From 2855895c8617dfd643e6377b7aef83959cdc44f6 Mon Sep 17 00:00:00 2001
From: bbauvin <baptiste.bauvin@centrale-marseille.fr>
Date: Wed, 24 Aug 2016 17:30:06 -0400
Subject: [PATCH] Added some monoview classifiers (diff. svm and adaboost),
 Added iteration gridsearch, added optimisation of dataset, simplified
 classifiers, and probably more

---
 .../ExecClassif.py                            |   218 +-
 .../FeatExtraction/DBCrawl.py                 |     0
 .../FeatExtraction/ExecFeatExtraction.py      |     0
 .../FeatExtraction/ExecFeatParaOpt.py         |     0
 .../FeatExtraction/FeatExtraction.py          |     0
 .../FeatExtraction/FeatParaOpt.py             |     0
 ..._24-FE-Caltech-ClassLabels-Description.csv |     0
 .../2016_03_24-FE-Caltech-ClassLabels.csv     |     0
 ...rientaions_8-nbClusters_20-Maxiter_100.csv |     0
 ...Caltech-HSV-Bins_[16,16,16]-Norm_Distr.csv |     0
 ...ltech-RGB-Bins_16-MaxCI_256-Norm_Distr.csv |     0
 ...4-FE-Caltech-RGB_HSV_SIFT_SURF_HOG-LOG.log |     0
 ...-FE-Caltech-SIFT-Cluster_35-Norm_Distr.csv |     0
 ...-FE-Caltech-SURF-Cluster_30-Norm_Distr.csv |     0
 .../2016_03_19-FeatParaOpt-HOG.csv            |     0
 ...re_HOG-Parameter_HOG_Cluster-ClassTime.png |   Bin
 ..._HOG-Parameter_HOG_Cluster-FeatExtTime.png |   Bin
 ...re_HOG-Parameter_HOG_Cluster-TotalTime.png |   Bin
 ..._03_22-FPO-Caltech-HOG-HOG_Cluster-LOG.log |     0
 ...2016_03_22-FPO-Caltech-HOG-HOG_Cluster.csv |     0
 ...-FPO-Caltech-HOG-HOG_Cluster-ClassTime.png |   Bin
 ...PO-Caltech-HOG-HOG_Cluster-FeatExtTime.png |   Bin
 ...-FPO-Caltech-HOG-HOG_Cluster-TotalTime.png |   Bin
 ...-FPO-Caltech-HOG-HOG_Cluster-ClassTime.png |   Bin
 ...PO-Caltech-HOG-HOG_Cluster-FeatExtTime.png |   Bin
 ..._03_23-FPO-Caltech-HOG-HOG_Cluster-LOG.log |     0
 ...-FPO-Caltech-HOG-HOG_Cluster-TotalTime.png |   Bin
 ...2016_03_23-FPO-Caltech-HOG-HOG_Cluster.csv |     0
 ...3-FPO-Caltech-HSV-HSV_H_Bins-ClassTime.png |   Bin
 ...FPO-Caltech-HSV-HSV_H_Bins-FeatExtTime.png |   Bin
 ...6_03_23-FPO-Caltech-HSV-HSV_H_Bins-LOG.log |     0
 ...3-FPO-Caltech-HSV-HSV_H_Bins-TotalTime.png |   Bin
 .../2016_03_23-FPO-Caltech-HSV-HSV_H_Bins.csv |     0
 ...016_03_23-FPO-Caltech-HSV-HSV_H_Bins-1.csv |     0
 ...3-FPO-Caltech-HSV-HSV_H_Bins-ClassTime.png |   Bin
 ...FPO-Caltech-HSV-HSV_H_Bins-FeatExtTime.png |   Bin
 ...03_23-FPO-Caltech-HSV-HSV_H_Bins-LOG-1.log |     0
 ...3-FPO-Caltech-HSV-HSV_H_Bins-TotalTime.png |   Bin
 ...016_03_23-FPO-Caltech-HSV-HSV_S_Bins-1.csv |     0
 ...3-FPO-Caltech-HSV-HSV_S_Bins-ClassTime.png |   Bin
 ...FPO-Caltech-HSV-HSV_S_Bins-FeatExtTime.png |   Bin
 ...03_23-FPO-Caltech-HSV-HSV_S_Bins-LOG-1.log |     0
 ...3-FPO-Caltech-HSV-HSV_S_Bins-TotalTime.png |   Bin
 ...3-FPO-Caltech-HSV-HSV_S_Bins-ClassTime.png |   Bin
 ...FPO-Caltech-HSV-HSV_S_Bins-FeatExtTime.png |   Bin
 ...6_03_23-FPO-Caltech-HSV-HSV_S_Bins-LOG.log |     0
 ...3-FPO-Caltech-HSV-HSV_S_Bins-TotalTime.png |   Bin
 .../2016_03_23-FPO-Caltech-HSV-HSV_S_Bins.csv |     0
 ...016_03_23-FPO-Caltech-HSV-HSV_V_Bins-1.csv |     0
 ...3-FPO-Caltech-HSV-HSV_V_Bins-ClassTime.png |   Bin
 ...FPO-Caltech-HSV-HSV_V_Bins-FeatExtTime.png |   Bin
 ...6_03_23-FPO-Caltech-HSV-HSV_V_Bins-LOG.log |     0
 ...3-FPO-Caltech-HSV-HSV_V_Bins-TotalTime.png |   Bin
 ...3-FPO-Caltech-HSV-HSV_V_Bins-ClassTime.png |   Bin
 ...FPO-Caltech-HSV-HSV_V_Bins-FeatExtTime.png |   Bin
 ...6_03_23-FPO-Caltech-HSV-HSV_V_Bins-LOG.log |     0
 ...3-FPO-Caltech-HSV-HSV_V_Bins-TotalTime.png |   Bin
 .../2016_03_23-FPO-Caltech-HSV-HSV_V_Bins.csv |     0
 ..._23-FPO-Caltech-RGB-RGB_Bins-ClassTime.png |   Bin
 ...3-FPO-Caltech-RGB-RGB_Bins-FeatExtTime.png |   Bin
 ...016_03_23-FPO-Caltech-RGB-RGB_Bins-LOG.log |     0
 ..._23-FPO-Caltech-RGB-RGB_Bins-TotalTime.png |   Bin
 .../2016_03_23-FPO-Caltech-RGB-RGB_Bins.csv   |     0
 .../2016_03_23-FPO-Caltech-RGB-RGB_Bins-1.csv |     0
 ..._23-FPO-Caltech-RGB-RGB_Bins-ClassTime.png |   Bin
 ...3-FPO-Caltech-RGB-RGB_Bins-FeatExtTime.png |   Bin
 ...6_03_23-FPO-Caltech-RGB-RGB_Bins-LOG-1.log |     0
 ..._23-FPO-Caltech-RGB-RGB_Bins-TotalTime.png |   Bin
 .../2016_01_24-RGB-ClassificationTime.png     |   Bin
 .../2016_01_24-RGB-FeatExtractTime.png        |   Bin
 .../RGB-2-64-12/2016_01_24-RGB-TotalTime.png  |   Bin
 .../RGB-2-64-12/2016_03_14-Results-RGB.csv    |     0
 .../RGB-2-64-12/Console-Output.txt            |     0
 ...03_23-FPO-Caltech-RGB-RGB_CI-ClassTime.png |   Bin
 ..._23-FPO-Caltech-RGB-RGB_CI-FeatExtTime.png |   Bin
 ...03_23-FPO-Caltech-RGB-RGB_CI-TotalTime.png |   Bin
 ...16_03_23-FPO-Caltech-RGB-RGB_MaxCI-LOG.log |     0
 .../2016_03_23-FPO-Caltech-RGB-RGB_MaxCI.csv  |     0
 ...PO-Caltech-SIFT-SIFT_Cluster-ClassTime.png |   Bin
 ...-Caltech-SIFT-SIFT_Cluster-FeatExtTime.png |   Bin
 ...3_23-FPO-Caltech-SIFT-SIFT_Cluster-LOG.log |     0
 ...PO-Caltech-SIFT-SIFT_Cluster-TotalTime.png |   Bin
 ...16_03_23-FPO-Caltech-SIFT-SIFT_Cluster.csv |     0
 ..._03_23-FPO-Caltech-SIFT-SIFT_Cluster-1.csv |     0
 ...PO-Caltech-SIFT-SIFT_Cluster-ClassTime.png |   Bin
 ...-Caltech-SIFT-SIFT_Cluster-FeatExtTime.png |   Bin
 ...23-FPO-Caltech-SIFT-SIFT_Cluster-LOG-1.log |     0
 ...PO-Caltech-SIFT-SIFT_Cluster-TotalTime.png |   Bin
 ...PO-Caltech-SURF-SURF_Cluster-ClassTime.png |   Bin
 ...-Caltech-SURF-SURF_Cluster-FeatExtTime.png |   Bin
 ...3_23-FPO-Caltech-SURF-SURF_Cluster-LOG.log |     0
 ...PO-Caltech-SURF-SURF_Cluster-TotalTime.png |   Bin
 ...16_03_23-FPO-Caltech-SURF-SURF_Cluster.csv |     0
 ..._03_23-FPO-Caltech-SURF-SURF_Cluster-1.csv |     0
 ...PO-Caltech-SURF-SURF_Cluster-ClassTime.png |   Bin
 ...-Caltech-SURF-SURF_Cluster-FeatExtTime.png |   Bin
 ...23-FPO-Caltech-SURF-SURF_Cluster-LOG-1.log |     0
 ...PO-Caltech-SURF-SURF_Cluster-TotalTime.png |   Bin
 .../SURF-50-200-4/2016_01_28-Results-SURF.csv |     0
 .../SURF-50-200-4/Console-Output.txt          |     0
 .../SURF-50-200-4/ScoreClassificationTime.png |   Bin
 .../SURF-50-200-4/ScoreFeatExtractionTime.png |   Bin
 .../SURF-50-200-4/ScoreTotalTime.png          |   Bin
 .../FeatExtraction/__init__.py                |     0
 .../FeatExtraction/hog_extraction.py          |     0
 .../hog_extraction_parallelized.py            |     0
 .../Monoview/ClassifMonoView.py               |    25 +-
 .../Monoview/ExecClassifMonoView.py           |   123 +-
 .../Monoview/ExecPlot.py                      |     0
 .../Monoview/ExportResults.py                 |     0
 ...8_19-CMV-MultiOmicDataset-RNASeq-LOG-1.log |     0
 ...8_19-CMV-MultiOmicDataset-RNASeq-LOG-2.log |     0
 ...8_19-CMV-MultiOmicDataset-RNASeq-LOG-3.log |     0
 ...8_19-CMV-MultiOmicDataset-RNASeq-LOG-4.log |     0
 ...8_19-CMV-MultiOmicDataset-RNASeq-LOG-5.log |     0
 ...8_19-CMV-MultiOmicDataset-RNASeq-LOG-6.log |     0
 ...8_19-CMV-MultiOmicDataset-RNASeq-LOG-7.log |     0
 ..._08_19-CMV-MultiOmicDataset-RNASeq-LOG.log |     0
 ...2016_08_19-CMV-MultiOmicDataset-RNASeq.csv |     0
 .../2016_08_22-CMV-MultiOmic-Clinic-1.csv     |     0
 .../2016_08_22-CMV-MultiOmic-Clinic-2.csv     |     0
 .../2016_08_22-CMV-MultiOmic-Clinic-3.csv     |     0
 .../2016_08_22-CMV-MultiOmic-Clinic-4.csv     |     0
 .../2016_08_22-CMV-MultiOmic-Clinic-5.csv     |     0
 ...8_22-CMV-MultiOmic-Clinic-ConfMatrix-1.csv |     0
 ..._22-CMV-MultiOmic-Clinic-ConfMatrix-10.csv |     0
 ..._22-CMV-MultiOmic-Clinic-ConfMatrix-11.csv |     0
 ..._22-CMV-MultiOmic-Clinic-ConfMatrix-12.csv |     0
 ..._22-CMV-MultiOmic-Clinic-ConfMatrix-13.csv |     0
 ..._22-CMV-MultiOmic-Clinic-ConfMatrix-14.csv |     0
 ..._22-CMV-MultiOmic-Clinic-ConfMatrix-15.csv |     0
 ..._22-CMV-MultiOmic-Clinic-ConfMatrix-16.csv |     0
 ..._22-CMV-MultiOmic-Clinic-ConfMatrix-17.csv |     0
 ..._22-CMV-MultiOmic-Clinic-ConfMatrix-18.csv |     0
 ..._22-CMV-MultiOmic-Clinic-ConfMatrix-19.csv |     0
 ...8_22-CMV-MultiOmic-Clinic-ConfMatrix-2.csv |     0
 ...8_22-CMV-MultiOmic-Clinic-ConfMatrix-3.csv |     0
 ...8_22-CMV-MultiOmic-Clinic-ConfMatrix-4.csv |     0
 ...8_22-CMV-MultiOmic-Clinic-ConfMatrix-5.csv |     0
 ...8_22-CMV-MultiOmic-Clinic-ConfMatrix-6.csv |     0
 ...8_22-CMV-MultiOmic-Clinic-ConfMatrix-7.csv |     0
 ...8_22-CMV-MultiOmic-Clinic-ConfMatrix-8.csv |     0
 ...8_22-CMV-MultiOmic-Clinic-ConfMatrix-9.csv |     0
 ..._08_22-CMV-MultiOmic-Clinic-ConfMatrix.csv |     0
 ...2-CMV-MultiOmic-Clinic-ConfMatrixImg-1.png |   Bin
 ...-CMV-MultiOmic-Clinic-ConfMatrixImg-10.png |   Bin
 ...-CMV-MultiOmic-Clinic-ConfMatrixImg-11.png |   Bin
 ...-CMV-MultiOmic-Clinic-ConfMatrixImg-12.png |   Bin
 ...-CMV-MultiOmic-Clinic-ConfMatrixImg-13.png |   Bin
 ...-CMV-MultiOmic-Clinic-ConfMatrixImg-14.png |   Bin
 ...-CMV-MultiOmic-Clinic-ConfMatrixImg-15.png |   Bin
 ...-CMV-MultiOmic-Clinic-ConfMatrixImg-16.png |   Bin
 ...-CMV-MultiOmic-Clinic-ConfMatrixImg-17.png |   Bin
 ...-CMV-MultiOmic-Clinic-ConfMatrixImg-18.png |   Bin
 ...-CMV-MultiOmic-Clinic-ConfMatrixImg-19.png |   Bin
 ...2-CMV-MultiOmic-Clinic-ConfMatrixImg-2.png |   Bin
 ...2-CMV-MultiOmic-Clinic-ConfMatrixImg-3.png |   Bin
 ...2-CMV-MultiOmic-Clinic-ConfMatrixImg-4.png |   Bin
 ...2-CMV-MultiOmic-Clinic-ConfMatrixImg-5.png |   Bin
 ...2-CMV-MultiOmic-Clinic-ConfMatrixImg-6.png |   Bin
 ...2-CMV-MultiOmic-Clinic-ConfMatrixImg-7.png |   Bin
 ...2-CMV-MultiOmic-Clinic-ConfMatrixImg-8.png |   Bin
 ...2-CMV-MultiOmic-Clinic-ConfMatrixImg-9.png |   Bin
 ..._22-CMV-MultiOmic-Clinic-ConfMatrixImg.png |   Bin
 ...16_08_22-CMV-MultiOmic-Clinic-Report-1.csv |     0
 ...6_08_22-CMV-MultiOmic-Clinic-Report-10.csv |     0
 ...6_08_22-CMV-MultiOmic-Clinic-Report-11.csv |     0
 ...6_08_22-CMV-MultiOmic-Clinic-Report-12.csv |     0
 ...6_08_22-CMV-MultiOmic-Clinic-Report-13.csv |     0
 ...6_08_22-CMV-MultiOmic-Clinic-Report-14.csv |     0
 ...6_08_22-CMV-MultiOmic-Clinic-Report-15.csv |     0
 ...6_08_22-CMV-MultiOmic-Clinic-Report-16.csv |     0
 ...6_08_22-CMV-MultiOmic-Clinic-Report-17.csv |     0
 ...6_08_22-CMV-MultiOmic-Clinic-Report-18.csv |     0
 ...6_08_22-CMV-MultiOmic-Clinic-Report-19.csv |     0
 ...16_08_22-CMV-MultiOmic-Clinic-Report-2.csv |     0
 ...16_08_22-CMV-MultiOmic-Clinic-Report-3.csv |     0
 ...16_08_22-CMV-MultiOmic-Clinic-Report-4.csv |     0
 ...16_08_22-CMV-MultiOmic-Clinic-Report-5.csv |     0
 ...16_08_22-CMV-MultiOmic-Clinic-Report-6.csv |     0
 ...16_08_22-CMV-MultiOmic-Clinic-Report-7.csv |     0
 ...16_08_22-CMV-MultiOmic-Clinic-Report-8.csv |     0
 ...16_08_22-CMV-MultiOmic-Clinic-Report-9.csv |     0
 ...2016_08_22-CMV-MultiOmic-Clinic-Report.csv |     0
 ...016_08_22-CMV-MultiOmic-Clinic-Score-1.png |   Bin
 ...16_08_22-CMV-MultiOmic-Clinic-Score-10.png |   Bin
 ...16_08_22-CMV-MultiOmic-Clinic-Score-11.png |   Bin
 ...16_08_22-CMV-MultiOmic-Clinic-Score-12.png |   Bin
 ...16_08_22-CMV-MultiOmic-Clinic-Score-13.png |   Bin
 ...16_08_22-CMV-MultiOmic-Clinic-Score-14.png |   Bin
 ...16_08_22-CMV-MultiOmic-Clinic-Score-15.png |   Bin
 ...16_08_22-CMV-MultiOmic-Clinic-Score-16.png |   Bin
 ...16_08_22-CMV-MultiOmic-Clinic-Score-17.png |   Bin
 ...16_08_22-CMV-MultiOmic-Clinic-Score-18.png |   Bin
 ...16_08_22-CMV-MultiOmic-Clinic-Score-19.png |   Bin
 ...016_08_22-CMV-MultiOmic-Clinic-Score-2.png |   Bin
 ...016_08_22-CMV-MultiOmic-Clinic-Score-3.png |   Bin
 ...016_08_22-CMV-MultiOmic-Clinic-Score-4.png |   Bin
 ...016_08_22-CMV-MultiOmic-Clinic-Score-5.png |   Bin
 ...016_08_22-CMV-MultiOmic-Clinic-Score-6.png |   Bin
 ...016_08_22-CMV-MultiOmic-Clinic-Score-7.png |   Bin
 ...016_08_22-CMV-MultiOmic-Clinic-Score-8.png |   Bin
 ...016_08_22-CMV-MultiOmic-Clinic-Score-9.png |   Bin
 .../2016_08_22-CMV-MultiOmic-Clinic-Score.png |   Bin
 ...016_08_22-CMV-MultiOmic-Clinic-Stats-1.csv |     0
 ...16_08_22-CMV-MultiOmic-Clinic-Stats-10.csv |     0
 ...16_08_22-CMV-MultiOmic-Clinic-Stats-11.csv |     0
 ...16_08_22-CMV-MultiOmic-Clinic-Stats-12.csv |     0
 ...16_08_22-CMV-MultiOmic-Clinic-Stats-13.csv |     0
 ...16_08_22-CMV-MultiOmic-Clinic-Stats-14.csv |     0
 ...16_08_22-CMV-MultiOmic-Clinic-Stats-15.csv |     0
 ...16_08_22-CMV-MultiOmic-Clinic-Stats-16.csv |     0
 ...16_08_22-CMV-MultiOmic-Clinic-Stats-17.csv |     0
 ...16_08_22-CMV-MultiOmic-Clinic-Stats-18.csv |     0
 ...16_08_22-CMV-MultiOmic-Clinic-Stats-19.csv |     0
 ...016_08_22-CMV-MultiOmic-Clinic-Stats-2.csv |     0
 ...016_08_22-CMV-MultiOmic-Clinic-Stats-3.csv |     0
 ...016_08_22-CMV-MultiOmic-Clinic-Stats-4.csv |     0
 ...016_08_22-CMV-MultiOmic-Clinic-Stats-5.csv |     0
 ...016_08_22-CMV-MultiOmic-Clinic-Stats-6.csv |     0
 ...016_08_22-CMV-MultiOmic-Clinic-Stats-7.csv |     0
 ...016_08_22-CMV-MultiOmic-Clinic-Stats-8.csv |     0
 ...016_08_22-CMV-MultiOmic-Clinic-Stats-9.csv |     0
 .../2016_08_22-CMV-MultiOmic-Clinic-Stats.csv |     0
 .../2016_08_22-CMV-MultiOmic-Clinic.csv       |     0
 ...8_22-CMV-MultiOmic-Methyl-ConfMatrix-1.csv |     0
 ..._22-CMV-MultiOmic-Methyl-ConfMatrix-10.csv |     0
 ..._22-CMV-MultiOmic-Methyl-ConfMatrix-11.csv |     0
 ..._22-CMV-MultiOmic-Methyl-ConfMatrix-12.csv |     0
 ..._22-CMV-MultiOmic-Methyl-ConfMatrix-13.csv |     0
 ..._22-CMV-MultiOmic-Methyl-ConfMatrix-14.csv |     0
 ..._22-CMV-MultiOmic-Methyl-ConfMatrix-15.csv |     0
 ..._22-CMV-MultiOmic-Methyl-ConfMatrix-16.csv |     0
 ..._22-CMV-MultiOmic-Methyl-ConfMatrix-17.csv |     0
 ..._22-CMV-MultiOmic-Methyl-ConfMatrix-18.csv |     0
 ..._22-CMV-MultiOmic-Methyl-ConfMatrix-19.csv |     0
 ...8_22-CMV-MultiOmic-Methyl-ConfMatrix-2.csv |     0
 ...8_22-CMV-MultiOmic-Methyl-ConfMatrix-3.csv |     0
 ...8_22-CMV-MultiOmic-Methyl-ConfMatrix-4.csv |     0
 ...8_22-CMV-MultiOmic-Methyl-ConfMatrix-5.csv |     0
 ...8_22-CMV-MultiOmic-Methyl-ConfMatrix-6.csv |     0
 ...8_22-CMV-MultiOmic-Methyl-ConfMatrix-7.csv |     0
 ...8_22-CMV-MultiOmic-Methyl-ConfMatrix-8.csv |     0
 ...8_22-CMV-MultiOmic-Methyl-ConfMatrix-9.csv |     0
 ..._08_22-CMV-MultiOmic-Methyl-ConfMatrix.csv |     0
 ...2-CMV-MultiOmic-Methyl-ConfMatrixImg-1.png |   Bin
 ...-CMV-MultiOmic-Methyl-ConfMatrixImg-10.png |   Bin
 ...-CMV-MultiOmic-Methyl-ConfMatrixImg-11.png |   Bin
 ...-CMV-MultiOmic-Methyl-ConfMatrixImg-12.png |   Bin
 ...-CMV-MultiOmic-Methyl-ConfMatrixImg-13.png |   Bin
 ...-CMV-MultiOmic-Methyl-ConfMatrixImg-14.png |   Bin
 ...-CMV-MultiOmic-Methyl-ConfMatrixImg-15.png |   Bin
 ...-CMV-MultiOmic-Methyl-ConfMatrixImg-16.png |   Bin
 ...-CMV-MultiOmic-Methyl-ConfMatrixImg-17.png |   Bin
 ...-CMV-MultiOmic-Methyl-ConfMatrixImg-18.png |   Bin
 ...-CMV-MultiOmic-Methyl-ConfMatrixImg-19.png |   Bin
 ...2-CMV-MultiOmic-Methyl-ConfMatrixImg-2.png |   Bin
 ...2-CMV-MultiOmic-Methyl-ConfMatrixImg-3.png |   Bin
 ...2-CMV-MultiOmic-Methyl-ConfMatrixImg-4.png |   Bin
 ...2-CMV-MultiOmic-Methyl-ConfMatrixImg-5.png |   Bin
 ...2-CMV-MultiOmic-Methyl-ConfMatrixImg-6.png |   Bin
 ...2-CMV-MultiOmic-Methyl-ConfMatrixImg-7.png |   Bin
 ...2-CMV-MultiOmic-Methyl-ConfMatrixImg-8.png |   Bin
 ...2-CMV-MultiOmic-Methyl-ConfMatrixImg-9.png |   Bin
 ..._22-CMV-MultiOmic-Methyl-ConfMatrixImg.png |   Bin
 ...16_08_22-CMV-MultiOmic-Methyl-Report-1.csv |     0
 ...6_08_22-CMV-MultiOmic-Methyl-Report-10.csv |     0
 ...6_08_22-CMV-MultiOmic-Methyl-Report-11.csv |     0
 ...6_08_22-CMV-MultiOmic-Methyl-Report-12.csv |     0
 ...6_08_22-CMV-MultiOmic-Methyl-Report-13.csv |     0
 ...6_08_22-CMV-MultiOmic-Methyl-Report-14.csv |     0
 ...6_08_22-CMV-MultiOmic-Methyl-Report-15.csv |     0
 ...6_08_22-CMV-MultiOmic-Methyl-Report-16.csv |     0
 ...6_08_22-CMV-MultiOmic-Methyl-Report-17.csv |     0
 ...6_08_22-CMV-MultiOmic-Methyl-Report-18.csv |     0
 ...6_08_22-CMV-MultiOmic-Methyl-Report-19.csv |     0
 ...16_08_22-CMV-MultiOmic-Methyl-Report-2.csv |     0
 ...16_08_22-CMV-MultiOmic-Methyl-Report-3.csv |     0
 ...16_08_22-CMV-MultiOmic-Methyl-Report-4.csv |     0
 ...16_08_22-CMV-MultiOmic-Methyl-Report-5.csv |     0
 ...16_08_22-CMV-MultiOmic-Methyl-Report-6.csv |     0
 ...16_08_22-CMV-MultiOmic-Methyl-Report-7.csv |     0
 ...16_08_22-CMV-MultiOmic-Methyl-Report-8.csv |     0
 ...16_08_22-CMV-MultiOmic-Methyl-Report-9.csv |     0
 ...2016_08_22-CMV-MultiOmic-Methyl-Report.csv |     0
 ...016_08_22-CMV-MultiOmic-Methyl-Score-1.png |   Bin
 ...16_08_22-CMV-MultiOmic-Methyl-Score-10.png |   Bin
 ...16_08_22-CMV-MultiOmic-Methyl-Score-11.png |   Bin
 ...16_08_22-CMV-MultiOmic-Methyl-Score-12.png |   Bin
 ...16_08_22-CMV-MultiOmic-Methyl-Score-13.png |   Bin
 ...16_08_22-CMV-MultiOmic-Methyl-Score-14.png |   Bin
 ...16_08_22-CMV-MultiOmic-Methyl-Score-15.png |   Bin
 ...16_08_22-CMV-MultiOmic-Methyl-Score-16.png |   Bin
 ...16_08_22-CMV-MultiOmic-Methyl-Score-17.png |   Bin
 ...16_08_22-CMV-MultiOmic-Methyl-Score-18.png |   Bin
 ...16_08_22-CMV-MultiOmic-Methyl-Score-19.png |   Bin
 ...016_08_22-CMV-MultiOmic-Methyl-Score-2.png |   Bin
 ...016_08_22-CMV-MultiOmic-Methyl-Score-3.png |   Bin
 ...016_08_22-CMV-MultiOmic-Methyl-Score-4.png |   Bin
 ...016_08_22-CMV-MultiOmic-Methyl-Score-5.png |   Bin
 ...016_08_22-CMV-MultiOmic-Methyl-Score-6.png |   Bin
 ...016_08_22-CMV-MultiOmic-Methyl-Score-7.png |   Bin
 ...016_08_22-CMV-MultiOmic-Methyl-Score-8.png |   Bin
 ...016_08_22-CMV-MultiOmic-Methyl-Score-9.png |   Bin
 .../2016_08_22-CMV-MultiOmic-Methyl-Score.png |   Bin
 ...016_08_22-CMV-MultiOmic-Methyl-Stats-1.csv |     0
 ...16_08_22-CMV-MultiOmic-Methyl-Stats-10.csv |     0
 ...16_08_22-CMV-MultiOmic-Methyl-Stats-11.csv |     0
 ...16_08_22-CMV-MultiOmic-Methyl-Stats-12.csv |     0
 ...16_08_22-CMV-MultiOmic-Methyl-Stats-13.csv |     0
 ...16_08_22-CMV-MultiOmic-Methyl-Stats-14.csv |     0
 ...16_08_22-CMV-MultiOmic-Methyl-Stats-15.csv |     0
 ...16_08_22-CMV-MultiOmic-Methyl-Stats-16.csv |     0
 ...16_08_22-CMV-MultiOmic-Methyl-Stats-17.csv |     0
 ...16_08_22-CMV-MultiOmic-Methyl-Stats-18.csv |     0
 ...16_08_22-CMV-MultiOmic-Methyl-Stats-19.csv |     0
 ...016_08_22-CMV-MultiOmic-Methyl-Stats-2.csv |     0
 ...016_08_22-CMV-MultiOmic-Methyl-Stats-3.csv |     0
 ...016_08_22-CMV-MultiOmic-Methyl-Stats-4.csv |     0
 ...016_08_22-CMV-MultiOmic-Methyl-Stats-5.csv |     0
 ...016_08_22-CMV-MultiOmic-Methyl-Stats-6.csv |     0
 ...016_08_22-CMV-MultiOmic-Methyl-Stats-7.csv |     0
 ...016_08_22-CMV-MultiOmic-Methyl-Stats-8.csv |     0
 ...016_08_22-CMV-MultiOmic-Methyl-Stats-9.csv |     0
 .../2016_08_22-CMV-MultiOmic-Methyl-Stats.csv |     0
 .../2016_08_22-CMV-MultiOmic-MiRNA_-1.csv     |     0
 .../2016_08_22-CMV-MultiOmic-MiRNA_-2.csv     |     0
 .../2016_08_22-CMV-MultiOmic-MiRNA_-3.csv     |     0
 .../2016_08_22-CMV-MultiOmic-MiRNA_-4.csv     |     0
 .../2016_08_22-CMV-MultiOmic-MiRNA_-5.csv     |     0
 .../2016_08_22-CMV-MultiOmic-MiRNA_-6.csv     |     0
 .../2016_08_22-CMV-MultiOmic-MiRNA_-7.csv     |     0
 .../2016_08_22-CMV-MultiOmic-MiRNA_-8.csv     |     0
 ...8_22-CMV-MultiOmic-MiRNA_-ConfMatrix-1.csv |     0
 ..._22-CMV-MultiOmic-MiRNA_-ConfMatrix-10.csv |     0
 ..._22-CMV-MultiOmic-MiRNA_-ConfMatrix-11.csv |     0
 ..._22-CMV-MultiOmic-MiRNA_-ConfMatrix-12.csv |     0
 ..._22-CMV-MultiOmic-MiRNA_-ConfMatrix-13.csv |     0
 ..._22-CMV-MultiOmic-MiRNA_-ConfMatrix-14.csv |     0
 ..._22-CMV-MultiOmic-MiRNA_-ConfMatrix-15.csv |     0
 ..._22-CMV-MultiOmic-MiRNA_-ConfMatrix-16.csv |     0
 ..._22-CMV-MultiOmic-MiRNA_-ConfMatrix-17.csv |     0
 ..._22-CMV-MultiOmic-MiRNA_-ConfMatrix-18.csv |     0
 ..._22-CMV-MultiOmic-MiRNA_-ConfMatrix-19.csv |     0
 ...8_22-CMV-MultiOmic-MiRNA_-ConfMatrix-2.csv |     0
 ...8_22-CMV-MultiOmic-MiRNA_-ConfMatrix-3.csv |     0
 ...8_22-CMV-MultiOmic-MiRNA_-ConfMatrix-4.csv |     0
 ...8_22-CMV-MultiOmic-MiRNA_-ConfMatrix-5.csv |     0
 ...8_22-CMV-MultiOmic-MiRNA_-ConfMatrix-6.csv |     0
 ...8_22-CMV-MultiOmic-MiRNA_-ConfMatrix-7.csv |     0
 ...8_22-CMV-MultiOmic-MiRNA_-ConfMatrix-8.csv |     0
 ...8_22-CMV-MultiOmic-MiRNA_-ConfMatrix-9.csv |     0
 ..._08_22-CMV-MultiOmic-MiRNA_-ConfMatrix.csv |     0
 ...2-CMV-MultiOmic-MiRNA_-ConfMatrixImg-1.png |   Bin
 ...-CMV-MultiOmic-MiRNA_-ConfMatrixImg-10.png |   Bin
 ...-CMV-MultiOmic-MiRNA_-ConfMatrixImg-11.png |   Bin
 ...-CMV-MultiOmic-MiRNA_-ConfMatrixImg-12.png |   Bin
 ...-CMV-MultiOmic-MiRNA_-ConfMatrixImg-13.png |   Bin
 ...-CMV-MultiOmic-MiRNA_-ConfMatrixImg-14.png |   Bin
 ...-CMV-MultiOmic-MiRNA_-ConfMatrixImg-15.png |   Bin
 ...-CMV-MultiOmic-MiRNA_-ConfMatrixImg-16.png |   Bin
 ...-CMV-MultiOmic-MiRNA_-ConfMatrixImg-17.png |   Bin
 ...-CMV-MultiOmic-MiRNA_-ConfMatrixImg-18.png |   Bin
 ...-CMV-MultiOmic-MiRNA_-ConfMatrixImg-19.png |   Bin
 ...2-CMV-MultiOmic-MiRNA_-ConfMatrixImg-2.png |   Bin
 ...2-CMV-MultiOmic-MiRNA_-ConfMatrixImg-3.png |   Bin
 ...2-CMV-MultiOmic-MiRNA_-ConfMatrixImg-4.png |   Bin
 ...2-CMV-MultiOmic-MiRNA_-ConfMatrixImg-5.png |   Bin
 ...2-CMV-MultiOmic-MiRNA_-ConfMatrixImg-6.png |   Bin
 ...2-CMV-MultiOmic-MiRNA_-ConfMatrixImg-7.png |   Bin
 ...2-CMV-MultiOmic-MiRNA_-ConfMatrixImg-8.png |   Bin
 ...2-CMV-MultiOmic-MiRNA_-ConfMatrixImg-9.png |   Bin
 ..._22-CMV-MultiOmic-MiRNA_-ConfMatrixImg.png |   Bin
 ...16_08_22-CMV-MultiOmic-MiRNA_-Report-1.csv |     0
 ...6_08_22-CMV-MultiOmic-MiRNA_-Report-10.csv |     0
 ...6_08_22-CMV-MultiOmic-MiRNA_-Report-11.csv |     0
 ...6_08_22-CMV-MultiOmic-MiRNA_-Report-12.csv |     0
 ...6_08_22-CMV-MultiOmic-MiRNA_-Report-13.csv |     0
 ...6_08_22-CMV-MultiOmic-MiRNA_-Report-14.csv |     0
 ...6_08_22-CMV-MultiOmic-MiRNA_-Report-15.csv |     0
 ...6_08_22-CMV-MultiOmic-MiRNA_-Report-16.csv |     0
 ...6_08_22-CMV-MultiOmic-MiRNA_-Report-17.csv |     0
 ...6_08_22-CMV-MultiOmic-MiRNA_-Report-18.csv |     0
 ...6_08_22-CMV-MultiOmic-MiRNA_-Report-19.csv |     0
 ...16_08_22-CMV-MultiOmic-MiRNA_-Report-2.csv |     0
 ...16_08_22-CMV-MultiOmic-MiRNA_-Report-3.csv |     0
 ...16_08_22-CMV-MultiOmic-MiRNA_-Report-4.csv |     0
 ...16_08_22-CMV-MultiOmic-MiRNA_-Report-5.csv |     0
 ...16_08_22-CMV-MultiOmic-MiRNA_-Report-6.csv |     0
 ...16_08_22-CMV-MultiOmic-MiRNA_-Report-7.csv |     0
 ...16_08_22-CMV-MultiOmic-MiRNA_-Report-8.csv |     0
 ...16_08_22-CMV-MultiOmic-MiRNA_-Report-9.csv |     0
 ...2016_08_22-CMV-MultiOmic-MiRNA_-Report.csv |     0
 ...016_08_22-CMV-MultiOmic-MiRNA_-Score-1.png |   Bin
 ...16_08_22-CMV-MultiOmic-MiRNA_-Score-10.png |   Bin
 ...16_08_22-CMV-MultiOmic-MiRNA_-Score-11.png |   Bin
 ...16_08_22-CMV-MultiOmic-MiRNA_-Score-12.png |   Bin
 ...16_08_22-CMV-MultiOmic-MiRNA_-Score-13.png |   Bin
 ...16_08_22-CMV-MultiOmic-MiRNA_-Score-14.png |   Bin
 ...16_08_22-CMV-MultiOmic-MiRNA_-Score-15.png |   Bin
 ...16_08_22-CMV-MultiOmic-MiRNA_-Score-16.png |   Bin
 ...16_08_22-CMV-MultiOmic-MiRNA_-Score-17.png |   Bin
 ...16_08_22-CMV-MultiOmic-MiRNA_-Score-18.png |   Bin
 ...16_08_22-CMV-MultiOmic-MiRNA_-Score-19.png |   Bin
 ...016_08_22-CMV-MultiOmic-MiRNA_-Score-2.png |   Bin
 ...016_08_22-CMV-MultiOmic-MiRNA_-Score-3.png |   Bin
 ...016_08_22-CMV-MultiOmic-MiRNA_-Score-4.png |   Bin
 ...016_08_22-CMV-MultiOmic-MiRNA_-Score-5.png |   Bin
 ...016_08_22-CMV-MultiOmic-MiRNA_-Score-6.png |   Bin
 ...016_08_22-CMV-MultiOmic-MiRNA_-Score-7.png |   Bin
 ...016_08_22-CMV-MultiOmic-MiRNA_-Score-8.png |   Bin
 ...016_08_22-CMV-MultiOmic-MiRNA_-Score-9.png |   Bin
 .../2016_08_22-CMV-MultiOmic-MiRNA_-Score.png |   Bin
 ...016_08_22-CMV-MultiOmic-MiRNA_-Stats-1.csv |     0
 ...16_08_22-CMV-MultiOmic-MiRNA_-Stats-10.csv |     0
 ...16_08_22-CMV-MultiOmic-MiRNA_-Stats-11.csv |     0
 ...16_08_22-CMV-MultiOmic-MiRNA_-Stats-12.csv |     0
 ...16_08_22-CMV-MultiOmic-MiRNA_-Stats-13.csv |     0
 ...16_08_22-CMV-MultiOmic-MiRNA_-Stats-14.csv |     0
 ...16_08_22-CMV-MultiOmic-MiRNA_-Stats-15.csv |     0
 ...16_08_22-CMV-MultiOmic-MiRNA_-Stats-16.csv |     0
 ...16_08_22-CMV-MultiOmic-MiRNA_-Stats-17.csv |     0
 ...16_08_22-CMV-MultiOmic-MiRNA_-Stats-18.csv |     0
 ...16_08_22-CMV-MultiOmic-MiRNA_-Stats-19.csv |     0
 ...016_08_22-CMV-MultiOmic-MiRNA_-Stats-2.csv |     0
 ...016_08_22-CMV-MultiOmic-MiRNA_-Stats-3.csv |     0
 ...016_08_22-CMV-MultiOmic-MiRNA_-Stats-4.csv |     0
 ...016_08_22-CMV-MultiOmic-MiRNA_-Stats-5.csv |     0
 ...016_08_22-CMV-MultiOmic-MiRNA_-Stats-6.csv |     0
 ...016_08_22-CMV-MultiOmic-MiRNA_-Stats-7.csv |     0
 ...016_08_22-CMV-MultiOmic-MiRNA_-Stats-8.csv |     0
 ...016_08_22-CMV-MultiOmic-MiRNA_-Stats-9.csv |     0
 .../2016_08_22-CMV-MultiOmic-MiRNA_-Stats.csv |     0
 .../2016_08_22-CMV-MultiOmic-MiRNA_.csv       |     0
 .../2016_08_22-CMV-MultiOmic-RNASeq-1.csv     |     0
 .../2016_08_22-CMV-MultiOmic-RNASeq-2.csv     |     0
 .../2016_08_22-CMV-MultiOmic-RNASeq-3.csv     |     0
 .../2016_08_22-CMV-MultiOmic-RNASeq-4.csv     |     0
 .../2016_08_22-CMV-MultiOmic-RNASeq-5.csv     |     0
 .../2016_08_22-CMV-MultiOmic-RNASeq-6.csv     |     0
 .../2016_08_22-CMV-MultiOmic-RNASeq-7.csv     |     0
 ...8_22-CMV-MultiOmic-RNASeq-ConfMatrix-1.csv |     0
 ..._22-CMV-MultiOmic-RNASeq-ConfMatrix-10.csv |     0
 ..._22-CMV-MultiOmic-RNASeq-ConfMatrix-11.csv |     0
 ..._22-CMV-MultiOmic-RNASeq-ConfMatrix-12.csv |     0
 ..._22-CMV-MultiOmic-RNASeq-ConfMatrix-13.csv |     0
 ..._22-CMV-MultiOmic-RNASeq-ConfMatrix-14.csv |     0
 ..._22-CMV-MultiOmic-RNASeq-ConfMatrix-15.csv |     0
 ..._22-CMV-MultiOmic-RNASeq-ConfMatrix-16.csv |     0
 ..._22-CMV-MultiOmic-RNASeq-ConfMatrix-17.csv |     0
 ..._22-CMV-MultiOmic-RNASeq-ConfMatrix-18.csv |     0
 ..._22-CMV-MultiOmic-RNASeq-ConfMatrix-19.csv |     0
 ...8_22-CMV-MultiOmic-RNASeq-ConfMatrix-2.csv |     0
 ...8_22-CMV-MultiOmic-RNASeq-ConfMatrix-3.csv |     0
 ...8_22-CMV-MultiOmic-RNASeq-ConfMatrix-4.csv |     0
 ...8_22-CMV-MultiOmic-RNASeq-ConfMatrix-5.csv |     0
 ...8_22-CMV-MultiOmic-RNASeq-ConfMatrix-6.csv |     0
 ...8_22-CMV-MultiOmic-RNASeq-ConfMatrix-7.csv |     0
 ...8_22-CMV-MultiOmic-RNASeq-ConfMatrix-8.csv |     0
 ...8_22-CMV-MultiOmic-RNASeq-ConfMatrix-9.csv |     0
 ..._08_22-CMV-MultiOmic-RNASeq-ConfMatrix.csv |     0
 ...2-CMV-MultiOmic-RNASeq-ConfMatrixImg-1.png |   Bin
 ...-CMV-MultiOmic-RNASeq-ConfMatrixImg-10.png |   Bin
 ...-CMV-MultiOmic-RNASeq-ConfMatrixImg-11.png |   Bin
 ...-CMV-MultiOmic-RNASeq-ConfMatrixImg-12.png |   Bin
 ...-CMV-MultiOmic-RNASeq-ConfMatrixImg-13.png |   Bin
 ...-CMV-MultiOmic-RNASeq-ConfMatrixImg-14.png |   Bin
 ...-CMV-MultiOmic-RNASeq-ConfMatrixImg-15.png |   Bin
 ...-CMV-MultiOmic-RNASeq-ConfMatrixImg-16.png |   Bin
 ...-CMV-MultiOmic-RNASeq-ConfMatrixImg-17.png |   Bin
 ...-CMV-MultiOmic-RNASeq-ConfMatrixImg-18.png |   Bin
 ...-CMV-MultiOmic-RNASeq-ConfMatrixImg-19.png |   Bin
 ...2-CMV-MultiOmic-RNASeq-ConfMatrixImg-2.png |   Bin
 ...2-CMV-MultiOmic-RNASeq-ConfMatrixImg-3.png |   Bin
 ...2-CMV-MultiOmic-RNASeq-ConfMatrixImg-4.png |   Bin
 ...2-CMV-MultiOmic-RNASeq-ConfMatrixImg-5.png |   Bin
 ...2-CMV-MultiOmic-RNASeq-ConfMatrixImg-6.png |   Bin
 ...2-CMV-MultiOmic-RNASeq-ConfMatrixImg-7.png |   Bin
 ...2-CMV-MultiOmic-RNASeq-ConfMatrixImg-8.png |   Bin
 ...2-CMV-MultiOmic-RNASeq-ConfMatrixImg-9.png |   Bin
 ..._22-CMV-MultiOmic-RNASeq-ConfMatrixImg.png |   Bin
 ...16_08_22-CMV-MultiOmic-RNASeq-Report-1.csv |     0
 ...6_08_22-CMV-MultiOmic-RNASeq-Report-10.csv |     0
 ...6_08_22-CMV-MultiOmic-RNASeq-Report-11.csv |     0
 ...6_08_22-CMV-MultiOmic-RNASeq-Report-12.csv |     0
 ...6_08_22-CMV-MultiOmic-RNASeq-Report-13.csv |     0
 ...6_08_22-CMV-MultiOmic-RNASeq-Report-14.csv |     0
 ...6_08_22-CMV-MultiOmic-RNASeq-Report-15.csv |     0
 ...6_08_22-CMV-MultiOmic-RNASeq-Report-16.csv |     0
 ...6_08_22-CMV-MultiOmic-RNASeq-Report-17.csv |     0
 ...6_08_22-CMV-MultiOmic-RNASeq-Report-18.csv |     0
 ...6_08_22-CMV-MultiOmic-RNASeq-Report-19.csv |     0
 ...16_08_22-CMV-MultiOmic-RNASeq-Report-2.csv |     0
 ...16_08_22-CMV-MultiOmic-RNASeq-Report-3.csv |     0
 ...16_08_22-CMV-MultiOmic-RNASeq-Report-4.csv |     0
 ...16_08_22-CMV-MultiOmic-RNASeq-Report-5.csv |     0
 ...16_08_22-CMV-MultiOmic-RNASeq-Report-6.csv |     0
 ...16_08_22-CMV-MultiOmic-RNASeq-Report-7.csv |     0
 ...16_08_22-CMV-MultiOmic-RNASeq-Report-8.csv |     0
 ...16_08_22-CMV-MultiOmic-RNASeq-Report-9.csv |     0
 ...2016_08_22-CMV-MultiOmic-RNASeq-Report.csv |     0
 ...016_08_22-CMV-MultiOmic-RNASeq-Score-1.png |   Bin
 ...16_08_22-CMV-MultiOmic-RNASeq-Score-10.png |   Bin
 ...16_08_22-CMV-MultiOmic-RNASeq-Score-11.png |   Bin
 ...16_08_22-CMV-MultiOmic-RNASeq-Score-12.png |   Bin
 ...16_08_22-CMV-MultiOmic-RNASeq-Score-13.png |   Bin
 ...16_08_22-CMV-MultiOmic-RNASeq-Score-14.png |   Bin
 ...16_08_22-CMV-MultiOmic-RNASeq-Score-15.png |   Bin
 ...16_08_22-CMV-MultiOmic-RNASeq-Score-16.png |   Bin
 ...16_08_22-CMV-MultiOmic-RNASeq-Score-17.png |   Bin
 ...16_08_22-CMV-MultiOmic-RNASeq-Score-18.png |   Bin
 ...16_08_22-CMV-MultiOmic-RNASeq-Score-19.png |   Bin
 ...016_08_22-CMV-MultiOmic-RNASeq-Score-2.png |   Bin
 ...016_08_22-CMV-MultiOmic-RNASeq-Score-3.png |   Bin
 ...016_08_22-CMV-MultiOmic-RNASeq-Score-4.png |   Bin
 ...016_08_22-CMV-MultiOmic-RNASeq-Score-5.png |   Bin
 ...016_08_22-CMV-MultiOmic-RNASeq-Score-6.png |   Bin
 ...016_08_22-CMV-MultiOmic-RNASeq-Score-7.png |   Bin
 ...016_08_22-CMV-MultiOmic-RNASeq-Score-8.png |   Bin
 ...016_08_22-CMV-MultiOmic-RNASeq-Score-9.png |   Bin
 .../2016_08_22-CMV-MultiOmic-RNASeq-Score.png |   Bin
 ...016_08_22-CMV-MultiOmic-RNASeq-Stats-1.csv |     0
 ...16_08_22-CMV-MultiOmic-RNASeq-Stats-10.csv |     0
 ...16_08_22-CMV-MultiOmic-RNASeq-Stats-11.csv |     0
 ...16_08_22-CMV-MultiOmic-RNASeq-Stats-12.csv |     0
 ...16_08_22-CMV-MultiOmic-RNASeq-Stats-13.csv |     0
 ...16_08_22-CMV-MultiOmic-RNASeq-Stats-14.csv |     0
 ...16_08_22-CMV-MultiOmic-RNASeq-Stats-15.csv |     0
 ...16_08_22-CMV-MultiOmic-RNASeq-Stats-16.csv |     0
 ...16_08_22-CMV-MultiOmic-RNASeq-Stats-17.csv |     0
 ...16_08_22-CMV-MultiOmic-RNASeq-Stats-18.csv |     0
 ...16_08_22-CMV-MultiOmic-RNASeq-Stats-19.csv |     0
 ...016_08_22-CMV-MultiOmic-RNASeq-Stats-2.csv |     0
 ...016_08_22-CMV-MultiOmic-RNASeq-Stats-3.csv |     0
 ...016_08_22-CMV-MultiOmic-RNASeq-Stats-4.csv |     0
 ...016_08_22-CMV-MultiOmic-RNASeq-Stats-5.csv |     0
 ...016_08_22-CMV-MultiOmic-RNASeq-Stats-6.csv |     0
 ...016_08_22-CMV-MultiOmic-RNASeq-Stats-7.csv |     0
 ...016_08_22-CMV-MultiOmic-RNASeq-Stats-8.csv |     0
 ...016_08_22-CMV-MultiOmic-RNASeq-Stats-9.csv |     0
 .../2016_08_22-CMV-MultiOmic-RNASeq-Stats.csv |     0
 .../2016_08_22-CMV-MultiOmic-RNASeq.csv       |     0
 ...8_23-CMV-MultiOmic-Clinic-ConfMatrix-1.csv |     0
 ...8_23-CMV-MultiOmic-Clinic-ConfMatrix-2.csv |     0
 ...8_23-CMV-MultiOmic-Clinic-ConfMatrix-3.csv |     0
 ...8_23-CMV-MultiOmic-Clinic-ConfMatrix-4.csv |     0
 ..._08_23-CMV-MultiOmic-Clinic-ConfMatrix.csv |     0
 ...3-CMV-MultiOmic-Clinic-ConfMatrixImg-1.png |   Bin
 ...3-CMV-MultiOmic-Clinic-ConfMatrixImg-2.png |   Bin
 ...3-CMV-MultiOmic-Clinic-ConfMatrixImg-3.png |   Bin
 ...3-CMV-MultiOmic-Clinic-ConfMatrixImg-4.png |   Bin
 ..._23-CMV-MultiOmic-Clinic-ConfMatrixImg.png |   Bin
 ...16_08_23-CMV-MultiOmic-Clinic-Report-1.csv |     0
 ...16_08_23-CMV-MultiOmic-Clinic-Report-2.csv |     0
 ...16_08_23-CMV-MultiOmic-Clinic-Report-3.csv |     0
 ...16_08_23-CMV-MultiOmic-Clinic-Report-4.csv |     0
 ...2016_08_23-CMV-MultiOmic-Clinic-Report.csv |     0
 ...016_08_23-CMV-MultiOmic-Clinic-Score-1.png |   Bin
 ...016_08_23-CMV-MultiOmic-Clinic-Score-2.png |   Bin
 ...016_08_23-CMV-MultiOmic-Clinic-Score-3.png |   Bin
 ...016_08_23-CMV-MultiOmic-Clinic-Score-4.png |   Bin
 .../2016_08_23-CMV-MultiOmic-Clinic-Score.png |   Bin
 ...016_08_23-CMV-MultiOmic-Clinic-Stats-1.csv |     0
 ...016_08_23-CMV-MultiOmic-Clinic-Stats-2.csv |     0
 ...016_08_23-CMV-MultiOmic-Clinic-Stats-3.csv |     0
 ...016_08_23-CMV-MultiOmic-Clinic-Stats-4.csv |     0
 .../2016_08_23-CMV-MultiOmic-Clinic-Stats.csv |     0
 ...8_23-CMV-MultiOmic-Methyl-ConfMatrix-1.csv |     0
 ...8_23-CMV-MultiOmic-Methyl-ConfMatrix-2.csv |     0
 ...8_23-CMV-MultiOmic-Methyl-ConfMatrix-3.csv |     0
 ...8_23-CMV-MultiOmic-Methyl-ConfMatrix-4.csv |     0
 ..._08_23-CMV-MultiOmic-Methyl-ConfMatrix.csv |     0
 ...3-CMV-MultiOmic-Methyl-ConfMatrixImg-1.png |   Bin
 ...3-CMV-MultiOmic-Methyl-ConfMatrixImg-2.png |   Bin
 ...3-CMV-MultiOmic-Methyl-ConfMatrixImg-3.png |   Bin
 ...3-CMV-MultiOmic-Methyl-ConfMatrixImg-4.png |   Bin
 ..._23-CMV-MultiOmic-Methyl-ConfMatrixImg.png |   Bin
 ...16_08_23-CMV-MultiOmic-Methyl-Report-1.csv |     0
 ...16_08_23-CMV-MultiOmic-Methyl-Report-2.csv |     0
 ...16_08_23-CMV-MultiOmic-Methyl-Report-3.csv |     0
 ...16_08_23-CMV-MultiOmic-Methyl-Report-4.csv |     0
 ...2016_08_23-CMV-MultiOmic-Methyl-Report.csv |     0
 ...016_08_23-CMV-MultiOmic-Methyl-Score-1.png |   Bin
 ...016_08_23-CMV-MultiOmic-Methyl-Score-2.png |   Bin
 ...016_08_23-CMV-MultiOmic-Methyl-Score-3.png |   Bin
 ...016_08_23-CMV-MultiOmic-Methyl-Score-4.png |   Bin
 .../2016_08_23-CMV-MultiOmic-Methyl-Score.png |   Bin
 ...016_08_23-CMV-MultiOmic-Methyl-Stats-1.csv |     0
 ...016_08_23-CMV-MultiOmic-Methyl-Stats-2.csv |     0
 ...016_08_23-CMV-MultiOmic-Methyl-Stats-3.csv |     0
 ...016_08_23-CMV-MultiOmic-Methyl-Stats-4.csv |     0
 .../2016_08_23-CMV-MultiOmic-Methyl-Stats.csv |     0
 ...8_23-CMV-MultiOmic-MiRNA_-ConfMatrix-1.csv |     0
 ...8_23-CMV-MultiOmic-MiRNA_-ConfMatrix-2.csv |     0
 ...8_23-CMV-MultiOmic-MiRNA_-ConfMatrix-3.csv |     0
 ...8_23-CMV-MultiOmic-MiRNA_-ConfMatrix-4.csv |     0
 ...8_23-CMV-MultiOmic-MiRNA_-ConfMatrix-5.csv |     0
 ..._08_23-CMV-MultiOmic-MiRNA_-ConfMatrix.csv |     0
 ...3-CMV-MultiOmic-MiRNA_-ConfMatrixImg-1.png |   Bin
 ...3-CMV-MultiOmic-MiRNA_-ConfMatrixImg-2.png |   Bin
 ...3-CMV-MultiOmic-MiRNA_-ConfMatrixImg-3.png |   Bin
 ...3-CMV-MultiOmic-MiRNA_-ConfMatrixImg-4.png |   Bin
 ...3-CMV-MultiOmic-MiRNA_-ConfMatrixImg-5.png |   Bin
 ..._23-CMV-MultiOmic-MiRNA_-ConfMatrixImg.png |   Bin
 ...16_08_23-CMV-MultiOmic-MiRNA_-Report-1.csv |     0
 ...16_08_23-CMV-MultiOmic-MiRNA_-Report-2.csv |     0
 ...16_08_23-CMV-MultiOmic-MiRNA_-Report-3.csv |     0
 ...16_08_23-CMV-MultiOmic-MiRNA_-Report-4.csv |     0
 ...16_08_23-CMV-MultiOmic-MiRNA_-Report-5.csv |     0
 ...2016_08_23-CMV-MultiOmic-MiRNA_-Report.csv |     0
 ...016_08_23-CMV-MultiOmic-MiRNA_-Score-1.png |   Bin
 ...016_08_23-CMV-MultiOmic-MiRNA_-Score-2.png |   Bin
 ...016_08_23-CMV-MultiOmic-MiRNA_-Score-3.png |   Bin
 ...016_08_23-CMV-MultiOmic-MiRNA_-Score-4.png |   Bin
 ...016_08_23-CMV-MultiOmic-MiRNA_-Score-5.png |   Bin
 .../2016_08_23-CMV-MultiOmic-MiRNA_-Score.png |   Bin
 ...016_08_23-CMV-MultiOmic-MiRNA_-Stats-1.csv |     0
 ...016_08_23-CMV-MultiOmic-MiRNA_-Stats-2.csv |     0
 ...016_08_23-CMV-MultiOmic-MiRNA_-Stats-3.csv |     0
 ...016_08_23-CMV-MultiOmic-MiRNA_-Stats-4.csv |     0
 ...016_08_23-CMV-MultiOmic-MiRNA_-Stats-5.csv |     0
 .../2016_08_23-CMV-MultiOmic-MiRNA_-Stats.csv |     0
 ...8_23-CMV-MultiOmic-RNASeq-ConfMatrix-1.csv |     0
 ...8_23-CMV-MultiOmic-RNASeq-ConfMatrix-2.csv |     0
 ...8_23-CMV-MultiOmic-RNASeq-ConfMatrix-3.csv |     0
 ...8_23-CMV-MultiOmic-RNASeq-ConfMatrix-4.csv |     0
 ..._08_23-CMV-MultiOmic-RNASeq-ConfMatrix.csv |     0
 ...3-CMV-MultiOmic-RNASeq-ConfMatrixImg-1.png |   Bin
 ...3-CMV-MultiOmic-RNASeq-ConfMatrixImg-2.png |   Bin
 ...3-CMV-MultiOmic-RNASeq-ConfMatrixImg-3.png |   Bin
 ...3-CMV-MultiOmic-RNASeq-ConfMatrixImg-4.png |   Bin
 ..._23-CMV-MultiOmic-RNASeq-ConfMatrixImg.png |   Bin
 ...16_08_23-CMV-MultiOmic-RNASeq-Report-1.csv |     0
 ...16_08_23-CMV-MultiOmic-RNASeq-Report-2.csv |     0
 ...16_08_23-CMV-MultiOmic-RNASeq-Report-3.csv |     0
 ...16_08_23-CMV-MultiOmic-RNASeq-Report-4.csv |     0
 ...2016_08_23-CMV-MultiOmic-RNASeq-Report.csv |     0
 ...016_08_23-CMV-MultiOmic-RNASeq-Score-1.png |   Bin
 ...016_08_23-CMV-MultiOmic-RNASeq-Score-2.png |   Bin
 ...016_08_23-CMV-MultiOmic-RNASeq-Score-3.png |   Bin
 ...016_08_23-CMV-MultiOmic-RNASeq-Score-4.png |   Bin
 .../2016_08_23-CMV-MultiOmic-RNASeq-Score.png |   Bin
 ...016_08_23-CMV-MultiOmic-RNASeq-Stats-1.csv |     0
 ...016_08_23-CMV-MultiOmic-RNASeq-Stats-2.csv |     0
 ...016_08_23-CMV-MultiOmic-RNASeq-Stats-3.csv |     0
 ...016_08_23-CMV-MultiOmic-RNASeq-Stats-4.csv |     0
 .../2016_08_23-CMV-MultiOmic-RNASeq-Stats.csv |     0
 .../2016_08_24-CMV-DB-RGB-LOG-1.log           |     1 +
 .../2016_08_24-CMV-DB-RGB-LOG-2.log           |     1 +
 .../2016_08_24-CMV-DB-RGB-LOG-3.log           |     1 +
 .../2016_08_24-CMV-DB-RGB-LOG.log}            |     0
 ...8_24-CMV-MultiOmic-Clinic-ConfMatrix-1.csv |     4 +
 ...8_24-CMV-MultiOmic-Clinic-ConfMatrix-2.csv |     4 +
 ...8_24-CMV-MultiOmic-Clinic-ConfMatrix-3.csv |     4 +
 ...8_24-CMV-MultiOmic-Clinic-ConfMatrix-4.csv |     4 +
 ...8_24-CMV-MultiOmic-Clinic-ConfMatrix-5.csv |     4 +
 ...8_24-CMV-MultiOmic-Clinic-ConfMatrix-6.csv |     4 +
 ...8_24-CMV-MultiOmic-Clinic-ConfMatrix-7.csv |     4 +
 ...8_24-CMV-MultiOmic-Clinic-ConfMatrix-8.csv |     4 +
 ...8_24-CMV-MultiOmic-Clinic-ConfMatrix-9.csv |     4 +
 ..._08_24-CMV-MultiOmic-Clinic-ConfMatrix.csv |     4 +
 ...4-CMV-MultiOmic-Clinic-ConfMatrixImg-1.png |   Bin 0 -> 21677 bytes
 ...4-CMV-MultiOmic-Clinic-ConfMatrixImg-2.png |   Bin 0 -> 22041 bytes
 ...4-CMV-MultiOmic-Clinic-ConfMatrixImg-3.png |   Bin 0 -> 19643 bytes
 ...4-CMV-MultiOmic-Clinic-ConfMatrixImg-4.png |   Bin 0 -> 21677 bytes
 ...4-CMV-MultiOmic-Clinic-ConfMatrixImg-5.png |   Bin 0 -> 21741 bytes
 ...4-CMV-MultiOmic-Clinic-ConfMatrixImg-6.png |   Bin 0 -> 20429 bytes
 ...4-CMV-MultiOmic-Clinic-ConfMatrixImg-7.png |   Bin 0 -> 22305 bytes
 ...4-CMV-MultiOmic-Clinic-ConfMatrixImg-8.png |   Bin 0 -> 22971 bytes
 ...4-CMV-MultiOmic-Clinic-ConfMatrixImg-9.png |   Bin 0 -> 21510 bytes
 ..._24-CMV-MultiOmic-Clinic-ConfMatrixImg.png |   Bin 0 -> 19530 bytes
 ...16_08_24-CMV-MultiOmic-Clinic-Report-1.csv |     3 +
 ...16_08_24-CMV-MultiOmic-Clinic-Report-2.csv |     3 +
 ...16_08_24-CMV-MultiOmic-Clinic-Report-3.csv |     3 +
 ...16_08_24-CMV-MultiOmic-Clinic-Report-4.csv |     3 +
 ...16_08_24-CMV-MultiOmic-Clinic-Report-5.csv |     3 +
 ...16_08_24-CMV-MultiOmic-Clinic-Report-6.csv |     3 +
 ...16_08_24-CMV-MultiOmic-Clinic-Report-7.csv |     3 +
 ...16_08_24-CMV-MultiOmic-Clinic-Report-8.csv |     3 +
 ...16_08_24-CMV-MultiOmic-Clinic-Report-9.csv |     3 +
 ...2016_08_24-CMV-MultiOmic-Clinic-Report.csv |     3 +
 ...016_08_24-CMV-MultiOmic-Clinic-Score-1.png |   Bin 0 -> 23633 bytes
 ...016_08_24-CMV-MultiOmic-Clinic-Score-2.png |   Bin 0 -> 23649 bytes
 ...016_08_24-CMV-MultiOmic-Clinic-Score-3.png |   Bin 0 -> 23678 bytes
 ...016_08_24-CMV-MultiOmic-Clinic-Score-4.png |   Bin 0 -> 23636 bytes
 ...016_08_24-CMV-MultiOmic-Clinic-Score-5.png |   Bin 0 -> 23645 bytes
 ...016_08_24-CMV-MultiOmic-Clinic-Score-6.png |   Bin 0 -> 23694 bytes
 ...016_08_24-CMV-MultiOmic-Clinic-Score-7.png |   Bin 0 -> 23672 bytes
 ...016_08_24-CMV-MultiOmic-Clinic-Score-8.png |   Bin 0 -> 23670 bytes
 ...016_08_24-CMV-MultiOmic-Clinic-Score-9.png |   Bin 0 -> 23594 bytes
 .../2016_08_24-CMV-MultiOmic-Clinic-Score.png |   Bin 0 -> 23581 bytes
 ...016_08_24-CMV-MultiOmic-Clinic-Stats-1.csv |     8 +
 ...016_08_24-CMV-MultiOmic-Clinic-Stats-2.csv |     8 +
 ...016_08_24-CMV-MultiOmic-Clinic-Stats-3.csv |     8 +
 ...016_08_24-CMV-MultiOmic-Clinic-Stats-4.csv |     8 +
 ...016_08_24-CMV-MultiOmic-Clinic-Stats-5.csv |     8 +
 ...016_08_24-CMV-MultiOmic-Clinic-Stats-6.csv |     8 +
 ...016_08_24-CMV-MultiOmic-Clinic-Stats-7.csv |     8 +
 ...016_08_24-CMV-MultiOmic-Clinic-Stats-8.csv |     8 +
 ...016_08_24-CMV-MultiOmic-Clinic-Stats-9.csv |     8 +
 .../2016_08_24-CMV-MultiOmic-Clinic-Stats.csv |     8 +
 ...8_24-CMV-MultiOmic-Methyl-ConfMatrix-1.csv |     4 +
 ...8_24-CMV-MultiOmic-Methyl-ConfMatrix-2.csv |     4 +
 ...8_24-CMV-MultiOmic-Methyl-ConfMatrix-3.csv |     4 +
 ...8_24-CMV-MultiOmic-Methyl-ConfMatrix-4.csv |     4 +
 ...8_24-CMV-MultiOmic-Methyl-ConfMatrix-5.csv |     4 +
 ...8_24-CMV-MultiOmic-Methyl-ConfMatrix-6.csv |     4 +
 ...8_24-CMV-MultiOmic-Methyl-ConfMatrix-7.csv |     4 +
 ..._08_24-CMV-MultiOmic-Methyl-ConfMatrix.csv |     4 +
 ...4-CMV-MultiOmic-Methyl-ConfMatrixImg-1.png |   Bin 0 -> 21693 bytes
 ...4-CMV-MultiOmic-Methyl-ConfMatrixImg-2.png |   Bin 0 -> 20549 bytes
 ...4-CMV-MultiOmic-Methyl-ConfMatrixImg-3.png |   Bin 0 -> 22211 bytes
 ...4-CMV-MultiOmic-Methyl-ConfMatrixImg-4.png |   Bin 0 -> 20772 bytes
 ...4-CMV-MultiOmic-Methyl-ConfMatrixImg-5.png |   Bin 0 -> 20802 bytes
 ...4-CMV-MultiOmic-Methyl-ConfMatrixImg-6.png |   Bin 0 -> 21063 bytes
 ...4-CMV-MultiOmic-Methyl-ConfMatrixImg-7.png |   Bin 0 -> 19530 bytes
 ..._24-CMV-MultiOmic-Methyl-ConfMatrixImg.png |   Bin 0 -> 22429 bytes
 ...16_08_24-CMV-MultiOmic-Methyl-Report-1.csv |     3 +
 ...16_08_24-CMV-MultiOmic-Methyl-Report-2.csv |     3 +
 ...16_08_24-CMV-MultiOmic-Methyl-Report-3.csv |     3 +
 ...16_08_24-CMV-MultiOmic-Methyl-Report-4.csv |     3 +
 ...16_08_24-CMV-MultiOmic-Methyl-Report-5.csv |     3 +
 ...16_08_24-CMV-MultiOmic-Methyl-Report-6.csv |     3 +
 ...16_08_24-CMV-MultiOmic-Methyl-Report-7.csv |     3 +
 ...2016_08_24-CMV-MultiOmic-Methyl-Report.csv |     3 +
 ...016_08_24-CMV-MultiOmic-Methyl-Score-1.png |   Bin 0 -> 24192 bytes
 ...016_08_24-CMV-MultiOmic-Methyl-Score-2.png |   Bin 0 -> 24192 bytes
 ...016_08_24-CMV-MultiOmic-Methyl-Score-3.png |   Bin 0 -> 24232 bytes
 ...016_08_24-CMV-MultiOmic-Methyl-Score-4.png |   Bin 0 -> 24222 bytes
 ...016_08_24-CMV-MultiOmic-Methyl-Score-5.png |   Bin 0 -> 24344 bytes
 ...016_08_24-CMV-MultiOmic-Methyl-Score-6.png |   Bin 0 -> 24270 bytes
 ...016_08_24-CMV-MultiOmic-Methyl-Score-7.png |   Bin 0 -> 24179 bytes
 .../2016_08_24-CMV-MultiOmic-Methyl-Score.png |   Bin 0 -> 24250 bytes
 ...016_08_24-CMV-MultiOmic-Methyl-Stats-1.csv |     8 +
 ...016_08_24-CMV-MultiOmic-Methyl-Stats-2.csv |     8 +
 ...016_08_24-CMV-MultiOmic-Methyl-Stats-3.csv |     8 +
 ...016_08_24-CMV-MultiOmic-Methyl-Stats-4.csv |     8 +
 ...016_08_24-CMV-MultiOmic-Methyl-Stats-5.csv |     8 +
 ...016_08_24-CMV-MultiOmic-Methyl-Stats-6.csv |     8 +
 ...016_08_24-CMV-MultiOmic-Methyl-Stats-7.csv |     8 +
 .../2016_08_24-CMV-MultiOmic-Methyl-Stats.csv |     8 +
 ...8_24-CMV-MultiOmic-MiRNA_-ConfMatrix-1.csv |     4 +
 ..._24-CMV-MultiOmic-MiRNA_-ConfMatrix-10.csv |     4 +
 ..._24-CMV-MultiOmic-MiRNA_-ConfMatrix-11.csv |     4 +
 ..._24-CMV-MultiOmic-MiRNA_-ConfMatrix-12.csv |     4 +
 ..._24-CMV-MultiOmic-MiRNA_-ConfMatrix-13.csv |     4 +
 ..._24-CMV-MultiOmic-MiRNA_-ConfMatrix-14.csv |     4 +
 ..._24-CMV-MultiOmic-MiRNA_-ConfMatrix-15.csv |     4 +
 ..._24-CMV-MultiOmic-MiRNA_-ConfMatrix-16.csv |     4 +
 ..._24-CMV-MultiOmic-MiRNA_-ConfMatrix-17.csv |     4 +
 ..._24-CMV-MultiOmic-MiRNA_-ConfMatrix-18.csv |     4 +
 ..._24-CMV-MultiOmic-MiRNA_-ConfMatrix-19.csv |     4 +
 ...8_24-CMV-MultiOmic-MiRNA_-ConfMatrix-2.csv |     4 +
 ...8_24-CMV-MultiOmic-MiRNA_-ConfMatrix-3.csv |     4 +
 ...8_24-CMV-MultiOmic-MiRNA_-ConfMatrix-4.csv |     4 +
 ...8_24-CMV-MultiOmic-MiRNA_-ConfMatrix-5.csv |     4 +
 ...8_24-CMV-MultiOmic-MiRNA_-ConfMatrix-6.csv |     4 +
 ...8_24-CMV-MultiOmic-MiRNA_-ConfMatrix-7.csv |     4 +
 ...8_24-CMV-MultiOmic-MiRNA_-ConfMatrix-8.csv |     4 +
 ...8_24-CMV-MultiOmic-MiRNA_-ConfMatrix-9.csv |     4 +
 ..._08_24-CMV-MultiOmic-MiRNA_-ConfMatrix.csv |     4 +
 ...4-CMV-MultiOmic-MiRNA_-ConfMatrixImg-1.png |   Bin 0 -> 21209 bytes
 ...-CMV-MultiOmic-MiRNA_-ConfMatrixImg-10.png |   Bin 0 -> 21554 bytes
 ...-CMV-MultiOmic-MiRNA_-ConfMatrixImg-11.png |   Bin 0 -> 21591 bytes
 ...-CMV-MultiOmic-MiRNA_-ConfMatrixImg-12.png |   Bin 0 -> 20974 bytes
 ...-CMV-MultiOmic-MiRNA_-ConfMatrixImg-13.png |   Bin 0 -> 22527 bytes
 ...-CMV-MultiOmic-MiRNA_-ConfMatrixImg-14.png |   Bin 0 -> 18819 bytes
 ...-CMV-MultiOmic-MiRNA_-ConfMatrixImg-15.png |   Bin 0 -> 20798 bytes
 ...-CMV-MultiOmic-MiRNA_-ConfMatrixImg-16.png |   Bin 0 -> 20712 bytes
 ...-CMV-MultiOmic-MiRNA_-ConfMatrixImg-17.png |   Bin 0 -> 20316 bytes
 ...-CMV-MultiOmic-MiRNA_-ConfMatrixImg-18.png |   Bin 0 -> 20783 bytes
 ...-CMV-MultiOmic-MiRNA_-ConfMatrixImg-19.png |   Bin 0 -> 21067 bytes
 ...4-CMV-MultiOmic-MiRNA_-ConfMatrixImg-2.png |   Bin 0 -> 18948 bytes
 ...4-CMV-MultiOmic-MiRNA_-ConfMatrixImg-3.png |   Bin 0 -> 22182 bytes
 ...4-CMV-MultiOmic-MiRNA_-ConfMatrixImg-4.png |   Bin 0 -> 21532 bytes
 ...4-CMV-MultiOmic-MiRNA_-ConfMatrixImg-5.png |   Bin 0 -> 22039 bytes
 ...4-CMV-MultiOmic-MiRNA_-ConfMatrixImg-6.png |   Bin 0 -> 21510 bytes
 ...4-CMV-MultiOmic-MiRNA_-ConfMatrixImg-7.png |   Bin 0 -> 21684 bytes
 ...4-CMV-MultiOmic-MiRNA_-ConfMatrixImg-8.png |   Bin 0 -> 19734 bytes
 ...4-CMV-MultiOmic-MiRNA_-ConfMatrixImg-9.png |   Bin 0 -> 21724 bytes
 ..._24-CMV-MultiOmic-MiRNA_-ConfMatrixImg.png |   Bin 0 -> 21515 bytes
 ...16_08_24-CMV-MultiOmic-MiRNA_-Report-1.csv |     3 +
 ...6_08_24-CMV-MultiOmic-MiRNA_-Report-10.csv |     3 +
 ...6_08_24-CMV-MultiOmic-MiRNA_-Report-11.csv |     3 +
 ...6_08_24-CMV-MultiOmic-MiRNA_-Report-12.csv |     3 +
 ...6_08_24-CMV-MultiOmic-MiRNA_-Report-13.csv |     3 +
 ...6_08_24-CMV-MultiOmic-MiRNA_-Report-14.csv |     3 +
 ...6_08_24-CMV-MultiOmic-MiRNA_-Report-15.csv |     3 +
 ...6_08_24-CMV-MultiOmic-MiRNA_-Report-16.csv |     3 +
 ...6_08_24-CMV-MultiOmic-MiRNA_-Report-17.csv |     3 +
 ...6_08_24-CMV-MultiOmic-MiRNA_-Report-18.csv |     3 +
 ...6_08_24-CMV-MultiOmic-MiRNA_-Report-19.csv |     3 +
 ...16_08_24-CMV-MultiOmic-MiRNA_-Report-2.csv |     3 +
 ...16_08_24-CMV-MultiOmic-MiRNA_-Report-3.csv |     3 +
 ...16_08_24-CMV-MultiOmic-MiRNA_-Report-4.csv |     3 +
 ...16_08_24-CMV-MultiOmic-MiRNA_-Report-5.csv |     3 +
 ...16_08_24-CMV-MultiOmic-MiRNA_-Report-6.csv |     3 +
 ...16_08_24-CMV-MultiOmic-MiRNA_-Report-7.csv |     3 +
 ...16_08_24-CMV-MultiOmic-MiRNA_-Report-8.csv |     3 +
 ...16_08_24-CMV-MultiOmic-MiRNA_-Report-9.csv |     3 +
 ...2016_08_24-CMV-MultiOmic-MiRNA_-Report.csv |     3 +
 ...016_08_24-CMV-MultiOmic-MiRNA_-Score-1.png |   Bin 0 -> 23937 bytes
 ...16_08_24-CMV-MultiOmic-MiRNA_-Score-10.png |   Bin 0 -> 23921 bytes
 ...16_08_24-CMV-MultiOmic-MiRNA_-Score-11.png |   Bin 0 -> 23940 bytes
 ...16_08_24-CMV-MultiOmic-MiRNA_-Score-12.png |   Bin 0 -> 23938 bytes
 ...16_08_24-CMV-MultiOmic-MiRNA_-Score-13.png |   Bin 0 -> 23905 bytes
 ...16_08_24-CMV-MultiOmic-MiRNA_-Score-14.png |   Bin 0 -> 23869 bytes
 ...16_08_24-CMV-MultiOmic-MiRNA_-Score-15.png |   Bin 0 -> 23940 bytes
 ...16_08_24-CMV-MultiOmic-MiRNA_-Score-16.png |   Bin 0 -> 23843 bytes
 ...16_08_24-CMV-MultiOmic-MiRNA_-Score-17.png |   Bin 0 -> 23883 bytes
 ...16_08_24-CMV-MultiOmic-MiRNA_-Score-18.png |   Bin 0 -> 23862 bytes
 ...16_08_24-CMV-MultiOmic-MiRNA_-Score-19.png |   Bin 0 -> 23940 bytes
 ...016_08_24-CMV-MultiOmic-MiRNA_-Score-2.png |   Bin 0 -> 23879 bytes
 ...016_08_24-CMV-MultiOmic-MiRNA_-Score-3.png |   Bin 0 -> 23938 bytes
 ...016_08_24-CMV-MultiOmic-MiRNA_-Score-4.png |   Bin 0 -> 23923 bytes
 ...016_08_24-CMV-MultiOmic-MiRNA_-Score-5.png |   Bin 0 -> 23921 bytes
 ...016_08_24-CMV-MultiOmic-MiRNA_-Score-6.png |   Bin 0 -> 23923 bytes
 ...016_08_24-CMV-MultiOmic-MiRNA_-Score-7.png |   Bin 0 -> 23941 bytes
 ...016_08_24-CMV-MultiOmic-MiRNA_-Score-8.png |   Bin 0 -> 23951 bytes
 ...016_08_24-CMV-MultiOmic-MiRNA_-Score-9.png |   Bin 0 -> 23865 bytes
 .../2016_08_24-CMV-MultiOmic-MiRNA_-Score.png |   Bin 0 -> 23917 bytes
 ...016_08_24-CMV-MultiOmic-MiRNA_-Stats-1.csv |     8 +
 ...16_08_24-CMV-MultiOmic-MiRNA_-Stats-10.csv |     8 +
 ...16_08_24-CMV-MultiOmic-MiRNA_-Stats-11.csv |     8 +
 ...16_08_24-CMV-MultiOmic-MiRNA_-Stats-12.csv |     8 +
 ...16_08_24-CMV-MultiOmic-MiRNA_-Stats-13.csv |     8 +
 ...16_08_24-CMV-MultiOmic-MiRNA_-Stats-14.csv |     8 +
 ...16_08_24-CMV-MultiOmic-MiRNA_-Stats-15.csv |     8 +
 ...16_08_24-CMV-MultiOmic-MiRNA_-Stats-16.csv |     8 +
 ...16_08_24-CMV-MultiOmic-MiRNA_-Stats-17.csv |     8 +
 ...16_08_24-CMV-MultiOmic-MiRNA_-Stats-18.csv |     8 +
 ...16_08_24-CMV-MultiOmic-MiRNA_-Stats-19.csv |     8 +
 ...016_08_24-CMV-MultiOmic-MiRNA_-Stats-2.csv |     8 +
 ...016_08_24-CMV-MultiOmic-MiRNA_-Stats-3.csv |     8 +
 ...016_08_24-CMV-MultiOmic-MiRNA_-Stats-4.csv |     8 +
 ...016_08_24-CMV-MultiOmic-MiRNA_-Stats-5.csv |     8 +
 ...016_08_24-CMV-MultiOmic-MiRNA_-Stats-6.csv |     8 +
 ...016_08_24-CMV-MultiOmic-MiRNA_-Stats-7.csv |     8 +
 ...016_08_24-CMV-MultiOmic-MiRNA_-Stats-8.csv |     8 +
 ...016_08_24-CMV-MultiOmic-MiRNA_-Stats-9.csv |     8 +
 .../2016_08_24-CMV-MultiOmic-MiRNA_-Stats.csv |     8 +
 ...8_24-CMV-MultiOmic-RNASeq-ConfMatrix-1.csv |     4 +
 ..._24-CMV-MultiOmic-RNASeq-ConfMatrix-10.csv |     4 +
 ..._24-CMV-MultiOmic-RNASeq-ConfMatrix-11.csv |     4 +
 ..._24-CMV-MultiOmic-RNASeq-ConfMatrix-12.csv |     4 +
 ..._24-CMV-MultiOmic-RNASeq-ConfMatrix-13.csv |     4 +
 ...8_24-CMV-MultiOmic-RNASeq-ConfMatrix-2.csv |     4 +
 ...8_24-CMV-MultiOmic-RNASeq-ConfMatrix-3.csv |     4 +
 ...8_24-CMV-MultiOmic-RNASeq-ConfMatrix-4.csv |     4 +
 ...8_24-CMV-MultiOmic-RNASeq-ConfMatrix-5.csv |     4 +
 ...8_24-CMV-MultiOmic-RNASeq-ConfMatrix-6.csv |     4 +
 ...8_24-CMV-MultiOmic-RNASeq-ConfMatrix-7.csv |     4 +
 ...8_24-CMV-MultiOmic-RNASeq-ConfMatrix-8.csv |     4 +
 ...8_24-CMV-MultiOmic-RNASeq-ConfMatrix-9.csv |     4 +
 ..._08_24-CMV-MultiOmic-RNASeq-ConfMatrix.csv |     4 +
 ...4-CMV-MultiOmic-RNASeq-ConfMatrixImg-1.png |   Bin 0 -> 21985 bytes
 ...-CMV-MultiOmic-RNASeq-ConfMatrixImg-10.png |   Bin 0 -> 21390 bytes
 ...-CMV-MultiOmic-RNASeq-ConfMatrixImg-11.png |   Bin 0 -> 20975 bytes
 ...-CMV-MultiOmic-RNASeq-ConfMatrixImg-12.png |   Bin 0 -> 21544 bytes
 ...-CMV-MultiOmic-RNASeq-ConfMatrixImg-13.png |   Bin 0 -> 21331 bytes
 ...4-CMV-MultiOmic-RNASeq-ConfMatrixImg-2.png |   Bin 0 -> 20579 bytes
 ...4-CMV-MultiOmic-RNASeq-ConfMatrixImg-3.png |   Bin 0 -> 20264 bytes
 ...4-CMV-MultiOmic-RNASeq-ConfMatrixImg-4.png |   Bin 0 -> 19227 bytes
 ...4-CMV-MultiOmic-RNASeq-ConfMatrixImg-5.png |   Bin 0 -> 21693 bytes
 ...4-CMV-MultiOmic-RNASeq-ConfMatrixImg-6.png |   Bin 0 -> 21073 bytes
 ...4-CMV-MultiOmic-RNASeq-ConfMatrixImg-7.png |   Bin 0 -> 21146 bytes
 ...4-CMV-MultiOmic-RNASeq-ConfMatrixImg-8.png |   Bin 0 -> 20418 bytes
 ...4-CMV-MultiOmic-RNASeq-ConfMatrixImg-9.png |   Bin 0 -> 20507 bytes
 ..._24-CMV-MultiOmic-RNASeq-ConfMatrixImg.png |   Bin 0 -> 20421 bytes
 ...16_08_24-CMV-MultiOmic-RNASeq-Report-1.csv |     3 +
 ...6_08_24-CMV-MultiOmic-RNASeq-Report-10.csv |     3 +
 ...6_08_24-CMV-MultiOmic-RNASeq-Report-11.csv |     3 +
 ...6_08_24-CMV-MultiOmic-RNASeq-Report-12.csv |     3 +
 ...6_08_24-CMV-MultiOmic-RNASeq-Report-13.csv |     3 +
 ...16_08_24-CMV-MultiOmic-RNASeq-Report-2.csv |     3 +
 ...16_08_24-CMV-MultiOmic-RNASeq-Report-3.csv |     3 +
 ...16_08_24-CMV-MultiOmic-RNASeq-Report-4.csv |     3 +
 ...16_08_24-CMV-MultiOmic-RNASeq-Report-5.csv |     3 +
 ...16_08_24-CMV-MultiOmic-RNASeq-Report-6.csv |     3 +
 ...16_08_24-CMV-MultiOmic-RNASeq-Report-7.csv |     3 +
 ...16_08_24-CMV-MultiOmic-RNASeq-Report-8.csv |     3 +
 ...16_08_24-CMV-MultiOmic-RNASeq-Report-9.csv |     3 +
 ...2016_08_24-CMV-MultiOmic-RNASeq-Report.csv |     3 +
 ...016_08_24-CMV-MultiOmic-RNASeq-Score-1.png |   Bin 0 -> 24783 bytes
 ...16_08_24-CMV-MultiOmic-RNASeq-Score-10.png |   Bin 0 -> 24827 bytes
 ...16_08_24-CMV-MultiOmic-RNASeq-Score-11.png |   Bin 0 -> 24791 bytes
 ...16_08_24-CMV-MultiOmic-RNASeq-Score-12.png |   Bin 0 -> 24799 bytes
 ...16_08_24-CMV-MultiOmic-RNASeq-Score-13.png |   Bin 0 -> 24658 bytes
 ...016_08_24-CMV-MultiOmic-RNASeq-Score-2.png |   Bin 0 -> 24800 bytes
 ...016_08_24-CMV-MultiOmic-RNASeq-Score-3.png |   Bin 0 -> 24763 bytes
 ...016_08_24-CMV-MultiOmic-RNASeq-Score-4.png |   Bin 0 -> 24825 bytes
 ...016_08_24-CMV-MultiOmic-RNASeq-Score-5.png |   Bin 0 -> 24647 bytes
 ...016_08_24-CMV-MultiOmic-RNASeq-Score-6.png |   Bin 0 -> 24799 bytes
 ...016_08_24-CMV-MultiOmic-RNASeq-Score-7.png |   Bin 0 -> 24816 bytes
 ...016_08_24-CMV-MultiOmic-RNASeq-Score-8.png |   Bin 0 -> 24735 bytes
 ...016_08_24-CMV-MultiOmic-RNASeq-Score-9.png |   Bin 0 -> 24799 bytes
 .../2016_08_24-CMV-MultiOmic-RNASeq-Score.png |   Bin 0 -> 24817 bytes
 ...016_08_24-CMV-MultiOmic-RNASeq-Stats-1.csv |     8 +
 ...16_08_24-CMV-MultiOmic-RNASeq-Stats-10.csv |     8 +
 ...16_08_24-CMV-MultiOmic-RNASeq-Stats-11.csv |     8 +
 ...16_08_24-CMV-MultiOmic-RNASeq-Stats-12.csv |     8 +
 ...16_08_24-CMV-MultiOmic-RNASeq-Stats-13.csv |     8 +
 ...016_08_24-CMV-MultiOmic-RNASeq-Stats-2.csv |     8 +
 ...016_08_24-CMV-MultiOmic-RNASeq-Stats-3.csv |     8 +
 ...016_08_24-CMV-MultiOmic-RNASeq-Stats-4.csv |     8 +
 ...016_08_24-CMV-MultiOmic-RNASeq-Stats-5.csv |     8 +
 ...016_08_24-CMV-MultiOmic-RNASeq-Stats-6.csv |     8 +
 ...016_08_24-CMV-MultiOmic-RNASeq-Stats-7.csv |     8 +
 ...016_08_24-CMV-MultiOmic-RNASeq-Stats-8.csv |     8 +
 ...016_08_24-CMV-MultiOmic-RNASeq-Stats-9.csv |     8 +
 .../2016_08_24-CMV-MultiOmic-RNASeq-Stats.csv |     8 +
 .../2016_03_24-CMV-Caltech-HOG-ConfMatrix.csv |     0
 ...16_03_24-CMV-Caltech-HOG-ConfMatrixImg.png |   Bin
 .../2016_03_24-CMV-Caltech-HOG-LOG.log        |     0
 .../2016_03_24-CMV-Caltech-HOG-Report.csv     |     0
 .../2016_03_24-CMV-Caltech-HOG-Score.png      |   Bin
 .../2016_03_24-CMV-Caltech-HOG-Stats.csv      |     0
 .../2016_03_24-CMV-Caltech-HOG.csv            |     0
 .../2016_03_24-CMV-Caltech-HSV-ConfMatrix.csv |     0
 ...16_03_24-CMV-Caltech-HSV-ConfMatrixImg.png |   Bin
 .../2016_03_24-CMV-Caltech-HSV-LOG.log        |     0
 .../2016_03_24-CMV-Caltech-HSV-Report.csv     |     0
 .../2016_03_24-CMV-Caltech-HSV-Score.png      |   Bin
 .../2016_03_24-CMV-Caltech-HSV-Stats.csv      |     0
 .../2016_03_24-CMV-Caltech-HSV.csv            |     0
 .../2016_03_24-CMV-Caltech-RGB-ConfMatrix.csv |     0
 ...16_03_24-CMV-Caltech-RGB-ConfMatrixImg.png |   Bin
 .../2016_03_24-CMV-Caltech-RGB-LOG.log        |     0
 .../2016_03_24-CMV-Caltech-RGB-Report.csv     |     0
 .../2016_03_24-CMV-Caltech-RGB-Score.png      |   Bin
 .../2016_03_24-CMV-Caltech-RGB-Stats.csv      |     0
 .../2016_03_24-CMV-Caltech-RGB.csv            |     0
 .../2016_03_24-CMV-Caltech-RGB-ConfMatrix.csv |     0
 ...16_03_24-CMV-Caltech-RGB-ConfMatrixImg.png |   Bin
 .../2016_03_24-CMV-Caltech-RGB-LOG.log        |     0
 .../2016_03_24-CMV-Caltech-RGB-Report.csv     |     0
 .../2016_03_24-CMV-Caltech-RGB-Score.png      |   Bin
 .../2016_03_24-CMV-Caltech-RGB-Stats.csv      |     0
 .../2016_03_24-CMV-Caltech-RGB.csv            |     0
 ...2016_03_24-CMV-Caltech-SIFT-ConfMatrix.csv |     0
 ...6_03_24-CMV-Caltech-SIFT-ConfMatrixImg.png |   Bin
 .../2016_03_24-CMV-Caltech-SIFT-LOG.log       |     0
 .../2016_03_24-CMV-Caltech-SIFT-Report.csv    |     0
 .../2016_03_24-CMV-Caltech-SIFT-Score.png     |   Bin
 .../2016_03_24-CMV-Caltech-SIFT-Stats.csv     |     0
 .../2016_03_24-CMV-Caltech-SIFT.csv           |     0
 ...2016_03_24-CMV-Caltech-SURF-ConfMatrix.csv |     0
 ...6_03_24-CMV-Caltech-SURF-ConfMatrixImg.png |   Bin
 .../2016_03_24-CMV-Caltech-SURF-LOG.log       |     0
 .../2016_03_24-CMV-Caltech-SURF-Report.csv    |     0
 .../2016_03_24-CMV-Caltech-SURF-Score.png     |   Bin
 .../2016_03_24-CMV-Caltech-SURF-Stats.csv     |     0
 .../2016_03_24-CMV-Caltech-SURF.csv           |     0
 .../Monoview/__init__.py                      |     0
 .../Monoview/run.py                           |     0
 .../MonoviewClassifiers/Adaboost.py           |    28 +
 .../MonoviewClassifiers/DecisionTree.py       |    26 +
 .../MonoviewClassifiers/KNN.py                |    26 +
 .../MonoviewClassifiers/RandomForest.py       |    46 +
 .../MonoviewClassifiers/SGD.py                |    32 +
 .../MonoviewClassifiers/SVMLinear.py          |    25 +
 .../MonoviewClassifiers/SVMPoly.py            |    26 +
 .../MonoviewClassifiers/SVMRBF.py             |    25 +
 .../MonoviewClassifiers/__init__.py           |     0
 .../Multiview/ExecMultiview.py                |    35 +-
 .../Multiview/Fusion/Fusion.py                |     0
 .../Multiview/Fusion/Methods/EarlyFusion.py   |     6 +-
 .../Multiview/Fusion/Methods/LateFusion.py    |     6 +-
 .../Multiview/Fusion/Methods/__init__.py      |     0
 .../Fusion/Methods/poulet/__init__.py         |     7 +
 .../Multiview/Fusion/__init__.py              |     0
 .../Multiview/Fusion/analyzeResults.py        |     0
 .../Multiview/GetMultiviewDb.py               |     5 +-
 .../Mumbo/Classifiers/DecisionTree.py         |     8 +-
 .../Multiview/Mumbo/Classifiers/Kover.py      |     0
 .../Mumbo/Classifiers/ModifiedMulticlass.py   |     0
 .../Mumbo/Classifiers/SubSampling.py          |     0
 .../Multiview/Mumbo/Classifiers/__init__.py   |     0
 .../Multiview/Mumbo/Mumbo.py                  |   141 +-
 .../Multiview/Mumbo/__init__.py               |     0
 .../Multiview/Mumbo/analyzeResults.py         |     2 +-
 ...EQ-Clinical-learnRate2.0-nbIter10-Fake.txt |     0
 ...e2.0-nbIter10-Fake-accuracyByIteration.png |   Bin
 ...EQ-Clinical-learnRate2.0-nbIter10-Fake.txt |     0
 ...bIter100-MultiOmic-accuracyByIteration.png |   Bin
 ...o-Yes-learnRate5.0-nbIter100-MultiOmic.txt |     0
 ...bIter100-MultiOmic-accuracyByIteration.png |   Bin
 ...o-Yes-learnRate5.0-nbIter100-MultiOmic.txt |     0
 ...bIter100-MultiOmic-accuracyByIteration.png |   Bin
 ...o-Yes-learnRate5.0-nbIter100-MultiOmic.txt |     0
 ...bIter100-MultiOmic-accuracyByIteration.png |   Bin
 ...o-Yes-learnRate5.0-nbIter100-MultiOmic.txt |     0
 ...-nbIter2-MultiOmic-accuracyByIteration.png |   Bin
 ...-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt |     0
 ...-nbIter2-MultiOmic-accuracyByIteration.png |   Bin
 ...-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt |     0
 ...-nbIter2-MultiOmic-accuracyByIteration.png |   Bin
 ...-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt |     0
 ...-nbIter2-MultiOmic-accuracyByIteration.png |   Bin
 ...-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt |     0
 ...-nbIter2-MultiOmic-accuracyByIteration.png |   Bin
 ...-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt |     0
 ...bIter100-MultiOmic-accuracyByIteration.png |   Bin
 ...es-No-learnRate5.0-nbIter100-MultiOmic.txt |     0
 ...-nbIter1-MultiOmic-accuracyByIteration.png |   Bin
 ...-Yes-No-learnRate0.9-nbIter1-MultiOmic.txt |     0
 ...-nbIter1-MultiOmic-accuracyByIteration.png |   Bin
 ...-Yes-No-learnRate0.0-nbIter1-MultiOmic.txt |     0
 ...-nbIter1-MultiOmic-accuracyByIteration.png |   Bin
 ...-Yes-No-learnRate0.1-nbIter1-MultiOmic.txt |     0
 ...-nbIter1-MultiOmic-accuracyByIteration.png |   Bin
 ...-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt |     0
 ...bIter100-MultiOmic-accuracyByIteration.png |   Bin
 ...es-No-learnRate0.3-nbIter100-MultiOmic.txt |     0
 ...-nbIter2-MultiOmic-accuracyByIteration.png |   Bin
 ...-Yes-No-learnRate0.1-nbIter2-MultiOmic.txt |     0
 ...-nbIter2-MultiOmic-accuracyByIteration.png |   Bin
 ...-Yes-No-learnRate0.1-nbIter2-MultiOmic.txt |     0
 ...-nbIter2-MultiOmic-accuracyByIteration.png |   Bin
 ...-Yes-No-learnRate0.1-nbIter2-MultiOmic.txt |     0
 ...-nbIter2-MultiOmic-accuracyByIteration.png |   Bin
 ...-Yes-No-learnRate0.1-nbIter2-MultiOmic.txt |     0
 ...bIter100-MultiOmic-accuracyByIteration.png |   Bin
 ...es-No-learnRate0.1-nbIter100-MultiOmic.txt |     0
 ...-nbIter4-MultiOmic-accuracyByIteration.png |   Bin
 ...-Yes-No-learnRate0.1-nbIter4-MultiOmic.txt |     0
 ...bIter400-MultiOmic-accuracyByIteration.png |   Bin
 ...es-No-learnRate0.1-nbIter400-MultiOmic.txt |     0
 ...bIter100-MultiOmic-accuracyByIteration.png |   Bin
 ...es-No-learnRate0.3-nbIter100-MultiOmic.txt |     0
 ...bIter100-MultiOmic-accuracyByIteration.png |   Bin
 ...es-No-learnRate0.3-nbIter100-MultiOmic.txt |     0
 ...bIter100-MultiOmic-accuracyByIteration.png |   Bin
 ...es-No-learnRate0.3-nbIter100-MultiOmic.txt |     0
 ...bIter100-MultiOmic-accuracyByIteration.png |   Bin
 ...es-No-learnRate0.3-nbIter100-MultiOmic.txt |     0
 ...bIter100-MultiOmic-accuracyByIteration.png |   Bin
 ...es-No-learnRate0.3-nbIter100-MultiOmic.txt |     0
 ...-nbIter1-MultiOmic-accuracyByIteration.png |   Bin
 ...-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt |     0
 ...-nbIter1-MultiOmic-accuracyByIteration.png |   Bin
 ...-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt |     0
 ...-nbIter1-MultiOmic-accuracyByIteration.png |   Bin
 ...-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt |     0
 ...-nbIter1-MultiOmic-accuracyByIteration.png |   Bin
 ...-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt |     0
 ...-nbIter1-MultiOmic-accuracyByIteration.png |   Bin
 ...-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt |     0
 ...-nbIter1-MultiOmic-accuracyByIteration.png |   Bin
 ...-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt |     0
 ...-nbIter1-MultiOmic-accuracyByIteration.png |   Bin
 ...-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt |     0
 ...-nbIter1-MultiOmic-accuracyByIteration.png |   Bin
 ...-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt |     0
 ...bIter100-MultiOmic-accuracyByIteration.png |   Bin
 ...es-No-learnRate0.3-nbIter100-MultiOmic.txt |     0
 ...bIter400-MultiOmic-accuracyByIteration.png |   Bin
 ...es-No-learnRate0.3-nbIter400-MultiOmic.txt |     0
 ...-nbIter2-MultiOmic-accuracyByIteration.png |   Bin
 ...-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt |     0
 ...-nbIter2-MultiOmic-accuracyByIteration.png |   Bin
 ...-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt |     0
 ...-nbIter2-MultiOmic-accuracyByIteration.png |   Bin
 ...-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt |     0
 ...-nbIter2-MultiOmic-accuracyByIteration.png |   Bin
 ...-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt |     0
 ...-nbIter2-MultiOmic-accuracyByIteration.png |   Bin
 ...-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt |     0
 ...-nbIter2-MultiOmic-accuracyByIteration.png |   Bin
 ...-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt |     0
 ...bIter400-MultiOmic-accuracyByIteration.png |   Bin
 ...es-No-learnRate0.3-nbIter400-MultiOmic.txt |     0
 ...bIter400-MultiOmic-accuracyByIteration.png |   Bin
 ...es-No-learnRate0.3-nbIter400-MultiOmic.txt |     0
 ...bIter400-MultiOmic-accuracyByIteration.png |   Bin
 ...es-No-learnRate0.3-nbIter400-MultiOmic.txt |     0
 ...bIter400-MultiOmic-accuracyByIteration.png |   Bin
 ...es-No-learnRate0.3-nbIter400-MultiOmic.txt |     0
 ...bIter400-MultiOmic-accuracyByIteration.png |   Bin
 ...es-No-learnRate0.3-nbIter400-MultiOmic.txt |     0
 ...-nbIter1-MultiOmic-accuracyByIteration.png |   Bin
 ...-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt |     0
 ...-nbIter1-MultiOmic-accuracyByIteration.png |   Bin
 ...-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt |     0
 ...-nbIter1-MultiOmic-accuracyByIteration.png |   Bin
 ...-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt |     0
 ...bIter400-MultiOmic-accuracyByIteration.png |   Bin
 ...es-No-learnRate0.3-nbIter400-MultiOmic.txt |     0
 ...bIter400-MultiOmic-accuracyByIteration.png |   Bin
 ...es-No-learnRate0.3-nbIter400-MultiOmic.txt |     0
 ...bIter400-MultiOmic-accuracyByIteration.png |   Bin
 ...es-No-learnRate0.3-nbIter400-MultiOmic.txt |     0
 ...bIter400-MultiOmic-accuracyByIteration.png |   Bin
 ...es-No-learnRate0.3-nbIter400-MultiOmic.txt |     0
 ...bIter400-MultiOmic-accuracyByIteration.png |   Bin
 ...es-No-learnRate0.3-nbIter400-MultiOmic.txt |     0
 ...bIter400-MultiOmic-accuracyByIteration.png |   Bin
 ...es-No-learnRate0.3-nbIter400-MultiOmic.txt |     0
 ...bIter400-MultiOmic-accuracyByIteration.png |   Bin
 ...es-No-learnRate0.3-nbIter400-MultiOmic.txt |     0
 ...bIter400-MultiOmic-accuracyByIteration.png |   Bin
 ...es-No-learnRate0.3-nbIter400-MultiOmic.txt |     0
 ...bIter400-MultiOmic-accuracyByIteration.png |   Bin
 ...es-No-learnRate0.3-nbIter400-MultiOmic.txt |     0
 ...bIter400-MultiOmic-accuracyByIteration.png |   Bin
 ...es-No-learnRate0.3-nbIter400-MultiOmic.txt |     0
 ...bIter400-MultiOmic-accuracyByIteration.png |   Bin
 ...es-No-learnRate0.3-nbIter400-MultiOmic.txt |     0
 ...bIter400-MultiOmic-accuracyByIteration.png |   Bin
 ...es-No-learnRate0.3-nbIter400-MultiOmic.txt |     0
 ...bIter400-MultiOmic-accuracyByIteration.png |   Bin
 ...es-No-learnRate0.3-nbIter400-MultiOmic.txt |     0
 ...bIter400-MultiOmic-accuracyByIteration.png |   Bin
 ...es-No-learnRate0.3-nbIter400-MultiOmic.txt |     0
 ...-nbIter3-MultiOmic-accuracyByIteration.png |   Bin
 ...-Yes-No-learnRate0.3-nbIter3-MultiOmic.txt |     0
 ...bIter100-MultiOmic-accuracyByIteration.png |   Bin
 ...es-No-learnRate0.3-nbIter100-MultiOmic.txt |     0
 ...-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt |     0
 ...-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt |     0
 ...-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt |     0
 ...-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt |     0
 ...-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt |     0
 ...-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt |     0
 ...-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt |     0
 ...-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt |     0
 ...-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt |     0
 ...-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt |     0
 ...-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt |     0
 ...-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt |     0
 ...-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt |     0
 ...-MultiOmicModified-accuracyByIteration.png |   Bin
 ...arnRate0.3-nbIter100-MultiOmicModified.txt |     0
 ...-MultiOmicModified-accuracyByIteration.png |   Bin
 ...arnRate0.3-nbIter100-MultiOmicModified.txt |     0
 ...-MultiOmicModified-accuracyByIteration.png |   Bin
 ...learnRate0.3-nbIter2-MultiOmicModified.txt |     0
 ...-MultiOmicModified-accuracyByIteration.png |   Bin
 ...learnRate0.3-nbIter2-MultiOmicModified.txt |     0
 ...-MultiOmicModified-accuracyByIteration.png |   Bin
 ...arnRate0.3-nbIter100-MultiOmicModified.txt |     0
 ...-MultiOmicModified-accuracyByIteration.png |   Bin
 ...arnRate0.3-nbIter100-MultiOmicModified.txt |     0
 ...-MultiOmicModified-accuracyByIteration.png |   Bin
 ...arnRate0.3-nbIter100-MultiOmicModified.txt |     0
 ...-MultiOmicModified-accuracyByIteration.png |   Bin
 ...learnRate0.3-nbIter2-MultiOmicModified.txt |     0
 ..._RNASEQ_Clinical-MultiOmicModified-LOG.log |     0
 ...-MultiOmicModified-accuracyByIteration.png |   Bin
 ...-Yes-No-learnRate0.3-MultiOmicModified.txt |     0
 ..._RNASEQ_Clinical-MultiOmicModified-LOG.log |     0
 ..._RNASEQ_Clinical-MultiOmicModified-LOG.log |     0
 ..._RNASEQ_Clinical-MultiOmicModified-LOG.log |     0
 ...-MultiOmicModified-accuracyByIteration.png |   Bin
 ...-Yes-No-learnRate0.7-MultiOmicModified.txt |     0
 ...RNASEQ_Clinical-MultiOmicModified-LOG.log} |     0
 ...RNASEQ_Clinical-MultiOmicModified-LOG.log} |     0
 ...RNASEQ_Clinical-MultiOmicModified-LOG.log} |     0
 ..._RNASEQ_Clinical-MultiOmicModified-LOG.log |     0
 ...yl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log |     0
 ...yl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log |     0
 ...yl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log |     0
 ...yl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log |     0
 ...q-Clinic-Yes-No-learnRate0.7-MultiOmic.txt |     0
 ...yl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log |     0
 ...yl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log |     0
 ...yl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log |     0
 ...yl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log |     0
 ...yl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log |     0
 ...yl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log |     0
 ...yl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log |     0
 ...yl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log |     0
 ...yl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log |     0
 ...yl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log |     0
 ...yl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log |     0
 ...yl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log |     0
 ...yl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log |     0
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |     0
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |     0
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |     0
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |     0
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |     0
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |     0
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |     0
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |     0
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |     0
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |     0
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |     0
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |     0
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |     0
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |     0
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |     0
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |     0
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |     0
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |     0
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |     0
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |     0
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |     0
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |     0
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |     0
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |     0
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |     0
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |     0
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |     0
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |     0
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |     0
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |     0
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |     0
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |     0
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |     0
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |     0
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |     0
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |     0
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |     0
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |     0
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |     0
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |     0
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |     0
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |     0
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |     0
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |     0
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |     0
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |     0
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |     0
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |     0
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |     0
 ...yl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log |     0
 ...yl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log |     0
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |     0
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |     0
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |     0
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |     0
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |     0
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |     0
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |     0
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |     0
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |     0
 ...ultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log |     0
 ...ultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log |     0
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |     2 +
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |     2 +
 ...ultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log |    10 +
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |    12 +
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |    21 +
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |    97 +
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |    24 +
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |    97 +
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |    98 +
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |    97 +
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log | 14246 ++++++++++++++
 ...-ModifiedMultiOmic-accuracyByIteration.png |   Bin 0 -> 50608 bytes
 ...-Yes-No-learnRate0.7-ModifiedMultiOmic.txt | 14060 ++++++++++++++
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log | 14246 ++++++++++++++
 ...-ModifiedMultiOmic-accuracyByIteration.png |   Bin 0 -> 50627 bytes
 ...-Yes-No-learnRate0.7-ModifiedMultiOmic.txt | 14060 ++++++++++++++
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log | 14248 ++++++++++++++
 ...-ModifiedMultiOmic-accuracyByIteration.png |   Bin 0 -> 50531 bytes
 ...-Yes-No-learnRate0.7-ModifiedMultiOmic.txt | 14060 ++++++++++++++
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |   557 +
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |    50 +
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |   650 +
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |    30 +
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |    27 +
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |    53 +
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log | 14742 +++++++++++++++
 ...-ModifiedMultiOmic-accuracyByIteration.png |   Bin 0 -> 52176 bytes
 ...-Yes-No-learnRate0.7-ModifiedMultiOmic.txt | 14060 ++++++++++++++
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |   531 +
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log | 15348 ++++++++++++++++
 ...-ModifiedMultiOmic-accuracyByIteration.png |   Bin 0 -> 53749 bytes
 ...-Yes-No-learnRate0.7-ModifiedMultiOmic.txt | 14060 ++++++++++++++
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |   390 +
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |    32 +
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |   391 +
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log | 15314 +++++++++++++++
 ...-ModifiedMultiOmic-accuracyByIteration.png |   Bin 0 -> 53645 bytes
 ...-Yes-No-learnRate0.7-ModifiedMultiOmic.txt | 14060 ++++++++++++++
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log | 15313 +++++++++++++++
 ...-ModifiedMultiOmic-accuracyByIteration.png |   Bin 0 -> 54042 bytes
 ...-Yes-No-learnRate0.7-ModifiedMultiOmic.txt | 14060 ++++++++++++++
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |   655 +
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |  4082 ++++
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |    19 +
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |    19 +
 ..._RNASEQ_Clinical-ModifiedMultiOmic-LOG.log |    19 +
 ...tiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG |     0
 ...Fusion-phog-hist_decaf_cq-hist-Awa-LOG.log |     0
 ...-Mumbo-phog-hist_decaf_cq-hist-Awa-LOG.log |     0
 ...tiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG |     0
 ...Fusion-phog-hist_decaf_cq-hist-Awa-LOG.log |     0
 ...-Mumbo-phog-hist_cq-hist_decaf-Awa-LOG.log |     0
 ...-Mumbo-phog-hist_cq-hist_surf-hist-Awa-LOG |     0
 ...bo-phog-hist_cq-hist_surf-hist-Awa-LOG.log |     0
 ...ltiV-Mumbo-phog-hist_decaf_cq-hist-Awa-LOG |     0
 ...-Mumbo-phog-hist_decaf_cq-hist-Awa-LOG.log |     0
 ...-Mumbo-phog-hist_cq-hist_surf-hist-Awa-LOG |     0
 ...bo-phog-hist_cq-hist_surf-hist-Awa-LOG.log |     0
 ...bo-Methylation_RNA-seq_miRNA-MultiOmic-LOG |     0
 ...ethylation_RNA-seq_miRNA-MultiOmic-LOG.log |     0
 ...3-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG |     0
 ...ultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log |     0
 ...Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG |     0
 ...yl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log |     0
 ...2-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG |     0
 ...ultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log |     0
 ..._07_12-CMultiV-Mumbo-a_b_c_d-MultiOmic-LOG |     0
 ...12-CMultiV-Mumbo-a_b_c_d-MultiOmic-LOG.log |     0
 ...Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG |     0
 ...yl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log |     0
 ...CMultiV-Mumbo-RGB_HOG SIFT-Caltech-LOG.log |     0
 ...Fusion-phog-hist_decaf_cq-hist-Awa-LOG.log |     0
 ...umbo-Methyl_MiRNA_RNASEQ_Clinical-Fake-LOG |     0
 ...-Methyl_MiRNA_RNASEQ_Clinical-Fake-LOG.log |     0
 ...Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG |     0
 ...yl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log |     0
 ...umbo-Methyl_MiRNA_RNASEQ_Clinical-Fake-LOG |     0
 ...-Methyl_MiRNA_RNASEQ_Clinical-Fake-LOG.log |     0
 ...Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG |     0
 ...yl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log |     0
 ...Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG |     0
 ...yl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log |     0
 ...Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG |     0
 ...yl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log |     0
 ...EQ_Clinical_PseudoRNASeq-MultiOmic-LOG.log |     0
 ...Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG |     0
 ...yl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log |     0
 ...RNASEQ_Clinical_PseudoRNASeq-MultiOmic-LOG |     0
 ...EQ_Clinical_PseudoRNASeq-MultiOmic-LOG.log |     0
 ...Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG |     0
 ...yl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log |     0
 ...Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG |     0
 ...yl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log |     0
 ...Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG |     0
 ...yl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log |     0
 ...Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG |     0
 ...yl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log |     0
 ...Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG |     0
 ...yl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log |     0
 ...iRNA_RNASEQ_Clinical-MultiOmicModified-LOG |     0
 ..._RNASEQ_Clinical-MultiOmicModified-LOG.log |     0
 ...-No-Yes-learnRate1.0-nbIter1-MultiOmic.txt |     0
 ...0-nbIter1-MultiOmicaccuracyByIteration.png |   Bin
 ...o-Yes-learnRate1.0-nbIter100-MultiOmic.txt |     0
 ...nbIter100-MultiOmicaccuracyByIteration.png |   Bin
 ...No-Yes-learnRate0.8-nbIter30-MultiOmic.txt |     0
 ...-nbIter30-MultiOmicaccuracyByIteration.png |   Bin
 ...o-Yes-learnRate1.0-nbIter100-MultiOmic.txt |     0
 ...nbIter100-MultiOmicaccuracyByIteration.png |   Bin
 ...No-Yes-learnRate0.8-nbIter30-MultiOmic.txt |     0
 ...-nbIter30-MultiOmicaccuracyByIteration.png |   Bin
 ...No-Yes-learnRate1.0-nbIter10-MultiOmic.txt |     0
 ...-nbIter10-MultiOmicaccuracyByIteration.png |   Bin
 ...-No-Yes-learnRate1.0-nbIter1-MultiOmic.txt |     0
 ...0-nbIter1-MultiOmicaccuracyByIteration.png |   Bin
 ...No-Yes-learnRate1.0-nbIter10-MultiOmic.txt |     0
 ...-nbIter10-MultiOmicaccuracyByIteration.png |   Bin
 ...ose-squirrel-learnRate0.3-nbIter10-Awa.txt |     0
 ...ate0.3-nbIter10-AwaaccuracyByIteration.png |   Bin
 ...killer+whale-learnRate0.3-nbIter10-Awa.txt |     0
 ...ate0.3-nbIter10-AwaaccuracyByIteration.png |   Bin
 ...phin-gorilla-learnRate0.3-nbIter50-Awa.txt |     0
 ...ate0.3-nbIter50-AwaaccuracyByIteration.png |   Bin
 ...uirrel-mouse-learnRate0.3-nbIter10-Awa.txt |     0
 ...ate0.3-nbIter10-AwaaccuracyByIteration.png |   Bin
 ...-wolf-walrus-learnRate0.3-nbIter50-Awa.txt |     0
 ...ate0.3-nbIter50-AwaaccuracyByIteration.png |   Bin
 ...killer+whale-learnRate0.5-nbIter50-Awa.txt |     0
 ...ate0.5-nbIter50-AwaaccuracyByIteration.png |   Bin
 ...r-rhinoceros-learnRate0.3-nbIter50-Awa.txt |     0
 ...ate0.3-nbIter50-AwaaccuracyByIteration.png |   Bin
 ...pard-cow-lion-learnRate0.3-nbIter5-Awa.txt |     0
 ...Rate0.3-nbIter5-AwaaccuracyByIteration.png |   Bin
 ...-collie-mole-learnRate0.5-nbIter50-Awa.txt |     0
 ...ate0.5-nbIter50-AwaaccuracyByIteration.png |   Bin
 ...er-dalmatian-learnRate0.5-nbIter40-Awa.txt |     0
 ...ate0.5-nbIter40-AwaaccuracyByIteration.png |   Bin
 ...phant-walrus-learnRate0.3-nbIter50-Awa.txt |     0
 ...killer+whale-learnRate0.1-nbIter50-Awa.txt |     0
 ...r-chimpanzee-learnRate0.1-nbIter50-Awa.txt |     0
 ...-zebra-wolf-learnRate0.5-nbIter100-Awa.txt |     0
 ...te0.5-nbIter100-AwaaccuracyByIteration.png |   Bin
 ...s-chimpanzee-learnRate0.5-nbIter50-Awa.txt |     0
 ...unk-buffalo-learnRate0.5-nbIter200-Awa.txt |     0
 ...te0.5-nbIter200-AwaaccuracyByIteration.png |   Bin
 ...ant-ox-otter-learnRate0.1-nbIter50-Awa.txt |     0
 ...ephant-skunk-learnRate0.3-nbIter50-Awa.txt |     0
 ...EQ-Clinical-learnRate2.0-nbIter10-Fake.txt |     0
 ...te2.0-nbIter10-FakeaccuracyByIteration.png |   Bin
 ...EQ-Clinical-learnRate4.0-nbIter10-Fake.txt |     0
 ...te4.0-nbIter10-FakeaccuracyByIteration.png |   Bin
 ...SEQ-Clinical-learnRate4.0-nbIter2-Fake.txt |     0
 ...ate4.0-nbIter2-FakeaccuracyByIteration.png |   Bin
 ...-No-Yes-learnRate4.0-nbIter2-MultiOmic.txt |     0
 ...0-nbIter2-MultiOmicaccuracyByIteration.png |   Bin
 ...bIter100-MultiOmic-accuracyByIteration.png |   Bin
 ...o-Yes-learnRate5.0-nbIter100-MultiOmic.txt |     0
 ...nbIter100-MultiOmicaccuracyByIteration.png |   Bin
 .../Multiview/__init__.py                     |     0
 .../Multiview/profile                         |   Bin
 .../Multiview/res                             |     0
 .../Multiview/run.py                          |     2 +-
 .../ResultAnalysis.py                         |     0
 ...k-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log} |     0
 ...rk-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log |     0
 ...rk-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log |     0
 ...rk-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log |     0
 ...rk-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log |     0
 ...rk-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log |     0
 ...rk-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log |     0
 ...rk-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log |     0
 ...rk-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log |     0
 ...rk-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log |     0
 ...rk-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log |     0
 ...rk-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log |     0
 ...rk-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log |     0
 ...rk-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log |     0
 ...rk-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log |     0
 ...nRate0.9-MultiOmic-accuracyByIteration.png |   Bin
 ...q-Clinic-Yes-No-learnRate0.9-MultiOmic.txt |     0
 ...rk-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log |     0
 ...rk-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log |     0
 ...rk-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log |     0
 ...rk-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log |     0
 ...Methyl_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log |     0
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |     0
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |     0
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |     0
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |     0
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |     0
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |     0
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |     0
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |     0
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |     0
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |     0
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |     0
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |     0
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |     0
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |     0
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |     0
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |     0
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |     0
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |     0
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |     0
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |     0
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |     0
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |     0
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |     0
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |     0
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |     0
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |     0
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |    32 +
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |   157 +
 ...nRate0.9-MultiOmic-accuracyByIteration.png |   Bin 0 -> 49502 bytes
 ...q-Clinic-Yes-No-learnRate0.9-MultiOmic.txt |    88 +
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |    18 +
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |    24 +
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |     8 +
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |     8 +
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |     8 +
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |    74 +
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |    74 +
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |   107 +
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |   463 +
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |     1 +
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |     1 +
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |     1 +
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |    24 +
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |    31 +
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |   150 +
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |    18 +
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |     1 +
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |     1 +
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |     8 +
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |     8 +
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |     8 +
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |     8 +
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |     8 +
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |     8 +
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |  1526 ++
 .../Versions.py                               |     0
 Code/MonoMutliViewClassifiers/__init__.py     |     0
 .../MonoviewClassifiers/DecisionTree.py       |    11 -
 .../Fusion/Methods/MonoviewClassifiers/KNN.py |    11 -
 .../MonoviewClassifiers/RandomForest.py       |    12 -
 .../Fusion/Methods/MonoviewClassifiers/SGD.py |    16 -
 .../Fusion/Methods/MonoviewClassifiers/SVC.py |    13 -
 Code/__init__.py                              |     3 +-
 1487 files changed, 214026 insertions(+), 340 deletions(-)
 rename Code/{ => MonoMutliViewClassifiers}/ExecClassif.py (62%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/DBCrawl.py (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/ExecFeatExtraction.py (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/ExecFeatParaOpt.py (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/FeatExtraction.py (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/FeatParaOpt.py (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-ClassLabels-Description.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-ClassLabels.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-HOG-CellDimension_5-nbOrientaions_8-nbClusters_20-Maxiter_100.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-HSV-Bins_[16,16,16]-Norm_Distr.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-RGB-Bins_16-MaxCI_256-Norm_Distr.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-RGB_HSV_SIFT_SURF_HOG-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-SIFT-Cluster_35-Norm_Distr.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-SURF-Cluster_30-Norm_Distr.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/HOG-10-50-5/2016_03_19-FeatParaOpt-HOG.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/HOG-10-50-5/2016_03_19-Feature_HOG-Parameter_HOG_Cluster-ClassTime.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/HOG-10-50-5/2016_03_19-Feature_HOG-Parameter_HOG_Cluster-FeatExtTime.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/HOG-10-50-5/2016_03_19-Feature_HOG-Parameter_HOG_Cluster-TotalTime.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_22-FPO-Caltech-HOG-HOG_Cluster-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_22-FPO-Caltech-HOG-HOG_Cluster.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-ClassTime.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-FeatExtTime.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-TotalTime.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-ClassTime.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-FeatExtTime.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-TotalTime.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-ClassTime.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-FeatExtTime.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-TotalTime.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-1.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-ClassTime.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-FeatExtTime.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-LOG-1.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-TotalTime.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-1.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-ClassTime.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-FeatExtTime.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-LOG-1.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-TotalTime.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-ClassTime.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-FeatExtTime.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-TotalTime.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-1.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-ClassTime.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-FeatExtTime.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-TotalTime.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-ClassTime.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-FeatExtTime.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-TotalTime.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins-ClassTime.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins-FeatExtTime.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins-TotalTime.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-1.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-ClassTime.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-FeatExtTime.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-LOG-1.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-TotalTime.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/2016_01_24-RGB-ClassificationTime.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/2016_01_24-RGB-FeatExtractTime.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/2016_01_24-RGB-TotalTime.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/2016_03_14-Results-RGB.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/Console-Output.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_CI-ClassTime.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_CI-FeatExtTime.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_CI-TotalTime.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_MaxCI-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_MaxCI.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-ClassTime.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-FeatExtTime.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-TotalTime.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-1.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-ClassTime.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-FeatExtTime.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-LOG-1.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-TotalTime.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-ClassTime.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-FeatExtTime.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-TotalTime.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-1.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-ClassTime.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-FeatExtTime.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-LOG-1.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-TotalTime.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/2016_01_28-Results-SURF.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/Console-Output.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/ScoreClassificationTime.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/ScoreFeatExtractionTime.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/ScoreTotalTime.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/__init__.py (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/hog_extraction.py (100%)
 rename Code/{ => MonoMutliViewClassifiers}/FeatExtraction/hog_extraction_parallelized.py (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/ClassifMonoView.py (90%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/ExecClassifMonoView.py (62%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/ExecPlot.py (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/ExportResults.py (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-1.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-2.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-3.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-4.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-5.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-6.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-7.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-1.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-2.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-3.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-4.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-5.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-1.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-10.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-11.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-12.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-13.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-14.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-15.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-16.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-17.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-18.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-19.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-2.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-3.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-4.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-5.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-6.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-7.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-8.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-9.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-1.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-10.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-11.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-12.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-13.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-14.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-15.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-16.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-17.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-18.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-19.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-2.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-3.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-4.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-5.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-6.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-7.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-8.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-9.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-1.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-10.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-11.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-12.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-13.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-14.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-15.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-16.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-17.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-18.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-19.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-2.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-3.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-4.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-5.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-6.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-7.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-8.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-9.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-1.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-10.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-11.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-12.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-13.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-14.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-15.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-16.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-17.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-18.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-19.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-2.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-3.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-4.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-5.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-6.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-7.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-8.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-9.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-1.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-10.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-11.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-12.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-13.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-14.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-15.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-16.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-17.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-18.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-19.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-2.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-3.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-4.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-5.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-6.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-7.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-8.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-9.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-1.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-10.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-11.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-12.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-13.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-14.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-15.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-16.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-17.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-18.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-19.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-2.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-3.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-4.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-5.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-6.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-7.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-8.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-9.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-1.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-10.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-11.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-12.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-13.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-14.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-15.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-16.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-17.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-18.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-19.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-2.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-3.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-4.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-5.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-6.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-7.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-8.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-9.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-1.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-10.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-11.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-12.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-13.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-14.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-15.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-16.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-17.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-18.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-19.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-2.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-3.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-4.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-5.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-6.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-7.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-8.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-9.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-1.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-10.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-11.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-12.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-13.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-14.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-15.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-16.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-17.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-18.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-19.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-2.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-3.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-4.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-5.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-6.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-7.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-8.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-9.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-1.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-10.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-11.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-12.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-13.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-14.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-15.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-16.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-17.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-18.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-19.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-2.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-3.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-4.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-5.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-6.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-7.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-8.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-9.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-1.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-2.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-3.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-4.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-5.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-6.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-7.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-8.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-1.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-10.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-11.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-12.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-13.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-14.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-15.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-16.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-17.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-18.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-19.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-2.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-3.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-4.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-5.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-6.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-7.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-8.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-9.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-1.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-10.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-11.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-12.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-13.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-14.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-15.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-16.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-17.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-18.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-19.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-2.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-3.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-4.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-5.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-6.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-7.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-8.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-9.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-1.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-10.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-11.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-12.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-13.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-14.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-15.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-16.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-17.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-18.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-19.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-2.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-3.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-4.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-5.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-6.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-7.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-8.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-9.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-1.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-10.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-11.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-12.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-13.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-14.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-15.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-16.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-17.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-18.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-19.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-2.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-3.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-4.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-5.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-6.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-7.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-8.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-9.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-1.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-10.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-11.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-12.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-13.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-14.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-15.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-16.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-17.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-18.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-19.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-2.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-3.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-4.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-5.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-6.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-7.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-8.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-9.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-1.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-2.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-3.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-4.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-5.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-6.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-7.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-1.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-10.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-11.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-12.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-13.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-14.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-15.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-16.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-17.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-18.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-19.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-2.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-3.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-4.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-5.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-6.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-7.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-8.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-9.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-1.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-10.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-11.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-12.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-13.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-14.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-15.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-16.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-17.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-18.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-19.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-2.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-3.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-4.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-5.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-6.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-7.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-8.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-9.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-1.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-10.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-11.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-12.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-13.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-14.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-15.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-16.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-17.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-18.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-19.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-2.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-3.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-4.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-5.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-6.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-7.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-8.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-9.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-1.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-10.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-11.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-12.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-13.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-14.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-15.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-16.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-17.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-18.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-19.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-2.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-3.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-4.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-5.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-6.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-7.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-8.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-9.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-1.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-10.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-11.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-12.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-13.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-14.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-15.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-16.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-17.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-18.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-19.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-2.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-3.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-4.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-5.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-6.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-7.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-8.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-9.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-1.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-2.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-3.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-4.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-1.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-2.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-3.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-4.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-1.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-2.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-3.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-4.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-1.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-2.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-3.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-4.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-1.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-2.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-3.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-4.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-1.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-2.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-3.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-4.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-1.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-2.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-3.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-4.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-1.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-2.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-3.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-4.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-1.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-2.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-3.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-4.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-1.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-2.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-3.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-4.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-1.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-2.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-3.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-4.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-5.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-1.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-2.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-3.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-4.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-5.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-1.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-2.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-3.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-4.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-5.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-1.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-2.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-3.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-4.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-5.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-1.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-2.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-3.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-4.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-5.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-1.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-2.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-3.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-4.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-1.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-2.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-3.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-4.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-1.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-2.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-3.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-4.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-1.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-2.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-3.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-4.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-1.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-2.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-3.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-4.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats.csv (100%)
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-DB-RGB-LOG-1.log
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-DB-RGB-LOG-2.log
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-DB-RGB-LOG-3.log
 rename Code/{Multiview/Results/20160819-202408-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log => MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-DB-RGB-LOG.log} (100%)
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-1.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-2.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-3.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-4.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-5.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-6.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-7.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-8.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-9.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-1.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-2.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-3.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-4.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-5.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-6.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-7.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-8.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-9.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-1.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-2.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-3.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-4.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-5.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-6.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-7.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-8.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-9.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-1.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-2.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-3.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-4.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-5.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-6.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-7.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-8.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-9.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-1.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-2.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-3.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-4.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-5.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-6.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-7.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-8.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-9.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-1.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-2.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-3.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-4.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-5.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-6.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-7.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg-1.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg-2.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg-3.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg-4.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg-5.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg-6.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg-7.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-1.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-2.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-3.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-4.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-5.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-6.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-7.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score-1.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score-2.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score-3.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score-4.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score-5.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score-6.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score-7.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-1.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-2.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-3.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-4.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-5.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-6.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-7.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-1.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-10.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-11.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-12.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-13.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-14.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-15.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-16.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-17.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-18.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-19.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-2.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-3.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-4.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-5.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-6.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-7.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-8.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-9.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-1.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-10.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-11.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-12.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-13.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-14.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-15.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-16.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-17.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-18.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-19.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-2.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-3.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-4.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-5.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-6.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-7.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-8.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-9.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-1.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-10.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-11.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-12.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-13.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-14.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-15.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-16.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-17.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-18.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-19.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-2.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-3.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-4.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-5.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-6.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-7.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-8.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-9.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-1.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-10.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-11.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-12.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-13.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-14.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-15.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-16.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-17.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-18.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-19.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-2.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-3.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-4.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-5.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-6.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-7.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-8.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-9.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-1.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-10.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-11.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-12.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-13.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-14.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-15.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-16.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-17.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-18.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-19.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-2.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-3.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-4.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-5.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-6.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-7.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-8.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-9.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-1.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-10.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-11.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-12.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-13.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-2.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-3.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-4.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-5.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-6.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-7.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-8.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-9.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-1.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-10.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-11.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-12.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-13.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-2.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-3.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-4.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-5.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-6.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-7.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-8.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-9.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-1.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-10.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-11.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-12.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-13.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-2.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-3.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-4.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-5.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-6.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-7.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-8.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-9.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-1.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-10.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-11.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-12.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-13.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-2.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-3.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-4.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-5.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-6.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-7.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-8.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-9.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score.png
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-1.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-10.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-11.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-12.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-13.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-2.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-3.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-4.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-5.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-6.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-7.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-8.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-9.csv
 create mode 100644 Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats.csv
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-ConfMatrix.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-ConfMatrixImg.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-Report.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-Score.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-Stats.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-ConfMatrix.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-ConfMatrixImg.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-Report.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-Score.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-Stats.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-ConfMatrix.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-ConfMatrixImg.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Report.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Score.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Stats.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-ConfMatrix.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-ConfMatrixImg.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Report.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Score.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Stats.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-ConfMatrix.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-ConfMatrixImg.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-Report.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-Score.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-Stats.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-ConfMatrix.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-ConfMatrixImg.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-Report.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-Score.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-Stats.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF.csv (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/__init__.py (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Monoview/run.py (100%)
 create mode 100644 Code/MonoMutliViewClassifiers/MonoviewClassifiers/Adaboost.py
 create mode 100644 Code/MonoMutliViewClassifiers/MonoviewClassifiers/DecisionTree.py
 create mode 100644 Code/MonoMutliViewClassifiers/MonoviewClassifiers/KNN.py
 create mode 100644 Code/MonoMutliViewClassifiers/MonoviewClassifiers/RandomForest.py
 create mode 100644 Code/MonoMutliViewClassifiers/MonoviewClassifiers/SGD.py
 create mode 100644 Code/MonoMutliViewClassifiers/MonoviewClassifiers/SVMLinear.py
 create mode 100644 Code/MonoMutliViewClassifiers/MonoviewClassifiers/SVMPoly.py
 create mode 100644 Code/MonoMutliViewClassifiers/MonoviewClassifiers/SVMRBF.py
 rename Code/{Multiview/Fusion/Methods => MonoMutliViewClassifiers}/MonoviewClassifiers/__init__.py (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/ExecMultiview.py (93%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Fusion/Fusion.py (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Fusion/Methods/EarlyFusion.py (97%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Fusion/Methods/LateFusion.py (99%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Fusion/Methods/__init__.py (100%)
 create mode 100644 Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/poulet/__init__.py
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Fusion/__init__.py (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Fusion/analyzeResults.py (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/GetMultiviewDb.py (99%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Mumbo/Classifiers/DecisionTree.py (95%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Mumbo/Classifiers/Kover.py (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Mumbo/Classifiers/ModifiedMulticlass.py (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Mumbo/Classifiers/SubSampling.py (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Mumbo/Classifiers/__init__.py (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Mumbo/Mumbo.py (84%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Mumbo/__init__.py (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Mumbo/analyzeResults.py (99%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160805-051412Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-Fake.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160805-051504Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-Fake-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160805-051504Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-Fake.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160805-053948Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160805-053948Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160805-060450Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160805-060450Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160805-062754Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160805-062754Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160805-065239Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160805-065239Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160810-151543Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160810-151543Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160810-151701Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160810-151701Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160810-151848Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160810-151848Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160810-151935Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160810-151935Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160810-152152Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160810-152152Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160810-154441Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160810-154441Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter100-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160810-164849Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.9-nbIter1-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160810-164849Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.9-nbIter1-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160810-170941Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.0-nbIter1-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160810-170941Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.0-nbIter1-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160810-171142Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter1-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160810-171142Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter1-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160810-171605Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160810-171605Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160810-172819Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160810-172819Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160810-174108Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160810-174108Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160810-174407Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160810-174407Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160810-174756Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160810-174756Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160810-174819Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160810-174819Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160810-180049Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter100-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160810-180049Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter100-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160810-180916Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter4-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160810-180916Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter4-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160810-191528Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter400-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160810-191528Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter400-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160811-102529Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160811-102529Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160811-104307Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160811-104307Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160811-110404Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160811-110404Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160811-115935Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160811-115935Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160811-135735Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160811-135735Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160812-113004Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160812-113004Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160812-113045Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160812-113045Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160812-113624Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160812-113624Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160812-113951Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160812-113951Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160812-114041Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160812-114041Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160812-114131Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160812-114131Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160812-114158Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160812-114158Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160812-114227Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160812-114227Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160812-115346Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160812-115346Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160812-125212Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160812-125212Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160812-130530Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160812-130530Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160812-130656Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160812-130656Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160812-130943Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160812-130943Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160812-131149Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160812-131149Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160812-131326Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160812-131326Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160812-131416Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160812-131416Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160812-141531Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160812-141531Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160812-151147Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160812-151147Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160812-160744Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160812-160744Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160812-170236Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160812-170236Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160815-171926Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160815-171926Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160815-172630Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160815-172630Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160815-172657Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160815-172657Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160815-172723Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160815-172723Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160815-182427Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160815-182427Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160815-191554Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160815-191554Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160815-200833Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160815-200833Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160815-205957Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160815-205957Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160815-215245Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160815-215245Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160815-224527Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160815-224527Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160815-233644Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160815-233644Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160816-002920Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160816-002920Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160816-012052Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160816-012052Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160816-021305Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160816-021305Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160816-030405Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160816-030405Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160816-035600Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160816-035600Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160816-044836Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160816-044836Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160816-054024Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160816-054024Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160817-100628Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter3-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160817-100628Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter3-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160817-110027Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160817-110027Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160817-173232Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160817-173308Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160817-173402Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160817-173429Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160817-173452Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160817-173829Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160817-181320Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160818-094003Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160818-100400Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160818-102335Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160818-111628Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160818-115729Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160818-144139Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160819-090138Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160819-090138Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160819-090956Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160819-090956Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160819-094229Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160819-094229Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160819-094257Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160819-094257Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160819-094609Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160819-094609Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160819-095436Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160819-095436Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160819-100249Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160819-100249Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160819-100936Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160819-100936Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160819-103243-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160819-103707Results-Mumbo-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-MultiOmicModified-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160819-103707Results-Mumbo-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-MultiOmicModified.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160819-104311-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160819-104325-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160819-104346-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160819-143036Results-Mumbo-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.7-MultiOmicModified-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160819-143036Results-Mumbo-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.7-MultiOmicModified.txt (100%)
 rename Code/{Multiview/Results/20160819-202419-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log => MonoMutliViewClassifiers/Multiview/Results/20160819-202408-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log} (100%)
 rename Code/{Multiview/Results/20160819-202450-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log => MonoMutliViewClassifiers/Multiview/Results/20160819-202419-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log} (100%)
 rename Code/{Results/20160822-132214-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log => MonoMutliViewClassifiers/Multiview/Results/20160819-202450-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log} (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160819-202523-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160819-202618-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160819-202652-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160819-202755-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160819-202955-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160819-203000Results-Fusion-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.7-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160819-203122-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160819-203514-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160822-102447-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160822-102524-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160822-102616-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160822-102718-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160822-102807-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160822-102829-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160822-102840-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160822-102856-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160822-102917-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160822-103049-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160822-103149-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160822-103350-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160822-103432-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160822-103642-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160822-103749-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160822-103811-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160822-103829-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160822-103840-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160822-103855-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160822-103937-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160822-103959-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160822-104041-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160822-104137-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160822-104551-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160822-104728-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160822-104849-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160822-105015-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160822-105319-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160822-105520-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160822-105657-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160822-110013-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160822-110101-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160822-110150-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160822-110504-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160822-110700-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160822-110714-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160822-110807-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160822-111002-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160822-111628-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160822-111942-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160822-112058-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160822-112326-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160822-112357-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160822-123139-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160822-123209-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160822-123226-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160822-123315-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160822-123357-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160822-123433-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160822-123458-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160822-123507-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160822-123555-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160822-123825-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160822-123844-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160822-123900-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160822-124352-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160822-124744-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160822-125346-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160822-130127-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160822-152017-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160822-152034-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160822-152113-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160823-095233-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160823-095734-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160823-100003-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160823-100209-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160823-100355-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160823-100549-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160823-100728-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160823-101021-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160823-101135-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160823-101459-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/20160823-101527-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log (100%)
 create mode 100644 Code/MonoMutliViewClassifiers/Multiview/Results/20160824-083255-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Multiview/Results/20160824-083315-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Multiview/Results/20160824-083427-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Multiview/Results/20160824-084100-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Multiview/Results/20160824-084717-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Multiview/Results/20160824-084943-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Multiview/Results/20160824-085300-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Multiview/Results/20160824-085340-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Multiview/Results/20160824-085528-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Multiview/Results/20160824-090120-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Multiview/Results/20160824-090956-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Multiview/Results/20160824-091129Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic-accuracyByIteration.png
 create mode 100644 Code/MonoMutliViewClassifiers/Multiview/Results/20160824-091129Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt
 create mode 100644 Code/MonoMutliViewClassifiers/Multiview/Results/20160824-091625-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Multiview/Results/20160824-091756Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic-accuracyByIteration.png
 create mode 100644 Code/MonoMutliViewClassifiers/Multiview/Results/20160824-091756Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt
 create mode 100644 Code/MonoMutliViewClassifiers/Multiview/Results/20160824-092030-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Multiview/Results/20160824-092202Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic-accuracyByIteration.png
 create mode 100644 Code/MonoMutliViewClassifiers/Multiview/Results/20160824-092202Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt
 create mode 100644 Code/MonoMutliViewClassifiers/Multiview/Results/20160824-092301-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Multiview/Results/20160824-092640-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Multiview/Results/20160824-092735-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Multiview/Results/20160824-093148-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Multiview/Results/20160824-093234-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Multiview/Results/20160824-093312-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Multiview/Results/20160824-093355-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Multiview/Results/20160824-093842Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic-accuracyByIteration.png
 create mode 100644 Code/MonoMutliViewClassifiers/Multiview/Results/20160824-093842Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt
 create mode 100644 Code/MonoMutliViewClassifiers/Multiview/Results/20160824-094408-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Multiview/Results/20160824-094740-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Multiview/Results/20160824-100121Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic-accuracyByIteration.png
 create mode 100644 Code/MonoMutliViewClassifiers/Multiview/Results/20160824-100121Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt
 create mode 100644 Code/MonoMutliViewClassifiers/Multiview/Results/20160824-110726-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Multiview/Results/20160824-111030-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Multiview/Results/20160824-111136-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Multiview/Results/20160824-111445-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Multiview/Results/20160824-112743Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic-accuracyByIteration.png
 create mode 100644 Code/MonoMutliViewClassifiers/Multiview/Results/20160824-112743Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt
 create mode 100644 Code/MonoMutliViewClassifiers/Multiview/Results/20160824-112821-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Multiview/Results/20160824-114134Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic-accuracyByIteration.png
 create mode 100644 Code/MonoMutliViewClassifiers/Multiview/Results/20160824-114134Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt
 create mode 100644 Code/MonoMutliViewClassifiers/Multiview/Results/20160824-115022-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Multiview/Results/20160824-115712-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Multiview/Results/20160824-134900-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Multiview/Results/20160824-135019-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Multiview/Results/20160824-135102-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/2016_04_26-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/2016_04_26-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/2016_04_26-CMultiV-Mumbo-phog-hist_decaf_cq-hist-Awa-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/2016_06_16-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/2016_06_16-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_cq-hist_decaf-Awa-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_cq-hist_surf-hist-Awa-LOG (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_cq-hist_surf-hist-Awa-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_decaf_cq-hist-Awa-LOG (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_decaf_cq-hist-Awa-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/2016_06_20-CMultiV-Mumbo-phog-hist_cq-hist_surf-hist-Awa-LOG (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/2016_06_20-CMultiV-Mumbo-phog-hist_cq-hist_surf-hist-Awa-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/2016_06_23-CMultiV-Mumbo-Methylation_RNA-seq_miRNA-MultiOmic-LOG (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/2016_06_23-CMultiV-Mumbo-Methylation_RNA-seq_miRNA-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/2016_06_23-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/2016_06_23-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/2016_07_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/2016_07_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/2016_07_12-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/2016_07_12-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/2016_07_12-CMultiV-Mumbo-a_b_c_d-MultiOmic-LOG (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/2016_07_12-CMultiV-Mumbo-a_b_c_d-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/2016_08_01-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/2016_08_01-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/2016_08_01-CMultiV-Mumbo-RGB_HOG SIFT-Caltech-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/2016_08_02-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/2016_08_04-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-Fake-LOG (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/2016_08_04-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-Fake-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/2016_08_04-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/2016_08_04-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/2016_08_05-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-Fake-LOG (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/2016_08_05-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-Fake-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/2016_08_05-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/2016_08_05-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/2016_08_10-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/2016_08_10-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/2016_08_11-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/2016_08_11-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/2016_08_11-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical_PseudoRNASeq-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/2016_08_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/2016_08_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/2016_08_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical_PseudoRNASeq-MultiOmic-LOG (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/2016_08_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical_PseudoRNASeq-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/2016_08_15-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/2016_08_15-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/2016_08_16-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/2016_08_16-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/2016_08_17-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/2016_08_17-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/2016_08_17-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/2016_08_17-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/2016_08_18-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/2016_08_18-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/2016_08_19-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/2016_08_19-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/Results-Mumbo-DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate1.0-nbIter1-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/Results-Mumbo-DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate1.0-nbIter1-MultiOmicaccuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/Results-Mumbo-DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate1.0-nbIter100-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/Results-Mumbo-DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate1.0-nbIter100-MultiOmicaccuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/Results-Mumbo-DecisionTree-Methylation-RNA-seq-miRNA-No-Yes-learnRate0.8-nbIter30-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/Results-Mumbo-DecisionTree-Methylation-RNA-seq-miRNA-No-Yes-learnRate0.8-nbIter30-MultiOmicaccuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/Results-Mumbo-DecisionTree-Methylation-RNA-seq-miRNA-No-Yes-learnRate1.0-nbIter100-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/Results-Mumbo-DecisionTree-Methylation-RNA-seq-miRNA-No-Yes-learnRate1.0-nbIter100-MultiOmicaccuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/Results-Mumbo-DecisionTree-RGB-HOG-SIFT-No-Yes-learnRate0.8-nbIter30-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/Results-Mumbo-DecisionTree-RGB-HOG-SIFT-No-Yes-learnRate0.8-nbIter30-MultiOmicaccuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/Results-Mumbo-DecisionTree-RGB-HOG-SIFT-No-Yes-learnRate1.0-nbIter10-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/Results-Mumbo-DecisionTree-RGB-HOG-SIFT-No-Yes-learnRate1.0-nbIter10-MultiOmicaccuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/Results-Mumbo-DecisionTree-a-b-c-d-No-Yes-learnRate1.0-nbIter1-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/Results-Mumbo-DecisionTree-a-b-c-d-No-Yes-learnRate1.0-nbIter1-MultiOmicaccuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/Results-Mumbo-DecisionTree-a-b-c-d-No-Yes-learnRate1.0-nbIter10-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/Results-Mumbo-DecisionTree-a-b-c-d-No-Yes-learnRate1.0-nbIter10-MultiOmicaccuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-bat-beaver-rat-rabbit-fox-pig-walrus-chihuahua-moose-squirrel-learnRate0.3-nbIter10-Awa.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-bat-beaver-rat-rabbit-fox-pig-walrus-chihuahua-moose-squirrel-learnRate0.3-nbIter10-AwaaccuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-deer-persian+cat-chihuahua-sheep-siamese+cat-antelope-german+shepherd-rat-moose-killer+whale-learnRate0.3-nbIter10-Awa.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-deer-persian+cat-chihuahua-sheep-siamese+cat-antelope-german+shepherd-rat-moose-killer+whale-learnRate0.3-nbIter10-AwaaccuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-german+shepherd-otter-blue+whale-antelope-rhinoceros-humpback+whale-elephant-grizzly+bear-dolphin-gorilla-learnRate0.3-nbIter50-Awa.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-german+shepherd-otter-blue+whale-antelope-rhinoceros-humpback+whale-elephant-grizzly+bear-dolphin-gorilla-learnRate0.3-nbIter50-AwaaccuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-giant+panda-chimpanzee-antelope-german+shepherd-seal-killer+whale-giraffe-rat-squirrel-mouse-learnRate0.3-nbIter10-Awa.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-giant+panda-chimpanzee-antelope-german+shepherd-seal-killer+whale-giraffe-rat-squirrel-mouse-learnRate0.3-nbIter10-AwaaccuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-mole-antelope-moose-polar+bear-skunk-blue+whale-dalmatian-killer+whale-wolf-walrus-learnRate0.3-nbIter50-Awa.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-mole-antelope-moose-polar+bear-skunk-blue+whale-dalmatian-killer+whale-wolf-walrus-learnRate0.3-nbIter50-AwaaccuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-mole-german+shepherd-humpback+whale-rabbit-dalmatian-persian+cat-giraffe-weasel-blue+whale-killer+whale-learnRate0.5-nbIter50-Awa.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-mole-german+shepherd-humpback+whale-rabbit-dalmatian-persian+cat-giraffe-weasel-blue+whale-killer+whale-learnRate0.5-nbIter50-AwaaccuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-persian+cat-giraffe-beaver-hamster-deer-mole-grizzly+bear-mouse-otter-rhinoceros-learnRate0.3-nbIter50-Awa.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-persian+cat-giraffe-beaver-hamster-deer-mole-grizzly+bear-mouse-otter-rhinoceros-learnRate0.3-nbIter50-AwaaccuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-skunk-sheep-wolf-polar+bear-weasel-walrus-rhinoceros-leopard-cow-lion-learnRate0.3-nbIter5-Awa.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-skunk-sheep-wolf-polar+bear-weasel-walrus-rhinoceros-leopard-cow-lion-learnRate0.3-nbIter5-AwaaccuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-skunk-tiger-walrus-weasel-pig-sheep-dalmatian-spider+monkey-collie-mole-learnRate0.5-nbIter50-Awa.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-skunk-tiger-walrus-weasel-pig-sheep-dalmatian-spider+monkey-collie-mole-learnRate0.5-nbIter50-AwaaccuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-antelope-grizzly+bear-killer+whale-beaver-dalmatian-learnRate0.5-nbIter40-Awa.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-antelope-grizzly+bear-killer+whale-beaver-dalmatian-learnRate0.5-nbIter40-AwaaccuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-beaver-moose-squirrel-seal-cow-bobcat-rat-gorilla-elephant-walrus-learnRate0.3-nbIter50-Awa.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-dalmatian-tiger-rhinoceros-bat-killer+whale-learnRate0.1-nbIter50-Awa.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-giraffe-squirrel-tiger-deer-chimpanzee-learnRate0.1-nbIter50-Awa.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-leopard-gorilla-elephant-zebra-wolf-learnRate0.5-nbIter100-Awa.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-leopard-gorilla-elephant-zebra-wolf-learnRate0.5-nbIter100-AwaaccuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-pig-fox-horse-rhinoceros-chimpanzee-learnRate0.5-nbIter50-Awa.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-rabbit-giant+panda-rat-skunk-buffalo-learnRate0.5-nbIter200-Awa.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-rabbit-giant+panda-rat-skunk-buffalo-learnRate0.5-nbIter200-AwaaccuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-seal-rabbit-mouse-sheep-deer-bobcat-persian+cat-elephant-ox-otter-learnRate0.1-nbIter50-Awa.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-siamese+cat-hamster-tiger-collie-antelope-chihuahua-polar+bear-hippopotamus-elephant-skunk-learnRate0.3-nbIter50-Awa.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-Fake.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-FakeaccuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate4.0-nbIter10-Fake.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate4.0-nbIter10-FakeaccuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate4.0-nbIter2-Fake.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate4.0-nbIter2-FakeaccuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate4.0-nbIter2-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate4.0-nbIter2-MultiOmicaccuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmicaccuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/__init__.py (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/profile (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/res (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Multiview/run.py (60%)
 rename Code/{ => MonoMutliViewClassifiers}/ResultAnalysis.py (100%)
 rename Code/{Results/20160822-132504-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log => MonoMutliViewClassifiers/Results/20160822-132214-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log} (100%)
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160822-132504-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
 rename Code/{ => MonoMutliViewClassifiers}/Results/20160822-132643-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Results/20160822-133011-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Results/20160822-133020-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Results/20160822-133220-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Results/20160822-133238-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Results/20160822-133410-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Results/20160822-133436-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Results/20160822-133458-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Results/20160822-133530-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Results/20160822-133639-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Results/20160822-133846-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Results/20160822-134037-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Results/20160822-134211-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Results/20160822-134319Results-Mumbo-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.9-MultiOmic-accuracyByIteration.png (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Results/20160822-134319Results-Mumbo-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.9-MultiOmic.txt (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Results/20160822-140630-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Results/20160822-140803-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Results/20160822-140845-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Results/20160822-140937-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Results/20160822-141037-CMultiV-Benchmark-Methyl_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Results/20160822-141112-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Results/20160822-141147-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Results/20160822-141207-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Results/20160822-141238-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Results/20160822-141345-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Results/20160822-141834-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Results/20160822-142903-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Results/20160822-142943-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Results/20160822-143254-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Results/20160822-143512-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Results/20160822-143553-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Results/20160822-150532-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Results/20160822-150705-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Results/20160822-150714-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Results/20160822-152212-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Results/20160822-153503-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Results/20160822-154718-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Results/20160822-155011-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Results/20160822-155240-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Results/20160822-155839-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Results/20160823-105758-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Results/20160823-110509-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Results/20160823-110659-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Results/20160823-110859-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Results/20160823-111036-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log (100%)
 rename Code/{ => MonoMutliViewClassifiers}/Results/20160823-111124-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log (100%)
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160823-111945-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160823-112110-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160823-112139Results-Mumbo-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.9-MultiOmic-accuracyByIteration.png
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160823-112139Results-Mumbo-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.9-MultiOmic.txt
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160824-150940-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160824-151006-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160824-151503-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160824-151604-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160824-151656-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160824-151836-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160824-152149-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160824-153240-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160824-153513-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160824-165838-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160824-170101-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160824-170131-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160824-170148-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160824-170204-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160824-170346-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160824-170435-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160824-170504-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160824-170547-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160824-170609-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160824-170651-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160824-170714-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160824-170830-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160824-171109-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160824-171228-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160824-171252-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
 rename Code/{ => MonoMutliViewClassifiers}/Versions.py (100%)
 create mode 100644 Code/MonoMutliViewClassifiers/__init__.py
 delete mode 100644 Code/Multiview/Fusion/Methods/MonoviewClassifiers/DecisionTree.py
 delete mode 100644 Code/Multiview/Fusion/Methods/MonoviewClassifiers/KNN.py
 delete mode 100644 Code/Multiview/Fusion/Methods/MonoviewClassifiers/RandomForest.py
 delete mode 100644 Code/Multiview/Fusion/Methods/MonoviewClassifiers/SGD.py
 delete mode 100644 Code/Multiview/Fusion/Methods/MonoviewClassifiers/SVC.py

diff --git a/Code/ExecClassif.py b/Code/MonoMutliViewClassifiers/ExecClassif.py
similarity index 62%
rename from Code/ExecClassif.py
rename to Code/MonoMutliViewClassifiers/ExecClassif.py
index dab41d2a..2a02e7dd 100644
--- a/Code/ExecClassif.py
+++ b/Code/MonoMutliViewClassifiers/ExecClassif.py
@@ -11,6 +11,8 @@ import logging
 from joblib import Parallel, delayed
 from ResultAnalysis import resultAnalysis
 import numpy as np
+import MonoviewClassifiers
+
 
 parser = argparse.ArgumentParser(
     description='This file is used to benchmark the accuracies fo multiple classification algorithm on multiview data.',
@@ -62,12 +64,26 @@ groupRF = parser.add_argument_group('Random Forest arguments')
 groupRF.add_argument('--CL_RF_trees', metavar='STRING', action='store', help='GridSearch: Determine the trees',
                      default='25 75 125 175')
 
-groupSVC = parser.add_argument_group('SVC arguments')
-groupSVC.add_argument('--CL_SVC_kernel', metavar='STRING', action='store', help='GridSearch : Kernels used',
-                      default='linear')
-groupSVC.add_argument('--CL_SVC_C', metavar='STRING', action='store', help='GridSearch : Penalty parameters used',
+groupSVMLinear = parser.add_argument_group('Linear SVM arguments')
+groupSVMLinear.add_argument('--CL_SVML_C', metavar='STRING', action='store', help='GridSearch : Penalty parameters used',
                       default='1:10:100:1000')
 
+groupSVMRBF = parser.add_argument_group('SVW-RBF arguments')
+groupSVMRBF.add_argument('--CL_SVMR_C', metavar='STRING', action='store', help='GridSearch : Penalty parameters used',
+                            default='1:10:100:1000')
+
+groupSVMPoly = parser.add_argument_group('Poly SVM arguments')
+groupSVMPoly.add_argument('--CL_SVMP_C', metavar='STRING', action='store', help='GridSearch : Penalty parameters used',
+                            default='1:10:100:1000')
+groupSVMPoly.add_argument('--CL_SVMP_deg', metavar='STRING', action='store', help='GridSearch : Degree parameters used',
+                          default='1:2:5:10')
+
+groupAdaboost = parser.add_argument_group('Adaboost arguments')
+groupAdaboost.add_argument('--CL_Ada_n_est', metavar='STRING', action='store', help='GridSearch : Penalty parameters used',
+                          default='1:10:100:1000')
+groupAdaboost.add_argument('--CL_Ada_b_est', metavar='STRING', action='store', help='GridSearch : Degree parameters used',
+                          default='DecisionTreeClassifier')
+
 groupRF = parser.add_argument_group('Decision Trees arguments')
 groupRF.add_argument('--CL_DT_depth', metavar='STRING', action='store',
                      help='GridSearch: Determine max depth for Decision Trees', default='1:3:5:7')
@@ -90,8 +106,9 @@ groupMumbo.add_argument('--MU_types', metavar='STRING', action='store',
 groupMumbo.add_argument('--MU_config', metavar='STRING', action='store', nargs='+',
                         help='Configuration for the monoview classifier in Mumbo',
                         default=['3:1.0', '3:1.0', '3:1.0','3:1.0'])
-groupMumbo.add_argument('--MU_iter', metavar='INT', action='store',
-                        help='Number of iterations in Mumbos learning process', type=int, default=5)
+groupMumbo.add_argument('--MU_iter', metavar='INT', action='store', nargs=3,
+                        help='Max number of iteration, min number of iteration, convergence threshold', type=float,
+                        default=[1000, 300, 0.0005])
 
 groupFusion = parser.add_argument_group('Fusion arguments')
 groupFusion.add_argument('--FU_types', metavar='STRING', action='store',
@@ -151,16 +168,17 @@ if args.CL_type.split(":")==["Benchmark"]:
                          for fusionModulesName, fusionModule in zip(fusionModulesNames, fusionModules)]
         fusionMethods = dict((fusionModulesName, [subclass.__name__ for subclass in fusionClasse.__subclasses__() ])
                             for fusionModulesName, fusionClasse in zip(fusionModulesNames, fusionClasses))
-        fusionMonoviewClassifiers = [name for _, name, isPackage in
-                                     pkgutil.iter_modules(['Multiview/Fusion/Methods/MonoviewClassifiers'])
-                                     if not isPackage ]
+        allMonoviewAlgos = [name for _, name, isPackage in
+                            pkgutil.iter_modules(['MonoviewClassifiers'])
+                            if not isPackage]
+        fusionMonoviewClassifiers = allMonoviewAlgos
         allFusionAlgos = {"Methods": fusionMethods, "Classifiers": fusionMonoviewClassifiers}
         allMumboAlgos = [name for _, name, isPackage in
                                    pkgutil.iter_modules(['Multiview/Mumbo/Classifiers'])
                                    if not isPackage and not name in ["SubSampling", "ModifiedMulticlass", "Kover"]]
         allMultiviewAlgos = {"Fusion": allFusionAlgos, "Mumbo": allMumboAlgos}
-        allMonoviewAlgos = [key[15:] for key in dir(Monoview.ClassifMonoView) if key[:15] == "MonoviewClassif"]
         benchmark = {"Monoview": allMonoviewAlgos, "Multiview" : allMultiviewAlgos}
+
 if "Multiview" in args.CL_type.strip(":"):
     benchmark["Multiview"] = {}
     if "Mumbo" in args.CL_algos_multiview.split(":"):
@@ -178,138 +196,98 @@ if "Multiview" in args.CL_type.strip(":"):
 if "Monoview" in args.CL_type.strip(":"):
     benchmark["Monoview"] = args.CL_algos_monoview.split(":")
 
+
 classifierTable = "a"
 fusionClassifierConfig = "a"
 fusionMethodConfig = "a"
 mumboNB_ITER = 2
 mumboClassifierConfig = "a"
 mumboclassifierNames = "a"
-RandomForestKWARGS = {"classifier__n_estimators":map(int, args.CL_RF_trees.split())}
-SVCKWARGS = {"classifier__kernel":args.CL_SVC_kernel.split(":"), "classifier__C":map(int,args.CL_SVC_C.split(":"))}
-DecisionTreeKWARGS = {"classifier__max_depth":map(int,args.CL_DT_depth.split(":"))}
-SGDKWARGS = {"classifier__alpha" : map(float,args.CL_SGD_alpha.split(":")), "classifier__loss":args.CL_SGD_loss.split(":"),
-             "classifier__penalty":args.CL_SGD_penalty.split(":")}
-KNNKWARGS = {"classifier__n_neighbors": map(float,args.CL_KNN_neigh.split(":"))}
-
-
-argumentDictionaries = {"Monoview":{}, "Multiview":[]}
-# if benchmark["Monoview"]:
-#     for view in args.views.split(":"):
-#         argumentDictionaries["Monoview"][str(view)] = []
-#         for classifier in benchmark["Monoview"]:
-#             arguments = {classifier+"KWARGS": globals()[classifier+"KWARGS"], "feat":view, "fileFeat": args.fileFeat,
-#                          "fileCL": args.fileCL, "fileCLD": args.fileCLD, "CL_type": classifier,
-#                          classifier+"KWARGS": globals()[classifier+"KWARGS"]}
-#             argumentDictionaries["Monoview"][str(view)].append(arguments)
-#
-# bestClassifiers = []
-# bestClassifiersConfigs = []
-# for viewIndex, viewArguments in enumerate(argumentDictionaries["Monoview"].values()):
-#     resultsMonoview = Parallel(n_jobs=nbCores)(
-#         delayed(ExecMonoview)(DATASET.get("View"+str(viewIndex)).value, DATASET.get("labels").value, args.name,
-#                               args.CL_split, args.CL_nbFolds, 1, args.type, args.pathF, gridSearch=True,
-#                               **arguments)
-#         for arguments in viewArguments)
-#     accuracies = [result[1] for result in resultsMonoview]
-#     classifiersNames = [result[0] for result in resultsMonoview]
-#     classifiersConfigs = [result[2] for result in resultsMonoview]
-#     bestClassifiers.append(classifiersNames[np.argmax(np.array(accuracies))])
-#     bestClassifiersConfigs.append(classifiersConfigs[np.argmax(np.array(accuracies))])
-bestClassifiers = ["DecisionTree", "DecisionTree", "DecisionTree", "DecisionTree"]
-bestClassifiersConfigs = [["1"],["1"],["1"],["1"]]
+
+RandomForestKWARGS = {"0":map(int, args.CL_RF_trees.split())}
+SVMLinearKWARGS = {"0":map(int, args.CL_SVML_C.split(":"))}
+SVMRBFKWARGS = {"0":map(int, args.CL_SVMR_C.split(":"))}
+SVMPolyKWARGS = {"0":map(int, args.CL_SVMP_C.split(":")), '1':map(int, args.CL_SVMP_deg.split(":"))}
+DecisionTreeKWARGS = {"0":map(int, args.CL_DT_depth.split(":"))}
+SGDKWARGS = {"0": map(float, args.CL_SGD_alpha.split(":")), "1":args.CL_SGD_loss.split(":"),
+             "2": args.CL_SGD_penalty.split(":")}
+KNNKWARGS = {"0": map(float, args.CL_KNN_neigh.split(":"))}
+AdaboostKWARGS = {"0": args.CL_Ada_n_est.split(":"), "1": args.CL_Ada_b_est.split(":")}
+
+
+argumentDictionaries = {"Monoview": {}, "Multiview": []}
+if benchmark["Monoview"]:
+    for view in args.views.split(":"):
+        argumentDictionaries["Monoview"][str(view)] = []
+        for classifier in benchmark["Monoview"]:
+
+            arguments = {classifier+"KWARGS": globals()[classifier+"KWARGS"], "feat":view, "fileFeat": args.fileFeat,
+                         "fileCL": args.fileCL, "fileCLD": args.fileCLD, "CL_type": classifier}
+
+            argumentDictionaries["Monoview"][str(view)].append(arguments)
+bestClassifiers = []
+bestClassifiersConfigs = []
+for viewIndex, viewArguments in enumerate(argumentDictionaries["Monoview"].values()):
+    resultsMonoview = Parallel(n_jobs=nbCores)(
+        delayed(ExecMonoview)(DATASET.get("View"+str(viewIndex)).value, DATASET.get("labels").value, args.name,
+                              args.CL_split, args.CL_nbFolds, 1, args.type, args.pathF, gridSearch=True,
+                              **arguments)
+        for arguments in viewArguments)
+
+    accuracies = [result[1] for result in resultsMonoview]
+    classifiersNames = [result[0] for result in resultsMonoview]
+    classifiersConfigs = [result[2] for result in resultsMonoview]
+    bestClassifiers.append(classifiersNames[np.argmax(np.array(accuracies))])
+    bestClassifiersConfigs.append(classifiersConfigs[np.argmax(np.array(accuracies))])
+# bestClassifiers = ["DecisionTree", "DecisionTree", "DecisionTree", "DecisionTree"]
+# bestClassifiersConfigs = [["1"],["1"],["1"],["1"]]
+
 if benchmark["Multiview"]:
+    if benchmark["Multiview"]["Mumbo"]:
+        for classifier in benchmark["Multiview"]["Mumbo"]:
+            arguments = {"CL_type": "Mumbo",
+                         "views": args.views.split(":"),
+                         "NB_VIEW": len(args.views.split(":")),
+                         "NB_CLASS": len(args.CL_classes.split(":")),
+                         "LABELS_NAMES": args.CL_classes.split(":"),
+                         "MumboKWARGS": {"classifiersNames": ["DecisionTree", "DecisionTree", "DecisionTree",
+                                                              "DecisionTree"],
+                                         "maxIter":int(args.MU_iter[0]), "minIter":int(args.MU_iter[1]),
+                                         "threshold":args.MU_iter[2]}}
+            argumentDictionaries["Multiview"].append(arguments)
     if benchmark["Multiview"]["Fusion"]:
         if benchmark["Multiview"]["Fusion"]["Methods"]["LateFusion"] and benchmark["Multiview"]["Fusion"]["Classifiers"]:
             for method in benchmark["Multiview"]["Fusion"]["Methods"]["LateFusion"]:
-                        arguments = {"CL_type": "Fusion",
-                                     "views": args.views.split(":"),
-                                     "NB_VIEW": len(args.views.split(":")),
-                                     "NB_CLASS": len(args.CL_classes.split(":")),
-                                     "LABELS_NAMES": args.CL_classes.split(":"),
-                                     "FusionKWARGS": {"fusionType":"LateFusion", "fusionMethod":method,
-                                                      "classifiersNames": bestClassifiers,
-                                                      "classifiersConfigs": bestClassifiersConfigs,
-                                                      'fusionMethodConfig': fusionMethodConfig},
-                                     "MumboKWARGS":""}
-                        argumentDictionaries["Multiview"].append(arguments)
+                arguments = {"CL_type": "Fusion",
+                             "views": args.views.split(":"),
+                             "NB_VIEW": len(args.views.split(":")),
+                             "NB_CLASS": len(args.CL_classes.split(":")),
+                             "LABELS_NAMES": args.CL_classes.split(":"),
+                             "FusionKWARGS": {"fusionType":"LateFusion", "fusionMethod":method,
+                                              "classifiersNames": bestClassifiers,
+                                              "classifiersConfigs": bestClassifiersConfigs,
+                                              'fusionMethodConfig': fusionMethodConfig}}
+                argumentDictionaries["Multiview"].append(arguments)
         if benchmark["Multiview"]["Fusion"]["Methods"]["EarlyFusion"] and benchmark["Multiview"]["Fusion"]["Classifiers"]:
             for method in benchmark["Multiview"]["Fusion"]["Methods"]["EarlyFusion"]:
                 for classifier in benchmark["Multiview"]["Fusion"]["Classifiers"]:
                     arguments = {"CL_type": "Fusion",
-                                     "views": args.views.split(":"),
-                                     "NB_VIEW": len(args.views.split(":")),
-                                     "NB_CLASS": len(args.CL_classes.split(":")),
-                                     "LABELS_NAMES": args.CL_classes.split(":"),
-                                     "FusionKWARGS": {"fusionType":"EarlyFusion", "fusionMethod":method,
-                                                      "classifiersNames": classifier,
-                                                      "classifiersConfigs": fusionClassifierConfig,
-                                                      'fusionMethodConfig': fusionMethodConfig},
-                                 "MumboKWARGS":""}
+                                 "views": args.views.split(":"),
+                                 "NB_VIEW": len(args.views.split(":")),
+                                 "NB_CLASS": len(args.CL_classes.split(":")),
+                                 "LABELS_NAMES": args.CL_classes.split(":"),
+                                 "FusionKWARGS": {"fusionType":"EarlyFusion", "fusionMethod":method,
+                                                  "classifiersNames": classifier,
+                                                  "classifiersConfigs": fusionClassifierConfig,
+                                                  'fusionMethodConfig': fusionMethodConfig}}
                     argumentDictionaries["Multiview"].append(arguments)
-    if benchmark["Multiview"]["Mumbo"]:
-        #for classifier in benchmark["Multiview"]["Mumbo"]:
-        for i in range(int(np.power(len(args.views.split(":")), len(benchmark["Multiview"]["Mumbo"])))):
-            arguments = {"CL_type": "Mumbo",
-                         "views": args.views.split(":"),
-                         "NB_VIEW": len(args.views.split(":")),
-                         "NB_CLASS": len(args.CL_classes.split(":")),
-                         "LABELS_NAMES": args.CL_classes.split(":"),
-                         "MumboKWARGS": {"classifiersConfigs": mumboClassifierConfig,"NB_ITER": mumboNB_ITER,
-                                         "classifiersNames": ["DecisionTree", "DecisionTree", "DecisionTree", "DecisionTree"]},
-                         "FusionKWARGS": ""}
-            argumentDictionaries["Multiview"].append(arguments)
 
 resultsMultiview = Parallel(n_jobs=nbCores)(
     delayed(ExecMultiview)(DATASET, args.name, args.CL_split, args.CL_nbFolds, 1, args.type, args.pathF,
                            LABELS_DICTIONARY, gridSearch=True, **arguments)
     for arguments in argumentDictionaries["Multiview"])
 
-# for classifierType, argumentsList in argumentDictionaries.iteritems():
-#     executionMethod = globals()["Exec"+classifierType]
-#     results[classifierType] = Parallel(n_jobs=args.CL_cores)(delayed(executionMethod)
-#                                                              (args.name, args.CL_split,args.CL_nbFolds, 1, args.type,
-#                                                               args.pathF, **arguments)
-#                                                              for arguments in argumentsList)
 resultAnalysis(benchmark, results)
 print len(argumentDictionaries["Multiview"]), len(argumentDictionaries["Monoview"])
 
 
-
-# views = args.views.split(":")
-# dataBaseType = args.type
-# NB_VIEW = len(views)
-# mumboClassifierConfig = [argument.split(':') for argument in args.MU_config]
-#
-# LEARNING_RATE = args.CL_split
-# nbFolds = args.CL_nbFolds
-# NB_CLASS = args.CL_nb_class
-# LABELS_NAMES = args.CL_classes.split(":")
-# mumboclassifierNames = args.MU_type.split(':')
-# mumboNB_ITER = args.MU_iter
-# NB_CORES = args.CL_cores
-# fusionClassifierNames = args.FU_cl_names.split(":")
-# fusionClassifierConfig = [argument.split(':') for argument in args.FU_cl_config]
-# fusionMethodConfig = [argument.split(':') for argument in args.FU_method_config]
-# FusionKWARGS = {"fusionType":args.FU_type, "fusionMethod":args.FU_method,
-#                 "monoviewClassifiersNames":fusionClassifierNames, "monoviewClassifiersConfigs":fusionClassifierConfig,
-#                 'fusionMethodConfig':fusionMethodConfig}
-# MumboKWARGS = {"classifiersConfigs":mumboClassifierConfig, "NB_ITER":mumboNB_ITER, "classifiersNames":mumboclassifierNames}
-# directory = os.path.dirname(os.path.abspath(__file__)) + "/Results/"
-# logFileName = time.strftime("%Y%m%d-%H%M%S") + "-CMultiV-" + args.CL_type + "-" + "_".join(views) + "-" + args.name + \
-#               "-LOG"
-# logFile = directory + logFileName
-# if os.path.isfile(logFile + ".log"):
-#     for i in range(1, 20):
-#         testFileName = logFileName + "-" + str(i) + ".log"
-#         if not (os.path.isfile(directory + testFileName)):
-#             logfile = directory + testFileName
-#             break
-# else:
-#     logFile += ".log"
-# logging.basicConfig(format='%(asctime)s %(levelname)s: %(message)s', filename=logFile, level=logging.DEBUG,
-#                     filemode='w')
-# if args.log:
-#     logging.getLogger().addHandler(logging.StreamHandler())
-#
-# ExecMultiview(views, dataBaseType, args, NB_VIEW, LEARNING_RATE, nbFolds, NB_CLASS, LABELS_NAMES, NB_CORES,
-#               MumboKWARGS, FusionKWARGS)
\ No newline at end of file
diff --git a/Code/FeatExtraction/DBCrawl.py b/Code/MonoMutliViewClassifiers/FeatExtraction/DBCrawl.py
similarity index 100%
rename from Code/FeatExtraction/DBCrawl.py
rename to Code/MonoMutliViewClassifiers/FeatExtraction/DBCrawl.py
diff --git a/Code/FeatExtraction/ExecFeatExtraction.py b/Code/MonoMutliViewClassifiers/FeatExtraction/ExecFeatExtraction.py
similarity index 100%
rename from Code/FeatExtraction/ExecFeatExtraction.py
rename to Code/MonoMutliViewClassifiers/FeatExtraction/ExecFeatExtraction.py
diff --git a/Code/FeatExtraction/ExecFeatParaOpt.py b/Code/MonoMutliViewClassifiers/FeatExtraction/ExecFeatParaOpt.py
similarity index 100%
rename from Code/FeatExtraction/ExecFeatParaOpt.py
rename to Code/MonoMutliViewClassifiers/FeatExtraction/ExecFeatParaOpt.py
diff --git a/Code/FeatExtraction/FeatExtraction.py b/Code/MonoMutliViewClassifiers/FeatExtraction/FeatExtraction.py
similarity index 100%
rename from Code/FeatExtraction/FeatExtraction.py
rename to Code/MonoMutliViewClassifiers/FeatExtraction/FeatExtraction.py
diff --git a/Code/FeatExtraction/FeatParaOpt.py b/Code/MonoMutliViewClassifiers/FeatExtraction/FeatParaOpt.py
similarity index 100%
rename from Code/FeatExtraction/FeatParaOpt.py
rename to Code/MonoMutliViewClassifiers/FeatExtraction/FeatParaOpt.py
diff --git a/Code/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-ClassLabels-Description.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-ClassLabels-Description.csv
similarity index 100%
rename from Code/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-ClassLabels-Description.csv
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-ClassLabels-Description.csv
diff --git a/Code/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-ClassLabels.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-ClassLabels.csv
similarity index 100%
rename from Code/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-ClassLabels.csv
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-ClassLabels.csv
diff --git a/Code/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-HOG-CellDimension_5-nbOrientaions_8-nbClusters_20-Maxiter_100.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-HOG-CellDimension_5-nbOrientaions_8-nbClusters_20-Maxiter_100.csv
similarity index 100%
rename from Code/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-HOG-CellDimension_5-nbOrientaions_8-nbClusters_20-Maxiter_100.csv
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-HOG-CellDimension_5-nbOrientaions_8-nbClusters_20-Maxiter_100.csv
diff --git a/Code/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-HSV-Bins_[16,16,16]-Norm_Distr.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-HSV-Bins_[16,16,16]-Norm_Distr.csv
similarity index 100%
rename from Code/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-HSV-Bins_[16,16,16]-Norm_Distr.csv
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-HSV-Bins_[16,16,16]-Norm_Distr.csv
diff --git a/Code/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-RGB-Bins_16-MaxCI_256-Norm_Distr.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-RGB-Bins_16-MaxCI_256-Norm_Distr.csv
similarity index 100%
rename from Code/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-RGB-Bins_16-MaxCI_256-Norm_Distr.csv
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-RGB-Bins_16-MaxCI_256-Norm_Distr.csv
diff --git a/Code/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-RGB_HSV_SIFT_SURF_HOG-LOG.log b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-RGB_HSV_SIFT_SURF_HOG-LOG.log
similarity index 100%
rename from Code/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-RGB_HSV_SIFT_SURF_HOG-LOG.log
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-RGB_HSV_SIFT_SURF_HOG-LOG.log
diff --git a/Code/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-SIFT-Cluster_35-Norm_Distr.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-SIFT-Cluster_35-Norm_Distr.csv
similarity index 100%
rename from Code/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-SIFT-Cluster_35-Norm_Distr.csv
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-SIFT-Cluster_35-Norm_Distr.csv
diff --git a/Code/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-SURF-Cluster_30-Norm_Distr.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-SURF-Cluster_30-Norm_Distr.csv
similarity index 100%
rename from Code/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-SURF-Cluster_30-Norm_Distr.csv
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-SURF-Cluster_30-Norm_Distr.csv
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HOG-10-50-5/2016_03_19-FeatParaOpt-HOG.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-10-50-5/2016_03_19-FeatParaOpt-HOG.csv
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HOG-10-50-5/2016_03_19-FeatParaOpt-HOG.csv
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-10-50-5/2016_03_19-FeatParaOpt-HOG.csv
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HOG-10-50-5/2016_03_19-Feature_HOG-Parameter_HOG_Cluster-ClassTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-10-50-5/2016_03_19-Feature_HOG-Parameter_HOG_Cluster-ClassTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HOG-10-50-5/2016_03_19-Feature_HOG-Parameter_HOG_Cluster-ClassTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-10-50-5/2016_03_19-Feature_HOG-Parameter_HOG_Cluster-ClassTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HOG-10-50-5/2016_03_19-Feature_HOG-Parameter_HOG_Cluster-FeatExtTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-10-50-5/2016_03_19-Feature_HOG-Parameter_HOG_Cluster-FeatExtTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HOG-10-50-5/2016_03_19-Feature_HOG-Parameter_HOG_Cluster-FeatExtTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-10-50-5/2016_03_19-Feature_HOG-Parameter_HOG_Cluster-FeatExtTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HOG-10-50-5/2016_03_19-Feature_HOG-Parameter_HOG_Cluster-TotalTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-10-50-5/2016_03_19-Feature_HOG-Parameter_HOG_Cluster-TotalTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HOG-10-50-5/2016_03_19-Feature_HOG-Parameter_HOG_Cluster-TotalTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-10-50-5/2016_03_19-Feature_HOG-Parameter_HOG_Cluster-TotalTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_22-FPO-Caltech-HOG-HOG_Cluster-LOG.log b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_22-FPO-Caltech-HOG-HOG_Cluster-LOG.log
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_22-FPO-Caltech-HOG-HOG_Cluster-LOG.log
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_22-FPO-Caltech-HOG-HOG_Cluster-LOG.log
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_22-FPO-Caltech-HOG-HOG_Cluster.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_22-FPO-Caltech-HOG-HOG_Cluster.csv
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_22-FPO-Caltech-HOG-HOG_Cluster.csv
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_22-FPO-Caltech-HOG-HOG_Cluster.csv
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-ClassTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-ClassTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-ClassTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-ClassTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-FeatExtTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-FeatExtTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-FeatExtTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-FeatExtTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-TotalTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-TotalTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-TotalTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-TotalTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-ClassTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-ClassTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-ClassTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-ClassTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-FeatExtTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-FeatExtTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-FeatExtTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-FeatExtTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-LOG.log b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-LOG.log
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-LOG.log
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-LOG.log
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-TotalTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-TotalTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-TotalTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-TotalTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster.csv
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster.csv
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster.csv
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-ClassTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-ClassTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-ClassTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-ClassTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-FeatExtTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-FeatExtTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-FeatExtTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-FeatExtTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-LOG.log b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-LOG.log
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-LOG.log
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-LOG.log
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-TotalTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-TotalTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-TotalTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-TotalTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins.csv
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins.csv
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins.csv
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-1.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-1.csv
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-1.csv
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-1.csv
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-ClassTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-ClassTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-ClassTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-ClassTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-FeatExtTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-FeatExtTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-FeatExtTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-FeatExtTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-LOG-1.log b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-LOG-1.log
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-LOG-1.log
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-LOG-1.log
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-TotalTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-TotalTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-TotalTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-TotalTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-1.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-1.csv
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-1.csv
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-1.csv
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-ClassTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-ClassTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-ClassTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-ClassTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-FeatExtTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-FeatExtTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-FeatExtTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-FeatExtTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-LOG-1.log b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-LOG-1.log
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-LOG-1.log
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-LOG-1.log
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-TotalTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-TotalTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-TotalTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-TotalTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-ClassTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-ClassTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-ClassTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-ClassTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-FeatExtTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-FeatExtTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-FeatExtTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-FeatExtTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-LOG.log b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-LOG.log
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-LOG.log
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-LOG.log
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-TotalTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-TotalTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-TotalTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-TotalTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins.csv
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins.csv
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins.csv
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-1.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-1.csv
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-1.csv
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-1.csv
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-ClassTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-ClassTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-ClassTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-ClassTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-FeatExtTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-FeatExtTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-FeatExtTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-FeatExtTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-LOG.log b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-LOG.log
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-LOG.log
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-LOG.log
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-TotalTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-TotalTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-TotalTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-TotalTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-ClassTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-ClassTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-ClassTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-ClassTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-FeatExtTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-FeatExtTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-FeatExtTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-FeatExtTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-LOG.log b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-LOG.log
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-LOG.log
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-LOG.log
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-TotalTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-TotalTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-TotalTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-TotalTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins.csv
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins.csv
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins.csv
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins-ClassTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins-ClassTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins-ClassTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins-ClassTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins-FeatExtTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins-FeatExtTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins-FeatExtTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins-FeatExtTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins-LOG.log b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins-LOG.log
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins-LOG.log
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins-LOG.log
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins-TotalTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins-TotalTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins-TotalTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins-TotalTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins.csv
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins.csv
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins.csv
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-1.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-1.csv
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-1.csv
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-1.csv
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-ClassTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-ClassTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-ClassTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-ClassTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-FeatExtTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-FeatExtTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-FeatExtTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-FeatExtTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-LOG-1.log b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-LOG-1.log
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-LOG-1.log
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-LOG-1.log
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-TotalTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-TotalTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-TotalTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-TotalTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/2016_01_24-RGB-ClassificationTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/2016_01_24-RGB-ClassificationTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/2016_01_24-RGB-ClassificationTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/2016_01_24-RGB-ClassificationTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/2016_01_24-RGB-FeatExtractTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/2016_01_24-RGB-FeatExtractTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/2016_01_24-RGB-FeatExtractTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/2016_01_24-RGB-FeatExtractTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/2016_01_24-RGB-TotalTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/2016_01_24-RGB-TotalTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/2016_01_24-RGB-TotalTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/2016_01_24-RGB-TotalTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/2016_03_14-Results-RGB.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/2016_03_14-Results-RGB.csv
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/2016_03_14-Results-RGB.csv
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/2016_03_14-Results-RGB.csv
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/Console-Output.txt b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/Console-Output.txt
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/Console-Output.txt
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/Console-Output.txt
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_CI-ClassTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_CI-ClassTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_CI-ClassTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_CI-ClassTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_CI-FeatExtTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_CI-FeatExtTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_CI-FeatExtTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_CI-FeatExtTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_CI-TotalTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_CI-TotalTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_CI-TotalTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_CI-TotalTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_MaxCI-LOG.log b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_MaxCI-LOG.log
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_MaxCI-LOG.log
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_MaxCI-LOG.log
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_MaxCI.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_MaxCI.csv
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_MaxCI.csv
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_MaxCI.csv
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-ClassTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-ClassTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-ClassTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-ClassTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-FeatExtTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-FeatExtTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-FeatExtTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-FeatExtTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-LOG.log b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-LOG.log
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-LOG.log
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-LOG.log
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-TotalTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-TotalTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-TotalTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-TotalTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster.csv
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster.csv
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster.csv
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-1.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-1.csv
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-1.csv
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-1.csv
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-ClassTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-ClassTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-ClassTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-ClassTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-FeatExtTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-FeatExtTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-FeatExtTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-FeatExtTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-LOG-1.log b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-LOG-1.log
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-LOG-1.log
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-LOG-1.log
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-TotalTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-TotalTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-TotalTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-TotalTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-ClassTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-ClassTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-ClassTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-ClassTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-FeatExtTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-FeatExtTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-FeatExtTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-FeatExtTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-LOG.log b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-LOG.log
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-LOG.log
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-LOG.log
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-TotalTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-TotalTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-TotalTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-TotalTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster.csv
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster.csv
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster.csv
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-1.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-1.csv
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-1.csv
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-1.csv
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-ClassTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-ClassTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-ClassTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-ClassTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-FeatExtTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-FeatExtTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-FeatExtTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-FeatExtTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-LOG-1.log b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-LOG-1.log
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-LOG-1.log
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-LOG-1.log
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-TotalTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-TotalTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-TotalTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-TotalTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/2016_01_28-Results-SURF.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/2016_01_28-Results-SURF.csv
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/2016_01_28-Results-SURF.csv
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/2016_01_28-Results-SURF.csv
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/Console-Output.txt b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/Console-Output.txt
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/Console-Output.txt
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/Console-Output.txt
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/ScoreClassificationTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/ScoreClassificationTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/ScoreClassificationTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/ScoreClassificationTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/ScoreFeatExtractionTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/ScoreFeatExtractionTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/ScoreFeatExtractionTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/ScoreFeatExtractionTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/ScoreTotalTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/ScoreTotalTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/ScoreTotalTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/ScoreTotalTime.png
diff --git a/Code/FeatExtraction/__init__.py b/Code/MonoMutliViewClassifiers/FeatExtraction/__init__.py
similarity index 100%
rename from Code/FeatExtraction/__init__.py
rename to Code/MonoMutliViewClassifiers/FeatExtraction/__init__.py
diff --git a/Code/FeatExtraction/hog_extraction.py b/Code/MonoMutliViewClassifiers/FeatExtraction/hog_extraction.py
similarity index 100%
rename from Code/FeatExtraction/hog_extraction.py
rename to Code/MonoMutliViewClassifiers/FeatExtraction/hog_extraction.py
diff --git a/Code/FeatExtraction/hog_extraction_parallelized.py b/Code/MonoMutliViewClassifiers/FeatExtraction/hog_extraction_parallelized.py
similarity index 100%
rename from Code/FeatExtraction/hog_extraction_parallelized.py
rename to Code/MonoMutliViewClassifiers/FeatExtraction/hog_extraction_parallelized.py
diff --git a/Code/Monoview/ClassifMonoView.py b/Code/MonoMutliViewClassifiers/Monoview/ClassifMonoView.py
similarity index 90%
rename from Code/Monoview/ClassifMonoView.py
rename to Code/MonoMutliViewClassifiers/Monoview/ClassifMonoView.py
index d5b246b1..ebbad0fc 100644
--- a/Code/Monoview/ClassifMonoView.py
+++ b/Code/MonoMutliViewClassifiers/Monoview/ClassifMonoView.py
@@ -168,16 +168,27 @@ def MonoviewClassifRandomForest(X_train, y_train, nbFolds=4, nbCores=1, **kwargs
     return description, rf_detector
 
 
-def MonoviewClassifSVC(X_train, y_train, nbFolds=4, nbCores=1, **kwargs):
-    pipeline_SVC = Pipeline([('classifier', sklearn.svm.SVC())])
-    param_SVC = kwargs
+def MonoviewClassifSVMLinear(X_train, y_train, nbFolds=4, nbCores=1, **kwargs):
+    pipeline_SVMLinear = Pipeline([('classifier', sklearn.svm.SVC())])
+    param_SVMLinear = kwargs
 
-    grid_SVC = GridSearchCV(pipeline_SVC, param_grid=param_SVC, refit=True, n_jobs=nbCores, scoring='accuracy',
+    grid_SVMLinear = GridSearchCV(pipeline_SVMLinear, param_grid=param_SVMLinear, refit=True, n_jobs=nbCores, scoring='accuracy',
                             cv=nbFolds)
-    SVC_detector = grid_SVC.fit(X_train, y_train)
-    desc_params = [SVC_detector.best_params_["classifier__C"], SVC_detector.best_params_["classifier__kernel"]]
+    SVMLinear_detector = grid_SVMLinear.fit(X_train, y_train)
+    desc_params = [SVMLinear_detector.best_params_["classifier__C"]]
     description = "Classif_" + "SVC" + "-" + "CV_" + str(nbFolds) + "-" + "-".join(map(str,desc_params))
-    return description, SVC_detector
+    return description, SVMLinear_detector
+
+def MonoviewClassifSVMRBF(X_train, y_train, nbFolds=4, nbCores=1, **kwargs):
+    pipeline_SVMRBF = Pipeline([('classifier', sklearn.svm.SVC())])
+    param_SVMRBF = kwargs
+
+    grid_SVMRBF = GridSearchCV(pipeline_SVMRBF, param_grid=param_SVMRBF, refit=True, n_jobs=nbCores, scoring='accuracy',
+                                  cv=nbFolds)
+    SVMRBF_detector = grid_SVMRBF.fit(X_train, y_train)
+    desc_params = [SVMRBF_detector.best_params_["classifier__C"]]
+    description = "Classif_" + "SVC" + "-" + "CV_" + str(nbFolds) + "-" + "-".join(map(str,desc_params))
+    return description, SVMRBF_detector
 
 
 def MonoviewClassifDecisionTree(X_train, y_train, nbFolds=4, nbCores=1, **kwargs):
diff --git a/Code/Monoview/ExecClassifMonoView.py b/Code/MonoMutliViewClassifiers/Monoview/ExecClassifMonoView.py
similarity index 62%
rename from Code/Monoview/ExecClassifMonoView.py
rename to Code/MonoMutliViewClassifiers/Monoview/ExecClassifMonoView.py
index 04a271e7..55d4e86f 100644
--- a/Code/Monoview/ExecClassifMonoView.py
+++ b/Code/MonoMutliViewClassifiers/Monoview/ExecClassifMonoView.py
@@ -19,7 +19,7 @@ import h5py
 # Import own modules
 import ClassifMonoView	                # Functions for classification
 import ExportResults                    # Functions to render results
-
+import MonoviewClassifiers
 
 # Author-Info
 __author__ 	= "Nikolas Huelsmann, Baptiste BAUVIN"
@@ -58,10 +58,10 @@ def ExecMonoview(X, Y, name, learningRate, nbFolds, nbCores, databaseType, path,
     logging.debug("Start:\t Classification")
 
 
-    classifierFunction = getattr(ClassifMonoView, "MonoviewClassif"+CL_type)
+    classifierModule = getattr(MonoviewClassifiers, CL_type)
+    classifierFunction = getattr(classifierModule, "fit_gridsearch")
 
-    cl_desc, cl_res = classifierFunction(X_train, y_train, nbFolds=nbFolds, nbCores=nbCores,
-                                                         **classifierKWARGS)
+    cl_desc, cl_res = classifierFunction(X_train, y_train, nbFolds=nbFolds, nbCores=nbCores,**classifierKWARGS)
     t_end  = time.time() - t_start
 
     # Add result to Results DF
@@ -91,37 +91,38 @@ def ExecMonoview(X, Y, name, learningRate, nbFolds, nbCores, databaseType, path,
 
     #Accuracy classification score
     accuracy_score = ExportResults.accuracy_score(y_test, y_test_pred)
-
-    # Classification Report with Precision, Recall, F1 , Support
-    logging.debug("Info:\t Classification report:")
-    filename = datetime.datetime.now().strftime("%Y_%m_%d") + "-CMV-" + name + "-" + feat + "-Report"
-    logging.debug("\n" + str(metrics.classification_report(y_test, y_test_pred, labels = range(0,len(classLabelsDesc.name)), target_names=classLabelsNamesList)))
-    scores_df = ExportResults.classification_report_df(directory, filename, y_test, y_test_pred, range(0, len(classLabelsDesc.name)), classLabelsNamesList)
-
-    # Create some useful statistcs
-    logging.debug("Info:\t Statistics:")
-    filename = datetime.datetime.now().strftime("%Y_%m_%d") + "-CMV-" + name + "-" + feat + "-Stats"
-    stats_df = ExportResults.classification_stats(directory, filename, scores_df, accuracy_score)
-    logging.debug("\n" + stats_df.to_string())
-
-    # Confusion Matrix
-    logging.debug("Info:\t Calculate Confusionmatrix")
-    filename = datetime.datetime.now().strftime("%Y_%m_%d") + "-CMV-" + name + "-" + feat + "-ConfMatrix"
-    df_conf_norm = ExportResults.confusion_matrix_df(directory, filename, y_test, y_test_pred, classLabelsNamesList)
-    filename = datetime.datetime.now().strftime("%Y_%m_%d") + "-CMV-" + name + "-" + feat + "-ConfMatrixImg"
-    ExportResults.plot_confusion_matrix(directory, filename, df_conf_norm)
-
-    logging.debug("Done:\t Statistic Results")
-
-
-    # Plot Result
-    logging.debug("Start:\t Plot Result")
-    np_score = ExportResults.calcScorePerClass(y_test, cl_res.predict(X_test).astype(int))
-    ### directory and filename the same as CSV Export
-    filename = datetime.datetime.now().strftime("%Y_%m_%d") + "-CMV-" + name + "-" + feat + "-Score"
-    ExportResults.showResults(directory, filename, name, feat, np_score)
-    logging.debug("Done:\t Plot Result")
-    return [CL_type, accuracy_score, cl_desc]
+    logging.info("Accuracy :" +str(accuracy_score))
+
+    # # Classification Report with Precision, Recall, F1 , Support
+    # logging.debug("Info:\t Classification report:")
+    # filename = datetime.datetime.now().strftime("%Y_%m_%d") + "-CMV-" + name + "-" + feat + "-Report"
+    # logging.debug("\n" + str(metrics.classification_report(y_test, y_test_pred, labels = range(0,len(classLabelsDesc.name)), target_names=classLabelsNamesList)))
+    # scores_df = ExportResults.classification_report_df(directory, filename, y_test, y_test_pred, range(0, len(classLabelsDesc.name)), classLabelsNamesList)
+    #
+    # # Create some useful statistcs
+    # logging.debug("Info:\t Statistics:")
+    # filename = datetime.datetime.now().strftime("%Y_%m_%d") + "-CMV-" + name + "-" + feat + "-Stats"
+    # stats_df = ExportResults.classification_stats(directory, filename, scores_df, accuracy_score)
+    # logging.debug("\n" + stats_df.to_string())
+    #
+    # # Confusion Matrix
+    # logging.debug("Info:\t Calculate Confusionmatrix")
+    # filename = datetime.datetime.now().strftime("%Y_%m_%d") + "-CMV-" + name + "-" + feat + "-ConfMatrix"
+    # df_conf_norm = ExportResults.confusion_matrix_df(directory, filename, y_test, y_test_pred, classLabelsNamesList)
+    # filename = datetime.datetime.now().strftime("%Y_%m_%d") + "-CMV-" + name + "-" + feat + "-ConfMatrixImg"
+    # ExportResults.plot_confusion_matrix(directory, filename, df_conf_norm)
+    #
+    # logging.debug("Done:\t Statistic Results")
+    #
+    #
+    # # Plot Result
+    # logging.debug("Start:\t Plot Result")
+    # np_score = ExportResults.calcScorePerClass(y_test, cl_res.predict(X_test).astype(int))
+    # ### directory and filename the same as CSV Export
+    # filename = datetime.datetime.now().strftime("%Y_%m_%d") + "-CMV-" + name + "-" + feat + "-Score"
+    # ExportResults.showResults(directory, filename, name, feat, np_score)
+    # logging.debug("Done:\t Plot Result")
+    # return [CL_type, accuracy_score, cl_desc]
 
 
 if __name__=='__main__':
@@ -131,7 +132,7 @@ if __name__=='__main__':
 
     groupStandard = parser.add_argument_group('Standard arguments')
     groupStandard.add_argument('-log', action='store_true', help='Use option to activate Logging to Console')
-    groupStandard.add_argument('--type', metavar='STRING', action='store', help='Type of Dataset', default="hdf5")
+    groupStandard.add_argument('--type', metavar='STRING', action='store', help='Type of Dataset', default=".hdf5")
     groupStandard.add_argument('--name', metavar='STRING', action='store', help='Name of Database (default: %(default)s)', default='DB')
     groupStandard.add_argument('--feat', metavar='STRING', action='store', help='Name of Feature for Classification (default: %(default)s)', default='RGB')
     groupStandard.add_argument('--pathF', metavar='STRING', action='store', help='Path to the views (default: %(default)s)', default='Results-FeatExtr/')
@@ -147,34 +148,39 @@ if __name__=='__main__':
     groupClass.add_argument('--CL_split', metavar='FLOAT', action='store', help='Split ratio for train and test', type=float, default=0.9)
 
 
-    groupRF = parser.add_argument_group('Random Forest arguments')
-    groupRF.add_argument('--CL_RF_trees', metavar='STRING', action='store', help='GridSearch: Determine the trees', default='25 75 125 175')
-
-    groupSVC = parser.add_argument_group('SVC arguments')
-    groupSVC.add_argument('--CL_SVC_kernel', metavar='STRING', action='store', help='GridSearch : Kernels used', default='linear')
-    groupSVC.add_argument('--CL_SVC_C', metavar='STRING', action='store', help='GridSearch : Penalty parameters used', default='1:10:100:1000')
+    groupClassifier = parser.add_argument_group('Classifier Config')
+    groupClassifier.add_argument('--CL_config', metavar='STRING', nargs="+", action='store', help='GridSearch: Determine the trees', default=['25:75:125:175'])
 
-    groupRF = parser.add_argument_group('Decision Trees arguments')
-    groupRF.add_argument('--CL_DT_depth', metavar='STRING', action='store', help='GridSearch: Determine max depth for Decision Trees', default='1:3:5:7')
-
-    groupSGD = parser.add_argument_group('SGD arguments')
-    groupSGD.add_argument('--CL_SGD_alpha', metavar='STRING', action='store', help='GridSearch: Determine alpha for SGDClassifier', default='0.1:0.2:0.5:0.9')
-    groupSGD.add_argument('--CL_SGD_loss', metavar='STRING', action='store', help='GridSearch: Determine loss for SGDClassifier', default='log')
-    groupSGD.add_argument('--CL_SGD_penalty', metavar='STRING', action='store', help='GridSearch: Determine penalty for SGDClassifier', default='l2')
+    # groupSVMLinear = parser.add_argument_group('SVC arguments')
+    # groupSVMLinear.add_argument('--CL_SVML_C', metavar='STRING', action='store', help='GridSearch : Penalty parameters used', default='1:10:100:1000')
+    #
+    # groupSVMRBF = parser.add_argument_group('SVC arguments')
+    # groupSVMRBF.add_argument('--CL_SVMR_C', metavar='STRING', action='store', help='GridSearch : Penalty parameters used', default='1:10:100:1000')
+    #
+    # groupRF = parser.add_argument_group('Decision Trees arguments')
+    # groupRF.add_argument('--CL_DT_depth', metavar='STRING', action='store', help='GridSearch: Determine max depth for Decision Trees', default='1:3:5:7')
+    #
+    # groupSGD = parser.add_argument_group('SGD')
+    # groupSGD.add_argument('--CL_SGD_alpha', metavar='STRING', action='store', help='GridSearch: Determine alpha for SGDClassifier', default='0.1:0.2:0.5:0.9')
+    # groupSGD.add_argument('--CL_SGD_loss', metavar='STRING', action='store', help='GridSearch: Determine loss for SGDClassifier', default='log')
+    # groupSGD.add_argument('--CL_SGD_penalty', metavar='STRING', action='store', help='GridSearch: Determine penalty for SGDClassifier', default='l2')
 
 
     args = parser.parse_args()
-    RandomForestKWARGS = {"classifier__n_estimators":map(int, args.CL_RF_trees.split())}
-    SVCKWARGS = {"classifier__kernel":args.CL_SVC_kernel.split(":"), "classifier__C":map(int,args.CL_SVC_C.split(":"))}
-    DecisionTreeKWARGS = {"classifier__max_depth":map(int,args.CL_DT_depth.split(":"))}
-    SGDKWARGS = {"classifier__alpha" : map(float,args.CL_SGD_alpha.split(":")), "classifier__loss":args.CL_SGD_loss.split(":"),
-                 "classifier__penalty":args.CL_SGD_penalty.split(":")}
+
+    # RandomForestKWARGS = {"classifier__n_estimators":map(int, args.CL_RF_trees.split())}
+    # SVMLinearKWARGS = {"classifier__C":map(int,args.CL_SVML_C.split(":"))}
+    # SVMRBFKWARGS = {"classifier__C":map(int,args.CL_SVMR_C.split(":"))}
+    # DecisionTreeKWARGS = {"classifier__max_depth":map(int,args.CL_DT_depth.split(":"))}
+    # SGDKWARGS = {"classifier__alpha" : map(float,args.CL_SGD_alpha.split(":")), "classifier__loss":args.CL_SGD_loss.split(":"),
+    #              "classifier__penalty":args.CL_SGD_penalty.split(":")}
+    classifierKWARGS = dict((key, value) for key, value in enumerate([arg.split(":") for arg in args.CL_config]))
     ### Main Programm
 
 
     # Configure Logger
     directory = os.path.dirname(os.path.abspath(__file__)) + "/Results-ClassMonoView/"
-    logfilename= datetime.datetime.now().strftime("%Y_%m_%d") + "-CMV-" + args.name + "-" + args.feat + "-LOG"
+    logfilename = datetime.datetime.now().strftime("%Y_%m_%d") + "-CMV-" + args.name + "-" + args.feat + "-LOG"
     logfile = directory + logfilename
     if os.path.isfile(logfile + ".log"):
         for i in range(1,20):
@@ -194,7 +200,7 @@ if __name__=='__main__':
     # Read the features
     logging.debug("Start:\t Read " + args.type + " Files")
 
-    if args.databaseType == ".csv":
+    if args.type == ".csv":
         X = np.genfromtxt(args.pathF + args.fileFeat, delimiter=';')
         Y = np.genfromtxt(args.pathF + args.fileCL, delimiter=';')
     elif args.type == ".hdf5":
@@ -206,7 +212,6 @@ if __name__=='__main__':
     logging.debug("Info:\t Shape of Feature:" + str(X.shape) + ", Length of classLabels vector:" + str(Y.shape))
     logging.debug("Done:\t Read CSV Files")
 
-    arguments = {"RandomForestKWARGS": RandomForestKWARGS, "SVCKWARGS": SVCKWARGS,
-                 "DecisionTreeKWARGS": DecisionTreeKWARGS, "SGDKWARGS": SGDKWARGS, "feat":args.feat,
-                 "fileFeat": args.fileFeat, "fileCL": args.fileCL, "fileCLD": args.fileCLD, "CL_type": args.CL_type}
+    arguments = {args.CL_type+"KWARGS": classifierKWARGS, "feat":args.feat,"fileFeat": args.fileFeat,
+                 "fileCL": args.fileCL, "fileCLD": args.fileCLD, "CL_type": args.CL_type}
     ExecMonoview(X, Y, args.name, args.CL_split, args.CL_CV, args.CL_Cores, args.type, args.pathF, **arguments)
diff --git a/Code/Monoview/ExecPlot.py b/Code/MonoMutliViewClassifiers/Monoview/ExecPlot.py
similarity index 100%
rename from Code/Monoview/ExecPlot.py
rename to Code/MonoMutliViewClassifiers/Monoview/ExecPlot.py
diff --git a/Code/Monoview/ExportResults.py b/Code/MonoMutliViewClassifiers/Monoview/ExportResults.py
similarity index 100%
rename from Code/Monoview/ExportResults.py
rename to Code/MonoMutliViewClassifiers/Monoview/ExportResults.py
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-1.log b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-1.log
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-1.log
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-1.log
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-2.log b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-2.log
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-2.log
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-2.log
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-3.log b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-3.log
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-3.log
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-3.log
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-4.log b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-4.log
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-4.log
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-4.log
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-5.log b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-5.log
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-5.log
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-5.log
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-6.log b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-6.log
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-6.log
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-6.log
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-7.log b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-7.log
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-7.log
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-7.log
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG.log b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG.log
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG.log
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG.log
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-1.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-1.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-1.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-2.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-2.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-2.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-3.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-3.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-3.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-4.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-4.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-4.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-5.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-5.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-5.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-1.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-1.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-1.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-10.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-10.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-10.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-10.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-11.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-11.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-11.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-11.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-12.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-12.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-12.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-12.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-13.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-13.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-13.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-13.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-14.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-14.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-14.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-14.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-15.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-15.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-15.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-15.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-16.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-16.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-16.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-16.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-17.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-17.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-17.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-17.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-18.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-18.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-18.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-18.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-19.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-19.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-19.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-19.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-2.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-2.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-2.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-3.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-3.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-3.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-4.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-4.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-4.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-5.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-5.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-5.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-6.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-6.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-6.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-7.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-7.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-7.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-8.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-8.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-8.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-9.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-9.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-9.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-9.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-1.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-1.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-1.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-10.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-10.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-10.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-10.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-11.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-11.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-11.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-11.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-12.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-12.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-12.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-12.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-13.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-13.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-13.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-13.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-14.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-14.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-14.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-14.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-15.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-15.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-15.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-15.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-16.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-16.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-16.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-16.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-17.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-17.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-17.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-17.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-18.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-18.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-18.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-18.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-19.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-19.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-19.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-19.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-2.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-2.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-2.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-3.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-3.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-3.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-4.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-4.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-4.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-5.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-5.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-5.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-5.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-6.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-6.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-6.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-6.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-7.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-7.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-7.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-7.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-8.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-8.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-8.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-8.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-9.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-9.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-9.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-9.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-1.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-1.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-1.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-10.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-10.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-10.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-10.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-11.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-11.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-11.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-11.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-12.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-12.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-12.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-12.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-13.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-13.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-13.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-13.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-14.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-14.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-14.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-14.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-15.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-15.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-15.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-15.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-16.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-16.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-16.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-16.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-17.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-17.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-17.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-17.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-18.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-18.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-18.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-18.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-19.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-19.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-19.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-19.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-2.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-2.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-2.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-3.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-3.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-3.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-4.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-4.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-4.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-5.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-5.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-5.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-6.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-6.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-6.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-7.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-7.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-7.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-8.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-8.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-8.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-9.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-9.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-9.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-9.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-1.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-1.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-1.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-10.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-10.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-10.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-10.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-11.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-11.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-11.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-11.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-12.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-12.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-12.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-12.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-13.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-13.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-13.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-13.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-14.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-14.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-14.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-14.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-15.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-15.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-15.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-15.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-16.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-16.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-16.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-16.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-17.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-17.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-17.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-17.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-18.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-18.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-18.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-18.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-19.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-19.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-19.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-19.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-2.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-2.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-2.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-3.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-3.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-3.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-4.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-4.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-4.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-5.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-5.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-5.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-5.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-6.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-6.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-6.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-6.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-7.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-7.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-7.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-7.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-8.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-8.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-8.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-8.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-9.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-9.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-9.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-9.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-1.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-1.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-1.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-10.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-10.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-10.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-10.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-11.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-11.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-11.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-11.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-12.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-12.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-12.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-12.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-13.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-13.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-13.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-13.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-14.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-14.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-14.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-14.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-15.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-15.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-15.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-15.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-16.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-16.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-16.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-16.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-17.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-17.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-17.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-17.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-18.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-18.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-18.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-18.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-19.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-19.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-19.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-19.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-2.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-2.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-2.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-3.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-3.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-3.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-4.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-4.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-4.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-5.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-5.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-5.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-6.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-6.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-6.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-7.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-7.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-7.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-8.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-8.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-8.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-9.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-9.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-9.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-9.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-1.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-1.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-1.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-10.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-10.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-10.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-10.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-11.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-11.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-11.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-11.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-12.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-12.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-12.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-12.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-13.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-13.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-13.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-13.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-14.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-14.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-14.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-14.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-15.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-15.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-15.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-15.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-16.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-16.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-16.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-16.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-17.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-17.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-17.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-17.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-18.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-18.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-18.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-18.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-19.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-19.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-19.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-19.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-2.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-2.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-2.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-3.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-3.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-3.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-4.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-4.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-4.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-5.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-5.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-5.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-6.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-6.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-6.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-7.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-7.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-7.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-8.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-8.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-8.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-9.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-9.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-9.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-9.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-1.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-1.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-1.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-10.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-10.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-10.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-10.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-11.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-11.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-11.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-11.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-12.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-12.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-12.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-12.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-13.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-13.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-13.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-13.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-14.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-14.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-14.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-14.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-15.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-15.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-15.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-15.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-16.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-16.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-16.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-16.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-17.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-17.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-17.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-17.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-18.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-18.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-18.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-18.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-19.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-19.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-19.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-19.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-2.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-2.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-2.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-3.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-3.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-3.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-4.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-4.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-4.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-5.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-5.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-5.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-5.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-6.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-6.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-6.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-6.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-7.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-7.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-7.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-7.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-8.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-8.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-8.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-8.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-9.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-9.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-9.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-9.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-1.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-1.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-1.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-10.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-10.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-10.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-10.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-11.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-11.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-11.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-11.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-12.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-12.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-12.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-12.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-13.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-13.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-13.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-13.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-14.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-14.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-14.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-14.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-15.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-15.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-15.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-15.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-16.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-16.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-16.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-16.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-17.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-17.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-17.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-17.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-18.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-18.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-18.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-18.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-19.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-19.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-19.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-19.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-2.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-2.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-2.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-3.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-3.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-3.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-4.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-4.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-4.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-5.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-5.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-5.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-6.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-6.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-6.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-7.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-7.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-7.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-8.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-8.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-8.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-9.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-9.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-9.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-9.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-1.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-1.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-1.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-10.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-10.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-10.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-10.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-11.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-11.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-11.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-11.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-12.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-12.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-12.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-12.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-13.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-13.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-13.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-13.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-14.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-14.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-14.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-14.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-15.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-15.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-15.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-15.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-16.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-16.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-16.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-16.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-17.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-17.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-17.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-17.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-18.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-18.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-18.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-18.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-19.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-19.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-19.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-19.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-2.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-2.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-2.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-3.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-3.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-3.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-4.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-4.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-4.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-5.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-5.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-5.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-5.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-6.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-6.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-6.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-6.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-7.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-7.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-7.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-7.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-8.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-8.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-8.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-8.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-9.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-9.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-9.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-9.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-1.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-1.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-1.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-10.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-10.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-10.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-10.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-11.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-11.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-11.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-11.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-12.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-12.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-12.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-12.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-13.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-13.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-13.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-13.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-14.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-14.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-14.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-14.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-15.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-15.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-15.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-15.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-16.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-16.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-16.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-16.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-17.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-17.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-17.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-17.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-18.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-18.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-18.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-18.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-19.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-19.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-19.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-19.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-2.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-2.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-2.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-3.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-3.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-3.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-4.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-4.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-4.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-5.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-5.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-5.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-6.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-6.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-6.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-7.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-7.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-7.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-8.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-8.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-8.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-9.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-9.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-9.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-9.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-1.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-1.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-1.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-2.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-2.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-2.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-3.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-3.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-3.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-4.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-4.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-4.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-5.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-5.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-5.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-6.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-6.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-6.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-7.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-7.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-7.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-8.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-8.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-8.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-1.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-1.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-1.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-10.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-10.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-10.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-10.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-11.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-11.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-11.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-11.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-12.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-12.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-12.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-12.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-13.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-13.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-13.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-13.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-14.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-14.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-14.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-14.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-15.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-15.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-15.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-15.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-16.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-16.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-16.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-16.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-17.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-17.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-17.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-17.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-18.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-18.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-18.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-18.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-19.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-19.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-19.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-19.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-2.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-2.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-2.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-3.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-3.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-3.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-4.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-4.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-4.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-5.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-5.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-5.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-6.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-6.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-6.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-7.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-7.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-7.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-8.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-8.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-8.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-9.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-9.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-9.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-9.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-1.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-1.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-1.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-10.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-10.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-10.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-10.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-11.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-11.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-11.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-11.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-12.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-12.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-12.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-12.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-13.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-13.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-13.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-13.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-14.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-14.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-14.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-14.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-15.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-15.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-15.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-15.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-16.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-16.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-16.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-16.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-17.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-17.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-17.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-17.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-18.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-18.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-18.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-18.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-19.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-19.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-19.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-19.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-2.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-2.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-2.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-3.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-3.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-3.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-4.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-4.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-4.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-5.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-5.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-5.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-5.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-6.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-6.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-6.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-6.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-7.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-7.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-7.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-7.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-8.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-8.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-8.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-8.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-9.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-9.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-9.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-9.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-1.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-1.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-1.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-10.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-10.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-10.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-10.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-11.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-11.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-11.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-11.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-12.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-12.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-12.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-12.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-13.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-13.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-13.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-13.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-14.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-14.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-14.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-14.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-15.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-15.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-15.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-15.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-16.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-16.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-16.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-16.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-17.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-17.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-17.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-17.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-18.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-18.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-18.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-18.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-19.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-19.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-19.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-19.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-2.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-2.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-2.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-3.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-3.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-3.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-4.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-4.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-4.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-5.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-5.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-5.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-6.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-6.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-6.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-7.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-7.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-7.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-8.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-8.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-8.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-9.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-9.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-9.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-9.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-1.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-1.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-1.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-10.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-10.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-10.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-10.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-11.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-11.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-11.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-11.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-12.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-12.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-12.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-12.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-13.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-13.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-13.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-13.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-14.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-14.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-14.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-14.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-15.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-15.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-15.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-15.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-16.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-16.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-16.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-16.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-17.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-17.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-17.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-17.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-18.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-18.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-18.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-18.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-19.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-19.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-19.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-19.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-2.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-2.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-2.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-3.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-3.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-3.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-4.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-4.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-4.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-5.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-5.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-5.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-5.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-6.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-6.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-6.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-6.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-7.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-7.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-7.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-7.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-8.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-8.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-8.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-8.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-9.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-9.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-9.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-9.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-1.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-1.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-1.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-10.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-10.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-10.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-10.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-11.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-11.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-11.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-11.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-12.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-12.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-12.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-12.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-13.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-13.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-13.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-13.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-14.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-14.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-14.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-14.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-15.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-15.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-15.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-15.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-16.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-16.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-16.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-16.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-17.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-17.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-17.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-17.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-18.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-18.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-18.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-18.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-19.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-19.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-19.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-19.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-2.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-2.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-2.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-3.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-3.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-3.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-4.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-4.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-4.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-5.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-5.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-5.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-6.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-6.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-6.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-7.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-7.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-7.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-8.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-8.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-8.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-9.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-9.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-9.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-9.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-1.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-1.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-1.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-2.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-2.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-2.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-3.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-3.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-3.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-4.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-4.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-4.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-5.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-5.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-5.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-6.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-6.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-6.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-7.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-7.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-7.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-1.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-1.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-1.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-10.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-10.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-10.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-10.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-11.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-11.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-11.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-11.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-12.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-12.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-12.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-12.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-13.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-13.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-13.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-13.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-14.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-14.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-14.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-14.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-15.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-15.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-15.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-15.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-16.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-16.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-16.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-16.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-17.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-17.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-17.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-17.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-18.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-18.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-18.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-18.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-19.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-19.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-19.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-19.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-2.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-2.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-2.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-3.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-3.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-3.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-4.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-4.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-4.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-5.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-5.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-5.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-6.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-6.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-6.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-7.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-7.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-7.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-8.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-8.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-8.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-9.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-9.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-9.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-9.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-1.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-1.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-1.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-10.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-10.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-10.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-10.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-11.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-11.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-11.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-11.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-12.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-12.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-12.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-12.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-13.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-13.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-13.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-13.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-14.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-14.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-14.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-14.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-15.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-15.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-15.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-15.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-16.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-16.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-16.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-16.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-17.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-17.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-17.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-17.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-18.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-18.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-18.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-18.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-19.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-19.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-19.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-19.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-2.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-2.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-2.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-3.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-3.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-3.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-4.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-4.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-4.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-5.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-5.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-5.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-5.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-6.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-6.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-6.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-6.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-7.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-7.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-7.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-7.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-8.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-8.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-8.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-8.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-9.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-9.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-9.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-9.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-1.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-1.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-1.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-10.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-10.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-10.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-10.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-11.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-11.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-11.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-11.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-12.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-12.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-12.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-12.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-13.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-13.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-13.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-13.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-14.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-14.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-14.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-14.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-15.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-15.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-15.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-15.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-16.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-16.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-16.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-16.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-17.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-17.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-17.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-17.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-18.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-18.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-18.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-18.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-19.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-19.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-19.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-19.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-2.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-2.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-2.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-3.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-3.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-3.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-4.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-4.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-4.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-5.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-5.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-5.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-6.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-6.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-6.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-7.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-7.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-7.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-8.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-8.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-8.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-9.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-9.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-9.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-9.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-1.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-1.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-1.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-10.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-10.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-10.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-10.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-11.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-11.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-11.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-11.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-12.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-12.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-12.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-12.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-13.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-13.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-13.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-13.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-14.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-14.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-14.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-14.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-15.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-15.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-15.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-15.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-16.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-16.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-16.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-16.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-17.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-17.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-17.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-17.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-18.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-18.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-18.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-18.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-19.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-19.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-19.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-19.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-2.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-2.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-2.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-3.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-3.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-3.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-4.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-4.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-4.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-5.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-5.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-5.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-5.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-6.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-6.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-6.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-6.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-7.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-7.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-7.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-7.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-8.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-8.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-8.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-8.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-9.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-9.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-9.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-9.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-1.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-1.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-1.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-10.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-10.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-10.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-10.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-11.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-11.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-11.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-11.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-12.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-12.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-12.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-12.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-13.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-13.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-13.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-13.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-14.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-14.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-14.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-14.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-15.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-15.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-15.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-15.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-16.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-16.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-16.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-16.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-17.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-17.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-17.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-17.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-18.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-18.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-18.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-18.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-19.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-19.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-19.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-19.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-2.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-2.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-2.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-3.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-3.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-3.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-4.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-4.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-4.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-5.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-5.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-5.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-6.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-6.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-6.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-7.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-7.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-7.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-8.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-8.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-8.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-9.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-9.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-9.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-9.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-1.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-1.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-1.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-2.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-2.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-2.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-3.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-3.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-3.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-4.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-4.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-4.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-1.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-1.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-1.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-2.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-2.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-2.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-3.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-3.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-3.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-4.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-4.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-4.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-1.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-1.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-1.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-2.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-2.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-2.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-3.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-3.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-3.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-4.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-4.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-4.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-1.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-1.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-1.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-2.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-2.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-2.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-3.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-3.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-3.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-4.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-4.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-4.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-1.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-1.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-1.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-2.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-2.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-2.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-3.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-3.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-3.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-4.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-4.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-4.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-1.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-1.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-1.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-2.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-2.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-2.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-3.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-3.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-3.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-4.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-4.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-4.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-1.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-1.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-1.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-2.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-2.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-2.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-3.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-3.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-3.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-4.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-4.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-4.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-1.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-1.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-1.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-2.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-2.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-2.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-3.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-3.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-3.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-4.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-4.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-4.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-1.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-1.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-1.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-2.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-2.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-2.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-3.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-3.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-3.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-4.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-4.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-4.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-1.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-1.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-1.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-2.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-2.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-2.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-3.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-3.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-3.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-4.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-4.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-4.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-1.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-1.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-1.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-2.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-2.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-2.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-3.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-3.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-3.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-4.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-4.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-4.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-5.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-5.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-5.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-1.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-1.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-1.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-2.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-2.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-2.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-3.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-3.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-3.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-4.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-4.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-4.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-5.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-5.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-5.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-5.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-1.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-1.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-1.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-2.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-2.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-2.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-3.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-3.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-3.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-4.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-4.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-4.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-5.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-5.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-5.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-1.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-1.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-1.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-2.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-2.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-2.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-3.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-3.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-3.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-4.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-4.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-4.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-5.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-5.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-5.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-5.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-1.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-1.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-1.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-2.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-2.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-2.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-3.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-3.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-3.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-4.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-4.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-4.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-5.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-5.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-5.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-1.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-1.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-1.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-2.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-2.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-2.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-3.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-3.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-3.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-4.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-4.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-4.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-1.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-1.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-1.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-2.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-2.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-2.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-3.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-3.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-3.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-4.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-4.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-4.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-1.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-1.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-1.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-2.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-2.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-2.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-3.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-3.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-3.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-4.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-4.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-4.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-1.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-1.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-1.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-2.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-2.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-2.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-3.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-3.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-3.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-4.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-4.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-4.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-1.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-1.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-1.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-2.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-2.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-2.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-3.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-3.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-3.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-4.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-4.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-4.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats.csv
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-DB-RGB-LOG-1.log b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-DB-RGB-LOG-1.log
new file mode 100644
index 00000000..e0257feb
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-DB-RGB-LOG-1.log
@@ -0,0 +1 @@
+2016-08-24 15:07:02,885 DEBUG: Start:	 Read hdf5 Files
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-DB-RGB-LOG-2.log b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-DB-RGB-LOG-2.log
new file mode 100644
index 00000000..16ce3c6f
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-DB-RGB-LOG-2.log
@@ -0,0 +1 @@
+2016-08-24 15:07:32,272 DEBUG: Start:	 Read hdf5 Files
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-DB-RGB-LOG-3.log b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-DB-RGB-LOG-3.log
new file mode 100644
index 00000000..3f44f8ec
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-DB-RGB-LOG-3.log
@@ -0,0 +1 @@
+2016-08-24 15:07:49,531 DEBUG: Start:	 Read .hdf5 Files
diff --git a/Code/Multiview/Results/20160819-202408-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-DB-RGB-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160819-202408-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-DB-RGB-LOG.log
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-1.csv
new file mode 100644
index 00000000..b49e4cee
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-1.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.480769230769;0.0555555555556;0.371428571429
+Oui;0.173076923077;0.0;0.128571428571
+All;0.653846153846;0.0555555555556;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-2.csv
new file mode 100644
index 00000000..7811e2b3
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-2.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.32;0.45;0.357142857143
+Oui;0.16;0.1;0.142857142857
+All;0.48;0.55;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-3.csv
new file mode 100644
index 00000000..0a117a04
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-3.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.357142857143;0.571428571429;0.4
+Oui;0.0892857142857;0.142857142857;0.1
+All;0.446428571429;0.714285714286;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-4.csv
new file mode 100644
index 00000000..b49e4cee
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-4.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.480769230769;0.0555555555556;0.371428571429
+Oui;0.173076923077;0.0;0.128571428571
+All;0.653846153846;0.0555555555556;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-5.csv
new file mode 100644
index 00000000..f70390db
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-5.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.5;0.0;0.342857142857
+Oui;0.208333333333;0.0454545454545;0.157142857143
+All;0.708333333333;0.0454545454545;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-6.csv
new file mode 100644
index 00000000..97b4c475
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-6.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.375;0.272727272727;0.342857142857
+Oui;0.1875;0.0909090909091;0.157142857143
+All;0.5625;0.363636363636;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-7.csv
new file mode 100644
index 00000000..3f01737c
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-7.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.34;0.4;0.357142857143
+Oui;0.12;0.2;0.142857142857
+All;0.46;0.6;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-8.csv
new file mode 100644
index 00000000..bec1991e
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-8.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.46;0.1;0.357142857143
+Oui;0.14;0.15;0.142857142857
+All;0.6;0.25;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-9.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-9.csv
new file mode 100644
index 00000000..a1ebf059
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-9.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.5;;0.385714285714
+Oui;0.148148148148;;0.114285714286
+All;0.648148148148;;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix.csv
new file mode 100644
index 00000000..51fe7325
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.5;;0.328571428571
+Oui;0.260869565217;;0.171428571429
+All;0.760869565217;;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-1.png
new file mode 100644
index 0000000000000000000000000000000000000000..95867d748c5f288493d1a13871d8d4936627f5fc
GIT binary patch
literal 21677
zcmeAS@N?(olHy`uVBq!ia0y~yV2S`?4mJh`hJ9%>?l3SguoOFahH!9jaMW<5bTBY5
za29w(7BevLCxS5J3j5`m3=9eko-U3d6?5L)t*$v=`uP9H=jqbchR2WfSn^Ixo48fr
zq^6dV)vVa9*<Rt1Es|~`vv@8#2AeHca*Cbqb<uSBMD13OW!}>EZYx_e-#qyHd+~d_
z@cC(d`M>vkzxlXs_uI1Axc8S|uWe30|NZsne>Zpz8?Z1iFkIeYS<S@2z_6~Zft7(F
z!H7wWfuZ3fM+5@{gPL*zBLl;Xo>7V66eKotY#A9CKD0Zx^SwOMDSZ9u9n<V<Aprpw
zN-fR1Krx=c*v=;#^!L}-^|yc4*3@jtzi;Ohruk4%k%2+1VDGHeO8fu+`(3)9?O%HX
zD?`K48#!jd^?L4car2UrlSL&YH00&wTie^S@9rv{Zu`9S^|h7W)Ad$GZC&-}&!3Xl
zYqw|p{Pa}yUHzvgo<D#8K7IDAuXgylJ#Su55oOU~U|4YCgvZ%grrv^rg0pO^x7pa(
zTv;8izjW!+*iSc}JW2Wb;-a&tcG#6GD}zmIf0dNJy5iZ+FR%A;#*ZHrb8V}?ZDLM{
zJS?Tdz@YQQD{8rRqJ&%L?QQw@*QK7GrfFyxc({#svWlyV%Zk*~)1*wZrkLg5i+Qwh
z=FFK@&t|5J2n#QkG){}T7W3`R&BZ&5pJyFv;gqtk`!n^fhooaOD}#gO_N1d+l@%2l
zR#vy{p1pjza>WXb+`GF%-TP!TKi)9EUlaWN{QT=jI)zm|)6dP>`Q&R-Qqq?L%={~y
z+xf(K>ry2dxfvL^4XgiNeQJ_qUH&fQ@-pAhl|icQA2)0;`2B6tn)v;3=JzTVUt1Ho
zxa#Yxl|@fatqNS+cC25%{@{l#H9w1TZ*TLxyv%oZ*ZsMhn%!F%7^W0QMn-aRaA=sx
z2?!`0HYoY>;-XN$ZNY<vJ9qDXJtFL{VP+PlsHhmVvuJ5t)k{@TF|n*qPfmWTJwMNO
z^+aX&tREj9t_oj2k5A5~BKF;JE>O0QIPo>Axzupy&YhpWe9<v`_w;G%{kTbU=Ez94
zEo^CF>6I{ansjA*e*E80r}eA8UJW-*J0tP)*DtS0%lzi9YHDISdh}>)`|b^5a)L|@
z0p}{Kt6$&QS$y=^`FXb4_v<z$tG;~LE?*{5|74>3l-aXa=kNRJHfhSli3?v|UY>nw
zisq+}9}Tl#O>;fqw9>Nv-yhcFv89d4m8R+EWZvG|div&NhEr>@W3y8w+PJv6W$V0t
zeb1lR(7=$Inkp)-FSR;&xnJjTvE0?6tEU~_v48)5p2GoUW!qFT|NQv4Dth}mtFkvM
z&YbZ{O-s9V{{QFm_S(kAmzVytc_66h<(ind@Xp=4Q)kXx>2LSbr7dwq@$++8cXn*l
z3R$6W*dXRxtj5!m?D91WX3UVV{rBT>)!(nzpT2x~GCur)R?KO8^LOvw6_uBlOIX+c
z+r!1h<z=I0ViK})<;qhhPZmbJ*q3|T>}HNxYg^m2ik#VIxnB<R+rKz5Q90|vg2viE
zCnhRyx|y@<VVkrHC^=u_xBs)ityjuYCV%rylavzzH*?HV)6-9%KmXn<@A{^U4FOu9
z*u7hRe`W6NZBkYxEB<}#uV3LkU2m32=A^p+f6H&?Z1esnF1F@<BfH!MP+mznAy8Ra
z8T%#v1;d)f_5c5AX=nrl1x>2e(bxCa)YRnS=MPUvSfKLq#>V7Z`|I~}adW@@ZTsbd
zvk{N;`#qogYR?$(sH&^4uKM~a>+-T*mCR31PDX9bni{q~F86=s%cav*JU4FK2okAX
zJ577R!9%5`|Nd0&+_`h*f&~uBZao1YFP||!zrwX!tgEy0ViPNO$(tL7dw;!J{psV!
zg(tNRcSW7LaU;U>(!amIO_PuD@XA_+nBOg#JUN|xitP2|iNBYg6BiR(#>mX3p{M6}
zyk9=NpkPB#P|%c_Ggm%&lJdK5v3viuL#^CXCr(WKf9Zu??Jsa}Se34-`}Z?_Yt~h-
z)nRLcqM~L^nlve7p%bfT(C)IgU9sD}rfM1SIOpEp7W)3)Uf(^*&y^D%?kXxSzP!-6
z{ma|!_qFWp<Lm$bzF&IY_PfWVd)4o4dFAb5vahX~sNxhR`Te@PkbLcziO<f?UVi6J
zOs}M|8z}ouPGfseq!YEp<KxGVQF|&jZrZ$AR7hx%Y4)`hwZFf8tIaW+edkV>{hwbS
z4)dGl-LcS(-sZzCrW3F^?d+D6larFT@9Q54{a>4J9FyrPsdLnT=joFtD@tEqJ9Ym2
z^s{M~udR&^-CdSD*S0z=E-voW*|VWOK0S8-ek6Z=b93^9&^A%ii284ry!Al^-rlOO
zK{Yitil<%wd^pU{#m86n%_QdB_4xX=X1TXkBpvM%=P|tg=+Dp3r%s=~+$U>&Wmjo-
z@cCZuWL~j#(zDMlJ2h2X+srI%=gys{&YZcj|KC@A&-y*ls`mEr_wL;TWqwe=y!d?H
z{<^TgO=A4y)=fw6-i>|v@}-xr@7DfaX>-5B?flo(=hrOqoUHcp_xt_j_gE6UcI>b)
z&Ak<JdwYKQw-5$zP?&2*J^1r||Nq$ad%w-9sjdC`>9qdq%l`ILRYF$;98^r%ntwm;
ze%<f2e)DWzp2>Wy1@io2x86&!<#(5szP@(z_~XZqO>=G-)c$(8yhTU+!eV#+*7o+*
z{`2ix*1SF<89$Zzv*3n=S&RIqK6&;G6shWdb2j8l8zeN`tNHAknx3Bh=ElaT-DPW+
z{BPCK*Vo_s`J8ps{<^=c``0mEd;aw4(!|4UE3>b!dv$SfyWRgk#lN@hZ(H;C_jl{U
zWjmx?|J#(my5iZ{*$K+d?{>epa}o<+ViNNS-11M&);3m9P>_q0GjO(9u1Up*gxXIh
z)h8`!WM<ELc4p?O6DKarFih5y*pzjB-P<#_4~YKw{ORnUKQ*59e;)om#I3&~c)8!M
z-|u$oOKiHfK7Rf4`So$^d@>qeEg!$SQ~&?3lyO=QpS+#U?6b>0d?-*=Q(G0d*sW#F
z>jt*draSh3IK-`QQ7xo#o9FO^*|TSVdw+jDpRCo21q&Q>qqYS6{q=Qg&CjCRe?Ola
z@i@P|wKaHk*xHcgezLl;yFzxCy$yPMYwOiDk(-mc7boVr$~#%q{n?=vx=N+Iy!`3&
z=cn)9js5!SYVc$=-;xgx9DV26M83Vfef$214Z+L(eto?j|Mh+S|7d@^pG!{f3Ak`|
zZS3x_lP6Dp`tSji%tN+jg<f479j+U-<wE_x&+>ae9+Q4`W##0*v7S4uA|oTcyu2p0
zx3}N9bH|4_ye$#rVt>1zD*l{a-Hb8KO-)RP4S1B*)sMfpyu4pfNGPf1=hNxm-rleM
zKKJ4hPvOOBXJ;Looxd+rzW)2&a^Bfz(@I`lIeFsbNzJd7k5A39uitm$#>dCUd)<1a
zB>U}ttpJsR=l}gT&%c**r|foa+wR@FHx@p2YfrBK_w)H{^T-*`&ez{<=ao*okz<y8
zq(jgxEp1ut?`gWxJs&<49KL`5{=@mTF*{|g%Ooc8=<DkrzJC4s6?uJqedkFVlaKSI
z-%s0lP}wPF<JHyS*>`pnPWt!#o$_IWFQDQ(bafaPH}~W($D<o&o9D0dxBnY5Z{ECF
z=K1qLk@~V<pD}h@&dhsNuXU$a6|Y}yRsL>H-LIGGvK9pn$NOX_tNi@&1C&61z1e*J
z%ah6eUcc@?j`PgAzi;ons#ltG?d#+2?k>N6T)sZXJ|5Jl`ma`SG{<aqZSK<^Nn=oR
z=g1M4vonp|+xcWColU#^cKiKvkDVre?6_bmu%X~4&*2LzgO{7s{wndEZFcsbDElS(
z`1u8&o_PM=HRsQtn$R^7fvv5rSyxs}e0FB$Vo*Ik+dO}pym7(-2Gi_oYp%R!4o^Ef
z%e3mn!uBg$GJ{R?@5LNEcyQPMf4{e;o)%M8RegEUUH<Ct_xs-qY$_@)R`u++{Wc?S
z-_JBwHnyw_3mmPApY?dx&djcS@a|pSf0qwuW*T!w9!P!U`))^$*=*msy1J^*XU$EM
zj&Oj|{e}$z!fHMN1qB=4?Rd-wDhI5Jo^&uVGlxb*WYkB-U0&w<^x?yW^7Vf%o-A+F
z-k5Pw$@c4&U@mU%%bU;JY3u9jgF@ANn$AUc`PwC*c8;udSX*Mo!$Yl`ZsyFgE?>82
z?_O0;P&LxZCHm#p>-Ddf&CXl2R!7<H_Z#D<&z`OFpKmuwg`b~)u64N|C>AY?m#Kit
z;7MQJY(B50p>aZP)4ckBm0#c94u8M@|GvZ02MT}A`50=sgKy5S2BB2H#KeV(5^WpP
z&&xetxBH#Zs<5?LJ@WSV40sOT*pS#9xHT(OSw-cDMd_<4hYSDzd2ZkP>gsCgZZTag
zP+_npe*e7{VQXi7e6#ty6g!_x!HsV>)8|XRy|vXi$85G?<|UQKXJ#57yRgu?_taEv
z>A%0fn;RJ!_4M2SyRqZ_zTZ7@d#fb(|Npmp@;j#RtkctU+s>weG=6-sxL@k?^Yi;3
z)EOEYipNZzI&E6oor=f3Zj;q~d+yx1b7@Z1%<wI2r;i^$z9MGlrj_<~c6MtHYNeV)
z>`-b;JYm3dx8$-fs3qUVC%Y;<zBV*2F0QM)`|=Xc$tFohI9l7=Ur!B>yVz@fZ^hr=
z-?Oi+iCh)4bJM#$pZ(JBGwB`tvEQF#UEJQNt=ZSZN=ml;%?|8}JAQF(w0Y?IxY)wN
z!dV81O;RQq3yvId`T6@dNPE_e4GTd{HhX*fwekD!-OD)m%WtmL(gh0?K%Ir(-``(v
z<CQi^KPTfm!@zO-oucl)+;!<^XD$8w{JePfrbCAhZ%sJJ1nQWaK7D%T_Mo(j2|L;L
zbqk1tgmoh~xqQD{KHsYR-I{5-(N;P4_f~Ij<CR|a_V)H{P-np~sb$jS$x|mxSn%ab
zNo8f_$>Yb}?d<G+UElw2>4XUa>UTNUx#Z=o%iH->Y-`3vC++ZcB{$OkysTEbeCZOX
zNnKf0mG%1CT2N;Rl+V}3><pT!9UgXlUF_TS84foSB--BXdaZYLMWFNhz2E1V<=<N~
zJ-#l|y6jEB+NiB2MNd5LRz9B#s)STBUtCyN^>*uZkRY$5(Gj~o?eH(LE&KNETeg4K
zvJD#o($CF#xSPXU@cluj&TsGTuHOBAUo<<v+?DC^bt@w`r)B>B_SUNA$A(u|SF7{$
z^Iu&Z?*H)N!&_Ukr;F*w>6Dk3+kQS{EM<~0fr*Lf$}(SRP^u1I?iYG_neW_M?;Sp%
zwDj!U+|^R1SuYm0%N0fVe}Dd8XkGaFc{MdPTXJq1mA<~_3#x^-W?j9qF4lT$=4H35
zt3r#f=|0e!V_zSamzS4yaZ&5BUg_nao>2b%eO(<LpejrC@5e(oK!uI{pAXHT(D?f1
zX7D7F)Kem%t3o_wt;<aQc6XibUi3YovZ^X>`uBvVPoI92TN8A|o>e0-Az^`ApUg^7
zt42e^<MFZH%M+E|MdanzU$_tea?t1J=cl)~x8JLLE_=7`_uE;P#mnL<9<u)Y`Saz?
z^!Zm?IE6)IW!F}HeP#K(tblb@$jU_r4md1bzWnu{pPxT{_;BIp=jXEDG^=9nEOch~
zytMs(UADaY%@C0uDYKjvxAXVMf*Ol;zu%gBUUKHQT~hb=*U7VIebxQu1SBObnq`)|
z>gDC-uXjG5cX^6t@RtvV`A;8io~qv9a^R3_$l9pT!otF;UoV$$&AzS&>Qo)(x4&|4
zZ?&kXsOs#q%l7~O`#$U5o}FqwGZxG;&0gi!D+MaE9zA;W=J`YZJDZliSRcMU@9va&
z^VV?+t9kr-%zuA>o6hXBY4P(zOJuTbPwkV=+u`Wk#&hx2)zw>bZ<~2u5|6K0$jHq0
z;@$4|*KX(UU#q|Ghm)hDBdFhe=<s3FnjZzAyzMt{=j#Wu5vlUo8wxy^`^~*{q*K_m
z_?Zu=oqTz@|MvXfZ#JLbQvBRcRb5?MUESTiPiCSDD6hW1w-?m8-Mp+fyX3_M#nKlS
z9GCmg4@*i~G_T?jr{^YnJ)K|Eza47jHZ6G(@b~ll|5s$o?>s!CdD!Loxw*mj_tmCK
zv@Ke+2-Kw7ntMB}v$K;g+wgwv_gE0mca}-vqnudhi&AS&P1T-#k3~#G<i(elm)9KB
zaxK}pL&e_S9+dyhX8Rhaotcm*G0UQGkyhxcCGYO;US0kDos><*1|uUQP?!7dot?p#
zm;0;7Of7VDbgX*6_j}3ryXByY+^Y81mZYR48L|8CZf*7Uo~9G{_*idc=9=!0U%rHV
ze|J|@T6#5T^dtTJysDQ=r@wg!YIllig<M$NZ};lSOr~ot&8?@)UR}}L`{Pmfx9Obw
zJ{;oy^!01$kC2&Pjx%M-%gd{u6G{8^=ks~fgaZt7txCPV->=^<SM$NqH1AGCe9gyJ
zyPr>l-`?9BEp48s^NlljN^JeV^j*>0^L{;>oxdgXvYKiBy*nq3i*sFhr_G;#zch1$
z-&`x#=FqN;4Fxy<{P`myFR%ZyKEH6DMd2b_AJJN-&Vr{=yGma#%e}oV^T~;cw>Bg;
zhpms(ec5kXwKjVDwP$B%UtQ$Nt$to8P3zZ{nP=02|Nr~@_3QQc*QfROt0XXnH#D?r
zf4V;5>AQF9e*CET`RmuGi#g(Dk9*Bu-7UX=_2uQ|U(cG~U$J3BfNu1*kX|X%kfmOt
z>HhrJ9Rr(7-|zkYYU%X2OP`*e{`z8Z|Ei>;U4HXszJBbwcwJ*dt9F>kraO1<n&#dz
z0ku0OtN9jv+fpz$bX`m&sDPYnRXWF3bP6ap?)`GfyXw!!<6E<?YJqyN=jI6os0nN+
z2nBgqTzq+#sP?Og?sA3SN*H3?V|SN@zP`5hr&?Q(Q}a_Pj))yup{qhJa_jFou-Ngy
zQBXtV^fcX1U%r%l3u!QFZfMPR+QD>+{ZQ!3MTJ_w!Gk3n{T#8(UztGzgc%zc7&Zt<
z>0Ebc29KnI$Dvx-PMcnU45PBG7MWvF=#+hZU1&2K?~}K0-@bXtz_2bTFK?ZZk<pdK
z?)+ERM1I~C)690-RA7VG!CPCiO$#14r28{7BuqNmE&h7rak=7eCJBiwYl1E;aAfuj
z>K4;|^7{4bJ13`XVrJ)C;W=6D+&s6Hv#m;3ZC?IB<m1PWRUeOv&$Z=UUh(_w_PMsL
zLE8%-yOqAVaq;G5jnMu7eys+zU4HMszFu5v`KJDcP_8aH?q9!tttxtY%5R?U%TFIZ
zXq11~S$U@}efIqM@jLgH*Vosl`!BpwSyeUd^zUg$iuhxMz++m8ywkE35*Qg06j^kx
zAIO$sU|{fZYi@nLYR|g!8tZ?3d;9v0<^mDZ+*?;}1{ZjmM67FM<GvpH_SV+9wyaYY
z)&2ctS<R*4dUlp+@i!5M(~Ax=F&uEp*bu|a3m%LH2do6hiEP{q3<pv`1BE(EGI*!m
zw4Xj{`t;>DZbY!Mv7I`8-2LIhhf&+}?yB}jZ%AmobLURi-yOSmzg|ASPHS6zUERKA
zJ~J0RJ3IUI?c32?v#(#<`~BYP#qRxaSKm(${n#PEz`$L2P3ilI6CR+7_i!6;Fl3Mc
zJOa6F*{ayxWz%i`ckAzqcw;TKI&AH$53ie=n7+Qc>V11#Zg5G-7AGgCDRbwp)!+Xo
zNZo&4$Xu(^bwBQ{>1qHE9oGIX(~aKd)7jZ6WtKBTMN>)1NjG}il@)=Dw^V+9<~{H6
zyWQ`@USC_Qzw3ODq%kP_=HA@ontN-DVd}fEqsmSU3_3?7`#HkbL@4s}^Sipc-#%_*
zYbz=$x^!*y_E#q+Do;24K4*^1T>JWeO}BXtUwCtK^VRk7_MnQjwYBxs*|U59+@E0t
z8svAd++O_L57Yynsufx!!OzXTIe)*zVS|$AbIVViKksj6XZPyz^8UIX582ym_x*ln
zEo)m9Vt&77GaJ90PJDd)&tJb*g{}_s^7S?STDPXby@i1xqQm%FLTYNNrh>wP8x;-?
z4LpZ;ykIJkmzM{PmA$&NbMv1+f3_qa=L0p>Ykz<H_3QO|&``0bRl$RXCH8W{*H#2N
ze|~m$a-zg6qtvddZ*NwDnz&gvH$64IvvjM#1_lO==S9WEPhY-_%(-*=^yz(jRhZd$
zE;KMQzuEup?(Xfo%HOZ+leGp7ZdN_+HCOrj@yCW2_2qAGrN&>lx3f5%m7P8N)|Sku
z9R&+Bzdy+Vr=Vq9;!R$?eY>{!`8iQ(`|59NYJX47xW8|2-tM<%?bmHY<}R-N{f%$F
z*qZS5^Q=l<EZDMT%j%iCQUy0KFcc^*_n&|5<>lqF$GoB{;#3qA9yIkcZr-#><>jil
z`2p+WY?m%ye!D)lq%Ue~mgw#4_wWCo^m@-JDbVDKSkc<-4S)XpdGh@EbAz&PZz5&w
zYIYn+c5-%}I&0RdIdf#%Ti@N@mOJ@uT5v|j3(@nB9~^83jSarpzwhU>*`W)aTDj|#
zKEAlPnD6&4COcOS1_#UQ`|ImPMMN|-HBZ`2n?8N{lqn*u?d`Y4SIJwK`TYL=K0GmT
zVeNilbw3g7`^V+$*T`Cztw=vV@7qSNsah+;*T;EzdlzSH`}X$s@-16TO5fl6TXkpF
zWl*V=pm^?wNMc093^pE#1v_?F$lBN4`KR{%%o!h5b@kidrEROWi0Q?w=;`5MWo7l8
zbZcw&^60#suG{ZbtzH$fa*?ccnTDlh<k#2N!((FR94-arzpt;auP%Om4m51ZbNIp>
z%i@sDX=jsuPb&q-$&twTshcw{Djhw3Jp1FLqo>ZD3-j>k01b$Ldwbh@&hfKnKR&#E
znBRVlY4$bnxYPUn|JOA%FxdWlGFi&Lu4d!$y0f#*uOI7`235Z&C#!=d7-DyoT-=g*
zS?|ZJj!odntdNaKuBs|38j6YwkJL_@JXuys*Ap~$s^&YZ<mPowUf!#>wq~!dnwQE7
zF5L>lnpulCo{$BVJth$h3=urN!8hHJ3wcv;i3XSFKq(GEd6!}GMR4&5Df-|Fi7{xw
zK_&(U14&R(C<dve7#Jcr7*Csi02NsWQot?(*@&#r`EkfMkc|v8dO&3+H>iL{mPavY
z#}nm4tlVNJ&YtzPv$H#O>Xg>Dzvryqhj@5&2&b_zFq~qZ&J*E!Zm#w6>G5?tZ&-NB
zF(ib#f{I^_SUuSdPR`Dz`S)yOt;^2b3}$3tc-nEA4KyNUn0#!-f&~wnbg#`96%%`P
zR6IVUpkTwEJ$tTfNObO%wGOMStmOM`nsLElZ}s<U({!UtZs%@4dHZ&BueABKMXufJ
zp08zKI3;;&^``Tw%+pj%b8ZAQv+?dq=>`>goWg1^u0`jA2B<*gR@SR4E32MNbeH+I
z`DPBNPyr>_cXxMZAM24^6}NYnT>YQIx3{;yue#62z@VWVW0l}}>Bh$7sq^QrZ)s`a
z&btrl+33ZrIM~dd{qoY%s#hzQPnk1kji9ny#@AO@K`o)f|6aa)8MQH~HLm8PE3c%H
z%lw*8omwF)7Cd?K<kAjVhKBBB-f7tdKO3%YNOX2}anaD!^gP}#ufOf@<9_>TXVWfk
zNIWcaY<~T}O3Ai`rrFmldbVd=bb5Ph>*oKv($3Dxy0&H}Xcne6kAZ<<ilv_X29?Y^
zI|@&oKfnJ$)Eeh@K2TTT;K74@kGE!B4Z6B2bn48RFAd~GL_*%kTwN6!TvoPi=VUg9
zDc&X#>lViB$=H&3xJ}BUV8NtGlSHJYs}I)deb2WmFaOTnC*4+fGMQh-LV=(E`2C{#
z`ueNuVt;R1$IGB$3o0tAs&*Z|v9tL3y5FUh7guC!h%<WsT6{EWPetLztr1^eU%&qI
z^YhXN2N+GWubr{`ciG?m<@Wn^!GC{!^_}fJS<N?OXHn|qbL<Q|>Smc{Kl|{!>C5r?
zyx!CGN-y;UOq<f}-ZJURia=#v8H<4Yy<evtR_Chz`bzb%fl2l?o%X-N!osPWZ<d_5
z{XXSe2qVK&iGGgQ=F?^o;#Dc;Wp5&MqqcZ}oOpVguBxY^qGDH1Pe@SEq)nSQUtJlj
zUi<UubWr*J>+9>~esis+e!IfR;2`;Y6XR>A%)Nz=k9Bo)TxeqDmf5!d^EqqK%uY~H
z(3YyNSy$J^MkgQdyZYnf<L<eem;C2?u%C~CA?@M$DVxr#GKZz4EKyQc*58r)@6XR!
z_VxP?&zL=XHmF}(`1n}tmp!U`yB^;E|L^-%Ul9g|9V*j#A{ZE^gw}LjFr6~n^&JDl
zf|Sb2%C6qt(1e5qH8nLNa&qfRUtf#;Sh;BN;-}A^ExWh3TKsmJL>s8H3@SROYR7D4
z7h`~~1qcrV4Z^Mt*U!DX>uOK*1`%)t@@S2}pqrap*0nW}AWyxyxfwLH6}PuaQ&;!x
zrsw~zhR0_fY-0WN?c2Tw-vpK2Uc6jBKWuf_T9e{uKA`ElmoHy}MqBs&dbRrWKEKEV
zpaSaDPS7C6%}uFZK0aIOOJiJITB5e)tPEW2mihVF+3BV8X3UUqb#sf`@KZ}i=gOU(
z#a|yZ^J}T99<{r-zrNly>xu_x>}>7!ds(OcMlga4t4BR-*+;uXKYjQRP*Sp`_RQtW
z!GVE+w|14T?vt@BI$5b7vm>DT`@5@8PEOX}VQX(651MlP{=Hmc|HC%vC(oX#$;;0_
z{o}5tHMpVOVa#;x++6FcTQY+~SB0ERw9(Nyv+r+GQBjde)t8K3S?g^P4O)+$K3#e{
zZ?~_ere@XmyXB=nJ|u!VNcF#O-w#>r#@k--oU6hGRAWw`I(2D7LqpPIMn*;>9%uJ{
zxxFtw3ak4~>F@8KSN(2h_q**WCxvW(JZJ`GqS`fukB{BjQ@L5nB%>g-c)J!j8iH@F
z4?S`A?9}DU(>E6C>+ApiHfhQ7<=Nlf+>F|mGgB*MMZv|_A*(_>K@(Y^no%!y*NYn)
zldFC{oqlz>zkKe!J&{*ehwtAey-@&U-qShTw{Jf;*E&4s&zqZ@zr9uM?CcC|=aVh@
z|Mz?R7pd0P)>pT-g2sT?gvZxjwY#^}TO8B@uX;K)+@$o?mDPKgUn_#^nCrh5T}(dS
z2b#>|OJ-$d6}MGGv`;)sUtQVxpb*r3ytXcOb?E9aO=IKWOY-k`f#w83T@hpB(7jcq
zpstm)dES+Iw$-3y(_YNN&c3?x^Rru<QctJePmXjrz{GH%^~$<fP)oW@!n*X;lx_L<
z;~p6<T)5E7*EiJ9ukWza_uSjtPNr?vG%@+obX?Z1Cc<pCZ|(1Ir4rk3=75H0rA)Jy
z%rs8VdU0W)Rox%Zur3!jclTU%d;9;B6gRAS7z}Az+PU7q+Q88^FbKFL|MteezrWuq
zuJoR+7X_J<eET7IbDA$`9AI_$`fIh{@2Y!d-P*E}=kSF~OTA^+{r!49KKuW_zgc&8
zZJoKl*AG;aJ6IAszqoM00tL|AMd|Bnx@G%j%#gUcD)hA6I+c~Budltjwsy9dPQ-%A
z>i(;$zrVAp`m!Rf`mO2DU%#}})Ru+3+qy*n+(%5Wz4>{OYd2`*>1emOwzYLMXpVk!
zTJNpx`R@zl%(r{n|IvCWXZP!cvhRGmSnuh2pax0k#w6F$H#Y(&tN8{^R`Xr=W|>YO
zXaz>Ag?0j{SIo)D>E+>}Q8@p}lazM1)hg`#a(f=^SiXGuu|C<=8<UU6eUeF)&E5d%
zo3S!99G&v5+bz)!)J=soPtHX(vlb(_8x|fc;srG@7}OSH>y&|eyP%Yi#Nm=E-_OAa
z?)R}WG_-!`xB&0>f>u4y)gYv%S=+IdZ@`OM6m67Bcx{weP})+Uo+YTK3Ucv<gq>{2
zVS%lw2J)&?h06;mj)<i%I@RX|Ojh%qW6L|GNjh)G!JEMjn%zA;CEr8>xIk^`rQXx6
zs--lT!NnJ-ftE1Q8Z=G-=6eJ-r+z!X^vTnwnr3EUjg5_;K7I_WsMv9BZFKq3&;5OU
z(`L_}UG@E4?ZLO1nVGLHENrf+trZmz0IffmYgzoPYke}f#f*Ew%s0z@zg}tUMr?4n
zckiC~oqfg6{Yu~73Qa#h@9LSE#-g&aYnLoh0hMrRciU1ofLn=$$E4OEs(~vT5)Z3*
z3JMBl-Q2X)tygO4+1cjt*GiL;l0+mWBa=RZ7Jh)n;ib)TCahn-US(z7-(R4SvukUk
zm#>T69d|G`QW{hdJiXH;s{Q2Q!-X$iWc;47eEIT4ixzDueH|uiS@dMm^N1Y<3qb?W
zCnu}N7yN#CdHL47yH>6)E;kNORpFH~@z}R-U)BG=-`D?j(`f;v_M=n2{aQWOx_njU
z<z=fvR!%xx5fL$?_V>{zPo89ad2vz7x@^s#zkl_2oZo)GZgo==)7H$(#}fBAwQ_Os
z@?JH+UsHUta+)fruW@SUnl(DCEG#0@{2Uw;5+$svzPxblpKnpPsHUdo%bnu$v0tRj
zX0JW+I_8yBDlaJCY!FCabMO@Y5<lBR>!X$UZnsDma9WuoxM9!Uy`}H&>`Z!`etzE8
ze0@(JpB_+e^7s4w|0i9a5b~&0udH`d2gqyOKi}8?U){{kZ`Jek>C@ORGbYJhOifMo
zob>9-%Ho5M_x*Up4Vp&<%|WH5EmJvZzys>^nVW~toH-NJ$khs8ms5WyqU7BExaCW-
zr-Xuhsq-XCdd-6e39Rhw);)7A3Y}Jmuh;uH<HCi2rOTFSsjDAPT=;ui?(LM#H$|kR
zst!H|O+3y%yKG<WZ?WC&%I<wD0vEf1#=$}JH`8>ZPaQt&9AEo&>aXwb^Y5G6+s9j%
zzq{hhZ(CxzJv&mTh@D}<oY(jF@8{y;nlfcdiu~!*r-Qw`x(*#a4C(Ecy_o@;g+6r1
z$unrWUhI~vt6FR0_TGB99Ml57y=`sS`na{f-|hCF^yK+-P#Vhm_~<BKeqQ{Jf`#Yi
zSUxV&mtG1khURQ!)7H`PVP@kAh>4lgCvU&*!GnaQOO|LD8wZ~}dGgy|w|=>`t=!^T
z%F51;j*g(UKd-K>jeb*OXlS@9boDgb7}1$Fm78vD&tDH3HTdx0AZW59?aYjYa<)|~
zqPOQgyR*g>)B$DywK>n*exD<zAGc=43<=Nzs<X39L36CN^0UvXnQ!-YZ=dA!NO$|4
zMWwH=fhK%FD;_}O<u6`j=*I86bESGC6R23xIU>nBO$A#yT_2nBKmF~kt(TYi&ep5!
z+tdfji_m^u&rM!2FL_8W^qR8MjBe0q3%<e_spvx<dgNwc=w662W{F%_6DayXWfyYi
z5nJaHG5QB;O~UFEv@#TA&<2+SpsL?2@6L+(b-z6MZ9X)-y0&)pp+in{Z7PF8SA|U6
zy?giO<s1wQ1vlsX>bPLQ1DZ<Ul{UMQ+;6+=;o){|Tie)4QzlPd%*HE~ac+*~xj9M<
z3`^IoIBN8oed+m?jNl2y)$8}I0=0ZUpSPc$DDf>fbX7>;{<^<k4zkNz6t*!iFod65
z+0XI(?Cj-^&1{*crfB|pIz7HCm!FgKqWb)rM=diM86L>2IatK&#~abkFCVtM?5)?G
zcduWAR+vqF)Wg6~pvN>VyWo|wQ+<6scmU@uXc{gcAVBjR2Lr={Tb8B?UteGMFMfXR
z>cM9Ax5=)Wzc-(^17!v_9*GBQUNSNSygC#2;G9$W^Mb4cp!o+TCMFRnsa1~6Y@jBS
zqN1a$RY}14dA6XnLx#!6EQ-58&OWn}akbY}ty|l2XM>7lW%s@lr%!uJo8?@{-~V?R
zr?6Va<z>E~K7K5GCc?;|5o!{#?%+#(sjuI@UE5Lk*d*_cMY=yL1H%E48u5jkpqW$k
zc@>9lUS?p}!2#-LzvR8Pul6^n=iAKAuVrn0`(f(hOY-%TK~t$)Ue|uVTMinY3knV{
zeRPBqG!Hq~y8PM<!{jTAT)S6WEuTGGx}KStfx&t?+Zxwyv6ml@%ZImeiC$R~X&kyb
zZ0!xZdfu4pNl#Brt@?7&J#?`fudA!;%EZHMpk*-D@AoVg)eg(JxheJ4<>lu^=a>Kg
z_qV8cF%JtvjP<?dr&4pIHpEptWW8H-TKCtJ$^M{Wqt{hyo7wq6iv_s&_^uu6l?Jt3
ze{Y*HLjp9NBq%6&Yj5>-P@CQL`MQ9GO(!?AGBBjh49=du*uDQ%r~14d?;d(hTIM@@
z*_}Hvs;a7%E!v)-aul@S;^~to8Mn4%PFk}6@7w&W8ygZge%|xp5cknrTGtX78O|J9
z&Jo)j%nTZw>XWmL(z*_w<7MNOn)2hSP5GU|c2L-wW?%Er+PP@&1&jK}Obllpt!bEw
zeYE=amdwe&zPwz#V1Ytqb+xvFf`e`Kw~(l)S%>R(?%Y}R_v`hmpxJ?y!R~c+b)aS|
zsJHm}`T6*-@27`ankJl`VF+5M=eKb`M;fRl-X~|fDr{|3Y{~u!69oS5|Ns4e$+I&v
zUt7sDFsxBCG78$9b~ebxr6ukBJY9Z%{;#jDzMfR?wtV?=(4rpD9H4amo`n;Y-CzCq
z`1sY0jf=sv1a+X<;R_3$RXxw!|KB4dEPQoEpt9}XFPFQzx^}Jm{*1>jwiz_@trfcJ
zMW6M%fNn8e5fKs4YN2+}iZ{DI9}Z{lI`{JOa#hc%+Tr_N)VbdN*_6r9u-PJc;_q*7
zZ*R@HX{4&A1`6s)OFB9@w&vUn0xj`+c6PS6jhU9#st5-uqm&L%mmzX<+REzh?<Os|
zwKY5Y{5)IG#AogP7cVkgU0pR*Rb4-R{FrrR#l@@l7Cp5vO#pQO&1U;LIy#;@dGccU
z{o3#xdE<X-+FX9Fj;mFsOCMoiC{Wc7TQi}(y?xQ*#cz}6&70TN)dd<JDt&T7kd=)s
z?%PjLC4QLK{KfYBb({M^3Ewp9ipIA5`}=CAPMWl+_V+iz4QD1zoEWHe{p07)!43`$
zW$*9RUi@43{@&UH2OL6Ig{(Z15FQaxarJY><6iR+(4yas=jK|!Ubp+*u2;oO4D0&+
z?f-^kUtd=$vHME>irGuIT>tj&&dy-p*=D-m(nG*aoTW^l5ob^m5?1%iIM~E`Yj^qj
zV|}vKC$rO2Q$2%L);w5iV)@r~@zSUFs^4D))j?afY~j``xxXcIvXPMyXep^@(AKQ0
zGLy<DW^=as+yC7%%Otbt>TzZUuk&}y@2}nce&6lHocsG~L7m>oX(fMCP>1x_@Gk*1
z7{570ZA@|n4Y^MLBemzxpBm8OqFyP}pxfJW*XMl_OYLmfns}IPZRBRRnKNfjTJr1b
z>(}$D-vuuBo9nat*oleCTPr>$fwY6i)mBT@{rwsaT8#7Q>({Ftg32nMz0&5_PEJ<e
zntommlngG(*E6q++k0z^B_qR!@N*H(Q)kcC_V+)Z^f)dq?%UhxlO{}904nT1JUkq=
zA))cpr%zMn&tKmqsy(gZjQzil{I&o8e*g93aewT)*1LYZ5tWsdprJz0*pFn}!d0QG
zy(WPs<v~*u`S<sMrg(iSC#Dw^YyfrT8kyN&J)51sZU4!?$K~s<{Q3F$>uLS{880s_
z{Z<}t`{%>quHN3Of4|>fztFk;)tQ;bpjr1>rrFEZ@BjB})^lcthR}*?loimLii(Qg
z{{O#`+z;w8f~G3J{`>ttzTkg&T%~LN{=eJQ{O7Hav#pAGdS>nEm5kYsj&y>$wQfBU
z3qh;@wq{+Or1JO6Wq&UppDWty_kb5x9u<!_d0O@N_xJG6&(4~bz6v=z-~Rr;*p~9U
zrPCihdL*;2dqdUNS5bSbwzl!hue)(00yLJYzyHssOP4Qqv+Be>Vq-8kz4hPBP1WD?
zYJb1o&X?@!xKf3Ykx{&cCt{1;D!;i_;U?`|qFO7;-{14{@VKzE_<7gXWKB&?Dch<o
z^Xh(Of);&W+<BU7Ioldg4x2b};<xR~#Xo-k9`5AS1ZtnTc8kpv+o1At+3dVakB)Zh
zXW!S0-IZ~DUF^|g>OM0be0bf=&Ogh@oPlATX~Nd5tE+BQ%lFIKt^!Rv;hP)ze!qTt
zq6BCv-uVD%JuRqP^Y8EP*ITd0?SAxmny6pxgPBvOg2sf_9(lX{ZrSWUS?jPaV<v_L
ze_mp3r@o!9U;}BTzW>nqYkvK|oi~1hQb+BFgX~;fTtz=h9vthH{(3^W|HV1$_j}%K
zTD+zxt2uOgUhL9k%U-QqK5y59Z@kiGEAsB{T56-sz%b{yWcQuJhYpz}9AG$l^yteU
zA0Kn^@r8MLbr~5OPn|O-=YIZ|7Z*X}mPSTKpaRqL)y>VzK`kQCIM%;^|4yAb6XNC7
zwQ18PnQQT~RwW*LtG|Q#hQGeP4$sL2RY0IMbHeX$?VKaEK}lKJH1QBi=-Q}I==^1l
z*=#-;iv^%1JwHD^1+_Dbmvb;U?A(BBlI8aIjW=_S+PxJQ6<xa2dpc;4@z>k!_e0i3
znS$2DNLdywIh;MQ?$1Z}-_=LvRX&@UbbY=-A`|0jo#bOZ7wiB3j#pJx&Ahj#^4tE5
z=jZ27Pn78D>A5n)FnNxpD+7bqTw^;6&_D*-^vlcs^+z?U+MgUPd3ELGthj5j*DOpE
zcJAJ-t*YvJxQ+KRXx7TPozL^vW7~+mRbPvKoKR<AaEMIo6z`3DA<WOfFva~`L^JE>
zsZ|GdT?#vuwmJ4gC?^90Ls;l5M$oeL=~I_<+i`ilVq=)14jLi9!W@>B^~!ZSXo8HB
zle6me+U-x?y<6AO(Q#>}1Or2Zr_M$;?@6G93tD02>FIgu{Q2t#8ktSY-b9$@-MMiy
zn3-Y06;Qi*Is2ML$6lR3n004IA!sq==H+Y*4l9)tcCsyJT>~11dpbS-+MdeKpdzWG
zgQHj4+>ck<tmN7h&^S!sD@JW??bC8=xVX4XGA=0e%34oLU}ZS)AJkU&vP}T3^Z+e)
z$;eo7tVeQj8?UsMwRQB(n>SVEF7GOR9W+Ogf#JYb&94om-`+%eUNXO5vzT4J=EI`j
zQf-Q}&xWmwTg%U&aX+H@sg##(!r!mfJq!#CF}^F=*PJ+U;?h1928L8N(4<B2H_%S7
znBL3xLEVRc?cfCnpv4SK)3P6c_Wd-R1dWtzK$?RG4GKkYWTVc}gNK7aMkE-4yF6$;
z5N^;Q5V%v?((qIYG!V-GRR|iT0Sz$0=D7~xSw#UGO`_BwP>;J+#55x9e~ecgw#`d6
z@4EH(1%!l5nPr--79SrEij0dFFIttox#8MxUHNIrpTB=WL-<p*!{ffa_m4aX>iOs#
ziR|Z4R#x6x^wf)2+RW$R!Gm6&o`LJ*_D-2KYgO6XTT?4ya&p#e+PoRGs>d|*k_)I^
zHOI1eOWIi}&|;&1|Ne>F=-JuDrJtWydh_^nkT;PB=dq2-Os{xzW~TAgh0g5l8$lh|
z;N^bc#ebQXmLwg2b91vhs2kG4DQr^rr=mFjm=Y-HLBoHK4~lAsoj82h`QpWk-wgfz
z{asyMGhbg@YgP2bqx1Mb(-_Z7vgLOczPh?P`~JRKaT_%?H8)U)&8p;u!eIlw$K^}j
zEIi1>uwc&ZoyE&R3)sA-YFYNQx3=Eg&JJ!iottC1c+MOd&@A1JZBI{6&%V7a_t(GQ
z?@K>CIG8<qM=NNkF+uTM#FKfL<ME5CXIK_5`}Fzq*AIvJt$XI%R);CO_g(q$@Nnq*
zxV_p|>5<L{Kz5%#i#!B>dTZfhH{V$%p8U37CRmleda@z+)s>Z?vF(_cJ6nBs@PN~^
z*rOhQ!79{>*>d0if7PHqo1&s3XbJY=Z9P3apyAj2eLt7g)YRw|KT8#7TrC1xP6-<7
z`}uPD{5iI)Q#Q?*A(8ISxKu%1{rJt`9ZS|mZ_m2DEtfBOde#CaCMLZf5(e7Z-jhO>
z`_1)^`~KnK;aB(e?p_tTdYNhVwG-E`Ur+q~<Ktsc1p*q|ojG$R-}C=JpU($vL|U*w
zVR~gQGb1R)@4UvgI(B#2(R<NTCr&K9cwMojtxe0+G}O}4l8^iD_T1ZQv(GNOaN$CC
z+~@1@^`YP2-3<*0Sa9V^$kkP$t8dt~^UK4x74_WCF#}Ctn$7mTdGqF{&!2bCxxK{(
zJOvT+|KDHG#yU_D{^P^LN&hM~S3|~cp!K5PJe!pd9)L<_Z}3hd(CSOjf_-0KU9kmS
zKJ#oM)&1raNZj6>-v8+FW6&J@?fm_FBVLD211*~X51@gTTsJT>i-?Oae|)_E_WdXG
zFgNjl2H8C?E$+8l1zH9IYK`C9TfMdXecbPVQ?){a=G)b(yll#EULUlyi|25_?QOYN
zcbDfI=Up`dkFE9?UsD8)+hE;)!}qzUxVVP#;JVn|DVuMa)c>miHI@>i|Ni>=mT|Sp
zx=qhstp}OnAgUb};^fpMBqZc@N8Qr$=E94UmdMxt`M7HR&6UCGqGDokUq6PqK}Pw$
zrk*zt*Oy`?X>b`-038+RIAsUgDF>UVe<-*x8+oh+G*J&Kd&wH52IX^D5sR%X1{LBs
z29v-=J;;UNk$ikh4G6f<(8MoQo)@u>OW<0<PBu_t6LUIHMAU%%f<1d|jvhOvWnd6s
zXJ^O7&wqVa>1(~pI~$XagQouOmR^tj^!fAT*|TSx<=u&R^zY}-pP*5SS?2kA`T6;v
z>D}-5s@M0)*=9X^Yat7AirC|xW12=rLE7Q#K*gzujLe!TQ$#>3xmK=RnRR_#Z0GT}
z_xH!I-}9+!mPzKK2@?cz@9x@qq?VhD3$z#vv<>s(#fzX#J!NIv_Wk+f4H~)vO{~dn
ze<ng?fxUM7y;bpbKV3sthh1ftuPM0L0NVJLduxkl^tK$(W+9*b{MwLBw?SLjPQRJo
z9l0^7)yBp~L{>Ie{_~eFAt51Cw&mSjrR?4}rDDzc_3KxKt*tuw+la?`bNczP{dIpq
z>#{|~#I(%KzkjMvJ|zJT^hZ4nTQOIEg@N|YfJO~w=kJSbX6K)_e*OBI+S;qDLbaDJ
zTNd~E=i0W0($+h7?wDj=Qu)0;I4J1JvuDek+xaXD!x$K1_M(oYFVk_bhpy|&yR#$k
z^Ru&{aWByNk$JY&S?A~3Ua#TRR!sPNR62i;qPe*_s9iaI>;JDmEOZ$b{3&un>)%}m
z4O9Qy51O)6Qc?mnlR$fxtm^;mS>`*t?CkXoLQL1<_xygh8?^R+TmJoZpb_+HD+Y#`
z@_YC0S(U$w+4ymD`uSViXBYB<cgGxF&ieZ5>g9a0RvNmxZ)dGfRITay;16ojE?v4b
z^XjTl&@9F@oybK$epICUb29|=#k`(8vGnz|%)h_B@+E`z_P#KL^p0jsovP}&Y>(Z-
z7c!s~r`yinzkh#9X<V4ofnSqVy{E0H`ub|u^Lf=*_Se@li7_lV^YYf#)w{~xzA~6L
zZ{E8PoCo)F@$!adWvwbIDv}Y~m4ADiui0$hg$oy6w^<L0iVT$vvltje%spKkLqxSg
zc05oQ0`-cd^L9K0Ion3*&*bv^wc(&T*~Z4^3#eCeppp63#^m<R%UKyT(!GlRPF4B(
z{(d|wE3226*QWlbPoIKDNFF|X$i>4m<;(Ht+uz^cUw`P(A?<z35sSfstEzU@*4*D$
z>*eho{QceC^*`o>xix>SFMD%i;rspn<JRy0w@YQEb2}dw56_iJs@^gGQZpDDKIx(i
z$>-Hiu1-r^Hfi$Yx4(PkY@@iv^+Md-+M1f0-aOXd`(;v&+3auc?rI-4*i!J&36$<9
znUuYW_+1yg%;(~-udlD}EKUb)18qwL4f3vv+`R13qeouv+q@YWU;o#M+~fjU!8y15
zUZ#BYi-rI1-@AL<E%a%<%>O%43wiE_Zgh3q^mJuU;>%6SGj8du5n=3YT_AAlSdO>h
zlCx>aEG#R#P8~a|ciMSrm*Y0=fLoek-UpK$3}eG17Ib**Uf`(kF04~Tqbqhb>o0@-
z_B_JRud@sKS(m5XTc6@&^L@_F=ORb>?-xJw+vVluHD&tr<La!847N%E@!w)%V%DV3
zuMLyycNf=-xv(N|F=*9eudMa8_q9q&xAN<3zuzg|R~<3!DR=6$)Ss;26-MXh*`7Lk
z_Uioqf6`rDTrxmC{(Uu-?fsn`X)HRPxw*NZr3Y$0Gah_DdGN>)m#0skzLfv}!+rPP
z90mp_&-HP8K^rP`qqnWOY$t7&^I>&H?8R%>%C3Gd+<o`f*6i!1XANfvY*5+z``zwU
zt5*kSX08NHO7G8}mb!Au640Dl;<A1F;=X?UT9>P<t9!TZzC-AS1TjYMNyi^w%-wz$
z+)jD@^;fL6zW()Xxwp5Jy}iXJe~68N!*}Dxjc@I4Ub}JQ#@l{jg@o3&4g3+}`f*pb
z<=zJEG<bP=`S#uKO02%#%3crJP~zq5%X@%_k-=dD=kMbtAt50zX6Nq%t<1C9GjGb2
zB{yzFOr0|2%ZD=z3=cH~KzlY1*(HDy24DN)%f?~TQbFVNx3*?a-}md4_CHrv1_pbr
zH`_V1wY2KCod5Op_13z-Ri0Vj3%0IVqm!DNT6+2p1H;31<A{ZdZ?r+jSuAU<W#wjI
z*uC(P$e$IUCD{^gAinfNp0Et?^o26ZnhOWS6d4#A5<@`q^nzLu3mdsWRTp-?q?X^o
zeq{M`39aC&&CKZl7jKRr69WU(iiJ(0Qpi@K@n>Um(t;+?Dsl-?9R`M+7A_*4h}B72
zAm6tI9%N!T;I@JYCxY5EY3o8Z`s`hI?CI(0Q)ka!-N?*->R|zBP21F|Q^QTSEnMhm
zX=(ZD{{H=o7B2=Z-e0wA*RELm_19N#&A$HXob~%F=j*;1^GX;vXliP%TD9tzr~Ui{
z(3%m3Q>RV^)z$4YGB*AS+N5k`6r`!Cd24@t{q)Cs;?@TR1%*UKtvW7O?V}yGCZM)<
z@1)6-zrI{P|JT>p9R&;jeQ39Taee>4tzm1UmbP+>zdF(>EM;G}hfmh(%G}eh3+I6S
z$W+Mo`oY0wP_Fs(=@Y1l=NXiiwoFJ!XiLULrMGu?Z@;`TH8pkBs#QUil{=UD&)4(x
z^7Wm1`st-fs@_jNR;YNcUAq>v8~D<tOCb>vFQn~@pZS2wB2`t@U9Z>eURS*In<FbX
zLxaKg)YD?FZf>BNlIz!Ym*<0aQ-+3y{(97{ZzUTY7q^a)neE4+sVYa09MRC#^%WHr
z&C1K0rebPtzIx?K&%eLFf0ve*mR{Y_!C@)GcX&0I4ycYcOZxTa>eY}VSy@?6igt>~
z%D%lmZ^n!lyYJ0>^(w1Z&URO9byCtI(86rceC{L>QPHKl-|vfVZEd}^C37-px0|wi
zU&gmLH+Ox#7X9~7tOh7?3p{)E>eZ7HtJ_<x=lWIdjhky%`)k%QuTRp^K|xB>PcQB1
z;Q`II=WUNRH8lkdEVJ>;)%@k&C<u0uPzP67aPZ`+@9*xev(?f%RsJ{XSk>OR{TnY{
zya*Z*lB@j^2x=99T1-(<QC}W3^S@fXe&4QJ@__*lCRj5tm<e?_zpMTA<>FHB>9@AV
z@2R*5G9qf)Q|a5cZmsg1td@DGg%h+}q4uwu-<%boqbZJdiAL=zc^SG^T>`XfhC@+Q
zR1~!1^Y5*H-}nD7wLJE+q-+OoM0mKm=dQosZts?<UK$^s{Qb?%#r<}_JXVLT{q$N~
zUVgoxvRlUeeYLUY3~zvp*)a3<$^_8H5YWEVKes?_o|VDN%dC#QEqlH9`@P`g<i+<L
zzcaJ*o!F$a^X@yn<7HnY+Ckih1t*>sc}_Yv&sO{NrYpB@-CCDlT)a6dDyps|_h5^0
z1Or3M&Y8yPtClWxWo2dEx9#+F{nZ;b1bBLSf(Fx7UY?n0Y*qJXN4y7UHvQZ@+tq8M
zxBt3zZod6`-RNzgsis{Yk4dX~>P`2KTOYo3>C(FIb~QgX^vT=bd#EnhED0_KR0PsD
z2nh>=)`>5lSLKy{eqLxz%^ogp?yon~=Vu;n<K0*1Z})RaS65d^boA;SJ1ji!v#<H{
zr^fcv31!d#xTvu3V$<wvE7q>{t^e~_zBbvtUvBNm$?DmUkM(9{WL&8Ies}rh<^Hdq
zPLB_}zpvJ`{9VlAY(5iE5(p?P+&HiHTV$n;T<nelN6^enpR6^g#*UXiy-7sy;r^eZ
zf`SXT->dTWxB1utn#f<aObs-qzG8*P;dcJ-uXoq}E(2|>Sh{p6s1UFE`f6$QyPfXm
z?f=*8-gofar>ed89Q>88$lBFJBp>VH{9<yU`P^J<@fVsbN3N}nHcdX(<KVBXaH#O^
z*RNl@dV6`lm{f%%Coj&*%KGxKU0&+`rCp!?cg?jfe-*y}*VK#O?W(@42nq_?m3r@m
zMEV8>iOspUw>kJT+OF8Q&+bAnLr%A@69YpIC`1$FKs{_}#e`P2Z5)gY3_OdQt}?Hy
z;h%i`@x=~7WhR^1^Gxgi{VDT*%gespZ!Xst5vD~eS8C>5|95!(KMwJSKkk3un0$Q7
z#EBQ5mVch<a8&b$;D#!P+}yP)n##(`8-zIp>>MTIe*ERrfB5TnY;^SN??0Fx{8vu+
z+VK1R{&=~5_hxqfcb~Y885zD^yK-g8ty@ud>;M0~TgDHrPQv&*Iy*1Eulv5+0kjc_
zVXAfvFDOFHoLIF@K4>~IFfbejRV@k1Asd{SLCJ*SFh_)g#O)o0i<Oj=o)lPwgoj^$
zS5;KB$*osPv|%RW!`EJ{r@wI9b~ms(OxKIO6#xI%^|H5r7V@yLJ=FRkxPjrs+p^d1
z>;LaQH^)-=#YzST4}}EA#B-Z;Z2x|_oRyjRazocw=e29s{<=K>-;y6cDnNrqCnhL@
zj=Io`-}mNv{)Yz#XPM>B0<D1p6-=OPzajB(NKDL~cec_}QYQKLY>pm1s;Q;r1zIcd
z>FMdGU#oi833G_$2)2RhPtf4R=CrfFE^1u^4UDCn6aw|}PMtp=UR1PcnqKUxcKNy+
z>*uFNT2+2p0-B7zU;F)Kt9V=hXoeru2EMT|d0(BcuP><S4cbX_cAjlCXer>1!pC2(
z1p9*)$KKr*$M7Q0W*K9HO6JE$N42!HE^SIZZS{xgKIps;EiJ7eKfk_f>teM%fBk)5
zzy8LJh^J4VW`2Kn7gXJ>|KBOB{$+jrU+?`t&*rOmu3WkD*HQhtg}l;c89zTgowQ`n
z9-F`4_x}&|_3drrlhyJ(b?)4>%P+5-nyL-jN6af@v0?Xgz8hTqnH;<!8yGx(?dt-K
z_cS#z&9$xGcK7RC>+(~ZbU@=0>uW&^d8_t<n)LC%_3M9n$M2Z5@BgV4*6(&W|NnWu
zz9u(%Th7J&`rpx@#h|}Foz|~i-zlsPDu$}Ry)oS5#qdIsMTf!eyv^sHS+i$b+jM{Z
z`Fy^%l9JQMk00y6QzD@GgW7L5)9c<A78bs}_jp=#-o;jK@tXfNpPqQ`{rl~9S8wmv
zYS0M}(^6mF*;(8c#>N6po7*@TfAB~exkyS%f(F>~^77hi*L~xEC7rip;o)!ca&h_D
z*_WT3oIG{*?As3)mQ6oh8v31yVYgxe<A={@jL)BV{1G(UU-!0|jW;MddNycm$@<-n
z!`JKH-Lb6w`}Mk%NyY{Leb+Z69=>wp#tKehwV3aF8UqeWLRx9|&h31mZf<S=zHQ(C
zvv!ezs;X<;`tYAWf7bo|{OMCl<g{fzGe1p!KXux)Wvf<cfll;zyUx_aWX0C4Uzh7M
za4_cZv)OA!ILvsRk(~!h0eX7ZK0ZD^b;1M%Pbt%^DVsKJ3JC~Uz%8zq@#n`!&=R!J
zkdP&k#%Vuln?7XOemo+4YhUed(3wX!H>YQxnPK?r+wFYNgfZwusI6PKzPi5te(8Ea
zhAJsWZjNHvzi-QKY)Ay1qH?TP`tQ2+(cAq%Gc<{b3-47t<^?sBy2bUc6`!}g{?69=
zcl2le+rPiOTx?tY?S+2*&+b#FPKCt8teOA+&-0?4F;)M5J}<rOYc3h3DqwR%iHCRE
z^y8|`3<3q9QN9_5$y=(w=k2_kxA=W*aPZ=fkB`3w?G=7;adGcHb1O)b7u5c=c*4iP
zkbr1kqPI7Z`E6anAHb_9l|fk)R!XumH1q}><N_sOaH&ZwA2dRe)8-)Z=LTpw=B}Eb
zn~I8yL0cUyW%yK8Rab7>^l8;GGZPaHb#-^pq-IIUmUnx<$AyN6m)`)b3Xw9;oAc}2
zTkYkSSMDr+{_1xAe$$;I(V$jNf^zsa4&VKCK4D?gK7IZS%2d<isyru7oap80dGX)h
z-@9d=f2{&d*<ZR8Wc%$#GH64`tJklm&Y82u-~R8F_4&TOy=uO*mUN5jXI)(tdg|P{
zFh|G6OP4OKd!3%<4r<a1JmZtIS#fr@xwgK(|L5oDr>mr<rD-WDI(CccUb?rp+FCX`
zEDV(5rcR%p{p-uiNlUI=3E3H=2Rb}JuK)P;?=P3n2aV2vA_=r>eiCRv19ZaArcIz#
zy|0die$xRp*l&0!XhndAf>KhJY}&lJHW#!>2DDu&G<2!{z8{M&Z+!ansgyxNgMN%>
zkdIFfsI3|pxbWGtG{`*AsZ(C5X=%R>O;rKS&e#6_cJ=l8{dH^YjiQwj7#Ref5!t#d
z`SK!g>y|AUXJ#1I{mt9+(QW75cYfz{Shc}*5U5=k8#{N7U;6H{<(D<rUtfKBxqtlS
z2+w^ROG`^P>8!rIFZQmo1ZeD+quAHi_to9q<-5PFSfO$MYqsR;uT{0l>;K$}yua?9
zU=JucHuTnfI;nnae)HFp>hnt~_xjJb+g0*1X!o~nas6NG;!j7M-c*Co0UD*f;o#%b
zBg5BjWMs7K>EG(Fua?f3F@tY?={DDJSi{h|Hh%f#m#?p1y`g=(ckb7>ujCGbS6lKP
zIeHYdM&7FaU(NPC^*%m5j~+d;+ViYz_t$&X?^kZzc=7#$-;K=dDUs9e<drXf|GI3q
zbxqIVMrQUW1r|?=cB*)Ca&m&^HWxa#gO<q0?|=3z?dp{)8n(87qo${MPrLs5D_fNi
z1A{^VD8(#Uq5^9D^xOa2vE=>yH}fV;Sa9P;#M|53{U?<?J0odoVxnPZ7iWH_pjqYR
z*X!}%O>Ubu8G)AeOez7LrWK=S`{4kymZs*%yXvZ{uI_y@7e78eUfZ7)u|02YQBl#C
zZ@2TaKRr2VyYo$+>j5SP1}}gA>!6i9m7kw!+S$dmwzgW8yqIvW_IoU7^VKAi>Tfxs
zqM|FeZMzoEo1L9~8B{xdJT9O8@K7u0kgi##*(I;8Xo4obrR-{UyqCLr^(ts}EodbI
zXrrlBsh9qq4^5LMPu^Pm{9MDD-Mc@4S|bY{JxV$|+uUESA2jO}nw`D6?9Gjb+~JqL
z_fP2P_|VTMC@2V;ZUqexfR4nuxX2aMjr{lXeEqLhZO>hw&sm2?MryVnUU*!-K4$&C
zU#m84-W(bhc1=0^jVGvE4r-r)d&Zzv+W`YmI&4S;6)B*04+8^38z{9g@PLXd1_{vk
nJc9vv(_ezb$kOoUKSN=-*YSv=FBcgY7#KWV{an^LB{Ts5q%^`+

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-2.png
new file mode 100644
index 0000000000000000000000000000000000000000..4c6259ff70eef00631aafdaf30be4c1ad041d540
GIT binary patch
literal 22041
zcmeAS@N?(olHy`uVBq!ia0y~yV2S`?4mJh`hJ9%>?l3SguoOFahH!9jaMW<5bTBY5
za29w(7BevLCxS5J3j5`m3=9eko-U3d6?5L)t&Rx|{rCUlcg88RAKbN4>hPMitR>Rp
zk?!Y7Wrp5b+NR2?`}^~S?g^|<z2?yxbv7i4Qz>=UN@L+!p1sdZ)kSl2m`=L{Z!k1v
z4P^QLzQ1lxe!2kb-6Fo@*FS%J@KNG=T=n{`XP5QA-+InU?63h3BLl+$lf1rp3=9kn
zs}~+%Vqh?kWEEpzXgH~{fq{X+$E}f-fg!<&ONW7hVRB#sBLl;X9wu%Eh65=g5ey6r
zYKup;48jm|IC}JGSAT!FgF{12O^t}4;KDO!&YZrtJ>#O%&Ye4_{w^#pzplUkPtx`6
z>F4K(zqL*{(2)H#itq8m7n}?X49BJIYIcOJiCDN}hec~ki-xIbC^H++g<oG^UtQ`w
z-TPkl#)vPMy!ACLEN-mZ8@IRW=`U6`wybY&ZW{3%zIJa*X7J^Eha)3;?Dr`$Fzk4j
zbAMl~prD|amse0s%p8@McXk$M-QTx2Z^uKn+*?~#9;z1CjassNeqGf6KhNz;Z|820
zEt<3Y-7fF_|9-9h_U2~tt3PuEy;~R<VxCXakJsbp=kJxVymal^%a<!(yvWGCyDPMv
zUw++{VlFPOl81*{Pk+<a)eTKdd?<Q;yV`;SObidKrca%^^xE3!)qZoW%HBSF_;B0n
z=}8i8Ro~ud*4Nkn{P82>!GXqK58LJSZkemAyYJh#@6+ecldoo7{qpj1Xi!knxo!)=
zZwZVH1#?fIK0WzrmhSbutx>5GZGAG9K@a!Z+1W`MCbhiV^;+-e@88+S`(!~LO-Wf&
z_U_Kgh6aY{`x7Pze0_D*Th^*1ATe>_H2wH>k(<*p@9(RP+LUtAw9?!?kzb5~;rh-A
z69n$od_Mc@%Vqz!x9WerRNtC))$8-KvzKQWCTsoOb9T1*>gw<Bx;i^A-p=1&dvc$l
zp<&hgz2CQ#z7C5{ddB6kfq|hwh@D^V%Esj5>rQT#HqBbHV8Md!xX<6dUE5jw{M6R@
zw$<0l_G&39D_`AN{M<|Svq9b+3*Cqf4l`%Y1ZCy}G3@+uA)lX}U4Qd)_VsmZYkz->
z-Ev}6)LQXawlk+sPcBJ4uED~_rlqdFJm{~=%O4*fhsqtEx$&ed1A}_O+DWU8jvhTK
z+9xO`wrtKE8Br0D8(Z^lZ}S!Fc1=u743*3O|L<?sogE)jfB*gQxPMZ}%6+Dspn}Hl
zSklHBzltrJ+4;jfJv%2&o}8O|^ypD9U*Av{mzLbcRdsdyHf`P<8WolGx_slJ+^?^$
z-rAVl{_Feu{A}ymUt7AmyH9_eYnnYxN38qT*Vo}o?<=Pt7g7X;=!XvluCA_{ii(cz
z{c>C9KAAUr_Ub89M56b5PFB;@)%9iPli8qaTK4jitE_d|mABjPuiI7nItvtqo}Pi9
zpPijLVM4<0^5^H~N*SeewDCwTnlM2?R8%zcXqV`%U8Sp&l9JYGs1~Pz!p>sisbzkl
zr8}LO#q{IWWL{pTX=@v+?l&hOBV&b;k&%d`WTv^fx%uy->yOJ-`$$SkMs3fVdv1=U
z^6IOrX3UWAoo{zH@8<f-&(B`n+q*k#ZPd~~e`<E_+_^IM_O@B}_50>kK9ektzs6bM
z!_2_om+<`D+*emtUN+U-z;k#)qQtF@$;VUopJRKbaFB`NK&OS)!KR%zp74RnZ6O^7
zhB+s;dTj{U3rZlM^1L;x_~D_}?rod(4{Y7@^;-0;z17<nFK4_Gkv6~4Rq2_8NW==U
zrAwC<6&DBR<*mC{`#pB==X2J-{{4Pm`tMI=q>fmZj`+uu>hm?s%);{b{aki#p6zM-
z@CRIhF;{Ee9CX@RP+oq${C@57dA8NBo}8SlrKvgbYSz`u{`PBIT3CMm`0?UUEBDiL
z;f`lNeK^ej+Q0tS<ahgi=T%l#zWnp^^QzF*(-tphWw_e+f7ZiUTG3)Unwl4Xe0+R$
zWw83%n4LlP|9&jCDt)!YwOdTn%q%SZ+?<KCXG?dw^M-x9D*5r_$6bHF-JUvk?%Mx<
z@BhDgZ*R4%jq!rC#Lf$*0SOOh6%`j>KG@8@wd`%wT>JVsf7`E9-tGM!w>9IUllL^8
z!2kdLZcRHY6+Q82QR3OB@80Eof4%?j+x(~v35`O+!e9S>zi*up#_&KwNAS@sLmp>V
zR@Pm=-|fz=UR(9$g`%fb^|v)OwY8@C_iQBF7G7N)?mg*V#be%|KYpAr;Q4nf^zf8v
z({71I3aj~C*jfC1%9JTfE?o-poo(i8e!pfjb2`W7KOYYBb8&JOeldx;w$)?KkN=ln
zxi__DA4}SJ;{194j~_p3X=w%J<*l>(`z6?O)7$eOzkRzVoxf*c_4~cyudl7WeA(YV
z*LzdI<{i6tYpbifzrMbH`&Qq%R-wtq`>xJ1%{D21<}*o0e8PkY3$Cq=&i?)FZQneu
z2Uj#U6r7zhWs1inP!jw5^L+iZ_3PKCou9Y%yxnh~Ng=DlbayLh8yN-Nulv2W?)O`B
zcR%Uy7jJHEo@G(EsOsyhrDx9gME~BBd09kUeEE61-#tpFS--r#?k^}PC}mNg;CjvU
zketqShep=RQ*w*+w6re${QSK1%?-obTUV^m0HrId!bdI3d}c1%ntk2t*M6nbr%!vo
z-~WH#z8{acBiDwtpOFtge)_a`VPWB`ySuml`uci#>FaAZ*ZnP@ICbvaw+CiE@|yDZ
z_npP={Hm&|niduj-|yGkyNU%ca_P)il=I)$&#$kIPj=OX3jw9Cu6QnX>%BC~G+V{f
z-|pv<XXoawW@hKh`1ItYxbCLBJs;iN_pz;d&@b<1QU7nxlKcN3|31X6zrwv=ZrAg9
z)p}7WwI7d)OPS}*`S$j9_}k)RQ!76lWH+t+lp<?Y;vv@U3a#Q!Pt(=hw2o0o=lX+x
zhq(3kJb2-`AkCP^IWI5o)VXtE*Vn~{1_doDdwXkT<>zO=emw5qns?VqvTdPW?5-Er
zqVq#9FZ2C+(Oo|C`@6flJ|2_4y3BWW(R_#IV(s4ohb}I54_)pjyL0#M*MEL~E-Eh%
zPe@phx9g?a+xz?D_4ohT1S;A$rFwhr7f(3eFMr+s-$(wVM~<AhfB*i${H9Y8yUW%F
z1qD5M_;8_F?yVJZd#kdpt(kdiYxeT`f1l@9{eHXs>SA|(Ru&eEs#T^@adGn|O`iPp
z;X_4pbMxSC?ZXBkK|zaV%#aA<T-D7O(>iIA&|w3f#S0c3kgzCNASfl3RrB}j^=+^3
z*M6T{c-hxnvRBH~=w9V>+34Tx@^u*zI%136`{mpm9UZrxmktFLK}EUl{c@&J+j25(
z{{48oZQG+qNw@#s+mbo?;?Cmq!*}oA{qbt``Zw?Xp0EE`{8o+o@}H0Mt7Bs3ByNo8
z`S|#_^v<0-x4oWio^Ph4q|~G4JL|^Z-TkX>Z%l4iJo(|%C!?C$THn7PKYcP%k+d#*
zQ}87_&OAcNW$N0ftzN;){ic4YPnVZ$Tljw8Z@=yLs#YI5d|1`<=+UEDx3{ge`~Aka
zvZ^ZUU=yoV$%_dpnI|SFM(rwD`Rx3B{rLF!<9j%?-rm_+{OjrT_$~SO?Vdh=?meld
zrsm3GcmCRcKc9DXc24|Ke|qmE5lP9F>GNyD#PwnV?(eJ3buaV?TI|-l>c470s#y2Y
zZQF~^&9Ut2?F|hInsl$~wXUp9MSxhhYx%uO_0z3t$>2h3;U%8K7gh!@|MKhg`qx*(
z<FBrX+?;d$)924$Z|Cp7`R(Z(`}(-8+1JA|Ggn4!%UQYoUX}OmvbUF(`OePy?&9jY
z(s#Dm)qip;X7%*&*#3I4IP31Nt+%%2uAVSK!1l+3=39FzH&2>8`Rk9z{n<A+rIxvd
z1qM!3dD*ExFQA=IRzyHxLE_=Il^ZrpXimwNC@(L+t={zf++6R8tRX_|y^AjCh;{$@
z`}gZP>-QOdetg`<tdf3a#=;2`1WI3D^POM&Z6=?*-I|65hTGyc-a)Ugt$q6N;llZK
zzfK;^Z(J3zr()y0+HaAq?d`93KA$&v`t<4F-rio$Z}-EY{`c+sQ)bLqp&7jFgaOae
zrAtpHZG3UJ{QlJK+qbJ^K0P%RR7d>#G=2YzY0-I#Yu6~+{r^)8s+J!dXq=?N&(A;C
zy4-Kxym_;%%h#!BYHE5;`f{iEyrzc6iLjJjX>-43Hr`8{QcsIWO1|7szT%`s#uZnK
zl13p@zs$^)i4tue*Vq3&{o?BC>4EFxY?FU|dD)gIajcD3x~J;vE6Ifm7am&~y!_3(
z-@otw&ojxma3Eq&Md8--lHt#~_4gUPy1qW&=KG!EWBY1<zgY)L3~tl)VtKlcCY_mM
zd09h8$K+U#Wb%)nKP8*l`OWxbEE3kl?Y*_*|G(e8jLd8j>F4GYUWi_>$}In0PK1uw
z;iQcc{r3NMY%F+qsQX)YZ|~k0^VaA_Z<7Gk7~m}C>gsyc@~hPP9R6wj{rwN0KTm(v
z-`~$)y<wFkr`W0^20W5&3#0RPx`L|dV?C0K&F@t>$Hm2Yd3annGt=0#?oWlQi_43x
z*W)gqHNU^+&6}LFv(5eM>grzI+`N2oJmd7lKmYwX)<tdgGQU@`*sV_{^LNygO^+>p
zeR;W<jaN!TQPI&j?My&H!G=kbCS6(LDGbuC8?_~1ZPeB$@87T2-}mFtw2Xs4=USC|
zIXXJNy12M~)8@@v6A!cP{dz5WmSJ+6RoR;r3l=DNUfNUn8Ps|&@(govX%W+nTB7DV
z>%{5PrzfrtN}iaoldU^(gCdh?^p=c?c0V34->v`uch~E6yRYo4t=|2*`rDhpn3y@+
z^6#&cG)@C0MK4d!z@(%_MMXtVo<3ETmzM`MJ1+a%hh}7~Xuii18W<9?q)*m*RqXDv
zsEtXjcTFGj-xuDQdRmNE%EV*dym_G3-K(psm&e!rbkz=9GhzPx`BmTF<ytRdG;L0l
zcy)F4bSbl(6{_CTGA=Lkon>3St?bQ>h0=LD9EH_<0?yB~6_t_E@su)7>-qQRxqbGb
z7EUSKsx50}L$?<{_XAZ#`}XZyCLbFd6}9TnA*Z)DHac&=TQ+;;`C~^5`NXugl)sO=
zTYTR3*8cka`~LmP1_kQv?fKUiI=72RNNDi$^Ru$CX(=f=?Jj>GR#mm@&fU9T_y7OB
zU&<_J#+tCzpw^LNGuum0!zyZf-rE=9PO5V)i{0Mu`@Ih2YIphCD|z;J<^QY6NJwbN
z%ggJ=?h2{>^(An3+1rr)b+x50FS*XODh>Mk>#OWnt{qI`dNC7b&z=pcCRPS7*D^2&
z0A-*H3!Sg-sVw%~FE6n>`?}uW4~O|d!Sd_-dwtKUr&Gg2mix(;zQ1?(TRLlKa2emU
z<;$O&TC%U+v13N@hE;<9#TGa*GBVCGNNoD^=Z}bp$dZ-8%U^wXczBjs?yN(H4qaL9
zFRvT3BS210uIm5a@1@V@mS?@Yv$N`9t2iiKJ)c+YXPkEC!ikB>q7o7>UR-w+y|Oks
zoRN|7)X9?<Te-zSRUEgt-i@!C(R%N0ZC$PM@^=3Ity>qTX=(RFZOK?@{eDj{sF*4F
z^u*Ki(&B!*Rqb+B9(j3rR%LHyfYS1=((Jwee!Z^x_w)JJQ`+laY&<SExt-nGpP`e9
zdwRh7I9pW}l^6B@p4V@w{+?G^UHy7}{omE!-rZgO;zdTJj+pJ|Gsd8rB<;+Mg>Jo4
zD-#d5Reir(4(d--^Zh@#HuBWJ%C9dkyIWdXf^q@4v2ovZ+R>zqZ_jJ(?%ykC8vpoM
zuW8kn3{Z7-dt2^gmD-<Ar+0OAU9$atXYu!Y)&B8yKbJN&HJKDXa&dKW$#`>P<F2RE
zqGfD~uOF0*FqN;~P!PG?Z|<dT{e3HT7C+B=b7N!G->=tmuY(H9)YMc>RaIA3R#vN;
z9~)FwdQMimwYz-1lv&P;6`7B<K=n}U?y{>dFE5`uWeT`!J}KvPYwG{ybEi#PW|(~J
z#ryjIyLXkoes)6hu*>svb1yG&Y)+AATeNtwY1S2uyM@O=ec(;EyMI1xmw(k~{qBOV
z`Q0Z6ZtiN^WE)XeSGP>PQB_sds`i&j^@de~k$QTk@86F%PCGN<Xwt<wmc=O&ZE-ap
zU9YYTcCY>YE%g4rT9B!-76lIS^?x>Q+O!E&7Y4^%EpT*njM|ja`EKWPIZ!)yx&QpI
zoSZdxpWVK@yZm)Czg@uUu(cK@*N#?HRjtauzYjDXl9smY*Z249BR8kr>{|W#`T5mh
zYon_Ed^|2|6MVpOV#2~pesissPLHcPSvKPVxBec5`1ttU{!=~o=TG?d@nhiwpTuRQ
zudiupX?cOdwwd2<g}Yp(%i5@|m!`+ptu)QPmT`Wb?XOp>*Pp6ABw~79{{P%}mzVdK
zy}h-xSK544?(J=S^JZpidvEyj_wRborqWkeG=<h=xiqzUeg6La`j*VgDu3^5p3~p=
zW6|0fTEAI@j!w;fd3kyNw%psxIEB?R4!7|}ZOxjx<o@>;cgt?)-rABm`PSC#=MN$e
z`J~Rb+8m)HWmB;MH0-c`|G!yG+$)&4bV5$ni$}hD_YRb=YHDkLW^Ci${qx!Eub_ze
z^78Vnt=ZGPyuGjPtF1Q8xe-wM`daCiF9p0)R3pCMEuWuucGl8<`+pIjIw<S<y0;Hz
z?zH2RD&-Z4Sg~o7(&@W*W7qHdwJPiSy0tTn)2*tab{zZj=g*Vp&zCRroo!X6wZaXQ
z#Z9xPx%EgaoT?rE>Y}@R>6a-DQjJX9;YaS@kLTp%Tot=}TN{t$qZcn3cC=M}f4BB_
z-tOM~q!nr^5$iz8*5uvY1<LgiQY<ks4h{`w`S*1E{r%njSyvcpY$yoTSl95H`Do}@
zrNUJ|LF1JLN;-nO*dDQi1}i5fFfu%F@z@Z<%n2XQEKo}2oOaWGdT>n4njb$ZSXo$3
z96#<ZC@6U9%$YrJYP-dBC(WK6y;Huty!`K{)A~<;<=@=o8oRq}>iYHT*MzN3N=^=q
zh^TPgAAYV!)ro;&!NbGt*+;uXySlrBJv=&sf`d&H4lt~Z-yavdt7PYsy<*+2`g^}j
zYHDtNd+YVp)#=|~uUVt>_1)d*x3{)lzO%FV>*w?KuR+x>zx|&DJv}^|<4-Qs*s$v0
z#^mE$%HBq?va_GQef##s%Zv;$3l}X?0_B0fzrF@9cI#btQljrh^VZtmWuW5Q)6=u7
zyL++<udG$b+uPf(AL$g{nt6HI>Au4Aw%=pEbuUr(pSOmMR|=GbK7IW<RmC*_Ud&>*
z-k`L!WmVtb#hx@TsuPL0n(+44)~Zh@)n#pY85%q<UB3MFh_Js!mDIAxeKk96Y-~)5
zo_IvhUcP)eD5s~M5|Op5iC|=8oL=ka=-60OQ=?bq_6SsH%$&Kh@bR&mUD}?YI_c4)
zM_Y1k8gc1__(rDu`f!+kb>ZV<eRF+Gqc^AZ{`&s@{fo?y-DhW;TUT-M6+Sr7Sme!e
zy}Rt~Ez2sdt9g%)^}f2ccJ|`sfouEZ?bnsQz83r0{`u9vEBCKiqq8;dZdB>3D;u-<
z`T4iU?hk29l>iOvt!!#yy1Fhl8WdDPL6e-EoN{XS{rwg_b;^_#!OQ*1zF%7v>YbRF
z2ul5(`A;fDBCamTiQG{5_}KNk;!mq8D`U&w>zsU-pMG7KpTGb0x4W}VG9SIr46*k2
zKmYpEUe%p<%KG>0v58!Jt>|so>d>~t7odvh-s{JY7Yi!8y;!&V-K72d_k)@QOO~j(
zy18XNKR0*VAsu~vf3fbRhYGbe^F&S#04GkFjqIyetaz~~zWvG5r>VQ+Cazea;p*yo
zv+nN!X8slV_xFKDgW~Fbrtbaw?RMGu6&Z89djo|*qwo)0WC9aF70;cW#ZPaYpJ$uB
zJ5F@s#EGx&?A(0UkU#bOiVT@>Z&ppvprB&<xj7eS8mGUxr5CfK;AHihu-C5B89#se
zr1G+BTNPwP?|2^1VS}9Wf8H0y<XUsG_dc5S>cYb2#mgJAu53tjcK2tzx}x;;wZ3^x
z-n(uwyVlm$UfofcynFtyudm~a&TQCV@bt-(6$=&|SXX;{TkfU^9WHL})t{>0+~0ry
zU32W)+uNtNx3};6`Am9u-ShMF!^6U^iS|A`qp_jDx3#U!s)}oc+x1s53Kr^II@b*=
zJ|s+?GDXAE^5(U$n3y$Ju7tR{xZE&X_5AsBZENf3rAwD?t2^E&tNne?)z#sk@z%2W
zO5eYK4}X7e@6>to^2&><qoQVUadUq?q1+$S9bPOkjf0V)K&kIWv#6Zhx)m!lKvnmP
zi;K5SzEfOWJay8fq}S$|msFN6UHbAsBQqBl*CZ8C6A1T+p!vDe`uo?MIN?$H{$4C-
zNMWIKyGi;vnXj*}``7;ZV)%8gY%gerB;(_wqo8v4(&fvgkB)G*wzX*~D?3k|IB}bu
zSohL9ii`Sfzs)c*GTM@N*9z1?3tJs(XlOXguC{9DW_jzfH!IGZ@i}_@c=nqc8$W&i
zeEGygWl&Qj<g|5|I%qa#j!&t)iIyj*^OuygNJv;%`_1G@lai)qcwRa))7Z55*%`0?
z%S*k*bMNf<*!4Uzcmq3l)<z|Qfx$x1{msE9Xn`pbv91wRmN865FEBv^h6PHXl9&ad
zRZ?jAtbQcE;J1XGY@ks_Wc{pS3=DoPOs7pZxNyKnAvrjwWrGGN84M&r1+rh;k(JMs
z4}vG0!2A~5h;@y~CJTWFju;w*7al0$)e&R@O+A6+)t#E2N`V~5;N#ZB%Fr-bv2fK-
zB))JWKdMbFET>H;K&GzX`XRLiZqI||jZ!tIMcPjd#8O+V`E<v<Pe#+++}!rV0p_Rc
zzP`B`oR^pPw2qBOBH(G^99htmg~Q=?{_9<$+MvO)2@?dCE?bs$pn)-Jf8E|)B`<?k
zrq_HvYaX>FW8$8@d-bdCCT-L(FbLS3etue_#I|qCd}q)4#CNU*l$6vTb=XFL`T&=f
zdV`u|J9b!jUII12_tjSW&anubZI-+0ip9o_8>Q@OeyC1f4;sckF+p+a{2Jb)kfHFW
zr>CDjeArppy>H9b%Bm_YE32sJ?Ri%p9&XqF-Lqwj$=kcT!}a(7`IP#5+O%n_Hf;E?
z>e-t&;4n~1d%u5`kJ2>ENtB>~fCZkD)iO^_(agHE<fQ8FXHTA-xPCpnuC8uV)Y@5g
zwY$8$ytF=A2X6)?g9hQkBSMLBar4%MW$!FoeO2qQLCKR76TR>Kf7Gpi>iBW@^Y;J$
zsQzwkX;~4zJ`Pm+aB*{Qt@&AWc9yC4?{9A}Pg3>P`>$l$;Vl-?Ev9>^Ls0q2)2B;8
zZNfY9vp|E*KR!ObwK=`NIgNv%;j@O8)}-aj(|4BX>+9eC+V$kglNV>r?_asJ)H`%_
z*jn$t%?SsYcE{U)JR%I5QK^2vclnMT7NB{Qn5xbXcXk%fvaK%LS;iN`%wVDIt|M4g
zUHuxVsGWG@Mnvh`TcP}RKOTtgeZQmdaf-w-QCZH1XJU*FY6**pEo0>t1NDzV9p}Z%
znHdh4mcO}S`1jZA^<}x!Z$D1i8l}IBXU6pD>MI{5i|qUJ$$M?=?lA4}bs>3q>r_q}
z@PO*76)QY;?%bJmVL{`cKYz4jtPKnTCYAj8@zML-#$|;!SxzTy1PxwlX=?7w==$ou
zbm`KnmrJLM2ni|a>+6HYw1b!V1Qr%<jNSj>K>{d|f<}9+%HQea=jVf_mb%6D_f1>R
z#IWOBjBgOAIKNx-`D~f}!Gi~<%joOq_*hz6YH4U}$iBZVceajL_n||F^s4SJbZ$@C
z7-5oeK>=g~sIPx|nr`Wn6M~@8(X5-BmIeg{=~;g3xBsW%nRRDJ;nVu&EQaa28&p=h
zc8h^p17bQ63;z81!}Z(M-97tQk0fZo9yDeS%0KnLF3&$T_j2OK2++8itE=nE{QLW6
z8K?J2nPe;gRjv2`|NFkRPL_dTUFX4O_SH+4xSTwB5<GCYblEacmza@}anh1Me`-?G
z(^qfV5;Cde``z;Fr>CZZ+Rb<U7rXVA9G5N6xVkEI*Z+UNRXvyc&({-=@wl`ma&yYY
zh%4*k_h(gHe)ag0cgrM`)Kel$moC*bGz=_$eonW%_WQfLUf$l9R|GEp@^1HguSuZM
zE7QC?5uTo&w>Bg;SABVr_<H{2$%}iX&2RZ_?d|FcN=R4`6cqI3)#~+O=e-#jVx}qE
zxk_NEgWd|QfK5oH=uF-WTMNJ^6A%zEVU}t3vb3|ardG%0<g5YBnMN0?dRmviyD~x1
z*(BwJ04Tq#SmB`^w&udMwb7!&!oi7NVZl2~npFSJO9HhAPo6w!RrMuf=j+ws>p?xt
zxiQhpaxTZZxwXYs?=E}$W}nf5z{PG^mzVW^dw;(^H;#d!A!|d$$0XbTe?EKp`-kV`
ztnu>po;q>j!V@PvqUF1fDw%ITJ)KWnTWGd<{<?Q}cV}N+6)I(4w+GbOee@{l?0oz9
z{QZBoy?p;TLvMb9=cOwvgSS?EOgcNyc6Ury>4yi7J9qBXR8cvy?r)oPUcla}uQ{{7
zonm2SomyS@_t#fYRry(+k736<3#EgTmfYH!t!-!+*xA`B`pwhRbLX3RTAt#(vQ5p+
zpi%PJZ*k#;u_6(=QClud_P1O4<VniW<HzH-_^19i*u8sq{FcA{@llZzO|!4vI47cc
zd7(3VYg=1bRt|&1*OMnt2KxE+#oj*JXJjyYF_+Ga*Sj<}EV&=N=F68aMN=z3KRa9c
z@DS_U+uQwfZ*AGQ_5Y{S`c{>nmdrBG&$}f9YPL?gFTuyK4%93HjjG1p*5ChU(Ngc}
zRvB(9JY(wk!)8v?jed1feg2g{KR>^<3$#c$z#!SSu=4Y>n_vCCye1t@y14iIz398a
ztPC;7WeP87oO!;9^V-pAZ$PslN4v#Ajh(l*w@+7TZEMT=@!_GDpWn4kVRi5*^WU%6
zL21#M-!|ntrxOE1!>NLsOs|u!R;><OYf|zeKsRd3iFdz#zu&(;Y;BaLsVS()yVPrb
z4>YEl@$1XWr}H8&-e>x8n~~vw&L8uo&x%hnW&il_5LA1(t_KagaEt40$u2G~zI<h6
zuxaV5E8ce77cG|f_p!e|=B5iHLxXqGNhWTFhFM+yg1g#Yr%kqIU~ni^1kXNBAhtcg
z(;0l$y$QU!1k`?*!%+?Is(~u=0`!)LAkOxH^P`Z@pvDWsj2>|Peh4(>glsZe%L8Y7
zz(~Z!R321uGpK=DCI>n<xV%7aX$UJGEaC;VpkVSa&n|fMDCy|&<Jt-e4t92ST^$_(
zX=!Ow=NlJ20Ttmd8`<S{y!fgcy=_JI^>v^Q*ww7ioSZdW+}!KSe)+Y7tN5U42{Zo|
zTY_2)dn!MJVsY=!XR|+j_;8_tk$Fq%>1kf)|IW_ecX5$x_mj78YcIZzjEn@$iJhBg
zyBajY^W?-tP!dt@w+VV_n8gKd^%`B>yJUMU-aew2t-6_6*x`2m^#(s@*;H-<6}7z5
zW}td}(v>}x#l2FdUNdLT1leS%|AYk;Gds@d#_x-flarIOELyVm?B&bB7cX7}4Vm)E
z+tu7mU$S&*=KFhltA0M6u3z={%gf8B&YZb&VWD&G(WxrD(q=yU_U((>mUHv!{tjW#
zdZPoK7D=53+S=Z0qqm36wJLpc>+s>jx!3iVE?D3&S<Uy-6wTl(OFSocfBX6Ec0OqC
z%x|vM&8^qrUAXH{>$0;%KrP~R#g&zno1)e}y|p%MHP7J-6P4ZdD*t!u?*ol;f{L^0
zGKZ5khFF|?dTd4Jjb>H`P?N-v*VWba)0Zzg*WW?9U~}fkfC3&g;gfZBRq07Xl~9Xw
zOOLJSgm@jT&xPC&NIgCw<e|lMsl{qa;G7VX+XO1^WNj)gtb6<C=jZ8rmM>D>wP%lw
zXVB$kzWP=7L4!tHv#)18JvH^z*|SqsB-<8Fnj|DDDynI29?mOeGGYGw`MEnczM1*o
z*3UKhN(gA7!Hx+F7AUZ?vfkV}*P`&zr1rM9*4E6wzrKR1>f0~&<=!@n)DdfKZH@i1
z&$*rNWYWfr3kw{}-imd*w)4w}ot~y^TK+DkSJK!GRJK5SWxR4WH?DpE^YinmQ>Q?q
zp;fBuUvG&}Vgaoscof`%ePsp{6O)SP&!0a*vznQiD^*^;+x`C9sj1pqv#x6Gp6}Kx
z^%6Alw<>gX$^XCKy(j(o`}gYZ^8BUCm*1XyXWq1F%MKlKnr@vlg@v1;;dM+!#g0Xb
z7EPHjVZmbeek~Ohmz675o;rIr)XS@D?foU5lc!9Zwv3sbPeVh)<LoTc;LT}gPuc35
znT46(DQI51L+kUW)B2!E>btwkudfJPT=L?A;@O$T?w|pH`F6GIepZL6gNqoS(t6)M
z72UW!5$Emy@40mOvZ%E5>Pwe`Qd3eijEpYj#pUHq*O%3j+May8@6?$yQ~LY+kM+r}
z2938WyZ2o=E?*z>^Zp#ECU7b9s3TcQWo6mhTV6gsAxTL|t+hcxL2rcCcD=d3fB&KE
z*j*(TkM&CH|L&R92U33^1ypcY2)e6A7>I*9JPjv7DGGZrhg5ihi^)b%VudVY2wnW|
z@9)*MzrXd(V_S7_OXg)6Th@@xfBw{fI_U}L=h=c%?&9T*QVrl@1=LqUUJHWW3qvmp
zv6iJ^>k0J2aF&hGj$w+&oGd#~Hl4%a-9l2A6I}4)3=vS@f*}M;4{gtzT50pVD+d~x
zMMXqZ^7Hc}*M@z4e?LBYTaG4p-CI#{vG#Xk(9*Y$UVN^go}_SLNRw&JkAk%k8=VRZ
z3%NKs1GBPLvGGVO`1<<#YVYZKqW7jxo~&G6UfwHb8wG0H`^~Xf_~lCpXeeNH`1-K>
z`)c1l6O@oxadUI}X#<|<>dVV~*S}+(D*);dU*Gxm_V(<TmzIK7h=G>EWxlwu5VRCd
z&2P>M-`QrN75OD4TNW)|{Pvbxzueksy3twp_EeU!PE)zMHagt7jmPl6>Kq<W^<*(|
z6U*s0^S!Z*%WW-v9VTm6v%~BCgST(j9_y8U{p93i@x5{2xu!!}wwsrM3SF#=;);KL
z$prOKPMte<?a9f>Tg%_aeSLR#cg+4db7X%0`gQ93dH=B0p_iBYhkJT<TIxS?fff--
z{9zc~y3>6hPbl|iyuGz`61WYgrsfvB+;8h^VIiSKaeJ#)I=Ay_>F8Yf^z^i8_B9<)
zE6aPD&dNj5miC||vaT4VP_DD=?Cb<JG5KVzKr4S%?${9l8b^A2Yin+;m`+4O`FUY~
zn}suGNbLQ7uez(dd$VfVx(3jo#vGs0cl#&R-8U|McV}nO+w}AEw#M$CbKye3-P-SW
zt6r^K{^jTM`LAEE-+!$`P+70~KDZ<2wzRKhg(o<3D&DXEzjxE-&2Mk%h1vX_cr|P9
z3!{X%xOq!f$uACA9i|KFR(bjOT-jOtTyIw2R8AhADJrt|b$h&$Ev!KvnRDXmyMtM`
zx2?UkEjRmm*_RiAwI2?$i{1nE5J5?5!GZ&Mi+^v+y`8c#LPSg~>}lm3%VM{-#1~&)
zUY@SAq3+K|ch8{5$9h-Wv>7LN3NSFJgGwDXez`T1CJCvktKYuW)!jXH)~r<>9UQDI
zEFP0Sef~Uk?%cJPE(JyJ2d$@kI<NfG6VKXDC)K&QxIn89RQ~?cJpAa<qoUgMv$IsY
zk1neF`z!Y1`{|oOb=CtbaV-54tYc)LoCGS0pP!q1b&03&(`V1LOie>8D=VY6<;;A0
zZ?1KD)`<y<poMczPEH{qAxlKH!!ll9TieyyxpUE!Gc%!sm|sIJyT$ddZOObmW!}7X
z!s>n+CMF@0l9F9LJzJ{#X3zfnD7>U(i`}mm%Ajdbb^m!Gpgsa<KJZWrXIcEl%X=z|
z!I>{?ZBSj^zB_mBT-lZz4eEoOxB1*tssCC9G>Fjvnxr^##6?w2E$oK6s_Id_i<9d9
zN6opo*ggK+&w~dK{(7;ve_ho)Q&vzu^*a*CDR$<m2<x?nhugni4Ud00J-+VZVSf8H
zX=i7x+_EKP|KD%3UtL?PU0z=9?k~u|u;7x+FHNVz1}0^1B0$|@f18gjpn7A@92w6b
zN5@7`Z{=EazGYDt14GE}S9Td9&x$h|zuwAT|FYNo-i03@A43)aCGHN}o)>HT<%09C
zCzJhUESwn_8dep*5PI0e%59Q!!(i{HQ`*12UXMQ=%g@UTTGJ(CV9dZE(`*~D?%+b!
zYYUy*-`E}cdB3K%w)EANm05EH85sIp8=p$a>~guW#8X(-s$|8X*VbikHpr&1F)#!K
zTWmQ{^<rT=s6U(a|KHzj+cs(a{(Rm(JS%I}qD6~jOl=t$R?Su3r^OC-E@+r0Ypa%y
zj?dvX-pNOk0+W&!?J9e_>fhhr+9oC;lhyspo`^6qFswSWkTvY?uF|c!x6MF<Q|<in
z)22_KZkBUn!DMy+tYbZrw{{dRuBoY!v2<l%SS89iExX`{<Klbw?#;3)UA4?_?yDCo
z85kI599qaZZ8ZlU-?hvB_HSQgGBCujybL}2`~%DD`~UxK4+;v}Qvbhhu0`RYcN+p<
zez#AFuld-T`MCD`-Ez<b^p?86RkGG)KD^RqS7OWWE<HI}eRb^avhXiH=H}-A7?>Ft
zq}#<JKxwZ-P#Lt$ZENObx390S>tBDqpL^ZvjY&tjZ2$duoONTv!bOW0UtQ$N4Vrxc
zElmTh;9crHJ?p`N#?ZRFva)S=?r<<OGKBXRZ-{Aj=3XNnSK$a6J)UKnePu=9;%uvH
z|Nj0q&ADOF+S2l3_4<85&1}3m*OQWyuWro_2ldcF>lX?N3Z~ABT^*)7Ih~t<A<L-!
zn4Wu|%*D(8_O)lbwLPo8UJVZo30d;wNy_d=UXwtL^q-%fuU@dg0W<}t@^a<!c|qM`
zx~FWPw~EJUOb^@0&drb@X6O1sN@i9<Yg^l^6BCuM8eLmHzi!oo2M@UR&srY6J&%iz
zFU-xYZAq8%t?sR#*~J+W#HMk?HaiQiu`GV};_vtS*Qe=5uX||$n(LgX>|XME?e@4$
z@fjH_>i+#q7ZnqWyZn=Zf#LeI3oM{6dg<$Hq1*HBURf7w&C1Gp^6uTc>-vu-U5x+#
z>-uV`=U-l4o}^-Lzu)_t_U?1yKFka<tt_WaEw&s0jo9gkbvHFNg#-jF04-98kvIMq
zFh$fawKdFDE4qV`fgz^LnR^X0J736Yi+}(AZHiiZYjgT})!%P#Zgyv6WLy=z+^@AY
zHZ$|3==tPpYa%~=|GqtY_xpXnzZ_uZkNIfK$Z-7_tX;b8Rn$X;!c{+I>MmrI?gXj1
zSN%To^fX=ZyD#<?K6V4e@nZM>X)0IO$H%Mt&(pd7KCA1{%HZXzYJYzVud!!X@QX*v
z#G{#wcT@K5&FTHWzP^6GKysm4VHZ>O;Wpk=Cr$)_2Jk>@`*wZ5R}ETEclp>1gTy9K
zTT@tgF|V}Q4cV&&e|{9&{(iIh)7P(8e|&tb>Is@b&foucS^eMF@!J+@=<Bb)b3cuN
z!9chglB6CzO5&9?a#<a=c2c6ms_^ymR9-$gIoZq0>(T<p<}E2Fg@XA$@o;j2`i5Vg
zO!i;p+|IXc@*U6`a!_X;w2&TDg5JIv4w`a!^!V}D2hIFhXJ#0Js^H!4_pLU|y_NC&
z+}v<mc?O0DyJV_-4ujSWOw|qt4dI<Sefsjp$Hz<m{3v|-{CW1DA0I($X41~h$-Gt3
z%+7zUPu9BRdTe>-!$Ym0WiI#X|JU9vy&el%q<#1L6O)V!4j^~0U%&p*<Hyi}py=;+
z%j0)GFY1tHIG`hA@(PqnYkxd!m$Iwb@%GCXBi~sjpwgvJ&UV$&Zt>Skr^gxPo&han
zdinC@)K}G@LA~$q?moSher87E_t$@af1hn+&cG0%RKm;WyW!KPPoVmkYkm2<JCQ$s
z{=90T4BFfB`~uVJ$jxa{`|E03ubb!GSdeyhR_Of}28IFyaH{8C1Dedexhb{k+s$-n
z9U8l%!13nIn;>u5{riz@`}In2-y9_d28XGZCH$Z^($~lR_F9&fk=$ZB6K3Cj|Mgxg
zw|I&~TN}Upx|5UDt-%Gpwb1fe=NGb0+r4{tP;juQxcKs`tHWPEIM_U?&YnH{Km#Ke
zFK_9SFANL}>pFsEOsZb5-TvxYbbjd<69$F?3s4?jwfDfPEUnay5qec2ObiSSn^%2f
zTJ6}(Hg(mK&*1vr_bM;Lj&&0fcD7~dZ_q2%Y5r23ICaL16+b^eKYjOZtaCfx+IgLz
ztvg3Fza@BHy13ZgwEA0)s=7L89VuwW*EIE%$kwc@r!EFFGc33T8r5hQk4WvjD$l(d
zl=xFmPwSf}#lUd2kLk3j#hV2e|NN-|b*Qthu9^y7iMR2%TyR<0HZi>zk3v=k2UBf5
zy|9{^JxokYPaZ#B+|j|2nwA##ZC|gnIjGnKO|os@zI{#DYS3Z~-RNyGTmDbejlQxq
zI~>%`%-X7DW){}k+M2e%?{H{!)70tHm*3o+o_(;1RZCOz;)cY-puyR#85bArTF%7K
z5M1Q)$b`a1dv5LKO`ERlF3;bZeciA4`MIm-?f<X29#`#a|K~%qk&)4=$EK@&w~9xA
zGV0Fa=OSWa%Rm*1YquC^{j%R2i@=Ar+wYb|o1PP3Xn1}4+uPe)OI`+n)+Foc`Aq^1
z=4{QsA1AEtcV(IHY^^=!R#s6LFJ3ImUF_Zu?vv-=v)Rp*{pra`&}hF|&JEDQ6VLtf
zdUjb?G*Z*jR+YcMcm2UznZ>ub*KAHd?==auq{LmW^2wxH-oq1)CIx0@W|sQ!GBC6k
zACX&wWv(Z9na{<ChucL31Oi@u+_QHtXt;l_P35I)Wxu{;rlzHV^7*z$UX$8*rI+p4
zVWAtnt%vD#){-SlLcUL6V0a+3Y15`FyGpaKt_(iD&eq1}PTAig)@v^>FAt50S(ALc
zFZ1FeSI`QgWj-^LcK>_3{r;*YOI+q!m2TP%8i3^D=DxfxcDGNJ^z(qXtk*s~JiNNv
zgMlH7$6Y0&5@W>1`j~RR4R|^DBv7jjv^ip~)zv(n?xR5uEv84ct?88crs>4M@Ia=k
ztLw?jmyzr4o<4oL>~E2furR0@1uF5%?^Q1E>h1>ZSJ(|2zwt{ww!%}Uj!%q%;fH;n
z$A&$7_d+@ZslS))-Md%c`k4Iw>>r)#^Dg9Wzq?FO*)0RK8WuF)eyS%BI#<7L+ksm<
zi_>@h^_lM7j+jFC^qp<C_L5B2)m2N`<tiLHJ3Fn)-_5bHwaq=<n+lpwUuD&{8MI06
zK<k~d+qqBs%zyoSKHoI`+#Ig=oZQ@(e|>!&8W51M{UY+rxeaJ%$YFz$UtcmStExbC
z4`>|F{C>^igU#%>e}OhHL`FtdeYxlk?ihgf5BV+AIcoI!c@g%$!EJR8NJ)`fUULbw
z+Pmnyb>*iec0Zp8v$C?T3|#CsNu|EN9<(&&<;$04>f4tuUAl6^h7X(E&99n(#w}u=
zA3A(kR8(|nOACvvZPk^sN!59I>+XK^nyls<6csg#PsU;aXd!3N|9^k4u89Qow<1BM
zcwXMRpy1%C)2FB3t`B|obb5SPO3IR5<?q)8E_Qo)VWBf<b_cYo->&vo$ZPBPY|s#w
zg`j)w&CidHcAMtjGFiHO`RgN{!d$$(p>A$%O3KP_=RJOww*QBytnAu;yI&rl4N@m3
ztB3BdtG!$KeC{lRM5mqWZ@j#*aj}uHv8cTK`i;rQK|NQ{_>K1ZJxS-ftpq_mvju1~
z3!3E#KVDp1Y+Ci@1?s#xbfw1Bgo80TMeLyMk)XjFKlE`E&^QaIt5KkYHm3|8_W+GP
zLB~N{ZZxCJUSl0M0l9Dv2kW%#1W>0BI&?(T)H}#=$RkTk+zbrrPK{5cK%I5crrtw)
zkM&3@>+9>g`!iovu(rN^G1$R0``VhBpk*NeF)?pmXf9|2ZLvGh392zbd*omv@bJ*U
zH=+(6Rnqj{aOU66IatQepQXP4{pqwmD5A}BZ-EA+L8b4BiON&w&yQc1e}10r(`V1Z
z-lZRCU=06K{qzjjgP;}!&Yg=~@4Nf^uXhToi-?LYot?MK^Y{1n*Q4|IF74^zNli@!
zt%KaQPpsRuv9S@fsF&yPhOOqgx4z8UH(ME+3O2HXHqL-X*d|SyBqA=Z?kQzevf|eE
z{Pmr}>RFeU`HJ4NE`JwO`u5h<b!+4I*MXKigVz8*J2SKF`m1YeS1UTV#XOvSMMg)E
ziJ@R_H0Hu8*Z|I<>i@fUOj?q6ch^eCX0~77_y4cGSncKQ4O)QqRk%C}np55!Jay_6
zXmvekXUOhvA3hY^{<=y-M<>M5u~Eu2E9702pI={1ZSB+N&(&97UG?(v^3_Y0Eb%(O
zo)Z*a2Tq23-^hhg2(S9GXJ_&ASATwfu6nca_?uhKPEJ==hwGQVxZv2@+8VX5W+!NE
zVD0a3nI|WyhJWQd*9MvmdL0uOIMK$|_Vm{3%F3JT!mowL*DjrDoDN#}7uqjp`(~YP
z#D)X!u7kSANl8gx?p43n)YCgRZN^R}@N9)rUxd;Z)Xj=U`~Lr{26c$JczJcheL_?2
z>?kziSsdi<bVUVJEbW-!JKHSt^Ru&Mx#{QT?0jMyw)*R$(+!oCm6No}dk!shZojfU
zKOWSWmz0$J^!4l7D>cl_%&MNp`{mb%{GZhX&K*TtkDHXdzUF&(SLx>L+xzSHKYILF
zdyl$~j?e4s>%$!#8}GV(&%M3vWYR_r9i2CmlI85{Vn8cXJv}?Gt&d+XowsA*rO$sq
z9+y}3?3FfO_r=zf5j02_^Bj9wj4@7QoPKUa{r`WUcJ`~QtFLZKJ>A_``0GoisJQs_
z?D_DWjp?7FEyY0D+wX`Vdv9BNySA2=7bhpDRn?ajZ&kkExf8Q=$&wqtd}o<>W@ctu
z6+CEYYHCvP1g+lu_w#%`Xvs(Q_jjO8ak+nAUs<`hk(u3V5@@-oqH|lui3y6J(aylY
ziJ;uGHhR03n%c8XnvuTFp#9%lDn2HGwyM2+`4ZILadLJ>nGXhSYrMO=9JC<e;i1;3
z9R&;TZhdxk_HC{;&(6+XUH$!C)Yh!2pFV$n`s~@VZMnCz{{8t`^=xMPy1(3E#^92!
zLs>}26SNjoNLYC4j2RJ$^QTM^+3n&zsqWXy<z8nMEi5ABYrh08{k4k;xs(aMtG@Ga
z4KyR@3Lc69Wh&$%2sDNVT_l9Hm_;g<!NoM#F;p3zMjEaL&ug+0vmy$$PTBmwr<Q?1
zbTQ~$00wnJ<MLq>XV0Du>XiL1&B|JJ=gysy4-XvK&v7v@SO{~i`TyzL?flbc&-#|%
zt4v?|E53VwCIiE|_|*TghQHabb~C-+U-RQ(d)CE8t)N{Le}8|suCiiaSirXEz^~@{
zb-z5Lx8;DAW?xwms0<pw?3*XV@W9Hs>8X^)hJO!0ORbyPcuU^z{hsyV!9h@bJm?BY
z_<OKjzHUXkd|d=+s?aE<1GK?M*1F81DvF`uHP6e?v+j*w|ATfvfCgFRs^1uT23=nl
zD=Hx1(8bEILr+9p{Qv%M@9dYY`d#q&N3q7#_^v4r-c04t>L^TnvQEP72v=!`WbCeU
z4K1Qa`W(N<d!Kb#x@*bibz5A0cI)WowK8R2U3gV(*4kv=1<cRqT#{UTWzA7bR^O>n
z4gv>v+yDByY<t6@>CE2?D)&$N-9G>G<6=Iww~s$teqV6tkW*`0+o}8a<3E1<xN7a%
zz3&U<Yrjk^DlXodaZ!ntg+)V2$*HokGAln{zUcq4V{W?9+k6-q88_X`0refP-o2aq
z?d=X(#@GM<Jmjyx02(-4vP9*1gqvGi+53CC?S~)k<7Q^?(R^3M2HL1;UH&eltZZ9c
z{om5c>S}FM)6m}D-tRW+Hf#v^`t@tn-m0yjeWaj9I%rn)$wc>(udhO<*Up|jd+MAy
zYwq2Pn>uZpmcG7!YHDiK=Crdj>e9lFbi1kE-C68j{q4=g<bK;{pUxiKvBP5OlqoMj
z`xGWko_x2Wm4TsW{^R5Q+2`lkYH4Z)IyyG0Xj)rGgQjvfBsTZS*;>8XxOC}K&~WbQ
z8>>QBgSKSd|MSdT?|t8$J(ZiAnwvx8<JUJdFn9)4RP6Zl`EzJ=^y|R?>z5w96#g|W
zI(l~5`+I9!xy7yQB_$<|cn)t#J+wM}{j2@||E@p%{Ivdllc#qW7>e)isSKW9|8M8%
z=iU1IB)(VPy_j(I%9RthZ%0>FR-QAImzRI~?AfZ7D?O*{#Y%m<k>95632OF=%E*8^
zLRQDEtgS<%qgTIqlasz<(vq#&*R>QB9IC&+lRevi@>9kJmC*3;>~C*w{(75VZ=GRT
zaDQJdXhX@@XS4H99Y3D#^SS1A^!-We*T0`}j*(%8#J_+4K7IdQF8TWPYw0a-Qq9W$
zteW%eS(>Y>Yv!*nFZCW578ag+yKvz`<$3FO?~aa*jpgFxEbN<WR~z;B@87Q8-qM@j
z53<Woxtn)=W$<#hntvw~PO*bxXz%}jzfYYwaiPEd&tu2ixn{HPRlm0dWh5_u|MJ74
zObiD5Zr!?-viT-k@9i8jOBue{eKnOK&$V@RufDy#eQvzWZtM0$iNoiL*QcI1nQ=;A
zP|l_zVD8+xRgXH=+wRE8%dd~zoc1x-iQzy?!EvEPfB*9nR-2TE$5vHUxz+sT<>jsV
zcvKuzWFI-=GTl;z*ZO?Mvl%?gY7T&Qr96HA-u_K<X<OopkH_V&&;S1?J$8TH-1064
z2AjV5^XKQ?-DR4wXZ!Z+J8M<W&9w#%UTCYSx$Q1{D`nEYB=NcAOPR?>r^GASRD5_)
z`@Qn_+wEV!-Ol%(#Ky)Jv+e1VCmQPN=`rhg84SMme3kzsU-x4nXvAPgPiblC-Om!U
z&ze0kN{Ei0t&(|ej^+2c-ya?A_VV<+=*(}s#JQbsr_G7Fa=!M%4{e^CKbJfyGx_8c
z{s;z!ib+$Zh%8;QWJk}|En70~?kYVjm%ROUXn6SYb?fw|v)}EPwN^W9kh1;ud&}ov
zUtga(Y0{#9|LU$@y_)&$&CTX-oqc`Nwr}4Kn!DSw#pL;qx3{-ny>n+xPfw5Fy@yW>
zo=)drWY{pPv+iU@RMf0rzki2@g*}sb{rYvVt843{$B*aUSIEiF5BK)&KAm;$>}>O|
z&GLU7a&vP*n`y*!A`G6$G&VMR`T2#FmTo;g`?j{W_SL(0-xlgiFFnY_kkHlL-5p$2
zwaYB`))MXTbs9!SL879fy9ypQojQGb?(f_?I|8Rpotl-K8yXQYL*=Eq{m)L&x*H91
z^Kj@o?m55x=i9~F|GL;er@rpx(&?aS^QWh$Yunq$i|fZ->65kIl66&UZOqQ1M|l-Y
z0vi|@HVBmOVfUW2YSpSOsi(z4!^2lEUhHgWXb9TgDkLNnbMEoer@MZ9{dipdv;oib
z=TqNv@$;8+M%@4Vt~@k4di9}0PN2~q&{m~SpFVA={r%1G-omd?gIPhR9e`%!jvhUF
z_+4;Z+`CH|o|n?+*P5-$j@(tUvQNg+XjQVB@;t~=UtTc=2C+x$*tnl9LK1Llekz#(
zId2BEF5~D03*S1E2=MtbprsT}6>O)CA@(s%ONaJ}K=KhBywlPbkZ8~a$WmZ7ZUzSK
zg$F<Ju;?%_=(IFEl?1hj84M)BP9(-fG&2a~HHX^TS}h%&kc^BKfByaj^<;0|y7gP`
z`n`MWK*MN9yF|Hoc&1FBK3z&ms_l-srlx0HTwJr=%9ShA?)Tlkn83)8p!hCpLs3x?
zXr4q=L<E}BKnH8Y#?GCl7i;yVP*+zMG_|m`;GxseBS%)OT={a|b;I&^F?;`fI$dNT
zbMB*M@w1+HZEB26;Arb>0F45J#@$s_RkbuUCa9#Qr)yhTMM<0GT)4Q{z1_C#<RsNy
zWp8ISH8pL?zrU}VO~-SVW$`j2V`KMv;mP31Yo9_>Q`1l1zJVr<i_aWC?habynw52F
zsrU3YTQda(2S-Q8#k2Ag5*+T{z5D<D>$yA}5ey6wXYPufUUUAhiMctb-Ftbtf4O9T
zcXx4~`Dyj}HH#V=7|zZxbT*sq8@)X*w7!0S=JV~~HBd7i-9j%}Z%(OHQdZuYbd;<1
zx%K_P^78FjSy@|hZ<~R}Ro?IYK2Nhaf|U`JItq^)N7&lhe){-P(&XLi*RSv7wZ-l(
z+xh3`%H{Je8K1XV49X!|8X5&=Y4gDI&C4w8?d|XGD$Tx7k)OZ5_;*F*{<^&~e8)TD
zI1OiBNJxwUZR6wO;VJo^${@jRo_}x3{{8!R>mPpHv-KdT#m*;Z^TO!b&6}0ylXJ{&
zPdMF>o0~i7*mqN|;^*h4s>JTEtG)BAfSpO~m?$InhZq)}Y|!BC*C&(xclFG*tNk@k
z|MQmHZ&$5e9ULA${dDuY<9)J|6D2m?e*3s=@Be?__p5qtPCF~L-SQ52#lOyxH~9j6
zO9Z{Wy@TuP_n$g-YEE)(ZSATRD*|e2_Bc5^tJZ$K_HEiUF<u^?o?rW{tgWwJziysU
zb9-B^5s&lgu(eWOE!Xydvr*x3=XZsLg<k&t*O&RuE_r%N^!e;N`Y}5eeEL-MyiVFY
zFC;Z}X;gHysF>I@nf=m}K;v8OhZmkY<t1xb<T5EFBt*p%w7SyB*m&y9nJZ76@c8=W
zO9tq~n5-;NKpU^qooNj!02*+WVRL><v?=PZKiC}~y*;nA&El}ZoP}o$c+wAW@$+B*
z^z?M;g9D6Pw{HiXF9DkL1NHjn|9z7#T+lAu-C)Z2u5RzwrPJdsJv!Qbx5iW$G_$sJ
z>C$)mczgu@?OQ%=<&W>R-`+%~rl!vPcB|>(jJpZFN48{M1}!^z^ypFIcTIi$^2{yo
zb`?KAS9{(*|DMg;dwZ*Wu3O9$*r4W+oxNH`Q(OD=Uhzk28#iuzw~xg~0c_~6?{{zA
zdUfdy!+n<nvlv!~tqm$I1$CUv*S!~FWawExZ=T%NZQJ@@Gv9ny!N&beIl;F9v~mCI
zmEd>#co-TuGu9ahK?*On)5ag<z(;gJGQLT~yhc#O97ti&N#Lq}KDQjS5xTy<{<(hX
z-(5?Vs2n|VWXHo(4J%K}?$=^}rkucdVQuvGFP~29^GiLqKh;nzuujdMNsQs<+p@Q}
zwtByP`}W;F5rz*OEIJ8Y#yrlm&GW<R>;F&Cy>^|Khv!B3{$Ep-l$D>pe!UtrE4gBY
zM{RAb-fz&1J*cn$@7wnMFRSnWo(J0ND=4^d)v8sF&-WBQZkt#A&a$<&_2l*I;oRbS
zSG3pfQEES&_^Os^GOKsXyv7DrhtJQ?U%$0A`~B^tr_Y|fn!f+f(rG%8i{@IFYiVkF
z?*I37{nVK=Uv8S8C}CCq544^ORMX2^muXm7MEKkP-EwZ8?dv=1moIleJzf7gXrin1
z^)>L6`=->>TQV=Jfre=Ayc1_QCcQqBLBSJrz)EWB(ys3A_CKuqKsyVxw6&+spTFMx
zeogSCFQ4cCkJ+4dHptVn^VRFuQ)kS0ap(VJf4hqlmEE_LybSUTs;b)c?A+YdpFS0V
zX6h#`nKVhL_S?<$th~HyO|0B1o}h7-n>kf)w_XR$PPewT^?hH<Jnc}nlnpbl7=vg0
z)`*)oZ)$04U!JNR&X#Lm^J4?g;Q&X+#?wE3eSQ73zyh?cZTiRj`ro(D6{yyJ)m{wR
zDDQ9o_ljj$aPVSx`PvZU^mA9XW?!E(|9$=c->=@k4|jHMK3UGmAl%%*df;WNc-)1z
zx3{;~h`qM||FeJ3o;{#L5RB}qzvZy9vc5dj%B}Y}F)^|E+{X*f{3{nPKK%3f=jZ2N
zgLaaqot^dcQ{>K~r96i(TwNXRyURG?(*sGJ^9O_!8J7S2{9IdG+dDNiRZB-lrfB}e
zf9<~-+2tgP{=DX2e}8AOJ7{A=V&cOI{9D~!U3)Y17&b^Ti7|-l@A=TQYW3>Sn3y+4
za&mI(tjpiM`1A8~)Rv5i#eZI1UH$7(x4wv+oZYLPN=iysu3lYwT&_Cj%yr%hu6YMP
z@#qLL6>Lm6$dsCz`f}~|dqqFp60@>a$?&z8y}R>rQ@y8WC(q#vkNfTIUhTZLCUWtz
zWon=)#^!BzcN97^GczyV&v<}&gN?<{iwTUucLKaYOO95pS{3B&-Mwh>VpUH=L&H-i
zPX<Ot&a|?!0(E}&|Nr}b)tWU|UR_-syU)=gX#bC+`d<#R%fD#1|FiJg+UVt=Jt5`g
zujBv!n*Qzm{q@(bg|V`;_y3e*Ojsnip+PfmMg3hj7Z(j{>*)7;KKGse2HMTg)zJ~)
z>e>n#J_q%bU0q#o?J9k}pqTIb`e*C=fB*csa^XTp(9R$E|3BPALqjzU3<3fJ13~S1
z)8c17livx=u!&Im!qe7#U6q;PK^bU;Ois?4SFc~EZolnoTV7ne8FY5h`TBps{WhOE
zRz5#=0o2agARwi4{($p4L<=ip12_>fG@OLXJ2bO`Hg8FRnn!KNGCwJU+Y~y2RcxT)
zItCv%P*bh-LP8}QND0Ga^r8pUiox1I1J~y~jTxW7OPW@!U+>@A+RDYtJ9Ynl(AZmO
zbaeIo$G2|Z-dgzB4YU-mv9a;fr%yr7&WAVrHa9cNy16Npi-Tjr*|f`>&)cnj_b$&k
z|ELhy&=Yr6oi^KlpFDZ;Vo)JrZ5_RS|G!;(_U;9(kvewlShd{sOP3af$Jd5V*N+eL
z@i}ArJS#6Rtf**HRdsb}RMe_Hdu*mootk-emg(YumXY91Tt0=MvvlU!R)fyJX=-Bf
z3@R(zwrKHU&^Z>ewpArJlBerLF3P^XPE$j}<M+3>!NI|oH~h}Kw<q%8!Go*TuLm8%
zr=n?N6Z7-u&sA&Jh87iV+G+mG4IDZh)>3O`&5{E3`}OtDTRwaIc=4S(F{Y-bFE1_i
zJ}f6KAh2M;f(5_tg{P-4&&tjQoq5C)J_)=xn1v<d{k^@)KVJICf$D%|J1{z`$)&%(
zWPbhrUE9p;TIwG}$Ml#@`&3X}x<R1aBqBFAchk+B=3}{Lvt{_&_2T#0Jo}xMojn=U
z-Aq0v6XtXP)Mt79^5w+-{__h8<KyF>ml;2sVDiQ$?M$Mo%@aO`hSoXO<>$V9Pnc_6
z{%+pwzkmLeyuP;9@$ufhd(XX1F8wZZ_$<tz158d%PM{MU)~s1mX!##>Y?P3Y(UWZt
zr@gp!>z0aV@v}3MpZ}CkmwrF*^X$(v45999*s#H1u5ESL{Q7@Ccg(R@QE^F3OmxoM
zjJ2tgJkQ?BD(c?7d!UiZOP4OqdAvRUepqqwW+NjbxX(K_Y}k<Ke4zrgiz0jd-esFM
z8G(8@llE0@u7-5-M5Uy(UasE0?f#BJ=ZO<1Ry}BBcQbWQNLVmw^5oFi*tNRR+brU*
z21G`#eD^M|zxw8ihXocg@Ah#pFg%Epl#~QD=0Me(tDD=ZMT?x&{pMV7m#<yY(!%0-
zX;<m%kjTiD*RF+4SJ;tz+f1@;p>g`TjPLL6{(9+Ozv}1b=iZaLy1M542A!M2$;lbD
zrvkJCwDjX6SI}sgr>Cb?&5sX9?tQQT<w%CFU%!G@u&i3QF3jD%Jt-*()RdjReYO4H
zFPB%XT6Jmp{JK{{8}{tk(^g|}-+<@q_wT!VOwG(zZP*Z??mzEJkEHRGi4zyTy}f<+
zo|-GdpoGETbF3QD8G{_|32F<2S`rKl43h;%B^VeCB$0#UFaHz9H5G23#6=kx7#KWV
L{an^LB{Ts5wK1~r

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-3.png
new file mode 100644
index 0000000000000000000000000000000000000000..362fa12b3dd593a77bc504bf9e5262568f1c8918
GIT binary patch
literal 19643
zcmeAS@N?(olHy`uVBq!ia0y~yV2S`?4mJh`hJ9%>?l3SguoOFahH!9jaMW<5bTBY5
za29w(7BevLCxS5J3j5`m3=9eko-U3d6?5L)t*tr#_0j*2&(o!M7x^Y1i_uj|3!K$G
zt0=HUX;Z+);Owb&veqp#vx`h6y_TD(&tAPK<(16TMaDu!N?KP7Qszi5eU{V{ySKjn
z$GhTRCdEJRJ^y^~_~W|WZ@>Mmir;td(#JPHt7`Ab&rXzRV_;xNkm3*LXJBABa93ah
z0|SGP+W{s91_Mb(ZU%+}DJ(h+3=ES6M<s?)kj$LEnw^1xLC>P(#e_b2`#81h>q1vg
zYie#j{p6NLX9Fuk1FMWxi3hKgiN@yFzkmLG*)CtFkYdRh+`_;R;SgyWe)QZt+vsQC
z5B$H7z{rqbXg2%omDiGOiLbsERGLIEFfgbsKFGvyz$wRU_DkMrF5ORakVP{#++pSw
zV_;}FnX!R^VZ($?SsNb2Kolq^9L((M>eAaax0LZ+>c2lfZ|$w#zPg=pO7v0QX*cZ)
z^q9ovEZVRkKu%8X)QJ-pnpnBN{Cd6q^>O+7kh;2kIcCy|r+xQ)zgOMW+j~`e{hmd|
z&(D24FS^66W%Z|i(})5te}Dhl|9`)~y0de$-yDmDO-)R!Y;3Pis?QIpsoC@A&!3Qx
z5EXuYqx#Bk9}e?pAM25Pb!lmLO-;>|`SaIviE8briePw9@+Y^=DAYzbA|POapt9SF
z+}qo{e0{Ih|NAVzHTQN{x43>-PR^Qh^K7;G`T3>#i`Hz|5HLwZTzvWM{Qa>nU%ssR
z_w)JI^z(A!{X81+Gn7jBS#+jo^7He{T9tUbzP2{Fu5RDIKhN!7H?qqGEOzVt^6hs1
zYWIG*UoRH-zftUddFa#W%a<=dye?n!p;1gPW<^U2%ikZ5`}L$m8FsJ*w`dr*C2FXv
zyT|S-*|>gdS4YPLmATgCe*gacn`NFqkLU1(cKJFD&#IqKr$2rET>Y@Y5B+sT%QkGd
zpqSDtV;S`P{QU5wq(xlZ+@^JZD()7Y*42|yJhQ3(e_d-!%Z@6Eywy5V>i@o9`I)gH
zAT7siwpRGMH9K}#Jbm^|OIg|Z|DWgfswel^9lw4(Tz~(cO>z|v7;AsMTwe9*r21Q5
zu~Xvy{{C<8?hen)%>0)7_*n1d4-XH2z348Vd1{KLNo1aaon4&oY_qH1-rkP26*+K;
zBSOQNm6dhUlI8QNyw>mgwd&8`zox~{d}{xEJU(d&m#CIS%bGq}>sPn)_g_6ZSv}S=
zCuVW+^K+S3Rs`<)ey@6K-QTL;-#$J*o_%9O;;$c%`#B@?9_;)5F1Vs%N7eUtz9+Pl
z*BmV3XVICltYTtuUf#M-pFfxW`BC_L--#0*d;k4<ed^q~Yd1C~Z_T@F<@ujG($3DV
z>hoFit%--(SlQTirTp1pXJ=<8WtKBzSJ~TDzu)clpI`TDW$k@==dh}(UEJ<n*@1uF
z7rVH$2nh>c-H_;P`{O}#i_QWO7M&T3D*m3mx3}6f<AOqKTidGK+uN#sy<83o3eQP$
z^?wS_&b1C_=a;)O!!TJ-YSXJLD<7XaejxP6-*&-IpFgX{{y1HJX^Cf7N5_S~-|yF7
zoB(pt-VcYkZ*9+?fBAS%_U8-E{F!HF7+Tf**pOp3`_SRTQ)kRrajaKbc+)8c-f7hz
z=9pw&QVHj0dOAB%;?su@0aaDItV&-kX=-BHnsL#ISIXqV?)Upv``iBwX-iz;+|HME
zch}Ze*Ve8U)eg(}{_gIo;N^X@OtZrt31@8B_K06m#=6XBs#fTv<;$0U`uzFn%a<#E
zeSQ7<+3fsljm+#OxwlM8-`oi7l{TMNqS)~F+wJ^c*Z2Qhnm(`6Ep$~#;m64jyw*f-
z_d9v=<fl)cf;Oj}4OtsydUbWUzi!l)3;X~7&ENa&R(4lMM?gTpgw^d)>rzuwH8nLo
z<Kp5zefVHt8Y9^T%Ez{!&lsN(vgl@vX>V#`I&8qBtge3i#ogW81*N32YJNVQ{_XGm
z`u}?iKc6+1-kNpQD6al*>F;mb?^T`Na5Klv#ieE9<jIe}6h3|>A}TudM%kMihKmay
zA3L_V-!AL^wCU5+|Nl47zn62T^7-7h<;$0E%)G4DUR?k4>GVy~IzFF&*S|a5#%r8o
zHrp`i2#2z=^5K2|yY=@O96Efsx1oWdz5aXQ*RnS^5<QG+YHE1u>+6H-K@87heX`au
ze`lEUEaND=dTmW4$V$&&_jmX69KP`Ve*OAuYok}k?k=0OWX~QO)BJle^7Vf<?%BI{
zYr#V&S-YBuNhSpk9M;C{49eg0vF*>_zp<Ycb|gJNKmYo9`~Pcde}8-V;^N{-D)#pF
zt}ZSwCi~l6G(K;m{IdS?-bq(BCcE4IezRFiODpL6ySs1KKbo*4YHOC|f5n2UIcBqK
zbDz$!EEbWLUVY?<%h~z%@$G!Flg_3E|Ni!Nrk;spaLc>KhF0w~i8jBvR!eVgPS3u!
zCUTZl>8jfM7Z<yietP2hd)J&le`-S4L<F|Bwr1VgvGLjY`Rmv3{}(meJb&AKVM)oA
zX=i6y{<SP9y|ylP^}oNrS7%;cmUVB>PA4a)FBhEoUv}&73kV9DBv<<-aPQ}H)_jWE
z=H}s(zT8OeUm3bOjEjrw(u0G|rO(bt#;HV~tEj5FWiMz`{w~Hzte~~xqQ<%zXVZeG
zYK4L-hwLLAg5ShF{N`8$Dk>`OdcAJ<mygHgwT+E~9UUFN=~ql!vdnk(sne&u?f-t6
z+&!NuJo)9NrB&Z<re9qbYyJ1Be*MJ${{C-oZ!dp(div{Te!BoCr>0|lvf76YwxpaC
zx|w698?nJ*-@bj5mRz|K61pP5vHth%`z5c}Zod>ZO?ZCIr_Q3{;;XyM^F1d`pFaKE
ze0%-;{QR?Xt-~ixnK47d^VjM4e~TVGNT@zh^{`d^%5r~skau6**tq!gyoEN8T^Hva
zS}Ht6qnwMIoA<Cm&-;D9&+Yhruevwu>MBWLH6H_>!v<z~cQQg&hn?l%<u&!2YxT6?
zp8da%{EOXsrH)-%>OI#kEoL^aw3)=!)#2v<K26^*@%!7`;v3&js?V2@wJI?HrP<U|
zB9G6^G(L7=p>yx4soK(ie|<IPle5XF`SGy*STny}#+NrYFI!Z9Thl#{Df~4kVdt35
zPTYL6$6dbmO2n3oi?03My}f&1%vz%xy-i~KouY1VHru&#=Q)|Go#A`fPM<%2enrgA
zO)Kr|>gv`UEHaYPi4i?)kRs8RxA$w<-cP5rrL0O;#MS*w{rTgEhMiqp@G_r^9fHat
za&qgY$5nZPjJ$ODvT6Q3o6vPJk#nuf%f2c<FzWgLyXC<w)9jGtezHf89J#SyZ0V0u
znY+76gL|b+MdanzcM7YoN<7@=<>M3L;Lz~w?Cj-ky;3WkTDevQE$uSPxsi~+C82h?
z-`t>rf(=SaN>k>|Th}XXp7rm~&si3Qi}H5AHDhIG_nrjOxM<NLA>XiyiXCG5acdeH
z7=HfvvEx(VDP1X@?+L~{VlE3xy2bUceR_KO>w{+gSM#dh1)iR!EBmef^I3CH6|pV<
z{<=<K^{gWuf?j@pVNOm>-`?HTmY0|R`Sa(=^XL6RRi~(w)T>462d|zud-iJX_Pfi(
zbfYr9zPifyyXStb|C4FD(V*l}SzVp|`r6u6VQXjA{rj1|Hg0d!RPFGv>+53QuFr7z
znIO^jZtwTFt7{^I^Y{PVW|n_%%}nF;tmA#Mt73O=bL*2?d2X)t>cqosla?%WZhv((
zJpSs5iOQxaCj@?%#q6DHT@I>@K7Idg{`abBYip}j@w1+?H#ZiV<=&c6l^Y}T{-D#!
zZ*Oic{{4P`JUgGvh3WBiD=R-g%l!TAEvT}2b$z|QzP|p|_3`l!A3g-N-KObAtNHu;
z+y4LaS<0qj0~0gz)or=aUteB!H%>bfaCw<;>|c)^PU+|8U2S6J4%wXM`}O_(`-!%9
z-~adCQTO-Pr_Y}+pPH(Db#1gcsAjslIy}6cPxi{T-00Btad$)e8?pnyEjE6T?Bip-
z!GC{!y}I0Ao>$5Q)Owvz^00MdeEr|8-`?L}U;Tb>xNX&!2`awx?P8~Dg<iT_en0pB
z=BCxbf8=!X^WPg)@`uI6$-O^Vr1VeMVP#WOlS$DN4^VnLc<`W<dEOi&V`EUOsI|3q
zW%TyEs4W>2_w3p8<=O1~Rkgpr&9W|Er{+6riB{;U7y9)-yVd;Wte7!F;_CYN`&av$
zR|jm(3T0(w&3u1vua=e;s3_>_>XPZxoTvBh%F4+qFK_4X-<t3KGeo9G$~0@qx3{-J
zMa_jyVRaSHzrVkS-``jJ^x?yWkB|3j8yW_J8cA<%ZvJ|G|G&`7%l)r6Ffu=Rdi0dA
zgHpmnp;e))m;LxrVf+0~F(?9RYHPp#`~5!q{5;#PzP@Q^(=G@5+b(@}c6RooBb}>4
zS5M2jwq_+Ox0r^V-Mu>5e}{DAyZ%>}zP{#L{r%n5Bb~ya*2edK#nWk<Z(dIqoqs&4
z|I_<rv-2)ZP;}msc2+9)_BP*1Uv8$)*EBK;`hLHD|G$6V_rKnJ-Y&SHV1rw))Y1<h
z3V7x1Vz%F_THWpb&aQ$z?B{VQotSGYgO{6Beo6tAgooStufMsu`R#AJpHGC}-rDMY
z^5n@=Cr<{Zr7cs@R8VlJ{`MyD>@3q*)0~*)&h30FgO~eR)&ANdBrN>($z*@8NwvE+
z{HWhDT_<u8C`rrz|Iz+#*K56SK1nsJ`hR<VeR-*T*g!;9cJ1={by4Ma3fqN*g=McL
z?fZHyde`GV>ypoB&36}UdAG2FH|*)DslNG4++18GzrJK%ORyA-)ze$;HB}2#8swPG
zes*T2@?iszvqM*fc;4Mz9{&B^-LGFR`@ep0u(|5{-SVy3*Y(cMvz=WKdXANy{q@`J
z_pkl^et&)8<6|$syu94i+gln@v%C6xo^JfU7~feY50`GtJ9hhaG{~fwm^s(h$FG;O
zt;%?HW#zYmsgNGWi;M2^r5`;QvlksaBx+syYD!$qN7vt{S=4=JsnplkxBE}^6c_XO
z{qyI}f+Yr*m(Q<Tb>f7_T&q$qe%mh-<SL&Cnr2>dnP2;Drroa>%C(=*n%~-z8QkeV
zW6_^qfA?R$yQ}o__4xX==k5Q;oSki6{_(_}=)&gErCw8wGB^0mwQ_BK>S7YHBPn!M
z$i*KYAFKX-uX}E?y8pKJm5=-t1lQg1-kx`NOYUtmP}f1)JnzaZ(`=R4h{e~J`AX;B
z+Y_l9wWZ*rM&hzZ{&R2Un0<YH-QT+W-IeL_b)E;9)-f@1hd=FCJbn3c@Z;nC)A#SU
zmp@yU3@YjGRlU}oYgZcu%D7zI+*dcHdV|Wd(A8n3Uq1w}bxE(W|NGJ()ZVyP`#sk7
z*NergA~r7Sc7OJ-;^K;Gg@lKzMB8=z{r%6*GW8bK4!bf%GdRXpXUfJ?Q?*wYJw3H5
zdi%Q7?M&*RM#Pns!C#LE`)in*hW`Eiz5MHhhN8xX*6g6AUZO{jA77nxv`fmOV8QBk
z<^?>ZZ*PU>-rDkTw#1wkw$ru(8w$>@3R}C%bF!MDDaVeT3l=EUempAv>D#xmuK^83
z%?+)uopvzg@w8|^UsR~|pCf{SA%X+caQejv8dU*xcOy7>r&TXF2p($z^@qirnxD#n
zy2K1VZp}|wj`z!7-&Okh%7#SepTB<Xs<L2c$euEL_UdMK{#T%G%-X1}r=G}}M7(Qk
zc*^qn+S<#H`|aPoN@QU0*_3nB$oAWf<aKgwD?feuWK#F1LN|Jw&&``Rxp;Z6URfD@
zb!+x@ZL9jfzrM~gOl|`e@QW5HndaUKDJ(4P>gn0@;-k9%yentT@2`1$yg&Qus?b-r
zx38bs|G0=nM?K@lhJ`AbA08Y8RVdl)k5g8MuP@tOpSkYHaryc;uM~G2IoQnpw*Fqe
z$=lo8%fAZDdH1;A9+VB<ze=>Y`tkActyN!N8T~JQ*L6%&OUr9@`1)%b5)X?A2`!p3
zMda(7o57ixnXfJ^Jgj=&*U#@7sIYo>cQ>dj{^`q?kgBR(eDZcNuPh%Q@4vpY`1ze}
zvC0XSjvu!qyuGzGbbno~c>l4THMO<*JJP2u@tUf&vx-CS;nSz3hwXm%{!qPPXJ=>r
zq}aP?_fxss+w-rVnyNi@#*7t-hub_SvGGbRnWh_^b!A21tv!{+E1##Oq`dg~e13RN
z&YEXuW){1C|NU<F`z;9vnSAG11cI7gPbJs1xxQmyi17F*rL(zSFZJrGP*4xX$ET-u
z_V(@D7cE}Awe)pZYFgT~s&}u~?_alQk&^E`o5)Ee&(6#|ZI_&rvqrA&M`G!#E1qqM
zF%RGS{B$}18Z?O!+)(!R*3xCZv!`V&xV<$y{eJu`UTL!z)1vb(-rAZC@+GKJGR?kr
zrG-;iPih`07l6v)&1q+MwcVflsaeyBfg!ITGBT2jhev0lt${&6TjGlo6P1_F+ns;k
zuCl5MJmL`(Gsnr<d27|zEZ@0Sp{=d0v&?d5{k;L|K|eV$QOd4n$E)k>*E6&8O*#2F
zf{~Fs71T6XC&x5r#TvV9eA!u7S4~~r{$N_n$60N6?!;79S5Lq3?(yT~`|-2p%#o37
zTiDXV(ko%;Gzrvd`TOhjdeE4IY1$cypTB>5Pf9y8V_{Ph)6wI{<6keHBJCr%$VYHP
zo({_zX>P{TwLgCSdiCe$XVq=<t;^5t`yce&>rw+Fv&=Sr8H<3OJ9qy2^?JQ(?2joQ
z-`w16TKlWy=g*%rO-oKM0*^VZ+kOz#YB@L0_VtFfD^|Ri^qhr_Ev`h$KwI1U(o%cX
z=<Rv2Z}0Ele<ZtuiHRviqHWXW&8nWlYCZvbtG<?ezgw=YtbF+4ul;{MbsHHOiO9&j
zF<YOjkif|B!0pf9zi)$!j(+;|spQLxi$Ui(xw(U*qGlBp70HP0%D=tM*KD?LVq)Ub
zdAGOaM!&tkKYr%SnSAfrPoFt6<!stzU-P>vo}g9|s4;S^SK4|`{^pw|DJKMO=9s0X
zr-SO5@XtG@9TibzU=VwJ#$UiIXn)<`kbr;%OO~ko-nM6t&C(@HG;C~Q9334eEm`c|
zuVrf++uGXt?eVYg@AVHGfLbEAwoA4xeDWma>WaX_`$AG~ZOH@;P0cdReq$fJ+;6JN
z(W6H-O-;AD80ee_6*M~zZq2^#H*w;`uKxb(8<UT}$uBy8;zU4E(WbvUE-rS@J~>I%
zs^Y_frsif<&%M>(!=~%Snj|0N`TOa#K4?fFC^&d)>S-}mRaH=%dQ!>7?FYlxMuoN|
zzUZ@l7qC8V@0`yY{Gf^YYwCIL>3X^!V_UMXuM0iiCo8+|@x#EPPp|)ezkhv4;o~hu
zPrY>G_C%bWWqSG3)6?EMHT$n^oazo5ebzY=$_Ofoy*xYuoSd9i9#>IUw>F77`sdFd
zlk{_QwEwM|lO!l8$alH-U5hEw=wr;)goDs=MaXa@+Q6fP)bdaLY~Vp|NO7EvIxs09
zrSshZoFzFT-Zg?U6~p9<pz%&cP@#*Yk*7EKr+YIi14Dw5lnw)fPK#;8yGA5=P&p4u
zK?#a1I^Pd~;ukvf3AO=AW81Nne?U%UFpvaS2!}u}K#~VlJfIO*h8aB|<GB}t$FD#(
zHawM^p~M0jq6TY3u1Q!K8jfDDm|73=BWz$c0;#59WoT%<kg$`TNsNI(%;`W8f1ai5
zj*5>-l@%2y&Y$;>jEq$MR{riz<idpu^&})27<LHmNIjrc_U}*S**TV*kCaWaVK}g=
zOIl}h{ezf1*$syd9ohmKpRldEa@CoUfx%p0J8y*9Y~SQ#J%Nsn2VJAr+}GC8xzeq_
zZ^eWO0zZHJSP{6`P0G4#&8JVFWcspiY*<+J_0>}SeLtMa?^Q0Zsja=b#8X%|cGngi
zc~*vk=7oE;{@*c6@C;h))@xGn;lb%`5f?9B1U1m|_WvzAJKNlUu66mf9!X=+*hu^1
z9JAS=zWa$29;NT^#TGw16WA+d`sIkQ{|nGK=<DN*3=B_OqS<vk!7ljxdFq4-1sDJB
zE`NV*lB)NYFPHtZk9LWIMgykKnX^Vv*)8MjEYn*%3Kt*#2x=d%3SIr>QMZ29i3y6J
z;n|RdPOPfx>ei1785r{VOe5YMe9IgLa%aW`1yxnmmp3*htA4Bh@vwc<%^Xmt@bEYB
zxC+O%#EiGMw({MM-jcD9PuA*2eeCKmUDNDqKJ0ul8nf9M7!GiL`t%7jfV^OV!q1;S
zHEnESUSD6o|4rr5`FH+5?q9xqdELLC&xMXZfBroC*O!-B_x6CQz|iG>vVULt*I$~b
z?0)Le#+YYq75vvg8Li}H(Ahbb!Nt$dmEI_SaY3=NqC!JO<w#;Rs0v*hWty6jVv)no
z$ER2L_tn+a+Sb;$|1>f)<XNn%;tvZ6nG&`>Zf)Y>Hcb^37fnsgS2s5=zjW!6Ojqlr
zb^jlA>#s^Y+{Sl%b?EA6A6_>#F@fsy+uL%3eSCVHoSmo6ox4_l|DPar|9K&Ica^UH
zb#u+DHjap1Dbq`j`|Z~)Spq7bV!zDL{(Jb%%a@fG-?k;je7kdXb@=J)*RLl=-`<vc
zbzAOj?Oo;!2P*gd{T5yO`|WnV+vnz5hd=vX>U!YTzS`Yk>ta?OIpXrW=iCCv<|~_0
zy?dohy=I%|?|WnWZvX$ft(ljfO*(#Nrm_3{`hPq3{dmN^{r~RwZ5$DoTE((&Zc0_X
zmSmc7!NJwl6*QJQ%QQRf{=d)X?Oz}16wbP^pfNM~#qI6uUtM3Hf9op)L+bL-)nTA&
z@bETe_dX3x&6BRmTGp$>)`GfsNl8g>ZtvN<S5#JZ?Z)KeT9EOk>3jYB{QCa<`Savq
zU=i!2M2V`WQ^T)p&yNSq9JIE!o;rP6JJ4na_xAYa&^3jRk5&Eoc>L=z>3oZtMH|x3
z&okn2{`~B0v4x$XVW8P;Uw)ep4V&A!7<M%7Oq%$6UF_~FTQY+~SB0ERtlnMr_RVko
zqXs;s@9so~t_qnrfByWc@9)<B{r%lq=JVh0_g|lws0?!Zyt-eRKY#x|egA&^+UV_J
zQBk+9{&$O<bK5LJeD)@3>#{Y|^kP?i`BJhq=Vs6(5h<xvD^_Tzs;X*QTSp5D3jX?Z
zT7PTGNujTAZ-)yC3Z9d*Vqox_I(6#O0|yQW-DYNHPL(*OD!u?Th197&?}F|3JBzhK
zS7jXUlLd{*9Pg9eTKwFv`t#QO`*xn<%Q&;Ity$U1Eq=;?2h>Nmt@;8U|NVXc?7IWG
z%-4=ys+z3kYm#w6K{syCjl}=6^Y^V(^PQ!ks_L43ZB5`@t5TD)Hxa%w3>F?S_5Qt{
z!H$WW!JvEdf4`Gw&raRGy}a|Sot@pcze_uNdO}iCmi)cGx9Tfs^t1H)-SX^PTQaNO
zZoRG&JHt-r-~Qd@@3-k^?0-J58q_e2+?<wqa+2yY+sUhUrXJ|(>Iw=8x#Id=H)@MV
zx0r6xjb{%ZE-ZX}Ec4Ee!s&bRGS?^lxW4~iX)ZG>!vUt6+S<~8e|`$x?iT+V|JG_H
zXu{&0_4|^Fv(6t)t;*iK_>g(<*VospgO~f=+LU^FE6?3ccZ?Dk83N*B-!JE=2W9N{
z^R+ZIc093cY-|*t%Xa3}sYy$+t7@J8{`$JL{C(W-_1)_OcbB~tI?l$z5>qxeywVv|
zXZ5nMuxKbK97w$V^78Vn#m~>-Y_5dc_A#^by;wFoZ`1!>p{v7I1uSebGB);>seW=o
zus!+iLEg`xy6+Tocum)a`2BTS8X5%^tgdl!^MZncMC9c1;#bstc@emD`SR5pHe9H?
z^YQU<@0j<8`R%Xt$y#4o?9Tsto7YsWmFef_-P)Ae?Y#NxVSf9J)6;Zc-P`-y^#8m_
zK~RllzN75zEzlUk$B!Sa%HGWQ>-$bpQj+ifR_m%S8M=|1T-f>Lw$yL-Z0D0Lxt+WH
z<+t1U;a69MZcRSUr>d^L+Oe6ftG~Z|$N4WWFN0=7?iQc71q~_k9KP`9=jYJXVQYns
zPb-HuCgP`VE_oT$D{mindYW!<S=lyFGq~(+ROy==7av;H*L1#UU}WA>_BIMMcV$)m
zZ4DDM^Vc)R=Q9qqaH=l*JIg$Oo$qWjO+7uo%gcNxx3{<NDtWmma&ubj7gNEf;8}C-
z!q5YtKB<t9kXOy)lkY*5f=SdQlhjipzB7%Ub{!WI6I)jL`daMAk55IjH-P8dn?d#T
zhfl9Q^-FD;Ai=-@SqlKF<`1NRs_ux6)z|R1XTYrqP~1DAwO0&H{GQ5#LK)WVxR$V!
z9n@06(VhXdSJ3;V;0`QL<BC7YT>^*>ET}_^<V0*5LG4UXhZd!o;jEzbAGy79NMs?-
zo-j-!9tVRPU|^qv=2LwHnHZ2;NTASzHGB|FK(L2A3Y$~Eoqzh|=~Ga2IyyRj`urI*
zKX`3@eErqO{hgf?+uPf#zP<`gnx7~UwIQJqG$st{eU-kt5_o=|?bg!Q*H-WAzY1C&
z(XeRIB9r`kHlVS`^?N>b?b);E%I0+c+?$)8cCG(-H9S7^<D;XWzJA^N;-8?h+l!sg
z=LNsMw$`-#T@0w3RQ>&3sEbR>zF)7jH_IIriU21Ei|VsizP-J@wdkprs+wBXjSY#D
zmN+)EtxP>VP0BQDidp`>8rSQcy}hBJ@@V$@Lx-F|lM($kpE`nqg5KQz{q^<oW4+SZ
zKR-R)_4nIt-%2@cP_!O!iZOKEk#$w8va(WBP3_pev$t<YU%Ytn)~?dkM#jea*6&ok
zr)8X<XFJO*_m=DT=g*&mCSMpC8ToGK?|P{QX&1idsw+RmFQua{WsuNtYfI+iSBVEW
z*?1%#yiz=Ha#i^Hcdrx=aF)HhvvSE2m2m#UCA-Vs23=m}8@e(`wf*heTU$53=jY<m
z`ub<i9GPA@+o<H@eY%1Rx_<un@#38I`w%a$u0w|pmtK!82URrs`+h9Sy0+$}z`Hw)
zphYR%g-5fcHf`D@A|VlxRGpBpfamaqiOTMJmH(ccoc#3p^X2>heO*7@ChzB`r&UiT
zx_|lcxc~Nc&_LL1^Zc;GZM^!Gd6kDj&2aM_Xg$}x)!$!D4UfC{=H}+mg-)&B_m&4O
z_1g9ITJ+aHpU-QXnuf05|8Ex;7uS{D<@unQ%<JC;#GFA<)w*NR!B1bmUj6y`xp$6z
z`MWu_^_fY@$yZkftJ{9L;5>bgdt%~3&^&SVyPfW!x$)ZS>3XrCX`)w4r^j9Dku=t;
z?ETaNT6!UES@58t?$=B8_S~O8e@?eiH!%3H=yF43WaOkJyGmcjec5x~?zazUr9f8J
zDkCE!mDq~wp^lD?Ma9KaCr(@_Wtz33=;^6jTQVo_`~A-P>|E>X52X|p6+z9yeLo&`
zYu6q7)Bv)lH736q)V4OwymTb-_WJ$*R@MJ`EWdP~u$b7gEn7^UK6zrHQ*wV>?rhK$
z@}Wa|RrekqZcp8O^U8An`9kL>%$&Irl(yd8*$FCW`(&-vW}jVl=+Ggd>nG2j4|jAt
zc-3av(~WH03=PsTkbdlg51c3W?6LW+{;$j4u>w+M+;$F{t`|FH)~r>g+1D)oTv-+B
z4H}{a&4sed*91%gwP+;U7K&<zS=_09er~Rpzkm5||C^UV-7v#*br&;sm%SB{lwA4a
zM}@3)nUA8PqL-&<pqpFUq{)-t9tWi??`b+04>q%l%E+v#`ub{R+}<kHb>h;}t8Z=1
zzI}MA%GS)wZlGb%M@PFs6PKV~f_tCL#ntQgY1P-)A3b)=>S^TM)&^DvhAlWNjk=z*
zX_MQJKULrFHT&702hIE@)!%Z~Mr?EfMbgnOQE&s})D+EKKcCI^t(6N`2Dx5w-4Bt4
zDxfJ+PEJlQ4-bv6GoCz2X?I&~!p<kN<3(A1etxg4by)K8zP)cuPg#R|XOC7juoiDT
zA&V%0@r)p1DL26t0XPRGc3rSFaOFUBS=mn8qW3JZmzx=&H9O$0GdK|$xW2&G^91)S
z36<Q)JzP-N8Emk?hC9rl^+uQ_H`oQB$}XX^Vd~78D}861y?j2u{@P)FdvFwQ*bo5f
zVO(7m`t;??m#-9=7#Ly<r~3&?wJm&jxP5itVz;U{8;_gR{3v*PcX#-tDU&BJZsV2C
z`uFGOIvFJf2EXt-Ni)APKQGQaQ1x=@^e>-I>x1Tye|@>^pDNK-8-I0G=+*7{@q54D
ztJafIWMDXOwfLpT!$YmyrWGF&K<(E3|9)k6{$03mA*fFnV_?L<5Yr6m3@&AS{o&!^
zR~HsKul)V@@88l_S2Wf8I2ahND<$k?pYA8f#=`RA!^6W%-`(Gs+}_mOJl8^rfuZ5`
z^GgjN`#>c-JD<#kd~Ls*plM}L<4aQV<*J8_3=c}u^b67#?#|v}k^mZEY;0`g;^w~m
z;9zs==9^O{OjzJI*J`DEzZ_`vcZOkdjHL?$L&NH4ml{I1W`%-A4i~%i2BoDftEs8k
zQux?yu0^4fu)5!s=kx3J?CtHt`2-mlmM=P3#IIL>amD)e>yPzHFE4z2Y-g1Q0|Udd
z2fI0ZFMyV}{CqNbog5p(0pAO8Q|tBeH`M)j$gZlc{`x>8^Qm*^$|`QID0#?#vyE5U
zXZL;3;)a)(muu_l`X29>4?jE0wDi2~_lz?$46`mSI%*nw`S9Up`vVLN2hJ_!y>@A-
z_tjOQ+Msm^zrVi^4-A~hbGYD#rk0k`+q%`^>%(T7<$hUT|JU2!?&lKFvJTs?SAxB~
zy@NsG|9-!Zzg&9x^5v;hrlj1mU}P}Y3txNi)alc~F)?$Rnwp+Gf4=;~hk~{7`~R&v
zE-x&s%+JsN_0`qai+*p<xw*)1uGPu=_v0HI8@qaYug)}1U-!!{?D-|O>`O~LcfH+q
z`^!al`ITX7qf)EZGqdw$e0Xq>i<9%>GT+%Di`{sC@4Im$0yMhY%*K1k{C*86k;Prz
zsvWW-;Zp`9L&3TgD>OjUw};z!gFQSzH8!ZZuypCt*iTCz?Ej9^V2Isawle$rx~z+f
zTA!VpyZZmX@B2Y%b4&gIy0x*pubnwwXgS?10#tBK_P2|C_Rwom+Syr4@7#$|RaLcY
z(e_*wxVY_J#be&5Po894TN62HiT(ed=RsrLov(dnnRv>{_3h7HbC8K)#!*q;YtR-4
zXpq1-{oEDM5InE6*$T&IHYwArE290jW@cf5fq`5c96Mh8GfY0V!mU>dG$sP-O8U+;
zas@5bvitYrady_}HD{JGYMYpZxcA8vp4$8G=lOcj0Kw8_A9lan<;^Q?wnhELrGE}_
zIo7Y&GccqTx*mwynl*LLo;@PM!pZlay?wj(#fyyGySqYX&YU@2_WLAN?=9))<$PzG
zy<PO%f4<$?udlCXUs&My>HGKX`SLau8~*(L`}Lgl`<RFC1AacZ)L@!^PG;}VXR~i@
zO7)(3@A;LL!B$02I-<7c)t-Fp<m~+Q{{Mg1b)PpeGH9H|(s@=@S9f3R-Va&==AFA9
zG~OU8A_7|N$9G#hWW|CF8w_gye!YJEBg?hNmrNr#IXPEFZCwSLc?8WxA3S*Q)0ZzL
z7RS;y$9{hFIcd57{Anto>tcRRIxhPDIrlO~hIK(=>%(^3`HI?(+3_alGIAqkPy5+4
z?XPyA5sW9cr=+K|t;yf_)6HzQ@4<ryPn|q@@%#Py_(u}P|0amCFMqTkbe1-65(C4I
z$vB!dr>1J_|6I8KQTCLw`QCRI+Z1IU0FCbkzYAXKB??*zIXi#f&L@TUYd-fjH8q8-
z3|bo09GjT<(6m4K#)d?Y{|;|!WM<ELaG>#ejW2`4&4`Ujtzqk8UT%2%<m6<(o!d8G
z|Mm-I?0&z=(fLQ}Uo33btLFDydhdDAca8p-e~SXse_o#dZ^{1uf8T?8y{_WBKs{ZM
zTiSRel{{C)?cD`hu=8lgYtGi<=jTFao8_+iS;NrqnMcCFftih`;KsJ%=YDr9pU>5k
zx;XXcx7+z&-)_Hem7~q)wUm>GXU_|hgs`w_Dl7Bu?h?0szxlk~<z1z(r_7qQs;7s?
zb5f#&mWD<^Ufwz*BO_2w4P6&=)9!9W%~|_<%ePcd37^Ih0h-OcwKe<g{{ktKj0Nm+
z6%K-eg3InEKRGcmYFp0Cd6my3bMNf9_%M`r|KD%3=hc3T{Q3JgsG69xM9p{Bizg>1
z|9ZFkJ!k;RQ~V#pn#j$^wiq%pd~m<Mn+=p77A{=Kce_u<a*_GHip5uo4;?x*W!ki5
zbLPmjx4yf*EqC(SwBU${8?NWAAuITPeR&!DNYcpI`09?rWYCnkb30$?>1n!8pFUl>
ze%~*zzrVh2mY+R;{(4Y3QUCwn^-nvdJ-yU0b^7$>py)a~%hZU+`Rc0B$trU#3Y|JT
zJ6~O1-hZ#|cW!Xp6G<VVMMt~EUw=F<AHF(lEoh?Ltyk*h^7(a_7P)qRdA)vr*3mA}
zZ{_j45(W;1g@siw7Pgy|ya<?US?tCwrW3F^?d+D~=jUF_@iQ=lU0fe;e|Da2w5O*h
zXaZ>ocfI>^)Jcn1Pfkwe;^dsTeED)vxB1GID?-=1J39jpxAB_h-La_l3|#6ZTKe`D
z$a|N6e0=<NeOAP#l+JT=EEl`WRUYy5e=VcO8!=hkKP)S2m0OR*LeLQE*6i!kRQ~??
zeBR5)=Zd%f-X)sB%U&E6k2iT*_xIP=;Lp#_nkFCP(T&=2;$Ljb_j}drA3c67yRRFx
zKp|>#T5lV_{JI@GEKIYmcz_DLdwZ+BS#<XK2s0#zfyO*ycb9eb^ng|f_sLqP)laS_
zvU&OXAiI3Y4Lj)i$MXBN+d(BHXyIP*vojZKzu#S+cX!v!&l|)ZUTXMyEjnLQOY79X
zZ(oua85zAiJT7cZJ`QSfUS^u6a<}UB+Nf<gH$`P{FZC9GdvEXVBi}lO)vf;gI?%|x
ztcRC@A)H0$<)QD){kR4-{+La^^sank^}Vv&xl#M;_C9*_$fV{+0jMi$XlOXguJ+ee
z+W^Z4ml~!{omzVGXcK7cJ#0<H!y|%>3<b&1v5YAbCIq}PJbCgYUvF5ZUZ_pUiwlnP
z>;L^U?cHco_;U80*H>3B-?C*((D(d1J3cPDs?5Of?v!Z!ROZh+O%hyPU0=>Ezjtx-
zdArqLzLbcHiLF|(!sF%3mr_P49iSP^zdz5{mpv6=WMEh~%X>M;@gB*=|NlI<_ww?(
zbf}g4?dM&tuC7Kr&Vhk}QpRaL+U*<+4VN!kOs&`BjhHuYo|mWR#SMvvzdUT02Q{!J
z>Fr@(oqm3v>b=K|3=9Es5szFKgN8R>Ut1e%%frABb1rngQp?UcavRodo4V;{j(BY-
z69Yp-sHJVf)fIt{yC!|PxY&K_ym@}F*ck2vWNf(8e3|*$(zw$Ku^eHXoSapUd(EG`
ze7VxGnawgifq{WRZQ~Is9Z%4}Rob~Zpf2yz=g&bo>iUh1$)G+~I6p4~!}5ioHWYuv
z(cY`?o3HLDe0*g`VKPKU8Poz~U9;G|KkM0<nNd3m7JmBt8MHjOSK8dKSIV^L>IBdr
z(ZesG_(|mtV`XIpEvGuxC+od|iQ&P2(EN@ce}wNWlZ!t;KNl4fTL!9^0~foUI(IIt
ztgLM1^DUW|k98`uFfi<}^W%?res1n$6;SmB>L2S>u1S>GbTdawN2lc21qOx!OVIex
za`rV(o}{GT7h+&IuyT&vhDD1O&8hWfU^vAqrStv4!&i(93=BJ@r|)OyW?=Zk&pWLe
z>kJpTqkud@gl&!ux&4o&9|9h>YeAdga(*20?_vTYe4r<hh@KF*4+WaxLK-3JURbF0
zAJn6OjZtmD;sQ`l$f2^bva7p0I3QrcpFe*<D-*xIz8?Q=4`}TSXl}HiU_(u9t*C^=
z3eXy!)6;bMjz4|&>{WjK@7eEmzqh-(Haa|XRY>4$v)nBS2bn}gMW<d(-pK>*jA`a=
zIP-7koE0lHK=W6i=A!ocJxcoe`d{DN-0TwYYw_Od@24(b4t8$ixtP6v@3M)??yqia
zOy2eT-R`d^)#u;nw=Q_l(8edL<q29uI%NiUt@mrt08>fHm#=@9MGAmAQV|{6%Q&{@
z-(NRXJ6y}q5LDt$RsjuG=|*q6vLbNtmdel1g3kB$_2~&tXycJw1nS-2+f(`K-rn6R
zEB)qLfh)8<mBqgc4Gj&u`uf7Wyt<C{%Y(WD@voJm_&@`U<~u@Hhn+lq+S}03@LTS^
zd-uBf`mSAD8$EUA%*xQ~pTB;+>T7;?iLkogjqO+0L|#^m5q*7mdA|y1f60zx7o&wi
z!O>m#?aKo!?Xl-yUS9t7^?Ll&dGpp8CLaS0P`$df^>ym`)2B{NQn|V+^!29W)6_vx
zThM&^)Ty9^goMtwjg5^)JkIWYGCSXxf|f(Ajo$7zDP&`kD`>sAlzHAA)$=FMpTEAR
z@-rwi-Yq;Xd)=&}TM5!Zk7%Acd$x9d{(GU@wKX+we(S3%Dmp5=^;~#(xP5EI$E2rE
zpK99M$BSx*>3p5@|NH-c^XvY6bg%vKu>I4Ag7u!Jp!8;L5g#8v*S>z=k#EJ%&)xhU
z@0XFW;_v_ZHye*%S>`Kk`|*fy)$_UKdR2cw^%kf>1X_miZuk3r*)lszLF0-WCcMtw
zur2Q{X!(U@&h8jyQ3;8Pi<t)=eGM#qeQob5!;lpLj-aUwC#R-!^X=mo$$EQwUVL$J
z@z*=W=QZu@{;gUU8z-<~4yfVJ#lcbV)!+fk=jZ3kzY07^0WW$Ic)$W`#H?;Fh<tl{
zd-(5fZ)La1+EfGxtNZDEowH$s!P2EmHPzLRCocTGE%$cH=9?m7Vr5q!gBAqy9KP`K
z@^V?GYro&`Uq54p#Mjr?{nzjN^(r)e`<{aJoc;_9r!2$wWNd*<8-P}H*G9u94%RJL
zpx}84QqZnDbjay<;r>6LygOfm+9>b$exKLW+$?J+yCd_m8n28+0BBlwQ|jq;-?yK-
z1j?`IYZpWyD~M84QZy_rZ`R#;ad9zdW(wqyg9i^zS|Vp#wIXhB)vnLytVIO`7WDM+
zfR<BeYoAX1dv&36`<2z<`jr(GEAsE}Q@xf3+LaNyI_z9!f;yyFTlZ_z^QGR?v;O?}
z2x|Xr+Pqm*N@~^C?CYzNkN5Fi|M__NU(kA=q@!G*EUfM~C*bR=t5^5cR)dzt$y$|c
zkpF(!-yXCIaMF_J^XvB=`K#_X#{;y_F7^1EhEi3nur;8aJgO=xQ>uK5iZ(efR*n4;
zHAm68E#})V(Bg*R?st8r$cr0HT{()83qVli0xGBQjF*5HGbC}iJe3EP2QY=8A#*|+
zahK5G@)JCk4qn{`nkgb-Rsj@|(1I7dMgdaPYdYawC4p@f1d<1mGUlAJM;>y5?D8SJ
zN&<bX3Orf{D%Aqw;^sYi^hiWR1hko=wY@$2@2{`ZZ9)Bt;F6LpvrMzq>g(%41I&ho
zhE`QyUZ|e8uKcuwiHYgS!-os6t`495RbrYWWSBUM7w07Um4(jjLFc=>yFqhOO3KQm
zpU;|uMo(th*YCTwE*7*CL{mZG!J_BA^7e7h&&@5qy{!*CRJKDYA@}~iSncq2AxTM#
z+IXeaJf%!BCPZz^SsA$4E%WoUvrFe$m%ocCeRbtz;%!jFv!jD!@2^*@XBnk>bryq$
zi9w@FpfR5oPT_SAJJ<AU9$Nk6;lqa?+ErCmUFGEDtV&)?;C5$aIIuMuXAgbpyx+$Q
zR6Wb@mQK&QvSOip-H(Tho*y}O?A60|`LN}Fb5kUaeYJ0372NRe!Pe_>poz0v+w<#P
zk54~ZpUJ?G7jv|J{fxiGnwT>M`=!#)%?b4L>&v>jDm3XnXm3*P?QNOY)<lMvp8eF;
z@RdD(@7HOdh0||uZwH0gIypWDhEzRmZSTg$M%8WXY;30tcw{Y$o~&ADUj8oT>GS8=
z2O1dpZl9lPy?mmwd)AK+4_C$S|5w_3^A$(L{?C{F?K4kL)176U4zh9S)6>&;S9vfr
zNcU(<twHHo*Dp28y#?xQtf>G0udAb@;D&kfF&<G75e+-Le_iXt;{-R<rT_f&6g2!I
zSMh-H>+9?N4Xg}16wwyAdHwnExc}Ad?dw4^kp&N(+G|0(zYwe2V*fAD?eiD>cP=`A
z@6vYpx`?>AIMBjWF`bA7vespwL5X#8QVb8+ifps1udk1ffAlvr{oI_L$aBUjSJy^=
z-}K$K=EsIz<?q+My1F|1?X9h!zJD*jVV`)21+?J`)I~8eGLl*M|Fr&o4P|BLg9i`h
zZC*FC;cGo;ji`M6pFq&&7M0i^Aua&{6Q=3M`yF6nm?9m!yDaqjx>(t5OP4RVu5tR%
zkE1`U`u^wb{QWDdzrO?ZzoVjNWnEtv`)J1DcK+=D|Neru2^}t*eRi3mbK8lu&7g^&
z&{ZKjCmr8nvy9{a`A<(zgO;?EzPodC-`e{B|DrY~wcf645n)KMT^G@Ob$z@&DBLwQ
zPwvyz*Z0@d)a2sl4-W{Kpz`v?#l>F!{^5y<3;*ueoPK_ld%xVNQ>QM0!coaVbhcUU
zEYL!>w6jvb&tF*?tQuPpnVFT9)p>2T&EkWTLPA28Ow|qt?dT}{@g!k)*;`QiidWif
z%8&Jo3=DT%Q6?bH{8Rhh)5D{xu70~;+O}%TG@Zyr&FuVI78VhczPwo6|LXq#f8d3o
z>F4F%-rRh=u4bv%RM2FS=dKsGAFK{rt996*<hX44itzPuseh)Nb3JgW^?e}7wOyjx
zpq-%BZ#Lh|iP~4QQ<L%a=kxaZA2oZI`OaRId3o9O+FXW)okm7RUVB`u^!3-DdH;IV
z`csj+N>+jzX{o2DfdX{l!i7=0%hrO{9Tdp&^B+IC{_gJb(`lPCFD`NgZD=^WkBwLA
z2J^MAJ!@^05<EdwUDow=Yp=&uuRT)op!)sZ<yWqR=tgXKut+{}uT=Tn((sk{PqHv<
zn8wB{1sWjayIuGDtvP7kJhdu5oOMl?sJ51(q9Z3K=Tf=JbLPCckl`sFS6H%ENl8g&
zne^S0yz(2)&9w#@`t|+&_}X7zG&kBC7zBW}uGsx}!0hVgwkx59fnmX(oe#x#?*ISq
zw^i-0l9k2#A3l7z>*cc973yLP2Q*_go{)XE`yunS=={B^_V)XOu1DO=F|++}fH`V=
z-dvD_{w-i)XgIy=;c|}q_5c5#mizp>wYq+eb{}{pN65?`UWS6lg;%9?X1s382hGNx
zDLZTqTCmNFZDAj{$R%QS!U3t$#JaE#JYkJCRgb>3@WQ5~j|>bvuAp-P&}Y|)=>kD&
zX2#RDcqV(mRX9>j+={IW1gV)D$X;d$_AGdnpq{$EzJFn1Ar}|dr1|sbA3FTMzWTd-
zaOv0Mg@3;8jQo`C^={H6VHXbf;9cD5db%ph{Wd*|*|Jq3)9-q`?lGa4vvU6)SYWWM
zK4b@5TtxKgsBJfY?R=@a^j6jdeU@#zHn6@ba#<|Mb?3eOIqUb|o&G(zQ*9qJumA12
zO1t^zf6if+-cvEZ*uH$~zCWK%uZ}B!c1H5;y}i-=HXj;5+dJA1E3Ut8{qm={eq2as
z=+vU3BG5iER&KG3&(F@jdi{F$y7iOqf?DMb+j4I&+qKJT>Xa!j4m2{)GR>aG#m!y%
z>dMOhd)95<9K3$-w^_e_{hBg+_V4+Lc_k$wt*xz~HD#a*!~A|tu&AggXlUcXg9R@&
zT}7)wlWG$)-W&vVvcBA_e!p_twy@OH)JaPwO%ejF-QQjI_R{tEdfS&<wZqn2`1$!c
zXgwmo-4BPgYu8Smx4Zs--PSEzK*NrwPM_Yr@uZJ%2*gAkK{?AJm(6KsFZIb<Gv#hh
zKMxw-zk2J|D*Jywk}qWo3ky%3GpFWi<<Gx$vK9pn(cAMv<KpHWJ9f;(#-`?N{EW=D
z23CdxJlC&XTlVHnj;g9E>(=!#JB<ozR@MFe8vga`*UX=vp5EG7yj)0F7_^ukG_ZfX
zUw(ek|1$78q%@_y2lwvZAHQ<tO2xM;SFZf@`>&hXg7Wfm?_FDbUVN=8eQ`n2)XXd^
zCB<d7S?;Ct_Wy03R^Q+R1;~ttZSC!*)!*Js__kxmjsqW8N=Zp^{keVb-n!fQ`(r18
zRz|N`qjUAjl@pIY`uwyja|ER^w?!LI+S=L0DJv^0zWx92cm9JPA+hh0zrMQKSfJ|J
zEv9>EmTC67UwKDgf;{HHV_EfOMW39l)Rk}F@7Mo-Zn|>iN?|?bZ{NRr2L&kX3Y`9X
zhJAhAiH*1OcAq_Ar*Ey8ptxq&u3b~+&Xs+e$iUG&Z=T%J<;&fxB@EM7iGsF2f>t&;
z=7RQ;a&dF3?>+Xk=;e=(k3lZK_2S=I^ZO?@>FkVICoOkA_4IW8>u1gH+dQ-u`u*$I
zlu46}KpvlcM=&flHuj<%Q-i_Fw{LsD2_&3Q?zdTV@nYcB>(|+D>Ba0=aO{}d+NiBw
z+~RsuN?xvfJ9q9}DQW55@2XW)Raxa?s-C`Y>+9nKZ32=u%bD@ZC8vc;jDf*SsMj_E
z)I<ynoT#O(UHa`!WNK>a%8eTXZEbC{GBP;kY_I;FS7{^nv&L@e(xt4o;_H5<MowEA
zU-#3sZhyR7zq_uk?j)7%w`DEXuUh35U;A|`7Z(?3iR|h3-$5Ioimc|YTC>K)>Ujou
zep~q>N5rHnSFV7%J8@^vo|Tf201dhK$yzVFx;mWw>*InJy}Gw|cbgaRpWei@@XV$)
z3mT?Qo~*q7`s%JOF3_IPA`2N%0iKnWrB>r}qy&5_$*!l<qC;Y1*S>o7%JY0?Mh3^K
zj94=}ySlUA3wOr+db9a_UPjMlPDX7eJ$w5n3)|&_{QUf;xC=+Vefw5RSGV_@fl{8@
zxyVVUPM!L4Ogi7CTB2jZzkhXaZ*A4Sb+}_iUmqW66Hns*4)M#PIxcdI+DtWe^Ho;v
z*kQ4YxpPv)e+Pe-$G>eipSkjW`}ybGQC7_V<QcV@%<}H6c=jv}v?}q$;adz07Y%J}
zbmpI5-Yae1_EzrVt!CEE91(&KO02&Ac--$^Ey2LRydvgd6zH&(4T4$`8ynesnHU%(
z+*r987^D|AiAt{k4Qxrc9bih^aJZfS^uq!TMMcNIfBz~TzrHSZ^_@F+G<tYu?9>b2
z;Im&Kl0}C>N>UQEVnOQCIsQ}yD~|BX@{HUKF?!SaWUZDMr=N4F)?g42=7>1JlO8#3
zUiCZ6-o8G+h@-nM-MBF$uIi;~YHBKI`IDriWYO-sy9ypUU8n?YW(CcsPgeH_HGKkW
zYW9GpAFf;xx%B+Og9V`Z574N9o}M3Qxkgr2)|2nQd(R2a(2G#&;bqZb0G-Yu>~B+e
zRSQ(!d_BaipK-KHbk*wBmv3#&1}*or{dObS@p<I5rSIP5iHeG59&Y2kwZDEpXsfOI
z{F)$HS=q+VZSC!)|Nnk}eYgC6XlCY0J~^8errFn4Y}yp`^y$;Y+4>AE(*2nX3Z6x~
z?|!PVS+#E6ybsK?Z{NQC^kc=A;^%&Qzg~-m93G*mskv(H+N+(y>Qm;=m$%rzdbPK%
zuI{ey_o`JrU0uN~A1NuRkl<itPmsFz`~R=ow#^K*>~PYS<l}rxmo0ns^?H1GW#vvW
zy%>piE19<)N|s7u7S&;xq!+r;%gZYyK7Re?^z&^p|DR0uPl=p%>eQ*GTc=N-e)|1)
z>6;rH7ksmRzsFc$-4btk$*m<XgFs7%8bOPOU+nw+?(&_T#h@jk2eR+(DwUFzoqGMX
zsf{;72M?22LxXMgw-=9&b_>5d`s(f5sfQm1goT9#{QmRvGpPKZH*em8Z(Fu(nP3On
zM$OB^!}9O`-Mec+=Qe0+YC5j}`uh6mO*(U}%g<dn)9|v{HezF=suKgFq@<*lo?cjO
zEodvMn$7d5`hfc-mwkn|#qX@Ft*HSmE)REgJ=!w+*5=Kd*T0NoNHAy7VQ>WP`+fE-
zEi^owee3e&%d=~0V(#9(8?~z>bHU#`JBxq4UcZ0Jym@tZzn?mD=E{W&6S%mzmf7Sf
zgl%BgHrwFBp>Sf7s&`0C%$n`@>#SeMwzjsme)|1))#}yUR{OVY3!9eu@*unXo_E!@
zzg{fP%FVs{e15%LQBFZYKyq^Ob$dnywhcBGe*+IPrS0gP_UumH_F1!LUAcJ^v=q*B
zQc-d7*4*1>SFc~sPDpV0`Sa(mZ@2S7si5@rwFTt@ajVnk*M@-(PXO(QzH|wcd|uA4
z|97$9{@)6I`#%A8^Zh?RJ3IT645Pv&P&P5Y7{7hy%$Zu6nin4)Zg1|}|M{HtsWWFn
zl9LyM_ECa5%X!<QtG~bFeObI||E%>n{r&yZufGlr4V`+g{(r5hscGi9IhLUFLqOXc
zb{0REnx$$`yTL_5TF1WMn~g!?6=-q9)2B~g9_bV=+8N{aJ1;vsxUO#BzW@KK@78|5
z>-PKD5l|tJpd7LxiFx)NMg|6+#Z9aX4ZQ&eyLdr$I}ZNYfWle-K#jf|9NsP9=w@Iz
zj4(-5hk+zMXgqedqJVF`4rom!w1i6RG%yPQZ(HmES1eAf+IaazzrJKX7F~XMxxe&V
z{&06tEzLH^Z@G|=P)JOS%(Q>PLPAeUtPWo?cZ#gre_#HsBLf4&%I(|3>;L^skN8z)
zHP_4Ao7?+7hbw5f%%I2j9RmYH8>kJ&zyqpj7(fLj1A{>iXpvTe1jxw;3_wG#4T+#e
jE5l(>aExk@_-4=W!}7&-zSph{3=9mOu6{1-oD!M<fqK?7

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-4.png
new file mode 100644
index 0000000000000000000000000000000000000000..95867d748c5f288493d1a13871d8d4936627f5fc
GIT binary patch
literal 21677
zcmeAS@N?(olHy`uVBq!ia0y~yV2S`?4mJh`hJ9%>?l3SguoOFahH!9jaMW<5bTBY5
za29w(7BevLCxS5J3j5`m3=9eko-U3d6?5L)t*$v=`uP9H=jqbchR2WfSn^Ixo48fr
zq^6dV)vVa9*<Rt1Es|~`vv@8#2AeHca*Cbqb<uSBMD13OW!}>EZYx_e-#qyHd+~d_
z@cC(d`M>vkzxlXs_uI1Axc8S|uWe30|NZsne>Zpz8?Z1iFkIeYS<S@2z_6~Zft7(F
z!H7wWfuZ3fM+5@{gPL*zBLl;Xo>7V66eKotY#A9CKD0Zx^SwOMDSZ9u9n<V<Aprpw
zN-fR1Krx=c*v=;#^!L}-^|yc4*3@jtzi;Ohruk4%k%2+1VDGHeO8fu+`(3)9?O%HX
zD?`K48#!jd^?L4car2UrlSL&YH00&wTie^S@9rv{Zu`9S^|h7W)Ad$GZC&-}&!3Xl
zYqw|p{Pa}yUHzvgo<D#8K7IDAuXgylJ#Su55oOU~U|4YCgvZ%grrv^rg0pO^x7pa(
zTv;8izjW!+*iSc}JW2Wb;-a&tcG#6GD}zmIf0dNJy5iZ+FR%A;#*ZHrb8V}?ZDLM{
zJS?Tdz@YQQD{8rRqJ&%L?QQw@*QK7GrfFyxc({#svWlyV%Zk*~)1*wZrkLg5i+Qwh
z=FFK@&t|5J2n#QkG){}T7W3`R&BZ&5pJyFv;gqtk`!n^fhooaOD}#gO_N1d+l@%2l
zR#vy{p1pjza>WXb+`GF%-TP!TKi)9EUlaWN{QT=jI)zm|)6dP>`Q&R-Qqq?L%={~y
z+xf(K>ry2dxfvL^4XgiNeQJ_qUH&fQ@-pAhl|icQA2)0;`2B6tn)v;3=JzTVUt1Ho
zxa#Yxl|@fatqNS+cC25%{@{l#H9w1TZ*TLxyv%oZ*ZsMhn%!F%7^W0QMn-aRaA=sx
z2?!`0HYoY>;-XN$ZNY<vJ9qDXJtFL{VP+PlsHhmVvuJ5t)k{@TF|n*qPfmWTJwMNO
z^+aX&tREj9t_oj2k5A5~BKF;JE>O0QIPo>Axzupy&YhpWe9<v`_w;G%{kTbU=Ez94
zEo^CF>6I{ansjA*e*E80r}eA8UJW-*J0tP)*DtS0%lzi9YHDISdh}>)`|b^5a)L|@
z0p}{Kt6$&QS$y=^`FXb4_v<z$tG;~LE?*{5|74>3l-aXa=kNRJHfhSli3?v|UY>nw
zisq+}9}Tl#O>;fqw9>Nv-yhcFv89d4m8R+EWZvG|div&NhEr>@W3y8w+PJv6W$V0t
zeb1lR(7=$Inkp)-FSR;&xnJjTvE0?6tEU~_v48)5p2GoUW!qFT|NQv4Dth}mtFkvM
z&YbZ{O-s9V{{QFm_S(kAmzVytc_66h<(ind@Xp=4Q)kXx>2LSbr7dwq@$++8cXn*l
z3R$6W*dXRxtj5!m?D91WX3UVV{rBT>)!(nzpT2x~GCur)R?KO8^LOvw6_uBlOIX+c
z+r!1h<z=I0ViK})<;qhhPZmbJ*q3|T>}HNxYg^m2ik#VIxnB<R+rKz5Q90|vg2viE
zCnhRyx|y@<VVkrHC^=u_xBs)ityjuYCV%rylavzzH*?HV)6-9%KmXn<@A{^U4FOu9
z*u7hRe`W6NZBkYxEB<}#uV3LkU2m32=A^p+f6H&?Z1esnF1F@<BfH!MP+mznAy8Ra
z8T%#v1;d)f_5c5AX=nrl1x>2e(bxCa)YRnS=MPUvSfKLq#>V7Z`|I~}adW@@ZTsbd
zvk{N;`#qogYR?$(sH&^4uKM~a>+-T*mCR31PDX9bni{q~F86=s%cav*JU4FK2okAX
zJ577R!9%5`|Nd0&+_`h*f&~uBZao1YFP||!zrwX!tgEy0ViPNO$(tL7dw;!J{psV!
zg(tNRcSW7LaU;U>(!amIO_PuD@XA_+nBOg#JUN|xitP2|iNBYg6BiR(#>mX3p{M6}
zyk9=NpkPB#P|%c_Ggm%&lJdK5v3viuL#^CXCr(WKf9Zu??Jsa}Se34-`}Z?_Yt~h-
z)nRLcqM~L^nlve7p%bfT(C)IgU9sD}rfM1SIOpEp7W)3)Uf(^*&y^D%?kXxSzP!-6
z{ma|!_qFWp<Lm$bzF&IY_PfWVd)4o4dFAb5vahX~sNxhR`Te@PkbLcziO<f?UVi6J
zOs}M|8z}ouPGfseq!YEp<KxGVQF|&jZrZ$AR7hx%Y4)`hwZFf8tIaW+edkV>{hwbS
z4)dGl-LcS(-sZzCrW3F^?d+D6larFT@9Q54{a>4J9FyrPsdLnT=joFtD@tEqJ9Ym2
z^s{M~udR&^-CdSD*S0z=E-voW*|VWOK0S8-ek6Z=b93^9&^A%ii284ry!Al^-rlOO
zK{Yitil<%wd^pU{#m86n%_QdB_4xX=X1TXkBpvM%=P|tg=+Dp3r%s=~+$U>&Wmjo-
z@cCZuWL~j#(zDMlJ2h2X+srI%=gys{&YZcj|KC@A&-y*ls`mEr_wL;TWqwe=y!d?H
z{<^TgO=A4y)=fw6-i>|v@}-xr@7DfaX>-5B?flo(=hrOqoUHcp_xt_j_gE6UcI>b)
z&Ak<JdwYKQw-5$zP?&2*J^1r||Nq$ad%w-9sjdC`>9qdq%l`ILRYF$;98^r%ntwm;
ze%<f2e)DWzp2>Wy1@io2x86&!<#(5szP@(z_~XZqO>=G-)c$(8yhTU+!eV#+*7o+*
z{`2ix*1SF<89$Zzv*3n=S&RIqK6&;G6shWdb2j8l8zeN`tNHAknx3Bh=ElaT-DPW+
z{BPCK*Vo_s`J8ps{<^=c``0mEd;aw4(!|4UE3>b!dv$SfyWRgk#lN@hZ(H;C_jl{U
zWjmx?|J#(my5iZ{*$K+d?{>epa}o<+ViNNS-11M&);3m9P>_q0GjO(9u1Up*gxXIh
z)h8`!WM<ELc4p?O6DKarFih5y*pzjB-P<#_4~YKw{ORnUKQ*59e;)om#I3&~c)8!M
z-|u$oOKiHfK7Rf4`So$^d@>qeEg!$SQ~&?3lyO=QpS+#U?6b>0d?-*=Q(G0d*sW#F
z>jt*draSh3IK-`QQ7xo#o9FO^*|TSVdw+jDpRCo21q&Q>qqYS6{q=Qg&CjCRe?Ola
z@i@P|wKaHk*xHcgezLl;yFzxCy$yPMYwOiDk(-mc7boVr$~#%q{n?=vx=N+Iy!`3&
z=cn)9js5!SYVc$=-;xgx9DV26M83Vfef$214Z+L(eto?j|Mh+S|7d@^pG!{f3Ak`|
zZS3x_lP6Dp`tSji%tN+jg<f479j+U-<wE_x&+>ae9+Q4`W##0*v7S4uA|oTcyu2p0
zx3}N9bH|4_ye$#rVt>1zD*l{a-Hb8KO-)RP4S1B*)sMfpyu4pfNGPf1=hNxm-rleM
zKKJ4hPvOOBXJ;Looxd+rzW)2&a^Bfz(@I`lIeFsbNzJd7k5A39uitm$#>dCUd)<1a
zB>U}ttpJsR=l}gT&%c**r|foa+wR@FHx@p2YfrBK_w)H{^T-*`&ez{<=ao*okz<y8
zq(jgxEp1ut?`gWxJs&<49KL`5{=@mTF*{|g%Ooc8=<DkrzJC4s6?uJqedkFVlaKSI
z-%s0lP}wPF<JHyS*>`pnPWt!#o$_IWFQDQ(bafaPH}~W($D<o&o9D0dxBnY5Z{ECF
z=K1qLk@~V<pD}h@&dhsNuXU$a6|Y}yRsL>H-LIGGvK9pn$NOX_tNi@&1C&61z1e*J
z%ah6eUcc@?j`PgAzi;ons#ltG?d#+2?k>N6T)sZXJ|5Jl`ma`SG{<aqZSK<^Nn=oR
z=g1M4vonp|+xcWColU#^cKiKvkDVre?6_bmu%X~4&*2LzgO{7s{wndEZFcsbDElS(
z`1u8&o_PM=HRsQtn$R^7fvv5rSyxs}e0FB$Vo*Ik+dO}pym7(-2Gi_oYp%R!4o^Ef
z%e3mn!uBg$GJ{R?@5LNEcyQPMf4{e;o)%M8RegEUUH<Ct_xs-qY$_@)R`u++{Wc?S
z-_JBwHnyw_3mmPApY?dx&djcS@a|pSf0qwuW*T!w9!P!U`))^$*=*msy1J^*XU$EM
zj&Oj|{e}$z!fHMN1qB=4?Rd-wDhI5Jo^&uVGlxb*WYkB-U0&w<^x?yW^7Vf%o-A+F
z-k5Pw$@c4&U@mU%%bU;JY3u9jgF@ANn$AUc`PwC*c8;udSX*Mo!$Yl`ZsyFgE?>82
z?_O0;P&LxZCHm#p>-Ddf&CXl2R!7<H_Z#D<&z`OFpKmuwg`b~)u64N|C>AY?m#Kit
z;7MQJY(B50p>aZP)4ckBm0#c94u8M@|GvZ02MT}A`50=sgKy5S2BB2H#KeV(5^WpP
z&&xetxBH#Zs<5?LJ@WSV40sOT*pS#9xHT(OSw-cDMd_<4hYSDzd2ZkP>gsCgZZTag
zP+_npe*e7{VQXi7e6#ty6g!_x!HsV>)8|XRy|vXi$85G?<|UQKXJ#57yRgu?_taEv
z>A%0fn;RJ!_4M2SyRqZ_zTZ7@d#fb(|Npmp@;j#RtkctU+s>weG=6-sxL@k?^Yi;3
z)EOEYipNZzI&E6oor=f3Zj;q~d+yx1b7@Z1%<wI2r;i^$z9MGlrj_<~c6MtHYNeV)
z>`-b;JYm3dx8$-fs3qUVC%Y;<zBV*2F0QM)`|=Xc$tFohI9l7=Ur!B>yVz@fZ^hr=
z-?Oi+iCh)4bJM#$pZ(JBGwB`tvEQF#UEJQNt=ZSZN=ml;%?|8}JAQF(w0Y?IxY)wN
z!dV81O;RQq3yvId`T6@dNPE_e4GTd{HhX*fwekD!-OD)m%WtmL(gh0?K%Ir(-``(v
z<CQi^KPTfm!@zO-oucl)+;!<^XD$8w{JePfrbCAhZ%sJJ1nQWaK7D%T_Mo(j2|L;L
zbqk1tgmoh~xqQD{KHsYR-I{5-(N;P4_f~Ij<CR|a_V)H{P-np~sb$jS$x|mxSn%ab
zNo8f_$>Yb}?d<G+UElw2>4XUa>UTNUx#Z=o%iH->Y-`3vC++ZcB{$OkysTEbeCZOX
zNnKf0mG%1CT2N;Rl+V}3><pT!9UgXlUF_TS84foSB--BXdaZYLMWFNhz2E1V<=<N~
zJ-#l|y6jEB+NiB2MNd5LRz9B#s)STBUtCyN^>*uZkRY$5(Gj~o?eH(LE&KNETeg4K
zvJD#o($CF#xSPXU@cluj&TsGTuHOBAUo<<v+?DC^bt@w`r)B>B_SUNA$A(u|SF7{$
z^Iu&Z?*H)N!&_Ukr;F*w>6Dk3+kQS{EM<~0fr*Lf$}(SRP^u1I?iYG_neW_M?;Sp%
zwDj!U+|^R1SuYm0%N0fVe}Dd8XkGaFc{MdPTXJq1mA<~_3#x^-W?j9qF4lT$=4H35
zt3r#f=|0e!V_zSamzS4yaZ&5BUg_nao>2b%eO(<LpejrC@5e(oK!uI{pAXHT(D?f1
zX7D7F)Kem%t3o_wt;<aQc6XibUi3YovZ^X>`uBvVPoI92TN8A|o>e0-Az^`ApUg^7
zt42e^<MFZH%M+E|MdanzU$_tea?t1J=cl)~x8JLLE_=7`_uE;P#mnL<9<u)Y`Saz?
z^!Zm?IE6)IW!F}HeP#K(tblb@$jU_r4md1bzWnu{pPxT{_;BIp=jXEDG^=9nEOch~
zytMs(UADaY%@C0uDYKjvxAXVMf*Ol;zu%gBUUKHQT~hb=*U7VIebxQu1SBObnq`)|
z>gDC-uXjG5cX^6t@RtvV`A;8io~qv9a^R3_$l9pT!otF;UoV$$&AzS&>Qo)(x4&|4
zZ?&kXsOs#q%l7~O`#$U5o}FqwGZxG;&0gi!D+MaE9zA;W=J`YZJDZliSRcMU@9va&
z^VV?+t9kr-%zuA>o6hXBY4P(zOJuTbPwkV=+u`Wk#&hx2)zw>bZ<~2u5|6K0$jHq0
z;@$4|*KX(UU#q|Ghm)hDBdFhe=<s3FnjZzAyzMt{=j#Wu5vlUo8wxy^`^~*{q*K_m
z_?Zu=oqTz@|MvXfZ#JLbQvBRcRb5?MUESTiPiCSDD6hW1w-?m8-Mp+fyX3_M#nKlS
z9GCmg4@*i~G_T?jr{^YnJ)K|Eza47jHZ6G(@b~ll|5s$o?>s!CdD!Loxw*mj_tmCK
zv@Ke+2-Kw7ntMB}v$K;g+wgwv_gE0mca}-vqnudhi&AS&P1T-#k3~#G<i(elm)9KB
zaxK}pL&e_S9+dyhX8Rhaotcm*G0UQGkyhxcCGYO;US0kDos><*1|uUQP?!7dot?p#
zm;0;7Of7VDbgX*6_j}3ryXByY+^Y81mZYR48L|8CZf*7Uo~9G{_*idc=9=!0U%rHV
ze|J|@T6#5T^dtTJysDQ=r@wg!YIllig<M$NZ};lSOr~ot&8?@)UR}}L`{Pmfx9Obw
zJ{;oy^!01$kC2&Pjx%M-%gd{u6G{8^=ks~fgaZt7txCPV->=^<SM$NqH1AGCe9gyJ
zyPr>l-`?9BEp48s^NlljN^JeV^j*>0^L{;>oxdgXvYKiBy*nq3i*sFhr_G;#zch1$
z-&`x#=FqN;4Fxy<{P`myFR%ZyKEH6DMd2b_AJJN-&Vr{=yGma#%e}oV^T~;cw>Bg;
zhpms(ec5kXwKjVDwP$B%UtQ$Nt$to8P3zZ{nP=02|Nr~@_3QQc*QfROt0XXnH#D?r
zf4V;5>AQF9e*CET`RmuGi#g(Dk9*Bu-7UX=_2uQ|U(cG~U$J3BfNu1*kX|X%kfmOt
z>HhrJ9Rr(7-|zkYYU%X2OP`*e{`z8Z|Ei>;U4HXszJBbwcwJ*dt9F>kraO1<n&#dz
z0ku0OtN9jv+fpz$bX`m&sDPYnRXWF3bP6ap?)`GfyXw!!<6E<?YJqyN=jI6os0nN+
z2nBgqTzq+#sP?Og?sA3SN*H3?V|SN@zP`5hr&?Q(Q}a_Pj))yup{qhJa_jFou-Ngy
zQBXtV^fcX1U%r%l3u!QFZfMPR+QD>+{ZQ!3MTJ_w!Gk3n{T#8(UztGzgc%zc7&Zt<
z>0Ebc29KnI$Dvx-PMcnU45PBG7MWvF=#+hZU1&2K?~}K0-@bXtz_2bTFK?ZZk<pdK
z?)+ERM1I~C)690-RA7VG!CPCiO$#14r28{7BuqNmE&h7rak=7eCJBiwYl1E;aAfuj
z>K4;|^7{4bJ13`XVrJ)C;W=6D+&s6Hv#m;3ZC?IB<m1PWRUeOv&$Z=UUh(_w_PMsL
zLE8%-yOqAVaq;G5jnMu7eys+zU4HMszFu5v`KJDcP_8aH?q9!tttxtY%5R?U%TFIZ
zXq11~S$U@}efIqM@jLgH*Vosl`!BpwSyeUd^zUg$iuhxMz++m8ywkE35*Qg06j^kx
zAIO$sU|{fZYi@nLYR|g!8tZ?3d;9v0<^mDZ+*?;}1{ZjmM67FM<GvpH_SV+9wyaYY
z)&2ctS<R*4dUlp+@i!5M(~Ax=F&uEp*bu|a3m%LH2do6hiEP{q3<pv`1BE(EGI*!m
zw4Xj{`t;>DZbY!Mv7I`8-2LIhhf&+}?yB}jZ%AmobLURi-yOSmzg|ASPHS6zUERKA
zJ~J0RJ3IUI?c32?v#(#<`~BYP#qRxaSKm(${n#PEz`$L2P3ilI6CR+7_i!6;Fl3Mc
zJOa6F*{ayxWz%i`ckAzqcw;TKI&AH$53ie=n7+Qc>V11#Zg5G-7AGgCDRbwp)!+Xo
zNZo&4$Xu(^bwBQ{>1qHE9oGIX(~aKd)7jZ6WtKBTMN>)1NjG}il@)=Dw^V+9<~{H6
zyWQ`@USC_Qzw3ODq%kP_=HA@ontN-DVd}fEqsmSU3_3?7`#HkbL@4s}^Sipc-#%_*
zYbz=$x^!*y_E#q+Do;24K4*^1T>JWeO}BXtUwCtK^VRk7_MnQjwYBxs*|U59+@E0t
z8svAd++O_L57Yynsufx!!OzXTIe)*zVS|$AbIVViKksj6XZPyz^8UIX582ym_x*ln
zEo)m9Vt&77GaJ90PJDd)&tJb*g{}_s^7S?STDPXby@i1xqQm%FLTYNNrh>wP8x;-?
z4LpZ;ykIJkmzM{PmA$&NbMv1+f3_qa=L0p>Ykz<H_3QO|&``0bRl$RXCH8W{*H#2N
ze|~m$a-zg6qtvddZ*NwDnz&gvH$64IvvjM#1_lO==S9WEPhY-_%(-*=^yz(jRhZd$
zE;KMQzuEup?(Xfo%HOZ+leGp7ZdN_+HCOrj@yCW2_2qAGrN&>lx3f5%m7P8N)|Sku
z9R&+Bzdy+Vr=Vq9;!R$?eY>{!`8iQ(`|59NYJX47xW8|2-tM<%?bmHY<}R-N{f%$F
z*qZS5^Q=l<EZDMT%j%iCQUy0KFcc^*_n&|5<>lqF$GoB{;#3qA9yIkcZr-#><>jil
z`2p+WY?m%ye!D)lq%Ue~mgw#4_wWCo^m@-JDbVDKSkc<-4S)XpdGh@EbAz&PZz5&w
zYIYn+c5-%}I&0RdIdf#%Ti@N@mOJ@uT5v|j3(@nB9~^83jSarpzwhU>*`W)aTDj|#
zKEAlPnD6&4COcOS1_#UQ`|ImPMMN|-HBZ`2n?8N{lqn*u?d`Y4SIJwK`TYL=K0GmT
zVeNilbw3g7`^V+$*T`Cztw=vV@7qSNsah+;*T;EzdlzSH`}X$s@-16TO5fl6TXkpF
zWl*V=pm^?wNMc093^pE#1v_?F$lBN4`KR{%%o!h5b@kidrEROWi0Q?w=;`5MWo7l8
zbZcw&^60#suG{ZbtzH$fa*?ccnTDlh<k#2N!((FR94-arzpt;auP%Om4m51ZbNIp>
z%i@sDX=jsuPb&q-$&twTshcw{Djhw3Jp1FLqo>ZD3-j>k01b$Ldwbh@&hfKnKR&#E
znBRVlY4$bnxYPUn|JOA%FxdWlGFi&Lu4d!$y0f#*uOI7`235Z&C#!=d7-DyoT-=g*
zS?|ZJj!odntdNaKuBs|38j6YwkJL_@JXuys*Ap~$s^&YZ<mPowUf!#>wq~!dnwQE7
zF5L>lnpulCo{$BVJth$h3=urN!8hHJ3wcv;i3XSFKq(GEd6!}GMR4&5Df-|Fi7{xw
zK_&(U14&R(C<dve7#Jcr7*Csi02NsWQot?(*@&#r`EkfMkc|v8dO&3+H>iL{mPavY
z#}nm4tlVNJ&YtzPv$H#O>Xg>Dzvryqhj@5&2&b_zFq~qZ&J*E!Zm#w6>G5?tZ&-NB
zF(ib#f{I^_SUuSdPR`Dz`S)yOt;^2b3}$3tc-nEA4KyNUn0#!-f&~wnbg#`96%%`P
zR6IVUpkTwEJ$tTfNObO%wGOMStmOM`nsLElZ}s<U({!UtZs%@4dHZ&BueABKMXufJ
zp08zKI3;;&^``Tw%+pj%b8ZAQv+?dq=>`>goWg1^u0`jA2B<*gR@SR4E32MNbeH+I
z`DPBNPyr>_cXxMZAM24^6}NYnT>YQIx3{;yue#62z@VWVW0l}}>Bh$7sq^QrZ)s`a
z&btrl+33ZrIM~dd{qoY%s#hzQPnk1kji9ny#@AO@K`o)f|6aa)8MQH~HLm8PE3c%H
z%lw*8omwF)7Cd?K<kAjVhKBBB-f7tdKO3%YNOX2}anaD!^gP}#ufOf@<9_>TXVWfk
zNIWcaY<~T}O3Ai`rrFmldbVd=bb5Ph>*oKv($3Dxy0&H}Xcne6kAZ<<ilv_X29?Y^
zI|@&oKfnJ$)Eeh@K2TTT;K74@kGE!B4Z6B2bn48RFAd~GL_*%kTwN6!TvoPi=VUg9
zDc&X#>lViB$=H&3xJ}BUV8NtGlSHJYs}I)deb2WmFaOTnC*4+fGMQh-LV=(E`2C{#
z`ueNuVt;R1$IGB$3o0tAs&*Z|v9tL3y5FUh7guC!h%<WsT6{EWPetLztr1^eU%&qI
z^YhXN2N+GWubr{`ciG?m<@Wn^!GC{!^_}fJS<N?OXHn|qbL<Q|>Smc{Kl|{!>C5r?
zyx!CGN-y;UOq<f}-ZJURia=#v8H<4Yy<evtR_Chz`bzb%fl2l?o%X-N!osPWZ<d_5
z{XXSe2qVK&iGGgQ=F?^o;#Dc;Wp5&MqqcZ}oOpVguBxY^qGDH1Pe@SEq)nSQUtJlj
zUi<UubWr*J>+9>~esis+e!IfR;2`;Y6XR>A%)Nz=k9Bo)TxeqDmf5!d^EqqK%uY~H
z(3YyNSy$J^MkgQdyZYnf<L<eem;C2?u%C~CA?@M$DVxr#GKZz4EKyQc*58r)@6XR!
z_VxP?&zL=XHmF}(`1n}tmp!U`yB^;E|L^-%Ul9g|9V*j#A{ZE^gw}LjFr6~n^&JDl
zf|Sb2%C6qt(1e5qH8nLNa&qfRUtf#;Sh;BN;-}A^ExWh3TKsmJL>s8H3@SROYR7D4
z7h`~~1qcrV4Z^Mt*U!DX>uOK*1`%)t@@S2}pqrap*0nW}AWyxyxfwLH6}PuaQ&;!x
zrsw~zhR0_fY-0WN?c2Tw-vpK2Uc6jBKWuf_T9e{uKA`ElmoHy}MqBs&dbRrWKEKEV
zpaSaDPS7C6%}uFZK0aIOOJiJITB5e)tPEW2mihVF+3BV8X3UUqb#sf`@KZ}i=gOU(
z#a|yZ^J}T99<{r-zrNly>xu_x>}>7!ds(OcMlga4t4BR-*+;uXKYjQRP*Sp`_RQtW
z!GVE+w|14T?vt@BI$5b7vm>DT`@5@8PEOX}VQX(651MlP{=Hmc|HC%vC(oX#$;;0_
z{o}5tHMpVOVa#;x++6FcTQY+~SB0ERw9(Nyv+r+GQBjde)t8K3S?g^P4O)+$K3#e{
zZ?~_ere@XmyXB=nJ|u!VNcF#O-w#>r#@k--oU6hGRAWw`I(2D7LqpPIMn*;>9%uJ{
zxxFtw3ak4~>F@8KSN(2h_q**WCxvW(JZJ`GqS`fukB{BjQ@L5nB%>g-c)J!j8iH@F
z4?S`A?9}DU(>E6C>+ApiHfhQ7<=Nlf+>F|mGgB*MMZv|_A*(_>K@(Y^no%!y*NYn)
zldFC{oqlz>zkKe!J&{*ehwtAey-@&U-qShTw{Jf;*E&4s&zqZ@zr9uM?CcC|=aVh@
z|Mz?R7pd0P)>pT-g2sT?gvZxjwY#^}TO8B@uX;K)+@$o?mDPKgUn_#^nCrh5T}(dS
z2b#>|OJ-$d6}MGGv`;)sUtQVxpb*r3ytXcOb?E9aO=IKWOY-k`f#w83T@hpB(7jcq
zpstm)dES+Iw$-3y(_YNN&c3?x^Rru<QctJePmXjrz{GH%^~$<fP)oW@!n*X;lx_L<
z;~p6<T)5E7*EiJ9ukWza_uSjtPNr?vG%@+obX?Z1Cc<pCZ|(1Ir4rk3=75H0rA)Jy
z%rs8VdU0W)Rox%Zur3!jclTU%d;9;B6gRAS7z}Az+PU7q+Q88^FbKFL|MteezrWuq
zuJoR+7X_J<eET7IbDA$`9AI_$`fIh{@2Y!d-P*E}=kSF~OTA^+{r!49KKuW_zgc&8
zZJoKl*AG;aJ6IAszqoM00tL|AMd|Bnx@G%j%#gUcD)hA6I+c~Budltjwsy9dPQ-%A
z>i(;$zrVAp`m!Rf`mO2DU%#}})Ru+3+qy*n+(%5Wz4>{OYd2`*>1emOwzYLMXpVk!
zTJNpx`R@zl%(r{n|IvCWXZP!cvhRGmSnuh2pax0k#w6F$H#Y(&tN8{^R`Xr=W|>YO
zXaz>Ag?0j{SIo)D>E+>}Q8@p}lazM1)hg`#a(f=^SiXGuu|C<=8<UU6eUeF)&E5d%
zo3S!99G&v5+bz)!)J=soPtHX(vlb(_8x|fc;srG@7}OSH>y&|eyP%Yi#Nm=E-_OAa
z?)R}WG_-!`xB&0>f>u4y)gYv%S=+IdZ@`OM6m67Bcx{weP})+Uo+YTK3Ucv<gq>{2
zVS%lw2J)&?h06;mj)<i%I@RX|Ojh%qW6L|GNjh)G!JEMjn%zA;CEr8>xIk^`rQXx6
zs--lT!NnJ-ftE1Q8Z=G-=6eJ-r+z!X^vTnwnr3EUjg5_;K7I_WsMv9BZFKq3&;5OU
z(`L_}UG@E4?ZLO1nVGLHENrf+trZmz0IffmYgzoPYke}f#f*Ew%s0z@zg}tUMr?4n
zckiC~oqfg6{Yu~73Qa#h@9LSE#-g&aYnLoh0hMrRciU1ofLn=$$E4OEs(~vT5)Z3*
z3JMBl-Q2X)tygO4+1cjt*GiL;l0+mWBa=RZ7Jh)n;ib)TCahn-US(z7-(R4SvukUk
zm#>T69d|G`QW{hdJiXH;s{Q2Q!-X$iWc;47eEIT4ixzDueH|uiS@dMm^N1Y<3qb?W
zCnu}N7yN#CdHL47yH>6)E;kNORpFH~@z}R-U)BG=-`D?j(`f;v_M=n2{aQWOx_njU
z<z=fvR!%xx5fL$?_V>{zPo89ad2vz7x@^s#zkl_2oZo)GZgo==)7H$(#}fBAwQ_Os
z@?JH+UsHUta+)fruW@SUnl(DCEG#0@{2Uw;5+$svzPxblpKnpPsHUdo%bnu$v0tRj
zX0JW+I_8yBDlaJCY!FCabMO@Y5<lBR>!X$UZnsDma9WuoxM9!Uy`}H&>`Z!`etzE8
ze0@(JpB_+e^7s4w|0i9a5b~&0udH`d2gqyOKi}8?U){{kZ`Jek>C@ORGbYJhOifMo
zob>9-%Ho5M_x*Up4Vp&<%|WH5EmJvZzys>^nVW~toH-NJ$khs8ms5WyqU7BExaCW-
zr-Xuhsq-XCdd-6e39Rhw);)7A3Y}Jmuh;uH<HCi2rOTFSsjDAPT=;ui?(LM#H$|kR
zst!H|O+3y%yKG<WZ?WC&%I<wD0vEf1#=$}JH`8>ZPaQt&9AEo&>aXwb^Y5G6+s9j%
zzq{hhZ(CxzJv&mTh@D}<oY(jF@8{y;nlfcdiu~!*r-Qw`x(*#a4C(Ecy_o@;g+6r1
z$unrWUhI~vt6FR0_TGB99Ml57y=`sS`na{f-|hCF^yK+-P#Vhm_~<BKeqQ{Jf`#Yi
zSUxV&mtG1khURQ!)7H`PVP@kAh>4lgCvU&*!GnaQOO|LD8wZ~}dGgy|w|=>`t=!^T
z%F51;j*g(UKd-K>jeb*OXlS@9boDgb7}1$Fm78vD&tDH3HTdx0AZW59?aYjYa<)|~
zqPOQgyR*g>)B$DywK>n*exD<zAGc=43<=Nzs<X39L36CN^0UvXnQ!-YZ=dA!NO$|4
zMWwH=fhK%FD;_}O<u6`j=*I86bESGC6R23xIU>nBO$A#yT_2nBKmF~kt(TYi&ep5!
z+tdfji_m^u&rM!2FL_8W^qR8MjBe0q3%<e_spvx<dgNwc=w662W{F%_6DayXWfyYi
z5nJaHG5QB;O~UFEv@#TA&<2+SpsL?2@6L+(b-z6MZ9X)-y0&)pp+in{Z7PF8SA|U6
zy?giO<s1wQ1vlsX>bPLQ1DZ<Ul{UMQ+;6+=;o){|Tie)4QzlPd%*HE~ac+*~xj9M<
z3`^IoIBN8oed+m?jNl2y)$8}I0=0ZUpSPc$DDf>fbX7>;{<^<k4zkNz6t*!iFod65
z+0XI(?Cj-^&1{*crfB|pIz7HCm!FgKqWb)rM=diM86L>2IatK&#~abkFCVtM?5)?G
zcduWAR+vqF)Wg6~pvN>VyWo|wQ+<6scmU@uXc{gcAVBjR2Lr={Tb8B?UteGMFMfXR
z>cM9Ax5=)Wzc-(^17!v_9*GBQUNSNSygC#2;G9$W^Mb4cp!o+TCMFRnsa1~6Y@jBS
zqN1a$RY}14dA6XnLx#!6EQ-58&OWn}akbY}ty|l2XM>7lW%s@lr%!uJo8?@{-~V?R
zr?6Va<z>E~K7K5GCc?;|5o!{#?%+#(sjuI@UE5Lk*d*_cMY=yL1H%E48u5jkpqW$k
zc@>9lUS?p}!2#-LzvR8Pul6^n=iAKAuVrn0`(f(hOY-%TK~t$)Ue|uVTMinY3knV{
zeRPBqG!Hq~y8PM<!{jTAT)S6WEuTGGx}KStfx&t?+Zxwyv6ml@%ZImeiC$R~X&kyb
zZ0!xZdfu4pNl#Brt@?7&J#?`fudA!;%EZHMpk*-D@AoVg)eg(JxheJ4<>lu^=a>Kg
z_qV8cF%JtvjP<?dr&4pIHpEptWW8H-TKCtJ$^M{Wqt{hyo7wq6iv_s&_^uu6l?Jt3
ze{Y*HLjp9NBq%6&Yj5>-P@CQL`MQ9GO(!?AGBBjh49=du*uDQ%r~14d?;d(hTIM@@
z*_}Hvs;a7%E!v)-aul@S;^~to8Mn4%PFk}6@7w&W8ygZge%|xp5cknrTGtX78O|J9
z&Jo)j%nTZw>XWmL(z*_w<7MNOn)2hSP5GU|c2L-wW?%Er+PP@&1&jK}Obllpt!bEw
zeYE=amdwe&zPwz#V1Ytqb+xvFf`e`Kw~(l)S%>R(?%Y}R_v`hmpxJ?y!R~c+b)aS|
zsJHm}`T6*-@27`ankJl`VF+5M=eKb`M;fRl-X~|fDr{|3Y{~u!69oS5|Ns4e$+I&v
zUt7sDFsxBCG78$9b~ebxr6ukBJY9Z%{;#jDzMfR?wtV?=(4rpD9H4amo`n;Y-CzCq
z`1sY0jf=sv1a+X<;R_3$RXxw!|KB4dEPQoEpt9}XFPFQzx^}Jm{*1>jwiz_@trfcJ
zMW6M%fNn8e5fKs4YN2+}iZ{DI9}Z{lI`{JOa#hc%+Tr_N)VbdN*_6r9u-PJc;_q*7
zZ*R@HX{4&A1`6s)OFB9@w&vUn0xj`+c6PS6jhU9#st5-uqm&L%mmzX<+REzh?<Os|
zwKY5Y{5)IG#AogP7cVkgU0pR*Rb4-R{FrrR#l@@l7Cp5vO#pQO&1U;LIy#;@dGccU
z{o3#xdE<X-+FX9Fj;mFsOCMoiC{Wc7TQi}(y?xQ*#cz}6&70TN)dd<JDt&T7kd=)s
z?%PjLC4QLK{KfYBb({M^3Ewp9ipIA5`}=CAPMWl+_V+iz4QD1zoEWHe{p07)!43`$
zW$*9RUi@43{@&UH2OL6Ig{(Z15FQaxarJY><6iR+(4yas=jK|!Ubp+*u2;oO4D0&+
z?f-^kUtd=$vHME>irGuIT>tj&&dy-p*=D-m(nG*aoTW^l5ob^m5?1%iIM~E`Yj^qj
zV|}vKC$rO2Q$2%L);w5iV)@r~@zSUFs^4D))j?afY~j``xxXcIvXPMyXep^@(AKQ0
zGLy<DW^=as+yC7%%Otbt>TzZUuk&}y@2}nce&6lHocsG~L7m>oX(fMCP>1x_@Gk*1
z7{570ZA@|n4Y^MLBemzxpBm8OqFyP}pxfJW*XMl_OYLmfns}IPZRBRRnKNfjTJr1b
z>(}$D-vuuBo9nat*oleCTPr>$fwY6i)mBT@{rwsaT8#7Q>({Ftg32nMz0&5_PEJ<e
zntommlngG(*E6q++k0z^B_qR!@N*H(Q)kcC_V+)Z^f)dq?%UhxlO{}904nT1JUkq=
zA))cpr%zMn&tKmqsy(gZjQzil{I&o8e*g93aewT)*1LYZ5tWsdprJz0*pFn}!d0QG
zy(WPs<v~*u`S<sMrg(iSC#Dw^YyfrT8kyN&J)51sZU4!?$K~s<{Q3F$>uLS{880s_
z{Z<}t`{%>quHN3Of4|>fztFk;)tQ;bpjr1>rrFEZ@BjB})^lcthR}*?loimLii(Qg
z{{O#`+z;w8f~G3J{`>ttzTkg&T%~LN{=eJQ{O7Hav#pAGdS>nEm5kYsj&y>$wQfBU
z3qh;@wq{+Or1JO6Wq&UppDWty_kb5x9u<!_d0O@N_xJG6&(4~bz6v=z-~Rr;*p~9U
zrPCihdL*;2dqdUNS5bSbwzl!hue)(00yLJYzyHssOP4Qqv+Be>Vq-8kz4hPBP1WD?
zYJb1o&X?@!xKf3Ykx{&cCt{1;D!;i_;U?`|qFO7;-{14{@VKzE_<7gXWKB&?Dch<o
z^Xh(Of);&W+<BU7Ioldg4x2b};<xR~#Xo-k9`5AS1ZtnTc8kpv+o1At+3dVakB)Zh
zXW!S0-IZ~DUF^|g>OM0be0bf=&Ogh@oPlATX~Nd5tE+BQ%lFIKt^!Rv;hP)ze!qTt
zq6BCv-uVD%JuRqP^Y8EP*ITd0?SAxmny6pxgPBvOg2sf_9(lX{ZrSWUS?jPaV<v_L
ze_mp3r@o!9U;}BTzW>nqYkvK|oi~1hQb+BFgX~;fTtz=h9vthH{(3^W|HV1$_j}%K
zTD+zxt2uOgUhL9k%U-QqK5y59Z@kiGEAsB{T56-sz%b{yWcQuJhYpz}9AG$l^yteU
zA0Kn^@r8MLbr~5OPn|O-=YIZ|7Z*X}mPSTKpaRqL)y>VzK`kQCIM%;^|4yAb6XNC7
zwQ18PnQQT~RwW*LtG|Q#hQGeP4$sL2RY0IMbHeX$?VKaEK}lKJH1QBi=-Q}I==^1l
z*=#-;iv^%1JwHD^1+_Dbmvb;U?A(BBlI8aIjW=_S+PxJQ6<xa2dpc;4@z>k!_e0i3
znS$2DNLdywIh;MQ?$1Z}-_=LvRX&@UbbY=-A`|0jo#bOZ7wiB3j#pJx&Ahj#^4tE5
z=jZ27Pn78D>A5n)FnNxpD+7bqTw^;6&_D*-^vlcs^+z?U+MgUPd3ELGthj5j*DOpE
zcJAJ-t*YvJxQ+KRXx7TPozL^vW7~+mRbPvKoKR<AaEMIo6z`3DA<WOfFva~`L^JE>
zsZ|GdT?#vuwmJ4gC?^90Ls;l5M$oeL=~I_<+i`ilVq=)14jLi9!W@>B^~!ZSXo8HB
zle6me+U-x?y<6AO(Q#>}1Or2Zr_M$;?@6G93tD02>FIgu{Q2t#8ktSY-b9$@-MMiy
zn3-Y06;Qi*Is2ML$6lR3n004IA!sq==H+Y*4l9)tcCsyJT>~11dpbS-+MdeKpdzWG
zgQHj4+>ck<tmN7h&^S!sD@JW??bC8=xVX4XGA=0e%34oLU}ZS)AJkU&vP}T3^Z+e)
z$;eo7tVeQj8?UsMwRQB(n>SVEF7GOR9W+Ogf#JYb&94om-`+%eUNXO5vzT4J=EI`j
zQf-Q}&xWmwTg%U&aX+H@sg##(!r!mfJq!#CF}^F=*PJ+U;?h1928L8N(4<B2H_%S7
znBL3xLEVRc?cfCnpv4SK)3P6c_Wd-R1dWtzK$?RG4GKkYWTVc}gNK7aMkE-4yF6$;
z5N^;Q5V%v?((qIYG!V-GRR|iT0Sz$0=D7~xSw#UGO`_BwP>;J+#55x9e~ecgw#`d6
z@4EH(1%!l5nPr--79SrEij0dFFIttox#8MxUHNIrpTB=WL-<p*!{ffa_m4aX>iOs#
ziR|Z4R#x6x^wf)2+RW$R!Gm6&o`LJ*_D-2KYgO6XTT?4ya&p#e+PoRGs>d|*k_)I^
zHOI1eOWIi}&|;&1|Ne>F=-JuDrJtWydh_^nkT;PB=dq2-Os{xzW~TAgh0g5l8$lh|
z;N^bc#ebQXmLwg2b91vhs2kG4DQr^rr=mFjm=Y-HLBoHK4~lAsoj82h`QpWk-wgfz
z{asyMGhbg@YgP2bqx1Mb(-_Z7vgLOczPh?P`~JRKaT_%?H8)U)&8p;u!eIlw$K^}j
zEIi1>uwc&ZoyE&R3)sA-YFYNQx3=Eg&JJ!iottC1c+MOd&@A1JZBI{6&%V7a_t(GQ
z?@K>CIG8<qM=NNkF+uTM#FKfL<ME5CXIK_5`}Fzq*AIvJt$XI%R);CO_g(q$@Nnq*
zxV_p|>5<L{Kz5%#i#!B>dTZfhH{V$%p8U37CRmleda@z+)s>Z?vF(_cJ6nBs@PN~^
z*rOhQ!79{>*>d0if7PHqo1&s3XbJY=Z9P3apyAj2eLt7g)YRw|KT8#7TrC1xP6-<7
z`}uPD{5iI)Q#Q?*A(8ISxKu%1{rJt`9ZS|mZ_m2DEtfBOde#CaCMLZf5(e7Z-jhO>
z`_1)^`~KnK;aB(e?p_tTdYNhVwG-E`Ur+q~<Ktsc1p*q|ojG$R-}C=JpU($vL|U*w
zVR~gQGb1R)@4UvgI(B#2(R<NTCr&K9cwMojtxe0+G}O}4l8^iD_T1ZQv(GNOaN$CC
z+~@1@^`YP2-3<*0Sa9V^$kkP$t8dt~^UK4x74_WCF#}Ctn$7mTdGqF{&!2bCxxK{(
zJOvT+|KDHG#yU_D{^P^LN&hM~S3|~cp!K5PJe!pd9)L<_Z}3hd(CSOjf_-0KU9kmS
zKJ#oM)&1raNZj6>-v8+FW6&J@?fm_FBVLD211*~X51@gTTsJT>i-?Oae|)_E_WdXG
zFgNjl2H8C?E$+8l1zH9IYK`C9TfMdXecbPVQ?){a=G)b(yll#EULUlyi|25_?QOYN
zcbDfI=Up`dkFE9?UsD8)+hE;)!}qzUxVVP#;JVn|DVuMa)c>miHI@>i|Ni>=mT|Sp
zx=qhstp}OnAgUb};^fpMBqZc@N8Qr$=E94UmdMxt`M7HR&6UCGqGDokUq6PqK}Pw$
zrk*zt*Oy`?X>b`-038+RIAsUgDF>UVe<-*x8+oh+G*J&Kd&wH52IX^D5sR%X1{LBs
z29v-=J;;UNk$ikh4G6f<(8MoQo)@u>OW<0<PBu_t6LUIHMAU%%f<1d|jvhOvWnd6s
zXJ^O7&wqVa>1(~pI~$XagQouOmR^tj^!fAT*|TSx<=u&R^zY}-pP*5SS?2kA`T6;v
z>D}-5s@M0)*=9X^Yat7AirC|xW12=rLE7Q#K*gzujLe!TQ$#>3xmK=RnRR_#Z0GT}
z_xH!I-}9+!mPzKK2@?cz@9x@qq?VhD3$z#vv<>s(#fzX#J!NIv_Wk+f4H~)vO{~dn
ze<ng?fxUM7y;bpbKV3sthh1ftuPM0L0NVJLduxkl^tK$(W+9*b{MwLBw?SLjPQRJo
z9l0^7)yBp~L{>Ie{_~eFAt51Cw&mSjrR?4}rDDzc_3KxKt*tuw+la?`bNczP{dIpq
z>#{|~#I(%KzkjMvJ|zJT^hZ4nTQOIEg@N|YfJO~w=kJSbX6K)_e*OBI+S;qDLbaDJ
zTNd~E=i0W0($+h7?wDj=Qu)0;I4J1JvuDek+xaXD!x$K1_M(oYFVk_bhpy|&yR#$k
z^Ru&{aWByNk$JY&S?A~3Ua#TRR!sPNR62i;qPe*_s9iaI>;JDmEOZ$b{3&un>)%}m
z4O9Qy51O)6Qc?mnlR$fxtm^;mS>`*t?CkXoLQL1<_xygh8?^R+TmJoZpb_+HD+Y#`
z@_YC0S(U$w+4ymD`uSViXBYB<cgGxF&ieZ5>g9a0RvNmxZ)dGfRITay;16ojE?v4b
z^XjTl&@9F@oybK$epICUb29|=#k`(8vGnz|%)h_B@+E`z_P#KL^p0jsovP}&Y>(Z-
z7c!s~r`yinzkh#9X<V4ofnSqVy{E0H`ub|u^Lf=*_Se@li7_lV^YYf#)w{~xzA~6L
zZ{E8PoCo)F@$!adWvwbIDv}Y~m4ADiui0$hg$oy6w^<L0iVT$vvltje%spKkLqxSg
zc05oQ0`-cd^L9K0Ion3*&*bv^wc(&T*~Z4^3#eCeppp63#^m<R%UKyT(!GlRPF4B(
z{(d|wE3226*QWlbPoIKDNFF|X$i>4m<;(Ht+uz^cUw`P(A?<z35sSfstEzU@*4*D$
z>*eho{QceC^*`o>xix>SFMD%i;rspn<JRy0w@YQEb2}dw56_iJs@^gGQZpDDKIx(i
z$>-Hiu1-r^Hfi$Yx4(PkY@@iv^+Md-+M1f0-aOXd`(;v&+3auc?rI-4*i!J&36$<9
znUuYW_+1yg%;(~-udlD}EKUb)18qwL4f3vv+`R13qeouv+q@YWU;o#M+~fjU!8y15
zUZ#BYi-rI1-@AL<E%a%<%>O%43wiE_Zgh3q^mJuU;>%6SGj8du5n=3YT_AAlSdO>h
zlCx>aEG#R#P8~a|ciMSrm*Y0=fLoek-UpK$3}eG17Ib**Uf`(kF04~Tqbqhb>o0@-
z_B_JRud@sKS(m5XTc6@&^L@_F=ORb>?-xJw+vVluHD&tr<La!847N%E@!w)%V%DV3
zuMLyycNf=-xv(N|F=*9eudMa8_q9q&xAN<3zuzg|R~<3!DR=6$)Ss;26-MXh*`7Lk
z_Uioqf6`rDTrxmC{(Uu-?fsn`X)HRPxw*NZr3Y$0Gah_DdGN>)m#0skzLfv}!+rPP
z90mp_&-HP8K^rP`qqnWOY$t7&^I>&H?8R%>%C3Gd+<o`f*6i!1XANfvY*5+z``zwU
zt5*kSX08NHO7G8}mb!Au640Dl;<A1F;=X?UT9>P<t9!TZzC-AS1TjYMNyi^w%-wz$
z+)jD@^;fL6zW()Xxwp5Jy}iXJe~68N!*}Dxjc@I4Ub}JQ#@l{jg@o3&4g3+}`f*pb
z<=zJEG<bP=`S#uKO02%#%3crJP~zq5%X@%_k-=dD=kMbtAt50zX6Nq%t<1C9GjGb2
zB{yzFOr0|2%ZD=z3=cH~KzlY1*(HDy24DN)%f?~TQbFVNx3*?a-}md4_CHrv1_pbr
zH`_V1wY2KCod5Op_13z-Ri0Vj3%0IVqm!DNT6+2p1H;31<A{ZdZ?r+jSuAU<W#wjI
z*uC(P$e$IUCD{^gAinfNp0Et?^o26ZnhOWS6d4#A5<@`q^nzLu3mdsWRTp-?q?X^o
zeq{M`39aC&&CKZl7jKRr69WU(iiJ(0Qpi@K@n>Um(t;+?Dsl-?9R`M+7A_*4h}B72
zAm6tI9%N!T;I@JYCxY5EY3o8Z`s`hI?CI(0Q)ka!-N?*->R|zBP21F|Q^QTSEnMhm
zX=(ZD{{H=o7B2=Z-e0wA*RELm_19N#&A$HXob~%F=j*;1^GX;vXliP%TD9tzr~Ui{
z(3%m3Q>RV^)z$4YGB*AS+N5k`6r`!Cd24@t{q)Cs;?@TR1%*UKtvW7O?V}yGCZM)<
z@1)6-zrI{P|JT>p9R&;jeQ39Taee>4tzm1UmbP+>zdF(>EM;G}hfmh(%G}eh3+I6S
z$W+Mo`oY0wP_Fs(=@Y1l=NXiiwoFJ!XiLULrMGu?Z@;`TH8pkBs#QUil{=UD&)4(x
z^7Wm1`st-fs@_jNR;YNcUAq>v8~D<tOCb>vFQn~@pZS2wB2`t@U9Z>eURS*In<FbX
zLxaKg)YD?FZf>BNlIz!Ym*<0aQ-+3y{(97{ZzUTY7q^a)neE4+sVYa09MRC#^%WHr
z&C1K0rebPtzIx?K&%eLFf0ve*mR{Y_!C@)GcX&0I4ycYcOZxTa>eY}VSy@?6igt>~
z%D%lmZ^n!lyYJ0>^(w1Z&URO9byCtI(86rceC{L>QPHKl-|vfVZEd}^C37-px0|wi
zU&gmLH+Ox#7X9~7tOh7?3p{)E>eZ7HtJ_<x=lWIdjhky%`)k%QuTRp^K|xB>PcQB1
z;Q`II=WUNRH8lkdEVJ>;)%@k&C<u0uPzP67aPZ`+@9*xev(?f%RsJ{XSk>OR{TnY{
zya*Z*lB@j^2x=99T1-(<QC}W3^S@fXe&4QJ@__*lCRj5tm<e?_zpMTA<>FHB>9@AV
z@2R*5G9qf)Q|a5cZmsg1td@DGg%h+}q4uwu-<%boqbZJdiAL=zc^SG^T>`XfhC@+Q
zR1~!1^Y5*H-}nD7wLJE+q-+OoM0mKm=dQosZts?<UK$^s{Qb?%#r<}_JXVLT{q$N~
zUVgoxvRlUeeYLUY3~zvp*)a3<$^_8H5YWEVKes?_o|VDN%dC#QEqlH9`@P`g<i+<L
zzcaJ*o!F$a^X@yn<7HnY+Ckih1t*>sc}_Yv&sO{NrYpB@-CCDlT)a6dDyps|_h5^0
z1Or3M&Y8yPtClWxWo2dEx9#+F{nZ;b1bBLSf(Fx7UY?n0Y*qJXN4y7UHvQZ@+tq8M
zxBt3zZod6`-RNzgsis{Yk4dX~>P`2KTOYo3>C(FIb~QgX^vT=bd#EnhED0_KR0PsD
z2nh>=)`>5lSLKy{eqLxz%^ogp?yon~=Vu;n<K0*1Z})RaS65d^boA;SJ1ji!v#<H{
zr^fcv31!d#xTvu3V$<wvE7q>{t^e~_zBbvtUvBNm$?DmUkM(9{WL&8Ies}rh<^Hdq
zPLB_}zpvJ`{9VlAY(5iE5(p?P+&HiHTV$n;T<nelN6^enpR6^g#*UXiy-7sy;r^eZ
zf`SXT->dTWxB1utn#f<aObs-qzG8*P;dcJ-uXoq}E(2|>Sh{p6s1UFE`f6$QyPfXm
z?f=*8-gofar>ed89Q>88$lBFJBp>VH{9<yU`P^J<@fVsbN3N}nHcdX(<KVBXaH#O^
z*RNl@dV6`lm{f%%Coj&*%KGxKU0&+`rCp!?cg?jfe-*y}*VK#O?W(@42nq_?m3r@m
zMEV8>iOspUw>kJT+OF8Q&+bAnLr%A@69YpIC`1$FKs{_}#e`P2Z5)gY3_OdQt}?Hy
z;h%i`@x=~7WhR^1^Gxgi{VDT*%gespZ!Xst5vD~eS8C>5|95!(KMwJSKkk3un0$Q7
z#EBQ5mVch<a8&b$;D#!P+}yP)n##(`8-zIp>>MTIe*ERrfB5TnY;^SN??0Fx{8vu+
z+VK1R{&=~5_hxqfcb~Y885zD^yK-g8ty@ud>;M0~TgDHrPQv&*Iy*1Eulv5+0kjc_
zVXAfvFDOFHoLIF@K4>~IFfbejRV@k1Asd{SLCJ*SFh_)g#O)o0i<Oj=o)lPwgoj^$
zS5;KB$*osPv|%RW!`EJ{r@wI9b~ms(OxKIO6#xI%^|H5r7V@yLJ=FRkxPjrs+p^d1
z>;LaQH^)-=#YzST4}}EA#B-Z;Z2x|_oRyjRazocw=e29s{<=K>-;y6cDnNrqCnhL@
zj=Io`-}mNv{)Yz#XPM>B0<D1p6-=OPzajB(NKDL~cec_}QYQKLY>pm1s;Q;r1zIcd
z>FMdGU#oi833G_$2)2RhPtf4R=CrfFE^1u^4UDCn6aw|}PMtp=UR1PcnqKUxcKNy+
z>*uFNT2+2p0-B7zU;F)Kt9V=hXoeru2EMT|d0(BcuP><S4cbX_cAjlCXer>1!pC2(
z1p9*)$KKr*$M7Q0W*K9HO6JE$N42!HE^SIZZS{xgKIps;EiJ7eKfk_f>teM%fBk)5
zzy8LJh^J4VW`2Kn7gXJ>|KBOB{$+jrU+?`t&*rOmu3WkD*HQhtg}l;c89zTgowQ`n
z9-F`4_x}&|_3drrlhyJ(b?)4>%P+5-nyL-jN6af@v0?Xgz8hTqnH;<!8yGx(?dt-K
z_cS#z&9$xGcK7RC>+(~ZbU@=0>uW&^d8_t<n)LC%_3M9n$M2Z5@BgV4*6(&W|NnWu
zz9u(%Th7J&`rpx@#h|}Foz|~i-zlsPDu$}Ry)oS5#qdIsMTf!eyv^sHS+i$b+jM{Z
z`Fy^%l9JQMk00y6QzD@GgW7L5)9c<A78bs}_jp=#-o;jK@tXfNpPqQ`{rl~9S8wmv
zYS0M}(^6mF*;(8c#>N6po7*@TfAB~exkyS%f(F>~^77hi*L~xEC7rip;o)!ca&h_D
z*_WT3oIG{*?As3)mQ6oh8v31yVYgxe<A={@jL)BV{1G(UU-!0|jW;MddNycm$@<-n
z!`JKH-Lb6w`}Mk%NyY{Leb+Z69=>wp#tKehwV3aF8UqeWLRx9|&h31mZf<S=zHQ(C
zvv!ezs;X<;`tYAWf7bo|{OMCl<g{fzGe1p!KXux)Wvf<cfll;zyUx_aWX0C4Uzh7M
za4_cZv)OA!ILvsRk(~!h0eX7ZK0ZD^b;1M%Pbt%^DVsKJ3JC~Uz%8zq@#n`!&=R!J
zkdP&k#%Vuln?7XOemo+4YhUed(3wX!H>YQxnPK?r+wFYNgfZwusI6PKzPi5te(8Ea
zhAJsWZjNHvzi-QKY)Ay1qH?TP`tQ2+(cAq%Gc<{b3-47t<^?sBy2bUc6`!}g{?69=
zcl2le+rPiOTx?tY?S+2*&+b#FPKCt8teOA+&-0?4F;)M5J}<rOYc3h3DqwR%iHCRE
z^y8|`3<3q9QN9_5$y=(w=k2_kxA=W*aPZ=fkB`3w?G=7;adGcHb1O)b7u5c=c*4iP
zkbr1kqPI7Z`E6anAHb_9l|fk)R!XumH1q}><N_sOaH&ZwA2dRe)8-)Z=LTpw=B}Eb
zn~I8yL0cUyW%yK8Rab7>^l8;GGZPaHb#-^pq-IIUmUnx<$AyN6m)`)b3Xw9;oAc}2
zTkYkSSMDr+{_1xAe$$;I(V$jNf^zsa4&VKCK4D?gK7IZS%2d<isyru7oap80dGX)h
z-@9d=f2{&d*<ZR8Wc%$#GH64`tJklm&Y82u-~R8F_4&TOy=uO*mUN5jXI)(tdg|P{
zFh|G6OP4OKd!3%<4r<a1JmZtIS#fr@xwgK(|L5oDr>mr<rD-WDI(CccUb?rp+FCX`
zEDV(5rcR%p{p-uiNlUI=3E3H=2Rb}JuK)P;?=P3n2aV2vA_=r>eiCRv19ZaArcIz#
zy|0die$xRp*l&0!XhndAf>KhJY}&lJHW#!>2DDu&G<2!{z8{M&Z+!ansgyxNgMN%>
zkdIFfsI3|pxbWGtG{`*AsZ(C5X=%R>O;rKS&e#6_cJ=l8{dH^YjiQwj7#Ref5!t#d
z`SK!g>y|AUXJ#1I{mt9+(QW75cYfz{Shc}*5U5=k8#{N7U;6H{<(D<rUtfKBxqtlS
z2+w^ROG`^P>8!rIFZQmo1ZeD+quAHi_to9q<-5PFSfO$MYqsR;uT{0l>;K$}yua?9
zU=JucHuTnfI;nnae)HFp>hnt~_xjJb+g0*1X!o~nas6NG;!j7M-c*Co0UD*f;o#%b
zBg5BjWMs7K>EG(Fua?f3F@tY?={DDJSi{h|Hh%f#m#?p1y`g=(ckb7>ujCGbS6lKP
zIeHYdM&7FaU(NPC^*%m5j~+d;+ViYz_t$&X?^kZzc=7#$-;K=dDUs9e<drXf|GI3q
zbxqIVMrQUW1r|?=cB*)Ca&m&^HWxa#gO<q0?|=3z?dp{)8n(87qo${MPrLs5D_fNi
z1A{^VD8(#Uq5^9D^xOa2vE=>yH}fV;Sa9P;#M|53{U?<?J0odoVxnPZ7iWH_pjqYR
z*X!}%O>Ubu8G)AeOez7LrWK=S`{4kymZs*%yXvZ{uI_y@7e78eUfZ7)u|02YQBl#C
zZ@2TaKRr2VyYo$+>j5SP1}}gA>!6i9m7kw!+S$dmwzgW8yqIvW_IoU7^VKAi>Tfxs
zqM|FeZMzoEo1L9~8B{xdJT9O8@K7u0kgi##*(I;8Xo4obrR-{UyqCLr^(ts}EodbI
zXrrlBsh9qq4^5LMPu^Pm{9MDD-Mc@4S|bY{JxV$|+uUESA2jO}nw`D6?9Gjb+~JqL
z_fP2P_|VTMC@2V;ZUqexfR4nuxX2aMjr{lXeEqLhZO>hw&sm2?MryVnUU*!-K4$&C
zU#m84-W(bhc1=0^jVGvE4r-r)d&Zzv+W`YmI&4S;6)B*04+8^38z{9g@PLXd1_{vk
nJc9vv(_ezb$kOoUKSN=-*YSv=FBcgY7#KWV{an^LB{Ts5q%^`+

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-5.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-5.png
new file mode 100644
index 0000000000000000000000000000000000000000..e98fd01af94dbe1711ab4d6872568022657a3389
GIT binary patch
literal 21741
zcmeAS@N?(olHy`uVBq!ia0y~yV2S`?4mJh`hJ9%>?l3SguoOFahH!9jaMW<5bTBY5
za29w(7BevLCxS5J3j5`m3=9eko-U3d6?5L)t&Es@_1^!F=h>zN$^;7@?KC+nu(jig
zOp(S~6JKNPB}zKKr?#x@a9;M*p)<HyPUqlC6W_JPYfQc_uuPqKIFQ>^s8T|Qo1G{1
z!@s{557*sdFWi%wzwQ0?(!#licP-y~;?e8$wbi-Zi4tuL3=9cU;??C03=9Wu1|%>t
zFwE#-;$~ntkRlSnz`&rk_y7|FgMlQg7z0DYNsSE*3=BSQjjRj|2}WEx3=9mD14p$C
z;ShV4_MVS{p<%y_b(xR4-<%za-`52$ZewC%$~&<)PzV(1d=GAHOkNeg{~zz}{nMvU
zulw`Sy=#rpArVCe2EGSws^Lff{rP-e`XA39c_AGJ2AQ6tNrqqR+7f3}*~iFnf)kC$
z1_p)#1+ng<Us$}Aj%sDAfYX)oK_-R+jS~_q*+KdkCQnRYWO(3^7t++a$+ZcZzNXCN
z7T1f}GPjiR+|#+`_b%SsTmAMf?}9s8ejCpGbGo_cfYVG3Ev-r2-QAZiT{0<u7jt%|
zvAg}>FO#{rxKcJoXl$BuWcmEMRV!9#oSkPI{rueA$MdxddNtOavcHzF&}YZ4U9TP-
zY<_iR<z&BkHY*Pua{Br6=gXVv^FwoT*6i7{r{v)w)}1>7K2J~YxBInXna|8cda=7s
z96s#K%F4PbU}4kV-K-3$efQILEbLm&%FWGfTJxh|YvyIQ)nRKdowxtL#w_<%#=$1m
zuCA_2^Xva<ii?X2^%t#KvBG1Lh_LWt>-T$tH8nM>UM`(p^56iY^>-eP_!&wid?FD$
z7RJQHl)SlNxHfio7%MAl)vuS!zdmT@UzK>c?bnaT{Z|*e^Vj}-I{lhb_sc_{PG7xx
z_1W+9_Wxr(KRX*76Emmo*GqNluUrgonl+v77_=p7n45>k?kd^1ZtJTX8yBm*ytA|T
z)3<Ne&dfAUm1x`d;}N&#r8SY8pFDl4df4EHbhu@3NJvU>O0R^W)ARH5!)t2xbai!^
z<lV8jTXs9Q?2Y1?q9-Q=S=rcb?Uwd??WW@Q=lhm76B8b`ZH&-a6|!<tQc}{C>C=~Q
z*<$kdb^QNHDzAUZ`1|{xon`9HZ}(%tzJI^6ZGXSnd`*S>Y4_^YtNCQDmOOcql70Ke
z#$?l+8wMb6&9W#|@|-5z(c2q3S<QD#@pHfGa@K+jk%%3MT-@BMp66}9&$(CoJ+`vC
zI{Vd?mA_uCUa#UQsui+9bJMM@*~|a`d2Vl2`f7^p?%wQ@cXup%Wh{ff-z}eiZGC)x
zuDp5PoJETlf4v$WADCj<`1}3-_=O7>zPh{H-1QpoAt{~b4vnmrMf8i#ojx7x=-B8t
z$0E`8+Wz`_P`a|Tw3ISV>$$crR{Q1uE**Y;{@Nc8+iz`1Z2t4-&znp2G4lNU{I2fq
ztFy1K+x7q7@2_94$4B@7EuT1b(xjy0^BzTs{QrGtW3v0v<HuJ!HnUazc-XGFsUavJ
z;h@OT*ZH83*s#HXm6dg+?`$(En~Dwl{(SQGycFzjyHwIR?Zu0Wi=}L<zPNU;xwSR>
zcCo|`uKIe(g$ouqT#Dac6JP(gwDir5Kz^GK2VA??@JgG#xEdaR_2J?6(|gYEFzdJZ
z)Zx}IxAx1Il1Lq~*0we+JG;1EDbqzKb}@QvnA80F_4@t)cI~xp{B+iUXXlO`8mg+U
zZ*Ol8PfT1m%RGPGudlDOe|~!U>(}e`sS<6sw&kv#rW?J=Z?09;u9B7C-rZe&YisuE
z%*)GE?>RIlYu9l;{PFSer;i^eu3o*Gi;L^Yt5>V4zP@^SEjm9mD{GaS@2n+dZ*Q#(
zT<kXKpVonYKOXb{{eA!cwa@46_2c8?t@~NRliuFi>gD4zW%lgZv&?c=X@#y@k#~1j
z*1bJD_x*lnz4!mW-=Kv2=kMRQcdr)dYHNFQa&i_G7f<f)?p}FxYNCXej?R_O=k3qy
zI7S*aybg$n$dG7DeDds>)ZXgvW=%~^J^B0pUaR`^;9&EywcGDyU0D%$c!qI$-`2m2
z`|XT$#JVqTOm<f`H{X8dckk-rhlg5)a*y}Rn@gEyrPzEtB7AMzpFcIP|KHz~+Fkhl
zZn^Zjb?c5jJ3Bjf-QTy{@8`v&C(hdczqr4z&rC<G+py+GfwHdd*{Yh?*VejaWUL6>
zoaQ^b{(IrqvbVQVJ&bH@Y<TkX^Mm(;7@o)0#qNG%duBFUaLbOY)#2-}-Po9{`uF}l
z_qN0r4-PhG-Q2X)$;nB@^XJc>S=ZLg-1qC1_RihAv+wPx^z!$guEHy05pa5%?q&Ob
zANeb*t8b?(>_~cke*X3K`~R&v+|I9UZ5=)7$<wDx`(&-N?(QnB`uFp>>fie%>s7X9
zU-#4B^Px#EX2*hecXvl`e>7o<lxfzKzX}Ccb;P<$bDw^Bd0A9cbm@;D6?;FQv$iUG
zGebwL``ymxa?7}VkBKZSUU1-$s4<W8a{u|)wq#!ZaxFUl<yrIlTjWlkJ9lkm@bWdU
zi@3PBLN+G3ii(PYV!rD6-105e-}7>BZaP}!`~TnHt6MTJ8_Bb;J2%TT+a%!tgK6d^
zm$S1>gA)=K$W=ZO%)PrSl#`RQ>QSfqmy_!AZ-_)zR#r}0qCUSSsQgZ0`=7smO*1Yi
z%(bna)|+x#GCVx|we&&bv@;7%Fs&1i?tRo1sU!CD*RQN|b1bFoYIc+|pZxgvxVC{o
z!1sIA>p{Vonv!zj{{8#E7|&0-vcyw(=gyrkr^nZA{H#%6DyAE?L_Ds-QBhH`>gUtx
zPai&9c(|QE`{X3mUw=NI7Zn#@ZkT-RgaMCk%#HxDZr9@H=cX=SzFZ~q>Z(vs9dWPv
zz3tt)-*1;peR^b9>1$BYcyDjD_oO>_?v(udQwfT{V?C0Smi+ip;d$w_{{A%$4Gh^6
zzrI?%ewF`xyI)Tx`(IfXYrVU7p-uAQK=s7yoL*C`U0q$<5+#oP`}@21_q*NaR|GBX
z`gkjQy<}UW#B8%%qg5d*lUP_;C71ip-?sDJ{QrNJ2d<4WO}@CuHT7P4%xqq1Gl|gE
zVWx3)KT{unczD?C__ejs>05GdU)vC&bL>c`aPQ{y^HR?3e5P8Vt5UwazJA`K>dT6c
zN5$hM`0f8}xVSmp|M7YI|649=6l~p=cQ-3SN9=IYMhSnLk1dAv|NeB(6BiXNy=WSF
zdt0t?-tM<%kFQ1Nn|}KA>C~pzPvbsH>FDe0FAiGjwXCkPvT`Ha>Yj-S4_8UFDIPW`
z`Tcf#_O~}TrL0O;q@A6m%FoY#^w_biM@KqAk>=#={Po-I{MXxV=LLItb)}t~v(js-
z*2>`Je&6Jn^bY^HZ_X0FK5p%;t=ZZ}MwfnV)Hr&(u;leM->a)agL87$9P5`~&&DgI
zVP_X-ntkocnVH5{HzYcTt_X14w{IV)3^%>l^w_%g*A^xwrYjqh-Ip#|l5u&NFDRj!
z)cvX0nswESk&$uIl9|TouMV|xt4>;T;X;6J#0Ce`>}yln+uLp1gYqUOSh9B~Zct!a
z8oeQ*ahgu#qIUVZh`H9~VclZ7IeqVMZ}-1=@#3wW#mhmid3d;8+t4tuu&~go<i!LV
z8yip!tgo*Rsy2fH0w&CLYg#>V`t;>tYok_Hets6UvuNpA!^ipag?HxOHv9VWvirMt
z?{4j@-MuPg<)ZldzoFXU>q3@#O}(-;JN&g6uZBF&;S06j?=F9Jb@l7V{r1<U=|-EB
zz6yDJYpeIxtgDwg1eLF>3|2SIxZp6!q~t}w-rw(bOBp7$wDCwL<sQHK`(eBMm1Vxt
zmDSa=_m%nv22MOT&vtd}?y{Aoudgk;CoO*5E<)pKBQyJ#1I+vyrlz6y>wd2V#mQXj
zaxGii*srgyPM$q`_N%L_mtVLL@b>QR@NRMaX{%SSj;ng9$}45!QCC-&b$MCuuP-kb
zYX&b{;W=6Do1D<P3-jy$t=w7s98_UQ86-5Et=hH!zweH?y;Yw+eY&(M_4Jjs(dMT4
z_hLd<hlSqWmV0%XuXO0zsH<_#2TXSqJZy@IiMg_;vba~)I_&GKtHJZ_YDL7vmi_wr
z+WS}b;Tv~%m%lzSQF+(<eZQ|PcIWrJ^yK8^r;i^m=99IG_`l}CE0OojPv5<(bN+Vl
z)cN!2@@tHa>}S=Ox_|$Ew;qXwUQ@L+6%-tjkN1VTxwReZm0tefK|<;4YrdbKpPxQ^
z_H4U9ADr(NpSPW5nA{du|F`t#uV1g8PLIF#<KtsdNy(K}Utis<w%EZnRXcpz{{8zw
zwLQ1E-ifnkeZ}=+HdrpN*tMhf_qRz)K&_W+WmEi*wgw(<<1IaJ`~Ah|^Y+(IPF7d-
zWM<<DxWBLV>7z%Bgw_2(N!fRn$wg3sdrEtK#-}GItNwgE{`A?gQ^F354jfVqSsCQI
zapT6Sk4MF~mcNgytg3po`MllbMrL*qK|#gtql=!;tM)rP%k=V(kB>tayYYsukBcpS
zeh$?5{c88;kZyd}|4NVt+xcWK{rLD;_3ziy-}iUxbRSKMogZ2wn{9h)e{|kXSLZgK
zi?6P(-kN-z&-2o;Ug@j*>+5Yl9AN(SpqYP5;bS*e7M6@BCnj?7@?PDLco>w)Z|{75
zuGw}2s1g2fliz&1wVc9g8OM4grOa|>Ec2b6X1gu#uGQO{o83D*J5QZG3kq+Qm1$>Z
zSrt5JSQWlLZ++flD_QF@pSQQSU!Q55E+Q|#K7D>|*rYX=TaW&~7`LNfVH=<9s``JQ
z=kNM{ulnuH)EO`S{QUgt^74M3!vQWXEo}U9Yj(fe<^A#FN3(20`(H1V@0MPV-Szca
z^xGTJ&ja?btp=4(>W!_ftyaa)c(ON~5{T5(JAM6n_~YaK(~l-y{POa0szjTb&kO~5
zdHK@!_hRqvF2DZZU~}o07lFF*`(moUy#Ymw#=28G8yXmD|9m`N^`Md6r0h+^T+3p&
zz`#JW?)>lX?ygq#p0=X!@v$7K*C}`I-o3iFy8P&oBN=~xeSLLtar?cR&%W7(p#cF4
zxJ0#HbgIwWQ0&im+@+~iyX@DO%)K9vNnbn50&4hy>iRvQYJayn+&X>wbf0bOOi(NP
z>-+ohp!!(3-)7NqxoV$YY4dBxdZoWUogSZce_!pbJ(b0s=01USfB)WpnRj<r=J$7Z
ze?6O>e`QUivGw;eJ4Mwa_U+qeu5!?-_Lm7~n55FdL!zI*e!aS*@UhC@`+Dbu)qFOH
z1s}~<2#m3u4$^<TPZm^unC0GDa&>jM_pj{UxYyU#ZcRNcW}1KR&bhrUGrR6vZH~}+
zb$$K(x*reOYk$ApE)sDdbisi`p+Da%oxXZC^zpIY$=kP^uTQhycsp;muYB#7iRb26
zF21|FeD#VI9=cIm0=~Yw8oIM6wYr?&+@Y}P>jh_iP&?zwr>CdC9uf9mk#w}H?A^@I
z$%_M@J2bYg4vR_Ixog*}wcGCn9qke|EqvrsUCwPDvD9m7$jTtqt1E+#--~sW{Pg|%
z_1XFRR;JIZ1ozw;7@6PPRb3FHP;|ib<JYgC>~O44c6B2&`>oy940#LI#qM5J`ubXp
zkh7#=b$6S#?~zZRKZ^<rE7#Z8S5{VPnwW&VzP^6{qq_C+`{QDFl>|=J3VrhW^=eRm
z@APzi{jYz5m-~T|b5UWT=EqLKa}6xq*Vhz1JyrGh>-CvZEOX}U-@kub-d(No^786(
zR`Y<0iXCC=VphI*k-^HwrlqOrX<Pj*q^M}qt!=s0C$oixg}>e@KEJa1`@302sa-L#
zu~R2aTJ+`1m!S2M=6Q3@&9#2M<??iqh#h(&;Rnt(K3bJCwe;e~;^%(4(c64Je*D<g
z*Edb2wY7DnYqyw`WzmvtIX8n|ZOzQg1a(YBL`9dryu3XA;^%Mg@2}rk{5<Q=kB?Pv
zw_f*=Y+n3uyD|d<-x0as7VWS#6K2nzt)#5HHuv4TcU>JF7rwo{y>_-o{FynH#h`Aq
z?+gRSNhROj+&tZ9sHNov>QCR=p8tN!{BMqptPBTy^Ulw+&APOtv!<pd=a#dR)0*Sn
zn-dSSfx4Vgo6~wh^$4i8ulo85WV>FJ4Jeygm%X_VoxeBroq`Nca0>&2g+O)A<q1=#
zs@mJ{7kXP)S7*fIJagvErE%3iJ|u!t0;p^6<I~gB)U>7Osn_10&t_|BX<b_4IeE?V
zdDi8A%5FUuHY6SnSs!P+blI}F-wR}9Km#D=JNN9_)4gu<=MNt?$m#p$<*nm691s&T
zr;T4;&l6Ot)cyZk4(i}8cJH6IefxHm%u`b|wRChsa&q4AO0*^?b_p;ruqXAKM$DTx
z&#L}kP3O1b=jS5(<6lL2f=cY%TkL!?EB5TMd3$ef^rVt6F9LmMoB2*w_ur>!_pzCU
zn}I=n()8)+x;<U7I|?37y8h$m&)5<v18r^ZNqRdE7R<FOEqQW6@an42)64dzot<UG
z<7{bZIcdrDxN6_h*VjVZ`DCX|o0eAm|9;(X-^|QRE)I@@S-H|08%`bQ6jt9-_BP5i
z<HCbU_1p{$7Tfmhv5~c{3i*D&et*`L6@||83ioDj*t2Jkmx>E3E2~xEBbSxeS=iaN
zEiEH=?%Zj{eYgD04Nz6`;K75S^|_aq_4dhFF6!ywG0nJe;MTl}6G3vIN@CKKdGppO
zyZ5aKT<m6cJz7VMSJKEutlQPn((=>SuX|@bw9?^PW3-{{ZItcTE5YC1u`wJ_=@!?&
zHrd}U^L^foW%2v#W|`&A5)u+J$+=<RS^xIUyeU(bT(}VM^Y?G>Nt-rrE`4=Hla-C_
z)YYq@lRzB^-Pm0r@^wEJ-m7@b>p3Y=!pp}eWNX${P@BdR6yshZmA}8gzrLgJv52tn
z;_7!hkM9aQEg6t7weeAxorT4YBib9zy#sZ+?(NyRcX!~kw6n8P-|O9QEh*WOc4kK6
z`@9=R+2v~z-s?@-slV@slWq04E#>B?uH^6kyG&F&?1qY|xl^S7<kps!74`rBb@ldM
z{rLF!TI-$5moC*bG`v`KZ$;qZEd>vqK!FWzSKixOz1n-a9w-af{eEk{HRom!Xc%c*
z?(HcPCV*-Hk4vuQ&Ff=!ZsIw7A-4SP(zv}<Q_m)x=3otz)R-ss<>SY|r>CaAy)%2$
z(`V1hF84-GirSu+3v%((Q&aPAZM@$j-}Lt3!@}Uc=v`kHz5kSTagnQ(dEOi`{kS!A
z=E$(JvSyy0Wtw$;-Q2G--A9Wq`hWQGX7hPal?5s%xW#k=E-&-lnsRcI5chrkW0BWl
z{+fe^e`Pvsza5;kq)Sv=OHa?Qu&{9HyvZ|WWK7Nw{ru_Er7tfpum7>Qs0%bS;p*xd
zUg}#3%I*!!8^aq}i#PH^M+Xa>@2+`moEOH-&bOspJfN+qsp-vK*5xiuPh~td6gZ3S
zztugPnf2P)Rwix@S<sLoUkl4=%L$NiXHfoNcYYM|4>W$rFrx>|hmPbhG%znbP{ijW
z$OIbH2Fo~s4FwNkH?cA_Fe@G`;zJsbJUGE(YCRIaaRVEwO(6ZCLGS_vk%)7Rnogh*
zaFERp96UD6VFo#_;Usvx(?G@VsXP*2VGXKH;E_*o5OT0iD^38F5eHI0Hd_b?={$FU
zjDUhhMrC+9gMYds@j0?lZBkH)IM)dBoQA!9yrH4tr|;jVPoF;B$=P{p-QQoQ<F+Rp
zWZJo7$CMvMrKMNb@BbI|=ucA<lkYs6$g{IdCof;VJnQ<pwe50M9y4doG*5~sa|Q>@
z#_%RlIk|OHwZpZntfCql8@;@|g3iygojPaEnr*qa<G%gN-}A9e$|NJ<a@<lc(b@00
zxw)@yPWOL%W25uLi4(cFxPtur`u6?(7CqOh)T{K>m7T9PT55qk++oYLX0CO4*3C_+
zUH$#xB_&%_G<9@*bfdOhI5AOqYwGD~r|lj$vdaa$zP47s^4yn~m%pAhzn}5?+S;tk
z%g#>aUm%mzCBV=y`%agr_LFDNmYq1^kv)6&?%hgCN?U4wm!+np#9XW`DlRU4c&N2o
z&X~t}bNczP`}=A^y#-NGQB8gQ^Hcs=D}mkOQP`CF?fTL;H#fWc&N7+U-{0?B?cve!
z^~X|)wuOFktxjIQ9v&AL_v-HM?R_$qNyX<5HnUHiIdi4;yB*HW?EIkee$U>$S2v}4
ztE#KV|K&e*(9o5G;efB6wzhX&U7hN!zkmLuNE}lYUr=3H`Eq9Zyujz@=01J>8q}B4
zw6lwQdu!`ue)~TP_4W0hmmVH&SN&`18?m>l^z3YN|F%R>qaM^21dV%b&A9mJ7|#Vh
zaOyKi-MiK)E^gkPyLY{}R993)^iN+_|Nq~s`}_BQ{T;Wr3e+5UbzxyMXteG7{rdPz
z@t50={@-2xKJInXw{vr?L4zOpd%sQ-(~HTtHRDY$C?V$+q18{lWp8i2e7F1kwwuou
z{*ZfnYwPC9=nZjutFrFz+q*6IcA0K$c?3AcPIz70{o(ul`s?!be-bZ;MMPAb%>MJ|
zkDe9pjHy#qJ+E)6b=q6?wdBPG#n<1DeqRx~I;^ue``Vhyo27A2c|ldI-;%1YuU5tF
z-Q|1x=H~R$4-XCot>@(93o9zxR8(A?E4J(Xjg8J?-L3}@9t^+Rf8|QZ-J;XF*WSP1
z@t7}kMZm*F`6_8?X}9LQ=9!_y!f>GR#$(+>b$@@Y+^`{llamuXV5h38s%c_!WmkZ$
zwRN<nrlyvb)~0#okB)Q-egFNaTYpRTb-k}IE*`%1?D6Bp^K7fLZg0yqJ9(|&{@;q+
z+uJ~)dHs)Zu?yI@0@XPtQbIzD{{8)}ZDtmBykCC%yC?IeO<Q*4h|BBB#csWq4z+TF
zx&o{$EFP0U!=+(sqh6k~ejoDm)YPrn*Y#A@)K=B~{ngdmyS4J%larITCLU%heRn6)
zxt(unq6BEjA!M;zuh8>p<$g00MC<h?O`kr!^xu#7R;90&ELfmm{e_2t;rNz}i%NSx
zozjllQ?YT;qD3JgAxliNudRsPU3RTlN31(0Cda$|xO{z#d!Nk3DVo8cKK|P1?SAL&
z|L-Y#cPBFG*80fJX}9)NZjRcLvCwm}TIQ=OD?xp<X}ZyRyL??LpIza+_Ve>|)6!QV
zXJ?t7UN+ZXl%2sstGZS!@o1MQXxwYZjvYbgJ$-z(cy3Y2d~~F9mPO$s(eJ7j77^Lk
z*X@1u`Ly<OpAB8C?ChWs%2VggZ7UCFU^w7=B$HdG`{<&Ji``dm*borB+;8ubovyB~
zRgZhkMI<CN`1$!wb8ZAAAL|LMtJ`<Bl2^(kV13-)Ev2u+?$&<4`{~P<kjKY*w`N>i
zByB0eaKLw&j`)tp#|mySc~6ou%UR*r%ob~Q6x0I!@$qr#^SR|&&(6#Q&G3MxZ$NGM
zIq4fCN`8Du1oe+V-L@|;FNdy;GPV7D#`xFA<MR1m3K$q1EFWHBou<+&Y3#<z%DVKN
z=KH(5!@0%vt~@x{ytU+I(B2P+xV?OQu6%fScx%<ytlV2$PConN+|HMIv`ZA^50jJ=
z0-%|URRIf~IxRC97}mAgZp&==IcML2tQ#8^9y)XgRH=hHlNSGuipQTw+Nfb=b!*w*
ztKsoe6D2?mUf=4^&(2=mmK**0yJ^-HP~AIq)~u>z&}{N4+2#5hR5IV(*r=tUvExP5
zn&jhsCyyR=ZES2bd%HF3YS2`zP*8*Ka@?Nx$M1)(jS982w0u@3#ZVBebg+oeZ?CWO
z#x`E*S1Xs#3vzO5N=i!7t2#IJ-^1e4(!CkG6D6ka{r2Esb5Zf;zZ0*o3_iZgS&!jB
z;hWpr{eORZyE#+)--pN2C*y9L9EdS@ZB+d`HAy#a&yFKeYkqxw{rXTVw^hxL4YSO0
zvvU7`y&hls>51pn_3`(&*qP+ti<zn&ZuYj0p+Q<*Lu18}Wmjg-oH@%ly>D(+%cm#H
zW++Wr;?^tma^>=Qmp}v9v(34xzrE2sY+zFS%xCuJ$B!SUZjAWypqYPKX*eT;x#2R7
zxy_f=BE)BJk~U830S(elnIf_^<D%20_<Cnfe*SPLr>3H!BG6DCsHYjVqhR5$Z*N!k
z$y!e<z0SzsVEKFt>$Rh+z8>q9*4EMS;TF@`VEON1yZoxc$H%<9ye_@Ex;k`sSuQ9E
ztl#@Bs<V39x9tr7$`}|7xc3L2vR|&V;n3m3qH=O|7n46fKY#tt&(FEHVq#)I4W?dM
z>u;03>*i{=)&Ku}|N6B+28IVy=4?8^#IRt`BVDKG1($V-*cli!v>~MlT5Zq4Ijy)-
zRd+IMEx>{UplQ;81WWd19E_m3cTnxztXQb^AJoiX@Non2nG<=Z6)PMBPt=3j92gBG
zoXwU5k2$C8LCp-<1Z+ezsMUqDfdp>0Agc#8dq71vUt80PKgp103~1qi#e_$iPMi1Z
zsbg!DtbSLYlClIeTDLlUz0h%<!x!%CEWWxbR6BH4i09Vq>tW~T*>0`<{cUw!-(v9k
z11^64>t|*fi;9UYySX|2^x3n%w$<ORY|Fj9?uXp{`u}^ybRrb|{m*yH$=lWJh^zVN
z3Ti+br=7X*;o;%Z7Z(&kEl`lUNasS1HQ<To8_5%YpPOsFHRq<$(c{Opt*oLZfyN5O
zbfZ9{Rkt>!o))!L*V6KO`0$~)?>^8JX!*Ms+iy3Ly}Z0OZTtTEx__^f>7_}k-X+iH
zmdE{EAR_|`c=Mg2+F_tky@?YiUNb8%FL!lu$@u;4?Wq$dcD%6_(~DWb%+8l_X^E$}
zZCpUWf<1d|uC9r^yzK9^=)8&D-Q9ck>{*vDz}E&^e*x|>R)2dFI9bj2$>Yb#m*s?n
zl5FcVckbK?nw&Y-BN@D?LF?JWhYNSV-xuxa>G|u$;(ky!tM>P|moJyk2aSN{c3Gz%
z5K&}cFyFamjn2=XKc{AV|NMD!qQt2)XZAe#Dy-%+Vfysxag|S}de7UQa#9H7zp7U&
zm#@hM4Hr$*jlQzLu{rzI?!}A1sqjWJZy0K$<JpCU&a-T*w@uTHUdAP=74yl`&dzSv
z-*2};WmoCTORhI>-kfDsx~l5?yS2K}+g3zv%?dY|^{El;!QgAsy;W6Jum1e}ta|JG
zT<dh(xLGS!Xl%{DAJ=d5>4fV1z>tt7py8I{=b(9^X<PStPuBw(4w?waJ~c)2x&_m5
z=SEhB24PQs|M04+UB1zdjt5oOfBgJ;_Y0GRu&`+=EB)qLiSNyOe5^NWciGyowNXpA
zY%%eye_I+F5drFRFI~EHWz^Oz(9E@2{=GGSe}B(D)+1^5or8xbWOLftEv2uoY0D*7
zI)H3p-g!^+P(uR)D+|kwEl;03$#{IMcWIokjLe!RPg0&fdv;5w<o?Fwb{(<qrsih-
zs@STkT{>djzrMT-PU4Z2l+3!aVq)5v84DLWx4-)F@$sez9W5;_t-|?DO-!O<VsU2;
zWaaV&nHUNtzrMbHJ{LFl)Cm(3a!;Q>A08Am$;sLI>HGKko~O>83-j{o+UoJ@($a2_
zZ?3Kmzg=^6MWA!}-O}k{>*LmfrX0YNSdwiEmwHdXW%IjTzAnJat1D`IUaZ?<U1><E
zQ>|0P&&e71|KDFxY3bFEkN1OGgr1(BUf$lpNlA;o?g?D%mih2dt5wyP6--P_A=~p}
zuda>We&jExt+6^xH@i^Pb8YnYu<dzww<H{70=4n)?k*2cOIrq=n%CCSI<<$<ngP_x
zUf|j-mU(AKA*iiVR8%A)B7)Xd(X;;<8a469&*$^AZ*9p0O)Fnp7rVMkRC|?kJKrpe
z!bN#|zlH@LPtFIIECSUk5tBf(iARqf)zs5lccoZJSU6W`?WHBlmc?zkd-rZ^^0A(a
zGYpgUs{23nnIf$=xuJcqX(v*-2`)#$4Qd4+K`Z1E7QJKGh`vw-RPKRtJaTsrTn@Hq
zIz4x23~iIE{SpXSCZWNs?mrLIvpu$}>}}S2y#+i=mMqCQH^=hZJGN7dpa7BqmHG)2
ztr-}g#=-k^2T~yMg;q;o?Gr+*XF6?Z;K~77p9LzW!6p-`87K>p1%Lk396fU6#Qpp6
zadB~=Hsr6buh;*wn>cY|QDI@=`nbJ%RW-M_<$}5md-m>q`uzFw6)QC6+E#z7+Wo!&
z68c9ur`?R7E-WXvZl-a%mX40k=JfN^X3w5o_3h2d+}qn?3-9m$|F0S}-!^aFJaOB7
z>F4E2-`)y+es1pN9!X;nNy(KhEi9nYEBsH-rzS{m#=897l})LqLDK^-USxO%MMTU1
zwRI;dyJwxArW;-|f5i%o*7o-4vub+fY@@EO3cb9{clMLFZ*@Ia#qZw-nk4x8`Z{Pa
z$1|Q2jG)nm2MMRF_C{??YQ1ykj)<gWW^QqLdAN&9%eMUc>w0>6PTxxgWtf5o4Qjr#
zN-jQ5KR4&%udlB~#l+Hd*QsP)Sm5~S+qY}#^J|J&?Pq>!1{Z-z{hEhttG|Kfzdn8Z
zxG|HTlXIio{wa6v#Pmv;dVw0jXJ?t}SDmZ>_gP+4Ol+0!Y%{aBqFNyV1qB<*-ruX;
zDet?}2|R*|+Tm<7GB(z){M*7Q44Ux|kE?t->HLNWouziqi_UB0M>MlCG%#;GZpK?#
zSy@zGu7B~}!-t8sakD^e*l%xcMs3TPsTH!K;AFao)>q5vRc@6oO`uWQbC)j%KR-WT
z|6<*{JC?6MUUG4DU0M74Th)_^?s~s@JeS%%4?3^W4@yl13fE^REM2lhLsj+YGF^N7
z|C6pyF>{>`>J6?6UVhGX{p}rvi$Qrjbaj}fuCDK-6p1!akq22h6uLUhcdAzCCO>nr
z`=9sE558r5N*k0-=6GCQ=6iKZX7KE7pczm3`agv@ha<b=rq7$F*L`%6UG1+MTcUNu
zQd3euqmQ8ZIneZwm~IrPo(44vetmtNZo7TK0te8%O#>tIy3`$f-Jmoi(_wp0=?%fs
zxT~v6#WQwS$;DNntG85r&6>Sl$~5c6y4~+Ut;nw*4)c3Ys;RBLx-~moH*U|3wCCSi
zxy4_-xw+YI`%Mi{5n{e`!UO?Oe`MpvjaGGkb}%tBPn|Ml$(Ai9s%mOc=cP@vrhr-w
zi{1OR6cijlW4d>Dm3rUN*V6LZnss%PSol#j=%O0uc0SO`p-Y!9o7Vm+xm*AL@2hKT
zZ}ZBhM=F6DJqM?Jbz3}X3(lUS+25kVoi#55ZWTvw&06~P_4U)IPkSG3<Gsu-U$fxE
z2@l=)eSc2XTRdd}xjF!|8|XE8)~u*k8@J`&el<IP-_B)r)6}5__M2wb&!B~(4;(Z$
z%wf)ktRe-sT+s&Lz~yYa#s(uJqb-%6)BgT?y}s(pMfcF{d9k9RqA#zk3|<wpb5l%g
z?AyDp3=9q0Y1cKK4jX_5g+aYWf4iSc+IXdxIk)q9PAV!czPiAX8MI>M+Z!bYhSYO%
z(!Gab%5*o}tNWb`8n8dy&VT)Se7){rgEhys!q=_YSNr?bWq<pv$^48A4D05_F6VfD
zcJ^||X12^vPfq^&`~AMR3_lmwrRni?neFo!84~0{V|rz}8!lbGe05vy?V$eZ>gv~^
z$-x`S3=D6&nNC~YDDB#ic6OGRzrX(1AM0XwiwFn=wAnH-Fzl!+)7=2-k?bsfeyc_!
zrEu!ryt`Jas;VpN|Nr~;N)F`QH>~e;O1AUw7K;Ei)aK8h-_+a;TIUj}BX;!YQBckU
zjSV$5HJMa>$*3+9WMFu(>gLu1pa3d+b7SE|Wp^!QWoJ1#xm#N@!7Cg;K0f|>cK*JJ
z)2C0j-Oa(^FcZ`vEW4j^<?`j=<l}u;Z){9{dsmc!fg$)qWQ$tHg$0fCYQIHRmoqaw
zQ1MuQ%6_+cg#EuCi-m-Rr_P$SYR(*)*=OCB?*BI-_r`{UTb|3>R0K>`_XiEy_|36c
z`0DEF)y2=xN!eCynPr||=li{+u<#+j0RzK^P1%iGGcGEDy4<S*7B+#_c&!RuJ<a0z
ze(rUzHx@nhvi*2O7&IEBq@;9ZL!vWikQ_9YAGRi9Ve08=E6d;C3$MLDWs1no9Rh4j
z4C~~7Cs?xY7K>QF|KF~ttyxR;_x}kp&APH<;dw7#->VB8n?)ofR-Bz}zB+1a*0too
zz(7z<bm-8bE&2EDKyx3f-o-9-Vx3&g&A@QVc=s{AnKNfreY=^SUs0&)2^u8(^y$--
z2@?{6V?2YlW?lW#U;oE>=gyr~uh(u@@$|R<yG6<@C*qOa`u+c^I=6Iznj4!xh%GGM
zkliFIBC_PnnKMR}*Y^MWs&ATcVZoLDXFI>&s|KaZwUL|Mf?f)~J$mbBGdF_)cW}$O
zgX=i2fkrzYw##ST-j-|r#d5j-{IImNWl`I5Do=iHYHIpo|NpbSRrR+wyl?p#7z*;r
zd^bFL^eAL!QR?05_j^H0<d~S4p1gXMRor(p>0<i)+OpX5mc`F{R8|Hp^_p(8{)dIU
z0WZS_aUq@O3D=pj@9(SK6rsb#!4Z&`w~kNFCgPEd@xK5OalfOjVVUc;2rx4+>=4;4
z7UAA6r#t!ik6*t|oj(s62iX0j^7ps5llSl6UsF@#rTeC<t83j(dHI?TjeGX)&Anw+
z@?t@staaRHTSf-+W4lUUfBAYn{`Quq&z?;?x!H5hDf`{|CQ)H>RWB54KOAJgwJrCy
ztN5<^&u7g+t<5$bNhQx!QCnB}&9jMowCA-Z*Zk^tmaJ@Sai703G;F%Ox4OLa{k^-(
zbX8SdL7`u3)lzg+k!y|bY_rU>vrN6by(g<&T^}D0T5h`X<hc$(<t-H-lWhP0`3%Yi
zXTx~w|9otZt9Zy-SzVp|<HN&AOOEwQzrM0E_}2dV{ZU&o6g^L!It41ZeP0VRF#PW|
zjW~C39cx%!-99!xnH5)8ho3g!30)cFI;rH-6Hm}uPS857ACLQeZ=NtVFbLol)42dz
zvuXWq$KhR*f9vo6v*_pN=dVGdqnDO?udR-^{rBT>S7+x%<$jw*psv81o114@m#+im
z0{OZh4|n}$W?+~zJ$8HM41>fbP!m5qzBV*6GV<5se)})S<?A)9t)oE&*Qu%6pegOk
z^RBOtw+AijnQL8s?a$B8rl7&69}nAK-PySrw94?ap(Uto^XlsAr*Ge`oiRf~H)@MV
z@N&Pa&iu9^kM`v}Vq-AimhQD;->nt_nsPsM`0(1@%f(kmZeI52(W8<-KMFw_K!g36
z=lA^mc6)2Z$4A;$+r6jj-P&EA-}&w1<Kwq$=Fggy<#nHdA))Jn<qgw=pb)%Uen0lr
zM^NAN=FOX_H<TF|8eXSgXIh<icbAu+pWfFW%Y0{tY|p#9>9qg@Lm6ll;fCx+(3FF}
z-A@<La>SsZAke5Lx40f?Jt}CK$)~5MD`mwP7^Ya4#WtH(eaZOy=ks|l5049bDnCDY
z^eKFA`NKo3l5Gn=d?@IZv%NJhmW5%#nTZxt>&tXEfF{PLOj+{cMMmw%qvD_?j7#=^
zJNWA6=H;O2rkl153=P?j1f+XG^WVDB+qRUOGcathzNb{eml~H4o2!+&F+y)wC=&xi
z!(y$^OrWA9Jj63SJzZN>wRM#=LqRa8B1`=zmRMA@>EGY?_0xZS{dinn+rlCuGc&WO
zv^2D$q9U?fkfC9=UtQh4q@<)L@89d|>+83+wPpSN^>zB*ceC^N1-`$xS5!bi!QbEi
z=g*%j-TUQkZOff~wz9Iavg-Zb?<N2LeqZf3*Xq;Puc5E6tu-xw7Zbaq;GrAu>AW|)
zd=KB3wXci0c=2M^ogEwRRlm0drL<o!m(Mq;|5sC8&dbnXl)SzcG;U>D{LH7dwKenG
zo0~<&#lh$2*?Nn3{eOF5p)+WTXo8~imw&(CXCLVh1hqy$nYr}!waD|{zP?v4EOb`&
zT)*$vsz;9>UtJNXy!XeW?yioG9sA^GF>m^<^!?4798jlBQPGi=l@&CS02&Z8&AM{p
zUMw@if-^Uhy9%D4n+s}RK6?CER905klZ%@>xLZuur09u9?#)e0uVgDLDS3%_IJfZx
zE_Uk$jsAfa*h~u9U6%Xy{{Hy0vrIS76PJ`++0ntFs;Ua=Rr-D1eLs&gtgLKXT;)^I
z*+;ZgRb4+nKVQB|-hhFjFYjoVD9Dp3DNDAVy?ZxSP*4!GYR<^WXx*#2dGqG&dO9r{
zl#{cgzrMPf+qF8W_Sct*Dt~`G?!SJc`gq7Q&akksY0LcPuB!a}3^bw8%*K0ZhGFuR
z4T*<0z2jnF;9I#yeCd1i>7yO{_y1RYU-;~d<kRQRUmxidj@ppW$R}g5z%cn(%(t77
zk&%-?OKfA3-^&Ki6psLnw*373TvSG84QO0E@o?LzlP3fH{QOp4-;#HC7f&?@!-2D^
zC{s${7JhX<XlYOO^>tHKLf1qDf(G}G^~qMB%;w_a0tKCE))kNPyQSB+mfmxmTG?3o
z?vADBrFVCCf4!01ANwihutCbkh>(zw5V2Thh6C^3Y-H2c*Y|(-?w#r_TN|4-$Mx0q
z^!yID^Mi&~#B?G+9X(MI5zsQ5rE#DC|GWSHvcLV`CHnh*9QsvQd2Z1e?lnh_9NAQ-
z!oaYD#oyn5u6_MJm+C@|M=xJi-mLyptNc-YeofHY=<U~x&)Y2axBK~I(ewR(zug9{
z6f?=ZqylQMUcXU%JoFi>*zYJthJanKeL=mPwRd-y-`*lB?zI#;u=DZP3aiprF`@EW
zAuATd?XA+()AIxMOD6V#lEjr2fmI)mii=81SBHMr(|@zimzjaVz<+hv+AFI<wP$bp
z|8xHTi)UsUd+$}Vu!uN$^5m(rXSYVa*q3~qFH%R0m7P7l)c)U}&;F8a3yssy-4KbG
zU;AyQlCtvE_3`$gWs>2w_dgxlsb<5-pz-|8#)}#I>;8sBM676OVablJtJ^ne(j*Zn
zsjS-O4L_3K{M%>tYy15=?ZW+&)%`(j%TNc0hO@UDXPf6=JJ85{b!D)+Zrq+9RrMi!
zy`U*v_N0E-cZ!ONpozSs<mA#nKMJ9XeljyN&9axf_ew1V^&VbaT+GG6F+t_)i;K>s
zudiLbTYi7-EYoZ)U0q*KPf!K6DYCxw%?-n^udaIQ>FK??y*<BkYow#2<F3bj);=;@
zYe9{122jEN_*n1dM@PG-PM*AY!2$(PqXab3H!pc(gx8+8;(~&pK_t)|idE&OC9A^L
zuBv{w(_PuEC*bzB+_lgDembph1!`WrTsl2Y>*Jq~kB<i@FfueqFJEIWHTB=E-N>r~
zB9hD-6rI~LPE1gozPJ8(pKSiB-07gMC_{n~c&MVo_FBTh8qjzLgBteTK^|CUzQO%y
zr^cr;pt(N=14&Tdgs<($%0D0@VEh(S=o~qY@f6Vb%L4Ei=fIA%i$tV?rh@LpI!K;8
zd2(a9c)&5xI>733#?%K_RtA52$8?Gl)Ds2|>m=|(7f^t<SAiA*fP=!>G2|a;4w_-g
z{Q2u=%#ir``!}c?w{YRYsQq<+Q^7rNP{VplW^iS7_3FaM$GUoYLdwd%sjjy!eKjTP
z+8WSKrL{3TFRe+m;DJQU-enwz4<FuI^wi7M-5oko2&y_KO`Z(y_^j{l><skt>-+Wn
z{rc$qy`d{tt^`eEZb>^U1zN{xntg50i&9WZ+gbd4j@eq!kp2U;?TAHa*K}JC9XfPn
zkt;W7w@&o79L=w{B#qNn)c*cvmJ3>pWL5TNMfv^OaA9>nox-#K{{9BleZBJbaqIVf
zo3*pKPyn>X<AFn$u+HZFdZ{>ze6PLV_IGQ0?)rYO8Z_w#D&@uZsv#Dn=^r*&_dz{)
zA853vVDjzF>HV`zGL_`z<!67JFhSsTVSW97?S1!eZcd*%d-iJ3D7?kCnx93WB@duY
zXF<Wi>(@W#gDgQw>Sxi$D6rRO@ffF_32=05l&k+!I2*JMEb~Z*AZX$1tE;QaL%-|f
zgT}*loP7H9>B+ly_qyzEZ*TwlW9qFvm7CT4=B!|3W?PYbywB`7Xg2fEA*Z9qj>W~d
zpJoJ24HYPStLVOfIzprU@v^`D%KZELxVX43?Wz2n(+BEHU0&vUd5&fAlc!HhTW$6C
zgKR7?xE`DU+GP>FJ#TB~Z_s9(%HH|&@4GH%+`MU%iYI9O#+%~HmoI}Bse<Mdv#+h0
zxPANfvmXgAGh<*VP<nf7Yw+%}w>h_hf`j!fb;WTEng2Xv|L=!0XdF2)ap9!NlS5aB
ztrdE{WchN?vTe}tx$o|yNf#$5I;U)mm@;{?a(w)KZOLVaLCNVr<BjC54LFyHy_Rmd
zdGjV{TNo2F^V3(av|g?+S>xU>ck0xsprWFpPNr2imUvDsd31zx_BPNQz?~h1pf<Yg
z_dCH#U$xGIf@sG{;#YI2&#Q2{U;BNol9Cc=Z=bA1!GWrM{r&w_-{0wair?kkSM>Ch
z5f6CGzUu3%(q{L_Z6GTO6u$jhF$e2l`3)cQC>^n#J8tATY$$&p7pWt5cD{Z5=jZ3Q
zTZZkgtIcjKwXN0e2N}|!6}D!@jvW?9j~<;`<(HJS$aj&d=l(yRPMg|qPCnkJrKPp&
z*=t!z@L=(gI8L!MN8J{K_W6Q}ON{-P;ORj~ffL+<cfAu)Bi7(ql*FzJ6pv7Y#u$<3
zKCzbFgvRi}o&yzd$a9~dAcQXNI<)%9qeqK6h1H|>`+IqTcA56cTBjY4V`N}(cWV3^
zf3N<3?am!LUd*e0w{y|w{3G{G7#PggKf14-R=+SOFyZg?e!E{DywYY@&ds%+I%`(e
z`*#cs4MiPHuk-7EJ{8Zsz0LRXa{usNDbp<}CxxoZIT;EjgE|o+5%rr>P6~krK|y`k
zUteFlH?lJ9$b9nrxwe{`+rNMRK7INWl##LG+WPqVo3A%*-fWt6MdNPy{n}4ozfSG$
z?l#N67xU^TD=X_Po61eIOtaPe{r#`5i;d>D{W8JG*!ZkW-`&83zh~X$YnQmo*M{Wf
z<w;o-EZ~#3TNAsx?B?!hhKAWawwG3a_)u_mj%9FSVj^gU@6Me&S2m~n=ic7-cGC5w
zOP0KNyZt_BXrig9N$=;LLx-HczPTA3yv!%CU(VJf{hSPFM&S5y_vL<bcdeQ~adGnO
zw*R2DFMq#W_6K!kR6O6_-adW*{{5hBGG@8AZtN^)V7Oy}f6RVqT=nz0<*&ZquMeN9
z75e4n^7&c6zr9^L&${+kN$uye=C^j0uD<*~Pxauhc<*UCfp2eZ1vRj;Z#OV9Zz*{h
zB-xg@zmJh2PwQJm^VX!JTswE})HE`>bnDr>ck4PjICAgri<Oj=TpIWK?c23lp{rub
zV%icjzP-8m>h|{ax3*+1UbIN*>C>mNKlzu<S$JR)Xj!vv^fn*R{+_I?RdxS<rh~ep
zT%4SNWo6sUa&9EN*JENRIQ#~^Z}8)*RmFz|M#jda$7RbiK0G-1>DxEZI<ly3IV+z$
zdGdPS{>6!10hf;TN>80Sb?KSdW9AGDBITfS0hW4CfAzTEew$_5#t2ZFDSdnEs^4B_
zh8xaqZf>2e*IQd#&HwEDcH^WiYR#j`eSu%zPUq$N%tNoPt_Cf~G2(Fs4b}C_*?zfO
zet)HFx7hW+GVYFzs+k`j9R&@>-K+oqSLkx%{JLK&L1Pd*i=Usmd-txNEepdG)B5`Q
zpTB?K-ZIy!^wp%-6VD{{GimGVzhAWfu??u#us%F5Z{62=&;|#q(pMgntjgc5IdH&X
z@7HV5Q9BAAmf9Z=yz_<i+RozVTe7Zd@k$sx_`kjUzhUUz@AAjv+ZP>}diGlEitWpO
zaOXchb!V;F6rS*n|1#X9qoog+G_Nw8kQy1XYHCzg?44_TQ%}9RWVwxxWy>~)aGy8p
zFZiwH+PcobI{Dz1!;-F1;m5sP8&CiJcd_Eq@2Bo-<#s-go7dkWVgLNI<@3)6kL;<a
zxBI@Jm0SGV&UZySzdY*J&-(uEu9v?*{{bFGh8_DBEm~Ca^3qbfx8nM7ChMa=@_2gr
z`I#M_s&cpL_1amM#m~&^q6}~F{B8&h4qgme1I#U^^Wu9|P!MPf^p@n~d`w~t4|eUo
z#&s<^fA7`je?zCQc4sc!8S^)fdE2&aUX$V#c12BpU-<c~`S+b-($d){E%mJ>zcFS%
zKR36?LWX(XMk5|)(7t8RYKGc>KcDXr6lX}thAuYwdu!ILSzAh8USd36VIv3HUnMIm
zTgQI)_3PKE5^Xke=S|PQX1D**=++}~@x8jx`8k%0XUv$9UDr03=eNJ$wJTRvEM9#0
zPWrp^@&7)FmzI@fota_yscLW3_Pn{3xgQ@L{ZzHLtGipe>m?I|Q;b5~<q6ZKEt@w_
zPE=fcc5ZBJtd_2BXi(6kO0l<ZZf?%X%9?cj_1|l+yZZXf;$v>zxs$U^-o7rTolo|a
zFjw>44eJva84T{Is;Pl?hGk!07aAQs`_bdap;1w*Cae3eTC(KGo9{m!_pe^F#z$9I
zx30A{{{OG*Mm)~P`(!7de;yneITJLe>={&7x9{frm&@m0yPdy(?aj^UpiRl2e%63;
z{T#pL*Ve^amvGB5vFI=`<fsX_2c9~8dTZWYtI&`T(DonD^6_tPZZ3ZEBxQePYwOp$
ze?Y?%XDp@L65EUp8~kCqc4cMo*82Z-PoF-0X}<qw@1aA7K;>BOogEwRUw2_KW)fpy
z0Ig3A4G37!)YQcId&-n4KSH<Yy?*<4@1y4xHgcf-1mUK~6P!T(2sfsWayk+H4Xg|e
zy#gDY4sZAmT87bZbwvUrLxOV11}A1w(CHc7fuMOAw-pJkY+9gsYO%$jNs+Swg<N$Z
zph*%PH&$*22I+@9VHpZwoh)lE91v4vU}!i>zDWzfi-`?E7T(|xU30+!>|l<Fg^jwP
z^~@x=iRvbS0@<u+XH)9e>*g<Cy$Xtpn|G{NTD|@7!X-;ou3ozqcX7_`+qXfT)f+b=
zT;1JY&#QhH=<Mt~zs_#H|LtwLmu1WEEPP+{+*-=IY)w#baA<h=_qF@|%iKYSn1Gfa
zbai!2nL2gp^Lf>N4<9}R%?~VeZfBEy{`u#WS+iEf?k>yx`ROTWpxEyB8)Hy4_qgBw
z+w0v`U$g%Hd2WB5zy61F?#)fEtHala6&G(#J3DKsvU^|5`KP>==fLsPXwh8y<3r-!
zFPFSQTR`&i)~RShcBn^fPV429u`qaW<J2jyt5>hC+_fu;TU>97%F^Y_Proh8{`>3e
zsue3Hs8sHa12qjKB_*|Vbxn^iU%E8&(h|>G8<X4L?fHBzJ7#5V065JsZFG$Y4PE--
zLqTeK`s`dmK|#>4+N)QuN`8HL$#^_0JUsi&jg4tLCaEmHyt1c<=jxR!D|YXWo^<8z
z-L>b=`5irW>{oApXJ=qU#0(j}<5z2T=X5u)G8{0te&dG5_S<V;yvW%9?Z^?A&%Yd`
zq@+x0e|@og+u7N<tKebNtl6_wJtt0_xa;-0-62s?tL9plzq+zA7&Lefs?FcmzOSx(
zs3#(@fq`Me%!PIj?%lejHU0F}<#(SJoqYcJ<(Zkr;ih4e?%$BLE<5qIOxxHv7_=1f
z_~XFj<i(&dGEQN&n1khN6(9p7o>^I2iwX)}TyAS*bZJkWX>zUI{QEavyvP9Us{VCU
zzi#3Fe_z-CIxPQh!Mu5L;EjiWKA+c(=&UU`A<MuZ&3Q!e`-&ABvAarE`u{%KEq?ZO
zxbZaup5isvUthhmv)HuyTh8Bi<@=3)gN}IEe!p%vXa`&Ryvk=?*MxaEA{ZE2Cd`^8
zb@j@XA6x&vum3My(sTOht8(cLTepTzDmksYoyY21(f)(S-re6H58AuAHTAUE{<@DJ
zKY~_0@yXd(ypU<;W#n#1UA1b}lxfq%USuY8%(1JDdVH*x`-_RwxvgOv<Z3=R+WvUZ
zT$c-)<O&K7W|w*Vv0_X4`?%7Qk{_}q>({TJo+$CD!lt?J?R!(cuV23wS;!RazB_5j
zwrysTZHnu!-(H?yUcSAms%l?h?!gx02nL<t*jU*Ynh6}dWgjFDs_N?c+S=M`>FJr>
z-nDBND9V;BQ8D(IZ(AMa>+4&m2%3S<&CRWPIyL;vw&LgKR<2s*1)9g`5L8z2%-bGq
zH{XAE+1pRm-$3)g%a$#xv+tBRvjUdhr_PwM;>(v3&|xLHxw)Vf{h667K?kZ#nk2OO
z{^Nf8b(=OBZQZg(Lr>4|QaB@MFQ4~xy{j9Ok3T7~`ugYd`PJLEhwuOMRR8S8%gg<*
z@2UI@TE)M0`}XXAe|~~Sm+JoizMp+%MIdPD#nNm(6L29R)X|{o`Sj^iP?e>nr3Knd
z585^bS}<2swCR5Bp+kSn_a8cR=*zFy>tAm?E_eCb+UTn{Z>~IY#AWK#sh}-db+zU1
z@2x#M+dTXFy4b4EXU$EEo_K)P7~k5E=sbVl!M+Ao1_sc$G-%9o!GeSXcB-nXb)sue
zgO1X8^eAb+?y-L^E-s*57e9agylxY}TRDNZ@$`F!l`B?UxUw>s*=F{_sk3L_elDzh
z_@Mgy8le}OEJs?o#oONAGS9go@IsSk=bbxu61Ts5e7yhlfkx)$ed4FM!ooKgeBp?2
zUa)kj>!c|&XG-4aWI53zY0PBH%A@#iZ~OFzzuw=ybm`IdQno+!ENc`C-tYasYSAJm
zVKpC#FR8f<4ArmSyb1C4?tZuT`@PrSdK~5+Y}(2Z;e6m_$*bk|e=`>>XJpvGFjYH-
z6C8?8tlB0Y76mdeFkqDW$_b2zZ+v@uTU1O;t^IJ~zh}SKdwY6<_O&t@7$^ML6?1UY
zFK*}V23CjZda;-C>wn+2d;4cO4-4BvtsjCL7*0I?_`<*b*W`2aY^7hUWN`3MNMJlX
zCsCs6QK$Nq%a<?bi@tunCvJV+*VXZ$eGn5TP6Vy<`t<qp)vH&ZUe7<&!U-NSm$O*`
z+Nv8E7zpajoH~8__npmq_r_|6uM3HZnWLnvY?^vXB=^paK)d<pFO@PKY|=dhs?Qd5
z3ah`G=q~s3nAWvTsi(Kp{jIuN`FyUHmR69LSJ%ACXOgymJ{+$5%X9cbr?5I`)#T65
z&tKn6pMQ0RVKS(%AZuTD=gsw-H&=otut2?%NvhtUHRzxoQTFw9S679uUU$2S@j=yN
zQ(gw}ksMmu+QE*Fj{Em7_$~kcNBgN$r>0Dvyg2vvHqS|Q-!{+JR8w<nZEd}^J%2uE
zFWI;Jyu53>-|t&3|M!Laq$OXzlz^I*TAG>{kM&BcdbYN<{<^;Z-_m2p+<a%5cutx!
zcdqXA(@Q~#_3ElnDf7HLU*oJ2wD&AiGzmD!r0{aJ7HFEHtGoN^wQJX&|H@v!SM9LD
zl-aXiU*DH?RqJPs-P@a+kFN(Ew6aff-IDcnsaJBh-(BW!_wz{3>Q$>Q_1FJN?v=BR
z`v3EM{h9Ta#m`nOU+(_<`}^$`QyC0QI3gH)Kr1VD?cV*{w)^Y*`v1|1iHTkP{ok|q
z|9m#P^l`8Gt0yNX*S#$)EUbN3c-hzd<)5FQpWXMLW3kZuUWK!vp<!M8=VxapCrbSK
za@k)uN>aeaqFGexh7wBxDAJ9LjYDH%*6i7{r|x&m%la$kcM6>Mzm2!wbMN-;)s>&0
zY3l2*zwi7uZ~O1Ad8`a&&IgztJU^*EKg89wm5Yn(&#mMA^6T&2i<@gv=(PQA+3cJD
zUM`>iYXASg>yP!z|6e=bwDMC*X-NsFCwJW@Um>J`P1|IHE60KJOFSn}nK^T%{lAa>
zb@MfRe0`^$e;yndI5GbJp+ioRZ3}<D+x<S;URzn&xwNztG~NFzCObcW`t{d;zi~4-
zG2CuG*v}<qaOUfF)9Lf)umAL^$kfzSQ&G`zl1c6@6WzEy5l4?6wW|NO2h>XVey`d;
zH8r*B#lrSKc8(QG<*MHpzP-0M8Z@{Gsx(1I{G8U`f92w0_phh4*RNQ*)HV57&(3G2
zOa}r$IWeZ*{w`=jJTfv8G<|jdE9guTP!}#Ub7frZ*HF-r2S0!Q1hr{@-6>u$f7bqc
za-yP3|Nj2|`sMQZVX3K0Pn|yf_3rz+@VxEO(q=gqUR+$P8>K2>b3=)Tx2^xWDl>yX
z0cZjrv_iG^_qUUeKSor&KX%Lwv`z-Jjvch1$oqZoKSYC-ZznSYLqrdk7z2YDs2l+`
zOBgmtfZDY=EnHz4$c;lD(d7?7ZLkAwAp3Ga8}f+M32vZ*8o>vWKrP}8f?5#^8$r$L
zvjQDW^3g2}3=Xlev8PU-zPzLG@sk3JDO08_xpnK7w$$x=_twpsBXjiFG0+CK?{|v(
zrKF^Oy{&$6K@pUR7rXUNI{oxgm#Frar_<x3c8Wwp8rajfbFBUMORZa6KP)hC;-*cT
zzT7E3uW4fwvvTE1tCANN7Cf%8n;#S$3>wVPjo%kD+bs7|`uy5uQ>KX2{`q*ku2x!F
z8Z<Z^yQd;BdRq=?ETF5qd+NlAg}(QVt&_S17#b4aeRy~nw7nWMZFJ{OjAu|-*fb#_
zA<%HStVKb>fsIqAPF=Nnb#Q6vRx!O84NuVVKDXaq`}Os8XkcLCx7tUY>LzJtB;MZM
z?ho>Y3TPnQ($aF(+O?o2&HBe$?PB0qP!SMavuc%AYkRx4we{_s?v9QNn^I4QgoiJ`
zyxgDPV%x4=QOU>qOb<_0v7GCdnv$|&*)q4gckfODP3bvp-MaPEsZ&OWr>fX~I-v|2
z?2fDZ`E>Q)X*Y!!xfvP~*KOPwn72Lp;>C+~poZbIuZ<=qCK<oJysW(?EG%65@DQu1
zxw-cwyFVYCzkc}wI^Uu0uUn6VV*hdD2Q$|uxPm(!Oo0cpa&xDie){V2yP};>KL0Fv
zc4p>kDeaRow{P9jI&8r9#`=bFlOV*x&6|S-1qEwwDJv_3TXD}n&rH_;Zy9j^;5@+|
zizj>x4ZSsAF1k<K&;ELGzn#>Vs*sQ=da=8%EdTrHX!o<Pt0l7~+AP0)n$P@I_KoDh
z4p1WEwV3N?DZ`hVmKHbtcfX8fkl*sn_p_OEFKz{O(erjboyPe7b<xf<b<Mqd_uRFB
zSOsbo-f)PCnbRk4zpnWCx!CEyt>^k3J$m$O_1VWCGv43Z`|8Du57sZ@;^XxX8$9_~
z!M11p@y9Q}qqN;xT3A}!+d%`{Uf$luze~%@S8v=H*e#~J>(<hnlOBHlS<^U=g@J)%
z4(RA6O-)bGjN#&bJFS<i&3CJ-sA#CExv}%hO;MR^TOIcH?c1*Y{_DKvcN9FUem<QJ
zT64I1)21NMfFJn0x1!y5f1UKNTO?~;HsidfukY21i`}nYxstMP)x%ctxBx%DKF~ht
zv$M_fHKy0b3T|LvXaH@g0j)d%)wDG=d%V28OP`z&1TCiX^7EUfq8qu%B{elQD>Kt@
zb>iN=duLe|FYA-FUItnp^RndC&*$^6uMA!eUPo|hismz8DJiKbbLOmB8N6IeT^%$k
zcxm%_yVX;si0u7#E1NO$``1IuIT#rlKz;V2r(U5UAsI)zL_bySy|p>LA5>$-DGG``
zlb3}y=&~;^as_q!udRt(eB(yM-?#bopSi;)l^mBXU$Jdl7+<?H=!AiPf1cZePQ98s
zb*l5GV+&mnr3izL8>mCLL4px<&}9;6$bg|6<n2)jlpy&luYNSHa(=k_eFg>w22WQ%
Jmvv4FO#q8TDNX<Y

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-6.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-6.png
new file mode 100644
index 0000000000000000000000000000000000000000..734c7048130c5b40a144b4fe6f80a1f91813b400
GIT binary patch
literal 20429
zcmeAS@N?(olHy`uVBq!ia0y~yV2S`?4mJh`hJ9%>?l3SguoOFahH!9jaMW<5bTBY5
za29w(7BevLCxS5J3j5`m3=9eko-U3d6?5L)t(?>M_0j*2-)qnByP+<5_=cL2?;;6r
z#b^;FZ?538l1txrx=Gwt>6&HaF?TXYa<5R7#?n6BCrbpfG$i?qy?Rqk(u)87`!M@=
z$^4lI3wFNG&RhTdv0;DlubA7<wVuAMt$p`;n`B!e2Ll7cvW>f|nHU%t=Cw7jGB6|<
zF^MrSG@Rs!U|?WSQ%+!HV3^S}DlwdbWY1k&Mh1q0gAWh4mp(eunO*d5!UTcV_V)P6
z#fuF<u`gEe<3r-r6@iau&9yf$2(bV2fm!jiYlRC3Lj!Bf>SwDC%&-4fd3Jr{|3wFx
z7!D-mn9W}K+?eO^mCp|^Wo%$zVDNEkW@Tt-y^&*fSz4!4?DSP+(F+NcY*IQ53=ESm
zCNMH2C|+N6uqhkF1gEp<mi7N?CO%%n{Xu8_{(rm5-rjopE|Xztm}7J5H~yIJ2G;2(
z&Yz!tH!nOZYgO90IV;WY*96=D`?0vFxHxt5O^!&pM}NQHzkXq%vuW}%p1IcLef8@O
zh$_WQty^=j$-APmGV}hv+N{gVdj00vtlYE5rnRl@)yL!V*I!&*EGi+f;`8(Kr}NZ5
zPfz2w`>`Od>ZR(|?CXC2{{1_3_UzRD{{G#|SsC<>zfaq-j7yID+0&<)KR!Iny0oM-
zY+cOC`St%IeP@|m{PXj(X~~O#zdxVP-*o$}iQLkNy1IQTns#<^<#!6(gMxy-eBb{+
zw)*?K($8laF15P1%xi3D%|4a4{q={3hog3vtt~1p{`z8Z|Eqn!-vzIY+WO_3_4^gY
z&(HmOGTC27vHN)I(&^KuPrn>r|Knl%EZgdBLc+pdANSku$_!)B3-|Nud-V9RsF>KY
z0|y*jU0pNp?kb&bllSk>&rP@Aw$|<0v**j}_4~!D@2m`79<sA2_2%2MwGkT+or&Ja
zA}9E0mLZSx%$YN@uCJS$yf*apwY93A&(F;b4hWdA%zwV#VS_DcXQezZWv|~0GF`Im
z;QSq4GynXlSw6uu=?F(^db+lzrsvO}KfOFWE}S*L|K^zFAszd_UnVOlDc!N<?Jw1p
zT7KFxzNBPJ*qVriJ9b#Oy0~aqT1Lk1D!KUU>+7qFT)VyJ{cjbI3phK=bnda!)Ai%u
z7;<uQT9v<>^ZeiTdkpI~-rSrnJykp0EXQoNVfDA1;}w2>eTfonAD_>!muhC?HOjiO
zBJs=H+t)3szpdH5tZVg@Nt2TPypI20BsJTja8ckwC)UOB`|FPJ+y8kmuk)bEVz*wS
z9JARUzg~~uU9BaTe!Ne%P37?Q>(@Vg|8D;E`1R}8C#1Z&v2pQ<?E1f7ueY5|GhXI5
z_mzZo`MWuSf`W-#a&CTF^x4nP&+JWE^~UFVr@r5>&;Rk`hlKvVABz&V-|qc>zyANG
zeqG%PmyT>TeSQB)U$*c6>zlvlV_Q>G)0a=D^<Q81x1Xx=^T!VjbMtUUM#ieQTd!Z)
zl<Hmk|L=FJ(pOWgm-lLyyt`xBD`Oe-{Z4WJ<>c0u7M7z&kG{O@Z-4bjr*LIV#HrF(
zS3Cm)17F?SyL(&y{dezPR;ZM(IT*FCX6K&0dqt(CUrT)c{5jair)OK<-BpX-`{S<N
zF*Y{tu2nrB&ns&c0!ryoTeF^SJnh60Vc>gE>G_&9I!~WHdv&B!xG#5a_4jMD^Y^Xn
z>EY>>wGPX^zHaK5`xBnNf4|<c_}PnY{e1x$87rcn^{;;X{{8wLJ1n;5-;bMXReI_9
z{Q7q{zU^1kR#iRPYkYL7#*gniOJ85}^70BgJInOy*6eVnY3(<57B7EwZSCp@4-%Gt
zT;@C5YFm6yq68>+o|>k+`oIB)()agb?f-rWp7?v;_j}d1w&l)_t9&Y2td<|R=3tX1
z*R}g^?(dIJKGt*b-rnlcUtcosmfx>^b#ZaKRr$L$|Nj1d{paWBuI}#3GYpeeVt-uz
z5bqo|RV(yPjrxw5WAWEcitg!KSo-?fr;i^4<KpJM+xtDP_SehhuP!WXUc#;DJ?UP>
zW8S%TwNaOs`Cj%lzx!m{&&Qu^KOA6Q6|-}bkdRQw-l|epS659<P0#aozt`+4d%LRN
z?$?Qr(uV8iSzk+7x^$`N&-U9FE(A!nElfV%Ct978kg!0m`i<e%+}mNPr>9-*leL~Q
zWy+Fiy3wz0=kE`Vh?tRlzxesN%p)CwQf4_bR)w!$*UZiz_tQ60hF5IetVD@VpFRb7
zd38l?%UL<U?w9BGdsVBWwq`AD<raUHU;lgdGM|}Bo>CSC3zqrMU+3J;_j2d+d6(Vg
zYgIh=Xs?{2$q|0MUw-<R`)WaxqPAo#6pyb7TpPXp+TQQ?qF)p~eB5upZg2H>EdzrK
zy2b7%LstYi=I{TzEw27=sjOX1gxPH0v$M^^gMubyU0>%rxs-RuFHzpe$jDEhKWm%3
zd;k9Zjkr1Y_Eu+~n`8Ov{{H>DN?$MI6jsZ4duyvz;iDEc-&s$#y!Y1MyJXKEn_fBF
zT`l$QUW(;<49+j7PoJJH(UzE!mL_#~ce%NevhrN9{qJsXKfmMUve`WoCI~z}Ykt3^
zM?Z4YkqtL<++JT>+k57W&-C-ss>T2Q{B%k_-Y;*Sb$wl~&7Tj4`!+W5>q)dF=G@zJ
zGvnHtnGc^nP0hKp<KoL3_v?PYz2z&m?B{Fy?>lx_98TLTdAOb5JSaF=_V)f?ue6o5
zv`(#v*=fXme|^wFrSkgvdSwlb6IbNx>;HG_73JU9u<+u(+TTu(e}8*x3@UrFudNZf
z@BjJP+1}ZCyH0+*zW>jsZb1o&j5G7??;CEb`&)H5ZS%$xvJ;kst`5t*v!ig*zu)ha
z4;yUBzi)T9>~?OSJFBIo<*NAo`|SRH3I6%>XXdvzH?4}Ebf~P1-(MHCEobJvs@J-#
ztgJhqyA|Brw0ZN_*X#GcI?%}M<?lbe<l#n#*Vop5y_r7$WvBYQ2~X~%Y|XhD<Zt(L
z$+`LV>-%J_t>TU<dMYX^uG`N!WyaaG;x%jMSe347<C9&rWQoeGHQ8^nZm-(2$7Zf|
z`MH<s>gvxIUFYHD4ULM5TKKVP<Eqfr(|*{25}*CQABR6)KX3be&Z^MW%XYut7rk=j
zN-tmE(mDUP->(bK%377KTTxzq$oXaAzdx0audEDqJ3UR8S6*KJajSS-L5_97gNDGJ
zMX8JH|Nm=C{ImU}M#he?H4%w7a?FxXPEuVr-(uaV<MQ=6C9kiY)d*iV2NYc_tgMot
zbN~t$WpnfE5=JQ<f%|GIlP@fA>`VUl=d=G|1HC_19X&lJudb|24p|j)^2C`lI-7W#
zw?2LL%<A8N<MTGolS_L=Od=Q=8QlsBHmtN~WMmZ2-Qd<Ekq9cA)6dN*l$vjnISEui
z|NrycUUlDm>vua2@A&y_wru^~Wxmpf^R`Qy%|82bdBT~z?b6Hr=4yQ`UDM_IZby#U
zY+q2u1(k;n54T&#DOlG1sc?01d9iNyyGzUG*MUk`EghXRA6d^&3fZ0)TUlNGdU||a
z;pf-|Dq?yuE7a%L1o_T3yL#E*Ubnu!Ue=<(p<7)4TDyGRiX%r{K;>&&V#dKH)=f8a
zW?2?5V`5@b@zf4qH>JP7|KG>{`WMrp^A@hvQMLR1#yB-Kb!GMUcav1|^Yc^F(@&p2
z?|*rj?_?EKRaMVP^Xh(Owzjuh&svi{zc$Ra>dS@Q@As{qrW?KMt(=!}xlYmhtE;Ck
z^O?CQa&ubdjSY#D^lVx^{QSZ~LZ&1ytg5Qo<u})AX-5agap4|ebw81;rPtR)E|#?}
zdoeS8USW^#ER&NjFF&2MCH=gds)~w+on747+2-HZ{CC@7{cvH)$@AyUc@7(Vdvi1S
zPVsqLx1XP$_CB9iea?XA@Qn?L&7jy+HZr<oQTuDl<wE(|FB1bdCb=d*Jk+W;-+0{_
z@%Wm=kQD(3D}KFP-pkC+XOa8+&F1qxV!BZhX0y-Euqa$q`0Y((@`(wGZZnNid*b$1
zNw)LJ8eLlxnOySr*3}o6mUb_`*z~pb>(%hSw1*Gd<;|X*n;ZS4&bggWchkvRn^L<A
zKc6+1HosdkdE(TmPfx9!Ud75AmXNR@aG8%}a6J<<v;M6F$+pBVFE1be@b#;yTc1qk
znOUZ%GcGP_efauyHmGdb=wDK@C2{jjng3^a4;$p|da1V9f4<!@?e%+-_I$k-eQbea
zGmpHy{Nl8;vyQFb|F7y|^|vRc5iB}WJmTW!Jr?wLJfRi7ZjNE)r<B76Jjus;B-_@n
zUw?6dBXjcCS67dnxBs8BCUWz!jO**>1}=8veSBh~^1C^9dd>&!?=PQUcWXub{(T#(
zzvms_*5tmgEm7ir&F9{W3!T|Pg&Mb*jzLjzaj$rM%|#AQPQx6t*&s)^w6sX<E_++_
z)Aqrs+D|9d-Fl@=dm5S9rOwVWH9mCcP|xlB{dXg_W=*}EzpAb9;dPHd#n-Rb?>DRa
z`BdEe%)SzBjtECbN4J}sQhon&a&hfSIdJOSIWthugshFa%E7^5Fv~PMt>)j)=YGF!
ze!W=S25O+L2Q^g|7d}4b*2*QyV{dN{4v+i)|9$sv(>}aIV1vz9-*;w*KP(YVHMsrf
z=jW{zACpSo-U`jVy)E=`8}Hn0@9*u6E-Wm(wXb&fv3~jW4-dCz-`i8^<>PbZ-{0S$
z7RZ4E4y<f!uO9c?hoz(}nf;DMb>h^iOK<1zkL8sz(fFde=2-l_`mL#_#lF6{=v-G<
zcWYPa>QmG8*T>iY4b=`?6EM>#^~%25>Z|KwZ_93P&`yzPd$;qsT<EG0&-Z&i_nGD2
zTQfbrF4DT}&4pg`dn*K$-B$R{HtTyoN7^W*1JpR^l`wQ_X6M)Y5?ivP=6>DpwX;kz
z7cE$@z$t!S-PTW^KbL-c6Z!VWM(18>bF;5^G-h4@eBS>5p55w<*|&C=uLrd^WNj(}
z;_Lrz1=ZMZZ*PBnVxsb@xV^jf?A<G?FMDTe_H;4bC>4Eu{l9<T*Iz%-$Sf))wMxx*
z)(ZE2xvG~-r-RCv^7}%1m*?02TRGD>eO1s>uUEIXufJTiYyY~ZE8_O<Vq#|Ansd{r
z^u+~7UMZ7+RxZ&ii(I))GcUP_YK0VB*L}b>$G$$UY&R&xF6=0L3~JPXLW`M=C!kl#
zR3)}z`pxqDwaY>64NwErs{Eaf=PaAbO-;?srQh$CTi2~!kaFqLC6nxHIzNB@JejwB
z_Afb|!v<3(PhPA(uc9gcbb;VMU5AZ_4jnQ{I>IqkGuZ9n!-rDld2{;YY*)3ku$X3D
z@sPDDxo~G^@zb|&*IE`oTT%J>*(|f%S@Y`uRZi874)eGFy9E^gH*Q3Pu8+HWcYCuC
zsJ1wC=+Kt>|8;Zi>*Ma-yVtre{>+XIM;z8hZJne7YCZQAPVr+sxFT$ARMx#cJMI2_
zaGq;Z88qq2_Wby-Z*B&c?T%IVn-dTeGzrxH)C^t*D%vhSIXU_31!w+~w`ZUCV-#ZK
z76%npy>hlu{<dGIl)b&Rw4s5a_QOGTQ1m4wC8cb>32xATeSQ7<kB^T<g@hJ)P1VYL
zc4nqu{>!K4cP=e`Fh9JVPZs3PUU~btORe{7{+p-V%rSFyaj}q1|F(SogDUeo1<h>y
za%(^>h1=V5CoR$6|0f94>fZbP-s<i5>!Rc9el9(9_^@fw6Aw^_?#711T~DV)-?1q^
z|L~Rh&ciip4jxjSYgZd3tmboJOXg*hoErwmuix_!w>!7D__^QN+2;N;XU^=)k69nH
zbJMqXcUOB&)!LbTYll}mzkJy0u(c)6&Pb}Ns=oYqTz<OB@yCan{%7b%Y;bUH<GJWA
zU%O=YyIrT}2Df!?+PwMdVt0PYwuLihNbpLTc$D9(Ts~>iq&e4;^ddL8l;5jVzptIy
z)MOfwdTNT{Ud}V8PhXyCoF38q)Tw0WjwPE?PiOu4@ex$9S(UEhIeejoQ&>bsW=)^0
z^{V9KeNrYF6ZmAUmVCcg?QdQF?#dL+V2<#mF%=a%?o~dQy<7c$FDS{Jn`60np>w;H
z?!LRAtf3#b#;WwyinzU1d2@8nJbV6pd7rGcmYrSP>uYO+pP!ri^-;IJ)uGUX;x+bv
zJ{-=Qr<veu60sv^x&QoY-1>VSRLp$v`Mmx51q&3G`%m>07xVb+x^Ld&&*$yK-{0E{
z>P&#z`mZi8?|*e=<zi5z%&+;>S@!<k+FogMv0p8kUhDV&v%b5~nZ5S=-SS&oGAF;f
zzW)8QnU&j`*jDG<+;n}(L95zdCcM+QFD5+P1WL%9oSc*X{T6%9DXeC3DCD5}1di}|
zOP$;KK;0U*9*Kp#(q<V~SA|Z}TXQk{&W??s@`sIAYDeWXgW!Y9&*hlSuKN0FY5xAd
zVe$2UO&Pg07@5Spp42-}n?8NIkdTmwh{zH5&9*nrn%`fe>OJknnVH7F-tB%rW&Zs2
zZM@Q;k^xld>|WlUy<ow?UH||61_jTnz2EO$KFn{g6CWRMe*VnoosU-+CD<{Ed96`M
zsjRGgIW;_P;`;UL)%@nXc$fK5N;`O2&#5Vzi&urN-c_wtuyDf$gS|f<byvOFczjFI
zQ?IXYZ(qL~%;d$&B(~1u=B8BBsxKKofBjk&zrXI?JidnP6}7*=W!>3fc>l-)C6fry
zu!nZox)@8_|9?K)NU_+&L`2Nk_v@AR&!0bcR%<z|bUbh<R56C}I{Tri*%vLQ*0Ja?
zFzB>^#!G%NGB6xSF^OPch~VIzmcHO169a>RB(E3)gP2qEQ%Trh(^DpOzd09fZOsnd
zoaW2Q!m^{<ilIS!%G9Z#P+u9m+>eWsbEn$%1qVOzu;_?K>@HjT>-+on?=l$}d^TlV
zRI>eaLiyc1Hl3b^r%a~V*QTg|I&M!-PcMI;5|i`#+FDS-vU~Z%B2YhU_wol~-qZE2
zI`i8;d6&7vH7je??&S}P;%h#(-rAb|{9WdbEARLJU)OK{@5aabU$a|}t^A^#u+!mS
z^1)9}PseZey1A;Rws!sQ>S;@)OtW@WbL9yN2o&7CS6x=N4P?&0fB#kmE$!O9{Gpi6
z_XA4>HZU-35V)35$p#**b2{*eXU{TdnCw{g>dMN;?=%mz&N9t@2BJaf@||Xdij>ZI
zhvwF7EhVKxcY_<a1vjkI=an)k_%6b58a#~Wl(E5v85D>OCqW^&K|*TzrG7SUL{MjM
zuwiE8W?<k}OsHg&6J!Dn41?sk7ash?1Bwj>wZ)+EK%xvnvPb~rvI9&E2b?$}<~6#v
zz{Z^u6j^zv-L#)RY4YU7KYmoSwzg^-7z6|c21aeqi|u?aFD<RT`|i5DySqehrAf4b
z1_MELf9k0zfm5|YuPpTz&%L{A>yhgltw5m^P*So5RLwFnvt=CXk^J=STiA5H*e$82
zr=7MtZhpUJ@z2lCwG|W=oOpY<o&S2UzwOf7dAoftFY~?p;o;$}_5bU(=G~0~wY4I*
zCvmO;c{3?yZ(7#xZ*M{UwMmmEiHM7<drBE3G)S4{teB|mp7r_J+3BV87CN_USy}Bm
z@l4y^KHfO}T*!R8+9`A9ypaI4!LzQfTYI!y{B@u8JA<cnYZ}<N85&;S`SkQOs4l#5
zBjWgs`Sa%|B_(YseH|uiTlHnq^N0-zji6H8bF!M~PFr*H@W{wW(166{AH3#w6n5WT
zci_N*)w?;n6~RNR?;@JF7C-m9x;8re;K74_k9}vGmFDc9apsIquav1*^6@@hkp)~o
ze*az_xjD_t&+pnKRqv7~Cj{T#+Z)|)_iKe#=&C0o?`#<RIT#ssoLjndsiuj^mJ1ab
z87p`WU)Y#@T(9a6s2rD&Sdl)j^4X%_x^a6VYJYtR{QvK-Y;x(VD;J-gogKP4?X32!
z-JycuG+VxhU0Yk*yRNRT_1NFPe`RlXZ?6AecXo!M^XX~2ll%M6yRH|Oky#U+x6@TO
zYD>WGvbR&_&07a*hTYv=ejQ}o#-yXCcg()j*Z>+}-l3ep%EF>yZN2-#kDbNOWo~yH
zm%IqrnswES-{!*s*Yy+U&tL!T?d{dMx3__Y)?^;Py|wkS?)E#2!sBa0_4j_c<a$1E
z7AQA;P*C@ucV%Vp@;S#oeg3Rp<&%+-F|nWV@})~Eo}sJ5bU*C?)d1Po*Ihj|ReS2J
zSz0d-?Oylk(<e}2a^*@$=$eSY)KgO~9_y9fntoo+cedHtmokEaf}k$`zF)6apWb);
zQUln<F}cm53!PX)R|Fi))X~=V290iQJZ_S8#pCt$_2Fr0%Pu>8&%M3vWZLGHfs5T-
z<;tI&5WJaV_VvZZ#TRU4Y^y@HW?#Pss^(Kp2*}#k#hA@rdt$@%*|S&g*|TTTon=oy
zYC176tSjDI^))CiZeH5iSx+TSpF9~@RJ3W)qD3NNVrrgV{{G=!UR}y6prLK;@O4*K
zg|41c=j7y6@_cT2*40&^uWoH!t+F!j?k*!9XYc8HrMtduzhAd{$`ldPygN5s%U?@@
zvU)_%>Ufh|TQY;czPlT}*uDSS$H&J-1qByAd6Kep*|MyAdn)_>y7fveW#txoabck|
z7e9aa)~u@`YooS0J(spBS&_HrqnrDVNlT9PO0RZq=bL3;zYo;u?31;Abz@_4)#F}s
z5fPCk3!U3{J&B8LZD3_!*i!J&NmWH9<KiOMQzuRYq@*kfTOYS}nr^h!w~aS*Hr>|$
z`(gEt<8$Qeek=raZI^ma&w6`n>!+_@uih=czqV6Y{nfJBc}8FB?(~8qV#nj)mPt=u
zzg~Uhh>NP4n%M61dn!NAky`sm#-?J!i9&mOdr*Ho`FP*nCzf8;*C5ki;L@%zyqUEa
zI$r@602P0b%BkV0BxsU^A;AbV!J*T_cG~y?LTC5FLao1`q7^njvH?{dT#mvGviT(V
z@XycBsoQUhN=U5OvSo|Y?b};27oRxcVSa{(fgy(9#wbDb#JO|VPV4WF$(W<U&#+-t
z6Wi%G@;j!vv#)XMl>!YadHMU7e-B|`I8b^dnR(jTG|*7!l<CvMQ@X!~|NQy0>S3$6
zh@hZieSQ7aRiWO=$NNJ4{Q54}nPy)L*`9az%hmAsm64m%xHvch=313*DR_7&yHcB>
z;Wf|O(3j6QGI~$Sy1Hs<BQty4rlVb*ofm(6d|Y~5wmjq4mzSVHT+sZ<*Vot2XWGv`
zyNsEgZ$<h0d#`S6T)fP0?y4?P?N=L*%U$NT|5LCwpPhkWijbV_29?Y=H#VL+dp0yF
zDQV*E^0&7@=_ljD0>`LbB`fFEeDVY}XF=ujs?gP25)ZR2|NH&@{q;{zPk-Gi9(Uov
z!RD_g)#sl$e%$@@v$MrV-!d@R$YgJ@X+F-rCTeR|=79#rS*F?3`sD57GJel8%}&{T
zQ$$?+xyipbo6nyz;8`2D_g3Z}$7Z&yi;G$xuXlEG3Rxd#D{E8n;TCB2R-@F$F2VEC
zj>5-NX3vg(61C=VJOAmt?b=F8hcf>hlg<zM`RVD@S+ic5$jQmYy^s;r3JGv?Yuh=Q
zjUi@w#s-_ir5_hvjM|#Dvi|=+kSiWNe%yWMc~Skx%F0Sn%RGr=s{MC&m9DO-t(|-9
z)s>aO8h02O?&RO!SKE5+`aJ9MceCQBi}zNwy;e%_6pvct+ASs;)g8LnjTh7bV&{_y
z*jx2g=JEc2zgB}Lwxmq6W|*}<J3CujMdiqr&x{P~=Cbiht#E8+^GkmD^5rc1`hBz0
zS}r}=RpFxHxi$NG*#Ccjzg~;Zx2#>X!F#%%5s&lb<^JWj>@_t#&1U<4zgs?k^>QwT
z9ep1=E*MwjG>2YM-n}vTc-F&1tzMp<frs08RXrz8oY>XZcWq7N<|z{=F1)rj8Z?4%
zt%;TU%I0+ct$BBET@7YuU|2fmINO><m#XGkm6{|RU^qM9{(k1~IhMsC%l%|k)z!1F
zt_lS;bdL4Ou6{nRdff%f?%%--^;QfFGg|Kld)fE%L|nXhv8%67ujuxjoyDf*?_!o4
z?!LRO@bNLwFsrz2e&PD0AJ_N)D@_$<Wnhpysmv_Kz_3(wzS0+->t~h985kJC7lP_;
z^d<_nCJ4AKlaw*X%N~@OVY8KM@V9k{F$i20PG~ZXNc$h-<%ea)PSsFzei&>mz`XjL
zoHcLCcJC^E{mf+E)TvAB|2&p|b!Fw`RbgvaZAv}8s_^kK&}iYg`S$UTUPs7+T4)+p
zR#BIi`(JNhWHw1Y##32cz1n-a-mOikr&H%Yo}IrBG)XBcAP|so`(QJ>Y03!!&r6%n
z+pS)*MCIzb*l191Hz_H}XE*=q1W+?g>`|Y;VBY<Gv8Si$1_uRAdi3a#iYI7<;BXr+
zs9TzQZ_m$7>p(THtGm1S&6?1aL9W%`-UR;r^;I@`<Hn6$ot>Zx2sCH1yX>vdovB+v
zrDwt1Xxvj&pJcejbS~W6TWy+oX^GPI@KqrvHDg3yTwL6)^0HmNZpWdU(ZV2)au*(#
zS~J(Wd{y4vU0i&8Wm5UKwyaG4eKaL4E$hmPKq>38HCo~8Vix`O_4b~u(%RB8<%Pv+
z(3*yVx!&I1!5JAD3qQiAXkx$o;1pKVFfa%>Z}ZuwbKUIOvsb^oynJ=p+grOnpR@KZ
zS#xzGxWETlx@HY%z(Z8(`}gnVIr``R{rwG^aMq39=3{4Pr#kEU|G)SDzdSBqe+5*~
zY_AS`?hI<-CdK?+bg`j<AvHZ+T*|)u-JIm=LeRi`*xIO<jqGw77fs`9zlQGp`|b8D
zlgvq0rLRIZaZYCf)d@ByE-rTG*7Z7n_Uzslh6@)ibhTsCiI5N7nsrsF|M#cU`diE1
zMy-w68MJcc%1J7R4W>+=zI@FZou$i`tx7uDr4_ua=W^l6lP9H2v!=|edZpPbXZvf@
z`?V&Jc4GMNjtx;;vsQ(zopt%f$;s+l3m+d#>d(BgV&b*+@$1i=@mb#b?)J9a$!F7o
z7rXU#*}OY3QF+tNoIZc1e_!Q5BRRLWW@q2plG*n?-t!W>e9eLzHzK~iy6T<3=i{-d
zcal~*9AIL2V0C?UxW4a9BiGGoXD@9?JggF1vAG(xVRC(C@N!Unq_3|JZJp?p?7MLz
z;_8~n;K#>$gAcdy%08Ah&kNaK_xH*&UuoT_EhkLPpR0iaNau)b_np~hxvN0)P+wkL
zw5t2FLrF<#%A7fCu3QN@JKOyH#``M*7jH>8$Rul3;_>j|L)UGoms(3B&F@t#-c|PY
zm4tQ8j}5y@U#soDyKbIs^{cz(_e-tRjEsV|->Z5ZdT(VZsG-;Z8pm&GVbP7+;vp$1
z+11l?<<-^IS2v}4AGb4`{dSYx+wc&NKToH}gT_@nFM)<TosRd&+s^|vVb<}Mn?&Gj
zbX<sdeQoX3`Sa^fCfl~A?=4|sU^u`8YA$RLC^wBT5C^6AZbgBqbv8;Y@c!;0WvBBF
z&ERD_pi&CG$pLOsfZA*Lx@O?^(1(r-#veKa5WPJ-9cxh28*LSbp^4v8d5{aa9||r^
zS4h|yaDJX`>F2ZNyQ`%N8bK2*cY_<c|Ni-W{@pyLn1u85Y(bUK?&Xa^kajW1II*3~
z6m==V)|1#b1((-I;nxQ4nS++4*eHGBK@Mry$U;L=QIUwe{Q3<W3|QINw6wImUSC_g
z`$^$!v)rKX@9v7q$*pT>U}$Y?TUGr0+^tQi-V=X6fA%cv)02~+-T)I5Q^-;;(Yy8k
z|5}y3nQ?RblQ2;9M0D(yTJz#X#@dLDPKAYqT^$_(MMax-mAqW^_4W1DuH9ls<+j)V
zudA%A%>3}+AgGEoGBVndaZ%}R?f1J;o6~x&%HF)VVXm+54_ZyJE%&yFwDjr|Cp=P9
zQeM1XzyBI&xyRP5(BOC1xj^f>VxDiyzrQZ^^fb`ybzx!Qq$P~ZY%3BEw@FzREiuc#
z7xQMLp`l?{XJ?_5v`xhZP&f7E<>l6_YgPs?&$_(K_t&e{>#r>FoSa>3EOt=YiGe|9
z$%2DMzn>>f(~sB7&(A-4?3mTDKY#v+2n#P>8@>J2i;Ig@ceOV(Fx)LT%xhKoX-V=K
z10GPX&$jwo$YeEN&?wcKHESmQJ*(*oabMZHJ1cjUzSgp^xRJRh^YXI3x6_NBoss<e
z@ArEzPtS`p43oE%zmMCRfB)Xb+WY%zL1CG<_iGqvWYW>mk&BD#QttM<%f7z8KD)|3
z>;Tw_$F9!*g<9wrMsi>H{pIE2t=ZSTCe_r|emx@WpK)hLVc%PJKA8z64-FHSdQCN{
z{+1)zw(#U+_0^zNIN$gGU)#njJ*&k1oja&Rce=Cjge^*!R$tZ7Fc8#8ov7??Qva{!
z>60g*<sJL>?VGgZ%o(5K|KHu(dV1r6y}7ryb#-)H&|bf15i7UYlo$KffR@=EDAiL?
zaJYH%X6v!@bFH7>sMDM{abn;9|0k6DR}?-z1{!Po@^1HgtGSC)PfzokFSaIb@2;q=
zS)p&TWxcdP107;TTY1C0yt=-<zyIDOETrPs>I)YxD9JM~Te{RUs55^4gU62-=iS|<
zX=oUD^XAP@pFbDRd3;PdUuR4G(^FIRv*(6qI)VJvd}VdG|JPSni=}>ly&k`{<mDyY
z6@r&dzy1F|!EK44QO8f8KVM$E{hpS*{Cp+*i4|{d7=j{Qbzj?5aNktti0t~z7gtwL
z|Mck-Xx89(gr8sEq{)*-MMalx*kIrpR8_SrC@5&k{Q2*1yx)GmPP=5^WOe^nf4|=k
zuc+AJ<m9B{dGO%DSC^J{Z_By)=*ot_9}e?_ru8oW-ekiFYOP$~xy*O=s`B^uq-?9U
z^vT=5tC(D!m9^^G+1bx;<X>447_}jx5j58P;X{FE(DQS1L)S)`nr2_~nW`NgmX)<?
z(&Wigr%ihnQ6HM{>B-4okGl1*Y|D-2l{9i`OMLP5dVIKtM~7R#+}lgl`>uhKYDCBG
zeOl?DmavD%g+;F2pw{n+6CP{h_D1POZ!59tzx(db2W>SqH_-6lmzS4IKRxjTt*$sb
z+x&WmpfXqOQNO>xzHTji>~{3{@$5@WJU88b3tE5`SNU|RQoL~BEKqB)p{BNW>WmpH
zjvP6X^nIpz{=DGDs<A(!<{WHhkN;LGWt#P*B7T}Ws9lp_xUTM^#+l>bwk~vm-Mgq}
z)?$z`8w8l9r9Ti<1g&L+R4h`UF+tSYBSI-b*0w4{+C1;d`u+b_vCG#4TwN6!TvrF~
zpcg$ob@KG-(|3be7#Mcs<kh-lNVK)_N-vArn)Py`yWGVMiHBw48D`F$xpJ0i_N%Yg
z<IA6mFftTahSyy*UdOwgZ4GGTW&Pf7v)cIO*PXZjAJdj-v2Ch$xSwtHw=2Kj?|*+x
zl8J#~%A9C<!E^I$qnX+Hu7GA`e!t%@eoIbLa;3lB&m+9X%nS!?BbuK|-jUkSCu14(
zV)nNGS{fQ2%l+q<J?vp%D9~q`mR|5$`OvAU+MqeLqj~o?Cbu6td^pxZnSr5U_48{D
zS2w5opPgeF%+4=Y(j&U$&3U`uJ||C}e06vC_T9_a85&N{+<Rbd>$`UkuQiw^9%2C%
z=YfmeK&xwV%w`J-3twFos$Kf-PUOUi6QzvPdaRdoFfarp<?%*5JvH_6w%pq$MNd3H
z!T9grzgrs;n?aqjkB^UMUtZ?R#luqq4iil&o%0XAiTARxuz(63&<w}!<xC6=30(WS
zFR++qU%T?S-~JtFINF8<)ZhNb_PSlZ?!unR&m|uoIHsngSnSOS+4Z6OO}G9&gSS<`
zzrDTu<mBY7b$_eoS`<1>)d~%|y)D-??TmzJ#)Su6=Q6k7{>jS2z#wx+Y6GYdb6l<(
z)Kpy+zJ8uo$cliB`Tu!i!jq47iB|o1*dDqvNcHHEBcS;+tCANJo}HPw`045C**7<(
zzPh)!y7T<(Nt2Xz&ovTYDEL~zKP|l=`#{ydpU+Ewzuo?NvcFxRhsO!iz1Ki}i-HFZ
zt}ZSakB{}PirBa)`Syi{&Y+;<l`wGFUH(4o>?~97l012N`N`?r3=Cez+pp;z?~}d!
zxZl3+?BS^@dq17hK6UEUr8SY8=Ny`<0vcw^-}`l%k+JdDQ`+l2Cdt))3B0;0boGVG
zdG-H(I^~LHZ(v|Zdl=j@@8DWq(4=smto5@=*|mQ@9$yu?Ic;P7+2ZT5<tx+9&WhSw
zwROoO?OThE{cPoCFyQXzux*Z(2G?)r=2(JyN~U|yy}Z1<6jXkd-Od%it8Zi!^#AAi
z`jT&NZf0A_GcY{3dFNJws+!uWn4LwtUa#AIWq~7eYkT|Y)2B~o%FjN#jNk6ZgH`K_
zpPiBP44P?_s<$itVA;L|DTW7nCK2-vu4T;r{_gIkn>nDNv9z>h-`?I1&yY8+3lw2l
z-n1Ze&S~Bx1_lQ4$JZK4UtCa}9<w~><|Zy)-mCBK?$+OR|J~i)phcb!9y~~Dj;*Wv
zCwe~l)s>at9?<J6D<@l(zA8EToP{Aq8nnQ|?$-<D<r}^KI^NYW@mo6ocD%_et?&2i
z_us4gott}e)6x^I?`E6jURvnfZc_0f!853pOSI(Elao%rV|_Jb%yMSr?fdym+fI(*
zfmQ78ve4`6V&@+F_U7hdcDafJzQ#_ONu3Q_6A!b2N<2{C12lv20<?DZ^|iIWyN`7U
zDudc7wjYlOgEGS9)l&a{Jm$Ck`D8MvlK$}Uu&O6$q<CfUa?pAb)0`Utlcr3Ywk&jY
z*i18Z28Ms)paGm{<}g3MzF%KoFArTEcG7@ns(yUjq>@ihJXKXySAr(PpU*A#shpVZ
z;?nZ${QUKxrGM9=^Go-f{5w6q?&6)D#b1BF-=F>R($c>2c-t=*oV)t_uQT)8EKqcA
zd-3MxW>EL})z#I@^Y{P#w(2=E1B1=<==jS9iHBG~9V*c3zDt)beK{^)|DxaiUqDsW
zE>PhmsvVZ`=t$?X*!AJ-<8EzCZojoHclFNV=UE>f9GqpG-Us5!T9;YW`uZL165X10
zRg0CC6|@YPTU_tTY5o0ce!t(p|3YPDr!>O>ojn;>jCX837_}*-bJ60(vibh{0XvIQ
zRn^p9{rLDeYDdAsxQd6Ym)BLE*4+*o0G+-ye|Op2E!o%CIX!-SyubX{>t=TTSw`jz
z3>7XfB=6h;tv&<|+#Su!zqV%PrOTHQ1s|xoTN}TB-;KA@W;vjt@)&bP28KI5?w~xw
zsBL8x^?u*)b)d1frAwA**xScHKR+KdUJRO}22Ia`<^^D-U2HR`cmXx)K_gme=jZ9}
z{_Awly8hoDp2MK|mSa7VkI!i`F+3;&rMqZm&{QR;suveuZkm1V#fOK7C+Y2B2MtYh
z_4JfH|H8n)u&zTj&ZO#g?)I14Zs!$$H(_8Xu(or3AsHjL!RwaS&75sY@lzQX7!pGD
z_#;HM!}hFEnLBUZx+zmcg3K8n>;kpXW8^mIeT!my>9hf~R3tioud2SjKCgtq0aIaS
z1_pyp)oTf!mp(o|{`J#o{p@RNB0<BA|Ns3pEqfDjb!G7JyTQy12U0UO*fif}4s%TY
zdOg83?~Vm%jR;ugDM!S-gSm{_wzjeQ`~Pf8J3nvjojWn0;tbS3T^qIaj;SgG14HnR
zKfdoWGc%>EN>+ec&-MR4&wq7&{rsSyAd~cSGKWMN7>xeEF4A+yHvBW)ChzhxU(kBq
zLx&HG3J5H?a3KIx*F<m2(JcC}8@+8s=;|;oF0P=Aj1{24gU#vZr@eUZpZVYu+iJhL
zR;SLL3tQ~gYm#<G0yL;ADJgmC#0iaWGmiC2?=EO#V2G(-w0QB>q@!F%j~>-jQgQ-S
zdzY4WgL?X6x=|w4cR<T)o<3cAu$djSSm4x&6QFiY$@jbE*=J{&f(CGt?}LV1K(o0Q
z7BnvNoxKdSj;`wK)$p&E{p~ZqzPh?@hwt>l$^)R4+bS=2zuy-;->z0~*ZM?>O*eB+
zoj+fG^a?0m%hwzPE$*478@+7F5|yJzk9tmG<B?d<#w(rm<ix~Vdn$`J9zS;Eh=!Wl
zvCJG$w<mV@wq^eF--&EE)+4#NOH@1Sa2qcd7uTechqt5Ic%_z<zP`4y_V>5&s_toz
zKQ)-<-?Isi7h+(DIf6N(W>WSh0#rXICMHg=-G|&Wd2?o_an$y_x$|njMS^B18kyO(
z^z{7R@B6LC_&UqQ-F^43Nem2Aq~2w0z|u+Kiby{<C(zHY&u@;!!k?d?XTQI<7c>f$
z{QLX;`t^JE*qCNsI`Yy&US1xw^5uT*_gK%olb`PVo5jY!@E|TTGn0##SJy;NN=oan
zLCKpN8@=a&)|P>`1*n|7em&gZ=3~pTUg_s0ytB`Sy(!iECb7w+=;v|{Mh1tEXa2D~
zd}@+}vMRSuv$M1F*PqYlK|`gc`S)ThEiF%-JzKh~ZAsGlV$16qzL0icxs4JJ2S-3z
zS=qvmP5jGPSy*B|NlnDj@!0V?=A5aQFsQR3_vCi|e%&qeUIx7lK$|kVC{t5Yb7gI`
zxvH9)mbG<sU0q$@@m|*Ff9}7Y@<l2P+<8h`x9ninr6ryVTc5c1$y~g$GPv7zS>R%~
zsQq<&jf{=witWn3z0KEbwr{VLsn$mu(E3lwwuQ#&=T4kI@6Ri3Hf8(v?fZT{lm7bZ
z>gkQ~d3ozVF|x1r_p~2UVaGt@A-HD3WacaQK<2?N|JJPk{dT+4bL+}aOYYVGuWfB_
z*H%$+nG~`uCvt24{kU#1-J+`E-%YICpqk%%pY-M}kRjwd8`)N8US0-jGP?E4t$lpF
z-}>H@d9!A{`tt8o;9|GTgH5cUw$q`*hgCi2T9=1y&ANJJO{8(?x|m4NLRvq+u&Ah6
z$$vu|JtwQJOg%kq*Y9_`O*1YixNp9;GFZLz#f5`cs>{qlp?u*`EBDk16Bf93i)kt=
zJ5QWA5!8H%+LrV3#__bxC-chdeuxSSF9uC{{rd9Ks`Aqkt&kN9o}HbYeWXLMbzjo+
zZ@2TW?<#!_8n#G0+_utZrcqaK@6{(KC&w1`uX6!)_nhurOz;%H7mM7>h+CMSB56~x
zfsJ3T=4Nr`#YL@VxwlGg{+=ENn*WBaxOlXVjr$pB0Rc<^R0xB6MjVW%QHGRwdV^oO
zBaOARm`2QN1P!R-S<5l-1}P-$ywJeNe8-k`#|hA&?#^nif{j;KhwrZDDrkK3Ca2t=
zaVZOU=m|6rh#WHTfZ%Cd@#Qgcw@Xg23S|ovXf+Hm0fEz?1#{-e96f$qTSv#Iv9YnM
ztLxIP(${*Gcc#bJt(-AK;_B*fe@92hRl&>ql9H3B&YM?v@iAz+_0&}D(|Oyok9LWs
z-EB(+O;si+zRTKxzkZ0Rso7&>WOQYBdH&s!%f40>9~OYN39OCV8)aSoF68N{sogeu
zii(cU&&~aOqYO0LdZ089|2m1Ia@M)GOtxlSJ(am8c)4HJ-CbMnRXpbPonx`_f?@Ty
zHy6*$G&ZgKQ(^o4PVuvQJ+9z^N^Z@J4QKxCobmMZ^wYO*M{nG?vCq)n-u~#3BN?x+
zt+lH9lCkmlzx*AOKx^2%MYY4O@Z0|hcw*?>&Udw$-wxEZIcd;y`j2(+E|A9y=HABG
zjndxQ8vE_%xp}s$&z$jTZD|p?_3d8u`^?+ha({h1E?@fL!NJwDceH{gGZGZvWo)=~
z>5_<)R8)qIiAhLX;)@#_lT~-MXI@^WX>K0QZ~JA!WzZT0&@xC~X)~XztHbp#T6#-^
z^7r+fYmjFX_Q!xa-$y!yuWrwe2Th%2-bU=5`1MLHh70Wf?!vF?ubG&brp%oioAKw)
z&f>ne(;pv~uMast&sJ1Ya^=m<>DIZ{B`+p`ro%zo<Qf|r!|gM>!NUZK;lF3K`OY@W
zyu8fUFFF1EJou!74``+&bZykvN!M+Qo^)81y;;E}s+IBe)m1JouA*E2?i8P28MQSF
zR9b<iJ4^oEulw!0a^*@ce*W(>uA6}d$v-HR-z}Z~Zr5wQ<r_iU;tsd->wlX8nv(we
z>+7jAXG)@8?907vb~DG!H0#QXMc4m4?zg|PG1>j;)2Eq#e|_Ec@t8FC+u|oD1pj`y
z?7u2@_qNMB&Zb>{aIiUb^G(qB%BIxQap!WQ<iNSE@OZad_19NRHG`LBTw4<f+B&m@
zJHN~yvY!31aLdb=FF|{$l$4a7JbkL_`Rns}`>Q*P)0Zw?3bL$~DFjpizdX_@?3WCh
zwQ_Q5di415)jgG;oz{kDx<O_xwxBF@kj*dh_w@xSk@*c;NCTRyTIk#^A}6Qk3F<w6
zeP91S+R)Gtv`+NfySuM%*jrdc+}&M1eTmY2w)k~1mXd7?t>5nnzPqb*_p$PqQIP42
z*!ZcNajtQgdpxhaj`85S*xf0cZ<>_9i#a>j`g&$`uav0_<Lj(vVN#&+9c;ryp8NlN
zIxQN%x%Bn5Q|Hg`fAn}QXq2&`b;s(1O*<<tYQV>Wz{|a;HWdIGiG!{qLtUtbZAhH~
zx?dDD2>`0Kp>wU^IR!ih=_u~LyRK7M-Rhr}rDbH<?$~yI`Lf4r7#JF+3T*gy-2VSh
z|C?{iO!M#k+4OC{Sp6jihM4_ab@7J3+1I%q_$BW>O($?|)YdJvzsqE8DlXi;%*ep7
zRDkide%;Tf;<-0Bxdt!y3-$2m5Yvx)^G=hIVVyCkm~Qwg-Yu>lcC<^h^nUI4mEr5-
zK(SZg$`Mh&G3BI??T-h|ptWWD>;9HJIKcS!#>T^UFEcU3q-U)6vS+&Xe|z$AzP~>n
z_gB4G*skKaHfn27M1+K{7z2ZbAxO63V-jfgH22n)!k({hZ-;wN*PEIs@ou&R!-HLi
zK!bG$CYAjAQwf@8%)Pzs>cM9Aub<D`zkWWyKJ4-`->LKFt<&H4;}CdsZYf88(ey7*
zr^jpQ>iU8PAFbc-dA#Lp+UCrUkB(;D-?w*m8aqQl`<XL7b8V}yWxo0I^YisTyY`&C
zYb>xq1vI?{niu=`^L)KnmCTQSzu#v+Jv9~7QU3Gi&m9wIhKALw?Cjd0;dvcv>*&nP
z%<ErvvFMyHxXZo<w2AHMsi~lq=v7}{1ZGrcWURPX`CPX4$HR6|Ye_ndgMq<o_Uk&{
zYoNJ8<MeYYqPOR{=Jj`VUE(#rb6`0qBZJ;SrE;)gs@~Hy3=B5hFb#vQM7XvtcD4P#
zAI<SA7#JQ*TKC(%MZV_4LDlawt;^RvJ2zL`6V$=DB_=Do_Qi`A*+%9J2fntOM$CJ-
zD<8Bo`ApeebI`g`UTkd<aOxM>V8aYr@W$W+%KHbL?tEQz5qs?#Q&qJKw8p9W-A?z^
z)6=Hj&AWcASGxPobpsyI(Bk&{b-O{UWwk<AtpLrw?<&pi{BIXYV1nMY-`msk;_CJL
zK<lD4jf_6+-8xN}fq_39bS}W6#JnFL9#*|txxD0d?)J=ETQa5WYIb~ke}6q_!Nu(S
zeTKiM-RUv~d9cI!T0$<~Is2VAlHc!m%=h=-@Aq2q`}W+c|Nl4X_KH7$YCw($E#oUH
z+LXK}e0?0K1QyeeTVwrh$KogE>4BgLtC;7wr+SXcNsEXq0WEC(B(-zr&QqsO1wB1A
zb?&kJ9S_-VzAa;AV~hLA8zBHHy}Jv){#p&{Orp-;U;Xs`d-&$Gv!Kaa&|>Bj6P0i6
zt=<kA?h6Gi1-Mhm1X_QJZ4!TG(cGim;;a4V+krMBCa>|EYjtZ+<>stwf9l`ft@Q~_
zWjOxvzT#Bzxw9^E-Ea^oOuK7nQXJVeb5r2zs~es*)pUnF<8trp(*L|vbE2o~<`ryA
z+P5NR&dy&ebx9}d*_x6j9oOv+v2J2~jojPq=ak=#t$Es5yrafmy8g$U;`5(n=DsVh
zf4=kjM7L)JT%fW{=18Bv;I=JWG%PG`<lCsI9I3w3qUhX~@#n|Ks67=M_x*UpoqKmz
zXx{ede*1qr{{4EbuUu@w3M%#Zl8&o=zi=U7>$YvbdgJ$0T&&)++sex7%ZJ1K*}uNL
ztor?S``*XKX=g6{`1pA0^y$lcrOnH#<(4ZXFfs@@fEKFTR)71^V`^?5|J77bP%zex
zEhi^uii)e7TUm8%XlSTa&5sSBITT|#aq;D#6*T|<{k=QyuqUX=ZQ)Tay=KZ3k)=zP
z{OAGolZ&67+4(3Nw1guva^<sUY4dyEUA=mBla4nhC#U(|d8g0Ku~a_2>B_~656jo=
z-5Z;?efRBR3(o2d3=A)x2L%T|E!!O$5%EGcJ3BkLuyCWA|GYITR%m!m-?w$|wr$%^
zPbks-`0?YX3L7nb{qK_Y6(1I4WoJ*FG2_PG*##2NP_&Jhtmb>^&CShQYkn5ZwJdfk
zEG*R0)4O(ZvU+Gp$P?TAo10R#G&KWjYxgc%ym;?pX|tROsgYJiPdaSm`n|lozT7Rp
z?>VWcs7S@Lv$GRal5NYqz3lVz^PoYXtc;8RN5@9cAXj)?<<S?mw?XYzhLEVJRiUfH
zR<2p&<Lm2Nv@_<`&f?|Ed}cnfJ-$hYmG!6nA5cfk{7B@qr@X1tQY)FKsem^8<nQ~r
z?9}PgTg%_afhHt_m-}7aRr=Z_?aU0heTVP4g8EyDKIReELAx43!%um6??lgQYH5AS
z+@kmT&6_>zESs8}r%s;ySa=tcC@2gWc)*L19N*k%X8jE6vBLy1HZXygWV0(KutJt(
zOMs7FXugoZ3h7}S1}QI)kXpVEvX<Kb9Goq-5si?p7nIMYZ2)Sy6$mheB|v6~5<%JA
zf`d0K0kXcn2h>4nUs(9+H^@Yo18y{nN+9z=4gw|K284D{f_$LBvgQDI8kT{egP6n^
zlKW(>)4mH`=$<uu_S-lohh29PX8v=0uav-Oux#DBbMI6ah{x_IIQUMLq3@`i4g-S>
z*gv4+yIEiZ6Qua&S$yyntFEr@q$Qg+8TCq=pL=%o%Q{u>X&I-d>6Ym;?|riUe%<9J
zR_-@(ZMwf6*M2{~|Gs;_Txe9(tnc@~&U1Qv<-6d9D#zN|y(*fzx@YgT-bgvr!da%z
zxVOXp{lBIA|5aYUem(ot6wNYyW<IwAuUJo>JgKFvefh*hWl<@qtnWn(4CX7BE_MC-
z^{bbk-@A>LppfE-*sEY;6La3?bI;w=3=9$u#jUR$LCL`p6mIju>pH;U%)am-7i39&
zo8X3qx}4kFazO)r5fL+_q^1A%sjI4<d|GsKgVBQjkL;`Ycvy58vT}2;F7uuJ=h#no
z$qnoeSG`wGU<`0_Y65S4va7xIZYjeC&*<pcn>KHTPPO{Zvx$ta|NGT6zWmphOi+^o
z)JXviC@xr_5E>f#bMEy^mllD>d{3S{30mlKVWBf<c;Nf}`uMqX=h_x}Z&ONO{5vN#
zGHPQ|>z%yv>AKhcmzI=d{QdQ{tGhec!=nS#*_=Fi@wRPd^FO=w$*cs;IsN|r{(9~A
zyUQ<J2mo!ZTDo*;-F2J#e|wCKjYVZ;*G`xq&?{-|20A3cMy~(jZ<b$NyX6GW&9w%t
zSM~Duzi$10&tgVqHVsu(*ZcMV|AxkgM@O#)4Xl}%oOoIkTe$A=@&4COr^ioINli`7
z{QT@JXvve9Zq$-iZt;6R@~0dY+`yn=W)^nd?)Mwh=ryg};#p^Bna;8(T=ePl=c!Ys
zEa{at&pJ29((ZZWw57XtS)H9{8x2~q6rI0!si3l3#=k#5t*XAP_`YY_G%??~R-vG6
zLC?<4US58`Hk{w)L&G%v_;qX6tdZLt&#<rV*Gu)<Z#UCH+k?z<Z!LK~ui6i^hXAys
zzvShm)%(gG9q9y(l4fOPZAm#fNqb)T^SR}(K0G`O>N;%Nv<cMP>FVM-JKsKDRaMoh
z?$3^ww>OD0ayO`Gs;j%def##**|Tpy{m|e4XVIidLZF>ATKf9ex%KxfShPrK@2^*@
zK?AJc-rjy*{BL9O@sPm4g<oG^e|=Ou{>r<%yG;uoIEadhR-V7Pr*boByz<qnthLeG
z{UjwNwY0Q?%F4EJadCmBJ-)oKW%f&PZw?I%TnGw!W#z-xVlpzIuzLksjrZ#Q(SyzG
z**`u!yuN2WXxqf&W4)iH>mPNhtDJm(He5j=fpJ2~%A=r_=ZT36&&{!XTwZg1UF;^E
z)9+=o!osH6$n}@KyYtex?s{zb%YVP$fB$D?V-u5nyzgt}^r*nVg`hd;!)?5mcNRb2
zV{e>xX2R{a?~3Hv89wvLS}pnUqk>n`=tz3ar6r#C9@{?sq(0;D;ltHAeAWUR7%D&$
zIB(y+jeU0%)CX*8Y67kJHLe4#QvUJbA!w-Vd__sgmiwll)gz{+rj_-v;o-||tG~VY
zc02$3&zY9R%XCg(y16->_paoH@*5WuOwG(dJ81H4l$4z0`rUbXd2Nf<gCgSm`RgkJ
z7ni)>`~BMqnX-qo?=V&zJ$4M#_-<`&J$3HfyH9go|2^?tcl(`7Pk;P3UteBUmi6q+
zOpr`baCJ@1pVG6e3#y}{qC{k5-k8e?2|cpCCk$Fbef7$fjO*)SxwyF2oNI4jJ#hTg
zRPE5PuxH!FLCXr}&Yinz_3FzvHYV?VoPK`Z)%*4T*Up$RLwa8Jmlqea^75{Id3kyF
z-aLhX8z1AJwzRda+Pd{>{+~xjyYD?-_Vnq~my7%DF1=pAf8CQODUYvjmuBQ{=nq`%
zrm3szD_`@WF)1m@q~L*rC+OS>(5Wqd{?z2&-F3D4-?Ou`QzNIzRX&+0J@56(<?}Ax
z+M50KYIuC+wKb7;$Is2TU$5xg7PFC)nJKcIDa_TiRZB~&=GecV&*!h+r>3N|==AZ1
z>EGR5-Q4bdsoE736SF4u^t8;2i(Em+mR!uXW@Y4l@qAa6$@IyS7hk#*boJV`SMPSe
zpQf@iM(^xg>+sgr)~u|oOItE8e|g+*ziP=67trws%Y0{-9WLJg?N&BuIu6uW1T7aA
zR`a>g$}J8$_vY2-^Y-DjwR_!qBrd+KX8ASw%9W6%%a;A>0WAph^z;m`@pW=)($dzx
zdgsoY%@_CX+7&e|RZ~&%;EiAV{(SOIO-a!(H4SBDWj(g;wMpaG1HuP*U%#6B>BYsx
zQ|HZl_kG2q$Nl!#Zf(sjeQ<zLH*%B9)TvWXojiGQ`TV+9<!80`GXMV%+B>sq)v7He
zFN5CR-VWNCdFt%htDvo6rLV7nw&J(F6MA9&<_2gSS!?_4wTBKly^n~Fp54{mZCd#$
z#nsi-bJv%(Z?|sU`s&4t9V@F>uUd6!j%6|E9Fa|%HqGAU7N1!8V^<0TLr(dJ2adio
z3>-m6R@{>CoG!H{^YXHnppIfvQquJ2Hh;fd29*t<QdeAj`J+ckpwkFIo0!4Jh|Dt2
zpXcS}6%rr+{<G&pUTL!vn{;F?i(H;QeHyhPp)n~rSv5B6$Wrh5E@eAoigw>Ub^7$>
z3k#iVpOx>7+4X#0b<e%+b3r>H8k%oxJQ+L5%i9|?0XlW+)Rik&dg@L0wl077rET@;
z>n~qju3H_x{@c04$Z6lXTXj!=Vp}7u?)Tz;{r{;dx^a7MyqC(pwuW;>gDdDjDdw2G
z4XakIs#<bzmR0GiP-&eRVBzK)R}&8En1NOg;%WVWTL&LH3=F`7X9p1N9?<9?19pu9
zQfm%CR#!@Z8Z~@Q&7u<E<}pv>iuaHaU1&R}pMx2)cMi%&Z8jlQ=b+KT2MVU9rpKh0
z&zdE*`1;|kprM<Bh7TVKT3cH+b#>Reuag%OTlV3@2f3YQe<J1jk0*auVqj<}d38k-
zbgGnX(c2Fn3S8aYzn|FpuphLpG(lqa9YzKQ9?-}hg9NDC%3uH*<zYyW0ClnsfY0=5
rNCXX3FdPQCpP>z8C&Q?QH};l$|4(>!*v5;2fq}u()z4*}Q$iB}QOJ5f

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-7.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-7.png
new file mode 100644
index 0000000000000000000000000000000000000000..2df8fc953bd12faa85adddacf1715398ce3ae146
GIT binary patch
literal 22305
zcmeAS@N?(olHy`uVBq!ia0y~yV2S`?4mJh`hJ9%>?l3SguoOFahH!9jaMW<5bTBY5
za29w(7BevLCxS5J3j5`m3=9eko-U3d6?5L)tq!>w`tSe8>x@%oKe%h9RH3Zv?4+w|
zxOLCc-kH4-VIHm-b=S=~g9Y^~J-ufIto|96#HKWL`<0c3mseagG2Op%MzV2&<)p<4
zk+YgkoIU@(zi!U^ISitIPgu&#@85bZYNP%1z4k4izHR+}^LUa(n<4`P!;E8RFETSQ
zFcg@IL@+Qgs4YIg#K2%6$tuRc&~Q>?0|Nttk6R-v14Dulmkt91!{opOMh1o%JxtsT
z3<pw1wG74(Td`z`3nwQh7YE0L{{H?$hYwGkIkWQS_4Kr~Rq^}lvaYO{_~-B6(%)~l
zXMcTlb?Uj>8<X3szP?h8kB^UB8+P>Q(UluETsY%i$OVdBhl>|4Ms3NMxM<O$FSoMS
zpFDin*}0A9VxO$FUS)1p)+#n$sU^R@zJ9%QdfX-L^?MfC)&6?%;^N}6=c%cwE9?LN
zv#S5MM@%nf#f=*gOP4IkcyeOm^;a8ZjwMO7J$&KFz`$_)=HBY<ASce5v*yQ-3eTXz
z!i`Q&P9=wV%`<*~dwVr*_UzfK{pMO_zPYh6YD2<7*WZ#xDINQMK9f#OPd|PAdibO*
zB`<?|C5_!?o8<=m|M&N7wFbNLK_-R=R@>9gN>x@=XqcH@yY}qm%at=`NW8tXGx&I)
z?CNi~%<tC(i|fT)cyn{J>dIR$_iau;uVri;92gk5?UC0cw|+U@`1ts>QCm+fSzgEo
z3W%8Jn>KB_ve22`G~>d7b$hG7zuWfs>d!Zu&zF2YYo2|$jhBmuXUhEf^Jkgmu6jPd
zKJLGzXW4@Tj8mshT^YSSuk8Bu)#3h$iHWzi=g;r-e^MdWCkM)OYxeB1iClZl>uuQT
z(6+=EKR!Ob8dv?|g5u8IyI-GFpC97n)a2ysytV9Y)Y-Y#;ZL7Fon@XsZ!LfK(V$#=
z@!4%_x<NT~$2n0^(UX@iZw}f$efspb6{TEUTqzQ5lO|0vDSYJOdFjK$!(Tt2w|{*#
zJpSsHmBCM6zs}z6Uivp?P5-VAP(D`wc$nY*#gmhhuRpnWc9v;yKtRCM<9qh*4ULJ3
zS^4+R&(GT)U;X&)+qIp=&%b;)%zt}pzm%!hY_r@;`)Yq*Ssku_+jiCK=Sj6!TtVSv
z(I{W{!*Ol&_I+vJ*T?VQ$0utQk~%SUYt-sFY-diNo~*Jp=jNtczqjSw47y+YeQw^4
zhitpQiRnh2FyNVMReI`Ld!od)>VNy@cYh5O-*`fnfkC}s?WEOQs;a72zX^(oEt@k(
zMpQ)P#@6?@wt9<oyCx<kUcI+H>Ef^V_cJTr+%SyP5i`xd7c)sjNJxpFpTG9+*Xw1^
zr%s!urLFyX5zL8_-A9vNy$*8gkyyBClhM*8OK#lq^75K8ZQ8OA9|~AmSUe_u`uut7
z+_`H%eJZ+L$#45*0?*+KmzH|x=C&njn3{(A&NA63n(*)6zgPG7?>90sdb6#_!{0wV
zF>&GPT(eUmiVO_bcfPy3TieJesI#-vs_;=uQ*-mwY15Y7xf8Q=*|J;bW*en;UAla^
z^vMaq+aZrPBp$x9KHh%smrLHiUM`<sayxf>=G|STw>BoX2L%O%tdFz3{q^&+v%xMd
zEmhy&tu;(O2FhYl8xk5pxsQ>V?aHs>cyE;m1_lek&6ii7_T4y5KYm^M{Ms-{Ny)D6
z?%>MGon|>V7IbuQ?B2L@XQ-a+zfaTmXZ-o`@z;yR{U(WrSpNQa++X$mZn>ziaB_Lv
zbiLRqGiPeb%gg)DFmTM@|94wba`NgwXAbS^>p#WFaDem8-QD4Lca`pb)3id3=kSC?
ziCde~`*)SS&3d&r&~zCGBSV4G^+g9JseGDp>nJER8cup_U;qhf9dvrDbP!s>WSwp0
z7GIT<9@~&z`S<Jft@Z!w-1(VTY?k?|=QN|6iF@m!J$qvE^72ldJ$p4efA3OImi_<d
zxqWC<lvejqr-@IM?0!68K6>=%%dOYrF8}=e{O5nJ7{#vDyZTKdR*1fP_wLuX+xb_w
z=f}^rtBp!cP2Ci=w(8SK^{F#vXvoXU$L=Utc<OIxK>44K{q<M8_4h8R`}^zU>C@gz
zmo6=v&BJuyYt#L-9m}+qv7SD43Y3pZUtjZmeQoXK@AvE1=iS|vd2>^0S9ka2oyE_e
zJbUK$D6l=Wro_$3sVQ&&-?G&7^w<0U|K4Bv;ejK2KhKKj8A>I*A`v^5-MMq;%VB=|
zjLXY>wRCl_KJK?)_xs&$|J>W#uKs?%fBnH`_Uy;UdbcTczdW?-^xeC6-@WFy{}bRn
zO(!rYXwtu*=j*L9LKq%M_y|6lWys^q%F6oc`uh2~YeVPT)v9<tKR<u^`t|F@bfZ)b
z8+`eAT;6+9T<zD;pFe(_FyQ%jH1znC>C<nEMow1q1(mXsCQlBHi(4mYoc7|`?EJC^
z9EsE3@B8g{@ZiBdxwg~0#5#rR=U=lE(upw^>vpZHtMl^k2nY<ESX5m6_4@vQp_6i6
z7w_4-_v@?G>tF5r{qFMe`E{$*=hs}Cma;Ifu)I9n&#!M=&dsFk*><(N)O=<v=#@6l
zIyc8sB~nkp&@fQes^r4EySrs=MGmYCOn5j;Q(JqoitX1c!M{Gw|F07tAAfefef<2I
zPn{|&<MvjSxrVv8wD8GTEQqiFdv)UBW1^sHMa_TSn(B8u-Dl36x$T>zahismUEKVd
zPn@pPxFt+7CLB6^*fi&cLD!n>7So7zjZECjRz^ID2?<$p=~B>Ko61XNIz~o8`TKq@
z^P6k6H1qPZ%*)GsC;eN0;?t*3mo6>!{(3Wg{>iMZRw;jWSjEM~b@lg$|Nr;bG~<Fo
z?XQ>1w<Yh_-?VA-W?74%n9eTy^R>Ue1Qr!-y0s;9@j~bJpcKZd3l21CYF)ek<jE5a
zEiJEw3m3k+ws!Wh9?8YM(&k>1<f`8o>c;E{aPO13cx7eqYMo7adp^3k+p%Rmu)p6E
z5EZ5Ma(n!~&1q+Y=G)blyx;phEHb6`+s*W<cRQb#ytuG1O5S+g8D@T)1uKJ>zj|?T
z@umnJE`I)SkQ26MyH70Tosh7T?R(_rw6jHD6auzOwkevMo2RCyuMS@yr=_hOyxec@
zm0hLTYvcAt&9D2llIL*1`FXabw{y3zOg%j<YGYFCxA*tgOXu$il(jBf^M%jEVtbdl
z;v9=YCtfL&3A=ai_VV_A`tIGj0|y-LmR$C=s`;_u+1c64J32VFW?%Qal+SuYfB&CF
z`~SYpm$EKf^XKnh**_{fWI#1^R@N#T8=ET|lif|Tu6V4C+8VUnZ|)aRUa5NAYkp<9
zzdS1oi$&Fn(x|w&c|k!zPaZx5IX$>r`>;VsSlF_S$;XYn1EP5zXib?qRkAHnf|Zr^
z*oMTzJr^znJYKzi-zM4r-)`sk&d%F)GUM8snIE6c&cAi*e)W6X!$}(@YJYt(<l^GW
zs=c#fCbzg=NS1Zsqn3;7Vyz!fbeG$>b?THUH~v-s{`S_bU(S}NyuAEzxBk8jyT2`;
zU$?8Qxi$0O=l|6;HG2{_M)Y(Ft4r<NxpUj&_`07<1?A-Owq#s9^zOV}R^It}wrwhh
zPoF;h;p<n^uTP&oP4zJP_U7i}7svPH8Mt;xMencMyUc&S-pl{r?2LGv@7Miao45O|
zS?T+Gv6DiAf)+*R?Q{htd>dQattlskWNoWLCYfYi(O4U^GpJi!f7<%>>yzbJrmx+x
zBf|dQkHvhlR!jc;sqviD-{1f1%ge=QXPalgxv_E5zx-X{la!Q{zI?gt|N2lXx0FS}
zf?RDr&#Y@}BH!AxWSvRcc;i}_Uc?56!oor?Kfi0Q*Y95ks=39wUCZxPs$XtZOYXX0
z8j$dClVsaM<MeYcriRB|JgvWf&CcTIxB8wwfByP<eErt7r!{qTL;wEz3Mxv<-rjoo
z^?LmEeYL;0)c!8JZ8~w{#8)>qCa<+;&q_Po##{AbVLPY=b+_oWE*Br)HBkE1-~T5_
zQ&Y3*$wc=pSy#1oE3IC!!ei2x7mNE>6+b`6#ldmm#l^*;5fLZcHkJ15-o5*+>_KjE
zy(K4@^n|5*A8m@%5&QZ3_v^Ff_pco36wa0QI5)>K_~5~VyI!x`{pF<k{1-PiCUbFc
zY^Xi3S*7&F1xGnKxnI}!|9kpixr47x{Jt1}`@dUumA_w?KCjX(E-uch<i&)0wclfF
ze>`mW^76X0CG&EMMBAmyms2-Je7P2#fAaS2=t*1h?pj@49q#}Cv;F_Y(fNC)ZrRj#
zV^8JguC6YVoErw7liJ(cySlrdzI?f|m0R3v(xl0gRXxw!eC}y#YRYlFR(#%e`NPBQ
z*;iMEc6D?V+%Ue9nq%@xNyf^t(`xyiJ$DRv4*&Rl|9{?{;`6p{i`{yAp3kqpXTWp#
z#;(%U7gq!-E1Q^Hu_%7lbGKB!_RGYJOFV^>e|~zp)h;b&=6So{XEN^W*!b~`@p*}M
zKG{vy+bTb&Elxi_ukC1(;j=R{lSRbDq#hsdH~;hJPmiFon}mCxjG^7XAIZrtE-XAY
zLD9LV`1v`@7n%XVpmd$MF@mT2Xp+sR6UxV|-|q>2T3J|F7`pBxs9{q0`K-CL`Q4Jq
zfgvFwvz^y}*1DGP^T!W~y1Ke$`)X=xBAP=_du#|$Zc992z;n0i_1dbpTd$kc{i)dd
z>(%N{pFRa8B`tb(X6E8fVRbDVo0$4vm*;~T(%RP6(cNOYljhH#|Lfb^*Du@;s7n0*
zFWdC``ugj==J!C|h}*{(h2$JJOgO+`nt92kv$J!SW$`jl!TaP%%GQjFPTgX<LAST%
zhOUpZ1tpEm=j}GDMitbhpPLgH5HJChN8Y^2$-TQPbp8H+yVB0hS*aJhOG87$W73w4
zi%OtYLC_>oIk|PIr>CuS?H2p==~K~@#aAL#BGw&DlF;dJ_&QBDdRh7X+HmJ~zN>f3
z@2{OOL16de`!%0?A3c7&wfcMB**TWM!s>n@Sy`(lO`0@i@?>RweSJ_JeEhh3{omK|
zqEb??7N|S=iinD?^q#Kw>dMN=*Ve^mm!J93f4=k1#^m-ketA8Ae}7P4rB}-IQosGb
z6<f2fpE`fu|L^bb+jB2A>^f+`bGP`sZPu+VEAQ3+ug$%`FZT2E^VjFuR)hOZmzH?G
zy1jk<tu2|#o>KO8d;a}-Zl8T=iKmo#-ki0vrrXQk$AKC%`}XZymLD4&7q{-vA*Z)D
zH@nB~E;IdlZ-vzFgoRP;{Bl?Je!sW+a6A9&)$8|NTIAZjrTTjws5okDZ2a`$LqI~p
zf<uQ7gIaB=DJduJ-i`hL_x}I27Z<yq&f2;vdV8LfUCoZTs+X#zFD@Ls*xz!x<lP<1
zy<e|IgIq0F^+Iv?*OLD~^&cKM;PCUukBq0Mrb-zkG+33sT5_ycdUg8wd7%1I$~^DQ
z3ikt|I|?2)-MMq;%F1AM-}!d2jg5^U(-$pT1ggY5_vcFN&cAP0`~7bDuIKZrO)5Sl
zcwXw(-?xH|S87H1`+M8wi(c_LY8NqY-n{E6@@pnd68d&<mFpi(hpkLZOeUF^RDS;a
zsi~piae2A_^^M8LO_GoCw6?Zp9%x{!dOo-O$-{>WmwHcsb<X<zl|!xErrFnYK<R2`
z`n-#0W*Uo1ORqj~z`@;~FKa>K;WjP~jsQQuKE0S73jF;1u{#P5zMIqa@=@I0D$hxL
zG8PHh?sr21CAQ|?4lBP`x!ms02WL>@bkdg#&ipSAvdd4IJ$ts_Je!qIo}`q%xZt>c
z&!?_=wcjH5{&>_~_2Xgt(}xF72|Fx0aLCmp>xxHbXXmf=|9|Pfy}v*H-o1OjPRIXS
z)XdJWrKaX4*6r$V`*lj*&ZlCa<Ou52U0&w<^;&ekrlH}*GWoiP*K|ey?`PwYSTJXf
z3`ohP{QWic@hOoyVz+;->3SXUI`BKFANBZH@8w@#UvJI6uIG8_`TY8ICr)_Wt$x3^
z>i662Uw=NIudSisF<IR|tfFEEsF4?)zxV1v<#O3KjiKK+vT;u@d3Hwf>^$3OZgIUU
zEu6w%PHC^d(U*H~Ph@0dq?fO6sH0<JpRBc-XV%3<t$cDeE0+1rw#vG(!^{59hvurU
zua<&(<(8I_{&qi?sN7t}t^MzkpTGb0A0Hooz349ga^3ECMNcLqE_(DRiC5k(rY%uJ
zP0cO&SkFb-@;eKkJW1KTb;kR>-{-yC@t6<PO5u}Po4q2U`RViL=~Y4zVPVTQr=Q=%
zwpwiB(?^s3{QYZM{LCj(M@%<jgF{<l#<w>&vo0)XWaE=r(a6l6b!LX4Rne1<u=R0k
z*R0Xm`{|UnNO);XK)?i0{sRTbEW6rW=jPe2-m$}C_tEXYzrVk}`~AMv-`?KdoVlj^
z<Cia24m2`PoiJg+nKM4TayAjg&(CcY4PUx+>8kMc^W-X@2(tH!6!@t`?8r$!H|HX^
z{+@)}J_Xm-M1K1Eb!&C_%rCc@GUesv+51G&eto&@FDfay5>zEOvddjKF;V&IzS`>A
ze?On!+EKW8-_K{#wI7d)PraAewd=M0e;<Ac1Bc(=-d^68d%NVc?skiclyz&B4u1On
zeZLy#wVB509viX*ImPs5@87>a?aU0tm;cKO=h;?oTRUS_1-sDEso9bS2@Pd$Z!Ptl
ztd{xu+S;i7b$gfGzxJZ^?XA$;+w;Sh`^}ZH@tU#nQEa+cx2v*S&xLz?tG`|ij}J^>
zG<9ffmHJsb5!6zYG)_Bl{rdFnX}dSf&fgaaikEZqY**L*{<d<@o)|?%MNqLIWtQ{e
z#lweED?B#*`_OKm@$SyfsJ&HNLE&?Cef<4{%Eh%gCa<J4HUuP#x=!1@dv{#j&(y2y
z<Kv5;ohkgXp`iEY&z~pHpZC{|-d6G@AfOwRz02Rl*nT`B9JM`fE~wOT=jU7@tg)fM
z_0QkGQ)kRr@$2jB>?<n*`{ei<vRBmq|M%+FR_*ym0=zvo#4xjpt&2F^#tX{v%h(vj
z#RUWwfSN1w=FRJq;|fR*NO-s^AcpZed)Mk)u8%^#f4nWoz@VP=P4C@w>!%SxL5o^i
zSXfzDP8>h({_x?$Q)kZXc~W|Mn(pM;v!j<z-@SWx-Jg%{yNiE+dmH_9r*j+6&PVU3
zZw7acyZZXB-P)QhDlfnO!GnaQOP6Mzn4oxTQ)+kBw>Om+vvtL~<0>AqZq2-WY~9|#
z#cos2ar5w8`SbJhTRXS2qW5i_8(A3|gbR--eZRZAJp1XXsa}45VKp^-R5Z1;yc87`
zXW3M4+LnL6?xfwjz2EPhzI9|v;^DUIM`tgdp~Ql7*zEE*%gxh+0s;bFIzL<;1g<j<
zY0KruIzTOxTC--24yerHl``3o{r=wG-EV&!m1tYIulDz;`}gDR?Chk>a%SxN{cg9`
z`LicaPF%l!{hvR7Qnp5Y{qy<!>NRWDu-#v{t5MU5fni;7Wo6~2sI^mXtqohvbNIr?
z$H!Oiy>|S#yT8rHmUsJp=l%TsJNx`RTad3@Tw1=pySuuff#LQ}P^<6xyy`1Ei_=BL
z#InxLGM!~zz7Etr{(isy|16u?ivtp_HceLd&$_(KH|z4U-aUKw%G$~>91zvg(z-NJ
z+1(`Lf`V!GwKucAJnS%yaCLPJ%{%(=>C;r}xVa}zc(}T`-P*VB|G(d+1rHp)zPlU!
z`Ptda()oK5t+%C|6xy9FU;8DnSJpZVG+grN@#Eainc52utYQTXlO^}tK6{bKz~D1!
z;>3mS^0ikk9yaLRzI}UFcenP|`S$hq%J!%!DJfl9?B0L+*0YB@pU=BIN!5GG%$c5z
zt+Q5E+<tYK-+qmlZj?ot!PYm6`|U1WSm-Qk+Y?p3(c<pZ+MiFSgW8c_3}hB%US8HG
z=d||slga*|KBHBY#MW2K=ht1jwKZEi*F9m|YR?Vl=30kq7XCV~E4V6YYt-sL)!O>{
z{+FiaE*6lGSTSeLoYPkRlj?pxoi6qL;Teq$S&ptx?=N!Y-kNpw)WO9oW8>oDuHQBG
z4$912xw!p-z}MH;!#_VeD{ITszT@LDX<6HrsOL|gKArSiJeDs#?%l)3kCo-+<#%tJ
zG)ZW#P35Lr*@q4t+LC%&3^ahJTXKJE_H-Sw?n8$TW!dx{Zs(7`cAx!z{r|lxJMY|=
z-P0|=z@Yx9qg=30!q6!-HPy@06Wl}7(AD*Q`0(Mj)>l7&{ycT=Tv%o0&bND3ac%Fn
z{})mH?ajpp2b*(q)6dTf_4M>yTKxRnT<z|oiyWKTuKuWgdImBM)fe&P-rnkRS2s5;
zL&HFIzd0M;KAAUr_UbEFLT*<EFY^hks@l~jW4UO-0tL^Y^Yd)4F7+0_Tlf2I){PAd
zzrDG+_{x=#t$BB&Iy*bJWq*HncXi-mx6CUm0=fA3!U6*)URxKtdaiYO)|(p}!>3HL
zGzQI^EO>f)diJp%$x|mzTv!>rTtrH06|c0}jkT+{MCcS1Z=U}LRK0IaJj@0fT(ByC
zH)l=Q>SKMft3hr5yj$x_UtfE5clY*d>*Lq|`BSrV=gybYqVq03I@<m9O0fUcTgBJJ
zxO8HI*L~9$in-%!e)q`>#RX!e@9x~Z=v?60=doeQ{c8bgs;Zirnk#P=2L%Ve71H&b
zWt`sk?99yKlfSoTUUt(CTeIU!LM%)6h63NxmzR!Sbav2PbYR!MfCR>?pwaXLofcXL
zn|6YNkHN>SiIt&YvSQ(?-$;DnMBZuH3l1<b9Ow*4*vSSO1%#>;Ry<h53mTndP=go+
z8k-OTPbN)FU}SiZ;xXry9TMLqqWP&5vdJL*;GtzfE}iQKkOvf1BGxssfM=pW=37V#
zE#K9T#237lu#*khWJsybz~I-yblTLwl>;=b1(Kh`!8t8k0WvVjDaOFy*LGy(JCI`;
z3?#vP@DLKR$wE5U9hz7f7(iWi!sYyNujlV?Y;@jR^>xzv_3PJ!t$y_AQAk8Yg|6Jm
zg&?06DD`=5ShRRCXrTY-@#ESS77>}5nNmh69ouqlE}Cas9rx*<{+<s_x3**^U%$5^
zP<i+I&6_q|*<W8@`s#`&sCBjf|KI$-Fa7H;mEW&j&MR$p<;TuB;7L5cBZ92g-re23
zwdkprs=B(ion71{5mC{l6DA1w&a;WUy*+<_iv0I`)$4bay{)=fyv%RzDmC9(8LzLc
z{q*(gR25J<Pd?TYn3lHe*Z24JGyR|Z!B<UyW><Ev`7I(M^5Re{cc`3o^|v)f#>S$e
zqN&>JR5HK3xcKSo*Q={SSFd}gIEM!`$>_I4>7dc?Qp3o|$X6E@HcOdgBwPn&&f6cm
z4SAeve}9|0fB*iPni^2o8q~rsdoE*9;E<Y{3hE!kR`0F)Dk3JftoHY}*mv7k_$71+
zFf_c5iHn=JCM<ht+3KrWhYd>p{P>u){_Dq&7lr+87Vdt(FZ$oVf1nZTNs}jw3JNaV
zTm4;2LE*r)_M=HFx6MC2vu%wxXjY}bXzSj!PJw|FZES6|w^mnH-s}rkH!=#EIC0{(
z_3!upuj7@m2-sWw{o0<&&tHy7=ij)ycvqd?HTT#fpcH!DGCx0GR9rkf%f9~Kp0^dg
zE-o%B-23IqZrg<1S-h(*>sI?_Py##98S{2GNBzH_>3=_+)-TIVO-&Wwdn{{fm?iIw
z>C@Fcvu<um?L96CE}Ug{+wmOUaQE}~zcHTj=XyZNQT)=D%wSOCwru@^1q-_4gt5+$
zn93c0c)0!Qp336e*A*2NKYjRc;d*?1Zh2g0=E_Z*HmzI1pY8^&$9HqMW1SVb?ez7}
zpPJP4^woRz+$p<va<aPi-S?0C?XS(V1$VfjK@G@X-`}tA>EYQu_x9z>mqQ~WR!mfO
zkNf!jjHIC}2e?V%w)pPu^6-?DB|^f&rH_tq-u8R9bLUPkU*D~B%~MZ_EM30*^@)kf
z+d|fW`hS;}cIWN?TV|SbBcS@*o4~BBRZ-jX)*d<HvbzpC*a)hILGAsEi`};-9Ax5^
zGVx$$<1zR;Q}(Q?@S3jkuAe@BTv@bkd;a}>T)e!c2Tm|B6!@K<u77>=dArp;Jv^Yf
z&OLi#q|I^yTwGe-%5)!9GB^Ky>EXk6`D>tjG(E1$^YQWi>(9>4HZ6M-@%G-{+j(69
zlXjK7Ty*A)52)LEsD%^M6$14FudWWie#-co+H}7SUESTL_5W%>Lmg#rYgSn>9Eh}h
zwVC7f_4VtQEKyNaRSm87%gS06yGYfu_}Q6@b1aMXs&#CazEoNaTMJPA?aH>?+j_tM
z>^h|?yoM_=F)?aWO6RA~pJi=D7#Ip<3vV)=PTH99>dHzjZSBi{ety=k%B!s032GOz
zva_E)ecBr|rLZOQa!626QhD5Lv)q#Zf4{#zt-n8{U(WW)+qY}Ky}h0N^V8Gop8^>e
zuFt#`^Pn&La4NTsXV&d)Yu)<gYEO!2tEsser=Pp>cKiKxuH9lQ^Y8DgdbxBuXfSg3
zXC1L_P}Azf2@g;<;1<&fn5^de<%qEV3;F*)j&H4#VPFVw-%--2>UnvYZ*XR2=GNj<
zzrVi^ud3Pw8Uz>B4tw!(`TVe~tW|1$b5?wPeLeg2wY6o>pFeq$adwtz)x%bCle{|?
zxp#I1etmUywTU_}!-1&<N6dH)=ARai$i2NSG$dq7P*70Gqa&SO$L;_9NRHGIJ9_;1
z?XC9T?-U#HI7^%5Y{-6pW##0mZ*MYx?~2@<_UgvQ#eDL1HMyXP*DIEK@d=)nzP!8~
z8Wk1wG-?fK=rb=bkBg6QTlW5kZPHg(1S&s$_UzWy@U7B$kB{}1zPh4W%+AZOLvLcj
zPPXaymMwI;y)F0ajpTk!RaI9`PR`JI#XIe5-o1Mlx=p&R@MO0AuNTU<)hCB@aB~Mw
z*NfF#ozLL#*0SJ1185lFdf3N@$FEOXye+d~=elkt?_at{Pn|fiVvE@7(%08^6+CPL
zg>9d#^{rd=e?Gc{h6vV1Z#T>3ac<`eT^+X8XSY1VgIh1}?A&Zs{x0Ww*`FVUx^a7M
zI4V2E7RCAqdIjw+d;8@^a)0K>M@P%vYseU-bnqO$u*kLh%{hNRziCI4F4lg(8-ClF
zl_BOhXl6=pc0#CWs(J1$6W#cIF*k4C<l^L<sM6Zjre$RnrKzcDRr+cQXy9!9zF%H1
zU%ssRaFG4#a{u|a<g6GNRy>Z`c3{=2sQml;_AXkqXiLsbqur0ar|X6O{`M9$<@xpX
z_1DLw^RH~ly!_?Q=kwva(o6qyJ&0##VA%Y@dg;63lT6xHR#6u(UJRA1em=MS%Q@@!
zH@5EFxij<EmzT5bYJa)DkG>nmQ~&$+{dGAD7#I$y?o4T9WpIc+x|<{RaOq~y4Do_(
z6F}_<7f|gEs;yzujiA;6cz)Zd@u?K3)`HdMMAz;KM)1}F)}{^CMi6p4qJ`zODadiq
z6*KBV6BB0s-8E&>Bq3E56%7Ri2Rl1E(8NtzT3YXMd1+~Fb93{%_5c4)?fd%nc6eT1
z-qbkfHlCG*_UHOQeWL|0USzC|-5vJv<3~_qGb(CU8;|57-RNyA($CMEUfREY|Gy|u
z7jyge@~Ovl#k!f8nL!1SWLsi({>@EGHP1ir0atBGeG$!|u}aXS!pV~-yZZa5tGK$l
zYO1KXOjh^5_U-L${nhh#?67ckcaJyu32OGb^-7igY+euUBOW+;<=dABvrMx=Lt{5?
zL`2VCzI=I7Qqq><=YF!*Wp5^Z_we_>ez2L{H2>Zn?|IRX-lF%s@adq%Lj`kBpE?!P
z&L?|ifg|(oZ}0BzzTFq^<LKD9%x5O32Ll>)6}L54S9jmHZ{MfSpC@0<y88LN{rXLt
zHm$B^PzTqpen$j@TQItb`c;45+}!;1@#Dqm^J~8?dd|wu{(4^ZyTIq?=7K6C)9h=Y
z5e4uVfBpZz-u51{PK~S#2TIqiSm7~m-n^-|_U_q}bA0vW$&(jfkE{084qq3tx9Y3j
zt@D#qz2EGs`*P78R156=`|WmDfB$yXv~>-jIGNL-ye;#?w{KyEg@sGMeSUuac3-%<
zo}S;{s;`%r`E3eZ&;PzteEy_CkM=F0Lo>lGUZ;P5-`9snO^J(&s=AoHCM<jE<%Y`2
z%1Nv4yFL7T-v0VB-`Su^hNsV-c}?Ou91s~fv#YCX%Iw*z)qH22IDdZqt$obQ%&MOI
z|9m>_dOYHK066upE8`7INLa8oV`agwFPXVFH!a24-&(cj9c0c>%C4qjX}U$(n;EyZ
zW-o8$7SH<g<KxwDfB$~J?>%Xjd4AnW_tn9m6tm-8uY{o!Xgo3~C<wG-z;plGH}g;z
zOniO4e!rH5MZ~*z??AKC*VaadzpUH1aU-a&z0809x(O2mJTKkcoDP~8`Stbn?YY+F
z?_wf##CWAlUP#%ezFh?FJXk!6Z6T(Sz{SNCv^s3<l~tjuy}oyMcVFf;zq4SWbNj7Z
zpb-I_J+iCIQc6X^?apIwm|how=75aT&IGu*wSlIAFI))7y|KYjP*AY!aZ&N^FTWqJ
z(h`c^p11bi-s<eXzrLP2e}4Mx*|S08s=9G|B0yuTFV8>D0Ci3rzP`R59uzcb(xgeN
zY}HLouj*Y~b?)KecI~ZOq5Z2>hSyX<DlG)veFP8HylDonsuR*-V8G~pAQc;+R-U?3
z6H1Q=T<n0Nr9jC?a2F|kE%Y+dNX4&I9vmDknoidp8biAmEna+eYj(IhKl9cHxAXUx
zeh~;b-PF`1W6N@-Y0VlPP(5?;u!AgQ+y~S%(<x#HEf@q9yne*E8`R%{^$f}BGlI&H
z2QFGdI-BFC2VogyTl4Wpa&q$1XU~@Xe!qYJsmIo3ZvxiG?S1n4wf5?(t9I<L5ET=<
zwnIMMy^)oHK}1$|t!uX!Xk={t-fy#PY-~(YP6)icvGMVy_aDDrkI%ljDfQF0Z|go)
zgoRB5HE%yZKcD^ZP-|CjZ>X17ms_7q=Cx!C-fN&7n37d}_6q)<)|%f(jvm#tvf6d)
zN%pHNE3+;w>D-ogS1Ud~-ZSX+wY8>cXCzY7(pJ^~|M$#hf-tBeInZg5)KzeHmMLh;
zB`0Ui+OwB02OAn1-r8BbyieA;>}28c<;!0`IM_VPJU?#g@$>U+SD!iK<Lc^qvrF4k
z%C>4tO>OPgtgEX||KYpJ3rc<1*0G5P2Lvq83|^LTYfEO<#YL`DarUu}3R}p7#xv%0
zC<|e(T@&A1_wCKiPai*C+<e}y`l6kVnD^GdF{}D_wV6gRFvL9X>gsy(@@3@8yQfc|
zF56>eX=w?X72Hzv)a&Z%@b`;qJyvZ4uls^TvCPJcD^N$ttO^SYUtL{2U9RFmqxUz(
zmAAnCEf-MNh1;^^#RNWCtCZ_up@E<0ubRE+G;Fcisn>S@{}kum+T!{8+S=f}ymcxk
z4R}E7@>Z<y*tv5jC=&ks`IB?GSM>XzTKlVC1H&QquQNLc>XBNNyhynI?Xtgp?3dUo
z&<egysoh*$TyMm7A(o(p#+8405eO>F<n8ucGM2F}^Lcw~>t)b%QQe=4)|QqNhYvf)
z*Z<w>)+3Q<y?x7;kjThL&~*5^Cxvsxy6-SDKnhsQaW2pzPL-$6pMxewK|^bxRZ5`6
zVW4sNyQ?ENr|o*&XT7EFZxyesRmh|#@87Tg_xHE9vhv})=ik13DG?PD+jS>xF?e)j
z=B;}fTdKdm>+0zVNlIGeH^*WjWO!NA+&p~c%9YzbgKFR}UrJ;xi(DKX9kZ^kni{n=
zEA(YuVPWB}hi%e1M?+gHKR?q{QgQ<IduJFXmwb5<2%0cyX5+ooz{tGrXYn;PaDmpb
z*si<a=clJt-)^Q)oj7sfjvW?Lr%wkhlkDo~*dRT7_U)zK?XP~lxwN#~$k-TEWpfIv
zy?DF*eppV<ny~e8v77UQWFZ4A`|D~|QO2&;zLK%4*>Nk`7Sc&tm(f$o2`<8p2;Me1
zP~#)W1X`est=vQ(i8?vK;%Y4@Y+xf(8`w^pLTXcu4Kd8YEuaO_kX}04m=&lTZ4MTR
zINm3FSv<aGp?v+H!1_Or<*%*^)t)+i`s?fQ^`VE`c%Qy|_wI!v69YqxS-YR0RNF#M
zVYL;xx3^V++7gL}Se`z4;xUPfi|fiVU+KO7e!cFKQDR`&x=!h+(d*V*&o3~&_OJgn
zIj;6=sP7z$K*&O!4YJucHY}8@`QTXl;UGJoj3NVr!&%Fcu7Z=3R6+SYuI8ib-#?$v
zPwi`OYs-3ktd~zhl7XS`pp?$_2N#%Lzqq*g)y>W6TaVY))|NgyGc!s?kb$AkwehKx
zjFsz+MXubkwpCkhJqC5S0|Ekc`#2aF9=x*Lasbrk2hAV8{P6JbwryQn)t{f8_44)(
zPDxp^xQ(5`VXbj>qc!(k*~1H2uf4gsIdyB4sF>I?&}?whMh#6(Pf%;<!NF!xDXCQ}
zgO^(sftJFXKD)rQI`MGZt*zP9L5sPPkN1HV;6-oGyZZ9-a?pHS?(J>9c6N4<VCiBx
zZE8`oI50myA2bPkdAWc2mjKZE^n>YwvljTyHUq8hleOhxXy{hhyXv>hyoA4x<^Km{
zWv$|qw_6ju-0x<tnbzNL&fjjP&!2hi{`UKItHtAM0;9L(Ts%2h{VHf6rS|*XSyrX1
ztV&;%xPC7wE`H1|!N73CV#|T3eKkAhRXpMZt^1I*E(>{ltXF&P=ig1Qv)07!4(qr1
z)B#%eJ7WfTY8SMq>(Wy1t!ZbaKn?7}ZM>^L)^6Us`ROw^2@ZxGRd1S~O36eeoSkLr
z9lNXK;;~-ot7{@RXWzR1@Nm0n)t3xVyR}<?AE-y2bNtbxN1!#fuCA^xXXoz=oNbny
zRr0>->#LbIQ49<L(=AQPEbIR4m{;@ZWOiJP=Oxezokfe3Kx<k>!zW!?;wcPjsIaoK
zR{eZBUDdPS{@;#U+j65{+HFodyJ||<MmBDS1hIRrFQjB<CA7A+z54O-@zzV%<NyB(
z-<o-O*{%L(J72Hc4N9J%c2Uq*!Q9Zde;zO~oH-=2FuNe52{i1Y8@nsSy6nx4Wq;>b
z7P}qqm%pC7{chRC&rZ(HU*FgNk8W*ky<TF&z;IxzrO81rFR!4(ZM>z|W6M_tFZbi(
z;+nL3_wKuvV%@IwKTpT6TQz@k`gyNOfByW@tBN~XXqO<x@IV8!_+laJHS_y5%H2mn
zqw=C6A}?;|?_XQeCuuJt+8XS-Fm&!|-6ISP40^{FvR<30?4Gq$zP`Rba&1`c=d<SG
zw(mh<=ityFWs(t)n;0G!S9kPrM}L3#;Wpm4x7>QAmIf|%i~VTJ$Z-AGtE;QGR(;Ld
zz3tYlhYE$Oey^K-b~b1>@<lu-P+srdmV0}dvU^{~iwg@Ufz~R#{_^tj)N{LMEh>0;
zsP)%}!~AdKM8X*!%u!NS-U?dLbp6lI&$6~_vX^07m4EUz$hgGAZJ_lB_wL=>6tz~$
zrlMf#{`}wH-fEkhZ}(cS=-d|5?OvqO{{D%cCn#^U@k&pbJzLu|>+Y_t?{>ep`}*?o
z@hx_0zO$C}^zeYDprW_uZN0tf;q>^ri<kZFK?~VI#mA&8`)aHI{(8Os*YErP!Hw~t
zxVU-O*2m}Hn!&*E!`6N6L0l7$-do=vn7(Ar9GRWFcW2+(QMl{lF=^0%NNP$7Xnn=6
zACLP%vtqjoS=iXJ{{8t`Cf&I`=jNwZau+x)w;a&Y)V#PNa51Qol5AV()+^;X$#1^h
z+9yv^K(qGm_y6CgDP76N&JJp8RlV7G95jP>+wa}~U)T48Mgv|vpI?8iOH@0jI^Oor
zhr?bT9v7JTZ5Dide0=qW4FUOkzfQ9%d$VG1_4l~16$}goV!O-VUpqBbd+HqMhJuig
zDNasKCY7I3a_{fkdn-FRDM>_FIQhC+-W?0jYQ=6b-A&pXR91o~LErQ`FXu=<KW}a6
z>uWD}KA#sH7dNl&=TmXe;OwdM=dT~>6b6mapPgxZe9J%3`f=OpZ!g~Met*sS{hq~z
zkB?=(ytH)J?{~Ymrk|JF-G4Ik(vr?=>*Mv~<KtCTR5E^kdOFL#ejg|`h3wLwy@QeA
z%%hH8x9e*nmHGMkj~+XA>z0kJt*Ef@;<?u4uWoEiHmzdI&(8;Sqfae0yOjTWW^Apu
zO1oMFX!?B7;>EeUmxpIuT+}*g(xj3{M>s))H=tR9%-VZZuh*VBabm}s;@@9iFaP`d
zdwAA-%i?8suebBdo2BM3FjypY8E9*J%UYELG_&!(xwX6eeV(<PfIz{;>N&R6VXCUC
zR+XQYfR;Knv-4-&+LAf-+-b<Ht(TV<XpxbInOWF*`~Q1vZ000gos=o_%cQch@)c+x
z_IUM|7YjwT!>&B)U|`ts@5$4rC$qMOWo?gIYsB+-lU-@*lM@qfZONRhva;^)FVOPP
zW&ZQ?%KZuoHoV*UT(0!poygYK)~L;Cz0c0gUG3b?_ww)e`{vIR=d?I;uL)Zlm3exa
zZq=`s%U9d%D}5aXYT8b7XJu%3Y@u{eOG|6g^5yAE%k=g2Z-4am^zyoNq*J&Q)JBQk
z=A){rss&lAnEPBOa?_D_v)tutLz0j8T?LgSKYmn1Cq3hm*~JDLj#?eI_R?j4`?YW0
z<bZ1PL#^DW&Yioqqww*Ts;^nL|9(6M*GPKjZ{LnSdi3bjTj%H7=Udllf>!xnUq4^2
z{!bxjkxP8-*QxU=9(8)heTR$yoW3QrNUt!X$+YxUNbUc>-@QCNFHTbRe)8;F^xpD^
zhgc=s7QT3q;XBvr>O^N2h6UGReVew{|NrMDogFUXb#-IZ+E72{XHTDcuKH=l_4U=&
z%YVP$2Ms8LrWt1Tg>vxlO!;zqn&-MB3t2&nBQ9OKBqA@r9yBisT2Hg&{<njm86_uY
zXIV=d28LI2Zs+ax-F~-hcI@qq$;Uxc7$McZ5fL*$Q%+4yOuJj(?Jj#e>1a}5L_|dI
z@xpg^EG63(ZcaZRx8=aEf4|?WdY+wazP?cY+!@VjZ^FMGW?(q*^@L#d22idDkE?Xm
z)YP11kl3{3{<l>=-rm6#6+7O_w*370^Viqw@uD&^I_2f%o|pXX|Awrzu&VvF1+<o*
zm6dg6<mR+VDcW2975h$8IXl-nT&&x*nT^-zY2;kjwc-(`zDsq)yr)L1GB7X{m%P6h
zJ8|MfFCU*Pox<ul);pg+d!}V-dbRA{6wTl%^X9EncJBkP>;tU`+nRON%eLxEK)0AK
zXe4FJ7L%t>pJrZN6$+lh&Hnx8?t=#jqN1XiZ*Oe{b*_%}$yU2+&NN>Am1(u-WVPv`
zGoOQ7;j?*d7#XgMy4QxB`}Fj*Y4S0i)RdGLS5^jd@$z16<CPW>6ih6i-}Uv9C}>11
z=_r?O)E1BB{`12?gUHY4mS<gB;#nrY@$#<HY|!+@>+9>o>+1I1xpN1!Iw#}fqoY-?
zRxUqN9iblhn)TW=-Dtfk8+-eBPfyRNJrx`8+`TI*DjI6d%*^n>Dh#7#tow3%|4~Wv
zygRDz?=SP6{W>e(dwE2&s;9c&oC|+`ex5pM(xOY3f^5ItNS<YuJL}f={P!;wGBN~Y
z%S=r;7{jN(K}%@$f1Nd;v6`~Cw=AnN7#OZtap_!tuz^Y2-aa0*#Bh?TcSuy!sue3V
zKuxgR+uKU7OaL{(0$;O+#l_8Ay8$#E@#5lQ)7)DoT-po_|Lld9?^=J2d(F4Ew^#4j
z5s{df2x?&6+LpUIc)8!pD=UMq#$Dc;eLV`)jy-U7<yWTFNxT2m{{EKv<itdA+v^5A
zkvd{ir%%6r>;eNrfyK3ioo!M28|wal^J8FO2oHYE8dg$Ll3UKn;4s&*>8aEmy;{&_
z%&bEXe<v_9H2imNdMX7OClQHQ2VPymFc~}oN7S4%a?b!u`=1%y=|G=J=IIQ+>kgV3
zhK(I(Z-`+A4UQm>N`pEl2U0-hTL^+?l0iLK;e`i^c#%6V&W}RAgB;5+13cBIen<-c
zob&B%xtBL29u^T1QOVEGk6atZD`yj7UG`?hr$4gRWh=th$AM;auV#hD#LVI1<~~~|
z(+=9~d7v{yB_eIVo~o5q6lm>iNXV49>bItq6%`pLCMaGN^Aas8Dthwn-MYfZ$6ofD
z-@CBHb26y50j1vA=K0&K&9$|?|Nj1d{paWBTMHgK9X)nTOI6iX*}ZSis`oRElfW~w
zckqsjtp9dv#tez0M~>Xs+AD4D2kJU6a_u%Lc;FEI8<a$rcnX6S?C#sQZ_<)$YooKz
z%rHE4=1j={e}C5>yllw^3SGY=f}GcI4oR<ZJOAMA+qKWm&IYyCwrvBgE5x?jZ<SlE
zg*9}1gKG`uil(KY%F+J+pUs;#Zw3|OvNjbL^d?#rJZLy|>eQ9B(dN5fzq-15`GyS!
zZ*OmZU$oz~lnK;{jCua))2EcJQQBLh*M>>9Eqr{uKmL=PvU}f^WxlgjJioraejQZV
z*ZwNm4IMMdk=mpOS_^jI<dtts-xn=Xs;sIC%liK5(<a&dQ<f}I0WA{&Elw?YKDT_;
zk|i#nO-tb6lhZF3>nVb_KR$o^cI~4_kG$SKKR<uF?EWbiE(F}JxBvBG@vB=~SA+U8
zw{NZLst&n+{^^&%>5xwEy0XO=V|SNjUSAhmmizqN+}$rs!&YxSm3d&#9vjb~)6;ab
zP1>ryzIyrZ_j}M#CuEU(=Ip#RJD$J)y)sk&Tpwt<MO;WuZrz6u1-rL_n#tGJL|z3?
zOM_-97A!cBxA6D6*xe}`BSgf+!X6jSu`c&(OMLO>=H^ddzJz#qblBL~d;tx-9qAC<
z_SwtZd+OAwOWWnDRvfFfFa{5^xyXFfJ0z&=wqng1A5BfoZJ^afOP4Oyw6Td{WMrHK
z+6@7prUq3nFYA{3&%eelU$bDr0?_&{pGmk!Nw&V2nLaP@a2v0zEzgyvUTJfyDvlMY
z<#!6(7q>S=J?N5usq}Z7tTSQ)o0XkiTUXZ?%Oo}z7uO^eP!0s`ap{+{y|T!a`{}c1
zTDrQvm6erKzik8U<OHqy+FhOx+P>=EFL$+xl^e7OjaR~8LD>ACQIOne@#^rr>H6`Y
zjanMY%FfIE<_2YCtbpz3`@Li5P5-*1M~-A1?GgoT)CD!IkM&BwK4<;@$`a4XS2m~n
z?=IdAnXv}7K@YWXe){}5I45TfXr!Q6?n);p?isGGj|WvUUS3|SzRkIEC1kgY_pi6f
zg~xiO%WwYu^5$mn?QOZc9~E8`1&twE2)e6A7>I+*zqY0o?;gh@jg%O;zQ9<$11jlY
zV=OpJQjkf>T>_we<skJIg3CB!36`A5B`uaUJdhv+IcbIx3$er0Sci!q{suV-l%p{{
z0~s^KJuJQFN$LFhe>;<slCEq_cK`Y7*Q(mz-$292b#--1L90L!y}gUyPw`93@-i@p
ztp=S7Fw+pUPzf|ry*2x~mYrSP!Gj0AyuB|^P;>?@ru+Kl=H^?kg@lAkUR}|2b#r^Q
zY<AwIhlkt0{(8M0G~jmX)Ty9uG2NW!Q95F*kp7tw&*5wLHl?1<{*}`Q8OSd@BDDtZ
zYSFm2TR}Uf*2nFAa|^WV6tvI#eEq-8piL#^YZ4E)NttF{5w-KYdl0<(Wv6NOHPD#n
z#*G`dnfd$sgA(ZTb91fA-b8G@{%_xoNlSLW+vV*$%jBZ{zmNS|>oxWD!xIx9Ugf{j
z2@c4Vtm?m^VPVs(N?t5r<CVIxwfz0PyJdUSxVX7P0|FMLot+hGHEr@_<@oscpMUp%
zduP9F)#tv)Kc3&q{F%8{EPXx82llHsA`Yb;o)NX-jMu7VXJtA<H1a}nf1OXsTNLDb
z>PFZt#k1RXaLF3f{YZAqo}I9%HFCk+sMWIT7CK3G?J8P-wx!f7aL<W<FZR6DT@b*3
z=kU|NULJeSSDve!r|e}{GynNK>%^uUv)N^DZYVClY`NrhKbwvq6NACAn{Uf*=4`Wj
zYc|_=@7}#x+1b*UzJB`rx%BZd-nDUiZ>_bpv56@xECj9hyL$8H%2TJjo<4c9V&~4t
z>hJINuC6waW)fpyP<zyA8xb2D`|0DymzUqYe*N0YE~2!w6tvtiC}>hra`N3i(8%uI
zxXo$3ppxKve0{8>q~yA;ndS+d0t^hoACDwU{rU5!<nOPqc5kn*i!GLw?>TnN4Ky4j
zC@5Ha=!%0`?yV*F?%i{=6-qK$2wKo5UI|*$|Lu1E?yYw-op+v1dtEMhA#c04)SYAz
zy|_IqmU>SIwOv=OS{3BraA3hRX(1sc&#e4>`H=q?n;KXd8anU16-tbWne*t;qdT`|
z&7KWf*~?$ymy)t1D=Vwy>#NZ1z3-0q%TGU=6qu6oB=>kue*X1KOTC|#ScL`$FJ2kE
zoUdx1uCDH+C7Qv@cz(^f*r4jfz;J9wOACwTTt86}ksY^o?cN<46tw8Y3(ydm_aqs<
z_F1!LUAcVu@vHAYpU;2YsXlMQ-8}FpTJf_pb;oxUJ?+}Hd-v}x&!0Rwk+f06&hFlW
z-Jf){A{ZEEbf}x{ba!>tG&BqZjj1g4o*v_01X`-q)!iNY7t{s1bSY@-wryG_CLxo+
zo9O<2zaL&zwM$A$>dJ)+4_?VjNUT^sugYuEmxJu`8kUxkCr_RP&E$uNPY3N}NIu?|
zdAN<Ye9fd@GZq~Nh6S588G-icJbn7~)r%LP<wmPkt=dxX&?#KL`>4|DtF<3NEt5?V
zI$By<L4ko2Z*SbN!65tq7dLmXk53Putd&apVa3%~SM4l*p7s6RUC_9C`+qif2}W)P
zhRKGznoK3W-zn}dDlVQnd$x7L{6~+Hws%canQL917jS*PUG1)KZ*P}}7t8qG0M9xa
zK*Qi$!odoV>wH=op2|ij$tbP9y6VlFoa?VAO%jS+8wT3H(!808fg#Q5z^|^@-DM}U
zw!YeZ|L?m6zxa>mOEENTJS{9gmHDyYhJ8ur=h@COOl||sDr`<aUsYwrz>pxKlu&ze
zXYq5;Gy!NklcS^Ksue3fe3`<)kjx{h^WNdWuSs29T%dJ`r>E<OJ2^3dyi=pgvPS>r
z=Jfu$56$u!cXkwlR(cl~Z}yvO_4H*XBf~L?RpE=}8DIYg&Deqxb==-4@a8R6cJ|<-
zObiUpZU=tt@9N^R{cwO8)N5L;tEuVv``g>#{QULL)z}y$f^RfGmF0+-ly`5>%D=zA
zzutIU?()se=~pjZS~P8%n5(Pn$%h3m*4O`Cy?i+b1B093yeE1uPfS$abo=eC?fLV+
zy}SFm>`c<e6^j-*c~8^X`MU7j9LvQYA0OYn^=6Kl?`*TT>(=u!7+iaLdivFS_ugH5
zR$|p&8#C|8JCK#9PM-!f9N*sBy83+4gGOd{P`~@d*6VST`}@zw_8OPJi}9Uf@p0Wc
zMg|GV@AvEXzuW)6Zu_=#=lp8FTy#HdrN?;My60y@>DybTdp{nN25nOOzW@JUyW_cL
zvq2Nz+wWC*cXoEl%}``ukjOpuM{W&h+kE)Cn2VGB?QXvR2pV6QY1CRS%*5cvGW*Wn
z!!!6Js=vLNxPSluhUzssV%?yl1ML6*JfD@H|6E>+fnmpD!~HHlp3Tm`x6wZ^aAH?i
zmx`yYt!>`%OP4N9nKsQ#r<j?c$M(&^PkhPyz?Jb9!}x<t3<q*nSoGF~fX<KMabx9X
zU=U8^pH{Arz{rrG#G>>5fRG{sL&L!pV1CGkJ<Ot@^}x-6Ae}BN5-Qn236z0tF{ofV
z8Bi$o7o?IwqK6AqI3AJ%B^@S)11=m9_ZmT^1OtXnWw6QHwIbZ=?|PP(ZwD<xm66e@
zudjD?cVE40*RQ_kplPm`FJFQdLW4GnWM9)+8@=6+uYK|Tf1t+LBG+ya0Re^CXP1Fi
zw7q)sM&{G~$u~E;a4;}{PKp5Sv{F`fe)#YqXnb>1>gkZ+;Ki)mVmuXbX=%%>tgNQY
zn6ZLgz9u03{Jg9A^}nM-Lqk{Y+ZT8L&olGb+SjjNgLe1Ye!1Wb8dlu@@2fs&Q_-*I
z_WxI|TD5B8j<bT!pyd!LZdK<&gBx4w|JOZz`czX{*?H2GS+iDEetwqu`Po^}nGNhV
z=JxjS-D0{$+1>s9;W;^L>b~#3uW4<4`|7^j+h(B5wRP)O@H`@DSKHrTUstVLcWsiY
zciY2vHqD^WJGSH0DKAjR>-Dv@#an;=_@QBI8w;A*QlDRA^k8Q^Z#Z~EZq}zKC#{N~
z^{jq-YO40Cb?ZQj_q1a?FBzY=S=`XT09t))^dj#}Be*W8Na7Ext=*e;e%{&x2OPG4
zTd_jp`p1PY-n_YTb#=I?h{%(y-yaV1KP|BWtxwv%@A2_|(6Z2f|Gw|%&*a$*iaml=
zX)aIqQKJVI&a#K!fJ(K7&WcBt_$$q06HFdhI7=p*K+@qnj)=Otx?OdDtLA^pzP@f}
zAHQ32^5U>{F)KSdI7G$7zDYV?YIw|3)&r^E#8<9b1!`E`y|pf8XVL9qwx~s$Z@-<i
zB=hpJyM=eU#r3mZURpZKBy-ZLRjclpZMrYDc>DJ2rDxao8P70u69!l7McYN!h-!y{
z+Uj|^pzXUtLPBgdpjE}Drlz~9zOK6M_Wkkk{?kbtHH?ftZA;#^eS7xHOG}Ha=B`?~
z5_C|&?=LgW^XDDwm0mts-GA5Fr^kAwSFK+k9u#ybA-^yrVX`#?LvoChQ_~#3<y>4`
zF}Zi|-qq673@j<x($w6n>dDvc?Cb0M>gCJAufP9%KL7QIu>Xm??XN#PJUq*?IBkFO
zo$B{{K?_Y!oj!ec-krFps8#3A`K^uGnl<CyIb%>3OfXXZyWrxA6&k8)YFV$Zt=(1f
za?)$hchAqy4=*g-xcdGy-DuGG(6wt}t!-^yljha^%G~?^-)}E}|8QsLW+^GDn7_=-
z%%EKhJLCR865oH}P%F2nu<&BgD#1rbyFmkQj~+k%`r~nb{~g|b22h}ZmOpLFzrXI&
zr=rr55)CCKr_j*Qs2v3hSN9)Hnt1iqz8|H(zGOz~h>41du3WL=#M_97h#AobeqGzX
zZ|SR7S*dAhuhi{-c7nDif(G@c@Bj1k!@W7|0vi|@3<Ul6bO%fVjXQ(7X6EMQ2ked>
zJ(?$~>uFW~?#_f~n-UH(?frbt+Sw}IB#9q%Bo?&Dnzt(9U<6Xl3F=!&fXXnR7OrXK
z3%~^-q>|+kU4F42RBXXYJ5W)HTrMtbdMXPFT3G4k#CqBq;y9*h<>1!bfdr6x14%8v
z#quCKV5J?X7K7?+XidBdI^{@{K|*c1e*CvDB6}{a<(hUeULul3hevz&-FGiRQg7eB
zoi~puA?gjdoCWFU05yg<7*AVo02OQr23iry3s$f8o&;K}nf>n0PPut!Pn<e&0<@`h
z`EtWY#~#^w$Jgxt{Q0x3EpN|+jX(a{6+i0<3JQv`zuwLb@@j)AQ&e=cs;8!==DfKb
z?PuoO-@hDufaB3`+ig8p-<M}+uNKpbdGRvyz!8oJWd%FCxTjB_f;Lb7`SZudR+izw
z^($AeF1>aw?CA01{I?}QfyJ^$P(VaviD~w=iYh4v2IhdBhY}zGq!n?mu^cqr53LwL
zK^Fkt#Ua7SEphnYkK^{IvbLVOe}Dh|^Sv>9DmE%9DcKkpC%k!dc-~%SM(&1n@%z_J
zkE>egZ*4z?@w`GzZyk#c1899jV&Xy>zV_wInGQJb+P!<~%$X}6JV^NY`!{HE;Of<@
z<u>OZ7G#{BrVBa&X7BfVpp`|tcI~SBtrxc^B5d{6^Vc_}p6=Nv+pnC!m^|lb(#37L
zx1W?){a%|?8|m-gU-$3xd~F+>n0@>9f!a)<gQf1?eS0nc*O!-|Iqa|7_y6_1|MOh=
zljqNuM{Z7Axn|9p^QQK{-x!0|LoZyo5VVJ)ncr^3^!U2Sy?ghz-BUM+s>tdz(AD)_
zzwg(opy1%Iv+w_L18v^jlzO`4%ZrP*=Uu;YWeI3lJ~ubFtD|Gb+X%64S4Bm|RV!8m
zR95bMo&EXQS?7P%M%MRSIUJ1B&RhVM>W2<F<=))n%5U?*VgKJtmqBZ#SB0()d%4{H
z@5+1C?`{9S3f~`;oV=J%#^S-N^o<c$?%Y{(<cQ1C<;%0*-r5S<R>xoe!`b%J3FUR?
zpS*eXD#*vD=S|t}dDZVMTU%OQytugd)~?dkGJNf2@9tPCedq5f1&vhy`}=$9^y$lc
zdU!m8va(h^J3D*%+1ci=@0Q<}{cy)!uF_??e*CrC?{}9ov-5$@ci1kQ4O#{6=Vw;(
zFU{oulY%Fx%bS_GvZ%QD_g{wlmzVpm-m)bGbc8_m`n_tNpfglVQcsCIefo6ewryb>
zH*Q?_Prm-o#(R~|WpyJqI7|Z7+!H1Uh>DB9emXsVn#$9sPhZ~IS-fif`s-(A8moeq
z5luduc6ojM-)zvTqJswy9<F`eu(INjA@9_wQ$f4zudR)Kp7r_T$H1zpU7I#-0-Z#`
z^P}ESK_TJ9=a(;EUfh~}ec!d6i&?!}7*uKlk3zRX>&5Q6^8Clc!|kaXBVzX7y|*dz
zvf9^g-&U<!b!zS3h3#@ht=ccU`+GnQmUHuLUuUgev*ya;e!Eqj!s@R+Jw3f{{rlSY
z)kRiwncqETNLcghSJl~hw$Y7^jd^ba0|VDRcKi9`alfd5zyeNTwG(NZGmrPl7Fo@0
zi@mS2B7w1>@?ooZNLbi1aCQ&{9T~DIYAqK(e|h$NtI}2PcE7iqYhQnFt*wd4mh)fL
zeP=D{>*Krr`q{HI&{-L?j8eVk?-T2GonQCs<=s1c23nPino_slPThR-*OuEkW*}dz
zU3+#yWlMXzww|6Jzx|&LR@T;`k&!Fs%#krQH_v{5Z*N;qq8N(~gC1x-rk7V27Z=x*
znKN(Z&p-I@!T)3C`!44Ho^HPW{+`O<e*1qrjEs$c-@Rg2{q2ooFYAMMC8eb&j~`#|
zzkB`q^{;mba&dFtjawhN*-hFk=fdmt``7jK@Pr>dBQ3CjVF%cwadGSJ+=<!#ZNmnG
zyL&2w&z?OC3f0wrFZ<hHt^fB~zO}WLw{lJ7=CqfuuC4}6O24bR*RcJA3+w6g=l!p*
zkAHu;?(Hqp>mMJ2;z(3XY}Kw^vl>_rRG*z=8LX+Pc?)!?-JwIE^DaCuZAv}8CHJ-&
zXgA2OzwhhcznVXNx_bA~MNdyp=dWA?%1=kd<FCa3`y{R#yX(r^8|m|FmmN58fKfZK
z!F>1Z22dcKI_0%}+y8&x_iwj7p0@exZk~$Q!g9-eXMfxJyjWdPQE}3eZ{NNpN*@;H
zh&Ui|{r;txu&`;M5$P*emQ;Rz<_S6o2GnM4YGMLap=M@bpb2CzZ*S11u<hjneAmv`
zeKQ6f&JeXRsTH(;@#p8~t2b{B{{Q2+eaVLhj$5~F1GWCjYx@sGOqwuZK}!qE_HDm@
zRq4j<sW?!qq^u0;!LJTqzbm)IzV6Qs9kFgDW##tlU0Io#6PMI|PwGqC(=8zJ_}6dW
z%4=&Py?lM&ZVvg_ZvV$of8UQqpaTzjdU&p0xuT)1z54vKE4OtEYj)l}f8M{ewDi`V
z%FS8X*;@-AyFGpOY}L}Gt~YPqoMlnC$g!NWM{Zulg$%5%o!5fA@V1WRr`p(^MN7{+
zcdBZttGkPJyMFxm(RtspnUPhMF-8mwa^DZK%V+%i^K;eOwWfQLLgM4s-?$Mm*Q(U(
z{=aYAf4`kPWy%ugcD~HV$9h2>d{56#kc&ZM+Yb-5PFk`x`}(RaTSC^ZU7Pn_WS{6H
zDJiKf`S<PqzHqm{)FWxEQX42ZeaWp`QJ~FtmX?tZA3l8b>eZ!#&FrObZWw}A)$A^N
zYxHHFZLg{m1B1^I;n{aoSFTy(1KM0)S-I27%1T5~aN(*|TH!l(mCCN(`u@@NK3VIS
z<Om%xQE~Cz|7x@oT3cH+)zsYD`D7;@emLQ3*3~;Zi$SaVZGXSn>~?3_N>G(}fF&<<
z!>d=X+Lktn3JVwC<`V011$WCnhOlxUO9C|<VGR_t?pO+_BL`{fs5+6<aqA2?_=ykH
zbYXyY0YOb2aD#)VG2=@zXrKz(v=N-fu@_$#5W}R*oE(!qkFMOfk@4bdK|0uV3K|+7
z|Ni~+^7NFP_WJkl-`W})84>Gx_v!52yLa!rc`OVJ6ZB$sEU5qg`~Kmgw+j|1w6?YJ
zo!)v;95m)|AR!05j9CK00U5~9EVzMzfq};jd?4zm1h|8aGf4jOPjBP;e*6oQ1_J{F
NgQu&X%Q~loCIE;*!%6@E

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-8.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-8.png
new file mode 100644
index 0000000000000000000000000000000000000000..16a85b62953c7e03e808cbf31b6d945c757e336f
GIT binary patch
literal 22971
zcmeAS@N?(olHy`uVBq!ia0y~yV2S`?4mJh`hJ9%>?l3SguoOFahH!9jaMW<5bTBY5
za29w(7BevLCxS5J3j5`m3=9eko-U3d6?5L)tq!>w`tSe8>x@%oKe%hPs6yG-*(rCz
zkt=~$N|v2*GYQ_JWU@bd(ucN+v(cWdx1Qc+H5JJ9G2WWF#wW|f_pGO?>};1}mHk~-
z)0Qa|eg6D=@%(fvMy+2Hi!E&Av*&J2s@JQo4|sew`~BwrqXs<A3=9kgy|WjyGcYhb
z$kN!rz`)?+*2v1hkYL26!@$5WIWU2dfni1u6E_3HffSJl1_lPT#Rr%e7z`v?#TXbG
zPL66Bj3E|~n7B|#NJvCLKtWz!zO}twTUq(>uJz|noCsJSw>M<DpX|@yzhBR*es{6@
z{oe3bd*0sOzB>E*x=&xfPQ98H8WS_;)2B~oYDAVhfRchq(Gw5ds4X5BFJ7#AIyL;s
z!-ot1{r#Q&``g>=d(2EtLu-G33q3o_^y{C`=U*?K9vAfe-QChRHw<@wHZnFAm6TlR
zJzX#J;i1;9-ri6zuP!!zxti5-rxSJB5+(ZNSQr=z=EUwU)3mXPIeGGASAYL>6;Tlp
z4GW8i?RU#&Z_B+M_HOIVn>Vwrubb=EFSnMJTP$Yle313`_tjced{|IZTdV5nJzekW
zionHN3Lm?<y1C8z9>C|;#LD1cx;^czRAohlhMC#5YtLT3TsdQg#M>Jiosaj+>wmvx
zey_rLx_<n%HIbWDR^EBJk6T<%Ls{AR;>C;G9(hf2>yc25kB?s)xA)eP<%N8plpj(&
zbLPyfySuh#U0s!WT~16a%{p%0dAr{}<@YL=o8{bCu*`S%sq^RkzrMbHy+_jc%WKa~
ze}8{py<<njT&vPeyZ5>EN^$Y>UcI-s+P6mO_~(Kz3=9kn$xoj=Igzz>TGsZcwMIP7
z>V9)HzTa|g=R0}#Zmhq}#}-g53JERRnteU%-JP9Unwl5)RDRB>jnJ7^^n2$mlax@G
zMvzaZ&!4aF?|(k%ZCqU3w#QFTo;^D?QNqj1>rxA+u!<)$JKvRl`+qB@$Ja#$FY}qW
ze*OBla!<b&Z?#*c1j^=fj_}+6Szw%g?#`rY^Nb4)jg5_|a-Y9_3v+aIT=~s=y57yc
z>Bn#1juzLCyQ180lXTs#<V8U4ogIPI-`|B^Ul*JEU1R<H)n5ZeL8Zk5mbxDg*-f*r
zy_t4*f7;nuRwXY2X1Y$hnx$JTWuUI^KIzJi!pBALZ|^8fmbI$^M{{iTVz=HDiMDg|
zY_ne<HsHB!TYvlf)n6;RBA)OuGzjkqJ$Y5MwYBx>H$f?>RcqGhJbm`;*4FoTb_R=e
zyDnU~@aetprxty^zwh#gA0HoYiqOfrv0<T#riDd>oSfXRU$57{J*Tau6_l3tEcEw^
zE>MA0U?kRk^vd<EJW?heM~@!$^7P!eRa8t&OIO$T;lqbq92^r==Gs&SvGdD?czSle
z-J|H-cEW&1H+I*RYiSZ~LBYYH>*H*r8K1p>zy8DtkF^mS59MjMfB91K^y$-`chVO7
z2r@AQoNaAw)zs4R>g?>aDt$Gjsi|qov}w!UyvbR*Y}u`Ivu!FjUAla^^vjFD+aZq|
z7@4oE4%fH+|L60s^Y#B0?|#28`t`N7m%qKeJ$2HgMN+0&H`dKJ&!4BHq;zF%w0W<T
zsn_v7*~?9=+*h{e$A5iyclV|Fzr&OcGBF(JoG~{pHot3Y&Cep+&u5IIHYT+`dh{qH
zC}<I{w3&vI(xJSZyu78}?fiB>9FmXsU2T`ITT%G<*vl_3FIPRETP`9joLnB)&L=x%
z;zUJxdHG&xb3gBCI)OPkIWy-+MqK?EXvx4}(P&%!ZAI{Mzw5CAp)H9LMm)~D%io6`
z@00c2YkumOh#~`n-;*$rh)FK<f_BbOVgc0_oMK=>)rb`_D$rWQY3a_IpG7m@uHi1w
zUBB<ws(nA7NxSniuh=B>RnKWgHxu{NMN5{r<mKg^I(P2c?EHNzK{@t*?f1D|U0o>~
zBQ!R}9Qplz|N0#}EcSjnrM;`<rBMC41H6lNtojwv-0Jo4-Me-9`~Qa7R(-j!v-o*P
zOpMOztE<%KRXBBac7FQ!@#53d(@)=tXAM0*|KAsNP|&}+x_bJaJ$phzLQ=M$RA2}Z
z|6_7kw=^|s!;T#h!fHMN%l+nV$-8S+`~UCvS65a}o~9eUY{w3Z*gX}2d3kv%a-lb-
z_Mh|c@VH?6{m$ZMcK%oA>;G-$ld*X4U?O8EcW}$PMkem<Q)bVe4ay#%%;W0nTJ>h*
z@h|Q6e;jqAwp=(hRr~7tc>CHvACGTS>VA1>)#<x;@4kDz|KHd3QF|&jPMS37%iZ$(
zmKh-o4<vj9A5Amlao)LeC&<;gYeT=kyQ}IsT`zXh`t|F@bfZ)b8+^IwF7G)huI^{*
z&mTWd81U3RUX|qK<@Kg(O{cK>ss#%iPM$moDo?(=yj=QxZn;%Ki^1uKhucL(M4r4z
z+_5HlqQ%GmmruDjwMHLH+IZspd4En$&Qs^lhnJOY`}b}8e$Pp{wSC*SZwFcM_aT4%
zg=N08zZ?<vzcEQCMEBjhcc)IBy7cVq?A+YT%X}~ID17|o<8k@yZ*Oj@MCvIR8V0V7
z-hORe>~0xbkpn9O6CO^})YF@$V*B&S<f^w@uRnSHdiBrG&tFgWx0|SPbw%Lebtk$y
zIxhVC`}^zX^Y+$7H+DEq*NeTh#B=hM&FTKBDJeH@E%%?l?#GXc+D|9dMI!YU<lo=N
z#m|4efst8bQ=Z_pgq>_$Iy0V~QhNU9PmQRk=*u%RjkhHS1_o9=?lmv@_9oJIu2rbC
zdES&S_mxhcKJ5*vP}1kus;$2IYQo3I&nhY_HSO%;CQh9A>h|{aX1TXgtiRn>di~&F
zGoOrR-jS*G=kM+=4=*a(G|N1H9lKmbgA%s}JFA#aVd`Jsu&`;17B3bR5?bUp*DCYM
ziojn#9`~zy9&YEqeyEijQ~>zSG+KH_>GikU`Q=ZN7ckZRO>0@SNXc{mpAWU)Zl+(|
zTU~y){{P=pvB>$g-)0``mtXJP&KLS?Mq#pC)eA-6nMSV1`(!5{O$w~2*fDAH<g1%f
zy}Q;#H?W*G-C_Ux&F1q~RRSw+@f@Bod-iNTIhz&hVt23Fu_NN`t*ybE)6RamSN%To
z@-kl|9_QFyB^U3O-(P#ISNiqc^7~iK@7FB8oxeXe_tqB8uY4vJ+qLtZEJ|NZ$-25q
zwY<DsR8$mHNBPb+yDD3LXQ8rtU&g&Xm0cYj0jH<ws{RdX`1|Fu|F7To|F65a*!}eV
z`}Ys}H@)6i_}FdfvSp_ZA9l{YwIy(_Rq2%_p2AzRulxP~aoqmPuh;8WSAT!U#lcbV
zC1CZIIdf!|E?IKo@L}h?yu4*%;cba4cI=2)?B1U?ZNVmq1HKx1dS*O_4T_43dl{M8
zBoq}DkA=tArdt1dyZydY`JKY{iwhi?ANQKy+pzWjQ~i2F9kK3<d#lTp&CR!8I^Np_
zDt%UN3tsLgsT;k`M6UKrV03h1;=;H4x98qYD|vV4W<hzm`Mw{IxOZp&|2+Tyom~eH
zne6{p+~41Ct|QiMn0Saq+1mPc*`L$;`%MlVKHTfpD|PelZTF*Z@9n)kA*G_SQgYwE
zearUk*|Ueo^Vqw)yJi2*xXKpXvSP#6*VnUeZONSUZ}<0!i4woQ-Oexlez#m(N5^MU
zNJPYnZMnB!fl~hR<;%tN<JKe}@AI70#wWWfbamLvwcGE3a(J>F%k{Mj7C0>TpMPzk
zb9>3BC!U^@`uqELmA_x-Z~r%Bv3vitFZW-@d4jS{u)pon)6?}=`_H%Aw$?&rrDHSO
z)c*o247!gdMMv*UILLJL=uu5e%Scce3@V!<b;Rygzu)U4KC4I5>AFK>>+3X$wsZ6C
z*H4eD^3>n+q3PMVx!KlbpPqRB{qy<!wo*%1SJzdMo0oZcd0p9*>b>{ZtJSx5m#^QJ
zdpm8nnwFMV?yW5=zdUz1nsZ}=qjMWi;OlE^uWrkYW@Tl4xv*XC()9Scl~bmO*#3I4
zIBIXz*4T+t=g-&olrqbiacg`2`i2IEUI{~|%F4<dmFS~8cJID@PjFAcL#HmC2UZ&|
zYOI@mG-=}g{rm4#Jm&SCVQ_F;<C8NpjYUO7mi&IV+kbw|r_Mfk`*jTs47b^Byn|j}
zTl@6k!-e(#f8Xb;;|e+Q>FMdOSAzXDb##3E?f-7svu97qiwlZ-KcBPy^*a9lswGQQ
zK;=SPqK2()tXQ{e{=T2f_UzrO>iPQG+TdO((=Yq~|K7jr^}5|2+N(Q2!T$5-Pbq_h
z29=YC4?DB6vVQvV<;tN}ZdK2dCr?gVvV4ABRAXb~Hl^%8KR!xX6f6i^AGfxngQMNn
zIrNy@V!cBPg{Q12^78WHIc(5V|L^mBxAXICd#y@eNf@V{G2l6Dur23i(v_9L$2mAT
z4bRQD&o95*E?<{%Wp()Zh<!DcOZz3wpKU&GXZ-5g+H9M@UoIb8=-mFMulCo=<!;mU
zVtKlcCY_mQd;7%c)5gd8WV3(#{3+SY#%t6kXPZ^?<)ZsBW`3K5FYoW)-%;^#QS&?|
z(XUUZ$4iNIAKeh4b8K<HUDlqz-)^VQ6Bic`e>Q8)+uPfvL9O1x<Fe%vKY#w5YWYR$
z{V6FOd3pK6=g*(NGQGc_KYN3gB&V3x5d$8{wuQUj?ebo~=Tq0QKH1fvR%l#YoR^Q!
zl{Ysxn<gG&X>D(ReN;UD%G~mME1TK*vo0=j{q*^BaKD_b%wLWjY>)r%cP{w*>+7z+
z-)@UaOK1O%n4*2V@XNcq(O+L(4Ngj0ly+{;%4cV1Yg<}I_DY#vTIAY&WsxiQ)fIux
z|Ni~^^=9+=oKCSh_kVtVE-E3h;@#cdppyI6rqu4Z+OMH!=U4{IT9pJOBrH(Lytv49
zSIy6&l`7gcHZiBC=>{)$>wWU{>C+SLD>r#;h-p4*5Fya`NjG|%&-*=}`{XJfF#i4b
zeSdgC!G^mZYkz+ORT8_)-d;L0(-`EfrOTFSX=-{#Mn-=6^a+$bYieq~Y~TOaS5Z-s
zuSzJyrLJzDRmqD5Wp8g~zP+`z?08Rnt>2SxZ*Q9xJaDM2s>(XvC%Y<md7s~WyR}=h
zuY>v)6DLmGrYjX-D$%xZo^AE2y1&1ob`~w&mV0~I&(F`ZzrVY?>+QDNCWVh&zP`BV
ze0H|^bd_FN>#+5Ezs*wfo3p|&`PhwHfrZuI-UKf9oBQPT>+E0GOjT7?Pn|w}`Q6>!
zS2rfR2fy##w2@!zROy2QjG$`As_03_zF)7jK^;Jl*ES{}zp^DWxU!;RMdsyYpgI;*
zPl#%Vow$297L;mDla6pit_>@Fbp_n*_<Y`e{k65x*1ske%+-tAv%>s-O)#i~G(pk%
z&9%#af0;i7^_q?!cV8X0Ht7Amy;s-8T3=lo9Ui-@1mwn$?Rl~8woG{ko}Qlm^x3mz
zprE?7B{S>RmX&OLGAmxZ$S}>m=5tA38dSiBxAV(~ou6k5YDIZoDn4(!JZfv!%INKR
z+xBa(n4$eUp|Yy#-lW<MT-@9@*;fmFT+i^7i-Y6Bkxt>K&z~<paKOQLwwdqoe);QP
zUS1ZJl3I0dZ}sc9+wV_nZ*QNb7rUzZ{oZhHalI>>&)aF&*Vo(r{c?GhW%074<m9Vc
zGK1ai`LsYW$;H7D5EeE~FMgj6KR<u$zM7lw=4f9&8oRq}s><8@`|n@tTlLZ_5tKeb
zg)F$7DSm#=b5a|R<f3-@x`@2IJgeeoJ)oL=S84X%FPFTlp3O}Ea;NzG%ZcuC6WiIf
z{TVu$xWfaN`^l=RslBTI_q_hgS@ZiRZr_fUuldl(Cu6Z-#tex_9WhXAD(m*PwV>R=
z#w)d=?(eUv&u7i2&X|$0o8P`*^)&7JxV_ci!@|O*rJb9j`Et7azWutJbi}%IYp+dx
z9q~Hwt7*=SfaGI67k_<yy|wtcpXa6L^Xu2GSfK$*7*U&2I_>`dDQ0D3%eu706O<Bm
z6h1Dw9$Ri%@nl`I?S@r$*AgDi0@WLlo6|r808-|8bK<IAs@~oRDl2EsoayE38=9B5
zu20@x&ok@Fiisen|N8pcI_t&`Py0U~ns=4GT?OiuTUthfy22_qmvOKE<8N(i8w=~X
z{C>Cl{6y!rPA)DklY$2hl5GoT%#Z+ekM{q*`+mxtIXT<KKI_;2?5_L1`~J&5>vshY
zGGY%;HI1mNt6Qetc=YJeT?G%BvNvc6M(V9QdH;UAar(I_N0Tl#v2v$Kw56S$wG@<q
z{O8-fy1cyKtygO4V)y=6d%xccPD@(`@=4cfEj<H+0PXN~SN?v#zdrNwvX_Tixx2c%
zH%Hg}K5Kse#oY3HfvdyT-Y~g#w4$nNmH&J@FAt9ZH@CK5UtcfZS^WG~*Xl)!lt2Yl
zzum7D&F)+l>Owj(+dn@)pM7qQ<+igd^J~9F{`~dp*51`Vzfv2w^!N8OyK@=m-rC|B
z7#L_(|8Ebd4ah5J6R|dGD>!!g?f*sm{`U5=czjLZE7@f$cGdmO-&Owp9=Jx%ySr*z
z?rp1zlyz^tnx4LYU+*on=JWIOlM_Ofgmhxe>+9=%=i9|zsxL2`XPP~2?TlTY_*A;I
zuV30-p8xjF&R}76zbn&pqqo%kt@7Nz=Hlxc8yAC0p0c;MEGwoMT%KA!H&RE8SIWer
z`rDg};qkSujjSOItYTVEw!2Q-y?ggE|M`0H@$vU&y*>19&u72CPxb3BwsMPaDSsa~
zb;=abkk8lG*Tdi5+A3>nbB8HhXpQ~9kNvZ(%h%njes2qE9)KDd&F;^B-N?9N8j!H?
z&^nRGckkX+J!};Z*_`HkcAo9+i-!;CK70OL-QM2bH1E!hi_VU!pd5Z@XYtn`kNdOl
z?kbfsO6geK&Jw~Y60t+^-@kueK0YC5XPKIoya;gTXFs4TA}P7DPuBXAC(qOtmeZyN
z%bTUcc9-Sa{(iH0&1r_17zc-jeSbcA|699z$Du<`swyfP3JMN(c6MC+{NZkH$4u8p
zZ_Al^=gu9ky?5^3E&cT+b9Zs|mluK0cK-eSeSc{GQv;QV9hz%)Gp%Cx_xE?_Ul>*B
z@(47*wl;Qm*vF3_xwyE3qM~N~`u=|X+1ci+y{GGi@4c3^G2`4E%cXYRoBZZlEj^cg
zYs<=K=jZ2d=iI8TXS?74sMl|i)KzeOU2N3Wtf`YGPZpJz*Z1t|>kBI=*r4V+Yf0|y
zZLypCf4|@Vf7iB#6|uX^wnjub{b9g4LU#C@rtI}evu8)YQr>zhC@5&ro;`b{<?=&8
z!+{OLhQEtB)~gGiK657I^|iI3tHX46f7`IZ;P%JWhCI%;RbM9T-@m`6rp6@U0E4Vu
z&5kq0n>THG^7^&5y}f<p+OV@T44sc2Ju3QxFO(NDP=aLyEJ|Kp-uB;*$G`r*uh*}y
zuYY@QZ!~Clu%qL`Jlkp!0f7W-a}5m-+v;y2zrVemI(_<b)9h;*@9ylhDtR#>Y+X#H
z_q?-#;E^7szKG_j^XJDula}1GXHU-Y)54;nOINJWxP6`9?#F^(UtTWGySpp%-k!>;
zzhAHC9v9P(%PD`mA@Q(D)t3z2$W1OEKYrYH<cz3+D+hyv>GQX5*ETgZ1-+fF7rRMz
zeMd(JN9nseKX+}bl(4Vc!*h7Yy5iMBLTkJVo}G~d_3+QmHedfCK8T^=^NI84uU}m3
zesz0(ylKXT2h+Y3ZsrWDtE*di<mL5fr71_VwobF;oiTZ`^2=k}0yA!HS-EM`rgg7v
zJb%4hK40rjyYb=!t5~GX^R9e&cv#k!hoQkUY)!<%#KUctRT8P6zJ1gCdb%bsaN@Z+
zmcj2#7cN|QYft6oqT=GWV!IHdWTJA%Cn~#N*^qcRd*1iI-|u^0DxDiWH6S6hNn3jT
z*8KbXu2`GI+%3OfyWINyp34^xuP6aE8y2@e5cv4<W7Lj<g^SxC3ha+d4~osXwZ(I9
z_4l$b23l8V8mE6b$SyzSR>0+)se3QJSm4<F<&w9)rmCvz<72&(znnhzE;BQei=ThH
zZis#5rzLg&ex|dsvVyvfm-O#XzQ3$ezV^$+viJAarq8Q9cCGB;A=b*Os%gIteArq1
z{8ZA$75Vq~ZT}>wEz26Fy5rMqm$gw_pS*wn{=vl%J%0ZFtnX(gt;^nQ8y>Q|>}}TX
zH>rD>PhYL9stP;(e45riwUakd2jOznzhfDIV`XFWnzXCr<sv>=s~7XC-vz$CwRLOt
z_q?UcmaU51oaW`@vn6(S`gu8CS*s9G*E=9!!l%!lx0bz)0u3fFcJJS}aLSpP;Gs_!
znXifGPfynewIH@89p##9TOFpTsCa8bVzZKx(wldmZ})ptKbh#hCGjvDs1O&|kDGEe
z>*|Y(i%pY{@$Ak7jhBKNEK&RG_WI4U(KI(V-<o?nEPwCUY4d76d486=<{6N{$nd~L
zCN$ydn#f>JPfsr|FRkx$u3QP(?czNt?fks8H#eupfBtuNw)yql@Ap-|J-CZwTPA3h
zN0L)4Z{@39c8hnd;*)>S^&ix6k+Ef&{$vFU_cNt~hjd*VL-z(Ggz6tWc(6~7>A@C{
z4GatgN-7cS8d<=zKcI0t3rV5ntNM}n(6JQ;hB+Lp)3Ot~1Q-|&q<~cl3h7*TXaY|q
z3F(03Ij3bS90X4tfd>QIj;ws8jKps-MYRd6zmb)pL3rVTB5+Z`Frx=#v$|8$Qz?++
z7<@p({0);83s?O@;tMD8qS^#1$RWX|u_1;zxCJzc1+w`-=Y)ivY#_%mOr8h|))bF9
ztL#Ah1w@tYFN2=v-`^JtYTB(|zkW^F>PL?rO_@HuTwCtsLXdk3l=`BYO^cp*;4Iv)
z@A*H+viQoL%HrMMtV&<qsGU1==E@T%JU}BNpr+>kzxV&Y1oey_9&X>7c({$re!4Me
z`fb6i+gr1zhpmlT`s7K<(c{OxCxOP8WMtNOPFBmjy)F0pp5vefNuR8B+}Amp!OK>}
z?X3cJc)+tIXJ?sSUJ<x>%EXBaPn<Y0yIw;5AY{nat10!{>#S>QB9;01`HvnucI%dn
zt*xlA@M2l(vKK!-KE7`H?arN;*nKrS&m@cM#emu|ixw}=Jvvnd)J5O7Z(r2js;{MA
z14BW99dI@^Ep1il>uak*S5J$rj)<7?_QzF;wuN%GRVVJ>kGHe419g@8<n40G&;9%R
zJ2WO{jo)0Wn_I812y_OOV7trLbNWBB0SzA?=(I@U4fFHsTN9SOvTXHLt-}T-kB)Q}
zt^fM*<Hg7Q_UrEd|M&gV_wU!=-Q7KP&YU$J9UO0OZgyv6WZY(_Bj&yHZ_Ig<lu##d
zS}JsD1dT5s&6RX^bp?flOnLj7UA`uu_Scud?Rj@i^6%N~{rBs28Ej(15KsAkGjDdg
zHb`ODw})>a@oqjl0X+Qma{2r>x4gW()>ZYQ&VO+AFV4KY?9{1Ko8a>uy<Z-l0qa%-
z^=bnGCfr?}d3jm*UNsYwkjTi$Q)ka^&Az|0c)5;Px0AE8woRY1d*6!0!)@EvH#awf
zhBemj|99)%o<)n4Qq$7z1<0T40ZrPf2hWT)@wl|Wu{k6rX3dl-BH%HuOP4N*$jRkJ
zuc-U<#8cL$;)0%_b@4NwmA`AhTy(#+w|e`pudmayKY#xoo|3X8Y)wSs_TuWQs$HKx
zeKM)|@Id-koTc_M4n~F*&kh|rBqA!h^vDsHxmKm8woR@sE87+n9Gv^ycb-k;%a<>$
zs=lmXVrEwL1oh|I`D9DZ+kRhB_VyOYj-cS+t7{^SRn^pPeKpR%XXEPPvLbqWo|I|U
zls;MOWvtv{pu+#v-QDF&?LMys%}O^27hZ9HsuRC2=JIm?>s_MSprPB=mX?geZM<C_
z9UFG{&z}AF$#vy^n?=0RW*L{4`R=OtxM)q-YS7f7q;c8}UqP=R$mGVtmKGM!<VIax
zT~}}K)#CHE>F1iQ1VOW53uc*SYiVkFdU|?3oi};btgPu7o|ix)71iI~yneUbd%E7O
zU8S#i`!}zGw!O3tHtmEoHbf%U9aO#Vx+CYN(axPaPaZ$M{LEjosxL1VPM9FT-owMd
z5W=n(nGhQo5U}9q=jYS2mQP}5u+ZMTJ!6Mxr^LFmOCw8vD=<LU0&uUna3Mf9Zcl`|
z|Gbhf0if2}qfM;SjwW54q8S_#6BCox^)*{nRdtqedS6ph)03x9mx}2|WxTqwQcFi?
zi}m`-&(Eqp9ApQL<E$!ve(uw^Z(*y$)^4f!`6>FR217$u+m}_Zif=M`Pm0=-u~1Oi
zEynn0S7+zNGc%1#&)a^_xVXsm)y2i_^XmUq^2%CWd1upobdhsApQe_USM9Gape|C#
z`Z!x~BklVBf2FJC*%=r@1odJQJTF~Y85|lC67p`J-2Ix*y_YUuHqE-CvG@18-Bqtv
zE}t@M)+$b6wT!>NzJf}myFVi%BcnE_^*%c@bFpFau@{f~?ZZGlxVPL)3<r7>c&B9-
z{A60~+ARiZ&w6=v`OUQoef7g#zE-9C=%OD#Dt3SS`1tr~1D@O)8xF498@s#g)upA~
zZ(oBtyuP!|tcsqTSX;@!z!30sM@^%u=jCO-!GVE+GqX2>Mml%y+^MOdabn%yZMXA+
z=USCcnL9W4dfn5_)9cpe-Q8tX{cX+8W;TWpZ<UC33!`#OZY^@<=9RaL(bUxR^6=33
zJm>Y_)6d_%i%Z*`C~<wyx83jeO>S@hyZuhq)>Bzq<HGMVG@SZ;zW!e@JD<#kY;6sV
z9Z&ymy0{{Hg&6C!FWy~Sla6);WpA8in!W7wbp6*C7CL8LUe>$z@0XXCt;*lcnPr-t
zc1r@(QTqA&_v|uzh68JbWn|Voc#yDr+nhNvpvg!_Wv9>}-DMoAD^pKTld`MXaj)vN
z?(TAtZ}0ENw<UsNu<W_Iy87v)jW77?e>kV|i!ucC8oIuaiZMH=m3=Dj)s>Y|`)YRb
z$=PK5UaO*_;-c){7vkmBb#9*RYS1Xz>h=4As;YL$)%{2;eSdH7rglCChE*2RbvK+^
zbuD^p*3uU*GIXQ2oq6};(o*lMt3tJxE?t@l9i}raeHC(chT-BXwx@sVHr(f9U`TtI
z?sfI~B-U#uCMug2Jvm|2zxVIA+f~2cZhw30&Ye3ZxwlMwXPdoU^<6h#yKVpfzwgb>
z0vH$`Op4ibfQezjsz<Rc>lWV9DPm_}SfPWneF4dk0SP<VK*bX&?Sl!BbuRGs1w21D
zYC6Hz!8}M=w<IEM?>cuZt1A{CO78FNojQB=Y`K~b2ZN4ReR-j1ZoWNe{lCAz!*|H1
z9|u*j7fwu62DKZH9zU+Fq2ZC4nfdDe{{3e8_txme?uxl?yYJtxY|!B1y?ggk<+exY
zfQGrAou99N*dXU^ue7<@Q^`4;pk+6HM+CDsl)b&RG<0<sXypFm$B&biym*np%FdpB
zX^H2pZMnBgzY2?sFQ2IF9%uS<RqXC<ZG5s-f1B4Y0@bGrW<_sK>$S155s{Y8&i?%6
zONft8PuZIr3m+fvkN+$ODz*zAG(0;yyZmgix0e^FNfVr0Rt8!FVIjErdVH+E(zKZ~
zS6*8iy*g}dRN33a#Kdin!za(4z53*2_3T$yR%TsUaWVA#*;A)La}|I7{7Kmw1!~`l
zii^h|FJG3G*d@Twkfo=t?jE*!Ysl`aSyK}wtO_3;30*(mG<zCoko1i4`IxVJ7A#Qs
z`sQZv+uPg2<KpIBTNAl>XYun_7Zy54?JRogYumheA++zy8&+4h&&Jl)duw%N<;}k7
z>e|}i(PmHsNy;=UX6yW;-Qu@vZF6oI^vc;rfhM$TYWC<F7PCTnpq16ts~0R-5b}Ge
z_jFJfQCxiay4c;X7PianTDT9iTI8@nUWPYEI=Hzhyz?f@>mMH<FJ1PftE&sSW)J##
zTchUR&*!&x6fVBDHhTG+H#we@5+$_s^g!<0w0SdV*#Ky?{C4@}WxlGO_J6-z4m}=m
z71UgMkdn9TK-Q%towH0bldhM&yJMMqch}ZC*-p;RTPr`OfmS@|mLRJC(|g|C*qFR2
zLPyG?AYtW4dHcE;-RNys4z+Tdmc6-A^!wkx-|tmDd8N(vJlh<q3W~Xq;$}A9OWyi>
zmrR)=0;>5g>09q!zH}*Q<qabv<D?~%)%{;RpI;vq5HR7+-Md#;hwHD6-oEb2U(opG
zp2}j-*yzE72PZAz7S}s*`Esyn_O&h6<?rt7+!Uen>h|{cx^<^cxk8#)N0h#A*kIu5
z>Z)mI2pYuQ^!CZTxpUWExe{`_a<aOASXI@oJ~`V}2M!!Cx@`1vdTHeLyJfRMgXz(?
z=h;@9l)MN4b+sHF9Z#J<fBn|h?5)Yi`FiDSciow?X4N9l;xkaGwakD1I#KPg7jJHE
z=HleM*v2a@A}E+>eLQL7iL-BSz3<mv?U8eB&CFe;ua|v&ef{;5laq^zi-T`(%l&#S
zI{)QK_4y`$D`k4YO{7O1EZ&o{uB}<QWQmHZs_N8gzpSiPv5P|IDZBSg$;!UBXXm}z
z?{~A~UTfW0#)#<OxT{7Oh=aN^4JX0vHgH!7Y@oAa$X8H{ks-kd)SH;Y0h;{>6)i+|
zjX)h1<O0e0QOH+F|8j;>2`?zk;^+zqD;_N31(l8rYPdT%pf(P~NldGS&dxM;FTY>A
zeQ|rE*M!NFAHPssFsWD8`r1Wj2h|(f^XE^~i+%MXaRC>kWCit?#C9@+Rs@2)qmI@S
zL%06q1dGsGkaHYbTU$XRpAHTUH8nLNa&qf>dV09-tDBjH<>lppnklDk_SOC_D}8$_
zbl<*xo1)fsb$18H#oas0cmE|gd$_DybI|B_sjjkn-<3tK-6FEGYs2FzUFGEDKt<@b
z{QGrxlmGvEy?$%XO{2={>gkm>#>T-DCr;c|@^X@xUd)OcHzJlUS(5SL!NKcy-9sTA
zo+E<Ycgl$?MW@ZK0nN03eRcKnG~H;>XqIQzwKX$AW5PW>Jg#nTVGmZ$kp?A(t9NFZ
zW<PoOaN&&`5z(`kFJGRNl(Z%JIG?P2-Je<CJ^cNzH!`!E<loz4)E~d2z)@0Cva7Fe
zn`rnXlcXaYKY#to`uggs`F{n!7H~>>)S-Fk%o(4pd3U3>W?kKs&CkufS$6-dJ9lD0
z4ea3MexZxqdQaJ;|Nr+FRLm^*oBQTg_LUV2FI)(Cdw2KusQa_DTA8?sC~dd$cOMPP
zv%mgo@v1~#&{`c(74zxy=cg}UMy|Sh`t<3tJvNb%k)Q>DTe7ZdU0o6QcvY>3)^_l+
zFHq+>;4Gd}G);ceskhIwYC~K>slj66Y~Kxh@^)(uxAWfyExd~RI_uN27ez%yDxSU4
z=6auZowxrV0~+qyRr-3$+_}1*Mm)|(j~+b*S$*>A>T1vc@9mPuQ>*`NoB!$8idEp+
zTG7$bk&BCKQ?_;Svz}|~Vx!;T8VXB|D}Qst5HwgVV{u{K-K346-fh;+O-n&3Wn=Pj
zEyUU}(~JuWw|Ba_x}G|7=E?*`=e#F{bHzYI2o^I>-AgICu)q-%?p|J9Yu9er5C9qK
z3U_d5P<i>}<YdqSMK3Qe70<m@UoY({eGM8p-yPn}#`|UW{l9*%udlz(%x|OM`3Xxu
zD<*GqAh_)4P!`+SPUKQDRyMX(o|DzGE-mp~`TOY6qc6AJ&f6>+9)4!Fxxb*G;HztE
zXM<8~^6|dRgH5cUwJcTN-{qb=Y{dz(YQfXf(_ha_pLelKR9i$`eEFnFLb*3KI0_01
zZY$Oi>%MbmU98oVaFwzb7eJ{Nw1jF$;o~hSCxwn4JN9bt_j|@)Bj+%JvVh+aLC$F^
znB!BcZQT20G`~ko*Nfd!`ubY-y~V3Qr4)mKBt%yrr`Q=+0wYGC(T@Y22CgrpKrI=V
zR`dds*m4P0Om1L1Z3-!72#gT9fM$V%MIu16gyQiv3okGCf9+rYYw|3U%tezX34s<w
zfLdF3?%tKPbzxv=c>U~xrqf{qle{|?TQe>?9d6?Vt%aI0b*if8sk3K8KR-MB_0{V2
zRz)2Q3?aL;HK#@DhuF1?Md<JQu?V!V%6Eo=<7~6sNr@8MlDB4Gzjm14e$Ds$_4gZ<
zSr`~rShV{I>c#DeP<HFNP<-BYxqSVfjaNQSm>>XJLdGW{$-vNeP)g_eg9}WrZ){9{
zb!n;h&f~SUwWa_5{PdC$WMJrXZG0*vW952dMWC{*b=jIbk3q}$5)u+r`#2aF9z3($
za-izR!}hPwX6L^;F;RKjHto=F%jegv+OoyO)z#H9tAc?c#A>tnj?EYD8p=c^oSkLr
z9kx1j;lhPdhDj|tV%?J_O}er*JN)bG>;8(0inEMTyOi5G7#IQ)`E)mAU0=6$u5~#m
zsan<j*|BHOo-L`T#pYU<`x&R7yK-%9^wY<WAD>WUVhC6X3i89|QeVG)yS63sGN_~A
z&d<uga6qI+Y#}FT#g+QJibEF<GcfGnxU_oJ`G>66_W%2;?>o!Hvzd)IXnovX&?2$j
z;p^k}`n-LAJAePx4-XGtUE(QRSy`#6px^*niM9QHUG?GbCB?;$^$i#ncxmhCgg7}h
zF)=YcdHi_shYtm*DJe0Zcdd=yo^_ysk&B0C%J%Ks*MzMG&Embiy?wgXcK3d{qT*uh
zudnX!|G&0ErM>8d$V1TTk{^%zSG)B}fqHhYuC0xJH7EZ4ySmNS*2S)Nm#+;0&3F0u
z^ng0xi{1OPUS3)X>Is8dt&GfUAwTx9^UF<{J^OHWC_@8x!4<m*P~~@PYqqGo{Q3n8
z6qYVsy0ZTNzgv4MKZkx_bLP~kNxOINKGq`%UbU5ee%{qCQEkw2QP7wUXae)D#VoVj
zRX;yJzx}r+|IUt&XKfb<7iBbleY5%eD(7~-Uq2rAUtQqX9DVEhL}hnSZ3J4O)2+WR
zU~kpeoa2ukJpx6htGj#l{e87r_x4n_zKdP##yi=ao5A7fO}xXAPvfM8g%{75A+dX#
zVe+vRsi&t!ZONDz+o<~Y6WjKM&h4}Q3-}#dxbbwSusUc7;hj&9ye7p}JY;?P{JFNO
z>d|#OCM~J@`U<r8DJU;*9Z1IWQgXlTGBMq#DZ9>ZK5rMTwKj=YjNyPzUxoNXob~S>
zr}GcqzFphKEB)%u&f-)#eND~4xVX61cac{uwj2PpB0GiEwU(~m|MzV^$b&l#pVxlB
zyZqVN+1ZENcqg6e&p4fx{#O)ajm8EeW8<s4O0%!73O&8fR!8Sd*`FxAm>mn`>;D9@
z^UGbCq8VKB-~gkmo7*%ieQj;;ef#!(`uutF)vT*MlE$FXo5uG6S07x^JjBW^rlF<f
z_4n7;-LL+<I}4iA^_yd{uwAa|#j5A6EiEq&^V^sFTqVWO5P$mQ$%$99bg$-ZjY^d`
zR@$oA%+7!9Sg*9Ir)l=JD=#iC_Rc*hA|kQ`v@)dj_cze0j#;MJCgty9WUWd(w8Ph#
zJWrg{;>^8f$r6>T>tdt7-z}eiYil-W<-^Y1yKm1;-WUOz%efO`FRm9eLFMPqpRr%}
zXdnOCkjc=n*dl3SbscgqE8aUOXp)-Gj0K?T<mRSSEghYZz`%)F*VbfOr+<8OwCp;M
zw3*Lh_x@{>RJ}#y<@3GI#56i{uc`h0?PStM4FiLKojZ4?=1omF7Qacm_3~7w)i&3o
zI~W-rc<tG{H#8t1VAbDCOTD)}zAhvrl=S<3;^DTH$;bPu{(L;Xwd(7u)p6!^e=0!3
zW0I1RA`xkpRbMieetG=<z5eQ}t7?CLi~YI>v>-=8!C`CGRjutCv^6z%J}mT^Zx{RT
z-@me4e)~Tg<m!Grl-{S#@Zeg+?y|Ml)<&ma4~sOGF&EZ*bANyQ@9*!oXYUTun0g#O
zH@EW9ZH+4{0-ZrKhm$5v3JC}ZNV6()h4tlvTYnXl@%>*h=hUa;_WuICr|De$_V)Ja
znD<*tUx&%sR)r)V>zSx>b#3(aGv)Sod;%@f&&k}a{eIWH#+G5hrzu~#KkTdheJW<h
zTOZKEw{LH6-`+acqR>fGQ}bz@u$0uQv$M^$&CRdpE&P3Mu663h2oWi%sE36ydny9k
z5?>r@<qp@~u<!rBYR{m<ZM@od+Kr35?iy~-xw!~5CvakdB539tG#RWLy=}&=<Df+^
zPoFNmxY&LAs!8>~UaH%Ey%PNC>({H`4FhYVwq81K|9=f=LC?0&MMXuRmP_z)R)z!X
zEg!|UfXdav!i}+lVG$84wrnv0Z7@+#aF|pA9Zk+Ndv5>#r~k^|pz{3v{{Q=!n3;2<
z4P$o{IJUO7E<HEbx_q6ESog1QZ>yc}>!&}xz_NP7h5+YwzN^2!zD|{Bdv#@{^2_P=
zGoCz2;gzuft*<aiRX)F9fr4)IHlM@o{Nca9z0I}W`TzI*|JQEk?_Uebbno~5UYGlR
zwYyxU3nwRM)r*DgCS`9To<4p0@~rv&klALrThh<Zn=QxBz;I4UN5>~HFc7o=ZDsKC
z9P6Fw>FL_0rdP}EJvljf>b!aD7Q6Rr85jgiy0Sjr-Zb-)%UtX7u*Gh@Q|8WHyJd^X
z(<e`EtlfWWb9z5$RpvtHb}bDJkDot(M(r+J3mQeaxY+%EfY-A#&?@ouwY8U9IE78>
z{#4v8yPZ2}$>rt#pp|N%IvzA%XIcDg#-;lU9GkCf%Z&!DLkEqCl|DNod3Ak!JZOeH
zDQVHIt=Z|;+vE0DfhGoz^-3>qX<-4iCq6$vA08GKwvwrv|1t~1jH7|_Q#aTAECQ|K
z&<<O3;pXOa(86Qr%KvwE`|svhtEstxf=Wy`YDw|)b1U=i?%MVJUbSiABbVK(mS<;~
z25-;13yN*f28g`8JkSCn(6AzCG0`*IHIp|;q}APsX9ZbqTlHnb>c0B78;{Ff2Ccr!
zHT<)7Q~G&1(9$nSNy#+_SE+S%b;;PWgc$MnXKh}xHEQ=JHqaWiS2s2;Uip3Br_D)c
zW*9E3H@goi_m4^E-<ednIEOE`dFtfJi_guqo?gAD`1v`j%1<eX_6TT%#4P__%)5`e
z(c4ydPF9<0uE4+`b4IZHP9mt`1garlU0n@Y)p_&Y)PkR%Qe|x_z-ySQ-|t<1T(0`e
zL}yUb$)H_NYKBp27bwGk`h_1K9o^PiJY7G2TB3xMWzmvlJ~JPITOTh$Q-bYc5%1o;
z^YZo%uBq8$_v?l7-w%iRC)HIhcl`hF@7ry6L4%T7a~|dDm*1~7f4`2I!J+T=GR9}C
zzA&v`v=X$S$ozgyakm>Y14F_-FZ~U#uC6YRo%&_!+aD`;F*01`<eZkh;tSL3tlLH&
z`$fV$Jw2;luigIS-Me)!Uc5LZDZ#+d;5jFWcbdvvt5PpejC*-?b#--_)chy_El*t=
zwYBKW1qOx{CMpr@4nAbPHucD>>#bL}WL^fX#&zfCWoYnn2Q~D<5<qeK`T6<lkB)YS
zhJ=7d3_+thx=~vSu1o;!{0n@^8s_KMw|0Y;p5C<%L1mNDS0P;53=IG5g_f^ce~Eid
z*xIO-3l=ymT)1$SQEC^c-Lg6T{Hr%NH$RO#tX|K|(6DOBCGIue)Ac+jeS3Fz^}%NL
z_^&aC4N^8ngaiczNjft#9C#Sf{8UP7?*T7g-?eY_7#SF}LYInzS~hDyycI^E)*fs>
zqRc*iF$RVo`k<L)@X!+aOfYC*1l0M24Tl_(!awJXt)BqyJ1U7ptRr%y_wlUjxp#Mk
zGPCi3){O4iyEk=f6lld^?)`mx&wSpVe}CP&*xjeDUk?vk9a>mec<S`&)fc`m*8&Zo
zFo2R4DCfO+k+JvFDeX@mJ_P*#_xH5!lyxT%&A03E^|7F(Rx5*-gPU)^UM??to|cxT
zWn>ft+V*g$m0MI=di9hkBD``oKf>&0Id5R&W?)c%)L|L{TB5lsboG=ubJqO$QQ;X>
zQnIC~x!E-Hl1lFFZENpjCnqI=w)k8(OFJX6HRonfx0r6we7oA5x53MN0{2#Z1vSEd
z{`%!L2{bJcxY$ioS=o8w#EIs=I{eyMK;sB`XJ?s$oSl=iX6@O_mxB!r4R38sZts(~
zk6ZW~Gy;%#xD7OYvG(nuR_;?LP6U*cY+1Ww(h@;sw-eW|hp!G_zwak|p%Q3B68Bj0
z^`eJ|SpWWb+z;wNFY}qXh?$-5hHB97@9)D43pZMozDg;N?UgbWk&;@qxB7eB`|T^d
zKr0WhjVYVHH>~)O09uSQ3A9KIH2iycneXP;hm$r=xqbfXGR4(OLZH<N9m+y${`{!{
ztv$*5{^`>u+5OX&EKvci(a7KbciX$Y-{VBZ#8$0Xabg|6=hJV+wzVOu;Gqmbcb%f|
zC_Cliy*)fS-tKSbm0s2-YyIluary0Q*X}Cn|MY9;JiApwpwYLO6YFAkf9bFPb9mj`
zsFxGariObLy7fwd#>A#hnX;s*iK()x>ee#p^>;pR{~NM}KiwUa6DIGR$+Eim`MFnj
zc5aT1E-Tyi?Ck7toZ}s$a>tK$i>FGo>Ba0&@b~v;WoJKq_^@+){ok!@yizIF>sPGs
zm^pK%lu?RD>+gcJH3yj(7R-`1$(Yd9-92^Eq@-+6hbSs))}h0PMFj*DJgq7}EdlK%
znKVi0cIE${=j*-hzQ41xxa$Ak@1PadY`jt)lm7huD=I0uQdB$a#@jpd=FMBTXOGSF
z+c{HMU`aJGF|n(wD<~-mv@vEWq(7r+Z5_RG<;rcJ)%@qJ`SPU%)M{#MY@D>D?(eUa
zo|Dx;-jy=VS^`?dvvjGZy87}f_rg9uI~(lc(gGUk4P5N@^2WyGs0|5?zrMX)eQ$5|
z>|ba4+(5fnx8ST7%leKcO$1FGhx_>S+^hW_3tH>^{M_8&ySqwD-|zjN_2@_^Xj1X+
zPFbrG(4q$+At6wQ{^!r1nr3EU=WV~oEVW5aT?CnoP&zoN?&fav`Q!aHI_G8>Ca<g3
z0d2Fnwl;eG??0=$Ou;+hKw}^WIxSFUk)dS~sBC)xUzGw~rQ!lAK|v$V(D^O!sH;fC
zR1G7eOQ2!fpC1nM%i6MpY?^7DZdJvxf<;_EuH=hAfGcE#!(&4Xb2en7cN1uJ4QR+1
zoE;^(7Om=s%yxn8bpZ`FgAzGxlms;T3(71ocYsU+joi>>{2St=bv}Z#{_dKFeR<CB
zKcCNomaCZM-U5|1YooRX<>ajKn`aaG>JDhx$=S1OudJ^B|Ihr(-l8;+#~eV-1#BJa
z&AUoo2E8lg<m3cR0xw#$sN}e8`HK@1m8-s94d0r0m@PFeZB^i6w{69`V%^YQ^=Sj1
z=<3JEdh=gywq%0N(h(S6j^24)FJ?yoXhCN7>)YGcgSPKnkE{0GoPK_r^<<a!6$}iL
zuAp-PKub`0Wv#xj&0q2gQqtimhu>}8ue(m=<-XtVg7;Q^{j$FP@9HzzUXXdb&&=gX
z;K&wqUvuyj#tP1^6Q@rH=jE-FGRX*d6%iITt){m2>GS96tFNw-G)`NwW5*7s@9Vih
zBX0|4q4Y-E{N`8$F8r+<vm*est?|i3_cynio0>o)FI)5P$5mEVf<`u;otwMbxt%Zb
z>8YvaUwO{8L5H|aBYyt;`RU6SovZJjK25c*+Y8!sb#|U@G-$Wb_jh;S_UXp$x$*9G
z;^DT;FE1{FR-Qk4{5ZFBrZyxj&fUHZ+D)|dmVWH66ze+MeZSvX+y41*n2VEBGt_5l
z`kx;kjd&jK+Sand3zTgNjLat|<lfxm`hWf2-~B6p?fP%=@7J9m#}DcUZ)ywvX_S(7
zd)JldvnHTjsx;G>Jt!)`y6fHkuCzz}uY{h*tXz~9JF81N;6VJ`{kK>y=bcfoD!eA2
z;d~`Z^!1k{<3v9J*D3Gi>-K&W3z#9lLtgK^`yu%`=YQTQw!87F`@7}$JDWBcZQr&$
zS7ZC_w`=v7t>*f9zO{CHcxtLPs7VFd)bQw05-SVKmh64b?R-;Ju3ovaWp#bIBdBz7
znpfIspr_|oSXh{s3tC$trW0}DnJr(t^U|eDSFK)MeEUV+lM{lHZHn!OKOQm6&dM@L
zJtbmlYPxdEmXKz4{=Dxs`Y}5cJVDXB`~6G42qhMV1?}D*9s$9@lZ%RqVsd+XdqJb@
zkY<Cb=hdrML6!Nt`}^O&D*yd07t~zzTOJHrVBR6993}hs+S=%>oSdAC`>MWXNwzIq
z8N7VfpOAU3tlSI?+#ipqeP6LcLsd-;G_tj;?(eSGD&J2}*Voq9KYum<<Rn!s4UK@%
z(5X&NPAZ=Hdp@>-7FL4>wKi=EnmTprx_`C5zFf>+zgNxEs_;?Eq{)*(Yr8gVFfcVS
z$@u>6u9m+3^*=v9&yP}loyQTuzyO+K0&REh>go!Kj$Yl-!67OxuC1na?CNm?o|`%E
zy5pDo&7G7e0UCGB%UgGQ>xBye;Rm>Qd9NPn6y93?J}xvo{B+vp%r`eS-rABm`Ci@c
zx992)=(&Ld-X`$iq$P2Ct2DK>y(1$dbHANDeY$vchUcZF-qUZHwu4gU?{9D4zIx4j
zqZz#9Q7eLhA);fsR)m4LDC8iGgG>wul2%xh)`vg}UvL;D@=q&QNMK}0P-M}0e?UkP
zbfm@#Fh69&9%dw+PAd{B*+GUfs4WH++eZTmU;P8AWSG&zCC0!Yc1TX=y#v^-91-^#
zRS)rPx|su74*vT0pFcG>bIfXgzuhi3N0fnKgAmiT?=?Rjwr{$b^XsI4-KBN^=6;;b
z#<1Xd)tC2OH{)MKv8;K2b64r=Hhy_fPx#fNquul7@i8#GXyb_J-&yi<5@_n?>+9>F
zB@EHqaz1{U!oXn5BMP#<>dZ9VXb}mC6_Unj8j6aI4Xg|d|I}I59M8GCD|G*lqxw%C
zKVJOgNy=RN`nco$^54H~0cpLu`dxp+*Z-iMdZ6ya*X!}qRX`)(2M-<$*~q})&@Q;)
z-~DO2(O(X6>uc!gox3`1%9JIbBP(|9yjd*F%<x6y&B0H6EIOY2ayA$GWUarP(q8}K
z(b4W*1rM7*V{$82XoQA`zkXl;fA{j`91IM*1pSJpZ>j%ZXF1m|_x`@v+uL%Bcc)3T
zZOgd{T2aJ*mXF~9r>Uvws<mrNvv=43uUp=K+VkDL#s<}uD^_@b2Ho1_>uw}j7F=H!
z3mOIh^$36d`c;+D#?Y`%OhRJCfddZPx82^J|N70%&2z2v7*AV&`O#4N{G9CDo15J|
zJw1Q@JYRqB(XP9B*SF=~{&F*YzNVq!MP_3b28O%7{r8){zFa;ZG+GR*Y@+wd$;z&E
zY-anI=fvPJJz?_h@)sW&vtM6Z`|11l{Nnzpi4wC6liNTg=G7}#KFDh^FjTCP+wbz@
z<?{J<TmAF$))f^Ot8TsX05sZkcBb+2;Ad<MFDh>|Kb5Vj0VTl$IV?I13_8bzf3KI4
zmYzCu=E?^T5`O;vt!-r$rK+mxzc>H?zrSAI-j`<>CW{CNESRY5u4QW*d-dwowcqS(
zery1Z05&u*+<aRG+Bdms{rdM8&M&uq@zJ}5f#Jc!Y18lSF4tC8c1}!81kL7ud3iZB
zDr(io$H%u<#;2t%%gWB4I%CEPP`mBX(e7Uln)yM?6uY{({yt#0FZjB4#fpHMnmutf
zA6-FHQU8Bk-@m2oZB*^&v*ucQdhfc9zcB*4{)lk(2GEiMS?e+lYwKu9Ny$k|u3QOe
zZEw&1_~<C;1d7?;^KNW#6jt*o$ewLgx+*C-`73CUZgtq&qOJPT+k6@u8?6c+G%ztS
zsd$3Ax90ityu7^jyb8#l#=*$2LBL<;@`mE)em{Tw(6F_=d-d7t*Q>W|F_}7j`s-I$
zSLfdQ{kK5XQ-A-TO-#(pps}0q+iRn@hXe&Jx^g8Xe8;3EH#etiD=0Y3uleNZUgtB-
z9kiyYef5eJ7hYUke090M{Pu4vR%l%R+P7l;`taD;xlK(?F}d-zU#HHRHA_TN^5wPf
zKcCN^e)!>qlatl|AHNwb%m^-EU06@QEIF08eS60C+i$b-@~&;ozHaq}N7^js!rtod
zpzYMVdlMzxW<M?|;aRPmz{qgnu&Ig3mS2^->+0&(y?z@S7Pbtugh*4<bK}O1dC4AG
z#dG?4F3N5=DGM#X@9nLA{qF8=-COVP?0mfIo*Zae;mk~9Q9;3lXJ?ylmv9c6{dh}x
z&%34uR)z-gpMO4||9VtBe#h3USFhTBoVRV-i#dMFRWeUZQ1qAmj#|ZS?|svMEF&+k
zZ11!0$1~4M+~oxMsk?F-7i^Yi`!?hBa~i6uOV3uz@U?q+dxwUHKi_uo?}>@ZMm)}Z
z?T<T?uU)y4acYWYR#sL}X68yZez`k~{3|MU)YR0Jyt!ehs-m*v*897=mv?n>sj8}O
z{Vuqh^&2=8R8>?~tX%17X=%A`+p%MApm_!>t0?gDmRGN`=31AZds|$Ye}CWF%*)G8
zzAVYQzpqxxFv(?g@|V}w{Xc&EsHLS<WW96mf&~s=zkZ!%njNNYJ2yQ5RKh#iY-HDl
z9QzTqt7PT6`2Fv!PX7J$^z^CIr;EQvZ%P5}RSO9XT{>ZcfafLY{5=cx_x}mX%*<T1
zW=%+H>eAKq^X+QC+{#|RbKn2F@9UP&m?7ai$0G3av$L0{YKMac=0IaUlhysrzRtAm
z1%-NRg;IiNP-5aj(3TL;ZnA6Fw3L*bjvfUq=Paz2oqe|U<LfIcgN=BcckbMI>g?Il
z-C|Nwuf#UgeOWBOa>){xnKNgCws(L!Okci~tc~3KOmhB(DsYv$x9V$9SlF~pn>O8g
zGkN;-=V2EoE%BbNSDG>B<KyF?U9|r%%j_0r0@Xi{R&t4*IjU9;UMvR=38HE&a1oRO
zsuDK{Xhqxu)ff$}0vq-)gUSzRUDq0L@Dm?M34@OtNPYLhM_2v^LbeWosz{v{+lYIO
zpjxouB&bSEPy|(;pyb4@m{7?M%D_;a+zXqY%7T=@YE9>(D}RIPQ-%a1P~{rIQH{Ua
z1v>>?<g_$Al?An*7z`xAZfNTY{_YNP-GLOa{F94vI-B>;Tefjy;LMpbx%l{|?ccwD
z(c;CSK|!Cc{9d(s_12V=LZC^?zrVgtKARRC85y~{_VJ@fDVuLb)%ec0+k4nveRXoD
z00RSP^A~8nw2_gKh?v;2KYu{du}haOm9np^nf)C!#-4qB-PIL=i$w$l7k>Km$?UgO
z+rov;?Vw5d;Ns%Vt7}h8P+Vr$Eh?~qVaBrqjm%xWy<fkWTyV|G$`X-~c=0l`Le_sz
z_lFl37lX!fHf`QKb>c)tPtf+vii#beGYFj9`L<TR2kq~Ce2kY@!oXp7+1sk51Cy5g
z`}<ql(sJix{)=ZfxNsaW$<^gPV14!4wW=yEgOlgxT0edKc=4AnCE>HzuU~)Z(xs5N
zxOJ<;*Ke!LcW`K6<B_<q@Z-Dt``7>a_3MA-zPpUzDEoLsZcSGg7igrW_Scuf?EbE<
zqFD3O*W>HgHZ(ANeS15+Y<H}7__~nb;K`Zm^F?(8nHUlj=S3)$Sk2vZ`>pP+w`IF$
z&7NKQ_LgbzGeI%2WuBAOUbfr+S@`NTco*y1xV=%&&(8-{y*`qMwLt0oO93x0@29U{
zb1%Mo{`~o_ytcEm&3D)Se>OWm>))TBzb?=Jx1^_sC;aFcX@L#94lMp}(B0K#QuZc-
z|NOG-)RYv^^7DD~*miZypFcl*pY#gbegFC0{Vxdr|8H0PtS2Za$cI}d_vNc*x9acj
z*6uEUzb#{b@$<gdRq2siGA4pne@>bt#3W|5Y}G2SNmC|GdUUh1!XqVR$@1k5dPnA$
zpT89Rf6wYwt3-r_AHU4pl68Kb?XBJA>!WXjjxkWbm%ROUbSztm)!a!|-z8cXI=6dO
z{a6>0?{wf56KHu*VBo|yUg>Kq_p>rEScN+~H?LZ?%B1ww6+h|6k>3+Qo8OJo&y{3b
z*Z%q<{QOOUMMzZCs$ILRw)ehs?~|FBC{bh~^Z#?ryl016xhE}gY-TIHB{9$8z$+$4
zM@P_RVq05Yh6c_xQ9G-|I5|0^w&%?SO%@eAbn@i)FFSw!d^ofxVQaJX@3XVBxwyG6
z7oWGizR)o5?k?5%`1r4{uAW|7`}NgTBc8><&a2f0HZXuH+dbU|M3$l9zZXvkiHuzN
z>{*(qh{%fv2b(7?d3t)f_ax9H>XRoas_N>XgEe@0c|lp|)alcv_5c3(t({cK1WIfx
zHf#vc4qFodnzzi(2Gweh9wlw>nwu!G>1LGN!ktA=y}~<;c@B%7;yGNv3R;j4DvUv=
zUX_+^%`uw|I?lj%w%N<K+wZ??QhyWW_W7|q8w&%2&7&io!d*Q*SMLA&X71|ZGUFHM
zfSPMhPEIcU^P>>7se9Qzv#8^q@4#D;5*Tf79G9=xnSEBRzP|qY?Tzx{;^OJQ@-H#W
zJ0mPVmHD&a28I{!?(VL7zxR98me13T9!R!;n#`;YeC^J&&GW-bOSdjx&cqPc*ueUw
zpe-@u=BCuFtgNi9U0-+n{{H^;_Wgg?9y)aB$@AySA0BSc{`u)?R!&aIYxA5N2B5<_
zejT^}w^087kK?cI?%wX!C$sX<p+jPz?E}8L5gQy76%{{y{tVhM^yT00_ub#`FIb+`
zdBIv>14G7-4-aSAR(}g#9g&%t`Ri<c-QvQ>$1)!u>+S09zWl!af3>Q*`tGmBJkHP0
z&ks*ZS_B%&1@#*Y3<5wq+Rn|feEjPAg$oNhh1IiOUt0^>>TCDo0W+xS?>$}b>LS-}
ztGAVm3pN+>i7|Nc^E2ycXat0Xg{_u<Q2pwPrl^QW#=Sk2zg{fvSMl8c>*{)wj0*~>
z>FKW_1zhP@&~m`i4-XuB<?Z7pO_?!c1!$^HU*G@z{{Q<_KqHOQ^<sluU0Xp%y?J{1
z`%k}{cOA4yE90Wlb<Rr;{tr8w-4gAzA{bO`*Cc_?a!^-yzrH>`zp(cHzFH$5XGuxP
zytkkM^y1>pUESSxZ^hSqbPeAzNv<yC$_&Hgl8=vE!*8FPYyI`pX?@VJ)2_nDZLeQ1
zxBt6x)~s0}VPR>Xf|(qyD<m)$RDQo(4q9O!_B{#IP1|%chl`uLI9uMPVgnnG#Dde)
z^>=Tz|7R%G&m&_IuyyO!b??v5w_guhB-hNwTl9ODP30z@!xzf$*QQ^Z%y^d_REK%D
zFvNg5a8ss;Jbm&+!`OK9RlB!;yLYYSZ>p{N{HvLr-=y+WN@`l#wp}Z0zr48kR*IWp
zO<M!&fwQ~c?*na0PfbnTxwXBm?bX3%cF>}PV?C0Ov;M!^{r=1R|9{*UE?g)pm;L0#
z#8s<TU)El~=hK<bY<pOt7T@WSFa%9ogSyeTt+|%_&tLcKSz7L$9T(Tumz8bfIeei<
z(%8xdbn+gkLI53brMvF#p330w@9)3=!ORfX@buujelD>KhqrDs*<SOrNK{M=v|@vc
zpMScFtBVV$LOgZyWMFRYT2MP4w8eszm35Y7@v__29JgOz-~Vr`-S0QXf8V6rU%s=m
z7&Hw1>sQrWyV@ww`lis(sZ7kw^M6V*E?6zNp+Rol*86$xeKISrTnPcKo65WX|Ic%K
zkk>%{m3w=uzaHY&&-nT2Y1Gc5)b8s!ueU!tej8MfZ`x$EHgdCD{m;|!pi_J5{{8|F
zPHoMa`s@4q{7b=1ciFvL?j6i{wj+gs!R8&bKxkxUe^OxKQ~S27iwm@F?#IW+RWFxL
z_o>a@(g$k6h&i#Iwg$Jq4<NOQKr+Z}8&HdbVKS%*1Q}8Qw>Vl<ok$u&0Jmk3npNP&
z5vV$h;Avd(8{G6*K|<?g_FsN^yEUA`YM>qQWxHcRC#1Z3{rYT;h&N<}qkkI5*?(2D
zEQ_CIJU-Uz<?DM@{@(}opFe(N{QC0Js^-TB;rG_%@8*COM`d4Mr>Ug$s53b<Bt*l`
zF0TCDor`U}(o^QmTQ_Hp%-LC{t6{C92Dx{nHCuuzD=TN$PS=fIcHn@6tVMwXBWUsa
zg$n^^XPf)0s;YMN_nUt|Xwv}-a<NC9T-OM<Vm@4XzN_^0G|&+1tXZ$P!Y7$jf6HNI
zVR<px-!AjG|MK4;|6e#98WNK6<;6wNQmp9ekdP^_e{KHtYW4anSFS8Mal&K!x99Wg
z<M`U0)&1wyJTqL=0%_YXYI<5?mAd_Q^p@Li%S_G9U*FoAeg033-}2zL#4VP6lF1RE
zep7?ox`hiJ_wC!Kd+YC?KQY(Of;(n24BMuHlM=UO^|v)IpC`<<t^U?|9h7(xt&m@v
ztG-C(_9h>b2y+4rA2EUUlD&Vwe#(?7ewBYgLtYvhE3Rhe>Rz;*>*slCf}-=h%0KR>
zd;8-)|9%Xz0bFG_Oqd`r*Rt5{|G)41t)G5vZfX({61w!twEghHOP7MKUcI_Ax5U2a
zNe9p235Oq6Jo|X~@L^EXF!^|&rlR7(t99@1*@B{4Q}gA_;~Rv)9ST7qp-X8TuY5>r
zSAdq}{rFKKDk_?Jv`ci|Vks^zu8{cn_oeN<QfJSeJv(n63j@Ok&<d!xcXx+#i|GVJ
zM9lc~`7`Lm(zo~b#~T_NPFk|F_&Ml+ywK3lJjViX<HULD)Ty`j)$XqQc{)Dp$A^cL
zK#h#uzd#e}hK7bx)@5s+ot?d0JA55zUmK|U+gJO0*SAJ%NpLG;<HkVLR>sxU;k)Oq
z`*$rmf8~Y^0igLA?g+ElYp?eHY)f3Ra^=ajZ$CUd3|evADXb1U;!#yqHS_E&)4cZn
zDrQjNG@P_x2k*%SWqgLof*U}y_n?tV1_Q8-kUq$$1SCjq{%3UA{?k78UHv%*1_lOC
LS3j3^P6<r_$9}Sj

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-9.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-9.png
new file mode 100644
index 0000000000000000000000000000000000000000..0cd8b91c5f3c636e468fcad9ad7dd6738ab90983
GIT binary patch
literal 21510
zcmeAS@N?(olHy`uVBq!ia0y~yV2S`?4mJh`hJ9%>?l3SguoOFahH!9jaMW<5bTBY5
za29w(7BevLCxS5J3j5`m3=9eko-U3d6?5L)t*$x$_5c5mzpJIK4Ua#`<=NbEO)6{J
zNyX(WI%I-+vwFY$K9YW@$8yPq6pvc3$!5-q3+?2m&a(43p>FB2^`*A5+fS2r!?F**
z{$4D9pZ|Va;+{8u@7;b|we!uVpB4N3&ObjS_wM}j*FU#Ov?X#dFfc4DEG}VZU|@*h
zWffy!XgH~{fq{X+$E}f-fg!<&ONW7hVRB#sBLl;X9wu%Eh65=g5ey6rYKsprF)$cN
zj%pdoAtu-Nj)8&U$Ki#}?In+nbiOWne`{;Dwt~WgU3a99f+GC^3!kjjk~UuHxb44x
z|M>BuUA}I?2`zOWK_-R=EbGFHLZ95(S$zGk<PUq52nGfV$?l^`um18JHuze%!$t_4
zbS5S+GCXk65$k@*InAXj^qvPKbv3avGzcpmEaC;}V^C8*$i#4<GiE&t_tS0`Xe!e%
z7uS!|**Le9aoy9c*W)g~ySrQVF7JXvT3#E@{B!!b=z!Bs4IP~+vuDpXGB!4?|5vm3
z=d;<rJ|35!I)A=?_fe;bPnGO`JYepXu?+hB?Cj;ApP&DH&lRKEwYsa{G(toC-Me?c
z{{4P`bz`#oT${=uR#w(cQERJStz0f5F0L*wFCV+7A}}xS${*32hxzT-NE)ZDD1LtK
z)2B~Cb#?o+LRUR`k;mw;^YL=Yb*mR;9&Bo2>XoyNS{uFn+N-OpzuN!*Y@c;^*H$sz
zs3jAX-Cy0=SzJ_Hto(7s0WNNCRnLtZH}3j;&U)&+dF%H7eVc!4d;a|9YPJv^AHiL0
zTskq~d3kwOB`+piTN}On&z~CGk4J=e{r~s->W;$Xz2EOuzq+`%-R|cT;pmA+OA?Ph
zefKW!`|EzYUmo0IIsr~jO?7`hy0d@fVvuRpbc!)=OVm(Tcb{urzHRN+R~HsGtGxX4
z^Yf>#U$5TTS)3}-X7}$$vgf7M>-TBN%gal)9o)Y|YsR5NPP>(|&&)8~Rq(J$NLV;D
zB4S0Su==ZO(fOqb{E5@%*ZuNzbad={*LHfBT&HmT{Au<=Ix*&A-L9dl!$Na%))W;N
zPn|h)W&PjR@sm=b=Rbb?c5QfkZRq#=_51Dq|0%ZpdL?+93b$zY?%lhMjEuG<9%hS<
zuBqAM)+@Et-|nYN@Nz%ZlSPb$g@swSwyfNifB)T!bqs#JOx)Lf9UU80UcOvD|Jv*I
z`}N}E<M;mgbo$qq%l@jKQ?)`jX>U?eQu=bY{Qk=;D}(#qn610?^Ye4lvNsWTtKaYS
z^7h`m)qjpfprN55NQ>sC7>Dog?uyFEt-H6kIyfa(ea*olUXcg`--}Am@7#%b`uzFp
zBb~zAlK=kxetmZSzLjs@<oM1oaD07j?c^`@uG6MZpDv~sv*PRP>!-7}S}pm%!z?Z?
zuB)>%aJpXXmA%#Fwf}xT-<DjjyXn&9%d$6uV|o|apO>{N2}nv>BxRblgk8R7f)cj|
zE324K;Ff=C%F50YCr;$z<P3a$ZLMj^i-6isC)Fn{IWAuxQ~d1A#e>c4rgeXQ2z9U7
zRr=bhNJ698et*w|`SbN(_RH@JUgi_n&L>-PzxMmoh?KSQ`{T~r|KIcN{r&iNwa2bj
zzF639Qun7q)~+T(tlRbB!-rlzJ|PJS3a-~m9h#m>-C6E4)9C2MxeiCuB--xWxie+n
zyme)7Z>?Ogz(F@^OTgha-mm|DzkmJty#4e<iLBe(*1p^EnD6T9aR1ZObU|4%bbDT`
zY4)`>H>5KP@?7;5W$f!>LRW=M+`W7Er_Z0CzI(ThjaTZ$wCKExjm+#OxwlMQU0gH_
z3<566v)*{W|NpxB|G)1`ndQv*^XHF@jZjQy>FaBnmX?una&lSM*34WLzJA@Wudi3T
zc8mQwU;l5h`MnBfS*wx>`}gl(ygO=PYHF&crlzNyoLo_HvGLX&Mm)}}tgKRIITD*$
zo*rdb=jiCzm?+UUaq{HkFYoT&=HTQs-1qNS_U(`F_y51Q<LR{Mo?Bb9rStdwT(<V_
z-SYdUI%3@y7do>mtE(@+^SgJ`&Wevo8@D|^-Y?zQ*m!Jlzg<@L>C>k-|NVb<wz+if
ztu2Ok?%wV7oo#kA_V?}l{jvMc9Wtr^_g+p|I5|Q`Ecwfei*9LY%ijJ7kFQN_X>XS<
zeRXBy@6G+2Zf{I(S3LRQ(<h^v+FIYgpFVvuQjxSSdsFbmAYZ~qaM77-Ya$o__)+2c
zfBW}|i4vevs`R*QxrUC8&!j2Sr!RkYcJ}Mb{`OOsFJCUE6S3fMJHPiNHeRVEPft&O
zy>|P(N$c0IPiAY<E_-;0_3y9O>u>F^-`^)|t>*dZ<3~_J`EoOTe&&r0iIe{2?+Tv;
z$}(q+&%bzdwENYywX<`z`8-#}?k@Yu&y<?BF(M~hJN^8;wG)-ywG0gd*YEu{i%-@{
zrTgfj-S79!e(5yX(Dj9s#)g8UJclp5yu92r`<l+#IhMitd%sM2dt+nr@sd|pG;i;k
z^XE@Z=(?E5*49=o9-b@N>-R33Yh9l8`PtcR*}uNOU!Qh%*3{n?0cP3P*Ihl($b5B6
zX0U1gy%<MF$Ep_#+rL~5j|W9^zum7DVQV51!&9C<d*(GsuKJDP-MZgzKYjmx{lUTJ
z(r<4f%_gl)xO4YzZa&NTna1r(+&i3dOuDqwHby*o{(QOl{hHv#?)}?x6)Y=1rLeNH
zzMNP6?&9+Kb*q%!`%c`yfBzff`AJu{WCmAORJ?dTzrO5)Mu1qixc)Wc^EQh&Y%s9>
zey8};r%#vu{r$bQ<YiFpmy7OR9v&B3IE7Or+Jb_EQ#VGK)c>ogtgiN+6t+HYt=Cko
zm-7FAwCC-9Yj)`r*Q3qn?Sk|2)>VCfr|bFY!-os4+~QAOzFcWp{LEvLkg%|-=Xu-j
zbC{Tza$K){K5xI?uJ%{P(Js-hj*fyG5?V%PQl)}?a~HU@21i6>NVFxsxx4%Nj_>!X
zdtY5$Ej?My*NEq^fmz<2jF9zlcR{J#Z@yh_`Ca?}Km8Y{ot<^;(b4YHd(ZE%dVPJp
zdDfK`i8kNw6d(Kd_xIbr+HW`0-EMEo<?TM2<TKamszvp;HHJw?I2LDJUFEjF?r%>s
zJHM2C{hy5=A2jnz*;aouIXBn(`GUX&YxezmrF}SQql8%Z(TXn@-FwULRW3jB*{x3|
z^3kj{y3yMtw%@B-U3gk|yTs0&JD=YC%C$a&cUpgcf8f@v(BS<wH8l~<q31j{1gNzo
zo-p9KTXs8lmU;d>w;qXwpvnSNn09wxzOpjdwCYPnYkT|aso`-K*KWVJ>dTjsvvaM(
zL3PdXK3Q2?mYBAW`|~;0MQ(O0eSIyoq-4w6<iM_Nk6+x{x;pFHnw2|tSoqGfiR_g!
z4N6K{^y<pW#XF0iuPS_eY*on0Nq_$Q*;4nnDtZy?^YUL`GFe$zRyeowdHMTaKh`V#
z^;Y)!%ui2FX5HMhl!=K+#k2VNxvNLJ#k*A_A3l5-wIyTXt1By&_4W1L`Ia71I#|Rj
zb~wS2#cO-UMJ3(XT_OB-KNeV(zFP9&LBj6G)!*I(`uOy0%fG+w<Ye{iFE1{7`T2!8
zIW-v>89jOWR8?MH{^yS$FXI3In(pM}Bx52p#WgQ)UDURmm14S48CO?@mL2c0ul0K}
zO*i_=a)0^Cs;aEl*Ve9z+q<jo@7M6PQCq!00Ww`LHYeI-L6QNF^Y?qz>$9$|TKfH7
zwf}7M{A;K6_pgz)E_?B8cK)>)hRIhpCcB$vUGbP?l5~V)@4sKKrHs>h+W6)3vfXdi
z{(ie1)OrDxPWN{$+pr-Z{rtSEeX`b9R)uN@zwe#2kzdSfYyN$^yXE(5tqLAAfXdXf
zbFIT~Z_mH}@NoOp1&+*>6%{KSo7uSd`LDmbyL)TONuiy)cfZcB|2><HUruNB)m7Kl
zMz8jtZ#T;@xowtN?yDDy54q-Am-~Hwejel-lY$2hyT6vy|C?UW%*OlV@#Do$PfuT+
zeSKZl#YL@IS5_?CmV0|u>FaB&0vER}ZfjUw@bQuB&Ye3~x^|0o_4kK2v+;sL$<@tm
zRpQ~cN&jvbls!K;_t(qi^Gn|E{l3b*UvAQpmzS5X_L{1db${R9x8J!=Ez6MC@%KOf
zdJ}(GT%6qRgsIB^L>7en`}YqNFss7Wu4-stIC}i}>k|`|XIT_3a&mUQx-~m|@8@&Y
zpxk_@mAmx&-SX^nb1Y{WrFQ-K^XJQ*;`5-y)794(*38B$V=FVoackDqC-2{{@9E(I
zH7@1k<aSkjTy)pc_43iTx3*4Jsr`Ppd|O$Fk85k-<72%b^Ik9Rx4U$5vbw4#Gdo|%
z{e87hpFLY9tnQ~_Xc*`_+wAI^$jx8A@BbfrdAa{}<$fC_e*Um|3_`48dJC(*zUu1k
zzP$Oo-Rir$%TM3F9W7t?W8t^Ax0kP2p%JMgX8ZTc<*a*qcB=W$TXSn`_Uf>;QM2sp
z_dR;_DChe__PnD(U+#l~`_zdO7oMD)torxk;qU8RryWh&xc0o(uD-2uqW68x?=E?G
zxIO#qEYn-ta%Zc&?AG5G@c-Z6()+dFU%uUb|C)Gw&BBHThF)3gu!j#HN||O&0hNX9
z-|v)eU=KTbTuLYA+RMw!zaHY&&p0>75+t8?c2=tOH&FF-eO)XlfB5<J^~qQ&d9Dgx
z-Uo7f)YdG^RkwGzwe!ga?Jj#;^6ZSHs+!uXmCNT%Qn_7{crpIg%9Sgn43k>^{XAd)
zYF_ob!j$QWi@3%0R`}1iGvaX$3=EXADp~Pv*K0jhHMLu7kJfy@TV8rSw*2L^=)A&&
z{8;CUQfpR)uAViIMNCBG#hIDLYYu9;r|jIJV{dN{Dn-P)T{ownpOz?5^{`buWT}^E
z>FaC0cXyRuzOc}_^uq(kz5oCHzO^-bdfM4pu7#loSy@<K?EQZ4a_#rK%YXc+m}^<=
zrtIFgCAwyJ_4hp8*j*vMvrG~%M~FXu`Eq66-CdeyW?`9`nV<%KT-8g}=)$S<=dTA<
zBp2P~OAGuNpSv`*YM1@`lDYTCqwZ~IS(f|EREm#}-@X0R5_>U^-#>m>Y*=n^`T6|%
zb^reUe*NX;Wl;TTl5l{*H1m>6e9gyJP`Baj&CTw!&2qKAwP|Xtv;RNy-L0*w%ii5t
zslWeE(AnAM<pt+sq63?rK7U>wE41eFa{tK*Q<bkJJnZ`U^JnIxBb`<Mem<W%W5x>2
z;AJoF>@424zoYxw^MIJ0)7HiA&bqxV7t~YPTKL$__ScKWS(lgf3JD24dH8VQ+1cj7
zF*|20+I~)DW&Hj+BOd4Y`oCM7t6N{|>g)S&+_>@6_wUpD`}+?aK0I~Ww6deumoHtq
zviSKqPzm?v&!3X#bIV`-{eEA+>>j8DTo-Ho^VhFaSzEK7oS0};{cX)m=Rz(Y!9_k@
zT{<uO`%e{=mtQ~9Dg5;H>(i@m>b<!Zoqu)r`+cj8)6Zo*KQ~uPM<=A9U<0Uh%(}YD
za#!^ZzOH`{zZ_uZf3b9W+@;^|_pf)CuML^19bQ&&K4$)6Gbvf4l#Z~qQA=mckYHtH
z)l^k=wXObkrHxnm%C_9w-f^?%%vrO1eq9tOA@oQZKY90V-Ip&VvUW8$-tCFqUAEGD
zx*n+9dUj^!;`q9suIu-F>Z<$oQhjag?r*b>y~vrNbR^WW_ScqW{`1$(G)~vDvx^H}
z?pIneogqfOTTJ)TWPiJrpkkbvov);%JSOa-NaEJ4tLsjSJX{&P+-t7Voqe^tLE$!I
z#)=s;Bs}Z)ybzF)Su;C-U*v4_e7&#tX3m@mvc8R1dfCm*>G7N7L5`niTRmmoyu9Bz
zms+{SvtC?S7_~ib?yi!TMZAkk^j!FMXw}u#b#-?K*VOD`<CS{y;vK_|zFj3R7lo~j
z`sm5?^vD}ssdXxX(L0Nl+Su5L$jatsfBy0%BqU_Yw!FJp)y{iVK&@)MxIHVx<0>2{
zdCh%iUHq))(xpoxl9HL<558|^=byHI{ra#q5rNb4CtqHC;85u5u(h+6`OG|YDEz?D
zpTB><UcG+bqw~ACZ*R?>KFch3l~(Ag8(Z63TW|JFPy74p>#ncYqPLd4jWW%+-~g)n
z)<$hL$-JbpyH;TT?|0UsA|fkFUtcS`9=<BXbK$~;w{{jU?^G_bxt8#7)`oXnI}9tT
zs;qW#n@{<4PsT)Bd-ak23mc=>8u2*0_si*iz4iC^_tSUp#`@cSosyKCEGi_lD0Fq$
z%caxff)W!KF7ut8R^4_qN%O1a^jU3dIzZ!P1xkGpPv*^@9i1fj_UY49>$q8S=Ez94
zEo^CF0gVex0@X%;zwiHlb@lpvt3EzHe){_L>t+3y<`u6@4{<rd&%ki!!JfT)OCKI;
zO?vzM{QT{*`>$-B^yP$d|BbEuQYIcdckbM_a{r>wUe)K8&I=TTjH#?MJ$UNu*{z~(
zu6o-O8?I*Q7D^dtYkN-$Ss%AIX#Lvo_47c9>~78Hvt@5fUtO7)C~@lCxox(G4R~(b
z{{J<{+jg;%5@^_^wW7LuwOg-LS$yc~u)R-A7cN|Q>coivKfk`%-`jF;r)-Q6k&=pf
zwbixz+W%k69!^wtPuUnza@p71b5c`t^V5e97v}H#dF<VuKYwc8-rD+l()kszAi1$@
zVf_9&Ee(x;prA=>K^a|BQ<ICIfBOFY`&C}v*qH3)?;oC+xbW?sMrQU?20XekJ1$&H
zlW3bXd2;CHG~Z~(XV0H6*NfeiadMJsS+wPnWy@Z@xw%=&AfZ9?zJ2;Z5k&?D^Bo&D
z7<_$yKfbWA(5mjwj$HNcXU_Pjs;l2VCvBcLCnz`=R4lWyuy{<W`u=Y1xw+Qa$9g1x
zz1@Dl<hX2k#@AO@Z*5BLo-}Dv$jTtq+g~p)^9^=!X}PsMfBiz|_E#Ss9-d`ey=_<d
z`*rJLcTfAhW4$`pnxcY7M>y9;Z};n!GA-KaTEkGFeDdtss|TCeukNibzq&5=_b!{m
zf$~!~SA0zJonsN`JxwRDtZbW;lhc;6w^6PxE;sHjU-Gun?#~D3qsNbD|NQh6)RdfM
zn!RkP_jIx7ANMw;dM{nN6jT{3cIyqgx++vuR(9>n%gf_`E6nAQpBl_JO)qxUaryc?
z7w<AK%t$#oNww<D#^XMF(=WO|y|OO$w%%7m=eoLmese4WU%5X$P@@v@bV1-^w@FKG
z=kMQpLvQE0cgN-HudLmE@70UEDZ8)7*WbMuThK9MhQ!&K#>X$-E$A@6Uvv3ltVa3#
z+HW&=mA-!VB5%rSVRgTZv$IUM?Z3W$`lovtBF`2d&|-JJ+yv_D&!0cPxjJ~Cjg3v-
z4nyx<iT_(8)<$iWE_<W;*6-~r8(Z7_6NTQ>?}>9w0Ou90zNlu_V({>yi^hf+=HHOf
zWft!1S9^EaJ$5tAxS-%(&iGWr!s5oo*aA<Lh;@xD+}A}}ul2Svy*}pD$U3DDG)SoK
z)bvyeX*_YVV&SSENPOW$-f7tj4uD1$0}^(!E#qJWjca2ad7O~2lMQLSGR0$#mK_q`
zC88O{Ch*85XdK)^kW1(K0Z>A0I0>@3Kndbl&^S40WYa=YXn9vZ$gu}fz<j}Ls5ZHH
zY=~h74Wj$CFr79vaOD6Ex`S+<!@)T%Tj3yhkeySEfx)ls$jV2cVN&RzyWf%w-f1`E
zr%#?feff<W5kG(bK7IVSJ7{>v+k5w$(rz)`Nwa51Z`3a@F9!_*ER8FFbw%^)%3$}r
zyu7HbS)nucxr;Iew=gg`IJfa!Tot-nL|Az7f&~gomn>P4etzDq4T;USw&hlz%+?j_
zj;s0TYMOQB#JaszUtcYaGcJ7OGS|NTUg~mZ%?%6;1xkGt-37nDy^Y#evr|Y|SX5Y8
z*|V#s2UN!%>yur5cD8x^H_7jJ%jZXJ%_?>MdvkaB`e*0ouLt#mE-mp4FY$Ff3<^Q>
z9aFW#PaQt&eDUJNZD#)d{;saBnXj*{wJLgYLiDb>y1Ki#e%zinmCEjYS3pCuWp8ht
zH0W9VZo4sPF5*C^MH26|b+NlaefZFoK}Xlw>gb#)`xC@-IN*4n?9=DZL4&$q-`$P2
z|NAAl^Z7ndOKn^3?6h-pBHP}39R)kV?}%V<OJro^rl_??Z><em&2#v|#l`O4d#@co
z?(T2*bBR^yD;0Zt`?ohXI(K$<c6D@I*nYoGyS~2u_Ri<$=U<;;m~4`DMFUhNvGd97
z_~mG637S92E7-Yn=cg}UbgsRF)D8ds{$5@G|KGOw@2{?U-`!Oj{QKKm)7)Dodp{nN
z-j-~fb|%2lvGLKPM?P=%7B2#)Ukjy!pT2#&*2*p3wROII{k^h1I!a1PSC;uo@6MIu
zle1Y7xjF6SS@Zi-`uqK7z6%!wXD+9@|9{K>{`>vDEVs3_b^4xTSzD)B@XnYzRn>D<
z`1-h+zb`IuWKK;<xlw1Ec}eB!`uO;_x3`C<r7gSrxBmBA^VGC7Ed_-GsoQeFdFW(}
z_r$=}VY*jWg`Qsb_RY=BzaF;Bd+k*-F$s}2%K=pvcb&fH-rjaHX`_aT$(A#JEeakq
z<n4N?c6&X)yxkhmsBvRsW7+da9Wh>cyBM)<*PAzQe){}b`}5{Gg870>3<b@vudkoa
z#l<yc%9Iq)KwGevSJ$D#hjY2F_RCr?`|_n^x67L&ox(@oegAk|KKpo|EU2NpHuu(+
z%&5IpTd%E&O#WT<a_Mvx(D*t?q^7oZ{dIxUvf%7<L@;~9p+kqR?60psdi3baA0HoY
zn|sID*m&xkIXTw(cXkwd`TBy&a8UsP1y9g8C#dgj{eDmI)m5RF`(&-B%$c*MjaT}X
zZkm3k`H!rtt4<p5+%3Hx`|9fI>7I*A`9P(C18BVHNT=}Dl#@cK>FL@kDlXaA*M+*c
zw7iw+KB{DH{`=&5cezTC;8jp7z4-aLlUZA{Zfr=LWs*7Ru1I2LOzPRI@!-gFk(rp_
z8T9nj)Tt9DENE$I2|DlT=eNy!i%RCJD=TMNmA(r7y4ty&Z+dJ)d>~XqXu`o5y`3j&
zFD`N|DlVSf-{1dM^n(5C8ygpch7>LsGcXh=7o22TeWI0H{L81)`r_HkC$TeFXuH>l
zDV}+Li8U-EV+CkHG5L6(<t}Xoh6ikqHnC1Snso8U$H$=o0Rc%}U(;J#TdO`E6&Do|
zQPJ1eH_f{fA*|*T5EnP^ZY5}hWqsV<FIU6kSNhI2`}FNw*km=|EfpUhy|xr#IKbQX
zW!0nNn@rx5q|Ecy9BgKfH#^$Z)phB~$;qY9=ay%^yR-Avjg5=b&dgZo*vxiwZu-WE
zE%pEFKy^E)UH#_fW>A~J_UDty)9)yXGceqVh}m^u(h^Q#H4S_F{a3F0mA}8Y_R5tI
zURkS<)6;Y>gU0QiJV^mHzp}5bxp=Hs`t7;%Cr(^AHC6lTqi+4IA0Hn6dNSERWM$CO
zr1fi=7z#{5g?!Au16g-=Y*bQKo;qd9lE=sU#jXE+JT8AaX`_ak+Oc(ie?Ff-Jy9ZR
zciGz5>TWUJH)V_0#_rw*s=S%m`C{fXGB7l79e>KL;|UsusH>~%%-#qZF*P?gXJuu*
zx%Ga{=d++L&0FF9-6FLn2j*X05$JsL=FMkiQVa#opfM!#BW{a(rOmHB?zdmJWQoer
zW5=ddoSXXZS#f!}{>HloJ*VS-Kkm0bb@=eV=)A2_savDgzqrZJ@M&}T`?$AvcVA!k
z_E0PL^}joFOkPRlbufAVQa&2BDaCW+)(Bo{vnxlt#kbb~uQScQcIMi@*X#GcdUA4d
z){PAdGi!Hzy%zoS`SbK!e;F9A`xg{!XlibLdu!9CO<%s<&bMCSzQQA~L(|C<G=2+m
z+4g%?r{DD+nrB;m%7EwWT<h!a{v0{t5~(A0xBma%r*}gc4)FG9I$eLTi8IVIxJ+2h
z=fb0--BUsRjc`v7kB&AT$wf<+sHCQ+gVOM?U$56soi%IKzS`fboZI=H-YsQd2spSi
zr!h2W>%AqO!me&^Sr-?%mK_(@i&>%OJ4-`V)iwLtn!vleN=*|FvG~q1S$V_O`*%3Q
ze=7!t8Ljg*Mdy2qMS!Zc35w2MHs8)!zke~e{NBdw;^JaZf9BES$NH7`FKtWu@qPdQ
z+EQ6o1_r&8s@ysZ3|d<EluCHb&nT5MFf@E}!r4>+mFjaiSf^ztbP14F)q~0+<fZ~>
zN?qNl@u}1dB^J<px}o>dQ?RuFAhpQVKA7KP3T_R-Z50&Kx$e*eo~uV~Hk>+rIyfh1
z&7Z%2pFV!P_``>SrAwDi{b_gc;>Duk;^6ghd%I+fd7MGxZKtQ{hHlLYy}C9!9Mm(s
zwl?~#L{soWaK$5{8j)5Xdv1cFvq|~87*I^y+f(`J!-s(L^K7@Ko}Q-t?zj2<n#Hc&
zVkd9k-hJfpV)y=Qpg||=cRQRxGgmJzE}lAZ;zB-Is~5BL_w9W2JcI>2d7N^p+AAM_
zo8e-uTc6BIMd!9DGipS|#IpYV`3Y+J2L%P?y#4#@Yj8rs0#HNP`u(2EQ$AWSgM6P?
zpdG$$N_%_zqQ#4IbLY*Q2P$B$t&J{ya$@4?d&;J!p})Vqy}Tv!vX{-g`SaJ`xf64B
zW$^KJf0xb9n>2g&?3$XIb-4n5ZQw|G)S-C@)OpXmylhp_(yrL*h=>_)e=L3S<VnVz
z9fh+D5}h_Ot?HOQefq5}nTw}P5!w6u-EOOz9~-{Cxw%+<UWL=vtgD-}-^GC2Sa%+5
z+O#QUYgG5v=(S;zZ3`E>_s4zu1?m~w+1dU2egA*m$<H9aFfy~f_;_4?`&Q6^&201h
zu*Gh@>sGx#*9CP^u2fNR@za+tBiGzLefo6S9urAPNzkbIH2wH>UQ@MVKUs#Z3b~lO
z{q8c*_-OI-b5><<X2jL~Oa--jK<1sDWx77WL=@cOG`Gml&yU?vurT8H&(F_uk9!*z
zJ@MF@ecg}W_R9s;`GFA;EA(P_tq5N3SM~L3c<$S|*5%hgMu*2$x*DgQ*>OtHLLQtE
zPHa_+*#GBKciqpY;=8x~`SZs+E_rK|_Z+q}r%p{$xw<-h{gK!Eemvp^^_f<OuMbO0
zTeigh+b&SQFfVVNk+CtTU=Ljz6*}82_tL$+)u!p^WOi4xu(GbK{QT_KtJUk*RrH85
zf*Q$sOX~jqS{1*4U+nFZlhwB-9&QU-&&kVswT)ML%H+w(+b`7K-j=&5LWhf&SNG$t
z!|nX1lQx2e{>t8pb-TLv$pj`OEO>Ti=3+r*w--M?KHe0eqot#xQ#Sw4pBhmSktvB&
z&h>BSV1%@2HxTT)ZWr|gg~_X{tGA||mD;`j*4FIT>vq4pG|M#m%Y$ZquSv7aa<vW{
zY{|K4v^%~2_uK8D?(XWawP*gAS;>Gi^RhkWQoP*U!T<mL6%`j>{`h#mwuXj>rl#hp
zGiO4IiZ;F7Q~3Cprm1NtJHK3rgM&k7=FBh0cY%g>ZidBp2CWWTdu3~OxNg)IkL7-I
zgSO}0E&1{y5Hy+(n&Ce&QTcT0ny0Oxw3G4i(NWN_^)#KxMQ`5Zw6?TlyuG!xtD|GX
z+~kcBPo9<iJh}c-&}Pswg3W1XFKtRay(RCi6=>4#?d|Q?udEC%J*~TahLxN<tf@Vl
z&2v@E&P_r>LQ^J82zX_A^5n^~&ag~A8H<3V-OHCRSM!;%fKym4=9`?TY&O!8kHU~9
z)?(231;dOUP`3!Z4+rj9fqF{NH6bS_ScKMq+Ex~V%Q#}0K^+#TOeb2O4cwCgg(`CK
z3bF#)^8)w8Kw+VNNMvF5f&*Ia#%X6R$d=!E_#%&C2j4QkxvyU6Es&}C{dRlR@3-4!
z@A8H)Kr9y0xqbjtBQQ(`Is5@p79m*-?(%^%3VMx!v+OpI1bM`-h2^yA1X$;ofkEB*
zQOHL~TW^L^2`{J|g)Yic51NuN^KYqTWo2boZ|~Io`$6+-B64!;wrtsA^xfXdDk?88
z57bhPt<K9^_wQqW{fg@E?^cDcpZDj_AJDAM+4=VIpw%{?i|5FKGTH^)1^&L{NCp0l
zjm+$P8Amz<CoOqCzdo+BvlG-p0961hR%l#4_E0CH8MM%+@QBo!x3{;0#yUW&4}5%j
zR5Xo@f({-$C}mx?#w`C{jq7<y%c3Q1Jd#04pFm3r-rn6Ees;F`_N}h&?%G;fUYeSk
zp!Cbc%zWBF>$zJKE5iZayr-w8f~umDk}Ye`UcMY07#MhKSLy0L8Ox%Z)k~Hw%eud>
zc9vOgROj*RtE*DOV?<wGUf!?rvR%Gz$EkbP>fk8pP`;M%_SRN!-`QrNQ?)|h+&X;d
zP|k6ERdsdu$H#gvw{QxFEccsh)N2kNS=(Lq)+qM*8_+1mj)SSGsVB3xie+zy4IJ)$
z@>PG&ho+jE8qlQ7UZ3-4&!4}3XJ@gfgv5&7?{=;Bxo%~B4YV98<y7_kRd?>hR901q
zWq<$lX_KtJubW%jv$M08gQmHHmU^XDz5D;W{=dKdzaNW1Yjk$*+!^-Fxe*eUO69l<
z?tq!UzMRrt{{l1tvnBKLmA%#9jbft(13=a~85tQ(nK&`=dRWlMFX>^cw;stnu;^>x
z*H>4yKkm}s_rvM+wY8UDU0pqO=1fgb$Wn?^XU~SFr7Z)^qpk{FeJghQq)CekA0K;p
zGktz&Ow1k8{<TVwc0x>c)73SR#-Ntvy0_Qk>#uG~J&n6_c;q#oyq!+>(WGkO59gCD
zik@^ZF*AdT{oDV-Cw+O?F0W-}74`Sm*UPWh@2@j;ULybr@vpD1`)^J=8x#~Y$*osP
z^=1FuyTL(0B64zi_4W0hm!Jy{SXo(5-n|<OEt<RU>RVYwf%+yjHG7(xn{(fSYMBL&
z&7c`j-N;Q#YS^ADK=Qf!nuA=#7sd^*uCHJJ>+5Ur-S<ySR4)B|*8KHBcKIz^Wvxm)
z_EvobwI_akd%IdxJM2cRu#nKA+xh$dO1ZzX0ePiCOh0Z-r?7g~$w{iG&YcVM@aVX<
zE_QWC2ghwovF@i`_r7Vb^!W4h`TWvnXCyr@-T(J(d(w5Ec{Vda<yVY+pT`E3l|@fa
zd3ksQI5|13e6FIdep@wasb#?fhmG6#WUW?g*zjS~^<7-oZ<R1HFdX0n6(SE(PE{`s
zoPjbJ<-Yb{(@v0s3Y0`5)-`H6ffjq>EaVPqa;;Hz@5{Kn%=g#V>+xSd9OhqL_xG2U
zj?R^p!OKI|Mw#y1z1w<MHv<Dh_?d;lEp3SzS5^dqx>KOV8og4cUXqfMla|bxBLkXw
z1}!F0-p#?_uv6P><C$MhKZ`ROzk-tP)$sVMFD@?r`t$kx(*``ZH)dU3wKD(yzF!ZT
z`DJc6GcYu4Dt;mIu!)u1q~b$@?|i%1|9{`tcgyl~a$Z!QU-PJ89wWm83D9CLKHUv`
z@^)*s<=&oFb?5r^@a6vV^^VIiGCYV7iCA}VVQ@?7t1A~D9&Y!x-IsivkClaGN^(B~
z1H-zx&fIJE)&2%GI6<@9YuBzg_3zE*^HU~GTJ-PlZ|han3=C7OH;eDseBrL4OjN?&
z4~MunMXlxH<-PjgU~}rmh$#~$EC4N`a_^Vp;^YMNo@H;kGB7k46=yVtu8lIyy}ivh
z`FP*eiOTLzo<3dLD{cPj$;rvHY$`YH`}4{B=Z_y2o4Oeorf3W4Tz~MP*KP0Ky`u8+
z>wo;Ha4%<NU^pOBBeswew1#Z?ysA^6A>bVxmsWS3f5>@_-~P{nCr?sjEeafN-n>~h
zyVtA!k6QHpy1kj_fB*aa-n8~tN$!mej_Q7M0@g-ty|OY`y;t5oPB&`Hj#bsWcJBNr
zEy2KW!(z*Us67=M=hb}j3|$rCd3Kg*aIchU*WAz7n_fq)iQ4J~T8IOhJ6o|r1JwU#
z=a;*3sFizb(Nizo_<b>ZtH0}guDyKu^3!K-5*!RW%HA|Tm6C}{@SSPosvEuSiu(MT
zMYpzQ$6rqeIkTCaKP(_%f?4jZC9_PkZ}ou|Yreg;H8>?@38)?I)+;sj<-Ms|p+-Bm
zGcYVrD$aOQ^yNh$Xa(W*y*nl?0nL_~n}>UPdX^oXs&aKrWN`l8uhWW(icE^1`FLIu
z_P1GhtXEom_xUNB!Cgy3*BoSGn9;hOBevODc+G?f0<yMMTVm#YU0?s#yI0Co>+9mm
zcRQcUff8r-^>tH2s$8OjtoIi(GNdJTT`;vUIS85y5YvlUp&Pv|=KAwFcC}IN{c=}j
z%kLDP{Osi9^yRev{ugg<Zoa<No`K=OR!ftEpbWY->uSk)+wUt}yT!OTI411gz5A}E
zShuTu-H(T+w$IPZG@i6%Rp{!tPkR<Ut~p@Ba3IiQLrk+X_Zr*kZzqyAYA7f;SXx?w
z)_`@-O+J?2wdl~w6&JM5P8CaHU|^X3=mOL02M3#<ev+}bw~t&K_V(uH=aZg;rg;DT
z`?o4+sn^QZ*u=z#q2H7L{P_6k^XJXk)juA#UtJ%+fAv0fh6leY-tYbX<zDssn_K5v
zm9C1J=ldw+qh-zFi=RG$W<x=h$TZz(ub3DAo=%T{_26K$lwHjZm6dM2QdX6pQZ{~G
zw^U<}UG1;b>y3;Ia}F<XY&OZbps;&e{{FvVYooW91@s3@v~X?QTKL#)ZS3x_nKNfj
z0<9%}_3!ul@OC~~pXy^X43oE{oD|}fHuI4-&)af))x+=i>#rN1w^5Fdj|UCiOuDkf
zQ+TdbsaN&)ccBFZ8&ov4wY{^itub8d&%p3UG#e6Dd-mAyN||_MUt2RVQDRlx-d!p$
zpPZZwYHG~4s|ERQ=BA110Ra<0>v2JAD!1RS+nuZaeSZDF$oG3b_x<~Q|9{raO{v@V
zu9vHPB6#%Ju~!S*<t}vyDwlkF6A5Y?ot<TRdHemk>a%|t85q``UU=JN&xb?Yph3oY
z_5UhUQ&V4p+zndKn0&l1^UI5iQCqX7F7un4b?fu5udkQOT9<+QQP1a=o7DU$(2dy<
zFxRT|QlG5#8#}e-X=i6eZBFa0sjU^2mR^0dTm1FY>G9W?`E3H;?8|w?#$doL-Mfpe
zT`l7MzTfNGcqEf<+wS$4YgGy=XC5E#&;I!6C}>R1xB3~Vd#36=E#~4*Q0@2b?(Xib
z{_|{ZzPrxOCu6WQpMk-^^@Wtotc29mRL~IJQn~!g%X<4{t;70knHU&$l=10qcy)dK
zdR}R>DOEL(kM*vK-(UB$l!JkRJsFe(wj7WGO@yzBSeQPq((UETm!P8mXty|MA@jq-
z?XUlSzkglW-{#>7JthW*DKnj~CxFVA|DWyuFJ7`lMK@xDLtb9}m1=SQxG9MeAft};
z%fAOH4tNKeaA{YIc=zs|m#62&b91e~Uh>ulFZI3bZ@)J4^0G|Gl8|kpu?!3kex1ZJ
zxDoqp7ibN`-s<mR4h{`__U=vH8g+HCJAdxYO-qk_{`~nfsQd#hEWCH`-m2*B>*OjP
zFv{9iU3sHuIVCv9r0TeA`G&)m3=BngqFX?NN2@|H=R}-4=QjkYC@VX^d-o2M7hYXk
zyZX(W9NoxGE})Lmaryc+d3Sf+Jg2Ln0UjaAy=?|+z^bUY+`M@cG|p8DnuS>%etybF
ztL7s84Ngu@r%Lu6P0}n}&BDNt(1*8?9P?^xU|?WZSJ$R&X}g*oOw7!t<?mv4Gi85!
zbMx1y)B0bphR5&x<IXp=x-oQf+F9*YOQ7TC&lWN=n2WfpL|_>mY2g$ud2&MV=kMR~
zA3uZUpfCHH->hA>K2ZWRumEbofL3a4*bq=zS^4SPH@)8tS`9_|8}zp7Hh*zX1PxAa
zzgOk`?%lhto*td~eT)nR&7cJ^s5AEQ>ke2IKkNDQ=~Kz0Bb=cA>hEuFL5=I2<NN>r
ztCqE`3IS!wHa^)^SFVISefsp}x7+#GL38DOvevWg^xTWOOd}?h{P|G`TJi1W<po-V
zFIWGk5VRuOca}+E$#n(>4f8&a4JhL*g|6He*m)!tl)k>^IY}#g-I~P1ZJKs=_sVMi
z|NA@X-wd@ip{u8f=|m_THZZCERr2-4Md$xN&)18{$iz%bv@~rOk8th0I-h&>j~^AR
zY;0D$vOyKUyGR7ebWWWmCnu+rZPgY~Tf?<mOjBRq|L4!2px&{Hrn>s^Z~J$bzu%^t
z@&3xn$xTg7pqgpvvSrgUW6qsPWWBaA`8a4OKKo!3>#6hS!&6e0JbL^Xw9?<bl#`)B
zdeZjo+x2301g!b{=jZ2bkEefrKK%x$F|{@8suyTN3bY`$yuYJ^WA}DeX_E|4vt#P6
zwa%`g?^wga!ltd=prxU4;laUX&^RfVHUq=I>swVKtjphBSr@ze&8;r3rI#YsUK3i*
zxOvkim6d01tB0%#@!VVWHOR@SNiSxHg1^82ZQHzkKc6K%zrHefdBl9}T}ApEW|?Gy
z)>LVjn1nn&-XH$>Snt%ibJxCk^CoD0=G9f9mfr*z8oE}eo}LC;I2n6efB&CFm7kwY
zt@6#tSYeiPW5Jv`GP_&f-QJcv`DjvLMn=ZW--Yk)SW31nG)_Nv;_~HSP*TteUA08n
zy-&pY`-_W<cfDLT`_vzv^sslVVS%E1i=X@PN*Fwt^jxY<vHR$vLx&E1dLhNY!1uhv
zGy>FVSQEK<%9JTf0vEe^{z^{&K4pqXYkT|cdkQvXZ)W(-wOYDhfx^z+yS*pX{eHVW
z>FC9ilhwZ-WS0lkv|F>UPg4n983bP5b8BlhXy|g8?`*G0bw3`m=ic1pdbpk6y!1>T
z$RR~VMV0nK3=A<&5fL+feSg1x#|{fw`?@>ZCRc-|(9XX_8M<juS?S&{2O7Ep4HsIK
zzS1x@4h9YMoI15>?S3tz+FvE0mHVJtp+itPMWQXP`mO2Jb+OTfg@sS8p1odshkFfZ
zDD=BBBf|;<nXiGCIOm$~*8ck?c`z_AFlt-Q%xCB3uAZ#!zsjvwYS-^~yG_&1%t(^o
zczI7{aqg`xpoy|sX1TNO+_`gQXL0)3IhLD`<SJ<ywdY@EU|^70kJiNypWP{CS5q-_
z*>@*r=iJ|^JHfld=5#C;(wWf>>Y0ECvhV2Cb1^V5oN59Mfq;iBKphI$aL*wr9K+Q(
zhCD!1{8&3EL`~7FM1Z!cfo9DQfQO5~U4HaY81TRl$g$9YBJg+(Xfzq$cn{pW&~bZC
zv?+QpAM03sV`!gM*_#(H^cKvKXnP2vK+9<R-Z7mz`10~{*}JSE0-%wd2QFPgI-B?F
zsbgCnck?x<rvMt%Wn^Uh^zGZUt68D_a<*GiPfrs%e}7YI_pPnj>hbaMk!!<1E$a01
z^K?IdKY0^0cErFdY2;G;{9I^C%93YiXRGt`^M8GFbMqCal^$+xZFlb8HLdwk0Gf!F
zGEVF1leb^@?d|Q?o6p;Awl2TEF80->rQPS|+po7Qex_k%73JyaDP@pw;H%6mXVB7x
z24R8&J=p88(%09{UbCzFQvqtiOPl9SS-*b0%F4vUZJ^bfmo8npvebL}YS~4X6+!Ej
zPEPs$<-w_`+Mtz3FJ5Fs&tATK`JzROwv@gOleH{b;`8_Ww{O=#t5YYd``@~CZjR;R
zEn7@n-P~?<X?sf9RBWiJt=*b*w9Cl$FgQR8nlV?H#h;sLoc`th|9{~xU%r&GuiNwO
z?d|mG9-sxfpi%4B*VevWw>o6yBqwL*t;Ns%gxwz5fYJeI4MG=a4OZCdtr5GgW=&0$
zu&Vm<B6YrD!T|=*==Y?Mokgjj#_q?DAIr{fh|pPT_dMwG1W`dyaxve5G9<KrPD=|5
zXctk{^SR|E-|v=dLn@ZC^Akc|6|Z|DDar}b<#$Aoa~fJLAuJ@6^!tCm?Y9|GTeFs`
z&#$?(ZQH6Ba!YNWd(8`+2pJ37mUA;GC%d)y`MKCnQmd~<Ju*oM3!A30GH!2G>MQ4^
zUQ@5E4%b&zQF(EwmHX3|FI#-g#qNGye_r#oF=T|$?@5&KnvM<*(0Zn=fB$?wFJ)g>
zv+{aNTU*xQHr`VwPi~BUu`l<wS)`6wYg^m2o$}Am&7GVm0cr-=*xHK9$msC%^Vfbp
zYyRr``uT66i^sf~+4*!n8_$sh4H@q^2paEUWo7m9^4hfZ>C>m6b(aqxJ_M~4RgtwW
z^MN!#x6J*1JAc3E?)&KF_|Km|K`Sq#Hl=jlJ@<Cy%9WsnqNj7syuj0Xpp=TbbgZeV
z3Dm{MxqR%)i-n-ANWQbpRs}EbGcq=wI%(3PHEY%+RY&{IHuDt}6wJE6Z!f3~bGV%!
z)Fyj%Z}0A1WpA@y&5-Q{mlw%pjistshkmln?`D9;;nVDYii(OZO+7s=^WB}DR+XQY
zfEK&&e!nj|`B+cj?QOYl&w-k=pmmhe(yId(yRFQ+x~i+M@7kA_mrtkmJnaP8vjVN$
zzO5Q{NnXC&xaP+P?K;2P+j74?ogN=oYOl=&E)P4DmvJQ8iS1-&fECi9LKn1}iNOan
z(2BWF6K&)jToi+i;s|abIEvJWT-2gXUh;GXA9V+ha)Nr?pdy7K!3b0oW2}Zk9~wt<
zGL4slA=OBSjEahjFJD<1oV(x8({tkN*|Yg%t)3i+V`M1E{q*URh_p0lebCPzKQwG?
zVlp!`r|*3SS|}e9GG&%&wpx6AJZP%#;>C+rWp8e%uD33IH3hV(#N6C`ZPeCNYZ5JZ
zxz_Bjc-(9L<k_=jyWj8o-F0ri-2Y1q40m>P)vcTHx6~5URRIk$OG<*K%T69X><pU3
zou(VDR~eg=v&Jm%&We4tzh8lN&@OOn-jZ~b3)Fbr|L<4!%Il!ziO<i^FTXi|p^xCd
zqo6g?$9ko+e}8*xRq&vJiJ4jUt||k=y48fbCB@Iq1nw?-`{ovCr6g#s_v`ie?X$mX
zZYqBt2kJggR`<WQ#B=f)*`CP?2Y*cl^}D0D<y-`<>DXPCs~fxP%EeeFhC2x|6BE|P
z><p5Vlk4j1+qSi`s!B^s%PV?&9%!u0Ywx%9N2jXXEk19%DsuC(x*reQh1P>+4dm*6
zB!cEG+Y)0QmM=?Mc;MIMrQXw5rJbDxT8w^meY`!F4#NT7#Ov!~K|4xUg{(}vE+;0I
zW*sM%etur4pI=|r^>wjtZh#hk=ic6y`RvTh@cR$B8kk=D->dx|Yy0QJVbC5AQ0UeF
zuX}rA<Kc^UL9RVj{Wml$Y}%Tz?2TosuWB7ODEac@qS4p-b8{?Doj(uSkdbt~?%$uv
zUP)s&&`Qo`Hr`Vu=eydNUe|+Gkb%bb-<mt`E_?gr{d@l|R)&H~)Q-gjmTXN12H^>y
za{-ouhR9Y1FVA{#pb@l>_wGi}j^qUk9105yuU`W@wq7@OR|see)bT#q++1dMzAKwj
zPsfziNiaO9k=e)w+5;l47o%|v<fPjlwLd=Yw_lZie;;UwvWb=ZO`ohyMF42>@5{@}
zPai)nZoS{z)xDiV6|`05^mP63<$iNZ9vond2F-&D2@7wn`&(7|^3u^pTNZ`~r<N>T
zDtddrmb&`$N!JlQ3eT^vuI_$Q3|jt`cXt<P*a)<6rlz*`ZJ+-v6VI=&uZREs_IB#b
znVIGP@7MkIojG$R7Y9ed%v@=W4PTC{WkyCuMs3Tv`9J^tyW~}?<SqK@`79kxmR$OB
z%8B(*q}vj=DWYi$PtRJ)JX<v}dCR7-iJ}6D(f#&8UGqBSb})5KOS_eG^;h$SL-XcL
z^*b4sA-rU%%S4U1J^SrvmEYA{aZ>!<!+YPeANTKje&=(;+1fuf`@hSChKE<@Zr1TW
zJzZZtfze??W>(fGmWJdQz3}z(w=X{*?&Iqlnw7QcdPHsQ-c6e}?fUDJl(Z--E9=U&
zYtOb`sQvux>?R%W&d$!`w$DNPU2A`p?2OU7dgTgej?C`&pHHXtK|9oI<?2%+r@h<r
z*)MY1(rMGgTwPq|oXNc<$LJjt8afrc2QIGiXu4Iw*;%HbAoKF}-aThN8v~14`{9S1
zKm6{u{}&J&8@qnqb@}zDJiWayUs~!N8Wy(f_xt_vm+t$Qm0QgPZJ!AVnWB<;e_w4@
zZf<By%p5=Kw<eyK4mPuwzTJ9#)ykEgrlzKM?d(6DRG)t(fB)ZSrrUCFn~92vX_=dc
zPmilw>HqrbeAe0n;H~KEVpq@3+vT}A{rtC^?+PqJVq@2SeSKZq*7h!cI0u8ndr+Ue
zs%qD#&!4Z}xwB@+4hze<esAyXjeh#{={(R5*O0)#g>7wYuI}#Mlk)ccOsoBRHT=}6
zQ<uKIy}h;eciH)Wpkj>I{EmX>t~Z-b*POF1c@ePlZeDE7$D^}Mv%~c7r{3rK)vz`1
zt`%qr*4=*x)zsCqe|&ftwXepKk(=Sd>px#NJwJ8IOH@p3)v8rqy1Kfc-I;B?(k7{=
zMAkoUX{o5Ue|I~7|J2mTs@H3`f4LT&UzsayTeU?!;p>xIzZNgxkI)WV6Hrl6u|0c@
z&gn~~*JGEzdX*(>QP5D%&&0rV=|CfMXh_JCMT-{Yeb?02|DLsF$^QFIMXQ2>g09@W
zS$S&y_RS0UBVJ!yYyHsfzt7YE|Kt^oje}>-oVm9sm!aXo<MnLZX&+^D7#J81H|+y8
zWAifR{IZt<3uJ6yVAvpdErFGdNsNKP%;^9Z52y>kAmIj@J?*`az{-ZKP-@Kqhh|m=
zh6D*-kaFk8SN>lF%@RYEZ(!3l5CEIV6qW#4pkx5jp3}mnZEyieA)2|8Qp^AKvw;p@
zfGRhQXlz906KU?*3l?ANO+Y=bHjuLtl-C^O;z8z{L^L)wurf6C3T$A4%;-ZEf+Qdo
zg2SPB%~7MT#YR?ER#RrrUcF+4Mr(V!wxwm{{F+ZEIqkRS-?w}E^l9d;Ety>%9RVI5
z9a-7gyYF0oTef=3mJspSl8Juye@j5!ALI0MA+fP{>wo?I!p@?@z_8%V8K0?Brf4WD
zJA>wH*?1%t%rs7a_4&NL{k!L{UcUw{-!wHd(^6D?xTEo1BfH!M(DuHEt>UkCKA(4)
zncrrCeBBR6O-)VEfS&LDN%0#&j+Xv-Txtzy0CIKM+MvS1jYUO8DxRSAIR=SMa#b%B
zb8l@~dHcNIJe$bh-`|4<dakXByqqh2_2$i$mo5c?wom#kzid2j+O%aeW=Mc$QYNeW
z|9fwq9t;XPmYr8uhi4yXU_5p1+_#?Awl*zoZST_3(p$UB^S95JwW-*kq^#^;(WmU*
zw_@+!*!20e+phok@bEBb>&k}@AA<KYN-HHWG9)N3yB<H+M|oT6>oCyXgA)@J;~sl@
zdd_=mD=H?o%v*1#i{J8K?XWc$K!Y~#_x<+c7Sp*9nLhWa=sPCxN+y<_%a*BG%J9uE
zY(K2H{r1{p$J~^kNA9cH2^whl`T2SEv83eWt(lkAdL@mIov?h<1PL1V=BxMat-Ej`
zVE)Gq8w}2u3Agb`F8X}lKEC{Z?RL=ACuq;F-gIyCI|a>rG8PF>WXc@DY5zy^#NP`X
zn@fItNSy!Cxt*_a+xL+4^yTYzK9h<qy&78e@8@&d$Kmm{ThH15uK^9i`rH34=|7(=
z4vJ`|6T3=ZfBE<OeRc2OkH_VY|Lr;a@I{f-hLtNlCz)hjSs@o6o}0UNTkh>;&*xR2
z%eK+e^Lu=}|9blT+G~%CZ*VelGce44>DgTRxYzvEG3op-QlMG1(!XD?m;au5<cQ1F
zD_2&mU3)fr;qPZ>XQxI^6A~8o|5??SnU^;$HS*P)H(zd+Jvkw`GiIIK{KI~rg%A!C
zyuH0ApMDw?896h3&Emz*e#?VTo;=yr)ivqM_u$*FU%%eX<EbtrFR#D-_S&i1;Z?o)
zH#fO{{rYv5MPbtUyhCY_f}(!SLE?+s>SOaO9&tuaTl)6)_S0|6RxeuQ1nOX`h>D1K
zOj7fkv*OB?5Z&l)K5N&mon=?MOG;WAH1eML;laUO-|toT-rKxia03HFgO;{7=p2w$
ztF*Rm*`lGS=qPQLb76{Ru+8s?X-g*v+&{VgXt#K^)11`Ec>!sW)6^3@Fa7%Z8njb>
zZOqOf`PwfN+4y8uXs_QB1nQQav;BT2Zr|a3M@1AFl2@%>{kN9$h4XPShr>GcHp?6*
zfs`&<qy$<60-9ZXc6N5@S<~wkZ-e9F^roMFdNt1T(#6H@S8v{Y`T6tv($Iwq7lMX4
zzu&K4zipctXj<|8-tY5-goLX8b#Inr5@Sf_h&b5Vz*^D|n&8ekBA>k>K@JqT(uxVJ
zY~XDnJc|#$Vm^NFVMu7`(vOdi|NfcvE6mTY?|g7|^TBDl(SK?=>n`59CAH=IzbnE1
zKYt7Tit+RFyKwh=pR9FAczF7oyES(g7QXt=5mCEf;X=nrd+y1}`KbBMdh*`eLH^Ns
z>m4kw=a)M>H(!6u-B7Qb@U;=tcw4o~EBRQD;ip4B3=Q>Lwr^j(aG|4d+L;$yiy<ZW
zuLBzr50{+Q-TvdZ5d#C;g_wsakYZhG&4B};WoisOi$N8MTgC<^W>8JgkjSE=&;g1}
zMMXs}e*X8L_7(*%_v1Y=eFIb3v-Q($59=_AF@O#N`TzU=|C(bzy(K^J9}4~Net>Dg
zks~gkbz`8TX!h%~GB7bQa&r_-OMUsUU4Gi>r>{00{k8nuIX~NfKOTcN1x7^70PXB(
zYGNuaDXDmCo_0p!>?~7n(0(Dkolk^7b8#CtZd|oy%@@nG?CjO=cE7g+O@rv@_&lFi
zy>4FRGs&HI^A>;S{37ln$OfwPdS$J{w%@CI%^AIB%^Drh-citWxR;lgN$IN)+rM8f
zgC--c*G)?WPXqb;U;py*^4B+;&%ZijeEte()=Sp9tm0dCe*X2T;c+WPwZk$FHnD;x
z#Y%rZovv+fAKxve`)ccN)`ok>lBF0tCUJ3bfm$Ss7A?|?zwr0%_WP?AEph^lJ9~M1
zt9q8-DQs`!mtXhjQBv)%m&?68JwLwrf0*As<MFXxQ1e8^^X1EzR?p`Yhs4FL15JfZ
z3W<qX1Mbyq&kF^wZnCzH=4*HMp00Owk!!bzsOZ((+xc#A^=EQ`YC@I2cau_6QdX>4
z<8$`xS-aczKOQhgPFp%>j?DUxuH9lM-<D+`ZsU!6{CsZtJoOmQ`u#>(cXky1dbxbQ
zP4epS_18qhV-_xSZqNGv@9(_%tJm*~(wpwRb?er)_d*Q6*ciDRjw|=uEK+vwE7>WQ
zeSV%T7bj<6Ow63?KRN`JMI<Fx-rZeZ-Rth|{#)j8kMX$xZ}0Bs`^(?nTFP(#C*W{9
z|My>>zP?jaBSC9Cc<)MHs0SrS16Pg%$!~6KoMm6X@6@SNQ)bV;{nSqVxA@o0<#Vq+
z{b4V@Uf#AUWaY}0r_P>zTNGGbQ}f4jE;qxQwg%P%r$NqHwMt7=RJ5|UU(OahYrZaa
zw@Ka|i}OF$@Bg>ze*OR0#qRz8&Oh(!?G25Np1p3@t5tIG<^mcK&7u-Blvp09s;Rks
zet!OX_WHfgzV;rPX`FuQZQ1H2OO9m!fAlCRa@tbR%1itC+3)V`T(x@j<>T`8Z#J*p
zx;1p}+`0e%vNbRq_>%D7y_uC|=elLjK#?CAx$@VqD$w-NB+xV}s6{Y!>dK`{T|w3Q
zqi%gr>aZ++R#DshA;tE`gXXCHb$i$C|5pW?#GI_=dnvyD?^00x2%3_Wl9DQUHZ%R(
z4>`sK>jgJ7C|tj~KQB2s88my4dU{%AZvE%8=AzQl+RHD4_wg#b_k}n*Hj3%Ty(vEP
z?%&lv=RZ0&v#s2=Eey2b^j_t2+0d{sEhQzVj~_pRcJ`T+ya;eE=lmiM$}FePKAyzL
z@L{)Z^tOykOFThG8BLurBjd}B=<Ru-US3`Mem;}-onvwF#m0-K@K)c36S52p2cXS5
zB3gmq)|r8;1Ssek7z}#AmH0v|%{Y+6ip7hackbNT)zuYLQL$sv<jG%8s?VSEq4@VV
zP=P&fneXgn9UUC4EiEgyZM&Af|J%1R&?Fw{;0L!}sihqq9H3E%rAwDuRej0GzcVQw
zRNrivn9Muv<$U3jXU>FpdUhHa8GQkr6L6q`ah7HAGQ0nOK0mHow{Kq@Xm4e5@?s$&
zp<TAu{q6rQseZT9ebSbUi%O#6;@WCzZrtK}Az@+H>i@gmlmRUsW!Xt$6K(OXUAy$Y
zOIsE#0kso8K0aQ3Y}4k=Q>RW<U4D7xp+inbj~tn?*U)|uxFr5_F=1`o-Y8}^o`ABl
zZRt8DCLxiLk)Q;5Z*TSPzi%EKY!;Q2tUUDF>h+q<dk$SS1RW-z^7h8Y$1TTS_;W-s
zFx>Eo_vg>MyDRkL$B&>H^6M2rL6g#}^E0!uCaLgBo2|Ki?jb*@ZPOGJ96VWuul@Xv
z!w)CiejApYoV<R{_Y)J9wKO$BCynUs`|&8wvVH#sP!vgjJf19d>-KF?DXCY+a$;i7
zZr+my9fI)o&dy-@nh%XmPE4ymD<&{92s{BDBy_l)|96kPRmq9Xceki|PkYg8e(wTk
z6S|~vnuPs6aD!mO#Cc{BSFc`;+F7*pdPH{i>q7g-1s1#Ju-R<0%et~6aCwbwY@yZM
zQ>RZ~KGe!Rb^iSPFE`2@4=^z(G@O}j?*IAO+0Rn9H>I8~yl$bYrnYL?GPm5^+&J#L
z=K1$@PH&nrV@AfCU!e2P-n_|Kx^yXM>$Oo?%x=y#oc;_9zbxx*mMQA$`sz*hPEAdn
zx3RB}&vLGxs=7L8rRb&m{<-VduMba8f3A5qIyZMMXj$dT;N`1Ut$H=3?_&G~us0`7
znlxqJymf#6)R>x^YwPLx`7ICLUH(3-vT|qo{ylqaLPJ7UEL`Y#@#4jKAJykoI895<
z{Qd21(eAseR;;*itXEpqla-Zq(h}S1ZyDFtM1sap=2#Yk_R3VpI)f%pcRXma+i`mz
z$j1lV%HG|{{1e?`UH;DIq21J}Q$Yt1goaLyii!f2J-pIp8K<Ub&a2fq{p!>0x^8j(
zZ!w$U?I_UD`mfLD?NvQNP37~3a<yMBHgH8uyZyH8_irTz29C1oZ*M?r%t}8zI2dPH
zS5dK}?9GjbS8W!42e%eFZL7b%*nYq6_0(j3X|tY!tL>m<#?bar7qr;#FoXljatu7m
zkiOvo(4Nzt25<)x)Ji&F0P2l_8W*6>>xkFz+rA?ESMyUY##syu3=E#GelF{r5}E+0
Cpn}-|

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg.png
new file mode 100644
index 0000000000000000000000000000000000000000..7f34e09c5226e17590b72be6ab8d51dc4c423d86
GIT binary patch
literal 19530
zcmeAS@N?(olHy`uVBq!ia0y~yV2S`?4mJh`hJ9%>?l3SguoOFahH!9jaMW<5bTBY5
za29w(7BevLCxS5J3j5`m3=9eko-U3d6?5L)t&9mReRS;O^Ed|<5nf+s5%VHV=Sx9C
z>ZaSbTryd?X2PW{Ia-@S?rgub#O3TPBOk}3YtJl|H1d|!H7(t=MOIhX_u|PIA=XHn
z{r0~K)88?yV}G}E`uX2qADKS3d_M29ZN{$;HT%EE%ubYOV_;xNklMYPoq>VjK_*88
z0|SGaasnd*!;GE=RtAOyBPKBhhK7@)62mD-&fLDr%)r1<Z&mQ1p-<L2OzZi&xV^ia
zoSnU&-qGl4U}b1vm9Z#rD1CiRckAchzkk1Om#<SunJT!9gOOoF!=<csTyt%!w_RD^
z_<zAcCWZq^IcBq0J~!q$eC6}QM;RL!7#MuqnpqhdT5sf-U6$7A6kEOKA|y$%aWgP*
zFFg2(#{`_v7K3y<d96O^baT-`CI$urNk;C}XMcWvKAM*v+mK%Q_v`ho)!*~N`I!r%
zTY0D5jMs=}(V5cO)Wmf2ZCPqcO2)T0H>+N+-TviqzrB{ezQ5V*-U&|?@74dWJ$m$L
z=Cw7Er%s-H_+4~|Q;YWZ<5D_PIQ8}QYybcKo^^lUUcY%ZEC2kdVP$7uUH|`|lx5M9
zKY#z0{`*sT^KD99dD;Ei?=PQDj}JTECmXsk$@S^erzejeKYsNvQ-jg*{b?GZt(TjA
z{`@IrRk9*#Th7X<+TpLB&#w<VJx$lN{$I_}qeox9xw(1M?YAa!d21FdaF`?_FTXxI
zZ>Q_amoKY+y<GnFZu$M46)6qXiCq_r1vUh%dQ-NWPsU=w*6iybfArh^TJdhzYrU)M
z<Kw-j=>%@iySpXrtd#qSq+J(kD=RB4|Nd&`x4SUMvUtjb2@B-w|6Fuk%*1d#p-W)t
zF$12|)YO&9$NT!WhP}PDb+XFSCr>mK6da7x&rL~``1Rp1zpCf@z29d2`TI9jg3Z2g
z=gg)irsWe%b8Z;SwJ!JT?CjLi(7148WAfD{p2FgN0%<>AE}t(VCid)AV#S(E8FPO8
z-ty*R!on*za?C>4#YBGm`0>=ab75|7ZT~*@*LzG#uI-yYe|}u`ThqIx*JFP@ne2aM
ze|^3CWY+JGo<3b_Tm3EL@v+{%+~i|D7eAl3UvHXyE#uM>Pm@TwgeNB^W?fk^vFy!_
zhp!egOmjQnwDRQn^V3yq|NVGe^|;quL_lD{%HZX%7WdmtQu+Dghehj}6)QAqKc6+X
zDt$FYyS-O?%H+w5A0BRh-Dmyo!miTSGPjTS$*xv(ZhNt~-%cr|vSD59ZY?9DAlvG1
zDk)Qit|e5mF^TyE?>J#;Z5>@%S!q@FW=3*+Ny(ObRj+mDS`<1hcJIG-YiqXZU-gvG
zH4%Zu&(B@`_4T!=jLe%!A0NL8SrZZH+{P2Q+;8rct=ZwVpH8ax)&7^>bm{WtSc{;T
z&O`s_-QJqL{KyfPtE<EPzuzh5SLD`UWaM6^5mUc8{k+`KBS$oBY+`hyw_RD_*bIta
z&r8bvHj5;U(=z`5`zvLd6|zzB^{&_Jil62_F#7X-w&15vpH%+-?0?_FDSTyJto7Z>
z=W~y?t@--;`s-HlxC{68R-djpv%~27z3TODy;4h?+4)bUZPqk03hM0a%(}3EQE|1%
zg@j7B^_;?LJ_TPD9^B(OJmGF$cvaP|TibG1|M^pMx8N}Es_5<O?p43H1$oDa$2s@b
zmcY-?&W5fI)76dL6|%eh{k78TvCEJ3N{d&rORZV^!I#6mUoLd1*VHFZpDx|A$ELEf
za;4u~t6l$oz22IC-_CcQO=MtTVAh2NjZ5sAZ+v`w{OkGpf5HAXA6uB1nPY3zcZg(P
zUl&?bv}w=Yy;pY>CWo$#3f-E0{Ti?NodxxOU&mK{K5Kq;U95F$OUsU`6?wYG#=)MR
zo}a#bn|3$P+%!hAZQ-9kHMSp*2%iy}BFemj>*vp(ZHW?YVPVrQZcg`Cwz0W$V_)s=
z<p1CA*XPI7|NZLr_0`qh?f0rqZ>;_J=xE#7G~-)av(r;jQ>XsiQCN9yzI}Yk?Td@u
zd)auUB=~K=Oh}H-%Uk#OfBwBaH#6?;+WPS6)6|+@FPHnR|ND0PeXslt250O4@8g#=
zI<nzr&an#%oqKzFc#i+mjov0PapFX`UMbT#|85_DdV6Q_a>bJ?A~r4(6c9*w6@Ii!
zl-Kjvxw+P{wX>hH1-I<TSsk|a(hS37mA}t#y0<01`2Bu=_~&P5udWK!_6*9)TQ|!r
zcU8aLFOPlu_RTU*@8grR(eQkAd;9uny3xzF->-{iWMo{oQ!r*z@$+*p@Bja|{oA{{
ztCijRJSP45`xg{^wSPVyuX@y}uJSj1SNNnwixz!(GTHytpP!#!U0T}xI8bI%$lj{2
zoAz_Yn9V->EF#*n_E*W#qenFj4FlKj|F?@z#zJBC*=4u$cK5z?nr!I$LXsn5M@n1b
zi+=lm7q(<x{&Grt{fnj3<BHx`7d`3ln``wnV*2Fi)0cCJYOPqXz=2oF<ihLq``4}C
z_seUxd4Aa*H7l#AUTJf^&%X~m_4M|>%*=1Iz^zwmW#;8&T-@B3_kO>(S~q%|hNh+`
zzwMU^_iDe#E}t-U?p$5Zsvi&AOE3GHYpSTY{QdRy@=W9OiV16GfBf{RXpeHmu^!15
zod-gK8wyV5n9XKlX8w9DI)9~eJD-=2&y^#c!m6H$iHW~X$NyUd3d(jq*-8EV{g0XF
zsjduM?Dpx~w`=<Q|2#SseIPYzN5R5(`~TPd{dioy>e<Y6lfp+XUteB!&&<qxb#3kJ
zv@<gnUR><1t)}L7dYbO#$^Lelo}WH{o~*JqW@nI{o!zh7_x~-6-Cd@spwKXX$=w6T
z<?Gj6T^(*+_xA1EwZ+fRdG6XW;p*ye{oI?Ij)opCuU?n6p{Tf6R9=4lgb4yafB)7t
zGP?9~qPFVG3k#dylvQtx-?wjH-{Vc2H-Fu}|F3WC?y}IeQCmeMBvy#&MuDopzW&h9
z8tdjRY}u`;p<%#t*kIq^Z_$tYtlt@|3R|1iBW-@pfamayEt!)8w`PTcvc!+a{q}R>
zzJK5U|1Jj?mywuWOvJO~V^bsd*X=DlYkFPcyv^sHjpgs-me<PH|JitPnXmNWw9S%}
z)qIW4&9O|j`Tb_I+tX81d+lm}N&No)-rVlb2j|E0s^1yzDu16h$F};KYkA}8t*NKQ
zK)TFkpRIVYu)U}9^E1)vn3$NDjoF*F<=xFP$-H!A$G=~%d*8fyvq@&xZS9!mr|;kA
zhpdaac}2gz{(twngH<06viEX{YDs+j`0>~r%i^9DD>M!tKYskirqt7{$M@#lwMxFY
z$ki|2)6)}_k>BlnE_b}}e%<f2iQ8}Y>c#GoxV+5Qc+#XvJ-^@WJ`c*Di~H@eZhgO~
z#SyVX=jYF#eXZ+T6<2#r)jBpsGnnVFK~Lo7G)Ymd5QDrO580G;b<h6z`Fwsazx|&J
zFK%pH9JoC%_VI&*&Ff_B^c)|)e{X!=CfOwS)|DT>Uayz^&2|4uf<)WLqvG)rbFItG
za?ECLOgPA-tgnB*;^ormJ+H2=mNuJxc16I#rog>brODsl-A%3I-%*r(ZH?ipYiqN=
zyuN-ORK5rb2_@aB`F!@+s?gOkj;k&hpSKClIdN-W?e34K_4n^c`0{S8K>{lai$r5%
z<FYzd7M2);gxvf4?t*;x<>h7B+eJl1JsUO{C~IlG+Vo!4)buJy=F(Dc+1q`x)@e2W
z|9*GvdwYNXeozq2umAUR)B5C87M+*?FR!kPJB!nkudRtZW`4gWIOYGlySsa>-|aZO
zB4p*HkFQp*mugFt`26gwv6OjU&W#+i!{^VRUlF!;R^W0!*?$X5mDA79GX+U~d3AO5
ziGBa;(r-@FjqZ^$&5|g6b;Ypm@7Hi;ZSB)Hw&%|`%)Mpu`0e)l-*)UbINkjD`FZKL
zx3`<W+x^~7+1&j4jSY#-7ngdAFOJ%pb&S{iPJ)WMx^?UFLlaDEeiS%e4J}GNAZ3;_
z<Kg4S$#d*#Z)N^It-n9##@n*T*W>H=uBm=`ZSCy9okdT*v)2Fr_kF)~+3vePj@$n$
zjJ&?Vib>2XB;xt495ZDNjT0Mgzjgcm?r!h&__~`n_Sf%!Y<~pQkOIXtsEqcRYjxFt
z=deZTt0{)r*L0E(wQ#xx1x+e^aDXxV9+%$blatkZ+jym=zTYYC4-5!Mc=Gh=)QUIK
z`Fj#?<d`L&on@M8;WVY~kSfFN?fK?^{{HQK@+9T>zNOyNrJC9K%WUFOzr48ES1YXM
zV~}Gu+c53S4DNrC2U|ti)_6_Tk_=rHV)%7+&{8jPo(NEC%G>ktn9}X*>*MQhK779Y
zew}emO-)bT-(RtpK7!Kz-8}Pcxwp$sUN2zRDRS?0a&j`sxnTfmoh@9rP|7&1hfmgO
z$;Ra4T1rYzbFIs-?Wz3y<n7zFJBy#c+IBnda*w33N#Y?ERyMX*Gt=i?{PFRzX~6@B
zt1E+#U)|n(I$)`nXlqML#`$@+R`vh(?Ag1wTgS=t-ycTb+}qoxs({*GeQyi=Tl2kE
z#_!*kxBIPG?T3TxR+XQYsJv`smkW4*Z*S`M+of-A7^<qNtqNT1Hp?t`*1YO>mcBEM
zT>0&OEZDPmZ)_#^4yTzjXCAd{FtM<RXiI$Y;o;%wHS3moPhYiQfdjw&pAWA6XHTEL
zd}gNc)dh~scdK5noo<@8S~+2%OX%vbt0yKZf4vgypZWdW-A|uCUw(CUHK>7|d7y!D
z)6JZ!KOc`@-I5vHD{minb#-|7)~u^0)!%Y@Wh^fh%KbZ7s^7Xl9uz9`Y^zP`{#1C@
z|9kv<zvAh%&6+woXI_@>@xJgkw)*W>DVvH7VQZt7=HA}sIms;N#)20wGC(b`s^@dd
zw<I2BYi(=G`tjjmS5MCsP{UR_f6v9E%HL&D|MDGr^Co9``5)0$5gQjJ|6dxlr()x}
zz2BlrUtM{*==i^{>+7%f+y7f(ey`%N;0Ie)`>Y2|t3p;TnyBoqWo{n6*sb@{#^mEB
zxwlMwXPfz6nxFst-q!5tlO|7|I(6z&=XO5NNs}f|HZ6G(5V|_7x4z)6&%^iO`|JKr
znKESwC?E4mn}z)U_cwL>ZQ1_&8aD6#e!m}{kgxz0PvLyhYP)~G+g<v6ZuzUN*W-f2
z!ltqDN-YUn8<qL$%F3*3Yi6os-rZFSa&X?>uVJAp0uCNk{wA~ZW5R{*x#!QHKmSpq
z@Bg&PlONxx*R1>bR6O_gHsAAhzu&krUtYa_->UL^mF|<({ll)Wi`9Sm=Uq!fYd04U
z&y^n^AE$1<X;S;EM6zvRr?C2}pru}*R>-cBmx~;m*)sqC`&;#X@Aoa)*Y!X?zPc*3
z`0Is2Q732TttlskKtT>l(th*p*6!G0vHX1RoxRoD#dM>VwDC%Rx)8zt`1R}6da=7S
z?Cj!RUt1fzJ@4+9OWyjHheG4x=GD~He7WGvzq4Y=kNBNCcb+<Xw)9rn#^*k)?Cj#!
zyfbFb)bv~xy84=GZ1u%OuA6S=i2p5~IBC)%L1niWE0@nJn)UI63X4w6qyq;WdZo?%
z%x3#`c6M&M{dSf?ViOY+Q;I~}s<5@IIyyL9U0hzgxw-k%_wVIjCnPqlSfQ~tVx!Z=
zix;JgQaa3XZ!P)#et$f#wAqz5UTILnzxMCf>%YES_77d`#v9Hru4ee}|KUCJtKV5J
zUApw;>h=4AoSd3wndQE+IClK_@mA$8IpMbxe*XF;HuK%-^XIS2*Z&E8l&z$sw59N|
z8>sUawA8Eb?d@&3lh39FySN-tjjcX8Nj2-nhJ}xnFL!OO`kKWnV-ZmM>&r#y{5^%9
z&r99snLg|c5|xlxu`&7ht5)&2fTW~FYCba-Y)(IK^-oFT4`*k=(@3lGcWZKQZ+p3J
z_q$8Wd}o6Ka%Ji3YhE566Si;PZkB)VO@`?M$sDuU$-c4k?P^mb+P3B2fA=VGp$Vwz
z^z-LWFE6j6oYQB|hI)B*DJd(93JEE_Jm2r??eAY+<My=v_SWp_bw3`qbL-{(|8m*?
z>h}Ejt@-!kR<2z6?0!e<g@lKjMA~#by?lJ8OrJjeSfA|bh6aZI=mj1BGcGOZ6w{Ae
zb9uS{YfxZ0IyTNS&0dyub=69*saosg<h&do^81zFuiYM3^-^{3_j}b<FBY~(WQVfF
zY-C#<x;m_@ukYH4iOQv4UIezbwrZ-Xx=Kn)dinX4$(Sb{;n0oP;PCtV`|ym66_+i8
zf`j!fY%3ldVEp>xqI22q*uB-?ukC)n@AVdY8=DyOyCs)J?=Ac)u%X~4m-Dpg)2GK(
zJ{1jJ5#Tsk&9~_5hJaIA;p^6%nyMZDDT=3}ZNdbBy<aYQSH0PId`r<&FWV0XnAgb(
zd7V7e%57TqCSvKbWv`BO3Ul%Ehet)tTC`}9%<&sJ+mh;MnDIEDo~9dodYW$O->=uj
ztN+E<{d8UKKYyBv?cXn#UBC6q+uvKvH0|sI+b=tumix^ON=jPv>)YGcTg;dn(k)9~
zOsM+yW@Rh4_^10-n!i4s*1x(b)jM=;)YUJ~JD)y({`$$u$+vbEFOS-ik@#w7ppBGH
z%to!yRT+m`IDL4T<n&ZjT%xz-XnwQwWax4~a41wUhVd!$!&NyS|2TYiKfuIrz$s?q
z3E5|h>li=-I=o^G3}Q~rPbHDZg+Sd<DIEp|hRGKbrZy%Y@5_99YwN1;_4EGx`4eL+
z!*D?K)VXul{{8)Zb!&Eb==!+5A?qBQpGtB>q$a$*wYBQWME4k59)<=_P;C5Ic#MH@
zHP4mR;r^3Kp3g1U($F}uwOKQHwpnh_?y|QrwmnAQ4{_`7sN&EwOgSNNc81~MtA`6Z
z-`?K7yNV<A-P-N<E<HHd9BbQSRQlimqwid+s~^8tWiBi%s%Kea6kwq%AtJJ5mTC5`
z3X{~+*ROBCb9eKSqTiA6p{qhPw|}qu^P@1Ff8iNc7M3YL4(^-R_f&3&1Zc!m?2wes
zc?WQ4a74^&JZ{1O8c}8AUb?FA@v(JsOs4|w@2icqWtp;&Pu6Nj6^C3W+iBwq2@69^
zGcO&v>g*t?lrUAl{7zx}>UM?*F>HZ&^n%4sdsrYcG9)OjIrxc(MTdbwr={Vk<P0Si
zqC%gMA;HkZ?_ED=VD3N)XjCqOBYT4lGswn<lb|@;Ab{c%O(#gSfowF1nAeD;k*9a^
zZ_tPygMlPSJ0u92!Gp*kcj~mToi-NOz`(FUfN5HKLYDvo1I$L=Y3U0f<9}d{&X1q`
z16d6lM%(}n8%73(r_Y{g+1bS@Dk^^Z{yjV;Wy!U*(d8%C$8XP@YgP7U#j4QNS_TFI
z+wT;0->ZJVSE%2<^wpHCD=QRt-(4rF9X6wodzuqCO1PwTHt*L{GcyY_PCpmo<I|IN
zc9v>>etzlud$G~m^Y*^To;-OnIPI+naMa)bXVWs@*~`k_-g^1qV6*DJv^O_4o;rE*
z<BhUjP-vXmDQjJpadT5DsFyiG(OJdQ(9jT6dA9M(uRA;2eEN@DJv}_2oY~dgefi7F
z%la>?K%JDd^Yhkze0)6n&W^%mcbczWNB{-tx{M9e^yBsN^YeLSEG}$3d;NMiGaJu^
z=kx2=Ik)po{c&siy(;hL=jUGscW2Yj&Dr_F_Sn&*FZca^7kqnLZmPsF)w=XM+>D@c
z)<V|<x3*?amom*-;x$#vGB^L~s;SBKp4ZmLuUGS(rJ<|qTl(rs;L}r6L)S)`_DY+t
zyYb=6z3TUwx3}e1J)Ii9?!oTIcA#{$V9x0?XF>`J3MRfic<`VRk8?Y}yxzyH)!*Mu
zoj!f~ukY{I|M*eS+TNahv`e(=<<jXP0Ran6PFA<>JA3lv#SMvvzx?@pezo6Rt6SUi
z<5%A47lovOaGPa{*4EMc_U&`s7QQCp;>P_dk&%%`JkFe)oS<P<m6hS^<9_}9e*f#O
z?Dd&fRs?c!a7<9y`{&c?Q|HfLKQU2x{g<#iY{4xI3{#5h>gue@-^EOPYiViO_gB1X
zt%~iB2hD!Be}8+s`pui1+OJo`CoTE=`+N4SEt#{7QoH{A{d-nwS1M>wI>9jfa>Cz#
zzu#Nc{n>GOTT@dL_dYcXiyb#I51cvU;~BIzYO7aG?%JrWUoQLGuS`2T%kOsfl@*GI
z4N4vz;q<(;qwsOa?y}swb-&-9I&q@F>VN+Jzsq`hcv{=qs?H=!gQiU?CV*<9sI6Ik
zx6jS7Tr6MrW8snOE-o&hfzVT@P8CJH*q3|T>}HOctBcE&AGfCIM!#A<zwXjP=k}2G
zakj_5Ik)qjOxyhOR`&X-DzY{e0rr2tOqMdqc<`la_St0zo7qpNZGH)=CU|)E%(=Z)
z2RueE5Wc5-ga3THQ|Hfz2L(+64`Kxc1&K&XuADGI!1K~XW%nub=DoYp0jhJ1c$|x$
zpDWEV=5aoG@+21*SJ3Hcx~iU&)%~xXnyS4u>#ElA>)!f%RXn@;`>&sxsx6zn)rJw2
zQJ==F4qGcCE4y~0viqwS7Z-DJa|e5Qbr~5MO_?+2jYZy(4#B7m360<0-(P>>LV#z`
z`FXZiHzvD-;_%no?f0+jsVoMKm_%>S3k?dIR8v!<;+cDEi)PVXt<Y5`40u4T{8twj
zyWhN%BdG|<9ltg_Z{-%xdUIo=m#^>DPGNNsIk|OPwwSoOx?0XXo~Lj1b8FSttX@fD
zH_*V$pP!#WLyEdlTUMMn^j%wawzU$(7_JCWt&jjGrzRmGAuk&>OUs)pFKRt`|9<_;
z%gf_Gxjz-jy1wqNtN4T6+Wj%jpaK1xZ_9rE{%w74;fMRTw&$<^@S#Awhlhb-3cH--
z1}@OBdGK;S-A#9cUwbe#{4PGKR6gVUV&*UxmzHN|W-eBC@7qzO!N9OU=Hrb9P}4W-
zipJCD&&6*i{oUTw#I*Ovqi#^h9qkeg-CtMRD`y+EbLURK<5yRQ``cE1xiC#P`pT}-
z?4Lh>u1q}K7PX@wG4mc5!-6>r_ZHR5NpDbDS@-wXtLy9UyGE~JWM<3w^W)>Lr_-WM
zil6y_nopq83sm=)%sHEO`QF}YQCZowda=7Qetmh##l>|gx!<<zAo~tRhK5f^7c);&
z0oh(zS*f~DJL&toyP((u^$3=FPk(h%eSSz$(WW*&*;S#d!!j=~^YuIa{^n-))6?~@
zckAz4aj=;^`|K>!Pai*Oev1`lV2IJXmQcyo&mZyi_4RNcpPosRCY5}7aZ%~F{htrc
zH*?H*C5?_`{^r)-qj1<@%Cu?Ew)}0A&MT;ji2C~KDk#?8-rl~xB#(iCVTWu#f5aq{
zv@;S<pFS1cE%y3ABlD))Z@IX+i*LnkPV)t|Ts}5VY2}(9^ZWj~ozJ9>w?{HD6qsgg
zuyNj5aUtXHudiQEDEEU#6F+|ZcvP-<W&Mvmd-inQ&67Ch8oxX9vf9sIzpQez@9fw(
z%OtbN^Ew;Dl)1dpW-sRd|Fit^HqgAuuhQ7B3j$}Xj$zSxd0tH0)O72Ks5QGvUxNlv
zZ|yE$FJ+$h=ElGG_5Y*Q{pW?;-Bs!<?Yz6}ZOG;{-^=IN88mD`HTk<8kNKA8R)2qY
zHQ3+w=_0{{bEkA`I(dSI#^oxX2=4v+?Y7^0jW_r9?&djs;ml0qxqbdVK2y%7U5+ik
z8+y%|m0?P<k6;yBf9{5^*_)(otG0;g#jN=9rNlJ*n$ILqKDcosLRD22R2F1iUpIGK
z{{3~V++r)r-`~r+zAiSBUzUMkhh;x+#L=Z++jyn5)YRNQKR;i7%f9?wjA_n|08LHJ
zsI6I3*X@311xf^ukM(L7otsq0^<X(OLqp^b^P_(&Qx0_X_J-!<<ZS%??Ck92m7kwk
z=5D_I7StU()+1Sb@bk1U8g2h$SvVOOPMP=fL@+Sy(7xyTLh{sErE&&_hD}c3Nx=&V
zm29B)0I2Z?s`5as2+)*ctH1^uW>9&~payD197xKTb4MOj%)r_qp!9^U5vlpX!8<Ko
z0i3^Cbj}|TQ3Op}gIW<AB&5{8yCb(lOi|k{AdSe)4{WVfaGTCqp{U+RkO|U~V_@J0
zP2Pd3ZH5^=Aa`I)Y-ZqSNF{N&yz2)w9TwcV6La+Vacvb9mw*5MfrbutmA=-?d+d83
zwie*muAiTupU&GZ{`1qPPnY)p|NCC)`17YvGfz#?%(}H@<)1%)O750kfBA0r`)dym
zw|hU{7SjfHO5s(J#GITpVQV55Dmu4m=;-)pYHGf^w|BQ$-klX@xwm4z{L$a{W6`Ut
ztDkS#n{{=S-~Myw&xe11cXw;<Z8K2!@ZrOUR)vpRK&dErx!=mLwNcY+^TS*ZFflBc
zb9-ZQJ80tJ$PpJ_Nh6m@BErIp)6UMy{PE%8tv!{WUC$RjpIg4lwOdTwChgakm%rX@
zKEEaPwAj|1o0q0+j1~pOafC-=bLzM2tvd1hV(#6$CuLEvAbIxs_3PPqBo>^v{~y!N
zC%bFO#`M(Gm!R3;cg8%<o72t)y}!2?)K?J|5z(-={(Wh`VP0DUD}#gO_U!9=rdd}!
zrfP*2-MY6bRQvcpZbKgDx3{;0#yUV#Ae+<u|9-jb?{^$D0%}$BV?*AqmukFHCLWB8
zj9eTX0iU0p-CFqAE%^O$E>M#P)Q4fyHZ~4Ec<`X>Hg<OQ(*`}<dJf;ef4`pGZ@Y|7
z)=I;`Ai%o(T}V>WBG7Eg)9LYADk?6Mwv@k*^Q`w14qF}OTm0<I#6$^Ddt+DW>t&$H
ztgLHmZie1jx)sy{(s;gU^X8|oUq`1@AMFyA{p~FzE4%i^i;UyztG~Qhs298I#kbq}
z*Poo6{Po%Fe6L@{zczfRFMogUZN!Cp3!T|pTU%dF4UfCn#LDfnTRj}KVk1FuUB(7b
zf_Qglr_$}>q9U2!`tBhiQ=+!#z5Ozy{ZO%stE=VS=nZ~zt+H-!Te~gqZWUxulz~C+
z$$>^@&|-kg+wR=CgVF%nwdlC|m6gHn)!*I}{@L|G#x(nyPEk&;l&RjXbEofuJhEZN
z>dXzVuB~0YtMs*1u65m?9d<vTOcsh478G3AD{Zc&t$jLk;qPs^w^KIX6cH3Gy!jY3
z2n-qlJH9@D*GsjZKYob(?mKe0o!?saHD`smA_Ifiqpss7UtV5z#~d|~<-Xc4W4Y+d
zml9DC5sN<SvNsVEKiB?v*beHl?kau#>_*tiAXR8XzBFrF-H(Utxp#Mk#_lTF`RM&j
zQBa#N;M~@%t6ret7|Wt1eR8(1DkfFCxwTE2JX!X5uY{o!x0ud_e}8|AN=a#XW?f#^
zo44<0+TEhlx~qbgc9p%mv+~K4l&fo_!<F6pN_L%_q8YrU?r&A;iwlnD?S8M}ISiia
zdUbWRxaGCGg5d5>cx}izTz&dE=aRQu``3Zmt6tvTm(}OjEZUrYUdzHF0yIZ@tXDcb
z<<|Pl%gaE+L!cR=latj?=WSn|e7q0TM(?WiX|V=HJ_Bfwfs>Qd%fmzC<BTUyQkJ`U
zPg3)pwZwC>TI{D%(BM$n+gsXl%XdSH$aPs867<A&GQ-O<v_%=<!WZ0&02Oiq8%_nx
zx2r9A+-tt8N`k@5ak<~z7+aPpjSChig!41zHG#`-P{EGJNGG)75NojvHVCaEK-UQF
zkRq4ou<jwG814r5-N7AUO(&F!fPhBy@*6b_3|u)t%b`FO5V$8xLcvdwPZK)XUSC+~
z9JMK>Gp_or>EB<k*H2o~)WjrfUl+s5%Bm+P%fK*C-`qU><HwI&oSYN)@87Sath_bv
z?yl2z=MOY8r*6M}b+LQD(r=!_7v9|5T>AN}`Rbylr*^&D_4>-*>hjuuKcA=FX<E9&
zBtf!m;q&?RabI6wzkZnCehr9S{q4;}70{4k+}^6HzhAG%TDmYWoQg^8PQ7-0X-9AG
z)iX1VMTLbIM{Z6#dHZ(s-QDHaudR*Nue=jq^Re~W`T6?x_WP5*^UGR=_}hM+GRr)F
zouqME#)}IJZ*5NRzqK`cx&FQ%k0z~u%oiiIA+Gjo=-zL)vO%3cyPr>lCEFg}2w&<Y
z`t{x2==b~o@8fpoU}$&_t9w=kFVA{)WhH2Ee{0>}Do}nr+|IxM$>$?Sk7}Bkg_&ku
z(b%+p!2*ZP>F2Ng{eFM_lqn*hl_Vh3udR(<{^w7PZq$|&XQGQNr?aiGEPl2ket#XP
ztX5J|>UzV^&tGm51!~}@Z4aM*DM=SkHT7bLxK6}^_xpbPO;-2UE31!-o40B6=I)mD
z+3WX)mF<rG_wV2I4|faY^>`!L`Q<`po8@}lkrxnHVE^yOVjg!EhKB5&N}ypa?_Md>
zpru|@=WN@ab@kN7|4y4WZ8AwZ!qF>dyX(d`uSr^AYgSxa8?CLX>e?-?f9+s1``546
z<6mENmk-^Vb#>06x#|TkcXMQ4S+TI0oqyVn`se57a`E!&9u{O|2>6$hmZoK4vE#(I
z2M<8;e7K!I{=-*cb-yY5_wS!q{cb0>-1dx%N_Xr3{{@Y%$=sGQ%UN-Dw)yI~y;b2R
zWvh!ao3HLJ&p$iQHv0Fsx5YWyJ~u%#!=NsutnAxW4;dK(p2b{DNKH=%jgg)B)+MTK
z^=*2}`FXapOtYsg^PR0GFF&6<Zh6pBuU#LHNq_xv*+2W~si~l~TT|xGUq8>b`qht*
zk72<itnL?5P_RKsN$JY^c>9|<W~wSGD{^md1I@i3I(!%uwc&h%3=I9xpFdw-{QR8g
z&3T|ni1<l6c35o9y&d-bUiEv{^??Ba3;gC<t<1W*3gigTn5X)@3a9xspE~RQ{Y>Bc
z>(%P;a$&K@moyK7hBt3-%LNVKe0q8swB9TC))r6D06l0jEa%1s?tjae7#?J<`{ua#
ze(m?U`~Lr{UY^_PxKicd!GlNrnA6hIye4H`T^0J~HE3pNYxec5r>CZ#I&oscm*>he
zK7IZ?b?)4?Jv}_EtgI`Go}L1g<zL@!zn^uiN7C;(2RC={<z>EGQ%_Ix-sfKa;FJ2!
z-#>q5o|$0?YFMvsXJTl$z5C-a>C(r&=2p3&1s2cF&JIT&@VC@0xxX!Uc8*!}#`j;Q
z|Et+N>ug%^`nbJww%yJ#leH@G04>1iku?7DX7hPaKYi29oTGLQHv0PhKY#w5UOanR
zdZ+r%-Mg#4zFJxT|KB<}HiiSvQ@%F4{r>WD@t;36s;a7%+nzpqrlqRtI&tDeP$Bar
zJpeRp-?F4n)*9qhP|x9V_}5ogOJA?u4ho1}&*xREc=k$}PD+%B+Eudh^49%-K6x))
zzI?T7w^&;3Z=Hird9U%?|5@<lNy^*X+x^x3<`h)jSn=h#{HCw3ug@;q`+oobxZq_z
z7mxKygXRuHSBLq^T9sT_5xBVIFt2&cMa#Ek*7HBJFcd_ujoKPiQnJOZPiEy}_kJx%
zQ}@(~69Gj<n;!2FRCdca*u;8kfBk+ZXXnt}Ww}?^#qK`w^U<S6pzfLbj!8?zbfZ=j
zKR-9izJ8zIT&ty^rq_puhha<3cI?<;wDbC=N0%D57Cdya{dOby)5nj2kB{}1o;AHL
zV)?9|`TEs}jY+L?RWB4lu4HE83HbZ#>(=`Jb!X>Vhl9Gun^I3-*_?j<v|WBx)vh;X
zryLj#TrIxZZmS=&BOv*BUuag=D!(}v3qO1)Sh{qnrk2*Jmp0Qsy^r<${^20Ie8#OU
znV=B7wk~!xm#7xFRk*}+a>?JX*W>T`M$S2FV0<uU8K_66q2ZBzZB5|US698iM*aTw
zHn^f<$E&NWm;2lQ4RLgI?5jQAFCTt;TkhA_>-WEUy?(#h-$<GGx}Qry3m8SU!$f9^
zx2I=aSut^SJHrAIk$<)Oil6&kUcQCvylujPhNStPrKU#4#-`=(?gUAicRjy!>*<Gw
zhhN>_U%#?l+Y{6nnKF0o+9gX=mKUgcIyyR5{eHV0G({O6SLr(G%ZtVRtLpy#ay@69
zc&J6`<y_MU28PW$9$7{h%=cc-arp3I{a+;!oBuqP{~xfo>Z{kEjCuS2Jk?(nzJA`N
zOP5rp#^j4_pKHGZq$jIO;8{^-vuW+G5>WU?Z_m@c`ufku<MN<Z{VenRx`U4o9X<^9
z<C&SpOReM>7#`e=xs?DaL%gPHftUYC=k0J@xNza8PoIjcj-_qR{QBx@c<J2B%l*A4
zX@#$=Iry0C`)9_>3=H9*R*@cWM11|<tvP11ot&MgPMsS1<mBc_mh~E3&B2Kmv`#K%
zGh|?B;4aKOaBF{k{mdA31A~Br2M_-G^?JR2#hvT%^=l_g5C~lrvhqkm_#NR4{i{<n
zgS%R`?|#28y8M3achUL63;|ZtbRrk2dQY>+wJv=XGBalOv6Fvy{&8HK`V`c$vwpv4
z@!II^V!JQ=-F)8e^1r{oO)EYmcwRES9<z9|y1$s^yDX=ND*_i+_%Ji<=-gNPdsY7Z
zeSWvO<d-tU^r$jjTjo0(G{Ev>!3ofi#k$?^K=UF#yN_*1JUnIAtW}^wakg2m)+d=Y
z>ho)Y7#SHsb>tHJ`4>xHUD2%l{dPNOFnfvpeC179SG6u5V_`V(KZ$o*dO_xaQ)kbH
z-rrXX8X}ZzTevE8wbvxjvf3j@TtJD?dz#L~{{Hi!@!C2%KA)eTzYbd6I6H6G$&V`E
zK{HmLpPjw@e*b^aEWg#f+OH3q`9XvG-|tngpI7@Wa;{~u+vfE1VULgXetkMUKJIG;
z14F~}qL;~1YJPK8Ow|qtPgJI*E$frFU-$TU|LYSIl|c>%b$LA}tIaIiYghX#<N3L{
zuP!WX1`St$2B_ZM*$Lv7y}R@Bi=m~Xqa&!`Vq#(fEzboFEWWz3^60whj}-G57&d=c
z5P1H<CARF3kB)Zr_Lkb%?hWXbGMzGE!h*%_{aFtWwN`yRD(<`cS+DuM6<4lY@wVEQ
ze7x`0-s<v+Zyz7;FaPy*U+r%nNofWK(5TIHvxu29XJ*~qRoeMGdVAhlW%s@*4?)`i
z*3I)~2CdWGTKM>w(D(dXTRgXBU)S5s$jI;@39ONA&5auodw;*%UG?dt`qX*z)-^RT
z&9$$Od-?JuXh{NSt)}g-7mL@)C^0Y`NG*OTwI*<}+e^@5<e;EQ&(6$L-u?Idp7MWx
zDka+%-nbFbD`k3Wsxu42f-@H_cG^#8)6v)0U%F&T#)%1vptZrEIWW(9JNDJp-`{cZ
z^OryUz`($;u0vJM<kp_bV$=M4cdj00U^wu!LVRJm#^;98oolC@P1F7s$jQLK5ElB3
zQCmaf#iU7JAmht^uh<x-Xq!aLTX=@~TC3b?g};((goK2?e7l{0`t)gULqo$<V*}81
zQbZE(G!<Ffs*vF2exX4@lRka=^yP$df5w*=7eUk3tJ~Qa9A<*^B7a0{@6~$t)rQH(
zRya1Zt&@{tU`Xw2cq$nqwxLhPauKLmcy5m6sne%}eSCV3^++!M_4W1cEDr_-hGiO`
z8>Y^j`H~~-=g*(7uCJf()-UI~fr;V4|BDto_Z#s?fa?35#m_|q1s4V`b^{Hof<{36
z=2!$i%8uHS5!j~8!oaY@DphVnQBjeKXMF9~sqgmx|HmztEzy=^Hk*r!>r_$(1H%rP
z><u=~GuhWXdGch_J{1NAhnZTR8$_k0qpwY8VK|Tr>L$VVTg3d6(P3ctAWzLPF!Z4;
z&>Tbr2jgjD<Q`1hv6Fv6U18YJRU+>+lqoo*F)-vAGpyYVx&Mf6M$-5EySqYjZ*L2A
zaA;_1ZWa|6Uv8X!F6LY5nm%yfZiiOF(PPK5o}HQ5)!BJ*P2^_KN~CvpcW1x8wsyMB
zH~oD-oIXE4KYjlE_>I5I-`-m4H`hv2UESR{?aYM(jm%T0OaZN(_&;g=L%oP*@X$~4
zaX#JXZ9biyouI`PDw=9)Zf9qiUjFd#@Yc%D&%CYtV`AncB`165>~rgtTDo9?0;p-n
z$jCTp$*$7ZSr-;KMuBDzOJAj&<Benh4L6DfUweD?)6>&W-@aYj$jolF?dPvwSqB;z
zfBpG<zVyX~h28U#4>qy>dbj(%N#&;}N#Ez&)keL(wicA$lw&-D_SgLdtyBk<?LzyE
z-!<bLpgMW#)TItVWs|Be8CO>XF20ex@8>h=r_Z0SPCY%%?{;lX4JaY5-}md4*1H2$
z;7IJyzLt<ms39MBIBoOPin-mfhwpA+<7Q|m(nFhNtN!-p;+n|KTXJq1{rvGG=7ZEE
zuRZ5l*FEfm+97B13U{;Gb-m)sBd=p#NWJR-MJM~seYLwmEB3d%eRFfOc#W@TaLLS>
zGbb&H+L|T$dl#>?S;pI2TcdUsEj2PSQt@m{)UdaYzj^cKsS_sx0s<yzg|B-vBTvWX
z`Tw}(OR{%pgGX75w(^Fhq%2WVR-U^Jw8!Jp5>M5AYD!8@(&l*~VPVrQJAKc+z3pV$
zW=$ofMK`X4ro_x<`|hp!s#V0_&L<nx%*Jbye2mBT_nXb2ifhl_y<d-t$FK08Z`YUn
z`O_!Rx+2i5S9sCxX-7fh(mF>(yYJv`>Z-_E7P-89`BF<mV}eTQn;U`J;p?uf3SB*C
z->UHS>!S1bhJu!E+kU^J?8(K$6SCZI?vz=xUVVA;jg?#M#hIDLa^E)uf(8vv?F?HR
zrD<gqrR?5!<>F#@Q8BS)Q>KWdrle?CTHY+Y(;=w5CE*~`+xz?D7cN}5Dt7la(6IfJ
zn!>`uRgs&QDaVM;vZ>s(XwjmQ-*2~PUs&L1Rq<iLGXMGO*2V5#Rs8(i(z^MnouIMb
zZq3*1y<V3NwQ_&GQ+!_2)HJlPuuw}wBLK39WX`eF?eR8NQ%dg6&fgdL`r6vbpe|tj
zzskLz&sl@UVL?;p-v6KN-~_pP0hg$jhN7Y)Cnu+>+~hfP-dxF;nsR?%t?Ik%%gcK0
ze!tnQEw$JhIy+b4!+hpA(!e`-yybwF^WN(3WnTpX+;|Qbd=&^dHn09)WjH@$>Vp>-
z7q63Jy2An<X95-PYmgQJfJz{6isWfL@z)S}@I}+<yaVpxAM{Zi@aPf9hHgcHo%W#F
zQP{Eq1J@TgSEaxvCO`pt0J<&$t%wAzQUE)UBe-Q=BWO4uc}4?|Mv%`y6BAH(fERLr
zQ~n{5g?QIRplNIc)g+)ug4&C9AqU9k+=>a6Y*3#QD$Tq1z1w`=F8KUBThQ>Qy}dnX
zgH-hPyj#0US6?o?dGjWCaXTo@g{_SOCHQVJUC?sMx%Tz{y7tF|X9yU&u#F7q3r+cV
zeV%PKXrsu%X7<--&F^2?ka)P{%ZtFfb-&;K`ti75_Bg072pUFJc?n&HCS{VbVEMc%
zFJ?9#jjPqgtk=LZJnJHwx8g7Oh2pIf4m2n+W`1~Z5H!V>c5co}z1UqIlRy((;70AO
zEh``IXk=ywmF-@ho)<w|o)$PZYwvYEz3?Dtnj?B&&CWf0_ktF~9yg1RkLQ&zaF}2J
zZzrFuRY~OY&!0bE-g-T5^<;H_t8JmH!_I2Ph`zeIdb-NXcKNy;hb~47gMz+W^Yz#8
z-DPis7Q6L^tPE0J{&sED)}lB2XMh%~eZOBHURAXVR4;*skLFsH?t1as$k<rb^XlsG
z{Vz7YYXPOIQ#;R`0k2TJDJLVNbJ(Ed$A^dA^B({E{r>u`t=X!cqFNyrg#B$68YUl$
z`CwXESvkwHc$t(*#)9bly<bnU<p+Wn1sxI1-hevcps%K==;++eclBU1J7|s@)Wg@;
z_ZQU)(fDWznyvWyxZnQOVSf85ci%-$&Vri4c>4T#|L5oCYHzYtS3kb-f6}4Dhh_i&
zf7mV`)-9&{<wkP<%e&?Gb-(=xkFO1VzvpwGn*Y2t>tc7uefjgQt)X=0o3h<%J~I{+
zK0f9-DJUoiv^fk~<bg&q7wn1NU$@sR=f;CAy4u>Wo7Qvk@#&RGZ78S>SsS%gFPq2C
z&hFL4#qB~uLM5PSj<*qBUR`cI5(_~|MA^M>&zj=h+)UU0SA0He4jN=yUHbYOsNUAE
zs>%GbgpomG|GIDYr~1vc5{-=6mwsN3SIT4s&czrp-z?6}v(-LqQ1a_b=JE#6$^y{L
zSS@tn<jv=$;`2-&W;Pw|7GGWW_t&kB$?f0X-hTe-Ap=9et6w<BPLL{;0-5i(^Y@Ed
z-ak26{p-Kq@3l=#uDrb4IKS@K%3t5!uKxD+HfXL{<o$`S85{nc*5ChU(c0+kpz#(d
zlZ*+VHLn|!kMF9AU}z`;MQ_yBtfenrWc12d27&fuMMTU93JRJsapFSI((^)Px1I}4
ztlV>^9W8l%&39||^|061)`AwCf@&aDRo9s_XZpQf588w%XIph5Z~N-<_xD_{rM0%V
zzg{*w&*<a2*zSg}@gPeVEKmUL?R#~3IX@#eLqMJmu3?PAp0jD%pYrxIGP7m8ytEXQ
zE<xSH>~%Zcw%;wA-Nq}u%q;hoMc?nI)8j#5?0M<3zkTeJUyqOXt0z>hI@&G%df)GN
zlecf*4hoH%o71zOpPQR?bJJ2#hd{$UX5+T)POV&C9v%TsPEMW2K^p~3qb|*t?>4UZ
z@SuC%{@C4Re!<=I`b;DK=RZF;_t(ec@}OR(*Cfz>w+RyjKm))>m6;hB-nBJ+{SWfm
z>vg;R-rn9`o>Tpxk$p?a%OJ_Nhr1dX8BU3AwpVK}-@TiS(fiWR&(F8!+%y8s`27C%
z_VRiA|7+&g|BGB3wH36k1~eHI&M(NoutV@#g6FLbiOojF##>8X2I)p_I+8j6Y}(~T
zuHAYsnY9@i<~=?xUmsFcwd?Y>NAt?^%)<9{3p`U!@bvQa4Lv){6g2TCHj@uDW4X2H
zsn^+gw!3ef&tzh#Sf=JXYlY`zHNV?^a<-sgn*OSkGh*JtJM3%b%#m3evona_=0ii(
z*H@t_^#uhRK!XeXc0U|0Uc9I$p~%2cVE(j@_u8wgt4n`<$^81_;^G^BCr+HW>)WmD
zN^?bq1wI>2+%=x^yJ2g^$E2UXe^1|W>{Qxj@T%WiTeD05{3!glfQg}@TkCsp%j)p;
z`(7A=`tf@zKdY=f;e076IT_T`(Mo1!m}0-?;3uA^`@nU2^v-<HRG1XDsd!LBvX#U+
zA8h>>$jlbn<UhC#g1fZ<o-6__dxS1JaEfTgT&fDLoShDQ;z6GL2ens_G=e9KK-~v?
zs}+dxDe7d=Bm;LL1_tgcpmPBjbXs657c{VS#Jcz89d6^5GDv8UGS6Gn(7*s%*1^oq
zcV(ioyWWpoplN)!Ua3vD-$rdrYK`2UC<$_YM8|5WH8*ZVtc}>{1lr9CDK$VdL%DZ$
z1cH`heJuU>@gt}wylC-a(0b$S`}=A^b3s$5O#^LmTj|y-b#z}IVofBZ!$YukPCmx7
zHTQS@+q?BXS4w4$f4n|DhRMpa?A!$#7M{(P#}2I#t=guxres&-6t!i&H$SZpc{au1
z&WrX(E_bs|7j!aRwl7(kyW?8CSMjY`eA>qaefeV-EfeBBEZ=@zer@!9KJL$l?@oVj
zD}Vd%!{?v(p8x)NV(;FHdb{s?YoenQ6BpLl&A0paBRMoI%x%x}cKNys+j4Jj$-8S6
z8WJ)iw#RvcD+fbE^PkXzMt^^qgEIL9MdvLgFE16`zOc|aG$?3M^6@^<7|Xub)&C{e
zsbt>Tk_pPR-rnBx-&g*AyZ!4WZ+%UB`}l<cE9U<<Zsr!%VPKF^5sPj)d-m+9bLXyo
zcz8JXZSZnG-tYag*4yrX-(B~2*RI{WpMI=R`t|MI-PMne_n&_M{q>od#((9CH!N&o
zWpJ4D`o)WYsHiBH>Zqt$P75dK#q22Xf1G=Blk4{U``7;b{G9vNJnznhRiUdvYsq`1
z&EM^N_NF9c0|P_Bj12id?_R#VcwwQl@-1Ou;lqFbUcGW<$*EIbph=KVKWnz_`}+F2
zwgk_rHEZ7dQ?ua!P3w0QdwP2As{EYh^1D~s{LtUO55NC5&A(^!^vRQq-{0PD+vlLL
zz<0LU%gO$Bfkj21{`%i~2x<*mocKHMAgF7?Cuft9{rm0q`~SY$W@cvA<}sI*lz2=!
z)+70O{&(B@e|xyNxJ-(kc$k`*W!>12xb0t87nkj)6UwvfYIohbeLMH@|4*m&v-0z&
zUw>VC7P69Z$B8>Ti%rYl#YEr!e!qTw<mR-yUu}2p+zA@_-L-pnF8kend3(Lno2Ja3
z{d@iQJ!NlaadB~p@UWHs_>kBuXKVFn*5~KvUoW3u7nGK^Z0+4mI-r4rX{jqWZw^*=
z>v?hBNVebk9YfE}&FTJYmN#g8`u%s~ye93Vj|_Q1tLT~zF38HtI+VLT@9w2@bFD$m
zi*|d*ijR+6w{F|EYWsHcn!BLUO!2r1M_E}}tCAN1E)Bm<v&+{k`1|`iXwllk>%ZUc
z*ME7wed@dW`|TIKGMy24kSXEJJlpCm2?v`Z{FwtU-MY2vxLmc)waX2RprNq9z=@|$
zoho^GY3YZ_cW&Rl9U2`iy)W<VEYnr1R|hKyOt}7fstRbz^w+oB`Jhw@YE*uCdHLb%
zc7A!eb<4hfHTf}Rib$)IqV3NolV=&HpJP~Wv<n<d9&7e#E#J2<?)|>s>!hTluH3x2
za?TtXQ!}$yH`C{D?VUU!;r<`cwtAh@m-=L_w<I6ui;l0Vsyb5k^#9D;2`->sgkzHE
z2DzFKj-jEUD_5<0weI?rYu9dRMNKOC_U7h)TmAXx({JaM2%iHT{2<}Rs?GJU$|2g>
zxmnG3mdN9qF4wz6wYQ|6o)+P+{K{{hjpS?1BQD|L;dj>U-Lb>sT5!iMVRgSFcXvfc
zMQy46{;s;}!?XVnujOv8a5~V{<e;FSX;;ta9TXQA2a2di&t>BueSI#=!IG0cxuISu
z!PPM_aiNrylu6y6A9eP;;tUULY;A41SeUeQbYwPEA9=+ic19_|wek4li-%gdlWln!
z8W=;?U62R0ab;S#rdfXgHM|)PuSj5Ic%Trn;Z7qL=oFMh79EAYx3{)>gBDu&`GvW=
zySx1Fku;t%d9rZxOvaDeV)5U2K66Aclze{Xn|ot};-b0nryOzw*0I?$iGdccXZ`;6
zc2~v6q&3T#7}hx)V0ttsH4?OcOoWH+_nM@?vHAJy?^VCI^_^kh*xA_$8YHQ#+?jWG
zSL*J(KR-T#HhzODd{A50)6?_RsZ&9<wY5iP#Ky)(fx0Sj>xG1czrI-9pY`}yFITIR
z+jUMJu^ho&%#7R(Mn*<oe!X7*KV5Y7k|i#$udTfdTDMaAI_&HWL+97m*I#d9<<7Yt
zIc@2-ZDyjPqAM3HaF}hLAC{H1>R!cT-mP1<w5)&q^5w-ZFE4Mc{+_2BxyePo_RGXi
zpFf9&g)O^u=@MhKJ_C=5++_xbNg;7@>vrw33JneY`jho8X!}WQ?A&`bpM62w!zO*X
z7M%}T&An>fx@!}a-Jg8^dFcB8ACLP%^Ce%;7@zl;)Ya8xl6S}A>a}Yie@t5P>Q&ZU
z+v+e-$$93?6cx}h1euwj5_htfx3_88n;VUBRu436mK~H`k-#|NOS)+G#YL{GR<69b
z)O)(pFMe4omD8KHBpv07uFlL{>9lZyl(cm2+kX3h6&5j`^>wLNj&ur_K07nB;P$@S
z-zK@YOqMQL^5WIi)eo<Ow(%txtXQ^8?eJ=rh8GG6j2zLs%hu-I-*@+U<eK8==QI@+
z9fj3=Hf-&evyB4nR0ow?Z{yaRC-qEJc3-u5v+<wz+qRk2{(L%J$~0@rThroaK9SRw
zo}R8R9VKZ{QNVUu_J$IRz_f`I7e0EFboI)WjIXb**2Z1FAAg14=7YohxApdW>YksI
zJv+xTcy;*tcb@~Q%gW03zhh<ab3VY7u(|AQl&OiyidCylU7I&=-a6~@cPrMe^%Yk4
z<Jlg+uO@Q;zhA2_UB3MOXIx}t<g0h@t`(oREx-Sn?M{<%#JdAxiVU;QobeGA7k_=(
z-+pWDq7O&K<3lt=E?rw2oqIhzJpA+~owKt{U(b90^_2Gd7dJL0|9Z80z0$8;yLMf<
zeY^TSH$zOr+k*%Dxx@sX|GG6xTVFrCwsvn+bhK&Zrxed1KfgZEo~&83q)N-mPCftp
za(4c{z}VQi&(6+H|ILzE4_a3bS|kG61)=IaO+#Pb|N8p)>*e=rmxI>-H99z~T)Fc5
zUN?pgGbWG?zh0YZYkPN#>0VkFyF2Ia{Mv6bH*MOqrTDp@tVIE6hv<e=r%#6l1_~NJ
zyZbNeUv+g*(4<+jW_@|sE}!-O-riN~*I(}tR0d5^o;u~VbjcElC{=@s4X!Wv!a9zt
zGBXGigI4aw#mxgvBHXzXvpCt@-2C+O&!E+`pmP&?`g->Tf=;V(T#>Mox&00!0|U?E
zCRT=q=757m>{_7HY}yd=pz0o4dKiSv0q1@OzC&UQtwHSyh6D+aJh+?*05^_%K&1<x
z6YFVE3T9xCaAW0WU|?U^^pp=&eIr{0YKihWD@gsh0p8yO(Fih_6oY>Jt$Qr0zW;uH
ziOnB#u!#>oR!o^QXU(HWj~FHGEiEJE`qLebxv6N2aJ44caxyR|fR?z2uZxkKu+dho
ze^1=|hMryzP+`e%*y0Hv14DuYXsqLa0m!h1M2G~anqg=IEr4U-QHE3k2S7*sK#r9f
c)lkpys+lcDjXj2kfq{X+)78&qol`;+0G$?*t^fc4

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-1.csv
new file mode 100644
index 00000000..503753c4
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-1.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.735294117647;0.961538461538;0.833333333333;26.0
+Oui;0.0;0.0;0.0;9.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-2.csv
new file mode 100644
index 00000000..fdf64d7b
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-2.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.666666666667;0.64;0.65306122449;25.0
+Oui;0.181818181818;0.2;0.190476190476;10.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-3.csv
new file mode 100644
index 00000000..c9f20843
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-3.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.8;0.714285714286;0.754716981132;28.0
+Oui;0.2;0.285714285714;0.235294117647;7.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-4.csv
new file mode 100644
index 00000000..503753c4
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-4.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.735294117647;0.961538461538;0.833333333333;26.0
+Oui;0.0;0.0;0.0;9.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-5.csv
new file mode 100644
index 00000000..0346c934
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-5.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.705882352941;1.0;0.827586206897;24.0
+Oui;1.0;0.0909090909091;0.166666666667;11.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-6.csv
new file mode 100644
index 00000000..14eb2cf0
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-6.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.666666666667;0.75;0.705882352941;24.0
+Oui;0.25;0.181818181818;0.210526315789;11.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-7.csv
new file mode 100644
index 00000000..10addb29
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-7.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.739130434783;0.68;0.708333333333;25.0
+Oui;0.333333333333;0.4;0.363636363636;10.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-8.csv
new file mode 100644
index 00000000..090b022a
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-8.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.766666666667;0.92;0.836363636364;25.0
+Oui;0.6;0.3;0.4;10.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-9.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-9.csv
new file mode 100644
index 00000000..24b0ae77
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-9.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.771428571429;1.0;0.870967741935;27.0
+Oui;0.0;0.0;0.0;8.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report.csv
new file mode 100644
index 00000000..65942d65
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.657142857143;1.0;0.793103448276;23.0
+Oui;0.0;0.0;0.0;12.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-1.png
new file mode 100644
index 0000000000000000000000000000000000000000..9b3d4ca8b53656d55202f602a41b0fdbba6c610e
GIT binary patch
literal 23633
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_eCM&#<h{~y2SSj}x=nG_(jYDLBh
zCEbNA6Yhmf5DV0)U=%#Kj^mODtINb^OJkOFa&UPGvOMLw<hWNO$jQ@*cdi1<x%d40
zZ_1y}Q!q5}{PMNN=F^3_md2lFo?Q3Ny7-*TX^CVO1_lNOvx1azMiAqlC5Hlt&T(b{
z@e`z(I6&On0uCVRMjHbY0|UbWGZq05cbj4Zh}yu*2r{H0mqe{UqPsdfCmx<?{ZF|3
z+ndO*FE6`KoH+5*$Bz@IPoG})=0;(3pQxbV!b?lNck9eH%bg{|*PeD}#>Azy@9*!A
z=WBPit@?7}QeEEGmzS5{pY(aR?4|1Y%a$#B)oXq);OD2OPv5`S*Vost{diQ|@{`p4
zRp0p=>ih0|tWRgyR%9WgXMgYBJuWV;pufMqn%4gM@<vbJS?Bbm)JVP4*VaTTw;x`3
zu$etQICLJbgn@&6&4<Q!JD<z#{qyN`)#G0CkTnq-d2(mZnX^XGxot(++gn_GeACvi
zU*9F7xv1*vtIQuC9$Hm>S>gTr^?J`+M*gS&cSY}9FCDotsnx3d-I_~Fy|wf2?Kw4B
zz5moy?d5rQcV)i3v{df(sZO2KpClaIdZm^sI=5-q*u*fi@m!G3-?PyA-HyXMd*?nc
z-h96I?pKBrfA?(O&A?zeIW<zsBx6F4;jWsWo66qbTYKLAe@ynZH5Z?qo&ELS@Av8D
zo%Pb*({ut`xkR^QTwLUnyS?ILQt8V}uIcCJh2GqhdUai_b!$t@i!U!P-`bKnIj;Jx
zDX+X;%<l5{VICeHyMAY0UpM#N{{MBYZEa~UZ4MniytVkbpQuiRf%os76N{gpTbX@*
zUDTG0iA+pPR~9%jZ_U3SXJ=>E)!%>p)6>&mPpZ#fQUCv6)$h04^P^?ApQ``&Sw410
z!NJ_0lT^K@*w@$9em-md>C>koJ%3-{y>G8uY|gv-oBe=2J0pw3E|6QMUw?gVZSdV)
zrKWX%D!#tIAHURV>ZxU?{z)bKludsSn3S|=(c;C%ThGoi&AzfO*81m<9~rl{WWKt!
zb#?UY`1-%0wZFbxJlZXuzhnKMpP#ks|NWV1wNL%ty?a{m`)a0rpDdT$V^#8E!PC>z
zS0^5Bn`K$NtV>My)g?7k)6mIkzL(bT|5tVU)sCrM;`;9jE0dBIH8nNG9BME5y?&#*
z`R_Y-zzIr#nc@0IozoUFeEqNA?Ru^ExWM8}`uy5wg?}$C^*+nYZ<Ej^qM7vP&mW(e
zMyY2S7@5zk3|@Zc*1H=U50|{TanZ%aMZ(_RURXvZXI03`q<OX9A}7z9^(yE3-s<w?
z$Z0qC*YCe=7q&hwSLd`*{=T2fPJfy)Lt=VyM|XGeyy>Zt=j7WDCth0<ncQRe?9x*2
zv^O_4F7ukIwXERbAvOPbHfl;rhqmP1y;bx1thxFAg8%B8nkT=!x_TO9YkYh>$ktn1
zv(wG;@4X3IynNQH>+9<e|Bc^Ubv0x~z(ETcKI7C=Q)XW)e!I1&qr+h0#EE*Zm;266
z(>ZN)dAWaiWZbF{O<_sN%yaYY^XJw7s|?<h;`#Xb^Yl~GbhF+1WL}od`SGJ7IdWR%
zmy7OquYn@IN5b$>$m+1OPtMQ3|K#-a^C4>@E`E7=`M8X2)t6<@6M77d)6bbqOP$Fj
zsx^aKT<^|?w@baJ$DBL=uwcjB``ho=WmkQBllgAXXTRVD4vfMA0txT-{m%RRY<B*v
zZgKrxZ$H1exjF5_gM-iB?S5~@$|Yj(^Ye4_)KgOo`R)H~xVb5{+xxa_x7bWJUa1)u
zE(Cy_dg#z0pOTU-lJ<3bym!BNk&zrZ?Q?0>`^#JI-(0)n*zU5oM*4d`G_4F<JByQ#
z&#bPlZdu66pl6-x^9<VgWQ%U5yV;q)+*{vcnD+VE*=4c2%hXg<j#SQx+gmkr$r6?A
z+pgE0Q}>yXpcT3*<<H;0z84p{o)z}DN%Wg<_jVg^!<|lR1%`h@^78WAQ$cZiujaEa
zD=X_t*KRQ`PR@&cveqV9S2Sw>e!U*GJ#X%(r>E6Df4y8jzvO=H_md9`R)nq&>+0#b
zGSfJHOZE4>+AkN~rL0O;e0p+H`Q^1QhWWR*t<^bwX-np15n<uQGiFFU-__B<;TiP(
z-Cfi4b26c;LOk#8E)REbXb=(>-dgrHN;i6&53jV@o|lD>9zPD<U6w0rR};Z2WpY8e
z-)2!WJO8W8{`OZVsd{foILKt0ea&ammluosSJnOf1uB7*l$1oo#h(ZHS6y2Zxj1%r
z*~*HKk0hmfYW~JwwDru-Iq~%L^s7reg;iBmS4M75`}FPGwL`7kUmtbrzv{RDSFqdr
z*~yi`%Rw%cwJv+nXZ`L%a=)!we0==do15J)FY^ul{q3!&j7-htzdo}}Jg23;{P}!-
zxP!w1-rH4G^>O)6PE7pucKiL1)nU3@GcG!b>&IQG|NlFlSIWc#R2rJ!uX$V)JIf?<
zQR(YzE5p`Cy}G%1`JTOdOJ7`2to{9V`>OEu^R&X(y;<{l<??w!85t|0wq`9=a_xHY
z;^N|48<X3Y`OaRpe16@no#$WQznyz~TWCtk61RRi-P4<{tdF;sOb%HQuuyuQciOs-
zO|0A|nU_?qu8)u3ntdHqBh>wTD(*Ye$hBKs|JpL&*>mo$H2SpD)4Kn)Zrq*-S*wx>
zDy1(jI4<>?dI?l!Uv!s$*{#3t!mX{@vF{cwi|uA)X3O~b>1o!@O-n)U&)@$yY_hul
zwRyJHU(TA}zw_ogmxB3;cPuOl&pqGsotR~s-7|gq^pD@ao451Jmql*Rx~i2NIc;U|
z@;=MrXFaEPy}Z0!`t+tV#pi9G$6VWAUk@s+rpMR4ESvNC{j?)Tk4m;5p19On!8|Lw
z$8fp-d^5iG!&g=W9?qR>cuYlIy*j3D@3CHK>Gs2kZT#}@Hr3qSReJ39?b{-nK}Y7;
z*WXKxb$eG8lYL@>;;~ISm$znL=gFU}w%1x=-a7$MiPL^KF=|W3!y@+wFD@=#7O>C>
zR7~lWhhO^rx@NiG+@8Y^4bIzq?uoX2etv#=_5O-Uvu0)e`SS-PUj6OO$qPI0z4`O)
z?d|6q|Gr+oKTn3QeWrQ-yyBbw_J31!P8+?wz5V-+vs>TaTot-ns=mIy_|K2R?PcnI
za|$ZozO2pad47Mg;r3@z>S}7c?kIX~PCCl<`03Nss;{q}Zu;XkUpm<){(kZEb2ASd
zaCrRoZSKF{_y6zOQvdty_TJRUWuBAO^iE%Xw{416=&7fEXQpb0`|Pdy3UZjVdES=@
z=7u}1%M%zq!f(m;hR4^2f{L4@<YZOP_xpaYi@yK+`~CX(X{ni)mU!m<J-EB{^|BQ!
zG-^McRL?v9;rsXU=xMUdIl8AO8M^J;w@>c6xL(YUWxqW<JT7#JYKLq}@#K{-IFK59
zc9!YYmBH$&>gw4Cn^+@PnQCf!PD@>CUH2fY`v2eWPoF=3ULz|bv*y~`=+|FfUIt}{
zyd7^hCLcG+zh~3h*7j;{`MtvE`Re}jczWeM{QRyh^`5S>)ILvX^QGOFuWZkcmrUN0
zbJJ*h>AZXEC;hIzcKi12$8(n-IB?*Mc$M(Xy~h?VTqyTmz%=WMNBP~->Bm2xTjSa-
z_VUTe$**o~T%2`v)zeMyc0QjM?BdcAwkBesb35P8HJf$3^Y?sgJ9PN)+|x3A?Q*qW
z0wt5TBpz<lxz48W`ywm1!>)DpZ<eJ-{`&E_|LWfA^6lGRUtd4HzrX+4+1bwv<EQJz
zUfP&^yyVjpPf@*?2vDdV>yur5ZEf^w=XSoVD=Q{uU0?Us%)K@C)ARG|r|Cv#eSCDZ
ztE(&M_qVs9+w)@Ymfx>6fBSB7+Usj;CoS1k`nu}Rr<)5Lna|F#436HO7dl-pHZSw<
zcJG5ttfG>VFSqS+=@go@WU{*dy@KDp(&n#TU0uB@eEmJ&^^a$nW^bwbnl(LDP*70r
ze*X4Dt=!@!X=fyKV|E1WE_-|F=H~Rd%<FVd2RS)4ZGJnq{NBnHD>Tl|vyJ}v@nhEA
zU0YvWSqTcGowYOH-`TktR9D`ud_ETxa*Gx(29>p<nn6#t&2dj#S2$~?aeCITFE4NH
ztKIE4&t|1|_&SU0vC?M$SLsG?JF!XU>iYQmxpSvapZ@CV>gE6cJh#8Kt8{hrf;CZF
zSKT&~tliIeLY6~;;nLJ^OI1`=T|v#KemUDOPbT}X3RxMXS9?(P<&jR|T}4k%@jkz?
zLC5>~xw*j)54DEwttwp`yF1Leo$qS;{MuzRjnhv_Eano`dI4%nAMcaRf4;I3l#+U7
zEQ2<uoh`C!x^e%0ysTBpg%yE|^L}VVds@~0+M=@bx5cF`PnY}6Jry)};lhPR$9B{>
z?u)%7UH#zg-{=4B*8P3-%JbIFxZmP$zpRPdd+Y6AVOiO=@9yr_HZTa-w{IV)87m|t
zWYf0jjEApp=-*#ow-!Ej1JzZs)@30D1sjZgc%)1`>i>Lf-@Nzm!wcK**R4L-%%1)4
z&(ErlN5xZn0{{K_2}((zMr`HhXH!+azP|2%@Zdoy`?@{HdZm|dOg?UP{^{KEdmn$W
zT5B5>_g;P_ZC$qJ(4j+Dwqypkwzpe1pT4p(xb(q+MxE<Zrk-zF{yoO+em+AHI}=C4
zY_Hk*4^Qjw51FbJdS!2Q`QLB1^Y!iqa*63^B=_{m+s}LW_g?w^+Fy^l^-F$!O3l5u
zC(?Vm-qjt2kFV@3PH$~#S>f2sHtETn6}qOTS99ef{~Fcn+S}Xj{rBs2)!(nzr%sr#
z;QhYeewUZ|UOqF^cx(Oty0wv;pS9gyUV7NF=EsKPUp+lN_1^wlWmWph<JV{I-G*xJ
z{!G)qr5Y(GzU(!>2kIz1ECeNutZQplzTf{pPCI<vmB;<|^Oo)s(~VlvD{a2Yy<cvY
zQEJ!eU5DHGvo9=g%)2e36A=I^rtZ~#k9~W0cQ~lNJklxr^&q=Es8^sjxuopnCD+(p
zB^PHJr++!jZ~x-+dHd_f<?Gih^PT<bdVGCoKtRB>SNp@#)_nw(HhFg}?iQc7{q?Y2
zehz<?hjI3`HPJznW9PFn>=aIRU`UBr>NWMs=5&8qs}hgJ?)_zv;hWQZ=h{>TS(m>%
z^QEq~rY2-_nlGs4PCni@)$mwq(7r7n#o77gN^X}uKGrMwk7?dDT`lE$S6+Vp@a2AU
zx8&S3nyMQemVJHQ-pud)Tb3(;(sB6uxYFqTSy#0pr!57wzE<4(;^OYU+NqVxs^rCl
zWqxz34sSaq(SPu)o@v&V35OqED8FC3e9Dw5I&WWhs?VEX=(gCcch}21YMGB+FKw>=
zo)<Z7>9*Y4yVmaBCp|-bsrU42i~H?XU0ofn9lx*UrJqvd0tZIZ+*={S>V6?HF>@wO
zp8WN0`Te^k|7T8|nZ2j{eO&C`s?d!aH|9Njd|{#Ut=;A8Z=22hd1uMWn4Oz?4CU58
zovI!F<?r|V-a*ssxfzPonK&AJD!*P0fBO3M>cGWrmb)W8itO~Zq@SO6Zhv0f>qD*F
zzdjz9pS%A0+UVyWy;E+*`>g+46tdWjS2Ee8@>9z6ZT5e^1TRZV@&CPg^Kw14<Nfm2
z&)ffhv+d8Do13l5-_6;xckgA{1@qKwY+^QU+}PFMU(TIj|L@1*wDa@U9ys98A75pB
zc$1Fr9E-rXxVTq$cW*y_@b9EAr}g)1n3;ujc6LTu#f6Dz2DyN8Wm3{2P=U7H^X<9$
z_Unz)&!uF<&$TKInylvg<@fvjt3y|Z$^G9|_w!R~ue7<}-{0T&KisFJq-0a)cyD+4
z`nZ~puG<5o<>lAc{{FV}t-7UUBq(>E{%yLKq4>!OLC>P!kLHKY+<7dM`TctSlc3`2
z{5)IRwyV;$d6zCP^Oa_0W6S#X=BD2KYELQKsx9B%-d=v=M#OEoB@7Db3%SJ_d^owe
zF9-YEF5Q@XJnPAciBe`cGnUx1NA$~B2I=qpG6~cHPdhtH)5s|3`MJ5pW$~+`x3Amx
z>y@_WrQ7-Y*M_bRTbXxvS65F@$iAANpdfhhdj0;efPe|}Djsn@H;mq%x3=i%smyP0
zZdz4*SnzK5dplW+0*7uf-JscKxhCcB?(kfVTj<2v+TNahZjR-rZ{NaJ1}#mAoVKg<
z^|B{VQbO0oL{8NTy=43S&SD`|uNP-#8b|G^*w`myxoBVQZ>!%w?w@Gk6b@PLC(A2i
z5pa6Ce)!g`t0fN(FrJ-nA0HPNH_NIttL<B{@z+;ZFF&7OziwUZ?p4{>*GU<rbR;Du
ziO9&TxxCyz`|>hhP=c9iU;mGX*Js~9@7HU;fHL^>__~WNoWft;Zoj|EbF$i}uV1g;
z+grW0=4Vmu&!^MDmEZT|$Z5~c&tJbTc6ZjrMXp-0yS7M~<*euu)joClwD-r4AEUNr
zP3@DnfA>vf)9dr=Q%_IRir%*7UiEw1w>LIAPt^{;_V4fSttlskKn?TaXJ-mC_t*X|
z+nRmd@9OIC@S|O#qGDppl8^UgUR>nr<?DNuTYt}koZH)Sqo1Ch?r)lXt%PkZs3?;*
z&kOnb>gv@Mfs1uwe9s$I^>&NtuIiJu&U$xeC#cSUe5|+h*O$z-5gVNt85z5}x-NZt
zdpq`9?c(#kw;p_Wy*~fmp31N9>;Fgd+kTm_Xz}8&51RQ`rJS5}Yft6oY5MW&Hf%8P
zoni2BT0A?$&X(T(KdckHBc`S9*|X<TZ2glHf|Jej<0jkJ*KLnn^Z)n#|FhcV>u$8P
zw@ZWi?m|LITH)(*K)GQ0%md+TA`+{<yhsEM1_ZANP@JqEZ&!R=wtPnV{Mu_W76k|1
z&S>Y8HIlV1GjViu1ohIFx%En=Jv`K!_Vv}(V-E{v9BgLay`{gi^J4|yY_nXWUMW+f
zRxVMaxVX4;l5_p%TBWw}NG3^{<z#e;>*s;`l@Sp$R>tq&H`BU2Z`r!|q@+c~YG1ZU
z-n$Lz+UMSSvT^U>hX%Y-CMT{KUQ$t4pS}HF)#)qiV!_S!AHROhTChMNcz0Q@an22c
z;x{)8r+*U^6kJyF@{-=^JQMyCUvn?>NST~SHOoo<H)rvohXpg_Y^!!`-CyvqNzyE5
z#?J5es(tV6sq}4RVm%XEem8Yq^*hV$QpQO~yF`~2KR*XD2;@mM1%(4sG=q<oyt{K#
zCw`xe^Yii-7Zfiq^%f7_Q&Bis-CwTw``z-{fs5T{Ubzyo{r<^?&h2Nk*Y8Psb!BC;
zle2U0{{8zk0~fVq-rKV?a$C;K({<{8b231q7pJCZCVzT%HoK{*$!Dro=$RFPi_h#V
zejamc*>^kN_qXnMWzU&3DJib@YiRJg7)#Kof!8#h%&PD2awkomZ2WiU&Wm4tZ@>FB
z^TPbfXOjKK3y&W?Dygr(zU2Auk6$d=Cs;=wyK~IGnh`YWX)3`?(&%S{Oz!7rXS;fP
zLkkKv$ndqV3RyYnuIkOS3kw{JEM$JY+x^~X&)I)}e?Kj-xU$&2|8_*=wKb8O-T2y_
zo7wr#y$dRu^YZfY(+>+Wj`c|1jOAju0~&U<ymoVQ`qed&#<{n)c+Rydy|low`OB4H
z|C@2gXXo$JY(K2net6-I9Xm>H*M7fSey(h(_w;k03Uxt4n|Y^Y`PxDK^_Oo|G*wky
z7rXa|m6U90YHoh|{Q2??8w|E)UG@6>{QUW%vy!EYr8X<+-ii4QO8Tv>t(sO=QOxXo
zSGMKe&b#^X(W6IC3M@(<9B7Q*cK&u@EQ5mj$8+zP7!+)!&2lb)8Ui&x3if_D#C<ci
zucoHPr2b#c-v9r8YXvN5xc$p>vf9bx$K6-1TzNC#?)*dWQN;_nclG!GSu{;ITFcHZ
zPEb(r)rE!4O-)Up@=iB$lS{X_eppV<8gTF6cl6VJzu#RxH`h9JiO0m-Wj!4o9O)5z
zN?uOtleJ!^8@=tt-SYdO;^NB*<^GIEM><c<HqW2dSG>DPgyGLzK?jB>5uBWyn{>Pv
zE?jsswoB)9P`8-wmV$>)ppIG9ub0bXug$kA_2L%O2{=7XcWc7IrkqtlpyK=Ir>A$P
z$y*k=Y}~lfs_02aT;)^I=dp85mix`U1R5$?>OK9{!*=;=mzH|xNB92w_fIZ+&r~HP
zr7yo;uiveEe`9hxsOXQ}oc8j`$;nZhQaq>iCHI`X^o`+zzl*pIgQedsi?$s*EF_cX
z+>KfHUb_CrheX@YXN<dgdZx^uKi|p8>B_#^>fD=~j^@t4{%vjiu9B6nuCHJ3)XH`8
z^l9zGrJ!cW!-o$+t-Ra2B#qNv^xOXn09BcJ)tmSIHGdse`qob8^rcr<SI6#>T-v+b
zBcJDl_WC`G4!85K4qomjWt7t4{bRxsr&g}ae}8_0ihEFh?&jw7-D~<gIs#r^T3Y(=
zPbH{Xt?E53WS&iB$j+iv-KZ@dlS-bR66KY(3VC{ZI%rtw)HL1I{Puq?ytT<QVSDoA
z<m9TSQ^P}62B|(hJ3G9UOEf4XWJ+AsOVy=ImfZR9E9D5N1{Bo})3C6J@Sd)BRXo1t
z;ikHWhgw0SxmqDB7S#Owq#3`jW>whQS;u;%pNpAYs+)gI!qvs4;!WN5)YD>L-`)-n
z3=9N~=sP$xoSLq`{`vg+xaEFxcO|X`4S~PCwRNg~yd5hW+pB}@@>ky7-F^4g-+#Z~
zgE|hN?oVq=%ZdB<;{^o;t3I7npE_Z}gTnilm-~mmy|q<TNN7<*1H)9E$ROX@W>@!A
ze!g={O-1EJ{QqCmPfgKOuCK2b)eLf38@(Mg#FH0c&#<K3T7jWx4k#2aEO5NFEq6Ak
z1%7R9w6>O(*Q7cBd;0r92ABT$kZ785!J*&gQwN`%%?f|}zaie!bS^fra$i{!X*~UJ
z)U>5wvFUoDo72vI`EuDmebxJY)2C0b`to9-qH|lu>1n!p%#YOl=Yb{_KyAgBdGoKX
zvjWw-3mltGGA<}g*K?aBA}l=lT^VRtOnrWh(&<fKZe_1udRxzbp3STK`}fbQd?x8T
z%LG)G6s`RG>FMdN-rlPxC#zpw<|`e$tHg72`uVVSK3PypyY|P!_FFp&7t2*VVEp;>
z=gZ6f_M!9bYDI*E7O~6Md|38eTwZ?tj2RNLHWdM(tHVOq$L%fo`YQD8t*ze4$9gVa
z_P1X<N!2^;Mbur7f`Se6YCd`H{dz6>*OSTqS5}2;Ki@SyuF5kmE^bxi=4FQt9|l+G
zQCq!ge}B8W%y+g)?XQyb+m6j_FF{?9K3Qwfu!X2rh{vQk|EK(`iPwqQ5peP1MUd;S
zt`6T?`8jRx_j}b*yGmBp{rTv=Jul&yMD4em>A!xxUJsi001eXJ-j;hA)Ze|jI{bCJ
zd|klKqNj7-it9uy@SLo+vhMG%Rk6Fb)zsF0J*~e#<J1&QP}9sT_tujl@sCfZ$6xCZ
zR1Voyl4<+r!(pw64GShsnzW_xu^Xsm25Mw%emhM!`pS;N<hfR*UcR$T0)KydTl(im
zA!yK`^wpJ%hg!L>Zppl?^WTr*&tVCM6APF5&Q1f3YT4E9y1nZdzHzqrX{nO>`udw|
zetz<~YM60B0W^+xT)sZ%+xz?Zd-m)(6YOvMw8-c5rZXQN9`?=3TD4K<w2PZt+K-qX
z!(*Ftg7??e_8*VkoOagt_Oj0Ye)DOmGu`EDuk3vD`~7|p=h4yb`(I+}|NjNeL4ZaR
zLH#Mc{*Dd<zV^eQ35A$lB`0(5H#Rnc+Ahz|%rrh%TK)Z<>ArpYK+_L;$0PPuZQZDI
zde6^iv-M8D-~Yc3<iHaXmG8c?Dty%P^Krj@UR3?9eV2FJWrnSb$<#S*Bq%7Tcl!Ig
zyRSFaet&nj_wYjlX|tSyNI7xwbQ!*O&^*ZTw|p`d4~k?j|M`9YzuC0ZncMHz-A=8%
z_4~@hf*I@g{W_I;_xJn#`8uaTEvBN#c{66b_+;&gGSFwEp>bl0M&O~CJrx&oXA7(Q
zS^T#(HN6UIm$0y~%y_^5|GlNLK|zx^`T5Ng6BFh7c^S-|#B~^U`Z+l@fy%*2s@_=#
z8W{CngSyy$bFDNjEpI-K=rPN^rD10FO<#U@%E?JtcXn({J3sI38zE3%tg^cL^+k92
zzo&oiojYmLBo$9puPHk+Z*MUJjc#=ctKYfSFKO&%XJ>crdg-exfhj3V{N`FM-G09=
z`se58<?Fh8dP3gb+WPhLdHee%YmQ9QjowoCw+hs2U}onliI$g;(1?$}Kl|GJz=sbX
zPFj+Dyl<yYe^1Ys8~gm{+Zi3pxVb5Hrj=i(kgCnSpIzPE!HrC;m+r<NZsYxWfSG@X
zPW7{y=^@K}B-ci5^#b*=_4s*tOMlK?l6hstL{I~^|M-WGA3sKfCnPNRe1E!5<f6UR
z-&d8tzqcxQd7t<0q@!J#4-Pb1)%@5Hwl3!7M;QhMTNVL^o#(EtjaKz6eSPh#McZP>
zW;UZ^7Pn(pSABgIX;*iCo^9!~Gm>X#8oQ^Tp9d;SuPk!q7S)Y1IsN<GNiI>XB^@0c
z+n**TCQf=%*f;INhk~Wcmc9D$@UZ!v@4vpjR`u+aHa}OjP;!D;$GZPQ^XAN1BOYH9
z`2Ak>`cKc#zn8flxHif(a@y2)GrGPkS+?v|GrwKH-Cd=kA|fjJ`T3SIe3g}zFVD<0
ze)(>F+}^4@(72>AN6i0w^DK*(B_$_|3JEF6%gd+Vwg3BN@@+%VWbKb16`;Yos-I7%
zZ_T-BG}p5D*xQQN*Vaz{l74-M`Td&9Z_^LA@fsb=cz$l~%w1{>2P8lt@bdC<Rn5E0
zlb7m#H#xCAVq;RIUES$vx}jS#0ztC@pvZ6K7QZB0Gf#NQ+|OI<P5u3&q~qh`Sy@?k
zuJL|<anHSb_5Tt>*Z0EK0<3>>Yq$LM^}B0+e&X$~esx7Na@x~9#)Z38)zrLx729~s
zy1d+fb=20ZTl?$xXI)vb5IU%K@7_JD(pOWC^++zZ|Mx>V_;}@uh3%kb&Q#4{x7=G>
z0yicdee(RdI;itpvg^0E{+VTe^)A~nPXf(s^vYU?B_<}GV^?KiVey!>%x~^1vvZke
zW*BM(FY8(6H+R)UW%sNj9fF`{5vY24xBLAnpP5FJp6p>RTl_Oo=k%qW#m|k3G#L(b
zGB7Dz_x!Ci=U)8P%e!P^|F`}OJ9~4&wYwngppJ8wxPIN`#vOd^&c`JBi(6uTr+zA1
z5w~~OpFe-5%$Tv_e%)_hP)Wc2ZI`IFis$$H_50U;juz1h@i;ca=YHak)nRL+R9~LA
z^t|LV&*tXO>;GP}zg{1|KQ8%L&&ex>X8HHlv~r8DDtvtG*Q?d*W9HeU^;|qLQTg)S
zZzm=y%S~Ut_xa^}w~zP9Ufxmoxa7R;_ZOhLV4h87%&qgYOi$;^PfK0tKi}@v<>mc-
z^7iYtW?#=bH^*|8dH%eA-}nE2IX%8^Vt;=>XdLkLrY}du<5yIEem2vpoMDIHt^~#t
zrCQ<ZbUdSWm#tkFxA)byx~r=~H|d;Cp1vUZ>Br;p<z*);-)uad_bYX8!NWt7Z0@(-
z*io3gtnY1sMak1sQ+c+3|Ni~Da=(pIa?ic0*K12|$L^^Je82bmJe|{*g#B$MuAH@L
zRodBElcu~h6stdaak0B;<|UQLX-m(|wYHxA{^n-)X{jq?cbDbeUK6+X*5iGbb}>}_
zs$F7hv_19ow7h=Xe;<#_=l_U!XqtU(hwkpGudA-Di`9Plzn<;eySuAbhp*Q%GrOi+
zBV$$KQT_d$?{|qwAxk_2w`N{;D}Ht+u$hf_OZs`azkfcTpY-p~T#4i_pi!>^d4>s*
zpklzUqGAUqPsz)#zqr_a_nO}ykIS1@f6HNIV_TJbd)xN4ZI_mMXW!hE`s>f<^H+D5
zzn{Hreb`#?B9F7Po_;!NY-t&(zvqL~vUg@ItgNXktgmjpSM^#~R5vPQbK2QUuh;K?
z_pSBklarIP?(f_C?aj@_H*Q3fzPVu-{QLYWt<Y5~!q!HCT3&8F5)Zf8Sz20NzB}LM
z=Dyn9Ny*8jkB)Gf=HH9ajoMPMuDhdSg5fdUoSeJ6LY3WmKK!uudcEw~%ffS+k5kv(
zzkhMD``7jLe_ywiu8Z1wDtFS6!pFxl&(E{Xy0D<}b0TBr@f~(O^R3JMY^%SO?0#JK
z@{;P`4~O~lj_<DdxoPw1(5MNScXw?)HAQnVzx|(p`1-$Fk6T?|AHTj^T>svO7={N`
zB?p-%EMEHk%MwmuwH1DIt)wgp7Jx=1vaYUrd7zPbmVN!cJ$v?;l)eh-|EzuIlvSR|
z^W$H;M75Wln`@o@?95Ei=*Q=0XF;WE?boZ}U44DuEE4Q&d8N&++}T-tbycW#=*l2h
zJ3BkjH0P^pYiGYRTexsx)W)P%&@|^l=k}~;XJ%&I+Om>~nYr}A0Y=@(O)ks*<_0}J
z)@$qMmfk+oI2|<23u?Z9xtTs+Q%%k7m;|UrcfaOyZ{6Ro*Llt}Pr5eM>(}SgUq3!R
z4r+IShQ6nzf)<DTda<}aX4}haYiHl9d@c)WqpuEI8?>|NDQIjk`{SddptyT>X6ECv
zIc>bsph>EWkNfS{eS3Qwv|K|gWW@wf>ojzIT<q5D>(`oCxkGlB<z8JG?C#ztbMbn7
z{aVn<7|V+Llc(uMgA!HN?QLs8J&(1~+p}I?TB;Saq~r9HKG$xs(BplwrseNqTwPsP
z7Ct^^Rr_lTs6uaOU~qMH&HVlC?YVE7nwp?`4WxZl=xWe>$*zizi$JPCYf08dZ!asm
z`1#v6kSjp51)%h^HR~#<AM@$S$;Hj={8^8W_1@Z^KY!AsNl)ItpTF=vH-kr#+=Sxi
z=Vo4yufJ=Od+Q1d8=KVWO_yr@{-2v`?K@e`*JoeNPoIQ@1ut)HU2R$RX2$Vt!OMIM
zMYY3B{{8#6EM{j>+MOMR+drE$>|Z+j?A(bnW@J=-eU+-Dq|`Hi{(R7)gtxc08qYS%
zJ@sW@-jiFE4tZ+1auYxcrq=E*c{xeaqF@1N)a2vm&&E$rO*K|_?=xAsawTY#iH%pP
z!sgxA&kZuRRaZcxG9ubxXDX_zrP~iboD-~UXLrv+hVSxXcmDpb;H4XKwzsaVjlRyp
z$|?yO^pcXwirSWw`Rx4s`R^)0y)YZ~<etvXPQ$pkIJxUb!DA@;(<_ZYYgc6W+9ho&
zHbnn^@+9T+qi+3KphyEXxDK^)&ptI(d-nCX>a$ChELjqL|LgC4-_$`XS9EmFxVXE|
z7LThqm~(%h?cKNK@9tzqZO_Z?64TB4^z?N4s?gPG|Ng$OzyD!ZpPcQjJC)Dp9=m`4
zzJ(0mbjt+4c{Z7#gacZh!o<Ynb8}Pb+12a!Wd#KV*~DGWzQ5dinvUVttgA*pKRq>W
z<rX*NxBIc+=il%5@Al2dJy>+N&V0IlyxIFbpZhYet(mDAx@rn12Zw>8qT;iEzu%ir
zR`WHQt{-1^`~Sw|<7d3}_ojfR9zH!goBiqe`TSGU_4DOwJ~$d@U(+dmdTQ$Ie{l>C
zqNW)}{+RsW{(*mge~U^=t_)i0wX)>prKr7CTS4_}-rZe0w|IMa1cZc4;S$$dv#<8|
zt2Z|{S3RFw9<nM#Gxx@ZgFlyud(N^bTr{ulSElWc2hE_?=f3~{s?W|abXIonE1A6+
zv_S8N`p@I+6HZUpfBod-WYFT0XJ==FI=#NL&CcpJe0g=%+c@pah5Y@0pVjz0IW<*V
zR9bqq=VY~)ACJpV|MFbnoRF#)s5k{J^(y`i9SXLp_>i!xe-mio-@kYNJ~m&dt*H?a
z5-Pe}1{yT!7SoNH7kGa|qVrV!_<KwDf7yP&ZuOHVDPLb*J)QbHeO{#-Xt-TE1hlyD
z&*VRknLXT8)YM+RxVRY9!@s>t$~0>SkDTxC@2f&r@7l6DYU?T)KKEs8vq0l-_2w)S
zcsyobIdgf<>4ggydinX4o%=L<$`loSeSJ~Qpd(A?_V@QUH8suI{2rwIzY9otb=v;<
z^XK2*wZ)x(*;Y?a&xz~TuRs3x$M4_w3m$1QFfcrL-&g5iq@bYSFv-TRX{s4xaMbLE
z28P&OB_|)(>Ba4Nk@Nf{sCdh{Y2@nSa%Y1q0|Ub*cQ3E5M~@$ambPq{(?21><iWP2
zbg$RzuF|zjmZ-3@v7I`8{P@jpr>1IK)&1FVdbUySw42htHlT)N>B~z`#lra+7#gB;
zpPiZc>dwyMvgs4G1s#kObaZ?U9y|zIkav3*ue6zlme#4CR$5wK$0R^Qe!jEKO7-sV
zC|nF`PF(s{B`7F3>0ga=_?n21*XDvEJFj!Db@?jq>3Zkh=bo@(@?Zlk%QH?p6X4|3
zblOH?ciG#Z|Ns8ZeJf>>vEaY~2hhqPJ;o=C`|X16?WqK{$V>VsUVFPL>1fxgprxmB
zt%MmE7*a&<KK*aS)UgCqiGgYdC#NPA@KTk7&Fre4wZFau{`>Ru>!;KDpvl;-&d$Pf
zEp}N~H11Zv-`myQUHtC!{rmCGZ9EtE|NE+M`{jaj)}<w#`+mQ(K0C|Q`*0g?@It57
zO^-zw85kO59?IJb?^1Dfb9;55ky-Bg+uPgyRlTQ8`SM(M`}29#e%aU8O<li!ebknW
zg@KFRG%YM{<nHdb{}%z8#RN_NfYNID`+KkM?*7jE`o^Zz?p0xHSDl@0Ud+zIz@WhX
z=y%k$LUxz>ww|695gQln`}gZL&(_*E8;^gvk=&oUR0ot4^4lw^z1kH#I?7O=&(0@v
z;p5}un|Jdt>`*OxcW35Z)hAUf0t^Roiys_d3|$crD6SuO;$08}gCz?i3q!$e8T-0F
z{|_Da@f6*>TZUl=>%K`}qRPZ4t`>A)U@%*uvC^wdoRMKWL+pl4U5+n6(NB+sy9^8r
z<gWQ0)ylxYkU*7H)kcZm-`xeRBJrA{v2ai2XHb>}4d4a^1;yO@`|I_3P^<3K^YiN$
zEKn$Yea-iHzx?@Ss~8y=8s;3f-pzeNmrvGe$*ZfYR~I}y1e)b#VrJf&ch_p~$79mB
zHl=pk{r^+!30l(f>e|}Xhg!L_k8}uHRexIpYRQ4x{I@nFHt*TH^9ch3!;j~WZWpkD
z>YVg*b1v>GeO+=~w%lWqT>YQI*queL|9_sZFZuN)Q&cA+z`30-)XS@DTkh>;A3hX#
z27P^X6;#_~US0;OZO)&&3`)bBL}ND?y?AqT^Q0vcCJ0P_dbCS)^5KUQ)~{c$l6kO+
zHS6M{R^u9vpu=svq5Eno&(1bKzpn}8FPRR8NsfkwhDOI$xcAF}*3f{wxU=|q)}a>8
zSGTvXXJTRk^(Pm*_pgfDnw59^`iem3=<RuD+fISB&uP|+ki4?QQ<zuM$mMVw?`84$
z8b!}dI^OH|eClH3m(%g|^75Lb(%ROxD_34hYSoh`DY5%%BJJ$#zKQZNFfcq(V42|4
z(a{l5QnCfKviQIO2T*Go<mHV?N3X07*MEL_!=FEY?ri(|{rhy4rAwB8SJi*$cV#%a
zz_R$+i%#`<7vA07J-6KA)|Sl0+TrV7w2H?CEccr$A|RmP`Rj4N{he+5D?Tn#vAhim
zCUDILYGQ{h^%C9wE_7|w)=OVrUfx>zI_&x7jhA*M#cFG6dNwvTO78l7aechKs7}O%
z)X3$2bFZunUam6-G^b^h{_X$YnAZViBA>Q9F`QhW?B1tgU~nP#=hM^EQ+oolvQ`~B
zbO<z$>^s|R=hoXB5}Ow-T4YqR=Hg=a)m~GzBG*YWFfc@3eEGj_-Pg_~dN%`3-)Hwf
zcxu6?r>C=DUt4=?Z}s-mpCUJ>ojiTo`}>{ZewCHAzrTUTQH6wr=H!O0ivjgcUoLEy
z+q5-}fq_9``9nSrHeLw>2k+^6p>wTDzpStS>+R_1`0LYYeNeUe_07#-P-;*CEyV}*
zjgpd*K;yu3ZL7l;yY*h$`~BYP9XocsvE>ArHoK5rr5Tib<?DVpUR@P>*<HSNN!{OH
znfLeAf>r_?>z99@6TYXSaBbvfx75?qu6pb5T@tw14YUR~YF~|||9&P0h6DC;<qk#*
zqqb&6?Wy?adpmSZL?Eai$14g7z@6OX)UGQi+f*@Hz*4P%1?4g7?sy?Oa*kQ==Ki6*
zE^hCtudlCbD=Io3?GnBG_xpYQ{P!`HTA;~jd#`o7nLoW=zkiieD_7Qy4GVvLd%K#A
zS87Gh%}t<j58dPUH>Gxi`uGbLD1av2K<iA{<!c^<C0}0VJJr6v4z$=jdV3zIX{!4b
zl$I?c*KsTCt@?V2ncrr?WOaWnL&HE%PfyTr-@J-Poww`Wfc8p+t&IX{iL3ux3Yyae
ztxe{WwR(~>dBTJRyGmbYy}!3t$}p*gjYndEs`s=Ng^!PUfwp&;g4*Jik$rEsf4LIu
zpLt_LA{P%&N#wrl>w3LXre6R4{hPEz$+c@m?CvtqSVLa6EohU<_jh-%Zc6p8{q=JB
z%WcwDB`bo0g0|$|HfwEf_nx#WeEqr`HzIszoB8(J|ND`<7SvQdakA)*?1UpnTtLgh
zl8^UYovIx^=X7#X(v|)7^|k;1eg~CFV)}7wzTd0%H#9WdzIC3z-A@<yez~g`7CNhX
zitEKpFg&*QE@%>Nkt=ulj|ofKc%@g>{QNY_JpW$qT0sT|h7&J~au|L->ee@@{+0up
zJ1f6myM3Botd=KerQxB&hp(;(RGz9IANTgw*5IjHp(d4|p4^T)e`>0B=mG~u(Ck?G
zox=7{PfssrV&z&9zCI3Aw5$A;oYg01yDIDIs-3y<i`{s0@9z4#?HZ_u^rXbntic1c
zrfN&_aX#ChPbODAndp9HPi3*JWs!?<`neD<uP#1$yERj$h=78Mi;r*L+O2>7{eBNx
zQW>>9Z!NoAg#)*k4rpEdGSEPid%xVIB}<m5c!Jiu-~I;aMqPV)dU}2~s1xDfH*GO<
zhYD!4{AT+6tNHu?f@*6}YaTRX2wLeiVS+$qW#!GF<2#F=Pnk4n(T*J!y>hluxwp1l
zoMD&@T5$>*B)zpcy+0@@NX4_Rt}gHP^4>_#Y-R=qhCjkje=roiyreqUt~To6!Gp6*
zGAGsjc*qXw-++qYCnqP{_8s0K%f!T_;wfugRucK|gmV80iN&R_uUXz+QhIXNwWHnQ
zvEQI(-B_NWs;auuy<ZMAtkq+9?m*!BI9pJeUi|#r)dP*pp#4Lj(d@6UuI^s@wWYQ7
zW&Qu(^Si`!Uv08cQE{0BT4S7kef5@g5!dJYCnPMWsj11UT2uG;*UE&0O?s!TN?(Dd
zW&U3M#K^!fA#?Np_s^r+ZA@L%p4?#g^klL>Xt{!R__~mXhgwZbUIc*pTfe`*51(gK
z`Q^i5e$Wy)P=)|anwsX{`?Jk16%@z6p3TmmGGW4kqNk@Ur>ld8@r^rLT3a<OEFxx`
z<rdwpJKV<G)zx+C!bZ1#xwTrMtM1G?#K^$#LA><W{`uLpN-Mq1u6+7FF?n|aXq`vZ
zx0~srva)Nd-|ci)cJI5=DXjiw|Np<|Z>lLMIDmGSl)by7d3sY`wk>FGvd0j#<~nwo
z|2!K|>!qu&Z<-3o)u0s?pf${APfgX{ntfdl)KlBO)eTgYE<e4o+`-A&d28L@Do_HP
zwB+mS>!&yAh-!zOS(|%ulB#L>yF0g|{6j*ffF`F`1}}dFno92Ly9Vm{pSSz%qrd;p
zrp@c7$Ja%EettgO$EOEWU~Nu6pLJzL;I8lYszt@c%cHYd7#J9ecF9OPwDHTY11<1+
zduuCb9B^CCP0*6KRTUo}-3+^Yq*FL_RfwkVT&qxSalMe0K}$jFvA@2%d;8|HijR+?
zHmCK179#Eaa>@JC*RP@7V!9?-S61-!{s$H5|IX<oUr%20uc`L;x6GTHQg>B+Tm+gk
ziQ1Z#TJE|1>NMTxkgZvvx%c+WG*n>tCwA%IZnfNLN9wOL{E_`*$=32dyFRvWFSC;8
z#EBEDUaefdX*UnZ*zF#DvMr!y;Dh(=#O#ustj*M6=muId+AC!W8dtBZtlasxqWbv@
zbuLiC4&a;5u5$K3BlFjL)$cX6w7g<>l>|OK)Vg`M3dp*8$8{VEpcM+gzr8ihzqjX&
z9xDR_gM-+UF1-j%O-)d!mQ4qh>I&UOt_+zsHY_yDyEEf%DoF2%MKOX7$NJ^he|>#D
z`^JVutHMVvWz#{HKF~iU$_QHi0a~RB+Jo2H(xQ=nZx3kY&T0RHO{|-D`+!U^pQz2Y
zaC`p!xM``W<)Aho!zPVzmI;}cm!+12nqCZfjWHKlxj_}xedoSC%tpz_cszryuZvBM
zoc8(a*^<}S-j+=RIar~)D21W3yL)nKB&aJ>Q(Fs42bXhoPAh@;mRiR2@hJTM_I9$$
z&tJcG?E!71ov{1q35K9mAuFZ#fw|U(9H7w{BDbGfelpxMZ;nl6(B|~>*Y54DF8%bx
zQ!+W`TJ*G~{r3MXX0HMT!vw*dN)0;E+k8Mv+<$(44l1@q^<r+U?M;om836Kc!<iGJ
zj7#eO|I-RvGeb-#Vu9CGt<-W$P}uxi6l2Ji0_vMxUe5mzWZa3TMXn5*;p^s{n`b*4
zDGEUI8NKrMaUVZ^ycrAHHQb<cLNwU{)GU7RAOY0S+_-V0R^XzRJ$v@V+=`e6TE&_c
z+zPV9NGY6U0>9ml13%w)i|c=bHdCI|>{M!q*;{40+Z&{)fcr_8A$U9QKe?i#vJ*^x
ze|viwG;IF&_jm6}UQ@M}g6f5d6DQt`0sE=vgellhQr2Z_qRVyK4=+rgUkhqipIUYb
zWL`?hx))7f-|c>%_2tFItn2IMURxWzJb1a^%PT8`L7UV-ot}$}-Lt>ExOg*Gje&uo
zVfG2patAg4d27PfMrGdHQ>l0Q{qFa6py^-Ga+D*T!dKVF@6TBU+D+`>_N2>N0kmb}
z(h|>IuV<TN9#R2$)j@B9Hj{^kN5{7O`}5xYdV71jwuQxwV_hHz{Sn=%)L`@DK{IH<
zlUt9(!q3moTTh>FUmpi51gB^Qg9_mEWRNioMoQs5jFLtv9iYA^s2Ezm|KF}dhYqQD
zc6N4pLG~M%R(yDnvrY(<Y|lRFVwj}vFSj;kCunV0(M<LwnU|MkU0X9VYFm!x=}nt<
zdVySEK3SW|W7f5`(W^^eU%MF#N{|ivHNtxsL0Rv^_X*1H8(iGnPCYDmaXr3%YJY#f
zlCpCCt)r(l>AbzU`S>y}kg`9bmPQRO?(U~I=~&9}O}`E@w`jYJq{A}b*=2_zT=iq%
z?6ARi9ftyF*~*)nn`5WxMsM@^`s(WC+V6KkdmGY%!MWQ=Ih<ueBQtx}yE{A2UH|><
zZSd`Fxm)w^+j(9pK5x6+bFx}$cqPaVBT$xodwct8zqwZDt{bPFnJ|6&^lf=}SIO7^
z2?VA57Ea+!8=XK(B`0b#op^b9xu}T9lbXL*!{as0%)(r|L?)^nJ$5YX`@6e0L*+p6
z&2vhWQN_e0#Jc?56cyFK`@g-j^?AMP-2WfhZY2zs^0ErSAvO~it$yLZg|)wB@!DvG
zEu9rnSB~0Db!mIuc~#_c!DU}>&80?>x2K)S7A+37IWTLM)I5)i+9{4KtUPQJ-@orK
zT9?Ky%Cql#kDc6g)9Xk7{;YZbu(tnttIf~4_wV->B-VYNegDaa!~FR-;&&FM9@ed9
zWN3J{I`UrI_y52CJhz{py?(FR>hSgF-rU?A92`73xzBQ0;{WaY|K|Ss_BQ$;CnG}x
z??ol1CzrhS&%R#2e_nLnPSv?qrKhf}48FWM{k+P_Pft%9*Z%tQ=d%6Z;MV0V3=DQY
z-5e9j-rh>RwI%cY?(gmPe-v|XZ_@>}(i4)mb};-@xO(;K%NrY$mmUXgw0GFdGof35
zpG9bBsOA4ZpMzs#=XUGw`{6u4I5c!>r?C1o16c-!4}qqq8Fqd+#0?Vs`1p8wm(_=Z
z3=Gn@JzX3_R<GT5s#QGh$HMc13JeSv{+OO-h}@ocm)(wyfgwswejXzO!<1#NEGJIu
z@1G-SoVMrvzaB|rqxye;KCv+|FxX8>tK_`)|LfKDb*87M>z@yFm)&~r@B6y%yFt0Q
z?$_n{(`+Oe7&aJ29g&>iE?242E?aiv_dEHb6N;4|4zhdC;b36+p%LW*Djs#--rin+
z|8LpbTTgq<?`ae&F)%z>oFT}#>Fu`L&la}JRo(x~E?;9%`|FD)T+S%#%8EZv)a_4B
z(F~TlJL&t~^807Y_kEswr|fp_&r8$yg}~zAUW;Agp_VhVOtsVJmWHYM&YCi}{GO%f
zr$3+1KmU3?{``Z3&BgzIJ`b<(Vqkc1cuR+|f~l$L&fo8Le{PolqrlA0cV?2R_okGS
zlXzq-49xGA1gD*wGjrCgSzi5|3=B0LVufrfo~u@`E<VJm{-j0NZ^ai428ILfSCW`i
zJYT(j{rSh^{`8NJj!K$j1neq(9rkh}14Bda1tq<MUXwI~mo3@0&8(S?_tgFWfA2qE
zxqP12B%R1jDtC94p7u4r8}bm8jQB4rF+F)UJO5l{`rN4to!g%+o1NzsD8gF}Qgx7B
z{!Q=&Mur8f8G?*OS3|>}exCoortZ&U`R6MZ_hoJRZ(je|{O8^Gb>WRCK^9+BVoJHU
zr}F2W=XT%s{f^yL^3n4J1H%QTEgcM?Xq%=J`Dx$p;^*hin%&L`e&ho32}sM04T(D+
zwn=|_Hap+!=I^`j>!wTR?=f_juPtF!V`gA5bL-}q;H|&c<o&+idB48DpPyg%dG^Xx
zt4{IP|2SOp^K|?<yWejn%h^^vY2wyf@nr@B!-4h;LB>m~!`J_LX1@RAg@w+=w{y2I
z)#$oYbXs?&VX~WBuhdj``PwZ?^Er(&FD(fP4^Qv6{g$!m`<>$RsV^=p1dY7xDtkNY
z;$rvu2dOCx3?Do%B-wRraPOD<`S1Jw`S0uh|E~P|_4?+#ySqx>-?P1Xb!z4cR&KE;
zn@;O_?=E|LZFl(vNA{(~&(H1r^Xc^Fq@!Iil~1QuKAV|tlzwi`maMBub#E9LHh7x;
z-p~2}V}Jdb<#u0J*8F`PfByQuZ(CJ7zrVYyZ4+AbZs+r7|Nrj)KYeTVb+et!*Oz!s
z-jsE9mCes5lV9H5T|O!0e(m?OiS4q}Rt7JB_GGgEx+5nT7y=5<{u5dQsy#wihuy4t
zy;j@StC?M{LZSRlq5Ha>&t`pncfats?8?=vvpf1#ET2qpzO+7m|DQMM_S)G#3=A1%
zvuYbuPKxjQ(CRbaZtq3)1>vW5mA?Kob$yNM@;OCbW%p~ptNmWT_gj>he%zeeZ#S2p
zymz3H`STHB|0#xQ3=AgTAnR2mEsIk8?Eik@ku*{PY1?)?Z}*nW%gas{R=?l-J#GHe
zU$57nU%h_ctoZ-GuD`w;zoQ^=(vof4ww;X2&CQ*r7dxx`UZr|;-p;3KbA=fgW-S&I
zRA^@B&-?MUncwb4%6^TmkkHVlpoJW3igjXlnf(8A{{I|qy&Vd%yGkP88?Fvp>ow`h
zl`AGUv+wRIJ#5It!qDKqNK8-xl)+Z5TBT*{cFz9)pOUw?OdlWXt-hap&)PURKK_16
z{?}Jmd;1s}8vJL82`VHX>sk4QW2Sk2T;86K$7-Hi-#^*J%021N%QL56U0wb8ob~%B
zQ^Vst+xcXr^!8T04_dQ-OToiKB`+^Mbv|DQ3L8*)x_E2gVz<;QD*|V~xXQrr;bGmU
z=j-=>Y4_s!wDHm!X3$jQ&!hTv6Q{@5S;p=z^No$YTXjD=u#J^lY>7r!%~S38lalFk
zE~f0yzrWA&^BLpMZ}aP|@9r)?pWJVI?a2(w;%6xb8W`n&RmawTy}ESId{%}Aexq0C
z<Lfh{Ch3PKOzZDYlUC>!*FVR|E;C_zeBI86@4|C$Z#!H6=Xm{-3(owywe$Y{{r&v8
z{r}3zpap#P+TrWYOwkO!v_1d6O8u_v>-}|K7VAW8Snx1x&-Z)P`EeBwTjx~2+qv`{
zF9X9_&&|9Oy!Cdfe13lZ{LS?FbDR0?EIvOwds=mR%%qLU$De)Q|G)O-XHYnUa`WV`
ztJm+d0#zxmRxFmfw(nzae#);eFC}d%3eMSlKC>obqtaw`|8w)I-`&*FQ)gyq@XFlA
zSoHmFdHR<Z7iZd379EZ{KhO5_QvF)Z^Y;I1%I;M@=kmLL<9}^)&3wDsqW^!tKc7>4
z?j)!^a5XG?>AH1#lhyspzH2iu*j=2J+py=?tJRYBbv28(GV|LQxCW+xjyh0tc(?og
zzOU=v?|Qv%=j(O5z2>noFwEMX_S^Ht*RNlB=g<B)@4MXk*xlQNlo=Tq>X)Wfv#EH3
z78D$puix|VV|4!BsVbEpkBVPj8N6KW`0ip61_qP-vsMmjesgAY3agt%+W-A>S=v_b
z_2dhT3=RAJHuFxHoxgAAC1nN%hS?FDc_%#Xx8Dcj)e2iNFnsu^?7+a#aEU{Jfnk9O
z6AJ@_MlS;+1B2J7@Zb&;Gtjuzw8F>7me&9OmwA0%tli(2{?BhD_n+<7-*@B5jpy^K
z^_<)Jd_mott=ZRm<ZP|Hr|GObaD{>4!k#UwzA)$>-M;VZTAM!~4olkARD8RU-2dnO
z|9|=G_I|tdX7BfVGi|HO%5LXwR{@nmMR+Tir|x_V2h^wU=gnVGeBRdF{^v=5Db^z$
zg36y}p081x9$!~k_hqrXswb$u61qC<=}GnZKJV}CoviZv-R^uo>o*&G=31Gm&#x(R
zea6nv@a%wUgmlLLzu)tVz9k)(EkE;a_xpM2^J}*yzU{Mq=Mftl>s+I9Qn6iTQr+KQ
zPt)yxM`nIzVsI!{aro!eEvD<WJ@4)$6_hHY5Y+Gy_O}WAR>8n<VGYNG{fE|Wzc-7O
zTP)?tiHV+*TDis5JhQU1XUjxKN6%jBJ^k6-@_U-4ZVU_=ek>>4zkurLJ39(N%^tUY
zxw$HlTeCtZEm^i~*~yP<qqpak@Gvmc2yss6Pq?_q)$-E`<;y#ZpWmtb{dVQ5RbG>}
zWL{SD42qAx|HN{2_<E?~o!r;lqW0BPw(-f%dU|?#`n5HYH`8Y4N`1Sx`^&4n-W&g2
zI@HR2d8zmGoSjdn$^WXxDBkOzeqmt9*)jjm&)52Y7Ya4ktl^l@8xS8qf7h;EXJ(u0
zg9=YjiRJctZ`D_?@9*w@zLDH-TKR5{WwBAhfd<}RwV)lHpm?60lE%Pbw<@sy-!JdW
zlWKM{ZLX==!II6qHhR0BvRluIH#awf+V(s$76p5c*FNNqKcQd$^E9Z8PJDZ>`u$mM
z{XG)|mEES8>Vc}`a}7BQiqBc98>gK)anW6VuB!L6lv`Ued%yjEDF08<^HXnrjq>H?
z{@{k{vzh5>N4rEpMeVmc#pin@jh8V^W@d2stmt5NA;13j?U2yW)MGu8pf=Rxzu%db
z_|Lc7`TyVV;&YbIQx3Io-ppFPHYhxN`pL=a`4@iMGcY`O?9-650F<bj`|p-sk1f6)
zTb_F?lYwDD>L<C;@@;q)?l*m|t%;oc@$vEH<?ruh-rkn`?SB3LGjl9AUrJ_VaB$_E
zaQ4ZM$NlF`ug6S&+-I#9yv)aQb=X>?oEsZJMc-68UIqrOWuZ&ie^|^iPWQ{({dQYS
z>D5rn-)}ZgRyi(P9s}wEd_HHbzd7yfst+v;3;~ko8gke!FZcIf9k#aUl;(1iHCL}(
zd9q}(-znvOn@OzPVj%@q3=At|7&l3R+s@b5$KTqTeLbW0!GT8J-=NmLii25mE4TPE
zPz$swH#fIy(TVK!d&3%6GB7Oo#Bw5SL)O(*p!Q^BKBzru2P$1Eg@2`8SmrzX%Ju8!
zk@0)0N)P}0wMSfS|F5g-KfT#}K5ri*qt~ZTr}h8;4Bzkd=)CEJ#}5{&{B!)dUeUp<
z`PQvlU*poY7Cbzp;<-L<@3r51etv$g?y2TCXUEMn<`q2k>lo$rL5->fj?G%OZrvdF
zF*36~+5i9d{>?>CPr2p0)PK3?4(fL^GPAAuUg<7V=#sbh>$RNicgx;aPh(+dI0Y&b
zK@An<K8r<{7H^3Nbqy4mD);Dd+POKFH|ziZHLm>hWKQupOV58_PQLj2`@27=OuFFA
zA6ntWz_5ZR-NCH6k(oX1$A^bA4HBKibfc!omftZ9Uha2Rd;OkC;6}`2Mh1tY7R;Mw
zu8G{NCamsv22_Zro}QN4Z~N`U(&=%tocV3HTv`lL1!>LLftELE^fF|!;YlI~)YKhj
zH9qdQx4Rxw?AvGkZimlIBh|H0TTg9BJpAdyVgB$c69$GGOZKoYIdpG#>if{}*r}V(
z+gXFk^!fk({$8Gbe%?&e?66jK7KR4j<B}7&X4}<Pfwq7L`&lkcT)S+Un)=+5Ai2sX
z6G4S$(`8161Itt$wBCSf!ToiArD~I^J}o~lRGBZ&z+k7x;?b%bv%_HP)~&wRva_>;
zMO@>m-)`mdVP#;L-OjLbL+I+TrJ$Op>h-m?(%%>v9z1qx2m#HGfU203+OMy!g40-`
zqJ!3&ZQIPa#r1MF{ks>nK5p+RIZg%!Gik=4L}oUg6QE*ys&=?p6jIEFWEe3p-1x%c
z(OUblJO0eAt=YwgdCg7Mtc~2P28xM)zu(Wlx3@YRl)i6li3+W1@ZUv5q#aOuI{Cuv
zM$_zTDUXhH?)-W!dUMXrO>Z_Hm)rT}l6Ucoh3#RGAZFoUU<i<U4;m&Uv-#Q3KlAOj
z+j{ErDw38SzoAn1<FNd)UAwG6Gofm~=ZVKvB(7Th_dWlDpg){E7n=5bx#TTrU6xaJ
zBe5M+P0L!BooQs3o1q!J4AfKdoV04ys;+YuX=i3^$-iGWxpu$r-zrdl?w>K!50&iD
zmy8TI49f3Srn~h>OuV)>8q{xid4GRBD6vIuPJ6oN^SRS^b{2om|Nkw2s@&!H4~#z?
zm{=CD&akhq1C0s1-G1M0|G%&6FE4iQZ`*s>&sukSOp)iiJ)h5U`Ef8vA5)EB&^-WZ
zqwV?o?e@=u{B;*J?CxFOo_~K%;W5eAweL2ip8f<Hv8sNv(f!u;{P}&d)@e63Bv!s!
zxqOyP_1mr2m(~CO2kMi98WL}Izu))srGNdc4f~6po|;p7E%IjF@3)tCmA?M+=B9DG
zd|k!7nolQtt8CZr`;`UiOTXE4S`Sp5?kasfO;Fhl)c1^h|1p36-?C$Uva|E<?pm6B
zywCFAkH?_H=FBYLt=s+XRJ#4|n_IH4>w!)(iH(hYc5d$Pg`e*fpSQJqv7q_V&f@1=
z^6%U2ezVCN)F1Ax@@2@8NOxd}YKZ^$Y5L3C+w;HO&fni#_s&~??-WoU8?;q#^WSf`
z(=RS^{dw>EzUiRjC*R%K32G`$QZc_*kqqj{^+*^hrOz!53tJyIclo?3t<CA@&z+d4
zJXt0Ac;8vs@;eia&siw%ezz<8Ud7{H(9qd=yWcr%JQ5oY8vi~2|Bt_1?U#!^Ql?t9
zzrLLO^Ye4@-O}r+CnhM)v@Xw!+Mai}ASX~n(mXE)bVx|I-YyMLUvS;-ce_CSyPfa%
z{g&$6{d8KiQQDaqJhE0M;W34-|9%{|e+C+HaAcRAqCT%e>2}`kw^ivN1N*FAt>BR`
zPyj`AR#ui#{=Ge*T1fiuX0`-o5eAd&)6@0!L8&ge&oZsK?|$Cyw_U=177HJKoMoCl
zOXl+_?e!v{hMC^pFPGZ3?*F}ezqZ}yndfUBe1CUkWpLp!$@H2BhRMfzG;eLs|KE6g
zP2ApHCvUyExw(7Qs#TA!Md#;6%(g1c3JeVm<&m-25V5-~_wcW&;c<~6;o;)OX=gOL
z7HNd7i-|0GcW0-?*DJx&wdap^i;K^-D%CpHCwqHC*~3<Gv8z|F^7gOa`E1srUAuNg
z>?(Q5evaqBvWG%C4QY8lKRxyQH1WO8)~C~=&Hhx~-BlX7t0WV&^kQ!Ly`2}|=31A&
znqvRwAwOt?&%N)}rLV4Ng5v8?E4Te6o%btOuFU-L_14zx%_T1{eR+G^e6Ce#)O+3X
z{~zW58%F1BbUpkSlubaay05F_RXyMB`~7au*K5&|mPIL`=xtlSYSpSY+wa%)o}04f
zy{YQS^Y#Bei@1Ia->b)9H-~{S;~D6%8<oh7Nk`qQ>H<Y}{(80g^7{DwSFT)H61_d|
z<;BJB^Xh)R1R2SDyjR}d?(MCurw=qTgVgj$o3A^W>H&)3d6my**1QUyf2!{H+v%W0
zp}+snC%5xks=mI8DLBY_v+Q=R^w}@hqVr8>Y5u$%yS402;c>U@=={B<S=rgf_5c2;
zoZM6SIY`8{jYo3QySuy1Yrej?sQmp-vA>vp+@F1$Wvbt71obxjET2vRWzWTKy{F!8
zzpv-UU?$ASbm0tW;$m;r*HgylZ9Y$&XP<d#322Z6G_tYGclNa1@Ap|7r=L5MxBKn1
z(%08aWwxKz+x_I{^ZDm<x8I%C%x9%hey7l#&*sB{n39XGyvKRu?QHb-ehK>bHU7Wp
z-s<n?o}8S#`S-is&-ed(z27WrS>fYjPdA;`JAGoJa`ErCpasY8PM(=*3@TOJjB{6%
zzP`3})heya%Y09tnQ1It3p(ovG|2RE-}&6TyGrFM9yFerV`;qDz5m>0fBU(~{kCT9
z@^w2n7;o_G;gns#x?=U})4k^RX58GIp8rMq;{U(*|J$<5*A(RKc-ZFlI)C5Kv|Z)z
z?`5p@ooyy*S5wi(FF$W<_Vs5olKW0B@tkawc&H_3>(wyNN%L&0pIr&|Kf7}Iyjh@b
z$NIhBPA&1ATy#XxJ?DxKXxp1;c+ABOVe#?%?^#ESx=s|2uQ9Cuy}kbShHu|)=chkB
z)C%gnO;)jfv%$G*k;nIUcZ)w9WY7N~Q=fTaf}*5Riiev2yg8@!cI({#^US>Xe(m?#
zC-2!0{IX<by1+E2{9Yxfxb(C8`Q&Sy-<RL_|JwyG^ND<4y!}Q}x7z<n^}pY4Pe0hi
z+Iwx9UhJ(Gg{#BXZhF0L_cD#HJ)h56M{duHJ^VZH-sQE?+rPZJs{QrrSLv@++dx{=
zt(N)BoK$|lwtVmL`vr%2BSE?L@#}TF^*|%kZM@RcR4gBLC|_FW-2UhE{y*M}AK%-Y
za&pr5xv4idrTSh2b*)5PH(p%N-N65xhr@yU!uI_8e|{Xd2NjZ=U$5J3_DkhUyIhq9
zs9V;lK5xgp=hv=YeLBfo?_{U?ycx`V77G6Me@j3KOSbIB!i$BVx?<bSwAnmTCK|TY
z-_C%lxV!J`%u7p4L6yztYti{j{pZ{Ld?dbqhVAz|#-J=@`~A-3<8swH_y2v{E?v7G
z)D*b1#M3wJ<)x+Ge%5cdT)BGn>9puP(BS5#+j+a6PIQ+$x%c}$P&KpmyD6x>*Dh1!
z0jg)8&#PYd@Y}A^(o)ZVB{Oe*y&gaR;$rvo_j|vC{BwD4^>=W={P~=9@q<S8efbMw
zYd#*We9*{V^kky@v&-}Um4Moouh;LlyPdZ?7nBM3|K>9va9efd?RJJ66`!A-)jrlI
z8~x?&?d=(Nca>gT=-mFOftgQZ-QI7v7VX=&Porzmjk@1&yM_I2Ha@ic`t|Ek&>;Gv
z^7r?SUW?9;t@*ZjzHZw2d9gf_MoTPyJZP5g+x_vFboaq#cJaHr%k^(<$qat8<+9(=
z>-+zG1sw?E8u;gB*}lie`}M!w%3i-H`FNk}?{9Cr_kO#z`p3QR`>tmkGfX}va`o!f
z*MDziE}z@ANTbXAe$8f!mrEvh$=Ozk$Xb<XwDC%Z?fGzs+c#}KsC18wjRj5r9$mS7
zUR253TU%dTSm<n6_2oqpC_U8KeZOB{|8eK}+I27P>@2>xE%$cP^0{SNel{PEJOb@}
zw0L%iTVDs1^4gAnzgr$(c*gL!2xzt{YI|PnmzS59|M)b0f6STL=I_`4^k+TrdxaL)
z`wh$t45uF2DljlOWI`Hoj7$s+Q`|t)vr9n}a%2h5`p>UA_ip^>rKUGP)2*JaelF{r
G5}E)X0paxk

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-2.png
new file mode 100644
index 0000000000000000000000000000000000000000..5fe905c6357ae0412cb4c780c85815e7a4bcdee6
GIT binary patch
literal 23649
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_eCM&#<h{~y2SSj{!@aPnNSXwkw|
zTUvx1RxxRLbZdz1Xy{tBD9A-b#C45{{!=Aimw*Xs94ADVG*>w;X_<6^d10%N#eVxg
zY4tk08;=}Nxp@8a#}m%Q&(54lSKGbo{aoW>o#Y-t1_lO(8wVy{W(6^RJXdG{(HnRf
zSr`}?8ge-lK-?T>21W)3h6HIQ4iNXYfCGrS(Z;~Uz`$_8j70#%-KI#I)(82TW@cf0
z?)QH9-+6g?`PJR!`L3?6CyyU@kBf`DwX5{C?#=L&lqIL8Xg<DVR`|%pQijiWo{eSn
z?R&e+*URv=?<##gZSC7TIg{0VcWE9k*G~Cj<?HQz`9LFc=t3vfpTB>fK7HEze$8j!
zbvDP%Uw>tOFkd<U&wa^;wK9C|r~9{W-`>>J6tcgr)_0bP=JM00MNV%@iJazryGvC2
zNrA<eW77Fg0z&8Q{qd;#*N?~jrPpK2SJwakCuLEvpi5kT-pbO+lP8;|oDjIWE;d?G
zQSsB)ub~A68(v*qy?p!qx@h-4nZlR#Z!JCZKVSJ5e&<YX?D<Km-d8pzyHC{&cKiAH
zdHBAXpCS8dDobBpa^)7+`w|hJml8ScID=8r5e{BSBNstI!K#l(#Z3zyINU9}oqMkI
zjm<piz4>p}u{+#*KKC*!!-=^%r!OsVY)<L9xYT?4mg47rwST`}kJ^~jYL;_j0l)np
zgXP|TZqKl<-=`I}X2s6p=V_UHD?dM58NA%js`l5GQ&Y8<o8{ipFfj?y)YOdHU$-}|
z{%`5tzu#`(+F88Z$=TWXj^Avv+>-mX-!*k~bfS+73JNaFy}fN^!NWs0Z=L%($FkUM
zu66mfJ3EU-1q2qb@k*`8y}j+z$B%(dPEBI^aclJV{cx)N{q3st`#r^{U+swe_j&&R
z7k73R=e_;>{CxPqCf2Wizu!N7`t<3W^QKKJJAJ+|?CzTD{0;SdOdJh7d;k4<t+#)D
z+}^0t*VnEtpI^6XU+wQzB`+^ohTM!#?m78V$i~adE6B&kXWF&MjY+Mywqz>H%gg)D
zu?U=NU0(KjbM5c4ukY?gKR-Wz|GRBmVmd3DSh>?O|Ie$au3qib%60RepIeV%*7bFB
zK~8PsmCiafMN=zm%?$7PTeg_=%36or-k!fdwe*gUs@IecH|9;5vSh&mh3Ov@@BS)&
zbF%lIIXFGZA7MCPs&m?iul?}jP1f&r9JY|*`+PM#zA|QC!9%Cw|9`*Fe()gS@$={D
zr>5y<$JKmvE&lYxbNjyN?RlneZ*MoBIC0{!^XJdEw6x4v6}oy>`uy5!OO`IR{9XF?
z*42n<so&n+eZ8&s>FMdxr#GE>aIiV{R&sK3Y@ec?-Mz|~X{na=GJNeI&l?__(Jih&
zD{!&fOpq~)T)Su0{QNZY#0ihfyGpY^|NVad{*NPn=Qp$S&yusPnsMTU$K%(pvz?rr
zd}f>Fo@wKizLWJOB>3;Iuj_aJ)ec`bqf1m<s{L@{v3~jb!&U3-rcazWQB6zhRO-(o
zox;7Tk!hEfc<Q}f>OI{oFfj1ho12@TwTj0XEcKddR99EGEM{j>+K&$p^L~4Jco<Ae
zoq1fY`b_T4oyE`3Y)Cxp^YztL--Au8zKu+*K1;o(`n<ol_v}Pv_q+<8V-m)xr$mw?
zr>%_GxX7~n-JR0kaeFE*KK&uX*M9rs-w%iRmsNj%_w3v4eDhW=Q6ol1#%JfO-<veE
z^P4?CKfnC;vzM2bpOwzvllX4WXTRVT0gAyJ5*&lK<wSlyq1->CSK55nm$}yE>oPAa
zXyoMPHm<9yQ?s$TbL7a88UFTvuPlxC@#)#9bNXks+xp92_TM~faooD>je-8&FOycr
z?cK%6$!Q4kT*=Ez&rYh(H(}?KDY%)IcF$aLZ(WaJ+Tk|dWxlh`)J#mS?3@n@;%0XK
zU0?V9s<o^7k`cVKDE0CC_xW9-+G+D@K6y@_H0jYczJ@)W+6oN+gyiMrw{JVx%%1(>
z!9gxAuApu)T@fj%RcoWSXC3JfjM|XU7`8rcEfXu3$E3QSPsQ&RpSLZtkjc8bYU-jz
zi%MQy(R_PnXYl;mZ!_EYWLMSv{N%aIGWm>r%?HQGX-hkW)wRsb!ZvQ)crJC~#EFxZ
ztc%^9_3O*aRWUm^?J9e_s-b~FRaG_f>Z;JFEg2J~%yKFY|5Z^@SyA@(mQ~4%2~s8*
z3*6;vLw<jMe|>s<-O8VzpJ#u2b2IDOnwcsuHy)P*r5MwU3kt4oZd!JB_m<A<Srf6*
z$-3-KK&OzZQK|8#t@jsIPrA5Qak^e?&}22=k`E6YO|!50+`D&gmT`JtT;0#q*c}B2
z-)hZNSNES6l9RJ$Ti)GOxAS)U_S^s4QBzyHHT$|AC`aes-WKZNae{ZdaoL-Q$Z1Q(
z<0>2(85ys?ef{!l<=Tgb+h2dbUmw0UYU`CnuH19&>*N0aeP0i9+1iMWPWS8o?>$|a
zd1*-}C?KP@X05FL{_fMaZ`T@`*}oj-w_g#rw`x_;(yq<tmd~$?N=!@yg>6%FbLo>4
zg1L8hg$k?tT`@jy^Z3rQt?S>i%hv=11_nx57A?^^eX01ot$K1#mxyN3-Q<&}Ea%x)
zZ#&i}yZYDH*Q?9k-um?Q>(%`If0uoHd_4Q!o=Q*&TWk@UcF+9f@xryBf;e_}*`y_9
zZ*Q$Ed3ov9hQwyO-*1d-Kc6*^+L|@>bm)~Y#UCGa>t}s@bTsScrlqq?G8f6${cwDI
ztoQP|*xg@1nfk?fE(QG)FIiX=zMp)-b)rjDyJ!0J=^wv;H*e>YEsEThbJGZvpMsb7
zS(d(<a(a{JWHrgto6dYbZ~s2$_3iEJ3oT@x-Ok@%di(s=aPLQtANL-9c;cGqgx6n9
zkIk4eMdWdTh0obprgx`FCi@f>Z94uf+cfXa4NwvH?RNg|E$id<-m0js29<Ed-`+${
zPo25*RpC}e=QfGcn|z+1n`^w+Z&%N{hKgNI0+N!MGJNfs7Z<gj7Hw2^@0+3I+BIX5
zYxl00*pn}A|KyXkl4w7iSoQ7A%dqn|H>cl?)1S9w=~791d;7-)7H8JQ?lvl2V{Wz2
zw)$Je8~cO<3?R`nGmYow?*H?td!x?jExEU^J+=zppSC)5b=sf5f6s1AK7QwytbN^`
zr{(_ZgOhFk&+XZ1`P@QN^W;;mz+I}|(<Jou^)D}W=b!%V_1^rRk2Q7Y=U65)F*EmW
z-@g6l`}+T{Fa4iee$Q}P>P$7?Sv$5YkI&VN-L>WP)ETFz>(8$G`bx6>aN@PK(a$%s
zF;sH<A7q-a@Qb$8`n}&~$yGiPJbLt~=cIep?`^kl{4QVjW1-IJOE)$q-#yk`{_>LR
z#fukzJ?hrK^X=jL_wTPw6E?pQHBB|Sr>3^nR!=`_%M0G^6KBj=q3S(tMaaq^PzxY-
z+TH5+dtY5x*gR?SWYg+zZ*s0yeR$v)Ic@60zs%;h+vV#t?CtHJzgJXL%(}a4Yfw<o
zm*4OA$Cuw-?B1XC?95CqZtlyw-|u_9%_e?d&CFf(3YM0U;`(t@rhKdwj+}aN>N309
zUne9MyLOB1)cyRWYU-W%&G+uzlUr}Y%Ep$q_k#3^SC)L-+@C92R|GD0+x585+D5KC
z?Cf0YaCN^q0l&Y!4P70kJ3aNh{r^2m%F0_)P729d6dXvMnHmXdDJdx_&B^6!ckZ|S
zHlxQdYIj-gwru7JpCy`D6`Zfzm0jMXQ~U4d^H;aFu8zKMntkoW@#F5s>F2)eSlcbG
z|LVoX#a4xnTDrt^SGmhox-53<4SIcT?bUU$)}~okJho<EFPpvikRB_ySjg#Vx~BQ}
zY+T*lSLfc|wkmr2x_3LD&y(i+?zuhlvYKbm-Cd=&bw6@0ENEQjGjoyeY%@?R$b9R+
z=%ob@4|R2Q6=my3Zd#)9@<^xf_1OBmyGnNzJ?(mRb#?jS&pVQia_PqJyR%f+$mr7J
z*KgA-%HPeg`|*JJ>`Y^K>#{c&US3{4*E}YA+R`IOT+;8~&fgz<@#4i<X1TM3goLi_
zD$TySGT8m<>hSX42KP56yYKyQh<n%HZ?~`RtF1nI<Ory&<>KSpr+R$i)Z#gLr>1Dm
zGRd5@E$8MUVRgS3pPrsRmm1!Fc7N96W4)VnyuZG_ULO7I>C>fEUthhn|Npb!EcezE
zF^$!stDkN2ON-BE_{7G<(ZI8`Uc=MZ_v)*wtFNw&Hn;tHC0GlTcq0ltt?K^l(2L(!
zbJx;L=k%qS#_1tjG6Juz2y|W@w)WD6h0b5EhR0`~nxbiRY(>)1E>HyC+MZvp&3|_B
zOyl&dA0HmhvMOEmS@6iefB!&jC$}Dn!n^J_y@I^Fx>QnsSX}z@ZL+$5+Uj!~HW)}I
z$Ji;{*OI(j{ow82=l|{2{d@4r^Vi0>zrAH{)AZxtef!nf*%^3!U96~tghqUPeC)0g
z&(6+HIp@HzB}<pCto!>bYJ1*Xt?+egzP-Jzt)g;7QjLvQY6-Wvp2cr#89q>hpz3k2
zxk>gloxOiPoi;kQBH>^YC?Vae`<?sr{QUSyU+xs2*Hlq)nP2y7rQNR=%Dqyirz&;c
z@B6*(IRA~Cpzw~nzant4h@9NIWxlhul#~uh#;EzsSWx@>Tk7s*Z}y1W?0shRyNY>&
zxqt)1oq%68-1qB#uU!?kcGbGr-LJmiuP>ME3))eTD4AUH=Eg>!{O|Ls-(57nU$fYI
zx?bktHr}Wm1q(s;mcF?WxNzaZtP2YoRV>xByuH1PZ@ZP*pNT(v{=7dk8_$IXM&>Cq
zW~`X19iH{*Narl0)UI#u?yeTq4vQ)O`z6t$olo}Djz13$HtYTUx5}#YmB+8o%)1TM
z!u^@1|4TG7PRx98pb->R$5Z3t;&y$%SN-*IzkSxrOG~RBb*gU)y?$qB@z%V%R;916
z`9410UmjWZ;({Wtl*x(QxrbW0U+?{X?{f9~z02?JF3&#NB`Rf{)?@eYNAl7oOLq8N
zy16n~z4X-;&*gq|FZtX5U9x`vzo_~3|8~wY%U$*M_I7Oz4UOop@w(d2f4sQ3_}7cY
z{Uz69%U>>^Usq)JLh<gEmBIO5zGZvG8J_swVP;ae42sQncXz)&(8vs`LQik1e!mw~
zj9l23dwbKKSb2GQP*Epkk}<)pS4uUx=k$`Am*3;x+~0pc_ipLyYpK7OD}HTQai*qQ
zN>FeipR85J#YL`K;p^svt&J)@{80X-zayybTo<$R(YBhKn^HIFc!#bII~%fB5|q@A
zc8QigIKb#T!{Fhr+FnDs=Gn1X*VbsZA6__BJ6y}u)HM2b)u)r{sXZ4v1eNnFwtN2i
zt0Z}IXYq2K)0dk0?Otqqb1N}n-W1JXH&9_VO+S7e6DwDWMQ6%Fr`9W5GJ|_1jom(e
z{OIN9ckR?v?fe~o*PJ+Id2es^_H{8k7wy<#vHe5gg9D6j@9n*vJ9o{V{7a!LgIteE
z^gsXf>FMcTACJqcYTka&%1|lH$l@?<&$nCIp!P$Dpz@r<Ix3d(;<xrzmp|V=JKVbb
z-JH6AKhvMTUmd>w+Yd#fztWdi+sj;C6B&F=qF37d+|u{@`~OT@DtYtr{?czIN1oi+
znEdPO_4vED{O8-PHBLWw;`VLp!_rqSySlh&=;`@!a&qP|zI{Hw{@Rwz%OVmIFFrcw
zheb?VYM6ZN#Oc%Cd#k>Fswm#C^7q^A{I2fq;Gm$OZQrKL9z1w3>;AsIlO|32a)?`h
zhi_K-w>Ob<txC0mZ-Xi-P-DgZ-w)@tQCmO#c>8Oq_w+9p-Q`#2-`{urZdgjnlH>d*
zc9*}uc3OY`8?h{5A)zhl=jFD)RZ&-eeW;aNZ~gTirZW!@x2v9f+gx9k`c!85{fhcr
z54+-LJ-f=^zcXAD_r7-WM0U9fhsMT6P(ge8cibemKADxa)!#Jq^v-Q#*JL;m3#wwg
z4;?=I^~+`d>?<n*rR-{U+^c%6>sfy<!M5f{!QM}&w6)^*?U`koy==t_jk%V^$1H1B
z=H1=(>)r16DxUB6eD0g38@+5->1!=5EiYCskqe;494oh&hK7cRzunIz#q-xjZx8$V
z>8WY%Et9wR_s4&~Q{4aU?d|0|i=V%0WS6_pBWY|DT79%jR8&xK;mga*Pv5>Bz0`a9
zwA9E~mzH)<nmjplsh4Qzx|qoFyQR~;rs;s{q|AGJDy?dMZ20x%<zt!0^|p)M`@`m1
zm0npNZ?7A-C*tbr@ay|(e}f9W%F4>jLoJ*$Z=LJCvO3&9zW(o4tMYei&ds&XJ~2VD
ztG74Q!=oc8C}>OF->ScVKA+c$*pRR+&u8B^=htVyd^|4ydi(vl%P%f2{t9XXdrnpZ
zCAW8XcW<rum{j}w?e<mS>+kVyPmY|Hc6QcMkfHDH?9>Wg)+1$>v%+ht*2&YSy*W8K
zqqgPD?31;A_Dy6{cK`a+)6+n?@m~G^T2RY5bXCa3dwZ)*>;Khk&A8}vdAWc2%l)aR
z#kOW%b~DYo60p>3DyZxQHB;W*+3Dr&ec4-o?~^ybA2jo?a%f}%m1J`rpC6a6zp|_J
zb;x2jUel~A8q(>PH=mjJIO%BD%G%%GW*H{8En2+z>W)HCft7J`k}4MmM?gu*mTfsV
zA8mU3dT;)ve7^nP{yaNBKmPx}@B6=gILxoDrsl?P`(=XHRIR1F(q<VSA06f5=fD2q
z;^O>Yl?)TyZ~QnB&rsQt8hPyWY3;*L+xg|qetv##&dM!TGW+PS{r~^2uY5Am-N(hH
z<>Tki#tRoNT;?@Z3)BTJn8{gla+2z@=<RvW`mEm>xORycvT}(SY`<GJyYk!3^t1bF
zf8Y65`QQNK<$bl)!XhFmpPrsh&$_lI^Vyl1$<y@X^JMtiD<Aio$NV~e>{yje+t=6E
zXS?-E%~W#j0<~A4_ncGrpJ(FS#$(7UZDykCHO1iHzki@!?3MNL_s`5QRQ7(Zuc>*`
zQn>0D&->h4TMS=cU;q8a{f7lJ*m$K<GUZ=RnmqaJ?EHP1S=ZO)HZ?c*u3x{NlZ(q}
zYxZ@s{JmeNSyp{n;r;)_36J1qK9bY7y*|ralzYFVnT@w-ChzST_Rm)oSjd2Um-qMl
zT<dgDW-9)Ew|w@WpPy$twQ|h_4S?AE|MNM|H0{_VRd1i;eX_nYjZ%H~)%^5vaA?qs
z-nQoDjg5;V_f!-v>wABok$GA0a=&FRokD8y`)a_Qd1bdAgUrm#y!y$^?0hrA<7=;8
zSs8r1rL|SEzP>(qQ;O&1J(b0qGcGDkf7>T%d~8eR<zrKHqpv+VKmR@pD=T>LLr~dm
zhH?729beAAD4lh2=YGlO7N(|GLFMVPnxCK46ci3j(F#5F<<-^GD(dR#KWmHkexAMW
z-d5v<-{0K4{MhHk$B!Su@&2>UX772%C%)4Rw|~gi2aRs-;QCJ5@TNle?G1^|j~+b|
z5fV~rKfG{N=;~)Bp4%i%GA79IwTG>XnfbEx+q=8k?S~iU-Q9Kf(5X%7N4rFeEM!3K
znxb7(V$v@y@hq~CnPpR1<Tss(VLJ~ai^ICoUtcmoz3A81*N3<B$(m$bP_X^`<?^=c
zh7}(YEM@pCW%!OBKc0Rg|LLiz=ju{VO*#3kPWSYr)X2QIeC^JldjC_^q$#szt(vIp
zuBE2t1{%8j{5iOyVn@{0tfi5g(^7XoJF_dU_vS>oymkLh&bQxx=<s1tVd2Gfe}83u
zes<P8xBlbDk3|+Tx3=fs_r3jWt%W|rgxM9(OBfj@Ox&7%9n@;C`u%qM*Gt~|PfIL6
zef)TFP2}b;58LHe1uS&RJAJ%QR$E?Pe(BPsPaR6@yE-~Rm4C>Ng2e5q`~QBM9knfI
zWlIZ-tDD=Z*xhAZTwIqx<z4;1nzOUb{R;~VXIU06JN`9)TJ^h~?zgw)1{V~3(7o-R
zlCs2DCvHzgpnJdE)nmQVU+-1F&pgs0SoP(iyJ^}PiKpl1+eiQ28S2Qz@b4Ul0z=W-
zBS%~!r!C#EVZ$6f*J-IMUAx6VV-ov*JmR+fe8yPswEsMtl{Yu1uTDKZZI*3y8DFSo
zC1m6<?`=E3d{|7(96ouwHJ~I~8LEEw<Ye`)FBbP_Jv`J}^<<*^mV$?eqQe&N-@pI3
zRQ|FPCp>s13=XWVeSK{$sN`SfH+Pk=x?je>KR<8Y>Nix2e$9NqUeI|1!xO8Q-wlr(
zKYm)`vCOlgw>N$`xAUz`KR>Ult83Ey`SYEeov&`ojn2KZ<6`dY@cy;&I|>%Qy1stB
zl55wA)2FpBmzw6@3K0|(l(Mheb9>Xt$>7@b)xEvDkC*0~Z2Rwac-6XlZK;t_`)YQc
zHdy@Sx2Dl9_9s`v<F77sZojh7nVnbC=!j~KN6<tiS5O558mIQ2rgL#i=H-}a?rv_Y
zd}bP1RexJEulk+kRIO02pP!xvPt^)FDSsE^dFkot>82$w0zy{=fJSCOwSe8vC&Jqw
z@3?2Hpzb&4!s_+=R-KxvtzG}`k5<r<jzx<Xe?6tWUc=P%>#pbO#_x8$*3*sL<f5pk
z2x>I%`}s_I`qScPX9Ay}n;W_@$yHP%z=4%ZB;f0-t6wj=%kOOM{jz_#q1(iX6Xn|P
z=ib>7So`ZsU`ffArluwl0f7ZvqFOIn#p5oVoUFb+`t_fmpF?+-<$}y;Y;3H0v9KL9
zR=&Ni{?EsD&=?e``?GN2!cX77gC-m1RlU+wRa2|F^KFUe<dEHExvgz&S_%pdOTDHB
zU0&vETKvps`@YW3&R^H}|695#_4KLx_u~&9JP7J}Ut1qvfA<%of^rNa<Am2Dnn5nj
zY`mAAot<r3{w`)~-rcB+7cWkF@+aNNsVVFFy0xIlb!=t>CDE<*|LbahKAk?xzJ6cY
z`FU&8&d%DIbA6KzNDLGppf*bSyh=6i<nMd;?76Zw+8i`PAZ?ykvQx3{&W=KG#cY~2
z<>9ZJva5oZdWrH%nRtN8ZOJ4R&y5>5O0Fya_ouS<<5BTVI^OH||Ep^I`|0WF<)9(;
z^z-witjpF|mArTm^n0oIbP;j!<)E%7r~z}dTO8E3*_wUbuUky_lKT9bMWwH=z5Mt4
z{q*_s=kNRT$s07pzHs3}P@v{j)NpcgcJ=mN{rC5G=-MdLuP-h-hp&sd*e7fK<siHK
zi<#;30#^ntH7Z@VPF+RC#ozYplzTOweL=1Q4Y?KH)Ly?wNnc+d)CK73=m_xg>H;;u
z>}r2y{QdP6)Gglpet~22m#^33vq3rO^78&J5ltn}bM;>J`}CfjnYnnz42h#hkG?!L
zRU0&%25N@r#_R~N|Nm$6Z3Bbko_)VwY3oL8aLB#2CGhXBuUjiWr`3MF8V<@2b-!M!
zPt}jVceDQ6o138U0OhM&TeDAJza9=Mm5%kxudn?4Ec5TLuX^EvzrVj<pLn=!rO!+w
zP;LhmUa~e70k5yEy$mYqJ{;z^{+)McM_{kC`L&ai)vqq`6yBP9JM4I$?BzL@#Uac6
zWI<yGzO&8Fe!I_dz`lpEAqLd(JNB?(hUa9pox0g~c5DQV&Ar`zzbrF;Z`Ib1-@ch0
zJa`Z^)~<JZlg{ai%F3BXyT#L2_Bl4Qfrg^&{{Jc7T>d`p@zbZN^Xh(OPOpucmI~?!
zPo6d{P3N>xU|`@(JF#TY2sfy$@VG8~O+?}0eJ_QCgnCjVpKUxYSG?`-kH`JTHt7T}
za_N+odo5r8CsF6L(Z7HHo}HSieeN4*(xAY?=k>L<XODJ^-`yrFA&~)Uy7<ktdK$B>
z`g<N|N?}#l+E<(UktZzP?|yFw8m;^A@bKMNpwWk&1rHDLzV^Rg=Js6u?xm&Py{VCE
zMn;#G)_#9?SMGQD+gn#HWcW6hy^Wgw?Z=M_kk)&9t8Le9&%bXs{qu}>_y7OfzES7&
zp3mp3_1?Z*AKZR8ao_KE*3(l#<7^vsPMc(1IkD7MQ}g80{7HEyC#fDgefsp57Z(pN
zwbjr#F-0fx(j5Exd%1HTAMdyRZ>y_&7Sw!TVPTmeU;pRg()$OS*?nDHS~&UnzwgLr
z*df=Jz<8oqNLUy&ss$?Y^!NQ(bQ;`gm9;7f0F8-O8_HEYU_5&C=-;Qc)3rjqKvBLW
z^YR?$renR*>iPNkw%=|f*H`Y|e(7K{yQ-(E_q08U_rKVQ>&IRB`1ttUY4sltvVZ#c
zvG8Bqaz9yDSJ#(MPEM|RKDRt%LxSV;O)FMtfMyr>|NHft_x;oxI|>(HTNAlhD|FS0
z`2BTxr<s|VpT2%wefXELwvv+5q>?W$0;hjlu|lK&Z}s<gy2(9ax=~Y>{ssB^@znJ{
zepHBRg=idpYnpQ-;QRgh{oc{%=h=pC%Zb#D-sbcB`}^{3?X9gl|M*@q&AQ@Iey6bg
zc<qlLKPuK}8yH;p`Tq0s^Vi?q-F<a+xc=3Z!N-@ze|&WG>iT$lS*sEc@9BD9D|i?t
z2r_Xr*rZ=x<~wQ0uF}_4d)gN}HnSNWv-lmm)~#3S=Dqsw@9vhqx}xbj-!68!|NLub
zW*T2z<jO6o9j0^p_PMiNBASa%obcHG?Zbxx&rcTa-YzaJmo8l@d2wOk>%8i-vrH!~
zIo2zkzW;)c2fxepIu3t7KTsEP&F=U6qCu_md)EW^R+WOrMQueTJ-xjzAD6FR1M0tN
zXn5Sacdy7o=F_K7msSQZH@XwIx9aPiTQYp@#vC!fZ_P7G?E*E^q@=Xu<>k}wf<~2Z
z+gX*pS<%wMa<}gH+gJDZ?-$dJS`xh6Z|B?mudl97`X?i0UhyGe`~0oh*H1|-&b_@Y
z_2nD}hVKmwCyIlDf>bmQFHc^&y?WQl?G+y%-Mm+SdYW$Nnh3*QdHXm}-0v)YZnWp8
zjk$;Yv(@`e&wEtK$H&LBva;^fIsM||o_qJ||E+)W$~*Iu4{R;KYWeGWyGvePD*ayl
z>4|6Lw5NNF3RkPDs(SwVTsNUaQ&V$Q+}>TFQKMO=*{iazujAt3nX-NRcE5QxEBWny
zIEd@ToVZjcSN9_kRPv;ro_3X)-)6z1qur;^pZA|+QuO2m&-UqoGkpI?FWb+q@^a_%
zd6!p!N5<aO1UNZ3G^l{Ont9(XYd;)h*NWb@M$Ko&f`^COvu|uj{PgWx*ygmeU+z`E
zUzu}r)1)VRn9BD4Ow<7nFB%nVF&yY*U{W~m`Cnnq#qF<NI`^&nd!T0Xvm6ikJky*T
z2B40!s@Ieq4|{j;wL2e^=r3-G`J4DDY(?PWwm*OVOqnue$^H8Ov7*{xXEwZ_r0T8W
z`TcJB{I#E>LG|mg89MQaKUPoEjaGYk-qQ0DX#C@6?*Fakuh&Ozb_30VP5ZVn@h}_6
z)1aJLe!uqlrzeKVJ#GB*^B(SM=a>I>W8S}6{`I-?wpAhWwO=NJS|WeHT=qXTU4Op!
z|CPbZcjX@5qywtv_EvwtwlVqmmaMB<p!92;e(uWuf8Xsv10$eG?}vw4QzNH=S}vf0
zXz$~E4A&0}=rC0JP1Ooj@dOR8PSp;-Gfh8wo6oe=N*SS&%{Cv82%l55?6?2-gV%nI
zxNcO)r01&zUSC^#`qDmGzIMI%eRE#^`}gl3sDY5$b8&Y5zL|;pKR-YJ`tSGq(^Dfs
zV^y0&g3CbF<)kT3t9AZ$DZBS&yt%P)la9Bnby>-__qVosPfK0tJKHSpwNCuLJCC<r
zYG<hWRlUUCXnX4EX?gv&|9(E7zy5c`Ls9Lp9b02}7P+ntTRZ8?|NG3K(V3~*;UePV
z&&BNcWGoik-Cdr(gWr>jkM9~N<-EMSe6?dU+pVqH)9e0z4fm}7=i6f#wX^7H>2^kj
zNLL2N3C~^N<4cgCzWMe4A}=rV4Ngc{AXoF@V04)COrz8-85fm6s}^2eU45PRcli3a
zSiW}W;N^a$KOfATGiS~8xGGKWaOtL|CL_~1ud?#@{an^1s=aJw@bat!4UBp6GyLaR
zEZmlRJL~$oSkUOy?{9B6Z~6OXRn*p1SyxvrJv-YRltS}PPo6w^v(2BAlXauFfyTU!
z_sfTWes&gA_B`Ko;)I7}@|{D+mif*$$+=<BU%&WEV%9vl=X2`zpV@lby68#Azpv}-
zW4E76Jw0uw@1!3W-Q_c{uZsnZ=6+6OeEEBaS<igSVz;}y%gc8^D*O1z6_kAPe(x@M
zIjQ(WXw`(wySuiYnx?zj-|nXix0ud{i089RvrGQ{`T1Ion<1uKF@m9JYtOuSCRJZD
zKr;n@e|^3D=xBH7-m22Kx3~LmPCGkk`t<2)J~JK^*0s)#JpT3BpB-VKvUg*$yYEaR
z&~#GPy*)eq=2|U%zwfu7p`oE%{*3b;hue5flaKLi&ARFpx;kuXe}6w{Val%3*J(Ta
zA|hr?(}`RZwl*sB#f62S;bzcq?tudiAPYg|JgCjGqcFLD^2M8pr>1DGir>F4uJ&sv
zsIk=5+dI|J4K(fX{eJ!Wx3{;aSIJHIvM}V*eED_#vewH$11g8xcsJ>IgVu(m&#!&9
z$#1$|?3Z`D->>qYZwDGLIyGH?J!o+7^Ru(Tx3}e**8VEl{?{buMgVAJeqO~RPEcD3
zG^sOD$@R+SbbnC$d~5dgYj19D2DRfsfz-|~f31m?yX1E6cFX*G-<PDGo>ukYAp2L)
z$WhGBqFY-sCyVLDta$JsVfsngZc*)J-`?KNKGq}I)z=sH_*n1MNs|_-dQa0(P;j_-
z@#3vbsok6Fv$9sby0UU{(bH2aqqb&&=1b1aw_mU7JuTz+x3{3yeR0RU?c2A5TIb7r
zXRoUK{A^X|>S>D>FP^F&ZwD&GK&`)dw$-3X?w`MZr@wm7#4u?F`;#*>jnfV^FfPly
zyiCo&;6lW-sSk^PZO^@(Hp?V4iAzKyfr**f_xZWGXD=>xxBVt-U$<vv$jV8eIozkG
zr<=>yez~~ThUY>4OSj^56;;)lpv48Crr7i6>9F-1zrMcSyl3s}omFxZq&?@eFY%da
zly_P$ZcoOqudma+rs-t<`SZu;=clJ<KRi6_8x=LH&_ZUJV>6rF_v*Jc3hsR}hO*XW
zCP%x)&F|g2ckE$-#q%p39v%jK?T1TVUpt#z3!2GQcJDJOeSOW;(a{mSUZu5l<}}^t
zS)jp!iWpEYtpB7$a#C_~@AT=@kEcS0P)?`L>jAX{+Ycw+t9Z=2{ol!xC!al?9&ZL3
z4&&tDFmUY_GYwr8Vz_?)zg?cbzGpY=%ido5)gLrkR8g^`v$N9>wEE)ard02?*ZH@%
zo!ydm_m+ru*clOxfCC}x<L>_XegFTyca^f1MN4-6{dT)||Ni}j7BYIp2j*B59{Td;
z=4BUG*O?6s48iMSEI;4MUO)57m5~1DUtV2*`RC_n-?dR&eL#y)E-rFC>&$PP^6$rE
z{_TI4FIzV2dR+C{Df;pEK+VFSrCu}R_Eyb&@+4*Z{<BNHr=QvVeqZ)1)9f^_>3X?L
zOiVr*87p?a-}n2>jg845`8(U{zq|<id`f%$j8jv!!9!zBtlYD>M73tL%T=B5nQL`5
zW?#+Ewt8`f9kWt>%=QWWk-o9JeEp(Di$ZplWP<wKr>E;*Z{ZZavea9AdR=E{Cn(Wg
zT;zInxxf5eyV@vFF7cYKw{~mxb*uSblsuD<^;|SQZ?m{vuF3;c$MxI)TXAx-dNybc
zPO%th;Of81{~ruRFE6RiwJ3C2xNsq;bCh*u#llWu^<AtJ<ZP=lK0P`4>+kpbbNf4E
zc9pDr^yraE*_#O4k4J<j{oB*IIpyReP+EU>Ztm-t{l(AE&9W|E_wD`t`41QCFfuSS
z?B8Ag$M=PuogEi1@7~1ypg|MYZZW;{EAnq_Sf~}U;(<}zuXg!5P;<HJ%ZrDb>dw!z
zEq!)Ia{Fv9koNjX^)(D9dzLIwk+m#x0Zo)fhiy*toj%+B^8dY2TeI~3t_oeP)_!>6
zQfXh1`u);O9%@Vcvz}#Md%9tRfvUQ?b^1@+iVq9+?AaqCBlG6c`Qyjk9UUFd-7E(w
zuU7&ox8HpK{Q2{_k-rwRU;e#h*|JmDuU~&$_UG^4_0}In7#J8nlpnWIm?<D2px`N|
ze$Z=vgXUg;2Zsi|xIHfltwGC+zI_Hwq=1&mC@Cwizs=9Uz+kCtY8uMP$(eO&N$2ej
z@f1Er72!+maZCA+?z(lbnH@B(32IH=KRsRl^^J|mditlnM5e7b|9EAQYxk9v!OLgI
z*fKCM<ZaUoUbZ6nc%Nmg+dLPBlPw=U6tuRqfV#YSr?0JxUH#%k#`E_VFJ3e{1`^A<
zwPoezTId9|_x)^FH#e_epIKv91}&Xk4vOp@n%i=3FY}vgWof@%@im9S%q!b+qkZSu
zM0R#|>V0l_b7P}(?eA};-?A?(Xk=n${(3Wg{!W$&=k0#`fYu~_es<RQj{C0-tG%Xb
zt<1W*YWoWh1_p)+u{_iNzvfVw1RB$sYf~B2+1WX1N&dc{Zoj|3pRNLG9f8X0|Ns7)
zW?$1edhD20x|6(NQp>x2zw?eBKW@GK>HGKV6`k8&#Q*;_9n=Ul&AjBI9lq|$m6gF?
zuSMst^q8n*SqNGT>#*)a|9sBaNsAUO+LC|YuK)D6H#ZjtE%oyJ^?B0m&*$yehprAg
zdHs60Zq$|w9fHatLPC$W-FrU2e%<$b)&AAr-UObUqzdYye0_EG^{&#KJ39iet_r=}
z#w)#piHU(>0{6#C-QPQy7TG(yrG=~t@#GfMIT3RIxO{y~zx}_8vQwbNtpCbpu+x0y
zD+P;YN43&=Su%}7_+-;u>+)5#zrSfkZd&r``T6x;Q?)WrOi=Xl^(}q5z4mt*Xc!li
zp8^6V>?(P=DEWBb(}1fC3=9tM9?reY`b3nSPbQ#O$`rJ8<Lj%d-i?ioQG2Vlvhm5R
z=#@5q^?LpOX)3B}YOC_@?$V0dvZ9SwdfDaW{;%(r-@m$k|G!mRv#+1JJv*3>fuW&Z
z&yF|!(vy>uL7nooaeJdcRkO;=PW5>go}Qlmb^iZ9?wXpKS}{8|fEE{Cxe}6lZ%?G4
zpx~q>Ql?p;hBRnxoUp&m#L4ZT#o<ph+7ePPy}Z0!)pOy(g?ev~c8gCx{BXkh_3KqK
zLF)!DE^0Nd@d!HH#v8iOiS_Ip%gg(kKt*&+2g4-LD5cS{717)CK+Q2wk3-TpE#u3J
zi?1#(?`L9S0`&ux-TPKleSMYp`udv4;Mr!mry5UzwBKn~jF@?4iKj4VOcXSY1?q%(
zPD+ie`g%3|>oMtkk4b!THX5E>+}y>{_BuK~Cr_T-Rq}FDO-;=kZ5ajzh7+zF3XuYm
zk}GG-kN}N!f@YQN>-T~D{OD-+YWIG*bITKd{`|Rf?d$jN^*z0OeN{mdK@a4+876sN
zUhaQ=vcKKRxz^=Y>kDi?9AMs6^K(;N)l1dV7Z*Td;gdj1R(7nd|M#cTv*;Troc?uk
zD9rqFGkrd&gv~p=8Z__XIaw|9@-p9Z%af7nj~Odh%b&OXK8H(O@6Dxa3!T|ZUtCa>
zb_b>ZH8ad|XD#!c{p`}TNs}fyU;R@n;9&If!^6W|JUk`Y`%7L<>M`{4_6AMsI5|0i
z=76`?WnW(xT2fN7?3-!P6A#b`?QK(L28IXgKYwBUaI9B4bZyjDnN=^|H!e>|4Qk~Q
z-I94(?d_eNmzUPQy0Q{9auQp9SJgA?_O`Xp&dy#ATI@7`srU4(<9)JKKOVN{u9XA@
zW$q59NuHo#GEn>5s`M4O$Zu+D`to-B{j7_NTtU+jUE=zBo}eKW(A4sc8xdb$UUml!
z2XzQ4mwdllu5D*$m(C9=icciQFrHkptMv7&<@4);K!g7`)8~T+C+68!f4LT&|MIfG
zed#ytz(p-#Ya$jFJw5euYIq!I`37hqsBYYz8O!4t85kbO_iHOe2JEdWJv-a{ecNBH
z&{a!Vxy5b-fObAi*j~UoTHI4{QwNPpPf!M;?k*ItgYQ|!GTh0%y-jzyH$%g0H4BS~
zrCw7{y)<HA*vZ1EBL3>i%3#0g3=HPI`|Iug{`+m_#KGVo#Hcb|N@-=JpEx6f`9ZU}
z_V+!H_sJ?ZFfgbHIuxzc@C+^91q#>)%O0zhfZApx?T=COKgV43^pxn@$jxq@ot;{7
zdv?6r{oby!`uRy`P$2vZ{B%cj!rR;1S0^3q%DS;(;jb?*7lU?TfI7f?DmUx?zQ3bz
zF{o@=us{K{9&W03__gEm^>4zGFE8^A-H_nO%F4RZd%B)g*_#=<UqMFhjGV`<U|aR&
z!r$-r*9)urX=rMCvh&M@+}xD<^~q%ad!K6c<Mu>s&ANJNWAbs6gaZt<KOVM&7ANz`
zSUh+$dB%(tyGmbYeSddX$}DFFXt%@J`S$U>(&k}NQMYv0gL2!6vqf)rECnsJ1{Ksy
z%*?U3%HP~rD5&gq;{N^kNg^^bYs_+Qy|@}4zjx`^Id-*CvAfGcPfyeR`gD4H+Kv1d
z7Z!T?`d)o@cDAUXprYrhz{PE#&Pw4U7f@$q`xZY21_lN5(_6zGCQX_YvM$E5SIX3D
zx_*4ww&TZ+t;)Z@546r|Yw>eG&}8!a{r~qRB`4=++Q!#>Z0(b=T(r=+-D}dhxz_5*
zJ<+g!%()MWp1jg#A+21ZCdJRrL`Nxu8pOAs-eUN4*8G0Ptu2{S)@5rzdk#QzO_RR7
zTs~h*Ny({K$`n+FURmY~Dpx}vAM4${^s7$nE|58w{{8)3dOLUfN{2=!t&kNHs=mBf
z$Stnt@ypl*-UZs9c6QdSEt!{f*MfuXZBZ`6#3gFJvoc;^TU+&N<?=5t7Wab&AwX+|
zKucP$TnPb<#IIbr^4F)+`l3QYMc&yzANSjryu73entB8c_=CnSKy6*nnxgG_cU3@f
zJ4L0nwRPuOc`>nNPoAX2?kagX?HVTo1H+TFomLGVprNOEwcjHD{`>tNG*f@K{QlZ~
zwZC7zxw)B(mv`#)>C<&f=U5iItz5aXtH1yHiHXWz4>0q;Xy&)O5bSTe^yTH{+1J;_
zdinZJRRPzZ^XtxgRmn3jFg%#Aah-iax46ERs;aA^q9P~^L340x<M+osJvH_6j>5+_
z_u31!Sy)&+Cf(Ye|Nhdy7mNE(Ni4p)I^6pA68@9BZvFiHJa!v10|Ub!;itEjCx9m4
z?(QnRJW16%rKgasuj=co%%feRpanv|zP?`WZ~r$0w0?MR)z`dC+lLPy{<{DF-}0oR
zT|2k5x3zgq@|$DvP^N0CoyhB3k2!gGru6swt9|=6Z;9mfEu}y9gPeRL@z$11&}uX9
zXfH1>zR=I#CuTFB0C}^eg+(`ZSBPu3*wqUQ!Bg~a@9qx&`RVCp<$fFRFx!m{iM#&)
z`+ap!<>%;MQ$W@J%ir(!hbJX1IyGJYeU87E*Q77$0-XH(;T|3x*Vf0s-}dj;)@)H(
z*|{h8ew}*dqgn_rsH45gxt;ITg@a$YAM{F_uZr55Wf^kuzVkZSrmaO!y=;HK+1%CH
zc`>&9?$U>c+h70q_!#8J=Wm1s1QvicnB3l$yGiHuv}>O~9OgeQvG~0G|2s=-@9Zc9
zjb8is^r)=Ny}fOgdHy^hVd1&8)AV9j$y%4ac-St#Z>cG$GTs@xZZDINnAkGY>}xMp
zE}u6^1ynLkOI=y<@ljr__f)N=lE&*~H<c8F7GXzk&zohC*rXS`Ysrim5}>uZzh13g
ze`SAteR}NQ-`}sViQFtAExp>V_ScIqFE2|W`il22NrBsRde_+|Y`<R@{r2|u>#IUn
zhb-|Bgw6AJ3aJ*YS!S4gY(>e-OCVc7Q@@v%dcSVww+mPww|7ph*A$I~qS|3Eem<Xn
z9W<#NA0H1|fTrx$bK=QgP+T6kKRxwLRnL|94e96QbfdO-JU>4_{Ol~#(A8mU=jgqh
z_UnH#*Yb{P2ZlekIa5M>rOk2zuC59#-X+0sV%wMV*?-F4t_Kw|Dw<kaUjFufOZ=vT
ziq8jXC%2j}1SQEIzlquj`J|H}spsMh!{m_7X}+xN?4ZqXZ;#)$4z~}K05$T8e%dI!
z1f|~Z_v_;?UcC6~%F4-IV!E>~tAeci!TrgFVWvsuq+8o^SI;y~e^#Ois$@1P`tuz0
z^7Rc}?ABYfiw7ihbBa0>Xhe8x-rZeu^gs@DFnij`@ag69`B`UYnO41CyS?PkkB@Wo
z*g<t+JV^D?F43*k-}CnV`}LZOmpAm^pP!*C0u-muKh(<oyksWG&^!hIJ1zIN<wi$N
zn|e7FBywVzji7^?-<%njRYBYxoS%*e=zv)D{5wB!op^F`va07?>+)%-k>~E`FY%tP
zw|x^>`sNgEW{;YhJvyg@et&!W^!4l2KYsj>UY8sx#t3Seop@T5%5ZaYdcVra>({S8
z1&?x6Mz7;hSn54}-@Er93qGmkIf2|xT*JV3T@BBAb<nDmEt!|MRDaI{jf)+VnErHH
z>dVjP?awcK1u`?mZ61e0x0r6w?y|Qf-`+%uYK3^Xc8it1PL2%Y3juBDRnY$A!tnC;
z_Vr!j`s+Z$UPVt&S;q2#Vs5{N{~hK{#n1h|zPmg711Pqh6jmxVOwo^zTkb#q9H?Ev
zz>pF=k3#`8r(yT^OR%bn$`g15-eKNU@-nEkrDa9XQZLZN#>q*lPoF-0dg=Hkon9$Z
zt#&O?z)X;=RBEXC^YQq(`uXPh^N!nrci}30KP}Ao<kVDc%UDphZJ4d#e}@^wdhlM+
zKZenBJ1EIVY;dUl{%)$uRK3_JP}Q(#(W0UqMj&s`oS4q!aerSeXszY;hY@`3&gboZ
zuW{><nCLte<c||;Yz$dm@BM!7@`;JcSC{!pgZho?{`0P!oUFdJ>T4FL1EuWVcjd%H
z<>FmFAQR0esIP12kv8{R8@2V)nVH71x8Co3E(e-JdwzcY^%;iApmq9B16o09jg&!7
z^zaCntmbPJb8m^Ku$m^wtDhQd1Rb25owuf*p2jmh|K=u8rC}BZl6tWIgfQcih3#^e
zetdikno*o<TYc?j-M2T9yz+K2kB|3XSMIl&)GP`Lf)hP9h5RQbC^~Pc{G9gn{rz}m
zHlBcriXAGNnwp-OnVF!Oj(Zi4du7%MfpS9clTL<7`tf$4(!Kckxzd^JOENDn1MPo{
z+LohvdQ;I3FOZ|nC#f@e?7Fr#dUfgRYnHK~q|pFQ03a(LyjKj5W9;nensoT#g>P?f
zKYjdo@ro5Ir1?P8bi2#mZd&OCGNayg9gl*cq2VSSZ@%`!NQqon-ER*pk-uXE#X!Pr
z8$k!N{CjIMFE87<1yp){eRcJ+?e{y20~fnJ4FG4wO-lYO6F>|0j`c{MyZ`;o&BdUd
zYt`T0OjNP`|L3!mby<$zR8WplnEc6w;pV2)?pIe<KK@ht>B&h@Pj8v;>@T0s+pmt@
zT_$B)Rl*krYQ`!Ue{x~)^z;l22$=BsJ7}`0u&|Jek8hgF(W6H*pP!p+87c=#`#z_H
z8C7(2-u&NM{ys78TIs*z@y3goIZjBjpAZrCUy{+aE`wW+(>;2-Lx$+bEi1Y!wK{#S
z3$NCk_HfzkX_MN|q~vy+t`9vE`jH_!E2~1ub^QcZK@kH9mv{H&pZzJ5@^RR)-}qNW
z%=MV-HTLs=TklEVvu>jL_rH7hSH9c%e3HuNXJ=36*Z;mPQ*=U+_xI^(y4gEY^%)p0
z)R>;W{o&tI{o0q_JAb`ey*cS<7ih_>si~>urxVK3-|D~bzQ5FezMbeC0S1N$X<a1;
zy`4`c?fH02dgsq)voCK<KJGKm#?rRxi^n9L$W1E2%Y07S|GjJ<TH(dO@L=(l4hGPy
zVBX%Z*ZA-Lek}ig#<tws(`-Z;7&fena%uQudiCnnn@QceTDEKq3>(B|r8dNrTy$Nz
zYSpQo&*#m4_39OfEB|xOs#UAzl;5jV^<igVShGG&Qb9bXz;V^8RTJ12yk=mKehoSo
zz$ov|j+|{b({?^+;<o!_$;86IFl&FBq{8a(_5W7)Gcq(xJ2^X@fq`LZrXb^|Q`+lO
zUR_x!zstV#)s-_djhF9fWMF9cdPztB;4km^|G%z-hWBOaemu;+^Zy`!-2~8T?sWU#
zktZiJGBCVe<T{73^2<f{;tvPe>tFn9WS0X?W2`vR2{PlN5>v{@M@KX7@B7>SZhQ81
zz5IPY(>jGg`WCygoCu4~o!Ty6_rv+SeASDEU*6r_jnMYw#KfI%x7{|%ytKq^`;*%D
zd%u7B`@Y_O`~AA=eZQ`*4=ZqDU`WW_(jmUEU*6vC@^b(4lIe3Matf=Zw9A%xOxp9|
z5I1O{v{A-|1#_z3?G&9S#K7=FL-!Gnhp(?MXzSOXAII&_H83)7DtLHECuWBMGaJtd
zUh_K>GA}P%x@_69OUX<O4Dt(I=P-IsdiCm+O!=Kc%Xd2-YuR!!Fl?9?<<p?zSzB8>
zui{asPQ(TUW_CWG>+52*ZG{*ZHt<CqQH}5fx%|qtYiSP-H2(a(|Nn2Bzh5qUPHN>A
zUzUA+-Oh(?(pol(3=AIvqg)#9R6OpreB5JflyYLior1%>nq7+$*Joc}XZfIkc@MW0
z1H%>uT_uNgdp@12dFdU0%D?{CWl((hezX7o^ZfJg`~TOnsxdP#TyyQ_m~eA*`t$Di
zKabkqmA|`l(|RE@g9G;kC8j0G$NM686g+HycYc<sc68p(R75mfSm<1QxAgkcwcGDy
zZTkNE{(rmc@%6QR7LPi(eApNm)^v*rDol?l^1N65e(#sp*Y)rJ`?fteG<53xKTp&x
zf4x||`T4wR(9Ubi|9?Jf+o~}zd=QLsY54Nyrt$v2Z}W{oo~rx(R<ldV{C-XGGQYXA
zCMvsw7L=_%QQhP-!$1*~@Jp}9&VB<bcqENdJZ^2zpRX6YE9J_H!1}L7Mhpx;Ofn4f
zU2g2H{{H8MyZx#Dx-W}C*)DQ#RVnC%hgYvonOwQEv$*)>(&@`$cb8?~xn2MN@8y-j
z%VWxJrbg~6$y~SNQJ2l{H=Ac#7N<pR%`&tvV_>+kVAkLJE&snPw|{Cp|EJHspJ(%*
zN#FnBHfc%p_B_#fT9&`xZ2oLs|JgipYgXuF>jK{y28ySr>z@zyx1Acdw@TIX+pX;N
zGBqC#&IGN#w)uF(tA~eyLG=0?{exMzx8;KN8J#u1zvt3olZp=q*^8ggEq}IZ^}49X
z|K^t8o4IS(uC^Z@lbHE!3~GOWJA1zV-{(!oSQr}8mfvLem{jxgbo{v~n!!?gnX8tr
ziQ8)x|NGYUqD!9YsncW2GB^GI^?H5!!6w$5#pi8jzu}cIQ1G|=nIf6Y#Ne>`${YQI
zUXuis-JV<t_CNdJU~@4@+v~O4K}R*rlG%P-t~%#S<hs4zZh=<3|2&&txB1xL%FoYK
zJ+rd2XTQ06?ONK!MXr_K@0M?Vxomdc6-!2j1(sQYjG&Cvb{>>Z)qcAME?Koo>;2yE
z_uS?tUtHw+^LhQh=X2`+{d{?6=Vz(@$bB`Hla?%7w(Mlw>uYPJ`vesj7;2=pb})ca
zeNbp<=u5+*cRQai^Pa9JX<hcFUGDS2nKOU=`lVK_9kwQ;golBl=GK-D21(nhlBMn^
z-rU?={P*ki=fCg&uX}cG?(8RjjrFy|)|}Y=e&6iy_*zq0tCEZzUtTqPZ~O;ZfVs5z
z`MK=EZ;wx@Z2y1s)(QK128MvP+j+Znx8E&`Uc7bt{kq*wmurelUNb~)OmeOJc{={t
z)bKb@&<6DI@a@O0hfPU*cW0+&ml8P0Z)Gkwz4`v~a(_Sjzh7#;@4oN5J@4+PACLRZ
zEz_Qznfdbm{{K;bGSk(6w)fkcFfhE%eR5)=q~)fM_6+tPj|l(#^V~juVW*wstlS1r
zDe?Q=?)<pQr&HT@$8XKOZTA18{Qrr~d{!&IRQ~$<dV2hyN8-NM&f9*!qZ7SNXR?~F
z*L=I$Nqg$AubZ8>OSAa-x!fJ1?`yx`oh}|<W0*d_wrpiFGlN6%r5xrbkGl2G&9N*l
zdNwotSpzd4ILtmC6;D4i!|>-}`F{bwY+`qnoD_7IxtQ{|`u^{@RjXDN{dm}JzNYqd
z^!-y)G=o90JE!i~OHf_`wa@RC-Ci3R<HyFpFcoC}yy|x+R|GCLDtvULZL6GZ)sxln
zf3xB$9=5*OaF|bY&bp2JYZ`0b-`o5705kuSHJi_!`tkAc=9_7=m#$l<C#>#Q@?D#O
z!S3p;+y+pZlQhqZS-kb{x7+%zfhqs~{5-4X@NWPAf2Ql+Z@KKZ^Y^>m-t*WP7-nrx
z`|bDQ>({Tm?`MB(<d<6?wRM${G9v?neDG#l=1D5W&(53__P4qC;YaiBd3(QH@_u<^
zWAfz3rz_M;7#I@%n!aYRe81;&(Y?y&rjhnvuLMim>b;(Ofsvu1fB8+e6TRm5B3=qI
zFf{P4xyg27<8irY7;hhkECa)jC!jRzkjcWqzz`tC$i%=f#SJu|zjRc1aED3u%a6z9
z&)?XXe0hER{w>+p_2&P5lU{r!(EaJs>2X;_Z$6*5pRefLwxss=x0jcedb{;XO>N~C
z4@<~mV91Dz3ax6G_Q?AFPd~ZJClh(3&2)CZ+m-$Ad;Nd&@c7!&Z#R<rLG3}%X*H8l
z-rd=G6K^H+NtvDD!R6EU+pb@_nLdB+?Y!M<108te?QG`%zVp23X6p2(%Vy_!O#)Sb
zcx#oeGyDt;XB)jYT)SlV`_1JiZ;qDT&Yd1xc2o7d?f00&w{X-Zm!7dQG(7WYsPXyy
z{Jj75b+MCGK+F2YbRs6$e!sK%WFe@%GuhuR@>>N1!-X{*6Z#)ci_SZFXJ@f-(vc38
zlY1&ZPg2>sb*pdR+O=!XE^_Vu^ltb2X;#V%3?}MKDYoFM+PW-<jZbDq;9@sb&uRMc
z^Hf%@T$x!^11j`onHd=7yT!HalY4f4{`|vy);e>oN>9m_-<h~-)hZRw*=D(uRK9-w
z>N^kA%62=>P&4b#{p+U~x1`j~udQK9k=2ddq~hGhb8?cZw^8k{FF8A(PUEeXkE!~4
zaB0N<>w79cU)ovxJZIO-W!WE>$IN{4ZGVLH&*%IN(^BFly^^W@a&f90OGBDd!<yz_
zzkXf0dNuXio136TIGYahS)1H?e{*v>sNHZ}zJAZi;`DQKX8!y8d;Qb-C1sQ9fBax(
z4!INU8K%Bd^`xKZJk|u~AElE%YuUPVt2tb|^y=zr<C-5IK<QxrudC~g5)L$&%6)&T
zUvFuCw<P%4xw*FswD0|Xw_9I--;bnocE8^kxwB=sm3eJ)U)s)agCVBrYa!=^ttHnY
z(^FqvS!wyGLmAZmyi@ghZSS}L59ROKCx2X<U#ku3J1lT)F8cLydHTysOJ`aXCY9aJ
z-QFW-yNhWuGlRotMTcvb-q(HK9TFM}GH9k%Y1ZVw{7g&A-`}fz(8yi{vf$5;k2iBR
zpA8BRpWZ2~zV7L3dj^IFlf4_(EdBj{fBoA2yP3=97Ja{4o_{2hfnh=FCp!fOhS4%_
z7#8@OCa#IuY4rG5ulM@6y_dG--hQ+ByxmN*+^D6;nHU<ngcPJtZagkGd-b|qTE}II
zebjtsO$l2YmHOhsLeM@|En6uDh7h0CUi=?CK@%Kz>VCi7`RSB)@w1ufYMy<T&t`mi
zeO>?goMOLa{`2D=axyY3Fq*@7lVh3B%t>Kuqn<9A?3Wd>dgaQKoa%EXxXag?6hA+=
z_CW~)Lx3eyigLxPmCG+}&%eJV`}(?zzZw{srM@vTJh<%9ki+u%*;()0+}z1uZ{4~j
z;yUqqeEnXgU`7Uqr<@ad6MlYr3My?j-P=|Ax~&$}MfjxjrFQ}7;Ewg{^Ed5FI@;Ct
z*YxNA#7`fNN%1a7k^f`&yL8fXElZ9AY@hzUH~qh0&p(zEZUNEJyN{h-^X%;G=_)U8
zZhkH`-#q=?9Q*pRxAW~8>@?4<{=&c@ePxbiu~ET;177_Xl{hE#E~x+i@8|pf|K96F
zZ(DPb`=WgHn~fo%p-b!k|I4nqx3FDqR&?G@)#&`aU)$%YGBPYE0+o%H#m}BxaOPk8
zMMF0%G*HBKY5R{Qpx(&0o9Xj?=2#e}&n*p`^!>i%-uV4>FR!hQmaDs=8pgm-V`a&_
zNsvdvK;dv3@97^O9~;;I`;)W%ZW*Z45m)>5DyZ)`RgRy5LF<_0gx-{=r>272J*RcI
zgL>XKORvWkpH!XxWI;3EsxKJ~3;~9q!2pfk@1TJqFJ*^WjZ?M5)9&mje0g<s_^oZZ
zvunTIRKL8;clDPD28Im>IVYq&xRKm{HZ(kTYI2{Y8mLveI&7^`$%_j%pH3)GmE&b#
zFw<DixN-x3-p%T#Q^TK~F+T4z>B{x%%R&CQxY!+*CK3)8vMo78FimVo<eb1&4NVhn
z?`O>0^FK~W{tYw30rggfl^ZHQKU=zO+qRQcxw*Mri%z^=zdx>VB?CjkV*v%xZ8bkX
zUAc0_Br^Z*uF}JH3=B0v922;*FE8_b_4@VfHR~fbE=rVVV6f9<@n{8gbMEb_^u1;u
z@%rZG^qb0z3<unl9kkZe|NmF{@u>LboSU26UiaI6i&(X4)usLQ|G9kG7#O7IF|6FM
zzUHYms7JVN_q$zfTS1}s>B-5P>GNwZtqxz$<;TvzARPwEE1BjA2O2<)h{wnK&;R-P
zdGp<}+o_+PoUHtMHN5z7uX$LN4X6*gN4Uy(L($VybIR{k?tD5edQ-*6M{jn$Ubpkf
zB=4dNj_jdTCLm>ymgstDtT8Y&T;dR5U|3)RiA~VSi(bkOc!eAMXRO_R&+52*ea+J2
zHx%kVO`gAG*Dfo6n~z7>e$N6ABCY=Wo_|5mA2zlO$GEzmPkSVd)o$nQ&IK)&*4=hP
z>G#|1@u0FnR69(?bJeO<T2_x=TwHv4U+r(+Z(q&6d=Cx{4gEM@@WArO)n5Dz2X5_r
zy>7Qr&5sXT^6pwKcI)-pU-x%Y(bH2t^X+UwrA6A=SyStOZ?9kdWyZfI{sZx<4h&HZ
zmc`Ffo}8F?Gi`S6r`h-asNLONo`1vo>6GB2k4MFyuiO1@)q@s>4P`M+tQVMSo?G8P
zY5jiBWcmL;j`u!#%v}5H%gM~;bGIFPt{1n*0z7o}dfo12wZFfC2G+od_V1U=zI}Ut
zy;==wAm;4*`RwJLoyDMz{GT`J_SrY$x8+2hvv}N-v-zx9=G|STRbO6Abmp^E@wfeY
z#j4hR{oZd;ezsq)yxH-%FZ1@c++AgFXFWXJ{`_iqeC*?o@ArK6JJusPd0p)8v~JyP
zpl-$N?f0rypDZlDUt7NKL#zIh*xh9>FD!I^_3D*T_O&(rbDrO;et-7g@AvaTtMftb
zEIck-{BGy-b(g=h9Jp1;#<GC*$NB$%&VPA%S-txG-tSiS-=9v8KexW_>uONax}CGx
z7u3Fz|M#I?(j+4Q6r{S_?-+R&fqKkeF8iPV@bGZ)G0F6lqg|qvzg{jkPCnMtBVnlI
zX_R(m#+}ONb1mO)xxDGJpY_wT=J(Hhd3pKso#ON0g3R{v|3BydKiPO(?(~U?%9nSS
zzdtk6Sp9lTu`e6H+?>eGX-i9AU*kP4<~ng>@^R2M{hc2UaeqF<t^Z_J_PUeV>-SFk
z{eJ)chdXBH@3UO&-hXa_qI1#Dr_-PN*Z&FzjXu2D|Nmd*r<3ZNuZBghEu0p)Iqm6(
z!~FjL|NSlgcvO7(vSn(U)6bt%?zh==&OV#rniHeL=4~k_CoNjFYL&&O6Ux_L{aCyG
z-Y$!GJ045Pt&iEc>7?QMeZR6U?kau#Xp*;HX2kE^`+x6#R6PIpo%p}EWUb3|{H)(@
z*<W?$#l^+l-`?K-e>FL5O~l2N++#hGuA!l!g{O75o2>DjXR~v~s#RKSJQ4wGqPDI|
z{M)6yPGi;T)!i$Dmy5XuikzONt8G>KDr8R0r<1+=o;9&@clF6yizOfH$&A?jpozQd
z)vH%+$HQYwLjz-DV|AjoyjXvZ=Rn&-A)SV_ypxkuJvZGepLVO{vahsV{NAckG2N&s
z+j4KGwab=elvLjajjZ<9|4Ejs|MQXmZ<MTc*%{CYA^G?Ae4X`_+0@jOcmDdQty<k;
zx}c!}&=L#Ndqv;n|9_O<d{S+;iH+UUDZ!ggs?C0KegD7GNl!q%_S^aU=Yj@<&YIuP
z`LSZvs#Eu>-`{=Vb8^<c<tjgq>eo$Nq+xgMJL>^=VFiY>G3|V^lT^H?>&32rF77(<
zeeL_|m$$d)XJutw+M0d6<o!L{^ERJ-?$!N%+xGZauk`e?x3^LcG%$kH9P5+4{lsX=
zY5n~+=k0#y*nOUPKIQ%1@8?>@<7R}%Ri@5OkJ^~zdd~j;pPa2%!+O&|`~RiSPT5l*
zzV_|5+v_ggdNw<M-mP1=K#9!LsQTL*5!Z<ao7tB~Z_neEzq`Bq{NC^PX0vjO)x6Mg
zmn{tebvq{eS!vo<eK`S|M>;NB-XYk~>(anrQViOoa(<re=Qo?rue<(P-Dk#x&FAf`
zo7s3zt=)caR`t7`p!)6fIqUaxuC5L@m)ZWf&l+?#$BDPw@6Y@D{l0zqy~^}&xAXVM
zR6K0uJr2rd`uqPB{rejK-*j))*HcG2g*Ttp+x=w!zt{V(WiH#8eEiuZZ~e0!g33k5
zWy_y{GW3?r%b@OwoAKJUS67EGU$shW`@O2{Wxlhoy?6|g*RTJ1n!h&h^|iI1A2jo)
z-P)2VX_^%>ukzVUnbIqPmQN-)yKo$Ed*J$lLDwNRHg?_qf4|PmFif5s-|-LB>;Mf5
z7u_wrZW>kpdhPa0YooWjW#``7a&klBVWXTI8`eZ^)pD1sOi}ZhG2!Fm<LR5vnt4z9
z^5UYh`uv(AKf9k#K%?Ee-|wpiDRAbuEt#7Jn!?fB|L0TN)?dGVnclm(N~3GfmrLG1
zZ}0zmyKQUvy-Ib^oJnH4>@<~|Ww&#KMO;DMCuTm2gtgCq><1MH2b<Z`A06r3`Q?)L
z=ePOw*5B{f|F5dIWw>@mQlLTX!JOiAp0~H<7C-7#U-z+Sk^P^C{4-55FG<bc4NAB_
zr~k2jw?i2;#I<Ex#>GW${n1;qrp_(9rRf^@<Zk)>v#+kMmX7QH)VMBo_p<c!^H#23
zAHV#4`ea|T%%Ww<mzH=|zTf-(TE(Bz>#@^ASBII}?0YsV`_sMZ_n;=M=Okx-TN7EU
zk`w#?oZfF@^^TcaT<_0?NHP7mJ1M!_@0NK7ioE_)%lP5q97e_r#$R7vPM-ho%W_G>
zB$u*VnakbYxBUBXm_Pm06iv&2KOSHIac9@AT`@HukAirc-|zeVY-akrlc1E9yZ!FA
zi-qknMIPJk6rJXgu`mFo&NY#nKQ+t$Q7A1fy;<}5?B{Q{^Ou*uzxVT0_`XSZ%Wmtw
zy|wi;C~Y5?ueZ7X_g%Sk?OITq;!q2xZyKm>^0Rz8<;vBoPoK@s_iN{q-SqjK_4AAF
z@@GK<f$L&-ulraXv9l<Z&*sAc(AdIx`~NkE-<H09^=i_d`kA-3UXPm{xY#YV-}c*y
z4nbv5QUQ&?fhy)r_v?PwW-N#;x#(I68lJw9*#30${J%M%>Lh#pUbE=jt)ZY?(Elf&
z`GD1`D{r?mM3iq%Kd*PJM>6=!%gf6%?(QnRxX`&h>3;2Z-F5qZy;`(y-#(45MK{uB
z=XO2rx8L{B^6S^HN6q(r>|GSTKJMtV+4*rb54qzt($35X<dL)4Vez1WS*maMzhAGr
z9h=!i@9rwqzO^MYIA{OgZ%57d|2&)Y^3qb*z&-WW_X{5%69pyMjYq|zMc&@tu3vV)
z_WPrD`#*_`CEfewVnf2i*MCg@{dT*4*CLI3Rj=1RY7zF+*j4^M4zx2^!m1?W<D+hU
zvzegDOV`rU(vKIM`9(pw0dy?#BIkC#qbmXzcY!uI{rm}9pL<k%|Bs`Kf|vWb-rknm
z{dW8PeHQ<IJnmMXSFz~f3~s$03vQ%L_LY*mU;qE_(TVPIk)W9?aB%D{fB)#k;(oof
z^Yi`|{tIUOpt!2*koFq}hK8aFUMi0zKKsuoD*ViUTCzH5CXd0>)z4*}Q$iB}hiD4C

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-3.png
new file mode 100644
index 0000000000000000000000000000000000000000..f505eef6b575bd177c2d3a7041c57b73fae632d7
GIT binary patch
literal 23678
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_eCM&#<h{~y2SSj{!@aPnNSXwky1
zEiFP0OPZN3DRr^xFHl;sqC<hBOR21DdeKBRB?S#vfhpP^>|YmoaH=k3cj8tpsH^{R
z_FqI9b7!OHqV>-oPi%j7X6DTEK4qo%t<#@H9FtIHU|?X_(5Sqe8^ri<-jRWkfq@}G
znu!C%zb)VZqHeS?FflMN957=M0CBe|Hh`!Nyo@Xi3=9pq910+Ajx%Xm58MyR$yp=Q
zx98*h9haB;ug<@}udAzTQh$H{o;`cE<lf#Ey=nc46CP7FgO4rE{q*Eyk%i1GtJ17(
z+xC{fkF%8F`}*dlarEt-H<$U$EDG*>A9mtJ>8xqfmW9XHhKg#1OxVAFKggVfgH17&
zefig3vmdZ`zxQLmF+;Sa4BvG5{QP`YR@Rk{&1|!bQoa19PuHB5dUBJ_^lhQ5!%jXd
z$aryKp=HR_bY?c53+(bW3wFQT<=xE2dujFheXAZF?M~0S`{YRque6y@>8mS&9v&Sv
zwY8!$GHZT)ef_%E{N9C$%I-10;;a2G-L~2KU(~!f`ugUan?|KCFS(|kniBZ$&(Ep)
z@pe=7<Kyn`F2DZhXt(XPsnU_to*Fjv$k|36ZsQGhacN=Wkyrro%=Wuwvx{Y|`=7hL
zm)`xFal-e?=Ov5`Me3(FnWUT$kW4Olc}ex{ot?q)bw8Jet&LjRD{cO2@ArGBUkd#<
z6Vr`a(j}^$_3zKm$f*2>hgx6V+Pd0rzTMiQr>9oN?k?lv<qh@n>N3l@u^>FI(lvk2
z$F{O}cUE4waDiw0<#n;vcdOs;<>KZ(eXY>N#U<nSx3^j`I|{aKE4EEPHz#m=-d&UW
ze>JQuEGrTZw`JYmx3{LIX3B&K3zm9Mf3^9%UGV>Zf4@GPoqunWRo=A!f1cZ0mA{)4
z{d<vXcgThW$J*a-w}1Ndsc75srAzOADxMQ+{`xEPgZa%2ObX8H_k8L){XYBJn!vqP
zU%y;*mtR@`|DRUut`fe`Z`UP~i*~W}PntAIL|Az8(o&F@%ii8PdHlHhWOe_r?Rj_a
z{QC3lcK)l|+t;6)Z(n~mS5zk=fR$V9%%y*}AHRJIYvmH%w0CZgMDmq|&g{CeyFz-U
zOfPN8yd1J7!f?7>W@e_8echhA-*2}^haEo~vdD$A|E;H|Cl?o25vTm6wf4v7-FZ=4
zygAOE;h!T9L(Jh#I*$u1Z1i?N?z8SW{Lmo2=40#er`_WEX5a6Y&*$XhGpnnsTb6Tk
zQ`&(B#%E7XPR^^{o_jmZs`OQglCpB|{Q2`aIXMkOSBIJU+yC9->Fr(o?e)dQ?HhGY
zzqz~ndakr~_&SqmsWY#~Ri9mIYi4%ssl=nlkLMmwjhy!R_``x3p{v6rlY4end|V`H
zUAAUr)Yes+QCn7=oUT8=v!};oZS;1t`*pwH_WIxXZ&~qS!OOe5w}Zs@?c1lOqH<(Q
z_Vsf)cXnJ{>*jB2nsMR5uG{;Io_4K_*tn?BLMH9ekxuh9&tDZwN=jxfTC^x;n*ThT
zn-SAem-)<mbSZ9ENv5!<XzICnw%PNl-&qE)3ekN0{CWDRsoLpoy;4uN&2MR8NsgRW
z`Qu^x-Dz{J%g^=5SY8TQA9q(oC*p#LM!<oPRUs$8yuE#0#<J*1+wp`R!^_Kjji;r~
z>=M<URs8&1?DqFZyTxPs&Oa>JA$!04er<Zy*H@`|`~Q{&uLw{S77$2yx979p=Udt9
zXMTQues}KYFE1~ry|}RO**WX?CaqkeMy%XoCaI^VnaWz1nanoJEqZBP|F7oqhD2v!
zF|o8ifByJXRP5;N>@<|G{W8&e|BM+D$&u4OfA5J~{<41a?83hCH#ZXJ)&Hvu-dj~F
zEF_c!((&@r(zD6^wrPAa77sR^J+mj@sOqmo@|k13(!RUP-uh%@tSGkMTm9XPonNlx
zb@kWZe<u6e8BWy>H~aVR-?E5}NzXPOmowJX)XaO$aANijCZ-4aA3uI9%&vaB_4=1v
z+3PhmG(2>pwghBktk{-&d)dXs?yqO(@4Gn5G&^L01Ec4q^Y;JORKMHl&e!g|Hfn27
zNXQhwxmHW(T9?0i+;4yF!^6X%LdDZOy{Gc_w%pXnX=?uS*4(%earD?RtLd(8ZeEkB
zzPwmC(>Q%q(bH3}E-r3oVq%&yWy+GPtHZNTPEyUfvf?7|_sJ6`EU+ql_2R-p=d2qW
z7Rpt<P<(rTfBgLVe>*{C$<E^Et13S~o3x}|zAl1S%H+ZXMQ0I7$(28TR7|fj+LU!w
z>+Ow=&Z=HhPFy*A;(A^8J5RUoZ85t_Jbh=IT|L;$esxb}ab<ON_PsroRS#RmOCBC#
z-M%_y-W;3Cpp6?h-rANsJ8$<}Guuxmls|p_dUajwZj;JSDO>aJ$0;f*n%_D1<KyGh
z$Z4ST#>&DHvwi*Y>(95k^-3+hU;jULYxec9ZZX}Ge}5|fe&7H9>I6mSEm>E!K*fyS
z^QD=Wmql$(>&?2pZf)G&s*|^GN3-+ETqwU^yZqPJ*Q>pzYMry1U-5{uwY7C+=;|;o
zKE7)cmEE`G-Zt}{XA|jf_j5_{?Cbls-QJeFdc_KjUP)uOX{j$~rq7#b=;qobvh&@>
zl&3Q1=URt9KHeYR%*GqC+)wuBuV1gO$Jbvy(kZ;P;Gt9QjSUAa=V%$fpZ(?Wj%$Zn
zxvwsCX7>zg=aUWDRg#%|XGfrX{hy6uIuQ%5t`6TF<LYZK4yt=DE%m;-Db?FF_g2XL
z+V6AKd}b_&-Cg$bcK-go7w3yQ#7(%&$>H#B@<q`JpprmeU;pv@_xXIXR!=tN9PJW4
zwn-;=dtPkut1Ft*Q-hcJ7*0!_nLfYv+RbbG>+2sESeyxuuYJ00e)jrlM~)wtZa+M6
zt+vAT*V#RWnwpx&9u~})WtzQ9*ZA0sCr?uP-(JtUw4}4pLgrbo`MrY7_|0j(AHRJw
zJ9zNmvo|+4>zy_#zWO-pa2qcu59i(8m0C5oL^77~V@a!mk<ld!8NSPlT)C%fGr9N4
z7`k?e7`k?gmG0a%>Eia!bFItG_}UNKe7zE!_jQhK^|iNOA9+Sa&HDKHvoT-$;WxLo
zY6l;$TKxF-=JfvK|C-tPL8{Npv%P)u+voH4(x*51{QmaVc3tt;>}^q7vyR=re_zJB
z?9AHxA0Ho&t^5AP%JkUh`zL42F7BH=X;REOfu+&ga%O(~^vP&%_4l&O{r7$!lQ{qU
z`<a=>Y6b=uDypkz|Nr-Wzuw>bHJ^QxBd2BF+OpES`q$NImzH|(j_KT4^K;Y6`2G7p
z<>TL9U*)nHCT#y8qQfBRwSUpaPp9=)Cm-+Y>h7MbviI+|+j+_F?^nOKjhwdh<KyGI
zd)eRL+q-+w;>BNYrqAE`_VE4t_t)yG=WW=k<9$rx=dWK?F>zZmE=uPq8yW_lo~9eT
zGH9tu!U2ZqsavzI20cGFcj}xuYjzetPg{MhnVtXCrZqh8<#*h?SN-1h=g*&(_57Ti
zfv>NvojPgKqWks#|L%G%XImArIsJTCM8u4HRj+loKmGaX>FFzfnNOZPxvS#iq9r}=
zXP;Qrv(Dt}>+Al<By=M;9m$=!{QBxA|7Lyt_U&86Q%wT{gV(M19Ky~QMnudwuI<t*
zZGKI*{LaIVJ2r!w6IO+fTC7T6ExENdd$&&Yx0~srl9DS^PfvS!ppjYcw9aX8OR1xS
zBYpPahZhd>+v_CvTw5DG{p~G=CpK*fj3+K^?Z3N4$9sO=ua#9_UOc>3{`S_^Pai*C
zd~<WNZQkogN4u@6zO3+@W3h0NYxk<;<9$-rWox3g=dI<FwOUd5_}Hr8<$bqhM9VZI
zHY|wRmb0>zTU^V^D(da+?csZ?zLuP~{eGulhySj#v(3FHy}G*k`NzZQhue5fb8ngC
z-rExyySr@f%CGmeTDir;LPDlQSD&1us_LokH)qGYU$3vPzdltvJY;{}U+H<rLsy4o
zK0P&6FL&a^iE{Dz=7)C{KmYP>_xr4Sdn#{jOm6p^Z})c3!&{qlRMph1e&4J6{kE&G
z?^=(fF{mAMZEf`Gyt}(r#qHg7yZxtL?5-C(pU=DecKiKxesirf)zsWTjmLt554x6p
zYvw#IxxCEx@)XVBEv2u+=2{dwP1lbv)7x#8^DlI^S?;9N$gB$s8gCov>+4@#A0Pk!
z=lS|Am7mkLJ4CLHGTmNk^t+0Ag1LYLLyE><XV0vxRoB);E}myw{p#a!`S6#Qmc|}y
z^1k%(@$u51pPs%xw=pqt+POKFi$P)Q)+-gYw`yw}zx+D=eLtKoFY}#j=q9Qib_LYb
z^_y#T_muPJjBjslN||O&S>`|gT@A~|{rmS@mAqJRaj|>+_rPtFrc9co<SA*_XR`P2
zlarHgt}@oq@i`_jo&UskFSqY<71jTL?(bi1zoTkW-J0<F#d9Z4)ehgaw=O9u>B?ev
zepWWNQ`fJDPuGhLN=jOEJYb4wW@aYHtJl`YuRk?adv)+~KQ2zr!nRID=e8GzTDi~t
z<7;;Ym4$75va2kMpS@@mkDFlV#>y=g(l2NG<(PE7M*Y7(la{2<t8`OTRQ&Z~asQWp
zzu#xSxv}wFa^>r_+imI&oCAgTmtV*FWLJOqP+*#U%|}pB@Z1BV%u6b7Z*SMXZJPRg
z?}L}7({EmvZrIbv!1SQ)((~vauU4-Q*_svl^~FW!{r~^%K3y>7P%HOoiN(ps`%<fR
zf4@`Q4=TRBr|V@tKGqwxr()y1`v0|{Hvhtf3qh5silus%x3_okZMQP}Gx2B7pZ9NO
z=fC#gVDr=&GgiFc|37ZBy8pE;nU}YezmHoRwe{7m*UR}2Tb8_-aQrE#Me*``_|>)1
z;g{yi-{>{mStYdN3;*PqoZjpA{aO`Q`!%%x^qxI?LRN?A{{3*6KWbmiPPy7I7jv$f
z*8i(n8^1r!w))$ZBb~yr(`2nmJe=Ej3Zs`7JUmqO`|b9x-)`q;e}8v3YHQZiW4+SL
z`R#r<XliQeO)e>Wdn+_{ciGjI!OOoq?zew+T7UnQ<@4)SrJbGia{K+d;DCUDZLju6
zg`N9&ak2Z?f4|?qUbp+*rGEQ=FKRA0?|ON8`TZ%g-c;#>8awPP4$DH<#YFC{`g*C6
zncXDqj0Cu3yVNPHzNPl}H=X?J$B(;j&ANJNf}*oY*_#N-<QTQ5-uwS2{r~qj@AbO)
z{dSk-4_t0{O??)9rK5wR^xd6E?`b-LJByxfsrvd#n(x0yJ=djIS67!lJteyRsdm_!
z38|5*qPAu&dv(^s$EQatY|RR0cD{^DOFXZ?&F=Xqapz6Y<}_bR8NS;8f4_VA`kuYE
zO|JTlp=7d2)t492=W-|2?e}midv{0k^rkD@a-+AWUgu-}yu@dwQPq!!?OThUdWmWT
zC>-`w;TF|el6H1h=A9jdUH$#xMMazT{r~q{I?rBvQ&C^}`+IA(!`Er(>7CQ9k+CRn
z*j@g<ELvUr{p^y^RUs1%k3HVGr{?FTx*reOJx_hBW^}mc!oWB|Re%4VO*OT(rd3}u
zo*Qs`o;%+9?bX%OKi@vPdTy@u^7(bYPX7Eo%QV}juEXd5u`jRq-A%KvO)+#6R`V%%
z`TO&E`}9n=Z(s7~+VUD&mc5x#_w%Xv_HUP$`@cRj)A-Z3Z|6R+eJv3b6zuBm4t8>C
zigx(@a`}9d<YPRnY;0A3F3c94mJ0ICr%#`P=G)cU+`FUix&Pm<)sG%Mnlfd|l(m0T
z-3tmffQtSlOH^#X-zm<Ud~2?4b=Y#hxu>pdvnqeLW|{BoSN-<?0#=8uwW-@(_wthJ
z-v9r8zq-Hwf9ZBnNy(QVnLoX|yZh@QZv7ptw^~|Q-rn4NJl7gjF%>*)I{n&oF+=f>
z4~d>dzaPwxjkG-e()?b$^rZ81EEmV^t*Yc%eZBgA$`aq%W?VcxS9&CkWA1&Q1WHbC
zZ*F!kEG*n+>%r*o?vQ{EL!^+L+&cAn6;8>=`>w7CTx^nbgu}D`UV?4b6^*?=9(8NQ
z@7puWJb&Ga6&iCbi;r2>tc=@R_3PK`^{Srv`+hD9TNAOc>gy{_EiErrE|ClC_y1d!
zzwf7;qoZThn~lfk{LZ<%YwM}$`s*c)(=z`5`@8G;yy`9a_wCNkw~x=gwdLZP$jwHf
z)knKTMFj;xjqX#oZ$~fno<1!#^3}b)yC+Sa9J<s?6qF;%@0L#Ynx?Zdc)4HZ!$YlB
zH9t1|`uh60%;S37`8A(9UtL?fx{;YZ>*b}TpnBxn+uO@6i=Ul1ecF4nn(wJAWqC{L
z{{H&)>9qdUwbACKudn%nMh|jw);KviO_?-l5wEn_i{<m{f(|yZ8kZ)2+A1HFzYLVY
zK{0Cg^NDcn_q*j;x3;XTsjb~w{XGxV9geU4I`!4{_4S9}Moe33S^R88^!B`2_VxQt
zP0?KJ)+@C#XsH({Z8$kKfr2Rcc;8Oj);G5vXW!hk^wd=C<>mJ(-EVKp4W6nM3M$BS
zqqcxLH5bmzG>-k1e|J~t+gn?Md!<Z6RtBlIwzt22ad9!o@Jp92efjhGy!G#Gxwpeu
zxkLiiMs1zr_`F@d?!vFHuR|BR@tWq{v5-!`y!p($$4N)KK*2T3G<({j#fz^l@f2RV
zWJ$)&O{rWQ904UITejuheYNTB>%IAx^7;0E`}6Gl{CH5K?(2hQel0aMH-4KB4PH~V
zKm#S9VCCZHzpg&Nrs(o{<_4QX$K3xholw>}Z4?(5C#h#&^JBxw`S$xk&5YYR*Z%)~
zU+;UoPuADPrRC%2&&CTEE?nj{RqNT#=ktnZa@O43l)5ba{Jdv<*6$2JZCq9^5d+ZZ
zP35nb%g^qs{e9<K<%0u^msbX>3yX-Pe0q91J?q+<%x7n3r-!YJ$&}%1m$WKb;r;){
zjfno^8xjw*UEWcc9K6Is@bS~9Pv>0x`Q+r}v>O`|mjy0%TjtU!1ZwHFw71V@<CU5b
zxj8NM<sVg5Rm*fI|M?I1#_ldlJKV-A_uE>A@A8Jk!#Z!3V~dJ5RsQ{Y-FL24sZT+{
zhL2yrnmRf<F7umfm3E{<@Y#!ti}n60D=YiXG)j%Rwa%RX#Mau&ypl#oQq6Lb|IJx^
z=wZQ(dA8NNzS@_+n<HtM)UxyUyWPJ3{`~Y^=+t^fw){@wyxMP(+og<?LBZfXU2mDs
zOe3}UeKl$d3J0d>Mqev=dFiN5>@Jhw<K>`G*qR+4yvT)fvVOc>@$<Rmvo0=npS@*^
z$@cvx8=2Y9c<b*?d39}V_Mt<EdiL+%uNk>%$<F`(exIGB>K(JqI`57JXml!gTTbL;
z`}#UiXs!xdo8{IomwRrG<>O1{i?3(8J^z<B=kb**A)h~;)}Q_9>FL=G4Gf@Rip$IW
z<tNXXGw12|vtQ5U|EjuvuI1mAVE@WFoVIp$_bMtYQ!VcIFaK`Yu;--FGqJk2tf0Zo
z@P~4w4Shbzk~Yr^iHVux<mB|Ez#?R8*3~(BC(WGOcqSfxc;Wl~`uQ(QzrDMw-F|rC
zJlpDfhfZxuzq%^4$U;WSswBg2`lQ!BGmTvN+MR=!`<;Cm#PDF6Vgtj8t)QX1XJ=<;
zA8zA)b!X@1HXg}E>hmfNeY1+Ierswe!)GbOcl7x2^c(Mgzu#Z}O*?p*&$jQ`k<)Ze
z7iE`Q$YkBvkT~u7<Rw?Ggn+uRhK7b*oSYNq&!2zj@ZqbgLbcD%G*-WDntttT)|tL9
z1;t<e|NZ$XDkryY#taEw8H<4EZ8<wLe|PuyPe1(d!oJ$ydAH2+k5)1^+&N;soSUJc
zXHE2WKlgsQtJ3*<7CxU}Z@2vP#Qy&NXJ=+E{(i68zm-e0DB7;>PsPt4KQwf8b=g<_
z290uV%fG+wP%HOt-QQoY$Ah}MswyfPMn*xhRwV%e0TV#woolxksATNw?!FA_9jvS0
ze5d%l?X7*ayPKMu^KaTIDJ#!S{0QwbnC0GDvi*Kt^kVn^YtH<(O9~$!)2#pZ=jN^R
zYq^3LK9svLFiyx;RZ}~)NvE~7^=XObCLM3xs4W-vRDS+)GkyNclj`$JBI`aq@jN@%
zI$Sq;+m$;zi;GuyoxFWJT2w2fARAO7JbLt~<j04^y<aYQpIdG9(r=#4%67Rbk8W}O
zu;YEQTPr?3iVj=6fB*jDQu)hHobce4v$?Uh_V%`1P|3f{fBrgQb-#>@i(GHs>Nix2
ze$9NqUeI|1!xO8Q-wlr(KYm)`vCOlgw>N$`xAVPRxqKdIoafJ<KO$06tG>Oxoqc(k
zZ{F=aRXKkj9qqolz>!&0Gsq<_E^g+!)sdUix;i>89O)FkJI!~lRj9aLOu+iMy*BHr
z7jOJ)E)`b#)lBE~rBhS2W7{N`-uIt)(N;l!@0Uq@vQ|sZ&9%<Hu_00Kq4T6J5zR%Q
zLf>bmQPj4anQ3QcJltesWE7NoYRbi%o72CZF+RT{WM$B)>H70mg{)lk^Ye4>NqX`7
z);v7izS^mk3seH{EPDFoVY~b;+2dc|F<KTrYKg0QsS2v<etv!)K2gb4L{@gKczjLZ
z%9Sgx+uF}8ydGPg2`aofIWIms+PyX5Ak*}xpP!u#-kx_iWMh)6s78PTs7Cnu>ME#>
zxx2OZ%l_qtZlDfX`~BQoTRi{%`WjqPvZbl1Nkl+k0hg#2xSMryvikby*Py}X<$kgt
zGa4Hks~$A6Zz+E6x4o|Z&&T$-iifOMR|GmQT)6Pl_wV5;DNE$){}igKsa4(iHbpZS
zG>FsM)~2PP;IPzdYS8AivnJKwa<=d5?Ckt?egD6un^I4ox_>|Z;K74gcXw?y%ehf-
z_ZOprattHmgx4aPK`zd1JQt_wMuUdPx8~iAx_I&8q$hvUot&CpU0J!<xt(ui;^DTc
z7Yp0B)c>!m{rB^E)Rv5i&(6(V{p{@Q-8t7c>43%dRBQybQPk(x7<ngu-@9kemCfn?
zywYYqpdrnjigkxtIJJV8^+=iL&3X9irtGTVrCy@El13oQ3ni0OJU4FKD7miu-=E6b
zZ#UC7>3FZ-^U162@297ym;d|w`}NA@^Dh1P`1tD1;`Hga^ka7|*|Ea{)b#{4V2*Z+
zn<gLQDSdIl(R-TC#di6+6<=Rpf4%SbyUFwC&$s*kr}*pJ+u;irE(8T?UPTQjCudi0
z@6~^Qe}}G(GX47QZglv%n2UX~)}Ze4tCQ;ULskYYH7Z@VPF+RCrQiPFj=1{2r65;j
zU0pS`_-42MJ`GUcc2%giprD|ar{~2kQSB@1<Lz^AY;X)-=2Q4h)+nW8-=9z3xwp6Z
zf}(t)lB>$epZ+h;Uq8C1^0SDr@ZudiEMj*Sxk{VoU9o<@XYtW)@z=}e*A+>#rS)7C
zkFQw>YQKS+AI)sMTT)Mp)qXrG9<{S*Y2BZX?o;*S@7=6_cV{PP@L$R#12hPF;`;S)
zP&-M@Z_bKVZgJ4ymR`6ZJFnD|iOTM)d}bQGy0LLFm$=@VW_JFpzrViDGEVQ4tNGxV
ze&2Vt*-FpJYF3q>mdrBC1?Ah<H#R2EGS8m}YR*-Dezr1lbK1>+vl)K08!}Ar_MK;Q
z(?W*NIQ5js_Eg_lCWd_NhxdFuCaw22``Q}Ad-v|CSy<cvjf|y6PfL~5*Vo@%^74|-
zRl}4M0-!;><@4*ZzP-Dfy=Tv!Gs6Bh4>$Rr-gHJfe^272OP6|5Bh|FDv@Rb{>H!V@
zvGGb(+<Ct$bambh^H?XRrj0tMZT@^Xd~Tb3-H(G2(^9>rXcQh!{`<J!z9%&j)WC?@
zS#<QKoTMbEb&`2^*H+L>!|iR%%*?)LXPKT|8N7VX>9Y6ta%*a9eXp(xjs3Q<=&2WI
z*#GU;>oK?9@BJPJa^Q-<#dls=)&1GAv*6(&-q-&3%iNx;-~IITbZ=^;nvv0^rM2JR
z-Ie?O{l&$@7BYOB^X^(r|MufY1xV|?z16nsw&&lsoBnymyZitDZQrPKde6^iv-RG-
zTp!$iIC0;<U)j@B-|ziCZ==p>le{}OmfC7+o_v}=DevZ{)MKYlpZ@ah?(L<v8X702
z=tN$cV_$zSckbik{nr0&b#>29(T%>w!oo5G<oTud4>q%d+I5`#{NH!vGwhH9jZzg0
z2@7w{xoI?2E7Xgbji(?oY;~9}sPB35<Vm^rM>8%j>wWa-(Z5goyr*g{Rr8&dajZx3
zoT8(!n$Lvo+qcWr{dl;4&)w*k4-Pg@S~5x1``(89s`=gG`mcU`e4Kase(m?zpFe(B
z)US`;zHZT?MJ1n}c<%lAY_?X!h6TluAt6&h1x0+_&!=tQy>f1C@yx!yE_A9^s7b*C
zhwV=r8yi1;{kk{t?@UoaK}Ao{Xqk6)NXV4q|7w4Kn`-FhJx%B2r8=)^Ixjz-3a_cz
z!zHRU<>5Ce)2t=G-|arX^ew1nxw$EIYtm7!xA*tozbPjs_Ux0n=k*<h$#)Bn%gTL!
z`1tYTjq45^aCp97KWdA|?(+9x^X+Oww&%r8uRGc;e*HirbLoo<in{Up?mRYRaB$;L
zVE8l#G2SNE*TyS-O5*XG@~u*)St-^3K|TMK!OKmGpZUzStBnGUO?HdvhOCL$n3Hd9
zt{t?bLrGcr?ybXz538PhETao51iZa3FLZ8SxBKnZ?CV~WW|?G8`s-w@Xe$u=ThYeS
zGE#rfho*P?e&>nmL|mwhcmMk8YHDOy+xL(Z6<u9l`I--nudc3MzF>huWp(xGhXtT6
z6R3|`Q2q7w_44du3z>5Y1#h#fZ*9p0^@KArR@Btg%qji<=kxiz-!CpL?G_ReD*63(
zd-jC|j!~OZI{oHaJ>9n7H2a#zui}h5+3WW{`vyv>lF8uVi@CxK599<GD*e2?x>Qns
zl&twu=5PK}Oh3-%_V4_go0fKoYA@>)R)6*AXt!1QyO=if`On#29<TYj{h6fa`^T?e
zuU@b~VS1{h?X2s!f1m$9HKz8figiT_Y%Rd!TdC9aVt2i(^Pgv<d3w{FaJ9UxOO~j3
z*5Biwq^GLtdUbX9^?Q4(LpP`Sf<~u6Y2(|sYbPhGe|@+6{i{Q*+>y7=H}l)A0F^vB
zH#cQnUe?<suCHfrZ|`|&hGDYNojA8dv%mQ>|H(}NkDDbQ?+dM{*zwtslaY~e(h|?f
zYCG?Ohdo#2+}s3;2hgO;L}hnSr}pe@^Xs?s_pjZQdfIE!XRaGxpS5q)@lHQC=j54{
z3=HZ_91S+=f13;3?yp+TZ@KFm^XId(HY?WdxO!ru^49wQbyGD0AGMi3vXbGGOtv{E
zSoF31Wb{I}Ua3!?KL-Z|O{)9<w>)%BgyG?Rr>E&oR=HdKe($z(`GHG31SOL<)wDib
zAGI;5b&36R6;JcTLoCm?|Gj>1&Hl2tQG0*C+Z}o9__1DT)BJljrkR&q;_LrzJw5q&
zkD-)lR!G}xIlG!0$<@EI?f!19{qiCZG(xfK^}5}laW1X+eKmT2m;29uw~hDorYqa?
z<3Tmu@jlthudc2(Eq>;6cAjnY|KIoje|f!r|Ec50-CMcEr=><lZAfT*xBve?9a(FJ
z7=BQT&Jr}pqp~(`Z&diYn8N6NNk_RNr#&t7xN!E<i^cs`?N4kzolrLavmtIvMxf`s
z^-gQz_uF~@F0+u?Rr9lG+3(-Kf4^SXE;q^0ZT<d#Rc(LI&9`3<>RnGueYx?t-02|S
zo1v@2bUjafvK6a8I#Jo(r0!2e<g}%FvAZm8m%qKGdV159b+OjlOT*U1yey1<>C9mJ
z*Y=Y9%-fq%y|*8i`~T&#|Ml86A6A8~zH@6`%+5tuSBHE5`v1Q1?(Xu}r>1Imb$1tY
z%Y$ag-re18e5YN7m7RUH?`*SKmc`4Y%yL$MrlF?C*G>HL{QeP%#qan3|F`QlL&F-S
z28I*GN=iy1;^NC&T3C7|jgO_?^tb=JMAA4-!@wXQ_x85EsispjgFz+K#p&^NEA483
z-Put8_0`p<1r{c?ze=X_&pUbYWYxc)&o`HBRn*YX2tK@W-M3$_*RPJ)m^90-b{8AJ
z+?#KWKaX?@gVr3By}h+`#}13qS64K>Z=YYcDs=U#vbVQxZA$HS>yvr8&BoHw^7P^P
zHaB;bf`+h4{`@GsTmS!W*2P7w#gQo~OL`3R5|ckaJ1b>bwB-2yz+VQY{{6*%`{SS8
zdMj&L<nsU5_5JIjpLdCB-%<0d`TzI(*6izgra3n*{M^v+r8Y+T7<61}XKdl_ijRvx
zO^NM)V|SIDw0xpvdtyu8-Kf;l)2@OVPx<?P9!s8^eSO{4pP!$vuhwBG&;`{nSB<Kw
zE~(G2S+uM4b=HFejZwQwR;~(PzpnQ8x6E^MEI)nvbZLp_WSevA3yfdyxHm`sx>nqt
z9lJ_iF3P;TOw-CL>ihlr{h(>!_51%t85$bO<<B_pvDmHGB>S4q)~u^up{v8D_V@R{
zy1srrX#RYMUqr-=X}ZzN!q!G*{`l~4mRatsS*F>`4jgcJdwaWox0vpwlatj!BP#uq
zFWyYNwFNvB4{E=I8cSWhy;BX{tjpe9*nYom_5Hfvx|csUEa6`|>EEA%+BY{0bMNd3
zls3<sk{bEy+S=K6|9&J-FWpuCe%<zaRo;JpeZAZzsvWYgrt<H{<ML5E3Krhlp1*#k
zar&;e%L5m?RlQ!j{mYBR{i|w!e*;y3pnk~mc~xGfSyuw)T9ulVzl*uLGT6QJ^|h-H
z54V3kYkvR5w%d8d_x8N^JUvbK>bBhIt+}_uo}QX|`PtdoTPr>$v9h!8_IVevCc?1v
z)fLapX=j5<O18{0$y_vLiimFXHXlYtM$lBvwYAZ6{{{yKhi=b{ovIz~cXd^0@XJd}
zOaJ|;1gYBp_uK5K?Rjry7CnFab}eZ7J92Z{uK)jjhwd)Rb#-^wj^9^vYk&QI&}@Zm
z^|u!f4mN-K{{8%w`>YHqhWsaH8mFImaIo2TbJ|&-goFhfb+ivZ|B`=y-(8d3TUS7<
zAXwPgX64=8HFL3hf7Ki7!bdK_D}z))bGWCb>*wFA|Nl3-QsTh<OTEv|d3bq&rYy}S
zPMmn`{Q2`OEiE(3-rkzYD{Yoi8GXI@tBr#BBs+eOnMSF1rp4~5xX2@8aRJok`SJ7T
zOwi~@;9|F#Teg@yF0k-9+{SDB?)$Auhdvq0q+KO1le)z9^Y-lB+k5z7!MT+aCrn6?
z;cI_+bMx}!zs}9IPCwQonf&VN>hz|jrXJ9G6>e^0-RNy5#m~;1{IEkwS=m-@vf;5K
z$Bs$q>+AQQe)RZp@AT=@Puoa>mag!%ALfy@y0W$&H2U<gRs2lu_Pc3JOiVr(7rFXQ
z)e1eMy?#$pP;jvEn)kPI<Ntz2gM{Ve@{*F0&U`*^pT8~d?yQHuZg0;w2Q6he+9hfX
z8dJNvI@}yIptrs{?s$)6GH6i<D9B{^+E2?EsQb+^@VEUsrL(Kch>?+TS<KF&XHTcc
zo2^{AQttfAtLrbjc8krtwKaP-6D!w@MXuem*ySn?{P}oXKJT}`udgX+>|HZ{-yTj5
z4uhp$Q;lkWeK9<F@?>89Z13rMGq>NXI&G4F@6Hsx*jp?tEHf@#2q=EP_xr4mkB@`o
zcjo?oadGjpqvG)<pk*IFKR-7IEkhC23NZi;I?lAK-L<pk=O^C(dJF}or)T8UsQxhD
zQ2sv7)zx)n$;(Tio?O_v7*N+?W%c)WdVht4g+*m$*DiAHUKPK;&Z_p;7SLSoRK3`!
z*Von-+r4z11e&l>pI;LMG9Hw;<?DVp1~2ymjd$O9rUM$e`sexYBjb}xOT9rewocB@
zTMHk%fqK1@)&0x374}wtzjkG1@Ymn(_gl*g@2vS*boA)a%s)RqR(-kXuKKr9IQ`@#
zRZv<#JKz5P&N}FluebO2+aGq11g#0IFaQ5z_J!J-8WAa}s>5}~&(DQ+i|NM93%tJ~
zP&sr(z`@i#UqH(&o;*qU`tI)S)W4uioqldk;qH~70kt3MKaaCdIOE~vb!noqd&u6Z
z((S3H+1E;TR+{|1zdCgFvrFrvwq_Ms$VBeCD8j(N@ME`PLyFU{C28~0V)?kagNuqb
z6;He0%+7!6^l9&d2M_A~t*NOI5fOPZr&b)KTwMvI-1zt3KY#8_TWViru-88;YgJ8c
zt!>`%`}hCv682|gU|^^(Kf^o;+}3$gD75Aa=Zs6gSy)(JJUZGfx4rn^pUQN5|2|pk
zWvbrOG>nWs?fT2Wz%ao$C^&fPgb53l`Oe<eTjBUjz`;nd_C@HgfHkXSZ7KplZLp6Y
z3%~8H`MIf2*816}MLzRWzf}qQ>qc&J0nI<3yvoeL@E~orS?;V|B`+skPJQCZGQo#~
zpFiBgqr)uc#)EA+cXyR`_4SqglarOzP3{3L(n~u#%kuX1_3`Vq!`JQjvNtRxWyuoz
z_zP3DLU&cNgVtisPWt`rEohP7=VIwieGHR4-`?JS{mRPVsWWE0FycSaCu@CWe|>%W
z{x)7|Edzr9(3%r(hMzwk_fNI2uLD(#lJAsjZ-g%OnhF}Rj4n}OU|=|**LM1UDT{!o
zeBF<Qpuw&qM_fEFHL-GoMlL*q?(eG&-H_nOD`nzQ{On9%PR^QQwJ#SJyT5+7`+ZnV
z&7R`ufB*hTndQv*_jP^!%Y*FlA(xl=e*OFXe)g{~FQp8VTDn9uCkeNM)|)=z`u}6*
z1y#_T%kOV*KkvvnKhIVxbk&q4_WC<*f4|ubny9X+t-ZR)mAhBYHcC-ZG4FNlub0a~
z)0kV+&&y5Ki43a!^(An=UG2K)<I8+!hpde<&Aqc@qBdxS>P~_A*EjWREBrD}NpV~1
zHTBC`^ZO~Q-YfUpEOM8tRIyG4Ck5*>%%F5l-L<ZusL3U7ne3=mP$_nsh6|DD8^S3E
z&&{>Ix-wWDlvqI{qD#G|n&jLtSh{T4t}nmeZohwJO{6hs$*QBHBWS?5Pu6;xb0{+d
z1H;btazF72;h=eBP^;+TBG;?S{pDHN*s{*fGOhZ0HGFI4WwqL$Pp3~>a^#51)z#tt
zuH9mwepczPFPVG4UW@+qbb9=jyt`JF)y1b685lmCKf3&(&n&CbRiFl>Y4$Zxi)ylp
z?XMS$ch&sd^zZZh{~D^QuC3hS*FcL4XU$rr8@)|KNy%wa$YM8MP(AVK$w^Q>QT)jO
z6oxWK1=je0Dk&9B6O$`T_f~v-RAeFZ>Fd|2DrZ51=}}t>+W0-QuB@1-6|!Q%&CThz
z!$JBca0@yZX_}dZ9h3O_=4Np8_Pnd06$07UbZS4HRDX4S{e0*`MP>KC6;)qf<-NYX
zCNg-odH%UZkS`kUG%H5Tys{-T7&I)Z?ACLkiIrQ$b6V=lrPJdsU0CR>>dDS8H$|nj
zwRPuOc`>nNPoAX2?ke%Lv$Ojq%E!RK@I;Aaf=)+IPl%6C4`^A-fddYpNz23S{NW!T
z9lg4{JpcLS4S)XpxpVF7_wUnHmM&W+1X>jTq2HC^<dT`j>8~~(m%Ds!uJzn-i(6YV
z7oVQ4|N7_i`Qgvc%@q|8Q1IMU@UZFjujl9IPghBoXJBA>Fu#Lgk|(I(T@|+WmD!$E
zp{v7Y8Kria<==Z#V-<!}f6UzV>mz8mz2M;?z1+Fh<zdgy&D~rGT5^A)3pDF|tVdEW
zS5s5dGUV)ic1D%SeDZc{4jgdU{>^*3-bsnYTeg_Awzq4msJKX*<rKW$o_E*E)!jWk
zD?a&HPvF&6p_^lk85kJ;S^38^<loxjd39Cj>4jbY<SMwr)IwJTIL<cDzjkh}b?mL>
z{`2+p_4V(TUXPu$1T+Ql@KCFlk59?B$bB_C%ii2r$Sz-V;o2-l28M<^ZQ2SmL95nu
z<Mu>=n(F)iebr}WWqrAN{k}_+RK2gP4%ZjekBgaPl5s)d>`Y_#jT<+DA{aESg{U!V
z&dGs1IpOdQrb(V(UtPW2Z~t$_tE;PDgO<4(pSM|TTm3ELNQWS3Y0sR$UQ;v{hOQ1<
z8MCvf>f=#y)2c5STQe>?c~94S`Z65U1UUYf%R?+=eOxTJxZa+`{a#bGUe3<nw{f8o
z0|SFX{zEQM#ltXs$`?>+N!-qiW7f;L8+O0Fz5RI!Cquzy7Iya4AuEF{W7!xKrYkf&
zaf;ntcJ`$Z!-HiXzn@=zzy7`-2P1=rQp1y=!z!ldUn(&?P`k12^Yh)WZfs0u5nyOg
zVe-%uRb83oCl0Dd@08qW0p+gIdX%jFF}>w};vd3eb{4sUMtzf#7Ilg1ud9B)H~ikc
z%1;5H(zbqzO*!im&@!x}U7}Z41S*48a`H->h3qVP3Yy)B{<c5!vKnX%z|qn1)O`E>
zTH))~@Z0@3u=ZHm*;y+S4mNRdaRq&UcenJ-4a4YHpbDmFvyHez)%SO6f4|%9ukJS|
zASh@OpPbE#O{u3rh1~9^zvFh5tOTv0PCnk3`QgFAs`q=pU)hxEEo)J5;HJ8vVIU~C
zzPr2IwCITkuY`d^x0r6wWHsL@)25Z3&IaY_qRlbZc`rNF=UwO!R2GqtcyVc8@^L;;
zTkhY#f0LFxc#yC)`?{b0-Y=JQ*FOL9@-k?dI%s+4dHer1hwDH^a#q%=Z8<j=b#!oe
z2K7prf`*w+PF8<?(OrJ;(o#^vZD-`Vy-bs)Oj%O&^i<}X8yi7Y*=Acav#`IvzhCFK
z|FdAOb$QmqL#<WM=a!2|OILfp{`qF}`I09m1bOA{VkVWmyJIPteCHST8teWgDR4Qb
zcb#nlE4LVExF0lO1lo!KD)J_Mx#%vhsifr8D{T(iXL4m-taa$xs8C@wpB+oT>csDh
zY2^~V^zZNQ(%ZS)S2{E@X@#tq019w!aXpV;#wMT<r>m>O%cJ+Fot<@SPvvLbwSu4q
z_}ijfhKWm-`OeO|y)C!u&&T6mFF5nR{P+9)^@oSsL5o_KE?f5M!a`>+U*D_G=hv^B
zFkwP;)M@$pKMTF5>#Zz(eQnqKeZN6ND4><~zn)C?2hAdSUOL#!uIibXn3(svy|q=-
z(lQb>$P5ofK7~n7o<3c=e12UNXt|@3l2Xa{yXC9v|Npb9{<g-++4<?yr>Wkupq)Tj
zS*spBer%d{Mq+E`Ww-bHey;<~q@JB)8N9pfZBSO$DwUJx&!5lz`=vVU(r-`!_1|Tu
zT|>;Cia<?GO)gH(i$6X-{`$Dz9yG<K6~1ncn$L^}AMJXg6%`a5CS6$>tUmo4XoCHi
z#M;Qs$8M_EdR)7DZod8dO|sznRO7lG>+1&xn_u1BynLE&v|4hHalw`K@$sv})?Qi@
zxfwKHQv2niJ7@**tLy9Qy<c<k^I!k}@4LOIcG#Jvwk9SalS&>P;e38!^_PVa*X8^Z
z5*F0d)EI5tzFqa~u4QXK{|EK=4)7VLow)#7Z+0svD5z+~to{8l(heYRs;a1D{QUG(
zD{9LM&>~t;4f+1w-c!@{=UbJ%SpgbodvanTC<03U|NVad(sG~B)nUH(>wd2l5*7~K
zS5ui@9TYTaiG8z2Ma2#$C#NlmhuOA&y}mYj`HL4XeBQ0yzeLY`VHN`e!=F${8(<x3
zeO>fcU=3*TC}{goQc_Y0Xg2-Iia^kG+rRJo|6784vRkjmUH<m=c537`-L=mTvdd2~
zbOWut_Ws?%Dg5N|<Ha*(NO%VQ{`MBMQvtk^8I)E*1AWc>b`{=`th+m=npH(d#|Jco
z`MBR+&ogRw*;<{`K_4F-z58pLR;btJv{>tum(RNT`ohl7vo+1UqylPZ85$b?dbj)i
zm!snG85b5fp4-L7E49S3_?ZSMOaA(L`Q_#1pgQ|*?f1J~{r&rwnu0TN>^fcr&~7xV
z(pR7jDyuyvD&5+WIr-Pu*UN=ey`Dt)K0ek98m9x<a(1@4|5ESi*LJ_(x7x1um&NZX
z8i7ur$lrY4ZZ&A3!M=U_vMw%ab?cX#d-AtEsPNpcfBME(iIw{k&d;+2P40k()@PY!
zgGP=mV=w7`{eN7<PxyNS!;k74Dl2E1<=t7aDs=U;5<`Xwxi9Bm|MC7-{PgVg4IZGi
z8S^S0b<WWP6`u!uCuQe5fx6)zz7w?<@}w~15sAfxkB_ZPJ3EVuk8j%a>C<obZ!ce0
zw+PfQW_bFk(%}+l<<0v&pZh>7-L__ji|R(1EcXV5(FgG-oeV~)r$n~q-;djze*WCc
zAW+syah@m9G<DXjRmXazpO;92gf?mVvrKU7mCF44>no^wXJBZ^IVH^aWO2XUrCVFG
zO_Ppr$lBN0EI$pZxIc(L?PLhrnB@BQ-ri`?Mm#5HXVBn)s8+~{r=T^%ma%G}Ae25K
zY`$=N{{6UVsZWutIXPJ!)SO^oV90B-F=PSlDm`%DdEFi+qtaI)o<ZC5?xukDSxLXV
zxA*s29gwtx+0#=DLh|zZr#FGJ`p;j#wCwEuwY`p*<_g|WTC_7p(&5{io64S_zJ4wJ
z3Ci;h_oitxd%V1~bp3B@kX!b2&b|P0J8}C|Cu_?eetoi2SluM~7!Syo>V9)37#>UA
znHu@)%Vq!K6;_}?n>kUP=>(|Fy3m;&w7#{KOEl=>BG<dWBBo7co(i(<M3;@A!>{k}
z*FQSio&E04&Q&oxi~Od8Qo;lMQ^MaH-rU(4T>JZ*Y7NM^%9wc^3Qtc@zy9*_^5R`Q
zAfcO6)R|7aUcY}`zuhknPEJnCSkTtthMW_^-y1;rPf<~ERmjRoj~+b=*_7g0Sy{RB
z%SIjV<l}v37jl8@PjQ>ap#Yla{Cr<rFXqKYe(-kO6MsLsFzhUP>g6{bWXS_HkZ~Z^
zkLnY`;SQHT>tyfOeD3}B?yk0{R_v}V?{>epb9HrnT967-Wu$zbWx~I|zq8-m*qC>C
zqYPjByt-eRy>hlz?OGtOO^B>a;<yHy@H0$42ATu{ZL0ze3Qbn`2lYc=U0B$BtVeRO
zVe+vjB{M-L<|+8cFwQhcY>L{Nwe;rZ^xa$T7oWEUO(TJFUE$+npp8@~;a=LoGzl`Q
zmbPP0=H+ERL7?{e6UIuVhL*Ortk>7pO6uL;Rl3^A$th<INa{d5D59A8Z5DJ2t7knq
zF%eWdZT|b_=4Q~21<=}!K3VH$39TTf7%BVTVK&OSVUT-slPhRD?}LNQqH=P2o?c#F
zK~Yh&Knp(>I=4S7m<m#zr{d2tq2}kO%%7j0g4U>>woy1c%QX1&v$LReYLU~X9u5WN
z!yOZC1RXAcmiVlV-hS?-5lHJF*UCqb1%vhcJ3n!GgoI3y;cKt^{ni|``b|sgRh#n~
zozs`r#qQ2o1sVoD5I<3y8MIDa=k%n*4+{{9{KS)!li`WH8r1J(xS{6HGC?<b8>sQ2
zmkU}1|M%C|((|_8Gv3_TXc+>^@eONE2s5TUIM4`MBK!HfZS}Vmxwp67+MM36^73Z-
z{Hs4cJ}zEm19Iq0P#V0pHX1bj@%(-8a=)q5r%yM_zqe+7-7imBtC9=q^J^wGi-P=l
zqQ^$iAt)#aG`jld@9XvZ!(w9QG&MJ?dKMNI-r8B5?l%=w_9;yM<if!DyZ-In+9}gZ
z=l=hAz2^l3Q&B&2N>|sSB^h1oGPv&v^=->*4Ct!ZzM{J_TxjOH@-@pM+GgiPd99pz
z^47MLd7)=QKeAoBa^*vxh^->Gl173-N6dcvGe1pv)ih%6OV-+)n_2v$&hC17#rcYJ
zCyLj-uCC3_{(Q#xyo%?u^YiE5|MzXX<&Ou=(%+`*$KNYB9ml}1;Ahsf?GOKE$NxAa
zUUW4yJoV|RsWUB$)3UO%ijD}no4on|u6)1ue7jmL3q=No4SG>74KXzzk5<0jdcEjz
zulcg%<9#!YQoX9ayqKsGxvL~|ncv)5_5YsNulq2Cf#CpqrXV9IGVj!UKKp+6_v7~e
z40CU9)2-BEU`VLl+QINMde!RHn~#b`hg9(}FeJ#DoMzbh;ShIlXz0}9bC&8?uU-Xl
z?LSzChK5>xzf<fzgO7pX$A(#{4Rh-M{am@~+M~Tr3=A?Ho-U3dt4{s+_;~ZpwAoMp
zd_MpGz;g}(28N7(vr-$@L~eeTZ^y>K5T%wskCB04$}(4$6W;oJr(|AUw)g$NEt!{%
z%HQ4j#Ky$HU^gYLlJi>p?_1aRO<U?c{n>`Ye9^B#t%biOZ*Cac|Gs(NYaR~+LxjBU
zBc2n7`R(U4^I5&9{myUkpuy(D0cKS{76yhI30)<JX*!XUzP-J@|9#!=vbUdpy<R`v
zLXd&sL*kYWhMQTd*M54?%)jsbKW2WL3HSC^BjhAavqJKAKAq+>&t~UE-OBrw&*#>>
zufBhJ?e=@K^y`0~7M&x&zz`v>`^fc$u$s?_9!cY(UoV%ZKRVKRGqGKElFE78?=f-J
zZ@2Qu*;qWEQ|#BeoP~kG&ZFCcIVd=I^6q!LwC#Ug>^CZSa6l(&i$=GY?x_Qf%*B7d
zUQhq^<>ktiD_4G*0gAN@!E}d7OLpzDIxbh8(`WnbhF3om14E66uA0N7CHwZ-_1k`n
z5Yvm9;n>W!H2eCxsdAhQ3=#agkA&8!%(SU2%F50*&bYAP&tv<4$@6MHom4rw$hG^@
z*6iys^?$#L&J$o@_@SVy<dC=HVcVR#UoR!CN;1~%|MyG8_2P!>TeGjf+5i9FJyux;
zhNuQHL51*`Lf3sCTJ@hSxBr{TXZ>b_+VA;)-=u&3egFSHrpb&946hfvvYeP>S^Vke
z`TBpg->u8vy_tJ~kzoOAh9KjmjmgJ#qPD!K{hoe)-dx@7cQzgAWMF9E2Wi=mc(~~8
z*6W~Mn;DzF|Gxj<?s{x_ET8?K4_rQM3=C`f#RL_^<7*1<RX(5l<^6s8`@gPj4+;&P
zD*yk-am!aL7H>K(SG}bA`#a0`dp>K~sxdHpV2pBU`10na@&3PW^NmYhT)0#9daY)c
zlKH)g<Ym6Irv)x{dpglwZsm#UCZ9PLhF7m%y_q^acGerv06r)TZf(z>uNS*3<;#nU
z^`DK57#M!2WEkeV+}K<F{m+MX`!oFYKMwEtb}Kt_bDHn2($~{oy*g!bWl!bjqLZrA
zm&EQa%f5R%fB)Z0D}$HERJ~jpxh*GBZ~vc9Hh;fdo@tsL7PU3Y@O~Ks!;J;A{_b!2
z|7E%T)8P5PLiT;^&42Pb{(se^CDGgSMCWN)zFxEWQ+fUO^2oharIW1-eCJpgYKN^k
zA?$B6F>Y^_s^_;m#ph*8E;xd+y`ROy7Ox&21_sgVZ}bm>I$@yAQfJNY@42+tWXJ!1
zzl(pr-TwTP_WGFD|K4uDKX2ErU2Q)+CNc9_DAfM`cJ_Szzt5YFu`o2GEx*a`F{$Qb
zcl?<vD}$x?GFL5K6S-L}{_m^s;zyn8Y0u}D=WY7`YW4cGhlg5kCimOUdc!MYVbE{?
zuR=1JiNRs>l{fkay(Udmc7HY{*ze>7Mdu=rw%2R7`+??>WVZi)w>$q!<hq^DX6^ZO
zO8e*8{JPE8{{H;@T-`G(JA3w<tJkijeSCDZ^7q^An_n)Qop;5Okzs*lmLQ{1#fJxN
z_VynRF#CS%UgQxP8VX7dy;jE`9qs<C|NoOdDE2SyEPlRKZgbMnE)`E-U*E}ludR(X
zmr-^A#bA~oW6|HQ*O#wawdzvxlR3rbJg4i$8s**D@!j^>USs30U%&c(3tJa+^MwQh
z!;dAIf{aFKXJ&ZyPp~Y0_GH)Vb*I1Y`@Z+gY;*mSyVK*s*2T=+e!tFIfB&B%tCANN
z3SM5Vo}Tn~>Cey4mlr=j_qyQQ<1Ur$|E}IzVPDU{5YQH#w^Mcdog(kWTg~s+Y<9X_
zQ)BX)A#!I?YTeJ%@z0h{kMjcUE({Ofe(ieLl*D^`DmA;5z(M|M<#Mx|?=LU+_p^Sx
zrRKTyeb4QAcR@>Y%q-Kct%;O0NH}2iCpTU7=P7r2DTW6A+$$>rB~4d-)NhclezURW
z+vfReFSy9_pEYv;l@hhzZmR3={StKe?t0Kh_Wys*|3A~nE*J63=I`(C=k@D8cB{Px
z6;{*q<L8~6tiIfTzMbd2z1i3O>po3BGuwRq!>~Qy?-cvbtN-_NPU*GCrRR7V7|wcb
z=AF>3w@ah=`MI-_>2oIj{eIsbH1X~#9y?`Y^6_W<^*@|neg+)@(k@?DG5PEJy6?MJ
zu3B{}v0e7shHq!{>x@Ag2p$}4F20qyJoV<L)R`ukL1lMKucsASN-{8ncx~pL04gsR
zyZ4`4;yGFB8mNW?6~UG7c0S*9n9n+-VArvKzgR!*t^R(l_WRxG#^-H}L1l8<?A&R)
zcJ1<+WpeWFdIp9cF4@}{Kb_KEpYrF&$KGq-?v~#dah=G@EoL&CVdwXI)z^33TOYsw
zPUZ8ts{YIj3}>S^*Q$T{_3KyL_p=q}tNX*($HjI|WMF9MUvYCDqvxcZ#m_;9C1h9p
zxtDuBuHs>9$(tJ+Pkv0@BW%UM@Zq89YX(p?S^RG2bF)bMr&EHZZ1rA)O2dZ!WjEPQ
z@S5KVcqz!h(7?OqCff<a<1)c8-aZal28JI$1Qi$<95Pur7#ISi7?~ItrnrF)v{^cQ
zg=d9Lm1Ah=-=99Oa@i$ih8%&qd9@`>EDgOGb(3DnlwJv(D#y~0=G4HjL2&QH6yHg+
zCw*D{L5D&5(E7=9qF*XTnJ_XraQ;%gx%ZMYLk@%9!Cx!(fI?EE7t}-Z0u=!bmp~1X
z1tv@^3=D%%_}azA{dThoA0Jy<|Nmd+^>wj!e_#4PKcU=zhFgEng(o-C=hvD!xAXb_
z{`U6rQt#<Ka<*38V!EpiTw!3iuxHDvFATazx9|V^*5=CvXGy!7in5!j)BoK6|2KZ!
zu2-wx?EC!=)Rru}mAPEy<etjUo9@^BUK+gIZ|9dw-kWo7Zi=b<`4qGV%sBhnnk`vR
zqxl#Ps86rwUB7tqIV){&$<-iXnB-#jdFJ^im%R1Qf=UFHlSev*L1nGY$0NcoudWWC
zlycto`x!@e*(sXA%bv6d`>i<fhk@aO%np`p*|&SY-}5~em$UtD+0Dx5b3rX(lQnni
ze!pG0dUbY3zl!C92IfoK^Y8!p^W0uPH;#cJqmSi;`<8@*O(kz{nR<Rgu5o0{3mzP>
z`S;^-YCk&z!`Uu|pB#C+UM>R_&dTn6K9kPOx3~8UijKbh<i@RAw{+t6Smf{jTei}e
ziNT>*$-!<3C?p>r>pi`|vDv8V%L|p0U835PR7_1xef#q7?kZiJ%)szqvPVM=2e+8c
ziG}TQv%m{$Z|8Z3hK5c8?d$ZM^y}9zwez3?9HRI{?1pQXFD>;3wKYH+$c)p@oR}7!
zcXPw{drQOL$98?44r=s+Rw`ZgHIHrI{}j1)=!^dM=i~H$5uJ{9VJs)AR;*v|9~&F{
z?99x`)$ewyTff=hy!h`t+v;V}+w&^FTy&ppQw}Tn|M@~nehG$#{)F894Erok28zyj
z`uMPF#OsW+vrHuolU&ly&6&9}czN1`1C80X@4DmvB-MRg9iMt{PbF_QtT6A9FkG~z
zkda|QWD#46?A*#{GiRFRM)BGI`2cF1n%}P}Ui^1`&C|QaV)y?%GdC`Mbp_O{T|T!g
zYMO5JG|$Ousn=u6&(1JR)-teUU@(zqN|F5w>a2u@hJu<~nU|ND-mKRLjoZ)t{cg8@
z`n<|CHJ=$1&YIoUDJ?CXX_9%#YTrL*1_rx*EGMjXfy&~aH|qZWdV0?K{hf}>3=9sZ
zpO}uc@^EC7`cjOWCa#Ivs`dDIzyJEUy_dG--hQ+9`@NZVwN*=xGch!D2`NaQG(0Xd
zS$q8+BX{}Q5;gyMbHdg}rQX<(SovaMyOymK14D?<YA^l|g(lh8)_@xNJ0Epv7afyK
zSMlt#`}G3UVMw1}Tb6caM&LtEMur7Oa~N-OfI7!vYoneX5%$lCSiN%P$&bh7=eNt(
zS$uwWcJ+f228IAjrWEChN1f`RLTO9(^>r729cW~h{>BI{8gf`ZKR@rEo0~iN>#bY2
zL|i9^$JcIU3T9+*c*;4UH{ocP=*pEVGdJDaRr<QE7S#Csr1YhC0cg+7`t|vn_7y!n
z)%JJm&;N;^9vqY6U6Atrug&k$N$Faa90%Awy*qEZKj7a7mJ@CP(b2oFon8YfI#gcX
z-26OhzIpk(JNExy&a$s(sEL^q{gRQvYz64Vl?w|Tr^+pM6;hBs*ucpA$^QRm`^bGY
zm5ap}*?&5r3~FsPFfw2Jwa1yyQpNmkN$|FNRj<F>dNVONJY5s9Q3=#^Q*4(BdKnnC
zX4N8%E-(I%g`k=M92F*+LFa5fpHX?g&$#OUzrUB)MsK(IvA}x`1H+G$BDNG|35$Y+
zHh%eeoWg1;2b)-L=IwrKlzM8)o<E;X?|j%Mtz|36z!1`7tRQ`IRp{!XcRQayTQ)oI
z)Ff5!O{evCKY7%xe-6|HeR+|AVL=k4z4IQlylIMCg9-EMu(hDEgv+bL*Mm+vs(!z>
ze3}3JxR)Cl7!sO=70w<Ylr(Yz;+TUH-{0Nzy-R!D2~hJ?W##(y{vdxWcJDtk!*KB-
zVJ3zHZI5|8T7BnQnXZl6da6@>-i-}m!NHRs_uJd?+y5zec6N67!IumS35SIgM86#o
z_Fs~Je_!uCL)*&ldtL6`W@l*V=VlB_#E~Qp98+}A0v&aPnk04zD2QHL<~#e!_3P%5
z@jHuB58E*?)WmR1;99+Q?b$y+KhIvXfBUt~>E}1OGch#ux;2E{07dPe&*#&BetOz_
zO}_HU#E{U?)B_ESqO*7y7|d)KgA(I^U7EhB>g%hR>bF~Yvq7OZMKgHQ_j}dL!`H`&
z&f#NVFk2HgRqny$yaxvwL9GN(G0e&>ma_Zpw$oEIgFk&bt^d4DI&a073I>J^j+N?P
z(h{z&0uT5UU-mUmJvm7g)Kf0{cvSrP0cQR+Uot?-I0YCO7MR3AV~v4<f%Imoym55?
z-qJqncRRfLH#+|Laopaow6s*N`prh(Z<gon|NjXI|9xNHVd)P}o(oNTemv@yv@Xlp
zcDL;Imdwj)(K#DkLCtxec{Y~X;p==Rg@lHNmK-xoKDMOx_c!S`pL1WV2X*@%-B)h#
z-vn-FmKGnEEl)YpA((l0S1D-L<=@}mpxw<g4U^r@+5LWVW}dC}|9|iQ$GtTC%Pilp
z-?M>X3j-*dtO#7Z>8#o9C+7Qq`tB-!e{Vzir<3Z>7j^5Mk}bazc#xAZ;qDF=?ggwr
zzHQ$>cl*66@Gy_m(c{&>zPy|q>~CAT_I&K76wiI%wysZ|9$V)5``cU4s9OrCJo|J~
zeYQ;X)zENI3-D&m=d+i07C(Qp^ZC4=H_z8y+pxdp=chS!zh2%<o1J@USLy37FD@#x
z%hwcurgy&ns*0<8I(1IbDb1UO$7L^X%e@V1Hz~XIoH(t&f6ukY_p4s7?UA)M1Fe`4
zi_V#t+-IqlzvrXd<j3#!d_Gt6u6Vxp?y|R+7CN_Ixq3DA+nby67U%Dl-=F*U+im^1
zR;6AbcRud3em1B0T;%%ooDHRqc{m)nKdg@bt5y5!%Sq5s*S+(#ACHQEj{pBP9+b4U
z-AtRU6R|<T{>MRnQ0E;Kq|tdhQzwCY)0xZXP7_pid-CP7|M^o>wLd?Z?4S1R%uGqk
zqLfJ~Z*FYd`S;uH;#Vt|FN@z_2RakLIQdwQ&F3@5;2!V!FZ=)h-e37-qPtPnl@(v!
z-L(cq&DHSuxr)whDc|1Q1jXv%jjn+ycXkxMys|P_Z^wfso9}mucm8^{`tvF6^-u0q
zzt6RJcT76}3}|yv$%_jyWj9lQUY`GNO7^;)YQNuZkC&_e^D$@Z)v)ZjpwO^<v*EB&
z!hwdEl8de@SFSt>8s)m+%)j>gcd3Tb0EP=|bYpjIS+Q!BR-eVAj#8_-*K4=yfrjha
zj;{_|n^kn?wEq5>EqQl$?fCJiTl(6+hw}dx{y39v_u1UO{CJ;icd)<h*L*qSv@<gn
z)&Blg|9J*zZFb~r%i^@a(9qC3C6|49vxArUXs%kds;iNiU2Jvu`n-t!e?Fb=e)Z~A
z(yc9-u7M&)KRrF&?Kjs-RDEtq(Bku;jf{(ukM|wDu`yZt+By6Ge-`c9wd>)>so`;v
zA>rZT-QxQHW*akaNCYL<nbEsSGAGr%u=dW~^>P_+eca|WUori-Ioon?r?tzLWt3Fk
z22D})*Z)Zdo!RsKZ;Y&U*_ksljg9O7{oyw~U7eMcCG~Gl)z?>`)^_c$FP_KyWUp79
zzFYrmdHpH1**TX!{CG0i|D4+FoJsNje_i*S1nSY}@B5kN)+aObdVKxfhl^LO(yD&D
zHGHwLYWDA0lb(q0|KZxT=!ZwVID@=T1A|F1=v1IdI?>zSINR>m=&Jd?`@Zk}eYL^C
z!IRg;?p{{?{axj&mCHXpo1JeaV_x^?$Cm8tdd%#6KKJ+48t2{Fp*CGHw(MpqsE_k`
zrGG8hDp0D}^W~EFYun4GrfL`8t9+iidhNC>lgqR7_ub4`_T=vFtlaH)%X+Vw-LLt4
z<=VBhcXxJrPO>b1wnU?gN76{;?yl18A206ht$w%f_dA`K9Up4bEkB)5293DRsd&`+
z^5SB5w_d5KxAS)U_AunAFtIF{nSFm>ZPm9oGeJk>INR1gI?@Rm<pX68(7^o8*Xwp0
z)&BbOX3J$i(AeVPLhE-slIK;w+X-sd+|1wqx9IoV?dkVxzn^6lkGW8A=EK9opC5JW
zKfC|$?fpxu!`J)FGSRetzo+=$@BRO)_ohji=f&vld@`v=#?ol}-LhzqJALNc+0L~t
z&ojBaD{6C^@2XX+iawt;2aP)S+JWT%e44($=Kk|-d3UY8-><J<=0AVl#l`N=S1zA-
zYNET`%w~SOh!%z%mbeza3rtt8UVRE08ap%7`1<eG7ym!X{|68MT#u{HUHsMjUWGC!
zh_-;LIUadCo5St==U-i2U3^5)J>}7n&Y1>@PG+}rHmi8{%h?uP@>GAiWU}9>MXueO
zZs+Yz1qIEM3C`EDmx1Q#Hl5bXj##~Zef;aWYr7Vm;MU(W0aOI!M^wLFyWOb%-yfN(
z7YjWn<!--g<{AhZKfPK1|L^t6zWpXCCnkX63Um~W>hzdN`L(a3L8CqPU!F53yq&|y
zn864t??J5#^*IHHqV&~&9hUz$0kk#$>(1FZn>;7qe{#R<cJ55`{J6zik9LcjSKV0^
zy86rO>-w&NPu_07e{Pm(wp3jIr+J`Mn0|iV%Ju8x*RM~X>}!@;v@H44larOt=ayfq
z`m^<V+-%UU5Sx9VGU%N3dr*<@ISJGvleH>2vH#!e{bpA0Y`evDtL{fm(}}#4l6yV2
z+&56<_1{v)4+p_61=S(*|9x2wDkXn?eSQ7K+zawG9}fD=wK6>}TYe{Mesp;FbkJDb
zaoO^iZ#UED+kCweyz}R?*_+>PyKQFm?m;vExoOdPGaZ}Rmb&-L&9tp9+xP$P`{nD_
z>CMjHS9!1I^I1?~3T{QbUblN$?Cvtq5h|ZwEbf11egCK5;`3XxuCDT#W3ln14(Pzt
zlj`&5?Ao>KPQ~NimlqZ~gGLuXd$o5ypH~f<WY}8A3u=Nevdc^W74<jM=jZO&n-?1!
zJE>ehc=xke*`VGxXlMfDAJ8~@cwD7w`JF;{P-Xs|cMG@v9s^Js<g@*9q2|}+`RAHg
zxr@%4UQb!QcH60azu*0C{GZDZ;XifPUonQ)`RC?Xg37vXyV_qOYooX8S(Us9c(eJu
z-O<qS*w8E2uZz0|irmiG>|1!J@VKeX@_qaE{rGi#f83W>S6APt`FytfeC@m9qi1Fs
zcPl!#iTr-Qzy5F`Xd1$>;=_YQ(cAM}XPf1Az1@C)-;ZPF`vP^Mx2@6WD$jpzUH9il
z()PP$+S_g<b%P4;qj|gEhW&ZKZl7WDc!pte*Q-~rw$|nB|N9M8L`&!I36!b-^U?MD
zySv?dvQ{F8+jzA>!>MYU{bw32U9oPRo?OL)#z#vg`)Tbec^Opl;=)1++p3a{DJLhX
z-Jk#a-R|{2{yevjFL`xkWybAoxf}m}yDbii?2k8+`%Ptv|NVR}4ob9#A6LKMyWQeZ
zhjQ1wz18BN;HdikE*3P5c65$qvE8Y9ErxsUp@9{xvJ4CXeCrt*85pQJM)t?P%jo5n
Tij{UNKr^_Wu6{1-oD!M<z1awe

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-4.png
new file mode 100644
index 0000000000000000000000000000000000000000..16d6a1ffcbf1b1033dc9c8ef8408c0fb3a1a4e22
GIT binary patch
literal 23636
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_eCM&#<h{~y2SSj{!@aPnNSXwkw|
zTUvx1mNYY6QtD#WTd-)wjQ|(Nz$1PigY+)Bu&}Tyc}&svVE@|W!Ku2C-HF@j!JmI0
zX8+yzhE0fhvP=B=<I4PJXBr#NpZVt1zVdTtHuf00F)%PNBrv<jiGvsq<~K7iF)%P3
zFk=w_@wX{9fT#_;j4TWc3=O#)3LtKdGXo<?moyUxh<jVW0Yu$sBTZ|={-rl=L|DqO
zKDIAh?l<?+fktLgQBhTSdHKr9%FNT#bj?%ZCr+HWDqvxg_w6SqCqFH)Fe!a?B__A}
z{5;zt3z=7!m;0~VR=n4DrqR<~GWUBYTzze#tn946|IemXAuE;Y>+3=09Bg9!`AH^z
z{dN9^`o5-*_2~@TiY#RG?C;&X$Hm1J^!Qk>Y3ivdd-U|9bxu!8jnvES?CdPEkg585
zHT?4mt@HEher48vILN;1?Y7${B`*T@{`quTD|T1Owrjq=zE?jyJRG{euC}$M<;3;t
z;Rg>M%(}8-;=PK;ys~yRH<tdN`dnr6+2G&tg|^#EO*uI^U)|fgTPtM6f<vv`s{<A~
zt%}*Xsp{*irANEPtJi4TZ_+uP%phr7wWW<;eqBcghwa}lm#cn0onCs`*WB{@#?KY&
zzV6$&TaJNsetDcYgF^i#9q+?!yps*x#Pwn>^vPO(c{)8_%g`|J_4W1FtKaXPeqHrn
zu1?ezkI>a&SO5I{T)gGpp;qpzi{1I>T9tZD)d~$d-X|+6CADhH7L&En+x_(S{a6HY
z`r8{Dofj@#7@4;``FP*1*XwqRh>1;G{kWr}<HEJI(V=@PKE~ue&+?mZw|1Uwb=JQ>
zKe;$K0w$~ZURfEe{`1EV4NXl?@9BD1)92SNJJ`(r`mFi=J&C0;`u~5PuP^!bCUW~X
z*KV<u85bA*`gS}2>C>lAbIzYQvE$)$i{<OCzh*yR&(6r=FfFd;qwDnh;cKIow(&~8
zTHJ4U>A}I~(0w&OZC1TmZ+PrUDW}}hB}+8a)YRNxtEj21N<QBA>Ep+XPfkw0x;fo{
zyWQ<=xt9+#GMB!)vvYOc>Wqtvw4%0T^nH8ZxqbWgRUs=Uy?&c=RATYDxz^b)FD=cw
zwPocp-`UH8mU`{{a`ME93qL+S-kN)Rn{?RmuOZ8PB>UfLYHD(EaTRgOU+T3#J}>5V
zZSmeXdxn3GJPa`hH|absu&~kF{d8J%&*6s#@iiY?k3a1e*EcJ_U%Q=?kI$^Gu5MY<
z(XMANm(Mp-_nTAjdUxt+vCCVt!-XX!GynYg<KyAcu`+V=vdTXnkNdj0wQY`ne{XMZ
zYGm5^dA51CBQ_?rZqzxw=hG=|y|)`TZqz$2ATR&kM(^~dIre<*hgH<nq>_6q>;LVM
zv@Tl%GDb6U(-O^)6%#spdQ9Hl+G>2i?)TfR{&)Uc7CdNpd42tSkodlR`_xoaj+DH)
zadA!j{(EcP{7p^s?)+GFdw<ExNh_nat}3*UNqcmp^ZJ_SpNb_VB{LT-S`;(Qf1b_F
zh-s<Id}cnn6t}OYQdm?p_1qlG<at%EG=ta0SU!IKJY6evRf=1$)YEPAmn>09j+|Ec
zpppH~w7Is`*Lq|uFI`y|ds{>|>WYYF(2<bUVP|<{EH22{)%=)sJfX+%@-koJX{j?;
zg|42pIsJUx*7rX@KacG@|FB?(?EUilwdudUz0J<s_cJYcO@yJafIvdt-mhVwPie28
zQT+Ve&fL#eRt7)28Xj-D{a)2-&9F5yG^4hxSQ)W#(aTFqyKintZ1%qY^YioBYQD2(
zY}jA`a_XVOhkbo~dVaoG+#mDn=#e85r#H>npZ?YA?4Q}O{l$A~f0uneV|;$bt*zO!
zCrl6k={PlAKVPoyN8;xC|8>)I)1KE(zWVyOMDn%u@%dI|Z!(;mo#*}r1u-b7qwk--
z|9pPUr_Pmedv|^O{@r}3*Hj~Z`#&2zy}gU0*&PlZ5fxyl@9gjIkG`$Fe$S%txJp+?
zN5`zYyS6$xJ8w-rE!Hb%8+E_tb8pz%sHIA-T^^I_{{2k9TX<Zy$U-LT_O`W)7A-3I
z^u!aCUFGZlY;^09Sm@Ns<+;l)`HXeR3x(60Oe#O696feS%gpTBP8}noph;JDm*=0I
zV;OvPb$IyudwWF%1Qtx0BC<ASXOQ<aoxsb>eAn*;McdW&@$u~Zav_t|d`tfS{hob)
zU+u3ypU-d2xTth?u66j@sI8M!Y(E@e&bqT>V;isZvJ)pfjvhb0`^x00M~=AU-rpCS
zdTPqaYiCb{*LA=14Ex>|v!lRKH)_j;MrQUat3tIatE;o`?WwH#b~F9!aryckv8tb+
z9O)G9>g~NcO*gvavak8egY5EC)~{b*_U_Kglatj~2QT;I;^f@<tn667y#DD;U#<lE
zYbq!_SXFDg*KWN@))kGv-)`rx3SU1jYJ1+=;^*gH?*IRHJ;-H8j=0qRe!E@o`BK+z
zv8b(CQ(s+Oy?kHo?^CyLNB{o*{(AZS+U0J&QY+nhrOsK&*M13XZEanddwUxfAK$fy
zhucB1;5*MIvfuXGjN;kh`?gt^yjZYeg+{NWvD>uNm!0bKCK$S@dQI8!YU7h9GUw-7
zhd(~vAO84QFQ`uV`RmuK>+$thk8}!eEqLg(HhTLx%Q;%s?`NNRyyFt6Al_M=?iuv_
z+}zN8HI-}Q_s4-EQA{Ud!Bp+=T`{g_ZN&ZU|8AM47rV+V_tpy6Zn0nQcE2}CJjC+$
z&dy+PrvA5vfvahcp990E`D@lSfJy>=ef`Jp-{<qm*}T}4^YhcwW1Dm?FK}co{`ACi
zdTQ`8AH!*>Gu7wUT)Jsi@gd=HfyJ5d_}Zu2=4-E?cI5bR>Gs1DS8FSTzs~M4%*@O@
z_OM{auF}`Lbd8VAxN;?=|802Iy*)b%Eo7ecn%^tPjNh6y_2aj1W(N-*e0FB0vEJ!T
z#aAB}9d740pO!jvo^5qn^<1CGSjLYftqMj)mn>xXF7GPMp03T*&M$AK>NUkc)q7gW
z&RvtPZvT9DSE(^y`{6I|@84fL&p7?uj=ga<Cr_L(sH>|3xnZt#dD`oU^`$kt%in*y
z@qg*`I3vFH!)NB%-oE+m^Lcye)0=#j`^~jkSNt=3TiDvDWB2dhm$9w7viAPQ<l`}Q
z-@jOy9{YU%<c!zFeZfING3x|Uy*xY&;^N|##qY1vdmCPTU*hr4KlAKrZ?UkkN#*C~
zf4=|!-}R;cXXo$B)H!XW8?~h%^ZcG$LHlYdr)wLE>&Kb&N|}OOuqJl*wPaofF0pw{
ztP0*U!%gBU9<r9cyyRL~SU73P_WO0WbKm@}e!o}!^d^(KKNZ_QKG<9JHK?Ryi{0-x
z#@lOu{QkXr>(isW+oq+Slu(Y3kMBS2Jx!<bY_5vBy0)UC<I_`9FJJbzf4k|;IqUZ!
z+w<;DnKf(G&f@3KR$XIe=R2`!jm~@d9rx~4zqkGQ^QUD!KPPA4?y|R2rcGN0N*k+Q
z%UKq=Y)(HP77;PyUe#;e?N3{|L{DA&%e->sN~`*RdzP$uKl{YWHS0`xrA$1IN$5sy
zI+8nc`SsOL{>}RO?c2ACr<w)^2G3jLoc+!hMnudwuI+Mmmg!~P?ROr1+))gw^sVat
z?ATTIc2(8aS37m8Kb=$;m6TlB(!%og{{H)^GgBi$4Hr>C!G}4;7BW>28rf5NF3vK|
zE{c_I*mGP!haqy;r;W3xrM|rEZy);p-rl>v*2V3Ova_?BWm~=Nc<x;L`Z)JKnTsDE
z9}nG>;t2}X<l}vzyUX5Q*;$-!ntjdZ>+9>~vlk!IbL|!joo$x8rQo5HtGhd>q{zCl
zVd1+SkNdLuzMtGu_}I-e=x`gaZQYNYOG`RIwS2F%`6~B*x$9g1NiVJV_^7L^t0-GP
zdfOV6mp?u}4v(#Wdu!{il9!XDOtVVPex5O7#tKpGupL`m-Q22b_Qvw3pPzSi_xpXT
zD?dNW{Qd2%Rq3lKpWCueZ<;b^&YL&YpU;|WTUkXJr=1B13Yv6lYxZ(BUa1vjZ*S$v
zKiggYe%<nURbJ-zYc_)dZpI7=P(gd};6d{z7DYvU#=f)7e1n(yTzqzRcIlrVg|T}o
zF7ABuX~WO(+#4Glr=_kee0(hL^qxI?uB-@D{`=hi|HWgy(s!9s*G6r<bM552*Srn~
z9T*rVEIq@o`ts#VP+|A$%ge>?a+NMmPfstG<ks^%-Y0wcXt(%!tK)5{kyf?8ws=j`
zS!q@JD&y&?sZxeXE&F~v;s!b5m_+E>s8CQddRN)oDrNq&i*IgD&%UxEaF$)|uFrx;
z{{8#+>dwy1ZvAq#SKV)V1w}>8Qc3-3ap}xAVRgSJtIloMU?7<sW2bOmBl2$bgSUU5
z|F_fo|KOG9vyE~8ddtGX)<it~_N%kAGZ0h<Nl0kK$H&L+C~!P^@}!(|pkGQ#%8J6r
z$D($Ztz8wqe%-p*-C8OtM<mri<+=U8ABS(=e^~Hh_xpX9SFhi<%Ch*`i<{~5ry9C}
z62kj?d%qr&&R<dR@X(|s>hmg`6crVJy;$7;<=^l3*>7%aJeOSgdhK?bx&!BW=gfJ0
z=GU=4+0`FD6l~4886+quc<zBw<|UQ4cXyj#H+}kS?}L}7)9+rFZfI&`V0tji=y~*y
zSF6{DY)<q2`tEM@{=eU5pDvj4=xFz8iN%ZE`_rm-m)|LD2NmDk;(8f>e|?SGQ?c=0
z{r}q1_xEBKE?k&(X-TJwrFz!s6DJC8yXD!Ri9dJ#yube5FO%Y`UaG39tH1vJe*g6+
zCnuZc-ZFW6bF+JAXJ>e<eX+#3gU#%=diDhm8oc-KU**`$HtFA=19?3suTMUZS~ug2
zUj!(lef@M=zdGjG)2B<V-|q>w|MQ`Fnr`&6cDX8z@Y1vM?c=kruM3@TS8G!E$Ypve
zJHOnO4T*>ET+@u(v*TXf@7%qAzumsIHG8^{u&`;~9Scxz$IIKhc;=GL?)`GFE-r5O
zn`g69zWz^OeBIBbc7MMFg97aKw%p)=fPi(c_Q&|0`#4eA9Tdo~x82UW+;9KyMa>20
zWiKx;kDos4O_e@_#*7{8EDqa3*T==y{{D9L-{0S+X=fy+r<UKVT;3;dziw^x_GcBl
z?d<G!eLiPxnsdXTSJpc0n8b9?pGNQZ-`Ji%|Msrz>+8;bWB+g_G4SS3F;gWar@OmK
zFHchS4p|wbx;AF#r&)*XjpjFPDSGM^yQ}16?$1w8Pp3vs%euB^=Gv;wLc+p}SB0+5
z`v33mER)Pjp}(b)ZP?6rUs)R+&e!gIzyAN;OP4PfZ(Z9iUl(yqqF2uL*R0~%Dfjdz
zO_jASJF!Wp^u>jPxi_aCK47ylU}2M7#RJB*5gVOcyF^YF37t$j+O;zE^fW2+yg82^
zKb|^k)~fgW|NonH`+Vn|Igev^m%Y5S)Vr&@yO>)Z)Z$ndyZg?ylP7<x1@}ssru2NQ
z(9@6GvqHY^hvTH8zi|u!27(R@Pfl>_?@@@4kMEVUy=8gEY0~Gyg|)xGmDcU9+_^dZ
z{Hx{j>x%yE%et!7FRx_0-*E4r!-02qm8SMwY~d7+`StJ5=ku1cCfa_EPWN~A>65cv
z6<_!B=-R(mRtAIe{GPpgH}7$@4R&#9dGzSflqpl5h+U}r^-}%p3`6I}#zr~&FV9+1
zBSF5|vuBS<!U2YU^Y7l5*6;tfYR3+XrAwAP$*SKeC?m55lrL3PUHxspPPx6LEdAV^
zizg?mZ{E5#@9wUZpvKDI@At26%Z={8zb<}9f#duA|M#)+%hg=X1r?-!8unyg*R%co
zW^>*`Gfhp;-R1AgZu@0rt@`)lG5_@I*<p;&E-ZAO^yJ$?`|Y5TF@Mi~BbE7fwNbUd
zzkQVmTmNm}Nw44E-ik^{tdKNL+p*`pYUY_4hPU=sZ-4aYQBL&)riMSQiV+M&DmFGT
z{dT`rfbx0ZVz-xHug6dS@|^eDVz=H)#pi98pPH(@I&^hdS6A1imzS5%Jv?2?EN8{~
z{r{pSeR(!JKkMhGr=ZGY(V|5mOFRVs{(8Os*R$FAA|fJ7+U4tR>^xug_SVXxr>ABa
zCbxZidwaR{yB*He-`|0{+E@40R-c_^svW&Gd~H;yprGI^%i?8w_U;8W^&+P&joVwL
zX=)m3nsp`M>#M7!w{y3z%(=PAs`AqkF};`-&h31e7Zy04GyE6+`K0>%6^_kpQbs8q
zpqAjRt=ZY{@9mvsoZbhDoy<#1a&n(XNttFX(ck|k$hP`h$oYA;rZqnbK+S#?6_?D+
z%&6^ob3ySdsvBhzZLSvobK%#jUk{r3zr0?*|J7uFyNjSUu$XQXX#8S#+1pE(mU@4^
z8XmtgaIxF<JAJ8<AiJu*y;=G5^YhhCtz4kK@~Y6)YWn*6s;a7)KR-RSs`|3xcJPUH
zHv2&B)S#taRnO;^Z%I8Zc6CLdbM?137Z<s9U)fcfeRhuJ<)#0hot=GkW3v0zmBH>;
zSA_;wRP5-Jv0U`?^K)%wW#{uYpL;gvxAVz@!uxLJ^SS31d_K%?pYitA)>XmF`(~MD
zPwU?NGP3M^;mV+;SGHz{pPgmueevQ&P{Z`nrAt#LOjyv+z~Jicp8fgRS-so)Zv9sK
z{Op7F`TU26TED)p{~!JRZu$JAq@<Gfd%v%W*;y2|ziuxmSU-FysQq+O{rX=U1`UOr
znkV`VOouk<JbwCg>eElo?R+y2wQ|p1<l4RKY|>v)<FMrArK2t`E)w?k_QFz9Sy@+B
zB!arY(`OzK783HAZ&!Opcl(_ruPGXdT_T!EdAnY!eg5&dfA-$$@4Ma>|Nr-QS@!jH
zY8o0RM6^OqTv;1^{mg9h^J^kD9<q?(`}}J4`dwf8dwaiD@VvgZ*7)o!Q)5tTIW8{l
zoa9{pITnd+{PKCT%yP3%P0>vL^Y^cBMa7QHJ3BVcG|dj{I~VWe)m5za<&5M#>#{c)
z*VaZq-?;zqLj&JgCMPf287*D5Y}WO->a$nY$KPjRXP1tTj~5mZNqKdBeSTd1-_qhI
zCj_Ven>caeGN)E9z1;BG>`zYZo7u)I{me*un_>OAz=s7EAm82jHQ%=S+Ma*EUO)SG
zJKwyOTionum#FdfJ4M}<pH8aZ%{tT9(!z3iZ*_U_LMPVX6#<H%-nv%Unv7lL@AIbV
z#m-v$`1bz#{Vy*rZr2Q6)&m->*!lHZ^w}2|7lXz>Zr@M&|L^a!pU>x;^GcZ*Bqk<;
z+VoR&qp#g5K5v_La+0dvZCUfYIWKQ)Tny^qYsT!@z{$mBWSV`=WU+g{*>eB+WiMx6
zeQmP3xZd_$VO7<x%7?AuK2J|g^>uJ)&<tNUN75jn!PD3G?8o2FvYwk4@6}FsdVhca
z{^K(*JbwJRclz}3X`laARLy7Bn4y!L_uzUQXmGPY@*N{dW1bHCw$=TuI(qb|rizLS
zU%Rtu_O&ywC*>ID+%T||;j8`s_xsJbbofB#dEPZT<wC;3PYW!*yjs2fS*hmFb5k^f
zpFoB@_vo=Q<Vi4bG}OGlvNAa9>Z+;N)<!SSySpp%#)ibIFBjc&*FT;b9yjsu!wH8U
z2GrElO#8d<|G(<={am72PpbA$OFg+sXM0)u;e~3xvz}DgdV2Z$U!P%^EFvttc)|pM
zpFe+U+StV8-rja~j%9ICY;jra+GBT4@R(2kFQOL{@$lipuFlSj6BM1dWL{qOdfWaV
zKPoI`_}<>#{e4&NXSX@x3@7~eeBQ;taN^V~)9jKbCj|F?JSJWBY-akWT{1s^{Kz;r
z$Fl1E-tQr6A`G`beSExsdVhbvk&)4-1-tBBU0gC=Ut6mcw`a%gP4V@ALvwF!2@DFF
zq@=8Tb!TxpD=TZ}`+Iw%wq#5Mm5e)fSe%__d;9UP>!)SQ?<`y!y<N+~;z!$CWh0|Y
zl49rQ+pkx4@5?yc##{CK?RL|uFBy01|NjM5WnAKVb5{SovqFKDp+22OfZ=CYQPC!y
z(?Jmt5pmO%PHzI2PqWSa=huFlDOdf*aQahqzd0A~>@2>z%vbvCTx;|GRZ~F4_fjv>
z?cbc+`84(P{Mz|sFMU35|9;P^$uEy|3h(;=@AuY<k4d1uO1HTFzC_bszkgS+`B>G}
z({sgJfA5oP`%+JfeSLM+`|@)C>mMH<-<ol8QOw)p5|dYdWqdHdLotHk)7&$^B_2I~
zoZ3^!SG=<*=g+}r_N)8r>s?)4Po6*Tzi{EgS65a}Hp{v3VB6W#$FJ$f?TP4>HV^9*
zQhoCD>D0HoqPFF%?C9X|onvt^_vV$A!C#Nd*RROGzfbP^-fK7hW%I7yRU<tuHS=hf
zsNUfoqxZ{Cypo&ne13f#Xsl;@-d&TL9|hAtD0-@TO}Q|~vN&X+6RWC<O2)AsNxjp`
z%F3Y&oml5u7Q6Y|d~7*2ReQNpD;H?oWR`vXK9!e`j&_535UWB~E^26C2wfH8DPQ+v
z;qAhhw{jC6AMbzt^ZESnudl9#?kGr{suAdP@#4j*cRQa?nK!TQ>gUO_+wYdm77`K?
z5fWN-v|Bv;U=yp}>E~x>FP~>yy(;VKDy^U;9bF=ti*9Yre*O3R{c>*Unf3n3Jxa>T
zwtV|<Z%Axr<CR+S;zb54E32l0f<x%4kc+|owo8T8{bIIW0}VFU{rv?pgNd2B^!?uN
zS;zZi^ZwTT|62}ffq*I&CuirU@87RKal*s)(+OoSKfiA~-f9LfTT%D-7Z)#YsDncT
z$ivfgqqDxfxtUixdGh41>+An|i)x2W*}s2(Q*-mxb+OiKqqo0X^_AHnYzGsQ!hOxa
zMJ=Eni|=f+%zuA=W?f%5chTa-swaP*U$R66)b9fYI_?3sqMPedBf*1i6(5tfW?l8_
zxBV8;ckEqtW#vl$`F2uvH9J7*pvd`83#TwBrcAT1>74#rY#jm`&yq6BnE@`hk9bT<
zN>1J!^Zw4x;$LqzpHGPdjjSKl`7Npy;?c~`ANK#>U(>oj6{WAQon88kTU<{=PtWgo
zzkK-bZ*NQg{iy^s3g=pvUz?=r{pDf1d={v0{QKSRr_Y}+KX3m(hMAo&BqL+RyS?A<
zWy{3}1%WKvnt$K!>Z(xhzrVg-Ug|x4OYQHny}#e>u6ncac*we#ojG$?ujb_Byr|r7
zv*>zUwJ#{g-P)G>I_BG*;`1j@pY{gz36zwSKm!?1PfyRju)q=2f&q;=zp>7_VNm<?
z>GWHhQoBJ>E~M(^G3oRCOY_%vSAKq`six*uSXj8L<mIGm>*Lp#->Y=*7T3S#Z~ym+
z8P6Gs#rpexIDv*!t;*i4IMyqjeR-MhuSebbTau1){r&N{A2b)U`Tw1r#h~yo&ASuv
z_4W1X>({TZ`};NAcaB9Mx47PwU8S#M)+zDHT7@XP_l2}_iC$UiEiS4b7sJjcbK%z3
zY}52}GIz`G*Ph!aZI%=8`PtdhM@KlfW?XcdYgKyb;$nBx{ChU085bNrKRX+IdYW$W
zUvtI}{K*Uo^Jm#qZUPOtpPHhXcY2n2ex3|pd*$O^^O#%VYok*4?A_~IP_V(W_*u{C
zZ91oo;^N}cUS3*ixhna_hD6X1nZNztD{pRYK3-8-In!Of_DbsfX{j^K?^PU5NlB47
zy~!seBxGCvQHf-o(?-40=HGVQKXT+q_P4WBrc6oEIc>ym^Pyq$+jjXngK4QVjZ#m=
ze2%F9|F=9ja@xo5-_57%#TIRIcXN|!Kb&}LYj*m%`S$O(y*+TiA$WUUENEcy`KH+2
zWs>pn@xhzZe5cof8Zr^nQsXM0icbHw``xb77BYOsSywc+@9LAaPW$)caewx;`8(gP
zIp@DD_4G8!)0=!!QkHoCUKhLD=G*(bySIaa;p{9^y|*7fegyf=w)$H|O#b_Od-a|h
zUf%!zZ$4;J;qzJZ*jvW&%lX<5*Zlo@UGFq#94t9<TIRJiGrg<5yt+=`R|$4<YWn!;
zlhNN_UyC#Oxwwo{Pfs&_er|4Y^z$1Vlh4(kKXJl9R6ERsk&*FPyL?^2%kl>Y7=;A|
z6Av9eZ2L}{VO^VI1OwNcCr?sTRa92Q>@2GK^>TUaG*Gkj)wQ*=gMx!??{#0?S6hAb
z=+VDVYo}|6`<<O_e!WN1c#d<En$HY{{QP{-D0zM5Zu3ix%<L+jsi&vyO}l@_?)mxo
z*Ec2~zcX$B?{~XDef(JX@7@AOW>;5NP(4!h`K)>9mW;sXn^vsQ02LJb|9m=a`hMz-
z4T;TR>*Ll+nPz32n4p+<nwgpT>Fd|kXMb(hR#I}B1gdwZe_OFaqyH~EpNvLw&orIL
zNsIr2noW<VuK)3)LR33U=k#0C+*=`_i7D^s|Ns7mZcK93jo%mZ``g>%ZSAeCJOB8C
zT2Vfrrrhz`A3uIntkE_wxbX9Rx0vpwb+Nla-9gig3kR0Qzr3{6H06YVtW8D0>1n#3
zD|i?th%#|BFr_~});noQ8?SWLp7zC_lhurlS^SP&=Qr1C=e_#-`)W%+J@EuhK!9d@
z-`w1MbysQjRIO00>$lIH_nM-y@Wcs^?cY9pDDeDb;qL9?(qd#}RPy1$!PR-yUte9F
zwB*^@+0XY~$T`8|5?;sQ@9TSY^Le|~xAXVMx^|0|-n$;SyDT?y+SI4EqLC+0oVdU)
zU$dZ%S6WL$!{gq)dqoy9pFVxM1nQ&SiCgT}d*_x6U%N3!%+Fi%%yMTvdh|#{N=i#!
zUOxS<{r^9kZ`<uEf4^?Y5|z6(pU+BJm8_Vi6S-)zy8o`X`BztkPWmS!_5GCg`W=7Q
zL~eFFCXsu0m#O=676#BDN8{va)6_g8?PRq#-@WX+Z>jh6b6@}6-jcaEXsK7`qa&T5
zvDb6+Y-c|``~0WlGsF0QYb(Qye*gIOOG`uJL~3MM|Ff^({(Y`jogV*J@PpJz*jj)c
zMK@cy#n<h+FRbo&Vw2AEsh!fgs;aJ+=6`Qa@$&W#etT={*7WmoSJy^|@2&nGmXNSu
z&)&VD(g#%b{(9VRU$kZZ?{~ZXK_$=8E>TebbgEu#R9#)&q$P&Q$5M9gU2`bs*?ptW
zwhEr03LeyB{_vsTd9x4`6O)SPWHsNS-REE4Ex#Xnv`f@9^O8!hl&P1pd*77p+qXw;
z&04zseqA)EI#hWsx?%NM{^ZDMe)H|-&JAW{@M95RVD)>({&3B{(DO1yB~RI(y*5pE
zepax0qOyC|{e87s!OPB=<{v4wkTE(|F-Q5yC;rLipaS#B^XJQ_OcD7Dn%arlnl-If
zSV&04v;1!9^tGR(r)UH^9h)H&pZH_-H2rwJm**`#jeKVq9Q>L4f2#TG^>KTn-tYUJ
z*Y|B>-QTLSv(5cMIrDma{o7AZ43m4@dZng5-PO(~`{~BKpR>-_<jPwXxqwC}@^-&9
z1JwmuAuA?$|9^RT`R?4qn{;?(ECQI>`L0}C?7p?=sTU~yZcaac?f<{;_MkC=Pai)9
zetdK^HF6qg^soBePIdR=d<@}-1#}o#{d%QLRXnxB*IilaJ^ju!{rG(`(^4yCgi7|>
ze7WF!PSKLz?#BaD`!&;bB7-J9Uo8L{<+`{}makneZqJOj|Ni~^2WnQP_FT+fzjs>d
ze$dp`-12)9QzNT>JZvux3C;tRMw6yIuGab2b-0~B`_GS$n{>SI?k+Fi_WsV!;AyEV
zlaKf1y#|%ZkGC1MGgSSmPO&rE?mOEouiy6H%jNUe{fc;a<cQ1mZQj%MGM}EBI_cm4
z>V)g-VnMa&qeqYK96J8*@9(YI*VpNMSM)r1@L<;ceS6c+%~`4DJ1gV)xw*fdPLEgl
z`_tU;*o)uq_wRpY#-OmALxF*7PDcj^sOO`p>6v`2r!ex{Wq<q3V?B~wJUk)oe6o2F
zyrNnm7eK9wr_<xJ4m2=ce-ppEEZ0(o&v(Av-KWjzSy`**RX&?36PwGy#dYdh!K%}H
zzun5#3SBj2ng9HC)8nd6zGeRW@$vDiD}&WR^I?UBg|BXH&F<SaKiV|=TFBn2uUj%N
ztM$rQUdpY^%F60%x3An(`8n<A(W5VKY)szud|oxE$^U%Qi4z`@$#)JNJJu_0TJ*%D
zzkczV#H@L8&*xO`KQr~Vb<K|r|GuuTkKKCi>FMdaeJA|@4J1E5Hy1RT`#F(u=I<Rw
zJ<xHf(%p~B{{5*0C7-<Cy9*vR6`u%An~-^Z-CV7(H7oe-{{(;<AIGi2*T;dTC}Y1y
zFg)<$Imk3&ed^aQOZ@GAy6{SwTmW^lN?rzCT^Ab-8cLdDS^VVb)1{u1)hg%2Kdib|
zxYg2rUC6GIOwg$E<z>FXB_&(l?R+jb*QPQkzW(plq@*O9dj|8TF7ut8b!|-~XqGtZ
z+8RxHd3n>UD;~VkW@n1#ZrES|s?c(8Zv(a1K{F!LbfdKl3<5wFE^_TId31!+H2>b6
z$0;RcGt6>lNtx%Z0re6<3mcM>lT&*xetUcS>)Y-3vu<z8y*ZCvrC4L?m*?%T7rXao
zfyTY}*X`9g9dv%4?bnaT<#(^SygFQe@7HV5QYIM_rs>D8J2h4N_4oVr*FiI&D}&WR
zqe8j%zO&7)M(6Kc+Ade+G1saz=;9*R&_ynsU*F%4FMV|-@b9m$rseNqK(!$#kQO?(
ze>rP@|HZP|c}4g3y!V`KmV0HPGkfWa3yxE@LN6Wbl?HXhSlQWk`@D--6{1=C_EzZT
zw6mbOw^`=->$Yq$QB_gVP*8BVc=6(`J(Zg`*H=~Tk}}Cy;5AiiW!Ty%t@wR=&ds%6
z-qOO7dwZMj+gn?U`7VC`_U#&|L%1o``)=`hThMItqQ#3tR|F`&y}jK(`}(@8@9yp{
zeQ<#B=kMR?uirB<Oq#*|<jc#;&z4S)Gt!OTX42T$cx=-eo%xsdm%a|WyvUV1c!`Ig
zu!KZL)weg9eKMAhHoia7DeSv7>uS&b{rgwO?A%oO|L^zwCy5O8-q&YYE32v={qp+y
zc^5Y~DbT=^kWdn6&B3*`(bFI2#-4rpxgo~;nT>*|R!BiKC?OiBoDc}!mJ<nDx1bfi
zF2}7`D%Hry2((1Scb3V=9rv}LGg{XC*zoe+-rbt9yS9Mla{1a1TP}AC3Yt`CA+yYX
zzMb4_>*{Z7B#qO0GH+~H2pVIltE*Gf(K)jv^YXDXGmX_xKkn-3`BLF?OhQ;%I(yHa
zJvMsX{r%=~adCQ|Q$VE-Y)I>?zpt<9dAr|hcD`IT+XplZ6S-;0%D}~Kl^>6a`&Ly|
zP5T<V^X=(+E>W!%=(>!`XEW2!JUcskb4>l~YipOq?k-yvvNC9y$3&%NWp8giyZ`^+
z_t5jNXBZ}*Ict7D=g;52y@wwb%w&G{<KyFH_5c5=X=$BeVPTo!HC1b-cwEK7CCisr
z+bo~H-%ngOD&^JH)#;$IIj?CtneX;~kNf=l{r=r=?QL!E?)h+tds)%bQ)&td2c~F;
zpW~4*IIv{dvR!|3^<s7;+^c%6dwEr;b}(r5i-16ale6>L*z&un$NJ^-^<s8B*!EZ1
zy>G_zdDZ7a*2moy(TlkOTI~|DGU(`?>i2uoetmiQ?9tKg>wk7L9C)geT=a43gZl^O
z*;b2)iZ1>1^fYLEHELs0tD5huC2@PJc7E~p^9w5}0Z-F8HnY9FvNE{p_1f(rp!EWg
zn~(imBJK$q+>on&V|cgv{a(;0Xx)#8?7nlYLKnOB7R}xa8n^nP{_{Bd1a5J?7e78e
z=HlhO`s?fK(B*!zzVmEu>Nb3NeceBJx!=|N{ePd;_&nK^dRjzWeEG-6$6qgOmz(tE
zx$m6R)6+utR(&<8|5x+;mu>a8D}R1|-kN`ZpN@PgCj$e+pSyn_=R1A>_%Sde<Av#O
z@cNMG?PZm2wU?LqhA#CIo&NFC{o3zygMx#vu8+5${`L3w_v<e&_uqXt1hjPU&*VRk
znLWyuELrm6!^6X?Vs~%5y$Q7F;Ev6#pYOM3T`hVUzB)|TQl?MlZU$&s<)6C(4x1E<
zgN*$*>$SJGYMPo}wLJa4k(nJ-Og?y!Ful&s&JMIx>)bwWkn4m69X2U`p82<~t}gGi
zk-Y7Uo9ec<vHSMzliU9I{rmc>oy!>*7#j9lKVv-E*3iJ<`N@Ja>=}#C%vvTUrjmbu
zD*JC+mcN^`dA_=PzueVHs@@`!l9gBM7#J8%NWXmf(#y*$s9Q|;j@urEY7T{)6D+@I
z6>D63$|qy7;J^WgpFe(B{EpjG5$N78S6UgEcFw4JYv*!MOH$6ZD(3ksMh1q0y`cHl
zySvNJzc%7hVe&9*X>Zq7QE_>FZEbP%wzRWSuI}#E_5FQ)(+u5SUt0_6G|qhsDr=T{
zPmlQ(r)gvqbZNf+i>#}wV)rwHR&ADUEPWmJ^~J@*KX>w4x-*<y<~P?W^VOA=UVeUM
zGucyqe|sxsQ?X%l{A4v>5ebPE{r3NEs5aF6`FLC_X2*tiJD<<f`99I|&8n!aS*s#9
zKjXC$Vqjo+B6j%ce=DYrC7?=7-EU4nQPC!q%!5s=x3=fcSIK;EpiwJo%ZfHWS<q~(
zhMCzlOW|KHE-o(p{dT*yo!z~iy7l$-yz+K2|9@TIUvj_pJ9v8N-|zRPwZBUC{`>V>
zD{zrZoQx6!1H%OUKabO$rY~8sLgVe--Pa#)y1To4b<ED9N&ogd`SxV8f7a7eQ$KzE
z8v6R$TF~fTYfH<HwclSZpa1IZ_WRe~-Q69!Ehmy!!oY!<jb}%eET|8@HfrmZy1!NH
zK#N$PIM>9Twq4io;{1e(vR7AyUN*m9GkNVke!CwF<Z3<~yfcLrlw#f*@PiU2!)@}`
zw1To6y4HJ@u?%-WorLw?3=OZ<EG#0Po|=04wGjiuPZmZM`BxVgyT?suV7T79zh3e0
zx7%S(91IRZj4Jb`^j3z(i8C@>KNvRG`nt1wznp3V1A~g7!>5%Ro~EC7f!z6E*JHI3
zkfpR-s0%V5-BYw*9z1F*C<HL$)pA4faXwI+22?aZJk%PxHp&!~zh1t4srPqV?(JpM
zbfZ^gTwDZN-Ml_-Z^@Sz7j0HafyylVJ)d_qG$sB2_ZKwk30nQZ$jqi;U=Xl6Z0)7f
z`uo@LN}Ihnt-pVYimJN$>cqosT9KQUxb?}b3|{W{a_#nem-P4lS!9}h?ZoZb!F&u1
z4fT3<yy=&(tPBSA>(@qY^)kO(GFj#2!gje!N4v$p&j0_%Ju@>CG`J61ocQHSN$#yJ
zo`Qmcla^SOz5)$3PFDB7=FD$9WqLbkYUPP$TSDsPmBGtZJQprpsP}fM_w;FpA5K`m
ze!WWOyE{9x?(W)ZT;mZ0tyn-a0sER585kOBIv6JTZrr%h=-3MX`F5Zd-M9Dm*GFzn
zdkLD~T;SL&0$J!NYgZGoHT!y5^!~iNyKe0$OqL7b1C?*`JO@uL6Vr{#`0?Rk)!(nz
zw<a89@|=_!S@rMd^RKT~ulJh7Cu5=D$;HiG9Br?o<Fj(*%3TEyn`&xm-e}8!!quHa
z!BRj{a^;K}5~c6%L^d`yf@Um0e!jHSdv*N&x^v4DfByWrbM5Q*@AW~GFY2K3=z)AU
z!z5qh^mA7Z^V_eHwJx(*U$7<rew?^|+!f>VHjDG_?g9;GPx=B{B)PW!-5pEMqHmyZ
z`q#;!aP!N@<MON1&d$m^y!zI*+|`=F%Q7Ax>pizTIhF6|t~-s)>>?5pGtRD-&-b2H
z>KeWM|8G!8$)=r|u@E$6zGdmsrB4G*>*ZM{<XDxwn83u$eD{`q%npU*9wQ?o5jnYa
z6DA0NmMpHlKg%>*L{@h0*}c5euGp5dGBYqJgzqYSy)5r;%zlP@8xosA(^2lCe{DaA
ztjSpww6x1C@6HNY>#`kN{O8-n#>K^fR?e$<&b2B9t$Lg~XU>~9n{#d&f!2wFreoKd
zf-0_`yx|U;UcOvD|JtLY-B%YlGXH%Y|34@oV8Xs%ue5a|H@VdQ{ucW3(o$7V=XO5O
zER~3~^lE6ENXoWqOWyv!Wk-)6fBx1HlxHe?v=we%*^uZA>WzUK6?XrAB-?&GB7AFa
z^>)xyXYH4Z?&s=KPfZC-N?N29x@yVudDVW4-TT8{Ut7Di<YmyjI#y8fwprKk!~rz4
zQt<Fl_P5nxYiI5I`Ak|`i;01OflCZrsW8xFX9UO-qXjNz(FY2b9IEU+0hu%yL%6p*
zPW(f7%&rp8)#2+wvy@)b_15lwx6Aw9J=RYFpvG$b6sB_4l-t{KS4C}IHOnj)v?gq&
z=VUd|wg$7@TPdgindjVCur2pCXymh%TRiORtE*oRvdizddSg?nx2SGZh@+$9tE;Q0
z_sQ92dDk*9FgVnOJz(<KU-!4<``z-_KR!P8^7Ope$jlzHG0D~T&xgb2HTS)z>w$U!
zC0||y?)`Gf8#JAJWtp!uXtC!_bxX@gUTL!{paJ5dCmx_(E1=>J)Yb0k>5-082DR+w
zKfPV(4O)u>%6_bDY`eDP-`^Lz*u8(+{{8z^G%YM5WUb4td_Heq@BG@b^wpHA@9)-{
z<=%Sn`Mmx4P4_zlm8Z;`x6XIAnWmDG)1;8)ezHf89?ksp<Yd*0h3$D6bHTotmcPDX
z$&w{2f|hzoS(mNRi`(-er@y!N>Vt#LUqQ=Aj`zt%?I>7yukyL<(PPK%U8n-B#06Cf
z%5FUqROZ@NhaHpHURV759H@ag_o4G7Q0QufuFClK=BD`;&^{@J{inAxrW|Zyon@HZ
zcC251eRTfb&~9=4X)2%+rK_VOU~}5pkfmOtrEhKonr2_S(!wd6mtlK)nr`sMq@!E%
z@7vuix$Fy?i|i8BURL+_*UNtUe-pl>XIRzz*pPL7-P>(-cXyR;Eqr`TItm<Y_n+Qo
zQ1S#Vo}Z>0{pEym|BHXW-(R==erK_BJ74ClEt#O1{DaNxQ|HZF2bz&nR8%zIGVOl-
z|5$Oon1J17Z$VL-{qD}rst*U*zk*g1`OmkTw1k<R&tuY|Lx=8M<LBlM&dOS)7qg?l
z`88;Z*Qd=jvJNVsnYe!Ye>>`azcqJtae49WcK-DT2b)Wuosn#9YddxN^yz6<pdCP8
zzLXq2emwik3`5Y!;Jw=Kv7i}L&}yf$cXw8P`BLIJY5x5Aw|~w2z9t1)cYUg5u&n>L
z=hCH1p!r@<SM#`hJ!onTw3H7thWofy!raNhp+RM3_VsmoZ@=HK-``^hTF<)K|Jj5!
zr{`LipG&m{b$09n_tkP;1MMnU?k}&ZqH;pwF^^2Ilxa{>(xSApvz974x4i&u9lEhG
z`Ra<m#nMs!6%{-Fec%6oWys1Py|)V&E}XRF@$r7^_Bc?T`Kf}5nfdAC$CG>a?$yn_
zCYpQq-+Oij28Oa3hRJPdXJ$OSG;P|nY3^75)IPb*@acqdKWL*9C}vMiQZ-FF!cqF_
zif8q=H-QVCT0zr-TXS!RDZBSwxm$jJZS}jI&)e)$SB0&O`t|L0{?s{h)|{HEZGAg9
zC`je6q|2ehhed^i7L~rfwsY-%NT)BoIKNr7bU$AxGXuke^`QBtU8Ti;nJNyq@vaJ8
z9VQq0<@<#E_5{!>lBz!+kBbTmFTS0(+ZVL3ZDaEBFZ=)hJ%3YOLBV1Do=;ud^6qM#
z-jtVN3#x8=41ayO>>qne-Die^yuAF;BS$<YS(Uz8(#kEaWodcyX8O%dskipk?tZuX
z{XRq*)K*ALOpMxFwN<Y2iJ<4DS65f3Mo#mZuJ`uZ_L!YTvrJ!~QuMwaUQ)6JwB*=x
zvf9f-t=ynBBjxvNmxJbAo!j|JubGy-2sk^_*nQ*1jZ!8V6a3~{Exowd{q?uo`QbG+
ze|Xmlf|^qAKjkujW<EiyyFeRLK#LLDc%@A;E+|aZ3|2dz1sd@<HC=zb=VZ0adwVKD
zV|Acp$17oQ;O26lnMPhdK369D+pPrE===8V12r1m`sL=H{cR5_JooFLzVTIJ<^F{4
z@9suzO6dd*^X)2qy((^RRb}iY-mm|Ui}(qDZ(#UQeM4d8G|)WqEYs{~rG^X>vS-e}
z{^R|v`04rU8$5zSLZ-;oez~|u57c-$P&z3;-wBjfK71#ta?%uFJR-5U@bR&gd3Sel
z@$pTYK7IP_{_W-a>J}M*DyFBOD;<n@C5>F(@A=%fXz^mup1r9$kw)viK`oCD;vyXk
zMyaPnKq+o>`uTIOgFu>|I5kQ%fy#ljv$LL-N`i!nRywdu0F4E|y|uM67PJYqAx2Ap
z@d+qXyt=yj>#x`AU*Fi6Tp0^$1~=?q;lMHhv`qH;y4b3ZN5w%~13?=VBQ_@K*&po|
zKmXbY)cTBZZrs7SH+Z?<CLQhdr$N?C@McwN@R?_0x!xPZEszxft!80hVE8BZ>8a?1
zmBGusCRKfVqY2ty74N-1Zf{;nBuHVAW<1-3A3rK0r!8F<yZhAj>){_ie!L!Ye3K4%
zTj_-JPfs&!s{WqmIcfd+^{3y1v~X>!k#smUUBCY7eUMv3eD1V>+)mtX)!8*aCF1-+
z3yvj?(=x8Fi?yozv!lmQ@3ijeOUvii&2qmAGV??qlb{1=l;+%A>(^&y8f%5Enc+1}
z=jFBIo7UK@-~rV%exL}b_>cgaLIYJ7UteAQybIJ5V5kpl+`*o5yiZojqCnvxC~;^!
z;BsLAjpq8zwVHZ8737H%OPK^6;;P@8f+`I!FRxSZ2;9M*a&uEE7bj=n)~u@{;^NCU
zrJe>AwoCg{Bc-g%a^ylmeSQUNE*FNM51RSs{NGpb(5b%`yeZe=U$_F(iKX7tKkWjQ
z;|$jw8+WjSSO@MqH|}7Xl==PLUC{c~E$QdwJcE9IdRqGZZn?IWmR7$u$ej~pS=AbN
z<ZL36kN1^I_kq@-f#&MJytr5y0!mB`Z?puQH{7fHoeSFi1gfl8g{}t870k6LbXpy@
z7PONIw5q#T(pYW%X^_1IysVG7PPA|eU)h!$4eG5e{o7~#?!uXw#-;D>SoTVr`}x~^
zbb)*6i0FhROH@Fc%uYYmjoOkh$%%o1VF81N0HcbDNyu#T{BuP=pPij8DkPMY><S9T
ze_c$14xrIn(DDpWQ9IK(ea>6ZO5_!Ri$P1>OJ816<<|x|Wr8g0Be@9=54UGuUgis$
z&yA~ksoL7!?ma0eC}_&Wi3^YQO257u9)I?+7AOhCcsFt=v~r1F+LU@4H1IjS(gC!#
zDr{}kO5fRLn{>4MSA$F~&}CI>NC7SF0j-{g#O;r6t|PYKJ<^cGzhZ@kr3@cv8o|!a
zuB)qS*E0d_)0?&wKlhuh1v2A9_><ENLc+qzr#C$*u!yMxl_CKfo}Okfs{Hh1^*>PJ
zUXbue4zd?pQ-Cq$@-kmg<HP&*Bvo(FP7u(BKuFR6<!=RbE*Az#qm&L%A@Ha6`@6fZ
zE-Y*=dw);Yv+C1Hb<?^(KlW(xgVL~>Xa@smN(?lg|MT~imBCM+K3&=?Z4O#p4vI@q
zW8q0+D=45hEp}j;uw{!0D=VvI{r_LD*NcjaFMseL!80f(W=`3g8xzByf<o=YGA2QX
zLx&D+`TBor`TNAUYo-5=$2Y%VU@AJsXykfSSaaS5(cFW|4>MkiapWq^6Du|JSDkpV
zD#`Sy(VddZL0-K+*S4vCjyf76%D<s)S(|#$7p_PFM?SXZ6Mugno^#)?nN#C?xto0d
z>sha7y?<U@-~OHF`cj+c`}TkTelvZt3b&ZfiTwKCw`D4yO#J#=JAB=m{i*s43>QjF
zPu~9UZ|V8^f1h`LyOq7U>g%gBb1aRoUcGAhZpY(S-|N5czQ45m{XNk+0t^f{1kNfs
z=<R;93ADU*=hJD?mlis=gNnAhyUYD2>BR4|3104Z*8cBh`_Kw628IXCCfy8~x3}fy
z?S8xM``zD<<^Rtx%e^(lMwEeJ!^T;z4S!5^qqdwdyPXsK(vX3nf%k$6^OH&5dY+-7
zp?Z5h9NLm`QE7Ti(Mfi@<*Qa{JwD#ApJ>IvkPvKol40kIMcqN6p;I>|A5UAomVKG_
zL<R=wd!Taxww-bnkNwhkUQmI7;ldZwlMIpD^X|si@-Q%%_}{Z(W?<0p-OMpzdVHPb
z<z>Fr_y1;IUY2@qPvuiy76yi#Notjx*W!P@3g18L>FMduXC(JUz6Ujl{+7JBplJX5
z=6SDqJPZssB+fqKIkC9kZkBSN#iQEq{MK(afM%>!{Xk}Pr3or{PuKI^UH0}~`TpG7
z+dvhz*BlN8h8rShl^nL+&f9JC=fmOmyZ>Ks=3g4VJ`SNx*{$cq6wP3x%u7qywm+$T
zKDYeS-uJco+wa#^@B6Y;KeWJ!fg!=!q+5JpzqGlYaoU*^me1!*<`h;-nI2o_Imzb#
zpU;(lzg{;kcyJ)5;$f@kJRt^#9|~t5@pzP$mV(Bw|GaRw_xk_u@8*h+k96YpSp5C{
z{k*UF-6=0GFJHcE*RD&+ObiV23nJ$*dQKA4je4?Vvfn9B^|>K00~r_^e6Qp%sd&D6
z^~$LF+Z&yzEgH;hJRZ~aVzq3A7#KDP&N`|Z;R$m2l`B_L4m2?S{JsDGZ=0`If;}f4
z?G|6|JzWnpxus>J$iVQyah7Ytotn>QEuYURHmdmW;7-Y9U(K#Xb?d#S>sfxe;JlaH
zih;p|`K*$|x_!T1)%^QB|Ga<wugfyUXAFD4eZO0N|Ifeg`_~^xVPH6LEJKXZsQlfX
zns>$XtMC8yn`>36Uc$hT!8Xga0TgN7;`(*>|5_G5OSzr9UAIsPlzvRQL4|-v-j0WD
zdwxEf-TSTX|L^<Hk4fjB*?3$oy743fLqqRH9i}InPV1eve!pk(zS`f<X5aslwrbU?
zPmksQTg3nSG=1~^y5CEqx99!5wtZjdOG8G62L1~=OiSGR<$k`+ub+Lenf>{<+xh;1
zBA{$ylzVGSkA$HTXqlqxJ>ir?Eu5Jb7rBBK^|@7_xBVW&#xFOg?Cq_k#m~=4S{6Nt
z-`m5(z+lHY>#Ve3+3Rb%_J1Doe?Bb#&tU!je^sD4&2_Q6m$`PIG679D75{uXeR=Nf
zZLjZIKbhcsX=C#7n8Kr?ksFg-*X??>%I5PKW6<jNsBJlB_GJtVKRir-)^q-U>0f_p
zx!u>5HGf~npTEBE+g26N>+52*Z9<Fw{e1pB|KGFxO=WLyxs^YdWsv9;wl-?2`urLr
z+v;yVliuwA|IhMKhcc)Ho>TQ|<x~kt1_rHlC*zy0F7uteCFiD5bpGDbrS2=gKWOHE
zcFy|!8Pn@AoA3R#e!s_f>(;GbKTcF>mo1C<_2uQ{`TzesPwnMoVDR;u%s)Zp=OOWZ
zpyrTS1^XAT$nANt`#w!w|76Q$zteKnZ!Tv1-+Ddn^di^pP50}5o8EeTe}DbFibtJB
z$5<E|)K;F1Z<?xdxSjv}%=CFP9h=#ng0y|Roj?ED+GumDy!o}?Zob(ZQ~&pCCFtM^
zP-O1?%`K+mG3m;cD<-#AuUvU@lB)NoZ@2T)PwQ^Kv!<Ad!6EpH4pYj51C3wj+kd&>
z-21J2kw<7~=)KD4bI)2G2dO^)|Ic|)^iTDhYqj?KjL_9#s-CM>ua<thHS6lCe-eyL
z3<uN$H*-vwowrLfG&FRooU(XaMWR*tyE%r*$M(E8d_Q;Q%GIm0w`{Na`ikv11H%Dz
zP{|ay*e$fG<;+}bbMt!@$@{+VeV_X8&ri>Lwx2<VVeI+)?RMqUso|IQ)&BnFz5d>A
zk=OsDHY7M&mA=}-m~Ow$ujqIDn%*Cu*%=s8XBee=E%TXqDIxdfrc}{c&mJ%KWIyrh
z>gvy@<Nq1y@BdQ-a>}h+x4!P%wutBR^Yi|JB0o=s@0+ywoYm@!b?@)(E&g^h{kir1
zpMJZ_-p)EMU%%&~;pVinUi<6*nmzEhwm)fK^J5_+!;KVBvDG2SThC}y{q4=0-S78_
z&U*29;Yqd=i(I>lE;zD3eL6jU-TvR9v(0ip$^ZW-Z~5oLVek3N^Y8Ebc~rmdV#eP?
z-1=uuP1QEeytL%YySvsWcbC8Yb<)3X($CM&uix+bzVG+D)7<)dCVW0`zyHckMur8N
znVT4kUM`)Uc5hFm<@Y<q#V;1Nr@gzgbLW>!-o{m5Ui^8;U$0R+@7!GL=Qoo3bGQ7v
z`@YURG&I!m*^J~@*Y|zw%};rCWu>G=LBct^-*47LY*Z3f_d63;{r0Mgo;ou_gBQsB
z^S0kpo}8FC)1olxZ`Aj9cRw%Huhl$n|G%c}X6ke<zv~y`_c`nfUmsWbppm`kUgh)D
zJ39(*X02Wu6dgUgQ&@f1Z&3z@`5C@u4so?#ulC4VZ##JFAiMmWMH-t59v)H?R``Cu
z{(sf=^4q!F@6>+3tLo3pz~CD_xmNwlu3fu+eLq`qzPkVVy4dK>i3|)4{3}n+WAvO<
z`T1Guw>LMx_TS(A_GY*Kz8QS7Rwh>addflFE3??id=oxCKA!&P$H(4l=WRZpVe3C#
z1u6_590vL4^I7xoDi#KY2g=t{n4cUG_FwabgMs0I`<j#cIAj?Ze*6H{m=2jN91IKr
zQjAOt3{%`d<M2yIg$H+-NWb`aT>ktF!{kfb^Y3rTy=^xC-<RdZe?A_6epEa@r{qoX
zdE4m+o7tCxHe24=S?ty)GxKP-cz8k<14BksR9IERvq!h@|0|QLd@_+o*2<*%-OluX
z-|PRIUyrNK{dO~bKBzgk`~AM^Nh$yS{ItYd#e7j_XLvCA^!_&U3qPOFpRXCb%!H#O
z@o?Ky<M}^**6n!I_2-GYz2_vK83u~0!`7af>~9A;3qj5E+x`0gGKEJ3XWCR2`PqKG
z(shQPfx)-YdxP19Ms~RyFWwyWvwl0p_S+5R^LD>;{@$8fesAWjTep7w@R)R%&swMU
z*O!x^2JEG0tPBmyJQ`{|xW)B+rt8H{Qdz(ETa=h?)Re#9Zm+*s2x{&K``ZM5t6*Tb
zu!Lg*|HEt1`Dg$9{A^tF<Ach{CRXlADyF8Uy?tvD6~c5YWd;TlRi+eS+wXUZC5_X3
z*mxu+OjLGP^90q4Dl6Bm%PXl_9ky0VhM9q3z6(=|uujYl19$n_605Q|Gpyh3P!0_Z
z^_+BVZL~V5^(1AR{`J*W-abZ#27jgUgSR|RPuD;H;9&FSnxCJ}%rI2Gowqyp@4f2j
zaeK=(ul?VeaImT5)fLU?yq!<k{%D4)@BFKO&F#-mW`+hMpP5Fg!OMIyH*Cwfxrxj7
z^G8JoGpE?t*sSbq<MMZR?v&rJy_q^aR_e|77Z;UdcbA=g+;4yH#ZFie{=wf0T!c5`
zEW!_}Mo4Ge-Bl`SmJ^Y7ZqCe=!OKBwhhE#h<BtE~RQGjtJg92=n*IH5d3;>O!&V+?
zvo&i985tIM7O|x;&n>@KInyjRs?YY@4V}0>7TfQZMK}Mg|IuE4KBDHa^!*c8RtAGw
zs&i_;-2}B()coem*!%64_F}i*RR^Acx+WYGc)#qv|5q<GG!$geGT+(PGXC#nczJbo
zxLn19#yREpDkaVHVz%ANT7Bi(HPDGX(m#IjgNiaC1!>Sw@cjqLu<~_wp%eo{#=Jdj
zEDQ`9y`b~Cyp$an7#c2d2rw`#Fku=M9^zqQHrX`$TFRRn8(-esoPKLd=457m8-vTs
z{nvkqU|<LcWJ)o%{CGsT_^j#mCoRH$Czg0l2900vNE)g1+kEm^>dws2(3KhalF_a&
z?d+_nxAXVghR4^Ip0oXaN981^`kV=%PCyg4-iaPbV{j)Xq|I1i_Q5MFgD-DNJw2!F
zR_51iP^bCnl;BS<7Wb$9`}0$D4j%)9mU}}Eo4?)9lwV(7PTrP#+brV!{r&ZS?HCwp
zgg7UhO*q)Zx^m^p%q?-j!IKwhe7cprJ~Tm#fnkLW<0i>9QCqdHUcK6TEqZHK=ze}s
z=@QqnPjXA%U8~a4(%x&~>*Heg@3;GJ?<03FW-;TGH&0bguCM?5+UED0&7$*I9~`d!
z`Lz81?q}ksX8Sedu$h{gzTSH#>tGYB=Oj7Xsx{v$KR-MB`*ZsB|38@@JWl-c<Kt90
z#s|u#`S<qlNEj@*lx*V7lw$ni`ug~PzxV&Q)(&5n^TFxMak*-p(9qDA*Vo^#nqPh;
z(ETZ>4E=UH|Np*pPX>k+b3#{#fjZQduU0J9vh~^=8Y<!%_)^g>4-~ARH~}@aDxc4t
z{^V}C+xy$w^FfWvcKNbSP;<%WTtf~UsFc32(AhZe&JIvXYW;Rgu$uq8IpJ}Ys^<4=
zikBV-MO7hNigD!TG~Z+W^7Etf_nLZ7*E>6}`rXXadb@Sn<?AXS5h|#_z~GR%2ef7>
zK#K7a%bLi|YRSj@e9zCby}ZnKwoJu?#+i1tRZEXEF*NkgVaR0iv-x-=rueL><--<X
zP-hm@pK)&EIjP)l6ZG;TsPXjFR6+FHJ>BZ{`+mKeQ~hqI=cHY`c71t!+Z?n`4VE}+
zO6D-G+^{luIcOJ;<=ZWnUtM3ddUf$B&E-!ny32!V9Bm6(28Nm~EFP`4Kc7r~d3m{i
zbGeWIy;}W=-@h?3Jb3KX5OSl5l{+Xn_;SYHWy{oD1D|ZY9=G~H2m`~0N{$I!pd<n6
zY^>d$b#+ypJOhKB9*aloR+OZ{&%hur&a~uER#w)ggo90Puivlz`r_i^Hxn5c5;hAe
zh+bPCzaO-sGjeB9YV%h_#KyO(F*7vu&tq7*LBH-}cjWG}Tu@*6*H%yt`}E|b<%a{z
zmp7-M=kjA`V31!sZK~XZ$?NL>|C6*T$vD<4J-wA%JZ<^hvQtk^P6nMo_T<^@{B>U{
z7#KcG{N(q-_rNUEY@@nAKkih$UK_cqBoovNjw!pD3hEVT+e$Go)GUFtLDz$J6q8v>
zH}ubZyZyeM`uv)rrN@7G{P}U*-mhCs7c_Ly|0X-G<f3cl#Y6x9F=!pFZ)BV`ae7>p
z=3@8$bA8tDW?WkvojyBv+euJk-E*>9>ep9SJtwVNwW{l!Mb?!STe7deQ~q5g|Mh!t
zXlUri`GN=3BTswrGaP8!`Fh=MqnsNXwq#w^Qg-k2xxcS=bK2QipgLVVroi#pnVFO8
ze{Zi}{bk0#M*aiwstydZ8bJ;EBOQV_6We7!&A$If?e4D9)%UF*_ZWkEH_z7Xez)pD
z3&V!Qm?qW>JT<>>-#-_fzjvzq-xuz@j~?6Zt^R&4GJWpWd(ZV^cbUZheHFg>`Mhe-
zQsA3uvvZA7PD}s|zx4Kj_6A(uo_{}Q@7HUfRkEPg)}J@&_N(v5?<`6^XZd{2n+=Eg
zGOw-*-Btd6o^rp9k-y!~CvLU&>-YW2I%o6w%$r@W*JWN_<_p^P0BX%m4Uda_|1p2>
z*D%oBkzVYs6i|3|s?VEYe!ph(#lrIYwdHodZ=PS4dwW~v{e88d21)w4Is9{;->ZIq
zR<T`XQlG3f*qx=<V~ZcQisxPV&T^owkd0-5<d3WC>!#k@Tm8I&neWDn=li}~^8N|x
zXoH%j)^9dAi|NJ8kpJ_59n^UP1!?Z~yJnt6k9*CZz1e*J+=j%%MdvJ^r+j^Nwer=<
z<wnKN&hW_F*?1aNeR*-G^7&lL*K0O!x}CTCX|MS`P)Yvj&F1r<ldhy~F8}{?{{NGW
z$K_6U2r6G%9lrj|Y;*nVvE{LByi!vvi=QnCT^;uIxR~oi!{lR2l8^W8{PC#!^PkV>
zpYM9T?)2*Q`)2)qzkmO~9npC^RTsPUo_cVwx%lbS@Mr$@zk=88|MyF#=!9bBqfYfr
zcgt?CEuUst{Ork$<UY^+b$>xIy=>PmtK#S9&MNoYY`SQl&0yxh=rDO(&CgGZR;^lP
z@ovXsvll<!Zoj|J;^mUbujJQ9ZeDiLaQ&W7UKdw|u70%XwBG9Y-@Et!-u=jU{?9Y<
ze{acJm1vx^dc9_U)tME6i@VC+-uinrIc$C0-HhC4XJ)#FhK3ftUc3F;df$0AJ6Eh)
zrS<Fk`}j4nySLT-UA1~0=qSiQpV?+>HM$l>>?}&XxH0+oqc4~J^FNr1>qdo?ytuGX
z!nUg9?=4sH*pMw57Z?5eXnH*+7{rR$lyWkDu4F@hoA(BWSv#Jdp00jU?S5p|Y2EE>
z{@2{yRT{Y|#S>ID$Clk(dhl(ob;*kf_WwTigN}B*|2@0(#RWy<^mAvLSh>wIr+p6z
z55Hc&uk7tDoybipd#k^Lwv=D1K7F_T&++;*V$nH)|9|utpF1HIoij21|F7$wlR%q`
zPEXT4{o&!^&&Q<muhfTxhCXdz=F2EpmQs5^c+#Io;`==UMdV-oW_r-fDbS#{uJ-pg
z&q<=%VL6vRcP~0ozW?{#FE1~vU%h(u<)x+GyGmbATRy+e>hv_-)%JOBZfpdNWdHj9
ze!gApuaq-0414vQcYQjg4LSw!N$~t%A$%4O8e(cb9<BWObh>%fva74ZpGV*S6$Tpb
zWi!@|-nQnT&&l28S8ru5pDVQ{ckkD0D_5>Oxu^2;B$eXl=X?W2Buz2`c9p%2`hRh4
z^mfpK_{c387k{5C`t$L4`hf;UP%Uz4Z}oT3IAZyo!gdM98$K)?4#L;h#qR#{;-WIB
z!>?vrf2f7i^8cUDpoaCGvfH^kpU<l{s{Qrl&A#97KtpPO3wOWUl|8Ti-_JXBzu$s-
zb4AbRmOp#Y%zy5vczjI#nF|Y@KVS0Je;WV)Ydolo_nBj1Sp8<B`@h%w|79;ulQK^8
z(cAy$6DU`e-zjtlZEp6NZ)ZE#sx-^sa$D5)yx3K%Ru$dO-JbgE%S&E6ko=!d)A!fh
zf4(j2susW9kA!9Z^XE-eb_X5!dG6zJ`T3x#wS^&vEv|*{0?(Ce*Pej}V$aMpHviT7
z;{U(*|K~aL+nSi)DR6H7YJR`QICghg?uKi-N?(IY1m||Xv$wWp7vCv7o_eT-6V@A0
z@%;YoZt<^|%b$O_?0^2z(eBOP?^UORg67qV#b#N{0vEeIJ*B;VP5kQBtE1n~UE8(j
z1ZXs6|KHpD*Tz@BUb`JsUCPvcx#&4bw)~EvYv7XX>+3)R)8-X@|3RCsL2(7@ubkH3
zZ*%|8GxOsAf4}E{y3U;NcMc<C2AkfF2Th<IR?FvAy{ghz|8-dY-vrOeYHPpmjLzBU
zy7>N+`-R74XWG}-HE&h*o@P>UXH)9wH`{LKX?7{)@BdqNZEbY;|Eek9OI}`5wXOQ%
z5gU8gt=1l_)mV12n(ry=_j@+qdz`=HVH+sh{`**ZJ$8Eey-IcGHXhGOGNo4nL8b1$
zr}6)m9xQwxxu@de?{k|<US4v`u70~Uylc^o7w@?n_@D7`I2d2pUH<;hm*w_nKRi6V
z`F7rJ(+c%3?ecXNpn05=>ht&9dw%WOwP%;S_0OJEpFgLW&q~AJ{%;9rKIhGj$9=qg
z)}Kx&Z+^S&cG`gk#+Uc@R)dP<_x1mOuUxzK?6v6pxv8h8fu=ZqJ`&##?%d_x-gb8H
z_j|LC%h%i7|9P%ls%9;yQE{k+vo{S?H=VP1+yhDj)1vb{e}8+s`S-is&o8>mpRN6V
zce-Bet~KAQBQ~e`@>##xz$0y@bKdrQ%-^@A+1c5X_f*fk_4RuE{E5o$Y4dBpo&50d
z@a3)9*Z2H-wHj107kxO$zCV9KY|%;8$`1$Gi@#iSe|~xXzY<V&@_PM#yW6?jWBKfU
zJmCMcn=wH-^wqa$hMYY+i=T@vcJJ4#`u;9<OV-s@8Ta?q7G7{<7X=NC1crx)i?{}Y
zs?MV))#u0jpR;S%u1DGNzoRa0PCuXYdhK>SP#q{{oPJJ+jaMo}rs~DQugC9JJnlVu
zppm(IUF>eLwb9%4%I;M@fAl*3f7QmMqg{(M?(LoX{>H}S?!Djd?Y@yVI~P=Vi&nqi
zTmG?G{?CGgJ&WCXK?U^2d;N3E@9os+T2%4*ta*2^pXJgQ*VaZ~+*kWM>BI!Zquly?
zE@XT=Iays?H)@N9T-A$(pdwt~s{CEdmi+tsBrJ<kHi8m_{d{)0iUmLJJhuxkd2?f9
z#^q(c8$X}376-MP46DDr`IW4<>&2p^ZryDw>TCZ0{Vsl7wmjzI>hSf8LRW{mu8-T>
zrC<N^^wB#zi|x<Ei!!`lyh>xwAwC8MjrQx*9y|OeZyxX>GW}aDcsYlstDnm{r-UW|
DIqdD3

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-5.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-5.png
new file mode 100644
index 0000000000000000000000000000000000000000..db1c2e58921296acbe6016eed3617991171842b8
GIT binary patch
literal 23645
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_eCM&#<h{~y2SSP6JJF?nimhK87g
zOq~|M)KL=P$fDH6x_-f;6%iSW76cyf`xvBm$%Tb=DTmNgu1k)4HG-Txos0#dG#Wqu
zKAivU_$Fx&9v`7vTlsz)J<H;>XU3E7zTQ`U?##v>LpKHn28IM?_d0P9<H7u91||ju
zh683S0wDf2#Rd?yftQhmfq|hRmqP)>&2eU61nH7y;s9}P3pjwN8*QX%ZP>r`#*GL|
znbybuANkF(SorVnZ*46tFFQNCPoF+ry0$iY{po#5%F3ZDgH)$)(+pmA;$cC?tu2|A
zx4zA@t$tEqab>yxe4E_oQM0W|Uzu9&d#$+pdS+VMvNj&cMOjx@oxFcPJ}xfq*Q0KI
zt|ylJ!q&?({FiBcy#E|S&eH;mn7TcC_lnBMtXbweJL}bzl|N(S`XZ*Op57F5OGsGw
zX@P}F&5sW?t4?iBpI;mHe((2rc{`tq@ygjmIJfZx-rSU0yd^IxYL;7%#KJaSX)P5M
zmwo&8X~pi^GRq`$(e?QH*mgeIqL=kQEl*~BzVa_T=5%iC$xW%JuPk=w4_y`F>Dnz8
zI#J0rWNTLF*H>4)yT$dtMT9%1L{2--FloYs1%k?M8cIq|=k0#40eMC`Z^yx%eRGc&
zZ~fkT_bY?OpFN*<Gcd4DPK}hZDp}EEXjT7jPuZIr3(wpCkLm2}ytN^*`CjGoxqtLN
z<|kiV<hm+u?=CT&hzYB|is{9y`2Bu=yt?0<fT>!cS9TVsx3;xu+1kdwzP|qYY5o0c
zKu)(VdlQh6k+JRe%R4(azuWPcueG)H=}QYGC8aI7x6P(%1S<L8-Z^Qqy8o*5^YfxM
zBs4NHF<n^`X<Yj9lB=DaotKx_rAte_zn)Z|pYh;8W7Xqc^L5d(*H6{|`z$}#uJ+d2
z+KY=^xp;W4nBT8a*4NihuTD#QR%(BIXX)BFdxn3O910AZzJ5Bbzx&U=s;^n5d3Pe@
zYd$ox@yV>{64ibdoLb*&sJ7qxgNCZAtD&Lc&M0+5!@#-L<<t86`<MC5Tr|(Nde_&V
zU$4hs-Ctin*RuFo*KIByo{)rugmvHEcW&RleO2h{Y0uxL9G6(UE_Qd;%S%hM?(NyR
z%zyqmqtsJ7zMMRB=1L2v@R!%?_s4CwTDP?5>8Z*be^1ZAf`Sd+KPIgEZ~5&>*8ADn
zUw<)v;7?+BU^FdNvi<PG!kfP4cT;5e+JC;;eBMSceow{5ouAKH`@X!iw0Hje`72{~
zZmRrtGyUww<l}dK<=x$NwdD1+vo3CKQug-t!a_nxS=ZO)&a3(4IeF&Hmv64`F3(Sn
zoOW|_djD;+uyrw+I;V{exA7Kd_V@OdTDJZ8QSrPma@x~Bg%&buhK3g<lF#fcetu?0
z;bWh-x3>DO3|i_lQOVUOC1uIW3k#cnKAWAtuI|x4|E#Q4FR!nk-`Ue+vTxr$H5HX3
zCGYOs%(=1Q;956-Q`6jAU%GDZulTrVW!&Cfg%&btmzH>juYG>0SW;3lbJ3zjG1L5K
z8Xb+8mb%Pu?yF028<SjxMMYEn=31rBt9&LIywHjD@$={Dt3p;Lx%JDv-8O&85|!l0
zX_XHe+3!pPMSG8w>8UGgqp!2DvCT?4+BH+kG;7AczrSZYxAVn*mFO`{`}O7Ju}wO`
zd#g%|e|>qW{mr)g-JH`OEoJz&KmPsgcE0cZeYIzM&F^J&iR<SvF)^JvYkohcjaNGD
z+#Jit+s+EB`^|WGxPA8Q{Czh?^yBV;tT{DRdv^8vz1MT@?6|n}eG@CU&*rqVJ`oW!
zK7Rge{P5vJH8r(kH6ISL>-|kiO6p0CJa>O{_1v_-XV)FIytl7*cjddC&wcLhD)sg7
z=m6;u)ebY^xBs)@=KlKqr_G8#?K}DIYjTgFv{{b9T<dbPg$oy+`}^hf_47-XE!*{V
z@0Z$t7v1G&&N9uGs;{pPUgjhD`NLuU*<ZetY%gUH@rz+({4o8;j~_d>@=BZe9B$(c
zE-2V=Yg_K>3l{=%@9qla<mCMI>-GArRbR72wZnWSeYxy!|8m>yyvc_j2K@f^R#a4U
z>Eq-5*~j~2e|<R2Z(8)kLsT=!<<eHk<a;ZF)gz}Z)eK&yVP+P#apT5wsS_tooV4WL
z-s<dYYa&-gZeCXP{oUGz28N|emSkLA6&kfErE`{fe%;l-Dyph06A!mp6+CE|WtzS0
z_q*NxzrVe`ynKG$D%WnY%zJw(vo0^|Re9OSE*EflnXhTdivU+QH!VB6drRlNQBhON
z`u**#R`|M@zC5>mf1*qLH|;im^5^I0tgEZ01_cLSUFIuYSzVp|@6XSwe?Om>etQ$S
zeRaw_8S65ijT<-K+EuzbZ^uJ6+aC{_KYjgr_1s)*)6`QUph87aQ8E1PxfV|0l*nnI
z#Ky|P60>pr^6Sr^y7kMgy<hj+msiRp;P$rM(r0HR|9;>9|LTQ>&QoX1SdqW)=dq`I
zwq#xPS{=SVteK7X%J%$tkQ4s@`}^zL?fk1tJcX~W3Oyb9d~v_sstp?qw&vfDTk1Xi
z+Ct~{Ev2u+d}kWD_S=4&Q9OJ4{%zK!ua>M>q0uX8>^3d+<;vyrCK<Y^dQaQ)XycP-
zGUsQT`wOf2fI{W!hD7I|zka=%9$$BHiRa`k1rMFp#_zvpIY&$V{p>Z5cicJD%6)Zf
zcDQHI^>wkK8<SjfZ)|XsuluoZ-;YP!YooTFda9LmZD+-|o9SCiUIuN=zV5d+YU`!#
z_v==73ae*5KR5RmC`W%wXAO{eQqIH_@FAs~RmIToVnt=8WPN>o@q+`5(^Iv>))-7n
zo$1yqHS_WD{@psWtx8vI)H!YQ_sivT+ZvhKrP>cC?)&q}d;8y*x~(d9cK0k~`fOqu
zcLv2L_jvmIoAb3FzOp|4e(p@eV@sAUt<2dUb9$O?@8O3A>-YcL<^B8B)z!V*w{O>s
z-L=KC^wpHpo94uP-EpNuP`M{Ha#{NMd6seN-eutqHnEBwJv}CT?T5GI-oEy<>%c<i
zcAt}zR6%7_%(`_c-{01Je|HyTY`^`#9nrSS{pJ=`@2!|Lb7tnBKYw}-KQyo|e|P5M
z#<;gX%HH35yYavF`aMZ9eC;!h)B85RT|U3gXj<w_z1Uq9G0!hu&zWmg+OvQEe#@dK
z9nt&k|NS`pwA_DvaI($+xjj40o?ED@9(~FcI4$+`G)aAZ{mbj)?Wcd!-kaa^v8K*{
zo=s*`Q&Z3O?c0C8umAu0(*Iubd!X<OTN|}=OL}bX%7~4NPEVb|Ev`31&3BeW`{BfE
zYoniUWMgRM_CLrpVeJ}iDgC`)CcWGHJ?`kyqn?xQRlU~TzVZ9}J)iq@PG4%_6uxt;
z`TMJ@-WM-k{PkqA|DA6S-@ku<ZJNCKji_m=$vri-wYGZtp{uThZl5@3&YINI(^fjQ
za#el1nI1dsZr$&<ukP*Led*FAll*&oY_86lHB0OCrcHb6A4F9@pIiRq`Sa(0Y*kcT
zWUWd9s;YL?{eHV$dtLR94~b`I8oMVZCRTkuYkqf{xMq-w`*;2&OP9X9v$J^8rv3R!
z+c)jLWRh@zK{9zu%1NQ^sq^C2Px_sG?e^{4kEbqQuwcO*@hZ`sw#O3_6Xn(mY|Xgn
zWPZ0~^6|&#*0OSoy?AkP@vCcVXG@u6JlOQ+<?{JqDJe^)=|(U6`}_NDoy|Jlpk|Vb
zOUvf74+~y2vdc{{bj!ZJ?rd=`!zX#?4Gbx-KON7Dnzppx{$Ir2>hEQ*cc-0|`uXEW
z#<@9`a@$Ma-LaIltBG*$mkV7Pw6x^?-tSp=b`-w4u&{Yo+1piOx=||<54YtNhuly#
zFbH^iYwP7ht=yurvTOBXcdaOVd~Da-ZMWB1-BCZi%y+hmXRoyRw;vBTM{Z7=Wmmh)
zEce!u-|zSTpLMN%?-Y$dr@+9#ythwJPoJ(LYg_fD>-GBR?SA6=aUqk{eAiXU2@4Bv
zEqdxTecOo>9{uaLXFvS%^0Jh5*_vnP=dXWzd;9Anox<m&*Xf=PDk|Ev`F*eXy%jHB
zWSpI28SLrl339HKY1WcmrLT9@&Uk-uaXYB&x?AzM7Zh+wNl8~WBsx#ki~Y4r#y#&`
z;k1{RmuJ7avhvoZ)b2hx+g04+dKS}TrOf`X>XkM>wMoY`_tur%nbW6F2emN&|9NhI
zYfI+j=ml$nm-pSavaH?9s38MtIZge#P(@kU8C2fQx2yefLb-oM($Oxx<b$d&`|bZ-
zXyq1PXK}nOHPWi`(-N<#T1%_GzRJA1Dpbm{Xo=nLH^#p6?P8BfgszW^1x4WYyu0h3
zFRV04KPS^GXB%alcBa6t>Bjy0@v*zhLY<rriOQ#Hd%k@6a?+Hyk3BZu>X)^iw%qFQ
zp+hM>g+Ci=_NJ7-Z`}TU{{NplzBI2^k33%W()`xV$el$?Z@*SoQ*+x}{XHxoU_wo8
zZRx*1m8$CM)jX~{C(fL?64WHWyQ>sbQ|&5!y==k+f%F*?RwXOW&9i;|=6!+1m$%#R
zXZ`r_aF%uXx_R~gDkYOeBqUbc+gttm>-G5Xi;G-UJ^gLJPH}Q_`f`w6{>9z$`&V}q
zKAv;@)3e$6Reu`hitn^M9{IIb+T8Eq!-rXScWqTtQkrux_0yA+w|1B3&&xh_y87Vd
zY`x{{%^6ym8Ced5rk>sY;pz1FRb_8)y}G-5d)@E1=F=Z)sCrGAVCd%FCv);+S^n;~
zX0;!Wii4WsW;r(&9PJi=eYgC6Xuq7Th?LZ-w6n83ClxQ+cIJ%F_S`355C2*E=g*%n
zr?l6<m>M1zSX8uW-|u(UpxWm0a{ue|Y^$ftm{D=`>*ltHG8P2~9)G%WC1iSCeduDh
zUX{N;8}CX4FHmnh{mWqH<P9b%Cj@vUjgCAv(%09&Tlf3zuYbSaZ>{-RWc%fUbLFb+
zgH5ba+w<oB`towI=VY~=I@Sdb8rt||Uv2a26jJ?iEjs_@+U@r)t&80~WyXvZA0Hoo
zz4!aQ;Hs)!r&Z>DzhA%q-Twb|vi5Z`_J2M!+x`DjT>IzaaZrHO{rwuw%Fh0L<v;JI
z&t&B7Y9ik6`@Ig-Mf&^UF#kDr+mxAx$;V7ro?Q2xso_v(wFASGh_kayuWrwee|vv_
zeDblL!pO4UZ@0gGadGjjZMo6ww!eP-c=7H0{jtvNe4xlm=_#B!MgR4`?%LnqcCOu>
zcXyXeJ;Qk^v8j{u1C^DOuI#NY*Nxod61pnn;;PWq>#Y7Lzt;3v9k%w;(Qfg()7D39
zbefjBvh3|G%T?yqhK7c#;`Z+P_Wu6*latlsH?B84mRzve`|q!>PYW!*+%3PasjRH*
zf4l0(!}ipkKqsd|q0h}u?uu8jwk~@!AvN;Vm6elkZ#v!HSQ)f3NY(bk0p_TkMN7Lx
zwWqyRnRK*UJpA>wwWf7{DvlmMuC1%<d%yPk-O%mxrFU8$-(B_=<Q`FR@#kW8AnRjy
zm+f3TdG>eTX;E9VPD(uf7!$Xn!0~?l|Gg?tf9_>iP@vSnaANB8xGK+m`}TQxcogt$
zp75k5Cgc9T+PU}h;$D4udHL7J<MMO&uaDb%>v8*uHTgdJe+xqP*VRfUn-o5BnZD2d
z@0Z|pX({J_UAuW%V6w7%-;3w->&vq33m>)k&9l+W&wrnjA8=ksP;lXn9TuvpsykV?
z$k+b~G)_Mk5)d%qIRD<AiILNe^~>w)>+9QoJR&TY|8Dw{_`092g@uJ)o}MQ!|NFG4
z<mDw$2^JI-^yQ54`5nGl<*%-2%G%f2xZeg<R8d>Amfo-bAN%(9_U}L5{`&d(`PX;5
z-)B8I&=`IPR7)J^KLHAu&*$ymi)BroG-*rq_q^?IK^4=Ro1694Uw^}N=3q0s>dCjw
z^>I(1$)w+{sIT;}tNgU&*SEK?4cElIterf!Pu5yXL&L*3{ai`qeeX*%43j~o96fsU
z<~Ida23Bt84Gd4bDk^r!)qV*C<@3ev{nxVB?^SzwUV4ptzua2!xC+P6)nTEt&2mLV
zMVC%i_qS@-2X!^$YrjradD&}z??RWT_LUul$*!)hD<d{0{dzh*{>#_v@!A#^5uiRm
z@qAEqdv#T)Y4J0kx3{<ZZ@*hM``f#_t690lRwN(qn`K*F)|a(DZtpH7B_)&WYdV$H
z)vJ?^c5Tw}-dpuGC@N}J*40%@XPIWdniicG`18}#(my{6bz^n}u=C4ZX<%fYll*7>
zlg0gZL5tmbO)@Sh=*I2}DSdtI>b<?yrseNqDl029KRr2VdF$L&lgvvl^XvcZtort5
z<viQ!tRo$QUA?`b9v&T+E??eS_qXcrkH`I7JUnME_MV(xpRsq^z3TV2e?Ohp|Mg;V
z|ChJh@2?779R_M}uZ!KirQ~H$?a!yvvo0+;8M-|=a@w<Vb60~5J=ny$DrDuPS?2lc
zq)f9;oIdUC>FF7@F{!mr#`4iOkxi%j*T?QITNSjl>t5aOTu}dIYu43E^K7fPWL#9*
zntMBJbK2RWm-|ysi<Q2+6Z!Sk)!<$!QxQ42b%)#eL1ombGiR<8pSOMf=Jv{9bx?n2
z`~AAz#xH9A|NRaszFu8jy<AK;>dC{Ls%e*tW0v_ymcG8`yE*-QSV_s2sBJkbzkDgt
zjo#+N$jI2$*LQ82ZgkAH+NIxpubq83eg6GLuHCQh|NpoB-OlH7M~@tN@ox9~uvRY7
zEs2NOK*9R(;X_bRtovEX5a4m+$BB4`)|S-BW2aAR-+s!@FK6P~EoR!-*qFCD;{W&k
z|4qN&t6tyP(P2<mSEpuTa^=dZ(9<@b&lu|&H|j@kJM-n`<>PlsF8eM^IXP)r#Kxp&
zZPIxL{&qi?+}vHh{<hus_xJO6mA+1EYHs!g_0j+S`g-=y&(CL1P1Odqf)BUzm%o&k
zmVW(F;@bN7{HQG%iC)umGWYD+GsoCU-n#5ekA&eNll*&krf7$s`|<nt><=FbE^o;U
zHm?5mCT8ybDN{tA`@D!W-c$bW&doLP`|l;!w;xWNWtu&0b#02Lx3}^7eZN*^-q^4Z
z)NcRy^{eT@g9n!-9&UTK^?ICfJHLF{OL<AjOs&vWPcD@$t#r_PKRflsg@t;X6Qw^t
zml5S_KMeBS+W#*vFF%{Tes5ad-mhW7TQUNJ_f!-XU-mVhxqN=zt+mJIL~P5M`SRl8
z_LU(kCus&P>EPtxFqo<xZf0Bc#lU;I-r0*E-`?MU|4#k?zsq8F7A^CbsPydF?0hp$
zPEIvr<I8XJH`V{I`~0X|e-^0svSEY4<M;3LPfgd)f4A$k-sY5(Let;&$=lxp4PJz-
zi@7PH8+C<+oqhJLt=Y3%T3CudJ@K5r@8({=&DP(qKaxpLNtrP{uIgmS+Ni56EG#p)
zM73t9&#O4JWa-kUziNw@exAMc-c#d+_Wyo7mP>c)@9#H{i;KH??)&4HwR{T-Hudc6
zi?0TabRJOM!A{x$DC?~@UTG0=@#PaH2w2MSU0oMzz2AG&*$WGup|#G_in+Gc-%dO%
zSm8h4?)t_}dpv!7rW}5F;lsnjpLb7TN`G}_Ws!x<EVJCGy6H>|*LfLP92!d>9pT)X
zdD-pt_4VQ3-`xduz-@oMSiJ4JVa^Q$OBp^(8NQ>(kEh>$zx(~Z;%}=%RtC-co*g+&
z=X6naxrI#DwKb9Ju1{Xl)58Pm#TptKa&dA_oIij5p~Hu-?yIdnJJ;I$yy^2RQ?t%=
zuPG>g>3?yNtEimZx*0Phc%@7{W}D~lOZ(m3-#`8E!wdKJR<FNlw*Gh}V?)ys>;2pe
z4R6-O?hb3`m%sLU{r+{&=T+<NKRvO(zaLbDl;5j#KiVx`9&ML+h~?*x9~#ES#`3Fv
z2fMhmY|Fj9Oi0yhhwksE)8ntKi?vo&Rn;^y3Ieq-3ko)Xid4|h!^1<ZUEST6=U5io
ztgBypr|fp_t!=rpy{7Bc-u)&hDfyD8`}w)KmmeN(-&*+CZSU7>(Ow=N7iz!XUH<X$
z@zog@7ggRm|CK9<;X}C_17kpfs=E5=O*)`q&2r66I^Marw_W}7^D}6~^2NsEa>bE#
zZ*CZ#oo((9>RRln{QPO9*U8(rqpz+CEzY*D_^{y7qemql9ysp(@u>UUYOBaTS!?i6
zNw>KEwY}f(tv=c<9=~1c@87?+*D7>f-P~SH4Ua3#zQ3z<b=B8bOC^odK%J+kEg6CH
zz9sjZy!?ydgZ~i$9R^mvYqdNdKYlbiX3@Sg#?I{Dfkx)4KOc{aii)b*+uOIcwXO1=
zu6Juk;o{q7`m)jcD?TQf=H3cX^`16m`t<O=*PwP8sItktq_REr@-pAcH#et)8eILa
z<8pKUUu_GG-Nk!)(-u&7CebbOdvHoQ|A}t>eJhyR`Bqeae<x*_)Z+bP!jeg<-dXSN
z>;x6}p#I!U<MdrR{XIP)OTDI+yt<-k`}Iojs(^(}T_T!`qPAvb9&BQrw1it+FXPFH
ziL1ia&SGL>3R&tUy7&LT-+9LimsUG~`ZD72HG!tt*Fr8Xat+;-;_2${{<>8>F2K$0
znCN+bzdJ>zb)&ZB%ye>c+EVc`3Dk_%JN^9p{Ppu}t5;QheWew)W=5B&_Oe~2uV39Q
zzhBBN9a-<6+@qwdY|FR*_Kw2EY&;SRUcAU)WoOq`P;j`qD)h4Pd7H(_$NOS8UUTgh
z0}W|`%xG$AD*1l595iN@_qXo<-*Vgke?G4YUq8>u+4<@F_v=rb@UZ=KLfOmD@7s>I
zD}$G>N<7@g#mgJ&;LxBIvSPutwb9w<=2+&{PM$pZ>-ze?-cz;1r|sXr-)p+wT0U8;
zjK9CWhOd!l*mPJ_fPvNT<Rn#4?##WnCz4xCC!n2ARzy}-*Yn(eUoWqq!)?5!4-PPz
zW?%F9ez$!7x3{;K``iBw=@!$yw5Rg(m1Vxt)89r-TM8Bv*AJU*miy&Ka{tq;H~Xef
zpAKrv3o5&1JU-T|XMV(gjz!>9t<a!uG2KnE_UoNXLG6l#&h1&ClH0jQMbpg8?Dp4l
zb1WD8+x>KzmiqGP^!Rhz;wLJ(niM>6u>JSr@hpSHrd{Rl-v#~t`T4o1xcKtL?)|Hh
zkM~)XznhbGZq7>3DEY}rs#X90e&3pR*XnNN^SPfse+CZ<f+lQCOhU@<*M1M}*Voka
z1dZcu&!7M5%F4xce}BDvbhP`{zS`Z#`eauhm#g*>)e1Rrap$f{6DA0N0=nw!)o@Ur
zTT%P_+qqQzJs+C(?AcQS8op3ca(emlC8&J?irTNQuY)?q=k|g62G8f$uUi|vJ?lUN
zqgLdmB`TKx!+(7)HLU+vbM(j&4Lv<j=lx0>uk@F1xAU_<J~|3&FW+rzluZ6|GkyNc
z*X#F(JwG@1>Xyu4P|VD){WddfUCc`Px*wqCVClE{=K1r~d}b_I<~th{`=Dl#{{BCU
zJSVGVK0MSKwZCrf>Chtwo7uCktOx|<5YT|nRE<EVl`B_*+9{y2uKL~1<2TD6AM4G!
zxoIh=Xb4*ywbFaKo>kG44$!cHTd!2+zdt{-?(Qm`_g{_SUm_2KNI>v1A49(O!#;DZ
zuI5Ib#y8ToP3N>xTwGk*%S%glu1bD!Vd1fd1vC2X|J`_VbMx_v%F3DU^0ik|=TA$W
zc|E@VZc193)agw=At51s{YNE|bxs@k&NlnH<NlE&M^=A3J88<46rIyX{5BsNHoyJ-
ze!uy&)R{$3PsM(XsQ>@BJUMdO$M4_G#r5M#wz<2xfkq6iN?s(Kn``}i+uH>T6oU8H
z)fWHxQTTjQ?Cvtj`1ttX-DSDcYuCi=yc97lwT)N$*`>PUvgM$`GSG}b*me2(KZ)n&
z*;ZfuwRzjzyFX8Es`*)z967DCr>7+I{?_d2$N%lE{%*$Cet1pn?rTeJ!Gn@~o72zB
z^}l|5clY(DHfcY<@Bg2xbJ{3>&&M|J>T9pBJS>>8e&4TCsW+|P?*aKvH)=~kroX3W
z;m_GAk=t@+e*E;w=<lzu#hLtkd}dEiPd86LH>WWAdB6R?f`8V=#+N}22vD=&{r>;=
zmd0mgt?KOPFnIXzq1<;~hVVlIIt;CTMMaxH<sg@+){C3z^Gm_q*45SD-+6g^f3DDX
zJKiTNDlYzg`uEs{POMvVZU%w+Bz&B+ED9Ix*}M1a0cQR`Pv6G*uUxru(vnY4PseY~
z51U{7{2XX7rXbp`>`lbaA3rSW^RKL!xM<O$k~cRD_kKJk&Beo0qSxKk1u7`Mem-v>
z|23|&SK2)5>?~8z>=hfY)RS#C8X6w^_U#K_YrkAcNlC>M)PBqC@9O$=V}Jese@4eL
zPEJzYdCULjr>C}YKfC(-!#_Scy7_M0=Vxb2pU*AdwFQ**SH<ky6t*T}VeRj4mbVWd
zIu!FyEi!6L#=_ZoyG}l~tEs86xh5(i^5oC=MXudjvajobdW2b5R!sEXzbW-})`bO*
zpqYYc`tk2RN-!u`vj{M>o`Vm$Rq(rSPCJ{@Q}}In$lj{2pZ5IUSNr?bkB^T*?NQKd
zuVwMG6}h*!X$3FynYTT5!c?8epotSF=DmIR@ZqE<g?-aHIyh3((q0{CWDdXcZI)@a
zil=V$wlmcWEhmU}==~R%H*MOo=kx31w%@B-&BV++_j~D;wb9|zQd6t_UCWG&jlbTj
ze!sHt@i8twzG>UHZ<pa~2bC^=etgW?etn6j@OHEI!w-3wrtjaj+<*SM9Xl*q+uBYY
zKYl#&yTAS4C)@hvY^yXhH9gJmRV-%Xms_LiJ?+JhkB{?yNAIoLy2QTy7_YS1nYZb0
zZ*4U?mT`Mq?oKOph6A<=3|w=+d@1of_3dRu<lA|9pLC<Q<;?qje_gEgRLx+w$!flr
zb{0P``Ss;xPQIN!$ELoYm-5eUo_zKA_3PmW4<6Jzy{Xz{J!r&Cb7!sfMkd%=fG@9(
zKRtbJzJ2}CzjD@PKGRYy*ZaieYiepv`nN}3#k;C%*Q;x5SKC&9TT%D-7ifU0sj2D7
z+qY|zkN0K1xv|lz`diMrZ^h?rzi0gW^Ai;3R%LHiY)U<S>il{CNhWD$X5?(29y{ag
zujsVB>?)v{jY~TUAB)Jzy{idua&Tx+0d+O=zFYRnT8B;54!`!~<Yd#TFB!d3re62%
z-2=@Cfrh(7*TqCmniGCtor!%<Drk5y#m|qG!9vi1LBuLjzGd_8Fx%`C7oW<{Sbud6
zZ{*>%ZoN`VYkz-R8MCt}e6Qg3hXp4j9vAja@V57f<Nx~V>g4(J=YvKVZs+e`S@reR
z&2O>Wa%QT$?6ZEip|q}hlB)M9iOH|EdFroriE69-wN&?<)+wxRwg2t@KWTqWv#({m
zxv_EQt>bOH(kAu)YC!oC)U!W5`FM|^lx<bXw%2kt6&I4LuVvf4-dg+PL*m}w?{@Ec
zIxYIkVSf7+9ut-H{-&Rq@o*dO=}lMm*Vli2e?Q*6PX;v91nSG5ooVd;|M&g>Ury`q
zKXLrHJ7^#<H4?PYpyYaN`O{Z77$0~^G_fwYurhS@G!@YB>aL29i*A1s)ebwcNvGer
zY2DOzxvCSED$ftH%kO#B{xxW+m*=M%(WJY(N_XDce)u71n6~K7{rmUhLCu36Lr_h*
z`EB{LGm?A%e!IO%$D7~&Pr<sZQ>$<1?~k2SRNH?vzVO8bMc)|)j?+?Cy7$YS`!?6Q
z{M06$(sy@m=FXj}9bR=O?3#dse|`TN_h;L(ub+Fn@i?f@BPy>wXU2>d*UCOVa$Os>
z)$7v#dj2=Jwt9m`z++<OME|(4zkYw&+gnrL+NrDrjr-i#xH#?XtfgsZXJvwBqJBP~
zulo0=x#6)FyWj8I{m6_#VLJyX6LfTN96fqeQ&ZCuJk<B?ald`mvokZfxVVCr`^{Y!
z%{x^q^wK0%?=L@}&wt&iK5s|X|6Qf8PdzNiIMySnCvS84(xoqViqAiNmE~MeP|(*F
z9Q*2Oczozgqg0dRV?295ozl*epV2R8yGk#1SH|;mbGy2`gSY41E!z5b&#Ktn+oVh~
z7Mz`J4yvW|PG7!ssmS)v$;rCW+d%Du`ad7rK|RT>xwo(F)G;y&IwrAw!^X_ZYQ0jX
zryk$e$euB4`EkqiyZXgHzwyahEvf(eIzD_&@zE~PyvZv2e!ts&YiIHDS*F>~Y9bu2
z+3E2=R`;J5a(`d#-E}+WT9^BQMoMr0J2&6{y-d+m(G;ta7Yj~J)qef=`~B<J<LlpU
zJZGAH?Zugy#^E+%3_E0;H!z4~+_bfQNpPq~?s@o*X{9ll=lV}i)r}6bt@?7|%gf84
zNsry{c6lG~m%kn!U%Pb142gd8GwI7KKR=sgTfObp_Wbp?wq~C`e%#%6mPz2_W4)VW
z)pc}yPEXSf{{8JOXx11s;J-F{J7^#t+Sht{V`DO??Q;C&i#G<fze+%z4E=pS7J;S*
zjvhO9N@6i+=3{pLzKiSk|C{x=(qU6ukY|0}4!fc!9iX9aUTL!vn{>Xuxfu+a)I4pq
zx9aPq+4=icGBUGe9PJWa6}5F$-T%Mkpuw)#T_qRSL~g$G?ed<=;=Mng&8~W}u>HzX
zZ*f*OwpA%7CxN;@q3h#pO>=Gpe13K|_;4HV)fIutvNja~@%4YVf~Jd~pZz^=OZIiY
zxmKm1qy_4G<lfri*)6Ug_VUuwShaGU;AK6aS%jOL)3vRvqI9FTg;Z7T0#)e^4GgaC
z?%AiO>7M&1DJco6*j9zCTx3=H3N&S6Rs5_6q$<AtZ>X$QNde!*&)>dX12xZgm1f^9
zy&ju&VL{`f#fw9icnE?90AF8Qd->hn-BV}H(yFijFY`B+!9nPA!yKE+OM5<@(q2~j
z`kI=C#)*h&Q{NW<+MatmEoy64YL}>XT2oV#&-r<_XCEGJxBWKPBy-Zrz{PE#hF9q7
zFw^(@e!u%_!}B2jWma+ek|j%K)cyT6^TY`c&{7L0Cnulh=jNXM_4Re}-nH60OXMc3
zJ~@khNzhWSywm6ATBoz|N~M6tP5%7(<8yUY=-C$+7yG8AEi1H;Sr)lDP40X3PaB1H
zK3OBsxJ>HlX{Pt?-8=TMz~cE84=*nx=x9%J?Q;M5X358T411-`%?=(sc<lW7^DV8d
zGt1uInz^(1d0KVM#EBE-`cFzECnYEMPM<#gc<RTGACH|reL8hs&s6PjP_wa(U;f=S
zdtKeLHvj*829Jm_GBPd;SsAn}Y;DxDr_<xjBqb$pUMv5(P5&==z=)sU+|bbQ+0N(l
zjH9>ZoGkmBdwbhVK3S_7MyaP}fEJJJDt$ex{{Qd$;Wq0*ZUfcQpdjOGKb*=pW3hYx
ztmE?acU)XuXEro21TXax{d~z=e`Ze)Pyh2Tm#)8D<l61i%*N}pG3lt!%AloZ?v~%r
z1trPtfAI_#?fjd2ZoYl~y_(OymzViU2ZI*C2nZxNIXj<~Ex(hf<})J!l<T+sJ>1Se
zTRg7f;FUFzm%)QmY;2&x-kH1K@4J0whT-9u9R&|p)r&Lin3C!vw@>Jg^o`Bw{fibY
z3fY+C3R)Yc9lq|$larILt`66qUU%~3$*#V>u$4heK{K^;Eef6T_x)U^6}D!@*6iz6
z^S>y0K0e-mJ-Od@+3xrIqIILUUHN{$etqWUWtm@IT+AyL11-z@uk!x~L(#uKm9n-~
zAqy8S1g#GPji_n{FWbR7q3-Xm%v)PBf4$v)e@=gA%)XkPj~+cTNj$^?nn9ZMZ%^mu
znxCIQX<bYw;z7)Q=#sB*Z*Nb3yI6;jfuUjl?)pEzFYN5>xOjQ@X6>*1{A^|J?QMGJ
zSLEN@vvXDG>SsoAzi#L64~>eN_3P{F=bQdL?zdkzS>1ov-4M{?!9SD#JZARrTe4)y
ziwg^#S4D4McYD*XudjFCv6=Pty;bR}9bZ-lFYlA#b6=Nd!pgwF@Gp-;!E%D>%9+a}
zryo9aXv(x{&*nTeH#H57i;Dv-!1K13mzQT{XSYtj4_4j@QvUT!oxQ#N_SDFJxihaO
zPn@V2A0OX;`{VcT`yU+%2Ca6yFZ;RSi36yyQ#pr4JDX|Q8aqZtMo<^{_}e*_#m8=*
z2Ti7c+SFY=J$sVu85kIz^!N1esH&>23|$?TryMuIm}P>@38|{7rXsI{R<2yh#l<zL
zzrTO;`&Mr8k|!qwr;Ddv)7cz8t0L><B-LI2|NUNH_?3ZyVaGMl(la^Rswd@=twM|{
z?1v5?78Md&^!4@i-MZ1c%hoPhym;<@cX#*G5{tjSzP`Hj^|f=~N?%_C^{w@4^~EJ6
zf7bu6@(DVe9b(JyWcl4mao4`QybPKu{G-Rl@G0l^wp@^9`akcq-BD_I5-?pa)+G0q
ziK@E#?la7rYJZpU%2-^uxju4p8W$JWrFQwc7eWqpe?B;i>PCf>-z^Q__WQ^G!|SBH
zlmeN5Sl`finR<0ap!3%3>*wAlF+7-+xZ_W}JHx~;|9-!JePd&?m!ID>70~$2t?l{q
zRaVyj|Hs9{bLGLoX4CR_F-MObvr2dJ_wcx|cKf|mphaxk{`~!GnskKY@9X&gmu$b^
zSsb=D>gDeD`!4rL8h^Q!y?$lN$w@y8LF;548XXuWPMI)a!QSfcUXyfAUjhvSfR;O6
znr}RVosDf(%+4Y&AD=6i{q4bXJNx$S%euX7t&ot=obUB1m2Wm4fAaeE>h1TcyyNSB
zE<H6}fBnYf<F7i^=WY0VgMopep{a#IDf9cgyOyuQ7rXJ+{{4F0^40GL&HS$pvdf?G
zjs&L=zR$E<2@A@mx5-;XJE|2F0<>JF3^Jb%k+X9{@^L=Uyw=mx(?N?ELKnO7_DUE!
zNlHrU{jK}^HGFH{-KfUKMlL?Su=R0!OP-vVShGrsfq_B8V$bK@4TqBc|NFZteEmGo
zst)ye6;6(hj!}E7wt^NA_ez_;`h4Dgx{9j0`s%{R$FxFMO#$`4gw_3CoHf6H<-Gm>
zHCwZ<pSnFen2&*>p<d69_xXh_nU_oc{3u)-w>QfCPC>KE%Z2T7ms+{Szs&#t$NlBY
zms){~THN|%R`&GpfX31U1qCN9srvd#Q%}z?c$v>dXMWo$^V>mlCr`B75}sb@6joR9
zT)1$d-rLmE)21GNIAQ(z^(x>cg}1k@HLmdp`uyx{=-MdLvonp4?`r~8EKD5?lbknh
z+-P(RG(!Sf7Xz9@zqvX6_2PcJOAU<7A_4*nrc4o$wJPx_eSNJodVk&DU$?eo2HS=3
zF)%QQ$nYFIwJ>aLROXQm!K$}guYWlz9`6AvJV2w~4-dC{PYMbSR`pCwOw4=T-rB0E
ztLyvx{QT+t{r$DA%nS?+tQ?Fg;!4WOqQb(9*TwDzO*n%_XirR34&9a$`Stbn^FK{=
zK-Eg=-@kuVJtZY2!As`<BnvteWn5bmS@q*#`_|;+e9uMu`edzN9ctySdbjgAXz2ng
z3ya4j&}x=#|7IGetDL;a&cML%LtUxi$%S_Lx)ry!X7A=*pLKuV-erDsSNYC1vz*_D
zRIQwPc(s4K%GrHu*8cwg7gRLy8K<ASa%QG+?5#_eFMnP+Yd=4e2Op@B?C9v2_ZH+Q
zL${eTXL9lLhkJN*Tw5Ri{#yRqTU)#O`p!MP$L95F;&xDYPf)+RyFC2+yLIsl`FC~%
zmcF`ja(UN3xeBf@zR=ZSzO&78FZIb<$J|OkGeZ%y*re#R?xZE4{@24ptzLe9W#1zA
z)$H7se}5fl1oYZ0Pz*M;X)9QMd9(R^*2hOjLG9~*U)R@bT3AGYO5tfbk&E`#{$7=H
zbJL_HpfS~VcXoF5_FipZWG;Dhgi}>T<;At={Lq@3ntyUE3=9kt&hKEF<lHN5evRM$
z&jQe7z+ry-E5ZJ@OYiP3f4%j3++}w8ng?&f*Tq<>s;RB=nyOXxuvHvXX>7~A4O-`I
z^B1%?<9|gA<H^=trLVId9%>DL3oGx<LO^zi=*2LCl57HH8yo0UVt}ln&Q1)FNpvXU
zK-P>%2fzQL_h9{wijRw~t%+Rx<Vgys3txVxuzk;7?xzbuq4Hm&^&QuV_51&=dUbX6
z>dMd0qzn=oKx?qILRV#ces*@-n|jcc!u@@Fo0^+Lw`2rfT@x7$+LjXC3+lZmBrIrZ
zZU%K3WG#!1O#20H)2z7wZr#5;XZ`-l#l`MZCrw&(<w^)>oQ~iA&xg|c-!CoozPiAX
zS=O@1W&NH{UH2-V%Yv30|Nj2I{F|qrU)bYgy<4-d>wyOPKwDA7bfZ8^JhhCCKkvE@
zYPyT0u$JAq1X?<MJ+9i<(a}-w?d|RP;Z9CXe?SG|Qt#<u&(F>M`lwq!?s}Eq9E*kb
z_ExWs-Cg$U%Vqz~Z_SIIc%-JJfPB~0(J?{g>gsU+!otE?MyXwLRWBC4j#6h}U<jBX
zdP7@5Q&SVPw&Yl^^m5R$$lJ-u$)*Jl9BTjn{eEj>ayw{S%l7+q(Hl2zyuNjwzuixl
zc0SolCnhSZdM@{$Kh5yi+WVk>`?lQZ^dA$JJUcskb=20ZS;pz-O4ka4>dzNkISfA^
zb?ciHKl1^Np_$*W*(|0Xr{nqSK{LOIpx{E#iqojAS+DNw+?;iN-P%rJ^|<R*)AZxl
zJv!Q*eScr=u7_>XA!{NGMfKxi{{H$3nt4_ID>(}^e6*|d^{%z?`|E0RZ*6(G>l!%N
zN?6SrJc3q-t=&@kIt(-uw(I@A-=Lwxmk$m$gBGb885xy4IKY^ilJerRzkR5O$BELl
zPru)<zy9;{^Q#M;*+Fw~v&{47$<=&tto?G){nh2={VJNKrlFHW#KfL$tBZ)3ap}^f
zl7D}G!b9-|gOX=lTwK+slj>h@=kM24QgQ-~oP)O21TXi~G%*Q@i;LTKrSQ`e&(xF@
z4LiHI<YPU7$NOYW%ictQ+z1-BFMD?fRNZ?{nm>R3?O&1K*Q9&}m6rcHxoQ|J%iqnp
zbonx<@4_jp_M%<B?!vFHuS1u5iTcj5xcInM;<_`ad$lrpd!F7~$gn1;d9vC6+JrUU
zb1jRHrCNjPGW)>BTCT9HtW}_C&eYS>PD(uHkpT@}B_%CNJ3nu&V>8>!W`4U1I|?6P
zS>ieQb(DWa#g2d9_y1q%Gt)@#?ZSl%CoNg*-fz_&m&$u|*PjZ|Q267=lbiSMRn7dC
zntS*Edr)0lHp8-bS=zZdFE34-H*cQ*)jzc&HyA#hQ0@nf`JbMy9}enp7d`O+?LMgf
z_9k$mk}GHx@~Yb3-=s{lro7wp*$*@Xbp5MlaOtZn7tQb2fO2){+Ni5H=S`ZV^zyud
zkeuAQ2@?d?#_zwE`*&;hbuB9^tM+PXjg`kuSAZIA^`YP2-MzYZ_iOP3(&l*~bFE50
ztz5LfoynTzHK+$P+23yEj2RMli%#oG*;Z}&_v11D-}m+Zi@$Mla9r4s2wG2X7CEgn
z_Vv!^^Qu#NE*_V!e{;#M@R18>b%mOm+a%B^8fb{^<jIrg>`qVDzy9s*?b7qM-(#*z
zfotY<2jUnxxw$XTGR+1p684yMZB3-|=}jTqaw50y6V(d2@aE=p{>WY17A;<Ub-BO1
z?>w8x=jZ2#`}p+i`}-}r_S?;LDVvH7o7ds1xc?yKugbq)uU}moZ4Me`R`s5C<yfz@
zX~F@9soLRs_p_wz>-K=gG)_)d2kj176|r#<XwDe4Q0L}yoL#%3ivOUv{O~<ha<`oF
zSMfLZ_C|Y8)44d)I32Vk(lq0O!hY{v>;C<pap>hEIRS=xereUK7u$HHLw1+F1^141
zUVoPQzyI5HP#H4`v=Go;zSd;_X;6V&&?|Cd_61Pt{_~fpjv1FLgW<7^KR-UMir>G_
zYr3AUzP|o;`TX}xe_awm25LR{+>jz^k}(0aLJqV7;@|K0pk(%Gw+cwQ-f<y^Lhy3G
zP*4Xw{oI^CdZ5t@2RV^0#R$;g<i$m<b<;u4QRwG#Wyrj@XXmxG(bMmzg7ltP>?G)5
z_u~Qc+Q`jr>-T<}_3y{y{y%!4z&Q{fqQT_x_0?5SLB99Tr_)@#yrCBtxrXkkD4afD
zNY(2}`Am=z>lOvvX}P!5TRd{wR3t-}`OKVjUlpWa2OHN>0UZ#lo}cv-*NH8emsLD%
ztG`VFZJS!ZEPQ?3_03@E$`A!+kD8i2I;VrS=iLQ$yMO%nv3gx{q!@Sysm24Y6o#97
ztGBD1yng-q({hlBt<jA<3ZmL!dmg<9ak<p<oIq|Tt`X+jSi`ek-MwG#>Y16wAYXz;
zxsFLpe>yGo<>P+)bIV_W%zWaqkVC<Hnoi*Lb+M(du4szt$Hgr5np*TaIWo*H1hhj}
z!JNyLLDHgN!KrDwpbB_p+Syq@V?iB>hW#r7?l5mkKF;^`{r&kLK#?F))T-1FvNkGI
z-EYo`_eNkF0vB>9fEL(+B0^PF^=Y{#NchtNklvb~MXfC@E8KdeKr<CTKRpG3OUF0q
z^h%rS&DR1oJtqjaDmCo+ey{pmy?)G&3(4}}t+fFkM7tP@K0Z47M-OE00n-4Dci<N4
zhwlLz>l#u(A-V70uk5!sH@i;)jUa-mhOVxzQ_oL<Y=7dikW+z~o$tzy!pC>ok}YNU
zY=1tP?B(HcVmU-UWT8aU*K5)FnP+Agf~vQ$^>LtSL(m)msB{Kxw=hgTmT_i=;m=q#
zP^)6KhDf-Bn%|ri-`?H^Er-#23tIUKniDckKL<+wRj*bq|FqHxWV>ac#<~U-$Ozd@
zz5J`IL??@Y_7=A~EaXrC4Mc8A_1<=Rd(O>86D9~qYlEadgo|`B6oFRhTw3A@Dr)`a
zT0PCNFMTxywAIUVvf9gg)$h+9=K=-B6PJZM*i(*l2;SOLxfwJ`8y;8b3YtA$GG&TL
zYFgT=%*)H9>}o3P!Z{fj7#?JCxiWx8mqGP5E4SE=Gt8HEm1cuh)4jd5b#iLt&lpfb
zZ&<A<!l>fi&L?|ip>z8mJy1swl!@S>uCTtr#ntuX!-5yr<LjsP_xCSav}m2xkyD#=
z-rm`Hc^TMce?(c08jc(}a$=K?r3~Nn`ykhf<gpqx_{=nV+O;2Krp6rDf<i7=hMRjT
zH-l@VZ7C;(OfxUJfWq`xuk>{PsUWQ<dYuFv*m$Lu+}xaQU4MUX^>(Y$S4-~hF87`^
zukKf-?+gRQ{ii^NPH=8jYRI{{$+cI?wCJB*?kyA0LgCBHd_k*VKzq(WjfI~PiVO@4
z4RbU^7*%X-V-FrYc<%oGU$3-}9z6=0;+wQ&#}13PH#RCG8QId>nt6L$?xZDGu7rSg
ztLaAn+yCvI&8gMD_Wl2nEg<XQP$r|`7Fej<B^`B9B!;tZnHi&E=#jN6j_yzuO7gk8
z!p+d|M#kdKNh=iHvStZAUYWF}i~Gu=z-H;dFD#lJ3f+y4PyYSeaBltNgB%>+trzzn
zw=CwnfBt!0`}dybJvPtpz5gp0xqpAs(XL<7-<TK}e8VU2;e9{<_apKBGhVOXZ?`&Z
z?WrC~<Dl5sxsUs-*VX+m-~T(d>ifIcgPe>E4PP(nFg@wgUUy=4{=S*F^LFdXT9uqw
z;yL-!-s<lvpk3KUsi&s=Ic)#Oxpg@U1B0E{W{wHla&JHDvwrvE!e0A-ANw;eFY`Sa
z%*enXy(*IBMEs>iuH8AC&zen@V`gB8;P*9h(A)iHQ%Gp&(?#8SUfp84MK@EY*FGs;
zwQ5z-$D`uY4P+S@Hf)@g(hyU0Qg!93Ri|!jOx}DoEc)prZ@r%<o^uE=Fl79imC~>#
zcK0`ZJ2nP}S?c-o7#SF*EQ@40v3mW!mOX1~7#O6VgU$t*wK8~l-HU%$Rt6iFzq|8^
zjfsK5%xm%<me=QN-)6_3-jsT}=#1g<HO2qg?SD90mAsfR|No!os{U*Y3^^TXg=|kg
z9+y8a=q~ed;qP|YvIx1#CliI#L1wsZ=9r-BJ#9(s?lSpZ_qXNV-t+ZZw5lHq14B+v
znxMk%-0iV)wO=ms->rW#(f!iu@bw67g34|wpPrnYX;GNe9Q|qE_j}bp|9#&--}?O?
z<M^Ma!nG_E85lO$%{tnB;drm~^p}^HKfhCa{_KyBk2jyz+pXdmSM%}co}bTVOIj2p
z=<Ry3h|8aofuUwfS|Qt#UAwHl-z|@?`}0_SdHw%?ky|nX#dM>l{QLX+`LyV~lUp(`
z2gSz5zBFWHXz0J7bFM+f6BPKLPO3kDGTDFK7Yzo618!MnjFVJKOG{^(W`~LC#mr!2
zW?SMtU2m!!Cj-L`hO>`^)~JA7o|TnllyIQo&)fU|a_3b(o2hbgk!$y*rQXx;6rI);
zohQJ+@I&LQl0)9!uh-^OzuPHkQ&Et&^XW7Z*TDVPmwHc^sd};S9;++^!>q<ML51sa
z)w%nA9Myl8ZvQ*7&+^#}x8J|t?ar?Q%~&NEF)$=Jn{+eGG*0*1_n}q4=0)9dzqxya
ztr!?gn9nLXfFjMcTdelQzc)8GZ+^S&_B0DY28IoWvs@c^B#l(e@0JALtNZ=dt$P3e
zzwe7bpEZAeBe{R=ffNRY18o^%j73L9!=LQ^e$V^<zS_@g^J}$3LqmU_^sk#F>}R3)
z`|bAlU8S$5<=6kdJylMaf#C<oStW<6FE1wk|M&j?xd#WEi=WReU#8IoT46iWsx-^3
zM`EJ-yoyCi?>UX?{`}aIaZ#!I-OlvId&T1_6r0)k{Xkneb{0SHk+J-wALqu#z%ZZf
z?6Y2u-KDRm$^U)f{_|pg-4yftHOAT3*ZE#w7khb;YpPV%y*-sXKb_LPye;>3={wn?
z6N;evX5Fq=t90V`*<6n)_MKP#Zs(afmd3i#X0!9H85nYceE-ECs{eI){->GeYt-)l
zIA;Fo>-u_I&r4gguXFiNjVU<D`g8UEU#r(dZeDg#cE_=P`T0||!=JreKHu;BJln}C
zzu)h#@3VN+;WNubbNSq|C{;H$hK8=}Pty~&W?ohUEiAegoge!$@RjYK4~KXDez&{$
zZt3;4#sA;!e(#r?n_F9>ax$@9cA8!7uP5UBf4D{_Gch<!zWjt)#dF`6rTVF-rfBls
zW852bZC&i_^>trYTmJoWdGm3(YLi>_k9*BG6+ArjX8ZlR-fzFYzn{N+Ue&4|Lq>)L
zo>`x!C#atM@bGZ)waE0;3kw{<+WvmKy}b1Gwcftl>GNyNe(RXut4NNk|NHgNx9$65
zpa1*w^YdgCQ&ZF4Z&_Jcn<_p&+VlI}?wduYb<JPTVPLo*V%iOA#U%WlFJJj&qT6rR
zz$L3zX}#b3{a)JK<d2Vz{ybj)=XlNU+xPvJ`^~*pdFIqq?a3-vuU_r_7PU1iw7!Rd
zk>SDR6_G3_bhqD`v})BVul|YMdb>2{T9==jVVG?9Wd{GbGgq!&HN6$RH7m3^nStTK
zWl$-#B5<*mt<$qJGbhi^-)DLM|G)3X`S<pyyq{kgxiu^FUhVh0d%oSu&b+^`_V3bg
z`IxS+^=IeX+t0Nsjq2Yle_d_o=kwRx{(!n>sWWUUi`4w*-ATxOd1<NWtY?!Kd$ONc
z6}tM<>iEA}>-YW20!_-@x^=5`-?l|OpP!xe4ix$MDt!N}&FAfQU#xq7Z*TEA%jZva
z-~XGptL*J8_4zfME*cuApYz#Y_xIZ4{M`yC@7MlW$jERbL)oq8M28@6J)=$bwKZ>c
zzuzZ1>&4`SC)rLMYUM7z;K=^;YIywG{l7tbgg)i}|CVq0=fh#|`OEX~@B8^wzy4;%
z-$mVer@BP7jS3$f`SR|r^~vAmZ-2e?ub)-<`PtR`UEdqo<xY6(@14S}w`0MTos0|%
zG&46b7X5rWJ^kICotE$Sd@g#iupM-I!OlOQP8(N!dGY5Vf4xTSJkSEm8_E5-TmJ2R
zU#lM)8fy7$M)Irc`+lCyPdhb56I4u|vwS`WlvRY)d``qwzrCuWr_RjK-~}@Oe(m?v
zCnqM(G)Q#%8}<F&-Op3k*Qo06`;k<3Gj%$b-}MXg_dDzhUmsWbVqtsHzn{<3@9ZeN
znYDUtP;~TcPGPkjzeO1s=4bhuIe?N}kF52!gSQT{%g<S)u_@tTlbWyszuk`qR@cjK
z=Wf4K{eG{iKQjY^Z}j9^^)I`2?fUio?2iNN{nyt-26s+mU})%Hd2$}3=OoZFfop3b
zzxLbjczg4-{{A_9vQ{Qm`+CYjt$ee%$$S&K_4iqb$JZ1t{<`^`)#`(fH{IiuWnlPG
zF)OFxPSxwRQ{@;L7;YSymD4b%<dP?h_on*-BSV9~93vA0!xT5r+}u(@1qKF(Oco9X
zh5)Hi;XxfHo94}{`E;^J(patb_c!0$+j2kOJYQ#aT)w_0uI}ekx8wUh9O4F5vbVNo
zPX{e#d2(VRsQPDJ#>UXFY-#FJ_6)s!pXa`Rvhldw=?e>;H$R_O{jC1q^ZKH{U$3Xn
zul)uxdeiTByVX6Pot-`1na@&1*1GIWXn5?@r>CbspOwAtWbt|1=`)Sfm!*2&FJfS@
z+xsWG!Zx<xAnQz<%A)253A3CCyYD;CKV7wY-6{Y2Uzb%*f?6y^Pfvl)P<VNBbNZx|
z|9`)q7j&1I=s8*K>6XiWt55s^6~H@KvTbE69yIozi+i)>vfs_*e%nufKA*q7{%-B}
zyDQhOUEANUV)<sn;Y-W?=l^*mzF#9Zj)5Vgi{-@eEeQvkN?u-4_55^9IzQ#%q1K!E
z`~OPGUf*B;-{$L;;M9J01_s|QhMy97`~QABGuvGMa67;Mq%-sF?LC8ngD=0hF>BT=
zowz*~@Av)ATWQS1;1I0jV0MXHf6oNN<YOrZ8W<%li&7?~JUunlbJD9<uiTDr&$_zm
zpdkaphfEa*vqMd++(ln5x-U;Y-naAhy4^vcp;J{d@9rv{v}E17br*}n)<#`@Ai==!
z!=y-j4eyqmo11v#Y%ESs(>?v=<z-Mi<=Xq&f|pm>rzic5|NQ*C|8l>%o1RXKUU&R{
zQSKz`|2erw{?{=u1hk!;te*bq$w}U8)AVAa7G~O6vYcRBv3j+4Zf-89{$Q7@P}u!u
zlXvr9Ioqlw+1J-qembcxZCn2A%*>b9*Wa)D=PR!Ab9cYJ0Rw|{?vV~bNy9}C^&8U9
z&YD{L{qA-r;aVe51gwqSZFabg_jHe>F{pL_<^BEoxyNf?ddHtyU;p>@nc3#+>)yf&
z=)}WqQ%&_47)(6RHLO|w`MkY-@N&Pi8;{G)cI_5>+GqVPW5fUQ`tScFyYuTl&z@<N
z>cz$<Go$#NrTXdV`sZ6Xg*RP~t4_VLB2aXO3<JX~KE_S+>b~#3zjW0qEs#N1Rt8JI
ztrt+(TlMu6Xi^kp!Q*4Sr^BLir{21C%V&l`qHX+tMh1rYF-$48pyN+o*S^Wy{dQXQ
z`@QAHe#{IEXD44DE#5LCUotZMcvAiE=W}garUPmZpWi&L?!a)P=b3uuL}5RRg_oKc
zF1T<AFqkdgK6#CAQT3#|S~lDVmVKD5A|77Vk>=aL5YTjY(wpFyiVS9q(-UfA;#&BI
zbj^{YwmN+Mxf>gkFK<piza{gs8oOLY!ZP34VJ|l_Ff3Taaw4thlBfF9U9Z=j?o^*Q
zqf=OY8R+m6qZALh>Ngv``q>y5L@#f;#9SkEc8;ZS`Mt{Yb$h?vnp1wS(sPoqzl~w-
z?{8;Y#p7nYyu3WT!ij-l1y8zzS+i#FvL&gfr&<2}a{2Z3RjXGQzgoHc8K_ser}DFw
zg)9R@NFT#Zo_Te@UVeFbSv~jmw%iT(_SgUaRSPOPgcN2U{PXj3aB%SDjJ?a2sksI|
z0UergAcTP-ppq%YIAUi}>Z;YNrPqQ=raE~B2D{!p9JR(7cXyS(di6?b?RwDS(fZhb
z^)qaC?Q~<-xXEsRzHai9pI&@S8#?#=FFvb3#e5#aO`fc*tZS7suY%jkwpCvuo_~IJ
zZtm~>^}9aS+cVf{>aF|2z%cvDot?$T2?rXy`Y-BmPB^<Det+H1^Z);xUlXx$(LwHu
z^D7>8hJ=PLjo)AQy5?S>yX@54`TK2e=kNd9K2MdAVL?&Yx){(B$Y(1S_pSP(aW*V8
zP{eg<`;R3vEsN9mY(5<DnPH&#e13i1r0@47_vYW<_wv@(Y`NMis$mQaHCC3)n<T%y
zzi;o{&Ubc4;bTzi3RGLnG|3E#tA4u`((K`9V9+`yIpJ)|*H>3}{&>_~{QK?p^plfR
zZx)}oEe7@TJ{;y>|0RQgA;6G{g@Hk%_d958&`a52R>RfR;puN~Yy?$Qpo2n~`E3j?
zFY{gfC4zxr!%5BwY7dr7_B&O2J$5=MriIo0Kx=}HQ%+2<`F10DsvIu^gPG=f#+4iR
z^KMqZ-Fp4mp3mpJCtbOEbt%Xn_x4sV^PeC0kdu)i;c_9{l0%?j;%U0k&%RvtUmw4E
z-MVutm(QDZT)y7s^Ru(7ACxdKY{=xCz*YV0<?_qR{pYj2pD}OG|2QT2H_QwN)LR)=
zZut56`SNAUmR+p!_4VyqbV53RPhjIp28M*s0t%wrik_Yd2@f}q%D=iQ^sgNQLroCJ
z1g>n96ah*onk*izSFc=2`S<5%?=|~~*B2MN-&AH~IFP37ptUA`e_iFvrPDVh9qnR!
z?QiqZW!0)xm)6Jc=kjG^V3<9RVdVz>`k$vGH>dgL?RvTF*H%#IU0UL4`QZRFD06Z7
zu`@8t4m<6|{~;4p8}rConShG$CRXlEm;J0$FD>z`e7p5}(d)I_!>Vi;7;Y@tBU~lC
zq3Y|an3|7AcmDl$dvnUkNpE&OpSSZ-mv+&Qhwb52CLm>yrs{fVtT8Y&TmlUSEii$^
zCg_YsFJ%Y3!VUg2-fq8dw|q{K*V5xRRO&uWp1;JkTWqFj_BFNNbEd}>c}8vdu;0GH
z>!Yy50?Ep!Q^Sp_zPxy|<8dFTYTtG<ZMIC!hl8LIkg&B;Q&m>3TD9s$&tkV;uia&D
z&2B!weI?#MG&J<+es_lXX}a3B3=FTI&#QiSazo<bORGXx_sCcpfr^P&S63U?{`wMA
z@vwEKZFSkdr}6)mUP}JOZpTnRk%2LT?b*4xvq8f|?XqPjKw}Rjudl7Gdw<6G{F$fI
z<3XMM<xRp&2YwZDia8j6nESp){r#TLexP9=^NxQ0FYoSJgPL?!^LMA5oKyoE=9*Xi
z4zvO}b$0HylM@u3Kb<i?Z({ZB*X#BE_xIIq{(3EXdGK<-oAv+ye*QfF|DL+~qg|qw
z-|rM}KFnvmBy@Gy%X@pP`)od)05#>LzkJ>E@7HU~*K0O!dcAJ<GT+%|FE1_iZsV1n
zc0H~-ckc21pU+uK+E$h9DtS36ciT-h^|>WM-~pK9cdOs;{rTs){rqjYx0iwTvaDTu
z_RY=B_C@o4zu#})E>q-TRrY2^+1p#G*JI1ix{Akcaf}ycczs+_pdszS_5J@!tG>UR
z%gkqy&^-V5Ded)7?*IRL-?-$(g*O`x^F?k*aIE`rSU&B+fkse}Zo6A{Tjk_g^ZRo^
z4G&P$X6N&HvqM*hJ)N0857gK-s`>Fj<>ZTti;KVCEr0%I^Z9e2HpKRORoa)A`=9@O
z-hO`F-(PFL`~3eJ|9`6byb2{{w;qr6aeIx*-`%-WaF|!pBqJd0{JgoKW}bYsi0iQ)
z$;o}P*3T|^>!0n`-#0@#Z-?Ug{r{@uYCatN^*C?$+ig8krdrMH{O7KQ$IrF@`_g~s
z$79mPCluSCtXw|tRN3v^?dKvv1}67es{Q@-^)x7^U%h&DW~Q-vzwNghZ1w9IBluYv
zd~a<^J>9ix)v8B39`{ABf4u#E-S0<FCi}0e-&6JVmD_R9xPj~Hu(e&<>vk-vdz=67
zS$@~~+IPkEAB)RhTv%xF`_1P6j|>;P^=jSPn*Ck8A2i;uc&nswng}S}zTJL5ZogUP
zr6r3%3H$#3`i*I4XZ`w`y>92SjEjq04NG5LS)|dGbhJy<^?09bxA8fP#Rs3q>?laQ
zxX`&h>C20YU$a4Z=;9*R?qA2R$Ck%}SV<or9jz}+V=&{Lp1^2QczT+y_oUu^o3BiZ
z&Wrs2d~5dgw2zODg2s$NeQvhx+uvST==|@;ar<W{)#v}YaQ^B-=k_x*43$4WKYxEk
zq+LL4Z0!H%rrFn0K0Z47^6u_(tCANR&PBib_xJw)+HE(Ix_=!{pI4a%V*Pn$zTb1w
zo$~v&k-JJV+xX?@f#&f4Enc-si(RI`q1jmV^{-izo=o5WC$($QkBE4226^8G29rY2
z{)9<7@%w5P&x;pv-S>U(`=$Q#?N+W^=Qmw1_R`wu?KZ#PYz7(mw=ns5AE-BWd4K(X
zQ2m{JtS7TX@)9VDL0kIg|2&gkbbyil2`E*pUcYbGLF2ViTea^0`?h`a-Ll)JGcsRZ
zTFRT|b#MRbYkt;muO#HYUc24T*Vh+R0H}aQJi8X1Sm4-vX>0cNU;TM^cRl_0`~CSt
zt=#q{(;oNR+cC58oOro>{=9d0cc&le5CnBYj&K}EQ*vOKwWI9qt)=e$a-dTg&0hU{
ze7yfWt9Z<WMrL-<K>dl@?{}wXUS5{^{cidBTU)bV_unqP9t%1};@LUt_h%H_WhU)@
zzt5UozNSEL@0UxzlH2%XXNAXAs{a3T{{NhLw$*8eS~$U7HTnM^<)uw7&oE3bdO9^c
z?Z=0QAXgOq|NA}t)|SkdS5^i$&%Ad1*4FIc(9o&Y?{+9(Ugn$qq459T@6W^c|GL_4
zw>@-qSmlq0?Z&ycwt&jV^LD>;`t1Mxkg0q!QHdqN_=8eOL)wCE+sw@G*A%CnnX&Pp
zzRUmX^?$E}#*lZuTsB*3&HlgNZi8A2&0DXnjZS}YVWFf|31~&(<i~y1dLW;JS`1gi
zqE$V2mA{{7e9l5SeNLepXlQ)z_j}eL1%d9eTOEyirA)QL<7-R*M#aY7wR)cuD&h+2
zUH|zS|G)I_E$jDtCjb2W{P~N;{eF``HG*cBQta-svkTkhcHJxf6W`3nduoAWvr*!q
zmYB+?Q-5CDzHcfh02kZKGrWGr!{K0D@UT@JRA5@Z-E#R_rR7EWe;?X?=2#TYJ%2Z;
zTUY9@+W&RC-<{f1`B`d>Zrq+72Om$<jZWKsx6C_Gr1JaS^37#$Z~eNyxMqR(biJ1s
z7rVcD^~&tU>zg30b6?J|C``In{eEw$T>WKV^VGAmOuzQ$?|9e-nj)1nO7WQVWX0k>
zuixL^e)j+W#h<tD_kl&O-F79@RK2H}MBUC_zc)zaC|i9jLybwg1H-JwdwZ*&gGS>)
zndWZU?X?H37ux@Nu^7~w^Rs+9rPOZwwryt9<LfFxJeiUUj-caOi;v5eryQ3p&ndVw
z(Oqt4?)JN8%xpX!-{0K@ow)Mn0lU3NZf@?jdsVM>Vt1K<I(XCf|9Sdm>-9L$blJQ8
z|Nq(id@}jxyYl_F9~7^R+iUgscz?c$H|UtdXEW26ZQEwH{cc$_XtDg=^82>^_Wvs6
zDjqbJyu6e;H~#RetE-D|B(|sC*pOKHuvPq3{`%<X=-E&Hp1zW|=i@O@%KH6gvp>i`
z>tc65`+7b8yzTcplbiYNemFC~-E>;-^kIJcIg9)4tmglHlfF6OVAGw7$Gtc6cE2t9
zaFD(JNxd|KS-{e~{j3MtW*evb8CHFHv8eq0J#bO`?d@%GcG;4E!oOdyi<g#`x(13I
z<+FYhFsJC0=GXHpSFhII_wVa^aog%|Iv~$K`aJ)CjbZY!o}>#49FHz+my4>ubJqNR
z43CV(h8MTCW?$S@`a0?P+;Y8rAA9pfPEXg@?|St2_Rl_9>uoox-|y|t-F9<X#`Sfv
z8^7PH7PtTNkYD<YMb?!Si(I?KUjMmK`Fw8oB8@K4i9i-#uLO7J-Q6Yn_V#xDHXg~K
zJzp+)_omG^$qWLO%a10y%W0moc-*t7`1v{4-{0PLPgHgn^PZ-Y`Q<NYyt7Nc<{>w@
zoHxt8C1U-4PjTTX&E+DS)6TB4e>TZmPZLze{yNTY_amY3PT_IUy;WbeK%?ScUR_;n
z@vud>%d+@c&7A)s3^g6A7JcBdW?)z#6UR*D;m4o#r=DEBmi;co0yKs0>FVdQ&MBb@
E06tg=DF6Tf

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-6.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-6.png
new file mode 100644
index 0000000000000000000000000000000000000000..2303641bf0e1e927dcfa695a099bf424bd848549
GIT binary patch
literal 23694
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_eCM&#<h{~y2SSj{!@aPnNSXwky1
zEiFP0OPZN3DRr^xFHl;sqC<hBOR21DdeKBRB?S#vfhpP^>|YmoaH=k3cj8tpsH^{R
z_FqI9b7!OHqV>-oPi%j7X6DTEK4qo%t<#@H9FtIHU|?X_(5Sqe8^ri<-jRWkfq@}G
znu!C%zb)VZqHeS?FflMN957=M0CBe|Hh`!Nyo@Xi3=9pq910+Ajx%Xm58MyR$yp=Q
zx98*h9haB;ug<@}udAzTQh$H{o;`cE<lf#Ey=nc46CP7FgO4rE{q*Eyk%i1GtJ17(
z+xC{fkF%8F`}*dlarEt-H<$U$EDG*>A9mtJ>8xqfmW9XHhKg#1OxVAFKggVfgH17&
zefig3vmdZ`zxQLmF+;Sa4BvG5{QP`YR@Rk{&1|!bQoa19PuHB5dUBJ_^lhQ5!%jXd
z$aryKp=HR_bY?c53+(bW3wFQT<=xE2dujFheXAZF?M~0S`{YRque6y@>8mS&9v&Sv
zwY8!$GHZT)ef_%E{N9C$%I-10;;a2G-L~2KU(~!f`ugUan?|KCFS(|kniBZ$&(Ep)
z@pe=7<Kyn`F2DZhXt(XPsnU_to*Fjv$k|36ZsQGhacN=Wkyrro%=Wuwvx{Y|`=7hL
zm)`xFal-e?=Ov5`Me3(FnWUT$kW4Olc}ex{ot?q)bw8Jet&LjRD{cO2@ArGBUkd#<
z6Vr`a(j}^$_3zKm$f*2>hgx6V+Pd0rzTMiQr>9oN?k?lv<qh@n>N3l@u^>FI(lvk2
z$F{O}cUE4waDiw0<#n;vcdOs;<>KZ(eXY>N#U<nSx3^j`I|{aKE4EEPHz#m=-d&UW
ze>JQuEGrTZw`JYmx3{LIX3B&K3zm9Mf3^9%UGV>Zf4@GPoqunWRo=A!f1cZ0mA{)4
z{d<vXcgThW$J*a-w}1Ndsc75srAzOADxMQ+{`xEPgZa%2ObX8H_k8L){XYBJn!vqP
zU%y;*mtR@`|DRUut`fe`Z`UP~i*~W}PntAIL|Az8(o&F@%ii8PdHlHhWOe_r?Rj_a
z{QC3lcK)l|+t;6)Z(n~mS5zk=fR$V9%%y*}AHRJIYvmH%w0CZgMDmq|&g{CeyFz-U
zOfPN8yd1J7!f?7>W@e_8echhA-*2}^haEo~vdD$A|E;H|Cl?o25vTm6wf4v7-FZ=4
zygAOE;h!T9L(Jh#I*$u1Z1i?N?z8SW{Lmo2=40#er`_WEX5a6Y&*$XhGpnnsTb6Tk
zQ`&(B#%E7XPR^^{o_jmZs`OQglCpB|{Q2`aIXMkOSBIJU+yC9->Fr(o?e)dQ?HhGY
zzqz~ndakr~_&SqmsWY#~Ri9mIYi4%ssl=nlkLMmwjhy!R_``x3p{v6rlY4end|V`H
zUAAUr)Yes+QCn7=oUT8=v!};oZS;1t`*pwH_WIxXZ&~qS!OOe5w}Zs@?c1lOqH<(Q
z_Vsf)cXnJ{>*jB2nsMR5uG{;Io_4K_*tn?BLMH9ekxuh9&tDZwN=jxfTC^x;n*ThT
zn-SAem-)<mbSZ9ENv5!<XzICnw%PNl-&qE)3ekN0{CWDRsoLpoy;4uN&2MR8NsgRW
z`Qu^x-Dz{J%g^=5SY8TQA9q(oC*p#LM!<oPRUs$8yuE#0#<J*1+wp`R!^_Kjji;r~
z>=M<URs8&1?DqFZyTxPs&Oa>JA$!04er<Zy*H@`|`~Q{&uLw{S77$2yx979p=Udt9
zXMTQues}KYFE1~ry|}RO**WX?CaqkeMy%XoCaI^VnaWz1nanoJEqZBP|F7oqhD2v!
zF|o8ifByJXRP5;N>@<|G{W8&e|BM+D$&u4OfA5J~{<41a?83hCH#ZXJ)&Hvu-dj~F
zEF_c!((&@r(zD6^wrPAa77sR^J+mj@sOqmo@|k13(!RUP-uh%@tSGkMTm9XPonNlx
zb@kWZe<u6e8BWy>H~aVR-?E5}NzXPOmowJX)XaO$aANijCZ-4aA3uI9%&vaB_4=1v
z+3PhmG(2>pwghBktk{-&d)dXs?yqO(@4Gn5G&^L01Ec4q^Y;JORKMHl&e!g|Hfn27
zNXQhwxmHW(T9?0i+;4yF!^6X%LdDZOy{Gc_w%pXnX=?uS*4(%earD?RtLd(8ZeEkB
zzPwmC(>Q%q(bH3}E-r3oVq%&yWy+GPtHZNTPEyUfvf?7|_sJ6`EU+ql_2R-p=d2qW
z7Rpt<P<(rTfBgLVe>*{C$<E^Et13S~o3x}|zAl1S%H+ZXMQ0I7$(28TR7|fj+LU!w
z>+Ow=&Z=HhPFy*A;(A^8J5RUoZ85t_Jbh=IT|L;$esxb}ab<ON_PsroRS#RmOCBC#
z-M%_y-W;3Cpp6?h-rANsJ8$<}Guuxmls|p_dUajwZj;JSDO>aJ$0;f*n%_D1<KyGh
z$Z4ST#>&DHvwi*Y>(95k^-3+hU;jULYxec9ZZX}Ge}5|fe&7H9>I6mSEm>E!K*fyS
z^QD=Wmql$(>&?2pZf)G&s*|^GN3-+ETqwU^yZqPJ*Q>pzYMry1U-5{uwY7C+=;|;o
zKE7)cmEE`G-Zt}{XA|jf_j5_{?Cbls-QJeFdc_KjUP)uOX{j$~rq7#b=;qobvh&@>
zl&3Q1=URt9KHeYR%*GqC+)wuBuV1gO$Jbvy(kZ;P;Gt9QjSUAa=V%$fpZ(?Wj%$Zn
zxvwsCX7>zg=aUWDRg#%|XGfrX{hy6uIuQ%5t`6TF<LYZK4yt=DE%m;-Db?FF_g2XL
z+V6AKd}b_&-Cg$bcK-go7w3yQ#7(%&$>H#B@<q`JpprmeU;pv@_xXIXR!=tN9PJW4
zwn-;=dtPkut1Ft*Q-hcJ7*0!_nLfYv+RbbG>+2sESeyxuuYJ00e)jrlM~)wtZa+M6
zt+vAT*V#RWnwpx&9u~})WtzQ9*ZA0sCr?uP-(JtUw4}4pLgrbo`MrY7_|0j(AHRJw
zJ9zNmvo|+4>zy_#zWO-pa2qcu59i(8m0C5oL^77~V@a!mk<ld!8NSPlT)C%fGr9N4
z7`k?e7`k?gmG0a%>Eia!bFItG_}UNKe7zE!_jQhK^|iNOA9+Sa&HDKHvoT-$;WxLo
zY6l;$TKxF-=JfvK|C-tPL8{Npv%P)u+voH4(x*51{QmaVc3tt;>}^q7vyR=re_zJB
z?9AHxA0Ho&t^5AP%JkUh`zL42F7BH=X;REOfu+&ga%O(~^vP&%_4l&O{r7$!lQ{qU
z`<a=>Y6b=uDypkz|Nr-Wzuw>bHJ^QxBd2BF+OpES`q$NImzH|(j_KT4^K;Y6`2G7p
z<>TL9U*)nHCT#y8qQfBRwSUpaPp9=)Cm-+Y>h7MbviI+|+j+_F?^nOKjhwdh<KyGI
zd)eRL+q-+w;>BNYrqAE`_VE4t_t)yG=WW=k<9$rx=dWK?F>zZmE=uPq8yW_lo~9eT
zGH9tu!U2ZqsavzI20cGFcj}xuYjzetPg{MhnVtXCrZqh8<#*h?SN-1h=g*&(_57Ti
zfv>NvojPgKqWks#|L%G%XImArIsJTCM8u4HRj+loKmGaX>FFzfnNOZPxvS#iq9r}=
zXP;Qrv(Dt}>+Al<By=M;9m$=!{QBxA|7Lyt_U&86Q%wT{gV(M19Ky~QMnudwuI<t*
zZGKI*{LaIVJ2r!w6IO+fTC7T6ExENdd$&&Yx0~srl9DS^PfvS!ppjYcw9aX8OR1xS
zBYpPahZhd>+v_CvTw5DG{p~G=CpK*fj3+K^?Z3N4$9sO=ua#9_UOc>3{`S_^Pai*C
zd~<WNZQkogN4u@6zO3+@W3h0NYxk<;<9$-rWox3g=dI<FwOUd5_}Hr8<$bqhM9VZI
zHY|wRmb0>zTU^V^D(da+?csZ?zLuP~{eGulhySj#v(3FHy}G*k`NzZQhue5fb8ngC
z-rExyySr@f%CGmeTDir;LPDlQSD&1us_LokH)qGYU$3vPzdltvJY;{}U+H<rLsy4o
zK0P&6FL&a^iE{Dz=7)C{KmYP>_xr4Sdn#{jOm6p^Z})c3!&{qlRMph1e&4J6{kE&G
z?^=(fF{mAMZEf`Gyt}(r#qHg7yZxtL?5-C(pU=DecKiKxesirf)zsWTjmLt554x6p
zYvw#IxxCEx@)XVBEv2u+=2{dwP1lbv)7x#8^DlI^S?;9N$gB$s8gCov>+4@#A0Pk!
z=lS|Am7mkLJ4CLHGTmNk^t+0Ag1LYLLyE><XV0vxRoB);E}myw{p#a!`S6#Qmc|}y
z^1k%(@$u51pPs%xw=pqt+POKFi$P)Q)+-gYw`yw}zx+D=eLtKoFY}#j=q9Qib_LYb
z^_y#T_muPJjBjslN||O&S>`|gT@A~|{rmS@mAqJRaj|>+_rPtFrc9co<SA*_XR`P2
zlarHgt}@oq@i`_jo&UskFSqY<71jTL?(bi1zoTkW-J0<F#d9Z4)ehgaw=O9u>B?ev
zepWWNQ`fJDPuGhLN=jOEJYb4wW@aYHtJl`YuRk?adv)+~KQ2zr!nRID=e8GzTDi~t
z<7;;Ym4$75va2kMpS@@mkDFlV#>y=g(l2NG<(PE7M*Y7(la{2<t8`OTRQ&Z~asQWp
zzu#xSxv}wFa^>r_+imI&oCAgTmtV*FWLJOqP+*#U%|}pB@Z1BV%u6b7Z*SMXZJPRg
z?}L}7({EmvZrIbv!1SQ)((~vauU4-Q*_svl^~FW!{r~^%K3y>7P%HOoiN(ps`%<fR
zf4@`Q4=TRBr|V@tKGqwxr()y1`v0|{Hvhtf3qh5silus%x3_okZMQP}Gx2B7pZ9NO
z=fC#gVDr=&GgiFc|37ZBy8pE;nU}YezmHoRwe{7m*UR}2Tb8_-aQrE#Me*``_|>)1
z;g{yi-{>{mStYdN3;*PqoZjpA{aO`Q`!%%x^qxI?LRN?A{{3*6KWbmiPPy7I7jv$f
z*8i(n8^1r!w))$ZBb~yr(`2nmJe=Ej3Zs`7JUmqO`|b9x-)`q;e}8v3YHQZiW4+SL
z`R#r<XliQeO)e>Wdn+_{ciGjI!OOoq?zew+T7UnQ<@4)SrJbGia{K+d;DCUDZLju6
zg`N9&ak2Z?f4|?qUbp+*rGEQ=FKRA0?|ON8`TZ%g-c;#>8awPP4$DH<#YFC{`g*C6
zncXDqj0Cu3yVNPHzNPl}H=X?J$B(;j&ANJNf}*oY*_#N-<QTQ5-uwS2{r~qj@AbO)
z{dSk-4_t0{O??)9rK5wR^xd6E?`b-LJByxfsrvd#n(x0yJ=djIS67!lJteyRsdm_!
z38|5*qPAu&dv(^s$EQatY|RR0cD{^DOFXZ?&F=Xqapz6Y<}_bR8NS;8f4_VA`kuYE
zO|JTlp=7d2)t492=W-|2?e}midv{0k^rkD@a-+AWUgu-}yu@dwQPq!!?OThUdWmWT
zC>-`w;TF|el6H1h=A9jdUH$#xMMazT{r~q{I?rBvQ&C^}`+IA(!`Er(>7CQ9k+CRn
z*j@g<ELvUr{p^y^RUs1%k3HVGr{?FTx*reOJx_hBW^}mc!oWB|Re%4VO*OT(rd3}u
zo*Qs`o;%+9?bX%OKi@vPdTy@u^7(bYPX7Eo%QV}juEXd5u`jRq-A%KvO)+#6R`V%%
z`TO&E`}9n=Z(s7~+VUD&mc5x#_w%Xv_HUP$`@cRj)A-Z3Z|6R+eJv3b6zuBm4t8>C
zigx(@a`}9d<YPRnY;0A3F3c94mJ0ICr%#`P=G)cU+`FUix&Pm<)sG%Mnlfd|l(m0T
z-3tmffQtSlOH^#X-zm<Ud~2?4b=Y#hxu>pdvnqeLW|{BoSN-<?0#=8uwW-@(_wthJ
z-v9r8zq-Hwf9ZBnNy(QVnLoX|yZh@QZv7ptw^~|Q-rn4NJl7gjF%>*)I{n&oF+=f>
z4~d>dzaPwxjkG-e()?b$^rZ81EEmV^t*Yc%eZBgA$`aq%W?VcxS9&CkWA1&Q1WHbC
zZ*F!kEG*n+>%r*o?vQ{EL!^+L+&cAn6;8>=`>w7CTx^nbgu}D`UV?4b6^*?=9(8NQ
z@7puWJb&Ga6&iCbi;r2>tc=@R_3PK`^{Srv`+hD9TNAOc>gy{_EiErrE|ClC_y1d!
zzwf7;qoZThn~lfk{LZ<%YwM}$`s*c)(=z`5`@8G;yy`9a_wCNkw~x=gwdLZP$jwHf
z)knKTMFj;xjqX#oZ$~fno<1!#^3}b)yC+Sa9J<s?6qF;%@0L#Ynx?Zdc)4HZ!$YlB
zH9t1|`uh60%;S37`8A(9UtL?fx{;YZ>*b}TpnBxn+uO@6i=Ul1ecF4nn(wJAWqC{L
z{{H&)>9qdUwbACKudn%nMh|jw);KviO_?-l5wEn_i{<m{f(|yZ8kZ)2+A1HFzYLVY
zK{0Cg^NDcn_q*j;x3;XTsjb~w{XGxV9geU4I`!4{_4S9}Moe33S^R88^!B`2_VxQt
zP0?KJ)+@C#XsH({Z8$kKfr2Rcc;8Oj);G5vXW!hk^wd=C<>mJ(-EVKp4W6nM3M$BS
zqqcxLH5bmzG>-k1e|J~t+gn?Md!<Z6RtBlIwzt22ad9!o@Jp92efjhGy!G#Gxwpeu
zxkLiiMs1zr_`F@d?!vFHuR|BR@tWq{v5-!`y!p($$4N)KK*2T3G<({j#fz^l@f2RV
zWJ$)&O{rWQ904UITejuheYNTB>%IAx^7;0E`}6Gl{CH5K?(2hQel0aMH-4KB4PH~V
zKm#S9VCCZHzpg&Nrs(o{<_4QX$K3xholw>}Z4?(5C#h#&^JBxw`S$xk&5YYR*Z%)~
zU+;UoPuADPrRC%2&&CTEE?nj{RqNT#=ktnZa@O43l)5ba{Jdv<*6$2JZCq9^5d+ZZ
zP35nb%g^qs{e9<K<%0u^msbX>3yX-Pe0q91J?q+<%x7n3r-!YJ$&}%1m$WKb;r;){
zjfno^8xjw*UEWcc9K6Is@bS~9Pv>0x`Q+r}v>O`|mjy0%TjtU!1ZwHFw71V@<CU5b
zxj8NM<sVg5Rm*fI|M?I1#_ldlJKV-A_uE>A@A8Jk!#Z!3V~dJ5RsQ{Y-FL24sZT+{
zhL2yrnmRf<F7umfm3E{<@Y#!ti}n60D=YiXG)j%Rwa%RX#Mau&ypl#oQq6Lb|IJx^
z=wZQ(dA8NNzS@_+n<HtM)UxyUyWPJ3{`~Y^=+t^fw){@wyxMP(+og<?LBZfXU2mDs
zOe3}UeKl$d3J0d>Mqev=dFiN5>@Jhw<K>`G*qR+4yvT)fvVOc>@$<Rmvo0=npS@*^
z$@cvx8=2Y9c<b*?d39}V_Mt<EdiL+%uNk>%$<F`(exIGB>K(JqI`57JXml!gTTbL;
z`}#UiXs!xdo8{IomwRrG<>O1{i?3(8J^z<B=kb**A)h~;)}Q_9>FL=G4Gf@Rip$IW
z<tNXXGw12|vtQ5U|EjuvuI1mAVE@WFoVIp$_bMtYQ!VcIFaK`Yu;--FGqJk2tf0Zo
z@P~4w4Shbzk~Yr^iHVux<mB|Ez#?R8*3~(BC(WGOcqSfxc;Wl~`uQ(QzrDMw-F|rC
zJlpDfhfZxuzq%^4$U;WSswBg2`lQ!BGmTvN+MR=!`<;Cm#PDF6Vgtj8t)QX1XJ=<;
zA8zA)b!X@1HXg}E>hmfNeY1+Ierswe!)GbOcl7x2^c(Mgzu#Z}O*?p*&$jQ`k<)Ze
z7iE`Q$YkBvkT~u7<Rw?Ggn+uRhK7b*oSYNq&!2zj@ZqbgLbcD%G*-WDntttT)|tL9
z1;t<e|NZ$XDkryY#taEw8H<4EZ8<wLe|PuyPe1(d!oJ$ydAH2+k5)1^+&N;soSUJc
zXHE2WKlgsQtJ3*<7CxU}Z@2vP#Qy&NXJ=+E{(i68zm-e0DB7;>PsPt4KQwf8b=g<_
z290uV%fG+wP%HOt-QQoY$Ah}MswyfPMn*xhRwV%e0TV#woolxksATNw?!FA_9jvS0
ze5d%l?X7*ayPKMu^KaTIDJ#!S{0QwbnC0GDvi*Kt^kVn^YtH<(O9~$!)2#pZ=jN^R
zYq^3LK9svLFiyx;RZ}~)NvE~7^=XObCLM3xs4W-vRDS+)GkyNclj`$JBI`aq@jN@%
zI$Sq;+m$;zi;GuyoxFWJT2w2fARAO7JbLt~<j04^y<aYQpIdG9(r=#4%67Rbk8W}O
zu;YEQTPr?3iVj=6fB*jDQu)hHobce4v$?Uh_V%`1P|3f{fBrgQb-#>@i(GHs>Nix2
ze$9NqUeI|1!xO8Q-wlr(KYm)`vCOlgw>N$`xAVPRxqKdIoafJ<KO$06tG>Oxoqc(k
zZ{F=aRXKkj9qqolz>!&0Gsq<_E^g+!)sdUix;i>89O)FkJI!~lRj9aLOu+iMy*BHr
z7jOJ)E)`b#)lBE~rBhS2W7{N`-uIt)(N;l!@0Uq@vQ|sZ&9%<Hu_00Kq4T6J5zR%Q
zLf>bmQPj4anQ3QcJltesWE7NoYRbi%o72CZF+RT{WM$B)>H70mg{)lk^Ye4>NqX`7
z);v7izS^mk3seH{EPDFoVY~b;+2dc|F<KTrYKg0QsS2v<etv!)K2gb4L{@gKczjLZ
z%9Sgx+uF}8ydGPg2`aofIWIms+PyX5Ak*}xpP!u#-kx_iWMh)6s78PTs7Cnu>ME#>
zxx2OZ%l_qtZlDfX`~BQoTRi{%`WjqPvZbl1Nkl+k0hg#2xSMryvikby*Py}X<$kgt
zGa4Hks~$A6Zz+E6x4o|Z&&T$-iifOMR|GmQT)6Pl_wV5;DNE$){}igKsa4(iHbpZS
zG>FsM)~2PP;IPzdYS8AivnJKwa<=d5?Ckt?egD6un^I4ox_>|Z;K74gcXw?y%ehf-
z_ZOprattHmgx4aPK`zd1JQt_wMuUdPx8~iAx_I&8q$hvUot&CpU0J!<xt(ui;^DTc
z7Yp0B)c>!m{rB^E)Rv5i&(6(V{p{@Q-8t7c>43%dRBQybQPk(x7<ngu-@9kemCfn?
zywYYqpdrnjigkxtIJJV8^+=iL&3X9irtGTVrCy@El13oQ3ni0OJU4FKD7miu-=E6b
zZ#UC7>3FZ-^U162@297ym;d|w`}NA@^Dh1P`1tD1;`Hga^ka7|*|Ea{)b#{4V2*Z+
zn<gLQDSdIl(R-TC#di6+6<=Rpf4%SbyUFwC&$s*kr}*pJ+u;irE(8T?UPTQjCudi0
z@6~^Qe}}G(GX47QZglv%n2UX~)}Ze4tCQ;ULskYYH7Z@VPF+RCrQiPFj=1{2r65;j
zU0pS`_-42MJ`GUcc2%giprD|ar{~2kQSB@1<Lz^AY;X)-=2Q4h)+nW8-=9z3xwp6Z
zf}(t)lB>$epZ+h;Uq8C1^0SDr@ZudiEMj*Sxk{VoU9o<@XYtW)@z=}e*A+>#rS)7C
zkFQw>YQKS+AI)sMTT)Mp)qXrG9<{S*Y2BZX?o;*S@7=6_cV{PP@L$R#12hPF;`;S)
zP&-M@Z_bKVZgJ4ymR`6ZJFnD|iOTM)d}bQGy0LLFm$=@VW_JFpzrViDGEVQ4tNGxV
ze&2Vt*-FpJYF3q>mdrBC1?Ah<H#R2EGS8m}YR*-Dezr1lbK1>+vl)K08!}Ar_MK;Q
z(?W*NIQ5js_Eg_lCWd_NhxdFuCaw22``Q}Ad-v|CSy<cvjf|y6PfL~5*Vo@%^74|-
zRl}4M0-!;><@4*ZzP-Dfy=Tv!Gs6Bh4>$Rr-gHJfe^272OP6|5Bh|FDv@Rb{>H!V@
zvGGb(+<Ct$bambh^H?XRrj0tMZT@^Xd~Tb3-H(G2(^9>rXcQh!{`<J!z9%&j)WC?@
zS#<QKoTMbEb&`2^*H+L>!|iR%%*?)LXPKT|8N7VX>9Y6ta%*a9eXp(xjs3Q<=&2WI
z*#GU;>oK?9@BJPJa^Q-<#dls=)&1GAv*6(&-q-&3%iNx;-~IITbZ=^;nvv0^rM2JR
z-Ie?O{l&$@7BYOB^X^(r|MufY1xV|?z16nsw&&lsoBnymyZitDZQrPKde6^iv-RG-
zTp!$iIC0;<U)j@B-|ziCZ==p>le{}OmfC7+o_v}=DevZ{)MKYlpZ@ah?(L<v8X702
z=tN$cV_$zSckbik{nr0&b#>29(T%>w!oo5G<oTud4>q%d+I5`#{NH!vGwhH9jZzg0
z2@7w{xoI?2E7Xgbji(?oY;~9}sPB35<Vm^rM>8%j>wWa-(Z5goyr*g{Rr8&dajZx3
zoT8(!n$Lvo+qcWr{dl;4&)w*k4-Pg@S~5x1``(89s`=gG`mcU`e4Kase(m?zpFe(B
z)US`;zHZT?MJ1n}c<%lAY_?X!h6TluAt6&h1x0+_&!=tQy>f1C@yx!yE_A9^s7b*C
zhwV=r8yi1;{kk{t?@UoaK}Ao{Xqk6)NXV4q|7w4Kn`-FhJx%B2r8=)^Ixjz-3a_cz
z!zHRU<>5Ce)2t=G-|arX^ew1nxw$EIYtm7!xA*tozbPjs_Ux0n=k*<h$#)Bn%gTL!
z`1tYTjq45^aCp97KWdA|?(+9x^X+Oww&%r8uRGc;e*HirbLoo<in{Up?mRYRaB$;L
zVE8l#G2SNE*TyS-O5*XG@~u*)St-^3K|TMK!OKmGpZUzStBnGUO?HdvhOCL$n3Hd9
zt{t?bLrGcr?ybXz538PhETao51iZa3FLZ8SxBKnZ?CV~WW|?G8`s-w@Xe$u=ThYeS
zGE#rfho*P?e&>nmL|mwhcmMk8YHDOy+xL(Z6<u9l`I--nudc3MzF>huWp(xGhXtT6
z6R3|`Q2q7w_44du3z>5Y1#h#fZ*9p0^@KArR@Btg%qji<=kxiz-!CpL?G_ReD*63(
zd-jC|j!~OZI{oHaJ>9n7H2a#zui}h5+3WW{`vyv>lF8uVi@CxK599<GD*e2?x>Qns
zl&twu=5PK}Oh3-%_V4_go0fKoYA@>)R)6*AXt!1QyO=if`On#29<TYj{h6fa`^T?e
zuU@b~VS1{h?X2s!f1m$9HKz8figiT_Y%Rd!TdC9aVt2i(^Pgv<d3w{FaJ9UxOO~j3
z*5Biwq^GLtdUbX9^?Q4(LpP`Sf<~u6Y2(|sYbPhGe|@+6{i{Q*+>y7=H}l)A0F^vB
zH#cQnUe?<suCHfrZ|`|&hGDYNojA8dv%mQ>|H(}NkDDbQ?+dM{*zwtslaY~e(h|?f
zYCG?Ohdo#2+}s3;2hgO;L}hnSr}pe@^Xs?s_pjZQdfIE!XRaGxpS5q)@lHQC=j54{
z3=HZ_91S+=f13;3?yp+TZ@KFm^XId(HY?WdxO!ru^49wQbyGD0AGMi3vXbGGOtv{E
zSoF31Wb{I}Ua3!?KL-Z|O{)9<w>)%BgyG?Rr>E&oR=HdKe($z(`GHG31SOL<)wDib
zAGI;5b&36R6;JcTLoCm?|Gj>1&Hl2tQG0*C+Z}o9__1DT)BJljrkR&q;_LrzJw5q&
zkD-)lR!G}xIlG!0$<@EI?f!19{qiCZG(xfK^}5}laW1X+eKmT2m;29uw~hDorYqa?
z<3Tmu@jlthudc2(Eq>;6cAjnY|KIoje|f!r|Ec50-CMcEr=><lZAfT*xBve?9a(FJ
z7=BQT&Jr}pqp~(`Z&diYn8N6NNk_RNr#&t7xN!E<i^cs`?N4kzolrLavmtIvMxf`s
z^-gQz_uF~@F0+u?Rr9lG+3(-Kf4^SXE;q^0ZT<d#Rc(LI&9`3<>RnGueYx?t-02|S
zo1v@2bUjafvK6a8I#Jo(r0!2e<g}%FvAZm8m%qKGdV159b+OjlOT*U1yey1<>C9mJ
z*Y=Y9%-fq%y|*8i`~T&#|Ml86A6A8~zH@6`%+5tuSBHE5`v1Q1?(Xu}r>1Imb$1tY
z%Y$ag-re18e5YN7m7RUH?`*SKmc`4Y%yL$MrlF?C*G>HL{QeP%#qan3|F`QlL&F-S
z28I*GN=iy1;^NC&T3C7|jgO_?^tb=JMAA4-!@wXQ_x85EsispjgFz+K#p&^NEA483
z-Put8_0`p<1r{c?ze=X_&pUbYWYxc)&o`HBRn*YX2tK@W-M3$_*RPJ)m^90-b{8AJ
z+?#KWKaX?@gVr3By}h+`#}13qS64K>Z=YYcDs=U#vbVQxZA$HS>yvr8&BoHw^7P^P
zHaB;bf`+h4{`@GsTmS!W*2P7w#gQo~OL`3R5|ckaJ1b>bwB-2yz+VQY{{6*%`{SS8
zdMj&L<nsU5_5JIjpLdCB-%<0d`TzI(*6izgra3n*{M^v+r8Y+T7<61}XKdl_ijRvx
zO^NM)V|SIDw0xpvdtyu8-Kf;l)2@OVPx<?P9!s8^eSO{4pP!$vuhwBG&;`{nSB<Kw
zE~(G2S+uM4b=HFejZwQwR;~(PzpnQ8x6E^MEI)nvbZLp_WSevA3yfdyxHm`sx>nqt
z9lJ_iF3P;TOw-CL>ihlr{h(>!_51%t85$bO<<B_pvDmHGB>S4q)~u^up{v8D_V@R{
zy1srrX#RYMUqr-=X}ZzN!q!G*{`l~4mRatsS*F>`4jgcJdwaWox0vpwlatj!BP#uq
zFWyYNwFNvB4{E=I8cSWhy;BX{tjpe9*nYom_5Hfvx|csUEa6`|>EEA%+BY{0bMNd3
zls3<sk{bEy+S=K6|9&J-FWpuCe%<zaRo;JpeZAZzsvWYgrt<H{<ML5E3Krhlp1*#k
zar&;e%L5m?RlQ!j{mYBR{i|w!e*;y3pnk~mc~xGfSyuw)T9ulVzl*uLGT6QJ^|h-H
z54V3kYkvR5w%d8d_x8N^JUvbK>bBhIt+}_uo}QX|`PtdoTPr>$v9h!8_IVevCc?1v
z)fLapX=j5<O18{0$y_vLiimFXHXlYtM$lBvwYAZ6{{{yKhi=b{ovIz~cXd^0@XJd}
zOaJ|;1gYBp_uK5K?Rjry7CnFab}eZ7J92Z{uK)jjhwd)Rb#-^wj^9^vYk&QI&}@Zm
z^|u!f4mN-K{{8%w`>YHqhWsaH8mFImaIo2TbJ|&-goFhfb+ivZ|B`=y-(8d3TUS7<
zAXwPgX64=8HFL3hf7Ki7!bdK_D}z))bGWCb>*wFA|Nl3-QsTh<OTEv|d3bq&rYy}S
zPMmn`{Q2`OEiE(3-rkzYD{Yoi8GXI@tBr#BBs+eOnMSF1rp4~5xX2@8aRJok`SJ7T
zOwi~@;9|F#Teg@yF0k-9+{SDB?)$Auhdvq0q+KO1le)z9^Y-lB+k5z7!MT+aCrn6?
z;cI_+bMx}!zs}9IPCwQonf&VN>hz|jrXJ9G6>e^0-RNy5#m~;1{IEkwS=m-@vf;5K
z$Bs$q>+AQQe)RZp@AT=@Puoa>mag!%ALfy@y0W$&H2U<gRs2lu_Pc3JOiVr(7rFXQ
z)e1eMy?#$pP;jvEn)kPI<Ntz2gM{Ve@{*F0&U`*^pT8~d?yQHuZg0;w2Q6he+9hfX
z8dJNvI@}yIptrs{?s$)6GH6i<D9B{^+E2?EsQb+^@VEUsrL(Kch>?+TS<KF&XHTcc
zo2^{AQttfAtLrbjc8krtwKaP-6D!w@MXuem*ySn?{P}oXKJT}`udgX+>|HZ{-yTj5
z4uhp$Q;lkWeK9<F@?>89Z13rMGq>NXI&G4F@6Hsx*jp?tEHf@#2q=EP_xr4mkB@`o
zcjo?oadGjpqvG)<pk*IFKR-7IEkhC23NZi;I?lAK-L<pk=O^C(dJF}or)T8UsQxhD
zQ2sv7)zx)n$;(Tio?O_v7*N+?W%c)WdVht4g+*m$*DiAHUKPK;&Z_p;7SLSoRK3`!
z*Von-+r4z11e&l>pI;LMG9Hw;<?DVp1~2ymjd$O9rUM$e`sexYBjb}xOT9rewocB@
zTMHk%fqK1@)&0x374}wtzjkG1@Ymn(_gl*g@2vS*boA)a%s)RqR(-kXuKKr9IQ`@#
zRZv<#JKz5P&N}FluebO2+aGq11g#0IFaQ5z_J!J-8WAa}s>5}~&(DQ+i|NM93%tJ~
zP&sr(z`@i#UqH(&o;*qU`tI)S)W4uioqldk;qH~70kt3MKaaCdIOE~vb!noqd&u6Z
z((S3H+1E;TR+{|1zdCgFvrFrvwq_Ms$VBeCD8j(N@ME`PLyFU{C28~0V)?kagNuqb
z6;He0%+7!6^l9&d2M_A~t*NOI5fOPZr&b)KTwMvI-1zt3KY#8_TWViru-88;YgJ8c
zt!>`%`}hCv682|gU|^^(Kf^o;+}3$gD75Aa=Zs6gSy)(JJUZGfx4rn^pUQN5|2|pk
zWvbrOG>nWs?fT2Wz%ao$C^&fPgb53l`Oe<eTjBUjz`;nd_C@HgfHkXSZ7KplZLp6Y
z3%~8H`MIf2*816}MLzRWzf}qQ>qc&J0nI<3yvoeL@E~orS?;V|B`+skPJQCZGQo#~
zpFiBgqr)uc#)EA+cXyR`_4SqglarOzP3{3L(n~u#%kuX1_3`Vq!`JQjvNtRxWyuoz
z_zP3DLU&cNgVtisPWt`rEohP7=VIwieGHR4-`?JS{mRPVsWWE0FycSaCu@CWe|>%W
z{x)7|Edzr9(3%r(hMzwk_fNI2uLD(#lJAsjZ-g%OnhF}Rj4n}OU|=|**LM1UDT{!o
zeBF<Qpuw&qM_fEFHL-GoMlL*q?(eG&-H_nOD`nzQ{On9%PR^QQwJ#SJyT5+7`+ZnV
z&7R`ufB*hTndQv*_jP^!%Y*FlA(xl=e*OFXe)g{~FQp8VTDn9uCkeNM)|)=z`u}6*
z1y#_T%kOV*KkvvnKhIVxbk&q4_WC<*f4|ubny9X+t-ZR)mAhBYHcC-ZG4FNlub0a~
z)0kV+&&y5Ki43a!^(An=UG2K)<I8+!hpde<&Aqc@qBdxS>P~_A*EjWREBrD}NpV~1
zHTBC`^ZO~Q-YfUpEOM8tRIyG4Ck5*>%%F5l-L<ZusL3U7ne3=mP$_nsh6|DD8^S3E
z&&{>Ix-wWDlvqI{qD#G|n&jLtSh{T4t}nmeZohwJO{6hs$*QBHBWS?5Pu6;xb0{+d
z1H;btazF72;h=eBP^;+TBG;?S{pDHN*s{*fGOhZ0HGFI4WwqL$Pp3~>a^#51)z#tt
zuH9mwepczPFPVG4UW@+qbb9=jyt`JF)y1b685lmCKf3&(&n&CbRiFl>Y4$Zxi)ylp
z?XMS$ch&sd^zZZh{~D^QuC3hS*FcL4XU$rr8@)|KNy%wa$YM8MP(AVK$w^Q>QT)jO
z6oxWK1=je0Dk&9B6O$`T_f~v-RAeFZ>Fd|2DrZ51=}}t>+W0-QuB@1-6|!Q%&CThz
z!$JBca0@yZX_}dZ9h3O_=4Np8_Pnd06$07UbZS4HRDX4S{e0*`MP>KC6;)qf<-NYX
zCNg-odH%UZkS`kUG%H5Tys{-T7&I)Z?ACLkiIrQ$b6V=lrPJdsU0CR>>dDS8H$|nj
zwRPuOc`>nNPoAX2?ke%Lv$Ojq%E!RK@I;Aaf=)+IPl%6C4`^A-fddYpNz23S{NW!T
z9lg4{JpcLS4S)XpxpVF7_wUnHmM&W+1X>jTq2HC^<dT`j>8~~(m%Ds!uJzn-i(6YV
z7oVQ4|N7_i`Qgvc%@q|8Q1IMU@UZFjujl9IPghBoXJBA>Fu#Lgk|(I(T@|+WmD!$E
zp{v7Y8Kria<==Z#V-<!}f6UzV>mz8mz2M;?z1+Fh<zdgy&D~rGT5^A)3pDF|tVdEW
zS5s5dGUV)ic1D%SeDZc{4jgdU{>^*3-bsnYTeg_Awzq4msJKX*<rKW$o_E*E)!jWk
zD?a&HPvF&6p_^lk85kJ;S^38^<loxjd39Cj>4jbY<SMwr)IwJTIL<cDzjkh}b?mL>
z{`2+p_4V(TUXPu$1T+Ql@KCFlk59?B$bB_C%ii2r$Sz-V;o2-l28M<^ZQ2SmL95nu
z<Mu>=n(F)iebr}WWqrAN{k}_+RK2gP4%ZjekBgaPl5s)d>`Y_#jT<+DA{aESg{U!V
z&dGs1IpOdQrb(V(UtPW2Z~t$_tE;PDgO<4(pSM|TTm3ELNQWS3Y0sR$UQ;v{hOQ1<
z8MCvf>f=#y)2c5STQe>?c~94S`Z65U1UUYf%R?+=eOxTJxZa+`{a#bGUe3<nw{f8o
z0|SFX{zEQM#ltW_<x9o$62^k<wZFg3(PL!DoAuy9!c?tLt>vc~7@i2ROo&;LeSMu}
zEEB^WlYjqye);|WHm4#3gD1;`n5-E~o>|7SFx+9eUHY#kT-Lg*hk=P<f(ygRrHfQT
z&%OlttzmZG><geOjV8M{KpB3tMx$A>=`HsY{}3Ltv&a=R>YJ3bs7qXbUG@9D;rH%U
zehL5ue*F}ia@HrHWmreMM6a$0R0gf&<drrH*;(`yG`kV~ZGYxvHP9G<qod=g`S$y@
z!q=_gxBGEm?Xk48vsNY?Y~teL3i|%;Zt0sFhS9G;6-?1)8*zuK@9)<Bez)6S-EU4n
zP|zekIhz%mQcr^lx!q5H$L%Uv30gy)e7rC7!-IoW@ArPcvMJSD)}r9RO?5-VKu~Ud
zcXzjG(Gw3|2?K|2G2NiaYQ9sZO)EQ{4a(C+n`5l=UUsU_yU-!1EFvNC;?ln4<9wjD
z+`oVSCM|jJAYp6vbwB;RUoPpceg5U;WzaHp(DKgn_Wx}T*MW-UtgKbra&9i_=-}`S
z>XkAD4Ktmbtp56<yZqjzrJ#n}&d7CpnI=t{vZUzgsmwPwHiD|M&9-J{VSj&rzs_&}
zXTe<S@~nr4TC1MVEf<lNuJ(TY^Udb-B~MNW^2*!AOe%SI$5Jx+&M)jW*8NLT;Brpy
zI@<(RZZXhsKWM@Tv=sqV<W2f=(Oq6sNy({K+8ngc<jT5O>(I4Pp~7lDJC=UciQgB~
z$|ZW~-{0S*w{y3zbZBJK3Ry7$6yV(AdLF-wO+X_~S67FZNAFKNJL}e-%FnuM1wjq)
zw?(-O6PGOWot<@iTW-~#kH^1WaOQvc@Av!b4-dD47PT&2w(Qk~h0b2SzE_{muU|J|
z!i4Ck)AIFy7J5(DTUq-0+OGHeeuIWkKr8EiJ(=tennm=ybg-FS)iW_MG4FMIYpbTE
zWh7{j86Jv!3X`5ZeY$k{{JJR6az`a4rIPP=%U9R`|7TVGZH<$&^V6qKQ@v$DJAtyY
zRy}(B*fi~o#MaEqZtwT~UI&^<Jv+xTcz4;`pscJ_DksmMKcD;eOLf?#-=OB)f0vzh
z4KaHv0yQ-?xi~p5{`mO#>*IcV&=i|i__{f2J~JMCwCjmhR8Vl3bY*3*`t)z03HD<W
zYa=%wyQyC5aqa54`S$NO$%5-sjq7%-uOA$2esy#6@@cx!YRNsu1y|O`$FB}sdudJN
zX3%^|?U#%0pcTZguCK56e$C0xfBpZz@AjhFVP}@wnwW%4DtUB-^ZA9<UlvAOm-A0Z
zSWr__W3+MmcGa`HmaYB#AJpGFz-OFx<^pKF*{z_UprRGC_V>p~JAk~Ys-lwd^V3tU
zs4Xi%i)cYL<okPjPfgdKZ&mhY1!$n{$%%=e2q^jg_xt@z%Y8yuhxy*G`@L33SU7ZF
zO=Ws@P|&0$_RSs@6+4`qoVFw$X50St`r7E_FJ8RxdAD}|5<T;USquyee?lQ`fOV+#
zb<taaHK4_#pzT9RNl7K3+4L(b0zuPl|Gw}4Zwc<nZoM9N`P<vusgc)o*FHbUE<eT4
z4Ycyw`*#bc@RP@n7tfd>;TiP%+gs311@KB{P+A2I^fmL_Rd_?P?(UdsRuvr`AJ7oy
z<9>TR&#2vHYjsWseSCEE?yqTDp<bKQVy#nNKI`i13p+p0)->~y3aFiBXlVHB-R}2a
zj*7=;Tv*_EZWkM`)Dp|$XBwa^`RnWDmzS4=>g>C<-|u$y_wQe73eLo_>v$DFyV0yl
zUx7BLtoE3wbZblI<X>N3FBekvdJ^IL_*gG!oDO8m+1cj)OTDLG+x>puYP;HB7Qd%x
z1Ui8tfAe{})u4q2`}Xb2y11y-tzT~L$=~*%!gIg==^I}qR_;$YKhG94xdR$npJkd2
z8acL%y`=l~|8WsN;qMI$KdNu2tej<*cW1?_(ACdM3>hZmzMOyk$NO9H)3et%c!1Vs
z%&U0RIY$pvd>-(fl%4Mc>V|*#PSjq=lfsNgBo-GwKDILL>?|%mzG>5^Pru#2y?kBW
zB2dGa;pwMJhfAQ9H}Cg+?gOoK+nOCNsvBjp+#3`|AH<(@G8m<v64{!6KW=mS`ExIW
zKv^rrd7ebm)LFAu9qW~TULpw++N9~vGQq7^D)aBJua>c(-KY&Yr-T`wEbh0vbZcw2
zY0?o6S^GMh<)=Zdg%9FSI~jsDCb_=7w>KKJ5zool88kQ`sugnLDQL~GWvm(~2&GR5
zn=jm+e?M+o>Qf|ZPEJ;TUcw2oHLuCWkOj1>^uT@Rb$ghMN?(O|25rx~n*!QrCH?Z=
z-rs9=K++CoPfsxj$;<1X-UQ0(KY#twva|cw_BvvkD|ka`(aso2hi`9gDtmtV`nB{Y
zD9=0Go2Jd|@$%Br^}nq_ZrRgGN=s+5w*2AOCp(4JO_GoCfPAU$H)n$3vDBTZk-xrN
z_Ag#x1#<q(iRw%zKyB8A&g`J|t*u<5K^GUf-u)FZZ7TCrP)MEVvJrIn_5J<&M@PG}
z-`&}{DrRSq-*iw)c%Xku_<O^fJ3E7Ge}7Z00U1{rGmk^z>FMd$UtV5byo(1UbaRS2
z(}~yX_pj@>`{lvO$!Qr2+B)2jb3*ug11SF~Dk`oDSvl#^qemf|QamdwD|dd`sN<b{
zyzlHnE|C2xZu2-4K=YiR?~Cijyx7PO-i~|X?<W_AokdT*{HB8}d7uU|4#fIVeL^_g
z;Sy+_?ERY0z2Dy5)%Mhi-L>W2?)P@CuC7lDQbDSWl+UwF`1kjB_M00U^A2y6;cK5)
z_bank&ep133*@y4k(Egt*FY0~hRMf3lR%(tRiHtk$?E=~e(0+U3!9JiNG>)^KK7(!
zCdkA*1^*bvnFfhXQCqW?-rStNd&~Xe^R}RABv7s^e0&VFk?JJeOFNh*K}OZmcI?T#
zyv!#E)INX0SgF*|($<#s`r2Aaz5BaLS35a5<*Wfo9f$`-6f?igf=*%etS2WXf@-JD
zf8X5P4BD{(TD#FFYyB*t7335nW&b<OMmaYOa&K;O1#RbjaIjfaPEOC$%gZY$Dry#J
z;m1Pf_GblCL8|jq{8=W{{QQ*p^V3t%8r9P_3TJ1T27i8b7PL++a@y3xp`d)YW1@|q
z!zIuXpS983&%HDPY5n6``3SOLu%3VCCoYeWkSQ{J?RCH3nuAuqX=%M`b6%r!`qH}C
z-8rj3!=MM^Cu%c;)~V~9o^<$O0V0u~cye+wJdsy}`kf3n)cjc{=tge?H9qumL5tx3
z{`y*a-u8ROn;RP~LqIvcVa*9)#*_yK8bM2BKYzEa{<b3b_O@G_)B9Ck-b|l=^~cA@
z#j9*U4xI@~gV)wZgQh>8zYkvSH+A~->1O%&*37T_<tb}bazTB5&7@{gkUvlK*a$iV
z1qFddSO5Hdy?%dKOw637=4MsT!otE^JB!o(rh>{og~^{>7&w2|zr9;MV|wY_{~xa_
zST!`vDQxfw{OHo9Ug8@4!NcO#E>@@29m`!~&jx#@?3x$hyOGEI?v^P*%9FR|p4<~=
z7=Dy_&BB!rJ4N<7iMdQ@KB!Ri|DVD0?Uxgn4*i{b@%ZCi&vyN&v-@6NalRr}`TWlJ
z@Bgk{dGhml`}ry}&GX~xe&4?T?89OH_4ngJ(@nb7j0_FSR(sxS`>tR6u{-|E*X!}~
zr)r0%{rd89<+^p}43EnM@BhF1{$IVl)!)}WXklPDuq#81vFNC1_>;5d_d!z@)A(eq
zQXU=Ye0gtg^`w-SmzK`7sVw^Ua{j-Shk}_H8042mvUuFymRo#Ww!G%WJ^BAXj&I4l
zyzI$J28M>OS9O@4tk1l-$aUMTtkquqj0_BGn$;u~rpJ~=u3ELK=wYk)GS_agoo_as
zw)<om8XCIu#iDMn8GH;3Hv)W(9Q1ZRnG~{FIqMGtgN%fyi(^P=XzH06hBuSCb&F1_
zPOo`V%)-IIU{dRA<Zx|G<mYgCW(J0{lg-aFFfe#s)?s>bH9Y?86wP3}lKN9qG-n#8
z`&BYCGB8Ll@r-NwI(^@_t?N@?URrATYQ^GfyFja(?PaY>PMoj%wt12|GXujl_stf}
zpME^<f4<=`-|q{5o%t+P`fWaWbP9vaSQN=};?dFW%j;ry^WV+Cy)E}%)$6rF>P!p_
zW-gmKCgg6rsn&1z>qYxJ`%fp7UtV1uj?mU2sBDyZX^GDagM|lmEALmo-&^y(`u^#;
z<@aW;uX(C1I!AzkAwvA@Bi9$8;%-ak<)U+z&r|N~D7=}ueC{L_{e3@@?$vxg%Ohi9
zARbqd*t(pBfx*sevjuZdZ0y|M?{@3k|GL<JX@C8HotPa4+~RsZ|Ns3hKCQbw<<*sy
zE7z@C_hkkH!vXgUv2=$?OI*9fEI%F*E`HRh9#$p7z>vUfI-9|B(ym>*&djki<`&aA
z(ZI-jX{q;guYMK=hBfVJg`8oNd}bIZnwpwQ8YDRU`}h98-FchOK9f=&9%_AgX{mSK
z&ZpD3{5cpHYNn(KDr~=3m3_|g`5YcO8;k9CioClPt+@aC(o%0eyB`VfoA?+Q&N^)7
zn2^1GuUY(`N8+C^&;MuQE?XM1`0w8D_pJB-|NCCsK$3xBgWW9GhBNbQt>b?j61OYa
zAH3Y}9;Yk=!>q<MK?P8x9ctyaFR8z_Ch}(0>$To<I2agi2%J@NXycKbG&^sXX8!)a
zWsCRT|Nrm%&Y#a_7k|0v9-d&tz>rXD(#^2*QJ40od)4ok=HK7<^V;@(Q&+88_2<WN
z`*VfIWvADEyQzM6SLx}a;_)#r4H+34`Y-4(EphLc`}sD%e)hp;_UGrU-}?lL?0mcJ
zwo&S-DLoQ~O8zz<U0m-8gCY!+@XPMkes`<Z-}AwVjbCmKXu`hu`8i3;q9^ftdw3Wa
z?09FLl@=^}eNET?&qMythvokn<nQ~Lc5O}M<aM#Tm$`PIG6Ao`eL6LKS?=v^*>|m9
zENH&8G5L5*>DAE4Z8?$ac0QYB^ZicoOv7ZisBJlB_sbX<ZmgK~XMfB8FU#$p8qfdf
zv+rYX{*%}7|Ene~$-cf$be@*w|39BUo7aCfkK9{Ty4bp)SK3@pJ8aE~%l`Ir=h;@P
zd49WFeqW~SM&eA1!X!V-r&GK@P8GfWME_vc<z>E6+j3^=ZojkX(&8)CKOVLhf4^J)
zeAnxB(XapAEx$ka)~#E=et1j*WtZAtUrwH{|Mz**F&2gfwdE(-Jtoz>^o~FE<m6=O
zJ<L^0*F<hsi~sv7y!h41<!RgRmSu1Ge@r?*<zN%*&Gh-TQg6S$zi;nv`!z%|nTf$+
z@|7q02fZdeJly`g$N1cd1&+-{AZ@pExBI@nwpLnp`}Mf$+)t5tdp;i9^Y7Q|pJ(&y
zHedT&`T3cuXI560)Z439uB2RC<XZXtZu#b)&t~UevSegfpqVAcXjJgvz%P4HKJES1
zy~rapH1uBe`@Oza#}~PFe>(sF&-tA{9(7+{8N7U}+~%aCT`HcXrKOAahOLddDzEIo
z!0^K)ON_DTwC?sLt5&VLl>Fonx4zHwb90NI%}lR*VJJUm=E~Kpv$t$7dU}fOI0M6h
z<-VIaCIl{a3$1DarD*f}HO2eB?|q;8?#@ond-k6<6+Jz*=l8qam2bCRzqGIR_b>1D
zb~{8~|DR=^A7@qiY71Yw{W{;G=kaTLe|%<VU`U-|k{P7tJL^h9?#W52qO+b&UhK(!
z;?z{_&!^-68Li*<D+_e)#I0Mmw(i@uh^P4ZIp08$pRdCA&)R&>YW2ms_xJV|f4iCf
z-1`1czg=Z-XQ|Jx*>us+IPHwb{<^={9_CxypR}*}vyhSDMuM_i&xsB}-g-ux;%8^x
z?EQXEbk>W>3s170Xkz6qI>5*dDs0#8{|(x&`APo&M|sOH7o5H4F9+qSqxy9hGyWdp
z)<5&<>1pG{LoHw4-L*dXyZr61lm2y+b{0RscE9U;BfH!QZ~eVfKA*SWe`O~qYBD!5
z7X5rWJ^kDqOUv(fii<xSWKaM0=H|{npH3TBeR=WcA%DF_?Ywhyt)IVG+@H7Q-`)3h
z=AogXpz{3H^?g6j=BIsna#GTwAmN<d?>9Qp+jJfu?>{eB{pO;Io;ou_gBQsB`?cRw
zpPZN|X<t|KH|qPlyPv17uTce+uw}P0mvi}DzYxFAVPE+AxXKp`+l%g1K2LpfV<V{g
z35t%M{qgbf-M>W{80KgBnmNSP|NYt{X}s*<twwga8H+TG>i_*w6IS52`|%*^dil-N
z>36E%?^X3@W?=A*o?NT`W!J7<zrLUSae%!)e0^MO=R^jEhW?c&=P`OtvMhd<^6bpa
zul@Er-rhW|zkd#&td)t?zMgVW@5(G@GT(%5y<HmOu_b|vzZ##jSbXsDCU9Z+qheN0
z!=0+vYp2RFGBDgYF)OEGPQf8g81GH@1xAJje>p}b28JnapfhZi3Mw!#IAnsV&;Y4X
z;XxfHoBHO}d^$O&^4ZLnx3}km&WZrFQ!KyTNdElkw7$93w^s4E6AunHgW4mYQ9Nb$
zzB7kfxwQ>U85m4-b+v6Bia);1uea{E{T9*2Cp+tI`F-2}zxV&2{d)a=yXv=F!<YHb
zpBGzx*VNOf{M{Xyk_(P6Z){9nx9im^P{z3)Q|vph`rXbmGYpk=qkm0fX87>(Y5d{W
zFaCT!e}0MQWGR*-8xjwH+IhZKFFdw1wC>a7`6`~rdZnj}YKJ{}xqQCg`FXaJRerzQ
zozG|eW`oZh3&Z7eio9H(u`@I*JD?izI^+M}@A)O)lG<g<PUP)=JMH=W`h9h8-|c?y
zmz$egTcdJPv0Y}8UG1+Y&+Y$LW`1U3a0pg$uv_-?^Yi82)Ac+jncu5W2DMe}e!sc=
zV#mL~zn`yMK2NLKhJhg?h~>obg5Phqr@y<iQ_`-cVp7VzJ(Zr5X3d)AcKjNmM)001
z$iOg5h;dV6T*bpyP&k8HH*S40GgTrtCb>>pvTN6_iyzlUZOtm+VPL3{;+(*1Q2+0b
zOy!e_pn!U}>-D;j&`?#+sO@=kRX_#)mpPzCFcxeK40gSDShH<)V|SS}v-6+3wA9-;
z_tuu2y<e|=t(K3e`g(9_#Q*DiDnDOZ8N57a-_K{SKWvYg{p8&K2<eZ{`572a8GxFK
zvrJYVyfsPHTg&9EdOJfTe`#sy%C&3HzPY*i^8sf5l;v~FvNqgb?A~AU_Lix?-OrT8
z&(F;;RQ~(xYxME`FaN0g|L~EWjUl1ASHe(9+0En+>xVNljW>V4R~??Q$e(R`!rH~A
z+1FBTY)G7GS6ij#KX1;zzrWXi-JxIm();Jt^>tH0Mf7^x4+oelUoM?)lyhUlremxO
z4QeMPCzO_e3dK`XG%bI<SiHI5;h{T)$7OlH{eLKb&p!F%+59@=$?E>+4m2`@s+shg
zn^Hj~?YA4r{XJ5qtC%J;GdNsUbhvi$eckunpvFC@nQoNowfHYT(-PdJ?)t~C?HL#z
zO!jVAvzT4JreJRW-PGx^Mep~1&pVXKz_6h5lav4h!vYf~76t~5UhfSIH=fL^|M%0Y
zpJ7AbkIHW!IRzNZ7FK#jJ=yWNZ}k@i1`|OhmImJ!Z&k7<-I<p%o$EZ)2E#vACtat?
zEs7LYV3?9HU8Op-ild?TfNF&Nbn%7E3=E@X=TNISa+FqwtvxlvF!|Ev^z&OXFRT52
zzrTK&-`uE|8yOfDEMhsKR&<C{{mHJ^>rQ_>E<c}BSZzt_>1mQiDIRjwZ#H`MvoSD;
zUfy(xxkl*h3`6DedzI<y_I|rHr~2Ja&q<H_?d@uRe>=-69y1~H^0LqhCkBQUJn0T*
zjVC9oFHb!^&GPG&;MdnztzKRH>7@GekH_WD-`QELZ6V9R5YoqRlVx7rua{q5URKY&
zy)Adcz5Vt7f7OE8l|l-$5A3P@926XUIb-j#WooX0PkPPotvC?Ezz|T$lp-9lG0An+
z>ebR~w`W~lRVNQBYW8r{3TNEiRr>1HE2*{XV|H$;tIz#cKf`9%N;hVWo9y=I>*hZB
z>BYyiVd9?u#b@=Wn9pIj$&!_ob**aV)jgG;C#l$0eTjJe`PrG7pP$>`{qdZ?!N03p
z%a-AQn`!#FIXn^u3oa#_cr&F4zqr0W{@?HY|E*6?*U$gp^hJGMg;Ho}=*#Qt??=rq
zKO*S<<lF81^V@Fc{a%>v$-uB;j;MB63aBObs6$!H)@yTUsEBLeOGUfPv@<g%{{4R6
z9@IFid_H&jlfUI|?{9C<2Q^3C<x4w34J^NN4LMAIe}6xJVWG2e*_#_@=G)s_zuDld
z<~L`?^|)$XP%m@oab|{wu0pmH;mEC7p?bSsEV@(o`)%Z&ib7BiET-_ND5yoMZ7apV
z5Yhu0TlIQe>%hR!aEW7rTEf*;p_0aFK2_h|%rwirmGb}Z_w!d)25Z}jF)-wmFfHM<
zc-SIbbhq^S(;tuf&$n<2U)q#<nn%(|1yr3bb!TR1=slI~p!KFX`deJ}+pVD1>SUGD
z(o#@ey{r8FJXo5zQ89;c<pzRjA}5Av$suT(SborYnfm+v(@(JfW?=Z>spz1Ub8k=O
z%9SfKx5NbpPhO<)>6mnWNP-pv!wnM_kJhyj8<nnJz1n*%dTUnbetrgq`65h94uNW=
zUAuO<z19w2x8^=OLxVpTV^E^0sVQi{Xz^G6YgJ!f1b*{iVAybyV*=Of>+9p=s$MSD
ziQl*9;4fi+n~AGdt@`r%`g*6yj0^{ksXJ)BIUWD6C~SS)+}U}%R@UWST@?!ID1N(N
z|NqOIo12?1gOptb<&|5Y9-MPK-`N`*la1^D{du$DFds-MD3l;gRelBrGp+Y6_gL0M
zZPfxbYV-F0{iYMQ$71*UebwuBJnE9Eda-b-94|;2xQ%)&8xm_sB|JDbL0z$iOC0!x
z9|))2&fR|2Q+;m8OGC3R&{!3ykDhjJ&d!T=&sC?#OcK-m^PYb}&>t4I47a$-r&D|6
zY^`qR@2>>~;o5DtwAke;64ZQVOqi-2uI9OF)haEk$14ICg9bBuzx_1(c0D*WH1y+p
z!2`=9PkZq*9N4w<`MhdSjR`uAOWD28=l;Ih%~@Ah`OG%c6^|)!OglSkYW?r+^{c<k
z_}9pPAYRphVOArk2XLfA@Mhlbx1VO;|D$$ySLy2e)_=cTF8=v+`ty0!?^Zr&Vc3ut
z)5Lm#r{?$V`{%6R@0l$B_k}y}qsPp9tG}O%OrN{;+H<|QJr?o5Z(ZN?``zy4vAfG|
zX02XplyYK%&F3@5y?uNC{d#?Qd;a~LolmE|ys|PF)aC#4Cf$BDc-#;)W|Oo1ZdvBl
zRiU61e3;+f#^3($m#SJ@(0+__7LR-0?D>2y^YSuZ&;riH!);HuUXP1@{qg;t&wik}
zCcW5QDXZ6RJH@F!XTtXTb-OPXe!o|pZ}<P_`Q^E{w`JbnSDTfcZJd2=P5+$d|9-ze
z@5nAY1+>f*<j%_HbBiCgim$tVo#nu;LN=BKl0QJLkb8Tp)A#@V7XAMDzE7vLe}a1E
zJhE0Mw{y40K07~uzWkpD?4aHrC`i|Czh~uH^!cp$^EaE%pWBdl7(9gb^wiYKXEW15
z%bI!Q?QA@as=mCqQ~Uj{<?A(@H=Wko{bcR-d#AQ!UjFpw^ZDiR`|DoYT>k&({QoDN
z>hn%?2r6G%9lrj|Ok;KPI|a^cyi!vlH>WKPT^;uIxR~oi<MTGgvesp1mQIhGB_3a6
z2vP&;659ND(ERoI-Ll)clBQW9pb?<e>-SmJ|GGTC=y9+4vjxq3r-J=$r{-?EnYMQG
znOUaVpwX{iUtdo@t-s&q>eZ_=ZL7;b_0QLTam*X|xEN+_S?WDqEHpIqsNr#$&3?!8
zcfZ|sv{QXv#Q%z`t3rGGK*I)IVQZsA!($3v|K7U)_wIes`M>Wx|M%+oy9*1Q3$I0{
z|Gk>*)+-gdCHwlj^>Ukwo}O~czP#LDf7Pm0U7(ZI>T(|)>2wVZ4ZXO({(sWfS69Ej
z1~vaLE^_ToIyFVpHBjW}r>Cd8`(&-fmd`DVYCgX+;b7Au=XSoMFD@>AeH}DpyU4X$
z>}&t}-S2jRSVtGRcK>^Ih9O5r?;umgqiK4vvs9#O(pR1}zrW|-`Rr?JPA+oozO>AD
z_M0u2{dn{8Z!dIi|MRiG{>)^5yPpf^uXb+d12s#Zot?eiadXXrUAuPuJHI-7{W*}X
z-R18~UR+3AyZz4J<Mn@z=WM%~_O&0BPC=}nU)R^qRoVG|-|tN+CnteoJb&-ku)pr1
zp`qVy=kI4r_qz7YRQ05O-N$Yb*N+?b=`q;NVqna8bZdM5e3i&;IXBsC_iJ?3eBXWF
zcfMUMXmC|8cGr^V?Rk~oZl-TeIXUUq<6}LNlR?K7*8l(a^73;3b2gvPxJ_4#t^Inn
z^4-qopJtw~QTzRNd%WJ>FPHZGdbRqs?d4NbwTnL<6;Gd?yDih;@+4JnsWVgd)Q7K?
zExWPs;H_!Vc{69tngvQ_o<`N*-iWwPbZll@ntgrUS9#Dl<lpc2=d*H))x6L-E?1qy
z#v?Hy*x%Ol?(XvQ9fHb5*JH~&1si-_8W>Cp-`?8l-7jbR=}z(a+zX$N_exLyeBR!k
znVk=GTE#@rC^6`8g>}2%%`(ltc13>s=X2K2kBY~i0gXa8^I2(>->)s_v-xl!rt0O=
zug5|8477Xt-`Dv6rnc4J&iwfJc=PSN-B0)bd%gc!_A*fN509%%ZR3}pxBJ~L?eF*N
zL2av9esir%XJp2%johpT8r*-}XKhsa>I$1YNWSjp>G--A#nD@{rnbx1S%92#Vxscr
zH=EBtyOG>~_F=oco)d!^qrMY+23uBkcJb%4=IOt_ynOxF=}Z0p@Ac;ovdhl_)jtP+
z-Ok@XcU|mmvxw}wyGlX5+l9{UX<uJmwR|=s*(mSMjviTSv*?_Su9KEje}8BBcFX0W
zTbavKA0BGGS$y8sIPcC5nZhH2uT3wn2wYtB^=kO_^;fT6UHkQ1m}}sZr_<xl-T(LY
z{<ZacKcBM(RhNA>pH8Tp{B}Ek{vwS_TeGjr)O<Mj+UEFw(~JuXc%)1;K<${R;c+wb
zYhOoKemKZ({^K*_hO%=F3?|H=0v|MyAM9tDx^}wo--rD5Ct5g#ul>4n*6jA0i}|14
z?|QxN%v|g32X8HM?Uu3uZR0JwnL1s>bz=GbTJ!8{YgX3Vo?-_TxN^2tOV+K++q-Wb
zSnJF_PGPktd%xd{e*Mw>Zb@+1`ncHtKiZ`8PE^0&J6+MaO~td%;!y|ajGq6W^#5Oa
zu!CPGX2%ETbWr<f@mAY!H<Voi*L=UudceIHRNlV0ySu#Z*X8+XKR!IXnL0gIYLD=*
z#r<}(Koi_cCi_LbF3!%*2G>SQCi|UYWS5zcKEKwi{7#|!w)=Iz*^bNB{dfo(iZ@O;
z&`|RJp6%wev!}lA|Nr;OwQFgob+@0Hr0NYSO>2Ihjz1??{bu5}+}qDUwZLS5yP5B6
zo?G+UU0)Tt8WeYKn@e6@(Of>it_qX}Zs%@aTKoIk&C=_!pFuM-jqGwB)AeGn{W1kL
zAKGP#Jlc4rr-{c^Ed2Lv*Ve6DJ@4)Jd3#Jc|ICSr%A2ppRj2;=@bKlWt=XWW8FY?@
z<%a{z_9hqfcE8yK+6r#@>4fs<o9FAyK0iNyzSsQT4A3+VyIjQs_kY_N6Kq3YeT!yT
zv;XGibn(UR{d!g3-^Fgpy1FXk{=VA61B~n<*W>GJ1H;3^MO*_xb>~q~Gvoi9UAuNY
z0u8=j+?;+s>9p>49Z)4G4k~ilc%?!>$>;0wyEUKB9zD>=+`TS#x7ga~?RsT*3XeaM
zzW>8*W6sS@i!|=-pZk7>VRD!4_dA<!WUXG?RrdClX!X0D=^vZr|13Dzv)HXyD{4!|
z#%uku<##q}bS<j*{dRlzWPiJzFRrbPzPPXUchZRoibuWm_g=~P)+wwmrW>_IL$314
z#7A2$`)PwV<!;HpzfZ!lC}m^C$474W=eNsMt@v?Bd|yDxn;RQ5E-&-l__)tnOnq)i
zkYVw&Gry8S#eCA{vu3O7|2$~s7dtLf>~nE-`1(bmtHWH^$L;NU+-JRRhHdq?<3Igb
t545k);#$9fnStTdLsKdbInMgezVzD1rJ>hywu5GLJzf1=);T3K0RUnx{pkPz

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-7.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-7.png
new file mode 100644
index 0000000000000000000000000000000000000000..36e419858af0ea61e57cc030513464c02f6b8574
GIT binary patch
literal 23672
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_eCM&#<h{~y2SSj{!@aPnNSXwky1
zEiFP0OPZN3DRr^xFHl;sqC<hBOR21DdeKBRB?S#vfhpP^>|YmoaH=k3cj8tpsH^{R
z_FqI9b7!OHqV>-oPi%j7X6DTEK4qo%t<#@H9FtIHU|?X_(5Sqe8^ri<-jRWkfq@}G
znu!C%zb)VZqHeS?FflMN957=M0CBe|Hh`!Nyo@Xi3=9pq910+Ajx%Xm58MyR$yp=Q
zx98*h9haB;ug<@}udAzTQh$H{o;`cE<lf#Ey=nc46CP7FgO4rE{q*Eyk%i1GtJ17(
z+xC{fkF%8F`}*dlarEt-H<$U$EDG*>A9mtJ>8xqfmW9XHhKg#1OxVAFKggVfgH17&
zefig3vmdZ`zxQLmF+;Sa4BvG5{QP`YR@Rk{&1|!bQoa19PuHB5dUBJ_^lhQ5!%jXd
z$aryKp=HR_bY?c53+(bW3wFQT<=xE2dujFheXAZF?M~0S`{YRque6y@>8mS&9v&Sv
zwY8!$GHZT)ef_%E{N9C$%I-10;;a2G-L~2KU(~!f`ugUan?|KCFS(|kniBZ$&(Ep)
z@pe=7<Kyn`F2DZhXt(XPsnU_to*Fjv$k|36ZsQGhacN=Wkyrro%=Wuwvx{Y|`=7hL
zm)`xFal-e?=Ov5`Me3(FnWUT$kW4Olc}ex{ot?q)bw8Jet&LjRD{cO2@ArGBUkd#<
z6Vr`a(j}^$_3zKm$f*2>hgx6V+Pd0rzTMiQr>9oN?k?lv<qh@n>N3l@u^>FI(lvk2
z$F{O}cUE4waDiw0<#n;vcdOs;<>KZ(eXY>N#U<nSx3^j`I|{aKE4EEPHz#m=-d&UW
ze>JQuEGrTZw`JYmx3{LIX3B&K3zm9Mf3^9%UGV>Zf4@GPoqunWRo=A!f1cZ0mA{)4
z{d<vXcgThW$J*a-w}1Ndsc75srAzOADxMQ+{`xEPgZa%2ObX8H_k8L){XYBJn!vqP
zU%y;*mtR@`|DRUut`fe`Z`UP~i*~W}PntAIL|Az8(o&F@%ii8PdHlHhWOe_r?Rj_a
z{QC3lcK)l|+t;6)Z(n~mS5zk=fR$V9%%y*}AHRJIYvmH%w0CZgMDmq|&g{CeyFz-U
zOfPN8yd1J7!f?7>W@e_8echhA-*2}^haEo~vdD$A|E;H|Cl?o25vTm6wf4v7-FZ=4
zygAOE;h!T9L(Jh#I*$u1Z1i?N?z8SW{Lmo2=40#er`_WEX5a6Y&*$XhGpnnsTb6Tk
zQ`&(B#%E7XPR^^{o_jmZs`OQglCpB|{Q2`aIXMkOSBIJU+yC9->Fr(o?e)dQ?HhGY
zzqz~ndakr~_&SqmsWY#~Ri9mIYi4%ssl=nlkLMmwjhy!R_``x3p{v6rlY4end|V`H
zUAAUr)Yes+QCn7=oUT8=v!};oZS;1t`*pwH_WIxXZ&~qS!OOe5w}Zs@?c1lOqH<(Q
z_Vsf)cXnJ{>*jB2nsMR5uG{;Io_4K_*tn?BLMH9ekxuh9&tDZwN=jxfTC^x;n*ThT
zn-SAem-)<mbSZ9ENv5!<XzICnw%PNl-&qE)3ekN0{CWDRsoLpoy;4uN&2MR8NsgRW
z`Qu^x-Dz{J%g^=5SY8TQA9q(oC*p#LM!<oPRUs$8yuE#0#<J*1+wp`R!^_Kjji;r~
z>=M<URs8&1?DqFZyTxPs&Oa>JA$!04er<Zy*H@`|`~Q{&uLw{S77$2yx979p=Udt9
zXMTQues}KYFE1~ry|}RO**WX?CaqkeMy%XoCaI^VnaWz1nanoJEqZBP|F7oqhD2v!
zF|o8ifByJXRP5;N>@<|G{W8&e|BM+D$&u4OfA5J~{<41a?83hCH#ZXJ)&Hvu-dj~F
zEF_c!((&@r(zD6^wrPAa77sR^J+mj@sOqmo@|k13(!RUP-uh%@tSGkMTm9XPonNlx
zb@kWZe<u6e8BWy>H~aVR-?E5}NzXPOmowJX)XaO$aANijCZ-4aA3uI9%&vaB_4=1v
z+3PhmG(2>pwghBktk{-&d)dXs?yqO(@4Gn5G&^L01Ec4q^Y;JORKMHl&e!g|Hfn27
zNXQhwxmHW(T9?0i+;4yF!^6X%LdDZOy{Gc_w%pXnX=?uS*4(%earD?RtLd(8ZeEkB
zzPwmC(>Q%q(bH3}E-r3oVq%&yWy+GPtHZNTPEyUfvf?7|_sJ6`EU+ql_2R-p=d2qW
z7Rpt<P<(rTfBgLVe>*{C$<E^Et13S~o3x}|zAl1S%H+ZXMQ0I7$(28TR7|fj+LU!w
z>+Ow=&Z=HhPFy*A;(A^8J5RUoZ85t_Jbh=IT|L;$esxb}ab<ON_PsroRS#RmOCBC#
z-M%_y-W;3Cpp6?h-rANsJ8$<}Guuxmls|p_dUajwZj;JSDO>aJ$0;f*n%_D1<KyGh
z$Z4ST#>&DHvwi*Y>(95k^-3+hU;jULYxec9ZZX}Ge}5|fe&7H9>I6mSEm>E!K*fyS
z^QD=Wmql$(>&?2pZf)G&s*|^GN3-+ETqwU^yZqPJ*Q>pzYMry1U-5{uwY7C+=;|;o
zKE7)cmEE`G-Zt}{XA|jf_j5_{?Cbls-QJeFdc_KjUP)uOX{j$~rq7#b=;qobvh&@>
zl&3Q1=URt9KHeYR%*GqC+)wuBuV1gO$Jbvy(kZ;P;Gt9QjSUAa=V%$fpZ(?Wj%$Zn
zxvwsCX7>zg=aUWDRg#%|XGfrX{hy6uIuQ%5t`6TF<LYZK4yt=DE%m;-Db?FF_g2XL
z+V6AKd}b_&-Cg$bcK-go7w3yQ#7(%&$>H#B@<q`JpprmeU;pv@_xXIXR!=tN9PJW4
zwn-;=dtPkut1Ft*Q-hcJ7*0!_nLfYv+RbbG>+2sESeyxuuYJ00e)jrlM~)wtZa+M6
zt+vAT*V#RWnwpx&9u~})WtzQ9*ZA0sCr?uP-(JtUw4}4pLgrbo`MrY7_|0j(AHRJw
zJ9zNmvo|+4>zy_#zWO-pa2qcu59i(8m0C5oL^77~V@a!mk<ld!8NSPlT)C%fGr9N4
z7`k?e7`k?gmG0a%>Eia!bFItG_}UNKe7zE!_jQhK^|iNOA9+Sa&HDKHvoT-$;WxLo
zY6l;$TKxF-=JfvK|C-tPL8{Npv%P)u+voH4(x*51{QmaVc3tt;>}^q7vyR=re_zJB
z?9AHxA0Ho&t^5AP%JkUh`zL42F7BH=X;REOfu+&ga%O(~^vP&%_4l&O{r7$!lQ{qU
z`<a=>Y6b=uDypkz|Nr-Wzuw>bHJ^QxBd2BF+OpES`q$NImzH|(j_KT4^K;Y6`2G7p
z<>TL9U*)nHCT#y8qQfBRwSUpaPp9=)Cm-+Y>h7MbviI+|+j+_F?^nOKjhwdh<KyGI
zd)eRL+q-+w;>BNYrqAE`_VE4t_t)yG=WW=k<9$rx=dWK?F>zZmE=uPq8yW_lo~9eT
zGH9tu!U2ZqsavzI20cGFcj}xuYjzetPg{MhnVtXCrZqh8<#*h?SN-1h=g*&(_57Ti
zfv>NvojPgKqWks#|L%G%XImArIsJTCM8u4HRj+loKmGaX>FFzfnNOZPxvS#iq9r}=
zXP;Qrv(Dt}>+Al<By=M;9m$=!{QBxA|7Lyt_U&86Q%wT{gV(M19Ky~QMnudwuI<t*
zZGKI*{LaIVJ2r!w6IO+fTC7T6ExENdd$&&Yx0~srl9DS^PfvS!ppjYcw9aX8OR1xS
zBYpPahZhd>+v_CvTw5DG{p~G=CpK*fj3+K^?Z3N4$9sO=ua#9_UOc>3{`S_^Pai*C
zd~<WNZQkogN4u@6zO3+@W3h0NYxk<;<9$-rWox3g=dI<FwOUd5_}Hr8<$bqhM9VZI
zHY|wRmb0>zTU^V^D(da+?csZ?zLuP~{eGulhySj#v(3FHy}G*k`NzZQhue5fb8ngC
z-rExyySr@f%CGmeTDir;LPDlQSD&1us_LokH)qGYU$3vPzdltvJY;{}U+H<rLsy4o
zK0P&6FL&a^iE{Dz=7)C{KmYP>_xr4Sdn#{jOm6p^Z})c3!&{qlRMph1e&4J6{kE&G
z?^=(fF{mAMZEf`Gyt}(r#qHg7yZxtL?5-C(pU=DecKiKxesirf)zsWTjmLt554x6p
zYvw#IxxCEx@)XVBEv2u+=2{dwP1lbv)7x#8^DlI^S?;9N$gB$s8gCov>+4@#A0Pk!
z=lS|Am7mkLJ4CLHGTmNk^t+0Ag1LYLLyE><XV0vxRoB);E}myw{p#a!`S6#Qmc|}y
z^1k%(@$u51pPs%xw=pqt+POKFi$P)Q)+-gYw`yw}zx+D=eLtKoFY}#j=q9Qib_LYb
z^_y#T_muPJjBjslN||O&S>`|gT@A~|{rmS@mAqJRaj|>+_rPtFrc9co<SA*_XR`P2
zlarHgt}@oq@i`_jo&UskFSqY<71jTL?(bi1zoTkW-J0<F#d9Z4)ehgaw=O9u>B?ev
zepWWNQ`fJDPuGhLN=jOEJYb4wW@aYHtJl`YuRk?adv)+~KQ2zr!nRID=e8GzTDi~t
z<7;;Ym4$75va2kMpS@@mkDFlV#>y=g(l2NG<(PE7M*Y7(la{2<t8`OTRQ&Z~asQWp
zzu#xSxv}wFa^>r_+imI&oCAgTmtV*FWLJOqP+*#U%|}pB@Z1BV%u6b7Z*SMXZJPRg
z?}L}7({EmvZrIbv!1SQ)((~vauU4-Q*_svl^~FW!{r~^%K3y>7P%HOoiN(ps`%<fR
zf4@`Q4=TRBr|V@tKGqwxr()y1`v0|{Hvhtf3qh5silus%x3_okZMQP}Gx2B7pZ9NO
z=fC#gVDr=&GgiFc|37ZBy8pE;nU}YezmHoRwe{7m*UR}2Tb8_-aQrE#Me*``_|>)1
z;g{yi-{>{mStYdN3;*PqoZjpA{aO`Q`!%%x^qxI?LRN?A{{3*6KWbmiPPy7I7jv$f
z*8i(n8^1r!w))$ZBb~yr(`2nmJe=Ej3Zs`7JUmqO`|b9x-)`q;e}8v3YHQZiW4+SL
z`R#r<XliQeO)e>Wdn+_{ciGjI!OOoq?zew+T7UnQ<@4)SrJbGia{K+d;DCUDZLju6
zg`N9&ak2Z?f4|?qUbp+*rGEQ=FKRA0?|ON8`TZ%g-c;#>8awPP4$DH<#YFC{`g*C6
zncXDqj0Cu3yVNPHzNPl}H=X?J$B(;j&ANJNf}*oY*_#N-<QTQ5-uwS2{r~qj@AbO)
z{dSk-4_t0{O??)9rK5wR^xd6E?`b-LJByxfsrvd#n(x0yJ=djIS67!lJteyRsdm_!
z38|5*qPAu&dv(^s$EQatY|RR0cD{^DOFXZ?&F=Xqapz6Y<}_bR8NS;8f4_VA`kuYE
zO|JTlp=7d2)t492=W-|2?e}midv{0k^rkD@a-+AWUgu-}yu@dwQPq!!?OThUdWmWT
zC>-`w;TF|el6H1h=A9jdUH$#xMMazT{r~q{I?rBvQ&C^}`+IA(!`Er(>7CQ9k+CRn
z*j@g<ELvUr{p^y^RUs1%k3HVGr{?FTx*reOJx_hBW^}mc!oWB|Re%4VO*OT(rd3}u
zo*Qs`o;%+9?bX%OKi@vPdTy@u^7(bYPX7Eo%QV}juEXd5u`jRq-A%KvO)+#6R`V%%
z`TO&E`}9n=Z(s7~+VUD&mc5x#_w%Xv_HUP$`@cRj)A-Z3Z|6R+eJv3b6zuBm4t8>C
zigx(@a`}9d<YPRnY;0A3F3c94mJ0ICr%#`P=G)cU+`FUix&Pm<)sG%Mnlfd|l(m0T
z-3tmffQtSlOH^#X-zm<Ud~2?4b=Y#hxu>pdvnqeLW|{BoSN-<?0#=8uwW-@(_wthJ
z-v9r8zq-Hwf9ZBnNy(QVnLoX|yZh@QZv7ptw^~|Q-rn4NJl7gjF%>*)I{n&oF+=f>
z4~d>dzaPwxjkG-e()?b$^rZ81EEmV^t*Yc%eZBgA$`aq%W?VcxS9&CkWA1&Q1WHbC
zZ*F!kEG*n+>%r*o?vQ{EL!^+L+&cAn6;8>=`>w7CTx^nbgu}D`UV?4b6^*?=9(8NQ
z@7puWJb&Ga6&iCbi;r2>tc=@R_3PK`^{Srv`+hD9TNAOc>gy{_EiErrE|ClC_y1d!
zzwf7;qoZThn~lfk{LZ<%YwM}$`s*c)(=z`5`@8G;yy`9a_wCNkw~x=gwdLZP$jwHf
z)knKTMFj;xjqX#oZ$~fno<1!#^3}b)yC+Sa9J<s?6qF;%@0L#Ynx?Zdc)4HZ!$YlB
zH9t1|`uh60%;S37`8A(9UtL?fx{;YZ>*b}TpnBxn+uO@6i=Ul1ecF4nn(wJAWqC{L
z{{H&)>9qdUwbACKudn%nMh|jw);KviO_?-l5wEn_i{<m{f(|yZ8kZ)2+A1HFzYLVY
zK{0Cg^NDcn_q*j;x3;XTsjb~w{XGxV9geU4I`!4{_4S9}Moe33S^R88^!B`2_VxQt
zP0?KJ)+@C#XsH({Z8$kKfr2Rcc;8Oj);G5vXW!hk^wd=C<>mJ(-EVKp4W6nM3M$BS
zqqcxLH5bmzG>-k1e|J~t+gn?Md!<Z6RtBlIwzt22ad9!o@Jp92efjhGy!G#Gxwpeu
zxkLiiMs1zr_`F@d?!vFHuR|BR@tWq{v5-!`y!p($$4N)KK*2T3G<({j#fz^l@f2RV
zWJ$)&O{rWQ904UITejuheYNTB>%IAx^7;0E`}6Gl{CH5K?(2hQel0aMH-4KB4PH~V
zKm#S9VCCZHzpg&Nrs(o{<_4QX$K3xholw>}Z4?(5C#h#&^JBxw`S$xk&5YYR*Z%)~
zU+;UoPuADPrRC%2&&CTEE?nj{RqNT#=ktnZa@O43l)5ba{Jdv<*6$2JZCq9^5d+ZZ
zP35nb%g^qs{e9<K<%0u^msbX>3yX-Pe0q91J?q+<%x7n3r-!YJ$&}%1m$WKb;r;){
zjfno^8xjw*UEWcc9K6Is@bS~9Pv>0x`Q+r}v>O`|mjy0%TjtU!1ZwHFw71V@<CU5b
zxj8NM<sVg5Rm*fI|M?I1#_ldlJKV-A_uE>A@A8Jk!#Z!3V~dJ5RsQ{Y-FL24sZT+{
zhL2yrnmRf<F7umfm3E{<@Y#!ti}n60D=YiXG)j%Rwa%RX#Mau&ypl#oQq6Lb|IJx^
z=wZQ(dA8NNzS@_+n<HtM)UxyUyWPJ3{`~Y^=+t^fw){@wyxMP(+og<?LBZfXU2mDs
zOe3}UeKl$d3J0d>Mqev=dFiN5>@Jhw<K>`G*qR+4yvT)fvVOc>@$<Rmvo0=npS@*^
z$@cvx8=2Y9c<b*?d39}V_Mt<EdiL+%uNk>%$<F`(exIGB>K(JqI`57JXml!gTTbL;
z`}#UiXs!xdo8{IomwRrG<>O1{i?3(8J^z<B=kb**A)h~;)}Q_9>FL=G4Gf@Rip$IW
z<tNXXGw12|vtQ5U|EjuvuI1mAVE@WFoVIp$_bMtYQ!VcIFaK`Yu;--FGqJk2tf0Zo
z@P~4w4Shbzk~Yr^iHVux<mB|Ez#?R8*3~(BC(WGOcqSfxc;Wl~`uQ(QzrDMw-F|rC
zJlpDfhfZxuzq%^4$U;WSswBg2`lQ!BGmTvN+MR=!`<;Cm#PDF6Vgtj8t)QX1XJ=<;
zA8zA)b!X@1HXg}E>hmfNeY1+Ierswe!)GbOcl7x2^c(Mgzu#Z}O*?p*&$jQ`k<)Ze
z7iE`Q$YkBvkT~u7<Rw?Ggn+uRhK7b*oSYNq&!2zj@ZqbgLbcD%G*-WDntttT)|tL9
z1;t<e|NZ$XDkryY#taEw8H<4EZ8<wLe|PuyPe1(d!oJ$ydAH2+k5)1^+&N;soSUJc
zXHE2WKlgsQtJ3*<7CxU}Z@2vP#Qy&NXJ=+E{(i68zm-e0DB7;>PsPt4KQwf8b=g<_
z290uV%fG+wP%HOt-QQoY$Ah}MswyfPMn*xhRwV%e0TV#woolxksATNw?!FA_9jvS0
ze5d%l?X7*ayPKMu^KaTIDJ#!S{0QwbnC0GDvi*Kt^kVn^YtH<(O9~$!)2#pZ=jN^R
zYq^3LK9svLFiyx;RZ}~)NvE~7^=XObCLM3xs4W-vRDS+)GkyNclj`$JBI`aq@jN@%
zI$Sq;+m$;zi;GuyoxFWJT2w2fARAO7JbLt~<j04^y<aYQpIdG9(r=#4%67Rbk8W}O
zu;YEQTPr?3iVj=6fB*jDQu)hHobce4v$?Uh_V%`1P|3f{fBrgQb-#>@i(GHs>Nix2
ze$9NqUeI|1!xO8Q-wlr(KYm)`vCOlgw>N$`xAVPRxqKdIoafJ<KO$06tG>Oxoqc(k
zZ{F=aRXKkj9qqolz>!&0Gsq<_E^g+!)sdUix;i>89O)FkJI!~lRj9aLOu+iMy*BHr
z7jOJ)E)`b#)lBE~rBhS2W7{N`-uIt)(N;l!@0Uq@vQ|sZ&9%<Hu_00Kq4T6J5zR%Q
zLf>bmQPj4anQ3QcJltesWE7NoYRbi%o72CZF+RT{WM$B)>H70mg{)lk^Ye4>NqX`7
z);v7izS^mk3seH{EPDFoVY~b;+2dc|F<KTrYKg0QsS2v<etv!)K2gb4L{@gKczjLZ
z%9Sgx+uF}8ydGPg2`aofIWIms+PyX5Ak*}xpP!u#-kx_iWMh)6s78PTs7Cnu>ME#>
zxx2OZ%l_qtZlDfX`~BQoTRi{%`WjqPvZbl1Nkl+k0hg#2xSMryvikby*Py}X<$kgt
zGa4Hks~$A6Zz+E6x4o|Z&&T$-iifOMR|GmQT)6Pl_wV5;DNE$){}igKsa4(iHbpZS
zG>FsM)~2PP;IPzdYS8AivnJKwa<=d5?Ckt?egD6un^I4ox_>|Z;K74gcXw?y%ehf-
z_ZOprattHmgx4aPK`zd1JQt_wMuUdPx8~iAx_I&8q$hvUot&CpU0J!<xt(ui;^DTc
z7Yp0B)c>!m{rB^E)Rv5i&(6(V{p{@Q-8t7c>43%dRBQybQPk(x7<ngu-@9kemCfn?
zywYYqpdrnjigkxtIJJV8^+=iL&3X9irtGTVrCy@El13oQ3ni0OJU4FKD7miu-=E6b
zZ#UC7>3FZ-^U162@297ym;d|w`}NA@^Dh1P`1tD1;`Hga^ka7|*|Ea{)b#{4V2*Z+
zn<gLQDSdIl(R-TC#di6+6<=Rpf4%SbyUFwC&$s*kr}*pJ+u;irE(8T?UPTQjCudi0
z@6~^Qe}}G(GX47QZglv%n2UX~)}Ze4tCQ;ULskYYH7Z@VPF+RCrQiPFj=1{2r65;j
zU0pS`_-42MJ`GUcc2%giprD|ar{~2kQSB@1<Lz^AY;X)-=2Q4h)+nW8-=9z3xwp6Z
zf}(t)lB>$epZ+h;Uq8C1^0SDr@ZudiEMj*Sxk{VoU9o<@XYtW)@z=}e*A+>#rS)7C
zkFQw>YQKS+AI)sMTT)Mp)qXrG9<{S*Y2BZX?o;*S@7=6_cV{PP@L$R#12hPF;`;S)
zP&-M@Z_bKVZgJ4ymR`6ZJFnD|iOTM)d}bQGy0LLFm$=@VW_JFpzrViDGEVQ4tNGxV
ze&2Vt*-FpJYF3q>mdrBC1?Ah<H#R2EGS8m}YR*-Dezr1lbK1>+vl)K08!}Ar_MK;Q
z(?W*NIQ5js_Eg_lCWd_NhxdFuCaw22``Q}Ad-v|CSy<cvjf|y6PfL~5*Vo@%^74|-
zRl}4M0-!;><@4*ZzP-Dfy=Tv!Gs6Bh4>$Rr-gHJfe^272OP6|5Bh|FDv@Rb{>H!V@
zvGGb(+<Ct$bambh^H?XRrj0tMZT@^Xd~Tb3-H(G2(^9>rXcQh!{`<J!z9%&j)WC?@
zS#<QKoTMbEb&`2^*H+L>!|iR%%*?)LXPKT|8N7VX>9Y6ta%*a9eXp(xjs3Q<=&2WI
z*#GU;>oK?9@BJPJa^Q-<#dls=)&1GAv*6(&-q-&3%iNx;-~IITbZ=^;nvv0^rM2JR
z-Ie?O{l&$@7BYOB^X^(r|MufY1xV|?z16nsw&&lsoBnymyZitDZQrPKde6^iv-RG-
zTp!$iIC0;<U)j@B-|ziCZ==p>le{}OmfC7+o_v}=DevZ{)MKYlpZ@ah?(L<v8X702
z=tN$cV_$zSckbik{nr0&b#>29(T%>w!oo5G<oTud4>q%d+I5`#{NH!vGwhH9jZzg0
z2@7w{xoI?2E7Xgbji(?oY;~9}sPB35<Vm^rM>8%j>wWa-(Z5goyr*g{Rr8&dajZx3
zoT8(!n$Lvo+qcWr{dl;4&)w*k4-Pg@S~5x1``(89s`=gG`mcU`e4Kase(m?zpFe(B
z)US`;zHZT?MJ1n}c<%lAY_?X!h6TluAt6&h1x0+_&!=tQy>f1C@yx!yE_A9^s7b*C
zhwV=r8yi1;{kk{t?@UoaK}Ao{Xqk6)NXV4q|7w4Kn`-FhJx%B2r8=)^Ixjz-3a_cz
z!zHRU<>5Ce)2t=G-|arX^ew1nxw$EIYtm7!xA*tozbPjs_Ux0n=k*<h$#)Bn%gTL!
z`1tYTjq45^aCp97KWdA|?(+9x^X+Oww&%r8uRGc;e*HirbLoo<in{Up?mRYRaB$;L
zVE8l#G2SNE*TyS-O5*XG@~u*)St-^3K|TMK!OKmGpZUzStBnGUO?HdvhOCL$n3Hd9
zt{t?bLrGcr?ybXz538PhETao51iZa3FLZ8SxBKnZ?CV~WW|?G8`s-w@Xe$u=ThYeS
zGE#rfho*P?e&>nmL|mwhcmMk8YHDOy+xL(Z6<u9l`I--nudc3MzF>huWp(xGhXtT6
z6R3|`Q2q7w_44du3z>5Y1#h#fZ*9p0^@KArR@Btg%qji<=kxiz-!CpL?G_ReD*63(
zd-jC|j!~OZI{oHaJ>9n7H2a#zui}h5+3WW{`vyv>lF8uVi@CxK599<GD*e2?x>Qns
zl&twu=5PK}Oh3-%_V4_go0fKoYA@>)R)6*AXt!1QyO=if`On#29<TYj{h6fa`^T?e
zuU@b~VS1{h?X2s!f1m$9HKz8figiT_Y%Rd!TdC9aVt2i(^Pgv<d3w{FaJ9UxOO~j3
z*5Biwq^GLtdUbX9^?Q4(LpP`Sf<~u6Y2(|sYbPhGe|@+6{i{Q*+>y7=H}l)A0F^vB
zH#cQnUe?<suCHfrZ|`|&hGDYNojA8dv%mQ>|H(}NkDDbQ?+dM{*zwtslaY~e(h|?f
zYCG?Ohdo#2+}s3;2hgO;L}hnSr}pe@^Xs?s_pjZQdfIE!XRaGxpS5q)@lHQC=j54{
z3=HZ_91S+=f13;3?yp+TZ@KFm^XId(HY?WdxO!ru^49wQbyGD0AGMi3vXbGGOtv{E
zSoF31Wb{I}Ua3!?KL-Z|O{)9<w>)%BgyG?Rr>E&oR=HdKe($z(`GHG31SOL<)wDib
zAGI;5b&36R6;JcTLoCm?|Gj>1&Hl2tQG0*C+Z}o9__1DT)BJljrkR&q;_LrzJw5q&
zkD-)lR!G}xIlG!0$<@EI?f!19{qiCZG(xfK^}5}laW1X+eKmT2m;29uw~hDorYqa?
z<3Tmu@jlthudc2(Eq>;6cAjnY|KIoje|f!r|Ec50-CMcEr=><lZAfT*xBve?9a(FJ
z7=BQT&Jr}pqp~(`Z&diYn8N6NNk_RNr#&t7xN!E<i^cs`?N4kzolrLavmtIvMxf`s
z^-gQz_uF~@F0+u?Rr9lG+3(-Kf4^SXE;q^0ZT<d#Rc(LI&9`3<>RnGueYx?t-02|S
zo1v@2bUjafvK6a8I#Jo(r0!2e<g}%FvAZm8m%qKGdV159b+OjlOT*U1yey1<>C9mJ
z*Y=Y9%-fq%y|*8i`~T&#|Ml86A6A8~zH@6`%+5tuSBHE5`v1Q1?(Xu}r>1Imb$1tY
z%Y$ag-re18e5YN7m7RUH?`*SKmc`4Y%yL$MrlF?C*G>HL{QeP%#qan3|F`QlL&F-S
z28I*GN=iy1;^NC&T3C7|jgO_?^tb=JMAA4-!@wXQ_x85EsispjgFz+K#p&^NEA483
z-Put8_0`p<1r{c?ze=X_&pUbYWYxc)&o`HBRn*YX2tK@W-M3$_*RPJ)m^90-b{8AJ
z+?#KWKaX?@gVr3By}h+`#}13qS64K>Z=YYcDs=U#vbVQxZA$HS>yvr8&BoHw^7P^P
zHaB;bf`+h4{`@GsTmS!W*2P7w#gQo~OL`3R5|ckaJ1b>bwB-2yz+VQY{{6*%`{SS8
zdMj&L<nsU5_5JIjpLdCB-%<0d`TzI(*6izgra3n*{M^v+r8Y+T7<61}XKdl_ijRvx
zO^NM)V|SIDw0xpvdtyu8-Kf;l)2@OVPx<?P9!s8^eSO{4pP!$vuhwBG&;`{nSB<Kw
zE~(G2S+uM4b=HFejZwQwR;~(PzpnQ8x6E^MEI)nvbZLp_WSevA3yfdyxHm`sx>nqt
z9lJ_iF3P;TOw-CL>ihlr{h(>!_51%t85$bO<<B_pvDmHGB>S4q)~u^up{v8D_V@R{
zy1srrX#RYMUqr-=X}ZzN!q!G*{`l~4mRatsS*F>`4jgcJdwaWox0vpwlatj!BP#uq
zFWyYNwFNvB4{E=I8cSWhy;BX{tjpe9*nYom_5Hfvx|csUEa6`|>EEA%+BY{0bMNd3
zls3<sk{bEy+S=K6|9&J-FWpuCe%<zaRo;JpeZAZzsvWYgrt<H{<ML5E3Krhlp1*#k
zar&;e%L5m?RlQ!j{mYBR{i|w!e*;y3pnk~mc~xGfSyuw)T9ulVzl*uLGT6QJ^|h-H
z54V3kYkvR5w%d8d_x8N^JUvbK>bBhIt+}_uo}QX|`PtdoTPr>$v9h!8_IVevCc?1v
z)fLapX=j5<O18{0$y_vLiimFXHXlYtM$lBvwYAZ6{{{yKhi=b{ovIz~cXd^0@XJd}
zOaJ|;1gYBp_uK5K?Rjry7CnFab}eZ7J92Z{uK)jjhwd)Rb#-^wj^9^vYk&QI&}@Zm
z^|u!f4mN-K{{8%w`>YHqhWsaH8mFImaIo2TbJ|&-goFhfb+ivZ|B`=y-(8d3TUS7<
zAXwPgX64=8HFL3hf7Ki7!bdK_D}z))bGWCb>*wFA|Nl3-QsTh<OTEv|d3bq&rYy}S
zPMmn`{Q2`OEiE(3-rkzYD{Yoi8GXI@tBr#BBs+eOnMSF1rp4~5xX2@8aRJok`SJ7T
zOwi~@;9|F#Teg@yF0k-9+{SDB?)$Auhdvq0q+KO1le)z9^Y-lB+k5z7!MT+aCrn6?
z;cI_+bMx}!zs}9IPCwQonf&VN>hz|jrXJ9G6>e^0-RNy5#m~;1{IEkwS=m-@vf;5K
z$Bs$q>+AQQe)RZp@AT=@Puoa>mag!%ALfy@y0W$&H2U<gRs2lu_Pc3JOiVr(7rFXQ
z)e1eMy?#$pP;jvEn)kPI<Ntz2gM{Ve@{*F0&U`*^pT8~d?yQHuZg0;w2Q6he+9hfX
z8dJNvI@}yIptrs{?s$)6GH6i<D9B{^+E2?EsQb+^@VEUsrL(Kch>?+TS<KF&XHTcc
zo2^{AQttfAtLrbjc8krtwKaP-6D!w@MXuem*ySn?{P}oXKJT}`udgX+>|HZ{-yTj5
z4uhp$Q;lkWeK9<F@?>89Z13rMGq>NXI&G4F@6Hsx*jp?tEHf@#2q=EP_xr4mkB@`o
zcjo?oadGjpqvG)<pk*IFKR-7IEkhC23NZi;I?lAK-L<pk=O^C(dJF}or)T8UsQxhD
zQ2sv7)zx)n$;(Tio?O_v7*N+?W%c)WdVht4g+*m$*DiAHUKPK;&Z_p;7SLSoRK3`!
z*Von-+r4z11e&l>pI;LMG9Hw;<?DVp1~2ymjd$O9rUM$e`sexYBjb}xOT9rewocB@
zTMHk%fqK1@)&0x374}wtzjkG1@Ymn(_gl*g@2vS*boA)a%s)RqR(-kXuKKr9IQ`@#
zRZv<#JKz5P&N}FluebO2+aGq11g#0IFaQ5z_J!J-8WAa}s>5}~&(DQ+i|NM93%tJ~
zP&sr(z`@i#UqH(&o;*qU`tI)S)W4uioqldk;qH~70kt3MKaaCdIOE~vb!noqd&u6Z
z((S3H+1E;TR+{|1zdCgFvrFrvwq_Ms$VBeCD8j(N@ME`PLyFU{C28~0V)?kagNuqb
z6;He0%+7!6^l9&d2M_A~t*NOI5fOPZr&b)KTwMvI-1zt3KY#8_TWViru-88;YgJ8c
zt!>`%`}hCv682|gU|^^(Kf^o;+}3$gD75Aa=Zs6gSy)(JJUZGfx4rn^pUQN5|2|pk
zWvbrOG>nWs?fT2Wz%ao$C^&fPgb53l`Oe<eTjBUjz`;nd_C@HgfHkXSZ7KplZLp6Y
z3%~8H`MIf2*816}MLzRWzf}qQ>qc&J0nI<3yvoeL@E~orS?;V|B`+skPJQCZGQo#~
zpFiBgqr)uc#)EA+cXyR`_4SqglarOzP3{3L(n~u#%kuX1_3`Vq!`JQjvNtRxWyuoz
z_zP3DLU&cNgVtisPWt`rEohP7=VIwieGHR4-`?JS{mRPVsWWE0FycSaCu@CWe|>%W
z{x)7|Edzr9(3%r(hMzwk_fNI2uLD(#lJAsjZ-g%OnhF}Rj4n}OU|=|**LM1UDT{!o
zeBF<Qpuw&qM_fEFHL-GoMlL*q?(eG&-H_nOD`nzQ{On9%PR^QQwJ#SJyT5+7`+ZnV
z&7R`ufB*hTndQv*_jP^!%Y*FlA(xl=e*OFXe)g{~FQp8VTDn9uCkeNM)|)=z`u}6*
z1y#_T%kOV*KkvvnKhIVxbk&q4_WC<*f4|ubny9X+t-ZR)mAhBYHcC-ZG4FNlub0a~
z)0kV+&&y5Ki43a!^(An=UG2K)<I8+!hpde<&Aqc@qBdxS>P~_A*EjWREBrD}NpV~1
zHTBC`^ZO~Q-YfUpEOM8tRIyG4Ck5*>%%F5l-L<ZusL3U7ne3=mP$_nsh6|DD8^S3E
z&&{>Ix-wWDlvqI{qD#G|n&jLtSh{T4t}nmeZohwJO{6hs$*QBHBWS?5Pu6;xb0{+d
z1H;btazF72;h=eBP^;+TBG;?S{pDHN*s{*fGOhZ0HGFI4WwqL$Pp3~>a^#51)z#tt
zuH9mwepczPFPVG4UW@+qbb9=jyt`JF)y1b685lmCKf3&(&n&CbRiFl>Y4$Zxi)ylp
z?XMS$ch&sd^zZZh{~D^QuC3hS*FcL4XU$rr8@)|KNy%wa$YM8MP(AVK$w^Q>QT)jO
z6oxWK1=je0Dk&9B6O$`T_f~v-RAeFZ>Fd|2DrZ51=}}t>+W0-QuB@1-6|!Q%&CThz
z!$JBca0@yZX_}dZ9h3O_=4Np8_Pnd06$07UbZS4HRDX4S{e0*`MP>KC6;)qf<-NYX
zCNg-odH%UZkS`kUG%H5Tys{-T7&I)Z?ACLkiIrQ$b6V=lrPJdsU0CR>>dDS8H$|nj
zwRPuOc`>nNPoAX2?ke%Lv$Ojq%E!RK@I;Aaf=)+IPl%6C4`^A-fddYpNz23S{NW!T
z9lg4{JpcLS4S)XpxpVF7_wUnHmM&W+1X>jTq2HC^<dT`j>8~~(m%Ds!uJzn-i(6YV
z7oVQ4|N7_i`Qgvc%@q|8Q1IMU@UZFjujl9IPghBoXJBA>Fu#Lgk|(I(T@|+WmD!$E
zp{v7Y8Kria<==Z#V-<!}f6UzV>mz8mz2M;?z1+Fh<zdgy&D~rGT5^A)3pDF|tVdEW
zS5s5dGUV)ic1D%SeDZc{4jgdU{>^*3-bsnYTeg_Awzq4msJKX*<rKW$o_E*E)!jWk
zD?a&HPvF&6p_^lk85kJ;S^38^<loxjd39Cj>4jbY<SMwr)IwJTIL<cDzjkh}b?mL>
z{`2+p_4V(TUXPu$1T+Ql@KCFlk59?B$bB_C%ii2r$Sz-V;o2-l28M<^ZQ2SmL95nu
z<Mu>=n(F)iebr}WWqrAN{k}_+RK2gP4%ZjekBgaPl5s)d>`Y_#jT<+DA{aESg{U!V
z&dGs1IpOdQrb(V(UtPW2Z~t$_tE;PDgO<4(pSM|TTm3ELNQWS3Y0sR$UQ;v{hOQ1<
z8MCvf>f=#y)2c5STQe>?c~94S`Z65U1UUYf%R?+=eOxTJxZa+`{a#bGUe3<nw{f8o
z0|SFX{zEQM#ltXs$`?>+N#V{6P-doiZFSEwmf=qB{e8B}y%`#2t65k?EcKdt>ZK6_
z!%h}P74cWMwr2ZHXJ9bz-Cu9__uua_Ck_S&Ax4$yQfezJ{lpm=%nz2$wZ9*FyiZoS
zfq_9q(4lChhG%H;E>LtnSoT=01QZa|*{MR8@Ic*K(_8K*{vkYOXOSyt)Hf+<QJ1*>
zy6X3P!|&az{1gCkQ2i8}a@HrHWmreMM6a$0R0gf&<drrH*;(`yG`kV~ZGYxvHP9G<
zqod=g`S$y@!q=_gxBGEm?Xk48vsNY?Y~teL3i|%;Zt0sFhS9G;6-?1)8*zuK@9)<B
zez)6S-EU4nP|zekIhz%mQcr^lx!q5H$L%Uv30gy)e7rC7!-IoW@ArPcvMJSD)}r9R
zO?5-VKu~UdcXzjG(Gw3|2?K|2G2NiaYQ9sZO)EQ{4a(C+n`5l=UUsU_yU-!1EFvNC
z;?ln4<9wjD+`oVSCM|jJAYp6vbwB;RUoPpceg5U;WzaHp(DKgn_Wx}T*MW-UtgKbr
za&9i_=-}`S>XkAD4Ktmbtp56<yZqjzrJ#n}&d7CpnI=t{vZUzgsmwPwHiD|M&9-J{
zVSj&rzs_&}XTe<S@~nr4TC1MVEf<lNuJ(TY^Udb-B~MNW^2*!AOe%SI$5Jx+&M)jW
z*8NLT;BrpyI@<(RZZXhsKWM@Tv=sqV<W2f=(Oq6sNy({K+8ngc<jT5O>(I4Pp~7lD
zJC=UciQgB~$|ZW~-{0S*w{y3zbZBJK3Ry7$6yV(AdLF-wO+X_~S67FZNAFKNJL}e-
z%FnuM1wjq)w?(-O6PGOWot<@iTW-~#kH^1WaOQvc@Av!b4-dD47PT&2w(Qk~h0b2S
zzE_{muU|J|!i4Ck)AIFy7J5(DTUq-0+OGHeeuIWkKr8EiJ(=tennm=ybg-FS)iW_M
zG4FMIYpbTEWh7{j86Jv!3X`5ZeY$k{{JJR6az`a4rIPP=%U9R`|7TVGZH<$&^V6qK
zQ@v$DJAtyYRy}(B*fi~o#MaEqZtwT~UI&^<Jv+xTcz4;`pscJ_DksmMKcD;eOLf?#
z-=KW?-({y=L(HCvKut|eE>6yiKR!PG`nca7G{vSBzHW}1&x{8j?RugW6%-sMU0E5d
zKK&bLg8i7p+Q`kvZmQRMT)TR1zWw`6vf%nu<GLN|>jwv$U)|iie41{wT5^wZ!Iky#
z@vFnuURo2m88lx~`{klLXa(`B>+9>iUvu*FU;qE_yS=D(*qNoaCMF@1N**2Ie12i|
zmxU46<@^&87Sz<#7;W6XUG?m)WotkG2le+3@ENC_xd2*kb}J|-sA$Ek{rxf04j^x;
zs;FfA{Pa{SYRd}HB3e)l`TpMCQ`7b5Ta~?80UBs~a$+JV0!se>{eJ(_a-Y!EVZQh4
zey<f077pE4Q<+{J6f|jxeX~bJ#SSMYr!9$x*|vYZzBYRKix)3^-mTrgM9+L-76Svr
zpHN5}U>$0GUG!F94QTNwX!}r7Qc?+MHvP(qK+tsCzwi71TY`JCTd&7m{`U5EYUDND
zwa*W-%TF<M1FgLF{@ubU{N(ZD#WQ9|cn1Cc_7=2L0lbnKlvY6lea-xK72c4nyE~?u
zRYga~2Q-BFxZhsSGirC)TAkBDA0HjP`)it3sMqGSSnHIR&${~h!p_gLHO;)F0%~U&
z8XEq3xBLB<qvG)y7Zy04+r`E!wZyXcnFc6J{`z|P<>lp|I{R+z_q$#F{ri`if-`aK
zI$j0PZZxaXSD+0lt34(v-P)2l`PbLi%Y{_Eo<#UQKGq8wrvuq?cDA|yQt#>4cE8`Z
z+OGDO#qTK^fli>v-+bO~HE5y1zJ2?$E-q?y>zA8*^0z&x@Z7I|`o>p@mHQLU&$9(h
z?tq5YXPIV$Mvg6GFX?{$e_X^*_<IAxkLnvLD`%PI-C40JboH|mLxu^tFXvzX@%~o)
z^z8Kw9-y@u^C}*7&d~!Ep9g#=W#>DAy5S$b6SWueq%h+ViN%GFkF88QJBy2tZ`$<f
z({J~0FJD);2-GlUc>1Z*;Sy-&&HFu{`#>w*wq}Qm>PDF?_XdU02k|GJ3`VJ^M7HMN
zkK3Gn{@lwTP}WLuo+r^Xb=Is^$9koomq>zyHfj2^OmOR!%KZE5t7R-`H)=!9DPhJZ
zi~H>^-P)RMnskIi*1pbW`DsuG_=EV<PKKb3Nv?12?TrR)#B*|X1`Q5~YK5G53R*L4
z8LI{gLg^F2<_ovy-;bM?`V`5Ulatk-mvDk?&1<qTWC86eJ#gQ7-5w^R(pMp#LEH20
zrhxWYNx!_e_xD;IkhFu@(^CvW^78tpH-WPH&tJc^?Ck!vy^fgX3f@p!v@=H1;oF;=
z%ATLTel7h8%JUBQrfD;Kyu7q@{cmfKTlRF$z5sGNar;y!Ys(*geX>(n-6Z)K56GA5
zesd-m9!uSs8u{zXW&h$8Rv_okoT$!p0@P+*=*$jU-`dJ08gy}y>)l@w)21>{1=)6@
z%SO=Q*Z249A06$^es^c*s+gTce$zoI;eq}s;qMJ^?(7V%{ryd~24q}i%sdW-r>Cc1
ze|dR%@h%>a(9J38OebEi-@mTk?w1EAC#PjBXzOr8&I#e~4WRs|sHnIqWaXqsj~<0=
zO7X0$tlar!qmFm-@xHSQxj^=(xXt5G0L^oLzAvs9^I{`EcsuTizn@$fb{0ML0=1qP
z7#^sBj00Ksqxyt!xWgsTI@$X*pL@T(yQ}S~6}xN8yWQ{YTwPtC7Nmky87ZG<negxL
z@9Z}>Hs&4PD8tu2ukKf7ubiz_yB5f66Cx{<IIe*v{0x(ifhK`K+p0i=LX*|~LH*EI
z7Zx@j>ycb+n0)L>$xM)mc?$k9j57@qo1(U6ExoxpefO68#pi87(@3CPSNQlCXd~50
zxR-V?O@fT7rR~_0d3l*n5U4@-gt1bop{1=Y>-Dv@l6v=dm9BPja>`i)k~$C%iYR7&
zn+2W1>RC@tOa#?VoBzJKxf!%$0kn3bPuBWbLMzBAM#}zon2mC7806mE<O<r(``}=+
zsGOXhr<a#kP*l_`(87;}&h5_%rh-)Gsra)@sQLLR^XI3hpf#$eZ4}PVG7bLx>?~-V
zTI95;heJX6aK}U&L5EAAB|dATx1R$wU>O+xxK=)bEEufk-}#BlBP3*s3}1WQ@3-cl
z)o)r_uiBi~=$yW^E_Qd$D$p?Kf%u8q%%FAZI;STceprA=<R_k-oD5Io)u4VS!wofm
zmI=Di+dz#Ey<E^D_`kotmY%o$p7G|!M#~UTj&E3VLYOh-!GT8564}q+ZL7bn$i2Po
z*5>qnm6tcu=U@Ht@p17g8;~Dog3{o%wb7vIkLT}$m-|hfK7G1b{=GHx>wbC4T9sT-
zpI<YnSrp{Y6FoM94naXdpwZPoe_yZP9~Kicr>VJF)w8g$@Yc@abib*fvQJ_1Cl?0J
z-}P_rR?nDTI`{v_>pd?Ril#L)r*w5KT9VPVE`wW+^LW&D2Mt%7we3eubURIB{nsqJ
zA(gi&Q*&vETK4Tpm1~pMb+JeIuYA}kviC@&fFonG<CA}X6VK^O`2_6PZ~Utw=6a0y
z{qxWN@x7N^pZ&!0``^9$w{8V3vz@H+_3PKlCllR^UMy@kd#4}2Z_meRdl?uUK3~<z
zKm2?8z8^>RpS@bW{@kgl+Q!+})?B%A<;e-<{+v7i@4l~_Zddy&q`--RA)$6l2gA-M
zle|CO%3lBUm~_6+a=*Dosi&rVd2vzMb5qI7OFpyBbpQY8{~z&ClaZl;|B@2ZlGxp4
zGp$Nr{eHLi(<$xD+uL$a1~W1+NUw5bIT0Tm8#}j8);g?;hk+r%*5ow9&KHZigF-{6
z7N55@zk2m5h->%3GBh;Q^8KFAUNiU@7=CP+mD&(faFBK7s#Pah|FkkN$S`@jIEI|s
zQTTY%QL*SJP274v4m{@&U|`7jH!HPaP2}ch>+RSW7^2kj=P@!cOj+j2a-v&*-;9@+
zm+yc7@5{@}#`*X5d}3o_V6dB#R>^rS{?{?{eG`{@Pk+{-+!yg2)L8gi^6HAF{r{im
zz31^TFx(K(eZ+I3ncr@PGoR&?+VA{UFBaS>zhA5B$HKr+BcZG0Fij_N(zmy__rI^(
zUH10Vuh;9RTL>~Rd`R5V!EiHec5c!Czu))2|5y9{?(}<ms}XXNrdc6%-!{)ry|lzL
z`|hOgbIb3Y{J!t|-a9p)&;C3WzAxw?CnH0{*NaMVEp~N(ew>+OX`DW<GEL2A#)P?L
zw=_LJz1e*J+1BfErym?_E`GQ3d02%P1H*&nEgi-RrlzJlANN^*S}gxpgPEQ0%p%wB
zO&J##@yJ*hT#v7>O*=DV;;dP-y!tsA7-|~C3fWXVSFK)Me5dgE(;bidR)5i8U^viz
zC5cJJQ%Xt-G)bTK@KCFyNk+h~vbRw$Co(WJ@Lo{TJLomZbF$jfZQIP6*?3Rg|Nr;?
z^G@}79+PyUwrIreE<5}6dVKstkQYGd;z^ry-iev%^JanymS3;e`v;2jR)bVEvdg`Q
zy}-z@fHgyqvFPd4@Mqoef0F8cU7in$kc>_LZ=SC++yDRXdu;<r28IoaQ7#Q<=31N2
z|NrOt{qp_Z)AjCg$}%uSHHZl+%(W^#waB&mUU~hwIhHr8Ua$3@!@<Dt!yw9~fk)a*
z=XzXq?!Ah~y=v7U<BIQ=UVq9R|HFw@jhTVL%%z)Sg16pImG^r-`~CX<etv%a@7pU^
ztvc0T|L3tx?U#!;v)Avvw72^Eoce!1r^*R4F#KT9RdT5M_GTt%(A>G5@9bIg`*Rj)
z6g}=WPy6-dB`9*`s$MMY+M|A=g;O{vHg@javfFD<-ZMULGkKwN`?A{K-)?5DUTakK
z<;DIgNl6BV8lf#S%$45U+gn}t<FNd*cKbhxan*0Pu8G{Nc6V2)cWG&=6lllc&M%j|
zFRzQ;UHVS8-~i*xJ3EW@cE8!A6TM9*Jf_ffUe&9WXXe>juZ`L|Bj1{VAt&VQzxYG-
ze;&(!Ug=+}b^q73?Vrx(*BN_WS{uEc%YW*e+HW_1&ffoX_L{i8yH3jP03|L_?XV{w
zkIVb7kJ~#*rTYEeaz4u^6MSYGsjAPbNK$oUV`%8g{x&^fYwm5cwNYD7O^eQpd>JSO
zT9dN#>$T|OtD)g*i~nDX&i9RtjZLmmIqAqQJ7r((?`Pusf4D{_Gch=9zWjz+#dF`6
zrTVG2wq$1SWv*HZ@@4$*Ti1&&d8(&gk1fyL^#9fB^`K-23iw%Xcx5aM`fa~ONP_iW
zd82>OYtlqz_h(x!`<<Sk=nU3&J9oP;XdX#s`}29#d7mQH{O8S?9$#m<|L@!U>pSD)
z<L9faT)Q@RQ+Rar?4#Y{&);spf9~1r{C%F!Sr{6gt#D;I@!(*y^#7Xswckx|>USxH
zhK5!?pIdJBQl?v6|D65*&-Ty%d_M0#T`%@p<(V!~?MW)8rl!8%qPFMVt>|H3WOy(c
zWX9L)@$*-$TIJP05mcx}=WY!>)+hUW-|;==Y0DNaTzK-{sj1r6t=Jw+e)Mwr{B>VA
z7^GY0r_0B7b4)NyJ{D5d0!rN1W6NXrec$^&_1~YLp7(4&Zz_6vYR}(qw<}*RoqlPd
zbNeyx_4js*ygq;R`t{}B)Ae2#etUdM#r*%#TPy5q8Mdf=^;}i_<)V9dl>o!6&NNvC
z?eKMH*4KSqz30cHZcv&F3J>3Y?t0ji#D9N&YIZ4s!~NIG<>oivUtaEi&f;-T&G+5+
zeYfY`{q*55zqw`Fw>LK>4H6Di{mD&N|M|*YUTVRkdmfwAPWpQO3at=p=zVDJd2aO=
z0o|z0yc1fv#nblx{dT%rf8ULY@2j`v-hKuOx#AB8*{9q2|Nr;*^Xd41n@;}P`F!5&
zr>Cc<Us~e%^73;3N#*ZveVsi2kILug=kxc7zK<=xJN5azYQ6ONwPh=dnN9frPRjWu
z-O7+trFZbxid9|D3i5B4TKxTT*|_r4lR1^oW?FtYz-(Op?oLe2$D=PVEOh?&q1`^D
zYLA<98_&tt>-W!7pI5P{@a@#_xRdj$-^~QIg?fz7o!FFm+Nki+k(|wE&1TwGfBPNR
z^!3H!{%4!#|INAg*LR_@!hz!luc)}ISE?|v{HUn-{`{75zfI67*$Df-S#KpLSijq$
zyx6_}+>uUU>FZTrUQAqH^HjU?+s*XNm;J0m3wCY&`;_}h_4jvktKaQZPoG;FcC251
zzV5agN~NWxGc5`i?T%+;_|SPRhxy6V>G9`w6h6Kdb-Vum-(V3}F`bADIZRL9?S3Ek
zylQ{l-=g1dw@<g>WneJLKl^R&1!*ZMsr%-SZQt9*?X4<RbpzFAi_)suR6L)Zoju)M
zzIMyUkF)dl%~YxU_w)JXmBGu^j_>B<XJDAMJxx~O`P}ljbJpu$=AQGje!FF>-1M)0
zFBljOxL?j;29?q)zHl%w9B>1<>PB+^S{N_Bg^z)u<`1Z%U0}k*!oZ->3+k76DLXJQ
zG+Y`L9@Jqn;p>+Vhxyar+}QZ?{{H$~TeGM8*Z;a~`D(@DPk%n2H@EyYGkxC43k#hu
z@2mZtv-N72q-|A+m~K=^<4Q(`1(lhhFBzk{-q$?0u6)qQZdCK*!<%il^M3CC|9gK-
z?boX}i_hDF8j)`{o!0Z5^z-xc=MBt!9?#FsExwsLJ@w|M)SZvIv_D-5_D}ux=4R&A
zQ`==28vOPCOU3zvayO_2v{qC=*{$b9y4~lQF=aPXf1dQOo1`++AkisoO~l0G^7S@*
ztG;?odb9WYJ<BH(oIx$nITepOMQ6%0FwA0}p0IX#?f1LePu}d7ExVz(``xbWd3C>D
z9@`q7zt^<1w6yo*L=|?~l7L^|-p-Ey^GJN@S#Ab~vlAJ9c8KXjOjsAYTg@}B_Ul!h
zm>mYyZ?}d|e$2)vGvl~i^_n*y85kBs3M$AS^fkXb<>%+;=}%5f^qlnT*Dn>%+}zyB
z$=TW2n=3v(0+q~5&v7s?ob6=zIbmMqvza}z*5EeLi;IgVt7wO<@tAbw$`upKeWkCj
zWy>-%FwA#hdg2_hA;FQ){?7-{Q0w+PMc%7ct(v3)+Q>1<#Kgp;64W%mZpFsHVApwv
zHJe#Cc9#jLm2qjQw{h{aGdX*|UhA!XA6xbH-qMKrb^G?&fmYjrYBRa|(^Eb3{&jB+
ztpCNput3KC_vPdBtCtEj*R0`~z<c4sg$cWM?E+OY<#$WN%Wh>Z-}<fk+nbqrcXvH~
z*e;*<>CVl~>FEa=7+?Q1pF8)-YWdm(1_ryP(!Wd<S(6rP8=OAg?!DpK<yofLMoC9H
z&df5^zP!x$^npg^>y>w=@B6a!&#&wI&;9xNS^E0BU9Z>Ke7{pHX_({^`508~KjAr1
zW%YW^X3%P)nupx+Cl<MO8<oDgvh~~kUsub|NBp^L|2KG<@9b#@o7tZu70++>{eCBD
zoaV!-#?H|2%(-FB^80_^m4jMmpyqt-uP<u9-?MtWzqhyeyzTcVYc`)d_2c8?%}2$e
zm#kZ-C#>!lbN+fg1H*yi(-|WD%kS5IuadvLK7Rk5y5DbS7f3NMWX#;dHd>wy&%)en
zV(99y)H^#0UtV1u4mwz;_WNCP<Fqp?zC<uE1Ozgr2wQ%;kqm0HKAn-=cXEm6<V&kU
zSA%*B{5BsPmbx=DG<1QAKfAuP^YiA;&fjMl9#@&V@88$;>Yja;&t`mif8YN3oMOMU
zb8{j=eVqkHa~N;3fYNZ-+Nh^XCi`W@tX{eDB&YhE3GDJU2A`jwU;m(lfg!+>DMh&A
z&&T7Jx98vAl6^gI?bk+TcC&ZP3<uOFGTdZ&_4;*iboA|%z1y~#xduMD8Xmv)KnMdv
zKqXU(aKy$W*Q~6pS!=fE-Q86v4=Nz`aMTKCTwdlYB_%a$&H9*~n+oe=|JBd9vwx)<
zv&PM8`}1{^pS<+qW7;rr&+p>1`cv#}7&mcVxpr;cXQS2N;_Uo9+v`8~RDOQ;_oe^j
z|6dqC6c)xUWoNjt0@R#vY-S6s>Jjs7$YEk;<2mvF&-wo;KR-Rq-Yf8TVY{4HXlN)K
zkHm&^&t=PQB<_5<Z1$$N+ivfBA1TDZpp|~KOLV4rejK0mn+;z5my$w7T?0d^I{IgW
z3Yq)0-_IWD6fV9NnXX#-eeT8I-`~#%6+{1i$0o5d98jNZtT6k)fktNInjar}<n8Ua
z#dJ>aS-+W}8NBSt(&=%hc+KwwyabieNpl!)x`eHbn)>;iwZ8e?l3-AW{BGH8-RUt!
zo_uyc9(eV$F))ZiS}GOt0t^fbOqiBPMr_RrJ=QBdJ#KH+(%jqIZkFG#HBLU(<JHf~
zz#u)BA(O4o_S=n^(yO7C&t@bWWnNkWI!Nho8}Dgmew%=o7a1557JrhOz*YTz+FnGW
zkdl(Rw7>p8XoSQ#{oI-lEes4BK3XsbC0<_U>%BT`EvTnry6)<gD^FU4{lKFNpv5l*
zRtyX`cCdJ~+W!0T_~q^G@1x$&n78M5oYMQZ%nS#Pw=%5U@axyFE7z`>MXq1F);Cb3
z^6S-bZ39sTh8!uTC5J%O<g8h<)LyTR-kx`douQ$hn=vR6RF^nAJ5T-!T7(HoT3~Z-
z-MV$<`gQZj`uw%&=jWyNvoJ8s?qOKDfsvW*$<F8VPJeoO`g&CTi-ql=aT!KtwvY@X
z28J6ySUg&5f1Zv%_v-5E;<sC`o2^?LwN)#4na|06zu(P{+glY1@j_H+RfGSoMrQW3
zA0Hk{+Sk>9>R3><3{vW?zjums-j0Qr9y2l=aC<uU!tBP-)nQNfd_H#?RKu!zPfOW;
zx9qg)^q5J_{B}DoEe0u51-CCNcsUpt0;Cw37#OCwfsS2VDyYD~;E>5ejBw4FoZWA?
zS^oR+SljlP+sDW9|1GXwy;}L@qPzL6=X)MBaR<e|t*>X8`bgctf&0@TZv7`uCi|cJ
zb~}GQXd7+v@xGh&|Nk0iURtsyW~Y&7P-tlAMaknml9Ru^y`8`1{PvCe=dD_`s;j=A
z!R};KXcYs)wez{#?@kj`c3V>V`WmPy1sYHQl|#?Y%(Q$yr`Ra{+?+qZ_y4b6di)E2
z4Z}YzMy3l)XJ(u0FLvuaRdzdf`u%_3w!gf$xBBtDmCNVN>ek<9vHfmYG^;vG!`H_`
zIt^kEtndHyyI1vk?VlI!_EFk)_bxB@pFgMW*UQ&6?<T2wf9lPzQQrM_TlB5%`Sbf^
ztwG!6D<5^L&yuPBdNq7`{r`VAi%#oaUg|v^)TH|P^L+ii9s6s3eggHQZszTNdudnc
zYfu7im#fN<tN-(n_g7V1-Os0U%5G)etb9KA^0wUDC2wz;f|_jJ`g^yWdwjp@_1ZZ#
zpH9BKwKdzS?9Ghiep|ErJs;gBKhE3#_gl@o;`!dY%ie-|u2-&JO+7cqQr_bH-12)f
znfWXf=31Bg{r>iL^XGHc&+inUzq?>PXT#UWJRA<(A701*x2pa1<)q#3H=7ThuYK4m
z{we<d*LX?0nu=|=^LFb*Y*4WOagg7r;=_Y8GmX`w^Y@lcda~>Fy3>;Bb0!KZyFEE$
zeE!U-soI~92>Yj8TN5d1S(Gvf9Jgz?-<x&W-`@7`udk;;y~CNt>Cav+pMS1_k@;Hn
zvj2bY|3B-@Z#yM$vD?z}_xC_0*t(t1X7NZGsT4mu<N5m9TIqh>E~Vt-eZHV(?!#8`
zXE)R5pEbQ6GZ{4CP=3F*{BfcAy^7>xJ(8foo@bv<>z|kZ|KqsNJR3`PnF0s7>Nguf
zozB;DK%rszs6*K(;XnhZ@49m3%9D3?7Joj#%%Ah&yHvy10EP=|bYpjIS+Q!BR-etM
z6JM?BZs%^-?X!Nj<Jj@lVQaIB&UowZ4cU@+ch`<5lf0#_|9kiT-?|@X((OKn+m|o*
zo7;8S-~R7<Ipef5GZxkU{#O5W2B<uUoNbyN78n{DdZ*;FZ*O++G9OJ)B5q`67h4^^
zJ}+kfqb}{PSFc_r{rd9KHBjW}r>Cd8&&{<KUp}YkRMh<9hlg5SL1s_(x7%6xwuxI$
zW7X=_((>`8S3_M(OG`Iae0;Ru%9ugA-FpMWtes1}r>mW8-?#Y+=ori&&rP$hrF?vJ
z6f`&tZh+?H-(DHKe9xy-+Msh1?|&}_?PA%ScGj!5_HX;Fr?#f1roHu`j;@$~+#I{w
zUrU0Q`@P=t^qu{m!}ckg&zfb|)Vx}`JZ<w?v(x!?pJ%I_lr6tA(fodmv9f#Lnb+(0
z-}@058afrU$#$)=>g!*#COw(H|4(Yyq8}dd;tcXW4Gbp5pyPlh=|pdP<7~TMqwCM>
z{r|E-{e@YxW`R=r-QDHqC;QvYG{0Z7`Qwhl$H$h&?k<zGC`bUQ*_eFXY$wl4P!tFI
z+fMbbeHDB&eSU2bC{-L4kH7O^X4txznV-+w+uzRFd^XA$w6`()?36v#;cG!P=Gv{g
z+wT}{-MST&$|j|}yR%cXOUb#7$8&q$T`Bur<?rWNzu#lbEv{E{KeEs2)e0Ud6Aksb
zB|)I!hQP&cPp3ua2`V$p?qFcdcm~Sv^K7f1tz16uSHSuC28mAR?0&!Dk+ZP?ou2>-
z6-nc?l<Bc$Cuf;vOZDHbd_MQ{o6YB+J)50>j*(qv0;tFI`~CiUy*(ce9ZPQGm!Bsd
zSE2a-TmJuPaeJ#$A06quS$aM8Giaz++T`+$jmgC?mrhT6a$@4nr_-W~p3f~$JJuul
z^3u}NQO0Z6n`U2IvTBtU$mSkN<7>Zmd_HIWd3F5XSGDtR?<#$Lr~3WgnTE-3py_DP
zzHWEf(hxq|F9Cu~8#pTjtsJ-m!o#P(UbkCsbK2Qk55yP!KVJXGozLdOftc#ITeH{h
z|9DLL<+Zi9qq1{vZ8`bj;bBlKVNKj#D|fld6woN<$H&LhyLGpDOahf;%jXn%`B^@l
z0vejGezVaXq~I{0bxw1dlyRDm-u^$Ij%{sgYb(8XbCpJy&Hq22f8O5z_x7=^+wWCr
zfBpK^^3R9ElT~i#@2~Az<gq>PZqb8A_I2N7>hn%aP?R)E@lf-dGs9bduL-E!F8+SE
zy#B>`_5-^tnVBvy%_%--2}<aGHXo0a#`%3|xBsI!S<N@<d9nHJoXu+cPwsy@E!wF5
z-=D45#Ps9#Tzd>U$Tfa{oo1I({{FvZ*VaT{{!umMJ17;}R)6zxc0SBjYdbr4TjXS8
zS<ulp*6;UhKKFS2-fy=+Be)+wg36%sdzI>k+jzYv$&}ql1P_KijsKUr_VK;V85b9Q
zpPPDelB(~uvir5)MO-%?1Z9CUk^&843;gHX{e0<PKWn10`?C1`b=iA`fBpS_e}3lW
zWlw)R?vH<7{QA|aqK`+#pZ|E=f4=Vb+v%Wa14Zw*+xh#i6@qGuZTG5PgA%B1)t3`<
zEQ>$=eP3^1T3QOKZazPooxiO7{k@-`rthC~xBR~C+gn>tgDQb``8o?wfA0FPnAKrx
zPqlCg&pLBysrU3bRj*dAT)p~qulc<he6m*HWDA;w+5K*pcI@u5*yq<bWL;e)Q*yx(
z)WZaIyN}&|eeLR1)ynTiTTf0_Pyh1bB6w(`=*fwa*VlCQ_x~x%+x>RioBjX)y_e1q
zk1Yv&xA*%!nYteje|}kRKbMtTEalUalb{)!P5=M>u76N3&0rR=G;crafwtM!<#~ml
zPO6L7{`#UBwLLGk<i&-BH}d!Y?OMHl->!^|42`Zu8lXDq(T~Ud`89sd&dwjt=GSe0
zadmb0#;4Pw#peIM^Smo^bDF4g8;>R^6(4)NZuh%gNgo~@blskJx63T|mWcJc9myZp
z=GU%{*p?F+DDwW^x$-+Z3XjTFzX>dPb7N!1{e86?kIPkyfa<(!vkK45Fmx>~{c2@j
zcBk<8B8{#`z2^5c{45@}EUNzg&b6ISwkz>)o9KDl?=h2aF87%k6cQdT{{3!weBmk0
z<szVQ>5B`U+mpV$xOjAus`sp#`gc2@&wKQF{{NbbJByz$%DuhqXrJ}F2$}jnACE5X
zx4TtwhE+T!AZOdnwBG*r`+mQBbV9jbr|SE=SWwOL;_mM9!Y>!y#fzVx`>XMPB}0XL
nsOv+~G6n_*OR9ISKmTW#bp4Iv%yb7o(A=%3tDnm{r-UW|X?*%!

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-8.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-8.png
new file mode 100644
index 0000000000000000000000000000000000000000..abe53dcdd226db2769369e0a95b929ad2fbe5b8d
GIT binary patch
literal 23670
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_eCM&#<h{~y2SSj{!@aPnNSXwkw|
zTUvx1mNYY6QtD#WTd-)wjQ|(Nz$1PigY+)Bu&}Tyc}&svVE@|W!Ku2C-HF@j!JmI0
zX8+yzhE0fhvP=B=<I4PJXBr#NpZVt1zVdTtHuf00F)%PNBrv<jiGvsq<~K7iF)%P3
zFk=w_@wX{9fT#_;j4TWc3=O#)3LtKdGXo<?moyUxh<jVW0Yu$sBTZ|={-rl=L|DqO
zKDIAh?l<?+fktLgQBhTSdHKr9%FNT#bj?%ZCr+HWDqvxg_w6SqCqFH)Fe!a?B__A}
z{5;zt3z=7!m;0~VR=n4DrqR<~GWUBYTzze#tn946|IemXAuE;Y>+3=09Bg9!`AH^z
z{dN9^`o5-*_2~@TiY#RG?C;&X$Hm1J^!Qk>Y3ivdd-U|9bxu!8jnvES?CdPEkg585
zHT?4mt@HEher48vILN;1?Y7${B`*T@{`quTD|T1Owrjq=zE?jyJRG{euC}$M<;3;t
z;Rg>M%(}8-;=PK;ys~yRH<tdN`dnr6+2G&tg|^#EO*uI^U)|fgTPtM6f<vv`s{<A~
zt%}*Xsp{*irANEPtJi4TZ_+uP%phr7wWW<;eqBcghwa}lm#cn0onCs`*WB{@#?KY&
zzV6$&TaJNsetDcYgF^i#9q+?!yps*x#Pwn>^vPO(c{)8_%g`|J_4W1FtKaXPeqHrn
zu1?ezkI>a&SO5I{T)gGpp;qpzi{1I>T9tZD)d~$d-X|+6CADhH7L&En+x_(S{a6HY
z`r8{Dofj@#7@4;``FP*1*XwqRh>1;G{kWr}<HEJI(V=@PKE~ue&+?mZw|1Uwb=JQ>
zKe;$K0w$~ZURfEe{`1EV4NXl?@9BD1)92SNJJ`(r`mFi=J&C0;`u~5PuP^!bCUW~X
z*KV<u85bA*`gS}2>C>lAbIzYQvE$)$i{<OCzh*yR&(6r=FfFd;qwDnh;cKIow(&~8
zTHJ4U>A}I~(0w&OZC1TmZ+PrUDW}}hB}+8a)YRNxtEj21N<QBA>Ep+XPfkw0x;fo{
zyWQ<=xt9+#GMB!)vvYOc>Wqtvw4%0T^nH8ZxqbWgRUs=Uy?&c=RATYDxz^b)FD=cw
zwPocp-`UH8mU`{{a`ME93qL+S-kN)Rn{?RmuOZ8PB>UfLYHD(EaTRgOU+T3#J}>5V
zZSmeXdxn3GJPa`hH|absu&~kF{d8J%&*6s#@iiY?k3a1e*EcJ_U%Q=?kI$^Gu5MY<
z(XMANm(Mp-_nTAjdUxt+vCCVt!-XX!GynYg<KyAcu`+V=vdTXnkNdj0wQY`ne{XMZ
zYGm5^dA51CBQ_?rZqzxw=hG=|y|)`TZqz$2ATR&kM(^~dIre<*hgH<nq>_6q>;LVM
zv@Tl%GDb6U(-O^)6%#spdQ9Hl+G>2i?)TfR{&)Uc7CdNpd42tSkodlR`_xoaj+DH)
zadA!j{(EcP{7p^s?)+GFdw<ExNh_nat}3*UNqcmp^ZJ_SpNb_VB{LT-S`;(Qf1b_F
zh-s<Id}cnn6t}OYQdm?p_1qlG<at%EG=ta0SU!IKJY6evRf=1$)YEPAmn>09j+|Ec
zpppH~w7Is`*Lq|uFI`y|ds{>|>WYYF(2<bUVP|<{EH22{)%=)sJfX+%@-koJX{j?;
zg|42pIsJUx*7rX@KacG@|FB?(?EUilwdudUz0J<s_cJYcO@yJafIvdt-mhVwPie28
zQT+Ve&fL#eRt7)28Xj-D{a)2-&9F5yG^4hxSQ)W#(aTFqyKintZ1%qY^YioBYQD2(
zY}jA`a_XVOhkbo~dVaoG+#mDn=#e85r#H>npZ?YA?4Q}O{l$A~f0uneV|;$bt*zO!
zCrl6k={PlAKVPoyN8;xC|8>)I)1KE(zWVyOMDn%u@%dI|Z!(;mo#*}r1u-b7qwk--
z|9pPUr_Pmedv|^O{@r}3*Hj~Z`#&2zy}gU0*&PlZ5fxyl@9gjIkG`$Fe$S%txJp+?
zN5`zYyS6$xJ8w-rE!Hb%8+E_tb8pz%sHIA-T^^I_{{2k9TX<Zy$U-LT_O`W)7A-3I
z^u!aCUFGZlY;^09Sm@Ns<+;l)`HXeR3x(60Oe#O696feS%gpTBP8}noph;JDm*=0I
zV;OvPb$IyudwWF%1Qtx0BC<ASXOQ<aoxsb>eAn*;McdW&@$u~Zav_t|d`tfS{hob)
zU+u3ypU-d2xTth?u66j@sI8M!Y(E@e&bqT>V;isZvJ)pfjvhb0`^x00M~=AU-rpCS
zdTPqaYiCb{*LA=14Ex>|v!lRKH)_j;MrQUat3tIatE;o`?WwH#b~F9!aryckv8tb+
z9O)G9>g~NcO*gvavak8egY5EC)~{b*_U_Kglatj~2QT;I;^f@<tn667y#DD;U#<lE
zYbq!_SXFDg*KWN@))kGv-)`rx3SU1jYJ1+=;^*gH?*IRHJ;-H8j=0qRe!E@o`BK+z
zv8b(CQ(s+Oy?kHo?^CyLNB{o*{(AZS+U0J&QY+nhrOsK&*M13XZEanddwUxfAK$fy
zhucB1;5*MIvfuXGjN;kh`?gt^yjZYeg+{NWvD>uNm!0bKCK$S@dQI8!YU7h9GUw-7
zhd(~vAO84QFQ`uV`RmuK>+$thk8}!eEqLg(HhTLx%Q;%s?`NNRyyFt6Al_M=?iuv_
z+}zN8HI-}Q_s4-EQA{Ud!Bp+=T`{g_ZN&ZU|8AM47rV+V_tpy6Zn0nQcE2}CJjC+$
z&dy+PrvA5vfvahcp990E`D@lSfJy>=ef`Jp-{<qm*}T}4^YhcwW1Dm?FK}co{`ACi
zdTQ`8AH!*>Gu7wUT)Jsi@gd=HfyJ5d_}Zu2=4-E?cI5bR>Gs1DS8FSTzs~M4%*@O@
z_OM{auF}`Lbd8VAxN;?=|802Iy*)b%Eo7ecn%^tPjNh6y_2aj1W(N-*e0FB0vEJ!T
z#aAB}9d740pO!jvo^5qn^<1CGSjLYftqMj)mn>xXF7GPMp03T*&M$AK>NUkc)q7gW
z&RvtPZvT9DSE(^y`{6I|@84fL&p7?uj=ga<Cr_L(sH>|3xnZt#dD`oU^`$kt%in*y
z@qg*`I3vFH!)NB%-oE+m^Lcye)0=#j`^~jkSNt=3TiDvDWB2dhm$9w7viAPQ<l`}Q
z-@jOy9{YU%<c!zFeZfING3x|Uy*xY&;^N|##qY1vdmCPTU*hr4KlAKrZ?UkkN#*C~
zf4=|!-}R;cXXo$B)H!XW8?~h%^ZcG$LHlYdr)wLE>&Kb&N|}OOuqJl*wPaofF0pw{
ztP0*U!%gBU9<r9cyyRL~SU73P_WO0WbKm@}e!o}!^d^(KKNZ_QKG<9JHK?Ryi{0-x
z#@lOu{QkXr>(isW+oq+Slu(Y3kMBS2Jx!<bY_5vBy0)UC<I_`9FJJbzf4k|;IqUZ!
z+w<;DnKf(G&f@3KR$XIe=R2`!jm~@d9rx~4zqkGQ^QUD!KPPA4?y|R2rcGN0N*k+Q
z%UKq=Y)(HP77;PyUe#;e?N3{|L{DA&%e->sN~`*RdzP$uKl{YWHS0`xrA$1IN$5sy
zI+8nc`SsOL{>}RO?c2ACr<w)^2G3jLoc+!hMnudwuI+Mmmg!~P?ROr1+))gw^sVat
z?ATTIc2(8aS37m8Kb=$;m6TlB(!%og{{H)^GgBi$4Hr>C!G}4;7BW>28rf5NF3vK|
zE{c_I*mGP!haqy;r;W3xrM|rEZy);p-rl>v*2V3Ova_?BWm~=Nc<x;L`Z)JKnTsDE
z9}nG>;t2}X<l}vzyUX5Q*;$-!ntjdZ>+9>~vlk!IbL|!joo$x8rQo5HtGhd>q{zCl
zVd1+SkNdLuzMtGu_}I-e=x`gaZQYNYOG`RIwS2F%`6~B*x$9g1NiVJV_^7L^t0-GP
zdfOV6mp?u}4v(#Wdu!{il9!XDOtVVPex5O7#tKpGupL`m-Q22b_Qvw3pPzSi_xpXT
zD?dNW{Qd2%Rq3lKpWCueZ<;b^&YL&YpU;|WTUkXJr=1B13Yv6lYxZ(BUa1vjZ*S$v
zKiggYe%<nURbJ-zYc_)dZpI7=P(gd};6d{z7DYvU#=f)7e1n(yTzqzRcIlrVg|T}o
zF7ABuX~WO(+#4Glr=_kee0(hL^qxI?uB-@D{`=hi|HWgy(s!9s*G6r<bM552*Srn~
z9T*rVEIq@o`ts#VP+|A$%ge>?a+NMmPfstG<ks^%-Y0wcXt(%!tK)5{kyf?8ws=j`
zS!q@JD&y&?sZxeXE&F~v;s!b5m_+E>s8CQddRN)oDrNq&i*IgD&%UxEaF$)|uFrx;
z{{8#+>dwy1ZvAq#SKV)V1w}>8Qc3-3ap}xAVRgSJtIloMU?7<sW2bOmBl2$bgSUU5
z|F_fo|KOG9vyE~8ddtGX)<it~_N%kAGZ0h<Nl0kK$H&L+C~!P^@}!(|pkGQ#%8J6r
z$D($Ztz8wqe%-p*-C8OtM<mri<+=U8ABS(=e^~Hh_xpX9SFhi<%Ch*`i<{~5ry9C}
z62kj?d%qr&&R<dR@X(|s>hmg`6crVJy;$7;<=^l3*>7%aJeOSgdhK?bx&!BW=gfJ0
z=GU=4+0`FD6l~4886+quc<zBw<|UQ4cXyj#H+}kS?}L}7)9+rFZfI&`V0tji=y~*y
zSF6{DY)<q2`tEM@{=eU5pDvj4=xFz8iN%ZE`_rm-m)|LD2NmDk;(8f>e|?SGQ?c=0
z{r}q1_xEBKE?k&(X-TJwrFz!s6DJC8yXD!Ri9dJ#yube5FO%Y`UaG39tH1vJe*g6+
zCnuZc-ZFW6bF+JAXJ>e<eX+#3gU#%=diDhm8oc-KU**`$HtFA=19?3suTMUZS~ug2
zUj!(lef@M=zdGjG)2B<V-|q>w|MQ`Fnr`&6cDX8z@Y1vM?c=kruM3@TS8G!E$Ypve
zJHOnO4T*>ET+@u(v*TXf@7%qAzumsIHG8^{u&`;~9Scxz$IIKhc;=GL?)`GFE-r5O
zn`g69zWz^OeBIBbc7MMFg97aKw%p)=fPi(c_Q&|0`#4eA9Tdo~x82UW+;9KyMa>20
zWiKx;kDos4O_e@_#*7{8EDqa3*T==y{{D9L-{0S+X=fy+r<UKVT;3;dziw^x_GcBl
z?d<G!eLiPxnsdXTSJpc0n8b9?pGNQZ-`Ji%|Msrz>+8;bWB+g_G4SS3F;gWar@OmK
zFHchS4p|wbx;AF#r&)*XjpjFPDSGM^yQ}16?$1w8Pp3vs%euB^=Gv;wLc+p}SB0+5
z`v33mER)Pjp}(b)ZP?6rUs)R+&e!gIzyAN;OP4PfZ(Z9iUl(yqqF2uL*R0~%Dfjdz
zO_jASJF!Wp^u>jPxi_aCK47ylU}2M7#RJB*5gVOcyF^YF37t$j+O;zE^fW2+yg82^
zKb|^k)~fgW|NonH`+Vn|Igev^m%Y5S)Vr&@yO>)Z)Z$ndyZg?ylP7<x1@}ssru2NQ
z(9@6GvqHY^hvTH8zi|u!27(R@Pfl>_?@@@4kMEVUy=8gEY0~Gyg|)xGmDcU9+_^dZ
z{Hx{j>x%yE%et!7FRx_0-*E4r!-02qm8SMwY~d7+`StJ5=ku1cCfa_EPWN~A>65cv
z6<_!B=-R(mRtAIe{GPpgH}7$@4R&#9dGzSflqpl5h+U}r^-}%p3`6I}#zr~&FV9+1
zBSF5|vuBS<!U2YU^Y7l5*6;tfYR3+XrAwAP$*SKeC?m55lrL3PUHxspPPx6LEdAV^
zizg?mZ{E5#@9wUZpvKDI@At26%Z={8zb<}9f#duA|M#)+%hg=X1r?-!8unyg*R%co
zW^>*`Gfhp;-R1AgZu@0rt@`)lG5_@I*<p;&E-ZAO^yJ$?`|Y5TF@Mi~BbE7fwNbUd
zzkQVmTmNm}Nw44E-ik^{tdKNL+p*`pYUY_4hPU=sZ-4aYQBL&)riMSQiV+M&DmFGT
z{dT`rfbx0ZVz-xHug6dS@|^eDVz=H)#pi98pPH(@I&^hdS6A1imzS5%Jv?2?EN8{~
z{r{pSeR(!JKkMhGr=ZGY(V|5mOFRVs{(8Os*R$FAA|fJ7+U4tR>^xug_SVXxr>ABa
zCbxZidwaR{yB*He-`|0{+E@40R-c_^svW&Gd~H;yprGI^%i?8w_U;8W^&+P&joVwL
zX=)m3nsp`M>#M7!w{y3z%(=PAs`AqkF};`-&h31e7Zy04GyE6+`K0>%6^_kpQbs8q
zpqAjRt=ZY{@9mvsoZbhDoy<#1a&n(XNttFX(ck|k$hP`h$oYA;rZqnbK+S#?6_?D+
z%&6^ob3ySdsvBhzZLSvobK%#jUk{r3zr0?*|J7uFyNjSUu$XQXX#8S#+1pE(mU@4^
z8XmtgaIxF<JAJ8<AiJu*y;=G5^YhhCtz4kK@~Y6)YWn*6s;a7)KR-RSs`|3xcJPUH
zHv2&B)S#taRnO;^Z%I8Zc6CLdbM?137Z<s9U)fcfeRhuJ<)#0hot=GkW3v0zmBH>;
zSA_;wRP5-Jv0U`?^K)%wW#{uYpL;gvxAVz@!uxLJ^SS31d_K%?pYitA)>XmF`(~MD
zPwU?NGP3M^;mV+;SGHz{pPgmueevQ&P{Z`nrAt#LOjyv+z~Jicp8fgRS-so)Zv9sK
z{Op7F`TU26TED)p{~!JRZu$JAq@<Gfd%v%W*;y2|ziuxmSU-FysQq+O{rX=U1`UOr
znkV`VOouk<JbwCg>eElo?R+y2wQ|p1<l4RKY|>v)<FMrArK2t`E)w?k_QFz9Sy@+B
zB!arY(`OzK783HAZ&!Opcl(_ruPGXdT_T!EdAnY!eg5&dfA-$$@4Ma>|Nr-QS@!jH
zY8o0RM6^OqTv;1^{mg9h^J^kD9<q?(`}}J4`dwf8dwaiD@VvgZ*7)o!Q)5tTIW8{l
zoa9{pITnd+{PKCT%yP3%P0>vL^Y^cBMa7QHJ3BVcG|dj{I~VWe)m5za<&5M#>#{c)
z*VaZq-?;zqLj&JgCMPf287*D5Y}WO->a$nY$KPjRXP1tTj~5mZNqKdBeSTd1-_qhI
zCj_Ven>caeGN)E9z1;BG>`zYZo7u)I{me*un_>OAz=s7EAm82jHQ%=S+Ma*EUO)SG
zJKwyOTionum#FdfJ4M}<pH8aZ%{tT9(!z3iZ*_U_LMPVX6#<H%-nv%Unv7lL@AIbV
z#m-v$`1bz#{Vy*rZr2Q6)&m->*!lHZ^w}2|7lXz>Zr@M&|L^a!pU>x;^GcZ*Bqk<;
z+VoR&qp#g5K5v_La+0dvZCUfYIWKQ)Tny^qYsT!@z{$mBWSV`=WU+g{*>eB+WiMx6
zeQmP3xZd_$VO7<x%7?AuK2J|g^>uJ)&<tNUN75jn!PD3G?8o2FvYwk4@6}FsdVhca
z{^K(*JbwJRclz}3X`laARLy7Bn4y!L_uzUQXmGPY@*N{dW1bHCw$=TuI(qb|rizLS
zU%Rtu_O&ywC*>ID+%T||;j8`s_xsJbbofB#dEPZT<wC;3PYW!*yjs2fS*hmFb5k^f
zpFoB@_vo=Q<Vi4bG}OGlvNAa9>Z+;N)<!SSySpp%#)ibIFBjc&*FT;b9yjsu!wH8U
z2GrElO#8d<|G(<={am72PpbA$OFg+sXM0)u;e~3xvz}DgdV2Z$U!P%^EFvttc)|pM
zpFe+U+StV8-rja~j%9ICY;jra+GBT4@R(2kFQOL{@$lipuFlSj6BM1dWL{qOdfWaV
zKPoI`_}<>#{e4&NXSX@x3@7~eeBQ;taN^V~)9jKbCj|F?JSJWBY-akWT{1s^{Kz;r
z$Fl1E-tQr6A`G`beSExsdVhbvk&)4-1-tBBU0gC=Ut6mcw`a%gP4V@ALvwF!2@DFF
zq@=8Tb!TxpD=TZ}`+Iw%wq#5Mm5e)fSe%__d;9UP>!)SQ?<`y!y<N+~;z!$CWh0|Y
zl49rQ+pkx4@5?yc##{CK?RL|uFBy01|NjM5WnAKVb5{SovqFKDp+22OfZ=CYQPC!y
z(?Jmt5pmO%PHzI2PqWSa=huFlDOdf*aQahqzd0A~>@2>z%vbvCTx;|GRZ~F4_fjv>
z?cbc+`84(P{Mz|sFMU35|9;P^$uEy|3h(;=@AuY<k4d1uO1HTFzC_bszkgS+`B>G}
z({sgJfA5oP`%+JfeSLM+`|@)C>mMH<-<ol8QOw)p5|dYdWqdHdLotHk)7&$^B_2I~
zoZ3^!SG=<*=g+}r_N)8r>s?)4Po6*Tzi{EgS65a}Hp{v3VB6W#$FJ$f?TP4>HV^9*
zQhoCD>D0HoqPFF%?C9X|onvt^_vV$A!C#Nd*RROGzfbP^-fK7hW%I7yRU<tuHS=hf
zsNUfoqxZ{Cypo&ne13f#Xsl;@-d&TL9|hAtD0-@TO}Q|~vN&X+6RWC<O2)AsNxjp`
z%F3Y&oml5u7Q6Y|d~7*2ReQNpD;H?oWR`vXK9!e`j&_535UWB~E^26C2wfH8DPQ+v
z;qAhhw{jC6AMbzt^ZESnudl9#?kGr{suAdP@#4j*cRQa?nK!TQ>gUO_+wYdm77`K?
z5fWN-v|Bv;U=yp}>E~x>FP~>yy(;VKDy^U;9bF=ti*9Yre*O3R{c>*Unf3n3Jxa>T
zwtV|<Z%Axr<CR+S;zb54E32l0f<x%4kc+|owo8T8{bIIW0}VFU{rv?pgNd2B^!?uN
zS;zZi^ZwTT|62}ffq*I&CuirU@87RKal*s)(+OoSKfiA~-f9LfTT%D-7Z)#YsDncT
z$ivfgqqDxfxtUixdGh41>+An|i)x2W*}s2(Q*-mxb+OiKqqo0X^_AHnYzGsQ!hOxa
zMJ=Eni|=f+%zuA=W?f%5chTa-swaP*U$R66)b9fYI_?3sqMPedBf*1i6(5tfW?l8_
zxBV8;ckEqtW#vl$`F2uvH9J7*pvd`83#TwBrcAT1>74#rY#jm`&yq6BnE@`hk9bT<
zN>1J!^Zw4x;$LqzpHGPdjjSKl`7Npy;?c~`ANK#>U(>oj6{WAQon88kTU<{=PtWgo
zzkK-bZ*NQg{iy^s3g=pvUz?=r{pDf1d={v0{QKSRr_Y}+KX3m(hMAo&BqL+RyS?A<
zWy{3}1%WKvnt$K!>Z(xhzrVg-Ug|x4OYQHny}#e>u6ncac*we#ojG$?ujb_Byr|r7
zv*>zUwJ#{g-P)G>I_BG*;`1j@pY{gz36zwSKm!?1PfyRju)q=2f&q;=zp>7_VNm<?
z>GWHhQoBJ>E~M(^G3oRCOY_%vSAKq`six*uSXj8L<mIGm>*Lp#->Y=*7T3S#Z~ym+
z8P6Gs#rpexIDv*!t;*i4IMyqjeR-MhuSebbTau1){r&N{A2b)U`Tw1r#h~yo&ASuv
z_4W1X>({TZ`};NAcaB9Mx47PwU8S#M)+zDHT7@XP_l2}_iC$UiEiS4b7sJjcbK%z3
zY}52}GIz`G*Ph!aZI%=8`PtdhM@KlfW?XcdYgKyb;$nBx{ChU085bNrKRX+IdYW$W
zUvtI}{K*Uo^Jm#qZUPOtpPHhXcY2n2ex3|pd*$O^^O#%VYok*4?A_~IP_V(W_*u{C
zZ91oo;^N}cUS3*ixhna_hD6X1nZNztD{pRYK3-8-In!Of_DbsfX{j^K?^PU5NlB47
zy~!seBxGCvQHf-o(?-40=HGVQKXT+q_P4WBrc6oEIc>ym^Pyq$+jjXngK4QVjZ#m=
ze2%F9|F=9ja@xo5-_57%#TIRIcXN|!Kb&}LYj*m%`S$O(y*+TiA$WUUENEcy`KH+2
zWs>pn@xhzZe5cof8Zr^nQsXM0icbHw``xb77BYOsSywc+@9LAaPW$)caewx;`8(gP
zIp@DD_4G8!)0=!!QkHoCUKhLD=G*(bySIaa;p{9^y|*7fegyf=w)$H|O#b_Od-a|h
zUf%!zZ$4;J;qzJZ*jvW&%lX<5*Zlo@UGFq#94t9<TIRJiGrg<5yt+=`R|$4<YWn!;
zlhNN_UyC#Oxwwo{Pfs&_er|4Y^z$1Vlh4(kKXJl9R6ERsk&*FPyL?^2%kl>Y7=;A|
z6Av9eZ2L}{VO^VI1OwNcCr?sTRa92Q>@2GK^>TUaG*Gkj)wQ*=gMx!??{#0?S6hAb
z=+VDVYo}|6`<<O_e!WN1c#d<En$HY{{QP{-D0zM5Zu3ix%<L+jsi&vyO}l@_?)mxo
z*Ec2~zcX$B?{~XDef(JX@7@AOW>;5NP(4!h`K)>9mW;sXn^vsQ02LJb|9m=a`hMz-
z4T;TR>*Ll+nPz32n4p+<nwgpT>Fd|kXMb(hR#I}B1gdwZe_OFaqyH~EpNvLw&orIL
zNsIr2noW<VuK)3)LR33U=k#0C+*=`_i7D^s|Ns7mZcK93jo%mZ``g>%ZSAeCJOB8C
zT2Vfrrrhz`A3uIntkE_wxbX9Rx0vpwb+Nla-9gig3kR0Qzr3{6H06YVtW8D0>1n#3
zD|i?th%#|BFr_~});noQ8?SWLp7zC_lhurlS^SP&=Qr1C=e_#-`)W%+J@EuhK!9d@
z-`w1MbysQjRIO00>$lIH_nM-y@Wcs^?cY9pDDeDb;qL9?(qd#}RPy1$!PR-yUte9F
zwB*^@+0XY~$T`8|5?;sQ@9TSY^Le|~xAXVMx^|0|-n$;SyDT?y+SI4EqLC+0oVdU)
zU$dZ%S6WL$!{gq)dqoy9pFVxM1nQ&SiCgT}d*_x6U%N3!%+Fi%%yMTvdh|#{N=i#!
zUOxS<{r^9kZ`<uEf4^?Y5|z6(pU+BJm8_Vi6S-)zy8o`X`BztkPWmS!_5GCg`W=7Q
zL~eFFCXsu0m#O=676#BDN8{va)6_g8?PRq#-@WX+Z>jh6b6@}6-jcaEXsK7`qa&T5
zvDb6+Y-c|``~0WlGsF0QYb(Qye*gIOOG`uJL~3MM|Ff^({(Y`jogV*J@PpJz*jj)c
zMK@cy#n<h+FRbo&Vw2AEsh!fgs;aJ+=6`Qa@$&W#etT={*7WmoSJy^|@2&nGmXNSu
z&)&VD(g#%b{(9VRU$kZZ?{~ZXK_$=8E>TebbgEu#R9#)&q$P&Q$5M9gU2`bs*?ptW
zwhEr03LeyB{_vsTd9x4`6O)SPWHsNS-REE4Ex#Xnv`f@9^O8!hl&P1pd*77p+qXw;
z&04zseqA)EI#hWsx?%NM{^ZDMe)H|-&JAW{@M95RVD)>({&3B{(DO1yB~RI(y*5pE
zepax0qOyC|{e87s!OPB=<{v4wkTE(|F-Q5yC;rLipaS#B^XJQ_OcD7Dn%arlnl-If
zSV&04v;1!9^tGR(r)UH^9h)H&pZH_-H2rwJm**`#jeKVq9Q>L4f2#TG^>KTn-tYUJ
z*Y|B>-QTLSv(5cMIrDma{o7AZ43m4@dZng5-PO(~`{~BKpR>-_<jPwXxqwC}@^-&9
z1JwmuAuA?$|9^RT`R?4qn{;?(ECQI>`L0}C?7p?=sTU~yZcaac?f<{;_MkC=Pai)9
zetdK^HF6qg^soBePIdR=d<@}-1#}o#{d%QLRXnxB*IilaJ^ju!{rG(`(^4yCgi7|>
ze7WF!PSKLz?#BaD`!&;bB7-J9Uo8L{<+`{}makneZqJOj|Ni~^2WnQP_FT+fzjs>d
ze$dp`-12)9QzNT>JZvux3C;tRMw6yIuGab2b-0~B`_GS$n{>SI?k+Fi_WsV!;AyEV
zlaKf1y#|%ZkGC1MGgSSmPO&rE?mOEouiy6H%jNUe{fc;a<cQ1mZQj%MGM}EBI_cm4
z>V)g-VnMa&qeqYK96J8*@9(YI*VpNMSM)r1@L<;ceS6c+%~`4DJ1gV)xw*fdPLEgl
z`_tU;*o)uq_wRpY#-OmALxF*7PDcj^sOO`p>6v`2r!ex{Wq<q3V?B~wJUk)oe6o2F
zyrNnm7eK9wr_<xJ4m2=ce-ppEEZ0(o&v(Av-KWjzSy`**RX&?36PwGy#dYdh!K%}H
zzun5#3SBj2ng9HC)8nd6zGeRW@$vDiD}&WR^I?UBg|BXH&F<SaKiV|=TFBn2uUj%N
ztM$rQUdpY^%F60%x3An(`8n<A(W5VKY)szud|oxE$^U%Qi4z`@$#)JNJJu_0TJ*%D
zzkczV#H@L8&*xO`KQr~Vb<K|r|GuuTkKKCi>FMdaeJA|@4J1E5Hy1RT`#F(u=I<Rw
zJ<xHf(%p~B{{5*0C7-<Cy9*vR6`u%An~-^Z-CV7(H7oe-{{(;<AIGi2*T;dTC}Y1y
zFg)<$Imk3&ed^aQOZ@GAy6{SwTmW^lN?rzCT^Ab-8cLdDS^VVb)1{u1)hg%2Kdib|
zxYg2rUC6GIOwg$E<z>FXB_&(l?R+jb*QPQkzW(plq@*O9dj|8TF7ut8b!|-~XqGtZ
z+8RxHd3n>UD;~VkW@n1#ZrES|s?c(8Zv(a1K{F!LbfdKl3<5wFE^_TId31!+H2>b6
z$0;RcGt6>lNtx%Z0re6<3mcM>lT&*xetUcS>)Y-3vu<z8y*ZCvrC4L?m*?%T7rXao
zfyTY}*X`9g9dv%4?bnaT<#(^SygFQe@7HV5QYIM_rs>D8J2h4N_4oVr*FiI&D}&WR
zqe8j%zO&7)M(6Kc+Ade+G1saz=;9*R&_ynsU*F%4FMV|-@b9m$rseNqK(!$#kQO?(
ze>rP@|HZP|c}4g3y!V`KmV0HPGkfWa3yxE@LN6Wbl?HXhSlQWk`@D--6{1=C_EzZT
zw6mbOw^`=->$Yq$QB_gVP*8BVc=6(`J(Zg`*H=~Tk}}Cy;5AiiW!Ty%t@wR=&ds%6
z-qOO7dwZMj+gn?U`7VC`_U#&|L%1o``)=`hThMItqQ#3tR|F`&y}jK(`}(@8@9yp{
zeQ<#B=kMR?uirB<Oq#*|<jc#;&z4S)Gt!OTX42T$cx=-eo%xsdm%a|WyvUV1c!`Ig
zu!KZL)weg9eKMAhHoia7DeSv7>uS&b{rgwO?A%oO|L^zwCy5O8-q&YYE32v={qp+y
zc^5Y~DbT=^kWdn6&B3*`(bFI2#-4rpxgo~;nT>*|R!BiKC?OiBoDc}!mJ<nDx1bfi
zF2}7`D%Hry2((1Scb3V=9rv}LGg{XC*zoe+-rbt9yS9Mla{1a1TP}AC3Yt`CA+yYX
zzMb4_>*{Z7B#qO0GH+~H2pVIltE*Gf(K)jv^YXDXGmX_xKkn-3`BLF?OhQ;%I(yHa
zJvMsX{r%=~adCQ|Q$VE-Y)I>?zpt<9dAr|hcD`IT+XplZ6S-;0%D}~Kl^>6a`&Ly|
zP5T<V^X=(+E>W!%=(>!`XEW2!JUcskb4>l~YipOq?k-yvvNC9y$3&%NWp8giyZ`^+
z_t5jNXBZ}*Ict7D=g;52y@wwb%w&G{<KyFH_5c5=X=$BeVPTo!HC1b-cwEK7CCisr
z+bo~H-%ngOD&^JH)#;$IIj?CtneX;~kNf=l{r=r=?QL!E?)h+tds)%bQ)&td2c~F;
zpW~4*IIv{dvR!|3^<s7;+^c%6dwEr;b}(r5i-16ale6>L*z&un$NJ^-^<s8B*!EZ1
zy>G_zdDZ7a*2moy(TlkOTI~|DGU(`?>i2uoetmiQ?9tKg>wk7L9C)geT=a43gZl^O
z*;b2)iZ1>1^fYLEHELs0tD5huC2@PJc7E~p^9w5}0Z-F8HnY9FvNE{p_1f(rp!EWg
zn~(imBJK$q+>on&V|cgv{a(;0Xx)#8?7nlYLKnOB7R}xa8n^nP{_{Bd1a5J?7e78e
z=HlhO`s?fK(B*!zzVmEu>Nb3NeceBJx!=|N{ePd;_&nK^dRjzWeEG-6$6qgOmz(tE
zx$m6R)6+utR(&<8|5x+;mu>a8D}R1|-kN`ZpN@PgCj$e+pSyn_=R1A>_%Sde<Av#O
z@cNMG?PZm2wU?LqhA#CIo&NFC{o3zygMx#vu8+5${`L3w_v<e&_uqXt1hjPU&*VRk
znLWyuELrm6!^6X?Vs~%5y$Q7F;Ev6#pYOM3T`hVUzB)|TQl?MlZU$&s<)6C(4x1E<
zgN*$*>$SJGYMPo}wLJa4k(nJ-Og?y!Ful&s&JMIx>)bwWkn4m69X2U`p82<~t}gGi
zk-Y7Uo9ec<vHSMzliU9I{rmc>oy!>*7#j9lKVv-E*3iJ<`N@Ja>=}#C%vvTUrjmbu
zD*JC+mcN^`dA_=PzueVHs@@`!l9gBM7#J8%NWXmf(#y*$s9Q|;j@urEY7T{)6D+@I
z6>D63$|qy7;J^WgpFe(B{EpjG5$N78S6UgEcFw4JYv*!MOH$6ZD(3ksMh1q0y`cHl
zySvNJzc%7hVe&9*X>Zq7QE_>FZEbP%wzRWSuI}#E_5FQ)(+u5SUt0_6G|qhsDr=T{
zPmlQ(r)gvqbZNf+i>#}wV)rwHR&ADUEPWmJ^~J@*KX>w4x-*<y<~P?W^VOA=UVeUM
zGucyqe|sxsQ?X%l{A4v>5ebPE{r3NEs5aF6`FLC_X2*tiJD<<f`99I|&8n!aS*s#9
zKjXC$Vqjo+B6j%ce=DYrC7?=7-EU4nQPC!q%!5s=x3=fcSIK;EpiwJo%ZfHWS<q~(
zhMCzlOW|KHE-o(p{dT*yo!z~iy7l$-yz+K2|9@TIUvj_pJ9v8N-|zRPwZBUC{`>V>
zD{zrZoQx6!1H%OUKabO$rY~8sLgVe--Pa#)y1To4b<ED9N&ogd`SxV8f7a7eQ$KzE
z8v6R$TF~fTYfH<HwclSZpa1IZ_WRe~-Q69!Ehmy!!oY!<jb}%eET|8@HfrmZy1!NH
zK#N$PIM>9Twq4io;{1e(vR7AyUN*m9GkNVke!CwF<Z3<~yfcLrlw#f*@PiU2!)@}`
zw1TqS5YYN~?se7!cdxCD{=AEYVMkt5b93mrn4Np{m>DMc3pjjQC}&&sq?D7P;O>v#
z;+OLG=c=|aFsKMRd|LT%Qq<E@L52d^oU1#FZA-qq2xQ`5a1dftncp=j#CUx-$p7oC
z^PJcj7#I>LTOJHDY6t`+RhB}N;#bQJ$;bIXZ5mL~{P0j~=-Mb#Q2u)P@}=J2ZMnCX
zP1B8Dm2q(qXm#`YxV<G`UR<<UB?T(8?Du@$)zFmm|KDHGs3&Ok2O~3^hJiuA>aew!
zPV4Vq!z*p};<Wz$DJrV!>Z=nEw`oOgTH@9xvod(O-^;bz?_JX0|7VeD_O%nYX9x2!
zFf`Qb+3}`dzOphH)URI~wbje~ZpmbomkZnFE*<R_|2qHwANS16OwiyyXmR3~FD1FR
zws;B(3Qk&LRr(4v)Hqq)|C%$u?Ud>5psAH7nr#WGmsbWaSMgl9aG~DYrQXx09ey}r
z{rdGPneXoG%(}a4t8tA-5VT?e%>?XgVq{=wsOeys<hya>Mx$dZ{O8+&T6Evu-(MfO
zIqfBAesh6ivj}9NqpV#`#MbQVWzqZd?(Vv^qcB-6gb!4{$@3gMwM<MmD&xn8hgE;S
zUf-H<kjZmWYGl>FpU=O(TD{(D5}%BPf+rU@cX716j*idDl`D4@JZ!3|sd=L<0}5An
z4h2gANy(KnW=NF2yA#>i*a(`j0QvdSQt#FA`|HjvPyG4w=gzgS-@n%fO}?mu%A*JJ
z-3*g_jnmIvIm~arM%KE_Vtv7u{QGg@`f*o`&)Y1{ySocCoIU9aXp!XF`geCMJ&V49
z!s%Zphr-P-ACJqgPCGj*@9^qd+j3WH1~1Eae607}^5j&$qr2`jGP8?FNX$69T0Y-<
zR;g?B_W!>@Atjr3X2wF$l=+sWOP4+kG_99snUG^u@?ruLGxObB`Y}5cl6#Ddj6~$*
z)=iio09vxR_Wmr>Y!O-6xo7wCPP<}T&dSWdpb);R^!2j5yD|G2?rlhH22Dq~i~hC!
zAhITBRnXEdv%EViWUb3~Z1JCO7aJEB2U<C=;t3i8J=DrQb<UhOZ#L)LGy<&?1x?4U
zH3d~%KY7C)HobhgeEzjZN4u{saAf}bI{tr9K){53zg}tUMs9Mc{rxTU<)x*np3d!j
zpjj#rY3bF_Hj$KV)t0>df6I;@KmPo!BPb_T_Gl~Iys{zD8PppCH7e}>{YbX`ctrTt
z-s<h3sm|Ij7v0a*rJkA+n3S|gD|FS8=ku!l7Q6R{y}q_~Yst%?d3CIy<ZZLA;fVui
zXr<ucq3my~!`9B)_w$*wv=$Qs0|S>BxKd%D$<7FnCq|1tTJAj=tRdW69w+`GJZ4vk
z=j!nFpjk?<>3VB-zuV<~?;h)?08nGKehO1LYs&3yxvQeKu9{_*3tAJl(sQyJXj_9>
z?yZ#5|IBl4EZCNN8#MCS$}JxD_0`p{2ifI!T)nX=)mv0ID#X#z@zvGU)BEIXv%G5=
z7#JMt!X7Yr?63P<^8If4>mMH<dwF_ZY-DB+*_h;N`{%=9^P2nK)Ac~T08o9u_sb=3
z&~)yVWxmp&#hy3SEiEH?rOmE@28fHEcz|}TfQmm*SG%XDM><X!)UuoZ^md^)Xe|yX
z`?0dI?b?!me_!lk_x@@7_wQHHw6KVfwJy8z`MiC-^J~k}S5vCKzgugTd+WvL^Y-UA
z-R}@oo-%LVI^Wr5no3GelR}pJ$sRp=H1pGwlT|Mkw&!Kc1^Z%J{`!U`OO~t%TIwZb
zUA9IqZqJLH{@&iJ4-Phe1uY{v-X|NiqhR5^%IC62j~%;rp$fDT7gQ-IyY);^nQL1e
zc1&V>UGejCpa$mLht88gp{o_TD&yOmo90_U`=k{1pWe=xa<GYYmSJ++v3~jW(fNBr
zyT$dVsenq9u8xj?&1q*tmU@YnzPS--ntkm`3#V{ihVAKTy1^Thj&8}nZ+ExkvM*>Z
zvP)EZS>4}XFZ=EPP56?YVO8^EL)P_mZ@1Om-Br4^@bNL}C~&ade|noi$rH4AewuFd
zmlMkUFaG_0f8F-`oyE@We3`elWP)b$4>q$;oi}eCXhu#^QPF(MwEOk{W5xAi0(O_Z
z1x0E0yE{9pJ{)BK3R+F%Ki_WB5@vQjk4c9P9lCRkpPM^4D{GZr%#H%**Ptz4pElRX
zI;enV;`;6X?Wp_x*4)*_<;Az#`PUyDY%YCvMzXc7?bPYhr>9wgb^v|(QgZb8@$54*
z3_&A<_iDe#f@V-btDVZ;-C6nNONr;C`Sa)B{x$RaniOc=^{JM@vi{$mOP4Nz=6gY1
z&ExX*ps6*`Qa;ca?&Desb0-If29=fB*VpO2{eHiGe~%$(J?m!wXA{<(o@-rxF4Y>;
z*|87YSIcz`w5wpbzr3o7$_a_bJTkpfra?(bi_*@{TB_*W_5!qZ=*Gt6t1AK*OGo)v
zRP6ZoegFTJAuEIQ-Y#6YaMF^;$NR0@<3M%hrwS%!=BJMzPww5jS2y#TXztyA??J8D
zvKfZSZE0s_JiIh*+O%ozSO3&Lxy|tDgmOP<qZ24*Pfk)bO*+C+`s#{j^|v>H3!Pd)
z(}G)bZ-*(n_g%SLet&KCyPeP5>{3^St&RHi?RNguIdj&WnyPJmJ2)sv<*%g6p~Hto
zg@hKBzP`3|?S4q7FTFUwS+#UOUnnyJ!-Msp`KDc^#ebP94!7~H3SAv07y9M<g#7jd
z&?=IuKOc{a3JWj3owwT;w6JYs^6@YG|NlLIQ(Zy9Vf~&@UEA{RYMtJcmthO4ZhH)W
zeYxx(drRGChJw7j{Lv#vJSJI{zFN}CEv{v0dGlua%}uGd_SNowxBLA*L>kmqNK8zO
z+FP|%uJVbX=cQLySEoi!^O~;r_S*KCokg=uU!PL+z8+puvIVr{*mJVl%R{Z)pfw}q
z_iLAf=3SlJ`AV;umb?f!JJZ;G<Hn6rCK(g_=2|VixY+&mx7+#QH8p>D*9wA~Qtv<I
zGJs}2L94q!8&g1w5!!gAO)@ShOw|llJD&v_@i;YIf4%2qwaj~aDnVm)pk&7@VQ}E)
za-W$-UOqloCi~m11l8#K_U!{T8r}Nk=AQj+4=OzO>z}^yRbu7-gzxX}Mr}&z1P$};
zDt)~wZf{j(>?Pi>|Bs9K34d>3_)&dBVdXT?Jn}5l>}REh3=^_v&cFWS{jK=v`Rf}z
zf<i*3$kl$i2<k8~FdQhIl%Ego@qGABRBu32fbodL;=;$rR_5K^#l^=rZTj@-xBIu3
z@2gv60IHatey(&d;*~UVdB5j#-=f8fL3{S5>O>l?_Xf2*K8TBSFc_tt5&@;S&FSaQ
zy$%9tdg9b5(F7_7($3C$S}F+=Dq88lG66Ie{Pxz?%2?1Q)P@)>0mdhwO!4aK>aV|E
zuYY}GV{&CIs2SX_e}x0f1kf_s>+52xJ{}bZZ4Cr%RE*e|q-TG$Tm1ZMBT(xz#<_6^
z=icDuew%c(*PjMiGr^lxsljKSjpcf85Vt^91hkrkfq~(l+^46a6IKQ<_nK7o?TsdA
ze^tEq`nbJ$DUl$BMVj$!6Mp=th@7@`UF_~t*RO|v{P^*D%<)Y+;BBQ7&ObfPu&Mfc
zp68_X>(`%t57NT5twz$})O7v&tM@@}5%Iax0&+WXyH#h`{FI3E2Q4_3G)~L7zAo0P
z?$3@ML%q|wr!Os^UpLGBD#*+eeN2K5pi!E0bFE*WnQ5#Qwq}OcG@X~%j&E9Hvw{ay
z)A)fRpyERUXbKHfU3`6Y_46)JPk^C5uyF@_%JDu~DT@MyhoF|N#se-F2GD4(-(0Jy
z*Hb~BII)yT&>^n+ttqI|@bdCH1&_cT>?t=lrE+m{25!x|Dk3hvd{gRaP+_~YKQ&Uy
zx-3U76f`!WV9n*i@bf`4|D6B(3LZN3*Mc|YI{XV)U^=nXd-|tcpmLnyx?|%Gb`a~p
zedop<Op`Ldzq<=szq%#;yqssy&reTFzuzs_*3#1I*9N(Bf-I|A1CN|dMDp>zQt3X>
zIyBH+{g)RPD?>nuso{;5fb)iXb-!~#yPrUn^{UX-pt*v%7KKi$!`6a!GJ#fg_evV8
ztv?O2w}6-R5!Z<pPT?!ta-%`LwWWXitlwQYGt;>A-5twbX>&h+n~yGVFC7t`uw;n}
zXp`CLr@B#F5+*q@Ffc4&&=6o$F)<05ZJvLw=;yPuvqgo3l9F9P!T7I>Nzef_dJ9^f
z0V--|8mG^B3tEZ1B5*Nise9?mORD_ZAg4@_Wql+!;o;%-?90o1LG!tBRWDUr+uOY-
z1qB67nK*Ibv0mxdSHt7aKGp&yff(;b4uw`O(My|BPlE<Nr&l_F)>ehBjaunD+ia7L
zcK>RSsRg>MN)0KXr9Gh4^N_gx(am+l7Q9CqlK5Aw(6E%@15G2?+1Yh<b?tg4pnZDN
zmg47rv$a5Gd<cJXnn6fdSo!p(Cj}NUb)Xt2V8heX3`Uioo~-@{O56()9?3!WVrvR8
zrd(d;3u=6L-=3uE4cZ9;+7Jjy8le2Gpw8vOAZe7+0V)Lk)P8?=_tk}k&1LWJ>3UXu
zI;n12_vgnREq+iMHWTe&08NR3=JS94zOpj->C>l6d!@}mtII)g32H1nNo)lL^rpoQ
zEEBeDF=1t8wXFaD>-Bn3aq;C39wc}M#l*}hdvjxA_)}1*omj>s=y2%Jp)FtkZ!P~G
z7<aAo-|=|kMa&#0Z22Z=YIRLoq`7O6ZiTnStzE26nvd=-(t8%`nX>EN##u>{dAl+-
zm!_#@-=0(%W*B}{IwCmuuyxRv7M+d-4F?s9{{Ay~e%)lof`Z!gFCQ(^&prJ8Gv@w7
z+sBs5=Xb7q|F!nnOqG*=et!OZ`~E*OcKMou!~Z@#JuRJglbeCTB>wCtvpw~1x#NF0
zt=si#)tZ={M#kyqe0+U<`z#)HwEeyR_g(qR%gg;))ma!AuDNz|Oz76%XR&_ox2U{5
zACHy1xnUT*%*V4|&UTWD_jJ9pS5^jpKL7vEdC_@73=BUMbd?-Hkv}_s-_P3b|9%{|
zUzU4&o2ox61H+p2VuA|w-le6b+ioOvd-XFiFsx}#lT;9ot4Lh6YE{uW%jZjW?XnV&
zt9Zz6w|vzqt>^Qq^EfXvGBC)8ZRVNq`MkY-XlSUUeO-;&?Hr#YKA#yFWWeVFY@Sp9
z@2C6^8Ac`shO_aTc_x@<U;A_RI0J*j=_hB685kNaZRudBe7SVGQSPlR-|x;h%Z++=
zZf^8F2L^@%?U!`)5B|!I|9$KFrjnPJWXf(NX5an)@B9AweX`ci((Qjoo}A3c!0>vp
z>m0^P&>ZsxNA|t%|1q-5OkkI*Sa771fuVtau`A1oNvhtL_SOFWemDR6y4bk-zh8ya
znHU)Cdc*`3qI0)~f(BH-->rYp$bM;e`Fn)iVz=H?y4&weIyqV0e3$Bb>-T#mzps5?
z4O;&D`Kf;W&L&|d28P#*T=#I)9%|v7X_)NhXaDz$&m0Rw>o*&mCq3EueBNo$T=>Ce
z_UCho&#nA0g@NG!d!}HzLsnK+(e>E!r|$N@0@?UvX1I2XrCwa*Drr%Wux|gqUq18g
zY)wr~r^*R4F#KT9eZ=E2DI`4n`HkfMvm1}gMZXLLd2HoT7LQ3+u3vw?@wnXSL#^D#
z85b6myuG#ck}@bv7P`hXO;wq!?(dhIo6E*4HKqQ~@%l59{q1I|L~h9l+*S5=*6a2A
z_Z<RxL4JuV%L!idI}<MZ+uJ&~^PT;AJ%0Wo4XJM+Re!(VzrT9{GlK*71tq2@UE1qT
zi0}K*`sd4X`?HDdve#1nZ=U}*r|$pn`{4;j3=9diTRIqK8mIf&{r`D>|NFY<=jQGe
zwqjt|!l0|<U{&@8<kP+H|Gl}ndGph0(bFsh85lk!Zs}l<G|P!txA)tvJs*!r`+fr%
z_k7pub*CS;%f~gIWMF9cdQpk#$)j%lbD&80_xJbn==;CIR;^m~>9PEO3wPPlkZ(7V
z`%B*6vwc3dJZ|Z676t}8hi;Au^K7f1ZQuVlw~bGBR&@SeQ`f*J$E5Q?GlE80S60}3
zI-x9D=|7=USbf>9T~@o_Z1SGGH+_DsnR7dz@9%GKK}!OA<ZOTC$GNdFFwAGseb&pd
zyZrq;`F|hUe?H`|pK(2|S~vUJ8qe){cY|VMXSU5U&yUmF`DD_T?CW`JtAD@U9uL}b
z=dHij<n%P%(@&?z&s#pf&T4boS+CV$y3cO&F)&DnZ2mv}!~B0=me;%ro`1@G-^bpX
zzpvx{CzZUuw)Rl4YWm#Luz&B~|I=F?zCN#reO;%pdfL%0(aJ}i>X%lBuU9!auln80
zW<D#8;AK81Io0O`bWUVsSnz1pU)2auF}^x%?WUj4W`|czVf%i+zCLgN-)}LMPp4+z
z-T(L7?cnh6>jLtgMF$w!m*n5y_w(oZ`nYQ|7#J?RG5O8lIZ40nWA{v}(yYbh4(q3w
zW?y@<I{t5#pUuZ3Z}xmX=ld<b_Ul!hm>mYyZ#KG5-rLB`{_Nv%dHrM`28N7jAnQGi
zik_U9Q*=sG(kR6Pq%CLf*K3)Vm-$Y9Tz0?qd#~MT)9W#l!{aJd_y0Vbe{Gk2{l7md
zp1HZXllR`bbxS91k466ezh!23OD^|XsWUK`xa%r8u<^^?`S2W+w@=muimY6<>Xh~S
zJ(~lcN9?I6{P#5epDHN!t;*l+xt1KZCSsz>%9SfKH(lRV`noNdg@b`%zKgDs11Num
zgocJz^~@<gXZiBdQtxBE(%<(T-&3BpY~Q|pC-0q_sx2+c%)l_;L|4h-SdV1zOF^Ub
zb8}+K@0R|&_kG{=%FoYKE5DyPeQK)q=Wn<3pFf=*4_aO=rMI{0ebAcyCiVaRl)SrB
zDSNIiX5y1;`=g}4KIdm(I8|_3cl(oR(RrC$zCD|rAC@tzzdub@K|6fi8U6a7r}uoh
z<PCDmt5>hC{kqj<bY`}>zH1;P$Zfw~QTtu{>&wZ^<#VUKuX%3$^4i*HP=j9W_?cOz
z+RSV`5$*fmu2G5q`NEl*;lsjSDO0V*Zl?cOKP30tPCH-sZL{dC7mpX-WIJ)Fm3#Af
zyWdZiPLIpl@jLYPw%pJ2|NoqC`QZSw_x$Dc|Ns3ws$X|8<?o#0b0<GNJ#Ae13A89c
z{p9ZQx4%yM*G;PY{LJ)D*Y|nV?@oR`Z$E$YIjhxIb}}+7u*}@XSai`<JoVk3otBS#
zj5q!N_dEUE9Lt?A7Ihnyy}9w{A%DF_?L58MT~9t7=Fi{s@9z6L^U%;x%QqViOI_Rd
z^K5?Ft1BxdZ7K@<tlw_YiQc9&S<Uy<y4~+?>FB95Gc<UC%)cI6p8Dm*#hE6VL5HLI
z<!nDa)vvcaZ~Hx_>_%ccm*4dp@%tV2mA}8Y^ZmZxMbBoYryXkHyqUB4Y*2XkbkE6Z
zJAaEZFwD<5YvvGF`E+WJy#2n5xAy&hH+zxBri6n{X~GKM?^VB#y8ip?>*=6G^(2#l
zVL@f~w)ZV@@$vUR?2~+7`TpaptE;sQg%}t<2%6qDR`4_`e|N{`+l^%2{`<S%-sINb
zGoeq`+RSoaPdTW6Ww$3yRsmE^p0oXaNA30UIYnNJkEeo5!w(ltZZqtB*e0!I%f!I2
zq0#g<gXOas$#9<dLS_aAd3z=n1_q5@(BU;+$_}8al0$%jVS&le6W+4w3j;&VAKTAo
zjHk*mCNzKe{ARJR0z;0==gA?@S1j&Z^+kcfM3{-Cq4!0vO7^5XQ<lWHrZe6UsGIxb
zju-#MMVtZ*UKjLFzMCq?l)zlTdCmQ)>k9@3hfGkW4v+#hEvC4ECMlK*Dhz4i6IP(@
zF~)g!c6@n%-~R2bt*4jU|9vS_`D7w!Q_w7#-)}abPkV7;VdnjPwV*|B7Z<yyUtHuW
zIzx(qVb=7psd5XJ{`j_i|J-)DDviVK{O9#{znS#^_x}H<L&IaI-YvgxYn*=WjGy(}
zDJnC~^W(nV&fj11>Wb#{xT?%)y3x~4>+iSmxBpv`c6Qd(u(dU(85w>&`LzCFY00(7
z^rxVbOGH4~t>;9#-RGGxRWFzR1eFLXGc5{}KxM7^yb7hgRbRa(z1jJEp5==L%|@xG
zrpzfg#3?#co`GQ&^YnzZi}!xNxBKMH?zh`+>si0wQw&-&*S7U`{(jri(o)`!6IIw{
z3LJiYdpmpn|3A-{p5<m>I6INyXNQ<h#DsORyVX47kZYXBpk~u?`T9L?J~A*Yh!j+i
zKj>?IcS_~wXQ@w4O!S=e^Ye3c&#dh1*)q}5(X)?si$8z6{k~qQ8v{dzAIpjMFQAaT
zv!hVbBqIPc;-V6{G0An(l4Z-5o&2~qdV5|84+BGu5a$H`#Dh(&mR~M7gJ$~fl-<r<
zxoVZyB+zm_&!G7D`%f&j!`J0N6z}A|Ru#3YBooxuSn54J?O2cG&7#w~(%<gw{_<+C
z_r`yh{`~xWd1vwSoLw)Mz5cKrrFJMhJ>UM{C3$Vb6UVz4BKg05{kn4X>eHYNPUmgE
zr?ktKWo)^>IsJUe>ub9GcE2(vKR*X8`H$~^2`>4WnHfF^u6Zkdz+ByO71QRLnjI|J
zvTGwZtAV2I%uHkB(pOh_WGo8S9<Tk_9e-wh-PhG;W}B~1d<!eg1(n^VnCdYwn0TLS
zShLvpyp8eYWxk*W*gV&6v8T^w=jUztKXv_{>SK>)-~W@g%x~^2P_uT+Wxvy#QcoLY
zURv^I*XwnX#%VsRYU~UR&zu|9ECzK}K$Y~C%*&wGz1r{htRC<0?Jd4v`~B$|<MU@)
zIE6ReOq;!Q-8#L=YQ9m&uh%m$95_CmA<`XG7F)^RULU{zPUZ8t(uGnC3>h=`unm{;
zaHy8!v~suEq|nu2segWae0g<s_^oZZv-f_#XMK6O|N1Wx3=9E*OexBs>apnQ)bM97
z7Wbcfa&q$JRiUeSq|J2rZNCI8b!TR1=*kRz$!OOHD!V`p{qUGV*K-z+dsI$dbeEqC
z>M*?7eEwXIq_LKbA_GH6o3VoQ!7D3+LB`Cfc+|<8ZE9+2`R~W$&mRu+r{CLCDLRLb
zfkDf?A%_Jt>;o#4%HG~Gjgq%0NH}Z<DH?hc{{8v6a_!pOO>xoDvlnT6dbN6eSb`P<
z!wMV5O@eD8HY%B#n)+Ug-kx`N13#$o8P~E;5L9w}{rc7STKKw{n;Z6<{kQj#yA!dP
zamt&$^V9eHeezLdXT0HX@9)lM;-}>2G2G<H%Fe!CH50T=d$Njc^|zSUpP!wZ`}?_l
z?C0nF4gKB4+O`Y_*i6gc-QkfkS#c?Oiw9GRvV=i`!@uYC|I|-U*U$gr^u=ASQU%mI
zH%K@THNX6XV*8V2v-3_}i_ZVMFWr-YVZ|I#?XVP3)9uLwXDwT=?$A&X*T9#Gc6p%C
z1Vsg?H8wMS-pnU=%iZ4J-(SD0^z}4$`I1ghi^}I*Lk<fwJKvcP4-XqB9%|8v*r0Gb
zcYEwIpP7@U$Jbe!-zjijdK?r(g={Ixkz2DuLG7VCC6|38H>G%%-AtVxQ}gjCs0pfV
zE5*PN(gSYqJg$W_cqXJJTwMhoSE%~>YU;M!+iCCjen0o+<z;PKF$RX50;VOB7SCoR
z<4qd8r?MTi-t3M37FT#w6x2MOr1JIa*O&MA*H?XcF;UVuEu_MUf#F8M9LAL!Rt7I$
z7P>mj^5YR<>1&`~`k#--pFeDuKewmyvzCP{14B*((~?8;Djs!yd3$^NMeAki@ApkV
zQT>~N;X|RKgH{fXByq!n#iMmCdXkVAXIgUT)|Sl4zkdBvdkv~dZm=^n^m8)?C2rli
zb*6oN-Q=&|uT_0}6Zy@9fnmc%jtN}S1_=)H>i_-JiQl*9;xFZXn@Ouyt>Td|Sl~37
zk>Nm_x`Wmm@AzLqVe8}OX0PA7Eiw1%s?eE6sb1giRloo8>gwvI%OGV}S6yPRxx_1D
zVE}3+fQsRSgH1Wx@0Nj-#?}3NdZ*wp?^HQ{1_m>Y_bvB$)<kUu5BTKmdbvy|a+3<E
zr>wW{$0M1F2aQwZctOg*jj&_ckXR$Dnff3(?e*I2=L(O@hQBm4>yZEd<M_&T>&_+j
z+ip8(_x$Jc`SV|8{r}CpLd3q2F=~Q%e2ro9@xHU$Zs*MgO(b{gZaV>L&YzsDp8oXI
zR8LU2be*$EJ2PWT{{6b<+I_r#zk<4bf2vtNcwSp|iJ4(T9_Zkm9tlGw(9)3?7Z+dN
zU;iKEQ{%KVCvK+CpL=t2`t$q$|K8WOT~_~q`GYy9K!aGqyE{82O|wF_-AtSP=b8C_
z&+qT<N`LdS`}riM<f7}&$9>jX7K#jOq^Bn^Zeh6p@7wmz*P`>m!#s<BRQS)gt1Wu9
za{0QiJH4mroV>p8+txRmPV0eMbD&W-P<iHW_cLX3^7>t`R)Jc8v-9^=T9v<>WBdJ%
zvHkCx=cT?)*N>kE8l}0Nv)LE4)eyAw?LjmDIbnaBjdAhkwb$>N6zpfIYW;3UGN>F~
z7rQ&{NQYqM&!^L`SN)03-#c|<@^R3P{+mhNx<zLUk3Z=(zn4*TXKwkundfWY6=#Cx
z8A@JE*tKidnR&LqnV;|c{ciW>`*pvU1~2ymxwGs};c-yE`Sn**#tnIM7#TAd>%Ojz
zU+O>K?q>G-z1M#4)Zh0b>EG-9|Fl6#%j|Z}WL9pmC+zk=9NGBg=G@$zo_<<)yU!$0
zZ`$(hmdi#-M>^)z{dyU>vnX|5&8L%R=2#jlyZ8A_>XEfJ+kU^U+Rygul`pTa>#yJc
zuPW`#jEU*<D%C(e-sdy_eXsv--f#2C1GGct-rnl;cXxK~{Pk+JamtAaXXe>jgPL&`
z+cdg*q|No_T9uw+6_1(ld|tI)czkUss0#>M<ji~gZpGtXP^$&hYCEmBTc`fl<@rTt
zO|Pfy|NHIq<9_>jYq#CXTDuu!V7qKt1RIaUgl@fE8m6YEpiwTlsuv5t{)=PYz{kZf
zYwJ?)>0+Uwp+^PXWj6X9&)@s?+R=^2<!*ndxVkFTw+|Ev-PhJei;KtC6dt~1|L3s1
z$o!vY(*Hes{_e)c<ib}gm;XDPe5^+@cuW5MfBABoK?}RHjnmKRtXj3IYj)nQm5I5h
zrf9l`hK3pzJUEc__0?70*VE(cDg$F<V|`|ut<~sS6tS<S^5V+i<&Tz3_RIQWDXte2
zQS#=-MhWY(oWr+%KA#^S5*}`Dv+vU>?e15vUL}2ebhN%Wjlqm(dIF<KvG;U6-%0$n
z=_`HB?{0Z`KKt65laG#eU*48``^|>Ke7$-3w>Ksq|MRiG{><WjyI=d}uTDPRH`B5>
z?b-SH{}-lJ`uqC&9-be*K5p*OZt>;*^X*>V*!Vaqf9G%i|6lxXrcCyglAB-i=_H8t
z>2>^nD^KtU=vnjoXHHC1{`~9pdh?o)(9qQNd%tCsEKA9a51#brk@$X(KoR+uubCb+
za|$%1t#fYY^PH4=dRpy@=i;st-`9QL{qpwq{H(03OIx$AgNFb7ZNG-xtNDDk?eVdG
z`T1pUZ>2ss&<Ij<tXKN_6Qd=k^>*uk`Z#u9SNemj0;dX42WW44)Xt(*(C}i;)~jK?
zX;q)knoFOZvZp$H?b~g)*Im5zY<B*<TeohVnQLwC2^tR)ah<5>+_ofodmgVmXifCp
z^80gJxyARr*KwDtOaYC!3j5m_+E#rzu_ADB(e2#roq`R$E)5JO#h@)1=jYje{&LyB
ze#LYDITnVXQ9e-in4Q1Rvixpo_%i?b^X8V_(#*cLCetGCxNP~E;`6rCLG2pQm?CHt
z@6GP_`*uEP;+E=@w5zFztND2J&+Ywxqd}FV=VZ0i=X1-?)&Kuqzy7+<<72(2Rj0>H
znyBplY}@U;(;#=gyu5sQ@$+-NX;I;z;mgp_(7b&=pZUzU+k5diNIw4Gr|Iv1-?_Fn
z`uV@#@6UgEdD*z?%L|*YSAs1+olq|RaFD%QprQ9b_XWnNhF!aMfim+<%i?EM`vv~m
z|9fl?8vc2HD|>zJmVd{j^Fcw>dks|0Jv`i={^P^L$h}pipxF%2K)JA*&xy3zxzki$
zUR><%XZ3Q)oRUkPpaJT#+qv683fg6gPE?&WNjozmrtD@aZ}!)(U$gga4h<9m^@u-x
zumAs@H#>jt*RW^j=g)WMw>9zH^mg0rWg1<ep3?94`~O>=|2VykM{<&)b6d)#C7wH<
zO!EG;HosOI)Wc~1SHrMouCW4x?g3DFzb*Invld~$h}TbD>VF)T2hC}1wJV?OYnJ(G
z_Mh8%yLCT5JDa^_TgAsmZvD|)v!>Sl{k2r1YtP?rw<9;F`5t~9c<=Jo?CW3N+%*3B
z_3P`eUvoB{RP#Mo0-9@nzvuJ0sQ&%mZe?$-`ueKvIH(M|SNVJ{sL1y$I-%IU#JQdC
z=k@x(*WHfq1$F7)Tc4h!>OE`C+g-2MX?7*;-LJ=BHv{BShxvB3pDxe;X96lE_t*WE
z+AI94ncr^4%HZYCc0BHjeqH?f)hp0g+|wP8`%c^aelvObyecj8`!&Ve?v~wlJ1$%E
z;UK763YsnW^5UX0XiEP3{{MfkT)mq5`K<Z*+4=is-rHOK9Mp;^yIXpFOZIiW^82;r
zpz+3<=hpW#zw8WK8#T34Slw*q(&FdmEPp<k92_1#T{?e{p{!NO3DD?5yL_F+_dCV@
zyUO0~y0$*?>Z(x72Mx@iqTc5Bo6Wr2udiLb+WXVH)U4|<#lE24H)v=A<e%+%cR!ud
zUjL-e`W>h;|GlrV>|v|;Gf)~_*e*BAzy8<d$PEdO>vley1<Iv2%kS6Pf7s8<@Oov?
z_WMi;f6vY|UJfejE-v?<4_cw(+Ri82Rr~Gc@*S^Mt?v5u>(?TUuB6$y+cf*E-|c97
ze&zag@%aD0u6M`ntr7**wI6q$uU$98vN+8!<-~-f|9`*dTfE!#dYv{Kzg!GxKtAL0
zGT)7VzugwU|Kpf>SL*3$qOKp`y{$RkFCYJA+wHugV$nH)prv9ra<|{@lK=C7y*Ew9
zIL#+8Hg@l|{<quj@6+g7RPngiyz6nl{k|9X_Euk9=-i%kV?*N6&*$y$r+m{4UM6z&
z>eZvn{5AogjNm$5FSd(M)=Fftd%xZ^oybd1euFyCqM!kiZoj!!qPe%X>2AAU_xsU~
z$9>vz)o(VoC7-kZ|0fBQXe(;o@BJ?3E>q}oad-K9aB#f8x3_z7pVg`v#_8wWfBLf?
s_`O1lYyAdh28L4)O{qL|HtRpT@0({6x6adS15L|%y85}Sb4q9e0NM%10{{R3

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-9.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-9.png
new file mode 100644
index 0000000000000000000000000000000000000000..61d5c7690d46b99f0bbeb4ab54a8faa6000576be
GIT binary patch
literal 23594
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_eCM&#<h{~y2SSP6JJF?nimhK87g
zOq~|M)KL=P$fDH6x_-f;6%iSW76cyf`xvBm$%Tb=DTmNgu1k)4HG-Txos0#dG#Wqu
zKAivU_$Fx&9v`7vTlsz)J<H;>XU3E7zTQ`U?##v>LpKHn28IM?_d0P9<H7u91||ju
zh683S0wDf2#Rd?yftQhmfq|hRmqP)>&2eU61nH7y;s9}P3pjwN8*QX%ZP>r`#*GL|
znbybuANkF(SorVnZ*46tFFQNCPoF+ry0$iY{po#5%F3ZDgH)$)(+pmA;$cC?tu2|A
zx4zA@t$tEqab>yxe4E_oQM0W|Uzu9&d#$+pdS+VMvNj&cMOjx@oxFcPJ}xfq*Q0KI
zt|ylJ!q&?({FiBcy#E|S&eH;mn7TcC_lnBMtXbweJL}bzl|N(S`XZ*Op57F5OGsGw
zX@P}F&5sW?t4?iBpI;mHe((2rc{`tq@ygjmIJfZx-rSU0yd^IxYL;7%#KJaSX)P5M
zmwo&8X~pi^GRq`$(e?QH*mgeIqL=kQEl*~BzVa_T=5%iC$xW%JuPk=w4_y`F>Dnz8
zI#J0rWNTLF*H>4)yT$dtMT9%1L{2--FloYs1%k?M8cIq|=k0#40eMC`Z^yx%eRGc&
zZ~fkT_bY?OpFN*<Gcd4DPK}hZDp}EEXjT7jPuZIr3(wpCkLm2}ytN^*`CjGoxqtLN
z<|kiV<hm+u?=CT&hzYB|is{9y`2Bu=yt?0<fT>!cS9TVsx3;xu+1kdwzP|qYY5o0c
zKu)(VdlQh6k+JRe%R4(azuWPcueG)H=}QYGC8aI7x6P(%1S<L8-Z^Qqy8o*5^YfxM
zBs4NHF<n^`X<Yj9lB=DaotKx_rAte_zn)Z|pYh;8W7Xqc^L5d(*H6{|`z$}#uJ+d2
z+KY=^xp;W4nBT8a*4NihuTD#QR%(BIXX)BFdxn3O910AZzJ5Bbzx&U=s;^n5d3Pe@
zYd$ox@yV>{64ibdoLb*&sJ7qxgNCZAtD&Lc&M0+5!@#-L<<t86`<MC5Tr|(Nde_&V
zU$4hs-Ctin*RuFo*KIByo{)rugmvHEcW&RleO2h{Y0uxL9G6(UE_Qd;%S%hM?(NyR
z%zyqmqtsJ7zMMRB=1L2v@R!%?_s4CwTDP?5>8Z*be^1ZAf`Sd+KPIgEZ~5&>*8ADn
zUw<)v;7?+BU^FdNvi<PG!kfP4cT;5e+JC;;eBMSceow{5ouAKH`@X!iw0Hje`72{~
zZmRrtGyUww<l}dK<=x$NwdD1+vo3CKQug-t!a_nxS=ZO)&a3(4IeF&Hmv64`F3(Sn
zoOW|_djD;+uyrw+I;V{exA7Kd_V@OdTDJZ8QSrPma@x~Bg%&buhK3g<lF#fcetu?0
z;bWh-x3>DO3|i_lQOVUOC1uIW3k#cnKAWAtuI|x4|E#Q4FR!nk-`Ue+vTxr$H5HX3
zCGYOs%(=1Q;956-Q`6jAU%GDZulTrVW!&Cfg%&btmzH>juYG>0SW;3lbJ3zjG1L5K
z8Xb+8mb%Pu?yF028<SjxMMYEn=31rBt9&LIywHjD@$={Dt3p;Lx%JDv-8O&85|!l0
zX_XHe+3!pPMSG8w>8UGgqp!2DvCT?4+BH+kG;7AczrSZYxAVn*mFO`{`}O7Ju}wO`
zd#g%|e|>qW{mr)g-JH`OEoJz&KmPsgcE0cZeYIzM&F^J&iR<SvF)^JvYkohcjaNGD
z+#Jit+s+EB`^|WGxPA8Q{Czh?^yBV;tT{DRdv^8vz1MT@?6|n}eG@CU&*rqVJ`oW!
zK7Rge{P5vJH8r(kH6ISL>-|kiO6p0CJa>O{_1v_-XV)FIytl7*cjddC&wcLhD)sg7
z=m6;u)ebY^xBs)@=KlKqr_G8#?K}DIYjTgFv{{b9T<dbPg$oy+`}^hf_47-XE!*{V
z@0Z$t7v1G&&N9uGs;{pPUgjhD`NLuU*<ZetY%gUH@rz+({4o8;j~_d>@=BZe9B$(c
zE-2V=Yg_K>3l{=%@9qla<mCMI>-GArRbR72wZnWSeYxy!|8m>yyvc_j2K@f^R#a4U
z>Eq-5*~j~2e|<R2Z(8)kLsT=!<<eHk<a;ZF)gz}Z)eK&yVP+P#apT5wsS_tooV4WL
z-s<dYYa&-gZeCXP{oUGz28N|emSkLA6&kfErE`{fe%;l-Dyph06A!mp6+CE|WtzS0
z_q*NxzrVe`ynKG$D%WnY%zJw(vo0^|Re9OSE*EflnXhTdivU+QH!VB6drRlNQBhON
z`u**#R`|M@zC5>mf1*qLH|;im^5^I0tgEZ01_cLSUFIuYSzVp|@6XSwe?Om>etQ$S
zeRaw_8S65ijT<-K+EuzbZ^uJ6+aC{_KYjgr_1s)*)6`QUph87aQ8E1PxfV|0l*nnI
z#Ky|P60>pr^6Sr^y7kMgy<hj+msiRp;P$rM(r0HR|9;>9|LTQ>&QoX1SdqW)=dq`I
zwq#xPS{=SVteK7X%J%$tkQ4s@`}^zL?fk1tJcX~W3Oyb9d~v_sstp?qw&vfDTk1Xi
z+Ct~{Ev2u+d}kWD_S=4&Q9OJ4{%zK!ua>M>q0uX8>^3d+<;vyrCK<Y^dQaQ)XycP-
zGUsQT`wOf2fI{W!hD7I|zka=%9$$BHiRa`k1rMFp#_zvpIY&$V{p>Z5cicJD%6)Zf
zcDQHI^>wkK8<SjfZ)|XsuluoZ-;YP!YooTFda9LmZD+-|o9SCiUIuN=zV5d+YU`!#
z_v==73ae*5KR5RmC`W%wXAO{eQqIH_@FAs~RmIToVnt=8WPN>o@q+`5(^Iv>))-7n
zo$1yqHS_WD{@psWtx8vI)H!YQ_sivT+ZvhKrP>cC?)&q}d;8y*x~(d9cK0k~`fOqu
zcLv2L_jvmIoAb3FzOp|4e(p@eV@sAUt<2dUb9$O?@8O3A>-YcL<^B8B)z!V*w{O>s
z-L=KC^wpHpo94uP-EpNuP`M{Ha#{NMd6seN-eutqHnEBwJv}CT?T5GI-oEy<>%c<i
zcAt}zR6%7_%(`_c-{01Je|HyTY`^`#9nrSS{pJ=`@2!|Lb7tnBKYw}-KQyo|e|P5M
z#<;gX%HH35yYavF`aMZ9eC;!h)B85RT|U3gXj<w_z1Uq9G0!hu&zWmg+OvQEe#@dK
z9nt&k|NS`pwA_DvaI($+xjj40o?ED@9(~FcI4$+`G)aAZ{mbj)?Wcd!-kaa^v8K*{
zo=s*`Q&Z3O?c0C8umAu0(*Iubd!X<OTN|}=OL}bX%7~4NPEVb|Ev`31&3BeW`{BfE
zYoniUWMgRM_CLrpVeJ}iDgC`)CcWGHJ?`kyqn?xQRlU~TzVZ9}J)iq@PG4%_6uxt;
z`TMJ@-WM-k{PkqA|DA6S-@ku<ZJNCKji_m=$vri-wYGZtp{uThZl5@3&YINI(^fjQ
za#el1nI1dsZr$&<ukP*Led*FAll*&oY_86lHB0OCrcHb6A4F9@pIiRq`Sa(0Y*kcT
zWUWd9s;YL?{eHV$dtLR94~b`I8oMVZCRTkuYkqf{xMq-w`*;2&OP9X9v$J^8rv3R!
z+c)jLWRh@zK{9zu%1NQ^sq^C2Px_sG?e^{4kEbqQuwcO*@hZ`sw#O3_6Xn(mY|Xgn
zWPZ0~^6|&#*0OSoy?AkP@vCcVXG@u6JlOQ+<?{JqDJe^)=|(U6`}_NDoy|Jlpk|Vb
zOUvf74+~y2vdc{{bj!ZJ?rd=`!zX#?4Gbx-KON7Dnzppx{$Ir2>hEQ*cc-0|`uXEW
z#<@9`a@$Ma-LaIltBG*$mkV7Pw6x^?-tSp=b`-w4u&{Yo+1piOx=||<54YtNhuly#
zFbH^iYwP7ht=yurvTOBXcdaOVd~Da-ZMWB1-BCZi%y+hmXRoyRw;vBTM{Z7=Wmmh)
zEce!u-|zSTpLMN%?-Y$dr@+9#ythwJPoJ(LYg_fD>-GBR?SA6=aUqk{eAiXU2@4Bv
zEqdxTecOo>9{uaLXFvS%^0Jh5*_vnP=dXWzd;9Anox<m&*Xf=PDk|Ev`F*eXy%jHB
zWSpI28SLrl339HKY1WcmrLT9@&Uk-uaXYB&x?AzM7Zh+wNl8~WBsx#ki~Y4r#y#&`
z;k1{RmuJ7avhvoZ)b2hx+g04+dKS}TrOf`X>XkM>wMoY`_tur%nbW6F2emN&|9NhI
zYfI+j=ml$nm-pSavaH?9s38MtIZge#P(@kU8C2fQx2yefLb-oM($Oxx<b$d&`|bZ-
zXyq1PXK}nOHPWi`(-N<#T1%_GzRJA1Dpbm{Xo=nLH^#p6?P8BfgszW^1x4WYyu0h3
zFRV04KPS^GXB%alcBa6t>Bjy0@v*zhLY<rriOQ#Hd%k@6a?+Hyk3BZu>X)^iw%qFQ
zp+hM>g+Ci=_NJ7-Z`}TU{{NplzBI2^k33%W()`xV$el$?Z@*SoQ*+x}{XHxoU_wo8
zZRx*1m8$CM)jX~{C(fL?64WHWyQ>sbQ|&5!y==k+f%F*?RwXOW&9i;|=6!+1m$%#R
zXZ`r_aF%uXx_R~gDkYOeBqUbc+gttm>-G5Xi;G-UJ^gLJPH}Q_`f`w6{>9z$`&V}q
zKAv;@)3e$6Reu`hitn^M9{IIb+T8Eq!-rXScWqTtQkrux_0yA+w|1B3&&xh_y87Vd
zY`x{{%^6ym8Ced5rk>sY;pz1FRb_8)y}G-5d)@E1=F=Z)sCrGAVCd%FCv);+S^n;~
zX0;!Wii4WsW;r(&9PJi=eYgC6Xuq7Th?LZ-w6n83ClxQ+cIJ%F_S`355C2*E=g*%n
zr?l6<m>M1zSX8uW-|u(UpxWm0a{ue|Y^$ftm{D=`>*ltHG8P2~9)G%WC1iSCeduDh
zUX{N;8}CX4FHmnh{mWqH<P9b%Cj@vUjgCAv(%09&Tlf3zuYbSaZ>{-RWc%fUbLFb+
zgH5ba+w<oB`towI=VY~=I@Sdb8rt||Uv2a26jJ?iEjs_@+U@r)t&80~WyXvZA0Hoo
zz4!aQ;Hs)!r&Z>DzhA%q-Twb|vi5Z`_J2M!+x`DjT>IzaaZrHO{rwuw%Fh0L<v;JI
z&t&B7Y9ik6`@Ig-Mf&^UF#kDr+mxAx$;V7ro?Q2xso_v(wFASGh_kayuWrwee|vv_
zeDblL!pO4UZ@0gGadGjjZMo6ww!eP-c=7H0{jtvNe4xlm=_#B!MgR4`?%LnqcCOu>
zcXyXeJ;Qk^v8j{u1C^DOuI#NY*Nxod61pnn;;PWq>#Y7Lzt;3v9k%w;(Qfg()7D39
zbefjBvh3|G%T?yqhK7c#;`Z+P_Wu6*latlsH?B84mRzve`|q!>PYW!*+%3PasjRH*
zf4l0(!}ipkKqsd|q0h}u?uu8jwk~@!AvN;Vm6elkZ#v!HSQ)f3NY(bk0p_TkMN7Lx
zwWqyRnRK*UJpA>wwWf7{DvlmMuC1%<d%yPk-O%mxrFU8$-(B_=<Q`FR@#kW8AnRjy
zm+f3TdG>eTX;E9VPD(uf7!$Xn!0~?l|Gg?tf9_>iP@vSnaANB8xGK+m`}TQxcogt$
zp75k5Cgc9T+PU}h;$D4udHL7J<MMO&uaDb%>v8*uHTgdJe+xqP*VRfUn-o5BnZD2d
z@0Z|pX({J_UAuW%V6w7%-;3w->&vq33m>)k&9l+W&wrnjA8=ksP;lXn9TuvpsykV?
z$k+b~G)_Mk5)d%qIRD<AiILNe^~>w)>+9QoJR&TY|8Dw{_`092g@uJ)o}MQ!|NFG4
z<mDw$2^JI-^yQ54`5nGl<*%-2%G%f2xZeg<R8d>Amfo-bAN%(9_U}L5{`&d(`PX;5
z-)B8I&=`IPR7)J^KLHAu&*$ymi)BroG-*rq_q^?IK^4=Ro1694Uw^}N=3q0s>dCjw
z^>I(1$)w+{sIT;}tNgU&*SEK?4cElIterf!Pu5yXL&L*3{ai`qeeX*%43j~o96fsU
z<~Ida23Bt84Gd4bDk^r!)qV*C<@3ev{nxVB?^SzwUV4ptzua2!xC+P6)nTEt&2mLV
zMVC%i_qS@-2X!^$YrjradD&}z??RWT_LUul$*!)hD<d{0{dzh*{>#_v@!A#^5uiRm
z@qAEqdv#T)Y4J0kx3{<ZZ@*hM``f#_t690lRwN(qn`K*F)|a(DZtpH7B_)&WYdV$H
z)vJ?^c5Tw}-dpuGC@N}J*40%@XPIWdniicG`18}#(my{6bz^n}u=C4ZX<%fYll*7>
zlg0gZL5tmbO)@Sh=*I2}DSdtI>b<?yrseNqDl029KRr2VdF$L&lgvvl^XvcZtort5
z<viQ!tRo$QUA?`b9v&T+E??eS_qXcrkH`I7JUnME_MV(xpRsq^z3TV2e?Ohp|Mg;V
z|ChJh@2?779R_M}uZ!KirQ~H$?a!yvvo0+;8M-|=a@w<Vb60~5J=ny$DrDuPS?2lc
zq)f9;oIdUC>FF7@F{!mr#`4iOkxi%j*T?QITNSjl>t5aOTu}dIYu43E^K7fPWL#9*
zntMBJbK2RWm-|ysi<Q2+6Z!Sk)!<$!QxQ42b%)#eL1ombGiR<8pSOMf=Jv{9bx?n2
z`~AAz#xH9A|NRaszFu8jy<AK;>dC{Ls%e*tW0v_ymcG8`yE*-QSV_s2sBJkbzkDgt
zjo#+N$jI2$*LQ82ZgkAH+NIxpubq83eg6GLuHCQh|NpoB-OlH7M~@tN@ox9~uvRY7
zEs2NOK*9R(;X_bRtovEX5a4m+$BB4`)|S-BW2aAR-+s!@FK6P~EoR!-*qFCD;{W&k
z|4qN&t6tyP(P2<mSEpuTa^=dZ(9<@b&lu|&H|j@kJM-n`<>PlsF8eM^IXP)r#Kxp&
zZPIxL{&qi?+}vHh{<hus_xJO6mA+1EYHs!g_0j+S`g-=y&(CL1P1Odqf)BUzm%o&k
zmVW(F;@bN7{HQG%iC)umGWYD+GsoCU-n#5ekA&eNll*&krf7$s`|<nt><=FbE^o;U
zHm?5mCT8ybDN{tA`@D!W-c$bW&doLP`|l;!w;xWNWtu&0b#02Lx3}^7eZN*^-q^4Z
z)NcRy^{eT@g9n!-9&UTK^?ICfJHLF{OL<AjOs&vWPcD@$t#r_PKRflsg@t;X6Qw^t
zml5S_KMeBS+W#*vFF%{Tes5ad-mhW7TQUNJ_f!-XU-mVhxqN=zt+mJIL~P5M`SRl8
z_LU(kCus&P>EPtxFqo<xZf0Bc#lU;I-r0*E-`?MU|4#k?zsq8F7A^CbsPydF?0hp$
zPEIvr<I8XJH`V{I`~0X|e-^0svSEY4<M;3LPfgd)f4A$k-sY5(Let;&$=lxp4PJz-
zi@7PH8+C<+oqhJLt=Y3%T3CudJ@K5r@8({=&DP(qKaxpLNtrP{uIgmS+Ni56EG#p)
zM73t9&#O4JWa-kUziNw@exAMc-c#d+_Wyo7mP>c)@9#H{i;KH??)&4HwR{T-Hudc6
zi?0TabRJOM!A{x$DC?~@UTG0=@#PaH2w2MSU0oMzz2AG&*$WGup|#G_in+Gc-%dO%
zSm8h4?)t_}dpv!7rW}5F;lsnjpLb7TN`G}_Ws!x<EVJCGy6H>|*LfLP92!d>9pT)X
zdD-pt_4VQ3-`xduz-@oMSiJ4JVa^Q$OBp^(8NQ>(kEh>$zx(~Z;%}=%RtC-co*g+&
z=X6naxrI#DwKb9Ju1{Xl)58Pm#TptKa&dA_oIij5p~Hu-?yIdnJJ;I$yy^2RQ?t%=
zuPG>g>3?yNtEimZx*0Phc%@7{W}D~lOZ(m3-#`8E!wdKJR<FNlw*Gh}V?)ys>;2pe
z4R6-O?hb3`m%sLU{r+{&=T+<NKRvO(zaLbDl;5j#KiVx`9&ML+h~?*x9~#ES#`3Fv
z2fMhmY|Fj9Oi0yhhwksE)8ntKi?vo&Rn;^y3Ieq-3ko)Xid4|h!^1<ZUEST6=U5io
ztgBypr|fp_t!=rpy{7Bc-u)&hDfyD8`}w)KmmeN(-&*+CZSU7>(Ow=N7iz!XUH<X$
z@zog@7ggRm|CK9<;X}C_17kpfs=E5=O*)`q&2r66I^Marw_W}7^D}6~^2NsEa>bE#
zZ*CZ#oo((9>RRln{QPO9*U8(rqpz+CEzY*D_^{y7qemql9ysp(@u>UUYOBaTS!?i6
zNw>KEwY}f(tv=c<9=~1c@87?+*D7>f-P~SH4Ua3#zQ3z<b=B8bOC^odK%J+kEg6CH
zz9sjZy!?ydgZ~i$9R^mvYqdNdKYlbiX3@Sg#?I{Dfkx)4KOc{aii)b*+uOIcwXO1=
zu6Juk;o{q7`m)jcD?TQf=H3cX^`16m`t<O=*PwP8sItktq_REr@-pAcH#et)8eILa
z<8pKUUu_GG-Nk!)(-u&7CebbOdvHoQ|A}t>eJhyR`Bqeae<x*_)Z+bP!jeg<-dXSN
z>;x6}p#I!U<MdrR{XIP)OTDI+yt<-k`}Iojs(^(}T_T!`qPAvb9&BQrw1it+FXPFH
ziL1ia&SGL>3R&tUy7&LT-+9LimsUG~`ZD72HG!tt*Fr8Xat+;-;_2${{<>8>F2K$0
znCN+bzdJ>zb)&ZB%ye>c+EVc`3Dk_%JN^9p{Ppu}t5;QheWew)W=5B&_Oe~2uV39Q
zzhBBN9a-<6+@qwdY|FR*_Kw2EY&;SRUcAU)WoOq`P;j`qD)h4Pd7H(_$NOS8UUTgh
z0}W|`%xG$AD*1l595iN@_qXo<-*Vgke?G4YUq8>u+4<@F_v=rb@UZ=KLfOmD@7s>I
zD}$G>N<7@g#mgJ&;LxBIvSPutwb9w<=2+&{PM$pZ>-ze?-cz;1r|sXr-)p+wT0U8;
zjK9CWhOd!l*mPJ_fPvNT<Rn#4?##WnCz4xCC!n2ARzy}-*Yn(eUoWqq!)?5!4-PPz
zW?%F9ez$!7x3{;K``iBw=@!$yw5Rg(m1Vxt)89r-TM8Bv*AJU*miy&Ka{tq;H~Xef
zpAKrv3o5&1JU-T|XMV(gjz!>9t<a!uG2KnE_UoNXLG6l#&h1&ClH0jQMbpg8?Dp4l
zb1WD8+x>KzmiqGP^!Rhz;wLJ(niM>6u>JSr@hpSHrd{Rl-v#~t`T4o1xcKtL?)|Hh
zkM~)XznhbGZq7>3DEY}rs#X90e&3pR*XnNN^SPfse+CZ<f+lQCOhU@<*M1M}*Voka
z1dZcu&!7M5%F4xce}BDvbhP`{zS`Z#`eauhm#g*>)e1Rrap$f{6DA0N0=nw!)o@Ur
zTT%P_+qqQzJs+C(?AcQS8op3ca(emlC8&J?irTNQuY)?q=k|g62G8f$uUi|vJ?lUN
zqgLdmB`TKx!+(7)HLU+vbM(j&4Lv<j=lx0>uk@F1xAU_<J~|3&FW+rzluZ6|GkyNc
z*X#F(JwG@1>Xyu4P|VD){WddfUCc`Px*wqCVClE{=K1r~d}b_I<~th{`=Dl#{{BCU
zJSVGVK0MSKwZCrf>Chtwo7uCktOx|<5YT|nRE<EVl`B_*+9{y2uKL~1<2TD6AM4G!
zxoIh=Xb4*ywbFaKo>kG44$!cHTd!2+zdt{-?(Qm`_g{_SUm_2KNI>v1A49(O!#;DZ
zuI5Ib#y8ToP3N>xTwGk*%S%glu1bD!Vd1fd1vC2X|J`_VbMx_v%F3DU^0ik|=TA$W
zc|E@VZc193)agw=At51s{YNE|bxs@k&NlnH<NlE&M^=A3J88<46rIyX{5BsNHoyJ-
ze!uy&)R{$3PsM(XsQ>@BJUMdO$M4_G#r5M#wz<2xfkq6iN?s(Kn``}i+uH>T6oU8H
z)fWHxQTTjQ?Cvtj`1ttX-DSDcYuCi=yc97lwT)N$*`>PUvgM$`GSG}b*me2(KZ)n&
z*;ZfuwRzjzyFX8Es`*)z967DCr>7+I{?_d2$N%lE{%*$Cet1pn?rTeJ!Gn@~o72zB
z^}l|5clY(DHfcY<@Bg2xbJ{3>&&M|J>T9pBJS>>8e&4TCsW+|P?*aKvH)=~kroX3W
z;m_GAk=t@+e*E;w=<lzu#hLtkd}dEiPd86LH>WWAdB6R?f`8V=#+N}22vD=&{r>;=
zmd0mgt?KOPFnIXzq1<;~hVVlIIt;CTMMaxH<sg@+){C3z^Gm_q*45SD-+6g^f3DDX
zJKiTNDlYzg`uEs{POMvVZU%w+Bz&B+ED9Ix*}M1a0cQR`Pv6G*uUxru(vnY4PseY~
z51U{7{2XX7rXbp`>`lbaA3rSW^RKL!xM<O$k~cRD_kKJk&Beo0qSxKk1u7`Mem-v>
z|23|&SK2)5>?~8z>=hfY)RS#C8X6w^_U#K_YrkAcNlC>M)PBqC@9O$=V}Jese@4eL
zPEJzYdCULjr>C}YKfC(-!#_Scy7_M0=Vxb2pU*AdwFQ**SH<ky6t*T}VeRj4mbVWd
zIu!FyEi!6L#=_ZoyG}l~tEs86xh5(i^5oC=MXudjvajobdW2b5R!sEXzbW-})`bO*
zpqYYc`tk2RN-!u`vj{M>o`Vm$Rq(rSPCJ{@Q}}In$lj{2pZ5IUSNr?bkB^T*?NQKd
zuVwMG6}h*!X$3FynYTT5!c?8epotSF=DmIR@ZqE<g?-aHIyh3((q0{CWDdXcZI)@a
zil=V$wlmcWEhmU}==~R%H*MOo=kx31w%@B-&BV++_j~D;wb9|zQd6t_UCWG&jlbTj
ze!sHt@i8twzG>UHZ<pa~2bC^=etgW?etn6j@OHEI!w-3wrtjaj+<*SM9Xl*q+uBYY
zKYl#&yTAS4C)@hvY^yXhH9gJmRV-%Xms_LiJ?+JhkB{?yNAIoLy2QTy7_YS1nYZb0
zZ*4U?mT`Mq?oKOph6A<=3|w=+d@1of_3dRu<lA|9pLC<Q<;?qje_gEgRLx+w$!flr
zb{0P``Ss;xPQIN!$ELoYm-5eUo_zKA_3PmW4<6Jzy{Xz{J!r&Cb7!sfMkd%=fG@9(
zKRtbJzJ2}CzjD@PKGRYy*ZaieYiepv`nN}3#k;C%*Q;x5SKC&9TT%D-7ifU0sj2D7
z+qY|zkN0K1xv|lz`diMrZ^h?rzi0gW^Ai;3R%LHiY)U<S>il{CNhWD$X5?(29y{ag
zujsVB>?)v{jY~TUAB)Jzy{idua&Tx+0d+O=zFYRnT8B;54!`!~<Yd#TFB!d3re62%
z-2=@Cfrh(7*TqCmniGCtor!%<Drk5y#m|qG!9vi1LBuLjzGd_8Fx%`C7oW<{Sbud6
zZ{*>%ZoN`VYkz-R8MCt}e6Qg3hXp4j9vAja@V57f<Nx~V>g4(J=YvKVZs+e`S@reR
z&2O>Wa%QT$?6ZEip|q}hlB)M9iOH|EdFroriE69-wN&?<)+wxRwg2t@KWTqWv#({m
zxv_EQt>bOH(kAu)YC!oC)U!W5`FM|^lx<bXw%2kt6&I4LuVvf4-dg+PL*m}w?{@Ec
zIxYIkVSf7+9ut-H{-&Rq@o*dO=}lMm*Vli2e?Q*6PX;v91nSG5ooVd;|M&g>Ury`q
zKXLrHJ7^#<H4?PYpyYaN`O{Z77$0~^G_fwYurhS@G!@YB>aL29i*A1s)ebwcNvGer
zY2DOzxvCSED$ftH%kO#B{xxW+m*=M%(WJY(N_XDce)u71n6~K7{rmUhLCu36Lr_h*
z`EB{LGm?A%e!IO%$D7~&Pr<sZQ>$<1?~k2SRNH?vzVO8bMc)|)j?+?Cy7$YS`!?6Q
z{M06$(sy@m=FXj}9bR=O?3#dse|`TN_h;L(ub+Fn@i?f@BPy>wXU2>d*UCOVa$Os>
z)$7v#dj2=Jwt9m`z++<OME|(4zkYw&+gnrL+NrDrjr-i#xH#?XtfgsZXJvwBqJBP~
zulo0=x#6)FyWj8I{m6_#VLJyX6LfTN96fqeQ&ZCuJk<B?ald`mvokZfxVVCr`^{Y!
z%{x^q^wK0%?=L@}&wt&iK5s|X|6Qf8PdzNiIMySnCvS84(xoqViqAiNmE~MeP|(*F
z9Q*2Oczozgqg0dRV?295ozl*epV2R8yGk#1SH|;mbGy2`gSY41E!z5b&#Ktn+oVh~
z7Mz`J4yvW|PG7!ssmS)v$;rCW+d%Du`ad7rK|RT>xwo(F)G;y&IwrAw!^X_ZYQ0jX
zryk$e$euB4`EkqiyZXgHzwyahEvf(eIzD_&@zE~PyvZv2e!ts&YiIHDS*F>~Y9bu2
z+3E2=R`;J5a(`d#-E}+WT9^BQMoMr0J2&6{y-d+m(G;ta7Yj~J)qef=`~B<J<LlpU
zJZGAH?Zugy#^E+%3_E0;H!z4~+_bfQNpPq~?s@o*X{9ll=lV}i)r}6bt@?7|%gf84
zNsry{c6lG~m%kn!U%Pb142gd8GwI7KKR=sgTfObp_Wbp?wq~C`e%#%6mPz2_W4)VW
z)pc}yPEXSf{{8JOXx11s;J-F{J7^#t+Sht{V`DO??Q;C&i#G<fze+%z4E=pS7J;S*
zjvhO9N@6i+=3{pLzKiSk|C{x=(qU6ukY|0}4!fc!9iX9aUTL!vn{>Xuxfu+a)I4pq
zx9aPq+4=icGBUGe9PJWa6}5F$-T%Mkpuw)#T_qRSL~g$G?ed<=;=Mng&8~W}u>HzX
zZ*f*OwpA%7CxN;@q3h#pO>=Gpe13K|_;4HV)fIutvNja~@%4YVf~Jd~pZz^=OZIiY
zxmKm1qy_4G<lfri*)6Ug_VUuwShaGU;AK6aS%jOL)3vRvqI9FTg;Z7T0#)e^4GgaC
z?%AiO>7M&1DJco6*j9zCTx3=H3N&S6Rs5_6q$<AtZ>X$QNde!*&)>dX12xZgm1f^9
zy&ju&VL{`f#fw9icnE?90AF8Qd->hn-BV}H(yFijFY`B+!9nPA!yKE+OM5<@(q2~j
z`kI=C#)*h&Q{NW<+MatmEoy64YL}>XT2oV#&-r<_XCEGJxBWKPBy-Zrz{PE#hF9q7
zFw^(@e!u%_!}B2jWma+ek|j%K)cyT6^TY`c&{7L0Cnulh=jNXM_4Re}-nH60OXMc3
zJ~@khNzhWSywm6ATBoz|N~M6tP5%7(<8yUY=-C$+7yG8AEi1H;Sr)lDP40X3PaB1H
zK3OBsxJ>HlX{Pt?-8=TMz~cE84=*nx=x9%J?Q;M5X358T411-`%?=(sc<lW7^DV8d
zGt1uInz^(1d0KVM#EBE-`cFzECnYEMPM<#gc<RTGACH|reL8hs&s6PjP_wa(U;f=S
zdtKeLHvj*829Jm_GBPd;SsAn}Y;DxDr_<xjBqb$pUMv5(P5&==z=)sU+|bbQ+0N(l
zjH9>ZoGkmBdwbhVK3S_7MyaP}fEJJJDt$ex{{Qd$;Wq0*ZUfcQpdjOGKb*=pW3hYx
ztmE?acU)XuXEro21TXax{d~z=e`Ze)Pyh2Tm#)8D<l61i%*N}pG3lt!%AloZ?v~%r
z1trPtfAI_#?fjd2ZoYl~y_(OymzViU2ZI*C2nZxNIXj<~Ex(hf<})J!l<T+sJ>1Se
zTRg7f;FUFzm%)QmY;2&x-kH1K@4J0whT-9u9R&|p)r&Lin3C!vw@>Jg^o`Bw{fibY
z3fY+C3R)Yc9lq|$larILt`66qUU%~3$*#V>u$4heK{K^;Eef6T_x)U^6}D!@*6iz6
z^S>y0K0e-mJ-Od@+3xrIqIILUUHN{$etqWUWtm@IT+AyL11-z@uk!x~L(#uKm9n-~
zAqy8S1g#GPji_n{FWbR7q3-Xm%v)PBf4$v)e@=gA%)XkPj~+cTNj$^?nn9ZMZ%^mu
znxCIQX<bYw;z7)Q=#sB*Z*Nb3yI6;jfuUjl?)pEzFYN5>xOjQ@X6>*1{A^|J?QMGJ
zSLEN@vvXDG>SsoAzi#L64~>eN_3P{F=bQdL?zdkzS>1ov-4M{?!9SD#JZARrTe4)y
ziwg^#S4D4McYD*XudjFCv6=Pty;bR}9bZ-lFYlA#b6=Nd!pgwF@Gp-;!E%D>%9+a}
zryo9aXv(x{&*nTeH#H57i;Dv-!1K13mzQT{XSYtj4_4j@QvUT!oxQ#N_SDFJxihaO
zPn@V2A0OX;`{VcT`yU+%2Ca6yFZ;RSi36yyQ#pr4JDX|Q8aqZtMo<^{_}e*_#m8=*
z2Ti7c+SFY=J$sVu85kIz^!N1esH&>23|$?TryMuIm}P>@38|{7rXsI{R<2yh#l<zL
zzrTO;`&Mr8k|!qwr;Ddv)7cz8t0L><B-LI2|NUNH_?3ZyVaGMl(la^Rswd@=twM|{
z?1v5?78Md&^!4@i-MZ1c%hoPhym;<@cX#*G5{tjSzP`Hj^|f=~N?%_C^{w@4^~EJ6
zf7bu6@(DVe9b(JyWcl4mao4`QybPKu{G-Rl@G0l^wp@^9`akcq-BD_I5-?pa)+G0q
ziK@E#?la7rYJZpU%2-^uxju4p8W$JWrFQwc7eWqpe?B;i>PCf>-z^Q__WQ^G!|SBH
zlmeN5Sl`finR<0ap!3%3>*wAlF+7-+xZ_W}JHx~;|9-!JePd&?m!ID>70~$2t?l{q
zRaVyj|Hs9{bLGLoX4CR_F-MObvr2dJ_wcx|cKf|mphaxk{`~!GnskKY@9X&gmu$b^
zSsb=D>gDeD`!4rL8h^Q!y?$lN$w@y8LF;548XXuWPMI)a!QSfcUXyfAUjhvSfR;O6
znr}RVosDf(%+4Y&AD=6i{q4bXJNx$S%euX7t&ot=obUB1m2Wm4fAaeE>h1TcyyNSB
zE<H6}fBnYf<F7i^=WY0VgMopep{a#IDf9cgyOyuQ7rXJ+{{4F0^40GL&HS$pvdf?G
zjs&L=zR$E<2@A@mx5-;XJE|2F0<>JF3^Jb%k+X9{@^L=Uyw=mx(?N?ELKnO7_DUE!
zNlHrU{jK}^HGFH{-KfUKMlL?Su=R0!OP-vVShGrsfq_B8V$bK@4TqBc|NFZteEmGo
zst)ye6;6(hj!}E7wt^NA_ez_;`h4Dgx{9j0`s%{R$FxFMO#$`4gw_3CoHf6H<-Gm>
zHCwZ<pSnFen2&*>p<d69_xXh_nU_oc{3u)-w>QfCPC>KE%Z2T7ms+{Szs&#t$NlBY
zms){~THN|%R`&GpfX31U1qCN9srvd#Q%}z?c$v>dXMWo$^V>mlCr`B75}sb@6joR9
zT)1$d-rLmE)21GNIAQ(z^(x>cg}1k@HLmdp`uyx{=-MdLvonp4?`r~8EKD5?lbknh
z+-P(RG(!Sf7Xz9@zqvX6_2PcJOAU<7A_4*nrc4o$wJPx_eSNJodVk&DU$?eo2HS=3
zF)%QQ$nYFIwJ>aLROXQm!K$}guYWlz9`6AvJV2w~4-dC{PYMbSR`pCwOw4=T-rB0E
ztLyvx{QT+t{r$DA%nS?+tQ?Fg;!4WOqQb(9*TwDzO*n%_XirR34&9a$`Stbn^FK{=
zK-Eg=-@kuVJtZY2!As`<BnvteWn5bmS@q*#`_|;+e9uMu`edzN9ctySdbjgAXz2ng
z3ya4j&}x=#|7IGetDL;a&cML%LtUxi$%S_Lx)ry!X7A=*pLKuV-erDsSNYC1vz*_D
zRIQwPc(s4K%GrHu*8cwg7gRLy8K<ASa%QG+?5#_eFMnP+Yd=4e2Op@B?C9v2_ZH+Q
zL${eTXL9lLhkJN*Tw5Ri{#yRqTU)#O`p!MP$L95F;&xDYPf)+RyFC2+yLIsl`FC~%
zmcF`ja(UN3xeBf@zR=ZSzO&78FZIb<$J|OkGeZ%y*re#R?xZE4{@24ptzLe9W#1zA
z)$H7se}5fl1oYZ0Pz*M;X)9QMd9(R^*2hOjLG9~*U)R@bT3AGYO5tfbk&E`#{$7=H
zbJL_HpfS~VcXoF5_FipZWG;Dhgi}>T<;At={Lq@3ntyUE3=9kt&hKEF<lHN5evRM$
z&jQe7z+ry-E5ZJ@OYiP3f4%j3++}w8ng?&f*Tq<>s;RB=nyOXxuvHvXX>7~A4O-`I
z^B1%?<9|gA<H^=trLVId9%>DL3oGx<LO^zi=*2LCl57HH8yo0UVt}ln&Q1)FNpvXU
zK-P>%2fzQL_h9{wijRw~t%+Rx<Vgys3txVxuzk;7?xzbuq4Hm&^&QuV_51&=dUbX6
z>dMd0qzn=oKx?qILRV#ces*@-n|jcc!u@@Fo0^+Lw`2rfT@x7$+LjXC3+lZmBrIrZ
zZU%K3WG#!1O#20H)2z7wZr#5;XZ`-l#l`MZCrw&(<w^)>oQ~iA&xg|c-!CoozPiAX
zS=O@1W&NH{UH2-V%Yv30|Nj2I{F|qrU)bYgy<4-d>wyOPKwDA7bfZ8^JhhCCKkvE@
zYPyT0u$JAq1X?<MJ+9i<(a}-w?d|RP;Z9CXe?SG|Qt#<u&(F>M`lwq!?s}Eq9E*kb
z_ExWs-Cg$U%Vqz~Z_SIIc%-JJfPB~0(J?{g>gsU+!otE?MyXwLRWBC4j#6h}U<jBX
zdP7@5Q&SVPw&Yl^^m5R$$lJ-u$)*Jl9BTjn{eEj>ayw{S%l7+q(Hl2zyuNjwzuixl
zc0SolCnhSZdM@{$Kh5yi+WVk>`?lQZ^dA$JJUcskb=20ZS;pz-O4ka4>dzNkISfA^
zb?ciHKl1^Np_$*W*(|0Xr{nqSK{LOIpx{E#iqojAS+DNw+?;iN-P%rJ^|<R*)AZxl
zJv!Q*eScr=u7_>XA!{NGMfKxi{{H$3nt4_ID>(}^e6*|d^{%z?`|E0RZ*6(G>l!%N
zN?6SrJc3q-t=&@kIt(-uw(I@A-=Lwxmk$m$gBGb885xy4IKY^ilJerRzkR5O$BELl
zPru)<zy9;{^Q#M;*+Fw~v&{47$<=&tto?G){nh2={VJNKrlFHW#KfL$tBZ)3ap}^f
zl7D}G!b9-|gOX=lTwK+slj>h@=kM24QgQ-~oP)O21TXi~G%*Q@i;LTKrSQ`e&(xF@
z4LiHI<YPU7$NOYW%ictQ+z1-BFMD?fRNZ?{nm>R3?O&1K*Q9&}m6rcHxoQ|J%iqnp
zbonx<@4_jp_M%<B?!vFHuS1u5iTcj5xcInM;<_`ad$lrpd!F7~$gn1;d9vC6+JrUU
zb1jRHrCNjPGW)>BTCT9HtW}_C&eYS>PD(uHkpT@}B_%CNJ3nu&V>8>!W`4U1I|?6P
zS>ieQb(DWa#g2d9_y1q%Gt)@#?ZSl%CoNg*-fz_&m&$u|*PjZ|Q267=lbiSMRn7dC
zntS*Edr)0lHp8-bS=zZdFE34-H*cQ*)jzc&HyA#hQ0@nf`JbMy9}enp7d`O+?LMgf
z_9k$mk}GHx@~Yb3-=s{lro7wp*$*@Xbp5MlaOtZn7tQb2fO2){+Ni5H=S`ZV^zyud
zkeuAQ2@?d?#_zwE`*&;hbuB9^tM+PXjg`kuSAZIA^`YP2-MzYZ_iOP3(&l*~bFE50
ztz5LfoynTzHK+$P+23yEj2RMli%#oG*;Z}&_v11D-}m+Zi@$Mla9r4s2wG2X7CEgn
z_Vv!^^Qu#NE*_V!e{;#M@R18>b%mOm+a%B^8fb{^<jIrg>`qVDzy9s*?b7qM-(#*z
zfotY<2jUnxxw$XTGR+1p684yMZB3-|=}jTqaw50y6V(d2@aE=p{>WY17A;<Ub-BO1
z?>w8x=jZ2#`}p+i`}-}r_S?;LDVvH7o7ds1xc?yKugbq)uU}moZ4Me`R`s5C<yfz@
zX~F@9soLRs_p_wz>-K=gG)_)d2kj176|r#<XwDe4Q0L}yoL#%3ivOUv{O~<ha<`oF
zSMfLZ_C|Y8)44d)I32Vk(lq0O!hY{v>;C<pap>hEIRS=xereUK7u$HHLw1+F1^141
zUVoPQzyI5HP#H4`v=Go;zSd;_X;6V&&?|Cd_61Pt{_~fpjv1FLgW<7^KR-UMir>G_
zYr3AUzP|o;`TX}xe_awm25LR{+>jz^k}(0aLJqV7;@|K0pk(%Gw+cwQ-f<y^Lhy3G
zP*4Xw{oI^CdZ5t@2RV^0#R$;g<i$m<b<;u4QRwG#Wyrj@XXmxG(bMmzg7ltP>?G)5
z_u~Qc+Q`jr>-T<}_3y{y{y%!4z&Q{fqQT_x_0?5SLB99Tr_)@#yrCBtxrXkkD4afD
zNY(2}`Am=z>lOvvX}P!5TRd{wR3t-}`OKVjUlpWa2OHN>0UZ#lo}cv-*NH8emsLD%
ztG`VFZJS!ZEPQ?3_03@E$`A!+kD8i2I;VrS=iLQ$yMO%nv3gx{q!@Sysm24Y6o#97
ztGBD1yng-q({hlBt<jA<3ZmL!dmg<9ak<p<oIq|Tt`X+jSi`ek-MwG#>Y16wAYXz;
zxsFLpe>yGo<>P+)bIV_W%zWaqkVC<Hnoi*Lb+M(du4szt$Hgr5np*TaIWo*H1hhj}
z!JNyLLDHgN!KrDwpbB_p+Syq@V?iB>hW#r7?l5mkKF;^`{r&kLK#?F))T-1FvNkGI
z-EYo`_eNkF0vB>9fEL(+B0^PF^=Y{#NchtNklvb~MXfC@E8KdeKr<CTKRpG3OUF0q
z^h%rS&DR1oJtqjaDmCo+ey{pmy?)G&3(4}}t+fFkM7tP@K0Z47M-OE00n-4Dci<N4
zhwlLz>l#u(A-V70uk5!sH@i;)jUa-mhOVxzQ_oL<Y=7dikW+z~o$tzy!pC>ok}YNU
zY=1tP?B(HcVmU-UWT8aU*K5)FnP+Agf~vQ$^>LtSL(m)msB{Kxw=hgTmT_i=;m=q#
zP^)6KhDf-Bn%|ri-`?H^Er-#23tIUKniDckKL<+wRj*bq|FqHxWV>ac#<~U-$Ozd@
zz5J`IL??@Y_7=A~EaXrC4Mc8A_1<=Rd(O>86D9~qYlEadgo|`B6oFRhTw3A@Dr)`a
zT0PCNFMTxywAIUVvf9gg)$h+9=K=-B6PJZM*i(*l2;SOLxfwJ`8y;8b3YtA$GG&TL
zYFgT=%*)H9>}o3P!Z{fj7#?JCxiWx8mqGP5E4SE=Gt8HEm1cuh)4jd5b#iLt&lpfb
zZ&<A<!l>fi&L?|ip>z8mJy1swl!@S>uCTtr#ntuX!-5yr<LjsP_xCSav}m2xkyD#=
z-rm`Hc^TMce?(c08jc(}a$=K?r3~Nn`ykhf<gpqx_{=nV+O;2Krp6rDf<i7=hMRjT
zH-l@VZ7C;(OfxUJfWq`xuk>{PsUWQ<dYuFv*m$Lu+}xaQU4MUX^>(Y$S4-~hF87`^
zukKf-?+gRQ{ii^NPH=8jYRI{{$+cI?wCJB*?kyA0LgCBHd_k*VKzq(WjfI~PiVO@4
z4RbU^7*%X-V-FrYc<%oGU$3-}9z6=0;+wQ&#}13PH#RCG8QId>nt6L$?xZDGu7rSg
ztLaAn+yCvI&8gMD_Wl2nEg<XQP$r|`7Fej<B^`B9B!;tZnHi&EZ%1@sccHh+k%YS|
z+zbtGWGwESv_jD>YnIUCl}T&5xUVb<Y?coE!lK!s(B0_x<lnyy=hja?$f5DwdU5}8
z%i?o2_Va(s-ZP%F*yj1Y_kZOg_wO%ydg@p7Hzo!K-|)$Mc;C<e{YZTOjMwXS>#Yu7
zf9}jo<KWoXxsUs-*VX+m-~T(d>ifIcgPe>E4ZIh1n4Ww(t$$uRf6v6|{Jo~KRwXB%
zoSb}lZ}oSTlb@cRHZFa2<<DXJKhCYoSr{1Xd^U4T*p_?y*|*#I{}1f7|M#&!^YSv^
zlfjG(4AQG3Sx&@XTIAZDv-zyqR5@k_h8qmNMh<#=zg!9l4SjluTi>T!Ot<Le(&=?C
zidU^#WmNa)htM)+1_rax$vhLf_4iqXhK5R7m*s4`m9;vi=HpTMUowm!AH`4RnNa%r
z+TWwc85kTsKRIj6z|e5Xq?@7g>C|wA51uv*4ANUb=K>hz-rB-{XTDi()U&g*!|ypT
zFdR_JoHRY*@6Pr0e_u!LtEud>d^Y3jyZ;Z^?LFH0WIuhL|9{VulMD<Ey%%-PHQ0Q+
zk!<;>L)ot2|AxbSrw{Yn$2@XjU^uWWLyU1#$;(Syvai2m{(gH~?rcya_(&%MLxb-{
z9j27sZ?~OR?zj2W_!~6!T=n%;C|sLS(vc3InMSIU)qJxGyziCYuQk8_|KIoG<Fe&X
zwBvtzv8uB$FqpY)t`PjSqwuj&^0A&d#pf(%8YDWE-AtXXa*|tr&jj;(70S%)d}mt4
z<02kvGBPyqU)DL-5E35#9F*Pr>;F9d^8UVkx48bfM@PFa@2~%Vr{?q7nRc~Rt5&bp
zwpC+b_@FrJsN@8d%!`X${j6RtnNxDfbE+IG1H%oMvuX~LmaJQ+w>ka%xkawsMhOQR
zN?u-CdPx}+oeLvlnx?8uR`d1p_4Q@rk(jXm@9q6(FZ<iiRf*hFQMjw*<)qp9`*t1@
zW@2EFUlz%7LU;R}NyX<Z)tlM*&z&{DKWCA~tM4FH&iuAlb}wLNa4^20!}MfU_PUee
z`+pq$^CsQ?wBd1?%Nh0eYrmg;U;qC%mk%2QLrzbcphEHUb7#f(eQ4#s^Zv@p$>mP$
z3=L@uB3VF@wyEOdBmO({jnn<M-7UK<q|U^^VCK4+V}hb{+mmC``Ddc@_g>9-|9$`e
z+Pqyam&sJW*(f@Lhk@aS#91W=z5Rba?fLy~_siSc^Y{IIo4<V3DlPk;C;dNNU0-MV
z`|bAlU8S$5b?fa~aVZ((sYQ`29{qB*pYH$vdtcI~qTt<*$9*EM;B0bvneXWiLFG?B
z9`}bov2|4QnK403H!9`4?f0B5-~W6*pZ?*&!OZLHVnMSc6P4Zn9X)-5f#JdB1vmEy
zCT`EW`)RTKUk&?T7yCaQlg>}MyQ}o&t*zNnTUPiupPg@SA0AWadTU$m?t6Qk`7Bjr
zt;^0#4Ud~CsvY*^)#~-<HlMef9l1GeY3k{;&&liz4gH~$|4;ug|KFG8HP4LapETe9
z^K8vy>H8j&O5WbudMH@+`TY92f3Md6)5^ZSF1Lhz9jCBb%GFh&m9JJVzqC31yvoUc
zzu(VS?z2#utnPnq<??w^of8=u7Cf5uM>PU8TYP$&?&h!8qQk4ERPoz>33#{b^}3kq
zw_9J|-T!*s?x5)CXnA?hq8o|rOa15D{XD8)7kF(31H*+UCO;WGC+XL|^qy%|n$=wH
zuzpJE>uXQ5<9|o_S-;)#X5(?W-f!{sf4}NPZP5UQ{Nla;{{DV`QhmNovJV48#w3vS
zo<=o4KFq0nHdE3hBLJi=XaC=CnRj=UE`I#&X8QcIcBgsG?@YKJSFOAM@7w(AyZ0v?
zY*O*`_4Qr6ch;;~I+2@H-tYPBx9v{R>9bbq3=Af&XO$e-_+%pf|2)iZe<x$VMi;1D
zx?6t#?wVqd>i<9b|Ig^w+odtrsx<1o;p(upUXwz?!_9AHUtJaY*N};Yp}~J~nxKOD
z{TfjDrDf};x97v5l6QA3laKZMJdk|P-Z(fs{CY<I*H>40`xqG-{AZ^LDlB&EUG;@y
zrgeE9C_&cz|9$`bpP!#6?<s$l`t{Y-%I9;-KfPMLep&7BZ(pa!?XB0m_J3=_!KRW|
zS2CH;)x}JH(q|tn{c*oM1H+WWQ&Ti&8l`$QZ%sWtEi_}6f1jGH0;qgnU-xzOo=>N=
zLEBfeva_%MzSU)PX1=|>Yv2=5h@Z21y~geL-s<n?Zl=$l`@Zh`ZcuWYSMjLR?f98l
zrrLjheZAda|Mrhc{r8LQYzzsLdnF8&l-*4Juzq-RbMxl+`+kRIEb?ztlUC>!(>>+L
zE;}VWu5#(Wcj39Wwwwf&3Qs>A=GU*Cx3Bj1v+4W)q%Qu-t-r@WJAB=lC7zQn?Jj?>
z^8W7D*URnyW<EPVKfYf3-tYJO?e+KlNIGZ#|4-0!Him{}OHQ(#NSz)#t@87;r+13a
zpIz84H*06{^Jkk*>z#gaaq;JN`#%f6RDyC-a=-1ii@(0_`@R<xc{7sxR>uFnwte5!
zmBGu?9vo=2{QYM0=A@%tK65M#tKV)7pS)uZ4+DeN(vxf__I|%Nd!n*?+M^?#U$gJ-
zE<Yc>@6*&h9}aQfOr0L9WfALK|BvZs+}^6Epoy)@=X0kQK0cPZdhIr^+}vC>zd0}7
zg)=bJtTMgHQ2BQ2b)&L3H`ub-<!cJM7M(cM%01hs!REsO=GU?JbGP3uI&b@ZiVZIV
zgGsLMx49Qyzk2oRzWL+Y_x5qS%W_rSm>3xB7O7RUsdzp+JA3-g&FR<e>;7*`*Wddk
z$g1SUg%>}J?s3X8Fx)8dwQ@MtFF*g|<KyO0_MgufOWWwZo_m3jp`m}-Nj6Y<8}w3;
zfuW&4ax(7(VSk&Amy{V8800sr{Z=YrV0bXu9W*JoR8WC|!6B1{gMlGH3RIm=aT^sL
z)M1jdKz&|?Qu47L&-?poFK^4eUGr`8{IegA%g>)4SGDru#`E_7YuNbZ=9Im?wY2#8
zIZ4Z+6fym{n8uZi3=1+dBVRJk>V9AI+`971MR((p7Z={_d_M2z{Qp1a$CTeKy_r70
z)~NW|nK%1>zw?~*^YioP6P)=xkN3$IKb;z$cC<@$=dV|*Kfl?0KJD6?$jqCU`ehgz
z{Pq7!-E#m{Bg=edUQ$qK<CUIvzV==5&QGVbKVP2z&&1Ox@leZ}sI6N5wqHZ4zP*{L
za<l&b-{K>J?kS*+cwessYa7`!Fqp9F9lYhhE?1GTc(b_m+bzN0ZY1~He7{rtH5)XW
zo|T>b`mwSnpY@v!UtV5T-~Z#NzSnGV28LNmjGqK`V|EzC?ke$|wCCTi*O6N?0>9nP
z-|u$(>-+om{&qi8Za!vYaG0#*VApgzZ@2E}=jYFVczAfS3b&Y!$D}J)u9#SDTeeKi
zdz#Kk>-T$tU-d9BT$sW!!S@TOqCPXjP|_g5!L3hbrb^`2tk6kIcJ11A@#EU4tyu*;
z3=B0=oD+OE6g)g6Q~Tv2sO$G`&*yU?p`ogtphfK}D_5`1{xaw4>Tq)lHU<W}-aD+>
z%DVCUY(Q-wQ0qDQSWnLGx7)r}zmKo_`fq8(|LaYx+?Q4cFVETebei;s<@n2YKE_Rg
zuU@?hijJNQDh&Vqet%wX_nS)z``!EHUf$Z84KBjZ&o#{s`}Otp_Qv{4KRy4wTg=bH
za6nDkFv-QOC*ueAgPWVv)9=@QUwgr2J`X4YUSC^#dPCx2P%7}5Yi0WP_xJesh4H^G
zP5<;d{=e1d=jYeQ@BaVqH)xkx+Kml~slD6`48D_$6{KJ6`F!s5mdwjVZ#EuJ`}pYS
z&cEMoOTYPl_x|4UV~?Wm{|Z~?H+NPeGyAhQo6n!?64f>;e01c^*6VSSrdc7ZYU~UR
z%bXi>7To{)u6*UHRj0OOUN*|TwZ-lCdv=fYaeF^KXy$(gvS3Hy<4sq?qL*&lW+tre
zcjv(MdIp9A>eCr+I`G?kIKU>q`*z;$r}L`c-R!vx?hTlZ7H`9|Y~M6<P2^^^<l}w5
z=jYj8UgkSnrs6>(s9&@6I1@udmyp8jlb!1GW@NA5Yo<P@z)8(_)|6?w(P<|pD1u5p
zZCfb@h7h0AUi=?CO|q}8xl?#tcIUHM*+uVmK3DVfvv}C@<?U^A@t6X~v@<gTA96A>
zEHIkGc#{W|hNtO9KihKIZ*~0Yb?eS)E}t{$xLmc)=jZ3wKPX{f2(V;IF|GhLo|pU2
z-;#TK+rg^;|Ng%I&dBiKvPVM>8@HH_2dD}9b=Is|BCZp!$Jg&=3T9+*c*;59Y{J!5
zp)1#|%iD5qRp{zpwG0eDOg<@nIlG|r^)*mIvSnY@*H^#(e*O7B@zaTCQoIXN)~k5d
zeV%>)$<F8VR)5f8kiV<Fe$V&&ruzf#l`y3kuUNS<@_lL;$i_)uUR+Gxdw#Zg{=NTo
zWrzRQG1M6K$lLF`q|8vW2Gq)6WM&Jg>Pho#$YJ~Y>+9+If6wdFo}QY@8`l9E5CwIF
z{{H$J{r+>G)vFbtErd7ge!sQ<pu@?)Fm-d*)m3L^o9nyFmWC{K&)l}EYmtVQ?Gg2}
zYa%xnJ!oVHHK;7#@A*7w&-ZgLYJY$8y}mB?^9g0WjZ6#=E}xW~aCSlc|9_HJB^jVm
zn^tb|wB>WlPCYp}`SYvQ>z_@F&RhAVf`K8x@LWTVTK2UyCx3i=Tzorsd+N(eOK%pR
zw=Mqpbo%oThxylk$pEQhVqsv===}~F=kro_nAKpKeJ$n9jg2pFZcYas`oYX^V{m!7
z|N1Wx3=AJO3M=>?Ae2UG*6d+ha_HXv)c2;>V<s1$w>9?+3J;&YulDz{>hJGn8Ya87
zs<SXO^!FPph?<qYy0RtbrqS}bWl?{lN=r-qET2vR4I9j~udicW&dkuzKb>LahUN3B
zv}%8S$^6jw@?`aU)ldKI7#M1TI3{pKZ%A;=%F2>jd;Q9lB^q6zx=eHi7XyPCKVwiL
zsJl^GTDtga*xIP8@0l46sJAk#+;DAe^zwD<)?NJd>gsB6BAe{g5E9|*>no-caUtXH
z->q`CRa0z*7#MQQn3f#+_4W01@%S1;?eKLu8;~M)^@S7$h7TWw6-2*1)vvb%9XHc!
zelKGGwzRXeeCF9$f-2>zZ*L+GzGPr{@c8PcOUyO5Ky|BgJKtGQfn4zL(3>rn{bt%!
z7RA+my$afuI8~0Hfx#~99_L=ph|Oufpmr*#?gedPo>%>D=4t)?Htq6t6-(Vgp)wV8
zB%;@2O3LaFoSXlCyZ!vhWdC(vB;>p2|9PSg8qr8QKkx6x+Owe1Bi*PU_vIay{?IpY
zF#h!Ew0`=R7Z-099+$nmtMoN!NXqiZgJ$E*OH0<o?X~g@3JndtDCyoSHMQ*Rt=gRU
z_mBV8ty;B8>z^^x50mW3my8TI49f4<mV+8QVQZsOpPZNo8a24KCUUZ*aoUq6ZoLz8
zEQ>$s|No>vRqnF=2gV=WEF2ET2Ko2)^hg*gS-;ufT=)C-{bkYH^S)N6&na}%+x=$K
zo!akrMdt`GnDuyXV3^eiZl(QxyZ!TH`Tsi{Yxb-!e}B*N^_tDse&1Q@J^k71`2SVk
z?i8N~?Jl~Vv)Q+eM{?5g`E|Q4ZoD2_9{cOt+u3Wk-?N%)ReB24gP;HZ&-1UpL7gtk
z=W`~@mfcVUO(%VScenV-ME7Sam(RPk;{Efj*W*slOrJM1w*0OssB=GEFV-mM#)dt=
zUafv@`|s`c`{!O<Tzq+{_jGW0eLN!k`C4?osnxrA)$dL|xBvfhOYUtm(1PyV+}vkp
zW`17y`A+%$TFWOBoG)!mJ`Qr{?svPgL7n2>U-KAl7@TWhFk#;R@9X-@yUX9p6dYib
z{(EP7e4XY0fA9a#Tj<=L)-GEH>O6fuEdS2{G{!Z@vUt<mZMW4tL0#oJwcl<^n&m{C
zvwS`W6lebSe@oKN&6)Y|aJ#yvTff}g-S2j3r_U`7E4!V$eb3Klvq714UiG`3UtV9&
zZ%+TU{{OG_HvfJ+mNZOqsrveADyVPy>-GBc3mlt`($CG=l67^}zZ;7*jMC1`0BtUt
z9#iBQSMjhlrvC3&P!I3Z0cQRy^5w7BZcn?iA`mqGvu@X`RexUk*Pj9nJAj5}KuynW
zxAS&?JqI#SrudBE%j@goK`|W?9-jX0&Q4HGWd19i_W+v)L&l|P`tflgp`oJ3Wy|ld
z$?pIA?Y6l3+>)Tbk4>|$nOHr$8Xm73wKXd=rtas{ui5pV&Fh0}-WAXP-5tN%xt;H5
zWcu8%;{Bk;)WvnNyZ2X|d3ANQ^xCs?EH|%MwMr{*_uFm1ww|1<E*=^h>iYlR-|ns1
z*RQRQul;(}wOdTLEA#R)QP)5b?eKLvR%LG@=G6Uq$-D2_BG>LNK3OY~#qRy<;&=ae
z)ZHzn8+FBg-?v-YAeM;tG@YN_#>^i+7I2C=2yd_X`AOyG6Kn6>olmEIoxeVMyPo$n
z9naZjxtmVw?Kau5Hy1Rhdffh>p})<?BkXmct-mSH&diM5kZ@4#?5BONUcLHt{`$Ju
z*{a^tmXyE0_wvHR!&Uh^e}Aw4|NUlCx9%(X`Gv<ML99=+@BdNrEPB89d)m!Ssgiaz
z758dBpZ(RpYSk)GGU7cqWzG9)uSxO$K26u`dZb(%&roB*$aLYz*8KZ+o|}@6cKKG-
z1&aK<_kG`VyV_q%cI~nPbso0o-TidN_<YLEO{rgx_sUwE<=)=r`~TnH%gg=e_edHq
zyO`<`9$OkZulCzb@K72fyUYY{y`3uS_k23#c799M*H<wm7hP}W?S3nDW=qb^O>D-h
z@9&0YFP~eMwPD-WYthS>EmQma?5y{sGjpxYT?11tEO2~zYissjchL5m`?cRwFD`PG
zw>S;z$uTmsJ=t>E&-?qkyT(aJI_^|HpPR&zU@WM>;2Q%v0cNp#zs>JAn`eLd!zrxx
z<j?2x=MOY87yo{{9X#m!<>lqgzu)anzq_mS>+!d{UazZs*eYHG8dRR(%y%-j{O;6d
zeme_Lg8pj=D#B0e@1Fyz@%_%vvo!{_$~PXD``Q2hM}O}u(B#(6M_t;Wp*D~!cD~>D
z+o<-}my%akRvz?`25rR!wbtKmzd!Hg<>lr-cD&#B`_t<9zpt3*-(D5E+UCmzXHc6A
z)O|{ySE+VfzP_f<=97mY(+0^3K`RI2favJiv-5Uo8mFJT^Fn;l|JVEfW%Jp7xp1fA
zaWC(+`&F;kf`%y%M!mka7Svhgk+m`b)lP-SWv6ortEJr8QFt?J_1Z})pz)fQ%jeI#
z>~C)i8tcAS{eCVeXjUxlyR`yzmfzIX>vpZGTf1&u-rn+UT3t$@(UgC`*8ksC_ZC#H
zHL-FReYxna?pb!H@VJQU#C5T|pIva~zx%-Q-+ISpw$uv?9A{b-Cav4?sH^7p?fd7L
z`E53wjOTCoTFl0>Kyt@}Chkkid}q(8dbRTP-Z?M$>wh?_`OeyM?|I(Fqhh^vlk1<)
zEl>OR=O^#AX*!XY9u$H`O>gJzUaHZx=kq!1$nANte_sdQyS~(W`j;0Ml}k%YrN92o
z0ckx~;xo%c6SSA5s(=5-W73<;-ro9k{Ca$S?Y-LXcX=d@R6L8W1iFK^1O8lI|7$th
z@xA#UA03sqIDKiUxAfY#Td&7yb|o#|ug_pN$5?^kti$_zdp~cU|5xX5JOBB--EXfw
zn0rCK^2tO{S5JL@&8MpQ(b3VfPwVa0QJ-H^#Ao$lfz9VL#-Og;=Er^3W)|;GDEFV)
zb~|r2BQx6)Py@&~-LLLLv;2~6+svZ#_m)o6jh+S?BRd`cujt#Y?De1;;rre4cu-fg
z=KJpZxgWNI>PSvuHIrFOgO~eRKJGCF^<P1AOK)#)KmTs``+1<|^!NMq^}9-5Zo2nA
z@$4*9%QqVigDN7>CYZ0=udiLZ*7wuB)GYHm1<s(9Rr~Fx`r&qde^A5nR`&X*?{>dG
zcaUBFPh(@*%cawwEo_%Nb<tgZ?)kcJn<IA=B<AgS*p{>XZW*Y;xBv2<t)Vw$<?VdN
z4IiJKn;YFDXS?gg-QDG&4U3Cve}6mb$SxZK8X9qpjg1Wyaou>B&sqc&Hh+s>y?WJ^
zU-MYn_53{B?zP+R?fUWOxqbYZIhLCxOfmurUo33DCSQKp*IbmDolj?1+1scsd3Sf+
zsC+)RJHPJp?4w<x+Fgq(-k0r5KHjJM?Oyf!q}jRKG;eLq4u7-v`@N(5^*;`?8TUz<
zuFAN$=xCLF*}cl=i!{0(t=)c43)HS$6umvq_4l{8-HOg_BB0UI#W&Uc=f!NvxVWg|
z$HVsS%l`IzU)<SQd~sjx@1!RuCLRSPh`%**H6IQ>;*S5}ba7+y@kPF~&5oY4ejhWZ
z=F`ceZ*FdW-M<r5%Ij{svFP7NW`3Ihnesb@uIuCWc7?5t65U(%Rcqg`tLw#zpP&1y
xQ6I`s)39pM2QF&{h6OTl%uEan)EqnfSs(uS{94ub|0F>3;hwI3F6*2UngG$G?AQPR

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score.png
new file mode 100644
index 0000000000000000000000000000000000000000..23722959a153adee8c0f6e47059aaf1beca02f00
GIT binary patch
literal 23581
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_eCM&#<h{~y2SSP6JJF?nimhK86Z
zEVv}(#juiVg#we{Q6}+#z>pk{rUiiqnu7LB={6B`beyH&xK2U#O1F~g6crO^^(hB_
z{(WfvJNYKB3Y%KzzIpxba=VPv)9j3IUad_(H#1o>xrc#)f#CpK-yS_M!=9ayg@J*g
zA(uk|#LsbNU}RumNRVdY0C8^%IDn`dZ468xU1lr-AnrEB1`xG@mqe}g-WxY=EVAG_
zR{zLvp3TaAwZFBrw7l%>>^^<^bm`jK==>8Km6Vl37do*{Po1phJL&Ml3sW?Mi?+VE
zt^Ri6VZjRbez~2u&VMzl{Pg5?QJuL{*!#;pJv@8={d&DBXld7<zki=TeY$l0zF%7L
zagSer{m1y>e4xR<_dEx}_}ULYJ%0Ok^udD%v#zX|sOCR!&h@9M-KmkAbWW#6CM7MB
z;cI8(mz(1rTKVnI=ku=*^V?s^-F|mjBQyJ}uh-+lUtU_ed24P|)T}lh$wgIPUumkS
zxa`}vPb+fM5-GEs72EGsdAIY)7G>5yH9Z;gEc0i4q3!olQ}5||q0{wZLl!!*it5Eg
zv~r0CJv}w`>e^^?-KZ@ml4E~POpTOd_Hc4)0vX%U!D0LV&*!SYU$2*5_BFTMzVUO-
zy01Go?v`U<onIa&&Y)1gNyodHjdzlvo48)gg+5v9FHfh(YZ)2_N}J_e`2BwW{OhX!
za&;m$IE1baySk_HbJ3Q&e|~=c`r$DD>nA5CuL@Z?>DKoA^%pJ#$lBM%yuQBv`s(%j
zR)O4ZUG^p*BO_zl@67xA_P*QqJFm61_30}cB_*XTxwp+kwZnA6fA5?XyxebP_VsnM
z%=70lF)>})QJ7r%;)0`{ot>AL*QH6S-d}E}&tF;p|6kSbx7+h0WUrsD|Myvbu4VDD
z+@DRX+#(VZEAsdM4U3D5JNHylQqug7)blG}tNt_mc&^aEaN^SH_4{6Zs`~osYSx7X
zjmLT<7ytYFdv(pvPn97z<CA+%z813a^7IV!@$u=~=IP@T^84G{r;i^m_MEH+a#LPz
z-QTa_U*FyiPd`6z@2h=G%*>(^5;GP*u733P?OLtSRZptyBMpzONIu>dwJD`@mPzKK
zmBGtbg{%zH%QZ4GGReDR@%Pv3_2z5(Ua$0-X(Ts&`I03X78W;DYdp;VNmUoEJ%1ML
zRCYs#0@l-;dJaGQu;bmd=sZKd_QN$FkBZA(*N@tA;!g2-+hr*yCmlO~{(Q)qh>JG=
z|9pOSV`Fk&?)JR9SyrX5Qk0aHd*{!e&&kPYXqtV^#NYn!mXjw=6l{BaZ}0AnI;Y><
z+<ZJ&UOQ}!!L-zw=JzTNr&i|VtT}CY<oI#x^QSlIJnujJ(4e!k^O!{Px%u|_ZvAq(
zS=ZKNdQH(t<Py~aneMy0?CqKD_v@<Pa(}N63J&&NAGg;hC1uISuU}0S6&07&{{EJB
zxQ#c@v})DLz{PIicmFT-p6+vXRcP<whX%rGK0DHEr^lZ@al%7bRP^blx=Twuk8RR1
zuKbiT{pr)w)6D||1D}0)dHLDS=ktu8o|<Z0S68<zXsK7)kq*JU<DOn#M$=Mfy317_
z$-O(%IQ`6rhlhRFMs4*;NLZj5w4`HY*xFeyZ*O03S@Pn7>G^{a$;<raX6c+Z3SAv$
zntpE1&aB&?pP%17Xa3=b1=joD@B4l3%bS~*@6>!gyDa14A~gkt19z%kuYJ~Qe$OEN
z{JhfJ&reQPKl|Wd^VzlA?`3s~>1Hu8Gy5Lx5<T0@Z<k?~cjv{WvU__fmlZxfrlzBF
z=Eu*UGe3MN5Ed3rKGq}o_>!KQ+OddfPiy90{cZBOyv%mp$8T?MpXJuylaO_FRjQMd
zQ_uYQ^EKo5?Wz3p@%Y()e}Bh*n>qKqZ`gbJ<er-w5}QFeg_D=JRBn0r`ZzUH)2nOW
zKAr#B-|pv;ko9qQfBgPEJ7}rb%;WO)cVz7A?&L}{unLzuF#J)qv$M-PeXrs%@7|Bc
zq`CO`!d_onD=H<mYHjp(Ek#8~ZgIUUudc2RUE(3=dCA}Y?-J|xdxH7eopWz*3k?aG
z;y1@)p{#Y;i^u);*Dfq{4qXwT=y`p4|Iga*chygCGReH8a`f0SEi<!gJN1l=f+k(r
zTU~y3hN1J-)#2ga-`y1z5Lhr}ipbiitzO;Y`eBpReAiXZS+Yds>gsTRc0QSa$H#iV
zUU25myuYvZ*PqYlw<a89Iy=+YT{n8$6cyV~CzL@&CmXNSk`pI9jvhb0`^x00M~=AU
z-rpCSdTPqaYY9)Z|98Ff3`=&_i`lW@+1c6Jrlz4Fz1z2Me|B!}YVr7*z~|@Y7Vq|c
zc5-9#aS>_h)oY`-zgjjs@6zIaJFWQm__ud<22WP=4Ql6;6%i6DI{UXr+T3qi>dT$a
z=LI`B90<K#RaGCCd89+|*W2y)L$>F|Zq2(Jm41HS)%yRx<9Ve_JUTl&e|@{1AG^-`
z^Ru&CtG;GkT^k*4Tm5ay_U+rhy}!Ty{l4FRywYYNy;7!gO6`6=nast_9ejIRZs?{I
zPg$!HkLc}rSC@EB{&FSQ-|~Cq)9T;*e!mM237O*7C!=|K)0Z>G=TAs1esr`u{%cH8
zQSb9JGZz;=J_gE1tHRgMtEsL1dRl*f#-SF@S@!k&uC0%M|Hg0X-1ENADq}ML{rUOo
z#>T}eE0d4+X~pl`W0rGcLBIXKi1^yCQ^VFqJuMP9{Tu}<FF?i9tu2|0pPilkdiVQ%
zmw$YGytVkbU+wR=+pquH%A~>Z$%>KjME#~+%#&u!$k?-IPtX4S`z;F|G@Rb`^z?M;
z)0=$${`z{hQ&>Ibn(sWDn-SAe=hc3Te7@=5-`~>hhZFbx`<1=@aZKfQ6+63o7BYP?
zcNup^MJM-I*8SO0Xd$!AZ?09|>mEZjUEQ;fKWUq0Upr$V!}s}GbpB4A_`OwIKYsgW
zrs_S-WV!$RvdHOkcgszeHcIK(sB^mH?Jd*Ww^L5N;_Fy$%`$P~#A6Q&W?Wkvz59-!
zMahc^nsIw}Xa+87IemBPntxXJcNV8VF0k-<e{b*ISC+NEw%q=GbaGD*&*SIM(`ESD
zZ|*Ek-*)b6)bs7t-}Cz4##g^JeOzF1W=-VgIj8G>y;M(*oc8j<!sg?-diCe;6&{y8
zcK`l;8Ox$0Ywya}|9SZ7*5%(<B+l<wPhNN4)X&qiaHsQ>%$Jvz9y@*d^p{sxPpAI8
zYG;0|V&A^yeshf+9UYI|zJ2@8_x=A%Gyi|Poev7Y&(F@rPD{U+3(Ebc=g#OB*PqqK
zD=pQ2IPu!r=;s^R7+AUe4>C<ydd6C6{hm)<ay1_uj~+ehIq6>Q_t@?GzQ5o9f1l3j
zOFIf5-}%*C{`#8l#fukzz1e*JPT#}#@856J(Pz66HBB|Sr>3^ncAb9Uq9dl?C(fC(
zW~uk|RWUn@s{Z|a9((O>>GjxGcXn>Rbm@{w`nfqVS7*(drFDAKCK>yJy?g)v`~B(j
z=i+^QoScEX%ifm!`BC`y+wJ`DyWc)MJUq)Zd)lExhrXP%e!pX_e#nY|ZO8bREM5BY
z&(F`3Hp!V!434~;`Re-m`8|eFdnz{Gw(@@;e)6yF>$h*;emoZ(5D;*VdvDvExW^kd
z81$ES%reVe6`i;9=;O-gSN2qXF8T5zu=Ldx&(hb|N+Z9&*?eBh$SBBry53b#@pvtA
z+S2Rs^|6A2g6C5C+MWAtK6UgMM(r-kU6;)~;rojwRt4{HyRyrhbZURST>k3b-rdo+
zO|!3^IDXuHbK2QYJJx@Ge*X1`hlj1IzO3+?qOp)&z9wL?dw<yOvbR?@CcB&F-U|8p
z>T2=q#fS778ymAOFYA4Fe*XFwFET)l5MC*h3v<iwRi1rkH`6TlmWn5+5pi69ey_Co
zwJR%ww`N{ev;Fho@b#_#q?bl)OzP_DDvFNVmJ{iD>EdGd^}GJ=Dt%q@@{+1)&W#VV
zt{WN}25N_`DTox4lzjQ|Z<*~J%VM|1ZoQZ8>@40|`@3weP30xa2e&rqsH&@5-@aG#
z`D|BT-?c9<FHfB^Wl7oFTPy4S{#q5fdfM&jKlNgFz1aDD-sQ9A_t*H%wbE2mbNl-0
zYVgTPs`)1>pFELDpJi3LO3i=X8r|q^FJ4?+ysP5lqT;(x6F;xNwWDyc&gr1VZoPM|
zRaRE6Og!B7>wNvc#lEx6cCwzbez)Ur?(8@F?lXw+um~_jp869sY2LhbS67FxcJG&~
zdeo^NvahCc`o0H~z8sgYfAQ#Oclg}o!<%&GT9taKdQAy<du!{~tgBkQvQ{DSH6L4-
z`OVcz?pYPKb`>ZF=USESnz;Pg#Wj(eO_Gjq_|7&v`;#N7zP`Tn&5b}#PR{V!DQi_g
zO~^@`YGg8>eM&yw_jJ{{4I2z3lVkQN+}DWgwf*qz-{*Sy>Gg$QRX)e)|L-mf3tJQM
z@Y}!6&dxwkMI<7k5+5HQyQ9GI<jIqA&Vha@DJd%g7rRAm&zrj{eEm95SgEKSkyHa!
zH^tA-S>Cpm;j8_Aw_M7mVnf>bd22zH$uS95HnvsO-``ceUb{VHM?s?JCFAopiziGF
z=#?~fldt*E=+-ay)@FM7y~^W{#oydHankhMn*1*>E^_hnhj)wViU<lm<k1sW_q%d$
zZ*_5OaGo9aynDqrYxgs1NN^}HtkW#s*SdcHzbMn}Ya!p?-TityfB()Bcg?UhGkOfI
zik^6E`(FKgZuzU#>-Sx1<rd$Pc$iH$YKsTR-d!ax7hSjzV48O)V$vMpt*I#~JKid9
zkAJ5B{Q2|c*W;>v*YEu{YtrP&TZ^80`OY%&3|{Vcb)IeYlo>NBuD&(i{ZPiD;K1Ww
zSFVIiFRKsz`|GRf-=D2_B_^*|Z#@0SXy)7vUw*w_|N86o`0qQ;oj&bdez$b`zW@KK
zb)&cW^xJ-mSodm{dH%d>YonLT*;aw7BfZyrG8PLQo7r~e2Cs=Q-2408?yB#1%eQ7<
z*Hcwf%X)KT<F5~g`Ah%&D4gzTC13X=5tLV~3Lmx9{dmY;`}67aUtcc!UtQ$N4QeBE
z@$sDt{X6~iNmIL;9~<m`JYc?Cc02di!*=;O{8cARa&K*U9W*(1J}U#OaIynKO7z!P
zSFdhP_kVkTf4s7LUrA*7_1N;4FD@>=wJkTg@B8b=j~DNLw+qy*x%A@V;?$nPnN#$O
z{~X;{`}@we*zI|-+x9o4mvx^y7aypsq;zFxak_5Yo`|Vhp_f*Lu3mTZukvS2kJVvo
zFD><+e&?Eg{JxlJsVmdY&bqnET-(sla8=aSRiJvmQ&>H2>srHO$pxFe=USCMDX`d5
z^wewV^5xI7;`{CY?dUP|^6=R4?2g*Z$F7?;B_HRDoVN7$yWQt=?@qmYz-DE@!X~-O
zCxUAuHafX>iJUAFI=RTTdzEXqn3Q$dnn#ZxPn|Yx*;MWDxZ?ko6DMcy$-b@^yQ{>r
zu&^-iVe<cfe{XHgo_^cR^5>nDRe_7!dJN^(KRwzl{`K$o``$t8?711Z)R;ILWGbId
z4S(|b_3D-umUMG&&vVCHzrDG6`RDbsr{`K0yV?KyvH0`XS65ft)^(ow)BW;keBY}p
zE0vRbj`hpGzw~YS{JK*Yd)~~fFa37q=#vu@m4E$wKL75t`8Jh7%l+m~+P=Mf8uJxn
zR~HuzJv~29PtQEYx5wq{uY7rVSyV*i$w%*ezldo|HzprHb^5e-?XNE%Eq26Ds{8p=
z{OHl6nyRX*;m1$+PEz$=6};Tf%hU5>@p;?lW-IT$yu7^h(UH!ax2ubvpUb+pXJ_62
zzvWwVZ(n;He_cOj#{z!49}a(if8YOVpOUh&ZJp!2t=ZG#YCgJd512h=%96Xg%Xhz3
z*VXlXer|4Y<^D9$1U@+%4bQyzKgHVW*DZ=4{GF=!^UBKLS2s5=Kfa-A>v`X>cYD9b
zv9hve{`&G#Z+^9>lx5M9viJAa?$}{*TW$%1Lj6K+u?87Ve*Wu|{q0s>T<o5Gq(e~3
zEN8|Nd-jNa2}39Sy<aA2g|AyPO*a}e?y%f%Zc$l0sHWKW^O>~grQ7-Y*FHTxeYImV
zTUS?C&_pHIFQE3^!$YlHe0<j)_uId-N!wlaHe_c}s_%Te*x%pYUY=WiZ{^<V?^*Zu
zRPOqIuiCWu*_oWHaa*%OU0qx<j`c`>`t~jC=clKsk<)gSzFxLvi^<g$fuPp-b<p6#
zrqt7~j&urx8jE~#HY@7>{<8f2BmS)V{F+6-zP`>r(7*_43}#(jwG?E<w>LLIqa;T<
zg*R`VpPhMQ!@_-kK6#hEy%id}yX@)&MQ2chdcp(&P{9o9+xOf5TXEpPfgE0+eV@Ev
zfBo{XUH;Yd__~WA<3a7<v$M^ouV25u?Cq_ks@~IHyk5UQ>~I_J`knHpH<?s_%K;hu
z`PtdvRxZ&iOFV@`SBLq=#l?Yo`k$VjE`4%BaQpHJv6XeXx3&Z>^_u$SUiJIT*Vop9
z68N__Hy5*Vi>)YqeQlOua+~*W-RNyAYJY!Q6}x-es?gQTK71&UwX2B$8SduR7FY3*
zHU0MQcf0*vyF@O=mfwBKV|Bm&|6Wk>b!%((>dec_cJ7!pFZH|BbgfXYxmKl@&df9x
zm6ctac6QdwA0Hn_?J8Nx#Ka^bE4x-VdfSdSzq97gK6CJ4c-;L%t=zBg|NpmLuHpgX
z(IZD*{QLbrd}q;9a5){h$>rh0hrgao_FwnAlp(<3#*Y*646H4wk;hJ-);|4}onOwR
zm0R4bv9U34bHxAe`~REr+x=M3+0kK8S68QIVshomionA*-|rOb88_<3?z-~j#l^#S
zicae;tN8e6na4z>XUk^i8Ts4)-Ewnx`TE<2-{0TQ2X+6OnwxzWI<@-DwJJSxXJ_%*
zE>Z2C!w(Ib+4;*d<)x)xf0VhlK0bezS#DOBxPIQAJ$vRDTgh9Oo#Bx*I%1M}>Btn#
z;A5b!<%bUimsbQT8y7!2BNMxS$`q03J}+h(@7bPz|K6JT{r8fq+Ycv7ndi+}oSfq2
z?QNXD@8`0W;p^vVMs5NR1ROkga9P~ms<ay$5}$o|cv$bPva+&oE0<`@wAfs^3EH>Q
zq)aj<oX)v%?2n~;>*0q6wpCvWvg@Cnku=V^VNm@0?e^J+TDfO0a_yc4Y8=}9ezQ5x
zH0}7MrQW{N^<sTmxkP<Ho^)_%SQ)W#(aTFqyCXNHcy2qF|Nr0LXAj%u%~DTIF>K`$
zHQIi!YPF|_hk>M|WZwSCe}8|UJw3ke=9TsF_gh+9CF|?!gSX{GUS1Wdy}9CJ()7Q5
zvewtO<lnys8d?$2i@CwV&OUpVY4)s^7M9{yS2U+@i`?tKdDpk=kENC`Up_lLuJUNe
zx|o|REG#pMo}QX%SNm(mmMvRk>hso>)f#W#U8MHq-rnl!Ih?k3cK0eOD^o4+_b)$h
z+0b;-=o#C;o7|uQPQAktq>Xnz$(A<D35bcA<K*P@q`)F%bK2QGdMC|5gLa1>UN|*X
zd-LA2^K7f16j)qY?A|XO5&2F<P3_dff{YIj4pzo`?E{UpSjzDE&NNb8@6FgC-NwMA
zaNnx((~_udIV-=uz78sBL6I}B=9A~`*A<U@&7TxlJSngck(ZyJx_hd2xYcdYn85Yp
zTXnprrS8-%w~)!Yv!k$Y`{X5GzLfOJSOysy8gg-RPMkk~{-MK%uWrkYK0D9W`nqZQ
z^{ZKDde0OT|MY)&s8v)>ZrzL-61)-y4ztbk_vIb$?(d&|_~C_nd#l&qw#z?K%GmJd
zi1m7IhK4n3Vt0qN^UGh0&fmLKJg!1<{ppGQ{r#XO+V}hQ@vhxsrP20zcPxJX_@SY!
ztjxdacd&~~%eLIx%aV?E?Ogl&>Gb$3%Y3C(RaG^OjDlpX%R&kYHhg<`cQq@wSjN9U
zKfAiSFRzK*Y?D{N_fF;Wxwp3E&i0z7Q+c>gP*U<GPxtfl^RGWV+`hH&u^XsW<K^LT
z!I|H7$;Ra4s|p?-+G%yJmn(?jL%ACR<Ai)wb@kJmbXr?mpO$KF((zs!z5UvqoyA{o
zrq6%5a{0WX$oe-o3_-&kxwp1loMT!1X@%Fx+qa`bSA`Tt*L`>Z>f*h8aIm@R=hNwP
z%S(-9t;>A)ZNE$q(~VjJ>Z){$>F!E2{q_5I^_q`WT|GTlve)l@wyoy%wY9IVt)0Eh
zclNTy?)_N@n^<>R^%<&#-)25wFBrRl;feLk#}bboKTho_EGyo*DgRF+Gy9d@<@v6z
zt|!l*_g}bh;j0S^o6Yj>yx4aB^zUo>QCmEErA&i9K05mJ>C>ricSUW<SlH3Q;XA|N
zVD8;1n!zRS?pS_(bMx}!ZP#Dju3wuMI{p3OO*(5MHXd3!JMdXW*P3Gud;WYnZB_7~
z!K(b-8b#-}9WDHxT5)@JfTD~`R4e1<rKPj%YImLfb>f6a=!yWx<^J=pftuAtPfx83
zSm*>Q;h&wIt?mixs<iRRuF?u!rJ<nU0BVxC%hx_BlM9z-F8cB!aPOZ_r&q=8-NhxY
zx8~8&Zfz^8C{X=->GI|ERkfQQZ@Zm$`O;EvQ6Zs4uH9lUSFhh!6lq`nE(TQZgsu(?
zov7p*vcyC1>Z(w0P>VYH#)&_*QpqBck}o&@zI&`!`s(_4dslaNZ3~MCMn*=^@c+E(
zcb2l&Wp7q()r;8R0P1E<RB{y&5n1y4{r-6CvNr|U-+#Z~|N5wSe8}5dTScX$wCd~Y
zUESPXb*j$`C@R`?yw-o7O(aNPM#c&zCZ>>eF_v31E;?;aJ6n`Jd(NCS^?zT-uZq~X
z=+EE3paG+;+1LGEUthmJ>o3Cu(RU3DC(66T_18Hzvt@pMb{5nEzqK`c`HL4Bo<;wR
zH8nlIzPfrD6uCPJlWo6TaK5!Yf4<%SKgGHc8yt$Coe4ZWO*i&icH}g$Skx8|-RNys
zg8gl$F5dS$E-voX#l`KQIf7nk^Ibe0^7eImv_e)aSmrxBZD(!X?pIe<1Ufgf@m^Zs
z*c`J<!ZRo*CuiF2xwh3|^J~A&)Hw|rTc4G>+o_ccG(7+6?(Xf!dZm}2n`^!MO5MXl
ztVfR?1vSV)4Vcn@e=0$38(HhJE02zLf4%4~pLusz>8|JVs-HZ6zWluX|Crj}-$FAo
zR=nH)|6lgJ_@JOkNy*7u^Y7c;Ej%v!>gww0da=8fyuH0W`^t*Is#hzQhpda)nG?Hu
zH76(MMPYxNh35Bbf<dmjwJrB`%=b&)`X`}17$qeo&`5@E{JxmKzrJ4n_4T!B<)@VN
z+m6j_FHh_5zjAGDG$_tR_2XhD&G|p&Urqd(xz^!^hK8UbVyX9ZP`$qQ`@QO@Eg2K*
z{(N-bo|kY;qW0ra@u(dI3qkW9ZoN{VnECanTYpQ^QLeuq4)d>y*|}-+-#M1WCV6)(
zOtY?de0_Cw^7{4bK}}!Z83vA@pP#?}>+9>-cS?LR76FIb`NLbeM87;}=3f=DG0Dr<
z_v)_F*PzCd?S})*=e9|k=Yb0Rk~cRDP4n-?$Xb<Ln5gV-QvNRH>iYQj;^*f=yTx>i
z{#rAB;7?{ym_N%Tb5fy&OxmX>C-Yv<GR;nt;cKsay>@%dwDoa&Z&g%R&z_{}J?rvv
z|J`p+Z_;`E^l9oeoybXxt=M>_Qe^nre}1{_52{Ogrca+<`RSy3Y+q*NG?0EDH@CKp
zI;UM+T~mL@^cWu7qyuUz^dI;2@!6Ah+sD%rG^GFegmS;d^xFS_zaQJA6THl4X7;?-
z@Av=D(>ZPQ@87>?mzH{;dkP)JD|>ruCTL*(t+j^6i7P9EkI%6vJhU_K`nuR-*RNl{
zvL^EKQwiiLi=TJP@8`<!wM!Z%wM56(|M}Q%S^n;h>Fe`%%EPX!U*42@x+gVK&B*9d
z>d$qtyKT0;zqfZcC>-A2+NyW@@#Dv!nTYCdZ$9q0dv9-b?7HM-_5Xk0KekEd^S9gi
zyLHaj%(s%^`+U~?{*E=(|NnmPO^sZZd3l-M>ENKCm^$^D)AVAq_Uzf?vp#Nb%rtg(
z_Su_KPtV$%etuW(=i~DA7XNLPl@Eg&5TItk`~Cm#Esf2}S_Nv@J$(33uAi47+*w?Q
zfz_|5Xwx*k*i}VOPrdy4e118&*SfO!`8h9d@6Q%ukMC8#4~>br6K_|xv*_uSHIc@?
z^X=~5RL%JF<Kw4q->xb5+kBe-y;^zcvSnVAPEFITKD%vZ?z#E)>+S#jIGp=;Md0Em
zj~_p-iQQjU>+0(I^2Www(43j5gv5&&aZ%BwRbOAdd_KQ^-?NC$UTO2Jv$IS=r7jzf
z#Di^i8X6w^_U*gA#(uYwl9GyNJHLEcq@1Ye(~Y(F_tmEMTzqu2ySQY|rqt6_dp?WG
z%dcPL+MTv@znbr?7xSv$6-Hj$U7jDhCL-|kbp7l5YJbl;efZEJP_V&A`V4DoYHY57
zdWC<!gX-Yx>tbJBUf%!e`ug{m)|I@xBxR7$02)n5Jw2_`hMnOA7bA;9<L1oEYMw#O
zY`ivo4>RuU*w|xuu59}1*xhC8`tNT}_n&J~=wzIB=EBLz>ZaM(bU>r_OTDI^`nvD)
zW>C#wWOOOFvZ7*#O68ozs!B>ul9G~E1rH8{e&3sRR?0I7RQ|?in5D2S(%#>)eCg7c
zN5$i>yxo3(-GKuR&v*1iZOuBlX^qbDkQ7yAWoP-i9}A^SG8Q~|kWg7&efnX+iPNXO
z)&1t2D5~d`HY<sKR$wv5@xiI@->$3-78Ms?e&IsE&mTW5UjKW!eEyxji%Y%5RaI4A
zKAW9??LZ^*){2iwb1e!Fy{%XszJA)5^y@o7b8>If-`?74bS&fcwp`0yY77S?1Q=M)
zeSCaeRrB=n<W#-yCMUL+yu7s2u5PwjZpf+-O;AAsYNyOJPTwR`GfzHc-sh+FrsuuV
zq~qh`S=rfluQ~nd;-2enzwR(V*8<$TSO0JQlTW+l!`JODcz7tZzxvG$!^mk*_ZSy0
zUb<w7$FE`=k7bXK_pc6H8+B`QdjG2{D;K}JyIWgB!{gq)dsby{X1MiAEiHb2?&%8)
zewz;spxKu$QSDctRQvMM(x=a#tAjevDbs$R);g2+PtVw%c@k)HBLgxvR&J-EsG#65
z$)xa+%l1OQ#csVpN4rE#3m>`kN*FpFZs(uAefxG$gS7m9ZMdj**c6rLvKv;P<xh^B
z<~P@B>RfL|20s=723Egk;t$vSTQ%?I(-)`o&s@(w*LLPz*x`2m>-%bdhk%M4z9Xd;
zGDgQL<|se;q(9l*>FuqpPoF<uK4ppsXgqsW)YhzNxzqJxwLEwIez!Y!?)^m-A0HVV
zd-8+taQxPqpGBVa=R7B6{`v9o-2QLzmJ#)5XPHWwW`*?iZA?7Oc6P3H_}N*em(B0j
zJpS~=FuBLAM`GgBZS4GVUv}7hww?d;9{TWA$cg~P>EA9d^DVyJo*Mb;_V)F^zP(+o
z?B17gbyX;+C!2P5*3$of-`D?oIz9f$<Hw7Wj&_~gq*MF#YIxSwRiS<7WEs}A=|wPb
z&5<(A@|YC1HfpK&biJKx<M-9<)H(g>hU$x|$~PO2&xtLPtNn5@yDm~ca8ZlO`Etc;
zYon(xPPUfei``RUc>C?&zkflqa3>`eo8PZ7K3xWy;HrMVSN-&+FFzjlKVPxz&aT(%
zcB^O}PuBU@<=oDfd1puACLQnCT_uHj_jeXA*Et>Z``g>Q+afn6wH~icEo1!h<@br2
zl)Twyxp(BM|2*!ukNdjuP-kan-f2)>9lAQq^Vk3Rjj_ASUS3-2-PPS)%q{=>`}^zb
zVs~${X;Yc16B+dVUiJF4Gcy(*>y^%aer_&ka7p#=Piw<t8Bb454Zq9I@I(Yu3<wJf
zF5I!hLRD2Y^T~;cdaps%u<v}kSVu?4UGMk(&Wqp`)e5-)YF9j+9>2<ezTNel_|;*$
zpbpP$v$IdT)1#th#Z^3PmARYC!N+$ltbEn!y+5DL)(TxU1=N7P9#?(#E%)b(i`}m-
zbY_2hXJ>F>Vd1MQD}(#K&5s5R(%#)wy0!9i8n3+Fo!r`}sHnc(_LZAbPm6&XIQ{nj
z0#=8uy|Sw``}wXDCp;vR?;JX|%y+g)&5wfq{fp1!WzCa&KF2cd*{Q#vnZW<QuJ2zL
z_59P*(|6T8|2$~s-%|YC&ouAOjh`DD&Lqc39`m1TwRE0s^{%^x*7g7PfCfspKaSl|
zaPa0+E#nhgvakDzYKL8Mm#<yY$}L{CrughEQ>*H4Z$i(rGOTkE*J1b>73S{`8h;4c
zUsnt2XL(Q430xbsbxZmCxU=(YqvPV@W?2+2I{s61UAk=e?9Y$AmU>SQo30mYQu->y
z)!lt{=;|=g2rX#j>gbUp6*30%r>gnR%6N8WX4dU(YqPGc(Ug~$H_f>bz$;~PqG<Mp
z4F<ZgyFzkrZ@YS7p|fe}s}NAr*3r@N*6#B4Vmc8El8^VTjNF_ir@nae;VUbHudWDG
z2DRWpttAm@Y3<~mZTa`tf!1&A|Mx3<+jGW~Z@g6h{(SoD#6;y=8xot%a&9P`-gISa
zc6jZdkH__Hm%P5_`+m>ozF%KoF9(gO6+J!m>+kpbruF}7N?%-XG)_BHVC^?q%@;IJ
z^<v|3xnR(ouY|;kM@PF?m%qOU8Y_Brb@g(~;%6)3_ExQm-@gwuMAphJ{%YCmydu7P
z-<SB#HUlN9lKZvaR|YNhy0s;9GN>;$N!5Fo&%20KA)26>D&zEXAtfbSW|?M#%FFDR
zmzHvIa0HZ;Y}uA`^HI+HdGpr&`ucix&{D5mkNd1aQzoEBGiXL@{r-Qe%HH0x-2I}m
zx;p#Z9LubWi&~?$W-Z-S`dZ7%Dyo%B^wPfC-&^wTTD`ruH+tpDm7l(UKY#5#D}#z5
z|B02s%g<!5-<uY-B_pw^si`M5GSY5&{q1eJ%PK!V1C0-<X=t1%d3)=sj9tx*<lCIW
zYBRE~t^$vE>?}(Ce2`uK&WXzm|E8@oEqC+s>Uw!~_4Ll39uv^mlZwg_&=|;?`2BXr
zfA5-g`Z?pyX=f@Ov_e)q*!J$v&(CQG8W@-5+}v~wv<78e%*`GN!$T=4DH84A5urC9
zcZ8o~E_!i6@$yn{@!(x0nUCMT1vS=+{d$)yQ2|ZL_RHDYTq_3+_7pwwxV*rTSy)CU
z=g*%%J`oW!GA}RdooQQLHto46XliUukD;2G*|mzw%E}mVdHMW3d-lXUI~lPtsTI_o
z`|#jk-rLKUE}iMt-<OfM>!q5ofIx!R6ph5JD=QM?YQKg~o;Pn^YHj$t-=F3?wQ|8$
zXMhF-H>aMSrnCM2w%pm7*VoO}3|%z^ynZBf^|YVg_y4cG`WiI-QvCU>xpaMf{o?|Q
zm}d=^RbN)Tyt{jQXIGaIBO@bdRm!ue;c<p9U%r%E|MKbk%dFgDGj^4}o~7j4HA6_%
zYsT;Q`|tnx_xpX`aese*bI?TY%9x#-I5{{BKnq)He|<5`%*@Q&Kbu=zZw6=vX-m${
zOH=gY?|~YQ7cK-8f4^HkyYTU`ncU)fJKp~P@bK`nrPJe#uC5L@hmIUB^O~yl?BDPA
z=9icG8jI`4?RoZ|l|e6Ea&osl=Re*zH#fTn1_pxG0)V=5qS|2@kB)SL#tOW5KY5Y@
z%Hl4aLZF#i&`P=TdzJ1_Pfx#oYissg|Eh_g0ghKIm(RQO_xt_zpn=fe@AqGyq8SXD
zuG?-28oFwzpHyGNu(RM{Q=gpestXqaa&K&K+?sv;+7i#ncbGiZ$L%#qJq502&mDKs
zi{9o_SXc-eF_f!*W9V7W_edvt+nQI`)~>Gn{LFIu`&(OAKRY{ndF}6SsXsNm85kHI
zyniQe&vEzoarcD_7hcaXPd_KKHSg}Nr;=ZNXPE>})e4RI<z4^%Zn>AYcQB|WzU}?p
z-P`@<T0J#e0UA*Iq5ktY`-C?ho}L#MI=6?c4%6LUTKeirp`^{MpYO}>6t;Wswtlz6
znXg^ho!OU>fuUi)G?Rx}ieJ{V%xh0KY%o~5bg5<fPhVf(sne%V_nM~j^3u8E$K4Me
zJb3PAIY@cE5=gn-=KJT*pU;hbwwT@c_LAkxPhY=&{c+u&zkk<TeH39}VE9me+(zN1
zfPjF4r=0r1Q*#<LH~Ts`G@P4n|Gv;3w8UuJXV6qi)SilsO3KRXZ}BlOFjOkr+Qxc%
zdV;1qqWi^D_!(8CjdsVSmL1&{la;lqsi_Invd^jh_{de(vgpWD-<g)D-&|Fj2Qoyi
z?#IK|F}4g04C}UoR-buK*Q<<mYjj~a+4kW>L2FA(#@}CG^Il(D7rXk!i;U;5U%beW
zOx{xWw`yy~#X~!5K>hHNmy^72YrDF+dHwp#8@o1Y>+5nRh6(Q5a&LdDuaA&a($rdi
znz7;agZ-22%Ifl+&j~tgTIt-*H_IrsYtrP&vCkN9?yKGX>-+onIoEd-CbP1#zI@zo
zU&g5*U;k$#XrLx+ZB%My&zZdNtE)nT&(1Q<zc7=*AudC+^Zz==AG?3dc=u_i1H;5G
z7v1GSofa=YziBF<_77+<LuF<D{e4_KJXa1hGMiR^%Q<@Nm{q!yzlX;KP+R@SkBaB}
z{`~!GnsP$m@9X&gmzeo&Kx>4upPrgJ%PbePz+%~>qutMsYJ%38{$yfw33763`u6Uw
zw&x}t@A$f(OF^?8p7rMv<Rm0k7^R-lFf<H2Z})pmT-8g}pTB;sDt&#;%fq9f@BazV
z>YbC<uZO?i_j?^^xyw}D=rB+lcD`M0j=ebp1A~ISVuQ!6z18L0Zh@vXxW)C(gxz+R
zuMO$9`<0P*3gm!)Wi!}W=(Q@Afq`KgnG0%1wK6a;&~(W%jY9ZjqpWq=is0pbTG89q
zfO1~e)m51%CMbIO`<G{af4zP`XnL88hX*tq4w^btcJF%<c$I;H!QtP-xz|}mM1FsN
zAO7~%*3d;RoL^sFc6W4ijM`hZHLm_|Y3`jJfuIbdqG@Rv$tz_N&?%$}YUR$gsSE-&
z$?E?7OkW$jJM7-Qm?8!ShCjt0b1h~s^O?CwSlut<>#M7~UM`!h;@NNeZH8Xlo)!Q9
zJh!*1`?I4<RD0P%=XNby+t}IW`C%?DEh;O^-rfQYzJXTE-AL|#`ZN<XXHwav7jd)X
z(-Tk6pp1+ar$1d<>J93KU%wtc$pl(WNZP5a^qi~)8njJ2J1aH*Ajn^KE(|A^-MA4U
znS5ojJAdxYO|GC$$eEeOUr(yfUlG5*4%Bk<^6KJ~wOSIjHEU;X{Bl3p+*?~T`L);?
z7#KeB?@CAw{`~ALsD$B_HuC|ktW!C;Ne9%5m9nYWprUDN8ahctOzhdV+K7l5mo8l@
zd3cER=Z_yZ!YvpW7$)=!I20)u8G$B9Kr8i{nwqvG9ApBmkO8&4*T?Oh<9`^m?CSQl
z`}gA~O_?{(542GJfV~)_%4|^I=(v1+3}}@3-oqW=?^Tz6eB`?K!y)chcXn=OVq#M9
z1kG~a{`cnQ=1EU-m_flVEa<QaRQiUUon?A=SNPW4+hLQ{{jV+aoju3@_^CHtr8}=&
z31MYrO@00DIB5JGG+(0g`p(YHR^{*JbQ^<$?3~a4{qs-1J>Tv0FN{OsX32*Kj;yS#
zJ9YOLJZ$PQJaytkKt;t4CnqOR9kRVF`}(@jl9G~beWpcEJg%;ZG`?=i%)p>vZuS5E
z`KNZ1zZA$_`Skr@@P<t*y{2k`n$u-(Zamynb8AZ`Xx=$@`&~6p&|Cy))zy<HDe1FQ
zPfyGI{q1elgGTn8wUP`B3@7q;Fi-M5Z~uP}s3HFA>+9F?|9?$yYHt4e^?H2v$45s&
zQ~6%g^>jU@ED9EY<{NI@i1_;Yy1%;rybvd+ro8=s%Z?sD{`{>cI34v^E8M)Yz>yg|
zP#d~>n%%!2$+n-*7~k4ky}gZBdYNJJF^k(%HG|zcJ3B#Z+d(yfs)`C|-Z^Sh3a9^m
zCI*HB_HyM8MGL~#M$NLX|7Us|THbG2sKmg)upr?f9}PA+FpL)GL$gd~q|&~Zisz+_
z^+!Qd5@~0pRMpj2m%O|L8o_${Hdeu(m4Sibhr4D$xdUj&Lg?D4P*96`f8Afueu~gl
zA)d3%^S3?y0h&v=y)9Q%MrO^SR_@hRUtfWiXx+`qxwxnmw7Ee>W=-DRT`x~eRNi(4
zRQx?jXVq)?^6IMh_dCV?peFy6DI!akEnAgzw5#gR$K&}wHcr=xT(qn7^{W#Tm8;%v
zz5eCj@As>HXPe#HU%!8|Z&A@E(5Pwb?y}4uA0C3%pn?{En`U400qxY-;|6Xuo!<U;
z+Ps=io}kjz(a}-w^!EJw>sne^e*XULJ;`gD&dP6ZZ@+#zJ$~Q9uXAiFgYNDw51(z8
z`{n2J`RO<FUR+q{<?ny}+1c5mf`W>kpbq|{M~^@&)@{GtNH*W%2eqQyAt)#)WMz<Q
zubgd^xPDxTUVm?I=>LCzLF=WmkN3&WvajEFull|1(PPK%U8u7A{l*wHUgO-(H&q3+
zQ0kb(_A=0X+Usj;=RS0v1lsAL6}l?p+L}o7Ensi#KfRst324pUmzS4K^X^#Ot$Mu{
zG-sred1i)TS4T&{<z>F1OT9$5=HHJq&AxW!$H&L{8MddV=>}h1<O-hXD!J^d6||(I
zOH6lF+}^5}cXk#}`p4tj&L<nRHfrmgZR>-V_nGD1Dsj#RwIDz3u90?7Sy}n{*{xlr
ztLIfb;snk9WnEo06*Qo+GI%+tMrG%d38<>t1)BS7ZE3l4AqupT3bZ=%?X9hsZNJ}H
zY+3y5#YK1dtLpP>7RlLGc}xll4p#L{OiawX-QL=&sjKTNt{1aoVJWEX`ZIDLpTeXk
zPoFMbKEEz%|KD%3K~rnL-)>)B|Noy=?XN9P&dyJtK27zOUG6tGsH$q$qsNayRl?os
z_j{#Gv!;OD2--AYUH&els%n?YNl+*1_ZdU&nYo}Aas8qic?Zy3#^dAt+A1n8kB{|U
z=C}W|0JJ(GXsMT!echhpg%ajY4h{_}D}$H&>7ACZdZ8$pyrt@ER{HESdXdwutG}%|
zT?aMmx5%0+S3<tNxajOXU2m%4F-Z&1hN>e+T+Yt13}$BIxiG^p*`(@A254z++cjZ1
zxpkl+SkRE*=}#9f1b`Rt&W&Afv^y!b($3M*@zckTJD+WwSNTj*R6FcUYUJ~CbFc0!
ze!f4-j)8%pDCgJzzcG3Hm$#j0tdVvA`4lu*d2>^$R^Xx*&}=rJtX0POdA3?1D<*)}
zb%SbU(1<lC4#L((-Mz5f2Q<$K+GH?w&YU%;rfOSHU%q6C$1mfKmiBf~aJ;_0zWjFG
z+gn?^`ufgY+vwIOvvQVccHI0!j0_AP#7qC}pMSbm?d3z86;IzQ-!D5DwX<mHyt-eR
zpan{xDe(?LW$=pK`v1S@gL|W(ts=R%xA{&>y?dbww3JCQ`OC}Y^LOchCV^{eYD9#E
zm2uX~c^SQ+c0%3s{Pztlt*x17XPJW52CH~xUt2RVHBu{f*OutpMNdy<K07nhe9OES
zFET(80a_8;$}KJ;EW8-BPz<y{n2k^7#hUB~2O4MDR&Ps6P6o}yg4&auoSeJ<e!DFy
zFJF(8-0xMr)&-5etqxlYTB!h9odK%mLAyjY&pOs8yZY19)7g)Xbk4FaUw3M{{`$bh
zZY%xg+noa~3<^w2S_Im$u=mR)?@wR9hQ7YGcIt!)6V`r|2kk$+KQr}BRnL|94b|WC
zKnp?B&(8~;YgHPuJ@4)wy_apEMbqzgJm$;2v7ymWf#IK+(f{3Qxf71mUuXCu`^S>4
z<$ZR2?7qFsN}hp%fmNSQs(;?a18Qqr_uMDj0_xsBc;8OUM#o?UrVc~5<l}u{%QvNX
zR#sN-{994|{Ixn4sBsryH=kYQaswkXXkDD9l~okK{htk9Q#2-CR|QovKe)ME7-rg3
zZn7$Qu^@7D+S5`^kSmH7I+Psr^7jwFyv!Hsu$>_aOdgZfe7EG?-L*##WVC~xXa|E)
z+8K$pk(=EPxA9(<um3ag`cshpAKhFo3@f9yf(9;^hR4^2E?l@!D`v-rE-~F#pMuv!
zY}}(K3<^Y3kq*ZfvQ{M%QX?y4L7P<@VzdMpQ!Xv>tc(Q}APuh<IFuX&u|9mCp#Q$X
zXQq+sB+$@q<g}+XwYqnAmF}LH3i8K^r8SZcj~+ixjhtpx`U<q7`{?oG@x{`oH-Yz(
zI@nFuXFl=n?rv4jef#$5tp{ll$@yv2FhxK9-zo^#hsOz2eG#|a)OTME&w6$Dez~h(
zUS0;RUY5133OOb*{p+;UmzVwR&n|ui3WgN-Mh*qg{-)!7vZcSiWQyuWg{XQ>DacNa
z43i51`By=m%Z1_P{r&sBrt7T*4KY`JeN`C?ivNcFD;#<lZ*EL(|Ml&y_YaV9TsxQq
z9YCu_C#(BED+RT48H!dquuK3gWJo^N6BrZ}6gM3dSPJ4?M<gbso}LEU910pgiHVtW
zYMQRLzP|o+vuUZBUtV0S3{eCXdv7!Z7@r*Gw=enk`_IqMw$RT1&-g|Th3R^+r(O$z
z?2Tb(P2vGHPaF2PGZnI{Tz+?V_tt`kPH%5+cAo?qs=ix%-nOf&>(t{@Amu6UjhqU9
ze}BLJ;^N}FyOJ$s_-y}vx$NcPabht<KD_Zo)7N*q-)B8JF){1@zP(}V<JKl0?*onF
zfO?KrWp7qYRCWi+R>rD<T$!yQQ0{Q7Uw-|z+}l~#)<o)^e!u6lAE;&k%}CwYnEdsO
z@%bl#tsvVsEq1uW=;`GZ^!eG@%`x})R2Hjgf@(jm1|~rVCuirapaI?M`8PMYDk>_P
zg@L3VtOtd{zu)h#w{QxB`=@rbw|4&d^768jVN#2l&x{4^@-+th+90(PWLcAVPE1gA
z-U6E5k+BE>t)D-1_^_&{rl#hp6DI-|yY-q>e0X594it0;wu*Ex1g!{A1TBdF{OoM;
zO!g(N-C|icH!Z!jB~$tIrcXP(K#sm1q`>5{tnBTrm9e|apg92?|Dc2lN%}6Xt|uQB
zytp1;KefNVf6<~v>uw%BwMpmgot>ALae<Wm5&db@aOB956Pt7_W%#CF2bs&Ytwz#8
z&39JGRR~w@7-YA!ZzG4oZ1a53PLbGYpwf$1+UyEw1@Xnj?#}~LL0XFzIj~G%WM%`+
z<D9#`yZrsN+V6Ll-`!pAJqc7O_DY-Utv>}S1}6BjDmCQX+~oT8_4V?7^Ndov_UzfS
zCG)b{-ye_rLH$?I?lzk>putv$GLa63qCY<hS=rgG<Lf`4HSg-~25mu61uap(wK3T}
zZYn4bD$M3`Vc_KEzPv5>wu<M<l`BE>I<ri(pT*R_x}y19xtfuI;a_}pxm;>$?ft?(
z#>!R=Z&ouO(a_3sxu_L&Q6z@5Z<!gRV(5{zD~|3^6-wHW7qVD_*X&ltA{8$oWmDhI
zk0FL(M_IG3t~l7MQRTv=q>+&zQ2ERK(HtLkQ68IexA^tN&t%@c|9<CT_3`2f=I4v&
zbDPAU{baW1|9$cOKaR!}pEZr#niZOMe%{<!vu4SZUJ2y=z5nmq{L9<(?{oQaFfgp?
z7ZX&N9#iBQSO51bXyfS1D=UMS`OTd*&$e34bDDnqyqA}kKbQaiQC{0dm4V?yV3bS4
zmh9_#mzVkeKCm}DzScDN_BP#0Ee3`J=dB$KKMk&4y$Z@7OOG=!FkExq%rl`|Z<j`B
zXsG4;J)eVOW9N43?Rud+KR7gWYNxRJGy_=%h7X0Nrx|uWXyOhE4W0V&@$vL--EAjW
z#bZ89JTIugz;NM@>1l?@-DPjv?bsL?qSWN)F)}brS?0=e!drju6iMT>ng{=SB+GX8
zKW1Q%UJg1Jz}Tq%-=9xxObiTm)6yzAul@hNb$zYw>FN6C1>I#fp8Na0_I)+Tn|0qd
z&!1`|$-uBdG3toqgm(Eli*}i!6YTHgOD;H8K4@h3n!~}s@WUd?r9mfpo6g(Y+y5W<
zTlV(W(_Zs?8ih&>3=bY>2r_Q^dM*0-L3a5+2mZ3lRVdW{`l1P!Gs?QM;?I}m_GhPP
z220(Y^nLI5d#B6y|Go>_mHYEl_`aZnoQw<&UoR@%Yq3i_)N*E)sdoCj$}~0KSyN=o
z?-+W1x>J1q>DTM==N}wwF1}a!JhZ}#f#Jd8Egi-RrlzJlU$5K!>9G7i17>!<Gm})k
zH>I4M#3N&2V1BP6Iqlq>nX_ii^6KYgV5n&kD`ZpgT(x?2@t=>!pZ|E=zy6B`1H*yi
zSCW`iJYT(j{rN_6f9l6aM<q=%0(O<Y4tqI~fuVu-f|A}ruSuH0%a&~023n4L>i*xm
z_n)3rpYJnCCvua@-Cd=pd(H1fJOp{6|B@2ZlV!8>PR&f8H*=wL`?F)x`96UnywxC8
zjqGwSf-f*KEMUzLWGs3*HT+q3{GX({Pm||A=}_*=*z`ZV{%iQpyYK758&85PzNo~M
za&J%N&qLz-J~aN0-Bt3@^92LL1*R<>44`P6rW5(8@ptj_b7#Y%b3-4wfP4bda$`f{
z&VRpNe||PQ-|Xh^yYK6!OXuxSbeF44VO3*hU@&v(=9u8Ew^QZ)-tTe0zQ3QJU;8?G
z<*HSu`s=<dmMK1Ccr$zb-b;(!`{&gE`#Dukn1SI3hpv)C)z?>3|Nor-|Kx>*&c(0S
zZeOO+1<EEf4U^s6dZnhi%T+E>n$KyJd1*;VczF8uyJgv%K->J%UR+oR+7!I2?Cq?J
zi{0yAq^2-1e8{|zWY@95y<hI<LH@c4@_!z%SN{EaeRJ8{TP5%B*<QUmHFE_kx7d?Q
z-uj?T>DP9aA7Er(QvCef&NrJ*Z%R7a6;pUrwDQ-><;Lmf=4{EjnpF3Ofnh_S>F@oV
z{~z+#pGdd+JhSGp^!*dp_y7B<;`#mEU2U7tqH~tdpRE7?YyIZ5v$NF7AIvhz3<_Hp
zGgEzDh0@;Y?|zfs?EQYv^2r2eqtaJb=9FCWoGKy7z@WA6W_;7tZMnC%WL?#Y&fA%~
z)IGD{|KIP=zunG1e>FUQ@43IX^Y`19mX`8<oT$PsTN3c=>+9+B|NnWO+RMqnaMo`#
z{{)qvm!|KV^78U>^It4qydrm(<?j1+b^Ws^ll{-F+x_lV%Kxp`<4!+1+P(RDT(#*<
zX^Vmcx%xjJjgGM}G^DM(8Q(NjMcKXYOy=^r(-fWCo`AHO-Oib8mV3*@GVi?Y_d8EE
z$CTeK1#JTQH2eOaw7I{z#r1q9UAcD6?B?pVYtLR<>izlM?)Pb+g>OrWnHU_3uP8C4
ze0Xq>cYoc3M)p~6#9b$@TD5A=_j}c|OZt|2Pk%Q5-^=+$|9(DS?mb=awN2X7Q&T-B
z&6+h!t$J<r_B;!>22c!MQDS-mO5CBLp-YdSsC+(m`nuTNX?J!M%2%BEou2mU_3PPh
z)<$hzb<q%{`mz#J%9$C4Q{@ytKRbJx*Zj_e_jTWQM{Y=PoMb<*5>zzbtNnf#w7mG`
zg@w+CmxjNO@A~>&OfP1JUhJ-#CpY^ypR>}IwJyuqVwQDfMURwemhxUH1_rxZ{{O#x
zeIB>=h{Al0vsMmaYon&d|NAt(^5xR$m$qhKzjF2J+RuAMQzJGcICd>M5x)P|)j4&)
zUiyCf{q5~+<8v0u_kW%%zqGgdyUni`i+%fM8mIfQ@ko4_xc_=+cx>pY-;oRqKMWTC
z`||bqGF8iEOq*+pOl~to?x`sJb~}Ino-dcYdCT`_-QJe_@9+Kpw(RmX1us8;d4J!2
z|Bs{kv)0TnzgJoL`|Wn))KgQwyuEFHQvUs|uaD*bTX2i%Wb6=qZ~Ohu<mdD2?Vism
z_FGxZ%-~RbDTn#Vqi+3ke|~;0z80DO^Z+ye8PHiAACHQszqzsT=im4B@xN?hcbA==
z=q`6N<?pK1>%2lkL;EZqb+m2GulqcErd@3n8^7Efkk_=s)|_~9a`NWi?{=GapFYXJ
zupnqwZo{3@>#>ryRV8Zv^X_c8wmJQL%~S38lf~z4r^}Y#+1Pa1^xOaY3ip@$&%aZC
zzt-~io6W|Fhgxzr9u-@;diCiiCnw+i%f-;(zco!-Vf~&@UdQ_7?`P!x|NGrPP$Y6o
zM&M@73DxiSmd|}{{eDmJyFH)JO<K;#(C}>S%{rl~+S=N~&(rq2|9d?9+M1O|JQx@b
z#ILwHkI{3|&(F`FZ#*uSUGe8ybiS%5Xc<q*t1Bx{etajx%D`|odNbdIPGR-5M@Kq+
zulZZQ-Qw1N`j<)x1H%LT%Q?)T(stDs4hDt;Zr5^{pX_+tw;IN~59*iIeBuybU|3+n
z#KOR!(F+=P_fmFXU}(5BDm<veWWv`kFBbQM3Y3@k_t%5=L7uPsw%PL6i^ZQ0aqF8{
ze!H1I|Llc@&X@Pq{sx^Ou-Lu-+$2?REdx^q1{3|YTDA_}AK&KJTl3p~325V&pLe(H
zw(kGm`~T0*Ubj=N`rXcSP+Ksz?53*cri6n{G6e@1U*6eSthf8krZo{8mBM2RUFX&P
zdU<B1vHIGmpA(rGKD>OIfB5ywImPEr`q%%u?8a!Abflx^UGe<WsncVp$^ZXx+;fuW
zWVO_%r>0gu>Quk9yZpV%$$QoB=Q{IQssu0hJL{=FH)P^ZMur8J1)SHaZk6A!ojqso
zjk@1&H@{xD``OI&d6^Nr|9-n293FmMK;E<Hf+PFV`2BT1f1a<8yS0ab;erh3g#8y5
zxprS#8@*lSWcK>K(~fqFr?21pEvx9xfkx)fKOXl_x0PdHFwtguqF-=YcYDggCRRzy
zqLfJ~4-d6^PP%pLmfG=a*RG|#ytK6P``vQyxq=J~vxFHx8QT7SvsuzSFNTd*YRbjM
z?&_YPYEfn7%9WW#piL;!vdjz&^WB)9Bu8w?2;{T>^8vI|Wc%H+=vAv$O;X9dwZ(JN
zmFw5dE6=S8T`dJs{H|$hBdF25(78SB=clJLO|!$c-O5_sw)eaK-m3pWYwWidJUj&2
zHa|Om-%s~{a_MtR!>r2Q+{nnivLaB@H0w&dg)IZa>-Wp+fBh<6AC@%1UxaZJ<Ez)N
zgTuq8SAKr>bYAtllYQ3jZe;8aUmy4K-rj1^!br9Ab0H=8hPeIbL&IaI+J3)Ny!Z?c
z!-3<bul(cd^P(mtYZ;tYZ};AC?eeXy*~UpnI?l|qwZ6RE|NMbQ=IfPrrtkZ*^v|pC
z{im8(xuveX+xdJR=wJ;=!z7o;$4m?ko1gHUsImf;ipj@%WGbIbjNFvsxy*O=wT%Do
z|NnbGS>^tpXXeJWzrOIu*;u5{DRc{46EX4RWcBp#cgxSuFih4muw-B`k!MP={rheE
ze&5j0(6lo%CQ2HoncS?mclh<?<>cS*cI&6luPsyanK40k+YP1C($bkWm7l8i{%2-j
zusg|eq6)Ov;`;9!bIb2pmfx#<t~LkU8+gyi$iOgKvJJmteS&Yw*H>31?dxi)zQ3Eh
zE%$cX{o3zm&&)K|wiRPw2${lg)1}Y)-Hw>ruU9R<-AD#CHb70)!)?5$o%wA;US4Ei
zSdbJITGimc$g=p^lWWoWXQzh8%>=clJd56JJie^{|3Ay`cZ!X(udU(o=U`x%`jF>@
znnCTaFCb&o=hqY+j`H>O^|SeS#OBY3!=NS`>vCp>hEswHvkwUS+f1zc`)g_J?y}x%
z?0hmeHt>UsiWK399R-P5+1az#T)%d0nMT*1Z@02VXK*nvX!$qfFlmRc^YQido&5FM
z+Gz7P%nS#XPc&bc&jcz-YHMpJe+8ZD^k)6(--(}I$N#rFZ}a)gGHHPYD*AiBT$*3^
z^|i{s7-l<8IiE-JQ~nDvr3kNByEgWDY8bfH`{mWu?78P>+t=4kN_ljob9Rnd!>JF?
zr9PYl^@Vw)OjcY<-r~WOA}nE$;PCJD{(su}`~Q|LHeY1_>4Y+<6V$-SeC_9+!+h2{
z+wT;4Z@ZZ`o8QKpiNWFNnwXtNpP!#UpV%%N_A)SP&8kHjU0(bjJwaWNH@n~On`u*7
zbk6Sg8<qM$DPR8m{k^>U`@6~y2idi46d4#o+Kd%uA2`s+Y+Uo>gU<{D#cna(Q{Qgq
z&tDn5{Mpm#@#lQa?}ohm2#TsXj5l4v*2m556jpyWEjsVyrqt7$Zs+ZOI>}q_<Uw}%
z7)XS&a4;|gNX=(vVqlo!)?mWCI(+@PA0HoI-d+BFOYUv6-|u$kr=6P<`EnxzL&9QV
zg|i0=kIPP9y?&q7ak=W8Wj-@OOUzSmY)Gtpv9MjsR*HckC*&S;P~!Xho4%jYUVkPs
zeeP71mFw60|Nr;*^5*pOXJ(nMJ|xV<aNyWu9*<Vv`F6Hzqqd$psXqVChOpq^$-@3N
zhWz$_3dD3G0uH`pU`Ti@q#*k3h_L^X`2BUgc80b;AE$Tj*$+w^B1}sTftvN8+UWJx
zty?v_l-BS47R9=ZiJ`&Qxgq4nsj1q*!NHeP_LjcB#`~Lr;e)55gVq|~*=8%(ug~AK
zFYD^6wps>;A4>!jM8l$^XM+|@M%LG_4PPIZ+RwtkFuR9g<pxG(wkJQI&p&@VfB)T#
zzZ2c%JVQf6*?1%Z7M=t-PFO+o+f)5|%j|1wPJX=}e}BWas;{qn=31G8g01TNyI6=H
zvO-@n+P!7tlbP}GaC`cp7EVwLcia8C-yo&>`~MW>?RvS)tDl{LL3*mcQ$8D^SW8$e
zq`<)7khur6JdE6?s9ho`P0lGe#5q+idGU{n{dH4by?SNy?MAZn+v>Q2gRCppecNx}
z;Pp}6z=8YIqi+4QH#auk%-j9;(lX!KC2wvR{(ir|9+Ut=SBI&3u3EK9%j)qA!(`Bc
z<lb+8&Az=}xoXv_ALlt9TwW8pl${~r@14TqvY`48biB&N#qP`N|No2JTUDBNcGlG5
z^S0)o;fMYIUhfa9@~J<_{=k`2pg}C*-=Ck7rdc7|?v~yD^UQp|XTO}S)HgrduUBGf
zJ|5lqxX)V4LXlyO{PYCIEe!YnecS%|ob~%B?e>2X7yqb;zrU}x_}9zj>p$;2Jx%xY
z^?l#AzS(v=4>X1V+MSYkxD7P)l2i1?^m@$Xe}8|cpVr;(GhHus)AxJT&(rOHM;`un
zJAeON<MTGgxAS)Af}B0iw))uxXa2Lo{x%yO*FT>c9(NMdnVwsAOA|Cbwmt8zQPPnP
zQ0Mct&A++j_fFo}n0$F{^mb5i9hWVS0Ugt$cKmMT^SM9&Jhz_@I`+W1oe$I@y0f#`
zzG&X=_xr5bWeOau%HPfT_V#xA^0{TFDxc5Y?zo<_;p<}_4hQZJtK<J_)&Bl=*6#P4
z%?HnewibQ{jU`Ij)l`5&NhfNH#{K{Qz8hD3cyMN}wRv>z*3d~$+NASNNT$!3D5&iA
z<c#t8Gpj;Ze|j?6KkeI_n~-+hn;RQ<{{40v6kO@g=a!$7&fhZ;G$%AOecnk>K~}x&
z|G)SD&nfrYObT4=w$y*V-Aw!Xx^;WM-QtlnQYn6Z&iD1TwbFgMT}qFS^?HMr89i(j
z2OZFNdh7K#&@On@@As<n4;Px>uPHv(BRLr~p!Mmr{(1R-AKF1f4werZm_Pk^+@Jn>
z?e@6mI-s;5=q@u6l>Huc>-+io`aU~5dwRQERYr6DHHJ0qObuzdKR-Qn4Gj$~yb|cX
z_WH-$Ih%b8|9m`dZWFh+s&sO4T;0#7i%MT#JE}T8=F*05+v|UCKl<G6`%eD9_vTua
zYWdm!{lagXc4mg5>+f%G?Z3<b)fADlZL7-yLqkLF6rI-P%?@7fr@Ly^s;)+6cCqYh
zYceDDKkCx%diCm6(y<;%*Fce@xAXVMmb|;O)8grrV5!>kN4v$vL1rK8lfAv6>>#VS
z$knS?dHdJz`}Jzku3ft#c9pzrKgV<6*h3+mhP1q&pPqVt+W1~)>(6Ji&Hq%ry|p!R
zS4k#lZ#k&{eDQ6rb?K`qpyA+tyI(KZ>(=|twMzZ==4RxMf``XvJ*_o0HRatOw>iys
znqKUzeYL-r1uyq|z31sW`#*>6Q#PM9%dV(-wQ_md=Cfv}*Vq4jt#UH9{O;84_o}o(
zBS6ymdoF$m4Go=I`|alPi!&#c?p>zx^QeB^#6=qa7F}mO;4ZAda5ko$Pj-@ucG#L9
z5$E;0l)__6LqQ`_vu4dId3{aSw(83X(AHqk@d*!ie0+R-dF<{oNsEF6keb5B$4qzf
zyadJYWq<p*=WCuB-%OuhTLelJOQ*-(dN30-zVi9Jy?u24-qOW0?^V5C>t?K4zi0Ke
zZ@2UBXXJviVs38kv-9)ktIRadkLy|lns@<?ue7a~v#omaZuk3hkB)ZR7ff5+Z)era
z#tW)K=FGFLPP?)qaOc}?w~uffP*ZYXn6>lU+uNYS5kX^o_SZhE`_7tDe9lt6nVtXK
zmdwjV*JI05pPiX`Gj)3Grn0xU+8&qP%3KaQQe)@WYth9A7}=kIM(6(hem|dEf6s=8
zpz{0qQStaQ`~RHYzoh*AJy2a;cDMBUpXc@ep0k}b$-A>7rt0NVP^QY;{dU`(+V6K~
zS{A46DtUP+W7*fOWp8hVgodWx+L8$pUA!KY-}nD{s&D^c=i2D)=l*`bKYylidKzew
z?$yfWMPDwuKfmD2FRI8eyTN=R^A?8E($bv|+oX-EzrEqDQ~tI8@9q8Ip&d}&lkxYg
z`F)@7@9s*k-I{q>?QlE)`40~dgN7(UlN2*eGJ{|}0nbaD)6dT-I;Cm(bV@L2i2KdP
z<8mMceAaI^@Xi7)LD~7|(`o5zuU@~tUYWjnk;bP(-1<-Q|2@l>x^}Pf`COft9R}_4
zbrq9RcE8=`9Vi0oHSyVeIPi7e<MX_dMk>y2JSU%=oLu~J>GWsO_kV$o%(>V9_b)?)
zdAb8bR0F8A&%M13)Q{bA?sR9}|KIo1PfgK$UGpw&cJ8$&@t^W{zul%2v0=f*TbGu4
zOWWpMT@_k(ukyKw>%{W=wdUE^*X35&pZdM4^!2p3y;V#1?W=2!I}g_Cb9{<s@TYs#
z@7I3*@p}D!J5a8zsCm2f`ZLfx!G^@clT_Me%Ob2wUQDR}_q;x@<j!yK*!O18PJ@%T
z-tB%rZ;^)Ck5a}D7w0fCW-$Kx_ICFCKTp&_@d<K)+x(V)51RSYetmgq`LIR!+Rr<?
zcI^UHMIhd$`*pvcu3SFv)RxT4o9>p~Hnn;Osw={xbEi5svn@?OKX0aWdEUP7d*3fz
zw@wc<0t`y_UtV5T2MsiWM%O@DXy@;DyFb5J-2cq_{!hQf@3(>)6thfLp45rmRdRCW
z@_Dm%?b-zzE(eWnmfcL94r)s8d_J!l)R`~c*LHPv`11wLe5X1Dl|Q}NeBSI%-1c?r
z^iIm_2k(Bj>$OqUmltn#KA#8j&#v<K^TOjQRm<-bx_`T0|DT^{3ut2L`~CWQP|v*P
z+vfRa7rAy9-7USI`g-m5bN_z7|3C46F2fCnsk{D)F-Yg#+f#Y;#>V9CeYL;E)<$pF
zvnqKJ@Min{x}&DoV}h?-zb@_?C~`Y*cW&V!PIVKT<@@&S`|<1g{<tsi?(V)(bXvFj
zeEq-AN8jAs+^y)`Cc-XPk#M-s{7!+hVa10Bi>klBbDeFL+a+6eW8sfu=KBKIL~LB7
z(Pe+{T=}0LACJmazX>dPb7N!1{e86?kIPkyfT}#{vleM*W-QvZt7>k%^_vaOfg-LS
zpUut}Q=eCnbaAnJ|03shzM~rw4|jofHJ^L~F5OqJ?q-*(SO6-(yVk|-7L&Cq(QxaR
ziv_2L^UwGFey6?fL#w{XT<dZ@&{<(`HXP<V%Beml0Mt(6JswkVko71i<$d^Zull`i
zpVg}si~Q%?xxT)(w%e}um&kFMVjsi&dwcdju@_~KU$9DJ&tX0W295Ubpt;zkpt(4Q
mOh^Nq5z_u<U|=9i_#gku>${g^DrSOL3wXNvxvX<aXaWG9a^mX%

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-1.csv
new file mode 100644
index 00000000..ed7e4d76
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-1.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.714285714286
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.5
+4;Mean of F1-Score of top 10 classes by F1-Score;0.41666666666666663
+5;Mean of F1-Score of top 20 classes by F1-Score;0.41666666666666663
+6;Mean of F1-Score of top 30 classes by F1-Score;0.41666666666666663
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-2.csv
new file mode 100644
index 00000000..1c2dbd1e
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-2.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.514285714286
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.42176870748299317
+5;Mean of F1-Score of top 20 classes by F1-Score;0.42176870748299317
+6;Mean of F1-Score of top 30 classes by F1-Score;0.42176870748299317
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-3.csv
new file mode 100644
index 00000000..43b035de
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-3.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.628571428571
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.4950055493895672
+5;Mean of F1-Score of top 20 classes by F1-Score;0.4950055493895672
+6;Mean of F1-Score of top 30 classes by F1-Score;0.4950055493895672
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-4.csv
new file mode 100644
index 00000000..ed7e4d76
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-4.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.714285714286
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.5
+4;Mean of F1-Score of top 10 classes by F1-Score;0.41666666666666663
+5;Mean of F1-Score of top 20 classes by F1-Score;0.41666666666666663
+6;Mean of F1-Score of top 30 classes by F1-Score;0.41666666666666663
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-5.csv
new file mode 100644
index 00000000..bf6df6d6
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-5.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.714285714286
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.49712643678160917
+5;Mean of F1-Score of top 20 classes by F1-Score;0.49712643678160917
+6;Mean of F1-Score of top 30 classes by F1-Score;0.49712643678160917
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-6.csv
new file mode 100644
index 00000000..d62c8a0e
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-6.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.571428571429
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.4582043343653251
+5;Mean of F1-Score of top 20 classes by F1-Score;0.4582043343653251
+6;Mean of F1-Score of top 30 classes by F1-Score;0.4582043343653251
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-7.csv
new file mode 100644
index 00000000..81997a60
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-7.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.6
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.5359848484848485
+5;Mean of F1-Score of top 20 classes by F1-Score;0.5359848484848485
+6;Mean of F1-Score of top 30 classes by F1-Score;0.5359848484848485
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-8.csv
new file mode 100644
index 00000000..afae0799
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-8.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.742857142857
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.6181818181818182
+5;Mean of F1-Score of top 20 classes by F1-Score;0.6181818181818182
+6;Mean of F1-Score of top 30 classes by F1-Score;0.6181818181818182
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-9.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-9.csv
new file mode 100644
index 00000000..69922632
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-9.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.771428571429
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.5
+4;Mean of F1-Score of top 10 classes by F1-Score;0.435483870967742
+5;Mean of F1-Score of top 20 classes by F1-Score;0.435483870967742
+6;Mean of F1-Score of top 30 classes by F1-Score;0.435483870967742
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats.csv
new file mode 100644
index 00000000..cfd6be91
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.657142857143
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.5
+4;Mean of F1-Score of top 10 classes by F1-Score;0.39655172413793105
+5;Mean of F1-Score of top 20 classes by F1-Score;0.39655172413793105
+6;Mean of F1-Score of top 30 classes by F1-Score;0.39655172413793105
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-1.csv
new file mode 100644
index 00000000..695d8c1e
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-1.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.5;;0.357142857143
+Oui;0.2;;0.142857142857
+All;0.7;;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-2.csv
new file mode 100644
index 00000000..c37d7e48
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-2.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.5;;0.342857142857
+Oui;0.229166666667;;0.157142857143
+All;0.729166666667;;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-3.csv
new file mode 100644
index 00000000..304fcfb6
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-3.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.5;0.0;0.4
+Oui;0.0714285714286;0.214285714286;0.1
+All;0.571428571429;0.214285714286;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-4.csv
new file mode 100644
index 00000000..ef2cbd67
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-4.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.0714285714286;1.71428571429;0.4
+Oui;0.0;0.5;0.1
+All;0.0714285714286;2.21428571429;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-5.csv
new file mode 100644
index 00000000..8a9c04e6
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-5.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.433333333333;0.4;0.428571428571
+Oui;0.0333333333333;0.3;0.0714285714286
+All;0.466666666667;0.7;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-6.csv
new file mode 100644
index 00000000..d7ed7a70
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-6.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.407407407407;0.3125;0.385714285714
+Oui;0.0925925925926;0.1875;0.114285714286
+All;0.5;0.5;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-7.csv
new file mode 100644
index 00000000..51fe7325
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-7.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.5;;0.328571428571
+Oui;0.260869565217;;0.171428571429
+All;0.760869565217;;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix.csv
new file mode 100644
index 00000000..08010776
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.5;0.0;0.3
+Oui;0.047619047619;0.428571428571;0.2
+All;0.547619047619;0.428571428571;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg-1.png
new file mode 100644
index 0000000000000000000000000000000000000000..dee01ca35e6efd2352e1df0540d6c19a1833a3d7
GIT binary patch
literal 21693
zcmeAS@N?(olHy`uVBq!ia0y~yV2S`?4mJh`hJ9%>?l3SguoOFahH!9jaMW<5bTBY5
za29w(7BevLCxS5J3j5`m3=9eko-U3d6?5L)t&9mv{rCUl_p?f~7d`6I$a@mhwWN2F
z#mt?mzPA=lQw@@u_E(M5{D|t=qJxLF&gAhfSb4=~?XfdgoPuN2yf^cj2+O*hX7img
z_w(<?`rpskc6iC|%+HHIfBbQsPuz2>=P~Uvf4}ToSA19OumKMv1H%Cmy>D_13=9pM
z7am|@U@(wm6=Ps%IH|FLfq}utt&x?1A;E}Chk=1%a$o`@1H+6SCT<3X11TaA3=9lv
zi$}E#;Sf7>_8v0>1H*pH!bdIV=Gj)qu8ZBC7t6}V7B@Y6u?{HGWe#)-t6$lYdHHo&
zZGL`!?f1LoB9T*DG@Te2WDb1wTIUtJtK{Xb`^^6xn^+kdnm0!1EQ>pDz!SW_eYNsI
zaBAWdV_@JrlC*KgyadlB5mS3vz^O+if`P$8KuG7gLlZcG3F$B}$ej4<wIN`q2Q=Ze
zdIbjs72Pbm#%eMBXt((53k#jU$*~2bPF0IYs}I<zu^~XStGoN@qeqK+dU$jrH@U3e
z_iNR@|Np8*#l%h}Z45}U>@2@u8-DTP#i%VA6F+_W^y53%A3u@sQ2Fc)0h%$fv0vYA
zzyIo-_4_M3i=T&tgs9Zl*YnET#S|76e){$;%+s?oCT7LY)tlJmYXUZ>pAS1f&-Urd
zmn#n)a@x6j_wDKkhJcqpZu49ZeYqteFmU3rUg_n2bFDHDxAFdZ*e-u%Ww5$#{Jxlr
z7ccHAc{wR2CdR{N)rLopl01WQa@OSServXL>C%_$>;JCa_w$*wbwAIFs2NHnd?FD$
z*2Toclsr1ZnR|1SYinz3)timSOU~PVUs3t_S=H~i+pn&Vx6i$|=VnxjVQfU{&Rx51
z{rUCx`~B;emU@fI%ddaG|NlL|#Y_yp6S@Sh_a;i5I(ahi{5;#W*=u)|zt{6Tb^7$=
z{{DV3od|`)245bw%X>`{(~Hr_&(D`^J6K;BYIyYMQ8U+TKR!O5I)DE9mKGLKaq;X|
zS5{_SUe+t?&aqj>wkpKY(eayH+vQzyox=6=!t8`}V$8+5T}`vD1mxtbDJm|WI&tE{
z`ah55C#A&BfBf|6(pGNqSM#dhUA(q7+O+0JLH4B9RY$L04So6YrI)AY#%;bcja-wD
z^;~>*cD8BqF`h{}>H^~8%fr@2W&Z#7_nREog9{oP3hs)Cih53(SMi8*@26ARpFV!P
zILEU1%SCs2&q;Ug-p%b=vtfgQtX)mS^Yin!Ki}}t`svfBnTJ|9cfDS>drR(Zv+Unj
zRtAd-3oq`s`_-Xzn)A!s+u;irE|fAzU~s)wdPqv=xkDrC<tcha=gyuDO-x*PZk}zn
zty#teg}uLCtv+?`+_fhsCvQzXE#~=ObCZp&?bl<{`5C{zz5Vq4`}Wg6J|3^As?t(Z
zbK6_>HR%4n+O4Ip!(MOvue<5erAu!tg8s-Y{a^p?-rn6pLPA&8L>k|%e!o{F(!o+=
zLqgZ3ujVgbzU=Dg2q-AnU{(5R$wX!Mtk2KRPFk|ixjpOOpPyEBe|D((&MLX7v^w!{
z+qW8?kOTGmdjcXNG+u7sU$fkQ{<?Q}cfWqO`~AM0iCb%bm-Wh8hq?F3to&m5`1{WH
z`+l2bUQ(HBQyC=I?YeN`LN5=GfNn8ejZN#Ag>;@ju&Vv_<>faymQ`kl4W2xDv}nr~
zlhW7Md|h2#cl~@e`|6g=;Ju&ES>M`Kx|-*3!1Z;pR~I_7n`T|{SRKCp+Ct~{D;pA>
zx8~j5bw)a)AZMw*;vCCjx2vner>|bUnv0wJ>8n?()O=^XST;NF(#GWDCdJQuT3cIJ
zx^|0As?$F3@9+Ei*O&e6uTJ*2(~OUgx3=e8cXXO=^pq)6RLsrIx8~iA+M0DW=<%`M
z($8njU(f&lXZgQ>-}kSs{{D`OgJZ+@fYn>ptkF?bQ#*C`tgoJ)-ZHW9w!{@HR(SZ^
z{Z!e^GW96KzlKGNlnxv4D66X<moP|Z5R{S0d2@UF`Kmv+^Y@$P?Ru%UIPdPRW2@Ki
z%gU{Py>>fK_tB)1_xJ9eIC*mAm%_zKUS3|Ow#>CGK9+HDQR~MO%KZ_yxwyF2{NIy(
zU2n1XbiKCKt5<I<e(pEBxc=YI=daBpW<1;ffA8@lM<m3$k4l*5&6zlHVxsN7>hF2V
zCMH)_#P8pC_W$?5LUukG0~N`6^X9en_xG=q_xJaAo>chY0AscNGu~!Rr;r=RdZkTM
zPl<T`zxn%w0Z;Akx7%M`SlDb;{!YhJOG6{z_O{%w7v1Gg9zN{sJzekW$;s-fp3ZGN
z7iXDff4P;t{^arF$L;u=vZu|TzkYt*FHiSAnTszkFIV-vckkY-dwX}={riz@`}4`<
zN&k%RYI`OoCRV*#xjZB&Xpvp*uZZoBCM?-i`a0~N^MXS<V%?>=Pxn-Q7Lk=*+tR|K
z8@DGy-EYo>qe&OvZohx7WZ_9@ah2AV_~Lqe{ngX@``7F&e*WsHc>ESQ>)Kyi&ds;a
zkDVSI5wRlc>Z+AHc0}k#ZMpF1X!qBr)8n(QuZz7_%*HFV<l5Tk@L$CXlFV{%Eoqml
z@>m<SHR$%XTu~8`CBNV8_TOFpJ}fC|kzC~y!L_lwuPr-q>g?I6Dz?8~EY7;WZ!Z%Q
zlS$4EgV;S46MIuuON57qzm`7u`T6<fCz#d=O7}jR6{#ck^VhFeSHt74?kIe`M%u$~
zwwbS^qvNm7^Z&2uxBKNWbLLD?da66PS!HY1Rj<6fyk8%W%fJ02vZ7<EcKEB6%jX3>
zKR5U58RPROE?*7?h34%1eJj7;uaE!u@#8F;%1u0nFLa4&r)-Sal5$e0va-^1l3C6T
zh4S+9zi;#FFY9i<;}jL?TJz`Q@l$8dUTt7xR`JZs%R6=c{Pgzr_Gjnk>w9{6cuY{S
z{d~rli-%{6SY-0?zN>$~-(SBq`?{8n&Y8UP0aG_#TrqjWYZld2a~?fPI&8r6`1Shz
zX76^r)>|C5HtJaMdE0b}w!}9#HXdFPx_TNYng99qdcE26+7AcW+vd-ozp?1)DKB~B
zy7_N!Z<pShecfzc<ul30CnhSJ9S5a`#o5=_wH-||Ogl3pF=kK2MG4!gErE;Oc#|I-
zXgv1u@$p`M`#%?Ue7{%S`{6^u<4a4u%c{6SuDrXuo45ODQiP7!<B9HahSPMT%Wl?P
zym)bX?BuDlW@T;3ynJlO%Vo2B?%cU^N~UUR_%627w{PEG5xBT*rF?$=`_=0Xo;rWt
zT+L@jf=Sku6CXZ(GTK%0GAZZouCKF>?=O8F_ITaycSc#))?{8;5qS8;m6ek>mc6}Y
z^p}f^t7oQhx>WA1ErvF>w!Lh;QWD?q6!%Y@IrHc4y1c$F7H-ibi8h|Y7j(DZS>)O+
zmigty#i$(x3vFy|Ma9LJOB$zT+}Tmc#mjruTYv8ov)o%6y1KsHVmbl6Ql=%(=a%34
zEm$CW?EhZH9fgnGOml7o1O^6PTkooQw{LOz`+J{0e-4g`nX}Ay_Oi6IvosYI9lyT5
ze!Yp6`^uim;+?y9pT2%Q{Py<z?P^g4HT(blTFu1Fe06Vi`O>9JGmrPlM(wHC2+|sz
zzc;k8v2oH8R&KEsOO`D0nItMDwd(2V>8tDh{`&Og%a-ShLn6O<ZBSBH-dgv!>gbUp
z8X6iNCr_T_;^z<d^6J`E_O|M1@#IO9z8n$uU*SLBZkBEJwwT!1sne#V#g<2}TCu|8
z;lqcwc9*YTv}lotjLe!hZ*tz=-tPbW{QU66ZoU656kCZ{i&qpBoIH8b?ft#Iy{_G2
zlI{HRdc}V(EOb5=TYfh+WPRM-ikC~L^BgwlNj*JHa&7c>Gaa$+hfklTURfD@Jmb=m
z&cYWL7M_x`t6T0pT@Nh(ZvX#(M#umCKD+7e?sDm`udkcWGRaK(^E&>&QBhG*PxA3T
zN&WqQHhsL6y<XD(&j;sJK4~=#O-;jhdp`R;KFBU_0*YLJyPrp1TwdNExZF?n@w3_a
zW|JmO>XEPibMe;ynd$Qkb;P<26A!V>E(?jtY<l|maq^E}zh?dV`0?Y;q^7O;_w5cR
zZIt-@?Cj=kPoF-ObaZrdi-@=(dc5|}kHW*ZZ{P0d?A-av_}KB|(sFWg$DYrxkJ~8k
zC+gDJT2%Y@>-Dzo?(W2m5j^(x_J@xiJ<7q)Z=QC3UapLN-JKl;51SGt+CKjMeqY+Q
z`kP5jO-+ww@iU3GM2Y9;=bMY^My2@7x4Y}%<747C$0G5(yCdsd>+*9MH#aRUe82a*
z)X}3y-4YWMch<&NJ{1MIakhE>x+8**sx)GmHh`Rc`}S=QFRx8<(R-`58fIP5c>PUl
zvbz5^x!HELyAn4>^k@bzi~0DSYu%bH2Uf-H-4(bw%{SQo>gw?QNsXp;e<}{&y?gi9
z^Qx6MH>XSM>FFKY|L^PiqT{mC(%BVNRZ-L1rfmP}=jqugC?Jr)BWZNRpy&R!pM}q!
zGVgKiC}L${$@uf*<Ep^LZA{F}psFV|EiLQSm6cqaoPqD}?cJJl(`e_;oiBUM?_GGi
z{r<Y2pPy&{`ttJA*RNNN&)Y1{yu3_POUui5mdVENj~6gyU0buVp@CuP^5v_SEOE)p
z%hS@--1sv2&;63Z?Rj@qJlpx@w{2UTrB$oBwDR+_U4Osb{`&9t``34N7Eb~f|NJ%|
z8bIyeZ*L-1Ra91lt`4jE`E>f%H=ECAU0V}b_2Xgt(`Uy{O<wil!NKONtE;B23SXah
zId0e6a|fH*PurIN{`MBsQUz5eYQD2pxb;e{3SQnfulk+kY<vEFf4@b~wJP;`dwcu!
z6BCu6K7On$FE3yE;=;ja-jC+8vWlGwT^*)-^ytx-FPF~;HE^CheY*7fy=wpaHJ^Lk
zdL$IPk1kT5SK*X<d)w75nU_Ph=fz%K8SL&oO(!rWX3kfuKdsSQr~Lc<>hA9Cmo8s6
z&Anyfx&QCe-}_ys9ZlM}?!1<5|Msb?_Emj-1uE2T?I>LQ?cH5%&tFd_`<rB3P`F$B
z{chFYuh+kxRG+V5U=Sdz<`a;SvEo>d<l^YOok!0pm&;Av%N`aMb}hBM;`{gS(-S4E
zN?(QSd@g5M<f863=fa1Fhrb>X_J47={C;Rf#g4d|kFKxhbuRt8<o>si+dGSwPt%KC
z_2fy))924u$M3KE_3QQe`s4nm8gJ^`IENPg`%{^GW`-fCA~@D3n_Zl9dYZ0VP0gN*
z%Y3C57d}3AZF|3zNk+mP+v;n6%59QHMn*kqzOy8@W?eP9SMiuPyE-s%;#sRTPft&m
zHqE}KvpL#&)wVr*Y!=7wuRC_P{C@79&*!Y&-rm~UYghYgN@VxXXS4IAUcP);CbhI!
zbFR{wz{PEWyUTKe?M<_;?06)SczT*{Z}q#K%YA-tOg;{3nd!vr*l?$C_pV)1dU|@-
zN_Q;%_4Rf7j~_oGmh*(Ki^+`85j%YO^5ti}2Zh!BB(AOsHC9qmsyp9*HgRIY!&No4
zwV>GOl{9wy{Os)I8yl0SPM)mn`RelWel?#N3v8>uy=dmQ3y6uC^Xu#D<^J}6LrPy=
z+4%XyM|T!BwpVYr-wz86oVd(q=Au?^aj##wk569uuVh#9V#2+e&%Rr8Zcg$|p4-#j
z-u~;$%f<e7KV6*LcmlWQ-TiXOTYqKj?y^b$KC|BMxB1ioYI9ceiK>10^eL#Wu5RYH
zJ$r0kf7G6<?a6QdXM^wW35w2BX3t)&zyHsrW$_UaGtS;_@||S@GHS}KS-+0U9Xe<b
z*_Zw3_3PEo=T-ZOb-QwMauyX9Ui|X%GAJz{HV9cArrX-mqM@SVGF>lr()R7!_qOv0
zx3soq{{8h;$|Pe#Qc}{E<l}t2ayAjV(c7-5&#zf@cDDKJ)$8|NIycukbbnoKHNUu;
z;lKRVed+US!)BZ1UYZ_XxAMo2imkb~uiZL+_wL<3<&wPmlG$y4{?v$yh}_sB86LUn
z;rsXXH!}~cS)=2*>(MvPUMbT{7Z<x<UEs((``fRtuTLBBq^76ej(J@Fd+N8nm#o&W
z>R{r&e&+i1@ZjZsQ@_lQoio4wUuCvoXi$)nxVU(iw)*AW<@s;#?hb!^y#IQito4?{
z$8Mhc*Is;mW8>nox3`wg&fj<Q+~Ss*I%3^hPe@r5EZFzs5%=5M+s`jM(DeAzhYu6l
z+uMDk0|O`4{r!5q=sYJUXP}o?S5Z+>j@YjEcXx-2b-OAmDn6Zedu6b?tZh}u%$YN@
zuC1B5)z;WJSghOi>#M7iRkr5ek9+s--KjHYbc%a}m-|Kjw&Y&M5vaJ-^%^MsOqj4h
z(m3tKqoduE{(WW>n&Us)EceT`==_%-9v=SnpqU@!<l28fpI3dqTduioPDp0cr|J9u
zxZb;Wuj={S@>5HccG$i7n0lU>oi8LXaH5c~@Y-BfR#q=Rzp#vq6--P_Du2K2-JF@3
zc}<^jdR_J5D+WA!KOU35W_H*B)I+kjw=aEl#dA`~-m22p_I7PkQ&4aE+P?d>-{%Ge
z2VY(8FCSc2*Vn|tEgBY;vUAt2tao>It_oW_3)IMapZL&fb>QN*tSc)X##rk<Ud6=3
z^yN{v{;QA2<*&E#N`JZF%zv}mV+WsA`MWia&1{-_dVcBW=4^cTWZuMy3zsZW$==^7
zte$nWOBB>OEe-$A$jr7P{ro&oE2Qq<&-Bt47aXO{assllRtX6U=PsL^es<Q<x3{;i
zcJG&yvaQ;}a~RYM2;H6+JA3>2xs0r0b>i{y@kfsyT^Y4COUfvvV{be21FKh8S5LPp
zd$Z!fgM@1Sr)>%A*Pn{qS+sPS-`rK9tHU&{t)mYfJa}tM=H#=}%c6Crojw<~=li|t
zSw^W{*VaTX1~sNiUtg>GeAfK5PEG#pZEMTk-C23#M#R}Umce>@darJ7UjFRd-0GXT
zN~?^z3%5?qKOj0~-EO7_cRqdoe0t66#+{%f1qx$O30Hgg+M-2DbFIt$*!g4vj`zv>
z?lsfvXW_2rI4W9@ykN(wn4BBYUqOST4;<c@x^ff?+B1O0NkJoB>`qNjWuPNkpb;`=
z#e+qBpusN&HRXe=SklkWyE;ub`pTNf&DwR!mJA0rK7ID=)sK&lU)|om{?)a$)v@m!
zo1V&OY|uJ5O*h)4<V8R=KQlwZq|nu2FE6^wZ~boY;DE*kEytJJyUX9+3N_8Xw&i_-
z*3Cv{_BHWeDwQig9u<FU%d)$pv-9GgpP%2_^6aj7zxVqa+ZM0wRbO8j#kW3svuV?&
zEhR65UeAAhox3yms(WK7r`K}U>}zW@?d|QY`<E5%+`apL!FipRZGW}8W|?N++i<?_
z!vn`^{)Lw+D=SxKUS9T1t}S-M9p-T7MplLf=0x6U#S0EFF&t<NNU&tzmdOAbQsxv}
zxBB&70g=Ac6B87_$uVgKPS=ZlW6QGK1spsDv4IJ9BQ!ST>4-!)`~(G8fr3iJxkgY3
z9!LQNmxYAT@>Tsve1U5Tmh9jWN)Fa(#R**kpfPE%O7u}h4$f)C3P@v-ZAVtVLLQrJ
zF-5frtRL)^g$IiGd<2=W#U)6-S<`ppnO`y8O-)Qkj~&xeP;j_+?;facu`T!Zy2>-R
zx8(+(pJxkdRDe36+ivGwwtl}Scv*Z_)~a2luhrz`<$wPEt!-r$C9WU0=h^QNQIQA+
z28W3gCq`{ZXjD>C+LCcmY3I(Jnl?5uD_5=zw>8()^sN2;Ep%(vRg>y(IeY(nIt}X6
z`^~e-y!`&b!DdjN`Sj_NN&UYXS65d}L&LykcK&^F{i)__4uaz2Ml$cUe}8{(O*<>4
zs-mKyrsg(DL{M;H+1p#7v9eoRv%_~jPfJO80UDKDw0N;;{=Gfg_tGyd@%;4p^W{ES
z>nD#ND|=?$+OpEEPiAHA?QJW=*T;$07#(+QVr4kMn|F6tX;E=;a7f6Mt!ED(c2;)l
zxiHVRddke1k?(ebhGxCIyuSSTeBL`~=jB>)y_gHza&L<W3MT5VQ^~xsArUmDcWZ05
zZ<W+>2T<TL8&?0lx>Y5KonJ0wb=X=^Q8)YBxw+QS{nOKNH}fRh65p2p_>d?nD!MXw
zxu4nd-Me>dtEjld*ZoX&tq<Yr1rJ<z*e>JPylK;u_wVDE-MxQ5zAf>^m6gFy=T$#B
zAqXlhe|&h@)!Q3dP_W_J`uO$Y@il=*j~<<6S-kA4oLKkLJHKNxr8a3TI>5y6fNlEh
z+1mX4{YG!+&6{`a@zawhPfkpf=<4skzN7H5is$$H_5167J{8xE*%2^V&396NfB#ph
zr+1%weP7WvLy3jqK;w<%t_!D6d;k3TGxgTzPoLHtUth9L#rDsK!)9+m?TEa*b)~P?
zZ;7w`zVnjpDkab;`J59wi=UUgyJI<f+oMO1wC6oW)V@KB-Fi>iZVz1SW>xiN1*pMx
zIc|Sltz_H6H*a!Y+wvUV5cj$Meeu%j5La+cnPERE<m$TE=(DrUxBrY;TLG#mtEzT^
zYRX&R-`&;jKDubagb79Gbz`^u+n+C$mX>xZY2%8xy;YNzl)b%m^6XjP`St&H`tCn;
z$Vt|w;zQT>6<wfNqa6o%Wh??*U0uC=e70;86%o;}w2WN1a3L25#{`wRcC}HNnVDvt
zH=OxxRSp|`IVPPSahvCGKv2-6KY#wLVV$vl{rak}ua<_c4!fE2bVJfnuGl>l7hjr5
zr-Jf0ds6>)4r`Q}DKH>l!lcQQLBr1IwG$IFv#KXE8&AObdA6q2-*W!``FtKUoMx7D
zW5JaxA)xWYyLaza{W~+$SX4}Gnf1FJ&dTn6S58h=H_g9i^Y!iR@V(XF&A!fj3!b&e
zczSAT)wi4JTeGfexw^Zr-mxQMwpngaM8u4({YR4~c6;Bv^l<O@dzW8aT>SMQyL`r(
z8HT@JE}#G9+3ftRBOQWffAjW!4a>c~&G+8Dds4<}J#qDaOI=-EW4~E*ueJh3txSil
zkd7y)qJH%Fv8cR!eBS&eOH^jNte&!c`}SvNXO~}He`?~Ab+Nl&Z9Z?eJ8S={KI8(i
zS~bEz95i>w*TQt#(!iAiG;s$uma-Di&(d{A&CjBpJ9eD7eLFfbGBUOAe&zGITzq`n
z4xeCPIM91QlY33j&!0bM8K?WrEYqrFXjrV}yWz~g1x1#njiN$Ai<Wv%fA!_%<!^Fa
z3=BIOEpi)EH%5R)rbR_XW6h5K%0GJaXw}13aS;&_6@Pz!)BJlelhysh932~d_otnm
zwX**Izgv5&x9=)>sid#3zcuG(kaqaGJ@fjR7<L?-5EokO7oFf4^!eFY)0`U{RxgVH
z6+BxqFPGfT-JW@{iFMcKbJn1^=an=%vTXj*q>B@k-9a6$uP-mVe|~m$^8ESp<?8<w
zf@Zd^|1M-;a1ecXg>{;W?>w8x*4Eap{{H=MK03GaWghJkm9i{a61F~W?eck5UY?$w
zQs#Mc%<}H6khLzm@x|ZY|N5@d*Iy2C>t|e95qN7)<>otg?@paEB}B5HnW3O)&A}o*
zzxV`@=L7`>y?lJG%rs6vCG-EoVgA&O5hB9E$(QZQ-b6^YE%cpjc5}=9n$Krn-P*eP
z>-Eyt*Fs-kTU+|(#>Us585kHAoGSdq<UI-0A31dB(CKwYtqLEt#Kgpih=`<IzPG@U
z`Rb}rZ%Ii>v$u_njj8KE{i@XT^x4)K3<r2SSx#Ht5s>aR%fA=n+|C!8l(Z-*Ia&Yq
z^QijIJ9q7h+jiHWXZ5`52L~8IQ(Rk2v#<G_on^XvSv50**7<$4zqjPyx0}7~&Ye52
z>*CF%O8LxP8dd*JOIjPXb=8@uHOqWwuUfLi#l24^@b$H|Yv0=c{WAI7T<hh_d}q%x
zYxA3Hb@KfA^IKjsGOU}g7rSeP_jEn8TuDjES%%4NbKP22J!zYvG-ZjHZdAsL3k$2>
zZoQs!PlJb_e|n+>s6O=l-_pVosUvo`_`K~@+Yp8Wygiyu&mU~zy!Le28#VuVYo=<4
zYw7CxzP+_|vI;9ZyS9;0P-kc7sdMMTzQ4N*8XQ_1vC#=MzObwOecVlFb_RyfIhVyE
zrmwyhy)9>DM+b*){JuNSen{u<SvXBMTFcThQrbK(<Zv6WY2~LB+wXUZQ`be_t7rWX
z&(6TG`9rza)#p=K!%|X~C@CxJSLfW^lp3`yXQuD$?(S|-)PP59c0J8K`r+mB`TzDc
zGBGeLe=-G>J3~eD1+Chp(<WLoFgT<tf@|gp36|`joXRkH#Y%TK2IyLVi3yAh4;(x;
z%wY!U!^qV<pw=4F>?ud~hB?ffVz9aU0)?fV({9dRt*N0Akdw29iHYgS+qY{kTnNa$
zz3uI)=b*_+Jw3ftyLIc<{d&24{wdq{e|~;m6~BL9Oiav{y1&1;{`Rb5TE@Z1(13p+
zQdg`yuHqr9Y4)`<%l3w?je0uIxb#)X)2B}@-+oaAJN$@T_J(io@2@w_zNVq5=xAtY
zIB7{o2glaz>wdy&J{Q)-?p{~bzx(~ZXj$vBJ<C4U{QY`8YEw!lXsq=4yy|ze&aKRX
zSC$1hTN#zU$>&d=4D|Fo8T#AR-Tn1JcKML)d3RGJj+w^pUIkj(@PMuS!vjaqIRDkv
z;oCFc-`TnO>yN1tZ3{uovVHsZefsw8S_30<$(I)wPk*a@KDT^J`TMxDbFHt>IcTi`
z3W)-PseAP_wY9zf{ri`C>+j#csS==M9r|u3sAKo%<MFGD-T8n1`t|BSBQt2OEh1tD
zs2{<~!V>ZO+0&<)e|~%fmHV?yG8ZKu?~9%OypRRd<h%2rsJQs)!-s*(?q0rpxoVG1
zGaK)v1&+;Y_P@Koe?Mqg0aP&=r=PoW|Np=8*BftcPG7xZg-2mwp<3TPLukKa<B7W{
z?Felp9UY(8T_qcDK707%<74nJ+N;&;Pu;$~+v)mha6Mh1wA^oQP*~VB-{{1|hoa{{
ze*eDzjY-1GQYq7{kcWjPnU`E%zI=Ht-v0ZY;;cJ6Hon{Om@hRY<wnf^=kx2s+}uC|
zhI7+yvw>UTC**xMFflRZT(kAupZjWO_4ju;d)}gQ$2TS)4_O~)`+B|qJe!q^-TPO$
zc8i())e-A<>y=XNKDy}5o1CA&eue#r>+9Ig!N`ECMRBd^?U$FAy}Z4H3kx@Hy?=9a
z`stYWhxzTVG%~YaSs!noef!Kz<E@E@*>dmfxcCdy8&dV$xN+mH4T;S)H8tz5D~G}A
z-D?S@@9so4v+)MS#LPK2$1?fuNn2%QXHQShYjwivepk9gwM+i|C}d@0^P04)?CmPh
zApZ8dWwSv8p3Llg8k(A(zO&7?MxLqLdG|r~wKbZD4ZbY5|Lghp_jmJ`nX=#<eBsno
zZPU_MA#0<ydfmKvlZ%h<+A`nSB4T1`Z<9AhJb9F4{qyUG!~EHom-&JwUG-vjftDnI
zrt7NS?R=iIjN|lUo$Pi0Aa(o^InHS+p{v7uKYsk!)!(nb-9IR3lJ6o_Pvf*R7kVU(
z>#pzERsKHD`0fiIP@Am4;M}ZNcRV7V@WERJ9ebB?B<ewm9Yj$BDL}Ax!QdUE=7kEY
zeu1(igMlPSJztBa6Ussk^ae)@%W2CAki|ow77Kc(xLL7q)i1Cs6?_D(*g;v1!N(1w
zyA0~XAWBNCPBu{S3zY{KI$$R?hITGmy!h(A+Ujb4<^!b$H9rcf`5C7^=+@r{3Zpl+
zJRyvr90*>CazLpZw8#mox$xfTiUkWCHg4PqYRYckzTL^$d28<NZCvr{T3TM9afSQ)
z>t`mnC1#wQq`K?twdl~rZoH;BHv&NOF`Lu-CHo%)fW2w3RC8M7{A@u<$(5|!Vj4<H
zPTgX<lV;DJedzGvsk3HPoqhc8&*$@7Ykn40R#wJ-`>~_&@s}@`{Z~7;^Uboa-v?T2
z^5siO>HB-J^XvcpG`+uE3)BH_kiLVrdw1P5R^7@fYU0F+(|z}Kb$4$~IVl7h3p{!9
z<h5^&%<P~{2pTdey`8&#<|muJ25?*@l~tAMYF^t_`ufSUXUkTs(8!+M-rnxkBeBr7
z`kRKa@#j^K<2EL>f|jwIon!fV({XNY?y0k9um1J*_3bU!SBLxS>FIs?_HAF=e7~!X
z;GW$^_r_8z1@V(7Pcj}I>6~R#Su~Sr)s*GSm+vZhx#-E0l)YcCMO#&VTC(rgD{b3v
zH<CeP`o4wFc|a-f0o(McQ&sEh{~Nvi_wSz(kMnZBxw{_yJa7Mh&z`+|K@$gY8}EbW
zY!5cGXTP|x@Y=R%y3wHN=d5dMZoZe=y%^Mu19ih@x81oDQ&~|lCG-22FI(jF{i~{W
ziRnfyG0nbq;_ltQUEf#6?cJ5P^Ql<r+gqWw)!(kXyu92r{hSQ1gn`5EvbU4w&%bYK
z<9ij<cRj#+4y7nQEi5a$Ht+7Pm-~Ld+x^J4tGoN^>Tvz9FD^QBi|cLK_WjMx;O%#c
zy5p)|s-B%^`@7t(@iC~nI?(v%BFpO+7Z-!p6Xo3E;^JCY(YJs9|J3D-n>TGz@$8i{
z-Swt&e$A)OZ8<j=@k*O%C@VW(%CC+U6&2MqHxHMTlmty!_DY#<DSqw;n&JYbowKG*
zO-)y}<wn1~xA*s~`5U#sV>O*DtgM<E8Yh;$eRFg3tqqCJJD<0-v}mZRx>{OVnsMJn
z^afAQEC2Mw6Vwo^|NqzQtys4!X!!KvqSj~U=dZuG*!}gHnZ}zUbhPyJ^or*mI^-lO
zDjNF4P*yHqkcr`e!<&y{4-YglhlYeKIda4$JKE8)anj_;p!v^+1_sYdFE1|#&0^|K
zs`~b3C9kwu#^YnXX7hKIzJBFj|7$X+tzG?oZ}_Aut3tIU+ZJA39e(@H?{58l0Z~!2
ztjgYGJnO&s4pegOIEY%9FJ7=fK~-H{8+(Dis_^l#tUEgjXTAn?>KvQdu08Ua1R8t1
zx3@a`=clJu_5b#OD&gSeelMqn$4%_-?_acdvG&tQZEkQ$b4)J&+@7MRUcPg!LRW{a
z4Js?!*3{g*HS@AsYisMxp3_I4zM35WbZOfA{r~sH)%{Fe8@D$qdRtE5)~u@~$7Rbi
zj`c|Hdbw=2Ppw=vXf-7`F|uLn1=<|%lii)OyS=>~)ZRTgSv~%%RH$q=WVsx;wA>ip
z#99n0z!+xqfHN<?(MKkR0|zHqgw{d|z-1hBnS)zEOFBVgV+R@u6twUHkt)M;1szP<
z#>T<c<?pWe+y7kxT5;DaZ5~!wxbfV4`}MO-vrk>Udi9<&3j@QBw6eKMCOpo`$9e)k
zKRf&N#p3>~Gcydm{Qak^Jbm(HMdao*&^)_sI|qZqQf<)q+=5Rxw;rf^xpexLf`?AM
z(&m2A+w-O-N?c1e&AxVpncrqX`Tg4Keab8h3@a>l`w8mB?g}~F#(Q~9<mNA@_4iM)
zl#`KJb9T1*?ZgxYh8yhJ8|E~}a<7@J?!PMg`nsob-#>o5xPJe?s7_@jh6DRFK(fm@
zUSD6oezLm%wCX<x8kxCxc-9;dWMp9YQ&^_EL9XHfBWSJS@jltj+op!yl&}A@anj_;
zrWqF$s(JYt8obiKF_nw$y4@bjy#_Qx{qNsDE>6yi8xjwvY>W_*mtUWEch}1J{dJ(m
z!xGQQZ!BFH7#g@XXE%m!PV)uLnSkaE)6$mN*xGJQKF$Xkw7$H|_j3CDTDAQA{AxZy
zh6XR!rl&G*_FY^tefo50SLH^v1_J}bvIo04d@rntH0G7JyL0a_1A_(UrPZs>zvH}C
ze!q74k|ip#)@437Z{9SU-RrgguiEW>wYxLF|NeG6A2j8+bjgwzZ*Fb|mCaROUM%#S
ztoHKR?EHVR*GmcuADSC5Fl^YA-L$pnsTXKwrCVJ8+Qr50pc$XT203=Bs;bNG=KuZm
z_0^4yi|zh?2?j001PvL27W^$;vSdZ_@xH3}d%xFRFTH%}(v%r9GHzKgGMMXCuRRD_
z6NTQpS$pVle^=L}?(Xhi-{0q7o;Q2;>ivJ;=7WaRrA)I_;^X5>-`oiFo~C2?^?j9l
z;&m3#gf^(U-dg!N?dsa-@4N23zOgY`$}DF_Q&SVD@cjAnXJkL9bco)b*VWN+Aw0fz
zY1-LYp)YQ|d-qPQUyPyQl&GZS%CE1lYpbcbIXXImW^yVjb_4|lt=pmbqy9IdHlJ!)
z_U49Rubgev-m0&cZfs0``ug>1-RNyEK$Fh<YJX3eG9~4k^3AES!fS$;`(^(4@bLQH
z9g~*qEPk$KZXVv**=crks>;uwKVNRW9vAHA*Z1t)Ty0O#BGD^*DnA=tpJ`XSD<&qV
zK4;BACWaYD<v3v@zGr6|yB9w@b5YpeW+7-cCiC*LSq6!RO#5viO@dYN`|D;V^Gcgt
zxgKA?RyTTE#+w@(ySlnAfd(~xJnqjv+9hgMon*zlTP)(>!GoZ==cRXE%m4q;KFc&a
zEKl^`bNm01XJ?sSUgkSnW$OP>*6G>le?=J%=zP=IaBXe0y1BWztE+3|Z5taKlcXaY
zZ*OjPpE+}8xa{{XQSC2h&F^PCJ2P{-ZQOD{Sx}40=l9?5_w`?HH@$i8$U4?*dn!MJ
z#tAh{O~3BC_xyT%{neGh%daeSZrA?C&Bu3b|G%&Lv3n{$?&@P_U~n(O+qU?WdU>_>
z$y28$E%BOpc9l<AY%^%t>@3slSLf^hZO+^GGmVvv4OHAL>pz<G^KSQf@7Ns$j*~(b
zyY*^+)3!Y)?!(OR=4n;V+JddGQ&Uq<-oL-!XZQa7`*{xUc$IVc^Lcyy{QP{|-)}aH
zN`)sTE)>&=SRkew^}@gYS8(gO(vmXW4WMRBq>dOX8=IE8y8HdQ-?=mG(*CGv>(24w
zUi&E~Tak^S!T99avs2sK-Dj5h`}@EC_-V=V<=Gb(xkhbH^KFg)^{f8>`~NS0zu$ko
zUA`_Nt+qHc{W{ZY(4yTU`S|$wpTB>D=5%)@?O(s|mlq==<Eps5RXbZ_3kyHKmpi^C
z^YW9|ud^?g-LL%)YLWcDd!2<LMm~T4-);Bme&^2K_WAkw@KbxWt8>>+pFSNlAGYQB
z)2EUB)0cno{nPa?_S+?I{g+>_$6r4))A;K4{QF(JJGeIdc3V94seb*>ZqS(K(q+ry
z$`<}kpI^J|@$vrbD=PvgExENd8??$J_1E8ti$45(K0o~Tx3~4*e=;<jGEO-m03Mrr
z3#!SN`^|l0vM9Uw$A?5&yP6xz)@}*V>W4IXysx{PW?gx)>3Qv^lj^rNrFMfxaeI1r
zJSQbeXlZE$<>jq2GBSGd{CRj<8fe5B)NQ-$Z@+fOjvd)`+g2S><XR(ZU6yfqneVlF
zOW)aMS8c!FS^Vzq?%8GiA0HpjzPc*3>eESeP^me4trU2H>dNKwKtuM&dZpDpvu<u$
z3aX4ig*|AD>C5f>Expp_v&_^O82(+Ck8Ku}ky-QLLBi~9pmxI6>v7uO=S-L&uyn~1
z4R!V7X$ybf+glA9=o1nuy7}2}o{eVr(WF}85BujU8XE_LmPY>h`PsDUOUCPspd}}P
zfq|fj?YPRPQ}2K72yKexUenaX#4Bm!B5j^GB~fBk=;~=IFYoLu_VVz!09r4&{eIo;
zDZMt$O-);Beire{T7`g?xpW9BgO;ZK{qeXTG&%*EidY-B_tviOR}b^sueos};%@o<
zTF|7dUfiA)s@~I9l)k?9>ruD<zYi4*3<V<0?0i>1>pG7daRDu!xRhV-uCA`GZDJC_
z$jCTp$>rt#umAk~%*DkuY4z&W&?eiIopB){Q)ZcFFVhTO7U9h0d246!@-`mHMW8{J
z)nRK_&1v5(yjv^+)ItYEVBzCqnQv}v%(}3kQRU_G`E@}~PEFvJ@C-v|{XHL=G`~w*
z6fC&4EqC?J&FR@UH>F;Cue9g&y4@n;;_07bTk7iSKuc*r%VcichyabQ7C$=^SXEUu
zlc`((G7G2(%oi-f(zQRF*8UY~9vie&Z%1LWY2KY3XTE~^j0+r@K`XVdZ4*}aTT%c2
zUr}M<MNn&DYxeb9bA)AN-h`aacoUTX>YH@+^lW)IFK$)c-(R4apP9z#TZ*1~UFOp9
z-1T%?^tzo{?{02h&L?XXvaI&jmQ1t#W!vtiGctTj?q~A;_4aq;a*R3cLx&FKtSi>d
z{~h~IvhL4E_t&?7)&G4Re|nB_?ky88oy{q!sVlvw>phiwe`#rV*!s9wQ0wEtv5>V<
zrbmw-*S53UcgN1t)ARb5xsB7g<#v_7|JQ!+$oi}|yI#6HKGr*R(xjkwA7!n}V$7;o
z7!E|<e7w3S!EU!$#Kegcqjs0AomcfrbLrBhpe4Jis;XYz-j`PdF8*@P`u&TI$K^IZ
z7hq&y&^og&xMi}M?<IcwKMRf=anX(4b;W9ZbWo7eVFM9K$(5dy)ovDdFffEz2`yiB
zejV$y)vH%enmie_0-xXhPXK5k@t50n5f2|eO#Swefq`KKmrT;)i+r+HE1cW;zR9sM
zFqEaQ-_DV^&P#uT)-10`ooT1@rZO-vJXoQ%_rRympLZ|w`UM&IS^SEP;ZA_ZhB?kl
z#UsLRO>_LUb^|C9ve)lb3l9%>b#VzfcL21J>5)M829=j*W*W~jPVW;E77mSwSOHpO
z|LMs|P}bht&c@)dRPkUDUzz>}FX7ey_11veMq;{AH>xv09^uk?p0J(i^_Q2IK?Z;p
zQyn_w<m%#*acYWY*1bJD_qMSxFeG$&>2KJyY15k4(7?cnZM@RUPEJ-2j$mZ?Q13Bk
z)jlu%4N=>2R{r@@)7sLKacPMsNaLo>o2Sm58~e^u*1BxX5zuV&AH%6}2~VFs^_;Zt
z&nItQIh!9{wY-NX98KD}a9^!7LqT#f@3i6-UzoHtHCJxR=VV|ASgE!5Kvz%Cnm5r*
z3<0U2rn`7GKLZ29ftxpK<#iYsKFEV+)0wy#7}%W}pUQwb&aj~yqGrR9N0~WMXVXDL
zI|1N<YK;wZkb4l|z6EHS5wy|)G<36p4f`Na0~Z&Uh_v+Th6aYp>S|Ewa(i3u?pKxb
zYroB8<B?c!;DAGAW#!5H_v8Qm`Wl>-^(ytZxR@AdJz&=DZEN@J*>hz>qVwOU`t=uA
z1}{HTr?OiKJf?m_`(Rg3&y`<aUxShzv<GNo6QilA`Rdlz?48e-E?<87>ebN2ZoNT=
z+jytWox2vas-n;O-Gz4fx)q=W@xR4HMM1Og)!*NRhJ;LMYHkLps{Q@#<)5FQv#zX|
zsCoW12Y5h7;hV+={6pNQY|D>y2uc|ywfKV8L0?(q%B>r*;lQ#3v&{47+5LWF{Px~n
z(DKAz%>GY)fFkGt+xEP>R-pNREv-|xo;`fHP*B+|<NQ3^Q)kYsx$t$*o;{!uRM0xp
zTWJz)prHzOxeAB5R;59Og&T{Ci+!uv+`%g{pvx4_9&Bd6x++vVbbZ|2WqXUCpS$)r
zy!hcE*1w-l>w_}+63@w?cG!yW^>No8->>_<)^D!W(r<5XXFoYH@zckTpl+{K$%_S3
zrcCMj+pvlOG)TAOAX*D(8S9H?cK&PAbfZ-~udWKcJlWrFC8!$cm$xi(xs-porS#R6
zi<g#qr%JS?ot?F`?(eUcpsgLZwq~ba621u;xC6}=pp1wA$$Iqov1#5N3(!WE)6@0C
z9UU9FxVb~uMwxmB`T6yIt>>4uN{PL2Z?QW+D=TZ}yE{9hHYT~Y&O1FZFoBVwp!qY(
zg1gn6e0<yfeO}yex2jLp8ocW1*4FIYb%J7IX`i<xOjh%~vNn2q(e~06s~}NZZ*uU~
z_Wb$Z-rvu^T=w$PQj{t8RUf`_zI*rX)&2eZA3X+bn$qXz=YMS~Ws(uFtp4w>uj@1C
zhKD+VhP{MeURv4>TIGIu+Qf+q#p5a#-YIr+a+)$}(xN$YWM;R%tN#9O>d~Y?4-b#l
z<ApCTsY<pj<QCUEarm(F+uPfx@8118^}dHq>8mNPuC5M$SZ!f+54?b2#$UFFTUC;9
zuO#za?ms^)Dr#0&clX-Ab^m@oH@a?J{%+2_+V7x^eyj5C?wYjZ)z#J7kX0sL{{Gv)
z{e8Fl{ghd=vNp$0GX|}k0S!q^tbTrOE~uLdS|EF7rt!78cZ`jUK)sc>=7o=3K$C07
z`{lzE5*Da{`lnfUc5K{L@^aCyudhMFE+<c(Jay{Srgi(ZKz+sB`}<;TtG--#adB~~
zM4Om?+?rjbueJ2_&Rt30W)7N7STI#P9JB^GYHQZiO`A7^npVEE%`|m%&fGelwDH8z
zqh+76k8}t|?XB7hYG4;XKew{%?Jdx9V$-@mKaAoxUfz}){r1kz;EfwMg4S)s#Kc_L
zobG>iuJ!j#w_QR~!9yMrn}ye82cp%PW}VZ%+`j&(N6PfotoOn~LP>Y^PtV-QhO}p~
zdd<P6pP*4D<RNO2h^a5$?S8-QyFh>^&*2T<1p-dC@yTYrS6m?U=lA{pAaPenDG8d+
zLmsjLRXGsna4lNZ4_cnWFc~z0^S}YL!3Mef1QqLqM(e>vyt8A-S3~6K|KJvsrBvW?
zd;&!}@@T#DqY&uoHjtBWEQkV+KY=`h-N~Sw_#nY6SZA}{^+njm&{xm<elvZ3=79!A
zE*_pK)2C1W^Y<@kuOp~4v8^84lBqQp&M(&jk6t#;h>eNOo(SrKv!V~DpVpn?g(&GS
zfo9Np<?Z9r&&|0gTYhI@zx}@(%ie>E#?|5apk0Ii{`~Cf>IzCqTExaL_ouxst*^s0
zf`Q@A19FOYhuU9XHg5BuW#S2Hr*2Gcuc@g~0ZkNLJuy*vYwm5cudlAYwz8R93kvQB
z4sRwVtc~98mzS5<)z!6WTV+K>#*q%eTbtASjf{=8zwpGx#jOfoKkwXJ>-5~+1rM9H
z<=$S_(ZP{jsOovRjTf}B^V+)D=!Ml5R-jCjSAe;8D*kLMw>W5AOG8)J7u0|=zh9F)
z*#oq7($&@V)s>Z#&sM&B_YO4VG(Em9^U!1qK2Sklpz!U+GDVDu&(f>aJaRS>(c5w+
zf~TVV?S3v<<})*?n7{jI(7W1oCcKfNptM}jeEKYMcXoAWfB*GsYokGX3+~qaehV7J
zNlaXL)>dU|_5AFe?x9ZL)U?sP>FLv_OaJ`&WAwJNvhv#FaA6sloWIZA<!eJ^t;?=F
z?zhj2jSj8q{q(L__xlPjaB;1qsi_ItSDLx|mR<0_fB&Y>Wjk}~)Fc(ttSc*=k_*bq
z!~g&L3+nR!`BPI_Q4z6R+I#)a{ohx<u$7So59dDXSBbE#`V!DDXPa}YPsVal`n<|z
z#23}KwoaZsd$!&GKgGN<78h=<->@NoonP*XGrw&JsL;L!u8}}pny#)c&`4IUwuVMP
zQPCzRXJ=6X0R>O1+Fx5PUAhz!6O&Ujckvts1`&7Axd3m!e?D(NedoQM#m~RI+x=e4
zz#yRX^|h%gKY#sN6}~<WR8aaZ+J;yxr3z^SCG&=%7Ta80TtP)en~X>;y0tcMze;$O
z6u9_F>Sywv6t*sA<;vjYSyxwuf|g(u6l?%(%Gj{MVD{@BJ8t;Z^-35zf%cI$v2ugf
zvVm5iZNFc)`&hsH`gO6pZ+!vvt3Vm#=&@s<@m<jNltqgcnPgwnDVDp^2r5b$uuOjb
z{kGL&v0Lx1XTM9{-U^*x`|aj?x%5!ztP^N#eB%jOly#yX{@>pHea5QS$NL|zKY#M5
zYq0SifmV%<)iQxnfwOM7#@;9q%@F65-hBI(*V+j_w_jv+?#lAoA+mGjY44pA@4BaD
zPUD-cmiEYTdV+Z8CI`mz@B8=7o4=g-Ud7>`1?N6*{Mi2f{M)}54^3Zx{&&p+@EX(}
zP+c;6Vd1Mk8K8lCp2eVua*JqwD$fzYz;J_u@wEMijt?@HGJL7&>AUOa&Y!Q}et01>
zJKv9jFb0MLejE}1H)dQ^vXtSwTX2{+eQSO7A8%#`fgOJT_9p$}mhEo%DzB=lDrJz+
zur2TIs#B-D;{Dkf7)qR2)&#$~zdt^{{_j@MOwEQ32BPBPzpK0$8W^0xmM_=P(+gW4
zx7Q@^j>Xa?O9VDBFdV2<Oqjc9$r6|H`?a9uSBpTiFV)}QUEP*@yT(?R!J%Q{-dBG(
zBK~jAy=@j667phR^}C5Gpr{oT6x<TQ!0=#>;D&$8ckGDx`|B&H7kMWcROXzTs{OQR
zXN|cbgM&jN@3eY_1W(W!rm(e9OK0cri<~-jD!9G%_V)6Y7M815uDsZM-tO~P5k>|F
z^+U7osDjqjuUfb6+Nr79Ta%7*_2*7Y1@%=yv+@0D><k}RmtWRge)*;0wHr5Xyu1F?
z_uaq72Gx}-R(RC@{&sbdYxf>G_H~h)-Ckc?8=RN7uBoZ1#>APy!M(eyD<~vn%JCZ$
zmEE@_9&Rh!tH*fSo~7nMRz}8!U8S!<3)b#dKA#(R`|#nzTa%7*t&QIww{qo5yBUfM
z3@>t+>UgjHe!qYH{(rx`A0O|}FRV^VT2%G@-Pz@wj100(uJ8USK41nND&XYo937jS
z8aWL#iwoL=>fR^w&_0BLp}>vtf5(Tv-|yQ$wgc_$y|mO@)${DxvvRjDUA{bZ-n@Hy
z#mo#Wa@P`mwm0O1(vA=J4^U#-O&~FWRz@30=`b+lw6LAFzW|zsmvC!lWoYQVknoco
zB*AbPlomHgN-aOv4>IupRJm!yzeW&W+EQ|ZPyO7JA0Ho|I&&sytyF7Uo0g$r;QYE@
zFD3gyquZd>mj|2KS7%>e*VWf|?aIpF(BR<WTaRD8dUa*Fzr3Xk-`d#S-`3RETXBPI
zT=3;f$=cZ6VV9Tr2K)H*eER%(>YO=iHf=JxTk*Jet=#mPGgsca6}5EPvaAaW99OMb
za|JYod+Acp)alb#`_H%2l{2sYmSbvS@*{V*8)&V$Tg}Igg4fs9g37_7q9T*rTPB`C
zQBku%15fGmD&1zA<z{`o!OATLs!-*UlaKd>1_e#JSM^#qH9fsrc60G_KhVPapU>xC
zpJQ2k?s4Cne)kpz29_OHSBJ0mo~}2`s&rMgj)sPZq@*NhX&<N^9oGLhf5)UHv-5U&
zf`;<n-Q68+^Q=>S-i5p6_ty$4yPbGiwDm7rP6s#yKe{%D#>K6>aU-Ji^|iCfHj0V|
z_u48cJzBH=`}h0xpjlonZtl;wzP;Q1KI`-}-Bl}A1f-@ujhw%E^TLBn3<?KA!^5?0
zZ0=;+*x1DAP4{l+leJp@SvO*XLvL^IuIKZrZH`GxNrBb~fafy)d^&yGBz-ryY)P}K
zdRSgtySJ&SY0t6d=H|P%&tE&%D-G(&dQMi;)YLqgd|P|{o<+-+simf-Zp}S3mw}O+
zp@BhMNC>n_sj}DH#AL_z`Mq6TTz5;a$98phU!J7uZL`gCuHV_&=KkH{`e7Lv8MoDQ
zi&;QvY{}Z}4R${sFz4Rba4`AJ`u+c`-Woo9_)yo5ZOyuM(^O)sUM@}F^X_0XyJ^}P
ziP)NtN40cyL$9xkwcU1prm_3<*s__R)#a;JY4v~p|LgVoRjXD7rKBvmzh_%x11m#=
zyr-XESW(fY<2OJfPo9(2wpRJn)a*HR>Qu>>7lHk)??7#l)X1*>e*3qk{W6w|43m$o
zSh><OH8mA9{d3(8R2PG$7#o?{t9qiREd{kDrlqdjwk_=L?sEItx3}0bi7_ykJ?i!s
zT()FM#=Sk2r%s=~{N?3k)xW>fzW@1CqpGI1%ib{}IC$}{T~<er9C^{itv5mC@8|RO
zpzcR#Z0y=in~c^olwJaDFuq^+`)qQ~^K)}Sn`4ZOjY|*nnpbR%n=8r4&A=f2(e(gm
zl~`8Rs!f|VmHhaS_<i=B)vH!*$+>Ctz0NrOT!^D%;~c-`O3KQrp5O15&j)Q_OifA2
zxV|p-*4FIl)&KME?gFjcpLFHX?FZFgUMNmKz4Z0E-F}ac_nQ~4-sX6KiGe{&N9W3$
zo0~xs?ze75fp*z!*%ETNoxl8ja^y4_zVqfbZ*OdLo|c;V^3u|%T_r1zZ~OQ6_ipB}
z>_4ezuht80U|`rF7;h3WspMg+IA|BqEbH>T)xUM3x1Cvhanh2%zrWA_zGu>;NmuUN
zskwLjwxqrkD+7Z8q>lS|{dihq3n=wN%abGF*&7nXctI-^6HUOC9k}pkWJpkE(fNNs
z*@=MxS`rCL>HK$S1|19|0a9+}{P@bxi%1362K)sXSUb2_;E4Fw2+GI|Z6NIl#wLDq
z<v}JkKpl|1;SV!}&!WR{Y)!<*L)U{H*o&;@?wi*XZ*?<a=0B(7N(qbxZ4IIk91#w$
zBf#Y*$a+xyxIvI<TKxk-MFs|td9n-k?Tecf5)!gRd)<yh$2Y%>xV+5wauX|ejcqUA
z_S)ZN@%{(ZU%h(8^zGhq|M~A;YnJS2X6I+SQ~Unj-e_sFoPzrJe0`7u8CNsUiQ%xS
z{FHLv?}&RFpX{sGnhTgeK9`MP`g;EM%aW`gA0F<T$ClI6aFy{`pX};Ii<Ch7JycYV
zT))i7FlYI%UsaZK{d#4sx7}TL5EPOJUNIylChq$G?{}>&FGB;PNw|eHIJ1H(gb(08
zC!_`d2OK2a8M!$UPEXgLe)u718|tdntM_i}mooJ#EG)E}At|t<=Ih~k{qpwf&Ybaa
zb#c)!F$wAH?ELlRvj6#t7+>Gsv~zP-M(6Exy}P@7`r(Hcj`d1M-?{#@2(&EadQ5Sz
z-mVu)UteGMKY8-xtv!{WE&toylx5^@=##Zx79L-FHG9r+u7>=Qk{y$leECwM8?z%I
zGc&X5aj*H6rQYJI>gumwuitO?wy^r!n~Sg4?_cNK&ZnuT_ioGe>Q^h5f4Py||MJ!9
z_1BtMxxZWq_J4U?zCI)<XcB1cP4O?=P1e^E7z1i*_Ds`>T(oA5&ezx1&tJdHc;O(Z
zwFKH(rmpUOd71BI70{;r6B87xp3O|(l6iSqSih`U&WyVMf6KqVxfz^&ZB6FZ-mJX5
zu)Mr=YJPK8{P|P!y~4|@i;Yia#iK__ywYZ8Uex{+;uRBkpmX}t=JR%|mn~Z+7QH6e
z)ZF}at9V?1k55libF*o}0fw`)Oudiy%YVP2uchVn_;~+y(B$&#_50%#6&1Vs`oa<u
z7hbn~{p!`1CzJiPjEsT~9y};zk})B!`mO2C7`?^cIZMR$Rk-Y^`kGbx@{()ta=+4k
zR#sL`Wo75t=K0so+yB4wYGdr~ve5JMY|mH3_xAR#TE9MgzFn=&vFh*d-o~wZ;Lj1k
zV3Kfv!S=%eX3)CZtgNi4yZXw?&Y&q8&=__rw|Lf-6@gVxr-qlj-}}AlO?u?CZ}0A|
zzH%i5G%W<0FI*qD_sfH3{;cos?!No`>h){Wq9-0xr%VA2j)PW|nI;|KNKH-6Jk}%m
zwroFx&D81Bwav`J?(Qo6EaC6rQIMa%`oV*Q*!sU;Pn|y>?&;adCug(b{r>-P!OMIu
zs!or2B>3(RV?PI@$0X3OVN(;+*}2x+kIG-zn|z#4R7B*(!ge{(^q<PhiSBZN@9*uM
zI(hP9{e3^2JUu<%{jLA=(Y^NP)9JfD9+Ot}T)A@Pu0NkngSwu3zun57v}Dd4nYZ`%
z$3K1g6g1<ek_p=S&d+~+PvvKm<YPRpE-qWXuVvo$sQbD}2u2-jWYquYQIhW*i;Iub
zKfAfRgO+Y~b#)mP@$O!5kV)a?eKBoaUEj*eN~@Y58?JxjxBKBREp_Mh^f@4-cgE;V
zoi?qiC%*FO)OQ7{e}5}4X5*JzbLy1W_ZzRSt}eaoYrfLGUk-G-)7|*(_o`OUnl&rx
zuZj@E=2x#@i;9RmF_n{%d2=t%X?xz?lB=QNFF_kPca^^0Qt>g#)YKGIGguWp>6n;(
zgO!oH;db$P+vUfO9TU5rBx_ONz}N0<XlN++7_^@Zv`H;A^r@koq~y!ezHa?}5nH!z
zeHRbfDl1?2V`0_zcW*y}rY0k&Esd}HdGx|u#<}hK*AiM=T3+1Pm>l<*mzVe5+uW;n
z?yR|;x7!!AHV(9io>N%u#lv>_YwGiB7J-J$zg~~e|7`lE#l3~$4ro~a<YaYieSQC#
zGiU0)E8f<xr?=xllh|?p*gbWRj&Oq3M}TDXvif^_ZC7VA{;1Eswgz;{jm<I8(#Xql
z!g6x=9wi@`{QmgvFPFS;+pO=EHqUx~Zf=~nKvGgt$x+ep7of9!KsGk89ykp0{h~!m
zpw-;Td+PuH19dn+Y4~6>`|jiQKc9;K{dipd)&2edE#pBu^4$C7uAVi&f9F{x^S?!F
zvo{0<1x=YW>5<{K<l}t3Ql_h}CO>-oI5aG5*<$zpDxH%1n^L=VP6yT0{HZ+ue97T<
z{?nUuOwG-!bF*`DLV|;XXRl9Gw^3qwkoe$0<1CxXP50`4=l1)HsHv-;ep;0I@KCGV
z@8?gRoY<t(D{cO6&U(|rM=rVd_C$gf2VLK`Yu7HZ{esMm3l_(l%$hU_)KGi+^y$vy
zee(9}U=5O-py1%ew$<O}T>n3N<Hn6eJ7c1D7A-yg<J;TYThq_W#a6%F`n<-^dhtOf
zrWo)3XP{hk=#Ud=5r%Uc&qS4@M~`aS+QwE^R<2sR7Su8Zt>y$}taZEJefq)j@MhJo
zm&-wik=!jjE(_XZ+r}rmYXAR#(f8~B@4dDzR(tv7m2rEkw*Hi3oD=8d)D#pPJay{S
zrH9-3LF-|D{`|RW)v8OIQcvIc4cdUq%F0?~HCOJnPJGQr*T`v0V|SOGd|I?}!2*Z)
zx}Qsz)bF3~acS%IxYZXIyMxx>ty;bM@(jb|k{1^gL8AhoT`}`29(DHZeOcyq0OX(l
zyL$WjKttTq^yA-c{5!Y&USLVdmQSBQf4x`z9yAy|%QSo1vokXvm!7-!?`qAf3J;GC
z&|1Rj@pX~!_x)bS#mx;mrse3dV_MeM(Y94z3`(XuJb&1I-NYj(F>ztq`FU#>EmFFA
z?V6UJp5M}?OQq~;b{wyi;d|d6U;OM$Vf^7uI^`OhbxzA}Pyy|<2TkaJhCe`kJJ2vc
zs6G4UO%AV=$%?hxGqtC6Usq*jcu;(Md;awc3!T3n6_1yQ{9Ll?)2AX;Rn^Sf+j8r^
zYn)pL?vV+`n?@LPyS`&!fHq*1O`u&eXp;(5fg|<k&R(!6t%KC;?ky-S9|9WDyMo|`
z0H_6(#^EwozMq4UfdM*FQQ`7J9^^I{KLg%^f;Z`q20Elyu2^Ak&muG=M8a17To0%T
z&)d@4s%c^pGFja}Z~Eu<wl*ytoi(xNc=M;7ep>XiN{E5M!K&avL*4JU+siD=BO+!f
zDJ$Q8dglYEpT}U(0|^XJ!<2zX8PX&KwQ~(XW-}y6fEv~Z3_xx8hD1<6FdPOAt1z^U
dcn#m`6MsuTe^B+eih+TF!PC{xWt~$(69Cdj`P2Xa

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg-2.png
new file mode 100644
index 0000000000000000000000000000000000000000..67961b566905b77656562a4a9b3f8dbcda7de94e
GIT binary patch
literal 20549
zcmeAS@N?(olHy`uVBq!ia0y~yV2S`?4mJh`hJ9%>?l3SguoOFahH!9jaMW<5bTBY5
za29w(7BevLCxS5J3j5`m3=9eko-U3d6?5L)t*$v=`uP9H=jrU$hQ|$(XSgnjbm4BD
zvq;G`=<KC+6W48;a#^N`W2@1Ub(gfHpM^NZPG9oENouE(Y>2bbI?1JTmTkQJ`@8%8
z+I`oT=St-N-eW)C_TBc|dDoxT*6dwc^{r;F-TVHt20YFT3=9Un?VH&d7#JSpaYQgM
zFsLafFfuUA=xJbOU`Q}x5@TR!I5{dYoPy-c>6^?93=H*FB`+rQ$=lb3u8UnArrX-m
zGG&*&xq0|xHQ%7DtW|z<EEazFP~bb?F81!O(%lbAcbB|ebauA+^d0AK-;REMe*Sco
zr%#?_9Bg9!^`M#m%iHbuwXCh96B84qtV&k2@yTlO^M8L;lhc+caZZkffkE`{Lg)4?
z8xjw%E~~AtumAhuF#poFHIB_}nO9eZN?8^yIdtgIlu45o$y%3XTwdmzb$?&&%IkM`
z6fW+QwSKnY?VFpMrOa|>yxa9!ulB=1_DM@@tG{X3*u>o3RT|tcXDcEhvEu9N>)BUV
zg?9Dzg%uTTs^rgRWYJ+@&`G$yE;j4(va_LkkDr@seRWsq>!jP|Z*D9+al%7YO)cxm
ziHVbze13j@b?WJ9tAdyJZOgkGwd}V}<R+KEz`&?&IWyV#WHdZ~z1@EQ%W3`nD=I%f
z<2!!r$Po=yRoCC&-Uer6yhyd1`E^IQJUc^!^oE-`%l^fjIW<-L>C>l6Z`_FZZ6+@-
zfAq+ajN99CPn|iVbNR<~oybL}rfRSDpKtdq*EIW@j@UYtmGS%QCM}V#`?1jH`vxme
zmJ_}6?(XiZTQY+~*TvjStlnMr_RVkos~;a9-<o)s?d$97{&jVA;<k3$+TNGuXCJx4
z*?otRVZ#LP+_|S-IcYa-+O$bTL?k4qIv`*I&*2LbmEHAz+MS-RAMWVbC|C7jVYl4u
z>C>0*EPk$KViJ;jd)wY8)jOEL*2ehx_0`nWbme~k`gQC3{UP4d^{$#;k14+BFYk5f
z{{MgFe}6pg|MlT8|J`@NE$_aXFfi<}*nB-c)=T->^XKXHa}WKuDt|Yp_W#l!KcCOv
zTKl`q_QL^Yab6$&y<aBXt9q>qN=>%a-}Wqdy<131hk@aaM`Geb*5%CJLLwp|k4zFS
z{#sG>^;PVp(rG%8O0&-{W0$Y_&~$w1k|h~;b`)0q`FLDZUOs-=#$8+>%{ouKW^4KT
z`&U+0TK=i1s*3wCPf$?s*6#B4n>KHj-IjlUU#!_|UqL~^=_cP&PfuIvIa%%7(T}Q?
z|Nnj$m6l%p@9*!|SHt7?E_uC63F7(x|Nc&$KY#s_B`UwS-MJI9bjcD8Bcq^$2M<nK
zve>;}%hooQm6i4Ax{cM}^FZlWJm${6)YD?TQYIdAt;@r*vR3`%Pg3*|Ty#f7Ol+Ek
zdcMT5(4R+m<~*Jn9(OT!``u+>YojcyH5$BkMa@^*GokG5t;_=rj9vZx*Ec2~f0JKy
z{=|ubio?Hl6h7XPaZyRureebl>4(9=!TJ`q6)!F*etmh_T~1DJ*Y|tXU(Z>;w|K+P
z&wriQ{7%BZ!<L+k+)o!RSl}>k-n>&MPF&bk`Z`6TZCA<5MQXmYPTamdd%{z-d)4o4
zj~+dmd18X%ujBUr6y@dR|LtO$e(=rye7#iPYmbh0ch`zPytOs^>OyDs_QI*(<WFgb
ztqGWImRs_6>-A|Bf9Kc#i%dT^XQGPj$0Nc=zxmIzxw)1}EPiTp(dWP4@2@U?e$J}$
z(~?i0KZ}ZpEOD2w4f*)-<EQW6^|wB3%J%f|2)Mp3w)C>Exu(9p|Gj(n&dCWq5bD~e
zb^P?{(_iYv#Kgq3?CtkoS%0eW=a21@>sB2)<m4GtSGUitS8AzQ?yZckude=jxqSYW
zWxmq7F*^bZ3k!ce?zeyP@L}LH|9uCnx~`@4$XbV)-z}MZ>GI{TM}++|&d;;;laqW9
zHRt0jwi*2mt*cKRKJ47iCwuAF*Vj|0PhajXSLsrIuX4GRdEOdO@(5oa7qvZau5HTA
z95bhB-M?NhpJMmp0rTFU&t`jhcwFeW|My}^AY()E1~%^S-b9I0=gx&)Ul%)d`gHZ#
zXP5cSwetM+`DrO5BjYUV@^w6iFSN_oX?Rxsd^-K<`}gN(>4=AHIk)b_i;Ig(|NW^{
zRa0BFV1dJAHQ!66*JGa_5j>>x`}_Owh=>`R+aGRQ=l1xBz5i)>Ua@sjv(GNm3SE`)
z=ElZTCr<{txwZZKy1w4?*XP&bpFVwh^8ESo>G5@uAYa)1d?IZ7>&4=4YTWCNUcMY$
z{r%n5WxliD+*b3Ovts%Dx~SLJ)?VI{c{yX#9fz8lJ+sVmSIJtJSyXE@EEU{PaP`Ua
z=iZb4ecQhO<<;=`PzQ&GxQd6YwO=l}Pg2Rx&u^aqN))xf-)^@meKp0nz4vs<yE~S>
zlE!Y^@7L`%%ej$o-!Ai#O0SG%kbLbILB-R&U*6mdo;Y#htJ~Z46<=#5@=mK(NH}QX
z+C8VZsA$Uc>B}D<@4x+>SHi$y{r-Qu{N`9J<P=uR`1|YYq<{J;KY#st^>+LHYsY$}
zz5lqCN6cTpe!W|t%*wpGyH=*3pZDv@WdAq6|4D7SbougJi=ddkMf>Mlm%dtZ<cN!D
z))kNP`?cnZ+#0Nm+{-kg>Nl6ak8^c()wHpR$-TAZ;)R9ITl4N(d0slqZ@<Q}_}PmG
z2b-nr>uNd`SLfZ`b*_eI%EAA25{mlz{+H(e|1{SqwacpX)e`G>I~E_Au(j~9o9*W_
z#<#ZT$M5Wyoc?@X^}CBdK0Yq}@gebMj+v{Qo0g$r;KGFqTh^>@U^{JF;WyJLwQDmw
z<MlL&HX9q8Df8y7>yx$CvbT@djoK1$xQ+MgyWQ_!P4>5&m?)8Tf8XAytyxQ}zP`%*
z`RVDeU$57PZqJJ~&A#?#(f!G+*_yuu4sA?69<sA2wX&*8OJCoA-n@BP7Zx<G+xsm_
z)}p|{IPFY8JD;qGl$6%X^9<j9zu*7*{{Mg5+jymy9XQ~iZqKQA6qN4g%+b-;*Eh|+
z=5uvbXz<@(U#~85<^KEJ{{O}7^?O07_~w2;*6Hfn+TNa?p5MMF%#>Wmb2y-`ZeJU(
z^f4XBO2Y>23G?UYOSC1Xq^C>Q{{Ciq=<wlQ{e3?U?fd`x{eE+ha~6lKjXL&v{r<fB
z`$}F09ZuUUIoGPxXw&A+r)%$M%szDJP}1!_S?jcxwl*n#yB`Z`qx16C{r#VRch}V&
zKcCI!_4oHrK0QsB@A<!9uh)m?Z!kFf|6i%RWzmwv%{O}j7rRMHN=knFJHP(lPC-e@
z%q#0+Z$ErrJLT@Vxz@a%ZR^*s7Zeakc-6mt{d&cdH+B{;-z>lRP(qhL>bA7AQoeI6
z0x$jF`}>3ePwoG|-?Of+n))~TN^x=V)jgHPpw#~9<Hw7$^Y^Vh+|KVkiH%okiKuqi
zi(d140S*og#d0ju-~9Rc`Pb9w@muom+sWEig-m+#{{4EtxmGV9_uF6Fka$?-@BNbX
zDy1(jIQH9qo597+eRZ)r|L@fnDl5a*Mm_y6pkX}wY+8J@W%ak5qeqWw8X5+!-}9-9
zPu5Ch_St38c{^KQI!!ioeIdsYu_L7|@x_;ymuHz~Pm8Ph=;}M)?(V+#FD@>&Dt$Gj
zHr6jLZk|@?swGWLOs#EguRt|Sczo^Bwb9#eotHF7XqaW19ro^g<EF^nWoy~^WL7Nm
zoxQ5^^D{1P?#s5{?<_uV|3Ajl)3fTsL3VIm(z0gG92w6`&iuAZr1N$-9z1wZ%BEt&
zxp}syyHjF&mM>raSNLG@vone*jMF>Bdml}@nPbMv#`fy#_4w;60vEs0pD@R!a?_zh
zhe}?r-TrEEzg<vT+OnqR=FotEg#UJHm-)^<b^5fo{r^9kC(ma}-B|H4$@bfg<gDxK
z=FY46<oWa0FHmzYYEw!lsK8ZKQOP*e!fC|g+%2X%>1^8NKR-V|eg0hCGiq<u);)Xo
ze(kUS<9t27-Zpn>_m3Zs`=?Hxym(*jZ?8#v_UtM7_owpbj~^N5=2%Vw6$qY}Ci~m1
zoG?M4`b5>Undw*7$J_7ye9oFLUZ}_Wc(>c#mSA;_hecdmTs(&jdfxB*eQw9!Z?}81
zuC9_iZ})pmqD0%q%Fk(wqqb(bRaERK{PiWX{qw({=j)|Rv#uD3>Bq&qOFs7W=8nR}
zfqSb;AD>j8Z}RQ!?dKcbKkm0TyR|((|3;2k@~thI$8K&;?-f*blL%cEV)*O(`+OOj
ziVHtJ9Om!c{eIu=7k77W|9D)!-r}WZKo}@lCvLvUGy80s&5sAo$C_BVy=?UK^wu3Q
zjm*r<JXU%=Ha({L?N&EGKfg-8yH7>e9{lwEyZNe+l}WGq_wTpQ-f&8iSM1ag10Kn?
zg|FA|kNf=W?BxzY<u9L3>z}@UJ^bUxkF(5jXMt+f6DK_Oe!1km>)o!`prUDK@$*$)
zQ?*{**|~YMJfnExpa1?G>moP1mA<|fnv=8UZ+2i;-0_QhtIMyh2y_M+V^g_F$}|fU
z%2(ILMi)On7y9^E@6)$$*B&_Fkb7sx#d{eCfBDU~TRUNbK<TS1o-bd%ytSutb6n+9
zQQvtsk>>X*7CSjPsd$1kCMG6sRMR#x3gQ;m3we8M>(ke-U!QR=j5LXOcQ8#tr^Df;
zm|n~ZRqtsp-tB%LHeE0F%BEEB_P_UQKKFtu22h{j)02}@rdd-aO`be;!h{8TtG}PR
zem(r(zki>;f4{!}-&g(C_IB%+o&jQ(mX^Cd9+L(YduyY%o=Tkm(f+>h%xTk>)&2c-
z^7wK0+uL%3w`N@hHTE;Et_ochw6tqi>Fcz5SLT@JM2TI0zugYqoaU<=z0D_jd)`%U
z{XGljT9>c#n`<RyTeZci{M{P2UMbH>ZaoqU!{cj17rXag`|$Aa+uMO<yUX4N%{I#w
z5fDiDwK|)Ni>u_@o5;6!b_TDF-fs5wmWJf}gH9{Iy}7yA`rQs^c0QR4;_)>LcNRa-
zI^HL1Rr6zmlu3pHsOZkP;4pFGL{J4Wb=E9U^B2?{1LfAHrY2D92-G_`Z~q@u!@qjt
zen=J6OfsqeS95huWH2*3UrB`j_x=A>?<{a+{`vcN_R%iUSNHbrj@pv3@YU7Tt80IM
z%euU*cUAcMcWc}aq-yBsOlfa#2g!B{tFLlwW_xvg{rp9X7G2qp=<Hd)&*0nY_4_XU
z`}@1}_uK8O!`H`6S~Al(eO1xZQ@h@7yZxp<EWph5{lQNkKkn3efAG}Vvrla!o_6f#
z4p{ZzK|-&bZB*#0kU$TQ4p0;2%o!iwStg!>f`TCTi0MRtJiGVrx7)j(PK!24KPTfm
z)5x{4v9apYNp;i8Pbo)_9Rs=NT%F7m$E&MCMP+2x?5+O3YQu(rxVShi9i0-3Wf{A6
zBp>gav?PE3-)sA1*R9l$FwMIYvHea_H>jAIYf~9C$)w<c!`<rldp~{naN*<Q<5OqM
z0F{(k*VaT<y;`~4r1+T+r~~uqQ_@pT1;GskjG#)hre=>^{hz|xzhAF^`uzFw@Av!H
z+g5+mP*Za=o9$cw`}X}Sdn$`TNqlS8)u6MpOik<m)f_#3{Pz08`wL>dFUGHbcXxO8
z`+Iw5*;H;?V*mf?@9Ps%H{X2odUMyg<hAXucR!nzZBp~2U~S}Px7*wEr>oTddbwQ6
zAfe&ij>mj^zg~;}_2sg^sF2Vi!{lS2?uozs-!1F*|Ep5(zf=2xPv`n^DV>-rFE1}Q
zEqxVocBZjANIvcCtknD8KOUFQ{{HT+m!Dr)S=lxtV`Ej%t=ZSF&9kiz*_`H^&MO`M
z;=)4bS2s2;J~zj5@sT4gp!VdXl=*r(zuLboa_u%rI>Pby^Zfr;)^5M|>Wt!Hm*?l_
zhwrcZn<CMcl$2yr@*-es?(MM7&Q88;!|8gltG4CdeswE*ed(i&yUrJ-)@X&UnsJZi
z+4JYG&&)Jlb5P5@Wao|*2M#!Zg34^R@8<OL(-I|SS(UER3SYNI&bDfWd%qlLEP+qX
zW<~k^+VI`w@2{<i+{_WKr>COga(bHXW!dsO3p<6?U!9q0+|}J(98vT8>-G5Tlao}l
zE-m5I?=3a9v$K13adG>xKH1g0(q=2d*T>DWtKDTA^YrP{lece2gIXVx-MJ!!dByZ@
zzP!Br>z(5BH{;bTQcsDnvandxtn&F)+_+``{{6!4T*kGZPO5{V0aT<_zuW2l{eJ!a
zStgl_{O$jSfZEpP_iGmGMsE}O-J%(D{r^APyL+q4YrkF%|Mh0`c~FW_??1Cw)HI^8
zu`zt<L95zdCcI&miw+)A<>ukJvcz+;%HR9ZbC&zf&EgMso$sI&vvWEqnf(6t7F4d7
z<=<OlntjdVS8;FL>uYPbmc9<#nsM>a$;B-*yX;ESHs8FmzrOzMt*zeiH6K|Sxiy%X
z#7;d~uXy_M<>1L`zCjKS4Dx5olCQ^>&z+_hyUIBI+>6!g_XRmRHb!mBSvkuzdsWue
zRp;d7)-^3+d%bS=yGvhQUIw>K53<XLEcKc?$HwS8sJ3Kg<W3C}*<@pD`}I+`{;Hs*
zUZA>Ub9?LRHC|J-Kt<)NtE->CS-3!km7P8N*O!-4MkyU(>*LloGP7G%do*|}Bs|>2
z!p5d$XBRhBEA-L=$L2Y<G7RB?+w<;T*;SgouXEv?3kf^fnZ)#>udWI;O+6*DjE&J;
zTt;RMsKH`qXLnAH>wytR#15qv?FC5+F;n%W)UUfAU}8AnG()L`{|Y~7{BrR@5I<wX
z9cEte;AO@J28Im+Qaaxqn!!VwQfrC|{`@Fh8^1rUSITtK{Q2`Yw=*;B@UgVCw5s^9
zpz7P3l~G%>Vy9Mvof2jlvA=GwT-}evbbe-rgh^MfgxG$$;CxPwO{b?JluybuOU3im
zrKR1VBJ<9{DVw)!G1;1b|K82R8s)-jJ_X+d<|I8iF>#i0df(>uha%GEc_rTjPQ?}#
zZEE9@eDo%9%Ig3BzVDx9o<HyJ{MX^!y^~)nCroW#lzH&g)z$G^y>7133SAZQa9-r3
zsO@=g-zZwRUR@Qc{buw3KcCN^lXKe1&A}0nk+A|~w9fYfM+LxMy#@|K1_m*w14aCM
zmN7Cg97r*V*s<!+p+j?QS*9#@Y-Y2p=Fo7LwJt09CU8fHcUtv=gNH(053Gvdh!Evw
z<kpY{g`AjE^HVuc;4%2PHM24_9KB$%(+)K5!Z7(_0wY6$;+lg+{NN$BmWHQtGn7~u
z7z`xQHG<=&OG;;Ry`Gx6d3f^izR-e#4S)Xr6_u1+$t!IZ^J#~9&W#1@Vt22K+M311
z!*j*g{O*$S`?cGzJocY!we;53?9+!2JFgB~yX(pC9bBMsnt+m$Ezi!)UA<z3#@X5C
z{&8_}ukP;Ne(BOBy{f#TqD`Rq^O~yl^5^sU*VjaDzOph{UDmE<$CY9=-&sqFpP$?L
z_KRvZD4b?|;*+&5dvl>nRC~&d87n3#yL(LnRc)J6y+J+O=<RvBU+?tv@PO*quI}#3
zZ*FeZe_40G_WRst=jX3KIa&Sn&Gh-EPbJs1v2imraOFKcHTBb{PeD03Yieir_xC3y
zC2h&QZI+srHm&O2>-GEB9XjOXJJ%|7QpvYBH@olY>*@J@zgs@vs_c!%VS{yl7<D=t
zSQ#2xEs}Y!VUGQIZ!Uc77F&L|G-`L*S}Bu^1zMr2R-~PsRrT#=x;Kyi`+dLHZOgyE
zPCUNmqfuRX40~`314BqbWMm{47njyHTMZ45w!{}FCMqwTw>$s7U1e3(tBdaPS8r@g
z7L}7*7rHtu^VgS`S{fP`dL)hC9G_=h?gwhPT=utL%f>79;y@#F_|wWY4G{M|wvDi~
zwEXn(qvp1|*RNmSx8LOE&6`F%&YYZ_Ql?o`R6v87;Nj9wr}eY{{P@Vl!7)L__Wz&H
zr_P@buc`U-)UNAvLYDvo19#yuk%jZ;&p$WcK0fF7&f@29e(RU4Qvp@De7D(orIyT@
zBLgZxCoO4a=Lc2Evn-33{rUU%^q1;KU7&PXpuF6F{<W8vm&<Mw6%&j5FlWJn1wzXi
zH*eac;`#N}Rqd~LK)vbz|Ner;bq{|7B_#u%xfX>^lfJy!e128k-(R3s%9M!{9~S(L
zum2k=DJjXt$yqr2x*0ehP0*gJv?glns#RfYUu}4MXJ@fh#fOBI&s|(xKm*jL&YdfZ
zc(JeccNwVf@8UA0DsQ$~?w0!hb*X7-s{$9heS14|=FCkub9OzOm9660&M$xM-{0S&
zQc|x9_MJ_;{Ndr@)Xg_b9v$IiWn-K6Fmr9UrV|5$){cLFe{0*@$AdcGxjT36^z!r!
zOi5YN)ZDD<>E16FT2-}+i;L^cab6jVfVRXJZ@1symT%1CeDdVURe_7!Zf(g__MByy
z+y*LhO|!4vs9)wkU(Zv@x@=9@`ncTq)ld0A;kIGMr+I4G*VoNu<B?eK<41+8b(v3M
zVj{>cH@CJ)lPAAD-YaeH*Da=d>0mRvsF0A7=d0V>*Y7HOyXyJ;`ndi7eys)#Ra{*i
zuC1%<>*?wF>D#wyDqHjK@4HdEI&7`hVS_8%a-+Y#yu7?dZrdDCST>01$F1?4tfpyd
z8mjI$C!nHY$F+5_tNCQDZuD=wne*v`hTYGv|9-#EesrWWYGYC>sI{MVc2?%eNvcQ1
z_Dw$$doAX#C?hvG&16fdtPEP}<>lcK;N;}A^0<n+y0uA^>z}`WO{>4X@&31Jj?!GK
z(xMr8CF*MqGQrEFM{C%)pDBUMEf$^c2SgM>^IG80K&~1<69#R^PJRUya11kg*g#f-
z2Co(%nS@p>wt}k(F=%n?Bgn)6)41?p5x)s|N)22kC1uQskq4EJ4JRS?g34*+^3){a
zT_ZS;32eC29PKBl7qcTkPEPLA_wV6hVPPBpf(Dr@Ds~9Fu`w`cF>U9Ga6LEQe!X~H
z#ljn9lWZ6ctOA#_0sHP)CAhk{yf|xq|H{S1?sIKL7#IQ?cjO+}bTdcFzHZN_&!4?>
zHvR)m2F$B|XW81?dh+`9@Lp;2Yb~6@Q)bV8T@bU_t@p}ufBD*fKcDaV`E2&n=g*g`
z`OeDt_~>Z(=RgJqQJ%L`Ul-qQQ1t}qdT_8=|5g%clH=2ple=Cnn{875E~fO|ok&nG
zgpF6~Nx_`6X_xoa{x(TC!0`3OMd!`w=firXOifZw2>ktUm_Ph?Ap=80cfsohRZn3x
zpMbcyc|t-$UU&X~y&j)^agi&i4LD6de%*1oYM+xQ!M(g|Ya$n)oo#L{v%ma(+}fC(
zLFaA1&uQbAUswA28mM7+^5n^<A1xRd%#Taye1GtbadqM2V_jWcK|w*2`ed!ca{hw`
zXJ?;XHc{E#DyRP0%=8qAwrlHRUvJp!+ARheiu-#V)Og>VcDCfffyULJ85kH2Jl#=y
zVA7IKVRbEi{q;w-Mzr(EPHJy&KXmAj%(m+*gWW-012?y}!`~)Mn2>aRMciJ{ux8@B
z1&j=$pc;0CfWB1jogEuNEeTas)yy|HHmb@MudM%JV{7YuCr{#->v>;q@8G3gQ)RZb
zwzi6LmoqRtzrCw;^|rjbufX$P;eYq-$+%)0($S#$_h!=4Wy{2(yRU9YbQTo@Ik`6L
z+M1cQzxDV3Su|PQe^uh)wq?BwYkz-R6}oy_=5=O<7+YEEvXJ9_va;Ji!-dJmdI~Rf
zJn+&wBC=2gG=lW7UH+PM{+@>)IuG63TYcJq=j>eT>koe%IpT6N$Lwz9^SMuLLl_)b
zkBKa-F1XFMdWq(4(1`8FM@PN<{liaB(^d6+`0ycU?ky;2lHVMQg`h#PZvA~17P)qp
zyx;qMRq%4Zr?w>w3=baNF-w>_<=SkM%tb3!Xz0f5xRCh&cK-ggYQD2TlWN)5)&$<&
zRce}eh{g8zo6SepMc%4s{SeR2z_9tldy(tUr!i_<Sw&sEcv1CT^oE2+F`bA98_pg+
z>@2MAcjZW@uztneOL0d(ys!WN`x6@%1H+w3(QG;l3^Ahfl}h+U(<WLoFgR2$#Mwdw
zH&-|!-Zg?sV`w|a(8O<DKd2-CwW1gpA~>>fH!VTsM+@6&TTr35L4avmHMpkJz}oWp
zvZs|>{M6yYi*NKVU%tHV=hNv)$Dcoan)!_7U~w#LEx?(XS@-tr{PX8e$o9P0yQSA-
zt%{zUxLTpJ9PEdrITtNl-Q7Xco=8)u_x4t2L#9ywvYy|1GpFj^&gWNF1S+?`y}By2
z_(y47-M*^t@7BJ(y<OYPEbQUKhgOA;TK4^T#68!l)a&c3tH!@K&S`64WpH5Ko_w5d
zZNx^W&dyGd`6`-PT3))*+pf$oOx{xZ`dW9~<38(m0k5yE)vq}7=H}+FH`C|8{CwU%
ze70GxkL2!9Lst%lhE|ca2aSF|cM4k<qp7d2fArX~TibvB_yOuKgT`9Y(w?dI+FDyj
zx3;#bzBA@=1`Sy4{eEw?S?;YB3l=z7T3Sy3C;d1Hv;-lfV0ZcZu*=JQLw6RXw!eLQ
zYwPCs`vndgT-jNi&dSDi>i+%s+TY)<{`>n|w(sY^-|tJGoDjTQaF`cVf-o^Li3kWR
z2wNMKd3l-dGP{0J1F-8X9tXFewv%EC7<cX8zrT$~a*<x_E)4^N0PFI1AxTM#tV&)i
zh}~VLX<-pD2{ZugS??!&ZB1lw{=T2fcn)7UGt>C$>TrF~V0z%`X}aqlXs&GqhvM|f
zla=M==O^8+t*w3g+uJzd00Xat!GV9T?P`CmaPOA`wL(mikMZpNb}M_*zd3d~zwWQ!
z|L@km1$(`x>w!jWyY=_2aP1bG`OW8?8#sl|xtQ?t=g*gaettf>ZN7E+xqbU}K#rT8
zzwhQlQ-0U$FD@)>KD?Y&+9YEEXvRTTcP(sUIZwsdc=L@Zadmb7SkH5EacLDw8E9*J
zPttq+m6KP><ifqZ)o=If?Q)xIRoW#Ry}Rsf_qxwTrr=io6EEpCzrMa+UHA7F-)+CS
zR!c!cq*scSl$5q)URFy@Pq)@7xxcS=caGU?B_*X(Hhs+Od@p8YuiN<lSDSR+gzekQ
zJLh}Y6g}xUyzyOwzaSGsg5lGjU2LAO?(g6K>GS8QQ>LWcpEi5;>M2u1T;1GmiLa8k
ztqOVh64Wl;AYcCH$H%1Wzds!2-&*|K@9V3pr}wQbdV1;=q~$L&Yps0U568^R%vTo|
zA5Z-o7byy=Xhmaom%RnmI!BKme|=+P@;CFH=_x51mX<f`?jUAa0~8e%CoTE*_V(*z
z()r--$EwiPS<lbS1r3xOZsQe|mw#U{f2MJI*5hNnpst=<kA&i3gD<DF*RKd$8+Ej=
zv=kgZM<V0D?Wy>f1RBO#xpE~aQyn^dcx&0)sL~e~4nDM!lk1xt&u{ag0o3&IxBKZ*
z|L0?SQ&W>k&J6=_QMc^xEc5(zy3yM}(|w?3oQ;jmm95#~dw)FYR^6v|XsX}_28IUE
zsDDcfi>ivslq#R1qD{_=RXr~+^99ZA>HV}56cmiwU-vh)|8gj#3`#eRFc9y)!^i;b
z#ethE*jgP&1v+BnLHz~>HE?qU+@nTnzBpwNF7_@!mJWdm%kG7RMYZ5?Y0-4T+uj0|
zmq;49u{E2(ZNJ2>3$_9qPF<X!=nNYFP3LDm5L$4*_B*IE%f7qpZP7P@2TGuFB7%c=
zT6F@btcNwVkb3{HA{xm`uv?M68qxez4q_1FX<JY^!H{4C3Nsx7Zbc6x36$XpJZ(cH
zjbM8{0-IC6oj>~I*|V%SH#Tzd@lD&mf4`El^47$|ZASg}W@ce>a&oUOFZbVA+m@K|
z@6S)rn0Dw=FVU-Oqr>-Bf4{aZ_x7n8`PJaHT%a1_-JP9XU0s*<RDOQ)^y$)jd#kl|
zb>B`}|MBVc_^gMAT0edMtX=qjMd0EuKOXn54qY7v8nAHdm0G&D8eDb%`gB_VY?X+2
z0w`OF1>ehFR`%w`LQ(B74MW2~W%s@*Dz2`sD^pKTlQK^0*_L;=%JX_>cXx0}NlE8f
zP(u^cWB&bqf4ruq=C`+he}50p$XGE=Cvws3yj>@!Jm1I!4%{P>!7bY1>!wVfK0PTp
z`R(nRni>&d;l;VPw`m$1e_r%BZcD~Q&;YrlaoUs}_WJt%mX?;QVs~#l{4IOkPB%zP
zd4J1&+3Su6m>3o`-QHWh9W>2-YO1z%PX6_Eb8G*%rlhB5-`P<(%OKHdBSYws>(|50
z@7HV&3JTg%@-j%)t|kIBr65=NMDXgG$jgd%b}}#HU}V@JkiKV`qPDiTqod=|ZS1V9
zCk=RHEsLHsJ@=n$75eYrKhRjQUd5eBs@^64|9*e{uw8yze)gp$o!j#6u5#;@iv181
z?%WKjPtj@u(Bw2|2xD{F*-6{Ce`kFkyt61Zw*K$esz;sbTdKZh?fv)bHK^Nse_!oa
zQ1IP!j^F{uz@r|v)926oKR-WTf7{<XJBz>lT?z{C<9)KF=WV~oe2`;hWqoyR?QGBz
zkm>PtH}~z$zP@hPzhAGvUh>ul4UO!7U>d^-%2no*=FMC8<x5FBsJkg{qpqQ`;z;I!
zHEVP{gZ5T^^|E<?+28)^udlDSR(;J%O-b?i^*J{D=g*(e)d*QvRxAXqPdGhI_t(4K
z??L1A?b$7@tt%@(Kl}CP^LhQBlCg{+Yq)n_Vtc*o^}5TT^$r`}PLHp<cxkD(x2?L8
zlGALn+@P|uZHJw{zrDTvblPT3C8b42KJ&@j>C8S0nwAl*ZaZ_vr?ssu>)aemDZ`|e
zK3QwE*=LtEH8mw&KY99ea9v$pq}=6C5#TVszQ4Zy>GS8>nwlr~>6)8|YieqC_4I@k
z6l_p=`QqYYFMt2-?Mv3h?#}x9>T1;HwBE!1YooS;I;@}pchJC-%F4{k%ZzxOPfyn`
z-|>B2>~7HP*tNCM(=T71#t%-Y%l5>Z+*%iF4O+kO@#9CUvNtoJtJivZcvRKZZ}&@^
z=gkq*jat&o&ab7S;_~(N_3*#HzIMlgMtw?OUD?>K?U{9V*VbL-@7J|*i@&<EG8i;Y
z-6vzY2sCTN$jI2$-K{-6T~{Aef-X4PEuMX8iKmyZ@6}FWbrCtabz8HquX1kZ`<9$z
zHrvKV&+cdFEtBW$@-+)0H>YL({PZ+xf8AbCMR7ZCw=bx2*m^xK`_*R)X>e2&9$U_#
zilq;|)Ux1#L+9<<ni`YDLoB{C3?44JUI44x7`dM%5hzh3loC?Y(y~Bl;pz1FlKZva
zSJwUg1sYab8N57XYgTAwRh3nB2Ll7c^fN1iTiOy|yj(s%?D4VQuNR#8U%p&E|JuF1
z)vBI1Z{EzhvSK1=qA;CLkfEU{{7TZyug#yHUugiR-lx;!uYpRclj`$N81Veww<>h?
zt9#Y&uU5a``}_!~`#oiD@N$m(HJ^QX<!mC1)6ZSW-~Tr(ryexuur~U6%S1+o2Qr|s
zOF!O-c7FM=-{0PP-<1~-Sa5l{|MbTl3=9Q&Ow+0hUWp{Wy|uOU$A^bO-{0Ta8LX(N
z_|!s)fuTYB`IUy!_j|u*{rmHi?|x*+luh>kek6m|s2ylvJSQc`!0`0k8`gI^CFOj}
z+19KKUaqB~;UOp}2%4kIF`F$UBy?qCvisLpSG^xTd<g208@F>XFa)Ie@kWHM4!ip8
z?QPSvGZLw3X`mU*+2;AzPEH2Tc-4Npnf~ef_wr`~j0_s#CK2xrzSNic`uX$aBb~yg
zg^yg)`B@nl4v5r<F9Z$5EpeBxy>jy~1H%r^TiVy3e_?ywE?*Z=RJ4gt#$ti6x}U|K
zoRD9i`EMTUmG<3z|NH&=^`I8c<z>EBb$@nbU0btKFLqbPpC2EyE-pHn8hiQh;b!{-
z3=9X(tz^vp_~<BTV1Livy;s*n8i%fr+k3;Xo;M~u>FTOb(24@k1nJQuM^+R*J_Z_4
zzgPD=7t}`wttPv_ul97!-7jBCDk}omm>AZ{ygyjP@5dVvyv*lfulc<drLV7nR!W3_
zjRVbqJ~-GcDkio}H+tI&w_d4lwS|R+pxLQKixz!3Ykq%4;9|GbUE8*A-+pp2D+9y2
zGb^{Ao~Z2p<;CLuxUU7Op8ETKEGjB0nlfd|6M=OqE8Tjfsvh^6PnkP+t$2J*;G{1n
zl>0$WJi5*}_0*K4Tv5=VaN5J*mUjnN@`hDZ?C6uR4AT4l>-zqGOWk^<rvAEWv;AJx
zYS5JT*6izET6-7iW?I)5Ffycp+9eiS56-f!-UjmP(xppdul}B6R~zNtClk0jY^`2J
zOhv_xf4}elfA!|(=I~M*28IKBEw>&74Pjkf6<Ydw?e<l!-C|svoD-KXUw+uoY_{+F
z{r~@o-hF;%rtzdDTA{0AKI~ZZx8|S;!-2?*4R@M@nXj4OuTh?TcG-jp0;%cguYbSa
zuV2<9S+CL66dZU#>+DiCLk5Nh?!v4CpfSsxchn6G0vsJ3e?6O>uUBygG*k89K|<)d
zn4MP=!UF;dZa%JfxAS>d>vm9w#DBis^jcqr16McZ+%(dS-gYMO_R8Spr=H$3@mqKP
zrM{G|e)-+f>G!H$>n>fobn1=^e>b1EyL_;j-L&RMfoIUyS653vJvo_lJl0cVj!EXE
zsBJlwH=i>zoI1b2vDqZ!f<k*PbRv9?iP8=sZ<aM@XPalgy|wk!i4zl4Oml7ofEKe^
zmA*>3W$V^2xAw}F5MF6BpV{X5Wfh@^-|znq9tL7$WQ2@0drnpZt%uq7`<->Q#;H@M
zF3mE{_K_B5V5mO|8u_`>Fm?9q)u2VjXJ?rj@i<>y6*^f3H1XTn*$JA-o~9d}cB<Rv
z@S#In3LZMy{`qit*TXjHH~B^Xe?FhTHQ^xB-*30`qxRM8{ChVX)N%(+B!cGtl-+tR
z+}xaQTK}&Gw3KRh+1p)@J~A*ce1Cf7x{1$RtI*Zq>#rG~w^_Vqjn3bHzu*7*`~80D
zmluJ(Ql?(3!`5Efl6l!@cl`f<e?gs@(wCQ9xy5uYe0X^H>$ltatG%b|-P&2a{P6WB
zS5^c%gT_M~92!72AMF-@-6|e;A-4Q(=$l=8j_@)hh{c(_lACiYK{s|+$i<5nzinSG
zzA|?AHX$LQk~cRDb>sF#fJVkLzwi0?>-E%Gv#LCgm%Y6e8ejjnbmQB}>i%UvzBV$m
z`$$SNF!%`WVqb0+5g8c?8u9bKTmSj2`Rf-K7bD8N(EW9_xwp2gyz+Opd4Aa6Utdq>
zJ1{U<NP=?=cvR;7p3i-9)o%=!E?>TS!2*ZY)>bcn|LY)sffl+=beAgxm0b*{&aBMd
zaI9Z`{rtLLo}g7opU;{<efTl`p0<w8lthWHzP@WeK0cmn>B7KpO15|M>*A~fpT2wv
z@$%{dE%xBI{{vd+HtEar>J6Y_j1M0Q()suq7#?hjc;vcxZPeDF)nRMr*zzzi%<1zN
z+|^#hACa27G{-EubG;V>1H*<@Mf?$_Syy%}QK|j%B5>*Q<&$?YGKg~VPOH}V-cY*m
zx{*gc+v=7Umc1X3NrS8n2?_bh!^6OEKxJA)v#RIuKH1BlRUb>1s62i8^d)H6tc6qf
z$`ViEbbeljh9c+Yr*d=THgrj?{?8jGtnL>Ao}Oc4aM-Dwu#<f`>zc*x{jWf=2wG;g
zXOE4mt83<?Bb`}yc5K|-#=^jm&{f0_iiK|pQ|HfLf3TT7`%nufi#7wpKYJ<l>*4Ph
zSA)`g{l7g*N=hbme=0yr8r1#fT<8>5_p)7H`uf^a3nx$|75t9z^_`u?la{RC_si@1
z{rdl`{iZz5X0v@+Sy`VNnt(#bG~(UDJIrB4MMahOg%}tX#7wO|(AC$c_dc45;eipT
zpn+`+ne$Ihhk@ZkJ*W!^ZbB#~>|_TujTwC0Km!s<T~Rul>-1dn^45V8>VpRfKY#xQ
zt>=+8%hC9JBRM(w>BEN$?P`Bb*<r7%>kAr*bZ}^BYHAV@7hevV`2T4a2AalY=<4gc
zc4ud?sHo`D%FoYEo<8lpxB7cnRMaii_{XR9_g^{G%Kh~D^YBOi?(QyM9lbpdwA%dH
znVE}k+=x(BRgL|!cgDI7(+CEJhz{dx32$#~bOu#ANlA;``eZacK_kGYr|E)f*WA0i
zzD{~4EH1wM#fuj~v)6xoe0;TAuM}v35)%`XiYKqM*%i=Q(Zs`SrLV88<?&C=1@#X@
z3h?w#u16sEPyU~oX?$x#V)LR!i{3o+n#9I0x2B<i0krrm{GWoD6DZW2&cxN1YWCiE
zhq=^W#o9Xh@v+{^Eu6w3yUX4R_5b{KJ0FxF%yMs8<b413EzHHGW#6w?tGoYR+aUs)
z6%~yM3!B!|)YO&B&&4$<Q35nh$a;RhRq3iffB$~H66_!QLC$RU+AF_f-pH+MgNM=6
zCr?fsKfe4%S$ur_?|+xx+}#}x8i4B()qe8!ZSBEo53R3u;=9_l7aat3sXl-HeEH|+
z=iRyXpjH0$nU5Yl0<~rC7N55j-`l<<=za0R>K#hpHZo|mNPqvIAnWpXB{#}8maW*L
zxeIr%ViIJLDX6-hIB}trY1Rs_saoG&9$S?C@2lO?yN5$TLmwL^X!Azo-rg2^dt0vT
zHc)Sklaq7lJYhk>g}$@RG_9>~CocT`?d|Q<%{N5^1p^;dw)4wRJDV1~zwU3Bt#ex1
zGACze)AVyPy%L5_y3yM}{mgxTK6!tAfB$}6PF&o)viJ8uD;46-J&qCs4TOXgfO@KR
zb^9hwn)K#&QE~CqNs|_xIN`y{&h9;_PtJDLmoFuvA|f7>Kr>@kSBGbxon^{r51Kf*
zy)AcZ+F7Z)wcqbfT5{lkL+R^lzAIO*<jc>C-;y!$+&tUYW%|-fL8H(~r+%NFd3$U2
zaz<u04LiHI<9)Kh5fL+jf`X<@oVf7Gla$|upmYElMgQ=?v9+aTMcv<DtK#?9ZG3(7
z=+TvabFID=gr*$pk$iPwVRPQ@w`RPuRw1Ct#y2-NU)`MUU;6&u-&OYMm7w@zh}u)J
zabDFc&85qhY3b?tv9hv)rjxBoUL@EbOWS<%@Z(1p7jDTsC!N11P}(eK!v6jH=hgkn
z1g$yh>g~O{`~AM`SDPakp&iicCLTdcy{1l?Frnb!)~J&wPxAGKW%9{b1iae!?d|Q?
zo6p<reqkB|UP%BOg#nL6fwaQ}K*KWNoIv#<cj#C>Pw(W{pwTSY%7jB88==cUU;{y*
zA*H+J_usxzTrfwX?IDQbl{Pzb)7in&qVCU*&Fu{0j$lWEN<UB|5qTsHl=Z}%6^d$+
z2X{aXLZsm(^bswj!JZ7zLIm&xB*=y&4wrTPNHY(Lph_8(o1ilhil7-n(BK->cc5V|
zJTsHv1sh-o9uipynTa4yBYcc-!JRuXy|UI}2M>Z)nTDsNEHTTuQE>6I-S0QXU*Fyi
zS5#E|^!ameK){5mudkMF*<#ZExTvV;3uu9^ZS}X1y;Wa98?&yhjn4k}=cksA&Yr0L
zrzW5-t<JI)M~z-T4{~vL&&C*<66f}+-&+1YuCl5s>&J(ORd2UmH>vuP0h*@Xez$D4
z-M=5nzY9VAgAPGu70>fFpL>Lag+-;LRvnkGk1;efoc@1yY9J^+5){wPP`a}*xjk%6
z#KI#-TtNF1CW(lOE}f<uopol0;jLYz*(;wPJ90#X+v9LMKWI=2w6H|Zw#sADt7~gl
zzu))U@9b>z?egN%(yM38kO1}ZE-mro;^p0Y$9;<oC}y;FOw|rQb^5gT#*G`l<=WZV
zb#-=L+?IQL%FLOO%U**9>1SoHyLfW4`rF%C*VeogSl9LC^>zPAUk>xz$2@znwi7(x
zJHytt0((91?95DK&|(VE5X8sF$FtARvwd}K?QPfdr%#=lq;hpt=<7wtcL{-N;uQ}z
zVea~>>IID&y}rJFx=QG(5YNMHyr9maeg$atILN0LE`XNoefz|g9|(?>Ba+!0ii(P!
zJboOUvwQve^|k+xs;H=BTv-taT7e3hmA`Wbw0I6Qc(8Qd=kNRf$J+n<vDog<2j|L)
z9oLsgF@jdYoI@R%5*L<}%lrSI-}cLdsO@=c6`k8&%q_pC`SHi}xGK;5y<exLotd$4
zo^5s9vlDB(!Ql~;*}OILvRdw~EhiIi-`t$8U*Q)J5YTzK!S(gxS65euFEgyDu3qgw
z-ww1d2UH(zP1e-Zlrqno16r7Q^!V}VFK?}D0vRR!^3Kl9R^{*BY{>op?=NWWDDEMr
zGmn2f?zc~oXgfE@^0B~%d-eZoL5oc5|NpD{dNurXO>FqXIN^B=3_BV>)m_XWYOmP0
z$8~?dUQfDiUHNGVX#Z7fON&K~Rl(_Lx>6<?6RgVLt+{gLiuO<4O*W9Ugt{e6L`-bi
zlqn*qxTY-P_Ev!gSU~Od(A{OZAa$y$u91<Ee6QE@$yzP3tNnH2@L}ig_p0+ZZjF5S
z@FA#kbLx5HX~>9N;kD_u`f+<AKq~|h`#smj?hcc+Dk<1;F5dpFxUlfzr>CcbvZz(%
zrzNYx*RPAt+v&R4y&p7c^7i=OKcCNA6+i1ydD*ExPowPr$;s-%8yFZ4Tz$BvA#`Ps
zs;Y{LhN9xaE6I~4PnMO^eR+QUQAxX+AFk`~uMAdiU+G$Y9OQ3U>2@w_LxLW%09tW}
zwJ-;jn@-^B<B-v(4<9aU$-Mk#zn`b)#P;@fK3S_LM*<lc7_=1={vOR<zgLZ)pZ{*r
zY2E21f3E(}=Vfp>8v5nE=;r!>eH;<>8%tgWfm+j`HDQg+>~m~o7#JQjaYX!o{Cs|W
zSX9)kwDa@UMs3Xktx7p3C&aLz2{co|vgZHBl#@cBMe(4X>#y(c{SPoPFidZ4_-YSY
zZ29}$ZqO1nP<(%Tdwcm@>vF5=2!;l(wr{7t3U2tff39`;tK;(ZSD5*26g)wr8%@p4
znHw1x9A<)KRlTRJ$h*4>v?#y!_JKy`tu;T3B-<YDX=G&35&^9rVVbt&&>^R_5gVOi
zca>ahWM=<z+28)<^7(Z^yUX5|e0dQFT8V$tnT3Htuf=?)H)!qf)TvXKf+F?irc}P)
zIcBp#<M4TRcUfkZFfgRw*k8Z@+xz?PH|Uz1e_wTfy7|uC>`c>^T)7f*b!D*o`n}(x
zHoiRY{a&>{sD}&MnDO}W<0XPj45y+aB0z(nGTUVB>taC5^;UgXP1xDaCBNa^T<hha
z*3p9ljjyh+kKg#$(a{mKu@<xl8#E8fsm#K_ux{C*^#`l||NUP2?2II6>ClnC6DLjt
zt)2Q|qR6lyX2XfQwjn<nwwAmM`uY3!^j*hJrEPwB&ieh8UteE;{r!IbXLeBrhM17n
z`ARka|9;o6I@83;y(QrwlP74E>*0MbUSznsyT?!6$jG22cMasO`{1dnwTH|>y#-!u
z%>+csa$;a$fUbE&OOog{u=C?5zd&_5tckDzV=Vx2H88m924#iY%iru}VBkLwIu`)u
z2GH0gs5im@ou~t~OVE2|paq+RtMR{If<Xgyk(<-FI5+|(tNDsZORrw+-XHg2Pw;ZT
zm1S>lfwI)9(A8(Ecus>_8h`eGduPAw)vNx;KVC07dj5~;pGK7~g|y(L#H^-8Gp#(=
z&P=gaFl~EkuWIG$yk%ylz>3q`c&00DxRQA$bj!6U=Rb^5mN`Nie2(fXGEW?0V156c
z|9R|p?kUII-?g9qyz#E(`JaC*o^RSH{=WF#^Ft{zfrYc|>-QBE6^Y2puRn0W0aV5r
z83k2VR)Tiz&3>+`qOxMyGPl6MK+x{+Q>RaZmPS8)_H5OP6&`<oea-&5XUP&3Qxg-5
z+|pjqT)cSspC5&9@9qxI%*^cS@1L#$TDJ7$#6-}dGd_8{JI{84#x^P{cEsNP^768%
zpx{E#MD6QqYqJZ_tqfkiCHJ-&sDRAAw#Kl`NbR7IA_Ie3Q91v#i|gw*)&H+6eSa^u
zu&{8OS$KFjsP0&>z(HI;F6Z-||NP;TK!fU_J-n)_s%z(cK4<;@#ZmG2kcx^OYr<aJ
z?lYdtEvm!7uxrPnMM|u!tS3*OKE1B?%nZYAb@B1{tM}dOl{OCv4_D96e=k-G+IXIr
zxX{bnJ2Wot-oD1!5+JQUM+8OJyn2=O^T&@Z8Q(vCoOm@WG&J;T?b*c7&(7{DeLXF%
z?q}-mZ*6UCy7BvBKs&n^I5xj~J!>v6RCj;oiuLQKuU?(qU1n}>9{qpssq^Qr?<#$5
zl7G*})y3t;*W5ch0)2gbqqb&UwT)lD8MK=2!qJ_(cdy>KaieRsvvc#>|8Y~MO#@BS
zaPje7`}X$s+h1B*T2p4tS_N7qFDEDWR({J#P*=`i;<vC3`~LmPuKj%0yezl=-_Pgv
z^BzBbeEF48LTTw%mCOeR8vj?_=N8w?xV0to)!p6Oi;9b%zI>T^eSg|nDbT)zSr&zh
zw6wL~t^;j5T)k;iP+eV}-{%`_p!Tj`%C$9-ppA2}(S?N@<0>Aunw{t5<P409oA>I~
zt2bu5#Kpu;C2iDDQF$W&{^xP|dXObqSy@4Gar1tCe}Dhc3~q6~7oZ~ttV&kI?mn7y
z@zK%l)Qu4#!NH5=Y^&~^Hu3ETwJuJUl!&IkyR*~F*B7)hbDCbP*2{B~?;0B!ndIHE
zxUJ5iAG>SGty@v7Y;3Edx93e-vj5*NZ{xHx0i~r|KYjWX#j;{Is1S_ZTXl8a+bb)B
zy}Z1FoSd5G)%|)Y7P|f%=m-u6ar3k@5}-k%tE)nH)%@J_*7M!esZ&7%gl|DjPc38P
zU{O)gPoF<eR@wXO)oRclX;3D9^e9PGT>N(5_fMZLeLiom@442FcVGJXd7Glvf@UjC
zs=vKqw>jPC3M%AWWWJ`JkBp22SzlJREh{TaL`G)KojWnDt*tj>j~_kykJDe>f8La%
zNf-NMt+yl}=i9ySU^Dw|rm*T`*CavF*#KVErmn7SX}R-ka@o5(nc){Fffif;eO~S6
z;<94r&Y$-4^V2|WOrIlxqB;`Y>N}Yk7$kbQ#26UVoLEm=f)*<n2r^A8PUsY1U^tKv
zvH`SmQ_F9zJScH8GzWq@%Pu#XpUSKN72Fa%4Xg(Yc9*{|`yz0m5!9i6p=hymx2VqI
z_!ki@It*=!38lI$Ity~&!1aOV)n{-pp0?cJ!ok3hV4xKtyI|kGxJgsy&Rr|0>}FA6
zBCBm@7Y7<?{$gNtr&Cy6#+Idh#oD!RHx+{hLuGAS_`;*2ZasY#8x*u?&K#NB@4vFQ
zb_G9oKk$k{R8(}*k{2&Bj`JOHbaHl<wPh($sJj>I9saj6JS0RzN9WAN!wsE+8>|j|
zd3ky2+_|7u@QJ&3?_NC2$neMg>({TVR;;-2<>h7h8@3=nazw};xP3c%{oZf07Pm7p
z7%)uLzQYYl+2FAH0PZ3}gJea5CA$`Aktv&U0%Porb+NmjJbI+W&(9wk9=`p>e3Q&c
zP0h`+21W~BKRP{cE;A!{gOs%NSI`u7#`Eb$4<uSvpX+a6bx>4PytS`(w_fb7CodK<
zGz2RoFviX~nsjmZ`+cjIEn610I->siojYs3->;8vY-}tlE}p!9|9&B1;nL5~e0M(v
zt(CgDIsNsCiOQhG#&_=C6%`Ozux8B~vFmHruDv=*)%(fw=j!I>=Af~BO-;>BQES`I
z3BS;ZP%7bL(P8-X{rmOT>-Ya#AG+qojR;Ty3tE0YO*h&k^O6dv&;f0dy;~^O?V6gJ
z3R=dnCG#?9%@L?H1??F0^z3}Q<JYe$(DvT=nvbnwIuQ%jMsL@$u>rM2E^SIZEq9}a
z@qy!GLtX|I&(6-yQ)kYE6crV%j=xa*>4_(3((>XW*IV0iXREwiyZv6!{e87lr%hW1
zn!Hs~I#l*&rg3`7iwlaq^7e7y?jvYI0kl5I({rNA(xppZ-q~5KrKNT0!a`?N&%(mO
zPai)9W@W9KrW>smAAg_Sw)8+qg->(wf+kjnOLMite0+K?UA|oU^V3tYzxV5YuhkLj
ze)Rb9+gsChqt#YlU3KS9%<gZ;<?HW=ty^LpFA17fnL2&??OWg8-(SxuthOTk{JdRd
zZ)d#)?T#@uHPy7YzyBbT$>F#{0^^3ry;WQD?(Vw!DsIi^=jTr!Jqp?}R|Z~iu|95Z
zNMvN@^>@#oUw<S88ddf6?S1<{H8mA9aerlde*Et1S5^k6Zj2~-dP=l8jjcrP&A}o*
z9YLlIAHRPOFDcn_>GI{N6DC}EW%&J9_pa#ed26@*ul@Y%?d|QLoo1>kDqD7~wAIjf
zG4CBKLz?periApbudad)Nhm7X6#M(Z!RFH6-*Tr;otpXM!^3Ugw8PiE`1SR*lugBl
z+WXoH3J#^ErL$}*i*_I9wc!4iV97p>gYkx>RmqA)ix+>rnLht!?IHssqoA<Wq0!rN
zHd@>1>iUXxyPmiGey8^S>!s7<K+U{;|Ns3KtKGVFYgS&~zW<yIehp6#p6lllyKr>t
zHk0WyW~^AVMrW>FZ4`LD3TTJYzdt`gt5<z}dzF-wKocgQlyGj2W!Zd%J>jRP>t7F#
zuU!h77CqR+%EiljwO88w%j@;~wba$!MMXtH%Wrl+=U|ZSZD1`aT>H0FT0mgIj2RMd
zZ*4uj?*HfW_Tdf=4Ms*rB@YfTf>sK2c6LT>PV?=~-u5;8^Zna*@7@Is=<-UNW!&Fa
zd+OAwAkaBBA|gvbbD-(x=dqm?dSL^~AY$76-fRp99)ecYUbqk-Yf}MQvDOy1d&LUS
zwDPZ~)8oH9nd~oBmAj=6UY>3^DGM(~1+^m1HG*Us4uT5L1f`G-bC{8e)sz($rFG!4
zxkc6K`2kR)28T))L}|0QiIt(DGvHtmAE>Bi-~rDAxV#J7&{Ow!_H6TfEk#Agef#!-
z+K)R5AA`m_{=BZ7t`~dh)Ku-SXN=E-7Csgg76#VU)y+PBe^;ruv{}xD4ngH7@7}Fr
zWM<2Fc4p?PRjYQb|9<jKgc1wGffSjIOU&#4)jWOj1T;?C*w}dL#EF2ElqH`&eKM*0
z^TX`Cb?vV$cE4UIgUXnL2M=m#Xk>i8v22-|tD75WTWDcnAr~KCn6GbdpRDz=TeqTk
zWh_28`kYk+RSYGC$NS~4-`iUa%J)BhRCosY`1F8gn?U>jKRi5~JI}i6OGfPOGT*&b
zUoTCMulw202wGzcK0-;xa?yng0f(O_s_B4MH7fN*DBam#zaO-?W5*7Q=-I1RuTDx%
z4h;xc&@HaNt#aM+<;$zSzWTcU^QNe^zkWRK2aQR$wzaL=xij+X*RS9I9V;;c#Rg_m
z@ZUGkSWrl4=+eN&ZkZPsxqkZcWy<p9%jZ=*;(Yq_>DJ%BKpBtWfQwAv!By+lP3!OX
z?=F*<mycW<=4`fL`qZhOyEgmGm_L6#Xz8!AvU6{5FKC&e-(0J!@2Y2TR&QWnc=71f
z>(@_Ty}GsN?%A_vuicL;EiK(v??2Bb^Y#V1%1<e*Y;0Pps;)C<&V0MCKN3=FyW3=3
zxqCOZx3^dKmb8>q&fmAC-=z{06U*j{$(UqJICS`M>6aH5%kCfc0R^?i#Jju8K?7N3
zx!2dn|36+_Q&STa%eH3Sx@juTa`OwmOa1-*J^$kM_3`%3-zsN<7byvA>gwi(v%cPV
zT<&u9`@QMc!-9eqIk)p|t@QKo==k*MQ%HDt`u2-^H*5$H>vmOCRQz9QQx2MJ<+uG3
zuzJ47npLYnh5GGUeq%+@77(U;_wIfA@FAe2<O}o8eeLb-d-m>)emmQ`d|gm*@YH$p
z)-Cm(?zQW4%J-fg9?({pef#!JdS|nB@3w7Wjg5_<5xCmB_fMbpo;Y#hsk3LV&NNOJ
z5fM>&>G#9B>dOi-{kS`QH)r-A&Dt6zYs<mFpfK0IJ}!KHT&=?OZ{NO6n?FB(_FvE>
zOCvM;mXwo1w<q7J|MxQ;bg~i`H}_-}-G~hiGiT0RwPMAF-PeA7eGO`O#>A|#t^Ni&
zi2^h#ucB#ac(E+T)3Xya+XgzvCV&6mZEM0ndj(eA-k$&ZNT=}Hx=9<sEp&#vdn$uH
zJv~81v9E7$Q*-myy1!MR1*hARK_hx=*64uh7gil{@#$gHO?Ab(XU&@R=2ll%*OUnp
z7Bn?6?cA{=<J1&Q(Don)hXc*C=P-k!oq^|Avl}A=B;zv}NPs$^2NFQ(mZ2HcBpj8%
e86-FUGspy{<pjH56J%guVDNPHb6Mw<&;$T=ho_bR

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg-3.png
new file mode 100644
index 0000000000000000000000000000000000000000..e838f4c158579748455665db9999df9df8a5d72d
GIT binary patch
literal 22211
zcmeAS@N?(olHy`uVBq!ia0y~yV2S`?4mJh`hJ9%>?l3SguoOFahH!9jaMW<5bTBY5
za29w(7BevLCxS5J3j5`m3=9eko-U3d6?5L)t*$v=`uP9H=g*BdPj=?(oq6rdgp6rj
ztujR#t34J9>%I+oc|BF|*%lYi!xLfz!_AIsxW-QRI{DORoru%2BxSR?&kWw~`Tm~&
ze(gHD+`|>OpYQEI{<rM*+g*F^Ex#Ups`&i(-=AllHQ;e(U|=xly?a%dfq|jGoJEI$
zfnl=X1_lNOAGZTc3=9U6jNA+i2U12QhEtG)odn1Ca~aDbm;L{Ky%x1Be|u}IsEA03
z>$%=X91#o*5eFtJyO;d^dOd#Q=ik46z1sbLpK{7nVL3r2h6Kj&RXepl9ha|<`I!Bn
zK4Sv|!v=}jXVYH&<T-5cwPuHb6gUxGOkiY4P&Au;_6wW$qN7^*CJ_t_3~GxHGBF%*
z%Ghv+nOBT~q2VN0_XO>$2@7jL8W?8uG_)24M?^$CvUtzBW4igh3g_MB@5{cLG;pn6
zanR^D_tWl%)}p|G0EOLm*Il_1a(1S%`{wlX*BY7Gr%a!&KKrcOi6Y_m`~UAtN=h;*
ze&&;!p8ol~=nj{b)m{DN8v^ufY;3mF|F0{3b0bjQe_lvk-99EJrY}z>`)6HQ5%}rr
z*U-eog>TA?>RrD*Xy(tlw8Zn(ot>Na?A<$c`gC=FfB$fQZiZ8`^|K##X;taWm_L7g
z;^DTJ)1vb(o|>xt^>M%bD-gShm0Ltuc(MJzAI@dF=N?<kq^+SbLFMSNW3R47=Z6**
zZJJm8&hqW;?dOjgGi!;-3GQNN5?iOS`|dhr_r8p?vrJE&K7Co(-)3R;yPfX5QYIIy
z-|t!c?(Xi_ll|=qTXf{a!(!y*<ox#kd$G9RB>$ex(c{NoA82IOn<dJygRP&V@Tf%F
z!ZT-lO5feN`EgxnJD;qI=gpfpKYjjuxku7CMWW5_-;ZR^ORv}O*Ncyjmux#&9wX}G
z=-3#1LdvdYM^RDHlnE0SG&M0DJ$m$In{-~mL!QKG@^wEP7cN}5ZeH8%T|&LW|7~^a
zO(J$A<(SQ06}EQOjT;fEsi~T#rlJ4;ec!Ko@?%|Je}8{m{om5N#pi8*{rP<U>yyd;
zR<m?MbmZjZtSUY%xVAq2y@a%N*_t*!*;W2_KV5{?d={K6VqWal8}#^C@7CnweBu7A
z8%&tQ*3J0yr^fTr{eR!g&(1RSuB)r7db{=dmzT@udrh*jwVmq}c6(dy*SFj6zq+zA
zc-<T`y}+`vZEigh3$5Sp3C_O0uC(X)(W99sCMf>;a@n6VGVj5<-S2{2Tw1EWz41J;
z%c+9>w5`B~gjtKG&)K|b)0FAcm&e!ty}EI&|9rbyw$<B=jEqdu&Pc3{-0XJgztgns
z+qd7V`<+|+@u)Z#2S>rlKZTWh_U<)JIU!K`@{()$-O}lH|Nj&p-?qPP&66i7;^#!B
zFM4tRIiIYRhN7b5!Gi~Pz2EnnBQj6L+&p~a#*JJ&JX6-MU$3O3G-qF=*4ZXj?v(Af
zyK5^eDqcLFU$6IdNAPmLllSk(m+g*~uldk8b9)l!o@Ulyk-hcBA09aN%GpN!{`U6r
z%gf74&)a@q5xzd|)xEvDe|>$u{LmpMUP&XD#qRynO5W{$Xy3kOSLy3rKl}<d{`)g8
z=3)_#tX0W`<;$0U`uw@{``z-_m;LQSudj<$oy#3L$t3%l&Ro0NsLRX!!xy{t#+cQ|
z?D_qEfBe6H|GK)nFPC1AUEa~bp{k<tqE$TZLhbjv%j^HXj?cQfYU=9cFU?}U@`Z(j
zOtJg%fEnb1g$oyYd3gn;q%66%K7PGf?yZ;)fAshN+0@kBJoni8ozG?k^>=o62bYy?
z`@Jojtzae>H#hHLgC1sfK8dZ_*Uh4~WF&rhdHMK@+uPSaeET-{%Ifg*GmKKZlK;1I
zi%XeiUo(l?nw47f<)Zt#S!R097wtcP`BHK`A}?><<Nx_LHywR(W##0=?YDc++yB4w
z^2S7Ecd3I14<7Tk{~KaA`DkkOqfT|6*=N&u<n8Ww`1+diJiar(Q8#*<grJ~c+y4Fg
zKR%rvzpG-J=>2nZt$97$wr}75@cHxfSJSs|->!J_#?IpO&g=g^oz~}_eKyT!w%J+3
zX>;f1wzRcL<=)<A`+m>lNt1YX-;H~<)BDrg?f0eT&6{^jd;OlI8*j@V|NVY{|BGa8
zE+#QO@4C8ui4tuSXU@$0^5*7c4sPz^U;J<X{r%nR)+;3m3WK!s^WI9t?<!fDxcO!e
zpRAR{%$YNv+T~C24P5YRv#`3KgrcJ2vBmv%uOxmKpSZQBa`VMqrP+rMA3l6zN8#ej
z8~6YDbb9J+9iPw7>)$!I@fhZq%{I)rVc>L4^wFsX)0!Uzhc92gY*GBI=kkvwo|AcY
z->tis-|<go!?`(@$s!^mF(2aI@A>Ta_+h)e*|qiY`8RURw(~^nX>K)&-kLS_Sf8x+
z%ld42$+m@me}7-?+AY@S&bo8w&a7KoR@(jj5?onXnR#zdrB&6J6)G<$y31Ys^z`)C
zYti{9&!0bUYTnd6ZSv&B^Xvab-mm|^_tNFds-FAy?R#}$VYA)uH^#Pqzg(X5@4Mez
zm94qA!_M1$?&0F*zPdKr{CJSeq>$ZZZ$ItloHFxlTJfG}%iLQgM~@r<<+1!dAKUt5
zER|-TU3NQve=H{_Cl@E@!?`+>cRW)49=p42W#QvvtAdtxU9PxTf4=<ft<rmsc@GC1
z?~@H(8)f?Q*RNIS=jZ);*e>sN=lkC8_bz{Xd)u_~(-WgV>q2Z;bYe^n8<hO|lIc6w
zDs-~C|26IPdmi1GHgDd#;N^anVw`7BpALR{YHDaez=8=A1onPBCjIN#?EEd2pVN*T
z*8chuI9bj2)L***v(@42uQ~JEE;-gKy*l&qGA>@;tAD@WU#}azE#uvtomF2hx_^DQ
z`@L1`nl)>5JTE2p+b)}(x68A!v9apU$K$2n-b9K`TAN^FV<R)4W1d~DmEvjNrAwDi
z{lU1np@BiNZQ<kN{nM+~tY5#LjYndE`Td&U)nRLca&p$}`|*ey6qLvNWQ%W^TU$pT
zZs)&#VWD&B-O}qb>*T`@dB59{VK&?M>Z;JoZ*Fcj&ADN4oN3bIW4*x{87toHc+6M(
z>*aE*vNtoBn3-kmA4E=)GS6G%HC5~7hlhvt_Hj=+y2!Qr%NgVID?(R?{rY|Xzg~WR
ze(nFi-=j9AblUxTp?viC@$54*42^i4xyALSoK3qt$Flgz<HyRLQ9Fy4+SuBD?XUmi
ze0G-U;<alOKnWl<HFahB`FWF;cum#PR9AP8i;J6OSG!9^Q&G`z(wFc1|HnEyI`&QY
zdWc&eRQ6SUzgvEFTW<99yUwo9x~AXRylK;ur%yw3?%ck8d*facPz21ktCiXR?&9M1
zU8S#=eS3R5`_Ylks?TT5WpAtb&RX*4Pff3s>8dr`10D)&2vBQnZQb>9*=&>CTPD16
zHW9{YX95xv7ar@EUw^Qf{dKqgzJQdJC1&~e)~pI$ZPjO8^J4?3CS0&ULHwLt>c+gg
zR-hDVWfj%T&R-U_^Y_N%a+kgJ_bvfdmFelPw_cB%d^RmODQQvN@3-cl1oiv-`|FR6
zc84zaliiws|DNEkgxu)uc~|e2-`9P4XYn7s*j*V18W{cRfBMb0i)~AsBC%<i@9bsj
z^J{{b*?2C@v#pk?cRYNnrlw}f<jKJ~HrCd+H}2KBwJmq`wYAaKx}PUZnzU$T@bav0
zZ*G42`gQLf&Ts}6ohhA#@0ta(uC1Awc5co}kiWiOj|Y`+ZoN`VIfd0SZfr>G>gc#I
zMKieMFt53WrDY^29Imbky}B{kJ^VhC-hm(cpNfaAjas^^^mW#Q1C4zJp<86!udj;@
z-JIszD`n~hN<Re!8-#>}p1gm*UeY*ig<~_@r!QYZwq{-Za#TECV4c>4%gg<>H8ebA
ztx5uliZ+?$+*kl=^*uh;d-<&S{Wm|<R=$|MdVkxRjt&mphz$<^{{3rN?On2yH!Lo0
z-s9L4O5#-}@&W<@kCG2;*<#`uw72T(DVzS+>vsFG^UIa|`E^u0KIHGOuUGfgRxe$)
z%xdoc>G5@eSy`)^nwsvU-(<VKC%V5&NmKLWi(6Y)8x}wFd3-y6zwWl$@9*v&n_GS_
zGh}7Z(TyU9|NQ*itL8gP!ff{04<A1oW?fyC8dH9^^w_(*yH8jD+Tl|F=VSZDC7!~I
z!`H_h-S+qA<kaYGIfj4!{_TCeZuhw#FPG2nIdjJ6@r8xX$F8gl?%jT`>hzC~$K_8K
z-!gDaOk8+zW3v0>gY5DqMa9LvrLV6^-rZGd46@`-#p7PLq@+cKKRzTL|5yM2_kB=(
z(<5PcC{rdi{EMcOy}kY7sI6Jc>VE$G8GC6thq~XKii7@w)1F<6&Nt25@sREKdh4<`
z88_aR9ZuV9Su5Im^KIGVD=ULj_w|JeZU|VlxB9!)zX#XXL|)!-`>k6_$`ZrOODf8$
zsz*QSKWb!V?>RTuTDq>T?pXHvy=f9{iF2$<PtC9_UiR^lx4vZY^K+(sGM0}{MLSB)
zwW++6abv^6!uz$~C0SWn-QwcnR{lOW%k=byn>oio>9o)I$kc!@AAjlZ|8wcX*RQ5R
z!osq*r|Cwg@kp7R*tqA^48vrZ+i_JdRS&0amP|h0XZwD>=$!b#1EBIcaBo#<@cvaH
zD~keOC#b5ZSR5-VD(V5%k-4|F6!t7#x>S;#Po_ZUVzPv){_agxU$a1lIJfZ>_T=8&
zbo9rE!~ApiburyJF;Tgf-~P{qmwQBI8M&99I&s1vDLJ_}>*^}WhYuef>(<|wu_fc;
zp%o!3Cl#JGy$)&$9J`&rKljgv!~AYuUR@WLdW$din`?D!N8#fb+tL{eYJY!oo2=$5
zQ=j;+G<Wu)Lr#k~Y`Ab^YxZ<db$xQOy7jTZjeq}qKJWJY+}z%{y;YKul9GKNK@E}*
zA3hk&GR;n_sIHdol`=J2<})*Cj!osI877&NHkQAS6F;}>QE}=4Bc8*c=1<_xqSWLg
z9fHU1>@4mz%e^HrRXg0wEdSn{8|qqGr#9To>DzjN=dgj4X;#XYx3{m)u&Lbi@mh4g
zq`&RgDGy)1%w%C_m$v`^=X2%znWY;FLU%ozm2HxBMZ@;@o6WcOR&TGVsrmA-T|Vpn
zzS^$7zG-LEE`u7}rn$F5KpFV$t*xP}!*tKiG(P@PScy&k^!k9Vf0d<gZ-uh+%U#(~
z_*liWY<FyHYpdVyTRCROe@D6=-+A`8aQMdT^?Spb*?2Fl3SGUW_IH`*bGt7Wmix=!
zt^I!Y*K_;-D@$Kr)6~%LP<HDHaB*n?^##(-&e~b=?A>8e`xliL7r9pb`}urp#mA(h
zM~<vmu)tw;`1-P6CM(XS71vnpIdPcZehsK&GFi>{(u0G|ve}Q{-q`4TJ+At#>)qAX
zn<W3dZRfVA{j~*DXurI?Jp09kg|n<mS0&$0pI^Hyc6XVkp<&?6nKS!L{r~*^yEXs5
z-PKj0r$a9vOSLL`(s65R_HyI&bD&0rzunIzDwfmkYy9eebf}fvwBkd;-`DZ~FUgkQ
zd3Z|mu#2Uo<*Tc!r}G>RC@I-8uj-ZN-Ll)cULGC+pP!wT{jD3jD`flKGHLtpODysA
zf4AoCd@2^YHY#+g*393MTmJm1nQK|>W?lX+<n%OMUt4ppW6L=T9YK}wj>5+&n{R?D
zAj!6cA0HoI?KM^F)wQ*=LABTNc~xGTnwnMb_kQ1!eO=FYuGQ3n(1Wb3tS{%5-@ACX
z{QlaF$;V%vnQ7eB*;%;ep1$Yq^7q#!sd``8kmxMdTWTB^7Y8ybDLHv-+1sen_xEDg
z@A=fF93%R-;k~<j?Ukd(tZO>ixW(Uod3m|&=hNx3-JJWrT=M?(`Ezm2n*Ar_>;Dvn
zt|=_q`s2^%^H-Pq%Y%9h-|yG&|Ml(d>NZ~Kth>8Pe?6J(za{;=T<)D67gt_&IQs2*
z{qo&qZ&&5-`{_2@EH~)#GT&Gm<L_Zt5<*vpz3noISnfZ6*+DILlZYJ|S677w$HdH8
z@_+3ko4P+0?lZJ>bf(<RQ;*p>b6xE2tl!_>g1V}pnj&;{n5WhEzPQuVbhlQ1PP<$2
zxL0qU>Y0?yH)Rx8m%qRF>(}e`U!P8o7uwKZq>!-C=bzLj8yg!DadCBf`~6A!c86;3
z6ddM_+Eudh+#JirAh)ryvS!`evoq`Js->^4uHIc$wS%ckYEAX~z2TrBx>x<)*7nzn
z#j9d=Zt6~d_Aln+;-UmQCb3g%G*T)nDl$GjISG<d^O^DBRpvvk)lpkltqNOP<*9A8
z_z@Qm&lT<UdloS=vt>LzHMQ!+!uA+j)dfxp2@fZQtPb-9b$*|on)>yGa{rDhD~5Fo
z^kR3dNIgA`i<`UnYsfk-lZbbX4Xxf`d#g(Ke!1jrBgJwjCLv+Lww#-fzA(>coFmW3
zJ-xMnHAa>r{Au^Gm5-Fc128s9CHz<TaSpu*Na=icXl7+#NHCIGQ}p5W`u$mFXPI*G
z@lEUR?_a%~nPG=ZWMrh5r{~4k^1DlKZOx9Kn0+B(Cp%M^WyI#R-d|r|KYx|Uz~Hl~
z;$xESw;Rdp=CSGYG=%asH8-nzZq2$nY5DTy+3LaPjEsyz7Q69=`!Bw;Hg4~&tHA}G
ziq35rzrMU&H?Pgx=Kr71>*hJ_yuCet{w&k%XRk7+tUhzbr}pz%^S=M<;x$eDMCBP*
z%ZS*Defjcb&#N%!ZMWZs-?jA)Iz3G{)|PepinzVMLTlfLOZ)quU;SyH>c?H|dL0d{
z3=ORx_@-4WfCGX>=lcO8UPwS35`Fso`SVwr3uJ6RolsskkLgt4-m0%LwyfJ-nxD#L
zY$$LQ+^|lMWzA~ugoFjFmor3&fkvyuoWPO{ps~?rR)&V77c4?+kcYJ(qX`TQ8w8l9
zRX-3^gb#2bhq4X>gH8+EY1<14j0~XRE|5VYTO-nHV|(u0i8*@gn3jP-z`lL^KrOFZ
zTeDBwd~alCKb5zAwR^wZ(QT4#3oVPEy?8b|KkVwN(9rF9v94}zS+}?4rta&z3L3X<
zShQ%7N%AqCukY{28>gQOS?V=aL{f6)+UV_ZUo7|idZi6&MA_NdspiR><;<8@`z>;7
z#zm*g%l)r!NIYEf;eli6iwlnNwO^-3LdF{y8d`Tel3gQfU6%3l(^D@Gj|&qNomD*l
z{{9~R`Po_1q$3=;_xAi;v`$!9c=3uAD}-jRZ)#!!jmp*j{uUY(G%0yc`TKiZoSYXY
zsd|^ZUb{W+k8h+5C^W-&ifV_g2wLhTWl^vo`ON9l-WM-kytOTNcAu<u*}-C+m>mJ2
z@r@&$!rpi0O`pDe%^IDbzkgfz##g`Hy6N^?a5HxH1_>rH1_rUDZ@<IEFL%7Xwbi><
z+B|HkR_L5#(Oa{g-l(&iIdi6zWzmvjJ(9sX4x%5weG7YiZSB-4Q<g0Cp8o2^#l^Qa
zr}xjRc*F@R{59|FWCo9LDz2+=nK5nJvWA9+q{obmj7B`p$NS~&-+u)4uGX(#Kd=7Z
z&(H6+r<@e}`u2AC-(O#gdrWg~1k5(i4=X76P}#pW12nF=<5X&D>dDimSKrvNef#$0
z>P$X4n-w#S)3aV(S^4S97n}E`t3p;TN;^C2<<95xE}xpJZCd>;=jrq3t3kcczu)ic
zzgN>~W8-FE;4XA+e){<F;yH8XBt5=)^Jd@MrJbFffxFAzmi+(weg1bTR#w(mmzH*0
zmA+bXJ-+^~;k}*3>89D&e1ezxTwLNg`CN5hR|_aRNL$wa+Tu6g?yX5!KtRF0WF{si
zuNs~i)269;t_oit*Li$x^mf1OYimHmnNw%Y(t3F(D*WfqpQlcp3d+h_m33{+%2lDO
zvmPJoy|uf1{WAag?@IbETnGTQ6QZ}}?0iwZhJyn%c6{ckNyOFF;o)CjU7dSu)22;R
zCQS-@W%%&n!>IjrdyR~Z=f;)X-&eak$87eY!-u_X-o3cEc+<_CS65euZ~Q55UFM^x
zs0ixovGL2T5mxs*k+ylN#J5kMK24cFKfZ1E7Q1@~nHU~uUEf`v|MdCu?00u|_HDd#
zCq`9ORZ~gHsj;zf(vmM<N>tU=t(}6NpPRe2=&9G*sI8}7t}c6fYuDRtx3^?n)w)}L
zzjhL+3x3*wM>l%gnU}Xfb@Qajldo<{Jzccx_9sVB1_!77u(eSu{pZ_BnPyG#n`5!?
z!i4~kO{S)yot>S1f8F|IR<?4BYpJTbIyyS8ir>HQ)%Er9Z)yw;4Oay(?^BNP1eH-&
zw`PZf^4)U3xk20W?w0)dQ3xH)?CR_^eBY+q(7?*TuqET7($S+wGe15$dg{c9fQX10
zVe8}8Zp*!G^=;$LoK3g&|9n`zWx|h(?(&(huB?pOmNWC(n#jecrfRRQ{rzp0L1GiA
z`S<GYj#+07cn)8kTu=`36R5p$b#3(aBmD;t{hjkZmVL)^`}*a4-%DRz(agQI#nZa{
zoyp&cVHfX<Dk>^I|9j=$(i5jnU0UeezV5`HKqJslzRnTRevU-DxFUAYbPy=(5>*gF
z%QtZPU3jpFAGx3ejsJt@mADlXcCv$V9K(zrYzmVy=4jc0+`usTBDfIWgIWT&f~z7>
z3E*^~h(GUVN5R1+R!HFx8Wk0_@vW?NSx7|04DK{G28MNPd6FBto;-Q-V(axdZ8N_~
z><kg1fz7Gk#7|9+W?%E+L&4eE=Ke2VzFaqti-BQB*N)r+n{MVv*;Z}&^!c-Q&c=Uh
z7A$Z84PQDrJ3oE<b}bvPRK}SZhNsS+Exo00VG&_l_2t4e-RLX3O0$3d_^~4Ka9h-t
zjEhtEh%y`qZTq(BQSt2tRZq}({^Nf8x`SfcR#s7<PVU<6_f~;A#>vO~W|?G8lB;|o
zxcqO9+3bD)|5bl|dD;E$uF}g}GB1a0PV?oJFmSkE`~B|JeX<M;0ggLL4@_EOn0!n_
zU*G@Z$B(Lc_xDzB7t@Pb0csweo~C=*_`J>HBS&0#rOkX+hpoNT#w$JNn|;NH1z~F<
z7EX_^iv+dJ)#ukJ`TP5;s;Nyo{+5B^j?DXno$TBBBY34u0{;K|Yg+y;X0Aoyq8s1(
z?f*rX&GrR#s-)^4wu+}nw1usYduvknxYvA@?`*Ta`0MLpqkU(YTm&VaGrSB84P3|H
zGEY<Km9-A5tgKYs*IoMLgy7A$Wvy*(R=w9(2D@L6Deesl4xW3gxv8mZ?qauIDNv8B
z{1QXMY9Zcf)jPDrq;fATXatRE?<{_<WoEYRNUh#C{`u|g?wya@5@SBx=;`6P`S#q*
zYv<4V*VWaDm*z4!{Io24Gow%5{+-FR>C?-Pu0QRx_}#-*91)jxie-O%boA)Gqr3k7
zdL0@OvEu#y|8c&vObUDc|M`60s`As4b^HHSU49m@*p0WcvT|mb9m9dC!V(fI4jgb;
zzA<>YU*_dyzIw9+wI;28B)CwewWVc6{QkPC*K4=Wu?v)tl+-+I0IGPG{}mPzO4)p~
z<h<?oDc?gF8Nv-gQ#{*qH+WU0n5UhQ(2d&Saq{FzP%BeKQ%A=qFfeeIb@@6YBcm$|
zo!M)DKAj%5qhO(2#RJCD7Z(=pS<c76pk=Y0H$rvk*EU}1RrUY>MQuoEy!>tZ{kmvg
zX|s@^ph>VHm@_jBt3DnT@1DDP%X_9D?-&>o#QyoM{Bg%9!PV7OQ%h^rk=)PE&tL!Z
z^Yh$eZ_0Kb>yur*G5Pqs?|YW&9{n)?|DWfV)VLTJ?pzA}%qPacAlkV4-oaC6&xYpY
ztYKnie){_L>W&VMwXwUmo%t+pQLx}m+3u<@FCLoAn>uxA{h!D3yI!x`9kM>oHgt8E
zuWt0VD|0N1Ln0y~p1qEc1!Z;(EiEt5_z@^o6+iO{T@~UvapJ^VyGmcX&VRgm{k}_0
ztlUo?KMu~hz0kScq~b$@=X0^oejXkH9v&T_c8aUJ`|L9Lu!qz7IT#sMtccmjcdbv>
zdP~jEBG8CH-6qff|NdUxQ(4?AVdym5Jb&Mc*GG;V(Exe++3LKzyFgXeEVJBK64Dk0
z3l=S23~B@H*kRGy(lX`Yx;4FQ+zbt??{tZ3hpY@z<(09xVEF9m)1@z7WaQr7=6k$P
zcJ~8IP}Zvb{Vns+kxtdT^`Wb$1@F+hv^reh^HTZ!+ValL+tt90kw;zS8_M3^S_&HA
z^_r^X_jqm8)}kEy`Df1f^vYNUB_HdVxPO2B%y;Ixy1tio&VT#bufl}`+{_Y8jEb7Y
z#KhEPUA9A-0lF5Tmz{;>gh5Y|z0r&H$NJ^<<KyFP|Nr@%Ix9RbZeH4%84D*&5CHW!
zQ?0JO0@c1TPd9Da<n<>o@7}$8eQ%dqR(x0h8s2+)div?hmpA)d|6Bk6{r{H-8kv9n
zc--Ipcg?-7K2X!(=#=kHi|y>}PMtidX*O@}+_yL4X3dxZnuqcGe!sqc<~qyNQzCyq
z&;NhrNT+b=_1N;Mxram<K=EomY2Lhb!s>n&y-%M%pZ|SELqmg*JhRwd`Ox)odxiR=
zx980T)l*Zo!?jFJLoe-=51l@L{`xg*be1k#wkqxHtW{B4S6wdj^z;O^(?Aj3D`om>
z(fhSZir^xD`ft842M33Z-&gw0w_7V~T{fl4r=ns9Xh!MG8K33icem%?*PDHI*@q7w
zg!-+kzO2YGoBeolL;b$?<l}vsDk?6Qm;0BmsaN%suluo(jZbF9y}i}h*VaT%FX|R$
zVg$u{%=>$LO-o;eoSkbO?%d8dwIna~`;sLpt}ZSb1_l9_c9y-lvND*9mv?G=d%IQn
zyERj_!^N!cA82G2m62JqG5Pqa%FoaGKK4qRznbVS7kIo+c5B7QN1t|DibFiG?uSU?
z>aev}mix<thD6o<<^*J9te7-u(v(@VRvkIwa=cF2z3<AQR_>{jCM{a9K;i28`1r4{
zuj`lXn=wP;>dIjE?{~}RC%-u{QTf%y#qDp(c7uwBy}#e>_B-Cv+WHbSJ#fZ)D<3HB
zU0CGWEg~+y{Ajnhwz9HwVq#*{-m0y)w&lLQaXf8v?3Lwzy|_Bt`Q@+8G)`CXJa79w
zW@GZPUTJsGN{{e1Z7Cg3Q1A88<Hw@%^6{_iIy*c4dc!jLWUWGS);PEGX=!Nec(CzZ
z6DYm3?$Am&81ruHDscve23AmIpI`{;rtu=C^#$%>srHfOk@}vnUXcKJH33uL(c{Wa
zprt5~Y9G{zMQ=aQ%OH@~pv{x+g@vnrfbv)bM?c41W>7iA;Nu2vDS{dzkcJAV6SiT(
zBDT|S)^nf4Qh0uAIu2@g*;aoG2?&@_Q&S@%Ah6)w-QC%*udP*mH-Gx{<>B$Qp}w=t
zruO&uzq+<|HE8VNc)z^<=l4^me(VrnU;q`Q@--hC+jt}wL7SsSMnSKyuMeMXmg{Bv
z?!m$4Pai&9Sm4+kvOO<0H6<nE<D;Wl_xJ4u&HR_XzIJwFeqG%@C1vHUwZF@FWh?>`
z6BAFJIB{WmeBH|6<$f#U_EtSDT>TUp%>+AtJFg@!Uc6XTR`#ulS;hs0)|QrxV?C07
zjM=xgWZv46IeA;o%|+39JD(c8JMjxt(j5rRJK80>DrDs(Ha?jb5}!YP3MwhtvMu-a
zvgG4^Q(xBD+1c&-b}PH|(-Y6*GZH0cSr#t?rTDu=r**Y7Gy=lHre%IlFl7Oym}PtJ
z@4vM*dpc+?N-K1gMep{ktEV>pbpj3M+^_rXd-CK-Q2XuM+uO_aVs}|=dw+j_{PBMI
z>%Qi9mw*~cb#-;0K7S7G7Sr8Q_xIPPzigolHcBiE2b^L)b{OdD`Z6*y9zDj)#FQd&
z%yn<Wz3ut&prrtlLUtCVf+i@XtjpFU|NefzUjOBt<U>(gvoi1PsWjqoUcc|xs$J#p
z*MXKpWZm0S8JTzb5=X?-jC*@3^S-vTFZK5FD*7rCa8Av4))UYm#GCv3<7b=Y7JW7G
znLc%@s=ogEq{raWTU<z99=ycl#l^*-O24SMc<S`&%TG<!_MT*9Y%KeKclGzY<J@oO
zT9pQ6WUNs0pSPx!TYOfjw;m`<A8?AfnDFz*4-Iwo<u@wI%C;r{Zf$98wfy%VG^;pG
zH#+M;10!hSZ0@;>+j66q`*X*Y-!09$zAkp<X{(SBPzc{S@$hha>5mVI%QxP+bLX?1
zFk+@f>+>hhdGqFh%A`k+A5Wb;Sy^9S|F|V+9Y#)lef|ILs`IO1MfmN6)|M6x6_q2I
zZ?@mByS)GZ-}gcNoc#RPe|>#Db>_^MUl#rT_V#w_=9?mNa&gZp|9m_yZ^YxAes0dh
z>C>m@?Ru$JSyeUdN9U2p$NOL3%3iPg*>p{hzaSGs!PM7xcW?jn`7@}Q3ZD6&G-;BE
zpy0v-2OK<us;YKPnmjo)AmG7`_tWF+G|To)R`-AP_xt_ufPe{E*VpNKg60-L`JnW5
zn5<33g^lma@7FG08@=6X?ewR78K9y_Abd~r)m5R|pqBVzx86&g!s;^GJC`q8re$b&
zapV0H6P33XJak&RWQm4`hR38Ud#lSq#rN9i?bG(}-yakl3~FU;*<y11cera@?blGy
z(veqJR!(N)m(w|H@a33v{))1<w?KW%mEYfFfkJ$NYqyxDo}OQ~xPF+MTic;ShqhFG
z&DxrK``X6-vuTs>zWeh5)N=qe?|USTOFljEyt*RLdHemk-EI8xac|t;nB?9Hkv7i@
z$;nxx<~Ikltmxca>+DZYPO9n&2TlZ+P7<4?*K~uX6pkK0u5D+x?@FzZu<%?d-IsUz
zk4l<kTyTw7x3RgiF>admV_BrNT<a>>xt~Es6+we($OSZLY!cLgJCFh@rXx6br&TXF
z2wpx2DyFga7eSuYX>o6P*XZ5?8I{AbG7Qha8OS=K3S>wXLcoR2k3&9!6hcdS?uW8E
z-yIHsT*MK9%Z1>Yzys8Syx#ic*)uIOv#`d-M$jTM7nhc6>td@9J~qp}wPc=cwU&m4
zhn<}r7Y9ec_jh-<mcG6w^!@&>($%-NW~<xV+q1H;XsD^VrJtXt`}zIktC30xvesoj
z@ArJ}11+NZ`{lC#q$N#FOn?9Vey^pWQSk8%14BVQsM}ze-1h7H`}H%8(^my8_3G;B
z(J|E!1-1BWY-~(2E-38%`D`|5s2ntK@$K#H*PGAV72hhqzAhFtTC{2NX4BeVC7=qR
z`1!fe`}=CwKUur8#ryt2BOYh{Js+CV&dyr;=TFVe9J9M6mwiEF8%D;)pf(Suu-c2C
z&*zsvHDP4X2!Hzb+!aJaJmbU!#Ys#4{r$bV^7At(!=x6o{ChF4HeS4Vv8%7IOiJ1$
zV}g^D6R4vEs)-Eks=j1gT@x8BZI&}({`~nWFMqvWe?8dWcInpa>#Mw{>xDmf7jt+i
z@3kqK!C!v8UY~tqLn3HFS*k=^a`e|%SHB)$=6~_``~C8VJd6wl_1a-;0+xDBH7R)D
zaD2w}>C+c2Uc5E;wwbJT*&3hcpFe)Qxb=G6>dET<R>wd!1jvf||Nr_5R6YCc|Lyqm
z=g*gSyWhwC>y7B}X1=zk^7EG;kNaO=4UZ44sHoWZHZd^~v~~?Nme7z58WTlXP_jB~
zt;}uxCue3F|9ZRq{**a$)?8fdo_&8`tzYkz?f2_e|M^n`s=@q@S5{SN+1SL~ulaoT
z=s&Sg4!v5JiZ3q$w`N{mcI9ndU7c0!uM*3191INCi;f!cW@ct`ad2pu$q5K395yKV
z^W!6T+~WNE`=U0d^{T8adU~qr*UROmWp5&uXWz)#7PP*2-|-2e6TPK%>g(%eZL79i
zc?+6b3J3@Q8QHMfKP+t8o;`cIdaJ9et+&N{)YR+&Em=D|-##8xgh1+-=Ow(JOXHp=
ztqYvE!z97>!vW@5#_4^0vQ|$dw7qW5ul+W2(xgeC=4`kxKSM*&^Dg%ml#WB4Vq#+A
zt2;Y4&#QRES^Mo~`max?^-U8FFf7mZ(E4g6UfkPtWNAOg@qYRB|NlI<=i=wTE?a&_
zarW6|KYmnz2EcA_%iZ<!*=*CQFB#!}f(#8@srUEQ-r8Tk|8j)q!e{5vMlEMPd+_q*
zN;%sq4LiFyOH0d7pFS1Y<mp&Fk6#~rEjwbaxAdA<S663)W{nJ!TKZ(I)$;T6b8l>L
zRQI0;n!VhTd0Fk}uV1^0x)>OytUjH)YL<Eax_!03t!hi(-uk-dIuAep^@GjqpnA$=
zU+wR*n>pKr>^sU7L392*hcAGe(r0IzhcES-`sHePyye^J)2A<w-CY)Y$#l(`r`)~2
ze*DOIb7Lc@opNrT?dmmabl%?G9j?Fc$D-R;TNxN40^i@;J9Ym2^*f87TO9+%z?3OV
zIyyL5+1R`$UAlaE>YO=mws8E=-~T7*O%2G&zu)g)59%hYi;bQXvNp;TwDz!DT)!-8
zXYIp7tyb0F*4)-LJH=mZ=2%d$;oY9kerM;~-@h8n$grdFQ(VTD(A8nDE-&u~t?>|6
z_tP*j3Gwvw^z!u$O-fpnynmvyd)C84tzMp<g*6;&tG~YkW&5b@dAjxW^-Gs6)6&%R
z%*@O@dTrY*i^4^q^(CNUW##gDmo6@LH_g3ea<}w)ta#2%Evf13Yu@ks?bq4aX;t!K
zf{~HY95Lys=l&}Ge$=h+v-{q^zrVk}TD?B&@2{`FzFv<9%`ca}y5hOmz5iOT`MnCy
z=UZ;S{j;Qq!J%~<fl<-9@^!B6?%6jtrOq-;Zu6UGvr@`5>&3U*`PV-@Jlw5&wB++y
z^X#{`ws!UQUcIo;Idp4QD5%I=zwcMp&O6DKMVSYpwq#6X<B?GC_xCr=yyRk<bwy*_
z`FQ5*Pk%gU=Ku0yasR5YwNYJteW1DQDU&8G0u8)qhpoBr>FMdKo72x5%{RBS+<8OZ
zf`LJ=Rr}h(N$1waiptBc|MBBT(05NCpOUOCON#Bq(l0D<6t|sjmU}DX@-koXz4fk7
zFExC<<gNem+3fsl>ho(JRk&3zm9Z-E02M|~&dys4AG=*$6M1=~u9}+L+gn?M|Nr~D
zHT}FCD?9u2mv`pPo2PbOjDaB}MQ?3vpS=A#_4zfQy4tlpXW3M4+O%ntN%^~&<prvq
zrrFo7MCb2adghFe?>w8xNnef#`-2wY96k5>lDEES_UfkQX3+B7xSc1N8P-Xyi(uz|
zR-D-^DkfGIc>4Y9hxh;g+uqdN?EUwmP5GU|_NM0MtyN#MJeP)VQSJTAF3yl37H+H5
zvNPsZg70iI-~9c5w{6S2TjjdG_}7<AS^K&e-KZ@V@9Pp16Mwy2K7Wp#9Tx*bK$u?c
zhDVPdhwiN^y<2!(cGt&a(xM_FD*XKX%WHGYX50PwaQO5tzl%!gp{v7e-`Ba`{>gZm
zfgyb1!6JS=-iYdNZzi5i3l0dFU}S9Et@~Dg=I8cB8Wy6gYcIv*2rx4+SjbOjTQg<K
zl%kz}TeGf$x>vT<-{zF>x2^sL>d=R-3ehyZ@wf8ptxcf0?e5m?a<)|~-23IG*Z46U
znELVKae44kYpLBA%wMH}x_mMFE@V{h{C=<c>-qYB!O`3EbU(U&_nmE~sj7N(<23hP
zDbtcqPfjNNj`h>%>Fy5x{Oqj$&k6>IpPfBDAt@<KF5dv9_6yGZJ2Tu?c<2aj0L@%q
zT^+7%Y8pBTw8sARyy|y>?R>I6yN`W%co?+c0o1#=wIQ+jauDzS|NnN+t9&N;^XJdZ
z8ygZQEotMG1~sxl<5|igOP4Oqyt*oM*;!78hW(FZb-q8i)G&4S?A7jal`gBp)=o;4
z0Il^<nfqIDA}1#&Xr02n%IC7dVxM?;d9OCHa$i{=Zx5>7`=;LEm$zH<^Yio9pceY3
z)YCHA@wR_H90p|@(E3Es@~}5IH-l<|Stgl_*6;uKYtwUP28KJ+y{BhN*w^g|TNkrZ
zJg&kqGc)to-|zRo{(iq-+txPra2xMscKMnGoWg1|%JzcBUY?(u3u*#CJ3oKDV>8>!
zx7+WBE%%$drTDqua{0-@o6~&PMs4+~tE&Uq3|drpD|`LRd)4oC%i_cenHgrZwz}PI
z_Lg3=)O)&?me#3_RaJuZ_4P-OAAfzMQy7$$<LZ8<US4-|O{B4I+@2qczP-J(b934I
zd$Bn+cXkx|?YAp=F+sDKnW4eG<=w%hykSvMv!b@=#lHG>ZEdu+t?gc!bQT7Nf}b%`
z8(v*szy9m%>(h7D9&Y1Z6~Djkr!NNsgZN{?h1CU_2fDhtF71B5Z*}^-O1G0IPlCFp
ziHQp*O`dEDYIuFWS6%g}Q$5Dgm4TtbsQ9II1gL21xBs_dXYq4TpK#Od^H294I^-nT
zws6G?jb1t1TT_Es7#7^QXc1bY#~UFhC+Fqmb!md4^A}KhJTXyu(z&(GqLPv;H*7En
z_v2?^crYm<Y2igN-KZ6=-D2zJu`w{{9be9I*Lf%VnoZk+%x14WvQ&tHfnm+6JIrBc
zXPN42c`jeRT-(xe<`rIs9jh)R>})UMk9ZzE&CyDH&7;SU!3%Q_A9nux`@8=9PSDi!
z5ux`9o}doTms{EEGvD3WdFu4(;Qe)fK`Y`-b8cL?8qCbF;0|cuV><hqMaN#9KbZCA
z#zrnq&cd%(7#K9lS#-WX*wip}-n@0!<Eni>KRX*77dH>oTm=o8IX1Jcn<d1+(4cwB
zHeu<~rIt;hb#?pX>i-n>N*cE%ureI@56XF`Y!g5etCp6QpjN_*i;J%=aAZzRNzqVN
zUVJ4vYFkcZpD_yq!w#FLavL^n-mL0*zvgrAuWxUw@73}io^UoT*wN9k(ubFUVftfP
zo$mqf7_|)zH}28rWMBwbcghwtDn9kQDkH-RgNzM#nqixu^y1mM85sWX^CB-DK<e!v
zjdMY|02i$z(&}S9^77UtB`1qYNNB{z$Gf_?WW2q#Roo`;?ygc$<uO^!_sR3;%R$Ry
z9vo=&^7prYU%1?F?xg+u_rEFIZTI6rbN9c$D>XnPBn%>=qD%ShemFR{@dQG~3PE%D
zUteEe?K|6Sshqg9^y;1-9#EgOSIQJLSqJJ#W_*2h71YT1^Y^c}jh>#K-_4sh^L|@Q
zfsEEY3U0A3djqPorcRi!K+(C)V-hGXo}HbYeWXM1)}G4ZmB&GAOW)qwS}e8u^}5}l
z$q3LSrLdZhM%kHrd#g>;&&l*koBQeS`|(Ki&cv^vu_(Ml=GtFx>~GWd-1WH68Z>)V
z`~7aYsvKyY0K0rmz}s6}CnriwuV)r>0S}<<SacBNc+`;`TLXg+i`JKadlQ+OmbR+w
z?X9ER_I|%teQRIsZax`{1<vh!v0p5;r9cC3>xwX&%0_eZe|>og+D>zr-~Nrsyt#AN
zK0MqGS_ro5-LBVq+2_LCVRoN7b!yV|>ERm-^YinMf9nR-y}mOH9Qkd(Ot30>@nB2t
zr6r!H&Y!=&B5<+ZuNqNN(7-o$q3eN9A3p~A`T1@9_~uQ{@o(LQ4-PPb8q8eW+?V%M
zex9>!>5?TGudb{FZ6>Lyt<^7jCMpinYX0eJc>K%N>-QB&X>)lk<>cVd_-L3A6*Wr*
zH2NmK=iSA{?x5A~puYX;@b%N?&!2z!n|ORp;MdpJ!+(E!J9XBqS0(@A>wdbfT)C2q
zi>qjMsx&w)o_X5Rb31Rh@AkW8voC}8Jcxisa&gVQpRYc9zy5#h-Cd=@b#?ndL+Vzg
zuS9M?e{pd!Xc@eSkkBKOyv;X3UCEm{W~nJDE26e$i5JhF=6(P+1rJ)hT>ShTsA;7-
zH~OZnrlzN$pkSZBz_R7bUn9oNRbKYn{{wY?r%s!;?Cb06;@knQYJPK8fVSIY=DfeR
zx2wB5I45UK-u}PelGcX1f;Jz5hT-_aP>0S7);yVqec0Ud(&B!*RiGiauD-r&`)Yr0
z$-i%R{9ov*kihfvY*kktx%yyr_<Fs=1|_$1x36^XmrJ{|Dit)`+#seKwPeQ*3*ERq
z5t5RUps0Iwbv0-)`Efh5*}i4FKXdu-E`JYN75V4qXVdzBHOq6a$Jg&wPMCTu_TJ84
z+Mtnlu}58O-jlS#*RA>S<HzTHtEbMG@#0E`=cR{-+x08sKx>;F9S^F?=cnqJaDf+F
zfrc-Sgz}1=am6;uK-9!HDA_YWC&od;8{mvCu;C8!z%<r1N=QT6+@MAk%bKE+`?cS9
zR&i;lcXoDy)<fOg`~BYQSDFiCo;-Q7ql#;V0yuSn#&sSb4++7nJu1+lWrsYG|4?ut
zz7Zhs#633m<1+}9akw?JHk|plYXY{VQu-A!RaLt{D>6WvzpkzdoqRX%`mtVV?>pBG
zctA^%%<tE1UKO@>)vnUlT1G}ex3}eLgT`AxV`8|MP0jnh<H?g0-<d|P$NS~OBO-28
z9=@|7@$i>7o6oOu?G^(qRB7XtUe?Uczsk9t@7Jr<>(A^{o&E?EN;*eG-zR_;rJkOy
zAMWJT)W##J<oW9U{{5gHrl7K0#^+~em&#SYUc3DjsL^G5J!Uaz73CGPRSOn46hAu?
zcz<8*)G1S*NW8zhd%Kg9)0UKzLU*fPuT9-=*}Vw72xfcIQ7+I#Dl<D@Nl#^ErKXit
z)a`A#mp3LK_p$}eieHZ@KFhj(BKGxDU!*rEFo9N2V4t$wA9L^Cy{x;twoaNfX-mn=
zAX(e0km_%5E`s(ZMs3ZqY_%>w0IC+T6upJP>o#Lw9koI8`UWmg%<C-MWA8WvWw<+S
zMbOf&S*F>`p3kfH(+*#E<;~5_pq}wO+v-=}@7J3@l?sEc%TX<tmzRI~<cWy%`E%#W
za`wj%SOTT@+bYZvl+${1Zf)@d4Yo^JSATm`*^gHAPPbj(D{Y?j{@z|t#9pq*$XGGU
zEO(V|^tPC9rfa~9s9Iz4nnBwMK>IW@-yD~(zrwA*CjjUACjCk~SHC$HinGryYiepr
zx(!*#RDbjO1|fnAna-`fHE+(Gm?V!~6OQ#tL)R*0{&~HAe^^n`rl@T>m6hg+hTtLB
z4()pfLEG?teR;V!aIxFVBb~xryu6?lc%V_}88cqo$bWKTB4}knP*9MFh{zL(`lnOF
zQ#RiO6_b)}3tPFxt>l9HB#qrBUD=fC4O-pJEv9o}W$^MVYopCUJ-N+kXD7{{KR+oc
z$!BkRIA|Q00ko8%u&^*{PsK(fBO?(pv1M0Rhp*1Py{!+_k9+g&5&!<UnvbsT9h-0F
z^aZ4CzA3}#JqffM2vlo;hOlRuW`ibEw&vfD6ISyHSnSrj?t|<!eQ2VDm#7s-j~}1D
z%Reb;QSjo>B^x$;SoG}S)2B-flaE=n>Xje0Mr<ukI+M2{;2*fK>R2r&cqj%mpTl4v
ziES7fYas+0R)&sZ^YjKE1vL;rYhyvhbxZk%JIvrhh`_QX^!?2eQp>ygkqqVlt+4_7
z5wvW{MoC9`_uX}z!fF<EbEiyEfoufcQ4q$!aKMWr!tl`Fb_ND9U(mS#^&g+j&Oep6
z{q?uo`TJM=U4NupilJe3_{IC$Y4r<h1ULLkdU<JS)`bO)Wp8dQbZ+O{S!Kn*uz*P^
z;qS?ZhugQ7z77L*(zj+`2Q3DVu~h}FOkz82E3n~T%E?Kpt0Ffqd$;qs+}C$^XM@(G
z>2Wf?_MfH~y9(4^o2nIhNx9!<5opnjb@{uJuUi-x!X<C5?&@#&T3`0=&Prx>z84SM
z<)^7^&A#r}*x0xwf`MVd8IFkm=^&${x39A*d-Fn~`o+TbEjc%hB-<YD>SSbCrv+Nk
z#St-yi<^6E&Cepx7*IQ(>?Ke~NxuG1;M%CIplKY?=CyEtK?a5pg*8v~GVksx_44+<
zyeakcmvh$dEpj*C%mHmP+g0-N(W0A-3^5Pi+}sQr2fG}RnD|h1zn=Ea-Rw-$mK^OC
zU+p*73bf~|+m^59|KIPRwSl0DAucXXZ<Zp%f;~Tf{siq#%+yg=cYpcvW%!p}EIQu{
zuG%Y|Id|^bsj1qf_iMke3|}8t^`Mb`&c1oo@BVKu|85u>UoLapUVNj?F{|p0F`gTl
z?zOSroLkZ(V!m>1^3vXwE+%RUW-OaZdqra%z1E)Iw(Dnu>aLl6+a@!;Ue<6??MC}X
zzCgxUZJ*a46tg$>E|@F3IBC7jy}yZjZu0WKeZ&9m>8Co?mM?$K{rp?U9{l-Z^*LLc
zrRVMc$AGpw?v58_XfV8d`!;BVxwW-b)4(8rlaq7R+O>Z#6;9WWzt+Yp4O&<Tig-Ia
zyH)Gg%U?R5xBd0@{eRbjI;+{&bU;#|WkKHhdrkDF9{gzblKI-fX7<vzw@h^-H>KQo
z4c$k1xrL#j@Zmb&cQa?s)Y8)fO;44*yQ3K&AHQ_Tk`)UVCSECges1pNZMnCv+`G5#
z#*G_-^S^?2m7JYrI%x^0^Ri-vhoGQf)u)r{Q>RY-`v3m|n>$P5m1_Qey)G&tVev>#
zd-BO8?((%Epv6RA-`D@2?VrrRu;*N-u=<wr_i>`4qMGLB;ghCJoVakt42h>tpT2x?
zaj|mW-v9r8f4!MLKl9g@m#fyT3rkLZyy35tv-8)3?D85`R<~|Wn>%;ynl(C8r%eMb
zUG3`VFeppPb76h`z_GNv{Pg|%^+)VLGm@#>Z<{6`<KgAu$#{IM_gwbOnKPv%Bmycb
zepKwyV>obn=i;W&&`{O*`1sWHbnDxH{`{FTb?VY%$J}Cfm1G{-=;-J;%dYm<^mDJ*
z?S5Cp8NOX7c2~%xE4Oa_TKav4hg$6cCWeGf*_oLWuV#f76m0OWuBqAc`B%it7cVBL
z%sl(du)59K=a;Gz1B1=kihNg)@X;j6OL-e3o)lPIxp&V_?fl!<uY(H<H!3M9eVO~d
zCf#S=Lp{(WnwsVAyLN8^UAAvKf8*^p!^(I5b)SUi+E$0P^T|%??=RO~1!~}YP<Us-
zuC1WpU~6mZd@KLXj)!~lw&dR4_Ht@?+(mBvJqw;ZNjd!feICd}n-kZ0BS1rWps}Lq
z+upr<7kE5EXIkQP#{9SavrMzE<?cUU;N|VTHSsW;?awEZwKOygzTBG!UN9i;>E|aG
zBnZlWVQZsIA4$wUyKL7ktJ3oF-8m)sSy_`#rc64UX8h(aXfgDgH#xe|+kE!_Je$w6
zd;Ri{>sb967}PAvWiD^XxoPzE`}fsLmK?cx?e^`}mo5dVs;Fq_==fYZ8+`lxT<hhH
zjg7ZwMc3Bu1r0ncS)vje5_0F7ts0kB1OtOl(Z`P;y}Z4H9UU9j#q3<PVui-kY13Xk
zI@%3d?!Ebb8?SUoSlF^{+svkamaqSLI{s9O(aSS4jf*T~w6wJ^PgHhS@oa5vowNkB
z=+S$c&cy!y{-EGs&?cej<sH4fSNBwYK9;!caWkmN&0ct2zgkaUAJo(g4Gdg(?wsGz
zW5-r4Tjti;*{Szk^4;aS^Y;Jue3n$3d{Xk1kJ@D8gxW6`-FKC}ou%?}<??w_Mg6|B
z%|LO~P`>kVpY@j1(_*<dH>Do2tN!+;aAn5bPoZ^@pAWTi=T~PIDk&u}GCWB9F?YML
z{Omi73=BMOtlSI?{EybzMi_{JDkpxY1E2VG1eq8ZBzm~S7#QSQxTcjaXkukxNH73}
zO@)9~#Jxt4OvAwyV8d2e_|}Agj(mZdbx2O<y#vV90|_AE4+<e0_JHd>f<{Yd`3cL5
zf~Jg{13?FUG;d%(Z5?osiGjgD0wiq1A*%BpJgwR+uwf6gcMAgp1KZ*zR)z-lg-uUo
zLC%4>x~=Q-5qD%qygB%Z59Az}kDXWv8SSul@7`1A&xc1ufHo~poiJg+ty{O&n`~RX
z+S}67a+YQBGSFyt#ziGlb94UN+t;u62QA<)DcQor#3Ujmwd%NBwa?qPZ{7TkzXiGM
zLE@dj!c%9?T>1C+H)x0zlBhr{ze`I?K^20V%<}>Z&;-Hd<^J0G`u?B;A<Ew0Tf1b5
z%3PbupotSFp4<2L?_V!Z&%of|$(uHB7L}G>eeRqesBsk=8w<)<6+Wdgpg!r0Cw_A*
z7VfS7zG}q^kDWVrPFm8_!*le=5zta!_kKCq!kpC9rBc$;p|P=RmwHe4nsn*XrIf8v
zTQe`Kg@%M!{C;<1qqBRT%*Bn#$3?`&&9_Z1GM>i4$nZg7`?mzizoxTRt<w7W>z9_b
z_3fL_o<9fetuQq+dv$54w{qXwb?d@1GFBMJcuu;RbM4d9)1@CCIDY;5)pJ+m%Ue5(
zmj?w0i;9acZ){||`S#oTpO-(yfQk&Yoztd?MXn8FWoO^L<@oXA*6aJ1?A#go`T2SI
zOLFq^>-G2jaC&}z{&bbUkLCXdR9EkQc6RpiIdf!KSy@3_0Pp|0wml>~JpE3J4GSZ8
zL*lGiv+n%ml5oGiKEC|Bc7<wr$ObDbtCWoqZCj#s#4Kg{0?ilnn}tm(e$&b=u5vd<
zZO!`i*H7#3UvueF(AO_tUVu&;V3)7?Fty%Im=R<kXhHD1@B<b~36=c2@9Npx?^k^L
z@87?3ueTdtdstv`ysW(3djJ04?{<S0Lahp2{pGp+|H$U%=3Bc;R|^Jzl*lP!XE@Nj
z<FU+|h6aYOU%v2U?k{}Y_W9S_9@CjV=QeKNr>>^9t0wBhyy|xsLBr}7E_`?@JktTx
z5UrT7UU~y)xQdybZ^xF}e?Olu?%Nolb6AhLtfa)_(u(8i5jtY&`!625_p9#v-E#hy
z)}XH6_ex(EP{8gv@wnf9-EsN)J4->k@qRtzueZQas7jZ<DL8InVrmL%1B9&(odh}^
z#&@n&=?#CCZQHkNtEfEjer`5VV8gM4Yrj74>f&;Bci;Up_gHvd-a1e-y?j60v6EXe
zFN;V^zkYYUp!@Id@4J7C9=n_J=l|}lTSH&Ie3@Lg=Rk$L$*!E6M!EO*#j2{RMs3fV
zyJWWd?&;H}X(=i?CMG6MT5@{2{_54My#oUSXBnk-73Y+eZvFQD{`xCdLOd^BT^$}8
z8oE@~dm3n1Y|@ek4-!C)hh@v$o}Zsz&bI#AwJ=i?lNZPB|9#wXu5yjwhGUM=(X&-F
zZEf%F)qkXRuWp7+%*W@pJAJO%zu&gaOjS*7*KboEVR`xWTeg^piio^8HC6lE<U9It
zdsf(1f3x@vn&(YTP0h;A4z8%!v1B&m>K!{G{B1tAoSS2*y!qyuySvM?3km}4f8RVG
zGjDU{=d{01_3JM-^V_X3&AxWxVL`_Ab+JaX&uVFCNSxQ~w`96z;o;{O=IYw|ZtwSd
zf#zIH3^udx=7mQ`&z>}S^6@v4?|!A8fBN+4tsRAnwY0RZ+`PH+#*K)pSFY?}@tk~8
zMPB|oGY4q1?X%hWuV$vtySOfPcgptLpxMGrn~cuRwZ6VIzocZ#tJkkV-Codaik+Pu
zXrthk(%07#`>ST0@ZoDe{P5j$28M)9)|H=@JbLu#%eUM4()+H|y}F{Qs;>U}@Av!i
z-vR<8`avbU+>uyO9f|H{H$+8&RBSSG&o~lS{niw;M9jdT;Kt+`lP675d%H8NVfT*5
z(`^q|u;?(ndinC=`ue}G72p0@%Cm$0VHRjx;e@kkmqD5B^mP5*ze5=gXbWs;@I04d
z^zvr<{LuRP{~JQr{5Lf)SP=i`k$6{E7ift4*_oM(4;^y)`t94UFT20rtKOP&QV6uj
z<^JDy<)Q)t3r?Kym^ytr|IYOA@afmq#jgJFq2TB5-=NJspd4tih<~!EcgwxT23F9x
z$i-EmtM_f`nmTprQs3ETFaQ01A6{6vanhtoUslKe_0kSsSMoC5XlBX7L##`eE`7;v
z{{!3~k~B_x(WyQ!AUk{Y=J|K?u7BVEzjp7xU#~$+WI^k-S-HhPn~YyyUoXG;C)0t5
z$1~U%CM`L1$Z6`-shOvz=^p;abRX1C)Y8@t_VeolZB_TY)L-{S8MG5%#R?D5y4pjn
z+;jh)pKrfj*}d;YBfH!L6_5)+g~B}B>Mf<O!#slm11Exdz+1O$(NI!ynlxqZT;1-Y
zi{9Sep8faN*K_ek+&*G5mmh%Y!U-jtyQWT@xNy=Wq1c^8sVBZVxAUD$G14?QzrM8g
z@2{^#7BZ_=t}M*_|IB><OP=saDQ2@l{gao6`Rz-#g@%T{tiJzy9%umoXbr}>_3d(1
z9)JJ-UA2C_dBrpa13QighB=^<sJ?#v%DY?q_2Yhf(4Nmlix$P)dcW^?p6`6SSaJQh
zl1zSne)*#Q{F=wouim^V`S-n*Tl~wl=zL8Tl_O6<J1UH3`hX5s;+-XFPzb8;H@I*d
z$UHa4(#zjJ+|#r3)926aZ$F3rUo_7s_0)#9|94l`78C@4mbcZ_{o646*4nVw;Z<S`
z6;e!M4C3c)zt7Rq(gHPsrhmJ+IUSTY#r0x92Ms;X`Tymz|JV8d|9}qs`nP{RXfo{G
zyFA+;51QkD?`6zCD5vxOfRG}CxS*h*m%sn@_jTW`r~8X6Te9TD!-5q%cHCH69~d~%
zM{TlP?U#%He@B7_<&u*Z->ZB+SMmC;UAs&S3_kq#XZXOR!|zuUvZ28<Z^zP|py;1I
z{q>!l#a*496IDRlGmVXdRaI4Ay?Fy#vt9b<N8!||Q#DOZuRaxSiN9)m-exiA_=<kp
zZ{XcqJ9b#a?yrko?l<?+zrVk)Uc0tT(m1W=ttHce3graG$#)9=@9OR832}341Lef&
zuR%*km6Vl3qoP(Zv-5#gXSBAqg0{i8-zi>FZ~8yK+QFgW)$7-w-Oiz5VXOA+iMhPY
zck<P&tLN+g72mCVK9}vR&<u+Rr7wJH?8jA^86K2@&N+*TnZqY<r!)I(+Kau>QBhk8
z9y)=#O|$Il_bvQ>>;t%Y<G3QBlHF`4GieP+P#tB%0m_@8z6%4i-4{SiV-2}=2XA6J
zE6n;4p~S+#@apYb(3IezLx)5pBv!Pvuw1=%t#0YY*x1-pCr@5HGZVZL&9z%><<6az
zH}>)J@`4t~HZ?V+Y>fEw<+A_lUteFl`5jdTwWdBOY@f!_`|p<#?v5*8yR)XI=C8~1
z|1B}izLs%&Tkfyx`~NLnvP1>6=b_}~?Ms&ywaeE<nCIQO(5=63#hW)dQ>RP;ZHbM4
zo&Ky7<l=-$)`gE+zP-D<deI`Kr_Y{wO#+RH2@5aYv&Tl(wyNaF#;H@MX659Bl$LIt
zrWdQ_>E-PWinwLIvqJ&{AHMnhX7l;1V?B~qH9s~qH8rVtZcaZR=I7U!m7V?d!(smZ
zhdRf_!Hwt+YpsaT&`{7q!?Ln%o6nv<?;jZ%nU#}sWvTacH<{?z*tHif1f=hnq_X+u
zny06yzkYDA`PJ*!lT~7Om-%kpy7knF69sMBo>5z~rZzP-ZOOmC@Alt`l`5bCsmU?k
z-rZ}$K#M|RZ#{nec<y!gOLy*omId%<_V@Q+7mu%5`1$#H?@6G&82|p&9X)z<=a<=5
zrK@txZg*5~Q_}(&B6mbqbWL9$U!=}7#kXSJu6*szZ{NP%ZW=bJILF<+-AC<mN3DDH
zF&7t5mw3|V+iyR8{w#gz-TU|N_taS@%ks4szghcU`K#<(Nnt@yALoNY`uTaLe`MBd
zPCwsQWsA~>t+P({Rhx{Y0o(;jFq<tZA+h4imoJ7p|AW?+ZN6#qX6wXhFRZMrR6IAQ
zot65yPptds&HODJw@;IHe`S5kSWOA+bOjrmn6+!y?yCCwYQ~-WIcC~6HZ?c0&1U<S
zmX^MH_pa>bi+fkDs7yYoGW)FAquN}v+Z#|?Tq454%JK2>ph?Q8Z8<YH$H&LdkBW-g
zl617|_S{+SMwT*s?YrZd7#Mb(?-W)CowNrk`0ws2os>84jhwLX;t3N3K-J=;lAoVa
zOG`^NwY0o~m-$Rod3$@izjpY#kkr(rLBYYQp5g1`re4ju3L25K|MQUl-18+%mb|#K
zGT5s8-JH)W+CW<fEG;cTo71*be0=nA&bJw$jw8d`h>cF{d@>hqZOs-H6<vDiQV__g
zpf%uAXUx#>1XYEnPMx}P?b@?7ZM=MZSqGa~t%{%Z)cv|V|5T1y_V;&pLFYPr*}ng;
zZ}IbUrFM&V?u_j0?Ck361Eo~EpHGBA(;c3ko}fiv(a&tdeuyYCFa%Uq?gUlpU0qzD
zg)N{_6<^<8;}}o#{s|vG7WVRiS~;K3nr}@y$_3iPU0GQP>Ye@jb$$P?7H!X8-?r~x
zd+SydD;rzZ-Cd<sPp5`YnLBswsZ*y4XFjf2gy`Bbuz^RVC3--kmk9=-2yHkBYJ!hS
epajW3?%9n$G_s$kePm!@VDNPHb6Mw<&;$UPt{6Z7

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg-4.png
new file mode 100644
index 0000000000000000000000000000000000000000..0e15f883fbb7cf274b087dcf88c816615c4fe7d0
GIT binary patch
literal 20772
zcmeAS@N?(olHy`uVBq!ia0y~yV2S`?4mJh`hJ9%>?l3SguoOFahH!9jaMW<5bTBY5
za29w(7BevLCxS5J3j5`m3=9eko-U3d6?5L)tqut-{rCUlbxQ{&jtbR_EFo7+jL#Sa
ze-_J%O1|0AwXAPu)c#PbS>H{3&R+a<&0=O|mr}*)XtOkNEnVYmr;EpU-cRSrkyx*w
zHU01J#ro-1jcvOu(~E2Dt|hH~xcU3d-+MWaZ(o1@c}?G010H7v1_p!PyLVX`7#J#~
zq;wb<7$#p#U}RvJ(Zj~gz;GbNB!Yo~L2dCtCI$urNnSAqhK7?F8yFZEeB7E@85k0b
zMzsv(5ZiM%mVtrc$JLLIk58RAF;MCHx|p4toSdD#pWM;_Cjf4Xx<5M(9XjOo=2u-^
z-L38U^1jo$4O}@G8d#@<6oo!`bhKNwj{grorx*i+Sn}qZK6~dSN-T@xukT?2Cm)pv
z28M`^vuVb*2Pb)KjOj%Z<=~u_t^i3_VBJAMoMJKE5CtX?1vCHr`J;3^Qv5;WvvYG-
z-`!oldpFO5D_R~K&irf2zL;=O_0y+MDcf(CzPVv|cD{Xl{@$<C>i&FmfBNLfiL}iZ
zQz|>QW?#>Gabe-F-}nEo^PaBv@xJH|N0acS^4S|62*t(4{d(9ge`T4k^jzEOu$?=1
za&dBAyzFnkc4PAKQ|Hh7|NQxL)9sf(y*Jzc|9Sq`?fd_hwaeE<?Ay2R)X9?*`}_NM
zpJrm1{y5)w%8I7UgLm%4^hy{y`OY%A`0MNI(iayLO*1dKcu&{6dSRh+>BmQ|H{X^C
z^#|$b>-$eKsrr&}xBPysm#^>D&*$ye@2&p6Yp2nIlEkhH#upM6y4-wQCTm|8BVYSv
zVo_1im+AZexc1xqT9I{a%}P=2uoc0}{ci24+`RZ?(yk3(K7IOB^sDaivEHa11q+w?
z&tE5B|L3A_C}Tslfoq3QvP7GavGLarhxx6qMQzQy8#Srq<t5dhzkg?+n`3Fj<1AnE
zp;6^!ulc<R^XJd!Is70#W~onH+`Qn)rbSOYV)xZV8mFHNiHn=3<}+h~_4_@SdqofF
zu=C4>xVW_JKK&s=b)v<`|I638H?;~SZ@wuaAh6)#Vs~w8>*(WsvX|}u|Md4PT611A
zdfS?N6_0ssf4x}z>&ayQFJCVETTjxNq8AqzcWZzB{%tuoA4y2t*X?QJmtS{wwt4oY
zC7vpgatUv4Y+Mz+ecisl-=fQ>Get=8ih23u<*ieBIWv9UMf-mr`9a>ewI%b{hr|4;
zo_2P2e!gMdV!B`ce!u_v&d%a@I@0DZE-m$zGR>NDYisuMB}-I}|7hV9Hp#hRQ2XOy
zyGf+ng5=|US=ZLgl&k+!IBSj2At{~n4$Z8WMRbbJojVui=htUsWF&KZ(c;BluSMs-
zJTud{>gCeuUoN`Kd;W@_{Pgwf)vn!QFE9JshkAH)M87(I_T$&DS2rXc77-O)+9zxM
zYO=pwq0H~v$x~;|dUedJP?_tW&Gx*zQJ^5LsMzuE%X0gRDU9Kc&8)#9YxdvVU%&s?
zmzRs(dZku+PF9mL$(Uf4e^1A=>eb5SCe`0^WNoWL9v|z~-gI(R)Yetj^32yCZqIi+
zaq{HEFR$bG39I{syuP;f>j~w4k((*Czg{k{`gl~l^uYnf>DPOtKOYhH&$zRr(5moJ
zOODy>S*F>`W*Voj3R@dx5~<q2a@x4UcaBBjqTSsNFViI2-jwYQ3J$)yDb@SwvuCRu
zo7uRyxi9a2zi+j_-A|Xc#1)mFpY3`+uR3IHl<C@-ok6?H--lgY6&kueZm-jOhvu!K
zdpI9nSsAPqzHZK*J$t51o~*2|uYYw#pmXV~D;FOgZvXmf_4-w=-D0akS5I3KFTLUN
za{t$#&)Z*raIjfaLgK|Ub;rV*FBjdry1OTD-@g6T)z!;CJw5%p&-z_JGaK)h_4R+f
zKR-Jg{QBD3(7jcq<<p~9EnT`a^I#L}r*Ge;-OV%Ky3>fqdFRfZQZ^L^n_1Q+F_<fw
zn_oBJIeg;G852-MFAiMncFg>K&0~vyhxzR#N?%<u)Cymhv*+uz=)R9nPfwRNn|(Ip
z?yjv9XU=^2X;)$Gr_Z0cd*@n}o>~#QdfLU+;rhpKOw|sT`Col|TkbJtew&1f%1X)j
znvboQv;Tjd|9?u%MuW5Y|9A6Co1NKkGv`=`pmI<0@jlDG`ma~R-8QG4?RoGZVY&V9
z9d##9o@`S&eEs_M58uC=e?5Ku`t=DZD(dRHe;ejY`UpPSm3w1@<KyG~)4%NB+s||O
z0>AyA1=a6%y8F&Ho2nAKv&i-9>+9Fs<?B`$rJl-oc&HT=xhk4!YHq8;)?T`uzhAe$
zzW%!nN7vg=Pf!1PIz7JR!2!ml%a?mk`t#?{m0hLTwSPVym$IqYu;jn*cdsB&#(A^(
zyq3LvysTA8LC#S{&#BtsWq+L??7Ep_cKp_<$jxb)FD@*cWm&uoR2Dxz-hVo6^UH(m
z@+rG6r1%I{u}SHO%ubZBs{gkq?aYjY*W;>vgO~Xf%6R+xU*B2$T;_FAQBhIJ?cD8}
z`uhG`v#wscv$J?>_I177+uP25ob}>G#?{r~=bxT$e7!mIvf9@d7oAIAUkm;F>#L}s
z;6n9z6;AQBU#E)cL@bEgTb23s)m1;=u(GmkDl5z1-`n;3-EL4?`1<yCcw}T`j!N{Y
zipomMdxAFA-*RT@ESPa4L*!`M=9?lC5-YaftMXQM>nX@lkd&5Q-O<5e`{jZ&r~oPb
z^u#lCecauTjOQnXY|o3Wtge22Vxn?h9al_$>gj1OZ>G-=y}Zo#>mhFa6W6bYv-8OW
zBqc2}%e%AU<>lqCmrjqHlqk{F-#`6q+T}k#KZkD1iS)em>+9>Mj~_2Kzh4tvez#OS
zGgb5B$K&##;<4ZU-wu_Nw{J&J*N+dIX_N}e;GUPx%rsW@)Zg==$;sJS*7sVs{=OCK
zVs~eKeRVbK;-c2u^A?&UFAn5?c#YF*idAK0Wm}@evHk!5<}Z%jUFP=l)6?GR@pU&1
zcn;s#Rk}KGUri-Aq5u5+d~V$Lf4|>Li)x3NOw)~i_GwmOvfbY=!Hb<*xsGw`?@5rc
zC^+!)#&P-j9FzQecR*=&iRa{=HEVQ|PfSpBb8u+5xHj7S@r#R#kFm?wB>Z{lUvFep
z{w^nGPsK%F|Hju}uZG7<n$14D;bxB8`nbJ4N4v$vEAL%c=-eGMd28+Ovd8DF-<!O;
zvNAa(J$?74FG1@Qc&E*uKVMKlAmP>Y`SazoH^lU?a9=-az$4kVaQC}i-u3@~-#1M;
zA+Y!3G3ifVzh1quG1)Zpk_xDHJv+<v^6T~c*IB>c6TEWe%2~$geN0SDpc=f~p6Or1
z$NKjIcQzz8uL@hcs*#!9%1&%)f_2}wx3^a(9qp2`E?bk7oGdCQw{E6!x|W4SMDepT
zfoEr#g5v1F0S8c_+2_K2t^D7g%GS2FRi&@5f$HaLYokre-^Cm~c5GGQ<6~UByi--q
z&NO!a`SWM%q%~=0XJx*;w3LgFZ`%6x>#gONUQs&uiO1}4f+NeiyqA}jdinTVng8#L
z`qtdrVZ732C06^=&&%;joB7<Y`@J?PIoUMn2*=T*M>BtYc?qfsYietsK7X!mZ*Twi
z^ZfrIi`{zfd{NmUck|}WtUEh4N||IVD1Cj+Qr5Wcv*pCw+w;S(uZs;`<|A4A_v>}7
z_<eioem)gn8@=6+k&&^htE(vIV#B3_20UA{ulr5a3cb`Ns=X!mwwdp2GvAXZPwx8r
z?KY^6-<o;Z?cu|Rla?qtx4n@6|D)ZlPiE!wdDZ6(`(AG^e(ncq#QgjBZ&`lq<muCw
zuUVs`s;>U}UiEv^ueUU$ekVL!_3ho=)$VeYF75pC*UazNEVe9u_TqN_{;QqB>LH8W
zcq^-`SG)B}foj>Z_xIMew6IiGR=)iCe17=-eYK)OLW|UVXRXM-z7E{H+Ew~`*YAk|
zKH~auS3tRFWsvIE7Z(p_+TP9ouNt%1jrZrzpP5%zg=XE~w-*!|T%uZ_+9>PNl1{CV
z6%W?AAK*Q4{`~a2dEw1$ye4&jDnQjv?C!GA`F6D;Vq$79uk$9CzrD4znVo-C?C!Ex
zS5{6|$$WKXC8(~7+M4zBN9@6`nm5>2`^+>_-Nb)ws&@Dd_S3CDf*V$^irc#j6fzAB
z46SW#S$}?fw5t5H1k@@zal&J3{{6Uaas6rAw{I8IjatGkUlXu7{rt5fox-9L5-Y^x
zDjYX%+$d#HupsNoiihuxA1vkI;tKlu>gv|||8-BFKR<o@cJ$AmKmDGI_=s=MxfwJG
z)Pk`-7HB1E;%1tC?MgGh-HKjm^H*<fZl1J6&bI2sN%i?t?&gKNxwWO8o3nCP>Fcax
zJ(9m($NyioGI;r_^z-vReM@`Fsc<pjq137A`s+6)AAj}#@BaVG@9r*NopW<j)%(5Q
zx0Jt+<CQRQFq`dr-sW@9tLy96-?$MGx-KRXlvMuw{A^nGCgOPM5AN+Hnm^uO-B(-v
z_Wu6(jT<*ks{4ET`*+`IXVZ$;oY$(5&9?R0uNAuL#m?vRF1PVYZ%IDR=Xoi8e(kas
zFEVUDolvfNKDYeK&Gh-2CMKZt9JD#@tVzv}g1e>HWAoPCDc-;y_VT!t&Yy*!pPzp{
zH9YR(o12?WYkm}*ond&m@Xh0X`!FxBu1Aj^O_@1!<z#h#uSreK&0EXg$Azv6IT@S!
zSPj%n){WkFrIlOUr1+VS?cXn#Cq0>=r}M-9?T;T7ypl#P@Av=TCs*}Cv3wejFsMNr
zySr>^qJ)$|LIWGG)RN!t_s1KjpDT&#-dXdr=x+W0zpH|m_ern*%EOwyfr*L9$DgUV
zxVZG;A=YaNI|U;3{skl?EJ#XDPThRdB>S3<WZS~<xJuWjr=|wC^T}RW=*-S5W#Zx9
zFLxExUYasR<m?Q?=4Y#>aP#tB?Gn}gazeR3<Ij(ey9ypQweiWm+VZ39`@6edK0YCD
zZ*9G4a_#UG&0sfKtC9;ZE-s!rWy%u2xmKB{rfBv((^6M=x3jZ*b#?Xh+1jjYI$5}n
zmi_xv={wKn=Ej*1j&uq?egFRbmvu%jud`mNtE<afBa#McX^Y6pt_1~br~15r@9*x0
z?k>x%{dO}Q)Oq;!=H_DkeLogmu=WY8`upvC$?tD(LDg~X&!^K@#qZxYTl;ekD`!|j
zLPDoX#Pjp>)ejaa3h9VMCnPLT^O>RWvVOP4{!gd0`_fiDko7PLpSQI3_qSUclflKu
z+UV_Bhue53)x|C@f4}#8*6nS%Sr-;G&R*Rzlj~k-+UA>A)<&DZy|Xj;e$8iIUa<n%
zj12{`b@x*$D=RY(wQzp={{8vdn{sc?S--#X>FH@u;J>}K)w{B?GV8{Mg<7GjmMmDH
zP(Hm~C}2W@?YA4rvy4)^?$v&e{rc*v_x8JGvuA66uE{ZZC7H3I;4arJ9esWMz29zS
z?|QrKwn^qCmGbGWLSg~}3mO_2LRW{Ky}R^4>#Fee>okLxt*HP1FKU0?-l{Jz9=@B@
z5Y%{r(OkvAARzg8-_;)<ABzeLKYmxlFlE7t6&iP|-|wvvYVMw~*VVaDXyf~Rzx~eJ
z|KB5Jmb0Sh=_ySe9Ut4OFBck_*}FnN?<{_9l5s(Sm7RTc%+8{$>+9y0y}cFsWGAQq
zKRr$N>HGKVCrl9Fm9+|qjEubgw|JA4*v`kxMAqzPdT>)Oe%~6S)Kfcl^Yn*pII*|p
z=O@)oC;q;<xj8)ciJYwL+PAm2Yg<`G^-7rrRaNbJc5d$KGiQ8iKc6+f9+Muq;o*nx
z_v_aOE_PcPwA5>sdH%dUdHZ#9t;<)Hy}i{}92^vMWlv?XX~qSIW;WhS{`P;DT#v7h
zeS2%`<z>FJeQMLnK?6PqnCfmP{QU7_M%CLnbLM25MOc@;xlsH4?(-`*WNj(}%J0{1
zU$l6!sJwjr)$H|gd!uZtzg@YtHT&w;>~PN@H@CJ|*Ve8+H`iKQQSo45-t%*Fx2B($
zTe@u7sr&ciCvC~Ns07L{pnmS6MT^c<rEFKOVqiGnbjQ&3#+t~@PAel_Tw31kdad{N
z_V)L)*2nHHTe~W3?W>G+Dl3bgo_cj}@9ulm?`@wxdEzliFJ{MrB}-JkzPx<=VvJ|d
z{e88dfW5jpJpO(EsY{^IDu;=FbFG%1nyMZDc~0!^GSQh`rn$F5Kvm7ZzrR)g{;FKM
zbLUP_RdTt~&d#o@r)STrS!*wKfkwc%3*DPSr?j-N%(bZuvaSBM=UHWDW+oRWr>04q
z!MD%n?XAykzL^tlyZwQUzawZ!Y|ft_kNd0s{d|6Pkt_Gtx3|B~dY+b^F8-5^BR)P}
zvTfm;H#x^EC#|c>J6Py{&<;F2vfEtBw)E8$x!Ny*p(_F$-|zeVPJZ9EoSU0=)%+}4
z_|bd1-pRDhD|2pc>iet``}I!K<9SUWr}0mkJ9n-3bUn-7r_Y~@zux-%{QT?6{Wgm}
zKR=&+dt2_RsI9N$_o=C<xMXH#wjSd?#$~3?$H_S{Q6k*-`eif2We1BIdwO_kzg%?Z
z;^+UqgHM(rPxa=_n^sj{R#=t2`O)6JKmW>EwTQa9x>h@3Gj(-$NlD4;HFuw$p8oYl
za{tQ*2b+I=x$F<>{3YGhH!=#ky)9SUWMA@ezMnsTuFSi;YtoW7Ug=Y}Z%5y+{XTbB
z>FZ}9(OzC%$7{V9c&BlL`gx%K?VVUQh65^`oSd)j?%uxpw1ID3-M(Gr@7Lw;`{^ca
zo)>a?nQym^zO8NS^K)~9U0hoB?AfE@d3RUo<y%{`x8~iovi<pF@}xRmv1@B07wg6D
zviSCei-#v9BxH(^kdVy$L~YNHA3vTtbt>rlySuR;maKDbe#!)H^X%BMBk6zlf#4n~
zQ?K=Vzs=fxx?tzQX7=5?S+-kLeOdAN``@t7m%R0N?q-=@{rBs2P<yF-`okdiKADR*
zHYR)j`F`iB{5hMN9|e2=|NH&w($a1tBcmxZX1plbvtXu-aazx#$B#?Dya;S<YxDZG
z^&qIV`s@39&}h%9qNk@o8S>NT&!&ZsT$aDy^Xt`WP$NHTYt~Z7X113{I)!JMW>2#!
zd$Z!(+uOUJM8>wVoo3})#`^l|>gC6JrFZX?y3WPLwd?7;$Vr#gs<sQ|=f98scJuZ1
z_3z&a#jK0jS+xC0vG=DPPvv%(zn^wC?eg#U``3TJU%&st$0oMZX`4lVRhaC)3m$EG
za$@2v>+*G*HgCSVB{TTw@#Cxg=34nZH_N*d;pyoqWm~lcG%nN7z`!eG5fHrGPj_c~
zu`p=FSLcZAd!;{rKA-O{ox5X)#nGcjMWy(;xGpuZa&JjE*kr%Q?env<U!P8o7kgc|
z6g+G!_UK)%R05xw6e|ORfh4DxS4c_8mfhYB+@R|GuIhnStI}6b-U-<Vfky?MIzMfx
z^)1L%-KsCJrjw0(hn0{H1A|Tr%W2~YkkM(-IAOP9q1Imy$Y^vED?>x;2Da127ZMm5
z5)@4$<~3?Mfkv|@g83>D^BO@~4y1rbB+<tnogan#0x4ve0Uo#HPUM}2GB)Yd^i&d5
zkZcf;(m8)XL=iL$4zhTIfRN64hbHhyIM{`4M^=7OMjF%vk1HX`gM2`g3wb(&U%De}
zG{xxy(5Spv(1e7Uf4{nK+O$bTS{f9Mpn`wX?YCY1{rX{Nb8l~(dN)u16R3IX_k3IC
z<z**6Ta~}7akkfAozx}3z`$L2T_n-Xtxe5;-kJ>?3|!sZvQAIaJ-YATkB^T{3m!Nu
z-?(Ot4zHX|gsgR$PKbA}l&MMXEfdMMhZ5_<)<$i7A1(#*6{uSEefjbw7aw0(QPHM%
z`~Uw-+W+lgyS$#sv>7urJYU`2UA{2c(b2K1vvcRiByUDYT8ibI*5BXX)ZFa5J3T3B
z(W$B0%k^S+iB#I?>-$gFi=DK8|NhMHTZFEGVm>%EB}GG1(-YLRzqu)uTlW6``u%_Y
z{uLDvSTJFNz}`QfPM<n^w$yp4YC9;tyEWh5)>;#@GpMq%($$aO&BbL!?Cvtqu))-+
zQ<s`%U&}Z(MboO_K||P@h=*-i-fW=2G`RZd>FLm=UZSq9uA)}k3LZKwe_#Fm-P(iA
z?62pR-@CXW@$i)`nZe;xBNxq3VgXfJTYZ}&`(!K^$y%4KNIySs)9vo-X?uP=>NetW
z_Vn~rjhXuzlx!b3{`-CZ|En)AFZ(60i@85##te<wXP3q8trGohYMOOr!V;&_>1m(|
zmxvQ*)%>Pvhlf2qHFfT>O`A4tDSv-&w(i=9ur(12Z*9$vzaDabp>w;6XXvUB&6S&C
z`anrt=g6zzmX|MIdinZ>#>K@gOxD!YytO?)eq#4+)t84_xpx&k^;-B*GkDpFw9TTo
zrff0!e1awW<)x*s?(g4UQ(Frfwr*`{v5?KbysX!6zTH~e>Tf$%Ix#S;d4AUX{*{}X
z(?R1To|lgGN|!!5!s&Twf}%5M)YmZin1-EQoO{1qXhz10%ddrngw|Qw?kIllcl5{+
z4K+14K|#S&=gwW*Rr>nN*X!}wA08a+>gmzB$zGz^pR<80W?xO@<z>E?rStbZG>N-)
z{~s5_hnRP_GD0SShLRp1@3)TIT=%zXZT$YYNmrKp%d@hufZV^c;;sSD+NiBwzOzgM
z=USC^?Wv21m;ow6d8N%XY;9x9cE^GS$!_QGUz<L!@)_IwbF*xAfo#5VsFfSk!wFp*
zb@lF328M)8_dc1Qhl?LQdL$w)9-eV0ZL{U2b*nk~`LCavs-3@M-=!nT*As5$nDt7V
z`|aGhbCy}|Ez|R7PoKX0<m6;gK|#g%`1q@9B7^n!ehFGw`RK!kg3_0lTtP!taup94
zr|L$BZOy)ZZBy!LuTOyt4BI7EuiNkRu`;Jw)zdWlTFCu<wOb1wIxStkJpSt*MrJk*
zGqbSocgyELJ2P{!S?;YD`Srh}7xFLKax({%NEa<$e08BS``KBh-lE!JA^-pV-I{-Y
z-=sPj28IByijrnkPyM}LCKVMGnbiLJqSXKX-rnesA3uV|lf%}<tW2L@8&+6YC}o(`
zVwQ7b!P@BUR&)2)|F2scx!G;9y8pG}^R~;+&Ne@N{P^+{J46^7UZ;L77hF_fv+v-l
z$j!?@1JtbCVlS?&3~ueK|8S6f)6E<yvz!^1D-N#PG}|n<NGkurg2q|q`R{)0D|&ir
zRrvaOeDZcNM*Iv63|_MR`5RO+|NQuP>f}kyBHe2rA0JQMep^&f@S#cF@3-4m*Zlls
zRrY4a<sa|wPtx)f)e5;V(>VQ%t`tLoH)vEv?yue<CQyGk*xz<3E4Nt2mlqdZ=LO%1
zx6{{OuXLRE@Q=gS`=m_09336~k}qDo`0C<f_l@s(84Bit<`h0ZJL{J`bLLFdy7=<E
z%M73I2=Pw)lHE0R!i0bf-LQy=8J|9X1`U^kMj;LVoz~y~;?2#?T-@BoYui9WnZ45H
zW^bz)8YW#{8LVFV>dMK?ocsG~U)|iie72TTW|6m#pjXh^sI6bF1pB{yyZwGym3!jz
zb8}NA+Mb=6`MBiYnVH6^n{R%3vABQNt`LR;x;>gs=O1k33=0e{14Y&}-RNaku7sH8
z+z6O-WksO!*Votmxy5uq{s)iLem-m7)!%=8vcKKRYipx-?<!$n2sl-l(;OPIJ#Ked
z?$?)>-My#lm0In~xTth>U2L@XG@XlWywV|CvqJZNx#V5-^XYW%*w0!2xgNx`Gcaua
zQ112e`9$8Z{dIq@tdHNX)UO-2C!$+izf5ZL?YC0)b$gEW%h#WM9ha-!cHaK~pJQCC
z3=DE7m8EqU7`(LaxxSFho9X(Ffq`M26S%^ikWk46s`nTsgKEzNMNl;hYMOE{Jot&n
zN013Lj|?t`vDMU|A`w>MDjxjA1FD%B)Ihc80Vj_QHq4-+Sj?&UsU)b71veTP7{rLF
zsX;X}gO3|t7j`dH)cOlG7;I6HfosOM>+&a0oeIjySz}fDYKhlWt&@4%we9ToMVRWx
z?g}Z}z4yZO>C>mz{d_vz>3RPBeX+XH+otT_zu(Ep$)w~(Kx%4g?DzAhPJvB5b>hSY
zPyrz(w(P_SkKCJ^p6-gv-+a@g@>5D{d%Jb-bp7~yFMm&&BI4@my3(<kZI*5Iwz^+0
zA1+{>30n)GzW3j+*H#rD7MSJUDw*t`C=0F{I(Ccg3|}3FR?WWNcOKOAuYSMx`>f|Z
z(&m1m+F@6&t&M*A{=L2@XcA|EWAl_LQ<kh)vEuc<^`eHZ91ILk9zS0E;K760`~1?<
zmVNsCx!b1f;UQL4Rn?XL^X>Ycc}@ED?X7lwef`?Fy}y>d&liPSe=Xsz&S3-4z$+^o
z8)&W+G@{KXXY-=u9H`HE=T3}i=A|Q<ca9%-pEz;it*zPNo!4J#ff7T*>_^X^FaP)V
z_v+l++d$3qqM}WpVJtD-sEp_5=7I*=R5W#Uea&Y3Dk>_rt`igzT9kWx+s<8Igq)i}
z?Yk+*dfgT;UMwmr`}W5^@9BE4E-Y*YmHFZEwV|J%ot><bnx5`G>C_a>;1^Q+_U-F?
zJg)(i8oNKX^twfF$ymrPSK;94>DjjtR2)yzi{BUX;t!|;)mO~~YKhpK=oD5jd31zx
z`NlbOWVT-kTI|OA_Wu6+A8S24I(QBTL`6j{EWUi{5@`A>d|LP-aEoxl?72!jyu9Gb
z@5W5ybkK;`-JHzpZ$CUdyeepE*W=%4y&#G6Cr<`?d3Axt8a_#RbG=t$VPH5qZQi_f
zSFVISefre$n30hY*WB+1+2u7XEhFbzl@|4|vaxAtX?bySa{5_sKYskUwzjtS-QDH-
zHy_1zfbti2;d7<$pvi{x^YgBroUE?uDQ%ut;$zMyY2?Dl$S8&Akhlk31NHp#?nHp9
znWm<uDRbtm*|Ec-wY4?#&5ezI-z&ae4F`2yw`N`S0u2sy3af*LyGq~O2z+~cyZOhJ
zce_Dh>H({ty?<@hjNV_j_uBe+ea}~ym-jO<F{Nz2nX=v5zv1hfo58cqaxbaRuUXVB
zuCJw{;?m5{f9<sX{x>GB8lJt<=3zlWlid2{);>JkuC1Wpz|78f<;u$7*v}L6oWL=@
z!}y?8(UTMM^Mu94m+#nNv3#TFWVOsoOFWORTVDD3*{@Hh^}B29GLL|w4^{{*EnFNZ
z0?Pdi2}Yp8Ne9#@2M=gC%~1M+Tr6>8D|SGO5gJZ{$`GurdxSwI5qcrZd?bJV`n78}
z&yE9YA~)ZOWr|r-_V(60Jx0BPhlg0pr#A$FyXs(zbc)y^eIEt}F;IsBWCf05%235`
zsXVent|e5mf&8e`!gksiwEhC-H&BOyP(g}hkc80kOZ}ku;|47_AkH9&kGX_&Ht+xE
z5f(NrDLMJ-%3$@-RUw{byJJ6o{CITL&&}uUE;leThpdmY{rUU%>aw@Dq$~;+T)KRj
zd+zOJzS1|}eshYSYhAwY-TbLj!G+J1i4zx|oUE>`qvHcAB{rpcZ;ZFD`jRo%ve@n7
z#fzY!SU!2XH9L!+XI)<A>*eVgSWvLxam?(q%cM-RGHz|jG~zjI7`Hac)L8!b+l&ni
z3>zfM*UVfMwszK~%a=uEWY#=+k^&mjJzDqn&CShMH>G+n-`FQ>4Vv2db=>~nLeI%+
zma^PjTtPlQJ({J_qTo8<(K^?6pv459m%sj~Emrm9xBW6fD{Re*+TY(qf6m&o$0l}H
ziRZt6|IADLS0{sX7{rE!O*1k!4&7Pw)am%Q_xJVd>+4xrSTs~rT=e(<*;G_qd^aHV
zq~bv)h67GEsk7T|Zcf)$S9iCq{#GK@-_a4UyX<Yr_q*kw{G5Gl&BZC2!JxU?wGkT+
zJuRIk0*dj3Rr>pWI89db4eFP(y|Sw`dwDXqxL(PxedX`(f#z`URX&#mO)L4%HY-hC
zsoDnV3dG(vnep_veEk(r!@;drN;GTPx@Skl<EJD_czJngJ$w}d?jG?^nl)?Hl`A33
zH)@Bk+wtU{y5F3Dc0SpVg-)!wx3;Xj!F?n9$_hnKtJ+^Bp3|NOfolLz-=zFr<??rX
zKKm`-7+?3(_4IW8{WmYId->(%Wl)J+R9w6@^|aXCy5Db)*1bjaQ$EFj`zZlA@J`CS
z<TsCwc7x_(E?v6x<siHKim<g&uKT_nYUOramKnUvXX4qk;NyL=-fQy0!R>;iJ6|83
z$=~;L*|~YPt0#jd1whlV!s>n=liGMB7d136^hz4Lef;<lG>GNo?5yg!x9aPq{r|q|
zgJwLczrVYBZ*R5ib)E2ab3p3>JTIM_Yb`1)ym-b830D^v4QuP@*Voowz8+r>>g#D6
z8C^Q+A5#QMT@5Ok$9g2K>i+Cl5<h#-*Vosx|Ni<qX^CC!FAW6+&{Rs<?$0bY-re1u
zy7}goijPUUaeHpOjEIPsvG^btH+S&ru(ewf53?;@zWj9F_SJQNe^vc{yZ!4K<MTTn
zaK^TS^JC$2y9nf-Ncr9Mlb3w>P_Q;;=cb6~)5^eM-?2Q$q-u5YL~8~H97PnUJcw9y
z5Hv-#@5dwVzn@O)|N1=t{~GIeJDe*kE3L}k&1q_Cdh+z?(|1CQ3=Cao*9Nz=C1(8i
z@DS9<uloKDR1|0b|Mz#&k~3#~THD*R-`&~yPDhY|VY>EO`7b^H3$vTQ{(8Osb+7ro
z3mt;WUrwseKViUgeB*)z3ZSvLsNH32rL|cY7<Sa<%~guoQLymWx3{ZT1}}dFny+5?
zxL3;b(zCO(?*>RRFuXe`rE~tlHMZABI)$_D?fDtn|NHmv*MEL~)?35D!0>(1!B0GS
zbCr1b_{wTJQUWJUo-8Y`!pXo85Vd3L!KzOu)lKXF)yUe_+%OEgkXrxe<MF6XDV>WJ
zFTNWp$H1VM{*9?zY}fAgXz4Yec^XAU#jc(nP=5<Fe^dLbWNXgNpt)A1L5tmbP4ezo
zluzSeU?{kI=T-tMD{JQQK3UM(A-{Pxn(^`Rxp#Mkrk|e|nv=6;-=9z3KY#w*x!Hw*
zA*PGvwDFGG#TPfFp3eI7<0Gi~yxW_Rfx&=vzH3I)hYtm|f4^LQr^n3jK+$8pm;HA2
zh~MAd2FJwA0hMgV>E|qR&9wgh^8WU6`TSXB`{nC?I0i5GyE;ub8dNxXP1RbNdwZLd
zdEOi;lZ*oA>sxNW{lmn}z`(xUEaLPu-QfTK{(`2jtG>Qk>D0>AdhTcK;ZoykYonLP
z?X3b0{($DWK+DD!yZ2{ZT;v+HIjuKrZPe1^^7Vgqt)D$>me%gM1_BHPpKq|AHr}!I
z;4F*6MN;N@YtGI#UtRR{lxo%b!|nX5^Y8EL>gc#29$&MtOH|vc4>VVy8@(-LzFqB>
z^z(A9?d|c`x7OCw_^cCSV3?AY*Be{+?`Jy5->UawJTGOh-@EM1n;hMU4F^{4oV27%
zRQuK2?f1jd(w4<lzcux|6#ws&_|-L$n=h2A`OS&YSewKv#&AGqPxl4m9i|7fuB?~{
zGHv>u*Yp4XS$^p7;q|{R+JMUBLx&G<&AhDU8Q!1KE%jVnoFPGM8Ha6iwD6k9&1snz
z7rEZrS6khA@A;pfpMU*)KEL$5?f00^d)#`ZUM`<s7Zes2)_IMYfx%{WwD6jjmzQg6
zXn2531x+hoxDZfTS!p>pdGpOL_p0CDy;7?evqQm?i-Tjwvr5+EKN~U`8g_$vJ=@J9
zs=vJfl}{NND?sb)4)fcKSRL<)?`k@>a>2!2vmTixF)%P(e{_xQ^^1#(^>+FvBrI@p
za@vx9eqQ#x?dj*`Lf6N|K0P&ccUJQB>C?*(m-0xP`G7mHhK7cq@v(>5OblMfUR_<i
zHSMg_@{PsM&+UA2PsMNP{M+VIrBjc~Rr|c(^SN(Z{{6ToPT%$S{|N%kJr<w0Rrg#K
zu(0XeJlp6OduC^HrJtX-7St_hi|1!3nEUST?$y=b-}!+Chq7*NS_<mICUvr9zrMEi
z)|Sl4eX`bS;O@fWe!ErI)<(}R>z}CXuBE8x2x_-oTN^!hTb4!buPyUxzeR$U;2r4@
zoV4WD)@;zCyI<e;|6kk2EA2Ju(xpqF((ZB=6T^e=5zS8}@7ziNty(fPG`zJTv6<&^
zz|T)lRXss%)iX1VLGwkR3U5lUjk1!`mXeo2wqLIVgNEp2t#`^>7P)kb>tCz?|2uwd
z%+5<2zlWZmXKPyZCBydP5n(B#l#WfCHks7_tGT*5+~2zV-JX|K3=9p=i(Z@YuHW;i
z>)QJG_2Th0fti_^R<*yjfQGfcd?^7fCjpi7OFSq0?2g}_cNf$K-j;hi>*J%NRqu8_
z2Te|G&AlCV^5jWB`N_c>lUzaTvHt!02O1Fvb=Wg6FMGN1xSV!LtXUy5!;IEmH*n&6
zdV2cm`2BT#cQ13Zu(N0X`ts7M^wkuQhLe-kXP2D^t#IMw<UDHi{b9TOwRd-SbN3!U
zcFd}_{>O*J;4Ef_22H2)53aFj>+1UQ+k7|>+He2i0JE3Be|e%S0|SHk`L(>)WXta?
z)Q#R2^YzEIwb7-=Wy^Q0Q($1Y10Gbk#s;!IYH!t6Q1mQawoFT3AGDAaw3G!jwo`t;
zHoX4l>G(U5N(>AKN{e4httotb?B#`p&QTi@8pZTtG<N^JUZ-zwAK#X^B7T1zsOYiw
zW??w+)MJj9{dTj6xVSh_5!=Qqy^P=Phr{uH`RQL?+eOT^E)N5(SBaEkU^u|L@rc{v
z?{|v(-|c)ZS3aGQq2cyNJ*V>zKC!*73f7!`Htb0lCj$dR*wasJpp`jCUoE+O`SR3R
zv%IeJGVE9i%30I*cNd(Vru*y9=kx1-ZB07L<?814>c+<8PoF*o?XUYA6RX6)uzk*&
zH9AL+9a|N=+;3IL%1Lj^c0YRjxcl#~;^*fwFD!5b4M6WKdU|DDto7SlTUVbb-kyJd
z-89{3(A=Y<qN0>l$%;*zHl3*w@h*66#=F1t)fG)p8wxa1H#>jd%6YccuRx8bM@PHw
z#!4|T=sjLnyTQoF2-JK3`{QvxXohgzmD2`1rSI-UYKO18GC|S#3#d}G|Npc9)|Sl0
z&h31bb7xPQv}nZ&4N#jAv?k<0BlFgTgG{CG@BQ6X9~SoPo9nxmFJI2GtK9`!+csy8
z3@F)4+1KsKy1MG=yGslV1(xN$f?*h4{iOK+cgycz1vOH(W?x^GeSO`eC7?BQYoo(A
zZrtc6A84L;$0Br1L}2vxys7*5?_UyM&M#q-F=5iANg|@6rE~q$ee=9GT)KSu>-GKr
zu4--sC67l(yEE4@FccWd%geK}v){jveSKZ*>Q$kut!8O^u8P^Y2{a}5{a&@drKRPh
zCEVhApdt9$UtbDM!Y5tXo*xe?3%<U(YW`h7?9nGSPy%*t=L=mMwbdm5o(*Um*wi$%
zTTD0T>@3sRSUv`ZX~DPb)Y7l7i{178UNv{GInr#b=l%Nsdy9&TuP*TvUjDhJrba|k
zvhu2F^wNo^mvdxaU$^%3bbW0jqoBvfdV|l-GA(^}MsluY@v~LyHDB3FF)(as+p@)E
zYu?>m7b-kFI#gahpI?71w*2nWEn7@Liy42sKYw>yZgl7MS6X`c8}wp#sl2?N_q|_i
zi)5SP?6b@E?6C=-!p6{Wd+M=VsZE<Vhc5G(>GXKtzI{eK&Npw~?1Rm}9(c+d785gP
zbv`EpgIB=KO{t|nKRtDN44SMsn-+X?Q>yH9&t0!}vL3f>JT0yBZ7UPQgI9TG2SI}&
z3%B~PZgy8yMa;{t3SIro;=Do6>Uq%x^VAD|oAEL*9Iyd(jvpWEoqMeA*Gu)YGmV!Y
zc_%3;8TsVbN?Gf&6X(zSm%hF>RRuI|c<<i5U+;Fm2d%6)UTJA*3F<8M%h`IZaSPvk
z#%(bJ!+~1qUa|0l?l=FI)s}3}yIb<=isstr?dJ@qO`N#UH2c~L@9BD<K7O32f@PTD
z^kOq<RdDy^&dw8mNtg*(5-+{RviRAG`v3oK?Ji%h6~1mw<>zOb_V)3@>V74=j;~(7
zZ<UyC)QZs6VW0tOzd05QBR8k51TD+Hzi)3P|6A}(h{Gh4<YPRbr9PL|``-NZ_4U@e
zzg3<=phaB*0t&Ows_nj8$#f=fd-msNXQeEQmVnklym^xYn%@8T@gt}gd3h%&B=HY3
z9Nm#rd|{D{WziG<^PSz@+C}aS3l=EoMr?547Ss80INK!uUQB%5&!@asBce8dTI<kh
zM32ln86vHqp-+6{m`L4k@N^+~VB<nUCEGF%M$kr@CRT=qqZ2Hq)*%mof~rkC0|bL)
zq%~th%!^M?Pwy&uIcfLl25!(I(z~h$j&94p|L&d8115GpnSydo4OLJN3Otx{0Mw&}
zjnlvei*XIb?ksxR1sWTAb#?XW^XL7~&N2-S3c4h}Z(Z)~ZJTbtb*-DK8GP*J9kbk9
zB9(E^&&|#M@jNvYG|tEX8bk+G@Sp|xf`SWGy{D}xetz!Orqt7>+viEz*X?2BlX+n>
zZR*se2b<YfCm-+gdu%q_*EH+Og)NzvQzY7w_e5>YdS=(d3YyeRP<$8h<lo!v_p`39
z3I(l!ZsV0!1CMlp*8Bu6cFVlIEjPUO?O}fVm<%05!@x;bc9*|*I^NXOBqA(aZ2NS&
z7sycs-O-!VdiU(zJ9iRz+4g}3#$Uf)uP^=d<mBsJap=>Yk&%(+p_{LQwqk+oZ=O17
z(xP3ZuUEzFEb@B{>gvnruj}dI0S(q>Utgycy)9?q<KN%kPv5_PKNAy^h>*~t>G5@u
zJ9q9py00$tAZWsR`;IMJOj=u7M5Oq^i$FjP<L=tEQ?<jj^!3-DczLj+g9Ef)6tt`d
zG~<|dR?2s#kt;i&%!Mvd?Yvi#YuZ35pS$q5)S5SM-Z;JgF<B)(KK}T}M^XD~cCHFp
zxoE|T6;8*+^kQCoseONMuW7}HguS27S%c<?lnp<#fWjcbaNWH{3y~MLSoVn@pQ!A<
zCHXiXXt1!X`eRfNsKM5jD3a~naj69~xXJ(NYIyw1)$8{aN$sxq_{cO~SV$=7iAh3K
z)T||s@)u7)Orvg&TItp+HEGG^<^JNoO_wr)hG@i!HV3zWx-6%s>CQa{>UkL^AB*{F
z3K@0kHZnGzE4J(Xjg8J`vwbH{oOpEC_byTGklkf(U(b4FUGidr%1W=PT1V@AGr`mT
z+jr#M-KA-69?mVMQ_ury)Ot_T3EZ4^He_#AsV8V9R#0&8)ald1Uq}&{e%%5d&~Uo5
z@x<QD%geg@`mWvBm<(!&9QS*7yiXR?O?<ouZF1FAi16g<QNNR3+@Nf>AocV#(3(0g
z4-fEc(uzRk+*?~bb)&Wv%t_vSvnys#o<tj{M+jPm>o?cRHO^i~$7gNS)=O=?(o^Qm
z)7yP_-LJ2&U%%ac|C;f6o8YALPxT;!5Y|FEp5QfgwZBSy=iB{V_58@uqn4^s`}h9q
z6jonX`4=*5@u|Q2tH2th#So9yv2Z_ALJ|N?=0K9Tk6;yYao7rK2!h6Lk;@8DT7VY3
z*w$}Q%^>9R9JCN*0l50h*kHpP+ydGR35ht+3>A9Gj<j9_H0BIa2%EP8F9bm<`PWar
zn|FPQ=VY1t`jMMl%67*d@0Tx64rO3C;FYnVF8$t~%1yW5R(&|g-d$Sf`Nx}?q2RUF
zkLsgu^mmByUVE<-zc0o#``VT5_v=<4Zs*^<8#DvVbur=ZF;Hfz{apr{A_grWNJ?6?
z+nb5uP7=tuyw~zo)YMib9qp?6a?$<j+Gukr9fkwCk55h22K8)Kg|FAMx3@RVzUJfU
z=~@3{*HZ84r}DOo|N8Xl(<M*`^TnUHx3{lOJw5Hy_wV5z9vy9bva8mtSu?3ZW&5Mp
zmi-%Reir@xdA=UB7&<8_3Dhf7Raal_Ia%$U9xp=yccJ^EE9>L!LCe$+xAB4&b4}BU
zTy$=(b@u6Lx}fnN)A(${Gi1oKVkzI0cZ%{}`|s)Jcdg(4-wN~lHNlgvY)bV8^{qQQ
zJ3+~{{~Lj#yS}0qw21vXXl46(N%Ooppb_7-(c3|Ng-Ie}V#^$x*)%mZJp%&+&Ho#S
z9Ta)^-_yq@<m#%>tIK?)k4N;&*={L%>LuCsaNi*YhV3HdYYu|OTK4SS3tBjHJYuF%
zs!75DhT6YhuUl1qO4*oo{>+(>y1KfF$8j!P6n`zZl$Cedl0ScHKx-UwZ*RN$@Nhe5
zg@&wEiHGlOv(T!lU7(E|<<mJB96CKcJp=FVDh*v1W4Zj}GT+%&eevCi5?Pm*^)fLt
zKYjju`EmLB7<PWS607IG-|r94%gb9BsVFZm4_f7OeO;`YO=qcrtH#UC=k0={qGo}X
z3W#clS;%g_nd9Z-W1_lE#x!e6Q&ZENW1#g1i{1NY?=xdK5F=mzr*NU`J?O;xn<w+8
zO<Oi$!UU(sii(OxJkIw2|9lROfBl@mgx_O1v)OM~eb+o^l9K7vtg5M~=(zoU-R@^+
zXNPB46}-K*6|^k(+4=eFjZ#nDxl#)nHZsk-^JCdMMuvi3K3S_3&h31D$tzc`e06_+
zedoRFvb<qsWn~lVkN^Dj%c?Klx1?mtqQ#44@0Y*4<SJ`b60kaK?Uz@p*Js_^Q|Who
z$F16RrTv#)OapfXmVAAEeYJbP+^bt#vloJV5w$U?)hzGMi!a<P3=PXQqPML9O&MnV
zxwO=~@A37;uH9l)4;tC$2pwq3j(KZ$y_$dZ?x)ggK;0y9y_kUMda+$L_tr!jhpr5A
zg(SuXq4Ld~*Lr<&+ge&gEO}>4o2KTuDs1ho((8fHsm7ObZHX4^e*XS_=Y;K=H`DSr
zOw*6ov$x;BdfmoNH*>1KTyzKZi09hX&XO%;WSCZ_96TFGMRq;*_`}2PpjAxAzw=6)
zP1(ME`@Y}rtV>^CJ8L*^^5n%+rik=M_t%`>-~D0l_j|!<Y0Hx5?bPTN*AFWz+Xl)4
zd-mA)&M-JwxF&vo-Ko>3gEKN#XrE$bsIVx{xqM-5wE5F#&$13SvG#$c4l+(oQU&ev
zNM2Y~RkaIJ1wOaXS5{tp;j7(`2h5;yAb7c7-^K$699&&pH5C;PW<LM+<3~kmYU;}B
z@9)h27;jz_ZFi7~;X&B-Et$ct?(W%dZfpb%pCqe)Pd?tKsi$|Y@ZJo=WD$A!^^4v6
zt(sb&ot?e9@bR%-@Av%{5fNGP<VniWqensOual4WmF_x^zklI9f9Dc#g<<$EqH9ym
zO(WkK29BJZoL0rpdZbLVmiW##Tj|;@=2v?2?YYVEpq0(bd}o8kx?emx+6~$({NP~o
z*H5SQt$hW(KwVMLlKqQ|-Lrpuc*w=Uap6ECvuWw8km)vywL!Kp+%3DE3+m}F^PgXL
z6|~f7j*zbBER)PhYQD2V-u#C5FRn*ML7SX6*tvseXB=Z-5LgE~7vLFW5-wwd&0*dD
zdZ2}kn?cnSWW@!6iV>s`)<2<ceTG!uf#w}9BryKpzxQ|l%3Z%6Tm0MAVb5^7WI^2A
z1x*&x8)uso{cG|m4AL%Enz+D>>9@A4caV>H@lv%%o3<Xg@36Fq@3z7784Fj=un$cC
zH>=B%^{h%;$EU-;|1Pe){+FrkS7Y@~8~NL^k895TtU1@%ySHNg`M)s?1xhSB*AIv(
zGB7k8T#>-Y@W5q7!cI0V(3u5ni$VRW$qOG{`4tFma!82kFfh#F_>QVTcwy61DUJvR
z1`9!^Y1s+g0t^fX5<)gGFcc_-Y=~h7>0xLF8F1iaKw;KjkR=QfJzQc841O)us0um*
z4i@o(v^K0-y?W}LIcx6itv-GEa<Fq7Phef$zxux0o74LrJqE9*tgNg&dH;SqCnu+t
zuI}3F<~BAld3kwX<0ej=cy^;o`y!Crg$qMivtM0Vd23(oZqVS3fWU%YX>%<jqaapR
zRw=8JjKz;9O`aSY7Pf4~3JuWw)^z>&YpX(6PnkY_`JzQirSI?E&6BJB_2uFuRqvFo
zQMqsTR(-A7#%iU=1akcmLB`h~9v;56DYYAvU#Cn_@$BmE4h{&I09t$Y_xE>mD>GeP
z-^1<v+q0#u%hnt^bm+@j^ZOYW7rB-l-&OK*(To{0mdAL$J_ri^+!#N<zB_mCPMt6z
zA^Y`>jf)>WejFMRvEudh_2yRJ{vVzS-okfxSLx-Oo71Ibg2Tg?pE`9aef|z%Wl*f8
z$c1j~sroy8(IO>QHnvs8&(D>;UAS=Jw#WX9Hf;(je}8Z4_U+|+lg0I7CQP3`eO~oD
z%b91>K;84LTetd`{JYkm>%_otYsaKXLNm`kt9qNZIWlZ@sCnL<ibbE7E?v5E*)q5H
z`+l#Bt#)u|aO;&?Iz6t+bL!Nor%s-{_~>YN>BmQ|ph3O!TiDW_4=^zt=(Knww`SEU
zt<pC)HpW#i_nVt@e0J9TeYH_rGA4pHJcx;<mFJwDWm<OMf1XX`<>mg@Z*9$<I%P`A
z>KQwkws9~rWIVR9vH9}gU~|>m@9*z#m(A}24ND$s;pF1uTPMCu%DDPlPUPBaYPLd)
zOcyq_rh#TlUESTStE3oa9ej6pH)vhli_9H!($^+{3fbd*vSqoVqN4q>$!4>q@384;
zYEHbe<+w)7?lNCNLBUtIwyys4>C=;^Pp>Zd`R(Op_emws&&^f)ny<?dkr8(D=1mrz
z1Flb>KNsFG=faPVk4@|TRP5e%dAYy+x5Rm3-L9;xth=heue;m(uANVI(#e!bN0Tbw
zn7+TWb8$xp$JJ}sRxMcIU|aPi<5P`(>@F40Pai*KewqOZ@i`qA-z(&Jx#m1N(z$Bw
zT2P~8?b=<tqNL69KqI18c9-XS24!ZhJU8Ed{jObB(fg~vzstO{qfkpz^WwR=)>rq}
z|7Tkt7#O(l)vH%kZ@b0yr=3i>bYo-k{Ab6XZUN=A2QD&&ldCf_RxDby$fW#T%-ube
zm%pieUmd<a>u?+Iwz~Oszg8L<8HL2e=)}jzdtR!3zjwK^dmm^$YWlf37iSu$=lr!U
zf464){krH$C4YVtf`%g1)Z7>u8CR`Zb?MvN+n_}H^78Wk=~LHiRRpasPEAXD1!@R|
zg-ttk>Xe9#%$hxWY<Q*3&Rjd5Vs!HC*}BiKpPZa*G}8yvF1fZoKEM3T`Sa(+HvIYX
z$E4_q2WZ>;mMtN9d3m5gt+4fRYx(VdEchvY;}A!L?t_cBqxIwW-Fa|3AvV(0wYBd5
z-*R{V#YbhW%g$U3F6daYL}lsHrIuAv8H#y%dAaZMqkeyTt7>~QnR{N_MbS0OUR+q%
zJWVfl)l%>2X1CH0xAB&V>Ux5f^-ex_e|vs>?!7%fXFj_zOJGBkLt)`Y6-_g<Ya4|N
zCrp?i;O@_;+i}1A_NB1;`$vx+Et@L);J@I8r~@}PCWF>N@2mZ7_7gNK@H{v)bm^l<
zkJ9!k-WL3xaIk`9jo5>?Z`YojtPV<@49o#Loq`46rQ><zf>l)Kx&tfd(2oQbodvwN
zw`5MfbLY;JmoGDa2VAe`=I0MDDA>T9#<nH4@5c%miT(yw2Yxx53zJm6Uv2&DE?K~H
zDD<`a0Vaj+ql-X8l3TW1xfsmIFx}w*(=Ch1Czn)yeztPkwrvNsuI;~i_3F#d=k3EC
z92%@jUoENo`%6<*)%EJtt7U&dbIqWA-k?#7)$8|Z@$-XDiqJMT-h9vU^y$;4#m{_x
z{`v))H2}?yPScH6TYWX_g;nFVCS9lN4hNVP)cySh+IIIp@@Q9o|Mf$y++R;=ug`dT
zYAP2$|Mltdbt`Agkl0<PHrZ2LKMu6ZL`g|$OVUxU(%08~-|zpw@7z4w?API;p-U$!
zyT59euLF%IZOOW-#Vc<YQ~dng)i*ac&(7V;aN$mc4>N;jke64Nk&)4sl9!j*>^J;;
za&q#i6DL4>%Rvn_&r9v{bsF;W@=KR3%X)urFBdoW=CAt;9yZne{TdFMh6Ro0FSV=v
zm2tR@H)>nXOchO2)6npBF@b@B6MubwukY#Q;W6Q6&b3cZPn%YM%lZ25?(Ut_`7A``
zE<cc3k-#|Ni@&J0o}S;!moIl!eoou_*t-1Pl#?kzK|zyZf4{l8IdyB))aldHum5}0
zt$*v#)Gz1V-FRgz0;cQ7Z`=Cx$&-vD9fF{3FaLhM*1!Gw>-G5X+}yR_-ri3CpvAZ#
zRbT_djWhG@<4sLXdGB?9JuY8=;_O*pMn=Z6x1il|-1>VKtPWp)YwPb{zph!kgZ46q
zg{A%e_vmQ%t*zP9YierV#3di=nRqhg(%R_lJW-MtstWkQwR3~-{<^=Q9S&c<l&Gq!
zo8MTzvVO(wt=ZQTe(%qZtN-y~;jtdc#ZR6*Vaw0r=i$k@w3Xq&O^|D5+Sl*fv}x0p
zl9xfd%k1s#ZEJo6fHr^~Xk^ZPyFKsjrTg{&b?xo<tM8k(fB*h>_x7&79#{Q#=5yX1
zT<;DR@#Y9JZMeL@zW(U3W1vm>W$!h5dU~c@&ANJOs`lGo%a<)Xm0|=sOQqsbw(l$x
z&(_w~TYIa^_a;Am`gGOm)zzO^8T1<79=z7iC3fMM=@!%JlO`=XbH-<`eSMsxqvNC{
z4<01=&b11C`SPWfwsvqt#EiP%Z_QIvQZf#;aF)GS$XNwCf5ZOom&x~PKKp{UaVsh+
zu3EF^%F5v7TWWuoiHeJ_j^3VkevcbNMkb5Sg5K;G`=jgY>yI8int6GdZ`twdYopcc
z>+5sx><HYsb0=u+a!^nZXs1rq^PD&PpVe=#uBgbkzpwV!qi+2vbLXx-bH>N^|DVrX
zJUmwxxprS!>Mh<J#<@i<M{pP0<f+G1nHe4w9PgJ0jRAancUQanXwr+F-CbRv&T{hc
zzRV8~4z|sc<^?yv!0oFYCuMOqtKh9B1|Bz1@uBW~bmdoYtH9-kQVA&F8Q={ru4&l|
zz->+gP!rEWP%C0xBNymQD(sCvu-)Lcog`D>>*Jt?N<eAp)=85mU)^1vUs+X^bz*|z
zsq^RaFWva`sYq2#ZB_O6cdzd3+ze_Y2&?;<-1z?BV6&86&5k{L_N182HcdXp6B-sK
zwNqrd1Gu4Jb4$tO*Vp)EesfoW#!>b3{Nn5XZoPB&uBfEs%4T+cyRtb~vqDo+mYC(=
zThnj%%LBA6;NPFm{;lopuP-h2F01YC>H?n#w7)(+Gc(i6!y}-oYL}YttS>(H#_2~u
zF3!F4@Nhe*g#en+)ztKyBqA=pe8B<*&`AWpzrW8f$tf$_#>LIOHTSj|XuNgOk`*g7
zSlQUJ9v*5vb?VfnuXD}w=j|$ey=-sw_fw}&drx}u{Q2@DM_ishf1ds2#l^EbPEB(K
zhx?-rF3`C*xLR>#x3}ej5{_<+=cMi1x2yTiS_0bbvTT{#q>#YCg@69k96fsU=Ao%7
zpiyJc@jkmsUtj)rVvZ0aH$#Kjx)m!t8XFryfg1~|(BD=hgJygVHnU&P=I7<Ty0`j!
z$-_geo|j%;ULG19y?Vj~f!%d)Z*QM|G%54TytUW58dw<`gbQ6*S1(!OlD2tg-0qt>
z)2?P+?Ugp4m$gRa_6<<m&u5w2Z@YI=YXu=zu3F_KYhAYH`n{FG>bE~Gm(1Q8m76SI
zo4e-y<8>FM3MX4LF!(*Wv$MF(o*lG)q2Ko1!-osm`Q@%;@2~&A@9mGvJ*G2#wr%X+
zXLjv-;q{DOa7tp#&j+O(Ei<!ik>~C&bY`!tt~Re&vr%`~q)9@aLF?o8O4+WznX~O{
z^_?5;w|jfP*4{CVQU<rU4_v<<o_>Db)wj2|&wl#n-o1ODzJAU9Fym-aprd2syL)@H
z%NPG%=-i%SG&5ymgp}?2qe+<`4EaE<vgON{Gchx(dOA8f7L}J@zqr^Pv~@6g|EyV3
zqN1XjR#v|<r$3wG6Sn&5s~4UO3=GFDYkq71Er@%1dV2P?HIbA4Rc@*d2$)b)Qv+IF
z2yT>}I(-_nXR7S&Eze2Y^6svhF+(CXJw5wS3+JRIx3}kO8yEyUKGu8r`~CX--F_)4
zpbhCuKR-WzTkh(Hyt`JaYHC^6*TqU1r}=p6?T!@Oz`)S3Xz}8yvuCdcov@*x-~eg_
zUR>-B+VsmSZRRrxv|lVWC1u5q9XG;wtABi02-;d`oPO@b<9>V4h#}~#r`X+PzMvhJ
z4UEh=*DVSkwSblyfQH`;4Fj*Qi@n?>sx2ZX2inJMm2&rNYdL6xL26oB*0VD+Pn|k-
zsYlW{Bs_fio;^0vJ0|_BY-yQ2ySAjDxcKsU`~PcRyvP8Jr4>Ir6Zrkz-LI$h_upvM
z_5|&Zm^y#HzP~?ce#txg`npgjr>0GtH%F)R>UJW^76yr)2GA})15ivh90Vl=1~yPB
gH7bD;B){duQ}*gh=>N4~U|?YIboFyt=akR{0DmypG5`Po

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg-5.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg-5.png
new file mode 100644
index 0000000000000000000000000000000000000000..ccaa268b77d1d8a0396d4d948d37b21ca5a1f400
GIT binary patch
literal 20802
zcmeAS@N?(olHy`uVBq!ia0y~yV2S`?4mJh`hJ9%>?l3SguoOFahH!9jaMW<5bTBY5
za29w(7BevLCxS5J3j5`m3=9eko-U3d6?5L)t*$v=`uP9H=jpR$XC}`uT&{RYr>j-U
zQbbf!$aHnt$}hUvht4Pl@o781((=72qwEwr-Rt2jXYX|)>q4B3es9#Ad04`_;{U%F
zyU&0BwdL%`-1*<_s_*2RZ-0ONb#2w&*e5T4*45sVpPeYt#=yXkAZ4EJ&%nTN;Htm|
z1_lNnw*yQJ3<i>n+zbo{Qdo2t7#JoCj!F!pAeq^|S)GA_;a|y%3yQMVWp8%P*&Vhv
zii?YDm)>)?LQstBJh-sXIqSxTho#p0*RNk+_v@v)Q<&sKK}7}zv4Xv`Rx72SpSSnj
z^#lJG9%N!Tkd$LKd*yRup2Jr@KfIIyNh-~(3=OR}a?CDE>vW2(UUM;lk%3`G4;wcF
z1NXv%MZ6{v3=9lvi$S`b)`d5>ZgOpAWnf4!ViG%brj=XVOC~+GA-nSPS@W&g*Y(o<
znKia|N$G5^UyviXAwZ3boBQdrXUo2PDLFgWI{f{f&wX|Oex^Tt{`_>>X2DG{N8IIW
zm%Mn9adxJ$`}1>iAJ>OJ&=OpC%KloyLZ2PGcfUR^Umr4EFSg{-5l&GN5e)?e2Y<Vt
zOCCLX^yKyH)!gEGC(ibsiJxct<%07pv)oy`N?)tx=jT6t{(N=NQm=FK#2BVn{xdsV
z8u}$-!-544%I<w3yUX5gsrs7r_tR<ptn2IMis?iwc<~}*u5EQ#US6Jw+|!7}#DyxF
zW@cgA?^Uh7bm`KUJH_WS&(E{<n<p8t??cB0Q-KWyu{(F}e0gD^bJX^{xt~6N{`%u_
z|Lc3z??WFS>-~C=U4BLQ`nX?jHlKf^*nPb9>Ga*ZcOO1)|MQ9P+1cj)A3uKl_4E1s
zxhC2S1$=UXk9HaII9pm;zPh${cJ12Gii#a7FYoLu{`C3t<u^Asr%JTh{rwW`c}Y5d
zk79g$yky(K{X0(0JaovZeS&G$6^*&}^>Lh>oLV|MS6VoQOCI-{TNSn$oc{Osx2TNF
zn>U#|*1W!G@$vrUP43ODuaBi|Ug<SetE;y+G%s)6rOTJUp0EEGJn7Br;+mS8FUO?w
zU)-yHe|36%-AeWOHJ9$CEUYOkFTZ|oZ}rqklal16?d$fq^++r{Z};10vbz7WlSPb$
zg@sx7_Uzo2fB)T^l?>C|4jd{C4hT^2{B`^Ozh&F+Re9Id)y=Z2-DUUxPqAmvQm?5p
zPGQUa=6;#~|Bt)6|GbiCTMDP1n`^!N;$rvL>vq4p^y};Ew~vL@d;)xYdO&)drg881
z{cg9YnAoy?wZDZntrNbMu#=5R%qMuu2}^VH@Si__T9v(-QG2_Ak@?Fx>-QSg*3plT
z^<Lgp`da00{E1KBzFqtMe*b!2X)_H4g#((Ok8l0>?OT|SPtUIM_v?1Q-xnQU_j76O
z?Re*~sHj=O>0PS>zdX0Jv5Dd2<jlIVV&c2~|LdH@0=SsOd;+)pOM8EBZ&yc0fQLuN
zt*zP1m(Q#6nqT{Erpn8W$K@`siQHWB;elhXto61d6GFG=#irk5TX&$oUP95{KK|1D
z`k#KYOgtYxe7NiRylO9=NNKa23*GwrR@DCfHudM6!cw`42aLV4)?t#8lACVkaB*`7
zJ2^GYGRbs0v5PNbLrnAUC7zSjEUSey?(-a;FnjjwOP4NP*;$+}Dk8EXbahzPjSUOK
z)<i7S-~T75EpbKi@xH9f%X(j3UA;W@^t8<D>ta_$Z(kR+B_r^SaK?shi})2~Y^y@1
zYKKqTy?ghk&!3;Zd$*2_S87G%<}|B<2Mx=7W-juZYqipIvf8A7JPF79<*)Dm_f_Ba
z@0ZJ;zJD+OH1|Q#n&|C*o}QkcK70u17Sjz`8)bTReSG}dsI8aw|Noo6_wTpcT>Sju
z2?+}}FOOQ6nwF+zXc#CbCs$NlY-}1M*|xB$i3wz!jjDz=TLCW@7Z=ZAgPu8aWESV&
z-{<Dx(ed%D`TZN)|NnU0@3uMZY){nIEJ;wYQCsu!($coGX~u^RAMTwqXO7W)^L3!&
zr>j@iw(3g8r6rw)6(16QN5sX=`}_a?uF};P7do>azI*rXjXjl{4{zN6|KIPgvvqtv
z-~Ye+_>m(LX0y*qSQagrIB#Cw{eM@(<0TUl6W!k4+A90+&Er#VZ)`j~A*G_aTDq>T
zZrQ&N-@citNLrV@DfpHfCSjv=L^OJHTJN!bdHt9F@71PAwAKCj=)N`cvfJC++o!8M
zefo4|>gj2}{(L_F^y$;3m7kw!Dl0orGRe50pc}t0=Ka3k>;C-tGpAU2N6z!}^RMUc
z|GTXA_cu*#ZSP5-LhZwcg4&Nq#jAe3T(0`}{^K~$S65a}o>%!yGImFSqiyxKE&IEi
zCuLn-75dG*Q9Et(%{STF>F4IGeDNYfRYm2+S@Zi>7CN`5Y`$6Y`|bA6J1(TyD3$QC
z=){;EHYj;@Mf2<oL+AB-zs-uP{Tljv+nO~xb8RXw?bB1Yw~wDUZ=RNpPRL|6-!IQ*
z=fC>>e*g7rYop&D=aDdQ(2d%n@%i_Gsgb+O*0S-*tax^I_UhEr)42Hft}*l5ELgwq
zmse+Jr<6^_2D?8WoZBZ%ojqIIv+B!5_tMX2&9w~-0-W1;F3vPgub7x)`S{(ty#FpA
z)<kaRh&+(`$aV3K9JATJ|Ni}}dOo+@r09vqZ*CQJzd0)&JV>}(cw80~j-@|7B(k!x
z-P->ka?&jGd_8`C{=dIoulL)>9n<OBE%tI|`n<s3-`;-x^ZESg+qa{Ce|vj*lB)NY
zlj`#|?CjzmAM2f*C=s=zU}28g>}TiZYRk*ZdtQ2Vb#>^<Al1Kr-`8LFHNWc;9qCu|
z@u>Kzvu8u^@2geyl#`RQs{glV&z?Od+1GSDgPfe2R9^mkK0iDlV1jMR-XD*;UtM26
zALQNAS65DEeh--UaZ#Z7!z=7lG|IWSxp@y8^vKu!IJo2Wy4^ilS64~u@BK0<QKD^Q
z=4G|TQCqV>DZTL370vd?|33EDOPFR|F%Z*@3VBw1?CQ-8iOqp~t4bgLd_Ld&+uPgE
zH@xlE-)CS|_9o*-j#=`jCnt~1G*0h%c(`3UbXADqukY{kWo#-g{P=R&zxVh1{r6wo
z-Mzi=+nY%ByR7T3gvZyW-pDaKoVHoAnVsM4+4=eLkLoU7yr{bFq?fO+Y2KcXZi^!~
zr@7_j<wg4Ky`vq~{Pgwf?2wf~N3Y25+qZAcL9Jwyh#g98i6;zr?v`Bkon@Tf*Tyfu
z&ir15^Syiby1KhBKRG$swCIUPYisMvuh-+R_nO~Zv1N<N*?G3np{qgyr|ZSespa0m
z^0?k!aYx!&sjF+F!=2mtw$|%<U3_g(_2tDvDbp+sJv~2Rb-$3sZoN|`OjvMhYj*ax
zH#f8H?AWLkx=N+KzCQQHhJ*Jq4*v3+YqfO20)^K0c5Pi<-`QrlmuBbhTiGeB{%Tru
zUSL4L1eMHhZ*J}?c<8iIO<PCDhg(c1;O(ugPv5?MdnQ_QJE%B4YY-vOcu6;6gM;@p
zor{0J-(SBjcK52%*Vp)Nm%qQacE${e-23}th1LD8oS3LQb;^__KYmoay}LX7-o1OD
zzJ8s$e*OA?KhM`|si++BEN{}DID7W$=)9e-pz?23=xUj5lK;QjPF%TiB`9_5*|X=%
z*X!}Cqqb)Kdb|DpmaMB<p(}%2@9r+&zJC$p)8<5pU9Z>e4%wXMTl?W4`>kE2tC#uD
zUngr_w!&|&m6U1LlwBn+7rFIHc}@ZaIjBxu?ACi}L*n5#k9QQ^ul+vv*4AuwdwcuK
z@v*@X5i5+-&t)9%lg+xlZSBhEZYL}F#k{trpO?E^eBKsRw(tA-Od1p`x3}kqyScSV
znPe#N^Yfc#TyRKCOuV%<d%Bo@oKAUpx$XBm#ZpEo9ZXD2SJuT^e|>%3|MD{5;Lp#_
z&aL&{;gf!T-qkxhi$gc3`SQwGTu8LNTmRpChhsC_r>|eHetLTP>SA~Ptyx#SuC5Lb
zKi(&MbzQ7===!+3k=q+q7d$+~x^w5wm7%M{r0nbVNSS0TsQdd%Q%T8*SK4gKm*?Ec
z`~Ux|etUm^eEHqd=~Z7}sd~<`DqW=&zHW{6`#qQcRkMaKdtn<97Z-Q^scl4MW#u0B
z)jS`UGc4ue;kmLRaB;{|FHu%j*33UYK3diM*r4V!W5I<B0bgHSbpHJO{Pgzr_IvgJ
zYwy<meml!FdzzZ>EKtg_{r~6lEQ`WLZG5t;*m$KZewP)nt_oYb>c9a9P^^pV#Y|{#
zZ`X_2@nD1h#mA4%&9(NP^zZZh|2K{Y+KI9*KGrM!`rGaN>+17s7745Sc}xNokL>a_
z0eN|Opyr8?kkFMqmBpZPSAWlkre%I}SGmhoy2#0`v0+qU64P50wKWTri8i0NTOGT*
z?Bwy|?(+42Hhz0^bMcB58aH#y{=Utx4?aCj*R=4F%hgq(-lo~tuH4yKEGjOZZqHx;
zaGJjB|7wsAtG~aydZbfW_3zK=@8g}PolV=k{=Ak|-&VP&_j%3lEJ!@umU(uT>8)+K
zvsE%5AM2GeNN9Ms^SRvK@As;2?I>K_)YN2B^(CXVwKeldhv2T4%Vy89DZYNtdIP8}
z{%{f~-%XFNi`<-c_ELwSvPtqWp5NQ__x*6PE`Jvi6f~)*sHo(}heXeyx3{)}(%jWG
zk(VPcA2YQoc`?DN{N0+%%l)+#6&*p1ca@v+;$nZ@s~;X}m9neZ0V@7p^jW_vcs3<*
z(dXyqSI6(KGvaX$3=FJ#wQ_mM?cD8}ii!slb)Q{Y>Roy}cl*l7&1rsf)@Ex&HHR+s
z61_b8KvNUbT)Wy?rV*(fdg9ZcynnyGQ&{~}+UCq>XJ#7lIP35Kvk8=f=Gj)SN<Tjj
zZ0d&xj%y<}f*gOPN79%h{Ao-;zy!M=512uD1(Y=X=G(1(@gk%B==R-ZZ!b+!^}ezt
zGdND_b<&<ad#-Fw_dj~<Sk~WPUte8aJsnh)R_{1<{(SgSuc;;#9}?8hi)>Jn(uvs?
zyxi~Q)bO~C`+W*7E%E&H`E&7)keOeeGiAod$E%+cN&EHbw7zM=0fxC&rC$6t9~$K9
zek7Xa-U^X6&%2U7zjoQ(-R0SzpPfBwm)P~`_5S}p-(OsGzF+@;@3x$qi>B#DTUDm5
zTf5@mr|;kQ>+xP&8N57W!zqF64Fxy<{QYa1c!&j5M|pX8Tv*~cx#ZiM$lvuH-PfKA
ztc&sPm$TiHd)w@8_4~cIwq#Cb<Cj~*Cu;?&D&^$lZtW`7et7DrNbM`1Nx#0o*FS9V
z<*fOAi^{Ma_db34BqA-n`oIB)pTB-->FD^pzP^6{o5$DJ$FI-3yK80C)~rw8zh7Uw
z{oX23?XW4k{-2zz9=f|McjwNXqSdlJ+7AR3*Leh<nDp<@DxUK4a^D#Sj&*f)H72)P
z?^ZnSjoMYR5)|t1_y3P;ZEelEyK8IKwKXeOg|4=$uG+!Z_3vTH{o3y@uZG88?Gn`n
zg>z+96(|VKN9s%U_Vip?6}nnPSa|V+2MMa`>Z{A&-}CbH3_RW^t6!B96g27Ix9$5^
zrk|e&>L%W~dw1%zY0G+gdV>0A8YDKIn``}iQ}+kXh#g6;il^`1jRm!kY;0{!D?g>A
z`*UB9oT?QHDq60t4nKc0*ijNx+N@r`Z<YGI3a8cK>#rSXWS(oQ8pD2jd;axLPft&s
zFk!)r84{jBE-o!m+w<05T<o6x`r6v1a<k{nTlaikwco{y7iU=(KTC~$-!5Nw;m*!t
zP~P7A<&yWZJIz-GHWY;Z`TJK?TwLAX-=9~?<iyR(j0Li#@9)Lt-rn|fw#2CpW2rS$
zwZl&xKI{ytNc$@*D>b#WydEFxz5MWSyQqXj#G{R%7PDT=js>7RJE`Q^nVH^o8>>r7
zw#ZezP%M3S=VogB)5FHHF<V!KuFkr&#8an+H6|t@VZpv%ueATI*}Y+|b@{5w&(BuH
z?A&y?;`g_=Z*O~VPCU#8j;GyaYe5CKR_Lk~X=i6uy<9roi^pF(Y|VvjxwpUE%3eRS
zT3F1vxi$OHF6{+LA3l95`X-_^WmDYrDKlqAJ_>)q!oqUGfJfG{Xvvl2?{9CbgDRY#
zPbP!<r5+v~VQZt7hR4^2wzjs;GD_{Ly<hzNT;`P(fl`J^Eg)N&+4*9o|K7;NB*wrX
z_Nd3bW#`VFs%;th`T4)UU3&85$q56VqsNbDKRGdR(vrHrzh3s+|GOZazh~jb<m0#G
zCH-cb`LeRI^4<UTaMcQV28I<6YHDgq{{8ux^!WL?xtsI%-`F_m%L(OviynR{6OWxc
zcmDeK`@O0sJHH&Lm@p}Qb%pDrmAsS=1B1?!DCsqK?!;6ZXcet&eZt7dsA|V{=FFKX
zOS<c-cEs(iy0yQ4|Enu29~;E&F3Xi{TlnTpj^`zB{k=<meSQ7<ob~&Vs;XUwf7bv1
zTfTJpa%~Nb6RB~x9S$%t9BBRV<A+H0oKK%Wm;U+jF{q!Dmp9bQtE;G}NJeZ|{_SnP
zX0v@4E?l@&?)JJ^Yfx3$&MzOf*sb@?<92@eX=l?e^P1mL@H}<m#D#x<e_vhVDct@z
z*KBqhue93iv&-JR$@%&Fcl^n>QDXfZj0_tlEMhzTMqd2#{`z{*@QR_~MZ0O!r!Rl<
zB&D^r^=ACV2~(#o-Ll0*R7~vFcWH})1w4l@{C>YbU*4F<+0)Z=Rp8<_Pz%Hp6jfpC
z<JOvHU%OGi=hv&%la}1L5wSLI@2^Sg%QgH#!%Qn4+}fVMo{^ai)YNnDm)pAkq^+%O
ztf!~vx4*}FBp0`Gi@$nsu$haCYm&;>x3|OZ?kc^!CG+x^-|zRY_ML4OwYO?(P;l_n
z88cRRP1W)Y>dbFmAGLKA&*2NX+wU&3tNk_Q?Ad98Okt81Wp8F&TN}OHtye0xWT67X
zfm=nz#ibt}INq)Oes@*q>T9Jt+cxjhO24?sb(TS5lbC+onm2E9T3cE&-rm{@>S`UX
z^s2Hwe_XzP&Bw>bvwwbi8nq#zF=|W3LRIf+BGEtUwiavm=d`Wf=XBL+noi`R<8sw!
zZeC_!n33}F(NR#3$Jh3G`Tg4EWp8h-3|kxZ?b>l2=s-o;n;Q$a<=&oEl{ck_Z8eXG
z?yuLkwys_kzW&{vlT$WcxpKw3&U1zKsujMeUS3_hN?tyClWB1@-hOMSV8{{s`!{di
z1Xa_Alis~P7#cmdtEC~7t?S<=P#Bl4p0f7T<;$B7-QBz-Dc(FVu%fb3^!JJ~S5PM)
z-GAYk%Brec_KIN_L$1`jJp2S2AKoC4zV=|#PL2o$h6oPE)21Kfz(dCu6CUp3;^Qm(
zCKAvF>KUZ_Gp2Uf-@nezJ1u*`!9%4->l?Jin8J=;S`%rU?$5YE2b>jJ*iM^XK#Uo7
zFD%sh4~lXIA2;yG;s&<Url8U44FXKlvLArPB^yqH<TnUN>0Eb!j3p9n5RygU!AbB4
zXiLLWsR|bk(4geN8w43HRZd`JNKka;op#e+PgP&vf8)lDTs%Be)~{cG=+L1pb$@?(
z%WY3M$ONhze?NTpZr%O5-)nFD`}y-HsKFbxEk{#cULMp{`hK^3exHnGQRx1-u%pUO
z3=BF)BKtX%m6f+<UDY~z<cNlaMa0RICtuy&y*(%>=*q_A<KFZBPYsU?T<q2>b8L0!
z>SrH5H#ISReRntd_O{&17Zy5;3JEQG^CqYE^I3DN%1=vPU0q#%^m|$;C?K_VyuH00
zl;*uWJV3*6DxjwM+UV`qUR+$fwe<Bh?|F~sRlf_oy)9RN*ZDIujkl(r7OVYwH5@dO
zs#&~UOHPo9Awlt6h0Bhjr(Ts66&WusEc|Auudnaw>iY8a`u*1)9&XpqerIWE3F@JB
z-sU-cVUA_-mj})Kt73PTfkq$l^4>lDe`ty^#5I`Jkp3|Pp3;|>T>t(1_v!0bP)~hp
z{r|f5TF?lLtYwjl`Td&B^QvBH{`~p#<oWadxwp0idU<uN{GQBeqr}2+AnDYvtz0u_
z&gA0Y&@ht|5KuU5ptp<R?)B^8{x%<5c9p%=s;{qqdt;+BCnqPUFxdC|oi!^Po7bdo
zZ*Qx=Jb%0e)cW32`8h?R4b+m4+gtVW{{Mg5qqgVO*5+N{1m&lYf}J~ee){xD%k16T
zx4HM@W-&6eWgKW={5Jpl%ggSz)!(knEx)%?GkDpHx7+Ve`||wp;YI&<XJ6O*-Sll;
z>~1X!iwIEbLrgCw<Cd+ZG-zUnyYSd@j#|`;N@%WCX;3?#tW4bJfRaAHxmK1nQ5zha
z*<Rh*xj85}c>N2hFn4fm^5^4md8@iVI}S%UIv#ZG=j7nf_-L4rmbOeK_Udb4P?fs3
z`unZ=xRO4r(pMt4x0k)WH9h8e=sj?TosgZoA?xa@rBPe6EPLi!7Q0n{d!zYv#)S(3
zOP4IsP**>mxbXM3+}kOeZ;D7sRUQ3oQShK4Z^uKn-{<r9{Y(p86|(Y(zlxk?(UHXX
z@B_<16^=mqo@EQ`|Nqm{&<IFMT2!l}ukU~I<Vh}W?#=ok=TDsqii(=W#m)Wpx2$#9
znj1es!{4Cj*jx2=Q-A2Xn8>}=-@~%9Ryl9}dfDGz)6_K7w))$iSMkQ$MJL&^4>qw@
zJ?d0{^7ido(Ae$`b!AZh`SJ1o?C<aH`pr^gV7PX1Uu`w7gn>h0VWCykmlc0~-@SbK
z(#y+h(|hx@GZMNnI|A7G<w8K?2rHA1_w9N*ExP3O+U={duCBVZF}Z!xq)AscBsw2G
zdekx|{neF~w>Bg;?<#w{>fzz`(*`_ye?FVNDs*+&#@f@?(|ICX&&{`A|MK$k*S+TV
z3M8IKA7x|+d%9-*smLuE6G1)Gqut`#*4ELAii%OY%hp<zzIsw1XKsGHJ-*-OQ^&P+
zv8zENy6NZVg*rGi%&YsA32Go7mHWLl=Vs7s^Zc-!oHfgQW-6JRo0q=6=DU9Hx2Vqb
zof_w3tP)z=+OqELsqE_R4!*mqbgr!|1B1@#%a?;ce*D<g->+Xff5{S+b~o=yYX0-q
zoSdv4|E<)?*?DW;-Ce8arB^=Ol)WLxZ1%A}+0{)=OuqB&{x140CMNa@RHPIXY}m7R
z@6{cJ$-UC%ewCG#e7{Yzu6We``f@QmzIG{}tksF*$K8Ern_XSx+P&`iS_THK8JlA2
zTVEeeWuB&Dns+AxGz_?>^7E9bQ$t_X1qKF!I^KDEzlMQ^C1Q7#T-=g*88lAX{x`>L
z_P4jUmoqZ6tpGLJEsK|BU0JaZ)Zn)N`{nZ2eX<M;0e(A54oq57`1qKnz5V_xr;4wy
ziv<nxfwI4D^fsUKHlKSYO_~H6QCu6j*=@F2ZqbeU_xJWj?JQavSNT+wSK7=6G={Gg
zx+-Li5i7%kEQ`m%Ee7*Xv#&YUE3K`h<kZ>OX;t+lW8>TTb-z~Tn9WW~N|HGiU-Qvb
zvTfnk?CVxN+q15E$y%3f`M)P@ZB*99MXh`?76r9=3=9lYto7tKsDK6{PMtrmU#NR+
zp>z9_XU~>Bc#zQk(W>;-im0twUjF{&68gU)Ue&LT+q-Mi=FMm4nlLPIT6D08SMRUp
zA*Ehv^J~fdw#$wjaXEVI*t8wzpZ<GRTwbnUc*mf}TW<EOSz7-7{_PtdJa~}wkdNU(
z4QSZ&-{0S|$Nv3#xcv3O$n}{GJGER6O!}9zQA|HBCPz2ya2s#w!$YiZZ*TY4joPxI
z|Npn!`BsIGTBOW!GH%IOmA#30^O~E1;o6lok;bOk*Uluq`F_9ty1RVslO>W1ZB`2O
zbEtx52CCj{JpSd~?)O$Ti#C+Mzh}hbygB`R*$sO|MMtyQzTfXv=STXBG6Xb!?6_dM
zBd0m^lJf4t$Hy`+E^_tq_6~l1ZLO-OqM~9~Pftiv(xOe9H;c;2t;^r{(~VnP?@BYj
z-HHz%K5Uw2#lWEPJjN_x>Xd7<&2m?Dba3cKY&ekk8#Jf0%y+hyrDbIHwKaivca@sv
z-LU{?j&qT>_A~vs&d6{;=g-`re>+nSfb2*~N$I@(?EL)oKR-XW?%BC>Cn#2=?Cbux
zo{zq@TH@c=_4ToLT^Jb}yo*jYurfGQ9$n56>)aaogpYwCAPi?i1zbROty~fdTMK~R
zx{;7t{;8i0JTVVy5=3xhZ-`;$6=Pt))A|7$N)3asHj~;MLjHa15CAO|fViliBNnTR
zrc9r{{Kkz4RyMX%*RO{sCMHJhulp-HKmEmpg+;~1!Sn5EyK;?roQt2IyQ;hW&LU7(
zFz@azP#a|5zhBwLc?W|)HDQEDU~}rXe(%nno-1!|ZWa|3TxePR?8M>2&X7|4RqFY_
zxAXU3ZDQqq^7wJ^qi++H-Cx~IpC3BgEEhE9-Ya7nRQ>%OXjXLJ-*2~1@AIoXpzOrJ
zK&X{++RDGAWQ&rrvUkotE^cnq@^>+|e?A=c^7Gr)|NZ^_c;8tj7bmHDg9`RpMfPE!
z7HC7O#o~jYg2Bed#-!v$!0#E;r%zwBXc1`i_VtH{ho{f^eyEijG_d76(`f0Dw?BXW
zJazVLC}_UuSpJTOY&&=EJbC^4ccZ$}Q~cnrY4Ejv_VRakR)Qu<ik_b0d;IqH_U-xm
zXUv%+(<^E0_V`$@w%CHMit6gs&h30&ety?3E%lx{apJ<eyUSmHJT4!8c9yB^p}C+T
z69xv+n6$KIOiWB&z3i~Q^OHr#_y75H8Z_d{t-q(>;$Ki#q+Px)qTlx0jM_DsmzRMC
zlch|vN<xdbYk^(#sOP%LlV{IPoj$$##*XdVx7Su@etUO!wPo?MjGv#Lt_oRs$#s43
z&Z1P%Apffy8yD{?eZ6eW8Xe#HcCod;zg@kyHac{%Tkq)|vp+S0atZ76$B!3(etuqD
z+P?hVoZ9NlMT-|--C3M&`{4ky_+Gcf#D$<~)^)MFU-g>b+t6SB`kJr#-IB?1^?yr!
zXPdp%dVin_oJLM;HH&EHlMQlnYdaiKSN9L4iLx?oZ<VUt_QJ<*YooXOtqxxwR#mlY
ziT(Z3(13sickaY2UA}y^Td&lrpru`A`S;ey*ZpwZoOZUz!o8qiL)5mMmFxHYdbR2O
zMjM3$MurDYO-)TAA|g)=rp=wZ7Bt>m<&%-IA}A<m%H+w9H(aQ_y)73s{mRR$`*BB4
z56{gUv#+nOpHIA#w)y3UhljH+E$K`<J8S8~!|ktMTwJ{AW{#GQj!xOUKYwaOMMPpw
z=0?fQ2emMr=6syh_V4fS)e9Clbar-r+qh?sjjFmjXfC3$v2oIpHEVR1E?s)lIcR&{
zUC=^=wUL{TJ#=3iwG}kd2^yi@_5a^*RnN1t&8H_yL~YBNd3fvo-|wuKE?v4Z_x855
ze@0fapfW@>=J&U^ps~ZFM~}XIad9yhA75Be(WXn6FHfB^CFOqpnHh$lx{y!KX2pU9
z3ZMzvudlD`m+gD;BID}H;Nx=ZR6xePy12L<v;tzXx<6=W)T-!7$Gxi8x<7yZ)U>kN
z<@0Xq8c2bZUVHQNBG+z{#6v8)aeE?e-n_}h$$9bC*6gb*gVozV@7Njp>tT52_YWu4
z=Vu)2kpwyW+S+K)_|@IY=W}P-RBoDOnq8J^o(f*DqTuiEfAsiqZ9BVtS869snj|B&
z_L7W6!Ga@&`uh5ymc`>^y}MskP7?=p0(6eOVdGBiZvZV(v3M=0c;+am9SQ4NUP#!<
z2I}!KOa?7lNl-M2Sl5VL<bwOH;1yD!KofI*9P$s+{go5k#l{pSDP^8F=hn8|*KaZx
z@TjP%SygjsB!ik?o0m5jZ76>3SNr9n`?+~+rx?Lm$f^0MR0OD6NH79fs)N??1@}im
z1uJy1Oj5?2Q}!T*FxRa)Si}qV6M_CJx<O7Es5J+;W&wu?XhF&c<Psgt!yp%fYA_t(
zWoY8}R36;Lcqq6Kd)J(BRp51J-mF=x&ds$xeg3>ZBO_y1U*ENv#_8)ye@$}+bwQlK
ztAS#?Qc{+rou9Y1qk{vq*hfxI4pd(R1qbU_zXNrC#dIPR<mKlJZGV4fXYk$K<=1x>
zKL^zUys}myot>RkKOVO0|CV~n3L3Xs@nBp2{dG@IPY2B@7#bQ*TGG+Mu{G~*)MEGk
zYuDCB>%X?Sc=2LaPmj*lpHkLkYd~#B-`QrM9wE2^Z~OI1aMb>~y}Qca=bht?WB@0Q
zM?GxWPftz#^x?yW3k#j!Cdb9ab#--Jx*lJ@_Ha9Ye9=8n^JJcFwMpu!DMH)l+to(B
zzP>)(#ihkI#`DqyMdv5apD*XP|MS79zV#G4D7}c@IXBn(>YmEt&~-646Zh2q{`T#y
z_~glx7aJxY%eb?n5Y*@G{Qc*-{r^Bm$HrS*v!5Hptqf9aZEFKfzVC0d-XI4uMlAT+
z>-9#)#-aiO0Xa4b3Jz_FFHTHU7PtNPbb9=>_3PKiRXl9%jys&Td1}>M@7TqA5<%V(
zjmgVfw`b3uuHNeE>f76=gBGxW=5D9y$FK96sulZ1YLeI9b4S+&%0V(j`X2Vv$B(-|
zKR;jJtnS?%%irHFxwyNpE`ENl>OmvBUL~*R(zxeI*ERZ~r8e7|`E|cM?f?JTd^o~$
z;j{fyzjf#t8wXDcSs%AosQ>nk!o{FbxT~wfwQX%<C#6WVadB}?nLT^;moFt(R|GnT
zt_s;`pQmH>Jbr!fEz?ulAdl)TNj*I+>*l7Vhi_b5?7p?)<0G7-pQ>`xCr(tHeRf&h
z-(QwJw{y&7?P?-G_4=B~%_cQJ3P5Q=PEPLEx7+zw_t)3|-uLt8&s#f-m$UK7RG4nh
zj?^h)XE;DyQN41*hJZ;|)<&DJjoTZQeQizQkHFPox_8TN=SFQ#>jkY6@|?7P|9((y
zceGpFde6?<hlg6Nil6nI-kURpjhmr?YhCT{Z=mV6M~@zre0dSb%FeEBX&H&5-}&nL
z`t`rQz81HRFDcpb>dMMw{%}|5qMVoKtlwV=_P1Ty)5CLij%9H9{o3tSUtSd6eZN@;
zQv99!wQ3G%Jw&T`+=WL+yG3PX*B(0Lv^I8k*j%g9q8YPi-(I@dIrI9Sr_-Xh)cvjc
z`RiBKkq*JC_j|vC8a-<xHa<F4H}Mpsw@E}hzx=glXJ>!CoxlI(!gjf!zrVhQMntRt
zRTNoQR~40)mwyvsWGKj-H*a27e}8yQP0h;RDypiMCQ(Z*3m!PEylqwXW`%C_wwS9j
zr-hfBMYJVm9O)1QP3X(jehKWAFm$T^{%-1*=h2DMrddnO@7G+O8O*}4;LOz0YSzz|
zrU`rh{d!&XxYr!id#nBVbh;7G;eBhfuCA*3aFG4$MR$42LeOg1@N+BsIi8=Ly<E|`
zE#uXdmA@YM+jr&ib8=oxpI`f|WhNuT1DSIb7d6g2ztR9|UG>RYPuq3({CWT7esi@B
zOENM%h+)yW{@{vx%hv4cVQy}2D{q&-xv_A;f(1r%1Q{3(Y%R_@0J0I(glzYh7FqfR
zH062n<VjF;ZeGUD;4riJTDDYz-g34zpqUm%Mn*1P-m4Q7ok2q)^78A?&9z<~zCI3A
zTi)21JlE2dfuTYB*_DRSty!VDx3~F%%BzQm+n>IDyViHM*~=rH!k`}Uww#+v@$vEL
zeu4}QMy}0IrRMxw6euq*-z#q)_xN~!`L_@T1_qyl;ZJ8Q2wdz|_35PgTw7j-hVBJ>
zwf@h!m+<$?Wq&U(uS<>0>{I5>efwck;LG#(Q>4vu4Bl4R|NF5RG;%d%iioUrnU87q
zwUF!UVol55L~PBv`fAm=m(QLZ%THinNO*pwVQa=kCEJfjgja>EoD{VsW8tf-tHp0W
zU*GsTYE9HuuV!}su(PvFMMXuIg66;<9Bi)o|M&aWqNiTE@%v(Ge}CKi=<~9rOJlE1
zk7r^i(A>j*+SI}{!FQI4=k_~A-FCm<7++l#`g&K~>jRC<pw$LV&COdYKc`(?5qNl?
zu9a2PT<h{M7nhc@_xIL<#_})j)DB&h@+pUr!J+cmm0M3wOjHJWe0}wfNlUKBRr~JT
zxzo$Xr-UPXQpjRA-o3xy?LKw#<i+gud(}Lv{(L-sbw}ajq~|kDGJ`g5>oSdCVA%XY
z)9LzyD{R^-DlYDQGMbaK|9+nTAG83)>u=UP>vubxd!<Y--P)S1IyLU%G?R1rF$@in
z6)rEN=G;mEWxn_O|L+40w7o6`O^qwN_pR`qZ6<zKUq!{`|NH-c?dMt+KihSVoq=J8
z*>bapj~_p-irTvB-Hyk6prsLxj*g%#bmMs1=9iEA?e{HvJ;$y#YEsBjuc_Vd!ne%T
zpTWjp!Oc4@yCCbpt-aOTbIfKpH8o9{Jb5u_ZNLq?v_H!<xcpolSDQ?iKElAjpm%H~
z<Ld_pn^TKq>+9=TSy(c@zq>1bH~;&)yIedxAx}?D_2w;WZEX#=?VmA2B6Mxk)x?|&
z3mm0PGA@M97iK7^T@$l2NIQI8iG+3Kr<9p7vyZL(Q~ayj?ewYI?{}AfzgO+Qa^*@@
zy^{NzQoBJ-%EZHMo|9IEuU{vu?k95leU#I~HIbXIY|Fj9+D?ukpzPQ8_v`=t{cYXz
z_Rh}WhYuh6%@RB%?9H;qceYvP+gn?`{Qak^nC9FF_<pZ?{mT8F?!8h=k9Lc{ez|=9
zwPn7uW#X<D{P|I6`}vG9XdUc{iOQ;;pfRPBlhwZ-=C@x_`uf_WC1=j~fLhL5EEyR-
zgoD~ue!QUdAW|k76Rxd^R6c9~T9@c~sZ&@Tw4Mkw6WGjeXYkZ@-ob+hK@&Q1)o%>%
z)_gwu&3xzoU$58CvajFw@5f_)-RNy+{=HibTA{IV<3>=;2dYg#BcH|3&xLl2>3+Fe
zen0ke4Ff~N>!MfLQgL-ZQ$h8D{=OfJjEs#-|NJPFwXchbjEt1BELsAZ%se?+eRkR2
ze}8{xAMcZWb!+Qt&`3n$;kK85zuynPzAkoa@^QZQ^(R*bE^Y%k+}_^)=&@s2pxG(A
z+FkE<zu%Yi{HbalD7`KU1f|#PmzS1y_4I7nZ@bsy?X9h%^788!yZ3`MR6U&<?z8)u
zule02N4v%2uk8a(p{<ME-PP+q$Kv9{=j?nk2B~=r44^in#nywT&YTHp=acoidvBpL
zdunRx)Q3F`3=He$1~Z5K{q=R~q)9=qzWL5JTUqz_SE{)p1H+si_m*`BS2AiF83oDL
z{a6TEk_hURY}gPWt``#!6*a4kS9+PKcG!!L$K}hPi7+xSteX*hJpr_`b^o7F-9o~`
zrup}5cJBN;^SfTm4u!)8B9f9THzpsqD(+%nm|`il{L}fBjHmD3jXintWLIbB#pUzs
zRynuxdH(ur8?m?gdzgnuhw*ZD28M!AosWwyn&sYF;XB*x+&nf02EXH=5u2IpYqWEh
z=9ooyuJ>YKVA!zAh(E$K>&lKbDsv&Tm_g<Y3!D}nEaFX-+o1O?itXk31W@pm->(gS
z_wHR+M~BAjPSDEtBSP65R9?QgxEQp0Sx8uT>iqfZkIPm2JU-SNe0iDgTw7BHhEqJC
z+*x%%D{IX^>j+T6>^sY(@Y@vz2907+m9nK_>eQ)AUtV6GeQ!@CXl;m#OUto-`Sr(o
zrLD6;&ReGOxnb(enVI}ytgNh{^6yx$wEG4oh6nW*EvD9|%59ismb>cn^Yhv!CLzhk
z`#@{Ur_P<b_RX6&LH(Jxx8+Kn6JTI?aBE8C0ju(Nb5ve}mTMm7x39Ta%X@gj*|gxq
z#KcG+UIvEc$-L9DL3T}<5^`-i3j>2jaH`w}C1vH)za}v-Op!K;Sa<O3O<@KGh5}P?
z-(<;(gGRrPFMaa#DQFdZV`C#|o+Tn;#<lhF^(P;1%elE|U+r%#4Gj-FJ3B58j)3)X
zd#B8r^=d<WUf#NY|Gw{k{ciXBu)S4ZLF;g~<=)PEcW39Wf`^Af|5rtdg1Z`pVW43-
z%n>0yu_^zu-rw6>R9=34L*n5t-)`q;Us(|d8m51@=d&MZQS7(Bd@>db9v*J@o)lN}
z(N$GNWrgQtwW@D7(?vx^OLO;Uh&}mYzLS}O;rXq7wYx!0-If-XqeqT-Oj1%(y0WV@
zyI0OODtddK?$;YDR;);3%)GH75!|sqKX2_k+iI^#udc0K4H`wzjo!B9y?M!t09RL6
zO-sv2VKtwEmHCAWL3<#QPVEAZA>$Y-3OA{jmzTd=aF`b~vRb<)?d&YRhpRmH*Zo!T
z1dUyb#vXnJYD0$<fR;{ues(r=XHjbV$8T?M-`*a7>gDC-UysYzYv}6wCLiy+I?uNH
z%HHbl-g47t&eZe-O<#wexw8v2)!EQ$@z|6Xbt<dm$%%>HagQIi%U=U6g7=&^ZysnF
zv1#3(AKh}3=g(h%b94G?&&g`L-fp|CSK0fi1w4>5efDf^ef{-GkMG^P_wDU;A$j@r
z6P4Yyl$D)9iznma=7Cm;zkC__%JBbZ`~QpQ*Z+$Ijfda46Z3kZ6eLF7nxDc(gY<t@
zS<B1M_l{FmQ91JOzx}Tli$UuV=T$u7to`w@UG*KPxP86%`@PFkG=odN-z|^-^yeur
z$QbcW$;bI>zuztAOP-#!fQgC8tA;0Hi`}ZYy;b2R?Os#0R{GDk>+0{n{`2$m?ybq7
zR+w>G&%D}ikw=dnjlH<@G&iUdAy%}O_ZnykQgr^_tBE?w%FgTe|EpSgyrr#8OI6j?
z($bQT`|kGK+o07D7cN}To_GA_=JZsFHoy6HZv{5k{ri#3D{B?<_xJbf(fNBzk3QGc
zk9pmw&cLuE>F@9F;f{`tLc+ptlPfDLz5M*bA|hrmF*B=rMn*=0Mz#|Z7uN2-U;lsa
zjh}vVEEe|L{qk^hbmW`QcV|!KW;R}_C3>;DGCn>!di`VH9Pr36ci}OqHQ(Oe&OXq<
z2wDVqak0CojLe!RPf|dOLNql`?z=z3FnLSCLnm3AiU3DP$4N`#_Ev$4<X0CKHfLR5
zxAx1I642<9vGL`^zgHJJw_jQAFAv(Ca*$nKXPX(QaRZtW?JR#A1J2w>BpJOYiRnfy
z;S^Q_x#ZNjbD(k+G}{E4L!9$`{rqp;U0s(prJgpa{+2V>qR{E;>hSAtx8GkExY!Le
zCHC!a-QTa_b3x4&(AF5y-T#hs3Ufw)8p{<`Ra$m-aUVZ^T>5VElqpXxWO&xs>7Lt=
zcv!FU--izc?e5*{`ar`LM`zqkSomh+30e3^bjRjv2?t}4#!k?OJito@z@rHq5$hV=
zTi`pAunw}&%pk_qJfQl_H0w&iH<JK1yB`mjL2D%5$p8P*4jMBm`1Hgx-JkI(3n)Q@
zhjG>%L<~QHMq@x(KZ2)m#h=H>3n4(mQOF}j1jez*F$f(0_zQQlygMsatkBq+anY%+
zt}g4=mX)AIv1`_>>6R=1^u+V(y4dKvyu7HbSyxm4|C%Chqr}3%(1mB^owu!?nOWG)
zn>Rt-rCFxg%b3~uz&jLfZOz_V{M_&Ay4c-E9)spWi=Us{`R1`VI0HZGF^wR!lFmB&
znht0gTjCo~ZBtRP12k;uJI`k44MY1sADW+?o4XpcCVc7ixLsY=o9saA5&{mcjoBF_
zCnqOmRkEV?%<0qKfq{X)e!X5_`s2gHp#HzvJ0>jwHTzAou3Yf9{~Pki@Z!abRWBB{
zgZA1;wiUiLPjCdKs|cS+d$Zd+i<i$b&tG?Hs<w5{_Wb+z_SqU3eAslp{Mi}Fr%#@&
z2wNL<bQ@@eDQL~bdHersnA!PaZXeNwY^p0fru6;H86Q>_77=NF4vq<l5>`b|PKe$;
zye4w<l=<`5yUSG`N&ItXXEA6AIB3@u8?RK%Ma$FDpzuK(*oj|vcD8x;rza<+ED9DJ
zI(%4mn=fRMTUU4Y?rogYnL)91z-i9L6L*iJ4DX!&`1!p3>x1m_As!wb&(6+%zTxeI
zgUz!HliTi9K9~LZ>sQ>fGpF@IHtMB(es=cOrqu4kH)a~A>s9$UI5>3nGa4Hkt9pKY
zb#?cXQez_{(4yGT^>MM;*Vj#*KY#w=Z`0$dJioraejT*h;menj_Rs(S{eJJ|?;joz
zFyZu`ZJ<enhSr$uW>Go0xHlK?=<oltNKn~r3a&x<y)R7r<?Yvj7V$1v;Gn6gxhi<M
z-^N-aBcm<#|LaUMFC77m)PpMYO*eB+ojW&e|Nj3^?<{)?8r@p)0MsLqG)~hnG`uKx
z<kP25Q|8QBvtfh5Z*`8%n>Lkvdg95-&JJpNP692I{rc*v_sp3yy*xcN#TIn=%rtU6
z-X~iu@%v%BJZJ>`=&@t3zTM8(zg9Ih9h|9-NM>&!esLSGoK3|4f8Y0mI?lG$-!jh6
zv;Fp0JAB=meYL;6FxR!sC|o_w5wyuS3fHoMl>5iiHlI9u_9H9H?y|R&&Zb@d^YgQ5
z{lA*_TwZCjE$nM9?Km}S^?oJLf+WLp9I}{0Hj}=*UcW!?tLfpxheIPGDy|-nmIRky
zg~ybgX7r2qGU40~iZ(C}E~SwcbhRB@`3JObl)*p}G$tu_2(;h}TPcpUxF^A&@Dpdx
z`c78&-}c|e(lQdX^uFZ91mSd628J~)4PV9c_y65?=gysy-*30aU;B6cal8~mL)YpT
z??oZIRR1NtytEWFHU%10W@hKJsJ3EYSRkX6@OOHA{ol})D_70}EkL-sYN@LCG>d94
zh6b)S@S3)Nrzfd;gT@;`OQ~Po-)|2Jwir>SYxR-4N>+l_+JY8AU0C3FYkU6uvNty#
zzR6@{(2}^d`cr?y*ZrUcf%EJCMS><AR8|&0KgY$xv*aif14DRE!`J<w8NFSluUC0b
z*Za1yk(oW~=B895p2L;G%nTtKpdK%aj;FX@%!N-+PhZ`d9WHB8-~j4o)%|=bzBT`T
zTx4V<Xm!fw<s1wQrv&dk(aU^%toPKJGgmgHp8j%>UEU&R^Ua*7O(~tb%HP+Wz5esv
z?)Oh#zI<sQCL*!~G~V)gCnLi%&?bsL8Ouio)8@~wzq|hQ>^rf{jNX?X9qkTX?k5Y{
z>UUI*z3$6JchK@o(9SA-{q@<q{BCc{1<e&^Td^}N$YEh)(=sr)koe}w$;r1irJgR`
ztH*fSG~`D^>AO3YpuRIRJ738Dy1!ky{2Uw?*yU>$_}l$-VP@kgIK%@Q><NB&J)!o`
z$KzJDzqb7P@-q0*w+$N%K+Wr#Spp0JY7tM~Nomy_0IeRcsjc;nO-|i>v*i8W?^$<u
zm0H#PvDhET$Z$Y4^oM(keEpw~s^4eY*YA6Fe!jk^mX1!z4KYc{l_yS|cx`0P;BfS?
zl+N{lhtfI>3=Eq?e}JZuRui+75nQ8pY>w0M;jLm|5I6%m7r<l|wi$HQ{?n&UU7BH-
zTyj0O{N(-n@p*Z9xAs&Pul)V|`Sa{oS5|@sziVo0Lbm6{-YvghdvxFTje9@~2^n17
z+_JvCx!Kjx0a`Hk<l)1G_x4t6o0@)IbbRU3rQmH>6P4XXgoKJN8iWS~EV#F~I{Vg^
z%vV=ePY0FeM~@v_RrK@}Xu03b?N35LZ4ywGz?S{{+uNvpH9LibghYgel|4Z_Twh;X
zYg+XsBlqsEum87~|2GVs$}e-=e!5BBx2rq>C5t$cmZ^0*i%U&d*=-ihW~M&n%*&|k
ze-eJGKBv7{gFT}p*EKerQ;XO+^X~<xfQ@Ng%N81N=Qhl+Pg*R%^6oqT^Vsr^l`=cp
zPygO(_`LXh@wwuHVtKpgJExmH?~}C-3ttx#`2OBrP>=i3qeo`_cQ+(9cXf4vHov#F
zwcWdawnPwA2bUCAR#t*0FQ1*8n=M^jT6%SkWpPMM%$ifDPMJNgs;XL5{{G(oO5W91
zSAoWyetmh##mgI7T)g?!>({)I`z1k@g2Bvl_v%A~f)+h^kWg7!d9$~@we@CP{(4Z3
z4-E|kRlU#7&IZk4R#sJIeR*+FOG6{$`_Hp&piYx{cx<e$z5V{M$8~jeo1)gX<v8f;
z>rXHFY?zpsxDeDyUb9BW)Wqb)&Gh+KR|YS?Rm*Ff$S=mgp!TT4Hsb5ouSKP$xu)-)
zJxi<JyZ6<rS2^|bEDD|e{{B8)1=Qoz(C}Efa^<OW=kmUno@oL#nL90%5_az1y?Wuo
zg;#%keSJN5{r2l?i(A^;Zy%bf!YgADAgt!|<9xYx8MqTa=fu6e)nC6}kH6h}H>>~F
zqvy}dZy#^CdiCn06!DIC*Vh(*d3$^N)$D!y_O-qFY$Ob-<kc?SW7D>>in@65Vp;Oi
zrAud77N^ZFc5-qG2?$uQYnRpT-goYOG82y`1$ua#s9pbj8mK>zetzEeTKA;T(5W>w
zHDEtZwq{_s8{^~CGi%nYDHA6qN@wTfgoK4n1C4z!GP8N?`nmEgXiZyj@n_rk!>3Q5
z{&sL_YHI4XkC!e5f#z_6m-%G=@14N`sxH((VU?Je2-+GD6f`L-D@#N~1T=vT+V?(l
z=FDx6r|Cv7d-EnIG$iE2{rmUL{=M7%{#4S&7hhgp-W0VK)VB!?oT#E{X?e5k&a11d
zK`TXFU0pN({rR~mYAt9Ka{Kn}lO|2#*_-YT&Sg)ZJOMRNL-O+0t&82g?6`b=O!c=n
zffW@y-b!>IRT7_mjemdGnutX1Lb2|nVyAS(x?>N3wlHyVb8jtq8MOENz3QUE!i!5h
zCr_C*tLk=t=ZjOI!eK_wMc!+7D?S`#pE_yMqA63RnDw7Lb7o8Smb}c&%$=`ax3sjp
zn4Q0G=X%pJ)i>bof&|?A267-~!$Hs_u7RMG&U5e{0T+&lbC6CD8>o6c;F7Un4rCz@
zM4_bA@^#=2=79uIcA3FZjVe!FgTVE)0jT@p)53Pz60~H%K#*x#F=VMXK^JjEya*5#
z743^-YTyfsjC}b*)naKh@3f2YFJf49N>*@->seHBGFW+phE82PoneMp^#%q81Ho?z
zmf%TNHKzkbe4sWigMkEZnEHzK>!+)Lc7Xi&@Q^Rg_xY+dYpy&x+AX`c$M3rA`$%x#
zw^!QSs!H;OO1GHqrQ7-Y-@ZsKS#{}Bkf^BW&42OlHB9_s<r!BC->FiMjft6)EdEGg
z;lhP|aZFZ%|L@)PF8}*|-HH_f6%{)cPiGWXPAF|!8N6J}+&sLQogcKNe(`i>h8_N2
zzkXe{V#S3kD}$}yNWD2&#K*G6@4?%*Ya=(OSyo9hFfd<;d6)+YC@G!i2X=EXGBEIf
z&T={6BJ*{1k(9JFC_#Z1s)9N!_H}!{y}ex?p1p4E+N*miKR<c>T3cUV-}dj9%T{%N
zDpo&U6Sf+({spu=lHc~rgkN7@FMshOLsVS+{^#!}-+<Df!}>j+x-MP1BqA@r9yF@!
z-Y*B5r+;|3{k_HctgTvBR#DbvZ!Y}#`FU&JU8}!8pU($%>~<DEf72Jcr($DV^;=WW
z*coVN8mRUU3tQIF!69o~wM999{pF49+%Jx8%e%X(rG*7F_y9S<Vso{vkx@|i`nann
zC#%bDaa!=Z@Q56E))=(v^4j|N^{(Awp1XeD>{WK}yD~}DyX3=zgJ#d)-Psv@^ytx3
z=g(i~*59Mx3CjHi1slTF#jLz@C&n|VxOg+jub|evw)SZ=do?vT(5ljHxwlQq-rOj=
zx3cm=0%L%)bMv)zvA474^lofOF8TKO;GR7;Ute4VEm_;zyK~pBtaEcLwe<ADQd3iB
z7k~cz`Re+3`{*5$^7d8N9qW+<ZOkiue2mxgQm?dmNPN70e0==wpLTY3MTLbE+uM)t
zt()!B+ra9esHh0)7wN_AdGTT?LqWr&NkX8G#Oc$g^K5i<&U~wi?vuA)XPA6!ixfXM
z_htM4e->}rWaK$%_UzfmdZm}IS)&8mYFz*4W4qrxo0T^=r@x-)F1L}p{9Ho=Ye}(K
zw`=~Mk8QJN&C0u-^f$V=cr&OjXJutQdG@R?BO@bd1S&as@!i5^cK&NyGB1N_Nzn3{
zckkYTW_|qp{8krVyLK(>;i1+~-@i|vJ$p8&JAdU$NaWfu=l8-dv}87(+`DVnuB&2<
zpv{SsuV#gYhF+~bJ2l0;{Pwn7(2}B<m^q+vs|gbXrcRmi;=#dYDVvH9v32dc*qFo^
zSXo$JJe?l@@4Q&{xjB}g)pMX#!&|nPfLbeOXPM5jEM9iEP^{ba>C>lOy}ehbXa;Xd
zJk0j><z;u!sU^C)TV=!J<JW`E(g5}M-`w0hb>6&noWg1vnwp-Sot?5}`x)L`y?*`l
z)vH^t?wCD$_S>(&XJ&7Wdi$)ZvJ$jQwd(KJ>tBC9pa1%CzkOJ6@Z@>*|0-kmR$Xnd
zHsm+k$vi;?G&E*y9j&RUx&3eJS#`fT0cB;|o}Hb&{OoLV?@6GIn?Ha2$oTu~D`<PP
zl9E!+@##~iu3WLg1GG<d$?Vy2?0hmS&YbaCx@?)(Bv6XIU;jT=RaF%<Uayk*?#@oo
z1QlpO>X9QZyb=Zr7U#<vh`Q&1=Jvv!ot;;Ie0_cW?YRB(cZzi%HQT;(XC!D%GH6-h
zL3a5YeX~t6CxLqRrLV7n7JikN+Q%~TiZOVaN3Z$uqarmWWyP{(%dWnTul+hzN38p;
ztlM@KHMLV&TeHs3vn_iJTIr`7<7sZbmrvTvXaC=CvvWa<=|Q{b*T?NGd3s9p_Vp#6
zldoL4vgFVqr{?!U1$Cg^C8pWa?uHi?eUg3t<LA$npxFPhcH_UlzqeQCB_=Ke&1Gg@
zUUpMfTts9EXsO$Uh0f*sHtMypaW|X=ZEc)9dGXfl>)Wz6f~Ii9#l=}!S#S1!e|tN8
zZ}s<UKR-Wzd+hJuztMC5gT|n@W?#>#*Vos-uD}0}lDz!<u;WoWVzIkQR@!c7F7bSu
zyCEqlNkmvU*}Ux05l&ZE*R7W7Dk?6ltgNe6uikw7MctDVf{{96tt~Bg3g5l8JNEFz
zMCDH(J_HmLY*1ObY?+%_x9i!nXV>=aEqn~hBmX|%+a)BW!(awlg4Ep|?B?b+yL#ih
zZ}$J#<tiR*d;I_2o_m)rEjl?_J^TN^zn~7;-Rq!@TH^6FAMfQe9kA{0><kPJo@``f
zl#|@s+k5KNsY^dTKF;lbr60Fv#pd+$w_2CXm?3fX%9V`k>teTUJUv}sTVLNFv@`zv
zJX=-Ig9i_8idqZWC2)6ZzpVAL&FSaweVf}63+nk=pPsHCo|m^SC@AR7F?L?5CDW#f
zO`SeH`^JXEZ6Cd->%CmR|KFtrj?M3WMm07zu3Ei%_hbKS4&{$KY$J$l|J;arHDiXv
z(xpo^6%`$q`_G@YefxI1UoVumZrSo;?e=?{&dM66^?(-quZ`ZmYTLH3;AK96p`lYj
z$5()ww+EY8+wN^%d@+G>gK^3U0nnnt$^Ld5vo|hUyf}4h)YNIy(#rq*`uaL`V+3f_
z_wMJdX=i3EeDo-(_V?TEYvWe0UAy<~VwMHgFW&G=O<gi)jtpog#m=2OK~t@>X3qvK
zoNaAyzrFVK(W7=&J9g~Icz<s%Xy@pZdGpq(dQUrX{dzcP+^&sJHmm&2ySuwVo13Oi
zovLYQ82Iw#OVFB#uCA^q+1pnm*VNqLxsZGJSE!|XzueZ<&(F`bUhXbm8*=vSS<sa0
z+wi9<Dk`9(fHrR22<k5N+y7hf=1q?8e7o4n%F1m&85tQtP5ZL<_j1eku2`WFsUueV
z|L^xndHeQOKRVL6jbECFm-p)Z`u}SutNUkxj?Y=KB4EB<t<^(oMvHqJlaGr?Nv&#X
zYO;P;xl3MERTWfCp11%1rlkMTnJ)Jh2lMjX^YfUQnL#s)YooW{+WYV2^7&c@1_6<g
zk-r{w>t9(PZ?CGZo_(}SbnUsD*Zj}^mn$zX4^K>72--k7*ScIwUETfv@B9BnWMtNa
zt`1unzCMoauIhzSi${WrJ?@|lb)0vyHt@+<Tu|f<b8%te4O3qPnwD|_wE<_}VFWcK
zK&m<~Bv`V88f6U4;Ke~oCK2Z#Ya<iDZ9<;j;OpQmLM|09FJwSdN(>2zMjUwkxCD5(
zQh4FPB0i872JDSZcw;h!!zET8v^<Z22fXpG^Fzl4OA-v4Xq<jd;-1A^%i?1fK0n+K
z?xZp1=jT^eRA}hwt#dy2{^3K#{QUQPmgZ5LBi4qkUM$YYz_5f{T<^uFr>A9$^78ZZ
zfBybmeq!fE@VwN4gq$LF1_lEO(5TFT1khL=Lo>)!NK<Q6f>4nBl{bC;&*W#6^;`x9
O1_n=8KbLh*2~7a2`X7)0

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg-6.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg-6.png
new file mode 100644
index 0000000000000000000000000000000000000000..5a9e32a2fbc2758f328f0224ebd57598d416d9bf
GIT binary patch
literal 21063
zcmeAS@N?(olHy`uVBq!ia0y~yV2S`?4mJh`hJ9%>?l3SguoOFahH!9jaMW<5bTBY5
za29w(7BevLCxS5J3j5`m3=9eko-U3d6?5L)t*<%%_22)GzpL%vOh4Q2lAqk>y2NzO
z=4qTK`(Lz|^jxsm>b7rsu(j~dxk9q5+v;k58E%{z>R~b0c<D4}PE8-#)ZkkdIaaMX
z#@`OV{_QUR-v51?gnsq@Z)LmV^xmI7I&Z!F`RCbnZyx@u**8CbcA`WZ0|P^X6n{8B
z0|Uc>y8#J|3=A`Rn7A1j4y1@gFfcHvEk3}+z+fQBD#pOja8hFf0|SGPTO%t2LxK^P
z4g&+j<iJragD}JvY}#bxJIloL;K75RzJCu737N8K)24IPcPFWOKY92t@afZ+FIURf
z|Jiuz=WO%*u<!5giV6rQ?7q9MrG;hclqoTN?nRpV;54!0-iwQiw`N_{QdLva($VqB
z%*>RsC|F>Yb7Mi?-Cc7(N6kLFZ2A1UsD%p``n~0qHY@pMWo;c@`|C^K@jhA8`hPWl
zpWFYxSbW}g`TKpp{btUbnPxx9`zFs}gBV*528IV#x3}d6hlEU-G<ovW88b9Itx8`_
zu_}GFB<<|1%*)Gsug2|8IVoiO<3aPUN8S2YmU>Sw{$^b8z@hf*)$mg%PX;<TG^k`=
zT;wWcoYr$~ZS-=x+Fvui2k0FWQDk5U-!WA?{M6~w-XA}H>@$;>mp^*+Xy)l@x>gk*
z9<bhBzGFwka{u{uuQx7Qq?DSPs%d6+EilIO(u%;vA_4*nM76_WZaGKrfRcUqjyG>|
zwq{@V`}+ENc~*Z<Pl=4Z_+f)9tHbqKSy@lszaQVs#(Sy!e(m#;bJyeR*LHPrmA<`o
zb>-dLx1$9G1#j&vUe4*CB)jGy6T<_p@PGh?-FM@b-p$*7+JHyas$|8j?7x5iem%g<
z|KeJ7erQ0zgl+lv*FAZX;_B|6eY{VWi;u7DOXB96tKL43xjdm%5aOasmx6x&_z{x%
z{p;6Kne~1?K0QfENiy;GYro%pb$$K(sxL1VS{6ThF*Q7{aF=`O-#M%McXfbrb@z?^
z_5167y<C2}=)IcnEDaTvCu@%X`SYjb)s>Z6Z`J+hmB_5`eDNaVZpmd|zuPu*cDk4T
zy|RUWHK-Ig!1V3?{q<pMqhh!HzP>u#zxw+-+w6&{+i#z@;*AIhQ1HyUx2LlAclOOq
zON)w&=l(L_Ib3-D{`X?T+6c++JB$n)8ct7*nHv}u7M3e7C@6U9?Ag%5!i~YdudR(v
z-F#C-P%!ZEzi)4EFJHZW->r|O%l+m)dHQsz{{BCgUhetysVFr)Jw8M}3{>_s9KDfa
z799WFIOT*uXh?{Ls_M~;VPRp*wrnwRb#=8ATO}?grlqd#K6UEUzR%~vwycfa9d>(r
z{`Ce%W|>?^N5@x}m-ibP8O<rn^Y`};_w?*+<CColysy1FsY`&NK|3ZTWl2&}l1b_*
z5m~#M8yhEA*VXL{3J#Wi?mN#W^5x5yr%s<P_AxDcea&~Sb@?^<e;?RQGcGvX-ku+x
zm9;8rYt~ZD;AIwHjnmJ`xVpQqcJG%1B~LyXiv^XRpRKI_|L@i9?fGl%K0gKfr8Oqw
zRY>sj-w&oO^`4$}tVi<Hi4zwtE_N4{lUsM@jE}3kyLIo`!-p$Bz25ixU2t03GP_?d
zl;>I$I+g8?O+MatRoLI=p^2-8=UnUZu&}UcYQD3Ue0+Rd+rS{;<HwIx&t|5dsSfCV
zu(*hUVMBwgb=ivS>+7a3Jz&J++?JT}``g>+e=VeEG_!CsFmM-!HnA3OJRu7z`&A+s
z7$QzQ_1X}y+XGtWw?-BJ`tow~w#|A6_U`#|$@|vU?CGo98Lvd9y>E0?dL|_ju|jm}
z)Ty67d<dwk+ZR{;)^zW$SF3MrPVYZ;`gH2%n;M($9NGPT-|ChYmc2h7bz4<_QrW-$
zfa{_itA0l`w?;jD`Eq6czMpP;tG-^^n0!1WFi>&#-F58pH37lPd?xPSzu#}ZU2JN-
z=oQ`iUzg{9*}ng;@AkW8vukQ=L*wG~^7He<`MDXgWbMxuM9!Tlwr0hO3oV?&SGHz{
zuZ`Oqb-(`q-d$yHSE+hW(@<1&RQH=Rp}n2G(_Oag*<xc*klFuv$bahO$&2y-K8e4*
zxA*o@W#(66%Q)^bvx@0y^Yin+y}v*H^|iIZm6bdH{dsQxy3hJu!0T&kzka)&pM9W#
zvFiWd@3O99ms?AxFJHd=^7Z$7zt0oXi&?Q`iOSoXn~%FLW@5OW&?PXvH&H@MPw!gp
z_Pfs_vafDV_xHSXa<aOpfWQJ)Zm|;vJfM_1>B}K*{S)`^$G0VZuwQ4jY}2MoD^JX_
zC|u+>*J|mLCn=#}VW4EP>)o!`F&0iUp6-6XFE}D%#_INm+w|NY9ofHpYd;J3^xm^+
z!3hZqKz_S)Dd_3*=db7g|Fc}h^4jwsKYzY#6_2|hTYhI@zuhkne!CwFlutU{ef09>
z$~$*ra&K%nc+sr(S4pqDecb!~|M#Vxo#i^|DcdrinTyKa-pahaEq9$9S3;&p#Eu*-
zEiDyKe%mh-;_7~;va+ybyt}jW*Mnw$70-M3?)kZfm6UAR_wQHs-%qFY*U6aaf&BXQ
z$K(Fh<?rvEI(4dO%lR3G&Yhi|AT1i3?l}Da_g7R@bg5%ATVP78+M0t!{2~zsXJ@*e
zTe@_qmcIUVfBU~rEX0I`7l+5!hPwC5UEPv-c}w11E6@MoDL;Sx%DTA7_1BNb{i)k;
z#~RheNX5s;tE#E3@}F<_>i+)yplow|<9+c+OG`^V8BM)oGxwjjt^O8LRJ6&-*}3$3
zY<XY`<JAQRnl#U?*?;ov+0dMvHHQu#zPdF#yjRlL4HOb8FaQ01fBnzT&r_#QU%oPU
z`Mj+sc0HSw9rIISMdST_k_-3jiMh1izGi;SC(o~MZU%3^U-vt*driOnzleU@Z!^BV
zyBqyF`Pk8&&*xQ}l)eg)wJ2~fo9!DI80h8a7dG20S7VbNvyjgB2S1-o_P2Za%5g!S
zF^{vHoE)g4`~L23Xkg&NK3VHkp{v8Hp3g1+a?xG>qybOq>ubK|_bL|8GS6R^dU{&s
z^>wizH(l9R`&;Y1L-W?TmBNP}9&QiaUsqdMRkdo*o|t*_=4IX7v~=CxZ&7b=Z}%^L
zb|$c-WXr8BnaVG(Grc)6QTf;P{r{G3Og^rqp>g7<e-rn{yt`IQmn{QTrEhO<4?o<-
zdv%d3cj=oOf$=pTTjMI9ih_K5@ZiC9a#?f30s<CHnIckIS$XpC;lo!RoigAF4GGD3
zb7SKfp(|p{J6J?TMcWc3+zJaf8fIKjP`0tT^W)Fw^RmbH|9mF>_*V9M(^)2&Nqc_1
zTHW_;`@O2u8*b*fou6mh`{>c5D0%a&XJ1}k4!y-EZ<n(r^YSqX!=#qQYuBtf^YOLs
zY%@voyCst!zI>Tk^Xa6z-}Qgr_y6Bp)7+X__xty}88b3&<d`KNYT<ONtK0YZNBaEQ
zG#6J_N#EIKrN4If&$_*@cDLfm4`08UGBGjv)c*YSOKMWj+uPfB|1w-J;Ul={*tIp0
zi(g(|?)_{3-hQ6L7tHV1ESApS6F70=#7RpwZ89o-alui(=0jsmP0f~qhfbilon%t;
zqd+%)U(EXb|8_AkF~xjV*paZ@Z|<dj`+qC;R)1f$VMD;AC-2{{pJ!YB>M+0kl^YwA
zRsY^ES+C;i?*95=yZp76mzQ5%A8&s=OlH!RC7zRS)pJ~#aW<`Z&DuHU`SXN?gr>}y
zvu1i+mFMs8@28(lyL{IC{+W`6Cub;?@QXz3NN7uZ@#Ev;s((M9e|@w0eAc%&H~W%X
zTU&oUogOdqy6DvD)1m9*Y(vAsR{730t9rR~`j+D7ez~`{oGkS9@#(p>JwN{S`Nml%
z&z!lkA@T5)b+OhUFD51??s`72`peDq`I@S#uF7sb7rI2X=X9;PbScR5(us-6rH6UV
zH7qP57Q6KZd3th6pS)%`Z{EDVa+dS+?dL0T?{LU5>Ece?d{ab3WC<u23#<7Q<S1Ac
zKl5pAZGAZ{I`1O8e9eMpc781jiyI#q&rbr`Tv=K9vR%He;A8LtwP|{>tJ>x3A|_6p
zSoLJ0`;*tNSMRO<{_3px{VUb)_by+uM8$WunQvR7hOKR^*=*nSd%w;4^XHF>=j!nF
z)3$Hl{_lDHKlkhL^|qO*vL7F|%dgt9C8U{+cajRojw>sJKYjdo@z2lCs-7oLo}9GA
zU9QqaQBko^>Gj6ra+e<*Y~Gr5l*`rKefJy5S4L)1rNVl17r4v~j*QHdXiNO_`~H8k
zs_*Y|O>%BrsCd+=&U4tHr&rosidWjq<j~>6y^oLgTgQIyum5v6<Iawa8%thZijp_h
zJ9k{ZKF1{M%88066Wx3ER)4pW{r%xEe{bI1U6N+A&(1K-o)#Dslw|Yk#bURFgaw8v
zCj^xB_0LD_E?Zl8J+@qunVrwXZ;r*oMavz0Yrox0Z#$c2oMSfIFzE<K^2bL<({1$?
z6(6q2-ei`4FDIt_Zt1bD*W<FMOq+J?*@f48jI%fV`TMu`zyXKg_<#TYtvR?VRV8AD
z;9-LliMDn7|5br1>Z&gn-M@mWr0dtigO~YSTobw3B=Hc7tE=nFozLf8F1;SRe9jyh
z-G~hijg5`3uCAWGTAuNF;-B}{EZ5gWF3w)J(+$)B?{~G_EbD%MU+vW$g~`4%ja-e>
z&xK@Ute7-;^3^Sw!65Bxqql>isHv&x%g5vL)<U`w_dh;9E-ECnXr65~s68ibo_EDt
zfA5l+#_6kypP%F6<eaDi(zx7z{<=viuCA_`Cnu?9-P*FUrnWZrr$(t5=d|h#l5E^c
z0ee-wr@a8Bk=XLPOQZAmhR(GrEwcJ|H9TI^&@k}!w%p5SW*VC&9%5O#Y?+p(rsvL`
zJ3oE>I(7g4{eS-c{d&IsU+}|+5A~{quDE1ouCywDx28|lI_v7HP`~3n_iOx~JUctv
zwBkd;&mTWBPEXU#y0Kwl-Jg%{YooS$fr8}n^8Vy*wky1Ci7U$A-`n+S)#@*xX2a!W
zzO$^$*MVC5px(}-Bb}hYb8>c8_3XF%wE|S7`p&Tke0;38c+28vWp8dQTo=1rOF`kl
zm$lhi+S;K(L5tqr-oDy<y56#T(&@+TB34{`cXxN`@3-5t@9(Sq_2={XtqBL2a&K?*
zW#^L#I6Y1G>C>l6r|Cv(X=!=wE_)l~=GJCoYx{Nj{y(mZ-Fhe8%?rQ2E*9jCzi;#F
zgLjv`jrr@b!$I9|&V}stdzY<Vx6A8r8*g!x|M%PfIk)HB4Ep!)U(~*uoxi@lT@9+1
z0vEfzy0&&UsFmf`E4A~LV1c0Dd^=r!etu9*ae29a_~~i7Amfi7I|i!5Ce__FD0_Zx
z?yq;d-(T5Xp3f^`;4taS8RPRS>i+(Eb#Za~<MUiu&(7FI*xA`lPnBP@X_L{ngR5Ns
z=sIj|YHl_yeB{E)#-^pB;&OSp|Mi2-?54@bcwAjvR^;E`7qzEi<DNZxwq#sXx?A)4
z>@55Gee-HQd9t#yzMSYTck#?jV^Mke_0x2tcl|01VCI!F2`DJoP*hx8`s+(3s2uq6
z^0MFaIWzU%-P^lc<>l-3`^&a0&a(=Z*qV1Y%KU!K=6lueZDp;?d?uOX+%ULX{eJJK
z4<9c0+y7ni<VgyspLpK>|DJ!puJ3;}GkxC0+V6MO_4UK%F$l4Wom-fAxNVkEYS+K}
z|9{tm8qk0K{Q2^I|Nq$C<?q8{V&>$S&6cZrp$IB!LHT2{ns3R~(D0XAug6`Uq8Tjn
z{ULka-J)mTSLff~ck1lft7m2!tN#6U`1^O)X`p)Hyj8Jmw(YBZtJm*~dVH++@+{Nr
zEv2u+JTLwF`dU<2c=7H0{jvFbKDJ$3AHROW1OeNBKOT2=bzS=L@p0+juh(~1JbBk_
zyWy4HwS<Rz`sD4`EuUBA_4)bv>pwm|{`%+hdF#H~9}nA4ojVtnm9?s?ySwzm14qxG
z%gcPXR)5cnExj7LPRdO0;=jMYukNib7ZnxNw6u%_wJlXFmvNu}vv}^jdF$NeYeWA3
zIBs8ZT6g=7q7w!eR|YRPsrZl}*|u=U4hv8-tNzbp`Kfc}yxAi5dF}Rlm*oHdaF4Bi
zyH!tSZMDT_Hf;lg3tv<=EL!B`>gu}Y;40UYofhjCEKoQ*$1>P#w(sX>XD260RJ~fc
zJY;`e?bp}W{r~>@dU=Ln@|5Y*mzUqGbiaA?Ca6BtT=#0ngb4zB|9-o@>+iSQrnSFH
zK<-skJec|M?Yh|AU!Kj*UzK}%TaMK0w3?clE9>L!L1QVAk&#jc2@PrI=e^Zfck1-%
zr*Ge`6;yWHQL&`KbYjB8CRzKs7=Qb}Tat|rs?V<pVq|3Wd#^RQE>_{~`}gk;O+4fy
zU;AZZQc_aMpC5&Hi_hCifja-&a#w$Sef{;{@At2V$JZ|PxBI!|l(kP_`QLBvOYZNh
z-CF$IulCo=<*zO*Z0>e{cJG`@grlS5bk&1ab$={4!*rDn9%AL@;=0r$X{_@1zTP>1
z+pkj=&#?N;r_!bU{nGaQ_}sg@LWR}+t{m%?-kNq+%5(p^i?1&&?KaE3wWLqhdRN61
zgUd6^=ibaQ<CQdWu`YXa;raY}zed(846I^VPrkcOTfTgG+L;*(8yXny&3b!m-R^f*
zd%s=-l_8hT&9x4Vj9lqA*Xre})$4+q*?41YZDQEch1OWV-xIt!{rolS_j?u#D!Z+S
z+gqh4H}iM$;=u0?jjdAF!6}thRj+QQ&kx;O_0=T%noc-B_w>kwgau5@%vbkR7Kih*
zZUr?WKxQ!W+bp=cIz0QvhQxJpLILUl2@e;su(D>JnxeTXeEqyOe))H=9y09c`Ss=H
zV!ha1A3S-swy>PG1t|k{%KhzrssuMT%;x6fyOut`R!v@BKAfL*g|Wtl0#A)~4cg2{
zL*FVDuKEoc*xVoh>hOJJ1`TwAI=veNgmk_;G=axDg>)DgbU+4AfDCuCtQPz8<+6X&
z_Pn`H&dyJtKY#w}Ap?V6P-f=JPoF+r*<W98ntAETrZ0|7PvtZ=WF6d9`nu%*-|xGt
zBp4Vbr=+B0JUKCOogAA^57TO~mbNypNrw&{TDOBmTVMbD$3Nkd&ds&nUB#idvF>lx
z*LQbsUp-vVxwrcJt}2eLdFSWZg1dgUJyD@CF>BWE|MzRt|J`nnLcRwkTx~LTojQO1
z{8!i4zkhV`ik`mydhK^JRaZuCPFp9}<o)BvkC=_;>wbJl4Ch~Xt+KLGQ$yp#)x!mx
z<$ul>MMlm9MRZROkF0G~$is&ZXW3S7`}O5z@Z#S`jvvpyxX5+a=X2Iy?^VCIlzn}5
z^>n+RPbO<!zf<@7ZPf0vx2nDOvmjv@zV@J$ZPk{rwNXot9C2xFZPnD(^<`$~yVAxh
zePwO*cJ5ctPwVf$GD+2Ym99gs+3cuoIV*P-KR;!_<6iyw*;)NJj;{njBg;BRL|LzG
z%e}p&=4X+ry1KTZVc;YYY3bFV^!D+%{PktNv-MWYZ)suam9veCjEuZG@A3jiW?p%_
zKZn@k-8cF&;~xR6d_QsCymfbXmuH`wWBJ^6`=(7ns;a8fP105`K5!_tbmzTeJlUX3
zx4OL{DrNiaSX-9uC29waewXUqym>S0`nuSurkf{DoY?pHc~DHunv;{&vu|z5%(}JZ
zrRDjvXU~Q@I5aRZGpBC9{q=~j|B6M69x?4RF69nx*|A1r!#W+2h;T73o$rAG0R`9Y
z`|rN1ci5oh#f62%asRIb`-27)>;JxvKVKOa5iz6c`@6N$c{?0cRaK*Q7A;LXKW{Cl
zz590i{e4T)H%LK4Dtm*MxA)V>kAs)qy?*_A;U24<J9k!nJSx7m=4Vl5b@lws^IN&a
zt!izHo_O@iT8Duu0U=>w+0L2P3E&~GIrHbw_nT`Ky7cdplau=%U-k6x2>AZ)Zs~d3
z?=d0wLA_U=!xqmE{n*t38Y$}DIfZ5Qk|j${F@3tc+<*ROsoi($u4Nu*YGU%dn!k8M
z-QTLU(cAr2hp!K-tJ|k?65In^v1Loh&!0cD?(Epe#LT?<?e5gm(<UuZcJG^0+*8U6
z8q~~FQBZII6`Hxr{pJQGCMIsZ?&9K-ak!0FOHZ#X>czg&*I_qv%v@bu=6v17%+7Zr
zZFA;_2M7J$n$7lQ=a&naZI)|N|F6dO*Neqhzy1CD{l534b^Ct3`fL{+>(t1~(9pUg
ziTBzBMdvSnKA+cCRds!Qynp(a*XQ14W@dJEbp;g^Y*1ObVMD<FKcBh}9Xj;n<;#_~
z^LG2L4qv~nX#bBN6|HS;S--x#e062zWR;aGR(ROi*?|h6%R4uxpPzO%E%^Vxzh^5#
zPA@pX#BjhVCNRO(%}q;9%?;FIet5WD)_Ujj=g+lGO|KT-dvbE})OqvP?b&0~+S0PZ
zwOb4{a543_s*1{r$jxcHUa#9NlM5<|KRi5aTJxizwY7ESmMtNx!`5D!rW<Wi_U1-b
z@TOf|pwZlnmzS1?+I1Tk8wX#!c(JcI$85HZ&AI>oc5D{yTpP7Ds9(-@OWIi}Q8BSo
zhYvf;T9sUQy?+0?cDbq(U!E75Lefs?eAkHeaki?es+yXbD{mDC1qaU+TKnqF?d|Km
zqBAm9Ow)}nyO({J^|lEEXle))|J>k_!imt5keh*_Td{D}Z%~oR;N#W=3hE7Pr)^;+
zC1_|-5j>W|z!1T~I;|R%<QNX5fQJ}4IHy%B90boWaf&f8h&ewB`Ho~TcOoyUyc4)Q
zWnkDKz@_v30BD%M;UvgnjIz4z$jW!hNCqF0!d;fr&V>)A1-E!l)0x=b-u~zB-_U@7
zfTtDf<MxWk$-Qfu$jH#3-54zvkv_+&)T{XUxwV)4RQVY;tTN`Dc2oa~-gdnWN=izg
z(F9R3v0YUf3=9vr9&KZtb~f$um6gGvfq{kBL|$*#($@a^<+8uFj*id1efzTR?%KM{
zclNSPn~au!1`TU{zgzx#^Le|=zUFsT?CtHh=H3qTp02ldPCpaFjzbgTuGZ#7CwK<E
zzP8ph>&lAH%OVO33ujptFZ=hQ-9F=B6Dz1k^6%UB{h2>LJoI~hGso=h-QD4ahK8Uy
zhG%DIFF)2R{koA|?!xx_b=5oN*%=tF2<F8mcwX9)c{wC5Zrze4OE$~h-<m!B(&fvh
zX=fyKqqq6++yB`R6dVldY^{yl>?UoVS7K#vZXT{3zV6CpfBUtCkB`0l`~Cj(?c28p
z1qWw8E@WWHI~SV0;nb;9CYhI1SlQW6-@hLp7#Mi!)Tvb;e>{Ht`02xk3wOWY_j}E8
z^Za{j-re1;t)SpgwmX)SlT%Amb7i4@*z<3!VXv>P6_u7=J!J}LP=Cj%k6W{^pGw=T
zX=r$H<=>6R<t8UeoH}!+B<uZ+jf;1czJB&&m*-@)to!@+etUbnyi$&Vp&`nk>PrTw
zySZ`WMo`%b>P|H>vuAyNc2>NmUw{9fAW%%tpMO8HKRrEtwf}rOtIAJHo}Hh+{>P7s
zrAwA%ytuG1&9*IdM{T33C#XMES@|>adJ<@4Sx!!li<`SREC1S>nNnssEB^ecS^jOp
zgb7;TGp?+d*e7S3^=<(pL%2$~N(88{`swLu)ADyQXXjdng9cyi{{2YanswEy-~QhZ
z)_z+>MaRYN{b84v`JS(;d39wasK_<TyR*VD`B=uaHIY?6pHBaJkX=3|Bq}X6+@<mA
zuF~wg_5c5Rd3vra)4kTJ$MogP7n|(ei4xEEn(6ENSATm`SoQbIWq<K2`V0%oL`6h0
zj`zv>t+%cI7W1txHZWmr%+8>=xVWzV{_-t9fBewU)ANhomUHo7Gy8e#cVE7gyuG(K
zy7<`{%hw;_Gi_mvjEsHX0vEe!DkwN;hppLh;C;Z|f}?Mq*wy|jNli%!iR`|*DpY%}
zU2RnL_jjSczrB@xYya=Z;yzjHWnpWhW}3BKxDar4ef<3`zZn_y<agiI+kN-lm9jrS
z3UhC6I_j#tt7g;Y%~wI)W&6cS%F43Go12?g@7=d!N5o`x|7%+^FR$`l4;q*b4G96w
zhxom{ckf<TN5_S8bFKA1YOZ<O<*`9!rSELBUH||6{`%|ndh4YT%<Ozq5+$NGBs5<B
zdGh4RO*eCPJ?^v4s$Rj+pgludXiZa7lh)BCU$Q4=O0@CGT9ur8J-_Oe=Fi{1U$3wK
z``YsNhMPH8zZLJZdnL8qcf&ceRP)?hCc3e^LM$yU!BvW;jZKVir^-~=S^!WKdU<vA
z$=R*~jSqf4Zy#P&wd>v9?{Qz>+}ymaosYp`t(LCt)c$_|sb%r;@y9>Ddh+bqtE1xa
zS3W%jbxmr|*{OuyKELzVitanx4p>ERy|*nl`slG^Stlo{`W+Y7jasrT_qLX<u5b3W
zH5W~<$1KjgyzFJC`n(lI=U@F3Kj4<fz_9tsxAP+Q_V#nFN>_RPJ~>%k_W0__6DBNp
zcX#*edDZVM^W`UjW+iK{xaLJBfSO^8-TUocZ#>#9p8fIBQNLU{Ik{POwY!%2&#yc8
zJ8Zk?;r;)<uJ4xCU|>-D{qeZ`*T?<#R$D_uLgsv)^=jD*E-o$=&$F}5?O&I^zP|qY
zuF}_As=j6&-~EpFaDc08tCzR;)cNz*AM2F{^#Tp=Ry>=x|NZh^cCWOy>ug|PSg~5~
z>*L&6rrFEV&d##jDk>_PdAv{dYMij3;6h$$vlTmb+{j#rm})G%_L@(|LSgpVWe1zt
z!z<gG+4(`^ptJ1j_sP|M2`qhe#WOB0?$@W&`lcx-1di`~`t<3kbLXyYNIb0ftWfuL
zSL72u28MHaCnhMaTCpO)%c~1C3=Ntb@9OF*+S9yY!-fD$OUqSj)=W{kTXs7)YH!un
zYilAOf62PEr1Rg8<Mvr+XPJU(dKFJ>^O3i6&Ah<%XiOh}hTZ+YO3KQh{<~)IvKJp7
z9_Hfa4vvbN_388HxprK6pProb^7jvqi<{@<<aA|`EBDrni;GVE6%rD<vL@2ly|DDy
z9Lr)6S=qI6wpAHtW*Ax(JZJzF-T(gn1`Q)TvsvQ`uBkzZ5!CFQI&tE{mKK)KurMvu
zW<|VJNVrPbyE~DQk&&Oie+Lf>9Fxx1u(OMMzvpw`%JWIA;3~aCTS&(f)HIqjY0|2k
z6Mv&uu3YKY8CH7k>(4!Rca>gVKEJN&UiFny(DIUqj@4W`GrBdMKr2Z=^?rh(ieITb
zs3`!e*RLh)WC!)W7$$?|6;&eMHG&!;NDT-`n@eNE9p>N`1_lN-P`!U3$z#qdJ7kTZ
z`6Q47q4G{18}2Y8TZE;v2U-r3U?}2JDvxBa6KH^apbP>>)r=lc0Dv1^kUkfv--_%)
znAZX#BWHqU03SR^`1$*{ww9JxWMt&?z3(pj+h1Ma*eoI>q-1YzfAeh_Xz*>edH%Yh
zy!CN=!3#u83mzOe{n10u6`T%tXyNbFWvxGb_UzQ<%Rvo-<)9&7_kOuhH@7y>I)ts+
z*H^{wuk(AHadXqsXXoZ>A2yJAdv><@{w?fV6hLjzbp_B$ZR(skYmOXo@eInzSp!-G
za$LSXX0}=Gs&BV;?65d`^r+?5UTJf`+*?~NHnDQg;nMNUy0D<JjbA?RpK}Bc$o~;1
zX0n`qbA9I;oK;fx7oNJhx?R6stuB3YW8-GI^=sCIczSyFzKgsLitK{c)922G?Jj!@
z8bDh9?ZgR>;~zh3YH3|MZ~uSIoH;VSbFD%_Lv{1*YFEvfK701+h6V;!HnvlF+h2F8
z&jS@xmi$SIK7vdP35Hw$uG`<##B}rRH?6m2yJOoDUtCz|{Cw~63k#jMf+j74K!YD;
zZz6o>+ueORXTt`AukY?go8KvD_VV)DQuNg8>^$4(>hJHa-p=2jd+u-q3#gAI_NdGC
z-O{B?KYjeT^3uE4uU}i#*?D?;&N4`B0<AAl^`5q3%^IJlPoIMF-{U!;PG77sW~Xn#
zfmN=VnVGLHE$v?2-WXM|j&)&yzj4}`g0BJr+@Pv+u{(b_|KXClx;m@US0PisO;-1}
z>YMLhQL*Fkb!GRykm-7{Uk)(yXB_PkeZJ=%XmaFGEBDl?Q(ZwT!}R*SeK*woc*y?u
z!(o2E+|<<6=X;LjZJ%E%wPC>mhoH0D13!HGcI|HY{k2P$sLZu0eYNK04N2YTZBtZa
zEsK`8)kesIyqdS9^z}7Rdp7tsDDcmmIg_=%v!mle8?SUoOw5}t7iwQ$Tf6CIPFF|A
zijNk4b1W1O8-#>}l$>LF{rmm?=_;|cU$2_JJAA4_T#<o6>`_;)R2z@vqOLBkrAwAr
z+&XpY)Rbw{maSN!!OG6=J&B8(d+OxLi%*^MI$rtz@B8}Ici!LFm|XS!ZaHZBLCtrT
z$FHxkZRy^Z($3G*oqcxMzrVlZuY5nf3e@%3afrySp2s9M9*G5Fx=}Bd&CUZ2oPz4J
zEn7@PMMNyt?!UD$xxI~Fe%-^v?V!f|(xpqIwq{M;mUDB_#^mF1Azo>z&;rv=EB)oA
zrLzo^+l-8iO1``ZY;AAXh7{F)-#>mRnD?ivyZiE{)YDrM4l;p;se7eNFP$~Nzot`I
z-KzG8-|DcnR~EbTgBstht*xNt8tr_tUw*w_|9WA&oYDJ4-6l}iaz)(UDladuprD|j
zt<RS%TV|yib!okPw{hN`9iQ*no0x>0o~FC|N#Qk7u&aD>^G&!uBd;ClSbZ(wU<_E2
zP@fOfrvn8ftn)YlwZsS42%r=pc1UC)-p(Uk4MMIuKy?(TB-3eOI&Ev<$^lv(395Qf
zMhs!S%xM}M_~dL>_}l$-0kvuWeOYe5(zRP`)tWU|^!NW+#KtRi;_~IoSDjfH7<MG+
z%~dktaejQfKOEFY1Lb6S`?#GucTQUJ=uuK@TidIp)8mSs3NSLPC`}L2*&Mf`R!?`s
zyy|zBdp{iF1{DjSWe<{V4=t`OaAXEeRe;iTtc4Q;L&L1%mm&`jwQ`$gUD2@pe8%|K
z&*$@3%kcB_U;q7n|9epP^nnzp&eYT004iJZ?(Pb$woy=UINmS6{-_`$!-FW1h<68<
z2DkXmHoMx$%)ZKYU+wR*)|Qqlk2)9_81&|PbFZm>zc(B-1^eyo?dKWR!Kw8>9=3aV
zdk6dY^sH`UXK+|+T;2G)RV^tsHFcIr=A@?P=BMx9uV1l3BQ-U3?)P2(_J2XMvq2sn
z9e@7(N!fneG~ob4?!7%f*F4X^w<q%M?(%R4hlV$0yM=^=LV|*V9>1S_b?24?pc#Oa
z?YBh*1s4V`b~~B2SyNNf^X~3)&;l?KIk|N!gO~3r>R@1q5p?U9Tg%EVreS6lroZpU
zqCI=|m=ruXkj1^!xTv@ov_=xt8=V>+ckxK4aOsZ^iC<q_be6CCvGDTFn>TNQmXZ0*
zvswA`^K)%GyEsivO)0CA7f)+UrWd@FTEoUGmGS!8S}#ApYp14aKYjgrb+5EJXjTE#
zzgF{`qhW7vAI>Mp&=B>s%M{kFBdG=i%}codzOphHG^Lt*XGb6-BjcncVQZr@&&)79
zb?Q{me7jn`Z-TnVpUO{t{QUXymzS4oTU$q~s;X+~>R#Rd|8KtS$0Ncb;S3B{ns6?a
zOz3_0{P}axn!KpveX_+{Kocd}+TI&CZtQ#HHOZ}4YH33Q!`g_Ak1oj{af*pc*x7vH
zLI7yN<~lhxh6BD=zWrK_xq5Q`qD4x7|9n0VT5)w{WiV(0X}Qa**X#F(xw^LQDtr5?
zWbXFu+d-or#m~=i|GaiZQt$tYIr;nlhOJz=^49kJ`F(P>ueRJ=@#VGrrhfZ>H@5uS
z_w$)FC=uV<kl0-J>!mtqK5Ez3Ytg2quR==S-1xZY-OGm$4@M_2GL(inIySy3tDag0
zA9wwHFZsoVg`lx~m6dUOtE8;U)-3a%|L#ir*|gQ$<`?@qUvt&d-2hs7z%EzeaPQtd
z(71q<X;#S7Irqh5rYBup6)I(z)Us~ZE3KnPkFG3zeeKlg)0Y>yc7v*M&<c=dHr`bq
zYm1ADo;-Av;9%HMvM!=IG%89<UVgsT+kN}?^*w$*dCHU}oWg1^4m2`HZA$4pb?Ovo
z0Hx~dE6cl!ch%`F>ECr^DeJY#{&p+R&9w$i7llt&^VQ3a|NZUlWzd>cF|lQ!5~Ww#
zyiCR$GI|Rd?pVL?m)F9D3r%-z-@bkO$;GS;3%>pM`ST@c0O^+hJe!vmb#@OQKJ1I{
zm$3|r-BogtncwC?M0DvhxvO6v=e=GRE45q3ssyw|>_MvjI+d58Ih)MPl|ey4bGo!W
zK_d%s^?yr6#l>IWOrJkh<?qk)^`L>4)pwqsRG+_QQrJc|Zia+u-m&?hDAtYNcjx8T
zi|+DsH~a6tyRNCJN$YL;ty$*zaf{PoErQV1VU}F0j4$_I{Th7PZq2!+oM9CeKUmMc
zp7jv4e$C0*dG+6ndC_@0T^BA~c<RiVDIv8k)!WLh#WOOTDOwra0%||y?Rdzxd|Oi!
zlWxq84Y#sE$tdwKo2a<BwQkA%U8SpY%w{VoDP`I839I{^FyIjt6+L<UxcgkI(n-^&
zPv7_FlQ*xV(UHQq%F3OaHg7h~xv@d&dt$1d?}le*XD@f{7MoixyxF_-&yPY`s}c|M
zdlio@&vWzhU$6i7S$_MSKrx1fS3HtNE~28MUY?$XTc%E(3Yq{33=HJr<C~@;inKEI
z-|zeX!*<@^n0)-pyWQ`#R8)=_dW(vPEU~NorJ<~R_~rAQs;XUHUS4<dHU~~ui}3UW
zw|Db)J{1Gas4FTee){sI#Oiq3=9lm5|NmC~8XOX$;>pFsWAnT+z3(&QWd?@u!lO#x
zPn_^LdgMsPsVSOPH9s~SI&=us@cHwnX6dqJR_A8hRBpO-`SR51)1UuX^MH|=4KyCT
z>*cc9SGHsZKYjjOTUXbYm6bL0+qPN8>3xe9FTT3iogXw&%g!frVNc~}&`j6Yx3{lf
zNiQ><E*24A`*muL*=#2#r;wPKHTnB~E<0tJ_D9h=*kZ2cmQ}?ITO}A6-lgGczJLa>
zqo<ahC@d_D+Lkj@OebPN^6|cvfs5UC{d_jtwD8dpt<y!I)fa2l=zu0<LDgbH!h%PS
zAAdb#eE!NQ<7;Zu#Ud&zE4N<q4+xm>rfm1VU$0gd&-)Hq=V4(H@%8of_1iZ5&ee$u
z?(FOYbsmCmLk8JDbnjDVc<`y>`P_0)o?X5zzV7GJuwP|IZ{4f<`U+HiczSwXoi};b
ztXESqJone>oZC_OSZ~Mtyt}(zUiP=&`=aogsNVgIE!*x?KA&6lxYvA3<>zOc^-BJK
zx$F-PTjxtF0+pBR{yV>8%A$gQe}2BYwDh!VJU_z<TSG&`uFlTFEKtXzU(PnhMCpp^
zG>r|Q5xX;Ie4ajk?)~d)v;6xVkNLj7xp{euotodA6+JyXplKY?*y*iR4^K=~uKMw?
z9khy+Q&`Po(yeW|tK;i_y8i$7egD;!!Rns-_i-nmon^YLmy@C4e(_N$of+qsvW7)Q
z&IGkLO|!3^FyJxGxe;(_{d+qPKfh}a4mN|<wa(r&F+Cz;#x$MCMZe$gj|b(fWcBaz
zbw3=t#r3a&+T^LHr&)g6x9k1B-=L9M(3Cc4tq^Eo%JsNv-?z87U+<H()~mE(U^q~_
zvt)J~XhFg1@b%Y{`)!vsH8IIr7P+|h$pj`QE>!cGu^@DHSmw1gk;}fCr<@STy}vJZ
z`@O2wV)}7w3LhT>t?>sH=UZ!kmo4u<nR#c&M$m%1h6V;uI`E#ZclFNB;?n1H%foiQ
zfBNG-8^eQBDc{&_KO3JijhU4Inz07WNhW{)Vm!+%ch!<5DzbJp5g=`s{q1w3=3kGm
z-)m%Kr1#<uXv$}I+1pi@?24cHEMNcq?d|kaHy9Wax-Qu6Fgd8Dp>e_2{BFqGkF)c3
zdA7E;ZnaQiU}*4ueu-(dYq!{~4T;WMkDKS+Ss|tyb>&_I14Dt~GLE~=-rQ?0E_Tm8
z+9e8#C)w!t^X+P*EG;di%=6~lt9&jCDmKfW3NSJ-WSv=>y<wT(+*R-Q{|7ZFqIMK4
zOfJ81dAa{-10K)_TkvwfQjp3Or7C`<^S!xs{QdoxE?o**#gu)0-PM18f2;o8#eeNU
zBeSTS+`Cf`85tO2M7(oMKxy*TG3or0uLcYZ1(x?*U&v+cJ+LZMD|PeDbGt&B7#JEt
zuU0i)-BI|Md({$dZcul~`6@5Njztp^cD6_9Z#cJAxA{wU;?yZqmRygokDWJfURQ7L
z+PRIO{X$2CvNx!_{P6HFXgyO<P!Oo*0wtNt%Y1`xZ_ACfHDO@L;^mxHT~OIrs<!c0
zZX#&O#n#Nr$F4dvGc33kn6Q(5x@bgeYb(eA(7NeQpNc?3mA}5c1oZ${x3PetAWDA&
z7Z;aIYpAPhE2!a-d3jl21S7+T{T_2(?Tgai08014%l$N!l$?T>`-Q%~wzl-ki$Gc1
zsx7y&ca^*h>Q)9dsZF-VCCs&{44MR5@5n1_^<~a;sW!#gXP2Eib?TOc6a$0aaVeee
z0k2uZva+&r%Q+bs0#;}3Js@RURRZEU%mq#9+r-#1FfcHbKmJs^fq~(`f1LAMJe|RJ
z-I13Nm|_lJA<utd>%w5|S&%Tl1?tXmTTV`x`PXVbj%`7p1w!KD%fG$74VpX2y}d28
zre+TpH}~o}w^xVjS5{PnRPxGLd|0$EJPf?IM(oil%|oCxeRWl+myb_KM8u3smoAwU
zJaEXpvBB}~uF}=tK=UUrUtC<=)!BJ*>-D(RwZFf;Tsl22C@pOnXoO))X7KXDEjc%X
zil3jGnkdot?b+Gc@wb?x1VBB#@Ey6gw`KnP^c1u*Iw@(9il&)a*j%g9OON~Q*ZIyi
z3$1?p=jUh8I-}*={{8*EI{o~-s-I7%n`U3rS)R-*Wpd%e!^3CmIl2?O1Q-~)SH69D
z5O@1_>-B&8c1&6VYEtw{n_mOXWL<-<uPb7_-?^)si5s*hq^xY)t*zP1e|>#zz17{#
z&8qLZi>GI2S9kZ-C7zSDju#adgUa6n2OMs`EwlZ2M0nMT6+3<$j1~b8OLb^pOAr+i
zIgz(LJahZ)w?;h9?R>JU0_#6NKObIMx%1ub_jb#_;T-{rU2M0e58{%{%#}4YHLJG#
z{`JeMFCN^F+?;my5@?m~=5+t%$=u?4CBLekoR|n|$KI=W%&V%VW+h}?4xTLq4}_rZ
z_t`H{{q4=gz2EPx{_x?0*3pnsx#~BDl5K^K(N0%XLF1e|CZ4zdA9H(KZgG}%;iDs#
z>o?whn?9FKM?+&mN#bn{8H)mkzrVf)FLvvlGIQq2hK2@isr=K^bX7gw`($=5`23m+
zoPeJMT~Bazb=B0;I<->Q-hTh7GS2;=9vZg6`Ez#tGM0<#{{C9IXpxh&Sx&&_w6l5@
zdqBH5R9?PXy?)<=>{m?7I2ai=2!#6x@)6hE@|$C^5Y)g~u)rbv`nu5BX1V8Xxd#SL
zJay{Ssx9Z|*+!eq_Wk?&`~DgE(^El1%>}L9Jv|{lK0TnF4~N_Nt;>qepFa=U;`4aV
z$;s;4wzjdAm6hN{sJ#+~PN22$j~+eRQvE#-w1K3s?(eU!rWqF$JTLXhT7#B?^UB-B
zBqk<;`d+I-S8qu@E!Hb*{cVqCWUMo2dBV{ddwmbLM(iqCiMkBu)R{9OB_&%f@366%
zqrSiF?Jd>WXP3dISdK?+&3dY_0kr1`G`xRymZ_GG&Xo4{cB_&X3qa*GzwMU`PwNjv
zfwmekgka3`>w5lr*e<X4;@`rB3!}E>+*Iw|sJ9TZg5hi8c>{6Kwk_mg8Ll-^pe;4w
z{EQ3?SD3)@3R)DkfepN26qHyZKr{N_0r@12j#qY|NP-z);QB%i&o~dxk$q|ygj~jg
z)))jPFft@4`Uvh~M|L6F$P+dfQP&_XZSBiTJSU6D$mrD9*MqW$w)X2i*Vo4Hk1H%J
z%(}mCFB22f70|@p@#CvEZ1{kE+#~7R;~g@f@hGv!T}Lv%ytoJ&ITR8W78Mf%?TO=+
zu?PTVqV0KiSMANaw8Yb@>dOkyI>fhIuV>xgR|{JF56Zc3-sG6(-nvqlS5^jE_ywA6
z&HDG}=dbhi{}w-=SM7Jd_WN8TW8>_{hS}f+I~0`C1cxmSU*5?EE;>)lG>u5xe=hau
zsi~hneG00n*|YfU@#F4=g@v~^rFQel*+jhEx*yavofe%3S}Xna?e_atx4OEzrc9l>
z^u~<{_d-?A#csVp4h{`rYa#+C=TCkLiTiaL8$k8Yx>#$_MDj{oBcn@&d(^zVyg)q{
zHQ!klw~%LupI22^Ybz-^S(m?C6DS|%-pI;uKy=-L1rBAq_j>KVn>RgC!m8v&K<_*A
z`hPW3r%wlM)+>H>IBj$2ZGYe28?3H@)7!cm%NB0g5@Kg(7kaC<wpRAI{uTB4HH#uQ
zr)A#QkofB6=H<blDb?j_wO7D%X)zCR7u5y2F*`PRfs{XY`n^IMl(9BU@b=wsZGAjw
z#yQ?E_vq21&-X0brMU~VFe~Wuv$N-Kzi(t_2MrsUW?k`^Idi5T_s#QP5+&Lm&)fh0
zxzn!|-k|BE0_DBc-^1SD+dKExw|93}7d}1~TJ7uN(gND@`{+^9^453J+w-QLO$&B$
zIb!+Srszq>udlC{cXe@rs{XUHOjj5AA@*(tIk)i?ZkaxPI%wqSa2xOL3+`)#XDG2S
z97xLgEZZ{4B;^E_Eu5Mb77>#|A|h7InIjV#7G`zMy6{m8Xz;wLi3zktF89_J%WQdU
zGpC@PoEz`!c`Jc8+los{uADJL0<_(ronOA}&69ca=dZtVCFFSJWOe_rs;XU|K79gB
zf_Z|5Z}$Co#C`PW(ai7f?%vv4z5Vf@UteEmUs&MSxBmH=nTub%$N&xgB_Hd#*vQOo
zl7G+U>-+ohwZFfu-OIj?6+F(}vD)rUC9b|LbZ8#5<~zr1HmF;3v|HR-Hv8(Tslkm`
zcNV9orlw|ITH+~XU$=*enOXD>mva~cgWyF^7sn8J`St1ZDxV3>zfc8=pbY}yq7h$T
zT@4Njngp6-wN*DYy{dU}(h|_fq+9aKYinoQ{rz%TDmGYrBirgW8ylNBcHy8w2st^q
zTl?$xbGx%LFsx}|dR-n@`Bb#BqT<D~+4=hxeAYky--Ll7Tra#Pgzt=d<5%nay<ewA
zZO>Z^YK-0ASG!J*kAY!Dv&M$H$L;cU7eJdH^6%N0W?pgub@W%avw)TqCG2G9T64eR
z^I3DysN~(k<FZmlDIB0i-3|?ri2Wb0Md!ctum3d}G}K!2qX4v?==S#f@~;~h7{Vnk
zt=`qo^tv9@`2)2{KuhO6U)|fgyQ#U^b0Y(TLvLWh-}UDAYl5%;`Ty;m-LhAo{y+Zl
z+F7K$>q$vj%01<CX+151!Jqa1Y)VYN>T;ZAqvWl6SDnDX+oya?u3Wt~#Y@0r;~xEJ
z)2w@{&#t^UrfI~R%eCvu93z3o&%YN}Ui-;dS$^<m!MV>HKek_g{;Ou)YoX(D`_{j%
zsd&WcJICVURkP${JX5DmJ^8YvDldtFVg4aWo%aq0CSAF8Yn5*FwhU0wTK#R!xjB}L
zjnmJ87Q&R4mj3$p`@OBLD+9xY-VbW!p7wt}G-qXJhlYhMJ3HHackE^z@A<XgW(o-j
z*_c=}H0Xc4GW$-V7^636B{3*pfwqF2Eqef32%CJI545h5k&#humLkJ}aDfebn$NSZ
zId;tL?TwAj#%X6RbnEZC@od-OhoHCtjkqmcvZNxRje%jo?vFo>BX*a)z0@mhK4s3F
zJMX^!_)+oo?d|FQ!b}XiSlaLG1)1bK+f38KV#i_QuxY88udb~8_3d_k>DO1G{}wVa
zH0=KLQ}<Bp?y|dE&$sbPZ%I7N<{9Me-F<s&PY+LON=nJ8I}8l_+KnUb9el10Iyhq4
z&l*;428P`WA6@wy2wsTS!zISRU<L^@CWZrU91-^#bwM-#hgX0~N9B+WdzeLa7#J9^
z^NmC1?6TJa8Qlgl?|_>{^HW)l2nL259E_)}H-KkdBtZIeTDYc_F93JCu=Crxg1@_i
z9CyF~WZn&qbSySAax*YUD<)L3Z{uKOVBlE{ng{O<IQWS#WCH^O1CKJu$;RcYB9`rY
z=NcS5xu~cJG_~;HLBi4F$5-#!^Jm@nt5>gP9&BQrWmCBcvPOLQ-{0T2-!6Z2r1R6~
z&)J`+PMJ~?UvGbxF}j6;!9h||^47lE-J3RT5)l+!xM-1*s;X+{`+Iw(jMIGDzlVl~
zW`c&9?P_)`TC^x6Fz{kx{OL_52?s!9?@oTpFJHa4zrKEP_C{tVP#{0*G>&lZlesue
zH+sta`RmuL(eVtbs@etWHUIql{Plx_&9e8TrKMMEhp*Gn(eb&xE%*2N2360!RbPX$
zvR?hwUo<<hTY!N<etYTbFwn{YW8=$L#RLQvSQbB9v1pN#xL(YQ5BDZa5NK^}y?ebv
zS66q{`t|h>ewMMb=rAzk9QpEdb@j>)&=L|OqafR=F9q5C-QC5p=1;%8yv)VP8F+r4
z?b8B_EhR65OwG-utM|o%Vy~gMBB^`Bwryd2?TdYPAAUID^2;knyTyCYC@U#Bf!1vW
z``a%4^{WcBqv7;4-Qd#Ft)M+^DLlIs5*QgCJeHD@5)lx%u*}xL;6mx$7SO!F+w;ch
z=dSFj{QTvl`g{#-?bD%#pV@Liv-8UHZYc3^aa~#)z5Uh}b2GDD>&mCSd6Q!~_gr<A
zs!O>OD0S$6dOAHG)Y~Y^-d*_kSpB`n1s1pNvaMOWcIuU#>jNbW5*k!qzPh@4u34M9
zzy=0}4Kv#<n?W-;PoAV~-*&(Lf2{tV4^HjhUEJNX-{0H2tMc=*+m7E4xAULgq~q%D
zZvUa?-Lo?@jVCPu&70kln0G)-k%7T3544UvFAp?Jv3l*wm7cDyu3i28;T07-mek+7
z6&D)1blS9OzvUhu>y^&R%F4RDFXyIF<g}$njvQf+Z{UUG44aRdhj#3+04+Lvc&K$(
z$;(NvecwGlH#ayjapCIwO|0CYHqNYBQoJ%27p~T+tALIZ@LL{y^ypF0>L3+ObMx>?
zpj|4U-EgL+p@M>fSs57@zP-H-+JjvA`B`b!)HA}Mtmgn)mcA*a)63ht^zAKE&=$P&
z^K7N8%hs&!PmTQaIeYidttBsm!aFwWoEAN$bGnFijbk%g=AR!QL8oH8diCnb^XJPa
zD!XU>{q?o#>D2ID39Yf+4Xg|ey%md^R6Rip&p&<oG-dkq>xuIZ9dg><bxn5d+O_4i
z{~jD{4h;({yIyy%$r!0fun9fb6bVj)Ee%g)Zz!=aFc?6J9p|Gfe}nQcLjtr+Fpjv_
z2r7^o5<wYygP;}`KG-D!8}=}RawtPv;K5f+yu7@VmR!0N)GK3o>G0;4pq&R%o6~xi
zFK^U4^!@hsACJEOesXfMm$!HE-<bD0pdyPYOnk-4l@nE#E?rt#rX(jMEd2PT<^t}I
zf4}MO`}KF-%9R&yY)rPb<-H-nxSCr<O%1#ym7PB<AYj7s<;)Bf4!pd)t5&WIOiD^x
z-g^*S<Gf<3{q+U3kImMWm!W|%WL<$iC^l|zi0ZsQupC!;Wta2#SnsFLpMwhuHe_XI
z-;SAYQMhQ)qD3|a#s|vpu1uKu&*{2S0^^0X(c8Bq9qlrE`zL_Srn%tiU%?Fw8dg?O
zpz~s0y?SM1E6VVJi$&+a@yKaQUAx6r?%cWauGY2vTeoa^F}M6)po>cj6Eibt+1%4-
z&sMEmd2;Rj2M59VLcab_;CY+RJxxtbpq+D5r%c&W`RwcK>!2l;*$)mha`Et7`S9@Y
z)}p6gmUI0Uzh>FRy^UipGb48cXz51e=Cr$8yG+y1$$-XlyLx-C-rAZC+6TDz`@L!}
zU*FQ#>5<b`tzJEK(xgTI|GuvWt+@m3o|qnA7YRDp<ZE_D#)TgrA8*aPtOi<J18OZD
z>y=*K$}O&CZN2;QHExEvz1K|`Ca8eiy<-PxBH`^nru(3w^rJ_Qf`%rqt&LXqtonL2
z{Ob1n_@~dGgEm@%CfQg2e|dR%>4O7|y^_Xmlcr3Xv<NiNuwg@hcKEs}Dxkv``tAP(
zq^2%y<CE3$1Wj8Vet6;c`~B<Ryvb>8Z!iCLi81=2DK9uddj1dDc<J)x(13si-qZEA
z?)>-ldi?24I;p9tJGZ8%r=NaVl68KbZQfgdyPr$6V?6)=IkiGi+3m%fo152dTN}L{
zysc_|+}@I>r$nz`2c5g~>{;5|`}^;I&|+MWEwF)Mhfds{i0%3J^S<j``}z6#)925Z
zcXV)U|5o?+m!^)6&+~J0i?ih|3KC|g+x+|ScvsomS+CDuy?XW6v)TDqw&%xhU#}Uw
z?8GLW*nKrOFPv(4*9^)>x=svw&TTw_QBkwFxVWZFo_slPe)V6+zbBOYx7_~s{_yLy
zYuAFdJr)%e-LkzRCn;I!pUl{B7v!4AJrx^4OFO4ee}2s_<ATE0ZQEAu+7+ej)>E)G
zeqT*w{r|t)*?6T&?kDp~oB5dM-vjN0m#ezhu>AqgwDN>*fri-&o!dd{SYKaXU;f)A
zF(_!#9KYq)*2TWQW^ZpF4{6DKx4i~BI3O@^;ro5R*PY$^`uh6SOP4<VC(cm8xQ%_c
zy;ej+e|CPhp1FCrs;cU$RjWYf0I7He1_quwaU#Icv2k7O?q#6q+2!-=f(i>a##Oyk
z-R>`NZ#Aefy1V@Swa@46*WcWnuC1o#_Vw%6Uth1sgQhC3UbzC=^2@*1jp0QWD93F5
zzW;XO;WkZM+gQ-#&F+6Mm(S0-u^~}QOY73Pxz?b~LK^1g;oj5razCHx`*;1%`)>;t
zD7?MDKmPP|{p;fKH47(A5^8O0(=sv&%HRKYTh-TBsTorpz8@4@SiWJ-9z970hJNe1
zKRc3=lD6dEw{vxOm#!^KO<f9_Ur9dR2O1l2o8S8lQcJ8zsAT8c$;`kY;RdSiq!%_l
zl?AoLaPVh?T5^J*dQK3OE2BY6E!!ac%llvajMGl?_4NgvRZ&r~qp7(Ww8i$*r%$`@
zg@=bPXXO^l`1Ir?7cVbpd)l}6_wOhEcW&p)ytAW_i<5KW;fLTo#=n03`u)rL6(6W9
z1GR^uc9*Tabonx9wL0iL6i-i2tCANN>hFbzhAs_V9rp6k(eAFUu3zU3!XqPBwzROA
znwf#t)q+OM932~%`OnX*vXnb6sRL?~2&Zr8ld)W+8@)}#-abAuGIG+AFJDS}rA)zF
zTn{$0TkkP9GYbn}7ZVr}F=Jcq?PXnEU3|awqPBSKt^R&(U+r&5N6{o>!n1R8SAY6c
zq^hD~bKupRPEaLcm-qVGTF^mTX=%$=>nbQX6hAu?=<3?47qjES!@Y`%id@{>yI)I~
z=iLdYtlW9&^5xivUX#+!&RRNQf<W!RpU?TXbIeu*wJ4S6Su}%oRh~HE@%6>U!)tBz
z^v;$3P5k@qc79e~UYL(hPxSA_{dTKfyvP78py0P{n+s}sd??(yb!(A@OztgNzV<nO
z%k|>+WTfz%-ee_n{D?%^A$Sm=w2}TM-mP?Ve>_9tupcPIZ}^1omoU-L@YtSrH|z4f
z8#i9;%1h$$l<iAS;;{xf?t$y6Q>Q@VmfN?zzP|qdb6eTmi&w8*^P2SQ`}_YFKJVIm
zx8nKC|MfD$$u~H`t>?-cx`(b@30b;q*{-d!_H}nk6ZYC(ym;}}?(+3{_x8LjyYTnJ
z!^4|&yf0q7$Zs>>+O1bgwZ6U{wEgh%GT-8@_xIICPn|k-mSOTS=l(=>nId+E1IIz9
zJDfdxR!c*pV5_OADQG9w$B!Sm`1z-QIUjv{^{Q1@E?p|RpWM>crlqLpxOC~#y!<?U
zJ-x8n+P&BJ=1c)amf53D=XZsLg<hVX7Z0^^m%hBD>gwXMV#Nv%Tumfs8w<2v;AP3G
z9Xle}`DDP=#I9d^f4|!eYVREDmtViL`1z~z_W!TEy1IJmj2SC5gO^FfZe9+`A`PH5
zohc`UrcRso>ekk5(5~xww$&zOZz96wPj7ni{Ce5v?3b68t`kU)oTfb`a@td|4fE=L
zWlo(wU0Yq<9kgAq>f4)@XU_QO#_!uRIsE!po#mHbe)*!p!0@5;c)xtOk55mZob9TM
zi`}K`%W`r+#}lOextSrK4(_WYgWB@amZh(zd^C<&?l;%ym(3kna16b;yu81uxq0fe
zY1cH*^YihA&9|$ydU`XX8`P+}apdRc=U=bK*O#8!{QJwx$KOucm*|1I7Y&J^xL`2o
zX#nkwl>nJ^zyKlvYI`vp1|=s3aM=LqC^1O5flm<}@ftS#XTDjQ;V^~u-A>T_p{J{#
J%Q~loCIF;4g^~aO

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg-7.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg-7.png
new file mode 100644
index 0000000000000000000000000000000000000000..7f34e09c5226e17590b72be6ab8d51dc4c423d86
GIT binary patch
literal 19530
zcmeAS@N?(olHy`uVBq!ia0y~yV2S`?4mJh`hJ9%>?l3SguoOFahH!9jaMW<5bTBY5
za29w(7BevLCxS5J3j5`m3=9eko-U3d6?5L)t&9mReRS;O^Ed|<5nf+s5%VHV=Sx9C
z>ZaSbTryd?X2PW{Ia-@S?rgub#O3TPBOk}3YtJl|H1d|!H7(t=MOIhX_u|PIA=XHn
z{r0~K)88?yV}G}E`uX2qADKS3d_M29ZN{$;HT%EE%ubYOV_;xNklMYPoq>VjK_*88
z0|SGaasnd*!;GE=RtAOyBPKBhhK7@)62mD-&fLDr%)r1<Z&mQ1p-<L2OzZi&xV^ia
zoSnU&-qGl4U}b1vm9Z#rD1CiRckAchzkk1Om#<SunJT!9gOOoF!=<csTyt%!w_RD^
z_<zAcCWZq^IcBq0J~!q$eC6}QM;RL!7#MuqnpqhdT5sf-U6$7A6kEOKA|y$%aWgP*
zFFg2(#{`_v7K3y<d96O^baT-`CI$urNk;C}XMcWvKAM*v+mK%Q_v`ho)!*~N`I!r%
zTY0D5jMs=}(V5cO)Wmf2ZCPqcO2)T0H>+N+-TviqzrB{ezQ5V*-U&|?@74dWJ$m$L
z=Cw7Er%s-H_+4~|Q;YWZ<5D_PIQ8}QYybcKo^^lUUcY%ZEC2kdVP$7uUH|`|lx5M9
zKY#z0{`*sT^KD99dD;Ei?=PQDj}JTECmXsk$@S^erzejeKYsNvQ-jg*{b?GZt(TjA
z{`@IrRk9*#Th7X<+TpLB&#w<VJx$lN{$I_}qeox9xw(1M?YAa!d21FdaF`?_FTXxI
zZ>Q_amoKY+y<GnFZu$M46)6qXiCq_r1vUh%dQ-NWPsU=w*6iybfArh^TJdhzYrU)M
z<Kw-j=>%@iySpXrtd#qSq+J(kD=RB4|Nd&`x4SUMvUtjb2@B-w|6Fuk%*1d#p-W)t
zF$12|)YO&9$NT!WhP}PDb+XFSCr>mK6da7x&rL~``1Rp1zpCf@z29d2`TI9jg3Z2g
z=gg)irsWe%b8Z;SwJ!JT?CjLi(7148WAfD{p2FgN0%<>AE}t(VCid)AV#S(E8FPO8
z-ty*R!on*za?C>4#YBGm`0>=ab75|7ZT~*@*LzG#uI-yYe|}u`ThqIx*JFP@ne2aM
ze|^3CWY+JGo<3b_Tm3EL@v+{%+~i|D7eAl3UvHXyE#uM>Pm@TwgeNB^W?fk^vFy!_
zhp!egOmjQnwDRQn^V3yq|NVGe^|;quL_lD{%HZX%7WdmtQu+Dghehj}6)QAqKc6+X
zDt$FYyS-O?%H+w5A0BRh-Dmyo!miTSGPjTS$*xv(ZhNt~-%cr|vSD59ZY?9DAlvG1
zDk)Qit|e5mF^TyE?>J#;Z5>@%S!q@FW=3*+Ny(ObRj+mDS`<1hcJIG-YiqXZU-gvG
zH4%Zu&(B@`_4T!=jLe%!A0NL8SrZZH+{P2Q+;8rct=ZwVpH8ax)&7^>bm{WtSc{;T
z&O`s_-QJqL{KyfPtE<EPzuzh5SLD`UWaM6^5mUc8{k+`KBS$oBY+`hyw_RD_*bIta
z&r8bvHj5;U(=z`5`zvLd6|zzB^{&_Jil62_F#7X-w&15vpH%+-?0?_FDSTyJto7Z>
z=W~y?t@--;`s-HlxC{68R-djpv%~27z3TODy;4h?+4)bUZPqk03hM0a%(}3EQE|1%
zg@j7B^_;?LJ_TPD9^B(OJmGF$cvaP|TibG1|M^pMx8N}Es_5<O?p43H1$oDa$2s@b
zmcY-?&W5fI)76dL6|%eh{k78TvCEJ3N{d&rORZV^!I#6mUoLd1*VHFZpDx|A$ELEf
za;4u~t6l$oz22IC-_CcQO=MtTVAh2NjZ5sAZ+v`w{OkGpf5HAXA6uB1nPY3zcZg(P
zUl&?bv}w=Yy;pY>CWo$#3f-E0{Ti?NodxxOU&mK{K5Kq;U95F$OUsU`6?wYG#=)MR
zo}a#bn|3$P+%!hAZQ-9kHMSp*2%iy}BFemj>*vp(ZHW?YVPVrQZcg`Cwz0W$V_)s=
z<p1CA*XPI7|NZLr_0`qh?f0rqZ>;_J=xE#7G~-)av(r;jQ>XsiQCN9yzI}Yk?Td@u
zd)auUB=~K=Oh}H-%Uk#OfBwBaH#6?;+WPS6)6|+@FPHnR|ND0PeXslt250O4@8g#=
zI<nzr&an#%oqKzFc#i+mjov0PapFX`UMbT#|85_DdV6Q_a>bJ?A~r4(6c9*w6@Ii!
zl-Kjvxw+P{wX>hH1-I<TSsk|a(hS37mA}t#y0<01`2Bu=_~&P5udWK!_6*9)TQ|!r
zcU8aLFOPlu_RTU*@8grR(eQkAd;9uny3xzF->-{iWMo{oQ!r*z@$+*p@Bja|{oA{{
ztCijRJSP45`xg{^wSPVyuX@y}uJSj1SNNnwixz!(GTHytpP!#!U0T}xI8bI%$lj{2
zoAz_Yn9V->EF#*n_E*W#qenFj4FlKj|F?@z#zJBC*=4u$cK5z?nr!I$LXsn5M@n1b
zi+=lm7q(<x{&Grt{fnj3<BHx`7d`3ln``wnV*2Fi)0cCJYOPqXz=2oF<ihLq``4}C
z_seUxd4Aa*H7l#AUTJf^&%X~m_4M|>%*=1Iz^zwmW#;8&T-@B3_kO>(S~q%|hNh+`
zzwMU^_iDe#E}t-U?p$5Zsvi&AOE3GHYpSTY{QdRy@=W9OiV16GfBf{RXpeHmu^!15
zod-gK8wyV5n9XKlX8w9DI)9~eJD-=2&y^#c!m6H$iHW~X$NyUd3d(jq*-8EV{g0XF
zsjduM?Dpx~w`=<Q|2#SseIPYzN5R5(`~TPd{dioy>e<Y6lfp+XUteB!&&<qxb#3kJ
zv@<gnUR><1t)}L7dYbO#$^Lelo}WH{o~*JqW@nI{o!zh7_x~-6-Cd@spwKXX$=w6T
z<?Gj6T^(*+_xA1EwZ+fRdG6XW;p*ye{oI?Ij)opCuU?n6p{Tf6R9=4lgb4yafB)7t
zGP?9~qPFVG3k#dylvQtx-?wjH-{Vc2H-Fu}|F3WC?y}IeQCmeMBvy#&MuDopzW&h9
z8tdjRY}u`;p<%#t*kIq^Z_$tYtlt@|3R|1iBW-@pfamayEt!)8w`PTcvc!+a{q}R>
zzJK5U|1Jj?mywuWOvJO~V^bsd*X=DlYkFPcyv^sHjpgs-me<PH|JitPnXmNWw9S%}
z)qIW4&9O|j`Tb_I+tX81d+lm}N&No)-rVlb2j|E0s^1yzDu16h$F};KYkA}8t*NKQ
zK)TFkpRIVYu)U}9^E1)vn3$NDjoF*F<=xFP$-H!A$G=~%d*8fyvq@&xZS9!mr|;kA
zhpdaac}2gz{(twngH<06viEX{YDs+j`0>~r%i^9DD>M!tKYskirqt7{$M@#lwMxFY
z$ki|2)6)}_k>BlnE_b}}e%<f2iQ8}Y>c#GoxV+5Qc+#XvJ-^@WJ`c*Di~H@eZhgO~
z#SyVX=jYF#eXZ+T6<2#r)jBpsGnnVFK~Lo7G)Ymd5QDrO580G;b<h6z`Fwsazx|&J
zFK%pH9JoC%_VI&*&Ff_B^c)|)e{X!=CfOwS)|DT>Uayz^&2|4uf<)WLqvG)rbFItG
za?ECLOgPA-tgnB*;^ormJ+H2=mNuJxc16I#rog>brODsl-A%3I-%*r(ZH?ipYiqN=
zyuN-ORK5rb2_@aB`F!@+s?gOkj;k&hpSKClIdN-W?e34K_4n^c`0{S8K>{lai$r5%
z<FYzd7M2);gxvf4?t*;x<>h7B+eJl1JsUO{C~IlG+Vo!4)buJy=F(Dc+1q`x)@e2W
z|9*GvdwYNXeozq2umAUR)B5C87M+*?FR!kPJB!nkudRtZW`4gWIOYGlySsa>-|aZO
zB4p*HkFQp*mugFt`26gwv6OjU&W#+i!{^VRUlF!;R^W0!*?$X5mDA79GX+U~d3AO5
ziGBa;(r-@FjqZ^$&5|g6b;Ypm@7Hi;ZSB)Hw&%|`%)Mpu`0e)l-*)UbINkjD`FZKL
zx3`<W+x^~7+1&j4jSY#-7ngdAFOJ%pb&S{iPJ)WMx^?UFLlaDEeiS%e4J}GNAZ3;_
z<Kg4S$#d*#Z)N^It-n9##@n*T*W>H=uBm=`ZSCy9okdT*v)2Fr_kF)~+3vePj@$n$
zjJ&?Vib>2XB;xt495ZDNjT0Mgzjgcm?r!h&__~`n_Sf%!Y<~pQkOIXtsEqcRYjxFt
z=deZTt0{)r*L0E(wQ#xx1x+e^aDXxV9+%$blatkZ+jym=zTYYC4-5!Mc=Gh=)QUIK
z`Fj#?<d`L&on@M8;WVY~kSfFN?fK?^{{HQK@+9T>zNOyNrJC9K%WUFOzr48ES1YXM
zV~}Gu+c53S4DNrC2U|ti)_6_Tk_=rHV)%7+&{8jPo(NEC%G>ktn9}X*>*MQhK779Y
zew}emO-)bT-(RtpK7!Kz-8}Pcxwp$sUN2zRDRS?0a&j`sxnTfmoh@9rP|7&1hfmgO
z$;Ra4T1rYzbFIs-?Wz3y<n7zFJBy#c+IBnda*w33N#Y?ERyMX*Gt=i?{PFRzX~6@B
zt1E+#U)|n(I$)`nXlqML#`$@+R`vh(?Ag1wTgS=t-ycTb+}qoxs({*GeQyi=Tl2kE
z#_!*kxBIPG?T3TxR+XQYsJv`smkW4*Z*S`M+of-A7^<qNtqNT1Hp?t`*1YO>mcBEM
zT>0&OEZDPmZ)_#^4yTzjXCAd{FtM<RXiI$Y;o;%wHS3moPhYiQfdjw&pAWA6XHTEL
zd}gNc)dh~scdK5noo<@8S~+2%OX%vbt0yKZf4vgypZWdW-A|uCUw(CUHK>7|d7y!D
z)6JZ!KOc`@-I5vHD{minb#-|7)~u^0)!%Y@Wh^fh%KbZ7s^7Xl9uz9`Y^zP`{#1C@
z|9kv<zvAh%&6+woXI_@>@xJgkw)*W>DVvH7VQZt7=HA}sIms;N#)20wGC(b`s^@dd
zw<I2BYi(=G`tjjmS5MCsP{UR_f6v9E%HL&D|MDGr^Co9``5)0$5gQjJ|6dxlr()x}
zz2BlrUtM{*==i^{>+7%f+y7f(ey`%N;0Ie)`>Y2|t3p;TnyBoqWo{n6*sb@{#^mEB
zxwlMwXPfz6nxFst-q!5tlO|7|I(6z&=XO5NNs}f|HZ6G(5V|_7x4z)6&%^iO`|JKr
znKESwC?E4mn}z)U_cwL>ZQ1_&8aD6#e!m}{kgxz0PvLyhYP)~G+g<v6ZuzUN*W-f2
z!ltqDN-YUn8<qL$%F3*3Yi6os-rZFSa&X?>uVJAp0uCNk{wA~ZW5R{*x#!QHKmSpq
z@Bg&PlONxx*R1>bR6O_gHsAAhzu&krUtYa_->UL^mF|<({ll)Wi`9Sm=Uq!fYd04U
z&y^n^AE$1<X;S;EM6zvRr?C2}pru}*R>-cBmx~;m*)sqC`&;#X@Aoa)*Y!X?zPc*3
z`0Is2Q732TttlskKtT>l(th*p*6!G0vHX1RoxRoD#dM>VwDC%Rx)8zt`1R}6da=7S
z?Cj!RUt1fzJ@4+9OWyjHheG4x=GD~He7WGvzq4Y=kNBNCcb+<Xw)9rn#^*k)?Cj#!
zyfbFb)bv~xy84=GZ1u%OuA6S=i2p5~IBC)%L1niWE0@nJn)UI63X4w6qyq;WdZo?%
z%x3#`c6M&M{dSf?ViOY+Q;I~}s<5@IIyyL9U0hzgxw-k%_wVIjCnPqlSfQ~tVx!Z=
zix;JgQaa3XZ!P)#et$f#wAqz5UTILnzxMCf>%YES_77d`#v9Hru4ee}|KUCJtKV5J
zUApw;>h=4AoSd3wndQE+IClK_@mA$8IpMbxe*XF;HuK%-^XIS2*Z&E8l&z$sw59N|
z8>sUawA8Eb?d@&3lh39FySN-tjjcX8Nj2-nhJ}xnFL!OO`kKWnV-ZmM>&r#y{5^%9
z&r99snLg|c5|xlxu`&7ht5)&2fTW~FYCba-Y)(IK^-oFT4`*k=(@3lGcWZKQZ+p3J
z_q$8Wd}o6Ka%Ji3YhE566Si;PZkB)VO@`?M$sDuU$-c4k?P^mb+P3B2fA=VGp$Vwz
z^z-LWFE6j6oYQB|hI)B*DJd(93JEE_Jm2r??eAY+<My=v_SWp_bw3`qbL-{(|8m*?
z>h}Ejt@-!kR<2z6?0!e<g@lKjMA~#by?lJ8OrJjeSfA|bh6aZI=mj1BGcGOZ6w{Ae
zb9uS{YfxZ0IyTNS&0dyub=69*saosg<h&do^81zFuiYM3^-^{3_j}b<FBY~(WQVfF
zY-C#<x;m_@ukYH4iOQv4UIezbwrZ-Xx=Kn)dinX4$(Sb{;n0oP;PCtV`|ym66_+i8
zf`j!fY%3ldVEp>xqI22q*uB-?ukC)n@AVdY8=DyOyCs)J?=Ac)u%X~4m-Dpg)2GK(
zJ{1jJ5#Tsk&9~_5hJaIA;p^6%nyMZDDT=3}ZNdbBy<aYQSH0PId`r<&FWV0XnAgb(
zd7V7e%57TqCSvKbWv`BO3Ul%Ehet)tTC`}9%<&sJ+mh;MnDIEDo~9dodYW$O->=uj
ztN+E<{d8UKKYyBv?cXn#UBC6q+uvKvH0|sI+b=tumix^ON=jPv>)YGcTg;dn(k)9~
zOsM+yW@Rh4_^10-n!i4s*1x(b)jM=;)YUJ~JD)y({`$$u$+vbEFOS-ik@#w7ppBGH
z%to!yRT+m`IDL4T<n&ZjT%xz-XnwQwWax4~a41wUhVd!$!&NyS|2TYiKfuIrz$s?q
z3E5|h>li=-I=o^G3}Q~rPbHDZg+Sd<DIEp|hRGKbrZy%Y@5_99YwN1;_4EGx`4eL+
z!*D?K)VXul{{8)Zb!&Eb==!+5A?qBQpGtB>q$a$*wYBQWME4k59)<=_P;C5Ic#MH@
zHP4mR;r^3Kp3g1U($F}uwOKQHwpnh_?y|QrwmnAQ4{_`7sN&EwOgSNNc81~MtA`6Z
z-`?K7yNV<A-P-N<E<HHd9BbQSRQlimqwid+s~^8tWiBi%s%Kea6kwq%AtJJ5mTC5`
z3X{~+*ROBCb9eKSqTiA6p{qhPw|}qu^P@1Ff8iNc7M3YL4(^-R_f&3&1Zc!m?2wes
zc?WQ4a74^&JZ{1O8c}8AUb?FA@v(JsOs4|w@2icqWtp;&Pu6Nj6^C3W+iBwq2@69^
zGcO&v>g*t?lrUAl{7zx}>UM?*F>HZ&^n%4sdsrYcG9)OjIrxc(MTdbwr={Vk<P0Si
zqC%gMA;HkZ?_ED=VD3N)XjCqOBYT4lGswn<lb|@;Ab{c%O(#gSfowF1nAeD;k*9a^
zZ_tPygMlPSJ0u92!Gp*kcj~mToi-NOz`(FUfN5HKLYDvo1I$L=Y3U0f<9}d{&X1q`
z16d6lM%(}n8%73(r_Y{g+1bS@Dk^^Z{yjV;Wy!U*(d8%C$8XP@YgP7U#j4QNS_TFI
z+wT;0->ZJVSE%2<^wpHCD=QRt-(4rF9X6wodzuqCO1PwTHt*L{GcyY_PCpmo<I|IN
zc9v>>etzlud$G~m^Y*^To;-OnIPI+naMa)bXVWs@*~`k_-g^1qV6*DJv^O_4o;rE*
z<BhUjP-vXmDQjJpadT5DsFyiG(OJdQ(9jT6dA9M(uRA;2eEN@DJv}_2oY~dgefi7F
z%la>?K%JDd^Yhkze0)6n&W^%mcbczWNB{-tx{M9e^yBsN^YeLSEG}$3d;NMiGaJu^
z=kx2=Ik)po{c&siy(;hL=jUGscW2Yj&Dr_F_Sn&*FZca^7kqnLZmPsF)w=XM+>D@c
z)<V|<x3*?amom*-;x$#vGB^L~s;SBKp4ZmLuUGS(rJ<|qTl(rs;L}r6L)S)`_DY+t
zyYb=6z3TUwx3}e1J)Ii9?!oTIcA#{$V9x0?XF>`J3MRfic<`VRk8?Y}yxzyH)!*Mu
zoj!f~ukY{I|M*eS+TNahv`e(=<<jXP0Ran6PFA<>JA3lv#SMvvzx?@pezo6Rt6SUi
z<5%A47lovOaGPa{*4EMc_U&`s7QQCp;>P_dk&%%`JkFe)oS<P<m6hS^<9_}9e*f#O
z?Dd&fRs?c!a7<9y`{&c?Q|HfLKQU2x{g<#iY{4xI3{#5h>gue@-^EOPYiViO_gB1X
zt%~iB2hD!Be}8+s`pui1+OJo`CoTE=`+N4SEt#{7QoH{A{d-nwS1M>wI>9jfa>Cz#
zzu#Nc{n>GOTT@dL_dYcXiyb#I51cvU;~BIzYO7aG?%JrWUoQLGuS`2T%kOsfl@*GI
z4N4vz;q<(;qwsOa?y}swb-&-9I&q@F>VN+Jzsq`hcv{=qs?H=!gQiU?CV*<9sI6Ik
zx6jS7Tr6MrW8snOE-o&hfzVT@P8CJH*q3|T>}HOctBcE&AGfCIM!#A<zwXjP=k}2G
zakj_5Ik)qjOxyhOR`&X-DzY{e0rr2tOqMdqc<`la_St0zo7qpNZGH)=CU|)E%(=Z)
z2RueE5Wc5-ga3THQ|Hfz2L(+64`Kxc1&K&XuADGI!1K~XW%nub=DoYp0jhJ1c$|x$
zpDWEV=5aoG@+21*SJ3Hcx~iU&)%~xXnyS4u>#ElA>)!f%RXn@;`>&sxsx6zn)rJw2
zQJ==F4qGcCE4y~0viqwS7Z-DJa|e5Qbr~5MO_?+2jYZy(4#B7m360<0-(P>>LV#z`
z`FXZiHzvD-;_%no?f0+jsVoMKm_%>S3k?dIR8v!<;+cDEi)PVXt<Y5`40u4T{8twj
zyWhN%BdG|<9ltg_Z{-%xdUIo=m#^>DPGNNsIk|OPwwSoOx?0XXo~Lj1b8FSttX@fD
zH_*V$pP!#WLyEdlTUMMn^j%wawzU$(7_JCWt&jjGrzRmGAuk&>OUs)pFKRt`|9<_;
z%gf_Gxjz-jy1wqNtN4T6+Wj%jpaK1xZ_9rE{%w74;fMRTw&$<^@S#Awhlhb-3cH--
z1}@OBdGK;S-A#9cUwbe#{4PGKR6gVUV&*UxmzHN|W-eBC@7qzO!N9OU=Hrb9P}4W-
zipJCD&&6*i{oUTw#I*Ovqi#^h9qkeg-CtMRD`y+EbLURK<5yRQ``cE1xiC#P`pT}-
z?4Lh>u1q}K7PX@wG4mc5!-6>r_ZHR5NpDbDS@-wXtLy9UyGE~JWM<3w^W)>Lr_-WM
zil6y_nopq83sm=)%sHEO`QF}YQCZowda=7Qetmh##l>|gx!<<zAo~tRhK5f^7c);&
z0oh(zS*f~DJL&toyP((u^$3=FPk(h%eSSz$(WW*&*;S#d!!j=~^YuIa{^n-))6?~@
zckAz4aj=;^`|K>!Pai*Oev1`lV2IJXmQcyo&mZyi_4RNcpPosRCY5}7aZ%~F{htrc
zH*?H*C5?_`{^r)-qj1<@%Cu?Ew)}0A&MT;ji2C~KDk#?8-rl~xB#(iCVTWu#f5aq{
zv@;S<pFS1cE%y3ABlD))Z@IX+i*LnkPV)t|Ts}5VY2}(9^ZWj~ozJ9>w?{HD6qsgg
zuyNj5aUtXHudiQEDEEU#6F+|ZcvP-<W&Mvmd-inQ&67Ch8oxX9vf9sIzpQez@9fw(
z%OtbN^Ew;Dl)1dpW-sRd|Fit^HqgAuuhQ7B3j$}Xj$zSxd0tH0)O72Ks5QGvUxNlv
zZ|yE$FJ+$h=ElGG_5Y*Q{pW?;-Bs!<?Yz6}ZOG;{-^=IN88mD`HTk<8kNKA8R)2qY
zHQ3+w=_0{{bEkA`I(dSI#^oxX2=4v+?Y7^0jW_r9?&djs;ml0qxqbdVK2y%7U5+ik
z8+y%|m0?P<k6;yBf9{5^*_)(otG0;g#jN=9rNlJ*n$ILqKDcosLRD22R2F1iUpIGK
z{{3~V++r)r-`~r+zAiSBUzUMkhh;x+#L=Z++jyn5)YRNQKR;i7%f9?wjA_n|08LHJ
zsI6I3*X@311xf^ukM(L7otsq0^<X(OLqp^b^P_(&Qx0_X_J-!<<ZS%??Ck92m7kwk
z=5D_I7StU()+1Sb@bk1U8g2h$SvVOOPMP=fL@+Sy(7xyTLh{sErE&&_hD}c3Nx=&V
zm29B)0I2Z?s`5as2+)*ctH1^uW>9&~payD197xKTb4MOj%)r_qp!9^U5vlpX!8<Ko
z0i3^Cbj}|TQ3Op}gIW<AB&5{8yCb(lOi|k{AdSe)4{WVfaGTCqp{U+RkO|U~V_@J0
zP2Pd3ZH5^=Aa`I)Y-ZqSNF{N&yz2)w9TwcV6La+Vacvb9mw*5MfrbutmA=-?d+d83
zwie*muAiTupU&GZ{`1qPPnY)p|NCC)`17YvGfz#?%(}H@<)1%)O750kfBA0r`)dym
zw|hU{7SjfHO5s(J#GITpVQV55Dmu4m=;-)pYHGf^w|BQ$-klX@xwm4z{L$a{W6`Ut
ztDkS#n{{=S-~Myw&xe11cXw;<Z8K2!@ZrOUR)vpRK&dErx!=mLwNcY+^TS*ZFflBc
zb9-ZQJ80tJ$PpJ_Nh6m@BErIp)6UMy{PE%8tv!{WUC$RjpIg4lwOdTwChgakm%rX@
zKEEaPwAj|1o0q0+j1~pOafC-=bLzM2tvd1hV(#6$CuLEvAbIxs_3PPqBo>^v{~y!N
zC%bFO#`M(Gm!R3;cg8%<o72t)y}!2?)K?J|5z(-={(Wh`VP0DUD}#gO_U!9=rdd}!
zrfP*2-MY6bRQvcpZbKgDx3{;0#yUV#Ae+<u|9-jb?{^$D0%}$BV?*AqmukFHCLWB8
zj9eTX0iU0p-CFqAE%^O$E>M#P)Q4fyHZ~4Ec<`X>Hg<OQ(*`}<dJf;ef4`pGZ@Y|7
z)=I;`Ai%o(T}V>WBG7Eg)9LYADk?6Mwv@k*^Q`w14qF}OTm0<I#6$^Ddt+DW>t&$H
ztgLHmZie1jx)sy{(s;gU^X8|oUq`1@AMFyA{p~FzE4%i^i;UyztG~Qhs298I#kbq}
z*Poo6{Po%Fe6L@{zczfRFMogUZN!Cp3!T|pTU%dF4UfCn#LDfnTRj}KVk1FuUB(7b
zf_Qglr_$}>q9U2!`tBhiQ=+!#z5Ozy{ZO%stE=VS=nZ~zt+H-!Te~gqZWUxulz~C+
z$$>^@&|-kg+wR=CgVF%nwdlC|m6gHn)!*I}{@L|G#x(nyPEk&;l&RjXbEofuJhEZN
z>dXzVuB~0YtMs*1u65m?9d<vTOcsh478G3AD{Zc&t$jLk;qPs^w^KIX6cH3Gy!jY3
z2n-qlJH9@D*GsjZKYob(?mKe0o!?saHD`smA_Ifiqpss7UtV5z#~d|~<-Xc4W4Y+d
zml9DC5sN<SvNsVEKiB?v*beHl?kau#>_*tiAXR8XzBFrF-H(Utxp#Mk#_lTF`RM&j
zQBa#N;M~@%t6ret7|Wt1eR8(1DkfFCxwTE2JX!X5uY{o!x0ud_e}8|AN=a#XW?f#^
zo44<0+TEhlx~qbgc9p%mv+~K4l&fo_!<F6pN_L%_q8YrU?r&A;iwlnD?S8M}ISiia
zdUbWRxaGCGg5d5>cx}izTz&dE=aRQu``3Zmt6tvTm(}OjEZUrYUdzHF0yIZ@tXDcb
z<<|Pl%gaE+L!cR=latj?=WSn|e7q0TM(?WiX|V=HJ_Bfwfs>Qd%fmzC<BTUyQkJ`U
zPg3)pwZwC>TI{D%(BM$n+gsXl%XdSH$aPs867<A&GQ-O<v_%=<!WZ0&02Oiq8%_nx
zx2r9A+-tt8N`k@5ak<~z7+aPpjSChig!41zHG#`-P{EGJNGG)75NojvHVCaEK-UQF
zkRq4ou<jwG814r5-N7AUO(&F!fPhBy@*6b_3|u)t%b`FO5V$8xLcvdwPZK)XUSC+~
z9JMK>Gp_or>EB<k*H2o~)WjrfUl+s5%Bm+P%fK*C-`qU><HwI&oSYN)@87Sath_bv
z?yl2z=MOY8r*6M}b+LQD(r=!_7v9|5T>AN}`Rbylr*^&D_4>-*>hjuuKcA=FX<E9&
zBtf!m;q&?RabI6wzkZnCehr9S{q4;}70{4k+}^6HzhAG%TDmYWoQg^8PQ7-0X-9AG
z)iX1VMTLbIM{Z6#dHZ(s-QDHaudR*Nue=jq^Re~W`T6?x_WP5*^UGR=_}hM+GRr)F
zouqME#)}IJZ*5NRzqK`cx&FQ%k0z~u%oiiIA+Gjo=-zL)vO%3cyPr>lCEFg}2w&<Y
z`t{x2==b~o@8fpoU}$&_t9w=kFVA{)WhH2Ee{0>}Do}nr+|IxM$>$?Sk7}Bkg_&ku
z(b%+p!2*ZP>F2Ng{eFM_lqn*hl_Vh3udR(<{^w7PZq$|&XQGQNr?aiGEPl2ket#XP
ztX5J|>UzV^&tGm51!~}@Z4aM*DM=SkHT7bLxK6}^_xpbPO;-2UE31!-o40B6=I)mD
z+3WX)mF<rG_wV2I4|faY^>`!L`Q<`po8@}lkrxnHVE^yOVjg!EhKB5&N}ypa?_Md>
zpru|@=WN@ab@kN7|4y4WZ8AwZ!qF>dyX(d`uSr^AYgSxa8?CLX>e?-?f9+s1``546
z<6mENmk-^Vb#>06x#|TkcXMQ4S+TI0oqyVn`se57a`E!&9u{O|2>6$hmZoK4vE#(I
z2M<8;e7K!I{=-*cb-yY5_wS!q{cb0>-1dx%N_Xr3{{@Y%$=sGQ%UN-Dw)yI~y;b2R
zWvh!ao3HLJ&p$iQHv0Fsx5YWyJ~u%#!=NsutnAxW4;dK(p2b{DNKH=%jgg)B)+MTK
z^=*2}`FXapOtYsg^PR0GFF&6<Zh6pBuU#LHNq_xv*+2W~si~l~TT|xGUq8>b`qht*
zk72<itnL?5P_RKsN$JY^c>9|<W~wSGD{^md1I@i3I(!%uwc&h%3=I9xpFdw-{QR8g
z&3T|ni1<l6c35o9y&d-bUiEv{^??Ba3;gC<t<1W*3gigTn5X)@3a9xspE~RQ{Y>Bc
z>(%P;a$&K@moyK7hBt3-%LNVKe0q8swB9TC))r6D06l0jEa%1s?tjae7#?J<`{ua#
ze(m?U`~Lr{UY^_PxKicd!GlNrnA6hIye4H`T^0J~HE3pNYxec5r>CZ#I&oscm*>he
zK7IZ?b?)4?Jv}_EtgI`Go}L1g<zL@!zn^uiN7C;(2RC={<z>EGQ%_Ix-sfKa;FJ2!
z-#>q5o|$0?YFMvsXJTl$z5C-a>C(r&=2p3&1s2cF&JIT&@VC@0xxX!Uc8*!}#`j;Q
z|Et+N>ug%^`nbJww%yJ#leH@G04>1iku?7DX7hPaKYi29oTGLQHv0PhKY#w5UOanR
zdZ+r%-Mg#4zFJxT|KB<}HiiSvQ@%F4{r>WD@t;36s;a7%+nzpqrlqRtI&tDeP$Bar
zJpeRp-?F4n)*9qhP|x9V_}5ogOJA?u4ho1}&*xREc=k$}PD+%B+Eudh^49%-K6x))
zzI?T7w^&;3Z=Hird9U%?|5@<lNy^*X+x^x3<`h)jSn=h#{HCw3ug@;q`+oobxZq_z
z7mxKygXRuHSBLq^T9sT_5xBVIFt2&cMa#Ek*7HBJFcd_ujoKPiQnJOZPiEy}_kJx%
zQ}@(~69Gj<n;!2FRCdca*u;8kfBk+ZXXnt}Ww}?^#qK`w^U<S6pzfLbj!8?zbfZ=j
zKR-9izJ8zIT&ty^rq_puhha<3cI?<;wDbC=N0%D57Cdya{dOby)5nj2kB{}1o;AHL
zV)?9|`TEs}jY+L?RWB4lu4HE83HbZ#>(=`Jb!X>Vhl9Gun^I3-*_?j<v|WBx)vh;X
zryLj#TrIxZZmS=&BOv*BUuag=D!(}v3qO1)Sh{qnrk2*Jmp0Qsy^r<${^20Ie8#OU
znV=B7wk~!xm#7xFRk*}+a>?JX*W>T`M$S2FV0<uU8K_66q2ZBzZB5|US698iM*aTw
zHn^f<$E&NWm;2lQ4RLgI?5jQAFCTt;TkhA_>-WEUy?(#h-$<GGx}Qry3m8SU!$f9^
zx2I=aSut^SJHrAIk$<)Oil6&kUcQCvylujPhNStPrKU#4#-`=(?gUAicRjy!>*<Gw
zhhN>_U%#?l+Y{6nnKF0o+9gX=mKUgcIyyR5{eHV0G({O6SLr(G%ZtVRtLpy#ay@69
zc&J6`<y_MU28PW$9$7{h%=cc-arp3I{a+;!oBuqP{~xfo>Z{kEjCuS2Jk?(nzJA`N
zOP5rp#^j4_pKHGZq$jIO;8{^-vuW+G5>WU?Z_m@c`ufku<MN<Z{VenRx`U4o9X<^9
z<C&SpOReM>7#`e=xs?DaL%gPHftUYC=k0J@xNza8PoIjcj-_qR{QBx@c<J2B%l*A4
zX@#$=Iry0C`)9_>3=H9*R*@cWM11|<tvP11ot&MgPMsS1<mBc_mh~E3&B2Kmv`#K%
zGh|?B;4aKOaBF{k{mdA31A~Br2M_-G^?JR2#hvT%^=l_g5C~lrvhqkm_#NR4{i{<n
zgS%R`?|#28y8M3achUL63;|ZtbRrk2dQY>+wJv=XGBalOv6Fvy{&8HK`V`c$vwpv4
z@!II^V!JQ=-F)8e^1r{oO)EYmcwRES9<z9|y1$s^yDX=ND*_i+_%Ji<=-gNPdsY7Z
zeSWvO<d-tU^r$jjTjo0(G{Ev>!3ofi#k$?^K=UF#yN_*1JUnIAtW}^wakg2m)+d=Y
z>ho)Y7#SHsb>tHJ`4>xHUD2%l{dPNOFnfvpeC179SG6u5V_`V(KZ$o*dO_xaQ)kbH
z-rrXX8X}ZzTevE8wbvxjvf3j@TtJD?dz#L~{{Hi!@!C2%KA)eTzYbd6I6H6G$&V`E
zK{HmLpPjw@e*b^aEWg#f+OH3q`9XvG-|tngpI7@Wa;{~u+vfE1VULgXetkMUKJIG;
z14F~}qL;~1YJPK8Ow|qtPgJI*E$frFU-$TU|LYSIl|c>%b$LA}tIaIiYghX#<N3L{
zuP!WX1`St$2B_ZM*$Lv7y}R@Bi=m~Xqa&!`Vq#(fEzboFEWWz3^60whj}-G57&d=c
z5P1H<CARF3kB)Zr_Lkb%?hWXbGMzGE!h*%_{aFtWwN`yRD(<`cS+DuM6<4lY@wVEQ
ze7x`0-s<v+Zyz7;FaPy*U+r%nNofWK(5TIHvxu29XJ*~qRoeMGdVAhlW%s@*4?)`i
z*3I)~2CdWGTKM>w(D(dXTRgXBU)S5s$jI;@39ONA&5auodw;*%UG?dt`qX*z)-^RT
z&9$$Od-?JuXh{NSt)}g-7mL@)C^0Y`NG*OTwI*<}+e^@5<e;EQ&(6$L-u?Idp7MWx
zDka+%-nbFbD`k3Wsxu42f-@H_cG^#8)6v)0U%F&T#)%1vptZrEIWW(9JNDJp-`{cZ
z^OryUz`($;u0vJM<kp_bV$=M4cdj00U^wu!LVRJm#^;98oolC@P1F7s$jQLK5ElB3
zQCmaf#iU7JAmht^uh<x-Xq!aLTX=@~TC3b?g};((goK2?e7l{0`t)gULqo$<V*}81
zQbZE(G!<Ffs*vF2exX4@lRka=^yP$df5w*=7eUk3tJ~Qa9A<*^B7a0{@6~$t)rQH(
zRya1Zt&@{tU`Xw2cq$nqwxLhPauKLmcy5m6sne%}eSCV3^++!M_4W1cEDr_-hGiO`
z8>Y^j`H~~-=g*(7uCJf()-UI~fr;V4|BDto_Z#s?fa?35#m_|q1s4V`b^{Hof<{36
z=2!$i%8uHS5!j~8!oaY@DphVnQBjeKXMF9~sqgmx|HmztEzy=^Hk*r!>r_$(1H%rP
z><u=~GuhWXdGch_J{1NAhnZTR8$_k0qpwY8VK|Tr>L$VVTg3d6(P3ctAWzLPF!Z4;
z&>Tbr2jgjD<Q`1hv6Fv6U18YJRU+>+lqoo*F)-vAGpyYVx&Mf6M$-5EySqYjZ*L2A
zaA;_1ZWa|6Uv8X!F6LY5nm%yfZiiOF(PPK5o}HQ5)!BJ*P2^_KN~CvpcW1x8wsyMB
zH~oD-oIXE4KYjlE_>I5I-`-m4H`hv2UESR{?aYM(jm%T0OaZN(_&;g=L%oP*@X$~4
zaX#JXZ9biyouI`PDw=9)Zf9qiUjFd#@Yc%D&%CYtV`AncB`165>~rgtTDo9?0;p-n
z$jCTp$*$7ZSr-;KMuBDzOJAj&<Benh4L6DfUweD?)6>&W-@aYj$jolF?dPvwSqB;z
zfBpG<zVyX~h28U#4>qy>dbj(%N#&;}N#Ez&)keL(wicA$lw&-D_SgLdtyBk<?LzyE
z-!<bLpgMW#)TItVWs|Be8CO>XF20ex@8>h=r_Z0SPCY%%?{;lX4JaY5-}md4*1H2$
z;7IJyzLt<ms39MBIBoOPin-mfhwpA+<7Q|m(nFhNtN!-p;+n|KTXJq1{rvGG=7ZEE
zuRZ5l*FEfm+97B13U{;Gb-m)sBd=p#NWJR-MJM~seYLwmEB3d%eRFfOc#W@TaLLS>
zGbb&H+L|T$dl#>?S;pI2TcdUsEj2PSQt@m{)UdaYzj^cKsS_sx0s<yzg|B-vBTvWX
z`Tw}(OR{%pgGX75w(^Fhq%2WVR-U^Jw8!Jp5>M5AYD!8@(&l*~VPVrQJAKc+z3pV$
zW=$ofMK`X4ro_x<`|hp!s#V0_&L<nx%*Jbye2mBT_nXb2ifhl_y<d-t$FK08Z`YUn
z`O_!Rx+2i5S9sCxX-7fh(mF>(yYJv`>Z-_E7P-89`BF<mV}eTQn;U`J;p?uf3SB*C
z->UHS>!S1bhJu!E+kU^J?8(K$6SCZI?vz=xUVVA;jg?#M#hIDLa^E)uf(8vv?F?HR
zrD<gqrR?5!<>F#@Q8BS)Q>KWdrle?CTHY+Y(;=w5CE*~`+xz?D7cN}5Dt7la(6IfJ
zn!>`uRgs&QDaVM;vZ>s(XwjmQ-*2~PUs&L1Rq<iLGXMGO*2V5#Rs8(i(z^MnouIMb
zZq3*1y<V3NwQ_&GQ+!_2)HJlPuuw}wBLK39WX`eF?eR8NQ%dg6&fgdL`r6vbpe|tj
zzskLz&sl@UVL?;p-v6KN-~_pP0hg$jhN7Y)Cnu+>+~hfP-dxF;nsR?%t?Ik%%gcK0
ze!tnQEw$JhIy+b4!+hpA(!e`-yybwF^WN(3WnTpX+;|Qbd=&^dHn09)WjH@$>Vp>-
z7q63Jy2An<X95-PYmgQJfJz{6isWfL@z)S}@I}+<yaVpxAM{Zi@aPf9hHgcHo%W#F
zQP{Eq1J@TgSEaxvCO`pt0J<&$t%wAzQUE)UBe-Q=BWO4uc}4?|Mv%`y6BAH(fERLr
zQ~n{5g?QIRplNIc)g+)ug4&C9AqU9k+=>a6Y*3#QD$Tq1z1w`=F8KUBThQ>Qy}dnX
zgH-hPyj#0US6?o?dGjWCaXTo@g{_SOCHQVJUC?sMx%Tz{y7tF|X9yU&u#F7q3r+cV
zeV%PKXrsu%X7<--&F^2?ka)P{%ZtFfb-&;K`ti75_Bg072pUFJc?n&HCS{VbVEMc%
zFJ?9#jjPqgtk=LZJnJHwx8g7Oh2pIf4m2n+W`1~Z5H!V>c5co}z1UqIlRy((;70AO
zEh``IXk=ywmF-@ho)<w|o)$PZYwvYEz3?Dtnj?B&&CWf0_ktF~9yg1RkLQ&zaF}2J
zZzrFuRY~OY&!0bE-g-T5^<;H_t8JmH!_I2Ph`zeIdb-NXcKNy;hb~47gMz+W^Yz#8
z-DPis7Q6L^tPE0J{&sED)}lB2XMh%~eZOBHURAXVR4;*skLFsH?t1as$k<rb^XlsG
z{Vz7YYXPOIQ#;R`0k2TJDJLVNbJ(Ed$A^dA^B({E{r>u`t=X!cqFNyrg#B$68YUl$
z`CwXESvkwHc$t(*#)9bly<bnU<p+Wn1sxI1-hevcps%K==;++eclBU1J7|s@)Wg@;
z_ZQU)(fDWznyvWyxZnQOVSf85ci%-$&Vri4c>4T#|L5oCYHzYtS3kb-f6}4Dhh_i&
zf7mV`)-9&{<wkP<%e&?Gb-(=xkFO1VzvpwGn*Y2t>tc7uefjgQt)X=0o3h<%J~I{+
zK0f9-DJUoiv^fk~<bg&q7wn1NU$@sR=f;CAy4u>Wo7Qvk@#&RGZ78S>SsS%gFPq2C
z&hFL4#qB~uLM5PSj<*qBUR`cI5(_~|MA^M>&zj=h+)UU0SA0He4jN=yUHbYOsNUAE
zs>%GbgpomG|GIDYr~1vc5{-=6mwsN3SIT4s&czrp-z?6}v(-LqQ1a_b=JE#6$^y{L
zSS@tn<jv=$;`2-&W;Pw|7GGWW_t&kB$?f0X-hTe-Ap=9et6w<BPLL{;0-5i(^Y@Ed
z-ak26{p-Kq@3l=#uDrb4IKS@K%3t5!uKxD+HfXL{<o$`S85{nc*5ChU(c0+kpz#(d
zlZ*+VHLn|!kMF9AU}z`;MQ_yBtfenrWc12d27&fuMMTU93JRJsapFSI((^)Px1I}4
ztlV>^9W8l%&39||^|061)`AwCf@&aDRo9s_XZpQf588w%XIph5Z~N-<_xD_{rM0%V
zzg{*w&*<a2*zSg}@gPeVEKmUL?R#~3IX@#eLqMJmu3?PAp0jD%pYrxIGP7m8ytEXQ
zE<xSH>~%Zcw%;wA-Nq}u%q;hoMc?nI)8j#5?0M<3zkTeJUyqOXt0z>hI@&G%df)GN
zlecf*4hoH%o71zOpPQR?bJJ2#hd{$UX5+T)POV&C9v%TsPEMW2K^p~3qb|*t?>4UZ
z@SuC%{@C4Re!<=I`b;DK=RZF;_t(ec@}OR(*Cfz>w+RyjKm))>m6;hB-nBJ+{SWfm
z>vg;R-rn9`o>Tpxk$p?a%OJ_Nhr1dX8BU3AwpVK}-@TiS(fiWR&(F8!+%y8s`27C%
z_VRiA|7+&g|BGB3wH36k1~eHI&M(NoutV@#g6FLbiOojF##>8X2I)p_I+8j6Y}(~T
zuHAYsnY9@i<~=?xUmsFcwd?Y>NAt?^%)<9{3p`U!@bvQa4Lv){6g2TCHj@uDW4X2H
zsn^+gw!3ef&tzh#Sf=JXYlY`zHNV?^a<-sgn*OSkGh*JtJM3%b%#m3evona_=0ii(
z*H@t_^#uhRK!XeXc0U|0Uc9I$p~%2cVE(j@_u8wgt4n`<$^81_;^G^BCr+HW>)WmD
zN^?bq1wI>2+%=x^yJ2g^$E2UXe^1|W>{Qxj@T%WiTeD05{3!glfQg}@TkCsp%j)p;
z`(7A=`tf@zKdY=f;e076IT_T`(Mo1!m}0-?;3uA^`@nU2^v-<HRG1XDsd!LBvX#U+
zA8h>>$jlbn<UhC#g1fZ<o-6__dxS1JaEfTgT&fDLoShDQ;z6GL2ens_G=e9KK-~v?
zs}+dxDe7d=Bm;LL1_tgcpmPBjbXs657c{VS#Jcz89d6^5GDv8UGS6Gn(7*s%*1^oq
zcV(ioyWWpoplN)!Ua3vD-$rdrYK`2UC<$_YM8|5WH8*ZVtc}>{1lr9CDK$VdL%DZ$
z1cH`heJuU>@gt}wylC-a(0b$S`}=A^b3s$5O#^LmTj|y-b#z}IVofBZ!$YukPCmx7
zHTQS@+q?BXS4w4$f4n|DhRMpa?A!$#7M{(P#}2I#t=guxres&-6t!i&H$SZpc{au1
z&WrX(E_bs|7j!aRwl7(kyW?8CSMjY`eA>qaefeV-EfeBBEZ=@zer@!9KJL$l?@oVj
zD}Vd%!{?v(p8x)NV(;FHdb{s?YoenQ6BpLl&A0paBRMoI%x%x}cKNys+j4Jj$-8S6
z8WJ)iw#RvcD+fbE^PkXzMt^^qgEIL9MdvLgFE16`zOc|aG$?3M^6@^<7|Xub)&C{e
zsbt>Tk_pPR-rnBx-&g*AyZ!4WZ+%UB`}l<cE9U<<Zsr!%VPKF^5sPj)d-m+9bLXyo
zcz8JXZSZnG-tYag*4yrX-(B~2*RI{WpMI=R`t|MI-PMne_n&_M{q>od#((9CH!N&o
zWpJ4D`o)WYsHiBH>Zqt$P75dK#q22Xf1G=Blk4{U``7;b{G9vNJnznhRiUdvYsq`1
z&EM^N_NF9c0|P_Bj12id?_R#VcwwQl@-1Ou;lqFbUcGW<$*EIbph=KVKWnz_`}+F2
zwgk_rHEZ7dQ?ua!P3w0QdwP2As{EYh^1D~s{LtUO55NC5&A(^!^vRQq-{0PD+vlLL
zz<0LU%gO$Bfkj21{`%i~2x<*mocKHMAgF7?Cuft9{rm0q`~SY$W@cvA<}sI*lz2=!
z)+70O{&(B@e|xyNxJ-(kc$k`*W!>12xb0t87nkj)6UwvfYIohbeLMH@|4*m&v-0z&
zUw>VC7P69Z$B8>Ti%rYl#YEr!e!qTw<mR-yUu}2p+zA@_-L-pnF8kend3(Lno2Ja3
z{d@iQJ!NlaadB~p@UWHs_>kBuXKVFn*5~KvUoW3u7nGK^Z0+4mI-r4rX{jqWZw^*=
z>v?hBNVebk9YfE}&FTJYmN#g8`u%s~ye93Vj|_Q1tLT~zF38HtI+VLT@9w2@bFD$m
zi*|d*ijR+6w{F|EYWsHcn!BLUO!2r1M_E}}tCAN1E)Bm<v&+{k`1|`iXwllk>%ZUc
z*ME7wed@dW`|TIKGMy24kSXEJJlpCm2?v`Z{FwtU-MY2vxLmc)waX2RprNq9z=@|$
zoho^GY3YZ_cW&Rl9U2`iy)W<VEYnr1R|hKyOt}7fstRbz^w+oB`Jhw@YE*uCdHLb%
zc7A!eb<4hfHTf}Rib$)IqV3NolV=&HpJP~Wv<n<d9&7e#E#J2<?)|>s>!hTluH3x2
za?TtXQ!}$yH`C{D?VUU!;r<`cwtAh@m-=L_w<I6ui;l0Vsyb5k^#9D;2`->sgkzHE
z2DzFKj-jEUD_5<0weI?rYu9dRMNKOC_U7h)TmAXx({JaM2%iHT{2<}Rs?GJU$|2g>
zxmnG3mdN9qF4wz6wYQ|6o)+P+{K{{hjpS?1BQD|L;dj>U-Lb>sT5!iMVRgSFcXvfc
zMQy46{;s;}!?XVnujOv8a5~V{<e;FSX;;ta9TXQA2a2di&t>BueSI#=!IG0cxuISu
z!PPM_aiNrylu6y6A9eP;;tUULY;A41SeUeQbYwPEA9=+ic19_|wek4li-%gdlWln!
z8W=;?U62R0ab;S#rdfXgHM|)PuSj5Ic%Trn;Z7qL=oFMh79EAYx3{)>gBDu&`GvW=
zySx1Fku;t%d9rZxOvaDeV)5U2K66Aclze{Xn|ot};-b0nryOzw*0I?$iGdccXZ`;6
zc2~v6q&3T#7}hx)V0ttsH4?OcOoWH+_nM@?vHAJy?^VCI^_^kh*xA_$8YHQ#+?jWG
zSL*J(KR-T#HhzODd{A50)6?_RsZ&9<wY5iP#Ky)(fx0Sj>xG1czrI-9pY`}yFITIR
z+jUMJu^ho&%#7R(Mn*<oe!X7*KV5Y7k|i#$udTfdTDMaAI_&HWL+97m*I#d9<<7Yt
zIc@2-ZDyjPqAM3HaF}hLAC{H1>R!cT-mP1<w5)&q^5w-ZFE4Mc{+_2BxyePo_RGXi
zpFf9&g)O^u=@MhKJ_C=5++_xbNg;7@>vrw33JneY`jho8X!}WQ?A&`bpM62w!zO*X
z7M%}T&An>fx@!}a-Jg8^dFcB8ACLP%^Ce%;7@zl;)Ya8xl6S}A>a}Yie@t5P>Q&ZU
z+v+e-$$93?6cx}h1euwj5_htfx3_88n;VUBRu436mK~H`k-#|NOS)+G#YL{GR<69b
z)O)(pFMe4omD8KHBpv07uFlL{>9lZyl(cm2+kX3h6&5j`^>wLNj&ur_K07nB;P$@S
z-zK@YOqMQL^5WIi)eo<Ow(%txtXQ^8?eJ=rh8GG6j2zLs%hu-I-*@+U<eK8==QI@+
z9fj3=Hf-&evyB4nR0ow?Z{yaRC-qEJc3-u5v+<wz+qRk2{(L%J$~0@rThroaK9SRw
zo}R8R9VKZ{QNVUu_J$IRz_f`I7e0EFboI)WjIXb**2Z1FAAg14=7YohxApdW>YksI
zJv+xTcy;*tcb@~Q%gW03zhh<ab3VY7u(|AQl&OiyidCylU7I&=-a6~@cPrMe^%Yk4
z<Jlg+uO@Q;zhA2_UB3MOXIx}t<g0h@t`(oREx-Sn?M{<%#JdAxiVU;QobeGA7k_=(
z-+pWDq7O&K<3lt=E?rw2oqIhzJpA+~owKt{U(b90^_2Gd7dJL0|9Z80z0$8;yLMf<
zeY^TSH$zOr+k*%Dxx@sX|GG6xTVFrCwsvn+bhK&Zrxed1KfgZEo~&83q)N-mPCftp
za(4c{z}VQi&(6+H|ILzE4_a3bS|kG61)=IaO+#Pb|N8p)>*e=rmxI>-H99z~T)Fc5
zUN?pgGbWG?zh0YZYkPN#>0VkFyF2Ia{Mv6bH*MOqrTDp@tVIE6hv<e=r%#6l1_~NJ
zyZbNeUv+g*(4<+jW_@|sE}!-O-riN~*I(}tR0d5^o;u~VbjcElC{=@s4X!Wv!a9zt
zGBXGigI4aw#mxgvBHXzXvpCt@-2C+O&!E+`pmP&?`g->Tf=;V(T#>Mox&00!0|U?E
zCRT=q=757m>{_7HY}yd=pz0o4dKiSv0q1@OzC&UQtwHSyh6D+aJh+?*05^_%K&1<x
z6YFVE3T9xCaAW0WU|?U^^pp=&eIr{0YKihWD@gsh0p8yO(Fih_6oY>Jt$Qr0zW;uH
ziOnB#u!#>oR!o^QXU(HWj~FHGEiEJE`qLebxv6N2aJ44caxyR|fR?z2uZxkKu+dho
ze^1=|hMryzP+`e%*y0Hv14DuYXsqLa0m!h1M2G~anqg=IEr4U-QHE3k2S7*sK#r9f
c)lkpys+lcDjXj2kfq{X+)78&qol`;+0G$?*t^fc4

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg.png
new file mode 100644
index 0000000000000000000000000000000000000000..989bc0956f360233ffe01b8fa1621721e3695e9e
GIT binary patch
literal 22429
zcmeAS@N?(olHy`uVBq!ia0y~yV2S`?4mJh`hJ9%>?l3SguoOFahH!9jaMW<5bTBY5
za29w(7BevLCxS5J3j5`m3=9eko-U3d6?5L)t*tr#_0j*2&(o!M7x@|`uXEd(A!b@U
zabou(C8OBBEt|cTJGV%>aYjmd`(^r>IR_qkDdV})_<E6&%&L`(dk=40_bjO=w&MT4
z54WFJ+oek%yKVQr*5=*z+j-05-mkuXJ8+)u{q^U6CmZt|7GPjt@Ok{~4JQKw!wxAX
zF$RW)lN=EY3=C?@35*O3GkO|W85k0bMkR(%kU0GO`LnC9Z`%I-`)g`yM5Lrv^-7z^
zecPexJ?+HVvuls^@7}$;?%&VnM*Y^6pO(D3zFyzl+<a}^-dks)H?r`j`!g^w#FRWa
zA^7*#>-E>4-ue3KYOsTY!_3?5{POFrt`5&WGsBRJhbN?{Xw$Fn@7G_s5>oo|($h)L
zx82OCdO9`y%9hOF_K#6pv!+)1<m9Y5H`iKy_Svv?zgOshl3m1siOTL*mUvEnT~;SA
zFJJrpZu!!-HL<(PGM}EB+ST8GeTHGOil?BUVAl0@bJcuiELa=8J?`6|@As<LTa~;h
za4ohhc+eoG7qcSs^0LfVS5`jVJ<+Sly@i1x;=tFebzO69tGAuWUK6#|OHNL%tE+2M
ze`QsbmXT4Ab=jK>8<UT(dm*)R=gwUP4-ch&m$t3iB3Jc7vGnyd-?qe<o4g@LEIJGf
zI>*vB&-_(vS^fQ8=<2YwA#0;d+dod2An^N}w;_+SZPk~6UMbTjj~_2?WM+SLT)tkX
z^gh4+p8)IfcUQ94?=5THFEv%TpM#NM$HCOJv{UELuRpS5{`~nohcA45eEhV{wd2R#
zmEC#*&d;+AUF^pD_TJv;j~_q2y0vxnw>LMH>+9=(?|Xi3?&TjJADfoFi7?H(6Vc8u
zzfbRbGAr0^PrRa+f7*3r@s2%vY$~g&rb&GN^l4MRzIR2%jzfnJzpb}VIKc4r?d|Zp
zyUVYinQ8p>T6F%+?R$T{TCJs{6XN4@=IR}%rA`N!7#^@afBSar=jZ3AOW2pcn^Rj|
zS@QN)=v=GPqKdQ5RaLv5ote3K`~A9TJ3G7UW)Hm@8dw<`T4S=COCKI;Ez+0y{`s@^
zSHpy~v}GzQ6A!mNo#+1eSa0cz3yQz*`_Hus?UgbO`u^_j)QJ-x7W|8^`{^nvDapmb
zQ84qmnZO1Hh62UBJXQPsX%fd&?eB`q$gH_?CFJR|XI45T_jeXA&oP_b)ZBd9w*PQD
z|LbM5^EUnedvUS**T?<#t13S~<NJLx$E;VzGRSPUucf8ss=&o=JJ+YWLIS61?ZI7B
z6rI~L&dss(^6|NHV`H*vY|ZBCqM}Vs&dzVSuWsJ7spQiWPgXXzQ+MyiUOIZ+`^xI@
z^ABt0*L><Mdw*}OcwEInJG0_vXN1;wS`<8JNJ>r?m6ct4Zm#v|>({?m-Aij#N?>Ft
zXy)eR46LZwk(87)W$xVE`pMO9Zf%n$O?va&caBA%rlzKszyJ3A8@6~)*W2~?+wIch
zvgIq%&d$2Ew|e`eNt3QD@f2=9`ex}~-hF9jXBqK0m*1;g&c-8A@Hc-8li-GcM7@|D
z0coXgwa(vB-23y{>{s{p?!L7>|NWbl3{xi=OX+w<?J8NBl$^XZ=cduqCr>mqG(28k
zTN`|RU99Z0Z~Ont)jyf&z9sLjRqel@&#kJzt@-ok&zCdC=QCbiS;^PWar)7!|Npj2
zuKUFm8sQZfIPuP1P&_UC`uh551D>yMZU*Z{Z3&pF70MB*_h@myT~I~E4!0hOh4%k{
zp8xda%ai}%54hgm-0UuET{fk?-F@YM!zx|9m>mla9ddemZ}0D}{pZ-Ox3O`H9=dxs
z_I};(wN+nUEEHDvTd`q7KwVv3)vJ}uMTCWw<>luaN$Z8k@!Nix5Lf#(^y{mu-f?kp
zS{fQ4tLND2GOQ^0liBuq)sJB9*49=j^Sn7$Wp7rPW?y@8|Np=3AhxRaw2Ut=E`mIG
z=gys&Z`LdGSX^CQCoOsLBI9o1aak{K@5`Uh+plkC=eMd%b9kEc?fMgo*ApN2_BFJ=
zK6Uo2uX~@&#Wr5)kbr;%>ho)YzTYjMKg%?G+4uYP@qd4Pz5MIz>$i%h(>4ok(pve*
zUqtlxkH`I6GcGC}J$m%z@Av!5FRfuXU|HeP@%oqn&(mkmR)wzzIe)_0wBU${8B4nJ
z*}r}L8tUZK#B=z9`urLt&#K40=1(3!K0IrU*NTd{u^T@=KK}a8&(B@`{o#Ru6O)pY
zOJA?uZdKT3aJt|A---hV9Mb&{r^fal>#Uz2W+SB&V{SIv_v-5K@RE`(pFVw>GI8R<
z{r~^IpOg|m|MA<mYt8RfID>p(_y13^?bj>8-_*FLcJJQ3n@`qi$(1W1zi&*@3^ply
z6R|daf86Ee{>x7mF&Y{gW?fx1we0P!r*Bp=OmjPMs5CetLc{adVflXxSh>YcT)!T^
zIsN>#<@4*bJXZxR?Q%W=DyIH@U0?t5$;rv*=9sO!w6plRN#Y@vyS3l%^4+%=la^j>
zn0)NTWq*6sl${OL?{>N`T)0rmqCi3MwN)bTv}}chgC<A2=Y0P3DI_4^!G~k_K71(H
z`}f=JQzuVed~$N~*2KeXp8v%+?b);E%e&q0Uv=y6n=pU={NQK(*^i$-U22$oY(@F|
zd%K>`tN!xy`TX14|K^|Y^7bx%<Wp$c^}mvjn>)CsX3s3M+*Ryy6%7+ur!+RO28*oU
zZ&~tUf|8Pwh=|CNK3VHmFPG21_Ur3wRZoALk1fy6&R+iIONs9+la*H{TwUPEoPLk(
z)WiMuJplm$3NIhY@6+G=WzwNThf3b>{XR`<)4m^%xcB~e)cxyWyS!G-xgA#gc0U%V
z`OaFh*uDQ$+Gb4?laP-eKW5$AW2yMsYQe!G-go+Yzg+S@H;+Zj{IJ23XU~>x*<u2!
zZ(3Vhvo0^|on?}_2vm8@um87`=WxJuz1S=JYO76iZUktDt+}wT_V<+qj?8z9PV1`L
zHL_)E{}XU3E8DgzbhTP}dAX>F$cejmV|%5|!%k1rE&cH!@$4MS;Mm<|TkCgbM?}o1
z`~SE6?_>G@7mUx_JT{7d_3D*b&W#02mZ(%#RJ@oLofo(^YU`C1fy!GmFT4H!^V}X(
zS7_?!ocUK<y2EPb%$Z(3K3n!@Tsc#aD$&Np&HeR^@%ax^7A%rDV5*^`W5RRTps2XG
zw~?7$%F)sBSa^JG>ivIjx8Il2joxPR>gwwBJ%7L5{`T?vz3THDZsxc}M9i2tdv^50
z&u%|sb`&f;5>ZyR?c$!w;>R10%Wdv|`uzFr|5dNAt#w=OH<zcpygd2yv$K51|9v{G
ze?5Pb!P)x%|LxMwNE}YvEcy6Yud$Jl(VN@bb8n}$w6#fneSN+BN4ose?bYA&oF_ee
z`ZV>&uV1r%J%0K$)x)Ul{k^wuZtqF_&>`@2TiM$v-<d|Pm;UeleZqjJ_V?TES@-wt
zb#ii2iT$JY?b_Pt*O&e6r!HT<Tue6#6ro;|<Z8bJu8r9l^nTChKJVJ<U8}9?|Lv*!
z_cQ(Phr|4*PMw;h^7F?J4ILey`L*9>&Z~ST>G}Wrj_^sl%HFO@pI;j$t``$<e_!p}
z^^YbjsrvdV^pEd?J2_^vYjdC8*;#B_^(Euz@#C-0n%}=NQQ19Z^UW(ei__)AXZ5(Z
ztZQs&)lQRW^P6k6)Ux>5i>=q=F84?pzq!2$Qh)v4HK(bGDRgaAsH>}M*1bJD@6~+v
zt^It~{MN40)qiJv_)q{!Gop3!8uLqEUwiqmT|R7e*xD<*O0!wn*j^oEm%p+t_x6+-
zGgcgztM-wv`OxTm;?(KWlT~d0{dm0V?Y7%b-oIa;c)0E5nVH6WJhn|LEHB?)uT*hw
zPi2eF1FnyY0%HtkpIs(pn)TxC_WRd%6h3~VKVgnp?kpx|=F;o2<u5P$+h5(7d>mxT
zqD4x-%el8@T?Mtre!W~ie@>0KM*mXp>9204&kyzR==k?#x&6u0r@ig}d}yAgAHS~O
z{$E64Vc{&B%1u0n1H8Pta?ECn>BVT|=jVG~nq`_DveZlT@6Yq~VYj#CW@>A9p11q$
zQ(0LlWl^v|<>cYR&d<-!pT2zg@@Hpft9y3!_fJ>(`_jKY$ibn(HU*S%rA#s=*!_6G
zT>AFb)y(e!Ge0g06n}VyeaecGuC6Yg!v;Of?0gdC_iMKYt`5^pesyJKTcX6VWxlg}
zqPAv9f)e`5;N>!Xzi;3Fmv&`k@bQRUC7G?~CBvV0>+dtjy1p*=&rAP$qq-jt+1qnL
zY2xBiZ*fqny}aDt{M;PN<Q^&0Q!C>3?lMd{A)st)d-una$^Jd;auo+&+~2>y@Y|b6
z^}DR6vTtw8Z9AK0oMSfo<BjBg$!>9dz0&;`7rRg2rI!8s+uLJnx8KX!l5_LYiPNW7
zpI8}Qbu@cJO-)VDtE;PL|9brR@nNYoTyD*+MTR`iZHX&#Z*QArU%$_-S86G!l8B3o
z>+0;h_~qqg)4V$tt!-_uzFv>NzIOY)Ra>^0sH&)}sQUWq)y2i_oAVi`C;s{G&#^9c
zcNnjfNkB-*l)u@5UGc{+F87zex-!_^(9m#}S?(-QdHdr>#ntuk@tmBTS=ZLgTotl%
z5h!tV>+joO9<^a#@Nz#*1qFx1#6(b?yv%p@muIu{vu<t41htJs1q2j4y*xZFv~r7k
znM5vJxG-u{N++mKqOY%?e$Q*EYx7g7oVJ5a98+>nPEw89SF=;D;sGP5q4M_D*5Vuc
z>i^gEN*cTEE_-`vOXg*hygL@Es;ZiLdVcMEvXiDypI%c_18S^;DoZXduA)nG7ubCI
z^r__c+wH4;XPZUst=f9n?D776>P5f5y#=KX8(Z70$;bJwt_t<G|Nm!m*!sA&udc3M
zUH<;ww{VjMMFu?1pycuD+S=8imO}LQysK|+Zr)n`J@0PK=d)7wb$dW9o@KtXy(WQz
zoRwQF<Ij(eQkF$aYGs~oPd_hL`sPO9zJ2?a?ccR*#R`w~b8{}fySw}9LTC2i^Szfo
z%IQpb`QTvluJ8A%K_z<a*Q?>6z*!f&yX4D@Ku~u;PEIcC&W?>v&dyu&@7w7{Z}WNg
z?p@WtpU+KmZW#Rh`EzCR@jj40K+USHSyxZp+}@&H^6gEeZp@B=(%09n9_F`yvti!5
z{r|mp6h1!o>Ep+Xr>1IOUG6Urst2}aUk?LSLK~Cauda)|9l5<>b-}|!tUGt^T<JU8
zY?e`Kmy~(l8pmcfO(i8K-&rOTOFp)4ykGOVx9-nJcTg+f)%ErBRWh%wiCh)7cGj-)
z_j&*KHht2p<Da&C`Sa3B{;;|_yY~lIIs6H3F#7rXclMtjA6Lcg-NnSjWRiMHMAo{@
zXXD0=Tzq_C^X+Q4RD4VVRaJM(?}t7=H`g@(o(-rjT@|>v4OD1k-rADc)zuaB_*n1U
zT5FB=S*F>i?%$7Z=aaqE$}Rrn;lqX8;(8Wug8%H;5xqTc(vteWuj9WJhWH&lxFT|M
z+N(P|H{1RDkv!L;&}q__4~O})KRh^CR9t*{{r-Qee*CD|nswEy_}Q6@-1>VKL~c%d
zIniBiVmrIGKSO6jtM`h~)zgxalD^z2KA(AiU+t%F->${~{}nE4QxPz6;>1libHGig
zYipykZ*9q36~2BRD7Cb5i)*Q=9jlZ3cVKNy*Z=>oE-&u~wazjxFZ0~>qy7E=Hl5jL
z)8glc*2rYrYVDt$x64!6z3<Act=U_PpZj@UnjT-b5>&8Pzu)`obo{?X`uqO`F)}jF
zGDvK4a&`uF7Psc!zIM{MTy_uh>QBkMVtTKytPHOD`E)uc<a%YT!-}7s*_i+P&F1r4
z%HPL<GKsl)`0+m3$ts|{%g!$sa(7qhT+`f`#meq|E26jOS=Ij9^62s7uUCToJtzGw
zO#HZiOK?z-N!AsOzi;#FFUOYOeR@Xou*>uF^RF*(Y)+AAQ&Lv``sK3!>vPucLuzXF
z9F98k{a&>{sCN^!E$8Kto4eW`nMPb)9d5ptQ%6VV%FD~kBb!4TUlbKanr2<OuqE?y
z%I2FU<?mu7+ZIlbuZz68Dm3{1zS^tX^W$y*e!1-B?|;2rzHY_d>hD?S=2*6@_R>>O
zaCpD}|Gsy7zsG@U_T~Qbuf4dqSXS)*yW89SPfynm?-tXo$XwI?@ynNx`}=A^UAbOq
z^HuTt>t-1yx7o&siioW6nyOXxX5;ZWHo*sGWo#%o3aWF%<0_B-GdeguuF7-YzI}Z2
zwI=K7P5AclW8ov8#AWC0|HnLh_|U5K)fBm!501RDRw24kTP}d&=j-e1+5i9jy|t&Z
zxYK{eqEElx*Dw41<>li1eLvlzx8(%BzP5I*jq&xcI|)};1U}wn60zKG?xKUM984m1
zB$;Mi3CPJ=v*dqu_vh34`*Zk%kIr{cirG2MuJ%{P^K)}SMT=SPttDHtuY2v<;kMqn
zoexyo-`bM-_(|j;pQH1wHs8#VGD_+A_U7i|_4|HxHLy-$X5@bQX}{v>yLV$ZZru3k
z>({4?Z|c3d7M*{!`u*PJmzVp$o}IrhFfef9t*zP1ca^?gm3DU4xp{Kynjf*f{`dR+
z^&Uy%FAv-0Uu`@t7kqV9D9G){yWL_z#)ipkx^wsL*IU`^S7u#ZHOsDc*XHG|uh&$4
zeFe(UQf4_X-mF}}1j^&bdL*R`lUlB=iCo++Uw7kXFq0N5lh``1UMW)%Vd2HALRY`K
z=q_LSt%M=QeQ)*muy#J#A8Kt}PR&oHI3jjrnPy+R;;p~;$YRF>M?uEj-j@66%a@XG
zAq`&54XxQuJDBo#T2^<tJ`VXQxPgITgMggiF1A<f3=9mDFD5WDBq*9htZQWBW?(pw
zViLi?5W&GaEqlR1CI$urN!~ElA78J>gSs82xwk^@-Me>g9v{O4t*1|)YTDYye!o-P
z|LW@M^4N8bV7G`S9B$*Sdeo^t$Cj6&!E>5!^s?jf^>=PwZfF(UpyhCRnXhW>A3bya
ze(BfKZOqNXudWI${$`?e=UA`wTwB)V62@sg&(6+%{wCAn=$)O#b8TC>rq7zSO3t>*
zqFPGy)%W}L*Fk;G|8e`{GUjOQmwxSEt*%+8^Wx#dg<7GjEGo@JPp56ZTku`SQ`V}a
z;G4*tMQLYenZMb4zvlDVbMu^9KY#hMNAZ31ByYX%C(fS_&&gQ>a^ajgGOVnuna6r0
zU)|kZzVn>0sOZx2`?cZU@7M1K6@cxzZHX`DmfyQ*{eI74`T9Sgy6M%0h0RIH$yaw4
zryJ)Ve;M(FkD;MeWc@*--_MKM_~qBNw6M6kxMckM^Yhb(4*~!G{oPvo`<wQ>-`C^o
z*Q$C?n<D9OyjObp^Lf>NZ*OnEzNhjts8*J>D)C56O#Joh_4@Tctfn&ZiZL*VJ?e3N
z2dcSGP1P2amtSv~e9U8#l9JMub+OjIGYlM~x99C$^twmRHtKLYzkcaVm%zY@ps~M&
z&h1*3mN)I}Qceh%=HH7sJzf90Z26tSr{<}Jph&*+AZ%@vDnCEJtE=nH<2JUoqLPv;
zWv$Cz+}M~r-PYa9tBX(0X2ne7^l7{HE?D4DSy{O%e*eD1KYY#as+gOb|NQYI=C*GH
z4<q;Wsne%V-@Lqm>&uJ9{Z`dnD;&1pt6IHz`GZMwK6VtmzqdE*>Z;IAe%02NmK)pS
zz4G$bsrk)WadNWybdG?dd-m+PvNBj*RbBn{-tYG=UtH|Iwf=vd?awEZS4D4M=e(ns
z)kf(^sq2AV8wEDx>9FWrpEz@-roH`sp~rP~bw)hS$NS~?Kl!M?|IenHnwl?%xb<U-
z_CGy6J^RIlg?#JvvMw%a-IjN^>aP9F$cx~S)ehrp2~VFsJ$d=^<|7p!>s6jVeLA)B
z%|hpPllp%(Yh!kP+B9Ekec0Mrx3=Z3){EV>B7A+^sZ*yey}7yBwBUh5?%iFXrLV5+
zY}&n224viw2YdGJE&ccBr_kf)=jLwC*FXK@;^M1oqs?u9JZPT2$1N~$V%7I|Yv<Wk
zzv?x=x1s<0tE=9*x3^t=y?+0?@c7!VTJH~3fy{|Gv(+R5)XbS_oGx=rFJ?!<$>cwO
z{&>~$%$PY-(=+SFhQyV}YkxkSerrQwGpLa0>EZDdzh4>}5wT*=9-GvZloft+tyabD
z-DQ@4Zw)g$-;@f;!i0ncQQPy@=HA{G`_VRx4K(@})3JX2`kLBW*<<JC+pk}<W{pul
zCm&x}R#sML{{0*9aYb+2cP}n3-gGku)J8hI<80dHjmgKa?5Qk1JKNlUv0HCYS=qK6
zv)Nr;U0!pRFIeEv+S>Ybr|;><!Jr}L4r4o4i<A=rqGDoNhK3jIrp=$f{>hV+*0wfK
z(__+<sZ*D3*<w=d@#^a8=^(Fc&Ax8+=gR7Ea2<GUUF>RhxeA9#S5}2;OSUZ()ef_W
zsXjl?7Bq&jGrtj3C>?N`v+;zjii*p_hY!0tI|IwgwlOg?Pn|PoO-~Pxs;cVE@3Som
z7X<|cO_?`uT|)zdY1S2wUMW+p!hIJPyT5)mJAYfd_RB}%9baEwcK4p9bMfS4bx`#w
zYhM?`Ev7SJ{rdH8{c^eYc%vB@xfvKTUS3+Ny05$7?ygeM$WE>N?6Yd-+fUp7(b86_
z`}6VmEaUXPur(12d8N%(WL;ea8i!owKY!gc-RN0W_UGIVFfkl(nsYJ1GwAB7P*HL5
z<vVulF#7K4<yDli<y6s+4-bQm+uGWiR(?wHooDlN)AJQ?BAUT-O;Vsy_9KzJVrN{D
z1lo?R{InQaFoVj5LsB}|9gyT(*iM^*MvpfLFip#TAgBnM$jShh_-G30YS0D9BpRrK
z;a+&Kh!>O;by^ypN>#XUfacY}eg!!lNn!WG!c~7jPG|6OYX%LhZ(uuZiX;y<2vm+m
zcoZH06}q23e-@RM)vd3u2aPwFn1o21=jnX^vv|=W(2x=%Gn+-v^QTW=p0EG6`Q6Uv
za-i`eP;;W4Pj*YeL#Nms1q<(7-)J?RC&GK0&cxZXXV=u!Oqn?|GO4;>&Q?T3<Vnj+
zMur66!|nXxPEJiqN=l#tqq3r6Mg9MOxAxWk7M=h2_4@tSCaHQqdHXgt>Gs3J?WS2*
zG(0bL>+f6f<3|Ok2tIH7eU6f{vhQyG)deRTLf`!P`FWOYby;WOsvw4jP|L*!Z*9$<
z9=0xK<;~6M+27vW1UHfO_x%9%A}+RY3a_hpx7fY^+J}dSL-*JH6}l~DlCgl9oiF2X
z8*kOeqvE2XqDw<phh-k=5cKl&y!h~N`{}>gsi}Ih8=9J%LBq1Csi~ILS_}*k*H(qD
z2DScItkC#9WBKysO3KQh{+z6J*_%zzJv==x9&BbeEq-<;X#4fG(cx>Ox9b_&Wn573
zyi|U_wtVX5?P}9`Bg|&|PFC{`N=!^#se7$nTTAPb_WC`G4jcg06e}Y)r-4Q%K7IZy
z`z`y{mX&Ng5({!~Z(A9>-0#!3Z(-eHx?4(KUV2@r&Cnq2<GOzTt=;A8qqb%(&APhE
zvZo!RqPP_o>-8~cUe(uEQ(s%GF232I>UnmS>E#WHhxKkJxw^T5JIasytfx$vut3hX
z>c!RY_^XTi?Ott|e>Uwhzx|&DA3hX-W_*gDp99U`m?RzHnC^X#p+VX`Eo~X7pzZnn
z^XEwe9$EXkKa-B{|MTfIsL#i(zb9bbYcUZK4Mj!Av$M^w&n>?fxh{F_xuwk0RD9>z
zM6$B7c6E1am;T;Y`+LfyNsE@xuZseWNp3!Gw|dDEm0oFczwGPlt}gSPE%VL3<i&)r
zwNXpM<0@T2eU@KeUxzOB5>-`I4L$OffgxrNQpL1m`t<3w)sdi{&(F`#v(L@3Tots`
zYv;SK{q=tq@B9C+S~p^YLtfrGQO}syd0rRSL>jxgxM&y}2Hw1RQ*~SYr<3ZSvfDVV
z=kSki{e2pT4L~y;?H|o@Z>{j2uJ>*K`tbGh@^(HIn;t!fonc2|MRoP-KR-XK9y>qR
zI{kj!w2O<~S4VHptNL(|{dDQs>+$um^*>L?n<O9Oxm$eR_UY^b)dJ@|86~HtXo4nL
z($3FYTlx8!WsY^xla4!g?ubZ8yfCQyeAaw**xIO5Cr%Vd@N;lz6#l!lHCtO<{rI0w
zW`;bA>%SIV1kHKv|MRK)a719>Mb-X~km<6IzgD#IN>7{r<6|CdEkM;BP``m!+AQPj
zEYolH`n-n&5)&6f2l%Z@Ux9{W_>QZpt7ktt(pmLx=W`KZ;o_s;!)D$QU|b!!IStet
z1r6lAc=00W`_4=E&%As0ZfT!%Tj9;*;^JcOnB%8UpN>1o#IWY^@Avz!f4^V<-XJXM
zbn>=r-iWWSuj_BTU}J9neG>Q8=H}+9vu3Tjb0?;~^__M3yD4YWf(r@?RvwqNtqL)l
zefFQ{f&cs3laKeUto;0JmU;fXzkkCgeYw8>Uua-pAgI?NrV~+Mx;;YkjsT<gt{X|Z
z(c9J>iCUxPJL|=vR&LO6dC6(r?Kh6s|NEH^>T~<fGBL~r4YFu||D4ItP<*HA_1axu
zuSLrq+q8M})|#J1>Stg4k~B)`08K<5IpPB9zg{|OzFS>gUE9PY<ln!4la{Pmqchj0
zGN`e!v8cQ}e0|*BEoo<G2|e%b>I%BN%-1yal*rcX>*wtDRenyh{q<roXjE&OZgiNT
z`EwO>p97#_(|Hw-IQM=&XPtFvNvG|LFYoWigR;GoQ`5b=-?_j4ef;=w)6JY+@Av(l
zW17lvfcJ#teOCz~p+z4)6dXNrM8n!Ty0Nj*%g-;&&8_Wl`wmdkZ^{&rrOTIVD=0XC
z=0F#_^?J?8|MKGEuAk3le?7p=f8%(cjO8LmX0{V&&-ymA^Iv0^uX#}56A&;VZ};16
z*?WRt7u;+Jy`{YS<Ye{imzS1$d3$eGf3;wN0<XMXOlN23sgoxIBO+$(`}InD>5?TG
zA08a!;^tocVkI*}z{6>Jv8!&}hyaZUSz20hadBPRRr>nM*6i@#c4o8RcG<lRkMj8Q
za{2s{UtcmkFMU35AOC1Z=H+FA8?>4)U8?F9(-jdET&U_j%_67%``z-Zi(I)u$?ol~
ztyvcqG^+W}TeC8F`8134$p4}TuD@qsIP<8-K6q8w+Et)hKR#Q<)6>&4{7clLOLmd+
zVq#@CkA7QsM3os-pqtkG_z<*RH*QZvx43?pL~(KPWzcL?>ZvK-^R}-EH~jNh{{N0$
zolFc2)1ORY<Ys6%bxJaOLxSD(`imM23=XcKM!^B6j14i&pgu#xNl?wXK>$?ggIgdR
z5$hU33ji3@zzUNx=4jc2YF$|WZ_U9XUQlHUm8Y#i*xD-+Oo302D?1^2q&7+=1YJbH
zAaGZA!Xx*VwEr=Fb#?m|EnfWe{d;|RdHL41wyej;dZ*jwot~x(8Wv|_VtVrSt**Vj
z{nyvm{cms2*Dw9w)WmdlmZ|sJ=<U<CZ{H58Yk$ArAAh`GUjO_0sZ&382rw{Y{P^$?
zG&*{$M{@Cj0}iU{>Z|Mj|MT+o4V|tRd&=hBg@w*V<>l8;OjHI<n>~H<B;)3$R8SMq
z?&lNXuWxT(-<O}5xDd2JWUh6&mX?;6qoX5eo-aJUcIjkw|5b^H+e8aji#CB*7FZ-t
z{Jk!A_m-lkUPq4~2Q4s}w4|ehV{7(xKVdbW3)j|0pSCeGG76eFaUx%`vU^|1=Vxc9
zPMGjOV8gR>b64v|Z_Bv7E%()pjgL+5O#BLReuMNKob7-$G0#7L`*zLO{O%HAb-x?O
zc@AIr^YgQ5#fJpY*sQCo>#5VHjo-?xX@feA_u9R^)mK-AYKN{4JDX^uqH<*4-y*;H
zc5Cm~{r1hw%$#MCISJICytlXd_V)VUZ?{|3{n?SX`>h#h)aujMuT$5rUw><R{`xCd
zu6+9M6e)vkambEEtS_9~`L4F{N~?H=t`56ueBNfUX7I8b+y8$!%s)xbPHj!}_H|;q
zQ7VTGOtP=(fT9vKX?Jy9to7t~Cw_u^TF4zha6S9`>5-#HGw<vuw5s~DVwz6mqCbCX
zKx1B6S65A1a_3IW@Bi;^Z$H0p!QS-q^SF3;K<ihQO_?&K=<f8Xpaiz#U?ocRS!e0!
z==g0vsA~Wku<n&GbOKEt9k$$6_V(3>%!9{zr9qWz>b`3WH-XkkBp6=5l#rT|^5Voq
zWxnK}KYvcQId=a1`YXp9X3m^BDdgRC^^lc8uFPya0WmRi&ds;i_xJbzZJD?4=QE+-
z*Vo7Y@48kQss?UQKZ%kTG|Rme;yc@{RO0vF@AtpnOrJls(x;$cLr`$=)Y-FNZ@5tV
z{M_74H*>i7`1HQpoSSE>eb@k0)Kykhz1ns=FL<g}sMlYYM;{*_FTLz*KJ~X$*s<l{
zRXV(qMlP+bt)S^n&_txRr6p(<;?wu<(^XPaQ#EyUeO+B$zx}QI`E<I_bL+xKEq1?N
zD6_J#tccrNHEBuK)m1AY&1BGAd&>RqyWj7-{O#>+*?ZHUazRR}be$r8PJ-)2!W|qM
zR943Cugki!Vxm>)t0lj_zSdS&c0PIX<f$`fwyfW;WtM$Sr}pDf@mDuDFL&#eQax+{
znn+m{x3{XRv(xbFyt%!grF>gTUIraKb}Z}Wrqoj>PX-1AOt`i-dilE8-M7APyqQx}
zTwL=5G#VnR9R_Opsr$_dczbIrXsD-G-hSVa@HboX?nccv&krjp*^+i{j;6V}IcRal
z`n}(xR<7?{aR!>uq;y_B+P(VGqemj*;^EKiJUu=6dZ(3q%r126lc_vf%*n^MZNL8M
zsT)E4BIv+d$7U&=8Qn+%JiWnB-N8k8h06;mjtJ2g&HQ!+Kh~-3Sa;z<K)OGp=o?U@
z5H$QUVcxuVZ!{N7Qh<->xxNFf*8`XMSW9%I@)K)+5Nt16)j`N0Y~46;cyRP{#4>}j
zHLOE-Az>#Qavg+c3=-7Ubw(MyloMnEt;+<36uc+M0A8(`pm>yb+D-fEljqN0|Kdf)
z&)>gKA3qLSV{vOo;p5c)+nZ9m+4y8uG&C?&R#%@sf8HOokmcLk+unEUe}8-X>e|}b
zHMO-*pFdv?8Z9_8)A;GX(oI&Nm7f<rJUl#g!h{7K9UN!p+sDhv$-TP2zka6U${P!v
z+n>C9w{D`c`>VCv?_K)w@$uBTbJxDRyZiO#^LE8I%HQAH`|9rQ?dRrNFR%RkOjAqC
ztFyCH%BtkW*FC1o6F?QV*rOiP2>gS5x}R^HIN{;y=4RCcTH1AXwmGOH`s>@<Z29>n
znUh{!S-IGEw%N(+*Tcb!r$FWEtsRAntG>Uh-MT%)5>&h68}fT<HGli|?RmRis?D`1
zJY-k)>q}<togIOKf`Z=)R6P&3@lIa9e!bm~2hG|01-TVLNz71m@4qa_@ZQu_p{t)6
z$O#E0-LJC*%`oKe{|j2h;XBL3lbv6#Bx4C^Ma;?#8v<ml%StTPc}>;g;^Vt!e!r$z
zb-&3}Hc+y_wiHmmx^JO#d)DDL-bqV9W8gE>=Utql87#9dar4bnd(JJDa}IL@c`O1n
z=rm*cbaj9K^Foi~;^Mx&oh~dczWluX|CnxZ{jlff=1!eIe|=LEQ+u|D)@Q5mqTW+2
z;IvbCOsPCSKYy-${k|hVb{0Q>b6a0sL*vB1>;3lsc373XSRknEcH?@O=={ZNUdNm?
z)e;7!1idGq0u0(wSn)HzuC8vW9ov~RXQrr_=G@p2Q@kQ*X&0!=yJLsNT>JXCdGqFd
zJKlTr`Jel*r+k+RgXHIRTMvR(w}9p*45rPUyLPGf^l8Kv)~jN7mwo#1;R0wdS<$)e
z#&>NEjSKhoR)76)n14E`)CT3NyaMMop1{P!g+ju@Z$UK+s1=@(vEt9)zp9>*k&#~B
z-ob%^6KnU!*Zo|2<fq>pi-rAmzdRTj89~!=Dl6T3r9i26nr`&756`|$nIbaRviR83
zI5RKsaEwJVZ<vQi$DzZAMTLbIzj>3x%EqQ;X&EUgDe2|qwduWi;Ukx&OO|NZ+Qu?6
zGEQ1j_xIPzz{PH_uB@E=>iYWiprJZ-b!}tg%|~{xO*=Pd<+|A2tE#`htNQhFdFhuI
zfoJDhhlA!8etmhF{L0pPwkp%LjmgKiRDMqT`{(odsuv5}LCbPPMMYmeIXQV%<mP2}
z?%thi>&n0obL-MlZ&7LK)v2eaX{xKcJ32Z>ZO@y#tL$yo{o`qyPo6#d@nLvM$`a6+
zT}ulKsGkLz&;?DN*8Qm{eR=6<;{DtC`(vfe^Fm5WwjAq|UH$6nYHckougz&^S52s1
z<Kf2}(U$n)sCfL9CRXl{hzO0@XP4d1+wBYL%;e>*1I_inyuAE%t9V?&GZRLJ6#;4H
z5#funuCD6p?hcNLiJAFZMOD?(B<j-9^+zQwi=K$aFZZ6VcWYDX>Cp3=Hx;~+S_A5G
z=kNL0cC1$#oP^sFZ*0H1CNdb*8FH7eeR4#SiGg9t{9x%duH9mpH#Q{BGR>Y=_xtU3
zq1(+(O<U^zR;i!iVPJS(a7;>P#`%?uuU}kTtUB-fKlAwb__<c4tC-SR7#fNNH^ejt
z%L`sxA0O}DFQ;4l``z8$Z|4UwFfgppnIpA<jbCm}E4TQo4-XH2+xTe8-<#?4H7zY8
zA3l6|Zk8MagXlTQ`>q_HElm^lf`&^ze-17v*wDr+tv37YvK>1tK<l^u{`wjm5HLZ_
zch-|Lnjja?4rUHJJIfR_R|}fC0L`mTpFSNlVJEEamvL)L=B-Vs-8D5eb1YpM7_>xq
zr)3xX>UP_^cQ2@)>O0fu=*?h81_lGx`>q*H%Y0|QTDg2)(KizY2EC?lt3DN1HGjQZ
zeqU2l)3cplKFrUr@9=52rQQ2ag4Uy5Uiba&_WN1a)<k;w`d$UiUxQ}y($CMEWs(`x
znJ>RTC@(MX4;vc;Lzy3Mg!gp4s~v*Mpk*|mHA0}=)>-?{ydbvw>gw><pozY_yGlU~
zgtW7>K$Bqa_x)Z68rzww9iH{zK;u)p{HUm?&i83d3=gtC$mv{vaHZkvC2#$g-)`rF
zrmsTR$L)Pxwf1m3fA)<HiJ&&+v$L~9m;1^7-Uc0d>FVgX@bB;Mt6MTJ7tP)6HC0RP
zych#RNSfc;*gkptb<5{fz1r2T?OFA9>-8zqr!PNp#HGDJ)wA@~74QtzojWmmzun57
zv;?$d^Xx2B?ZSD}<EmD=L?4yXVQ7f_A+j*LAgftaL}bb1<Ne_$w*LF~egEpr%ga*h
zOwY%b-(9-QcXrm@U8R#wt;_J1er~SEa6kvt8}rKrcO*a)W4E{G?_YP_vh>vykaNDh
zy&Ye)f58HUzt8ReUz};2zV3Am14Bc0aaJ>E#Cw)$_N#Tf-v!M!%M}q2P$(}iZ?DZU
zoBi+C_5E>|Oa12C>3Xh;+xtuPyY{_v;y%m_b6VL>n_8GAyuH6a-fXrnBO~LfvuCe@
z7Fs9C8`lMkurGhKAat5GZxRCo!}Ld28m7*h7pHiAW#HnrKY#vgssI1a``z~X|8+lq
z|6U!nH7k{E_o79MR?l<K$yt+iWyM1Svy2N0ymB@_R-NZ$*kM=p=ElOg*5y_`phfXc
z>wF)F{IvY*x>)onXlgh9-zV|h`}_7@X?+KpnXanZ<<=*o>A5O)_cp&d7J*6ovpHMW
z@A=f#)YP=@R|SK^(U*62Zni3a_r_q_ym{+Z1~0eDbX(!0Be=mV_tuiq*Vi<am7T$r
z^WF0MwOriX#&4w_AMd}uDfKjX?eXPhzI^Mmet=r;Z#JJlb^Uty<72&(RkmhabW-=9
zccqb;{mQynYtNvxv}M=U#b)1{!@%$(9@KO9<Bj<F^JmqUi|$*?-bP8bEsWZl<v9sd
zp#S($!7F9r0a^f{ssD+Ghv&*9RqroHg#BM^yPdar|H;40=ht0&bhP{H?fm_jN4rG7
zmB-tDI-%Uv*LSU%-)=?VVmHwGwx}Hi3qj+BZ*OjXKI=I%14GR8;P}fQKAqOjK0C`4
zH1s@m=FFA%>;K2@|Nn3IrcIkbbD3-7_C|r0biJ)|ZsP&3-`Sk*4;tVAjehQazi;(C
z+v=?E@9y%&PYz!0C%ZOwci6st`#?5dTIy|D{VnHi{r|tJ=T3XyVPHsm=(>2_!Iiw%
zKvVJ$54YdGKQC@g-QQoJ61A*s8)#Gqv>ahe_O{&HVW+3*?p{<|{q@z-+TY)%O3XLQ
zopt!Wyj{(WDLWY%4k$Zae{h9O+t@gGu2rd4arJV)xl^W24Q(`LVqn+-%KV^WJS!_}
z=56!bTT9$}r9$ttFfbGtfo9B?v#oh}xczlAzug7U5bu^PCZG!FP%F2WxA)}}6P3S$
z)&ZPUpI`D!gpq;a)Y+BU8$jz`>;M104_axz$hG^)vogc?u{#PJ+Y&)z2cTZD@p29Z
zht|b~tNzT9+5lQ;K4;Dv&;sGf{&p89D!Z%1*6@e@|M$02Q=Nff#T1>7i!Oe9dwX^5
z?{DYku`w|C9be87>)gt|=F_$yv)OB}gsU<zFhqp5vahi!eH9Zp>D;MPK~YgsE2S9<
zoIz7BqH-JbzDBXVOxn=Z-F?~m{T}7=@^V)fmyk0@7#J9Qk~&QzCQX?;ckRv1>Dq>d
zfvl{opwUy4%1<d<GcF#w8O+SE;1H<czMOr{qhqi3H(#Bi84Q{kO!wzyXy9@`P{ixU
z9T6EBIm@<s8)%7WQxg+t8vN80P0*^h&C6IA7!ta;_#<Y{ocS#QG<}(PxGnS3lanmk
z3=IG5rIw#se~1}0Jy7!RPbDimd-kOzo*<1yMMYC4PY!-&C~H-+;sB`ni<!;EAMyO$
z+{r4npU;|u8q=!ZO?jNnW`la7qK2jn40Fy!W^Vw^3ZXOxK#N*HZQ_%U_x<_gtsB2D
z2DCh_{@-VL(~Juapk-@ul}|-YGcGJR^Vn~m&B|%I(XXz@*I!)~y4s}T!-Jyx)2D`3
z9Psk;TJ^%4iJ{@Ngk8-J(E2yS<YO8J1_38eo_uwG|Nfxh;Hyi$ryKQm_w|9QqC<xd
zU)_}IEo)a3k-zWfGEi@GZ}s<8b$@>?l@phiUS0hB+|D<TFL3ck9B$`d4>CC*(_%4v
zKIq4f3eft!NubfkvbVP~54CXK+Eto8^Z2>h=Kgngl@?3vem<{SL`-ZME4Nt2uP-lE
z`_Q%kg%`SCdk)#)_B?89)>IoC8xc{_RQb<ezJ#QtECCgR$;bPqR=)Y)rtP`w^}5|5
z%l%}*8;|6StG;B|e!1Wb>KgGJ-tkR(gTnIt?A#0tf8^6mA~1FUmDSh(*WPz;rg8d|
z*|S%JrfhC}d)O|Y_59r2U;lo;Fa7c1p|)Lmsx!D1DZ;L^xn57z*f_YZu1@vX-#>p+
zB-;Aq?c>%}&oIxQ$Hm3<<%Dv-MbCWeaz9W}d1GVp)g6V8i{@_L1nPqnG@m|wdh+t+
z>79l8`ue}WX>YCkoaQ^<E|%Z^&xS*X4#{jo+SaqxcZbje(3GfH@WuISK%-kfKR@^G
z5#Jwm^7ifDUFSak{eB;`!VNSkyvVg%X4}%`%RzH5RlnbEfBN`w@!QGUEWoY*l=Jg!
zZ*5NRKYZh<l!m?i{vdhgw6rv@Nm6Dx6*phY*;a+r{{9yF_SV*|d3UXT{`zH=GvBIo
zm6U1Ll6QA^Ybz@se)tD8?_p$QBqAX2z-WCgq{n`J*NMH!$NOI0*tq!cjf;!jMdjt=
zpBWxJcn~z6n3uQiu+#Us*5#lT^cEIBCSCvY_xpX&yftW^-PAPH{C-VwXKkOH?JCd$
zm9w+W%O$qo%mJ;b%rTo?R8$nQ*sWK4r|)UdhQ@+sX<V}gSN?GxLYXs|t}@rQIt<j5
zOG{f86ddf$vLeYi{oIxH`~ST%D0^^#@#wK*T2@w3bFItuE>?x6frp}wNUqQ1z%rb3
z*nEQzeDe=@Fz4mQ<8qhn|Nr!Nb#r_5;9#>=#fJs8|Ff>H%6xF3aZ<>u+Yhp@t<gMe
zQ1X0kdDejj#<V-DQb7~k4b${uqaN+%xQ;e%!+3CC?eCP$H@8%LOwx_pb0aZ&vYPK3
z#??COHa&Y)4;rxBAdp^rvlwkQUhCuBL-v2aTn;_2t)t`P>gpO^yJzZ0IUU4!^tr4J
z33{OD7jrsL#A~C(0$v;i8<+sCqGFiQ1MX6SHgSN~DS#GFf#gApv@$k;N>|84HmLX<
zc!M}1L|6FFw>vkFNy}ro-`qL2tRWi;A0M-<=32qP%E}57=Y+Vj`Kc80ngq}Q4=4sU
zkT7Hq9su$vY)<`l{^^tF&$X?rqW=B+_vz!uz>JI)W_foiZaxOJ8VVn|fY!%?R<GW<
zb7xEC=Vw8nGM!so@5<Zl_t$}z7&|tzfy&piH#Y*`#jCFdrDg`uybmWQC#cc<=jZ3A
z4<9c4_xCqw5%_c)JzZVj_51(r0yR??ELh;(wzKf@v6nla&kO$j?JaoCr?fd}5p)n}
z!sy?x?9KTnSAsm-&}xy)dyUX&`?o&pcNaiI9Z_4eUM}vp)7sptrKNT0P%F1-$%_D0
zb@kiF+j%4xJv%!)`{$>pyB_yhpQ<kw1Fh$1I2!Wh@xjp5VW8#sfq{YF4E_B<Ss?3p
zpR85cn~0gmfBpKkDr{}k^u2D5j*Xu_eG1uMSKIy(wBj`{FYnXGk2~L3LIxwuckHeH
zzAAKe7-%)|;R+9rj@sW_KYjWX1ZvsLnX?A8ywts4?&`n4zrQ}2?7u4S?k>KE=R`k%
z<}bJlk0~EIbH?ZA&!1BzzJLBaIZ*;MF0c7HVqeY9Ha^)^>hmfN*<D-Y$_-li<U8BU
z^r=*sV>2tm0bV_QegAp$=BXaryJydv+h+sTMwxESy&ZPm{{J4(svb~t9keOUqF_PY
z|G(wI>k>tw12s}QsN*f`LkX>tnzcSz6jZFloVd0&+Pmh}`!_c?ql}U-Y2%fS`@9Fb
z_9^4uo=U#Qjg5_2cXw^wmV3MG?DY*o;G|r%miHQ{gR}eHuG5KcK0G`;%OKHd=5ZEw
zc5PGB(49MX@^RlSe|JZ7_St0*9z0k*&wt~aH#s+R%tS>+r``w)2v~6F(4p*oZBsX}
zaWgbX-<hE391;<+;>Zz~-w}0n`zB4EEGi|XRbOB4DSrRfylK<IvOIRp30oU=(tu}e
z#KuF3HIQ{o!R>sq>)xvAw1G>D!edfvCQJ}$ZEx3BQ**m{^CooHu#u6`lqpkE?&m)`
z(&^>t8CX>XS^@s%v2og&31`zTA8ck%m1qkJ3fhu-TFmp(larHGJ!P#*0zhlRQ%(wj
z=6q{^f4lne@$sz*2bq5U`jz$N#l>a!Hg5(MfeoMrGtOyH-@H6k`8waZR#)X7<(SR3
zopLkBtop#DC7@j=pyl3OqS{*$53_-G)_``<etCKM>Za7wuWQ;xyFrsdM`zqki0xbz
zx>`$5&#$nsF!kN!DN~+Y$PnFK@bHjm?BUCogD0!|mvO|d>jEinwRkM3c;>iLIijdV
z9|-pN%Tvn0Ag&HN7XWEtDweYK=mm?=I#5#4X#s5zLYna;XV^Lesn7<kJ_46|gceqT
zibtenN?4aMAsLitxpU{v%wJz#e%tTw=QnNk?Ad)XmXD4^GBPk|D<=Hy-+r&kJ1;Nq
z)t#N6Mc>xj{_|#LD0r;(ulVR2`4AnZYyT_W@BMydO{DSLTU))``Q^*Ll`t?ksJa~Z
zrEmZD%j9kO_t)(#eh!-c0Bs7{y!^}mTf6_ySoQ9A|Ks)E8~^mY{jw^?b0gQK9SX^p
z41;dEtS(JTZepH0Q$(66a@SF>SXZyLr?>4|c~t0b&tm%}1s}zemUdn%+2S0sV4c=g
zt9sYfxh!u=dOWy4y{`NJV$aLJpB9Jl-#PsBrw7N&=QVcEYtEUP>ffJ#-cp>w;7Gv1
zPdqGZ@-_7Iu5}11gVwOCs;YvL<AGSkgxbT~a&Le6JpX^py?ghfwq#5M?UzkH-nX+l
zilITV?bX!>?gxI&Pd?uF^3Bc7zmDqHDSCoBe+2~wp*jo<ALa^f__ut=jtECb$FBbV
z@@=4v9M)xTCLDfPaQ_GcgLBvJZwXtsZq?M*_C9#<;HU53K}&y6oj$$4G{)Jv8MNd|
z(l`y&BLfwjsi~>k>vVN>f4z?XzY4Sz>&=agQg$^vmif$Fq#M0$#p>0s*V$<sD<^oq
zdiCnkxw+P+wZBSYca?aG>&IO=+AR(m5N&H?+x!3D?|1W*7#RL)nVN=HR#t)*WgY94
ze){(9+LjiU(9qDYmhbNDERNb=xA)bnS0a*<H?wE#E_pd=nqI7yCn&y(ii=GX53$&O
zK4a|V?QQ(0?oO}yPVZk2n)yTG<JZetmu39^_Ezt>j#zhBceiQrGavJ_d<+lx)~;Qf
zm780dDcvE;TfXPy-xn7b-`ZKcyr{T%Drhw+s5EhLX#ov@9&YFVZuRY=yZqH&Y4a}+
zn)z34*%ET~>Q&os++19j)aTbM@|>(@dHd4k%TuRKTh`RXv^Hw1m#~`8j_%#Y>P*vA
zcHdoRn0zeb^Ru&e|2@~#)xCN<fB#zD=xryCA3yGE%)-E95+5J`^VhFkTefcBzIx-v
zjq&SW_ceev0##O5Yuno1z4`3%<HcLHm^^**<i)G2tGW32-WBFJI2@2YoA~6!L@CRn
zl<nV+9B~m95qWWDrZJ0-|D{{ER)OjkZgIVkq@<+nkIiQL-rk;n9keq0$&(cGGXe|^
z|3agqSAY0Wz{<w9Ys>K?M=biki*0xpT3fqU<z&{@Z>N9WO+E4cpq94w<+HQRP4n;V
zk?TKx>{!;76@fOs91Icy?`}Mai;vfzefHYgyJ?$GJ}g+VZr!^0cU$-FjjgP#1Z^g%
z`?6U6>uJ+FsVBlWY|Fi^R$u==?t4U}ju>dz8sr>MfAXFt6T=4!U0q$<yyl&IU2a{v
zbV>jE->>WI*KSTfpY{LW-%p=Dt(kRx0)IqmYU=%4&q13UXXo$J^nCT^O^M~SS+iDM
zxpJj$rZhvsi^Ah_I`;PVcXySpj{g1D_g`IIUE4YLN!QlLuLq44gO)$1ou8Nc<LBMn
z6YM$+3^pf010|sCTza`@&z`OA+juj_R*(7KJ$cX`n8#`wD;F$q&<<aB1vG>H=1q?C
z`CKtjvFY<HPAg(_`uTTZf}lO)({v&)y`HgRg+^#d$cmjiZ>BD;_Vw-65$j&GXwkbW
zyZ`Z#kuyPQW6G2z`~N)EZ<~8P$0qxrFatwPx~He-s~0Z<>gx7wUb}X!FKDG)Z*Qrc
z<Bba!78E}}S9)8oc)6CgHfUAi(c{NY=WUlZD&M@QiIt(Db4N0Nn2%4-q{)*(vuN4Z
z*J<kL_^`6F?kalPwJq=Nt2f(=o_dLjiM{&t^fVVIXW_R0AN%X498J3T^78Vh1s0$x
z*}0w1b5c=Jk&5U1+HW&K`yBQ4^+A(%yUX4d&2&ylS)%4YFXxKxZduS0U*SUc1Cy34
zTBHO@-DSIDdwYAkdU~$xtNm?K`YL4l=PzHj-1pYs`(#hs(WJsQqwb@Rcp~Q4{aTrK
zZ;z(uue14em*2{)4qvYZTIG7a=>OmE*>7)cjoMw7yS^6W-k^)S-umrZQ+aDkX8GPN
z780N$&p@y|bVGuU*-mB#28kXnF$M-TC)U%(0pO**5~4Z`3_fjLmmj#Zax*X-NC?@$
zz+fQwEuoSP)QnMcI`D}{2Q>eQLuU)uwDbi{pjE^MS`iEkGk8RoAM6L&(Qt4DXyQ)k
z&B0GRATt?w+&~rxFKl`$32LIx;9xv$yaBu>7ow9xROh?{ND0&pl3ISv@*vkSGzT7J
zVmRP(qxq>M$V_BUfND1bL8fWx37rB6*K0-0YeaH`QOF!NdywlG*cO9heFHnH_mMmS
z_H@zirqnOzw`XQ&2Zx1CYie$O`u_d;8#f}RPM?1N;+)yDW`TD5UtH|2ZD0^!oOb3y
zr?7g}o7?y9tuxKOmT_r`=cmt~L6Z^lYCd^hy?V8F`T3J?B9vGd4!GRe>M~>2tW~zv
z-!zPkgA)@IK?f{2IW=i%X??ko-2c_;+`|IUDuCsFb1!v?YMT^2@yNZmC-URRkD#Wq
zle6>OT5BsS(8|+Uv!s?TU#@Lr6x7?>`|HDD{;OB6EZLZRT&ie)n!^DmhJ+65sxK?b
z-rZSw=T1y2Xv82WC<rv9BdQ(t;={wkd;4@XH3Lgaw|aSdPn|JC!xJ=NS5W~PUeeut
z_uZS_iHF%hJ4D?3WCBY{O8(!QGJB&72SdY2o-dysyt}&_RIz;dQj$KqzrX*|rAr~P
zv1?a{um5JXZOfJrM@PqV1*)E5t3$cPbOItHXWqJfTeUX!C1{HH*?I6xd1+bMs-;Vx
z%Gs$FgSu4)N3LGGre$Lj)7aRk_twzR@Z96QmW7X6mif%QwANNl%`Lw6>r~K!6whDR
z_y1eEYnK&hNi5_LlK=;YhPn^U@+%fCI<#Z9A-E%{_NdSI-Pf;QH{Hy+dn?y$whW*9
zeCZ3nrL<34emm64J!xN@+L|?Mz{_iznwakHD)k06Hr40X6dj*`G2sBHFW$Ce+BC7B
zKYo;CfB*WmRBr$5jePBgEw}C5dGqJ*$NlzYc^UKVYIhwvbO^NGRa8vu-sinDSVeUh
z+IH6c-L-pp1LKujw_d%|tWYTr+3@GjpOV+t*5<w4{=et%pFi)i)*MYL?A!ad`qh<{
zdj8yYUoJR<8W^FWSGU(&G;@GWDSX_vCT#WY<&BJ&Zrysdrr?0hw|93}Z`x!uecNpF
z{BM@W(l&qH!4nZ5ukTsA&+cH_X3O7SO}~A6Z<u_n<h6Cxmlt;5D|y|(1?`i#`^{5l
z%y{w1WxmQ>t5VQD%9o`+At6(=w6w0=x$|bz#l6dxxrueV1_lP!_Pu>+%4ce73Tn4h
zRP0az4VX%q<wW%Rt6aN!HS@}f!24DC&79sX3=A_mtfz5Io;2yo#fuC7{HaNgj*gzq
z#l<BeExr1|g9OhYXXj?nGK6#I{HAZbzApCiJlpCyx!2dnUw?OZH>f|%D{ba8Nkl?o
z1*C;yIbUbW665r9D^{)Y0v!dRIDdX5sE|tN=<e(cEGpWxY4hgNx3^56&%U!hX6K@{
z(c7(lgAM~|ZEf9E^K%pE+<;oy4WB-J`U2YX_~qs0O;Kxa?Wx?nYuBzXyYK%!_tYx;
z+M0{M-|t`l^73-fV$LE9nOj>jC$9-xy=n7i_D|D(%Q9v&+^K6il(!u;7MwTl?158f
z&Rki&e&4HinF$Rap4)EWIcopjIQ?A4$45v1{%i7CykG0NpNObv=G9f9n{L0&%E<u@
zaDIDxd-=-X<-5+DK7G3M<LT3<y+M<9^XmUq=HA-ksjI6C+DVd_xKPb+&WlUsmzH?0
zTC*l3ENog_-Otp@%F34?kIP@*Rr<QB=IY^uv_cCRzH<LVmqo?Jvp+sM`feT@!vTe|
z-Larbkk|J4$H&J(yC|92`814-E?p>|Z&Mj$|NG|ok~cRt%EfbWJq|o5#jrX3{It7y
z*AMgC-+8`x9Rovgc4p?qr>CczR)2d_x4UikzBiJ`loEIuR$tBfvA=|Y;oZlxs>Tb<
z!HEY{Ha;-rWnh36o}i{Rv_L<=)V2ZCX^4x9`}F<$`;WViJbL_?w?0P3;r^YEYUL9B
z4Xh5^^X^`n|NqbPytjXr^6X%LnDs$9ff2NMJ+At#si}#{j%qE22Z9_C2L#eLMu0X|
ztysKx@o}wd=A~t2ulVbKG#@&2=*jEXt3N(IuC1=_o|~Ji_gAj&M<Qr@kb9rZ#s2y~
zp!EizlRjKsUGJW|dF9Fy&~&_tip#!z`({}bF1ofhT76#%le4II%e=-0RtM17Zm_@Y
z*R`Q*wrnv0O&#^y{aW$q(<c#m`StdHU;2Z(1m5=DM;CF6>uFe8MuHL}=%@}sWw#fg
z!%Aivr_cEt6&3a6^89}xx3}e9o}}u%CG)b{(W6H-t*xU^PuG9H{WojFzhl`_3?87S
z0jQa<HT(LvAFTW2>;G)z;^v+@apFSV=xrX8>b|ay2W2YIv?FLEMD8t<^#7lqpMQN}
zp)+V3tcvH!lP5t-5Vn-Q4qF?&-ER_Tq}$*AZ^+iITS3i370{%x*=%3X+#u+@h6fKG
z{M%Q0Af&>#8B{SlT)G~*X37+ir_Z0izO^;`Zr}U+`{TvBU1!dmsrUBubp7dvAA*iG
ziMa)8z*!%j`sHi58)#N;SINssn{&UvyZh^;f88R`HYxMGI|cu2{{46iYHOvYE<ISz
z$-vy)z<S{2QStbY>gwwL>Wy~4-xya`R)S6~Sz3E$h9PKKf9caxqSL=km@pyl`Hy?w
z_boqm%<Xx7{Eh-gc0QR4D*_kC)TN!BrP_UTk^a6PhZa~fv+;u(AJaG(Eqdkc<3KBF
z>gx7w+O(<aP4V*j!29L*Yi+mH7k{n_51*cPcGl80Yu3n_Z*6aHzkhKn!+{)*2!@zF
zKOS{&y8Sk4ciCF+-#ZE)U%7g9DYv-Zi;3=Xh1=>s9u@!fzW)E}!pFyIpJ%tWwXNE@
zGxG9s|NYM^ndddxM$Btebz;y1opg4zTl{r?{qNbQg<Cl}Ig2c0PMtno{Br*6+1lMl
z7ws&5UiUm3v^nDH)vHzS_kQ0co1K*vl%D>)d_Us><_$I$KLQUjwe6TU?O9P#QAkM0
zlH%v*K)duOiAYMW1Rb#T{Q2sQ8v`#d^Sun(MSbXy)7km<_n&eevi|z#^ZD1HEufSA
z?N+LKPt&lniUO^h0ZkFvR)2f(>FH@H!=xj&_mvrVOqj$Bj(q*H{`Q3n0ZW%Gd9il;
zy&}th$E5Q$OiV&pSy@4wU7DJjrc9o^czRsb%G;LJzr#P9-~RjOPe^3sO4ICXE0!#A
zadmYC^*Ik6KK%9f{r_?NHXj-s%Q<=EbOfu|x|^@7GBZ3VJKir3I_ii|&Su4m6&lXx
zW22*2XI@_R^2Www&@luHpSzt0HO>;0LN?ei&%VRRfZX5%$sjk|K*c(P0aDu&wEE8_
zLg@=hZB6tRqadi=2O8%&DbT@YKaGQtq2bo8TcAyV4<01^{QX<o%q;Bb)2HPo+g7gh
zl$4Z|vaQ;}#LR4(e2izVMd703`$9uQLG`eMLqm?)?0L1{B0<|A-R^a1f}5EWZ+o}6
z{jZq~io2&zHC0tzrOorEY~Q|JNJuCoH1z6oi}u3{TUuD&-q`32TGjFE>+7%Y>;Hp}
zliOACagq1^TeqS>CjzZqySD1<)$pnF=B@klr$#qo!-IKt#>PpV0t^j`puLdz`p?^z
zEOEJd^{SSxZfH`{A{9-@A{o%K@Hb_<H^1lB-ve4i_Ts_8W-bnn3E*8pl9G~I`ud>5
z=YD_GV;2LpsC|yeimti4yZrR++tDvyzC33pFE77z>C%<Ec14A+k9%91lbN})si|qs
zL$66|!d8pvL@d~}$!P2L?cS5}?(JFm=~L0tB}*(0PgMaOY{kXFabaET?swmmja5O7
zXXlvQ+_j*US`rd3F3AZCKeo9y8?@r))D+FTw~~{RzFZBDfBEO<=SfR~m;0?;yx95T
z#fy4>+jymytyr-l?t2bz7`WO2x$xJos+&36^4^-w_T_7LE-fuBHw~LqoKsu7S4Yfy
zeeLgE#}Zt?P2KFw%!&Q|{@csq<Kv%y+%5UKz+z5v{{MGt^W(2e^xOb#m+qWnTYc@r
z_XN<=i}RrUyt_(Yhi(6M?OGT}L-xi9Bn{y1NyF8wsr&cu7t@csqyK#W|9`(zw?<Xl
zT)Qn43+mfvzPYh+@4V}<R##DSKHND6Se%@kN}ipOjNM<iH~w7y)+kXSp-Yc9V(;2k
z+2)6Yg!Hd3T(NTH#QppCA3A(k)l*PV5OjuxyL|1EB}-J&_ka6VcJ<n|tcQnM%d4}O
zr9helObiS=&V#1zq@`DbHhO_J{4H63|BalW;6l(^iW3u+CoO4fV>2~11$Amchmomd
zUSAgrs@=T2yg*wDJuiKIeO**eZk=WEvlTmb+^C!jTBT-F8T9<z+~R$!9`>5w3vhF5
z<CC!fow>pLB=@^ED2gu}YUSQq{yt7OdYccV4|4(JRDQc34#CU)rmE;hZgPP($~H?~
zyLxpgXlbHdZPfn1Z}U^PMuFx{YybUx{_DB@|COD>>Q?IuA06TJoof{e+U(=z)&@E=
zE%(L-$B!RB-r8TkKl<J7{U1aW85jZr11C<?jaJ)zcOB?7r@3?I-rAl&-#ErIe!tV9
z)2B_XDk>{q-Yvg>7399m%W7*QHada!Fxvn7$UnV6)zkjZL;ldXIKBG%dfV@JimU#9
zy$;HRlO|1K+<Cmw1=06p-~sKWWiXHc_1F(2fD$A_vmj`Mc2oj6NdC&N^|!e^{n)u>
Q3=9kmp00i_>zopr0A3&BKL7v#

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-1.csv
new file mode 100644
index 00000000..e4303ee3
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-1.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.714285714286;1.0;0.833333333333;25.0
+Oui;0.0;0.0;0.0;10.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-2.csv
new file mode 100644
index 00000000..45417716
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-2.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.685714285714;1.0;0.813559322034;24.0
+Oui;0.0;0.0;0.0;11.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-3.csv
new file mode 100644
index 00000000..17ba1f5a
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-3.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.875;1.0;0.933333333333;28.0
+Oui;1.0;0.428571428571;0.6;7.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-4.csv
new file mode 100644
index 00000000..28ebc0f9
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-4.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;1.0;0.142857142857;0.25;28.0
+Oui;0.225806451613;1.0;0.368421052632;7.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-5.csv
new file mode 100644
index 00000000..e9f4be6f
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-5.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.928571428571;0.866666666667;0.896551724138;30.0
+Oui;0.428571428571;0.6;0.5;5.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-6.csv
new file mode 100644
index 00000000..2b667c59
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-6.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.814814814815;0.814814814815;0.814814814815;27.0
+Oui;0.375;0.375;0.375;8.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-7.csv
new file mode 100644
index 00000000..65942d65
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-7.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.657142857143;1.0;0.793103448276;23.0
+Oui;0.0;0.0;0.0;12.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report.csv
new file mode 100644
index 00000000..ced61b51
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.913043478261;1.0;0.954545454545;21.0
+Oui;1.0;0.857142857143;0.923076923077;14.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score-1.png
new file mode 100644
index 0000000000000000000000000000000000000000..be7eb045cacddd65fcc1c567f91467661beb1cfa
GIT binary patch
literal 24192
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_eCLL~J6zmL^sb1zJqz`&`x@UgPg
zs!PtCd&M)E1YKEJLPX>PL|kSyHL$XLS=bS@l=Bjcrq<qwz$Gn0RtvKxFg*Xxe*aB>
zs<{A*n&bWTuOCgCV`=>PrqG@0=W{Hl86M+cU|?X#dEoJ$3B>qQE#Ls6Z?rLh_y^2b
z1VG$viVYxY11}>B0|P@tE{6h$o8!#D$iTpmAk73e<Ti;~3*x&wJ0~74tp5{S_U}*S
z*EctV0|Ns;ef&6a`t<2_KOVM!(R;mZZRBP*zINyQJs*$RTD!-@%#q=1=aaE0IDc-U
zl95pmE0@TQ=g)V>npe-;o_BZEjT;fIZEdF>7OV(a88qol?Y&D{i|zI^Tsr^vV|^~e
z_m;yC3w}O+`*!Vw2?C+3!+e96`FOtnbm_<@oyciVFQpx4f3pAa(&=%Re!t(pzFn@$
z<L|GpmtU{nzb<BH(cO~yQyQKYSeR6PdJ^)RSH|MP&Go^{{mMh0|NHy<{i(utEz7T)
zt`!m%HqE%85V|HJaN)v*pT2$#?US(#S?VRqD{B>UykEZDI^6B)%Swy-e|uhCUA<g4
zdfN)$*=AA(2@Si--p<PUU;Q>Lo@t4@FN2ZU`!9M74!<_(cr&x{OfYmidGh3~z17>F
zot?ehH2Ye{>uYPPzTYjsy!%Lf&(Uu2)fpETMQuoMob}!F=Z9x+->&Vq`{hwsSeRGa
zV>rtsb5c!BP07zsPj^Rr{F{Dpk!#hTkH<^@{izhy3h_8Q%QQG5V#c|7wyQzTssH~^
z%Bo~V+53BIH*DDOMeqAExymPkZ}033wk&#5ka>Sg=48J)77G_Tx4(KiJ-+OwS<VfE
zuWxUM3knKuyIQ%rVPn=+t=n0Q1@#II3<3ZD{f(`Q+h4a=D}3FWjmgJXmA}7tYQBBF
zRp__x63Lf#v-I=H+pSp@y87SRT4|Gv1wTJO&whSxu2$Th9jCV~^`8FfKqGV3wKX%J
zots;Iyfp2~^Y>xb)<iB&J3H&-@#F53)&0YMe|vlP*Pman*T1^CdAVNPo*8_i_vGs9
z>qRw#j;ys+RCJt{s#*T-PTuXJXJ=N<u`Iq77&pt+)pcn(CxekhTLNQ2@V=T#QSC6F
zV-mS{cU?`MpL%-Q%DBB%T)ezf_wV1&C91W=uJ+f9H#axu)z<&{=)N`cvKuIoe*YdG
z5i!GSy58F7^Xucn*Tocm+kNxL*DZXjs~&Z#hwQB?eLi*Wltj<CxVWg@WouP5EiEJ8
z@B6(Dq~pPZ1XeaSEiElC-&rOXPfgXn{KrPtwkqWA?(*=EkSTxu{1FioTlVbi?Cjgy
za`pbM3SIq7X3?gquUYB7S67Gof8IH->XoKsvPt11m+iU2>V6>!2@7s*&7S`1U--J1
zi#IkVhwiJXOg%l#x3RHND|FQqyB`mjrynpZc;Fza5#TT_HS^PxlX}iymif(nRd(n7
z{{L}bUtbRo2$;ac%q%J_y!h+u>$|_ayuN<E3}3t5&nLqDTXS!3^W|%I?v*n2dVTrf
zF^R=`vAbTJnyL*-fwpb@o?2mRW=zwMuRE>H^8DP~%eV9Quaz>*(#XHJ=iK$}g^!Qj
z+K||My!P7K=;dv^(pvfV_I&#OJ^bCBogjB^|NiFV<Ktf+b?dK+*qC%`j^*a2rlycJ
z5r(!Oj|g}5_m_X${n2*5k%^w3p5HNv=kHH{U4Qm$UAtNSy)|KLqcr{J*?<hIsMwKp
zecjrdo6~oHnQc?KDQZi`!X{R3t>9%or>5!7)(Ty<#NYn!m8J1sw%OO$O*K6BbZ^n$
zYU{0*3e)vsFKtLX{N;i(zovmfz|Bpm!Be$D@4VXiFJ`V)>7{>ve_!2In%&ygrlp|Z
zka~LB)kjCWZTG1$7^$smVA!E4FE77+TO%`j)`J6$T%4SN&1}4&$dj-8;i&A^b77LI
z_m;Z9RjKFZL|)qZ;o}MAehd2qH&@q}cXk$ovh%TC>E#ET*|me0`Am9uF5=@d-`Q67
zHph<~(NI%6wo}*0C}`4^jmhq3XBaxGdQAy9-X|+6Ah6(YJOAt1`TH(zN<AI2*sV8u
zp1Pe~oTzr#m5YnrL-$sdZq2<N#?CKy<;~5_TPr>$ot<kP{`J+>$tAiXphAzCjVB-_
zWl6C_sF!VK;FgTQ(3L^1mzVio{_ybd-1Vn7CLiCDaZzb&{{6Vf&1qkEynlLn`qc%F
z%)0UWVvcr+2JbF=`{e!m_3QWli?Xfya$%Y8>^a4Ct3p>V+njzr>&uIaU44CFlhu6Z
z9PjMwE3<s}?CfmQnjZzBD*_znT9;pIWM(%>KPPi_O=Pfj*_(iehgwxVV|SHYjLzS?
zlv7x(f`?7M?#Du%(?#c!e^`U^dhG5pP$Xy0+WqM1)6&att;^qCS-pPWs#T$@S2;Gb
zadB~7YGh{LQt;48H*%9px0r6w+NiB_{!Z76UB$*Lr4hX?C+o_JiAqXJQ)bLqG1t00
z>&}kCs<&IOt9W{Pdaeps*!1n~?d3OaM3`n>@i->&_Wu5OZgIVk)6;Z=YvWVS&x>Vd
z<GIi$YrQ4mAd_j{of|)AE%{@<_5Q+6Vf9tf+w(qs`xds?tv6&xL87dET}<@0oQpdO
zA79y&>YaW+@9wUb2ifIAuC5B5YF(Z;*Q(SjzV7GJTif&3$L=o6d~l#q@2k%&6Hj(N
znF7A2Q)2Glp7+Yr&o69k)YdI!Z=*!@<6_R+{a*9$&u9O$GmYKXMs2<H{eJy=^ZPZI
zbNB!FQ886J+>e!8ETo-J7UZ{?#_6j(C#(H>wR-)(Z=!AtX2uNvw(6WV;%h&=w)X5S
z(_^PkpZ@Xt_w2>){kw9aw`NV<sB=1GRmjOX*5&6?Z%@$-?n#Y&)+!!Xu<h%+ySFW5
z_&y&MkKZx(`I(u<diKYU9+hlAocQhi{rA_(zrMP9Y?F?0!2^fs-)78^*nWIMRD5!e
zW%ai;g%&c)Vs;kg-R?0|Gc>%I{JS^n>Z(*3zII8gk`>;+e|>%3yM6oilM|KOe?IQF
zkJ%PEEp=7s>S@a!FZZadss8rH@bWTW<7ufgC5_W8w)4wcT>&}cZu$M0>-YUS6)`P!
zUd1EM>B)Qk{d#?Dlg{PU;rhj2UxlXszPdX6>|}qtOc}oR$Q=a>H{06T-FsXZw8UmV
zU;AO7xmH(GZ~yrCxHmO&S@rjKdT)89Obqzi5C8e|`MloS=jZ2}M{Y_n{Q3EL`O3Fx
z?^*rXc%@QwP8+?wz1=_f|7%w_w^=JzXiVQ${QTU^;N^ZhzxsN37(9IV@L40fTtR03
zwKX#fEo7b@m#;6m{ruPCnvX}tL2lb!p1-~B<jIrI4z+Thn;%>)??2DxriBcjaq20N
z?a38Y_v(H=6@UErak7(>)0uN~t!?d=y?%Rl_x0pl)2u57`}Xa7_Tk}Sz1uc_`QpxB
z{%oCcLLfPETIPiXjXR5;c5VK9q*GYU$mo)V4BzIuzg6kgr>ZYKESTZg%(hb|`{t(9
zW1Dn>_t*Um$!3_a(SU`!;d9q9P@Vx5m}X{SlT3=9cx?ap1XLgCoW9h;DLh5hTWor+
ztW`-sNy(Pm0lY77ReY09Jw5HMo?X|LjXK`PB!2$-Rdq*BM5N?&vWkjI#?da(Q`7b5
z$5p*lou1oo_iM$iEt!jt967SvNd9q^Zq$~5fPe|74c7GA|BE=<Egt^!(^K1b$vqcA
z?W#LFi(k(zzgPIv?A9ioUKz`vNjCe^wg;^YQr)gCHP@<i()R7!&2n!&xpZ%9cDQ7+
zN!_1{>EHbA|AvU`#RNP*H~0OESJx*hyQf4>`}E}G=k5K4dvzi=X;@g?SZixz6Qdio
z<-+>?|5iD-^I6^w&iekv?t6)h|KB}(_linLRH&y`o0PqYh}~J_x_<AsSzV&q&$ijx
z*xY%V?q6)SXYbytd#lT1_tpH|)~31aS^fXtpepcQ<#XBT))`MvOmzPH`}=f5H~HEx
z6K~i3{QUg7_WC`KE`_ZQ(|vk+`uVrE><W*QIK&vX8@`&B`totVec16n*}K2;ZftP0
zv$LCJnmz4!a_p`WPj$aJ7hYaoE-E6jBy4R|=9w9WS$B491l3rxOtV)d9qoF#P0wMP
zPUMvhiO#xFTRbjayqI-w&rVPi%3ZF~g^`gl)9To_x3^V2r)r0PvzW5H>g%gnX1TMr
z<=<a-T)zI#x~uP=KVN=azCK32=0oGRcXwCU{{EJEex9wAZB@yt-*0Yh_3rHK)CyYC
z!Nx1~WZPYd#SIM%Z}05<yzRAS?5-`*v$t>G4r(o3Uhcnp%k{O<;emmHzn)C?H>vqi
z@SObvr?A?I<Hz0o?S4MdJ#U_HfMNTDPe+9PHRAWxY>%yus`>qPyOeQSk6F%*1&@#S
zzrM88`&{m{R82+2gOU}uwq`G{{QPWX%+8{$tE;AhYK<;Y?OkV0S4M4JrKF@}l5@i#
z_wKIHudl8KAMFwqm6feMe{J*49fgZkR{G7g%6wJ-;ejKsw3*N9u(hCKf6A08Pwq_n
zwB!AeR&Mbv>F4F1o}7H#(&v4Z=4bbyy7TMAWo6$Qu6TBKw)xeamJCL6OdJf)T|O*X
zqOvxAf81QF(xB;ju~Y2p>!w?ZOe%SGMKgA1(bHv<59*%2)XFU`A|kS6Q|jqgpqlo<
z!RD_&pU=;}wI$Q&*ousci>m&9y?%99>FesB7i>UL+r}@y?!4XaGnRRG@86FHrNRzD
z<-E%3Yg0PE&3ormQu}+Rar(Qwhm)+z->vz6ui77!ioU(QtzKXMKSVvo`+A(d=dZut
z@8|!T_4ng(`R%dZ-`?D`-Bw*)z57m#!>(`hUR+w*{p;J?)u3WN`FP*0U8So*5uSE-
z*4-jok(W^c`#v5{-<oxGihjJ^({pp9kIk_DS1>2(-k!>=o12z0F)@iqORoksi3|(^
z_}ZQ0>;G=Owk~${{(rwt-`t;hd0Et!jEQc2GAlhNt7RT);WRq7qU7ZzP){K1+8WK5
zQ4IHX6fTad|68gXvm@a2bp7duZk9z)0=DPf{qkz{`ct=mzx%h|@@egiY0;nG-QMmG
zYAD^@oF2NfDD~>P*yx*^QYTNJKK;?-$EK;LM5Z7ATYl%{`}1e-6^E~n+q-xd!;N+Z
zrURM^3JzCShhG<uuUQzh)N5t(@xEVgx8ILx>rOd6&G(qZT$@Uxv&U<nOmqj;_NwaY
z*{`pyjoMYR@?Q0O+pXEx{Sp%s&*j?$?_>P7W!llZe+=F~f4=;BT(vJKs|yJUfhtws
zc{Y)trp~{=zqh8Hoi+R2e4~;#FD@>Y+b(ZebY$uMyI&qO^S`?2E`Rm7eEpiu>E~Ca
zo}OkdYc?&&`SLPf)AVz5cE_E6`{K&V$)K?4mA8+RwJy8z<KyGG2UT?QzA<hNTIw}v
z-QCnP62-^OjbGf~zyHslKU+#)hi#93C}&r5qtbor>#J*{!%JUZ3k?dIWR`blg=@E1
z=9?QEvu<oyxGn$wJDGnXa&qfBh1Ihj9qGKavv_&f+Nh=cc0U~Q_k3*YF+AsauiX1o
z`?r=Bmj3Nu_ue}(QMvTjm(2d{hVu-QkNJup_F4Vq&tJv~h6d~`4YP$*y;c-IKWA0)
zVuD+*)YDCGK|XtVdHMfq6J+J(<!yhxSPbfW9_x`*PVPCqs76zM3BR1pi*4_pot=I8
z&qAZrh%3GK4^;~Z3NAFuy_IouQ>s?TiV6FEK9k=5(Aiuoa?=u(m$UQtef+Vo;_9l<
zO*-C7y{38v@7=x{WNG1}mPwN*f4vgye|Jm%#-yWDY^%$1Z){NXJ>OnZeg6L26BCu&
zL8V@=wE3&u@AqBqku(+&6@5CVxI}$b*xFT#T)SUgSm-><B=eH*Z>i+Goe7WU*;ao!
zz|6m+Ho^Q@#@$_|=6B5%6dVi<4W$f|T7G?fz1(}cUgpV3s&c=@^y6ag?k>On>FH@z
z&(F`#?|-@Rf1kU2ZOEjcwGXSRzrC5LVw!#JOz!PhS6AEq<6E{T-bd<s|H(O)o4Lev
zR<yLRJpZ|F`lf<~%N6Sw{z-BuFxXUmy&C@X_3PDw%5FQ>y#4s+^ZC;fi_guqw%)&T
z&%OEe|6a-z>%~T2xo~+=zUKY9Wp|pwC!LzA{k(8(w|xDdkK4jh_&GTzs`O_o&atTs
zvj6*Ka`f+?pP!dLJj7aAUA^4O(bm<)r6nmjSyW#Bz1Rg%!gzUkxweHxgzs!K-{P~|
z7ni=iHp{+#pO{WW!Rgz5Rh5-1-TURNYJO~}`toAptL(zs1w33_lTst)=I^(jY9zTg
zbamLT$NlzSzFhXdKlO3cw51;(AGemz&zk(I{@>5^qsNZD`tb0uxouoZ%96VOf6KS$
zzl^W{TiXAy`tGh$Ip*8F??1=a{d7IvFYmwg{@xiapxU^yvNH3+0!O**{dG5@PQ3-?
z-nW<1Z*EHc_2Y5Bt=#{#{rM|jURgPLUEJPP)8nd6svendQyJ9E#ycrB64WieRAa;N
zUA!%U@q>nqP0V?l&ppR_Bo{wC+@5`6g5sogz5=p#H9J6s+@V(P)p2{Py1KeR1@WB2
z(?OM={{BBflfGPw&d<EMDs)xM&P|IJEt+Ckoc8z6=krmUQaYWSoMP-6%<}F;v~r7I
z`||Q~>4yi7wx3QYTNONL5YvfRpyoR(<Jp;+nXC3@TwK)E(Q%<i()h{Sw`>3W{Cs+o
z&huT2s@~H=I)zlheZl;Dd#uXe%@Na$T9SOcZ)N!UxXfPyKOVNruL@e~_3HBS{%QL0
z>x@!QSzJH(;nSx}OFSpPJK65}@|O9V?VB^=|Nr~@^)SDE#-AS_e?98f2aN}~y12af
z@$oUJkpKF2`~9pF6BN&hUSnov{(3^WAC#IwgEFB@JOnE%D_0giK34VNAp83j-?&7z
zUOa4<zxMrpy?%WB{oTJ5H+xOhnq{6p57d$P_V#x6g$0gXot=Rh87rV;I2n(R^`4rf
zdRjN%;=`ZM=T~Q6Uw2Mg^v91MFK*}Wzj|)2_0<)D%C#SlitGKY{`O{NOA8BVylUda
ziJ!iHy?SkJ^wzAaTCT3Hmd~x$Mr?G_-}`0Ksp<Obm0Y_tbaZ^$`D8COv2s6o`t)g8
z_|_{+zGgL-ywy5=V`K8wt=ZvIbs{hQtS)<XMKkx_p2(Y<Qj7211oe|ZV^E;HE~Xm=
zih5A`pQanV?6_RDk8#?W0_(b7DN~c`Z#ky9w?aUbzk@@=r|0MEFH0Nj`SGY56uY1Z
zY?rT#`1<PV<@xphR^Hs4{`yF#aMjPJ(?b_JwVK$wF?^Sd&i}=&;Ji`ibVX(5(p`UV
zY)n=&Fu0I%a?(*5`?@=+x3}M~%Z}Qbm8ztq)H8qnd`@m|V^!~ICi?q+EV{X?boJ)@
zU834P%l+n_ssHy`ezI+K*<{P&wBR)nhM(^gpP$Lh&bMRk=L-v+mzBQ0rlz8DB<0kU
zlT)<A&z+fXe}7Hf-dmvF$}#Eu9bfu8J3s!A*p_oMDeKyr%uVU%^Y-l7({uQtLH4yZ
zhUw?#7&f!<8i5-6m7ks%{`>b&&Bo?V$m+1OXXaRb-ZpRl;dcJnd3SfsJaNL~@$={D
zPR`E0o72vonWh_U^R3)MW?9wOSKCYbrX1g%etur`x4*AeuLqeu*Q)f>j@nyWGMA;D
zodt5<kDoth+Ejj;acZje?8L)uGo9P{c7D0LIlVvg%8H4gPT1$4-jU@>Tdym*rlc&<
z3|Qc>s<cni_*lfW)TpglQ?usp*kSSb>C>stN*&fspD`ojUd?CU;EhSHla<~19>0E_
z?d0U-bF@qJ>;y&UGo8ZfmqOl8(G2!EIZ4&`*_oNX85t`w@9o+7^X2mSXBrrp=e%Do
zvN`>{S?=v^rmkHghM+#z%}uGss$NqJ{{H@MuI@jt<lF6?#misb-Mw8idfOUM<bZ-k
zOY4-)w;RcNuj3>p|N30By3`@4`kq<NjfAKz8Hq*D&Sd`i^T)@<rDbLG_H{r1d_Euh
zYi<1gdskKj9%f-@pS>n>^DL16Te-!TMV+6j9ezf8{hlN)F`bN>+S=a34+|pSt8IP$
zef|D_M$YYgrXbhMG)gs!+?-|_x+>)3k7@~d`TEP>%d-CSF`Ss8lbrWBTZDn(T|i9C
z9MIU<+L)b}-s)vDG}PNMaWEV(W9OF(nW*F%vLZn7?~lj*FJt)_6l4w9Sr`h=`_8wE
z-T(L7?6h-pR(em@tBes5Wccv@fT#e&0o(AkQKoC7xBFFoes+~xf6oFr+o~nyo(v5o
zPS64NYmDdv?I{`2+w($ma@IIGJ3lS32w4@f@{8U{GiElP35OqExV1I=@}Bem{{DVi
zU~y$-@bc=2n{y*Kr}fJ4wco3F-1|jO_3%ui)Gism_GNx^XWd)MaKP4?fpJ3OT>JVs
zP!5}>8+~P&uQacOfdi<Rep|{TV*zS5^0hk`78b7j7QMS{?dJGKCf0X9_DoAXxk+bx
zS^MFIudc4X|E+G)lqpk|1TJ=4nRRs)Xc%?={P~9t9|n~<XJ;Be@5}aEJ^N~fdeEV>
zU+Y05j&gGAKw~-n^X+bJOg<iK9gi5}zus4=KTn+DgvSnE{RW=w%gcPN3Lmw!@yV{5
z9$#m<_w>a6{{ClYW-czjUmG5|Ij!`zUE(2@pFe)Q`1JJj%YeJ4f`Wpe7SyKH)6cfO
zeLlZF>~I^esJ#686DK^jW?XbqR8$044f=6wT)V|I&CJ3!r=9(@<Nw`Hpc47{xw)q%
zDj&DCc27xJVyqJf?YV8sy$$L<_evN#<=)<Q^~cA@ppK>c^PS<2TnztCawsqut!Zgt
ziJZ3d&d%cH<(ivxym_TeF8ulV`RmK&^H*hGU#EBb{2a^0JBy#MN<7>)%ep+zDpa$w
zx_Y(8M5Vm9$NOZ1b8^=7$yzT9kE=Xd8LEDCrg8d}ZMo69vAaS*V?dXddcTkC{rB&m
zT=t&XO3KP#Z)LCFx%K~t!~Cx<ENr&>{l<8%U2Rmixc<Jyp9_>d8Ftk29AujCaLJkE
zj_&TshQ}<=JUzDYqkF$x==XPbMMXtb?d|PbTU%FFetvdqTkh=JhU?{{_m{j30u2@3
z+?+mr`t<NwuU7>x?^9Az`f|}-erN7%tI}2fe!bQ&eRt>P<9*wuZr86)481OYc$3cB
zxV^VhX9S+A>ALc)Vb7;i+E!Ixz(WI|k%<<5&r|bkcY`8~iIod9gfPplcGu}|Cr)^P
z#-;23d~Bar|F81t>FNG6jZ%Y7PEy^PaFEIK(p2qmlZp=sqMAXVzOPouiV2_r?d``4
zH(M$!_n&`Fd;Ok8LaJUGpwZjS>ER_MTR=^SB}<mfwzJRtc)^)J^JteS7ccMCOG~}C
z7CdyC{`T|p^Wne0y$#)x5eOQYooSpNHq$8e%f0INJ6n6FT)!-__{0g1{=@IL<=$Qv
zx3@~u$|_1xQIU&-BVeME>z7B}`mfH+G&Wyb`ti}xRS_E(8Ks|F^WZ_k)|{I`yUX8~
zz5f3D{r=bc|NmWoYMSoq4I2!8{{F3PWE2#;t0d6Lsp)vK|4buSQSGphh=>_XOiZ8-
z+tro9?wixj7QLQ5VZws+`L$uJ++tJq@84ha<ix^bz0%pIr|Funm1hV#EGobt>G$o;
zP1A$}3~z62bmkV*33z<0S5#J3*Yn)}W5<uLPCD8J3iMUs>(_0|z5VLJ!RA@E)!W4M
z<JN#uT-@F&z2jSTyf>$xzjkS<cj)>!+tRnUzHU4AuDY^vW$<!8DU*x|+j4I|Gg7R3
zbfi-&U_k?D{^ixba;uQ#DJLg^dJAkk5)X`ycuY!4N(#FB{?XCyUtcc!r$$cu_5J<)
zto=SSjaHVwzxV3i-rZ_GGZvWT-r8|x-kdpWZrq3frAyF^$5QX<CbhpxKw0qgG~LVW
z@-++2&Ng42cX!vP&z~>9xw-l3=5&8hl1x24ZF^14$B!SoIy)~OY-SJLRgziy`kHU}
z`nap>Vt1QVeaR?&dn@$kr>EYRi%X3cE?oHP($a2FHC6lT<#N!tZ*lbfeYH=YK3xiG
z`wI#RT2+4oO&ctY+gp`+dYbMmqtvd=?;9AIP4e&A`~_v9tE;DPN<XjXdG5d0^?Tx=
zgmQINsHn8`>eb=vvp|z>&*zqJDR~)`duPYRT!|TmZu9H^?VP3)xhU=Itd&t)vu<rn
zZnyjYr+97L-l+Sv-{*3P>%DnnU;Zw}cZPxE)m5ROVGU3>Vt)O<NYD@fsC}s$y=_N~
z>znKA=eO}nFJofmS`oTB?9?>f*?lsWi_XqA&ptQDvg*yo<8x}a=iXixwKePInVH6`
zVs~$wWuCuovbulPzdt`$g{++P?EL)oR;91*e9UHg5Pyupfz7n?Q_AB4i!)O+gYRs+
zx+?TEXaKV0MZolLUteFB&d<*W)#RU#%h&IaIlW2e@zbZNpjn*gQXUC|1E99d$K&#|
z|Nj0it*@{D`Hb=T9dj;k(lIW15m5Z|Q)+VLw9c+Bug}Sb$0SZ~^4Xeo)n;D#*;%IB
z-^^CBv%3c!tWCeYtMqkGYNVR~Je%z`Yxe*Dw|k=wco=$h_<F0`%F4>UhaVdBN}HQa
z*NZK(E-NV5pc%eyj%E3~ImNf{?XB)zzka=D=&C8FEyLEw<?5U^VrJ(n$<&YEx2MoT
zChf<Ehk2!Qtx8Y*`FcHm`x^VFH&)u(Ylf|h$<#S*G;!iYy|>lh-+jHYKlymyv4;gS
zd}o{O+=4WcUAQ0AqO<AO{P%tTf63FE&P3<$eR^r$C%aM$nP;c<_m|xK_HOrksneT$
z&dxH8y~QtY_vX{AB@r8wT0egJWOR2|X>le$C#PZM=Vzwk`f(+<pI=!Sd~SdIzM7jN
zIuRFGSXgG1zP`5ei*?bHj?Rt_(3r8@d0qzd!vZ=C-{-cpuz*_EKR-Ra?5)4|3Ak$>
zI@>IF%8VH=3iaG3tNDsZOaESc>-i$sT7d26=jzAXU0oIGeR;WmIUnaNi^4^F_U`?9
zMA-k&+sF63-TP!FsysbA`}?%o;9oJjN<5eQ%`LiZSM??1=Z_y2_3J`bPFl2RQOUD2
zl6${ii#|0;wYxYvBxH(K*qRmd>wdkQR;&st?|7xnR-~Mq1nS}3{`TNO!p~p7?rr+F
zrK_W3g34Tr!b3}KwX{wp|DR`DeM(|+>gj2BuT_3}cJ}qhQ{gc&b2g=&o%QNt)|C|t
zca^^0wWaj^y;xRmu`8=WSC@Qv;Fw<h?#|BGxXB`>+1IXsTG;*1KYaZ7F(SO6V8iG4
z-QxP!?(MC<y4amRbXCa7rSa=xc3xTTFAtg-)ec|x<%a}=f+>pt!}qywZ*TXWq!qsI
zO(CEA*H>3ldkVkpj=Q-j_5F`Oped%E#m`NWkMV$-GMm%R1~s$sPBBhDXKh#JHqExW
z%+<|p*Vgv-cJE2YO{0{QluCYnN|m*(`m*f!y$y-YDl5a*MwQ29NG)MmByHcKuBP@1
zRFKQn{YXqbIq9h7`o%sojW+3MU$qonxwGcyrhE1OYeUz?L@FvOe){%p+Tn*2rca-K
zZm#w8S07h}tbBCsS%JkI#|Ov0f7_CI88iR~sttbpuz3CN<8k@B=Ps^`wLW_M`0GY?
zxq$t3f4Ah^G@5H&e(r6}>+9>Mm*i&LInc;__g~JfEuP0Dzyq}Ngc%a}I2wMRySX`C
zRrBiZ<fU7xXFZv%9lp-muKsWv?^NS-zuGSs-FKC|ob>O{=kp=z^V3;0`+xq*KN~#x
z((&up!xa@3^==34HeJ8{`_}(cW9q*?K9+m(<Vkbe_cM*tQzEB*K6PYo*^dv2p4Xo>
zFR`fpw&v6n&BcFze_tK5v*^{0jf<O_o1eaYyVf}UT*j9d7k|B8zd!G_O~3888KA<a
ziIp2P1$Anw_Vho0{-}5^cI)-}TCuYA=9KG3Ps<%9fvWdjNn^K%4<DYBR%Kyf@tCCM
zJL`$r`OGgbE^0+=0QJz9fQAEZY)AyntnID(3TkVK>O=%gniGB?Z<}3DYUHkhhfY!R
zxEKnQ8W?uGUs5CB_cr?L6h(LQx`chv*=9?4wo94i%;1x=Sz%N8=}wW-y2B4A7#@2p
zrFgx5#vbug({#1%?d@glY9c_5@h&mlSy}f*wZl9>ecb%lzr;XI9>Ztb)*JkZT^+V|
zQc14wBoSeCzmmG!^^a5j@=BY5{Jp)jZ*BB;aJd`0dfL7}pS-7A_e&<5)cp7m^4+%V
z&5YyUrhKnCRs9>(Lw&#ZJ7`4V<?i?Uf|vQsjQLgn?Phx3@eMlOw$<N4&d;+g{q)4M
z_VZcuS%%4NX=i6G1&zDd|NpbOrlw|!ZnRnCw56@w;;ZWZ{@VWa2IGS?i6+(u`+_&6
zczRwkzhAR>b@=*Sx$#@Grs|yjWTEmRukzK(<#U{i=GA;U8C@5_&&4(A$xp2#&(6-y
ze|?9q-8p<+jAwCueSJM>lK7a!-k;BAul%;V;^QLFJV)fTrOW5n{o0nbD;PAXqjL9~
zO!xlBKR!O5WsumUb2?~u+1oj9L8E7>k)US5ZM)Us>%Ud3nWES*FRp(|^fR-Z8yDVg
zJ1%XWx94SU>-9B}kFS+|eH9Aw+@yd1-ygWQx4QJ}tI(szj_qpgcW&p)e1C86%6ZO{
zK<ymR=*+Pm$yITCcYS+vbMgGTU!Iq?UOytScx(3cdtW3N3U+fSFub!C6cp_0?G3G|
z*#jQY%zb>U7u1YwYHq%|CG&E1m~$f&D<~tKoo()KTlHl}>VKouQzsr4yx4r+uK4GJ
znKNdrm>ysEbK5$zmX?+!nHE>Sg4zpD&&&*-U;AxlT=iSi?fhq!`_B*i{Os)3^z(8@
zj~!c8`uf`T(m&Rrt3otE^Vrs9Z!T;|JbY)Hx|-U(Zy(hC_x=A@4H{6pvNCv8{QiAX
zCK(Uzh)GInCig_&xUsKxcN?$tvyY};lFOdGEIX(9IW^Db9%#+Oo6YC%Z8;aZI&7!z
zq#yUH--G68K;HkH#;Eyxhhb0rjsnn}dD-qqWiKzO)_%WRp7-3_&##Pcrx&MDue5pC
z!6w$P2ifH_KtrCd?`%kH){EOyarrnCgLx8%SObsl*4^s0KOVM&+6KSAyj=YB^z_v}
zGmSufo@ZxfD(ma(`_3{s`S=%C`R2aaYkw9lj@enXGIn<vXfkQh;>Dr+>uTp(m-~Sx
ztyhJueN}j<CJR)wgJvKC7rTL0mekbLfEG7}u8Xm}T3ht|+*(oXuoZ!e-K1<PHZ1d<
zz09igm4<~y1UsM1g-1ubOP`&Q1hqmQCzX`VFw30<n*Irot8@i5p^}o4QhF|~i{1U@
zYIyw1>+$uzpRE)$omVc&mS5*T&t@ekyS=`)c9V|x+uPf(?<jm6^X=t@h0XWse&>FD
zb=7-y*xI0nhg!e>e!oBa;v!ejd|BF=84t_mNttH7c)R`nwP1hSrO(dJ*7lyJ1L}nA
zDu2IjQ|f8ZY}+jB@^zp(&}*vJ%NrY$L1RszdBHh*-g_Qy<Gs2iGZ-`|)ygG$>D$}e
zTT5OBJv}k;aBAW4IhMtsgfYvqco`_LR)^`%wXF`*4qFr8;LxyW@#3$4zu&k1t*)xN
zGH9t6sMi8o`t#@K=hu&pc1LYYYOVYGH5{~}z|!UX?c34C&(DR<wJHtSUsnrCVizx7
zJT*mgGN=>-H30ALtF<b6((&i--^*WiF*K-LW87Kru&MIx*6TiVtxA0g3N~!i(Z2fo
z%lkV!FJD;~dpqUaoSUH0k8f{p&lXnqt9bMKqPzUeM@PG*>+9=-cN8RkzE}PJ?&)^M
zKgxHr-uB=gZ_4`}VP5>#N@4q?O?)1WOssdd#qKIO`Q_#1<4?}cz785-I@HQN`{CjC
z*{7%LOSd0RTou0l-N!xV>zIrF{3yJ<F4lUocDUZ-w{LT0_}Ytodw=|>cwAuNv)pg4
z&9(2(=hx2)T<kUzG(Iz7f&gf!tLXW;Tq(00&@k=fSC6}TdcORa(POBlrgp5Nva<4y
zn7DZQo;`bFuAPk7TeTH5@7`;Eui*9k88b5e{l5QyR?^X~nGFpL!XhFmUek0ke|>+S
zKWWmWptbLhCCC3)4_@X29%x$|b#>35Pp6;#e!t(p^#5Gz@>$1vrDxBvES_~{rtxf}
z)KfG5|9xL?UK{7$E0ro&@qqF1`}g@WeC?;D43_)PH@myL+&nNaP)$MMfQVMei9Nqw
ztya_2Jo&h|>hJH8kB^Qnb86*MD}HuHO+(|vmYkcH{`~v>KJU4|mzUA{eZN*|#_ZU@
z$-!ap^V3sf+o~@Hot>R|>wSxgHdX$9yWMwh)mNW?e}4KpI5dF9zn-3+ZZ53mV{r21
z$-LwCg^yZZ-rl}mGjLH0Cl8MaXao&3lBOHI%>-0-?JRnFN;h7dVaL4GGqN?RKlnG)
z|F3g(b=9o@_XpIG3tJzz)^oDjO6PVyy}v?2LL#!VYZoj~0A-)&=jUGst=jtY^D}6a
z<(&0ik4ry3J_e2Gf_k-Ev#ws+Rr=bb^i>G2yxpDLv!JD+5AHvSmv@*nc`|7JskOB=
z^Yyj0TG89qsQJ%(Bj&KH^!2ip!OLH5zh75;Pp#<bsi|GPy;oZ}g}+=0_V?Un)@hu7
zZx3ksjhIfvgFE|ce}9YGkkH5{XEWo~S{+6PhKBlG^?y}L<mKgCTU+mLx_@V9F=!Fe
z^y(|uR|Gn{c8L^9>i_+EJzm?;Fc8!dzq!Bq`@3BQ51Vc;abjR#fH>~bqYn=cTh;y9
zacYX@<85nWb{6SPb`Sm+x2q&`dfig*>C+BB+_AQE83O~u0efCX72Y5*)6ZL86}`K&
zbLxy4FJhj4KQU4H)2B~CeKM9YzkdGsp`oI3WalqE1_p)?`7R8e%~Pts{r>rLXRi0o
zuL)lBmn=~Mt&*_m+rR(6ulPJr82x)0!LGu~#Kfd>^088cCbz-TFPt147nXWYw~>4P
z=xF!3x_O}KAkb=~l$0mFzZn@A6lzseRW<GG;<jdAFO&Y*v_-LDiQ}mYtEViCxDM(`
zfEr+rA3uIm{q&URT${>EPkm=@I`!tP*u1E1IWy(z|9spXW6Qw6@NQe?<z=A4{AKL1
z+D?W^Y!4qk<l^PMI!!nF&bHiJTRbmbym)T@;>C+odoE7XjSgAvC!7BJ+1c5k>UsJ;
z^RAwrKl}HWP7V2}7s}7@GIRctf1p~SOI&~6y`u~VWI+S9Aj@9cZGTuM=x}L8<>zO!
ztV&l22?@nqW4yUFdwSLPcW>W>@2x6jWoOU6v!hUtG3CyVLM|SjkiWma2HPJ0FJBfK
zDAXx+!2Y0_=iksh6@^o^LbdjGGdApQd-$ndp3&tJXkfrN{hWrPqT?jcl&`E!MZlyh
zo74SMPfl_LEzO-{Su7$f{5XcQ_DF|d)sKhmqT=GuZKmztzn_g)Y6)l@1=KPHEezb6
zef`zu^LCdfC^}EEt^W3<0<`Sfq0NC|qDj&b4q1x=he;`s(?E-BD?dN;+_kN#a+*%$
z6m@?&(DGybJs+BWeS51NA0Ka;alt{^t*7AJe~*h>v%`P>`jz$M#6-{(&lL0gxL!G1
z(3-dne>Z|gYb7}uT`ujb{e9`m`ihT_qBf;?&iZBd^U36@PbbyiFVO*|Qu+2$x~;aR
zV4?P?R!|W^%cbx%3gHR2H&lPm+nRSbs`B%*(1e5qUE=!d9GlrRH8oEzy$@O^1!|#r
zPtyS{U2W%+E&251WXUQi1_p)`7JDx5Zuot4p>uo4wwy>-R@Rm7{c>D<eAj+`ef{;<
z>-C_u$)H(C6-`A&$En)kVF3XXK*Lv`pPzpXYH<16|6Src+wA1+*~?`Z7#RM?)kyg*
z2Gt06b{0qNuiM)ts;%Z(^=jqvlBcIcYd@V-2Mx__N<F>oU^Bb6rlzNL*_!|tmll<k
zIX5?fs*Wco!Al92K0gfFd2mV8dBdd_e|~<Rv}D5ugX!O5b{3s{Sa9O{_3%k1<?mul
zGcFvEv{PB>)+?nIw4@{L?5x!IgA5D|4s0$Ao{MM9kdREivNBk`_W$4SptTX8DH(qI
zKLLBIz6LosG=SEmKR(_MYAfgco~|A4cYAxjfBPv$28M>7X2poiklkguyiz6}&TTvw
z54CcudQMAyIW;`)qICWqMNd#WO$EH<{P**7bE7*uJH7n;ruFyt*S0b<Ffd4RFg`JJ
zadTUhb#+zN#YL@6&COdYJ|^+X*+lFtdK$Dn@9v!P!=FBXF1~&J{{48+REi5|3h2Oo
zF-Dc%v@<gnE}vf)1sY|Jdzf))N$0wlor|W&*G1;u+7jsC(4g{i{r-PNxBovn+CAyX
z8<2f}qy-%=W!%|O2x_k1{;<leS1R+=6wO=vYIlEr7oq9Aab5Y76N0Sl?8`sCI_}|V
zoS%{XxxOBh9NS-BUY`By%S*l7^z-w4muLO6<WR^gd2_>%m7RU}R&{mt(-MnMPuJJB
zv58r@aN(^@sol~0eP^3#T3K23roYx*d3UZT4+BGk^`&LL(pxhh|6={HE%$cFu9BA}
zt6t1++?}vAaH5jymfGKCZ}08Bz4Y(q^LC&mLUL6v6g`7LeXop*N~$U<7QffT>;&~Y
zFD3Were&W6MWWkb(FrD1FPBaS4aA173h@LjlXY@(`f^k}KI7)5)K_<QZZ3LyO4ak#
z_4V^X(+x9bNWfY-9fHbVJ{;!P*3;9gl?Ux*nQ(3g(<Ha4+TqvA@7FFjN<9S%tg3%M
zpKr~-Z^tWX<dS^6uk_pL$?E-})yPh*Tr2bM?~^i2YLPO@Sn%}p^y2T@3=9l^UKg@H
zF`J?p?A9%&yDN47qodu~Cnu?zg@CNM6TgEA)Ec1aW*ShGNt3q^XH@IZEZ*<Ej6HC_
z@awD4+#4GlIXO8&<8G&>>+9#g|NUtpsFeJ#_5H5sg!uZup|0Ixp}kV3S5}AXhpvx{
z1@&h8WUX^7|8L8^ePu<Ua%)QqX#PyqYs!V+@AtnCOP*_03R)E0+S0PZxt-6d^3xLC
zui!?_&02AA<9=7^>sMc1Ubd?Fu>mwq(ZtIA>gDqJ`<_3K+gGzwD`drj$?E>EwqB3B
zy!-vW)or}eptW4*>^M0&SH<ky1X`4uc)0E5(&=%R9v$rtT^*(iT6R0{I%pqRN{VFJ
zolC~&Z5As!w}BS+F0H-3E*6yK{`~!`>IqtQxH;|Yms8s7?_91rH{X7JpRDyN&{V2z
zb=j)FZ2WR-mMl>LO^yi)3Qhv8;M6iR3!AL&4;lj~^?wb@kw%+%s#%|Wcz77pF9)qb
z(hgr|aXUFF>B{c%e9%Pv?(+B77P)qRIcNP|Lrv}3ylbCdE}#GE$H&K@kqwoX=k5Pb
zF+8>w)+<T>F=2_6Y1RsliAu9fv#;5%6$I6wFN|^+B6k!lT;@N29jCC`i-YX)S1v8}
zR`pCi-WTfP(vo#;%}OQLt`(7+(?Er@n%|rX|JRW_i<WLmJG-ixoqrW{KMaVQcXt=4
zXrEM~YXaJ5ka}uL;qCn~JBx1ZtNo2+-NYrgwr0O>m#+($t``fMG`_k%KK^*0?By+)
zmqD}gi{1ORG&Mapr=JhY$arD9_UZTg_2ETDo21P1*6b>Mo%Qa{PEhOgD`=Th@N&ON
zOO)OFJSG)AKlgT9J)~E(;>nXI)lupU3=9({roLcM0&Q@rdbjiWm)rUKHI<Z{`0f8}
zsQUhHt^L0r&WVYMpFVxsw6u>~Tu(z&)3dO!P|7rG$}E%2MHd&lulAm<2O9AN4fZWr
zqT)Ge{`~p3|7jM71^oi2T{lU)2GA@<`uTaG85t`;lZo&5{q~FAmJ<kC?^F25rT??R
zyViyV2G5|^*Ve|~y1gw|JGtlD`uO*6CL5`|t^&=;Sn`28Yf}>6H<dm)Az1qAil=ti
znhA!-BrR5jtXu@zN%!o`OweS<u|C<=hRMfPcum#%zGdEr4+Vceoz_1!(|EaebwtDr
zm6u;$UOu-lT+?}DUX9Jcg9kr-{OEc3rkmHSO6Ta=|9^w3T5F&AcCnzTnM~{IZ#h<>
zpU+QBWcHY@7b_w!zkaHAxR!>7M>9J=cwn*qe_iUSDV}SiwgxSB>jf=)2CWMH`uh6*
z<>fQAVs~xX_v@9ms*1{rf`^CBeLLLF@4ZXR<<Q~7qEb?;K+}b9_h(*Kb9HxL{xN5-
z>ek)dq09^n58h{8Ue<eSOW|Lpird?AwPJUbScQH$KOwO_VQuX0u=BRx=YZB#g7!5Y
zZs)(gGI;ry)B5`@ezUN!WIQ;~2wEwjb9&eEub|a7M#o+}?zb<?oNrOM2sFsIH7gWn
ztz71x&BDOIV6=;;npLIz-5t<wuU#cCl{`TVozp?<Vs_s7_3ZR?f8+Ff7AY^^fi?&&
z_nT{yc}Yc8U43=d)m6WKy<QJmUcEYgf8DuVpoN^4#m_X<)ZF$~eZBPa^K;XrBOJDW
zJ{<1q?%uuJ6jYT;#<uY)IJfhKzP`5h>sj;r8r9$4fL1S5eSNjmrt;I0Xy3=j`@{eJ
z`DvPYN#*Q(`*_fD{TCM(gJze~=i5|%$~ZgAwCZ82_?7MX@jrk40&OLdGE8!jdJby)
zF#M01w(+%DQ2pV3wZB1w$+3GX0-v6m8Vo8ocQ2`a^}k<pj@q*Zh9BuS)K+fUmUkDl
zC~#@HAw$9OAiMP+-`~1FJ#l@5M^H$}lzElUW`5BFrH=!#lM>Yzf>=MED>i`AIDzf7
zcf=WwNG$&N_&8|t<<vyw_C0&{-1%2go&Lg_3uH_HTRgjp>wLRfa4}_N71eM5Z%0#8
z)1}=iAk*s)*9tl;^O?B_w3G1Kn#h;2piRjQ)&=oA2fe(!g3it|y}X+Tq_X_QJ`M%b
ztSc9uot=#=lzhDJY8$V#Ny-U<xmKlGdryOEfDh((#Tl1mTwHW(clr8X-`}s_u)zSd
zoiY2`8ol~Wsi&viO9jQyj@I8vLRFuiolT7ltC|kd_<--OIAhAECnsOVf)q6Dey~rX
zi51ihp0DT}$2ilfbd}1=+TY(c>74%gd2Pvy3lHO_fu;FUPcR6Hi>sgBbY)j*_Rn9x
zwDk1eP5T`&%@x!%W-!{pBk2HIO7HpU>(|nslAy}`udXxOgg-w&-~W;h^5A!MHE_Ta
z2yp2BWi{t}ZPzDXUhWTS{(^kzH{VV-x#x7*=}lig9+zJpTnaMt(xZJG3ZRjjZZX|2
z$K~ravahY-;^HcLog5iv6$0Ar{h;iQIO7t~me;A;)1RH2yIM%qYe~5!Nb|pCzmxb*
zyt}&_wAA4cI|Bnl!TjC&OdbypwU++-^Ann2WOwN^otT}!Z{^11<63rhc6+@+;aI@_
zuG>;UJA7S8M#c(IhwjFWh^J>~hsVXm>DB6-zBI!y`O-?zAQ(etVLZ!(@AvEP|NQRS
zEmrvkvR&I~-*2Ucn7vh|d%ZzUDG<LSUJM?E_+xxWJlrAZ&F$^}-qUn0{`>n|)$`})
z=izsEm5PdrPCYjjWV=WAZ?%Rm@9st?AL}WU?t5Bb@#RkO`OG67f-gfrLEo@tmwsCU
zXkX7_x89)5X=g$EALm*YyQQC-bMe>L*H;(0a)UOKg60O_8-e;%|F7Sxb*~J)|5LvH
zY)25wlE(~&O|hLx&ez2@2)V?XH%;j6$kpxMs48T-!|YmH=Oee|P9g6N8`5GI&C@s*
zy77V3QK1}-7o3|kniSfUit6ikoXb~l=F<3Xy}19lW%0Qh`}x0R?-|coZ1eoy`@f%9
zrH)EYc)f179=lvc!n+-h`>bADzugj?xBKljowz*~*JFx({VbnO;qv8RU|7@RR>+oe
ztVi-@{{Fvq#r6CDe*3J}%D`}e!=#Jh<&~Ae^QzzNJb$PD-OlHiHYOhzQfFdd2y<V|
zF`<!}{n@YA>(9H2$4&v&h-H5d^V^>}Djq-Q_4@sG?Q&Hatm-Tb3}J4ID|k=*d_I4^
zX7I8nXN=FExtTtHu3qde70-Khzu)RaZ_}y${q1b!^SR*<H5niOnYoIAL5>S_E&xM=
z{v{2jC7@XSaFD(D``z;EmGTqn{{C88|No!mg9hfH(9qC_nv4*2PlDNHO9J?;UM%qH
zXJlYlv&`+IlmG+6gVzfk=P|y#x3_xL>eZh=oz_o(yY;%?_jh;qe-K)|YSk*xK08%#
zIP|eeD%}73t~@w2bn2^DudMnR85)kQb!0nnV`H-YcS8n-3l^2U91IKrv)lv~f|vQ6
z+)?=W)tbK#`Rh-}Rlk`yx9pZ?cub*ds~R%{LzwGgjtQ6j?QOT;ud9Ch_~qs0&mT1N
zpZoIi@?@3e^QyAe?frJktCyXDVa*aZL51_S-($*d=Wf4s-284y@U^JywKl)sY@TUT
zS;S}gWWt|U;rmxTXklPDa4JKD(Ww64pDp?K_kH`g_xruswcl>4%UYFqOnS5VyxmN*
z+^D6;K(+@h=9n;R)~r2WE_r)Sirk#`)W7~$@VC3=_iz1e<rcqoZ<9C!L&grNC%F~>
zuQ{^IPSIY!$EaIe|J;+4lR>R0nVJs=xBdpXs_M&&z=NEO3=LB+YA`)%;?_H{`~AMz
zv-9^^=HA+J^2WyG%R7sotDJ0N<u<DO^W)EF`~StQ%UKv0_IWJkm@rK@`q{PU{J&@R
z?*H>tKl9=u*OS4F3=FGR1+tuYzH;5Vb5*a`hQBmqU}%_nL4o<np3mpJLqkK)S-oBp
z5+441&*yW$4?PbF4NZM=Vxp=KD6H18Nh&;_Q|z~D)heT;BOPltpR=-jKBsu!2TLXv
z1_r5pY?2D6r|bW}bDV*};qjBR#taM%mrS}CX4=(Osrk(KF!Q&tn$L+IN#j$}91IK*
zy1bu+*6jcKSpL5Sx0uceMs}GEhyKR@`!qfC@-kmgR+*#@3QO0;7R;c%Un%ozzx_P(
zckj1b+WmIFGCGApURfN-a$-;A=S!<XSD(L=e{)mnz3TUS5m|)S?1n<W?YA50@9clQ
zSp4$Z+GvEf35w1}d3Sd7NE$CYr(0?N@5keq!lR-)|9-puxmo_tf+k@m1_tfLfqOXq
z_86Z#vBYz7(WjH@=~q?+-ptv2c9P2aJ)gYp)qcPG<>h7d^tq*Buwb`fzO*It@}2ts
ze}8^mUqAQW-s<#ob1Y{Xr~6fXe>Yb;Z-=6=x}VSGWxm?BY77h?z$JwWC^7`yWhN^3
zSuDD=n1O*|^~#GZ9+Pw;H>sSr`RsGA^7-61yI!w*d10aRQg=}PcU-)KMceaOkL2W8
zvu1&$ezw>DXt(+Q=d<S|%i?ECK&!AHwn=N*C^9g7aFudxxKr`C*Yf9+$(Ps1@4r)U
zm{+rFQQ3OucD|d%=WX|LTQM-0F!d@q=<R;9Nv7n2<IlJG^|P7zEEe4R_w9E6eEa`D
z&x_9BVPJ?5?NxGE<~w`Z``Y)_^LO4~7i;~#g^z)u*I_Zo1hd>*Dd*-`&fjTY`s&J>
z{r`Tc`mr!Dtm$(TRQUV*`}wWc<7R)qU%&s}z4`zDJdY{ATWa~?0JFA%Bm=_+Eh*QA
zn1X|>KYu*#zq~p9{GT`J_Mo&__j&gHC++rs63cERwuAQ0rO&S|TY4Onz(F?Z#qN3n
z%2~g@zMg(Nf4{A3;FD*w^Ut+#3LB-Im|*ks$z;(={|SMM-Ing!Wfh&jw{-7b(3;-A
zzrKRzazVr9JhE0_iuIM585;7N+&;UtfYy0^y&gXwRD!<W_d9Qze*8SpGTB|bjCf6p
zpPh-Rc-WeGbJJ6<?`8LEzi-LCZ6+RD5@`41L32#i%cYeckBWc3670X!bF$m#WOjyz
z^&!pwr+<k5|Lc0q>*)KZ{Of;R{_{lL-g8pPn;RPs1*<NfTNd^2-TQxfr>E(zE@xjC
zxY#ZA;v(0XMyXz)qdHV>79N+~eBSPN%9|S-Eq}dOtZit-zz`DCyq{$?Xh+wjC7#z}
z%kO&i2fd!?E_X7v{O;7#`ul5If0y4a4QJz#2#}Wd+;lyzI`y)z`B~ZWJAv0`Ffd$r
zVDf{(bJF|z|Gy>e>uTnfJFK7b^z`)S?)JX|`z)W$$k}=|?CZDtb-&;4`Fzg$W@5YS
ztG8d@-L*b%_d7>2nTf%n`N{+RgI<#kHnTr(5%%-Azpu9VjN$Q=!@TA`pP!w5ExY}0
z+3mF-BiHTw^=i-8YtcU+%m3eT=x^laG*!>6tgKgWuU@&5^6t*gpDz~oZ~AsCd;LXA
zMur87St5*=miy1YbzZ*q%f+hSu7OKdt<nPRYLc3p3{pM4{^#^Lwcl=LUSD^Yt3Pr}
zM&P6+nU|M+{Wi-qJFL2gfsx_C>=l75CwR^8OjxyQl~@17&F8GN-`?JS{=>t=_Md0?
zpFg7$xoOG0dykHGzm{QUV7PD6tK`teD;@Sy&?xuT7EprR`KU|VsQB3#mHBfjBllDk
z+WmU5c+bygvor7RDt)^&e12Tl*ZQ-wOts(M+8W)tS$?|e&cFHB+Wx#}XJAN`FwcuQ
z)+-&Jp8N05PtjS=UN3fJKk?{jH>lc7|Mlf%=KX!OY&;Sh4qXqMlKAY*OwBGO`(GFP
ziyn2VU%UPO;$n9{tCvgu{CRHgf4ooj^Owv1*R7weTt3fhecax#NB-8jC++KgE@Whg
z$aQYxIXOYGw4U+L8RPRQzu#_Of59c5pV!O*TuN*@tp_S@-`-sh+H3j$NB{p5_p0B=
z{<5*H{&wbl-S^#9uR*1im|n~b!{lR2-23G`?RI8g_cgyeWu|fZwR>IP53<XjS-pPW
ztjm7ZYp?7CMNQ@g#-e{epQj(|k+gg|C3w^GdDUsRwq#oV|MR){&Bo);zFv>lububp
z?d|6WnEBUi|JNP=M=3Nk6x2e<x_-{)^O+ubd%N0SUru_e&z-_=_d{W^d;dAJ+c}pN
z^wgOd8oWT}|Nr|v{l$falD1VPZ=;@{n+qy~6+mUI+3lRoTz=u#@9%Ti7ri~N^2fvW
z;#Vt|KkG3*cf#uRn#qjJY$;z}Tzpr@%5cCus+o7f_Ip*@%5FU?HgCI~w|l8Z*O_^?
zyAQIQaOSt&a_Fn>wi`;{@0Q1(yv)GhaQIrnea>3Y67cu4Kd$tb*N@(|Mo5{FfgwJq
z*_L^digDVR6UOIlf`9+Ge0$#BZ@02R71Q3wrz_M;7#I@1n!aF=v@A+->ywGh|Jx$$
zx8n1THRVq13=I3`ut_VJ->XPo>dwHxurG<%%z@AT&j+u51_p+jqf&3WFEBDRte0nG
zVqlo!2I`|N6;xngaL8l<HEyIvg$H$*Y??H$?$=8mc{@;!@;N<C_w(EQdTUT?JFfce
z)~e(C{(L(9^7{IC(B`IZZ*PMVHK_7uUB<@H(6-cbDSL*F-o77?Z2tXtENM}Yu<c&e
z>p$oJ|M6e9=hLa2?RU#St<G(CicYJXJTudH^Y3@Nm*?Kzw)4fJ?oS8V<)2*g)<4^=
zzi-C!c~x4zvwlouX83USY5ZaBms>9Tod&gsS&l4lZ2mO&eT_P(V#?d~a+%7>6@iO4
zWn5h3Gt)>lc6XWYq&GVr_uWjNUu#tM=7vn|my4n^<rx^Hn5HMJT{5@)-p+eByL-*=
zSw!b<4UMaMx%Af7-S2j3Gqdrm=<QdznZ17RrkBfRKkKu8r;!`Sz>v|wa$>qk^|v=A
zFD@v0e)@Jh|M}eVdnfs<-vqqhac^(+^PB1Ob*pU{7%~D_PE0R2t-C$t*_oM=HWdYv
zQm(Cu^qe$n)~u@I*AP{L*IYpc1}P!NO|#<aem(_-^X_-MvfKD%XQ?0x{l5HbYa-_+
zGcY`u?a{EN?dIn6^#6aq``_M{Tl{=(`Lb23v^+2Esr;;Ra+0d|E8FyskB*l1F)}pd
zE0rINa^)7&@z`JYcT>W_CZAa*ny=UIuX}rM`SiHjD$Q&EO|!49*^+%-FMIvoZ(e^i
z@fY#V4QrZIy{DxdXkY}j{pD&t9L(8vGp+R7?vj_2`ed!2y<9$j-S<17$l6==HR`1O
z%PlJZe>`PpV@TM_D`}+S+;-(J>j&fWHk03OzrW8(xYl+DOSY<R{63pzHr`WDPEIzi
z`}5<=ySvq`$7}!pzJDH6XP=p4xw-5utdMqWW}9lN$G~9Xajs#_l3;&ZQ&1DTkzH<v
zW%08o*P`>+ZvNl@|HnzmZsYSd#*dHp`_H$lExP2X{<N9j?!=3Wi#MM&yPa}lL!#&m
z83qO^KE_RxK;2DHtN&07=S+h{r@epunU~-xc(s52;%8v^@k>ZS`{lxRxu}=P+ixUw
z-zmRen_VEqz>qO#4;u>ugGMiC6va!~0n{bn5MW?fU;^qgj0!Uh;V`*2VX61@G|-^T
zt*zOh=EmIedzQlLervu&FfarJGNtfZ{`qjY_~+B<&o><AI}I8#TH-nR%lrHG{r3MV
zmbx=DG<0PKy=2_iH?Qi|$~$$x-|l>~>2%R4&E+bdeAaI^e0g)zc=`OgDmC9(ArCnj
z85S7LVT@!x)-OLFw4i%Na^K2W&{-LMR<Bmrd^{pN)3P{?bvZLb!zn?9>;qFYgFyw=
zveeVlO0QLae;2!(pMl}N3sVa34Abl|P(yU>^($AFXmsuQ`|Y;q3@!!+E&ql!jNM|o
zUYD2ozFupdeQiydJOjhN&OIEpyczfQfEMcn<=1|Ebad-)?N9#?KiOz%D&=r;nY!n@
zz2EPFy85E?SRb68ZTENb|8+lGKfMxG$ae7cJ<FxP8Pr6bw8VS5o_5W>9!cYW-#4%R
z|DE~4>%=D~CQg-Oe4uTbe5?o5i<>I9I8aC-+hKj&-cRxWzs5)IC`g<uzR3RPlgTSr
ztpc|Ne}LSpzx_^;x7nS7!{=?hnHU_N>O^hP0JT=?e!mTW87Q@O)gp~9FaD3Epw39@
z^SR~cUR+!ZYBj0-d@}c9^|v=OL50)C<1tB~M$=?tg=~lS_x2hWJUB3?@R;OG+v+m2
zdlip+WUbBe_x()E+w<|5S3f%ggXm+P6H=Q>US8^vu`~j?;Mv*P)7NglXC)p};P~xc
z^?R>=HU<V!NG7k4hvf1lj1jv^GTnM4Ca#O!z09>+>}KWjxyFT$j(GL6GBCtjGG1bk
zsr&J8=bulfi*F>hr=FQ%n0aZ5CupD7aryc^mliWJ90)&^?V$DMa`d;jvYV-(Cg>y;
z?`b-o=jYjihCh5}nXEh{%*1dY{J7)<E@}I^npq~9lal)^mzAx}yu8fv)r!U7@q=e)
zW{S??V_?`9#kAzmGM|}~e9iA}IcL30eg2;5Czk(aVE9m~=%AHzZB69Ll`B_nj|&c-
zyhsC7qlG7EF)&0Jvv{=XMs3mXoo%*u`@J=hn{U-JF#Omhpdfl}PvvKD-{RM!qutrx
z85thDc4`QT@b&dgJ3A{h|L^6kda=8v*a|T)tTAL-a;WO-tEu7fwWi$SdTTcSdotM{
zRA23_`nu{u3IoH3tHKJRWhWHdQ*Lfb-TCcScJ}pYda<)MCLd3GKDXTO`np(c3t0w+
znys@!sv7clfrb|z9B8zB++%E1{q0T8o{z^Qt;=%m)qFk+>hVvN<7Z&l7j%zvFC-TF
zWM)R^?Nt5z?Cj}l(fM<^^>!#!zu#L9&Wh`&fQ#tIrWCYAKbUTQ*e3n#gmV9yFB0*c
z_y0UI2Mui)pSSruwf1cBIZO4cSO0xy577L_&2yn+&&OlZmfvn9Z@%azy|nW4v&j6t
zUpL*(+YL$spzhbCC977gT4c;8ZKks}YU{64`|gGR{TmV*8u}-l<%93FC6|~PHWa<v
z`FtLal!?aKS*E8iEOZ8q9_YmGGMTLAd+O!#`SVr=FMk%k|5xbJ<6rn|80@AqFlMl%
zotZIF(Yb9&_4jw6&gl%lxmH)-$=3h*2=39GxBVVc;KUGNsdtbmg9X%9tNHP;9W<B|
zt8Qm^b+LQ@oQg-C+BNU?RDS*h8oUAxEPz^jU#~^$g9bW2pSO>He*-k62kLX}dcAIT
z+1p#G$7RdU<ZizkwtIiU!$WgwKAi*&iGmLGIXBlj{eJEDvr{yK!(RTbe7$yi(IHOt
zl+S0){kz3<FD-O#2YD}l-_K`U{h$rFpf1-k=XO3&Xchf<*#7+Q_xtP1@6>+3JKgr%
z4Q1WvZ9cEBtu;<K(BL!I>MQs2$_I_?o1pDT(4iJ)_iH}SDZLiC`im{&hN3x)j2SF-
z|9{_K?%pqVGjsXeu%A2g_k48w_u2lxF*7@#&-ZtCjjO-Ci77s7`ttH}|7Cu2XMMdM
zZ|_-jxAgkcC6oP5EpTiGkBohMbhPr{&*#RKpPul@*;sfMfx3q4cE3B-sXlK8sNeN|
z@Ao)0-&s?p$5m;9nnN#V{`<ZEzqP;J&y+SE$w_&4ccmWdk=*%e)#^*z^Y8o2wK6?B
z%XGEvHjOS&D=_!=wzE5*&zl_{SE(8vTN-+=>h)TiFBhD*9=}`j`K+W_P6TKa$Xjox
zO8wv0@x@=ShNpkOTYi4?dAr%XW;YUAH-ijhmnm=nWxvno?d^SMo1NW~dHK_i$NlR+
zotJ8u8o+R2fo{Zx1uIsq(&DrG@nEV|-C<sHoj!|49k-5qPuE*per9(5zDSeoYio8q
zXyVSg{_o%W|NDNNE8q8dXZ&v8*=9#O)#v@#d7MYuY)!`1Rac+OZLawEs49E1y1(A4
zRjaz9^L8#R%YAcWqibkr=*8XT?~`tBO5OT;dR$dzU~Fux&kTcw8eNMbb`&ID+?IR$
z(T>M`t3R9GuY5jt5y<R~$K|4Tmz}eGE^_ti)vf*d`~Q4ev}@O{8P?_Ro}c465Pn!S
zf`Ru=6D#+ml&$Y|wtl;neZ6j9&CgF~=31NUMr}EfHaj=$`8Uw2+>@X&R-3<HF3<nD
z_12cm$tNePr(atWx!Uyf@>yoNQNMp~N<D2<{_f6~7Z;UtZ*7Tus9XO3<@|q|*=x6k
zy?y++-`)<y0#$k{C;xuGKmX_F=jk6F9ISl5_j{K8s#U8tUG}rSY8kv~(R)qLy6?O1
zFV*PM|60rV;V27-1M~G=rLR>^vdh<Oh&r#|rL_OYQGIYVoq2f~Xmr!6^wkvcxC+J3
z&(E*7%{$T|n0a$kDrn%;*Zi)@;dcJ@<&u|Fr^ieZkFPPj|LfXzkX=vj6rVr)<>lq@
z%4J8p#h<^~eEuApbWT9}GSGDFOwFH9)<sF@?<t(Swe)(dxv8n?Ov7ZiNh!CsWNLOP
z)&BnGd%RCJ+a6>wyIh6B`#qn}rJpN$v9LYudTjYw!{aiOK^gSK1jU`7&siVkI3T6u
zz#z2)bY2qZe1(rk#lv6!T<q3+Ds%bVX?C^0KyB``pit=)R!=*vyZy|kr>C>~Z`XW2
z`}vgi`X}FR=bwMK`~5snmumOhZPDj!zu&o)%*H1(!~9-_^8au7|EH~s-JSO3#l@Rh
ztJi)44Sh~cld`L+(A)Fj5GY%f->XcQt9a1pGsnX4?X9h=jW3^y+E-J#YSpTu*K4<@
zJv!1^Y6p@Bl?U^G-bp(<>nUhx@JOeyamkAddp;cEw)}FzdGq^yzq<q)Ob>KlV3cZP
zWM+G^>-D<RPfkt_|JnND|G)SD=h=S0V|+cXI(P2Z@AvENWv$EBYz9?xJTevr%<Oz;
zHl>~}`f!jPG#n19dp4c3dadFKI?Cp8pS9j`+47iYXJ$^$-G0{$6f||e-){FZ=9M<n
znI2Q*`S#W%RqwEh^wo<rKHbV*|8)2Lzj<$OwaeGdh}@i(3hKs9%Gq+!O|wf$*1GHr
zs5f${_)k12qVDgjHLm*d0yGBu^XB=wX`oK`*8Oq}+Ru169Fz-wy<EQBwOb4{P8wce
zdGYo7{h-sT)_m9rO0IkFKe=D|d@iVsICtyL;^)^Y?=110oU`$$m}ZxfeC?OOY5MVT
zzpJMBm%g~52-<!Ea^%b3k=bjvzMA_|!Z^*x?%$8cqH^_bw_Z;J<=g)CyI!rT`SbDk
z%lrH5C#CHF`_23HwY8tu|NphVwD0$oIhMtC#nV7XZA9Nro1GgZa#X86o}tDt-GM=>
zQO>sN$@cw!bJ_Ui=ICy_vFM!jLi=wwl0n0<eKwy?h}xAOXkY|aMo%WXr%jJ7JISrT
zXF_!TUQ_AZErD|%gJzOI1MD|Tug8L0Ky$53K~p@SLVwNfce`fV*VpYTeLc;Y&r;=f
z&Su}JZ8<YRiQC`)Z%N(1&-1VUjPjnYcXmbK;#X%ct&80)Q~&3qq(Op1-oBsDw&dNl
ziq6{!It8=S=EsBPmlqZu=Gxy5YU!`v`wdjufBJM<|N6Z+kQ+VicKW=1wR-)z3k#h$
z-z~eH`r*Mr(EcV+;e4m~yzR~0?RV{rFPyV}zsKg&3FVvh|NnxAOE#yUKX)}eelD-s
z4Tarrx7`;1cb8#9msaU-U52o`TQV<qCHLEIdvS5G`^7bpn-`V7zIIe^_nV-Y%BNG0
zPEz&mTBOnS?(S}Jce%=xx5d+RB7;DK>YBUC-bR6Ze^jpeO`y*_o1HIiZ_nTOd|vf6
zx$?WE*F|f8ebKZkdlO-je{au?l*ztb^Z$KWew1ClCP3t<`u5MVhDk0P-)_4t_ImC1
zxQnYoS0~-h-LAWC=d)Q>peD$g73<c;Jv^>9J10oQHE_@Wf4`3gy32-^yt=Xybgt6H
z{q_GJT@8<4YySJj#^ml-uU<X6=q|6@XZ>!+qT1izTwh;X+r7}aUF`F-v#Y;<2908N
zgXU0NZ*R-(7SoLqnVqxAv+&78cQMd>&s#&#EZfFwQQ24R>Rv2t?`r0^+wtPs+Guca
zL~qYK%3uHEaMG<Uneorob2Xd~2o;G-WM^QQayXmX9qj-7=U1GF-|)fF3N(%H>FVdQ
I&MBb@08siao&W#<

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score-2.png
new file mode 100644
index 0000000000000000000000000000000000000000..be7eb045cacddd65fcc1c567f91467661beb1cfa
GIT binary patch
literal 24192
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_eCLL~J6zmL^sb1zJqz`&`x@UgPg
zs!PtCd&M)E1YKEJLPX>PL|kSyHL$XLS=bS@l=Bjcrq<qwz$Gn0RtvKxFg*Xxe*aB>
zs<{A*n&bWTuOCgCV`=>PrqG@0=W{Hl86M+cU|?X#dEoJ$3B>qQE#Ls6Z?rLh_y^2b
z1VG$viVYxY11}>B0|P@tE{6h$o8!#D$iTpmAk73e<Ti;~3*x&wJ0~74tp5{S_U}*S
z*EctV0|Ns;ef&6a`t<2_KOVM!(R;mZZRBP*zINyQJs*$RTD!-@%#q=1=aaE0IDc-U
zl95pmE0@TQ=g)V>npe-;o_BZEjT;fIZEdF>7OV(a88qol?Y&D{i|zI^Tsr^vV|^~e
z_m;yC3w}O+`*!Vw2?C+3!+e96`FOtnbm_<@oyciVFQpx4f3pAa(&=%Re!t(pzFn@$
z<L|GpmtU{nzb<BH(cO~yQyQKYSeR6PdJ^)RSH|MP&Go^{{mMh0|NHy<{i(utEz7T)
zt`!m%HqE%85V|HJaN)v*pT2$#?US(#S?VRqD{B>UykEZDI^6B)%Swy-e|uhCUA<g4
zdfN)$*=AA(2@Si--p<PUU;Q>Lo@t4@FN2ZU`!9M74!<_(cr&x{OfYmidGh3~z17>F
zot?ehH2Ye{>uYPPzTYjsy!%Lf&(Uu2)fpETMQuoMob}!F=Z9x+->&Vq`{hwsSeRGa
zV>rtsb5c!BP07zsPj^Rr{F{Dpk!#hTkH<^@{izhy3h_8Q%QQG5V#c|7wyQzTssH~^
z%Bo~V+53BIH*DDOMeqAExymPkZ}033wk&#5ka>Sg=48J)77G_Tx4(KiJ-+OwS<VfE
zuWxUM3knKuyIQ%rVPn=+t=n0Q1@#II3<3ZD{f(`Q+h4a=D}3FWjmgJXmA}7tYQBBF
zRp__x63Lf#v-I=H+pSp@y87SRT4|Gv1wTJO&whSxu2$Th9jCV~^`8FfKqGV3wKX%J
zots;Iyfp2~^Y>xb)<iB&J3H&-@#F53)&0YMe|vlP*Pman*T1^CdAVNPo*8_i_vGs9
z>qRw#j;ys+RCJt{s#*T-PTuXJXJ=N<u`Iq77&pt+)pcn(CxekhTLNQ2@V=T#QSC6F
zV-mS{cU?`MpL%-Q%DBB%T)ezf_wV1&C91W=uJ+f9H#axu)z<&{=)N`cvKuIoe*YdG
z5i!GSy58F7^Xucn*Tocm+kNxL*DZXjs~&Z#hwQB?eLi*Wltj<CxVWg@WouP5EiEJ8
z@B6(Dq~pPZ1XeaSEiElC-&rOXPfgXn{KrPtwkqWA?(*=EkSTxu{1FioTlVbi?Cjgy
za`pbM3SIq7X3?gquUYB7S67Gof8IH->XoKsvPt11m+iU2>V6>!2@7s*&7S`1U--J1
zi#IkVhwiJXOg%l#x3RHND|FQqyB`mjrynpZc;Fza5#TT_HS^PxlX}iymif(nRd(n7
z{{L}bUtbRo2$;ac%q%J_y!h+u>$|_ayuN<E3}3t5&nLqDTXS!3^W|%I?v*n2dVTrf
zF^R=`vAbTJnyL*-fwpb@o?2mRW=zwMuRE>H^8DP~%eV9Quaz>*(#XHJ=iK$}g^!Qj
z+K||My!P7K=;dv^(pvfV_I&#OJ^bCBogjB^|NiFV<Ktf+b?dK+*qC%`j^*a2rlycJ
z5r(!Oj|g}5_m_X${n2*5k%^w3p5HNv=kHH{U4Qm$UAtNSy)|KLqcr{J*?<hIsMwKp
zecjrdo6~oHnQc?KDQZi`!X{R3t>9%or>5!7)(Ty<#NYn!m8J1sw%OO$O*K6BbZ^n$
zYU{0*3e)vsFKtLX{N;i(zovmfz|Bpm!Be$D@4VXiFJ`V)>7{>ve_!2In%&ygrlp|Z
zka~LB)kjCWZTG1$7^$smVA!E4FE77+TO%`j)`J6$T%4SN&1}4&$dj-8;i&A^b77LI
z_m;Z9RjKFZL|)qZ;o}MAehd2qH&@q}cXk$ovh%TC>E#ET*|me0`Am9uF5=@d-`Q67
zHph<~(NI%6wo}*0C}`4^jmhq3XBaxGdQAy9-X|+6Ah6(YJOAt1`TH(zN<AI2*sV8u
zp1Pe~oTzr#m5YnrL-$sdZq2<N#?CKy<;~5_TPr>$ot<kP{`J+>$tAiXphAzCjVB-_
zWl6C_sF!VK;FgTQ(3L^1mzVio{_ybd-1Vn7CLiCDaZzb&{{6Vf&1qkEynlLn`qc%F
z%)0UWVvcr+2JbF=`{e!m_3QWli?Xfya$%Y8>^a4Ct3p>V+njzr>&uIaU44CFlhu6Z
z9PjMwE3<s}?CfmQnjZzBD*_znT9;pIWM(%>KPPi_O=Pfj*_(iehgwxVV|SHYjLzS?
zlv7x(f`?7M?#Du%(?#c!e^`U^dhG5pP$Xy0+WqM1)6&att;^qCS-pPWs#T$@S2;Gb
zadB~7YGh{LQt;48H*%9px0r6w+NiB_{!Z76UB$*Lr4hX?C+o_JiAqXJQ)bLqG1t00
z>&}kCs<&IOt9W{Pdaeps*!1n~?d3OaM3`n>@i->&_Wu5OZgIVk)6;Z=YvWVS&x>Vd
z<GIi$YrQ4mAd_j{of|)AE%{@<_5Q+6Vf9tf+w(qs`xds?tv6&xL87dET}<@0oQpdO
zA79y&>YaW+@9wUb2ifIAuC5B5YF(Z;*Q(SjzV7GJTif&3$L=o6d~l#q@2k%&6Hj(N
znF7A2Q)2Glp7+Yr&o69k)YdI!Z=*!@<6_R+{a*9$&u9O$GmYKXMs2<H{eJy=^ZPZI
zbNB!FQ886J+>e!8ETo-J7UZ{?#_6j(C#(H>wR-)(Z=!AtX2uNvw(6WV;%h&=w)X5S
z(_^PkpZ@Xt_w2>){kw9aw`NV<sB=1GRmjOX*5&6?Z%@$-?n#Y&)+!!Xu<h%+ySFW5
z_&y&MkKZx(`I(u<diKYU9+hlAocQhi{rA_(zrMP9Y?F?0!2^fs-)78^*nWIMRD5!e
zW%ai;g%&c)Vs;kg-R?0|Gc>%I{JS^n>Z(*3zII8gk`>;+e|>%3yM6oilM|KOe?IQF
zkJ%PEEp=7s>S@a!FZZadss8rH@bWTW<7ufgC5_W8w)4wcT>&}cZu$M0>-YUS6)`P!
zUd1EM>B)Qk{d#?Dlg{PU;rhj2UxlXszPdX6>|}qtOc}oR$Q=a>H{06T-FsXZw8UmV
zU;AO7xmH(GZ~yrCxHmO&S@rjKdT)89Obqzi5C8e|`MloS=jZ2}M{Y_n{Q3EL`O3Fx
z?^*rXc%@QwP8+?wz1=_f|7%w_w^=JzXiVQ${QTU^;N^ZhzxsN37(9IV@L40fTtR03
zwKX#fEo7b@m#;6m{ruPCnvX}tL2lb!p1-~B<jIrI4z+Thn;%>)??2DxriBcjaq20N
z?a38Y_v(H=6@UErak7(>)0uN~t!?d=y?%Rl_x0pl)2u57`}Xa7_Tk}Sz1uc_`QpxB
z{%oCcLLfPETIPiXjXR5;c5VK9q*GYU$mo)V4BzIuzg6kgr>ZYKESTZg%(hb|`{t(9
zW1Dn>_t*Um$!3_a(SU`!;d9q9P@Vx5m}X{SlT3=9cx?ap1XLgCoW9h;DLh5hTWor+
ztW`-sNy(Pm0lY77ReY09Jw5HMo?X|LjXK`PB!2$-Rdq*BM5N?&vWkjI#?da(Q`7b5
z$5p*lou1oo_iM$iEt!jt967SvNd9q^Zq$~5fPe|74c7GA|BE=<Egt^!(^K1b$vqcA
z?W#LFi(k(zzgPIv?A9ioUKz`vNjCe^wg;^YQr)gCHP@<i()R7!&2n!&xpZ%9cDQ7+
zN!_1{>EHbA|AvU`#RNP*H~0OESJx*hyQf4>`}E}G=k5K4dvzi=X;@g?SZixz6Qdio
z<-+>?|5iD-^I6^w&iekv?t6)h|KB}(_linLRH&y`o0PqYh}~J_x_<AsSzV&q&$ijx
z*xY%V?q6)SXYbytd#lT1_tpH|)~31aS^fXtpepcQ<#XBT))`MvOmzPH`}=f5H~HEx
z6K~i3{QUg7_WC`KE`_ZQ(|vk+`uVrE><W*QIK&vX8@`&B`totVec16n*}K2;ZftP0
zv$LCJnmz4!a_p`WPj$aJ7hYaoE-E6jBy4R|=9w9WS$B491l3rxOtV)d9qoF#P0wMP
zPUMvhiO#xFTRbjayqI-w&rVPi%3ZF~g^`gl)9To_x3^V2r)r0PvzW5H>g%gnX1TMr
z<=<a-T)zI#x~uP=KVN=azCK32=0oGRcXwCU{{EJEex9wAZB@yt-*0Yh_3rHK)CyYC
z!Nx1~WZPYd#SIM%Z}05<yzRAS?5-`*v$t>G4r(o3Uhcnp%k{O<;emmHzn)C?H>vqi
z@SObvr?A?I<Hz0o?S4MdJ#U_HfMNTDPe+9PHRAWxY>%yus`>qPyOeQSk6F%*1&@#S
zzrM88`&{m{R82+2gOU}uwq`G{{QPWX%+8{$tE;AhYK<;Y?OkV0S4M4JrKF@}l5@i#
z_wKIHudl8KAMFwqm6feMe{J*49fgZkR{G7g%6wJ-;ejKsw3*N9u(hCKf6A08Pwq_n
zwB!AeR&Mbv>F4F1o}7H#(&v4Z=4bbyy7TMAWo6$Qu6TBKw)xeamJCL6OdJf)T|O*X
zqOvxAf81QF(xB;ju~Y2p>!w?ZOe%SGMKgA1(bHv<59*%2)XFU`A|kS6Q|jqgpqlo<
z!RD_&pU=;}wI$Q&*ousci>m&9y?%99>FesB7i>UL+r}@y?!4XaGnRRG@86FHrNRzD
z<-E%3Yg0PE&3ormQu}+Rar(Qwhm)+z->vz6ui77!ioU(QtzKXMKSVvo`+A(d=dZut
z@8|!T_4ng(`R%dZ-`?D`-Bw*)z57m#!>(`hUR+w*{p;J?)u3WN`FP*0U8So*5uSE-
z*4-jok(W^c`#v5{-<oxGihjJ^({pp9kIk_DS1>2(-k!>=o12z0F)@iqORoksi3|(^
z_}ZQ0>;G=Owk~${{(rwt-`t;hd0Et!jEQc2GAlhNt7RT);WRq7qU7ZzP){K1+8WK5
zQ4IHX6fTad|68gXvm@a2bp7duZk9z)0=DPf{qkz{`ct=mzx%h|@@egiY0;nG-QMmG
zYAD^@oF2NfDD~>P*yx*^QYTNJKK;?-$EK;LM5Z7ATYl%{`}1e-6^E~n+q-xd!;N+Z
zrURM^3JzCShhG<uuUQzh)N5t(@xEVgx8ILx>rOd6&G(qZT$@Uxv&U<nOmqj;_NwaY
z*{`pyjoMYR@?Q0O+pXEx{Sp%s&*j?$?_>P7W!llZe+=F~f4=;BT(vJKs|yJUfhtws
zc{Y)trp~{=zqh8Hoi+R2e4~;#FD@>Y+b(ZebY$uMyI&qO^S`?2E`Rm7eEpiu>E~Ca
zo}OkdYc?&&`SLPf)AVz5cE_E6`{K&V$)K?4mA8+RwJy8z<KyGG2UT?QzA<hNTIw}v
z-QCnP62-^OjbGf~zyHslKU+#)hi#93C}&r5qtbor>#J*{!%JUZ3k?dIWR`blg=@E1
z=9?QEvu<oyxGn$wJDGnXa&qfBh1Ihj9qGKavv_&f+Nh=cc0U~Q_k3*YF+AsauiX1o
z`?r=Bmj3Nu_ue}(QMvTjm(2d{hVu-QkNJup_F4Vq&tJv~h6d~`4YP$*y;c-IKWA0)
zVuD+*)YDCGK|XtVdHMfq6J+J(<!yhxSPbfW9_x`*PVPCqs76zM3BR1pi*4_pot=I8
z&qAZrh%3GK4^;~Z3NAFuy_IouQ>s?TiV6FEK9k=5(Aiuoa?=u(m$UQtef+Vo;_9l<
zO*-C7y{38v@7=x{WNG1}mPwN*f4vgye|Jm%#-yWDY^%$1Z){NXJ>OnZeg6L26BCu&
zL8V@=wE3&u@AqBqku(+&6@5CVxI}$b*xFT#T)SUgSm-><B=eH*Z>i+Goe7WU*;ao!
zz|6m+Ho^Q@#@$_|=6B5%6dVi<4W$f|T7G?fz1(}cUgpV3s&c=@^y6ag?k>On>FH@z
z&(F`#?|-@Rf1kU2ZOEjcwGXSRzrC5LVw!#JOz!PhS6AEq<6E{T-bd<s|H(O)o4Lev
zR<yLRJpZ|F`lf<~%N6Sw{z-BuFxXUmy&C@X_3PDw%5FQ>y#4s+^ZC;fi_guqw%)&T
z&%OEe|6a-z>%~T2xo~+=zUKY9Wp|pwC!LzA{k(8(w|xDdkK4jh_&GTzs`O_o&atTs
zvj6*Ka`f+?pP!dLJj7aAUA^4O(bm<)r6nmjSyW#Bz1Rg%!gzUkxweHxgzs!K-{P~|
z7ni=iHp{+#pO{WW!Rgz5Rh5-1-TURNYJO~}`toAptL(zs1w33_lTst)=I^(jY9zTg
zbamLT$NlzSzFhXdKlO3cw51;(AGemz&zk(I{@>5^qsNZD`tb0uxouoZ%96VOf6KS$
zzl^W{TiXAy`tGh$Ip*8F??1=a{d7IvFYmwg{@xiapxU^yvNH3+0!O**{dG5@PQ3-?
z-nW<1Z*EHc_2Y5Bt=#{#{rM|jURgPLUEJPP)8nd6svendQyJ9E#ycrB64WieRAa;N
zUA!%U@q>nqP0V?l&ppR_Bo{wC+@5`6g5sogz5=p#H9J6s+@V(P)p2{Py1KeR1@WB2
z(?OM={{BBflfGPw&d<EMDs)xM&P|IJEt+Ckoc8z6=krmUQaYWSoMP-6%<}F;v~r7I
z`||Q~>4yi7wx3QYTNONL5YvfRpyoR(<Jp;+nXC3@TwK)E(Q%<i()h{Sw`>3W{Cs+o
z&huT2s@~H=I)zlheZl;Dd#uXe%@Na$T9SOcZ)N!UxXfPyKOVNruL@e~_3HBS{%QL0
z>x@!QSzJH(;nSx}OFSpPJK65}@|O9V?VB^=|Nr~@^)SDE#-AS_e?98f2aN}~y12af
z@$oUJkpKF2`~9pF6BN&hUSnov{(3^WAC#IwgEFB@JOnE%D_0giK34VNAp83j-?&7z
zUOa4<zxMrpy?%WB{oTJ5H+xOhnq{6p57d$P_V#x6g$0gXot=Rh87rV;I2n(R^`4rf
zdRjN%;=`ZM=T~Q6Uw2Mg^v91MFK*}Wzj|)2_0<)D%C#SlitGKY{`O{NOA8BVylUda
ziJ!iHy?SkJ^wzAaTCT3Hmd~x$Mr?G_-}`0Ksp<Obm0Y_tbaZ^$`D8COv2s6o`t)g8
z_|_{+zGgL-ywy5=V`K8wt=ZvIbs{hQtS)<XMKkx_p2(Y<Qj7211oe|ZV^E;HE~Xm=
zih5A`pQanV?6_RDk8#?W0_(b7DN~c`Z#ky9w?aUbzk@@=r|0MEFH0Nj`SGY56uY1Z
zY?rT#`1<PV<@xphR^Hs4{`yF#aMjPJ(?b_JwVK$wF?^Sd&i}=&;Ji`ibVX(5(p`UV
zY)n=&Fu0I%a?(*5`?@=+x3}M~%Z}Qbm8ztq)H8qnd`@m|V^!~ICi?q+EV{X?boJ)@
zU834P%l+n_ssHy`ezI+K*<{P&wBR)nhM(^gpP$Lh&bMRk=L-v+mzBQ0rlz8DB<0kU
zlT)<A&z+fXe}7Hf-dmvF$}#Eu9bfu8J3s!A*p_oMDeKyr%uVU%^Y-l7({uQtLH4yZ
zhUw?#7&f!<8i5-6m7ks%{`>b&&Bo?V$m+1OXXaRb-ZpRl;dcJnd3SfsJaNL~@$={D
zPR`E0o72vonWh_U^R3)MW?9wOSKCYbrX1g%etur`x4*AeuLqeu*Q)f>j@nyWGMA;D
zodt5<kDoth+Ejj;acZje?8L)uGo9P{c7D0LIlVvg%8H4gPT1$4-jU@>Tdym*rlc&<
z3|Qc>s<cni_*lfW)TpglQ?usp*kSSb>C>stN*&fspD`ojUd?CU;EhSHla<~19>0E_
z?d0U-bF@qJ>;y&UGo8ZfmqOl8(G2!EIZ4&`*_oNX85t`w@9o+7^X2mSXBrrp=e%Do
zvN`>{S?=v^rmkHghM+#z%}uGss$NqJ{{H@MuI@jt<lF6?#misb-Mw8idfOUM<bZ-k
zOY4-)w;RcNuj3>p|N30By3`@4`kq<NjfAKz8Hq*D&Sd`i^T)@<rDbLG_H{r1d_Euh
zYi<1gdskKj9%f-@pS>n>^DL16Te-!TMV+6j9ezf8{hlN)F`bN>+S=a34+|pSt8IP$
zef|D_M$YYgrXbhMG)gs!+?-|_x+>)3k7@~d`TEP>%d-CSF`Ss8lbrWBTZDn(T|i9C
z9MIU<+L)b}-s)vDG}PNMaWEV(W9OF(nW*F%vLZn7?~lj*FJt)_6l4w9Sr`h=`_8wE
z-T(L7?6h-pR(em@tBes5Wccv@fT#e&0o(AkQKoC7xBFFoes+~xf6oFr+o~nyo(v5o
zPS64NYmDdv?I{`2+w($ma@IIGJ3lS32w4@f@{8U{GiElP35OqExV1I=@}Bem{{DVi
zU~y$-@bc=2n{y*Kr}fJ4wco3F-1|jO_3%ui)Gism_GNx^XWd)MaKP4?fpJ3OT>JVs
zP!5}>8+~P&uQacOfdi<Rep|{TV*zS5^0hk`78b7j7QMS{?dJGKCf0X9_DoAXxk+bx
zS^MFIudc4X|E+G)lqpk|1TJ=4nRRs)Xc%?={P~9t9|n~<XJ;Be@5}aEJ^N~fdeEV>
zU+Y05j&gGAKw~-n^X+bJOg<iK9gi5}zus4=KTn+DgvSnE{RW=w%gcPN3Lmw!@yV{5
z9$#m<_w>a6{{ClYW-czjUmG5|Ij!`zUE(2@pFe)Q`1JJj%YeJ4f`Wpe7SyKH)6cfO
zeLlZF>~I^esJ#686DK^jW?XbqR8$044f=6wT)V|I&CJ3!r=9(@<Nw`Hpc47{xw)q%
zDj&DCc27xJVyqJf?YV8sy$$L<_evN#<=)<Q^~cA@ppK>c^PS<2TnztCawsqut!Zgt
ziJZ3d&d%cH<(ivxym_TeF8ulV`RmK&^H*hGU#EBb{2a^0JBy#MN<7>)%ep+zDpa$w
zx_Y(8M5Vm9$NOZ1b8^=7$yzT9kE=Xd8LEDCrg8d}ZMo69vAaS*V?dXddcTkC{rB&m
zT=t&XO3KP#Z)LCFx%K~t!~Cx<ENr&>{l<8%U2Rmixc<Jyp9_>d8Ftk29AujCaLJkE
zj_&TshQ}<=JUzDYqkF$x==XPbMMXtb?d|PbTU%FFetvdqTkh=JhU?{{_m{j30u2@3
z+?+mr`t<NwuU7>x?^9Az`f|}-erN7%tI}2fe!bQ&eRt>P<9*wuZr86)481OYc$3cB
zxV^VhX9S+A>ALc)Vb7;i+E!Ixz(WI|k%<<5&r|bkcY`8~iIod9gfPplcGu}|Cr)^P
z#-;23d~Bar|F81t>FNG6jZ%Y7PEy^PaFEIK(p2qmlZp=sqMAXVzOPouiV2_r?d``4
zH(M$!_n&`Fd;Ok8LaJUGpwZjS>ER_MTR=^SB}<mfwzJRtc)^)J^JteS7ccMCOG~}C
z7CdyC{`T|p^Wne0y$#)x5eOQYooSpNHq$8e%f0INJ6n6FT)!-__{0g1{=@IL<=$Qv
zx3@~u$|_1xQIU&-BVeME>z7B}`mfH+G&Wyb`ti}xRS_E(8Ks|F^WZ_k)|{I`yUX8~
zz5f3D{r=bc|NmWoYMSoq4I2!8{{F3PWE2#;t0d6Lsp)vK|4buSQSGphh=>_XOiZ8-
z+tro9?wixj7QLQ5VZws+`L$uJ++tJq@84ha<ix^bz0%pIr|Funm1hV#EGobt>G$o;
zP1A$}3~z62bmkV*33z<0S5#J3*Yn)}W5<uLPCD8J3iMUs>(_0|z5VLJ!RA@E)!W4M
z<JN#uT-@F&z2jSTyf>$xzjkS<cj)>!+tRnUzHU4AuDY^vW$<!8DU*x|+j4I|Gg7R3
zbfi-&U_k?D{^ixba;uQ#DJLg^dJAkk5)X`ycuY!4N(#FB{?XCyUtcc!r$$cu_5J<)
zto=SSjaHVwzxV3i-rZ_GGZvWT-r8|x-kdpWZrq3frAyF^$5QX<CbhpxKw0qgG~LVW
z@-++2&Ng42cX!vP&z~>9xw-l3=5&8hl1x24ZF^14$B!SoIy)~OY-SJLRgziy`kHU}
z`nap>Vt1QVeaR?&dn@$kr>EYRi%X3cE?oHP($a2FHC6lT<#N!tZ*lbfeYH=YK3xiG
z`wI#RT2+4oO&ctY+gp`+dYbMmqtvd=?;9AIP4e&A`~_v9tE;DPN<XjXdG5d0^?Tx=
zgmQINsHn8`>eb=vvp|z>&*zqJDR~)`duPYRT!|TmZu9H^?VP3)xhU=Itd&t)vu<rn
zZnyjYr+97L-l+Sv-{*3P>%DnnU;Zw}cZPxE)m5ROVGU3>Vt)O<NYD@fsC}s$y=_N~
z>znKA=eO}nFJofmS`oTB?9?>f*?lsWi_XqA&ptQDvg*yo<8x}a=iXixwKePInVH6`
zVs~$wWuCuovbulPzdt`$g{++P?EL)oR;91*e9UHg5Pyupfz7n?Q_AB4i!)O+gYRs+
zx+?TEXaKV0MZolLUteFB&d<*W)#RU#%h&IaIlW2e@zbZNpjn*gQXUC|1E99d$K&#|
z|Nj0it*@{D`Hb=T9dj;k(lIW15m5Z|Q)+VLw9c+Bug}Sb$0SZ~^4Xeo)n;D#*;%IB
z-^^CBv%3c!tWCeYtMqkGYNVR~Je%z`Yxe*Dw|k=wco=$h_<F0`%F4>UhaVdBN}HQa
z*NZK(E-NV5pc%eyj%E3~ImNf{?XB)zzka=D=&C8FEyLEw<?5U^VrJ(n$<&YEx2MoT
zChf<Ehk2!Qtx8Y*`FcHm`x^VFH&)u(Ylf|h$<#S*G;!iYy|>lh-+jHYKlymyv4;gS
zd}o{O+=4WcUAQ0AqO<AO{P%tTf63FE&P3<$eR^r$C%aM$nP;c<_m|xK_HOrksneT$
z&dxH8y~QtY_vX{AB@r8wT0egJWOR2|X>le$C#PZM=Vzwk`f(+<pI=!Sd~SdIzM7jN
zIuRFGSXgG1zP`5ei*?bHj?Rt_(3r8@d0qzd!vZ=C-{-cpuz*_EKR-Ra?5)4|3Ak$>
zI@>IF%8VH=3iaG3tNDsZOaESc>-i$sT7d26=jzAXU0oIGeR;WmIUnaNi^4^F_U`?9
zMA-k&+sF63-TP!FsysbA`}?%o;9oJjN<5eQ%`LiZSM??1=Z_y2_3J`bPFl2RQOUD2
zl6${ii#|0;wYxYvBxH(K*qRmd>wdkQR;&st?|7xnR-~Mq1nS}3{`TNO!p~p7?rr+F
zrK_W3g34Tr!b3}KwX{wp|DR`DeM(|+>gj2BuT_3}cJ}qhQ{gc&b2g=&o%QNt)|C|t
zca^^0wWaj^y;xRmu`8=WSC@Qv;Fw<h?#|BGxXB`>+1IXsTG;*1KYaZ7F(SO6V8iG4
z-QxP!?(MC<y4amRbXCa7rSa=xc3xTTFAtg-)ec|x<%a}=f+>pt!}qywZ*TXWq!qsI
zO(CEA*H>3ldkVkpj=Q-j_5F`Oped%E#m`NWkMV$-GMm%R1~s$sPBBhDXKh#JHqExW
z%+<|p*Vgv-cJE2YO{0{QluCYnN|m*(`m*f!y$y-YDl5a*MwQ29NG)MmByHcKuBP@1
zRFKQn{YXqbIq9h7`o%sojW+3MU$qonxwGcyrhE1OYeUz?L@FvOe){%p+Tn*2rca-K
zZm#w8S07h}tbBCsS%JkI#|Ov0f7_CI88iR~sttbpuz3CN<8k@B=Ps^`wLW_M`0GY?
zxq$t3f4Ah^G@5H&e(r6}>+9>Mm*i&LInc;__g~JfEuP0Dzyq}Ngc%a}I2wMRySX`C
zRrBiZ<fU7xXFZv%9lp-muKsWv?^NS-zuGSs-FKC|ob>O{=kp=z^V3;0`+xq*KN~#x
z((&up!xa@3^==34HeJ8{`_}(cW9q*?K9+m(<Vkbe_cM*tQzEB*K6PYo*^dv2p4Xo>
zFR`fpw&v6n&BcFze_tK5v*^{0jf<O_o1eaYyVf}UT*j9d7k|B8zd!G_O~3888KA<a
ziIp2P1$Anw_Vho0{-}5^cI)-}TCuYA=9KG3Ps<%9fvWdjNn^K%4<DYBR%Kyf@tCCM
zJL`$r`OGgbE^0+=0QJz9fQAEZY)AyntnID(3TkVK>O=%gniGB?Z<}3DYUHkhhfY!R
zxEKnQ8W?uGUs5CB_cr?L6h(LQx`chv*=9?4wo94i%;1x=Sz%N8=}wW-y2B4A7#@2p
zrFgx5#vbug({#1%?d@glY9c_5@h&mlSy}f*wZl9>ecb%lzr;XI9>Ztb)*JkZT^+V|
zQc14wBoSeCzmmG!^^a5j@=BY5{Jp)jZ*BB;aJd`0dfL7}pS-7A_e&<5)cp7m^4+%V
z&5YyUrhKnCRs9>(Lw&#ZJ7`4V<?i?Uf|vQsjQLgn?Phx3@eMlOw$<N4&d;+g{q)4M
z_VZcuS%%4NX=i6G1&zDd|NpbOrlw|!ZnRnCw56@w;;ZWZ{@VWa2IGS?i6+(u`+_&6
zczRwkzhAR>b@=*Sx$#@Grs|yjWTEmRukzK(<#U{i=GA;U8C@5_&&4(A$xp2#&(6-y
ze|?9q-8p<+jAwCueSJM>lK7a!-k;BAul%;V;^QLFJV)fTrOW5n{o0nbD;PAXqjL9~
zO!xlBKR!O5WsumUb2?~u+1oj9L8E7>k)US5ZM)Us>%Ud3nWES*FRp(|^fR-Z8yDVg
zJ1%XWx94SU>-9B}kFS+|eH9Aw+@yd1-ygWQx4QJ}tI(szj_qpgcW&p)e1C86%6ZO{
zK<ymR=*+Pm$yITCcYS+vbMgGTU!Iq?UOytScx(3cdtW3N3U+fSFub!C6cp_0?G3G|
z*#jQY%zb>U7u1YwYHq%|CG&E1m~$f&D<~tKoo()KTlHl}>VKouQzsr4yx4r+uK4GJ
znKNdrm>ysEbK5$zmX?+!nHE>Sg4zpD&&&*-U;AxlT=iSi?fhq!`_B*i{Os)3^z(8@
zj~!c8`uf`T(m&Rrt3otE^Vrs9Z!T;|JbY)Hx|-U(Zy(hC_x=A@4H{6pvNCv8{QiAX
zCK(Uzh)GInCig_&xUsKxcN?$tvyY};lFOdGEIX(9IW^Db9%#+Oo6YC%Z8;aZI&7!z
zq#yUH--G68K;HkH#;Eyxhhb0rjsnn}dD-qqWiKzO)_%WRp7-3_&##Pcrx&MDue5pC
z!6w$P2ifH_KtrCd?`%kH){EOyarrnCgLx8%SObsl*4^s0KOVM&+6KSAyj=YB^z_v}
zGmSufo@ZxfD(ma(`_3{s`S=%C`R2aaYkw9lj@enXGIn<vXfkQh;>Dr+>uTp(m-~Sx
ztyhJueN}j<CJR)wgJvKC7rTL0mekbLfEG7}u8Xm}T3ht|+*(oXuoZ!e-K1<PHZ1d<
zz09igm4<~y1UsM1g-1ubOP`&Q1hqmQCzX`VFw30<n*Irot8@i5p^}o4QhF|~i{1U@
zYIyw1>+$uzpRE)$omVc&mS5*T&t@ekyS=`)c9V|x+uPf(?<jm6^X=t@h0XWse&>FD
zb=7-y*xI0nhg!e>e!oBa;v!ejd|BF=84t_mNttH7c)R`nwP1hSrO(dJ*7lyJ1L}nA
zDu2IjQ|f8ZY}+jB@^zp(&}*vJ%NrY$L1RszdBHh*-g_Qy<Gs2iGZ-`|)ygG$>D$}e
zTT5OBJv}k;aBAW4IhMtsgfYvqco`_LR)^`%wXF`*4qFr8;LxyW@#3$4zu&k1t*)xN
zGH9t6sMi8o`t#@K=hu&pc1LYYYOVYGH5{~}z|!UX?c34C&(DR<wJHtSUsnrCVizx7
zJT*mgGN=>-H30ALtF<b6((&i--^*WiF*K-LW87Kru&MIx*6TiVtxA0g3N~!i(Z2fo
z%lkV!FJD;~dpqUaoSUH0k8f{p&lXnqt9bMKqPzUeM@PG*>+9=-cN8RkzE}PJ?&)^M
zKgxHr-uB=gZ_4`}VP5>#N@4q?O?)1WOssdd#qKIO`Q_#1<4?}cz785-I@HQN`{CjC
z*{7%LOSd0RTou0l-N!xV>zIrF{3yJ<F4lUocDUZ-w{LT0_}Ytodw=|>cwAuNv)pg4
z&9(2(=hx2)T<kUzG(Iz7f&gf!tLXW;Tq(00&@k=fSC6}TdcORa(POBlrgp5Nva<4y
zn7DZQo;`bFuAPk7TeTH5@7`;Eui*9k88b5e{l5QyR?^X~nGFpL!XhFmUek0ke|>+S
zKWWmWptbLhCCC3)4_@X29%x$|b#>35Pp6;#e!t(p^#5Gz@>$1vrDxBvES_~{rtxf}
z)KfG5|9xL?UK{7$E0ro&@qqF1`}g@WeC?;D43_)PH@myL+&nNaP)$MMfQVMei9Nqw
ztya_2Jo&h|>hJH8kB^Qnb86*MD}HuHO+(|vmYkcH{`~v>KJU4|mzUA{eZN*|#_ZU@
z$-!ap^V3sf+o~@Hot>R|>wSxgHdX$9yWMwh)mNW?e}4KpI5dF9zn-3+ZZ53mV{r21
z$-LwCg^yZZ-rl}mGjLH0Cl8MaXao&3lBOHI%>-0-?JRnFN;h7dVaL4GGqN?RKlnG)
z|F3g(b=9o@_XpIG3tJzz)^oDjO6PVyy}v?2LL#!VYZoj~0A-)&=jUGst=jtY^D}6a
z<(&0ik4ry3J_e2Gf_k-Ev#ws+Rr=bb^i>G2yxpDLv!JD+5AHvSmv@*nc`|7JskOB=
z^Yyj0TG89qsQJ%(Bj&KH^!2ip!OLH5zh75;Pp#<bsi|GPy;oZ}g}+=0_V?Un)@hu7
zZx3ksjhIfvgFE|ce}9YGkkH5{XEWo~S{+6PhKBlG^?y}L<mKgCTU+mLx_@V9F=!Fe
z^y(|uR|Gn{c8L^9>i_+EJzm?;Fc8!dzq!Bq`@3BQ51Vc;abjR#fH>~bqYn=cTh;y9
zacYX@<85nWb{6SPb`Sm+x2q&`dfig*>C+BB+_AQE83O~u0efCX72Y5*)6ZL86}`K&
zbLxy4FJhj4KQU4H)2B~CeKM9YzkdGsp`oI3WalqE1_p)?`7R8e%~Pts{r>rLXRi0o
zuL)lBmn=~Mt&*_m+rR(6ulPJr82x)0!LGu~#Kfd>^088cCbz-TFPt147nXWYw~>4P
z=xF!3x_O}KAkb=~l$0mFzZn@A6lzseRW<GG;<jdAFO&Y*v_-LDiQ}mYtEViCxDM(`
zfEr+rA3uIm{q&URT${>EPkm=@I`!tP*u1E1IWy(z|9spXW6Qw6@NQe?<z=A4{AKL1
z+D?W^Y!4qk<l^PMI!!nF&bHiJTRbmbym)T@;>C+odoE7XjSgAvC!7BJ+1c5k>UsJ;
z^RAwrKl}HWP7V2}7s}7@GIRctf1p~SOI&~6y`u~VWI+S9Aj@9cZGTuM=x}L8<>zO!
ztV&l22?@nqW4yUFdwSLPcW>W>@2x6jWoOU6v!hUtG3CyVLM|SjkiWma2HPJ0FJBfK
zDAXx+!2Y0_=iksh6@^o^LbdjGGdApQd-$ndp3&tJXkfrN{hWrPqT?jcl&`E!MZlyh
zo74SMPfl_LEzO-{Su7$f{5XcQ_DF|d)sKhmqT=GuZKmztzn_g)Y6)l@1=KPHEezb6
zef`zu^LCdfC^}EEt^W3<0<`Sfq0NC|qDj&b4q1x=he;`s(?E-BD?dN;+_kN#a+*%$
z6m@?&(DGybJs+BWeS51NA0Ka;alt{^t*7AJe~*h>v%`P>`jz$M#6-{(&lL0gxL!G1
z(3-dne>Z|gYb7}uT`ujb{e9`m`ihT_qBf;?&iZBd^U36@PbbyiFVO*|Qu+2$x~;aR
zV4?P?R!|W^%cbx%3gHR2H&lPm+nRSbs`B%*(1e5qUE=!d9GlrRH8oEzy$@O^1!|#r
zPtyS{U2W%+E&251WXUQi1_p)`7JDx5Zuot4p>uo4wwy>-R@Rm7{c>D<eAj+`ef{;<
z>-C_u$)H(C6-`A&$En)kVF3XXK*Lv`pPzpXYH<16|6Src+wA1+*~?`Z7#RM?)kyg*
z2Gt06b{0qNuiM)ts;%Z(^=jqvlBcIcYd@V-2Mx__N<F>oU^Bb6rlzNL*_!|tmll<k
zIX5?fs*Wco!Al92K0gfFd2mV8dBdd_e|~<Rv}D5ugX!O5b{3s{Sa9O{_3%k1<?mul
zGcFvEv{PB>)+?nIw4@{L?5x!IgA5D|4s0$Ao{MM9kdREivNBk`_W$4SptTX8DH(qI
zKLLBIz6LosG=SEmKR(_MYAfgco~|A4cYAxjfBPv$28M>7X2poiklkguyiz6}&TTvw
z54CcudQMAyIW;`)qICWqMNd#WO$EH<{P**7bE7*uJH7n;ruFyt*S0b<Ffd4RFg`JJ
zadTUhb#+zN#YL@6&COdYJ|^+X*+lFtdK$Dn@9v!P!=FBXF1~&J{{48+REi5|3h2Oo
zF-Dc%v@<gnE}vf)1sY|Jdzf))N$0wlor|W&*G1;u+7jsC(4g{i{r-PNxBovn+CAyX
z8<2f}qy-%=W!%|O2x_k1{;<leS1R+=6wO=vYIlEr7oq9Aab5Y76N0Sl?8`sCI_}|V
zoS%{XxxOBh9NS-BUY`By%S*l7^z-w4muLO6<WR^gd2_>%m7RU}R&{mt(-MnMPuJJB
zv58r@aN(^@sol~0eP^3#T3K23roYx*d3UZT4+BGk^`&LL(pxhh|6={HE%$cFu9BA}
zt6t1++?}vAaH5jymfGKCZ}08Bz4Y(q^LC&mLUL6v6g`7LeXop*N~$U<7QffT>;&~Y
zFD3Were&W6MWWkb(FrD1FPBaS4aA173h@LjlXY@(`f^k}KI7)5)K_<QZZ3LyO4ak#
z_4V^X(+x9bNWfY-9fHbVJ{;!P*3;9gl?Ux*nQ(3g(<Ha4+TqvA@7FFjN<9S%tg3%M
zpKr~-Z^tWX<dS^6uk_pL$?E-})yPh*Tr2bM?~^i2YLPO@Sn%}p^y2T@3=9l^UKg@H
zF`J?p?A9%&yDN47qodu~Cnu?zg@CNM6TgEA)Ec1aW*ShGNt3q^XH@IZEZ*<Ej6HC_
z@awD4+#4GlIXO8&<8G&>>+9#g|NUtpsFeJ#_5H5sg!uZup|0Ixp}kV3S5}AXhpvx{
z1@&h8WUX^7|8L8^ePu<Ua%)QqX#PyqYs!V+@AtnCOP*_03R)E0+S0PZxt-6d^3xLC
zui!?_&02AA<9=7^>sMc1Ubd?Fu>mwq(ZtIA>gDqJ`<_3K+gGzwD`drj$?E>EwqB3B
zy!-vW)or}eptW4*>^M0&SH<ky1X`4uc)0E5(&=%R9v$rtT^*(iT6R0{I%pqRN{VFJ
zolC~&Z5As!w}BS+F0H-3E*6yK{`~!`>IqtQxH;|Yms8s7?_91rH{X7JpRDyN&{V2z
zb=j)FZ2WR-mMl>LO^yi)3Qhv8;M6iR3!AL&4;lj~^?wb@kw%+%s#%|Wcz77pF9)qb
z(hgr|aXUFF>B{c%e9%Pv?(+B77P)qRIcNP|Lrv}3ylbCdE}#GE$H&K@kqwoX=k5Pb
zF+8>w)+<T>F=2_6Y1RsliAu9fv#;5%6$I6wFN|^+B6k!lT;@N29jCC`i-YX)S1v8}
zR`pCi-WTfP(vo#;%}OQLt`(7+(?Er@n%|rX|JRW_i<WLmJG-ixoqrW{KMaVQcXt=4
zXrEM~YXaJ5ka}uL;qCn~JBx1ZtNo2+-NYrgwr0O>m#+($t``fMG`_k%KK^*0?By+)
zmqD}gi{1ORG&Mapr=JhY$arD9_UZTg_2ETDo21P1*6b>Mo%Qa{PEhOgD`=Th@N&ON
zOO)OFJSG)AKlgT9J)~E(;>nXI)lupU3=9({roLcM0&Q@rdbjiWm)rUKHI<Z{`0f8}
zsQUhHt^L0r&WVYMpFVxsw6u>~Tu(z&)3dO!P|7rG$}E%2MHd&lulAm<2O9AN4fZWr
zqT)Ge{`~p3|7jM71^oi2T{lU)2GA@<`uTaG85t`;lZo&5{q~FAmJ<kC?^F25rT??R
zyViyV2G5|^*Ve|~y1gw|JGtlD`uO*6CL5`|t^&=;Sn`28Yf}>6H<dm)Az1qAil=ti
znhA!-BrR5jtXu@zN%!o`OweS<u|C<=hRMfPcum#%zGdEr4+Vceoz_1!(|EaebwtDr
zm6u;$UOu-lT+?}DUX9Jcg9kr-{OEc3rkmHSO6Ta=|9^w3T5F&AcCnzTnM~{IZ#h<>
zpU+QBWcHY@7b_w!zkaHAxR!>7M>9J=cwn*qe_iUSDV}SiwgxSB>jf=)2CWMH`uh6*
z<>fQAVs~xX_v@9ms*1{rf`^CBeLLLF@4ZXR<<Q~7qEb?;K+}b9_h(*Kb9HxL{xN5-
z>ek)dq09^n58h{8Ue<eSOW|Lpird?AwPJUbScQH$KOwO_VQuX0u=BRx=YZB#g7!5Y
zZs)(gGI;ry)B5`@ezUN!WIQ;~2wEwjb9&eEub|a7M#o+}?zb<?oNrOM2sFsIH7gWn
ztz71x&BDOIV6=;;npLIz-5t<wuU#cCl{`TVozp?<Vs_s7_3ZR?f8+Ff7AY^^fi?&&
z_nT{yc}Yc8U43=d)m6WKy<QJmUcEYgf8DuVpoN^4#m_X<)ZF$~eZBPa^K;XrBOJDW
zJ{<1q?%uuJ6jYT;#<uY)IJfhKzP`5h>sj;r8r9$4fL1S5eSNjmrt;I0Xy3=j`@{eJ
z`DvPYN#*Q(`*_fD{TCM(gJze~=i5|%$~ZgAwCZ82_?7MX@jrk40&OLdGE8!jdJby)
zF#M01w(+%DQ2pV3wZB1w$+3GX0-v6m8Vo8ocQ2`a^}k<pj@q*Zh9BuS)K+fUmUkDl
zC~#@HAw$9OAiMP+-`~1FJ#l@5M^H$}lzElUW`5BFrH=!#lM>Yzf>=MED>i`AIDzf7
zcf=WwNG$&N_&8|t<<vyw_C0&{-1%2go&Lg_3uH_HTRgjp>wLRfa4}_N71eM5Z%0#8
z)1}=iAk*s)*9tl;^O?B_w3G1Kn#h;2piRjQ)&=oA2fe(!g3it|y}X+Tq_X_QJ`M%b
ztSc9uot=#=lzhDJY8$V#Ny-U<xmKlGdryOEfDh((#Tl1mTwHW(clr8X-`}s_u)zSd
zoiY2`8ol~Wsi&viO9jQyj@I8vLRFuiolT7ltC|kd_<--OIAhAECnsOVf)q6Dey~rX
zi51ihp0DT}$2ilfbd}1=+TY(c>74%gd2Pvy3lHO_fu;FUPcR6Hi>sgBbY)j*_Rn9x
zwDk1eP5T`&%@x!%W-!{pBk2HIO7HpU>(|nslAy}`udXxOgg-w&-~W;h^5A!MHE_Ta
z2yp2BWi{t}ZPzDXUhWTS{(^kzH{VV-x#x7*=}lig9+zJpTnaMt(xZJG3ZRjjZZX|2
z$K~ravahY-;^HcLog5iv6$0Ar{h;iQIO7t~me;A;)1RH2yIM%qYe~5!Nb|pCzmxb*
zyt}&_wAA4cI|Bnl!TjC&OdbypwU++-^Ann2WOwN^otT}!Z{^11<63rhc6+@+;aI@_
zuG>;UJA7S8M#c(IhwjFWh^J>~hsVXm>DB6-zBI!y`O-?zAQ(etVLZ!(@AvEP|NQRS
zEmrvkvR&I~-*2Ucn7vh|d%ZzUDG<LSUJM?E_+xxWJlrAZ&F$^}-qUn0{`>n|)$`})
z=izsEm5PdrPCYjjWV=WAZ?%Rm@9st?AL}WU?t5Bb@#RkO`OG67f-gfrLEo@tmwsCU
zXkX7_x89)5X=g$EALm*YyQQC-bMe>L*H;(0a)UOKg60O_8-e;%|F7Sxb*~J)|5LvH
zY)25wlE(~&O|hLx&ez2@2)V?XH%;j6$kpxMs48T-!|YmH=Oee|P9g6N8`5GI&C@s*
zy77V3QK1}-7o3|kniSfUit6ikoXb~l=F<3Xy}19lW%0Qh`}x0R?-|coZ1eoy`@f%9
zrH)EYc)f179=lvc!n+-h`>bADzugj?xBKljowz*~*JFx({VbnO;qv8RU|7@RR>+oe
ztVi-@{{Fvq#r6CDe*3J}%D`}e!=#Jh<&~Ae^QzzNJb$PD-OlHiHYOhzQfFdd2y<V|
zF`<!}{n@YA>(9H2$4&v&h-H5d^V^>}Djq-Q_4@sG?Q&Hatm-Tb3}J4ID|k=*d_I4^
zX7I8nXN=FExtTtHu3qde70-Khzu)RaZ_}y${q1b!^SR*<H5niOnYoIAL5>S_E&xM=
z{v{2jC7@XSaFD(D``z;EmGTqn{{C88|No!mg9hfH(9qC_nv4*2PlDNHO9J?;UM%qH
zXJlYlv&`+IlmG+6gVzfk=P|y#x3_xL>eZh=oz_o(yY;%?_jh;qe-K)|YSk*xK08%#
zIP|eeD%}73t~@w2bn2^DudMnR85)kQb!0nnV`H-YcS8n-3l^2U91IKrv)lv~f|vQ6
z+)?=W)tbK#`Rh-}Rlk`yx9pZ?cub*ds~R%{LzwGgjtQ6j?QOT;ud9Ch_~qs0&mT1N
zpZoIi@?@3e^QyAe?frJktCyXDVa*aZL51_S-($*d=Wf4s-284y@U^JywKl)sY@TUT
zS;S}gWWt|U;rmxTXklPDa4JKD(Ww64pDp?K_kH`g_xruswcl>4%UYFqOnS5VyxmN*
z+^D6;K(+@h=9n;R)~r2WE_r)Sirk#`)W7~$@VC3=_iz1e<rcqoZ<9C!L&grNC%F~>
zuQ{^IPSIY!$EaIe|J;+4lR>R0nVJs=xBdpXs_M&&z=NEO3=LB+YA`)%;?_H{`~AMz
zv-9^^=HA+J^2WyG%R7sotDJ0N<u<DO^W)EF`~StQ%UKv0_IWJkm@rK@`q{PU{J&@R
z?*H>tKl9=u*OS4F3=FGR1+tuYzH;5Vb5*a`hQBmqU}%_nL4o<np3mpJLqkK)S-oBp
z5+441&*yW$4?PbF4NZM=Vxp=KD6H18Nh&;_Q|z~D)heT;BOPltpR=-jKBsu!2TLXv
z1_r5pY?2D6r|bW}bDV*};qjBR#taM%mrS}CX4=(Osrk(KF!Q&tn$L+IN#j$}91IK*
zy1bu+*6jcKSpL5Sx0uceMs}GEhyKR@`!qfC@-kmgR+*#@3QO0;7R;c%Un%ozzx_P(
zckj1b+WmIFGCGApURfN-a$-;A=S!<XSD(L=e{)mnz3TUS5m|)S?1n<W?YA50@9clQ
zSp4$Z+GvEf35w1}d3Sd7NE$CYr(0?N@5keq!lR-)|9-puxmo_tf+k@m1_tfLfqOXq
z_86Z#vBYz7(WjH@=~q?+-ptv2c9P2aJ)gYp)qcPG<>h7d^tq*Buwb`fzO*It@}2ts
ze}8^mUqAQW-s<#ob1Y{Xr~6fXe>Yb;Z-=6=x}VSGWxm?BY77h?z$JwWC^7`yWhN^3
zSuDD=n1O*|^~#GZ9+Pw;H>sSr`RsGA^7-61yI!w*d10aRQg=}PcU-)KMceaOkL2W8
zvu1&$ezw>DXt(+Q=d<S|%i?ECK&!AHwn=N*C^9g7aFudxxKr`C*Yf9+$(Ps1@4r)U
zm{+rFQQ3OucD|d%=WX|LTQM-0F!d@q=<R;9Nv7n2<IlJG^|P7zEEe4R_w9E6eEa`D
z&x_9BVPJ?5?NxGE<~w`Z``Y)_^LO4~7i;~#g^z)u*I_Zo1hd>*Dd*-`&fjTY`s&J>
z{r`Tc`mr!Dtm$(TRQUV*`}wWc<7R)qU%&s}z4`zDJdY{ATWa~?0JFA%Bm=_+Eh*QA
zn1X|>KYu*#zq~p9{GT`J_Mo&__j&gHC++rs63cERwuAQ0rO&S|TY4Onz(F?Z#qN3n
z%2~g@zMg(Nf4{A3;FD*w^Ut+#3LB-Im|*ks$z;(={|SMM-Ing!Wfh&jw{-7b(3;-A
zzrKRzazVr9JhE0_iuIM585;7N+&;UtfYy0^y&gXwRD!<W_d9Qze*8SpGTB|bjCf6p
zpPh-Rc-WeGbJJ6<?`8LEzi-LCZ6+RD5@`41L32#i%cYeckBWc3670X!bF$m#WOjyz
z^&!pwr+<k5|Lc0q>*)KZ{Of;R{_{lL-g8pPn;RPs1*<NfTNd^2-TQxfr>E(zE@xjC
zxY#ZA;v(0XMyXz)qdHV>79N+~eBSPN%9|S-Eq}dOtZit-zz`DCyq{$?Xh+wjC7#z}
z%kO&i2fd!?E_X7v{O;7#`ul5If0y4a4QJz#2#}Wd+;lyzI`y)z`B~ZWJAv0`Ffd$r
zVDf{(bJF|z|Gy>e>uTnfJFK7b^z`)S?)JX|`z)W$$k}=|?CZDtb-&;4`Fzg$W@5YS
ztG8d@-L*b%_d7>2nTf%n`N{+RgI<#kHnTr(5%%-Azpu9VjN$Q=!@TA`pP!w5ExY}0
z+3mF-BiHTw^=i-8YtcU+%m3eT=x^laG*!>6tgKgWuU@&5^6t*gpDz~oZ~AsCd;LXA
zMur87St5*=miy1YbzZ*q%f+hSu7OKdt<nPRYLc3p3{pM4{^#^Lwcl=LUSD^Yt3Pr}
zM&P6+nU|M+{Wi-qJFL2gfsx_C>=l75CwR^8OjxyQl~@17&F8GN-`?JS{=>t=_Md0?
zpFg7$xoOG0dykHGzm{QUV7PD6tK`teD;@Sy&?xuT7EprR`KU|VsQB3#mHBfjBllDk
z+WmU5c+bygvor7RDt)^&e12Tl*ZQ-wOts(M+8W)tS$?|e&cFHB+Wx#}XJAN`FwcuQ
z)+-&Jp8N05PtjS=UN3fJKk?{jH>lc7|Mlf%=KX!OY&;Sh4qXqMlKAY*OwBGO`(GFP
ziyn2VU%UPO;$n9{tCvgu{CRHgf4ooj^Owv1*R7weTt3fhecax#NB-8jC++KgE@Whg
z$aQYxIXOYGw4U+L8RPRQzu#_Of59c5pV!O*TuN*@tp_S@-`-sh+H3j$NB{p5_p0B=
z{<5*H{&wbl-S^#9uR*1im|n~b!{lR2-23G`?RI8g_cgyeWu|fZwR>IP53<XjS-pPW
ztjm7ZYp?7CMNQ@g#-e{epQj(|k+gg|C3w^GdDUsRwq#oV|MR){&Bo);zFv>lububp
z?d|6WnEBUi|JNP=M=3Nk6x2e<x_-{)^O+ubd%N0SUru_e&z-_=_d{W^d;dAJ+c}pN
z^wgOd8oWT}|Nr|v{l$falD1VPZ=;@{n+qy~6+mUI+3lRoTz=u#@9%Ti7ri~N^2fvW
z;#Vt|KkG3*cf#uRn#qjJY$;z}Tzpr@%5cCus+o7f_Ip*@%5FU?HgCI~w|l8Z*O_^?
zyAQIQaOSt&a_Fn>wi`;{@0Q1(yv)GhaQIrnea>3Y67cu4Kd$tb*N@(|Mo5{FfgwJq
z*_L^digDVR6UOIlf`9+Ge0$#BZ@02R71Q3wrz_M;7#I@1n!aF=v@A+->ywGh|Jx$$
zx8n1THRVq13=I3`ut_VJ->XPo>dwHxurG<%%z@AT&j+u51_p+jqf&3WFEBDRte0nG
zVqlo!2I`|N6;xngaL8l<HEyIvg$H$*Y??H$?$=8mc{@;!@;N<C_w(EQdTUT?JFfce
z)~e(C{(L(9^7{IC(B`IZZ*PMVHK_7uUB<@H(6-cbDSL*F-o77?Z2tXtENM}Yu<c&e
z>p$oJ|M6e9=hLa2?RU#St<G(CicYJXJTudH^Y3@Nm*?Kzw)4fJ?oS8V<)2*g)<4^=
zzi-C!c~x4zvwlouX83USY5ZaBms>9Tod&gsS&l4lZ2mO&eT_P(V#?d~a+%7>6@iO4
zWn5h3Gt)>lc6XWYq&GVr_uWjNUu#tM=7vn|my4n^<rx^Hn5HMJT{5@)-p+eByL-*=
zSw!b<4UMaMx%Af7-S2j3Gqdrm=<QdznZ17RrkBfRKkKu8r;!`Sz>v|wa$>qk^|v=A
zFD@v0e)@Jh|M}eVdnfs<-vqqhac^(+^PB1Ob*pU{7%~D_PE0R2t-C$t*_oM=HWdYv
zQm(Cu^qe$n)~u@I*AP{L*IYpc1}P!NO|#<aem(_-^X_-MvfKD%XQ?0x{l5HbYa-_+
zGcY`u?a{EN?dIn6^#6aq``_M{Tl{=(`Lb23v^+2Esr;;Ra+0d|E8FyskB*l1F)}pd
zE0rINa^)7&@z`JYcT>W_CZAa*ny=UIuX}rM`SiHjD$Q&EO|!49*^+%-FMIvoZ(e^i
z@fY#V4QrZIy{DxdXkY}j{pD&t9L(8vGp+R7?vj_2`ed!2y<9$j-S<17$l6==HR`1O
z%PlJZe>`PpV@TM_D`}+S+;-(J>j&fWHk03OzrW8(xYl+DOSY<R{63pzHr`WDPEIzi
z`}5<=ySvq`$7}!pzJDH6XP=p4xw-5utdMqWW}9lN$G~9Xajs#_l3;&ZQ&1DTkzH<v
zW%08o*P`>+ZvNl@|HnzmZsYSd#*dHp`_H$lExP2X{<N9j?!=3Wi#MM&yPa}lL!#&m
z83qO^KE_RxK;2DHtN&07=S+h{r@epunU~-xc(s52;%8v^@k>ZS`{lxRxu}=P+ixUw
z-zmRen_VEqz>qO#4;u>ugGMiC6va!~0n{bn5MW?fU;^qgj0!Uh;V`*2VX61@G|-^T
zt*zOh=EmIedzQlLervu&FfarJGNtfZ{`qjY_~+B<&o><AI}I8#TH-nR%lrHG{r3MV
zmbx=DG<0PKy=2_iH?Qi|$~$$x-|l>~>2%R4&E+bdeAaI^e0g)zc=`OgDmC9(ArCnj
z85S7LVT@!x)-OLFw4i%Na^K2W&{-LMR<Bmrd^{pN)3P{?bvZLb!zn?9>;qFYgFyw=
zveeVlO0QLae;2!(pMl}N3sVa34Abl|P(yU>^($AFXmsuQ`|Y;q3@!!+E&ql!jNM|o
zUYD2ozFupdeQiydJOjhN&OIEpyczfQfEMcn<=1|Ebad-)?N9#?KiOz%D&=r;nY!n@
zz2EPFy85E?SRb68ZTENb|8+lGKfMxG$ae7cJ<FxP8Pr6bw8VS5o_5W>9!cYW-#4%R
z|DE~4>%=D~CQg-Oe4uTbe5?o5i<>I9I8aC-+hKj&-cRxWzs5)IC`g<uzR3RPlgTSr
ztpc|Ne}LSpzx_^;x7nS7!{=?hnHU_N>O^hP0JT=?e!mTW87Q@O)gp~9FaD3Epw39@
z^SR~cUR+!ZYBj0-d@}c9^|v=OL50)C<1tB~M$=?tg=~lS_x2hWJUB3?@R;OG+v+m2
zdlip+WUbBe_x()E+w<|5S3f%ggXm+P6H=Q>US8^vu`~j?;Mv*P)7NglXC)p};P~xc
z^?R>=HU<V!NG7k4hvf1lj1jv^GTnM4Ca#O!z09>+>}KWjxyFT$j(GL6GBCtjGG1bk
zsr&J8=bulfi*F>hr=FQ%n0aZ5CupD7aryc^mliWJ90)&^?V$DMa`d;jvYV-(Cg>y;
z?`b-o=jYjihCh5}nXEh{%*1dY{J7)<E@}I^npq~9lal)^mzAx}yu8fv)r!U7@q=e)
zW{S??V_?`9#kAzmGM|}~e9iA}IcL30eg2;5Czk(aVE9m~=%AHzZB69Ll`B_nj|&c-
zyhsC7qlG7EF)&0Jvv{=XMs3mXoo%*u`@J=hn{U-JF#Omhpdfl}PvvKD-{RM!qutrx
z85thDc4`QT@b&dgJ3A{h|L^6kda=8v*a|T)tTAL-a;WO-tEu7fwWi$SdTTcSdotM{
zRA23_`nu{u3IoH3tHKJRWhWHdQ*Lfb-TCcScJ}pYda<)MCLd3GKDXTO`np(c3t0w+
znys@!sv7clfrb|z9B8zB++%E1{q0T8o{z^Qt;=%m)qFk+>hVvN<7Z&l7j%zvFC-TF
zWM)R^?Nt5z?Cj}l(fM<^^>!#!zu#L9&Wh`&fQ#tIrWCYAKbUTQ*e3n#gmV9yFB0*c
z_y0UI2Mui)pSSruwf1cBIZO4cSO0xy577L_&2yn+&&OlZmfvn9Z@%azy|nW4v&j6t
zUpL*(+YL$spzhbCC977gT4c;8ZKks}YU{64`|gGR{TmV*8u}-l<%93FC6|~PHWa<v
z`FtLal!?aKS*E8iEOZ8q9_YmGGMTLAd+O!#`SVr=FMk%k|5xbJ<6rn|80@AqFlMl%
zotZIF(Yb9&_4jw6&gl%lxmH)-$=3h*2=39GxBVVc;KUGNsdtbmg9X%9tNHP;9W<B|
zt8Qm^b+LQ@oQg-C+BNU?RDS*h8oUAxEPz^jU#~^$g9bW2pSO>He*-k62kLX}dcAIT
z+1p#G$7RdU<ZizkwtIiU!$WgwKAi*&iGmLGIXBlj{eJEDvr{yK!(RTbe7$yi(IHOt
zl+S0){kz3<FD-O#2YD}l-_K`U{h$rFpf1-k=XO3&Xchf<*#7+Q_xtP1@6>+3JKgr%
z4Q1WvZ9cEBtu;<K(BL!I>MQs2$_I_?o1pDT(4iJ)_iH}SDZLiC`im{&hN3x)j2SF-
z|9{_K?%pqVGjsXeu%A2g_k48w_u2lxF*7@#&-ZtCjjO-Ci77s7`ttH}|7Cu2XMMdM
zZ|_-jxAgkcC6oP5EpTiGkBohMbhPr{&*#RKpPul@*;sfMfx3q4cE3B-sXlK8sNeN|
z@Ao)0-&s?p$5m;9nnN#V{`<ZEzqP;J&y+SE$w_&4ccmWdk=*%e)#^*z^Y8o2wK6?B
z%XGEvHjOS&D=_!=wzE5*&zl_{SE(8vTN-+=>h)TiFBhD*9=}`j`K+W_P6TKa$Xjox
zO8wv0@x@=ShNpkOTYi4?dAr%XW;YUAH-ijhmnm=nWxvno?d^SMo1NW~dHK_i$NlR+
zotJ8u8o+R2fo{Zx1uIsq(&DrG@nEV|-C<sHoj!|49k-5qPuE*per9(5zDSeoYio8q
zXyVSg{_o%W|NDNNE8q8dXZ&v8*=9#O)#v@#d7MYuY)!`1Rac+OZLawEs49E1y1(A4
zRjaz9^L8#R%YAcWqibkr=*8XT?~`tBO5OT;dR$dzU~Fux&kTcw8eNMbb`&ID+?IR$
z(T>M`t3R9GuY5jt5y<R~$K|4Tmz}eGE^_ti)vf*d`~Q4ev}@O{8P?_Ro}c465Pn!S
zf`Ru=6D#+ml&$Y|wtl;neZ6j9&CgF~=31NUMr}EfHaj=$`8Uw2+>@X&R-3<HF3<nD
z_12cm$tNePr(atWx!Uyf@>yoNQNMp~N<D2<{_f6~7Z;UtZ*7Tus9XO3<@|q|*=x6k
zy?y++-`)<y0#$k{C;xuGKmX_F=jk6F9ISl5_j{K8s#U8tUG}rSY8kv~(R)qLy6?O1
zFV*PM|60rV;V27-1M~G=rLR>^vdh<Oh&r#|rL_OYQGIYVoq2f~Xmr!6^wkvcxC+J3
z&(E*7%{$T|n0a$kDrn%;*Zi)@;dcJ@<&u|Fr^ieZkFPPj|LfXzkX=vj6rVr)<>lq@
z%4J8p#h<^~eEuApbWT9}GSGDFOwFH9)<sF@?<t(Swe)(dxv8n?Ov7ZiNh!CsWNLOP
z)&BnGd%RCJ+a6>wyIh6B`#qn}rJpN$v9LYudTjYw!{aiOK^gSK1jU`7&siVkI3T6u
zz#z2)bY2qZe1(rk#lv6!T<q3+Ds%bVX?C^0KyB``pit=)R!=*vyZy|kr>C>~Z`XW2
z`}vgi`X}FR=bwMK`~5snmumOhZPDj!zu&o)%*H1(!~9-_^8au7|EH~s-JSO3#l@Rh
ztJi)44Sh~cld`L+(A)Fj5GY%f->XcQt9a1pGsnX4?X9h=jW3^y+E-J#YSpTu*K4<@
zJv!1^Y6p@Bl?U^G-bp(<>nUhx@JOeyamkAddp;cEw)}FzdGq^yzq<q)Ob>KlV3cZP
zWM+G^>-D<RPfkt_|JnND|G)SD=h=S0V|+cXI(P2Z@AvENWv$EBYz9?xJTevr%<Oz;
zHl>~}`f!jPG#n19dp4c3dadFKI?Cp8pS9j`+47iYXJ$^$-G0{$6f||e-){FZ=9M<n
znI2Q*`S#W%RqwEh^wo<rKHbV*|8)2Lzj<$OwaeGdh}@i(3hKs9%Gq+!O|wf$*1GHr
zs5f${_)k12qVDgjHLm*d0yGBu^XB=wX`oK`*8Oq}+Ru169Fz-wy<EQBwOb4{P8wce
zdGYo7{h-sT)_m9rO0IkFKe=D|d@iVsICtyL;^)^Y?=110oU`$$m}ZxfeC?OOY5MVT
zzpJMBm%g~52-<!Ea^%b3k=bjvzMA_|!Z^*x?%$8cqH^_bw_Z;J<=g)CyI!rT`SbDk
z%lrH5C#CHF`_23HwY8tu|NphVwD0$oIhMtC#nV7XZA9Nro1GgZa#X86o}tDt-GM=>
zQO>sN$@cw!bJ_Ui=ICy_vFM!jLi=wwl0n0<eKwy?h}xAOXkY|aMo%WXr%jJ7JISrT
zXF_!TUQ_AZErD|%gJzOI1MD|Tug8L0Ky$53K~p@SLVwNfce`fV*VpYTeLc;Y&r;=f
z&Su}JZ8<YRiQC`)Z%N(1&-1VUjPjnYcXmbK;#X%ct&80)Q~&3qq(Op1-oBsDw&dNl
ziq6{!It8=S=EsBPmlqZu=Gxy5YU!`v`wdjufBJM<|N6Z+kQ+VicKW=1wR-)z3k#h$
z-z~eH`r*Mr(EcV+;e4m~yzR~0?RV{rFPyV}zsKg&3FVvh|NnxAOE#yUKX)}eelD-s
z4Tarrx7`;1cb8#9msaU-U52o`TQV<qCHLEIdvS5G`^7bpn-`V7zIIe^_nV-Y%BNG0
zPEz&mTBOnS?(S}Jce%=xx5d+RB7;DK>YBUC-bR6Ze^jpeO`y*_o1HIiZ_nTOd|vf6
zx$?WE*F|f8ebKZkdlO-je{au?l*ztb^Z$KWew1ClCP3t<`u5MVhDk0P-)_4t_ImC1
zxQnYoS0~-h-LAWC=d)Q>peD$g73<c;Jv^>9J10oQHE_@Wf4`3gy32-^yt=Xybgt6H
z{q_GJT@8<4YySJj#^ml-uU<X6=q|6@XZ>!+qT1izTwh;X+r7}aUF`F-v#Y;<2908N
zgXU0NZ*R-(7SoLqnVqxAv+&78cQMd>&s#&#EZfFwQQ24R>Rv2t?`r0^+wtPs+Guca
zL~qYK%3uHEaMG<Uneorob2Xd~2o;G-WM^QQayXmX9qj-7=U1GF-|)fF3N(%H>FVdQ
I&MBb@08siao&W#<

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score-3.png
new file mode 100644
index 0000000000000000000000000000000000000000..7129a16a35918c60634896635c930857306e21b9
GIT binary patch
literal 24232
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_eCLL~J6zmL^sb1zJqz`&`x@UgPg
zs!PtCmmI4EJ2{jT7A*SFut?#O2&<050)E#iTD}w1JOWoTuF)`^a)C3nnZ;ti{g1Tz
zHM<)X3^;$)#fIyhI5TtR`8Rn9@6K2j>m>IGGB7YO+&D1tA}fgT<GVrwh~B`<$il$D
z(2&ca0OIC2GcYnRFeFGbae%nD1sp)sjWz}*1_p)$W-J0A?lwizv_6<8CM>Mn{`lUH
z<!}D{{QT<b>gkIXEqe0!v9i9t{@)LW`6Xko=|*o(>y_bakE{Rtb$40MjvW@3GJLWY
z1rOHADu<?|Ea4K>D!JZYygKiT)$!xUwav`J7A{;^WFey!ysSs1I)3|?Q)|}iH}n+e
z|5?xbU|oTQj9&b`d-u3FIRks8OifZxP3h6okJULnDK%2>^qU<H|E%L`KDzGx|L=Fz
zgGTl%`|IoXe!G=@YO?xy-tC^e5q#~=lhytGHs4*~*gWU0Rq3me=+bxh_y6yE^SrF0
zD*m#zrlw~zJAc^IQ&UByq_pDW<DZ_I>V0)p=;aNGhfDtaDBPZ$8a6Mk{qytltLy&$
zy0s~_`_{JH)s4*TtD?8(Wp3MlJMWu!L(d9MhiA{`USwrB5iu<_^TB~eqhlJXs;;}s
z-(TBP`FTs)S*fGPkH5ZKe*f$Xq5p<r`f+O>9qrCO*u?tsp4!((XK&w*maqLX@zJA4
zcWy}}n`B;6`T66=i%(Bamv4AfeSVQ^_m>;V{V)Ig{HztUq+^z8_OcBd4CdNahedD8
zx!AzSY?5=s;O)J=(TRzPlCkf2ZNFS_zO^yAz3Azwr<-anFY~o3eALp$E4^%bT-C|c
zyB{7NzPdi%-qpqBM%eSSOvhG*uFhG_dSGuO1Cs+Y8&AQ{y1&1^u8P{a>R6xbYP;HB
zD-sSiNrv3KpWJiug^-O^&5sSM!q@-XzAg90hK0}0&tETVUA7|S<Rrb<)AV9jF|+fn
zh}@hu%ewqs?)90G@%v{-Zcgi+Wty!fFE8&q&n8mVs-z(M^Xv8dSB0;S+g0%~i7lie
z`_JFMp=%-xw?FOd?A)Z|UHSQ0Y4mjK^1P?#=HBl6bV*lBOKY(=!-SI;Sh*W!cZq7R
za_JN@I;LS~cQ1K%>gj1K>;C@Y;^m#XfB*h25zR&WYJb0ab8~ZEZvCH+?pt$jhXn=(
ze)|4BJR)MoscE{apU<oI3ttygxNUdf|F2)lR#!dhR1evl=KFl^+$(vWadB}`yUW(9
zXsW8ZzTfwI9Z1K62MMffY+71cUcR%<uAZ8zefh7ItZh|@ZPk~6kdP^V{`?UU6I=G|
z?Ck8<*VgL2&APJU;hRO9s=j8W`<iB7^ZCBfs{EZ!a*vwdoEO{j9v$iA;^7JT{q61L
zJO55i)t0g@TcZ`WW`&Gpk%oamK<cR}7un@&9tc^m@k%XmYUMh)Nym4d&CR9V_pYoA
zzWeR>-|zQVJ2ta%ad8DDBrHfuO4?HQw`#iC-{0S-AAWd2eSXcOjoa2nZ$I_0U`65M
zV=rqh??@zH*_s_5yR!)Fq2nJEJypG?T=?|#bbeL)gF8Emt6s0&9<n-2_v!ih_kaE~
z%e>?wZI<(4$Jt$_udl2KRDODXe*C|G|4z*|U#}Im=Eb*}wsn7Y#8o_GovIP&6uCJq
zG$3Gt*A$I~>hmg`I5|1bmDT?}v%IXgySsa`;jy2ei~d#@FP^{f>}>PZrLV7@nyx?p
z&)>hIa&qh3<tkk^r=Ks&G_U-WvNhwPQ!BT4*fgEUDa!7Ap(}%2=hyvO>Am|()wOl8
z+Q~hq)1Ur2Ulx_@pclJq$-~3#uN&Fr0umAy6g@eyFzf27omY$hZnP?WwdC*b@2h=h
zn{n~-hB`PjoSLq`{%E&&b&Wqmir*bZ#sX(MJG;EoprCbZX46zrap9FV3yFxBQTO8^
zd#{XTkoPp5i@(0Uo@$yM=6U_lac6$pCwmU`bah?YS^RuU_4mA9X>&j4HlDy~I*}@O
zXYPB{Z})4(=SP-mYHo&xhUZErPMkPtNuR8B*0CN*t<Y6dtjgZ3XlP)NwX2D^U-P+l
znr`&6sI6IdzgTc`a;}Qmxv5XicGWD?>{YS5%d9FsEJ!;)Z|%`;@$7eZcCL!wzi&zQ
z!WC}4Qc@NL3zU?V=iXfr^xCuk(b4YJQCqWSndQ!M>yda^6W=Fmz09>+Y^8HM->G@F
zyN~DU$M0Ly#w(rm^V3tUz(p;$w&&~D*Votn{d)b?&CScra&JA6`5e61jTcmcEOze?
zD=FDB%PjZR9siP&EvM_u^Y5(@RCZetwAAa>rKR0`G8PLgi=VA1dwc8FzS`YgV!B$M
zuWoH!eXr)TukQ?lgUJRzJ{;yxjht32bNK$ow6jug@9Yfz`RS?m^&6u4`s=0F-QSqp
z9#{EPG<1DjEGV!80w#dWY~>cuIyp%-YD>n%S65a(&e>n`GRQRNMu26}lYqy^dPM~V
z7cN<%^7h6?=f}r-FRxy|Ps`KG&o6AL*VHZf_w9}zJGQFu@iC)g8UO$NjoMMLFlt-Q
z%xBM)($CESh1RzG`|DV_#a4JuRy+4y<?Hz^b!}>Xb5^{&yZiL*+tIz!=3y5Xxt9L<
zQJ8yklk4MSy}_ra>CVmFUH*RE@Av!TudWUczqhBd^wky3+MiFSzq+unx$NDYm5$A9
zJFggLUQ&^@C^&F)YH-otoa$BTs;aJ~udZCYwKY3*Q;MhU=QGB?9{1auq@R=7ns+zq
ze*OQw_bMLqZhtEzBowmHiB(iDCZgZ|-;PO>CYcmJ^D)i66%t?j_3Hh7hdB<Uu^rey
zEj9Ak!-5^U@tf0nKYsdT^zYxlXD==;)_WbcHY!!;v{C4)5X0x^<`zeqr=Ai?j+|Ec
z@8|Qmr+<BUnJmNC{_|0{{++(!XJ;g*zkmGbQP1Ir2EV_*FVEgx^))Lwa+;(`#)Q+K
zX3UV-UhJ`Yt>Ljbw$;}xWcY#?I<amqJti@E%9JOCKjW{i3_fll!)Kgx!(jT;*VosZ
z-@A8DEqq<fv+wuo%Olexr>zWJ?6&LMe66p4zP-7byv%oYn$Bq><Fqpc>*URHW)xb;
zJlp+#pK*Nc*QpzIPTPDuBCPkj;_cS!J*kn)%HQ96_Uh{Db5Fz9$C>)u{ajLLA(Qs-
zQ0uv;oSd9;-zRH*{aR`vllJP$O1;;|`sMR=P8-=)eJO~%w;|E_ae>8|^Y;JWZ2I%(
z=V!I(Z8^&l4mRm+z58PGgOd*qHut7RE^}_@dzn?g_rwVgVNubio8H{nS^VtE%HX_Q
zVPRq4ii#aO-|zb!GtE5v+8GNOzR!>Q?RVuC|E=5i;}Lgq<g}NUm-k2So-#$G_~9Ye
z=if7H`_%pC<;d{0&ooNyx@~8(H*f!+Pu(9sel%26R7^YGCo6aUWmWa}cV8o-*G6sa
zS-*b0WzCNbr>*?$o3DTV@{3Q_>Pp14R4KEZjCC<PAH~!?I>IR|DVZt5*B-gQZf|kr
ztMp3`3uYW_X5alL`{t(9W1Dm?FK}!&$!3_a6I9K8?mMQve$S$7YokF;q)A`C-Ok_r
zRlWZE-SX7PX=*+*7UbOAv~x}MpO42yWo6%93w7RgZT{c&MNdu?vY%I~)j2)M&~4wo
zeR9{?Sy}Iv$ai*jMr}-L<r2|YARb?HG4<|Ye)~1sa&K#CYQF62Ild#VTTE9(MC8dO
z-q(-&?ZZw^QVrdh<l28*BKga|-|w~a@9n92KDRukPC7So+P%8pxt^bX%)9F|RV(z)
zyNr@oS3K|CyLW3#=H%0#^6u_BDY5wD<Kw$^{(rgbU;6M6Yw62NPq)3RleH{znU<;<
zzptjgTK@X!X}YtUnw#%VYj1B~?b<E&>+ALS(iayLpMSb?%eMBM?c3wQ*7^DQtZZ!e
z{BFwi%36nouZy|3di}mtLaJUn*7Ec7m;bzXc?NHOe*V`N7oDf;$M0L3*OmG6{{MgK
z?S~hZ->W?Slrw5)(bG!}jLa!L7v1G+pKOag*u?tv(`o(PI;(@1_i>46Joq+~c|zqy
zR_=yq`O?#yzI;3`zdHGNUtX?x&J6{5dHJ)mOiw@F2dZ&|)%{+4d3hOB>%P9W)->&m
zglXm_7u~2W0dH?@4c%GvlxMcMLiDzrtSc)fis?ozdGR8{H2+>q=<2Ym&iuAZ8X6i(
z-X`DPmOE+5s?gO{Z%zeoPV@DhZRUG>TkhrLe%rF+S>Hc@2C<g$+x>8;{{HUjzS`eg
z($CBF%Gp|-%>|V|OO~jJYKQqWv-6il=l29UI5d>Kxlwrf>lEGSYq>MGZ{J?@{M_2h
z%l&ujtPfv5Z_%PfUrwse&p6T{c#iu6r?A?I<Hz0o?S4M-?KdxY;IMtdrz67tD;ye`
zw#QUg)%<?DUCKDE$1LZ@g2%`EUte14eXev`s-~ggMaha=+w<2~etx#nsg*11?yjv_
zS5_=MHC20euj$ITy}Oi@luT-V6dXN%9Mn7pRcVVBFMfZk#!T8gZ;Hy*wbACWZ~5hH
zRy;i1o_%#ys8zv(hDnnr&wU+q{&!i-jsnN(Z*Kzk)%=`u_shEJR&^?0pTDWPc=4iK
zbJo8<KQGJ7W>)yD*uYT0$KvnjckS2L*H>2ttCzmL70SvjRwC)F=(*f)?xm^P;dvGk
zcQ)z7?kI3{bad2;-?wMq&u7xSl147`>;LUs<~v(0xu;89f8F)CYTw*jTXxP~{_NtK
z$jv56M>uM~-Aq4M_xj(ze_0n7wYv4mR9-&5c^Ti9?_Wd~y`DbbviR9KF};=E)Ag#}
z@BRMeqPu+N{e88czJK>GKCrdq?cYgDVt1F_{a_1fmF4f8HpjBKD(2nWw{JfcFuuH%
zz9{?px>wiN&rdryXJwzPwU(V--0f|-!JE_0=2^*imFQ~x|N3aNTd$N>z=DQP&(3Nm
zpUI7vSw71=e_qtKoRtj?44`VR;Nc-I9-b+OA6~c~U%z&1_Vrii?f;i-tN(J*eQU-=
zrM-W@-JWHVIZ4fDhC*@=sI{7SxNT+G+gp>?u|DXPHh;DCdfeqht=wB{eilh4Ptgw7
zD}8@2cKx1DU3>Pve^Y;U<^026Y-W|;-&YF?w{!DsSFZ|P{c57STwtG!<&&pRm$tO9
z_|7ys`gG6#zS}>4?!1`(?$y=R+e5_}ehWA-Sg^9NtVlaM>(`@h{g7oolBI8M1n&R)
zZMJv$L>bGX6B3IjtNSmj-p_CQWrCPq%!(;fM2;Rmp8fLDQc!SS*;iZL+S+Pa|9Ivv
z=>-4c$U7&yEA8#=_x^gdy6WrI@ToIqtk{};J?qnxlc3hlxA*tgn`U3TQ}FxBx@7l$
zxvx9^otUVs_x9ZqP^Hap|7U~UzaPn<MvZRtwmpg4H(rsFtNjvqcBb+3zU#%>R;90&
zfD*vt<Ne{s`(#b){#2wJc=k)jCWNgFa=o;5d5>gr-tR;<W;UJ)^XJch^!V{zxz_3*
z9}=GnUtJfzKF;>)>Tv&)Cr{qmQMeeC!#5@$Ulq96?bf#3*_(d{S5)i(wJ<t`)w7QG
z$wqC>nrips0rTE}zg`<1vtX~huennEZD(hvoc!zRz1#2CMKAZC|LupwV@cz*I|W8(
zzMMKSU!GwmbFu@&4$aV2Q+AcST;$x&mw9DHpx$e_x*v&i?P`DJm)`vN@#95M$=%4z
zo^@u1q0zA&KBuNvDb{{?;J7{4JpbODcipG1<OSCM)!m~mC@7e9d)r!2lT*pH>&5K+
zeTA>>zJxFJo<2>b_VZbDIsLBiwNa|4H-#+onOSnRdNs&WVRb)Hzjdy4`M$*4LaJUG
z>F4I$+K}kHD~|u=wYdG!6Sc$jKuvXN^SmqN_iL9+8mDP!X`Qls_M$9geO&C(Zt?32
zo!d<^FD;SYW_s*S$)RJm)!$z1`~9wXcY^t`jJvx^&F`2gC^#4z8cJCfE&28R{d(`|
zdYLCDsmk4+rV|-tTlEFhF;VsW{QUg>hx`8bwaeE<OuDq@VO90FHxpG%v#*`Wz5D9w
zYTJK2%j)8Mte*FuoMpP2OI&Zwks~h8Kdzf@Rk(1uULC_fNe%@Do2sW%!=Jo<y?Uau
z`>r!@Ki(-me^O$xUhFQ5`ryjF_WynyzWF?6m)XjN%RTQ0)&HLPizCi+Rlvfg<2&{0
z{(L+hJ!_(^ii*o5n{%xNpPqRB{c_nq@AUck_UpOD^-kQrZGD#U)k-BLB@t=q)h#V7
z+Z(nOK6dk+Zx?&;;K8ad7u_$%eqNh#d08*0i_FR`cIV5+#c^?QpcXivyxp34w$;mi
z#>L2MG&eP+L{2+?{e9U|KDYe4ySCQ-|66YR^-6Gg%KmAonSXwKJoni*JK*nm`~Pch
z+=!61tNGFPySu07%DULycj~<V-^yNJ$#ehpwY8rmZv6XY`Tyzk_>w<AKAPOV+w1t^
z?yl0w)2B~o<ClB0@!RX&YnR&Dm4AJ8RWBEmD*EmJ-FW;j|I6oT)BNUIy?k|bb=AkC
z;;~MDPEJ-gt@w}-Ic=%>yb7heznKg27jla+^dCBW`0JO;{@G_{7)lu?wY2fcYQ4P0
za1qp5h~HnQ6}4r>tLy96uUMfGyQARX&Dxb&S6BV|bXs54Gk@RDWnpWhmaYn24eCTk
zZce)j@{X$aGz}G%BTt#OcurOWX<z0)e_b;>|Eq=Va+eyJ*|#JdWCAsijnmKhgugx7
zEgtUT(vo&&hGKqxzNk(_z_e7$=e!!RyS8{u)mq9fSK;vU^YiPVep<#wC0Xk-pS{)J
z{jR${XqT^Bp%uDnMgIMLQTu9ko|>xtd=C5J)2F>BtNHHI7N2}+>-`P)Pc5lsX5+cQ
zZ~te($H&KCckAy9I6KP})C+lhyg&Q;y4YXeZs(hpya;&C^SZIIvFgRb_APmLt!%&D
zNY)BlGh@%5Jy(`^3g4~&|95+6^-`~?Umi5`zxw@t|Md0i-^=bju_kQotY>FuFXxlB
zTH)NzCuLKyAt@<IL`rJa=JfMfr>E(HN|jBir^_z0^VxjAQ~c`M+S#8SS?%oXK=y7;
zKF(*FcPApg=3}e(@3_5HnudmfQ?<jxQc{-G)Ygj1%dZbz9i|D&h}SZYc8P-G5!8MI
zH5U>S6Rk>KOc2wFP|(-c-@bg+Qq{fX(o3?-BSFJEd3SfMEO~k9-2BbK%l$GxKRbJB
zqH_D^lVNvvmtSAvIr+*WS8h;tfB5j>ub0c`Z^^l7v^DFh7pSp+yMArdR+H*)IkvxE
zECzK}nV6VDHY6OBwrhCUDjs)XlBzc-{%n6dXa>pt`|+6n>^$3Ob-y_my!H1k0Y%ww
z8OA%wIkhkJ8+?v#(s}&!>C|Vxl8^VzJaE8avTn3l@t+@s(@XEy{a%}Sch}a=jt+ym
zx;ix-oikJPVsGvFaEM#Y&hFmLyrW&B%Yv8tJ+uG+v;X8w<K>_NK{IesOXatl>1P|6
z+3)mKzPO-xd6}=Yu#iyFrj(OOS|KYEo}HhcAGSU&SB9^>^6%H{vA2#NIZ|QMt{c5=
z#;vW{v*%bAOX=(DgZdn^Ota6-G)_PB;9#@w+NiBQ`)Ypn?BBnilb_$*H0z3iar(JE
zORvBG@bK`m>hJH=jEpY*`1y0@g$n_f*F+j`PCYHw|5lc-eP!h4XS%Y=;4V|~<!zwO
zQK5wl$lY?+{b!q<y|OO$c1uf(guT7}Wc_%%;H_Dq#x*|*ieFq%oW8C4+Z)4PX>+rk
zMNf<N)vf&Ox8!TwlCGW}lU6QKug&KSlaEQ9-sJQ8+S<!G!s6oTd-m+PWXpfz>!eAO
z&PeC)Nz@8oms9lgRBBCat*?hi$I6(Un<TADR#+B3a@qB2u2E{2X6&vlpitxF<uyG!
z+uYp#@0ZDv76l7Ff1Z-{?aj?)vAfHbMQlt0^|{pC`(&1dtPDy!(7^cY$;rv*%B;)Y
z7}WmyV)*p*bo0c-#AEmG-*<6!of)<^YUi2iM4wyhKc9WZ==r+z_J+jf%!`X!PtLX8
z{_*o?V?jZ|WpR6}o_#)VU!J+W?r&A_>M&hl8JV0->F4uSg{{pJ(~FsrW*fdP#!!F%
zpG}%EJ2rg$`qh-L{c!5O*<0f7+yDP_nMc~}%oMHAQz<7W9Zfku?{3KIu(OZPCptMD
z;<dk>`PZ63p?Fiz&er(F3=9RcA3b^mZV*2`H8syal9}PpXF&%BhHaJ=9~N|pYA*xT
zk;moh&%7vNV32GuRA6Y>o%id@%U^G|-v@QnV|SIDe7vNCp`o7rT>}HdyIoSIS)l6d
z)O`E>^XmUqetmP(c(FGVLy7=&yxo8wecW9kxVyhUJSS(3le6>F0t-;J+oN~VjG3Je
z)VRB~HT&}3v;Y47ep+C0Wo7X4-4Qq6f`(3^Bk4VQs+U0>Q5nAWWqxyKU0lj=Al8|I
zaYE)?`}(-AudiR9rW<`_TW&P3j75OI{ogHbOL?SBJowt3`P!We3kx&1Mei<KyE%5D
zQ)}Mu9n(@zZqnKQl&{^{H2d0~r*Bm>EiEG#yY&WreRUNy3T|(2-`d{3y72L_S;pz-
za<9*cGhg+wY)RYf*ZY~6nL%TBudc3MoqvDdt$nq>Wv%04V&=&3we!hX6deCnX&xue
zaKfj8N58=*`!dSdv*zN{6Z`x7pPiYxxcq)?_|47f<<a(uhghIv-I4)!O$7x7!6VmC
zPCVT9?)m)su*Gh@QzlGUaN>jqs2oyMRJ1C1&;S}gckLF_G&2j^oObrpj=yt1U2x{l
zJl-dJYO412SZlYGlqJSGal1-9LB-9rwb5U{-OkT`a$;iE^>uTP^~<k6aNxjgt8;g`
zf*3ydyMaPcRZZ>GCY`5eXPYnfo|qb$1s&S<xBnY*cUNg~Wc{-<l4s{yhxbaEUb?fh
z*m#B4$=kQ1k9LU`N7uc%VR-b|u~#=XCRhD@I(=?=Y0zBDVz;-qwqCxp)cfkL(rn$>
zU0>E+eewSN`;Et}HI0md*6;hZ>h>r3x*v|9p&+~8Z;a>K)kbxT>+f6p_=AEc!;aFD
zgG>`%F6m3|01u+xJo|Kg?c;tq+f{P5RT^4aUUhYKT-@BjpP!xGTKYO{du`nP?R76N
zEnOA3xUJ~f8BKlt^(EIsx97#Wy12Yp+;3MDZC?5+<nPbt^Fbqe$8+<qZU3Kkch$Q4
z?WvJbd#kp3n=iidQ6#gMvGV8B>7`#@1cC<5LH$fl`AJiZ)BVoQG<I+061~(Vs%=vH
zt7Q7ui4!Mkg{+tWZmN90Qw-|AY)Uz~=+aVe(45AkCEDTZGEPiT1l5e7YGH|oVC{#4
z?0L@%7aJ-p_n&|5wEq4zK})?f4GaP-i=Ty*lx+F+_4V>6Po7BcvwQjR05gBa(JoOg
zUf!#hmU?e3c<40!>*wd^!`t~}L-te@rk<S@3L19aS@iVFz3TTnTYIm3zbvu%#0ii7
zyYIK<-CcEWZ?(3SRg|KlA{Pfoz{aGbUk-8Wzc@3~*nCat$45s&ozzWfXIDLVkgzr9
zX3*~P_hs4Jv#;y@{l5Qy=+942Ma9I_>g(%W-P~4XUtj0t<MU<5d(GfwD~g_;0tLE*
zLj!0SWmoCztZQo`!DCBb&lsOyQSk5(Xp&)F%uY~CAou2`r)^)E9inzHGbvmK)k|!A
zGArKR-VO?&tV>He7cE|_dh%zwlT(vc__{TV-TPOiot*_rpL}vQD{gL1&;I!6=q&4U
zQ2+7$rufsFKvk`7?5>cnudj!1&%2wq^8LQ))2D+vH3ys7!SfExkJSC<tZ-`O0`>kf
z^XhlUmU>OsTMOzdJUGy(7u%zvsivlO_N`vro)w^kJuNl!Km%juw$qbTyMKLoxmeD&
zD&tTKC#cil{Z>;`v#YoF>dVW^uWrc<j@?z_d3m{ic(<4?s0{#$%v*aZH@~{NTHW5>
z9#pUIt@;`i5iuibTTbQW&)yy$0X{xGAfIeXJ-w>>`@3CLUsr*~FfJ~3Umd+YPb*-7
z!>+j1(ww}!q1V^Nemy3g|KhU0edyz3y>nmx`ubX3Utiz$&xgZZ9UT{LZcg8tbye%@
zySve#>8>f7!E<ui`D9j9et!0{UA`{h{k^?Yjnn-+i~ecG{*E~_-yS@Eo0GF<UEJPP
zKYmo~{d~?kYFEihv%EVmuJN9cSbX08e~kAuoxsg$XG0dd@#fy&7YiCD2wNYw_Wi!!
zey-hOrQ7CPm#+g2vPqd{f#Uts*RS9fYrowuk8UyDOVf0tW8Nu!dw)Ova65naLZ{X%
zyGpa4o|x$D-Y0YM+1c5qpyA)FtEX<3y}q_~Rq*n@b8{>ggXTNV&NjaeYF^j>s{u`M
zfKv6{U8VWIZ5co4Co?Eao@G<H2{a~pYKmsw>sMD+f<|>E&2na({`B?rb?N;4{K?wk
zdY^y4-@p6KX>gM%b((&Bop&jZjKu}enC8dh^0WW`{w}SrumAbWW&hnWmpAEvMskaP
zeo9S_oYvXZ<@J51L^5bB)~#1cu77vh*;%u<`A(fMAwlP~k-yEymg1YcN?-S+Mykc{
zt1-8|9=p3t^7JN9gJ);e*Hy)pDJe@p4HwVJYR@h$_0Idv$H!+Tsuf}Y8k1gkdw2PI
zP$ivuYD%Hyu~%1D_ohasU0C3#cUn7aO@<6#yQE=KOLXjVzqv;B|9(FAeeHj@JZioF
zs;S!HQl~fhq@*l4{b_IY_o|%x8<X8ZZLej%vty<mKYCQM{cz&9_xIly?q+7^+p(u_
z<-hOy|4W|UbY^z`zL%S9z81eKusAb4zV79wcX!M0n@&red24I-ZXJ8jfNb@otfO6`
z$4;L<UGo0k-PB4CkB*b`?f37j__*k{*>b<RMgRVOdU|?U!NWsp3JM3-L~lR0^zKAu
zcOMs*7EXTt?-e-=I|O$nFz$G+qNWBi2~^mDrktmjf`%MGlfg@tsPrcr&N9ngb>oI$
z*~4hqT7Vn-Yu_-ja;@;2Yc<QRcGqU_3r9MIpT2#&R()Q@qx|>Z^Q?-Vbf{?7|NCQ}
zJNp(WJgrJ!O}YK+;$rvH$B!TXSvyrLR76yCsd4(b7iZ1yhiuEaIp_7FMT<gq7NvrE
zqvo>O8%tk@<=)ufxYT=k*!_LAcdxOtv!A|x{rj@7%R!wbm6u04h4oG^UbM(&+xx4l
zr}r2}ZOgf-E301r?~mO3nxjXLYF2-Hllg9a*xIO7;p^v}-Xv#R1uDrv0~maAHZNl4
zndiq%|E?1H_SV*~^Z)-j{@AdlrpD%)sEo{;KffOx?cQ4cKJM$Ao57*0LJBjdtNY7+
zeS16Hy<ZMAOKLlhnPEvQ1Ji?fn{#iQc?Mlw6>8h}a7E<iWj%)H%C2k2@B5Q0zu$Yh
zo>lp~IcaBREd2cZeD<|9;M%w7`MKKLzt5d1dUj^zi4z{%pFVu}aMF{)zG)pD9I^Xq
zBHjDt_CDMP8m9GJ6}<f1Tk%<ZD;r;|7k}vK>G|t@{r}bM@-+cBH>DQ$z19d{H%I5R
zSFw+4lwSP4HQ(>o$A_*C3-$2m*t2)<(*g_7AXoA8b4z#b2hAhu7F)=iQ}}TG{I@Nc
zmqC5|4I2!8{`g_>`rpUn@^||#?yId<RZ#&AX$1fO_jhZ~O{2Ni<>%g3yuQAEddb@C
zI}03}@9Z<ny`_@e0~((7UeC#3z{YaG_W7Hen<q_qc6npa^lGUmv(^3Q-L|U(wQj7-
z^J>3bbl+9-a?-yakNZv7=clu+d|vZ6|Lo;Sw~k%E9<HdUsQ3C(mC5?;-?#qvTDSlA
z$Lpn<nwsV|?`9gOr$kQseD28IvL7E3J+B{YUSd`KZOy5v+RH)HpiZq^uWoEy+|=9*
zN_58Q=Q6&$xcKYydHejA7HgxnUi$O%bLftOL{JyI^3#)v^XJc30gX6izSCc8F#A{B
zvVS}tmx|BZE;md*reR}q=jVc!h6V=DOG`W_-#KR4D`y+k$}N6viRWa{I4ZBaUCh0E
z_ds1e(EI>snrqUW@&kD$_C2YQy9ypURmE{J6eu+??0CK;j$`@P=&x7w-0Sxy><cb7
zTT-@N%C2SysJf{6`RQ(n!n(r`Cm0@kETecm-sc|g)6>(Z&!0aZG-`6c?zivJZgKz3
zZ@WabRXjzt!?u*xb<eRZJ|$6nx?JMly3o~Op1aJ{Jy&%Kt6SCI{(t@8FKM%!3okA%
z&VMQK@#Du?_VxQ-U0JzUfB&CLPfsQvljxN&R63j6FKhj*u<}*9-Pg^vkB)He{eG_+
zw3_70-SYdI-qUpS-rE0uW4ygKV%pNUy;Up2*T-2^ep&(=V?H~>(0Oy(*-QHS|16qc
z|1Z+c&hFGi<#wIZmkzaZUtQqX9Bow&D?g^_#YRo~a@PF*i&s}y=e>puzS)#<?h3Xl
zfA{9iq|Z+#```PLWUHa!G3ohkf!XHy`<5nK%kahSEK<Gu_V3@nSJ%Z_OD2CgCY`_J
z=DSBnyFpVjDUs9WRlQmnz3OEdsKT67aynV(Ums}9;!q3cCLQm$x3`z;-QS$vuX8$R
zbK2QE+amW?Z9QJQw2bk~m%1f(M%x1yyXE!U-rG_5m{(qVPuf|j?Wy7G<F1<DuTg&a
z|3A;0ySu}~*T;qC<gAJQVNvp8!nb#KXFoGk(F|V~lXYv$N>H|)WtyFJex5C8gg_;>
z+P}vzYIoUN-tUYI+q*!SUszCZ;f)&+swyfO;PFheygMsiUS6(kVG+@9_v=OM>V*Ld
zoxt<AXJ;>;XIp)5OYP30r%wtjzT8ZozcZ#nO;z>f(&=%#mhR?NR8)NV%CB^<`MnC~
zoyE_urO&Tj79L-F^=;G7FE1}=-P^PC+nbw<Z`_F3ntA!zv~TshPfgKW>@`&@^Y^#6
zpd@zt*ODbmqTl^{a`OBA`t>(%M9j4+_2QK>2{_!wJNLDcvT|xqA-6PWPUgeI!?yd}
zSKhs1V|&iBbkCXi@8y4f6xx11V{E>r`0A?AyvZv2zTd09wK=^%>)M)^H4zT44F5?T
z(~sG)KreRJj=P1sOI}Xe_xqjo_Qy+?EV0-fvy^S7n(r)7+4}22Gyj&9lS2Kac{esV
zitESidAO6|K>S5kZii*lu3esN_veE%sBuvH``gt|Pfv%gi?NioC~zo#c4p%A>C@GG
zXFVybYqgF%-uvv&kJUDnpH|fV{stN!U$l7f)dh~sbFIt$;_H4cT@}9mUEzV6sI052
zmd-Rz2ThlQmRQx))P$^!G7ViDWqLOE)3dXyMYY2~3q_=iQaYCT&R({w^tG0SMFcya
z%!NlsyGx&)kpxW$KTatrn_-qa3pDvNJ-#jy)L=?VN=oUucy6xs*Q??2FR#bf`+m1k
zSQ)!=Nw)ZPb^m!GH8p!4J${@TInAo%#e%}e$9Cp?{_(i~_1f+Cg5KZT3u@De>PCg^
zE_-`vk!$yrJ(b00XBZxSYq2%!>ZR!Xy-Ux{wO(EM`Pr#yy0bx*0H|WB`S}Udcz<?o
z?&?!hwO4yh)v_vkGh>=g<RT$eFAMhf)t6QTDuc$OK;y5WOFRT~Z*TMUo~{?VE@o$p
zTKSo|*4uAw$y_|sI9<!iDhf1h4{BT{9pz$WVbQR%0?*cOt}QCsv?^rfA|=<Z6*)II
zX+>;U0BSLdYKOhJ9$z0iS<QD&?3X=z_nMZ!i@CZsIvkXImU>MUk(FJm6S?WdgM-bW
zrt!D8x0frs_no+Z-#+#|H-kr#+yriMy&0gydSz|&bryDZ>C>Ao)%gAIleIph+;5Y#
zDeY`lQ**O#JD=>CPGNPMZGT@Z?)N!4Nws(X{{5O!TUJ!Q-~0XDvrLBn9_F*HALATv
znihTUdT)$9|B16p&M^nA2vFQ!I$bZ;sP^|a)1RN8o7dIVEz7vLDD6mx;ImIpPak_&
zFk_Z!c9qS$_~(q4b$@nb-ru+P<Ye{!kKewT@wFeeT<+%N)C6kr1uyrLd;R-yzx|mN
zfs1{vt_lT>C4mNVDnCCn?Ugb$Dt>mx^Yb1hWo6rWlMRm@IdVioUthof^`l3RdZtgG
ze%eNIb@+Oak$e9AdY$)n@}x;;>i_?a4_@TLDJ&q6(A3oA^YYTtvki>QK1D@Ev%dZ<
zy??zv_2i_ZE$!{IUtL{28?<<>=KtUCnR)w@kMmt#;we1Yx;$^PX?9rfx){sP`~Uxa
z-?sksionHZYQNu2|MT~6@8O39Gnt=#d3kx6d%v8Tmewg27M2-Gu3a<2<0_A;sH<1k
z_^$syM=x&AjgVC#CsWSOy2`@JI&+$C^sLz3Wjkf<EiG^E`E*Jf6kedFp@>GnfiG`v
zURF_6-MQCXQ&aQV+U@s@zP`S0&dM!j!pO)78k-DR6LHaJhQYxlOP1_-`~OI%@Ur;*
zb)XS5H3NeSDW|8M710hmvnA)|rJ8Ry)1RH1s%>5y&+wpXn&I}3+6U_!{{H^1t)=C~
z$}JYM(5ZDx)z>WFStg#KQ3CJXM~=9-y1Q#@Xn5?c{(kM}=jUIqMdz<fIM@W5dH?LG
zKgp!-PetkLYreYC+d}4Am4e2nedk(*D!cU*%-+nvz`*ds{O5J{2~(zsfQB0q6BE1o
z`@?^JdTLtvDP=purM=bVAmyOxyU&IbwZqqi<m9XYb%M^#wf5d+)?r-#@6W1`m6ODD
zA|Bk?=iJU0wIQLAPtIn>v&A}$3=9qRyXyZcl*r4=x3;$4-E#NN&f=>Z5}l`~U%9?2
z)EhKZ@>2ir*X!}16_<B+mzUq%=iV>3tKebN?FCK@3=9wMKZ%!jxCBbrR&{@NfJW)J
zt#fMS(rb1P{vWq3CvtjO>gj1y4?o<ov~d||39CIXql#>hy6I<=*G2dCR8E~T<;k3<
z-%m_b{`Bcn5Gcdn`uXDrXnw)+w;lrn!-sqq2G8~@>EC|;{JC?jckP#itl3YVr2PE#
ztLjew{{8=X)#ouWFfjakIfGqAmWhc;<>X_Ph?T+yOSf@ya9mjGJ>BNr^G8R!&y~%a
zV^bM)dYW!<O3D-7+l&kh3dt(!>e`Bmj{P>DI->i<m+*rewmWWV+0kA1CMvs&$jIo(
z%gd+V)(&6y;>pR$dh(~PM5g7Ne7v$L^)zT<=iP^|7#SD}mV?#<yuH2s{0pOZo-7ke
zIQaR)Gcs0e%enbzTi)emzFmENWp(nhvbxDV+j4F$+Ex16YI^>?J(1z-<4QAshl7@$
zt*c$&Jx!<bxgP_A(TP4;>woXXwVPF4Q%fuv3fOD3Gv|EX#k;+aVUi!HA9`hF@YESI
zUKsJ8I5*e&>T-Yi^xd;evq6Rb<72(WoC=_IQ3(kPq)aj<JTna19XnMgGAQ-bl%3w`
zObn6>_o@7gW&YrA*!S+!_C^M!m(Bck7iJo#Pnj`8!xOY1i%-r*!xOYXcvI@>W&i&E
z&OSHCva7SR@LY>s(Gw5Qv_MyPck#Q^_wUCyv-4jwK5w%)Y;DxbiSBZswNzhkrq9oO
zabe-9na1gEbCehu7$#^6IH-VD=&|$3Oi+oOwzTr|v&?&YDkrTwn=nr|+U)7+>HgW*
z)?EC2-hO@E-(M%MUk~S%HoJ0SqVn9w_CcU*v2WkLs^4$7e?2N5uTlT+kCbiIma1=W
zGJo#`t&^U~$>?%vU+wQpSJ$PSoD{Vw#dFs!yPr=cSA9CEp1)iNltAU%E2*)D8kBa)
zTz);OmDUT~2Qq{wL~p46p0_pgvfIzk&%+ZE7I;n5S$VLTUE9*~=F+?C_y1c3YMVuG
z%i-eWy!g1^e%)ks|FnRs3=9ko&mPXb$a+VcPu6P5r>CbuRfKKzw~&H@4cFGkufHBw
z?Hj#4@9Lh)&nljsot>bi-AzqRCN)0_K$8dgd%sSr`}I;i_tqBAd-wJ{0o4=VA7xq0
zUFJ7;Rq^w4nSXzM1uY|0Sy}x2+^(XhU3Nd82!mExSQb6GFhS9I%A7fC-rnA>t)%2M
zDP&(w<<VouKr1$0-Pu{}HjfRIa~Hm7n(Fub{QT)Et*xy)b<R&#@0a0guc@t7^(=mV
zE)>-Ee&{?2)J{!0+Ld{2P2@LG9tH-66epGmC0(7J6Aj(wT9sY`wb(&xBA%U@`Rl`B
z{;Rvo^I2I~UVM0X7+zo0wsMJX$-TXeXN3#{1H%a$kiDQnnT=m=%|hq)tcQnMC#js?
z^ySlO{nuZw$4^%Qtx20S#XLW5``gdY&aPgvL}lrcB`1y_Kfdn}s7CW?VJPBOQdSP#
zTUEL><D%2Sg9oGbRBUYHkz537cUOOZcW!y&&!0bc=DvRaULUkRRSmSC;z4{j!z4fB
zv@;ii{cV@t-Cb_|zQ82+RtRVX8))tmwC+wp!C}&u=kx1#<<@_E<my?p4O9sI>*Y{*
zX_9xxVyb5Fv9;Bp;ZW1mQzE&yx1If2vgXRVi0jrxPdb{Kn=hAsf4uYgyx=|=%b01P
z!TQ|W+xGSvgHrF>ng8nJuUk(MZ2hxXz~R!%8yl0k`1s1A=S`ZVl-vUv0QvBtptY?n
z>-03;ytih#x0bwk@uEaF`^t(yt>9&6a<B6+Ff`o0`0f9`b>CMmIc~IIT0P&qrm22M
zyF@Q<%e@U+13mre{Mv6b_w3p8<p49k$D~>2`RhQlF@}a0Z>BvxHTBlc;^k3Wvr@Cq
zGB7YWq#c%>Py(8e-dgf92-K}PZ}Yjw$;s)<QStbUo10QWGZLSkoK*IFb$|bU(A3b3
z84{qe-sk7%Uq3NX`Rjvbel0ycy<~q-?R+BP4x{IC&;q61@An1oEP4tGEZgsQif?Vt
zpWntOyJ}<dajV<VsvvNplIxZA@%Erf15_1!dV0F@mnf)?|GI;@h#NFY;@T~CcT4Qa
zNvc~@P6|nDfvk9^dxsGe7u4N21B#i^LZ6mflLmVTzwgm|@P0?t*Hxf3mPd}bJUuzt
zT~s@4%J%QJm0BRj?>}W*&i(|{#r*i_Xz1!NT~IDC&At{gQOR{n?eDVazWt@I!$8YG
zKoeU$JRvKCmVy@N?!FqaJuf!(^fX^ZMa8N=ACH%Qdg2-VikX3d!Dw@}UPH<Id$C_%
zUA_GB^77Ij9}+=D9%$Sy*x$DFdjH;<pGBdoLOj*|=Uo9Ut_97@g623EI=9cs6%rN>
z-I^8p_U`WR!|nXnyY=_2INB|~+HbDau9}~pV%LNAp`AEml)HcF^7(a9&h31m1qB;U
zf0}Dup7rF!#82P9Pgi+*YO43yS*Djy>+i1#e{EU+Zx3ikgj=sv=C?ODGq*__rF2Z1
zJb7#F?=n{x7mrDx?HV_3M1b}QftH}HE(PVtnUTx(G8g^$kSMAd<dS@>=i*fD@HwZG
zlaj71_m^KAz1<JA%W9Ep_m^|l?={rao~^s~`Q`HYuYP=dEM=6^q4Kid{@(<{V{2g@
zlJp-FmPBpMS{bo1X_jgBwb->_Z@e+eWr*BSun@EaiBnkZ#lPS0uU}f~t?HS4yf4(n
zr6ue7y0uA1yH-YSP6LgisQJyQ2!9>9vuNq2^z)!KOQ0P|r)HV1265lr-TnH!{r@Q?
zx+b#rbumv*O)b8?&#9H`*0$W+NY+hU;x1R|V*lqu^RBYDtIFQqTItx#1{%-+4Z}Qn
zk^<Ucbn@iMS+>>NoSdECXX)-PdmH5C)iui`b5YgTSDEkb>;$z=zdmf2UlqLEZ_*NF
z_dbtFpPrq4y{#6~AzCtJ%9Pzv>YzG!X6h>jCD7)ks&6;bzuwN@uc@Tu#BcXw0chs$
ze*OR0#Kgo;pFV9`+Q%)fr(tOsSy)&oWtuewG^+ucw9CG}ZkAzk8)$g#$&(b%N%QB=
zzx{1xa#+x9P{;DW+f2KLm|Z2F>F4K#W@M}Y^%_BQY0=wqK&7xr;Uky+#|H1(K;y?j
zv(0j2rftu@?srULZT$XwH`TU!U;C;Tx97zsc~CR^zQ$!c*4HN{D!;n2a&p+32*u<c
z<ARXYVZNZ&{h67@SGVWK_sUv_B_Hbv+?sXuU6w6qb<)%6@l&kJ^QJ#dOiY}#<nnTV
z>)oIZ*ss?=S=iZ6A3y$l+3~7(JD-F07EMphy}d2;_O{&rc|RE#7<Qyy{{Q}URlAMp
z5#1A87?*(Nd_6oaoSLdFDk8E((Yb9!<>zO&_Sf$R&2V2^8x2|(0UAqub#?V}HeRVa
zSC{)t)r}4VE$IPem@OHB&p#b*=l9+v=5pxpVNofmRl3pJcI58QysYNx?!NqW1Zbhf
zOrz9yJ`X`nt=YH!-M{|TZt9l^wkw~`Pt4q%ur_vg*m=9(YgUD?Uk6&%rtH>pVP)|0
zFQ@hQTij-0Vad3#z!9`aLg)0Z)nB({UG+L9QTylPalO;(eseVB<>f&eZ6<-n({!V@
zcyxAlo-@-9Uv~x6$6FP;dUupEC^_6ry=ARX`T5z^HeTr~TeHJGFSYSXr$kQs^yK8@
zYug+enPyoQKZ{+fZe<k(YI`m5oIGXHq(!f;u73S`{r+pu=hv_M_xHE;YrJ*#yLHz<
zOJGvUW|}qdNSpcO-r91}{C>^iIhMs)udl6rb$9pnPft%zPc-e7w~u4x7P|tPN~r%=
z16tY#+Lm;Fp6%S+Pft%TH_g8G;^*`E;rr|Uf>v|3@k)crmzPriLG|>X$&ts_9ryUl
z3))b(DfM*8$49QAD*_y+YK5M9G3ni^wb9#G<=ouV)!(1a!_iRRa;5(Ik_yj1yV)Mh
ze{f4eVBPh9`+Ta|T_!DBwCKy1%l_#llAr|rZi0_Bhb*XAw&y2iTkW%X916!IKpqj*
z3JF*jv-8Q*r%%5<eLHvMd<{@r)?sFi+=LL&h_3bfJ&Rww$N()I<l^Ew^<ompx<9<%
zT^K;idq8ce$jxb~C7K}Nyu-E^S+y-KBe!N>Klj22By?w4wNk^CRiWOq&GV6kdStD`
zKr<Z|7CM){y0WrIj~(Rr`z8J?6F@sn-{0FSWsuNt=+Ge%35gYNZf@RP^Yp|-<;AC2
z7#J7|gufqA`10)R?9-dp^yq;qjsv;7)R|5^IXT&Q7f1m^`2pLDtlS_I?VXqHVKyp#
z72+Ax&L<0+efmAS^3TWP@6#ed&dUp4#-mVJShz{YJNMR>iR;&|fAr{4-mc!%NbrVZ
zg~_L<Fs9t!S35~1K0bc>dr$=4xowonpc%2@0q=g0n+x)j1gt<t-6m?sveDDz3R}zC
zUt2&0_ulI7ufDvzY;<hLn(aE?^7VfT*+M~PD%ig3WY`2+yqIy(Y5)I!yFsP&f&~iO
z&8DTMI;4VZ%R6c-=m07UZ7M%yyt}hgD|A(e+jLM^Jjmareyrimy}i+UtG+7LfE0h<
zQLWS<q8k<R{QUg$Nb$1g<1uN_c1|H7A){R)AeGx6&XZu?RP@xVwXJPc%E?Jxy}hCT
z{``FU^y$+}$2RHoN*b#*Yk`7zg4}l(hRXkczt63Y-;y!$IHa+t@Oig7(}}CA!x8ad
z$Ock=!2YmpA-f8AlSs-*p||(<$4?5`kl+YfqaGL-C>aAv#SLF}q%(QUx2rWtJ0r3E
z9cV8!s9bUDlbPu_6%_Oy>#G-WU%Q>Ze{JAmH&E3UwZCpJXsH5duJG@#uUVii5xr7N
z0~focmdphCC-2d`9n40Bk6b|Qkj-glf7QReTR9>0>)ihj%gr^q8ya*r9pQNACDOZS
z@eGD_%@W7E6w*WlOJmr+yEymo>GepbiKt6WcX=daYLq6Ew1(qYU}0n7!PEk0NADB|
z7D1lw6F>hZzKOT$<>Go?_V{ziU9ETD=iIKzi@y5l)#f`<uXn%SSN(3!=W{x-yG*Xf
z*Vmr2c-+I~%fY~~rjM<VCFR+fnU)V4nC*&xGqTG(aOPrUSiqPez<6n)b315N?fjj8
zcRruz{rlTn?>QU{3_pydTpD;}EDX%=mIUkV{c@@1$HR8h*Yb5g67_b!*>tDmvajWz
z4~Mla6d4#cSV<i*RS=IY2?Q;_oB!vDy5;{rpD*t$ey(!T`u(2CqS|3g^6&54`QZ?^
zwv8$S!v|L>m+Q5;`V0(mMxb*68cg!<+3?%_NO-sR`@N|7%ta3x*_YM-|7ZE*L340u
zXy`*tMurCcOA1U+g4<<^Joqf1Oz`SwWMHWA<b5P1z`&63H$cC?q2%>7-K$rxf|hA*
zKFB7$Bzk*Zd_`AiXlN*CxBVnF76yiWJyntl_y4{t4-O5T`s&rIsPl{r4Q*@V*iPKo
zm~8*ul7ZoZ!A?*b((rBOn6NT<`LjOjcPqAjJ8u8a@cz$p<(q!L+x`62>h<d`q%bfX
zn3W;GSoG~?`tx<W->s^&OFq^kQ}truOv7ZiNl(rgpFhKEekWk%M+Sz5t5+15o`3@P
z{k^@}^X?a&)&)%^&#V1*(`TNIWxH%yMBT^k_>cl828M)ElMYZ@E79y`%H&zk>wg@U
z-*mt3_tMziWuBA%e!H!IdAa}kD-{e32ePsR7%#01UcTqcC2!A3H#et0f4O}AxqrXk
z$8WCv_~@wV_BX5y46oK#RZ8F6UwT5Z{mHECbtf+^^){~j^aQktzFn>=<LtNR^Q!gk
z?k->dpoM|qz$=i4J{}c+ez*Mo*|pp6&APTWI{nR!ji7$=q$kb%b|-ceKK^w6|DW@s
z^Mn`}ekk!OIe_-4-p=3u*LeHhzu#_y1|3fZGcqt_uX1EL@qFdFb?1&r=f}J>1cgF?
zKJ$}9-1<JDp`qt&zuyT74}X4$TmR3Y>mi|`PxpL2r=4iU!0_Pos_BeIMNdwE1m_f=
zJJ}|kH)Eo*d)>oq77hl6EA?NE9KzPc{M-qSx|8kc3=9lQGX)rpl8^QD$lL!j-rg^7
zZ)co-PA6Z1f#HGo%IV7!{;rk(_o4mggJ%As4+q)T7yUk8|L-$s2B7?2W%|j<Am=V}
zlwquV)Ts^%?AmAFYQNo7@3;Gv(J9Qxz!2}&%rSwLTWm?{>1p$K?se@J15G!1!E;H@
zwwq~{Z#EvcEB?K>-)`2r*xl1C1Q{4Uq?&XvSU&1dE;=q-o^ob};nuv9zds(A2PL3$
zvE_HC%Kv%5E;>hmfgwVc_mR>UL1nj;OG`X0|9-h_oONYI&gQdbo|D4kDplX_`wd!c
zJGuD0?e;^#ObiV1OB`hwGcPUil&g5q_~+B~{XXmC_8R5i+jC~Nx&Gd&ucy}6eO>J{
z$HLHemdVO5GZ+{Sh-V16J4{-#YnRn=nPQ(l%V#sZ`kBBPNX=nV%FRuwmCt6T8<oGi
z^JeSyxXkP8VwbuzF)&<nXy%+?n0zed$%%=e;un-_IEB@g#P6@0X`Uaq?QYran7W@&
zCCzdomL8AMj;ngP)T^IiL)ec>wgdOG1Q?4xpEZB}<+A_z2M3!s|Nr;<I#+Mm+gnTH
z_t)+Ge9rp%YzE6uCzQ2qnHU(>2=gjAtlRVHluXeH#h+*M>o%X_m-+K;`~JCx$;Uzx
zHkCeIr1DqWmgPXyhjx|cp;a6VuO_kyDqLRfe}3iidB0}fzP&AX_q<x6s_iPfL#j9$
zwjR)oV7PKkA@A_*U8S$j%r<{-yxo7cneOboU73hD{rC6x^ET<c6QC_p>9_y?d;kC0
zG3op>-}imr%jLtyz_6y1O;ABRzNXOb-;c*%UR+eR|NGJ(6bSMEe_aQ;ee>&eyFnXk
zLB*Z6tr`Qv2UaPUhLU%8EdA~OmhjnpIB=)*daP!b()N2**~j|j=PUPFDEZs{OmVdn
zPPwuo5R^aqtlveX-#)Fse-1Ohje&0Twliw8b0#S|x7EDMOkrU7P<lZ@&&huhpRCoB
zWwY~6`I_IIQhvYITswT7&+l(<gJWZ7w#_ol4%6HDWYU(5i%C;&f4f)xeoN+MwdrwH
znPR$8Q?%FZP}1M`BWan>%t^<3rO#}aWnj3rs_MV~L;L?f&;LATzHg%Z{~yPHUhJ=%
zq5|5%*Sg&6oYm_!f9~G@8ymJJBJeq1%wo6RQ<GG^jY?l#DS3HG)pOJByxpn$|9(4t
zV`Fmhox<axNhu5rD|S@XbA^3=cJ}g)!pAvVF1k&XTY5~n-)2(vyPfLcv87kFw%;#4
zZ!2k#;NV-Ma?<Yio5^dp-?Q5P_ig@ZDPabNS97c66+A!veP3_?_*k!ZpvY7?RqgO~
zXI3tsH|ue~y`A-&4bF4lzTflN@7cMzvt!HeZaudxZg17oo9Xj)lYJN%R!o2OS2M!X
zsN%zeIW?b7zP!CXzt8^PkDPr!pMeHW=l(6bnR>Ur;(qD%*y-EvRcY7%x;#H@XYIE)
zH$5l$&9%CE^V-Vb<!9#G+soH}2{gNr&|GSz&cJZRomUCe_zC{}++DtQ%eilhG=f4y
zr}o?btC)Mvu>RklKd1Nq@jhq&|Ie1(+htRK>qKr+0j~qHx;@J*H)?Y~10%zO*DD-Z
zPJnV{NN8wiRnMI2cRO#UO!hUZ`SIcWo#&U8jZaV0UA;N?<)x)tzcDg2te?#$sNmer
zxAqIiOuO2uygeU}#ngViI@2^eY?6Q99#91ja^t<4&u6z}U0wC;%4&cAqrb8@r=Rz`
zy)8HV@r&bAJ>UJBy;b?&CkBQEGUb1se!PBf-4TV?Q>$bZyr=7(-TVFCY)Rv^l*ztk
zCmR@<!zy!KCDYE%nz~4%=+(;Q&!z<Xt=zn~`ujV}w_7fM+C2ZS4ruBv*xxoZeZFS!
zvL)%~=dJ#@eeTpJ^80^XU|^_WUHyyo!&}e3H3xKF_g6_P6hA+Ac3$<nnUcn7SMK~>
zRr&eZPf)G#X7~GjOV3|k?B4(9UHSgio9o`~e4h64(NRg`G@o7N@8><4yu0jf(P>?f
zKhLhMkgxf0aL=z-t1Vxz+3Yn}nt|cf<W-C8?%XaD^|O3BC8qptDX6Txygq)v&wM*u
zQ1b({GVgkP{oYHDufDjwJ^x<y`@J^*|9m#h&fovHtn6m$^qf5(kAeKODdXaz9ywd9
z*}2;ym-)>6G;?_ZX!*)dP>J(on*|fo8hN|Fz7H>ZUi&+ji}BiC|GIUyf4^K_dZ)3p
zHYC5l!REsOW=W$I54V1~*v;2ACLjOvfZhIt_WC`Oa<|=F)^z#mx9#F5%HQ5H<+uM+
zaL(rQnH~v4CF#5!iEKO)6D}@x-~C&ZfgwKotC_>Ss@H4h6rZ!)dadgFySa-rjMC4|
zsS;M;xBYTK>-zTFdAsk_|NpD%&&<H^HG1z~l`pBMr(LbdJGR`ec3;xbF0URI28J5f
zuirR4CY_mMX?))1v(MSjt=!^jo^jQ0w{FS1yX)M)bBCE38h)*fV?R;(eD3tm=d9PC
z`*l)%e$4C2$oVaN3=B1<U(Foy_WgY3)z84duqO4ZnM0r5uNN@hH>DC#6HD2FfuZ3N
zhX4b^0uv?{1_q5@&>2czqr!tbOu{Y)``b=^c({GJd%s-f#YL|BexA*L_Te!9`Rw(3
z!_x0hkFT?2m#atstuga8yQ$*b#&dE{<!3DeQwD}B`n}q=4$g%)Q>Q=ucwGMcfkx)d
zkNd2jfojU4v!>TmrpK0@d~$N~=D*)=t9ydVkG<dTS?Au`a&qbPxLK~<Vo$rY*PZCr
z-!}tPXcQ*jFJfTWx9?AOh3VYVYmqx2_gQDL9$Dbn{Aq1|tv0B-%G>#Ln##!)fr~e#
zoSft{*UA*Mwtmu^ZMXAo=I{S&RQBeEO!=Kc(V6lL46m4%C#+p&`|ZZ!a~HdHx8E@W
z)efK*$gHiP>V}z(XGLef%FXoowVS?Pi+;X+|KHrq&rA#swJHw#7FiZQ1MN-soK$|V
zQXN!St=s)BDt$k!GO4y<U|12(aw5FocJB7nYilAUZ7K>Tr64Mb?ZM0aX4==++5LL4
zI4GTkq2ZTHLyf2Y{y#-+{POeme!HdZ+{WWM2~idNHqX7a<(eI+I#+Sn*J4@x?8$;=
zKCjtkxkcaamM>qmO3U-on#j#6CpV>@ezhkJUJodjAB=LAule8zYD?67ILJQJBs0kD
zZpr0Yx%1~$eSNtyqCOWiSbTe1E~vt~`XhRsPto=JYh*u8XJ=q|y5q5a|Nd`fs%(+#
zIVPBH$ho<RN5TNyYHH@Un*l1Su6;W<*Lr#F?{Af_RxW?Fr|i@e&6hVfKhOH-o38rv
z_<B1728Q^9tLhkQswXLH8=U@iSTkaE=F?MCB~3B{)cohoDSUivY54lM)py?izW=|j
z?*H%m>DSgonr4G~b8)p_ukuKltXNaX$gm);h$Y2zZsoI?lJ<2q`@ZjepL%ak<<7s~
zZfEEIKVJXmNykzDx=)jPq|Nnee|<TbxqR+4*KV=YFE1|M%v?U#sN}^3E+0MyhOg}m
zk-q0`zsIavwaTdO&yOB?`+euW`7?tCCM$nDY%hK`Gd=A{hv3bE!@R}`2O4_hY^zMy
z|7T!m_&S{-(ic>!X1(8ix9s*)P)Di#G6RFd;U}Oj<Y<{T3=8x~_i6g^^NP<|s)Ndr
z&(F?oJ}y_C^5{tCR5@-21}(3KHOlVtwI%Czy;>zxdL<Cl43RR=n*-_=d^|3{{!0b}
zLx5qgw(Wsm8K<Ub?tHy&chS?S;m>-E&v{G&X?S^YvHLl@-*0?onXEh{%*5c3YQeOL
z50r*`rOnTMJT4!<8MFjkruxlBP~Xxh``Q{VKXwL&smc!58dnA{PkX&~yI;4MZr0lG
zudc36vu0qZk>#9Fn(*z-&6ihJ2G9NKH`i*ZM%SLt=d49%a4|4w`8TX#_MWEWIa$s3
z)f!Nd0@1URqgFQK+M38|y3t|jwJ$F%HN74F^nd%w<kwjy4U=kreSX958Mo?*0z>vm
zb^GgooPM4bR(S2O+;47J<*ci3Zf>5eGS|91?&<5ab8~)9w~zfko&CVCM|-^Z88(ES
zonvWS{dQ~k(&HHuSWZ}7*qna;&-eQO<zo7AF|VDzsL!u43Jnbf6&YIb<p&tqpKQCG
zclz1v{C_juJsB8Q%u)581{-+Nvh`{X4Ha<>e5rWNJb0PUNxAAb6E7}ye}2aJyw9hT
z>Wja>xTp+jXD0Vs9_3<aSg-ExaIG<JZ&m7p1C5e~NiNUM%$y7=>64H5ot>S(Z|3a$
zeLF8bW@K<UYQeOrPbYq#&GWhCae2GnZqtd_pkV!ON3!0&ACEwd&Z%;|3=CRsp!Ek!
zKUyj<FgRqgc-U^J`S}Ud^m=(|sW<3c5!-J!l!ev()_jRzVAybtb3)aF7mNGPg@(sY
zUEF7-m3*wn^YO9X%lqs9+x+|S7;NM<t?LaTH<oXIv-i^}?c!sS=_;Pnbfc%q*;Xw9
z?bSBP3~E(pVQAQTTyO%Hw0T|(D0MyVx8Ikx)^oC&<+mHjpN|Opr(9bTDLRLbf#I4S
zV^Cu7a=)|JqVr>43tyh>Z|D8w@>>Rm4f_NXM9r$dy(xKhW#zf5<$iO6L|pGxKA+3w
z!^*($x{YDw237BAOFSp5m0p_->T`g4c;ZY;4$U&no(5_#M#k?d$vj)ezz`A7F@fv#
zm6gG1=jX+y|Gm8R++6GFwn7XHYmAwe9IE>EW@dPNt!cNo{<^LIo=o;%wrZ7@ZS}V`
zpy93!-#905S-;tEcvI5Rt~&*Xc}=rVPuD+xV`DNXS1s|Lt_ShNx?@x29=rw}3L<Gy
zkl@xMG10R4S;}eM?PqRmO#b|AcK)+xv-8(|sbFB(5cX5$OI5<pPfso1@A+H=s%sB6
zvED2^E?fNZsCfGQ+V5*YS#U!bC%DnM4z%=u%=Tu(*E7#%=g&(#+!k8Zv-Q#S{r^f=
ztzP~4jPdz3Ti08HMw`Na-<Nk-`h%0_LIY@|+VWwG@TQ|;(MuvXr`@c0+<SR<`THJ8
zV>R#TdcKoDow$-?3!U4SrJkOa{r2_Rx8H+9Lqk8l7d&u1^05~`!+}>j-|zcvlyPB!
zN$xEZP+Op1&URDH&rd$HOf=Ky*Oo2wojoo7&m-}va+mEtF#d>PVp+gA!?HN7&*D)B
zXdJWt*X8-3f!SHP>T^qi^me^ibf^4&EoiVPtUq`IgH*$5z1=#XvDmtwr{k}6_4}8;
zzh}FAPSGi?_}vKyoBn)gw?ETo{cgrI-RQK(z2<)Z|NZ^^=kxjNH^0xyUgrsN%tbfp
zrMb7a-OSy7x9IuY@@qNqdnyY3?EiiNS?@dB%=dVoENILo{neF~*<b3w-ISV7CvTSB
z&b_>+^7EGL>w3*>yr)2U@YG-XKOYXyDLBLl8aXn%SMgY;_RB@kfYIwW<^TVFe{OyM
zr(e{TjEP}uqf!qvFwQi~y(NCmIPp-+o4w!fWnNz93u=7kZog~xd|vfCslDn9Vg1Sq
z47>;4*Z==r^8TLf?)UqCOYQ&GYku!U{om{Lpz`45wYAZp^5FIQ{dS-R!<Nj;n_e!P
zt>y{pE6*vrl?iH~fV>0hE1$RjUju5a9BgJ+_w=)P*m9@%yshQaDZ!gSErGq?@10)a
zIr-BiZ~dj9j;-zG|9{T^e{xcN{ux1cnThLScc(o&Gjr#+TiKVl=im34ZKmrx+idO4
z?HXM?@^&_$)-J1f%mmOt-SxQYTu?ySe7WFk`ulFx>$Q?rB^jWmTTI>0r$0Z>|3ByT
zy4`x!@AsC227f{0hO6hK-rAB08tA^fIsJT0$wgPtxZX1V`SXs;*Vpv!zs|6xjj5sP
zZ8N`}#;R4Tx}5oKOSXQyU-S8FcXFTQvS&X(Jw5&U4JccQ`OY@e1r>O+w$}e>uh-c3
zb!~p_yX$#(ca;{N(p+Bi&d#}=Pd92?&d;5{bz*mIId|*H$;sWTR;_xp?RMVkNNMY`
zoWRh~&@Zp9u8!E4<a+j(Xn0IuNO-vT<KzAMU5hk8CH|Jo%gZc29udy2J-f5`x!Bt1
z?Ruc#oV9hLvb)&Tt5;3Wuiy1*)uLUycFnM_|M&bH&w*PHMRXdf-Zk^vc}&u;O<&1t
zc4NV_^Po|kKR-W%5)x>bb8B8cXqax#-*2};%}~3~*<17OT1{5>KlkS5=KWW6=4V}6
z;(2y{_?n1`KR-WTUj6-D=G|RiweolV_W%FIA2gPJ_VZ*vE6rXh(^H_4UX_!~{5BI>
zxy92yJU9p%tId)N4Gq0n`~7aVtY+lZYOhJ4IRMSBN7{S!8TQR!U|jJWG;*L4xh3P`
z^s3rGk)PY^e{av(`}G<qGHz|no(>v)YZZ?>aj2C$`<wOiImMuD8DCyq)sD{JTiV7i
zANSm3$!Y!lHlT5~eII-CQ@-CVKMzV4lE!IkKKg)$Tz)>EKmV-R?KRhYxW)C>m<E43
z8M}4couboG+0waN0zsP_XBwxgd4i&Tk;bL%`S-Wv-{1G_;zH+kpBV;<#m~?EJrl`i
z|K|f}gx2!kkH?ocCLfn6JR-RB_q*LkISyDUIWWB12|Bu_`1!fYk4MG#UwQ4`D>ZfV
zIV){Y26?;v{ycWM3I$<xzcb%%=g*(29e(Z2_P5(^KbsmJcM>!l4eGmnzf<fF8i(N4
z+p!>Rej_vcGf<}6|Nr;?<=)fvByFoo%5EgK|M}QoAG3HSsITL#w^OB=o&Vh3^80f+
zh1EcftIXTma@WobyMAh_HfXH$cK&`_P_6oPhC!keXoBZ_P44AozMoGh_k&bR8l`x|
zRXl8!sr&KpX8r%at{exf9w?PGuq7O5VBGofn6z=_rzfWS1peCpdu)Gcef)k<)wA{5
z{rdlZK>>6vYIE9Iqk;zqKvPxPVQWq-Y?qrAxY#Wf+6kDfB5PfCrc-_13}Js8!_Uvo
zo<3*&eoo+Gx2Fxvd=ZOhw(-f%I<3EdPg?HHO{uH*Yz_?+seHTj`lq|^>$a!8J<M-^
z=FQE`#TOjeRXw-eNa_}Go%rqT?d9?N>sH$ykAHo8d;YI)Z)bxVF_XOYPWspXx(v$u
z@xNX(Zpi9uU@&0-751RE#p6Efys68DL1$h`8mFDniod-gaIw|?lly<a+ijeEZB116
z=jZ3wf8A5~_}I<7-EV_LTtR)yH8DFkJ*%4Hzcu^19%v`!rqt8dUi>x5y0YTj#6H91
zV^1FU+s8fqXMU%^88lG)`OmHF^=FUE*U$O)_qVzypT&cQEm>E!{{LG4KPr2_|5?y5
zczWc91jo5s=a${lbPZhd@i)_hZc8Sn3k;xgcK^?_`9>8V9^`DlTej7X^Y6yva;J9`
zJ~qm^u_1I{87MwpEb0dF-t2rnukvB5c+u~-+ta&sx2@QE|KIQT^L@?lnt&RMpmjQ#
zmzO<#ZvVd$G~m^1c1wd>T+iqFy4d0yiS4P&=azYOi|HCA9%`}qdL{Vh&GU6(ud{XI
z_t`9V>s@8+eS2GO@g+}nP+hU}>$T|1phKAV|NRDPLw|bE%nv$qWpxcdsP$p@`^{v>
zX11qKr^m0`x%XWIBlD!1qFJ{<BfN^vZQ${V2M3!k@2ma2=j*j-P^ElnclrDCJX^T+
z_ZalseDdJ4da<D9^X&U)=2#XN-7USIy7{b`_xpQ$_kY;W%aFYyX#0JpgtNZ$?e<zc
zY!U8ycXziqsF;n~niUEPgQKR`V}f;}x2@6WTJ+-D+GxX^8yjX_2MPSR*k2b?^77Ks
z8ySmxyWZD4w>}CgZuiyx7W@0_>*|~Dk4fk2{QB}T7?g-XZTF2=!=gp)|9$N5cI_4u
zb^UnqZOwVh=W~*t&n?#jRjG?oPft5~&iZ{!O#R=lThnB$N-_dtWA~mq9u}PoYE<v}
z|L^zFjmPDpOI}=9m~nMg=*9i@{~uiqk6&y2`^LuP?pLo~J-X;Fuj^;?@kr8SUo%aR
zA9y5<mPCNk!~64x`R!x={JsCb_Tn<%*^4SaKRXICm`B=dO~tdB=~>?-EsIhvt_WN_
z>p8#emw>_-3){tFcbDmchPX@K-r8#M>4b9k%gf8_r~VINsA*fZsGwDrfgynJI=Ia(
t2x)S2Ffas2F)}eQOo24T$r1i1A7Fj>EKk4kQ3eJE22WQ%mvv4FO#tDHBmV#Z

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score-4.png
new file mode 100644
index 0000000000000000000000000000000000000000..eb40660a59145d3397b0199e5a0ae9668dc12d6d
GIT binary patch
literal 24222
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_eCLL~J6zmL^sb1zJqz`&`x@UgPg
zs!PtCmmI4EJ2{jT7A*SFut?#O2&<050)E#iTD}w1JOWoTuF)`^a)C3nnZ;ti{g1Tz
zHM<)X3^;$)#fIyhI5TtR`8Rn9@6K2j>m>IGGB7YO+&D1tA}fgT<GVrwh~B`<$il$D
z(2&ca0OIC2GcYnRFeFGbae%nD1sp)sjWz}*1_p)$W-J0A?lwizv_6<8CM>Mn{`lUH
z<!}D{{QT<b>gkIXEqe0!v9i9t{@)LW`6Xko=|*o(>y_bakE{Rtb$40MjvW@3GJLWY
z1rOHADu<?|Ea4K>D!JZYygKiT)$!xUwav`J7A{;^WFey!ysSs1I)3|?Q)|}iH}n+e
z|5?xbU|oTQj9&b`d-u3FIRks8OifZxP3h6okJULnDK%2>^qU<H|E%L`KDzGx|L=Fz
zgGTl%`|IoXe!G=@YO?xy-tC^e5q#~=lhytGHs4*~*gWU0Rq3me=+bxh_y6yE^SrF0
zD*m#zrlw~zJAc^IQ&UByq_pDW<DZ_I>V0)p=;aNGhfDtaDBPZ$8a6Mk{qytltLy&$
zy0s~_`_{JH)s4*TtD?8(Wp3MlJMWu!L(d9MhiA{`USwrB5iu<_^TB~eqhlJXs;;}s
z-(TBP`FTs)S*fGPkH5ZKe*f$Xq5p<r`f+O>9qrCO*u?tsp4!((XK&w*maqLX@zJA4
zcWy}}n`B;6`T66=i%(Bamv4AfeSVQ^_m>;V{V)Ig{HztUq+^z8_OcBd4CdNahedD8
zx!AzSY?5=s;O)J=(TRzPlCkf2ZNFS_zO^yAz3Azwr<-anFY~o3eALp$E4^%bT-C|c
zyB{7NzPdi%-qpqBM%eSSOvhG*uFhG_dSGuO1Cs+Y8&AQ{y1&1^u8P{a>R6xbYP;HB
zD-sSiNrv3KpWJiug^-O^&5sSM!q@-XzAg90hK0}0&tETVUA7|S<Rrb<)AV9jF|+fn
zh}@hu%ewqs?)90G@%v{-Zcgi+Wty!fFE8&q&n8mVs-z(M^Xv8dSB0;S+g0%~i7lie
z`_JFMp=%-xw?FOd?A)Z|UHSQ0Y4mjK^1P?#=HBl6bV*lBOKY(=!-SI;Sh*W!cZq7R
za_JN@I;LS~cQ1K%>gj1K>;C@Y;^m#XfB*h25zR&WYJb0ab8~ZEZvCH+?pt$jhXn=(
ze)|4BJR)MoscE{apU<oI3ttygxNUdf|F2)lR#!dhR1evl=KFl^+$(vWadB}`yUW(9
zXsW8ZzTfwI9Z1K62MMffY+71cUcR%<uAZ8zefh7ItZh|@ZPk~6kdP^V{`?UU6I=G|
z?Ck8<*VgL2&APJU;hRO9s=j8W`<iB7^ZCBfs{EZ!a*vwdoEO{j9v$iA;^7JT{q61L
zJO55i)t0g@TcZ`WW`&Gpk%oamK<cR}7un@&9tc^m@k%XmYUMh)Nym4d&CR9V_pYoA
zzWeR>-|zQVJ2ta%ad8DDBrHfuO4?HQw`#iC-{0S-AAWd2eSXcOjoa2nZ$I_0U`65M
zV=rqh??@zH*_s_5yR!)Fq2nJEJypG?T=?|#bbeL)gF8Emt6s0&9<n-2_v!ih_kaE~
z%e>?wZI<(4$Jt$_udl2KRDODXe*C|G|4z*|U#}Im=Eb*}wsn7Y#8o_GovIP&6uCJq
zG$3Gt*A$I~>hmg`I5|1bmDT?}v%IXgySsa`;jy2ei~d#@FP^{f>}>PZrLV7@nyx?p
z&)>hIa&qh3<tkk^r=Ks&G_U-WvNhwPQ!BT4*fgEUDa!7Ap(}%2=hyvO>Am|()wOl8
z+Q~hq)1Ur2Ulx_@pclJq$-~3#uN&Fr0umAy6g@eyFzf27omY$hZnP?WwdC*b@2h=h
zn{n~-hB`PjoSLq`{%E&&b&Wqmir*bZ#sX(MJG;EoprCbZX46zrap9FV3yFxBQTO8^
zd#{XTkoPp5i@(0Uo@$yM=6U_lac6$pCwmU`bah?YS^RuU_4mA9X>&j4HlDy~I*}@O
zXYPB{Z})4(=SP-mYHo&xhUZErPMkPtNuR8B*0CN*t<Y6dtjgZ3XlP)NwX2D^U-P+l
znr`&6sI6IdzgTc`a;}Qmxv5XicGWD?>{YS5%d9FsEJ!;)Z|%`;@$7eZcCL!wzi&zQ
z!WC}4Qc@NL3zU?V=iXfr^xCuk(b4YJQCqWSndQ!M>yda^6W=Fmz09>+Y^8HM->G@F
zyN~DU$M0Ly#w(rm^V3tUz(p;$w&&~D*Votn{d)b?&CScra&JA6`5e61jTcmcEOze?
zD=FDB%PjZR9siP&EvM_u^Y5(@RCZetwAAa>rKR0`G8PLgi=VA1dwc8FzS`YgV!B$M
zuWoH!eXr)TukQ?lgUJRzJ{;yxjht32bNK$ow6jug@9Yfz`RS?m^&6u4`s=0F-QSqp
z9#{EPG<1DjEGV!80w#dWY~>cuIyp%-YD>n%S65a(&e>n`GRQRNMu26}lYqy^dPM~V
z7cN<%^7h6?=f}r-FRxy|Ps`KG&o6AL*VHZf_w9}zJGQFu@iC)g8UO$NjoMMLFlt-Q
z%xBM)($CESh1RzG`|DV_#a4JuRy+4y<?Hz^b!}>Xb5^{&yZiL*+tIz!=3y5Xxt9L<
zQJ8yklk4MSy}_ra>CVmFUH*RE@Av!TudWUczqhBd^wky3+MiFSzq+unx$NDYm5$A9
zJFggLUQ&^@C^&F)YH-otoa$BTs;aJ~udZCYwKY3*Q;MhU=QGB?9{1auq@R=7ns+zq
ze*OQw_bMLqZhtEzBowmHiB(iDCZgZ|-;PO>CYcmJ^D)i66%t?j_3Hh7hdB<Uu^rey
zEj9Ak!-5^U@tf0nKYsdT^zYxlXD==;)_WbcHY!!;v{C4)5X0x^<`zeqr=Ai?j+|Ec
z@8|Qmr+<BUnJmNC{_|0{{++(!XJ;g*zkmGbQP1Ir2EV_*FVEgx^))Lwa+;(`#)Q+K
zX3UV-UhJ`Yt>Ljbw$;}xWcY#?I<amqJti@E%9JOCKjW{i3_fll!)Kgx!(jT;*VosZ
z-@A8DEqq<fv+wuo%Olexr>zWJ?6&LMe66p4zP-7byv%oYn$Bq><Fqpc>*URHW)xb;
zJlp+#pK*Nc*QpzIPTPDuBCPkj;_cS!J*kn)%HQ96_Uh{Db5Fz9$C>)u{ajLLA(Qs-
zQ0uv;oSd9;-zRH*{aR`vllJP$O1;;|`sMR=P8-=)eJO~%w;|E_ae>8|^Y;JWZ2I%(
z=V!I(Z8^&l4mRm+z58PGgOd*qHut7RE^}_@dzn?g_rwVgVNubio8H{nS^VtE%HX_Q
zVPRq4ii#aO-|zb!GtE5v+8GNOzR!>Q?RVuC|E=5i;}Lgq<g}NUm-k2So-#$G_~9Ye
z=if7H`_%pC<;d{0&ooNyx@~8(H*f!+Pu(9sel%26R7^YGCo6aUWmWa}cV8o-*G6sa
zS-*b0WzCNbr>*?$o3DTV@{3Q_>Pp14R4KEZjCC<PAH~!?I>IR|DVZt5*B-gQZf|kr
ztMp3`3uYW_X5alL`{t(9W1Dm?FK}!&$!3_a6I9K8?mMQve$S$7YokF;q)A`C-Ok_r
zRlWZE-SX7PX=*+*7UbOAv~x}MpO42yWo6%93w7RgZT{c&MNdu?vY%I~)j2)M&~4wo
zeR9{?Sy}Iv$ai*jMr}-L<r2|YARb?HG4<|Ye)~1sa&K#CYQF62Ild#VTTE9(MC8dO
z-q(-&?ZZw^QVrdh<l28*BKga|-|w~a@9n92KDRukPC7So+P%8pxt^bX%)9F|RV(z)
zyNr@oS3K|CyLW3#=H%0#^6u_BDY5wD<Kw$^{(rgbU;6M6Yw62NPq)3RleH{znU<;<
zzptjgTK@X!X}YtUnw#%VYj1B~?b<E&>+ALS(iayLpMSb?%eMBM?c3wQ*7^DQtZZ!e
z{BFwi%36nouZy|3di}mtLaJUn*7Ec7m;bzXc?NHOe*V`N7oDf;$M0L3*OmG6{{MgK
z?S~hZ->W?Slrw5)(bG!}jLa!L7v1G+pKOag*u?tv(`o(PI;(@1_i>46Joq+~c|zqy
zR_=yq`O?#yzI;3`zdHGNUtX?x&J6{5dHJ)mOiw@F2dZ&|)%{+4d3hOB>%P9W)->&m
zglXm_7u~2W0dH?@4c%GvlxMcMLiDzrtSc)fis?ozdGR8{H2+>q=<2Ym&iuAZ8X6i(
z-X`DPmOE+5s?gO{Z%zeoPV@DhZRUG>TkhrLe%rF+S>Hc@2C<g$+x>8;{{HUjzS`eg
z($CBF%Gp|-%>|V|OO~jJYKQqWv-6il=l29UI5d>Kxlwrf>lEGSYq>MGZ{J?@{M_2h
z%l&ujtPfv5Z_%PfUrwse&p6T{c#iu6r?A?I<Hz0o?S4M-?KdxY;IMtdrz67tD;ye`
zw#QUg)%<?DUCKDE$1LZ@g2%`EUte14eXev`s-~ggMaha=+w<2~etx#nsg*11?yjv_
zS5_=MHC20euj$ITy}Oi@luT-V6dXN%9Mn7pRcVVBFMfZk#!T8gZ;Hy*wbACWZ~5hH
zRy;i1o_%#ys8zv(hDnnr&wU+q{&!i-jsnN(Z*Kzk)%=`u_shEJR&^?0pTDWPc=4iK
zbJo8<KQGJ7W>)yD*uYT0$KvnjckS2L*H>2ttCzmL70SvjRwC)F=(*f)?xm^P;dvGk
zcQ)z7?kI3{bad2;-?wMq&u7xSl147`>;LUs<~v(0xu;89f8F)CYTw*jTXxP~{_NtK
z$jv56M>uM~-Aq4M_xj(ze_0n7wYv4mR9-&5c^Ti9?_Wd~y`DbbviR9KF};=E)Ag#}
z@BRMeqPu+N{e88czJK>GKCrdq?cYgDVt1F_{a_1fmF4f8HpjBKD(2nWw{JfcFuuH%
zz9{?px>wiN&rdryXJwzPwU(V--0f|-!JE_0=2^*imFQ~x|N3aNTd$N>z=DQP&(3Nm
zpUI7vSw71=e_qtKoRtj?44`VR;Nc-I9-b+OA6~c~U%z&1_Vrii?f;i-tN(J*eQU-=
zrM-W@-JWHVIZ4fDhC*@=sI{7SxNT+G+gp>?u|DXPHh;DCdfeqht=wB{eilh4Ptgw7
zD}8@2cKx1DU3>Pve^Y;U<^026Y-W|;-&YF?w{!DsSFZ|P{c57STwtG!<&&pRm$tO9
z_|7ys`gG6#zS}>4?!1`(?$y=R+e5_}ehWA-Sg^9NtVlaM>(`@h{g7oolBI8M1n&R)
zZMJv$L>bGX6B3IjtNSmj-p_CQWrCPq%!(;fM2;Rmp8fLDQc!SS*;iZL+S+Pa|9Ivv
z=>-4c$U7&yEA8#=_x^gdy6WrI@ToIqtk{};J?qnxlc3hlxA*tgn`U3TQ}FxBx@7l$
zxvx9^otUVs_x9ZqP^Hap|7U~UzaPn<MvZRtwmpg4H(rsFtNjvqcBb+3zU#%>R;90&
zfD*vt<Ne{s`(#b){#2wJc=k)jCWNgFa=o;5d5>gr-tR;<W;UJ)^XJch^!V{zxz_3*
z9}=GnUtJfzKF;>)>Tv&)Cr{qmQMeeC!#5@$Ulq96?bf#3*_(d{S5)i(wJ<t`)w7QG
z$wqC>nrips0rTE}zg`<1vtX~huennEZD(hvoc!zRz1#2CMKAZC|LupwV@cz*I|W8(
zzMMKSU!GwmbFu@&4$aV2Q+AcST;$x&mw9DHpx$e_x*v&i?P`DJm)`vN@#95M$=%4z
zo^@u1q0zA&KBuNvDb{{?;J7{4JpbODcipG1<OSCM)!m~mC@7e9d)r!2lT*pH>&5K+
zeTA>>zJxFJo<2>b_VZbDIsLBiwNa|4H-#+onOSnRdNs&WVRb)Hzjdy4`M$*4LaJUG
z>F4I$+K}kHD~|u=wYdG!6Sc$jKuvXN^SmqN_iL9+8mDP!X`Qls_M$9geO&C(Zt?32
zo!d<^FD;SYW_s*S$)RJm)!$z1`~9wXcY^t`jJvx^&F`2gC^#4z8cJCfE&28R{d(`|
zdYLCDsmk4+rV|-tTlEFhF;VsW{QUg>hx`8bwaeE<OuDq@VO90FHxpG%v#*`Wz5D9w
zYTJK2%j)8Mte*FuoMpP2OI&Zwks~h8Kdzf@Rk(1uULC_fNe%@Do2sW%!=Jo<y?Uau
z`>r!@Ki(-me^O$xUhFQ5`ryjF_WynyzWF?6m)XjN%RTQ0)&HLPizCi+Rlvfg<2&{0
z{(L+hJ!_(^ii*o5n{%xNpPqRB{c_nq@AUck_UpOD^-kQrZGD#U)k-BLB@t=q)h#V7
z+Z(nOK6dk+Zx?&;;K8ad7u_$%eqNh#d08*0i_FR`cIV5+#c^?QpcXivyxp34w$;mi
z#>L2MG&eP+L{2+?{e9U|KDYe4ySCQ-|66YR^-6Gg%KmAonSXwKJoni*JK*nm`~Pch
z+=!61tNGFPySu07%DULycj~<V-^yNJ$#ehpwY8rmZv6XY`Tyzk_>w<AKAPOV+w1t^
z?yl0w)2B~o<ClB0@!RX&YnR&Dm4AJ8RWBEmD*EmJ-FW;j|I6oT)BNUIy?k|bb=AkC
z;;~MDPEJ-gt@w}-Ic=%>yb7heznKg27jla+^dCBW`0JO;{@G_{7)lu?wY2fcYQ4P0
za1qp5h~HnQ6}4r>tLy96uUMfGyQARX&Dxb&S6BV|bXs54Gk@RDWnpWhmaYn24eCTk
zZce)j@{X$aGz}G%BTt#OcurOWX<z0)e_b;>|Eq=Va+eyJ*|#JdWCAsijnmKhgugx7
zEgtUT(vo&&hGKqxzNk(_z_e7$=e!!RyS8{u)mq9fSK;vU^YiPVep<#wC0Xk-pS{)J
z{jR${XqT^Bp%uDnMgIMLQTu9ko|>xtd=C5J)2F>BtNHHI7N2}+>-`P)Pc5lsX5+cQ
zZ~te($H&KCckAy9I6KP})C+lhyg&Q;y4YXeZs(hpya;&C^SZIIvFgRb_APmLt!%&D
zNY)BlGh@%5Jy(`^3g4~&|95+6^-`~?Umi5`zxw@t|Md0i-^=bju_kQotY>FuFXxlB
zTH)NzCuLKyAt@<IL`rJa=JfMfr>E(HN|jBir^_z0^VxjAQ~c`M+S#8SS?%oXK=y7;
zKF(*FcPApg=3}e(@3_5HnudmfQ?<jxQc{-G)Ygj1%dZbz9i|D&h}SZYc8P-G5!8MI
zH5U>S6Rk>KOc2wFP|(-c-@bg+Qq{fX(o3?-BSFJEd3SfMEO~k9-2BbK%l$GxKRbJB
zqH_D^lVNvvmtSAvIr+*WS8h;tfB5j>ub0c`Z^^l7v^DFh7pSp+yMArdR+H*)IkvxE
zECzK}nV6VDHY6OBwrhCUDjs)XlBzc-{%n6dXa>pt`|+6n>^$3Ob-y_my!H1k0Y%ww
z8OA%wIkhkJ8+?v#(s}&!>C|Vxl8^VzJaE8avTn3l@t+@s(@XEy{a%}Sch}a=jt+ym
zx;ix-oikJPVsGvFaEM#Y&hFmLyrW&B%Yv8tJ+uG+v;X8w<K>_NK{IesOXatl>1P|6
z+3)mKzPO-xd6}=Yu#iyFrj(OOS|KYEo}HhcAGSU&SB9^>^6%H{vA2#NIZ|QMt{c5=
z#;vW{v*%bAOX=(DgZdn^Ota6-G)_PB;9#@w+NiBQ`)Ypn?BBnilb_$*H0z3iar(JE
zORvBG@bK`m>hJH=jEpY*`1y0@g$n_f*F+j`PCYHw|5lc-eP!h4XS%Y=;4V|~<!zwO
zQK5wl$lY?+{b!q<y|OO$c1uf(guT7}Wc_%%;H_Dq#x*|*ieFq%oW8C4+Z)4PX>+rk
zMNf<N)vf&Ox8!TwlCGW}lU6QKug&KSlaEQ9-sJQ8+S<!G!s6oTd-m+PWXpfz>!eAO
z&PeC)Nz@8oms9lgRBBCat*?hi$I6(Un<TADR#+B3a@qB2u2E{2X6&vlpitxF<uyG!
z+uYp#@0ZDv76l7Ff1Z-{?aj?)vAfHbMQlt0^|{pC`(&1dtPDy!(7^cY$;rv*%B;)Y
z7}WmyV)*p*bo0c-#AEmG-*<6!of)<^YUi2iM4wyhKc9WZ==r+z_J+jf%!`X!PtLX8
z{_*o?V?jZ|WpR6}o_#)VU!J+W?r&A_>M&hl8JV0->F4uSg{{pJ(~FsrW*fdP#!!F%
zpG}%EJ2rg$`qh-L{c!5O*<0f7+yDP_nMc~}%oMHAQz<7W9Zfku?{3KIu(OZPCptMD
z;<dk>`PZ63p?Fiz&er(F3=9RcA3b^mZV*2`H8syal9}PpXF&%BhHaJ=9~N|pYA*xT
zk;moh&%7vNV32GuRA6Y>o%id@%U^G|-v@QnV|SIDe7vNCp`o7rT>}HdyIoSIS)l6d
z)O`E>^XmUqetmP(c(FGVLy7=&yxo8wecW9kxVyhUJSS(3le6>F0t-;J+oN~VjG3Je
z)VRB~HT&}3v;Y47ep+C0Wo7X4-4Qq6f`(3^Bk4VQs+U0>Q5nAWWqxyKU0lj=Al8|I
zaYE)?`}(-AudiR9rW<`_TW&P3j75OI{ogHbOL?SBJowt3`P!We3kx&1Mei<KyE%5D
zQ)}Mu9n(@zZqnKQl&{^{H2d0~r*Bm>EiEG#yY&WreRUNy3T|(2-`d{3y72L_S;pz-
za<9*cGhg+wY)RYf*ZY~6nL%TBudc3MoqvDdt$nq>Wv%04V&=&3we!hX6deCnX&xue
zaKfj8N58=*`!dSdv*zN{6Z`x7pPiYxxcq)?_|47f<<a(uhghIv-I4)!O$7x7!6VmC
zPCVT9?)m)su*Gh@QzlGUaN>jqs2oyMRJ1C1&;S}gckLF_G&2j^oObrpj=yt1U2x{l
zJl-dJYO412SZlYGlqJSGal1-9LB-9rwb5U{-OkT`a$;iE^>uTP^~<k6aNxjgt8;g`
zf*3ydyMaPcRZZ>GCY`5eXPYnfo|qb$1s&S<xBnY*cUNg~Wc{-<l4s{yhxbaEUb?fh
z*m#B4$=kQ1k9LU`N7uc%VR-b|u~#=XCRhD@I(=?=Y0zBDVz;-qwqCxp)cfkL(rn$>
zU0>E+eewSN`;Et}HI0md*6;hZ>h>r3x*v|9p&+~8Z;a>K)kbxT>+f6p_=AEc!;aFD
zgG>`%F6m3|01u+xJo|Kg?c;tq+f{P5RT^4aUUhYKT-@BjpP!xGTKYO{du`nP?R76N
zEnOA3xUJ~f8BKlt^(EIsx97#Wy12Yp+;3MDZC?5+<nPbt^Fbqe$8+<qZU3Kkch$Q4
z?WvJbd#kp3n=iidQ6#gMvGV8B>7`#@1cC<5LH$fl`AJiZ)BVoQG<I+061~(Vs%=vH
zt7Q7ui4!Mkg{+tWZmN90Qw-|AY)Uz~=+aVe(45AkCEDTZGEPiT1l5e7YGH|oVC{#4
z?0L@%7aJ-p_n&|5wEq4zK})?f4GaP-i=Ty*lx+F+_4V>6Po7BcvwQjR05gBa(JoOg
zUf!#hmU?e3c<40!>*wd^!`t~}L-te@rk<S@3L19aS@iVFz3TTnTYIm3zbvu%#0ii7
zyYIK<-CcEWZ?(3SRg|KlA{Pfoz{aGbUk-8Wzc@3~*nCat$45s&ozzWfXIDLVkgzr9
zX3*~P_hs4Jv#;y@{l5Qy=+942Ma9I_>g(%W-P~4XUtj0t<MU<5d(GfwD~g_;0tLE*
zLj!0SWmoCztZQo`!DCBb&lsOyQSk5(Xp&)F%uY~CAou2`r)^)E9inzHGbvmK)k|!A
zGArKR-VO?&tV>He7cE|_dh%zwlT(vc__{TV-TPOiot*_rpL}vQD{gL1&;I!6=q&4U
zQ2+7$rufsFKvk`7?5>cnudj!1&%2wq^8LQ))2D+vH3ys7!SfExkJSC<tZ-`O0`>kf
z^XhlUmU>OsTMOzdJUGy(7u%zvsivlO_N`vro)w^kJuNl!Km%juw$qbTyMKLoxmeD&
zD&tTKC#cil{Z>;`v#YoF>dVW^uWrc<j@?z_d3m{ic(<4?s0{#$%v*aZH@~{NTHW5>
z9#pUIt@;`i5iuibTTbQW&)yy$0X{xGAfIeXJ-w>>`@3CLUsr*~FfJ~3Umd+YPb*-7
z!>+j1(ww}!q1V^Nemy3g|KhU0edyz3y>nmx`ubX3Utiz$&xgZZ9UT{LZcg8tbye%@
zySve#>8>f7!E<ui`D9j9et!0{UA`{h{k^?Yjnn-+i~ecG{*E~_-yS@Eo0GF<UEJPP
zKYmo~{d~?kYFEihv%EVmuJN9cSbX08e~kAuoxsg$XG0dd@#fy&7YiCD2wNYw_Wi!!
zey-hOrQ7CPm#+g2vPqd{f#Uts*RS9fYrowuk8UyDOVf0tW8Nu!dw)Ova65naLZ{X%
zyGpa4o|x$D-Y0YM+1c5qpyA)FtEX<3y}q_~Rq*n@b8{>ggXTNV&NjaeYF^j>s{u`M
zfKv6{U8VWIZ5co4Co?Eao@G<H2{a~pYKmsw>sMD+f<|>E&2na({`B?rb?N;4{K?wk
zdY^y4-@p6KX>gM%b((&Bop&jZjKu}enC8dh^0WW`{w}SrumAbWW&hnWmpAEvMskaP
zeo9S_oYvXZ<@J51L^5bB)~#1cu77vh*;%u<`A(fMAwlP~k-yEymg1YcN?-S+Mykc{
zt1-8|9=p3t^7JN9gJ);e*Hy)pDJe@p4HwVJYR@h$_0Idv$H!+Tsuf}Y8k1gkdw2PI
zP$ivuYD%Hyu~%1D_ohasU0C3#cUn7aO@<6#yQE=KOLXjVzqv;B|9(FAeeHj@JZioF
zs;S!HQl~fhq@*l4{b_IY_o|%x8<X8ZZLej%vty<mKYCQM{cz&9_xIly?q+7^+p(u_
z<-hOy|4W|UbY^z`zL%S9z81eKusAb4zV79wcX!M0n@&red24I-ZXJ8jfNb@otfO6`
z$4;L<UGo0k-PB4CkB*b`?f37j__*k{*>b<RMgRVOdU|?U!NWsp3JM3-L~lR0^zKAu
zcOMs*7EXTt?-e-=I|O$nFz$G+qNWBi2~^mDrktmjf`%MGlfg@tsPrcr&N9ngb>oI$
z*~4hqT7Vn-Yu_-ja;@;2Yc<QRcGqU_3r9MIpT2#&R()Q@qx|>Z^Q?-Vbf{?7|NCQ}
zJNp(WJgrJ!O}YK+;$rvH$B!TXSvyrLR76yCsd4(b7iZ1yhiuEaIp_7FMT<gq7NvrE
zqvo>O8%tk@<=)ufxYT=k*!_LAcdxOtv!A|x{rj@7%R!wbm6u04h4oG^UbM(&+xx4l
zr}r2}ZOgf-E301r?~mO3nxjXLYF2-Hllg9a*xIO7;p^v}-Xv#R1uDrv0~maAHZNl4
zndiq%|E?1H_SV*~^Z)-j{@AdlrpD%)sEo{;KffOx?cQ4cKJM$Ao57*0LJBjdtNY7+
zeS16Hy<ZMAOKLlhnPEvQ1Ji?fn{#iQc?Mlw6>8h}a7E<iWj%)H%C2k2@B5Q0zu$Yh
zo>lp~IcaBREd2cZeD<|9;M%w7`MKKLzt5d1dUj^zi4z{%pFVu}aMF{)zG)pD9I^Xq
zBHjDt_CDMP8m9GJ6}<f1Tk%<ZD;r;|7k}vK>G|t@{r}bM@-+cBH>DQ$z19d{H%I5R
zSFw+4lwSP4HQ(>o$A_*C3-$2m*t2)<(*g_7AXoA8b4z#b2hAhu7F)=iQ}}TG{I@Nc
zmqC5|4I2!8{`g_>`rpUn@^||#?yId<RZ#&AX$1fO_jhZ~O{2Ni<>%g3yuQAEddb@C
zI}03}@9Z<ny`_@e0~((7UeC#3z{YaG_W7Hen<q_qc6npa^lGUmv(^3Q-L|U(wQj7-
z^J>3bbl+9-a?-yakNZv7=clu+d|vZ6|Lo;Sw~k%E9<HdUsQ3C(mC5?;-?#qvTDSlA
z$Lpn<nwsV|?`9gOr$kQseD28IvL7E3J+B{YUSd`KZOy5v+RH)HpiZq^uWoEy+|=9*
zN_58Q=Q6&$xcKYydHejA7HgxnUi$O%bLftOL{JyI^3#)v^XJc30gX6izSCc8F#A{B
zvVS}tmx|BZE;md*reR}q=jVc!h6V=DOG`W_-#KR4D`y+k$}N6viRWa{I4ZBaUCh0E
z_ds1e(EI>snrqUW@&kD$_C2YQy9ypURmE{J6eu+??0CK;j$`@P=&x7w-0Sxy><cb7
zTT-@N%C2SysJf{6`RQ(n!n(r`Cm0@kETecm-sc|g)6>(Z&!0aZG-`6c?zivJZgKz3
zZ@WabRXjzt!?u*xb<eRZJ|$6nx?JMly3o~Op1aJ{Jy&%Kt6SCI{(t@8FKM%!3okA%
z&VMQK@#Du?_VxQ-U0JzUfB&CLPfsQvljxN&R63j6FKhj*u<}*9-Pg^vkB)He{eG_+
zw3_70-SYdI-qUpS-rE0uW4ygKV%pNUy;Up2*T-2^ep&(=V?H~>(0Oy(*-QHS|16qc
z|1Z+c&hFGi<#wIZmkzaZUtQqX9Bow&D?g^_#YRo~a@PF*i&s}y=e>puzS)#<?h3Xl
zfA{9iq|Z+#```PLWUHa!G3ohkf!XHy`<5nK%kahSEK<Gu_V3@nSJ%Z_OD2CgCY`_J
z=DSBnyFpVjDUs9WRlQmnz3OEdsKT67aynV(Ums}9;!q3cCLQm$x3`z;-QS$vuX8$R
zbK2QE+amW?Z9QJQw2bk~m%1f(M%x1yyXE!U-rG_5m{(qVPuf|j?Wy7G<F1<DuTg&a
z|3A;0ySu}~*T;qC<gAJQVNvp8!nb#KXFoGk(F|V~lXYv$N>H|)WtyFJex5C8gg_;>
z+P}vzYIoUN-tUYI+q*!SUszCZ;f)&+swyfO;PFheygMsiUS6(kVG+@9_v=OM>V*Ld
zoxt<AXJ;>;XIp)5OYP30r%wtjzT8ZozcZ#nO;z>f(&=%#mhR?NR8)NV%CB^<`MnC~
zoyE_urO&Tj79L-F^=;G7FE1}=-P^PC+nbw<Z`_F3ntA!zv~TshPfgKW>@`&@^Y^#6
zpd@zt*ODbmqTl^{a`OBA`t>(%M9j4+_2QK>2{_!wJNLDcvT|xqA-6PWPUgeI!?yd}
zSKhs1V|&iBbkCXi@8y4f6xx11V{E>r`0A?AyvZv2zTd09wK=^%>)M)^H4zT44F5?T
z(~sG)KreRJj=P1sOI}Xe_xqjo_Qy+?EV0-fvy^S7n(r)7+4}22Gyj&9lS2Kac{esV
zitESidAO6|K>S5kZii*lu3esN_veE%sBuvH``gt|Pfv%gi?NioC~zo#c4p%A>C@GG
zXFVybYqgF%-uvv&kJUDnpH|fV{stN!U$l7f)dh~sbFIt$;_H4cT@}9mUEzV6sI052
zmd-Rz2ThlQmRQx))P$^!G7ViDWqLOE)3dXyMYY2~3q_=iQaYCT&R({w^tG0SMFcya
z%!NlsyGx&)kpxW$KTatrn_-qa3pDvNJ-#jy)L=?VN=oUucy6xs*Q??2FR#bf`+m1k
zSQ)!=Nw)ZPb^m!GH8p!4J${@TInAo%#e%}e$9Cp?{_(i~_1f+Cg5KZT3u@De>PCg^
zE_-`vk!$yrJ(b00XBZxSYq2%!>ZR!Xy-Ux{wO(EM`Pr#yy0bx*0H|WB`S}Udcz<?o
z?&?!hwO4yh)v_vkGh>=g<RT$eFAMhf)t6QTDuc$OK;y5WOFRT~Z*TMUo~{?VE@o$p
zTKSo|*4uAw$y_|sI9<!iDhf1h4{BT{9pz$WVbQR%0?*cOt}QCsv?^rfA|=<Z6*)II
zX+>;U0BSLdYKOhJ9$z0iS<QD&?3X=z_nMZ!i@CZsIvkXImU>MUk(FJm6S?WdgM-bW
zrt!D8x0frs_no+Z-#+#|H-kr#+yriMy&0gydSz|&bryDZ>C>Ao)%gAIleIph+;5Y#
zDeY`lQ**O#JD=>CPGNPMZGT@Z?)N!4Nws(X{{5O!TUJ!Q-~0XDvrLBn9_F*HALATv
znihTUdT)$9|B16p&M^nA2vFQ!I$bZ;sP^|a)1RN8o7dIVEz7vLDD6mx;ImIpPak_&
zFk_Z!c9qS$_~(q4b$@nb-ru+P<Ye{!kKewT@wFeeT<+%N)C6kr1uyrLd;R-yzx|mN
zfs1{vt_lT>C4mNVDnCCn?Ugb$Dt>mx^Yb1hWo6rWlMRm@IdVioUthof^`l3RdZtgG
ze%eNIb@+Oak$e9AdY$)n@}x;;>i_?a4_@TLDJ&q6(A3oA^YYTtvki>QK1D@Ev%dZ<
zy??zv_2i_ZE$!{IUtL{28?<<>=KtUCnR)w@kMmt#;we1Yx;$^PX?9rfx){sP`~Uxa
z-?sksionHZYQNu2|MT~6@8O39Gnt=#d3kx6d%v8Tmewg27M2-Gu3a<2<0_A;sH<1k
z_^$syM=x&AjgVC#CsWSOy2`@JI&+$C^sLz3Wjkf<EiG^E`E*Jf6kedFp@>GnfiG`v
zURF_6-MQCXQ&aQV+U@s@zP`S0&dM!j!pO)78k-DR6LHaJhQYxlOP1_-`~OI%@Ur;*
zb)XS5H3NeSDW|8M710hmvnA)|rJ8Ry)1RH1s%>5y&+wpXn&I}3+6U_!{{H^1t)=C~
z$}JYM(5ZDx)z>WFStg#KQ3CJXM~=9-y1Q#@Xn5?c{(kM}=jUIqMdz<fIM@W5dH?LG
zKgp!-PetkLYreYC+d}4Am4e2nedk(*D!cU*%-+nvz`*ds{O5J{2~(zsfQB0q6BE1o
z`@?^JdTLtvDP=purM=bVAmyOxyU&IbwZqqi<m9XYb%M^#wf5d+)?r-#@6W1`m6ODD
zA|Bk?=iJU0wIQLAPtIn>v&A}$3=9qRyXyZcl*r4=x3;$4-E#NN&f=>Z5}l`~U%9?2
z)EhKZ@>2ir*X!}16_<B+mzUq%=iV>3tKebN?FCK@3=9wMKZ%!jxCBbrR&{@NfJW)J
zt#fMS(rb1P{vWq3CvtjO>gj1y4?o<ov~d||39CIXql#>hy6I<=*G2dCR8E~T<;k3<
z-%m_b{`Bcn5Gcdn`uXDrXnw)+w;lrn!-sqq2G8~@>EC|;{JC?jckP#itl3YVr2PE#
ztLjew{{8=X)#ouWFfjakIfGqAmWhc;<>X_Ph?T+yOSf@ya9mjGJ>BNr^G8R!&y~%a
zV^bM)dYW!<O3D-7+l&kh3dt(!>e`Bmj{P>DI->i<m+*rewmWWV+0kA1CMvs&$jIo(
z%gd+V)(&6y;>pR$dh(~PM5g7Ne7v$L^)zT<=iP^|7#SD}mV?#<yuH2s{0pOZo-7ke
zIQaR)Gcs0e%enbzTi)emzFmENWp(nhvbxDV+j4F$+Ex16YI^>?J(1z-<4QAshl7@$
zt*c$&Jx!<bxgP_A(TP4;>woXXwVPF4Q%fuv3fOD3Gv|EX#k;+aVUi!HA9`hF@YESI
zUKsJ8I5*e&>T-Yi^xd;evq6Rb<72(WoC=_IQ3(kPq)aj<JTna19XnMgGAQ-bl%3w`
zObn6>_o@7gW&YrA*!S+!_C^M!m(Bck7iJo#Pnj`8!xOY1i%-r*!xOYXcvI@>W&i&E
z&OSHCva7SR@LY>s(Gw5Qv_MyPck#Q^_wUCyv-4jwK5w%)Y;DxbiSBZswNzhkrq9oO
zabe-9na1gEbCehu7$#^6IH-VD=&|$3Oi+oOwzTr|v&?&YDkrTwn=nr|+U)7+>HgW*
z)?EC2-hO@E-(M%MUk~S%HoJ0SqVn9w_CcU*v2WkLs^4$7e?2N5uTlT+kCbiIma1=W
zGJo#`t&^U~$>?%vU+wQpSJ$PSoD{Vw#dFs!yPr=cSA9CEp1)iNltAU%E2*)D8kBa)
zTz);OmDUT~2Qq{wL~p46p0_pgvfIzk&%+ZE7I;n5S$VLTUE9*~=F+?C_y1c3YMVuG
z%i-eWy!g1^e%)ks|FnRs3=9ko&mPXb$a+VcPu6P5r>CbuRfKKzw~&H@4cFGkufHBw
z?Hj#4@9Lh)&nljsot>bi-AzqRCN)0_K$8dgd%sSr`}I;i_tqBAd-wJ{0o4=VA7xq0
zUFJ7;Rq^w4nSXzM1uY|0Sy}x2+^(XhU3Nd82!mExSQb6GFhS9I%A7fC-rnA>t)%2M
zDP&(w<<VouKr1$0-Pu{}HjfRIa~Hm7n(Fub{QT)Et*xy)b<R&#@0a0guc@t7^(=mV
zE)>-Ee&{?2)J{!0+Ld{2P2@LG9tH-66epGmC0(7J6Aj(wT9sY`wb(&xBA%U@`Rl`B
z{;Rvo^I2I~UVM0X7+zo0wsMJX$-TXeXN3#{1H%a$kiDQnnT=m=%|hq)tcQnMC#js?
z^ySlO{nuZw$4^%Qtx20S#XLW5``gdY&aPgvL}lrcB`1y_Kfdn}s7CW?VJPBOQdSP#
zTUEL><D%2Sg9oGbRBUYHkz537cUOOZcW!y&&!0bc=DvRaULUkRRSmSC;z4{j!z4fB
zv@;ii{cV@t-Cb_|zQ82+RtRVX8))tmwC+wp!C}&u=kx1#<<@_E<my?p4O9sI>*Y{*
zX_9xxVyb5Fv9;Bp;ZW1mQzE&yx1If2vgXRVi0jrxPdb{Kn=hAsf4uYgyx=|=%b01P
z!TQ|W+xGSvgHrF>ng8nJuUk(MZ2hxXz~R!%8yl0k`1s1A=S`ZVl-vUv0QvBtptY?n
z>-03;ytih#x0bwk@uEaF`^t(yt>9&6a<B6+Ff`o0`0f9`b>CMmIc~IIT0P&qrm22M
zyF@Q<%e@U+13mre{Mv6b_w3p8<p49k$D~>2`RhQlF@}a0Z>BvxHTBlc;^k3Wvr@Cq
zGB7YWq#c%>Py(8e-dgf92-K}PZ}Yjw$;s)<QStbUo10QWGZLSkoK*IFb$|bU(A3b3
z84{qe-sk7%Uq3NX`Rjvbel0ycy<~q-?R+BP4x{IC&;q61@An1oEP4tGEZgsQif?Vt
zpWntOyJ}<dajV<VsvvNplIxZA@%Erf15_1!dV0F@mnf)?|GI;@h#NFY;@T~CcT4Qa
zNvc~@P6|nDfvk9^dxsGe7u4N21B#i^LZ6mflLmVTzwgm|@P0?t*Hxf3mPd}bJUuzt
zT~s@4%J%QJm0BRj?>}W*&i(|{#r*i_Xz1!NT~IDC&At{gQOR{n?eDVazWt@I!$8YG
zKoeU$JRvKCmVy@N?!FqaJuf!(^fX^ZMa8N=ACH%Qdg2-VikX3d!Dw@}UPH<Id$C_%
zUA_GB^77Ij9}+=D9%$Sy*x$DFdjH;<pGBdoLOj*|=Uo9Ut_97@g623EI=9cs6%rN>
z-I^8p_U`WR!|nXnyY=_2INB|~+HbDau9}~pV%LNAp`AEml)HcF^7(a9&h31m1qB;U
zf0}Dup7rF!#82P9Pgi+*YO43yS*Djy>+i1#e{EU+Zx3ikgj=sv=C?ODGq*__rF2Z1
zJb7#F?=n{x7mrDx?HV_3M1b}QftH}HE(PVtnUTx(G8g^$kSMAd<dS@>=i*fD@HwZG
zlaj71_m^KAz1<JA%W9Ep_m^|l?={rao~^s~`Q`HYuYP=dEM=6^q4Kid{@(<{V{2g@
zlJp-FmPBpMS{bo1X_jgBwb->_Z@e+eWr*BSun@EaiBnkZ#lPS0uU}f~t?HS4yf4(n
zr6ue7y0uA1yH-YSP6LgisQJyQ2!9>9vuNq2^z)!KOQ0P|r)HV1265lr-TnH!{r@Q?
zx+b#rbumv*O)b8?&#9H`*0$W+NY+hU;x1R|V*lqu^RBYDtIFQqTItx#1{%-+4Z}Qn
zk^<Ucbn@iMS+>>NoSdECXX)-PdmH5C)iui`b5YgTSDEkb>;$z=zdmf2UlqLEZ_*NF
z_dbtFpPrq4y{#6~AzCtJ%9Pzv>YzG!X6h>jCD7)ks&6;bzuwN@uc@Tu#BcXw0chs$
ze*OR0#Kgo;pFV9`+Q%)fr(tOsSy)&oWtuewG^+ucw9CG}ZkAzk8)$g#$&(b%N%QB=
zzx{1xa#+x9P{;DW+f2KLm|Z2F>F4K#W@M}Y^%_BQY0=wqK&7xr;Uky+#|H1(K;y?j
zv(0j2rftu@?srULZT$XwH`TU!U;C;Tx97zsc~CR^zQ$!c*4HN{D!;n2a&p+32*u<c
z<ARXYVZNZ&{h67@SGVWK_sUv_B_Hbv+?sXuU6w6qb<)%6@l&kJ^QJ#dOiY}#<nnTV
z>)oIZ*ss?=S=iZ6A3y$l+3~7(JD-F07EMphy}d2;_O{&rc|RE#7<Qyy{{Q}URlAMp
z5#1A87?*(Nd_6oaoSLdFDk8E((Yb9!<>zO&_Sf$R&2V2^8x2|(0UAqub#?V}HeRVa
zSC{)t)r}4VE$IPem@OHB&p#b*=l9+v=5pxpVNofmRl3pJcI58QysYNx?!NqW1Zbhf
zOrz9yJ`X`nt=YH!-M{|TZt9l^wkw~`Pt4q%ur_vg*m=9(YgUD?Uk6&%rtH>pVP)|0
zFQ@hQTij-0Vad3#z!9`aLg)0Z)nB({UG+L9QTylPalO;(eseVB<>f&eZ6<-n({!V@
zcyxAlo-@-9Uv~x6$6FP;dUupEC^_6ry=ARX`T5z^HeTr~TeHJGFSYSXr$kQs^yK8@
zYug+enPyoQKZ{+fZe<k(YI`m5oIGXHq(!f;u73S`{r+pu=hv_M_xHE;YrJ*#yLHz<
zOJGvUW|}qdNSpcO-r91}{C>^iIhMs)udl6rb$9pnPft%zPc-e7w~u4x7P|tPN~r%=
z16tY#+Lm;Fp6%S+Pft%TH_g8G;^*`E;rr|Uf>v|3@k)crmzPriLG|>X$&ts_9ryUl
z3))b(DfM*8$49QAD*_y+YK5M9G3ni^wb9#G<=ouV)!(1a!_iRRa;5(Ik_yj1yV)Mh
ze{f4eVBPh9`+Ta|T_!DBwCKy1%l_#llAr|rZi0_Bhb*XAw&y2iTkW%X916!IKpqj*
z3JF*jv-8Q*r%%5<eLHvMd<{@r)?sFi+=LL&h_3bfJ&Rww$N()I<l^Ew^<ompx<9<%
zT^K;idq8ce$jxb~C7K}Nyu-E^S+y-KBe!N>Klj22By?w4wNk^CRiWOq&GV6kdStD`
zKr<Z|7CM){y0WrIj~(Rr`z8J?6F@sn-{0FSWsuNt=+Ge%35gYNZf@RP^Yp|-<;AC2
z7#J7|gufqA`10)R?9-dp^yq;qjsv;7)R|5^IXT&Q7f1m^`2pLDtlS_I?VXqHVKyp#
z72+Ax&L<0+efmAS^3TWP@6#ed&dUp4#-mVJShz{YJNMR>iR;&|fAr{4-mc!%NbrVZ
zg~_L<Fs9t!S35~1K0bc>dr$=4xowonpc%2@0q=g0n+x)j1gt<t-6m?sveDDz3R}zC
zUt2&0_ulI7ufDvzY;<hLn(aE?^7VfT*+M~PD%ig3WY`2+yqIy(Y5)I!yFsP&f&~iO
z&8DTMI;4VZ%R6c-=m07UZ7M%yyt}hgD|A(e+jLM^Jjmareyrimy}i+UtG+7LfE0h<
zQLWS<q8k<R{QUg$Nb$1g<1uN_c1|H7A){R)AeGx6&XZu?RP@xVwXJPc%E?Jxy}hCT
z{``FU^y$+}$2RHoN*b#*Yk`7zg4}l(hRXkczt63Y-;y!$IHa+t@Oig7(}}CA!x8ad
z$Ock=!2YmpA-f8AlSs-*p||(<$4?5`kl+YfqaGL-C>aAv#SLF}q%(QUx2rWtJ0r3E
z9cV8!s9bUDlbPu_6%_Oy>#G-WU%Q>Ze{JAmH&E3UwZCpJXsH5duJG@#uUVii5xr7N
z0~focmdphCC-2d`9n40Bk6b|Qkj-glf7QReTR9>0>)ihj%eQARZ(46Apu9snutY@m
zAWIDAHY-0C#l;=B7w{d^ow(p);KahiD=aSVaOw2Ea$-hd$Hqkx$73ZH?_e<x+0w+*
zwV-LC<CA~?Jl@1tNu_emxxMy$aOvtD_uub4yZpA+lcSc;?^V6t{dQaQyB&}Fu3WqJ
z>{j;rvn!X+i(1CX$k1^0qRP33GxKb%f4|@V|M|Q3`~Uy5TOz=~FsngLPyw`fulT&}
z_np7b+kTI+Dt{OAz=eU~z^x1+Mx&Gy6Ydlo=H2;XQTL~h$K|iDt^f1!_|6}Xx{D9<
znm^fam{0q03j@P}R~bUz8+xS8^^DWboS2zDZ)Wj1OZB_EO1&rT`Fzega$ij)8=uUK
z&*$y;p9yASU|4-gg=xvuNi}s0400Nva{*FMPpkZJkR9ZTE5BtXI5xATet2-u^1}h<
z;K0DZXPS%*4WXGrjGtyU^V?al%hwd_JkG$ta4l%^4t5p>h95;4Q_>x(zP*`w>eQ({
ze?FbQS#X&5^5*pOp>au}fq@gR$Jg&&01Ae!7d4olMBo1vrlqA76d4)$-jadg!WPq0
z3^PqKFNxc+Gce3j`wr@(wq^=38YLg=xl{N1?bmB{zi;1vHv9gcw6fc|+hZ!9PEDP~
z!@v+B?5pH(&f;;;oyzBPOV8i0`FvKU=!9bB=d<RMRhG{!i(0q)-L9fub_Rwu%hUuF
zKw<mq`}_Fsf1b_GKgTAWGa-F`t=Z*ezNZ(q%gvhq@5}PkIRXp}5wgBY4t9S&94>it
zW8=G@`E{RXzuEnM-^(j2gD0ijul;^@P2}cNrg97n8)nUNX$T1qf4+2joY$l?bFIxm
zWBi-%*ZscwRzGgfj(57%j0_FORtN6megD7o!$J1vt5&b`%FWGP<~w`Zs#U8%ZY>4J
zc-7Zep~pbMbM>MM(~~A{y%W{%_fC(_+o}5Y*4EQYJSSh;ntfg6q`Q3Wl#`RypU3}u
z8h^@0m4RV{mamcnXeq?)yxnh$zyJGj+<sZ=>1nL~tPBimR;mdq#4p*j$td^sHr?+M
z3=9XdGNv#V{rmZR`JzQi>2piNw6wL0|NVTv{*$SwsHo-dH=DU<@G&q%ME4pwoU{FY
zCnO{!<;)Djn;DCHi{9;gzV4GL6AJ@_)P6Tf1?{jkKMp--U~stn<ghUVL&G7HP6kl0
z8>gO{a{lgoqg1c7^YdcwI503Ah{~KYJ>hTs{r~^If4=B0|MUPef6U8&{&k-wZ^^!{
zSAM6^{orIq28QfKo^u#0Kb=(H{C?l>x_AHXRllF>E?>LlKqmu3!`6!`Oeqf!wPxPk
z_4WC??O9i~-tYfk*C-6qx7d^A#Io6WvyRKx|0(`1U;E|amlqcoBeeba@NnnfZ?}yL
zA04U6Kl%IR^7+qBX|F#sxBTAB_jTWQ!=n6=+Lw*V$DeIHE_YgU`J71~A0JPDy>`3b
zB+vv4XlBbO;XuQj(rb~a^Mn`}BBrVpvMpJ)O6&Xm`ue(Wo98dhzrSy$eSO`t^YiEL
ztNs1#m~{S`D=UM8LqkK~8G^D-hETf0Bv53y%a(@pS-o0O)X&7gux6>6u!85Nl9!ik
zKA$nJ{C>Cm^7{DwC9kfmyrT^A+XBy+rl~5z>V7_@rKP{VzMfwH=Xm{@&*$yutAK0+
zt;Uhg-?Q<IFf>O$SvEWG6v+9G&1_GPN$2~l3|V#i^_7*u-)?2=&u`*mVDNRA%rW7#
z-fkUG7Owl)9slG2Gk?y8|K;`H%YPo0{}<49l7XSY6cpaq)<pjNwtfHKoxf$RN<MhL
zU|_hwV$#Wwd3{~%v-9)+@BD3?e(sFg?3^G(Syl1jK}`AG(w`5S`K8|ceaK&b;_LPJ
z`OSP*D|n!B%yNQNJZ6Hw{a=&4)!)zc*L_(W5)$&{x&8l2KKnl(-fTLp_wv$G?{k*V
z=M?pGGBB)hn#?gF@9wUr-}nEoW#g5aV*P%P@zNm8?RSd2m-)<`^zd-|^OeizX`N1Q
z>XEm%n>uys&BS(DsW*H7d^#;@k`WNKJ#TKGtaaLv4#D^eNl6BV8c~y({7P>?OT%_N
zYy%anpvc{nbhNAF-5txRQ=ew8uq=M|<Pf*M&+4$XVY{|JpI5!C_V+hX@w+MG;-Z+U
zmrE-@9u+sP{q@Bp`&vrf8wQ3Aex|?nbN+wnUw`WQzHeLqd}y~n!(aEIS;h1Dxw)rp
zLW_RAT>kw1|9|f{*Zlm%_Wpor-Jc&ik(*SE)6RH&e|LAX%I<f&vcKIezwa~4MDw^@
zb&jPQ8$-jU>@U+n>pzV^dpwUx=f}JYd}Z_Lg!0bc?{*g-6%Aig^8elL_kO;<zOgkb
zCqda|?Y3K5`~N)E@0Jo~V33;YCa>W6Y3}<P^~vh~>%Mcocnb1m&HL*6rwfnEPJg@o
z{=S3%tl#gMTz<dSeD|A8-pzYKDfedjeBC4;28N6&Qh!w=JdJX0Y?xE=s8iCSAfeCt
z-Hx1XH`6jNE^=*tTz0SW`B%Hsrq^R8Z@*t>z5n;!_hGy2%irBm@hmMZZQlFp)hnHd
z4GQyXK6#qmDLDMqN}Ykh#LZX9fsIEZ;QMP(-ac5jGQ`W()z$9rm&;$RjyJJ#e_H?l
z*Lut6bBZr5bZ(z2w>jnHBo)ul(9q_+&(6-iF01Uo!0<yWONg=Paj*HZMT-{QNq(|s
z^Et2MeX_<?UtXNIeYV-y*n7HO?uPK_=;-$n3=BV3f$EW>Cnt*fCq!;ed;073`twu6
z<7QeGKU4YndFJ$6w{F#ZI;mdydhPa0%Y0|=@?LMZTjcfnvvaM@Wvxmgp5E*a_O~_7
zy}fPicC(rvA9&>LYGiB885q{wdRt%lXRH0R<O%vy-DDNEZr!@``Ml~+&t~T@OFrJW
za^=d%mwQEBXBemZc`Xgv_kHjCr%NXLWo@{>I(+?{nolQxe(bNGb8fEn^Owu#=M|j!
z^78WK<^J<S|HVy@ud7u2zL|mHgKOLWrysB9c^6ekrv3bsv4!!|yWQ{8`fb0Rn4P~b
z^834R-RNy+>i<2jPn%!+O|xd+y}i}X!}tFRZT`CXoRxOBxc<2#ox+z_hp$(uue-i(
zcK$xg;%8@8R%_p5m#;BczwcL;pZ(u2PS4pG8jdZw$aZ2!;bWufZ*S&Qy;^xQd;MOc
z>}zX4&56Zsy{BHU-yiqGM%KFQj3c}3m4v^aPV4)-y1Me&d^oUctMPdo<H_p&=NcH9
zi$0xHPrtaxb*4e0Q`w!u<8FnPk_-$}ychFM`2Bvry|P=+i55=bSJ!rxy`2Rrdn=z#
z4d3+jTJ-e7UBCXl=lx_`_2tB2e)~C>{j7D9kN2H*lg^zoYt}5#boK6dMurbluVpYl
zdAt4oxfzDZuhxEjf8Ty-kml!SXR}QhKV5L<Ut3apJ9qop+V6M6KbSBuT-afH%ik$}
zS4rmG=V>+1Ha|Z-U0?sW2Lr=_`ztQaWAvPKb94Ihnd$RZR{wk0F0bYpSN(SDmh9{6
z4t~66$;H4RwcSltA$@*r**Ux4Z`fX|&#Oq<``oow$clmC!}iQAj767y&8JqgFfb&@
zW^Z9EdNR>{8jNSYkePuY-VRh-YV?3kIpP8(+=fFO0t^fb3`T_qb(o}>+W!4=S<<$u
zr0V;-xnXOgp1zL%U&UwrX2YIux3YQrKqqb(XIxkSTD<_u5*>odM)m*x82RurF!XwF
zF5<rs5>xZ>Xyv0$bx_;=&4$B#Kkxtldq1Z1YUs_%=W~s7Z*9rhez(kXl4bF;l=HUV
zeSUv?TYS+~JoVxt*PUN3d4GP?t)KSm%gfAbXZmFr8rJL8OUL;xpI=v%xBu_ADn`SS
z7Z++COW!}?Djqupl&d|B2-PQ%&)69njvY{qSe^O(Zh3yex1?^}Z706n&YwR$u4-l8
zTO9QW_iS+n1}SC6Pv*1C^W#8`4VB90bIZZS(Dc}{%z~Kv`)WVG*?eBiR*r$eM2qQ3
ze!=Ut+tbd?v6M8+iI|k~?#@onNv~eLVmlrd9-e-%iS_4`$^Kk(1sNEmgc&zYi>v$j
zv`5a?>hG_wr#l3dC#iT()A5`X5*li1v9I#;v#))O3=Qj*7&nPMJ3D(iGoOV5Xzf94
z`Q52qU0o`k-D0|vR6u3@hgr97-Ksjyz;GaZV)?-+XZhMMfuN>Bzuhm5e%o&mW;atN
z@7jA_Z||=+L2LG#mA|`F^5TM`bl#4KTJ;#E`=9(datsYu%YVnq)xYh3D)GeIwP8);
zQt#=@mMv4;oObq9Gr!%8wcGFQx>vV7?=I-j9h<*jF7w7&*Z%tQ<>lq{t#$KH>+iR*
ze!u6l)l5l-hOMT5^!xXhMNc|>+Tir`cJB>gm%Bu@jY?iz@R@C<3p)Ah{=VAqsypTT
zKF|I0>-zq4b1aKrU6ZT%aB$DBSF0thN-_c;Gch<Ue!_Di%j)fx%SNfErpT0Ba0E5~
z@^-)7R`vV;7ytiLR4hNAF*dIJ^n^#kKtX+eO_7*x)D%u(wUpzs<!4SzR6cEB$-rPD
z$CP3Unv7bxV#SFmn!zBm*nZDv_2`$g{q*55|MM-E{Z8N5n7sL-oAlCU%hZI`d?MEV
zwr5~?aN4I~&9Zj6s*J7ucgt?)7T>S^zV>(~1H*#MBG4|f00~AW1_lu~aKBAZfq}sx
zk%fbSfmXt^rdBgZRlQs~{gf@!0jr1SjT!#wGhX75t^4utsT?B%!!>TkOB%i2Mmz2}
zGpu3W?^#r~vz=jqprAr;(0LW>>D3$!r3X|a7_K~5D;X`1Sr{0oRYyhoPt%Q_W|(|z
zN%i-4nKw73mff%Y?laeF>z!mq28T$_316R_Q0_k?8XhxIxz9og)UDZ^cGjrk!voME
zJWu6#85mA2i`>cn!)TUWZPmLypU=gV-AuLodL?+Win~mq3#dFcK4+l}%G5K}Sr{5V
z6|kk)&akO0nq`_j?Qx&=y1cckR%soVDfXFH^XcT7na0a|E;BMX{N$MMHQ`u~<jt(r
zYcGLLH+fzA``g;v?2yt$4%BhKdi5&rwbiRv2Ww6Jbk6$ylte8C1`T`0O>&@idT3}U
z@3q;WNqBw+hIrRJr+9wQsZdM3r<+BrU%Phg?f9Ah<<<JvufNE^_3h^T^!=Wnf-Kn?
zBi#S}c|NN?Ag-Dz#dgKIb#X6K!-}7u^PN=k`daSN^|NiOzs1*;o{g7dh!;zrUd_-@
z3fj#2^7{JtoyRjKv7D&7u-t$CpYQem%f<BLV&1!bSw62yOH@?!<>lq)z2dk3|M&a(
zwdnk_X|r>`?M(M%V9=Pa>OC#x+nbv=>;L~fZR<5TG*D}**HgJir$M#J&D!sGjS~;G
z%qhE->G|)^$rqr_=g-g0{ruyx-bN;d2dhs?PWZYY|NcHnqZE&0eX_GFKR-(aRTE1*
zCx5yYo&R*%>^!aS6$}gkX6G8#sGpvud-`Vj{JGKjdri5;_0I5FznQ?Tw?pCgo6Y_^
z-I*C0HbKgP8a_xtaEU`FdYex2u^!Lw@9tjSlzRHjzTfX=T9sz)JkG?>Q0muU!sISj
znX+!jqb`}kBZ4z63PF=!(+)PXKkrnZr|~_5fnkH+PWB~d?5a=S1NC2*&#TIsl=AY@
z(wBF4mxCIV$K|TmfI7klc0K0tnCUyu#uC(VDm*S5zCA27bZT;+rJBFp&y;6pW(FU7
z$-t0sS4bh%EcsYZ&ep48U+oNSe|}Eytl0*NVKJs9XP%v#I~!DUy}o+&s^(NLP`!7`
zK$L-DjXcwmGt+b;C#_nwitY8;+2-p(=}4cOF(^$pYRidBOTDGnT)%eh+FNFZ1Jhd>
zG&jF`^$N7C_u#Me?7O>4wX0MZ7$WjnJZ64<d08FQ2nWS&{@<0$=YcvxzrMT-UUm}X
zIAMj<vKI^6(|&$>y7S$x*RQUDvX<v$wbbu-%l*H<yL;L~mVseS^x0Fk2f}0T@2fRV
zIWeI}*4pgzv$LngqH`vCPF8!mcKf|kzUFsB-hE_XNSOP{^F{B0O{u4gzTHd*C!9mA
z+?x;cS%Zh0?0&xqes>Y1ObA?j-(jYpK#w<?ox3fv&+gZYqW+D3fBrnT_fJhtomcs6
zX6ZN6^PqvHuwVD(9d`Z@mRP`9`MB5IDC^3KoP9r^fjX9;<4XSh{hj{kNaxD6Yken$
zgoI2fJvLF<eOc-2Yp>tDUi<p}@<odly|GtrSidRlDX6k8e!us7+KUSdL96ZDdL$;^
z+gqJ}b5m;Nn~ledj!CA2qWtGe|N5wRhJRV*8}wBi7-lux+?<~N<HN(3H#eu(ecye5
zsrPif(rWcN1y09$rKeZF-@Cm>nCZZ)LQXLU;ewAx#h*X!w?B8j?%U?7j~{2o?X3cJ
z=AvF^i|fVAcwhhjH)zn|(yr3iTXJukHM8@d`+VO1{(~E<*X_~*jdC25&Y#04Yn5_6
zw*0JY`JKS+`zt;^np1R26J$H+Fr9U=yVLgn{dT%X()iko-<7}LZZCe+sh&1Fcbn(w
zX}XtJ1~2E4wKB=y`}LYv|NkG4`;D`%tSEVPMH95{W}>^?Owcsx!NTu%%j5U`Je$8P
zbahzf<z>EESy`Yp&!Oi&A7JK(H8d~pDt(=^`K+1c>ouFNy{KkN_-et-bb$rb^zd6B
zw|CR+yxnU*X5X)P-23Nx{on959?41bY^&4m?Wx@P?N+vN!hwb}b1aQ#=WOzv^aRwG
zKB+!`&O+z*XH$axJacn%=hgrF32N9JZsYZy)FWl8Rery=+|TOelAPUdw}EC4KHo_0
zf4X#foY#E2+OX<n|9{T^e=^wLcIv~!?aST!<!0Jem#y3P>lKfT1?b=cpU=<EzV6eV
z>IG_!gO<>IK4-1Je$OW_keWSzzum5Uv9SGB-|nZ=qK%54oZyi%(U=}n<oWN*a{H&V
zve%uQSN(1#XpDDu-maHk=`$^h(?EUJFE1~vKR(v$9U2;%c6QcOP|vQn{u;xYHX(-I
zTki6;A*)ub(2y-Up}4yAPulF<FsoN97QdROAH8kOLBssLU&B^betx!;TW`mLytnfI
z9?E;&|8dNG-v`hZ-E}3GJk@I-8Y;W@>1@rr`-{7O<=VBm8_aTVZ3%L9b$xj)I)82S
zY?I8Om5UZFy0Sh0{-sY(PrtsVzxT_fpw!gV%u`b|mj<m2iP}?9xU%;5x22E!?f2cg
zUi1BKx%b;!TeW+oOjqT-y;FQ%H#98ln(h8aUD{q#r%qkU$}Lv&@C?HmX}yC?8Bgqf
zy;!Ug`MP}Ct%Ae6uj}?E9qj@Q#DGQ%u0`j^zJHs0du#S|`+pz%D}TLQZvQ=dYxZ?L
z&?xwwoyFI)rkxK74ZZre>gT7YksA^mtG>RPTK4wV+Aq50pt!P>&e`C2_p`8{g(8Sm
z_j&ex70-A3|NpD`@vt4#=)YJ0|L-n$S65fiKz&uZSJ*dO)syS%zOJ6)wRHc>-%JTt
zSvVY&uP^hRt#WdaYxlKRUzY}Hg2p_y-O5@W5*oTRc)1^F1Te1RVJpbY(&L~hsI^gB
zz3%U;-F!7HI`zwoi@bWyyPiz){`9C@|5<kY?<kO6bIR{kf<~aPS1h}A>(-p&bCx$t
zF8jVd`{iM~{I%JdKR@rz%H4QW?CUkNdlipE!o$<Qy}9W*DROh#(h#lG2L~Eo-q~4v
zcd_?$y~+oT?4T}A-8-Fj*|G@GsO#fCYrWXrWoJJ;JY0M|w!BlY;j2pngGmu+ZO8V!
zyC8S0yZZWgzx@2m{`R)aY&<7&x8I!x8uAEU?svBAcJ6dh?XWAd+s~Taelj&Y?j&gJ
z+4lP#V^HS!_5J<)&*!Yyznh`x-1el`{N9QE|9|gaUj6+YXcT4J{kq?OzHQ$hyLhHs
zzua7I{XGVU+jvidIzjAm6$-)2{XqLMUY*^tD{M`~#ICNcJ7u?XLDlNs<IMav6RO|s
zd|n)Xdr#$O(8wW398^Av$5kkTy!P#OzP%vR2Du%avI{s@tXz2#G+3K?dD+^Jy)XWM
zl>a|*@3&jp*JI0L_kQKK`=Kz`x_sUCYl~dFc_fWgoZEO#etLSk_=IA6%AX$}C9TVH
z%x+~YR`I;PF1Gm3$K%g`JnldL=jZ3mm;J0$|NQs}YLi^gST<4F{n;dMy_M0?yGmYq
z-M_giMC<9+>v5;I@B6xT*Vcafe-_2h&z)stmzkh)v*z>JV6Ca3F4mi^*W*^(9*>u{
zC`bU!VsQ$qfktT0fQFB4zFct5{`-|7!ZICHu7lc#pp?GxxZLhbr#nGsJp0VCC|tV!
zZbCD!)F1DEprErXes(1~dP9Qa-shk;!nWIavx8Pn@wfY_q8+wo#cuhh#-MFi+w<;%
zM&?a_)tTK$Xl6^dQuCWL!{7dI$<pKT<#$U#Q)+iVuU@~;YJT0XOg4VGIVvDeUS8%q
z`_JwDf1~$4wgYWQI6pV_;h|REYoPJ4DPBuW|LtRlFa<jmRE>!5|KZxkD?KfD``vB#
z)EC<S`|)_DO=S_N?wq=B+p=Y9kB{}9zUVGL*Y?{DW&J%LoIrg(P*wT0?{@zFzne~~
z&0Z3}zwYI&t=Vbk=FFV`=ZX5tl`BtzY8-z1KL(%yHPGCaZ229-wNYD7fzrhC`E^#H
z%>TM}ZR+W1pt#{pdwF4@v!BJomMd4TJed}q=Q-OfchlXn+fPrb&p!j|@cPZQTKlCs
zVp~q+w|mv^L6wpI{y#-`Z@<2F<%-JB&#770V~Tx2No#KTJxfs84{BI`yPg01UiEw5
z|Ns8ln_oC*|Njpt5n4WIVE*)VeZ4KHr2-l}_BFq2^7r@m_^0*K4A%m7-mBwoFg4G<
zw&v1`z{OsBtG;TP=HJ_MWts2nOLEn30(ZSywc5*jx}NS-ucblf=h=F@%h#6N&7P(g
z8};iTe_g<<dwZ)hANQK;)qb9RU&nX0*;<o=2L~?2Rlf}_zw`Bae7uxFf&*xw@KR6@
zdE1?$)0g<`e;fww@bX%EY5x6l<!5FXE}dI;Yvq+~xwnH}Ut8;K{dP<6%Ujv&*P1^*
zF;Urj>eQ*)wK+SVP6L(HpsjLVpbiJ<1iqzaxwodU@yo?jeZ3kkea0^H(h^Xq{_>)`
zysm8hpN~uXWUZ&&+L9S8WtilW2}%`pcKr5#3SQp6|E~;O-h&!>U^iWKmyfM_HZ%QI
zpXK*E#onN@_U`9)xvCW<CluSKRDF37n00SY<x2N{xuu8s?e~~uUt6>Psl6z}{Kbnx
qirQrv7y@`8v#5|(I8}P%|KuH<w=b^YZ<-C7X!msWb6Mw<&;$S{ml8Dq

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score-5.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score-5.png
new file mode 100644
index 0000000000000000000000000000000000000000..10abfd9f8a04e66f7a2b9cf1fefd20b85cf3f953
GIT binary patch
literal 24344
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_eCLL~J6|Nqx>tQIb1;#6JuSXXM*
zC1=h{)=W%7f-VjZ7HiyFq|ssG%F504!dLL6l7ffu5>3+vQ!y`%g~F@YI1B3PKb-v+
zQO4|;AoS(uj&*xg($AgQvt8v}_VY6`rzMhE7#J8B%nDLU89|JHwj2r|I>(s-#7~fB
z;s9}P3pjwN8*L0s3=9kh%vc0K+--^tAZi0IBgl}3ToSeJSbg-^u~QFsSpS<c*S0#W
z_V>5Yl9DYoH8oG3K3)2L|9`vHr*~y$Ut2Tr@WTtM*YB%3{!LI`UcdeD!rI^8?ryAI
z(%sb+ba9dE`yX|A*S^L*Z)ssUdi1EKj*bssyYti2)2FAre?2Yo=GU*R6H4Fp{m*9J
zp)AAKe){n3+tG@OimPIGZ(HUwbJEqPsa>g&n{-YuJ=@3pWdGxx&*xpPe!qA5?{~ZX
znc4ZSXs_S1=+Dp3@#S;BG(0V^Fsc0Xgy%P}q|uR^>$9(~+aB`#-rnl`(`9+B%fFj$
z4hjk~DR~hPx;o4^F){Je*RP=&87s1`tyw9k?Dpct#l?BQPpz}r%a?wBUg%=C-YuoC
z!%AOVaBODh4?924*7!~R^1Cm*8`iAgbolmc?p0QX6H(JrGe0~yXmm_NSJ&6N{N0u3
z^Xu1{W?$1#RCIj5=d)kf^dJ2jD?TPo)e80E7SlQL#p)${{=Iwme!W=SFCs7h{@QVg
z#h#PZP98t*F0LQ9r&siTt(b1q62G}tFW=nUtQEIsN7UA=r5`>N%(bhHir$`gb%A5E
zNzxIHw|901KYaKwGWK1m?S})*UOqk{85t|Qe?L1ryY$Ts!(ItPr}Osz_nh7|QQ7@f
zt9V>MO3ISl(t8>SYofNE+7`udN0vi@!6f5?!u0v(IX4zanPz3&*-`lF{{H=4BASz2
zr~b7)He-$6!Ntw&{Hwy&M%8EERr8&d@$b)1kWDj<Qe&p+#_kIF{q1e=>aevY`S<oj
zuQT4gug-i^+F7ZsSy#R6?CfUQRBo~=fA{9v^Xc(*f%o^-mj3(mQ)k78XFq=bUY&As
zQr_E>Cr@tD@n+=`DTtn?A8+^c^z`$6pNw>^tgKdhGfX&Zz{1@yTPt+cijtR?jE-q2
zDjrOppL%-Q%D}~LT-@A~_wV1|C9c1Yk(uqqmzS6GYU_VIWCumo#fuj|eg7U_QL#fS
zWW|Ez^XsCf>%|s*+kNlH*E4*ptKMup9<tm|_W8`YUlKjz;^Lxqm#tON)YbKUzvpuw
zNXLT*39M{vT2@w3x=~v$oSLd_{MSm>t|nq{_4lxnk}ZG!{1K6pTX$`3boT9Sxq5%I
zuCIG5vuIP**Q|8k(pOhbe%ZIH^tD=YkDA|{7u#|k9qHua;R!k3Cu<z@|I$)#Df7HJ
zt3p;TvZ?%}VPFvO^z`)Wzu)hFFJ#fiBe`giYxk*5I==I4Zl-qJyRtI)?zZ1|%kQr&
ze0+?Hiz_H0VL?)I^47$|Y}4(S+4-g%et1EBe$Ate+j4JjJNd9+MdaqRnYEU8B$BTz
zcIS`XRpJTq(D4t7o=d%_U;Fg*bbdwKgEKRYs~-27hiuP_71atk@$;Wq{=FD!^Sm!R
z&h09FePv5#u&7pu$G?C7v;r11tO{BA=-W)&sxK?%)qabdsuvq&S^O*{AYg*mbiK95
z<*I!=Jw4CWU9Wp~x&7GD<Ht`+JpNO=^Vi;;_ugNarW<`_U97dJPDH@JfB(8VIxaZ#
z+b*#zezxPwY@5nWx3*+1PCDA9>E0)EYO;F&s_^ye{O$i<SsGtun|*!VRKsIWHy3?P
zw_cp>pck`a0VoOY`~5CBAz{I%Cnp!rGR@v~wfO74U1e`q?XCX4s`mFcE^h8%2Zsi&
z&{a#0c8gcn_%o#V&tYUNh_$n`%gc3c<GDCN(OE=DXpx%lEDal*nEUnr_qz4VtyT4&
zmT|a^_tZ?|<x8|5K5k@}E09ZYb9aAzW~TA2oyE)Temr32l{WLSEP67br21Ib_MDrS
zDnH0bORv6hBjWj{6)QA6gQn}nniN0tnW`Hd7Q3q?(7~aBPtIn=*VosxZ*EFm6}|l(
z@At`5rYy<2y6WYJhlf`MFYlA9d?NVv{{HylXJ;-xI@)cTf6vA=>x##vsR1Fo%W`?;
zY$5^!1J5Ofy!@KtwlZjG$mTR(-`Qrqi`{yQ_UXI#$y{9I+I?kbar)D9b8kQ1C9WSA
zGFi=cOU=(BP!!2pmrdEffB(LJzp}r+yzD;PJijdNbMWr6Tu=d$e5@zX$EPQ1OUA=H
zem*`ur^~kI+*}m6*llIj)m5+V?cM$D?d|0|i=VHG+go*OV{*IK6b(hsR~Hwz$JPHW
z^_^jGFxlY8hr|4-k<&g~we3$nJInOf+wJ#5HY6PMiQWC^>C@7?Pdht1t6nah9<n-2
z*EI8zi=(6Ct?l{q#q?rUfCBsCBG*;%`}b`IWreFtJcXa0oa}yfmT7QG%95a<peZwE
ztl+o%;h?|&&n6X3Q`6AU)nQlX*;b2)i!V<*JL{yx;=R@1vmPF5&APoUw{3p+p32Wz
zA08Y8xl~LiV!^Ysv#sw>{_;QVi?vDNBbTqQu6p0QcQ5POnwefxG!`y)@6URDZSAiI
z&HPuk<wmF9kK0@I@?Q1((6v!pLl!tN&b26Xim&^*)T;d5n)`LXeVyBQ3Rk9ITH*<E
zf3e2$C%<lf3-OPNn)T}X`t@70udni%X;k%U<?=7j=htVwyR$Rv`ntLMe!sKc`|VbC
z-fLA=)s;n0Picj%nITvEC2;AIB^lS&L}p!F)VlB2tJV8!+XNfV@-)=zp5D}R_+deI
z{N}XYkDopn{rmUt*@uUR^-hPajY`!yZFF^YxOw`yIfapCsi#DeBd1k9o0&c*_wVoT
z=6vmkYd#(o&--mz`fAGQ^B+HcJod0)#@_1hyS~Qmt=hU#=QNL`(UGOLW@gvkTBcmN
zE|Kgv-!4~%uYG0A&P}(Cl6yQoJwM*4Tl?$lYw7mGiEcd-4=?RYJk0j^?b}=@XXmr>
z^?x32I<rY9cz4-bpIrOcU!QMp&7MBfEO*vMozrLLSYF;)bEHEMWM}^Vzt?KMUJXCC
zN$2y8<o=yGkEe#m8BR-`S@-wX%+u5Lt#9kc@5_;^|5Nz5z~aoIR_?iPJv}|;wolgk
z`?b_UChgUgm3pU-^~>k$oHp89{k<$R|I(7qLJOH^%jee>W!hJNTXS-%_H@mlB^}<m
z*MI9&7?r#TNRFKL^3KlUWxwKewX{yTxV!J(GS{;B*c^+(Lu>PkiZ*q2bQpZUQ{3-e
zy*g}d&*6s#_J2M!-?j?Rf8MRX&tO{W%zuA>@BZrT?QQ)0+}z@Sb1puw`1Ir?$Tyn7
z%XZ`*zWn;z=kxZ`^78V+LPAMG!os$8%U8d>xA%5(Zt3f5ru+8od-mX9v)*Z&zkG3L
zFTb{~`B9J@IW6<jlFpqaFDGsOdt+m=nwHin3mLx6iHF(JtAC|mdRQ=Hp>zAL98j@v
zY?IFA9fgm1vKc1q1=Vt&dyaYQ?_E;%_Lioep5LS|&t~WE>Q%3QKDRt2a+;dYj0G_}
zi+1W%f4S%`DlGiiEW~-2(Y(J=m7kvM>^-kktaEyjq1(QF`{bsxv$EbTkUn|xWYor_
zRxWY9HP7c&pG&>j%x|}XPu5C9RrTq%nEt}8X1TXCG&D}6N?bcGU%$pE_0$TlsakT^
z4UfIp`~6;UBNOYFYti{TYov1{r`@ah?CbgI$Gp29Ute9ldoH8o?XA#z_wL==Q@Po@
z`usfG)Sin!K0c1UW&ig}@LcP1zq`B3_b=TX-_9pHDK%0nV#9;`_l{jHdU|T<g9i!Q
zzjbtQY|Xsvw*SwkZax`{2RZ)h?_Pd>=W?0N*U#U+g(W0BSUctI#T|u@OI}`5-TUX$
zX|32@TW){q=-`+>-!^vh!?$nO-rHOK`q9yDb5kEf<^R9$|9?_o0e0*iM{N_6kY+aC
zNrrCnwO=OQu5#@Xx!A40@5QCC{dKjXdNDWN8nY|>PT~+_*lzf0TI$Qk{q|wg^<wY*
z%Db~85Y$|;t=@J#H+DyX<MBS(%O@wRi;9SVVkGm;jg49N_Ur`JSyf+Ot&G~56=|mL
zur6jNsJhgR+TvkoXqa_(*Ve2nD;BcLRX8v*GS0kp?AzPhs-C7<S3X!wS?)L2YL;2<
ztZn)C*ZIx0y1VVx-#>q@tPED)`~TnXTYIawe|vLtaqRB0%ri3#CD(nvoxfjGRn=A1
zd)k!?3!U#ylTH>95Lj^J$dTFWmOHg_<>lVHckk46{rP_LY+hcvw;|El)!qH|WPiJh
zD*_kKVSga3<};zczhAEY&qwKZ`5zt}%u{^2@wi;@!$Yn4yS|<I@oaX!N!go-+&eo0
z-TURPwsMQlIjwU#sHkX@@rRN(Hv;F^|J$h*zHUv~+gmHk-riajwszL-t!i7dt_G!~
zEOG0TS=rLU0;;aAt_ltI@i`+q`+VBvWxkV^u<=Tztor}&?{CwhCmw5~wt9gYhgn&x
ziX(r0-Y5F}+}z9SVt0pZNN{{^uy^&+c>78Js>`;{m?6>cxHVv*lVsd%W`*C14GaZw
z9P?()TE#1Ewj%rbI#AuyC8GJLh__V*R6tMHi{16^=!0pgpxh5?6fO0dx~1-K6{wP)
zU;Az5GT+&1$vs|EwU&m*Rl2^ty?y^=|Fes4Zcfj>vLbMnUG1*oJG=Jp-w%q*i;Law
zfB3fMrTDGtUECM1zFqD&ch}xlZ%{3Gul9Rv?U#%0w>GEu|M~mZc+Z2VU7zYaFTLOY
zzwYk$H~seicD#)G^z7{GjdyR~zWwwW)1|5BUHav0zZ~M$2Nm<LE-mdA5)#@{`@3vw
z*40;SpBH+BH+|a5K7VWW^{|JBT0<8&FiIxp{d{0?7t~$YmU~-ELBXN0un<&TFflVf
zEwK3V^?H2v+gn?Iy<We6&fn;5IV)Ye#a^B@zkg+k=VX(_LoAZXAq$;YLGApnudYrm
zQDw-#wZ(J&o=;t%s`lyW>8B+YU$_tessr`+ewnmqZ~puLvo71W&)jMHex7Z0$jTs9
zP=mlU>k7DKW>fj;#Oc%Co}Qkwj8eN!fBt8k_w@Vos`)!lPuIU66wC0&nSt>EC>dIn
zzIxHEzc1kDr>9q!dW--4^?JSDVb@PjPAVt&^vT=Ld->Mx!vW@~9R&+7UAi=7!h{7&
zy{EsrTYf+Ec%Q7OoZP!V$Bh3<C-@gf-Z|G?X>V^2%H>r*pH81TXU>|f+1Il^Jvj-=
zD&OASU2U3uEvEeMmxamg{PN#+{JF5uS?_P&^6K|{!};xgEU^3cBN^m_+}qpszT2?z
zi&WIMoRvF^pWpjdmFISSUF_FW+Uqm^{P+lpi(~!r?|IZ_7Vc#}^Xlqq?_EXH4U^C4
z-anIYVS(eP&!2;xoSJU0E#Q~4d9i2lt*cUIIV;+DrL{~=LuZ@iURvbZZIXA#!Zi0*
z$nEX<<$U#^*6fi^Vbj7#E~;v3SyxwuR{j6`{p+jM>rY8M-gDx2nWue*zn|Z?is<{R
z_x^k~+p6-@lH<1}&d;&@ylZk|T3Fb>e+(z&cCfKD%-)oGdR6uJcUA=t8t&Eo&YhkL
z@|oW}o1fd;-u(FS<HbRC`6~|&Hk+2ciI7Z=QG4obKjGf~`u(?eMQ_VF`Nc8y*M=3@
z`&+-O7#Ri0T9sVblzKX3PetL{`2F{Ce_YslYO1!nXVm_>y~mp$g{}@exk+cLe!N}q
z*L!Q;-QE5A#>QkXZ|~skd3V>{-d^(Z(y7_z>&^1+%vgEddDqVC@6%e^+E)3_HoLVY
zbMn5w-=fdXu?)U=@#4AczC2e@i)mGermRJQ!(=tzU3u}zXL!|f?rhDT{%+@Ux$Vql
z$vxNBMwj0$WoBX$k(OS4aj|>$g9DAb3LZ91(}{evF@L5}>XqH)`MUA@VkVi?|NHYg
z@AvzP4+q&*H4jUz+m?M@&ogLs*xEbO*2e9<_4s|lujfZoivG=*V_Cc^Vq=n*pI_O#
z_gOE6#jB(qu|JsK$iQ@9@$|SV&wcy$N!eCyIekaY-~R8G9z#%8{yh8C>c2mq&p&7Q
z{L)lUUR&Q^)Be3p|D{_2Zl1|K-}U2RyL?`j+qVf51Ux@kh#&g+`1sey{r0=I&bO@&
zdwy>2<n7zb+r(Ea@9yadiHVsrY0{)SOt+T#&NfLt#>2|azB={vw3+LErftc;ANTqB
z`Rh%r+<6tZ1NHUwL9K6gez}nOcC|(|`s?_nI669R(mDP3b@}Q``fmBx*UkO+<1xSO
z$0NeqQ+H2G&HVG@<GJUvFS>rU|NCX~qeqWQK0G-1I!|9q%WMDtf4gsQ{{qU~$3N`N
zyKB|o`1aQMpXcrWuUYKgpLXNDUrfur&FTJ?m6e$<E-aMG-d}Yi>et)i@bz(TFQwny
zl=|z(<9^$`|5f|*C12j!x>_%OAGl$ldPLs7F2=c?Z)$2Js9S8b*OsANye)z8gNBll
zlfT{1CCB<?R|hV3%lz@-;iPpj3RYQHH1>Wt#H|&$s71;&Ysrfj8FQ`6&so;2bnBJ+
z_35;}s^|Ls|8|9~jan*Ynx$c71?n(f@wflGMAdtmhKkCOrwm&vKR*L$PdhVX;osli
zUpKPLUD#LqdrQJWrmYzloi?YPJr(kHsn^t?l$0fD=jLeU=jV%R2Dwa2wS3O25x#ED
zscE{aK?6UnT%wm|8mDi`xTqv+S>*Ef*Vofm93QmH*R6PUb#?ZE2F9p;H9NJ!*1VX*
ze)#lhZ%{H-W}kd%YW|J<v`hOOo7rCee!u_vkB^VP9u<#Y;WyW+tEcD6#l`Mlf4|@V
zdUpQ4iys~yo@=~@osI1k$cdoN@ycNJsXCECadB~==D@qX-|t1Q+M9KC)vo{let*4N
ze*fh4>)*G@rCeJR84RjJLH&qxbFH&qTv*uE+Z!4YF~e`Z-P*O$+p{h&^F1|H`#NvF
z#fLAK{a2@-pLb4L6qMa(=kE(lN?J6_G<%u;z8{B{*5BV(3o011uCCJ5((>B3Z=aWk
z$Awj)t3_mG-|o4Vd9+Kk>fO%gAxphPK`wjv@FA!q5z~oK(AU@BzI#=w%I0+GCEDqc
z$9kog&$F#w6|=MG-2KhM>V6rgr|E)v-k;Bf?XCKHX^H3LE6aSPL2WZZLBU@ikIQe(
zxoKqk=fmMymc`3%e|vpx?P|;7XDd=qPs_TpVj>e0Q^*pJiLdW9JiM7c|LP=FZ&3W*
zt^fZQB>V5rXaBP^jom@bsL$u^*RKj)o%YL;X~*dsRhQ!#Zg!<c9y@(n`|wluJ{iNt
z#zwX9burIgTwJVodf(4y(wEo8S_?}`X8!r}$ETuVhi3S?IhEgTru#ZMHEq7%C93Un
zeO>I?`hTD0C!6QTO*T&V3*J?d`MLi8_xiN^`)c!k+Y~%#$h^OAFDECbp=Hq%gQ?o#
zW}ly*H(wpT-i)vP@Sb0<R_pyuPENM9YhN3^eOA@iS2OoiewNbL*9Ub@W|?N6SsA?i
z%!P%{zIS((`W|dz?cKkBKd3jcHT$~R=CrfBR$hPq;9&Ez@bz(^2L6wqKWA>(U~qX=
zsP^X4*J1sCW%=4y1}{J7`&Rky&$qX>zHY1C|Lc|Z;{pqi!)^8Eo8``08NPlV$a!^j
zb;}YCHZ61Ol}dYZV&by{jm&zr<!^7L&N9tTb8>c`yFUKc9%0G7;x891TI6$ak*o2V
z;x{)og8B~YVt4cWK63oHw7&j&pYzN`Tc=DB`FtyT{miVZt7cxf5b*f*>ue_{C!eiZ
zSI>NSc=+tb<l{!6@26-6`|K=w>T_<6rEf&UjLf^cw*LHhT>k8XgUxg2FE1&6cE+&Z
z=2M4e<fbK{9@ojq>iwG0+tx^$WK6KE`?F(nd{WY)m-qMYUm3D;5+^^u`M-bv)U2#-
z+5Gu%SnqS3#N>~!YZg~J7**Xh%e#|tYfEPGr>CdWK@pjfvLy4yhJ`=hY(5|JEBD5R
zgICr@UuR)wpM7U%@oXv6tQoD`;%O1*mwHb>)2+WRqf1mft){lN_wd7lneWvWU;n;-
z|34#Tw;qGk)6+~rk-D?^xtVG9wJ$%aXH1z=a`$|hTRl5NivKi2^N*%n3=G>f?Cj#^
z*L>;>TNm@PY`Q7K0eg8y7KVh`e}8`m4LpKIRqK8{Y+s|t&M<*>2OA4R!SS;*44wD?
z`?Wgl?5w5S;(8TxL<AW=ygwi*z;Hk|e0N#y+UV_mpfbn!yv<^}+FvQ9o(v5-PS6qf
zXN>40@hRDyoSa?V-N6wNGi3PMLCy86syEX<JUCcnArrN`EO*)Uo4d=`%kZ`DDtlYS
zuD#n7F^WFx>e3YJ;AK9bLG>#ugE#LIVc3z(p}??d?dJ6Js{$9h-P%>U+N$Kmf`iTM
zuTQGa-?Fz)(Yfu!!-5kJ3pDKP><-suUtd@HO*?AK3*GnEH|a!9dwT6%fknu2zqzyH
z{3itk2Y>x`JAZZ9+9=Q{>iqfhm6VjOtcf%}JJ<UAwCr<hUSF-yzI6EP)&2tq99&&o
zR)npMk}^nWD0_3G@b))x#Q6TU+<TqZSs6A7=N;x&xDDzN_Q_f=1C68qd_MpDtD+~5
zA1~fn{QTA2@_T{r?(Dof&3}f0qn(}Iu8NOIVj<<ODJe^YgoUT7`^#-l1=V@8%yL&P
zS)$_V>blZ*wiy>E=S5J(Q1LMd)W<3;ESv@Epnc7s4(eldc6M^{^6pLk-O<%m)OM6x
zT<^t=jmfvR<<16mSbODcqd+P7Sik)G0|yR7-#R~+D~REPzZ(PNgj`j1_0yYlL^T2w
zR(nrOjm)~Vr1RPN`Ro1d|AyFBe=CWsdv!(g>}+#?-`QqY_f&q~w8HD;?c33+-qT95
z?TemtfNJI^Cj|HYc+`Dvv(-z#xmHWv<tkmgr|X68E_=JB<mDynu*LiL?>{b;zkJ0C
z4N&_w?=5J&5i|_sJKru=-GAPdM@PH!Gwttq2r=ZzId5P{v3_~o@CbMWRpwdI+Z#U)
zxAU(qe}Av5uW#D?`STAQK74goX?E`IZD(_5hxf0I-&L|Q>-xI2dn!MlI(=IEa;a&?
z1&4_fCxYe_?o9KYYZY4m_v`ds<?r7W-j(isyZ_>bRjaorMotS`ANSVijK<%puAX&_
zl^>6am;U&W2pTbWZs#lIl%F)kJU{O2T<dVxZn3LfqS~Mq&h)2&fq`04TULPEDu2IR
z){5D&q3Fqpg+)(KWgcu|owUSzx?bju4T)Njo0fp8g*_F8pk8g>`Nvh)8|K(l2I=qn
zu?SRYA2{If^z7_#Lqo%=hppmMX3eU)dtKf5-R}2xYa=!~B_<|D?J8L*rWf;KQ_a6W
zKVRM1xf#@pn`2q5m40r{s)&t?K%KJf8z%m%lS&p56@6Ox<L<WH+gH}d+aEo0L_<Zz
zg^`gF<OtAE^<1mcSG%_A#qEgzbyCmGu@se&S+gzocGmNAbMyYz{r_A3_xt|;p-a7{
zipa_7)z{a9(wuw0oR^>9w;gXagO{y{+M311&mZpK&;S}mVdIs``1a;zUhU+`lfPaG
z_FoyXF$pxqkdd)smU;fVwb9$-w%0M7;7E61NU^T`{Osz3gUwr$kMrq9Y;ZU`+dSOI
zr$@!||7>DLflq+jg6HN~f`S9o#+qkaeecSRT77-}(zmxlo!j}YZp*zLqt`LtqHs}{
znC_~oudh;f{9DU+6;xHS@yo3_*v!70$8ge;8#iw7T(_?Ox5w`9m*B{0OC6ipQg48U
zk3o|>Ro~yO<rG$1;oQ!rw{`i_rJ!Lab^m!G-D0{W4-c_|O2gb+TP|)&J^kh1@AuiK
zr|D+h*s$==pFbw)=VZRVy&eAW;lr%k+uridj}Ho(1e%tp|6donBES*Uns|D8`q$g}
z`$5AQuWoK$&LyrlXXW)*Rfi580?kZ-#z%jBx$J*+O{DSjP2zDCj&X5uRUZzri%Lqa
zyu92$`|7IDSJ&6i-<EfGm1giVi{E^5HWBmd|LxrO|6ldj*Vp|kKR=tQ^1Obj_WbUj
zpPz%uv99j!%TG^FpE_Z}g6;RJyuGLEU0voo`%YV<Wb&7r>GLyBPEyUfx@syY&&XPr
zz1V!-?((avtG~Y8et(rqr_i~7pP!w*+`=gg8hsC49p<}l-@acjm(Txl(Oo|C;v!d2
zaeF%QNFy_Q){_$xL7Cy!*6igrm7iW*Sm=CfQ)>6Kb8}a>%h%nwS$=z4E@*fgR4BB|
zRe7w9-hS=l<Kw3F|7t?l$Hjhrem=aJjW_S7E#n9MWCn%Vpc%443z@W2Q#A8Vzq-CY
zUxu$;(lDvT`*$0!bkFwf+c|l8P3!-BY(KqC=d@8=TwL1EPfyK5k3Trr+<W+;fqea+
zji6ctG;j=Rt)I5jJq@lW#r5M%rlrn&@#2M#y?AoZMxE1F*2Ug_Tz7p<WbxsBFDFf!
z)RP+dY~yjc;%#fAx1WocmdYijQ*rqDuix+YOP}7<vw#2ooi#r<ZMKCBVP4)-SzP?^
z5bO3_c6RpJr>1JpHcmfhF&#7<`s3HHS)ZPs-u))|>#M8BHt86roDi7)O)GSj1ZYgT
zSL$il^-f{+Gx7C*OAr6LynXJ)*OT*}o|<}Wla8>c=+jI4s=w#;|J_~kGD(K7{U&%!
zv8HAZC`jJl+behd_V)bwr(e%_SO5R_{Ea%N_x$_yTJP=4`N8dn6Zif3<UKtVG{Xh*
z-Rki3OaFofWZ!%464efq(AU?$ygFQeI;d9{ydprc_}`z(?WKNmEFS*(ezaTMcVp5~
z9|wnq$nAM^z4tq}^UXYQ!b4b4@L}P7h5}ojgG>e2J^lQyb%|<+>?laI{eGud@3dUa
z2S-p@si~<cxBh6x#YL@;9zFW^tx7255Ce2Az&>tqy*0nSzRo_@BY95IQCQt?%J%Ks
z<*MIo+`sp(^~(zjohL1EYUR4SA-`%qsKz?dDV%ruc#ovAyuAGL^H*1ghnJLW@tbS4
z^m=@K?9QU6MS9(RePLU(u6}vkZ-4JYRA=t(ZJCdc^=gH$o5RK<@nD;cg+;`^ef!MU
z*l$)+R#x>q-X~j}+27aq?Z*E6`}>TJW!&79YQA;8Q!7`c&1X@0`So{p7N_snyQ}o|
zs>H)>dbyw(&5cP%w`5(_dV7EW{hM(M92lp6SBc$Q_4UjA|9_4@wyUYBvAHHHBlG6Z
z_eV#&w^o1819fY!t`0AMIo-a#j#t9Kp`Bm;+Nr79ws!0cCpZ{c4#cMa{`Pj#5-HQH
zial+M{pMO39kciyyEbU4*Y-XCK?4tGW*UQf73b#JuD-cBeYNLgwNume@9XAUTc4h7
zzJAf7MR#r~D=Dd*d@Q3oapJ^X6(1Mz$=lW3&CS2FBXCm4{<^=>`X<7cm@jT+f2gUc
z`RjfC|JA?W?~exsSlso%jY+PN)22Q&6_wms@o~|;>i4!+R|GmMDk^^Z_HEkXhZCkx
zpMGwR<>ZIovaYRpdF@$&#T>^6x6Xgtl6e_4%k<$x!OtH*EMEV6*e-wP+r^E^?y9P)
zFXvUiyLh0H8Pq2N%`)WHOPl3PC`rw@GeOb$j@)eX{Aq@6ot>TLUuQ8eTyJ35@p_J3
zZPX;AJ=S4WyO(#@e13ku{`BwsTU%CsdU|?!zuhknalM!e^Xvc3e0cQvO~+rw`+h}#
z?pgBv<JYgD9v&U1H}&M5ef_rfX}xOr{J%TOBBP>im42^&bwx9B+EW|j!sW6y6#<u~
zzIMC>8vhd24!d%1Z*}O-qSVrtms}4XJoxF`w`(hdmz$)Wk@)-ddc678`R(#`5un0n
zW75$pi(I*%o}V9IS64S_$@cqo)`#Dwilkk>fBMUPM$f8WFPDSHnp|C6Eb^xa2nZ;6
z&N9iIbi33KG;z2w>8MHOC6!(&Q!i!rK2XvI)lcU4Yl4q<iB48|F1g|LS^nh6Y3Jrz
zPoFuRiD3?h0>eA2m+XfmYgf;+d-CEI^RwHg>CV3jR!>xR&-(xGFKBvzSN}+<g^ba$
ziaE+pUNxVzUKq60>(l4Ymk&0xe|^1v|EiFcL6YBMHzu{Jtn`|ywe4K~MDzSO$>h9W
zJcsXZ&AO`P8U9Sg)4cGJ%k%Ajug9&~U-;OqSJL>|vTqY7OjrP_9_s%70*y?>zOzZ|
z0gaFw#e6?8QCaTxW&6)B=f6!p-uLou`TeW4-|sHZ-~Ttvvgk>{OZ(biCEIf&rY+r9
z`+HUX{e4z-e|B73AHRO4aeCIbH#dL%d_Mo{Wq*6nnvKd&PbQ{Df`&V#%=2o3&&x8b
zYgde5cxUzW)YQo;YvcFFP1lbvi{6)YRV#AZ(?X96Z!fKlHh(^0&T;wrKW*%<9UUDf
z+01Xfu_^Vm@7voC3tn7W>OJ$_`}gnHgBq2`BtVs=<Tp?)ey{4aZsfG3>hmfdEz8;!
z3K}R>x%<Ubtp51L#qOqwhgc$~E$x%Fwz^&Z_Ll1DO;=WhYHu$EwfG97Uph0`?v;PJ
z{Y>tyEh}&5_M7M4D!F@`YklPAV{6}jdU_f(M7ZSt|MG<I@9yrZ`MK%QqepiR9dBf2
z-%|bk9nW_~&xH#YW?fv=ns#o^N~_XW8Q0gvf`$lGV=Mi845N0Jy)E6&$Y9>h!1Q39
zu%zV59Xl*Qnda^G`(=^aGB2xv8WRT(9?ZJA>8b4Mg&7wYMQzKOY4`t6@z<A^pSS(h
z4qKzqet6-_%gcAmR4iMv<i*eD^Y^dZ%&VxVI8(~6bnErFYTuuqo?ia)^77YDr}cNs
z8qBw;3<6cH>tc6<^6a;_x9?y1mLK}_)6>wcS)p%lY;;z3?<<L(H)&GQ<-_xBe!koN
z9;8lK-ET$V<71!(e{p0;$dn$#yu{?+-`+}D7A-mcU88o!tmU^Ym&fZDzx~!HXS-_o
zysB5bO4mhgJ(WA@NcsKR@ZDu^gXUV5&N1iqxPN?W;-5P^i$Nodw<WiO3iI3f`%7=f
zM@7vlJ`q|qA@kmzon4~Z%f8>QkN2LY^D*N2v0iD=`j^*s;tV^)KyChP$-A~M5A)lH
ze0_D*G~oaPXfPC%nfKNHHYtA>0~*Y`w8T^HdH9aGr7`*E`m;gVR@S=g3aF?O7G8X;
zR~ocT0hG8ySBL5Li=Rnfl6QC4EYs|1vrMy>eR_KO^zq~FrrFm*dZkQ_VwO8JGJ$3V
zL2`+Q+cIx$$;`U2ps}gBd29ZCJKeZF5zGDN2L1i@)z;4~y*=~tGSK8t)yJdaUvH+*
z*EBN=J0|h>+wJ^cuU4=Ba$0|XN|oG%FAGC1O>KVt_;|mzqM{=wC+8*|@443H*VyH2
z9&9?dxZiG-`MnC~zrVg-UKP4JWRVN!-+#Z~M{UWN7_~ib?M&nJU2m7?-Q897xYzv3
z+Gz8wd3U3B7CjBRx2N*z?(+Q5RUw{NSA|~QQ~5b$ZImgf{RCS2FiF)rWLHV%^P|7#
zndIII(T&~~a(bF>=$?wg-23}tLA|hyj1{M!^!@zwH2C+ox2D<GbdDZ5vZC(qFRR*L
zTf){vENp0CIC|vBi{0<{6@T;h^$q>{>MBS(sPPJ#GW_}Z`PQVPTz@~E)&~vq6?e?r
zzJ2?%v$L18@k)V`&#I`ctCEtErYO7fy}iFbK6+cu#d)^XB`+>0{`~zr{Z%a^gXbCM
zqIY*JKYu!{KbwtLYQ}>H3CWRRZQoz|`}mmf+kTmFa;EWePCh=fxz^=o$NOYI-}t_`
z-_9uY)D**i|Nbp==@fc)xBULz$^Ohg+;?5PBgxJ$XR^2It5INJ;IZ@P&$qO;&J0@{
zHFItB_IqEpt$Y5e(jiZ!R&K%~*X~`qy9*vRNg5<HXojqq@bU9!V^yyy28-Q#jX*6z
zzV^dcRt6t`T(^EM`;!+J7cWab-ltao@6WN@w{Kg>@I9X+<>~1OngU-JySr-5`}6ky
zP4f5u-L^7taT{#7%At{IS?1+sY47grl(bvFVueQk`I8dKNy*8*)2B~Ao(fuoaQgJ=
z)OkHuSBHaE6~xtk4c-1vQ&aQV{{Mg1YsT){!pXs5;OOYMEM{j>+Jyy<YNn>9hkvcR
z`|WDKjAhY`jt-9C)nU4y|9n0_`~AM(dWXLX3k&;xes<P(U(HYOxYf}v(X;>mec%6j
z-#U=vc0Qk14Qj3yTFB@XADClPdFji$ySH83-Dfv6Fa+<ZDExfMTYu)2D<S>sUtXPm
z`DnNJ>{X$wXU(xJp0!|s!sTtb(Vu_6-@p5<y{YNdJzp+)gF;_TLE(UiUd)XzFE1Zo
zvSi7Qz2=#jna_I7?-_tHl53ZUAtNKBnvKn!kd;A4eP$ROT(WfO&fNbuHYPu76^{cC
zQbC6`m!+JXv@G}bwzOYgUOv0D)Z4r!p5Z~(G{fy5rarJgaBpw5sI2T-CD*PMph9tP
z)mAm%SxemIYp*PgFDlxUl$0bQBC@3J?=R3wKu|6TS>hp>dvDLp%H`soQucLws=mEh
zxh?nhs=B|wqPFMFUFJ6zG&;2NY$RyO=bzbsUNd_{Ma}Y?XS4FdhXPd<l@&oty+B=#
zXoi<pS5F5ikFWoGwQ}}}soLRMdU}4sYCZwm^X{s|?(Encu+RyV(#3Ql9>nY~ets@$
zLqg-X_xI;NT&u&#z|c^?tNyR+3p+bIE`I*~iTf)*KU?WJSxxWziuKXk*Lh9Td1({}
znz;<~^6IMk`s(SXy7%|?mcF}VxxJeUtbKBQEyKy4W_JEpFD@<y_3m$PIyF^$cZ|)f
zfA6_OwRU`29k8%ThVQs<YzAnd?w`v74n~T#LB{@@^~5y-95gjG&qdbp%UY@E>+83+
zwe9-y`Qyhx508%GZ?Oyv3=i&iFihfn`TfoJ&!3B<r`5ea_{DDJ%9WqKe*L;bw!Z%V
zYd;%S1_p*dmks$n)L2+pJSH9Y+;B-f!Rx)SfWQLK@ZX(tKR-X8`_~3E?m102dfAE<
zD_(zNW?*o*=Hcrb8Wc21uIh#2c0v6UGE5$7OZfMC$#<1*b#CX=w6KV<v$H$5Z@OOW
zrH_w~$J$MKx%o_7{-c$kg^R(<{kHF{VqjpnlXrQUZ}9Ox+0DCpb_+482rDTmiHM0U
zTN}N7m+tL7m79~2lIGYSKXT-R#NxHl+gCX@vz_~<8@=ttr>Cd&YS)X3imJXm#lFjD
zrqTBIoFETx^YHNj4e-r5p1Y%xWr7cAJpw3#pFByKUg=Qx`>pxc_xJDLT<<s6ii?jA
zTtW*ufL6D$vaziye0)suopSAs(3wW5A^U26T7U6jU|=X%Eur`SyP$&#XgtTN^wpF}
zlP9Zsa*OL-`S<s?swZeI@Vc0tCIt^1Kx0N5H*P#P^MZT7+*(ju{Nu-u=W>7k{tcS^
z0I!kyaG3w~!gje!x3*@R*8VEtmA8wj{QT@}*K*L><rMD!zh+)g)wHsT`u*+g=N&oc
z=h=eBnU-iTzca7$nIxzgwQt`(P{j>ew6|e{!S=79>0i*~DrkzHOH^x#UG1+G{`2jw
zuT2K^!2=dH2?+^VFf%bQOyDitQ})_|d6BlFvhk@Ynu}Gvr=_fV|G3|N9jFZ!b_%py
z`d{G;cCr>oGcYiayS92%D+2=qX{*=wY~IDN!`sK_%qt;=2irJ#c|#u_YTdkxhrz+j
zk>O+;D3M-OWjK)g`2Bq6{r_fpa4<4>C^e)6JFA+WdZonhz|7;y&(Cv9{`@Fp;$UzP
zVpN&kH7&$$bvLNI%(K>WVkg-}B(A3?KhE#8%(X5DEp^ojSuuf$nK^Wsk0h_GRmjSf
zEA{@?{d_788UqG3pFBJ|KqJkv_H{Pht3X>CHu1k-qxT@M@WBB_P@Brp(ec&g<^7;`
zU*ci5y`N5LgGS9k&2dlA8X(XjrUeTWdSxtw($CMkDxJS)p?v+HKu{ldySct40|Udq
zy%tjEmaGh3{tC26c0*#b*K|Ey&sW#h&en_FwZz}<r^|Bx`C;>HDot{37%W}3EbDlm
zY*$au6cv!|pkaKQ%1ygUUr(Fr&&<HUa3YB3;Hf2>)6aWNI&}DO?5)qw&+E4zR*a92
z_q?>H^7EA?p2F!rCM*FBS)`nt1eyY<Wd-TGDZr>QIVm|gwI>j?*yC>b{g($CnL&+T
zyFVYCLBoWMjEq(l9~OX`@?E0ZyVl0<EK1G2zt5Ii3lz<p_}davFM$>%FLZ9t`tji*
zs1K)da+3~dV880?)o@i$&>A)sQH_8Dxqq2hxinN&T{AN?KYjeTaXn~@h=R0Y!=08D
zD>SaI3iZytwI#5iV1t-`+?vG0ZJPD}{=B-ndiv+Qh`PGEyw|^e|Mmt=yKsW`ZTz^d
z)R1!N%uM62M}++|o}Zh0&R7Pt&U~r&^e=xtpI`0V&d0^UF+l~?b<cY}-@ZO>(wtfb
zP?f99<e^sk;UK$K{JuT6KdeeSJ1g_l6wO=vYIlEr7xB`0<GQjJ7Zh39+0#G0IX-(*
zTI}U(5C7YOQgpkdaazW)9!b62<^J=}Ez0_5$)PZ_<jDy^R(AH?pwZux5{tXV^|h3g
zK;!VB;m+v&XJ?yhtEs6?u70h*^6^?x9tMVn=t~Qo*-KwM_{I8RTkh?Ug-)$Ht6t1+
z+?|jbbaImF*4p1?Z}059ytMY$mzSSDeY#Zp{jRzvs2&3CXL#}?C4K%>?eJII@7G;E
z%x|BQeU^cN!J+K1<OCnk6!w;qmqDN=zQ66)DNasKUyh2$g9fia{i{#U&+B_iSrjY)
z4YS_35dn%@P||#HadGMYzu&d(?Ci4Vg9`5nM=h8qd4g6nZNFc)x=U31RWrZch0Ff-
zYi+B)W&HT?5VZDwbNs<3)~#u0r9}1PV)XZXXadzJYQD2Fetvp-=P#(O@xN*g<4#Uc
zPi&EEcixTlJ~NG?Hl=j(ih}0&%Eiw$fJ%$eLZ7sfn{MUg(2Shk@-Xoa<uUteBBjmq
zLW+tueR_U=y;kU|6Sse_tI-1O=h}ZNww&z=Xd}(aprxSg8=!1Z`szyH$45s&Q%%v|
z_UGOPO^W*{Dk_3@oZQ@$`t@G*`<+*BEO2CgdTOe-qM~Bemy7PDe|{83zXBDZn>O#(
zYxwf&syDB+*_D%%)k{A-aFn$w@i^KgdRf@trttXpy){3JLf1xx9`BdGep-M3n(}*<
z?x1PWMrQUowUZ`K4qfcV`}W@6Xl3`lE5+w+mmlpGUtRb2*RG0>k7U;if=c&uo8InN
zsy@Fa=x{rKctODi@89|R|1P_@*!}eV`|*=Rq@+Nbi(VcTkKeQS>m1u^@D7U0%Y04K
z&&}ca4O-N>a^*_U@_z8}_EfFVpqQ9BYX0-q<lWtM_o5Z3EAd9>_B=+*iVq7wdx174
zAAfaesrR{WpmO5<{rK0{)?Pk0*LrKlMWwx8uSIwD_U>K$wdU8$<yKW+Kx_QeJb!&Y
zZ=c#z_}Uz_2_y5;5lK6hm3en}fo2lZ&d;lL&jyt&n|9|&JAl?zf(p_@Eu6c)->cqQ
z@-oQt(vHH%B9f9TLF<B3PEG<%GM$>PzrIsg{oci@uyrvj@9Zqj{{QbUXdQFWvoj#>
z>hSg8u8~SCr>}dzT<Fm*(Yx2y$L!p+E&qNUl65LCLG9)5_v_co*;c)n=q?xd_*if0
zlM{lVtspB`uC%K8u^}ip*fjl|OlxcF-HTD6Y0afem#(b*{0uZ#2O6?CE?*xbU-x6-
zuCljUo>nC<CaA1*Xk^NJ4edgCd3*0(TncLc-i+MFr!eWs)2B=S|K9)q^7{S%R-HKE
z0b0=W>i+)ypt;}H_V&}KPoJJ<b#AWp@+((Djvhb$`tA1nVclZ7CTV9RzP`BVY@B}X
z%DULyQ)bQ5^85tqc-jA*HT8=fIQ0f@+sk2lx0M?-@w;ln1_R$22B4|Jp#61!K`RzP
z!<?WNgwE+*k4wQFvRm8p-(UK7Lb)HbhV#~j#O6~|G?hKiDMp5a218GmF+8}hVrXc%
z+MA)_cGLd!?RvM_COEhAt<1i@4m8TuV+dO0q2@Pd#Vph8th2LBK`jF|9*G5okB@;C
zbgzos{7iPOx{{KU{r^9kKRrGD{F0oUoSr9Wt!D9y&|d*-vgi936l|!esWIBP-CXtT
zu4QWv|F32^aQDdsm3DALvz38iQ)iB}L)DiT3zsZWSsSx6$kEYJ$}DFFXn1RH^>;1z
zJ{i!a5YUL*L}ho-luOo~9Uo=)o(^f{68&;DJYLh%GE&uRO2IaH@QA*Gkf7kg4I2z{
z@9w&q`xm7K&RrqJu<4ej=X6!y$suap*^CXhA9{N>Z`#$dd-lm?pPrmd1~q%0pRfM*
z2DI}+H+tKSuXlHsudn>^u>F08?d|RP=F?JV`pvc4xuyKYg@d4JJLh&j$>g4wH#aZm
z<l!-4=aVV;_Vd;1^*yPPX@^=kuitfda%!5GvLw^Z$fn}MgOB_bKE~ny)~Tj6M^$`y
zaPV=N&ALCa-X0!1{<6>cFLd)8k4GaD>z2aDZlI(v3B-t;w)D@>&%3|s#_ZUTc6L|U
ziA!%qg@qTdi`|`dX^AIj?djU6t)O+zuR#;C2O62@mh#G21Qb6%7n+j;nnzo{IsJUr
zmlqd73+zPY<?E4hhg*-t!f$VHXaD{66|`=3Tkh>;b$@@YOgPvS8Fu-{$H$>dJOq7b
znRtR`Jtiu-f|KaW%g1jnPdL~VwK=U9)U5=qWCU#hovh|-QuXD9Puzb{4gaS&@|eWr
ztF9?2=jYjiMyk)vw_ks1s`l!vtE(boFUfAry=?{>D-1v8Rm{uLP~YUQS~_Wp!pa)4
z>r4#W4^Q0>TKS_DKW~3_z56y>W+l&y7cW+QI;jrorZ6xtZ1>zYzXP;2_kcY+F?({K
zt>aKQCebTzA2(GyJS-z)#hyKT?#SJ{ck@@@Ay8d6<?M4tPxFKW4B+yuvomnH-&_$9
zkttVIL7w>`{jQ6_DD{*GXmE9N`uTIOf<T(?H0@5}2+PV^1!|>UO$7<<a4mObSQ)*2
z-L{;YlaPcY&GY7%<=t8F@NoO<Bb~yLv3#Jm=>C`MI24w8O}+H)?rzhJ3kt36?b-$g
z0XvJImsLJFIaz)6X;86Qz+8UR^~Kug?bA{tBV$2*k%s7!aFz)tC#$EIf`%;^@|t%i
zafpFTtZ&PyWJ`H<W#yzL=jK|U-lX&Vy!odWi~H}L+yrvookcm44v!u`PK}&)YkR(a
ze0==T<Hzq8$e!K=Zdo{(P1j{UG0(PI1+)lQ&mL60?bw}qnjr|ZOz|HNXo%$95!V+W
zqlnu#eRA6NhhLvOIXQWjVRBp9`+I9AtNWjlc)aP(CY{<pACE_d$bwvbW`{P@iA|}e
zL5nB<empLJYOeM6rlzJlzapkhWt|F&fgO_Nt_+|>bD$a>G)$Ira}y#Ecd(^AKR5T)
z?d|#x!A?GXSCnyyOQ(=k^|zd`=^*_N#O{hRKG}Lb4zyor%9JTnt}X?6Vh3yaQBwu&
z@O2>(5i>xe8asAah-!s+#Kpzw)#{wSbYo-k<`qsLl`{*&StfkHSAG8Hd)IEUO3*@n
z1_p*r`*$lf#O$lFT<r}~R3Lpv^g6g<`y+ja_PK^7w>PKvPt%E9w72@Z*Q72H%|)OE
z@m5w=-P#~`PLM431$*jPpX_ThnbQw{{J*vPy~g@i*8d-`mkj7?Xb@rV2n@+_*|;#f
z`-VctF14l^8cETovvN9*NyJKLA6~KJqJ~?iSI(Nq=@R}Tk8ibZP2e;O`O=}&C2}yp
z<=uP!$A63@LmYP8m#nopH?#Oho!xiqJ?S>-Pb|OJz29!7KDQ*OjbA=);YkLDhSaMX
zdIxvC*>t+-=hNxWf8YOKH?QJR=b3r7)}RD0>~AxXna@IDdVF1_-u^$Iy!tsA7-~A*
z3fWSgoS1mC{C;imaoO@Kk@xd<zb(3*yFK+_6YI`zx3Y^rom3CcaAIIch&1UkRtR3^
z<9UByt$jIYV*TC{0R{%CMmIr)xmKm8iqG4A-}(Ez?f00+UwSeb7~~d#&IPb4dlT`<
zg@NHfSB40qQNe=)G4+4H?tHPR`_n~t`K#;dzg%?R`QuS{@!zl4pC4f6U-O`af#JZW
z43YJWmjC~JHZFX0<j<ey_UCV=&!4LoyGzCMUhVh0I&pg}YJYt>S^0c!_(M%bh6er1
z8ca)4Pfx3S(8yl&{cid7O8E(Oe}65l|Nrl1`uy6U(9lr0x+liJ-)@ipb~}H+S3e^I
z!<q$dAEg8s7#_S{=s1rtGJo&apxD^C)8p$bSFha`buBu7um0X6t5&VjTEG8am8UQh
z1B3P=N468?`+wgJ2@PGkYuB!G$qWn&3bQ9L8f9Hsp<lzpz+mDR2O4pkvMiA0#F0+n
z;@4}pUyJ;GdH%mCv1K<^Z|820UAO1cDK1|&1_qseH$jEvbIYRg_W%8M>v;aYpK0Ij
z*Z<%1^Vw|ANx^=Ws@G%7W0xLdW?+~WxR_(Y^Lf>J)^E22zkNJAZ<nU;ER&O)&)d!Z
z`1ttq24=n!>+Ao%=JMlUV9@Dy6I3XEcIISM_S(?jKl<zcB!9b8d>%A8<GJbiyy~=1
zPfkvi;%8upaO+ia$jZw4bje#^)pMEe>}kvA*I8A+-5UP(A81o){!MNM29p@xPiA}m
zXYBv`?R02(>{M26v6MeQK4xB96A5zbt-l~wfht*8+%Xm%WEFq%_xt_xXU*@=*_L}d
z?aGS4mv?p+PkM5g-~P-D!{krv|NmMqI!}m!;fGPLl0($itf?0lyVt+FXZ?Q9<Y~Im
z(`-Z;7&h#Ya&4%Y`0CZGH9McpnkvW4z!1U4Yvgdw`u(1e(9ox6jL-X&mX?CJ`n7(c
zp`qujUat{a#>~JF77`jL;<~i`hx^s5S68lDb?VR0&zpa}TCIOscHOE~t3I7npFhRm
z?yApcjL)aMUc23|$a|7}Xq8OE)P#~r&692BrmW^V&$Pj)=2!9Cm&@m$3yc1_bDNUX
z6Uhmx-qUIxg5&$sGf4&phfFEg22fl{T9>_f{;prv+AMgPk7m9C14BZq$qDZb|1SF1
zeVSbJ<6%1}9ZuWze|7v{E%5rq?RUdIr7$oY_>>`%?f}ZDZ+1SPH-Gp3-|u!mpXe^9
zS*XOokl<?4#W2$}J1lB@-rt?S*G6qU#V%hH0MAaF&RM;Fvhldw?>m3p<tkO~?kd%W
zYqNZ@pt<Pv+U;paIs{AePX0crKL5!n?e%BgZofZI{@;go(K!MP3=v|zk6d4*&na}1
ztNn6uPRS)tNwb^?vs)R9RZeQJ-!tj^{d)V|?{;OMv-y06%O6x=%ycVcTN1fBZRh)a
zzdy~s|3__a_4ji<lEy~K$9lfJyK8NJr@;AGuk`e^v$I00d>9xWc!Np}Pf(sZ%xA6B
zE?X9{)SZ!mAuM1q=LD6=9R-Q=Dxb~V^Zj1+&BEidmlry>d-bz0FzB?q6>^46>X9&1
zGBq^?NqzqNzTW=4{r{RtDaU#wL2HQec06q3^5<Y+sF~>|s9=7tBH7RC<&rP2uj_*x
z(Y0vB-PacuI+xwfHGkj4$H36*u$W`QX}#S#pzL4wefRy;`L*9xZr}g)TJ&@M`k&sc
zYM@N!zL*14EkCcm|NGwaciZ#t-?LuG%;2DWL4#>Y?(J<e4U>;Of9F5TL^FH+-m*?%
zMo@7O$l~$;-{0c9rPouxy}9}I+rLlK_rnTRZ39ULh7C4St_?8-2U&kUne2aQbNcx|
zkHq(TgocLJ{l0zw*@I^Ob7r@5Ci~5`dirMb`E_4rFfbgLo*}|`X{q;go4;Q!zr4Oa
z9#lMtxK5m%zt1xHc;8t^cG)TF^J_LKz2`K_xv?Q6JUspLS@ZSVzkfQdzdU|_UFO|g
zrPrde*YZdjJ>k|@W@c!}Z*u$W)-u<s^wihu@$+A=-){%n#5YYRa#EkH^|D>NjCf5;
zUtNi*c-WeGb=B3N?`8KYpKr;&t|uN_68P-g+}YmxdrkEB{YX;tnK5CRuk_jNvJ4Di
ztJwbQKivQC>-wM9w(pxd|L>dhpD+FEXQ{lru`#)IxtE{q*DHT6+y4y~(~paJ&lhvJ
zjra7QpWs5h<n1j}&rNT)-A+4i`~A#{z{N#RCc1|ur7$q8*uhrM8FqS_?&U3+m)C4O
zCN))V>9xcB_H%Z>+oc^IQ+PD!`}<w5*YQXgEHJa1l=A&<xqrW$ZP9Vr@+qcj3=Ad~
zymk(gp0L~ha6Hx{8T?%Kf_Cc3Nvc0T_Ser@+-IdVJ9k^;-oNGdYt7&9{T{dNX4>qk
zYET;9eBLhl*bD}S3ks$`yf;ir`S9SN<+~k^FD>_<FH?FYFtYq^>E%VP-BrhPw_Xif
zT{A6v-A=Xq{eR2;{dsP$Us``_OQz?fS+izURhycc&a^B}v-|hs@tSS7vR0S)F)(Cw
zNVzt=+4Xwe*7~|96Ww3E6?dJuYSpTmPbbw^m-NjvPJed)-`o2|-)^Qaul@ba+cxdr
zpP!zS($3DhdOQ2xp31j|Oe_oy`HMiw{7!*0s5Y{71LeszTdze~{`>LR{`-vc=g#QF
z?AUPcUK1<#D;Z`6hWjSHN)By&vQaMujVeDq>5;KC3XiKyUFJ7;)|1P|`k*sdj?352
z*?zA|8?+o|@0VAby*K{5w<YuPrG2%(Q!RcMMozl@Kk@B?{k04X0e#W`zkU3EZ{-n%
zcx_%Q2Qi(93A^9#vj){y;B+Qokg#(7S`E;|da#IV-Ji$u&s&83R&2k&xBB~>ibtJ4
zpX%4o?31;AwsQHrRpn<|IE62*4qu=8<F=pgr^V~-Oc)sA4_>Ncw6QvQP;|!A*NYFb
zov41lce-rZ4MmV0Z||-LbwU3BTL1r)T=kp4UpBVY-_E?R|Npz{b^5%@v}b2$PZv~n
zTT=b~ou}R2?CZYfcc-ijUViOf*Y`$txf83`@0%6uZ@cx%PDX|WiYv9G4(-jI{-{OR
z?}X{~n8}m<tTcDO-4?CpKX1<G^Y-?+x3-*oy?%e(%a2)KUtU(1ule9Oum0c9TU*QT
zRjNnlZVkN_Q+yWWshQU0d2Rgi^GdHpstc?6{J7)20aTjh?EQMpGq2NF;lTC7>H9Tn
ztWK`lAFOy_)%Ta@w=SPww`+>^hB{f(8^#LX@0Q26@kma3c)0!gI?$}J{hx>YpHFG8
zPg&e+w(3Di>EFlPPj;8Sp4Ki`rLlZYk=Hqk$31KI{dy&7kl@h9FaPdcI0Hk?V$&N8
zmA~I^FaGs%`Sr-#nak$}iMTHFpMNib>B&KM`IuL~)Mn>Qs(!zB`;$xth6Rb)8{W6<
zD|mS5*7vhN&ZPH?>&L}(PGn$cSij=nJVwt+n!(GS%uJuRveqX3+#HpY+3WXC+m?I#
zn)SWX3I>J?8%$p?SiWAfx#(JC`qgOrcRL=xveA1z_W~nB!}?_h*-rGD--~!D$iUDr
zb<IJx6ARnrqF}sz9I^}yKYj@+fT~Rv4hDt*DMls+hAD2K=JwK2;mkoDCZ}JlTt4sA
z$K&$z=h;>-3tb)d^V|0QbD8;V4A$@c7PU7yzV7E!P}K`sMje&CcB-Ot8>pTZogu}*
zAT@2-RJjEkcl>zN{rSh^{`3b28gJHoJ`3Kgw)54h)tjz{MW_Dx@$qKKW#7pv!OQ*5
zp0j>Gr|j*mr;EDvPTkpAT>NtB^k+xK<H5zomX-OI3=H>U{+aIS0aY+}s$Q=xWlFlR
z!13p~@_m!L^>%5P-z^EAlyYN3;!OMcIyJvJGuFlKR`c9;x9m2kktJ!G71C$(=|tBV
zeg+2KM(+*NE`Gb6AOHT%Q8wwE31`i2>*(+O67=>~Z28@(jLd9Tj=4{Iv+wu2mlqei
zzuWP+@6t0?hK4qeh8ow)%l-Yqb7SxK{m#2r{eExG=CfvB`(EGOT|Te&+s#eKnHd_`
zTpMawx8Eu929>)9o7vUDjck>bD_5>8&++y3O*=PdCTJV|6-iLZB&eYM;_3AGbD(gR
zEx%*v+{WWM>CAk4d(TU2A~#nZH_yMf=bRw}!v|j#hp+=*US8h({a*F**xhA2KcBM>
z4h@~E0$Qg(Ddpjz*01w6Cmd|DI?ljwz<lEF1l{HQ_J0gOyF=UM>t?vi*P4JDFmLar
zPmilD)4X<nwpnfz=zN!}VbQsg|E8Uubmt#`Hv8YV%nS`hcYbZ}-~ZiDmF;Jgpu*|I
zhlg50<qxQ|WS6T@kj~u_IQK7T$}{<RU*)Tn%U{`+A8O%zd3E)5qkq23)qY+KmzQ8@
zSf7x&pFwW!lLuU9K7D;Cv?g^+%E?JQQYIRYkN2OSVVHbrclrCJa^IWf|0vY|I4o~e
z`s&K9tswK)@B5X-#w!(aZ3n1wwq)Ma<7fGFN{_6y+3$C|^V81En0Rrq`}LduFZSEn
zCV%`q|G!Q0v7VFbcE6h?>~CXO{QTV64-XG-J}MTS^5Vim(HSxf3{rfIn|kI|zuOrS
z8k+j%#zsl&vYfqt&oeEF-kw+aVqtsHDb3|idW_GVc(r={JVs`=lph}+p8oNRA5?q^
zDV%-*Dpa2(o8L^Ce5d;T-qi(C3=A1__OP)qFlh9GHo|!+J1{UbT;dR5U|3+nG%7sA
z!z65?Yq!|bFPHuOudj=}yeai`&i=pOB+c_;mL6wfXy_7BSPiP@W@)e6q0}x@<l)vM
zF>#si>}B=;|5g6^cwF07ih&`-=du_7hf<ToLoIjee!txb8l?GjQeEAX&+^HHFK=!d
zgGK;AT`+KeX6i$p6IupoXJ(k>-ZF8QEe&}awK?r<(GfxSC!Ol^PFz_TtZgC7z!1{M
z5XlNE-Q;YmmV~YjE4^0z{ax&Ceg=m7E=(z+Gt6?Mva+&Xt-XHb$`XyPJ-^@W7M;Px
zz@X*du!iaL^Yi|j)6TwH3o22{<QW+Db?)J)70tM~$W=@)CL+HUG&%g+`}6<9Pd0{{
zN;#ag`(63%xQc#gkwC-LCzt1E*Dc)hh~<P<KydKpE2r0h1`bqSURruOXuf&ssVV#a
zzMQqcmZ2tgPUuTUhA`0XrIh2c<!io3^iE=kWUc!8YU=-=^Z%dRQ~CMT9)Z6n)#v+!
zhK5#seYN$<^RI7jn}f>BYq8~b&)a%4F*rO06@bujCv97=#i5}hu7NKV_vL}QB5$|f
zw>#X<e_nI>oJmhEm%F{cxjEgc?9Ghha>bpZ3=H>u&NZxI0=4fCG%^<-lT1(f_2uQw
zgl1mQSk0cV*P?fRJSMGeE62bP(qpW!`otpFZcxkS>9pv)lWQV3Z~FOc_VXrgy%V4|
z=gW%>3=5JVwe)-N_>NnH2}8G-?x~l{=g(UgyL(yc>1j9Xe!n%&yR*ZqpOt|@doDvJ
z1E1}e3o(U9MJ=C9a5hRh(gBLpzrVkqf81{$2Qo5Y=_jcPT)*E;+dDnBEYi>J=M$Ba
zhg!KWZ%#j7^6rjhzum8lR&^GJhN;ITCvZs{r}@k>%bm5j&uUfK+Q`jmmXA7=KOGVF
z2aOnu&f#NV2-9N>N)%T2^XZqfeYGdK>eI{W&YErf3=Hw&OiK=dA_~+?d2MQHs@bIk
zs<>E}F)=iRIyZ#e`1AAgWl%Nq`s{4;^>^7B8rE|&1|{l7Z8>qMmHYKt{fG?<z)3}q
z#iRA=l`AQ?wq$<2W*`0f(o*l6%8U#Lw3HpR)`YK*tNeO3+&KT<9;?^>c0W^Aty*<y
zb@+PlXqWbUhLsyYqmbR=`sYfo$A<6TmT_@WkCds_?fm_<yUN~19el~aknl7s>Lug8
zmsQ{2&2406e+DXwL3Q0hHtCcrD*`KDuiaksxYs<a%7%d<V&xv;D&`Ft7Z=Sby%xFi
z>9lC0>}zXs_WgXe^Fb5$rsHzeAyp<IWsrDV589wiX8GK(erD<QSo3!Ix{9U8BQ!yM
z_hq|wS)I4}e8%hdoab|j{Z_61`<{P6&>t4I43~Qqk9%cmzg&#0|N9lxaRd!v-OOA*
z7nB5aA~q;^f(9ioO1AUK&bqcXdi|F3+c)i>w`$d@uKIq4eJ5vyRWUG3J8S#>&Sb}C
zwxyMypGg{}cvO9RGZR!6U38Z}o4I`MG|$OuPp|L)SGx507ycTCeG?cMGgy}S%$(HB
zXQlCa?e;iO-*kEKa=)$B$K|SX&e{L}bEo*cEokItTCev82C2qw{e2elwO<13KF_{?
zrL+Hh$@_b@>T?PX1<kk4zP9Gi6LtHO&t~V(yS6qu{jBMApa1{<e*W|M{B`SZt5&b`
zIzP{L^D(LHCAGi5-7LGETYNir`_*^nXPfJTMx{XmrzZLLY(U3i#8tnY+9|BAcm4Y3
zZ@2TG?|9sI`j~Y79ME!7(A=9zM!>zQ*K3!`{lDlg|MbP;e!q4;*-g)8Wk0*%%zyUH
z&CRc6%ir()o;E$U%yV_v+DprPXY)uHC`?xK{dKAG-Twdo-t75&F7x`jSkT(vUh{hv
z>GLX|71jDO=t!qKFi16mI#n<4?XBK+J8$>Xx_8p~dnW$>_x}I61C7j^?^V4{{q^M~
zXrO!Z>vg-+E-mqltbV(7vWl{M-<eMJc{3cF*`6+$?02e(mHX45&*#(s{P-woQ&BMK
z$&1DP=Rhq)VLuDS**Tj$?S4FHw)yp9aplXU(?RJyb>2(RVGN(2O!j}apqbBWd){5p
z%J!JruUB7QUhc2vJ8R0bv$L<uMT@xh+5h{oCHuPG^Lf>Iag|S}g4BRIbe|tI^IwxI
z|9sXw{l$fapiv;bolhqH`MSRTEU4Q$xBQ;vdAr{^*CNyBE<I<Id1=X;&FAf2UR@my
zifNPVYdVwF{m(t_x8HZ?em282M@EO{Zx7q$#X>_vkN*4pe!tK0^}FBgI-1xn8}_^6
z;v(0teW0Ax_3Z3yaq*Y}$G5la|9`d@zYl6ve<<FbdwZM3!xrIvA3%q<iLH&^{_jw-
zm`+4Me(s+iA6-L3LkmyqZojgwSITtNidCz$s=mLA)rs4)qwMb`Z++cWt5<h#Og=8=
z8YuGl*;(ydTeHJuiq9C9+C2xIVzdQh_OBO<v#+1Cd_HH<u3fvneH0Ck2@DAj7dK8n
z_vg?|#t6%pCe{lFYJWUz_uO=-d|FiQ)~i|n_oSShbY_mFv2OIXGj7tkA<w^ojsQIi
z8bbzcS}C><zr8KjxbDvnpV?-)t!Y1fHm9A<`oE{*<0Fu+ySvN%Z*R+;UUm9z{m<$3
zo|Dylv*hKg-)zjhw8Zn@kK^`gp6_<Q-*;xFv3fH*|2fde>+itO(5Y{?-ClQY=A@;y
zzMh|c-~Vst8d$S*J$Hk?x&wpM4zt`_DxS~I&E4&EUcXBTG}%)1<;6tMVG7Red@rx8
z434XK*m`EB@$zpwF8kZtf{q7!e{b*Q#qRww^?yEo)pOqUWRmx%N8S3*qVN9-10~rx
z)$evzem-kHy?Pldx7d?6o6m!Wxr5V}Sr$LLGE?*CmvvFnIU5}3ZZ*9Yp$r;)GD`KD
zl=A7xNzE>$+FxHhkN3%D+k+<Rf4|>v|9<cHd(Y1mJ!oW4J1$#(CeU4W>bber&lfcF
zotj&IPt%PdOpuZ3!hx-McdcS~m7MI>-?zi*yu4XX1gNJ48o-jYtttV9N{_U;-t4?x
znbUM4gR1X<vU7M`rRw(kb=9DO!#kzdV?l*o(Yu|`ugMt~JUFoD<1y)<{r`XTg9iRU
z6?WR}+-dfIU;3Xmy$tH@aO>|e0EP10@_REu4t;#A*ZcRkx3AA^SpyoQT(xRdkDRU5
z<72(6KNtT0`~CU5-S7Y1d2W_}&xYUrPXTDeS<$)eNvn9=iAHw08GFCo@@`>R!xY!T
zcYy;`Sb(zgkB^V1|89K&YI)4OTXtI)G_x}I>&?yS%af1ym0knw$7y6{PkV5nF>+5u
zA!ufUN7_sWG&mj>U;9<X6Ldi08N=gGW+eBW?2$Cy^mJNu+Kml~FK=&uUv$=_<i&-U
zqLZpyv$@6fVqVQ%+qLKfXz1j9-S^#Fvq5DnsOsJO{hqbwrhmU)FW2ZQd2_>X_uFl^
zjn04k{_D%j$#%8BKpl;p9}aPU?vDSX#BcZG0av{p!?bgf0u62twp{k}K0Qsh_{l_f
zy{|=!uE*EgD!cVWyegh;k{R^g{Ac;S%JgM^bEDF8pPiXmDrcU1%LG&`buBsp8s!6>
zp|?-&sWE6-({#PqO$84RJ^fWR3#8TOc!!`eXhuZm>yOv#cI$PE>#wT?9b@@?vcH|@
z|9^ictJMDf<~!Rg_tX3T|K6AO{XWwpX>3<MEpl_()#%$v-MT>{M~muX8EP!S#qGPh
zyPucu{~gQ5FE_{6?B<el)(h>w-AI-+PV?cj|MOv~UHO3q@Z4VUkB9B)?XqPjxb^o;
zxVYFo{qNW7>x=JzYKyJc<E*XU?MSvNe>VqI$%XI#70SjVF#(jsi=UnG+@5#0=l~;o
zO1JJdkJVvoi$Ey?G(MqU|MRrf{OpU1TtV{~dm}+T+T?y)GiElP6QHRmv)o%LmwnC8
zf+j;jeM?!Zl89H=L9GW+4`0$GBOtEs=hIuaU-L;AD4bkAePwL%SyNEW3mVAfk+ZRo
zwJtkzJAeP&>UTTUt>13B{G9Dp<@34I+vV#ls^9M|-}m=zembZ=c{VE>G&z&9d~VsV
zOaILnbe4PFt>bQZYF_#2$)gvG`}KB}zmEf*7M*c<neWEKeAXi2v8ACK3mzU?q|ueM
z_v<xnP*~l14jR(^@zTFOs^smhtr5w+rd_dRH<wD-*VSBH?ms_i``xnDws}uZOgy@7
z_q(W)H#atdTJRemwn>ZG|Gs&?YiIFuG1reT-`4os|NWA5T6eq7wV2|wi%MT#J31{o
zFEXb3?bgyX8LN_vz}VQmSNeI)?`+WMS~SD9x~%Yspu5Oit5U67TQY;cyuZJ{;_KD$
z*JtgruB-qR&=pT6x_2e_SuTsnUc0r+Eccd(a~qE)Xwv8X@6Q*U`9<&lzW2SW?CmX4
z-RNyPW_Jn>Kl*T(Umr9&dMg=R%6m>$+uAQ*^Wk99|G(e$ca^>l0|m#6YipwmKOAHi
ypRDfxPwW3mh95Gat`9}a7#JKZsoul>{GXx3$0TR<h7Wb1xqnYrKbLh*2~7a>y_Jjr

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score-6.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score-6.png
new file mode 100644
index 0000000000000000000000000000000000000000..28a5c3bbb83137d721bccef38f4fa8d8b8331b4c
GIT binary patch
literal 24270
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_eCLL~J6|Nqx>tZYR+G&p7L7cJDX
zouVMS#AAAg5))I^;)?D?3YSDgbQBcKU8iU<HJLch3Sy2}?7^v8;&fGk@!Wg<eK+M#
z=P7XbG}*~tpXy!w?97>J?~-`y=Vvzd7`ibqFfb%AyQhhR7!U3@GcYkQFdQ&r5diVG
zDK>zp4ZMsj3=9knxf}{0ZjLhpBS@Dt69<TUTfhNC-Do3CYeRLEk57+GU-e`A)aU2s
z2EV_zS5#C~RbF1cva<4JyL{b=H=FWq&N9t@Qeg4rm~{S~t;I)<9zFT6AmjhPzvXXb
zGL@8-Lzj3=++8;>x^(e#OFO%`jT<*|@$ybR{4ii=(NmS1zxSkugw@tDrp&8;{Qnli
zJFfP_4?jJA`*!Vv2MJeKg?a}s_dEOMlhKh)I+4?!UP?R8{$&5-qvG*b*yU>$u*+3A
z{Qdp?`s?-k*VX*|bhlvsmWHPV7AC2urj-2Vl`=VTbG`R;z3rjT_tpM>ccL(_eff3M
z#gisaHm&%O5V|%hbm78<pT2$#_3-G(y0T(n;^DTJH#R2cJwLU|#+D!C+rw?VTT5Su
zZOy*!$IQ+b^8MZ2%Wvzq-+klVaApOk!?kB~Z?ZC+h?$m}`QSjK(J>8E)6m^zZ!d|*
z*DN&6zNTSk7x#Ye_qep_Kl(RTd`z0E6B)!UrgP$hU8elKJ$v_l{dinnTTk!Y+I~Z~
z$?E>o`uqF!Vt19WYw!E66Sc)d*1GJ<&f@1GYa$G{W?XbiOiZ*Ye%7-s@9ru_X10tQ
z8xn7A&7OYf&>^GUcciOcENq`LVZwq569lGzJ3HI_^^cE_rOa|>#8tgiot}HRo&Wl2
z{rzh?Iyi2>+7o#oVr$ma+^q~d%mo}6G7dB_>g~_JvBB}`>hS9~HYQ))o*yr&7h^G5
z>vwgJ;mp`3_jW$nptG|~|6kkJD{X%5&(F_OCrnsyX{q<_oakL8E5E(Jzg|o?D&yXs
z%I&e~VYUDA($3B@&APa#wWg-VB=wX?>8mRz*PdU$|KF;6d#hg`YUQ38@Nn(N@882a
zg;ej{nmlPzO60Up&(FW#rkj6n&#Bqw>t&y&Mudcfq)lf~=uYGiV=$kp9UitaXlY7M
zU`@@Q<94T~=>{Ke;}w;X(yFho7u62)`TOhZ<(bCmcYgi*@wh+h`ntJ`7A<=6{{8w5
z8w{rE$H$$w|G!5se&3rn<%>VQmXr<qdPLZNMcLb1=d`Ue4^P^&XU~?hw^5!!Sy`*@
zRlm0d>2P#(JT=dD_o79MuI#BSUK_L1=<xZ=6P4YsY)<!gb#*;?{=9!;Vq(_KO-r}s
z-hOszec0NlbBbE4!`GKx3)x-vmS_I!mCNT%GISGG_ba(=R`|#z_58e8S*sF{^8cr&
z>u0~Yv2j(*&P_$n&#irPbMxw$okhPs9OjQ@I=;ZMIb?~4VC1x=n!(F<@LZg2mOJZq
z;r{>ss!g-5cr-RPf?So9l(Z%BFxzyyzrVjvKm725`uv(l8@J`&-gfd~!HUew%Oq>9
z?noqGSsQI0yRRnl{oe2Mj(<?}T<SIT(x<1V^Q&4Pyt%o#>i662q09YbMRg)B{QPB>
zea%POJnzen^Ser4Us>WQEUFU`@bBNhQ}gZjYlW|S^KG7O*_#=06%SdbYK3}P7Ci|_
zNLb)CRcopGyb7nz&dzgn*Y`ia+;;5f(W56N9{;J{`EBdYi}x=~(~Z8e%vV}eBf#O`
zzkgi({MVKHZ5CM;KilzTwoz(V)Yhz}i(I?4qPOLonrpp%Rp{zv{`P;bERBz{&Az^F
zs^PJxdyC#yTko}05Z8~p^5Nm(uLqd<HLAb80jbWqvf^Rb`K`}iU0T}x?d|R5+j4Jf
znV5tyGBU1;*tkecKkm&(Q^pCVg{&+Gcz^!*v12Q*l!-?(8*flS!3HVwyfqs(82tTk
zm|x1WXvs94$VI%;W*Y8&GLzP|^|#Aao%qRUtfl3ZetzE7b+Nlm^6pshN*cM`+>|=G
zB>h;I{jV2`&+(r(G&Jn$>@3Xd?&+DLQu^*rq;dMWkeNoQS9TVsv$C+fxUkSUYJc6{
zX}ZzNtV&<q`C`-A*|{oe>#9B(%SE@gX0NXO{mrW2LBq2%GZ!E27SF!7r!wothJ{O3
zFI*9}HcHB(V1bgd^4!BKF1<S0F-g^Xm0PdWEW6rWZaoqYYhwH4Y*)E<i>(Y^?ssac
z_VnYm`mwu~9P5?N{`u*tR_LlJRwXYK>g(%kKc6*!b#?W0v;2E+=6nub9i}_ive<30
zdw*C-$(C8>`R{D}N=mkzF5I4TbCIC3+X}C#TCZ+xT@A|8JBy#M%DcPk*2d)aE^&Q5
z&sW#h&c0XmTGw}m!NFvMA1@a7r$kOGmOFfZW7=7%w|901vvP@?xNt{QUw^%Hp1+63
zh1Ki#t(s+;y{ho>F)kjSEC2rf-dga`NjGwnOShPA(B7)AbN)`(i(PfBS6aLL-JPsk
zTUIJ5DNUI(XH82BORu!K-}=4ZW~peZs=9`*3b}Z1Z?&kj^y+24vrkDZuKoQj^WmY^
zth>8PcfIensr;1j;6NkDp<+4_3)0TcvW%a+rGD9WbCbeHE?-|<biQ}*9?1AEas744
z$NMs0Ut23>o;N3Id*0hOw->wf->v`ucU9!(WuKm(Uq4yh|JCaC`+}DH&D~P`+z(WP
zES-09vU>Lae}B&{oHOZl_3dEWl`B`S3SU3(+Pc`)mzH|JzL`G%>iqhDD?uUVJKOBn
zzu)h_KAWAt>+SRzGe9A_GUMW+sy`o(Pn|PoP2}dZm6e~L{rdHK{r_*GZVYC|4F9(3
zoHpWXKfJc~>@3q`r%#{$@%#5|W%s@vIni6Qrf$?Z9kM#?>>S(bYpJ)dtPJi=jeKVR
z|7ZW^wfXn=9eY?XLx2CDOK)wK`_C`?X{)Dq&O(N7bN+q1?fX`TuQ!{PI@7V4ZReKb
zM~>{UZTs>|D*4Pz<Mf`x4-KYjg%;gT>oGie@}%7D_2KK|Y#$d`oY|0gIOdjl&W(gU
zd-wW!cy#=H+;1PVEpl3F*40&07d~F@SzWWc{Jq)b<^JZ=QfJOIPPf|5FKu?lLWb}2
z-SYc0*YE##D`HyeyoyJh)06l7`}O+RCY{U6{pE|Fo)S&}JykpW%w&JNOc}oR$Q=a>
zH`^K-UVL15X^HKAzV^dDv(3(?-v06Nac^qmvh?%w^xpPLo15{qAO7>_^Lf3u&(F;@
zwk&>T(#kDfw(_mpdscroez_c-(?)ZxN>2s+&vtclo3&zv#`JBQ)6dVEtnR<-tFM=r
z(Zh!ipY8kot~fLQ;-c0<3z=uf<?BmsKfm?3=I7JtAh&JLkKbOma^=cre|~;GcmHy=
zy#Gw2qZTrJ#-*=9wkKCq-K+cgRQ&Pd$H`62&Av`fO~;RythKHFR<UNS-(0I>*RNlf
zu_`%{I(zy4gV~i;b?tnzSvseUKn|a-A78dj-oEaRi<_HN`{6{hoEr~v{Hy(~WcZ9L
zJ|s*}){WkFCSqEulxfzKJYI%PVr>bG1#uTEzFrN#y3AMl=&@s7liYfxo|?`3v-kVG
z$*GaE3=*4)o}GEQ>Fvkk^5G>VTW$yNzI;{j?e)`hbAR*Mb@go2@jfQ;^VhGcJ8}{d
z6_=A$R8=#Nc8O|*te6m2^U-yBF2DVs4Y#&tFMsmniM5gZ<EXV!TZ0l37MwO%<2hMv
zWy#A+pbF`DZI9uv2hIFb?Cb0Hem-Zdci$~~+S0(qZl05lUw@OfDs=U;GS|i4)Ac@m
z`*!Ww+1atTc9*}`OYS+=FaQ41zn9DBzxwm@^Q&81U+2dDwW|5CLFaT(BNOYtZ-(op
z8mIfQva;^n+TPy2I&^i|udmnROFuktOs|f5JMZ4}d3}#p&fmU$`=<2sb=IlXCS`9T
zKy??W4Dgz&^>mx9jm@2><^IKHd-m?Vx;foHc2~*EX>FRzp4b2XJzs{e{a)pB+3D69
ztt~B}_KeZ77mxex%WkhPczCGl>D2I;Td%IJUhdS&wR7)thLl*IgG>+1-0p7D@ttMj
zIoG<p?Dg)#$8JA={K)wB=B8YK>BmQ|vi5Z`%l+npLg?0(%*BSu$5upcP6K6wSJ&3A
zUKP4J?ba>^%i?Dtlhu5;WL#8ob$4H#dV1QbxV^jNs$M9vvaqDQkhr})f4WNO`nbD~
z1Lob@nw|aY%gbB)YIj?ey{R~!_5Jhb;NyL=Umv#1XPuvCduw<3`m*=;)?QrfzI^xj
zb91dhrG=2HSH_122lH<C8gg-P1UNYz(!CzMucmUlS$=;0)3dX~m;22v%FMs8pmEWn
zMPE*;&(Ap0A$X4efv}p-g#P~ic{QI-&YqY5;6P)Z;?qv`c>xQZTJv^(>-q8RcD`xa
z8HwCGI|7gQ$zDF%Ek5_Q&gr0_ph?CbN?u%WjIa6Fsuj9wiCOL~P+bJ7v~I^to@JV?
zrKIF^xSc<|re=?nS<Z@8p{up5tbVOqo4z^ovYKbm-(O#iulzsI$Sh@7vm<P6)Y8Ad
zziX?i9^I+?w(x%6=jZ3MzrVYy6|kV8c*ec0m!9=6`8zjO+sf)za)55chJ;<k#SAI7
zECLMYIv;3iYTnwA*u1Oc<)Xa1yH*xFJfv5wq4M&{$;rEFetzOrZ;qa}^z-xc+6D#z
zqS|3setmsynsP#*_TSIvpgOY0P%CoNlDPW6rCW1vf6KEo=}$X9Z>^xR+l$TT?TY)N
zzkmN8zB+8JNzs!Nv+vC_&0Vy2`EG&O+jYObytIzqv1DEB?pJ@m-@krbzJAT#>hGuS
z-?zWZdHvGW>)w;<{{Q_hy)Ui)&&T7s*C(m_%k{s#ckiB_x%h;2`_y-pzFsyxzAkce
z+S#Dz=jMva%ddZXd;4nFZZY#%e%D=6Q`Z0g5V<-`S5zy+<LBq+(+!_(vzJ-^^HI0{
zm0hLTtSl@VW@cfo-D08N-rRgzVDaUw`TdNyx3>Ozy?+0kzw)(T0(GOdcr147z4YYd
zWYfe$ERx9~`)VqArOkXwUtgPAV#<(zYm4Xl{r`4}>BX#gdV2b4iNzBp2!Lw9_4|IU
z+OzlloBy*e-)ooLY5M-&-s;eeNv@#Q0I1myYL?yES$z8RY46U?&RJHat4=@uXPx)_
z{d2eXJGH~t-3g0jc;n2#_&`KJV8N}e*{@IQ?+@8o^c2+8`TOm5zTRQiqUYyylY9K;
zSWJBQ*zU^(=cpY83xk4#L4mN;dpamQ!`t~}Ma0CO{W)g*Ryx5yJMzv+{?B!FbyaV-
zUjK3{d%dQnrf2r`byufo2AkCWDtUW*yMOkzH9H^v%XB{8Cu8}j@b|;R?Xkb^dVarO
zzhAEIM<OWurk|S=`1;z~e2W~NwQcV5wIRjN&+UEu^-h;w?5-DIug72i@$vE1oyF<B
z^7i*6eT*Kt$s4Q=U9I-=RqU}I!|k=k&5X=!C(fVu|M>A^-u6SbB`+p??#sHKbzwoH
zlu5>dDN{spZ*B4H7Sp{1>KQHZ6wbZB@2=$^O&gmSVRgSNM>>T;eWB3RVJ{E!+h38+
z-=mn^Q#|SW+)3XS+G=W^e4Jam-Zblq2B?~PoZFLrZcgRlqXx!W#{cUWQh3iWGCo-5
zGt&sv<l>XFSy6t!_Im2=!~FJZf|vXKU8`tqXJ=RS<6*mL!2^e0Nn^KT64PCOUb6F$
zw<tJ}dtWztTgngT)LR=?yx!mXT}4UB>Fuqpmp7%J26Y(M#_zwE`{TmbQ`2;{JwdI|
z<NQZghpnBI8mSe&E~f3(-q6_HWmi8wK0bBUtX0eBRlRDf^`5G=6x5b_e5_Zp%5F(?
z^}jq<504H|Bi(nl*~{JU_gy|S(^yng^y!@966>sMYgSHD^?vo>VDl`S%1^w%rIPb@
zB|Lt2cX#Ri+V4AS6U>ig+}%}be#cxv!NJhb5Y*28_5J<&ZgKsrlao~Ceoxbjjk2x&
zcIDI4)2g1IpP%3VaO3~JcKN!9Ntf0>jM`oPewxbGjEjeIZ@;>_+V&ssvc2&>Y}flw
zPE>C164PC^WQof2pX;V>D_FQ(v5w)NB!>cnP1V<{;ZI+`UOiFSeb<_|AOCzle_CSk
zy4c-T`&aI{HoyMgOPON5*w`x<E-%W@ykEEMZd3Rqt<Y6Z3fFea*Z=uAEi8qfk8hev
zf41Tri$W*+zh5Rt|K3^ryyV}X%F62M<<^e2zAi2;Ny*7mXUupZcEK$7))GnMGz|?6
zkAAyf8Ex77M00O%yZYzn=dB3`n`YlDyK?%p_ui_nmlis=Us)Z#z9haon>jThVS&!+
zPe1<LUAN`ri`-jVF3Q*cS-5<D-LF2G>zi~yiS%d1<=G+sKcBbPHZu!r=ab#_@S~El
z^4H(*_wTOt{{QRs`f8s0udl8BEOBF9{rvx*PU~Bhy@}ZM_uVm-FYoT|2Ib&pcK&Y>
zzqcN~b}4WE?y9d@(?K2P%S${b+sOTQtIvP=^3u}obul{^iO1JmR6R1^qR^?Coqt+t
zWYwcib)y;^hVP)($OjD@o0#)9pL>q=NG=vscFTBiVd128egd+FNiA`8KT}2Z<6?NF
z%|b##rktB^|6XQa$lj{b+OJo`CoS22ugZIM*xI14uda%UiY}G0EPC;Le*Lvcs@@_p
zGH*UHZi(ESrWLnmN7|Vg3z^yZUMy^vy9DYTBphTi&A%73IqmGJfVZmN(?VQaTGGzV
z(ag`!7uAc2n3igJomV4z+nQ5TG#7)$eOS50uH4+5zBS{blB{i2NbRpLCoi-g=(qdj
zadlN_@cz2LTWWq5g{}xVxRbAK`t<2){_|?W?R>n#_b2Y3>iV0FM`D3|-4Dmd$NR5O
zkFQ&KYiqW)l9CgsK77Cb|GNDBf5V*H`AXMqm}gsEW(z9Nw&%^YDtog+NY(4a>C@h4
zXPI99`~7}>^w#i|L9YCEKNjr!|F8PzuV42r^3OEQx^e+D2;?`{3e-iDvZ>gRl$0bQ
zCAG>p{anWDYin<9$(&sD>`dilX+E3(e?Gsuw|DnvH&#14yI<dK=YxurWxlgtoz~x9
z^78)f@_bcQ)s<OSS9SIDOj*Bv{iDZ^w`N_{a&>jJd~UTiVxyD(z8{OU!q=@4QuWf%
z(eYvDm%Gx$%KhZ&)2C(OTfd}y$!ae7s&yJvfbFd=pQ;;u?Pqz}rzf7dH#fQNEPh^g
z@8&A^ez{pTm773$J#1|hsB{CRe^Af$xLmc5ar(Iu>$<sCr6%d;WNd%ESPbf?GBGiQ
z>?n9BeXrqRt9aanNvhsk5)Lxi{&>&~lKuDRv;Wzd#_q@a<*$3|?_Hu5x+>*|A=8fI
zH>xhjGemZ!MjktTTKn!>_kKCko14?kL5=(4eX_+jzrEdlf0kM9tr;C19FLzrPd{|%
zkk8Fcsb{(M_ar=e{CMu)ur(2hyGmXr{d@oa-}xseCm(-uV&dT`TA`<GzTYWM`~UB6
z-gBFZ4+}DHZ(GaB$7gnPQ>yV)tx%)S&(E8Kx<q{KhxdFuCaw23IVs7;u5E4f_F211
zUxSJ;34MKiP$y`XY4(|ymzSS?aIo2Tu2rc|BNJ=S{{8zo`T5PaW?ePfoOX8C(&z6l
zEOcJx-Y=(SWOV7r&!00dTnM<l$d!9@>Fcomzp{MoD`R(m)19mQ_T$@odw(yh-T&`b
z_TvHzpXqwBHhJ^yYIm)S-o6gxyt=x&We$x@%c{P<O8fEQ;j;$^oAqkT-`~rfWtN-e
z<m5ExeEh9l!Y}uVfre3iCn~vKT3dW(h9Ri)vdnjO$?qdak4oz6ujg6MT(tJdla$ZT
zX6MgZ6}o!Xgb4zVU%$=<^;@p43O##aq4U{~kB=LNyuY$C*!Sk9RNp=sOP`F46`40T
zE&cg&`TR2n8ky(5Uv5(T?2O^t+uO}my`~s|;$&y>bF<V_Qw*8ecnsA2<`jJM_V6&M
z{r$~UR6EQhF){Jj{rmS_TwP}#m#aRLdY3!-QvJOAZG0Y8=WieDmG)g7w$|s~p32_&
z^XGSVbQthTnHbEk|F_e7Kd-de46D*tGZrjRn5-SH7reKsbaTPOLnW_w*8JR5`E+Wy
z&&5Tqz3bPnFSL-+dwqAw_dox>UXM?^u^|yuU#dlK%TWto7qiT*S4!?bpRllS{*QZp
z@Aoq^Y*ITtBl?FFD?`I=5pnV5{&qiIw8Phx>^?2U@L+yF0~5oBvyIH`A&Xo%L8FHD
z|9&K=O=o5}!E%O?k>O6MaoU*+`TPGai`<;{^3l<5IdNAOhCkK?tSk%#*RQS$^?rSA
zZScV+*01yb|8d`2_4U-7Nem1#TcE?~YnahT<WF3B^!PDo)Z)U0081IZsoLRso4q%k
zJ<!Pfw7_CZ+1pz@??GL4OBue>mzSREg_TubTNA0=et4nzy$a>c-Y1Ke`OVd8KfEyW
z^0L%2O@@N&0uBr*k(i^>SB%fwBv;Eev++(k{BXkIhXFA$F}wa=TNnHKP52UziMQ?6
zr$%nlIlcDo!-5rMZ*OhiGhb!tk|i(hmfsIOJIfR_ifV6f-`d{3I`i_fS=Qz6a<9(`
zG+*_xY)R|v?D|dV=huDsP;hlkWH4xuwNKXi-Ho4*9zA+eV6mnC|3B-pGrK?TVQ>gL
zlv}}=5;@yE|JujL$4zr?80`IW$$MsOA7~7?{9Vl6@As-f168-baSE%QIDXuHx?b$5
zmRIY#IywTJoSKTBpL@IQ?eqEdVUyK-r_7kK;=~D$tyx#S4jw#sYk&QIG5xqTuH9mq
zW@cfV)6aj~@qg~83(owSii(bkii+iLWhPFXcy2=lwA*%jTkho*fs0Lwo_K7{zaRJb
zcz^h}H#hTN+mvg2Fdnd%WMpxeHg(DrmD8K1*w_C%qvtv;b!Fk>W3%k*_u2jZ5?uQJ
z-rdySFE1}Q&A(@3nt93P^Ru(3muRWx=jTt=2t2g*?~99zyLx-CUR><{^_2E{i}kOT
zSl0g9a%+43`la5}SNYC1i`rH4GIsUF`}glB_m&5xq%4W6ervk@8>q7BxBs`p?)Mwx
zxmKlK-QxQD)_yKf_GH*m%5#uu!qX*ZlRLV*CmSBKJoEI|#*glOGJ)sk*@7lpK=ISs
zx-#|jv|HP9XWuqlFB`qT<Yf>jO;&z-GI9F!@V3{h;`i@UQd0Wz@woi%T+p!bzhAHQ
zOW)qQ`gotY^zHi1iJ{l!4sX&~8@KmX>Wsi!HC<nxHSGCxO53XFNe5_L;9xWR?iPN}
zQ<K&EpPie#TFJF5<7k)YEW_ls)89^<@DSAua;g9Gv3*|sze-U5<>sc;;G3ILw<a89
z^1Sr)^mI`7YpO<|6C)#|R@j;uc7HxNZ$DnR*ivD+-`q>u>-Q`&N<9T0x}B`vzi9E|
zub)oqYpbe0Z9DJpX7k|ybJWJ9RwrlYttBsmbYpg0Nd5ii=jW>{gVjM(CZOTwJ{il9
zg-)z{|Nr})m#F;qtI079Bcn@?KkUxEy=|rce7ml`zOaIV4WLSCkqhVE4~Mv|YJYv<
z&5qquv2j({+Ep@^MWB}2+UV`q*2V6=^Xu=w-|v6Dum8WgOH^A+N5|*izkgjlJt5ok
z?oOF9<;lkz!OQ(ZudWIe6%$+5(7*ul@YmPZufMsu`R*?@Rn?a_)8~g?T;%%n{rmM3
zCJ2~jU-OCHp0_vgFT(`6bqx$BiatF#xww&;J?nU%Y}AH?##yG>%U-<5@GSagY-ku5
zx;pIYL}mAo-DSC;1j^1Qb778U@s^5@NoQx9`}0bhl~}Gzjhtni-ZxDzc2yg%^s4Ib
z@3xzi-9LTWJ9bye#RmtQx8~k9o6h-BSlusVqLM4f*(Kli-(6^xdV1Q`1C7j}4#RXs
zw@D(x!js?CiR;B&SU$f_>+~j*gaZvFzf(_7^R4~;E%f|6TTm}@YxebXOTS&Y5_0s|
zu~%1C24~&dvr{i_&k9N7v=yPN!=kq3%ml?IsI|Z=Winy@{P~~}>w9~vwRLoS)<$pN
z_wuo~k57n?PY<7r#ez>yPp@|Gm)lkJw5#mhos}0CyRWYP{!S}oML^rU)zX~2yrJ9k
z?tXbTJO9;XfBVqO%Y5hF1~n%^bBPbz<-=TDTF%X}TpYSO3>2%kc9pJP<~R4%8|#7x
z4z(YTivN1pE`MdYzx>malierH`9EddKK*Cs=dTBiOqiL4g|CYNO%Q>`f^=hdh0Hd~
zEs|zS>$&)Re*HRC?`bPsyTw+8uAWx*=ElPF_Wxs6hp)d@e!q74qodu{zt7J$_ZL?4
z30NDoHDqg6=+9rjUV$2|pdkR)ZZXi9v0k{~@9*!|KRn#N+GC<p*5zfrpy`{#?fluN
zr|HhJE?*~C{l+l;J}5!P?X9w^{k27|@`>QqoSQ-FeseDT`T03?ZItQR`S$T&Utiz<
z_BzXf{XL8gI$5WtXo7}uR|YTNmAg88{k%d88Bjf^_g300$Kc+*dul2wNB(>~F0Xfd
zlg{ai%F3BfPfx!eB+JasX95~Gon><J&F$^yK@#cnDvv##Gc9#y;^DTL-qZCYPjB)G
z2?=SF?>0OZ0UpDB`f(4aN1b`!q_ea0*e0FNM}++?ZeLp)ovw4*h?PrZ$IIluf4|@F
zO^pQA>oGfvj^31$lmv~~W?ow}b7#fJMYlILH#PYz^_qI-=H~Rdx4*r)nOsv_>$|h)
zY0SBeRbR7`Bd1B4WK8g`etK$Z@8O3A%5FUct6x7kIr$lATq5&t=5fFGKRq`WJ@rbC
zoYvXXQ<8aqb9(>re{-$NL8HAn_x9XeiZqPf|NHIz{r8_%`h4F1|L^&TX{n$Yi0R+9
zd|!F^p+S7@*QuwseZN-?l6ZA(?dwZ*FD@ufzpiq&OH{jO`t<29FD`EPt}ZCppc%1Y
z!Ont*O}FjT{pXeZ`@PhAy3fT$uD%Wq4UyaP=6dfx+|EC{qk}_OPVU{uI}8QNJO`Ny
z&U<=!UFs6m4p|YPxcA4SZoS)}F$d60Flf;Hd6G%~y_k&~H`f2YQ@8)@8Q5BYRxZ(?
zy;WaLl8^B`pRk})SpC%P+tL0uACKI(dv~|w$A?7Epo2}U`M1p1o<G_xUi#^Y=k~XY
z-TOgvzn{NnU0tQArRBBUfBv=T{Jl%(SQcAtcXf3Iwf%p+Ts}X~Dm>}-w%l7g3KyT6
zrn|cC@2{P?{9Ig<)~|o>`}+Kfjt&mbOCKK}kG-{c(IT5~@9*y3-eVZGE$620+~o-e
zo8;El96fqeGkjglOS$!abFDyQ9Ny9A=h=pC$p~B<wbhHAPo`ko^YioXKQ;9X-kulx
z_x}IC^N$z*`0=A+jkboyiJ$Mg#r3bvv#q|eI$S?=b=cXZ@%w6iURfV+FKbx@YG-}<
zA;F*k8o>KL=k4w7-jh~^uYXs_=l=HA*3_QDZ@a^ec8TWy{sS6#xVbsqwD_6NT<dbb
z&FSaE9v|zSYMy`Zwq04+G<APDS2wp^pmAdFNykm2l$4Z8US3j_wJdtlcKqIs!o?~p
z<Mvi<kI!IR!n)|SeT%xf`s@Aw|E`y-`QZ5U%*@M{>lZt<a&6MlzH2G^a%aiQNp?RT
zFo&*>i#>So;HPijrX7AbVfysx=jPeYe)kbHhj{H-fyErh2fx05`||QKsI|6XgTc=q
zKP+DV`*>Xb?zxK#o!M2@)L!lT{Vw?bzrR~^ZW_(Ct-kiQM%pZALP=@Hodu4~ck0aY
z@98A>2nh-0y|iRxc-FwM<M|xRVz)_`_F9KU?OyJ=@8_qdyWf5`&%ESP`T5yZP^r=_
zuK()1{ePeGPnBU4zRg(w_nM7uW^GMvt*DI5n@zfVqd!+w$N!B#xi#E=-Ti5^W>p>j
zJkPE+YFeu0dY?PF?R>J6N=ofKW*MiSTjA8ob!&V6e9(yPxw+Qb8X6w=?%lJh{k6rd
zUvBOGf4^Q&JNNlUa)0K(KR>miwyc<Co)20p0h+^}^yS^|_sgpHd^wbJD|_ZQa|KV(
zR5_^2|KUTy^Ijn)CMFfn$?E=Pv!9z(eaR5jjS88p?tiUAP}!vBM?qzE_3FgKZJ<ev
zE-_s#&vV)d=27y;HtEc@ueVe7XJxPubYQqse94Yu`S-O|w<aupZEtXYrK$9#wrE~?
zyBKypnSe$n);uf0>kkV~NIWj=osezsbB|Y4J8a7Q`SbZ?t(M%c`|YdhJ<VtP`z}#!
z70;>K;oC}UK{I|QB#KXmOZ;0Gx;o5r*Df{BS)Ib_R{P)XuiNzRSg*8c)t491R_--5
zdqA~A)z?=qSFhh!wDa=}LpNo&9*^?-i{1OHa{Q~$FW<YpU*3M*_xttn{5BsN_Wgcm
zoqBrO*`@!}=hr?f<2k+Q%I@;~ukY?ggNks_Aan6EpR@C9qxb*$)Lr-QXZp_{KQzkU
z-Pxq$%`L7Mve>OR@8w431HA?;+y`uz=iJ;hY01~u*I%ESs-1T`d~KBK=}k6#oV$YO
zRlU-DK4Fgf{F+b8<gYO^Gpkna<Jy>ddRnyA_QMY^JUu<#_|E<N_v7E*-ag&XEq~w7
zv|WGoVs<PjzgOu#E%oKg<@5I~ot1a}Fu%Qy=XRUpkKS99y_uorGehC@rYj4b+0%c&
zySqCza$3}ujECFKgND!Kv~xKYEWfV&cG^zgStf<M-+o-?J3Fr;`k`s|wH;eycNV$6
zzP^6?m;e8H-`w2n4ys0Ta@Iuuu&DU3;M<#<liyjYXsW2VoSkic{me|`(A{OZZ}07m
z28|FbS-rl~&@KD=y1fq#86JdzqgzQyNkm$D^^qekdw;*%t#=!BpzKBL>V+N?l|ZeE
zeLo&?e|>fJ^|HU(AuANx4=+4#_xsG#=JcYXO>tE(mqzcpB_Ja+XW_$;>s6o6nol*)
zkE{K5Grj8V*6Vld4CY&vdg(@QyYlYtZcwJ(mV5i&rH}dHJByx%EcFt7dt;;X;dcJ=
z+w<nksX2XkzRk~nzu$w@O;-0`6}Z?f>&}ji#nCA#OL`3R5|e*_dkdPdIDTCtcgC#c
zw=I{Soxby51!yE_^Le}K!&c#Iqn>W_c=Y@I{`Gfvm#+pb9GT6!WbWf%26g}bRD#;r
zZ@X?E?H2!fxBULjx%#H2S1q4t>7FpjzUJfFEq1kCzHWu8_q2*N#gC8m?kaeAh*zGQ
zA*Nq3f??B^FYo4kx#%vxGHPqqtLy9MPt%WI$0e!-S~>-4QS8~X$E5O8O8;x^J14F3
zwmduj_0!YS%lTxjGJbt|32O2#cIz$q_9hZE?gpB{KF<01<;vjYeQ9TBEnVh2dsWQN
zqE8<`2KGvshU~5STJrtmeEa=jYa$jd^PQb_VuB)Qs^r!6_3IZbP<VTPe>|vke|dR%
z==wO@{_cx66Mubq32H9IRX!C3O{{cvc1|>Ovo3#k<$8Sm+W7jvriWiQEa6=`X<gk8
zyTV5;pw6zmy#DD;S5^kA_ez_eOPzmQzCI>@|KDxDzPtoC=_)=x`t|qweb9&<s9gje
zSMr~0Rr=-I?R?OJnV{3tbU_n^pyr)z^|z3tU812|vqC}5;?UJ$p<A=AmV9{;2wFn0
z)N5*y-@WfkJSVGFeYxoV^~K`;RS_GLK+|iWMl)y`)KS^b&(5yimU}zv+L}mEV1a_*
z*%?XDh#4azV^?3_weR=q-@lnZY0{#stE*N<Y)sOM-?xWLTyG7xxE`qU1Dd0}x+c>2
zxqxkcem=+*UteDjU+mTkN@A|=?%L7YazHCMw&mPhw72^Es}BzkfBOFY{Ds#{43i?*
zpZxjx`PtU%amHU?UpIGjbUe0cP09Pq^CwJ50JRGzE4%Xvi-@FHmA*>pled4j@%?f6
z`W&z6dbxl8{`LL%=;+zs@Auc6%d>sxFWJ1+m`~O!rRvLzL?vZq&}a%LFR!U?)D{C!
zuj6U*-4k11H{9{LWu@TSB~p01?BgTX%j@IqgEu5Nf`-t##P##sdL$C{Vt1v;fQP2G
z9seA+pYO!R<l{c=e6l|KYJT=?-@d)jLgt*QsgSTRsNoj7tK?(E{rUC(GVj%Xj|C0T
z2+PRi{Q2|8=ii^7zLV8_&)nHre7QDe;>3w^@{<jZ9XWCYG=SEB`_ZFEptjd(D@ml`
zw!FWSCr>_G|NnP<@Tw3^VF7^zCT3>PIMmq&MrI!`FRxu+W9#2!*KbNaop$K(Vc)Z}
zOwW4j?@ihF|KIPD@BSVh24`oP8drXPW@=gV#6VOl#Nhw$`~UNP?AiDG-EPnvzwy6+
z|BgK@*s+GO_|+B7%bU~vg+)bEnV6V-HYOcCvwHo$te~JE8@uJ#_xX$K$K|XFS(#My
z<U}IK6|b+YJ^OzD|955orc4p}{A%_3S&xo(&u(a72woAOczJcW{^U7x-h8{YWZAM=
z+wa%iHp#hhK}0X+1`7+zj13zMf_E0B8YdoNnLKOOtFk|jkN3}>9$$BJie~V!l=JiM
zJ~=b<@)V80LtFCh-m3X_GyU18r>D(pV;LSqO*7p7aq0v61N&-!i-?LYJ=Dq#>QzMT
zt=g*QKX1)(`T9Fc<AZ`GEn2)-R6=5fUG1+IcXk$o7j5k*NX)&r=Vs+{aZf4xx;?wf
z-><v2HhOj3-m0kWd2^Tf&R!;{?6zZVBxtecpV@z2GkauZt@4{|wRFP<gQLffuTDDJ
zHOnZqE1Ch+JO(MhU-$cL<?ItvwZpZ{%)*4#d@cn0+p4~NrE;!`m3x)fR4q^!w)nr_
zT&v83O{`W04;*%F-^9Ye!0_+ozps-o)YjC9h>4Y5uKWD#Z1Ce_y|M2C<Cpu%f(A=c
z_k1zGU$gkhla#M7E*?((KhL%rv_K$lG8ZEQLqq-K`dWsQ9nS51FK=v2UKOyg>Gn3S
zsaiXI<a~dB|Mc|q?l0Q$`}WB29oO|WVFg*2$)O-QVcUwC%R{Gsetv%alP4+9wf493
z%TJp=eY%sAQ_L?=b!=gAW9KhD1_p)?`7R768@5z``~CCh&Rp-^UlXF{PnjYDS|ef8
zw}1bCUh#RL5xajcBiL1#K@FXgkCh@axeb<n<>cVFaI{<8R_^(sR_=3k^FZ@Kpf!gn
zDNlHRGcqtJ6faq_M8nW9u;1oW$L$XB6dpzu=1XmHOL>p(y7usJyQqkWioCph`u)?>
z^<N+96xPc>wIwtyf6Ip}n^I3-*_eFXI>wfPf#KbjmzS5Xc5dgJ8GFpOlVK9$!-o&K
zczLg0TN{0MTkgF*kryvsJa>Qb;>D>w7q6|24&7f@oBn&6Zgk1hQ=-%NT?Z{YEBVR`
zS_xtO9TeFG?kXxOE0T}*ojaeqqm*R=4`_KJD1w(PQJG%qQ1<T5%6+xJt$tr!7aQ&9
z=m=T^<;@^zo;L?H#^=^6wY0i#OJev^@9AMXi=Mu_q|C^`aNupyjz9O^876*t*e?I-
z%gf7NUS5+_bYpe|u=B}GPyw}!K#L&$|NCoN{x0U|ks}u2PV$yTOF)hBqeqWg_Jc-9
z4mPuc*GMJz+b(mLt8@X)@uttOUAEA<UCV!-&CHJipwyuAFn+(#E)`c-*UbO_{>p8C
zdv|wuE0^e`lCP6)*Z=!0zczk<+`fJLKsC2ppUlb&7Xr5bRr8&-Byh1?=KFhlwIVhw
zsQUV9Y24nbyBqpIo$#8UpSt?{pL20AFgS=EdA{}baZ!O-UP;NoT_u^ik(*SUYv<Q|
z^0fW=Wb*c4F;IHxKWs(Cb<?02xlP`Z>rt(s5ZFe;MeQK-=^Z)m&*(jf+mwA>Z||>H
ztABx}`R2@7<J8KvviA44s)w!OA_4*r-h6+(e*deT&*xp<e!osTK0Y3_>i7Mg&wWl#
zPDUm3T3T9me-&UjP^PG;2pUpLo6g8^LWx5`vgE@9$IvwqfsKugpyi%TO--N$!h8Sy
zdJP&d1~s%jL92UKg|A<C;D7_D^Y#4P+{?G~_phB__ses(dH%HR-_Oqf)F*3w?`=CX
z!?us#&o8@Q=dIAfz@Q@NV3c!fOQu!zw>4%tHx>jf_41qq>cN24XU(tq)Cn4|yR)-6
z`@{rAFHg^leX`aff`W>kpjEg@$;qavr$lVOUI~`8xSin1`~F@tBg1W#7l&H=tO_5o
zFtRWxbTUjze12~3WR=#|)}33PpPuf|*Y3P;-@ZvpDnCC14a}eWpy*lp>Pldzkg7@b
zw>La&6Er-Zz6*KDz`)=z?V!pR9!SF!G&1`Ae*OApc79NU@7IgP{h*OT=t5kpvNtod
zLRLK3R=?D1>XzEy-+WfcFfcHju-d^i$q`hHv+>KVS?JuJ_3%*ZB$d;fzMRrt|DxCY
z-UJm{yPAkeQ|#;Ow*Q4zI!l)=J9Yf{@qLHD#a0VL5x0`Ea_HtXU(k$&qoZTgo{Eia
zJd%rQetuf%-Y@6n={Zs5=g*%z-@bnTUf<Kp(-WMqAH;VvOmZ|%KX>J_zx~?S-DQ^R
z3qV6k)Ai%8fo4q0-rlmzKl=N6eErV1^$!oRdKT@B)dv+*`OXX{7Zg4|wlZdCQQqOz
zv&?c=tqfkC_50h~bGws~s-P(cSIaL}IlF7!+PnWjwN`^HXu@66IBmz4xt7IhlUMzG
zuF#Nj;o@R<Q4x_R*XGTdrIp;H7rSf8hYtm<ZEabvudU7dYnFd+&5IW=c;>BLzl3jl
zxB&wLL!S5UvbR^(&3!F?;P$rM;GdtK8n0Yb&-Siqs-vpclndY9-rkyhU2pog^LD>|
z;^N|}9yGG6c!IiWi(I=wgX?cVqknJj><sR={WfE*DKi5DLnLpwgV77no{mdPy+OmI
zw!hzO=HlbK2AY^pJw0t@_VsnArt8mFSy})8AE;xLl#~RDT+sNDvU}f^W`4UBJ9g|i
zQw!P+<DmAK%YzLx;&Z?D`&_M%6`;U+`Sbbw>-Y9no0hx?=#{m;c5}T$BU9AowB9aJ
zZSa~cW%s_2$H#iN*8D7bSH}u!o!G8xxYGpcj9pyhYW_AHQfnM(>jLetspbxM0F@!6
zZl(e0p?A4M(e9s72ZKU@URBXC>&@IhtU+sYdZo>^G&MbcetH`G^wiX+Z)^SSL>L$t
z9>hPLx0~tH>-GCrrJS6!DtLJxsA~<{OaSWqZcJ|1eSUvi?rcz*@Zdp0>iK!Gsi&q~
zWS6gb5SIM+*H=*Anw6dX^~dA#*E@yPb5`<$%D_|ab~0RA?9OkRalrvJTer};9W+o4
z8tn78|NAA@9@H2QUFsz|*P_q~v?3R@Nd`1C%FZuW^3BuBE9mR1t6S60%Yo_@&{`DG
zbS-Gm?b1^3^1Yy)YYN(@H$9#<ukx8BudG#wqobqVThKVdiHXWjK}8}LCud-{m@cTy
zy>qqd++6GB=jK|k_MEIX%Q)R{*I!UsI%SFoXiP^?P;k-`(3G8-Sy=EgpNql%wx!{(
zL4A=;n{=vKpIlhztQEFq2512D^mKje+sR2uSGMQJuZ`aB2iljl$hG^+IqUZtYHH8c
zUHc4Lu6$!-vXoIuhsw+I_W!3C9$R~VPvz$;I|`H2e@s|nRr+d$OQ+B*+v;zzYXw0e
z^=eZN18D6!s37GOR(tX9_xtOYmU^ptCLiw$b#Z9{tqm4Z^#V;aX@#$wqvkiKBK&pa
z&Z4D7PfsmnX6IWGvNGt@MCEo6SI)NT#rpmKCY6|)$Xb{Ah-!rt+}<Cw)a%y1+TTdl
zO<V$MGTZ<8&<t8#`t9xQ)q#uMtg61OSmr-}-IOUJprLn7O-;~jp_8-o`z+o4|Nrd{
z3JwO1TYw_;^Ru&;C;Qv2?6>>n5xc8oBKG?1-c>75Wwu7gn_a;3)2C0DiqG3F2MxXo
z3JO+zILHp#6ZZGxad|Fo?#a`qPuDG-V_zSqsj1o3-F<oY`+cjQot>Ti<;6wN9+9+j
zb5`EnU9PRF>N@Gk^XJdE)!&*kb&DNnx8nZ5Y5d@=JTr~cL2IEvK?qt_2<qIdi7@n?
zV{!4ZP0wyc1qFvmSGMIwPyhDq?d{VNi+QEZEPgNHJ-O>zE4O$|AE?IoBb|D4cLJzx
z2G#prqS`4vg=~FNrdb(hXPM42&7St_>+9tklaFVenPIppaPhI&wdyuDF`!}FPtVT2
zz9c6mrsio?`f5t?i_lvEYhKIy2Lw#0si`q4*cLb`E%y4gcmMx_T+C;jcIHBlq;brx
zb8{>wdtUuhoN|-l(%NWqRW-G&r>CZZHnvPqbiT4F)%)%3?f#%i@!4j%SGHsZgYp8e
zlu5v1x88TJVwatouD^c${(n)Po}QqkZ=3&KSm-=y9os~ty7qTIq{}C16CLj<`_ADi
z0|Ud4-Jq%YvbQn&8SZV%oeio3Jw^W-r`%MG0QI6ku{6sx`&A>m+=UK7<&sZNJpX<=
zt$)srk&#i#Bx8b*kWfnGwb-@KHy)RpZ0I&w&9^9XzD41pnwpxB&1t@#pz$`)V4SL|
zs^#xBF*}1mxiY!mwk$jwoTql_RI{qo|N8@)aoSb-TFn#0&^aBnujc2SUt(Gz9-Gr*
z?NeT!1C6dt*NX*>RW4n&Y*pIXS-+mm&j0fB`TW)O|Noua1zPyIv-r7|nwnefuP+yO
z7C#5A&H$|y>+0^_z1kGi508wU#;b6+jW_uAw%o0Cf2%-afS~rpe7o9^1rCiqt26)n
z_^1`LV*_Y><mcz-s|y|;lCrJZQuX!K(>K8j92nO|Zg%_s^L+i6Pp9=yU%ws>+N*eC
zqO!5Ye^7$?@qANH?DmPjq`$qp3tFlF@=z=Hs*shFK=`KW-O&I4XB>K&#K+N4-<CV+
zl(wB++|yH2PrpfGc(840ZQSGi+4b?$_A)7X1_lOJJ)4<sw3`Q1F_e2uo7=(%DwyZD
zL)QV}-H}`D&msWcEwSEfsupNWJuWUT&;H)M$X|VjK;}(3dY#b|G<LW5^Eqo!s2=Z=
z6_t>faZ?qvllO=8yG{n9(pMp%!PCv@=g++f0%^L_R-MEV=H=A|%6>OfK|(uxzq>Gi
zMuNBH+?<3YBxzl?#w_p7iiOVYub!NoJTn&L_J;j0=W!^gdQZDD&$ikm;Q&KxYpW(`
zm)%tD>8JhQ-Pvip+XrN*d7;0LQ~u3OOLb14dSe6<xwEWVsljKak?Lk|5VwH+j<E9v
z5bKX|%1Ld7%gcNxtCYUF;yEqVvVQ-}<MQ=?@}_}Cavqqao@5Xb7gs;M36#%&{`#e*
zr}u8z?}%xx;4RCWcIZete0z6S+w;@cucbd_L0NIHt~c9+L#^ERKa_)P_^zh55EQS(
z?Ri%7zSnkra`1A$%ws*0w>GEu`^~jdP3}2ec6yUZ=A|V*t3cu4;C4rtG3Dka@NTDn
zKOXZxJvG(4v9U3)R_FAomQx^G?{rlwHGFw{JN)OTr<eCsehyjYGxLldJIH<aOZ?9;
z-rSl!z3Tfr-ya~w?+U-WFlff@*>P^J^>n02sQi4^+_daXgsPfaTA3zDW!_<1L-rI<
zdBV#Z`ts6J&`d=WEBC3>r%x~KPmPo^PV-R<1#RM1P=43R@aZ7Cyv6_8i;G<4euD=X
z8rHm@$Dt6uF6QJLA&_x*7{4Ep0X2mg{_}i4B09mO`un@9paq)w_w77`9v*7Fy1<dy
z)zvk%2%K1q9?j!asQvxz>I}o=J8j99GJLk*?-WZ}7Nw|#g7(8JEPmIi7y;UM04nN1
zTYV3=@q(ro{pQ=P<(2-o|Jys86RUom`~P8g^b}WzvK$4s!tg~IBC;1*?kIFv`LQT2
z?zp{!=a}xr6&C|179L(<adC%Br}rHRV?M($k;f}`Jdil5x?|x2(UbreR~{3k=il2m
z*1t5-QkZjl?fKxVp?BVYzw_*JZs_UN=XXB0oA&qnef#M#MV@*)pG@-V=VV~0X;dp@
zdon9~-ATLOZzkW)-@o_XFFxxx6Qc9?ns$rno(c_*ohs~SvCv7FiGkttV$V5@GcAkL
z*mxv9%>2#F#`8g~m4V>`i%BQL%S%hW=T$zNdHzoQvzh6ab{0PuQfFdd2y>gvF+tI}
z?a8g|^=E%RpFbb8l`8M=VSf8Ftl}{fve)l5W0xs#U{z;fV3;N!Wy;6EAQ$23;uzvS
zxq|n^i;IhmOJ7}?Q+6xU^79$v%WI>ztDKyjzi+0h_p~MT|NmJ&pHr-5qsqYW!F85P
z!<MY8THo*2*T38KdR^6fW}|`!2Y94RG^*e4Enl^26+&H2*8SS=XZQVn7yZ(ZfuUjQ
z6_q&9`okJilT*eD(m5L(SFK+C`BAri+F8@<XV|23KD17c2n`K=dNn*=H`9rMAtBY|
z6vNMV<@;x^TD2-9Jp6h!4+DcqZm*HUv3~jgJNp?K8kU{Rc3@y=xMb4FFw?3uD{tr1
zX;s<#|NnjedG7lfb?Y}9ob`6U*~I0`#=x+qLrqXYeSS?*-tM>Cb{#iPJ9DD$_uJ``
z#%U^^el{PE#MFMhI#r6Ffg!@rSIGes#BcU|K3CeGzvE%snvKV#Du2CPZk&2*%A5WF
z|NT6wUl(|glaZm}=|vT$Cx5@+_dnhz`&#b*yYl^~<*MII1Z7>%Z#R<redgQk4SLMT
zz;Jq{CyR%#uWww%!&a4(Z*Fe>eBAz@VfDM6>39D%v2wr4yUESKU=r8+$!t%3J}BIt
zPLH4G+AWrPYKms&y*-uRZs+gc^*4Q9rJ8N^w>1x17#I$G$`E2KdbjiWv$xytpX)Wh
zH>2$Bt<*n1KEAxQHG5LZzdt``8YDXX`x^g$>!DyK28Q@0o-7`(udOZqeAc}F*}eJy
z|2*H4b#>K~l?)6GqE}Uzo_r1o4^N+4dTr$w2?mA(MHy2Vi_Td-U$SbI*7EsvRjXF7
zE<R`Zyyju?s#U9sj!C9ZF_2|o*sw_|wP8-_waAsLR-MvZK4;R_Yf;)DL&WXe8yFZI
z9$(jBPI-B0>HOak3=A2w_EfSlFa*p}6I1|&|B+5%`{MdXM>;`iy^@)cfkAs|U|iGJ
z?{!}m%cuVP^Ydo)`@Pe5{{KAxzs=iQTTiduelO}%3IoG|t_-1c2f6Au8{cd^E;oPY
z{@Z!GpFV7t*DF*4r<zWN%I|l}FE8_*eg01V-Cd>kDxc3q<dUz~qV@Z2KAlK^XaDEJ
z;g=T|yLSqMtX}NNa^l0o!^Nj{x2N3MQTR3Q<nNEi<)3dlt#>+i``u~se;%-l&Jkc>
zh>-Jr<oaUyys9iU|9NvB_uJbgAL}`}Y<Au(mCBb(r+@l(JAZln{yNLQUoLAy^UM*+
z3D3^Xetxg|{aO9`pQpdPysTdQ{M=d4?9_7q`7z~pOJ|y72F)_hk9%pz$k3pFLFHV7
zif3tQDWBz&2{J_|6sO9uGB8AV`l>lhTC#1MnZNDVkb70H*M50>+kCE7>8dXt3=9Xj
zGK8ilsGi(W_&6vyc=Ep5-_Pd%dpZBpo6YCdJfEGLJKJxr)ze+C*RB2lN;~42LX1U!
zzg~a-<8lA_1C7kZcT2A?)#%!_*Ke*>>h;+2uX-<_1<uYNkGeO%-}n33_5J@!zul{T
z&-VNNzi-<=FSq}@l4&w1;1+qZocQwc^5?zpYu_7xw=Q|{VD1G*h6S7%LX4Nz#qK^c
z*ZRBh_vOB`r<Goh-F~DKR1{oPVM@8Mz;WlVSF1nYtA1~K<M-wH|E6TG+o|^Z&1QdA
zHD(5eFqg?36N=B<n#<S!DXjYXYU=!dUzUSX+4{P#t7R%4G~UeH{r1vQ@9A?YpUs>q
zC(OX`gUMIPVOQzvY4-m<_Dfn6B!F_di0ee@{5^)k>V9WFJUsmQ$K(F+C$^5qdL$>m
zdi5%2>(wycZ*esrkMhV^7=U(B9q*GhPCC+Yes2#C1H(SPS!bjL%U)hmy&hMcyKe8d
zTYLU~yB)c!B-5(=-JDmiPMKU;6S=wQUgh(prLV7@zH>WudhDfrwZG@o|NHs#K{J2R
zMOX2sKcCM(FYIqKG41TEGuveu7{XS%{nvlE|IbtXpU2GiO`QMdiTclv{q=KHUf$VR
z+`8P$&+6rpKZouAI8W1wy!3!C29&rCwQ_^X=aTpLY&|#q{dPOO-}c*yA0HnV|9IFQ
zo|MACuwsW>J!jbJu(g-gL~dTQ_uH+ha!b!S^V?3be!s_fdR)~@qwnwcd_Kn`XR|}k
zZc@tjyJe@<X6H=0oxgwY8bd~g1s5~FFiujr|Nq~2<HSQPRqq?(G`*+mo#n6paagAC
zh~Ukl)4I}c_Wyh~yYltg?VIkF-8Q}P`toxBd3C>D8XaR{XmDG3F}`W4%HcNN(}u@o
zCja~U`+0|Q--%zZ*Uz7(8*OHhcRP1`?Ay&Tl~1QuKJGRD)NcPLapv#M>F50>UAc0_
z<i_fiD^KpJ{QT*nyL{?d)9W#7i<uZ4lCP*REs5V>S6W~9<6*n>8*$f(t5&V5`SbDk
z>e9Z-&(EIT|M&KO(X*N9%beT!PTQnCJk;tr>Dk%Y<~Oo0E^@tV$i%|Xuzs<cpu+Xo
z@>o#KWb5W<|MyGDn;V9U-FknWNw%{!4vvn#osfTVk?Yq!Muvv<v(*F@l->K*eBqdB
zS6j7i=d)QcWj9l2nr4Sh@;|pnCu)lZXp3W9{ok)!a&K>YcWJf1{?T92Ab+&;$xeIx
z=J-+1yx+UGKCJ)Cz_5U4`<)_hNR{+{|NpwyWj|kKTw&aladFX|((AD^4U^qKBfbZl
z+4Vnf6-}LCnjO})=ma>(tKV$o{Z{?$&CJJr)_V58Z=MI$^EN-9Oy=#YeAKCaX?OYi
zr$27{d3`z`Uzfqa5O(Xs!^6fk6@TLy?7v<K{`qbD{@8_``=q3D8}@v?7JV~w`COyq
zV?Dce$Ak9d{QnyNf9l=x`+L7sg0j{9KhMm0uYm?pbRsq=JU-UzeSV(p<eH-E>!kB`
zC~i(WyK1-S`@i4s&z~M&XQ@87Bxq$ZGlN6&r3~hjFE1{FN^U=khb?b*y<P_jGPi!Y
zxyt=EM(g+e%6j=36x5&$-Tc*CZ>LIVXeg*ae|^o*`t25<83u}fe|<e&cwBZmzugao
z<l}v3uSMtI)zDLCW@zxr+`?G&e((3RBOQX0)@3<&qpq)u{oE}7M?rt@mmssdC6~GU
z!tdYT@37CkU#{}QLH6QDo$Al71pA+j%3eG5U^9FAn;RQJW26VJM=j=^0NSjud`^+q
z-mP=X?^(JArktB&*{kLtSMi`RbzT0xpU-wapI7ZQkBxyrYP;KSzZYA#ZY_O3`{PP~
zdHu*uON2nPjPXH>ZJ8&j7^j~*6YOsr`u)e{+w=B*I;EX?eO+wx<I@%DB@7G+PfcGj
zSU&DC233zH5%$k!B)_uNdkrcL8}yf7WIOTodVKs#K?a6~&@~s?P8?*HkAd?z7~*C1
z_k3_#>dp|M`p4$?Cl(Hd)feBWT($ggfLYs?gQ2&Dfic0fO8?{~6?4^_dk$@8Si`m7
z`_czBPaS(kCI?P4|3_gj4}>>*Z`ilS?YA4KkPq(%^;Eo+!A&F%0S1NzCQK|03>v+o
z!h<7BBK`dBex|tfN==R1TLr2^em*nbKa-iyLSg-$PhQQ*@t8H!nYq^6nSz-a93Ed<
zbBWnRR6M4@QLgsOMIK2bmFV29q5t0h|EE7azOHiH-Ll)DZf|tXM%PIx*VaVd#9uqr
zoMvSB@$1w2hfhl`d8$917M-_JT)?@V@9g${U)O?aw4D#zq$jBmtd3IZ7#K2mVw$$j
zDZ5j6oGo47>{iC&oSjdnRX%JLe|7C0j%sL2B_qQELm`FuOLHuXFRct-4(WhwzgMLV
zsymt=|N8QB^78q0yWV_cU|0|+s1Se1*Zl63$jxb~H#Q`CPP(}{UEMP)D@#fyIyiVT
zsCHP~Z>Lr2#=wx_!*ar_>f=#y<E$$yKrJTF^2$j%F*^)AFYT%P%yxWx#>GYV3>g?c
zl&Uy{9hzfVyy<#e_0rnk-*!IkvknRkovM;~b5km);kE5xv6yaD$a@I}h96c%;%h`r
z>i_)#H61=bKM&gHxB1<!*Vo?GR=vEse0tK~wKq4XFL!R|i!45CI{k6}PK%Sd_1n$<
zte0nCnDThq{<=SF?ZcBMtQTS2#FUktZCvr;fzNz9TTssmRKQjJzPqc``}w)KpPx+j
zH>-FDYD3)HTdn{6eo4@z`hTC8nHfH)>bw>|V6JYtfoXG1=?<1`OWoLACZIT*q8V(I
zc&O#e%ggCAkJtYHegAxZ{qNgnW|^+ed;9PA`}3#u_s?1A+&;}zkAcC&>s*7*a$$cP
za3cxSJ>6OS{MobF`Rlg-KmY&FNy+ZZe%89eYCazO>;4wqDLnqPncwcjjg85hzg~+@
ze{y1?=nNSK1}T2VO>;oKrjXFkR8W)NqA;oXuRrq=JO%XWpTGDS7=FAGQaJsxkzFq0
zU9$Q8n$LHN&)cpplmd4b*hY)1;aOIPO+MN!{(MTXpXc{?cQ3CBUHxXq<33O)Xz6h#
zhK4R7h1Dkyvdho$*57NwE?W|CtXFz^+SysD7Zx~He!1wbZ7apV5aP4hi~mFDmm|Xd
zPqy98JAG6<evYu8g`#KC1xNO!;p^ipe?FOPT>0q<mp=ys!_<d7C$bC@54D(NU(<1y
zDRj9T_4(P^;v0$WPd6TyJG~}yvzCP{14Bq3LnQAqzqzw~&2Fl!jo!X)`@QA<^LN#P
zGQ5z&>Vt1?ZVnC(zMQak*)lcPz$a(T@2@!!!oUzv$&_Lmv7;bymU;fYguSlaVx_-9
z1<DiG7pomlPtyfAGeM(arN2*q`hWPz#H*%K4kzvYR({*9q90Nu&=C4$^8D<&g?m1+
zoX83Y4&Hp`^qREu^X96&ytekX(R}mbXJ_{RdwFVq9Yam%oWPfi3}Gv08mBMIzrSy)
z++t55h1HJl@9q6;|Npan<c0*tz2b}P|NVHpa@8uY_xJWr|G9^eneEB4*?FfxCpyhc
z_hevLF{hPVJnh+;nUV$x4olrLH?8Vgq@iVdB>XI>n2{~NV+d-Gb*j&s@nmwj+xx4l
z!$CbBce%n&Q3i&1|8os%*g#v^Cn!1>y;`|E?c5y8n;DCHjq3jV03E5c^WU%6+O~2G
z3?V(n3ad{(I@(=)Ofntpg5B@;&0f3hme%um)p=$2YrlK-voSD;LTcj*c}NpwiD1N@
zib6ljr&B;3p0!b1PxV>9o8dWGEwoC9fg$24i-&T-hlA|TFL~>qb!3;FQuz4T(#Xwe
zk|r4epqdbD<mxHc8$xa@-~I-)E2j7mr@D$~R(AGf&>07BZ<$V3_g@F<25)#}!5owb
zD%v)uoh>>d=ze9bY5qN%cG<EB(C7lFyllG6$Z%kls)JU}t1BySrcCyIwKuuy)5+@2
znqB-14Dq5&OAdh|YSye-Y_CmCO*OleKx^SymoYIkTy<^;xpAnK8#D;Z_F6Y;%Zl6V
z3=QkK7=sdZqqq6w=H@nk1+Be)%gk^fyp>_)hFP;_otbC5`{1wT*>`u9YFDc;Fhu0C
zc(i_fch_2f|DPf;orr*Z&=i+{XlQ8F_jj=iPckqhToqOj-S+?A@AQ+CR6!l;*Vn}K
z<K}#Pd_4WQY`M?(cXzcx342Y{SuNWG*JJ0~)f%Oom@ud66(|Myfhy-7d3(F{`~Ov~
z+yC#ES3f%g!|EyJPWdb#Q;g49D4X9c3BFhR{Vu4pZ2A38@#f#}c86D)Ffc?cW#M38
z2#{LO$jHDzW-GH{{fw{I<L%q!sxp=yk5H}qx;lR8u3c9CwqLJk{hpIPw=`_k>c8*#
z7X<xbVasretA4vxrt-<en+1n?L8pkU*?i9GX65s_#(8&kfI4TML7}0c7bV^MWM-P>
z-deNi{PtD*=dD_`s;j=AVc)q~p;ZhF)6U;5zdv`ObNe#aZZS#2Bo|O0=xDci`llx+
z!39R{tu22ZiSJ+WWyZfo{sYg26c~IDoSA8CT=U~Y&W3|*KM%|Qo1hoF>&jc%+AkL+
zZL3P&?fd<X%a4QM^l{Y)2Hyjq;Z}b8KL(&4{_CU1msfpzGZQpjHS>J!_q*kv7t8<E
z0JYOVhbxp`i&SrB<2|+cyxr{wH%{yCw*l?gzLmXxE@&zB@3-5}gGRiz?@u_`Bvb$A
z<IRL--b;&IyG!2QGOd2MGkuxg++9xb=cV)aOib>xRGXc<Ei!6r)>P04&Wj5REB}7I
zKE3i!yL{aYP={=;Rp}|K*J~y>^V?Z~&iibB{BGy-c{R_i?|Z(!w)XP2+}k{IHWrtc
z`Tjms`EK|7eQ!3M*2}!VuNLIavu3w-K<9sO)%r5%$fr9n%xVA)0lmDrIlb&gV!LSF
zyX^IQr~Uu;{{OiNiq4x3vPpwFSUX>>T77AK{C=O=X1cG}?arG79{vXP_ZB+0Kl|~x
z|NJ7?ZqV>l+Nmj;l4dy(lb)PV?msiP{2nO0%x35Bs{{?)`OLGi1a*w6zQ5ah$N2C2
z|Nrvk>i>M?k+-w4t@?7}%uM6rqoU!UQR<myxlvJDG6KtU0!1WEvqEld&!4~fyqz_u
z%eZdGqb|^y3Y8BU*<bbT{&-B<xai3VP}5C3t|IZ@r|J8joYG!@MsN3<Nz3QgS-oDn
z{hm=e$UxAD*Ozy9trxrZ`+a_P*0}c97n@%%7Hj|6%a&j%!eEm1`T2Q$P!a<jF|@NU
zzW(pmZf8ErCGS2yI@&EQ^ZD27_2RlwTQttue!sJ8YyF?&^*Z~$uFbD~_dM_Vy4b=u
z8;{q$GgNl()48=J^YhN*I#F9z9K1C}Gq`Kjs#TAc&CXjDEp1;{6BrsA`sL;2<q?}w
zJn#N;6^{)G2@e++R`=8CTBHFg7PjQy-)He^#o|}B=eFOgTAcwh`^iN2YisA0UW;@s
zEiJwK*js<^mKE#P={-9;`}<B~<_%dpShyEVoNZrUH)+k6xl6Cb6rbH?uOGY1<nyz$
z-mAmbZhE<F_O;!6b9a}${q)@azooz3&nM}1>p+9dr>1Dmw5|T;b@tQBXJ=<$|66%-
zlIl$J{5VirFME4S_w%&f|3B&fpJaM1V)46=7v1IOnqG@g-v9gV`$;O_?^WmDtN;I(
zN7_v1{hrT$cilrnLqW-?D&1?^S5wuK`E{RXi@1JVx=)W`-wX!Ej3=PwfhwT!w6Iq{
zT?3y?^42>E8oYXTcJ}h%<$mA^k?MCl_x%6&yY%?nqEnigcXyS7dJCW`e6d?^R)OTD
zR`IwQ&*#_M-T!gSeA8h*>nCqEpFh_lX&hDoDh8gOF+P8$>h;?2{AHkHo9_9XR4>1J
zD`Ro*tF>$Qe!I1D<;s(1W*SdcxxC!pKTzc5{r&Y;<?mv?UtH=v{Z9G)TF{u7UGX$f
zx2^W~x3hxoG85Ou?gkx|0qQ^;;W&_`<iH@c6ST)DdV5~wzn{;;U;PC2qde8;PO1C*
z>*=%E`RDe2zc<@+vRZ1l?zR(`mU_SLyPdQ7?59iK`cFY^8&J9g4dq$C-&1_f?)RHr
z$!$E6ldi{A>;C^J|9|4UySqUH9-v{m&%f{guWL<{GR+D(XZ?N;D3r_Z6uN`5w9hOP
zO<Ajw73P;eMeQod1P$YVK5L$SX^H1oJCHnRRBHauJ7T&~PZqYzom%2K*(m8qht2mp
z#g-2mm^VG2SKTGhaP>g<1;$wo2b<ZSgJ!d)Xa<M<Xnpbj=luUOW6STFhR4^I?*01x
zUbX&Q>+*HmuWd>_4eFUXxAB~ur0Tute%<fXGcyb=zg`L6d@U+l)pJ+b+gXeIthC%^
zOG7||)VbSks)2&0fsr{ZW7$My_h*N=_18qNUb{B-+1#~Vi%w{--!tib-S^$4+46Ni
z5<yk(-fy?GJvTjUlU}CLRr2nR<?eU8UKgGJxc%4n_w)b#{S68j%lCUef4V&Xp9#Os
zhXY>qb_~<bN(wZnJ$N$N-*0u;+M*v1+x0&eEeemXHGO=nH~Lxe^@!wNw*4pfKkl<O
z%D%RyDjT#-=lhPx&1pAlKA#O1akcyPVzEx_t}XArYRm_1NCyo&-@0{6^jFn2kk)i7
zP>Z$S{$It+<MFj$uSSCM?PKkAJCx+>{}i(EN=;D#wY)$nyZ-<8`t{{^mOnc;_xH@r
zdw##$&3kRzy{gwDt{V@<i!;QZ0l9QR`uTZ3zpk&Jn|Qb__48Tt_22zo^xJ&$Q1h8F
z!I|H-WafEUn~DO^;F~kQt%>#9Ey44u-|f6p^Z6{Os(dZG{rSA=w7aF(eedt9y}UL1
zI;c#x|NrwmsM84=F0TCl_xt6=?){+2t(#S^*IwRL`Wl?HKb=(nym|iLHTRxJ?Wrg{
z)+2d2VH%&T)sq*C`_DZ%*j)U$*L+#-?QJ)cx^+L@NbZ07@ArHE<$iOg{WR5y+hei&
z?Y8JPKG|8~@iiOYecRQ{&hPi>WNKD;TxF_TkHo~>?RU)%xAB5IxyPjQpS;`s{@gk1
z_kU(KmYuVF4o-w|)o-VQ3WS-)>3-|>d^)ve`@JeqjlciHeqILc6+zqYGbJ4Loo~0-
z;?oJ`?s>M=VxYqI*0$W}H(M_I9ep}IKJLo3Yhtc}BGNe<91CA8Y`<o^eA~8dKR))?
z$CSLkw>P5t?bh!1HP5Y&f(qS#e}9Ybezz<8ZsGNqV&9AF<M%HretypN^fcY>Uh{i9
zew_5L3#$2Wkli(~rpWq!u%G498)>t1yGpM`F3-5U%y;8iv)dx!v8ADVL2Z!8knnK*
z&&iK_&Got#Y22%RzxUCG!+hGiN?rzmMvo;-G6Ft+I<0R$qxR2_kDxO8<A=li;-H*x
zabxoFMY*@P9qkZQ?kc}uyZzwz=Lgy4b@qMV`(E_z?d|$eTeCuQ_Ix~cbYZ((l+D*G
z!KKGRlW<3+veyKD|Ix@UrvaKTT;$#_=h`i%+a+gPCBiOOkziQ+>x=&9`CJX>142dO
n64@CTrW}S$pi*&k@IQZA?vo3P?9W~X&GUP@`njxgN@xNAr+q<k

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score-7.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score-7.png
new file mode 100644
index 0000000000000000000000000000000000000000..51bed9516aede380626b14b301f91d598d12e170
GIT binary patch
literal 24179
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_eCLL~J6zmL^sb1zJqz`&`x@UgPg
zs!PtCmmI4EJ2{jT7A*SFut?#O2&<050)E#iTD}w1JOWoTuF)`^a)C3nnZ;ti{g1Tz
zHM<)X3^;$)#fIyhI5TtR`8Rn9@6K2j>m>IGGB7YO+&D1tA}fgT<GVrwh~B`<$il$D
z(2&ca0OIC2GcYnRFeFGbae%nD1sp)sjWz}*1_p)$W-J0A?lwizv_6<8CM>Mn{`lUH
z<!}D{{QT<b>gkIXEqe0!v9i9t{@)LW`6Xko=|*o(>y_bakE{Rtb$40MjvW@3GJLWY
z1rOHADu<?|Ea4K>D!JZYygKiT)$!xUwav`J7A{;^WFey!ysSs1I)3|?Q)|}iH}n+e
z|5?xbU|oTQj9&b`d-u3FIRks8OifZxP3h6okJULnDK%2>^qU<H|E%L`KDzGx|L=Fz
zgGTl%`|IoXe!G=@YO?xy-tC^e5q#~=lhytGHs4*~*gWU0Rq3me=+bxh_y6yE^SrF0
zD*m#zrlw~zJAc^IQ&UByq_pDW<DZ_I>V0)p=;aNGhfDtaDBPZ$8a6Mk{qytltLy&$
zy0s~_`_{JH)s4*TtD?8(Wp3MlJMWu!L(d9MhiA{`USwrB5iu<_^TB~eqhlJXs;;}s
z-(TBP`FTs)S*fGPkH5ZKe*f$Xq5p<r`f+O>9qrCO*u?tsp4!((XK&w*maqLX@zJA4
zcWy}}n`B;6`T66=i%(Bamv4AfeSVQ^_m>;V{V)Ig{HztUq+^z8_OcBd4CdNahedD8
zx!AzSY?5=s;O)J=(TRzPlCkf2ZNFS_zO^yAz3Azwr<-anFY~o3eALp$E4^%bT-C|c
zyB{7NzPdi%-qpqBM%eSSOvhG*uFhG_dSGuO1Cs+Y8&AQ{y1&1^u8P{a>R6xbYP;HB
zD-sSiNrv3KpWJiug^-O^&5sSM!q@-XzAg90hK0}0&tETVUA7|S<Rrb<)AV9jF|+fn
zh}@hu%ewqs?)90G@%v{-Zcgi+Wty!fFE8&q&n8mVs-z(M^Xv8dSB0;S+g0%~i7lie
z`_JFMp=%-xw?FOd?A)Z|UHSQ0Y4mjK^1P?#=HBl6bV*lBOKY(=!-SI;Sh*W!cZq7R
za_JN@I;LS~cQ1K%>gj1K>;C@Y;^m#XfB*h25zR&WYJb0ab8~ZEZvCH+?pt$jhXn=(
ze)|4BJR)MoscE{apU<oI3ttygxNUdf|F2)lR#!dhR1evl=KFl^+$(vWadB}`yUW(9
zXsW8ZzTfwI9Z1K62MMffY+71cUcR%<uAZ8zefh7ItZh|@ZPk~6kdP^V{`?UU6I=G|
z?Ck8<*VgL2&APJU;hRO9s=j8W`<iB7^ZCBfs{EZ!a*vwdoEO{j9v$iA;^7JT{q61L
zJO55i)t0g@TcZ`WW`&Gpk%oamK<cR}7un@&9tc^m@k%XmYUMh)Nym4d&CR9V_pYoA
zzWeR>-|zQVJ2ta%ad8DDBrHfuO4?HQw`#iC-{0S-AAWd2eSXcOjoa2nZ$I_0U`65M
zV=rqh??@zH*_s_5yR!)Fq2nJEJypG?T=?|#bbeL)gF8Emt6s0&9<n-2_v!ih_kaE~
z%e>?wZI<(4$Jt$_udl2KRDODXe*C|G|4z*|U#}Im=Eb*}wsn7Y#8o_GovIP&6uCJq
zG$3Gt*A$I~>hmg`I5|1bmDT?}v%IXgySsa`;jy2ei~d#@FP^{f>}>PZrLV7@nyx?p
z&)>hIa&qh3<tkk^r=Ks&G_U-WvNhwPQ!BT4*fgEUDa!7Ap(}%2=hyvO>Am|()wOl8
z+Q~hq)1Ur2Ulx_@pclJq$-~3#uN&Fr0umAy6g@eyFzf27omY$hZnP?WwdC*b@2h=h
zn{n~-hB`PjoSLq`{%E&&b&Wqmir*bZ#sX(MJG;EoprCbZX46zrap9FV3yFxBQTO8^
zd#{XTkoPp5i@(0Uo@$yM=6U_lac6$pCwmU`bah?YS^RuU_4mA9X>&j4HlDy~I*}@O
zXYPB{Z})4(=SP-mYHo&xhUZErPMkPtNuR8B*0CN*t<Y6dtjgZ3XlP)NwX2D^U-P+l
znr`&6sI6IdzgTc`a;}Qmxv5XicGWD?>{YS5%d9FsEJ!;)Z|%`;@$7eZcCL!wzi&zQ
z!WC}4Qc@NL3zU?V=iXfr^xCuk(b4YJQCqWSndQ!M>yda^6W=Fmz09>+Y^8HM->G@F
zyN~DU$M0Ly#w(rm^V3tUz(p;$w&&~D*Votn{d)b?&CScra&JA6`5e61jTcmcEOze?
zD=FDB%PjZR9siP&EvM_u^Y5(@RCZetwAAa>rKR0`G8PLgi=VA1dwc8FzS`YgV!B$M
zuWoH!eXr)TukQ?lgUJRzJ{;yxjht32bNK$ow6jug@9Yfz`RS?m^&6u4`s=0F-QSqp
z9#{EPG<1DjEGV!80w#dWY~>cuIyp%-YD>n%S65a(&e>n`GRQRNMu26}lYqy^dPM~V
z7cN<%^7h6?=f}r-FRxy|Ps`KG&o6AL*VHZf_w9}zJGQFu@iC)g8UO$NjoMMLFlt-Q
z%xBM)($CESh1RzG`|DV_#a4JuRy+4y<?Hz^b!}>Xb5^{&yZiL*+tIz!=3y5Xxt9L<
zQJ8yklk4MSy}_ra>CVmFUH*RE@Av!TudWUczqhBd^wky3+MiFSzq+unx$NDYm5$A9
zJFggLUQ&^@C^&F)YH-otoa$BTs;aJ~udZCYwKY3*Q;MhU=QGB?9{1auq@R=7ns+zq
ze*OQw_bMLqZhtEzBowmHiB(iDCZgZ|-;PO>CYcmJ^D)i66%t?j_3Hh7hdB<Uu^rey
zEj9Ak!-5^U@tf0nKYsdT^zYxlXD==;)_WbcHY!!;v{C4)5X0x^<`zeqr=Ai?j+|Ec
z@8|Qmr+<BUnJmNC{_|0{{++(!XJ;g*zkmGbQP1Ir2EV_*FVEgx^))Lwa+;(`#)Q+K
zX3UV-UhJ`Yt>Ljbw$;}xWcY#?I<amqJti@E%9JOCKjW{i3_fll!)Kgx!(jT;*VosZ
z-@A8DEqq<fv+wuo%Olexr>zWJ?6&LMe66p4zP-7byv%oYn$Bq><Fqpc>*URHW)xb;
zJlp+#pK*Nc*QpzIPTPDuBCPkj;_cS!J*kn)%HQ96_Uh{Db5Fz9$C>)u{ajLLA(Qs-
zQ0uv;oSd9;-zRH*{aR`vllJP$O1;;|`sMR=P8-=)eJO~%w;|E_ae>8|^Y;JWZ2I%(
z=V!I(Z8^&l4mRm+z58PGgOd*qHut7RE^}_@dzn?g_rwVgVNubio8H{nS^VtE%HX_Q
zVPRq4ii#aO-|zb!GtE5v+8GNOzR!>Q?RVuC|E=5i;}Lgq<g}NUm-k2So-#$G_~9Ye
z=if7H`_%pC<;d{0&ooNyx@~8(H*f!+Pu(9sel%26R7^YGCo6aUWmWa}cV8o-*G6sa
zS-*b0WzCNbr>*?$o3DTV@{3Q_>Pp14R4KEZjCC<PAH~!?I>IR|DVZt5*B-gQZf|kr
ztMp3`3uYW_X5alL`{t(9W1Dm?FK}!&$!3_a6I9K8?mMQve$S$7YokF;q)A`C-Ok_r
zRlWZE-SX7PX=*+*7UbOAv~x}MpO42yWo6%93w7RgZT{c&MNdu?vY%I~)j2)M&~4wo
zeR9{?Sy}Iv$ai*jMr}-L<r2|YARb?HG4<|Ye)~1sa&K#CYQF62Ild#VTTE9(MC8dO
z-q(-&?ZZw^QVrdh<l28*BKga|-|w~a@9n92KDRukPC7So+P%8pxt^bX%)9F|RV(z)
zyNr@oS3K|CyLW3#=H%0#^6u_BDY5wD<Kw$^{(rgbU;6M6Yw62NPq)3RleH{znU<;<
zzptjgTK@X!X}YtUnw#%VYj1B~?b<E&>+ALS(iayLpMSb?%eMBM?c3wQ*7^DQtZZ!e
z{BFwi%36nouZy|3di}mtLaJUn*7Ec7m;bzXc?NHOe*V`N7oDf;$M0L3*OmG6{{MgK
z?S~hZ->W?Slrw5)(bG!}jLa!L7v1G+pKOag*u?tv(`o(PI;(@1_i>46Joq+~c|zqy
zR_=yq`O?#yzI;3`zdHGNUtX?x&J6{5dHJ)mOiw@F2dZ&|)%{+4d3hOB>%P9W)->&m
zglXm_7u~2W0dH?@4c%GvlxMcMLiDzrtSc)fis?ozdGR8{H2+>q=<2Ym&iuAZ8X6i(
z-X`DPmOE+5s?gO{Z%zeoPV@DhZRUG>TkhrLe%rF+S>Hc@2C<g$+x>8;{{HUjzS`eg
z($CBF%Gp|-%>|V|OO~jJYKQqWv-6il=l29UI5d>Kxlwrf>lEGSYq>MGZ{J?@{M_2h
z%l&ujtPfv5Z_%PfUrwse&p6T{c#iu6r?A?I<Hz0o?S4M-?KdxY;IMtdrz67tD;ye`
zw#QUg)%<?DUCKDE$1LZ@g2%`EUte14eXev`s-~ggMaha=+w<2~etx#nsg*11?yjv_
zS5_=MHC20euj$ITy}Oi@luT-V6dXN%9Mn7pRcVVBFMfZk#!T8gZ;Hy*wbACWZ~5hH
zRy;i1o_%#ys8zv(hDnnr&wU+q{&!i-jsnN(Z*Kzk)%=`u_shEJR&^?0pTDWPc=4iK
zbJo8<KQGJ7W>)yD*uYT0$KvnjckS2L*H>2ttCzmL70SvjRwC)F=(*f)?xm^P;dvGk
zcQ)z7?kI3{bad2;-?wMq&u7xSl147`>;LUs<~v(0xu;89f8F)CYTw*jTXxP~{_NtK
z$jv56M>uM~-Aq4M_xj(ze_0n7wYv4mR9-&5c^Ti9?_Wd~y`DbbviR9KF};=E)Ag#}
z@BRMeqPu+N{e88czJK>GKCrdq?cYgDVt1F_{a_1fmF4f8HpjBKD(2nWw{JfcFuuH%
zz9{?px>wiN&rdryXJwzPwU(V--0f|-!JE_0=2^*imFQ~x|N3aNTd$N>z=DQP&(3Nm
zpUI7vSw71=e_qtKoRtj?44`VR;Nc-I9-b+OA6~c~U%z&1_Vrii?f;i-tN(J*eQU-=
zrM-W@-JWHVIZ4fDhC*@=sI{7SxNT+G+gp>?u|DXPHh;DCdfeqht=wB{eilh4Ptgw7
zD}8@2cKx1DU3>Pve^Y;U<^026Y-W|;-&YF?w{!DsSFZ|P{c57STwtG!<&&pRm$tO9
z_|7ys`gG6#zS}>4?!1`(?$y=R+e5_}ehWA-Sg^9NtVlaM>(`@h{g7oolBI8M1n&R)
zZMJv$L>bGX6B3IjtNSmj-p_CQWrCPq%!(;fM2;Rmp8fLDQc!SS*;iZL+S+Pa|9Ivv
z=>-4c$U7&yEA8#=_x^gdy6WrI@ToIqtk{};J?qnxlc3hlxA*tgn`U3TQ}FxBx@7l$
zxvx9^otUVs_x9ZqP^Hap|7U~UzaPn<MvZRtwmpg4H(rsFtNjvqcBb+3zU#%>R;90&
zfD*vt<Ne{s`(#b){#2wJc=k)jCWNgFa=o;5d5>gr-tR;<W;UJ)^XJch^!V{zxz_3*
z9}=GnUtJfzKF;>)>Tv&)Cr{qmQMeeC!#5@$Ulq96?bf#3*_(d{S5)i(wJ<t`)w7QG
z$wqC>nrips0rTE}zg`<1vtX~huennEZD(hvoc!zRz1#2CMKAZC|LupwV@cz*I|W8(
zzMMKSU!GwmbFu@&4$aV2Q+AcST;$x&mw9DHpx$e_x*v&i?P`DJm)`vN@#95M$=%4z
zo^@u1q0zA&KBuNvDb{{?;J7{4JpbODcipG1<OSCM)!m~mC@7e9d)r!2lT*pH>&5K+
zeTA>>zJxFJo<2>b_VZbDIsLBiwNa|4H-#+onOSnRdNs&WVRb)Hzjdy4`M$*4LaJUG
z>F4I$+K}kHD~|u=wYdG!6Sc$jKuvXN^SmqN_iL9+8mDP!X`Qls_M$9geO&C(Zt?32
zo!d<^FD;SYW_s*S$)RJm)!$z1`~9wXcY^t`jJvx^&F`2gC^#4z8cJCfE&28R{d(`|
zdYLCDsmk4+rV|-tTlEFhF;VsW{QUg>hx`8bwaeE<OuDq@VO90FHxpG%v#*`Wz5D9w
zYTJK2%j)8Mte*FuoMpP2OI&Zwks~h8Kdzf@Rk(1uULC_fNe%@Do2sW%!=Jo<y?Uau
z`>r!@Ki(-me^O$xUhFQ5`ryjF_WynyzWF?6m)XjN%RTQ0)&HLPizCi+Rlvfg<2&{0
z{(L+hJ!_(^ii*o5n{%xNpPqRB{c_nq@AUck_UpOD^-kQrZGD#U)k-BLB@t=q)h#V7
z+Z(nOK6dk+Zx?&;;K8ad7u_$%eqNh#d08*0i_FR`cIV5+#c^?QpcXivyxp34w$;mi
z#>L2MG&eP+L{2+?{e9U|KDYe4ySCQ-|66YR^-6Gg%KmAonSXwKJoni*JK*nm`~Pch
z+=!61tNGFPySu07%DULycj~<V-^yNJ$#ehpwY8rmZv6XY`Tyzk_>w<AKAPOV+w1t^
z?yl0w)2B~o<ClB0@!RX&YnR&Dm4AJ8RWBEmD*EmJ-FW;j|I6oT)BNUIy?k|bb=AkC
z;;~MDPEJ-gt@w}-Ic=%>yb7heznKg27jla+^dCBW`0JO;{@G_{7)lu?wY2fcYQ4P0
za1qp5h~HnQ6}4r>tLy96uUMfGyQARX&Dxb&S6BV|bXs54Gk@RDWnpWhmaYn24eCTk
zZce)j@{X$aGz}G%BTt#OcurOWX<z0)e_b;>|Eq=Va+eyJ*|#JdWCAsijnmKhgugx7
zEgtUT(vo&&hGKqxzNk(_z_e7$=e!!RyS8{u)mq9fSK;vU^YiPVep<#wC0Xk-pS{)J
z{jR${XqT^Bp%uDnMgIMLQTu9ko|>xtd=C5J)2F>BtNHHI7N2}+>-`P)Pc5lsX5+cQ
zZ~te($H&KCckAy9I6KP})C+lhyg&Q;y4YXeZs(hpya;&C^SZIIvFgRb_APmLt!%&D
zNY)BlGh@%5Jy(`^3g4~&|95+6^-`~?Umi5`zxw@t|Md0i-^=bju_kQotY>FuFXxlB
zTH)NzCuLKyAt@<IL`rJa=JfMfr>E(HN|jBir^_z0^VxjAQ~c`M+S#8SS?%oXK=y7;
zKF(*FcPApg=3}e(@3_5HnudmfQ?<jxQc{-G)Ygj1%dZbz9i|D&h}SZYc8P-G5!8MI
zH5U>S6Rk>KOc2wFP|(-c-@bg+Qq{fX(o3?-BSFJEd3SfMEO~k9-2BbK%l$GxKRbJB
zqH_D^lVNvvmtSAvIr+*WS8h;tfB5j>ub0c`Z^^l7v^DFh7pSp+yMArdR+H*)IkvxE
zECzK}nV6VDHY6OBwrhCUDjs)XlBzc-{%n6dXa>pt`|+6n>^$3Ob-y_my!H1k0Y%ww
z8OA%wIkhkJ8+?v#(s}&!>C|Vxl8^VzJaE8avTn3l@t+@s(@XEy{a%}Sch}a=jt+ym
zx;ix-oikJPVsGvFaEM#Y&hFmLyrW&B%Yv8tJ+uG+v;X8w<K>_NK{IesOXatl>1P|6
z+3)mKzPO-xd6}=Yu#iyFrj(OOS|KYEo}HhcAGSU&SB9^>^6%H{vA2#NIZ|QMt{c5=
z#;vW{v*%bAOX=(DgZdn^Ota6-G)_PB;9#@w+NiBQ`)Ypn?BBnilb_$*H0z3iar(JE
zORvBG@bK`m>hJH=jEpY*`1y0@g$n_f*F+j`PCYHw|5lc-eP!h4XS%Y=;4V|~<!zwO
zQK5wl$lY?+{b!q<y|OO$c1uf(guT7}Wc_%%;H_Dq#x*|*ieFq%oW8C4+Z)4PX>+rk
zMNf<N)vf&Ox8!TwlCGW}lU6QKug&KSlaEQ9-sJQ8+S<!G!s6oTd-m+PWXpfz>!eAO
z&PeC)Nz@8oms9lgRBBCat*?hi$I6(Un<TADR#+B3a@qB2u2E{2X6&vlpitxF<uyG!
z+uYp#@0ZDv76l7Ff1Z-{?aj?)vAfHbMQlt0^|{pC`(&1dtPDy!(7^cY$;rv*%B;)Y
z7}WmyV)*p*bo0c-#AEmG-*<6!of)<^YUi2iM4wyhKc9WZ==r+z_J+jf%!`X!PtLX8
z{_*o?V?jZ|WpR6}o_#)VU!J+W?r&A_>M&hl8JV0->F4uSg{{pJ(~FsrW*fdP#!!F%
zpG}%EJ2rg$`qh-L{c!5O*<0f7+yDP_nMc~}%oMHAQz<7W9Zfku?{3KIu(OZPCptMD
z;<dk>`PZ63p?Fiz&er(F3=9RcA3b^mZV*2`H8syal9}PpXF&%BhHaJ=9~N|pYA*xT
zk;moh&%7vNV32GuRA6Y>o%id@%U^G|-v@QnV|SIDe7vNCp`o7rT>}HdyIoSIS)l6d
z)O`E>^XmUqetmP(c(FGVLy7=&yxo8wecW9kxVyhUJSS(3le6>F0t-;J+oN~VjG3Je
z)VRB~HT&}3v;Y47ep+C0Wo7X4-4Qq6f`(3^Bk4VQs+U0>Q5nAWWqxyKU0lj=Al8|I
zaYE)?`}(-AudiR9rW<`_TW&P3j75OI{ogHbOL?SBJowt3`P!We3kx&1Mei<KyE%5D
zQ)}Mu9n(@zZqnKQl&{^{H2d0~r*Bm>EiEG#yY&WreRUNy3T|(2-`d{3y72L_S;pz-
za<9*cGhg+wY)RYf*ZY~6nL%TBudc3MoqvDdt$nq>Wv%04V&=&3we!hX6deCnX&xue
zaKfj8N58=*`!dSdv*zN{6Z`x7pPiYxxcq)?_|47f<<a(uhghIv-I4)!O$7x7!6VmC
zPCVT9?)m)su*Gh@QzlGUaN>jqs2oyMRJ1C1&;S}gckLF_G&2j^oObrpj=yt1U2x{l
zJl-dJYO412SZlYGlqJSGal1-9LB-9rwb5U{-OkT`a$;iE^>uTP^~<k6aNxjgt8;g`
zf*3ydyMaPcRZZ>GCY`5eXPYnfo|qb$1s&S<xBnY*cUNg~Wc{-<l4s{yhxbaEUb?fh
z*m#B4$=kQ1k9LU`N7uc%VR-b|u~#=XCRhD@I(=?=Y0zBDVz;-qwqCxp)cfkL(rn$>
zU0>E+eewSN`;Et}HI0md*6;hZ>h>r3x*v|9p&+~8Z;a>K)kbxT>+f6p_=AEc!;aFD
zgG>`%F6m3|01u+xJo|Kg?c;tq+f{P5RT^4aUUhYKT-@BjpP!xGTKYO{du`nP?R76N
zEnOA3xUJ~f8BKlt^(EIsx97#Wy12Yp+;3MDZC?5+<nPbt^Fbqe$8+<qZU3Kkch$Q4
z?WvJbd#kp3n=iidQ6#gMvGV8B>7`#@1cC<5LH$fl`AJiZ)BVoQG<I+061~(Vs%=vH
zt7Q7ui4!Mkg{+tWZmN90Qw-|AY)Uz~=+aVe(45AkCEDTZGEPiT1l5e7YGH|oVC{#4
z?0L@%7aJ-p_n&|5wEq4zK})?f4GaP-i=Ty*lx+F+_4V>6Po7BcvwQjR05gBa(JoOg
zUf!#hmU?e3c<40!>*wd^!`t~}L-te@rk<S@3L19aS@iVFz3TTnTYIm3zbvu%#0ii7
zyYIK<-CcEWZ?(3SRg|KlA{Pfoz{aGbUk-8Wzc@3~*nCat$45s&ozzWfXIDLVkgzr9
zX3*~P_hs4Jv#;y@{l5Qy=+942Ma9I_>g(%W-P~4XUtj0t<MU<5d(GfwD~g_;0tLE*
zLj!0SWmoCztZQo`!DCBb&lsOyQSk5(Xp&)F%uY~CAou2`r)^)E9inzHGbvmK)k|!A
zGArKR-VO?&tV>He7cE|_dh%zwlT(vc__{TV-TPOiot*_rpL}vQD{gL1&;I!6=q&4U
zQ2+7$rufsFKvk`7?5>cnudj!1&%2wq^8LQ))2D+vH3ys7!SfExkJSC<tZ-`O0`>kf
z^XhlUmU>OsTMOzdJUGy(7u%zvsivlO_N`vro)w^kJuNl!Km%juw$qbTyMKLoxmeD&
zD&tTKC#cil{Z>;`v#YoF>dVW^uWrc<j@?z_d3m{ic(<4?s0{#$%v*aZH@~{NTHW5>
z9#pUIt@;`i5iuibTTbQW&)yy$0X{xGAfIeXJ-w>>`@3CLUsr*~FfJ~3Umd+YPb*-7
z!>+j1(ww}!q1V^Nemy3g|KhU0edyz3y>nmx`ubX3Utiz$&xgZZ9UT{LZcg8tbye%@
zySve#>8>f7!E<ui`D9j9et!0{UA`{h{k^?Yjnn-+i~ecG{*E~_-yS@Eo0GF<UEJPP
zKYmo~{d~?kYFEihv%EVmuJN9cSbX08e~kAuoxsg$XG0dd@#fy&7YiCD2wNYw_Wi!!
zey-hOrQ7CPm#+g2vPqd{f#Uts*RS9fYrowuk8UyDOVf0tW8Nu!dw)Ova65naLZ{X%
zyGpa4o|x$D-Y0YM+1c5qpyA)FtEX<3y}q_~Rq*n@b8{>ggXTNV&NjaeYF^j>s{u`M
zfKv6{U8VWIZ5co4Co?Eao@G<H2{a~pYKmsw>sMD+f<|>E&2na({`B?rb?N;4{K?wk
zdY^y4-@p6KX>gM%b((&Bop&jZjKu}enC8dh^0WW`{w}SrumAbWW&hnWmpAEvMskaP
zeo9S_oYvXZ<@J51L^5bB)~#1cu77vh*;%u<`A(fMAwlP~k-yEymg1YcN?-S+Mykc{
zt1-8|9=p3t^7JN9gJ);e*Hy)pDJe@p4HwVJYR@h$_0Idv$H!+Tsuf}Y8k1gkdw2PI
zP$ivuYD%Hyu~%1D_ohasU0C3#cUn7aO@<6#yQE=KOLXjVzqv;B|9(FAeeHj@JZioF
zs;S!HQl~fhq@*l4{b_IY_o|%x8<X8ZZLej%vty<mKYCQM{cz&9_xIly?q+7^+p(u_
z<-hOy|4W|UbY^z`zL%S9z81eKusAb4zV79wcX!M0n@&red24I-ZXJ8jfNb@otfO6`
z$4;L<UGo0k-PB4CkB*b`?f37j__*k{*>b<RMgRVOdU|?U!NWsp3JM3-L~lR0^zKAu
zcOMs*7EXTt?-e-=I|O$nFz$G+qNWBi2~^mDrktmjf`%MGlfg@tsPrcr&N9ngb>oI$
z*~4hqT7Vn-Yu_-ja;@;2Yc<QRcGqU_3r9MIpT2#&R()Q@qx|>Z^Q?-Vbf{?7|NCQ}
zJNp(WJgrJ!O}YK+;$rvH$B!TXSvyrLR76yCsd4(b7iZ1yhiuEaIp_7FMT<gq7NvrE
zqvo>O8%tk@<=)ufxYT=k*!_LAcdxOtv!A|x{rj@7%R!wbm6u04h4oG^UbM(&+xx4l
zr}r2}ZOgf-E301r?~mO3nxjXLYF2-Hllg9a*xIO7;p^v}-Xv#R1uDrv0~maAHZNl4
zndiq%|E?1H_SV*~^Z)-j{@AdlrpD%)sEo{;KffOx?cQ4cKJM$Ao57*0LJBjdtNY7+
zeS16Hy<ZMAOKLlhnPEvQ1Ji?fn{#iQc?Mlw6>8h}a7E<iWj%)H%C2k2@B5Q0zu$Yh
zo>lp~IcaBREd2cZeD<|9;M%w7`MKKLzt5d1dUj^zi4z{%pFVu}aMF{)zG)pD9I^Xq
zBHjDt_CDMP8m9GJ6}<f1Tk%<ZD;r;|7k}vK>G|t@{r}bM@-+cBH>DQ$z19d{H%I5R
zSFw+4lwSP4HQ(>o$A_*C3-$2m*t2)<(*g_7AXoA8b4z#b2hAhu7F)=iQ}}TG{I@Nc
zmqC5|4I2!8{`g_>`rpUn@^||#?yId<RZ#&AX$1fO_jhZ~O{2Ni<>%g3yuQAEddb@C
zI}03}@9Z<ny`_@e0~((7UeC#3z{YaG_W7Hen<q_qc6npa^lGUmv(^3Q-L|U(wQj7-
z^J>3bbl+9-a?-yakNZv7=clu+d|vZ6|Lo;Sw~k%E9<HdUsQ3C(mC5?;-?#qvTDSlA
z$Lpn<nwsV|?`9gOr$kQseD28IvL7E3J+B{YUSd`KZOy5v+RH)HpiZq^uWoEy+|=9*
zN_58Q=Q6&$xcKYydHejA7HgxnUi$O%bLftOL{JyI^3#)v^XJc30gX6izSCc8F#A{B
zvVS}tmx|BZE;md*reR}q=jVc!h6V=DOG`W_-#KR4D`y+k$}N6viRWa{I4ZBaUCh0E
z_ds1e(EI>snrqUW@&kD$_C2YQy9ypURmE{J6eu+??0CK;j$`@P=&x7w-0Sxy><cb7
zTT-@N%C2SysJf{6`RQ(n!n(r`Cm0@kETecm-sc|g)6>(Z&!0aZG-`6c?zivJZgKz3
zZ@WabRXjzt!?u*xb<eRZJ|$6nx?JMly3o~Op1aJ{Jy&%Kt6SCI{(t@8FKM%!3okA%
z&VMQK@#Du?_VxQ-U0JzUfB&CLPfsQvljxN&R63j6FKhj*u<}*9-Pg^vkB)He{eG_+
zw3_70-SYdI-qUpS-rE0uW4ygKV%pNUy;Up2*T-2^ep&(=V?H~>(0Oy(*-QHS|16qc
z|1Z+c&hFGi<#wIZmkzaZUtQqX9Bow&D?g^_#YRo~a@PF*i&s}y=e>puzS)#<?h3Xl
zfA{9iq|Z+#```PLWUHa!G3ohkf!XHy`<5nK%kahSEK<Gu_V3@nSJ%Z_OD2CgCY`_J
z=DSBnyFpVjDUs9WRlQmnz3OEdsKT67aynV(Ums}9;!q3cCLQm$x3`z;-QS$vuX8$R
zbK2QE+amW?Z9QJQw2bk~m%1f(M%x1yyXE!U-rG_5m{(qVPuf|j?Wy7G<F1<DuTg&a
z|3A;0ySu}~*T;qC<gAJQVNvp8!nb#KXFoGk(F|V~lXYv$N>H|)WtyFJex5C8gg_;>
z+P}vzYIoUN-tUYI+q*!SUszCZ;f)&+swyfO;PFheygMsiUS6(kVG+@9_v=OM>V*Ld
zoxt<AXJ;>;XIp)5OYP30r%wtjzT8ZozcZ#nO;z>f(&=%#mhR?NR8)NV%CB^<`MnC~
zoyE_urO&Tj79L-F^=;G7FE1}=-P^PC+nbw<Z`_F3ntA!zv~TshPfgKW>@`&@^Y^#6
zpd@zt*ODbmqTl^{a`OBA`t>(%M9j4+_2QK>2{_!wJNLDcvT|xqA-6PWPUgeI!?yd}
zSKhs1V|&iBbkCXi@8y4f6xx11V{E>r`0A?AyvZv2zTd09wK=^%>)M)^H4zT44F5?T
z(~sG)KreRJj=P1sOI}Xe_xqjo_Qy+?EV0-fvy^S7n(r)7+4}22Gyj&9lS2Kac{esV
zitESidAO6|K>S5kZii*lu3esN_veE%sBuvH``gt|Pfv%gi?NioC~zo#c4p%A>C@GG
zXFVybYqgF%-uvv&kJUDnpH|fV{stN!U$l7f)dh~sbFIt$;_H4cT@}9mUEzV6sI052
zmd-Rz2ThlQmRQx))P$^!G7ViDWqLOE)3dXyMYY2~3q_=iQaYCT&R({w^tG0SMFcya
z%!NlsyGx&)kpxW$KTatrn_-qa3pDvNJ-#jy)L=?VN=oUucy6xs*Q??2FR#bf`+m1k
zSQ)!=Nw)ZPb^m!GH8p!4J${@TInAo%#e%}e$9Cp?{_(i~_1f+Cg5KZT3u@De>PCg^
zE_-`vk!$yrJ(b00XBZxSYq2%!>ZR!Xy-Ux{wO(EM`Pr#yy0bx*0H|WB`S}Udcz<?o
z?&?!hwO4yh)v_vkGh>=g<RT$eFAMhf)t6QTDuc$OK;y5WOFRT~Z*TMUo~{?VE@o$p
zTKSo|*4uAw$y_|sI9<!iDhf1h4{BT{9pz$WVbQR%0?*cOt}QCsv?^rfA|=<Z6*)II
zX+>;U0BSLdYKOhJ9$z0iS<QD&?3X=z_nMZ!i@CZsIvkXImU>MUk(FJm6S?WdgM-bW
zrt!D8x0frs_no+Z-#+#|H-kr#+yriMy&0gydSz|&bryDZ>C>Ao)%gAIleIph+;5Y#
zDeY`lQ**O#JD=>CPGNPMZGT@Z?)N!4Nws(X{{5O!TUJ!Q-~0XDvrLBn9_F*HALATv
znihTUdT)$9|B16p&M^nA2vFQ!I$bZ;sP^|a)1RN8o7dIVEz7vLDD6mx;ImIpPak_&
zFk_Z!c9qS$_~(q4b$@nb-ru+P<Ye{!kKewT@wFeeT<+%N)C6kr1uyrLd;R-yzx|mN
zfs1{vt_lT>C4mNVDnCCn?Ugb$Dt>mx^Yb1hWo6rWlMRm@IdVioUthof^`l3RdZtgG
ze%eNIb@+Oak$e9AdY$)n@}x;;>i_?a4_@TLDJ&q6(A3oA^YYTtvki>QK1D@Ev%dZ<
zy??zv_2i_ZE$!{IUtL{28?<<>=KtUCnR)w@kMmt#;we1Yx;$^PX?9rfx){sP`~Uxa
z-?sksionHZYQNu2|MT~6@8O39Gnt=#d3kx6d%v8Tmewg27M2-Gu3a<2<0_A;sH<1k
z_^$syM=x&AjgVC#CsWSOy2`@JI&+$C^sLz3Wjkf<EiG^E`E*Jf6kedFp@>GnfiG`v
zURF_6-MQCXQ&aQV+U@s@zP`S0&dM!j!pO)78k-DR6LHaJhQYxlOP1_-`~OI%@Ur;*
zb)XS5H3NeSDW|8M710hmvnA)|rJ8Ry)1RH1s%>5y&+wpXn&I}3+6U_!{{H^1t)=C~
z$}JYM(5ZDx)z>WFStg#KQ3CJXM~=9-y1Q#@Xn5?c{(kM}=jUIqMdz<fIM@W5dH?LG
zKgp!-PetkLYreYC+d}4Am4e2nedk(*D!cU*%-+nvz`*ds{O5J{2~(zsfQB0q6BE1o
z`@?^JdTLtvDP=purM=bVAmyOxyU&IbwZqqi<m9XYb%M^#wf5d+)?r-#@6W1`m6ODD
zA|Bk?=iJU0wIQLAPtIn>v&A}$3=9qRyXyZcl*r4=x3;$4-E#NN&f=>Z5}l`~U%9?2
z)EhKZ@>2ir*X!}16_<B+mzUq%=iV>3tKebN?FCK@3=9wMKZ%!jxCBbrR&{@NfJW)J
zt#fMS(rb1P{vWq3CvtjO>gj1y4?o<ov~d||39CIXql#>hy6I<=*G2dCR8E~T<;k3<
z-%m_b{`Bcn5Gcdn`uXDrXnw)+w;lrn!-sqq2G8~@>EC|;{JC?jckP#itl3YVr2PE#
ztLjew{{8=X)#ouWFfjakIfGqAmWhc;<>X_Ph?T+yOSf@ya9mjGJ>BNr^G8R!&y~%a
zV^bM)dYW!<O3D-7+l&kh3dt(!>e`Bmj{P>DI->i<m+*rewmWWV+0kA1CMvs&$jIo(
z%gd+V)(&6y;>pR$dh(~PM5g7Ne7v$L^)zT<=iP^|7#SD}mV?#<yuH2s{0pOZo-7ke
zIQaR)Gcs0e%enbzTi)emzFmENWp(nhvbxDV+j4F$+Ex16YI^>?J(1z-<4QAshl7@$
zt*c$&Jx!<bxgP_A(TP4;>woXXwVPF4Q%fuv3fOD3Gv|EX#k;+aVUi!HA9`hF@YESI
zUKsJ8I5*e&>T-Yi^xd;evq6Rb<72(WoC=_IQ3(kPq)aj<JTna19XnMgGAQ-bl%3w`
zObn6>_o@7gW&YrA*!S+!_C^M!m(Bck7iJo#Pnj`8!xOY1i%-r*!xOYXcvI@>W&i&E
z&OSHCva7SR@LY>s(Gw5Qv_MyPck#Q^_wUCyv-4jwK5w%)Y;DxbiSBZswNzhkrq9oO
zabe-9na1gEbCehu7$#^6IH-VD=&|$3Oi+oOwzTr|v&?&YDkrTwn=nr|+U)7+>HgW*
z)?EC2-hO@E-(M%MUk~S%HoJ0SqVn9w_CcU*v2WkLs^4$7e?2N5uTlT+kCbiIma1=W
zGJo#`t&^U~$>?%vU+wQpSJ$PSoD{Vw#dFs!yPr=cSA9CEp1)iNltAU%E2*)D8kBa)
zTz);OmDUT~2Qq{wL~p46p0_pgvfIzk&%+ZE7I;n5S$VLTUE9*~=F+?C_y1c3YMVuG
z%i-eWy!g1^e%)ks|FnRs3=9ko&mPXb$a+VcPu6P5r>CbuRfKKzw~&H@4cFGkufHBw
z?Hj#4@9Lh)&nljsot>bi-AzqRCN)0_K$8dgd%sSr`}I;i_tqBAd-wJ{0o4=VA7xq0
zUFJ7;Rq^w4nSXzM1uY|0Sy}x2+^(XhU3Nd82!mExSQb6GFhS9I%A7fC-rnA>t)%2M
zDP&(w<<VouKr1$0-Pu{}HjfRIa~Hm7n(Fub{QT)Et*xy)b<R&#@0a0guc@t7^(=mV
zE)>-Ee&{?2)J{!0+Ld{2P2@LG9tH-66epGmC0(7J6Aj(wT9sY`wb(&xBA%U@`Rl`B
z{;Rvo^I2I~UVM0X7+zo0wsMJX$-TXeXN3#{1H%a$kiDQnnT=m=%|hq)tcQnMC#js?
z^ySlO{nuZw$4^%Qtx20S#XLW5``gdY&aPgvL}lrcB`1y_Kfdn}s7CW?VJPBOQdSP#
zTUEL><D%2Sg9oGbRBUYHkz537cUOOZcW!y&&!0bc=DvRaULUkRRSmSC;z4{j!z4fB
zv@;ii{cV@t-Cb_|zQ82+RtRVX8))tmwC+wp!C}&u=kx1#<<@_E<my?p4O9sI>*Y{*
zX_9xxVyb5Fv9;Bp;ZW1mQzE&yx1If2vgXRVi0jrxPdb{Kn=hAsf4uYgyx=|=%b01P
z!TQ|W+xGSvgHrF>ng8nJuUk(MZ2hxXz~R!%8yl0k`1s1A=S`ZVl-vUv0QvBtptY?n
z>-03;ytih#x0bwk@uEaF`^t(yt>9&6a<B6+Ff`o0`0f9`b>CMmIc~IIT0P&qrm22M
zyF@Q<%e@U+13mre{Mv6b_w3p8<p49k$D~>2`RhQlF@}a0Z>BvxHTBlc;^k3Wvr@Cq
zGB7YWq#c%>Py(8e-dgf92-K}PZ}Yjw$;s)<QStbUo10QWGZLSkoK*IFb$|bU(A3b3
z84{qe-sk7%Uq3NX`Rjvbel0ycy<~q-?R+BP4x{IC&;q61@An1oEP4tGEZgsQif?Vt
zpWntOyJ}<dajV<VsvvNplIxZA@%Erf15_1!dV0F@mnf)?|GI;@h#NFY;@T~CcT4Qa
zNvc~@P6|nDfvk9^dxsGe7u4N21B#i^LZ6mflLmVTzwgm|@P0?t*Hxf3mPd}bJUuzt
zT~s@4%J%QJm0BRj?>}W*&i(|{#r*i_Xz1!NT~IDC&At{gQOR{n?eDVazWt@I!$8YG
zKoeU$JRvKCmVy@N?!FqaJuf!(^fX^ZMa8N=ACH%Qdg2-VikX3d!Dw@}UPH<Id$C_%
zUA_GB^77Ij9}+=D9%$Sy*x$DFdjH;<pGBdoLOj*|=Uo9Ut_97@g623EI=9cs6%rN>
z-I^8p_U`WR!|nXnyY=_2INB|~+HbDau9}~pV%LNAp`AEml)HcF^7(a9&h31m1qB;U
zf0}Dup7rF!#82P9Pgi+*YO43yS*Djy>+i1#e{EU+Zx3ikgj=sv=C?ODGq*__rF2Z1
zJb7#F?=n{x7mrDx?HV_3M1b}QftH}HE(PVtnUTx(G8g^$kSMAd<dS@>=i*fD@HwZG
zlaj71_m^KAz1<JA%W9Ep_m^|l?={rao~^s~`Q`HYuYP=dEM=6^q4Kid{@(<{V{2g@
zlJp-FmPBpMS{bo1X_jgBwb->_Z@e+eWr*BSun@EaiBnkZ#lPS0uU}f~t?HS4yf4(n
zr6ue7y0uA1yH-YSP6LgisQJyQ2!9>9vuNq2^z)!KOQ0P|r)HV1265lr-TnH!{r@Q?
zx+b#rbumv*O)b8?&#9H`*0$W+NY+hU;x1R|V*lqu^RBYDtIFQqTItx#1{%-+4Z}Qn
zk^<Ucbn@iMS+>>NoSdECXX)-PdmH5C)iui`b5YgTSDEkb>;$z=zdmf2UlqLEZ_*NF
z_dbtFpPrq4y{#6~AzCtJ%9Pzv>YzG!X6h>jCD7)ks&6;bzuwN@uc@Tu#BcXw0chs$
ze*OR0#Kgo;pFV9`+Q%)fr(tOsSy)&oWtuewG^+ucw9CG}ZkAzk8)$g#$&(b%N%QB=
zzx{1xa#+x9P{;DW+f2KLm|Z2F>F4K#W@M}Y^%_BQY0=wqK&7xr;Uky+#|H1(K;y?j
zv(0j2rftu@?srULZT$XwH`TU!U;C;Tx97zsc~CR^zQ$!c*4HN{D!;n2a&p+32*u<c
z<ARXYVZNZ&{h67@SGVWK_sUv_B_Hbv+?sXuU6w6qb<)%6@l&kJ^QJ#dOiY}#<nnTV
z>)oIZ*ss?=S=iZ6A3y$l+3~7(JD-F07EMphy}d2;_O{&rc|RE#7<Qyy{{Q}URlAMp
z5#1A87?*(Nd_6oaoSLdFDk8E((Yb9!<>zO&_Sf$R&2V2^8x2|(0UAqub#?V}HeRVa
zSC{)t)r}4VE$IPem@OHB&p#b*=l9+v=5pxpVNofmRl3pJcI58QysYNx?!NqW1Zbhf
zOrz9yJ`X`nt=YH!-M{|TZt9l^wkw~`Pt4q%ur_vg*m=9(YgUD?Uk6&%rtH>pVP)|0
zFQ@hQTij-0Vad3#z!9`aLg)0Z)nB({UG+L9QTylPalO;(eseVB<>f&eZ6<-n({!V@
zcyxAlo-@-9Uv~x6$6FP;dUupEC^_6ry=ARX`T5z^HeTr~TeHJGFSYSXr$kQs^yK8@
zYug+enPyoQKZ{+fZe<k(YI`m5oIGXHq(!f;u73S`{r+pu=hv_M_xHE;YrJ*#yLHz<
zOJGvUW|}qdNSpcO-r91}{C>^iIhMs)udl6rb$9pnPft%zPc-e7w~u4x7P|tPN~r%=
z16tY#+Lm;Fp6%S+Pft%TH_g8G;^*`E;rr|Uf>v|3@k)crmzPriLG|>X$&ts_9ryUl
z3))b(DfM*8$49QAD*_y+YK5M9G3ni^wb9#G<=ouV)!(1a!_iRRa;5(Ik_yj1yV)Mh
ze{f4eVBPh9`+Ta|T_!DBwCKy1%l_#llAr|rZi0_Bhb*XAw&y2iTkW%X916!IKpqj*
z3JF*jv-8Q*r%%5<eLHvMd<{@r)?sFi+=LL&h_3bfJ&Rww$N()I<l^Ew^<ompx<9<%
zT^K;idq8ce$jxb~C7K}Nyu-E^S+y-KBe!N>Klj22By?w4wNk^CRiWOq&GV6kdStD`
zKr<Z|7CM){y0WrIj~(Rr`z8J?6F@sn-{0FSWsuNt=+Ge%35gYNZf@RP^Yp|-<;AC2
z7#J7|gufqA`10)R?9-dp^yq;qjsv;7)R|5^IXT&Q7f1m^`2pLDtlS_I?VXqHVKyp#
z72+Ax&L<0+efmAS^3TWP@6#ed&dUp4#-mVJShz{YJNMR>iR;&|fAr{4-mc!%NbrVZ
zg~_L<Fs9t!S35~1K0bc>dr$=4xowonpc%2@0q=g0n+x)j1gt<t-6m?sveDDz3R}zC
zUt2&0_ulI7ufDvzY;<hLn(aE?^7VfT*+M~PD%ig3WY`2+yqIy(Y5)I!yFsP&f&~iO
z&8DTMI;4VZ%R6c-=m07UZ7M%yyt}hgD|A(e+jLM^Jjmareyrimy}i+UtG+7LfE0h<
zQLWS<q8k<R{QUg$Nb$1g<1uN_c1|H7A){R)AeGx6&XZu?RP@xVwXJPc%E?Jxy}hCT
z{``FU^y$+}$2RHoN*b#*Yk`7zg4}l(hRXkczt63Y-;y!$IHa+t@Oig7(}}CA!x8ad
z$Ock=!2YmpA-f8AlSs-*p||(<$4?5`kl+YfqaGL-C>aAv#SLF}q%(QUx2rWtJ0r3E
z9cV8!s9bUDlbPu_6%_Oy>#G-WU%Q>Ze{JAmH&E3UwZCpJXsH5duJG@#uUVii5xr7N
z0~focmdphCC-2d`9n40Bk6b|Qkj-glf7QReTRCOw*V^MB&-Z9_zgf+EghMOO<)T*9
zL6$oT9Z}Mb9?Flxrf1y|>Xce5U3z%Mjf|K@M^v+xESt7My=$YEUc}-ZEaoC#STs8p
ztVk5B{N?^=jt@I4k4?E-{QBZ&GVk7hzw@yAc<}`D^TqR{(`%p4EkE~m`~7*U-qW7U
z%3gQUQ+;m8LQY18hN~Af&NZBwWvboG#{28cU&m&)pA(!I7&2I-TpLQ>-LX7x`~6P(
zJNxf<ieFw?8Qdw%$iNWqvY2B+;^DTZzh19D-zpwA1GJa3?C;`!yHl>>u~S~J-*3k*
zTN1#k&ceVD=DxUs|3u~UxzjT*FMImsvj6$W^tn^l#qL(~yjS=8txo(t8)kOCGdrKp
zi+-rd$j}g)DZ+T^S#*{!1B2{ePZ!6KMXud8KOQvi{QYkC>l(fj4-PgPr<|DZX7~Gj
zD_5;r^<fGF!+}*MT?{|3{QLcW{@?HS_g_k8U|@(3SX=>GNBH6C1%>ksUtU~PzIyd4
zXpz?Df4^QYckh>5z30fPRjaht@BdfjDa-`&Q!~$m{My&iD_5=ZDlILYdz^v6;qf&E
z=9EJ%ob!K6Ffe4y*~8Alz@Xu~m}3ISFWYYCt=|0Y_Wgfm_y0UI-~9QU_46+6bt^8U
zFfbgLl_A1d^lIhuXMNW1R@B-QKRY8+aDZ{9WpUc1Cr>8(pWAvpE_&rh28M>KS2UQO
z?0i1Y`~Sbc+4A>GF8fC2@BRAe&F1r<y?mA*4lsY-Jpb>SCXf?XFAiim@%#P$`Jf$g
zcA!bL&DZ0qmnI+Y^PIHz+bwP5v@<KNR4_0c$jTC73<?gOJUy;T)6*#Z+?+rEzVAPO
zuljxL?*9+l<*(h_B+kH)u|w)fZpHuof4|?i509%%ou(5xX=U*8Wto?kSw3iB&iX#T
z`rXbiZ*Fcz*!}bQ{Q2egD%H*J*A#<xZ*U5$E%BbN=Q+u>TP*d_k<Opf>wiw?^5<k=
zSmU*rW5P7u=x5iW^Z%aNYya<Kf9AzSt|x;T85pux1+tuYzH;3<zu9KFTDEKq3>&1R
zQX1w|zuUQT)v8mH>2oH&di4s#U0vfB8X9`e=JOe$Wy}l=`&O_?Dx}Y^EnBr}l~LN6
z895scvRVFqvpM{y3?mZ*18;mY&jeBJu$p(t3=9hjKRuLWU~tHka&0&>$I^JRn(wbO
ze?2FwrCwVT`IMK1fuTl`_mj|?|L@uDe>jTiMop>xez$z-Z~MP5{XxC;J9WR`s`|4r
zFs$ixD`b1psXp&ST=m<pGk;gV+2}4;`{kmLIuirKz797*1#WRYpVeV&?TYuOo}O0u
z{cgGU91aGCA4*cL4LN&09;<w_@wi>_|BLSOzTe;7MacEYSQ>4=TNZt+Uq1f%v_11{
zK6$R&@u=%g;c?lY@5=W_AB1Mkdo6XhGMA^Gnxbj>@rbZ-*_#_V8;^>4P705!RDHka
zvmYCe#02AW7K;xBGcho%zNB%k!6f&V$@ly9^>zO~&tIN@f8R{|`nqT5=g;3)`}<j&
zbRMX7y1XUxvR6MSqMR06Fi%psdiAR1mkZ9tFBZ0kRf#Y#JmAhUVVtDmJzejt@p+rc
zm7kw2jo)7f8WLIR&cwiQ&0+Bl7H!XC{qpl?&6@S)^>zLKKl=aAcs{@0&eN#=-=C5<
zHw?}16gannOMs<;EGK%+@68bQw=ryH=Re15erLiWjjZpW7W>`u`*)WwU}kVozM#SM
z<dV1kSx`2P|MzM7&GP%TuiyT^d;f3jzYp#9Aqhqd3<<s_T?{h~lil|HeVbqZtnT->
zx3xl63=Aery-E(C6#4V>^ZIB1zP!A=`J$WjR0}}{h7YbLT?~>&DIV+ge!I2j`@QO~
z-$2Ga+4Xwe>AK%<!y8XBFf^E6)L?q@=kxjV>ho(R-P>FJ{J8zU!d0tQed><?qjdlG
zz3-bI_gOD1etypK^_tCEwrUIv8@PIv9Cnqxopt~JzweSZ6$S5hJnj>5oj5yxpXFpV
z-%}?hDuY%fggr5KJk}>W`_-#gIlJF(`}!@e?&nh;IUCR_60deXS);5gE6(rj;bCCd
z$0c=^U9jxk9n0(S^|kBv|NFJ)^EvCtjY+PcrA@D1oie%d=H}+&gRJ69Qcq9QzI!`&
z``t_HVt2<>JZ$~>pqanur0Vo1N5$jM1pC`gRr8fP+b_$&aBUUafAfc+H2w3|^?lRi
z|Gsel`H;VUh6<=CZ(Z)?XZdu>pTGD2*G|)qk9*G-lYG4I?4zUI#<{n)l)S#C>$&N&
zpLOc`z28o?a0(Y45p)kpN?~AFv4gFiGYqttZ;9vRoE;C_rphh7rrd8cY4^Kb+SB9f
zetLa>zw7ln9$Bj`W_FWO`fa~?tdHCKX?6VHRcj0x85SJO{J=O#<^Ioe<wk{%j#$la
zh||;#TXW+3{{MevDxXZenKnE3)!Y4lzulf`o*!3sr|@`Hb?xtOXE&d>i#|4kf#HIJ
z=@0J>lTwa!2wHx-k!)P>-~d=#%4FY5dn!Ly9e=ywFyHH%X{*=ov&!H5HLULY?)z&?
z>d(!w^qe$n)~u>(Q&ZE(4GE5R|9(7Pv;W_(*Cl=o3>h6#t_?gA1`EDj@3;GvvG?yH
zjiAubss469Q|6xAm~gP^&+GmFvd>w)Ub7|te%;dJI&pg}JTGm@yj)d%c9!XCTek)V
zh7X~jvb;??&m%N6bm{REpn{A~*6PWQ$9=!gB-_~<Z!URxsjAw0n$F5%9tMV*tDuBw
zTUD~u{X~zXanaq<>rcD1*PVECbMxdsKhK<=r0V_Y<8k@tXU*?}b|_@)@BQ^9Xw81J
z^mB7SZkU>G?`QRL$(GE^%g)_8F;UsL=*fw#U$Ph&BDUWC_v!2Pe-WLI`$D8j8gwEz
zsg&QZEl)c)XC|MlRmzJC3$<(WT_w}b&zrkQ<I~^w_4dc*>udJ@oo8G9tVP)Ggn!+q
z$tAC@X!_g#E!mq4S|ju2<>mCL`>&@?j}1HZJCcFnhmG?8PhYR+`F`5Vb>`F4iwVpr
z_x4oYEWI9UT>R|Jt=;jU?Unz3&i_Bt_WPa9Un;A<zndHX|JU`e*Uno!?y33luwBx=
zuBPhSo0(6}m%rWha@lO7>ThpuMSryW@u0c#>(%h$Q<}@CSeY|0n5giYIh?b8zX#Mn
zQJ-59RCd4i`<WSr%FpMP$MspgS^=69UwZ!XLg)53+wa$Xy{5nW&8Cph(A4|2-`B=k
z|NU~=xbV>t9ti^l^*IGjAme+a&Gl~QZjWu=F^7kNL2KzjwiAE9-=812*e&(Wj>4_k
zpzR9f`+wgB&0pV4>ekh=h>iXKpZC+<-R0*G^V`pv>~Cked~R8k*^Pu|9$70B(2U=A
zZ3c#Ym!xtU_I$k-Eoq$QGk5F1zrUAjbe)-Nz5O7|31@!WEtkHo-F8ds``z;Rlb0D7
z91dSgu;;9Od1>j^`LjQ+^q1F<-?v9dnUR5^elc4$n~G=J*;!N5=T$EI_7PO!t5m+-
zdi~P2+}l;hcNdE=Fqq`<S~-B~#W|JFW`4caZ~N_rRsZQ<DkTgI5ArW3Fh4maoxkP_
z2Lr=_sA~z#PbN6?t%ULJx9~AA)coWSU|?8a!USs1^n#8%@=|tSU}(5BDm<veWWrTY
zPy6|f$9>-K@9n+3DfM*C-`DZy9oc24T#u_>dvBxu{y#-*{Bm<Zdj_4``6NxVLY|$U
zAK$o=kzqk%X3$GUsqSvQT^jxN|0>#erKja?ziamY_x}I0wb$=4vVOC{8MH%Y?e=?C
zo}di*X4~z&%<Jo7_4a%?RP*5=`_3nmygxna)_=Bg`8==5YIRQ-7-~v?-u{qf^>j*b
z(e2#rS2;T#9&UdwegB6WNY9;;%f6nIHYOiW`}pYSOtajmU8S$5socz5K6lggxa!nH
zEu5B*I+V4H>=_tLSo97?`R;zR$$Rf+@!7fCBDdX4o4x1DCGV}-<#$WN+xTRoq~$#~
z9ha+K623m}=hgLfp||!hFkBGeoUs4mot?#(HzprfIe9yO|J=&Y&r*-emai#~xxcUW
z^PA1*r`gIeFqmjCJ;^UPt-C$t+nbw`hDk1yQs5QB@oQJEq#SHw{rTf@zxP~01_mi1
z#!sw!|9m=a`EJMKOY7tJ_ehy)d2Xus_(;X`@-pAoviH|SZniqkz;GaZBEwInXXob5
zuKjjX{q3!-r{|X6o4IP$DizPq&(2N;HJ{dgpQGwM?TRHE1H-<qJFMBfx=~v+K#ib9
zuH8ndr>5j=x#+gFdVXBh*OyBp>T}P{u>@_CzZPHrH}szzsKC3mB{MiZ_sNNgl9okJ
z?pxS0Fsy#RZGX+*t@dF_6ZAzHH?d9Ai=DO5xjpSzk7VVCgY27+ibY?!`To|{Y*52t
z`TV+F_loCNy;=z>#JASXKdrZ0$NJ5N!%;IO85;Dnp2Y9_cWbTZzVOD#eKs*oTW5u>
ziJ18CaC`czD=TMO6ej)p_ICHB$NN6degDLK|4-kv^YdbNe|yl(|Lkgb{Mio=51*D2
zXJC+0Np}dld{TY>98d#$|KD$?|NQ)1{Ce&7Yd8Ndum81N<>brd^XGL6tAjSbSw3tL
z{&bLCKIP7i!kc-!-x^hYdBNqw$H2hb&JgK)-u8P8sCl1xX^GD)la=@WEoZ#6xB9!y
zpAUyEe?FO93~CBD^O~Kwu+Z5!@6L{^RsY!;7;0v6PPqEzf;0cxZyTd?w}!sk{eEAm
z1up}GiQheDCI*Hnpz4`nsh|R=L%_npzz`q>>M)E759Kg<ePUDUX;3#1)Kb-r+Hyi~
z_nS#4C##27=`b*?&|uuuCsTAnap#{;r;9%vWKaL|<74KfC7x|Ol9P_h*YCNsn32KZ
zsL9GN4DoLMwqHX)&G(q9mrE^QE}1+@g<Za;0Muv+_O~?+Ugop%Lkj~#faJM`HO#{5
zem;}ce2bn;bicOFH20QCyL?^6yoyJiXXe@NZo16K;P8}VLTSRSEtxN`t`3jdmJ^x2
zH~;>=t-nF-LluW>jh4mFmMmMg>|T|xuW#3)6SwpC$2P8HU|8^p<%HFSijR*>a&K+9
zSG76qY}R*1h6k%p%)W5F@!8qg=`SxW{d#S>PGr#T{YLZKPVW7FZ}#-Ks?58*908MN
z8mIqz8vb4F<8!GGsUISQ{xA5mT|nWrgRk#dFa6E4jMM!lfd=QbYwxXz+&oDoeO~1=
ztJ%B@jQ;FotJw)^S^fR>b@dmC-boCR?7zOeoc#aa`~T<K<?AAz_r3r%fmf|sb!oZ(
z{Hb>N7Zy0~d^#<9(@C}2HP0f27#OtDL1nvXb{HG4RLILfskN&XX>@t<e@y*+CD=c8
zdTiOr9fgmJKAluo|M^*c@%MLkt>;>mo=Wbw4SUGR$gsd@4r3(yuWxT>gGQ6KT=qMC
zXJ_%|n`yH_l|$v{v*yK*d(FeDY#10;NTfSlo0xif+S4<}=g;VFzcZ<oTRiP{?)I~w
zK?zVZ6B47428<nepr)50lVO@}^fbfdV@p6s4qja3T6Qyay3ahDotKgs84g6LJ4iJ+
z^I57)kFTrbv-|O&N8aAfcb3V?35w32emw3EuQFj^h*-UceaRuay{Ye)PLG>4+0RPT
zb5qI7OJCmIwFWg6r)UOi*(fqFtg$`U5OU*4r|{(^o|8fSk*(Rjv(3&vY?q%0ItpNO
z`uTMaN*EY6lyOernr)UFRrU2%=yT!AlkMxLomdV^9I1*9S~=(DSgu^Ta^?28;NZ!N
zG(LU1ogbc{#lR3@&f?Lk8@I>8cedHu?Vw1!Rm;HeW0Qb_DCm$xo!DJl?){pi>J3gZ
zr=1!?B7A*)pPiW*od5Uo)^)MFr`ZZIFsw0VT5<>!yW#P*rt+YZF}|wLuQ3V@4Sjie
zxqqt~Geg5x|AvqojqGwWo}Qlm{8sk*wXxCLaw64yW=x1JyQzA2SLteqA51~nrWDjE
z+mLv;2vj7$yR-9V&gQd5iHBPD{CqZh=f`8x+Ms%OO{g8`UdD)RIgy~&>Ybv~x{*5y
z61UwgyFI7=-_M)H=WVrZr5G62ghE=P-$9E&$SkK1Oh2PGJ7>~iKI=7?lGljt|8Z15
zC^mL(`n<}twYBFrpSQEVdiCFT_5jU)ENmGr_bMLu%9LISyjgPD_wt^~&s#DttNs1`
z{rr!Qk2j~BoTTCz8XD@FE@N9&616pJ>$QFNZ`Ij`hK7p%mt?G&3i3b0nt9dlcB&t4
z=l9>7b{5o+2PKKq({xWy(F_I+{iXf-^77}+^L1e_4ga#rH=I{>V32AA%}_i!G4bWa
z#qOYf>C)oo=eAZKmnrrE^>OYLpSKmABft>W@4bORsu9#sldt^}2pYz@-r4UD+9-Wo
zzW$Hb{M`i)5B+(-ZhvCi?Y!Bbrk?L?Gtdyny!wAXtB%K2KArmV?(TB4I|YY9C%##~
z-4dL)|L?b3fBEhI7^u&yNUHksVq)6aSxddA>)ot=zZcZqH?6V-b(Z^Vzum~$`E(j+
zunsgl18UBlHNPM8@*~J4pbi&kXeam9mXnI@GLydFt6qPv5Y(sH_w#K2veeVlGVksx
zZR3-j_44xa^+og8<th|*zugvnYiss&&?#)Eb+@09OrNvSZ9Qkh)yF&>4$2>9-~Xd#
zTm9_}$p6RA*FNqw{}liKYrLdcP6Wu6JByz`1C3TUFftp}{`vxHEqP9Qy>7Q2s5{rj
zFFy}7rsO?M=j7+}_VZT;FHbwtA?P`2ai5hIsM*+O|L;f6)~jKlK{?~pQ&T_<%9ody
zpU*n~#s2?i`^rxz)j{3nlK1y)H>aIF6&fBpwUL<}6mg)nRBt!B27)^8-n+}*7M-(v
z{$y%++)0p{?f0s*`E9=hye$L`gu3<1%{|!6{`^t5{<-=8zATTa{d)Cg?)JOjG2F+!
z=5a4|E-&{#zwh_E*><(Rp6vO2&inE*U*qIsJvRS-JkI{JnJvLogux`ETTEAL)v8rp
z%zPFJTl?;(O!n;p^&7u^+?0CymF(wdv-8Ey&N9_LXaE1tt*!Mx+Uqs;eeBJzdG|f<
z_O{%@KOc|RzcXCy-me$6HS6on<2sR>mfX8_Wo2;ps#U8VO^eQ389Un`(J3%AH1x~c
z+uI}d)l|Oyr8+$(C?q^we6pIaR@Wj8yFVWeFN)n=cJ!jVeC+e;bF<CYXMoJU66k()
z-Q3!5H(g6hOW!^|t-pWIigoMs#B?G)>@;THP_~1GdqHFLmW;qjH4m-5*Y5xKYwP~F
zjY+OzIuR4ZbfZ$bb+@f3uD-o3_x7{?`aj9@>VCaE|0fQ#HtWjDVB_?2bM#G4FP~+W
z8}<A3)6>(_4>qyBytz63*0$W;m!jYO`)vQe_*!)S-do2(`2@teQ~iFg=cM27_uIeU
z|G&<yM`B|6{o3u{R<By6W&M6n@myn7?P_1oPp{+uTe$}Q@m<f|5Gt&|z#H@W+S<t~
z@--h0idWSIitK!|>GY-5;p;)8rJyrUo}Zih`4G4MlfU2ZueZ%RGs7_R=B89o)fBh4
z>gkTheXGkQFC7(+pCcY$V;KMY*7Z%G0slG0=T4rPX?(q68E9T*&E|8bj!Eaoq%Zq^
zzkdHYpOf?7uiAPuZT8j3+XaVtgM))7M{Z72^-Mc6W8xwWqk;zqN?u)A`E7Oa^K+FC
z8rhBV@9jB1=jnoGKCk_Ce?cvbW!}^EBrS_l-tGD9XUMdnk3*n=4YX0~<*lvRaWx;0
z>VNsOG5PqjDZzdx8yK03Ua#H$?BDPA=bxOMy!q?3==7sqqFayW?tD6}^6Av@qT{mV
zDckRsosKQPJN4h+-_Pe1pId30c4I?gB`DLq|Nrm(%WG?+kM&AV&)s%YZU5i5`PVa+
zJ?^vC6OSoy1O>A7`#r||HXj_+{O8U2_V)JmnVF?)BQ`39hKBC^dM(<x^3xNmc#!<N
zeZSwGugL?QFK|M+KjqVtlb~*BT*bpynUV{RpaRF0<ABuz-xmzM2QDmhF1}lOJ@wU<
zmDzvXzJNxNPrTdxeqQ$az1z<Hs(!zBy5C%@tC89F_EduUtBHr(Qh$DW3YwoVDtmKd
zPT8%@n+eUllT<)e@kMv}xr_VltUf<KfBxI;{P`P`kAt?*W}94oadC0+$D`uc*XhRY
zDp^{-O{+_3{oZd;`@XKtzq$^zg>a^Ey5F~(>GM@iE}NY<YmvsKmBGv3?EC$0we9hE
zX^VmcHa?jdg^!OtZQ|BD(O>`PvCWqY&hbBfGj1q4*T7)Hw0vGw7U(!m<vxp~rPGB$
zXIDwu*MSP^dsVNm{+|8^6m*~_z~*fU2b-+=XPabB0*wZ_20nS*Z-1^!R6FZ_|0mEv
zXUnp$uZ!GO@=|K=ysy`y*Wa7j_wn)Z=ac>IB42*I9#@?U8mImJW7X<)r$8gsiq35+
zo@~5QQ?9Lzet!So+xxF%zOMuif$MOK>#f-is%MvKbeY!0GOU?ptiaIgaDJZc=hN~3
zjFjDaPJ~70hCZKsLB9IUMxQwrhV8OtH@xOsm%O+zr~F=}<(mzMH@#lB`&p}a+=;c@
z@6GZxzq{pJVfFjH<z}}s7K4WTL1F&o<>k+p=l?TtZs$AOCY?9q`~7-*&`24m5%G50
zZ9U!SZD*MIZ6++AUuR|i^Q8Z)n)Rutr=`BRvGHpfsH59w`D_Mg6b)36Ms3fV3mSXy
zxB2KISM%Xu$(tL6OV=mf+?0AVx!=~P=EsLUe?Fbwy8XJWRY}Gq`}k#LU$2IzUs(}&
zGqGLPDCtNCXwWi$@7J(*JD<<{^8WsRW9GMaiqD?~4NZgk=b#Zt<MMZRzy);0<KD~r
z>;H%T+s>H48~W;7G{c&mlE!Hw?y{vJ7dNM$Ulh4H&Gq%QwcWAhcen2NbV|E>srPg-
z*FX{5sxKOR)^9f4dJbxK{dmY<A5rr9+S(fhhk3j6>pssu3Mz9Onc2m5zu#B=w(xpv
zd8}c=frdrF%l%wGKRerf*8KjS9~b-ULO>%bu7Q7kmhDSE)}y)Ye%<dyzO&6-SBI_b
zdb|Dpz8%kIWxqOOQT64;qFuYHmd4M{-&YwZ;`;Gk^?OlJpX1`r;^&J>Utc>qLD9J@
zJid18y*I*YJ{qf5ukLo2uiawt>&4=3K3OY~wb9%4+<K)#bz*jGxOe{f!*+Q+(Bz5u
z+gn?;qqbxO=Is0V>}X=UY?#gGGsatw&#C=(^JvxUwc)>iENqw4;<I?ru&Da`JJ-!=
zXS?3r-7OB94C#_IPWz+#e<i~Yo>13^vSkbm4wjIqQ7R54ey&%Xy(MgVT=!GZ?763_
KpUXO@geCww%p=AC

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score.png
new file mode 100644
index 0000000000000000000000000000000000000000..d3f04355fac49b80720e195936602062c0389548
GIT binary patch
literal 24250
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_eCLL~J6zmL^sa|48h6c(zK)VMfL
z)mq5%Qo+^1MX8B{V}*v@0*#I!ktHh>7Vx`H(ej<3<`KA(aZO;B#zNs$Y@7vk^&igu
zizs7uOc46=ch|a@LuY2rJpU%I;N9HfXA#FFlo=Qp7&bI2FXjd@KD>8iU}RumNRVdY
z0P$}NIDn`dZ468d3=9X%SOh@aZHf&bY6CAL3j+f~LoSB`h@0a~n$`ohx>i<Ee8=~G
z^uM{Y`1zI1>He;6Zl{hPcaMvU`}Og-yz#Cz(c99_N?FSA?fv;|cKKV0jT<)>S;*Yl
zU;jVW+HF-w2ZyL$%#U^Q&%^G%DDCU+4)*csadL8cQeY9XEhp0R+rGS)QzPT!86=<I
z`?24wVfUej1v~y!R99<TSVWj+U%N6zGuUX?o|26^-qTWd>TG_@^z(hi&!^MB9%Pq)
z(a0_ru)pr_mt)fT8u|D3nBP$|O|X>V^POj7dA5w1ov&ou>l+&%=U&~Je}A9#runxY
zzO40KzhsFDuat>L=<2Xg508$T+S;ks<$1P$J{*=ZO6lm6wSHE%=FF+fuM6JYu{6!N
z;1InnC-C;RT+@UD45e>xnV$Vte*5e`mJ=Pb7*g`?NyaiX^rS{kW8;xfNbU&=3fhu=
zUGMB{bN}pXYXW0p<{ayhoP1IBU$Rczo(NU1DHobpxi9VYeRXv9_U+s4{{2WkdhFP)
zt%k=kE-mr=^zq}xrQXxuB^>=e&$V0ZWvBYQ3p<OShiu6RG|j&kvvA=;tKw%p+j4F$
z`uF#D_K69Kx3*?acXD<%-gQU1>czr#5qbIbcXk%<*15kWb8?@&{W?YGwii>w;|e3q
zOI`$geS16n;lqd9u2ybt*qC)y>vk4nLB2u*L%{!ke`EjctNU9Ox;`#8`FLOG`+Ivs
zR|G8NS@q_<;jxqwPB~et5)ad?D?g%dn`K?``275Qcumb7uc=y3H|4#&wDi{g`u(%a
z^VjVxetxfP?#!=Wch5A<zP6(B^D~f#o}8R~bzg1ucC-C|zs;`t_GTrwxL%4w>-J;!
z@5dkQ7B7#UH)Dpz=}lAg<L$PWR(^UCIM1f?jfVbRC1qvfT`UYUd15y(>{uDIbCcIJ
z9nIvPM~@!aY>V8MGgHbWW5I+80zZHMUY&7q(W}eL`_Ij>e0=TO^7(Z^x3}erN=j<h
z*VnhUwXKTTSyc6~RlMZqr_}V_(qH5K^S7^BKCjAaYu44GdpAAbPJ8n7>C&y)*S#hM
z1qGR;ospQT9q#Ao=*Y#x6Oxj$WR_|6vZ>nP%YK(y6+P+LRsMe6i4z__fBw`oF$vL)
z+H&FA+UVF@SJy;dzUi9!_0`pLv$C$Pn))ue^wky5V-mh|EH38WJ<=&GDj~6=?Cq_k
zJO4gCJ>9hIO+@Irm`KZ_Cjkiw3r<bbUCnR*=YnbhkBmh?E4TQx)W}&jm7Bc9_pS_H
zzU%GxcKN!1!)?4%wZrvT+1RwKtfF3DUtgYid40USr3_!~ub0c^vTyGyT`j}cKFcI?
z(!J@2dkx)Uca>ZO*_C!iqW_`uB(G^YE1#a8e*X*K!JC`YzrNf3epT7qTUr4N8b1Hc
zy|rbfS<a0Ig|kavUt3xD_!vm|&)>gO_2cbA*Tvj?Yh3;2hT+~Xm%OziH!azeb`}(-
zD^pHRs(Q6@`IHG09^{n&O}E>c9g~x@rpNHy{ps2FXG{O(%e}WJa&7eXuz!DkK7Idw
z{e}$&wx3QY&$6xF=DqvmWcAglr>AKJE$P^la&nQ3WzmYLty#a`Y(5`zYw5MkWpAS-
zlVj|(uh(t6EX7>(@sTU9tW^lV&4&giX6C8N?tGx!n)fxPdQG3Kb=LiTwON;!^*T8@
zi3kWR;1bo!`1t6k+<jq&nZo4`40k5<_xIo4)X2=9_257w7aw2PVz*uqDXCTR^?w2n
zxAR}0r0Tt;?r&A<*;%2Nu73D<!I|Gu-#}Sex%Atc$hWt)dOtqad--<${<S)hn>=<I
z*B+Ix{Sx^6XmLr&mPLyf&wZ_=q@?00YgKZgN76WCS4n2+iwlm7jEq(#FDC5!`z=~G
zdYjMI?Cbkp777Uog>20Vm9;E#*_w6r(&K*nb<FI18Q<RAjM`JN@!7e#tJ!#^Ja$QS
zWnEjdl98EBLrLk-&0ejo^S)>VE^3jh`;q87+syZH8*lMGefNI3tBYK_uk5R>PCY;G
z?&EFK^<sk-yY+6V`B^koCo<^mt*w*y@87@g=QHWAFD^RIHp?yQ`?)f5^RjbuEEfkZ
zcGJ|-@;W=qwD_I6me#4%{j<&UuWd*?9J16)wDjGb$lu@JU!P-H9J1U`HuwI%*rQ#d
zlT}JzUUGfE=X0N$&x{9#5;b2gx^L1sZQ1wmeZ=Op-m*707XJD9d3pAmuIbaS^IkuG
z{P^pw*W-eFrA)7^2vmN0YN|KL%tNi*TT@O7=|*kwD1CjcbX)wcl9f`XSxZ3C?>SkG
zi=RI{C}`57$B#|(?pW;o_v`hfB~PBDgsu#7t^WQl)W@f1mPw{ka?iK7x0knai?0e@
z9hO<ASM=-*D6}$ue|sCXA)#@WS?;SE|DgY~uf4x;q*M6n+Gz92>gv^=lhw4s*39UW
zwO*zhy)EO;jzUmA-JH8U?{3Nezu#B8^-7(Zu0P*zp3Tbj`+j-7y}kW<pRBb>!2^fs
zRcgMomi+zw-FkPC*Sh(+{$H0YS+XMU?yjiaWox~rYAt;}uiCHv-_PaG&dgkVZEf`H
zcKNys(fNCyZi{ttYSIc@vqH(W>%~d+`5{3;lhV%3S($cr*2~xH_y4<HF2Q)?48xD>
zn{-ZF$nb4{ntg4JVO(6?vHSP$%UBj2Nxi!&bahW^<g%!(S<l|w+^qL{na|85ozq78
z`+h7cj(mS_Z|~uU2Jv-2m)<V)n{W5_)At)UA|4l5oY`0V`_8R(aeHq?OiN|slX<bp
z#>(o}TbWB)**%8o=jIslwI2>y6LB$juHi8iRn^Lvy1lzfUrV(gPHf|me6*?N@2{`N
zZr{HB<lNlbe?A_U*L$sV+Q>Bfn$Pur!As}ee|LBH*)5rudr~9Qj`c{M`|8}r12VAY
z|KIP=Ua#M8HZ67L@_ALKQswjad~DmObNb7xtEXdj79HLB=hRf~XD^q}H{)wRtP`{2
z!cH4S#e<LQf|l;v$Jc(?XRg)N)Vn`EKJHD8Tvq-4o!)6_)2tL3zV@F_r^m-kn{Qoy
zF6H#Jvm#m{CzfuLt`)P9G|8B-QRnoQ{QGvXZ`X?o3MMKkE5}ZoYg>J7j!osIwYf=2
zi#WNtjlbV5pMUz(v$M0M+Ycw!{d%dsJ$K#R^V8$&GIdTH?XCV^mOXvaq@;86?ce{Y
zj++1Y<YaY_!eu@)A8q6JUw?c3{(o6DH8nm31sgj1`@dKCUB9(Cz5n>Ftn2G?YieuH
zE_7~>xmNj0cF(ls*ULXVICyN6&gB(>%EdoFr9S`k_;~;9jt&k`oc#LwdhY39`^kLm
zhk2w-PNc@4o~CO&Ep=uauk^A==7uw^dJznB%1z>`-<odCyBlR_XgFz!pt9SJuj=x~
zX+1ipFST$APtlDwn_lW~_jAdjMT_q2%JK;Ry*Xary-%k6gU+Snn{*_TpS*tky0CU#
z%+9=B{YQ?ttc}>{#L6vp<+T3(H=EW4E%nN}y>0EJNt524sOZVwnsYN~XVKH5mu+89
zs?T2$vNC8@%+5{6b9)SbJ!s|!Rmgk4->cTU?-o66si3l($E4%m-=wVyUHz=geR1;f
zzE9u2U0dcmJ7!w>+gqW>BzooT@1_1spI^J|^Yinoi=Us{Ui$s@hlhtZ>3IMA{QUpz
z-#fy#<=hkz5qYxBMn}g-H+tKZ{QZBIHM8?uO<#WP-OJ*4nfCK;RaRGP8yI{jJM}H&
z&5ez_YJP5ttN&X%RVVUNZf!)wjMMjRdvAXD_ATuDySt??FD;FJwQR<;|9{`t7g@+u
zz2EyiX5Io&Q|{~g`|-ylYX5vZo_AYRE5u{{zF(_OZ`xJ*dR4-~ro8!<3^T<+t%|RK
z+jYF>*L>=<DtYnXTG`<?UQmN&P2^^qcds8E?Y64>v%_z$)zX-qMJr2RUz4(}+A_;5
zchxlA=v97mtyV>C&1yT#JwZ3x%rx&#M7Nl3P)Nv>s4W=_UtL}OdSSa<kb{H6u5TN2
zZ<~1reSLM+w(RN3(ACqH`OaRJdwUzGZMP$N>+hdGL97ey@^ve0tG{Kuzqj|+-s<gc
zy;4)3nOT>;2?z?B)FrOJ&as(o=UVe)8VU*yA3uKF9^=2W=;@tlpuqB<XJb|RYRc(P
zzrMcKHZlsDU-xTe8?W@UJq+^=5}RsjYQB8A?0^4D1v48@0k@{V?bj(>VmcM4w=O?k
ze!q74#l`N~hue6q%HGV-i`(-eCOvYRkg)LF#^tfQ%VwG9&jS@+*Vaa_PCGkmRn*p1
zw<9J?nPzF&*u*%u^M%I5%mFpRR)wzC($adh?ri$z!pCl&L3^vdUb_14KqIr1RmqC5
zwNXp|{{F6QX?b&}-q$_($A5l)zP0*$-qZ8*@89%&AGPwadr<xPb)ur8PYqXyX#^;o
z-Dt^RB+tab@Z90UlP4)_<M+qOT9<`P*NY8V5uiBTP-Ifcrzf7V`)Yo+H6PSHed*`t
z=b&a$=!yWx`*pw9-mCkaTl?{-_$;&BSv`hYfs0!1RXpb1ntAzI-n?1vo72u-+K_no
z%g^WYt$(lm{rfkl2_j`z^TSvE{4A>r_bvx_tc$Jt_2s2?^o}Lx=32l0`~Cj)<MQ=u
z_EvvCb^pHoS;p&^u73BPRQB#p<>Bvd`tASicp6po?99u;o!hr>KYf^W$?Ex?da=7!
z<lo;n%d&WxRmqD5J9b#)-rnYWcDDKcmo*xft}dwgdo=y*EYr{p364)sPxn7I<Muua
zKhyksHe0i<dNDFGc6D|JPE>Lgk&w`6KfEx1-%q#f>+7z@*Z+N*^Z&)-{;Z3OT%`<?
zT0nIYr?A=yiN!@vPi3B%ptve{dEb)Nj1`ZM^;SLZHQ!S3&`CFbU(7Lyr|0HI-`!Pu
zIeYzHwfy(izxO}8az3$2?(FXJ_i><bOFuU!@awCqUr#9aYq<BxeERe$$jPY*Q~(y;
zt3Uqs&%Zk_jLV;%ntFQ`cS9|Q0>d08CZ>?pVY;<HpHA0`-nIth%lq~J?=Ic#(I;b>
z(sQv>SpCx8`|Wa79^B%3Azofxj~+eRQt~or@Be?lv#zh3>*VY__kP8)I_5W-dfnEQ
zhVP$0Uw%ElK6d^7f4hW)g}0Wyjq;sm6M1==@8x~9zqh2Foh6+&|5oXn6BCu?uFKoi
z+*o>dF1XGPTI%)d$z=bMXJ;h0W?g;NcK29NcEy*A?xyMI=2*v_U;E<5#>Jrc@0GWY
z12xcoe0)6jpo(o?Nn_;NC{xey`9^6yJKwfTetCaCzOJsWtGm0nTIAhA=k_`NA-lu=
z{`wlazphqQT|N8pvEHaH85587$*w-uE1i9NTkg4c{)vf+vn&c1srk)W@#9Cu+NiBw
z@^wEJ-mCfSE15i}dC&VPSGvC)IpWga|8?)R4ngITS64Lq`wizACLiNfKkT!<=g(ip
z36=(IEDf_SE%gSKm{t`Z7P$4vyabojR;915+<&#{@#Dvfy{2kq9%x_$6+k_PdXqmb
zjq{MVC^(RN`|ND<<-ZphZH>P2_5Pu1Avw8q+j4Jb-Q1L_6}4prsO`D^o%40=;AK53
zFK_4X|5_2aC+n(K<g}%mQco{ieJ}dz&f;`g`??rSP0d$VR$k`4JxwPv$g=p^l{Q}K
zOJA!zwtxF|x9iT%Vo)x*wWDzHzW@KK&(1J(o;Y#hIYamDi`{yqKsk(0&Sr(@WVO2+
z)*3!rCT#ZZ-ri_XoqL;gx1rnXYioBu+y+Y3eSOzHJUo1LeY}0_o{B*4X*wToYztW#
z^y=Q;-P82r^*m?U*Z<@F{<l12Rfy-LOKToR?Jj>mO~o|--ksdLudc4P{l~YgF3!j5
zdH=~-rmMR|G#4E?;`03Cx~W!$3zzHFG5nL{P++jBdb{=dlh?0TKRn#N`^?*qhq(1m
zNGv`#*V=mj%01WS*Z+I@rdTg_?v)Fdm*lU!U$@MzDSVPv*qRrG>$>OH{dzeqErp+t
zZ<<PfvEm$yLMQwGe>UI#RQ&wh%RfIqfBN>#uehOV)rSuSM~@uQP*gmqyCC<@j=;;y
z{lfzSCdk!(xma?&M*G&5%*8)HKhHkc#A;sqX2taB)2qI`Sm@l&x6-{|E_0vwb+%J6
zJBv<k(&=A+|E-s7&%Irx*?&JCm#=y@GyUC(I^ENkKxy>(>}v~t#n=6GH8eD|DtU2%
z_q({D;KI4q<-2OV{~wdiui&}=`r6vh5;xZUpY#9M>-AP;Zz5*BeRoXZ%evUzr%s>t
zZf4{C6!ClO-D^Se^LJN$&6;j@dYbNK_4zfA3jdq`s`d6h-X~l7^pxn{Kc7zPDgHas
zDJ*4@F+u0_rC@*Csqg+W?$~~TmAk<`F)^{~+s$;-sxKM5(q=x*?EKS8N*i8mNIZOH
zdw#sAc9;*Zlu1BJ$`VlP>CL{7y;Y^PU$2HwT2g+m(tUN<T2Q?wDk-^gP2}cR)8p$d
zPEz$2k&$^*#CU5<W-v(m<>mg@8=2X^TyW;k{QvJSxcP3Hy=<m&`m)vEgjBsiRgH1l
znF-ssZ|4%#QaQb8&S$nMn!#>My{BJe=C@hE#LD&J&CSiAyxAvbyDDyP)za5W9~Sr9
z1#Qi`dS$u4Jg5YGdU|^Kx#ovYpDqQZ(y85^FJGCz*>02>|Nr0LuaEofv;O?}`0LYY
z{m|86x~=W)uWxKjzO}P>`M%%pta;^ZZde|!N=R5BSM@@1ZS;0Of18gjUE=zB`uh5&
zxwk^T->?6ldo^yUm#FQJ2hG18w#z?x{kqy+-$=ghM<Qqx=<V(8;lIDVHO;u7;Og$K
zt)k+Res0diX}Zx{3Lm?ro}Tu08NW=$!&dPtTeHKTH*<k1?7QXnHSO%;d}o<loE~5I
z^3uNa^YgrXd_u0S3KbO;RE&?0KYH|N=G9f9T|GS|eWg(wlUn2Iex`y36pnU_hi7E0
z0Od$lZm|=mPoI9fGAq;b{av<~uVSZdOg_FU`}#Vq;AK6ZzrT5Ma`LS`m79y6oOoEX
zDRg_@U6ag9Dxfx@ZuGX0h=>_=|9+-}`mX)9-)5wpnelMj|65zLv%kH$S@q?j`_%=G
z%&aUdD*_fenb$BJ_SWCKMAds*#=$1mst*U*L9%~;KA#Wj>Vw9i!s9AkLsx}(ez#=W
zas0-w3-JsyyHX>Moj$F7_N#lpoM~fYqgwQ~oM$&SChNThh5O}QrP;!Aa(RFL{PD@i
zSfLrbtf%tj(&;`iF>^NG?Gn}YIo>CGw*KE|`N_uVev?hJ!-6-Zcz*u#`TXp^zrXL6
z{ruoy^D^JrW@;7|H&RYcItuFSoSAQbe@)!pTNW~WpP$Xn-?gQ`ukTw0U-Y&d!_rq*
z3@wYFnSi=p4-00PW?!3edAa{=$7Z&fx3*@_{`2#*bbWoju$Wj{*0nX6Y3Jrtdau8~
z(7D}bd){3i7nhcgpFbNbDk?6k{QNBK^fX<$+txCC!K=g8Mq9bP`uX<W-rvh|_y7Bq
z{kXsa<Zjz_^UZQ+tqfk?$H~WMR##W2R{!tMvZ}AI(q3Fx`0T;KX1(0<_xEyVnPesv
zJwNxh=5NsRxgM|gdVqR3T;h6j(&jF9?+5j=uC0w;epAiN>{>--<<e@o3E8Tusx!CW
zt2!OBHtH&<^Y-J{uUQWsBm{5G3N^0ykWl>R$H$VZ)~TmNf|vP7f<jGLNGK_4OGY9n
zs*Mv4Fg$;*dG*cB&1WC?+vjzO>*sAsJ)Ktc<V2#^biLeP-{0r^&9QixBQ7tWU-kW6
zu2#s31Se<b-u?UcclPv{fRf4SJ>tif{I$BDBR647+;(1Rvl-KLqi5Mvev+`aw+F@N
ztLy9Y_x*UpJ-zJp_4Vdkv#*;uIy$OVe|rP=|HDJAnb$xar_Zleub-vl+9eSmAOE<(
zBIem{&(~l7zFxoo%mhVepO=@G`cBh{^!fJY=Gnvi_HRCZH&9f3*f#&|mVdGg6D%W-
z-8pn!gMs1BvKu!dKx1Q3JByay4!*{~@V|ydfT1CmPsU=wqoduRVZ&c9m(MraCBxvr
zmcYZo@L=6+yV_lK|NoYsonsj+t{?ZsLQ{$1!Tm;S1%`&*>(b87irStxmrF!rfp~mP
zpl#Kc6E7w)Fi5sQ2i?ywqYu8Hxbo=HBN1WY#S<n7SjzBC)r~e=?7iu110(a30*ftW
zZ*P_4Z_dAOXDP#1`sT(*y|A+CYilBv+Yc`^zh7g#*!yJ3GM|}B?S~hx3|^jAqRCKj
zUBH1MCF=RPxxvkByjxOFi*3!l9mdSYb7Av&yX<ONW_G?QhaXNj{4gLVCui2%YwKcP
z=Y;PlczD}xU25beozuBH4?hf88?`mB(%RF@&+poaiOQji-FRDDT27ol4{FY2U0Txl
z?99yK+osE}_h#*pUHS0Yt@#HIIJCC5u5{~_0u8cm%fDZDyiZ(OTD$%5!oR=2-``k!
zulG7DgORY@VQz)Xw@^o(PrfL6^7!#$%i?DlXJ#0lnrFNF_AgMQ_4sl3>3XrJ8eXjf
z4f)j6>;aWR+ulu&uM2#9tas{!2@5(pI6!65!Gi}u!^>j&acf+=#WdB_+%~73{j}rn
z+)o#r`9Y=R&f@3$vX6IkbQH85?H1R6_2c8?Tf0hEyY)yce0aG1^~dA#*MEF`EGi*U
z5q*4Tv?CY8zmpsa3`T2@9C3-9wzTHwr_>V7O*-DaQl^*w{QUg&X8Qb<+1J<Uz4o7P
zw{~ao^Hqh9kIk|!&tnVK1Pvlpe0-F5x?j$A)r=VuvbI$rppNC|b$+WZFZTyqb!n;h
z)m^38y0N>yth@T+{rmSDk6CLfDLJj*|8LjrPoVKef4iSc?Ee2Lo@-U=)h({SZ|&m`
z3Z4u*N=pthO?bJaFS(<)cdFsBn`fW?+V|1DPbTpDySt#FY<qiq&``E(w;0HGx9!%y
zjox4KGU)1>$Y9IjXH%w658w5ARrvaOhYlb9`ti8@?zOY6N>}~+^;*C5-JP3{x0%1b
zUB5Xm^!mHQn{?L3?Y*^hcHpaut}VwJ_WXLa8Z@kZYg_JWP$#p6-}BT=<K>`{tV6Bb
z*+;uXXW7;6I{gbWhZ9l%=VN<Z#Y0w6orr+QO(}shjZ(KH9Axsm^z`)fuitLxudev`
zh>L?G;Nl|JuMgYhcg;QCd#quORjC&!puDE*tvztS;pv%~!GVE+uWoN&KWXyh{2#xT
z9B1aYSs<z%rlF$Z;yqpO>Y-Nd*lXwK+sA_{&rTuLDW=(BpuyRvr>9^4{eJ&@F|(li
z{>eQ`N=i0m`$6O0RbO8%U9m!gm7QH%LBZi@xA=8${k=;rFZaK{;o8w|@zq&ZSDl(=
zy1J>U>B_25?YFnKo?d(R++6Fg_y7M37u5<0$jDgn=kH%pLBWN3vAZ-34KF_4x7=su
zB2drP#3Y1~kx?sR!-7{=S1*s;oVIhTuaD1_;`6r4m0Y_{+`k{cv-o+~<z>EGQ%_Hm
zzQ)gx`H+vJ!ACv)+#D%`gobVT_t&v<i>=7KysWFMYm&<IdSPM)fp@&QzDeioJlkmR
z>3X5fY`j;tW?zqfwfp_kr%OTO-4_-(f|9}Mh98~6>Z=MK9$FQ=+;7(H`+4DWjZ#l#
zfcgps2@T%j%AQ?)eSXEexyAKfY(8%{IW_Xt{r&Z`-hxKl@9nK#UH$#tEQ7?RTibG9
z2UUA{btNSwfqE&Ru|9GAxGP^?UcS01)f?0Z0QGFl^6#zr_4W1X^XL6Hr=JfyKhIWF
zN@`Wu+Nir<{s;*PiO9;XWoGAF5wo-C)wQ*=*Tw8yBx_xkab-o|t6N)FbBXE9Sa<!E
zo0F5%m8IU|d%s?b{`F?_`7292g`e-*SNj{(YMrVT8dOoS12jS%x;kuS`1-h8n^L<$
z9nl=?gaZtq=9K-vAB#b;J;$=xYtrZam#&^a`se3oP$_ow$dMPPrfPR}cVDi4zjygk
z@99~OkM-u=J<wzL>ruD<mXwo1ph+~)eB!sax4#}0kI(q}>gun5zu$+hi7-t6y|egv
z)}a>8Rgs&QtqNPK6(1k}_tR<pUq2rAZ_T)<lzVg2(WiPz`|JLil)MNK)r*M$O>FeZ
zSeE?wkO-RRD1LV4VsgLjvz*<fufwjcjSgS#KmVF?zs({s-KZBwI)!K1*Y8^ux_a5q
z&(BxK?XBAWcOJu!>4ppwJbmZc+_aG4Gfq7vvc0tQ^)*w_0HLJOk<_2RzP|3=zJ2@2
zxz^i%KJK@V`IZ_v?c=9UMyIFi?_X-g#v_pc8XbKy*&j6C+cSOo^vZ8H(_{NGBd19k
zrF85pc{ypL&S@7nw`IR$dJK<k(h1(2=G%Wfc5~WU-`mT)JUk4bBegqo?(Ql*wn=BQ
zef_`L^Io5uYu%d~2^xb2kJ{QODIKzq;k&#gGr0KUBiHS<?5wOayF|5TZB9RLb^Yzl
z&BsB_j7_PhcgZAweRcKNCLLqYnEBJG+ToyqULI+)Gi%pPR`;K^|KG3I%f2puXTA2i
z`qfiYwR=+|)s&PDrT&~}TWz!L{e^|ig%&btmzVkKolZ_p290e0{`U6sj=TT<{*H}1
z9`gV9{r^3wk<aFq-z$uq_sg=>Lgv}(_4|q<&C||EBu7pIHK<O1a&G6_xkr6v*qVsM
zJ$v?m8fY=o*xA`<GqG~b;1<{0kz4%fiRbhA`mwuGx<oXSn3$N(>?(a7b4%8)=0;0<
z`|J%H4Em3=HApYy7Hg>XOG;W4wkBd>6D#+tr_<xhBEwe(se-CpPft&|<4Gpj*L(~O
z4eM*!CNaR)0{p(g$}JXhcUP%t?XQyb=?glA)lc2N9qn)X^~(Kw@9%<Ai)T<H6Kmcr
zv#n>3c8iyOdg8hL>teUwN&Wr(pWk0y6&jq9vczw`-C9r=>gJ}@;&t6UJ)oxl*U#te
z@0YAOa&2w&*2KeXQ#FI#YJYtxjFuM>QHhVgKl|GJxQ7oPPFnK#c>ivl{+^yMH$eRc
zqhlF2H>GYbnZv}&Rk7!@sI>IzH#avg-?{(R*6h`Fe}Czn22E%xxprk-T@`9o@Svf%
za$n8Qn0u2$N?%>M2x?*XAOG<2<Hrb4C-?LDZgKr<^K7fHEOzG)T^)9IY3#i{l~<Sh
z%Y&x0w8PhZso-OnAjZVeP<?J&?rjy%tE<DmTeK|>TN`C`%;I+JYNuAN?X`bE18Z+?
zZk}bB+;(oRHK<Ho8MxT()MWMZx$muwPtP=7uB4=NXIgt}tLLQSmQjZeA1-})NmbUe
z=t<k}dm9p)RaWNR-L*YF!)giJqSyL|CQq951yqpp+x=LuDfRR-nd^c3YAPeAO?@__
zYfH?o5>NS>4~?tB*ROl<Afd9l`t-ws6Q@smr=OqaTU^g?|7XK(qxQoOd6=%(Z(Hs=
zd)bT`60L1*r;Z;#9{Jth{_m5rp0c;MG!+#cK|>n9zP?_bdV1Q+H#axu9gp5$w|B|v
z*vFs=mT#LgFRMu=i^$8@d#~qYFkoXjVEg>cOyfyYo?YG;G`(8t$!zodd$;ZCK&=~f
ze>u?5^sb7Ji~jxjeBOk8emdLA=QVG)Kg;yYef;|M>IV-Jrk7^g&bog4_pAS2>-PRG
z{JU$)lqu43-@m-Pyh-PDW%{E$>yj4}maKm47&O<i*bP)M?yLPBvN6dOH2LW0=m;8|
ze|dSiY1S2uzhAG%Z!ej1T&~&&G;=>u$@R*bNaLqxXNT9-)lFJ5QQ3Xj&iz{s<-Dq%
z`O8|tQ-9BgCbxdMwHr1VJZ~0aVq#M9oUG<sB>mhZ>xzb`W{}HdHDAymDySR;HHjRX
z*+9dQT_T!Fp69F+%xB3T+oUtszTVDOpOwKv(1GDjagct?<zHd8TTfs7Dt@Ls>s;HF
zcVW)$d{-Np*{6WY9KIu^7BWW1D&{CZxz&Ag_d=&uu1}voUtZ|k{^j@k{i|I%g)+Cr
zZcJ)bSy}Y-)V6c^6OGgTB$M-g@*TdvHS4ODXZUj!Pt(FjF3-3Bz0QB_{)WV6w_d4I
z@8cca-IqbN!}h#b(6EG_znt;0j2jygGxMsyya?<+9c=%3<@~pgkN1Pec|nbk_xu0H
zMQ%zd%>4iJ`TX5)4{y@>`sQY^ZS}V+ox<v0-fq92b*x8nmTC61y1!q;LG{C@j~@d;
zgPxJo#PniTwDC&cyR?(}K<@=s?gO^VeP$X>T9Uv2Z&>)cn8N7&;IX%-8@(^gy|gk|
zJ$?F|<@4))Efasev*_uhCqMO$JUcr(|K$z7cIWB(@qXpi_4W0(|9(6+I`(4i_IqBN
z@3wM_f4Nuv{^TYd+s|i=w})JQyDDVmB$d0LB)a!MzOgYGRFmtR4%%JzcFyVY_xE&9
zZ@RLlvUq!L*!sA)h4Cw68Ep5;uk1gQduPYS+sXard3P!fALm*hx%pV`&8gbqAkTUI
z`oEvK`rDg}Q?<iIgoPiA*?|TUY^%R5spRoIHP?DOXeorGaT;h;A2dw?>Na|Y-xp5q
zxwbC0`fx47fwf8v3_G5;w6|-kskw1-a!OeiEjhibSK2)5*O!-ETwIqH_uExn&(et5
zv0<8SG^oQ28W%Iqjo(*OX(_{3`|sy-J@I*-o}N`tr-tXf%yTX%DA=_tIQI40?e~J_
z*;Il??q7es9$&sY!LIZbc(&#4?sAZ2xwp3LT>AI^x=pF4S9wj<y0x!%cN?GVt8I3g
znlGpAwy*qjnBQJQP0dZ+e_qJpHr}f%0+pZd>geE*OulpI*tXo;pyb^DJ}}GN)W5&j
zPgcM9??2E~@$-4r@7hY&MQuHmJL$;x`}Og=%io8sjoLbgpWDOs*w@5Ae|~;`b!X@1
z+p^n1y^r7T_m^A8d3kkhJ{_7hA@kOjm7tMIe)~TGpaIW_=WV>wB@Yj^O3&kFi0Rjh
zU@+RcW!}6m7v1GoMs3Xkb+4xB$FKYJ^mO+Be}88gr}ypIvj;RP)Bjof&Pl60ljq03
zetLFxb=linnYXrNc6D_H9d6?Vtx^Cb?^S_|+m17S&RiM0dmCt$S<QFWikzF9KvP<W
z`R&($ny)*3_tpH|l5~{IH1m>6{{Fw)K(kR*UteizXn268=N}#IF8%c-^Xl5@>yJ}P
z%4V45&H^n(2#>D~jj#FGx@hs@)SiodvesX|UXOph{eGSIcN>M3u`8FX7Qe3UHzyz_
zX3nEWk5VG1-P)eNzVPv}ojISMO!j|uxBPzS`nbJYvaV`@#{8_y-(3N%Tv+7FeRhW7
z;kOoBv#(#<{eItSzqwW`UAx6jP1BtXn$mxFcQ>fQ0L?prmPV`!T@9LYv#R>CVwz6m
zqDiXWR_yPqFYPEyw*B>DF=$LGbW27cXsQL&W`1{PXRKQJnaS$?pb^=b#_3vGT3)5E
zuU(yKoDK>ARu&cwEiEtmKOdSm*A^9R0yWJRxpsrrwP=N`n4lN41JogTvHgBs@a1K`
zb7Q~k*}K=Y{9Vk|)#3iU(q<u3wL(QiMVIPCZhCQ`kr_0O_U+x>)rZ^pPv5_9AN!u0
z!6Qj-!sqAbXJ3!6zk6kM_<0sqR>{+wF4g$e*VOE(d@|A9=h~V`-++J#nfLeYwXFNI
z<M=lD`ac^rLsw1t`2D;2(JoQr_xu0<yKBSyK>lS~ak`9E$%&HJ*Uq}QxPS*!goKi2
zndj$i%eh%}`uDDh+0Pkw&b(6Tz$LEtX4|_*N4uB#&$nCV(8zS`{Q2`D+F@rv?XZ|#
zB_}PwLsPo_$M@FBO-Mf8H?!>Rt(ki&KTGB3=RYp6m{XjkqM{<vemK#p?9Gdf`|SV!
zx!faTc`0Ol++7xSc4>Qi`^oz8c9(Y)CL5=pn`3fbTS@8AV@t_opOTU-A3uHiv_lUv
zAhq+%<c(Edvp_T7v-9`8yk@7VdGgQq{r^o>y{DNlGBT=#uZvmcGt+2U{r`VzmX?-h
zf33U!eXD)srWC`(#KdK8y;9GnhQ}G&|M}oN>-O>E$7e6|oedgEnz1Hw^Q=!#PtOL;
z`kL3oy7$RszT5rY?(zHg`7(U%r)3P5`^`1FySv<c;>3w+3JM2Abfd29`F1N?&C>Gb
z<Ls)p&r3c&I=akjs+L;zwKZT@gsu)tdwy<i-f@3FKeP3Fzs=GNTQh@`gTsK8Tg=3^
z>WhJ=r)S=KUoWq&%I|l}eVf^MeHJ>k`Zzc=aPsn+g4(&lYCZ;<nwojP?d$&RczJvK
zdd=8fTR3@mOm1#UH9p!cZoW2ZtI_=We>->9{QTs5Uz}mbwA3@XHL5@OH{{>9b9HlD
z6|m4rD`v-ru=R0kJtwQZJgGjvBy;+V87o$-(0F=ksyAp(b!YMOFQ8Rh0Slc#qb#32
z^(UFs{i!H@dn<Hp)YhQ8yGpm_-L>+aYZZF9jkkFAX3$#CALc)=vrm{ZMFce5uyEnR
zuI}#ORxVMK%1<fV87{4jHU}x+|Nr0a&xRAV!`FrQ`1Gjx%vj(z*UEF3RmWzBMy6Fk
zOS{B$A|Bk?SNr=LXndYe#$v*=#X5`(3=Q?W>i;T~$ji&Owzb{ca`(>8Vo<R<J^jk{
zb+OT)wS6!3|DH9!uc4{wd3RT7@y&hJ-``o)|J!qWffEA*!-M-z;^iGKJ-)Ee*{bZ#
zj8oI~-)~!&bhJya***Aw%(@uM>19t(O`UxB;f|$^%RsAI?RgnhWP{XAKbyQR+E?>)
z%9JTj<~;rW;o)J>j3p?;-}?FEhlYj44a?tp3=9k(@?97_+pna5`~CCh&b8jPUlOur
zKY5b!^VhGcJN^6j|L0Yo2O6*Y_i_fiiY%y|bMmoD#7bd<rQ0|;I4&IR7Po!({7@_R
zxw3hn$)MBIbc0=7j_}@QWMEK8R#8{iR#bHCxB1i&-7mg`ALOvzaZAgN?z;ByaJ#68
zh>E<teERLv)Ae5;=@izJKXoNCE#Kthl})LqzZ?<vzw_`FBLhRha?o-v&}hU9qj#Px
z6G}L^xr04CI=1E9e6%g^@-pA9uCAhgwpv<V$0TxZZgTzl>T0px{XLbN*Tw97bm?1_
zprGKSb#)88r)rfx_hVo%@~El#^S^eZkw;L9+jM4z@&o0Qj#;k1UGSPi;pLS@uH2xw
z?(FQ;``qy6#ztq*%9m}cLsw60YHBjcyJIn(!6@&J1uGlds>H)>nR3coZ-=f7S{kw~
z=jQGbHHHa-QXY@)n=<?tdHh1JUYbK;lHH#V&U5W*qdGe~CoO5^7Jqf1k$KXRdA8MB
z(c5xfU0**RG=}uzMaFZV7oatE&HQ#NZrq4?zVFZ9zo5ww+wXUZtKMup{^f*nf5zKe
zTYvreeBQL;L&DQDGmVw~1Q{3@PKa<QOlsqoU-$R-ckf9$r!VcP{A`kc&&D%6-QfH*
z-Pxa>pI>j9eeK0j@%WJY`)Z%Qehpf~mHFet!*d_ySMDl%3+lu7N*FqU7D#~xZ37p(
zfm$2e=1Vg$Fie;!;GpvM?r!tgw_a1Vma2MBTeAA?Wq<p%phj8QDR9atoWV}X!f6WD
zT#sr6m0na_)ec&wedp-$<LM=w3<d5V-b*q(sA8Gm^P*FI-ia4Npy1x!#4t&dchVJw
z#oY`I)(^Bj{~GV&U~o`#VmLWPNp<Sk7fK8d_!e-BF&q$Wz5rT#Pm{&=AeZ1=r=NFl
zUF_~F%Y3CpH3A$O8ymGkS50B#l>#l1oL&Z6UJYvF<=ot)X<-oo8fW&KV=>V&l$n8n
zVP<=|n|Q%`i;52mv_e)a0Ig_p@0a7^;=1(f>+7$_r1LXgUt2rNJb#{wrlDcr)z#tQ
z>tc3-n#6Oh%l+Q(`@Ig-)X%-O#q-|1Jx>@I7=C<zlw~n@ncv)1o72x{{r&Y7v@Td>
zW$<!8(2^~?zh8nu-BQb<Cl^5LW}iGs0j(kh4^ME3YH6scxlLC04+B-ypG-hL=5ZBY
zQ({&AZjOqkiOH4J%6oe%pB7j=dHq`3bCz}aIw{kvCp_|#LUxzsit5M3Y)(77X?+4{
z$VFJGVM%aF$(A0&S2s2;uKV$jUDl=|z&QQf6?ggCC2@PJG!+ya+WBNJZA?BMvahCc
z`&;d>H7jy&Z%cJ}%D}+j@XS$sO-a?0iS8yD7ZiBqY$CYD^`@vqPFo6U@#gRQxlHBd
zhlhtJEvfnWX=m<y{dhZ7RaH$@RaZMZyKka=3=9k@N-Pti1q1~bN||P@NIg9b6rzug
zc7uk(we#=o0gZ!x&Wxz5tINCn>-TT(Ns}f|<^*lR_;FpSVaeqlN#iePjL&CWUl)7M
zTITF5)61Y?^i$gFK~Ci2;FzES>bvLNj^9z>IB8BUD5UC@nLMm|rOo|PPfsg-9d~t!
zr?Br#BiGy8a*OR`wYO?t+sY?zw`ReD1ts_XN+@PND?NSd-+g`t28K6=fB)C5D>YE&
z`suFNu;lW^#qOfuwRozkuE!)|ca?Z1CMI%ma)PF&@7w}KbzorNOPi>C&$oHtz`mpA
zAJ0&)_Og>_#nbuC%M+Fce|&UwYwm3`Pz9Fy^ZERG(44sKhXc%$mWb&_Wn5h3>gD58
zvMq9F(NfUr;Nx=DXRgfxH5<;fSu4E!^69jG_RC94SB0&eHLv=eB`Z7o>(l!CK{e!+
zoyF;(;fYCC*2mkQooVcT@#4i-S65F54HkjsbPlr1hveks9GeF!oF^RI!92<D>gw?8
z-|yG22X&q9>?i~+_uo?fJ`NP6$;bOjx1FAEzyI2r$i<*0e*XP^Qg$^vK+BGwo}T{s
zi#7uT!=KlM>`%m|=*P!(i|Ovl+#R&kEA!+eRkIL~6?dX{V9e}+HskP8w5<jdn>cei
zsPv<M`7&xNC<G|nE=7F2-jj?yaKG^BDbd^;8yq`3J5S9vU#}IuPAC6;^`{V!G4)fc
z-|?LQt&$Z|^#bi40p)_MtE-kSa_!Fg{q5~Gnflk))`BK&o0^+J8%!=O^?u#VZ&$E-
zW8B^<P(Qk<x%n%o3x1?ic-s|rP=S^9J%-`swY9TfU0=UGc)8z8Q0u$q#|F?aMf$wT
zXY1sve|~xjYV`Zfu~-ONl$U(02Q(*J`r(0N`s^b|TtJ(IKx0G~7CL_g<>8Nyj;@N{
zzD_T8SIPBkP<Aoe>~lN+<<0c@S05Z~29+_JYL55Gg0kG7zkgLdLDOZQpPl{sYW4bi
zSF1pInorhhMd9OPvuvx&X1xV1-~_F>`~B@L7eD`W70?1jLqo$^HkF&KN?(<PzlK^-
z&Hm)VLT9b0Eh|8Sm8YlcTTgd)cVAup{$AAfyt$yAHlQ6;d%xccE-CpEyY~6!^LCdv
zCLjOu?RLKRq<?=t`%5O@xpj7~b$G9oX;B-$=c?G<+dwOABR8kry($GRrt~heO=#s7
z2Mt|;#@62L|6ivYyDMapN!go-*7kPLc!gHno*kgAPn%LtXFWR7S-y4NRPAuB>ThpA
zL+PL$H)|p{gSeoI05lux8SV^n1xj6nWSxK~s51KUxZi%2_jJ9gKOc`@-H_-EnrObf
z%s05GXj7kz<)SA~Qb03<ii(QmTc^#nF4t03b@iQX7W((sSI`KB?cXn#f4x}Te`RB`
zyXU2chuc*>e|~yeeA_O5UyYZSSCE(2so1r`p!W3{qf&;6D*F2Rw*UWp{`L3!eNj2N
zb?ovr0eh>zUz4x@v+%-&fXd3sn?ayOyHn@PS##q?M6Zlx5U8SB5x5vMjR#r{2pSP9
zD%zxS^8ESpxxcR%YOjRUREvG&9rWV%tT0YL2b$OwR`a>={eJy=-RNyAGA=Fxt(-hw
zC{gb0;LxD5(s#C*-f8*zKZTOXpq)7Bv#;nyUf)&lu<3LiI3q0fk#+!8Y@kKX-qUor
zxVVBkg;ckcy^V5pb<I3G%T&rZt><3VYu%~3(P7!w*X@1%wFNYN@af6P$D3?SOhP7s
z<~7r=ufDP_;<{DMj}1*tO-~*_p4_*%cfyq?yXL>F-(3c(24pWkt@AZga@PK(eqsyb
z67T7HULGD7PEFMYRdlYduAuR$U!Tw0t9q`D-hK^~GeM(lb$@?>x-##wY(X8?lG1to
z*`OVBm#!)ZiHR+nFhKw`dzky%cea_PmX_9B_t(0a4@>QH|L45~HKn3&o%%a#O?g|`
z7yk*F%qMPb&Hno5^LbETrs_c>yGhOsgSj@9LHqyxTD{rV!J&bTPX@HyG;&&L`0L6y
z8;_^-Tm-G_+f?)DNGE7Cx>w3n#S^qIZINqtOw%cl+mny??Un=0Q8k>=yX@yOLqFaQ
zROH0&Dw(JPVoXcb%)hrMFPB?PXT?n8^m|vU7A;x?N<Y4{OguF;H9;eb`+h!?1}&@x
z_3SpUtNZ&a^V}TEuD-so^>KSk-rcd}mA8ul&A=ojC%@0?1vReHre`vrn4stkYOvP+
ze!CsCu3%f<UC<&u&H8_TB*QNM`1m+<MSvp67SPPZLZ?>H9K+Wa7Z2Z5tN-^WYI9m|
zT+K&U(8k4m`}SpBSuwGVUw+=XkMiKrfa$4ks(P;6-%$QO4m3k8t``$<v`aK}sn^sV
zy_f55?J9l!zt?o8+R9i+XE=S*ya^)eD|6VcGclAOx>|qz(W6Hp+jRb~`zt&18()Wt
ztDD=ao9Xk<zAyq+0(TT=mI+va)1DkLTWrtT3Oe){O4--#0WF!ov$Oa#Xzktc+t$JM
zff68NjDFfEto-%m<>K%6s{I241FIf&s!!1lU)Q6@3G&VT0)LhXn!(FfxOR)pGR+Qi
zn-1!MJ}|o@9J^uC<jJAS{pR-Qfm-qha(AgSdAz-~b!+A4XGlUPZfr~j%?pB>JnH`Q
z&b%lBdE<}ocNYfDz(p<J-rQXL@9%GI6O)j}#zxRWoYVe&GL}ZWd_c;~3;lVV@-HrG
z)j53%>i=ccN)0~qY%CXhgA^37gB${4{V`5CWvvjr+;6JN*8KZ%(^4(}*BSfU{d{s)
zha2RP+*4B+Rm{x7rlo>1^{202LvwQ8_-@~*(+yrFl~Od*sNv1s-Qkl!J5@fFgN*#X
z%}3IKOH`}m@P3dFcbFS;$by25xYp6kPlkKuftHwn){@S%tp;Uu$>f-8(bJat+x=8&
zUIj99g4}l(hRAI>Go!ZUthE34!};dsbWj)P&aH@PQyHg%x^p{3zq>HJyt{ilXoMZK
z@~7nGCCOM&Bfnw)%Xt#ao3gL#eSLFt@&}OOJCEOWG6b!OFq~^$uDAF!$QK2(-*qy4
zx)z<E`R2w(FAt9sFM>eAciO6xcut&}sx2xcv?yq)7ib9+E0@TG>C>lsOP}6kQuXBp
z&nnPvZHKBm!i-NqwfDcui;G<4Af4ZaGw<hdD1@(zISKBiGTdSOenbMKoZ&yu_am|s
zLaM*Ny9(OBn1A2SGiaexYsmh(T30u>w1QNS?Ux?U<5U0@=PxcUzPl^gQicyy)=Syd
zRIr7D_PQ(Veb=cMq3qUk;lxDct9vSoLHjL0D;Hi~UcR;NZxv_>ma==_l@k+{jp0e<
z4&zLVkN>xpKX(kfTK=#7{@q17Oq-IK4ZC&=9p#mERbIyuc)U|Vt!qc`>4ZB%y@pnK
zJ<@3+>Qd7+0z0LXk0~DON|F&3mvD_~lIDt1Vph`1ieNeSo<I5jrOW^ai|x_#m#<pA
z<No`dXP4hzH7$I8@%g=q>@o!o?{>XjXZ70p-HzmUJ0AC)nQw1@J+?g7&-UvTE?*7?
z2AzJlLbjA!TQYB!->;p%bN~B&zpExYF)(DXNVztE62*Dj?{|#8&#!*Bv*gW<jYm2e
z7#gNt)L=?E(7?F!<1y*tld997O!l{18T<dqWdEX<OQ%0OCY^sqv0WzUASWY3!_$iz
zam+;zTgB5ZE%E$$^L*X3;`6rVppMg|J)h56M{dao{PpFfWYgJ|3=DEEpmPBxbL;I`
za449GfgyfbAd5%0m@a71+S7a0@7I2|Q>gv@&3Av@-%bDj{a(Im)hf8U6VLf<J{*v#
zc+faij+ucW!n600sR9GTf$PrAHq4t2vPm!5waZF>|DU33F~w(dHXLM&uj&j94GoQ}
z|NC{48VdtMm|HW?g!gsdcduNv%B!@rbnbBm28YMj6qr+<oR}E@LxO=JW6mBn76t|l
z-^CmgJSVF?{dPNl{pN4S?f)6>e!DHY>`vkFn9{4EqO*7y7$O9Fl^o7lJnp$u`F!ry
z{^fpiXEpO#X#_9#^PM!O>{jN^f4^R9o60dTY?veE+F<kjPVvjTyUX7`j?UYun!RSD
z+q~LuH+$sm?bzjO3hKVDjt?zxVqi$9H0fga`Qb1>XnV)4<Mlrd%WwLAuX?$2JD=yI
zz2EOy2QTwkd8LAZ;XqNA2xCxi@Z{-nRhphg$;WzZKA$nZnLfWZ>%0BGACGTEe`8``
z;0<ry!~6ce^@jt@#b2+6r~mu&Q_{Y!W|mnl$gL~N{_lJ~&-?qkyV@3t3=A7=q+A<f
zN-nyB#`23_uiXw>CoE}MlmZ@pm}y;}=hiPbxBln!`jsE1FfbgLo+-k3X;bRy9x2nT
znbrCG|CU8<$p{3s&kuBEi7<Y0UA21k=5toBL#lWf7!oW^PB83z(8L`S8aj3Jc{}T?
zSFeJ&`@UF)hK5=`pHu8LgO7nBA~Mu9P-LpyqxYfV;mcR8()#@D?CGfNwOeD#cdS~q
z>eQp7-QF|uzRt8LOxkukZ@0>J)t`w=k26NFx~W>~oHX{_w)TS#!|Frn_SffCKAV}d
zd+q#e?ZuAs7$Y~OoD{cXV_=X{&!5N0z%XT5Aj^p>D}#;G&df-C*Dq<Tc6phvcD@1w
zL&8#%6W$yC-RrOa^Z3kMYxCdl_x}(2UjOrSJSaGJKJK&jng@yfM?5Dc``gU~?F5|p
zyZYVEbh+v`8->)FK<R8T$As_q>+RP@ZH;<XcY2!c=X=%fr&<UyFl;cAa&1_%{a#h&
zpO43<@BDuwxqoT&_B>TT76yhjJ#K;u?Q&HadHer<>ya>AbWXQYTt9Bk>UF!c%I{UC
z*L`S~4}ql;@rCnCuSH6l=f(J0KAplNZKg9jZ&&7|CsV`YPVRocZ}#2t`?l%xYs*@f
zvoJ91^I2@cd}&MOWt$HNn16m<Uq3f)Z&m8IH#cY6R+m+MeKmD<-Y(7L<9)uMP_R{F
zVECXabyRYK%F1=?&P{Zeo2lGyv+2@e1_lQ0l^0n&Ch0_MP!Lx4JF_No^QO~!yO%h(
z^G%iGWMGJ3?0qD(Mn%#v$t5c*3ncYq{=b*=KmGZ9Ufnb8{Jgn*vQ|%)&CXl(p#_?L
ziawt;e?BGH&-4Di+TzQ;=1VoYZtdlhwMyx?{q{lc1p~tc4wEj1osYV-iykzxKij_l
zZ|=AI_5Z7W-_G40`|r<l`|t!K28IMzlP-ptMyX!=zVCgnTf9GZciBBoSq28FMmIr)
z+*?~tzPY)1`cC`GPfynDezyw|)_;F}J^l51{CrUB?B2ck|NlI{Q*fBq@<9W$mVqP#
z!v-a2hKSr#QCRim#YB*bm8({r%CGx8Tc+$r;?26>Z!fP5UOuP#-Oj0U!VC;QgnE@6
zc9p!Gls>Ogt@ih~vvbSu&0M5W^m^^~v@<gdEx%lF{(L3aKlF*MV;isZv{$cQ<!rqg
z_Vrs_-Os0A-rfdHhI#$|_SU%K!vp<2Jv<By`#7b}N(+{~x}s@*uOc~b&&OkXe!trt
zxhcgHG%@t*)hQFuQpDnqN5z+?o}T7?_jc*^*vs2;Z^sm!RQ>s4aevXzr_-Mw6^}pD
z!YO=diRa><+n5;+XkC5qU-i%Q{eM*N|GKvQ)8+a9OzeN2^q-_6YhAYHL&(XO%jeIl
z|IuE5Vv%e2tGkWaH#Q{BG|!Jy^PM$iUF>c(&$1hd?QiyezXvKC`YfN#@B+D1^!fw+
zgIO0Bxq^;a*m^x~_oc;GKvU1f=WV|~Ii<Zm=G8yj?{_Bu`}_O)G51Mtc0QkXGi9=G
z(e>E!sitZS3?>%5b`F!C{J#Ic&aGcA_POi@?bMT#RDWLVubYzGZ)+Bvw=;F`-|~Bv
z>YLNfp89q>KR$nb`1-iYZ#UCVO9(SCNG)Nj=M0;~BW0qYKCdF_*O!-*LE2ug-(NS&
zJU{OJj@<2c%eI~`db{=dv$fmrotppe%krh~&d)GZ_6!OR4$fb{Y?)f|voj}`&##+h
zdOfCi>p4ya2HwEM924%A-{1S~e826th`oOoX@H8aqut``uUS4jGjnqN-|O{fcRrst
zyX@^P-LEq$KR;9ToMo09mA^i6bK2J990Cjs`#Pmu8}5``_FcJZ)v7NNmcQR@29@nR
zvQ{NCkJr?tr5$Wy{rc_M`T6nBB^VffEXx#OG)g%!!K)wC=6%v8op&NMJa+2K%gfb&
zzBzOH&(F`FUoM~j?5z2HpV!ycX6x_$^(Sb}e$(V*JzKJ`=UJYsi<$W3-2Q0mFYDzQ
z7^Xb_w!iMr+U?qgC$4)n^G*2q`T6sE)$h+<Ss4s+!<YB>>sPK{t8w_t%gezcu617)
z%RgN**>BbM`+KXu&#C!z^5;?gx{07eUtTVszpfmdhBl|4fBNILpZ}-B>+MV!7~&6J
zs$;a#I+-Xs<LT?g2iZ=5iiFSStkYjzS-G`*KPWx?d%gdkcJ<q>;V(abd2vyB|L?o+
zU#*>A`|ak>ACLQula6$hyuW9AGQIrmuBX$YjcR{=xfT7<?#l(|%CA?$i+{abKHbWk
zfx$#2)YW;%_P0TEN-lZs{B|q5_>|^yP$6+*ie@mV>9MTz^|i{sU$1N1#;vuh{q<z;
z_j{*5pSO?S{q5WB{Pf$o+s|6PUNd>JznvxMhzd|=>Fc#<ePK19h-a!1pt7v&cJA~i
z+bo!wYHVx%%|4VqY0W=tQKmI@^Z&+FKbx8EwUhbv^}uFZ=1&Kh`BOeTI4EgXQ}GtG
z;ox(#{2zt&dp>!Y-7UGy<rjYa{(gsj(cAMXpG<Twx|O;7>6*>wPDN#}o%-+Z@AMxZ
z9=@w%WjJ6S)yz9#`@Jgd^m&zObGP2xTfJPP>&zU>%?DXd9Ok#*bLHz<^ZPd6@7LF#
zyv)GhaQIrnea_m0O{`nr&;Gdcyu5zYmK8$Ej0_C%ASX>yxxCEx^pQ^CZ29^h58FK_
zU5~5Q1sz;czUTD^28IQR*%ug#&RITxGN<_5%I$TJI@PaL#$2;r$jrbH@7v5fVRrt$
zotHqTD6NiY=AEG2XR!#zs};0jVEFJ=*@1zf;Swk{FEC*OHII5h=OlTJ3J>lunRfZI
zzx~{W&h5)UJ1lQ*O5OMOZT|BK&U`1c*Y6E`e`9)loh7KPy*g~|rG2%(dE{&?Hm9Fo
zci;*G!-WkdE59)G9$h*;ZkGDI3MFPXo)clwxl{lD-v9sf)$sVax!doWJwD!lUMxCi
zqRLFW+N!d<rPsIQ-Zq;aQ{-v)>&4=jx}Q%gKOPk~PCV3NlKCi_kKus%^m<<X<(K{K
zZMWaAtDf5+VNsB<@AKUEPbPWmoz&faXOfDfSx&^Wv$LmrPF7o*eSMwhB-yeXiq-G;
zmb>-I%uMdHT&DDynZd#NfzX<#TQ2)qU$w5@c+pKd^|bExGv4}pLw1*)xBb4P{{O$N
zA1A7ST4ZK7QzqXjy&k*tEH?uK??i^5U1{g$%;b}`Qt`Z3`F!q~S*F^z^Y_>8eGF;?
zrO&V3_U0o4!vaS^h4_QH+wV?$d3kyIg$0hDlO&DPR6Mh?vR=tX2M15KEPnRnvcJ7<
zsT%`Bh6l?Dud1I<ryG~NxbSAvX+24sih@Zg_x4nJPFm(W`<nH>$jxb`eT)nZ`AUqN
zgh1B+{dQYF_x854cgye3UA1bJis$ENXD6$GMwq_O`T6<zbxSr-t#OAnoAvBmYjaR5
z;?B-u<GedNK#iBJ)$`-4zW!VqQJ;ORM>6yJx>!(W=jo5=bsj~}@2{2pb)BDq;Z))8
zc>90XZcmkXlI_~Crh%1P3=}G$7Lr`mi-kG6UM?&Bw!7rzBv{%0{SK$F+LHA1^G^RX
zpF8hKdwgvI1H-<irGJ?!LM9#7GB|y`-Fw5d%ac^SjS3zd0QFiHyZ8I8kJ~$~>dyE5
z|Ns8^_kI8QFE1}=Uk8~F+BqX>QIHV%n2Eum`3cX7BCEGsE*qttnIThffDzQ>bnBH0
zP5<9+|L0B5(eriRHuuQcTJ3(nuiDS<=aZT*7u`XH>$ZDUuX!YmmM~3bW^g#H=rHYa
z@p;?nt5&V*ku+9IKGw5x`~S*@lGoRC`)xjX_*uW*GN<%fWMuZ*t(W%K|L2jntFes#
z4=N$!nNlo4M<SiBee-N~{=DDs_t%^HF*7jqPQDI018%9H0t16XCJP4xLx2<`69dB(
zw^89C9wsNUHWfTPG^g^}%$K*eW`njs&n>$J>ffyW62ZU_5Xh8bYWb)`x#;QC@Mj+m
z^Ple!RKB#tbMlwh*Y*8vKDsP*XJ%;V$_#qRxDRxs(**1HdyK<l3SB`1Dk>)*w#(0x
zv#om4V|?z!j>5-UHi`@kA#KJAs}H`oxcKrC&&e{?Z#Hht_ML5Z_M*G|T=n@iMwgfS
zuYXX&zz|@`lwvx=Br^z9E^W!Vx#?Wh`nbJW-x(Pm%=Tzl!)Baz#>3awckkC(vu267
zPAtDyxtuAOk-_09=Y*>X_x4m~-rAD6_iNhOSy$gNGaN9VD86t#+u7OX=RvzL)}Ehl
zzrU<L^I!c8n|-_7m^E%bw?F@H!jq+5d`ug<YQ7bp)t?eRk0FvbD=TYS)y%6slE#x%
zVt189zWTh(clNjI_OZXO^Ea&TF4nSTIG|;kdut1*G@B~7I8aDowd47Dwx8|)f3^p;
z*<SAv_`7oXJg?Bu(5i25c3ye@cK7>zJKt`*y$Ljr^I3<Jfnlm~{=Gduv(0pWzuTR^
z)ID>{s;)&ETDC{7pKak3-gMc|I`zkghn8=*T%J_(?c597sxKbL`(!`=c&xXPiQ&QQ
zladpzE(l*ACuxx2aL(%Wnlp1Ojiqz91cE97(DqOB`!&T&kAvc<kS)bDaz{bpIm_pB
z?v&lmt^EJ@`{t`*(N7n3>z#_LejEDoA_K#MBuM6d51Oi;;?`ioz%8zKW@h@lnd@SA
zFLUh{yP3Isu2I>W8(#ga3=FI1Fk~|HSv=~9seC%s^3R9Epe8D4r7@_pDC}<&2r@EZ
z>L;lQT)+QJ+lxpSpwkN%yZ3`e{2w3dT@C8uZg^$E9FzzuDna`M-fTR6ZJlZEEfaV7
z+LC!SpHBMBx7*uvnUUeZDpd!qoJ&hQK|P{Zdy=a@-K_4c*~ibo5HHTO<WSm~853vC
znpO4M)YMe7OX>Zd&wi}Sm>3$aIyZ#e*i-o#)UU64eRh`V>bvX=4ePlXgFxHskrIVG
z1H(Q&7LV4eSFWTS>yi9=%|8D1rKR3Cl^GchWGOpntw}#W57gTJ4B8SJS^sL~a!@a4
zo^5qlh7kip#8(!NR@s^l2SMX_>-PWqb!%%Yw|Lr<6B9w<c4=$&buK@428PvPlfC#q
z_+DQfzMe<IKp}l@X&9)o>ovQjq3qswW_JF*nc#NjV@8GpT2JR*kZx$@7JoLU_}ocQ
zO$!<<iO$^`s<-RKqBmQw$4!;vWnc)?1eeFhvMFeOKFCh{`}O+yKzG^Dmxf`T_y0UI
z2MuZ*=@bsX`P}CHp3gzCZ|mzBran?Pa8UkqOgjI`j>mnc+obbmJUcr(eQxPB&-eHC
zf|3AeRMj&mG&J<0WIK=Kq_DM7Yd4+WzH0xxRjXEY)%P>(J2@+)ih*I;`P%Pyr#CXQ
zFN@rq25Jj{#tlH>b!SJR<>MY>qsmWD{=5p`zv|13e~tVH#Dx?XdJk;Lyj=8RVS8FL
zuh|Ju$F$_tm6c`hTZH{iw2H^g`2BA8`X*tf1D^^x#T=9iK*O(-{q0V!umAhn>f^_q
z@9yq?zGSjr)T`qA_5c6=`ElI-9H^xhwl*pi<ox}0e?j9f*R8+3TD{({U(R;Zw_Dku
zLyT@Fw#ybBmo2~YuKv%*<CagS1aATjp+;^_dwFMP@wc1l^L=KSWVY^`2kNGP`qXB(
zb2e|uxTqv+RdV7$BQxlz0KKn2Kr;!)Wy@ngXZn?1i&S@)DRi;>@u0ct_}%*de{be)
zzY7{8+>&?K>hJIG=bxOMyuV}~yL^qo?svPgZ*9w+4RYt^vu3AnrqAE&6fewh`naS(
zgWH4e`~TPODt|vuw){?E>-^uKh}r-D_kQDq0}Y^&-I<ofY3p{s+x2GO?{_n8DvPeg
zmfux5$!mUR0;r3}%+7a4bNQS}p#JX9=kw41`1sg3<H7=!lZD4+r&qt*sjfb^B*^T3
z&F4Me?^T0_(Bi6IF8%W6X7SGSU-$q2y>IjNN-$`w=JML;?VwWZdQ7n|Xhh-UWOdM<
ztgXkzTqlB>)w#E~S^od?`SU65^-pGHuR9r?zjtc8eBF+3JEHUVnmV`fc!GwtZl+Fu
zs$c)pd)?k|x8Ce}y$&>HvH4!rYu(amCnu|?|Nr~l|NK1L;)ku`%Q7!712xj-RXpkx
z{TIi)L57P#YRk^z=VGCup+_CrWw*o}U%&s~ucH&)<syGqJUrC;wXgE?S@Z6+v$I6S
zV@m?x-m?Gq*k0`Z&vWJbJ```yyu8ff<&w$!KFm;bZWCD>we{DbWY9=Me(s+iA6-L3
zLkn-`Zoj&&SH^PFidCz$s=mGo)rs1&q71ZsM}O7o)!l~4$3$EMML^Tf7q{i!e)QvU
z|N76C>1St!ZULG7ZpY)S>*uWB?^(2K*RF3Lr-sKxhJ=TU7e71m^UzGj2-BD*)(Zzf
zjabjHU+03d*X>MuJAb-P<Rr`DXG=ikZpmfe*LUu1^PO#0`TOnm&tES4>whlZnt53b
z)U)W3G!Dy}b{<p{eLLSRrh96RW$~rG)!(;dUQS!N{m$R#_5Yr)*?3H9Yrnt6!xj+h
z=VAGO6I3c6G_rqs*e;)TVS!`i`@P?@>{qQ?wdrx6^)<`jO<UG$de(j4eSfJ&*ZMD|
zj31t|a5yku-&Oir<)piO?UtbP`dv!@|Gob|&)4jxitlVQU(gb{mBGvRd^p4n8kW!Q
zxBh&__%dj*@~f-bvvW3iw(-eEy*FBNT5q?G{=Oec`@XKtPdzSMe&*-%`SVu>FJJco
zw6*L!XpHFVwdnQdd_bq4%$+&u{JT|KFS<!zjf}2-yEQmCcyi|DWvZUbd}dBsq;YAv
z|9sFy%(unC%l#@p9Ar1nzP2XyT+s=|_LS+dWhXZtmz#ZVuJ!W^&itTGgsvMym@p&L
zg#(}+U$MJNPIl|>+YxkL-Yh4=&;IWhP!^Fi%?gpLc+l7*Yi$;tv(XiFno;$gwAs1S
z!s9AcL1W9H?%SQ>^R}QligWh=|J+Ju<B^zPey>9L|3~@%6W7J=PW$oU;mxAcx}T5R
z|0`@wld>ww(A)Rp5opA%{C;h@T+N4rAmiWO+Pd2K@~5axDW0oVtuo5GvZ6=UdfU0<
z&HQ#VKs~vc=X0;EiIl7Ta<NC&+N_zK{~Wjeo(ax;mMXvBZ0_e^jNskFA-h2E#r^&D
zc{?7q^~l@TwZ?b+oB#jk{F}-BwncxxUcVms|3Nc9Xyu|+HmLd2z{qTraG*gaYKsQD
zY)JrUWOeg7EA8yHTf-(TDSm#=^52ig#eY5?PyhDj=FPO(xkfoRHoV#WexJ6<<q3+;
zMK@EYUtOmgu_0k)`8KUCrS*HiMeX~2_x-hXwVzI^&ooSS`*u5jzsgBaov=s)Wb2!a
z$K_7j9>4$U@^XJrvGDM4`}0TL`sdEq|NCt7=fh#`zdsowtkNAAq#BLSSt#p9Z8>3h
zTxRo?)19E1s2&N!q?PAmlY32H{Z;$_Zuk3hUtV5*z2@vp<K^cbtNG4K`Fz&gKTzc7
zm&^W}Q%+90b$xNoI_Gx2mzS1$i|IscaEd=KmAxkLz0dIuLFG*qA0I81tN;7;diuph
zu3P)p?|e2(CvK0$-(O$7CxN_}d3RUozqj}Qtvy#bf3|J)H=}e=6Y2HZ+`V6~X?7*G
z?$=}3H^*3kq1WO2yStxn-~VUU%*K1_+3ftd=W{Q}*Z=tl>Y2IAmR<>(e|vxZ|Cox0
zt(LD=EZ+3_ob~fo@wgK!0vB(3*d~3=GH-tEx0AbGubUlPc2jk(b@{m`CntYC9skb=
zRO;W#UO$)L{*S@kU8ScFvdhm|yZxS(ZuGV@pfs_3ex23+A4m0H)vN<mlQ%XbeoX^)
zYyB)9wtRVi-+ueOs_dxkd2@BQ-B9wk`<VjjV3xeNkhn7b@S#@j&Clmmr#(2(So!nm
z^z8igAUCSak6l*wcI)-D4-XFBEW4cxD)~#^+%U}F`!(#{?)Uq?yt`XHv$5<TtN4?P
z?(%2re!rcbU;q0yxJKFg?G|Wm=H=bp->3iE&X~X&`s!OW!<rqM!OKKImE6U>)!!FI
zZccN3eQj;`-12)ncl>&_x|@|-3{*-==WK8+yb|bs)h_*D6YEj`x=)iAWnW)+^j7xz
z*f-m5=N<j=@o~3Z?Jtq)HyhpG7MkBFaNhX)-EMJN>oOhC7<JB`kH?Ps*Z;cwXmP)t
zR@bA=w|{~rv5uPE&Iw+#`J9#O>aew4x!Z0o+wpGK>sMziQcg@*v};$@N_px0J%xcH
zt{)Gw%Zq^8mKRqBFJDyp`kL$hy1!lF@wHp;y-{}W(*YIe$K|TmSp56(xcl4N+v01Z
zx9hR-%f;;Z|L^zLefFS!^vAvLYu9Jo-j;iDk!yF-<6d*UKC4$Nk{%uD+<JUY`Mt`c
zptSe<$HR7cJwB@!3l>Fh&vV_JcD5_;?k>@G*|G@3)KgQ|f11zLkh(&PYyAdh28L4)
hL36a!>|oFO&tBfU_w%8b9e+R*`JS$RF6*2UngH@f4%q+z

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-1.csv
new file mode 100644
index 00000000..ed7e4d76
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-1.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.714285714286
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.5
+4;Mean of F1-Score of top 10 classes by F1-Score;0.41666666666666663
+5;Mean of F1-Score of top 20 classes by F1-Score;0.41666666666666663
+6;Mean of F1-Score of top 30 classes by F1-Score;0.41666666666666663
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-2.csv
new file mode 100644
index 00000000..fb3b57b1
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-2.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.685714285714
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.5
+4;Mean of F1-Score of top 10 classes by F1-Score;0.4067796610169492
+5;Mean of F1-Score of top 20 classes by F1-Score;0.4067796610169492
+6;Mean of F1-Score of top 30 classes by F1-Score;0.4067796610169492
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-3.csv
new file mode 100644
index 00000000..12e7af6d
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-3.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.885714285714
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.7666666666666666
+5;Mean of F1-Score of top 20 classes by F1-Score;0.7666666666666666
+6;Mean of F1-Score of top 30 classes by F1-Score;0.7666666666666666
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-4.csv
new file mode 100644
index 00000000..27f52192
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-4.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.314285714286
+1;Top 10 classes by F1-Score;['Oui', 'Non']
+2;Worst 10 classes by F1-Score;['Non', 'Oui']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.3092105263157895
+5;Mean of F1-Score of top 20 classes by F1-Score;0.3092105263157895
+6;Mean of F1-Score of top 30 classes by F1-Score;0.3092105263157895
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-5.csv
new file mode 100644
index 00000000..410f8862
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-5.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.828571428571
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.6982758620689655
+5;Mean of F1-Score of top 20 classes by F1-Score;0.6982758620689655
+6;Mean of F1-Score of top 30 classes by F1-Score;0.6982758620689655
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-6.csv
new file mode 100644
index 00000000..af2aaa26
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-6.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.714285714286
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.5949074074074074
+5;Mean of F1-Score of top 20 classes by F1-Score;0.5949074074074074
+6;Mean of F1-Score of top 30 classes by F1-Score;0.5949074074074074
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-7.csv
new file mode 100644
index 00000000..cfd6be91
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-7.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.657142857143
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.5
+4;Mean of F1-Score of top 10 classes by F1-Score;0.39655172413793105
+5;Mean of F1-Score of top 20 classes by F1-Score;0.39655172413793105
+6;Mean of F1-Score of top 30 classes by F1-Score;0.39655172413793105
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats.csv
new file mode 100644
index 00000000..27249616
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.942857142857
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.9388111888111887
+5;Mean of F1-Score of top 20 classes by F1-Score;0.9388111888111887
+6;Mean of F1-Score of top 30 classes by F1-Score;0.9388111888111887
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-1.csv
new file mode 100644
index 00000000..a13e8201
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-1.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.458333333333;0.0909090909091;0.342857142857
+Oui;0.0625;0.363636363636;0.157142857143
+All;0.520833333333;0.454545454545;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-10.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-10.csv
new file mode 100644
index 00000000..23380cfc
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-10.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.431034482759;0.333333333333;0.414285714286
+Oui;0.0172413793103;0.416666666667;0.0857142857143
+All;0.448275862069;0.75;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-11.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-11.csv
new file mode 100644
index 00000000..ec20de4e
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-11.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.451612903226;0.375;0.442857142857
+Oui;0.0161290322581;0.375;0.0571428571429
+All;0.467741935484;0.75;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-12.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-12.csv
new file mode 100644
index 00000000..0d9e7845
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-12.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.454545454545;0.0769230769231;0.314285714286
+Oui;0.0681818181818;0.384615384615;0.185714285714
+All;0.522727272727;0.461538461538;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-13.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-13.csv
new file mode 100644
index 00000000..29d47356
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-13.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.466666666667;0.2;0.428571428571
+Oui;0.0166666666667;0.4;0.0714285714286
+All;0.483333333333;0.6;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-14.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-14.csv
new file mode 100644
index 00000000..edbbae5e
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-14.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.410714285714;0.357142857143;0.4
+Oui;0.0;0.5;0.1
+All;0.410714285714;0.857142857143;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-15.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-15.csv
new file mode 100644
index 00000000..9027b6be
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-15.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.428571428571;0.285714285714;0.4
+Oui;0.0357142857143;0.357142857143;0.1
+All;0.464285714286;0.642857142857;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-16.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-16.csv
new file mode 100644
index 00000000..07d5e788
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-16.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.4;0.25;0.357142857143
+Oui;0.04;0.4;0.142857142857
+All;0.44;0.65;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-17.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-17.csv
new file mode 100644
index 00000000..404ee277
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-17.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.333333333333;0.5625;0.385714285714
+Oui;0.0;0.5;0.114285714286
+All;0.333333333333;1.0625;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-18.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-18.csv
new file mode 100644
index 00000000..ee02a26e
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-18.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.5;0.0;0.342857142857
+Oui;0.125;0.227272727273;0.157142857143
+All;0.625;0.227272727273;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-19.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-19.csv
new file mode 100644
index 00000000..c51a2c8d
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-19.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.46;0.1;0.357142857143
+Oui;0.06;0.35;0.142857142857
+All;0.52;0.45;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-2.csv
new file mode 100644
index 00000000..9ed7a704
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-2.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.388888888889;0.375;0.385714285714
+Oui;0.0;0.5;0.114285714286
+All;0.388888888889;0.875;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-3.csv
new file mode 100644
index 00000000..b4e87628
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-3.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.42;0.2;0.357142857143
+Oui;0.06;0.35;0.142857142857
+All;0.48;0.55;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-4.csv
new file mode 100644
index 00000000..36ebd26c
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-4.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.434782608696;0.125;0.328571428571
+Oui;0.0217391304348;0.458333333333;0.171428571429
+All;0.45652173913;0.583333333333;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-5.csv
new file mode 100644
index 00000000..c9f17b95
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-5.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.48275862069;0.0833333333333;0.414285714286
+Oui;0.0172413793103;0.416666666667;0.0857142857143
+All;0.5;0.5;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-6.csv
new file mode 100644
index 00000000..f8e2fee8
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-6.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.461538461538;0.111111111111;0.371428571429
+Oui;0.0192307692308;0.444444444444;0.128571428571
+All;0.480769230769;0.555555555556;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-7.csv
new file mode 100644
index 00000000..4f940596
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-7.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.392857142857;0.428571428571;0.4
+Oui;0.0357142857143;0.357142857143;0.1
+All;0.428571428571;0.785714285714;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-8.csv
new file mode 100644
index 00000000..6318ac7d
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-8.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.395833333333;0.227272727273;0.342857142857
+Oui;0.0416666666667;0.409090909091;0.157142857143
+All;0.4375;0.636363636364;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-9.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-9.csv
new file mode 100644
index 00000000..21de79ae
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-9.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.466666666667;0.2;0.428571428571
+Oui;0.0;0.5;0.0714285714286
+All;0.466666666667;0.7;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix.csv
new file mode 100644
index 00000000..009955c9
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.434782608696;0.125;0.328571428571
+Oui;0.0434782608696;0.416666666667;0.171428571429
+All;0.478260869565;0.541666666667;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-1.png
new file mode 100644
index 0000000000000000000000000000000000000000..76f119810a7be29e5895a1e8794e320352709a27
GIT binary patch
literal 21209
zcmeAS@N?(olHy`uVBq!ia0y~yV2S`?4mJh`hJ9%>?l3SguoOFahH!9jaMW<5bTBY5
za29w(7BevLCxS5J3j5`m3=9eko-U3d6?5L)tqut-ef00+^8(R;kJDN;7ESU^bFtD~
zxN_$7Et;G6q_l=~JX_;=BxFz8%&8^|{kG0>5q8-fk>=ByI<YzPo|miisp>_G6N0n2
zl+3@s=dYiWukPZwea_jBf1|p$e%hQrzjvDd`F|Vw&l>PJGcYh1^v>R_&cML%Ad4e{
zfq_9yIf0RZVMb2_D+5D<5tA4LL&M2YiQyC^XAa*KW?*1=E@M*>u>a4e)1sE;lhu4h
zL_|tl&-HeJ;yU8M!DjZWn^I3}m(|6`$N&BDxW8qM)FEXj1_qr6UZ&ws{pQ=%9$nw~
z-?^EUq2cI_9JAo_=@M-#pC3MY5t4e?xEUC@H{Q%yW*#A=8|J(CAQJ<Ffh4aO1A~}T
z^HZse4GatnK5ii0tuZUvxJ|o38V;ne=v<kxIsN>+@;Rl9>z;1C9(VcM+uL((c^6#M
z%HMG2pVL{TgoSQXrcOP1_N=d^rDfIUv*usV*Z&K)E`Jx|>DifMCarkdwdTje_O9OE
ztE<=VTV<Sn?!#}c7^Op@Z;wmqT;V7$FaP`DF#oHIi`)I?SS-ABDTtMY<wd9ZybDiG
zPJa6O_3F*(=TDvOJrh6M_Q!+fs+UWrmt2o6U+Fj3N=s97;_~IoH!o*pFzwraw!n3&
zy_k-!?$sY3A79;=>|XojqWi7w`SY#H-mEy<Ev{{57Pj1f{<PV%rF-3V!@|PUJiGe)
zuh0MgC;jcMt={#&Z{MFXckbIKGa0vbZ<Z4j6BpOEvx{qNZ2a`~YiLEq4kIHYy{bEp
zj&?tN_AKn->AQDh?f?HNZvA_Gef;`$vAa*5Kkv`T$k^4}8|vtIP_=gbnjSXp@F}xr
z&*qb}S@C}V|2S1uRVl-ymUla!%Xwbf{eIu-!pFxnZEa&Ged(|N<GgR*J|muHuiaur
z<>lo+z8;saU&G2RwqnDEfZ%057w7-`qON|H$05|k)iv{ImuOdacd&;?M^I4EmHqYg
zscC6iN=lEKj^D~Lv;F_)GZ!CUnMD4D1&xQ-Z{D=&%Ia|at=ZT8il3jmTL1rd{NKOt
z>#yJ2Tm80Pd<Pek*gA>B22<wGU%&g^uG9Ojt*ZY1ZqgFt^m8Z9pZEX#?Cj)3iKv}L
zOI4i0a>K&Ho(XJH^O><=(IO>PHMLc1*7#gr?ysJ*vtw`dcP$l_BR4M>M208by>j&2
z_R7y`y3yNwIy*bNy1OT<xVpKms{Q?KmPO&BYipy+FJ|AV{eJh=g@uP%zt1#E?UFLh
zT4I`g4P@t}E1Ocidu1$xBqb$ZU0oe6`u@bP3YQM;V`-aL#_g@@>hBLvOk7x0RP^QL
z^7&qqYHR!Y`}_ZW?5}?@uln7^>G5?d)#p_>E%%?V7IW3<-Me?U_Ev8<GB$pje0iDg
z<sF5OzuZippZV;}%v(E)mw#5{2=<w06PbH^+tp`hXV0}2osseL)6-8MJ_Pvq^wgfY
zeLMQ%#f!H#BsTNO+r=#X{N(xb@L$4@m;22Pa&v1_QdWNZ&}&i~zr3Ekz5U+*|9(#|
z7Z!6qa7Z*bDoV=}6xVU}e@lP<{F(Xf&COqbKA%_hoHuVCpW<ro>3YBZ{eJ)TcK&|L
z;#)gh($CGgc%)PK>gII+_EPD~%l*S+V&>TW|5NNVjr+yz?duO6K5UwBfWhgS=%XIf
zh{(vutlQhxzPh&dwZXlW!Ro)iaU1eD+g5!E`1|WCD8n!^vt_)$x0mmC&HumOwRCku
zkN3&S9<#Nz6%`X(mV0|!=-22FZGjC5vp%_=Yi(`S($u`DzyD9teY1)W34cG&|9|D<
z<Kw2KuR_*FZS}hJzjcjO>8lrOx8J)I9$&k(p@Cuf8TskU{pMPM(%|~Iy;rv9$JhRR
zI{jO2Jx}EBvbRN#d<r#B{jYs@Z|`m)VPR1jnKjk#_fDViRH>-A`26qt_Zk`)B-<7$
zyZ41uty#Z*y<GjD!o44lNqc#F2iMf>+4t*}cInGYM;HD)b@uGkvuUfpSc&g)%RM5c
zGh<QB-?Q)T?lw(5C6bz+{`$$u$-AD<t2QZk;PCbJb^m_5Un|bdvt7MohlTG<BiBni
z|4aX?J+bTEuGe#F)K{#!zkafIy{z;1cXyw@e7W+{rJ%dD-|vDV<?8P8e9z}j(^U5U
z`}NwY^3#%M=jN_{y?+0_%+Kyu@7DkSn{{i;%4PoZ*NN#yY1r7rbar-D{d&2)^!?uN
zuO|E3Z8VqNQFAV$IW!_dBR~H=*W=PxS2pIaKl9*VvuVYLgx~Am?|yIh_2p&vySqv+
zbL;O}V1BRS@I#rYvCo~ZujtL#P;isy@PysFcbC1rwNx*57bxO({d_k2>elRV-N;QY
z%5FUuwAb%ZdU<E_x604YULI&<u6i~z{mV)9`5r>=y;h~3I(+rwVt3WQ@xq#(f`Wpx
zOtYu$Du2Ij_xpXj4?R8v$_qDd-u(3SYw4*wfwjESW>*fia(}&*z5eBcgUy?6=Ir|W
z?e^3eGge$%8+|z?meKTY7n{7iyr`&XsDyp-v!2@O(vp{#T<2Psm;Ly@|BuYn*yX#f
zZ?Iw#)ANpuoS9=bn~RG}L|%S<+Syr}nwp;P_y6BFO*eYk+UV_|@{p606I36l&i#FI
z%JumA*!y+A*9r*>$A0>&zV2E7d-csXbAJ7NK3`N&aG|?grAyG!319zwKL2{#?Yzr(
z%kQt<ntlCNf9=bq)4#mkeqYPLV8gRKhUrWGe7Ci<j7&b>cU61+9;XwlSiQWxOP`&Q
zY+wKA(Iaj-VF7^!ckbNbdi*r`>@3sO-)y3`WGqZR-e(ze*r3O2eX-{C4Mt32t8{gB
zeJ?Nbo&2T#y`2${v;ChB&3QYYiv3>P^ypF2-HOM(prrBi?c24i++r^-EOef<B=K-t
z=FLs1v+V2l9rmAmU{+UG*O$-d?X%C%vpseC^yHGfyRP5g-Tiu0JU-*fioi)S&SBH_
zV!u3@?EmV`&CRbaFYo^wDl_TI63@xA_H%~JKAX0A{n|Ok>3vDb$x~;{@HnySklyyS
zpT2yV(%;{I`1((|(|_Y4B4(7mzqj_!pPKfMz0&5V(l%@A=&ZT*ePjLqy4d2grr+YX
z=iiT$lau@PZufhcZ`zugfnj0SRAUcc;#tsjZk}!SpKrJG-KOis^7#AvKmPfA{`UOa
zo74L*ZpjROe9>Lrl;^NPS9dq>VS}Damx2x(@FXAY5^X!1W_+*m`P^CaE%Z(=pI?`C
zr~H0x+y4FgAHI8+_v7bJNoF=415nYlc*&9@62@sg7Z*4(CqFqc@msRre7jtUV>|8H
z7cN}rHrp(>=UA__^v|C^kKNpyKDShRhl{GJ>bH71>#{Y8n{W1fe0*Hm($camanA4j
z!{+yEl3Uu_rG00cnVRL^da`EawXEoEIfg2dc6N4dcXyTg{{8gvqoImq^tK$!_gl?#
zZ>8MGF;g})yl58|5|R>A|M#n#i%Uzbj=A~u8#{}a|K0z#Em7kC@B9C?=IGnn-raCB
z$1Nsi&f$vvb$@#f9B@#!x4&<<t>B^4;j?GY{&>`_ulKV$-IYZr<aVE|b&p-`F9}{L
z6N7oR-y(niXy&)eFv+}h<j4E^|Jf49b{2&GoBp!?-)H&5moHzgc-SgF$0$8!)|D$E
zhp%71{^H`|cEj9TCdt><M7o89OnLb5Vd9M(v&T=T$D8%Z*=E^%y%G!xO~b4!8tsp#
z>qe)Qyt#4l$DhyVd!5_)EMMvc#I6ooYjo+-C7EOA=2#~Gf8O1?ChhDj$=BD`uD)ow
zyXjNI)7P)FudEI~e?>n&{ysOG&S8TdMdvn&xVX4uM>>Ujmn>0HR#H0j;nSz0AA5Vc
zx{PwnX8-+u*MR5ouh;9%+ju0C_Wb#D`q-bJpL-`NyGzZRH_xr0V8h4H=k2Xyl3!n2
z+t%OTe{rER`{T3b_f3}h&CUAp<A=oGUtf*?OTS8C(Fp<N`$UQ7Ou^^p+4i#WN=clz
z`P`Ez(Y7(|tkh!1W;VBsj1`5So_MxDw)^=+cyZujw_}r3y|Zf0?J$Y2{W|sHhD7Jb
zE0@nR`u67L;|*`S_4gSlDJk*HKAU!Cj^$+y4Gn{1J(9^F|4Eo+OelPCfHC>$sj0{I
ze!rLf<^BEp_c9Lt+V}IB^x?G4l4i5dR{VI_-s{>eHn)8LjT<*Ux2^g5`nq)eugmj$
zKn1vlj?S8sE3a3b<BM>0bp?kGC@4Wm>iN03z54tATuPjOT(0^|L3w#ON5tjj{^nLC
zFA_|0Zd~~A?VDLsb93+hzi;zJ4~6c`-}m#_i(6Y)KYaZ<JEr>W)?+galVzlI!yOMe
zZT+)x>Z_ZZmp^>}K7Y@TN8N3S6314r-<MTUSt<GU)>h+7moN9${{AMZ9lp-w-LBVq
zi&IZe+aj^m;phAJ!Tz?XcPbwD9_y2}esjC-f5d~`@Any3eSen=O5LWWS2Z*>4b#rf
zN(H6A4L5Vzrca-KafzpJ^6zhNP3!n~l+3UFHuK`9RPW>;A0E1a{B+=e!{ckw`KF)*
z^e@P?r?}qjocJcQ+*>JszFhYAn^F5VOm4%UKYx0DeSJOq*VE_E%P%&t7T@G~%x^Ep
z^5@*6qupP>-Ohh~uloJfx#jm(etUb{I_Lhz<n~989&M@ooOX7Gq4VS8{ozGLn}mdf
zwp4%5ySg&iec!%)pT2&*x_o}!stXqa)bDbxTD)OH!1jApt8Z=1UM{K~W|3oD_x<1M
zudlCXKRD3%>D#w!ZM@P~7C18h{qy;J)W)RNS65drkK0?dvh?+}b30gLlnxtQ*_`fg
zns+DS{l4GpuC0w;esgnr_UUQ5yT0AZHcdRl^7X~V!~YiUOFq_f@%8%s>o|qgGQPaH
zC~EgcJal{M>#)){Hv;SG>O}2q{uWK0I(6lO1rE{Ma(2FW&U#4Z-Fds;Z#JKs$FfG#
z+B&-Ye(m;e@9(eooo$wRZ%^f|J(ZjJWUZEn=|-J6eE9IcO9$WH-k$yP($b>x^6U5i
zeKY5kw~Jw9WPEjF<6<^GnHAIHsyuUVZ!7(#yRge|zTH~$`!&J6(&pDLEOZVH3sW=S
zUTk0T=Xd$5Eg2V`_U+pjwJm36)%SO6%ii8vnRvLZtD_^}c%SUm4T;X_cbW7K-rSu2
z^x3mzWp8g~-rACxb#YNE$c_^yJhtZC47#+ld}i+LZNAmt--Vu^XM1&hyuIh8ZvA~L
zc9p(f6}>(0o4xjmd3Wx_sH&=-ynQ=5FE4M|KK9cFJfh;_*;iHs)<n7SKD^HqqGezZ
zAgtySu(#@~h=|CN%*)GOet39zmR;?xLx&Ds*<GHm8@0tlPEM}s_1f(vzu#`pes^bQ
z)wi4Jq5JD<ZNFX#o@JQamXwrqWsxg)`hC7t2k+mHZ)|J?wX)C6v(@J3@8^<#kToYd
zX~DYK-CkDTEt8)<UNQGnbKvT*wIJhOKkm1`)+wy6;_2MZca@pnM#0?N{O_mJ`d&Uh
zA-A{Xem$kVKI6@eja46yihsS}%zyH5Gd~BT3X_=L0>@^ySvHlM{{6bXKkN6mx1T<K
zytx10SN+uVbZslED6`qVpte%4`MnjA#%U`&C#z-M*|G6n&1YZVc{Vre<o+F68+)pL
zKPdF??k>+h)+0IT+~23ak55S5d{ab7=uyF(oAMtUXO*8dy$(uBUf$l9kM&Bcdae#%
zf9=7+=F;zX%d;OIYK_`kwY90K$)xa+OKW?3_MIJtyIwAvJ;$c_df?^!qV}H=&8^*_
zM&!Keca~@8T8BSA*1Ng>O|MGr$D`t>PMr!WD%$kv^XIqnZ*FeM3{Fi?2Xz9^%`(%w
z4C>x*%?_VyRq6$5VLs|qS2_7_$A&-lw^puPDP^4211e7M79N*9H^;~)BqU@>BQyIc
z10Gj*_v|MpChmH>?e>%zGhS>E`#iV&-o@PQcaJ^ynzf*YH*9a!SD$<)Z*T9?S64Kz
zC0te56%!Nk_t#g`<YPQHbIi`pG<I)Ge6jQSyx_aLO0O>Wmj|^~mEHTUG%~Y)Imj-r
zp{?z`e$OYahpVP>b8&(Dt-Igviw5<kRt7H@k(PeF;YZo;Z*Qx9zukUynXmNSg2TLi
zb9B!<d;4~+UF|OoJG(egPwx8q`JjS~Km4iu2T*t4x^h{A>BWSFr~KyGtb9JdJ`UvR
zUoV$`eY5%esq^R0KU{ulNip}5p9=BUKR%rvpY`FvK~S*1+yB3gSJKEO_tut+udc5C
z3hK-q@00!Y>-Bo=KP{SB>+k=!zPr0TACytDudln>Yku#=lbJiWePUZ(_xD%$5|AM(
zykWeH4mwS}x;{Ss@^b&_DynK~UXwr(Ry{-OKc~u}so5{@?%r;ecV`8tTsb?-)XUp@
za!FoqTsxoamb|-GTeGj9JGr@K=BfHuXVNxjURdCGYgg%Nv)o%Q2bfkhHne8_Og;fB
zFTT9I{Pg+r<Nay7H`xDu>0kAHZh6V8E1Dp;rKYB4-QTxY$~;e}zP>))pFiB8via-u
z{eN6Hr=7jTE?={tUA`_NE-ub*-ptp#g}5(AzKHwG5wT+1rwLEry<0auzAiE@E^d}(
z@v_a!Tea83?X6lBzJA^;)9hz&RxV&;Wn;^_wkERb&&T6mFS^TTzPPaP+&rNGZGjC1
zp0BR2Uw?A4`svfBy$`qX7Jn;Yh;iIo^);xSPxgmOn-pj$h$CW0%D;dAK)Jrsgk#5!
z0|y*xKc6-K^zB>Ow~&UY=7!eOPCJ;^@wKd;<@z|}x8Mc_h7AI8g1gvWu`@6*Oa_fN
zB`BIitZRgfAelrkFhp?hPRm{Z9dZie{qb~q{Fbb%TCD8sr;i^$e)BRTL(HN>hn!?B
z3LI*Ge+!+g=DY5MX~u>aX2#WQYofM#fjW1amoqXLoV>Ku`|Aniev4|U4F*hMyc~Rd
z(^O0|FFjfHd%>0X`oE#Q(&lB~OtS7+zu)utji$xXDVo7w9(C(mRZIC9rk|5Z_g{D{
z_tq9qP><%DN!FE4Vf8OxugBm1zq@Yf1&gb7ENi3!{zY6kefssPYUxe8cmED8KR-!C
zOzhbkO$*n*zrL=&RlPr`zkAIYkcvI|o;u$TxIzNpTEb2?(Acb)(}5!1J<Avw7!IVE
zMC@4f=g*%xwyak`#g}C@*9ynA(c8<uiNpwj1LTls==QwWbbm(Ej)v0G%*)GqH!o+1
z5W_YqcNFA2P*^gkfyV9*I7Ku+l>!e9axk7Y{m>x*u@E(^89{@7nxKKYT{9j%N;-P{
zxVC{oz`lL^xcK?Q-Q3)^K9?63RyH>`zgvF4R&?9f7Z;uL^72IY{rdhs{_X1s*?ta2
zhK5Cp7Hvs7%60VUQB4&U7fnsgSNHetH!?OB6%-6yT3qw}Zh6$6ij6fjHRpEUP20TE
zwOeeKZS^*u!yEd|v#*_*QoTV494^6^vzM9W-&>P<dYY!8VPIil;iM&?x-I{HoUppz
z6;L%+GVjI>P+Ki_!_QCOzhB>wc-Uv=_NgB`1Q;4t-}&_P^wWnA7tWX=@q5Ph?b{bE
zUc5E&Fq^Dh&5uRTJ$!vb%gVOJRXl9%eit1UwydeC>GZ74S0Pc8zUCmP?7h7$7Zlp<
zAN}T9-P|7UQCGK5&3D$4mBGtbWnNw;ey9BVyStx0e+~v!jRFD-(&tsWEnT`a^vAg?
zdNxWd3=g!X&z`-yp`n56F(V_R5s$NbpUln&AJ5x<pHov?Yg+c^2KPI0A)!U{Y^z^A
zo1Gu#=-4<-KYm^0=CsW7^K7fW-!0dFEw`qvft8`5)#9;jL~Cp7r*GfZ8N@C3ll}ee
z)SG*Iqu1~IwQ8Dfw3@&FdG5IMgH5b_`|F-ebT`SmqM;kJBcQOb@Y}I7qTsmZE<C2}
zgxXb4O-fD%jT?XlEvA?3_qYGMh3D{&CE-pH;9*|9Cr?gJ1{I=*Z`|CRu3zEf;BcT)
zp846cXI`uRm~w$Cx>cd8zg%>e*Hl+`pOhle=H=}j8WFK#&Kw!jtScU0UtL}O<(6*L
zmI*4d)@5&+ir3_Vli!J_c1mBqf1kd8|Ng@_W*VoLJUGzk)z8Vz9h{c7?9=DZvSPdP
z@9YRPo9&yJnE2fG-GznDn{MVvSrjC+R$J8k*bucnZ|%<F=UHcF7*36=zQ3<_(vs|T
zJD(+O4_hs;fq`MiDPAcPkM(;#bxoQy$t3TNh3E5oZ{|&!wCKZ!0#-IQuSuUiefn}c
ze?KT~zI*p>*Xwn=L4F9ei1+d7X=-jZ&Anx^HUECxBv9E~SzUel^y$-y_air_olM)j
zGXMU*@E>~FVxWA|z4E1aZ`rFWp3Ut1*Pfi5T>9lj;P2UYii?V-%$bvOKmXDaPcL8J
ztBuU;poY`4v$I!Metsr;PFz}gb@uwbVc+jnudmH{eQm9jS<Z|$Ug>2MCJ2a%iDez_
z5(SMQy7fwhW_pK3gHmL}G@ZyrFE1|#H7u>_{_JpacAh$K-a5V5T{pgOyqQx}y!*%b
z<8$8|rk|dsdv$HJ`O>9JHTCuV^YZd`eLN;@TK})6SHkenm*0hE;EeUC=emi<r0LVA
z3keBLnJ^*XrQOMsC;58AQop^wAD^gWVG;3u@ArGI{iUMtVu^tvqGPj^&WvtwY82QI
z!wkylu<`#32|L-Obl_#Vp^4vCc~Ftma1u02ut5M+)FH`ZE9(^!7#R{2S#+)+08LTg
zs1$g5gWtM0gJ-os#_6<}VpbY(gC0!k=MdMA(=j(U|M}~embv-%L*L|Vt29hZu5cPN
zGcbfRPv?nv+SS!%QvK}>*JG7RhKA6o<`HT23)6O%9N^;SzTCvhJ!Sgz=WkXrFf^?0
zIL)Rr`|L8!;AJbeZ27WB_uBiZQ>VWC`Fwu3heyY&D=Qa=t&Pfjb!DZNo?h7veG7|-
z?{~}RgSwuj@9sp}+1X`XUe-HJC$dO2pOv9t>cYLN{>GRkcm}NwTWeDD<3snhh>I65
zg4)Xe{yewOzPG0mG`|s7^-`5r+U!iC{p_>LY^%Rze0XpWG&1z;%*@4Zy;3hf9+$t~
zZ~w1iX+Apx!xbSt*$paSCunL0IyoJx+@61bUo5CKXj!!6UiEuh+n-M+d-?fY`|<Jd
z)M?X}nPy+Jc(cFyd!BCmzL@j&|M$4{%dI_c_uFUQym?-Je(O4KGcxS30L9&O{)n|v
zTZ2+kmQ0#7spQLxi(I$E*TrbgKD%tk4vY4W%jefcwIyoU+TKmv6T7>ttD|GX|6QJw
z)pk8>lipJQ|DSd-GXukdYlS}>R6Q>*^9}a&JXv`?N!F$!ATKYEi<7fZV*j^W*;f}h
zGCzIt#G;3tl{M7D{csy^>7O5k#p=8aJG3q)>}*^8$aV4BsI8Y4_uH*nvP9+R@#FK$
z=db$ru(-V3{{4<b331zR*W>Hg7VMcnfBvg$YonKDGc#nJ+gJNr%VzG6$NcuOoO?2^
zn8t`QdRtvj(v97<<xtd`X}Zy%(Y9Ng)BE#wJY@U*<GlU<HNxtCD^gESTXuF~;p1bU
zzI`)$Tf@+xz1(-U87K}9-_YOxXHmcXzZ;&$PPs*)HcC^LTw5Fc`l7r1)jvN!%hoO0
zQ2+m*5s&ldXJ?CV*c%#x3bOBaiv4~4MHvc29}6zbF1X3|x~BilGQYX2RK2HVTwfOp
zYTK!3nwW$H1_pY0d0qPW`1sYm)#adu$I6u}s~$A6U)fvzebziH28I<+W6Tof>aX3N
zdD(5^#EGDq^zgUs_o}>eZ*2+m^6I*D=~Btv((9mf02=t!nzMP+f9?nW`4|||9=@M)
z>%1y+SV+i}MT-`l+nsxHk!#eJjERS5%$_}aneXgnnU|Nve%Ld0Z`Z^7|Nnho>MO#)
zuw%*UG*DLF+PL{zf+&_bu2r`GXUve;xpU{seZSvXzyJ32_4U=+*VlpSMF)q5q~zq#
zfPer{(*RUtYG`SBeSUT}I3;CCT<zD;%8H5=_5c4x?XRnydj8|x^81+|A07Sl@uTJY
zZ)?`*e0_D*8#L2#XJ@gfu<+s~OH_CzjgG9jy@6+XjSB~ZL+;a_?+Lm0_C%hZrW>4;
zwCL|-UnOPbtNUuJedkyNf(F1Yl_n)8gT|&aKZ7O#K$TMVwKWsx&!4}fc)hojWziBN
zBcm&;!`ElsnYtC!3@w-%y{~4cjg5_nuyC^c=WpM_N=mkv<=j|sxSc=#i_FTED^Hy}
zca2+rPr<#nxMy{4{W?AuwicjXS<LAG6T<<gIUCuuwY9x-Z*N=s;iS@BtI|#R`zQSQ
zQ{y|!#4~ugU+Cp!zUOzJ|9-!I{iRDmrEhLrOuTdXa&Tf|;;n7Dw~y{K-O2?DK<+}f
z1E<cO4RvsEX#EJE7>W7t<N3U5zkU1mNm-Y@VO^iN`KH$1b4S+&-rm5*&CswqCNc40
zrTwY3esit9y`6e<Z}oOi=!53l=FOWYzNc-8*ZSgx*;m|HbQl<PmMx1ndG+}5;zf%V
zaXn5yH)mu1dY_z}HM`2*uKN9c|NlkTCxpB#)hp?})d8vtxKExwefi>IciCfJ-ro8Z
zKB@gLii(R>J<rZEwSHfS)<(FrvwxMgu5M@|ctY;Via_P7tHaO#+p+P_occX}sn=Jm
zg*FiOEmKrbSa8T{`DAtftk2KRPL&fD6I*uXjL*~O&#iSz?(ZmEoMSfo(4j-;s_!gx
zZco{K)1=_R0j}=_KRzUG&AS^_{QTV28HUMM_SIHbR#d#${eIu&1&+;ceovb+1=K%v
zZs*%O<@Qz`v7O8e1yiL>GA4L=drzG*B}HCaPcO{NtLxC=!=e%r8ZTq4w`E_~n>ux>
z=OoZj9B78v%iFv7N7kh!oq4<8nk`+r^yR(k_fu6seZ##~UoTx+>MeWk&b(Q(Ry8#-
zO|QPG0m?gKk9sf~3au?I8mg+UmX?-Yetz5Dn`d59S-Nc5s{@V9TwGj1pP!w*x~K9p
z*Yob)-m6=$$7S<}KaHz+$XfdHk}GIl=)^?j(iayLL7j0>_vih+y=Qkuc7yv%QJYda
zkM+r}Ug|wv%gih+H8s`C-#>i1UhJFSH*(B&?u@mu3K0{^-}^NzH6`W5_3NM!hs%dr
zxj|Ws-|okOE7cpBz?JI}N#1EHm6es6ii(b$oSakNO`bF7&4rB6wEzG9PR;A?=(uoe
zYqow>->p7SI%u`fPB<6?YWBhw2{=Cv`3=fb3^RH_{W|VMa0dqWA_BBV1h|m^GWn=L
zN0z;uAQJ=3pofAB;ax*)s}X2w5XdW_ei{Qq1h_Q<&f66(FQh75I6$jyz(Lo-cG~m;
z(khCD2a9+?Ju!!)M~{Lgq!SVr)YR6B%E_(k>FMc~+g|oIidVwG!O_w2)5nj24h{{!
zzP?`m_4W1e8{6Ic<%)`nSAV#=zy7~=p|_tac)^9m>VsWfU6;B<wME3mmrs}=uyn~1
zP)T~~%$X1u7nh~S-`?9B{qEg6Dch<o>vq4hlC`gk@t&?1x;^jimZGO#UteB6o+zgq
zwdKN_o10T5+G_ViZcdwC-Yn*FfQjLO7XHcj@Ru7eUcA`V*H<PXZCkYk)Eck+{LGR?
z#}nEGJF}m&`=OvB1A|!by`-66OASv?*Pq_r-ky|{^d|Y<y?b4KeW3B&k{=%)W}Ur%
z{J8t|nBrc)ITnTY-lnFeYH4V!xMrCx4Q{C>mF-yNbplIY?99sG<zHT}-=B4TUF<BQ
z)UHjNH(y;HzMkth$m4Z&b)eA=CMKpYXN=FU*s^7d)cu9G8r@q=UrhG53vB0;ony;;
zrJ-G}>cq`p2VQCWx;>khH%M(Le(qQM=i~8n^V(h(6&H&N2m~bBC@46zCB8T@QCZyf
z_yk2~&>(~-sOjw1E44K9@-oXe!gzadXLm|=Lt3QgBA&#dO!@Ag(bB@wD{l`PCA#$J
zXm@B#%$iA)geog5Z+?&5kkEM8u;1oW2gsgQZgDL=y>s_w>|_GvgMz7_KYk1h3=C}j
zXq<lT#`buhjEoha;>q^gjpSdCy7jkYURJaH_v5j+?Yo!D=TA$N2(40e$#nv!oS3}k
zt@Z!w{(iaa&zG#Ksw!@yrl9a(Pd{UEaj|OXe^ah`^XBb(zwh^y2@@79TD0i%w&bT#
zTQU?qt;*g+Y+aXF3aTPvJYHX0dv#Z7cKb%q2+I7rUztmfx3sou8XE`y{P~lQ`>uK3
z9gW#%mu=XvA?y6(FE1|}@i;H{o4YIF0BC)U%F9{V>sEd<UDM;<0_s;7*L4+KSl|d+
zcn}mcsdmkd9TA$EnxFxPgoFhuppMM$vbRBzkuz)e|Nr~GUi4h~qa&QPKOVM&O3KM<
zzAAHnYaV{|=n>cNbF)mn&1U=7{{FUi$@}S{pwg#c>gy{jC$sU(tvNYa{q>8Bi@%xg
zeE#H#hNb1refO7mPM$Jr)+%OpJ`D{Gk4ab7$J?9c-;0@RT^@FMneWuelNV2!BJ%Xv
zvsZt=-`_63yYzJ!ue6!Z;Wl2-S{g2H?yX5jxpHr8a9r%xyKBj`GpE3{SC6sXoXV4v
zR6#@J)AV9jJwD#AZDJDg^5x4{mzH)P-gD=UjC`G|yZh_C-|t=CQ~9~%(GgD5oErh#
z@7L{C^O^DBgP^r;^tO=gd3UEwo3?Dv9ve{G>X>x?l|Mf}n<gFUklKBI7N|+V@afa1
zASb6LAt52HyXuyfHy2)<bgowC+>48g^{f6pc#yF7`@QPvw&!m(flAR<i`R$eCF+55
z6==ZekBA~@Ss<i;CZ%)T0l8a+qxgajBqe3c$+8C<bV%6=Z+{JW5D!a94IZHaB`BR1
z_m*{ypws}h!U;5#2dX+@JxKg6>|R*7>MzJEuny@4w$rAdv49N%Ow+O-fXX5~21O_(
z$lBFJ#Ml4bTKDf~I%w5c*1bJDPn|ji8YVb-|9<?tckj;4Q(|Cnm}>b|aABf^lzHBq
zsI6H`L5mO`AM3sR?(S|?&!0bka`Ew9%U-|t*%?hHhJeSXqIEX!3-~-oYQw*O-}k?k
z|No=?Sik&w{r!J}+7fSU|M~m(>qd6D3+?iCFOEnuF%*<)=;?*k)a+qmW(KXw`S772
zH6<nH%Z{zt*Ru{ZFmiEmP3rIOXJTRkrPH<X`~U6vy*_?_T<q?$sq^R0XJTR!k(OTF
z)Wozo|M<%}QX9l{A{IP6-2VEgczj4iL`3V`g$oyca|1O88*jc14UJy2Vui-p+2;Ne
zCr+&TdNmw0RQB)h?{KLpr$A*WwDP!D@tD_lhJmAdzZ|IY_;OS{-r~*dsZ*E6?X7xw
zW~T8h>+*F;Nl8<tOj)An+!k}~`<bpeyVzb|Sm@l<(Xpar_x$<u{pQ(3HXAcB9N0N$
z<B8hO&(4A-wLlAf#KqM;yLx&;K$DY&k6hM9Z(nyQdGX@KqO!7Y4a};(WPn<7px(lK
zyV^I8gO~XPE_UnPl6F?==g*&>lcKietemLquBEK(ytnG>t}D@7WR{yn_|7)Fy3n~@
z>+ZhP(_*ZwtXCiOFfi=+r4zp|MovzytFv=se`R$wX#PjqEa$?*!|kg}?d0X<L8~LI
z3Lmx9zPYk8_|%CL0Vyd<Y-2nxeRz2I>GS8yzu&L_|0(~7(;TS{aup94_x^k~`_}&Y
z{k3asQtLk+75DP=y!hZ?^ITI~28OIT#&Uvbsi`Y-Z*N-_y?x!`isgQD-`v)Jc4cMo
zudmnRw`O1011&eYdGjV;?-iux{zD6YfB)9j)=bc-<6p6>Tz<7KKkgKte|i7^zwL((
z9V$64TYe&KGpIFodAa}fHeTtH*K4<DotmO~ZjKTIgPy**c{n2@qv$baCZ-gLwmuol
zqKm~ml1478!`4m$wc|3ctO%TCmOJaPX^vU+((5}fB%io-VkPgi{rmTWrY<^#)n9#h
zcz9Lt^1f?pA{Ps*`(+&Kk&N11wzj6WcCMu>14GsnW2rTV4mnj;SBFci4_@9^`}?Sh
zipq=A`undea_uhp{dW869XldaRaN=GeS}p-y|<3M)R+4D@#DoUnU`gP^cWacSlZdy
zX=!P#GN^lYM)LQ!Zcbj_t^YqO_uDMuleK#B@woi<^=q~4-BYixJY||CyqsMpTtG%<
z%{<%ctc#0W&&}gvIKUcn&R;MsJzd+{`gY<P8;ww;3JlckSba^##@4p<e(iTqSh>2o
ze){%pn|+>+{d4*C!FRJG=3ZvL)^GoB#giu~Z}0DqKi)52UU73p$vgg=;qkSpx4zc>
zc*wr@$D{63XU<#!b@h++O20m5{r<`n&EPBRVt0F6EuTGGI{y?aL&PCp^SeuC=j}R~
zsAF#ay-C#}B4UP-vGLUT^WSf{Q2Y2;@1~nM&uhb<9-U)X8`YNh;>yb4Pv5?U{r>hA
zl-b_z`|a1v#=Gf#cu>%yHEVQuWv#Z{y1v0^`MQIkHhkW`pJ{u)-O9eTyL>%pru49Z
z%)WE;Y_o5D4O<hj5ENLTgfXw;5hr*FUWcIal$kSEg2dzh|GKU^xBU9LST8RxquhB6
z4XdXcUrPXuiY{Hcl&^j|s2i`U>iY2ELoObkDJoB&KFz$oE>=rhd-MD6`~Ux4f9NM@
zVJ*M?p8!WkM^INsWo6ypU$3sNo<2=4_SJ`H->zH<5fu^Hap$z#+*=8@zu#=$_4Qgb
zXm0IhJ@dLLe}8|^{_)`<7boXM(146vuhh-$M~@v_m3@6(S5MECK3QuK8JU>1#nn|+
zvuvUn7_$79`^`0}_>kZ`&n6O7(0G6ss!o|adGV7cDZlF`tN8|HWv$|qu}G-*Pu*Yl
z_sX8iV$i6X?`*SBKfk`9pr9$UXGcH08>YYKL({I3my7c5?#g^}Vxm>aiwU5ivVFC`
zSCzlNXIgbWd{(gZ8fEvs7oF<!c079MH7Ty{XR4@}n3ksINyQk?pv7*zCiVYno<4v6
z`swueX)2%=Ro2y2p{<{7e!tmVR9yUL8!J2eYmn}u$?Oa<rgOdqT6#~@xp-q^^45}<
zK_G9gS>pq%>+k&gQJzpzvZYVnejR8r-un8#t0zsGbY)|*``XCOZp`d_B{#lbi_Q;q
zb87=l3FO_e01ew48XEq3(9D14=d;L;VCgj%E?m&s8-18(e%-H?P0h{Pe>3J;zuVz_
z@Zdo&fB)$rKix&=<j?sU&cLwQ;_>35CB^U8d3ksQI5{~j{jH*|Zfz2EX=ndYN!zND
zsn3N31s873z8+Tj|JJFMyw~Pf7Js=Goge$9Sw;W)$;s-aPfiHlEjq0$en;QLBm~sh
ziv1M4myyBYY++XO)Cm(5>g(%4Q_5M_*UfEeYI^eS-MbC_XVZ2+Ir{vm-&`wI&sE{;
z@3DT@zJHG0hnZo{(MVpgGf%HHY)wAScQeO~m6cV~-ag*`&j;t$+A}|#1LfwNY7R?X
zC3S>>fkE%cO2*d*8ktRt=KlKnT3bQE!Mg0tjt6ztWp4r!5*C04^fEX6{@cGS47Aqu
z&)>hY$3SD|iHF-_KUp#|gdbZKy86xhwc&d9_WRw|`92Q$ZTZ)AvFTI&`k&omdNC`$
zzP>)ceBtj~TeC|a9ANzIw6~2{`qhz6VbO29=LA@kzl$k-apB>les+c{b3n-@|NcI{
zWYCiIl$0ft(^_sF5n{{+P3-#nhx_^UsjN&rJq@&$^vd4q^2_TC6A!WI#_kGP?ACi}
zmT9(3+|`0NHw;0et)D)BzWn3kV^vSk{B!>Pzsvsrd2XL|f8X9E#rcPPy}gZd{TLYj
z2xf1HX%1!%D=gdy^3#?rCX#In*?6TqtiH3|IC8{=SH>a$w5~-{{}T@<=S9$>n-`1w
z!E;6>C0jrZk@<DMJiEnoFRkDIZ`JpE)#v}cTiq^K<?-?3$6f#b{WeWIBOxjx^5U%d
z{VTlYcNVOT-X8a@hJm5sb<wMADbPeVXkY`hNOkJ$*{hR}_r1KaG5OT#(;%mVnz(1@
zSYF=p8dQEnZ_Bv|TIb{1EtdJ^#YOO%kLPpCvrbRbl`=?ZsJ-vjE2XKc>swb>2U;sX
zN!8n=`diN5r~36P3+`!ute0kJSUq`joC#O4<<^6s`E3zV(bW3ts-4SxXKN`cf|?mu
zC#iaW`Sbbw?6R}7^LBZ9PuE*}X<zx>(&^js@5d$99P5$f+kbC={eI12W`+j$mURbL
z@`mN*t+OhB7xVJlxw+Qb`ugkH(peZ73VzO!+AzyJf8CigXS}wrkKF8bcDDKYot%se
z4^nKDN_hQvBLV{htN#D}{`JXZe^5tKOI!Q$&CThcD!NzBHcGzcL!(^v8^d%zK?a5e
zx903(%RV(l6V!v5G-=Y7go8}K)l25vR)@7Ef`&DNm-!Sv6JcanQE1|~b$&4OwB5UR
z2L%Oz`sY)%!(Tl(*gWanUiQ`X|Nn9E@|HgP0!s6ps&OV&r**f#m=>K^_|1fYp}?xH
z>w@W(iUX_iv{N_VJokGQ3j+hg>Qx^buC54Ntfl&L&mNn%x3+d);bqvd>O#WKHYxrH
z@haWs61@mj6_t#Ce|{E~mp^wlWn^$zo7`y{0UE3iJUh=e+SAh$v}_wRb`F}p^qp;X
zZk`kagJ~PvX;TZ^gsJ9X`}xB_WAm@Ct(|LY%D|8%!+6@%LN@_aIedF_GipOZqnDSL
zh@|Ao%*)GGhOQ1fH%o|tp+PgtCgJI`XSbR|Gc#AV@yoAU8N6I*4FkiE{~2?#_Dk_c
zfJUVQ11BCjbjT$2l*rbst6s<Z<*$Eyd|cahnR7dzsf9BGL&NFd$BeJf%ru^~B=`2V
z%o7t7#qV4<0IfEeI(6#RBUeD-at-3ylP6D_)_O89G)RR$X4KZwTD44{lfhxFWAjs~
zJ9BIq85kJCAAk9tz{t?>-x=3*H+b9zxx0g97709*hPK<Kp{u)FR9=4lfddYp2_+kw
z7)eP<aofDFudafIG<ePLDA?QEZ_T{yW@u=5>h$T=8}j?*Y@a-P7WNPn?ctB6&FKOS
zA8{9kHH(UhE)~@d)6moNQ&d#+^7IS@jjGL@xw509!>hl$zaJDtp!MLf^?$#D+M03I
zZ%vmjUk(~V_ML53I>WtNOc#{5B-;|@^RKPB`Sk7rR?t-827z>zHD_m=XW!hE3R)r+
z6EjCe)5s|3?d|Q?k8}!e&AYqHtADO_`MO<YZ(kW)+nyg^`u<+*`u+cQrJbAea>LpC
z_u~(@@$Noiz0wvmqIDoN5BCO#mmBMO!Y6?mrYiy$yZ!ojT>gBuPh{jwE-o&;`bT1J
zps}$ea4$$t4Knl{dUsc;>@n-oS1I@7WLa5RPn|y>K3UCIE9ds!>g|92{0UhfXA9cR
zGc$c&U}k3K)^qXFpvmio)iHT_>zJ6Bw0hWCSWX!5$XXUHiF!WUx_q6Nm)DmI&is}=
z?JX@U($CKWt%VN_2w3p+^z`g&Ya&52JNIh8-#xvHeYGNZiV<_^{i^l*|3w+6pSyBl
zp)+XKr9GEhOsC+-S5TugaIstF!$YlI-QAnb)7CYBx~MTvYiepjLPA0k|D2g={OxV%
z#^UFGwjT~KbMf-76<DVA`O9Vh(*`|SdxaL6Ej$Ps`q$fj@YlE7`Cs2|zi-tOyQYzg
zgTvx|@_{>dVmw2udk-yiZojhJUmi3D@bcx$PoF=pzEl$p8*`cZZM`mNSYgM6+j+Zv
zx8E(BefY+~X7;a_y!At?e6Tb)xwyG^KQQf=wO(dd`)kFPEg>^!&IGN3Ty1l|_V+i>
zN$Yk#o24Zm3=UTYZo}W|9IG#NfXeozOP6|id2Q;)(>g5w^(7Oubz<kvouExVQQPxs
z?`6-iD)l;g^r+~u^s}>6XP;fRul9G`sqLpXf%@Yc1k!bi-V;3l^X0=~{@1tj_lK60
zY}vGV^VGR>bMNoZySocix2R;|n<_88IBm@~Py{o8HbH<oNSBs+gXRxg+uF2jZDV71
zm27;Uy!qynXU~3o$o~E9?WUVKps6o0-KZxU)~24G_O0RSrd03J*VlYAGc!T!^JmYV
zoww(s+u8Z{@yc#JJ3g6590tWhM9)p$u+R#OVR6q({`P-EmVRbuX9o@J>|SGeO>GTy
z{Ss*C1GEvx0A*4f%a8`vAqxqq<+u7l<py-vnIn5c3^V%J$bnUkvesoK-$VkO*X{pT
z1zI4q#=T$e+&rc%hsem8o0m64L56`YB<y6nhBh<}9)f9e2>A_KI0IgV1X>i-&k>7Z
z4RWc8Wsrz!27w04p+iC7(I)Vy`jS6_3vb4Y2gk&$`SGKIm5uGx_3PmeA3i*F;>3;@
zps6O%WF2T4_vg=_D}861b#-<I#>L&M{2sr*Ztt$Lw_5i0_N*){8fIo;ppk)pc9F86
zU<?QenF8uk?bu-fos{|e`+Im=+A<|2B`sS$JG(egjRjiL`S<Jf?EnA%R=wSNeagIf
z>(;E%G0nYoWnX?+*tDvzua<(A;l8`G^Vj?O|EobGm7t#6rOTJIADLzIK<4g_DSaom
zXwH<Mk9XhO^`-X~J%yB&xEDU{xRm@~Vx7v%KI?Y@i`{y^Jnpx@b=+^R)zY3G9#=QF
zTZgBr@XFi8)Ya92nnk|5q_bgT*UeL>PF=b!_x7s1ySw-vgJ&<-_cb*!J$?RswdZ8D
zZyP}y7MCtv`s&8U#fSIJn>P=%egdSvly@~~H*&$$(-^asA+KwSpPvi$^z4+YdZE~!
zeIsX^7r2Kmn+;wen7-zqmX6Mp?c2*+KU$T(y0Ja{DyTm>(>Oir#f62h?(N-u*i<F7
zYVNC;#b%)T`hnJS)M?AExz^>c8rkInGBQ?(=|luPl$xZq*DrK^U^HlQCc$v}<pfYS
z3^ed}_{PzD#-TTrcYzA!pv`G#^{VbVxAU#^pKq6SW5dErmoLkTZJHi`*nsD^<^PJg
zt6~<Lfl8YM#p%C0Hn{i8fmUlAzHx7FHE3BE&c#gPd!B7fJ`O7Er%s!uWo#ULJ+3;p
zwf5Hbe0_d?{@U+%%cV>*Ce-d(vcx4aGE&N_Bt!K5hBEN@W%y3VX10}EwuE?kdVbsZ
z=uy(rB}+7HY+@Q48z(J+v<kgbQ&YeF1+6Nt`}<4N+&o-6d|k-vYirL}_x}3&dUg2v
zxTswvE1eflgUn9yN*X=kx;wWR92Sb_BA$Tu2J*_;L`+uqzjkr4``i4Y^CwRR78Px(
z-S0VBP1Dpgl$}o|ARu6Z%FBoC^4GTCuUq}%MMf%QBxYaz-Cd=iO^3hN$K#!-^xd1D
z4oVT^7Sw!<uc1BWM~@$y=H0Qlx;ot7(9jUH0DS$MvzCmItmf9N>KPXoht?CG^yRX@
zeQ36xprByX?y}sieJgt-kjk_ppbjf&hK(V?2wdc}9b5Sgw0IIWr+EleXoH$HP8<=$
z4Oq)t%#LMX5K8uRaSS2S(5p|LJzF-@IQ>@r+)0y^%+1YZZ7MEwZf0U&2y;5{tJ(Zs
z1!&DBXd~Y0E&r$fu;*nsaCP;c_oAEk2W;kusQ+-z`u&Q~)nTBm3E$q|fB)ts14Bbp
zN5fZZ`@df%Ut1r)-m>@^XuUgV1@>H9RfYqhpk9E$hPvl(x8Dz2?ABXy-u8ROg$0hF
z;=I6<BVzyObJp))9AuZD(%#+<>Y;*`BAuS5dv2Z>!vihn>d@bU8~*Lrjoy~={M_8C
z7Yo}}JY#p4g(f5@=!!8gtT1D`_W%30+xf3|y<QjGFK7EE8MKtY`u$$@!v=HA4H*uE
zwt`yV4XQ8S+}sQr9DcXwv)|kM`{RFqdwY3b?e8lqgVmotefo0s`h7*;L>L(ybPvtG
zqq;V3Z`976JFDLB{eS)5-s9J5?CWIeYx|<|_2!0XEc6i!@-=SSkQkPEMQP@aBU`cz
z->i2{_7bh{krduuKW%00)>X4_uJBIU?7L*0>y*6i3zC}7r^C{6!(Ux_{{8r)BR}U(
zn^|6MXIpDG>2v${=f!s7rIla5)_pJDcV%1d?LFHfr!75i|38M4le2D@6+?slj=Om~
z@8+%FxNOG72cGX58yi$X^Hy`MN-wF;uX*%&diwKob8l_Uo^JQ|OE4=t`|p=rj10cI
z8X6vsj`#liUb}kr<-NVty;X5cVF?)@8DHPqTMbgZ%xC5z^ZPZI)2l;5rfkc-y=-sw
z_pD1xJnMEiF)&=Xv*m|rMD@2ffvKrWkM+yPzyG$-xqVgg@xDJMiVO=pH=M9F*z%(R
zw80RxvFV^`*tFElJ39(NoBv9Ff6M*1fQg}DdDh3^mg;YBDqq>nHqXEI?CfmSzsCRn
z?YMF!Wa+YHW~a6?GDOK;OJHpiyAN(OTze#~!@w}7?bynnkbD82+h<SY4NCx36%Q0x
z)*Lthnpz6T&0Pzcfmj#2TT4gB2NdIt%<S`i?fdkp2sFmE*u6h&ciGz~MLR+Bz*XO6
zO|z!N=uJPbt*LqP%iAB|nwjs>dNyrS)6kzke}Xpq`uOw|6%|dHGG$3q6BDnr*_wmj
zr%suY@%7c!S9f=BfAr{4NJPYsBd=dvTRS^!UChg`7fWJyl~it%&SC>K+_n@f_nUj^
z+uPe))6PmQUAokB5~z1BExr27ml9dqsx1e<^GTU_h>D7Kb#z=fH`jW;#0Hg>pe^WD
zrK>K!E>~K{!N^b`P+t>r4m5x%BC;fMb6Vvw(0bA0XFj50Vy}LEea*Yi+{PwGP*CuE
zNq=c+>8f?>>Xv;sF$d+Ns2z_UC4sg|<lfryQA*yXVnh0F&HaBqbssu>`0BRYXjfO)
zOwhKW-FJ`my%+HjWMX(=;QKeYJ~cJ9tE=miWPexJq}<!P3Lm#k{Cwod5zv+sP^);=
z>eZmpHP8w^as4<@+U%KgSQFx3Q&UqeKE7{~{G6O0bIcPjFY}GtKhG?87HCKmw9GFv
zGjrZC9RUMZ4u*#2AIZF7plRg$``;Vay}xIB{@XF5{ChSxxBXo&$9ZuMsFHY~aQ^p<
zw*38n!+w8%|6OYJs#R5wsuwL<^lC1fj<)vXD?9oFL1C}*^4r_ny=8p$padb{09uQ(
zG5L5^?_B%(IMA|_=J%cb{o#&|jjL9z+9S4WzD1$av{X$yyL}heeZRESd(x6VS!=Uf
zmVX*GofsHoj>reM2&?-|x&1aQENoi(nr+*{EG;ditV&kwDtoK-a{lsd)2B>Xv2NYF
zneSI`+7z^P>sGtRp!Ei+kzPJNHP4c*z)P8R?|`;fXI@fCO-Xt2?Ck7$>O13i7P;QM
zd2`-h(CFZuJ26wIO<Ps{{oTBe?usw(>@41t8@+SqPOG9P9V(z{?MWri&Pe*swF(6-
z)$;M_$;!%_GJpR1Lx-Hs&NN;g7;Oah?E{5>zgEmy8@)a2<Rn$l0NPyZa?k)!?eA}y
zKR!H+J6^c6Mt%P@z1UZl?WvLT0@5O<sVBI)yJsKi5CrXrI(7Q=)1sZA>Al=LI|ASD
z`P|oeyF>&u)p~(jf6s!@)nS=eSB3Jvn>=^!+p8J2pFTW1yj*U-d%xVTPp9?gzm}RU
z3{uN?`3k>OYo$&RI|G9OB!7OqE~PUAQn5*Z+Pr*D&7u;ZRARxwsBHjB0SpNU2~f|C
zfd`bo4<u&HnPm^E3K<TAL<<D2C9p!4`a=0qYYsSoDnv()h(>UX!4!fdz*Q^6T<6DE
z{($D=86?0*hBR+r(>4GlDj5F)k>*NBEq?~-4H<x(CDURW(FoZ$0^%PF2@6}5dwbiz
zeLN<D+i$O3pzu%Huoq&L!Lm)8F5RErp!TF}_upF1hUAZH*%=tHheVk0ij^xTf@Vfm
z#_zAI+c#?&Xu)jh>uW!M8(nbuQMFx1_v7o@e}5`f)zz#2#pdgn_??w!T+KOU+BC08
zlO|98Tdi1URPex|KAvfoK>Yh@OPAK|_4f8Qt@%+<AKw<Zb?a8p6wjwmpGuyelRbL$
zXy(sPPrW=mDjxklb^7$yy1!MRZC%U#=ZA%cPUYg_GD$kpQT5%v?$3@(moJxodlLyd
zo&(fO11$iOle;Ie{i!+28np>CW~|t=#|E@1W8uPu|Mtl+9H<Wo4qkleQjn^e8YoX~
zCAB=g@nGN4qenrlsQ>@|Zq2)E6}!94cXjysYoL+l+TY*)F0U@uVhR)P=;^t#CG+y1
zT1f^5W~Q|}CoKtH?w9%d+uNwkX}y;&T~hJX)YR<i?G3G}+SMm#d+R|pJFnD|t}ZTD
z7Z*^g!Jj9hTTB<Usi@?|1x5d4QCZowH#et)W(53mPtOt-+sVxEK%rks=kj{>n;Vnc
zL0jswuj!nRC@9#Fc5cqfLx-GV_t)(`_`R*YU0X@%(aP_kk&!Dw3p-R*k7ipH{QB~e
zi=Y2`czo?w{krm5{GfcI8&g=g@z<A^i_LOxRrK=9+1%Ltw-U6&v}pHTyVu`93!8rY
zsF-V8{cY#@hbo{#T;_;8Z&+mH%teb9)f`*AXi>`TZFzTge7y4=w0HCLCMlc#&SDEr
zMs9`%v31Lqxg9)s(C)FKqT;-_YUdPJ9{g<bZL$6=DMs#$gWGa$DosDVbi)RNsZ*!^
z%#k<En)2w;qdx_y4yT{?vw@b2e1CucyX5}z_w&+!f37O&X*(yJVV`>5Uy$j--{0T2
z7CrUKy|Lk7_MCQErhgx8>c4;b{24UuXbM^aZTr!d*Y~3BuVbKdL;nA)lCy8mz5TV$
zI6N#Y?TL(^(*dRhKYmnz))s>{+TGc?dA~mUf#MkkiA|v8C#K&X_uJcj6y*5$@uQZ8
zMnGuj)ay>)h1LB|Y|=S;{J8!1(xb<YX=!M9Ecc&(?MSDv?PGp9n}EW?jmvyye!BC#
zKxi39qu9AkI-qT#dE2A4!`Ib3+E-dy3ToITB_)YKmP>&;KU=qMjr$EstdEcPU*DK~
z+$80MKx<pus_^x3w|14TK5zK`-rm(ai=TsvWiC$6!1wp|e*Jh{{`9uo#oswi#Q)7u
znqyJ8=uY1DO`A5^ByZii_0-9e7eQlqTeHJG|J!WcyJU$=X=&;Cn)tW3wgx*nHGTT@
zDI_-bt>pQ$XG2R%x2pNi`*Y@a38<wH+K&x7vIDfM_u-*d-fa=a>E}Z7^46*O&s+2T
zeto>U|GX>i^0iC2#q~hRb>3f{)0d8Ri<@R%QaL-vGT1on%!OxXXMg>6J3srv0>^ph
zpR8HA@?wXea!6R%vhw@2;h;sEA0Ho|I&tE{PoIj`#_rzc`A$CLC1_m|sBfjL>};NY
z?~BdJzo({ZpE`H$+nenL51pPqd$wxJmXN!<%fI*N$M1`omWo+3UEX}ZUA}I`!^7>M
zN(8izs_yq&^R=<N!#X=VrHs>jF5fK(-oUse!qU=m+v%s9y1TmGoSv?Kdu{agZO_lm
zeSOm|>xxG8fd<BHxwp#-3peIQPP0uvC$m2J%zXR%WjkZa9330eK|@I(&Hb|0&m@2U
z{eJ)Lgb4!G|Ni`(w=wnfw41rNw{6vr-SwpOOivHb?$X!SzHQCE-g8g?L5i!Z>o%3&
z4-Ph$xw^Jqyne8mJ=e1=Ffg$B`TqL<`{vG@mskGs(osHM-mUFCl1cwR9OjSveP)K?
z;k>J>rq(_^CAz-w^roEYr=Nb#y1HuW`N}?7>$Lr!PHC4#M9jFmGFbih-tYG|uU@t4
z%pWx?j^GvsmA{w4{bFrxZ%}aF{CC#;{)tUG=Z|ODKpHb|KU*gK{r&y>uRohkobdSi
z_ICJm{rGP^Z*OdLUcc|xs$1Lh*LQVsoqzrHdi?a;Z?8Q(+|GMnwV`d#heO;^TeGIF
zi{HO)|Nno{>V9)RL~frtcdqXC+i$PNd0sl)&L0{c{`@nj<ajP=mNTPI#&XfCS6Nf1
zPtQKw#>@EK@w`y>1_qn7kB^R4eR$xwH+$o{xV>7_PcNM@Lt_0$zqwYLN=i=Q>ta4i
z{r~@;!5h3!+q(Q+MP2R3N3Nj0kgRptm#SV#W4CFkFR!hQZhOa*VfSYv8~3w~Y}^g*
z=jYi@oik_6nl(DQ5gQiVtNr)Z{>s{@t*grK)a88qb-0}$GzAEja(!F->&wsZ=S&RC
z6%!agY^wN}1e)Txx+*m8@x_Z5tA2b~s28_q#lG6#Rmbx0?pkX9|4;D6ix<z=tOM=0
zU$x3>{oZf4isQ`%G^7?6E;^W1<s-=S;nO8=eN9WtNNMxDkjl!P={B00p4)P>|Ni<K
z_Zu|v2I+X5uUU6;vij-`8v^dv|KEFl+wSuB|CY<MvNJJWZayo|D|X?~RddtnGiR<`
z8@+wik|i!1H*TD?WXBGRrOTFSX={6zzq@l0wC?%S6VIp5o@E_s;gqs0dSW~ulny~d
zZJ?z}pz{Wp+4(|BOSjhjdZ`W?o!YV`MAoXL;$1aM!!ox6Oi??2?c4qK>gwr1K|xzm
zPm8U8`~Ua-|DYqUo<4b!@%`Q1S9f-9HZnE_&F0TfHv1C$`SIh03m00|{MY~*Bm_+r
zL~qXv-Cgz;G>lXG;UGI`I(Ol2mRbDEIGCGLuYZ55&A^Zm1lqW8pphB0N?Tdp_cN&V
z4?3jE)z!7?=hNxEa?)SH?JLKO4NT14cNiI<?JY1L)Iw`W1dV}OaPWpDfX23<4Y~G(
zg<1a~?Y7_+yzMPe0}s?<!(*;O0wco%1C~Y4`avyiSi5Z*2Qy^Y7pnu<7aru|0lAE!
z4b+-@pdhXnV{p$Rc1OX%7au>AfGbG_Bcq_i#6&MYzq~1r+gn>Tjf^%0_VLC~%e}pA
zzdjQKgGc!KxU2H@e=ceq@9XIa`Tp*%^wS$3Tn~WOhWEI>V_;xt15ITy@PNmOBtY{>
z3<i+X3?)FLI|mFv)ptW8$TkM>sQjn~iEs6Oud`Qa<yz=6FfcH9y85}Sb4q9e0ONc*
A9{>OV

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-10.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-10.png
new file mode 100644
index 0000000000000000000000000000000000000000..da7c336fc63e14a8444957f5be51610287fa9a95
GIT binary patch
literal 21554
zcmeAS@N?(olHy`uVBq!ia0y~yV2S`?4mJh`hJ9%>?l3SguoOFahH!9jaMW<5bTBY5
za29w(7BevLCxS5J3j5`m3=9eko-U3d6?5L)t*$xu_3{6Y&$oU)SZH!q!tKe0sFv3L
ziNPUDJWj2NTHU|TRXDA0;^k8lYEGq3J!|>2*>0=X#e9_|B6gjMlJaRwpBdzqRsH|>
z;qKSBS<;7Zugji({BPOryr*C7_TDSLQGEXU@2YsQ!v;Kz3=9WM^uEnwU|?w2teC*a
zz%Zkyft7(F!H7wWfuZ3fM+5@{gPQWF#Bd4{^J;$v28NiDFE0Y;T9v-q^=5b3+gn^*
zT)XssyLqzcFfhm*xVYH;>H^2+*W2pl<>lYr-rheU)NzLk2SWq%j<~a-8}0x7c)UxV
z`F}ebHv<EE^2P|CyYmwzmc8Sj?%oVeJyIZ3I*uk8?majuW22T7FE}-2Y+zt0P%w!&
z*9g*gAjKqtfx%+J>#GS1lP*G&SSwd>NJz*li|?!!)33+Z$L=nFzwNt8gV*XE2aSHW
zcDWvKYSqxunbO_eed+S$tpyLA_Wpb}`_}&Y{hvO6PTd&65$X3R{{OG(ZaoqUe|~<h
zZEimOe)t2eo60dypFY(zGYe~MZ2a``V_-zY46~dY1vlUBDtoIXE<Qade%`!!*S;1N
z6@BTi|Kq&3>TA&5U8SLGqfEEv-HqZF*VFmT{^3+l^@ae&nAq5_kNfRcc~94~s{OTv
zi;GJ{KwyFT{F<P`!a|VQfq@faVov;-defQTcF9cR^i|Q@^FDq06jWEY@6O%3Z*6rM
zo(f1xt~AZQrlF?h<~z$Iu&8L$uP-kbU%3)e`r^XEGjG*=W-NH|B4hT(&(F`lo|!%`
zaDCj~HOcM#^4C5*JbZO;b@|>OkGfZdt(|pkef;|L`L$v3^?$ccnlx$M?VUH9k3Mks
ziE%%=aOHvp4z<6(O-+=jdbjiWl|`=Hy%L5_yUX4Nt&iLL<yQ9klgE#{w<QLoh6lB_
zwicC^ZvAJatLt0*?94@wEt^ukt<UkSklFY9o%Pnt%Wm)9y<7HwLu5$El0ScH-rm_6
zyf%8f-o~2aeX?BK+`&#xO-V^fDxTtcF#)T?)`l$ilg+)k>1kKr_L`qXt}ZSaPftyi
zGRc^r@^btAy36|e|15fTcJ}Qx(xReEpFByCwW$a=c<^9&Wm{kSE{5w<ySuyl<ZM@c
zeSKZq-afwH{@;#wd%wq-W?k{n4qq4Y{@&iNC)MX?9O)4J^|;@DM@&TLU&|QJOZ)%-
z&ENa=T69-`|Mh==f4?=+W_Y@>>TA}{ojY%u1kRf`udA!;(ze{&C4YW=)V_89)6>(T
zOT9$DzP)|jDr|MwTA_ztlYV`FukU$ld;a~<bN37jI|Z)yCQ6(-cP?yu-rY6dqgvbB
zy(bkF7e9UddUfUJXD1DKYX5vZKFMWrXy@Op2c>MQw&=y|SkThKA}S`9_2@|FuCLdk
z-&#1&czR)>bJnFLoqLx*+_LVt@5|}8@2`v9ePv5#aOldQqiK6$cb8pz+Su6m)au&G
z;N@Eq53}*g*+ksCcW-*Ey|S|Nq>$ZZZ;RgU-?ZT1q0;1y5g}W%LXRFhrlqd#{_^F^
zUoRH-tDLN=@7un8dtCKf)4SF0_x}3x`TW->ll`M+>xAg7Ter@t;6X!BaPZn>VKtu%
zCnhR`gYVUql_rsX3VM2ezO&7)_Q_hmu@#-6p{(r8$jGRAjG2ikMWW4bjz!?R+P%Nu
z?bg!Kxsu#(TXwVb^XJc|`S)yC+1Xd;-rg2&lJ4$);81CBK!Ad0)vJ}uw<H{7`uXcu
z*0nW}zrI}dSM_}N?wy(9>g3~nzs}eHTWp+u?nd#g9bP+k?vyf4>v^~Dci!xBIo~-J
zfrf^LAPt<6ehb3a$AJ>n{<^;$k=HwI<t|T{JURJu-~ObyxVURipKeV$%5}HovhS;V
zdw-{1|2zNxPx-g^_s4UK=@jfTx3s)|^T0YTZf@1sKixCt&tD(B+%IxEuZ%@N{=T2f
zHf`EuQun7~ZT$YYOaEJS^!4@kem-Y?Ye!-7N_*FXA1f;>HPzJI?(QxR2W66<&*w)^
z|7)7Ebm`KYh0AtG9j%{#`0(MW6DBNZ<CT8(@ArH46id$h{QTG*1q+W<<mIg^t*rd>
z=kxhn`)YT~RX&+`nr&Hld~Im{{=eIn`OZ%JoadZ=&^E%r_2XZ2c0QR4I|?6fDSsa~
z*S0$B`@QP*zrMd;e{XMf_K69KT3T8`K0ZCidZpE0KJq_Y&lhQazh?8?^DIxlKL7os
zOa8ckoSa^HdAX>F$cuT^?=CK%U$;umw#s9d#3q%@gH5bf)!)`UJ2!WAbl%RRd7s^X
z+I~2|{OSAm>qk0;L-*I!zTSN{uI8ib-TME3e|<R2zxMm92e)Eh+eWamvR;#~=#G7N
z7L*8<#<A(_vtN~Wch^&^Z=ar?PTd&s<;CLuxT3vJo}~23T8Evt`@QDTqerK<zCYE*
z#(n*a0ng4|yR>w5ePyl7t}JwJFS(t&eP!@+zo=a$E9X_c(mXrQHhPjt$%}xqv(5e8
z`(!RI@tpkSVY|GS(0Q*_DP4y{)6$kL`Jb(%y3)CwZ<bl^tV4$nm!7x%K4nMDk0+D;
zv)<p^`|0Dyji>JvKFzweX65$#b<ykh|J&6kXRFnHbkXj2ySzC$Il1`wmYv+ix9(}s
zg5A4!@7c2_Cr(aIZn{leM#c(08H)vP-sH^w`1bbp(@7gOOiZ@Ke2&{$v{cGGujb@|
zzX#dnHLR?nnAvzPG_i7@+IrvXB*QvKN5{rQiMEMz=jMKSef>NKC#T`Qf4{O{f0D2N
zb8*MhY0*8mwq{F%5?5)>(Js-pqe+H`4j=A)^X3iLeDifafq{XY8_%5aQMRzSQSs%X
z``YBn%F1j1?{7-&zPPWp`ta4OS8wd8+<bQ1{(rw-f1R!4^ZEJx?=xmd98TIOvDmHG
z=+foOYftb0^-5b=N9W9k@87ro+}*Fez4*DG^Q4DQpQir!^=sCzPoF*+sYqIvztj18
z15_0xZj9(@X<>PNqm^5{2b2b0Tv*s#s-vuY_{RSF{a^3@v;Y0?_j}&%qe*+dT=Gtx
z_jsA_Y@Yo5{KeJZ-<kc7vruLdTX*Bu*6iMokB{H(nQL8s4(!j44i2!9JckW>=GXl?
z$-%>8616=qSH`yL%C0|qzuz<d_Wpjn;pAhcCr_R<G%_~sWoGA-kd%~cON{wrTmPt2
z9UN5t_J6mO-nIX~c;=KTDG@qihfkkA?cwRU@<Zk0TYrB_zvR~6<8WeEUl;SV?c28p
zF7*-(jt7;6JP~b)68!dmHavXzFtJC{_?U-}kBL>ui-d}b3W?}#IUCmrOG;)&=!m_3
z|9?KHf^6&V?k;?ApfTwC{CV^8Le|IK{qXgx>Ai}_yva8=rJAj`t^OACTl`|9z=nW4
zS6A0#GmX=G`ed!8-o1Nw?6m&=oY=At4;&BQzkgrCD5WD&;{SKwZ9n9nn`U2=5bHh~
zu`$W@sK3nhCyV>-jDCH4n+-C*ptRJqrna`X?(Z+j`E|cmPMkkKpGV&A&WgarZN4W!
zl@-t79Y3BcsHhytxU*wp;Oa14Wozr*SIl_&bnWf$|N7su=JoM=jIR&1avz&vnB23g
z^tIHzd-vRae|y_|-v0lcw7JLS>+cklmg)*_=<4d~srvd#GWYg2-Qxc%SFUX9?)IL!
zUNd-E%x&=t2L(119R2p@X7ZOeH!p*&7yWa=nO|~i_I0y=zwiH-YAZC15v@1=`><V}
zr@Xv8`PY}1WiyS}otvcU%_A=_zu0@a-mw-=;hxOP%OodGoY*#d_H0n93XiKidg9C(
zlX><3Di>FMeRa(EyiM}vzpFx5_n770k^p(S@XZZF>$$A!uKfD?y0`T8wVORppFNBE
z|G!9ab>7`wW^36`Ew@Pc`QwK~=;|=juTLL8F232oS}eGsz?F-eoA>Yzi5Z|uVX<4U
z)UhR=lX(vBsL0*x)+^=a;n7j}?M>wDw|0L%I3GTL{(Qu)lFZiglHuu(kM+8pon_kl
ze182si;52m&Tcwy_xlVe&4Zl0GI+Vv^Yin~+xX@4Le@rIl`u$XD1354@bTk*d$V`@
z|JN<{pKo`~jl1vt>h=4Kbi}$rn%w1UuS9Ig2weHPSHf`7l?hu*Uxz)u7M*XJxAUo(
zvby?mrR8xi1vkv$?$10RYN*#%v^D2u(C6ppuYY)W_$#Pwb^5e-VPWActI}0&y;4gz
zY%tjS>(y#dgJ9~kY0D}<KU<k~b=9j&OS|{_Gfq$Z^WK`}`r7E_v-9^wUc7kmTEDAi
zos4_Gob8k6&zJAmVc|Q^CX!d$EX2vF>CfN4pxPJI7JB#Y9jFaxmUk!OUHXdy|IW>`
zUA<s|LTh`wwyv)4Y_r@;uh;KicXG1&>ptsu0RaIMR5I`FsRUImPEJiKFMmFtA07}e
z;n1N&TPi*#{rvqqT0W>#JGsCARO3&bwu9=g7v*$|>tFly^mOU}zu#A9UtgDXb=B0f
zpKPnYf!eLsWp6G#IXT%h>xzb|s;Z`)T^u`~%!KLFr`OcfJbC<halhR!4@E`AGArSj
z&N*{r?iL=G&APa#_1c=q<jrS(T>iX%Ti)GO|Nj0yefe_m?QOZiy;7!MPV4W_I6KR9
zRn*p1yUO3Md+;EkdJfaNNr@7>e!trtx;jjEZOqP~=xsR{*F<jKQvBTS>dIjE#qRxK
z)AeGnY)EwWy!7GW;jIY=nR?}HqYk(6Zti=0s`mTc@~q3tdTVNHy=y9dZ3VSsetv$w
zwfMQ;*1Ws7uGB6rS*O4E%O&q`^H^jq-`iUas&HO>czF2Nuh;8AA^rBoM(5*wvcZ3U
zeSP}uSz7Ij2k-9g-kNjMXy>k7uXaA4clp9XXHfxx1!lRoR@DFhH_Nhk*(|f%toOlA
zmVZAUmyg;}urTZDs-=$2Y%4cxxbQ3Fnf-s2nEiFNKY#qlxVkFz)y2i_QCl(=&N9tj
z<=oB(a%$GKHJR&!4}@xHX-(?x?gq(n3ahQC`}^zF{r&rul$5S4aAfurpP%~e@Avz!
zFD!Hhh0fL8<@uhMdL)fQmU@YnzPoetrQN3`i&9cjGz<+vZQr88Lc_1gMLdTC;^OAb
zt9&MDr@Of6!*+&LE*_pMFD@<)-I^83%F3E~sD;z2?#~W2zd0)|TnPC3;-Yi6nC_(6
zvuEF{d@g&p^m^<p>+*GRRWDUTSBLqYxBtIK&41pS7cVldu8+TeZ+WwJz}~7-RyMX*
z2O62Rw6s7PySln^u4(RzxwA4@-SblYzt8foEwq+DO1QEjP#I+4ukZW+uf4q7-+K}p
zuhbHD`I-PdJw2<^S5t(9gg|X%P^&?I&xfY8Gcy*t%T>DM<=v@d@?g=4aq5*a6%iL-
z4(b5yE`JZIE$n_gV19ddcX(i6;HC&2P;>Okp2}iS_Su?!J#1~%)-44Ooo4sjJ&?|O
z8uaJ))y3}ovK9pnlhysFm3*B2KHhoS(WH&{=7;W){azJPXMVS2avQJoveMVrGJk)2
zJ86mjz8_A^?0i>jzu#F5YJJ4ld~9uMYBEVXBhlL0n)&3!#H^c}md;IoXQTD0d0t^{
z0l%2u>o+$y&oWBw0yW1bD!WJ7e{-8;_xp|U+gn?`Jv}{7ojZ5!<KyG1p8x*+yS2M~
zeb&`gsp~TzOUc?+h0L`oy|lCV`IHG0z}?G9Yo>E||GyZwDW$WGUw$3G{hxsP-?#6-
zu}q!u;!rC$C~@!{4hRXEGOzAe=GNTXVVs<tX5W+6MQn7+y}j*ev8r!C4S(3xRiVE5
zOx#>tCGYN7zB{<ep=9TdHCb0zWqx{ca#MuPEaUV(p2HWWXa<84($_aPgKew7UAgRU
zzgF43@5SHm_ph&u-EC6+E$2|Es<?>AlBwF^uRtx(7EWQ1fxQxjhn_vVeRp?x_RmjG
zv+nHJILkCU?fA_@IrHYtdv$a3@}%VCt%--(zP`H~eR-Mh=C;+3_<!uX)BcOeTuVx4
z%I%w*)4zT?t*@=9=%~N%$0ATd`}ynFtv#!Kc2zW+$Uk{)WB310F{m}4etzCnW`3Im
z?ecXIz0&5_#N%rg`rG|<ss8rn;<K}}z4sgznR<Qxf4}c9E;`?@|G#(NpHJSV`S<Re
zGcL|M${V&d>*_l1=F)F(BBj=Fxiq&Htqxl|OU-YNhUc~P`#v*`j!G@-y5H!sqe#!T
z>dS?1Z*QAceaXnZwZ-%GwY8H=KFaOAwl+HZ^fX;inKn0_(^z!>>oZ9kGY&K`{(86j
z{g<!T<ApagXgeG@B>FS^L{Vw!)gzt4PhY=29ld$(jkVkFtrFD^dvRxH@vncs--kv-
ztO#2hwK8mN)T+3>yY?<`f4yMG!Cmk7{Wi(HWwQ7Gzu#3~F1kN`_%QMLOiOz?lUFhv
z5j&EODxSW2HFW)+PhB=PHYTO7LaP0_uSZ^86$;A9SJy^gzZdMt3d-DDGB1BQBJ7{>
z_SRNV4}9-(mJlu$otUXvS66B3>G{dY$w}E%Y}mV;`GM7|dwX|BZO=QaZWtmUrSsh3
zz@gC9aeH@xVnL6W$xqL~ARxZ>>r@+C+qbr&3oa=nJe(!4u0fjl;i{yI7NK?Ep(Bpz
z9CMk!GJ^&Wu@3iu4TcU9t>G$obwv}@8RL~Uo3efT_PxuQ8FqMCT3T8aJ?W_W`fBN|
zt=aL@lP@G#vNMITM(nTK+r}fA^gfe;!Dmy>O(WZHH<G{2W0R3!T+L*Xb0c8VmDS<;
zKY#wbS#Bhn^ZD7?S9f-9-n%^TArmw6TU*xM5xdLQ{`&qt|9$3-qx$>*B)!)R*#XMZ
z<@am1?_D0au<rL;^QB9cMEsB4AD1yl%bqEWRb!vdi|5bP>+9>S&o4`=tf;tC@Lb39
z>+9>=zl*#%bo=)2HrwygAEg&9U%vd+m6gfwGjFhNuYOPj8aA~Mcz3Xf4-zJfr!7Cs
z01XCDzL@ZESJt&PGxsiU;JUJ_G`rfLQFKM+=V#yMH3cs^Sj1-%v11)ag!weH+*>!Q
zxmGx^=q$(q50fE>8)$Hir#JX1@?aascTgaSF);A8G(437jnzR1aru^jhR#YYD=RCz
zdV50?5*F0d)QE_QEdzyl^*w2`oPh0lcS9Dt@q&u<@_Uub@74eRYjoYd_*u`Nzki=T
zdbG$i``VP>7E@UnxfvKVjEsUlKRX-j;?nZ${Cs_LbMvn+FS|!?&)fTEo2RGetE;Q0
zgA!!%GapdF{qW&KtFku{GjIFMu?XC`bEjYR&q>wbQNV9I*t3uK$wqC>nkpnDBqA)V
z?Ag`P0UA646{op3H!VGrd-?L^uXl>iXCCPgoMoKuxAWQO!~FIc4-d7@vZ>sp<~u9o
zpYTc-P%7JTaBbY)sJy(quD-r)eU(*JT3T9Ox3}e9{`mO#={w)fn%@rz44k;kXQq;;
zRsFv|sr}|jM>uT1TyTDMWhJPI`AxXM0UT34uJ`M=W?$Dc&Ak;8x+-L&Wd8Mab4x2D
z&GPQ7h|b>|s;Q~DDt`aIRbgvaMQzQ>ytKq~Y1{Je_v_<tZ_mH3y?#$oYy8wxt==sR
z40j$F85xNP2m~bAC@46zCB8V)DV&;D{o#QlsNrx@eSSzz&Kf5tr!8q`rF>_b`L?#U
z&a$iBReJZ%ofuI2McKVC<nOPqr9VDAd|hPM*U-Sq(7?R$xNU@`rRAqDUvv!LJ$;%Q
z8#nFEn;glug+G2&^h%j}O}etbzW(pG+xb;*w_Z2NyJPY5*DtS0Y3JswY-(aUdh}@Q
z+m#_wF-j~957?f+eY=)hTyKiR`Lk!Y>g~U>ZPJ$$%KbNb_~mRsR)7j7RZmbS{msqI
zrpd>6e*X9|!?d*BwHf4&o!8hv^_o@ryE$hg0s}9qZs+9S(D-VU;O5q*vNG@PuGGBf
z?Rl}XRwW*#udZyA{Qmv>^hAkMr%p{$@ttMj`SsP+;OFP&PMtR|Z}b27`oEzsU%uqx
z;wqYT+)MzRIIc@=SQWm0-K(psZ-aXe&c2yW&dyV3%~}QOzDwWTo_}Aj`{<$z7cLlW
z&%L~?mrvGe$>Zbws}m2mfojwK(@7g&ESsG-Nk!JW%%`1CHmIOr!`W|Q-L8k*cqboC
z3JeRIwkmXWnd<V_8$dbb0B_!b21YFnjew-2MWs6W`u-<Ro&=3RB_u3RdHLkzWG`>;
z;Kam*rF$Kl*-jepfX0lj86Gy6GG&U2y}dnXcyy9U?XQxxvAe@wUt7C*-!k9XYMx!a
zy;pB-&0hOG%aR!~9&Vdg1WHeAd@?I`?662pOIzhRS<TDOFRZF+*Q804*1QIds(4S+
zxj0eTT|`7g#q-tm_49X?zFs!dIQ`Z2`1-4Fx8Gm4HT!zj>uYPhe0-+t-o0A|G*+V8
z7rnQtRI+X1w%psR^6&3co44_=;06YUhG}}St2%|%vu<umJ$33-kcUS{P*Bj7jmhq>
zt;D)r_4HKr>uNt7WS?b_*c7%lYU$B#@zs%=)1vm(RCY?=_kOJNJ?5_{DAThi_g{GU
z@F6If9X)=0`cA)~ph>=qL(d#P?q2-tjOKUury|_^{M&cldEv8zotuFHI<zlPeW#iA
z^F_$eK4{3F-KqJh45V;mnpXTkND*f>AtAN=R6j@y%qUP{3MvR0)D|CPVmQzUsuMt=
z$}kyZ{sV`M4Re^mPIWp^#0N^^3<i>*SqHurw$qjukeuNBIOHct3&V^akooL~Y*FVU
zzy<9AkQD+O<}?S#DaGum*ccNN1M1ZD^z;aw-d*x?(S!*C)@OJa818V)F-j2KUGT6e
z?d+`3q&X`53<V)ad8ggf57Al97qM{R!m8J6x0if+;#uv_%D`~PVUAfsq>fmxw7DNE
zE9=s25%pma5i6$0*G2lyGMPAi`gAGNtR){GAJ^8`KcBX@jaM2JoxfhKUVmj@ZFOaJ
z_3FaM$D($Xy!>h-%5Z?U?c1tP#kU$%J$t20FI`yZtbaSn)zuZ$lH2w9oHeNTQu^|e
zt8x0dD-RAf=U&?!p<`9?VF4)l&9kk}IycAi)925Zh5c<7*8ct$`~ET`1H;soV0Il(
zDf_xTpFV#Um6wly^$FCLJ2^?U>etKVU*GM1|LT4H|J{=&O)|;4qOmr5yWecH+)a`H
z4>U4I?XB7xSNAiOSK7>He$A)OJ9qC+oiZgva5*zWLD8M&r!sTw5<uNnK|w(;AD@u4
zw6xBr^7Vf<>WFnGB_-t?i?8|UD%rMh$`p~=AH{T|RyeowU5mfIE;jn?EYr&m54W#B
z&&j~h;C1{Z^E4IT83v9&fBsy0ue<cii@=>bcC7H6tY-GO^wpKXUMbTl^XBCl%ZZ4D
zB*~j*UkeEfo3?W@8^fIm85`yt=KZ+fqFb+2=7|Z4AXnt%<g9!><vaiU)vL2tK5k2l
zDZ71kw)yG9hYzQ%iQJq98pYn($IGz7;`g_=+J*IRTe-#8{VuG$u%dW}BGa^zjYp%l
z<wSN?Z<I30Sg>f3lB`X|1+^D{KAqMFO$|wzWF*{@u_}M3Q(s?y`5QaKj=EXq`RhP4
zA3dpQX;~*Hsg}(W)S4{)NNAx7D?2-A<oDNe`~R7r`wrRF{yJg6b9T1*`Lw?+Ei92b
zVxWP2QQJ_41H3)nE$0qqO0T)3ce7XCKF)i(UT9R*tf;M7s-9e&oPjARON4}lr%s)^
z^uvdO+P`0~M{P>!l&ksR*xKG6{^bfIgM;exExciwnR^Q#AM5Jq(3tq_e&usn-<d|P
z_v?PIO-f3dGHceVkB^UMKRq>7^;_gMf5ty03=9U{wzpRA*<%BmdN42uu(Pw{;^w~G
z#w)G2JND!A|Np)|ef4TpeBIBbM}GbM`E!<Ga@#EPe7*eq{JS-u&w^UBC6A7DYX7sc
zG+LgsK}lIzR8lhX)h5?&vCNB$T+Nd8^z=Z*kebhof|Gxzebs3D|NZ~J`&WHM7#P?E
zaZQ)aJ}x}<SklH9Pp8L+9d6^zJ(hiCMdIhzO-)RoM#=5%`QarcTb!Jnrc9l>bp8H+
zQR(OA1m4|Mde%;Ncj2i9RtAUE)c$h8cQ-aVuMS%q<mA-!b>{>@K|#<!$FUyC#k$ek
zV!layzf;^FwLP!)Wa+arGZ*Xc{}Tji1mD_{8T?OpMa!ITpi)d@{?*mtr_Y}C1r6UA
z`uqEX^5N}mxmI<5Dt3OGJa_KeMT-^%O_yu~%}TyL$Sxl;+blOEB4WjyIWob|-giLC
z#OgiW1=rX8+kT)IwiX~Z>(-W)t3p;L8Q)tMYyJ9@w;_*n?5>i)tyxz=<x$<=UoS5#
zbT)ha=f~rItHMVudAr}5+5Y`<`P0|0Q`fIwpSS;S+0tdp;(m&sI#}2#z|bHa<L1`J
z#Kh#)!_LBT!l1|dUc<Y`j~A=Yt8j|lT^71E>ndnmMO8&*1!%(N-R}1y5)vAopi*N=
z_jJzetE-l7zgOkmmY8v@NAlI(-P`y5d?x+c`p;ZOaM7F8U%jEIsOZVdmyt<#PM<!#
zYmW}7yL_OLdF}ppx3{ma`u1k!xw+QazrMVzdfaQS61%4+;?MoNyUU~VGv43Yx_XvL
z<|5Dt<4U<lUf>e=hH^q>b@lXLh7LP-?!5Lid{Of8zO4KE_MT0a>-v6iW3v0~a_(#E
z<Ksa+<!fuB*T0bH>jO2Ege@ySrF1^`7ZnkSDVp8T&=920oR*T}aVgZ+ZeiWuU!V!G
zuh)<MUJ<<9ue0>;-@p3R^TSh}L3SRD@op9s5D0iww`z0x`B$^^_h}Z-zHlL6>9S>7
z*4DS5xqXLE9(?I~UijlfB4{e=TKxU8+qp&M<@#S`JJtQ>Y>2!r`9aT#fg!JenT;pF
z(XmlTSQtF?5324XB4&Jb`#M?OA2eCg+S+>UtKVF!(4=}$aai{5&dPgxtD}#v3R$_x
zuJ%{P>uYPx&R*MB`+H02>#(nHZho$sGwUv>LVMuwrjS2uciCH$f(H&qj~>-DHop8z
z<@=W}C90~bk=LcI%hpWOiCm=Y-lw6V;W6pTLT7f+C>*G22;Ey%3Yx?9^z_WSu%PkL
zqenS?#>vNca_{U2jNM&!^~1x%sS<5*^?ysRu8ZA$WY<(#Q2b`RytH(dMd6}py3xzl
ztkG$0Y0*$sb(OU)+p;csW5kn3N!1@;Pjr_H^z!Pm`~RmHH2lTI!EwR(yv<_I$!b$~
zyt%%ovN-qNp2&?GH-g%_F)=Y$)<&D}{d7uush!#)BhWIF2M%v8CU{P2Z*PC}_%Wyg
zdS>P6>1ozGO~rSvRcP>XKi%&!PR`C->;C>KS|1--$d9zJ;9J&)1U=BY733}usEr_l
zwX+10L2f;OS_=&)LEQ<AH45-H!9jrzEqgsdCeS(=Nb5n>>A3^6I}7TTaqvznUT~0!
z0axn--T;zd3VeE8)ro-t=7b$CFJwTLGx)eQgWA{&!M#Dy@*CU@9wa9lnD|YV2gMTm
zAyud62art$HH|<jK|_B@$;qM;5*qUI@}Lo`!)?6bd*;7*kpZeg^Y8CdohI3~u$5c<
z6==lx>Z;Jv&u7h7`_H$#wJmqH<njjr;9_dRBev6Tu0M5gbIZE7r?RV~<HDbxpPxQ^
zwhWqDpU(Te{eIo*qut`CZ{Oa1<>_L#-b<U$+pWHxzdyG4`MIkr0vDG&IKbH2-v0V_
z{(jx>g<8y@5G`oFy)n5R)C_HDVL5u_h{q(*Q0J;p?OsV^x9Dv-n%C<<t2$1cI1w~^
z{h>onx-mNfK+{2!CQn}b7?jBh3N}pBk6&l~e$VA8p9@()jYSKAYLkf7;p?Z(o;`cf
z;>Bx|QC9(+K39Emk}7D}ZJGc4xL2S4{Hb~R<jINq_wT3u0d*g`ySr;@YEFH;y3z*Z
z^E(g9-rice%y;%Guc=yQkKf+fx>;}kls9j3K+X2Y$NTjK7j#utR<5l5{mskI?^>6r
zcFCI?hHr0fcJH_Uw*xe?C;V;><8%&2h5`f8zw7q*^zg8<uuPHQ=ir!-C}CCj=!oj}
z`9`T-H8nL~4sq+p6zzR_div{!?ef<qC_1l6290t}(~Z8eA@T6)S-Tf2B``8PaCq}^
zM%$b@GL=<T(<Hus`m{+;|8yfWyGi}Onzd0|z23chH{Hf>s#fTgO{w0cFD^LV-Bo(|
z<YaZz>}xt-Utjl+-j*|Q{``2$bIXbp5<(XQE_Pd4`uf_pd2Ct-UR+%K)|NG7L*Qb!
zo7G$^7(nA{lT^Lm*z#VktgZ%4QK=p)E-qes`m|Bf5suPVS3LP`J{(Z(4~&Rd@$T+!
z(0l=?6T0T{-Cd=@r>E(DeYJXh*0VD+!z<bP+CgPBGpG~!e1844^Y;I9jHgYXUVbtc
zR5R`6nK5yqq9<t8%*xxfACHPh?XTN=ZC&i@FJDSL#pjoX1_UgaGe>6W^5v(`pZ5=4
z9d`BE+1Xz~0|W2w>@@qGacM~>sFk&T->+47o<~T6JCsVjQl>$R-FkD5LC1Ke?DWmZ
zSP>K)Jaz8e+~UQ*zrDSkx-mjTN-FAA+3`MEP#^LCzrVT1bj7;+<n2K-5ohOGhaYa|
z4^K;5rX$wP#m(*gM%~^%o|Tm~yl56*f4LwNG&UHS*;XuA;LzFGd2QpKJvOT9>e@Ow
zK8=lyla@eA{IgP%c9p(f2I|M%-BoI~{?^uP&`OG^?Rj%S(@~y5mzVjbO0?ap{T@3z
zx&HgzaxZW1;$6`hpu%Ct!L8ZX{g~PLLSka(7#SO1UE(PWvcc9i*3;AT+Sg-!va40S
zr@c5aQJIU2D`;=k*O2vbdxd^W8z!}Y2B>($CxJ$tz~lPj`qyR}r(fBe?myR}(1}}2
zXTtjR>)m=J0u`S}1%lGMg+O)fjn9{sdYcwLa?y?6<`Wqi32I<^d39Npy~)@tFFyTr
z{2#5?GXMU*uh0JW=4RFRyX9N!{#I31RIDg|ehxJImACWhG;M25cJ~8J3=E$>d<dwi
z+4Jb}<I^$fnwlq<UDP`L@Nm1g?DsEUuKf7;*tG7?kJa<iQysw-ambfuw?w<VB6fIT
zdL-_9!oe8uKn(}uY0H960Yq05G+s$UISlFrg1X2B3NcD0c>9Z>5*rlsILhUN7f?n%
zLAe`;N~~R0UPS!`F2Rxb3ZPCCBpwKKmO<6i0|8#p(8t!Ir(S!%-OB#;zW%?qCup|o
z{r>;!4jpo`KF`O%@O=98>C122h+t)7J9YfHdtzeZtqqBXMc=DiSw-pT>AkwWJ%8ot
z?Rj@s`OURDdHs4gBO{}fVN%Pv`S$f|FPB@C@kX>IW`L$SuB@0SSN+DYSH?03H0`I7
znw}0Ce5v~T_4->&R|W>Hn8NPVYpZRPl$Al<P|ymne}8@!6&DB3x2xS!`ubYY`QNwm
z_g{T<wEOAXx3RB2#qKU!S^fRpsk3LV-q~3!Dl5D8$PpLYKOYW1wR1~NyxssRK3;9T
z9tWDt{_^wr{L=<JuQ$EAx*F7$zOw({SAFYq0t^h#w<jOx0~LIm)6QO66S?`zm0<tO
z$H#g>jhtgWlELr(_DC2yO`JIK)A#TCr9XERJ_gOO`p!0c`EvREYgbkVgJutFf4y8D
zes!9q(QdXipw_N)JKxnFNn=pqkW}g6(XsU+6T<_ygtF?;d1BdLUtI<Hs-$E~>6y!y
zg98HtL3L%HynWrxO8v-9F4f=PUH$U%vUhCVyE~S-H#Rs53JQMu`gLm`zpPcrzJ2?u
z-tYZ>>Zj-`nKx1!`edz_@yS|E*?H&s_3-rb^VS}aWMoK)|HcskTD5n1nJ;L)+U$>I
zZ*N6TkM}Ao+Xl+*A0Ho|elzaxbNl~+j*gADwqzz7zkBy?-GvJQwg3NqpZ@z&h*lYI
z#J_+4z~iu|%irBuxnRKpt~r7X4CeC))j*#l#JZQBc^vajVrp+J^R;GvyA`0;!H0*3
zuWfuZ<?qe(`I?rNk<9FTTdsd$U|3P`Ed#y%4_fE+=jUhB>Tfwackhn>Br)lf&AFw0
zfs!{(6F@yqMn*<1Uf!!07CM8<UwQfUesir>mcPHp#mRYbN8#f)pu{w1-uCU=^<s7e
zB-xmoU*EMyN7=0>V7cGiF9(?UW4<9w{OY*)>gw?8-`?H^EztsX$WEX3o^6&J^!Qk>
zY2~MsUOC%aFZVrQV2C-j)h?st{k^@vJ|36PJ=WD66nScw%XB=|j{Lz8^lE2oT%OLo
z=kfi)*9^6^ciW%5d;4}YXnkD^r|=tFQ3eLBz0-7~SEZhwW|pk(Kkv#S*X~ny)J#l5
zR<2xm>fE_)J1^G${`PiLgwE1^m*aQ+NHgs|y6E5E-?w|Bb;M-t>tYTbJP4X<1<mw@
zt&KW)_N*_cbI!&ikq~QcZy&$A?Cqrmj?L?ymB>zWwmG?XQ}&Gw3+L5*@~rk}W_X~Y
z^~-TFs7-{~@nB+RR*mJ!%FN8X<{$a;+S=Kmsui?MV^7xgb!)ff-p;zat8~}@f4@~d
zudWIW{{HSRXtH~@`gTxietv#_`L6cfTYC@Q+MYju(xgcxKRzU;rl#Js$qCu@qdn*G
zvEF5}?~lvZU+IxF28|*FFZTn@YrVR)b@j1c>E&X&Q88ETVq;={%u#1>SbB9`tTkvZ
zuduN2)R{9Olhu5u%$c(WM+XKpXuP-TtJj<SBOQXPf|vK1#)!_gtKDT)_GZPoxz?{i
zIe268ag+3OGGAX^^|r10vg6(J$cb;HHh@M!K|S1e@7{r?Ub3#OiA<WipKV?C#<a6i
zw!dC1UKP4}+M-2^Kr_;^mPIb__k8XPTOYSJbamLu`2BU^d+u-9VzP5b02>p-y19Gp
z-c;i32i^3q+;@L!DPQ@W!gjNq8w+mShyWFlp{v6}OG>t+otaUXsvg35!!!Z3;$YX~
zKI<<h)#tA$dwc8p*9g$^-U|zzK{Yz4k5pGzcP;hk`-YB=jtlc_t3j<k?OWfM-kZk7
z;E?*@A;wtjG<*BHm+P%cUM$ex|L4=HXAv`RY%Q}aeAF_p=F`d7a_dxHP7RL>^z-Wz
z5*E%qG*#v2&z~>n|Npam)8@@zPie3Bm?T&Kr_eO(%8Da(aaAvu3cZ{Qnx{$Ic)WN+
zg57Sj2t`Fj(Qi+#ftGdfN}K6?UR?R_+xGn{6A!m}d3sI^Dcc))%c8!3ks)p4bycSs
zr`Pdbn`2r0<(&2VjMvxJUjJ$Vny>8?RxkPec6)r$-U$-~{(j&8e`{qqGXukcshhH!
zMdjt!gUa*#`rosowqz_^us~twu3fj*ByWuPa*$m<=5pb=xz_5QtD?5PQoXJncaGhM
znc+<<+iA-irU{@Xwph2Tqod=gbLaFvK8ZXz$6n;<!Ic&nQ<v^><Y8cV5Cke-Wh{df
zkFN|{JBx{lX-oR~dEV=`r=OQ&Wn%-i=Tq5sKWbkc+dE^1MCkgsyJ<Ne9vqaisrV53
zUYMbvc1`T=u<YyWwo0yEp)F(LH+BA9d6THXce~%)?fv`h_N`r|*(=R=)&G1t9W-&-
z#w)Gnxhit=GQatDu}OQgIa`aLp9_6`ZSDH1Y6gd+FYoWK@9b~5xjDVR>f4*l<&q1H
z3OgFMW?ohUO+MOdY;tU7+x7ikwWyq2-YrA7ez~=&r>DJ~nLh90GT+%ba#uh6e!u@U
zXcV@lwidMf#uHS&l|DNo`S-(Ne$dd>l5Tmooq2byE<a;oI1pdRKdpE}_JLEUPhWm;
zuz73VT`S49g;J(j9+Uj$+pTSBVfp(0e!O=0I+Lf4^L%HSTzqu2+cf2bz}>Rjx!2Tp
z{{Qp&eAJeViJ*4#-rw(bUrUd-{d7VZG`9hoeSdhk{q>)ppFyi!W|?L$d%y4ZyIIef
z85rhFkCne{ka|i4G$jI>$u}}G`T}zI_xttNK^+j#=yBv`x8UV|rf(}i3og&iwZ6JF
zJ6tzvi^t(M-pkhS_bgr)yF2Uoxw&TYlOI2SzP$AHHBgge<Hn7k^`vQMXD$8xZuj~l
zb(I~`3<q><GOk$O*m^K(V^XV<vhrGgfBk3g->?7iqXIP0`ts7!s-I7%`&y@+o~FAs
z=jNuOwYS$so4>ucclVJWPfkwGt*c$x&%(g)z^kD10?3$CCr$+X{`U5C%)NcJ)pKns
zH!-ENFfbIneIvEu)z#I@uUxreG(G>;7SKf2>K&Yn3<>F=R%97(#KegcK{fi9@B9D9
zW@ct;>F9ta9xq+GWRi2k06dld=i_m33#man?RxbFP@y=#?w4n0XD4W);K`#R!}p@1
zq9+Y_T;1HV?(8W1Hb;qpLA3AK%1@iK4-}P_h87iVN=i!l^6|L*>lYUnPtvnv2X)Z7
zI5{^y|H8n)u&&G5CgaPu+xgeuZoi)gnki2x-_w1;GNj_bu1jI3k~U8HwSt9#fx$iW
zA>--u=hw%0{({VJDVH)c<Y|~hoLhK^`Px#s(+aUXVIMz!1dT^)hKGl{y10a#Il{oe
z;PXh}dxB?BTG}#D6dXC?^7Q$0(7-il&OpjMFX#PAMuvdIj16;|?=puKCVzdNV48S{
zg_WKCc6Am5Lx=^_wBilX2dpYTEdl8VwXc5u{0SOFXyFtF6~NWLoD2*HL`3B_7#SI@
zIk;-U0tZk7?8nE)oM8+MfApo6pIU#2IqdPV-qMGMSX<lLK%ta%WyQozn>J0EIyLl}
z+1lvs>kddVF)+l;=HidoxpU{FCGYqDkK?!h^Fj5xDUY*Qw`*%_tEizV1H+rX>J4+8
zTiMqvS+b<dPKANNp>@@V2GGd##da2k1(y~aEaHRhj@tOUcmo5&f&ZX!8LV9pqNl7D
zU>`-lJ3YQ`W!>Ljni?7&_wL=};@}8)e{U~n<>72R8&g68122BH(%lW(y!F7LOIl}h
z{B&VS$(5C#pJ^&7IemV9e){a$vwwYg8LXu7_i7_E`;%9%RwW*8d)aG#@4}0Vi>J<<
z2^y1qz4^S|=5^&iJ|yzW+r>=!@~B&1OHtAB;K74c-)^Rhii(!z#+$Go0SznV6<C+O
zxv(m9HE3bdj2RN1K`t&WQCqW?8YUmhI6X}_HBVYpG*n3eG!X=9#hB;MtNQjv({tC)
zXW)K1Xt~3+uZtEh7KQBo@SS53c<|uC>kr?&X$Fs}CH1r6X;-^GfAIG0+Sz%#JeT{=
z-`00^Rp@E87}3}F_wQH9yuYtDyoARc)Y&}Hctbe>w8+YLwpr*@t<aofx3^}e$JSXs
zKR5Ss{{Fwqwrnv0O~X}xe;4}w-Ch0NvEaGuvbVRU$8I-z2pZHk-+|daPW}Gz!(smH
zzrVgtQsL+4xBYy^c$PupA=T|C&!4}(r}DFijLe#Cxwqr)K9LmxkH!UG><>M0^5n$j
z%hNjx_4V~%e>&aS-+vu62=?ZNp>Eush|0>!Q|Hf5Z*O;>dHc`#|9|?wy}!S{-~L~O
zp5D3Az}^N{h6B9kZr_d;*Nf3GoHu)Rc5I!cqN3up|MhP+9>21yG~4#$5n)iN;}!e=
zYIywB+xh#~zP!AAb@=+YaLeN3uAt6zW6bMjxBWk#N!R{<yWK2#diDayP)kHjeaPKi
zrRy{J-o1PG>h|{aj~+iReR!x<=xsz%(I!y;0<^lWu&^+E%llJJpkW)~%-h>?JAcmv
zZP1C_oHiBLKuXoo&p#gb+owphottZ&F1!J>G|$!DJ^MfdW7LL(gQD-ZZz@>FJ&%DQ
zr083P_`?Q9W>5?J$Pt&<5pi+zCQY6!Dkiq<zySx(OD89*gBHymI^^`aYX84q*`0sq
z+SNw=|8;%8h=@qa=XVFr&Nk2f@Zcb5Iqfvv=(4r(TJ4}A)C0WhVt1EGSrjaI^ytx)
znKM_a`Oea?w2XZD@}-xT*QRymWp5&MBR9FY_sIl;R>y+69jn6E&%3ofU%$S-e(Cb%
z+Lo4)l9G~U-{V2c@j#oYy1TpOYCaqk`kvO>((+>4?Yz}9gx4{Ei-QjQEyMHi_uq<(
ziY_g`UmO1U+1bl4FE0<>oaPH!0SVeU1X{=*`yMnLwzK%TisyOT?=hW^{pZ=t1ntIL
z$6w8=!_Uuu^!RaYJG*^nN+(U4lq044^3m}}Jkn-wHvQ%YO}=k=@dkPFeMVQ^1&uTA
zNMj-$d*2;w+KFc@13W@O{s21TYNoSuEQ3MICigCH<ofVzcK)qut`!N#`(!tN7YSgj
z`~SDR+MjVM3pitd##NBr3mU|50HxJIIL3~3<b3+wcisB?KnpHsnP#iS$H$xI-HEt(
z@uF4brzfi0tx=Xw%_x=PgA{Jb{l_$ojDoVStqJt;=>g4nJ$aG>nyp;9a^<TF3!P`)
z22HSPYkPxc&UClmS#-Fa|Ml1F@!?)xU1e`?sn*y3586K4qHs}Baq--3vCuh_!p;Ih
zi>aQUo4eX?uGP&RQ19sB!-r8D5*nBJ&5cT$EnoM;ky~8v3TQcZ=A|X8EtHRgXD0Fr
za1WguZU39SW73lSf8XYV77^^L{q1!(?MR1U)r*DgS5^kAOSTohRe#U`N^AuR-!e8}
zj-2!J@aTO1cy7M^`ZsTKz|%~dzC#yM{rmeHwC<_s{pL*z4>B=4V4FU1;=+c82BF7{
zjEqJ+&gy=1b}ae}8j=0^^JmqQiS9X|p=i(wO;B&^>+9?Lmswg{f#!E)I&7uZ%$b8c
zKE57QT)eun60{id(BZ?m(?DsKm6f%tyIcGFKP_!g`Zu>g+tu~v{{DD=yB`ajoSeQ~
zi_X8PV_o#5BklaWwdVJ0g6-_=uG?jThd2*3#$-2xn)0<jpH4SRetv%b{wHRPjEqa;
z*v_0dF+t_(+UW0_j@y>KnNjua&B|G(*;=ZquKV`wGdr#BJ8MbR*H<fxpP%#c_uqc=
z|N8y^R(<(W!ph2Oc{W)ZJPtVV!-o$-)1TG-da3^UvACD8l+>y#S3*+L({JB-v9I=b
zS)`6wYg=2~ry2YI|Jx0+ps9&z>9S>@(LB{_mSt~dfYwPpc#tr=u>0tu#KUbTlQwE-
zYkOZ^6{>wc)5-?qbG~JZqUSI&vt@jHbJNSm=gNtR%Brz7o2rY7HXS;2Xw7>Co61j1
z&dsr0tmZrG#MP^zlfE36uU}FA{vN2woRyW;$q<_J>&r{f`t7qf`0f8J=oD7hGBXP+
zzgrsKd2Kapj<0ZX^=@J(E<u~lK=ZJHAt6(~y}P@5Z}s=6>+6G-cK!PLTHSN09q+!X
zudj@FoO5q)3%$Ru_N+x{J7@rz0n|+Ztz%C;Jxx<v+gnjl(aX~_@OYo>+Sd^}Vmo)-
zuzQ&K{oUP75jvm_j+ky#%H}nW&1}~iLdDW|K7X|y9OR%0q)AUOy4$Lr_W%EU4n41J
zV-wTb+8VxhukvHZ#fZte8>{h`wBS)=&<qs=bU9N2|FmL-1kj8QN5r{C&;mlR%-7{B
z=Q1z|?*W|)fMd}U(ulDEXbupGk3NF@P_(G9@Zyz~!E5*X`T0$QY_rWe9?8hS;O=zb
zSGW1S3THh%y<M-@?LM{j-`5|W%nSvOwf^l(`o=BV-SAahJ8VtBVz=Hc$;bI*?P_k^
zy9`<}B*6IEzwY19^xV6<LW`fB34D8N>(-i|Mb-YC3<b^L#_}5b$bB_C|NQw=@_z64
ztOE^<p!%{Plp~^kQ_@i`&@#-T;$l$ewDiLR$G3NOUcPskiQ!H{#(FJ#rfdIi?JQmn
zY7x21Rk}>NvNBkmm5uFE5+g%{w%dVU@u#QjUq5Spe~n)3u88Aoyi!X*^=n(=jr=5r
z25Bzvn%HSe7A;Z&4GM#1wjUmD|9aWq{^j!dbwRt!-hx(U<=)wG@m??s1H)7f|Dx$%
z{@>pHeTLR+_P)pS+k^CiBAc500(Y8R?%AZ+J?D|Cx|R3mPwi4OU*5{n-0X5V>UC15
z{h3WO9|l<@JPXn>KfQ^2;i79HTh3eveI(|w)Z<owp51=?S?P0S119UwX+QjX>)fsT
z&d)Xd{o`ld`NQGywM)CYxIjzrZf!_xK5lk;)0VowRlPEnn{Hmexwm?|RoR;thGNpv
zt8d)6kv3nNAt5X>a^`jKCE3~8(SLUBIeFJ!V1vrj=g(J1Z_fj*q`hA9;Mv*PTT@Sq
zf!4z|Ha4E!1zM_i=<wm$rF;wyuRFTBf<i*39KSKsIDJd<@jkJ=dW@&-xBPAZ^`&xe
zZgLG??sv6?Q+UrdcQ?1J!)?5`c9pJH^Pl&o*_wrcA=h_zeDhaO&-2dCVk!H&n#H$;
zg@r}s<j!s9WMo*|<ofR4!n^EizTdBpS5#E=UAJ+Qj(76$zN_i;YnK_PpZg%M#lWy*
zRhhl(kB`UY<4fm*X29Ow+B#`TTN_({?#h)by?lLhCss2vY_VT+@Du;rec*ZYwRg=y
z#{}^92H%D>W+cGPhmTjcb7W^{Pn|b!ot$lzhKh<yXJ_ZHN8S4Cs_uYxQ5QUP0`+7-
z`(~M#m_kBAt~~iyT3QNP3-#;k>*Ws~B!DI*?(8Vk(%1j*Z?C>Qxl4e7f&JrErSDg+
zgouiWXz1$t8X6j&I(ZVbpn;2<yYznTchkz4%*>Ub1rRrGM1Y1atG~U;EV}>eSJl!b
zOETWy+dIp)dK+kg-KteuZ*On+zk2m5XqR%S?R;Uu4Gat!&-eZP77bcu5g8fj<?TIL
z<?IYYXVCCR6D#+Y?Ca~)`uBdnS6%w+OJ?c2JCU=^^Y<kkh}u`P6SOJ>v=HyY0>@+X
z4|~o~VqrMoSYznABlEJ_-HOM(AZx323=9H56Cd+ztH0dN-)~x(v)pg)m7T@USKCd`
zy$u>)Fe!ZG!YgIs!OP3LYURqE-{gIyL5p4%%+=P^42+4H<K*mYdrVkJ=+5oguaC>u
zhg4SXe7EPb-`SbQ?sKh5gO>ZvEx8_BzH-Bc4L6^cOM&Z)N8N0z7cBzKsl+{=IC0{p
z+}kIZzC1qO@BJ%%)`k@;JU|T{KfgY`xIHTjlaIY<m#@qCW;&<EG=hO)OR=e`DHjjV
z7b$)&uA=<>b)TP~-~GSx#RbLhP2Zk8NjZAth=#Fou-^35H?J3Rfo;2dOJ9nYkMG*i
zZt=ax^ka5BxR>`xYSNS`Q=WXxJvh&{8nh`pys)rv^ZJJ>pi<_~iEnRjf4!MLzY?^K
z^<CF-7dJOEE8d8}Kt)ftxcLP?W$x}O{e0`%*6eWQ*L&u)fO<I1Cf{u%l8^OVoMD)3
za}3na$-KPGw9==hW)CP8{QFbc-}<il`@5;BkzM`$```WE`R1JU`;c}%S*gEnNtKm5
zLD{XAS3Pl}H3I|Rqi)xClhu5KYHRmy+PwL0^46_eK}jkpX;Iae7m6?EZ{Ie3+O$;*
z7e2JN4+l+22L*-1#H>j^-na93zntx=M~{*~o45b}oZ|=T(>Pd9pD<y;$;s;37Z<s%
zTC=8P|H-{;*7&@>wzl~F_JW5_J7e@flev4Vz83ZG|8z=wla9B0pUlME+eJHLKn1Ca
zrn2(kz4s@ndVhI3JzmSwG7_{KH|O@XQ&Y7;9WK{yv90%*w=;nQ`_bz7sgtKqU;cc4
zecaEVKUb|<b?HDO^VZzkW~!>Hm2=b;4pe`7-6|ee5Px`+PPxWrozuz*pj8E~uC8AG
z{?}Kp-?yrvfdO>t#LSs9d-tg=(gn3v8A{*W2=tz=clFXz@7Z_K@9rv<>%EpbT`zXm
zv)4zCAFtLu^xYj4buvf7dBx5ofda815mZ%L@F0o+P$kEANJ{5FWbKUvnD5m5R32Pu
zb1<H^H*n=(U`RknfLfvqJm94?i5YWl*@0Sz42MCY1p?O+ezGI;LFR&bB90sp{~9$x
zYjmIrK@#8&6~tWU$5+0Aml8{W;-;Z_1KVl)3!tUOQ2qrX&6SW^zO5fL^l`ud<P4b>
z(};hNBT@{Q#G<Zze0;pNmYX5UBQkR4`uv0Xv3VPO>M!i#h{y<J(K%2**QWB)_3aE6
zV%eaz^I*?_qtEHUCw?E$Ql+ccu4&oY#@beW3Gndf5E2&tdQ?0<=JLj?SFeJ$d+jQF
zyXwM)08nYk&M)`n*7<F@pxOhpD<*H(OEp&)7tk`V>Thoh|616&H(%w-%F0sl<hT7Y
z;n&yK&mZs3j0J5Ic-(LQ?)B}A(zhRHs%q-$`sVNX*tR~OdF_%#i$H4&K77sHvTCt=
zf7bCn*?0EWqr3E_mg6mF=j7h@^7Op;{eJy=R&KEs-qZC!6<iyy^fG34J`F3YTYKMw
z7M6jUEd4g0I_A}U@&p~EusVGGwF?WKLt|prRKMT5-BfOC>5YuSpFe+YQ?aZ0@!{cP
z_4$AP)I9#b9<&o)_vF2OwYy{E;_|+1uKisWJ!x<K|9@`l_vYWXyS+)L`sb&o?>2Ia
z>)kLkG%O1Wx+MC(`th;eZK;uEj*gAhZ~E>3ZOGsIHLUv9mdtk>fBmYmR#7=J&#H9Q
z@sIoe{aT$HIn6fz-k#S#H(HAEhG|RKR&Dw8`SaD?<@v1a?7x4NF)&<Txonx6y5Aho
zFkJK-seKXPo&$Pu9^~fM1{!_;`r_i^i^=Bs_ttcDaQMzJIA|*-Cbmp7cv;5ZUtd?P
zULD-dCmRwTzI@g!snWN%u0H<p;X?r{3yX$|$`VQc7d9+w!UV*`mStXE_Vbq+0|T3i
zs_M^QVm+7zKUV}hzZ__b<73l#6DBM$&A#^H#>V7V_xJAyZFQ{pknr@$6VRqo=Qf_e
z(9o%%CEuklFCA6B^OIR@Co{tXg?$wlGhAIk!|;2LDJv_d-rjcV^y&4lBRu7fuZ!Ow
z2ig{GSG#M`qD3O|^6Mu}5&{j<?XCX4@7Vl++n@n}1#?%gTp5^<u;6+{K){6R-(O|2
zZ*M!kapA&+AV+`>k^r?-K$CQ@UcdhOpqc;GnVH6H^Nv_TYsHOh+7=cO;`(u4r1lp)
zYyuk)Iqmn2wl+3U_weM&lU1M3n&15mDwzKM{(gN^>S@q%II)*MZ(#)$JbyeK9UHgh
z+<avC4Riw0#~CM1oN!ytsI8@?;(2#>`Tj>6r+?plX``#F>#v9H@_XW*3JD7@uKW87
z)R_q1b9`G{1M8OLojZ4ewgNXbHGTPf-oAS6VhOXH8K8dC;dcJtFZde2E#Jv|?J&Rn
zns)iR8_91zJUlFAS(GyQ_>tqsS8v!5@cjJz?-4KdmA{XRoVN7Gk007{yR)zBt^c^U
z`n#5jic4W(;iM&}PI*O6TiVvfw!ZfDt5+fM@%2~Jv%MplSsldn<F343zyF=-x%Jl>
zY8IP{@9@5~#B*{;d_1VH{XHT#ckOTK`sw=}D_&jEoH}h<Rm&33$!aS%Z3<##Wqr5N
z{{Np~(Dv~kA0J;`=*;dJ6caNi=k_&r`I-lXZ<*QoR&3d_<zl|lwp5b{22dQDW?##=
zxX87uqvONZw+tDnoSdAX4O(KlQ6M*dpMB@_sZ(3>?pl4X18q1u{q$0&usUd`p67p-
zHKN*K8PCql1WlWPcA{rp)r#F!;t85D`hBDN-A?z#ZoNTydFxiKUj6j|GyjS`dt&nU
z|J`O)`fAC};^*7GC2!Y|(pfNfvyS(9+wXH;y?!m7yYb)Jg$o_^_x}OSlZc3jEU~No
zrJ=0symjkVx!<6Dr;m^KUw?OZw`s+P1Xgx-Z7Zv&%F4>P=WEujySAtDGst1AtgN83
zqGryVxhePdi(;nSR{glk3Z9jfm9xzA=Y9J8*|hv!jH!u9#_esna_|3c((z_woOe-C
zLBU~u-LI9){N}EjsvVwnu!$8k?+rRE<mj<uRd05ez77M;`&yN~nepuW{PiF;CnhL@
zs^#nZa_6RgUM_JV@9DE=uQnc+yIg+1c6sRPu*}14yuW@vpMO_3tf**{-+a5bam`;}
zEbc$`v?%k`6iq3!oEhKV-d=v^P7G*E#BB5YviaNn=i7nSewCJP1<kO$ySqF4?X9h#
zCEWY||EvD~{>hq^D+7~~7HMf|f%b*2NIySMOHXgw>8F?O>@40|^YhcS{|g!HiXI$b
z1ho`F3;N&fdabwkxn0SN37`d-e}8}feK%xIu%Ro5!=xz_Cn`=qy>zMfbhBUFv-xGM
zRHmO^YFYd&<Lj%dla{E@t8jYw@ZqUbr!JY_uUWj%xqa7n`?5DP%HG|1`A>D@WOe_r
z^Yd&$Q<AA^X<m~yZQAtZ_4@s*mMn1rjkT(roo5?8apJ^Z_y7M}{`2#5^Pk@`4#fX_
zWXfyMuj#}v>0jnt(4O!&Z*oGz!m4urKbh>G5;^VCrAs!)o}Ztue|sCKrPBY=`rVGh
zvg?-A*QH(oZJ&y-`+3xMTjpgoUP&XD?RSd0L4o=Yv@GcB*RNVyT1J1SFkG<Wh+w!Q
zrXROv*REY|*OTVjR0c6JGIn)#ew28BZS8EU@^@=CZ8GZrc$z!m|J!TP`JthqQ-9y@
zm$zT{_V#vd8=E_ijkB(3L{3|JzyAN-3zHdh+t*)9IH<FXgK-CFsPFP}|M0T1ZI>=z
zmcIKu>i>d$58I@rWdDEPbl!WqUgnh*fnNUp`6YqBpMHPN;1KP6fayWv$45s`oj-s5
z(o%2RV~ZCpDtUQH6|_oZ`~AAz)qg;fsy8=-W@*08Uk_S4_4)aEZA;6YH^1}#;085r
zmT@pvytuu6{WAag>p&gk<$iOE`j;<Ra$;NV+K7#ZlK-z+qZ2u8>Bi*a|DI=qmgRs}
zdp@6E|8DErUAuN&G`C}Z%XqmtSDshw!Z}kjQ_yhSo;@~Gr%eO(<|i#_WM<bgH4VLa
z^CqZ`cwwRQ*8KZ+J7e^G=U7~PEZuVb)y?$zSFf#&HqE<Z0a|YX8hZQp?{~heT}=cl
zD=T#4!nQPfWri(gOdvbHZNL5EMFyyIv~%Z9x!d=v-`l#nyKAefyUW*pnW&_sG-cw%
zh2n7)2Vc+e{k!(({l^Cn9@Ns(x&&(2K5UoQ(%1I~_52<^di3RzxBkm%(Rqenra0U_
zD6+8rf$L%h28#nv#e3^MpEVEv^Yqm9#Y>jBIJfgXbzQu+1Jn#-UwH5nzYcieA!Lsj
zh!1LlGPHr3dk+*$;O#STd#&x*%D14V?E?iL!C&mlI2akAEltOa4S$$HZPNxw3zma-
zT0LZSIBs)6U68{99k=X|&6%O}g&&UtTF@Gvf4*GyKPJ5#bV$#Op9Q6$T1`elN5@A|
zQE`@CZB_RidleOz#Kc71qP&XDIk&gf)(SH)IDjT)|NZ%VUd*yQB4S3>*H>4Sp0}BU
z+L8^4(9mcAo$d$jfFCe`NPx^{I1FlbGqi!axC}g?kYJE-11<P8fE*?{f;DXT&%E%>
X##5Vb*`+ZsFfe$!`njxgN@xNAB%IJA

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-11.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-11.png
new file mode 100644
index 0000000000000000000000000000000000000000..0ac43bae37c7e9b4fcaae775effdb751955c5a47
GIT binary patch
literal 21591
zcmeAS@N?(olHy`uVBq!ia0y~yV2S`?4mJh`hJ9%>?l3SguoOFahH!9jaMW<5bTBY5
za29w(7BevLCxS5J3j5`m3=9eko-U3d6?5L)t*$xu_3{6Y&$sr@opD*pxJ^<ts(V9#
z^70iPf~VF*t?u8KDwuZe$rht&HK)?2p4~Ww|JM|+i}_0?`g6^nq9`fvw$gG<*}dQ2
z+uyIt55FyOuPk=A&AaWlOSRX3fBALZ;d#~j?qC1CNun*0gMoozS>eX-EDQ_`b9foK
z85j<vu;?%_FiaNQz`(%Z<92|Ffx$p>RAM*<$<CYAObiSUnijkFzxwj>^7WMa`}XbQ
z;^En&_S-EJ6#Fs<E-rSzy2NvG_O^O`ef_^54)eFH@j9gH#K0hPU~ASouRkA;%U}N^
z@x$IEf`P$8qWfsltA9L)4NB{Gm`H(B&&32rh6fHhV%;x!r@3^8-pqicre;=#2Ihqa
zi}*nL7}ORYWMVkb7_*v<dulfuH0_1Vdi3a#(ea)72X^lH^=kF4&FTGnmotV$s`5^|
zsUM=pB&OvW7&tK|CT7aSi3^W*i@*MQJ^uQ?zrRBR0u;KBI-MvI`v2#-y{NG8;#O{P
zEpzkf_ro7>-BgZw`uw@JnOPVkBjcw}pMoMHW|-yPDmnRfSLtgtaq;O!@$cTfyY{uH
zsOZc0{r_Y4R(}sW+{XL#@#DqYa&KpSe022bKZdxeh5TY#t*ckB-uM4sb?Mt%q3P%5
z1STdf{PXwk*CWFI8hUzuadB~4dV15kxo7Uzs(!Js-6Z{-OzHc3v2t>9S{fPwTeGgd
zvDIY|6_Au%xi$NG)|C~3Tzq_CUS3_lzP(+2<w{8Dt1Bz-yjAm^wdBQ%jM*FS*Z+_8
zxBt7P>ifG~S?ih~8{GP2R?68{y=WDWo6z6iZ<cpwMf$u-xA@wxQzuQHy#D6So6Scb
zxckI7t1eu*VMD;*UtcFDN>qKjnSOOusP@q#M>4*@yZh?y?(K1vPem&$D^D8mta_uh
zYQ+kVb?eq$i(kHcdG^0QKcy^-mPBpO%RN4mG4!zc{hGyPZ*Q%P+M2cO|Axqzm^DpJ
zOmA;(_0GM$O?PX}^K)~#xVeL!oSNKvrBppnojx5r+blO^e_d_v?QL&2^=&VD>gDR<
z^5X6G`_~>EY*zK$|L@o8x_>{@@78=iYxdgB)m2kf)s>xJE+in}g6O=3j~D74Fn#*y
z(W1rf{aKHX^=fHoTuAP>T~_^mZ}{0+rk8K$?_X<I`|HKye)}*VpPqj|9`oyohb7kY
zg-`mjzW%Rw{+^F*j~+kXTK~V!`Ye}&>zc^TZh3imX1-H)@7}#=(V{K2zsqFp>;7!|
z26EZe6@kuwe|_EDcXf66`j8!ymM}82c}%MN@vvQc&ferlLW=7o4;xIGJ9q87ySt;`
zZ{_0WpRV%s*|Sr(Z%21_b{g?G%h!IHsB$qSG_gK+!?8Zu)qD2XsH&)}Sh2!mvbz5@
zU-P>u$0ZNxwDZXZ6%=gPyZqsnbw_<)PQP{k-QC?+H>G-CT@iRVZI5$1-?gWVjEtgI
z*Ir&;zBTi*8n3KX$h>*;rpMSD8wXE%^7?i3!oT67CJ{T*bi}%|uB};l<3_~OCr>n#
zm7V45ek@dpe1HDqmoHbe*Y8;b3aI(D-)7FMc*L1Kxpmdit5-wW`D6mJvR0MmTw3BO
zWm~ny?%$8(voj2v)lPFBIeK(u>gj2>b`~$+yPQclH7)Jb{rmf`?AX75KhNO{ox<u`
zd)AlVt8{mDb*=hx(OrLMo}*)<kg%|*h{%#}Z*Rw6n<FdB$bH=>F>#^F%aiK!uPk!y
ze)9J1+MUJEUrqM6o2U}HI_#`kO6j{hk^g_5uP^!bCbHU3I$XotJpA#o-phB(@8^C#
zxA^2__3SGv0)IW3?9UPDx1jv}Jy4?h|L-qn<n<0)xyutKPfq^aw_iw3PVU-M(XClm
zweA)i=6!W>@p0Abf9L=IDgXBV{`hV&-J)IQmX_CV9$44a)uj^qqdOuXV8P|({?XHU
zrA$25@Bg=J)22-(g^yfv@9YS?^uJYypPzs4*K5(Y_EZ+nw0AxDv9h8f<I0M_R~Hwz
zSABoC_PpKiGrQibSJbw(z1wGebgIVB-!gJ?>sne^OmlCAe7|3BuXx(CqN++uUw{3T
zioCparIoIKzFhXdwK2K9jYqQR<bf}rPV2uuYkvRAnVH79_i|t8>|p0!rm^$?vjdIH
zvkVfOzP-J@y!iRKm-njQUu|GyzOvk3o>$t;=jhR+Ql?o`)O=<rygcN8xSlVPSIT6=
z=a~x@{i~TDbMmpop~Htm*G8F&iiy3NSN-my`uv(j^K7fVb_r}!$-KD8)vEm695J1U
z1!B5UH*){2*ugGW;ZRpsH_N7SlazU0PVM%a-1>VK{C>YbUcTl-<JUOZn7ym_vajB-
z;leNG{7&z^l_&1s-+$(GgX(v8)0`U{oQ}usELy4~)-6~0WMcQa>60cc`uO<x>zV2E
z0%KxgTEE3!y^!#5m1LV@czF2I<;zzWKR;(x@?t{X&ZlCfFE6>Cp00m=vcKKR%FoX{
zC$;g*uRC(YMb@&&C3u<7MRxfb1y398m0g;g;miHzPWn>syF{h*)fG?U^m8E<6+7PT
zd_FH|I`{mFN1ShOZ}*Rjiz}OHtrtJns`SgV+4--ohR0vMxY#{)V?@bu*>Vj<MMp<R
zN0Z3w2d>6&tqEH@%f`kgC+_O%@cl17IypO+J~+Ubnx1~U=lzY1&SKrJ3l}aFo%J15
zq&z!2JKm&V|Nno#yZZXB9cX0UnsIRv*W2x0Mh&Y2A|f&*+7eUJ)209Z{%-E%<kYi%
z->*}<{``Kw-#ltdM&gfOzobBktF-3os?fHhNrs0GAMSng=8e~Ub3OmU!ormsgO~eB
zIyyQYQ|`A(l0AL?{PutUx8>gM>65jVTDNZ9v1@CibGQ9{Iz4{f-IT;x_W$?wOPQY9
z5TSEyhGB9~PY=)QPx|}+T;ky7HvaSHPtL!0k3YS=we|Fbl!}T9iF^0%E!$^fW5eTl
zY+dZ`Q#Rki<7-nRbi|Yu6%SfXn?5~#OUA`RFRrYdT&iPieEG)y`u$(;|Fi%7?RGwI
z_t7Mu*=B3+6yMpD+Wqk5%giq?E*^e%pF7><z@gOW?Rj$z3m>`6-uU_Xd1>9KEe1+T
zN^6oUD=XU)C64vm|I1)uVUftaz0I^w&NeId-@D!KrG9^ZzkZJA<5f?dJds%LH`j<y
z#v&mlElsMe@Zon*lfk^EwzhZqysA^X-p&7i(Z|ovOh>Hy;lqcCIX5;ey!5<x_4nub
zOU~Q>w^4j8rNtRBZ{9q&UMW+b+RCb`IFkg)wnUph9}c^HeRZ|B@bNK8Pft&`<$iN}
zUR_-+eS2H(=5@l7l9>@YVz1x-pTGCRA?~*B?(V_|2O5pO&!0Fk@ye>u(;vQlGmEQ!
zYnpttOVn)r-s<mhf5k603Ty~SJbLu#v74LId(X|amcF_w)Htr@qwDKU&FuVAb#-;e
zHY6VAIs9XP{wCG`7VBeoUjs$Ws?gP1^^bOFfy&>D>*MVghpmljTfKVq!?$m9zr4SH
z|HqTb{yj}iOvz79OmusDYiq94HTn8Ki4w<J?b#I-72Q5RJKJ0J^_Aq!n>SOpB^Knc
zva(+LubvWX{f#f8va<5nj>5-1ZM@P_pg=g@C)*1ui_+#Em#aQgP+F=hx}mGPyVtE(
zO7iXP?fT{aSFT*y*4^#BbN$Q9%j55gUpOeRq2T7XcXzYDyt;aNMeOcvzM_9FIP**H
z+qdsn{r}(bhYj>vR!_=bcE9%f+`zR_rpedVM3&7oUUz0w>S-Q*ef`DR*Vi3e;yJlz
zrg6H|#EBEzX3w6TxG|z<dR)~>i_%w9KHe!lFS#}As?of<UzxMthOdvy-I9I%9N5#z
z$NO%+)G63$mUky(P5l0QX*%ZS*MI$=&K1ckZMG%THo#Do@$~7_r&mO7Uba$SUw^$f
zo6d~xhSt+TAt5Oe$661Re7{>Ry*2x~*)pG*NfO6evtNTapnO;S{M^l)?+4lCB}!jk
zGo7X%ANR8O*wmYQDmMo%_mh3R^Z7huJ~^9=&2KLI+nZXIzDkME5lcSSBYEuo{{MMB
zGM1M>b{ZBuaCm%TqVh3!`P!5__5c66-QQQcwpUE%{`B}dPy#xfv{9np=2OSUl#`Q;
zu6K8KY8t03UAk1#{BFtQi;G;jmDSak8!eA}D!5?|cYo%AR71U%qOEy%qqxQOuAG>t
z{PmRf`V)r_I~Nuf&N57HJJut)c*6#Ry?;KP-t}_X>?!l+fy%$DYa)YVcb9GbuK7Ty
z=YMVcgI`}?UtQqH?CS0wZ7;U;Nui8w^|z3_yGljH#h0%PUcM^x@-i<Ej|ubV&leIF
zzPcvTICOQGubrJ8sP1Z=zmWO2b@{tFOw7!pa&qgwd@0Gjxyg0?zF(`B`ORH*J8!pd
zV`Jl_B}b09h>DAAD=Iop`f{iEyrzLcKw@HI)UJ}1fByVg!@u&#(~Za7pB|_YJN#gB
zY2d!4-qW+5o|?Mr|G(c?*G8Lf&Afap?dQF{)uvfjG~V9X863Ra@9GT0<SBFJtoiYy
zLe`?dK~7HY)2C09rca-4_veFiYfH<Gmp%oSMMXs=w{y3z3|$=-wYzNXS)<4P=l6Sg
zdtYu~WPbAQ-MY88x34aHd+XQF=kvFgy^R6|jcwJJfPjDrwtkG^Ck%M*)_%XcDt!IC
zdv(8ab8m0+Eq;FP>blt7pjKwDtaVuI?y}I!%Y0QmmEHS5?GKZ(Hxa!OhKH>BPJcgZ
zet$*m?y^tczUh5^_%eL;iWMIF|Nq-v_V(7&ZMnB+?aH5Ww)EDP%*$_VIW3me{{Hq7
zRGmIN-2U}yc)X^eVW4&SyDJ-$k6+nQn7ni6&PaKy9qH%g)<$e}TDNW;s9kMZ^P}MB
z@87Fqcb7>SBs4rbGjs7Y-RN7trvy0G|M}Q1rXRPa>g%h_4-XD%X=!b;oBH#-J*Roz
zort)&xTw8VTdTgkSsAuAYNg*?t5;W6PQJA@d%0EVs~fLH3Rt_kyFu;Xu(eT{mzH>D
z-Py5`jYncZM+b*#<|UU)t?4ssf4|)hs%GEq`<?go<z@FtCe`0^KrPzxyQR}F*FNz~
zJ$dF#NKnwEJ9qCsee@{l)$u11Z43YWsj>b0<#J7wo9e@S##5pK0t+@KA77Prb`}>8
z&y^*flS}^mDD<6Y6S;8V!dEvpFQ29psbp?$4r(UtdfaEdCE*~G?`$(r%By;}^SMds
zs}NUr_tk}ukA1U~jcJS8nx(0r-~eiH78Y*2bLUP-Oia#ZzmrcN>Ba8ynDp=S{QnWh
z15Ky0EKWN+>t&zyy9@jOebt|9S?o5+q~b$@?T-h|MTLbIUtV55b;5)N({!V=?(M0p
z`uFp>Y4x`pUP&XDyu3S=Odc#cF)nX!Z3X2GQ1_?$+nb5YmoL9p|GyU0NC*rJ+!Ucx
z_35N~>F2ZN*{`mw{Pgu}=-#TYTPi*#&F;5*Af0zL=+p13o74S4i8gq--_(+av){)%
zPdl2l@!tH<O|svsLTb(L6g0c_NG$yN`g->9KG{j2iYca<jrWr6_dAQt@7Dy+um87`
ziJ93n?~X-lYb&Vo%(}a4>)iBrHd>#X=N0A_@QdlaytA`-mR;>GF`bA77Z<xn+kbPL
zWcT+=@Y{QPqfeeZdFtG`YabsUSM{u`tGl&5fBvhhtJBwKKGu@8tqO_VRdVs?=jWhs
zP@h-fG-=IrZts5=<F@6@1a$)W?S43v->Y11yPQY(>C>l~2O1cSc$@<R1FK%GTz+L=
zZMCY3%8fhSJF~88ZOy+w@BCB~$CI`ZrrFm__Hydz=v?{v`T0)v)j}7aKAKchQv-^|
zNFA}W^X=o?5;J~%dATZZaa+~bS4-peR=r%geBPyr%I;t8Rlm>t{_gH9^L)97tGc*(
zc&>n2PSx*rx=&W~z4Y_*b5UX8<l@h7=h;?oDSGN<ntw0G{9eUk*>vvBJ9qD19lk!U
ztGD;+GT+&tR_@t3mY1d0dD%Vq9VGvXJ7#^xhJeK9=jLAS*59|HrG*7lf6p?@owaB0
z-rRekYOy;UXYqe3l>>Eb*m$LufSSyW>~a?l^V_d^c6Rpb&*$y0AD6FRv$y(t*6V9)
zm)=Y4TJ`#T{qpK>Z&v2-{~H!x^RYE=-_JDb^JjKWHHomZv%9|JpjG)h8Qw6}MF*W)
zfByK9@#)FQNh!78&VG4$d2QmVC$b(b+Rra-PWOL%W21BO@xH6mbfdS_{jKs8e|Ita
z_O`X#a&IpSTN`z=a+*Q#$=&C4#Jbt|WLD(w`w8ldi!yTW;9=2;nYO=8Cp<hHl%4L~
zySK;mcIVxa%f3-tv!<S#Z@(VoGFMmEtjo)KUtL|jJZfv!&FZQhY+h1pe!tu8Z=8Pa
zO7;7_%iZNFU9PSU-~Rc`9C?1JQa%=)m~E3LJbm?Q)%3V3&#SA$ulGnAzp>SgNjA;C
z7IJo$>D3L1&ei^`Q#BM696*LV?zdl8`uZBE4Ei=tC_q(ULxF2eO^t}S`0`g*S7*Pt
zu<+YFzJ}}-?)`FEx3}reKN8@Xv0)A~BX{_ku(eUM%yOlsvoWfR3kWRG-~T7*-Me?+
z=5Yn23T!9{<p@9UwXq;{XU3dWc1&Un416u#E$144F)}b5NCA!TSO`ezJa=ejWnf4!
z0*wpFaPUqmUT_dRq{thlYEk=Z3upvmneXgVmoHzwcbSnPX5pMUGN8V}-s<nu)~|nW
zYRSestym!;w5eCxJnP1W#BcN17!IgthpoA=xZf`8edd8i!3|oD;L^YRe(m;GS5_w9
zKN+%V%NCQ;S65EnyS$<Vl#ll=PY{={|FiMemzT-!GjANt-~Tu5y=KU++}qn$dQaE;
zHqUM8sZ*yerO&TT`&<4uYGL83UmOur7d+XNFxRSd-R}H7pf1F_bCH)ye>a|xlasst
zcIWP0yKYr;O?_AO_qT56ZQBA*@W2_z_XJCJNKiC9m8tMyW?*PInX#e3mzACUb~V=u
zm+g0oy7w+`@Vc_dmAl&ipytH{OLi%pnBYImHMN|aoEyK31awAi%gKDN$-oC56JvL3
zeky}BeAWzd91@@Tp`6ZhhXbI2G=U9sn5T0vLWgY+G)^&zNZYTcYHuIEapOiV4vq=a
zr%yk0=+KtT%geaVS6^P{`|94_-C5Vy>B`H?->v)ow(9-f@26t_zqz^j)925VySuxu
zt&5F*_&7uq<h2DSPI#!Qsc9)GIdO~YO_@D=HfYFd%a$$Pd9&xtS#xi1_3EmxuVxvi
z_dPp1d-;bC1+vy<YwqN#`OjN(=T6M>y)`FoL1Tpi)pwe=7C-k}8@D%#lamwF%T>`-
zQgX_@wdLZD!pB>3Z*MEwe)hzP3!Bf|t)4MM;_Q6;{Z5~MzT5pCRCxQ&wF(Vh=Ckrg
zXNV#wfyF$(wkA^9+}s@0Y&w4D?p;w)(WP&1Z-4#c<Kw4!zkj`6zk0`xh|A0Ur>p$^
z_xt^Hn>Zhz9=WO)ilA<3TVl*#P74KaY%SaLe*dk#)!U=C<*bx4&AQQ3{^G*HU3+Y1
zo9BZ@ahC8(o2@8(d~8+Z=4GI)su{d&isZa|)$eUVrGx(7FPBp5LRX3D2{JJh%sqYP
z%#{86>sJ=m*Vjw7EfiMwo3i`u!De<)mIamMpvd6lym)JCwrTM*A5l@!%xh~Ruay=T
z7n_0_E^@X}z0&5_9v*IAfAXgV6WDo2<i007ee&eQ-Mf3Q>}YRqFRiTHw0U!?1Zb$s
zH0_Lp=cNWl<}a_;?|(HlJnmu(r|^@vZ*@IEk-^2yEh;WvzI1s|YC)#}L&NJi%a<?z
z^y!mV@AGHRqNc~^M0-jZrF5MAabcnJ)X9?<gUX~yB~MNWo}F#(zd8N<wCU5QM+TQi
zfI{11!s^@&=jK{3|NQ*??H*Ba@%R$y`uhJy`pju*X<n10%yJ^$ZR3?TyRy)^9n?0P
zU1)D_FWI(m%^DrgOH(w1udE1EzFT@d_SA_J8*cvB-~VS(PY(|(8=KYHWN8ji;+U|S
zH)3nn)u6ReTXT*T6&J5vxJ+l^!i8SGzM*Ah+s^jBvo3ox;b>A|Mn=ZY+uO3Q`?d4Q
zUi$d>_|+|$!JsHV4jKnI%xms3sZZ8=nR7dzriR9ewCe7oiv*S3P9$yA(AM_0v$LCC
zyo;~fyM=)v<~gX$K6J=QRaG_e_@~dGr%sx*Xu}2rRu&eINq+NeR(|<XA}T5xd0pD3
zVgt|N3(@&|Q)P{LoKK!Sxhi`5x?5Yb)jemKW>34eHhTHj*Vm)tjnmIfQ8{|-Sk~QL
zrPr#r&SB&Qm5N8?%y*W*xZv2##v2q9GskbP)zSwK5|%Dm0vf+NdGh47ugCi3*QcJI
z_VUC;WiB3`DJoyz-;ck$yZrhb%i=Gm_4mKH7M*`}SLy31)21z3vII1w<~!-i%HZWe
z$Jd6gp2l-H;P<z;SJ%he3!lI74-}9Npb?iRCns-BI?9!rnyRUy;v#L96Y%`p+_kSG
zbi{V<n6mH3*MGm?XJ1<432KE-(~DgtoxdkgJA9o^>Er6iIZx-U-me52!cTZ3XtgSQ
z{kk7NDvlmMK7F@eQPC#f#i55zpZ5Oz{QUY4?oX$1@bhoqdFO@C4tDSeJ~*L(ayjc~
z&?ErEj2_U)KDZPEIn6?VX<G3EAw@{J$iPsbU=nez5u^lKWk^UZU)7Jq7kGy@U2p+h
zVuI#lK;}PifYenC4D3z^iuhubSU~et;9zfIJ8gL(fsp~`1n0*gUqM=6{6n^=HiIiG
zSV7tx9H$hst7K(NOw5y~PnVuKb0+BY?y|S5CQJ~pKEuPn5W_#mC}HY})2A=r*;(w}
zJNXGCL*J?;2aSHWo_czPQQO2M1T+%uH_s;X{YnOghSwdJ*>t*(F5(ncTd`rohBIQX
z&v$ioeR<TauVrBoAtxu7b#2W|HNQD4{`{$#{dJaE?y9=Kzh0i!-yd?kPxk4{mn)y0
zot^#j)6?spLKqmXOWs<&>U<{iG!@hAYd(kD`S+)Eg9^Tt!OLHLyPY4Nl(cA9+1pi?
z#m_QcTv%xKI#NeW)}|r=l>FAm?KP?YS95i3ba=o0za5~F?(AAC28IP)1+N-ZJ%!c%
zLL40%A3c72I%Z$`c{$zaZ9e|CU#Hxwd@lR<ZGL@lQPCz)e-_jxK0Qs>?6tf_fkXDS
zH5Wn6HbG^#7ocJJtyx#6%$XA-xty7ypy*EXQ<*t-2_T0G3JQ98d0ko=yxdFo|BJ=_
zDH|h9vaV>%{wN+-;n<d#ak!1w?D5*DtwGEE=C0ZQ?d#X8z2^5;9B${2pDoP5z!2JZ
znO(<omPzI$E-tQ9d&FPAxVX5eurRQoV8hvpzrVhQ?k>wsO-Z@Y!_LMw?UwsotI{b`
zr>4GJ!pLx4RZ8c1L99*2mdMR%Qf4_bCQX_oA}t;L%u4j{;peYjMLpY*C^7wxnXaxc
zsG%jv&BqtkEvBnglEdKe)Ux0~187Xa_}g`J`&e$9j4PHg;*8$AE+nmu*tqD*-U#1W
zCV_>88~NmHR!HaXxoGw8^LhK%XJ#5_U0TwaSqvI^%iHmg?eaHvh8<;~>IKw2?D_lY
zw0_n1yX9|9ltWanA60eo<l^GGv?1~Em;U-cho8x|*8cuBHBrLL$7f5Vy`rL{Shwr<
zd)4`={-O*8vX6xp78l%V2)(Adds4Z`vgOO8k2^UziAYMWT(U$3)JXyjM#@#cF$9e{
zfO@5e4j<MozQw?B!?mt%Us7_isDOZizP>)F*K&E8@ANzCo;-f}?^jW2>DBZ0|6{WL
zHZ?Jwoo5?ue!ph3jjb(cSmJK^{aUNSM@P0==<Y7O<=v9H^y{;;v$d6!oV=&&ZH@eQ
zEjk}GyzAxZc@a90;XB77FnF1d=GOC{>bM>(XJ%-KeDl#()yOC)`}(@8D*_jb$jGdj
zGDYO;+uPwQSFSXBKTp5=Xc9OfE%TjytLOT<*xS#px3;#vy1jjU*_#^+U%bd@ZD|1&
z;h@>BbMtIhxA98Ps*NgpJcUu)$S7#y#EGeT(VJ2_r|Co{89#gUXp!e+HBi@C{BC|_
zf6|Zo|L_0D-gIGPC}03}>R(-5J$1r_gxZ`y7nhb>TQV0HK0cOtdt2`GJI6sCyluI+
z<4WfK{QUfNxBk8h)8p$_mc6|-)2Q72=@w8EYem<aLjG&BOtYUnd$#Pwi;UMZP^Opm
zI2E5icP^~3uyE#Sp2HUowQ_%b(9FLoc6XVUmR69TpWo5_2BAER+zbt`?_f*?IT~=E
zgsla5DxNISwyW%|mb|=tWo6~c`v3nxUH-FH_v`=f^_yd{FgkCiD=3HV*}M1Y+qY|@
z^Y@0XT)A@Dynf|^Q=lp?B=lPaUszh&vOj<SdiVbR{rj{*PxrlscTb-#JuY7#b9Yzi
z<o^DC&~Qjg3kztL=6=oRUM40cm6N}GHvatle0AL3s;bAm<|z_wY3JvGr{3=W|F`|t
zmds+&^p_E!B0c7LQBl#8ckkk|?i@aRc-I~qP$zkTWAmE*@2;<(59&qkez(hebK2QU
z+3WYJy*%{v@TC9mZf-ta<y^fz?=C1AfI2d#r|BBMo%5!*0W?Lt(Y+Z|=<V6FC+P9c
zojb2RoxZsE`MFm&HZDG!Ea&y@;?Cmq+2!13d3PdWca;Q2Mcqo3J$zAc1E@L)m)_tv
z&nEKK&*0Y9R`I*XAQKrgXU?2d;@a<@ac9Ry(5Up^(vx<tuCI^JinX`j?|tui=v4ub
zZY5qR6Hqysa}3l!tN;J|{?j~RDXCRgu7rT*4eq?ymwcQrQb(+{tu5}G4WGPS&gYK>
zpeFsQ(A8njtcCpNSUfC|S3SO)gOQ=YVCr8(OJ;Vyki^7=lO|1Cll=4NPcKi;z=(($
zU){b=R`=JkwT*Rkb-ni0Z@yh@Ry}Ag5fl-2wZ9^cXI)vba9{0jEnVHS%WnR9*e(yM
z`{VXj#a_IADiBnQ70i8oVPP{HuhfzqJ1pi}m7e;g^1Y{rM^#-t`nt4z-JWT>(aV(G
z`!oy;0zhpA^}A)ab9epyb~|)+m@a7g_T<Tvpc3lQqenS?#?{|)a_{Ylyt}LP@`;Jc
zsS<5*wO>Pj{`xg7YWpf>P&>fkP2uF-D!TFeVnFknU834krcPZtVS+&JjSY@-t;@IF
z?C<V=dvv{`a~r4_|Mh0``7g)i>rdRj9}k+oUgk41=+&nCXU*@gSsT4w%giinbK2QS
z-QC^0%HOY>9#^&U%yE~HRI$Zt{9W5t?)&)+H2CYsZ~JA!<=AAmn{!@%-V$KA+;8rt
z?;-)5bw8hq@BRI5_pPnj*H!Jso)t~4S^wg~!seQq8lSu0cNRb2QvCc}wo(3+UQi=~
zJ!w4~_p?W8<wUd>+K#P!1zM57U?2%;KU8m+!wh19dT^kmh1OC5w-?Ylw+f)ZO5kt_
zl?Rm)3_fn)6%P-E7Q(x|pavm&%LJ{92VNlo>T}8PG_H8{7`d?&qg28NYGJ|FPGD;c
z;c>DAsBs0(VIU`AZH8%J>n@(Y=U-B?B_<~3%KG^IL7*b-(b4Ww(3o!8*;!c^7BqtT
zf^TncpIyks*9taYGjqe4x>&E2lqI0aVnM-$t=!_L&YtzH{rxR8Dk`e=`M<B%<Fj90
zTKehB7oFmtGYpfzoH0HRZs<0#a+{=`kpK<NJ$(4^*RR*>wQJ_AY5<jHG0)51-C22c
zbvS4Yd$C*ZBo$W|mleLV&7{op=4{Ko9k%fAkt0VmjEpv&c?KHl?H1R+1{x!pGDYO|
zj{}X&q9P(orfP?ST1n<lYh+-}b6(sf`JYLjK|^k!dD_U$X;XLZS+Kyt($ezN=g*rZ
z_djfte)8y%lD__WuA0(Se4wt{^__Qjm#<DeJq<L1cDACOPj<~|eKl+A=*P$VuOI0Y
z_GVoHn#BecWkEqfTe7Zd$y%5BRDXYW6|~Bs>g%hUE!OD=z$<NhQun{sH#QFb_wV1*
zV}JktO_gZ#n`2RU@$GW|`Fi^L`nLc7d=`(*e|l<a)sKhmra3nZUPpX>c6Mv-Z8Ou{
zTVJ}Ky;}h)o-G8bZI&sjtGmB@_ipJiTN|4-r%x9@IKZeIvm;=2`1-J|Sy%O{=17@l
zttfqc4KxT1%9NAU{j=WP+4<`J{{5hVu3e?C!ye?UVq*$Z1<hLD+LoLBK68Q4o*$38
zzs+OPy7}hj=C`)2Ax(F8m%qMSet+wC6QAcVU#>)y-%mR`I|HZd#eO-!%pdbb!qwFk
zG{?TH^!2jvxXPne_x4togJw|l_y5`S?99yK*7OGzV7G&MoOQoms{j3R+20IQfTEP>
zOWJs)r|rD^e182p(D2aRU8Sc^oS0DZFfzQgwe{4=lYwq-ZLhAaT|LV*8#FBV3p9$5
zaFA(sEekvQ>u0m`uT77yi+otTh6`-h#I&=sRz_}4GfM`oQ8CN85%A6oNAGjyZBVR<
zb-OaN@obRX9-(7Z_h&~_Qxj-(yjR8&)PkLKG$}AJFmUBx5fPCU8#a6>^1J--qn;B3
zgA8avgF(Rq2T?IGEltgnR@3IsUq5AvNNZ~=Xy|-W$)_itOP4Q?b`JXf?(WvSyH;!C
z_uqT=^!4l2-`?KN{`>3euK)jjt9t52Z<~@RQT2Roc~0Nov*!0TY;Etp%v-qdAQQs_
ztLqD$*+EMl3JVLZN?%QBYHkMgY;jZ%y;7z@i`{y?-s-EVxqW?oeS4d>XV&d)Ye91p
zOTDMRdUJF0tE;Q0gIXJ|-C`$i-;OpkG@M$rZYm_FZ@k`atB<c@IK5QAZfZH-|6kYl
zo8;fK+57pN^{pL+i$UE=P{Y7D?My(on6BRYB{DLgb%radzP{?}?+>r3soD8jMP2>2
zNz_xznjZx-AHRF|Zk9#iA~nA`6-Pg>(E>->j8k<NG|n9NeaFB6D-&<LmIKWvg4z*^
z36|`jK^a(=4_iTtr#MYO9oPhwKrl<FU+_Zvzu0OO*pMlx?!a10fx?Yo{}<$WnMDUd
zNfk7aw)fL1?O*Tf|7&|{X=z=`-~V^nqD4y9=lK{Io==}YfBlUc5v(jMCr+RCPE1S$
z&5)(OSGTf?($muewVP(1zI^G@m8IU|mDSa!@86F%G&KD6_xt_zWxx22uVXxIz|$*d
z8+CS;>E*@!cB?Kfc7J`Kk$KXRH*a!Gb8m&L-}h^k?Q#wVho#z?8_!gQy5O!Q{-V?p
zpr-O-cmAi(o@E_uV(sed3kwRGBv<$2A(#B(RU5JoRQ-H99W?uzab|`gs11@L(N-F{
zHfrma2hIGi=Kue*TsED9q2crGoyE(;*2jU?D1iz&&_vPJ%Fk(_d9}yKdRKp_OG-)-
zk(AW5x8H9x-G7FGW9jQ_pyB^7SAzXBkM&4KZONEu_w&hQ?X1%>Gh>;rN$2lb`0#Lh
z_O~}Txp;YXx7w(v9J!Uj$WUNwuzT++kM6B$XQg)T+^K10b<676yLanWtkB54zc2Q9
zzx@6ud#39~gXSGUV}Pl8_VxevnC0GD($T?DSzR4{yq#ZOFF!vY)ZP*O!xhR~#v5_G
zPd0eD-`rEN@7}&$Tm1Z7=%XG6h7J1FENk#rJg0NlgJ$1WY}gR+_SV+TlIz3P&T?{g
z{`z+N{kT`&!AozLCj9*Q^W}|=$xrp}Z_S?0#LTQ+=*GYhQ*UH!{Pg|%_^dnk@5i?#
zzBtk;EPl7{*O!-{K7G3M`MiDo#pDQ`X+{0TE0aS^%XlOB?S3o}(~nzoxSc=xxL44(
z<@4)SO_?IXD`j#b?lLpOf=f3SA3SyP<iy>(t5+8C^Yg#{^hw5|zyUOQzNhkY$l9o_
z-Ez)BJCE<YVYo_ZH`|(*mzRT5*usSirR-{U=!kVcdi?n6Qg3n4l&7Mi;w*#2CQxE(
zxcvFcmyo!)xRoF8+=+Sp>C=%TM^<=G*Q<Ka$gWq(<M~wXdD8I}U2lFZxEQrHEAx1t
zte1z!1yB#};lqWx(c4y3ettH~s&v({KH1kL@dXSFde5@tO?Ktqx2ygC_q$oLs^dzV
zr?HDbgS#rAHBo2Y+Wr4i3|dI``r6uHH@CJW-2Dk!IyxbKetkwpMj_ktVy~`=yj-<&
zW6Jz`TffTVD^|Vvr&8|k@9#Uy#B;Km@22k|3=AtiMQzVpdu?s>?Vh<dl|kOqbTrFn
zU$_vkblEa3YwO$3+`h|Nmz_x3IOV5b{mVnMuY#tTcq9^x^EO6+=4n}3Su+ndv4R$C
z-rAB08VIlb`}Mk%MZtp7yG>0@pjpOdcK&^nE|*5|eN_3rYF*~#WmS(l)!*3iGBiwH
z@rJ#ZPsSpkwYAmD%WG2~Xo;+<s%v6mB51OpL~#YE8nRDaTK)Z9)b_l&*Vf19e+JE@
z{{HrMYu(?fyY>J7PEwJVm;d_WqO*3`nhljjzc;0x{_^|%e(Sr3-QM0y04*H$^78|Y
zWlx<tHTCm`z?X;QH=UhrKD%ts`~CmpHm9Et%gS2iH{Wh;)z?=mqqpaQVl!%MR;lan
zlET7=#q$^#Lc`kmWKA+IC>%X{^yQV6!O-=xMn*<c=FG{7&HwY`W7M{snSC;riw+!c
zFwMH+(JN)DwRQiD84_35$KRJ)=XGY5srOv#@@ui>cb6`oSLJoQPxkVkpP#SpF3<n^
z=H};F^V3r|Wgm#zSF=;D{!bxjSp{g?^3|1<!C7<nv#ndbvFvS>?WYsUpcM#<7A?B6
zCej!*LzTbx>$GcYA{Sp>9lpB$|G(*b?|=DHvU5iO8xzC2d3){NRQ~+*be2u!rm!^;
zpb_xamKIRg=+&K_o6pv1efqm@Pw|eo+iq{kysQQqF#hu5B4~19(c;CX)!*KnwqB@p
zU>#%jtu2|m-fp}7<>PVr)7P(mpC$MD!^6X%Y|zx)ytVXo*wwYs*LSUXA}b&$D0pjk
z`TALAxmA(B_uaT1#K^FM3sl3R4cyMNx37D--m3J~68(KY9(6s7n0jMtnPuUlmU$JA
zI<w{0sk~e|Jub-4uW!<%NjZn6s(=Ox|Nl5{KV|ORwV+=5q%Sv;`$3JQrQeKmZ*2*B
zIk$QP14G)z<HZ{i>~@<)C@LyW{r2P<zx|&8-`Qrm-xpWD+w<8EROm~a<xB{v+Z%b!
zqP~EUA#LMzRi_!J*YRHa^Yio9Yti|dy1H*?$vwZbv)HQeQA^(5uh+WQi3<rW`v33y
zezW&^3=9lAV#;ziJbL^X)PcQQ`Fw8H)m2lOn3<oxdX=@g?`YD+-|zR=haR`A|F=hF
zW!l+U;<4*fEaeS&88(PZ={!%k-mta&eO#oD7%Ll_mbLZnE0fbzi~j{oVOc(DLFl|L
zHbVx6hVG5o2ds*ocr2AUe*C!mzkmO3?Jj@sdj0n9^7TwiOd*TidW)K4PaeLy?#PP3
z#UZQ1bZ2i|=-i(5;=;o4J^l;_wr)&2E44Oq^RcuyZ*Fd$T9hNTeAW4P{8DRmzTYjM
zf3N1V@6x49r&cchEgoO9P}#jN<4A|#q$O6RuU?#)X}t8>?pXml5)LwL&At7tYdbqb
z$h<~o_FFYex>Z2A_~FBcWwQiV3AJ-XL~qNv*v2cpMqcFR5>Mf~)$jK%`==;pUA6|4
z(3a1yi;CWsv#~PdFsMe~|MzYFr*Ge`%`i+>@jN@*{QAw!>0j@b-(TrF+ia3vjl|Pm
zUtjxzMpx^P+D4o^xQ<cV-ag*Bo$u<eudh=j+CX!Io>s-rdW3|8OcD+-?EU-g_A;9j
z#ugS4-qZE2Zb&>_a$0wL#QZ1!F8kYOo}8rm>+ALSujj1aN6fD^O*tWO^w_aiplN#0
zqNv~R_h)~6badCpW71#Gn%|H4TEoE5@OjhgWT|ET^Fi~|FI&aq0@Bi!)%|{J{`cGM
ze5=Y&OF(1Ipmp-cdL)<0=07;lcx!9+bWpEB)q5H!_^Mv7-F{_lv^i)w<g?@=P+R}&
z>+7d)-;Un6aU&>4KRY*f_3wAP*I%it?2u+SpaUAdy|MLR)Yh!2O3KP>{r&YHK7YRa
z$B&A+R;6B`S(9%4eHph5qqpa+71a(4$+-LO?(XdK^K6$MTkbbE>+|dGS``KchUv}T
zE$0rd;{}bYS(Uwsc=xGK*80_xlar@fC^IlLtWLk)aCJqX^3r9?rtPjdJxv$1&i|<|
z2LppOXy|rB_JOXRo-4cG?^_LuA1{CZ@W8-{UESSN=gnIO8bsgw{odu|e%rM3noJA~
zF=o5(HJc_LV)^^yaX)DMTsnV`qWE;~%Jn;TM6@Mp7#Rf#tNCnrF2cyLqQt~6bbc)J
zwAHIu2L%Oz2G?u9Ty(dp`m$mP_xXdMfmA0ar#F_i3=9q0j|BLoK#O`xU$5PMt6GYI
z;fCycr4qiWavSuvPu&!ulWM00n#T_etvawOdV5~$q%S8Yt52Ob&+io*Lri$ahB?kl
z+1GU2PIKHPu;$U@$6x#F|2VH(x2~(BW5t|K(4@-|#dilMEeT%km-+6_PA@O7AV<f>
zHeTsvox<v?DnCE_HcyIyVQL%OY0De72~$nN>iNPZtN8{61WeewoQ=U@sd9oP`)<}X
z(2gi*2r?uf0JQuGRDGVEWxDzL6wn5xz?Y2L#>SVW)^KrigVtjC&as%7z{+so|DwWG
zzqD)<K&wzHD=WEpd9Su`3WLgS(1e(__Ub#ix3=X*cN()WFzm3JDz~AixLDQme%<f2
zp!Q_<x@?Iy9kK4Nt}d<QEKt~dPq1wF;*U6a^5oQ74+e$?uh5sEQRhvY_&FIIraCr1
zm5F&{%gDgMke>Ygc>*It!++=Ir!wF!3i^zffr($JJn|q7XpRIrqkjN2kB?{G-aGI6
zQStZ{_5c5Y<_VWCU;gLs->b|0<(Dp9dUMV6$&(lF|Nr+rXoH88S&oLhy!_VO+hN_}
z`eB8IA4Ti;%7}tG3ZNv@+1c6E(E%Eme){a$vVFC`r*V1Jmp(YaxO3O8tRo$QRd2Um
z2Q8xmWed=9GSHf(*H!KO^4CsGR95xW-}9kKNJvOTL}UqQ{Z(LK;Po$e-ZX;hf&zta
zJJ_?IpPLJsSOk?DSywbXgHXrVpXN!6iiT<_^hy{yIXXIe`S^sakK3!_$tz`Yq5OXB
z^4a<OZtjXJDcQ1U(V{7nCM`NSSzTL0<As<1#fP8?y@I*Xo6~yl+_@tnE1N4@TwWd?
z5;A35{{3~2kN3x4`)6ZoTY8w+98{`a+Xx;}SuMoO#xp?$)Eo)7s6Orj4&@t<<*+rG
zpZ@vz8B~mcG9#z3TE_i-wcvdQ+rcfrpTB;^72RFc;@!f)U?ET)qjUyivOngN1i$^C
z4Q6?FG(1<u?cD`hA?rKK<mIB<A|fIhhK7NTj*eOP_x)Av51a}bbl!0eWoG~9(j&)@
zXP=p2XjS%R254gT&z~Am5fM<Y_-Wo}`~RQqZ|$$&Z};nk^3EL=*Ii9PgHC+QHp%n6
zLK$$GE+izB^!LBJd~HbX?QK^<Yk)xOW6peyult$0_vf?Opn2=6@9%0`jmu*|V~ul8
zT#v6`yMF(_TWN2CctHyoW=?1He%GIMW5dJLvkRlPX1%(;e*UA!kEc$b9==M}+tc&n
zkB^VPo-sbJp{Mt5)3?}AkY@@M!mIhiet&!GefNCHmluI&=UQ*Slk4Q{JayKrRd3$p
z%$B}e{^o{a_t8ZcE?hW0@3?&ZAH~B4CI9|Z&TatBNNZbJMKQDUU0LMXtyjH2w6!?)
z0}BJg^xOvr8bNLAprA>mI`;PQnwpwi+}yzq4h<?VpPZZwEkaB8#@GE^dgb4_IhKp-
z|9zg%#ly3uvi!ldwb7;}F9JXtwzR|6>}X3*sR#A>Ed;9fbZ>BO=aVwYnDFS)qmoxw
zG+Ei%wN+JJB_$=j{QS19Gq3wop&Px;$GuM`Fd<=q%1ZzFc3D?eOtdO{qhW7vpPG`Q
zp{nXSbLLF5@A04|d!X%B-QC@CH6IQJeNSs`X?Za%I?wRqnz!8ztPBiWYJL`hR)T4V
ztqBMVo95)?v?cK{Tj{$yH+S_NP15|Dw|~V74bbR_mygetna1fM%l%~U79N+CvMyT#
zTFV^!e);@5&^kL+&+~S_b5=g~pKCQ0WbiuPYLkddt?A)Mj~~~zv)gy4bkgL>xl+0>
z4;_EhBVqVx(r<py9Q~FTZy@DSHLK2y?%8+13xz=A)7Y03p^a=Kk3oROuOYF`qVpU)
zSjjLMG$-)@JYWJ^=>_FG>|jTog9nX4a70YaxV0to)7P(CzncVbPMSO!G<LYD_V>4&
z)m$rB_W%7hd++iFttRj|GHA2l9W<v5o<VkScuttacKXfrrBASLFa-4yU0q#Y9+S?W
zvVHsZS?2lcUcAVdYg74Y(e1gm)nRpYb)Xfmx3*?$|M|L7YljO50|RI(7u4**u{|&;
zIeF^TsY@N3*;cxCi&@qD*Z`WY0Zqm1E`L95{`~lvw?XM_=gyse)jubJg0Xq!n+qF@
z39Pz`-H_0@tK?;p@wMIM`K|5k*%ueN&N57PTbaA>_d9FdxIGb|1>aLNgU{GXvL6Hw
zQFqwt39f_eu<PpU+t#;p_ik-1Ew9_#^RIt=eEjs?Z|fg=O#<}*K>Y~&KOdZD-ac~V
z$cu&TazWGeVpAmCSoa%+a)atZY~$w4OiWsP_Jj67-n@D9)7P)MTi<}1Mt!o@Tk8MU
z$=cQYc%}C40I23HQ23Uy0dt&UdMO{bm`(tw;lU%BWIS*7?A05Sk7s>(aWU)8j*qEt
zH?LAmU<9q$LK%+ey0xoxb=sL33lBE4Yunh|NxM16vN$9nV#SUfJ66vw5CtcA&?v46
zYLP3tvHpJ@XazGDC+9`!{5^@A-<+7JJj*<PUR?d((#p!p(1K^7;-DH>eN*Y{u-v=5
zuBN>Kt-^R=_V3@n)Ht>?XU<FkjV*kbblkS=%?!}Ysa5GKP_OaRw{P1b?NU#Pfcm$f
z`q;?GDCgV%)B5{CONbg98~r}tU<20#PqL)feE9GoX!^6dKOfy+KNdeFgk%2l%M4IX
z16gwDkkis-%RnnmmR_?gdozPi)@sRu1q!nZ(HBmMTKcxT9{>$7n-@HA0Id-7^aO7x
zT*B>N<`13Plx<P>pLgZv=5$dR8PMWaPw`tD?P`B%7#jz#T)A>7Q%Gmz=CqezUS2j!
z2JJopEfBnMBLY;=Esa{gst1}}Pp8OQm0Vch*eoJ0zC3ujU*!BJ^CnJQ_~c2->nhMx
z%BIxQpjB$DY;0bW<SL&C{{4Obe^^M!6wpLX?eA}q*VhLwZu|B9y}oCv9q+!dwNXYq
z&TnsT58q$+ciqRxFg<W!9g#EN>3!+b)6=GvpHe`J`XeJFL6O(SD}4nt#r${2jvICj
z3Fqh8Zi>)}f-WuCyvB2~+O>vK)8f@#p#1M}b#-`nP0gN1j~}0oRkyUfx$NSkCG+ck
zz3l3jl#^SxXwf3=d-o<nCa1q;ZAj3QGvUIzAQm*b3o2PbO&r*Ob>#tplMD>P4?SHR
zL$I!20tFW{iNo9nFIa@uf~r8+V0HmNXpJps$2LdAxkm4n=_ijKbu~^qv*DkWs;aA=
zo*t+RA)C(1z#zlP_*x&dg=*)H9WVN<->tat>-r;gUWNl-S3mjP1>T^2Eq+bZRxi-l
z@430wr9VC-R{OIvFoZa=tg-+3a`}AFJoeAe&re^!9<Cj}Zp-&6p!H0kWx@x3O`fV9
zzAEqTu3g{nRht$(Z~(>84keZ~_K{n&rh-;&?%cUE^TmaQRuvx>l)b%``aYA9VV&`o
z@KAZi*Y%(|?cd+uU!S1ptl|k;72x2&pex3}up@_M&Ht^S_2?NF96&p6`grARBHr)$
z+{bfx!~G)+4A(_LE6iAQJdYkd3Tm^0x|fIB`ClKGufNi7|8E7KtksJrCnw+9Q@MHX
zat;QDRRZ&#{QG}<_xBlEui5(^&u<UX3(9P4@(XmFQ@Ob0h{^Jbm7ZtQ?)?jJF5a~*
z>Xgn!gX_B@vf}D)o+;3jG04_jHam5x>xvboqFaMXX6@ii(wb;CrThH*{%4Wt>{p&}
zKY#e4E;oJc`{MMoc6Iyie^z+;`~CiKPtQ)f-*1d_Z)`Z2JUcZqYJc6{Hh%fI_pkqa
zx$K{HbJNn}5!ctnUfr5~y=uNRLqb?!;Kb|ROSHAMrT^^ObMmgezy_7n^mNcJ6;Rjr
zddY)jzO%Pfeok8(w>PS>vGMCJznYpohYlTjRm#WU@VKL^D<~vn%JCadPfrI87nr^%
z<&5~Z@Fx43?Ca|?KR-JQ8m4pWmwUU_*2pMG+AQY+sEw6($3p&&A_GH4)~vr$YjmTx
zy*M>hTgo&mWbJKXAt4btxpUh&85w$;T;G9>^0)sRqNu1?x^Ckp9dFPQ7SP0h?7o_r
z{{t8q4&<8t);y#ez3oofd{9mJ_SV)(OJ>cI>d!rS@}!raU*3djW(E`cH3vWOpWO#u
zP`>u2IcNzfZ*TBrcW`?_0#wqnf4sV#Lt9%L)coX=wbD>gapC0TytOg;cy7OS{l7h+
z@qvZT?XUj*ejo1O(D3Qgr&o9OuUh5BEv^^RFJ}u{oYK+30opL5rKk7L-(G!ra+d%D
z1N+CTO5dM6NqPF@38)2VXlQuq#EF2Qph-o=#ij`d8m#)Yb#$&wQuPK6PJjlgtG~Zn
zTYUf3t1MMj)y(_*YC(HKetmhlc+(~$(AMRrPoILi1hKaBg+T>H#xu~IXYIeA&p~^$
zf`WonJSVIBhk+LFrJs{|dvEXVbIG8+mfq9#R+hfL2AZAGWxlp4_4JnP>w0f*Zg&6s
z>#OlU8NWj!iVO^VkGeGv^-7z+0_`#W^78WC<i^IvS!TJjzP-B(+NpcBGG}$z+AF(C
zU*EQyo_qV(gJ%9OZ#JJ_6~Di3)ykEDuC7Pt{!f@C0m_VLV;mhDlaiA~rKDaN%E`;W
zzZVw|szkcFyFsI=XJ;5XgVyhXjN6_c|Mc0jYrp^aIfHszjx`q(rcRlnVPteE+s4Q!
zXj`syWJBGjC!U`FeT1JqeVTc8mg%VzCoX(_eciO^i3ezT+}C|=lQ*z&Gc=^FTeQfj
zv9U4kv7@8oySHCUzrG6nZqF}o_a^SbycsiA%$OkoYMkgzUw!X-As5J<e3x(NOY!pY
zUHkg_`rc#fV|PEhm-k3&l1ae>hyHx-vNtyZLDlZ3&!1n{@~VTH01w<j-N*cWKaVB9
zIW<*#yN#NW(WYye2PRDt@-+JNt7Z1{jO**>Uf;GY_qJ5z^QS7H4wKB1eeVx~M&8}}
zWL_GUy}4oNJI7+<x#UNW9!;4&d-dw@^;J40_qXTI*Et;&6LTl_{&`=}u@c>4x><kS
zk_rnq9y)v&WPjpBYj7mFzDqvd7g}1n_0r|bcR>w2P?B<TYO*SMq40A4_HE)~Vyl)d
zduDGRo{_O)(xgdK=FeX*tnRntc)zUmGSIHBk4J?6|D59oT5{rGEG{p<9<-wE-kwS=
zUER|CC-<&c;qm&~+T!=-<?mv4#^{0eT+OvAE$ZL@_uK7FI^O&L{aT%Kd)n!zm)6DZ
zR`JZt%zXD(OfP1|T<dZzL&HGO%zV!6Yp14ai;9UYtNi@T^d7T0WO4eV)$vm&Po28-
zdVGEC&6_v1w6%lh+tqH#y=}%TV{zfJ4I|^d$?@D`ItB5EH|dmXY}PrgoB*0KsI08?
z^7XxH{eI8lh6V;+X)~X0as72)O$B|y=gq80Jv|LH(<Y`H74qEf^|iI1Gq&XIDtvrQ
zHeOv%?_9RvK6~&IWrclN8xq92LERZ1(DI!Fi5YWd*?~JDhrw+_folmr*^&8DI{(2N
zCLB2;{xxbkF)%Pd6@nxnWe2E9%IEy}$`??#hCu=prVY&-*iPGnD`zPGLc&kTUJs`O
zpZI+QnHXRSK@vz7N=PkV)(={Zbie>4D$`;b@ei`(8OkTp+`|_vOd<7l8^~D?6hOrv
zxE^m4+;Cxm-+a5bucH|*ICOP&)zos=y-aIP{ndQT^?*~eQUc?@*Kcla-nWnSz{Uu0
zpAY02a34;9X<B^(s8Cz6X;aY3l`CIeSlI03<TPc%gaxwJWp^%aeERe$XdmmXZMmy2
zTnGRiP0`LL`{~yCZMmS@qu=IJ$GhF{?Oa`4G&D6mtG~Z9{cB<8-h7oqOG`_|Q&`O>
zpkL0mrpCPY^_7*uRWFxLuc?*pU1w>xS!L;xB^f_IJ>9pD*JRS9NkV658Xv#D{o)GH
z+Wq(YexLjMyvq5b>toRN(m8WvK+EOT)Z9Q_b1$!;yu5X6JQ4xV3%BKJYifGB_sd-c
zt(Cvv%%6F6RVZjj186<&ix(N+_pRUascV{k{JQ7!s{Qo${aEzx&u4#-!<*Up!|Lkx
z{rdj?zC`~miyV_3Z{FlY3(4En{P^&3vVU3GwvYeAWh@E~OiRhXzwfS|o}SsSoBL{a
z>z=eLc;K-1`n~=2`*S0w?ajGq^!>)x?CWo4%#f&laG-Jfp7-bN|KHiBbNbxLlZE|%
zKOUDan{Af+rc+pb*YQ=WSHGPwL7@6j3#Z)i|Nnl!-<BHrZB69nch8PLi!h1keQ;8J
zen?r_HmmY?YaTpEh`-Or@IWs#Bm^{=1)8Upej~LnqIqlKV>i&iKd2U|)-f;$xV+3a
zI4WuuXm19etkspOH_LoyiwFuXytvqX_whrA4w=;bsaPAoKQ1&hH0$D`)>W%kg#-pJ
z+?IR0N=9BzZe2qILu*URmB*ZO+Z(QOfYcX0a*4ms#&Dpak(vG1FR>nN4UK@DoHb6)
z&bG%MKYo1o_G_*P(B_N9{dTWR<>ckpn`U1F%?yKfj5akjfo6#`m6e@AJA6zsCY(BT
z>dUq0{Fe*c<vwwg|7&o4$G~9Gp&w@w6%@4S#0ih}A5Wa{xVdfZqeqW+TZK(JzVY?-
z_2D@=Ye47VtXQFO^ytx*3l=!+E`J~P{M_94AJngyfKqP8Gc7GG5ebPGrg9=8Pwv&3
zAHTKjZDCGE#tP8N70_%IX!nl0eC?7~ud-}EpE2H5^K(<9dLiF3(CSQq_%#Q)P^ySJ
z^W#y|p4x3&w#@BtJ3nX@{lD+~|L^=RZI&|wWTL9~v=?{F@9$mwJQKWN=*Pr4b7XSw
z?YWu!X8rzuyPg_OoH%i-AM>;+Q#>Z!+MZv3IywJc`Re4)pFV;1a8&F)rK+apW?S{;
z!aUpRyvlxGUPkVWV@Aftrlqe!SXo&?lbdm`HQIP27oDE2|N6v4WxHL@3x2N5ZwBq~
z>6J7-mJI4oO4-#^%sqbO=uu5`^YHNXabF`|?90Dz7ddU|jvYIq<#tzp&s+bo_V+i?
zrjLyqH%?k|=~7VSw579VNv*G4y=qlRY;5iA^lYz)W>$ym>*KFizu)`Z^xXRE3^j`l
z#dmmLy0I}iG&XkamoFvXBT`eB{+6yc-|txQ?@y(um{?WI63|xREn7k?EiK<|>=xJ0
zdVH)Gw1q2bONOFnS8wms+}oga7dGo^KRj?06%)Jm%lF8#9yacVM~@zDNjobA>M{xn
z3hvt{%h0Q1XBYSQSnp-fq<>V@tGdb6fq@gRt&M(uFaO=0okcriKod_^rLR<8&Tjy1
zWbvJA6$+}PKs(q#2f*wobOvp)_<aL3#;NSq1DZQJb^0{uB&HQRc0_>AWr*6EwREO&
zy4km6a}6n-1v5A6c(334ZPu#QtFv=A{#(0jnHy*lHz_FzG?1+qyGuh?*LUjFsdB$d
z-`$B^?ACi}o^3TaDO*@XT)cSk)TvXStkNqhccz`4wbXB}m8OP<2WZLcqoduax3^t<
z&N7QDe$O(;NuWb!vaji+rl)5=J2P|D%9R(l<=(cr_d7Lm8WWSvVrK`3hJF8jW&6%B
zaMTW8cV&)c@s(}4(V)@kSJ&3gKE5w{d*0RA`TJH1tNUeqdvh~tXVFs7I^WpcWtDGl
zUx_rU?_xX)ntGa7|F81zpU>w(O?tDO8w-M$`|XTgbL5Ci?5>iNd)cy2P0=jc86#z1
zw+ED{{{H^1ZEPI8*uDSSGT+&Ep1-}cw7aRPDI_iqv?^d_?eA}(&H13d|6=$4UG?he
zuCA>@LP8-yL5n~eG-R#ILh9=F#pq2>J2z)#>gj2w|M*!yOl)T72elM$?JQpY>)YGx
zFLyw51RD|$mpnMYxPNw6vDPvUMvqCCE?s(3v~x?w#YIu|iJu=HZhu;|(<J#A52zfT
z^yLt@zJ`rW3}{Lb)ZseV%)a}(ec_{)vbVRM{!`uf_*if7@jltDd3UWq?Yv1_N?rzm
zcJqM_)VjVdR@L+Ja{us@lqI0;-)HC9?moBOo%!D>@%5Pvl|F(@6TbMrHmUrS0y>vw
z%a$wIzr*8eRZnl4GHKEyL%Zs4IXAbh&Aq*?vd8|<hr{m*RR4a~UJP0Qd3m}2?&F}%
zsgBKTFF|vdOTDMxnV)#LZRM_AQJ_Om<_j@Mu`_Zv-2U_Pb7*L2=<BF8o72y0DJVD?
z8XC$yetT<c@at=9LqkHI7}gatzS+Mu^RioNYU;as`^ryCK&{OW9}4=<cL*w{L{8I-
z*^%(#WW%z<;n^D!#DZHG?(8ag3EIA(X=@w1a^=dc?~0e#2iz|{Z@abcfA!7hz0&3;
zNk=%AE?ahO*NVT-eit(=SgDx6_`#t5UkxbLU0mcU_c$;xa982uHqbV<cXxO1KCU0L
zV}bquKf!^4f&YI-UA%a4SJl^5Lc+qYYwtJgPv8YN0vg)a#qQ3!w8Zn*kH`I`|Nc~d
zuLug7lym!9m#DVQxA<KpD|Jp^3ih}CI)A-s-JgoLcXx+_rp&Hy`}FBk)cqekChR`^
zX0;{}4#wfPuf#+}&DykS6KLctZf}+6Bv60n$rErytXbpJ%+7!9-{0R)i*|x~8&x&U
zAN=-$&U@Qcx*9xVGSkTQ@2{_y@7Mod3tGmmuI`?GZqCJKe!GbG=`0P$+zv3!+Ij0=
znY66zTF~^6vGL{P-|F*g7QJ|pk(!e70<?9?#iixarAweSnd^(Meck@7zMq|)U0Yw@
zAGFp8Gzq_EjSgrL3us$9D8I4GRUEhw%;d`+-14tcyqAgL0fTwG$*;%#_V+$b*S_D|
z)WpOqXEQ^**Gvi0j$=D*zu|-|0|TsGhov0{QV4Bcf}4S$@tS4>*BA0Lz&q6-o8uN9
z{KOAw$3fb4CPcOmofWcvA)AxfbpfM+isS$RwDxV$pC5&fdoO={e7tua|8~&8-T}r#
zhYpDd34zj{>4~4tPEI0XV%HR&x0#>bmV5iUIU@tZlFjMoUp+e7&0F+t!v+J;d3BEG
zc=JIWB8I~ePxu%Z62Kkr0|uauSVJO20yIv>&<5(-GVp-*6EH|X4weLs_Kj+2Nc_((
Yf9Rl_Y5KK03=9kmp00i_>zopr01~R|VE_OC

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-12.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-12.png
new file mode 100644
index 0000000000000000000000000000000000000000..5564a0fc986b1a1867edd8f2bf6858e629e508d7
GIT binary patch
literal 20974
zcmeAS@N?(olHy`uVBq!ia0y~yV2S`?4mJh`hJ9%>?l3SguoOFahH!9jaMW<5bTBY5
za29w(7BevLCxS5J3j5`m3=9eko-U3d6?5L)t&Rx|{rCUl_h(uPv%dFf-1BgE?<{fi
zJR2Q%Y1x}csya)QOzJ=D9tzo$Hp}#4i-lRNi?GXS?`3AZR$`V>_lk@*9`o`Ql4ae!
zg0rKj@c+LTr+=2Q1zym7UQlBz-~YMd$gS-6Tg_(GRID%kX6SR-gq4AT;dF&XH4_5^
z!@D*nZU%+}Ng@#p3=Cq64=^z>Y>;3TV_;}Fs<DBAfkDTuk(GfV!H`Rbfq|hrFoBVQ
zA);qg%TNw6{d9i@28KV6PE1t(_3^m;`jcCw&2m;ec<>;*D0hl`BP&A#w?)yDj;Jje
zg=g2jfB$~{`u+cADXpHh!G(jNfqO^T$<Udb)6d6!HvCZUv4Mf1z_2YbqRRHNiSAxG
zy?z#OYEp?{VAvsW*g(gBgG$hvS8h$<G$f?Mz!1a1IjvgZAUK(EiZL+gJ&96{SP=)(
z07`yNTXz;bJmh-&ruc)nxXP!ZZ}0BDe)BRz)|yQ$r(cP$5@!`#<(iqf(#FPS%G|kY
z&F@t>uiyV~*S??6q(#NWPaE)b>6m|fxBI=8nOWH9=jX5QEPno@n01}N(a^KU<#a;0
z{r&xGzg`W0b$NNe-+a5ZlO_q>%rUe5^<wcXqtvcHfB%*~Jj7aA5%BqX%J=*A`~Q7e
zZvXPz?fmeyQCmY|Vs!HJ^V9vg8CJ>KpDpm6s>?lX%9M;lEu60|E$zOxE_StZJKsw0
z>3UI{QaY28lS{w7iL9)sm{4&gVd>JPla~DWQStX(`TooQ{{H@I|Npc7t?l{qC#SPr
z(a{my#m=P@6D%huXI1p1!z}O4ibs!<Z2x>XyzBEh>#M6mwRPk7#Wb_?Uu)x)e&Z^3
zy47_0^5x49U$6gt`~H@Khfb<0DlcZ|?<>5thT(vv#)g8kGnTE~v&ZIc-S4-*9?Sn<
zk-z_M*xu^z(^TeKm-{g?GR`v3pV!7C=``^v+bN+nM#AcTSKi#*{Po}O_pf(8pSSo#
zk@Eez-)lE7e{gNi)C5scQB6C$I7dgvPv5_XS5)jUGBVPuzBftL`^m$Hf$yHae7W-d
z{{Q=8{=dDweRcZzd0ZSE6V9du=j5#6;^JEOqWbA6kc%YR79Kd@aP;``)f+Yh+`M`7
z*YErP^*q1*wXCbF`*k}0-y-YxdxGWbek_!${SsI`v31tb%a?=M`D89UJ3ISr?&anF
z*MEF`yfyJK+u3=xvz1Qs`ph(P&Aq+t>blt7b8JN;bhNa*K0iAfoRYHS+4=eU`uh63
zl147Kx99JFv$HKR<J=s}sBJkj|86aL8FaVcFfZR<BV*&M`|ImL0pjWD+11$@SX8vh
ztw*A8ZQkihp9fN!dV1Ube_s{4`pm7Z*|T$RZ80>@xsi~succ+=d)b7WoBM3wVz-&H
zRwV}g^7e6Wi;rH_*3mI(=abEnYD=v9@vxomc-r}Sxz|>QpYQ4DFxda^SGM|Dfv_LX
z?f+-qt9rfmS+DuMjJjVhm!F&07kzVY^>)pZU%q}d{rl&SPVLWMzh+H3b9Z-ne90Ss
z`@dIAcn;68E?>9z?VX*)X&xROHy6A2d!Ms5HNE=f!-o|gZtXX#_>f?%p>g8O`SaVi
z>qc!k@#Vt@jqmT>eBGN^PfyVm6crO&wPQzw{l6cJ|K9lU@bK4Puh+l6vNCv<S?(;e
zygM46pT2zyD=gfYb#>KJ^ZPZy^0i+k=9tY6e%8M_cy*ZW(W6IK*8l$}Ws)($?#~D3
z-y0>3(=_z-{QmzqZf{ckE$8k1{r5YKk51M2{eNfq`+HtKJ|U;4>6TuPEuWaOv-9fe
z@YAPHdm9=Welv@Yk9T!<&pzHKYgP6pV(Gfc^XJDuH0J;O>C=>n6BnL1;lawna^tpp
zzuek}28Oj!TVK7(J9IQ4;h@mcrAxo5E;@0-qqVJVmG^W#DdV&rvz!|Wo>eavwojQd
zWy#@o{_Iy*R*LIx%G>kNE&U$bssn$n+U<PwD9LmGpAWU)Zl+(|U7mlp@VKnF?k2lm
zFO+Tnez|N_@gZUBdCBl+^Qzxnys|R5^vjDt$+m?bJ`|{`sjVt~eN80tdV}$|gw(XO
zRk^pft%}{f&AIyey4bhJ^^cnPetmh_z4X<UiTn5OZ{w4V%3FVLdVJl=Nt1+1UtT)8
z@b2x~(TRzPw>GEyr|x$(WnvXuH!E}2r!QZw{QLX+>SA~P+TU-tzq+z=a@DstE0=mt
zf3@+r+~w2y`*mJUzaR4K?Cj--+xcJ5OrLl0_xt_&o;KPm+YEh!+Y(<K=@g#yZ@tH~
zCGYO;&OSHC@|)7@>$6kR&&*ipE?*n+``g>e`}gk;e%7~Yb@=*uV!BaF!s9Ak-TP!F
zCQ9u3dM#RW)4GMP?md_{d2;c^tIV^{s$DiI{qy4^*ZHsCzh77Gw^?*OuG;tYwY9-D
zHG4q8^!3HX!-_voojf@)Q9`t@c%@;M%5uGcMaQ%?H4S|)n|%KK`RqdH_E`%TF68@d
zwC~p|?a#|*=NU<x<z(#p_v`hyZ`<$J-8SJl{O0cN?T4dmVlKCGi=Wy$*P`%H&fQ&G
zEwip@R7c;OXLZ@+?Aqw<v+nLHHMX_2J=<^p@5aMB@^wER-trZj_Verf>X?{0nG$W5
ziHBH>t*vj@)!g2en^sY=<K~XS<ZmglOE=j@Y|XlA#LUE`Q+st)=<7+<8*XjMOukq7
zeD2d*n>TIpIc#ud|DUJ&p}VGo?2(g`d$yzS@ta)l>3XKNHa2JK|GtiY`m0~g_STy4
z^>I^=6_lz(tk_ig`da3%FE1zkdw<h?S>~(N>-SwcYkohce@b^(*Oh&>)qfw$|DUja
z{dzIIm=%lN`@JS9DJg9!dg`ScvEe|XuH3qpe|~=c_3!ul(hm<DpFVr$_3P>OYxnk6
zzi#HYyKrM;vZ|$8q;1ug3y=Hl*Kv#MWjr|07`4A{@82q3X|px|W;;xkY)iZ!ZCU;<
z=IF6wT84%bRbERK9}`+QfByV)^X=o;{k^lZ_}k;qi;La)OJ83*t9Vdvx0~zZkW!v-
z_r_K)W8dKPb8{}9*5AKodR&!f@v}1<<xihId-c5i|D5~NgJWWJ<mKh3PMZcw=2cIp
zhHptfFPD3F*VVdnA08eC6{}hM`9plGs&={c$*kO#dwW&w?{8e3oEL4s-&ve{dz+@E
zW#nSF-b<@OSIcy*IdsU$^HMXv-3q_CR+<_b9*f=k!yFwM&s(fcw6V1f4GL27^z!mr
zbYc}_S9f=4M8t~^yCMQVXPeFTwY0Q+dh7J9S!TIWPb*FG@5QM5&nuBQY;u<C_|8d&
zF_NreT4xP-uC5Gr2UYXGzP(+2<cQ1JS*G5TM1+JE-Ok(X`~Syr`;s>|3@fXvZ`(hJ
zoOEkjuC~6ue(m?W<>&UWhFrX~)Y~-a2*+H@VmE)Ak1c6uXDv-U+@@)38{5pz9~Kle
zX_@crWhYK}tc}?j)NlW9$CCfQeM{fo+WP6+w`;4{?^|`|j1Mad%ZHxLQV&28SN(o(
z`u|&}PoMtByvxY-+TQQ?R_ET{W|{rV^xjpqP&+%jPv5_nSAY{?a$9Tb%L9$fr_P@*
z&$z#{csbAEfQX2QsqdAwwY__#OgGiv-I(lNSy}mV^Le}C7vV86YtEcGqb+rKsby)S
zkf~p0=E}@j%YMGE|9|_<_4V^B5A&MOIB)a0Cv(=aovEkAKDSBd88|yTpEXWDXEEpd
zzu)g?e|>%3e7at2)Z5}?Q-8i#+<&I(>#La{Usry3;MkrlU-O~y=HBY^%LY8f-`?Cz
zb98L{`DC*Htj5O1XB!d^pE=ylKl}Cd_2%z)z1Ax}F+uU!&CTg^OT<@z3cs0ci8I;~
zXDoK>H4@j4tGQUWapOkuyOX!p{x17$zW--$<z-*<nXRp@S1rFvt<T|~wtxSANePLJ
zm#6RF-yd}TpqG!&mhE%x>+kJ(xoq~CcXxN+zFkyQbS8h_&tv=kUo+9)x7^6q_O1!f
z;hyg9;*9-QiZ|H(c+jl<@7_)&E}alhPtVTU$Jvn+L$~L}er^?yGw{7^^8Eb#{9iwQ
z%m7uwmoHyF>)g&a6Xg2*{eR0gyLO8`ySUhWu4QeA)6Mzsh5c<3x8>iz_vcZ!{+r`<
zfBRph&#z76lQ1}7!gJWi+uOLiyZfwV@v|Ac(q<;ShYf0LYR<IrO3$kP{%-BJ>H|}6
zZ%AyuxyY5f_{)onY1{Meo>{O!;q$cUJj3g2qto@5oU-|NL>N@D{QVOAdH4H$#fRQx
zZ`;JAt)OsVP4M!*rRy6S8ob3KmSxUTcIyEf?m1a)=E;*M)4spE>nkrWU;O&o+HZD&
zfq}~sCHU&a^LD*dD?ZX8_{>{>Z;D>Th66IjX+1CBzRlg1bMw-lf4|?$9{cg<^Lbx;
zd;87B&(A%R&fk;hH{0y&m(QP#+4<#i{+eGosj;EJbLGmF&l(t+&;0!Se0F@@&(xid
ztG~Z9{r&ZI`n7ejxBq;e|37EevP`|WJvVZ$ubZ1G(f0EB^K`R}3kP!U?Xk4a$eyq{
z{rs%Ax3(I;-~0Vu(eb*!=Qicu-ZryW+T3imd4Ar%=l1^%K~=z-H9DW4PLDSe*NI4w
zvnp9(wVanbW=FxnH<y?9SN{L|eYUHs>$7FPv(Gd#v(Ms{GBL0&d6BSe$r1|@|5Vp&
zOFSoQtXel|GxwU$&(F`EtmbPp+blQh*Uz6b@9rwq{$BF6UB2$dmoHyRG&ZE2nUPrb
z?#|6M;p^wUeEm8b93J!k|D0cRG;}7&X|~nhO#c4;dsfYN)(n5UpG%_m&AwycTQ=v>
zqi=6-FTZdhVCJ%wRbOAd{PObhuE%}WCAV|8Ybq%@@k*HlyuGz`YyJPazaRVSubi7}
zZJK<H=jid{ug}ah1~usY=Gm-V<~#dUpY^+d&(F@zt@U29WPbg>$k<&af$e;<Tk`H&
z#qKC@jEjpCfBXB@>h-TW)#qLK_4Re>aoO^a&pwGuxyAKP96s#4yX<Yy{e87xK}sIB
z%TH4Ql{?YfaxO~e?^zhPw`yhj`FY>Wcb%DK>b*Jb?4>Q4mraVFo#Fbw?!hIy|9^^0
zUtV(EntgrSe&^d-OP4M^b^iSIcXxMR-C3OOy}q|Qd9t;Zh=|CNPGNN|1A~Br2M^A&
ztKHQnYrPEAWYf{{VP@mG@aSmw)2C0t4ZZF6s#Z^$H0jHm&F5G7&9$m})TwS#{LJU*
zks|>yR}D&EUkeQgn7}7vk)Xfs-|xrzXX1qlzP`B`d`aIwQ!m^7Y{<7|Q^M9py}TBk
zfA#*qZ{~CDYNIBZ6g}~{TYkUx(}xci`tAR%IC8{gYwqnZ{r!J7&8vE)x%a~%?y3ik
z>>BGD{<}7|a)FxTpuX3?`~QE}-`ZWi{?DI3U+z`E&%D2{wyUpiTB1bNn~ldo)$Q3i
zmchKzW+BaNykCw<=VzRnqWSIh2j=Z*n!i6w86-6D$yh9yX`Jr$>uLM@dhy7%L=6>{
zBM)uvsYZM@&AQ_8_*n1dU8S$L6hHU#ytK@Bwn@#80#JJ}YD>mMv)o%t9z00!on_+r
z@Zm!#`?@`Kzi;2Ss(kit@viw#_+D>x={Rjw{HzC5c`R9?(kpL&@83rAOZxfG&z(6F
z;^o!#>GS8e^4%A96ehpDz1^Qz%B0}hmcprhGM0<x*;Z@m>-%?hc2<44=&pM5-;dr+
z^;<4qy7cAAWdB!xzu&)}yZ!F7Gn$8;o}Zt8eed^s+Luj4Wo6eICLeq8egFTxLc+pV
zHzvDR@85pEE_(m}zwb*g`<h!8ZhN;dr_;c|;KC=B4NI1|R905%2!<(diiruEYgG!0
zL&>&<JBy#6GVujfmRqy0UpvsqY+CTZp;yw_t({-~n)UlVi_e_#+56|yX_0W#n1X^0
z)AZxlS-;!ie0jNlcwF4Pq~v7TZ*6bx?heo2`*qr_Et!X%lkfJdU%#G>PiDoB9~G%7
zDH$Ig9GqpG-nVy$mY&|U?c2Az^-4W`GLvatCkyw~vS()`ZNJ|s_VV$$a@pU0ZTkG$
zFh)kkZ~Xssi@&{zv^#OVx8}#gb}74>9p~m)F0OvJ(_PuECt$W&?v~8UYPmNyIL6m}
zY_<FMBe^|<+4T1M|MTSx5*og}xw+Wi?x)M!+uO@Oow*Yo*%Z3mZ*KOagt?Z*Z7i#$
zCMGPr^y<pW#gfKp9+QNGg;oE4dbe;>(yBMI9wOoIQV%pR-r8BbT+MIJ3f<^!8FzP;
zPO7`P`1;P`^xV6<LS?N=3O?y1svb6Y<9cmF;^8kppU;1N+24NY0j5<AOx&TL?z>J~
zzI=JwnHdWk8W?_CPk2yQ_j&gH7jL)U4~vVN2Xfn`OF^Y?ZUlnLle@c0=i1uFFsE`}
zlmGXD{p?I*_xF1~_qp{-smjaCtDisfH@3U?WlqWZI+2JKn>Hz(zI-`YfA5z`H8nM$
zURAn3_w|T`gau5@%y-{0M;2x}Iy!;^Tdwkn;M&;TVao1(CEunrNHsEXhcEG)YX!<g
zH8nLNf`Sj<ykywX_Urrm_2=eVYnzx{xf#4uZ$iRO&>+LcU8S#I-AtdKnki6F?C9ut
zYg_K@n%dgAwxSD;EjVx}bm0!Bb^IdXSG$j_e75)i6T^Yl4K6R_I^@9vflZ*1A;p75
z{E)#K<%1x3kinpF9ft0S38BsM^?w4T&GSM|Pt$$+{Q2`YFBurt1tcae<de5s<Jio$
zGVyTR^%Nc<o$n5fp}e4xj&`}K6E`n2Fhr!>+>~1N;UN25TizW8Tx+r}Y)bX^ywq!c
zui|cPz$<?HKMUM?r7WwZuD+XFey{MG$eg4@Eu2+9pH81^%e%bd>(%hNwyjy)GcT)s
zeSQ7>&C4so?Eik5eChJ#xBu70YpeK~%Cm-<YD9~D`S>w#ZPeB|HnU$nefY5O?%mBQ
zrSI<Cyct~3wX5`X-1hJHmUs%M`!Brp^VhGq>ECrb-^%UK0gZjea8z%&!wec2)oWoo
zZTn#cXt1|?V#32&Ts%A_-$Vj>-TGu+zR_GDwKf0#y_>-W-YOCA8d<onhs?Dqony-y
zvY1`2;=s*d2h&9dn6y9xVh!AAVR>|d#nl?*u-(9Z+BP78k>P=p#)do0-YuXJTFg)f
z$$M<L!wectgACdh7^Z4Y3tfLoLrW{Dre;r5Q`3|8@7I6$P>`CE5>olj(9jT6I^Qk7
zANww1zFjSNAjdT2#00JW$FCxkSQr?(y1FjSGR+nd7hgVMg22*c%d$>PP`tILa`Ue8
z_i-z;Yrfq~2UUuH{`}Fax?{j&ntv}wf8UQqK9{#_H_yFwWm0v4Drh`;hd}z9gSWP3
zPY+ucv+~Fhm!n6IdQMVORtA-5pu#qKd*0eB78^Hi?CR>;mGTMHx^s1L390*JDgyFs
z%=57Iak~2Y`bUo(xpBLuwiZ+{%37DbxUn&L`d+uFs9B&&{rUX*f17H(y}d&N0t!Nl
z%Ss_Oul^n%swQ~)%$bne+j2v9m*uv9TNk_gR)4%#UEMx4|9NXNFE3kJ`1siLH`Nag
zFtW0+Xc!m-n9cS*Z}Yjw%gama<J^^zps+a5YLVP&pswz2HhXQ%?z3r=GiO=V{rRDK
ze!gk;v_F6Ue!UXxAG;~u!=vNZ*VoJa=31>>u)tw;`1)&eEQ?D%JaE*F-}mQ}c~CPb
z9t-Ab>*!2bzdnEGx2UaIH~Yh%9B5>oWnaH9Y+a0Ie*Sy!zRd*>o!ZyS*L-m7m9-A*
z7Sj!iiJ4<-Sj?^?$i(o#Y0gHM7tfzB|NQ*?^lba`cXR$$xF#hhU)`MUf4BI&ZFtFk
zfBU~%d@k=<<nFY?2$U=DoS12xUh?dWWc#*Dmo9nFOWu4_Zx_#u$&-~=K02<Eb8CyI
zw0Yi@TU)cI&Yi34Y2+KMs;a7`qZ3kAw(ZsR_3IBDIKXv0@7|uBDlea$oIHI_vad5}
zc({A#EZYcB^Wg5TQrTNv+}x!<K0M?)&&kbw`PtdoQ|Hfrzu{u-^K)~Jc$^ax6UA-c
zzqq*Ah{yT+z3Tj(Kjp2<eAY&92X(#X)qFb1b=<Dx#RQd=fs5Uy@7^la%EZmk@cIs@
z^!;>NU)$0$^6~Nh>0eGyz8f4IEGj3rZovWt&!D`#b#?!Krnk1VoVa{Bc>Ddj-PhK|
zM!%~vG&Ib*xoPP#|M~0sWUaj>efsq2$?MnJ^78WS`--2PnV2XcWs-5hbl>S$t{{JK
z7arTqvAgW;s)vW$vrkRYv?_em^4Ig-&6_v9JUuslpKVjQ>C&Z3B|knSva++Uj@+D<
zb!|=L&eune9b4r&S#8(rb-Ul>&aeNsQ%OllL{M<ygb4zoVq#fmXPMsGnB0D>Pc}Ny
zD=Zj1WuhCqE5tbM%!N&<r%PU4(QIvN)3UXVwXOQH;kzM^vz*-Y`uaOZyN-zIMy&{6
z9~ZSfZ*Ea>@zaM77k+ztJNsZ0E2t5qvtK?PQYKp{ADpBjFE6jEqN1UwxbTpjrluxe
zXPE1zO`A?_-I{YVNIPuJjyF5sHG$@7#2>9;;=cCC5<I_ywe(2xn3H7(N-dx=98{Xz
zXnraO8rf&i!CFqWg35eInaDb=I-yelG=Bstw{{4CN_M2NexA<Yv+hWIa2X0Ir$FWx
zD1ypJup^xspUT}S>MS@pN%hl*4-@w9-(OTzbV~O9<>mcO&dzfUj2RdTYzs~^tp;^w
zzCP;KpO(FR5<A0=Rgigs>Cxg5iHV6(I|>#S6&KI76=h&3kS)B;blQN&cdk{as;a8E
z@5Z{dTegIpxBWiH$;l~Xb(rqftgBv^m-z+<22OO|KTS9K)w|vAuWie{ePwO5`Olv}
zSNhI2i`rH4a_b&Zh6AN-UsgRUzRl!4DQauh(u<4T<IRqC_4QplGt>C%?)!iJK%>v|
z?P|X)xBu%YC@9GHm*?<>gU#%wH9rb?Wh?@UpPvi;`|Io16UzNBUa#N3@7i`|28Jw-
z?RpzjGH-3k)Y8)nb8<T5+W-FU?(odaOwjmd*qVri$K~r|G&MD686-AcTN}MxH+q}J
z7yE(-4Poo!);^zC?FVYqw(&|odHZ(llqpkQ?T}??n4Qc&t-9bh)9TRGVO>2vAw@--
z{N`8$zWed(>+4jBwnvX1$=sS>_bYSevXx)Hl(c{2leJn={r%my^`JSRvbVQ1wY6X0
z0?lBqD7>@pz@#NFFE3xcW5<t0)f@X{ES32A`CD6BEVh_uUUD(NQ_#F=^Jdvw&CSiH
zV;9Hmt+Fb8HD&8$Hinq#9vki)F8#RRBB*<?uw5>wsA$up$B*@IE#FlC)5g|T|5o0t
zXQ}7^K5UnN^6+8AWi~c8PzPkHlr%#?EokJh=y&${`S$f^k3V%>{O;i{jSWlUgVv;;
zo;LM%_tizN+@P)&JHK4W?y|RU-rleOzZW!_Bc>Y_Vb<=}E44CgZPc__eujd#Tk`M6
zftrdL)`gE+E?v4b$3*#x%Jri{3stt}-Hqb6{W3vJC*r|}zC()6Z6{28&(1bKzpy?j
zX%Wxi3v<iwMcxf&Wr#T*p;W@3H#;FV=VackEtyffN>+Y*e}6r=d~tGi78Mm;`s7K<
zT&q&Az182ZEuUYvYReWAP!H(U-QDG-{;~`VR|@i?6Jpmy<zHUbtE8;FHRYsG`{Vq5
zKbPIwlDYWGm5{a3+x^V%RV)ULM5WKGTz1D)`<HIReLe<;u!rehXP-}F4GRgGvS`sF
zy{ep#kB&y|so3Z|yS=>~RLs4+ygdHXE>YXAhx7mcc|O%wgn?m)>UNzC3=At)R){aG
z-jQdvlbL}bL>!dA5p!=^*jffZtq?7P+KZ2GZ_f`uKhIWFKtN&k*=09wM2L!r#Jv3y
z%Li@*9f>@D5Y$ZAQ~6m$QgY?b&(A@_{LXDW7r(u|t!?}Lyxngf?`b*{=g+_I+Mk}5
zwyOUBKdbV0b0$riBqA)l_{o!$UJ1iRmy)lDz^k?$+1K?z-Qmv8&aUq6$ttdHZmW`y
z_sufNoU|?PZq&-cq~v5#QPI%EPo|}>LawflkB{D#6X@X3uq56tF!js~!&4_t1pNQ^
zcXdJdx?UD=J@V@6YEWl)#tez-+3VM@U$l7f*5u=Svesp9HeL7d_P)HY_V<@RpU=mC
zsfdf4XJlj~A}N`vzfL9d%ZrO#92^%`g|1%r&n<=n?Biv-rn4Ix8(-a)8+~<M?Cphn
zv#+oF_IUcF`SaJGoUERGYfEO<ogE)tf7kqcI$cXsGjO_Itjw*wd-sZpi7m6O{uWa<
z&y*8n(Dj{j=E&U4*;e${Y_{*R%%Drtb6{%$Uj6v^c)CsfwKb8SzJI?S>~C9o(vauy
zih?<(djl_TVCQCF5P#HT8`0X@`swRe-Rp6y!*qXt?2@r4Z~#qqo|>xt^zGZ)lZGmx
z7Uz~8ThR$BV|SeU`ST}eDEjHG^K-4!?c*lixDf&B#ect3d_MK~gph|8)1?-xDS;dF
zF}Y1sCr@5{=T1!fwn>vFdCv>JC=~1G*Qc^F^YSur+x*MRd~fY2Tnw7*eDfy9b5iCk
zkVg{}7jD|TIdp$rEh`(_t?AOI*ZsWzIK;%w7hK6oZ@iiF^qVDU02Wm4v_5ZXZO#1r
z>?~+l^u~*Q#n1gD+ZJxvu%UZiIb{B&`u*PP3-226$f7h9JVE`cxVX4qZ#JJd$+=-r
zegDy;q|~&utS2WXh8OMD>sEDQV2J53mNT)+xnVGM$`lPt%bWMYLPC~Yxf0Ua-ma~o
z;W25-?AfdT{{Fst%a)KyCBNTp&whJrE2y$PygKo4+poXx>(`gQzV>q6?st<^Kx58-
ze}BKeDfP6>ygT!zO<UH~#I(Koh6bqm(mNtK`wm*e!O6*K%B)$d-n_|Kx@5_X-@fx~
zA~Q2Ht!jR3Xlic0x+c=tH2d0`J6}QVwI!ay)rFzYem<Wc-Y;i+Wp%hds9WydFL(9M
z&SKMy3ktjv1_x%%E)@h-st(@M^{xi{+b&H#Jx$ZhENto0rC$F2AdPQoc@9r#KmOFa
zy{qd;bly%^Nl8gix&cj<W?WP{dgRE9x#jmZeu;}=1UvfJE0)zpH8nL;CQMk+($d29
zd&!a|7AjGqCr_PP^&#T>ySracs?U$PD3dJ&DlA})fjJx5xvzoR4GbG3z{a$&oVJ|+
zSqH)bN|8=Yn5_kH8(e~G(X4(@w7`r4m82jqF^GZ8I{<D+AX|m##eh;SQtQCkG34_`
z7Y@)m6p;ED4(}FF-wJ2D1AUDFx|5wBg?t9J%N{s^oCGR>7$SObdIpb^;Z3I)kDEdZ
zudY9>iKSqT`L+i%X5rk<7g|uT;m@BxDVuMaRD4Lty}xg7%zeAsUndS9UVJC}#016g
zFMEqpRU)otyuG#c)t#N2H!p9@D)@f4+`5`;MVi0u*D0HqH)It&IKa4c=~ByTsp~Ew
zAyclciCny6hec~ki-xIbD5wB_c6RpFz182j&RZ8eXt1%hHO;$Yakt`eFQ|H+rW?I1
zZf{lQ-(O#)ED9FvU7skCb#KqkxSEfyGnZxN=il1$(sZwR`T}s@-y(VP?{%@eL6cgl
zYHC_~dVZ5YWqqHlb=IXNp0{?DX16|fb9dLavbwb}_s)*Oth>9mK07=6c|d|^(A{07
zqJn~jt>r<*pmie$O7p(Hy87wUryw7np1o(UUk|@{@gk_1+$U=tw)8cqxfQtB&8qg-
z7uWvj)26Lju;9U}XK!ACmLL@<p1aXJb>>X)G*sE!TYPV0cb9FI-#=&19-F^kF8klw
zU%!8u-(1iP6=<IN=`UG}0tZG$MlK$nDQD9z8=tpXJZaJ-t(x{MwrL!U3_H#}ee&c)
z+UBX*+i&I=`34{Fm*4-!)U8KiVXw5g7kK!k>`jF4e7m~~{qgnc?#!B9C<spHpkA&P
zO2;nV&&jDt&1c4f#qRxCCnu?bs@uZCjWsnjZ)(N#VqO%S1I?CgOg^4<agl3RclT!X
zw08}loU*RCuCC6i{$I_`Z^h5g-RzI|%g9)fxBqV$XgSEQ2hIFnUM`>iYNET`&Nr2i
zzTTQE%8FUw3>$Ois!Bv;WaOz+r;0MPwX}9Uu{4|gcG2kuOH0d1tNux_=I7_%t^I!2
z%fsWs&(F{GXZ20Zgmvvgr4C;OX9%~b?Rjgjt&O(c^7qH%{;L0fziZp5>*)B*HqQ^M
ztJ`<j?fYEo@>2#pt*x!0m2&Cl=S|I=b?Wr#-6@TwFD@v01}%2$U1igzoeb&}h(GEn
z7vz&R^HEh*_44!EwjH#V#MCtO;lqbqTwIe>o<4h)_5a^rEnVHM-+w=Bmp>Kz{>#hD
zRp0NHi^|BXY2%gl`t>xnP2Bs^vokZ54;z?dTv(v}t8S+jxCrPlHrrYL_EzZOcK+*A
zG=obX9pU^v`OfCeo2O2il=R-b@>9yvrAuFaczBqLk8hd^ubfT9*;%H++w<;T*-@CB
znx3w0Y8q;3X&JROYwF)S=k5Q;2nq^zb#w%Hcyw@ab8k&MEA{rqM(5<?eR~&8IWrX$
zHVlM1aedwK7cX9n+L+V|n!vxj+<$f4-YU?nyJ_Jgm-hY}nHLweR(*Z7wDk2gO>^^b
zIXStk`}_8a=|n6zE?2$g*1OHSK!XGioaRhS@Z4{+TT4;Vk&}~C^qZ%rXQ9WICGmD*
z>34P%PTyO1dYbOmq@!J@{jd3g8wCfFKt<FJfppb~4Pu}&y5T6I00k9mPz4e~%V+h2
zyIY5Z7UJ!=(Z2wN)e)e+CnVR4M7(PR<q4P!mfGQ<D%YCi<9#n5_uF6le!qVG@Av!T
zLD8I<xe_!!aCL2T_`G@Z&dpO|U~pJ!S=xEQ#J5-8K5lK)R`7K7$H&KCA82HrwB*m9
z8c?@+{hm)<#>+Vv9JXqEZ(LKg@R#M*1HV4c|Gx&bcmUK11Fe6Vxh&H@Y<pfTsEH3s
zt8*=!85kN?6~7XCc&L@zwCYO+XpZC8%jNS=$@25^UTx!*o?~Flz%ZxTHsamEm8{n;
zE_MeO&;9HyEHBQ?G`?z~%)l_Go9VQzMQP`T!pFy~s=j2j9xs1?Z|#Ez53=S6GB6yt
zTAbBbdcXGj%U<()0bya&_O4xX>feKAeo%|!;o)}c>?#I^5bM?EJHpKbwMnaj{x15v
zJ^%hX&_soTf`i#?-;EnLYH4V!`1JkcRm-ghW|?MB%Q2gM=+GgPsxKLmZ3|mkSU}B3
z(Cm3e#)@Trb6=g&WMU|Y?da;dgwYvTxgkKS_`w0j%BrfYJ39)i-fq2aQuxSau0^5K
z-m0&c*yU>;Trf8_4hFTfb{0PeE#;XpLqb(uJ^M(9;Pp?}<{VmCz2VihwX5e^munds
z2CfcYAGS7X>z35hVp}sWyBVjSyK<yc7&O!jazwz|IUCutudj=Z+F7(zNLW}@TwL7~
z)CoS`Cu^E{NhSC0uC0fP7cX8cDl7Z;f?3`j3s5)k^Ru&;4>U5reH*;o57bHDntED{
zm4(G)Qq-1=g@(z;G?bN{|Nj2I|59{`rQiP*GWPcNzVq#3XU?3drJ(^D-2V6XeLZNc
z&cYo`3=5>z#O;lWi;L^(?A*Bh=dWK{R#s8gWp6HQOg_G<#Ma*49yA%X+<*SI?N6UR
z)l^n?o;Y#hw?|%++>lm1<sWIa*n6OeT{n8$mBsybuij)bFx+t|eZT+I8I0jfzqq)0
zb-!M!zrDXdK6ts`)qS<UWrSAh@Bb5|s;UZFnRvMJ-o1NV+}xKzG5mS$O2aw-0xjd~
z|85Nm3Ys!?>eArlewH>lA-|sL-*lI+O}SYSU;A}xT*X7y+<SW>L2JgOOfnYitNoqz
z>dMMj7Zx5CjlF#MaP#&9Obl6TP&zW;&dc6o9fHbR3Lm?9PU`RPKh`I^`sL;2);)<5
zZmo}FvLrXD6=gMomf_icI-v|&cDB3hZOHn#y+yVEc0br9m3?i^#T9{zuPkt6c6E0L
z4Pk)V&-ZFR`>u`K8>Jn-?#hLQ&Z}$g{{8*^^x<X$0fvIFb2hSr))emBx9{n#?5nF%
z?dvQ#IXOX@wNK7=m8$o&6)RSF96fsU)5nj6JKS6!hotq)I<k`W+UE0it3hpMX|tSw
z!)?6lUxKPmDch<oPEJl=J|34}UHA9bx8#i*H@>>LdAX9Z^4Fu{@hehKPYd0(ZTt4^
zM>n%FEco>UrDs)Vxp3jaZ~yB)9ApPg$bx+MZEtAm^%WU1<+sb<Ub*q~$H&K@S-|y`
zg{q#QsU9wF?x}O;ya|Z$4Ep=)>(+#WOi!Obf4y{i+$0rHeV=u8Rp`#wHoxC&etJpk
zTLL4)nxd`0*Mi2pr)q~=?Xmmw;jnjK=H{DICQlAtw|C9j%*)F{cd<ij`KZlly?YmE
zMdz)_n6s+y;j1~b5?b5Z!m?tobJhR<egEpF)YDw{vz~9eofmw1n(owj^Ym6e>iCxQ
z_RW4KhKQ$G(>bh5UxDV8EVn#;@+9Nop;pm(!eU~}&dxU1wzt2ZxcK+Exz?!?ZHEpW
zT4mF}IsN=86W^y#pPsyaJzUnhY|8ZM)9rr0G3J#vJ9BUSjvWy*XU>$eEJ~Srydc%j
zcf+%Db61<+ulc-*-*9&nXqnQ-$Hz-QpEZx)6rYi?;@{`_|93nUPGw|RabiQ_;gF!9
zMNgijR7VE}P7FdF0|t%5T)Grgy&tr4^v+k%AW-@J+VF!14}J?>WmWoWMg9MOpoO1@
z&)?j##Y9v@WXIjZZgXcPsH&)}$h*61*V}EkuPk(CXJuzUefjd`h5d;VRqywHUzY`H
zS$YN~Bs@_4JyrHO^D;(;bB}s_-^K1OyZYhbVbj!8BA^0HQBl#$*Eh7RY+F!J(3`)Y
zIfX4-Ol0k9Zv2Zp2r3>or=0~2C7R~li2w~L`}&6Z`T6ZkkGB2)=ku$Ji`zkM0nj|}
zi;IhAS(mS4<CR*%$jlZ|b^hG5D@?Du_4iFkl;Gmy3#+T!x9``h)kU>yet3t4Sxgm;
z5?z_2$i~pHJ91aaO3-v<>gj1OudEE_;^hsks@hfc<wfHAWC^#OwI^`4M~)QTF3Q{a
zR4g?mMZ?Z6?(y;d@Pvc~Nl8gx4sq*;oVE>9UoIBW&M&`iTH&iJE0t%TU8cY9$D>Jq
z_x*Up&C1HUvh3|GQL(c9eXgrP-Gb8B*Ge<GJ30bfT#ksw3o{htf~FQ`o8=Z|oIZbk
z{j`m9H*UXv{J1+OC#RQ($BGU9US3_!i&X!9+Gz3kSnujD7I$}-Uss=BQ*`w68qGQX
z7F>MwsonmMW4D;@rEhO<>+ibwce20T#fOL6-`0D+y1M%LhmQY7;lUzms;VoCpPvh_
zv13^9>&xrw{(pacEzYnmc;GO#i!)|_%%TIgHl=o7x_lWlyYX^5f88F?g6iGn`KOP~
zuqa#v>I;F|;HRhQ^7Us~RDN0_SO2Gwm4yYgsC&{9v)o%Rp3kqpw*UX%e9+*-CH?n@
zBDUwvO)X|(c(C6xnO|(p^D9iNSFG?56chxFBKTas!fSp<;pOylc@;IaSNE#lU;Xs-
zv~J~ubPtb?X*!XM+U2S|=313*vOoEE_xpX9A06%fdfDGT^JtgoxAb`14+ogL`unfj
ze!sI=eSS?4D=TZ&<6iSC>td~I|NVR(ZY$5g@L=DZUo+YwH>YL3y|uOK*UROg(VEHX
z{;!^#oP6r+*{dy_!dueLN}Zi&dwbKzHeTsvcXyYs&cDA8G-P<JS9&>Ub#LwOZ&%;l
z-7RaUw!H4|FOa*Ln3zQ5<=2B&p&k{FzaszdLwnKny<+=w85q|2ht*#&wqHEw@Jh~W
zxAXU}U9m#r_vOo{P4ezUaB^~jCQPR3#jbijuln33L(qEktecxsr@pENjjg=DxA*C-
z^mB7wekctKo2FXK%+R3f^!>pV7HxHP_q)4FSAVG3o_BZ3?Ag)1#!L(hJF5J2H_S54
z1{E>k6*Z@)>4IikzWQ=7FsLVYUa+;;dH^)uxGHq@mmiP&Z_Dqke|U%$RO^8T!9mLz
zK+A+?2D30QtT0;s?%*t|(p7x2R!g2dNzskjap7Od4bTc46JJ+X*UVQ}R-T)q#K3U1
z@5st$#aWG@MeJ9ugd9D36x1&UEy7<CKd;#|<%B?MTbosJ6$1l9_z_h(ld8{W&0jy8
zonQ9Ngn^;J>YnQhxm9})tjf|#l{n@qKb3)j;lV19K>Yr?rCKlV+=+R6fB*bd(hLQ$
zpqbvQaS5@nHu7B3Zw+;FY7*0lQ1JKncXe|MJAVW;z5Yn3dV|W#Bb~xkACHPpoik?*
zXcNGf3(lZb+PAi3K7O;3ks%=0W5b>1%iL==9eH)V_3D?Gm#^+B%})2{WoXE9Z+t2@
zCoJLVvuCeBv3RJJJ2WO{&508ppvKDDsI5iUrhu#oe9Ic<=hwG)gO;Y|#TOSBo95m!
z;nHSc_$S^Od^Y?oYuIeF+>(EPDqCAyLE)5jb=6eAxmKW7LTH8G^K)}o7q)?dWBD!a
zHO0@*c}@bYdJt50i`le3bCwa0^U|eDuNs;%FwE(*jd-{47WbMdQ>MI<6JlUk5EWY8
z2pYY;>&(OukUSw_Cp$lQAIgEd7JosLQxE=w#IQ~)f%`2;{TP972|L+Ay+Ax&gGOZa
zplK=agx|sgMf}j=9&kS>cv@2A*Ht}>7AYM)ejGGJ`0w98E`I)SH@9P{=WlPxoV;l9
z;;ZXotyx)ER`|{~18o$@%gfujulCoMiS6y~JFibrbYAtxwx|?rC@5{6on_k9-5u=V
z(Ge6J3`#<vX4Ku?<?BD}`SGIyG)(~NvHF_dU9x74&fZU_v_XS;X=%%(%=2>IXG^rr
zGS6Qp9$yo<Ec4dw*=D&_zVFXULi$7JZZvPr#ydj(aHprIC#b#Re0zao^OfD@`G3Ez
zufO`{=4RPGP+v$;P%ykg-ISfs<htm*-}jGBRk>SsJ9kz5{(YbcneKVPQBkX!nwnP6
z-@y%;g^bwyf0a>ZL|WRiTibG1-`bjOy`}u^t*do=w79sqrp%wezKvIUnsphr+4WT=
ze`i6*J1i|NH{Hy6dMnp#w$J4&A0HoIU9xw{5*1N#@z;&)as?UuoScFC>;7I@8LTcU
zB9ig-)zw+X>3w{1HY=W<o*sYIc83%=$#fWhOAr+kJ9Yi~_L%CmQCr^}*M1G^6~4K-
z*|g}1$JcjvZ$G?osFhoGAE<q1TJ|PFH)@MVVPWC7BWGkm15^#%g&2#gr+z$Ze*eY3
z-|vDmGBS21tx`fCa=CM2UF_~J>+AoXUih|%bIRGY-7kz1{QUZsoU(O$_~PPX&=A|J
ztE-oP`BK8l!V;3T@9b>z=_+$=DmMlF&E^6-{LEDy!LrxaeDCfmEzUT7?%cJ{=k4Pk
zT7vct?5W)R>GNk<vt94+><n&8)X>p+GbwqVO=S=>J70*WXQx^Iy)|mSvqGx&we!hN
zQZdcCvf|S7D=eU-STI-GEN6z7m)Ddzb8_-QJ;JQ4Rfi5A78Mau@dVWr|Nj0Cjf%>8
zU;gb)BxrC1G!(MGZg14~yxNO~pFVvG2?+^VS9@-br4f&FGaK)wAM56HgL0HOW<%)E
zKb7y;N4-@&L2JbK|NE*B+V*jOUoB|Q)86{Gx3-#=ya@2T^n8B(x{eMGR~Huz6&07(
z)>crXwd~D}g&UKP$C;_F&IBd=hG}}St0axnGHz~41&v@jIXh3CH*cMsZPkt65^ak7
z{Kt>3-&_6tlmU-!+@6STas4ujYl~dDs~bTRg<oG?^#*Nc$je)2V`BqaMyMOH!J*&w
z+l{UJ4`zY3Ha2h<x;3eK+S%E8d3XdkIXSh~1_cGl2<dwM0_`I+ZJ(waoprQJbn2_u
zd^egA+t@lb3+Y63g9{PR+%;&a2yB47?a0b!paE_ezr_~35{Q8TIt(KKE{;Nbca^++
z^hR^RtSwnrPk|N&Y5%qm*s(pn{)AzHCS+hyNay<jIq=5IiQr{Gpdk>@6p~(B(~4){
zF*cZy(>U%z7XV=$`2kyrJQ2@1tr|SWdo)1cY7HpGzy`oUBSXmB^U#ORv5oeFMxUT#
z`rtK85XXa@1S)BuGDxHSfnd*^64F^6KRq}k1hh4dm6i46{rm9`A3i*F;>3<Om9x!q
zgGx%a+}fJGyrF>s)YmsOG(2_o?A{El8_ibzsijsKJbUKMmH+<!2JPna^76V=|L?Q>
z-=F8}uWi3yxBAPMFRyl-%>pli;VwKTw<dOXS?1GIQ$c&4Vq)f~Xc`#>$y%3PS>ic)
zOX=%tT<3kgyn@cpvz5ICYTSc1f2^<nyBf4JEPuXL=_=3?8{Oz_8VU*ylddds<?fX<
zc9WEpe06{S|Ec#Dolfi&0Ih|=IfuFCQ1SoWJ0>jwZG-sw`ug?j@%6d+r%#^_c5`b}
zQdWL@bgD|PoNW{%BO_>()3yAu6evFx7+&4`U(47yIQRCp(6_g?%HG;t_BP8tPL!3E
z_0;+E;fLFJ-{!{G{aoth<#lDLw|M(L#Q4D~leX26!rvl!a<!jdUyfPy&a&CCZA4mk
zor8iVb#-@tJ;2Ow0qOKZHl(mJ94KA4VM73-n;sV_U;k%g+WC2FCn~$IDt~{EFWF;N
z!JJh+fx;V3%7Q04ecz!DhKC<BzhATX_q*Nx3l}bo+EI|W6ExH5mwJ4KCfH-jv(59b
zP1B8*xpi)yZS~1wt*Aw(PoA8pVw!vF%cjS2wpAgZf^%=x*D3Snz1uKxZw}98legFZ
zyf4%;cJp-tw-0vSVga?6U)|om-uX5t#?|N7Y&ukY=+L1pm7mj|K7VeVQv%=0aYOaE
zP35O0parp$CJBM+dEZ$kn%9>nAMgA0>C>h3`L)Xu54YXC-QC>{n!cE*>>l<_ESm+?
zlc%hFesyK#;(vdCXW!hE%IBZw@9iDz=-3F_z1aKioFydxpS#g~b!&Dwue@DM@G_r^
zox<vG{EN<?I~V5V)wTEjlarIDPMfyua67-Yg+;_9ldLNme_zM{2jw`>@IvkHZ#REm
zUl$wg+|IYP{_mg9=U2P;%e}g~dit>*$;F^Kjdyo;g7yQl@kk`Rw6&H7l}Q&sJ8hDW
z@#scx^I7gUHz*@x#ih%auP%1yua-Y-@Z{mc9Y3~~zmJn_TX?ivJp1FLqkPAswq!gE
zNVr>cS{F2PUsJQ^Sik&w&_2;4M_#mw$L-i={+tC|mPo7?UUTZh$B%(dPEA5WLRxPo
zPnz^-LWbuhP<MZ6;jZ%c>-_D0KIwWEF&TA0{LR6pui&(yNW^F|a+48jlM`HFbAZ=8
zZRoPGu>q~q{e6Aq%9WtyloOTR=U8YnFg)<m*zoUk_WHeQ{QUfPt6s02`l?>H?lJ>I
z%>Gk#>mvR-eO+|mmwx{KzuTg=W-X1~U8bq6efs8QMg|5`flVsDPZ<~lD?sN0uwGkV
z^Zjo5t$nq-LE|NDywb1MZogObZ3+X!bxCjy@>LtOG#gZifOgLwZsP@IO@{Cmrq|*3
z>VD_mt^fZQG~wpr(gJEO-Q8VoT^+^H@S5jk=vnv1ulvj1-&>o%@24BT&4&gR(7ppM
zE-s~`ObiU6ZjE2}->Z793z{?pZI#}e`{cw#(7cAv<&t|x7#OaLf*RmlI-cTsF&9ov
z)xNqtKRz`z_2q?y&Q>KaChRJEyXwxJnA$HF-N8feD;z5(?Ox(L+e}kk-Ca9u&4o`-
zPs{d6wk_O#ugd%H@9*W8-Y_tn3y6tXGij1g`?gmR7aw@Od)LV1eQ8tb=_^Y-h4+5D
zmHqVJ^UCjc%eR)jjoSP1nDnQwUrR6XFfv>{d;50uy?giga+fY$s->f|XW8SRgq`iL
z_Z<K&HUTYEn5gXj>R$DG-SRtWn=^lYdiv}3{eR0qW9Er%3=9jF?R@t=Vej{Q)u&FM
zzI?a*{@?$%ci*0&b(+2J@&4HX^LS1ke073F^vcbSK&zyrtY!6PIeRrW%uuj$u3mm5
zNaXO^H7?Gvdp&gyGH>=Nxt6wW(b?rkVkBSrOpMG3zOeLJ%R-Jh|GS^fOz-$naB!z(
zjs5M)ho$e_3*Q}ozw2D>yI*xdL7-iOKTH%E7KCp&ao7CI?}n|Q;b(UC@}0*{ZPGbA
z!_XPDzG+>|&O`Pg3=9|6*4exMIBR~tWcS%+zOz9~<vstO-G5)x+B*8?&6~DGxeN{e
z+D#+&Exd0ITJX2*>u)x028P`W3t#=t03GMRvlz6{!!4rusWe9f1H%mt#?$5ouArH9
z30^S<1~aGTr_#s@Gd9#PgCrUfS#%f}a*j#If4Ot(7HC{m!^kM;;K74lUS2_=p`qJ<
zo0^$v+1rE0phGh<R{Z(%XG{M5eY^9lQ%{Nf{Q0xAYU#3Nb{FpZ#~%<;WMBv=E87NY
z=-s&k+TFNn%^IJTD_7pyoZheIGvmV3x~*Hcf|`PEy;4hm{HO>G4=>-jHZ@YpEN4d8
z+9=iOr=QBnTa~Q1SiO;%3FPQUy{4eCs%zKQMuYmickaY^28D%9d-UkhmWq!_vK9pk
zPS+mqmtTK+y1urKj?eAw`TNrkOj>fVnO$31`SHR0Mg56g0t^h&hPJj9_Kj;dZ3_DL
z@87ADCky*QgF*N9RIXaL?%L1K&v)N3S5a|EOibi2>3{q7ZB|}h-GbU*QXn_{jq&yE
z1&!f5HnUassH>^%x^MpU%gf84J(G|7?e*FZFFbU}Y3tUllGgiTK>^;-TanzgVc|kY
zzV^kJcN~5=;q=o>t=!^0G444zYe3W4>GLYx&YnHHYR#G}r>1I$hKDcL-~Z>*3ClN4
z4Xg|f_SY|6TGY_c;P<$(vGLt^-y1s$7ayOWes<PUR&KEupU>Ne=jE;2ZTOkhN05mj
zLHS-pv#5y3lG*0@Wm5YKAGiJfJ8#nT>FU!@m&W(EyzmCa_y@(^<?pY(ySv-=*sNKz
z-tFu^{BXx>lLTky<|XrLdk$?#JgnjwzAonF#^MTQMs5a%*_BgFBUY|lIalt^&*Sp-
zFM7@Iy(pUB(!%og=4N+aUtc-yyZo|NDyKJ1nK0qQh3l8+8mFK00HyY-H!}CYiQsQc
zRMf0nw{C?51wE3>&dm*tjGPHt9wsTN`EvjAZP%||TeWxZ-^TNWe}9#3-L|bvDt>3t
zQk~O5US6jT-*4c(n7|0~*$<J#q@+ccE?)*sE5z=pxcFD)`{wlXtF~;pvNyJ_Zr>cg
z<*#1978MnJDz{&DlHVK)#p$P2mtS7__xE@2NnBi9DxU6rGJ$SxZJ^~}($cG^O%nsn
z{9e6!HEKhGWB<04dk&yOQMB~+ukU`pZ*^A}SM1)Z(2pNKf)=(<nmqaL?TBfr_WRFG
zj&E&keJ79}In8=X<g}-J5f?9B1T9@Fdv|B$v14vOfBwvTb7SMJ4T;V7YCfNh+j01w
zD`=60+n$RFo|g_ZGKYqQECH?Y+pejr`!!=r-s=}HUVQrj8Y~Epuf6)VY#%7z8+t3W
z6AtQ#f!6d%xHYpfH1u9b_{k;(>LVNm#o`7@spb3nL3#dw0Z25b#WZ4HBQl@uw7I|r
z28IoSOw;lcK*=7aknObj1<<k{h`DDkSbVKD0hJ+bkbquu@DndG--JkW+m5Y#4=QvR
z40=G$kWS>CmcIaW{s)NPVCd`X3u;Mh*Js}Q<l5S3&`z%H`iGxGeRa&l+`Rg?(1q?>
zw{GpJ<!s1>xCLZ)1IY6N8)}$?TNoG^+Ab!1ZJIVs%rnT<we?t^?CYniU&ij-xf3+L
z2{OB7e)<1P^7Z%B{pW?Gr7ipY|LZ)b$5*}!Zm4pst=+4lX>5FXxA-H~$H#g<e^Xr`
z{_*p>_+PKj@7}jB?&Qgn_xADJkYHRbzGTUg6^j-*9d73j4+xmBU7wxd!-S})sF3*h
z^;4!yk+Wvc-cZBLxLUlWy*>Ndn#g<mco-TOO~QA`gUikqw$tVxG@Te27!HGr-V<-x
zPJdZ#y>{(d&|V59Wo6K+hb2o?LPJAKcgH6uFaGrTGiae>Yg^l?^XL74e|!77=yx+a
zf7YWTom`xp6AwSUaHy5L_EWS1$T)|aH*bRWk8j$v>B~v=`6uq*k6*cRrB%g;2e#i=
zuU&g}mT7j$!$Yh`j~~BpeCFzvD;c-8WbP__+y+`#JZFx~)G1Rko}HPwEdTiHh-TI=
z$)Kk6ot?#^5)vzn)6boFSWvOYKJ}DH?9L+B<9)K9FNre!?Ki)cAZu3>5xqSxw6Jhv
zQE{=VXJlk#S9dpPWV`gifkwUWvi5a*^y2re*|5PN_x`@vt5>ha=Ize8X#_f+qx$>1
zP!Ep|6-_IvsL#*OhlhqvUFJLcn?QNGzexl`$>(RjYooTVx@^In%=rGr+m{DVo$~tm
z`?t2b`f*z^0f7aTpP#MVwJYlR`T6gQ?oXH?(AwHsTHW{h`uf$YR(VB6M!qXh_1v6(
zKFq_T12lk@*MD)kzy<~lMMX!@2BqZW#oP5+8^o_%xsvha#YIpOJYJEMwCML=_tHN<
z3b$_ET3TiCwt<luv{>$b{r|rc&nK$0=q#AOS;zbIG~M9n=-aW;Ypl0!-~RgV_xs^F
zIcu1hnL!)PMMXqbY~6Y_dH2J^?XRbX$6Y*c|9{Q%`SqX^R6xUrm6estljC-m`GPig
zgoI21Y0J8z0h-^`n|}I5EmLi)x!6u~6O)oCB?V8uc4xim-r{;O6;FO=Wn@f9jf|al
z{D|e7mIhV_Ww)LSZ*Fehox2gV+(cA6EaT6QkDw&5%xC7Je!E{Dl9G~gw<D)5-L=bV
z>GI{T>;M0r4{8u8I=5xKyR*}(^3#&)-P5Ltfp_9;%egqmvKX|w2$Z})i=01w`c(C%
zj<F&uGc(Y^!D0Ew0|y+w|5iJvxbpPpFJHb}e=`%?$vi<tR7B*&%aT<qR=ijj|DgKI
zi$Ke{erM;~$Iq|*HdE#0+U@s(TwGeZy1PMbf8TjFH~0R1d3iZ#qpj}@1II~I=FMA|
zc(`rlmMtNx!`Dv(5Bsg(|1StsnfA$OdV)@#IQ;O!aryc+d-mA4y19M(vX*(<qh8l{
zj*gDIDnF+!|0r#qx8r_&$oBq=S1W7Yu6~lSfx+X~`lF{#oeJ{w>;!FYe);$PzTbY+
zQg_-XmPE(J&5O~SUiS9ZQ^S8>F8l93JoU@{a5qrTyZ+zL<<)C8Z3@!g^P!22UvACm
z>H53lLG!e?ZrytKQ%9Dee0%Nhva_>HPd^6jH9B7_!`Ch)C1urnUrySp<b`tl^|vpN
ztvi?eNT$rGne{;K&reT5wZ^K@)mB?0o}ZgLdH($QNy*8!$L803@@#Ewefj3*X1T|K
zfq`@T{vQ$cfAQ+->UZ|nuU>um<KyG5j*b^w)}}`8DtUQn@g2Sk>b6<Upf1~%EhhaN
z7rXa^#`xdhscws-V`AojwkN$_zrQNx{@Up6A;H0mugBMe6S7GJ!yV9yw=-varcRks
zvQzAJ-T%k+Z#Eu(XI1z7(bv8{KG38AXb0V@RjX{`K&t@as^4y9-_OawucNE$o12@f
zrKwrizjfO-P}|MZ)AQZRU&oHQU4>QIf>KheGA}P%xoFX$$0y(VEe}3>_N?9a4S`ZR
z40522rd?fJqN1XeJ?`%As~0bJE-ftuZF#8vb7`sfukZKkMP+6G9(WGQF2TW<ZR<C)
z{gTdKa}YGjQdPAJG#=P3t`9omDK$0Ks`}d+FK_R=x1T<Le)?s}s(t(JEnXT2ZYW&p
z6jpyywDU=c6)3%Vews1w4`|8EoH=VeC#z-t`}6bH@Avyb9g3w(mSp_;^3v`7&D$9p
z7%C(zi<TG}8*fcK%+@akS|_GA-TU?R_1|yo+p!~JT59I89!dV1bu*3ASMAyrW&h`c
z^YZWOVt0QF*ssdGZ^3qX6D`lDPoIMJ6>Di}fzD^zx_vunQHqzJ-?trl_WRFWT)1IF
zKx=F3tzD(7bxsFmX08OSI7>Rp)&F*0?YGF#&`?baiwIB;(eD4B;-^oZWZd4C+y6~G
z&DkWv!M=R^b6-#)vu97t)~#E?3*|v`7uMF%s;a8Hs=lrQO+?4n{dDzP9=v|vuT{s@
zIo@9f&5wbOfdXyAes*T&;=;$rR_@#xdAv{da-Xa<r~*@TZnODh%k<(Nq$zS`<=%b4
znVBoy7ner6yC1KepMI!?^Ih5L>4F;?>fYt;zkBS+5e;o^@7d=0-zxrh>+cKj@##5r
z>J(^ywe8m{!H}gfiOZAAzD9qZ`xvy<bbJ1M(E6#|+uJ}Z1-N*5ufDjr_$z3y_lE}u
z+ujMiu-;?n%JEr8yx*IR;lOLq?&-qE$1>mF+v{exwS4)kSyG@i)%*W`n?0}ko#o==
z$L?MPw*Wzn0oQksHUOwa2;zfU8hF|@kos8D>HYywXQUw!)ULU~f!r`*V31x&WP?YN
zDe(SrWOIUBFj`zl4J-5p+r;4Iev<if{N`GveyMmN2WnbNbMW(r7ZhwTGB&P$^5fva
zgIxUl?<XcNHa`8dXy=|<K?Vi~Q1ABN&*$^yEXyh?b}U-7sOrg$7d;K2@o9<fJB$nr
zJj#%^9H{MT0F?lleZT<JU4eAxAPo_QHbHRDaKvkP^FMAW-#l&A@=^u{1_n=8KbLh*
G2~7ZjA>fh#

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-13.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-13.png
new file mode 100644
index 0000000000000000000000000000000000000000..df463cef976349d8b9874eddf9ff35fb3527f2a6
GIT binary patch
literal 22527
zcmeAS@N?(olHy`uVBq!ia0y~yV2S`?4mJh`hJ9%>?l3SguoOFahH!9jaMW<5bTBY5
za29w(7BevLCxS5J3j5`m3=9eko-U3d6?5L)t*$x$_5c5mzpJIK4UZcn`#En(TQSpl
z+MGp7sZ+DU-Wp%pzJ}Ad-DTla#jigv97zjPTxcinwbo8qasCqluG(5NJ7cf2i9ND=
z>gvDT{{6dhJMZPw_ulWlyKeevy^l3>=lLg=_doyqwI-V9umKAL1H<JVH+C~KFfg2J
zYhYzyNHAg&V_;}F$q~W8z@Vm_z{tQbqi0lNNCb(fh=_)so?l&E-KS5Vf-*8zT)KRD
z{jXnNzLb1@cQ<-#_VsD~{r!2n-<s8aILN;A-0e-N-Bn*+DCXzq|NQk!OHIw~`MJ5q
z#TtB#p!gP%lw4W)`I)AYlGEqs=cmt}J)4bBW`%C_wwRB%o;*qU`u=|W)z#tG*F<hM
zss5JJ+S>Z^#l^*D&)?qK>RtQm%f(i1ag*|QF|O|J+M1f4{I*{%e3hDZH-hJ|!JE6B
z3=9eOx3}kqXJo7p5*8Mfme%&%Rq=5V6EpMG4T;XV_x9|(lf8M<rYrkut9xZEgNmP>
z+4-gzWW8<mw-*N*nLmB|Hcdr0Zcl`=ThE0yUg;~#{pCNirKX2$U|`sBaBb99ue`jx
zuD-r)+jj2Wt*xcy6}>$#w5+Ub=XJe^4Gz=wVlQpUysWbF&dYt9)6Z+!+QteB3SKKv
z^*r3pKYjc5?P2R;GB0JwFf(#9G)UiB7rXn)GGFPdD*_KMvsF<!Qnkk>zUE_V-oBq{
zYooXO`OY>AJv+-ZbbXxd-XD*;f4%qI^nU;UI9FHKS9f-9KKu3Rs?gwqf(>Qw?qojd
zcys>jJy`|@hHq0RPgahPzaR8=-@biDJkH1aWVOHFa&G54dG%_jzwOs4j~+b|5fNE(
zb#?gbso`;fg@qf_&df-xZ9AHz`Q38*?6x&spbUEF!KcrkpT2t+x9aZU!-uQ(*i=?l
z8u2)Da&k&pm#tCBJTXD>*VpUuUyn)WXFNL6`RUuYZTA-Mc^>mlGE|U}n}LD7@W~0m
zxi*!bcHP-s_xIPQ@89)5&se^ExnA6!h*f_NwQ^s3{Pg3OFIRqke*X1@a{rAj{L*GV
z(q=gq&ds&Hy4aonwe6|ub5G|5iVALEU?^a4?~@7KoOX8I?Z2zT*ROMK=bI|IsiwB}
z^c=P`Cr?gPG0nTP<IZohygL#0f4@wYGRw)hd~bmxvt--CJ9lDU8}l6AaPM>f`JH!+
zS1F0@WM+84urB=RDi=pb$DQXn`1r0JY-XQ2eR}%keYv;IB6Y-A+1aO8-=F0Ay1wSJ
zfwgtCShuVB-IB>Fng#{|d3kxizTM8xJ*Tasb7fuZZoS_<t2!E385){5M(8Z7i#>T^
zp>t?R$dV;XRI;NT9UFs!f<&aGwCwHeJuiKHe7y9*0Y*`A@#yo_KOVNHO0<dT$K~W2
z^EjV8d2&_s_I0KWKY#pK;XmKb%iDYN%~Oh|rlHTz%`M(_)@`N|3&R68aUr2aA3hWu
zJ%0T4kxpSQ4vqjXudYp-Hcgo`C&xDbPz$G*uWx8t+OpDBg&!Uqe06vC_O!FJmd4lp
zbd|L#xiHH#drRtRF;!L7l~G%>uDwn_Gh^YqySrDXpPwgXnAFlIXS>R>_}Pm3|Nmay
z-k!g-|991*CRT<9X2ac8rCUSSq@JGk^5^sU;Zaeul9G}_Vq(^mzP`4y`ujVx+Tub@
zSy{VZFO+-bY@_P`|GsaUc1GgwpU>y3zTYhu6%|b_jyv8bJ9XYXJ$-%sUP)uO_j^9~
zEn2+z^q(__R`vCtVq`eLSo8gE`KvoSKZmj}>N4PQZcEHK-Y5I&%F4+rzq{R>p~S*)
zpfRSuLDln0u$Fjm3#bZN40helI8mJtJuPUZvhY&Ou9B5!%C50mOgFz@6TG|p{kC%R
z2CdU^`GSXHSad?V9z9ChxnqZhwzfC7xZaf}R_-s4`|Ve4*bpGr-8$i^irt?N&PR_N
z$@ur@=dOZ>O#kB>vt4$q`W4aK>h<u|t5tu0e}8?>`u&xa!OKHJLR8}8<88lQ3GV9e
zpFVy1biLSJA<zD4t+0}-`QUhVmZ|sN>hIIq+uOOgxpU1VSsJ8S@1HG*o$A9aCMufw
z=Eg=)Homqda`FGa_y2<;dTYtcprc2Qy!i9;b5UX8!bgFvQ)^1xVq)fiN>*8m0*CW<
zzt?<wdprI4JjPJ&;FfcZ4Xv+F9X;ym-Y0XhjaND(B4UO5yb7o9cZ&O?wqz{)e!o7R
znT_Xy`uv(C-bf$uu-J9$)|uJ=|M9qgYsN(-RTY&N$K~s{1g~c}U^heQNNKV}+ow;T
zuIw()e;u`Y!v+J-ORe1EPu{*=Tlx9fNdum>@%!T@eK{tbf8z9M@3zDb`s=io?bvZc
zEu~l5+)rFTE+i>wQCD}jY3eDFyEUKBmc3Ct^Xam`y{3Y~fqQogqOLD~bmac>sr_7H
z>!iDnE}CVUt)-{u_w(n^Q>RW{vj6vy-*eNt^Pn<8I)Bf?>UTTc=hy$+Ij`!KX0|GK
zX!q*XtNG+?R`m4nWZ!;raxy4^)qXmuKFhAwYO0R9fV}*Av)o%5zrVfx_Kxep1&)Xv
zd0kyyDxUQ}Pse|`7M*|c_U-8P`+lvm`}-x>GiYnp)f}g=@9*w@{rmm?>n|@ae|uxL
z?jopSsryrLxAc0fm%sn^ZT>TjTsLmq`0LAMf6hq11@-^`aq;qAeQ>auGx9oT_J%pk
zjNHpKBcIHfKY#t9Lr!yTDlb*(*x1Byi|GX9<*ifmowbBl+RWqE{s~VXK3sUTTl{sm
z{=Nz8*RPNL)o*|N@L}hT8#lhXyuAO{_xJ11+yB2)^`>9(^?^p_vNxLRTu;t_zF~ub
zs+!uW%FoYsz2EnnBhtZ=Bf`M-<geMy?EG3vN=}ZBj-UkO)+4dd-|nZ&q%S`n_h-Mm
zv-8xMGgppu3ZLeQ?3FUz^xPnT@&8{Vr^LjCOYZOgx$ny*Z!T``%XiD~$EKb5^{89_
z%OP(47Z(;fPra8OGyC`Z{qe%;epfCoc2C_HAtEKU>c|n7tvNR*O(>NOI9SBDPJi#0
zOWxn!v8*yXZ1CjKqeaZ@d@J1h<+QZ4f_{H{dv#5uF{lOb>(A%&sS<6wN?$MIleJn=
z`1n}VzM7q7@9(X3>y=uWdwbi`dk)RX+LfFSk8}#J3S8V46B`>E5up(t9&Va@D`ai-
z_G=Fhx0@y(<0*ZAFIG2t+mtWW48PxQzyIZY{l8#k_r59p{rz*@n^td3Jj|x5u73LL
zS>N2-+d|*o+In?~r|{PN`*Ht&UElv@`~JVaiHV7yK7Za^9=>|ZoH;V8s;Vc?p7qt!
z(_7Z2eb^u*BxK1%Wp^X*fJmMP{u)|ZMm&cNK7IPsbFi6R+R@SRnECyhWZQl9|LYc)
zzP{%6_t)26R&KF~+xM&A+a6BZD3O?$=oS|jxAeQTXz|NSOM`ON{pJ`%ZOh5D`SoJ)
zwQWsJOt1UR^Y7)9yu5U@ptRJ~EcaGQ@mu}<e~SKEabN!P{r~qHHzGg=B_HoI-Lz@b
zn&bQb{mNE0F}ad)VL{{B`L!W;`edznJlopa+aJDtoBL{ddwaX$$r~G!+xNCt9!}^I
z5ZzYxHp+LNP2{EjZ);N|+P=NNzn)LlN<&4(Wl~5$z=E>3w_aZMx1YLu_ii!Ws3nWt
z`@JT$@k%cf)ed{{cKiKl+qZA8Wouep_VJM`sKB-=c`>0+-d@iW)Xs~Dm|^$(jd8Dx
zWzePnzTdrqKsn~iW&hWgmU_RszJ7kGHlOFJ`2BTH`I$u1Hb$(;)_#6w=HeMMBvjSZ
zUY#|+e`TVwd&<U$D_gU}mvQ?Z6IocSknnJoWZOdH^m7^C-rTHuyY>2)Q`+kz`ep6w
zVwU^Q-?r|wrjAa?*H>3VV`A1!(~Sn3a&E5m*2>RmuT395e3*56Tkg_+X3@=gcdcyy
zd^ntSd0FqRt=Y>P8W`@@|Nr~z*X#9Dr%YMmE?*m>9lmZ0XXMYHKPN3YE?4cd{a)4T
zKY#w1)ch!zYhB*go3dIWJUslh^ugli=TuV|!#jK33a{#jb=TC?Y)LrC)GKR!ZCB%y
zD=ULV1q2pYzuVzFzwXz{O`A7Aef~WCZ$r8#$mTnD?tFP)|Nr*6#SX4I(c66d?f-6Z
za&r1|r}+HI!-t*Q`D8Ece!p*Zzx}@mPEO8QCYh6X4hLjqt<n+e7SoH-@b~xkyfn)+
zJ7jH?>EEyG>#yo=zvHxZQ`e6-o6k>~KY#tfW_IsMckbLN`S{3n=kDF0%spwzks~gi
zmx|BZs@K=oXP>Bg*eY(4azbEj%+8>@yUVxVmRMzECRHj_Hg|!`)Zmzy9ErBXH+Oem
z-|>3g?w(s)v!(U-{aBPJ(YCShvD@OZx3}B^0wxqbJ0m&!^}m1L_e+<)zGga2H#+QP
z?Xj&tA9d^ZSe3q#IB)xXPT`9SinEjF*M6IMac#6YD8*i0?r(l>u625kob9a@k(-wp
zmb?g1Ha5N-vA=F_;r-h0lFaOUCg<kc=PwUjuxQ`EU)dl{V%<k8zFc(gRrQ`Wr83UP
z$7g2trfoSllkU`fKI``S+S=YffBu|$Q#Cbw6Wi(2r%!{-T^S!27q{l%s+5oo0g7#j
zCk%M*7M<3eWnaI~tzT}f`MnBfIXStm{{HJ<US2jWdlS*x*7oY__4w;&&F`;aX6MVe
zx2JMd<mP4X_I&oM=4T8~`19YK<@&nV)o#5~npRe~er?oHy<Pa_?d|Z=*VjU8YW6Ji
zo4e}S+1c8LhJn0NCKvWpe!jBEl{<8Gn6I6k9jL%uBdTk$&p7?uiTn5C6B84y3LZ3=
z<=t5UYHb8B_X|DVC;RmMdwtJY=K1qL4T4pZM5UxwE%lzh%CVX4(}xcmo(HVb(TX^C
zFiAqE!{O&Nz1UUd_iMwy-z}eC_4U=#0|y*tKd%1vCNL*w&9?me>sAIY&w6uXqnDpw
zn3GczpPY>bKR<tEW#!4!r@jCGIBqW@B9gLv;sT{lpFdySnCuQJ`c{Xp-)5Qi=lXM(
zyqlX`o!fXO?%ut7Ti)GOx3*@#em=kc+N-OpLpP`SetmiQ_%2uGRcwb1O0LJ2uZ-JU
zRrUYxcTis2`|H)}TN{(xrOa|brT5Eo*6%|;KRc`Hx!Aq`T6F&2rG<}=WnNhkc&#kt
zPWk=X<>%&FpT2$j_LsHUUESTK@9tQ>y|K}Gu2reg*Lxb$zY`Y5{Qma#^4;?LYY(^c
zzn-1H@8X`y&s%DLm&w{zh4{`kn>u^;>{({Ht1es!czbVebY^B|QEBPb&FAe_KRn!i
z`ug?oxz^>^CMY_aWM9+SntA!yJ?BHAR`vh(i0Q?wsQUWq<->OQZIS-p@BbIdyR~KI
zo;`cEBpv1Y`u2AC+uPg2=USCsSsQI$`tD9->8mRnuL~6L>c#F-5f>K+1=eJB|FFx;
zd`(kM2)Meqtccv4HmUBuLD}<jbAP>DJ|7e=nFkseCoP$2oW9DfSL)Tx&C9=j=h9l1
zBCk_k{{8hP{xC;J#@`8{O8-O_#MIT*Ntx%($-1^iv%bC_R4U)Rd2^OgYFATp^VRM7
z@w$<lT=MerqV`m5+*S5=)z0GQua-`ao7CUmKd<_orSDv;(2Ex@X5HGda&LPx*NV{9
z)BgPVQ}W?~W9+UH&%C_6T_rCkowZcGeAKq;%LJ9$|9`(<D+}>eJ-EWPTkO@Xt*h<+
z{Yai`Rq8eA%ZJ1KuN&FrCUkdq`^~di397_1FS~6{KY#7>dHeM<jniLEbeEerTUy(n
zp|hd&^orQs+a5iB{Pm3S`Hb)H?tc36<%+v}?ULHx-!!$fyu`X)LCvTu>td}zPW<}%
zdidU|uUiTpIvqWJJo^1%^E<1SKKUPhe_w6shX;-zC70gculX;rNk^=^v^MNy>6))A
ze&y|Ysn#oH>Xm(c-PLWmw^cmj>wYdhbog-T_q*k<=a%2QI6b}&6llHj_HhdrE|fA(
z>&e^sRLuJOoyraDVONh!>BL-|X`F77d&}hPT<h@UV?7t&+}ynOIH-aGjSQSTdGgfh
z)4^qB+f-IMHnZK@o<IN9)z#_i^B((K6+P*w`to8Ss7G#S7zpYFt3)p6_WpOt&)4_r
zi;IiDe&7E;w){?EyX|fs;n+PDfuKB-DACo`b*V#8x#aiT?b?Qh7t?f~Rlnc6{C58S
z*tOByw<YJ#bv`MzW|nF8tT;{`Ev-v8H>XE7hjy-b`lzd>rpBc7RY;_c*x8xJ?rn(~
zx3*-0nmNC|zFuDU_gChT4na^Wja|NGLG13b%x`aQwyf4VcmIC;`~Cm-z1#OY50rG$
z&(90>@##7H==R;+<*)CS-w$0Kw)Td}wUaw`?_M3hzpkshJGiQ97aNbng7CP?qf+a*
zxVb~uMw#0Fda=0do#ulXD-s^Anrm6?roaEsrc&dB)8nc<@7=p+mOs^Vzy5@8pFV9$
z_D@`P-u{2g!-o&8il6no+yB4L_R9t5tgEZ0?)&q}8`QqOwK=`tEcaH(E8gIc*#Cdi
zcje#TcWY<y@_oNvX>ZNGe(s!Yah|HEj=cQ**FguZil6a_uJLkV<qki4{J4AYGM|ZG
z>UUfC&o(<Nwan|DgHnv;^nJCzL3KDNn}ABqt=ZSTe%1EIE%%$drSfyy*8KbT&h2fP
z>2=R)bA*nRRmqBdzu#Hcem-l?qO*XBBVxq_`!=2M@NnOmMy~hn-P<$k?Geyu$=>hx
zs;#QOttoqVXXT?uNvv#atK#-ntqNT|ZSU^(*9(?3mA>Em{nga)xQn152Q?0^t`6T`
ze149+bgvaVlbF^Tm6V;kcD>qqJudj`tE;B9ze=jhxvxipMqf6k`I_e4xp6PnQT5a3
z&zH5=?^&ciza}XA+M0`p`R#Mw>oJBhF>+r&a{Rda$B!RZ#qHhI#w(rn{vE@PzF%Kn
zF7}&i_0f}OY75siP~&IT)m5S1`g^|!1vfWL{`~p#<?HeFy5;5N)#a=!j5s2G1apKR
z=xr<r-MPXdw6>-k)ajkExBK^1KT9!eBXAXWFD><c`sh*6tJ7DnhT8xCQ@r!~T)WyR
zUMZ6a-QC_R`KOk%fkv(xl$4dXR(;JndhD2%f`Wslrlyod!2%;AqbqBpx1Wy7-Wc)a
z(`o(Hm7kxPz1^C9UGMuW&ERD(4z+UoMXv=7)IM-{v++dj?{9CTHYT;g#?`tyIsy_B
z798uBUw?MCdHhGo^82;lL-Uh%mA{YEjoA?pyxi|<xBkA0(CZ<lK7vdP1<lc0v!>p;
zb4Ns0HaEApygWQ4WXiU@yIFtd+|)jK`n2}fg&$HoJ3B8n^V_YEv#mN2X&(R@IBsCx
zcwA~t?C!FazO&6hxyZNL!=vNtkEarC3$5Sp3AVGd`}FD4r3VL_zk(XNmG3}toO^rQ
z%dOYrRv%dJb@i}_A_If@jyZE=e*XG3E$jQ&uTv8xtjgX*?7Uu8S^4s$`uvdfaeJRU
ze!N)Lx=h2+F!1i~^6TaIYt`-T?O*Q{*NeHZqwujw+8GH@-=v*iexKgsLKc=aUIm|?
zc;?>N;CObn`Sj(>m+#%p%&@}^)So?bCglIWzoGl<{=WXiQ@!Tksq^Rci?#Xq`T1Xe
z{M6Fku5Dv;=htV)X10~_`|Ch8O4^wj3-|whn}02NbK2RUz`%)*9zWK$YSC(M2<0@(
zxv}85eEpq!cNrLFsOakY_S=4&v3GZ(l)t}!?4F8^A-`L>#n&9yUR3@4-K$GWyU&{O
z&zw1PmTmPmF`Wnnef{<J*B@#%G=y?`#YOXSaO`-f6)|(>%%yR+_X@hWx!u~$UA8gh
zq!4Hn<J-Ho*fp`cuicAXQS$ry`|#i2-oCxt>os-y^yRU;%VNLpzy8mM_4S{hpO<R+
zg-3b3d;L24nMs15U!O|s<@5=lQi7ddZp*(vN5$hqCad{g*_`g5nwom^&j0E0b%9}F
z)BgPZJ2&k%8&jC7250EJdGnTv30PU1n{SuSJ2UCZs!;9f@`HMN_U_HUvGMw<(9<AS
z<mKg=KiRRgE4)N&^7QH9E4cz49UJ}T*+jlGJ$UfosS_sx;^O9=y?^uew%o}_lL8A0
z3R-^`{`io1x8$<#wfXY4RUx49z^H9GnZ@&tCS6<+xHx5F#FW{ywdLjKbJ?F31P?AM
ze2Zu{EqM`ecAjmtr>7^V=2>#zInv9k%gNb!E%()adHZ#jm-}lgC^)QJw{B8heEOf`
zUo&1`Uw^$%*80nz&*!6Wr=6J*sP*LS-QD5A%X|W3V&?2Bd#jb7|K8p<%-!(-6T^YV
z8_Ef-EiD>0HZdPRezYol)KaScea#vjRdw~~^Ro>Sn}ULar_P)SssKHMw&&fwvN75H
zZrSZzP!U%4=ElM&Pf|>?uboLVtd87$@cODy@3zDj-)`q$U*Op6BegbJ0W_JS8@<g3
zWPMcBtfJy#Q4x_P(DAuz#X4f$F)=yYFVsAl=)NWIu2t>7pU*+<r<&SY)1oIHpwVTs
z;FhO_(@ewbT@D;7E!`WJ+?KrSai8^@yR0FLvLk==Xm56B^`5jUeEqtX78X?%l_}MJ
zMMax@UA-qQ^Pj)&<>lq^!TS##IusHUQ{#Kx%BrmBc&Y1wT^j{9<mvq1+o-}29ReE2
zRrt0l;b07i$>8J03K}PNKDzQ1XdsUv!3Z>lXCZJc!IB*`QN-8M@Kk1o5(@)^fuyJo
z1A`2QsLpc-ke&l6AOi{%LN?4{2FWl?4m`-jaNuA-;i_LNKp`=shf9osfv?3h;#?z$
z)o>Cd{J>!au|^w&%vogzat?zU$ZZYGiM-Q_7c_w<u|UEW0$LI0Kyw)l%!&z??8`V9
z8DRc#Vm)mcaF7Y^Y97($tNM{05z+iq2IL&b<W~c;=E{Vbe@j(aSy{WfyC=_|KY!1j
zJ)nV?FJHcJeYdx=iqg~5lQPK&See|GnDOvX>#G|Z7iV2tv(l|sD)YgC##_5evs>ps
zegPV^cbGVFBB<M;q@-k0|F34}&YfTtn^I4Q-hX^MfB#ibZSnGD<g<?(laIfenLaPD
zolh1tm(nY19mdWt7ZMRMW8dFz(VN>I2}Cr5hJHaM@7vqkvyXO(dinT-<m9YT(Nt1$
zYHVzjvaj1?mVd7%^n7P$XJAT7%FL<jA3aI}75x0RUnT?v1+97O+|CzzdYbOnce~%e
z+IBl{_b*3F3rO%)`v|VXHJ9>D^!MCZvsTsq{+4;HM>17TUq>gTu5O={Nk+ouy34-i
zCyyR=jf;y5|F}B1Q~*3J18V=}-r5q_D`lE<%h}0k&2fEoeSLpnHJ=MhJSTgxt`L%w
zlLM8FK|w)Z?p41B%_o5xHuEYTab8^=eqQa4B{L`v3lzT1Py$UTtY4qMvMfG6Ub1ar
z^6|ddZ@)4xF9UVB&fEY0lX|}T``z-d7o7QDempL}ecRTot6sCs^TR$rJF8!v8|uso
zn%aq}tJ`<y?p^P#)fE*H{nMX6IM_VPzJ6cY`FU%zuC9vxW@(yr<$~_^JB!li*M@<b
z5>2e!ps}cf&FrtY->>^!++1J)PUHqt_ZqH1n>PUkc)y%&$^XCK<G)EBJ$e*0iU{gE
zn%}E9eCyus@_bMax$5uN>!#V))?~{xK2}U%WO(3G_xJ1dpsNcWJ$iIH?lGe9URn6~
zSZdt&r_<xJ4!7|}ZBFamv}u#d-+k9Z0|O_1`uut7)Tv8%mA+n;c6QdSEt!+Qy}P@5
zXYun}ca#+r9NymA3TndCUQJ%Z1xkSy6YO`ht*-m~YgPRIeZIGM7C+xo|NmdndQLvR
zFgG{Q=yHzOuKe5Ee8sw54<0<28dv`1MPQ_k7_X$!k}DFMHgCSVDb*X)z6bR)JB8I#
zHb$J{scvm;)zZ>hb;3YaE*l)-ys}myuCA_LUS6BFfu<%^Rb3Y@T=?np=gBIdktB9L
znGJ1A?(MD4K0C`aYIoV%v*CY#eJ%a{c6;{QTU$Y+sVbhix3)}7lmHD&p546v_d9FQ
z@cLY<(p5_?hVenu=pI)IBIjHF{QV0WcQnnswB*X)q@<)P8xozfcT8I1H`i)q{{4MX
zyGmC2&9_@y_xIP!8yl0WUa#E_8daY$L*g^r8wPN=2~@M_ct&l@nYqko=AtcIOrAb_
zrlq0b@%q}@;P3D5=DvIUsOag*^`DM?_;_4C``eqFAcuom2CuHJ2F>5hva8({wLLF(
zqobw8@;OSNIgrxu8<SY8{=Wrv-2(z9$a*#I-ve6<P{qd3kPK?73JD2KnLBsw=jZ3M
zZ*R*5rK7W!Cr_T#($bo=fB*l~_oY8RB-Vbp=)UyU-Me>9GcSQVou^KpzMQ}R@3O7g
z*R7s@Pg%|rp{f_RXGM5??beX$)cyas7!F+Bblm;vff_&A4Nc9>pt%NF`?@>#Vi_42
z%mtS7Mu>I03ak5t1O^7q3|;d-EGA~n^!U0+Mn=X@A3g+hi|LwVUQ!Vi5xFtv`ku;S
zUMUlg`1-$Fca^+U^7r=#<+sz*ba&5lW@NaNup%zB)=zqa%1YO6F)6#6AEK)x0s{kQ
zS(UB=&6%8?ZSG%wuW~tP7A)~_+s!%Y8zV|yTu^LnZwK|DW*MjVy}Gt`HK;vr|L4Qu
zuX2103@eo8SS5H~TH-kwG@a7Y(qh#A{@&i`l`B_*CdsDh$FEyHzb@+J$&*snWoxdj
zi(TC-ZGLM`{f7sRpxI$iU(2mmYAI+${_3jG&6T~P3=P>wrF5P@_`<l_wOb6-Y7PpT
z<TuA6@YRoBUtfcU*`=kkFaJBlt$)IRXKnQMbIbPD{{Hsr+S=J)pM(0^x3}e%{`m0l
zwJ`$&L%>su+5?l8oSdw_dc%edXSPPT_sLA`?(Sw{V#>KCZI-j**4FH3`{<P}k?WUT
zTN&)WbLY-yWl{_U&WoC!%H(zQx<zlvSa@8%KE~72v#YyX`}3UDf6qRD^(rcDccMi2
z9y4R(;JmzT`=6xNrim~d__t~EX75^tqSTtWd3(*IT6gAkG^qZKJL=`_t-V!jb>!wW
z(1-+|tksfjxwoTk*Z=#OKG&+$>+CF3<F))}XPa;TDd5Y{@EA1wUdI;Sd3m{i_UC73
z%U%htnk1dn6)-7kTh2<5WAgX^-F8;Gm6@GyN}>d)0z3P&v$JzkgwC$#^QyIWuV!eF
zmI!V+cQ8{sBGvb%?<^C~)6;Y>H!`z}NJwaSa&d75rKBvGG-=Y5*|R~@R-o>pm#^<t
zW`3Im8#Zh>_0EccVa204W(iZLUW?wEwX~yyLpOHUm1jR59qqolDpY&vk|h~$Z*9%G
zvSK1=(ndVKX5$sx)4#(R{#!9H%xHbD89G0hZOw@j9<FX~(<*aLPEw89l+x)tySuwv
z&41pSlatlszwLXPd-TKk`hTBqS#dEi%$XF-ro+InO6#6d37`2HrE&&_hEq<UwhKFY
z`vBak0XGo^Hq2p0n%Hb!_$cHns9^(d|A3~PklH(qpa~gJCBXn~N`Z_9Rfq)&EIQ8*
zfI2<UhED>hH;JtBkQBTr#iGN&Amic5diu?JZA}f0fS8y$fByV=^7QG_3l{>GE?*wL
z<Nw8r7mErDFD`Iw&bjsZ^XISE_x}t1`}=$N<72%~A3p~5a5EnsYTZ@xGKkcM$g3Nm
zX`ZSt8J?H8_4h0Q4O8XZ3_5S~xo6R$MLyE)ixYT34Y?z7*&DXy-(M%H9R}*2ZQQtV
z(vpr24pug{tUo_K-r7_7In-8NP0elM#EGe4`=m^>mh7$mzAAQi*|lviUSznsx@xMb
zx`LX<r>E&^8)zK|wLBZ7@2m=4{p8uRWiMW2WY6Bcd-tM6i?)=$4ogi>kN+sQa^*_U
z5E7_i|LkMc*H<@NRttefg;f52ILv?jM)h$QaGc#p=DoHKeHF)_qEDYbnIs-!0i{%4
zDU%f!DvFDWR6M`FzP|oKX<whF69a>cPip?^36s&6YV3aV_3|>`$<wD#pI86yCztK^
z4I2VJKRX+IdYUe%`U-y$<?eofiQxg;^!fAk%get9y_J)byY~30WyOaD&(6<ZFRC53
zB5G@vXw|#_f6o60&F)_L_4W1BM~`AAXMtn7!&Yo(byd}?M@PGt-qMfRkzgA)Z^jIX
zuP-h-f4^T}-}>vzuh;9r<8eKb##i>&|L2O076m6NrT;(A*L&%D>Fen1d1Jb7-@a5o
z=4osCv+nFDoO!+W=hNx8HY7HKX0z9<(ea#=C;^%htgG9%Y15{V?Rl|R*F;`^wrk21
z5#JdGj-UvB^!V}ms+>?x@M4iq>Dm#X)h?Hp`R3m8n`^bSSK549wQoVe1|uV*DbuH?
zZ@y4_dt2_N2pujyKE2Po7Q6SKO4=B4pXJYc!<6*&)v2ea&9W|ESNdPu^Vf^T{UWlm
zYZp4VzgoNf-mYniVVoeJ=M^}&^Id&&b2Dgq$T0bs$FJJ-?^C9Tw6?XKI)C1OQpukm
zg`lAmMn=Y>($diP_x5g0J3A}rdv{+SsA*?f`6-2!jV<c7dG4(xiHF<3BjQm}QBQf!
z`9Ul2H3zvkIRh&yc079gxb)ExPF5Bc4OLaw$jC@9Kfi7B%o7i>EM2xt%h)*h-@kuZ
zmzH$SGRX{jRcB~um~~^r!gssh+hyOLsO)Z%aY13{jvX%=+2t;rnyQ_<j+2Y)(%S9!
zeyO{^vH)4-04n^ZXa-N2Hf`CRJ29-RteJOrmA<;SclTGB?xRJa`M;-%3jP24zW()_
zo0}&sNuOW4?TTseazE7sMuvvhhvh_dJYiM;gb4xfK=r+u=-N**b~QUfq9Y<^bai*H
zuUNYo)TexqpjEv%aK`zaWnY;<%WyztNP)t)SxPNCp<NhI&xQ{)xU~SicLb7wmOtQ*
zmlk-12Dm%b3@X|neQzH@E4<w&aPbH#IPrD*K%rtGu#96aGvjKZrAwBq2wv{@?H!xe
zLFIm%r1yFYChh%v&idOsCar_>Y^$&AudlBzXAWfmr#w)Zx#5H?0|O58F$!5S`l~Az
zEO00+ECe-Ar%#{m<m^0k-n_b_uR%koymB@X|Ni~^^ySNx_3PJzhH^oZ-IaBTi3`)t
z%~@IY_SVVEmxFtyOfT*Ies6X1@xGb1D!U=8ayEvuY8x2^tqxxwmXouFiHT{-q)Ce!
znc20Jm7VYID%JkJtC^ku)YYq@i`{yI7Q6L=D#tBbOuoLk8T|VC`tbdAf7d(*twRCz
zA-CnuUbJ{IXvpBsofuH{X;u4ci<Eg@&Z!DnM#x&VZ*OmJO*+b@s-~u8W)?O{L{M<y
zfddYp(fZlu`Fh`PtyrPq>gsxP3uugAH+tKZJ(Ztxn6AySEdFveJpSeD_4~t~pPRe>
ze1Z%MsE)IkFo|p0&G_k?v#x6G+_@7p5qIm^yLanWtkB54yDRkO&6}c9&C8cB2hAGH
zwJJSzD@~#eRKBsxRXEJGE)Od#-1zD9XYFs@!L6XeX~#j#F5vnnZ*Fb|tx*H5x$>Q3
z5%~Mt+u-?jwQG)le}8{{^6|cx*P`>Ub_gmzdHYs3KR>_p#RW%6Ny%k>#{~^sIT#w6
zSH9W)uc)Z#$?MnAtL|RE9^RH1bCu~!yIhrrv{}vsmC*HZvC8g!SDu`ly!JT1td+{k
z@0o|HzP`%5xX9Ir$Jsdj+?57K<}d5(|9UqzHmdcW_y<X*)jCDz&!3;Zdw2E9GVq9?
zwx@^3g&P}_OTWAb)Q#O0!ph331(^g_^{lL{y!QXyy}h@0E!Z2rK8}ln<3jfOz00m#
zxx&?ZdLk$b?KoJ8Qk>VRIyyRDlehnNBN?=KYF^DJ&$Tf-FFlh3%??*aZ^*p7?A67^
z?mKT=g@l62MVS-x*CxnXm7K7W4PUfi!GlfLfBgD2&60P<<jKmOqWA0;Ms3ZKGRc@A
zBqRi#hK_!JaYN$apy%cp7apv-RvD@aGG-2_t8#T$Y4+@Gpyg((!`5njpY`BDLTXBi
zhQ9v!w1vO7<=#%&7$G7f6Z5ccj(vSxTjGm1H#ZlRmtSAI{oX3joWoDIM;nummt6KW
z5B(w8*R!32k)c50+l^(3FD@(u)h0nfleVs1umCiC&Be<*b^iSMDldP0d<>d^?dtAc
z`~2^x)A~!_mA|^8S^MK*`={^ULA^dzPf%C;KqK?k)YD?JHWe4D-tpW2S)d!e?Z%tw
zPkBJaSV1#4O2Pfw?;Z9+d(sj{X0{cclhr_D2~s8*3)ZaBS-ND2hPwLkUH?`cIWyDv
z>rwIe72)gSq-?9U@EpD{JAdEGUteEq+u7|4I$pCE6ki1j-+rx_lX`ku=BX)~Uf$lp
zd3o!anwmhPa;5L@-F;@Kr?+i#d|+T8sE7CL?Cj;i%l%gR&9wr}?;Y!v4u7Rw23qgn
zJKIcCPtVUd?F?v+uj>1|wb$dS*Ph8$S_NKZ9q{$l)u|IEENE$IDLU`z=eKQThUflz
zopUP!7q9zedGO%DYkxP*kp!23!8fIQ57mI;P^M$=GLA&OdnAmxQKNW7DtVioS=PLH
zlaqUEi>LknKbt|z=u9&&xg0%u6jUH(U0tOb9v)s@F37;}VAajit_ub{pv8o`QClt~
z_uDQrOg{GF!NKN9OZM!sG0ndhlfUohGTYr83=T`RS0>H;+IlMedc#*x^QPDQ9w@_o
z{rP<UX#<|u8>6;ny#!Ua?ecXQ$K{w97((X6F6R)}jau^XaC`Q%Gc!TOh_@_17uO}w
zQo8nej0_3#YYrCimGMTn_sfND&%1ld_TAgJYmL*-g(USeFl^9gnpV8wwMb$!8*j;%
z7Z;2A-{08i{O{ktsW+4v7#i%)uVZ`-vhYwVH>ii59qoDQA85_Tq)DLVoz<oM3=LlC
z-<Zn9cHM4|Wxlp0^YW9|uU9{KkiaW%7bDi~%E`(3>f+*dP<^prfr9TGi;MGOSr`~r
z80=<S6SXxf^Y*q}(D)o^waUYX3wx!_UtL)l4C)kv>YU2T%A1?J85lyev?9(Od?(#o
zRaKSs>B-4iHkF(9?q*_ONZ_*TzQA&Jw)yp7f7{gec?=A5Sgx*Kb^e{`8u_{(jwer^
zw5s{Bp{Tex*Gzh9-GAS2N5$i3eB1N)_jgcOojP&i!pX_%pjFFXUtRSE_49v!d%OPS
zJUu<VKWuCa3}I!w5uhf_WPiJrSyxxB%)PyB6)2Gx|C8A9uLra)`J%gg=-#TYBBG*8
z#dM=IjE#f4#r3bP3SAAF*5{S8*>UK*ZNY<vm>3N<CWe1D-ykuezxT@|tFkvMKwa;z
zudnZ4cOK--Hh%ea4Gj#SBvtzQ+E%&l&d$JoIa^TuWn2AiMdjybqPxnsW?l7pr^~>w
z;?$d{GRv|zGv-yjTKQUToeF3UDY&j~-=s;Cat=*Zxw<ww9MoC;^y$-=TiNS9C(WyP
z#JM%&;-V|HaaAvu23^&<mcYnx=1_FYxr6IO*DP3|AZuN=CTQN*{`x=8XJ?!1e_ver
zZpULjQ0jbrZSCZcy3TED%IY37F`PLhvaonVHf#2|IhLU10o!tJ7RAmles)Gu*1F6`
z)~aO3n@UGV$6x2`|1B<lelGU<KL!Sd=V{j)K)D>0e*3K7T>urNpoNpoY`mL(?waQM
zyuReyn@G=~v$IU~tK&`<+9gOaB<O#erKE$UqZj{i*ZO_Gyqekhr|sXr-^SMV>Fd|4
z8JXFpMBCilgtnajm?pP$*<7VNo74Ms#Jd0d{R^5S`uqF)bgSb%o6<ZBv^b-l?!2YI
z#?Y|2v#00EtE;O;rKMLlG%$d=+7Avio;q<tqr9?LMb@SwVBNZPQl?o`K)tp*cVd<<
zUAi*;{Jg0Bb$fq(eVuMwetlgmXjtmj_Wbpr<r4P)fA+`K|1JId<+A@ZRjYG{)-h@u
z8*dJp_xSN+<@oscw>LLG-}L<L&CTw0b#<!(7rX5|xNgUeAG3Z7N=vVf+M0E93$L`9
z&*3)S-Os9-7}oWhW?uvK{mpWxnjQ|knY|2eH?w%>bvIX6O)afc%W|)*2+X><Y3Z}G
zv(tq)sQJxVv8(iT*5hNn;0*+(+1GrO-FgD5s&@VQ^0HXgEnU9se#VwfcdFm-t$IGU
zd`s%-X-1QOgvZw|J#)qf)MT0zvfNJ=H2!#{vR+N(++1tWvXx!WUNbUGO+PU~QOYQ#
z!}m6{^=kd~#ji-rsZ=%JSxer$$@%&7XYAL%Hnz5<mwnA|*2vpde_M0u^5w6Gxb-6r
zPgMbxAR9MsjM`bG%6K|Q+C1;duF}_2rcPCT`Q4=YyzO@l9i1~<(tD)M{W3E%r7Vk<
znC0Ec*c^HoG~fps__}xR9%$f8Wo78<Fi@ck8V){iz`--f&(CjV{aFTv1hwitt~;`?
z>ut@v>}HyEWkV)EC+9}F{XqvnGxS_sTqU2Lc!JtFpd~>|JSVR?zW@KfYEe<qmBr7`
znOz4hv^se3;H{m->8@>0KD?3Iz{SO7l5@jgZS3x_w!{@>Z*NUn61?0`)6fvKOylD3
z_xtltxy@r_WCV?}%GLiVyj%5p?X|ggKs})Blao|IW%t&apGB|lh4<Th>Ui|%5oq8%
z`^$@qR^{*JfL0J~%f0<-_xpXnFaKp^I1u>c$&(Y;uWt|8y?*_Ap2Is<=}wiadZ7rK
z=baR?x2hDh7;>_@|F%k`4HIvEi9Otsd3j6PS*g7r4soA4dGaDCxbD~e_C4M&fBnYB
zWYFZh?|i$vTb_f4uC2@71gwwSyCvnM5Gd}u#r4BL+~nhYv(3d`Ut7C+Yxeb1w{J%m
z78ZhrgyU+zhTg4yzjx`o(`tDP44ZE});;v+PtDHVyQgP;|L|dh-2O=|Ei9lpJ<zz+
zuClkQnwpqI#l&veI0x-KzjIc4h-%r|1kf6ZuAZJP@8-oVa%^Vv^6<FODXhLF=cdu#
zKc7x7v;90RIxjFP>Q?C7+q=v2-`?B1JLLD3mBG1nbw55N2LEDXXs}(zVQXt!`ti}x
zpts_BF(7*vEKqpeFJJw}u=LdxPk+0gOF$c3iu*s!D>gm9!t0IHhN7aPD@(nn7xkCF
zyySX%y8ikja*PZCTi@Q?y!=Y^XI00QHjt5oXHTAZOp-Fsi&<zFvO3JSnT<Ed$*D;%
zZjVNJdHL&-<de4lf6VE!JACn`X#%K8ASo$X_3P#G(>D7GAG?9Z-6vJEGBo`CbCWBq
zoln-Qw&>)><l~_AziaPgH#Ij;oj7sfo;^0RTi>Bf761EFDcJ^E7j)|G-Pp#)#-ifl
z%iHhQtzPKd9(5kN!vnOID*T6J-<fsU8$in_ik^De{{3<p+UhKQc}W#Cb+Fj2_Y!E`
zf%?3PL!i3&z)Mg>W6n`rGw0}+x6k`q7yAgb;Hh+f@N&PGhxzTN?BBot)%ErIFTdMr
z{{HfE@s=$nv*+Fp4h}ATcgGU6DCc^1MOor?u4_j+g}?6q|9iiem)E65uH8=_eX72<
zyX560p2GntDNEG+=471LV`2z+srCEl$_Wz$THD*T?d;;z{pM_V_hjDGsY{<cNqJo<
ztmXq+hH7MN3|^`zWsuM?%OrD=UhJ+Fj?HYRPMr$!^6DxoDq8b;z1Nu;hR%0)mxrI9
zXKR{tgafo<ulU)S!2kdLUfrI5-%IxM*R<;mPhY)SHD!v((PPK5{{H%ERrI7|$^GvK
zL5obzHd!(-6#NCPjs=atVV|7dDiNflrR8;cy8iV&m7hyqUD3R{GT1$KciGh)g^#^*
z-`w4p?7npQa&0|5zvN>*foEr#ipt8aooSpNc1l8fvU83})U_Hz1_pDb>OHO+fA^J#
zIyp572??FDRkyUfxonZ@-+vn|ROdGpnSxfNuiy9U)vELBS83TMgl^GF-57D|jus;W
z!-2risspQ{x4#QjeL1PMB<BGq!;XnJRyVO0hgKapb>hU1Hy<A#@7GpTbOf~kVq#-O
z1qA~wWtkZm3_6|H9GtX7Sl#c%)$sVxprA=y+}vM5tMM-_@dR~j_U>k5a9Fyq>8Z>c
zxeZ=gVgF^<fCi4I=|<n$oz1`yVg+g~Mjx=M`?CX-*L9<|c(k^*c6D@Icye;`)kUt{
z)uo&a3<pG}%7OCJnuDuWtnfJ8&VPN0=VXpB28KWNA#+yk^Wu+K8@2V)(Qa{38JRVm
z!s@GByTwkOJsX;rm$&nJ$*U_Xg{nCi7(P4?sXCzb)8+kK>+-md#qB(YCmc=M`16c1
z1H&B2><x3Am$I+1f5*Vh!0;eP%QnH)%`NPkG9$wZBhcjebnW>}3=9oj8-CkGFfcs$
z4;q06_Z&DFPg{a|&9GT~2`#@+dE~L`4Q!~>;)KR^z#R)J8V&C1I2|bB1Fb}20L>X<
zY-g;vJ3YQ`<%$&=TXS!R-Me=W6myFfFE0J_<KyYL@?T#vO*1Yy=;`T2?XB7xdAL9V
zJQ!y1ZH0xan_Je`S691wdqW)@8iIm?ObQ-2q^6{-h~A#}G)`PxeEFR_F`y}@(%08O
zP11WcpM635`*xST4QgiNJ+&wA)D+EK1rM7phg}Da5!`t|s1*WgAJ|rX*^v4A{(jJ^
z3(yXi%wJz#E?swXclmlyowhP~`KzPi@h0U4d`;l-W{;CnI-B?FrC(hYT2x#dTvD=S
z>)E?^V*>*NZ|y2wy=n92(|f=5KlGXeYMz3cx%PiPIM2L(<j9d12ifIA`sHj>B#wpt
zI~Ae}@;0{dmcM`gtov2>{M_8&xVU+*uCI@Obpuo&f)-*Om#@F_@NoP8nB%e%phO|l
zVXGBkX=(ZC>sQ^Y?_R&wK5S6(=Eg>@-o$rzc53P9Tmg;SU9Nk0h_zSR9Gv4XFZ0zd
zIll_D9P9wEp1pniyLa!F-m<l^S#x~-wPn7uO=^FYfVKm0adU6BG|RrGBPuGYX=nHE
zeCZCZgf0OF2KJ=>+6|ya5mN0XW&iKTV!4V3jI6AzpivvM<3`5Drq$nabR#x6fL0jX
z{Jg3gw6~A>=Vr$2+uL$)?W^7Gd;90-=la#X>(}Scyxd@EX*p@hv0mx;k2^sf!ToiA
zLG3tD<bqaO9*?j2=nAT>Y^%S8goRBz`?vn*Q}NW))RXt`-_P8Z3m#&1adLJRm6FQ3
zJZ<XKrJ0wPO~p0tz3+{2{qMKtUteGMcXf3=b>c+8;Wl3Hxy4^z1pfVU*&oyz_1%rW
z%4xOavcupNd<j~+yNuCSIhB|BdwK?DWUTngd+71;e$Y-RE)I?ft5>gHa({I)GaFBU
zpI@Jmkr8MKg>l*$P`@ts7O2Ii8N3X%A2@b*nQrLURi_}S*2&39L{4tqj~^9tEea3q
znp_<gHf_@6$!nkc&M<IXxpL*HGiN~6oXX3K?($dn|NE-%>gt+#e_t(VqUGx!DbuWs
z4-XDb3VD|IVQbdaNr@7>{(ie{nsH&lYnxN2Tp`mfuMf|gt{c4!WWBDg@6Me&xwyD4
z?J9kJWp8!)?B6?f+{km-Q2jkGQb!E5)Y^NR&PK~?Ya)%a5BxH&T@BvY>Tq>+csN@1
z;Q9aG_x<aC&P+^9)Y8-2_w2PSWN0L5J(t)S*8{6u`fb16;NAG0eaZWMzt7!^bx^&%
zyL|oL-3?v=6M4-GlfeND9^|&uVn-cH2A4a|3afshtYiXh-NQ3J&J3z5KqFHOu$4^U
z)uW6I4-z<BLghgNsPKhJT^CT68xd8mhP-;nF3!Lp-s$P$2+Gc|2}ID?HpDM8lu95a
zC6WV39^nT~ULI(i;v+Z<$NDDixbi<g3PGu({BG&=nwlEWjxyibW>YKIB}zo?C|C&U
z&d)N<2KD1WZHaApccUK0tAnS&7`l3TK!ePnj{MKh&p|uDnA!QROw*0ltG?UF%nqK%
zy0I~ti;HVl&J1bmvNiK6pGkrSd5fQ)y9yd^{qVpMw72|r{(jSHkFukn`BJ_ka@}{f
z<C|$L-g*6A+3nn4U;l3{|85w1w_X0Y{qt+5l8<O<g)a+rkP1t6kxkvadQtA#4TTpO
z*GY;<H)ZZxH@i?&B1`=Gtwl$7Z7b$8-}xz_ly$D!tsPrsU0F>p-U?eiCFG*-gk`59
zUJ9_hd*A<W&r8_{!tC!JeyUSF_N98>KK9i=KUm(c-cb{IxSc;dGBUD1H^kk&-7NRk
zk|$46EM@qvS0p7Z0xiD_3R?8?^78xt&PIxWrcRq<GBa1U@klP}>EXFPqrboZ(&fvc
zp`lB=#r3~c<TyAqwDHT=UCxf#UFNH+t1D$&wdM8?&??EzH=n$JU;o@Z!4Xsk>l_iz
z-rzUKV&RDs9;|F^yLyiwJGN`v_i5|buLl*MmNI;~x3~HJ|MT4b>qU3@%#V+bf;x`T
zJ3h17D6udkOjx~s{q(ze?~U@d-+o$R6&fC%eyY^V%WKM<Icug&5xE{wQLzKGx06#?
zZAKCA>II<1d`>nO6Si*Ia^m>$<)?S7U%x(kw<HrYbLs!T-(Sy6pLcOx?Cvk^_J17T
zzJ2@aVt?Hd?eKLltqBu8fBqbtot-`X<LdDByS9A~b9Zl-tNW1%+BIFi|M%SNnsak3
zcm4nOdu!fZE6{evz5Dt?L9+-OX56dk`XK-RNBgPMr|%xy_v_VaX}RR>w|Cd_M8wDI
zdrDcCy^%ftd{<W&*Ib**AkcQw+Z8S@EsGW{DtU2XVO;!SFHk{PG4aQbilfJm@9w>N
z<;sia_WvvUj~_X5WW}C6F=x-7&EvkyFK?%F*g!;B`10#YQxlUD20W!DB_%h@-rh3Z
zx_$fiUs7R*q;wb<z@aWAEPVCey>);7)Lf5<j-D;U*ACjhFD0e*^7Zy@;o;%s(v$Mk
zjEsW(mIvS7o?k9)U-xIns@1DaOJ7~NZMS^t#RNu%1jTt37c+8l)__(>%$>Wot&Ppq
z#pT4q0?<BVEe(x=x6`LiU3%z{)75L&K=bMAK8nXxIJPCexUw?1$Z9UAK5k@YSMdbb
zb)a^|M0dH1*VaZ~y>bP-&#ttzwCZuMxrl(kg7`m=#FyRMyc{&p-O$z5wWa8(m#Db-
z>Wv!%FJ8QOYj^qjv@<gv-a2l;b2BGazHV*Q)>ER7cn%k|8XY!>Vf3E#?aj@_;c=C&
zx3}kC|M&MdXjLw#?*nRasrk;ja=iS;eozQUbf`<|c!G8Z6crawojv>ZV>?z>*1X<p
zrE}-b-EP7!FE9V}$&($edih5|0m(2K8Vp$*67-M+3{Cu)<w3cm;bg`J28Im+*Agnh
zOHaj|4t(OXQQG5cHrsb~`1-QH+YdjSa5n97E4R3fg*F32f-1|J|DYXoH*?Ht-&fz?
zz4Y(zN7lRy2Od1_obSr<S#ZO@<J)p?n-o5B0d<$s&(Hh%rG$au0E5ecUv0(D&#m0F
zDF`$NS5UCQ%gf8gR+Zs^f^+jzS&oSN0YO2F1eM)DyVksXd{jVFw$@Guezk#{QTG2f
zg7PwG$&9I~sa4sV8OxWmGDxIktY@=hy7u3??9GgGb1WCn|MNtB(h_$0nt+817j6MH
z)VB$4_!sZ#+3DouWRiVN=lYFBuHB&RSC(`A&inE(7_8X9cG_BCgGy;xS=RABS<r5}
zo14?W-b|nWa`Sn+;GCQ_da=8fl;5wtemR(hfq|JLzi2vWA?3<_`{F=xH9LRb%WY>3
zc&1L7^5S8;{JXEE|GuuTf4Oe=yCUh`&*xQ}BpvC9n=j3fux{BhHB(d5oxP<cC0~A)
zR!-hsu8`oVrKfjohGFuS!pFz-`k7CkI<+PHx*ll6*3Qmu@2+#(_kGp<`TO_xS27F@
z{{%%umMmDHuzlmSY18cL-IW+mTl4&CDE;~hwE5S&TTJ&-6D#+wob9*YR((EezBT>4
zoT{p7WkMSRL&5^dFWDQ)-rrlRzyD9r=jZ3&msQ8a%yH|LI=Y;bk>PKX>$`i27ueV2
z-rjcd{{8*OO~cv}LGf^FfBpV-F*^_aU%|leU>VzA<wJLOm)|d$uN%EB<McG$NxSq4
ze7wDbqoShbpW$UN_yGz_o?mR-3=9Wyn)e-KVmOeMF^A0#Dd8!uIrxbWT(Gt@Je93*
z;Q$?u1CrNiVLNSo0kVV{WB~WVgP-_JAQR^xgOU&ifwI_!39qv^ocUL3oSU0_>dcvt
zjEoh3{{9se7hhg}uk!h_<DhM0k&%(0y#Q^z(rUBMF6-**()+!2%a#}4_y6Df?A+Yd
z8<US`-Pn)_ni~MsCg;wbv;Gwo32y#ye+)U`<?VgBjaPcgtXZqB$5s0}xA6ozIW=i%
zYv)(Ql$LJ2wl;eCu3c8H?(W|!)^1Ke|LSJ?{HZFSh3J))m7s0rm;LS6e);m{_J5~H
z8PL*Ai6@{_CP3RP^!5F{r|V5sS-NZ)Xz~Fx+r=kmbK~*G%gg<*KRrF&wB|>_)TvWf
zu3EL~_FpF_C(x*&tE=nIW1tlw^XBQbA6__BJ6uag=gb}H&kEqcJ0i>*Moe}08&W&%
z$~)M^I%&z}<^K1-$S{KzqBJ<ZJJKoK)zcG_kg(u(MNZC|?CSWH>(@_LVP$9ke$&*Z
z(Y=L%A)-S)&Lk>6UVr!9d#QKwwx51kvTEJBb60-Gl)t@Y3K}R(OicXsu6+M(_3Ix*
zKug)1W4ygV`-*q<{QmW8*S7Di^Z&j{2kp4}_V%{=?6bS&R)J%4#=p9YE9TFi9~B+F
zyC;5c)zz(cb6#ItdwKr9FY2Hr`k*B)FQ0!m0T~&Wa(`cK)$h04?;e{qdv<<B&)vND
z-wYpo{Tc|`NuJ*{Nrta|)22;dzFhX#wzj@~r8t@u)D-1@`BrL8<>zOa_x4ogCC{(<
z)G4MLb>*?4p`oFczJ7Rd@#fo3-w(I*pElq*dgRERk2U|Uzq`8|G<tUAh|AuO$E26d
zy`Ht_b)z~1!;aj}&d#j-{P4QEec5Z)uJz?>cP=a}1kKET`5JwD_3G7EFJ3HkzrJ$C
ziVKhX?bk(aPFuNS$BijFqeVewuGphaf5BtNj%jIXdfvQwGb<w_z{RCShOhnHeEaoH
zO-$G8A|oR~^WeF;YmfEIzn7|i*eaeP(dIYTN_F|=m4^;Ffri~CO#w|)gZj?T&d=AM
zeRf$ZxA-gl`k&pmWfm=73_6KobKcFz&^m)@nu@5XXy(&XQ?>N;!jh90FIv2KYx(=Q
zvoj12zqPqrdn^Cys?c@W5^WE;Qri-DFkRbO{QS$)>G58Z=2bqMsrS6%-_Pfq5ey6m
zcJs(uh3wq9^VHe1Zwu!)H8E{>d%Y|AXX07o^mBV2yLU4Sg2Vb_NHc5kM#$n4P$rJx
z>Aifwy&1fV0Gwc3Oe5|!g7W!+6tFx8@3e9SaE;BP^ZtOc69WUR>M}u9NQ^<CW)y>g
zBsi>{z?BOFLj(uoY3mOi0-!z$*hV}CvFLnRsU5zqqKb>*mq&2$<mJmBOkHOlk@nx|
zzf!_Ne^WEFDv%ThBlinQP}at%KEXRTc*E>7GBYQttc}>{6c`vNH_!J!Xq+B2%;oRT
z{I|va{lQd&f0gs?YNIqYHP_W&|IGyoqyw+mw{G1!X~~o+BIo^%I4|>^{p_XY0{M^6
zZFlfovwwf<Rum}GE?;hF72NRa;GLbtpz{Jah1E`+KY#x6Wk!ZO3#UyJ1GQ(~-Pu`N
z#tW|4!|Xw4{rK1a3ikJBW=LR~rG1A>Y$r3QeN=TZBRYDvk+HF;l$2I|ef`m+M_<k@
zzqfO#rManT=E+H_pq4QcGc#y#0Cc{^-FMY*Z<(%*-0T(@82IV)=U@+y4!P<#hF7m%
zy?gEY$ycD}M8l;^m$no?_XACJ2nq@oS;%;Kcmz~d?%enP@B8l+b1uIOadK(`ZQ0e0
z-xmW~Nph@L+BEx`4rm4Y!-o&o)!x2+8#KFjxSd~HS=kx1GdL#)bfm(SD_53mOg{eY
z_}XvWpt3;hQKu<r9{OsZto4-X)0Z#xp6)d%C^#6jW({OEJHOnUk2kj8tMU#F4b{@t
zzTCvht>Ot<0o>Db1+*Xd(W9j6`#>9-8kyNa%cIx-Z(!-?U}TVZ;^plP+8LdilCtAi
zO-;>|dGpq-TBQ}cr()yr<kP24i3kZj;tIcXJ-dJM<jGsBzvsp7F7v%~-S;|ZkxDDK
zc-E~gnXg{Fc=7pqY=sabx5SZcd3UvDpH-``ufKZzdihPe>}xu%?(WqIX`rT)X@t7p
z9MC8>6EpMOW68<MvA3%~9b}i!cy(oEEQtU0{{MgBpko+RUQYJ63yh7O3tBC&>OD<E
zLBWBMk@45L@_maxefo6!k5;5SBX>hoboAFxr}fJvpD(`KkpAU6)AwJ$s&2mhruVpP
zcdXy?&u!cn@=MmJT;FJFYC36Oolity;KH-B%}+lpSh00$sQsUZ{H33soQ(c;i${b-
zhoP&p^Ww9!vq2;N{{E~D>|2n#C%@;)ye_edJ#J=hzPqme{oe1ODid@TPyPSj_pjc(
zxpHgv^;w15(;N>lu~{BA`0_gbf7IKzZ|`o4xPRs1#fA6(ecRsE(E&Og1~ivAXO7I)
zty_1#1+5u8JKsJYbdUryzm0;uy*+3gam9)ir!8mCn)T&${J)^b$NQ(RU%wtS`v;mf
zdRa27YW@L-hn?;%b#--Fxw&tR>b|}Tz5dPG@|pq9^^Mo-=Nl%s-CoXmyjOZTsEs&v
z>QwXpk9ZVnx&#_Pc7q%Z+RqXeHqFV&Y1dtSTie*y)>bb+ziaF3zG}-_7P)|C+CdG?
zO`D9a*R>_CShmc~)6>(--~alfquro&Hnu;XOa^U9c%5FfZOfJy3)|&_YHRm`&hh~b
z=uMqE_0+j@*Oq!u-%|JYSKZF~1GA@0otpXl+}ylm&?3`3cx|?Irg>Fu)7`xHWxUV-
z%T@pVZkT+m<YxJo7Z=TAo|_5?ZeZ}3R8&+1TBv{L&YisahWG9Abt?`XasrM1%r?uN
zqypO42%267&Dj6@{XYBInVIYU+W-9$ENfA4;OoCROO~jBoW#n?y3U=kva%91CkX24
zf=)jQa&v2YQ?@&<@~J4ONwaX_!rI!`4NJd#Gv)2<?DX>SDUtsD;V{2x^|v>2{h&=b
zm6bbZ&7OT%Y?r)UO+;IwhML;5w&P{rrP@I?>izri6DLlbv;?%X_TBFH@4g9lmX?-E
znPy$_eV?oFP*9P<Gk$vnXqfE$`EX}v=jm^Me|tMQQDR;BlbG!}H;pXk`n|oo`+Dx5
z+xP!%yM3Coxw*OYe(m>{Z*Fd0xAD@YpuZ2;?E?Y=Cg{cQd-KaQ{hZ9!?b}x`T6E~i
zZk7vkK`X1bZ`ZcBzi)c&+BLQI!wYxpu()n+HC-<@sI+vem6g?<zTAwAg6y;Vemvry
zI&E4O==`hS?{=$tHa0eb3a-@DrLQNqPAd8JB{MWE?A1kg`M0lczX>;qV2BA@6R~j7
zA|=o?Vr<kJZgIU6X`3~bln&+AoS9)LWmmJ~+<g1@W_ERde&{{l|9oEcl^Zu+{CYoY
zmQ?MZkH_!UJ<pP8v-|(&^SwKK1`3srTo-TLxY5hYE2yk&o0ODPOn#Al{l7h2TwF1~
zQ&Uq{ZrBj8b?er3`yY39c7j$MgBG}fHXVTGjCT|+wz9VVI{W^gV{ffMyQ)Bkul)E?
zVf*{d<|3=PpdC@5xsf+-a)RIAyvz~75Ccl^Q>KVKef}J@ir{u_-dFj5yWj0vefwj+
zUflaPZ$Kl_i_V-mlPA74zJ3eCg7;V(5ZmSRawXbw%)YnBo6YtGO%H*NbJ+Xu*Xyjz
z%)p$SHC)`>pv^PeYZotC6cQM?@XQ$>P=jvM%^c7clxyo^Z@*nF#|B!tWv(5zCZMoz
zV^MMO-DB_fevd0HD_gZ}nH%VMknBI7&)Z+$|Nn13Xf}9z?b;6?3QWz-L95HIe`ed$
ziqt9I{pargWzdGnf&~gspFiJioAk!h$EWAp`}_5m|FT(KOJFPz786@GWs1n(kNx!}
z)%syhPEB+CmYe0=c(AQLE^Z#rVbI|xdA~t>T~@7HbqQ2P>D`_+Yu24>l?=_E_4_kK
zo-IDe#J2OD+}Wp3o~&50!sF`ItDsdxDw<YSQJI;Ur_P@bPflJ8TFI*H-nU}Ih5&AH
zy^`N757$<`+xdJ;`gu9qZ#R-b%UzcF&RzyueIj4`Wg=)3|E*h5y%L6tu7BrX_}kmS
z%2RZ=wp?0HZrznDA-Q*VUCsSH|No!#*7o+(4+~zbum8K+$;oNT<jIReSBI5aru*MF
ztuMZF{=C1as3>SV+r6sSx}bQwu^|yOXb4)3A|jG<DVB-3eYu?Ap_sPG*HxJr9u$J+
z>bGQG{_^kl`}-gE2A4lN(kVR4vUpjato60G{Aq1JLDl*O0V$pL2S7VIaJ0=pjX31C
zm-Azj58&p#fSh0zyPO~s=-5+GqYu4v=ajKw4>PE_1{;o$(s}QI+*$<p(HR&vNHASI
za2&aHXruH6xtB=DpeJW$8ZR^VOFuWq@N3NuOK=lHKt@KVzP^6xk|keG{`~v*uc(a7
z9rfpK;cb^+mQ+;<F)%oQ8rl1PJnFWyEH5b7aI9bcK1d$ai)EM$ZRA2YAkQ-RxE%oR
qfdw^$52TDrFn~4);|h{*^{=`sXLGIJeTIR7fx*+&&t;ucLK6T3QMH@^

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-14.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-14.png
new file mode 100644
index 0000000000000000000000000000000000000000..b35446f9fbef95f3bc02699e5792220ddc3b4e7e
GIT binary patch
literal 18819
zcmeAS@N?(olHy`uVBq!ia0y~yV2S`?4mJh`hJ9%>?l3SguoOFahH!9jaMW<5bTBY5
za29w(7BevLCxS5J3j5`m3=9eko-U3d6?5L)t&RvyJ@oHmb^e6S?KUAD4>`BWuzUVi
z%<P@Ebm>xAmCH`cPMoS-UZ@cqc*dE1si5gxb8dIXj}fzONzcmcoi@udIkQ(Xip`2+
zS}VKI(+9u)K0IBQEYRP*_u9Q0`|C$bpKiW(>-Wu!s$%=|akmpC+7uZW7-k&H{K~?>
zz_5pxk(+_xKnjZv0|Uck!3_)y3_flLm>3ugBu6ENQ;__OvSnmoD7e<h%wF>3#6+pe
zH^+LVwQX$nxXDR}g5rHcBQrbSiptN=OuzkbbacG6Ih|kev~PqG3&R1ntW`T#6?}Sf
zQmUTskGzx)14GWShXpf!RkS6}_*JpP03^aN`C<YiLxM72`{6Ha-iwYFnInsuMBHm+
z11B_-2nL259=@g#1^N&Lf*T%~rJtK)`P||+)1K37A~$czzOJ`=Ib+3|F1FKe^mm9e
za_0rc#px}-yz<VSn7tp5Nzbya-nQ@OGwG?*rk#3NAh2oAkuFhflbRm|XXjW3FZY}K
z=)33+pBC-&$K`Z(wD$M+@B8;F`|FE~&hGtkp^=d@ot&M&{&?K4t*Pnh=;&xw{H$k=
zpV5Bx>JJCmO)Ed8e0_5>n30iDOIJ5^u2t!pd14GZWdF}v=oYHOJ#FgL%p)CwukP&J
z9JVfI<@<fV{pMPiU;Fd(vuVwbg1I)8L4M08A3NMUb^3JgNp8JTOK0cp^1ONT=C8-{
z|5x1IT^?;?d|>kimlv`e5i0`ymIt%*$z0e~`Z^>kYSsP!|GvMvy?uSuww#r!-qT*Z
z+x`C9t*zOyirr70&Od$pIQZrD_xpaYdv<2#;we)^YCoSf7dy+vu;!qUVpdP0gqD_8
z(D`|`vDIsLmA}{Xv?_fyrK!2uH2D~hWZOd1>}wvA;;P@8va+(CG~lUw^vU4q)2CCN
zu6;glzy9)ae{ECK(5FwIN}1=)S-1aR6?Zzv=9=Gcw|8}PY^aioTdgLg{?D$|UP|YR
zMEl`|yGmbYU0D&RrKcB`m$&X-^?O^-qPOQcd3dg5uiv|DU+wR#zrVg#{rPx2)>q7?
zyT8Bx+q=7~d!@~H9h)?H^4B+;&u6{8wRM(BrjYM6aSt!ApxfJWx7PkHTfLm=h7=>W
z>9RFzd?tN4BJBTSef{6nAU~v@650Fz-|tCFtV&;na7EtTReCu*zIJKy@xDmQ+?Zv-
z%l$H+oS3-l@3-4q6A!ap|FNU+@st@eR(!u-KYzkg)~fIC*3OtA@%8=v`4d8&Z!|xZ
z<%lrwJ*xKn(W9iP)26*TF;RJ4^2UuDK}m{>o7=SPO~l&h?S7a3x2|buU^qM1I$XZ)
z$3iD(XWg0h>wFv>8ia&}OOMNzuPA?iFKU0?-q$zk+t$2!lf#|fbvp3l|KjiO?oORG
zYn7O8)Qfx7?^RP6uPP)Q6cPQM4+@4IJ1kt?+*TDoKUekXr25vfw^5##7Wdn&dU<)d
zwz|4|^06Mv^b@<j-O65DBe{cRf1R;YX6DKzoB#jtn_=L1cX#>q*z&uj=O%o8*e?HS
z=ks}&_tpNsW0xK?@Atdi{>jIBE*@-Ve_CK6A}qZ4%9W6<Sy#IzgfeGr*wcKzg;Q89
z!j`kb?6AR;6050m=dO*;+v%E`nwoWg-`-i~`RlgduZw<tef{)AiC4F_uC^+BvtpU=
z?5vlUmfqT$J$>EYZ&6#budh30eIX%VG~dah=EnvnC#NTmA1}UiDd^{qA1`*jUKc#u
zEO$%&|GK?@KAnDbZSCx+ty!usa~OXAd_Mo{_x=B4{cXQad3AMl`bX`9M<cf9&AoK_
z^3&I^SC_rLwbHSfE$iBvnYXs*udn~}Sib7-*XvjJR+qQ7wno~9_D`EXfBlv%CO?1u
zI`y(-mee|)!vT?zGv`&k(hTFgbChA7LuBO4M2WV*kdTxw@9*F5=;<-B`~AlF`p5PA
z|J};CysY=)j>6>RZ*Oj{`*^flT$-=_@QZtUcL#=qJo#4n_|hE9;$^39JUraq8@4t|
zvYDN~tas{^DLejEe|~n>ZMt48kG#D6<H!B>>q_4C+y9Fwp4^&Q_xJa_88b30WcZSg
zbO^fT<*j@DW14Ps&x{!ok6*1`zwXO_JH5MoverDFZVnC&f-*8WufiQ18Wd07*qGdY
zRe$rfgie9!IagPOdinWH`%?ei&WOi3zW(o4P^iCnk>MHS>DigL;~^U;)qnc_{rVis
z;*t*!96c{BaBSX^bJJ+=&u6o_`1rOxYkjb2u3c@E{htrb-`?I{-qgh8859sOVORP4
zb^LZe96%wy<bU+LsY~+i?t1xh`TT1$jnl8J4%ffF)<R`v;p1cP>IHYC@U<V_y1nSu
zmP{$TnjJyG!KT^QbYv|G9QfLu&F|M3pKeu4?z~_vu%X~0&*2LnA0Ia@eHF6z*Q?c4
zFPBb_InKq!Rr2PB;q`rUKq=wp&y{=j#H@|ldTCAM<}XLZ<1;=#JG(ABDLMJ-x>)P&
z`}tyKty!bPD`OFmdwbheUh_K(IyyM+mfx?vwJEjx(xpo#6(17ze!Uhw)hVp7aHGo0
ziSBY2^Xq>{x3;!so|vHc>*@6P9TV5IfBg8daIbR3uP-lKbo9f5f))iXcGJ|+@o{u?
z?CR`X`K9l{=bIao+u!YcF4x-Dwkq%Lu2(lUE>1f;>*+6({#zXlt=-QGEJD`D*`A$e
z8@>H**=&%v3m>_72D!Mj<n8?$1`7F8r%wmZwJME~|DfZUdwbi|_3PK~`~R<6JDy1|
zFfDDFT-6IjS^K(}^ERJ*)coeGU}R>~(AM@YzhAq3ng9HC8<US~>FN2Mo~C>GvcJ8q
zCl?RT6qU6xJA+DJUAb8Q|9gG*^K)~#`1qcwXYzkI$S$Ap_0`pN@xOoldiCYy<w<&a
zDR=At{{@9g=;iMfVWtruKYpBLnB4a0(Ib=MXFflF{aWQe-|p6~($|&ifB*S>{_5Ij
zb5Nu$cJIHoCG+x?U8UK)@^&%jZNJZnyf1b>`7M{Kjc;Y;&P0i}kL&CIp5F2I+wER9
zUMUIvJs+A9CE7M-URGP|*v#gZlCq@m&ySB@*Z-dX|EK@rhD2v&W8=$ji;q41`Qb2s
z@9K5CPE|acnch?T`&+2hw}b5R60y6>OlA1m4KpvPJf0q3XZY{Sa(l_r*Vjzhcq9^@
zJb5CKeQk~5yS?Az7W>b)J9cuix^9)|j*#eWIfgQP?GFnqdJZ<TOMiZL*7|wn;dXxe
z=kwOAjovPGJ-&YL#bv(Ii+Aj}F*o>og=qDLrlzKzU8S#Q{Sp-sDY<7GF~9cPOpyM}
z%gc5i^P6jx>f+)ead%g#_4_^Te6m?AEG!c4{c>wf?(MBE2l*}hU+>2N7M++$n>HC;
zKX$!qLg@aw+Q(DF;|zHY8>F3^llkN4Psz8px0`R;w5jL)zTf8}HmCJo+??*exbpL}
zV+Whr*Uquib2|F|z43XQ<U0k2d5=wxuX||~_Hh~8VS}Fff1l?cn_GS_6I3i5Y+`lG
z%v|~LlDEEOue7-t$fwVrr<>&6xp8A__VnBF%zF24ZO!g|c6PS3a~qH0u9BBYEv>DR
z=JzTVZ_K)?6+U6rhcm|K=NPBde!H1|?EC%t{DW_7qg@Yh@$s2~3ei{L1qB}}nL!nJ
z{*{%%$1MsUxh(y7a<aO#-}1{pK*jCbJ@R!w9u~8$Y-DDaTDWjw_&48=2`oBu!rk23
z3ZKs{moiR2XR`0ttJPY^%irEgy;Jx5t(%8O$H(dW{~R^oIXuHWf8ND)vDSwl7DzNU
zHo7f#>+N~HZg*dOhV6-ylhu36-rkb@e!sqcYV!WN^qZj4Z}s|pw|2bS^}472|L^;5
zfq@e@*8i_desyK#vDx|iGHbryEq^!1%%|Yl8Og=&{c^{e`Ry{MOqn7fU;Aa^#ns{Z
zivt(Cx&8k3w)e}IFJ2E<Dy8(wSWXHkZC%3?QGTy-`N!G!|13N8qg}o(!(y)A<GtVS
ztuDKlzvpAy!xF3Bh0g6#)!*J278Muw-rSrn{qNtuV{0Ne`~3b_A;l!N>MJP47g)`0
zJN(c<$}9(D05~l^IXSs^&K#NR{#N&EK7(Ug*}~$+45QSpM2WV-H#ZEEpPiX`tc6p!
zXUi6o#|Ijj!}f{9EL!Z|FSRy$yBRo1@7Z%lLsxh0w>$g)eO(VS|Ju6P*T*CmsfFY)
z{&=(be9wXf3d**&cT00#URru=L*n6>?ctKvWousFXyFv*X+NB(qOLyw`+2T&>y;8(
zTUsQ(zP@h$Ra-^n$sWel&h321WXtaarv7=oem^J)O`J9@?CqY@r%(5$&#OH4;q&KW
zUH$7TgO68yK5Op#`(A~T+0MmLiHV6-|9(CX-JTcQ+TN~hX&G5rSqW;{En2jw<oVq4
ztb2PZKYjgr_0G=X($8njvwwYgIm;li>DATM%hTsox;;MLfBnKj=hC~S*CYQH6>z?~
zzJC3N4F+%T?ha2sH)rDd_4!lFnI+Tf9WLu`zoX>&>(%P@F^@m^h~|4`-rTe_Z{N?f
zy}#e>wyOHFLM8LTfySx_jqFcKtV*Ap5L~)!*{a;z+h$pnuKM@qx&7;@;c*ua^V{ph
z$H#-p)ZoIxjeq|BUERaZ!m^_;{P@d~Ri&@5?Rvd#_mr74S8l&o<^BC$_4<E5j@!Sw
zTYi7-M$6l>jNDhVE-YxAG-=Y8cKbh$yUX4NB_u2eTOYUf?(TAJMMX!xc4vQ^k1e3O
zv{&9fu2<STY_VJKmt)fT8k(9XzgqlhejTY*xBuOq&wd~eK0e+*z2uwz#s55!eC^JH
zf`U`mJ&tXfx88HInv_}2jIgy)OLK2;^PFV&>xJ^sW5-^t+x_m+{eR!gYrkA{=i=wT
zeqy4ssIc(j^!c@6`+uIz*O|BTd%<^W4rXTN*!LoTw+1iw+u0YMerk$l)z_=xTT@O7
z*?u~qEM<_;5Vj^_A*em}|7-mJ(CqxH2l}Nf*8lqY8q`5iRaKQTPV4EDv0St=czM>V
zD=R0R+c&rR`MJ4X{{G>CffGM{`lRCd^5sh@!=x4|)2t)*JLHx<`ksAaf})qV_vP2?
z_piIQHv09)<MPulzbv_1xA@T>QSGo5aeJ$F{d_ii?Hn_ovh%jzUx54qYQHa9q-6W^
z$>grSzH3u7gRd-fX7{|*#w)$0;$za^{r|uJfAai!`p2HV$EV(t*s^4ai>j*X)MI)g
zMNZDnr7tcl)O!5$=g&z?mif*OtA6|D=H}AhZ?|h}XsozYvA^!`mpjGhHPzLRe=UsM
z%E`zr4yu4b(Zbj6e0iDg<V1;C7KMwPoSZ-{l&`O@di&e`TvAk2^yS;_d{AWxN;p!c
zSt(zy6tW&Vd>9mdcT2CwdinWX>l9Wusrm82Yrgc(?CW~EQCmFLMsI(%Y-8N9`}gDb
zR(-v+B5?7R#KUZNYro$GH(MUA+Oj1CR1-fq*sMEG^WWt8^W&!;hz<)|CamrkQtcZO
zGQ}+K&Wc5glv-O_b{yNDdt0sj@WK@<R%ETWt@*Lxb>IK}VINoWiJGrkn=8Zi+I)w{
z@qYR1-TM1hT)7fr`~6NaC`&apH^<8ViGKLx<mAx0NsZ4zy@jOY<kCMs3PDYtsuv5}
zLG?5!^+fG1Tf6ViC-2%nACIrAuXy;g?(hFEbIb3o)Zh2RX@1QoaC5Lb{n=f+|9^^0
z-`$D)`s%82t$uW5<jg*K`*pI`Wh;W0`-S%9-`^K&XlMuus(H2FB0bY*Z{U-)TH!fa
zZJqS-u$nA)7nhdT?Q2h*@Ob+CdG`Bzdw0EBwOVCv?wLi47k_=b{r;=v^Xpc9X^zZw
zY;NriTOViJD{byKY09iwTArZD(e{~ZS?uPwd~(6lR8XeLy}ix%y#4<@X1TYPgsu+r
zwA$^yK6ts`tv!{SZ*9-d|EQCw)_(XQS0pnV&xPmn>(`yP``y#<^ys3+i$$fSS1(zj
zB5PL@At)$#>cokFyu5XnE?<s)-YaJt#Vw{2;OEzO=<wm#<if&2P-2|yZ@2Qm0SDc<
zJrVIWA6w(<em;$oT&Kb$rgyQvO-Ei{9^}%42M?|*S2*}PrvC5Os67=M{pMIK1cl(!
zr%zv9SlBFOnziKD*VoauwpSXu*j~@8es|GZfA11d*Qc4CKW+U~=_^OtjpNTePEAY8
zy0fD&YDd9BE^cm7Ny(LK*65VJzP9$#<3G>ue{E*x51Xv!Yf||s#doe%=<$B}@ZDu^
zzdW0r|Eg1cp264B3ZZEng^{3`36HCEUBB<ws!5Y4n`T~8S-qTPLED-6_VN9;-)2nH
ziComk%pPScyFPTIOT_-VzfzG(Hf3)jwtBZ1$n%QndGD?II%Ucf6?=PoUMZ6kuU;~&
za4f%5*ltz&YRQQc9;=rJX-8a5I2gmC6SM8t*VoyHS~zuhnd0<xbbO+><yb!N)nJ?>
z&Bz_zQowqJuSNU&qQXx#pi#b@7FDPB4u2UK7!r&?BQQBFY^SX+Brq~C%;;g`W?+zB
zc<>V+Xq1LQZSldPW@Y!jjJvx^vo0=bWnyMtJCBdyfsv@VIH<$AxB7e7<72(qPb@Pw
z>|tg+&3kQa^m2Fk+AFUz85n#v6+CnT6>(wy%w}!}ikiiAqdX>o`T|Qlg|pQkr)6JT
z6FA?lcFnxD+gH~{Uw@?;k#w|6wCck__O<icRQ=}JWPTO7^KS3=dzWp$-%0*za_3dM
zeBFgjsi$M=*IyTrQa|s0ps2Yk^`M&XEDar<GmmcW2zPLBSX+H|(v<~{%&V6tbRIb1
z(AwS}ZOiLD$D;7iE6p9Txqtsh3*ELYaD)VeZN$CC23CfKUV#mJn73y#fJQxe#j-+D
zQkGl|ZjioPa@jY`pE2*s#$@-^%O6Yy`I1*GOQfFhx*p4#TdG=Gr(S6?Y;$b}8F3+@
zk{uMB&~Y$h6Tf-=px``^0t(9;9Mzy80tK&PLM8h&4o1*8D>jYFCa6PYJiU{jFFpt!
zkmVI)U@$u*r}N&SnH44W1U4`*Y!GCcR-Vu)02<7N*vLDrd;yY1=f_WeX28dH54dT4
zOPKk$R1s9em}X5mbm)+Xh{%!|GbD0vY<Spo{chRq+#;*F&;NY-{@wg>^rMNOfk1|?
z{{HLM@AoV|a>T{e#YIC|*}3-Dmy5@GrLS(yzMi$-+t2UXg@w-Ay?;NQ)~|ZCa`~0r
z<?m<B+m;I+Uli27=enczcbRVVHlLL%S9<yQOi?*{^yo_Gc0MV~q9tbe_hQ~|wXOcP
z#%No{MJ3Nm%KbJ)ted~(=m;_~Bq)dJ2<pY}i`lnt-_%(e_4W0tDk?87``d@c#obfg
z+veIWrm3Rh^7q%*-D}=AnkytQG6bA{duL~G?(J=%9v&V`KfZX8as6XAs40?rV}s-O
z`}O;on3;X&E>}+kg_-omq)r2S`}l<m7ls~lc6LscXycQ$D!F)mYst%?sne%lfA!R{
zlZ~69A!_}O9Y5y0|G~|{Q6RfNqFY=)Y_ghf$#L288D{qWE(e$x4y4_w?QT18z+tXk
z?XFWlRt7JRIj#?C#IMi2z3t`0cKK<SBX=vadABeyR7^Z{$Vt|=YRjdF%F3UW>p6LO
zZJ!$@)Ya`%S($lxnfTW`-D0|v4nMr`;9#?U(YAZt;KUm9Qf^Hfuk@<K!);TK`OULg
z3F?g@)mn?Zr0*i?tnR9Js@~I9l)k>U?(D~{k#FC<XJBYx<B?dfX_L{?rAv1n^YZeV
zGI8R<88akWTU$LRadB}?nLD@koLkQGb8~NPPWNAX|4tlu>{fc?qu7><7cX}8_J#%p
zP2!Wcd$VhDHTIHQ+xFO@R_;i-KcY-x3=9EjY0HlFN-uBa7GJetL%_s|6HlEw6|_C?
zZp?EFnZDw@ICCE7)6;Z=pP!q1b(ybpx!>(=9H3$14pH7|DnEbz)Kpb<)zs9yI&bp4
zd2uT*{`&e@-lpP1*RvP75M`l^+|QCGTQe{;oCKxt4T4grd8F;w$<LtCX;=xD$d8&e
zoWSFP3=B6o7*AVQJQaHQ=jZ3AC03#$B1``K`J;8b`pb)jCr)^9r?D|GWHGPji4gUh
zZ?{%6cv*;~`blPnH>(yMH2Tf`?&(!VZ7nUY;%8?99UU951~W1+Z0)$trqh0Sp<(i|
z6>HYKnWKAc{nY8xUmq2Z4{>p6VPaysvMJTOSJpZV)Ra1xeQ{CiudlC{>qc)|;XPfC
zi-#xV^|iHAXU>eAtk232aQZ@ArQLeoh)Ez#ypl#wnsmdQoSKgH%dZCwG#jU#3Fw!z
z1yxMEQYI@dRr0kv|NiziI45UK)z?=`GcPY&nRvLZ>dnUEThh<Zn^kAYz;M91qV&L|
zB^#5EgPKH|nwrmT_JP_^5gQyp?XPKiv8$HPuZx1VFF{RU-`QrNR`u`i?Ty-3voo&d
zqbskpnNRlhb)d2GDf8yN>zmHZ@S*6<!B2c~@*ASI<*eMX!(!>ur7u4`JRI7$K60}g
zU%PW>XXn&o^Q+%kO13Rrvu2Ig<F~iBhhJY88@oU6&W??@wq`H?`}_O#Gu#Xe406X`
zGfz`dRaalVWy_a2)f@R_EEJYsUfI#n;q~}>OmVN2NydUZckXySe)#ZVsNCaKtJei3
zCNA7LnT_F!mr2CEg<*Fxwxph(R`ung`_yUEmIW?$oBMfA_us?MA3rWWS9sV!uj1`2
z(`*p|fq+aMBcmW$>#{v7p0hFRIDc-gHE7J!D|xx!+*Kc+KXqGtZ($gV&dZ$ctpyJc
zX;p6o4VxOLpUb$vuQu!Yy1ChZK(*7w#qL-4R2E-;c44`{d~0j#%x@J84YPzrMVGEv
zvBE34va)iPY4$W%<0kc$qTVf&uB-~xw*B>Dan<Lu=GuD~Z}6WF8Voc}JF}vsE-P!5
z3}5@NZ*O0}Tgk+bWjKvvZ}WAti04t8q^--=7#SObhH?31tvsxDyNJungT_cj#l%)s
ze}DJu&F1r45)LxiemKDV>fYYnyO;AZFxbqw&bFp_>DOy(qqX(){60TFzrLjA-JP9T
zcXw?yGBVndbyX|2`t4RJ>#{X*6%Sjr`Xlf9GyW-IU@+kRzpTP;Jr8IMs;j@>{`tnr
z&(AXN?Wvr4Y>waZNs}i}oinHA-to2X!gxSkfBpPL3=9XfD^o!wVem&ir}qKbW;>Y~
z7<O=jt1nPi1LaW$A2)dI2Pz`WoDO{A1C{j9JUV+};ino<JqBupFfkl(1C8CIYecGV
z!PO?Xcm&nupu&|wO&K&HWh|;YEiztw@scGji`{yIA|hrqH8p|8$a$sBV!q5V&$+Q+
zo^ACi$7Z%w;p^w+?Ru%U_wTpc(|_xJr~ow*7X0{8adw8Gb75iOEX(3$HMO-@m;1}-
z-re=J>H4ze%U74bzxV0$=gUt{P6myPmcG9i%g!%Xa`?>KPFqL`R=r_c{{3~Sr>AL}
znud0Ec1~KdV~0iQiwlm*?tNFDot?dUubH`dIB4J-G>7Cn+wAO>%4%@KENkb})6-91
zzaH+~&R5#|^Y?F1r*?kbua%!ZeOk4*?Ax20pt&nGzd0J7prO&Mntk&cz#%YW@Bddx
zQXA)5mxH?8T%4RMP2^-{-&)1Z<+uM602*7{v}sex-O}qT^X~4-y0T(oT*X6H$+p6$
z_XYTm3Mn!$Y>la_+vnu$yt=2ot?iTnkE~V6id)&=-`-Z2mzTHw_v5jYY1R}aW#zBu
ztlz&_Iz29^vT`S=O+IVRE?8CnEkRUV{Pg|%`%hIkI5fPjDDCR%N|9&_3JNkwI>O<3
z>F@XZ>*v?~@?5|7+pJ?fl8YZac%VIFZ+cRv07FBRo`FHYa{u}3jOt!p(Y*fgbF8)}
zzx|(rr5_!e*;ek@0qz5I8h@1mrH>mYrkX`mR#t{i`{L#8eZJZ^BjbhTbjHu0KdXBB
z&Nf^7?bb5i*{^Qr@4sq#JtjEw&#TqzrzJ{g>FDgav9cOmJDC-$GOmu?oR)QMP2|#z
zi{1NQfw~*tX02GEk$Y!HpsTCvRI^?Ax3~H7wL1p}240Q3y|XyI_V?TEpfTcZG2NKQ
zm6er67BX3vmYhu8FXn#?9E5io7@0%D!j^5>Vsbsg)3eja$Ox3`Hf%8P403dA+_ZUf
zXk6Sot9*SKzbg#TwEzzeG#c?Z7e7B&+AG<%@XMDH)0`UtbFItE?sIPx1SR&IBVE4l
zP^#cH9UUC0DJdG}=HV}2zFha&tzT{}E4P@2y1M(rhYu$$`S<ttYEWr!Q@N?`&qw#t
zH#Y*c!`EH8wl*469$J;Yn(-^jhLw?<fkDIAIQa3g-phwtxkDo&R-8EDk(!#iGJ1R7
zx?&l=_BrQPb;qv`UmsRfv}u}d^s=9ypRbPHT^6+^BXDZ(dr*&_fkArXqJxt_{gtIl
zmT0J|F1=NJ>GEZ5(<srVrY4izTPAi|&%<vZHC>OaV&i_c2&st*DjdKyI#1(?&l_Dh
z5RF_=mjy{DzAg)>uz<AG;q3uQaBl%55ux-2xs*Za>wx6ZG-7K=K-#j?IQB9#p6(SA
z61uW7Sbg<!M)Mzs<^Lso6?u^6>FEjTHGH@l9-nz_O=Orqvm7K}g1QLcvJgv03ybAo
zS0j5GrMm(t;y^uv18%ro4K7-PF5+wHpPg?X@3(yOsp<Xw{dGScvK#MHmFrY>VqgFj
zeS1Hjv-a}w0X0^PjEt^;ioQEL0%LcV*}mV(*Y2#p@5drg63E=+*vw{Xkz5Taa^KxE
z22JYXZs^w>Jig=gy4_b+1}~pAZ`E;dw*}M$FZlWCDQI}|!b0cR<bVJEd3ktTSU$gQ
z)t)_jx@T1f22MOT$FkUU{rzZAk7vcxvUhh@Zp*!`rJ}OrQbkG0me)UiO0+GMv#kOR
zaB*>Q1^xf`7c{VO?M96)BPhUbbck-xJaPVfct%FX)Q=Y~1W2|mbZ+Mht<DVym>^gE
z#t_u)0o4O#Z*DBSawVkn^)=u5_5XGrI&^4V#lLwS4Xg|fy5TV~I`#GcwH`AvGOl}k
zwX?T3G$&`x>+64ieGOh8xA)8L`+xoP_y5@xSO2&4v-%rGaEk5_<qb<nSl~C`E;jYg
zm6gHk9#3Bsy*=;MrKP7`?>;*i4N6rXlzxAE3!2r{>Yb}?^EV2$B-{I>GN$})>8;)6
z?^WZU>w--Mm3^Qd&h2fv+P!~&JnpZ0y>|Pmy=q!oUee}yA%TH`OMBnl-j+N0@WX(R
zkSnU^lmGww3o55TCRB)nihAtj)Z<$#;sOE|ym^x|b^7$(=d6pKcuYMWy*aHH6fnEr
z@7w)MJwF&+{Pyh5H<6N+U3=q3gsQ44sGYaYdgt?J&$K|}-uGTyT)Z{mAk)()Pc&?7
zVkTYLnjL<(;&Jb;m&;~{?60eRdt;;X%a<>+?(Nw*Y0{)SzpUQ0fNQXbjVEI#85tX!
z=H0Q-joA^<+S=OH(-RUFHf>kw>#&!FbIzUWj_0@kvtiSwO<U^zR)LmYEL^w{)aCqg
zh+F^4D^({@%AYWQ{`{bzped6k1--R=`SRsdDP7N5CYh7ed}oDRzWmt&RKe$fOCfx{
z2eiTlYs&;28=&692INu;%fQMu4p3$F>&N5%uZQ{VUmRqY580e{HY6@?UGnk1m34oA
zefs!uV^tRe1B3Y4OR7$X4ZghDe0~+E3HxNCJBXe2{@&h6OBO9s+M03EX>;1yO+{S{
z3_D_7yHl@;-#LG&;p_DMe_TPes#}l5!mqEdpElsRzVX-B*RLDd<t}uIYU|8VWMDY3
zbaP2(!MQn>Qbs8qag|R+|9-jbAKK^c=9cyL)>g4IJPZuk8`w`<M@Vhple1Z|E_QcV
zwT*>E#PNRl^2a?43>(B4Pg_Uqa;f-wHT?C1gUwgv?r%(PKXmx;T?=Ifh6e5Q%mbjY
zf6!Qa#{YkR*KO>Y^7kOSJZQjR<Hn6)zWfXf+l{N6t)=g-P0Tz18eDX8b`}*CU8?BZ
zcH&`yhN`OT_B%!0@Am!9b9HmeIy1vC%ukSk;lZRxsSThxiQL=UK&w7L6|jRt184wp
zv3q~kpC2E8J(=t;A|jIVRD_YCKwC=ZeZtRPH)dw$sdMJ6dGaJ>^>QW#h6FCV?h7os
zQCluN?zhkTYQn$}*Yxew=g4~rZ*OjPfBEv|t^M`;xwyHt@8*P9{ceAAnBU&y?N87m
zqP?F^Y2VsWxEM4X@762za@*~^%QFm<uk5S+eY(nL`Q?-H2@DJmk}?mRI&<bqa=+~|
ztI}61Vt1E;##vX*`8>bzwb!1{=d7h{DmH*dBU@Tnw&vUnvb40EWnI2*ntnW}nYgn4
z|G(*fcHF#qv&c%5nUNv9?{`8ayEpT-7Ea-k$GzsD2m%dH_S#+l_xHDH$_W8i7nc{0
z`|ZOHxADdvZ{wF=2bxSMEG+!>>9qdUMXuf6Rc}D`yiGI%!-JDLYh(Fjt(F{@uita*
z@KhDhR6b}ePgGRY(gIaaUTL!{v-9_@T(n3DBr|CVXjxL$%}uFOkIytnbeg)Y3)HIJ
z{6Wv@eL`k4XlT^Aop0yUouG9<TQe>$y4C+|=hth|R~NZ*r>3TQuG+WA_PRxV0V6|N
zV&?_xh+7H1v(0>qpP##WZEbY+mrBqWsdGEu%H-pH&u#UMjDr6E`@a9{Y5o0IUequ!
zG?Z`Na?s1uGw|=Puce@Jt@igfE`I*${r&z+K~0jd^>MYX=Zha5;q(l;yQ}nkb==WH
zy96nQ1W{1DXC46gAG97uPHx?zMM|}Qzg`bLXZV=k)wN(1N7U7wHx$?y7z*sBv8|ai
zM`pW?|K6&vB2rST^!NYywC8#4&!^M5xVeKpJUq4@T(@V>pH0sv&X}>{*VotKQqm?F
z6WDmAN^bUZGOUnX9ln0urlv>hMERuD&!_+Fb-Vi%G_(ww83OeZ=1AYQ|M^7t>60fJ
zH#Q_rTC#fGE-%o$bkV)3Er(uSUcNebx!?3!TZRL*zrMeZe|oPYzV_?XU*FzlU+j6{
znIpIXl(yHb(Ruppnb#yxmvdk3Z%`j^neB1V>aA98@mDLC&%3nDced8uRS%!fufKNL
z-+t|b2MN6rhE9_}6AZG}Wj_CZUEdF$%n7Qi+ZVPrD)rVJ28JL0pkDekwl$L`3Gqsq
zc&rXvJ1J2DG^M8U^2No)UcSCpL5*}(?`boNl+Sl`aDW;L{dT`r)cwAFf7iPw|Nefz
zpM7sn<*%2^=Wi)_8FYQ`dbzqEiM>*$Uf=JQ&j&38csV`3?xJ-5o`q#^Z@v6{-hTh1
zp9~BP?^9pqN`V$lOw|s5we$JB;JUhfb^m^*|NZm%yq1Q>g$_aGFXyb^XIxt1xy<%{
z10(a6<l}sxig}iK{=7C`>18{MpTF96JMVIzthH9?K~S1q6}nnPMrI9YA&9YYaPTsp
zi?-kI1V1g@*(uF%K<7@z6;Rp(%^rOG_;KCt<>5Piy;?nW(xgR)+xfMPje|kWn9TD(
zXW#$h#x1V5XGL-Kw>K+ecbA1q%G=k~ERBDEfB*d{I~f@c2rVq%u;t*X^XJ2->&33J
zy|>g`TvSA4N1+=714H<^OAS}oL>lMb*|G7~<Jo4pL7UUg-Z58XV9-gsDwOEy+3D6R
zwRFP<16Ed6O*J()X|tRiPk!>tT7~#64+aff&YAw+REIa><HwJnTKvnG%l_Kd*3nO&
zJ_U92Hf`Q)nsdVd)HnV0_kDdnsDN7``sndv&?3L1M~`McJ2Ugs*RP@T?P~R2K7RA>
z=lS}qe}8^*@$jrUIJ1h)`+GvKq_Nxm+V68g3vJTR$ym-!|9o$zae9hG8_1NjGZNa%
zIT#vl@2oz5<=flaTXSw2EnT)u%g``zl8CtYaz0tBj3*~1-r7_7+12*khlhtn<>l)m
z&raXI(InyLj~}3ty|c43YI9mIXo%+Jo7xS(zPwy~;)I9xa&`uXwHs=F7XAG7E9=FD
zh3gC<qqiAvZfpb<;1LlwD&><8HnHB?TfIGOU5w{}Nxpd|w>Bobm%h1i5j2&MU<n#I
zE`IK}HTQOyqN3u|V~ZCrjy--}d_z}Pmr2!^4A1~tI4I-z-{9V1n-H6&{j|X1T;*yO
z28M*bKYwak+uFh;`FVM#CQ4Y9ytq)ge!fNFqNb*%FVF4&?_9R*Md2N}4N_(~6@e%B
zELh-h^XAPvyO|jRR!3Y!@5F*u@y#?&2bGA+YCd&sFQ`6Xbw5{f$>xJvs;aK}`+hE~
zsi_eW7k@sllaV37o0W|Xw4f*SnEza>r&e)uA0BRhJuN!#V(s_4;mMyryKKABtm@g$
zFAth*oic6OvP+kOK*K?xL71rRdAVP&FfbI%*3R8f_U=w(YPPRyz$!n~HlgkFQqT$t
z(7el3?Qkt~^YBS25^bkWoeGJGS##%345<HD`uf`5Iny6q)Zvd1?Y+9bIkc!~Q`FY1
zRIus0wRs~z%TDt4d^`pjpRz1Y+j`x_)iv|+v0g1LtyNnt*52NhTVx^A)zxM7yp)|^
zZpz_@7yf>~AOF<!$<wDRLsy5*va8(%%I>k>UVjXk#=54diOF}Skt=8%G&6JMqeqXX
z%$c)hnr?KIsVW0Q)>1}hwv1O-R)XfIH=noDe)(qZU1M<P_;D3`qN8JDpRDz=jt-8W
zKYpx8KR+*OXHn|Z<I+|oE26e!EPV1LrS!#xgKO6x)w?6N;nU~Ou?JVJS>xl}#&hw;
z#$?Vg28KWS<@*n6TUkYI+_=%p%j?p^!|kGif(v_kc%EW!l%AbsYW>{(7HGi~XhadT
zu%mn*Pjq4R0npeOXrOn+3Jp-^(T&~~l9&jZ6I{I)wC*$y)RNljk8f<7@A~p}bNqex
z2w%Fq!!{u_XUp$L-TGfHIP=f_9&^~>Nr6R3T->|9m5dAtmfCrj6+G+e>Od8qmzUSp
z=S!9^56{}NYIFVnf8Mj^n-^6d*frz61Oo$u|FdrmqVn?Z-z{fhIFJmU0~C+*U}a!9
zpt|voT?7Nega4qOCa3{Sl~Fb1SuEaZ<)FEh1Z5VT_Xj}Z9MBPWtbJ89jmVQx@SZ+;
zo0*uQdh}sHvVF=lO&YYs_x=9=`>tMYkUlfd_Vz1Hh82wV|9&jK8oa^~G&g3RH%Ck_
zX2qdHPOfflua-`ayChqFr|{luyPr>lLG!<$`DoC{ifP6Lhrqx<&{~^aWp7_CyLp=*
z+~f3cZBG4mz4gfP<Jrf0B)hu1FQ1ud3|jhXSNkjD^|iIn_vXF7xA)V>j~6#29{%#{
z_4?O8pU=Pk@NoNAP(M<>=0juTeX)M$W>C*_JE7S#PEJlQ504clW;r(uwq{-R0!<05
zkK3D7@~#XrOBr!7K^HQMCS_H!BKyq!`|+HdoWH(Y_MbX^db#I%MFWEX-&rOXFD`c1
ze_j267u>Ju**%@T{2h8%yLFC5p_BdJFOxx4Q`#AcxA*q`Zu-4_k0i+3SBifA{K>`3
zyVgifN=oanLCK2?3%Tu%IrG~tDSds-bJCwbf4*D^_Sdwuy!mBk6&G}DOZCvBM@c__
z{|=Yr2T!j}m@-9VZT$YY&(F?YK5Kp-)KZx`ZCczt^Ml-=3G0B<s0D1D;>3v)*Zr@1
zGSMA0C}aEWMlz@-Ju`a+yCP^PSUJ3E@x`^#+rxHlJ#=!iI>uPx-X)e-RtCF+`te>~
zU4HZJYR{FOxee)=$L=m$Thx61{r>-P$;bQF;v5~EZqq+m-T#yU&s>YbMPY0@-@q1!
zy*UV4>2vDTsVUQ@J(JSb)C_cUYfDN>5)l(q^VHJN2q-JtcIx!$*ynR!zx(FiFL$*|
zR9i$&Zr!n7>DgcAe$)YVwXYPBH1fCm{l4h4vrL1h>&2FQy&A4<ZXPZvDS7Jr`Sn|W
zuU7%(nQci|+ila+(!ze~9D*-#u$Vhle7}&85U5Fac7`En)5O)#@YtoZ^Y=xbxBp+W
z_MZ;8Z*7)bc3_tTW`VV2vwXL4&W#PT=FK~v$S(#TgA-gmjU!PH6wwTmL342l;1PQQ
zMFdh#KYPKV(hlTmvqM4)@lJGu$`&Mzy`aJn$zJfxJb07=v=ak7t!*HQb8Z4jBf5im
zu+7Yarajy^BJMSUM$m}#Dbmb5cuoY=^9BuYL8tUT2wBec^POdK^6TrK9v;iNezFz?
z2M$FtGB8*xCj4!`9$z2pw>;SVe$8jsx$(mGnG6hB>$~d1&-~jpVbUZaP<uQvF%dKx
z=Ht_2mUE-v;A^{IFO*ePR6t!*E<V1n*VopXmb?fM6%m>7@$H8QmNox3RD4X@nsYPg
z_V#>GFB7!tgCS2)UVgo#ahisno}Y30xhd<{uLm{p)<$oi_kCC3Vz<o8%X~qdev|BL
zI-veU{@$<CKx<Xx>wX;c-Mn4?Tf*N{-|yG2UmLwW>*=Yf;4Kgt7nORY&Ck8cWMs$^
z)c%%`dw*XnXd*Z(Yn70&u&QTaVIgSgj$5D1%Coc0!>iwZd3m|?wC?s0sn>URZwIY(
z2d%uEy6x%}HIs<_n=&pcfm%GZzrS4tbsI7+Dy?45!r;&wy{~3xO>Hg6lh<eL-w#UO
zUtTVsucfcQ{#N#X;~39NYq#H9)y6BGb$*_$sZqSY!+~E@k9Lc{KFBT)@+TXw)RNlY
z-!hN)$%grJGX$L8QT_kwxw+O?x8+8+wzPyu_4oCa$?g}~|L0S8S6A1S9fgm*cb%Ip
zu;JhJK3VH8XU*@wc-SsKt;B3%du!{(Bu0ikaTpUUFDA+5|N8P$OINq_@9ZdP!43be
zFLLcJdAs%cD))Z5bsHO**+CmJjCc<3>SScd64k!v8i6tpDgOF#zx}l(o|8=q9ypY~
zzxVf2+#Yeo1W!=!0W@NNJ8!q|@9*!gm*1~l{(j$Yzl#?yf_ht^HML(w7#UU=Ha0d|
z)&44(`VqWTF}^2%-%mGwn-2|2%F3qc=VXGPzsRf*UwH1`VP$*!c<<?YS0|}@YsnT{
z$V6?)nD}nT<38=Wd8XOdcGO9&5RjBy*(Ylq_c587;mp?j`*v?{Z(n~Y!qd~U*Z%#~
zecc6re|-&o7atlDQgScb$=Uh*PM#U_=j(fB-P-b!b^iAU2b*7AT|Ir>u2)*Asi~S4
z7C(g2-qvzNOaj%!+3R+?t>6EzYU<MiqS|2@prrJ;*Zf@M{J1W=+Fu$vI&Zq<m>C|(
z<=)y7INK~&3p_3wwXdeK*Y5pPwl#5kt5$}ukDGdI)8@@ze?0CF$GLLiv)%La_W!{e
z)~xZ7HqX0adOfE2=I8HXTkR6&T9tZ%CQ=SGGME1U`#s!JPD*MOXyex1^829SU{+%m
zh6QQ75(W;SrFl_Nvmh(-Ztv>p;W>Kb$c|HuO-)RozPX^F;HQrtC#rykFhSb~K7IbY
zweYdq)~u_iHeF9t-)fhzHg0c}y5F3D{dIrORobYjxq&L^MXuc(5eyAd=|_9r78Ads
zPSvxSo&TEszmNQ?Dk>S@-`xdux?ca8FhSt!`}_B=Tz{mQReJ!mc&@3bY1Q52rv(;Q
zw&%y|Ms9Mk|NqB$zAXpC2d|kkXM$QeptyjvinO$~z3=WSEuQ<hz~V_sSY7>{b+Nmj
z6j+$#-?KS8+kE|{jnB@`7T%Dx`s(WN_z!d9|1Z?k*I!?vV`mrl@#9BRBXb6ax5=)}
zs#u!8OE$|Jx3Aja%M7YVvT8xa<J}FSM?ZsV5a>*?^u{cHu`{kTD0p$Nr9!J>&VuSD
z<eCCBvI45IVUyRO2^!EGn>2yNU*Nh4xlXL!u!k8`H$j`(;Q1(Ge2TSh0?j3b1flJh
zx!A@ltydB2=-BAiFSqt~{{GmnudYtM{PN0i`T93)lDDP7?p~R(0aTyhoDAP{JvBZ3
zwSN82ZqVrBi4z{THvNZ8CExjmZ!n>F>-BpjmwiEFNT5}FYa=!~fo8aOFU!pah2M=1
zQQm8xo}LD^mlry>?>hG9@878tCM@u`{~J<SS$Q>1T1I9K8?V%iZ@>0}Co!crDkWen
z`znl)0yP}4%xa%#imWsPH_?pW-P4FeDNlEpfLw5;2(?&zd<oR@OaM0}udWWy{`%_b
z)MI_}_H`KLSnB!Z+msR*86LR)`u=|XzrVl3rGCF!z5dGf{QFt!JG;6r9qW}24G9U!
zT>N`m?(HW979ygep~;`WhUo|{a(jDg>uFF|MDh2xx0|cD;!bvz3-U=AIHabgdU<;n
zgEpywhFlB{4Y|0vCzpI%_x9$^o1psa;`>JP1qYpaL4%)H!Rr<o7qGp#z1=_e)|QP`
zQU;DCC0mk`lc!FZvII2vrKIEpY80M58(LMh>-C<Ci`}yiHnE;Mc`~q~Vn_C$rPJd;
z%g^53-JL4YCZ-dyz~Ant%OsPsHxb+S%UMHuf?>5cigERUwQTz?N0xqk-6|eeVB3E9
zVL_`=`(a1W_VR0+wGuE_cC9LSc4nsbtoi0iu$JSU1&`QrV|SN<wu>cv%(;_&cULKB
zTL5_3=&|cMo}HbYpz(*Rmm6lkxwkhOwBrBj<$~3=)!#CHetK$J_t>}meul_1<%FG%
zetvx_FE6^wZ!J?2dwFN)X3!eXkH2GgU%7Vw{hT>-ys9TR{C7D})O>Gmb@szUtyvcr
zv6dfZW#A8si2;ofe|>j%_py10SJ_4wh%=t%l`_v;<1SZu1T;eB<51k%4e}RcF7~|=
z3uGxN1A`e-QE`ANYva$)&riQB(bCZH`1$i^Xy5l27o8_goG5mNXT{z%KWy%mKWAXz
z<OQ7zupxa$e*>$-a{u|D(V<m6pQjro@E)4_TseU;AS7hUvokXnH#ISVCN$z28(6Ot
z@wGcAAL|K>jJ#<Xy(V5;Umv_6y`zJJm4#(R>gj2qK_xFQFRi)P7rAnOeSO_OdRtE5
zbiG&+35gY;MM1{Kn@=UnS(o{Mwlayz$*pT>VAz^@*=_y4U#oZy8+<Kgn%4xHg+IWw
zV47}p)`<y<;yD|IgoI4${#1Y#%7XT%RegD}@Z@Cm><bGVr=Baekh!%ze|}PO^3~Ph
z`k;Y-&`2$4R>ZdY+m3VEdV2r<zr7pnapkQ1@sH<MrF4b(uX!paxpJ+5Qg@R_WZ8o5
zHM5(#4!A1ztXpI>`2yE24lP#C4k4vzT`gms7Y;5<WKFCi1!R|OTBKv_v*FDPJMoY4
z^Nwz<Z#TUD^>5SOg0%E+=GBVx|DMZF2aS=++EfI9@`$c(XjIfJvz!~Cbz^nW`V3#p
z`!X36K%KA&r=MQhmV3MAU&80Nx3@nn+PNj^DA(J2d!r|9DSGPV>gKj;$Bu}tTeo`o
z`+v9j|L}18u8NO~mif)q@&whGYCba-fEtOvzrCHb<k6!f+saQazP`R)ot+a^o<4bU
zB5m`^6)QY;?%XM5UsqGFFZ)4T=CXjqiUh_9U-ouAEwKs>3tM)5ef;-V_NA|;=!kV+
zTNC;C>b%*rwYT41J6YYoYODWDqocy>mb|x@6qT1>f4pD5`c|Ku?W&iTmuEjYF|q3R
zx3$j=)6dD&{{0nNT3Xr`&dE^E&dA;1o|w3BU(L@)pX1h~pP#3xq2W<jSQz&<`FP*e
z6@iPte0dqX{@aTeFXD>-d_Hgg>cxu>f9~G7v&K06oQ9FnrPqe#?_wf##I|nTDj6kd
zP*K1imXOdb&~SW-=VZ{%oK2gIo<4v6yXM^ae~bC}_`cozcYpTv>Z&S}@^>*Hi9IXt
z=57CfC7ZEfzhVO8hoFdv6{k*l<=)<Qc6IHeBb~2az6>lb-u&qCW81g6xw%!}-_2F?
zoAcxJde9Dmb?fxb&N6-7zh0U{<W94w#0@2u2dZjnZZl`jytO&K|GGJsv60b}vfZIU
zL65%vdGshLQb+9UeEa{?<FijrQeCxv{q>uh)2qLhmX*D_y*+>bJ_ZGb4Yn3P0uM5^
zS;R*dv$C?TTCw6nGdus32@@1NL8~0X!ls=%b?VB+i=eePv3sjR^`?7wi|Ky)#rE+0
zsne$~cM7Y67S^Svr-OD@y}!Tz`dsUB&<5D8Tef6;d2z9Rj~l~}+Z+)G1fIXXoST!g
zW{%(TZ}0EFzq-HtecaJw$5!px6Ju&>+SSzsS^{L2d+SQ}xqWt~|F_%f==hYDmfqS`
zx_Z^BRUv_a3k8+kPULORK0Qqrv^IKSC{r_gbW7vGN6&VoFfg#)IXl}NG^Kg#R+Oa-
z-{N9(Q&UY_+gS6wI{`sKlP>OjC@reP!0?Adbj^VSzV8?q7}^34GBF(J4>-uh69QTT
z&a=3Qm7zg?VUs8*1u`&5xUq6GFxWdE&HMmb!tucUh7u1?jvy0U#)(ziAOO5nr-w_7
zfuXL2D=c9_6KEN_1l%eIkQoOIv?3T7eh6wsG=kUG&sP-Stpl4>`|nTW&!0b~?CbU%
zI(!(kO}_Z~xxZI#oIB?Ss`o*qmy1hF+WC2FqqpaM{Ve+198_!9J*kgwStkGAKP+sT
zmzUR*605Dn&;43kT0r$*__~;%4=uLeUfa_HTBHV=!@30OaXmXL4LS>=U(VL(>oy)M
zko5*fOwG(*eRz0SOHc3GEYoZiPrv2CoSdAXeK~ruyRJOHv1*mp)$7++@7fi`Ev`33
z1vFh$wmWvVd45=G>eKkh=KTx7VJ6wZb?xF}cTpjsMRVrJ_(x}CtN=~j{`yt5x8mcX
z^Bb>Tz1r2)^{GYMb5qpXs7)!Ipjl4+_<etV&Nkuz4JJuEnl)=y%J$o$f`SjP&YLvp
z(aZOz*G6xjGG)q@)wZgtuJU#@7Y?`cpN)H?0IpK{d0bdmZ`~SdHhXRO?z3r=Z@;~E
zdb)mn_L?Q~eZ1g<TiSNKdzaVR*7hw+-mYfH^8e+>cHMmklDzYTkD)<+XZ`<uAB#7<
zyTAYc;eQ)87}WmyvNHVl@qT&Rzx$1^C2jmukfQ*Ob@nx3t3gpSbLLI`&-~J6K4Gh`
zrq4f{_Ic;j>$h%cc}kh*#mxVFE642o=ekmuo<)lnm%hJeyLJ2a@2CHStq#3-@uJ;t
z8NPPCm>mn&t<zgCeOFpaDrIBDlLCuhbFM!u_+fKw;lhQE4<A0<bo*_6-N)t$N8gt1
zX8)zcz;NI|W=>8>R@SPnuC6U*Z=*c#`<MB9cm$-REYXYKr{h`m_0?1>Yim()@#PO5
zBzRt$sO%2f5g!^Fnt5@N>!c;$zLnj4TXuG~xj#FfjKmCAUIS1Hx^QW!cW7|%;;XB}
zK}%nsK7G2Y?(eR1^X=DXUS8%oY18J-Pm6Y5xpe8#%C@gxzG&#``j)@HcXe0k>y)ig
zTeGk0+1CGyxxOwIw8oRYD3ZBN7qm92tBVV?IB@FJsjptV2uMm=<TuaeC1?1h@5(Ao
zO?&tiIJmejy}Z19>h$T$FI@^MEiczrRdv;yo_(TCyAzaw8Vcutn&Sx)pyu@fusa(P
zLF-W%4ui&A8QMT8g@FeYEesNn19^HHz}anNX?PQVZawQ)+rYm|85kHCJYD@<);T3K
F0RZ?j(f<Gd

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-15.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-15.png
new file mode 100644
index 0000000000000000000000000000000000000000..3148ac2fbb1227128d7e92f50c1220b8a2ca5fc5
GIT binary patch
literal 20798
zcmeAS@N?(olHy`uVBq!ia0y~yV2S`?4mJh`hJ9%>?l3SguoOFahH!9jaMW<5bTBY5
za29w(7BevLCxS5J3j5`m3=9eko-U3d6?5L)t*$x$_5c5mzpJIKZyFqzERJ%Sr5Lqh
zVsMDx#E{3qzt>z^zlPKJxW*PEv0A06XAPCEJYO92#nJDli^kN$>5}(vPU&yWeDmPz
z@5S%$-9NuOw@<%%|F?T@t9HKm^s{20U;lJxxp(KE|F)c+DAC5iz>pwio-WS7!0;d|
zV*>*NgO6J?D+5D<k(3St1H<Ht35*O3GkVy#85j<vm_#rzFsLm)$i%>4AjvDnz|e4V
zRLh_bu_?1>uiml4f|Zr^<niO~4<A0fwIT6vX#D=f!)&E5FS&-U3YoZn|NeJ79`mh@
z*}3V+=ks$c7tb=yK6Uo2@9OaNW{*X6T0zmD@#4ZlFE6j4l$0fD=jZA2^Yedwb=CX!
z_Wb>iww^qB^3}z~?OI`LR=m8tJo{LWWLHPWg^!Pqd+$j*)WW%|;9*ma+3cC?6D7?K
z8}OuyGcqvDNx!}>mW!W1JSk~WQgX7Yr?`GxNVk}7$m%fN+`GHB9?8CZ>C%-wmBqGy
zzg(VWS^O;2_Wkeo`@>&fTWgwmNyT@LMWA;0x{&|>{`yvmuU0t7#IRsa^wzAYHa0dQ
zva-4IpTB$w2??1}_U6XIFJHb0t)FXMzD_T8*OHTy)x9U3n{Qu#^!d>vM_w#!mkT=H
zC;N1jB|j)ZKfQBrZ}rtBp2DH4LQW>`iQQfH?Xl|39fgbY_I?dp8@=7{>#M7i=g*(N
zDs=U-PGNPi+cs-sb_Q9Ozq^vXes9`4?}(oE&D;zO4D}XeZ)W(-wJHsM7rVErl$D)b
zyjn+D*}1W?(e)TJGjpm$o8KIZz(=+G@^(7q<>j_NpG@xR?hek#SP`~9Zf$s6r7J5d
z>ny9%Re$eri|b`vSrI5@nAGy>>gwfJu3V9>H|$<?kcr^{Q=hE$vR_|c-{124_m3Yh
zj?35UY&&`C<jIN4m#0rG)YsSl{c%!CdirSt9#s{Uj3*~1PFhm;_t#7N|3CZhRXpbH
zm9-Arw{PF1B`+^8*S5Eh|M>A^+MY>E4P7}H8d&eFd9v!l`~Cmp9vSc1ySMb?qoYcX
z#r0w~$m@GP+~_V>c_gvs!-IpTPM*BD{eGRcr&ZOL6=`Q?EX=&T?Bwy|&v)HhsIw5{
z#H1Xv+okof{Ra*>q^6{ZNb1Y14qoopd0k9yb?EA8hbzv`GEJ3e+q7wuil?x;U&!5E
zrKRU>zia5~`etTke*69Z*X#9O-rmJ4S>O8zGBG@G>dM}<?#hmq*4E6+%Y09rJ69I*
zVqfudzneK`t*xz7D{^O><(51-A-Ht;^3{&bY~Mb9`BHK-$L#8gK<7y%e|{9oS{AwV
zN||Z}z2A^{IA!zADO0Da*4O`EUFmyT8RT52Je9q>?xkcOXka{b{`~bnKR>@s-nnz9
zm#1f7Ma7P$rY057nKNfvReV^$#l`jJIj@w7M_b~Hz2EO`?w4#^_~c0nD+|jC-`Qr9
zmaGh3o^^JXY1HnrwSQkv4Ue0sa`foY%(Jshzio|L*TBNf&``84c6XVSMZtncj~|zQ
zdg9sI(xRcN>YACE>E-9QZN7Qh842B}EgtUua$EJMy}!J?e^<%NMK3Qee|<f^KJ@f7
z-K}Y7rE>4@i~aoke0VFDsEX&?+uQX&-8nT?`?LYi*4*1+d#k_e&7H2R3M#iFPV}x>
zx@(TMudrU+o(N$zp9_;zy{Al_y7a<@08qk~wJIrCarW%m7f-Ic%hxXX`1pAC(Js-b
z9R&+#ndPop>OEa7@<*J^zEC~}h8>yT-rQVlmV4{O*|TTAEIVw#6T7R#b9edsu-Dht
z`tCLFa&KZ~XlT8&hJ|}+x9dAdo#C`{XUWT;jgQX+?Ve^?{4C@CzS?to%o>~LeAINB
z(a*-cbkTwZ4taTbUf$l9_f&p1DSsF9_seDfQ>RZ)KAX1qWRakJ-H(MyNl7Nv-*RGi
z6g0+%Kd`zOGqrZjL8p}k<>lA;?f)$Bn``xQ`~AA$y1IQ#%*<b(O!n8Zvx~E{v)cu-
zdcL3I&5swH`7?igdHL$n((XNb_Dq>RJ^g=&8N(FyKe=tQR~1AV*xSb|yZ436Hp|_T
zc2?@|@B9D5K<t8tPN34_`~CXqvu8_px=V)b_?QqAGY3>^%Gy)}oVWcxhfl`h!IM)B
zn_4xUt~)fh&IT2r$NOY2|N8oR>h$T$_y2jSzw7_M-&Z#zI`94e@As>lo0r@D{SsU~
z`DjVv&8P3)z5DRE-~M03`#qoggoK2?T=uuOT&cxSz_*N}@UleP!Z&YnN?%?&y6>8n
zl9JOU`TGm+UcVmh>FH_2<2=9SQ>V(yUh{hs`uqEN4nK&GN%e7bY;>M%nsr4Zc27lM
zXJ@CDhQ@^!PT`W*Yqwi%bei$>#6)E-PR_zINxj!;Dt>>yZ}~DY;o-84H*-FH{u~?=
zGpDGiXv(x{%j*9;mY<XoKmYODw`<MsRXBgYU%!9fk4M~~0_&R!cWU?U-Mjf@t(N%C
zHoJNJSik&wL1niWm;LRpPSFhZ*c9VXQ?qB5N#>&1-DQ@$MGjob*idl!$@Ayllm7j>
zzW>!(^ZQfQuU{Wm`!%%o+s*VzOSnX}EKDM0tx7JG->+S6oPN$?b56{1PyzVm#l>CU
z?^SP2Jk0j{M+>L0h_v+T^LD>`)K0U0d2!MC;lqcoE-&Zzz2<vJO6R&mGwWp$y`pm`
zPX@-t&GVaUm1=KR@WA2hT<h@2$Ve&kygAp_$LqiRKTAhnUw`lSd)2pg6fS0BW}X{l
zpVu>e`t+pa<f~h=!@s_`=p0}3vGwnb`LowFv-4YR42tPLWPe^zP|(ZAC#0E;_sfH3
z{!1y0stXP_X>wh^FJo2WF>&HVE?(Zy*=D(4t_1tPyzFm3RmJw-kH@o2v#0gR*{<4{
zd|d2y%GGtTw`Z<z%>Hm+-tENc)04j(kKd=i_sb+DC8d)4wckZ=r{vz*5vafK$09y?
zyO>v|kAHo6dpkV&c;D5JkB_Hrz9}Lnx9-Rh7t^dO9cr)D6b=^gzSH0P<&yU~J*L#z
zi4sM{#g`8@vtQkq?Edum^VOA~pRJ1Dzb|ZE%u4-zKb+bUSJeLgmUVN}(pOhjE`EA?
zdiMQ&wX0%xZ<}S78}&puW5c#X{EBmIDubqKg-+VNd-tbLpPsyXx322ztC!QF^8&N7
zRxR_JyNXZNYDM5;w@Lpp4*1QtTU-C{^Zcq`FPA@k|Ni|G^Mh9-_Sfy5G<ovVhYuGn
z^PRoQYpT|&=<Vxfndh&o|NA<=>h;>~B7%Yo7c5XnpB}X=H6<nE-=CkKK780ve>i>f
zKAyt?b#?pZ)&0s$<MirgywmXKPt9Qi9%XCm+b=FJ?-!Jk%BuPM_4>ER_J2M!7oOJL
zE^&2rxcRelbF<~+x8=-C+<ddAqk}`)+Ishu*T=Sk3Z97@C#(BQ^-7r<$<=-d{2h^(
zx9;!%{JXoZ?)ZGpnzy{XJo)rAUB2u8e!X6AzCL2cv;FmVlarHqXP-^$k+Hnw;qARy
z{{FVy*@AL%c~{m%UVeDqZr$B?cX#u8woRWt{o(7^*{`NgpFUmj<c+=6+c(E=zLU@;
za6RYkt*uh_b$gclzy14!0ngtLhxtK)ers#Cy6360XG1rqo&9n%eg4VImxDo>zE9p>
z&r`~#Vnf)Ph=tql*G2E!x9?n~V9eHTas5}*<LfRyJlsBY=1fh`Pai)9y12C1{r>}Q
z98LO{zbkx_RmqD5>GLYxrt8H9eSdfNZFHeW5U7FnU$x+Dj@j(m+^1(|8jA`GFFta_
z<?Kvj_v3xClh3AIjxE1?v}EDQ8A>I*CJ{Tb+7e&9xw(0kVRBns^;^@upH69iO9s_<
z#m{<bWBuad=7E}cO-)RuSyw!YpPd0!{j1kTZ@;x((xPAiDEYj4-<Z8Q@2(Z7V)UJ5
z61X|-tcZ}%qJ6c$vu<z8on>FY4;22j9}cqf`G)!V^{KqvcwFxC+wJ$)Em)wyD{18N
z{QUfM<(o#w?%uuouk%6V=Cq3`jNzTVZiQEK%x3@j``5JmT}-cx<)wX%PnLL22ARG4
z{l4h=wclo5x_ntwL?q=u+xbaXmUs$RR#d!rKEJ-~Q}lx<owz*_=WRas+}fJG{Q3O)
zxVX4DtC}Ahrs>750u{NOoSdLSf#>jrMXuc`n{S%r-?OQ#uJ)dEZB682E>W!)`SrhN
z=k0!LcIlMSqtEB<!~OjFetmhV?D^@#hYLr$#h<=>xiWHdn&%`TVPRFz^Y;JuG&MKB
z^}W`uzi$Poz17Tb7tqcpJLel;s-$%9E{^4X0gKLPYG@en95&eZ|6ldvd)4nvSB0!h
z@|k0C(SYahjXjl{1DAS<Dw~*Gv8evG=5T5K|KIm}8yXmrKR!CTG|qV4`D4A(y{kf3
zOMxsa{P7{NJ$ZipznvHN)m9%)+bkKp%*XKDeEWPJdAmCwK7Tf5<B>>^v8}rD<H=<I
z9(MVf3oov&p8oOo`~B80bqm&R%e|d;BgYJ+vET03ij4^eo086VcXn!)`Cj|>_I7V{
z{@$xQo=%JInKNh3C7r!zv}2l|K7O41<LA$rzn(sRd{}BtkXuu0c9KLJ&*2NX+wU&B
zxj8-i$A^bik9*CZJbk+K$Bzo%nMSUldbOfrM_m2i(z{i!*MizmlO|1i^8ER7zqwYH
zzeNjJkNvN6DtLQqE2u15w0QB``(jHAto!or?$T6HaQOJ~<1CZRNm3>m3yvIdxw<AY
z*wfQ9>&AwKS|KYG>g(%s@9elZFXP~^bMtIhKX{Pf>f-X^!NKNRdnz|SJ2P{!=VY~&
zp{v8V`1q!&sH&>IytLHYb<&y-9}0A1b_AGaUz;+0`gG&?rDv257V(-LPH<%L+E(z;
zNjG*^2*2Hr1y<$n)`;mwS;*YqU%x*oIeBaLbv@r%CY~TK6%}m~5)vwTaY3=Nvhw8d
z<L-8LcE66>|66$BLV)^S&ULPSetl6}vz9(PJ3IU9tE+s+d;b5jn|OPBe)#^nzfWGi
zTq$c^w!&+w)~~12<F{0O&HDNC=gREs>%Qqq1(->+Ev$aOH~i|V(96Hy?_a+*di$%Z
z;qh1B-Q69!I!w1$%G7JFRcTN&8?TDz;dcJ(v-9_@3|#D%d1FK3x5Aj+w$<N2P0>$Z
zzna#*p4HUEG}pd94yl=T+%7`nVk0v<sK(JWH4Tlg|GRb4q)A({uj|R$*TsOkI_>T4
zpgzZk4+U>;Z}<0}rZaK(?%ngM-&umPYGY$#*5zfrzrMa+{_^tj)t-~p&ef^LEWKa<
zKlbypv%y=lu9{?AP-y>J^8c^?!>X^ZK!KwjwkBYE-d#|~E_7{F=-b=d!)Kf2hHT9W
zP2bD3?(kCY=}(?LTLucNKR-UM3SU1DWcrB{9#_}L$6u0{K34bp?RKl8CmrwhevkY5
z=4S9DliXV-p{qhXzuzhD|NEV5o$o`th<WqonWxIHxpODx+d(bYKbj7mO-)TESywcE
z{`{$FVG;58cz<|R)h;!k84EUSFerU}&6itDXF_{>`@QP-ws%Xf$AT*BxT=?`KY#yz
z{qy<!>!6ZGR(5UG*H@OmOAC0l!q=@?us}i9s>EZuUhJgy_IAD4T~7-99+ngy?~_&a
zykGl$ZmmpeaANY64T;Vm1AqN^-2e4<{(jF%Y`juS{{8)Z`s`WX<$iO6l9CpI+DDSc
zX)jvE<1TE;y!_>aa{r0L%~RDIT$)=?uLxS&_2}{AuWvS=&$_>__S3g-*Fep4W_CUe
zEiEsz*}kCK^y->OV^DIux;i`@6zci+Y>pm3e*695_#LU<57&op&$|mspCBcd<m-R_
z+j(-+&75yvBU`U;yteqw>cGWqZM@RUwq{??dVX&1q$T?M{{%6!^IfU^es_8K{o3&O
zx}Qs%nww3lzGSqvw`U*e5Zv{4+wD0qJ6|X8ui4aZ8nI*1=JfMfpPrlqg_~QC#6n5q
zv>W}k|9(EdwYz-%q{)+~&YipV%a;<*ptG|~OCKCy3|$>|HZt`wo2+%2kF0gsm7T@U
zr_7kKLVbQs(4;q)TU-BMjN6hiv5jAT-Twc7-|zbUZui_sBcGCwk6gdLzV6?a2=cqX
z?bj){w&kuqa>S*5>x|RWbc1hi%Pl>vyWL`A)b)TJY^TqkKmSDq)S!QUZf-Jfn5NR{
zqoO~5|IWU&#B<ZloLQE|%Xki7cye-b=*l3~()agb@9r+Y9_(+sbg_GX*3(l{K~7IQ
zGsCes^cX8U`|H2o?_UQ6$j8UWU*FkT+|}7x7*Vr3|GpiljOdj%PrDo;{`lp~mGAEE
z*4ESWlQzo<I6u$!>nZK^H)gNiv&SZMMSvrybe*itx~7wbJN)gNo13eCKArw{Hs`)C
zm%KlH{aX4XWagLSOqufX^6Ft+#<d@hii0|b=jPe2-dFqk)x&oAu*b)GzdoHF{|eN=
z{`dFy*3{F}l;#__-u!yMe%bEQ*UR$v{|$?;{W^7)Y4)=xr(&WLo1VUZUmq;AW^?-a
zNeNSxgmhv|>+9=%XBaqM`v3NkP35PQYU9u!oGP=luU}dlZT|Mo&fvvvy_cSyoxQc}
zZIoyInv2<YcWvF4cX!pZv$L&tdd*n*AvoP^wl6aq&xLum)nC3|kH4J2c)fv*`}&jf
zzSDN^-mT^{Lm@ss-fq_0L!dDe-RNyT&(F=hy#0RN>ZT^9tr-`cuC59VetK%^+*rB1
zrb8^R8`<S9Xs_S1XsUMjtBdaPp+~z!=f=!@oxC^@)QidvyOFYU_wLtQug3)+?GiOj
zJtdMpy><4P^XL8R>grYnFYnvz?WoDc#dQf}hWfk;r|fHME-r9vo)aq+pmrhQ;jSOQ
ze{0*>#ffT%U3qY@d2TFU!|WB=*Vkp;-DP^ebK#T;2|L-ObYixjnyUSJ>GZgyEP;YT
zM@Pq7+j3{y*xJsG<qAl<knphWLJZ?m=Ch$Ml?t_fXKY|#*dVZsBbNCiGiVId1I!oF
zx$e*e9yt}#VPMc{VL5F&0Wx^XvRY)0RjJqO>+8dt*?6D4ef#!J5d*_@O?7p5_kOw1
zemUEay;Walf8qfd(HzQkZGHUu<MQ=)Zl*FY_-sl!DP;TYM)Em5W-+(sP%bHx3<b|!
zuh;E<^8Wq%J4s$Q=h;?Y*;SgIK0WYN)Yh!0Z-nL~U0oF_WsuOY`E)^-b332q?v|kK
zwZF@@=HI_}Gj+<UHEVSKexCn-%m4DfX^LR)csV}YvS9!I{Y*?ub7Fj7u8P>0w6i+h
zlZ%h9tc=s|;oG;ddH4T*d3pJq-oh)PYa%`_^PL<id)l@DGO)mry&;AfG<YWF)cjQH
z#xh3GP_atHj+LigSIznKs?YjeK^doptD>UfIlY6b6BBl_3F+JkG5<Z;Y{Rr|xwox$
zvrJKv(piuK9;NU|Y)buhed?2E&$RUP{2Uz}L5<ytiXCP-Hwuov7SoH-FgM?>6#wqs
zJ5YVuHD~_x>B}=OF9S8dK7IQZ_V(7+uLqd<UmWQazW()dYA9&Th=EtuDr9x|`mmgw
zHBL@WQzlJX6t}kuG<+0(=lz+q%`cx$kJmHG1~s_a<)1%)zB+t;+^wC(%NH$PEGi`h
z3a;9}U$0vgKkIpQWo7cWY)f9SXM=BLFDrX{YpJMqn1-QY;Kq#`CoMT~!UL4T7rXag
zyS6rZeMSH8ce~$rNqe84V;Ky}m)ml0FEh)%H6v(uC}@z)!E$@nRjta33Joi(TXxT0
zzFfItg~r<(8=YUid>LLk|IM46*j*(nZzQ)RW_){d^VR+R`)_T@T-?;e^z_M-8A1C+
zL4)%NisvGlx0b(;GtIo@GF2<INFx9Gy19RUJe6o$=r`Bu<o)~cc6N5JE-&xzld*hM
za1Jz1BCPKB;@j<fP-&+cA0Pko*RNHnr>EW8l6iUSf0sy^;1&jkhz{dznI}%12uMgs
znE3I)0SC#p!kerw?Ck8S9(Af;*;$+pDoVe<y9??GxAVzvNk1>g%F60FiBH~6=VgE9
zp{%Q`Ud}DQH!)FSmRatss&8*rf@-R)i;Ir(?peC^LINX0z`3VSo}9RRdGm=K)2C1W
zTj9yZC$plFnf+G%o!#a6pb{BWr-Qnh+wWC*Uy{Gv-ufR@;Qns<c5be<wu*|&`n}&~
ziRnhA+_JWm2FJ;x9+uO$Z%2#k$LSc=Jv_wv`(yUSh0g4EE1%EhyKN(KZ?SVbAK!ej
zHR0>$S(Uw6@%Hxi_{+v?`ar|m;*;ji&Gql*n!4q~9+0OuUT%<-l$=x&dt3d=>Tv&d
zKG{wGcYKiBnsrsHDDUhn)Ac*ftzH8j;dII~Ir!=G=gITu&p&+QXt(%R`~RQqRpW%k
z#FqKaHq*4WzMZ)6_qn;&pl-XESlQXqCCiqra_g1)CV#)~_uEwg3!OI3_pm8^)N**|
zx(0tiCWe4>yb=ZuKY#uNb(d;&%+13!H8r{T`M2wboIi8s%E4y#(13sh`}bE?2D`rd
zeo}pY#`kx3U)|iiymn2{Qm<E6S5M!TfB)TtoWDOF_utxAyL(sp`#R&evzg#>YR08|
z8Cy`t9e?}1!!qU=T2Qb-WhH2!;OeTWpmDCybup2k)?-o8rdQY3umAC*qW!tgY%^bJ
z^SqGf=jNK${3wuYTWDGQY(>@ASFY!DUxUiY1~L7(HJrj~87C*Ho;r0ZC?jLVwYAa9
z`DCqboZomer>MAi&Y!9$6WzDu-L(SMc)$LBzb`5wv10lBx+r0FKOLjD*VjZE=ic1p
zT3A>J8V|p7=gyU--r{?|-O4_iCmcBKCeLAmIk7FPZ*NZT2jvbq+bRtOg#$OAE)cm>
z`~B`YJ;tSHu8O@_RI%J|?xj~(S8uKU{!Y6tdPa8Wk8;<&RbSuSR-W<nP%F1p-Jc)6
zE2WPngA!81$r(y43<sR%Y~&X^<K7G!&AgDXlWiFXBWSh<Jh}<0H$VkF!{mtxj0_2e
zDt@W*oZu-ja4-v81DA84DKxOWqDsWNMo>EAUU;yG7hEjO=wabzVBl6fSj4LWo>)@`
z4L~P(%sFL;WU%5IRCy<l4Kd8f7J(}bs=H9n(sf6{L#LfPcY<2&l9H0HedVvNcrIMH
z&~F6~1H%+{y_*T5yDB~|imUy4Rq1ibCkBSqT0R@j{BwF)^pZ_mN5=;=q+w)iJU5n$
zfkDGPX4}C{H*=({%hr7Q{JGnA<G*M}$Hut2pQ)`aEhkQ&_U4r~yRxJ3@s!!KUl+tR
zv+-WpU7nwNdz)|hy~^c#_U^s9qcB-FZqJXjeOwF+<|yvf`W>_F;G`vOywX`GCMbsc
zY+STxkxAwymAi$<WkHiv%l+n>)cz{rm9x3=&}R18Wry4OvmYF2e06W{?zD4rRyH&+
z*nT`B{OjX!`TTFM85kOj4lR||@dOP5eERfh%7h64Z$8%k{+4-hk!#hfmCLu({4BEl
ze8$+z&+poaiOQg+QSQAxHy{3SZs*Iqx+=8l=hNw?IX4Vyf4yA3DqvyLq{)-LAD1#P
z==GUKtULHrdQBUzw3d-k(C6ppub-T(-YxV0$z=bO%{N7)rC%HTd(^Fe%7ABW^!9U!
zdn!La%eudB@89E~ru^k)zEfw-sw$3SU|^VHsdqoY^U{xxkEc$b9{wh3P4e-+lV{KR
zDk>`SJ>Hsi6*N{iW!ki7268eoF;C<|SBHg$g-zS(%FJ*|RY>Q0fS#FD?u`u#<?8<w
zo}F(WUszapbYAh+{Xg&Az1uBo&hxnI`n#K(-9@#-N+h`X_`;gmc-OtU$<T1A_{j-D
zS<9j$iEqx!*X@$Lk#WUzN;jMLFXf|An^HU{ZjJc*`ug>y-qTBdd`L9Sy>-Rz-)a5*
zFF=Fve}8@TUA?gM^))UI4uiLK3=Ol@RaBOocynxJ@N!T;S3R_4(~=k;L9d|2ZoOZA
zJnnz}cKiLZA1;aO<MyUVv`v~cN#>ltkI$5|X_x<gzaM{VDHFpf!(|+?&8O8Oj{4s0
zl{WY57T3Q98s=Q&%Iyg%S=#tySN;6_Tw7b)TToE&*RR*>w`N>a`uhHUyr7`q(pW17
z293ut+YV~2i_X8ZW22I?^45ZfPVJB1@BKbc$~<q)lqn)>V|Ryb&AxtZN8w|W!beAx
zzU#b<XZ-V;fgwTcpP%OMm`w+ztV&k2@ySNL*~rQ*mT|C&l`lCjFAp@#cdTE&{^sv#
zTSO1r|NnXZwYCTY!w!|{IU5)lG*<r*S(vS1-hGFWfx(L#RKkcoTH`PH3`;9#KXd#_
z*jj*svtQla-9cSN&`eIz83UfPv(5e2Ms1xmfByWe>+9Bn+A+ubWUv2`Sq+|*2RUxi
zq)8%@k}Gd+PCtG4u=C!kua~~Py}kaI-2Ix*y`c6}e*XKU{(c$Dp!0UW*F<g00X3a6
zpPZOzRq|qjl9JMwv*!0_eASwE05t!vb3`(G1EP_0@!#G`Wo6~7i(I*T<!qy(x99C$
z_58?@BcQ3_qiXS>8B6p0d2)3>5|=Jna^pBVkHiAEUa8ENmzM5&+-JS+-%_1EaFJJd
zOyuFJ(A7^KK3w?XMaJ(L%a<=-v}n<m<l}rxmoJas_|COk?B#(*=2=#ySsRak{`6_e
z<jJ5JX{(;=D*~PK^71}?{J67g{@hK?Y@k`Ry!ZF^W?fp+sTI2FiNU>fvDUvoo<4c*
z+_f2o$tHPsb|~?NDC+C$->rN;*UQuM;-=Kopn1Tz_xH!w|2!QZvNp=J{n<HD1JIo3
z(J9}yaY;%_a`Eu!7|BUUXdE^ud32=nbew(Vr<9*Ret^2@JKj`!PuIJ8nBRU4sEuxS
zZAW2p?%iFXyiz7R*4<j$1)kW`Q&)GNH*cQnvAuitygBY&^x}fz*?G3n#%X5)TDe5^
ze$Vlms`YZ)?Yzsy=WUmpW?##AcW39R^XJ3o+trr*`tnk`nzLIGR2ewU*?8hEYJ+Cd
zkt0V|Bp>g4b$k2!)cJt{0Snf}?p{^={2XYs?akxZT_qPmLvYvQ>tio3_uv1<_LLAP
zCSyF((v}$+8_OR1^!c-XwQoW~0<?v*#H#d_NcG+6@pUV|zP_G)c9yA^xA){P$K%3(
z{``6B<jKIOs98)*OrUW(-RNyEe!t&;eNE(MnRkLhLW|PQ&dR*KEjRpcUn(OwRTnMh
z3`<BznD{j${rtSEAV)khO-xL@wIy@%rp=pW#df{FvoqLiwr^r$;?cPBKR*g@=9qnb
zeSQ52>m|#VuMS-71{y&C_4_BQ`=3hNymG;U1t)4hefqTS2Fo<lHQ-5pX@i7@PoF=V
z*8i&k590>~1%YNm7A#QktY4DM&M&vc+!GWEvrMzMl)a5=U;par>eacow}B>N<!U}S
zdIn8a^G%Uxo2DQC?!z0~>TjT7!mPWyN;UW9z67l!09E^Jt5KUsxTj`A3ko*8y0&)p
zuF}_HJL7$Pda|yrO3h!Vva<B`wO7~H&KA>)Sz(-hZbkL?cUFauTJF_+_Wk+mmzJ8^
zu|4A37(h{@b3~GNnu;#YS=k-^vu{sT-|tn`4jQXAPCIkq)6>&i>;6`Su89Z)H<5j2
zE{e|E`Se!YsYl>87if^arG-URMP*8bUs2H}=S88Du3Wj2blld~)->;qMX$8^yIrq!
zv_XnDfEt7%&ypuvGcYuqgtT4K*B)%z31Tw%xM6GTfEzQQoO~b!)N+a7;GCAd0F+*n
zGCEG#A-9qYTwh2HltG}lWH68fwUxx2ABB8_^p<=Ccj0TtVe=YpgQV63fyN)V=H0z@
zGj)N;k>kg$ce6~{)G4eE>eV*A-}l>Zb@=+SGD!_)a99fn>0CdcRF2vzL<>lC+d$1n
zhNoC+ih{G>JNx>k&7M8G>ifIcHy_{L-o85dc;Bb5UqcfT79=GlmHhkjQ(E_a5!mVp
zhfE{V>SIq{Sm-=;$`nvf6;vY0$;m<c3w2kw)_*>04w~@avv+T|?Y{E&aiwo>g^KIN
zTv!viSwvQL?a$B8Uq5V@-}fqgiYTZB3+j44*_VA?Z*9azr_RpKuHN3MDz0vBt6aOq
zq-?9UY|Fb_6?(q2v-9GGh0fkS`;PU=u5M^x$i25G61?i<*VostS1zA-sf}0q%GT`b
z*%jK^pe8WBbv)Ylk}ocDwJLbfu*`36)SHjR&(CEZZsYCh>Dgi)KFK8Iguu^Vzg{)-
z+wJ%$zEJ?0yMkM)zrPEetmYfCGDx-kW7*qVH~ZuL%F4DK>ycbs`1sh$w6n90&ij0~
z{Jy5WeSGe%Erk;60~R(NI&|pE+wJ$`UM^qe1M284m~$GXKfF*_-7n_bualG2Pai+-
zuD|EQq15?_n{Rs6oSQl?@Y)7&W54j2)S5YSWGbtw#3a9e`m{-2|KvjFc9ZIFIiN5T
z)e711##m+Qk2$Ap7wag2i?`3;zFj-oE#BP|zoXz_-5wP~L&H}$HZK14?QQkZbPuhM
zmeZ@<B3;0_@=iumDXe*>V{ZO^)AcDPuG1$@RP<aGyxec&_1d3Lr$_Ct+Y6e-+OoyO
zb5f!NsFLyX>$`O6l8AtSg1x={?~>$)w*UXknKUmj43t40I5{~vi3kZjGAMg>MRRT3
z-d#ts4;?zRCG)acYI?f0PRae9#mjTdW*<6qsB7=LA0HoYx|#Fp`uh2YcbrWNuBzH4
zWtz1la&ubdj}H&CE-q@dv9SR)C^8N-Fn%lk{OQw{^7nDPQYJ5|;;wH3cd?SZswZD$
zWM<Q_w~zn){QUNQP)b)-b$$5oAr}|dB$d>(v{w%fHfw2UOi(F(dC3(tx_4`9w(P!D
z;p^9J%e|fT_SV*_4+q&*J^%gt_v+Tx)zfq$A8jc9y~wq@<lmpl>9=#Hfbti2;W4G}
zWp8g~J~+_W)!z?lg^LOaEt)b#Wa-kSnwFL~>+a1kOx}`lQAyUeD&*k7gP_UkSJ&1?
zKdCb`G+Y(BdfMKdS|+8hLP}p;a0HdP^QvBHf+k6f)6a$U%h_I88*N@3cTEXY)`7dc
z;&By@-qUmfeSCVjxVS*Q+tL>o4%YRZO`AOX_SES1NwbcGt&IYu-A^AsUhEK5{_<}3
zdo3%gDDCidCSPOMG(cSK)}-nwsvQ>M<kTc2B;;kIZfSW_@uHSzR#sN$@mt&T*RS9A
z>s8lxjn^QHVWqW&HvZxp+*bux*M~$FW+!wBKnCm>7{CQNa{1%b^b}w54K@f=zQQUF
zP^TB1=~~!Mn}V8D3<*Y{zAVaUD6G>vEn~x_%a^yNo)-K2>9l^;i-qkW+w)>YMMPel
znQ6Q#X6L3mckj-PRbpT`5L*07WMQHNXa$^<S<Z^%a@9V{Zao(kI=8EM-n@A;>%xM@
zXJ=+UJ|o1)pi$bYIW00?qt-8X18Amk@5f`(QkF$aKx<Yc+Y;@=b{3_AIs~BAM8euE
z3=BKU{N^gvJfB+*Dm;8=oB96#dA`0&hM$-B>hk$@uUbwqFck2C{I%RH;&{J&`0sCT
zy=~sTe!Y5g`uS-|t_%zo;=I$c3tovNg61~<{P-x;|Nh?I=z|9jE{zamU^viQoYj1F
ze|<fu<-T&|%5NJF>HP*xA$xgsvGK{gSo4X2L8CNHzaV|#?qZ9r2WQz-Zen6)78Mg)
zrs&*uB5kv#qN1a$by>*ydA6X@$c@Rztv0(bFf?R8yTZ1*=;<lYNTpl99B6u_va&Ms
z^Ru(R-fq7S>I>I?y&C@M<Hy3ZP6mc4T0%P4AAIR`+q-wKY2BZSUU~a_H<vOnFwAIr
z@0!uX#w+#Wr271lGD!voamT9AZ<e+Pe|<bIKXuNWHCL{Lq^71?=9p>y{Wv@4@v+`z
zw(r~J>p)Xgpi*J3RjC(fL?1K)RQ4vqH2>b8UGH8#dv+{8fq^06`4zV8kB^Rm#tcIi
zI<cDO-U<QDTo#?1FTGBBW7XFz+g~phuL@f`Ytf=bpt&+o?gMql!q!HC23A-2&$qi?
zbHACL|J2!D0|ADD$2Ztdn_6r=SoL!0^ed}EwZT2^xV^u8Ys0d#R<-d+E}Aew05n>}
z$jJCD8CrINI(qg0>r68)Jec(^cA*pN<khSU45>4Nlc$45LQksC-}Cb9R29&W5@<Q&
zpP!#)XK8zKad2F?oxgwWn>RTinMq4P3%IgwY)G8=d(W3k-maIlt|c%soH?|dBepqM
zc+G_i0dp-17lq9G+F$?2nODk0<74z^&<GSLbzWN=t-kU}$F?1Xb&r`C&VaIAK~|G#
z@iQOr>Z5(NzkO@Z-Q1jB`sfJf)|{K4Ha%}`YkO7y?|D6_4xb&x&%jWS>*u>cNJuDT
zXHn|i+V6L>?(Nyx)Z7eOH&)PhHtn*zd~J#IdCT&5b5u^AKmUHyb5XhH(mu=#b6Q!z
zA$Dtj{r()Y*-g#OpvgE;@;_mj_Gg(!&Kxf3wUc6UmDv~=3M~C{H}uKbMrob@`2Bl$
zLc)S?@9)>&{QT|x{q+kLD1@#GS$X8xx&;d!?0VhN+Z+1y)KuAHZ2WR-4mPvLf4601
zFh724Yj*dU1yio^uy+REeEy}^&HFSnzs&;BEaL6$`TAuGe}~7{f@j!nY)G86WL4<u
zSD@9SMfZA5S~sVi4SIcT?fTzU3=S_}-rm0c*SEK?4ZhtizrQm5{5-!^9I2hEQfto6
zHqXAhs}$5nQ2|W~gBGMIDJl6>A6pT)cnfH<<nNcupjrRJVZ6)z=U+2EZ=)O^AKxou
z88qq2j>6=*mc?%O>;LbK+LEE@dFsT83%9mr`>y6>Xs}NP<>Rd8sk3LVKG@8j{r1*Y
zBOYha>S&d}-)`rF#<};`{r&Rq_xstKCZ>CMbbwm+$K~r|w%@PYU90|me*M2lZZVw;
z_5VK0>&EZ9v+w&=<$jw*J9b!neS13`G(G?G^K;Yudp4j<Q2p)A&WBYD3=OY~UYYSu
zR`<U)%QXATqi%gIWo2iOvtM3bK6U2Il@pcSv%bE%I?E`vEAu?4=Tr9n-r93>t+Nj{
zu}Ycc%m7VTm%h6L8ka5mVP?t5$O!7@)YR6Bii<Bl+AaPXv|NCh-zMP6zMMyF3<liN
zy}Q_!t3{lirhECqLg%-;my558+`J65fZ@{<Pf#C3fB&CNndkSs-FACR%E?Kqt+snl
z*SobnKYrpz&&g_*e=JN*uTHtez>v^&!PLU^ASeLmmfwqf^wIkLp5U1?XMzj8r@?u7
z>mEINBqAcBA}=ownlwJ##v8up-RkxGg67-Ripa?5<mczJvazj7KR?gaOz`~4lNay*
z`(_SWaaa243TQog)b_l!m7kx17HXKk-a6;lO5U)$yGplaUS1~DpMP&pWa;Z`x_g@#
z7z&KieFgbstwKCKJ-d2(uDrRq8MNjsZf{lW$K7i|EArmGdj}4xs@LEZ6YBo+uGoIR
zv-rII|2uVYpi+ZhUeB}Y<5BUcGiI!C>y>(WGktz&NXV7mze^$~1TW`k=aXFpT0Y`6
zRjaGFH`K$UBgbqupS<0gB}-I5tG_3!`<H>r*d2Rfcb8=z?Ggngm7JV4Dw;+{LAp^}
zF1)z7cx&nFYeMULySlV4Dey|0`SePe1_cF8+ExBu&l9xT1+)stH2d0_y10^(EsGW{
z0!>nJ3afz@*qJ|kJLm99&TBU|CYz?55CDzdot<qCT5V=yYkPH1W%1s>-)>78rF0zY
zlYI@T0+-H>TN}02OHNL%tFLcce`QsbmX?;6b=jMMs;Xb6SKq&VyH?6H%i@iCBzW{=
zRlxqbzbc;g|9(6+wLSc5&a8x;yLW4=s=996xbfGM$^Ip8ZWwyjziGa@I$XcCt<7q)
z4Fkie*1gr=LBX;rWaXs86}!vczB%69)TCG4U;O->rnz}IXt@1QD>rDiAJpCKI)CoO
zi3uv9>*M}ft=_KYonvxqQ>ypYoST<Gvz!k~&ixQcbaQKCVrK5{VP|7IWxzAnqVQ4I
z`HCM8+d+L@&!D4SqF=vU_Rs$F<Ky(bYWn*ApyfYTR!qFLEw}n;`V`fr_Yz{WwNf|V
z?7FK3+OwjJG6u6=MN!dF*}d<|$H&J(qkf=froO(vsCJmn$65cs|Nl3??$=B8+D|9d
zi;9b1tx~-_wW?WEK%gLWZe?29GCnz*6Zd2p8j6lea!%X6eLH9gb;_SZt=!)phkv@y
zcq+NycG<PH(XTtz=UrfzuL*ebbN&8*yYAI~kM*5v6>3}cWyhnxr)LG_Z_wMW+x*2n
zdFq4-3qULU-o1O*)zhOh_Yea^0b}*|cUS-Y{VjWJ-4q8_Ha0P9-iRG`tNi9#T@P_?
z<q`#rh^wloym)l9+x61MDN{sxC5_!cV|b4qKVJXxUTUlAwFJ*gCnu|aeYJXh*1tbL
zPn|w}`EkGfI#3U%@bR&8db|t`LB)$X!&Zl_1=XGH8^3%hIXlyMInEaTx}ANX#XN0^
zFYfFt=HmsgJbCdVgIB`9A%EY`XQubJuPOM|lAe~f476f)MWFKExB2y#7dSS97B6QW
zY+^MDXJ{xoE-Bs1hkZh;zG*|jPd`V;#=m<&i;qtHt^57fy!OY#cF@%GkCF$|bfZlw
zJ|vXBy7F?>{@mEer(0OGjg5oX@B6jtUgdMyr%#`P^4R0!{o#k(c;|)+F)%z0+Fkb6
zq~L+W(c{NoKRG#>i<2|Z%d6|srAt%h%*nCOKQqHHYD>mM&`R6~4-!0s&d;+A-JTZ<
z8XW``gdla3CN1je;c5RGe!NdM`2D@TPoF(o_V4d+@yOYr2H5TV{d-H|c8E-=YMwfA
zVq!jMJ_D35d!^0$j&U(G{D0cRUjZseaV)WaeSZG8?yjy&pPrru^~3Mi{q_xA9d<Rg
z{O;1g#crVawr`*7{{2j!YhCU)>C2ts^P-jimUvFi*pTP)_*if0$49QMt*x1FZfpcC
zecQBY)0C-GLm!#0joz+zl#7u;qh2d)%?i}9AJxAfa|_#erOS@~c6V{H@X_71D=2>h
zm;I-oZ@1qEEi2jgW@lUCiL}jASH}x5IQ)FplPi_5FDQS*zdJvf7#Mbd(k*Dj`&K^-
z!-6xQwZ?w;!IS(~BhnTJGB7waJ=MwpFM*KKxqd)I5k8J2A+&r`Kd2uA8zurR6hQ7S
zfTpf+ESZ3H62OZBIC!U_bW?abgKvWN7{GfMrV;BJkuBn!mW|$xp_&UpQ`ZTKCK2lz
zHJ#uCIaqr_pq>wOdJsIU#I{=G=#e8Uik_Z2r^mcB;qI<d(ClQ+>uYO4w1Tzu?VG9#
zdcXr|;90(G$aXw%UmrBx2<}<6wXJxQjND}lZh`n+!`wW)u&@x+YwqvwKXmx;*2KeY
z+Hv2XPLBtb{=T!#rmkPV9yHJK;zdSkT3Xz<U7&Hvw6n87tHobkU46ES_cSQf4mi!3
znt*f71ZWjn=k=pUk7{abdxKVq>2ANX=*pE4(3;}c*VbOXx3?O!usLb{Y=gumy_g*j
zHocSr^);W~Sr@x|OVUv;RW&s&GqW)8B!!r6RK}MV7pLF#D8IHQ5;V?nIHF(9Rzy&6
zq51uq;NWFGnnh>7->+X^`T1Gqr6r!TED9Ix)K3<Kj6St;PP-XDeKXD_6smE*pFi`O
z^lsnpJXRJK@b0K@vu4bYu>Equ8DtmF;T@;u&)n1s9<s+Wi?Cq9g4O%(|NQ(M)M9>h
zb+x$VwxXwAZ}033w*UKOa!_z^{+a@A(1_Imr#TZ7Qd3ei3=B4$s7Odyz;pOQr?C3E
zm$GSRXD!{c$Hw;431vRe?x_na0vDSk9pSjTI{f{tcahgXD})jZm+t*wjapk>1C@NK
zr$j)@s09TD`HnC1pTF+UpPHk`kKd0tn92YS(K%=}(c|Uw>w^CO`wJ?j%I{Ske|Y2K
zVt3QzV?1Z)T8G=&*_p>}ISLx%Nl-N3<$L(r+UTvhx6Rr&-mm}vchhwiaE&tqI(l?Y
zbbj@pABCVr7@*Q=SLy2~uV23|sCjgx6ErgNZs&8krAwDu-uVyOiWC(!tEss;HtjYW
zD22v&9Pg9uuGyq-Y8sk+tVi?XtPL9sa&K(`_0;*e@0P#2qdEKRvJD$HoVNS?<>h72
zl<cR^pSNaSR=c_?boB|#<Nfm2Cn~#NSrMq*UO4;gvc$t}C(|~AQro|O|H41dng*GV
zw@6+L8aK)~)*}g8CgIj2q4=_Y?%iPUY(U<Bmc+EQW#{HtE}k$!VCU}L-oKP(U*Fuk
z+{nmiOXlTeO1vQpR|YSCb!BBRUoxmS09p#VV}}K3sitet`c0tyt{B_1@GO&fdC^_|
z>i&OU^<7<EK{HpN0m{FByrycc^q+4xDdbJwhpF1((-I}JZf{##_5EG#<olaSATe?7
zSC}Pe8ncB{7}R-5O-<D_F$sBnZEbKnpRCNg$IqVaIDC0u?eCP$H@74lWYUe;aNuFY
z-(O$f@?Pt`5+(*RgaI@Uz{$z!<>8_6an6$`DeW%alj{EceEzyF&BdjKi;HXB?<#H3
z{2(}IAB=hPgb%dA7gRjyv>jRb1|kL80szWa4A|EtfJ-Dig*R0V0%a=L&^>fR4?{yM
zfh8E=G8U;8z*<XyM`a;PFyfTW&CPvh8Xf)jc*+!!ojZ5Fys<IaZw(g%Lj))9wfTF#
zUW*2mjIrf+OGBUE@2SsZU^un@(Eji<|D0YfI{0gH>gj1K6A!oD+L}E*C^&d-EFS}d
zMsvo7f2Yse|6lX=_V(;&XJ)R7+q-L;UhJzklNcDD@_?sFe(8Hp*9&!UXn42(e;u!c
zK?BH1G2&8d{%^{;X#^^pK)VVa9BeNA@gec;y}h?@rZO^|lDxEfQ$O45`nUJ?MuSQp
zxymPko<Ya^WJN_pT)J2p7}iPhUi%-lt7Ii;Uf6H0)y?B<yi!Y^o}PZ%fakd=8-qr8
zMDtUrj14NFy?UTk*w4?+ojPmQs`~%G@BjL~|Nq*ux3@Hnjf17l^GeD(85kDuB&wHt
zf|mY*@=VRoBG8^SzT-J&vq8Hi*2V6=_o2A%$3ynY3X6YJuCEMscXV_#ugPa<*je}Y
zYxv(^uh;V>|NQyW{O`^;Pu_v-)s5WbvNh}KrRe;<p($1$4)fbznPr*{-fB@*b?-tk
zXlu}^soM81*fKCIUF_B?wJLCN+u?|^vTfhq-K`Fu@7?@V>QrrW>BB>;Ya=(iHM8*s
z?XUaWCBx6da|N_G9yB?|%+6Qh)XKoHV2$SY><xCmUMPc_QJ~55Zxt04JF>2<IJlgX
zkzr|*>$`Oe@0f$S!IS&@{X4VQ<e1F{#mCzC{c+3v=RY&oVqn;@sOWw|?U#%0r_P<5
zHhp?{=X0Hi4Gxx;mRuYh0gjH1YCba(?9EDE1c-`=XjoY6FgeA_u)`u<HDc$^ouIwE
z0Ra<gYHC1plf2SqF&}rGIpYIrvVXr<z5dVNzo1s7ZuGV(6?JiO^OpI}UY2%t*2&wq
zqd}_=Ktm>=$psP7we1WH0w+M{0$e^n`Rdf)ptSNwP(npj71Zzr4MDcIw^x0AwG_0J
z?c1(qcK%miug72S6jm3JlB&9yre|*-4_X57<>lq8o74S46+vNPA*j!GZjNR0H*L$%
zo$*ij7#gll`4%*VQ1^B3<38&z^Z);G4_y^<v0c7yg{*bil!|v}W*UFJ8Xgat2nKBj
zc=<k26*Mb2rFeDNTF}~f&`yrzdGqFVb#-0pleL~QZ(iJ^t^4-vTNSkQl<53KiDUos
z-``7KwNBo?Z$Dop<C67h6^_qEk3@E9@Wsx^h+Dku^ntakD~qGD&lY8QRAf#Q(>S?h
z>O(1x7ddf8=GxlkN4c+fT{K}$Tj(ob+Ucrv{qyg`mDhgCnoKsI!{7cqIr-f8pEY*R
zKR5R7t=M~i{^yIwdZj@lZ>_DZEBEb-3k?l*J9oc}BLcMM(fV4#)925%Ei5AH>gxO+
zKYaMG@A_=e-m5@Q&rZ-9c~)+*6~W8>UR_x^88l1n+|FnE^GBHT0Vak6PIm-1czJt^
z3J5$fk`oY6*nKxIg|R9yaN?5Nms>0?EpKf~?KUzp3W<$f3tHTker`_Yr|Jk!P$Mtn
z@v2p;q-vv1&b5By>+>`;EX?YkZRx8iRbOAJdd@OPY-(z1nlfk3nloq4sO|3$6#zH3
z%WbrdA3yGX_3Bl<$J_Jn7VWtgQr;&hDEN>geA1QW{_?%D*5BgahvnpgyjC%RnVs*&
zfktM(<nmjKcXM)ZWRys4*s>*L(j2CX&AW<w<ZP>U?76nL`g>aav1D&$(2_Pq-`owL
zgqeAHnPo3%>&V898_Vyio0x>O^T`IKrY^ng^nK4B8_>?{wl=#DKkpdk+%VXhe}CUa
zYawqhuNb*CcW-SxA<NKUre|dpRay!fvn%eodgY3Sva)mXv7W&9_x7sZ{deVCQxntG
z>(~E3|Ni0g=i-`z%*4cn$$#$bEVioqvtyah%u8Rmp;LLwmfB~S*x1Av8X9_ecmza7
z&IAR_#EA>L#r3spZSQWpyD9bbl$kSEK6;e2-2KSj-|u#Bx|w5D{cX*gvfW0;#-Q0U
zPtcZ&<lS4dufKY5uo)D%phYpe@2>NmZFchh{di7JPTlf@x(yAi3=E*{(V*qM*4EKa
zpFZW{<h=Or?{85-!G|}FrENZW`gG~1?5C%u_61~YzA3ZtOxk8k)-{UGZ5rz8?jJvX
zjM|*myJycHlfp+Xs_N?IzYGP}N-~1FHHF7xTP9su=*+IFs;a4}`EuRuCCisvn?{wJ
zn3&x8zO$vRZI{lW?=CE$Rpduv8M)Iyfyi*c0MxkBX<<8U4C;X}NPv#%0M&_=;8qvI
zVQ>dWLTdT7eo!F+Q*IhD54`LU#%DWi3`ssr)6yX`KUmE@dck6A9jNcc&<1K^Bq**q
z_=yLZZxS)Du>rK|P+)@%GibpuOd&`D$pLN0R(=JwFBl9!Z7K%tMBZuXpdJp4zmQ0C
z4Nd&k%7a?H4T&IUL~vwpumLYRZ%Aa(F<E_jy8iCpA`B*zv#+n)`CG*1(p<LFU&N!t
z7`e}`TC(KG-Q^4mW(sU**bQFYDRxLo=ez?r&vHb}gLLB#XKaXa2o0U8@^Wf;+{Fos
z&Ub3ebh9rma*f(swRN}u;-g!SW>3rezsEf1#)Eg49k?^Q?cak&y3EY3eXQQQ6BJx5
zYs3O#Vst#adV5RXckb|vh?ue4pHa7Ce);W7VfFWp9zELC(NXX{^S~jF2;GENS5}@n
zcP{MzzrRl(KYsk~G9!b{f>o=uM8(CkUtL*w_M03i#97veJ$V0qy?A`h#k<QH84Mbp
zaeZ$F2m6JDO15`OEDQ{*R;~=Jso7KY{hcmom|N1=?SAd|yR~nl0|OU=N~`Mc?>>G0
zd>OQ{WwN^euAKDkx3^Y)PV1F0bmF)FvjMa)d&LTkr_Y|v+9$IelJDPDg`9hHbMw?$
zvsUfcVFB8R{Pxz?;E<3hee(8o=l{Mb+YMc<1=>3Y>ho>QzHU<Yry_Po!NJVis@~IH
zfJU7^JOuSX*+A8PYilcLXtv+}-;E{jXI}+P3_3`EKg@6cV)J>sU@xyOG2JK?&#vxn
z(3tesXS4HPy|}oz{BHU4b8}CfJqz0I_VrHjdCy5nNl79yGHXIthiO_{M^6fgk6#a(
z4!E`^^3;hF1#jeKW!E+`vx7F8N||Pbe2z`wUVM=0)`qpw+fSW7?Y(c`J}q6{(#qOD
zKR$ACauyz*$(TFcT53(~?y{A!yURemh~zcN$NOfP=g%uDE-wA~>FMrwyQ{zFeSLHD
zvf#QUx6RAX&NB6muld-Tm7T5XxpnK-RjXEkHrvkq_Ws)1*^j?ZP*+S~3@9z#dawR}
z?es#iV@&TZUb@`;^XE^{zQg(R=U)c3LLPtJZCUwgiCdq{OCvcsxplM6^H*)y5HRV<
z+qY{kE_T;eR(8I<J^%Xq{r}fpUhbcLZjNQumy7Om56x9qNMH=e$XKy0=jI~q@O3+W
zhcN7L%*<TL#KaVHjG2ikW&7>WprB6<zrBiXmEYc$%f-hB+VcR~L3iOoz|-f?U%$Ax
z_|^UW^_TUJIB`TcNT+YU`Q=)4{>pXh)?E~PJ^$6~*I&<Bzt_;v@VIyH9%u)Nkg#xQ
zaPZ?TvH$=5HLd+sB5Pgdv)H|VT7Q2(6EpMFsZ*a8o$2c00!^~My1jk<p1pfbGcG8o
zs;i&Q+b+G=Z^71r<06Tnp;N8O-n=k+_xA1EiocHEw%&g0_xsn+pD#Zim%pC9e($pL
z_Wxt#>;G(g_3D*L@-d#fI|?7y?RQ<v#K_&i#v`#{dR*1Z_~<pDApp?E7SpULLBYYG
zNleh(S=GZ<@j2Tz-^|g{(hBnN=~?D8a}mGY4~N*@WmoU)EG~U_$MSetXlN*CY45iD
z`|ChQPh4K+3tEUQBqX$@;^U*V-Ej=(YHDgiVq@PL)xEx^d;B&3ruApjir+-X$FBzs
z{DWpdb`&lKoo+HczAo~9-S4$}F*_ENzP={8ODg+;o)g2QB}b09q^6~5X=<*#$o^xV
zRjJp^nKPp{Bs7}k-_v>djrj~{ch;0CBC>Wh5fdj)?0d`2%?+xJK&y}^<=qbjRoF|H
zFW0uTjGP1-`v(mR{`~n9wEs&b^WUGJpvlNzUte#n_?Yzd-QC?g^<_6qSyp%9#k;$^
zx2B($TfVWYtE>8*uz<jY7bXwp&W^A8`l|GNt@LisXaC>No;-Q6ar(I(f9g27xGqgl
zbS`;wV`KHa<ZS0=R)<S(#X#HDGBY!^w6%*X|DM+0Kjmy%@ts4p#~&T-PThWcYyJPa
z<sXmBRi6Q6fpSq^Ih%<6|9-7b&bhuWw(8SK^{YFJ)Bk=vF5kDlQ&@e~x^;e*mX>Yn
zg+A1PwkB`Oz5VRV*0i&;s^1AqNv%3`$O+WA>3#n6DX33xV)A9)?|Bx5hf;0y_5Jtl
z+Xu=fDpRLUJ(;$7<-UFQQg7e76?OIM)w}1PZk1xuVc<JGT|YcGH+OONM!ncwD*F2R
ztgNh-z29G4bOx>XJK8Ni_t@`mZ(kSnxXV?#Jbn7K@4vXH=*!pZ_lIrIyE|u}n*ThV
z*=Lun4qq>|%V@#Zg5y$aUcAV-diAQNuI^dGu;AduJv}_VlE%j_s>JUsa%E*@^;6We
zvWiMgP4!!Q^Xu#D;C;XI?PA~F-acK0m7V=`-uCR{eX@S<Yaboq6crIMsZvkMJ|?2b
z&<<MCVrCYWnVH$u-=AMH`}f>k6)zUHOUeF!{^)C48=LPuo5+tJKlbWn?f*Pozu}pv
zoZPw@GbB`1R9386<KyV)2%1?t+AThH-n@4=@@{TQJ$2?xNMYf|$Nei_yvSI(Y+2U3
zJ3B!wn?Ha5e!b`}zjEP1$Nc?&w<X`7sO%2fig{~S>1r)4EtAw!B2%YKd2yKEK4iJy
z+%LaguiyS9)m)oNj6od~nq_6%CQX_&=h*MBua~#Av5AU`W`1~Zu<zsQ@b$0G+y4*Q
zU-$Rl=W5VQ-KI@J!fHMlpDLN>9g5|zK6mQWr7ltJDRbwp{q(7*wWTHF|G&SW3eKu;
z`t;9FK=V`ke!bEL?T(ynmKzirI`z=u!=Ncm$7VLmT+luqP+!Zs?9GKnW_D0(2(+LZ
zv{>%uwynus0u7TJnb|?(grKucF3YwC1_o}r{npFZxAc~ss;aBmY~S-XpU>3St&iNC
z2AXaHt!_S@Eh;M7yY4E(t)^-J76f{}y0EZ$(xgcxKR>13-BTG{Sy>6%Kz`Zm<;$0=
zR<ACOWV*1kIDP5Tr7vGyUH$9z`u!yz9ys<&7#@0R3)&oX<cQ1PKcCO9TC?U#ue3R6
z;ZlE15(}@`g=3~>rqgH4Sg~e}j;M$TXzlZ)B@-qHfR@vNvXQ=icuL9=(1c!UT3Xh#
zGc*0l1@5h1>OCDaa$5E6X1ZzmIhoeh)|c=1|G)O~@^VoA6%`j>oqc_s?>;w%j7%1t
z1-;pC*55vGzyWk((Cce!{npq2dbym7hbP3%t?k>pyQ}BfR%;m=25N_|E3tfb_g~h(
z=R5lQ`-_T-Kr3EB1C)`Gk-zT$|F`_XgM_tld!y!Bmz$MLb$I=7ou<=_)Xkp@Pcks<
zxC`nfiiv^tM%@3LEGXwvSGP||S^4W_fBVWicdNo&q5EDc*~E4-GvH`&3V@nY-~;0%
zK&>+|=f_um34;44%Q$TDH4F(fWWnZwnrKNJE^FnH8<;+VRmd$~utFpUI5j_&1T}>j
zctFk015Ti05cU*W)&JXb@$tj^V5c$E*VlvA;F_6ji|l*<`n7g_{r@yevzVK2%68wq
ztIo*4u*7@1-pgNKU!N_?sjsj9`u6tr$Ufe1P>Y=5a0GbtOaj!DKVZNl#=rn-fif^K
z90v8X7}`KKFz|pHQVbGq2S6v~^?<q(38NbRv#WJ}d%A(yi=Tmkfx*+&&t;ucLK6Ty
C@j$Tv

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-16.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-16.png
new file mode 100644
index 0000000000000000000000000000000000000000..6aa0167942a86beee973547cfa5bb37b86514a4c
GIT binary patch
literal 20712
zcmeAS@N?(olHy`uVBq!ia0y~yV2S`?4mJh`hJ9%>?l3SguoOFahH!9jaMW<5bTBY5
za29w(7BevLCxS5J3j5`m3=9eko-U3d6?5L)t&9mRef0n1_tc5LfrYLj=2v2zE*S-J
zpVeJy;%lV6BxysA*P)Ojs+WTnyX4L^(m80V8=UQS_7dA!UG-pX-7Sh212^cz7)*Kl
z=iiIdf6vMu_<CY*Ox*e7&BuG@Z?5%=+*>>UyzTWQi8e(B28J2Oj@}byU|=XPW6@z?
zV3;hpfq{X+$L#<U1A~DiBR2!Xfs|2+;S?m#(%y42Ff`c9S{Ave`_J2>_k3OS_H|6m
z%<E6@43q-JID5g96N09>x4!I}d;j+BX!}1OoOdc}+uO%aR`<U)N!5GG<jIR4JV@C4
z<&yWSySu-q&aHoZtap}W@v^e__trjol(aSPZq&z*AG<m_G>ZRUUhcm-baj|j<)<ZK
z>ta?OY-W%Dy4O-kPLPS=0mHiR;?PI^_WyRgFkQ50kxBWx7*{v9S6{EkPoF(|_MyXv
zx7Pmt<~`3^Rn_(Hudl&dv#y#HKl3>|%hWqDG102(OUBOQKJ#oMpP!#U{b<t8Rlf^M
zOd=Q<EF?BNw<k)7-`$seU2ko~Mkh~C&#vz7$ttdHZmXQz`J~MA=4{Km8})AE%$YN*
ze!W~SDlNVG=H~SHYc>1+|EoSb+uT2Rna{<~=k4o%ng?}WNMK|LIJ!1wXHZ^VURP)5
z#=gpm3Joi(DC@E}7d9pzKV|#v?e_a&g@qfJ`OVexv?_mhM|HipwDjuV@At>w-Ce#v
z<;UtZ93XcIbRR8>t<y_;e{XNr-CbK(g|E*uzPHp{{Pnj_Ik&cWn%^mCzP2uQwVLm&
z6>hy!tAdyJ&8z?S)9CQ!cKNy$bFIr?O%0FR*|pzlDtkW%Bg2YEn>KBF^8S5%)}8zJ
z<J%Hn{P_6zsa*Ao3yM2;?Rxd`xO{j`&7P*_=B-&*wLnp&rKNT0%gf7af6ue8k4rw@
zclE`^#aEYj3a6%|#7zHP$O6jcGAEvz_=P`C>VNd<)2Am79|mUKxqSKZuDv!pckVRe
zaqjHwlrm21QOUfp!134H?f1Xj%3hy&sD<;>$Bz?L&d#w6Zf$M#^6=O(EqbL$g$oCR
zgXr_8PnU9w>rIieum88F^!L%esY}@9Yc8bK+}MzK>h$T$^K7eCJlpx@udRvPY?6G8
zr?R?wwrOd*>j5T)1C24SqqGkjgv7+eyn3GW=kMRCQ>TVz?MYb^xY+HfT=b^3j?HXl
zkH5aYK0Q(5)X9?*Rc!zN`J8oU$HsR%9`mK9rD+)(U#|KWU;j6B=FFLXTOZ7IZ((4t
z5EP$&>27DDgqD_;*7q3`CI~EDx>VEL{Ce8L-{<C9r*4c85fTb|w{fm@`89w0ze|#j
z_pOZFoObPF^6|ctNgG$h?X8-$WU+hytL5|Sg1W_YbNaSN=tx->EzuF{E-ET|^7?i4
z&h4)*WNZjXJoQ_6it*o0)=Sd)dluII{&urk%3*10zrP@#q>&3Kr2PE0^*w$5T-($%
zbm78<TpSz|R8rH^wQX(hs;%LbwF+rVe6jcYz0G}+Z40MN5&8M^=gQ*e=O!(Ad3kyE
z*H>4gHmCJ|eZF*h+$5Ew$B%<Vu5FDv*TBXtx@g4;k9F(TojP;o%CE1lQzhD}zP(vF
zO*i_~-Mg`Ei572f*Q}n@Z}-b%<Hn6uZ#EwPvVH$wUpYCsKeepuoLu*3Z1JA1*VWMx
z;N;ZgH^*Y(f&~gomo3vWHV)R*)V%ihSik&w*KV<wA08gQw*HQ!MZtoqudkNQG){kY
zJ-$Blc%SUns;^nO_xHt~JbALHynMP!>DyaduastATcdf{pyagf_KX7!jB58b{uSI1
zpcoSyTl(Mt<JT7#otOK~4N6R0_~-B6uRk95Ybz=`-n(~COHWU4^DVchh5!G4&wh4h
z=Bul#r`y=th6V&A{GG1NaC}?E$45c;U3ZkdjVgV8?d-1pqe+^d?_ZX$|Fcoech(Y7
z?XZl8hg!2PFYBGA7aNuJusU+iSN=q?=I6#c`n;Ti6B8G*@kl5fHu&=8vj6JX-DO?9
zy;tw;t-iWG-hS`5TiKt!eOq>N)e*0#Q$jCazMN%Sz0IvxYU#JPw{I7wIXwMv*8Kj8
z;^*gz%FE6F^3Ohc^r)7G#)WrxcVAr@tR8&6cT=GFgIz_1g%>9(yKhN6%qA)#^5UYq
z{MEbV_t!o<JNxzD@At$1|NFbO?r+u6W5-_g+yC28$HX@Ee0{sN=dUM|{Y~os)u^he
zy*e&mzvc28h68pLE*-Cr8Sp%P_H0%7`Zz5OjR{AS0wW@3EU~}8_R-_Vi+2`3KV`tP
zHhR0?q>N2k8~^8SIMye-np<2?LsQe!)zx*DP35M%9S_;8&k3ace7StSh=@qa`%H_q
zuRksd{8t<GF=Io)-3T4At1AMXKYsjp>h$U0w6taaKK9ppOe(GIn?8MdT=iSiyS3l%
z{`&LzJSdi;XX}LMty{Ows^Y_fOP4OKNuI3cd+Ei+#UL;F&Nk~+JI$%0qOzj&^|f1D
zv#0M}&SYW2B(`q$p+iodm*W3@65spt+3ZgrKVCeozkiLt{ojyDPu{)D6W+9|^!2j$
z`+oZ^_n*J*`If?|=jPk5FMNFL<vHv3SB~{cuYEjO-9IcQW{%z8FTqaJgkM}=Ki|pO
z*|gw+gVVLrr2gwB2WnV!W-NQMSEI7B5)>yVC#$c$t)!&%<=gFiZFO~bVRgSNZM@Pd
zfB#Q-`ts$<@As<xXPf0}edcz5_`}B5R#aSk`Mtf>tK;|Afqc65_CNEKrOTJ!E?l-l
zO7*`@duywvrl#lFS*Dlwe!u5^g6WjwfhJ9_YxiYrDgq`>oXEw;7xw(zT+^f@9BbqE
z$4&ZjLb*TV+#E}*njag~d}aisoyfYeVWDk4bNGY(_B{as0SYhA|NpV?!y#@iZtlym
z<#$8VPTbm(IeA|7J4;!sk`;%Z_pC0yU;7<Y(ppu0S)n7=?d0q{b;^__V!BZRo7OQ)
z={$e%>kzm8o`m<F3yO?+ob~kdy!`#czrVX18WFLg?Cq_UnU|OS`f!;4>(A%&PaE)*
zzP%MHYh4zy*sXU<&CjB@x3~NAN}GkuHp}&@W#a8y`^1?;-EU67*H>4czIwH)sflUl
zu3f7<C#z*$T{YFn$jGGjR|zP){kkfVn3(wM@Avy(&)5G8_P6=ia=AveZS(C7iOoSl
zK~J7NTV|GfYem@FC{U?<YisuM`oFK^t6s0&E+QtDR(sogonKhkv`LdEKYjL0O<Y_&
z`0&(32`wF+E5iOZ2ZNisk{GTp*s$S(0ngzRXV03l@yTScu(M0Y*M6N^`n!>ty(esK
zlw|4aYo_<=e&@dau_^U5PxsNJmey9uojZ4m+U3X0eDvs1P_nw;9D}GW8HqMuE;wJ?
z_~%c}>;Lz6m98#)y>`3Qx^?T0P1B9e>HGWjdi?tPDT%ZG|NAW`E}kBtBbIz-hM`+p
z+OpE$+j4LBT(}UhxbE*Sv;S`%pL%<5@9haG6;)MIc6N5l{(%^idhYHnzx~^6HIJO&
zqpr1)o82a>`A+)s|9)+XL>r%s#ezOr>s8*<^(OuMBe!~6?(J8X{q3i=x3@n#KY#sV
z_kOQQZM@RUM76_S%q_oHxa$49qA+p2m<#&*|15HD=hL*dj-K@7?c22*HW<`?yP00~
zs8e0#@Bia_CtX<^ZEpMX$z&}(y|DZHYS*rRG-1iE($`^sd>?d0>WIC*b?WBkbZs-U
zFi%g<s>i+NB~MNWM(T*&ExVm-qh})7&oP&ok$d`C1D?5-#crF^&R)`9zbEPMB)^yE
z^%-nye{Cs^^>cJ=Tot-{*`h^CTQe>?<?s2}_U+Bh#cQLtNA-7hbOeC%%^$mhR8YfZ
zp>zAH(%09rZf{%L)YMc0O0u`N<$C$~U32EQUBYko<A7Sq)2B~8C&|_QNW5F|xR;BA
z<HCoBhfCkxv5ZrRKDlGpt|)s!oAh%sPGSW!D=up2%|4nmasB%Bpa|}jG(Pr=>7-`x
zG7Sw4kL~yCc7w9NtaX_WBO{}hme!`ayUwq#t$q6J*|Pcd|8AZuZ`9sc@i7S$I<GD*
z?VeZpOtP}7>eYpX&QZHcR@(i1BCM*Wmi6dJrxA~Hx0vpvqe&O{RDOQ)^r@<6)ZVJC
zckbT(3aS_1-rl}^?HU!k-*1ecK7E?`;6URf6?1d**c}Cqa&mIBjMMv6K!w4iFK3L;
zYZw?@klF;ww!Bg%9`ZFG8qb#Bc=+k#qCoY;>+Dljlyr4<@f<ejdB6Yvy&a#=S@%Y5
z&5}HC|9?-SMBB#7&uNRp)<(G%6l^Gbc1Cjc<A49Y@0YHtt2_4SXt#FFxgA!s&2o*h
zuCL3r`FzIs*h1&_oNb`Q;C6joEN}PGB%j%4XD!O#%`wcnqOsVmSL)aVMdzNw?flZO
zudOwHxA%LTvW?B1ACLR(-;{{&2)ey3*H}laJ8@$~PrF>ziHHpejx&EBJ$7u`PPOdc
z-`*bMHNTUvCF|;`6Q@tFKCv>qN;P}Kp1pf}rA)JC{CfQM?OCZcTyD*++DQ^^Jck2*
ze|!7&*X#A!S5^d8z1@2K$;+23TUuCrXPfyZAL|Ls$XF3q`!)1#!C_u6fB)-ub{2;&
zcH{l};^N_Z+Z((M{=FA&%D%QH@NgTisIYMI->4~*t`~lJdD*?LuFlKD<H8ip;45n)
zja5}uSJwUgHOsnu-7NEbz4G$%pTB-(U0&vU&5gV7{h67@Ts%A>5fL*kUB0}v@^jkW
zkH@5E8KrjR?Ru%k%Esn3>Djrtt3kzqZ&*gg3NgKy6~Df|K7IM}<$2qKGA|}rvUewL
zP+)o*y`x~^G`-kW)$jL)+g5)IY3Gy8*;fDi?e?zj?#t_9cblZ166uvRcGJ|<^z!k!
za<G~G>C2az`T6;k)zz=%|Nm%jYHog8qP|0@va)j5%Vo2#tc$f?8@2UR+U$?<_l0-X
z{w@Qh3^_TuTN{(xv#zdM8ejL*b#>U<pk67{E4$0{Uu#PRSW2`lw0^%Qxb)SPi@)FR
zU%xhb`>UtZ<FA1l77HAidu6S|Y^%NmY)(6?;<?zZ_tNbAeJeL6AJ2MnV&b*Jn4S6i
ze!9)IE}z!l-~V#`I!!IDOFN67Z>j#CSNiJ8$t%T+bM~-vKfSfTe*e2&uk}(>QeLcH
zzwgqWoyA+Tuj|R$R)zS^GMPAg_Uu_EnTsx52mn<L-qUm@u3o)*Ufr)uUU|EifB*iy
zy0ddL8?V%ona1g$4F7GPYRoeGe?Oc*KRX*d*Q(T{<VC>juO<Kgsy|foops{&?P%?=
zH39SOYC*wqbzN+9?C!GA=jY~z?k>x%zRR@EsjzTkOiT<&)_0bPr|&G2iwhi^MI<Fx
zF7uu3_3Lx%#_DfxE`nO)pm6#7`}=g2voj2xudWWiE?a&l@$cRy?ch&xI{f_ouRqDH
z`SYjdUUO*UkL3(cLFLPhjme<&#>&Q)b!myGRoR;vYX0-qOqd|>_2p%EZZVw+vuDq~
zSN+}=R3?J5b6mwk)}OzAy_%Um@8T5AU=d;A#cIB@Zu~AQV9mO=W@SSIgRD(Oz|o^e
zi;9bb3kx@%wNvfy-d+A)&-2&2-S5{tUNOh3De&{Nv!%Clx4)e1Z+CHJ@NyMT=XSoU
z4-Pgzee`J2WOaWnO-;|W(c3|to-c1UpU*nhBU$y~Ap6s2$4&`5C?z~p0ws->78cvD
zSAuVC&!4|%&z>(IkIQHO|M$16uW#DXq>G@|)7ISEVZqCM0`KlB4PEXh3+lIWa&lh#
z{6YTCsijZehtIdGE&1@k(RZei>!tbsKmNTxA$4QKn%A4X`jXeWKMh|WXWJ`d8I*l(
z&Bb$btyMkaYd*FrDJhj)k1c<BxBUK9@%WmB2M##&N}KyFT)0rmwrb0*?fLo7XIk^$
zYYhFlk&SzL$+I((zH_ZYi=Umj_~PPX)9h<HueY7I`|VTx{avV+S65MSap{{IhMqxx
ze|_Cr|G)0)%HZR1myelR6+P+LRsMe6=JfNRkO1}nRU+lZr~UD+zPQL$$~0>VsO)?F
z?RNh5=Tj0Faf|C^Tv*^}#N&MN;zcRLq?Wv$PsLPKRd2328nZ2DCWyB+>*}e#&82**
z*&DL1tVpa9j);g@u{r(xCbrc~7oR?wR8w1PntDnkQb+9UJlp8D#Ee&0R<4TMyX)7t
zx2yNn{?0nmAqZ-n+5P$8{Pynd@Xcvwm107R8XFs{{{Q`6dOfy06O?wUzpY71PR<p(
z|L*p7fA8sfp{J+mR%Wi5{PDwwfcyJuMdjt!_ez_us{jA5>gCeuYaXszu)yKnyLVMD
z7Ph~!2|i$WG2!7RP(`c1@5iFAsZIKOJ~Y+T)a2NOs{P&RaO?K%+kM8ZGwuHWDRy;n
zd2wc@@vis#et$W@%)cV_^t4}(y7jlz{jI9~{dW7UO{v~1{bwxt^y_{7vfp1`F1D@y
z_Tseu{*c?-a^Kn*KM%W<@blNNxan-K&&)J7i4g5z<DP!@`t|V1>i*Nd{J;Omru0=v
z_6)6`EJ6=Y?F1FI*5&W6+}M~5DmXz+mrL`rzgU&NTCz5J`>NR8Wo7eJ&xCwhY21Bu
zk)m_ki`n`6E{4a~x*lL!$H2%P{-oY{+UnJ-)%@q_$ji&y&3bzT)Wy(^-sY2je%{r2
zw$&jaAxrpVtycKWwOSRqdD-6O?XMRsIk@Zjyy`EPy!Brm=C{8BY93@=U3IfE?OeZj
zuN6C!*t!VM6Gf$^SGCvgS(J5kRpzZNncwD#t=lYRngtpg$-1&);@;&=Tp|Jj3#P|a
zdG_0Wn-R7?ZtX(n_FL6n4oe*l918vT^=qh;QxmB1l6bi7X0;W=y2YSYeeiO>8ewPF
zg$IlHSaf2x&N9t@)hZtM;G)8VCrnICTXJukRaR8osMc~=>UiLgsbUOcDD%TrNf#|b
z>%b!<9H2(iS7ru=hLaf^7#Io^Od`%TvVq4*!Gli%QaaBanpqhb5{#tQa20%d;+cD6
zgX7s*rjw^npT2iFGs6zA%F0SmYWwx|_3~Y%uj8g?Ur4ZIX9{Dzu_3WpuJVaswLddM
z!X#DiX)hkO%WwN`^56hRgy@3E&1sXCfC|8^+1IzdPtm&Z?d|QWTeHKf{TCl9eRt>P
zz2FVquH9mpKR!JCHm@yK#;WARz2FrE(&l*~@9*t>Yun3J`ss=1-@otcxBsjDTeYxo
z)gO?tPc|mJy|p!TeVncJ`DIC=tHaiwy1QA$H2>b6d%+vH^Yh<pRliR^KX2=I5v@7x
z?d?)#IT`OWZ?K-WEzpF7NA`v}%-~T&rvpWNdzLYRMvP4&cC2e^YI<YK8nR&3kH)rD
zYhrhoeVf-5yy##NA4oE4YgX!e%>_)LZp6J{2iC0n`}Xc#&S0S<rNh7=!@)bPc)>yN
z2sE!40|Q^%v6Y_|Bk@~IBhEE8urf3-D<)X7gN70rK;tNOc5#f1jGw-J1J&_nd3P#K
zJ{Hr9(GVA(9%R36-MU{-r^kD}jSmP|AZeVoBKP*TPoF*o9d6?-J#YIRG<bIX@wPW@
zpqOM&TF<7frR4>xm}6q*G&MC%nKf(GhYtlymoAO{q<ToK+ZB|BXPIWF8ON;-)14hJ
zE+(dBV-sUt{w~DFr>Cj8dFtfJi`Vb_<+a>@e%NBS-gQ6j$%ry?Gc;)BU0)X)wK1u6
z(xgcu;^OL_T|GUZR)$I59gEz%yS`3(zT@?}-B(ryFYkV5T>UMl_UF^-x3=ZZwkm&@
zbLx()C}`lXKtYvv+D&`$%|%bWcJAD%sit<!>e<7G3tzm*cza``^YK2}-D`F}fA(zE
zjvYJB<hCWg_<BA5`h$bbS9cbti;9YB>g&J%^#4$Z5h(gr?buuW9aM*dO2e}i)AeH4
z+}1y4zylhQ*|%@sr*Ge`9cX0!dfDIp=9}UN2N-4T>tf9BRV;Svkx-PEm;d?W$BN|R
zeO}()#$W4X7{RVH5dFJy|C%*AKY#z8F7^HU_vwie;;{|y-o9OXT&~*3w))$Y_3PJz
zMv9j#Q7L_W&G&xI=UyfzCKb<iKG{iMo+lr&Dt(pl@6S&o9%tjUGXekq{r$SW{;#*J
zRml!J^9*)~tM}}&sjR4&BK7^tmo0hv{w^*pN=iy=_RAS0G=R!<>vubxFE97M9-Y5e
z_2v2F?W+HG=ij$`-SlmqZMBw$hR6CnpSr|!qf&0!-joKX-K2hh!K%v2mxo%pmmWJm
z-#-6tohoP;B07KX)n}&ss?T3sTRZ#ga@N@<nTy`t-3@9ZhnMiWyMx9lJLlL|hk>$)
zq_&pUt`~;?{{2g}V>@%|)TAY=t7@GltNDVe;n(ZE&w-jXLBFr9kN-dE^&Ty0CQ#ab
z5+$t@A0Pko*RNYWbM5Qn-1}rSag9qB9sPXb#EF2tRbSWa-}mvD^wW3m;-0As^~>Am
zZC-EuAQ&{hDNwy<S>lNaids54Aw@--N_Fh*<5#X+$;HdNRWIcHxpQGvRl9tZ%RW6h
z8T34Qd){17O#J)%JNo#l@b&9Hd??7hzwhp{o4+2m%WtXuUH0|u?eDAp&$3hk<;zt&
z^kR2uC@DE{a&lS~K5F^u`)=mUnO>fr8{e7N{i)E6+Tzj9FCUhWus~&H_Vsn325`ye
zv*xSQ&d$2Ew|aX}P|%evnZc?mDmP-%kM&4`#yCJDlYxufP8#rlTI{Q$x96>_)wTu)
z%#pbGshcZ4Ci%{@iS(YP6X@sH2O7<W4)r~=(bL<;zhAEAgX7xR-C^_V|Ly$u<1zow
z-@jjXs?WRd`MiDntBvuux8-h4JuL<rAN}>^Wl>>a;QF||UruSSpYn57$EltMRtAQU
zwNa+3YHC`Bh8yqH1_cG>Na=dcGRvK{%y)L#&Fh?;oEO`8rPo!>o5~7KD8U!?rCNVR
zJmCWu@Swt~WAC+ugE648pFs^&NF8Vd7w4e3ZE1Ka0~!Yh)de7>M3rlx66in*$UF<=
zx&)?QA%T(Mfdfaxxkk`%HnNqVC}Nm=5hS0GF-OZDiSH26{8T0bGPBnVDmNjuAE>Bh
zJZ)+5RQXUVxA>`}M_upTyLal;DXp!0-TURZ`1rORKEuG^5c*&W<LV==+~Qw8oz|Z&
zrGAo`K_=9*IrSUA*0f-DP+R)!eEayDH*bEM$Hl;~!fB3KLZptE?+gRS*4Eb4Z4v+1
zu2|s#Dlwaynn0byXJ=<;KRVKR>iqfbH`hmQPLnc7XxNr}ds%e;-q5(XxU8F-mWt`e
z)!62<G6WpG5EokKC%r*sW##8*Qg$^zRHN6tc##2W)SBO~*$nE|$=OzAJUcT}$}DHb
z**dXq*LFVHAQzVwP&sgObNcD?=lwy=gSsCN+h5mOGcYWeRPd@n)l*pAFT~NYQAk+$
z^qqbA_w7KbSJ|!S!l$RFzdo7lucfN$ntZJ1;w;nbEtQ|sX8+}vvsp1!JN(sA@%Sqz
zCMtu5ICt*et*xrMR4I?0;lUG72+y%gFwMUgGjZZX(4a@Bu)0@n{Pw)LI%3_A9zDuA
zHoy9vrDWT}t=ZRa^=!|+?iaheZ0o;Wd3Se#2B?jUjMkm!WngIVI{uP*nhK~R#LCK=
zy6z~bwHy-@0~)L~zPG@U`Rb}r@0l}anmul8Y+QOSaCcem(<e`6SZ6XgOm%5~DzoZH
zx7%#<{B`bfl`bbwp6u%H*Ds!b`tRB2uU<tx+mR?S-KOmKx3{ap*3LQ`5fCsTYHL<$
z<aIWNkU4*Ue}8?Tk=ZO+TrXzFyX#L~7oS_`#iH}_yjb?hNvcb)C7I^l3ORc8s8z{}
z3AeUnCd>YRIz7JR)fG+C+*?<+SeCrK75eqnRpYlc3=OZB*Z%$ns?yI!l$Duf=M_e-
zI->04nRRhdE2w?5_wzYxv-ui4{QT1sB|ts;v;RCjJvT+@?E3v~w|3Pkh6b%3_m*=9
zGo{yTlDp|U$0D#>Tpv_!S(Us{@B|I7hJ;L+G<h<pk_8QkeZ3kUwIyRB8^7F|4I4Ie
z&9h=)Sn*_zS;Ew**P^%OtUPhTLpNr}g|y$*@AodBrW>tgY8nb1aWE}><N}&CT6!+>
z-h8GXml+uj==?EX`l<L-gQ%$J(iJOK7;V>$*x<k|rn5n^xUlfz63@vdnU|Jy&)dEy
z-0;um`TzIq>SSVISpH-RsCGZq<u7Q}uC@7uECa)WMWBhp2M!q<<}iaAG04qD)TYY}
zP&w4lyz%(;Cr_R~ck;jf3$_+O8>2;Yw79>sb7FUQHye*cK-TO;iCO0P^FV_fph0`k
z7;Z(yj<Pp53XfhdECJP&3s$VqI6K!meB#83Re!%;2aS$>0GIK9H=Y0Z^?H2v!$Yl~
zK7G<E{yoDm`OB4H|CPzd`#{~`V?C0Ko7wrbbaZ^;>;G<z-2O-)0$g%zJT3)l%w-<!
z67}-(3W|xDqoQeK6eMd^a$!f|<1MAHubtlImy@$*(V|7Ca`ts~b(!Sfv$6effZ5B}
zcWWQNq>+nm)RqgEmU@?dK5HKT&)3odR8FnhF;zSK)Y-GXhK7dM4Eg!_UESTYkN3%1
zmA$#4dVXWZMWwg*_s3se?yp~5?daI}>C>l>{dKjoKURHxbrMo+T`v>nYXb+YVfEju
zPfe0QozU0U)`sq_DxLjNFLqbN_IRJXymg@Yt4?9{X<PxSHnz5<uh(t|rH9kgbT40A
z?Edxb_WQ3cy32>owJOayG}rinpdtf9XiQkxv_F6UdiVbR{rj{5kF0&&pGC+0=URo{
zyLYeZ+s$<SUH307_5ON*ng7K^ce#yyTXSv(MQ_gw-JEuIUDmt4F0iXW;fC63Ie)O3
z9XxJ!v`e(8ynO$QQcxBA?d|Q=+1J;BX1X?Q-u(5`Y5nX62O4kfDqa2O&mX<Vd0Om{
z+EI@2^y$;y;(9R}rgi`RRKEW9>BzBTtE#`h1N9p9s(KeKQu_MtZnSOnw=3D}_om6d
zzq)$*t?l{i!{cj1jnmKVd10v~3^K`2MO)iDGBVOExwW-b-1gZ0`}@xvZ%}=nd1Xc5
z%;U8mkBZ;gkk}0BT%9@N<5|D&^{NdU0xByjPn|h4W&Zs6Syxsp)Q#Tu;`jUg*XLLk
z=bRH15m~Y=_jcCpZMoBH`=>I3Yt3R^-mt}Py<V(~E-&|w|B^aSQBl#$+dDWfZ{1m^
z?{lroPbF>CP*GWO=5e2#tycHZMUKsEQ)m6(n0)-oB3JISGmYIrBVC=s>M0u|LPA19
zUfHm+vQFn|oXR_2iG^W7m$Xqz2NyT@)H!o<WKW+zAD)%9%E{STR6sz%^Ax1XW2*A?
z)m87+;p?x>GR@AZdv$H?>gc?kuAtG6z2EO?dx9q9c@Be0|J-$d&zj%Yu(geyYgM{x
z!S1yZkh-{f%|XyWvXYY0lnE0S2&?;n#-UfPTzTrunGi3puG0M<A0N-YxX2aMwPRvt
zzPh6@*);FYjw?Ttl9R74aAeNjF=>h4T&tD-^X;N`6fE?cZ?|?|?eAAVK0dDceAfKw
z<Hw6{+=%#`cY{%20|P^Yn10-vlatj!MenJTCj$!#He6d5yE^aguE_5jBXo)icYZm%
z{*%)q_4zf6A~&aH{`~Y56iuMcF1YQx%r|&-*jk^x^3}?q_JG5iiwT}VTeGfCnK5I<
zkt0WnzI%FlZp_?rYVyR1fzNidx3{bL%~{bYtRDACW~yv9QbS>5cr$A;s7=8zqX*P7
zVRveNDg$24Ai)&)^tiGUXw48v{((b<%L|M)1}Nxov{Aq%BRF+9E3Ep1(o6z%vC+#+
zkmY!qMd;l{h_^vbLNOVwW7)!X+7eVuBYO_1nbZvFBr`Br2*?Rqfx76k3=*5HN?)bC
z&s@ONBV&09)OY>;I{tqas52{LQQ)AdsrhXln-(J|Yw>}M-vFu%NN_l)3CUm}3GzN4
zmVPc$EPx!^@agks(701W14CtXwYG^#h_rd$o=2aL96560=uuZ@HXe=Q-=Kklz18JE
zfBZOc|9<?&jT=F0RJQuve+Wux1(4q4bRkjEr8|qCYZ(~@t>6D|*PT0eMC9bwy}i9X
z{@b1X|9)lb#_R})i;GLmyT7}9ebx7OYd=3fpM7qQWmjisU{TQ~xrzskr}w#~9t5R`
zRXbvLm*J}+to)%hMD9K{pBW1F_V&5=_C(s**-cuq%y%|uIPTVt!o^kJ-{qd;wPXNQ
z5HcOMQfu(k5zqG`*Ac&OZcg7?_}I<W%`NKiR29&$wVj>auLsTidY{(^Jast0#IT_2
z_U`iaQQPy@zPh^lc2D`sOGkJ8O)4rbHm&<p0cvx6eSKZOcs^(zy0x_xG~#`B$L`&`
zot&Juq@SOcy@UC<GpO@-Fyzax)u_E)tGYiwT>Ix+m9E;eckkCXo6pC6krL}(dgpb_
zE2*ixpv+aE@U6nvIWBIVjg5_0Z*^5w)b{Dm9~^83Rnc3Mj&kkXy*vJk)TC2;&mCPC
zC<)440Y@uQdZ%&oZrq3{eSa_Z``z;Us_PY3-gzDKMrx`cIN3ajl3wH7&iC@dLT9t&
zpFe+!+b-MVUJ@A@IcbSouhi7aJD{OmUTL$8udl9xig6XmwuOfdIX!*)RMXfvxUQ~l
zRp8>buZ77cE&qSFdK$ZUlM<*5af#ZRwKQyP)Xkp1zh1A8+F6vk^LR^3i-xYQ@6Me&
z&A9KDzq_N^eRR=;2@{O^ts(Q&Y`jt_#(5hfO5WTs1Wg};Mv7MiF21tRnSJNZoiAUn
z-+yg_qVt;HVj?0L@9*uEvMPCT_0GD(k3iKf-x0a>nGysG_O7lj70<m@UoXA7x_WEc
zS*h9cca^?=H7z<1)O0U-zxTTrX!Q5$?(%%y$W2F{oqgLarVE-9ne#4nF{pG3DU97!
z66oU6A|xbK^5_UBD=Vv}sVQj55Vnr3lzHBoW4+STt>SZX)<~ITB=Cl-F7uziF7NKH
zmwndnE_4Vgmwb5<2pVMutyr6HSG(?aZI}uq1@GObmHzS3QBad%YsyKXqsNY|TCu_-
z`}(@j?Rj@|o;`b1^zuc(J=6SMFV%AI><GMf?;dE>{a)?&*rP{|yg1Bnzh~2akEslx
zI1a#3mcQG!E_U~;)B5}Otg;MK1GNBUdTzcy=yViP9=`dwC~!u<X#@iUzCsyf0djK{
zspyrET7Ie@i7#*sG;~Q!Ul&vsTDTklO~7o+xw!~5@%8<F{eDn@E?T5C*RD3oH2d0=
z)vH(UUCzP4P;m3juZ{}_JiT(ZQD<kHUq8%mzvkj%_ty^&Hcwh|=T3}i_B9{ST(s?S
z4hDx-?aYm5emNf9oPD6`>(%hDpjBySW*CCjZlp@Il}4YPWolaSA))rmMfb8fiVO?~
zrfz<%eCX%r=h;6#Je*~i+*bGd?e?JC&CSiAUY+$B9tMWr3B1#aH)J0Gt+&`!_BQHW
znY_IGT+8BROzA8P4Yh(B<}}C33tn3vAMf5Tr(6E}-QC@y5)u)O#!L(hJIcy<BbwRy
zukES)JZ0j<L|JXmoAYbG%?t_-78MjsT>p}hA>iSexCiH)%71UjJ}}Fwbk(1~e?^6a
z7Ck)NemZHRhM{5L-QDG&wLzjXGHW=6)ov7bF)%QMpIOHU9!uF-y!=?N^m5ROw9A)+
zXPf6=TN%6@G&KntE&TND+qUN-j0`IROd`%5e5Wt<_0y+IkZy}gwLdEZ!vT>R@r9hT
zOtY6Am#@Eb?=k~}1?R2Rr_R6Qy~c0<XTg*yBB?1U8tUrDpQSFoG=Kj|v)o%Lx4!bp
zSb&C2LAhPse_qI3tI{i*)BQnx{I|EZ?p{^AYsZcc(h>{|5jRZ}bmR6!fV$jw?%ut+
z%vbvAy4c-U?EXvdSa)<)=;|*QocUM!&9&<4>k9)-ll}ORxcB?L>ZqMXOT*SgENo<E
zkNa48`SRtbkDMeq7<QEHVLxqo!!%*<heO<;0VU8J$knyc-*?4nD=Rx6Zs!jV2$--f
z=cbaqz5VNL&_Z$I#EHMY-Oj(dCUUd3)%M-Hcc0wM%D^ynW^DHK$H)6$e>^U~|J_5c
zNpY1=ML~t0rR7bv7|%)b=g+@a`CRttvuCfShR01*vHkU8an`*(l`B8*`EZDP=`F2m
z35*P94lU=H+Z-#s=D~vmS^K&@PV2t**Z*-oJIhr2`|8TP{eR0qNi+NUx~U;`uF=;l
z_7^fTq&*Z|SiB*-*|hpw4#=;!_SOC_-Ft4PaeB$0ABClFZhTzyo0XmYwf+B}{paRd
zm&ZP5W?+~zJ63wlks~fw*F*+yzhAc-w0!2k0f(KtcHMfDyfFea9~ghR^xQmKZO>JK
zi;uZ}*S>j9+=rRrO)DEXz(5m4n<8{T)8ct~>-c0W0<z?d>w>4SET6O>blz#+BnAcs
z@#O0br9VDA<l5P{e*JpT(!00Y@5hzw&)@$yjFFLXRovdHod?&gSn*=jb3t+O<+Dt)
zZ}sp>oB14W<K6wLn2BLsf9dOMnSXzMHA|lUt9e%>Xw+%<{){b)?i8Q5t@?hqd~5CR
zZ${#~>VH0+4r&&=^~q>@u8Q5g&2O$%Xx9F0&eq~*X9Ab|&0Y7ag2CY^CqI99Ma7P@
zHyWAQL37B~XE~;JI<u@fJKH?_?X9igstPm+QGUO6`=LXJe0CoLO<JX#6tewzMEKU8
z%FSn2OV$1VTMk<D0a{iz!!TLJQ#X3sm6w;7fBpOY{%YrTzDY~gtkGE;x%t=@OGbtd
z`$3~NZ=^PS`uy26=Y|1j@~bTov|wq{lHlcjpoJaHY`m9#zu%vKs@tZyscB2WLnqr$
zCzN-6JSM$1zv%zZ=kvEF9Ax_Y?RI|DzM7q1?}qc+{aEnm@#9j^;+HEc0<Fs5&3Sfq
z_Hwh_TcC-vozH$UFfcq%y?))qXRcK!s5?@8-gfz#H9CL){eBNxNi}uu+_i?u$1<+2
z3I&ZqW?lz%Z9rqR^K7fL4mPoZmYUwHesBBr&CTH5<?pxsoF!v#Zx3>~ot<4*fB*GI
zN4r6t#@F+z-)WY{#XVwUFyPjgD&;H7-7rlzdfAE<8n16(_P(+{KEAWF6Euno>S>6_
z*Ie9^y)FNKocA=Hooi~VzrI>p`}^Besrg2!U1!%D8yWe`lxASCQ7QqMvuV?&lGkgu
zPuu<XT6BJBSy>tDISvMf2e)pTCYa{kiO9^%e42NEPvvGQ^SqcsVJ3zH=Roc7H&PoG
zEn4*DAiMmFlj`$Bs;YK%b#;Zr#H{)9r35q)EnoLzp<L~kz-m8128IV+H%oc1wQvf5
zd0+oO`sB%zv+V2l#l-wOQ+@R4Q6nDbz`#IIQyfzKFD_j5=Z(~cnAq5<vu3T@vBLti
z1k$}vX5yFU)f)~SJ}fFDlXLzhBLhQ>XnV!QjN^T>S2rfRgJ#(nc5lAEoa6K7&!&~1
zQgkCXxma3Sa`Ew9^VZ+H<lf%u_%A#3_x}k3EsUCHTm9wr`u(fI)<$u0a$bCLa&qoI
zOI3Y+e{M0I3!q*YsG+!X=T0szu1g()$|gxiI9><qqz67^eC-vj*?lzV*=ivMhK9;T
zixzFkx~g^b=uu4#4G+-3JU@SUR8-W=c*F2V4-PhiCOuC~RKB_)(fR3<CmAOvsqT8*
zXT2rwuGQDKx5F>ZUvC1M9|yI+pU<oI+qZ8YsM|NM>Xl~g*Q?=Po}MdLM6VSPmD>Os
zEYS8$2QMd{`}_h!gVs?w-fQb(cW+5L%B8BRs;Q^vHwm=Ff=|{e<Iax4Tf0iLcOG|h
zch|PEx|Npm<iteKXx+1ObF+CPc%{v*e7|46ep~MCsPEmKoq;7KTY`dvL1DHv<Km;N
z{EH7mDh}+rkuABzzBx20X%VOx-MMR*mXXn>BsDe$2hpvVQ&pfQ_VGU1U<Zc-sq@dD
zKJESW)z!-@gO{&KE`4<+aIRIU*IVn13!tUPuiEA73RX2dHQ=}LpJTCb#|{h7089Pv
z+xNdbXyykkkG;~w%KgUHlz~C3$M#<H*7Emppe+bjSBGzxe1B<acj@n?pedUDf4|MX
zbosJr;vtr|_xJyw^m_Xe`*<ro&(hb|_CDD+wezm{&gmv$Cr_RPEg4nrw^`&lS<N!E
zi<RL)(apz#iI{^xlde}hXk-U1?ezrpt-l-*_RqMq#8cdM*@6WQ#m~=$c8lqPRy@ai
zlA79imnp2QY+GF2&(yQ??c-TlS-X0At}OAKd}U8%akVceLxYy4zP`VloZQl5wzjrw
zZ|kcX8U}(!pf4_V-&*j{>FM+5s~0SAxVkD-`}>Uj|GuvO_3^m;*1Wq`cCHm`H*MOq
z<{)Tb=5Raz^&_3aoM8+Mf97}nYnVQL`gFaR9RXQ?{`~xW?d|kW_wzX`emrakEm5}p
zb|V?oB|3HI|JCsLtGnOtTmAC#a?q;RaLeN3p${2Xr=Fg+tKeailarH4;vp8$(6*(e
z<*Ab=HNVdQmEaF}7#UXV`S#{!aMsxn&j79d{rl@@_A`24b2rVp@}le6gLm)NF*37(
z+B2YWs;hlVmo3Zs^W$UHtCh>AOqfvM`h1;^mQBLcKfd=ir}u+;klpXHCE9evy1Tl%
zw34zI7;fC%y6)hsD=ULnCOxwM|Fb`?`t8=Deoju#z^JHMMa9LrV!Pho*%>U>?W(A#
z7;e)KT7=Y=_~OmY&1Q_RANSjb`S|p-@klN*zhCpY>wI)%NX3DoZQ`Ab3;{QJC5>D*
zr=1NdD%#}MFQ@zRy!r0s%a&=Gm|XeQ)%NC14yZ-y=;&BfS~^t))ZtkbzJA`>pMG<#
zmV%bfH#Rn!&F8zbDYYB4a1%5GadMKXXi53Ez=w?5T3V|X>2oqTEKTh97c6^u$yHEL
z5VVx7Q&@dXe$n|eXSQg%frcTW%jmgyc&4a)eSbf`SK9pA+U@sN{rdV^+t@f5G`4i=
z)TYS#(kCYbc_j=S^z`(kY$^&?ZjC&6@F1uP^4*jDd(-c1DF%jyzq)aIc3deJTo=1L
z?C!48&F_*oMtIfU(zmjTIz3$<wCb+()fG+9;;Zd<%Vr<zlg<7tYHk1j&t`B70<;Up
zJGTDR6!4sWLG6v#r{}E>UA^qc5f@c8wQ0Nky}Z0uF11s3?*q+!=vV&RuwjGN)@8FG
zBb(s|ns&~4y*7@4fq}09)Hz^xejM@>)NO^0s~kdF6akyaLLRYc!7>g59%K?=npO-R
zgoXA;3{3o{$|Ltr)_@lj;P20X2bn;t6Ks@N7+_;7ZO5>zDF8Vh&sYuCxwnHCEJEu*
zJxN%XY6Di!h-xS*I@Z<IfkuZ8e0qBNtu1TF24;4?8`WGZ7}CKDECM_s12Ui$CFp%L
z@OV<2L&(pM9RiRQ77Wl)DNx@MI_>9xZL$I6Ck=c1_>Uhyg0`4!-@e_+*?DW><73`(
z-;avNgLX3I-r6#;zrR0fTh7WEGbB>e)8oJF0PWkV`}+&De_>VV>NC4|+Z`d}|KZJ`
zsgcmtVW29+(b3V%*Eh7HV#lRRm#%EhzFySd-QOSX=hvsCq;zFfsCH^f%8Op}dlznP
z%?6drSJ%hyKl514f8LtU&(B-u?gs5MJa90i<i(Ax+0#Mo|0PRQjvhVgIY~)b`RYPv
zcF^jx=<RvB-)~qJKU-1#{he7ds9zlsG2>p%XJ6mhW^1n)-mm|^7u3em3|{u)=kxjI
z-_vARKr0beJPKPEqiJq#e)PzZh~qXkHX^dJYh|s=UfkH2{8aAu{)b+ZK<)LPKYzY#
zm#@?KJmbcVh`aUw|Gv7ncQ?=B9p9u296-@(Ay93jbO&Rs$W}q&!KU@)@9tQF_G9GT
z-L-UE?T?4;w{{jUulw`SJvAjI=9{IqG$?jf?Z6x$5}liWZjL3WrfKH4%P_9{_ouQ~
z);esldw<wuHQ#la=lc3U5yzg?&!&x9FI=Cd8*P$%%LKGTC^0e7>~`9@IV%qxa#B@M
ziTU<ZOB<9@Lg%2B`;U*y*I#*Xuo={${Q3F$?Hucx9~;un&RV+teqHpvd-tx}WwL`8
zGc?9zH*YO{eJyDIFYEGmcU=2Fe*doj*)Sn2Y?{i-z{PIU_q@Bf*!}AE{CH4V0_x}V
z_xGRu_I!SQ9H{t`Ex)ty%o(5Apa1`Qy&g0&o{+HM@}6zr#X7<-@9nK#>HjS?B?Z*t
zcq%6>B(!MD7L%vXp54+Zxxce`IcR5tlapT6+57eXV{3nZ3r$R12ufEA9GioF%h*<h
z*#G@98MKxkG^S)y^u!}lN9^g7Cnv67|6Y`L`5|cQYJtMHh-TB269S-Jf+tU&1dX69
zvA_Rj-mF=xE?fwBt<JG|^XAfDUou%)Sx;WQ8anCAarycc_5c5!I&~^2Dk^FvLuk^k
zFE2sc70=!PHF{1?RtHVPZNFO<z4F>>BhWZXz|m4Hg*vuL098+Z+b<LTeO+I#X=N4l
z`}_Or|Nj17`#XGnTr4v?-;^ar_u1k%r};{@Ed)(QFthROI9DFI5nS>~RIhQ4+EcL+
zlvh-}r)j9GyB|DwFlu+%+Fhlu(~R}S#c!M2fR^Wqb-RMvpiQjYIom)}u~HjOJ=V!y
z_fH&L>?N&#ue2s??JOZ-;i)rbM7*=p)YLTVou=~l&*$^uw(B=+Fc1|Ljs5zuuSdL>
zi2+t#C#`4WezpjC#TAw^4K)7D;Nu1=70?FC!7H-RMyjDInL#TLK-mgbT7ni!fHDcR
z2*bK^0URLcRRO+*cc40kr#JYiJ9Hr)h|httP|ZeZkCUFB9;lD?_4>+{D?#PlL}m9k
z7TOF94?H*`{y$#3{obVR?(V$ZZ?~Pk^}p(mCo@Ap>C`{vN8iYY=rCRTAF(ZG<}CC4
zb+Nn4G?kSP-@DAnz%W&S@%8>ce?FhTwXb$}+WC2)xXOBYY3a9lLJSMKKwf8A^M6yx
z%b=e>f4+RT`#os%6XdxEs{}UuJH09Objkm}-%p=C>wCD3_wqvLcF?-*YJYC%G6<G6
z|2J2E&-?r1aX)Ceu&O6$l*qw>L061{VMh{3w&Z1yY0ixR+o~@c`atEw>FN5@6D7XQ
zmS9-mmB>4-SRuhvOHc1wm#8*q^afNm-~az_`@g^M>sNbE*E@CY+_h!Cv)|adGB5;m
zeo!k1uL<6?X%lFZ(BA+5ew*Fa5$gu6kH5FKI{tI%w>LMH%gf7WZ(Qa(dsXJ;W!G!+
z7#eog{d_9^_tR;8@Py*^zq|IFylW}2K?T&i;*~PF09xens_=okeC?8}tHZPJ?Wz3q
z;lqw)ukVyx_Wktv^X_HE3=CRse}8=q1x@g7+?;+s>-;?1>tA=V=sXX2%6#qT=jWgu
zh9KWHv+-(ey?g(D{QLd?_knhFxVpI9NNi(ZSg>j3r|b=O|9&LTwXF^VPl8luWUP2~
zb@lP(oQw>jO|I|GEj-1(CiV2Rlecg0zGE6D*6j)!RWQrBvEY9F|GD>9FfcrrwCa!Y
zAyAWY(r+Ee8h{BZqN1WVbGo~_f<i*Bl+Ki9SnvuItSdf&n<O_^)qpa?V$iG+G;@Ha
z2pVs^4sQAR^JiCof4GA~!=Al+MWv)x^-7z^ecJKnO-`@8eO&py%H=h+wND>CTBIAj
zZOZO?N5{srGc#Nomn~pm5GVqj3$Soo?(I{jPkVzpW47P#EPi~vKmKC8x;uCZPNrk8
z*iLs>*UYP{Lc6-Vg98F4fJPhT<koH3VglNLdFSz^%a^~tTD^W%=;|;~54TU&`qbU+
z8#V+yeE1MlXC);iiO9&TnKMTQ)RDBR{k28PG^-@^`|}P^`V1-DUH0};m#FrXDN~m0
z*kR!rl#;T<s^rCj!pFxlLA!3`sz0AKf4%*FUGUndtzRy>%g34|fCj<i>wYc;E$uls
z*LrrHd|wM_%@VjmjoDeW6g0;qESxO+`A7ZRyVX8dzdk<x@%qP8YuATWD5_@&oSV~e
z>%!8NPjZ7c-#l>D<>*SC=*@E^gyLq+DxZ91=_9FdSzn#shc_+r)@<Awlq1FDeNe3<
z(rx2}*FXPWw0Zr<A-MAJ&w>g&vuic=?>5}XUjO}f&5N7C+~Rs6adGoN+4g$!-o1OT
z?k<1-zeaEOU69C2&_)Z;zUUh_R?M0;>-Ya-B?h2DbgP|BO-!up?5B?(Kb~o$qjP5C
z-mP`NUaC)>J{>fM+|}DVb^G@1d-m=HZTbUE8()3CT?$kYi#_UMTfJzJQ(ax%*<*kI
z{7Kn<yI03SUsH49m-8lxetvzRan&nVLatuBmUXO0a#z7ar`78dRo5J3VpuSF^~#lj
z=jYkZ?yat<u-LXeth99N<NeRi&o9@>;OB=7eCFL<_2tW#u=wLzplFKlsotM)<?`j=
zty{OAJ(hoe-`g8`kEAAn7MCvf=LU@dK0e+bo|l&gvIFF=J10IqKK}LT^mwaY&<?oo
zHpkANUw<_7Kvx%+r_rZhE!NLpTwfo*Ik)!rH`7h$PJ4kZ@yNd4Y?^$G=j;r_!<lO~
zYzQcRc4p^m!-WeMT9v+<vTF6}xnjGXKYxBYZL_9{$(M!ipZ7gH+`hW{`#aq_rHy;`
z#MJ)!lKItiO^fS028M_ZZLyv1Zf>g<E_6J3@?_t}UAwG6y~H;+HiA}#EvdhED=s8t
z$+2U{*z5G<<>g&nTr|wh!;c<4+V>GOW%cY?)~zj>{55{spn1~;lexLMgF`~52nh*=
zL`J@>m|PthIWs6INapw2n4Li{U%u4R)t$P3|Ni8f!)?5qZszQ&__*jz*=|tYIBS02
zW0H`tu<UQp+zV)oyP{&pG`(1@-FMgB-CchA`t@*5PR_UA54>#v^?F)&yz+mVl9B?Q
zL%Xszdb@~_(4yqyeVKQ56#6}Xd1>j-C)a10X3JdPa5JYbAZ_!_IZW3sEOZ7fTKe&$
z0yGW`T226}-q%KN-}YlxM_&(UJ>r$c?)<qoH@QY{%h~xFR9pM?UX%6p_5EHu_riq>
zY26?03W6$j?!wS!*3FQ0h!UXEN6h*0m5<;)mjt*<Zr#9k+7>*w4dq`**a==bBIb0U
zh~Gz$iGcx00$c+h1{GQxB&3%2L8f>NK%zP=rV;NT3*4c6w$rwte#!;`rfJm)U7+3w
zLITOcqZcenYrr*q8^~D+ifaxQ@gwt1h%~qD*viMC*kv#PuR!2V<egRx={)u{w3>y6
zg*|%}&2Ygj@6L{guc8aQ%cXQK$7jT|=xots5__<ZBjUi_ji9D9SRbedm!Qa^^ZkH`
zA_GH1qDjQt1<RJXO)|;9XTvLNb>(RJ<$b44p9W3BhTnJF{krG8jwfhs(7CzRv9;0}
z>T^FnkBx{}@#00s@%LZ1IX%AeQE<a8$IQ%?Dw<YSx3-!;Qd;cZU-ngZf$Yc6?_#W8
zpWnS@OUUD6y~SU14;<o%c$@I+%ga+|&RkjG*!<+>%a^ZiGcwpLnKesl>a=NDzrMW8
zE#tigil#8@4`07tonu)XQ!CBDz?`wJz#g3SIC!U3gO~X-K*JOfhD>4?I+re8y3%{P
z-ltEWf?Qo)H@}^%<{RYU(ZT(W=f$2M$>-lSHn2Ku-MaPGp336Qg>{<D>mGI$gocMN
z|M8;&G`<iQ7bj(1w#ILcMPdB$u+UIVGqW(zC~$v&|GfHtm2<7j*WIiu+a3G++uO@0
zCMthDq1+E@IfKp$h>N?&Tw8C&#3aVh+Sc~!KqK?6y1%<t=d(6+pP6qT@9F6YTIW~x
z_SVw8ySp@%l$>_%-1*(+T;6tVB_*fG$VkwhOi(=mI;{b;iTu3%|2JFmV`ApS)&DK+
zl`wPyEv=7<nbXzX4O+8T`~UCv+@BS1`x;nFip*yFzTfk?PfAKEDre)rwHr4EzP`R5
zG%aLfV`EbBAwgA5ZPmJU=Q8&@HnU|uJ2TU&_*u`f9!X_?e}7gsHZ5i4#WyWiuUhrx
zT6F%&`}gDJ<m5mDR9i}4huwTzw)i|}iO9McN`Kz%eh->+$^QK8ENH4hOgCx?XeXC~
zf<ylPzu#>8ZEJpP`1I-1lxfqJg{}_EJUL1A*RR*>uWro_UmLso+Q#_g<i+3K-d+yc
zk85fQ8W{vFodcb((ALH#Yg2LI#P{={G92XKv$M_L+efcy<rdF+duwaevzh6jYS(kJ
zTIS_tzMvV-x!*S5%+b=+3=9dGvdnk(vhVln<3ST{Vmc8E4jpnjUT11*3K|~gleJnh
zV}``rdwZin1;3M1(=`3~duivn4@8!gZQE7)dfCx#aqDBCMcA#};#&Ip{@2&V?tZ<|
zy-z0a|G&SW4PD1)tY5z#)RG15>-zfj>!c;WepOw)a%DyS{e6DNzrVbEe52TvxdIy)
zz=daMeEfRd=xtke{QdLuGiVEXPR^Q5n>K;Y3DHzlbuBC`1Wl;=&9{5IrM|Fm<EG7<
zK{KwPrXgte*{<^U>!wT*Ic{fN_U6J=?eHn{=dTA%FnxS<)XUQ|u%-qy)>wQ#{#C>7
zBG=~7fPe)L9whwy@x!9Gy|vYH+x@dUi=UfhU0IR#7_=?@_xt^!F)=!xpFVuJFvBnz
zw1oq-C}Mhi-Nk<Ue=BCpkg)yt<FVhvbFv`U|5|<&ltL#>o*Wt(c{Att^ZE69v(GL|
zJw45`S3iDVOxf<(<9)KlQuV)HE(fjYu=@A*_3PE3{ZOBtp6=WD=1q?6_dCU)ReN>6
z-<lu4{^aE3s~0XTm@`M_us`PlRZ&sVPoF<$o4tGfTz&W5b)P<cYPSlTba^8?zg$Q`
z!G=YP7mErAEVytX0CY&i?fm^$7dSRY{Z|lkI>7W`L)KNTtJkk@-y!z;)z#IYN~5W%
zY0k0VUtfbyDOj`SOy-^Y_xInl1kIk@-Bo(}<NHaIgg`qrYJYtx`~{j{&M}*vcV|c9
zi<1p~hedhAe0_VXzP-7bbLa5k!yEr5_HDiW*6;YQA3ri~Y)Axc6aVsZ`TQ)<DK!}x
z7eG@X_v`=vt=sP^%amWl{=lH(LxQWjySAle<j0R6b>9{5m;d?h*4FIq$N%H@+`DpR
z$;#m6T6T8(j=H`*c<|u&QeB3%k6*rAdF$4#w8z`?@0aD&&q&TSoBjC4v14waW!w)R
zJ_L<I%lrl{^au5Ow&mX5l6iUAHM_1<fej26kz2E-8W|hUUVD^_gCig~c(Rw5mr2SA
zf#W}VrOiRTcMS!F2aW4RB_vk7dX?4M-oE|UKF0Ekx5S&%($im`n5gWRT>tOqbKCxp
zpFd|8N_{xT-7&x7QD?Q>?MvNV|Nn2aw6p{ba+kfk^KwgkK){4HKG{{q>F4fzma~>x
z#=&S&`RSy(sI2VTzrVj**Df+pQgSNW9qZ}o>G%8njg8J`vwijVd^p4$pZ)F4P0)!p
z;qkRsbD~2-r%Fjn%l~0yFuyQs<$)C|G*VMjEo*b{?D#nEIyWzGXkp<-P)q69=g*&0
zH{TSIlBznNe14wo?Hn6>`}nxHxIVRAn>GcR&0c%-|N7UjUthg&p}_wBEWTz?fv4+x
z_U=!Y#K6Fb$vP@3E}x&D4=*a(1e(nTZC*4qGz9G!0uAnT3ai_F*c!ejV&Oz(chJi9
zker+~-`?L}4=OMW4GpC%3KpzdwJPds4#PYDl$0e>Qc_dq%y}cRdiCnytgKbX`eau#
zGP8M1S{J{6-J(TG%O`*)j82{Ms{M3Qy>H`e^L#C9>uBTjb0Oc~-BtZ-{4{_2?Wt3z
zJ}r5>IsN>q6)RR8^;arO@eyR28{-`;*x1+z%3+r-U7EA4{>w#o(9CpJ)~Y@^+g1Pm
z{?;}$49vc^CbR6^Zr{Q`)pssm4z{$k1g!$&leb&b)5G)kef|Gn&@#xi(aYoZR!LTQ
zEqI*Ky<hf6{Bx8>-%7}NHLKRFIrH+WmUj3$&`hJ3x3{c(N@q_`NKnuuP$}6hu7B$K
z^>EOf<E&Y;zP#K0-l|X5G;7K-zqzZnY%vK94b8l@B~wdZ|N1=JYS7UO=J#tZzcAiC
z>+HGLlNcEac7pn)UtV0as{QrFcKH)IH%G@t&=N}dx*reM`3A<u&J9~1xAx2#pS!zC
zy%iM|L9=wrd}cnnk$$j=_0)+I7oMJ;KG#k&CNy*@=+uW77Z<NuxiT;!V#c=o`|Bnu
zyIaLB-nK35_V)bnu&`<CVs<V9O)(s5;f&gzH~046#7c1AqCh?2>60g0JP*t=NIYcA
zEOsUd)DUb)1oa*cIK^ya<9-HedEsm4ft#`ht}o<ffQQB*4XlNP8)_F47*X1fVD~sH
zy!wG`PGZ*uj20-UNyz|dXbMQ_e246mgfw7_US3jt+<SSc_w=55{QrAFPGkM?>ldig
zd-3AM+@d;tef^)mer-Fs^WvPddE0Nt)(SH)IP9wWx+?G9o||gVzkU5Wb^reQ*>j}N
zf<^)vc#<btgW7nYjt;|NQ2U9Y4I%*=#AA>EjXg6MfE(Qj5}-Eq0RxaX8WKmmhQIP&
YZURNTOc&W17#J8lUHx3vIVCg!0M-Q$5dZ)H

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-17.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-17.png
new file mode 100644
index 0000000000000000000000000000000000000000..29ac74b8b30bb35ff10b44ea8e57b40c634eddff
GIT binary patch
literal 20316
zcmeAS@N?(olHy`uVBq!ia0y~yV2S`?4mJh`hJ9%>?l3SguoOFahH!9jaMW<5bTBY5
za29w(7BevLCxS5J3j5`m3=9eko-U3d6?5L)t&9kLdg$NB>U;;az+x?zLM2~gCEY`n
z=eBrS&sw-po%if_t4xcBGkC*-7KS}vdql`-&Z(7tX=>A^t^D~cU>@6sGY{Jnj$a9J
zntAPgf84j*e1TV3tKXjeUK|_q{KuM?ktvnc_SyP5ZHW?03=9pKZ`RFYU|?uiu9(2c
zz%Zkyft7(F!H7wWfuZ3fM+5@{gPQWF#Bd0br_Y{cU0W0R>h|{audb|A-hFr7l`B_@
z<p1B!-=BG9Mc}IV{rgshuU{u;Ta|Hsp6$|audl70{idvX<@&n6zh+ii>pg$_ij#qX
z;ktF*pB?impGlhL-H8ws6uh;kvUq2|DUb8tUtcfptNm?K`6=b<%3$~Pd%w-vRr-3_
z-QDG@D?dN$tIai=EoGXu#IpF=2?L(v70qnCXZFZW2PLiq!FGQ6YabsU*M4%R^!2sS
zjEsz#x1~)o7R;F=b9H@u{O+>1mvXn?4SQF-|M$DyxAxWU4qF?wl#!XuV-g#$)Dkh>
zsEliCBE7u5i*M~uJ3FhZuW#Qb=|W)^9R>!S2Ol0D&bqUsuywAzf`Y^S`v0{v6;B^O
z?*8@l_5F*A*GFyjx*l6TS2@PBo@E!iT!n-8G@U?4$HtnPnmK)%T3VNO7C#q}kf?CI
zzQt<ZK_-R+Oj@gUYJL3uet-B4({FEXF5Z@Vdzw^#PtTS2`~R;ybH-=+$1`VqSlQUL
zG&DR89z0m}s8c;8A|gVuxL8yQ<ep<`n`c(-v$ua8BDiVu=Brz?uLnIoc<|t)C5zqr
zUmcUqpQ6&*+Pc!cUvAgSWwWQup1pdic6ipeH#cwXuirmSH#%(L=QTbcj}?S|`t<3^
z>(|j)cg~;pZ%fqB*FSH#t>B^4^4c~&*;N-8yT3kbem^88W{#4wvUbhBsg0^m3=BF)
z(l&>l2zUMT{rmNwpPzg8&bKc2Gn?)E@83Uh+qy$7oJKs(FJHbCH9hL(-ptC-z;4L1
z_|SBg|5_Fn5jSt%Tzbs=nBG^eHn(0W&q;oBEE4}ciD_wIWoT%P$$eb1Fq!voKw;s>
zt3Iz6DJdy!DSdq{=&^O#n*axghNvwWg%=;!|9YwJ8ML?Rt5!<gx&uOr3=A6E=gg5w
zO-Wg?V#NtVvw{Z>vesojtHalq^~l=S#b}4GyR!HDz1J14hi4k6PnkbI{?(k#>F1}N
zO$(lHSF81pO^cIPjDbNcNb<bT)TjIZ|K4Bv>WXG+YO3d?d-eZoWi5+bCYhAIiC|@A
z%{(<l)63WQ>cM7q+4onZED9DpJ3oJYyL?^5{kq?4UtL?f`g&Zo@6n@2t3I7nmwkSJ
zZ}s*?ix-Q^%C6n8!QkoBr<q@0T?M5)w|=>`9UUEB`=56?9bjT$n6zYiT$N`#zx=c>
z?iZprr}bW26RGUk)!7*s5HKOfZ1$V7=d1?1@2>m$`g-=IC7xAZuZB;ZK7IL#6CO*K
zEqnFr_4@KR*LM^qm%hB@ntgp;sGncoo3h<eTeFt3a*Mr~=q|T%kMvp=v&Ea{w>VD?
zjfshQ74P-3Kb<+|>vq!_@2`f(hfddvE%|)be0P;rL-ftP)!T1v%~sFPf6rCPAC{Q7
zu<Y%v(u3knhiYt^TfG89LR5C&UFY1+_p;ag-i6oe_pg($`{BsS%DU-h&eVUM;vqeu
ztHUzy>?o{yIyJoH-5tw+JDI{y%#FL)z@6MFF!j*s)86-Mzt06_>)_>nD>rNiIC$`&
zlwnfKGQYX28X6jmr1f_6@BjNYzv|!5=T|qU`~Up;Gxo#tenyAT1M|~X1gOe$>*?rR
zInpV7bzQ9W+Q`jr_J6-jzO^-b`S$yD(T|VyUVgv-zuxY<evcm>^Rf#Rk(XZ|oxe9!
zQd08Qar=J@^Y{O~cGQ^pPPg^G43VXR8v+)-Dcj8_Z?}e5+HA#w1rGK9f8Q^?9$UUL
z^YXH&Z8<Z4eS5q5>+9>*PGYB9-<>{v`t-}|@Av=TC#Dy(qNRo9?}x+udb30scCdN3
ztT1RxeDUVy=2tg2FMk}ldXhX_)w?^EtZZyq|Ni_m;&GO*`>{~v<<sf$VGa%q{QGt<
zT(n4O`2^F<ODc2i>*G2*JGHd5E}fZaTzZ(-d`Cf>!Rdbce=9a@FbMZQoE+-%_(;9K
zwmh$xR?peA;DCS$j~+h;r2$YpH1pd{P&xkD^54IIRX?9j2f04;@v&Y|m@YoqRQ>VO
zr=Ya7WoG&J-bl<gOl~{YFTeil>+7#yE}y^b<R^yU<$j^vV!B(3pZkUTvu-e964UZY
zOkAk)a-zH3Mf?9h{XsrBH^=hVi^csao_2P2eu}G;kN4f$o<G0t_gnLDKk4uncXk%f
zvZ>ru_2tFGFU-;D=jN>3vBRSF%SHDV9sUc;{pDR<U0?3|{Z2V0RAAo0PdqF-GnPG3
ze7<Loji`voiyt2!_vJRT@m>O@rOE34S--x#ytN^*dC7n7$hx|^s@H3`Z^^u@#>&pV
zJLTUFtGc?nuI}#O^>KTzEcchsy|d%u#<%MgwUw0*w;CUvs`2yt&g|>!ynK8@Cad|D
zoVWchu&KdFU_(OJr04lY#>S$;!iztADA<~P-EXm5@1<W~U#oiZ+kTnw?Ck92&FuVH
zx3*-8^F)G*bM1WQ=?~A#yJ=`>O!#tKexJYH&n3Ic-mbEKzvpw4V)o@_zOxJxo4&oj
zAOEuW*wmNz_wQfkJA0Y3d*6w)&6-+TUY(ttS=ZJ`Dz0X_kWk6CUj6?c=cWej1c|mc
zWxI`xjIOK<Ru>f$TUGk{TGpK%8}HSAkIlWaBd{%Tg>yUKuAk3lUtQqHtQ)^CCcggf
z)^)qzS#8a^x#^1fg@jyHc_)jqH#1g+uh-Mp*B2ELIdS^5cdwM`rLWiH*E6&8y||e^
zKlFH??A0}q#-8;o8-&&UUR?IKzxv|h;?TuzyyEvcPbD92<Ms0Mo3?%X_NZ++E2Fk%
ztxP=JmUVa6)_>3I|3RwVvbU=yOb`h7zq&RxJzZN<)AQcFdz)^*UDmdGlKIYlIonyG
zO{bC=!WVAXaKV7*utoK^HHG(Uze_%R`0&{D__~)j{@pFVFL^z_esAFRyx7NIug917
z=*RB5vf*Zq+x2y^y_?g|hyB`9SlQLx?cFPDU3Mnp+M1b$DJKMuN7U8rd;CBD?yjpl
z{(ig7tFN#Bc=LI?VykbU#CX(KY}wDx_TP8xusEEySyEWt&xB9b>dB3NN5$hM0s{lx
z{{H$p_ut*)Pj7F{p00TE!{^V&Ow7!_e?NWxY^)-=yX<Yz*W55k9l=MN*2eA*Gfq1*
z;Y<B{J0l)vP??ms?`N8;o1539PoF<uT@|VgO2MDLe!Y6Am0Q++s;!k(ly=yf3r(!t
zA`%iWW=T8l1ZCX)e?E18dw+lZoH;U{K@JWLpfu8N|1V;(d;hdA^{4kvy0S6Z-S*du
z#aeoL*JR7@Jgg9HSGl@2di$q*rs-$XHe1eHJIA_w-LYQj<wuUV?EUp>wN=fJ4LN4B
zZ*9*%U$pRKgwhut7M&@x6D6!_e{G4Yda1hi!y)cjw$<B`qy7B)KzZ<Zu_Y@j>#DG|
zv%0#vuB?eP2AOheb9(=_yt}U~(k?7;%(}TLb?JR}z4N<DUz=2XNZ6Wj(P?ee)}V-p
z8Na^2U$4LKhm)tLr<74j$Gytuvdbq-ojzUNQ_8AjMc%HLYOO6T88<d0o;rK>sq3b^
zW2aA_{@D4T^7AvnO$|klTo-GY&px|M$~5c6*X!}uk8}#l>Q9(snmz5%p+i@87N>*4
z@YJbOK^`6*kJ)X!gSy3ZpS*p$c7FZ8n@7tVPj9UFm;?%(uAZJN$^Eu!_V)H~@9&TI
zo~Cp0_xt_pTUuCr=i9}$C2E+OhMLXx&ENB}?a$x8s-D@`)=cd0@BjCE|Nm(7dlkyL
zOK1Q1@wgvUB>sN4+kX<sj?d4}pT2%Q{PVN3lT}pJ)VwCiRlhN8ZELe~y4J!eY?5$*
zVejX2)~{}CTzvZ7!MPt71@b?<#Ok$U?xICXhYffh-~az_`^ClX{ENfZMjaFOw@H*}
zOU${s>FA2k)zbv!<nrd&)!ur!qyF#fc(=E=w)P(F77zb5r!dtl_f|?w@mbSj$^Euz
zZ|?8EpLzSZe0@&Iiwg%g+{`(4+220*$+Krt$;bOlo0^(>8kyOp*!ks5?EZXkemt-G
zo#C&quhakh`~6;T7kA7${e3?UZMd1!b~eqpjYl#`Cu+-!rr*8N=I@%$r{vz=c6P_Z
zHtC+%>-XO~ar*S?Gb?xRos_<TiHWIa!2*Tg{Y*?u6>O^~T}*hmNuo{hutCY=Uh`K|
z!{aXA*qHqF(`o(F=g<2GFZa88+24L`r?9$~mX??Pz8{P7c06QDO-af4_va@U7gx~s
zyt^^A+&fqv*V`-ZD0>?fTYk5+tGBoGPsEf-*9*VAyBobV`}(yjD}zn5uj!a(UUKQ|
z>;&}#o}Hh+ewpv=Q^$|Hn`T|Pu*`S1Ot09Q_g`LK=HlfIy}mAX>coi)b)&bvxEdaR
zbxq{vlGD1|HB3xGCYjX#s}U6!pPsd8(V|6PzTM7WUHA9br_Y~@pRV1ZE2VQj!I(#`
z!{O$=y5G6Fk(*q;-zo0jRsMdRS?(>1-2cyJ=ZlDoFQ02&o^@?a<SdKAMUy5^o;qQ|
zf-`4)e*XNasi5G%$jJEXK{LOIoZP!b)(4-SIDPuE?)E#2uC0yE{`%^w-|ZgzzjIFH
z-rkmZpn(yT`@g-t9lAP9_wT3E`cZqUwl+02U0EHje_UJYfgI1_fPOjKkmY`|y3yNw
zqPOQ=onu+NCHuNwZ1vl%vrIB4fm%6gzOy_g9qW@_UH|X%e30O=9?8cN$DiJYG_;l<
zIN)$OJ~lWcWXYX7F>h~e_0GM$&GhS?9R~NBTa9Xezums;^EvC%2L~8ye?FZ)%f5bJ
z*}FR{mEHSR1TJ>_^zB>NVz*uqQPHLA_y3E^%*_1s>C+|qe;@gIrOkW}9z2+JecfC(
z9*G6d=hw&SMr|qhs=IJb-T%Mkdp{nNUKPB&kBwjM%@>=y^Z%>eSrMqr%EFRyv`h5W
z-QC-xw&$(QUboXt)~Y06ciG#Lv!>T~yb>#5?dtAM-G2M(uF~wYGYp+U)lLH=vxu<p
z;$ywi-oGBVZmj<H<|3%&B4=B*BLDurNlTv3tM<FPIy`*3UaZXi@PbOOd(BT@zm8UX
zfAG}#^UrM~rgqeG2P~T~LBMyGiKnBZBNs34)gDRXDO0B|ooSq|rKIGvxBC0FMXueT
zJiYy1mG|4*+pq7b{QTv~WdBuey;4<gHXb+0zNT~Z*s)cCi`~}klZ|PcWty#}qT(`h
z=1eU;Jy12*)!jY!n`WfmyDKXvt7P8aSKC*(WBH_nD_b&yx8~oE12yUV=31$GO4(Fw
zc(?z5-OaaUpw0uR62G{p6;$fl{`>K`>fO%gUmi5`pSnF;-JhYep|u-S7=RkC|9`Fj
zf9ZOBy>5Md{oe2Qs(*dEoo`z7#N%d;neC?&%2`)eO-(yHYw51i*Q@;IT2(#nH8&}J
z6>_}t2lMs4Q~rDgg}9NiF(?ap*8h3<`}%~`%{OJvr%#nRzFF?w`nbJSQpRaL*Ve_Z
zmbEVPm}K|!i7>B}iAVXp%H{WJKKs^wI;jo{wkIbii;9Xa{rLF!>toXSB_Ge&vcEr2
zRBzMV>J6$q=2gAYJUiRm|MBtu>)!f%pWOKN@wj~U`+Ix6{QR!n+?+mj>Qq%vP~P45
z_gnPUmBGhDFCPm9)kapOua+36pVKfj3{-aOnV@pKDDh<dmf+xE)3P@ae_zM{4|;xX
zZmebMj2C}?ewH#wXy7?~;lxB`)2u5Rcgt?)dinU2REZV8ytH)J+ikZ?{(il_yI|YA
zg-;~cELfm$dG>)rhn(hG7PqBu&=QQ*(_87*D>chBds>d!>}TiZY9BWEawXV*W!2YL
zyB_yhmmHTZ&$zN8(5m9Y0#KXj?cLqs`g^|!Jv?=`wXH4d=B89oZZS<h#xvKl*zNJL
z-r}ks-(IiZe{GVg_mw@B#c@)v6KiT~OOMNzYuMSvy?pr+G?tNee%@P-a8_2<Pai*C
zoS^6&V-tK}R>p>ayygD$uNj}Wd0a8`!DN5Cl?M(uEcc)4S#P5tD<JUT(9A<V(&l+r
z7C1JS{Q8pl_5J;Lewz;sv&{3?`P=<;d3}BTb@Tf*i_hErUUNm==i$D8f8Lk8zqfa5
z`gyt9e?Omt(nNRqvzuO0YotuGLOhyFe|^c6TI1!?+*-6caB*AOxjC9I|KEG`=Sr}@
z<)M(1>JvD^=PfONfA7}D<aRaRSxa=Iw`IJ&wRO_J3b*ySx3}HeRk}KAd*0hek%xR#
z=UZ*QnFH#fmc75XR)7DWNe!$qY)oQ$r{kTcO`kqJ?c5xYXY6LZJqRl9bz^shq@SB}
zah`2;NJz*Mv)o%N{N`G%irl<x_40PEfJ+H?Yro$GH90^*&MRr;a&=W`@y9bZ^7>L=
zd02E}woRJw^y$;3;&By@S678zzU*)R_EqM>CRSEfO$`kXUMZ7;uOR`QPEJlH)!%Y#
z|9m(cwK=U9RP?;kWXx-9Xw?o{?8fUm*DCbts?gw)k}a#3GcREJ`symED154J7$PL4
zbKc>=A<@;5o0rY2`Q$l`jgenmNN5qL-Lh}rzIF4s9++`N?9gh_UXY~_6RIbr{@wim
z6T<-~P~+(eKWG4QF=*h$DPw~TGpM)Ua57^91H%RZkh#s^!Ahw$UIl-C6z1O8;OINc
zWa9q)`&Tb#X4v6WSy>56Yrnp{T)eCFb=V10kP(clg>r6ea0GQ6Rxf8{Fz}3un$^Z9
z`|4HZfkPY-Qx|wnR-3fsxO{yKue4do+Z3&vi(I=+l8$hM`!Bxq_xJt(WnV>Nk}fav
z1$7lyFMlX>cD8x>R}rn)sHmu^zfV8DxY+&cuh;9X|Lu+o%$RdWo^iF%6di7}oEsZX
z{dKo6FxYVF?&dGYHx-0FdHs6z>vg-&UA<h;+4Yb4dKVKD)2b)6-j53TV}uyF85p=9
zN`gWT6cij0^BS+4Fo1?<*|<el6+b_>ZXT0X;OlE^V{KVO7JYkrdv_I=TqoOU;|mE3
zodh?m5@QOx>U4nVlpAOerxnzR0S!JeOum@F$dF)Y;`gqfjhlhtK#EBO149JI`GiU~
z(15R)(}7PsI)Y3Pdl(qF7ash?15)Df^XJd5{{C<ej}9g#CQyy_<;#~M+1-VY-AZ3w
z@oa2tTot=}8)z)fxt%Yz;C}AyZI<77`S`BwD11C+_U!CuYa^JzUee6maOU5xDGv{~
zXaD>2v#Yc7qW1bdO8NQuUteGMzr8JY_lrXLnh%Yjj{BiQPO2&@8IO*1-rAJfZB_nm
zO?>^|tC{!rR)1d=zCO;X{M{T-$M43C2vt?pmyPUlJ664)DZ0^xgTX;`d+~F>wGkVg
zIy*bNy1OT<96fSmh3{-LP(OED-rcBY8$W*hn00T@&V4@~aaUGWdQN(`?|0tT+}mNr
z&(2)z*5CKyM)|ERnIJ!H%elGezySx(pvT90K}F)y<;z!xua6V0m_D@|6olO?-+aq@
zdTJ`DGSA6blYHj-^>AhPzAN9}-kv&jYU#npe)DWrzTf{pj+u?8pher0i=RJyb=cZ1
zH9w1v-vEti&6~Gw#taGf9g~(M9&Xb#FbH_R=kvL#HLG>H8(2X;DSsaaYVcoO9bOI^
zW-Q6sKjHK9^WKyG{Qc{l%gw=Y0hHiQ>+koN^zH5K<%bSAZOy)ZF4JCKUf$Kk1vHQw
zUMn948mT(q6!VcMtgLKXQ**O-FFQN?X#*Zv+o~^3$3YFARiUe=fkI>X$N2icp`Z?x
zish~KZ{FnG%-LqNKKPpH9Z^PZh6XJ?eSQCZ`}Qq8_V>>pncMnD(l%#)d2#X9mdweZ
z9<+S@pFq%H?Sq5Op#cF8N^(yApH@0|)4GT2Kr;yu9okYl_4W0~i|)^#Yh8YB<6a$q
z`@dV<`eas$$JYevMr{d5Nm)`;Qv=Fwo<%y=)8;H*^E&2@)VmIUK_-R-#qi&YE?!>l
z|N6_z%YMm6j~*4bUA9Jb*PAyvo<YrQyr*og9Y5~w>FHVZ?PmJanKM^ruiqP%n3xFa
z8NDgnedy33nd=5ThYQc`k9(eUy}%umuq!4=nP#m>Jly6N4;m1DVJIjlc<RiVD>pZ%
z&plTD=7!?zv&%X<I=thy$L*~G^)?P2IusHUvqm?1n}(K_7b7F%Bv6Ta;`Z(6_}Z^i
zFBh`1vfkQVp1*V5LqDjOr*W|J$*cgSW>r<oW1l{Mo;qpLq7^GNT3cE?CKVMGO_?}x
z;i5&0y63$=Djpx==hvs^Gvk2-s1m9A`fBNxEhfv&w=Z9|Ov~K-`r|mWQ=mc9(3q5z
zC7|54GI;r`8yl0kxVeM9yt?>gt(H7_l5)H*c$rUNR@N#$Ihz$1E(Ca9nxyKzCF`md
zXpHgd>hSBwdZo7(J@o>$x$6J_^SfU8?PmJbjmhpHdC<VhL}hoA@^>*`UtV_KTm60A
zmFjgFpb=-CW1{wRDnC9tI?J+n*`-UDN<KaDY;AAPzPqaw6f&3hyeWHrbiJ5v)Qcx4
zCxa@SPoF+r*_7(78?nKm-{zCY%IrHur**yj{ljZ&_J9Vm7A#OWdhFP%ozLg3{_uNs
z4#<uLSyxwSDk?g1a&o4=n>=UEn=2WfprQX|poDVg`pXLoo9+Jp`K&!}`ECVJQKlIF
zTl3JSbDgJ-I=@4$DZs^zVnQX`G!8}v1|Q-JLZpIH(IjGCBPf@{3QFE-=@4sKbk2i^
zud&ocph5n&V<-QDidu#lJs|Cnk{nuBf#h4*P8$n=D>0^N=^sw09s&)2mhFyZWMn*b
z?wsD%z0uqAxcK?Y51wIQa0q=ck#Y5rpP!$brk|S=^jM{mp&@jtNkm%x!lKHO16>^*
z7Y?;@Pn|sZ@vD^#3=LXGl9{KSO}o4$^KwW;M8!d|*XO&sy1tw-KChvp<5O2xmvw8)
z%4PoZ*ZuiZv;6NYlgvfc@Arns*L-Zv+yA%h=kMR3$(pD=6@{+%xEL06E!<mFFDJc0
zWo72&Wm0B2H&mn7OjLFU_0M*Fy%ud+|F5R>^)=t~_W$=RTD*Afx6L<mKob?9v}yfr
zhja1sbD?i<ZT<S;F#l`Nkid)Ej0_BUhZZwWQvnSPu(Gmxd3fx2@D0@eS-EnhlxfzK
zY5MW&+~sRSPM$nD%c5`*sM)L=z0Kn7{FyUXPSp;7H8XwQ#TkalTk8H+{rvGm!_so6
zQ64+PgNGGtr;RIW4uE`@l$11O%9JI^$NQ$<`uDJ1{#4p#O+CGHnKh94jn~)K7E9&d
z-L=)K<i&#@rFVCgUfq=HEo)J*ASsW5fnkSiKYzp|ljLJOq9P(OA0pQrZs$Lpw_RID
z=S=3GTiNSF*G6qEd2vB;`Ns<vE(AT_@oZK$C?^!F^D?ZMl(E6ad1}SQjLXY>zg}?W
z*VNSX{P^*s_?_i@_W#_oXOEsmp2RWL{@5)U6PcKq=N<#qYUk!!Pk()jq2bi#+TUfl
z_xIh+eDnQ&{rV5DKP?J8AE3%K?TdT&)M?YgUPZ1s)+@bw$Bu~K-`|Iyo~A4N7&Lt4
zH`i+Ev0mxfX6=H?ZYwH3KU+4JpCO>|*7p4M-`?J~?v=Hv2ry1RS8}oEf#0elLJL()
zv#<Gp8b4w>5f8p}9;*BM>!bnC+4=VOGyfks;&L;`>~87x*r~Rm3=X2lgchcMxWV??
z$-C_Ga{ud(j&_6k{bsqhJSH7FeAu++M**nneR6X0t6N)F@B8z~8#JZy@Av!g>+52*
zt6woN95`E<b6{6MRQ|m^JCl-<Km!8Sx%IEtZU;5zmo8ZXY69<ix9hb@?XMEsk4J=;
zo{PM8pXtYKMur1Ae`Y@VXJeGWD{mKbxSfChgKe(eVwo2gx%wrS?T$50J9D8&(pazR
z-ln*tA6_n>A9vG*k)gr;(+SXQ)b2;YE%O$hvU$SCzz`6b0nTVhtwoF+n9wNzZw&GD
zPW}yQZ!#E2f*PA*hm0}HfCUGc7+~^F%}*u4HcXh*koxWV(kIWKYunkyDJm**ac~5L
zgiN_~`Lcdx%=dS9Q@7vN|MB$o>(^WIx98o}+Y!IN?(e!Ezf(g&6_LZ?cK++HuC5l%
zpWqzF09^|pF1~!j27{$bmaK^1Uw3Oy<z}mr7Xi--jnmEq<m9Zm9Fdo|4m2HQSNqGN
z_jZn%Y1S2w;%8?jCQ9^uWaE{ZQEe>d0BT7mX;pjXKR-7&YGYEXkg%|*xVSoaf@-!|
zE@-kg_wKH(XOgSGy@|}qIXOvn(vpSF?bB|BZBFxbb$6d_Qv5opQ-GmCD-Y7jDa%?^
zQ(Ft_9_QZQ7aJKFIlXkBs`s=Npg!LBd)4|o_O4jrv2*9naMSeF;JIDJbro!&erndm
zMXjsC*S|B7lazdUBQEZEzkGOA)h;$335ELl|3SBnjg3VmBvvd~puoz`{<>3rUO-}E
z;?DE$^&*s57#4J$K6fsxprByo#|IA*B-<8(MreP>oSv>99vFC$bvpauLx-*`cIUra
za@qIP*|S$qP1QE7{+9Fh{{HyW({y*Qs@@<4Zs0!Zx^D91>C>sdj?7p2`SYjcw&~X|
zE%gpvA7}gZ)z#HkwzYDLTm7wiabcm9ZPgY~@BHY|qn1*}{@}tsbk6?$`_Ij{kI(vZ
zXJ>KW+ovBtpSRCG-X~l2;UIhJ_UZabJ~Ip)+Y+a|o+|LJ1zhm&yv3%it-bonq<c%}
z6>{<M?R#L9P*%2W$*28pi6<wiZn~KxWt8G!nXV0ryGbRFj&v5uKjs6q94aPEm>|&F
z(qhs3_uK7!@!G3SE-o!*`S;drPCsvD`(j`6alV^5X09$SQ(oUXJxw?G^Ru)1*(={K
zpI<jg<?8D2^>>c%U<Orv8wA2@x(Xf~Xw=ft2?+|Cl&oWKAFrvY+11rm#Ig-O`MTnY
z<+pctSHIu?|6ddTcJE7|rs@3o@mV$B-rU@DGiPa>*Q<BnWIp3m-Ng*l=0~6TPI;>m
zkCP`)_WfPvGjq|ED<Pm#XW_zye$PF;y?4L(^x)my-Jq$|7cVkeTU#~t_5D|eufO)~
z?QPSlFE5I=r@U(dtvcCK@iFP_9LwO$%uK7wPfHFRKD;&Wu2t!q8y7eBpH18S;PC6V
zM9>fyXk2XF{(rx?=j|_ieC*YwrQM)fV$K|yn{UguW?l8-7Sp+)+;0<<`2DFCs8OMF
zM09=Tge90wi@!hrxcABIeDQO(N#>%br>DnPZIWwB-@pKGFYH)#uxTgA+c+8!;06My
z#5pR^aYx>}1<?cnbzVXFnn4Xzm>j^@d4&~67a+@QK<TD?VPR1{*y$~*PIy}ypq2!Z
zMtF}6YHt#_3kvE?CU#yh7TBN_`2F48tJ`v;!~L13K4_P(EBGoBaB^4q`**K27YMz%
zz5V>v;D*_dHV&xq(|!kM;|c6{kYk~ZBdi4{C~R5<HrOyDhYhF~4k}x5G@j7BL`GOV
z#Zm^JuC1x6+Ew-K4S2@Ptyc=ve);-t_xowL@^5d;eRXB!WF}^2Q5l&vg^!PEnwwug
z6TOiITxJAaN|^b#R1;J{|M~e@R9JX%cwD9Hy?ggwU0*+cTkh?$lgX1OPrka`Up{no
z7`Q0}8geXsdn?qvPp0rz{`-4-UtL{2{oGvZ<&~eGX_}dZf%+&98ri{xKd8GMaP;k+
zox$2+YXXvz7Cn0ONX668&@k)rvR*a+d27~2Z=Y8AW}$QYm;U-c&Y(H+J3EW@tLA22
zUbeFA?JZE}n2DKL)w5UH{Mw4Z#Z%_ZTNk&tYG!$`9=OeWG^DH=)Y`ACuGTg)yJq<8
z_3PE37ToV|Z%>^%rS<v7_4xW&(6WbDE0?RRJo9uPXspoIHrCM4u&+SX^Kct)a6-a@
zdzH`UeyXd!1L?&V9u<0cZ*TS0MXubT>*MZb+87yK+PGI|wps2aUh_K(N?%`F8MxSu
zi;F90u2t!mBf|cm1wVDazr77kOk8+tYxeV!J^lUtpd}*d=jWaN8x|=AN**DFH*enL
z;^WgZm6MUtIc!k!<;6v#{=56@_wU)W2h=4zdi=PyjZF-w=y-E;b7)A&lJxnt*9v)O
zpACCfs<(~jWgn>EjOfsgyF6j~boKc7`$3QE>gxL5rdn2iTf=iWz{#me&2Nr|Cuo$j
z?(f&|y?;KPo@JIhi;0<8_PNGuEAicJ){x5X-2MCU&(F`-H?4bj$MX2MZdq+le!CwF
zE?1P4Z29!*lZ<!0>hGzgbGu^?%YxeZ35wyj6H-%BG?bMOXX@D7|6g>Rg`GXVK+?e4
zI(ialkkP0=_rik4x<4P?LA`Ci$6sGxpPncID&`(bwIy1d`*|JG(FJ8F{!5!uz3*1P
z-|H72yQ^d;u1={@ziws5-}UoN&YU_m>1<l?-m0%Ep1HTSOx(VG`@UbVw3q+o;^Nv;
z{{CKf++kTka3ct3RREgeQ_)mccbAlu)Y8%_dShPk0aVRyzgKnIFioOu(&WjZyUTLj
z8Ib#>;g(A%>zCGkzq@>%ZS||4&*xvS|Myw`Zq4VjpwY!`xwn@sS)%gu#}A9Xdi<T!
zFTdA$fXdkjpVa*sA(O=P<JN%2?lLnorOfl@bai!YfmR`zab?vnUwpV%{XX-}jg7yq
z@BarLYM&locX5)cw@J|xkL7>!c0Ltbx_r5|f`S8Rn0<EszLhs_+~EFq#;F{%8j2xg
zZIr31ii(D!;=(hvlO|7|E45aLk&$thb@@Bh`j9@A(iayT=hy%H8G81rETnrEzK5Or
z8KfBm>M|OG*HhxG5fVBZrcRx@^t|0~A5hc&-?#1iL38_{wI%uc|1O(lntkf@>C;z(
zSr`~J%%|%KO0_Ng`1ts0P}j_=WCf^8eddgh=cSvQ)2}Y^6b4NsubZR9z%ccksJ>L|
z&KRi;aWx-Z!HM3YaFJQw9gV{VGPkp?ty%f|{r>pXVQY&X@-Q+m=*{<@&LOTB0~!{2
zx%2tF%b?y_R&_<ij%(}V-#5)<WOyKD)BIF2MruQ!jO8LeS*s~KZ4C?pmiy0NcSMqr
z;XxFO&iMzIR1f|7`ug>WiOQ*Y_qS$Gf4sbunSo&k_jI;3AlpEb!F)0n4<xibZ_3yI
z*%%ZQWRh_~A>5arp}{Nt8}mDx7w@F>cq9C6zfNgtZWa|3T$p&c?PS_!(CENitJ0wR
z`)Wny<kn?gUbeHSi-Cb*`q`z7tJBWT0uQkJ&s(!*jn2=XKQm8H)3qvnH3c+(bKd@c
z3?m~WBuKj0P8;v|<GT3Yzkjm~liSkH%y<auJ~PZ{n(vy?q~<#-<4A|#x_N922b?d&
z?X;h69&x|^|K3THCxa&Q=Gs(VdYQWTlKlRYpc&&^U-$ifXKnlaPBEyB-Y0Lr&Z_j)
zit6w0KxIqR_Pkox=UZ;S{lmt_z`&=+8__MUf9){8y^g%R{MMYCLDyr7eOK20liIQF
z*sH6nO;b(?TwNLLuI%0ya(S6=>4yi7d%s?bj@ntYG;B@8!r$+9zu$Cz_QZ*byXP7S
zFcf^P;GdRWka+;KXsz_L?)HqozrL=D-k#SQ_xeC1vy@rRj6;VGeYu%FA5>NJ<vu>v
z8@$|aE@;Xxf8S3x-&rO**A)N$@neQfGy}tfb1_l7Wo)ZLl-+t(d?--$)Zg==>C>lA
zQ>ILLBC<{eWJ1)2gvN98Y*&LO3nqQ}zW;x$?`$*O(s}ChYc_>M9|a}v%^x(K&Of-s
z1}drD`{mY7$*%oykUi_t63?0Tvz8Y>KbLiBN$0h-(dsMTbbWJr{O1@e!;Dr{u$Jt1
zcXonT4CUV5#<lm{%gf74zq|+p6$;{a^=)io{=fhK*Z%3VXJIdD7#JGTi!+-+lf$!2
zvq1ympan2a&dyJtK7G2S|7_aj>i2ugL$6yFKkHG^)X;db==ao|=j=Yr3^A>sm^VqN
z{e0GZ)6E>v%-hY)>0j@b-=BKxc+Y(i)q^WlGNvxw<H*Cn@E|EhY6G8~O@!w4m4S=f
znwp!xo;AN8Q?efvc#4XOt3Va)!F4NEyy$u^C@#KymT9(CudBPeww2YduJfD>D<rb7
zuhZSy6cni~W8(Mj{8N3YwL0bZYqx`X7P+^#y=~&(RsZkjbI>Hku^vff&t0IwgjZKq
z2K|op)tF<RKkwGI-0GvpnHjYF|Nr}Yb$@;R@{P5>zpc!_zfW(L;GIrYrfbu5qd`TS
ztW}A}q$@iLlR>?AP<K4@`V5oINtZ5NGO7BKk$ZE~(U+mT>V9)BEbg~kb>M)5?;MN3
zNuXXhsCV(}`~LrH%|PAyO`A7wEqfbv`56ntf%uO+;Iwt>{Q2;bk}cQP#cCfm2w5Gb
z>v?Hq@bW1$W~^XjX3My_DRtSN6UI6^KKc9qZj-Bep$O`O^_lPd|L61hs4W>2K^3iT
z{JuLM->qhsuL=10@#Cxe`}c$9)bHGh0ZnCR-Q2Xa?ESsktDhMe80MW`x<0ew)ym~t
z(#}fx&M<JidGn@K;iDG6ITj1&%#i^(8&v;;R$|=x%El+NB6fG#%Ifd$KsFugkz5R#
zW4^n){QA1s-E-=E{NCQ$3i1zVJ+7Ty94P0_u`Dk6ez$zOmA-x<GsBEl@!l%7>1Gk$
z)Ag=?cz9Sg-(Np)e_gGripq-{8<V5<RBQw-b-ui=@^P=ZmagvFnBU*t+zgJd|6989
zW8~&E%fG)4G%_zc!^^-hjl;ItTYAl#H#v9fe!or4+yD35?WvO|2X`7XF)-|?(&LTb
zl{UNb?Ck8*clM>87BkJcvEh>%3qwQqMwb_$vb2p~eqH&!O80)dUn`7^j6idFj~*p~
z7IU1LVOaJ3Zu!^m`~Tma3M%|}<mlD1W#8J8`RnEK`Jkb$R&McAdH<E)i;9b%HsApb
znOt7xTl`dnkzqv%DB&$-Jbn7KH>lUw-F>-TzHY_gc7E?)k8LCV{`wkRQL#gNIXeSG
zfve8PMHgr1?~63QU$YrBH`Z|aqo&jOfR~J~i=s7WpDjBWuFAl`5D~hRea)?{+0(T>
zpFeq`p{(3|g_mJP5NPOYDf^o4z0(|jDMx^&ZVooFe){w&$j8U$sSghW!vU3P6>Q#<
z`edz_Sr$Lj(A4x~Wo4~;v9KL9`eT}Z@6Od=W`+fqK$BI|+1E@u_Uin>tYbZrS=ZLg
zT)mu)!C|R#LM7XD)-`kH$ef*N?9MH&7vkvHn3R+R8mlwSy>%rt7&I*7x|AIh3GN%T
zbabw4NIVQOy-AdT;eYqBlYc|24uIx;&ds-9-_gP0JKN0HcedHplatj;KRr2V)Sr2K
zTdwLk0S1N#uR^L0fToyKGSAPmt$NVNuD5G_qQs_~Ia*p;t9n*4GCU{()qz^J399Pq
z;onpl85p!c;qvfsJD67>Z4xo>;5+b&`3kA&``Nh}82-qE2BAPBGESfgJ<xh=hRK4U
zhS`isVyD-v|8(N~dC=InlarH(fWU$kD>RlaUmpMMPI7W`>h{~E@ArP6cI(>OX!DzI
zzXiqr{q=SCo7WMtpq4Xy@CfUG(YoTAuUEsXe!t!R^!@w#gKy1d`+}B!%&{y^k!VZa
z<Jio$>`wDkXnVz`c`N?8vvsd~q|N<6BXSv^Lm^{C)9XLwb%A`dYR6RV@Kd*MM{nG?
zvCl9*KE7ARGU)d9{P3`_YpUlb&YHC<fB)aG^LD@AsD9Vg(hADUdl!24<||06{pR`j
zsmld#?=D{-wIyTWtE;Q6d)?jKthU9Uxw$#rH1(7SXv7#iNwaU}%$Zy~JRt!A6F^1s
z5n=xo8#Zi^xi9(s5M*`)bCPS(ar>`Vg1I<2E<EnHue<p75V6BW=^K!i*`MFIS7+wT
znV`kdTau1){rvGG=8F}#xL(PxuNM|Nn^t|v*!%O@?5^(aVw1Fa4d4*5sIRY|YhS<b
z%8#AJ&t-0(Hp;tW0h%)X`}_O;McMw~@uHZE+KOu+69qeOvAtfse%~cf@pVk^nuBM(
z4r^QnxEm34bA8~CCzJiRBpzm48@bu7olka>ie%fuLx-H6K7IP~!a`@zd}UKp)2TgW
zi`{xvJk|Z??06w_mlr$}vh!9$>FwO@FSp&!E0(e@deR{zBy`F~O-adVws}5i{m5Lo
zlKUHz+jGojD=8`IRot1V?4Gjurb)tqhM?~grcPa&c6L_gy*-su)@3;}um5|we7=h3
z*H>3}KiRue7}QG+y>p<E`RgTbebA8i<Kz9)zZ{=^H#jH=G*>)ff`Dfbbh%?|YwO9=
zr@d{fzg?MSn(Z}L-^?t`cb3V;9!cXX%Y3ChK?6^qnenWvt1RDISAWa7nPc|#<>lo~
z?>7}evdXD{56?`TI8n+ZV*+ULPV(_S%X?4iUR+RARadwEHrpt*D=0V^)NX2RYg+|c
z8GB<x;>ypx(&m2G<Eq!b+xcAX_zir+QAW{5<*o;q7#Ki>f7-b@E4OShnQK!S^zh-s
zsO@=kt;*iKxN$sf^U1vZU!FhK+j8b6zSaANf9qm;!Gj<>9+~n^f_5NczC^Bl@+4)s
z+iD$lJ{b+uYfC(Zb>sK_nRL90EABD_XtNP$7E0$xD6iNV*Jj8X2iPzXB%?A-OQ&?y
z8l3Go7*88-aN&SkN!-kp*2U%X>sB3Z=igl=wSpyhxnJp55r&Y4HEVRj{TcH>gLw_$
zMF;cH2Fk%!@-&|K3!0{9NH7BX5;Vl+faXa&Lt5aWG*FuERutH24;tcx4bE+Fc>x}Z
zhw(u*3CIQp$g&6Y0V@vPY3ax#`Oc4@`~y3X!@Ff3c()9Z8l9k101Q5Epu#=LD@tec
zzEjHf_VFJ-e&pih40Ld4ShQ%-lzH>&PCmB#|EKtF`TbfhUf!wu_wR3NZoaxbKOWo|
z{GES$n=hzulaR2WskzxS?~cXOXV2oUeLoKEO>RCMTIqc4!^6X%dAFlSj=Y!}9tY~}
z|N8nmJS{+L;>?+v`uh64lE!YJ%~zmhM#;zfR(em@`}N~-|J-kPcbBiP`ub{V@$++_
ztlZVx8yXZeNv`5S<LY1YA_dPUFftG^5(Qct2I?(uG)z9WB64%uEc^O>?{+-qJN^SS
z<+!^nH}~cy*T%-iNlT9PN@rhL5eS;`T_3ks>%qI2X3+2kccE)D?h&b7YpOqd{~o@#
z>TAiXE1G!LNTkLd2G<-Rh1K8Rfp$TJ?5!$Y{_(^KkK^CGLG6A}!xPke0=1LA-OisY
zwGz~H-moFy?X9iFR_Bf%cL(iW+nnCdS)L>d8iq?yTvy@ij9Gb1x?b_1ksVa-dIoLH
zx(aGgpPgZN_@$KD?6qfJ$K*&}0uKTO9DVxq>B;NYw_n*YfByXB-%C|gR5BhP>jgDU
zLDO-6{?v$yh*-or2hF^$dEWF6Wb4wSF1FLCgH7I?{QTvA{x5WHUzK}%Th)(;?Xu^?
zrh=A2OnEN#4!qrp{pOy^&7e&oCS@zX`>>)8HJzT-+~42-ZtwRvP%HM&&(EK}el688
zpEl?7`s+LIWJkz?GtbUhY^$rkzk79W@9xVt{{8*^^+t04)Jh*5lMFH6Y(OhdCEFGn
zr=L4<{dzdkI1{go#f6RWj*g9>350{q?D5}B*Yto!(N{bIHP8vId{8=G_y6bldat?f
zudED?+L|@h$=Nw{dtR((P_L9JXtnOrrAsYMvsSKLdFt%huREsqUII`2ud86wHZlUO
z`?z#vWpL@68-}2n1yxnoc0SplqM}X7`!$1?fmWWg^UH-~WUNpDb(*qnY*+}I<_2vl
z1gZ1#>e{q<v-jTHuVDKwmU@f#N|}1O_sLwmv$Gg9sQdNZ-P>2H%S=JFoY<qT231c`
zH{#4p<Ehi8Et{<FuVrHs^ZMG_;NyL=bI&Djx7M!%wR%oZ*T4Sf=V#D%wAkXardjv*
z?FHpWK3OY^x7DY0w`<ti#(w<xQOdq<Pg7Hqh_v+T=ku!1&5_<J0J0}wYu42%6DBNZ
zX=yR~?&;@OmbGPxeVxv^8HUNHYUlFFTD|yu-hTh1%3a(b)nboUv2j0pq*%_tfTP4B
zG&Vo|WZw4IFPG0R`(vf5>RPrtww+(T?BN;)hK8vE8~#1odOdFP-MsMM-`<|yTJQSD
zmzg1;bn2g-N#De^#2H`fPt%KCwaj;R*7I|7tqLAAfY#nI+!0`W?O*rrXL|1KZN8vo
z0C#tlZcRBU6z<Q-5O5S!GBaJ9uM@e+1+)M?w*2nWMrL-Q4GatiL=_YMp1icw`|I}o
ze|_)WyVup%ckSQb-&?b<>xKJsgY?Gjv}d~ZAJhS<`|*(7_Q!+fNlX0ZT4}1Nw1{yt
zFvOTKUHc!kDWwy%@uu|kwX=q16(15nyK&kQcjP58G-$P^Z?Iuz^bRU4+!(edV&S{H
zyFr5`puW_X%l`J7Mn*xFmX@F;O{<r4FfiQV$S<1y<)r$24QuOYP_%AJJw0dJ%^Wk(
z0`|RCUw6HFtrNAyqp`8kFL|zYdD!!FbJzd6!@y7sTHboU=5z1mh`6}8*7)h>JFD54
zrY+gB#U!@+?bfQdTd#ZRvagHU>Xm(M%|+?_J&N)1_gC*a*CD8UWl!bj)mH2b3yNG^
zTr`xF4rS_SYkU9y^W0wh%Ptn3^8rtpuk9>;4(cNF%GpFPv+-zbwY9K_I6Y1GGH98F
zV>8>%gf<3-19wAyrf;}c{oWR|p!WN{>i4YM-CbQ*#_g@DnI*swpjmO^u5rlEhOH$p
zgIHNuru^)gdN%DcC^mSd&0ZYo6#nDJ%D^x^<mq&d`_=FFdcWJ8aZyP(YKzCDkdTlk
zTXKJVcqnC8Q_*^cmm%Qm2cBu^D?Wkeb#AVz0j)c{dck6+J#qyM>M=oTShQ9L+LRC0
zSuC*0(50V{jc5!EIxP)PB|-DU=(F)SngCc=J|epiH0K3wuHl}u0(-#6vpe-#cqNX>
zem}oH&^#z;6}?-p)TY~Sf4$j!UT;VK_Po0(+i!c<etmuY{ic2P@4#Jz1)#-{UteAA
z>h2DXh?o%+6m(^MynXJyJ(03s8qX;*Fz`JCoeN-9qVai0PY=)DACJ0s{rmMAH2C@U
z_V(#J*Pl%bUhLLul73D`vhATn{)GjNE59ePf@cqph@MX%IJLBP`@L15MSokfu3lOd
zy82&z^>_K;(yzx0|9o}qivM<1W`?=?iU*};Mdq1L4ox{D-#trP-AZl6*#rN)CSDS`
zyf&t_b61XT;Buy^oL0Xd_M3+N^Dz8;{A|&`1hHo#rl)5JbshNo@8X`<d<I*YzaM`3
z^Ts=g=f!sO&s%QTDE_|q-Sc}!37$dI^<t+?n^yLGaz;8RJ{L4=>*|IU6l^duHr|`7
zsHiy0s&v(<)2B<ny}2oNzPF<z;QG4Q_b=*rd3jf@T)Ff0$8GE&59b{D@^AI+l^r|p
z=2_15D}8t8=5kv@!;95-rhp1+B_*ftcgyF?@U=fXKY#tNUscK1w{wFUkQ)T+bp*pg
zLr*>|Fv%>pkoi<$1M2%vEIe}bXy%U(4?%TsXmIf2OP7LlV|E0Hii-YvGTFc9&S5=J
zVkjxtx^*iTCuim*IVq`Ewt0t6P1Ua5H{YUg5ok$d=;|;{YwO$5hTJURHiq)Q2qhkF
z?#o|aU!T1tes|f~>OEVZJb7~B@y9#Ylof9YYeg_HuuK3gj*hSUxzzvmRPFG*%D%%7
zGs+}4tXkz2^xDpCVfgyENlWbi{aAeU-9vt`zn|@Ya}c!40JJ^j^0&+W_Mn0L?2j_j
zPcN0VE_?Cn>S{abyWij5RzJPzNzu-CRW|>hU0E4CX~~KeE5dfS+k<)l4(#T6cPy@6
zzrK3Gf&;h1!o!zu&Ay)X;laUIH#aX|vVZ=qx<^MiO-)She6(E`vvbj|UAxrYa*OLt
zNsW}Ut@?7;|3KS{1V)Ag<$o38iAhO|f`Wrh)6dDo?kG6;Tjl%Z<^I`cXPMrs12s&!
zxVb|kBUiq7k&*xV?1YjpF9IuV<V3~9vcA8&J88+CJ29S@7CN_2nKo_NmMtbnj~-pQ
zZCluEv)rJ{%AL!6XJ1<tYE%!Jp=J;j6@B^jdVF|c;YPjqeQO$-*|Sbh)AjQ5`t)t1
zj<=(uulW9F=jXrYEu5BG={z$v@?L|eu<+uA&h1&BpPjX;{|BmhK|9GnD~0v<{Ya8N
zvmqDU#}up&*`V_BUiJIXxVU+rK7ERMvpMao)cme%zP-J@|EvDq+gqLe_t)3|xAX%x
zfChFB7=U8!M#p}w2!n1=@zE==feA9@-4+O1yPmefVrzW}Xkh`*;wDyxhTaYA+6DpO
z&QVW8Ygp;$#X<}$a@%jeeXq!}WVWczW&JI>Okz=@jNBYC?tL;JzY8$jPU071U@$u*
zx8?wNQI8u(L?fh=a(G3;*2Y`6qCA88<!nV{W#2x(xMl5z4IB8((>*~W%lq3Oh~K<<
zGiq1K%Khz)W}9+voApYWp1OZH1Jq^#RT%I8?!FfVaw5wbvw+A*O;0a>|L^Y|{-`J_
z9=z}DApPk3-Hjzz?w6;gE}b-K(jQx%8xoAGd3)q+qmCXu3flg1=+L1*wlWL{VppwQ
z8=9KB)U99cZr1k%{;&jvgsqJyPI&mvvAB5uFav{x!&9#9&EOykILO7bryI2J3KDu8
zqH7K~u!2^l8!(AoXj~h;-4C>(h@U?^G&FSb<C7;(g0@7+yRntT)Z8deP)K0B@b&fe
zujj1an`A!kH+mr7vie(p1FM7HbZ^kH0Y5)K|7$D4z`?<yv!HpijyI?cQd?WQIdn~Z
zRz}7J(A?gR9TuQ50{{7Tr_P=Yjg6h_zaJE{XJ#0J_FsZG9JaQC=IdQuU47R@#>TFd
zG)~j7vWi-`a3N^!UraYjrT=(x$vlVZgF=ZQ7X{3>t2N2Iw4{D*5@<&RXdwz{ygl{w
zG)+s(NYDWJrAwD;enn1O+SSFiblI}3D=Pv)O%>2qGtivM@jltl-&U_(d-cLX=dYms
zJ*TE<M(wNF*~TNe2sCD@uD<;0Gj4{py~j-$Ca64p_H5OL4FQ#vm1pY`KJ(lES#ao(
zQ)+7J%ftNkQ&jeTx#Zo|)fH4%w-2=GEb(w#<?s16l|j49-(P#&Z?EU+<?9=|K5j3l
z6#=f(r_7(fKECd!Yu@(g+TY)%s-&i+oqAZ1@$u2oQzuUbo}XtMUHz(I?S~m{plE7X
zvVV01XtG#C<3cO9_$-<GyGmE<oDM20+vZ>G=htT=*S{_2=A+C1E;#d79-jK;ySp1`
zkB$BRKbyC&-LfUb-{xb>u9BCF?$`gn`@8DZ%H<*P@#|xEmr2f3W!S>YB*w75^7FHo
z$9kpDzB~Hs>-Bh15s@W3c38~+20Ei7c6Zs;mzS5<-denP@$8t#|9-!}{`B<pz4yaI
zLNb1Td)w93^{Eon2%nbv^3l=mwluaa@^21ufp#{0cy)Ps|E0^9LjwX9+}xaQe*1aZ
z|A6vWS61HqR-YG_pObS1)V;0#_9o4ItM%M-w|9v%+~8&8Zs@Q4{A}fp9TAn4m3D7I
zi!*X^LR?*2e|>-dK6ih`$3_4CeD*(j<j9?mdy|rrOTWGfwf*^I^8d;^4huk;AfZ#B
zp?_cPZ!KHfSnaSiA1d7wy}Y_?<oc)SMnAi3Z*LzzE%oKh^m#iUSNF=>$31=e^w+D^
z>u1TVUbimH+4=BXe+CW)9sX_gAsZU_*6m!n^Uj?ZP}z5+Q@E?Yf4T~<j77j?b^kC&
z$3{>&n0UDD<?i?UKx-|I^~t{e%y;Pa*H^38zxsUM{`%(gcB?`CB1J_<Q&Ur`q9+|@
zxwn>_I^|XR`r2Fj^MVYwq!_thJec+Sy_uO=n53j6XvpjQ$E&Nuwav`JvaheZ`t0oN
ztBc+FL5Iow`}5Ox-OWq&XaDE$b8}x_7rXn*wdnknOP08}y1M?l|No!*^2;mD?^QU*
z?kX`f@m}yZq0_)1LQZZv4@1L!(1aByC+Dr5#mi&#reDn7eK(I++RTTYUk<cfq9;!J
zETp6a6%#o{><kPBJzSsy(1{gZa$@B>A6@wuJmIdaBgh6>{0%L0K_(%W!Nl;vm1~>B
zm4Dy?tB~;U<u^B{uTDQdkBguGI%t<eSXf!~^RV!6ZEbDuySvN7pP!oxS{Ey8SF_{h
zzUuGqu1-*N77-LwY(Kp4<>lq8mn}Q?BqXO1TmasQQ8M}a%Y3rB|Fuo2r$O5QzTd0%
zKX~w<m#62&dwZ+%E9V`59O&iMb!~n8`swj?k?;5YUI*GTuBxv7`pU{+yV|>X+ueF3
z7G_^xm-+J2(o<*7fF?wa^~?XCUzb*P1T+>ddk56Df4O|Vmc4!a&6_tTE$QjuIePqf
z_O&&Uply!PHrtmhae4am>8%}wi|5t<tMm-Y%33wYZ@HLG#DYhUlJf8GEPlQ!dV3xy
zo|Kf7z$=qZojMg189CFfN8)1F=A39ym~H@7nO@%BqB1gT&YbbdkM{8B0FBOm`cyR6
zwtCyqV)MK^E97jeDh^LoadmUc`t#!>s7+k*_!zI}rK#HCAz@+5dU|;BcT8I1Iay6p
zNy$mtEN91U`I)+)3i-u@J9*pZ_${|8fA{9{ycsiI*xs9TxSc=y!U9L%Tf)M^U$4j4
zzkG6X@}wo84Jco~e)aP3`0%p)yzTcBPm8whNMF5I3DPuKkr0aB%DWRgSNmjjUTEl4
zozqzx->-dlQ4V5dR(7_ikkF+iwk9T5s{iDj`&wahuQ<OhcO_WO#*?xP4APc$e|CI)
zo*-*q_h;Ji!-o!){QdP+?d|n-v7hDk&o0(I{b^qH=WOrV{L=n!9iTYpb#Ze8jTgLp
z`EqU1U(mw)i4!NDmCMfTT(@eK*Cf#P)NK{9?S~(}Eni)nuV=pP%J;DE8U3JE<_(9E
zk}aUQGw<noTTgveR#q03mA(7M5PJ(RYR|gUPqV%m@_`mzRaESl<F{Nz)6OpL;K75S
zF8Z-v>F00DA0Ol0c{k5@hQY(U<!Rp2jz9kRqZ(8n*Mp8kIM~dd4c+UpWdHm(a`N))
zSFF%@dvmk<q>_JsDnrA=we|G;=313bQUUF|%goHw($oa)PFMAut`|G$^2;lrt?B)C
zzfM%opE5-RbQF)e-<%J2s}jGyx_au=sY{^MpG8kjY@1WI8WcMWzB3FQL30s3lE$E2
z;9Ik=zdF#!{Oi~2^;4%zQSqE*l-dPpIKEulW@=`Zbz*{|Rn?ajag|R+UESPXHS^nD
zm}#8;<?r|VtK;|A-K&<dtBC-ei(rt@uxZn#l4oZmK^^v!Cr^U*TE;)S8&x5$$iNT~
z7&tNQ%#4MP9wqtCw~OWF<pnLMGmr7Cw|7#~IALzZ!paJo6$G6ZGEF~zUF7C8&~)>!
zXS4Hb4oy`7?GM({)&|X?f~E>UjeTR|U{zJsT%+ULTp+C(P}`894V0)Dct9l+g9K=p
zn85&Y(wYQlH12=_XdI^@5mekT90o=Ah|}<o|L<PjX{VO21GSPFJYD@<);T3K0RSxR
B9jO2S

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-18.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-18.png
new file mode 100644
index 0000000000000000000000000000000000000000..2fc670e23d41fc70f454543e5b43cec06f508529
GIT binary patch
literal 20783
zcmeAS@N?(olHy`uVBq!ia0y~yV2S`?4mJh`hJ9%>?l3SguoOFahH!9jaMW<5bTBY5
za29w(7BevLCxS5J3j5`m3=9eko-U3d6?5L)t*+_+`uP9H=hf2IR=ozvey26B1?Y$r
zb#<M%bTDe^#JW`ZLuV9&QjA>YcWj#JJY|ucyywHmK6aYFmdv<xtljry;TgYm_vLH9
z|ND|BeJu5Tc7Ffwx7(sCW3T_-6?c7+t?l~jzpHNZ95!HKU|_hs!?K!*fq`LNTLUWt
zLxK^L7z0DYNsb5x1_m|d1V#pi89k#C!zoB?=GZbaFnnk~+|K{{NT;y*lN+I{LIMK<
zF7R5KaVaG*G9)mz^UH_5y|p#}#>d*4nlF$0?S(dZact*cWZ2LkeKqFk?t+Jhc<tH$
zwX<<EFm!LcnX^ppya7*ef4lbLgG>wz29msD3=CpPn{WE$Z%~O^Gs&$PoU){J7#MU~
z*iM^XfFvuBZtk6dykcHrAPt~Ir(rl<FIKB$PATKM)NgNY-r8Nhe)Dq1DN#Rpr`?R#
zh-A^3(y?cc&CZ=WHBC)Ji=UsnI>)kjOa1@4r%#@oNZTy9Ddvc~eC?7KFEY-~GW8bM
zk9)FTyP%gNe5ri)h5)5Ickg~Z%x}NKxt-6d_Scr8;$l$&fd%RFD&012-1zC^$BRq7
zr$2e-_Duh*T-}evz5jl_esyK#<UM=#Oqo1+u~F(Ni|QzbfJZ+v+oZMrZ%fF_Ti3=f
zziygtbk@^TQ-A$@KL6^bRBzpw9RU|FUffmiu<6d7I~g`!8~5z7@eK0u>3O%~F`ukO
zfrI{@4^7|R-hTdMCgW1>?HsYpjNIl^X3w6@CvUfAYxZ?5b#-@t+pkmJ?f+kQb!~L`
z`~Cm-?J9r2&NTbl4QH|K+}`@-<>l@1^}k*&pJiXa@6n@2ApfhM<zkrA9Nn@bk>_xL
zn_HVz>8q6Z?5q1~t359r?G}If`t|CW#_6XFcxu1hOrNyG{C-Waot>Q#PxJo5sYaER
zm3)fXM>+&gojMg%Q?uvOr%xt%cPvb^uAJyJZi%e>^-`Uco!z=xO7FFsiQk|9Tb^7@
zc-Xe_W{y_)x;aTnNmFLdTzTb6$luTN|4&i*{Yxf4KY#DfXR~+x|M&ar)9LZAW~R^E
zXdbB%d*|-msdMJ6>6JFWb^KVL?CQkBZJB3hna;8(RPvq1-O<|{+RVngCHuNwx<Bg%
z6DF~|8F%i)cwX9k-fs2wdsW{1_U)Txl-gzY|4*@J&`hIL8K<z@+j76o|NqB5{oI_w
zXIlz;_2Txdn5gXj>R$ExtGh~Hzj^%lSnuTv3!T6Id_G@zQ;fs*yt^V|V$0(8Rtav(
z6S$VJlZ{EtXY&3Nmd3`xmX?-Qg^yZlqbn+QJUcUUaqx1#%ri3#qjs0AUGl$GM_*rm
z@ArGvQTyxmGBGjDF{+P|*VotQm9+|)Yh50;J@4+9r_<waZU1YUB5P4_pwsy1))W6f
z-`Q7Nef0S8)qZoWsy-ZK=Ztg^<cKhE{r7A3lP4*zE-o4>DlWRw+pZjFWZs%~R?0Kz
z|G&Sc$;Wt>E?JWC<;BI;wl%M=uD1Sc6u?toXYAzX*SEyJ?uXwD1IM?ww_mUQem6Yh
z1js>gRWDU#Z7Mb#dES%#`GPZl=9d>2t%{y><e1Gqbm)+Xy!`sAudf6*<uOR<Tz_Df
zc&LT*+&mU9^TP&Do;_Q}%+9wWc6ZsSvu8smtNDiPF3YX`@v!~Zr_=hW5^cA(WG=p)
zzdzPA>&k^qsi(J;zmE%D9~a9jZKm^q&m<!H-)w<Cd3!y3d;6WccWbMwyT5z)ZdK^&
zX?c6UhRIr$cuZFF4Z6K8H*|fRt!F*UhRN#wuj2pzn$E^6wdB*&)7C$|3QVu9i(TE)
z!ctjLu_Ezs+p36-i?Xh*S*hkb>&5;5|F++&`<=Tr|9)I!W8=AbSu3Yao3^a-^RttO
z4?E}O<t=N|K5Q^$_UzS;&1{9!7c7xDP<rC*SyP_F21Z6kJ#l-hBo!4EkA=tArr!T|
znBQJv`@O2wflIwalh4hu{PuCF_jD<<*=IBE@7p_Z;>5s5pWQyj>?&D#;Ks+t$9t>3
zzLM;>|F@%7$J+Y#zxUDG^Gu_*=jHC$y<2*=d45^N+x-21%O0z7U;guR|L+S6oq1=U
zP2-WbyW`>OyEXs*w%pl*Vq$3_Yoo3{Ja5;P|NY(FHkHGtPoMtq^{eUE)2C0Lo{;k9
z-rn0cr&nHnAg0)rdv#T)ly%vfCI4-IpD^J0`{6MEuD{=IUtJZd?HN>7woS@BZ_Ro8
z|1tCC%>!lnJ{e0T&#E^Yk8i2@S+w`_IqOefzm}eBeXuGuHTC87`1-2{o7tz%o2Tdb
z>Ep-1-{0PTJt`ibabbbuq<`hR!zbO^mb?1-ylTJcda*&**Tuf=e>7o<R_LlJe_R*b
z$T6E;oBQ<3%gds&vTJ|*s5m>%HoBc(e%jfz%dzEmkG^%9T-bfVRA58FRi48aZf;ID
z&AnyfJJ%|7{oZf0YNM;FcAcAJnH)cT^5n^jH>IA|(%1L@`s(WCH#awbeY^dB*6V9)
zzg=%>ZwKXk)jC;?c~@75ua4hemvv!5Bgl&n9wgX)x!`<jTkh;<XJ;=zE?*xbU-O~S
z`NXL+XQrswemo+ab#2W|CT8ZZPbT}n`t$R%jmNerh2`bj_bXQ%>yd2Hd7$-iL12vO
z?6b>0Jw2U$ZjPmtUCoZajFTQ8?+-61*zj)O@4VW7Kc8DweObZ8%=}jVgN`S!l*xql
z_V&7;PsP>aS-X-iE^@7UxAXaxRiWB@e?02`^y$;3gU#$)Q%(xi{(8B*tGoO148!CU
ziMC0TCZ%k?X;S_!rn0))ds5iCn3YDUr(V3T|GztL_gk}Dr-B}J>+cIlOIud;^_8mU
zrw<<j!osH6*xG{fw<oBWRe5<-JU%2KV1jMR-Y=KDU)|lk-R{Q&=B>H6uVr2jnDuc%
zp!mZp(o-}_KYjYdbJ(Eg{r>;=c6`5A-P<LqEv3Kz&!$9)wvCyW)fOim?Q-+*=qUX5
zCbIqd-^cR*4gUQ7+w0mbHucAx!rW`?<MTsSg`BMTcvQT%nVsJ%=l7#-{T{R2TM}lo
z&(5$YTvYh)Pi69n35sqzi=OuEtNksdsi}D^eSU44&5sAoZvAq$J>24Y7B95|Vs3BC
zHO?`cow)gC&vE(sI}sZa92fp}b$1uvrI!8s+grEAZoNIx`FpRPICDnl<jUz)KeIQ~
z)YSA8Jv}w^*VD(34@<2Pa%*l)GURb?OMJ2IcHZSRk(*6YP6&Xii%*|E1?A+dQS+O#
z;^E<TZ5<t-{5>Drq)fAxFthVzJUcTJRNGjUym;`&`+%s#|L=SULsy5btor(@tE+2M
zy^hzv#}>OvUMkhs*B?E0EbGsYkE?>0_dR<2ICN`P=-D}z!KJUSh0Zie4cS*yxi)_P
zy?Yr4f1R6WyL!O_1yK3I&L?wWneS|q>Tfx{^7e6OXPbuy1WZuLe0FB$u9BBQjcOnV
zaf|DPTwN9V^y$;5XS_AHW^9OQK5Gym(6|Ux>w8brx!BBax1vwhdR6A-Wqh~y|9)o;
zsvmZjy}k6~<73mB9|fu^DjIrvekV_!{PgM5r2hW?nwpv~=j;CkD=I4b?Gh4kPfJ@i
z%RGM_sPuc>Z(nvJ?a#|%rS19m*WKG&efsj{VC%9s0Y|$;zrJ3-|JCDu`>>rwPp|AO
zPXDbe6<{UNwy^sB-tei~;n#k@-@krs^!BV%Q#5bwt=_&WboDYpWj9d62NWnOnI|SF
zR=r-k-6ZJ<2d|vX4ZFTazn{&{zp^RS`{%D;v;Mu9wP%mbT>JXC-R1AYy2W&TY|Xfi
z7jFnyQv3Vc%YDD!U0&$i{^e?TJScQ-ZOxwECu6xNYHJp#RNk6(H7Fut#<zEOS0C*b
zKYjOZEU3LRujZ2{D+|kt)YH>I$vm$9Z>ed<g#$OIx2!ICc!>4vTx*cC!}izxmAQ8L
z@6Y^0TeGf$f@hk3{5rkZT`N2%tE~!IISEu7P1B8D6|~gr+%A@wX7A~GC(oYs^_^vM
z@y5pF(A8nOU*Fx078Dd*6}x-e5_>s`-*30yf3<vm-KD+X@2!4!cenQ>HUD`!_V)I7
zi_hDByRWS=@6Ypu%Bre+6P_oerl)_FStE30K9h*1fkA+>TTj5wqNgGvB1<+VAAj}Y
z;$kWDyg5$J&R3Uui|a;gaFCOet9rlpd&%|K^2}pBlCumFn@&yFUoReC69_79LPDlw
zU0wC`&1px&kQD)rjg5_7ety?LEzE}x7kW?EvwSnTe)o>p-DQ)O{QvXZ{#)S`zn=$J
z<lWu1>-D<bUtTVs|LV)j%afMW{r$Dlf4*H&aq;C&VRcYd&c-X1acfKFuiN+kEju|`
z{q;q6`Kj&f+Wrik4XvkFL~LA?l$`wa&*$^m@9*vX^zGX<_4zf6YJY#rJkY?n>1IyV
zx0~r#cN8Xr5;>^Z|Mb*U)ADyQM~@x5)qj}(&L!3V`@^T}#ZH+sXU)gQ$Gv|&Zhs%|
zJnd}S=Jn@K)yrnvdhL(S+v(cO&VOxH=;|%S&;2|vwed=e$jPny{cgAa`+dLHndRJA
zuwa2guZ(3-Vq&6{S<Vbld8mH=PU#1pHJAELBX%s>oPPe*)bO~AJ(9*IIX4V^XPcef
z_qJPq--UU$)l()+SkTkMBWqg~GAU$hR_NQ?+x@3%hnHR3QaBgXL@s-K>*bxD#a;dV
z*NxBHD0_ap-TL$YWj`;kOA{2Gzx3DtaW21KyWMy>k8o;g>dNx>_l$U)nb~+Q9B5=N
zeLlBb%g*jzqVBUxOT9t7SJ$HROCROLI{%Ye11hBMu{?YB?A4u}#cK{~IhO3)u?SR+
z{Q2>5)6JY&cD1{B4qwn-zema5-oEtht<c!rWmgY0GEbc}X%WBupMdIbZ!T`hyvz~4
zG$tTm!oB+cwRg+!*Me&Gb91eizj%?+esp{F_jgw(sd|U(ud9`ldYxorYkPHTcKFdF
zM>6j2Dt&ct@9wzjx2DxQPMtg%IMXQg%a6zX)|JZ|OfM!pTs7CWI&A&EU#tEmHVLcw
zOjy5u{o&oGme`AV{QmL7qHvkP<>~QtD?fZF0IB1*{W3wW@`>Qp_3`o2W;qvTnPz{v
zTYf+D^Ru(8_Y%7<y*^*RY<J1aMfv;xhDC4734DC4cdm``^=bDLrs~K4Ycq*RKR<8j
zK`lp<h#gr^Pfx$TqwulH-}jp5*6;b$W$W{FKXYfn)2Lk~FBi?VF3&pBA$V&`=H#%o
zQK~QdO{;XHwp_TjHu~xkPhs`*LTRV!ug^T27JPqS?boyB_g}1DzfUQF@u<TAr;UG1
zQ+Dp&oqcCV;is=(pRT>Bw<d70Thy+Sm7w4Pxva9XGV9ism0IEJ)^LexSyWf;VEiP#
zhFz}00o2;C`}4us_TP`kTG89qOiq9HtK!0nY=wk{H$FK}+r4}DGQYX2Hl?1<dUT}o
z+&r<o4Mk5+t&G`Ov?_3M+vep>LLw3pE3U^?`}*7e-2$q)>;C?-toCwP>2TnXsb>7X
zJxR&Qq1$pIZNJ?}J~xlAL3%~;^K)4j7qQMi65y1vA%>Ze`}!KER<2nFiA>ws7{$dU
zBv$0!-gffx<;ypN8NGO!#MW^?<l12=u+B@YH~8goe|H83og;6S?}&e^d;HCtoTEpM
zXc!m-*xA`}adThZRr-3}k6o?Y;-}7@U3*~q?%liV{(imA^!xdfCmElfoXonjW8<E^
zdqekDmD+wdz-(3a=7wqQ{xw~o-m`|0QILH7pN(yNva23ENKjQ%Tjky_cWX!C;#*rX
zi*H`Pm1DN|*Q?c_LjQ2Z(JoQhy1BDwua>i|%6NWmZdX@VkcUTy-(0Ju>-YWg0`;L*
znqL&yz`(FUAYG^E{?_d2pz`;}j|xyNHc3QKaN#oF*;!9cOuV(L^tI^u!uz$~V?Qb`
zyS&{0`ZV3>ExEVNw&vXY^h$q$$RjaD1_tw;qS|364j*<73=I5c=<n~(D`DVZUG`=}
z{kb<&Q&LhyegyoeX-mwwwkGn`<>mcR+j3U!*<+KMmNv_%UK>0Pp?EH$d29N4In#^_
z4s~^Pe2>>gZQYc=U*@pEm4(jiQ}yHH?Ck7bU0ppL)J1Ktt^4tiUDmqH=j<%g%Lf{n
zpT2&r9UmWmx9<1bTRRGqKkg3{JFe@*z>rsznVHGO!J%OwCm^73*g$VL!`<V@-9c%=
zs_e}QP?rDx?rv9qe>kXndDi?sD6S@ze0bpKS${`uP0Y?s&(6=+KWt!9`6;FJ{k_=#
z|Gw{!eP!&+8KL^%NT)EU!}#jTO6C0g{B(bIhJs!rV`ESmk#~33O0TI}=1*kKMKn*H
zIWzLbVv9X{_Pn{>EhHzm?!$+I-|MTty;->~cK54!)$cAY@tpkS+wFYsUyr{f{<Hu7
z?rwJcg?k&5-C5b$vtM0V>E-36b+0v2f^jv=n%Lc8e}8{3|7OC#pcc8OV&lAuN1W;Y
zhfVI?yLal;DJ_G#kB?k`e|wa1d)wNm?RjrM%xM3Uye0ScwTE|`wq{)o+FkZ`OYQG(
z*)w;g3U2Un_;)+(^_7*$|8E~S`)L3Fzw5KEt$Fz-bIJ}??`am*Tz-ZnF9OcaFg$$o
zazWS2%ge2+xm5EWAM1T}VPW&;<$;U*=Gm+?&Auj5A=7ws-SUIG3LZK&9y@8!b9$ee
zg2I9ew;M7uGbfe!_WQ30T|I5m<jHUMpR;${nst@yP4w2RtJ>>6Yvpo8s4CcRt*)#*
zdHneClbbao-@SWhe%I7{*Q4mEv7xP8qItKn_20C&t^WMw%O1`3(OPwjgD2J0)NuW&
zH@CKqR`;8u@yT@I!iAu0U}R(@Bev`Pot?pEvwasXTzGWe@rBOqC8u?_->AR4CenDS
zX7I8L<tlR4WoHuO!w>8R4RHyi@9Ex<e}CVpvuCgFsr>vV`R2`=UOqk{5fL+L7gkkO
z?c$TMSg>c0&F{Ka*6ru*e*1u0N#EbyeVbfYSNH1T;`VL%_upN}`TOH>|E+zsyLXkn
ztvY+(SbNbyCWZq}b2gsX8@f7-i=RI{CudEcynSB%r0T4!RYF2SZ+`bmnR<D8dU|<!
z27(%&D}861W!>Ae6Et!Zx+1_4WRH_mQ`Yr$Yj50$X#eap&nEKq_4VP$`(#a1P6$Z0
zExfroeYMwAE!J<kZ#g0u7#zCAbT92Fe7vRNW71r!QZGeC#i+eiTW@X4&Axv;ZS%>q
zXFoo>zPR6R)z#JEuTSgmztYMrE+QbXz_FR_<<sf$dIh)F7d}3AYft6oq@*O1%u6ae
zckWynyxeb=RcY43{!Wdv91%MfYK5+P@<ww33#71Q@(Nh&);q_Rb^4PYHt$KNrs=NU
zvBTo%(W9a}{hgeeoENKl3ak5FInpV-zDjT5!i7=0%ie~*kB{2O#%(@j|Ni}(mp2Hx
z9N4u}U_-;Ai=eSc#dBF367)brhYXX!0){4jOXVTsg&E+o3Nnntz#!&yposU55(|6)
z(y95W6i5k!k6SY<LqqF@gq>`J3__AuG>KT(*Z|Tfupx#SH2OIx3<8z=2U1KT7#Jcr
zc&BA6fCGs|=lTIq*#-?Gu+xzg^7ID3bVnY9HH}!;h$Ig(XaP8Veqx?>Gd_IM+_`IK
z%#dJZV>@;HxO-w^V$}A$*p1KSMMYK3&CS2Qxw-j(*<k}v=hrm<Ud+=|Q-i<0x_Wi7
zJOA4o8yDYrzR_wrPXxEP-jvz1XV=u!Oqn(<ETOucPgX=o=uyi|Mur66i4!NzvMgSv
zq@-k$eN6{6_5-T7_SOClm4Ezt{r+o*TDhOTeH;7Y+rz`{uYW$DfBo(D`|Bi)(=vX1
zc<ANl7X}*C_<B8lcB$sH2a_1J<HN$HE%TWflrU$N2tz{Xxr_~EZ*MJqdU|^HsVSPE
zLBn~q-y+w>?~mJ>ef`>riOTD%-d((Sv8$&C)SctbIeq%{<vTlzzn)O;*Dy2;Ja6}V
z4QOb$^z}7ObMtWTX*!zUzMnc3W0la_)|U0}&rdIZ|MG7k3=A9AV6WjWTwLtFzM^Nz
z5|y{NxBE|4^VKS;_VepAGB)OJSs$IZ^Jv}mlT&x(9N2U-N6NMeG!V_5yYZinzP>-G
zh1b;F{PgM5rMpUBXPud0c<S7_vK#CD=32eFxq11v+}q2pt&Ki?`*!r#*VnHva_!E0
zvXp@#&q#IezpV4~Y(WDlfByWDITpP&EA@VzrKF^!lxfzKV?C0=8P%$uadB~3cXw?S
z5*FTC@-j%)vdHCr?f1F!s$OY^u8X;;cxNZmbl!+bA=~p}ZGS$Q9G<h0jYnd^$H&KC
z_gTNYaAv0Q)rHRNpkZ;)(38x!%{OzbDn2YYboel+5$ikOF81HQe^tL;F8}(t-~Qf<
z(~Jxc+C03ygB=_k8b3BPFi5s7Og`Qh`|T^J842q6Zr}g+?WW(lk(*q2rAz|;|N9%d
zyDS$J#OLSP-r7~V`qh<{#kSKEEcIkJsDOrILCxZrn3#pPzrVY?ddU(MUKxvk)6;Y>
z7oWFX-qOOtD{mLGI&AHwWxlgzzWMw4UF#Cn{_<+|`m7HR4n}QG>pe9^b8$;c%cLDL
z3=Q4I$E4PrIpb4VRV60z{nMvS`TAZ(MVr#j&RUvzdD%*znMTuX`{&P}59+$?{cwmo
zYG=_>(4g?0J278hUG-M?pSP#$z2D1+pBPu?-QCsI(Q#o<<>!(=KRz<uw*URc_-2k7
zudLOT#6L@?$4yF<02R82D<-S?URmZV{d@iDkd=$tc%@%mSm<p2jER9^$H6^&_fDNU
zH8kPRqodv5-nw@7^@Z&&d;8^rGk@$inaaw_S9f-9)(Ts*B64%u%JB7ZQYIM__Wk+f
z{rAu3^Hq;~&DXtG(s{P5;=+p?8<V$YTvYO%Y2<30cBbG)*^dv2pve*oiyMi1qPAv%
zMpuJ^gJq93H#Kp|><?P%WmWoW%1>c-hC3zezB?}7|M%PMy5Dcj+c)mnvj<*f|LnI~
z6}Z@K;riPf5}QH8wNtgjZ`H?1wJp4JCnhy5P0Q3Y^xwaKpz#^A{CjIaGZqKVKYZ{Y
z!8Gqq#O-alyI*DN@aA<jgl^A^{rdiX{O4z9gMEB_7XFTTo1a!*{@v*~@8KPfvj6|S
z|6i=4cB$9YC-2|ahdyUxm@?<@@9)|F|NZ4lZry5=w)<W~=+>;OOx$OUjg0hm2iTgJ
zgh-p`g}Ax39d`OY*Sh>v+Gb4?lPwpngOaw{Y~Q`r-}MT3-TUQ2_f~y1Nj}EID{16%
zykCC$*)(mFH&35D(J(jPZZSQx(%kjHq<<M3#q{H15_CZ`U!^ZEfkxB=c%{v@^#A|$
zdOc{uDC_#V+*>lB_E1s2Gb=;*)fIutph=R%H$Of;*89Fk&GXgm?dzBM&R$me`B~<T
z4T+QfRcxwGN?HUOgqM)e@bvQczdqAAT|`Dkr@Xwp^wkwl?eKLv1$$Pk(73uX*gg4p
zU+Cp!zN+9c$wY~$Z8<Y{mA%cn|9y7;zKe~_>|gE_pPzbQ>a;nt)e^3*4)_22`}=k4
z_j?xK+M0b^{L$AJ7o8Wo_g_0R)7UiqoXqckA3uWnt)N+$xu&TM2YgRR&Ud}BDpb3*
zy<OYPEbMr{JZMZ*NLYC4tXZ!<sI3cJ?53%y>8Yuy$;HJLbas|$=;pMuOvk(X`ogwm
zUH$T)ng7=Ds4W=_^<sBrJUrBDRs5`HSJ~TD$;bO%uHAlb()#u57cE|Vc6S1I!Oe!y
z8@js<laFOwT;yt1@Swpqu)U>4!^kM;^Ru&;R|YS?vahzf_UqMfFE6j4`F6Ee_SOEL
zG|!5GK{fB<B3IBji<o}gn&9Prnkp(TtHalW=6T-!zL8_Lb7$<&zlE-?NBr&ohFo6e
zdl@t*QT8@!s%~`H_dCV?put1X_~Vt=g=W)vBU=BquZ`coPf1B>OTj~@_P6i%exLX1
z`ug=pj<~Fi+Uj+6b@=rehRI((oz@q(NDHjze(<=Qfg!E%*!d}-!D~IebtjHXc?LN-
z9SXIbwqiy3wd$%WP?0QUoOZ_a{N^nMCmTd1C0Cv}al&akXheuxOs7DixVZT8jg85s
zWp8ermfODKzQO-r*Y~f>UBtj}Ky_!z0Vak8TZ)cJ>C8C)RNjP(fg#`$sD-jYKuYJj
z1EhkUlzX$30lF3d)EWWLm_mAGOw+O-fO=L9C&8K|q?TXmN3O-QH^eX_w~P>mQr{rt
zIoyQ@i+EW;le=vWA-@W{1sE7$4HVG)CIJ`G%pgz`39^JC!SJW<w8;2yWozqbLqkI@
z9-b-v{r!gy9omw2cURJRTP-cGyu7?uH#es*ybT&`Eqi<G<n`;}jEsz3eSOz{etzCv
zE4Lc779v40t$p=s-bmcdm-By7nlHB1-#}vryDB~|N;@-S;ffU+XJ?!H_uG6r5jubI
zmIP4HnD30;U6%Rt(^Jrp)`f-6s-A*^f}nv9w?3JbYooWvT`gR+c(JIYWMs-`)2c5S
zKY#zuzP!x$)7P(4Rj#g!jb>)&yRxhFHE0;PSnmWAIAsW=n?z`btpQDJELybaP4c{X
z^P~(C8p__>Sh(1|Kd$her>Ezw?fLW7d}oEc_*VS<T;|<frCl8z8``x!t3I7nfBO3M
zYJR&P5483>FJ)%rW@wmwXP#~Kl?9H>KY#wT?Ae}m_0+z<MMg$OCRtZBdL@nBKx3~Z
z^Fafdpn1g8({yEzot~n(_`-#N+TU-tUoT|6=6nF${kfR1bm>w}1%(9%DjXadcn)9K
zn0#FC_pk7{N>@8OJJ6tJ+0Eh`Iop)Z7cVWIVz%ZW6T<_w=`&|)`um?}dK?!Q_wB8#
zr=Q=oHIbV^lV4LcgP(1BJ|W~urCxd8r4Ddw-Quz1V$`nhA{Te})v>$Fs$MK?Usu8B
z={oOu(Q}PnP#0;(geg-*mM&Rh(ew1llbCO&u6GxCdwWk-xw;~7@rCQTH#RtCUtf3i
z)Ku-Mvu0^|8u2*q+`04AnKL0-S*!m1{TsS2#`5>uV}FwWeYJ6&yLbzD)WY!k<pj{o
zed+6Kr4qmYe!ssp?d&Y2cws52RlU;YTFT0Y6BqtIH`h9K^Gy*csi+sPLDPA&&n~;S
zw_1G0|BH*=L9?Z2XBav=xA6pCUgrDs;lqXN_y3Ek{rzq0``MExF9s#5`2BU)i*`;s
zs#FddT9WL(^ZVP|)pzd1oSkic-fr65xoeLcacOOB1&w4+nlf+RI%al04Sjw8Nmo_|
ztFMjO8MHcVZPAZaK});d?fL8nDh&DUek@Q~S@ZJ~sI4KUANS_NlW$9wsLZvmzxPzm
z%&R%H2{dKz)+=RMEv3QOEv8%aO(fvZr}~ZqTUFK7vrkS^JvXoIWz^QJr5`>N96fgI
z)sK&lx%l|Pl9Cn$1qV-^Fd^Z7{*@Jhpc3E9tE;K0DP(h+@6|Ptn-6?kw0Lpo+NiBe
z^?GW)vzBbjy$v1!Inc;l`s9Qls9kw?S84Ecz1X}TrPEZvCE1Zk`Kg;TE-L+fn_qwV
z(a~<uY~`LkHf!VdM&;h#Ryt$$?AucpI|n|`xwmKMwYAae^78V$(q=xO;ps(-7JYfx
zE-&_eb_f@^=mFIog@uJ(-QC(n^IKY2+TB)bwDZYo6-CcB%iWTCdRq3Z<V+_>>isx_
zZAO1|3utK+Xr;>m@L(V)6XPq98Mzr4xD^w2vgHXffmTz2N^EXWkqIfFuo@(QR&=)=
zTloc20Nqh4A*GXxwI>Mn%nsKVQafBZKuf;BVT!&mhky&QRzAdfwON(v+Qr50TPr`O
z{r&ZNebtYL?V+2~e4jpj`tr<7<5d9*o9^7bJJ;5gfuUjbvn$apZHXB-HYBc!-o6er
zwgrmHlP6D3TGG?Q18O&IPCsAvOoWj^qYzxoYgGF2Mu6rH@6~+v1$7GI>wYffIlLi%
zb-===UteA>?zj7OqSKg#fkDG=`8}mM_VxQf^HaX_Y$Esn|5x4k7Boz<IjvVXjg6t9
zcmvyMQw!4sP>VA6))vj8-Rsw{KR3@dy2+S{;lNIgh;;{7Zs%AXwsw`Wd!NY8+VAh~
za&d8K9h78bC@4O4?p&CUPY)9_^V7$V7jM{Lur_-8yRP-OH>Gx0eSNib!2*TK>S}ET
z1&6!4%ddZXdt3I~=`&}p-2eZty!7=oU(>8B0Y5)Iy}HPi8#F;ST`zW5;Pj^^e!LO2
zzrI|&v$MGL#RbLR5p}2jJ?hq<GGoSy4<8EBefb$0gwnq;eP5k>L`hlMwD_5itBVV0
zj1@Ek-7ja$#j<q2m!BVKkerQQZq4@lb<xUhJr_PcK3;m>_WO%&{e2tWm%q562x=-%
z`f|xzU(?Pm4m64X`MmvlMrO8{`{rkxa*oXppEiAiar(Izps`B*{eKqie!nkze*M3l
zyGmXz>gnNmdt;;X+1cjTpPilk^zq}zYcyv)nw`Hd@bom@trZ`WK&|GRmmN8OJZzVr
zW6L^aL)6wR%W5tS#*-&cN||I#D0_czt(b1qjH)+(=8J*`W><x;&wI7;^5x4@Crk)<
zvZws*t)&|_7#ux*Jp09kg_D-7S)*f`dkfT=zkF?Nba&~#GiQ82Eo6`j(&yKzdH(wQ
z{XS^YbXDQwV|>5)Bn%unJ3B$W*H>3pm-mKe*!tye&<a_x05qZT<iteK0)ahy_H4<#
ztTxxKHtO;5e$WWFSM3fah6NULE+(vv*ytoDCkL8&?ysz>$~w@%cxz*Fd!L+b)SB!M
z-@aYb-F|1$<>mgjk86dmi&2R240?ZWud1j0zaPmP&n1@n)n8b#efxG$fx0pIxK*_l
z1H+vu-`?C@%*HEq;{5sZiF-m<hkbk7*w{GT_Snwi=Tqj+T`R2a2WoYLYVBh^lEp`h
zmoHuFIcZhM%A(%Q+trq{>x2g^_mjO_{eExMhJ?n=%b6Go7*+qS+rMRt2`dYWhy*_e
z$Am-)(CmR||Hl)`{TXj>ZJo3PG)Hn_fn&Iie^F79N%1pqsFmNVe7@E9-l92j8|wai
zbXQeTd2wN(GpMKdZ<orMw9T1+e|=px_kFv3-GwJ7CvPo$>^9e;&}pi6co=9Tvg%8Q
zY38LTv-(~>dv+{3fstWpSX$aL8(UlMp6bfVo7>|(V`AojhF6r``#?SdWfDKXzEjh5
zqn~8|yZ`@p{jL4=`|W<eG2Xe;vh?btmvf{xi0MWxSw6omD)rQqz{734p(}%yGX0*h
zlkNZGe*0^W`|a1AnyQ_Bpn(xoLIec`eYsctKJ#doXw<%%omF37g}!+#XHjtAX<ae{
z!<@sC=MR4R_AM+dEUfWkx48bT?eU%-9vy%0&#!pIxi#aW6DYaa{dmyq^u7LZulbjE
zyWeMBTH^WY+S=Qq{qeUfOcQ)(7&w9w)-2QPydQh7JGb+_JgGiEq@ZAfS^hnp`uh6c
z+g`lL*qVLaPf$?s*Sp>CLzer^O_JU1Gt)@zyck16_UFIf?`PlNSId{&+Pd7Hn}b8+
zi&?_IUn`_cvqZA_Kz=+w&sJ1ieEFI+Yna|fBqc3!>y=vie13i0#*G_~T9su!ymIU5
zjg84w&t|53r6k_IvNCw;%$X}IKR>f<(f0iG9nvf8>EQvb%$fA%O0fURyt}(t`-~G0
zwJ_y|&b2E2a>n@logF8c8S<pA|IRy@c6Qdwi|+EJKVIG1`a1Qzq?FXECr?sRQ&KE?
zkcQ6p^>K^qoiN~;Yh8XW@y}#`yTFi;DZjqG1uf27edD;U?i{HNPEJnivL4Qn{P**G
z{VKn?R<3m>=kJ!^Uu#wRD&y;`tCPCcWpGQU{}p98pmVOm$NB!g+NrZ=ude+3?B?-J
zn>SCLF=NGs4F<ohIWAwmT>9Vu<I|^4Z+-_&;&aKo|MK$kuNRB^MMOlN1T4zAw<ogS
z_S+1rk{1h(c8kZq-+t=SoT~1EUteB=hStBoyQ}|uX3O>0Z*Fe3Dtj|SuIk0Y)9=KE
zgcjBRc`R>L|L+g)Y;FdIu**2Q!>d|aSbo<ncIyoa3YruY6!b<u_4?lG@~dkigV#oH
z54*Z5bn2{GtBxFTS-Nzo<(mCgH9s~~eS4z`8XJ9idHI1`YbHz(FwMTUCPi-ti-l>z
z(W6IKI<<1``u%P<XkL_+mG$J^yLS`iXP;f>Z};=bu5**){ikV%zuWZtY5sHOWsD5x
z9<AZ8j@yzk@mR0)@}u42udl2O=HleM`0DEFtJ`v;+aLcaoq48#k$FqbO(W3SmgWBQ
z!<KqY1+PUo(jmzA^rZg&KS}>9{~Y4h7qR&N<Ktt_h_s*YcE3;Ad=s>yp{J+E$v*B#
z&;6922VbuL-uVAjR<i^H!@6ZTH#c>4cL&GB#7z9HqM~A95;e)B;zI(joXwA}<N5dZ
z?LEBKHT?ONhN+V#1t~oTO_ee+F@ffmW6Sox-}l?Ev9a;f=g-<kH)7A{_x<?sgUSEo
z+iPoQzuWzOU$&hZ!-HcH`|I|a<=l8+@a?+m19PtIYH$1H_8D82*nBv^T=o5K`PSOs
z-<+;j=ic1ps;Q~@O(bq*kZSw+fK%nR3qLHK9{1?*JjMl6UR+r@*{bx_6N7306VD%*
z8ljYsduxm5>hSepSy`)8R+hcJ1se4Lt$w|H&M@f+hi=@Sh-Nlk@W`Ot)q+n?JZ-<<
zDgN~J>(vhr5372DhEiu5r+@kT{r>9A%gZMHtB^afDs;8aY+(k5`loA5BMhboGl!Lx
zZIi2hV+d+1w<WGfI@&eqUqy9#P0gOF@9)-rzh8fU3VS6RJA3xSL#?mw@83VmG&`++
z(r-}J$jUAD;`{yj>zh(fzd66J>dQrUQDNc5?Q&Hf&TTvwe|~-rT7hAjb0gq>&F8bF
z=h+z;cIYj)V}A`=B5`V}_E%6PtgGv*?mzF!$;s+d=gnIO8Wjf>eMdTleXZl~@2lNf
z{XMVr&5b~AF`Ww!4mN+iSN(ov^6@^<;-ACEpZxg!JNxRY&`)2#hWhyQfC^L1;AJlw
z+2u3}?nr;!&dYG%>`BS<2b+G*xs{+ByDMbk#EIXQFMqx|YU`>;j~<o$`BA7FwZ#K8
zHl6u=&)aRc*Zq2!HrJ~3(!IUa+&%sB_V*rMZ|9RWO3h<nDCoXmYO(d8m$!HD>uYPf
z@7&u}n!R-S^63wHKwAvv2Q!DAon^YU@bNLF?fJL1c$#Kk)7i<%$nYTLj#3G)A8*9O
zi4%W4XyykEb=|bT{o>M6Z_xM=sHFm0V*y$iZM>X=fgvErFSZ%f8wL%5&N9!R_w4-q
z{Q5utmU>T5k!S-oe5$@=r27dnGzhsr4*6wingCj#YG@ef+|GA3eSYn-!|nXuzaCpg
z*j9ZB@bKs`Ue3<IP~fZcalu8<a@Xzm>vnHm&dAVk`J<lG^?*l=t9PuOayCu-OCTo$
z14CHoBgWJB@Bd#lsRS|`=<te-;Z8`#h8X8g_BE$%r#b#ojyQVs=*zj~_a^S%y<161
z$tx`h)M?mwL`uigs_xH@Wj-?(RepY^sjlu08pWGom>jadt~TADm!Uz(x%sKo9Jvjj
zq*vRsuilt^d{x}us&n(C7#LLh8lFnc5!-O-@@3Q1QzB>Q+s9j4T7m|jL93s(=f$S`
zaxyR+5K)!eaOu*eHwU%M&BOieel9uIBk8<>iQ&Qj3l>xBROL2+hQQXW(E*LLe|d2c
zRA++L00b}h6a6_$OgC!E10F^OhIRg(>}$Hk^}QzT`}-~0_R|UF>36Ri@Z8KXd;0Y0
z)FW3I7z(VeCG2by;*a3u<W#NoVqj<x3Vp<=ZDh1*i9aWU!%D~Ir&4#odkq-EAAfnC
zz{t?>AJnM;j})~uJVoh!fI2v!o)B#Fz#+5_5HY<IY`u@}g@sywL1QAYxjRsM9^CJn
z(Sx@mCN@ca!<m1(CgE7F!7FW+aiD=Q>&AwKHMO;&`|E05U0pS8ZU1gsZ(aPXXI0o*
zEpv18+CLwUhyVSnsS9#JgOalH*N?~LK}}X@&$#N#i-o<?=Bs>Xo4M}OQ&V$W?l(86
zqGAVZ`Sj-W^VeQoT@6|T0qP-NxZW#m?kBDvS8}tg7c|y!bV|vK8(Z<M)5xB<ey(A1
z+pVqH&ke4vjW*w!e?KmN@7HN+esdxonBK4dzxUa>xvN2QJWr>`n|)8xX##a`?>q@x
z6QRh@&+qE$dh<AF(Q3j022hjUy<blE)7E<4@JS`#@0Opwe?K17rd_zcv#;;kVSf8H
zppi3!p4a;sxZ%^?wHWhKauO01SD#zg|J!3^WE8U0Ybw)i&}yEycXkH<{{H^@Lg)5%
zzh*4u1@)`VcVe_(BR2M#Cm-W^`sB$AP@6?!f5pc|ZaoqU6A!no3|kv@-86kQC?Oqi
znsYHBH7)Jb<;$B7?3g}%dhPG4pqXqnzd0*Fi|T5Bf8)CySO2&4>9c2AW@g`3^@m3Z
zZeU>8aT3%g)7D;n;K$K!@wd0vAN%+B_toY8@~tf`8UOzL<hvad6l9Wn%jE1#V|P0{
zyX*Fu-H@L7_1g)cG3{TkR<D;iw(g1psM%d5ZJ?{`J1JzbTd(%K?<XcIzq++`wN~h=
zC0AF6pT2(mdgAZX`uo?+GR+1Jc?4!<tvdX%{`Xt+rOTFSX=t2CmAmZ#?yIjePXG<(
z=;)kD)G;*;UBBm(*TnUlyu4SB^-52jIPu|z3$@SB&E0e}hl`hY?;A`1c{ZSRB%u5c
znjZl#uPA<ULh$dG%l@mv*Uvk=<80dH2M3!|H{UFIbwzWke*C{Iz003K<6(E6fLe5!
zmzQPU+fxZzytl-D-kW(S?XqWQBw5+nK}$O)ffjFqmcV3YX5QLSnB2%PHUH8QPtZ1s
z!#BR)uLrFj&{R`%E5BPB-gs@b2{@b#RcmLjA$AGG%a6z9ukZi=Hy^Zi==Zm`m-p5F
ze)IeH&!3=aut^~=E<ex?S)p*)pyc`7@>S{Q=b8V|@)iS?1E84)yb}qQb`LY(-`l(C
zW)7&oB&HMbV8hz7x3|7Ego=bm7Jm%~mr_S0`!gqiI!Ri3dVYn4g|6==PnhuFLWbuh
z{r!K6&VJ6izi;oSPoLKP{2F$w*^Q9_R>)YaKG?LABSLjW{r`XG<}rDB1O-h3t!(&q
z$y*=X&lT5;DflK5-~}1im(sa@05k@JJbMq$-U1z7_Q<0~55*Q{gXZaBr6hqB4&cEb
zsu=_-E}`T4;PnLHlu3<IB#;YRK@Eoj<f#MRX{3175ZkH{P?+kd*eA^VTdI2V=FP6o
z&cK9(1vND_piMxfudl^^EPeU%rIcybly`f-$AQ+9<>lqw+EZCP5%=P|h>iRF!`u%r
zF)(!X^jtYJ(^yncaAD-;w3CMqJKI)$x$y1nZT;W7nA!PW^qSuTjc$tw2^HNmm_8f4
z?(W6c>+#{=-`xex&>cN;<iz>&{^{rD82+9#rwdf>MsyhG3BJ3v)%)~x{qUNaJ#Bol
zTAp1U9RZh@`I;6z@yNZqYwL;Y_X>~8f(A4~Hzv8(e!1v=Yh$we#NU4N?P8<1<y_pB
zd;7|!)YI9!X9P8|frsw9M75thd<dF+_&sC!^5vjOeOc?W7cVX@cHMXF`t@*8?XW$M
zEO`!JSQEMV%5s1CtvNS?Dl02bojGHY`Y+4{9M5w$vSniw<aK-TF1dSLDt|u<Qm9<I
zbV)=&ARxg;LBXLdamFTwzYh*JPx`mRcSq&tG*CmPv$GSl`|SI>yI=o)zaRhIa!rdV
zXo-uDr+t{Bv2pOcdGlD0?FB8DTOaP`*7kRP_4jw7y;7zsp0d_upuRU~#pjYGOJ3Xc
zhk~m2g2|szI{C8;`8>03Z(C~{;~BIzYU`DCvAebRMQ_})5WMPT-S^m**VoryZ{wAg
zId*Qoef`brEG#S{(9&Cm>EhN?kX33qpf<7Q>pg2)z=<{{|G=v|J2zXEzk6daZO)uE
zj?HYMKWAOI5RiLkN1&vnBp>(P@^^PMXP;em;lhRNdH(y-&dvfYE@<7S{PD)d<Xumv
zMX&oU6Lv`VP!ec`_mNKFxBLBkd_e1F_~h;09EoIPD0mAhkg<>KUy}FFwJ&(k@afa1
zu3A2Od;8zb-jgR!e*4(|-;c%H^6#%(7rQ&|e`^E>@3r_nf4|+Xde|xsnkzbOr=xqn
zw?aXN;lZ<~J?y>PvaWhPeE6`dxA*GD$HzrwWY&PXw#$}jDJmY^cYj6T;we+6ESWMz
zgq4-`=JELIx2899%s?w!+7dN1H9e!Z<xEuRl{7xK?>=ZasP1nSs3+pw#xpTdVwP?7
zwpAf37u~oK5xoB9O^%5AjU_LGK(iyDT@eeN+e6mJ*{1t*GBijNoca~r^YiPc)B3la
z=bTO3+-@}c>@$H4pj|^}XPaxQsku#7^PMz%_H3)tS4&m~FBkhYqvKLfbW8oG)B5`}
zet&xlTE7i)33wT!7emABp3Qb|c0&5QmoF}MFMW83_3fRVn-4^-YiVJ5`s|t2mhed>
zFE6P+efm`N$EmYtbqnTQxDc>5c6V6%`FU4gUS9t7qPzUcy1&1!fA`(2z;tcCPUI$+
zfB*i0yPn(g<3anVcc`(fv5(wUvJ$kRw6db&#m3`umqFW!s=w!@`*SlCOxAq)jq90m
z!r%FKcb9`!I)HkIs-ACeZ4FLHP|y`)V9+pQy7oVEQ%dKm@b&BXWUX!-|Mm6t^3>DQ
zP8#q$_vK+I2rj%Pr8A?uVX3{?bKUrTF|yWWS3vtSKA*RL{d|6X*y^ygpb4O_udiEI
zcQG(55P4|GI|;N%f6EpV-RNyTpye8e&1Ronrs_RSq(YsQ;lS3pHkCok{pJ=)?4HJ+
zBR1W5UNh@w!3`>)ZuHevp_f5Dqz7dWKs#-xYKLdNyR);k?ve$=0n?wqf1kd8|9;||
zL#^Dm_SgUCwbf@lZF=Vm<LgI9yFp86Ku!lubKQ^=5Lod2etrD>x?d{~9X>qQz?p#|
z;MScl*&FPBJ`tX4UG8UF{Y|H&IwE35-p;3D_k1}RGz4{u%6ZLe4}jK)*VNQ>#Uz8;
zFaQ63&whJrt5xMEmHmN?3<pH-e%a1p|MSUY?RT3K4l;q}<%15g_D!5Pv8$(Nk76-1
z!=0Ll=BHA5zrgibj(II;ZQxZ<*9dt&2BZX3bVYD5o;D?+UOGxugV-*d6JuZy*a<op
z0Nr(<E(NT;0b1DzN^gXgKw@<reuGY7o5NTYSN-gaBxwCr=<2Yk^XJb8)t{i5Ue<5M
zJkG_>&xL+|b`~@_3fe3RsulZWt<UU}Sq^RhDuOq2hYLwcuAFI{uBD{pv^nkUr1tjX
z|MTC!OJ1e--@b1@-=aGn@u&HoU2H9{nB!R{)UM}i@Lp`DAG?LP#<_!0*;@CW`QFSq
zy~j~=w&XJxhviJmrkR_DWoe~oJvkdPr`6K+iqSJ(E%WE!-9NAS{8()>|D3}Qf8Ln!
z`B%*K=f$z@o%;9Yzpm+1QdTbg@!?_B@tbeUT;1HVK0iA<%P6&Lnr`&6*Vor;D=9gF
z+G($>i=X-I{dz4LRD5nJdg=uladUNb<>KeResQt;|I4qR<$)&B9E{7KoDc+!T%A05
z(#y+hlFHGeM>SPcTtL0JgU#%(WoA#Ex^&MTo2O5nWSp5{I0>{*J#uXrX!F?2nKLIX
zS+z=QZRBP*LqkI^Z|~xs{;n?2{!GyL`q#I&w?7oSd16HZBg2C<sohmm=g!s5&(Bv?
zQL(sHQ&R(4iVm7Q`}Fj5Y2VqCCqbJ&WgmJ?I+M0JDJf}7@^QY<kPweaT3T8madGR)
z-rln8<>%p<GJX2=KY#!Je|!4LHBeeNDQ<0T-4wN!i-V&ei=UgjSZ2MqqhsT*FE4`^
z+v@1}l)t|h8W=cH1++He@2{`HQBkwZa&Im1p04-uNT)Dp`NCy?`?n(RY#2c;aPvo9
zwh^kTs+%HoOmFFmb-yXwy)I_wr-)=#%ig;?3Ky>lTb-1ge0628`pq0OQ8BSs4-PiJ
zy0i1M@;)bD@S20Pb$j;2*xA{c-m0ywl|3$>zUFRTxs<ekz=F8FRWILezkdz1<ps0=
zd+OAwpmmi0emv%94tr#G;|U)_gLL81;thZP{3-eW@2}L`@9*vw%hb==s5bee;kH$)
zyg<W1pmDN~$K|bmfu_3lR(-t$T1-^&@sWF!e=xY))%@np&fxgkuTz6>uZ`aRN;Y|8
zMAly3h@c=PPte-Ey~*<5R_DKIWM&6-qSnUjytFdDpa3)wyb@%*_3>q(6Ezy7f36o@
zb8)eI_LmnI{c@N4&As$`{r<S;60^@P18t}K_V%`)^xe;&Kc^baOxb+%m2C9wWSLK&
zKR<o{UVrsfEl(|7-Ki&2f<i+>d-sWoimqC-=Fjo1rmAm1?UvphNt3HXLZ)bGgO(?}
z%BcSEpz+eBOIP;S*Mq9yNhM!jg@Q)wHC0?)T~}_|5^{T6Zt<48I|`j|-n<EF_C{^X
z(e&IDwRY3(x1hf9<*ohl_UnqDpS$|Y@5r(qE-?m%voR47GZrmg3>u=GI&GSkg+)YW
zW+rGo%eD3K?_YdBXZ>Eo);9L&(W6{kT$8?pAMo<@1npfY`Sm4p=GipRjQrKBSF8U2
z{VtpQ`^(G4pgsSG+jzCKwJ(2oc)0ZGDN)e2TF|Q0WqxyS-8h{W0P1+%>Cv{EW2vm{
z44SbwGBz&#{LB}$wGY&2XkcWX^X%!<r!}8XpFZsk+I0n53zBtJYwGmrpiP=DU%q^G
zZ}0Bl`=GhJpP!zBJht!WGwH2aSG_=kz>8eFv%ciM@+sSW_uVVcid~P7_iLM&T)BGL
zK^e5J_p8W-6G1^iF}AEGO}oqAzk<#nJlwuT?qB@Juh-*W|9n2*{L3BCXzYoJ%F-$K
zR>+F#FfiQd(3ZQ*@Oa}%Sq6p!2`oAcZ6{BkF8(TVp~L3w$=mM^iN05A`N$E$z%zON
z{P(Xk7YN?nQ+fGnFvA_O>J1DG1<G#@e&PXporCeTF{Hvt2-zUzSXsGKMbp?g*tYsx
z$;TY2@SvceUjA<_&#NAFs$W?ht{?7ySoPYv*w?Q#O?Ex|@&5OjnZ{kcy`_I*@-;%{
z%(7z&Q`XSao2GK~*s)z@N_vN!!)A-`yMNZZ_-~!KxVW|LLzy4{IU;%!K&L;PITP~y
z+}x+npFe-~l7T@kxUzC*S9iB*(vc3f-E7qxY?v8W3(h#3w)f*P>2>qi7!ELmtoxt=
zDmZosYDLUzEC(%bkN~HeycVu$=?j`br+yePiCyRct)q#Hi~IEbd$^~kXYXS{K|#<y
zQ0_D~llYn&o6{8%7%%+&{T<Yzx|;F4-ROZ-%j#wQ4Xh4kvwcD9Z?3KmkF^zL_`t!U
zvtXw2OdrsQua>rU_S&Ssv7w<;LEEN5LlW1ohsW+Jx%lVj=dTYAGB2;2Yh8YAMd0F+
z7Z()2zP|1c+MaQ3?QA0>qpUfb*R1imyv#Q^AYejGZSB>))#adp@3P%@FO)L*vTo<F
zWoG1V0L^7{3akA|7R~<j<Yd&2f`y>A_>?Ikpegl_kB&;&*X;?mpL}x3=jZ3Ot*oLB
zxAR}`64k!4EjQYCmWd~5N7WZ?ef{eT9GkafURDE5S6^KfDrHfy05s?(X`E(qql$6C
z!jCi97$z<G`T4oFt!=FLG@X@SnQQ9*{Y+oFe7UxvVPN*PH4{}pJEXaIctVPbHhp`4
zfBlCK1@8YBEm8uV6j1eY>2wv(ix)3~_I7Tq`&$L_$t2JY&iMMjp{=d0pfM*EO+`gV
zv2NGX)Ag_SNE%<+n0&k~&gwx}g-<gmq8u*8hpySN!(!>OWvjMq*>ddT-QDG<Q;ak<
zHBYXrJ=P-$Dj>FIPY?cGeBSmsNBE_9c}dW6|G%G3>-TMY^CoBSpHHW=E-&k?`~SE6
z`1J{j&LNSJE1B8(B=&eQWXQ1SFz|7U=>)jCx~{F>2wGrVSy`!RVR2*S-<j$2E>8Bh
zTiGqHZ?%=3mG!E{@nC=3rL)cRt^U>h`&0S$?(Xo$#zw#R!)?5iPo`Yjnth!oO7cR<
z26k{RX>gvd7b_wyz52?Pkh3$5mtV8%|JA(9wOefKw*R%Ct4d3^w(&|Yvn+mgW!K8P
zSzGNcZDlxcS6~B!MdXHrMk8Zm(7yiV-~8rUt=zRM>iPNk;r(*9GH<W1i@iL*{@+T!
zxmJH)XM@&aY|p=c?ZLt3|DX3T`X7|jIS<-w;Rjm%dgDd}=tKd(_ZmGtJyY)Hg?o8*
z1^<8YBxR<L+TL%svj6{zGBh+ib^7$>?f2`VA4fz+&Rn%>)xW<?4EzV)9$ePXC3fM=
z)w1loe}8_SI&tE{&f@1HLPAQOpxgl(sl0L}<nErz;D-+%{`z=ae(Jn=>p%+z_BMYA
zJUh$O+q(SSl@k+{Mdjt!U$_u(cW1G?y5F1&+j4J*#Kf%GmV5i(b5kaVWaR|LvoX2*
z@0Pv3=37`;cxyvq^W~4Fudl6)-k#^>?S1*%+uNY2GEgu4{oe0!y~WqQMt{D4`|qDW
zB@YfTf(`=#^~~Me+Wvjt|Nmsx)~t(*TtRW|xSC}aU!GtU+vK^&Rhbzc6oFP0XJoAS
z_Wr*9?6YYvc5-ubi^|EZOFrHQ+QQs6PkQU(CRT<9>4i;CB|&vGLxO=;1Oo%4^Z->h
z4F|yu9Jdt-m24mx1~#yU*$W?C`2rf7El|Fr^o8dRc#Dq&xX|Sg)j99L$_*-VL%_vo
z$Oao`kPJg}Ah?DMIQWSNB*Vbt22y73#CqBoH0V}f%(7@1cqx|yznsm5IhMs&HYU6O
z{QY}%{r`Wb&YrDZvN1I^6}0VZciCIeo~ZD+N>^4^)~(-cYkq8C<C9qd+J}*}G2_*h
zmAi_c_f7OJ<OUbtCk{uqxYhri+$pTCrK;*$SXlV$$z=a0Z{Myxal%8^u4c!*!m{15
z6DLjt)k~mhpw!dTUjF*}8Z?d5$}K+UmzbDX){6@Zca^`N7q%{DWlIYSXf#+&?V0`F
zw09k#Q6iIK_dc16({!Ujd3?zd70;lUm^n^PPN2gJK*zwG+ZY)cdFu4(U_ZaUV?C0}
zo?U%?)2?P+J=DrQb>_^MFRb(L*=)_d9rpYC`|#J-)~b5WwJHrtN?KG@Tx?qM;sRSt
z>f=S=h$?ht)wZ^dzIX4Qmxo8emY+X<fHtIp67$p3(_hPg)*^m;d)xZZRF#=$(?GkJ
zkN3&0TCrk+%H3V1-aB`KYLDU;ZBNkF_^9o9Yu83^w|nRPY#OM_Ahxaf^2y1`tJbUu
z$;em{ynmW*^r^JXS9hkbUI|)h`M@nE@Sv8a=ES2(D=+44j7ZsjyY%U)smG<XPa1Ap
zvcyGg^2&4jzQ!)r1S!67X6p3mr;i_B?gm=H_4vo*o~^gv_HE?<zh-rQ?e&Z<P=aib
zwygfP=HdB+R@L8f_8tf20F2h-w}<mfzpi~R<tqqo<R+NSe)|6X`WrWHuvylx4qKaI
zHapuk?7Hr*Nt1*;gWCCIU)iibnpF5@b^e>fw|kLw3W$g-0WF|9)+^0hRJZx&ngt6M
zMD;^QR<`HgFT3?(-u(IclTWJ5J{$JDGS@76ZGYj3^XI4U-@kuN*lHC`6&06z_wIp~
zDlJ;HNaio7aUT(}qVVxC+jp1lOgfpj{dTM^Cj-L+EB8K`!2kdLZms!Q<U8Lk_ENlm
z89yf{Xeg9V)=I^5SJl^5r%s&`k&#&=rW@rkX<OdiRUaQ8*VfkdPCni@RRz>u3|k!v
zn*KG*yYpg)UrNdnzd05Qi=Usfl)Jhi@2-`qnp)QTdwZqKaw3xTb~}QyY6EEH!rR;1
zvu|z51Wk5DMa}Ayvt0#RBf!kYGePC(@#CP{?&#5@eOVEurCUKc>hf~`>}O|Y8qGcn
z+AyORyKBk(x?i4mcbAvPEMBm{ftigb;QTyW&>|7<>3X2`J)k`E?(Xi`P4C(cfwpco
zfL0{u-ZDu|OUrt7W#y_>t1hjJ-7WLb>(^^Rp}4qn7Y{;Pj5`V+Z^^o<1v=g4?X9hs
zzu&KaFR~7D9!p-{x<7yan%4d*sr`6V+{?owAS^6w@tTc>pz?&lKmt;@fV{}S;|3ZA
sHjn@%1aOm&fuVU+0(1ZzG)VrlD;|;ETz|3xbiN>ir>mdKI;Vst0MV>-`2YX_

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-19.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-19.png
new file mode 100644
index 0000000000000000000000000000000000000000..75d3d637b6e91d17e5b7395967ccd0788c64514c
GIT binary patch
literal 21067
zcmeAS@N?(olHy`uVBq!ia0y~yV2S`?4mJh`hJ9%>?l3SguoOFahH!9jaMW<5bTBY5
za29w(7BevLCxS5J3j5`m3=9eko-U3d6?5L)t*`0-`sn}1=hgOarvEftBx$TOb&Hs~
zn3Ji?@+FVmPpz3X@x5i_=j=MQ{Z?VTe|MBR<)pPvniK4yo9^Y2_-cjQ$qwJ;6LOE$
z?buiU<4tXqx$)yo-?wf*{<rM*+iP*xzwV1$pMB!;=Uw-%-%gWgQ)FOZm~rgvO>PDT
zh5}O-9R>!5$$}dg7#Muq4lpq=7)Ua5GcX)T8I>4LLGtY38&(E}hGITBn-%eOKc9BV
z>`pw~#>L0CPwBW@B`B_S9y~bMoON%{Pf_cA>({T}_xD@0Q<&*PAw>oTv4W+uRvRt%
zo4e~#@q_w|4Gat$BxavYd-aj$u))`g6*9bH3=9n?!Quk5&!$y1t6oeBHJ1XXtcwYZ
z3<-)R5$hV+xIxLvB!Yn<;>6Uf4FP*W8bFE8X{%-Rw>Oo?cj_P5y64ZQ)3^3kZ{Iwf
z@k&H0@3fooE8<vmLb@+q3fj4Ir>3=a^!mNuX8rrvU;kqF`+dQMg&T9sq!mxQ?)iMq
zx~seUvbX-;C6|}`e}2ssqjV_rtos3{tp(-f*Uj(OEWVw$+jp^B@1^+vzryd<e!n}*
zFuBcdu9fQSvtfycTW3Aium9Qo@89?R*-uVP{PgWxn5Spw=IJaClte{EH5C;d9UUD%
zef=8h;?i>I@@4JXyO)-FKYjKr?A__RcVq4U|0&-2cYDswMS8KjPMkmQ-`LpL)!iNJ
z=y-6dh3fK0YUMG3>F4K7ojrTDmzS4G*_(*1`S;`Mf8V};Wtp$^(W6H*UtU^z>g?I8
z-TM19;^X5b+YavEmbC)p>D{}v6%`#PO_@4%>CWQkSyxsB?s~aw_MAOd3!d!|T6_7Z
zjJ}ms)avl{VKp^-oSdDfPMWmHuJ)IPva<7BtI}0pei)~p3-R#iI9#!}>Z{DY^JmV4
zq@*mlwIy?L<>zNFm(Q=e^!dE~`uF?)$7Nq%xAs$Iq$DGE_>|eRXM+;T`u+c+jvhTK
zWtKDJ-QMqUo|is7J#AX`CF8femQ&c-XYby<`|x-FzpwhbQCmD(TU%$DWKPQ4@sLe@
zEssO$w*33+rfP?4X=-|Y{P=Owk`*g7w&vardwjhA`m?jMwQY~te!sK0?Cq`Cg8814
z)if0p9A=y4PMSY|zRJqV&(EanYIa<@d|6advht^TvS5tT5z%Ccwojivm3+Tj{(61=
z-_`s6|En&2ea&}L$*(V&KY#wr{P*YQtINy#udR<?zhj5R@25`h?yju#^7fY9CvToN
zC+*CPh2QU0`x~d9yHb9?_W6>j2XpS%|KGcL`h!bz3Mc<w6}tM#!-orR+=%!+WBT;z
zNl8gtN?(V`+SUA6bZy@J`SB0m%2ifYdinc@hlEVAjq$v6VWIQW=g*gKzgP8o(X$nr
z91%N`a?ED``TKY3gb51{9db%dPk;UQ`~B%EmDSa&ckGC;v$L!EcvQUf{oe1d7Wdm-
zdfacH#~-;O^3L76Tg%_arKY6ZIKIqh=Aw&>-LwDx`Z~)nnN9IDtIr&Zz_roauYG%a
zd+uJ585+jM!E2+phrPYERrZ*5$%};hb&73?E2_W0TNS*#uco&4>h}EmMUH=7uip<!
zzPGmLzc+aI^5x189}3>y+IqUhcq1Q^*t!{;r02BrN-qnKt8}fatD9w<-e>pY0kh}x
ze*u5(QcB<5iHxuRyS483Tk~{1>FF=Nyu2)BU$^JouGf0)(#gyH=C1njqoVf1LG~6M
z@e8ZN^<7<DR^;E`*Rn?Yh$L^ApI;vnGxO<Qb~d(C20XHsMN1A{|MlzFtBuFyF0Wp{
zZ<T5GH4Q~YNBR0c8?DOUy}3~H^vRPGX`4eW&bK~W(a8~E;CoYb(V;_5qT=GOr^nZA
z%$GJuXaMK;A0HpjvZ>r;mUBblWxe9*+qa{;#r3Zpm#?q6XJ50yE<Zp2=<(y)Mn*w<
ztG-@xm#<B^|LypMsZ*yuJu>xC(3HQG@2;(#J!#S;5h0;Pzu)cdpYT+Pi<|rD)2E?%
zcW&Rly>G7)GaJu^M@PF&Q%(rnt^fabmR;>Gvz!|X;_H68Zcaa6Hp4ln^>a){->i-X
z*5E07n{(dZ+uPOE6%-LM<JR{4^$!oXgCcIy5=G~>jC*@3tqLAAsQJz+xi_Ko?bhp7
zpG^W-_wV;#w_``drJeh0=2t$G1SQ|^cZ$zfI)i+%#xVI<#{GS@SNEmG%wm_TaG0#-
zdugF_d&=gUB7%Yomn>1)nsal~gi=<E#Rorq{CIJuar&v=`F6Fp_U+ZODu1`8PuALM
z%gxl|D>CM-I+s|=q7!3w*x<>#ck9-y(E-IND7EM9`<Yhy@{;T6X}Xs;Bp&{9h+E&o
zs@(YTpP!#g9~@w`{rlx|)%(5QRpxR>uCP3H?`7qe7lEGtxlc~IvNBlx>@3sMa-05D
z?ELWYxcv2bw$)EwzkWSs>*80huCHHzJ-$9xfB&CNd~!A#v(GNOoxgwXgi_X6zX@8p
zx>si!r_1c?>gv+7h)+mZP*hZOs&{&?Y38LRr=DL}6KO1KU3Mms@34W^oaaH$HkdH)
z;89goZA+AJtE=00aeIEevX0J~AAdfde|vlX&u7w)cfDR`EM=CH@#nGp{|){7e?FVt
zb~ep;SLy4tC(oaU|K1g7ntpzsu6fy)7lDgYPft5`nBP7}URz6R)Bo?!&d%=bleLz5
z_wL;>_4zfAKHU2M@B9Anyp0BD-`C%L{P;2N?6YY-vews5oIAHI|NooK=X*LjI2H#k
zcH^u67FcRs_QpU(^4`6BZS&{PUl|W#s3afnlYKt7`p%BRw&ly0Pn<sexq)5vx17Ug
z&z}A9a{2sKHFovCF3<0g&f9VD-{1WGf72?es-!qMIr)Bzii%49`}gnIhQ!0GY}%(@
zOjvm8+M3A4n!(FFe%;^P&vW<!sMd<k+j;cgy2*<cDc!Aj-23Z6GyjvPPnWuOi@m(C
z(0S65gU#&OPftya+K|wA_;zWcZ~D187th=OUsL=0o2I#W_@$lF(Ys4uFXOlW6QJzY
zGvUb%aQ^nU`Pg!9p6%*+w$)j8ca?s7Y?^ap!!LiP(6DQ59+&RyEEW|PU%q6C%B(fo
zXC$X{{Qmxa{iI1kx-mO0*oB3JESWMz#MQ+`Lqo%3(v;b=SFc&4(|&x@pMQ0?jb2|{
zd$~{6`pWL|{NE9Ctx82CC0B0QV$!a@efhFws}?M9U}opr^JM-^RZHuK3!hn3e_QkM
zcK&|Jxz^=oHnz6CGmX=4ZGU@v`}vG3D<&GIoDeu{@b7xc6w{d1;p@$E%w~UlHakD;
z|DnRjd-eZoAOHLP-u%_Iwb?s%@0PBst8=@*ueO)p?#BTQJv}qGUa8b8tHaMr*wyU#
zYr5QTt`X1UJMWt}Y%o|Hx;o6QnT@yS&!0b^w<T`a_UKX4?|S>MSAtC<!#yIKpFVz^
zd}Uqi?JN57^7FaPBH9uqnA!PEvaYU5?UA>?7qO#Y;l-7~>WjnHMjd;0cJ|xfF7EEq
zX0y-!%g&c*E4*8JT@s{xUiCZ6<bzGD$38qf%<J#(udJeS<j2qF^JSmi*jc>%;p4~2
zTe7d8t9ZNhde6zp>e6<0c5d(Q?LGUy(Mpn$JM`Pt@OVkv>Tf2muC7kE`FzIs+sFNX
zp6a_DZsUC$TIA{3`B(q)|3A;|K}pWA`diNOHImcSOiizT`1;j!SNZ!qpP5ESXP9PB
z6O@(Bt*EGwFq?h0;@!^YJ&WD@rTp!FE(zS87n^*fLy&KM{LZ4K7x&dxKW^r?GvJf8
zda`7*Lul@e4F@AOr}ZAb@$&NWxBp`!Ph?$M(s?-k)DDYO#?#lYU;ps^yZP7C*ROBC
z)KL2DjAZhkA0OQ&tNHTC%gZlLKHhiCUB33ohVzU2?Xq_4-fhjYW@YelskgVb8o#=}
zKEI-}Qc_V-@!0);-?kS$Ty-XWer;OG%S%T=ZkIC8%juCaJ*Ap2s+h3Q%gfuF_ppWd
z3{cgxIBsv%vCIDUxe{%OIk&c)ToJy0o}idm+8mq8OAkS{>O4UKfdrlCZEJ2_@A3Zp
z@wmM7*Vot0=hb}jOuoObmhZORpAXK9gO~e(3X8NeGZIBaL?jlw^&0*8`?vSs-`~>g
zd@=^t)<&n_DZgLqHs7xHO|RIR_nXh#8RwYIPTYL6r(M48M#QF+la=4QySuIPPu$v+
z+Ff{<*IeRyZ28>4h=_=}-s?Zkk=>A>XV)zdnly*|DX5|L<&w94=9LwJpt}F*+qY{w
zh1Ii;^+-xtm#tA!Qu^}e^ZD0p(s==4Vbh+SpRZqEUtjwE-rbwa8@wd`f9E@BntkoX
zt?c!oIXP>boSjwwzAu!qt@;w+;LxDvH)loW<z<>GDlVR$o>^B`Oni2J{(3Rps1uhj
z2baFOa`Cu){hOlv{bi}@{_{c#3O4L2eZ6eW8lBu*TRcJK^fKSs%cAr5h8{e4aMF^W
zpP#>eb91wom)9f}+n-M+bMf(oxwy1U(~Di@)+=>${=$}3J7-ic(|bB&MV#5;2hR5c
zHZJv^{;Jpf-i6xlcb8kg-xHjBdt2#^e^<lfHSO%;Zg0=Oz9sWAsGX~-uC8rp7+C%N
z-PG;dx7XCxK7IXq_4oVr@rj9vepbREu8D~Y^Y(rX+nRaVZFTtivKwiC-W}cnYDw4q
z{dMy6Y47Omd7*o&zJB?9-ah;5tE->Be-BSdSrWA^=Vedu0aYU&=kmLy)1^!@7Cb#Y
zJ^S;sv!K>Y*_#^+kM&At-`P?4>fYYnPEJlLo}iY$_WC`G3LhWKd~#yqx5ALS=jK{p
z-B(-v^XJd0zdw9A9U2w2s;P<T?Tw9#FY%|eS>Bmn`D|wToV^?om*?45mz=l#p7H<R
z-(P<|pEs@lSCe~xUu-*{Y|!Skv!I4!+Syr}N=i<<%io7ZMa{Z%_wLv2`~UhnxATQ2
zBrE_m59<E@dilQo|L&;md2inYA9A%SeKjSn`mL#H#s!CFHr}Aj%$0ZUoZI{I$M^q2
zdDqs=tf{TtTJ+TG>x+xdxwp0i{{8j!>dIhsP`Bah>+9v$G#?1fv8@iv%gf8UysQ`0
za7;TpYi0cYI#7$`^Ru(6bE~J_To=3h%ir(!U$5K!Zqt76H#gJghrYeF_3GB_@Zax6
zLwx=G`o#2NH1zfLckbLd^B14fVS|v6kR^i3ZXYrwueR8;t_TPSm~gCDTD`u$o|T<F
z`_vRotC}Ahmif(H_2EMS$Z6iwbSAd9w~Oh=t+}1QKlbypvzLv}+bp&!ef8p``ur<f
zGB1lrORr8lJInHSNdRl<>uaF_0TaHxySsXG`uS6b4?CxypI3Tg`J1A`>3Xp$bAKyb
z-&A<TC-vY8*KV<0f4|-Sy1xFex4Pe)2`ao&CLa8DKNj4%bLY!x{rwu6nx3F`F}MDn
z1<U7Ed7ZcWy+*F;g<@qz!E;Up!3_nBUte9le56zO>;HfE|6hK0clXoBj~Cbf`#k^F
z=Jfugq@<M1H%)SG7=Y^3S!TJjq|9<wu<=U0*m^w<r0ebRhx&JBEq!x+wR^wZt=;A8
zm-)_CdwC~*Up-Hx+3d4*^<g((@3_AB+3shvvQ3Jfc&v@w>~?!w?qrqRJ39hF%}7w^
z2Gk^yHqQfPzGMCJ>pMC)dgW}R%<q;=o*e$pYSm}Sh#f{d*tw@#ReoBs%zys6%FoX-
zzr48kt$**tC7}9x=FFL1etuzfb^HEKzASB;wZyji+X}~KwsTQtdY2D2vtM26E&lZB
zQ%y}x&wl%VJ5+A!i%<LOZ*6KC3QFtM@AodZez)WBOz*bNb8{>ggR+wW&(R}CGJbq`
zxa;k<+f$}Yc~YSNY<B*>m7tz6s1y?pe=T+D-N8@aznkyn)X~%ojEj@|o)D_MD<))>
z-&`wDK;@Xtes*rI_F)5)+FvDC*TqKLR(}gQKhM^*=0}07MS(;9{=eIdjE%n@;?@^f
zm$l=;g9P39eKFtf6!(MD=$<_`M~@!0yi>Eg`g`8qkH@65uCAK8ZvVe3^>t!tpFe#H
zIzP`A)PMT&rR3|oyV0A|&TeX7{pe9rWmVOyhwbuZpS&2e7act0YF+thN!qzNE0-)$
z>6J8gJ8$zDRGZ7(3ssxD+i@2Er&3w@+AkB?cqA4~R`-9^$S!x`KqK?jRiWCT_<4PO
z{q^wp+NGe1@Q$@lVDaC7=S%wKY`0`z*Q@>Ya`~>0$E4@(F}fahE#d0Q;OAW?5$gW)
zmK<E=W)iU@15~tLSsAQ)^52`;FE1~@eK_Q%^#qRabxT1BWn1p-W4+SLeP^3xo}Fbn
z>D=AL*Vn~b=ib{BnR{zX;U}%cWt+<9-pn!k`u={rb@{t1&*#_s9bj73(9o*&Gx<bO
zdHMA#D}$dte||iAbL<UX^E(U7@7DxZR#x8Hnmygi+xzOa+-Oj7QTqB?>9<b>tW!)Q
zKq=ZZ`<l+)zu#_G{dm|Ox;ji(ef^oQ9~T5(cR1iQb!w|ld3m|*_dCU_LRU{qJ2T_q
zo79I~pTB>fzJLGzStgl}-Yi`p#mdT>d2LN()timSzr5T1KI_5)$8&K)0m=d!3Orw3
zS-H4VSbbI4+9)ZTiVd5mGe6+!>gfsDUH0~eN?Vpw^HV8~h#e`VudiJ-K5uh)spEm8
ztgNgrH=nngJbn7~&C{8#NU-R{h#e9wC{>6F)t6d6tG|Jjp`o>)^MYxBJ!mAd2Q)6k
zz3^ZWFKB3pL2dCtCWZq}85?4lVZ%zR4(jj!vxryPOhZM*#m>&|TpS<610hi{u~!Eg
znO|L9JzdHyr^5Bwf`di8ENikhBpzntl{7kX^E3m)3>95n-+r4<9h;{!aw{i<Hcyx!
z;2CtdjrZxxmoM)e4cVN0yiZd>;lRz)E6P@`TzM|8DcEPORj6_Lxsq>2a~`#d#}#}N
zS_Q5s*2P+<>o1O)Yf~8%y*+R1|N6gP3kz5M<cPSs;LWB5%a=b7{ce(CZoYl>yE&?{
zTj$>lTkbb^^|w3gkJWozSrz(vl}*0qop+61pn=v60`EXh)nQ=JX=!*WRpG-789pm;
z{rU5!Wi{stx4*x>7Jm~8=xu6lp1YT2x=Zs@sf-N;u2<K^-oEMWU|RLzAp6|CEFp`v
z|N2=iz!GAh0Xk4ngM#)z3MgD7IKC(BWMdLzU=VXUP{bRf!~z=W1%<E}C=NkGaSdHv
zT~j7ZSg>G$!p~p7w3L*bUcP)8YUh`ev*ym7J0<`BexH8(+TQB&ojZ3<{S6vwkzAgj
z2{yZ9v(%awFEZA~?Tz~Q@go;6Z>X17*RL-x7x(n=l)k$1a?!J&pHAy<EqNLA^T&^n
z9ertMXJww7V`;>5*zVpE&&l1^6Qx=jSQ!q4=KcQmHfm?lQcyQtUS8i5RGHo0mTOw~
zry}>>o}Y{QgvG^|zj*P2+bkZG;vO7q_Kn;=wXjowfuUP7d*hj3tIpsY$k}lzdC9V6
zS?A~3&a$m8Tl#z2v}vmrELd>qZ<Y}#Si*OnIpec6?{3uA?CWI`?=LKDuKnHm<oWaL
zLoJ-3VFxMGtdfJZ-{0NUwzs$c`TMuFfkA-3{ogHKUS4|dS#&zQTNoH3I*i{PJazJ9
zU_wH|&W{HUI7qfFRCe!+`SA7fa{uY;*RP*f^=c*eJ8>zgRlDEq@;1L;vzd#FYfIKu
zt+TUCy?=jud->DT)7tj1&{(%&LqJ?y+|y%w_wIdrTYFRa`?$SdE_s6j$i~)I-{Slt
z*KV18^-m_cn<O3K*!%C->#qL(?dECg8X%6j`8__?NBP;~$BT{A&rOlGul=>9w%Ya4
zqeoYkdW+kBIKVu;WMA^Jo{5PP)4zCdXhSld-glvgCnu|yetP2BzHxK<`M3|Jjg5`Z
z_wvk`JXv|=qvIMmcXk9yo8?^C{eIu-H*a!0CnZW~X=(;0CNA8xd9$d1fI@x!f3D}C
zCXC9<8yl0wW0HNH4=^ztXuYyB*uC`Cl|l*Y+Fx628Rq&|RO~P^GMX}f{`-Q(zqjSy
z290#c$<^JvE^AfdVK&<rlnW%b-^>BEIij}ZfW`$uO=;0{e-HE9drVrl^Vuw~^J~=<
z!6VG)cAVT>|Nmdr!&dPv1rMD-Rqdsn>bsXOS)!q&<mBk+IBCh9J28L1-OlIY<(;~F
z_wIN5e&_A|{ciWuK5=R3)e|NN_|7zP&Aq*Cs>;)+PeCoutyx!#Zj@hJ6S?VT4ycro
zT%IKf8Yo{^Bx_Z2p@EUvr0|i8tZmhme=6VKyvb2jSHJyzwn1W3P;fA4Fol(!eRbyL
zWm&hjWbS-?^ytx*g^!QzdcW`Yn`BVY|KMP=X~l<x*0#1)8#V;24qt!m+S+K-q$3?%
z(VJ#<fr`kZ7LO0loUR+aY-R9rEnQvT<NfmC5fL-4t&3fKZmzZUn$u_3e)@iV?)uj3
zdwX{7DtikaSu-~e&&$gL)nHo_4l?mdo1OXcxzG%hz5~`qZJjb>#)>0Hj&ObV^z$pr
z*rK(m{{O$CWJN{AsEtWSQ`c^U1?8^|=`*^YConQF%s`aRAg_bVs~s*J3=9cIpy7R;
z7Pix-7Z3`&K}8~{EMf3*YX%qd{L``*90boQp_DZ+`3r;!C8)xq7c8#UfXW(J{jh@_
z#bR*%0e4}{C!vRs;d!<A`1q$!o=mxYZ*O&ZYip}zVk!f}gRBRW7+0T}X`F77er`_D
zW0gvVhR~^|5oz@ct9F(g;Ns`MzR0zE%Iw*%-z;TdXjt8GnoVc+*=3%S)mAQ9@??+h
zwf9q}P0M<AW+o^lZQs5<YD>n#latj~uUK&+asPw~;K9RRZ#JL5vN75H=Z_yNLRW`H
zZOgei)kc)zKxo^yRnLlVHmG{)Ms2xpVWG2j?#85~B$M1*CVyZ0*I)Yc^Yhic)#ZQx
zzOTRj;9#@tx6L<mZf(z>4{FQIv#rj0cV{OT2gilve%odF`~QCPn$O3;utG7$D#7#8
zlarG}V`A1EIdbH4-u=DR+k=9GL9Md25gVOA<2{omPc|)k6R|dOv)gR5+@c%x@9*u6
z+L|>L)Q*~{?4I@a*Vj*9zJwGN6_w86V>ocMkbhcs!Ow=Pi(I)~U0pLD9%{9!`jWBp
z?dxl6C!b9VuBq8`_{R*x<P?dvYwKcP8{AvwD_#2P%E^DVhue5d|9-um{r}(J@MkOx
z3=X}IKQVew0=54hJ$m%{UU%t-2acf0921i(iF*nkA6pf^e%_|dn`MtRH#eV_1+`SI
z>i+E5+0DifGc{vF%;C_F3oeT3MrE9spcu8IV4;wZ(7D~`kN$gBTwZSfen+Cj)P3J>
zY)mdHE<UrRuC8uX?Cx)_XL%V`*s=4;TsYXwE_>|Xk7vuZ8`*nzwXIf4@O&P%X3Lf>
zMc<Q5^Y6u^pPzSiU+wRbzhAH4K3@OtXZl==LZ`E{&CPRp85tQrefnhdwt}HSTU|xP
zMNv_a4>a0$xs6wP&Sr%x8sSG(ojkK{Zd%&LBe{r`Tg+n5;tl@u?TmPwKR-WTe#2f<
z)6;CW@ArGv`K9`z3<aW(g%)NP++=%QGyRR4|GYJ+r>ALZYkPx>oYvM>O)IM?ZgIUU
zA0HpTx;EOp_TSIvUcSCpoB8cl<lWsB`u!3kg9GpLO}y8BUaDFhwpK(`G*s`be%zjj
z%gg<*Pmix#`Qt}LYD!ARrza<)_SIDGOb+|9p5b391A{@g@vYU17AdK!sDOs-_U+r(
z)zJ}9RaG_hx}3DMwz;`EXtewJ-F>O2#Xy6@b#--IJUk&WF>|=MxK`QpU)`C~EGjFz
z_Qi`ApYx(OrF2fyiF{=6?Afzrn!(F5PEFAix5;zuPx|qF|Nq)dZdQf^N{bdR-dgoF
z3p5;WViKaMsR?Q=7#SJK$oZEj#@GE^I!!NDOJ08d=RDl=QTy&BPt3BK&J)4Fa3$ni
zh4{m7Z*PM-#Hy;QH|KLpii$4XmU}zv&ySC{_Edg$Jqv9ZaLrziI-9hlINwYfKA9BR
zx_Oh?^u3@0Oz#|VEroBD+n+yus%dK*8yFb)tw7b&xt(w7{Q2|mRlQz&+Fp<wTKiOp
zC#Iz>i`t$S`)+5CtX0W|{QVRD{HgJsVc<Af-9K!xTkpBu=dZ`tubnhWXlwrcdx>{0
zUk-lw@ZqhkuRm=*1zQV{9iD1GOR5#z7SdB!cW-QLe0q$TnK@OWtxv|X=-_q#`F64U
z_U)^BwQ{+hMf=&b)dllTJzJ5vgPog!fxGaSZA5Ep>+@QHZQHkRudQ|kb+o6)Re5TM
zubZ-b`E%Ci6G9%^h|gNArUa=nIY6^gR>jYJc7D9P-2e9Wa1}j0zt~+R7n%8O0$$2Y
z(wg(!srZTus9cTl$je(-_wQ$V`^HI=CUNguw#d80($aF$5;fmhbH0~Ko9A6=<CO+=
zAGEBkqc81bubn<+%8Cse0&d>C$;H7jVgLU9e~XfD8veKNcP+jW0y0wPS&`J50|yQi
zeYXU)s^e=uy0)(8<mV4}b8Gwb`Lk?Z$^C7)vvbU5A3A*a{O?`P?R+QGHm{7|U-$G{
z{f`fcTXSv(fyNtF1TMa^EjPNdqT<DA{rw^T|NVXYTTEPB+t@g`nT>bXl*?On@`~6Q
z9%x<PUtd3U%9M<Uhg!dFT(n4ODWYj`ZfkO6WTcj^?o<`f%y8BByX9Nc&PuhfZ{wAI
zwe5D^<yofLCHHH;drkuNhfbXESh{qnrOi%TQ`1mZR#qvCf&|lfAE&y5t2~Rxa%=cx
ztuhWYFwU|lT+}CLn^ixlx~y#5q{)-t{stw8l`B_*CWo4uo3C!k3^vWZwdKx7P^)Z5
zVRH2jE#vBMIi>IJM8@teyZYhb;nEiu6wl7J4&Ph#HK<?C_Kam@H@HHL+LkkOUeznj
zrAwD;>go9{UAi=CciCF2@^?A+kEd-ud3Nom7Xg7Dd%j+ao;q)yUVMB!s717X|G!;H
z$;n^8-Ois~r5EM^aq!}Ula@qn&C)b94D9Ue6n!^&&YU+FGD4RuI{$9!62G}tFE9Js
zul*unDhsN@Ve|ayrV$3>pp_!riU~W}^aPn;jRmsW0HDSM!(_x-0dNCIpd-r;$zbk>
zLJJ8tCTM05Qdf$nH~6eOs7dRz!{vn(j^+@^2dz^;jf&7^D^_@La&mHUaZOske!Y^C
z(v*4g;$FVC`}-yM>)YGm2M>bg^8ynR7F2zIw^lcL+mzeetG~Z1DlXRkes#J3eD7b8
zk&@Fn7#SLHm8(})1~2D|-(LPcZs+dZpydm@zTL_${qv)6>C&Yuv#+m<+MYMJ>f4*l
z``6PpuZ-NB1{x#fIlQ6YJoD0%u6eVK1wbo01k&#`Z>{}Zwl-#Gkf*0-SAYL>6<1f+
zmASXKfu?`W^6$kw%uY^95)l@DY+zRO#A7Qc13o`r&Ji&wWP4sLubj;fq4P_gJpip3
z3EvsII_%`(!_FHwZv1AbudfdpczS(ptyRsBf~kGaA3t84y>6$Qy5Ag&_unpE3KA6&
ziMcjwZ67Gmj)r{y8$NU9%&fb+wq{*l_txOvLTC2h-%dSw`t;@X`1;VWuxV<(vp|Dk
z8b(H&?$m*Xmgmo(|L5;tQ3;6^%jefcsj8}q|D3$i5)?BHtrm}k5-}&GFIlqj$*ka&
zHuIR2b#>KJL1i~kO~&`TrLFDNy4~+Coi)F|rm2Z(ZPZq;&1q*Z?W_I0rRL`+tvM6F
z3T{|+@%Q`v>&xEWvaFU|!FKWD#dC2?t8TV%3eVZg64IQ%|L-+9r5Mk|#D#nI>^aq2
zU0r>9d$^jRVPNv{zN-tJ+qaaw3=$O;UAbdN#MZ2<o8E8ExTw^A-R9E?Whuj?mbm)A
zrALn+zb$PXen8cUfkEepWPj!d)cIbc#Kgp1zu)ct`eJeatHb>Epn;@y$K|TmT)GY#
z4r@z{xuUF?B?QU~F(>-%|E-X(|8p^M&59K-n$~mj@YuXhJuqjEjAv+lPt)?{%irz)
zU#F_3_Ug<`<L9}@Pnl$2^O;og=Eg>?v!GdI1_qrcMeh%SnmM3BcY|-Q*YAJz_xt_z
zA50%Ue0b`_iGaGgeTRGBfrdZNrUh42R7|~I`09$LWE;r)+-z&)>wY*+DmiO<J*1LP
z`!OVO{QLWR^^zqn+~Rs$`a#QUR8?IC1qDGFMCIwTXIk3Y-b<G*{r30Y@B9C!S>Njv
zR{wI&`n`sQMFg+3*_4uZv2D+@FQuKGr8@iUvbeofGi#&#Tp>l-<JcBrJ7?aLK-q1X
z@9b5{$NNAND4RBK2Cbf%Ge>6c*K5(=uD`ppGq{<Z|Js9t&7x9Ls}3D<0u69PZ_m5h
zA*igkQgt(U+~C5d)YB%VuR@kCUHbCJ$H!dU+?Q`{&Az&`IQ_Ss*=*muygu>$Nl8gt
zl8$nnoo^qn?l&jk@2{_=zu#^LO;7O2Z@j#xvbgl^t<daiYXbA~)`5mv9`~AO9c*Hi
zGRukBIyb!(+{7?UGmj7lO*(q{_=F@SCAI!mQCGJ%iMq72|EQ#8QOeTe{G6N@yF|71
zs^^-ren<4lz|8^!d2B^BxYvZ-tI9wcbz@-IARwi49aKladV6ihRz6b(HyvV>O0bS0
zLAz_Mpne@F`5~9-q?Vu{^@Lm~LGmaUvJ1UUBHH=ouYG!Y`s<@^{a4H9*G*EHI&Ipk
z8yl0gbahKVy<%V}sC9L9_44ol&4kp{)`|)WF8uQ4i&y-2(A<9h{e4_~eAD{-`<a-T
zukJ3-&%L?n>7L*DH#fP)?kbr$fBt+XW@b@w@#RfTOq>0Wznmkrf#>jr7Z(?UI#sry
z3~yVt<=eZv+McJ*pAYx&=!mQPnVPOA$k31#el2O{*HXhpix-0?n_OL8UoM><H>th7
z{nwY5!HEG{n-PV5)z_=xrg?WPWNoWLK#hiW`MMVy^3&3mDJd(L{`!)6cDA|y#*G_6
zT_-j^nTnJ4+N+CRsUCVhzdlZX-;YH?LPDTLRiK%UZ@HzfuYr3U<@YMx{cXQa5f0~M
zXvn_3uXcCXx){)K`_bday(cYNv<TGX>Xo;Tn{A%I?!#6?L&L7l&O!-k%OcR!+{&My
zpRZ0oKkwT|)W$ga(k|9>=Pc*kN&qb%b8hFmy7|1_>JJ}26x}|2=+K*9F$RWk=FPWP
zcV})4TN|ay&(DAK*s)v3_w3mtA}qXkZS?k6A08eKwPKf-myazzYid>asHIj%U*G@b
z%a>hUU7OmqJ*BKlR{Z(%=gYO|{LoCk)x}u{tV&)?uqu5O^03U_-hQr4<tC|c7KVmm
zOXY;rw6s;Fudl6&-M#H_MLVDDo7>uxr%zuVU;j5WGBOghvhCZOn~yJe)c*Z?9W>na
z``cUDxaaVtRj-rkT}+#T^##qcu6VTb$*wB+-6v};A|n&itIfpl;ML^GlNW=Ux{n(h
z8;y9J-TP!#egQ2j05zIbJhx_Dz0@J7Y?69Pq}?*dEV}h`%nPFw-zQhtULRzazmmOv
z@3OzYzu!K7D(G9geBFvEQ$%<r3=Tw|W@cD$%X0BSEghXH)2D~;EX>c(|NZThikcdD
zh1n!k?~>ndx36BY!sF=CqkP34s|x0I&s?llnAL1r`>W*d@B9D5Dk^ro+wqw1W{#Pv
znp)PYD=Tm9DqRhlkM*5pa&o3O3&Vk@KY#pqab~9R(_{Yg?Q-wO&D^lT;CH?KrxVIq
z*VoOJtA1nndv7Rs)e*$(1FNF9uiKV;d)bmDDxli)-o1Obwq#C@+M2aA^YXIHJ39*X
zzB98kJaE$c?zp)6+nbB#_iG*-go#bj5|WUpxOch%)~g7~<efKf-md@ueovh-V})`0
zxf7>PpRU`v@y(3-Im=fSN6fuE|H-?@k3s8YEMk_kGB8YkwrqCZC13NqPYkBbp1oSt
zds@hkSsy+Wq^6{3*xTQK==MGL_O_F0o9BL?`){gc>8mL`hXdl`=Iz<D2b7pm`VXS;
z{==$IGGS?*>N~HOC@Lye{rPx&?p_{-hVB*b*n7XdzaOuvstU?iwQE+a@X*xM1a+(f
z0wydecGT6@KK(E_40{cxa&={}`^1S8y}Z4PD~hVKvQ}|%amBn#T<n*>0krN`Rb3r4
zdIA~+;W=DzBX9G~FCUM~&o;XcS`d^zzcx%#Qu5c+>G4+<I5OX@d_EVHJa28uEcQHJ
zQe6DFcpd|TX;?d-tVzNF2H!arf$sfsp&1z~f`Wpk%$>XT$&-}db;4>s0a;nA_+%^+
z>ZgN7f<Qfy(l<8(d!<Z+%F4EZ)J~op{O)Gh=JfMn&(F;TO&asc+r_l=$%57gU0ofn
z-`?K4n`t>4XdL6^#^Z96moHxqn##MnK7RilyLz6O>B(PTT?I`_U0vYFeDuf>(4;P?
z-vgQ~4qY9V`SjG(SGTw4Pwk&Qb*iel`6&m615b;uwcF}PZ}SOW?iU&rHLFkFe%*!*
z25Vz?ht0JvFS9r&|9@Y1XD6tdGpYYq0~)LO`uh6yx7+WpD|~!xYW20JYq#H9_2o;6
zs)|a+mlqd7s|9j$*37H@7Fq0f#VMz4Cg-v)P*QAYU|1W!|6ZJ8oaXQE@53V^W;i)H
zeL1N<UqeCRz`nOPHYUHiw6weK*Gu)<uUEslI5`bV-_5lyUse12+pUes?YFjOr@z{m
z=nHH6%`i-cwf(~QZNFR){rSK0=6z8^L&N8_VOO4>IC=8oqodtFt5--_ZY{GcdeR|R
z|L3E&+&Yz)JD<-BPE1@VrWf-<V4VtR87#M$PC#AVKF|Up&r6H@?N*8DMoqCkXMEl!
zSZ{AJzZk;-opTj@VrQOT@oq^>OceiG5@EdO|G(c{oSZ8^EUpA)=hl{%jJLP8PSRSJ
zao+q~ehfoH<ebt@foDZo&8Fq=Vszv7L_}}P*}3TR9Gl7@_dc16y4&v*9sGOf(4jAv
z{p~IH>}F(OSg>l&tprsywN-g{ckO!IXAN4Y%*xJw`tIGkiSo10E(6UxPB-<Bi<_r%
z^8Wq*O~0q+K4)IW$Z*c7`Ki<#sSW#nz0$s!W5&wPu5E9>|IXxe)#AF~DXhykEeM_1
z&6~u)z##tUN<-;`1C3cTm;24N;^N`C5*}Y$dhjnuCo3!K%Cfh&MA>%Vw~tx7>e1uJ
zq1*Ff+c$!iyM1_YaC(go!-1(A>;6`OVlh$2-hO}7vt@;=e$M%~;Nq)K&+Y$5g1Wlf
za&8vglfG;J_e(HnZd%#BZ;Hy*_3@xan8x<|Pg@REet!1xTLi-jMNm`l-rj2Ko~gFW
z7+3VDGF@BdJ9|sn+o;s^bni*C%=6b(zuy~vcUP%#ZeQW!W170UzRGSr7nb?XK4r`P
zx>J4Lg!%L5AM2CVetE}u7ii_|-{<!K18;B3Rh?VicVd=lwokM$14I20+lX}sS2BW%
zWKhd;mT7j1MBA&YtJPoLNtaMnRRxW1MD45D37X!iUU%U_fNt!r5a%|Yi)YR6=hRR7
z4Qk7)dQW?CJ-+^Gm#Fre^ZTk^ENll&+JP2~E_Uk;a&&A2ttyGF|NHgU&f@2(>)9C?
zcIYj)TbB6i%S+I>hH2UviKkDVytuJ3*{bZ#jH2RV@ThRy-YDa=GX}Z){{8)(eY{V0
z*XMKATT@O7^~zWVftK0MEx)%?*1F81#>daWq2bz^NM(C_dr&UBxhWOYo&5Lbx&3r&
zJ^n&wh8eBwy}Q_!n?>aB`?+k<;>B<M{q--e2vi33F<x9;3>vsdJ2xlu)*R4Mh)b6)
z>1EyD{eEBc?(+9~=61QaOxoXne}6y!)GY>v2cQAdtmdhcCok@kwGP{{H~Dzqsk3L-
z9us9`V2H6>&bDTm?`$n)<;92I&Nj;py1dMHb-p75gN5XDj@ag4=CG2IE%&Nk>)L)i
zB7Ex9DbNxd(4xmRYji-q0<Bb#tNjuPYHu+tI5nq=|JoAI$zKlh+k-}kqPApAymRN=
z)4iaDDh52R?(W%_mUy0vQDR`Y+IMW_v*N4+Mdjt;US3^~9zWiich^eRrXt|d&gThV
zUtV@kOiVl%BgepSKy~AhX1DyEPsQ#Qoz^`U$Hu_mcYHTTtn*g(HLJD-nazH?r{9Z#
zfnmd{EdB^aMn>_eONxt&r%s*f`ihMqCNyJ13`ixn?KDR#@ijui!k{^wox68yYiX^j
z5@TavND%VA)2!<0-Y<7`j%6`u+DlYiJp051MbLz0)Yh!0Z<aDL1mtFHh-tpe92S}U
z^>>14>M4<}IX5re^aeE^1VJ)PVR?D$o}HPw*tJ^>)F}-N44h?@+7-1W<KY@r&>YaB
zTg;$k-L?^+(X$s97S6J%G&;z|(D2{+ameS;>I0xf9H1p8A3hZL&N2Z{Y<zrty!6kH
zk6iJW*TwG6icw@>IPi4kw+2vi)brB1*xe=t4-Rm@%a&-%F`Mn>?Y%lVlYzlP_Itw4
zwk-aLlP6DJwN+(caM-%)TZ5>qZ0y}&CWe4yP@lp)U7vx0;lNdkzm^dU3=ir-9Tsdo
z8=?oHuughU-Iw?HSZ`Nn=f$tr<Mr+B?YCxK_1d^`<EgV}b+_k#e|HzW@ng0Be7o>R
zQ|5GmJ1T`?;6d`MtHZVJ?BW(KT<GQL893jrcFM$w3;pI=h5p#p(!wHZUl#*f9#ncg
zcKP4m-(NqS9)IoD*6gV>XRdVXm9kv37;SLoli!6VjtB;Zn5P7`Q`EfOQ~4P*t=qma
zZg17f=<Rt`Pp5{PBp>5x2e;`T9Be*o&)NMD)cqC<x|T5WZ>i$yu(hBLMN)F|+vK>o
zIFNU*t&J}I@!=s?{O{uhs-ER{3fq~On7+K-et+I~)1^z7YH4WfI5FSjtP6PXYmVRs
zBV*&MyGpY`>k<<8IJfhCdm9=U5U}9SpBm7D;yc^+R)0Tr{=EOcfB!(mJ7^ej(xgdR
zvisGbgG6)Y$gr}pO_S#5;hB;sVO8|RV``sy{yiJe;{S#1azzsSyu4Rq%kM6ooxd-V
zm6a7dUv+lY(%RqOGJk%0I=z%H3_Q1-wCeXpuGZGpPoF+%nZJAcHurwrM!TO+gwM_}
zbOtT1+n#q<W}9x*mJ<(uyUSI&fQs(d>-Vqw@uQ+T`56~zoajL4x#P#()6dP(G_U*h
zCG+>U?vHoN@4r0AE*}yR5wX)CbfRJMu@eS8-Bl_szD~`cxy_h&$x{1%JmRkX`E)v8
z@>J6R#60=SM{<h`UR+T8`sQXZsDW~8YxdLU&&vZ}=U!Vg6EZEnwcghe6pXER%5LX^
z)?>*W18upnEPjT))v9S@^QWm;&brJ8wBpLsv(w1P=*o`5$K7%7`R)HGc<y>OD_ifE
zsVO69q;P{k`kw9$_5c5AX=+|P)XM!f8PtpQ^bB-yX=!R|Qt{lmb0@S!tlb~H+;3(1
z`+KKOp1ioL^!1fZsi!}mn>c;?@<odl6+PaZc6QR)wBYq|d-a|kPmKf(7Q{TYDtWPh
zk(n*y(UDH8sxK@4dcM1P^QM=d-?sPWiHBI0E?f5MKqE7#XRKoT=fmM&kGl0iT{he5
zZyD$3*?#*A+G(_}_P5uhvUhh@LThx;qLIYJg<<RC)~=1-o^_-{aO$=cQ(kc1F1+Uc
zR0nsXuy6M4$4A%S-Cce<ZFA<yNvctsQaTTBdv<pAZRW7g&(4BcuAoWJojZ3H6&GLb
zHNUrlm0K+1#)d?-IZL-fhdx=?U=DzLUh231R}q-a0UcM#iVr_v8^OQ;oq|qU_1kf=
zfjr8X_}ymKV$dKq^1L}H$e>!ltD3-GB4^B;BjW0c+TY(mgN>fAudM|w0NU&~*9x>?
zh;8Z8rRU<9vN%99{on;X;29y<(jVSw*$SXx8$*^wv-&}6LtyR!jbCR#wtj+>G^mKh
zGi<{_1%tpdKTFmeH2S^T2$U!>hgP;1K6X2L<j9L(uh&nXKYu=`xqjnD#M5Wb=9T}~
zjo!Axd%E7I&!2-65*9pq^e7}CAmHiz$yW<OYk)NHZH4<#%E`$I>QaHG(qFIJ?f3ip
z`|GFm_pjNSeO=4gIJj5JbkqCUGiR<mal!+%8W}XV<Zu6X322-Iw0Gv(y4Yyh<&n9d
z@;Jh$^u95{!Sd&4XD`=_-DT19_0?7HySqv+gVrBQ8mHYjuI@W)NkanzXfbwOUEQQ5
z&(6-y{_)`<XnR>o$`erw>*wGCQtVNWcMB=S^sVEcK7E=pZ{E5UD>SNiOj@$gxgAvg
z=I{L)7Fy>s4K!)-Kx_KUnJcfYjb2^$_7>k`@KojcuBIlYr_Z0SPCVT9Z6j#cpQ@^A
z*8P2Z5AT~dZysnp#JbqsdWB!FK@0wi2~VFq(J(OBaHk?6VFAzK3lo*ySC#O6es&hL
zArrI?7dng)Qp&d)G+<aTRU2iDqWkMf_4yf~b?_z`6LyuperC|VgzNdrQ!=KE<~x}g
z5){u>Tv*ZH-+yk7WpLh~FE1~Ddn^8U_xpX9L9^i-HW=teZCP;#JU^NA9JKe2fnmo4
zf4iS9^J_kJ9=@?Mc)8w>SzUS;pFVlwF=>`bX3)z$przX9=h=qtud7`fyZhQhw{M#)
zc@A%o|J?sM=8TLfCpcH`yu-FSdV3z<^k*tB+vV#v*w;O*Idu5&)QJ-p{`phWE`4`<
z?rpW%XP15W@PYeW<(nIZpz>W+RTVS}{`gq$>9?2BCL$jnJ$m%inKM@wI5z8j6Uk<I
zcaRDHL?md9Qfg}I$}L;2?7P1*csXbz&C@4OGVbmw&APeiY31`3!OQ!Ul$EDWoA&I(
zlW$k9gouiWWIQ;~82;kToMuo%q<iH%_TI7=7aT$Dj3b@GrC(kI{+@hi^XAP{=gi5u
zpMR)@6SS<Lk(pgYMn=aI)Ia}vR6JfoP0bB78Z*zf`pxg_>tds8e}CIrZ;y8_a@G5m
z)r{bPD?H}=Zqk;Vn?}BKtwJ+1GeOzx(4j-14piy8J2xL%fQP}$-rv)meRi3u_q2?Y
zlT`U`&oa+{C$IrD+O%}}a?mc<#qRyn_V3>hnxTBN`Fz|n$tZr1@higCMxl**Px|t>
z-##pJ9&~nc?-J8%D&UgkNF=Y=nWMh%;Kek!%tbDwv5aYhR=zP9NP<*}9kPvB*9e-2
zY8BWJ!wjlSkw=X26pr9o!Dd#((x~bUG0Y(6LnlbXCeEHc8?^D{zn!Y8YhGTSRmFz|
z!r`n83~O2%zOt|1_iNRi$rq#6F)#>T1)U3U=MHG}F8<2D@JI1d3=ONpZ{F7itxyu&
z@bAG{^ZOy)V!B&uf0w<zzyJQt(~JxZrUHzw%j^DpbkDuH$+h_TxzNLHykCz==UY^J
zGBm8_0T<nW&q?R+S=i9PaJTyX-dFec+k@N}BgAy={hpuCX8$@J|4)gZpPyIGCIYk=
zu}{`|&R!kpnkD6gzw>3S%U*zTp)<d&iYI7*q^YSXV<Q8D!&Jcy|IUMq&R)Ma?C$RJ
z?fszj`r2V@CL~Ini<V$`unH2asxRN%+zeX3_-@Z<zqj}I$J_t;&|LT9A$#eI3!o)I
zzkWRKpS#zEfgzyzgG#w4X!X3GUtidoh=os2Pq)t5d^4x&aj&_Eq~yybR~Z@REL^h0
zMO9UmFZpVrYqR>!-E2(LmTcK#Vw!g+V*S2fSv&1*-tYO`cdzz)?A~v;vOj(LRCI}p
zk>Tpu!;k-OFW+t$I=x^1xPAMJ<GpQ95-L+3@pfF6475s$x@W!2%sjZnkLPs2e9fIK
zM>Dju7cI2S>Qt*pnAuse`Qny~Z5fNgx~!IGh(&Sjx*#Ii@!+R@#+=H34QX)&`(*B|
z?`4mBUd`=iU$gFYP5=6u+PnW}=j7#uIXgSI&zs)xRCZVGfvk*-3-9jkHcdY#b9RQ|
z;;XOAcE^IY&FriFJ!Qg#2aVb+3=FZp+vA%-n}e@jyO#Cq%gfw-a^m94FI)(?=gYzH
zLPV$NJKtTq1ki{y7Y|QPdGFM-X_vQTUM_iXfbs60%E|jzFfcsWxa+UT!+U$H<#(UG
zwl;ce>FY4h|7Z5w>u73vdU|@w7UeQDylXd&xVP}OIjCu~tn@di5Lvyj@YOGH!+-}=
zd?zT*s}fI4PF@@o94sm(w(P(G2hf7X9Xoz({2dw|uC1%<3mQ-i2$)b)Qxg&ub?e!-
z$H#gn_xJm+UcWMUx!uR_CtuA_VqrMoWV7{zt)`}DYild0dz6y01T_9o`YHs}v%In*
z@a?<sz`%uHUtiDu@ZexqUtd^c<W1%Ei{tm#ffhI1Zr=O*+uPqM=2uuj&9)cMK*NKw
z)@2&n+TNO)nv+2Lm_XHN)W)P%K6$%4@AfIX_l5ZSf|gNl&Az_QolVCRw2<@Jxw+Y2
zey#1$1W&ID2e+`YvVyku7Zq*FK6C!OKexDENMz*9b#Z%dz1wG7^(CO7;Dhkp<l^GZ
zuU@^Hmoa}`TLUYDgL!yd9H^fC`sU{4TpKg9YhQP1itEJ$^vl_Pxl?@pWZrgdW#z?J
z+q0^fmvJyMY!L8Yb8ywFRg>=K<(uYhzx}kts`TwGQ|0S|l9DSqh1Fgh6^{>zjh)NI
z#kD2vtW@ltioo03^UaI+R)d;u7tUV2e*N_M^Xsqf*uQ`O>r!E}{CjV{JqK+W`S|E4
zXe(M!P*6<oO!I^;&|2u1Z`@5-SXf@%+grW%n6#8s%=+>vPft%j{j%iWYImm+RZyF>
zVj`#qdZ3XxFL~?Mt^Ie7=WX9^$r}+Gs=6{+e({C%@%EmV&dxTsej_u_0n|}(npehq
zZHi_vXqIC8#^UGaGVkrFeEUvVSa|WINkVt`R$tFu`1|5w_tecdMTCVv&tLz%P%n0u
ziYFH@@7oQ<6->e41=8wrmkqM7>6n_DYFb<0HobP^#)><4VvZg?s;Q&nbIIO6cm0YL
z0ma3ih3|*w=B|~JmX7XSAGz7hY_{*mk01SOe88)e7tHSN?G1HuY64A4y}rJF_q-={
zKR=~Deez_-Hg9k5$%h{Xq^2%Cbog-WV_ij1kyB(fx5z>UH2b3hTFEu3<k1mM(4rbp
zF`1IG<kjofp%D=)Hf=J}joY)sIoik{6y^zv^M0+EvuBSDXs`RJ^XIRxjovOIE4y~l
zBBfqA+goof?CjR6?>90sig~`_X3n~Rw9PkT7+2T-|0iXf*7NPn&Bd=?W&Ql|Bjd$|
zg`gP_P%$LDJyR1@O)dEU_kI1TGiO55($aR{e)8nW4$~-IIh%?PHy-m#7&zRo`Fu7w
zHaXl09PTz(6AtQ#?PO+PkN_{LJ$k{Sv=$VD3~ivkMuOs+gP-`2`6dzfU^UntW>B!h
z6oMo`+53P2s2<a4JGSyQr0RpL@=fHORt{cUWB}nWJot$Z<XX_GUs+K8Wk8ZZve3}P
zFBZ}dN(6~UaAa@T1KGR*<r8UcH=@)5IqQH^MDtTwNGY`VAXCDbxz^<(A|g*-o_0{r
z%*vXyUjKjZ3^#}piQwqy*Dt*t)U&d(K7CPTn09o%90NlH2k*3UNK~@uygwkK$iNUl
zLMis{8)$4id;Q*Ja<)|`^0sHcytH)H>ea@T+S44GuX4V6{aV%Y=g*&@X~y>T%ZisS
zS(5SiSns@jJS9SP_wIU^|EZjBUGCS}*}1O%x^<Vj6lh1asF;|Rs;cY6i4#wqJ$v=a
z%HYtTphba;-L~$IcXe$A9bR#;nO)n;Dk?QK^=)2sT--X($!eK5HYDEKQMmZupU?hl
z<M+qy|MzQkS67$Sqir^A4Ocm}w6#?|J3Bk)?G@mcG)!t)uFp8PV}AMfOR@F$rcRwI
zWm~mnx&Gl9kB|3*Ms`8{elM>s70`hhpkp>bwd>(_{_VTppO~l|8XUa%!Gnaix3<2X
z$e4X~Rp_g`ySIbJCFE?YJSP46{(e1lkZ`h^uTgcfoXde%EFV991m%tfMrIKKfd?;7
zGcx>f|N8aosx@muYHDiQ=N=Z$-oVAh_2l*I)lZ(JT%R$2{(LdLm=#~Xl*I0>3QbH*
z%zbxTXo}qOZQH_*9z6;g{=RLOzxV63pr9bo(38-H4=GMgPA2*HZ2aTd7!EMxXRV8x
zGJU$XmX?=o^|un~{@&iwz4zh{{Mrs0gj}|4S=id=o6p;=o-spWu1)2qm3{f9Iz{XZ
z2b`j$bS}sD2Ze^J?!J33>rUSG(=SV2-P)S%UmG798oKFb&f9s%k65k&ZAEb~503|p
z{Ou2W{O{ktb=Q68I0x;1{_=%6Ux^vKGzTrj-dp`Ws@L4aWJg?ml<x72_cr&oxy=MM
zAH_9wbgsO+yZi33cXxJvK2dvX_M+9RR!vg*`u6tsmFrih?%Mct#{d5|YUdJFS#%ai
z-`<ux`(EAe+@HUHzrM88d+jy19%*ww^Za{PUS3{qThi+A{qq*yYiDK}n-)Lw*}n1e
za)0|zvQ>tLhM*CiySvNpitUoOtqL)l?Q3Xg`2S~B6py@J%)Wj5e*JttAGAU2`j5ZA
zzlX-ft+OnCX7kl@O^ay+L&^JlwrgW|Z@X$Czn-zeEnTl*`jW`aX)9N*^t^fV=DLl?
zj=6zW<LK#~`^tCd)vK(~kdPHScmC{ruc@KoF<H$wsIG3`?a8-g`PyH-dSz1m?TxzK
zvZ)sn7z2EKdd%|gt(mGFzRG{T-MoD=40CnN%)&T1IYDi|b@BV(RZaT+^z`(plP5pE
zrKhXw%h&Eab?Q_ue*SV;X%9Lr=km)bhaX;8=-jU2`SRt<b#Fl<dZ1N|$;WywE^_Vu
za$LSX<8T{qSAYNYCnqOczi+c<<Q2Pc_GXS5XyVz|*Ee@t1b=p39{6;P6DK@={{Ef)
z;6Nj&mz|uv_;wknhxFy;<*$$X?O$CDj}LWlXaFtFn?C*es~Ow#?_b-LdRjzIPOrYc
zo>$H$0<`Y^@=KGd`3~U^JCB=q1jWV8o2DDR?9ZPX&@9c_vuCxmw2G?VO+TA9x!?cw
ziwP4aF6`;yd3$4{v)OE4OH0dBCr(@dt<BhW7c}bd=ur|Y8{4bB-|t<XrW-wF&YU%K
zt;_BHnx9L`@%tyrylZXl?QJjTmfyPw8iUZ^_rnR)I$Y{KJx2H1kB^T-gM%MOHG}2@
zEM@r4&a;hve608K#^mE$a&Mb~20eF|y)BY0e{i7j)A#S!-`?K7wcw!>Xssb=^%7`z
z&$Ba<*VBuxUB9lar{@<M8VVXS`}Otpa%K0v6AueAUS3*yYeS;*^ZH;0e#^o~Ep9y$
z3qk9+^!I+5bTN6pRjHS-y5AMhuDtNL%A+qfUIb+dk6+7=m0QT1I&&uHGjomqTr1V~
z!wX%z#a^D)-#<k~H*%B9!i5V@ojP^tU^6>t&guF$alIH&^v1{w&7Lq}LEYb9n(FHA
zpm0`6O-+6I{eFFTW#vvbUMUq%FF(I&ck`~N&#ztf^z?N5ua_4$t~(~&pV?69Bgi!2
zi~noTbZ}~V`s-g`U$2e(|8DpDl+8C|<XLVf{rvQ_$Z9SqYNX}Oa%O19c>b?RxiUe~
z`OEG6{X36wadCb5^?Lp4@bz)4R<10p1<jZH`ub|=>YCO}XSiU=5y21x8kGF~{r&cx
zVy{n4)&BJHV_-_klG{H(dygMHNQm86b2InPL)Hzt^XmUq-rZGt`s?#<as90S|Ne6E
z@|OMv&Bf%H&Ca{CBk{$#hINO7vo|D&1-CH7fEFMgIpUI<o~~_by7g@Czqj^R&f9$U
znf;hw|98!Y2aTXj0#~kFF%#eF?&|t?bunYZRe=o*J0ka1ZT<B5^VFF$Uz*+9Ute!q
z@xeh{KMv%ln8)UMcP`wo|G)O%-{1BhcPc3<m3)5}+beJXZ{>RF4`QH}f{!3mfpNwK
z1<-<z%gcOMty@>t>p#~j)Ngt4{Q7@8Z-0x71nqd5WtMwOcz*V`H#fDkwJ(3aUw{AA
z*4x|j|1WQsWV+Yz^5D9DHtrYCZq1tI?e8BR7dKB!OUtC@M}cQhNy(N;lO|1>J9lmL
z_PoqDH#UN%8D;p|@6~+v-Ci#6FZ%ud|NFkZy}jK0UWGHan9hX`LFJI}@a316`>)=x
zAz<p%sju$t{vLc^nW4mtN$kSetzU2Fy12A}jyK4?y=~{-f1pDKl$4xy?%WC5%MIFQ
z_~lDUYD&r$tF-F<ruH^+0s;#zT?zti<-N7Dc=@MKpF~7NmaJHzQTyehJE;A?a5u{?
zzGWPHnfawy84fT-$(dArc;KikzwXb5PoIi<Wv!>N_m(Mvn@BBer>!@fkY!+iHkm;D
z3!t@ikfvDcg@j6WkV1yTpmxdz3904lAp2VlTwma8GAW`p#ju$R9?NxBc=Zdp>6O@Z
z!5WVP1f+D{LsslbfJZZm{{5+Z+<W=w=jXk0{QaQuzXME8PEH~c5}=J>e3o?y2@9N@
zoUESQ$T<6~#A@!meH;u73b8wjT<iaS4R4pRR#9<z`0$}@QO*{~;eb7^prMsE&^A^E
z9#G$qK>{k#02=y`01YS{FaSBdAraJeWH<~OFJ&0j@U4E*j;qs4*R0QDU|?YIboFyt
I=akR{0R1%LAOHXW

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-2.png
new file mode 100644
index 0000000000000000000000000000000000000000..2493f05f554528086372b24a76b59adade37934b
GIT binary patch
literal 18948
zcmeAS@N?(olHy`uVBq!ia0y~yV2S`?4mJh`hJ9%>?l3SguoOFahH!9jaMW<5bTBY5
za29w(7BevLCxS5J3j5`m3=9eko-U3d6?5L)t&Evkdhh?o?~GH9)_Phm+95d2(&d)G
z%HFVLnNKfyEOQI#nfiVGr(<^l&TN{>wKeBdfk;S<M(}Dw<FyBkOrM)=J;|lREXy)S
zC|D$N{eAhnb9M_qnk4=_=J|&zJ2@M<uY0F`-dXVQ@$cWZ_mhoz4ht|aF!(%v{Emr%
zfng6XuNVVE!^w;dAVIfgRtAOyBPksQ28PKO6Brp7X7sReGcX)TF^OPcU{G6pkcol8
zKyp;eP!6%WcX|vA41XRyIN1E_<8k@dPwuUa-X7-R;W77)v?(ak6Bya~<wB14$-aK`
z&(YEG*R$FA8Jl8SG@Te2bQY|ev^s0K-`rK7uOIlYc#w(VKvIs`?3Le*c@AIs{qT+l
zBpEfaGBmW_$T7PttkWrS`YN*MgoH|VA#nPdn83)8pjbLJ;ow%Nf@ap~D_5<udTjBU
zY0v3DKR<6Re;-#qov~ugE0)u5^mmByip4D2v?<8W&hFINvsar~xxf5+z5ey>{QaSo
zl{<6Hq<yDNulW6TyJ_Mfmc5@&X<OC)GTFcGz<ZbCr#~Z_S*L&a`t|Dd`1-Z~{{DV_
zV`K8F6)Ps(&Aa~h`~CGTEiA08tSeWo^0Kr0@@L+g^Y#BW&#QiCdAH=UFBb<#KxO4l
zDU*x`?=~?Uc={u=%_`JZHzF`_q32|^mEr5-qIQ?9-S_`r_19Ndy}hUDTx{VKE_roD
z^XHEr6Dle;oI2&@dFjf^;L@|E*EO`Yz4`6`Z20!}_VZ__7|tIOSy;Z{pwrw>A3t6^
z*v!7Q@Uh#}>C<1|tA2lV?e=@C&ds&XetK%ElugA3vz!|bGB(Z7`x3Kn-#)+p|KII?
zpY`xitCyG8rS13YUN2k4aKLtklFM8}9_OP+kM4T8Y_?4H+FxH^t9x42{@NmCnzf|z
z^Rtr%JbVBD`#ovN^!U0+M@L5^p62?(${D9lc`aAV{`BOemacASQPCzXZEe%yXFjoY
zKcD8U5lH*_Zuff;DXCZQjP``Zs`&k>eO09rvBKDFwy*CjlZ#hY28RX(ExL0j=I`J4
z_0v_3|C)2)fWzKDpHA=kdM$cu=4G|J_5c6&sc_Fbdi{F%&6_t*ojFs|qpGHs_2@|F
ztqqCIY3JwpPI}5JBqSsvCbn#@b@{H{A_p#IYzRo#($Z4#tp9mB{>!V?>sJLXcB}gL
z^ZD0<?D8IyK(TQp<?GAK?*D&X-~Z+FdHda)bN=`(_n&`lie_-h<6iTu&(F^GeVl2W
zu4QKzCtve{(RZ4-gh|GPMT-`h<lHcrwZ`g@l+JsHX4cCg`bB!0nt_#-JL~>@bU(iF
z#fyx+|9-vJ($c!rBWb*)@Uffc|LZBNEG!up7rFj=vA92F`|Z0y_IiE}4h@eUKQ>J`
zz`!eI;xXGSw@Bu9?&PUcr#?OA^|3nSf91RD>*r6JJo)O%VD-Cozu%ffI_PF>Na%X?
z)%@non_ZoqffW@ys=mHj$}U&oAZ?a2LFI1k_q(&K%hweZ6`9oj`eJMrIX$jwrL{b>
z_=D^DZW{Xf)4!bNzpp;8!s+j?ua|YV-zhq#_Ih!@-KFGy+hu=$f8V_)?T_8zcK+*M
zUS2MJaY6BBj+v{gtEQ!8WbCezg(p`rt3=#8_`OqoUd5rit_L<twkgWX%crKMuFSu`
zZ`Fzw0pH)<y}B{keec(6(YLl_PUblr@c!Q3(yO82D`R(;MQzQR`t9A_)!zDhL+<V>
zUHy^IBqI9jYymEA?yEZrlYjpDwQA2EQ1X0rVPUi0?l(rV76lIHZ9ez>`towIUhFQ9
zUrQOStG=xG_p!hJ#X)xYkju+_@BUG-ke4>k3(3k__2<u@D{G_8P4n-?yuH0W{QJAR
zU(eV73tqqX+pJ$-UoU^~AfbHvtBapLf1WyNl9Ii>{m&miX55OAY+KmX#bx{BLGu}*
z9bJquEnQt)hYffZ@7Qre!YpTopqyM@&A*?|`yR*F|J_=6Gj+P;+UV_OarJ*okN@Zr
z)#jOfHtoyn>*qD}^vWvl?l1@q4K+Q+#m(KT7rRR$`B+b3&(x_?E&o-&zP9$**6VTE
zKYsm^nqTv&^YYgJKhM{{S{E_n+4cSJK7Rbzb~epe&39JHlV{JY`s%;kOm_<jnR0QN
zuk>>J-#ZF+m%TMokz{0KbX)A!>+_e3gTp{Ya(CI=qVLJqq<sV*HLZ=_?$_DbIq6^i
zd*#ChU%p<Cf4yq;x}cPlB`Pb|tnmqtDQva-@qqc~@88)E54BpAyqKVp`Q^pMQzuSb
zkj~$;(5+W$=X1w`dtTn&rB6->zP-Oco|Tn#(vk%W6u!Q`?k`{WW1(El2S?BU=6AI{
zYkz&Y=*(}sWYsDyUKxuE8%5hyw&vZv^_9PoJ8kn#nQZOnXJ#(u6jsx)w2b`x{QUKU
z&Frb0Z<gFGy>1wrVYG~6FEg*$x!H*lR&{@N#8tgi-TUDXch#?#%Vm#qadCn2qV=_>
zQ>IT}op`uy)tWUS)AeFa>i^Zey|*_ydV5}JjIgZi+Pu5FcK)#}NW8W_etqC#H%%QK
zuos=2olR?g6x4pZneOH3d2xne@|S0`^Q}xHRaI3dE!miS{1t!wkLIT4=F;=F-(NgA
zIXOq=bz)6zt?YY_dDi86zG4OQZe)l&Kby9BW#;8&Re!%;H_g1Ha-40_=Crdx85t|q
z?f+L*`{5w_sne%}3ko(oW}c@CvbwIW?$^V1`8$6^b_krFrh6F_I44ec*nT>p%*DZR
z;osliTWfw6?fw03H>kYrku*+`Xq%=Nt2O)VGFEOe4FiLKNn6U^Mww<@aH#+LI==Mj
z)bL4RRUQ2He*#ohRi(^wW~iJzf8KxT(xsoif4_cbXR)g1$&)81EpeBtbWv1P>{ENa
z@wnXO4nbv*Z&&%xx67+$^FQXcIPTC|;VB<1rcRyOmMC#7Jia#dPQ~M1x6jYc_8yn7
zzhl62_{OHx?u&aWi<NC`?pW0Q*>Sn_{oe2ME^bQoPQJM*Rd2oI{`2ngwJBRNE*`3Q
zGSR)~@9*!{vcEqZ=I_0?w_4h4_SqS>)!Pa`J@I^e(OuqjmPuw(kBsG|6DLm^-mCv#
z`}o`KeDgLQ$)q_}rKf!T8@a#UOrI}lHv8;`n>oj37$)}|?G~T^aSx}k+MGh)Yuj>f
z_ng+>e`m*=O{aS%O%e*9_U_}V>j|u^tdhR7ObowjYiM+sM(DXUwQ?s(wDBCiFf}}G
zWq4erYroyE6>)VxQ(0M9G!zvbH>aP!w#0L?h^XjN@%Wm+>G5?tH*MNvl7G*}H1m?n
z-{0TMzbikG>G@yV{$N+>>ynpCr)S;SQP|h-y7FG%<7cz;!%k1rojPH{g2>HjD}$H&
zdHMN;%{I#g=`VeECz4mnB;fKg->(<l<t>GDBkq5Ed|XsWXi?qYUz*z5-qG7~F8=xX
z*);o_PHgSht6ZF%6IIU6Hunb=3zOEYSfQaCxydE>)|NmAhX!l;qsbE!D%oczZct#_
z8oeo{bDDnqy4(5tW6kdrG*^9j@v!92Y5n~nH8p$6-rZRlxj8NK(h^TEU*FK6ph=rH
zZx$60Sg>G$0xK))%lGyFcON=@`0f{#9RjMVs=I!@T77kIb@|%J&BtEO__+Ff=bdf2
zv)y_m6zl8jbMNnqJv-a{`b1^-Eoo<^Kw-kn##4}Uk>PxTL|fjTk8WGDu6k*Que)+>
zZS>bapU-DsUl*Hod)rzy|9NZv{r$Z<c)8!CCGPUIA?x@3S_KmP`1rW>vBHP@emvp^
zHDP+COpR(^&pLI=YpzXY(C)IgLFeb$`tCJ9*HgP8V0G>9Z!f1s=Ur@MX8-c@`TXpA
zdn#}3EMCqhYqf+=*6PIh^Zv3{B>^EJQ$SV4moFthfBky(uwDL|?e{y%yYH@x+gp`+
zq(iXk-OlGCVq(wUxgV;uDt$FYOebPN*xIPfD=Py1UcapStN)Ns)=EP|!$VS1a@Wsi
zvq7P;HRGbw-s<mR>*MxbS>(!HZp&2HzG{`$&mTWlRDXZx<>M35&L?Y<bcEyRks~XT
zkM~WgyJ=AN{oUPP?{>cjw+KEwI5=rZ`uy6kUTO1d^Z$KOKmJ}cX2z@94S)XreVrn|
zX4594ZwHGM|A{OJJ9zNmESt(rvrIA<O_(5{s-~u;ukUZ1elEntr6q6Q&ote*JrQ+v
zbx~U~Ca&B4&g$%3>u`UYk1eyza#w*e_2#s*mv$6BzOvAnz1*Hp&tY@gSrHkTHE-VJ
zgocKKih|J4P`~FP{^H-?-VUGiWqtkM(}sNKL+(m|Qt0*A^11hFzsJg2m-$RG$-1I(
zxA3?usD;>X|8K>UCn>G1tuL2OkGoX=|9k!Go9Xkf#+KhzwYLwO#~{Qjc5YGS=Vx9X
z9vABWUa!x5e{U}r56>0r_j?xC{{E(^r{`xj+ZWWLDmf||o^fqWWY*nXTcfsSEd>>0
zii!sd<?9|)O?wr;es=!8$eTBB&N9uOwj{pp$G>eSH{HzX`x<%m`o?RAKgSlGRF$%?
z+jDJg^m1A2GLK1i|9&L9y1TyyC5-$3zM0ql`FNa*lk?&f&0tVA?i5ykbxM1EN%7Nr
z&9)nC<g+&v_#N+;zdqUDZspG6=b)Bg)yt*RWsckZ`QZHa=4SVmD_3gi>4n9`%~M(F
zJKOBm_Wb!#TeF_7+f+D_PtIn=zS`ffj&urp`T1S@`~AMYXWz?1ul8@5t{1xsl&nD|
zAgG`(pT;9Rb=tJ7BOQW9JkEuMg;ft4*}ojO{}*`j<VnA5!|*i`3+?}X?BDff)9E`A
zYs*)}HD6ugDSUbIfvzsDxfX>@rV)BBO|8XQx3;WIJ3DJ>r?7g~xjB|qZ#EteiHXti
zl(HyTu*_%XqPMrVzux=(Ua*r>6C1zWn)*MF<xRrn^i)(_w8PhhxVp9q2@8MybXwp0
zSL)-FubySSzqdDPU(L>4Wp7U{+ZcE3{{47ncD^ge<?Gj6T<pF&|Ng$Jk4MF2&xU^O
z`<r~MXW`CILaC{#v#d&2H8nSjiij*(u|gyF-kzU(*4^EjJw0#tTeF*Q%Rr?-cx>s^
zXXod~D}P<*@3EoaUZ1@Ey5;k#PHmj|K-k{~)I_k{yV~bhYGX-2zyxXS)|qCxx0bwk
zks)he7XxZD&Mm*Ua$W51SC9McueI??e|b7R{uL;OKJo=utc(9YbKlQrv$s}%&#V3Q
za`~=DUD|hIW|pt^+c3*4H%guJ+Q-Mo&(BKem9ve?zP2W?re=?mv-8wx(?AV+Eo0;0
zz183CvhRYjZ$!k5M~@zfh=?rVl{U+`yQ_4TL1I&K@vUENS34~7eP^3pJu}l-_3wSX
zbN+Temn@#Ss*YXg?9}p|Als9V^ZCxRi3F9>yGmcH{N3cXKK=Z>Tf0hE?<#-)?wMBN
zvRCDEZ|0cw%2)=)*L-ZX`~Rm{N=JWN@pHe_loU{V=HthYla|bwA@TLaMd#pUK83$#
zY`!10A)ztHY_{FsFTtkS*L)_K<lV9O`u=`=W@e^I#DSkbawk81{d)CG<8)9TWRL0X
zZcxuCYGYEX-yDmDcXyYs-n1#mw(3j3>aevk^$QQ}4pEQTez$D)yt-eRpq8|haaxa*
zS<Z`Rr}oUZHj|3oTebDipFbc=j?dV?fB&OLk4%z}@f>$wF!yAqu)2tVK)~boO`t~h
z&6_vH<M*^LI(Ue6b>60$+S;#&xb;^g9&VduTfJ@fX(!q2OG`RIMO4|_TRV4)><B0*
z*Z{KhZu$LMP@mMTSL*4zNdfHN-rQWgVS|Bb-klqnHbzF53ioVdTV4PEU)ATc=3fsm
z^JhFd(#gfeb?Nu}{p(9#U$fk+xoY3SgNNQ<+L9Tps-gn2QOdSz%kI;R0qtx&5)0<p
zR)6y3(R<X#qHS;gzejq)t+!>8Z3{tZsOs&G!pB?k@7wMDcue}&?fd`KUQXxdsQ-F3
z9Ar^U%tN^zHtzk=o72vIIU?+DV9HUk^TC4zP<!vw_wVK9nk$r5RaMjfd|ms`=H#SF
zlcLst{rEBP`nuTC)4JPVoU?vEW&i&DVe4X6w#(N=fVxI)e6msLrO}eSVtQO>MFZ?F
z#O$25+MJ!2hbJU6Gqd;O<>mg?eb=A;d_Mm=Xgs0*f8FufbKLr5R!ZmZ3H<;5|6lvN
zWw&#`eoA-!Tb;zfpz|iFJXc>=_v(53|8KsOetL3p^S)(w^TO-u>UuxE+PHb`-kQH(
zua`dVHNRHD{`0~@=h7b^5}!VK67$3SAoqj>MurEjOiWBN!PQq!ojx5J5)$&-R8Uax
z)R{9Og@qe0JAIe6E<2I7SyM@A(Y0)DZtl>?$jIb9RmQivy1KY)S=Kv%$4zGZwQPC5
zIiv2$iHV>-nU_~r@|rbkd@?gLySloH_B3x;u)rZQGSZJXG$LY#S?;YTR}O@RhH5G+
zJNwQu0R@)tKfX#f&=||BohMFsxVpP*D=Ip+wzl@oy;EFVJayKrR~GrVwq!=_Dp^@n
zR3suK^hlz+vokOyWr<wH14dRhwydLFqPO-|Z=YBBO!DWiU%Os!ywe352IMY0ZpJ%l
zOU_NBvvVwiU%q^)rKJ^AQLzKminpu%WpVfUcJ6D(dn6Zo>+N(oZ~J`?sCNJ=UheKH
zy)2!-XW{-oPxY7CwW~ke%)!X8q2bkerJSp)rb?M)B)r;t`t<3qm;LSMe%;KGs3)W&
z{^R3udC-7J>8mR**W{P7GDJjsdUk?(#u*nBw&va4<rjB2mQ(DEYx7ekY4f}*cgyd;
zeP_hLpyuiCfBnYB<h!wKIz4QsS*=Q6sd!3Rm#w+AE%)`kq?nw$yGo_(YIf{CU9j`l
zt`)^+XPNGL+-H3!wk>+j%iLG@*4h30si&iJ<<ryCvi0k)iwdcqcW-{mboFvm?(J=%
zzrVe`8`GQ3%EoqWclxxtpEB!yf!hDFRwV`Hl6ish(rbSGd40Bse~$OxKbi~-4Xzv6
zPFr69k93(t+-sbBhmnE7$E~T=s`TsC@ZGyvb_A@C+j}RLDW>D^lviw=)5;YNI?a8g
z|KL|E+v>W9=gkAGK@q9b!gAUgl)e~d^ssO<Fmx*xeyULc56LQn#^9VHnxD#ohHy6s
zNa?&kAfgBw(gh8wZ4eOBc@Iif3<*X=8wAn_awKRF4>Vi{8V=TJVLNSY;K~6S9;S~$
z4p?iwIoIzN9OnJ>@uTJA>HGKZ=hoV;26oPo*z65S$;n&O&Pp9Ueq7tc1eE`!j8Zy`
zjE%4EE`J}j-rL9L%8tUvbB_7VvsuY5UlY*G#=GmqEn890X!h4T=jK{Zoj7sflP4)h
zk01A*l$4ZoWwATI?@S}t=<RuHzuuaiw`=9G8=sz@R`pCi-nVvklPyDV3j;%hM`=^)
zx9d08#O;l$tE=<#1eH*a9zEJp`@8Jv)2Fc)jCJDo#ef=|7Zy6#U;lnU8k86U&VyPx
ziHV6>cXn*NT#=Hp<nfQ6zd#AT@^f0RgrQSoW8<=GFFj`{u`nEPy0ei@+ulCDZ1>({
zJMQL9Pn58#`SGE0|Fu=2t3x6qBiAoyR|QAWQCZ$FPtTK*_dkjY2t2T;+ZVPbVj(Ci
zGPCjQ*r2qR2jt)@#f^=PTDrPx4eNe=$vpn?^T)&d_8G_fWOuz@xBJQC;Qi4&-~fG+
zB)n#^d;hB!7Z>{_Pn|k7eebcn?ehzz4D9XWCtX<=yZdw1+oz|epHADHd1i*;^T@T|
z7lBe@_m-TSLAue~N~EkyUrhlu8KTyAc60=!r7i2~?w%{Q>-~+5&StZH1qB74f4v22
zAYES<E8G3}_2yr5?=vzaIIg?1$Z-;=gzoC%TDoM3#j#VTPEDCMZP|(y8m#Q>-jlev
zxTZ{<T6)YS=lncd(9ra&zmL9Uf%3wY;)xR{cJ=jzIXN|PadXRB?|lC3nU<;P)xvvQ
zGB0l_c^UNd$rB9~l_M|ZUcP+k!~c&96!T(_*7cu?+?F#l?cAJ|U%r%xii&F5*u=cP
zzCL`uUG1EA#mkPqZcEfqR(9T7_4QKf^w_klxAVZIA*f#T^70A_3JO~Le95w9R;p1~
zbIfM*$y$X>e_AO6j*=sg5(<=)E+ka4udfk*I7!v}$>Yb17c5XXE+@DD+Wz|b*7o+@
z3yl~U0^}=Fn?u)b*%ETz{(ntxp;aYAL+H%CuFkP4Nfzeo^EN0cDQziu=p-s4vSYUh
z14BT6MQ(HI=9?z9ze++wLgpAA{k8SfDKFcvSAw~Cc|#o>8m!9St&ucNTd`)%nU{O~
z=2~UGxUlfoo6YA--fq3FWnd5xySwb_rqt7~J_Rx`eC2sL_4(&pY~GVVx~kvpd_G4r
zEGA|SsOg)%Zl~MlXJ>=||NHy(PVsrr$dljmn>l80@9&Slc<~~rCH(Bn%*E4mqhIa&
z{m%Ney8r`2!>^;OrFA@K878-#I(<6(?)79)!*^H7N>C-UHfpOEzwMU^LBYYG5gO3w
zSM;`=LMwY~>*&?t>#qg-+b;e1_;~i=Hr}iY3l2(tXJuq~-~=j5D{7ms?kr9}dgO?P
zs;X;iYpZGB{{R1eZ@QV&)!$z(RsUw=@f3-+YwP3Ro7~%5UH<jm-P<4kgC;n(=iM!N
zaG-HlB?AM)gTg)g4o+Hf<cQ1E>C@*I>Rvn8%>MN8<HZ*)1T6o!E%)}S%FoYEojqGB
z_5W?UzGqOkm~Kc&NJ`#ChK8z6mebZ(x_jNM%ipcp{eEAxrl#gBtI}7J=PmEwui3Y6
zU%HGr&*M4Q*F|slYiw-vOAe2(-CFhSO=aAAUWS6X`ul!3ff}ZlBRoAl=kC{&?yYLC
zx|ra(e@Vp4moH7PC6&Ip5f~a8dTW3E{#~W7pGnvkJ?ZF^wO-aIYdtIM@P~(oukNd@
zzWk1zVTHAA^|v)2`5!p9^JSi!W0|*#W8RWDA3?96>3Xpx-|v>c?lr$xQ04w`f}(SZ
zMBB5ov!9pL6%}pDF`J#Y_iI@AbS{P!$7d*g;ftG{FgNp5-mxCZsBJkjH*MMkD)&4=
z)p}BL^3+L_7A;z&1R6t}U;l6CG`-kW*6(&W|NZr~xb!6h!-2z<xy_}^^7dw5U)R;y
zd2y1e_nbccs4X6`yURkOqGo|Qh@h6NaoU*+kNfT89?#qQSG%EJmVx2Sq4Of=pHJlt
z%gI@jl$?CNBIo0yqfvV*HeR05-`_7JEIf6_jEZZ&uWb`O4C<rZ57%H|_}~?H6V%39
zSs}i#e1&;8s4k6Z1=WY#iU&XOfyw{|HAsEvv0)E0ICncWKa~ZQq6`L-oMH?NV$P4A
z{6wzbHn5>oth6-<<br_6$eGLh=B|4105meDsioyL+dSXy{cH35duwLr?eaW3+dTa8
zGGEYa(Tla)@2xuAwYC@B_FCz;;mkj)={IgffCi)t4GpWFP7QzZ{P}W4=eCU7+j5`p
zF*7v{ZD!*QI^4z!%B7$|f}s6%e@k9mP&D4BD%S~~z&my|xXQZxU5J}o+oZ{pMdju7
zJwY=O{c^S@si#D8@9x@qExWk5`0Izm{Mm<EIA<BB_pSEYW&^4dUhTZPI{ftc^Zt*I
z^%nR1{QX;7PtWi6_Wba;xVW{~_x=0zdey2`mnQq$X?j{!eoC2p{WT|~O;YY7`0nOr
zca-|BBG>NM3uSOmYJc5ctCANB)O=^H2wfdk_2=X9REc9p>z!>xAQjfnpFcO<ertN{
zZP{*~!xtVNZqMFZ_W$4CPhY=Y1x?<q3|_8fV-u5oZOz5Y{`PA@CE({X#-)+FQo)m%
zitlbLTexJ2%fEmBOph@$G07ay4vvY@IczXx%9JIZlhr&Yx%EgaoL~3LQ-A-TP0Re}
zuXF2_igo!q4;)^vb{;t3Fm>9rYZCUgzqUO7adX|&CA;74I-Obb<;6uUP0fq%?(X(o
zbEO#6I7?6zpPlgc_x=CZ_W%EzzkK7TPoFl&C2zld-hy|={Q3HxS=ZOauD!l3`?}x#
z+V68g%~6wk%X|;yni{~?0!T}?EnKu{(P!Pet3l0#2d=la=db_v_O^AetaX{s%$YN{
z#t91wE<AI_M^s$gTDRo>#^m-Kv)M{YN?Ciig|CkT4RuYKK7G00Tr10CpFe#{*?hC)
zr0VoP@6tb}_y{sFBq+YC5Px`LqH<_p;KC_WM2<&9M$Wu+=@Mv==D~vm&mc#~#!Z_x
zg+xZaw8+1*BG8D(xm!%Ps7JDG;gu^PTXSv(?XCK1^wau@Bq$GUkO<E=k&={L`Qk+e
zsGqoDL%_m?3%$I(gY)v%1qBDoKKGq%=IcFOFVxSk&&kP2#q)3*?`2=}yGx$WtM&uU
zpOjn;4bOagYwN9TxwC_Ug03uZWS(x<9SZV0gKqRTAJB+fRn@Mpt}YQdxpiM(UtjG%
z->$DX$82^@O_pEX-p}W(LF0aIZf(<aA{XV|-Ie+C(^FHieb?1N>lGq8thZ%OSklHT
zt);2y>FMdYb>8GzvtCWf2<7JDx-`eK_{WMl@rj^fqTwXiKLX{d5eDL*TnZB)qV){6
zi6gk>ULz=fF-(R`YpX=uYXp@{2U1ib7#Jcrz%6_5;t7!PVops@WkFU#o7qPvSXA19
z8w@R)PVXI>pE@NU?+ZOY&-QLCTg-!t?((JOoCO<y{HQ3O&LIBd)#~*o>E~q1r!(?9
zG=rKJphmjbPG-<*4UnB!3o($jP+v)ax-?DTl^&pMt<z!}ajy|v#w<Mei4T-cpxq2Y
z2BCK@+K!z349Rmof>rFxIKX`!unR-fBhu>UdSfm7o|k%0)0x=c@87E*A0IDkS#+c)
zztcUbOMrnv!^|uUbvQ}UxlIE)ob-CD*=%2b+pklsN?$!OxwohCv(=g#x1c4?nuDNG
zX(J<}DRbtm`SGK|GswrMr|Qd#g_^<3GG1R>`@E(%I&Y_|ZS^;krE&S-9@E!5udc3s
z`uzFw!pFxfkNx@kS5#bl`P<vuwe|Ji?|By-6SHR3s#UwRE-wZp&jiJH5zSlE&&##8
zwyrFEe9Z6h#EBF89;YWuwEg=2e*H4v*;*PJ9-#DIe!sT7@ID9saZs=9YfN3;zBgsn
zy@k8)>K!&H`SIal)Oubnu1mGw?=F|l+u;Zr|5_Kj8{}%c+Fvia_4fr76cofx%Zmi3
zv!2!8*J^2MPTar0zV~B81H<u;w_M!awXLjfef;m-&Uf`dBlFkg_J2J=)2?yVZ%sdQ
ze`5e^?64Nw$<D^MYRi@_$9}xLyj=FUzRP^OT2Mo9-gPtnd*BwW{-n8c*S>j^vwWkm
zssH{ol#=T%>-CEZo!g~KuR!wFiKA)}cXyQrZ_m3s=UAVN<)YBlVOOhsU0hm>jEzHM
zV%}`IP<y;j7St~5=-BbViciL3fw$hyCr#@=i|y$aU}&hy!#=>F6QZx75fBzOO-ox_
z_W9o*kNZvEegF6SJ!l$3%BG^=u6TYRI8Sw0UrTUxbJMc2isIzt)Y8!@dGlo6?AfcY
zTnRZ|d3l-d<x5Mwr%s-{c)|n$&mhn|_SdW7uV-bi3*4M`c1!kky`{^Rtx7)L=jGvH
z@YT|W6I2dd*pzzOr1+W7(&funuUO&n@ZrO#{dIePeR=uV;&|HTlgE!&etNxb_q$8K
zzP<*nY?y0R>Q%Nomf!Bj0=fD>AFFI#J;14bhw{NmSc)CbOK)y&Hm&~lrhDDR+Z#X`
z4q7_&tTvZwMQN7o$mRu&Y=AO1sNVq1O5oukP-X{ZTcncapb#%;tlaMB6Jc4)BA5Dq
zpXY;`iJ@U(ub$7Z58Iq}_Q~tluiptVGBBK*9le}`_wa=yox-4Ibg!&+n6SEENLkr7
zm6bboM9j4+z4Yhj=ev<g3=DeVbCYI%WxZaU-Td`YxBjcA)8j$&a$7Plt4X#!w79k=
z(ik)|QT6-n_PY^^3=9Wai(iX8Jk-h!o}2|uO!(XX4S8HqQLzKGdZq0Y149A-wS-Fc
z?Pd|}e6pY@$+o?>B2Zb@zV1$|C?mszIFpEb2iFF-<lfo>N^4oR`?9a=wYIeE*r3F~
z(9r$-8r$nW>vtELSh-6c9AG>iQ9Awa!*+QsU0vUc7caik;%8u(Zd~1H&3*Uo;kCTi
zKn;=Ich_}vaNI3EZ@cMc4ydzse_yR>#fOB}_V(;wUtYe`5oBO^(6n>w!K`a*W|qCV
zu~0L3nTEc;KO-aKtxc)jpq6*!=CqfW{p~{o0w!2{voIW3>ak%@^KEk}&=_M<(jp;Y
z;k&V13=9pLKXjZx>wY}H->=`l`!oYX1?MI0^UuGryq=xEFEA@>6(|QRTBNl6tlQG~
zy2-U)F1jz<dk?f82{a`&bLLD?|NrW$P;Jlv$1J<rUAxNP|J(iU<>SYP^Ai{t9z3|l
zmVI+m>aO?ueuL`C(%08~b)&YdC_I-hy{>y>+F7YyNn^LQQCovzV&;H)aC7F!=tgbv
zSRKAT%+0N>jaRzt;P<nqPEG3PPgG!d@Mt6dwDN-N=C4PD{a?IVy&g2;e`QzcYpdF|
z%<OzG=2gE7%*a>)N>N*LZeA+PIn=`W>h|{aNl8hdd4W~I%l*Vl-m~#a&4|%uVEB-d
z*Bi?xZ@1?6`~CaR&DQp;de|x+5)`y($`q01&%7o@ZOd6{ey;+wG6^K3;`#kv^?IxF
zcQKFc{B1tE^ls@gjbLEd{6Wv@{ex>P+BP;Z?fmj(C$m8-io%!s&CU9oG4J*I{c)hw
z`RnUz)vIzB=Vi{hzk`8cvw`ai**mim&dxM;?-tX&v@Q4ct1qRXnUBNm{Gb&SR<A1`
zK79D=`~LrHC#(Bk%d}-+IIw%C=|NCh*qnB@<nPz(tE<1i15Na<U%&pcrP*xX_j^8{
zbKQHcQ&?Ta(|4AM<?G6;$A30tGBoT4WxefY5%G0Dm*$wwc5-qGiHTXWe*eE+$1KzS
zEL)K`XO;BYTXXW2*%%lK%<^(K6crW4e6sSLZ8r68-u3D6b(PmX@B8z~o0Xk?b>ZV<
zTg}R*PMx}cci)d66{gwO&Sd6%d2vz7w(86Ked-Jg^7j0Gx4Y{7-tTjco%_mPx*60$
z*q(3lN((f#@bBC9{h7D7<)+8H`1f-8d@Xf#_s7Tkr>lUbNRRi)t}eWH)TFie`8iM%
zqW=3=28QdBRwXOi_+($1e7hPRe^r9{+z}z(YtwY2x77Wudiv~{*Cea5H!Gs^_lExc
z_0{;TDQH^w%a;<+vKml6xE#jo-Y<96ncsGaTdx#o8hg?b&{Wa$`SsVr<7=17*;aW>
z`t<qp*1Wq`m$R4{9&85<NZz@XFm>uw&|pE-_Pn_~hXX!8JFDt>yiYc`sAv<Y(LGf=
zeAcFk=@}U-K+QK$Z@T`+VR;$ro&P@^<_C2K>wdjdUmLac)W+|iNzSD!gO_Lh`0%jm
z%SHFnPft8`BQ`jIMwZ3nYYH!ZWnf@<|MXg})V!Kco@--whxOZjoAK%M=h81P0%dKh
zLReW@XPIP9y0#{A@y*TYv%gg-yZ3>Hu}Ti}nrD1`bQCn7DW)5>1XKxw7Uuk#F=v`?
zbk^NnrCC>2Oa%4VQcq8N37SaA-F`Rh@xGi#Yzzk6(!Eve+tnhp!`1}k<g7{l{v`{v
zI3Or!5*Ii3)|{J0ps|=`d!K<;I(+%^<+IiIWwY}x-P>E8-E)4H>FJmM`DH8;ymA>B
zpvm~@^XIQ`Wv^fR^~cuhajTn}n8d?a7#IpZ-no^qHUEAbr~@E(e^YArt?l{mcQr9E
z6c{h#*xMW}z2?S^h`m3b&8~W}uzkwZsY_3t@(K+N1ubZJe7yg9bpGC@)$jLSpR3Bm
zzz}1weceG&@d8@0xOB;qjE9F>KYjeU^#1Bqt0pB%boKUL{qpiMqylh%^yKHATM0jZ
z{Q{M-A3uJq`v3QP>4yi7p8MZ4o2Hx)0F7L2wqamsxPMegx;L)$YUr+4t5)BMWn*B-
zd%mt*aN5+Vna|G5^z!!)4-A}m=<wmMUoQJ+A823{{}T21SnuUUuH7ZKbGN^|TYmrV
zUe#)w>E;pQv%GHRY%|WA%D}*IMp#;UwQ2S>4LiFyNYCQ(1V!g5GiO#F>z`pg`Tx)P
z|3O0zA`%i2$FD}sKP|mxnr`&GaP`=LfCX#T=sa7<$ndqxT4>E&>vAn+W#^M8Pj>b9
zPgeo04{-07n`M;RwJq;%Ror^x#6v7cj~xRo85ED*yu7%wxpZ5u<dS%))k~JBfM&8j
zef=8h<I|JP#mul^UKI8Tyr)l}YFb$QSo1w%SINq6Z*MQ(ntlCJ!pXC@P5wkBCN6yR
z`0>@P+2Mb`uCE8D<^27B!@9-w%gQqu7<Tkne>-?<b9(=wLx-;HC`?}d@x%#_;~zI`
z>giqEl6e_4J-9XV^0P<#7~>AT?Y^^Gc=ePiBA|t$?{>crOG;X_tK{XQcb6C#3M|Wg
z1fM;BemZaab&2h_-x~2axAV)}z5eQN_j5^8Q`49G|Nq_>4_$6v7~LEi5U}9+{Q5X<
zalMer%AH9`NmFLbSaEKy_3qUw3=FT9PMRe2^Y`!T68sz-1v2Y>%gVOJRX!C>O-Whd
z*vwWMws?7AW%Jbe^WSHz(bCc?IdA(t<5-WRNf-meAN}zC2el0h0+udaYI@9nzTI1k
zxY?Y-YAf>Z?~}5tshE59d1uVMgwnUSLYFRG+SSo<;mga*ptgvpsOZWSD^^^~uKM=o
z<smLch7U2j%ipitn6_$H;HuucdG?P@66)&qseslZrtf(Nnx;P1E4{VsZ4|fw<2fAQ
z>IzyAJ7xCl)zfsNS9wlW+y6Y!X4YxxHLv2I+}&ON`keK9o7X$r5>KRUUb$)0CDEmf
z3=hi0ceAZdKR?g3sk8q7@B39hpH9!-tEQynG;`)mEj_)ms2BT^kMrHkF>`fsne%a%
zb35P3w9TL;ET;1m_4WN@ca>bcv$Oc?i^cu_-aY>qqL;rRC^$Iw?<59>2Rfi(?CEh;
zo}e*8i^4@q;>*hXy}g4&LZ&2lw>32}{r&U#JQpwT)b;Dv=k0o_wl;S6wqt*f^-6>K
z@0x~&fwom&3SMrGXgv+i;NkmK7#QRZ%f46Y>FEh6DcK?<Boq=6@#4lwTXXa4ni4b3
za%X`C=;q9kX>Dm)QTzK_*8P38y}x~D7&zwM-gfov_WOCSiYtV+=U--EV7QZib5p9R
zU3bCXUteEcUf%y$X7*V%`T5293nRsS7cE~18q9aP^EL52ue4c6P|&1FlO|=^s+*dA
z-81c%j77nNrdOZcAU%uSQaUqE8_7>)W?*=r3+mKvz}mqC^-Q7dT>`z~R!}_)=?$Yz
zI)OTvp#C+if11b(nlQuJtsW!>Wo(Ga`1$E6s3P5cx`F%5eEa)%RT)+=yZ6ZymUDg(
z00$!|OcFqSkOt^j1a#=3;b@3?WLoXq{!N>VeCJw)9z1xEi;F8LBxH(N{=J%WuR*I8
zc%{vJ6crV@czCAV&Aa~KVDr}8+uOSTnpK#9LU94sA;USF15cehH*Nj;^~d_<*I$pT
z_MNQmAC{Q7@ZXo^_Ad|f+m{4>y>=MXXBB(Yr+El(5gPS+YhhtwS9f=@l(c=_o?Rs`
zL93859~@{D|IZ-T!NLvd?R|Z9_0#9imv<CCmP!8i?_XDU_vLSIZ%>^*z1;CTHxJJh
z)#)*dl8^Vzj9qnn0XXrUiK{QQ>%1|~wi>iB{8+EFb+5adn^oWZ)1AWVUoQLGgX*`-
z%l)tKtNm?~aG>G-|K1M;pwWwf^G`9#z~{E__I&osy|W{5(v=N~&Y*^kmyeIh-Y|bh
zaIb2I@<G&ob+M<H*QI5?v$s@yOo}bPTdJk49b8%Y^ZjqN3Pw=(3w>a4XG?p#^}p&j
zH#WYyxq11!-S6!{74kFDSB~Hji3#1c;txR${p9S{;N^aEze?@CTX!t;z@I-go}e{$
zdMn!4c%?F4Tv+Jk<rS2f`BL(-VZJ-4H+eM1r}^sk{P?eLZ(q-RbD)vg%fn;E*I6AM
z9I0t(t9I<Tk-6}9pR9Gt=9?mdf`tc5=UA0`wI#kd(kc9P)4?QAiu!toxDmhi_WytS
z_x=VAHRkXCyUoeT3DhIlRnNe!1dfn98!u+0q%2vqcrj>s<)K4Pt!-_fhQZFAJH32;
zOXry9-ZIgR-4$YKX$fjitMJO%M7+Jd{W_>EW0reM!`wVPGc)tl`Sa_yzh18bN}39p
zH#eouvMgS9>GI{!kdP%GJ`}8t-yc`|>r3IB<jpsqJbrBR6Eq4Fx;iZL-kwUUvNtoL
zwqz`Py>7Q3D7C)7w>S2$#56}xFtvg@-E}v2qYd?W?yu1~_v7PZ{atSPhe1}ty3Oyr
zHYDhQA`&KmHe$!qIr%wgyVC(D&?E^cS-}b&Y;z4rqiaMBih<J{sF=g!0#J#d0NHQ_
zG9K&H1!O1+w6cJN!AER!AV>xs;s(u6-rSsS{m))k*VoR@&Z^?W0_oLE3=CmT&0nQK
z3-W7fYC!A3=U)F=`ca>k!QpS{-{Pa-Ejrio*F<b|nrmHt?c7}J(gz0^%cnClFxUw2
zUR(d?!(o2VNH1ur@Y>qw?4O^WzSHAm2spn(`=FM#_T?)pgGFUz)+|_{;Ogp{`T5z|
z=ipi%Gzqz@^z|~gUa6JY*Vjpz=gr~b;yUxAtU^a>O?>3Onw_BjC8+PB?B2KJAQQtC
z>5UsV&N9!R2kNb!(q0c*l<M5Zb8%bl?Q>OkudEE-ntECcG;}e`zJ8xuzua2$`!&I~
z)!(j6RCbRE+57c_-l6!&jY+Nl{yet_O?NDI@4wc>$_*Mb`ughX>AOoA8D0s7ub+v3
zgmG(}b@{s(aIVd{u)y)v_4V`PYQKgqH*dSDt`hMdG@SM8+wJ_)>#^mYlYV`ByZXU{
zgdiP;hU?Lo?Mvutf~!?;^Ji;&?)vxZ_0>(O-nF04nwJKxS6^`OSN!Se`q!6Ek6ZQc
z?{Dj4ZoN`VLsy5LG~oFz%EquF{LV(U?DO+%xwyH5A0O+TdrVnbS@yX8k&~0vLt|pr
zTw5C*f8%hqpp=ehXlN*CM**+-oduv#fZy-;U;lo;e*K9P9-<;5FBbRP6_s}~FkG4W
z=TFVex8I~5m+g*iOMLO+;bHNT{X2`FuiCTcj-hsl{6;qK{d<^|?Cs-MhpoMIYO40!
zzMDB_y7BvBKr0bmT#wwIH<yW-dG4`w`+jA8eRK2kqW8QE2H|C8+cs_9JolKFxA*Hm
zrFS<@uJ-io{PXv3b`LuXi$&l3_5OB0T|leDR|GD;vOa!4xAv9p3kjZ}-o@>0xnFN(
zufIBjujcpL?VvWHZp4NMJ^O#^9f8c5{_ftz&Tzo=(4j-1WydCEPfiG?rleeX`Fhvl
zgIqj3Hp!nWpvxiNZomJk&-z_JMa2#=y_kxJtyL4N?kCK(tBuOOzV7OZz{Ms>M>?dA
zzb)GhT8LJDzc&2h#fy0>1Q;4VZ_m7}mV0Z<$;>xTPEJloUocU;@7+S@c9Vh!4xny2
zXo10Ew_d#kS?`12ORp)vSLv?qH|N5Ih0f<IY_znzrpFY4)|2}+vofqG7N4EKD`OGB
z%+6OLb^6pP&}eZuuBBy<)~v7m@*)tVUQ|>RwD#=ww%q#izxNj1(=UqOnAF<T)RYyQ
z4BFB0dhPbC$H#iDs=jE<f62n|!AjY^542!4C@4rKIW;xa3({C^YHn8bWMySNb?Q`5
zYU<L*dxDqyWqx>Y@YMP9*MGm?zg{nP*N#1P+DZqjp3g0wx4GhD5@>n!q&aoLp8Ma_
zNJ~pct8ZmwcqL!H=3p0c%XP(t3!qMdrn!0e%9ShoJ}>i~y=<xXbkJyqqN3uYC5Fkz
zUd;dhXE|s&P5ynmx3{;SFRXiftk*Q>hC%TBqrq2xgT_!jPEXUld}gNc)OqvPEn1`m
z8rl1c+@zI%escZZ>hGu0He0p|UbQNF0~(`cSaVR;J5b6jXT_2wDypigSF8N8vQ`Bz
zQuVa|^T9cG`m>3z{(@_Z&7kHcc(9)pI<-OF!q$m_0Y?QyOz{tzbwsX~AT3GWY2^u^
z*%KVCZEVFqwG9GA3^#Pf8b`yGi;K%7_m;`sipRa671lL1HD6Au&!6#e?S~AIHyrSk
z;jv+1)8cAAy2{$sL_B=>(8v9s{x$FtJJ6gA&b7W5L3PgFZ?m%3UG%sAyX4u~*{|Pj
zzklu9+uOct?*>ETd4^I9p5ixmv0LwzJ(b0m=iQG6)tFe;aarhrmsv&htiEoD(F`ri
zw7u5=ZVs<QnUO9`1oxW+%5{qPQI@VgJ_NGnf$P1>=dz&LPQT>i{qpv&P0M!w?YZ3W
z^XJb=OUmBfni-y8>)70C_4TND{EGDR^WNz(JIJ0mcP=a<V#e;%AFM#dhrAtVk$1V&
z@9X>jEmd@GyMk-3=EvQySHjmEbeaoV0lM3pA;5jp=FN9wnS6|jo_K_YglMR$9yJUL
z3tP5jiwS6Rp@l`nCH>vo(o<7Ged^eyRgm>#M`W`%C@Cw8%F3>7X<-o+6VrmM$vbuS
zY-m>2s>gdWFE7h{d1>jXlP3c`JUWv9yj(ti+S#<r`)Yqfc2}(e%^pkwjeUUfIw%+t
z6yIfRP{G|~+|}RjfA-{h(AKDrQf9NyUYv3>XIs_n1VhlWMNq3>RaI3}U*CVZ-`q=m
zveqUE2N;$Y2L%U*1_nNy66YBd8ah==TRXcZG$drlCqbQ7meZ`OzVpAlxq11z9gn!o
z!yiYzzP2`af8F0Zv2CZ{-r9QluIdignwmY&&dq)O&gg+s_4jvI_kO?k`khhCE6|v~
zo15F*_uNO>)vE2Jbi_}bJUJ1(!SkK&5#Oq>ub#dWdf@b@>bm~duh*^B)sJVs;`y;4
zUGE_S17{!TTmW4u9q@+LOP4Q$HjtWSGc)jq1qCgdGe?G3%4Eg4xWlp88xr)Sbi_06
z?%H~+Pxdu<^{c|pLq8$?C(s(0_ew0F4g28sBhs96GwYRP$fRq3Q&ZEF`Sar+SN#9?
zS5!{!UE8UKU#qPS8vW*8=i1EbuypBC(5~C;p3l>b9>|%5&+BL7Za`g!_JPYJ!ofCu
z^G%b#|F@SfR}3txmpHzDqlV~7Imy+Um+q)>aIV~tv6;15r-_N%@p8wa@Wh#({kj1G
zDUy=}R9#G?LZU)0IJu;x&dL>Y>E05&O+qbX+O*I0g8vsD+_?Pdl*eEG9@z6?&hI%p
z`}LoEDt~AB`ThQ1UtUf=u66CYUH!i`paDWFt0+*PvZEs)FK^wf*|YDilQu|b097bm
zU0l5Kb}@{Mj9pz_L4}2dvn{2irKirExpKn>1JD{4H8r=&%E}_Exo+1vOT=;nf3Y!%
zF}S+8WPE#b^MB+~(01IgwNXnG54Wvcu)qN{YPqZQ^^{4I9+k~KniQCuyLQs#$)GiC
zxwp1>Dk>_17R=<`-Su?Wx|J(ID@Cu)v#p*oapJ;5hn#xlY@<$3(+v&_yOtlV&+sQt
z<}!oBq$#s!YquX>`1SSm>OY5`y}rKw^uvOTe}8_0b~UJE9&BO-t>vq$+jr{p>AU-G
z{C;<Lw^jK&&>D74Ptex3|Ns7OO+L=|^yyPi&<On32M3w2Ub&)SWE3<BwB_w)jv1)a
z8yOk->iYWo@8hf<gjy^+XdZBoN#UipsJ5=IudAzT)yGG!v;QR@?>m{a5wyuU?`>pc
zWRcZetEw+6qJJ-NY>s*8_3P8rK+rywzrVl7=BB2mf_61DH8+3#^)>r?_M;=6pcpwf
z&o;YaD#M3#fej2hbmI5L=<4dq%|BZ8=f}oBfBuNb%D%mJZ+ChA*EctV`{itlviZ5W
zvyG42|NpbNt&Q#a`K?>GS`|KOadLLP8`s&{xhX=Y>gT7W3#T&9Wj~+rlWiLZ;|>=W
z7Y$R>P*+#iQzuV;tT_Aq-@<p7mUbWiwq8CiKQ}itDQQtrQIU<^mAvh@_rKoDaNst`
zDWE=rmzNi4u4DVR4<8D)ZriqM+qN)Jb874Unx8@W_x1!<RQ%xIA084i<=(#9)gK=p
z|Np6$d0$idh8pJR7KS@6Zf;tprlGgD<re>TNel{_G{<i_7Z=x^b?48YpMEsy;uOu`
zx*vN%OGr<Fx6N(xjZaQqY*+v9&tq<e8iw1=bLB;K9_T;M%+@nE4+rhgFMi&al$@;U
z+04!#23g{A<-&ypEiEjudny9?+MSKl&J_G+dHDU*xpUVhD!ZGMz6wcANdXNIRDFLp
zH}B4lh0W~zuO1$5=i=o2`P7u@z<jp@O#h1J{oCE!)fE&KHLL9Ht*6)a*ZwX8b*7%5
zn+w`A4BCl(=T6Mpn4O!>&UyRy`k&Hj2Zx4p^K4gd&Az^B%a)L%M~}X`xVZgI+3v9Q
zacdtuNN`@wV#U9Wqqh0z$-<Ki3?(~Ohp*3iabcmBzJ7R2%$$omv$L|MOqj4hJA7Tn
zi3y5s&)d>NHZU-JPzu>l!^{s_lOo~9%FV!_@5Fi<l<F8540^c47#QMOxTfVV053w3
z5Y=H|*ux{b{9JznD?@{LV)q5}4WJ@B0V2a8s&n4~WX1sltq2B&3PG)ieT^V98WIs!
zfy`hyyaKd5&~-(^Pf#9ah--7W@^d4|q$_vsteG=M2DFT^v9VFgFsa3FuGQDrWNB$>
z)B1lkpk0rSj*g&>Nb6#Ef1CaO#%@8dC;s18GWq*UAGFg!Ln9z6YL;34y*2A%!GjFq
zdNDtqSuDT2a>){vw|94kbBpU;0d1Rlbyd4p+T8E^ySv6;vtO3nP-0<tpdTI^yB4$q
z&)z=1TTFM7%F?AvHO<Vzyr=73{rUO%ZQ1Cks8y#<d4YD!UtaD%T}4%0{dC^;?5nFn
zwKO$<DrbK%gLqXo5Y$r+zP>KjH2<DWc=Y#ocTLOR#ein|UtV7Rw$HZUK?7*H0$2E?
zl&w*qQyf5TBwbzI{r|jQws1r+F#LI%m6esU{kEux$dhYw^78Lr<)7c0ecdGG#00aq
z;3=Med*9vLoBb`#nv)3>QA?DyB1%h3H{Hz1y_IV=dye1odA8Nxf|FHii`VEYConR6
zn4X=L74-ex-P>D!|Ng!ESAE)=%P;>ti-<qw{EmU4V&d)X`O^06ufM&$eg6$V2gilu
z{qncB)c^Q!@ali#WL>e-=Er{-fo(dFwH34|dF9HL`&0kr-Q9IEYire;%{O!8wtsr{
z>XnLT?eA~7<#DsmKHK%q9i~S?N5^M--rb<u+Q0cT?`Lh*($P7S93K-i=iD62#oP1m
z@3MUn7aFSCeRR=|9XraN_jY%GuIO<N4V}uw%$&OYcKzRH){5PiUzU`8@nv9W=nIaG
zT`Q>Umht#lFKGU8iN5;o<HwGHnl7TEqLY?9KR<u<#*Kj&FJ63gX=%4g=Kp_xy*xbw
zGc#AFotdHNxoZ9T>38$4KRG#hYxVbceUTyTpzvWhJImA?wBR8vZP}v5i?<d(_lw<E
z6A3!2VnyI$6;DY?$s!AxsvjQ~u9muX>(;7^i``#8J3BjSQ%dKWu+`ggZZ1;ypZDU@
zQtz(L&X*@rOC`2(FfufBb$4$~I?6S5%9Irg7dkex^IyBT*gf{4*RP_MmihC4GqTjx
z)qytXZ`!;$G$LZfvSn&Vj~_q%u;9<uhhB@o`A+6J=zt#yw*#Q@^PUFKdN2t_ZU%+}
z2B6qzNMr$>(sCG-W*FK)*@1xv?3<CM;kW#fla{x06Bo^7U|?YIboFyt=akR{02L!$
A<^TWy

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-3.png
new file mode 100644
index 0000000000000000000000000000000000000000..115004bfaa4c758cd6c3873bface46e3fa820884
GIT binary patch
literal 22182
zcmeAS@N?(olHy`uVBq!ia0y~yV2S`?4mJh`hJ9%>?l3SguoOFahH!9jaMW<5bTBY5
za29w(7BevLCxS5J3j5`m3=9eko-U3d6?5L)t&Rx|{rCUlcg88RE3R8Ds&Mu-cFLU~
z7;LQX8JwmpDH<d=>GKb@M6E|#&v<EF(!1|va`1G@EKOtKS+0D`R$8viNbb#0o7t3_
z$+alv&VKt}h5L$~L`qIu%EX^P-h5p7dR+DUt$~l<rmx++?Wh5dGXn#ILGSFv><kPH
z53)ES7#JATloJ>k7-sY|ure?t7%_=4Ff^PTl^7C165#3CDI_fX^!<B%d3pKPwl*zo
z?bnl@>&ESg$ji%{y6?{2yI&vo+u!;sYmjh&^><r)d;HqtMH2k({0s~X7I7sdTf)}I
zt!-&xVP#{}vbBwU`0(MWbLYb5+tun-tvi}@ar1e*)n#vQ-P~%PcV|b?ezV+L8RzC$
z8u1*yc5hXv_T_npBO`kL*EumT6r8=euXeYSv-8wRlNPnKuy|hDS^WIU-s<w$^1G$C
z_EZ*6eXbX`C!*i(*NT5%*VnI1KR-`=@A=&AcbCnt{});P?TumSpK~3WP7Dm|3Rj1%
zoz&jmo|K%Nn>%mbyspm9i`Ujhmp(Z$F)McYh7AGF&(GhVvj5YkB2iJ%*l!iDnLtVQ
z`i?nsWJ=%NiR6_s*^tf8$+=N>zr<k!lY|2dra3nP?Ck8M>}q!K$ygK|+_!V*&QD*z
zPMtr0{+h7WX=i3E+_cH4Snf#Y1~zVnhU}QSx_xWHvX_>vzN&TDpybPoi(2Que*Ab*
zx!-2d?Y!N-ywYY@`ed!AOq#T4!v=%5cXkH<`}c3#zQ)EzDT{&ydAnY!iHeG5UR@PB
z%eH#kxA*tgKRrD?erkHL$h8DUhJs#h9-b?_=64qG+yA++?(gpR`+|@6$(rWhv+0#K
zUw7;J??0c<UtJ$>fAr|lmuJoI@5#8oV~2%q%#MKQ?Ri^6&%`i_>M$_OIr9B}{rbnp
z`{So(o9Ew)VPs?!w|VyV?b_n!=R&jWtG}&zTjAT%+Pbp*{k^NVo;_T-eBPxdR_-ZN
zr@9_sVqkdo>)-G9SGVQfUS0P0*VotC|Ns3J=ZOqk{k7?G!_S{TC+X!&x0>bN(l9sQ
z9`#q{<@ETvl^<>ANOs?0WGG+?UtJWsaLJM-r>a@l*|p8h!&_Th%iiAJmOJ@qQeZ(r
zLGSzW4-Xu-W?XzU>F>V3-=aNNh27uP(!k2lFnMEy&a%4LQzs@WhlYhMyK*HYI@;5-
z^U~$ZqEb>>(JSHt0v6Q%{<d<@o;%mxJ1xw8du!{hjmhn8ywYje*0sO3czJngeVuDt
zy-i1~yNypaYVrGto0Gc)KvCx5(V?WIG-b+^CCSJ8Zk83DKYcnlDr(l+`%g|z-kNe!
zNY<+4gxS>_%l+lQzPRYT{Z3K0lxfxyS?e+lU0vVY+uK5ef+oGaGuOIY%g88b;>3wu
zJUk(Vg&RScV{P<yEj_(=n^vWq1C@{s!YlKxu3V<KHS@rwrQW8sze;qYxB001%?Sty
zm|$dVEGj0JW^QI~{`=(m-|zRw&zw2)*OSTqCC|=CMy?Gzdh}@Ku^!2?%XJ_-_t*WM
zGI8R<rY5GHJ9n<kzP@gjef>VU>NkeP^4B;w_%bsv_$53)H}}=m)z?EgBia&A81THk
zvGMVw^_v?lS0pepJaCZ-J=nA};t3z9+}4U<V6d3DI`p8^+eJ;#l056|&(F{GZ=Bo3
zaQ)M-*Xy&tzq{Kf#}<%2b1%D?sNr#igoR;KrcXb8_N;GZWo6axx7)v7i_U*(|Nm#d
zm$!H7#t4o`y+_Ubb^$dtd*Z6!n$ESYo_0U{fsx?4S9aGD7KZKEz5Dg+_4}_iFfx~X
zdg3{C>eQ22TVGvtmj?xBO-)V7zdt{{ey?7T_w)1o|7*nKDjc`puiL$6&z_K|s8v;8
zUs+Z~Fa*5*k=eF-RZ`T3HEVo?)qDch$L-ycc2=tP_uK8SuCAUgrXRQF$B&A+mc?#)
zd3hl=uQqgrr>m%`y_y!CcX40s?=SZMKil8hUB15Ao$ZRQkKisgCb4x|=H}+L|NnlE
z+F!TV%iH_whr|4@&so0@`Tgzf)|#J1ywYYqudl7$+^VyT`?X$qdHL@6|9{`tUk7E8
zIdj(h|MT3QPfC=*f-SgZM;6cFfW*XwdHesC-HuxQ@9%H#N$2L-YRAXNpPg;)-<Fv1
z_SV)(OTy!8L+$MBjCh*s3$GeJefqRaG5gVxPOI{FbAp0`LgM1qy}Z2qb(?fv!2^!O
zY0T_=8U_XzE*>t33}5`{$bbKAc~PAhQ?YK>y1F_qA0JTC`}FD4mxt~0UXyZb`?hc2
z9#{J{^ls(zxuC@K<;CLuTUwDTqVL?jJ9YN#)o<S9MBm<$dD*1yPsQ5k?S7ln&Munt
zlxfnWNmq6jr{~_^clV+*;~XhQ?r`78$eAiHHy)R}ES<kc5#)!N#_sa9UnZ)ojN4mP
zrl_r>;}c)|b!y$;ui@@|($inQxw(0kN#-OrKA9D3*62k4{_^tj)Cm(7^xOUFnDCUT
zjZb#fg$n_^@^*73luq5icG^^6L&B^s*K<dY9@Wy-z54O-@!aD|N=jcqsp?3l@GPs+
zRoB+X>%aW(G;R9y>Gvw1%hvvSxqMU9T0Tkpbv@IkPZtsrGRe50z$<GNGQZ|i=i3|a
zov-by{Vih=6w}wW|NP(I-^0DUx^8XFUcUR?uI>q}A&m{J!69q*pFDduG$dq7Q&ZEG
z)#3WRlE!YYudSV|V*BNS^DOJ~b$qf`OEiO*#TcZ-*8lz5SHpAVKz+T$!Yx}uF6G<T
z%&+^E`Stz%`0_i2$61}PEuUYvYWch>uixL_um5WJ_|u)@^R}~$QoH!%?R2`2F1m0b
zVCj-2E1cW;TGp&?;F^|QQ2*=Y^7&<76auzOwkevMo4>ui-M{wtx6sJQnY&6~FWZ)T
z`_<p?_phtZuTeT|aAmo_{N0+*XS1%ZntHGLz3tn3d!w(%*YDj`@-pb9a7IC%sJxR!
z*_#<sCK(Fl<>gbSO*?h>Zfx$YErHAZ=9YYT;As2(PB9lZcW^tOtjb@p19d;2ivRsQ
z|9?nK%p57RoEHz&9ZT25?~lvO%>4A>L%?*s*eg2<legyGjk>$5^z#0HU-kF?d^Y>l
z{r&s@{QWCyd&NrE-adZi%9Wo!e3&qM_Ux4pPZ{t`ojO%hPp>bs=~fa$_<}WS&KU3<
z*3i*0Y2%mAV_{{LjIa6F`u4~5`1;(ES65DE+}pGB<F)Ago44-Qevdtzv{B;k@9*YZ
z+}zo<cUH{&{QP`)mUY>i85b8ivp;TRm)o#)>Xa!r{#Ac|cGm6vy}i8U<>ikzpSRm=
z{eAiTx?NSxt(pIRf45asJh&l3=U5A;aL=ASHn%^XxBq{KgO}GdYFkd`_i}mD?a9aa
zoF_ee`ZV>&uV1r%J$?E#)x)Ul&5egIj_*k`aP5#fed5H0Et!{9{@%am-j?_RR7{;U
zzrSX}1Od+=PtVR>Wp7vY+x_yGH*a3lhJ;2?+<JEP^jzr@)i$aBSM&4NFRN#c0lCl5
z&Ar@j|8K?L-``g+Sl}?}$>Yb1|NZ^_`f<N~SWL{ECI4r?o4RDf1_RrFKOS4v|J&2X
zBbju&%X!i)^ZdBq{EbqZBXqWHow|O{r>;kjAA_1k*W>GB@7Mp|t0UI^@5ga_qu30i
zWgM~0jNDh#B-;GuS}mO(Ul*yr@5iFF^Ye18!vX>p#Ml45x=nBSmMtM)UtbTetlVi;
z@?rtVnB8S>FFiXuJNLPZi^~e{>3UoL$*h=p=8R9Tl&RNT>+-Pc>taPEBvw?v+vz^P
z{@>1^;NY(ZnE5lFo|;;wxO&Hqh)G`_H1oe&Hal<9{{8#i`sLOxTBKw)X>IbIyLWTv
zbIh|Y*Hh$Pp=KuKx;0Wq4Ah3o-}`l%n$L`c+YUv~&dlWE;kmMQ`#o?dy7$RU+`oVS
zTh{a7BB!#V;>GUw`-(pVFHoDN7rW}Xe0_|fqGHvfPW2~GpDz9T`}^zl^?z6Y`}cjn
zwxwlc@N&PYi4swpQaW|Sy6@Hf&aJGj_MUWYP2}RLudiO#|NmZJ`ncCTXzdzhyMI5D
zMa9Lle|&g2Nrj)Ef39`8-@JMAKv`TxQ&rV<(w8H`{u&Aj2gEkbt9qr`D`DuQ9lkCk
zB4Wnjc?<QD7YB+zyuj&o#q#OXr)`N6$M*mKo1gsPK%?8^W4*nS#%U65i4xN0c_vck
zc{!kTzT9u_ChPa||9`Y!+>#lb{PNP$t#)ZK^Zf1qUdgz$r1RquVSkC=-`{Vy{`T>>
zymalaFNQi|-G<rMbQZ5zaYDj8Z_dN#&(nKkEH7D<yqK`D>}}NJb-Ujg9Xfot*Es#0
z#S6`VU{J&)Zj9jRKAL3n;Q;foMXud?H}vi7{xxN9+Lm)O=}y66Ubp3bb9){=dUQ*s
zYHs*Ow$sOtAOG<Av+>u{$B(z0Mr`fj63aSbz$4kVP&$84;QGDaW*zI5UJj~|;^N}G
zyu2>0iQH_Gc!;I7t?kv)>2a4pZO_`@-!kv*sr>Z$^W_FcW|_YnJ6In7uXi#~R(1xJ
zMWB}Vde@aV`jS69IGA;7%gRZUCYcmJ^Vynx-A_|fGwbH2rO(dJUjFUv?bUI6tFmrv
zSZMe6OK`L+_qq31Rt9r%a0LAS_jhaleY@N{I|A45|F<jc+?<tiwpAJm3J#M@^6%Nq
zwXfe7q^fOV64EWMA9i}0?$f7FpPq1Exp_sxPPXpE4GK)5(R(U3{`+-(|EqPo-(3Rr
z6W-n3eOvba=Jb9cA)zg`zst_fu?z;a7owtOO`1G;>g?It`uh4mfBZOc{J6V(-H(M$
zO-(XiR9198dXxle^MOjgS65fR?UVffb>0cx=xrHCIs`v``Eupj+UTo03X}i-c-$Yg
zw`%L3KYu_q&}}i^71BJ1FC1uOzPcvTST}xO%xv@gYjZ4%w<I6u19fU<Srjf}<B?cU
z_V$+NBv6o>->YyIR`<JdV`Fme+Z8+KT9>a1Umy4B>sQm-*RvqKmCWOPvafD#UcU1B
zvDS_JVym{4zmL0HcwE-1;=_V{KOS*|niRLU=U;z#xc%xfU+Kz<iWR=I&A51ZufDsx
zduz^3qn*2VzpnrHyxyehOGf0{u&=MKdMms2T;SH<v*6rZYwKSV1ANoZ&AE6xfB)LF
zv$Ha<tOzW7{qo=M_(Qq3woL5r?+;rOvG8Cs`|9ZJd0Cg1bpHDCa&g?=s+FFT)%vPf
zV%k1GKM!gQg2HM`=H)BPe5FBIC@?TE>-M&_OYWQX+})ZzolnMMK_fGJ){PB`la@T6
zUmwRSWfHKz?r%<gSb(wU?}W;#s<^4O8@#-{Zm_Qw`?#GU^wan6*N=1xKYjjuc|!w(
z?`$()_dc16UtV4om62I<u$evk;v&~iA3j{Le!pk2{lAa>p!__q?pG$L(DAqV*aAvE
zH*Q31&Afc<Vt=z##+4Nl|NQ+6YWjd2eE6{Q^Yin!zYaExy|X<(-t$s;d~IsB``r-1
zo?F}V*MkiF_51$+b(7Woy(YQ!N-eE^zc)NDFVCv(&yJv=AW$1=@1IYnt3I7n|N7_i
z`Pct`zn|XDuI<mz+0fdZac9TINs}ghnZEyz>+bUR)3$Hl{_orN{h9CY?d|I9oOm?p
zVsgLjvURb$v!0!qnRRc^&RM3}%eLRIi}v*N-1hnd^Y*-zKmJPDRBR|JE;cQG=Ht2l
z?}xv&CpJasZ2KB1`h4TH#qY8&E^0m2C%d|*hbQ;;Hs48G5)ZSvy12aPvwnBsP%HP=
z#KUZ?EG!w9mUw~^!jF%SL8YNp#glc-wi`h0@Q0H?^+x)<O1I+Y=dS+v`1tFm)B3mj
zYX5vZe(L1Oz^JHMT-@BHPfiGW2A!U!yS4m%oN4y8Gl7SXiGsU<+w<e++SNvBYHC(}
zx#+HX(kwROqy1Y|?`au#b`<_PZvSs#bpGC}6P?>S&&{=7E~xBw!hq-Kks}#rW*GiD
zEdOu8lqn*+x6XLK@AtZYAKL9#1TXjFlUbX+BBJ@}^XKVRs-R~5a{u{hykWYFrgeLR
z3X8OJb2Ph;E((vUbZtv~F*AK$U^5%9Ny-TUUP&XD<YPS-7dp3p`S<(1wz|5z{{BBk
z4_EbZb8uYv^z?M;aoO^WTU#=%YJY8c^!V{xvHS1t?TxPg`#S#W#$<Q1-crMP^X5qz
zrE~}h3s0Rob!p<^w#;vDZf+|Gg>*PxHnPhVeDGj=?!wA_wd~auP21mZHg7x20%`&N
z{PpWr?JA#Nxs6-;`}>*Qxr}Q+omB7Y=(w;lczMZr+wU*-{eB1PtAip0)Xc8__U2;x
z{MxXW!pm0d{`dR+mj?%%w`O10%e}S5Gj?}b>4y_B(XOnk6A!nAFKsG)bwyJvVrvJN
z*s8UOhudb^)$UsI|Mt<JGt=j7Y+c#quOPTC<}}EF+}mcpb1VX-&GSOs+}f7hzxLwm
zo14M2&GW;y=iQaD@tU#nQE<9gx2v*y-<5N7t-l@>j~Cd`Af=G7(5+5>)1A9_L0!_H
zzkYqXm?K_xnAiNp-SYcaUtV4ga@o}B(^pr2f0uP_%}goNtS2uXKGa&VBH`~#|N2XB
zZf^ei@Av!HjqGv(e}8?IwK2MW+->o?#)ej@)f|!U-o2~(cvL)ee_id_S*E8i9zGQM
z?D=zbdwct>SyxY8bavDQWpR)hCzSg$&dxHGGR>N@xSiz+CyP$Zv^HL8Elo|&udlC%
zr=%=d+|K+!OUfi;Le;l7Cud7!af<3(cQ|k;HT%kniJ(lsjEzzJ`TO_l&)ffxnKy4<
zpBz^}`iIGa;VlKMG1462TTcs0_fDHKMZ?fA@ZZ0GpFVyJ%*a@=Y11aX%6pHFc0Yag
zEbQg!yLV&l|NTf_`Y(E0PT>80wNGEa)?R&e)sG()qN1W#e^ftt1MNSXx=P5(uD!ZC
zTw77mv9Yny%ilk|qGHFU&6}?-_n+?__y1=4{Iy>;y+76~efzJKy1IKa8*k9|yt^jl
z?_&ObILu%5a_RJv2L~8a)6%Z}*f~d%5j22w=iA%cTa%7*EnTuiLs8Ljl8C72(sy@v
zXJ1<4d23JQXVvwE$7Rc7iu%`T1}|HYd3o8b9fgZ)YHL+Jb8m0EI>Rt|%G9Y#9h=!=
ze;&5rd{)lDP@t6N&mXp2X<OD+t;&iD4KuTA*Pgw6xpKw~iQK!pu6~o+;;pHpv*ydW
zOI*wS=ZA%bO<S~RQO-lJNpAgey7BSxYh!k9iu%4n8#JaH^SG#}2vp>mW?VS1&Q?X`
zNZFqxp2HU!7@4nZNOb=B<44Ai4-c&h9yG+xU%&5{S88f1s23hvy|?PCh>Xmd*xh9_
zKd78*)^uWEnA4$rE#c|&=clu_hGlJ!T5H7P?A|Z8_EU_!yu9tF6Uw{ZZo3UK^zDs}
z&YGH<T-@B3&&{=d`u=_X?)IZeD?iy?o!Pd=8{(?2?r!}bo`L%M`nNx>a&d9dP*OVd
z?e*^W`=XuOcmns={rz&M_&jJpY|C!9(C<5M*uGL?3e&Zy`?KTP`uO!_Z*QHvef##s
z!;B0u%N{*SlC>)FaBk-d{rv3g`ct+tfd@Z*`*v+-@pG-M^KGlImF-bGbm-8P-R1ea
zbLF(w1zxR<dHY<MakUtz-^6eGWy0ciMh1hEn^I4MTF6#a65=5-F)=HpQY4PKp5GX?
zR(uZIne*qTFF9T18aCT3cgpP9+2#C)4RWsk`CA+F)-;A?O;o@}eUI&Vci-4q7V6&E
zU%%g~^wpCWiC1>5SfSz0e^4<fIM_7pjD$P?VMVi?8xLM6UfGp<dz+?-$(4(TSA?qj
z&kHFlD_i<^-kCC0Q5|`C`JX?2+yHf(Ui|p@ICP${jLe!hZ*oM%#BS-9+~1ZvTSu(B
zsku4ZrmvZuf0b*u*tYoc_xEDu<m7&RI<0S7^u!~&Ix}-+QBhIMJKO0X*9Ct20vZ2o
zb`RcdV`H;!XZo}y2M#!Z+*VUtyZ&Z6sG+sEJ>d1L>+9>UE;~7A?rPukUKz_E{r!J7
zfm~nrr^0i8>!vSXN?P06Zi%fD7ZG`JJ-$9PAz{ItyLVOpZsU3Oy`Jydy4cmS)@3hF
zs?XoD6;zuyv+-WqlzQ5v_E$;t!Nil3RJF9UF4ca&8!p`+l?_S>7J}|;4svmF2D-Sk
zOqw*Q<joDk+kWpVD=WRcy*GcIZBw~vnoi^*=XO3#P+JnznFclPun*|nt({l>&a$<&
zb!GhiIw|9{9zJ=yHQ{lUuFmazS05Z~_N`5G2TgrEaFO}CYR*#c=~=(Nyo}nGGt+O5
z#li&(6jIaDv~+aNytCS0&;IuB_xtP5obdtG30B3=de(%ke)Q;(N%AqC-I`9GuP!cb
z-?VAdlo>Nte0+TT^!fAt8#ivO`uFqs*~$QQC(w}Vs`&l;K+V)Sb7E5GZ`oq9yK9=t
z*;%IEo72v&`c?~ShxyJni~VNtnu|$n-KuH2(N<L)D_sBn{$Bn?AfVf-?9Gc8iaS)?
zLpLPo#Z7Hq{p#22^<Wt`9*GAp6c>mIZfIB)c#w(VKxe?gBHoY<3=9lDZmir44C>BD
zSH4>e84v^y5ei;Q*vSSOG52d}cq%nRiG_i|KoUHt%mFHiL3$3PfD9;53fU0D43c4(
z3^w{?K;f$2pn{WOMh}-51A||SX~eol5Ub%NNce#ZsQFHm(MBP2UfF@1!=MIoTZ3>S
z@3ia%$gb3iSl0*|G!|A&*vYnxgAwi@C)U%Z0SB4juI3S4zN;VE5fRN#r9jSMn2M#A
z$f}up<3_~JojYH?+x>oBNzQ==#-ifl)n7#A<noRwTZn?(WFhDtx?$1c#apYsW~r*E
zXc!m-ynOkRi=RKdtZdt_FE4}F{;v7?bb8dDij8~r?p-b8KHDtUB>kL>WLsi({?%2X
zU*(qYDT2rPZ||$!4Qg^vnIfX9qT(@W(V|75IT7DkCZ4m+^VeM~ef0RTsH|-5#Z%#n
z-FihNB{NU$m@66F0vgHf;+l3dUVJmwGC$P4PiE(n9n*Cp7wxV7{%Ys*dAn2YL%JBT
zzh(!v3vK|_8hsoQmX?;U?(EzwWs;F_T~0_S$-2(4wY7DYP35L#ese*|EN)AFUf#Nz
z+S;ejpR2FFx=PYGZN-{3YozYa+|>#y<JT4b{P}ZJ)Y_@H)`qR-Ieg*bVt4(jf5zu+
zltG33&nJ_`--=5}tY~Cr2aO~I1qMzGTN}0X=H_(Jq(aobnxCS!&6`1i@xVo9<B7dH
zc0|mZH*e~#y?gfL9A7<Y_UzTy<EnkN!`1}st@^50HJ_DR?8e_;2ifI8!&zc_F)LbH
zSfY=f5jAk-U^rlU?)L5I=jZ0GzEbz?P2}y5tBxE$zB>Q@zFp7fRqMUJ=WqLU3eVvk
zYjhRoK+^M>sUaKc{{2k<`{}fPS?<%PPsMGIXKjrukTS5hj}N+fTO;Sj2FKUe*I%Dy
znmuLubahW79_Q55R4qNdu(-H+v&?d}?Ctk!y}!H6SK4!x$+KO3p!CR{d2P+iS*F=(
z*TX_WmgMjIx$IPNQ*-mwxpUVZI^?vw^&NaB<OAz@>zW@Mbi}&ddL$CB=WUEAd2&Lq
z^u+~7P&<7`;p0_%zHh%@r|p?_anVuL`D^uH!NivR<iy0PpHHVxoi%IK$H&LLf90ls
zhm^FZ?%$7}6apC)3T<p`EGjR*{&xHQb*9<ZLUzUF<g5V=jb>h6wzB&ByGctfFZVxv
z`Eu~r*Vnhdwyyq`6R9J{D{FP7$GudFMF%v~rl_dc)zJ|U6f~(%);jI>Nn3q=|IEzH
zZFQ5?{jW_@^)7jFL6Mb(Wku=hYgu=9l`egK^!V}DyI!xm99w=jHT(9?;^j)p%A%5z
zD-RrS0FBFheRcKLu2N9RxN6O$tDzuE=5#EMo4UE=WsvWDyV%pybT4-btBZ(;EID(=
zr?s{9X6*5^Z!gX7-+jS&OYZHkzrVf)yScS-adAC)_6*#s`uFE&)timSv;GD6frDST
zFysJcSsE6~Cub9}a&7GHva0uczw1@5TU~H6S4vDjPRHEb98`PSF@C%c>a8zWpupb4
z!@v;39b=RbYEk}f&a*Q!gIC^tQ!mNDkRay1M~nSg@yiBK$CQ;@Y{h~F2QE4@GB8{h
zn9ds^*6kX+%qK81@+Rx*i2rN%?1?#V_j?T!GxO7@PnUjsdprBpm6ckWnj2qVUl(hA
zxAyzpU!b|X-R1d})zzz$kM~9GDtUReMug#jY1^yNyU#Z<dQVcnHE|CEbS(g=vwCr{
zd;F#@QDNc5GmX>1QyhCLKZE8l_kK9U-PO~x<#qbTh%NR1>s(!2GEPiTta>^%{K}Th
zU{G^Q{O$o>28NjE7^?)&OIKC~hekz3JzcI;_Ws^lP;c(c3`0=ZeEIRXUt3q#7c_L@
z=GJDGcPHbzy}5b#>aew!K(oCYlaGU<8Z>mV)h?8g;lNVRxc-is16lX??On8J(Ue)U
zRwW<r3$@x;_BJX~M@&^k<;K?VJvBzg#+TRajozO3>hkjbx7W|kHV>b!7pwPUVh966
zL2l8{2360?%Y1_~Gheb^PXf)&6crZ-CnPM0{at!Jb~&hh9Tyj=sGzXmlIbjy%tgZL
zelx5y7!H_ra!t$Lp=KtPdw<_vxvCe6OP4LvGBo_yRJ-bT`}w<f|2DmCON{w+=kM?D
zrw<?g7kzJ2syAqi|LQJth6Uehe!tzmO<XYi$KUq(>)70LO}L6<g&Dnnt?k;Hb90kd
z_QqS=a#w$TejZd<y}Gotd+p!j^7U6vPFBCVEjRk|u?s7M)qno{IkU``;lS0)8<X8j
z-`u#k?(L6{k58RAQE;InV0w&jaLc4C3!T})GY$6j`|hf99X@<GRif?L+1csW?NwD>
z#kyU~?^UMf@{2MQ@FsU%Fx`>E`r0YDEO@!!)k{mgLBnLF@9)J<0%eL9FEW-cTlVTm
zr!Z)M9yB7P8@b8l`@QP*zrMeZzwOM<z)(8pG}{{PrC<AGt+lkYyt>8pw^{!?XZ?Of
z^6@@U@5RlnZQcHVRlakrLXFeTtSC9V>YwO={d^1zX%ExA?mnNysBL8xb@Adwahq)!
z7nO9QwwzdZ_Uu{T%gcN(Z^^u@S9N#Qwxl1=?f+L+GP5!;=$%w$7Gq#26`ikC!h8LU
zQaJ-d!!0LJ8$lht9tO7_4uD!90vlqOL3J3kZlApHQOI{t0|MU8$VP2fU^H1kMhk$e
zFczKb2SgM>3sOKe`h%1e7FTOQZ4+4I=8%-mbqA1hRxDZK(%ISh>HGKT{r&x*bqG_Z
zhCY6M<k+!OXV3bU->?17+Mj=OlWXnoZ&TN=Uk_@&J$@V-5>m4CaJdz@obqsGJ^g0A
zcV}PUwLO)eL47t*)g&h;$HmWoeVT6cD%)@R`~L)Wi|bF@zWqCE|MMqLGA=A|w5tBL
z=GnQqt8d(h07c!t-|tp`vwg({YO(A%mV19+EU0qx^6C;25>oLD3=DjAZ|`n3-&spQ
z8RWIq$B!So`uf&w`ed4VO2jnxR*1BD-jwz0*Q>0|y}b?8WZkrB6KFWHSndQTsL^wv
z(_&H6R$|)(4?bRA?ys$_?Hw2xxUE3dbFq8>wDs%Phpmf=Jo`T2uEPN)h6hs9Cr@5{
zZm#ue$7Z&&w~C62+a8MtM?|bRIawW4o@L$K^py2?&DX2pTH4yd>*Mymx%K+$>g5j}
zB)q+~^)=VL13w`V)wcq(C%E^;&+|5)dunQGzC4-iANNI0tb6IH-!ZS`N_n$Ev1_z-
z?^>tA!i_ezw%S{(D=TmIg{zvIhl7T&L5-%Wudiai$W2<c=ls!kf#RS9^g!x4>Kcd8
zM~@$0-JTzRxA?s6^gZoMwB8qQtiIw3N+AVG;kz!r;J5!1kQrE&nfcQ7{K~8@J$w83
zNmo{duI8S%J@GKx+W7r(+1J(t#>LH3ISHQjTDfCKL}g_qXw3W1pFcU5dqqK=x>dW}
zV?hfi4zzB`yBoDOdi%C)>&j0{?0&!5taYA~k1wpOY#SFh_gk@D`M0<EigmjlJa|yt
z=KY6<hc`v&NEs%z#O^+tbaA4xJE){MJJ&k=@v+|E@9*wDefV%8C`~E5_ig#AtE(I8
z=hx@fD^+UQ|9T6kVSb>~B5C4ptji^|>g(%0gB%?jzrDS^{L`l*&r8r|fQGX2;diSm
zKR*Kx&h_;0+%3HxJ84N9uXNUh1&*NJ&E0cvy{G8}1_n+%oonXB3L3G9L0Lbc32E@2
z!dye)0a|FXW}4^zwWoKz+x0r<;i^N$=WUm7*kJJW^>u&H(A~qs?O#u6ug`dKVWE^w
z#fQ-PbGKYT`BVMTitwj8vAaV2?S3wqrW?KN$B&As)2C}28wV#QCYB`^7w;}9S@CL~
zZPk~6u&`-0H8r5wY|y$FP*3Xr-|yMqd{;4p3IT?z>*M23o;>O0=eKT?e^k`0Sl88B
z?EG?TK1Iy8tKE`$dD&^H<XBLr>p*AB%jF!acd2EGGlF|U3afrcG=rB$XhkqESO|h<
z-jMn?Sj!<$u7ej`XdNVQF9y=z(R4y7sK7lTkR{MEP<UYzv{M4>I&q=)cO<p^O69?>
zJS4I(TOr}<BG4eRZS}X3F9reJ$NFSnzffE-?db92)>RxUSmW#eZZ$G8lCkBv!U!(B
zK!xuCQ0WZqsuA=G)?O2&1I{!pJE2Q}f#E<3*l1|EsHv$Ln3S~W&)>gKA3t7v;X*)a
zYHIAKJ-)NeGJkw{$i=}iVf*&&Yr<By@k%e#joudW$~xfy!_J*MLw|Ac^Y35teyTBO
zsSbmNl~vU0@bzI%PEAbA%v0yhTle8ZL27#XYXA9mq4TECo~>P8UfwHf9R`|*0`<dF
zPfr7N-=lVytp!c4zRunl0h*UMJJZ;`E%C;!=&f0$q4UoQLY(ft=HM;-U9L}eX3UT{
zdgREBtsqNetx7KJsr>wgX_|^@))kM56DLmpsZz=gs=Q(zhpmlL<>%)=dhFP(TQ;_~
zphnr+=<TmgOjI`AHE;X&?NM7Y7EV_8kNZ$jS-G>Tt7~1xnRC!K>Jh0mn5)sITwd<~
z`uY5N(1He&)KemF@9qw7X5(FTMc>>!eBZu(pFV${d^PK8kEC%(SXfx|`+&RPs_*)a
zKYwZ>*Ix5_8@4*ME%C*Ri;Ji4Iad4q?((m%uX|5=b$$K%9Xl+1XPcc}=bw<U0JKzN
zcHS;eS6A1ltyxpk&d*!>_xJbgpP!ySv+0?vkif|BASJ8%{;Efhk}9jJ!m_@9`m{-Q
z|CA?BQha9^IJWc4Uwd@4J2WV0(WOg4SJ%hizm|TmiM8yx&5sAoUEST654CbnoiHI`
z^^BcNpen9Fsc(kT7nH%ZKS51RO(nnIZh!r-UH;l}`T8~b`+hj}+k85qdcOMA%H=5%
zZd<pttndcq<p)ln^>NJXd^bR&TQOf`R$r|;n0esOpBhio`)&*4_Ezos{ciWvIdj$&
zKR*|{!76N_?`*S4OXBN(E_M4}PzFw)C#L3IzOb`6z4YCko9o^#pI>)rRp{zfHtH4@
z5jSt%)Y8$}68&Od?rpP39WhpR_Ujcg>F4H5Oq8&y{q@C_`Pz192h6qi{lhb$GWUU$
zdC?OO&<Y4s)2r9Qf`S&I^}OIK)IjS*O7>1x_kRUiBIV%FFv~n&@8x!X$+#7h%n-e;
zH^+-KKqY~NpnHyql#tM(jt&l0Rn?a_HYRVId*}0~PgAB%OM7iz`6&g|)@$dJ4RUa3
zP|3WpAu;RjuB}zy->sdd8?B|U@Bi}U%TwpiUq3ZfJNNm!J3E6XPMp})(-V@Au%N5E
z8#Gptdv{l8VPWC)P}SlzP|z&EIiz*%c+$obXV2Ds(pFP*d%ySlJkWIRWOe^lo|Dyn
zJ(mB!qElG?*50J$xwp5yy1stCk&#hIK!Ad|xq0c^TcMwypTC~mZyT0<J~A4b?Lsyz
zx&LjQm!Dr)QBl#<+Dn%%z0r!gl)wI{q;=UF)%Ew+#ai$Eey@7E+?wtLUhw*2aO|gK
zRWA;l(GTiY3m0AyQ9N@LsjWv|5sF-#gE}sd)(KiO606a3loDhui(KZ{ew$hM=cD`I
zpXcktUSC@q8W*=NzW#4$uaxPe-Me=$Zs%ZN2*~A|t7O9C{P=i(`0sCTzdmT@&-(M@
z<EgV}r>cmGiLC;4L;rrgE^Fz+z>pQ|Dtda2{uR4+wl&k^syx^4`?X5VXT}15yPqy?
zi8uO8v#xl68u)fU9x$`_2{14$cqU`zx+CErQ?HzD)Oq{=d+PrEeC~C;xv6PO-d!tj
z=k<63@3icKj009RKQ@5Iqn;MV$H&jLDqSV!&ce`;EVv=2*?Bof^tPOphuitXD{GGT
z$#QXUtT-yj$iNU|+0M46`u*PU{QZBo@yXd_WUuzPDPR9*BWM|>py0z54;dK(UZ073
zaL%dxctOU2s%JCPQ?^EdI>Z+jyPr<ls9|XtS^N9j)eVV<L0uNj;AIv?phfPc&n`4v
zT@k1Zn!}u|=6h+PvO8$8N3XQ`t0yNX&$29DW|n(PMP6RsollUVA<C8Yw5dhS;=ug;
ze9(mO<z>FbUjjg*mIrrp_+D5SYi;}M#o|6WHiiSP0ee^dmWey~>)Gu5DbuDcYi8#M
z^^nSD_j>LBtN8oNWq;q@_pis-uLaFT-@JJfG_MPqg$1qE1@+gr=iSwNJu5FS?++sz
z1A`eKZ-n=By{n+ryj5Rct@NI*mvw20=Tf`<{4wE4Ute9VdeF#zWlf~<(IZDz)c*cv
zRq|p2XrbELsI6YwVQVgYcz8Iw=5FopZzs?8CMhsHIJJ=<92Zr;UM|17*qt9VGkA8k
z`TkYkL6iERWi<y5IMjZ-nGR}GzKy7<+4Jk$+tn*pXuQ3-+5PRUt*b9?eSLLx`lk#=
z28Y;Z7dD-~xY+&ci^ctMUkg+{K?{Mpy1S>&nw2HKPGx20<z=8HqFmhEUmtbrdrgw7
z`;oXc|Ng#9rSs~3z4W@O1zKTz=FoDE*k)(uuz-LGeR8%@+TVYDILv=_UF>eH__M{Y
z*KP+T&r@g4ObIFN{O0ub&p}p(8Ak&dS7Yfwm7e@;mV0Z-!^7>`3JMPQ?%mrIwN}b3
zXU4Xin?(n4%&q-?@<v8#LtN!k(Y>F~S%>~poALC@%3!OiFDvr){e0H_jhl<>62JYQ
z2b1<+WMGK#DJj_kDtlI}(AfL!RyJtGT1CYV)q1z*&z^zSy(J&-yE;36-^xy5^;b7G
zCW8ti&>EoK`z$RjL34=b=Gm?W&Fh$%g{@q<au;Y8`q^U37U$~;s_N>i0~fpP`g$$;
z>e^^?Ru+~MckkX^*MBtW;{AW$wrlS?|MK#3RnNM*I`OyRg>%Gxm>Fb_3U=Swo_~Lx
zsCJl!s;Vm|C+DOkD^_TLy62!2{p{@Q)i&m8YHo&xhGn^+L6CMnS<rG8UP+@P*X;22
z;1-;&by@!S0@t;9w$&xy-bAvpu&mgyApq2n+xP3$YOnb4RZ142ENfSVn0GKTJn$m2
z@p0>x-+a5ZYu4zvy1L#xG*tyuX6)OyFKTDe)2a3y!i5>EuP-cg-dZ%jjaT|q*4C`^
z^K8Z6Zcjfi_w)B}P>(Nk+22o}KAo0xcXDcyGR;c4E+#3t^2CV~r}wEbJa`qcyKL>X
zwbAL<%U0H}n7wq{^>5FfJXulv{9M+B1&y)Q9v&TUckJK)-*tWAuP>QXr%VA&Petvi
z*!b<;-PJ3Dm*48EN9s48TOGcBUQ;u8ihT0CW0n>*i!a{#wA}u$C%3rXm1(-sdOI%E
zUS8%4%5cZ}WVJm(3sho1tt(JnSn%%7&Q~`#KTn;{&#=Pw;lqbq{QTRqfB$;D-Zblq
z27B*|S0~S(pMEuK?UlT(QK=GcTkR&4-LL(g`S;h?NlSixeXXshckZ2O1!yEYLMQaz
z^Q6lYN+$-htm&0D*D^K^uB@z_R5!aHlwPmyudl!S&am*23usk$VPPR?ZuV{%@BTlZ
zy5;Ks6#o46E9+1T=cFZlvevJz$Jbv4Eg=J?k4yRW7Dh%!KGMPr4EvvVm_{5udi2wm
zFKe#6d-^ohx=!=t$&<4T5}Wws?baOa76)avrAwEB1~TuOuG-~a`Yv#~g-HTv!otWX
zNK#VLh{w5C+I*VIT${=uO-)TuA99+0eBLRyd5w*Ypdbbfh21T=?7MC5o&CSxS?fk^
z@v#5@XESI;>Fs;r-|yG&7ZMgOJ#YIRw2A{X$p%^yq!+s@<N3L{;Wly%40BqyZ{L1y
zu66jzzi)1C-u8I9kcddi@AvHTH37EO->xY4+ayIthZgp(dKWym`id$aZv?0>4_cJR
zDXjJaw4tE%daSzVuaC#&LF*bpRomvYv!Efw>{EZ;`eatFi{1UIRXpy(BG>Mm_ewGr
z1q&ukn)K$L>y0g$!Ko=J8Gn9!1TA&`{q3!3`Z*cUyggS$&LcJkgVR(0`P|%`?!T13
zBa~(7s))7Mxc!))J%8>!DQat0=wibwtHb@v@7HdhG<kCAyE~SZRaLi^No%kB`TO^k
zFLLM3Eo6LsxBPx+Ny(Pn?_an;U6G=qO?|S~%a(dipCz_I<>fKy{41MMPp`WA{oC#Q
z>+kOF*4}!4j^*Wd*V*~yOj2_g7-BLH?E3j^w)WfK6<=Ni?)`c#8sD6&ar(Iv20Wl8
zH1p=o1C8$3*w}n|Iz2w?$%%>E>Xt5Ddg|oK!kt@l`R*=Lw6~AnTm60Ar;7LY_J#%o
z1avDiF+8|sjJ3ge%g!+ZvLWJT?V^7ejm@{E6`+kM3mlub<lHpc&AS&g8MJ7T()8Oo
zR~Cw{xwbZ1+uAz1-~QhZ*8coEI|A26Z(sK`kdfhmMPI}dIU(d`C}^`oRn@Lfq&7v@
zZ`pnoZ})%0%JXkB_|_)4y1QpTJvFuJ&&T7roj?Bk{CsPB{(R7qr|<Xc<N59XY*20o
zP46VWytEXw3JbK*?db92tM}}QnK^SN7dQ9juNxzDii$V)^BEc%S`|KO0aY3M|2)<A
z^7Rb`?H4F~?A9w`cxYXIzntxqsZ&+u<>h<j?c=z`^+IxT*4(TA|2L}g*sUiQxUNmn
z4F2+V`+Y4_(@<_Poeh7N&9$$OYfA)mOM{pB6h0APWLQz!_v1mx-(O!r{f;M3o@o7E
zvUKUq&@D^u$8`s9Y)>iu^71lh%5T@3!fT>@yb<r-y#o!rIyp6grn}$o{~vcL|93)b
zd;9I$C&CO23)U5M^}6YQ>11bMSm)Xo(aie!YSn>NnW3kWHpUdJW?^7pNDqC@xH|Ll
zva4Q~MCDmkOPLwgsfKKbabC;5=FOWo-E#UG8UaN`o1UGYuU}qX?&|7#_1pnaQ|XaN
z_68MDM`D(7dS6g*Fld!iyIhq=@N&P<<9)KSwk8Y=S-he;*B^Xn2o2o$>wSW0?k$tj
z7Z(m*bY^B)a1GQ@Jj@j4=-Bw|%*@5C++r)XYzYYr44h?_JL}f={P!yqL7U(fU1JWb
ztJ|j=F?H(H%r7r4&ax`iI>^P)@V~z+_-^=XM$ps-Xrn_@bF*pcDUq%D_v6(4=3M9$
zR$pbaJpKH<trkuU3=P`BuNhyzxw(1LlGxp4v7gS~Y)d?mwDHE?t<nq(;m4$Ot_Qqk
zeEt2s0TTm5f$3H`(EMxm?`aGSS0qC=#5B)_?pKuA$1ldf@WUQ7GYuXsaXL`M>m$en
z+P(;y1NLj{3cl+O8gPQmVXr}(4hM}b;~UcfPkK{qG}wTkz=KA=Uk7=4c}<xyL!-XF
z{^yS$8YU(ok&%(pZSoJd@pg4~22R(Dee(MCYS3`LnOPVsE9=x>d=dr@d7#~UhYlas
ze_j0)+%G-QX_3`sfPeI4#*7uh>V6tZN=|dFN-rI3X8-!@^?J|{o28{CXwmLni(6YV
z7h4uTJ7K^RUA;PN?YcLNa|MW4vs66wIjE|r{rzogwzO5rieKN~uLmu6-JEuIll8R~
zfy%CKZnORi__cwijOX~|`tz@g+Ug}IC)d^6yLD@2Rh5>Snp^btysHzH-B;Os|NhWx
zQr_OLVW0u;`!%1>vYyw}*AEX23^d&*TnZYiYsilA^Xs!Jf47E>SL(*r_Li0#eb-$A
z11EBEb6?$4`Pu7uQE@S7QJ1~FedOA(voj2xQ&Ur?+gGTAdysxd1hY4M`usU{Yn1lZ
z=(S;zZ3`E>_g{NaSN!~3XlCZhcl-a>?f!P)fCI0LMS%I;lF40NU0brQYMq^D8~ywH
z`|F>cp3W}ePj?58kB7&^==l4e_j(%_7q{*4)vq_x=VxA96DehyHRad$_xa^Hpz)FY
zbsrA0i;9acZ{-%(QdB$`W?0M$N|vBmZ{KFrn)d3)`Tzg8gZg|;O-)*@D_7Zky%KE1
zvp6c+>53|N=voo9!D3tf{k-dC&(6&3o|n8eO5cKa#{BvEE30m6$k^3HfEGnfR`Z=Q
zbEal|{Qa!n?eKAtsK1~kBn%9GPrR-tfHs7hm|R(>tFOQQQW@ueUF?G*@n7bF8aQn{
zl8ZKNGD=NP2hH)W{#LOcw0$qATTFLVtzRs7Fv{<UU~r4FdtXRo<jkPp;M`nQRaH>o
zmyxmJ&)>hQo~*2_ptAkc>C?G?&&{!1oOrlR)80Nl`}(@jc0O6XivG*X{Z}tpvLxvD
zo12?cH%6G0ytr`sXPKogXoMu@v6GXNh@jxYB}-Ift;^1An_L|iH}BG=OF4hl{O7Gv
z^`7?P!a`@zP@{_NhXc&NuJ8Z1bjAz`&^TK4_jg;r=3iLQ*v2of=Xndy#I#<d>T1YJ
zBgxI%GgtKC93#n#$;<mTIUcm=_h{0^MXudjGA=6ZPR_l(Z7b`VZMnBs#qX~>b>c*T
zqhsTpJ9n;Z%?>|1-#)(I_S=oC^#`Kda4q_&{eHLn>aM!oWpBUSt9~DQQR1}_cm(-K
zpni4R&IqKve1hO5FrnR`T{qQl8DefXGPBFrvRv7;|L@!UJ~^f=$IQ%?i`yHln!p1n
zpb=)2(QUAH(6&oOfvdHk#0X!uqv-^hG=r6qpwd)Shk*g#;4ye0#fW9mu6|G+hp9Ah
zeF0f(gJW15><3W6jJ!e!6xYykaq!$AWVH%t>mF!G5jM4lr=SK6Zq30zF3l@#rlF?h
z7Q3rt;`;ULt;*i4xN##wR750Z!~bcz(O0(T$N&8G>r~cOEjzn7S65fle|DDEAln=8
zt^0Xe+1c3%YJVsxDP36^tS)O)5dhlWU}S7Ob@JrJ({!V6{dxwO7JPMW?d)gg=B}2n
z`{Ag+_sb+c8H)vH&YZbbaVE+cG)a2$%C}i7-`?JyeY8u|%hNN^$*HMXbnPDo1~CIq
z7sn74O)V|2ySvM;FY%nbrSkJLt@CrO%h&z-_BQ*vS;>n4&~CN-Js;cB&dy5Bo^O=e
zHOnk_Rj;)9sq5FnCtcZ=8{I2u>=qdrDP@vzA+*BkICwl?{ZWVJq0rS~Cl4QX-nen&
zHZy;Jf6zki*Voosfm)!?|JlWOUIK0DS>`+Y)$IIz8@Ga5wULpLU0q$9TD3i;Y^%1^
z)Yfh-dU|SB&FndH;EDrpL0ueuJ3PL2>84FaUte84y)GZIh&1-ui@Cz!TJli`7pQrG
zy5m~P_VAsZ#h~`g@Av!fzk|#if|~cB0rmr?>rmGbz21D@?lNebOV$;QukY{Qe+Qa1
z^!I%iD8Au@EJMTp>-YAug%--y$^3sS_*Bh9M#k0cLPy#pMV_^M3nwjFCgJvWNiesB
zG)LKrTjp<DmT9%T=sps$a<S*V6sep>hI>(}(<LXzt!b7z8sX_-?YF>%S*q9|G*gSk
zG2y@dukSv70{RadH_PmsKl5`_`u8`RwJ-kp@%FGB`^TfrZq3cjSFc{Zn*Zn4*6ew2
z%NH$N=y-aXZm^S6Q`wsv7xVc%na>q3FYXZmCFwsNzP`PD@^)`b%XUBa;VtPt_qNP?
z(lWofRkth8&$nOiE?*n+{Z4T|pNz$WtrPwpli8MA-S_ir<-3%=i7lWqpqXde!KfVt
z3&r$eUYLURB)xua|Nm#hdru#q5MSTkTeolT727r6qR?qts-~gg$7#iJJBwUFTk@-_
zszQQ;7oVK0{{6PPon0IwBcoO6t0_iCMmCSHua6I}t=&6KKfZ4HbPFZ$9{E5$Wo2hu
zTU#wn&5u2$<>jmQ?1?#f@?=+E-!zr2+qSLRxG`|=-o5kw?)&q}8+;bQ_Gr*><Ga1z
z@6A3ZC?~gW%NCQ+(9lZLEKyO>S1(=!goRxbh@G2%0W>{faQN?ni%XWMq^6~<+OQ!&
zTtDuM&B?t>m%65=rq27z#l;m87`X7+v$Uf}j(AL}`}0`-_51q&yFY#URPyUf=3Kkl
zTbuubHbFGY|2gpaE4Tih1yiPoEM2xN>+7qlpe=ga^6#(v@})#KYD>lsy$T6Xxz?bi
ztqoe$9~v6Ea_w4QPEJnH0_dQiAe-M2(^RLQ{{8HFyL_F-=}n-0%a<+%t<T-Kabq0g
z>*)Kxrt!(ytoZu+`s?ZY|13Rp=n$wGk$Z1XWrqGacJSbMhkjjmz$DQAphu6AM8(DV
zclbv}&J16y>N&sW)5+Mmr}tET2AwgmyXw4$3#epptP$OiAO_lN&%m=7w4&27W5XY2
z@ThsB3254qgLhi}0`LOJ9yV?UhW3SpQa>|53qGOBBbuMegRSOZJZ)dl{XuVMjGpcH
zJH_+XpFVy1Y0=J-cXur1=ZP{f6bLb0yT0esDea=2F~820?<;oy&41KiilO1+>tp}J
zefAsd;fRReoPAvn)V@;ppLgZv=JeWHD+Y!H7NvyRqw4c(7Ck=RpZ)vWThPwQb91e0
zYrPm60^8V5+Y4;im-PJHT+kk=X?n4%dU|+3mD~?Ej)?e;+1K^{zHqk(O>=;z`IjwI
zyL$EN&tF>@7#8!qy?Vm^z_0q!($cJqj0=zZ?e#pXemra!m6i4FW@TV_C&l>sKj_4T
z;AK7+n^?JRl21?9zdp~lI_37Z_kKJK2CFuJEm!&a^($zL4k$B#h6s(*&%HP^)7Z<)
zD=0gAHE09R&tD>p3<o$4O}?WFS}dNoJ-Yhan~U%6?%umCa@x|l*5z8dy15rV$LuQc
z)SF(ujF+1`I3nW4f_`2GgVmci2hW{5H!k^bp?kCX&fn}z)0V7SrR6)%CUX6rPhR`?
z+ko1Tuh;Ki2O4PP;^C3GVgou-fQw7&iXj8TVPy-8h=T_Y#wA~0AAfzR_w=@sIHqa!
z5?>i#-`bj8_4n&_&=&Q-AKLBTY`4|Y^4eYg{#tbY-lb>G_{h&uWMGiUbo(o{#{7Ow
zaQOPTtI7SgWtZQAMwd)7h4%Y$Fi42$6n*DkYzJDO;jO5s$h>ajCLM3ki1+;ef6`-j
z7PbBlU}QLu+xsiJC4b+~XSv@sb#+0FVwIKKw_neW&dXa@R9xKt<PHPFV*cz6e-5w6
z2c<0^>93$9=;!>{<kLmaaWN8Z&8!R!&5-bBU?>n^npXcn475}SYbs@5c<>WHDET_v
zy?Yn5Eq~GC#iBw&i=I45k+rG#u<d<zZf>ZfW20Q<6T#N@_R~*`UY?k!Y<{==U=wT6
z&X~V(-qUmpYc1{ELAD<Lv8eFW*|VXgrCUFJ{tRk%fBIAenmsc$HJxRif3M+vc1{jx
zW1ngEH62wIl@;5zl^v+nJ$-3Q=H)G^r^Rk=dn-BLs&v)G>_YI_A&c*voU9Jo7zLWU
z03Cp_WX>F!qsNbD-`!PO_5E%+d(HbhJBv$yeo6%`yZis|?{=PuNuWKIYa=!udhyd*
za61PhL%{^;><vEq^HT5ctL5V0xUed8wM}wkV<Tu8MQ-j|y_g*a52~G=okax&3&XG9
zxP5zdUtb?6*Mr*wjx~ZCUcG*8TKz4jSKj_!wvDFd$<24CfVMVq@$!a7M9f&UXwjC!
z$8KN0e37u;7hKRSz|atQ?roX2me#8K6(J#0a&BKspI@7nGH=HY3(#`Fst*U*uU@>k
z5VY6x@-pA7tgK7#?(XhA^AKFu$Q%*x&wTObO-MpQ!v2p77ATxA69#Rc{`yte-)5m{
z_O%z~`+v{<^!c-G?@W7eye^I@DA=%T*REf^@w>~;ZmwNn^Y_c;O}W4O<Two{feUVh
z=G+aSsS?mYYFzT$w{N%C_=kjC@y%!6bvMt``L{%C=H+Fclh(!TG)gJ{!33)P?Kf3?
zOwx_pb0hoB;(ohJkNfTI9#jhn3x@^=FaGweY<=rHb-y_iQX{>5d}KC#wk>|vqmp@P
ziKnw!yFMrc7}_Pz-B*~hq^F1H>z6MpmMl49eC_VtwVyr}sj91k7P?*fKkwGP8#h+m
zyLWH*zGbV!*RR^Wd-wex%Y0|2L{7VO`SSZ;GyFga`GCgsDN{geQbonYUOhV6Jx_h-
z_AOghtXXqrbG)Ntqn4J|l{<IV%$Ol@{zvbGl3!mkZ*E)L)x{-iTNN@XBqT(|v+Dof
z@1Q+DYa=!~6&4o0dh;fvv~+7$cJ|h^v$GU)Pu74Jvp4^Eb$FgOj>=|F-{YdM`+sgN
zeC&2!W?E{c)6CS!c@3h{(yOmr3EBJcm~>Wd?$pyyFM)O<fVTJA|9$E28?$UNxCX<l
zU`n0i<L~G8+t>aod3$qndcbpwNg$O40`aC12HoK1g20A9%==wA7#I>HK$)A*srjiq
zQcaSWF~`kL3e+z+3=%C6xR&sf9hons^B=T^?0_Rj#J|Sq76t}}Hc;8{K*1#9Un8h)
zI$!`&F4J}_^9iUbV=w^MSnP?YH5j~XK-La-ASiD^YeGB@;)sw43SS@h^{Xa>gwou(
zbNAV??k`z<(CF`>4@wD%9)cSf{<|JvVmk(QPm5{9KS+FlLI7rg6r1@q&77N?TtTDf
z{pZsvo<4v6`lxvPm#>)#Gd}#4i*<Ya{rBR2yP&eNZxhzrFD{h&$q{jQ!OoqLlcvm_
z`}Vf*$BCB3&wl(8G3fbG*RQwu>+idF?yQ+IMI?THTj1ThcW-S-Y+ki$)s<`4mbJ97
zfOZLHW@c`$iO<en9ar^I6*Sbp+;47Bb@lG7tgI=sW>sDO+b?gwuJrY_m!Jg(plxZJ
zHf^c=oYvab#&<OJCl6z`#FFL9SFc*-b$PjectOF2_5SP(A9zd4%2w^%8Ts<%OJ}q8
z_16-fK6|!m*RH6aKYw<0cL!Hi?wqC*xoFlbsk5`q^ACJCH8ab4eQoV5)9h(NLP8<Y
z(bf<4ef|2?%iH@hGr!FO@%Wm+`E|cmZp*v7s^9)!1UsM154Y>jLRi)$3P?(>RG(LI
z==yR-27?3lXK8y{Reo9mn)?CmWdg0Vn=*Ow;vYXMKvSac_x*m?@E+8O(Tm@=rlW)7
z?fw1#r!l^snLh90kxt>#A0HC^lR;_y>gw><4-PhO&pquXB({^8;eo=wiVH9H)&3R{
z5LghpI;`>-Xx-5C>C123ii+J)ka*yGTU(o!lG3AX*Gs>?3I%n^EG;eLwlmMK`Q!=O
z^Uh!Y<FM?Xmpw9|CbrwoU%#qA!#t0V_kWl2_wxFbBfqBp-{<+SUcP*}Jum;wjg4MD
zK3CY~YYbjk&Ve+le=Is!wEJ#XSJx|ZIZ;v7+uJ}xK)k<p-O1aob6ToEPPo{D6Vw$7
zT(^01aARZR-($^9O*XfE&nRXdsQmMG@pO)e0~+6MWv@T^v`AA$#U*e1?)%?Zxy3XT
z6%Vqfv-QO7%h=F_(oJYCeJsIz_Hq9H)bsg*OabBH)3@c^Tr@qt?q>F!c3Gx<hBNk8
zU%h&D)w*@xq<+7z|6hIjJ5NdXyJP%u!OQ*r9((@zs%6gYeJ}Zo^S0kUA>-$CfN8;z
zBQBtAc%aQ6MyXxv{n-yF=tOVxIXzAHv()bohxzk=a<m*d;&S!Ml@)vU-pyY4yHi*_
zC32dOurPaV+{cd}K{eXS;N?>$PJAf2zwYm@SFc}ht@-)M@%%%TJ4!5WmZvv;Ib(c&
z#q#Cu(c5x%KHax>?_SXUCs5tIV1WXt0qN@M`s&@gZ@2P)eR&C5(hu6&1zI)D#m9H;
z%uM6Z$jF=TXMhI2KqogGJ#s`tL&F0!qm*CwS^DO-+%Hy*6Ay`R=P))hx^nsQ;z^T)
z&PSA&Z$EYVG-#Oq#fuEj|J7O5$;peWs;l4s+I8sg;i=Q6EnBrptF)w~;+VFU)|HDF
z7p_^eX1Cq4$rlqCFZ4(ngI1+x9q*IX($J9Da1>NeySlb++O+A*>iEB2pj9z-e_zM1
zUbxWl_xJbT-=s%Qn>B0Jl$kSE?%89rHfCqg(xpp(o%F9;w6pkmmEGjcn>PoqT)DDn
z_uXGN&(|%>yu9q?kB^VFbaX<pvsZ7+zi+2=oxi8d)6?_RnKL1Yi3|1O_PnT^RPF8E
zed^RHo8O`$A}baxayonVY*%OJ$DaIKTRf+wzWnm?@}}HqQBhIQ{JF}?6)R3`zE7w}
zV{wDQ4O9c(ep+<1w6yfw&CTg=Hzpsy1==2y{=12l`whE%&4q2bx7V#-zg_qArt51W
zAD8xQ&Axt1Z~EzVD_4H(@ttpXw`^z3w~fiiZIb{0`@a9}f&~iIZ*Og#xAFP>`g?rb
z+?&tOv3y*5=FlOh>Nhtwep^1jF6&Dbqx$OAt2e9OZ0D2Rq#wU8=S%5}3yRT`V#CAD
zAN+}pjs3Q(^z|FiwD7@$2fsP<+ot^gy1xGFt@Nj-rhc1YnEYniG_m!Cr#IzHKYjJR
zY1)|?b)RLd%g)sOc-a1S!UTcpPft#M)35u;y?gK8yJzGVH5YUXG%WeQ6|}`kOH=dW
z(QfhIx%I!_ZcmMz_B`1nuj1Fs<*B#J_MaE5e$dFi$8Nulkx|h1yXEuG&9i+id3$^Q
z{C&Ugz6VX_?yC8@>G{{a?`!>SZEdZJo^(81&0;X2@bNLwVqkH-m<you&xF<ezC>>i
z4GUW~Z=T%xZ(fsr{rYv~_U+s6uU@`<Ie%W|=VvcpTwDz5%7TjXx}T~0e=kVyG>u@`
z_vmK&{HtGIU(eqq_WI7w;-Z}~UESTErRLjIZUPM>UApwh^xxO|2Gy7Is^0}hN6&u#
zdf75H@Sf}?o|E^)b&KgvN{s~VB;k#fG${I!#4C0tnOBUVU(z^D!`eDpRaG@=f8Af-
z?>jHouQ=W#S$w(hw|4jS-@kr=#w*vx@Bg=~`&Rn-dA07vj189sHZW9Fe!H0-8XCIv
z(W9jGA8*`<`1<wh%9SfUL1B~r=ks~{>-GOW%O5><?B3TH<MeYO)z!Pj^kOVtd}jM|
zG{D5qB;s&?bPL0tJJs*^o;r8#+UoWDR$aRmcK*jCRqvGB+dwth`oG(AZ>yc&w58<b
zrQM+Bj`!BBTYsI7|92_>ws?Ha$KE<onGfuD<YazkY-k94m$v;`S65d^WaP?Y$J~w{
zKkhwANJwbP?Afa)O%mF=b!#SQ3()($-$A|p)YH>I+;ZFRx3*@3&no+U|Np+QbulX~
zi=VAnyx95wkK^_sv9W8PJxlYQV^MhFItRny-Uim5BJ<xbL1XEsPM*A&y?*brt$)Ao
z|GyV>uEeKLMWD77=zu5CEI{GoV|B-6UMzpMzK@-q{q>27%D47ZZU!CIvue|(pob41
zf)4cqZ7cPiVQ}z5D3db#c8<TzsrTO;4`*O708KU4f|jPX^UIrkx@Zy~8Xv#@=jZ3E
z*RAsdbq0Ioq|L!SnC1%!KiNUm8w0c-1>%F+CJfM~7N}_jUaAafnSr`p;9*jMJi%Y=
zd7ud|;xwW)>A+(NpoVw5qCjuW9q{H)NSo}T*h1t{1*~l{q$b^xg$oZ>Jic<_Lc*7d
z9k!s(Js+q&Fkyl~YI-{V$&b!XP9l<$mMX{H>Zj%2-nQPKiGjfbbea;V!~5h0XzgNW
zr{tvM#r7b*4T(BM><kPBpab?85+pzlJYWEk0M*(Ihe6{R3~itgVBk@PbU#4@?4ues
b{AW(Pv4E*~so5_E1_lOCS3j3^P6<r_@PA8Y

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-4.png
new file mode 100644
index 0000000000000000000000000000000000000000..74b18add63a30703eb4d5d10c6ae00aa502df597
GIT binary patch
literal 21532
zcmeAS@N?(olHy`uVBq!ia0y~yV2S`?4mJh`hJ9%>?l3SguoOFahH!9jaMW<5bTBY5
za29w(7BevLCxS5J3j5`m3=9eko-U3d6?5L)t*tr#_0j*2&!2DJsQt|7%$69QiD`j7
zD^-I+N*aUGuI^j?Wv$81S&~7glGeR)Db6Ym3_SEwW=V*0xTR)iR>_u+$<Zq(Zp?mv
zU%vLc<@4fgiF@9DzIXg_-R`$#eb;}#`g-l^<<EbA?XfpIY{0|Fz;M8%EZm=gf#JYi
zfej1{3_flLm>3ugBpJCG7!IVc=rAxaOcorK7)C)dbNOm@1_p+IB`+>0%37DbnKWm2
z;p1amTwJ?Up1W0oVqE9Jg@w+$UaeZKck^d$ZSB{?{PqHyR&n-oFfwdt@V*)|)w1^2
z7uEf2|9aWD85p`Z-ppAx@4Nv|@cH)Q#RtKuhgXb&K`d$WO`rS?Dp6}*xizygFeDgB
z=`b+pw6LAFy^z4jz%Zi+q?>zZ2(Q>Gagc_FlN=E%%+k-zSy?crl=0outKsoix8JXO
z{VJ2eG%T_?^&9^xaYpW|i?(bDDcc=8bLPyb9R&-;bRrhW*Z&DTdi3a~n>j5y<{uBT
z%V%6!5je}fejgVX*N@j+F$#x5&mNc33E}4F=db<$_xrA&&t{kY`B6A^$`lO+1&4mS
zUn?Fxdi3P=>($2T=T79Qf4-jb{cidExVoRIUteB!zjyDRmY!bN+NiBDwz>=}%KlvE
znI3X8`QW5ULcNm4Zn3+|uD-gu`s@1ozuqABqoduXSywdX+SNvt?VfvVF`Kro?o^dt
zdHcBQ@%4KzUB3MFO0a+C{e881^CSZ{f9SYiE3l!!^XA(!S*sEcX|tSw!orPmbw3jC
z79N+)y1HuWz1r`wU*F%4e|>#@d5eym__Y{0IXS=m|2`b%-<okzNmWhl)p7ayl8b8?
z4wzQBba)>#;CcG==}Q0kc70pJ1O){rEoo|E`uX!`=DRyPjd+}2Ut2p_<?L*8|9$)R
z8SymR7hW}3x^$_ZV)mOG8?|(FLV|)Od3k$JoiJg+>h=3>wHmiX*8O^^&dScdyGknW
zb&!eQpWj=4T}*g5Y2(eDRngnm9qX50|L0FlYFgSW`TsxKRV=SP|MBBT#=Sk2yB_yh
ze>tf>|HVaj`BIa}6_GYJHe2fd*DYPT)bf~`@2n*k7rSTw{q=R0S+11tH0h4+?%>^J
zZ?_ab_Y3!D-C)8brZ;oaBq7gB|Nor-|6=R)xXJV9&rdruV`0DDFONwftHX4cPY{)p
zTlaq7Z$EXvIR#I*6gF~kahc@ZvAA1wTKCqD!o|rpii(aKH*Wm(VsSr5WZr{qxATG{
zB4)7hO1Yfa<r2~SRE{IU!1t!o^FM!TM8(Bl-`JSkm+RcdbFqn)d&=zDtAG5c$i1<_
z@zQ?hY1_ANzgP3wxAxb|<y;&b1t<R$7Vg=*S5#Vh^}gEQueROJyR1IH=FyFB_Z78m
zZSS@kA8pn6{oGPX$;s2xGwbH2rSEpV)^idI;A9f>3EcKC?f<{OT|GS^9v&UL%HFOz
zE?4dI`uh6mD!lS`F~!f$1iHDksrk)`NIa2sZOu&WeCE&(^X1(%^z^2Ed0t<$+;8rx
zjt-8yb-&+=wyp8E{~L1N_WK+@8H<3o#m8EA{(iUHwD6IOtX)ln*=*m$#6&MIub|i0
z)^bKpXW*Sy{b7bx>8p@%e<st}i4vP`zxDF>4__a*HzX)%QJ<{!t5vJlUHbig|9XGB
zpDt~QE7H%;dv#~$=2_<X>z<yT{`z+Q{?N^7XRqw5{arNQp?T}nS`I~Zb@$R&S0=W%
zw|8}SKYjRcq4xScLAkfLT|L;$Zd&`Rq_w?$b?NJClm77}?En97x846g#kT)`JpT0k
zd-=z?4{CC5Y;e@n)co}2OUUnUZ$tOj)o#tW=p<`hcE$exPyfCDe!cGM=m<ziSg?9|
z)Z*0CR833E$a(YTZMyw-S)2A@1CYCq%h%6Y&T{oAgPxP8XJ?{B+r;V9(|M#!PH=E?
z8t(h^$@}=X_xu0f%ecL5?Zq91$;k(sSo=Pf->W>n;bxATi%ZMI>C?mCes;S$$Fg|Y
zod`d_zKgp`vmYO1moMoN6&1Do_kWshbkDoHyQSsi<c>W%J9}>5->=u>_3x%6&ieo7
zwVbqc_Kh5~<TEo2-O|#QCI7y*HoAAi27|?(lhyqGzghgM?Cq^o52HPM_ww4?+XvT!
z7@o)0#qN%&ojsjbPH@qwYilAwiamdQ-`&r1_`>)5_3O{gwO$>)J#W&IMT?Y5UtDmM
zul+J{&z?P7GA=5CB6gBV&JBaL5gVQI_k3*o^XE@Yv9d*eYisMTr_<w09vomyO;7ip
zR8w0kDk!+H-~L}jzx}@*OX}_4O<nTgLxJtbBf?h2&w74+ef_*bv|YtC@6L{2`Anf{
zn{UcwYp0)|w>EIGo2I6w=lXrWR`JPNsmwmROwP9I!;T9nHcBP@EIM<{4;y?rE?=K<
zZB1m=)2ZQK9(C(mZA(p0e|@A=xUbam=+UFAVs~%z^7g*Et2BG>uUD&oJ)51sCH1t}
zaYN@ep1|MV-md;@7hsxwecjc+-|w$4dwXl8b2}dwAK$gR<@eXFjoz+hX&K3H_hZ4m
z>i4$GCrq6`U*EIp#lrTIw_C4k85jg8yY*aH8N9q=Vh-=)hYuhAaQQIDvX~?CK;<LX
z#TNNyvwi>l`xmt#q48Lc<l~CQCsQ<oMPy{wNaybf1chUtjOC&O2ON%z+js}<E_?gr
z<;#`x>;K(6THd%SVpqw^c@>X1OJ85}^|$}KWzXKdr4J4;?*04i_OB0z`KQj9vEs*%
z3dy#Gs@~I1q;1Z8c&PQ$$Bz?L*2e9P+M0FsQvAP9;<3eNO}9)nJ#t*We$AghHM~+L
z9+N<J96IDwSy`ERZjR-oB}<m5cwV~fZ@+fI0tNRIRqu8_FF9}f{l(tz_kt@bcAS2<
zQ0=kn;=Dsk`85I`PnkANsx48X`ujW6yq!<Q7T5j#b?nK>$-IXRdVFV_Nq&8O-Q3B^
zsmK1`kHar_?EnAwz1!h7-rl9&)5CtxDNMBc`z3g>V>8>a%l`JcG8P2~GH)N3uh04N
z=H}%MH*=0{$-LYXyxdRnyv^sH!0mal$sZmZbaQiS+n9IP>hZeW?~K@ZBogM>)!uR~
zZ(Mb2SLy1+%{O^wpG~v*@u2xwbpGDZhjokHdRG<rUfY&?y9ZQbfO6Ty`SauF2Cx5k
z>RQ6jU%#YEUtcr*di?tJ>824^d)T-`lO)=B4qq_69<%u8=jX3yrq8>$r}FcYw{O?(
z*kR#2+srrlSWjR?#Ei6ab5^cizc1?L%a^mP%h$cSws!UG{CzjCZf__y`1fA8Df`-*
zz|CoAMTCVP|A?Bh>3ZRvs@H3?Zfsci=+PsS)Kel`b8ZHKO5aOMI-i}JyE<%b)XK26
zQJ=nlzrK8a-K&f(3AOcqKDIYCHHiocF8uPPB=^=9aFSo<Gjq}Fb-Vo>9UUhv*;)Mj
z)tQ;bPiL*!u)#n#Zcl{oER%`bw{O?ZUwUlO!6JUM!wHToTH7l=CV>*kuGi~!U)f!r
zU;66G$;{vLY^z12rB~0jF3&nOMN`T+ttTibXv&NkEB^lee){(9=zaV4efs+Ks{Ox@
z{H-l5J6`w&i2nTfbJx3Fudi%Oc3&H{^;G8UkMj40cjn$UyIXwT_S2_Nm%hEd4Jsr5
zembomwKZ!hC{Xs*{<ey{*f8s$0S~C+%et~+BB;%fdvlYkaoU*+>tc6b*^(LDD{CEQ
ze!pgO)V3T=&#GrL)4$xxUZ45q#zra2q9w^Pq2Iq=k6)dAech+epN;=sHC?)Nsa5H#
zDP?bOE!B(NHKQso<WTEdNu9j+_x85k%`?w2n|*OZqVwUr?b6I_JO-eqlCrY$VT;O7
zOA;m8K0fZZm#Y2s#qiIcKRuGhX%cOT66$_)44$2zpYJo*>Z*sIpBbO5)ss`vj-s;m
zb$2o@FY7J59$PNCbm>yJ!otF(zxRE+mECqW&G_2-`1oGqBTECeu{=1fzu%;$wzhZ5
z6p`cGo}QjAt?b@cvL{Z}&hFmE+*emtg4C<|&MLXKKfItUwV&hlm6gd?R)?RzGT*B7
z)tt|QiHV5|4fF0;EUx_gtgXMl|Ki^2^2d|??JS?~2@VdH?VtMp^YOgx(w3H%Q{~G4
z{3v|frM=D|$80vJMHzG9{miK!I|Qb3@$g)^u`zjT!a*ihR@Rp*m(RO&|KB%rRTUKt
zL&L!E_}Z;WNlBmtWq!XV`2T17|BEe)pJ~|J#|JO>yL#E*{_U&i1FWmU*Uw{OX5L!=
zzizH&vD>_P^FZbCV`uJ5`|m%ww>n(k^HTZ!+U2+N_upOl(CKW@x9i(OSBJg2xVYW!
z&j;tbwcqcqir>HQ-Twb|rdd}!PM$nzRrY4aq)C&$+^c^7a^rEi%bU;JY3u9j-z~i!
z`{~OQdu`LukdP^1YonIlxDmn1&aQ208p_PZ6A%?OtLodE%4^BFX0zie9<~<orv3f(
zRohlgQPGi=mG#~4_uS#?HW9Z!K0e;dDXb=8Hv8<wn5D~?OM@C57Z<zpA5PmWxi#ym
z(V|6*df4SE4!pRraq-11nZe12S~&ZPL%vM%iU_|Mzg|49;vlHBInpUCd;64B-~T)M
z`ugWVwQo{V(pNu`=~qro)t)=+q`&>&D=Xsn?<+hmTP|^Xd%pR$+}mkiUS0-O)W@!d
z$LETOiS4R5W_rKgECN*SeSIFodu@7rT_&jh{r2W&-^QjUCS?nY8yx)n_OC&)%Dek+
z+)~yr_iMk;4O|_j`}nAMyvds~YhE!u`>(IA2FJwA>FVk-0X3Jb%X~JcoxQXsa<j_c
zpM~%4?k?9>Rdubbth6e6(xIZMs_F_VmKMA9-udpYp111F`s*En%2VddS#v$UJ~sE(
zmWzw~?X-5^eOK|<?Pi^P&4<Q6fB#-x?9LzVC#|;o^EvC%-*2~P-`i7p>h$T$$^Ev=
z^6u`+Jk}%Gw{?cJdEOQ4_j?vg=k0LZnti?OW6#}oZLyu}V|E73n>Vkkv$L?Lva(Xs
z$|~yP$B%v2-_P-mi<?(dTRZpGyRIH7Q!h|orRwXer`z5id+fT{LcPAe-gl;v>tgr*
zYj19D{(7hQyr#as|D-GH<L!H;&HZj~&%b{E|G)C1M~|+o|NrmTpU>y7t_V~XKQAM$
ztfArYe&6qPUS3`%nU}!5giG`F=jr^O{&oBPy4Bn7*G1>v+VXJe#=K*vPkaCU_4RW4
z{Mu!Shuc<$uaBE$S-ea+X6oLJ{|~auhuq$l8*3RlBjNkIyII%Q&3$!c<zth$Z)at8
zm%q1r{jn|a#k1M@)AsM*UsGFansGtl@0ZK|qVInH`~5!qc%Lk&QE_JG9@mQr5BL1|
z{X6^9larfn=6HE|O}d+R{mRPVr_Z0OA2tZtUsv1O)~01*60+QX{<QV$*RNjABiz#7
zo_%#ysFYDkM^bX~*38Rlys}mypa=rF_3P{F+2`lk-r7^Sd6r4$qgO8vsT}*ic5(H$
zo9SE2-bU4aK5Opf;}g=(CoA*&%Bs-Qt;Qw!>oPWM+O$dQkI;*T1_sHtg^S($!>ZP-
zU%y_i@`>QrcXy-z{rh)oYxeX>lO~DC$*o(z|KF{ZKeaS8F5K9dY+CgtBewGCRI7>)
z4_fa}IV!lJ;NG9Vf2U5Epz!j3eqr6epU-6zSLFzrJUq1*RDIprnB0D>Pj<EMY_rU>
zvrH%bi`jE)skb<&ESI$|EBUCCs5blTGmgk+cK&PE<LlSz@Bed2GvVOgC(oasK7D%i
zor;^g&z#!#Z<P|L7c)W8S!TbSMZtn!Utceuowv*L@^b&{uh;K?cjMcq)B3BIEO99;
zEL1ypZx%<yib?<ZBIV@dygWQ6%%6YXa{kW6&vyNKwfgHh>-R67oSY15z=cFbt@4{|
zwK8zA8>j$Vy}aFf!J3adKA*Gx`lws~)!*;;uQ&7CorqeU^`MLG^zq~Ft*xz3k8yKx
z$=qJ8WMdO^cX#>qW4+R{$&!+ivrMz6iRnZXME-G{)6lA=%?+{~6zw6q%W{2Zo1MLS
z`H*VZ_Pp4uYoo)@&NeUq8WPaU#LNt~X`;K_#aCBXm;V3zeRq|YMf;&chl&zk#&Dlx
zW@6H+;h8aYs;Z~>m-Bz8hR3b^`}@0foo(f(6i~0i{BFr)BV*&a=l;K5zhBGPIM~tA
zG4Jz14JI+Yj{W=hKYH{CWIeC6*_o@C84EbSzP%kDyQ}2kY>8DTkD5i?yLa#DzGW+x
zEO9yBFTeiFj0+b6mM&eYsjq)NbK&nkS?iR|H$|kRqMlaD*i;0B#}u|czTVC+e+|?@
zdv{wl$85G+pN!`0v&-(>iTU~aclgh!FqZ>|SXYOypSR3!?y1F&2hOsxv1Pr!wpMiA
z#l~t0n~Du-XJ;*a@+75K&NgaNNJz+%D_25VTU#x~R;5GQ+FX2mWi@lpZ%jUZWk+H1
z^3Q9dxBKlbdwXf~dArvVv+Zhk^~qX4+j9Tj-fB>P{^R50tKIwMK7IbYd&>66wHy&U
zG+MMDd~(>aD(>pv8Ec}q=YcZKqeqXXOrHF>Vsdp_+OnXaAerC3GYlNPr|Ez?rH{M!
zSATo664W{Z4Q9N$x_Wu+?lMr}7#>?X^>Wg;u6u0p>*H)C+ZKXKGiG+aJzvbDdO0E(
z7$Q2f#ddmMy0jELwvc*ynx?sVxT2zB)b6sihYlZ}d+zi7`VDmt8ripi^5LhG>Q=SC
zwlFa<efjaYA5;MN^>gT_<(W=ATW~#m1rtL+bIsqc*I(V*x?0L4BjH!|v99j!sk3LV
zj@@0h(tEnzvU$>?ps}a}PBB*#4#wy#U<8fefkv6coSL7?Wk5zWn?rf~WUZI+N}H`n
zJv}Y--!4XmhSDd`pKB{CJ8!>R7QM6Fer7A%X<LB}s}8pDN}JUDC<ymwW=NQndV1Q+
zh3#@hUriDcS=MA-*p%w+8Fai)_U<d)t<N7HXk^a1y>0F4<$-Tc-D|1YIn%Ou*|9#^
z*RL{n9NAU+I>xp&>-*2=^H-O@zqf9l+ty!ix8L8Ach~Cp{_FapQp;!cH-z$@lH>mM
z^XJOEySwz}`F{QM<;$Ko?;<BzmArWHN^^(H-Cd>nx2x}O&7Qt`dBEE}d-i}Dc;Wts
zRU_Ut7Aqz&G9)OjIatIG9?NTKcq&)n%gn&ga57^<fv0Kar6X5^9ZYxq{dPOnmNjHC
zsLg&gxWL;a;$0&f_w<m>X=h_V;{X2s-d)AD!fpC%cBzKXj?JtL4XqavcCv#8@fapw
z1X*He;%6!k3R95L3=A6tt|jbbX95lVIUOkCw^3rj8s@|rgk+H-$Z-uIjRG6)FoVV+
z8GJxvip04HWYB^|i<Ce^aE*<PpT2$#jfj|GmUk!O>E|Oyj-1Hbp8eoJ<I`=DZ3|nu
z#b51uy)O9fuF|V(B8_<^3>-kskjG*=tzhe?m`0@ipW_`8G6mG5IB~+`?0oz9dGqE;
z86-4p%e`H8ulWC~)$6xZd`$ZJ<44Gj+A}i@t3I7nzq+$H{p?I*_vB+e7yteJ4eFJz
z-}md)p7p`PA36jW7`O|MDjx!M6OML?f<|j{a@MG58W{!6wJN=|qww*T)YH>G?>e_4
zaIuJ}XlUZ+(5R?Yt=!^SFD@+f^7Sq4;g_?CSR1|l+U@-PYhSP5|L;%!sYjp`zT?bV
z%r*q5`k$!mey*}l)q7gT{e88w>}so8Z+CZhPn|!1y_)YVi{ALcqoSK`zy0*}>)su+
zH%NeE^ih|4%kJ{`VY|!ThAj7!UH&oe?k>x1^L^vu=BfG2Sn%V=k0QoZJ=?c$-&Ov8
z-IXgLdq1DEwyOED;oF;=i`(VvB6_7vi@3_)HMqAhFvL9Dv}u!wfIvW=je>$hTjGls
z7Z<17{`>iS{`B?h*Uzi{c60N)@853cXTP|xP|B`mNAeoq*=DykrFKVc%c*oM-mV39
zQSjaMp(oCtpFVwh_|C%o{QTqJPQAImKmPOc^VhpXwL?~it=$~A+;6Vcu4l8duWU~D
z2My)kym@n$VR9QAuhbIV=xr+!54VYzD~mZDU}AV+^!)MT#h{wxF)J%;-`lB@rdd;}
zzP?(z`~AM(Yp!eP>W1FmS9^7LdH&hi=I0IXE%%oPb@V}vp18W7Pr3InzlLNy@!y(<
z?%auywXeIAxn|3jFKdpou&{*ukTB5J_MUWQPvvK>{@-slpWl*rm<=>)FmvY2N&jlD
zhkAN;e){}*>dcud+jyl{<=x!{YNC95cXzdA@iU9L$`%$8vQ{M*uC0we|64Ab2^0W%
zOB|covMwxWynN&3<>jRh4m5i8bMo?rMn%o~^y$+av0d+PY;-o8?YnT{LQ%Q$A0HBL
z=74*Vevi#&`?~kZ1irqu)-?T`jP2($#-~o6oOm{EwZR)vaq-nlmMqcQo>^Jb1xcC9
zIoSE-)=Zitq^hoNeXOgiYs#!yt2S&fU}a<TnzU*2=Be}Mz2oq#{q+S@CvQzVE46(7
zv0mxdZPIxcW|?M}T#qgHoOEkzw)$a%Ej2%jmS@-h{dyfV=r~<3_ROE$5=&6_)GNNb
ztMu{&MQ0Il@#S;o$UyrjGiT29^7JfxW1e`3MK^Mji=?C^7Z+Dhx0vpgMXudN&!tVX
zrpz+SeZ>(z>B>@X@w-*8*GBEB*yuOMVqx9iUoT%=TwL{b>-8tkpDzzw>=t@@Z<shJ
z;KUxS(yxx&RkBh@NN7vWO{1sJo@uG5xMW{n7g|xV<8tMjZ^ib1R=tq}^|j8<GW9+^
zUH^I;uQaG>aJS^L?<}+2S+}<3MsJ<H$pUIzL+I|ZTvatSEknbNmuiE8g62rAJtbpP
zvEfjmzP|p^<Hxn_?EcMpzT#yB(nQFSP+qY!u1ErH$5uWA)maP%lAuCW?2wescLyYS
z(98*Fj&6eh)3oY>)9x+Z;`-C>=7I9ercIkp<?jFaY__P7(4(fAj0_E@8>89Q7`3*x
z&N57P+gUithT*`fQ&Kvc>jU=Qu}WxdYs<R0$o15@b7fyc7#I$u9?4~%b~f$ukxt>z
zprD|{?yvK`yuH63;?~!&umClDKob#<9zPBZ33;+5{`53m(}D*Mxp#Mk-rZe3y}!Tz
z)|Sl0OTDMZor-2;h)K&>pJlh5H)7J2RiWCw5{8fF=!TV)Yyl6etluA3{QTV2v*!2L
zOpmXNJlw`xeCvGL=9dQ=nL&*YP($_R=JeHxhuf;2OmzQpnBP9;)on%w2Gf>kb{)^I
z{{Ha7!i_@0!rFKKz1@C4>*OTWsy7>tgAx{KRMX4T^WqG{<Sl7urE+g=IhpzY@9*!~
zPfty)de|y%QuM@QZT$YYtyx!tyu7?h@9;4kIJ=SUwC#@C10dfiDJxH%GiS}5Idh6`
zUtb%oKKtyl8#f}Be|$c#+OI7!<L#}jevf6X%R<i2vz6VScW1}OTif&3H?#A{&5~wd
zU@+~w&937)%OrDBS9iB|On2#v3yL@2ma($4Tlbph-U|8p`g(X;+Oo?P0RaI!i%l{v
zIPBcH^O>I%LqQ~H6lwa=Znx;ISxX-tZr8T7jC_2&e|^FH&wpp1KYV!cp~Axk=PKVc
zGP6H<`SMTny(ON)rrFot>{-Xlu)@y%&xhu^KOfzfZ#;D9kat~doXIOWz3v9pzc-U~
zqqnWO6SZdbx?NuB=jL2&WM;pzueSR55B>dr7Ck=R|9aKxbw;^-xwp54-rZH|Yc0?4
z;L^(r3!6c043lY-Cm&WnUKpp>?cOr!%C6FE(8L62togD!7dwxH!eIlG@^>-I|4yDX
zDP{A`lH;=FA>Tt78KxV`3GQOwp1VP-Dn(pge*IGK=~}k7v2(3TC#kfyv}kB)d7V6Y
z^3>V0p)M{hpn-W%rv84fdcBg8(yHoL3=9j}if=cB21eyyUe>Fmth}}2W76`s`TKq@
z10}F4S3=fCZgx96%QU#AW{;ZxyqI@$rvBAzu$N_EICH2zILmH3Pefo~U{_bys)F0m
z`FodczgKlS^Gx3M>`O~PadRp1eDuxL5_bRpeCD35!N5@9ohP}0fnmkUA0i8@cjSoe
zWM*Ip5eJn=7_*cMQJPaO9PsH(Vlpjwx>HnCH1p4ok6b)FQ`WCvf9TMmErpMdY0Xzx
zQ*$fZ9m~wlS0Z)({Q3KD-DF{F0j`5alkb+@&ds{FXD4VhVX3#cZp@B=^mB6zUz_PP
zlinhka=Yxq14mGSKWPalU3+?ZX5HPjbzaRUPgi&M`Tz3+cn>N&F)-*H5$)$Fe|Kl4
zsCJl!rl#k{jT<K|IdQ_H^wky5$H#gvPt%P)_u6W)TW?TENJ#71@Xcvwx0Jt+D}8a{
zprM$s@ZuLQGL|k|rlqLpxHfwGx<j#%(x3uu`p&7^;ioQN4mLD2>@(EY*LQVy&;I@G
ztyR&J6PD*UrkoUddwaY8<>mhC3#u2p_0BmII<xxSPWMURQsBXxwVfaj9}W5b_~6~$
z<)DWCs^H~)mn*jC-Ick0UQJ)$Us%m2pr&TeER)QjrPXIootgxm+VDCaDa**s&~Q2?
zENmJR6Vs_)b{3Ws20XI1RbSQ|xBvg=GiVTY^Le}IrLV=r#k1et*$E1iyd4kQv}ChO
z*BoSGIN%hskxkp)K0Yok?&-0;d-uxT*4|wIzYf&;(+*n`ur_MzDwFm9|K9(9wcq~V
ziqhBDPUe-bKiA&C%5Wg{97<1E+c@ir#@AO@z02>{mQP)0S^UiB@7MM9SHHZxTzWfq
zduZ+<QwGr53+|ma*j~T5xcI5uOHpz0`Cn%=G&FF@Gf!LFpLK6fW$W?UZ#UC#ZAfem
zTOYUf%o!igNr@6#nwo)ib^DBrjjwJ<biTSa`ufWqSFVJBx^Mn=KbJgu^yu90ds#xD
zIxBBU<>zNlnJ#t;t8XcNeT{I#;kY{E=^Hs_vX(_IpqAzw%VL@L`zI~g|MzWvS7+zN
z2M3$K-pXDddqVdb2e{X9L^OK?8^7F|$jxb>3A@Ga{nNfYpM5ttI9OCnY}tVW4xT|}
zW!pd%^@9fql@%2${O8+6?X4=^`T6LPBcRS0s3^56ef31*{+`OsZM@RUX6NsVJUva<
z_#@w1NVu*;>98(-@E`${=8TPlH8nN+{(>5%s@~Hyl$D(w9UZeSE^3Y1k`ef>29#(o
zFY_(E9$RjCj8E2TNh34+sl4s4?^VCQTK#_S^AaBqkB)VFzuodKpM13kl;T=<ygEH^
zx?b$6mKGM>=xshbckblk<h*!mYqqGI+`E!_pMP$Ncm4k1^LhK%Pfkvrv}F0bs#SLk
zgO~Y$+Jg<=$KN!R+GSl|xAw>p7gaU2uwDLMUR}Y9LuWR#^G}oR?&t`}%zWv3cB5M1
z`sscQ3=9zrpu8gXXq9`50d!des4c%i0848CT(Hc5tfPRJP;Cw&pFe_n6$esGK>cox
zevZ4$ATwdTG$ITFX=G3XHAW63Wz5O41Em?UL&{Fy4}gjXX!j4?D+8_JfLX*lt$G2{
z`VZueHY-EJ(F+z=Yru)4#l7WSV?$`Km|n~Zz1Uqls-#x1*;aii_$m@`Hm>3!Yq&q-
z)dvR}nWJ`<tX#dkQK|tP4WP~^xQIsbFp@i+GB(_SdJ{a{;1k)MdhPsA4K1xpKR!Md
zm5|VgkB@I{ZOwdqtoOOiyKen`7Zx}+i-?G*$ji&KvaqbE|NjrvtZV%(E-wCh>GZgu
zc0SoBj~_2iJ3H&;IqUaVE-rRo{iQmk6x^@v>gu|*Ds(kydIys5vJNybdU<;XpPy%|
zZJYQ1-``IkK3q64Q5n>YeERHJ*3C_+yIwAv4eIBAeSQ7>#(YoDPBtEi1+vy<8ft28
zii(P-&YrzGJ-%+Gu)5!h%FoZP7OuY91orrjB;IT1=2~w}I?AQ0s;X&b7B)#lQgWr=
zT&v7GI|^@YO7&iP+|Aux+sf)zX3mon6G5fdvvYG_i)=_cKX0x6z8_A}+w(%NuZz`x
z)VHP|)B%g=xY^HsUVXz_oZZ7!CH!`FcDo*RX_x%@QFwetq6BC?&AYwd<4WJ&3SGK%
z>8bPQ*Wb$b<AwB{wpV}8+nRmduk_WGLaF!H*3M4;y>pIDWzhb=-)3LBd>OPJ0aUiv
z{{B{)^Z(!P_oZK61jbgs-CFf#<MAiYpR3#3+n2t(6PcNrx$IuQD56iiW{nOj3(FK~
zeh!Wai4xDZGSt4fun<)2sjMt}d#mct$K$4%msE~_V`k^``1RQ^aj{!3Xo_62ZQ=B|
zD$l>azh4I}A}D=zWu?~k)J#y~(<}b@^XI2epR~;1y?y)kMx9<~XD4W8j!)ih&Czc0
z)hkwbK&P)&KqGq}_usGky*Amg`u)AVqB1gT!s9Aky{G9IzMdA-2Z@|T2S0uM7?_xt
zxbtIE6Vvf;#hjd+g@69H%T;;A?kc&c+;6k!`@QP(FJ&G+eCRh{Y|p1t+E-VHulI_7
z9S{s!SXZEI|M$z}e_z+vTlR{Iiq3_V^l7Q7o<URN=Lf6~)8&=12<YtW)Y8$JGJX2=
z$1=XN&2+cdPge6impwP!7Ze2tob<LG1Pwaf+Lrs;r0mTNLr|S`DcQ-{dFr%j%l7QC
zS>F22y6nw_vuVK@85vWb7ykN^DcQDgvbz7N)2F?!$5pS*y1FX#p}J7Nob4*@bvqWF
zy1v24&Xt4VKx*EH2M0lQOHt9L<TWc+c&uExl8c)=I3Zzyil()7^vjnowRCk$-+X_)
ze*ZM<`yU@4|9X&JUPD8}qgUE|n#$Fc!S2j#JQud*-UcoHIld3nWZjl~``MR$I^_<a
zVWp!X-=`awzrN-RS{o1(GpDGiNG8AN{FyT$US3_v`#FWxGEPoXJ$2$lKtR9*70{do
zs5l3WGpPB_(l9m-Ub%ARsZ*zl*6i2%e92q?<z;{S(D(QDem!G+{)7P!X!$|bogEt=
zJ$kh2>pXo^a8dTC%k|x)EhR65R8>?mZf;5iHAy`@I<BpYUH#!h!Sc^H-k#&%zi9E|
ztu;T3&d#+CKi)4N-ps~(WwASdudMa9JK=9iUR-dTZJvMa$H&K@MJ_krmVJGB*?s+<
zPhPF-J6D_p6+sSLv#*CGB`pGVSMI8-svcc=anip(QFA6LyU+Vx>g4P!`~GxMIw(=<
zfct_+mC8Y@Ex|);gvwUu$046Vsb_-#sKqTO$OK<c2dW3K7mHY{5v=Xk1E3}kN5s2E
zP+<YB2aw8FxIqb>4W&;`2<G0~6S@D-r|x&V-`jzP*+Fy1g^yZZU0tot&(9z3FUY{~
zV9(Akf(sKRq-?9UL~YGl3d$a!395g8f2(>{R#t+RNX6BD4Gs4bWN63=zm_!fYxAq;
zml{lqpZS0mtAR$&)aTbI9X61;4H|W>e!n*yG|9%D&cVPCP^wq!vLoZ7Qm=%elm6Z>
zlj?rI-ClIt*~w{3-QOzlGdv6o*AsZBRTpF)01Zi1eR~u6vdrGz{_n@*@>eaC85m-^
z8=lI={OZ`?Ia$rB=10NO+vRU>EnTo+LDn2W28IJii!%@G`hKr^Yr#V&S(}OrhGEk-
z+5h{IymZ;JtP>Ly*Uge+V7Pkj4eL9dl5*bZY-^s+ua9G7WaQ%Iz1ktDoU-{QXwE-w
zZxtx%f|?FTI)!5`T^Se}w2CtifTmK)-rQJN`1sh%6BCs`efxH8neS{+sp~t_$Thy^
zV{1)qEm-*~QIH>gcDvQq)PSbvd}o=Qyc!G|*k--&n$a{(H~JN5rQKH(28O(*Z>yda
zS2lx|ZfdBiy0Y`jh2-U}yL{Shsr`So-(N2K`|iH?{eJy=P%)XAnF*RdmNLy+a&K>S
z_M;=6uWoF7%sTgS-uBPt1`G@Z1(^pxRWWF~>*}gd@3*(NgEGUZx1aAfzD`;bwbcu>
zR0pK}#fyxsSy#OzB_*pqpEciF^weu@#73uPHr`dADlcEYoVq=jjfp`|?)||cem&j@
z(2RKL_1NWKUteEc`1siLFH!9La#uP8l|hSj&dxRmjRN%Lf*Ne=<Mx7TJlpDTpr&D{
zRr%Vetv>T~85pjD%4<$e&ZuoUGmDCgMTLYGiO1Ij*8cux`??SmcAy!Q{Cz*&_W%2}
z`qlOI>n~ggP*qV0`C;@i_x3hW_4(`B?EEM1->+Zj-2Q6m^teg$=igtt%XE4{=G&q#
zF9L0Uy;wZmCdTuU_WC`G{`{!{4S}_4dx933+^cxZ`}FD4ms7*zCaT!}`EVFie(wD2
zGuLWsO!QGH9fpR;n6H|LR;<tf6(AEQPMl?5zt6_j)->S&L+<TuZ`T}udw+ktoSYnJ
z{Y6~;-%`*54NFT)P%Gif$K&$WZ+BOJ&jU?Cv9hwxGEVPHN=gDvH!pN<kGt}Irs&Qs
z2SI5G)GB!z_5a6l`zxDLPkZg3_57H0e#q%*x}fPy&#B>CM0<nxGBKP1jo(_Azq`^U
zsy$`OlqENAM0f_Jq%5&2eYK?U@v+R)({!iGNz2Nveeoh=`NoOL?yE{)Uz=rJz7DiV
zOk%!8;UX!soE5&a%`Bx>gGLnkZNGs=&@0YuTccK(*=$<<Eobk~XS1LC92bAxZ~yPY
z#l`MdcNRb2{7zg*Xwm=g|NqVRn`>3-`J9=dVd@$@tqwbRdHLAFqoP)Ie|99ld2(_x
zXc?!HvhrLx_C5(ir@Fejs`q=p>-}@nIkJ=&RJei)1JJ@Q(9ldkzyuo`n>pV$-pu)R
z`~JVO!0VQkpO&bAW>M1buFtWKH{fL`5Dhnpz#PbCXJec9RYu)^UPxfzM9`ej(QfhV
z`}=CU`uods{=eJ(9<<JIUF>cv+3?k2x~*+(uV&}(TX{-1a-KKywRyJHpt(O0ktKWf
z*nk!oKmBI-IDgZo2O(lxw2JpR@-Q%zPntS)X+uLp(PKtNMkAibd!~Knk+lkuHp`iy
za&=v7G-!d|W$z=KH*HGUd{b-hxtns%*Ie{?BP1myuNKMH*VnVMuw<N{XPbUE|NJ~#
zE*_qcxmKlGyk$$5E)}=wzi}ht>gw?GnK?H$Bubg(++dwA%utY7^X+CjXm)?@u~pfe
zo~7&Go<$igFZT5DxiZ5rx#Y)(M9{(}S65fiGUvCqw$42lc(e4}b1Bo#)A1%zvG4YL
z_5=4(x8>f}ih1$xsCYc6TczyYH$}xX<HCWLHw$NWbGCxktxngA)%#Jw;P7?l(`nHq
zr**em^vYTkIQZNBT+*FZ^76-zA1gL&*l?%9(Xlc4_s*7<7K?xXo%wB-=*8}OG0|PF
zaLrmRYxmUamh-c(s7&LCm~EDO>DJclsWWG4zC7<Qa;NaPY*$Bz!CR^1<9$~*rJe@Q
z4PIX6>$g7Z$KUVwzaA0xKXLxNfAX=Oi7Hz&FT1Jx&AD)IZ}ruc!Rns%*Jfv5TVt5(
z$H4Gsdv|Q}*SqESU+#XtuUJZ(+iNN(2giyJh6!O|(^OVgets4@%Xw|oR+EAU4ytNu
zt2S&1h>MHsJKmf6{LlN>Az!7!o?mJR4GCG2c(@HTOK-&E{Pp$q=_<1Jbupfvp1YpU
ztN!wC_xo9&l+HhRkN^tX!|nXnw_cBXT`~FhdHersw%@Dr1~rYR>BqmT_<og{-)6zb
z$H!m4+x`BU@p+rY!OQ(JA0BGWy1#GlzJI@7chBQzV3>Yr>-D(R+3WXS%X|YG*M8h<
zu4SucViJ;>nR)8;>Efst`;w3I-OMp-ZEFjwlmjh@NR+Uu{Imo#JGe4fy|Sw6)#~;8
zE<HHdEc;tjTs-^xySuyo|NFhVhF81zWwzA3`hS&c<Mu{@R`zV#wCT(5_xoRezh56-
zR<`X}kL2Re)nS>pwq!1g&HwP=AZW2e)%SO6LEcby@4EuZ3ZR<f`np)Z_{o<yBs#B+
z-0W6YS0`m(w`ZDO>?%p)v=`^B-|Lje?eh_4NDvF(lTm`TQCVEmWB_SW`n{eAnkXoG
zZe90hhux0{%&e@emT_wD-oIbJul6^nJLQ*sbDB=%qTuCzJMW%$i@lWqnsVyu>MGh}
zyVqy3nlGr*oij&9H+ENu{+<s_nb-F`o0YvK=jNu*x3>GwxBK<&cK+#J|CvTdUtVYD
zmorJtV_?|v$ds3aiHJ!mpmq7WQCkAOzq@;NiKlRCTAG%rX=r3*<kNe(pk`rfd;9BU
zv-2*27W^D;=g<E3=H{-q+isV<Ub}r()%kVLF0pBAYkS|_UB14g`un@PQ|Hc&?KNg%
zc<>3-Hnsiz2DDmlrdzMn(o2_u*2eA*d-(8SUu}+A^v?C&-F<ywd3ozV^N{NEYl2Rm
zJPDc%H_N@Xr25^?<C*tCbM(^Yd7!~Yw|=>``~Q7i4;rcY{eFME?)QkfF}D&xO|{I-
z%&JG7>RNa9WnNa>nsIT_taMg}hSxh59h~&9raTl&>vfa=gZcgQY^z^&>+iF8|2JD}
zx*2HD6;v#LIU?+DG4JI(%VM{eFJFS{wR`pdYe9A6x;aV=3=UIwZaFy1qHqzYvjZ9x
z>K4;2y3&_^ZqCF+2~dX`)-GBlD?ew|&lsr<Ha0e($)+1OK+~Ik?R>J6zC5qqz{Vr-
z;L9Z=28M=NhlKQ{-rm`{*{b~An^&0(3=fLdMK!Y)hgKh0m8G4!`KDG)C=&xiLuhFA
zfvg)F9#*Qp+%$dW#9fRG(}ksUz6ZQz)YjE~yXN-h&6`0>d(H1vILpb&b@lYDnb!&0
zp>jkhdxMImy1Kh@+L?f&qD@`h-KI4^3XUE>4qBkIZk`ka!__v>6oO5{RMW8kl50S_
z8m_I4-d&Z&zz|{$nx=_7aO&K-Ydw<2pnj>SxVW~FQP5;H-=NiDYhz4R85kIXL#hve
zdM_-iLHkK044poH{K%rs!0?a1H~4J$TSkygpnVw`87tKM=Bx-?8wFZ8v2*9nsdAT>
zdQZ=qqX=rDuKd;z8W5o132M%ml)SjG`CYa|TaMXmFK_SF$yp2xJ7lsq+;QH@zUKcw
zu{;I_hVtOIjM`dSt9I#gGC1@)Hb0envu+*(14F~^!k^U}7#I%hzldutAJp{#^-*9O
zcoOjs`=Box0QYRbU1zkpeDL@Xa?b^{KLga&K%eW!I+tH@?y=qPH^#2+?yGBmfBW?L
zbMS1lToGa6#c$rc*(_K7=m@82<|UW1-Lb2~)*69E&p`uM+=ZddqN1WpLsy4^hE)z8
zJm}@?d$oa)dCIhD%jVfuhgIGA@$oTeS&5=^+lt)V+pH=+EC6*=KzR|=h?uPAt7W67
z2wp9jcY7VAM;6Yq2LD{XSN~k&^ghs%J(IHAx!X0Bl$_S@{Wfcv@9eO5Gxk=0&w6;M
zb(T?Tmzw{)8piUJTF{8o1EcLlPrWLus<hP9ju}3C`gG}w7a6(t_r<#R$*lZx<3C^c
zq>{(I=BpA9xBYt9F0W;ic4bB2uJ`+XUs)ZlFWFZ3(LBKs6u1#SrS@jG_f~JewKaRW
zRp~2>-tyPi&Th0dF!-?NeEF*@nxMTyg^!Ot-M07tzu%zcXrSpOS(}OvkJR!KK_<jt
znY|CSx<ALVI3y-!4QLf;=AH!$96(j{i;Ig(pH2;ryE12OA0)hwN`cnIS5{U|mHz(i
zTUm~MJg5`BCG&F0|G(e0m6Q%;-af6rA2i#1^ytyK-+yL-=lZ8x%FD}(iiu5=*4NM|
z$g!8V|Mz1tXfUd^r6uFyB3HlLMn*;^+1GS*BQ`kf+qX~LKC@dHv_eHu{B}a^&!^LG
z?JQmno+dwE<>TPs(Av+qdDA8p&$F}5?Vp$O%iFD~`}=F9V>26QG18wuf97oSpJx-P
z8@1(vule02XU_O6|NQ^g>-DG3oCygCm~eZ~wnk6_mVS9}@9tgY@86kBn>ll(cwEIo
zT;nY-BG>=?{eJ)I`2BUDft0AIS+mS?qw?k-Zs&i!e108hch1~nxo8W-=AX}vk^@f#
z6dsjYbFi5```VgFFF(I)FD@=t{rfZR`xVG)FgwQ?bLXxVR`&x<)ym1qP5PH}{MYyQ
z>({K&S-N!TRPKP(W&ZQmB_Hpz?0tK8cQ_{}C#YJk`tl-h-Pcv%fr^L@ZKkm8d3Q}x
zP6!-5dQ?+g{rE?<?`O{VEM2n1;@fP4#3oQh+tb6t%F60FNv`ID<KNHo|A&;6Z29)~
z_VU`_-z>ka4_@BK#w(@bDY}n$U)<g*BOYh-I|a>bd@>ow)<&^`ypi$p(o!!Ej|-bp
zPlNVWO_(46%0<u`ZT6e8=jJxGzu#`(bTg;w_1f)Uu0`it=I(yAYPAgGYNL0Xp1s-+
z&Rr7WEq%APW@{T726lFKPJK6d(xgXMGCVJxxBp*r@OlqqIGt5KKXp%r2xtc@D8)u}
zXkSY>SOa1r4`wi~ma_fx;c(v9KK_ur<9)L0<}t0hIoaRt<txnvQd4S6c?$HvgEOFc
z_YI)ri!{!y07_kkEQ@A=$5UaZR=B)?FD(PDRss!KgQgSl446~RAmovEP!SCdEeb}5
zz~f}Wpn;fTJJ1^Gx<3`HY;32lUk^`AOuV(D@Udn8>2v3<wQvf9+W9B$-;Xcb9Xs1R
ze_cWRVS_CN51nGm@0Nl#2+lIiUdG7GmI2z`_3Q6SPSDU;M90mCuWFpba4w{}_82s5
zT>Q*O*0w4{QBg5{@3k3*$zPsK_Fq-}{M;<#^gd9l^zUy_nc);)`!#fG{rWXMrV*gU
zMP+y=F12jG{d&Frdj9^u%YJ=*{koaoZpD^fEnVHKhg!K!OI`#lUAD~X7-+@IwYAZ&
z-)_Hu?d$dU{8zO*g+Nm%VvoAmKnn^$yVZPrdXmqaKJ9(+;>BD0YIpa^SO&e^SXWoK
zDt`Yz%lE5y?1=dJ^JmtjC7qXlh=#`~?!K!RAAi4i-eNV-yimbR%rf|IQe}1Z>gw<B
zK$Vd7`#p<6EynZnY^#1eYzM8-US9B=ufm0cp`jJjPK}I=<l^AaFqab$P&jN*^5sQf
z@UxFN7ENWIGF{We2A%`0tJ}9{&z@7g)z#J3+h#BHgRGDG0@{-L_0?6-rYX?k?~Dry
zfB*e{zbxjk7N`c^AP{a6VP|KjrK6)`9v2Ys;6~j>(C)77`SD-h-HrbI>}+w*_m`L5
zug4Vkf_CjpkFWc=XnnFMDEr*;h>DtZ>C&Y+$3P<h*OHkKYjm^j?fL0?KKt{tv$uAa
zuYY!C=3^5%8JRVFvQ`<dudNlY<<$lSRf3`T<phv5d#k^fNm&;>XqZ>`>m|-9OL3d|
zMwXVAn{MW4>FVlkU%O*RgsQ44$go6E3{Ky9u$djS^!en;lYJW(Em8ta8tUlyG&VL)
z`d5=(T~$@ps`xSnX~ELR_51&U_8`5wwDk1RyDdjSlWqx$>mr)3u8lV5l{5k^qCR!<
zWMDzThM?eJ&<ZZl29-KtHJ=NURK2H6oVako0)^v0y7l*I%s#uU_V>4w20Wm351`>G
z6-_(4I9zL&E}Xpam4QKc8R%R9q;*U)tIn?jZPGvB6eGAnB@<Vv>i2x(?bG&uX4zD3
zdMsr&`>f!p9JATV37(hQ<?B{NZcfYm`ROTWCIvJ#30@n%%s2S<wp{&hX1buYjtrpX
zPH0P-jMC4|v0R^BQCX>JXLnDtWT!T`ka)C;jr&>BL~F<rQ_wn4v>8T1W6Yr`+i#oZ
z-ZDA9J~%iyb^Gno7Z()8&v7v@L~t^`-oNMHuh*MyzkPLa@$t&H^_u^dFf#0@nfkZ<
z=o|SEeWq*mmCxsvgH{^7y|XizonNlxYY78`1Fy@0U;Os}|7_ltdwUsZMN#47W552t
zy<6>b_3Pu~AFnI+bT3&pL!r`n>BT7#Qk%B0=+1m`C*(qmfK^-e)tGadLbKL>YHEw$
z)ZM1aQQ>{DBshHavWkPZblxs|7P5siYnG%~*MXn^9$x?a`48WUm(u6j4}achc<py_
zdy0PC{O`{XuL@m#r`C(1L9C7Kw6Va3yiHkGwYKKpk5hK*32<^^0@a6iM47JnhOLiV
zyD|CrsoS@sK?&yKVt3G{pz`@*3=3Kp?#=qg5%C|i&;YdO6Vx+T$-J<@k&Baa;ZY_A
zhW}EGuj@gZdKN5DIC|uW#WB!U?5)|?Pvvdj{r(68gDzL`1{-EZ@1WS&x!2Z4FTZgk
z0yIK#yifM>#^mE7qM}QU)6czFy?$TOcTFaShO`#*o!-BGy<Q(07`Sk2_Vui@vrPR?
z=a|g~S&=@k^4Yxp;IJ^Y{QT$omF;}8A`%i6=YO*?%m|H)TzTr0*Yb_GZryUT*UK;Z
z&cmYP>FVnG>dMN=c7HxNPru!G^ytxBTQVn4(~VY>m!Ds4<p=68?<##=eT$u8L8i@z
z1I$$q8rkO@TNkr)5op3Ku;2T@Cmvn9gxH-$uAosM&@@ZcmyGF84<0-iwK=VKTh7fz
zM~=9dgL*$1c~O64)_?|#H*E?6?M5uGEGgMyRrcn@<ranpwSy|<=Px{BzV_<s>ZkAD
z-+v&ZJ^So3L1niWpU>N0m#_bG@c#-1h6mfC{^%Y$JKOwz*<4ZWu#BT!qLX6OEtV}=
zqM@p~H1HfR!-Y=<?5B;l`~Wuuwus#aH2_Ra{LVraK!aPx5ggzE=VoBwR!pd5%LC2I
zNVtKfxLPkHRI-6v0*4{xsg%xn(A*b8f&{2g5_5ih<qx<|1yv5R3R2FPGfjKhe|zP+
zbzxOiyPTYyKx5S}USxn8wcGE$J2TT5v;wt_M{<!_?yVE2PkXDXs_MNC4Gn$S%x@PE
z6EnxE{M{O}+*>a`9+$tqDfM(nczAhuytX!|b<D7I$r259b@!7ePeyG@=>%<OmzQ6^
zxBC0NqTR~weV~T5mcD+ti;GKh;=3OoAA`CiDxguIQ|HcwWn`>~t9q%rblEbg{c`1x
z#S|GB#2)oUw}4^~l-S<9$?=_Q6*>ttWNlabE8|#?<gLBc<;}Ohy}utXt``#kT1Xrd
zv*yyJOI6poxwtO*+y4b^PCgzH6*UV~j?SOI{^sU%Z4;9(dh5>30)<+}L$jP43i<i@
z-~$9|YHC1Z1D7rZ&9$rDbuc%2d*0fzx3}(olaRG4Dc}k>?*Z+aD0y*V;ckoK*Gi!1
zQhYa~8MK|ZwY61KLE%8Ajh5D_je9nRgoJoZVq#{Nek<|L;Q$lEg4We5Rs<9jY&cy}
zP_W@m+3r)PPfI`DaeZBEu%BO_le05uoYCZz;hk1X(E19W;Qe6>SFQ50v$NBCyl>yW
zzNftppH7dz_V94~*4*1>m6erY&z-@>e*XOV^3~PhvB%cO?0giFcWaSrH)y0EwBo3%
zyW4nQeK{yv5){Ax5_t%kF0K7twtVBMQ>UWygk@x6-sc{W{=C?#{9VoU=fU&;{HZxR
z$1)f++ht^A)bsAP7N}iSG2zFLilfJmTla!Ch)UVl)imFBadXQ$-Y2`O=I5r%F5f}*
zPugZpBcn?<euC!hGBYzljq=~`_vh#A4|^PGZo|ls@$Ak=kwhn_rmU>2DYIw4mRP-R
zU07Y+zD0`{iwX%Tz5Eq@yI;m~(XCszcJJCYX_63Vg^{75p_Z1`uGO_B;-GeRM2B^p
ziIk}5(j!M)Qd3f1yt%pg)z#J0KYjjO`ss=1)2B}@ug$hBUdF}66%rP<3^cHQ?0((v
z+?zROfB$?wzv=c{(Eh1)vAb0~K?|gpfJQ{GtOx{cfCV)JUoM|-HP_k2rRCSRx7n{I
z-33j>GlWD$tN@ktD^_@j>&Jz-xU_7`ySu89nceEz#+x}`?cRR>^?JRv)10$u#Vtml
zO;iz}QzOo>RzIB@9`nsG{hSP_Hp`HCm$5<R<-gzW!^6U+ZQ8U+Dn?yj|NP2}yB_-e
zi}?KDVDtN5*OH2l$be49fn??x%jzy_oB=JCVK9KK#VNclqca1tv=@@UotmFYg5oEF
zgYmR+LAL+{!vO<OaR6FpXbj5e43La}^n!(HJt+Jb+CarYg5sHjpLme@CK2-*!6gtv
zJ8VgC`U6lVY=D$RJiWo6-N9>zAr3es121qGxqDyz`T6;s9V<icl1-Z~-Ch1*VxCFF
zGW!c#I3hAa#PwndzH2gMsIcfPNIU~x{5Aud>({6Sgodhmf>v@@RP302epx0czyJSv
zzWz?FREAQ`{^)7be*Cp7c`;$qq)9UN*QL2ZPCAgql$x3f-T?o7UdQY&udkoKySzc|
z$oJi;nJe$V-?YhySH|MP-Q|qj$_b{8J9b!zii)nR{{HUM=g-C8UotSf3knULdg|0E
z5pnVB8OIa&rll(+m^L0b;9&dz&*yh`ybKMDCgD4TK@CrE*nSXEWMF`X2?y`AbZ{?e
z6}Hl}e9POV-qTGgKc(1yx!}yj!Es@NqVpHfrncShwq{>9$-igQ+TMQp{CR&zM@P`u
z=Bd-CedGFW3vOr-%XxZg>ZebiChgz9UrS3XX4>&1M>Ld_4)Lb5ZHamJEBU;prY5L`
zSX8uWnoguret!PZ<Hxh#-`l(W&bhqp+IDtvppy`$Xa<AE2tn;`&_M0R<l}R$tzEe?
zu%>3uv-9)UKRn!?4QlK8`-eL?H0Z_dD)EmuU;R)_ks)?(RVcTZ&V}9Y_q{ebm&<y<
zcGj=^_dpvqOJ83Dt<VTw?l)CMRb73x|9m^p_J^|f_wGK}_WJtz@XXAWpfSy=FBzUe
zNlA+i9Xe!^eojVIRMhfX?4F8^pxxiL)!!=qSYOH5z@TAd6m)vJ{`Hy0>33?i815t-
zZsYy*?ORw>)U4z)$B(<OT)7g|k9v7|x%8cFJ9b1kIy&|hsK(aYUIgu7sr;N4ySvQy
z(${6#Cnu?bmfV0AdxP2x^~(FKL7{jqZS%{m*W-eHeS1M$15cM`XJ>!C7M%~;TngH>
z(=TT`W#-J4uU=&>{|Z|D5xCeb^ZYzp(B7LrfBt~Bc!-LL?RxY1(o*lLuUEsbZp{w=
z`RmuJ^7r>Z2L-(;+kNph%Pj8lJ4!YM4;l^~IwT?>@W4b)RP<@Yy$SF4|BnOB!JV!M
z37PWm=X3eLzh1AOv?RXnr|Z+FPhZ{MzFy6L-kNJ`qd`ZRfL1MSNj~0J|1)%x9g`Tt
z*B2L^_4j-@lpDR~%9Rk%MxVdGzlZzzfu?Lt>i^aF&M-KbX*>Juvc>NGT84&!hue5B
zKRVidbzg0@?<^C~c0SpnHQ}M5OP9~Di&`DN{@RgF;jj0q--FtEr%s%>uqE@d)Y~dX
z3)EWax32nv`&rSReYyQ|wpuTL<sO<eNk}(-UkvC7fvT^o+W6(y&9D1)^2pK%w&D#8
z9+QlWjY9(h7OYvbrs{vg`-9EwAl}Kz>e)9prA}G`nl=Z`p_Y|x1NEN|HnUq_`~UTN
z{MPL2dbU5GOrEsv{K*%WmUe&o^a<3thcDk`X6Mr|F$tLj8ZmwF06YgX%Pe=6larIw
z?@Nr{g~zj{R;^m~<niOjM(<v~ejQO~e*4zjvg6yP>&KVX*j0R3U{(H3$Fr-qH*|g6
zUXaP6A|iKgvYIlRL@=nt=5L%dc`|7Hb#wapT{`!-<<8DAo1M(`hWGL^-^q9Lu3uXl
zJ@=S=?Uz9J9Uuo*JelYYS~+q2MjNm6mn*^kD|2se+g0$e>2dOl3kz4RTp8%;+4*oa
zOMtw+y?yN7s;jAgPEFPBds@DE?b)>Aoa)D)4>U5%KJ=QjtK{V($7Z&>-!hLrYh&YX
zIJ_ouGpK%H<rdqqC1SbX+)2}?PX`a+-dh>04qEx9?mw?Y>iw;)t55%vule8@yQkvf
z$NTR6a^MBQeX`cO)?{zKS@Q1A&gz{q3nF)2X9Eoo96fr}FS-8j*Xz35Ir;e3eK&j1
zdwu&InT}Vtx9z*W=g<G#{F--HR!%;>i{JLk1>NVBrtT~{41Bg#Ujl-HCKVMIPn|a}
z?!8s{ujc>ze!p8?{^!}r*QKSURo`x=gJqU{+puASwUt=If8(+@5xuh3*D~KcIN03P
z+nZZ3`@{*4w>LIAgW_S<i+%a`?QZ6nxw^UCE4uwF?(v5F`*uHn|F-@o`~B_haL`h+
z@0~|Jefm^Ye=+Oa4p)u?C)Y%7E_r*)G&MEV5;TJBTUuJ$*SX4kj&-?T{lA~fca^^W
zw!Z)B=5+tqeKnCAH*S<NO6fR#{4l?LjsJBf6Zdx&T?UGZj;5xjr_P=&?FkJJ2Q9C@
zc=2N2&IzF13KNyxL!zT!Z+UxjbNbf8$8N`O{QUfUYvN(HUMW+rwNYCqsj#xJSj5Ft
zJwEB=X;t!K0%)sL;^8*QpT8nm8MzxKgBE(Is=i#@Z&y^c$iU7nu55R#rKP3c>-6;W
z(`lPCk8}wB{}u80SZ{D<=E{9P9&t}kovs&K^h=R%i;C}GvF|HZXn=aZ%F50!U%rgm
zSF<xIIT_S+Iqs}E$)xz1PiuR-_0|B;V5&hv18CX@G#TnWT`x2zXU(fuuf80U&bN?F
zzqh9nRC49ytl6|_)0TvTOrW**pxJxS5i9HGixzYXWITMe+jRQOnJW(+asn-{uKo38
zqKd1F3uxKS&Ye4VReW3oT1X9A#KOwT3Mw}*3%8VK{rd6}v?I=~PiAGOu==X_{dK>7
zzuym9@00QPSg)40cJS|SZ{PovV!RWVn79zM5OmQZrPw_cfr5g9pmSW<_+(y098cSP
z^7QGQvp;?UA1nfzvE2LpUiGR~tAav8rf_j_fzC2nUV8ZO;n1L<MPI&@fR?hv#l=Zk
zm8=lci-~x@T5gsxlh}nrSHIuRJwMMDw1H--cDR-9|0k3EK?U;D=g(hnK5rKs5HP{W
z*!b(O*Xwt`*}U-ntbDoepFanCdUifLJ9{~3{m+IC0lBxffKGk6SM%9-Ywqo97eblN
zwp+(tR`C3OzkdIwO`BqtvER|r*Y~fitkio9+O`5((4>2;&Be{_)#vl}``=cboqP7&
z>q(3Z1)x29et&;`y?k!2b-v}wKY2111rE*Z{MY{d{r$T3wH3IrcEIV*)r5mOYM@;o
zkk%J5y)?+MYMx*fDcw6z^AFU6Vc-F^5)U|KfcoX2qw^F6OzZD}_sK#Ujt|8aLYgSh
zhU7y0&A%rf9v(g>z5H-Hzw}-CynfK61S<<0+o}8a<2^k+dpFgC7LKs7nVs7A@KoCN
z+i&05aWXI{%(W`@dVYR>{*+pFHnvsS*VpxK%HIL%ATdZBQvoeOJPc~8GPHrb%D@Ba
zk}ybs2AmiSK<nWd5+p#Q7Y7VLt>uP9P)mzpRKsumy2BM&+bp*6GcYhPc)I$ztaD0e
F0swxXxQ74$

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-5.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-5.png
new file mode 100644
index 0000000000000000000000000000000000000000..5c6475e588201412661962ab5257d14234be9c2c
GIT binary patch
literal 22039
zcmeAS@N?(olHy`uVBq!ia0y~yV2S`?4mJh`hJ9%>?l3SguoOFahH!9jaMW<5bTBY5
za29w(7BevLCxS5J3j5`m3=9eko-U3d6?5L)tq!>w`tSe8>ksP$_oQ4CJSrU}DVXJ~
zvMg;yW^k7BEHNwBjJoUFIf6gV%Dm;#dgJMBR&N2_%RX~wZqUj4FlpA(q*T^vp34$~
zlem=3?f2XNDope1@Tz+v(|7)ORQlQ*^H1NCzf$q}*6%mThCGJ_7#J9Q9zT1*$iTp`
zLyAj>fq`LiU;-lp!;Bs#ZU%+}DIyUJ3=C?E4=^z>7)Y{;F)%co)Yt&h<krZ_z>r`x
zs%0>SSV&;t!X-;oSXo(5o<HwDapJ^N=g!$ZFZG_TH+A;x=(W>#@7`Va>*eyO=lOSc
zh3>8TI%)s@{cFNj3keB@L`78@%AH(jBV)_J!0@0V`FP*eS*F=jX3SVIVS+$vN=n9u
z2M14`JQ;X?p6&UnwMUaK3j5nE{Py<t?XBk7*Ur3qedkV$tGoN^?Ca~ie0{I>+y7g!
ze12Wj{kq?4H*MN<rcR}OlSEshMU?;p!-2xGH#ZiZIN`B$$r24i!@x-)adGP|TnLCQ
zJSuu?Q>ype>w2-fLcZUx-*5N#OK|D?dw<vb<&m?Am|y>I=ciAfp1gmr?^*SB>vfa7
zI~KV&HaK3qc=4I-lx9O$4u%7&d0$^${q*5OKuyh_wP$bNjxH=LytOTNHlM6jN!)i$
zP0fohFE2k|@#aXU@Tqg>!g6xftlcqbiDB}w6Zh}OuMS(gYeRd15h(4)JSr+KzPi*~
z+%)sjk#)98N{7n+<nSC0xWBJfR6;_--rk;9(#Qqmy}Oq2H6L47ty*<uu{;0nGJk*n
z*7o-7@9*xa*>rwR;1y$Fn7-rCA*aZ-*P`BrtqyHVeDUGo;nKL*&z~><{cgAa_B%!0
zOw7z%i=X>}!b3~TYj@e(pn!l0Yx%p62Bq7l&u+`<0cE`%N2X4ldh+(|-C?`?`}^Nk
z#3m&ri3kfP|NeE(`u&v#M&>KK%k$69w~yD~_hZpr+gGoi=hT|Gf&608DPQ-)(f<FR
z&#pVmPfybom654Amb`D@J}rIy^;hd&UD3S#@mEJz*QH+bdl}o$I-j+D^=kRPS_^AX
zCZBVF-~P{nvbVQlxBRZItjxT>uQpw0)0(i?lFJ#nxw%z6*G6w&S6-icds}E--M(1)
zw!|Cne*Uie=OKTt$MqcpgGFQa)R?O)R;*aDx&On5f~U`)uU@j`$hz9!-`;MD(Bb0e
zUteDT`}_OrPp8M{{kAeO36YbN`}Jn?`8VfQuUQk4m-kNo)!~_-qUk}3j#&4~^~I8Q
zH9J<VS~X?bw6yHiD^>)!xwR=NE9Y`w?e6NDGJX2;SFf^eSEg&-y0$)k{aowvtP2Yq
zw{1Icz`@nsJ^SaUr)AdL)6>#cZP^l{?AG(c`M!4gQ4vK@9CdVX96fR*<JOi;tD+|z
zx$57WnwXX@Uw-@CY^%~$M#jda4-PQi4oN;g&-UutX!E-Thk3JZZCP3N?#{|DUrM%S
zU-!Gb%y;wa^nZVTc6D_Hy}!5DH1CdutW8A#x47Pw1C7jA_t*btt9{np3o2mMi}tMy
zuATe3IeMCI^s>m!X_-GiJ=N0F3yX-Dv1!vL5mC`pb2D@E-zV4ae!nj|GBWblgJ%Ac
zPft7}*M{}V+sF0Wew%SuWT8sw>ubI@Z{GCs^15`SQ&?0$V8M?c6}CU0Onzp&V)BE<
zMGOoDOrZ4CFK4Ug)tD;L#&h_>xw+Qoe-@e<uycwrF!&t_<P<w|RH+<P158X{WO(4B
z7uM9;=Gp`;=1pc?UhY4C<J?llbx(gjpMQOxZMBRo&w`6a)%-d_hQ}8iaB5z$Zr!xm
zvuAU0aeeu8TL1OZ>2a6L@7F9ob;>JJN32Un{NuOV`Pzz#j^}N^&+(gUb#%V=2ll`i
z)4DYWotg{E%ddyW*Dl>x`}@_6jmfK4t(tT->+0X{_t$4$UIr?}miy0Nw{<_4)b#y-
zp6dU)egEIG=={B*c6N5F)~uPbeEIUl?W_#Eee=_HtjJo%x_Z?rlgvvhUte5w&c43x
zYWe-z<#M)F880s__44qzaB{Nx(`V1z9$oCXT2tZ{6f`Ms$3wQKPoKW5|Np&yYx(;)
z_I{p>m>EhXydn`hR@}LB=gVP!`;5bFysOr%xf1{XSNPq!-)~=CSlAr4CSsvuGuz9%
z<@dLWM*4`G#l3s?t}OolWBLCV9v$tTI%m$B{Cz)<IWA^mIG)fYAl{oOp{1#Laqaed
zS<%^7m;1|mURoKv{K@<G>s`CWP8#s6jo%+P>C2nV=TDtK@86dAK{{MHI5svnJjHjO
zP2|(3PrW=n14~P{rk$O&boKguw;GjOBKQ6M7Twy?Vo@cb_c}?%@6Z1&4<{x(T(mJl
zhl_(FASh_ksZ*yy0s<D4->Y<=l=Hf{rndI$o6YB6eY>51on5|W!SDC`?@vovSXfwI
z9$r_suc)XfC)YUr+?6Ap!e8I*exLR3&Q6s`y@Xp^GGAR<+FkbM#={p28T@*gxW#=#
zL#L{|Y-E?az^%VWp}xLeH)4as`@P@ishqrg`SQ9GU0q$5#N%rg#@GM7I`Qx^`I1*x
zG<|0px&Hn2HMp#7+uGV|Ya+dTe6Cc#-|If{DH9u?%!(5yJa{FIT9jTZCGt+oUT~l(
zGfT{J`qZf_H*E^C|Nm$6+Xx?@p17))s-oiJ*~fY$Z*53yUh-cg($3BfR1ti6*e-u6
zYpYetpB)Bvc6MGqJ|QI~TR;Z$+x<9D_U5~5SX|sZX7?`pMbGXR&$p|cGHKGHZ*OnE
z?z4Wk-~`hvhep=mD{J<jJbyksCuhx}Lx(^md9Sp&-}`;P*Qva`SN%RTD{B>>jKzYN
zmzU4qcw*P5Q`)jWC04ZmuQPT^O<lU=e%%kde?K0-y1cwUZ};16#$u83bw3u$)qV+l
zdwcu(gU5U9(_UOyILoef7oVJsM)%Q0kjigG^6@^ANO4BaY1sw!e?A_UFaM%&VTWX!
zqPe;G)2B~YhOduXwQ5z+^>wjV*Tq`z{dz4LR0^a>v{ik3v-0)&{c&rfw_lr`zi*{&
z^|u$NwAWt=4UY|dEt^r0XPWP1QS_u^mPw{kd3kwgSlFq%cVj_C^z(Cbx7Po!1631&
zfq}1XY+StLKG%lD?)|Ug|NokPtY3cpfddZg_MGRAxA96(nKw_5pPxUr^lE6<wKX$u
zZOL4`E_U~;%l`IPyY=_2u&e#0p`mf&qI2#QE^h9r)26BM^YicAxpQVzjAYxwRjagm
z<?ZK1Hnk-&h%Z>R>XZS`VGT`9!!{ntq?XoJ$@w*(I^X^XkFQNFd3Wb##?4JjKVI_I
zzj^C^#be&XNgE|<e|<6Z^74|ZxwB&a<>mg@v#g7rbX?q+?4JDP#l>ygy1KY-*XQ5d
zbacnZW753k<>kqjm-&`m|M&a;|9utBt(pIRpSLwMytpAk=hza@$vsU?Ot(Mw+yA@K
z(bHoRwKXgCd%pbF?ZwaioF_ee{5bi?@87e3efs#(P({+Z{9VbH<T#@lN-lfXMsN2s
zPCqy0%ly6lJcloU$|+E=3knKOTGG|U6<d7PwCerd?@!*oU3;`!{Plx_&6Ab{E_Ta&
zdTMIb)2ZQ4-oJl8gZ*How!Z##fBU~nYJY!QxnhOKq$kgxFSo1x_2TdM``3Sbe60F6
zeOLITMT-`FdC<)N>dVW^QU(bPx!Qc5SvNPO9=2zBbv9|^jcZ|gF*^b{IXS&NJuiMf
zZ@(T?rHggDn%^xEzTB#o+;zb;AmQO2$+m@$kN3ZxnLh7gu)pon%FoYk_KAv$zPuh^
zzjf{Dm21{anLd5`s@1EnZcKK!{r~6lt-aOTx8>YS+O4Lh<`y1X8rp2n{z_e2+gsVa
zFJ!u2Y{^;E>l!L5F3#<ISC7lrui3K2q*u;1YIWG!P1>7IojRrB`Tb6D|GM4ptXNrD
zGtbO0)Y8>WRlezV?C#yW-})Y0xf0T)^T1}~MU8W_k0u2sBrE{sV&7RNC$}{|d2@5K
zsF2X2+4=h-LB$83tkseQ3lwg%+js{}*Nc7f@ZrMu`~TlN=->D&Vq4Bkxtb4-t}ZSw
z7PiYx>hJIW_V)Jj>+$um|9>2}pE7688cE}{69zn~X=$gDHokZ|J$~By_3KqK-`?8#
z>C2ZZ|Nq|q|MFJ$deyZ#D);LD*G`=}HS@#-#Yrms{QOg=Pd|P8cJ#`XD<>_PGDXDm
zk~6>Uk_QhGq9=ZRvA93$#)ibGtyxnSEm|b=ji*;qx_1{xyI;Vfi!0ZyGvhgIu<y?&
z@5S-^>)bY{o$Wa;SAE8S=kSdkg^Mq)i8NN$(K%yL_h-l5(*J*++xLp;MoFBWrknl2
z@Nxgo4~O}CpPij8&2Rf<!p8jjcDs|`@BhE=;^uUJP}(nke$Ld(+q<`2zU~GG2Zuo$
zzkHsIMZtlH{dIc_kIR-zG_&)Y`OUL=xnQ|NZS9|r$J>r38S0328&-YENIp49HQh#E
zQSo6<_NHxlce7$@zg~5Fer|5>rcImLWU3a2Z)Q7v{``56xnG|?e|}tQ4Vzn2Yn367
zb6etzTiNTc7N56W-Y#Dkao+Ctnwpv#liXV-XXjdnPge5{N=aEVukKf7Z0*;pr%s=~
zyvVg%L_lD{zS`ebzXS{Tj{UE1f3U0cb;;AI;aYZf_r7h^Fuh&)<^BD5-KZ@Wwq#y5
zss5I;HUEB`rlw}r)m2l)bfcE=$y%Mbd^xzWvGLc3!~D6OVsq|)e0*F~MrIADc+uDQ
zmp0G40!r^UH>a<T-k!(B$2UzyH)@Lqs9i8M#nsI%>*b}TAk%7UYGi(D^ons#%ibWt
z#;p{veW~~KS6{EkUzaVvvoJbur|ZIn3(Jn%|Nm30s-~88yiazPZS^)a-&sq(d?`^?
zSJ$?;kGHe4`}Fzq<oWaG->ZBs+uGV{`NA_mJ~cJ<)wQ*=ca^<eWtx5MhOF_w*TqWP
z^X{%nJluBj_U-7~+j4_9r=9(B+220%>?~7I1zb|HCAXW+gs&}eMg0D{U2is>-jZ~b
zEBEFmS8g#KPz$W|sAzb`rza<0-QK?b*7kgT&#E5}+rJ*-)&~jBGDvJ%EBkeO_H{i_
zQ|8~lf6MY?gJWaYUb+<Y_Rh}WySvNHzuvPj{&vu5?zeY$SKrRt?F(u{tIw}l<k~Hk
zdAv{7s^Y_fTibHA`T6;`=H3pQIC0{w&FTHq^yBr)%gg`1|Nn3Ou^vg~)mK-6+DA7w
zB!XL3da=7KeoZWx=Qq!0<@ETv$my|VGu`@RGPlorx4&LE@AkH}fByX0QuNg8>-+oh
zvAfGcKR-Krb#uBu$dPAfo0nfve!y>0`)kXcJ9n;Z%?>|1$1*tg_O`1V5)X?=ORp|_
zd&~1z?%^AEcbC7uoxeYHf8Ae`j0*~$mnQq$tyJ@!wW9p}y>0uoSInPPyJ64Xz51u@
zB1A<+-!xxs_z~U!E?+)9ISC5ff`Scc=jN<*Zs*IqwkDE`pFjNnzrR~kP6}04RJ_=F
zJ?^rv`Q0T~u7ueB`|+5Ihvy0?N8j9>u5D)*mwS6#>6ga~<Yt-Wu3E4_;py||ufM#!
z{OQAo3okD(e|v7_OuctkS5H@Y*{#2C!`8)xt2BG8N?t6Oowv&qRM3>Xxnbye>BL0k
z((AG1C(oYs1vO5Bf`YCr^%l4Ne8#xy$wc=rPbT}ndbj)iw03rFe}+yb?sQOD;5*yQ
z_y1@6|BG#_zn!>#J-q(^@B5$@=h34_PbO`A0cuT|UXNJ}O5~}hr-9N7s41O&YfI*~
z-yfK_7q0yI`PKdX`#*jDY+C&-$8-PR4}WVXrf!VLdA&JnUGiG@$K^ktPR~Bn!Wp$a
zZ|=7I`+A<gUM%hx5f)wyN*n9<{aR)B>xD8aJA3x2DVkk9J)m}8>D#T>tty_ZYqs4W
zWq&Q<;ha8s`*oJZ&ooR;Lxt7-t{9)UNw)s>@ArFcbMx?*FJFS1unV2rRXo>5ZM}4F
zZ*}R-)ajO4H+DGK|M}2d_4U<KVRb(ZRaMvT_v`no++4<;{cri)nKM^{iV{!(So-;_
zxpmPAgTTtloo&3*YKIL(#Ko5vK0fx+zy8<cprD{P*OK;qJSP3?^89~G&ds&9F4(ee
zVH$6kgG0kh&xFv>seW@T4oa<IbD7p%42sn^H#etljM!4}&`Gjwp=I&26`qsTKs6^D
zkHi9ysRtUFt6s0&K4tdo)#>vp+a9f&$j!%htxHt9<aX}%%x7n2S`|KO5fT!5BX<AY
z&CTxX_y5~vRr>14vW<GjZr_e(X5#_1qBm{cY?^UF;p}Yl^I<WdcGTs|!HeDd%RYE8
zK6hzq{ap6vN1^S<Bf{IxvdGu}Dg62S_wBu_eSYOOZka!SKC?TQaqWkL>|LFm7e78e
zZd&pppjX1sX|7f2C3pGSCFS>P!$D&jX1TXQUdt}a*z@oA{Sr`0uKu2vdv8zV^_b$`
zX7^{evV_(gIB=kQQi7~~-5i$Hj1v<c?qOwP%euBEa?-!e-Jj=J7UvudIcq&ZV_l3l
zNPq3`GEm0>RC4YreXa6$o7?*8@9%DHO6}fN_V(3-z(YQ!@2xgR=t$Ys>?nJCYpK88
z&lV=`73^F(S5Ck0)+sM9KRe6R``^ERdrWV)g39`;$GzqykB)G@y|*{|>eZ`Uyu4Ra
zr^hZ^<~!S}s$vI6me3me|3A;qGS8oPuj;ifsDTg{7sn?z^L6s#!0Qf;tyQZvH{H2=
z_v@8l|C6Urdlx@HSNdf`!9-RT77Yajhqck$%f19$XlQC`GRePZbGQ6{ZPf0vwQhYf
zFJCA!_A;@G{hM&$fCDHC#l^)*nPyE{+|K+!sjIIq?EAaBKULb;oSL3WX>9n=Zkl^5
zq~HFZMR0RNH#Zm8rQ`DTI{Eqe?)<D7CK?+G95vQ8crzajJ*-ri_2<V+4u%F{!)o#G
zpXU~>S+N2X+f7YPptjkG6CSDQ>DR0OeEj&asJQs@-12*ouOsg7t9|<HS=ejSiVqK}
zzCV8Bv4Mf1;aH#SYSZj%pkXXUMa5GmPF#3!uzBj_$&2UNR?oX`Yxnz&v2N_HkbV31
zrQ76fjJUEbH(EDh!-03nS7JV%H3kpP2)gSO-QSqp9=0xK<&-HRs%mOplai8?MWv)x
zX$CLLI6Y1G`Bi@>r>0|lvenm~tj@f=Z2FPei)SdYFgy_2UiCGrvZ6x6&hFl|XK&xG
z-Lb<W_x854-z+z$Po6n*<=*P=S^xh0d~UOS*RH6gOP7k9q@}wzvNALX7aoyXbLUP>
z>B~#5zOzg=X7_h=Y>>5|J!z7V?_8@;<FqpYtHaiwtIDgZ+xO@1Ur_-8h1FMA9ha;2
z2@MT>{&8+*48;EMhzO0<SEE+n&Dwg(fJfG@=Es`r*K2ZaDfinHUHk0h<aA|yynSr>
z-BK-G-K(#zt~SlTXY=;<c7N@#H9Hoh7nq4e@IH7xzy4Yquk;mAD?<DqBg35d$jF(X
z&Q>Ec`>NE_)5MqZyRSK@rLArKI84UQ&TiY|(v#=UUk9~PrfP?ux_tTbn!h@6dv3gY
zUHxvS`{U#N*H^FKx9Z3dm*}KtTpAms4z%$~m%QKm-Kt80fnl;v{Jt1alXY=>qEvi*
z{M6~wuV>kpzMAs3B34L9=*sGFeO_6sFZ^Hsf*OAxA00h)?%c8iPJg%L-;bO0<l)1@
zleuRiBO@!%-Oq@*xGHqDj4ez14Ey?hX=i3Ue358zWQpfw8QT`N@*f`(r`J^fy*bCK
z)XV<gkHv5QzZO5;suH2@KX1)ci@)Eeaik}0jXH0^8xawqvGQH62&i}l4Q6IvUl;1=
z*tmB6s#RK3r%qkDV1a{f)Rq7T2Zy<}+jDP+O)B~F;^OAMjT;vp$YL;^T7R}JYr0VP
z(V~;Kn^jud+N`QL_yh$63QpSnUTX38{kwN{o_5=x+^N4;S6BDx^XJW=5wi>D?f=I-
zH+}f<A!t0;)3fug)AzTxx1Ubhs9|ICr{_9o%u1}=^>7>S=IreeI#wkwCRmldSplk0
z|9m)H`t9%C^822X^!ESxRBRWW>;z9w4-dD4Iv#;hQM1(i=4ia!zDP$|*?Ho`iCkP<
zlT@I+kWdegjyrenmcCxQJ?rhQty|xT%ge9-_V#x6vokZd#qaW)W1*OzpI=#7d2_CH
z{ym#W9Wh=RiwiyOrBcw$A`&4eC<rQ1w`5)}d2&MVw%<EeR#q>6|Lt?lOJ9Ygrlq|)
z(8$ci#}_u+EcePX-`P>$y*)fGh=#{3w0^ha@U?B(*Y$d(OuZJn^#*x(beuYMYD?N#
zsodM!d><e0UvI3My#_Sc+As~*u$=Ytn(4K3R(j-IUpKev`@6NJudjhRb$NMtyPnO;
z{&GrtJ*YM}_**Fh8Z4Q*d-v|e?G0>S?(biF=&Nb=wKEr;3q1QgHmHCK!jmUYdinXS
z`#k5%my+EstMz_=f4~0fwSBeKdw)Kg{d~{0(3q;#{TCN#Y|zsciI^_NrL!PUC4zy$
zLeO0`!a$r8JSzh#h6;>S{Cee)_)2RI7V$y?j7#VG0nh+v!%478C6$PEjV$0P9*9vw
zI@cW_V|_w83=DI4I)fj(Bk?)1H^eX_n+(zq9>H{Kd@2Ph1sDt@LGperET>H;K&FsD
z=BqnDy7B`wpvW+z2h2Ytg=!NACupdLiQzzJK*CP8WgLtQ3_fm6pu$P<U=c6KaSUq8
z2bmZSoSa}`T8G5%+`tC63G9-f$q6(6T21fj;!;&r)zr}NsH>~%>gfq7D=XW3TwY#Y
z-`w2%Zsqg2={EaHUx$5tbrn>%ZHij!<>3*KnVGrwcVQVQtQ<gd9-uCbwDjud^Q!&i
z<m9AmDmHA(yIXbd`;Rx9&u=Mt8T9kluX!IU^77U#TD-XQ)fLU9%a&=`*~MjMW=a_*
zwM6zmG>K>i`2keG%37CYJUulPG<uhmv`9tM%q(o-!iBSpQoFY0+$@UwtD>Tk@#e<H
zQnmQY%l*T<#dNn6K6d;0`?vR`TU)b1Eh9~9>*$LYFMh4idJYMh!XqLNUtL}O^x?yW
zKYmn1&)&X$`=dvXw&dP6leH>&G3W8QGiR>c+goi~|L>2noPFV=mQ9;Ci%LspYp+uQ
zb<RJ1|9*W{=<0Kyt*=-FBrq}*be=wYHgvjP?3E>+!n?n9ba34MxEVA_a%E+(Y4S0i
ztyx!J^*pcncvKuT4%IJb`{tIdt*xk>+`7BF%i|9STgZcF2s)I7)?mzVr0=aeH^=hR
z=g*hHm4Tg(nD^Yjb5{2sYcq{tV2F8i>eQ(xZ{NnQzI*)m@v=R7KY#wLdbjgAsB=+S
zRW)xbzh~*U;%#<P%3vFOob!2Jy?(v=)2B~SZ<qVc-6Xr-+sUa3)aYF3+&*tJit3mX
z`uqPZTI}9`YinqD`24T4b}f6s1)Zs|dt54C`(>h8&W#0Iv#+mOu)twbibUJ0RjWe6
z!j?5PF>TGb=)}m#xb5Y!S=Imc&ENGa16&*wD2ea#bv`{!_v)rp@7>!jT?(rGdNsT>
zPFPNE-JCfxQ>RS1p<8l)U+r!kvF<~M51+5Nd$5^3bz_7{&W#OG=L=q3P%M3OBXH%)
zm7rdpsFaizKR<u%x0~sp7TDW6r%ri2efBKt$%%>ePYUOXb>CrR*l~nc-YzCIG}O!6
zd-K-NkPr>jqEu5~|NOL$yH&5(f|^R#)<&m)&$_v3>Ax?_?KAK0D&6(C&sxQ^v9YnM
zukYHYr>EbR<()rsCL}X+<>_2AFK{L+JmR((wIpqAX#v^7N?d80sJ$-h%zXQJ&@kfN
z-P@1#N-u9_=g)e0s8!0MV8O5N@AJ<cw&DbrDIJULx(jY@N(FU~w$%JAQdLn|v1?aU
zWMpJlSJx)#*|Tr&^lsnv>&>;bvo~$t{Pg+r<(<Onudas2ht|~WxmWdi?XTL&QjF7m
zHcZotT?Lvmv$M1N1sbG&yYu4q{CHX0st`~+y4j6`p`rNWr%ypeMVlr~p8VQI-PZQ5
z-o;g?|NZ^_+UDBkbpPCYdw%lwZZs@>$+CLSo)~U1ofTK_UC6IzWq43ysdcbvXUwhx
zT>SjkA06!u4GDSjVj%-VgLlViu?VqlS5O`e4ZSKEyykycZ0uU~c@<8Iii)2;ehh5q
zlQl^`#uFM6a%1lGeYMq~vgX&1$Ni;`d(BT>za9>1@NY^zt@ms(1B0I7lJMU7r^O;B
zU0LYN-YaSRY>sAF%v*`axv;eWF>}(+&s!^<x5KepOgHHMzS^(b_y6@>?AE)<`h3#H
zjQjg)LA754BQvP$14^&o@0QQs_wU#1?!Oic3=1X}ykzp8ly+vu!c(VCS&6@Wdvmk<
z%$YN#%=6~ltNH9}`{O~gm%sn@C7zSF<lVK(y|d%uyFY*a)U1u$8|82Fu|>^i#sW~s
zWZt}a&$qtdXJ{w}4apb$WLoXq&ezr38yXcgt53!<==G0ZUtgzgjF>WGM#lAjFBbQo
zGT=!~O})9b{Ozq!+v;yyYVU4J^#%<cr`H~5VPM#?Wk*e;s;6=KxscS<r;^u`{(d;j
zUsPNi?BUT7`x{g{r=6X3(=K|YTR}m=+G>;hdof3k9(~3q#Zcg>bg+n5Zzun?_oXi`
zIDWrZz5ddrOH-yyDLGbr?z{f{-MfEF-sU}Q@qFvlsZ+Q9Dl9Kw|9Kt*!*R>9H#7QV
zt<$cTt>gDKYgR5RYX7O%$>ROXzw7Jotr2f;ZN2>R^75^q!MAVo>wbA2?~@JQUG~;T
zx_SBX<$Lz*c@rlR&hTK)EYs{|plR;CQQPz0zDQg+aYqW*nm$?USNE#lU)5f}C+U0N
zp@Yrrrww>?qqdxQ_h-r!kw_ge&`c4pZ3x2w)gDc!>kl>sx1`V7G}|z_4b-mKv&W{j
zt<7uFp+kpE%HBjQUAlDTjvW!TzrI`q4d9$P<8!z4dhDyq%l)1CWf>Suiu9rr=B|u-
ze`V$5q~zqSB`<?^KVHB0+bpZnS4(<&c-BU5_Y04!TndWv<8sw&uGzl+rQ2|ykAWfW
zVY=7jbi;G$rDl33*2V4yO>0zER?fY?e8S?7zdxPUm$hXv*^qd+&9aIkgCR9F_1CxC
z`JjpD()ai7Ua7wRXU&UiYiBbtG5PHM-YKlUrTY83Zlk<8Gf%5UFff?7?diT?DzKaZ
zv}Occ!Gn5X9*{L6;1UK@jf3h{3qiCth!M8d3UUQMAz>#QsN`Un3~E3;aPim>!wg!3
z;@84-+SI_61GE4IBu`vx1?0FDixxR~dU}FdqVwm^S5j7<I(KgExz}d-_tq#nw`o{d
zMC{wQZ&TD-DU*x|+w$&4y}q-r_V=l?XV+fK{_x<S_~VH(T_9uBAFW`?esg1E)aJBa
zAz@+A@O4iQ53ig}gr%kBtDBqC=U#vM{Q2p-cVmUsd@f84k6ZcZQIc-_zL>q$->?1p
z`r0(%0K@LWExEVDxW#lPBuZ@ic5Q8R{0(L+MNl=TS7=@K=EA9|+EXV@T6E-yi)T<y
z&Kf6YXVcVEBDps=Ej^e0_|YQ~aq;x)W{HPbKs8FYnC>R+4Js=$FE0c2i+}PzOaV2?
z4s>2oiAdXjE)C~mh>-Q^AHIIQ`gD5yy5!@1b3ay;mTvX(_I_P@{#YBhO?7#~(Wxp=
zpFLaUJzX#B(vr^DY8RK5w?B5yu_$!f|L0Tpr%#_uYJZiyy}LX7;>C+w&z(Mhe)|6X
z`<a-SQnp5Yy^-9%a@DF=Hv5fx*@Ig^)jbzCck0%t?5)vj!z9}l9&YEK|5;Ait>;1;
zue6FMs9SGew<qn~oXm1R508#tUtceOy>7SP(xpqI_Ev3uc6Rpi+TY(Yk9LVZv+0?<
z-~g!6XpuCrIx=$Rp1pgsxBmX|<3`_n@1mkjpy6ClHT3e*(p4)~1f-@e-Lq#;&U0}8
za2A&SAt<yS2t7w>TG&tDu)*LisM>iQ|9{o@`}OglxvF=&-|s7q`wlMYdOqJ0T4bmQ
zYMge)WHfz!+;4v^YD!#WWaYJN#L9@P_0p{V{{Eoaz{}4stg`Z_<mHW^p2k!aS=*{D
zanJ=8F&>bPiuCSn$;bOLA0O+**{*nP+c#O=|C9mGT#Ld-Ygn(9->+5o-1X<v>DPDL
zjgz|s7#P$ab>vF5@yoAUwMuL0(xo?VX=!OqnK%)&+J=>t)pJr;7h;XX|9{{2XWxB)
zV`FmF@3-4QL+;abqrHB;jcpSZ72SGnu6h1E9kFgUKA9iw`{K`m(tm?@jEhT4Qc{vh
z?ky8p%c3LOCRaN;HeR}XIrlke++gO+nN|f48k(A$RXv;8c!Oq}<(53|HD49FI!sGL
z1GG|ui<^6E)>W<BTX&bey|f~5u}Rhyjn<Zy6>HY`WM5lzaa-<fle#}Y?59k!GzR5}
zIUS4bw9;>GN}XkzJ#CtP{JKYvl3H6^HMO<90|Nugz84m6p8uz-yZbU|7Sy#{?B$J(
z$yxXI?9AKsQq6as&CPepWuT_?y}i}hcXyR)X=zQGJ$v@LozJB9embRH^`MdcOm&2M
zqT#>ahZ_n4-`v{jZCmwa!u09kYxmD6@QttgxfIlQGt0SQ;Lgv;yI{>4AJBpy(2|dL
zcX!XOdOvHvC}{c4Ec5)lS9`m=yT7il|NDATk97Jm|7y^B3eb|I2I0ahB8q3A>nXsc
z7O3Z=a1gw*4r|W|tstGOSeW$()F~}c@)6vHucy?Bt>6S%0qy*O3tmV;s_Asyq48?N
zw%psx-re18T_usha6PtsF37*z%HBqS{G0Ip-d-uIk`;^F8{Hbfg#yT75l{Hw#V;X`
zVC@2e#|su7DB|@IWWrl_fNBH>QBhGZFE7w~s6T)Hh)7DVeDmf_aoqOG&uO6bR|gLs
z{Pgwf)T>!n7dSR=DSds-c;0?2UA&by`yUs8tD=dsSWdsWzOzTxIt<jh%E?(Xulk*3
zWkm&Od0VNNm+7a^pP#;aw~kX-?Zr{?_$yCNPA+|NLh$RmyV0Nty1P4f?%WA#Q?CqO
zK4sRdRX=`IEM2-Z^GJuF_!rw^H;|7CI&b40%qxwP78hT>V~54=ZJfetpd|oNTQVlH
z@kk_O&$p}H6}2T}VXw6Lsr&ciCtX<=Yuzht?sxO%&91(_eH{MJB|u?fF|*BYec1Xq
zU4DN4qsNcmzO`rXUQu!J<+-=Fy}Yo{`K#3a_3PK`?f+9GYh8BcTG^u`oT=&Q+Gb|g
z!eTrx%`i*`tvd-_9d>m!KYTDyBrz{<-L8_Ci`0B)-Pr2x;&P*J{^?F(^)ILO_iO0u
z`-3Ln@9nLAE3{I7-w&tI(9l;G7q{Onoi}eDsI~m=?(Xy7qpxUyYUTr~>o#l%2wS~1
zZ1>fysfiL+H9tOBzBf!d!T}oHn)Kx9)1@CD9|w*0l+{M)OtboJdD|o<*#+ESD0FEG
z4GUAt&wn5F7Cg}ReA1jbYxwPcICxLfxd@un>FVMN4GX*VRdMCHx^v6>kF~IHGc<V5
zS-*b$sne&kx6ZdJJyrH6=Fp)-Isa?V+kRhB{r%mp_xpb5WUtP87Z`5;{IWZAylUr#
zUbpXWZ-c6pn_K6uT=6qMZ1vZk%MGoqt&^5qTN`~nn`hp<dAmNJvj#2Z`Shu%vby^A
zGU;s4(zaK(+c$$2#vW)bd3Psru66mg?BCz_|6jZPUe)Sz*@q4v295ttnk2Nl_1*35
z`O}Xk1y)p4>^)xi>4~Rg+d^S=zZ17_M=xBs5H#zQKEHO^!^7>jp^M$tx%J6JzPFnr
znZ1F5p+KoGqS>_OM?q+4sHU#&*=u2efeU+jcwF7wv@|q4CWVBAEZMWiCNw<!_BoIP
zVqe!C?~}cJJAeP$2M-dq=G+XLBqAZP;>C*$-S~ZX@}7S?bH-=tv}wEUq%8&|qnJlZ
zN=l#^qRh+7UY?k!%*DwW=;qeO#l<yc-n=~P{8v|2o;q{pN+UD7h>VPmC#YovS^*-R
zzb9~Q)Yc$J$3`O~qmYP*i0u5;KR-X$*3$9<wQ_b8J}&w2z)?45M*uTBU&#M|f2F_7
z)Hef{<~_=Gb1HF`=8uc;m*$b6ZiV&s=<Ru+rJF%Plhpj?tY~OpIC}i}>yzs9b0(zc
zctA2ackGk6>$c~Qo<8l3I>hGv>uqwOn$L`ad&w_vZeDJdf3N1=bMvq@NQE(YJsc^e
zHD!gIUtof)RSBpGa0#?T1hmL4>+-VRRjXHjeZ7AFs?5vFiptB&zX&igFr1t1yqtsg
z@P#9t!dDkMv)?T~Z#&DPaM7pFpH)3oRaLX@@7p`C{$Hg#pCCg6TlnOpnO~g_7iTnn
z{c_p=_09D8SC@EB{&J9A{)7R~?TyQPXTMsv``xA6`TO4<0F}d6<~uLv5Z8}eW0-vG
z#Yy$~SM>M)33^=-5i#Rl?e|#r9v%jU;|aXevI{aAOFukt{QBnR=5vq#{rhKC_osrn
zkAs2X_@V<vynJ(&a;~nL$|q+N@%-al>vAm%iye&aEDQ_<4`refK;4?EpHHWQRv<-3
z`%e7}np;#>b~ZFL?30pXVBkIXhV`9JNjXouSVZx&GZU|7g;rGTIMySn+<kP>lP4*l
zkvmYcA|hhOGXMGSPAD=lFkG4K%)Mrr@9eDK-`;{o*7#(tROIF5bMNd31Z9RdH#cvs
z{G9gl=TFO`4h9Aj4I!QD4?gs|)z;RU7C-YjJIC_!MQ26^1_Rdlt{F|BHDUjLzc2q{
zz`&r_^kvn@;)<rPU$4h&+uFwd{{B9^uyEtuw8fY5>rdMK`QUu{*Y8)W*MsJJwba$!
zK~uqcyWbeyEjq0WTIsc`?Cr1icQ2nkI~Je7z>x6x0#o+QO{t*L=*i2MD_5`E<#l$p
z`TEjx@444;Z%jKY1)4Pj&9^^#^awOEAZt<J0P5t0t&dwfRXaTE#015!`|{)B=H0o&
z!OX}Y-dDRJrrDW$&2jnqn7g}5FYkW8Z}l|Y=(sEUzP-P{-Z1$XXw}Yav)rI=G2NWw
z(5a21$Bw=FeBM6%_qVsNOY{Bx{U^I~GcZUQw;$7M=a;|s_xt_&i{09uRj*bq2aShq
z*<!N$k=G<pl@uOV>8h%#3X)OrtpEEu{^~;K_Necbe?A`1UK$F@KQmg(1$VKvt3@Ox
zCR)|}C}{rj^_=zl6}7*=mDZV@KWlz}&9}F=wY9aqgYF8xoq6kLH#dU;cW}$Pg9|yY
z9ctzNdMkT<=Id)~#kbA}Enxca@bIpGzh0lOii?PtQTOMg`_yUE;;wvTU|_iZ>;j9n
zrDde=Y_qE%Q`g1r*0QjOc=zsI+4Be;vA=)c*Y96Y2bxFl<l^A4cwK3F{AWWZL&IWF
z+o)X(yoy{$th=eXIW#C}5ol)onq}Ibr7JY&WO1$CH78$@je()Sj8At1pNz!?g}*Fp
zY^Soef<n#ybtPz&si~>y$`a4XR@}Q^y?SMD(|6>Ei)rqyE9-KvtO%4c&AKALPo3ex
zqaV-h|F0~+S9yHh+nD_;W*-&o40d&GO*=bl>C@BGSMS&nk(ihWnlD|nc=7qFyP(-%
z&|;?OZ8;Y~E9bS>?+N<*>+5CE5_|3SdoH~L^+vNUFZ12{t`IbN{rA_`Wp@3GEo&BE
zZ2R=w{(mIM8=!IOW3BIIo9AC^WM(%>JjCJ|^!eG@Qc!pGd8|j^j9If*y}P^n|HIde
z47|_#tlwRbEx(g^eOvkaI9^$+D~`&$cHo-L41O+sL`73m)AQ)jqg|byfzVZipao>7
zPMr$M%Uc(<H7nKndeX)fxwp4PZAfUmYd3vu^!9x#&OhVu3rqmz#>mJ>Ee(wcDxj6p
z+wa%y{`KW$a+LgJb$`(Kq-ous3eZqg-s-l+?)|S0vdd4|zkk1)?<^J1S65a}uKW8n
zy!PkQ>0G?LQ&mL8#Io-0DqYsg$<T1W_=waRyu<84&$q5zx$@Q3)zf2dA82F-Exz6R
z;Sl#M>+*GXL8V}vkg++R?glL_El^hkG?vnqxFT|M+N34P$NMx@Rb3Ca@m}r{)%Ll0
z!dOMc#e2Hm)xF>Et$w|3_qlD8e}BJUzh2dQ+KcJ&br)yn@5{XX8?^KzEGTGF8=vf|
zcKJHc;0~zBE4>;To_T#;thkLF1H+u7m}B^$0Yp$m;OOX>zUSNbqf@`!zUB^EHg!F|
zzV=x5s@1DOvkgCg|DOGs!SBSv+a_mb8oPtmI4|zETXpD=6KD|By<aXgFmNKM4{Vx!
z?aHbe{UaY99tI8QfC{CkO(~tA(Y@<&)xMx!OWC_Sncod9L3ZpaeGO_9E?J_Y8@<g3
zv_fhA|3A;8zNZSCGc-iXY`mC((LB8Fo|(DQ%ggKBj)@i6CW*i9s!x7!f#r3t`MnD_
zHYVrpUVc5}>Z+-eCWG74AZtLQjhVG^)o-^(?W_4&Ik)=t+U;5A=h<$(m41F+?)R_%
z{{HrrlxAS)o1vtmqci1d*4nFiTcc7X-1eHY`uqBZrlu}^x9@k}?r#$&2z-5g-5=C_
z@$&ZGTJ<&S>}+%Y-{0PX;_cPd_RYl^jiC_{E2Q)HY&`ea{9eW4do`cWvdIWCFifAf
zX_HZ9b@lbE?;k&Il(mnaZI*lK&dy@fq9-S!vR8`h$K`zgYWw}p;*XDyzXlCRCnYV?
zH7sTY)pM7Z^%fNsy|UR?_}Fc0=H+D%*;p7Fnk|#ME?mDJ{`Be7t+)K=TBTao+3oxJ
zOd3@6adC664)wYE^rE}`)I<r;&Ybn1rMcVHB0%#_Z*FeBx+c>2_H8F!v2M`fMo@2d
z?e=?@=2#ZXSh_GUNKFN;@&&C+%3iHG<y8`V_W0$WZGjdQ9~OYty*xWRTU%TE^&asJ
z+jDP+UCMv|qFj|vcf&IO`Rm^A`|X#RnHjaGV&k1Vb=+6{=G*BWHUN!3`p&nzJJFei
zVZp)J6H;qFd?;vbZ@;}2lo<8*{dg3){^ZG%fu2aS#8-CRe-BD-pd~V)p;L>Bib{@(
zhR^w4vH$lwYtKthr^nabyKch9r@P_K-MdpKPF#58h|Aje{c)gWLQC#{I|!OoJ9Oxf
zjHL|&gC6JMcK++e=WP~m*<#{5$0G1jezaz4N{WV&(WPy!&VhjwL3zKmrR9d5^^Yef
zCxcp{pvA_MCok@kwVt=JAKILbi;F9J`}x_~$w!ke9%y9Ne<W;Xv;0QJmtU{fU;lbN
z{{4$Y28IU(eHG$~L=RvrcJIHoe16@k9Xl*Qqg>VB-))_He~G8?Z84ACWp6jt+QeW?
zAKRyUUAtjY(HMF^<W$neIfbiP7#I@frJkO4^_R|}HEVQSU0rXU+Zds<?Wv9Fw>LLI
z%^FqjX&EOcsg@nTwKY3kdjtN_3cY{KW*gY_H$-j8D2$t085lV6)2B~24hS<8cow=e
zse;DQKqE~>MMZO;FIm3)wrbR*FMq$^pMPEA*7p2*&)mIN9<W}!xh-`<o%WhZlP7;Y
zrM>>d-Mg_HH*VxLHUJG+SR9qo@dRyu5z~oSuw{!$Xjm9{oV!QT_{z#)b$5PVh6c9B
zD_FRn6;(8bPLB9no@iS9?2Og@RtAO!?Zu!Lp!SBYuC6T!2bpx^_C!pbI<>2}_v)FM
z#-J9fJ1-{#!vPWAxCBu#v0GfLSFO_Ol{9uUPCK(;0~5o8|H_3~f28&t0G0TsPM-!%
zGrqjM95n9$+89$<SUC53$@_bI8QnP;7zz@l_8eIC(`L!t-R0RwIt0^guN&}0>WGDg
zhnpX{z`#&oaV=qI8=L-yy8ZQR3=9pcGe0na25x!psxmP2vVm6ITYuMNU|?9m-~PUt
zm4V@3Gs|gH(46Q47mW=u%%DL_BBq~NxEUDKL8Bt*<KCbS7F0iYPzK!n;b5JXod6o8
zJCFjBw~!QCeyks41e7m$4a>MU((ny<?jAA_gEsfxc4Xy8&|EnKXwWk#XcEdorum<D
z_1pdOC@d`8^=j2>P(klE*GkjQF3#1}HQlEE^|iI2>haItzo}cJrcRi!;L@d_&GN?|
zdO*6MQO%}hZz9%4Zg%VJ?1c6a+4$ww%$Xwt?gYG^G-*;uOw5`YGbBpi-HH7D{rz>&
za@{p+bU>rWp{v8T6&Dv5i^|Hb1+~;nO+!J;VdmBS%B=nUcKfMQr;MIP&SeFSNlo8D
zZbiPf_Sct}Sr-?zn&sWmsIRa04BB1x7PLDMH11(#^-IZSZZc?WqCt42=Y}(NbI)Q{
zztAc473Z?+<6}H8ff|-#x=}A)uiw9I>s*UMC(sZ~Z|_#o@JS|VXC!|9{+)ewRp{5B
zW|p>~nAI!XxpOCIpUf<i%%tmbf`W<Gaq>%-F4fZ13_LweH#avPX@_7jVha8L!Hd@F
zAOq%LokIUw)pq4d2q+J}+x>pq>%&PKuiW&n{asK7YHuIt#2f)%?>pNp^WB}DQkF$a
zK<%sR?MtkFuk@GiWdx<7=@uvpo__rN@oaW}$@SQBO&uMdZgKr}S3$}x@7qangNG^4
zw5mkh-kyJ5eSS^S^|DV-PHv71zAh4*n7B}7W$Ei{&)<B1aIhJ);&PUG{<<}5bauDC
zF|CzoOWghZ{cp?pc2dG1pT&5jq%2WVR(^X6w4}?j_}P_8--?PIMMXs+K|x8|FCg{-
z+Go#q@0YvUz{ngD8oG4O92wAl(5>e<d3mR{x3_~<((%gM-MJPQ8M*S#otR!3%TG1(
z8w0`lN&QiW>$}74{NbUYQ!ib*l#?qeDthX~iGY-pB~49DDxR*cuBT3)4lXU-`gYG`
zb$`&7KrJ1eE5E+JzPd5_xbZhZ3Cv-VEYP6dr`%#IP*z1BE7>;p4mYlG65FaRpna=H
zj~>l@e{b)t-R0}w{!#Otm2qN%;<okA&(B}KVuc21Jn`|d-pdD@*|!!vbmEn<2>AQ^
zd;SjgJO=OxhM;?G$hl3ar%kf2>42t>jvhVA#myZY7B+3sqD61sJ${yE|8r~ldAUd(
zG2O^bF5c60Hd<d>7i+zn3A9EY>+r~)1L`GqA`!eVzRzCGSRgysy1eX*Km+%qr%#tY
zd6J^4u717Juc~TS>>^dq`}O~8_x^$oko;*sc4G#lV3e7fa4<%vh#j;g9F(B^KudnW
zQYji8QufG8coMrVpezO=x{Tyu4SakYdA$;7$QzU#k>>(ImP3cM!DS+H8H#N^6L`oO
z<Rnljz>r`BGH(u{!D}=pV;_YFn+z#cyj@*eCrz3pA|j$<Z*LD8q_ejEJ?FZpsA%S^
zD=S}JUq7FTnfd9nXUlwNo6Y?Q>e0dH7r*|qv$O^UA80+PSfW2O1B2*7(76CO*Op$Z
zjE#$%2P#HEg>GVE;;n7D(Q}_i>4<Gbom`y#OXnP9@cvPUX#}D9#rz!)+5Ubytq<Dn
zb+7LC+s&YL3R^ORd!<ZQ{o}uQ0u+Au_E?8J-}>+0KhVnLy}wqkTNjp@`BGjkKiL5s
zOrRxE7;8?=y|MKkmfgJ{39)M(`e^b7&A%-zE#O@h?{>WoiHcfvb#-|5y*-t;w&%|e
zTN9D!C4a67TuENO@H=ek)Tw{>e|u-YY}MxvkAFPB6ZkXrs%6aHR3@=gkCHfM^QIov
zG_V$m@Ue1CZwX4isQNoOdC8)sx0aU9Ejhf)Y@_IIC;g1VuB&R>ZXPnb;x}ieSN5(h
zmTo=KoT!=1>`Ddu>r3wC=db_K&HnD;z3<u&`R5g%vwiNcRNn4<F+UeC?^j8FZtl-H
z=83nr<;Km|kKX39I&AHw)$8}Idh{sCKUs_eH2<h@qP4yK^{J`ac8_aoYv;XPymZMD
zm%Q!2r^#^|&byGn$dI6{Tr2)C{{OFVQ!}%w-mhQ2-1#7}{Bq^p%maOWe4dMcOSDQF
zr+G}$i`!$7_51@nlNbYonbD<&sWWG;Jafip{l;t8!v20)ZZG?7#*-&0re<cVmM=e^
zz3}%$W%rcGX_F>Te*dE?Z`s<lzLQLHZ*2**Znp=8y~BjlXU|?eaG*g;TiZ7I@87?x
z)~yT6%38H(@nY55e^<Uun<mD~$9M0W<*wbkuin4^-gsZ)VYbL=OV_MfW4)hIdJ$-L
z)a}p51sA7G5qbLbDQGX&u7Zb6&pqFzpPv^R8ag$7ziIZh6Hkj)?%f+}XlOX^W47YU
zW`4T~x8F`X{qz!er$K6J>ZB!)kN0Q4ytFiGSIJ7yIM(gkt8J^ltysCzb9LBSsjJh@
z$a6$6FgTc+nu7K|WMyYxy?S-&k|io{@9&S#%*>out8;qN;fK~gx7Piw^6%KJb6WV6
z&goAqYi`_#0QD2AzrPDjPhT#>*A5z;SsT6m)yL!V^3B#V(JVR)3^_;Sd8euP&M<I%
z`t+%mzP^0f{8g*8*1Nr)wQ%9W+575ZV&=Sh^(t>y`~vV!|As`92nL25XCmw~M4nv)
zEryhE11$&a{gKTpc18&tmn>@z91wY!TVx?q^=xLk&HV82@Y4?qUfkJPT(?JyfgwSi
zWsUyLO{v{7eC_*w-+h1Y(!a$YXR|RVRK))N-}REeN0;f^^fxy)I)irWUR>;6`s|Ek
zeLNongG4(=MEr+~?(#1`JUo1BOXlQ7ixzFE{asccFT|j5;z9x|8`CxMocsG?gO~e-
z`uX)06&G_xFfcsm6WFjX;dq~H)Rv5iPEJl+N?rzS-L?(18T;Qp9R`O93-?O>=ZN@U
z{N{$?T<~h<kNv8i#m~=$mXw(2iZL+k$Yojc|K`5h-Jo9PmoFvfZ%k744haue-+ue;
zer{$47SU@UyQkUx*M4AK{w~DLt?k?#%f;KanQh&=RZ~^fb?)4`zdq0Z|K`0n3j@Pr
z4*#O*U#9Q><0>mFyK437%hLIK9&SCmNhkOIzF2NCoe!6<GBPxA`WNx@u;_Sh-MV$x
z^Lf=<QcsJ`e|g~7uPV^OS<u!?5h<xx%e7e;Sh$(O5;%S}T)lpMx%vH?V9-R8a=*=^
z&39jxyaJ6)MCb2ax@V7#eT*UlgG7E)9q+Y$wZE_2y}P!RTRg73IxB0{GT+(9c5^Z^
zBsaOfYgBx}e63H`T0~IL@QsxA=}l86PhM>Q?_>Y2ijPYF7cwz4%;x%~d8qdHx4R|t
zK?5zIAzYQrf`SX#(TRx*xwyIApWb3%IM{9)(Wv-B8g%T+<)(e0oRXI@=a{_|NZ@eB
z1_p)=g5W>{Wn`xVTs)wOMFwb60>vb<La8+e96&vo1PRbt6K2kjP5vRLybWyH1_EFc
znZgplt)&(F_s1_?y0ojWFU-ZIB`7%f>V*phmmgbMTW?J}E0vm-mUU@~XOV@BRmFz~
z8-B~%)kJ_|J0)ew9KYpt-!{*G`RVCtwfv)Eplo;J#8$S`Uyh#@5fjV${OqijhQ<ZZ
z)?m<)A?fL_KRi5aZnJLbQrG=I&*qo>`%|f^s(SZB%-OSNL1To!e*OA#h+BWfiWMGH
zr%sL9Q}Hpke(sw-O(zD1raKoGyMqR<LPJ7U?AQ@83AB~{=H~S5udl9FeZO1YZu<?i
zWePNVrWw3!#lC%UzP`SP-~E0v*+1*mm6f1H2ujMzs-7D+Zj9Plv{Xt;3e+RrZ2rt0
zoIgA4rPkctU9PR7;^OM+I&b5J3ju2*HahwG`hu42wcDB*83hF|^V#{bwzRx_^}>aY
ztgNi_3RFG&?S8FLQda)jZvW?@*gmVr?2OzD4GP!q+*xzvh>PzWi;LMds;Wmf*De8V
zplfVoJUi3)c=n%lyWfFUB>K&<Fnm;egOib)fnm1f>#yOmva&^1bL}4cEf3Dy9{v3M
zeEE;Ir6naNHmylKpZrLs%;^9VgTjfg-@a*?m|RJ>(a|}x`R)-*72aw&;pZEK#db0?
zBq;x@;0vp$*s(5V=Og2L*RManX%}=oE_ui285ZqxL9x!EkiY-$Hqd6q^&8*4dnYYt
zd`BeK-Mt;Wt6lbEY3%I0J>O=<+x2%sT_!D=3EsalXO7JJjrIRN&o{5R7E)BSNlIG!
z>gCIiw_f;rVxsaU9nid5d5!J$GxKbt6%`eK9k>6t@Xno>^FOYx4!?Tm&KgzkX+1w=
z$_{}NYR(b){>&3Z)g`sQvrIg>#dHF4bJt#<d^=Wex?cP~nF4<4r3XP_0XiT>U*8`z
z?AgjKK4rp$1+QLZ&9$u#3k?mO_xIYGNag9Lmwx+JcJ#=Rieu(EHxy290?&B8Ej#_R
z2sAf7Y00KdM(6AH|GK(<%Cu?ADnCEVe0pl?uj~8&E%lvk23l6aZ~y1Rjk_Nt6u@Qm
zzhBAcaaAmF>mL{V@T*%JzyDq_-|0;@3(suQS>N#WZGL?;FE1}>!;601NAA0|-|uQ^
zX<aHlZ)<)jdW$TmZobgMDGWOE=F_K7iQiYQTJ<Sw%Q{IZsa;P$+kCm;Jg-c9f*>fv
zN?zs_J0=HO4a~r^7*s~M{n^UKoravbL1h8RL^A?~grwB+kNs?*RsROy7-=z$Xlz90
zvuPWES{le@3^sGmUa;t`2W26KHjpzCl-C^O;z8z{V44d`h8qN7h0g&4sWpZdZr|4S
zT(x%X)isfu|J0Z!gC<1u_k3vDug{#^^1i%)^Vs|E?ecXi{`{#qfBx%5r^hD$1UDRW
zsIK0vqG@k`f4}%6_2Oq|K7LnC;Q9EMPw(Kbzj^uj;Zaeu_Ukj7xgC&Vj*N_4wRUZ2
zOw61^hY$a)wPa|pzH<Ba>Tlo5Qd3iVZ&^k(i%M`rBr9lXd7Yl7`}un+0|U>3orl&!
zV%;R7v9TO9DT-F&F8KGaZtApYT2@w3f`WoxzP_Q(&WCknt6yGHT^qAADE|Mi>!yW|
zTvF50ULENaw)?$w`SQ~b3x3q3q^Hl`C%b>~L8hh~uh;Ki_w@91Z5<t-+}zwEtGRKv
zFJHb~`tgzL-v9r8*X?pr`0-=)K~V2>o^3T~T&1OjB{V!-+uAz1x3{<I#lrSB+jDQr
zKzw!oc~@RtUHx_I`dZ)UZ8?EeRl7htIDh=8SpRy4VR9R2G-Uhjx03t6->Y^nYc_K^
zz_dU+d|k%lW4*ubzOQ?3dTtBT1Nr2?`R`v`TzqS1@p3IKt&o@)9Zygx4w^Wv`kJ-(
z_q*MP<#uOZ*E2OWUAb>xT))ky4i!y(egDqR&Z=K8mxo42zux-)$;ruEOI}{OxLa~|
zLYF|pq{)-F=H50dEi3!=JBZ=O!FP9egO*AzTBLM7A|qo3==hXn%hW&{*AL4@$H%XK
zd3kyDp{ZYfKJFCLk6Tmw``gP`S6AB|=i%df_37#9wERP991#u^HtTr%+x=X^#>Td#
z@bNL}ch(jbE7IrJhH-Loa&dECJ~PueG%Re{zkhY>|AIC}6g+hL`!>J+ax=f(iVq(O
zjvhb0dfBpL&rS7XcP#-;Z-6GUA|htI+yB1~G?5i|nccx)r<rTUug7k)X3w5FW5$Y3
zVfCus<x7@SY~z1^q*M6Ux$=FFjpt38v<S3v&Z_p;mg_%WUS2LLDY+7KNRQw0;MdpJ
zUq5i*z}mXXW4uga3}@$92KU?jdf^+rMpQfO#mnXMuQBu6EI2#c95kW4|KHd3wXf<<
zZ@O~p)~Y>wZ2mrAx4*E=ceY9Cs}NA1A9RFB`u=<O;y|rbP{%E~-*(ybxGGTF>*}qo
z*`Yx}Mp@sv4@A4Wx1X2t@hq~MTeSPGRsFv|va;GIU*BkHVF7I*Ter^7)YKGoCRZD;
zbVxuz!UMfGt)>wSDxRsSsYN?uwDk4&zmxw^3p&T5XeVg@1!!&Dq$TtJJW-!zmOD#J
zORMC;0mifQ?eA~?|MK$k(iayL&p*1cXOGR<8HUcGp`lg(em+<A6crWy^<r`Vl{<IV
zfL7>(7N@8zzr6DPzi-<?qhKW^Uo!4nC20SPcyjOd?bR191kC@qVS~Z>Z`PLA-j-F%
z?#{h!w!U_nZuGLy)nP9|GcARM8<!h$vzSCMsMOv|5)~0yv1wC~xL(YMoBzJu&Og0L
z=RDJmY%edbCuO@q>j~C>%&&bN9rxa*tE=mh`Tn22b1jRH8E>opo>%+6`u^o7CntZs
znLfYLZr}gE@3RvU9N78gOlqbxtW&qKi3wj9^HK8s>(`%i_D@dMJ-zGY{Rex$89xb=
z=QNDFkiht%0yG~U9K5(!+Wgm+i09|#PCooFz{#oU`VY|5kY@0*7jJHEj(coqXlS?o
z|JC(%p|P>C^Ug;{N0)wj;^{lv>}-1c=}liws?YCvQr1wIxr8^Yws!BU*RS^;`}cYN
zf0VwQd0kJ_<(FUHl<z+7b*V?vSjAIZKW@*%y2reX+zrRi%ru@lfByPYr@TPZ;pOwA
z{~r85b$!j#U612q_Sl)2EP>8AUXQ&pZ^n!Y@8?V({(}x#aP1bW?A`nQUiGOHCnRun
z0`n{0e3g4#@Z^M`tBcE>FZT<hqi3tceivW+u}9O1A#PsPE6v!wRiRIxK8<_4apOiQ
zDXF0B?A6zQfYz*owzGHj_U?UK49aH9m%B?!N}f7%=F86?$ISN`E~;icrd+?L+rZpB
zoSB(<)tWV5dcJ=DzIxZLsFf>M&f7X+?%cUqnVA<KJXmmjqqttog?YBsHp%nreyuEf
ze-G3U2Q5{Zq*7X5{(H~kh)HJPihat|siuq8&%P_LfuUmO`+dKs%%8u0ZS?l4y^9U3
zt)ug{N6$9T|8{HtqD4;AQZ?1ppKm+Awc=xvsi`S=yZQNT-qZCe{|c}-os4MHe)-v5
z>j|Wb3aYoa<=zIZncbXzzUtl-B~Q@8)HRWt_sr{_I(znNcKMos)6?~@Z$59g8gxd2
zq@<*jl+-2t`k&tC>yG!!hsVUs@$&KlZ{NSX%ojA#4BBHIx;pIc236_)8A>cocfKxr
zcIworkl^6O)24}?oo5?8Y08u-OAZ}!3JnWewR*Mp=jZ3I-~a!wd}oZ_-xu!opQ_j&
zuC031ss80!bpFeB`#%fis^1u%ooVboT|fTX@Av!H+g5*Dv3D=1XD9p7mTAY%S+k_p
zMsN4qx^?TTSFeJCf+m3$g>2bka^7xQ>dA*6-lfU#wSyXkpsnjwFPBaSRgP1pi0q8f
zyIcSN@4UZB$;sfYx_5Vn&z(EB$U+9R{&rj5-Bris>ub)uD_$e8p+TX1@BO^Tj~|By
z1T457Uw=3I_xt+))u8y_wJWOn`@5@OUS0+j$X{Py|Gno~!G6>FLK_>K7<PWSE1<o*
zvAfGwE?edXI#nboY0<pOXOf@=yBA`a9=GrRC-xB1M0&T`=0P`TcUEZVQ)9czPbr~c
zVO73{b&=41_uD4shNsU8Pckt4xC`20pMFk8)}r9RkCMpZ;?2*_&tIQ>yf60q%GU<q
z#*g&J@MhM{kOi!e&XQBJs066H1#4hsY+zyr^`fBtc%I(NKiom9&D~}w@sQF9!)7kH
z-LELnTaVnCGjNr_=Kv1gu!IE%K`VuOK&>@t%hFd<J|25{Wo58iJij^EX>5xYEfNtF
zT=?hDpTNq$9UUC5uCBeOvJX#xTDJS{zkM7G3<`6t%l+op{d&1#PgzLFl%%92x2Ibl
zb~k_yc$0uMFO?xf72wl8dms`Z=N>QsH3AzFK_ejyhe7>4hBi>sl!0f&Yk2dYVMFK{
ViwhNIObiSR44$rjF6*2UngDrj)B*qi

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-6.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-6.png
new file mode 100644
index 0000000000000000000000000000000000000000..4e3b3e022a3c8a41e3c9ca5d741166b27631ae6c
GIT binary patch
literal 21510
zcmeAS@N?(olHy`uVBq!ia0y~yV2S`?4mJh`hJ9%>?l3SguoOFahH!9jaMW<5bTBY5
za29w(7BevLCxS5J3j5`m3=9eko-U3d6?5L)t*$x$_5c5mzpJIKXBHbJ&sZumYvBxM
zH^0D%b}v#^Ueo$}YL>xap;onQ?^>^5v*n9g{O9+3t>iEA5?M6sSBA11`|-@@d+X|d
zy!-oe&+NoKZ~oq@-v0XOChy99e&?Te+1{Cd{`%)!W1hnT3=9lDkDtBaV_;y|A;qP`
zz`!s$FoBVQVMY%VHv_|g6p;u91_rgo2bdTb3?x~_7#JE(YHR>$a%*H|U`Q|;)iRVr
z%x2DAMh1q0YmLn8Uw*&eA3w4B`uh0z#>U3*C-*dZK`DUSqToTpEVJCIqwn57e!Teo
z{{QooRyP^AaxgTo#;km@>d5^1f0ak)H~v>T$i#3UDaUN~%J0TJhp+s8c*p~iPMTO5
z8d`7Um|Ygu=@ePLXd)<eJ$?RM+srJCk&*G!$B%&#5i_o>i>*HRT1+QG!Q6a%Q2e`h
z?|yx~9)EhzyC)|nXI)s(c<0WYElEeYjN6kqRU#M|B04q;t(mCoo^`ZKw5zi-u%KYW
zrAwDg3LZGDjo$7TySvQx{Z_NtzUOVf&zWVK{p>>A?y|Q=>pT1V!}IdqiAt^(4M<>Q
z2soO1dz<g+X}ZBlNsE$_l2kke1qHKiZ(Dn;Uw(bBw0YbIx$Sp~x~)oH6a=2Xy*a)A
z*}1u^HG`MEn3+Cr=bC-dqQNZ;3=tllO{w3m|I~@!7b7Pp*VWavX?tZ=m6nlFQ1rH(
ziwm9G^;W&VdGn^0p5DF(l@~8w{B`^Ozh&?4?%w_8mH{a9tlBZxx_njY>1nG17q>ZA
zFZY}K=J@&J20UNi+zd9&zBZ-5zn_g?Zq59<UoYo8-}n7q^{ri{tJBWTO7(lL+r`8!
zx@^t<t2<uZk6X1WJg(ApciG#bGV=zn(~_KFVPVt${Qc{__4n`Jrww>y?P_+M$*!%b
z`SPHd|JBy(ahF$xt`?D&UVYx~x6j>OrP@<#o<4h)b!SJRlyO?mER)Ql%=-(xnoJ{B
z2)Mes7L}KWr==~k`}IOuvTb49-l~<Z-D0c4*3RNNTyV3sFZAT^_xsnsc#&cI<3aPU
z-}nFP`TP6-+s!n6!6I|1vnNkZT)sSgWtqOd{_l^Qc%;pI4!7}c{$F)rf#a*|>*rT}
zd9m>2<>jxpUXR->Kijf+85cLVsJM9eJ;e|!k%$!npv3TQ_xmfG)BWdK6gsuGwto8l
z{kk*1?UEfkEPnp@v0}%Lh`hX(Ra0-?|M$)O>>SJBz182RO`krUi;F8{ZIo$xIrjn9
zit1`@ef{+z)p>dA{#I0$yuRi;*Sfsy#xq4_W#`T5=dZn9zh6&Ye*Wp#1*!-9jbj2;
zFE_Qewn|x-t+6V5vtp`t_$&MWKl?#!R&Fs3E32sbe?OPsxpQZR-kKv_U0o`k8#iv;
z^{`EP%Dj2&)aO+=Reyh1T6DhQ)YGEnOx@kxp%D=;K7@Yyy;<kqzkjDrozl7*cj?-S
zz{N%Vi#;c+S(Uw+@%Q?9o6kK`=6P%6Y^yYkje}>-ocZnd|8KYRPn|havT{D7O2m#u
zckbLNd2oQS_V?TES{fP`4)fcuiO$~}I_b+f>-QOFW*A28t=g*c^6B*WY5o2Dms_V!
z*}Z%B;q~@E9x$JsZSHSrX*tWHaM8Nm@2u3n@~nuubN8<I-#Q&Vy)Z{d$C=k#+S;=2
z?kYWX?p#^Ki+!c9!*1r7wYIfQ+b#e5`}^ym;jyXzzaDI6|9aWqUQ<Kk#6z3eXO{&o
zb~~B2`Q?v~k5@%*PTM&@)m0>7M-tEBfU>e}Ro~yOZE9iynbO|wZ6$5}``0fmOUuZ%
z#21J8?Wed*44pZ3&1P-GygL?8pFY(zGz@fgb?xf!Uw)!U(Ejh2$xY48bMNv_FI6>@
z+I!(|8=vf|o14?MRaIS+kM&F}DNFypWs6B`YpbS$g2SYeCnp5w+EfM|Jb3Wi{rCI-
z|J(iQ`ug_;`}ytv1X!27xe)Aco0>n{u69@5|G(w!pTE7ix%kJAilfJlt@56(_v!1`
zy>B)~v9gM-lbC&0&EDSr=&@s2mzH?`db|Dpm-Y33z4`6`Y^bg6+rE8!T;0#qn>l7{
zBR9M8+kTnw?EL(A)o0IRdw1{N{q61T<%iq(SErw!H)+Yq$?B&KcvMwYPa5#pem-L?
z5;-*{CT5P1kkFRW*I~c4|E&09Rr+d4;^8(;Jv~47ez~phpUj&%bLEvQA-^ky)qE}-
zYUQ3fapJ-Q2OK<uuCI%|y05nSZoy&RRiUe=mA$#K@XD1C)7)EE5)FUvENfmLx_TPV
z;S0Uy_f|MIv&H^w3{$w4@UTl$M`wzP?Vk^atG-?hfBO3MYVo)VNBR0c8&y_DZO!6y
z4cne~_siSu_g_6ZIr-chGrhpPymg?$Z+8B^n~90pH8p#Zl9IlBJT9MoYfI*@hwbun
zZg|J6`}g;^wvLWZGdusaZMnDS+?AdFq$gKOCG+AU*Q!@5mv5=~nB?m2zIw$9kJaJp
zK~~88`gVQ##CQ9C=l%V1*?*R0@iMo5xwZawKVACmey!M+d;6JzYsJ2gyOd@>^wK`{
zAVf9T#nRI9(}xci<m>+|Y~z)_)j$2uvfOKHW~QB)vGCvD-`<n{`fk2+CuXii;h~38
zA$qT`ufP7~<>jw8)91f@+;1Ote_!p}<MXQDS*oh4zMK}FcX5hlaLL=P*R3`#*H}L(
zQ{k`yC=Plhjom;A+y4Jg|4BNNYyN({{_4iY#WuFKzV(ZD?bs1fSy_2&WAbs=`Z>IM
z{G4Jwfk82EZ*TV(6cps*<P1FCC;Rn;a{r6P{dSX7dL;~<JUu;6oj7sfNT=}Dw6jv4
z|9v;@*|SGuoz}$ve|JZoe01}}hXUK*Z#HxB^IzB9erJ)t{ogBfex8%Su70_E{<VJl
ze-RIBk1gH#xX;?8@R5tGO+|p&Y~RGhL@ytokbr;*dHesCP12ccseQ0%=bibr-)^SQ
zy~`Pr*OqwV>{;KJFJHd8w|6%eH}}<DrP-#rw?f|U{XWm`@0Vc7wuS3rcdv@wU6yra
z#l&fPu^{Hk#KUd7zTL|9-usa$Tf36;;fsrlK{e2wyLUqa0u;*2%S|&cxm=Ga?)~=u
z{`!}fm#>cAp7(8g+o8jUOW)iu{QLX<|7(l;?Oqw>bMM?`nte^f)HGC1P7Y*b=<c#y
z)4V$oYooVc3y-f|dOfb%_u<2b-&!y1Fo}$e^z!ta*xufL=gu7;-E};N0}>M#%GG|k
zSp4orpY{O;J?F&4g^3bv6X(v&<&m?w!NJLCxbM#=@82Ka@B4jj$Fo`4J-@!bmR`UA
z->$uX-)_HemSZ+sP);r{B|Sa7Vt=6B(W6I~-s+RH&0=9?mHd9Mdi`Eqd;9zU-b<V3
znOK#-%h|Dex3sibPQi|E+wa%yE}Gk#`S1JwY9F7T#LYK*HYOjJ0+qUtXPf039XfQV
zhmBXt;?F(zpKot$JUk(#qOwwQ-@bjz>MAQMB`5XBT9;W=&j@7;Zqe8tx;iZL)02~v
z{_XxgF;U_dsJdDgYyG>b=g*&-tyx#SK$*_Q*48xto((8kCzYJH{ho1iQ)<=YUh|k&
zTVukfPM^L!zW#5h{l6cJ`(!MYUcPzW-`d`OTYQVx|GDp`o_qJ?&yD2%l{<Ds{QdQH
zbN*4ql~=UyZcv+jHtqg`PfMrA1(lR+5fT>udP;l!ivx|!n{MX3y0n!0a;sW$*9Fsn
zgoleH+ZF~d_sjhD=H@KZ>}m7r|5g6pIB9QS&;RJ@!2tmaUR_-c%CU})j#W>mhJQJ0
zem~>!vEFalZM@RQoSu6ne0_Cw*Xwn=uWU;72KndU!GpUV_gQbrysWl#$&wfMs^4GT
z{eIu;fRw2<c{gjn-(CKC{r)&cM#f$L|NSm~c1Cjgt(7~q3d+m3?-!giWs1v0))<v<
z2M@V!zL~Qsa`Upd`oE>Uvewu3H9nc587v|rvu1YQE>BRH@yS{(X=q>&6&1aCza{hL
zrlmGEHeWuUx3{ho(dc*W7JIqzxLojZzqwzYO!hx@`m{GF_@?PZF5<WQ;lRnsIm;w-
z63<~!QJT8>rb+p`nBUK*t&Q0kbahqe<@^8tm2b_w+_q)Yq#sWv`%jrXdGWz!cJE0x
zHa1hHPgnQ%_g7U_^_(OmEUfD3Z})Qv6EpK$*K3#k?bj+gx4pPqe!sM0ue|tqN$K84
zTm`RKRJG<VTBLN?fG7F<JlkVu&F|-2Sr>b|;@Qk}p2G$`UteFB-kN>g%*n~ACwRG^
zWz6^U_5Uufh~B<#W5&frT<?wb&Zf_=O}nx(_;|&qlj^<l^?xotyrDk7CaL7@t*aYu
z<{aCSdAY|p{hY*N_kOcKfBy6=bZ(cDl$1QyE?<{%r|$RLV+R_Ud+q=Kx$L>vp)&W@
zmXjN9=CqwnGk&-CdtCCrKR=(_=v!I+nv=cBEdO3kO!?i?W2V<*lAk<z5|VOVd+#LE
z2s=Bww)yktuZ*{|vs-g;Rf0-{hWKHF6p6N5TQV107C+1Q^5SCE&!^L$K7G1$#|{hM
z*=D}U$NNGfB4)(Zd~}U1zgz0%?;l=NwCT^EKX0sS4)5yuU+r9QbyaBAjSUMIEn4(O
zzB_1>to!|awV~VdVvim@nt5u9X4bVeGlhhOuP$(8R#jJDUHSPLs8N}9ZOzK_cE8We
z%Q*PUZ?4tS0|y*h+uOBmZDT<tz4rP&i!_6mt*HI|?c3emlP6COjfsiTI?2V&eYuI1
z`^o}G=E}-S%VLeGVw}^m6BY-~x!%Oey(Q(O(A~P<Z(m(qJ^j|U+}8y)-{0Ns>g>F@
zE%&xb>M4<4S?jQsD_44XcwE?5`}@h$r>gSu@;`t4coF~q*K{W*r#U7<Q{4Uh`fhE{
zUw>_FboS9MQNH6n|9{Roadx(O_K69KpT2y#GEFx+WOrHa-(RoSM{P`M{qyI~mF52P
zgXG_EWgGK2o8Pb5{OaoJ<>mJ(-KEX*u5jz`Ss-g&_Tts*_1AV3J_faKO|!50OfsqZ
zlCk&KtJPBGd2`%)rBd_Ve@@LYdG-2r_OENEuCA_D#m{)8d&3mI9dw%c?cLqg(Rn*v
zLG{@5__~!(o}_>}HSGLyA(Pd7pFDiHP|bIihK`QU?y|R+9v$s|`tIF2Q0w&j{rdfX
z{{FqXG1;A0(#XX){ancDX}WW5RbrOd|Nj$Q{QO+#-m0%9*JH~q*DU{ie?O;r<|P+9
zJG-cDIWvEKd%ODD+UV7ObFE(8+PWIlB(^GjWs%LXgXQSaqeaEV!LP5aHLd)V0;)lr
z+js(9Tv}$C<!Zfr)3)(`&F9{_UoX|~)_guIWsuOIl6kC05>)S0eR+}iOYcdj>q)x^
zRqLIz_wt9;)!F?{2vw*PU*N;Y$OsCJKY#v+NJy+WIa&Sng@w*t{r%w?87n}}`T6<z
z>BEPe^Y?z8wyWgjq9sdIKsD{E$j!^<)qL{wooVD67#Ns!X-Vhi_U57$p{u7cF)?k)
zzi%fhE)LRn^ypE(=Tm&d%irINodjwS-MSrUIaS2%>}>P!>3XqW4zkO?IMOLRY02()
zyS&TqRf5|6p#HM9p<$qI^tLN+Zf^d1CD<S2mtDW#?SA_3;3;8;MF$R5URf6#U07IH
z_2=X9t=ZT0Dyyqs%m4q;4vMuCCp>QEn1LE+Syxw0UFI`$(XX$sSI6zGnq^(S?y&lb
z&&=D4G=ILox;;N0)aVFa<}<P6Tl@R?Zk^d@)8glc7RhGYYVBXWZkN|$x86&uLRW*D
zG@h59&#zyXc(@JR>Y1ItZ{>OW|1ph?jZ*e?dk!5sWRiA9Vr%B*V<&CPW#2T0{@lpM
zEnf2Kil*;et58o*Pf*V<?fkr4`)?=J=Vv@WH`mM8H?*v58=tI|iYKTW4sv+a*H@OS
zZ}0G7=aUKe{_bw+uP>RZYHF_*w#!XY`CXEDQvMdVxZaf)7Z-m$U;i)I{BFr)<J~;M
zPoF-`JTXDhh{t*2#EDf;Cc2kA?lspkG`yIo`|Ni9{<YHidjdhN4dLq7QeM{*e*XM9
za~_MBnAoc?FE6h-xXK}A=Z*!lOtZ62P0`$RGpFk1(&;G@ZOi=Tu97m%S`oj$4%Cs9
zt9&Aunv(Kj@ArF`&&{<qt^StNwc1P1z#!oLp3i-GJD-aA&a;VJ?ms`Qq-4wCN4H~l
zmt~%uq?&bc5$o(@yCnSm{lC7x?!R&4#;Dz8YuR`t7CfI{e=jaZR77M&)YhzB-|tn=
zy%T(3mdA#Ii=a~J`Mm0L`({4aeBMqwK0dyE`>7?HxtG+|)XcdNJmckMfBUN&5)Xp{
z_io{FSt+}k9Z_2{7J{NfzV^$+viJAa@=BXcsX8n&_4@yR^WNRwzJA}&XVSGFkBWoR
z!{q8`x4eYb%rec6o5=F|%F1As2+<A}Zt=BgXJ>Ww_fP+FKX%S?zqwiZ%e?M6EZR||
zTl@Rl)oW{`P4n(ptc~9vw>oU?q>{4UxOP6-ErpNWw&vZvb#iaZOs{)Zn{VbwS(U8V
z_wQGB?a!yvMIsz50}>X-{EJH2xqG*^on73%ef##zdV2`eN!<JQ+ik1bUt2&f6BQL*
znR|QNs_^ymvaYUr`sUq3E)CBOdAr}5+5Z3Yx$6Di?<Mc|eqUAf^_AbdnXi)<2VQq*
zY%S8(+;r#eUDNDqI-%?1VlOZAEiT($(E9V|&y(lR`}azj7L|nuG%_(UefjhG{Og14
z@>fnx)h-2<I=j6cmO3=HdIxPz^F4a>=*p_EuXa73S3T#hEJJv}e7o8!3!T~RIu|xg
zNZ857r4zF$YHQZZo9XjYvjhqX85tRGZONQ$V{1G2uIPeG3l1DgUATj36<gQpF4spP
zKSAT035q^~yVxGFgT^~SBT@;9DiP}%S-?Y{-~lEM&S}{S2f?GBoMEg#{(ip?YSe?u
z=X>|=oqNZ}@IdJ4lP4O=%Fcg(e-Hor>+AXx#vU7Dm|4SEBQ~e?y7fpre3Qq(;IpaX
zW76I7`?crZvFY?Mt!6R-mGD<~6h7A49vKfAp_zNPm&-i)7*BfnLCv(YvzC5*eB64s
zwBN^Pv-7QXbBn&4oxd;e_qVqoWu>pKXo6zxoBj3mB0|eg^)szzn&QJ<RaF(XQ`4!u
z{JWNUnrGJCU0XNrejrj;R~K6Lru6l-(lT+an6Iy{u70vZHT0zY^#D82sBQ#DHpsnV
z3=CpUjZdX+EMsI~IFJGwWB|vn-U23G34;SSV;xwzcz8<6#AAfOL2^hG)V@zIXB5qN
zaG>$rJ0`7w%gcP{-eo<o2{hohK|o07x<eCqY*<K#fkCJ3$jVR3pnyDe{(N{&&Kf2r
zrYDadFW#`hU~TN~ZFjzRc6CjfJ$p7AuT;pZ8Hp00((l&xe0_U+d()g70nF@tpj!2e
zMAK5xkX?eJYW9XR|8`B7sO%0JNe~nioMoKeXJcan8vDz=x98`g-}`ERm+3}qSa4?U
zyW@SbtB=dq$Gp9@H8?0}(y>0-)wRFBY1-Jt+}@tQ|HbnVHXlJIh6KfP5l{Bz-Zs;X
z-saQU+1b_EIZ?&c#brhA?QNiP(=6{!Md10)zP@WGCMutwStBYcn)&X|PEeM<bm`KY
zx6bW+p#cFCK+R6+yd4i8v8NV-l2AzD>FN5@+uPegZJ*qE^X7H+^nm<Q^5Vim?t94(
z54GOfUA}&q|NOdhk6Bq+Pn|p&*v!T&b8G#sS6VxF?mT(?`14O}iH6{)>M&l$QU31E
z%4xdMtK52}_}<R7D%~V+KmW~}9N!rRj+51VwL%@He)#k$==r(1Q>RT^w*7uxG&{fC
zm3Mb{e?7p=zanmL72nah+6i3(3=LX(+S=a#{{35e>+j#csS<5`@^&@%UN85Xt0gZl
zZ~OI1@N?Vzlao|I{&VY*NX*Z^xTw`E@6L*}v$JA@?yv0v4+|F_lUg%pj!b1$)wHbd
zpFVAp*FU|l_P0s;IT=tWUR@Px{k}Ns%8G?%xwlqiUtjm??(Xe<GM0<P<0>3M0|&=?
zr9-#p-R+j}ed^H2%HSaS{O#Mdd-m)Jdb@My&To%XJNx>=K$XjJ+44ExC0$)zUtM0_
zU-k9X(&_PaH}BosU7o)+^Rk=%z8{Oy&dsUpRNf#58cWrARwT6M@^b&zUtV73%RPGZ
z=<~hD?%)4E=W;`2WaOkJZoN`-Kkot+!P(c=Ts$>Zd+N-YnlInPg}1i0f`UISZP}}9
zYqjm|?Q?HzaIF6JCNL;y(qY@C=H{!bLbY>mZF#xqc!VS<9X@dS^XJc#=g*&Cm^OR%
z>iD{!OV4CGIXiF7yK9x2o^GvEa(`Fp>KwD#PR`EfEAJj`W(RdYQcei8m(4!A%(<OU
zQ$xc8RNvZGZRwM<)tY^F*`h^@g1&2NXapoCCRVm(R_+0fu(w(~);+Y)xqa1!4FQ^(
zn%}nl`BSrW=~7J{9Z-vC(h_C&J`G#jyKyRC-`$PY4qta=Rp@G&eXp*sUk|EISBI^=
z^mhAwJ<qJ0o0jq%zHn)&x9q&XU$4i58q%^>B?g~wzbJvE)VWrrmo_9G77-U;zSzBA
z%fcceGc)tlnKL0-S*!l;;S^TOczCGw)QJ-T2?+~8Bb3K_rKj(TFDcowZr`u0>Oxgd
zS*wzO`}=CQCLCm%Yf~BY_t)3U4-dD0eYJZ1sq5FnFJ8PTYILp3sSz|4VDVVj$unw8
z#>7XDA8)Prm?Udo7o(`C2pYNERr>l_fxP*4ZvVQerfvLoKO8_KvzL~7gUVh|1!7zE
z<-(TC%Oz(`uTRMj5OaqZxcb1VxV^iCgoLI{m=N&Ha^=dEe4SyD-`?M^KUe1O@9#Uy
z#B;Km@2&^7TGrP<vkx<RKm|Q_VOSGuF{toofCzLe7OwgOD#I9j+`y9-8`w^pPC(M2
zc(8~UoE<q>r)7h(61co%V2D7jEI{R{^P`ZTNCtB!@**k|ki1jVQz>MNAe9&cgH8+6
zX;aYL3PXYsxbSRYL2&_TE-W~yd5D!;3^X`oXJ-c*b1vPJetsSoCugD4c?JfD&<B%P
z!#eluvDy3K5ckqsE1xhjgoRE@nEAK0>**!du#Aiq&(6+XuI%1tv0IygVF6d+O{UXn
zn=>CB>D1EEu}Saxy1%Qd>&u<u^O_bG5pi*GS@-trRP&v+<j<d)_Rq6SvzIwGvt?dh
z=KJc-&dq!F?!CImm0LGz%L^|)R)&D16XHVa^r90ygFZhyTl)X+_jrS&pz;wkP<NQu
zT*J~b(zg2Bl`}JqOV8VWx0sW@`R13${q|WmHY9>tdT~`RRj;m%4(GS~v0&f-f4{YD
zWf&L&Ja?2ds)C|A$kDM;NJ!{hWzF?<u~9n;7J^!ay0N=L`fb0>2nr51EqfEOHfpQa
z>+9>wE$Z*@tBu-MvlBF4*ehk~1!|tH3SGVI%9Sf!5_}8?j&5W-ZMvhT@#>z+VpkUz
z4OLZF_kKCu(m$Xv?6YaXK0ZCpzc2gS>mD}PQuQ^f{Trxnlzn~Ow|LN8+V!~VwV;%k
z3YrSmlAW%<K?O8Wq@|%@@jPk`GdmwBdJY~u$oDopzIJQY^>u5{obhS@cHqE)pzkY!
zm-qF_+vnviXJiNk)xIl)q<hWs@5Ly)^#pi%btNSypRYW3^xygC@7~p&D?4nUSCJbQ
z7Pj(r_SIEOZ*9$vzp|N;K~&w?IGCMJrXb_@>(l<>Owzr(+O#Gnc>ed@_-~ik>dec_
zwDj~qV~;N`{CmBA|EnXN!dbVrtjw(a@cn!E<z>FI`!v=u9GErBEO*uHyj>?Bf@;un
z@2-hXo<D#6jT;fHEG#FEA9qhoOpMxHmb>%4u&Ai2xw$#7l*x&Ow(9Ec_5Xk0zq-G^
z-ZblqhiUe;kaj*<&^U~!xcF>Sp3^IgSi=GWCb;!TEHuAYarj~Hp+;u*QwBV$>gv{W
z=Fga+G5hSY=={A~7wzU^SaE2MsjEfN6Ax8&b!{ajr{ZU4K;wvPd@?J}&Nh!PxxYRC
z{yI>4zkPf6m5qOYf6xB%;^L%p>x%s#qo;E9e+pgQ+~WS2ub5PDQ}a-<?@dt2&@HAL
zR8_U>*0x-2PcBZ*izg;3Pn|Sr(c|O&+BP;ZprTz&FJ^`H`#r%AA3hYlTgt$ob!A)b
z?JYSsja1dtZpHuV>gWi#y)D<Y?oUPTogE(+y%Uy|T{}_PeV*}8(8vd9rXg%?)Xm$A
z7A+Eylw7%Gi^<XB$F(&yPRwD9Y&fkJ@qE>_=q(uwJ32aouKtP6-@8=*w$gvtT7Z?o
z%d>uedkY$<*j4)4B=eHW-p}W(m%fX<cAsg+eKv*}OBY>U{q*#7P%kzxFz}n1zrVk$
zn_JfDX}VS=FD|gY-&pX_>FwR!;g^^D+duyZ>br@AtG4k-DtYQ{pTERgEkfD7?+U10
zQ<?Mc&(B%*_4}M>&z?P7&41pSlatlwf8Upyd-TKm`v1Q#S#dEmu)evoGgvozTS%{z
zsmv|w(pM?=asmPY&%WNgd2^OQViPF)v++tzd3_U9;hxK@e&Q9g=>QYMf=xxoqFW*(
zBR_rru7CC2`}g{X4N87|c=$QazVuZHXqaW?@_Aa}`?<Kdrp%eMX2Al5yA_XnpYFQ$
z3bfc@#iOF4q9-q3My|Sh`t<3#JvzU?y}dlgvKSNxp{v8z#+?6K|Ns5}m+kU(7ux0P
zG|bJfM{RY1)D6l9KYjZa78e({^4py|F~2`<a&dQGUH$zXX!P>b)#c*xHG%p2elA<)
zKOZ!&G5z(eQw^Z@jd;<Q7lEL09KPJv)>e2kLiP1xDbuWybFc0G|0xDd0cnS?+fx6j
zGf_fIM<>M3ug}QX7&N-|^XE^?nCa7|E#nkcd-3tOe0WUE9oPP~Mhg!xF&uExGd~DQ
z8B%6BFD{h*`jVM@f8Soh?T0t{O#j|XfCfYtEKpEYRlWIr|D+}Le;&(sb#-03u+SM)
z*~Xm`&}Id<gpNoCw>Y=+U43(NGblM5CLi;#+P%3tDr(lDLx<kv3&>d(xv2Zk3n?hr
zaOdvbtGmnd*T(GJbmi}&MT@Sii8S_|XLEDk`z0!%hS2vr#r;*^-mE;@Ek4`A={3j?
z3%XukSvk3lS9;lw9Tu{-RUrot9`y3|4o*v378D%(_Bp6g$}O%J;^x-I#LRqkM`5yQ
z-klv+{w`X)xb*AQ@YmmN=WpLGYf<3P%*G39{lDAu*>CUfcf0wnx3sjp`1N}I{-WkJ
z3E;Z6$JlIr9M0Clh4tN)x8KKT-Z^joAJp>mo;0uGQD@L~pP5Fjpm^Ld?bX%Q+KP&f
zoSdAg^Cr)l^=d-K)Tc4h#qI6wt5>XevFTUDOi+Uk)CXv0{k-$qx;O>~1~E_vrlA#7
zErY6IhRLAH9MVMu8OpuzKoKvf=Rius0o2f9Py_XZ4mg22ik#rJG@w?%25^@Nlw6Mn
z2!z%l8O)v7bpfLVLN|lZI&q*iKnI*=D3!px4h{-UPjG+i&!3v3$Bt<!C^*>J*?~r4
zZ*9%iued87U$gLFGrP8dLBPFx_dwJ34UEiNDnCCfo);ewut3r{ZAIwnFi;LX+{Rma
zJ9qob4-XGN{TCN030hm>04kfhM72ePg%>|~kg#;=(#!`38l$%7&D~Y@HtJdF?{9A>
z@7}%JtygMk8?W@MA0Hn_?Wx!ZT226(^##q7%#V(USkcJLp7r|L+ODpyAP<j@K6(3f
z`uqO`ffD~>w_dHJ6{1aGpMZKaxwp4v-rST5ns4**=~2;CQgX_@z3u9ckB_$&K0ao&
zzPG0*Bqe2u^X(OZi$z34mOOcq($4gH>GZfuAfNiqHd~o|yl=Xp((7b!M=S5=r>CDj
zd<X~$nX>on<;%enCr-SzDYctV)+%J(Z_r@is@3Z*bqcG$$!$x_I5)>~*XMKApdndN
zQBh5G_2XL%BX~heuEZYom_}HazXJ`?hAwvFZU5#s*Xm|}{E3&Bmw!DjU$0?n8!N2t
zcjeyR>Z{BB<-t>Be(n77*S=nlU+*qg>9TL%zE5AjhVCwVyCv`Lu21!gb^0`&7#LRV
zShGgw=kMRsv%Y`-K0Q%Fd@Dokj}H%{HmCKffCgNuzFc$%jpP3QC}004@Y2o9Lseg2
zW!~FUX~g4foOb3y10(a7tKspWVIj5N6F)&k^@bT;_qJ=PtGmyeH*e{!y?ge&Ij*mw
zsOXq{yzlD4W_D2j;OX<{s~0SAxVk!gx=Lz#`tAQav#;y@Zu%Ctw+hsd+?;my(xF!F
zvr>~TLk4QjMLc=;7P)gME+izB^#A+scf0*%tx7I5^V_W`zh8U(q1@eFrNtG|8$2hg
zy}Gxzdgg7bkT8)5QP5OPXgi<moV&as4U<Z_S6IbWzcmF7U_1a-7|Z9^y?T>3=Q^kW
z>FMEV-}dLvpU-iR-@mUvmw8~#8XZrq@838<^F<3Bo2N{euwc&~o64%HTki|MUJaja
zwcoLsO?>OQ)rgXvi;F8LAYg*?ZP45`$di@685t|Ct&Lv(=1op}>$~Xfc~j4(1!rVr
z?EL-l`TY7*20U}^YNO`Oo44!Vuh*e#qqY|Bn^^JVLt<>{)zGJPZBsvrDKapG-np>Q
zIW!_-#gr)`)zNiz`z~F&BqAoZtf7Iy^U_3RchIVnMT?YvSMLA&EqdkexfX>^@Av=T
z$HdGWy1%a0GpJX}6gol@`TN`3&GUc%{eD0D^Ru&jzf*TIfyy|YBa+!0h+dFzsezIC
z%8tV1(sy?vd8JGO($bb)x^!vE)TycQ^`S|}dL)0n*?j)W>TvyDIoqhV#1~V;;{yNw
z`YI|ep8jgaT=2rOjEjpvYdx+%I@(?O=SN{{OH0PrS65$MTRZ!&%<Qvj=H|ywu0L_Y
z1Jr6idGe%H;iHyUS5_|8i`|uRXGh^uyQJlztHW+>NNi3@PByLmRkCyE&Xwiw@69sJ
zzGk_-bHy2OViZVMiMVug?`qVp;k1%($%SscQl%GbIeB@vzMuZ|R75jkz-rkdbE(#!
zpn@6J546bU6+7b!Dxg~f5_YmJ<6vZfNnxuZK%Gm_KpKvYAtY6Uh93uuL7>_VT9tvj
zstdra6palr%%D;jPo<U6$pV^)sd_%Q{L81)`md+Q*G*Ir6%~DXV`H+GmR3>Gdj^Jr
z+MhpvcJ=m#Iyf}c)YO0y?bht;aUXW+@B87@%+4Q{kg#CS-n~!XzhBSD%$D)_+1ckd
z^`D=e1ubT%sjUTxzj%=`*RuH7n}-&2gSmAM8-QjpO!M!>e7{>h|5%UY;@aQeJST11
zy!q;yNaMYqPHCTeqr|`<x=!V&(d*YqJu;R-Cr_U2>gc#I$Flgz!-oqSnc1gBYD~Sc
zJ%2uEY&z?T#@=tYvO)7peR8&|<ZP>6O!l`cv?zamZZ2rlsi?Sk>Xa!<R;<uix@1Yl
zj}H&0|Jl1qYq_7`z8{aeK@*~)($cH%?X6y&e}CV%<gHm(FU>8#xAOb_`gniauTzAp
zIT;$VZ*R+;Jxw=y*^whIM~@uwn53knbY)v^bg#U9oV0nK&gWYvPI$Pwxmj%ibwC{*
z9liYg!uHqwee+gW-7n<suF|b_f2)4}`sFnV)C~ib=-JoTh0eFDU3cKcoWm<QukES)
zT=M_#_v~Xml3cvJx}`QMDo5sJFfs&)&X^k)>(jNh=4Vl5MTLfz)~S2XUcOv;;)F-;
z%}uWDe6m{CCHCyyTY5D#{N<5O;cwe6FZa)WduwY~N5=;7@JS#;PhY<t{(j%@yq)tB
zOZ{{=@X6V%SQoo{TIHSV*Ta|l&0Tdsj*;O(%sGt>Wf%jL`zL?~<NEFY1yoh-QuCX$
zVsG_#E0v)8b-&kw)~Revc5i<T>S|xO5K#O1thxAa-BluUtXyv_aAcOXsn~Glv31#-
zfP{nu)^8jP4Xe~Khb<3Q^T^x9WM5k|Q3W(S1X@m{=0ESv2cFqy!=4qNGv|$zv@|^k
zs#Z<Q-^IMWzyJQdu%OiXPbbyAyuB}PNIX2}sx1S9)*NFY)WOXC6IxnWYJa_44(bqr
zW)%PYsSy<sv9NItnt6WbjPwvSKi>_Y*(Xr<mW!A7s;~K7mDy*PwY0DtJ$^j<^fcY9
z`}_8)`OSH8MvsZ%!KXcY_fDNYJ$#j|x%u_FKTb|gPH+C#-LL(=(z%_l>cc_yx7n+`
z-UVJO)_W#7wKJG|P1M$`%-7e}dinTV`SkQOXvY2P>+7psyTxW1rFI?bm404yzkq?^
z-18!Hsk^(&*YErN&bocuB&U_2#f8u3u$?(|YLbd+)|C}8wJXBb&SK-0TGG<O^7QG`
zlb0`Fw!0fqbbi0x@;&D_SS^1Ku3Jw|R<}NLnTesn`|>hhY0w1W!nY?TD$la7ufw`3
za9i=dm-ULE1&}<4FTA|G{OQY=E4Ss|K6Uu8^X={V*Dow|e*0WhL?q++xw*SuuiJg<
zFOT--BYy9u#%@kK`{jZ&zvXUe1_trKi_*QIrci5ZtCy$e#_ga*!MeJj^-f$I91}{m
z1$g`Wm;abD6_i}A{Pmk-u@IE08XFr|#qZyzvNG-LEKv3o(~o<zq4@WqR&MY*liN90
zUUFXhe!qVGl`A1{@9&R4-Y-8rQG)MyuGwt6-*1dB&-;G2{61)=7SxUeEe5>0I^2J6
z)z?c$I)$(9Dt+y}Yx(Ti((^yFFs#^uS|5f&RvAyhT%?y+f4cra17p^m9UHC6->qTe
zl>)8b1P!5{I;FLB`_(TmFJE07ZT|JeMdyB-PaU8vG(E1$^Y8EP<u`Kfh+1qt02&XK
ztNGv<x;o4kG-UMZ%F5tZbM}kHOiw=AB?_8)3|${*>+0sVs`B$Q&?+;~K*7_~)3a}G
zN|myyDA@Ua_Plv|=H`bS7!EuwzSeH5AGO8f<HwJn1~I6`J7I#r+PJ+@pcc}O^YQif
zKw|_iFD>=*^Sjn5tRAx5Pqy^sCD+HtdbPJ+PyPMv?bfolQJ^)DXJ#0F`usUKBxFk3
znHh=a9CVMQ&4@fWCAeEmH)MNWZ0(ne?%y~*dfnV#zu(Ep3Dk20^%zTEU)w5gUG`?i
zuJZTm;_H68?k;~HwmI#rPwlts@%3x_WUaG~_sPDxu&{aM_cqh1Ip^9}J>GgfuDDD*
zfU)k!Lv~jemzat6=e_H~T-@B|6|Y}$dg9cnOSj*v>Ync`dSd0q)1a~C3(owpA0K&5
zN;^Ai>6|$-OP4IM5DA|Ia@F3C$D~i4J9lkO<YpC5ewz;sv&{43UfG?u`<=7$)m+mE
z28PWR$?`fg&aVt^QB+hE-)g-^^556>^(!Mcr=`}JocA@qyCm)Gtjw>ku1-4DmvR2;
zx&J#rda}C&o)u*^eZAzZ|8nj2dzYS_oxT1=F=#3nwCXc<ciD4WeH9g#{eM1nAHL1Y
zz`*eI=@k}G=Mz*ZfDFC1HX76wdiU-f-}4(eW`7^c|KG9Z`5e32s7X(rKQF)c*{km}
z<7EbhbkIn%pYDdT_xE&XpIvs~fJ16}`t)0sVMfpEyCxl4x#WV@>7!yv3=9m<A75e8
zR#sl@G%t8_n(xowzq7x;yZhWW|NFbUTpSz$y;7#9bl&_cFW&kIv`l_&)K-~W?{+?y
zyIXwTc6yCJ!-1(A)6Pn*jof@}p{}*{Zl`&^k3xQ0)-Jx-RRrpcoi)FI<=NTU=XYNC
z+pWJZz|F1AtyfCbb5-#2KEF8@fv@(Q*5sNzX;Ou)7=u>lzrVj%*Z=>=m#cc)gh4#1
zlPUY}udh*itF{^$8>@Qy&NjQccKf|mA3hXZo(Ed-s~fi`0#sgKTOS{vCBNplT(!@>
zefvP`t(R=BE&)v<fF@vWZ_8Dkd)GbX>Z;IXUpW~X_9yX9%Pz=joH~F0`s#N(-9hu*
zi4v<~cW+y=d4A%Q88cRZ7H7>ZzZbYQ>#E-G$b$zDMr}xF1Pw60Ucdj|zRABq?fjpg
zpTF+6{|A~8d0QQSxAyzpuHN3OvgLOcUR><{`pisY&@AM-z2Bm0|9-tb{jNL%!-HLO
zcKIH@vNCvU(Nizmzh5q&I(6#O#^mEAZ*CaMS{Av0`Zryo+9tWTOfJteFL@F0_QpnM
zP^t3g=Vwz;3*+mxXwcH5vNty#elWBweSPifs?gO>UcX*_<3@yT)D{o@Js+C#cE8;g
z^gUJBoS`A|M#dFW3)6#Dzu#^*Eqdbd``t@bDU*x^EiEjd;g)VO-Al#iZPRZV-`<kB
z_-MCy{FR-1tG{1c7rWbQtN%=+qYtnD{{G&4X+8skf$IyYIkOT{Q&U$KKR=f$_x{e#
z&3!VKL5;Rd3=BJJ{B$>fCUi<)Uz=K4^Y_=+tUEgjkCt*UFsOqT4q9wIAZ1y!<X-Lf
zSle$mlD+)>!vg~+c6E18oi}e?;9|Fzprsbf{5B6j)f~f=*}>NneCJpM{{MNte#)dt
ziz+`qJ9+kP&ff5t7*MmV=!u8#9E*!HV_6s$9GYkmTIZ(=8hirHSI(FrQTyXzyH&x1
zh9#SSC-BNx1Sl#ho_iz5z;Hly;}N&TpefwlWpC%)<z--))3==?*11(Y;;HY_9JAY&
z+r1bV7&ffp(%<mv+S=;Csb3%+BEPG=3@d^>HpGCGKEFN9(JDGZRYm1Rulc<RyLVg5
zui|82(316Db8ym<#qRyDTE*i)gX&ydTqa3JI6y<gx=~vS%C0jotT0fCSa<LxYnW%!
z*Zr+mpPZa5DkAda%{oSgfQK3zVwx{=tx<OGd(kQ$cVSQE=a7Ja1sxq6prs~fXPcLY
zO$Y6k3Vg^4+K;h!gO-lYmA~KbulJm+78t?E@S)ygj@EuI{SBbSA$#`Nw6?WnJv!0}
zno0o`+mDa;Pp|X^HPbe<GcYhrUw(*t&7C_jo|nw;*DQW`xPAWjn8OAsn{S4MgoFsj
zGBX@_8PWVyN^8#nFJIraFWi|J7(!NX>2GlBlZm|8&%&_alET3v-n?_~7#J8DRu}%V
zi(p`QupcxU1s-MqEd!XL!~)vs1sa_aBVif~+&P+}5|LIP>rq#?FDW@$R6syMUS7Vn
zwKenYt*zpF-hDoAAD)u31eC3Q{`$4bwOb4{a5+)g{ap3klatj!O8|H7+?jc_OH};t
z-<3LGhkz1a*qVriGiFGzva@UJ>iU8f1neq(ePwI*b))s&y}egIK0a=mbHgCE_^j!z
z{q_6fDxZpiYC6zxNi!Soxysm@nmt9u#j$0-CJ{Z%<Ll)W^!?pk*;~K9zhD31Ljh<t
z-Ym1+sFm5E(fpmo&q2$Os-DeE*GqJ{c3eb}fkEt1kLDqq<M079um9V+W6~1Ps#Z|e
z|9-!|{#^E=#f!gg-~ZS5?(TBX;LFdsD`P;t&J~Z!FdEYQ92`4d{GMxB>~{0!%~kRH
z>sBVe-}`;uw!FKm<m-Mo{{H@c|DL{R32>|hU*x{CdDEsR@88F-x_keAd|ToR(4g9@
z`k<gmTwGiw-|v=NZ+VWg)hB3Ob(k4wv^As<wDA7R7oDr`o<2>ruiI#rb7Mi~<z+9|
z?S2<jQL*Fj#+k<HpxNlc!oum-A9^)_hLLoRNOs@Zi_*eP`t#v1Kd9L)DkKCd1uSJw
zpEz;h&CShUf4yFR`uOqZO4V_dppNhZr+vR(Y3JVGcX#1iC(bGR_y4zC&bWEgCKb<K
zDbrmKiuvViR@D9dwbE~{6{sqysjZdmv;Ta?7}V4P4fKH~%V2wCLJ|@doX)uoT2Ii>
z8k5&_b!D*n??+#R*!g5GoSA8SdXJikNyzJKYlF+mwjFl*zBYRMskF_SCMI9@oVO`^
zGvn9S*UJwbasq823y-fYU0Dojrp>SW<>~0?$oJN4w(nxM-brWEE`NM{Jalu~*>1^Y
zPeDEiILa$)6|y<~e3+M4*RdW+<(F^Hz01tZ<l^Suyx*|`u`Q*jynMRK-=ELtgVsH6
z+O!EY6c@xA(h1u7^!<K)c?M{U*`vpgLETBc*j-b+_G%eJhw@1onc4gO-s<)HetCh$
z8h4kk|Mu=~w*7v$UMVS?iVZ4ri_L#TZOuAqzyq3Jkuu4cAnCl72WkuJG!;-ygrn8i
zKYR9LHkRFGZ$V)Is@3ZM)wC!3&NkaB9x?s$_ER08+_j?W>nkr0j{qkpr<u=}EL&!!
z5;Y05Ts!`g@!`XVLqkGJPF{}&ZzC0ZylSOi=pnbopzWoQQSmuj*|?v9wh=NINP<%`
z(bME@ur)?djfbRA*C2tW(E}1f7dSSvfqFnU?>eyF*k8YY^X>*Nvy2N0ps~OO3l@OZ
zI;lE>OES=~4)Rg~P<srNKO%To1D}F3e8WjlUfm$Dj3bsA<X9LVZS@n#W~@sHs9_M&
zOhA&y94&kBINp+!t_yG0bDunqx!USm({)f=1+=;7toeP=;=)sB&-zN6<ybu5*_N2`
z?#@n7uNAavc|)Qzs0xnWmZSOo`$_O5T!UMm3}|_=tBVV0s2a38=RhO#*2>S%KF3X;
zH*XziCas-cKFq`8L}mBRjmgJff#$t-m%W`bWy+F`$;Y$q@2drEefjqG_F1_}!G@6a
zEy)vqBPLU|)YRN2i3kcV+?IPg>(7smw{{dJ&%A!G;4ts6$Nl!8mDPLy|NEV~EYQ`}
z71Tm&<CkBzWs6Dm?+Xi^MMXrGsCrL((I%az@&AEN7YjE-gBG6g_h(!8?c291cK0{d
z`GEle3+Bv`G0nJeVBz0YtJi@hq-ttv^lBNzpp%Hnyw}dnwZ6J3)%)s-z{3mo1~2#f
z_IUc~)2F@XT9=1KMa{Zb_d6G~uVZ)l`)kbnHVeS>tmW&##UuJCyH(AP4Vvd8H>Grf
z+%Kr?cH=gv^6!;4UlqAIZJEtsElA2rSBXF=jPu$+OI>|un^isPRNqqc)NAj*U#~&U
zi3bOpL0fWy=Ov1QQbb7My?gggoj$F7b>8gR+4gliySlorEcciH`s%8;{{BCk_U<iz
ze=qCuvR=@#{j+l{KX00!EDBECXP)kH-BI`VSJ3Z(xt7Jx_FVt*`}h1}DFbb7?@3oy
z1TOY|=ikXIZI*F<o~@UcS5XE(A79w&u(ew<FE2Y?*ESV0k2Za`uk-nNwpTZ&`?qfc
z6`%gLUqi5tB7pW5#ue3j$=Ftfn9cTeb#-0ZCn_ScV#9_Ho8~8~t~toWu%JuYs$>Nh
zH}}*@lalgJpFbZCnZOhg5KwseX5HJDFJC^_nWVQQ_4G6&9%t|AdZiivf4yE0YMt`Q
zTE*N`&}n1gW?<khJm$8Tlr>I!LFM%HvuT&_?X6CgXalVP01a180!_es2DS6aUfG@>
zuN$$!0W^!WzwU3zj}M8UMgnM-rKDub%H%RLP@%fOwOdTn&MvN7T>sj~$HzgH;nmgQ
zt3f-digV0n-?`)EUkBP7_)Y0t+UA?xMzhbR>2FYZ+01VTsw=maybQA3!fwvMAUpwd
zE&yo0`ReNM@P0X4P(K6I;t8*45$y&QyxfIuO{$(CStq9^At9ktHtMFPR~0X61;)hG
z1pfW-<;#^No|9#|^umuyfj9Ys#(WbL&v|V~&;u1443H^KLlwWN^2o*6wFJ=eTEZ)n
zxIrZ(DD^={i{a%F)L_LmsB5P-%(-*t4#*e3*I&ML>B+Na%b3~uEH;KSFdXpG*zoVs
z*6VSTXV0F!tK?--;Pd#-{h165tJY1Lubo!EFexzM?@`c_@n>geg9cVXt-j5>nHd<g
z6uH*?|M>a5J!oPBv_d>&e_gF^<fbDxW0@F23_%NgnO@iHL~e2cwZTB0(S^?KK?x84
zZ!iCD7&@(A{<wX+3Cql=MMWugjgNA?bh;y=>_YuY@}x5K1Y{5I%+gEeYT;kY&dpmK
zb#4O-qp7#a-8DL;U0koyGE*1nxSBK0byF)9Y5e?q@%r?+@(Y%U&zXJr_g2g6rS@}v
zw-w0ST`zsd%y7U~G2!p&HeTs3hq(1u_|7&14e5D#d6j&55$GQ;#;{=O!o68PIU@cS
ze|ZroDlY!|sCfJo6;K=F;K74iKn-?#<%GZIe|>!oD)Js4Zr^<jv{(bQs?l%x<zjI*
zhK$gN=BKh85tClMdIj2`1=^dKes0di{QZBI-LL!YJ8|N~RV!9pcz1WVZEYt5!vfZa
zp6@1s8n&N471jRx`TW+7!o|1EW}jX5_4W1FH`C|ueSdvt(bKM)nmfk14h{`WOib^7
z-(g_bEW_6>!`FU0qWDb42bJ>o4hJSpnLd4a-rZf9S6798t*iL-`SaG&*I}U6_`ZGn
zzJIlvYhAwYeK7;WtoHfy=l}Wh=gzUbdwW)%p002H^0m;0J<hB7Bd)KHzYbc)Uim4-
zcZR{jdu6-tuIrUH2d{zY?frT{l!>8X+On(b58m3AJ9}O1?qwezA2;7&tEJ@?yQ}2k
z-4=$1w1Z0J?=QS!zShPo{p9`o`!A%lXP;dLs(_xKoBQkU_xnHPMHv|G1g@U1bZ1-c
zZQ1XUyUW&ITNkVCxoYj&(%aJ}Ojyv;(xSH0jKSgcVJV&W7hXw&GR)<u+GbXUhN~AW
zw$_+{&ctZDn83)8pt$DXCq5R?I_H*#r?TKai$M<?sK{A(@Dm?Mp~KayS3$%11qB=a
z{QWB`D!MdwciG*KJG#2KK=TPtPD})igVog3gaiZx<lDC&UI^L;y4bxRwEp$#LT7eR
z#~al4ef8?qtVh#qx*9->C@WqqE&^>OuK8I68gM?^B?>Ch7cE{K8WB-(`!Q%tYN_}1
zRcqGxJbd`Dci**{#_1;6*K|BD&9N+=GI8R<2@?eN{`qv;%g5)>`*@9R@N{+9yAu<Y
zK?~=NjEqdGzvXxa)zs_(Ew8Hl{Osj{M&@3*-#;Grzdkip`_+||lRtg_92ydG<w2dJ
zqvNlq)8kDN4lrDg2nqsin43Cx?pjuEF%1=!BX4>u1$aSg9xvZ{d-d7b*;kkON~@}>
z?mSjgTRU~ej1`L(DaGz6Sa>n{_V)bsesitvel)czfA>agUEWNC#3q%OPfkuQw{iD&
z0xcq%3K~*8bm)+XfWQMYIZ4Tvx9)|UI(=Hzv$3(!_nXwb10vv_SZBH5wCU4N=WV|(
zz5VvvBCEMt+S<ldw%hOQsSG|nT|eBzqXV=^M6Ht7UlAOK^Ee{-+MW09+xPX@?XB6*
zZ`~6C^&&xe@Adlq)B5|%eOC!?U|`62`sdG|lE=q-s~%rpA77qpp8N9B(qCUL`+t46
z`+e4z7Z;D6f1e3X3s35#*W~Z}=>{6PzI|hB_Vv8#p1XPZ1yUcb{aW$v?(X}aznZ96
zTSseZYJw(^rp}s`_2o{OBWT*KyGPR4E%{hap|o}7rzOjLW?p(>C@3g+Yj^qjRjXFr
z5!)qiRpMbb+gDIf@YuTi+uL%zyu5;Ze0o49GbBIXD)oNW2Ns3}t)GuHyCo+jg#-sL
zK6A$BdPHgI)=ir?gHqpv2MM14ZMOcsvNCwp+O>O^S8Ho%T$rL6Y*O>1;OWz+cQ0E;
zae=CcsGTQHcpN=;Ov}_XR9rtU<o>=|P_!05Kc}g!eR^xWmseL&QBg=#)T(*5)w_<}
zuY4|hGsg@x@$9!e*wWGxR4l7#>gxJVD*5-P5;W6gXJ-dGePG{@N8H=9Ir#anFK}$0
z^)PQXJ0mv(L-)rc?Z%*9>A@z}Q>RY{r=~7FbolVr<l}t2l14|~?vkq7e*aJ_ckK0?
z%{OBfo=Mxhlj+*c&FQh(2jgnLUafi_u_Z$gWKP9&cKMosmoHy>`TOUW%wMxcXS>_$
zX}f=Jc$Rp$?e6C*N!~7?V0N<kD5EpuxKcR-1H<8r4Gat$1f+D{JAkD)BJMSU`nAXs
z;Q3(*a6)!|eB~1;?=wiafl7qd4Q!{aFMw7FL-`jHD%qJpDc<S8CqD3E9wZ4+$U@DP
zkXk;iA5>HvFaU|_w3tTRYeeP~Y3@;MMG~mwVQ3TFaAC=+RjX`jIT>bk9DexWi)zKv
zXx?cr?K9$7bWAjv#2)PBh;Voen*DA7`$GU65=_&|A*-7Wq}HSrWY2Y~s@lcIBk|zj
z>dZLMg6wwrx)(1`I~YIweRtQEWADG8oUAS?E`I&V>+>0NqU@N$j5Tz1r>Y!1dbIMJ
zlTFHp2M6cvV=+<QcYm#S_TRec)23yen4masA5Vk?<7&wsIoqhp%1Y4wfIol!*wk7w
zG*mw+umGj2i;LaOZ)SsnS75^|$Ap9hpjE&A@oWqS7-nhT;T7A-%#ffsuj)cZY3bHU
zlP8PH$mrD9*Sos9W?o+xTV8rLe0|*29!cXXTeHJiSy(cjoS69Q<8gWEJKvw3oei27
zVdIfdu(!8oWo6C0v!hT;Tl=?vy!z_JpuH-fZJ^V1qd}$M*SELBZ{EDw)z^3J-rnl3
zSAzXbtL9vO8B$WRrS9L)bkMOHbFIs-tqNTY%0YiW9OmcZ<t=?19UQ#)#fuDCs}j&c
ze=dIh@YK|$eDZc{R)?=&RsH?l*}~Oln;=Db67RK%%I=_=IyEIF<J+5?la~DWQ32|I
zeSUWKaw9Xll<l|E`ujry11Em^{Mj_|5Q}F}PR^P`hYoGYxTy5>>C>IxVz=eY1ntvr
zX6LW^E3E>mhZan|y{B^Xtu2|0mn>1aK4bm*^+LkJp&=nlxW)BMs&eY;_BAy%#XR)-
zmHzhQ63@w7a&Md6-BTHS$=>%mXdt`rkqfV!O~lr%TjTx~db8*(5RKlRH@Bvy=E?i_
z>py+^RCT+ZUw++(4+Z=&k{7BflX$OfOg;{p+;3=L*#7av36JaFj{W)ZxWDSn#^bMg
z-QC<?z2E=;+RMw!RXz9r`?dPisZ%By7ZlFUFm!%<dwclrZ*RZ8SlplW{@&jIA6KW;
zvgk1EDtz2_um1nvs>ge_N`L5i7WW`7E>3Uv-MIWadD~CFEV)<4`0H)o)F)QkmMn3(
zWPiDZm6a8=a%t1%&83fz@q!L_*#GC#>Db!bC@v;322i*4>@3q&D^`5?vXtQiL;GRH
z`1t!(kKf+fTAaIodh%Sq<*#q7TBUXUK4{vZre+UlcK7}M|8b?IrBRzwIy<8`@-T^A
zICV3}Z12Zo(yLak%-nGF*Y;btqW1p%cKg-s?dxxC&0cO-`%6Pt*Z1nxt9idcdoms$
z@4pT@F$J_c{rq|Vg$oy+I(v3)`MK5M>tAiX9v2MiD6NaN25md^o~ASL@=KGd`3~L>
zJ2jo`?d|XGC|rE+$Jf`_V{gBI8ZrCqGpldc?mM^f6jpCf0QCV%UId7WiQW6zeYxp_
zo)ZITG8E)!)9h;+s;aJzj*h(Vrq7tMV$K{H&|o&`!~{_K`+l$5|LD=9r_P@*f1AGf
zW=K%bq8m3NRMph7Zf(f~ZF~eRg*`4`f9LDWIehKTpfhPsojz?^{LJU;i;K>nxmsV}
zP*>O1X}ZzZbiVUfO#btyCimv1qq%R++yCG5*05~%-h-J3qO*<jzyDy_efQo2sdNA9
z->lugyYzKf{{3~ayYH3F4F?s%3Z9@9qkevUmo8tH{=;w|wBlM_-Q76t%!OB1SF3u0
z_9Rc&iv_h-YJY#rys;s1-CzItc5DCs{=R$Od|_$n)u3~7w6#y0icXj~apC6l^RI4f
zOy=U`oTvgibtP~6YfwLGj%BfkjLe-Y+xa3+{k2=BsHWy-XlR(1e7s-&`iY6k(za?!
zN>0_^--U*TPQC5)-MO9bWZGs;C8bB(j+=dvXb17{-;YmBOq{gDv6&6D)Qxwa^2Rl5
zd}4Q%?0md;tBQ{x(}XYn-J<gH>(89=iQQAN@!q%f`~O9m%|83JXHN99Gc%Q!UtTF|
zUACjw{?iHNJbrZ^9-ff@|NeretFPa9c6RpHFPHsSCm-+IRrIv$_4yTni$S$^QxntS
za?S;chK7c#R;~<8OIwz`X4kGLP)XF)RrGgJaA4rV;N^ZRw{5%j_C~k3{;sWQ)Ai%8
zJv%!av=Du3?(MKiA_4*nUcAT<6%*TaFH*x3)KyJPTsW`(-_K?H&ZfCGvmQwO_vh!S
zvuCe@j{aJI)T;j9o|>8(P}g?*$Gp3{Rt7Kkvnqc#=XS;UdA6_T{$JQG7nGX1^!0vk
zFE7xbp81d2tIwugUg|yl-Se^rv6I65QlRybIXP>Bf`dyxK61T2`Of*d*2~wd(Yaoy
zsi_ItVwIV>@^!k6nws0`>H44}TS^}t;bdiF%euNMbk*wBmuKhid-=@@)LnjeceiQM
z5stI7OuhY<2Wy9~1C8zm1qb)u+q_(G1H+ClFE6_n78Zi`C>0eIHUGZz*8UH_%?F3(
z$N%H@#D#}1e?G6;@8rpoyn0#tO}8>EcnLb(3ZreYoqzkbn>n987S8|k>Ep+Xpjnlj
z#m}>zo|;-@A=A~<6XNIB_v`EH=iA;lFfxNCcAh**0j*O8DP9q{cuUI3No?|8FH8ct
zXr_JrzE7V%O_?|Eo!PzB;rdsvUR}9li3@0wzc+qYiD&(vkL^`oUwxe)uWe!y5*ivR
zWteoNHs1V!uFb^+&r6_Xj9<Qdsj~n5f7;ZkPp@U%y|gjeJvA+Dm#?82D3My1zuWV;
zPFFU21H%qZPR_uXm^pSop9pV%4mxe;^vja0pP!!Q{Z3CwIgz$G^UaNo|9@@;EyrK9
zNU8Sw-SV&7V)s^E&7I4BVV24FX17E+Ua<?OOifHdi_}3U=~$I|F|+ecQ30K^ps46L
zbLPxdYt~!=?O^`#A@S*xCmD~9bmqNR*b`m+{M^-VZ*PM(8iS620Bz=rum8IgG}05j
zEhjKDbERC}kB7haxie(svFI$An*Cz??F$zIK)sZ^yGrwJ+y8!J+}hTrWo;cDU;A}x
zQ&ZEFY15Xqa*JQHPEX!%`oH?l`SbpuvV2d)#(jT2c|U#jY?X66A81W6Xw5^PthLlG
z?*&gkToF+`v&phD#)yGI?)zbW`-~3{4&K_He?ND=b*X-zto5?Q!)-5LTwKgsXJC8=
zRH+|u%Gj`nx%&<y0|O6&4{FjiB!Zet5gfeJ$`^oYe@G9mdto7{9}Zf@7u<rkMd;N0
zR2I~R#AB`ksH0)XvS?aAa?5fV$6jXK4&a7$AsL{3&7((;9+O`F=uy(*=ZEKldL$bf
z4jgd!`TMuFp58jobMN23Uw`1h0X0kWSDP*8`Ym6s&&0ss@%;S!>rYQlpZ(-cV`Jm1
zo14=o&yoHL(#*h<Jkgqgp&=2}WnnnX0q)d7B$Oe|S@5BcJq@6xkrJS`^#KD=yLMDV
c+h2J(t*>*^+x$fs7#J8lUHx3vIVCg!0D1ZM@&Et;

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-7.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-7.png
new file mode 100644
index 0000000000000000000000000000000000000000..e4cce092e7451335f182580fe5a36d67e673f627
GIT binary patch
literal 21684
zcmeAS@N?(olHy`uVBq!ia0y~yV2S`?4mJh`hJ9%>?l3SguoOFahH!9jaMW<5bTBY5
za29w(7BevLCxS5J3j5`m3=9eko-U3d6?5L)t*$x$_5c5mzpJIKE$656Z0<1WUehXN
z+3N2yEo5`ne9hWZcEV|Vole@$UpklN___XEU^jnaP;X1kBxldV?$Y-qRf{E(+1KBf
z|NHIVmptjir|-Srdw1RR)4zkN_xYW_F7vIR-Y)+9^rHqm&I}9;2EE;Ttr-{?9^`0j
zU|?YIacg8{U`R0H(qUj=m>ihE$iOh8hl!hk;XsN=1Oo$u+TsID3=9U6tYQod4JSvn
z4CN3j-dxVkz;NI_pS;}~VRgSd6N;~|40f-pt22LcN23oE>FfnRJ|voEUV73t_x|bA
z-oL-SU3@}Iokx&~;Q>QlNKxpMKR-X4|B?D3FQmi3Ak%X+$?$7UTjGo=yBJAMa02nz
zz`#(TAl7~K3yZhXQLTIxa2irR$i#4<aYBM6J4heH<cSH43=bUgLYi7Xxi&$Q-;~+j
z)Agp_IJbx4xl#GMn78-#-oAI2L2Jz-meX(ePl>aNopMb~To@A*GiBn$g+D((&%U>(
z^4H7d^QX+8uit&tY2s6re?QOHYgt)E6+b(3v6Wl=M=9$%!K0x^kIU#x;SLWE|NG-{
z|Eo(&yZz=`Ep2LI`uXF>i<Qgg1;xb7*|TR)$;(TsJ9h+p4o~5?{W4*h|NM1%cXypU
zeAxNt&!4M8R!-Wxo0Z{d-~6;43%lA_xw*JZvaV=s&A%VFI(+@L`v1S<LF{fZ-Jp_^
zE$8Oj>x+wv3-xoY*{~sCl8ChQYU}rVf-^HStKRK=zNP$qob`8}6%i6jC43?gJ3u}v
z`SBrfZT$YYpFe+AJ?d1yvOPcEH2a#*`~Cm-RegWAw)FM2$ZnlBZf(8r@bKB|?f?Bq
z){WTU@bTkEkpJIY(Pr4d-^NjRSfXv=oH;V3udki8x~^qn5;Cde;UU(_>gw!oZ*Cg#
zIA>p9H&tct$79l;K7E>$DDkIzb(5x!&KAv0ZvAp=yT$dj6crs?TU%#Y6fVl!`!&q^
zn?Ran#fJq<OiXX?@-8n`7E=Fbr(3TQu_IAOtb0}1+Eq7hL_B@=OiNkW`TxJ~`&Ca`
z*&n}rIXHjM$F^VJ-mX4x_uI$c_UjbWlTJq;y?V9k@9*#0rlwbKnI#@#>6NhzdVOu}
z<tduM9-HPk#Kg>r+LE#G?d|QicWXB|FFtUHH#i_b!SmPa`2VZS@7Dz1yLYeZ>(%hD
zC)MYBOwtNnl@gp%`s#}3{rdlV{pQ={p3i$M6}zLrG5J`}#oF(8m-9-SMch{Ro3moZ
z42jxLC)GtF{T76;kK^Lx4E+D^ujZyafoBPp>|8oCmSs#T&dXc(>GS8(M@KkcZ`-iJ
z;OuO3|C={&O4--#xwbxD|7E@FwD$J)d$r$VYybUx{^{e#jo$wYYi(?7M1+MGzq`A8
zb@=+YUvD;_Uvv9kOv=)wOK)ymzC+Blex9?l^VA6w7A*6f{i=~&ZovsAFULmKV3D)?
zZ|<+(f9UXGQ3;6^-`?KNzOf-OYJ1*Xm6son%U@p;xp~UGdFu)vADbGHVw!Q`z`X5^
zt3MoX7yR`3v+Cb}hrchK9v766vEtqS|Nn%#*POTiAEUqLLld8jMZmk-V_Pdf9Ar1m
zyJI11S>z(t?W(A#=;h%tVgG)6*K52EO;2TF;;UXRo&M%7XGl(4;)$b2T{AN?U)|Zc
znTw0-%C6FE)67dQ@^wEJ+WmfGEZMfOPu6->?(J<^H#RJsrXRoV?(Xu{j?HXYH#enj
zRKM`xMwgtEMctnrt3p;Pg@=bfeg6FP)vKYs(&pE6x8GUh+|HNz>dMMjS5{8`^Y^dn
z-?)akHkCo~bw8KRtNWE1x;pIax$>q>5&P@*PMS37$+Kt6rs+nna_g1Ky0T(o)b_l!
z|NlI<uX??9yNHyOR(yPXb@^7O)2B`aB_%DobLY;JM~{-S3R5N8xVX5!e7Wpz>=h8l
z^T0|(L`0%3QNq&F((V7hzr6<zI6R)6zi(sS|BuJzd!zGq9$gW<yw5QIo=x`e>i2uo
zBXq=+O-!zwIC)a@d)?z#F}q4uM%@1R_&9HUef{H$?($o=J$?E#@_+s3XJ?Pamfua?
zv1^yqY_r@=mfx<&*Y7Qy+nV|B$7?xZ;p7M%vE(Z&0^Qu)+Dd<4kFU>dX=#!8`s(WD
zpPTzvZ%;nX=RE1*!-t6#)z!0qef;pjKt<BJ?9GPnx%W&Yl#YZ(Z%*q~^O>RWvOZg0
zvTdP!{hz?x+uK453O1-{>g)TjjoNxieSVEnd3iY~&%5`@OjO~OG;+}nTXW%d{(jy3
z{QTc{I8MEJbhP`|)9LXg4-PQOT9^4udh+z?(hC;?YJa_4UiItca@D{2JHjVfmA+b%
zKCjYkx?XJ1`FXZ$y$d~p=314W`ma`SRY$D5H1Fw|nZ}~BvTIvfSkBJ14sYj|pLR6q
z;@$H5XA2gdgcMjB#)l0`o}H0AJHya<{oZf0;wqntzTTF6yzk|gmzS?qTK@d`b5+dF
zO<dgEPv5^^zq9yx*7I|7Z|$kv{B_2L4F+3tZf?5so;h4yRn@hboj<HwO!vyFP;FKg
zmKO)v<*!_iuU~uQh>Pv77mI&AXy(u9T65=4jOV4~e%ocY^Y_Q@+qX~3s$|8vxz@*>
zHi`DEUcLHj=Yz=2X@Mz>sYjd^YZ!MQU6gfoRpz}tl~SfzQ%V_6dQMi;R8VmEey6zK
z?&lNX)U>oy*RNmy)s*g;b#YPaojZ5Fd_He~`=?%k=`@|lMWC=bc<^A=zn{;aK76>4
znVm1==BCtNKOXms%FD0+`1tr~10LPDJrQEvuAiTupT2zga+S=ludagXhkqaY>tAfU
zou|BZje_0ZFTqcrJzG`(|KB7Pb93|9Jr#lP-o2Y;nmtWLQ&G`z(w9G<&!0Yj{(Mx*
z-VcYkr3?}p?0!68E`4?7WZw6Hi5oAhn7rXNgR0h?Lx-FW8}K}Cm#;H;xBI=_Vz*wY
zW8M1uG9=m(bMEZ8xFT?Io1lb5#vIGyW6yTf|9u_rwl->OkE-{yDb@1}bM5~BDPEj*
zcGj`a=k4=lED8>!-CjPwF016tjf)#1bdF8Y4DKm@eoj)^t;b+h*xD=}DU%Z({{H6I
z*2QMqd^o`DHs7wc=kxRPw_oZNY~A<oSN7qgjS^zrM=QQubnk8D7N52wzNDn2vv||C
zoSR8^s$Q=>rn~)4(vxS;rlnuk-m}OuA}%h@?dqyf-@g@=m4@uA=S)m^xJsf;@vuS3
z?cD8|=jK>S878&dt9Z;?Sy7>(r{@>E%m?Hp5h0;P*W>GBx8JK;ed*FAlj?6dp=+Z;
zV|SHo{I2_etLOj!mIt#;v#%_0WOj9Rjg0RO+9KoLFJ~LFI!yQI(W9A{mUw2}+Okqe
zNGN1|obB0pw$W#2nFcTQni{e;$`n+FUvuH^dw*u8@u$z9gEKN#T)K2=OW|WTP<o%N
z=6gxD{Eni%y}jq9H#awzzPz+F$urEuqeDzLYDv}CS0@i2K0I%GP~yY{OZM(W14X8#
z(OWVmPScHE#x7Uk5WBl9bhcS;&bIeAH@h1e8s6GhyIak7){?-*Zkn2!o*zGcytTi6
zzm1K}lc!Hr_4W1t{=WY|EFodR+;=SD%I4<b<#!6(L4{xF>ad$R#{WLdJE0rBE#p7~
zV^Mke^=oURLl?X8{{3`XKWb~%R8al<?(XjB=@|}36C~O|$>Zv}*l19b!7TsYn(+AA
zQ0uZc0e^peHLd!RQTp<dtM6>HsVcn^hEDnWel7!5`411bN8c{|y6^WpYf$Uu-o1Ov
z^kah~B32YXKbLvDPd4lNy16T#yPb?+=U#eiclr8v`~TO;T9tU*uld}Yc7ER4x3{;y
zJ~2@_>&}jickbM|vZFA$wWTHF`@6eQyGmBZ#KwNTQ+z)2#f62RK7I`R{q3!3!T|=~
z`F63oQCl{A*In3iZod8cpP!$vE_-`R%BEt&*_vJU|Gak;K0fy8)2B;aqS{v$yYp|&
zyBlSieJ$j8pX}9rwbfVGL|%^D-jH1YZmjKCQTqDYEQ7=*Df7HFjLd8rHa0Q7vrHy_
z`Q5b9y8PXhgU#%v_iMkeEPsD*(vr-}%T{_#)!Oy_UiI4j;RU5#*A5nym+x16o$&PO
z(~W##mXG`yy`H{)z53!}_tjZfSAF{Y`Em=V@RXS|S9S`kYiVeB*j9bHaHy60>9c3c
z%J0{Pm*215o_2QD(&=$ko>y0eUjBUEem$tP(bDqjl{Vk@{p|y-ko9q(A`2Ahda=8}
zCBd$elWFr8J$!U-uC@21egFSeXIpD6TXbke<mR+pzu)ct`ti8@>nkgRCoMVH%%1(=
zKx0v1;l)m2^(hl3ED+O;$~e{|`Rn)n|LZa@FMB!BU2fuRX=8tePA2Z@fs5UEj~+ex
z@@D${tMBgae){s|%6_|F9@XF9g{Gt|(GlzZ_v`xpRiUfHW|?G8dUa*x;#*s@v;Y11
z+11^>d0xBx4pHxm>%;ryY`4_^uk)Q{;(6)4ea-)vlt>-1*MHV5dOYKG;K!?Lqr(rk
z^IxB3n!P3WwwdQ8@%WmB8#Wl+t^fbG>iOLAFGt1WPn<vRpM0z*(8Hs{txsm<?Y!M*
z&)JsCt!WJXXvoeT4yreN=h;MVPCI+)#6)G&<YPRqxB1)u4cT4xHYg})Qc+RSl$kR%
zJy(UVpZD$E-PO0YX5U_Ydxu{;zkJy9b8}0-y@^y+Q318uC#k$HNW2(-t6N<ET8E(W
zm-Y33y+MV%?QR}nP;tx5#xo&NqN}Ip%7(<lR~9<6tE#BnICHe-{od~&-rb_px@B+H
z7HiCE4&9m+dU^7JrY5Gjw$;-tBc68Xh=+rU3Q#bJb-Nm;pPP~>G0UcM)2fh_i{{x@
zuS!2ZPs%K3#-+=bzdmf2&$_-Yc9vl>+tE<g=g*%n|9-zd{`>v<{c1il7Hm#GuVrO*
zEA7+UcXxMh&ADl0ntyMOYx3Nl-Me>JeS5R=#*K*F8yg(=R)4>yy?#%UE~p(Ex-v)=
zRQ;8`(|j<)V?#h%`nfq5PwVf`iS_xgbb8#R?c2AX4NkrEUU<pgJ$v5V2%hnB^Le}A
zh=>{I=2$Lfm#+!nxBs(YmU;d<{e3^2Kuzp<w$)oQFE2~-pRwrCugCLW%Gp+BJU=)0
z*Q?d*K{c=S_cJ?1RU@vh3f-;9d2Oa~y54M1j>vp;q!W~lH*MYwYN&?CRl45YUB3U#
z&fR5iSM^GpPusCJXsOq(ijRwy+@J3kx1(U8-M=5nwg3NqKXvkCpo2q08?W@T#KUct
zcMl7yL}+XV)yj{KbWZxWz3cOnlatpT4Y?@nArgLWse8ZNt!=rpLFG}ew0YLqS*DZf
z<}bd!F4j8t-k!*{(c8Bb>nAQ-wEUcoST`H5)ROo6e*4|8`OM2YZE|-<$Awj)t3mDX
zh6V;zb@kQ$^X<HReM67;$$H!79ctn1>gw8*X<hzq4ye)j_0`qWx5{2zPz05McXyXx
z=hok|0OYQ}zrI#|yP5v=toeNnP0g2WcW2v9NO-vFui;54<Fp<%zd0wg1M-;C&(FJh
zb94IE;^%&%Vq&X&XPd2x-Mwv9`1-u}>mIV5I&&t(!=r<VnR#o~*R0TWF*onU7Dc&o
zhJAf?HQ%GD^w*b{LBea^-rlaQqT<5I$=TJ}Iq}PHn>}W^w^r2s{blxkqHcHU>1moa
zHZh<goQ+>j$Me_Q?f1W&*55CpeMMPWdFq@wYna*jEUxaVJU8|D!Wa?NNKkhtd;Q*J
zKYmnHmvcS^c?Q&22X(&c{{A|7|Ni_(uhbsAe!UtLeW0}P>gwvZcV+J=Xos(xGJE!H
zU!kY(-mN=v!Xx+YuB*Qof+KaKxA}yw3JKg__jgV1*6izghODv%2@NWl_xIIazfpbs
zh=Afc&#hTkMa0FIpPH(jePV**w|9IE(krUJzstJ5PBuSDL;YJt=(%;VyRR&A<qlmL
zbaa`mg~g3scduXH?sMI$@KK9d&W#0%&TUg(nnp%OMowB{Rr+em%Ri#5tYYgTzrMQq
z^^&)~<=rDL4BKjIYrlTI9)J4o-MjZ<5Asf$IyLkW*LyoVJ0l)v_kKCu&pSb#l0%1_
zY`@(|4!>h=Zy&!o{rt53`}bRwyeJ5*Eh`a;*r6v9e&B55qg6Fizdu^AbLURge^TOm
zH&~mSZ$I<A>iypDA=~rrYTMOnc-H^EegDg4fBVe0x3>Cy|9oWUJ2r*}u5)if@0>Pz
z^5W&o%visN{dzGw67I%{+5i8ud0X!7W$tp7Pr6tyzh1w8UHQFA_w{=|b)CK3cCLwq
zn}I>S=;0yO?8J~KUfgUye*BnX!4qL(zbf%?Tk5WFn^I4wY>Zg9gCV!5Xw$Ji+12Uu
zYp*@Knsu%PJOWd+ck&%uTib3`zn?#UT2+2ZS$Uj=l~vQ!G}O}4(oFd7_T1ZQ-A5NK
zSg^n-_V?fK_rpIwJG*xBWA9HF-Q_j4w7i<xcrVS)-xs;;bC?Tg;HF@*v`NMUE-tPq
zGiGGuo<4m#xTt88latdLe*rn`GM~)MOf4N9owB~z-DRM7o<8@^zRb&Npgu<Iu9AzF
zmU^GvFUaoH#LCdXyz#gZ@4<ryxwyH5V`Ap?$=m0}p0rg~KAhJ2bz}1JtdEb5dincL
zpFe;8S<7j9u~j!89z5L6zdC+@9jF>R(8&DtAiMmH9DW|2D{r^ouj?&;Q2`oHY?!7K
z8T2N$MN?A~)L$%>?>-vz=t=2egDpu%xj-$G?RSd2JD>mm`FuX82JpO8eBL%Z=l2rN
z$#Yg6cob^+^udu%;i&y}duN&DMm<wEWMJr1H#ZM|`SRtftE;EK<W3gbtF_#3t`(@6
zzVi9G^XIR33ajh=-jqJ0n`O1kn)v;3{r3NM?A^`CU~ux%Qt#7SCaC4bi9|eIka>C8
zq$Tb0brGenuWijwKNaca)%EM!+wAvwQ+9(I#=E)8HYOf!Gt$+2(bFZCvS;R+*xg~Z
zzrJiNH$QcC{r-QerfP>r{g2xpc&d6~;EaBz)iNTy+}GAdZ$I<Cs7OpsPR{(Ut@oyL
z#yf8A*u5LnxBm97Ew-Yv^5$;tr{@kIUVP@YvZeI0>IYt+P%2RPR?#K!3^W>hpfMo9
zl3h%S6*Ml(DVDclTkh>!ySX*oLB(acct9T$GxOWKtjk@Rp2~P^C~yu;xEqtV`>k1Z
zIpfm~CT<N`&`=#;3(INC36SAlP>N-DeiZT%G%m+5qX*1CB%|}(p%E1A3l9|Wfl?Ao
z#tCdLc<dOQEEEqG@u?uj`3_F72(3ZlHyW^`+62-M@sdcyxkg1N(7-du<_8WQ8|E;B
z9M^CXJdS9f;wLJP#8)_jY7=-w5j1cu!@)YOIH5y;fdMjVZ7~5fYIuI?lc!HL&CJ5~
z?c4Y1)2AR0j}Eh(8v)Pi@^5T#yt}J3xL3*)RMX$Bd_MQrhr|5dcmIERc^TCBh>3~W
zl67^JQT*~n3qZr)T^$`4-rU?QDkrzjviRAFvuAy4e|@<)O*eX7MNUxAq^hs4mV(N|
zUteC%GE8oBa&|6#a$;go|4fU*MS3wi9&9;0{S0UX^x%~8iyLcym#vN1=mf0<R9f5H
zSNqO3164I<`S)U8ZIqOh1dS7l$jYvrX`DXoWtIJ(56#cc&j+<GUmg{YH+d>2!wU)&
z^PN+*!%v+(>l+vtc+IT5yxi5zE$j8QwWrRU(fN9#^7FHomzH{i8ZIg?@9ZoN-xF6-
zvPG`yg<|QuJCSXPG5>ij6u@EEVf!rM?X9iex=~vKrfP-e+-h!aUVGd7^Uvq=Utf#P
z5B2iu0=2MLg|1#z_V!lQ$D`ujI`i!Qd~nXaz0G(1-fy=|Ys$6w+Bg^)cAQL2O+9)1
z`0|L|{r&wshc8@Q?Cx#*?LZ@QQEBPbV1L`CH*Q3*vaw}dT@_mObZU4=M8t}f!ONq*
z?=5)P1Zo0IRCZrg`1qJr$%_lTJLTOW$#3IvtB9RDcNUeG>tB2K@L}TJxLI@N$Vj#=
z{PClrSIX3Dl1ah=hQHr#=T|-MH8;t-V^LXM?L7%Jgxl1_boA)a*w<@ABtYr6VDjfL
zU#=YO7Vq8~zoX#buD?acy)G&D+az7KOF1F%^w~4eP{pJrU%r%p1~)D*^PN0>`t-=y
z@(563wwUnRcZ1(No0V_g<jmf7=+L3la*rQB4t`{i5EeE~Wo6>wwxx2nHzYdC+EfI5
zeSLj<=KApU^LP$#`1bUucznoWx89QXd%tTbD<6LLXaB!ntBs6|o;-j4+~l-b0C+5X
z-Sz{Z_C(h8b-9<z{{5-^`{lC#QaND}ktJ8Iggkxn<c3el{cX9kb;P=xnwq?9x7Ggs
zW>xWFfswKC)h(I9+0|)j%XGxLUtL?P?P*o?q=Qe+Mx(yIe)eNsvF<j0dA;tVi{8A+
z30)obHY@LXqM-{1!vWvC3kw{zG&BN|k``^%)z|kwdGaI|C+EcV>({Hiys<Ia%iDXi
z=Mhj#<gme)ce~$5-R3zQ5EL{i>*}hd-`?K#p0vzw?y9S+!?VxMGQD<Qd;K0I&#vCy
ztFNxEUR%6%4kIXq@*R<ze5bj&SyW7H*^V6+vi5Z`jEsz4etuzYZf%n$O<ME2SJpbL
zTU<Y^s%qDtKYvs_|Nj0SzCG`*N$szazrS9u&$_*BZP@y_wYt&UGz<*`r)q^xQYn3N
zW8;m|)#2;)4jX{l@?T$HKYzq}n>{EkFHrTKmVw%IoiarPG_bO(|7g<0Ztsr=*Ms^+
z!fHMjx<s|NWL#9*nsYPg^fX;<vyXdK&KW&_bsk(Y8GO^Q(h6U<=EskUqsNa=-{l_^
zG|6{S=#kT>y^Yh)>3m*Y)Ya0~7FWnr=Xz8IJaYyqz}^_Lb3X&kb}$%#Cq%%dEF^|C
zHq2=b<`dM5+Tx+7r}yd8r%if?|GUTTDhW(TSRh-)#=wxr<`<bDy0hZrqPW_xSCig`
zd}3g551o=Q^RMI2qE}4X8X6wlVmcQ#CLe!uSCoOFK)CQ0)9Iv*8FzLRYH4U_7#{t#
z_|PGzy?;KP=HlR((B9rY%QSo0$H&LD_4UuE?O*0QdsY1Yx?jIuuP?nGTYmEL<>0fk
z&96^V_0D^;mVqJ9Xi2!}{L5kyldi0ZH0G7H`qHHtmXfjrG=Kq`zSx|8K5V*PEGTAp
zC5?`x*>@jZ#LUj8p`+ttTm9|InVH6+tHX3{e?FOfYkU6v-hHwR3;~W7rH!hdkB|3<
z*VWan^#1?;-ri_Xk8MNZ;Vm^ki)=riG4}HEy0jv2@s_l+Qn`0_Tul4__xJbgr>CY?
z{d_vzwB|>_+UV_mQ?)|1K3-*HV2IHLjoUBR-vIL1hYtm+YHF{3e0+R#+xpnuVPf5`
zhK7b_Z$Sg%Jck3kyt;g=Ute3BdygY-xt}a3n%ntgcNv;9FfeGzEZ5(ll6k0w^VIqC
z`h|Me9v*Ig`smT3h6aY&-+q04z1po;>ePu78#2Ft{;XZrH_J3z%i8+(9Y1D<JTH}q
za}SqAWNeAtoL2Sc<MF98W~{hz<A%_8&DZ&M;o;YXZu1`A@o1x_rsk&)A2wuW-`=+N
z*0$W}W!cOOr_O`=V(I7QW^dyb*SquK^`;9eig##o>Ad_dlKt}1(xcCkKqK(e^<pnI
zGP7UVl<J-RTYvwbMZwGcR(eiWTlRHf{{4NQzJ4`*Tf@*Gt!`kj;l`pX?)`FC_f&p<
zb458s#r&wiLY1Gtf4>GzCEU*6pZnP*alTz`ibPx5`FXjU>z$mMbi}%UeR~^yFP4?z
z&JoanuHWp0sU|7rb$=>!BR9EZW@ctxUe>$h{{L1XLBWMbj<}?zr)!&-gn-6;#Ps9V
zG%~YmnV4+Zvzw2BLCa#f?gp<_*JhjNulw+!KsRd3iL~Fl-|t)f?Cfl9OUuaYYik0V
z*?3Lr{#5M!@u>UgxyW1lnSNYnWH_Mn$7kh_Ihzi2b#w%{xVUuQ7SoGa(aJ4;Ys=0Z
zJ2DQnaLzJFJd}Dq`c@E6eBIBdTT4Y47%Wtm>ug|PSh1p_>w@JSlgW1&85mA+gG(9o
zmJH7JMS{m1Ej#2H$QjL`781^u4A%AqxH6CsTHe(UY9?vu>-%rqxbf51uT!T_pYG)3
zv?cLyo3`BcjEhP;ckB@Py<^v|SJUI`G`H2))$Lp6J9}B!+9*)g<CQYG5dZI!_^vNg
z-on-b$l6wYal13^E~r)Zz~PN4yS9>&)9SFbK|Ve`OiWBu=FC}RSNluD)HGDqx@^y*
zpYe4+Q%!SkU0Jr*tyjt{UR*?Eh5vjzP<MLKqD3MS5-Z-k$*KK(*4(Q0*A^+WoQkX8
zpRE9uZaYrq-rpCi9kwRG$*CzRDM`ii;lqcZct6%7x%ljC^Z1W4pdpM~TeHh=)~21C
zvvU2uUtaO`f4AP+o}ce^Uslw)g@FOu#Cp0WW@k`dULL5cy=~|2-P%S*LDAduLetXH
zX8xKtdGcb=r0$Nh20UkH8oM*I^M(BW_BJ#kV#S?1cQ(~0Ye|4g?Ytt;_)oW(ZpczE
z(b?Y~JV<!`?X)3}GpKCbnspU4mGSTI@7E6wHk<wa^W$;9Rn?ajdHesC@k*Qd+`D)0
z)3<M7x3}d^oi!`#)n5xHP(!3Z;oFSnsZ*z_%FEABdJFC}KHemJVeg(jU!F|%UzL4*
z-Kwy)v&!DwSlH6S0-i~%{XVy*wpP`Xolj=Mm){17Z*OhgnsAUwvTY$~<gonxy<g|+
z|1CDly%lpj)=CWGYP3elh7AU-t*w#!-(6onA2hsE{eEwF@N&Pa(fNB-Uw(ghc+vlN
z_x9elTDUj+`Z_KSjtklA_bxlyEk3)<{~KrxMg#Lk_a@N5UAMTtSoZ#chfSrwufDjl
za`L-fuk~i9%5|N)xH4FM_HtHf^Sm|Z=2~Z;o~9dK%Ioe9YNI#roX4bXY`po#k}rS$
z{6T4&#9scy37VGs_xJbOc=5T5>;C>a`fY9a`g@|!D??2{YdkCj<KyFB?^&+2+;8qB
z(8%#CLq|tP&`64(U*B1m@42_PolM%Op`r0&)$hU=7Zk6qjlTZt>)Y-3*Lh9Vn)<`#
z(Z$8?x!+3JY+N~@oy2A~-XKTEMj>J0wYim*m7p5m!=qzsf_2%O8J8|y3W<owxcmM{
zr|{8p+socYy}hx~d2jXiZQDXu2Dw5T);W{b*8cvMd3u`etDBpjo7SI~5d`IR^PLYK
zB(%1+YU=6v9q*UlzV6Aqi4zwtS)%f~F8O%h)kjCWr_P(F2O7T*I^HK+dR(^r#X0Nu
zAzxoz-I{!yPgPYFRFZ-QJ$Ihll6m>d&*$@3XJ20jnuy>zeBsW{;?U)ObCZ6Dm4Jgq
zpn9)X`pHSEpc(OLda<kCyvbo@W7ASqb)9Qfy2-M?yZh~f>&pE$i>6Ewsr_~{-KzfI
zo|>8((3IrsqvG*8W^b;q3f0cNwZ(Je#*MSAN>|0i#9Ub$ZNB&0t!!02;lPQ3pzc@b
zx|qn1A3t{W_v@F=U$R7Hwu|?qWj-?(X$CKw^3%%E(J^X&-Cxu1o54Mi1C2Md4>s+b
z@q`bwW(QQ1$#8H^D+YB^4jc>+2(1CNb7B3oLjntn6%K+|?|{M%+!g_qEiiddISJ}#
zG5EOQ?8iX@qK#uNGbqzDsDauxm@7HZ`fUm-5$75~rQ?AVL}|&y&A`A8a?*kWTJE5Q
z0k^hhr@zlzAaiD}_4RwP4wltVCc3}5%Q~gmw)$Jfy*-uR-mz&hfN~nxiwTpgK?{&T
z?kzw!UqDFbxdUV!2{=f2I)jh8Bk?(kH_TxMEnwnnVLEMT;KBh4Jg~_gflaC3o_l@z
z^hrcoT01^IzOu4XQ$@u^+AL?stAFmUt|yNkb^ZJ6tM)cf5jNjG9yCV-ntNg6l>!&G
zyGmb&#vi{3j!9P+myB<3ZgTPSU!P-H44T!ptNoR6dYW#k-SO@B>sGsVi=DiDdGnFC
zi`{xJZ9Z?edRy-8tZQo`L35Sg-rrvjny>x+c6-|0F6RV3F$M;{BXY$Xw&mYnC#oH$
zp{VF+XlOWT$%hXGTQe`afyVxxot=HUWbTU>8LloaQ)bkNiiu_Y`}4Ev$HVribLQma
z%9~_N`1AKKXy6&t!%f|<$qovX1HO4rPfaZ<E)EU}nX>il-Mg_9Cr-Szt8}%IvGMwf
zzN6jZ+3)Y|on=*;)p`5#=g(7T&t6^i_0`QS*VjgeLmIBT_RTIZfFz9SGY4;N&7K~$
zC1ash=&BoA*xA{mx5xYW`SpPYwmv>SF0Q?xtD>Uf#k$?^f{KbZ-K&0Y3tF8}{q4;~
zVSk&2pb>tN@^cNKL4drX$jHb~A3thdd-wRU@?nFLFE1{hmb0(?lu}t)`SN}J|KF+K
zqqpVEl&kxZX#4NS<7?ZVot>Ti`Ptd5TU%b5e!UwAii8IVr>gI+x^pLH=kDF&+222W
z*pR1x_TS&%rs?No)<$e}nyMAL>rE+WDF1feZeLmJGSCoU$(tL7dw;!J{p$Yy{h-;i
zsI6JC_j@e_z)7UTR&8f>Rn@CUN4t;S(gzO#&U*181JsM=xBKxRb$wt&#0t<tknHR0
zKt0ekZ}09Zy_~!K?lRCU=H=!7``=h<34x57bE1)%z2w6K$JyKV?Ae1-NQ3&1s&e0t
zipOXC{q;3!Z`D>KBO{f+`>usLIyM#+7f+oyabeWftd&_;SKZo@Il1n~L-w<?Oiw?P
zVPs^?y1HuWzJI@78{JQKh4h$r-eUnJHqaEe?``Nn)U+y}fPe`>!NF4}Pfj+zSbKY0
z?xqMGE-o&uk2{pz`%WZn1kE%aeWz$_9Q^O!KhR{gTaU!T$H)6mCv9A@VZ(+Sm7hL;
z4h;w>Fx~$0Lq(SWL&NMl3mlt60s<BsIpUHX9Tzum(&WjaLPARM@$sIQHYOjRGHqI#
z?xbC%ua`l)iDvVyN?)yTZs&{IoYpH>@qp2Dzj$3+V#d!;PtC6Xd$;@jlxfqJmA$<+
z_43_m{NS7n8k=BcXV=!z@hL1Uw5t2F1KJSk>ETgTRgL^EZC$no)G+<>rR3+&pDP0w
zyJcNj5xDWQtGoN^y1&1!J@T4#Yiss$Ioqm?i;G-AEg?|Vyx6_})miiVQ?_s4zG(5{
zv%3@7K>^3GCFP`$?;MLj@9BD>Wo6r#n3<<enzYDou2tmsjS)IUg*!hz2+wqVbX>lE
zjihlJ$l0J_M^HZzT-Pu2xd@s9fA#l<G`O%iBF8yR1+#cxZPLystF`g&-Mg`mkN02y
z@$vEcioUKsOQaFBDc_wI8^}WpiF0l-5T~^8WdSef1Q*5vpgt5RIU*05L1fU1QBciN
z&;e>!1kX0hy#(ruw98d_^h%iqB_=NPn{T)F)z#IfuU@@+FP4RYLBn`ApP*FRLeLlv
zsB`pY<8hOsCmwI_?~k7}W%A_3%Y0{Ny}PsX+Z!bYhNtT^jvBpg{*->5>Gjv^@z<sE
z_bd!t>;{_4nw%(cE%)l`@av%Q;`8<YF8A58Ffi<>Dw9=;*^toK#wWW9H2b;zex3F<
zTLXiD*Voo=c0SL*uz?@suiau1?tL<Wpc$aM@7}&$3!1%4?q^`wpwFfAJmI?Hp{lR1
zUY?k!yfp9r#^m-tfBu}>=+3~vaQ*x`)@uhEnN92e)yP_voVXPhl3M@k<#JHNB_d+R
z-d*er4m*vjo2-TJzCFB-_1cq@lb=3*ym-L^1zuUJ5V3C8j~_q2y0de0)%SO64;*ml
zl{P;&4-_UlvdVNftO{ShF8B7f%ri3#Pn|h4rM<n~Ebq>W;N^axr3#>VxF=7ark>Yh
zVhC90v0+a0U2&<eU%p&v;S@GWJj7C6&dR`WKx9w%1s31gW}q>&)c1J|40Bjsh8|7-
z&XRq9UoEH$z0kRR%G|lRn{TZ6@;iUidHer&w!8+dcbsLGJ1ZzS7__<#v^*eociGh)
zg^#c7Dt(=8wY<BVdw(M%L&MZq?lr33(_WlZpC7W+YbvPcd38<X<{NhPdOOw~UlqFg
z%ZtVRtIFQq>gwqU*_?J3v_uUw1+E>w?h0t4et-S{)pq$&QL|!VIG7n3uJ@O2nA04~
zy#_Qj4yrG&t&Lu8Rr>1Ag>2CB0q1tUPzQ$wv)o%tqPAv5ZU^Pm;^*f;wdOqA>ML6^
zFR!*LU+Oj0=bbJC!-^Acq;|{LR)zT6e!ar0zfR@l*6VS>d3o!EgoSgvv^`gauAX+U
z?sx9fCr@5%y&gAN#rES7VNjjA@$;T9m%NW&(t4J_$Z+ORaLc)a>o`G+E&Akaqx7!-
z`o91F+GW18r~S&BSN(3MyYFl>&^YIkOUkz<-TK+f&0xUo4Aye(%uM62?{>e>Iz3I-
z{EHQ6HumCT_p94-Z=ZfAE+Mhv|L^_(FYhdVo|jS2z|c^<IlB?GROr>!)vxDOzq<%(
zBk!yI4H|bbo1Z<i<X?LF`FT@SLf1xp-Sk^D_c`lj28Qa5*98*e;^rkKCqI4tT3cUV
zAGD0(a2s#<-Ty0AXzbjvV@3S_I@P@Un^L>2%HQea=jZ?Y@k7JP>Xv3R?`}T9cQ-e?
zi*>u!)zzIkdGcbv{lADDdE=zBiw><^aY4&BlG~7hVUDkhOH0_=sHHPzNU*Z7XjocC
z*8chun3a{a@^bdSH@EZmUtQ$d{p97#$VcB|cbBcK{{AlO?yjw%<qcr}fu^{c+4-ZE
zzp&umEf(?e<;$l<bF;3lI(huKd-b<BJKxk*e|rNOI9wI7GAJuCJR+jv?B9;g&cLs)
zuIAoq<B?pX=-d|b*^-gL{Mf3{)my5*X3gIAN$R1-d&}V4+w-q?iE4vZILw$K;Tcp>
zvE$a3%*BSu$1*-YJDY0dUsAF~NlD4eci*vI>E%&dvoaqa>;3fY+cXu>V9DV&-pg&g
z(pUCYmlx-qV7yVg@ZzUW)A#>zeZS{(-?p5aK}o9ru7<~J+S<k*Zs(t_a&=8)@N&Po
zTHEe_6=~g^b~b2t+1qtLD;OMpN?H^wVB?d?xV$a>yxejvrY<ZUThK^WTH3Oj+FJc;
zSVJjlZ&hh0>ow5SaN=RMy&n#7gX$bmF$G$D`r#nE-`BmR9ajy_^X{wwdFsQ1gP`Ru
zpsseWwE3*6-iwRfPai()>~H^fi{Ct(%*}6~oSa<sY-akCw{O=5E_U;r1e(piyxjkF
zyL{b-chjd%U22+rZN@Eq28Mqp<cc?xy}h+mOgCzU*HkUDw+9a%y!Lkb<jIp4gXZJ@
z{P?&ke0^N!@0$OAzk^14e}8+MdrLcX)sh7Z6yDz1`Pu9KEUu&LIK$%N=7A!~H2c~K
z1D>lZ0-Yz7yt<;Ps-gmF5>);F``tJ4gt3BxL${djrN{mD>u%@ozq@PF@ALNm*R*nr
zzuJDk?((Onr`Kl3+kQHs3>pM(=C@lRsO<LQ&d%al_VxRsw&kpRzwh_EUB8(b8Wx{8
zb!t+7zyHQEd3kxsw!)*TQ`P+E>44Tl{e54*|Bb1RnD@%-ny(E~TobReWPf^c64V@u
zt9Zzonwt9Z$;ru9m7kXM$yzT9T<n&4byesrqtvd<>!3MKP=9`1?Cz|GhgzlVYIfYK
z{T^HT_7-Rz)P~BWjbUq}K+TRld-sY;ORol%cUQyXug3rTG(G8gs-QVTL*$!@2~VFr
zJ9YQ&-iY1p?d_%2ncv>uUvF9b47BcMI<HIDxxibcdgZ-cC)ROZtA4+Cc}EAw>sK#b
zUtL|j{Kt<9(D1hRG#&72ja#PqyWg7W#_rnU^SkWzHQ(Lk@Aa<PWnNO5y`EpzD#hzQ
z1H*>nPK)Qwo42dtW75WN+~Rr>+ovykQCbXYQ;M!vTzTbn%sVO3iLu;k)~wOFTY5cq
zY2N<V>vnIc`T42njUWSq=<Rv7)m^rx@gW*hj~ze0{7B+~HEVP{gATXxdfU9~*57yG
z*Vose#R#b>DISw}4hLW~B(FU@wy5~uPphS|ix+LmZoIl8P<iRHWv^zY&(kdYeXLjd
z>WaX{Mejrz7`_$n<phnebno5y<i*9spmn)kwrUz09xGR_JazKq#+fhn<=!@n)DdH4
zWu01aXQHxu%EkzjgaZvp-zUtRsaaoNe|DCsx3XJLz-+VJC(oWO%isSuteK5>)4SR8
z=dTCNJAZg^@Osg1zSHZ9Hz+A7eL2W3|6*qPyuhfaSzO%Qr7th3E?v4b^T&sWpjo=F
zM}+-vZ0=@Yu-NO^%(imD0*B7d&THHD?6FZ*SJzfiIkL;;@W$lhYwXuAy}$g@nz+4D
z+1J)={CQ<%u)C~P$%R>_*<TJY^LzZN^*#0O?rzY)tC{w8{kT05&(F=he3;)prmwu_
z@lDf%Qs#Mc{{6oHU(3)ikXuY=Lig$SU+*pTo}MDnrlh0<nrEsm6J%&83cttihuTCf
zRsD{;d8*oH0;=)AZPQgJuB;5cx-wY(ZuR@UpfyE(GM0;G8mEJD?W>E6kMr(7|0(4<
z6KG-e$&)9$Iy*1k+L~SZ<3pn7{`IeJE%%paWn;Uwxtf9DjtOY_YNxPz*2_yvPn|ml
zs_24(g08F#R)1|L)_qi}EygeN@ElNO3|fG3<3<E%1%Bx2u+Wf@Da(9kr@h*1!PFjc
za_^FlNem2mZr>`p0w#glwP^DnvrgN_-rtz)Ui<ZGc({$bYxq0XYgd;AiFGeMvQ&tH
zfk7s8r+CEHtgBkVs<9>$`&exl8O(*NRU-_-cZx@>T)A@k-MTk7438c^{`&3q`_oph
zUVZ5B;nT~LLEDT9J1iq6mHhcp2<nJ=`S^s?)$Nn3|5Mm2Zy$Gdw)yt*>kJGU<|+~A
z4!&az3rzZY{7}}R7S2!Kze8loMIz1}%wxT_G5PqHSF6`&9c*Gfb^d&KMa2#^pBW3%
z&d$2I+M9uaVVTBvCT(r)(@_zkA|e?tE-aL?ud`_tWnlO(-x+)~{2go9=Vxb2KR$A0
zWo6C0v!gKU+M1c0HgBFfcW&$}!?(A#Y9E(lVql1wU!=dG>)wmK#m~=a?<+rHzyn$+
zXWh@hP*4V%qJA2eFg2Amf`Or-Yt0?*H60xtpZ2LRFo?2oPAlH=Nm`nbfuSJu%|1{c
zAGDJO$22?E33=pE4bEu<hj&23y#)$r)9myc2LFCFJbq>U|9_u8f1bR2`SO~Ynk&1@
z^K)-*I-0is&YhUQkLCXdtdHA!WkaHK=;|=vx3{)l{`2!QXxXiFX>^%0Xk?RFb5=8G
zhz6ABs=wv5wzp@Wn_~$YzL;-U+a>B%zpeg%-OgRRvVMGc2r8LOs=j1^O5*SLs@H=S
zV!y6y=aaqEA*ih437Q!a5)yjy{{8y&`L$saCr-Tn-M82QG-OsV`S!lr-C=7YKm)=@
zj~wxsbm;KmtIK?)dnJwCW}D~heZ6tw#EB%<OCKH{2CZwqxjB7x`uTa2may?ky=a%O
z3s@btcFk{BS659Vqo9)~PlARF|NQ-%f8g#-cJSES5joClr>1IyR*$Y&p^-g%_wL<F
z%F0_yUx%fprNv#ft*EM6m3Ma+XgSo@wPkN_nH>$C$jHp*G3nde+vTCx3&10icb;I@
z_Tfd}-b8|CzrDP@FYhRP4BB5*`u^VEuH&hxsh*&<p2fVj<uM>nK5%%mkuNMPY+6lC
zP1n}nKYpAr-~r7!bX~9b@vwbs-QOzDpr@y%e*JRUKl@M%=X6^&)J0WCvqMy%!#*OY
zGxBw+A3uHs4P$`{FxPG|(9Q+OMu4J~$N#*|ufObX|98pO?CYnF9^J`y6_hG>oUB9{
zRH;*KY;3&tzy8g}<5$+jT7xDMe?4gC_qy{R)Iqd<zi08v;N_r#@%oM8<F25T(Y$jW
zOZM$;xxb#x&d<4ZZoYl}&E%Sz8ZQ|(omui%HzXcj{mL2Comn4m4=Qm$<2RQ!K6#P?
znsYvH_j}EwM~~LMx&vBz#=zjGqN3uWsHkX``|{<>SvHkLI2T>5es}!m=jW*sZRh6M
zW(OzKe!1x0)zx)rfn)QRXS4I;zE)~;J(v2x!myxe^Km0y>;vK8nTF$ivcZrFZtZW-
zT=&s)<*%-2{{1}v{}j*)s>_X_KKBGg=POIS#dTwMeW}_X%Gb-n&CoDArl4TMp+kp2
ztMDEl@7GpPa5#DL<f#)UK(q6u`#~)~#7Zm`(DG-{u9|ndUh7?59qunFDGBP;hJ{T#
z`)4)k@~rN&XSpD2v*PT`WB5R^1YUI%FbQYvGW+wNpPBnlobb?%-xsqv{rt6+!OKH7
zr}^Hk{eD-<wrY!2*_({J@1M`F2Q`pYJ<r>IkJ<Rzf0jun6ZiFJXU*@2G_&!(xyw7H
z`Q_#1w|8@Eq+6H2+fptbz~?u|BJsW69fPUb;bAp3dmcT0?0r{VQ}d+S#YuJby5~MT
zJiNZ*--QbSvlqIigJ(dPH-<N{78{<F1+4)>3}=87%0h)zKO~e`Aj_o~82DNgolwS$
zK?5Cx2Fk&qVIblnDvvxCW8m^a1~ep%V+b8Qfe0GNf^B(38z=`aZ~_nWfShzdK#}Mn
zZgeNN9a;GZvNjClBoxoW)_Fa}vKXr1=;M7q9&x+6xvfe)Jq<LI_W9XaQBl#Q$;bO*
zzwNlZ+<$f4-YU@Yy;Y&B&+OuDcLdKAYz%J_6%<?;x;ji#P0bCurenTc?UY%wR`tnR
zPpgW_$yozhJ1i!)EIMzeE2s#*v$Gg9ng;4$#_g?Al`}7V<Py81;9%xuQ_yHsUJ?GD
z;8Hp3>}xuu@9x}Owl;iy92YO|)!F&`R%!+>6S02QE?;-y&(F`MnU_@d{&>{=>|ReZ
zcr_S%5NP$p&N)-@ER?br51&+W-uC;7u(eUQw&%xp9(Qqff4#6>F6jBWxv3IvlKYKC
zxj|*P`A(4AUAx6r1ugCJtu83oP`Z2l`uv&a%irCxeEQ_c3ctBlN4M4fc-Rh_g01`Y
zQeD=n<i#(mcLzWzq`=_m%s9^=%+hz&FZ=9kI!~WJe?8G%Zeu2B;ty#lRCwvRt~Mrc
zuFuO`cjxZi?yc1o6%pH~UtQ)q+a&dr2(O$?#KMIO&2A$tc#3b=W`ItER&-ssd^uQL
zKThXb-NQqyufJ{j@pAcmlY$2hpmkUWn^?_mU%Gr5v=Se*@i8tgF7-|2QE>6fyz?H@
z>(l!CuS}1x%e-9n?#@n(5$o_h?<Oj{U)h}Q59(Kg);xUsw(aJ>N8S3X0vEf1_F7Dx
zI5DyKUwr-FP)SM2PoF;*&q|dB=OiW2W|`~jVsmft$yhAd|MzV^&ecwO)n_NG`-7I<
zgZi*pS*u=MUmu?{U)jCy#e;**pcY`}_6QwNk55Oed(-C4p=+bIZo0GVFeE$NNbV@O
zu)q<tE>B2U*tF=0hv)wFZ|2RJvu45sf!D$<$NOY2zr4I$R6sx>JUra<($CM&ukJ3-
zPfbnLG&S8C!5EtI>dH#c%4Of%{PuqqfHs4enT3_#uPxtrWwjE>jt6SuGBRs6Y%l<A
z!1(d;@wKUUjE#(@Oqr5$H~-CzjZu3lHeR}X`RViL>Yi0!F1ml6|NoCWXv$@G`TB3~
z?q=WJ?=@8mH1nXcso1@ofkDI$bS}Wu9a1%4UtLX=XtOGLv7qknue%R+>%>EAUxL$;
zOf0+0--EX99cty?TJX?mcCPO%lZ|2#*Dr7H>R{q#U|3P~^i)@We|Swz&C1^@s;W0t
zq9%d1!o`0!b#`_R1r6XFw>ARhOPQX{%dE_W;j2wS(^7H88xr)ul8|+mAGAR0Hcm~^
zytaPw<jJ6wG>6;yZ*L4|U^p-_AmQ&x&<wb^xHza%NWJyn?T<GzL&0aQUpte&u|Mr*
zdhHLI6#{K|29*E{o!j5s1uY(83{3cY5H!R9+649N%*<86%loG3MyI{kV`RuP0?jZo
zz2*mPy#mdP<lo;XWs)HPDoS^#iA2<YxL5uD<-&HkNwa6q1`Ta6v-7?9zqS0mVdS;{
z^2g(^&pqL26S6|!v~WuB6b-3O7be+kIdd~BW2-??Sw!^eH9VeHI%kt-rUo}J<%rm2
zaCup3aIr>`X;+loiIf{$OH7h(1^8Wm-@otP>wkAUq~v$#=gsSXJMVLGt=;vnJ3nj?
ze}De@E)7l1k6*ViFvRj)U45><;j6u>sw!w{9%vht=cN}H7mG?tdWv#0FvOTKUHiW#
zet+D<hYzK!%hv3EyYKfq(5P0*?QQSX*ce^}-DrL)&k-?c*6i6^3m?0ws;jTwvnK|W
za6ywS6DBMWR`<)ezAkp(JS7H(7cLc(cP{~L)?KyAOWG{wLc4t3i^4OTbU+)-A0O|}
z|6E%3?#{{s2ORphJv`j5t){l@>~l7T8KH4;@4oJu_v_cMvi*AbMc?^ZbUc6l{0T~!
zVe4XEZk5@Qd07p#Cu4Q^`fptB)3g8l_{hc2pMTksfk8I;!~{htqm&N!+b1Whe|@=p
z{<hbpoDu&Po@QUOIsJUr=Vxbkz2Em6RLWM!_IGrE+_YkC^!BV*S6151P-I|uk+bWM
z+#22JZ7;sOygbV&)vNosu(0se?fLQZ)L0lwILvnbZr79F0NN$l+R_qJ&_6Xbau;Yc
zB>6bs-=ELt|8ZqyU=Y9hbUMfOoSQ`#?Xs_}xj4%-TgB7Y*H`ZNrAwElOq+I1ub7#k
z#P-d>PyDg_z}={*>FYsjFHJ(`SlMfVW?$L@L928fA;HbSV8Ow7+I|Cgwpc<GblyP=
z*R=WtV6E8sZC%07-C03XEe0U-EI6t+{9$GU&3h{*{A8cT!N|bCvlvu?HU}L1#2*4W
zeuGCD<OGH1+7Zj_#e?JH*MIp^;_Bw6rJ~}}+1Yt(XYq5_<8v(vor<5G0goof?X5cb
zv}omq4Ii5RN=r#?NjS&^S_T7JmCw(A{mIG6p^=f5k@4!wLFO`mhE0BcdOFLlcGtbi
z=dz`*ula)ZIR5+lJ6bk8ENt0Q@9C>HZ3^1BapT&yoyU&3f%ZIci|bvPTYhgPsB*Wp
zja|5K;i|Q3O>4dFj>>_;VA<mDKDB?pUca@YaPhsG&%U6cok^fofuL<QpdJ>e!*Xz=
z`Td&Bpo11bGvJq(`D*Fu?Mt|ydU{&s`+Iw}w6ub1YW95mT_6MsrjkNdR@PV7*3Ooz
z{SsInosh5qwC3p1qa;wTMqK9hVt4+pFE2k|bbUi^G-z1&-QMqUM~@$0y>g{zX=$n3
zv-d76Acq|huioJ0?QL4}BA~Uct!j(9ipq}u?N=8%w}(VVuAHds{%YfKx!`^|ThPYB
zy9I}NZ*5NZpMCzl2}t*@9jjJpxw^PiY;|{WIk7EQS^7f1oUPW&`KgBv9dZIKf>T#_
z2MrK`LPoy+&&IRY3xvLbqi$aXe^_knTqb7by|<d1n(iFG{p!q2<9G4<|NpCwEk0{H
zX~~l(DX#AB*(WEdo;rIr_jBo-rUq7qhUOni39RhwukY+Ej(eMaeqO13{_4-qJ-ob%
z+O<7*eY=%yTJ_~cx82$sHw88@FnmzHy)F0hx3{-#Z~4u)yZdTJM@NU)bjH=IR;ip+
z7Wf<f{QSlJ_4VtM|Ni=Fyy^UDPmTx%1`Cg9?TE?h{-Eh9+gp6HR!gQ#nZn)I+1-74
zo^3T~GhTo1JJ5os)X1*x?%(G>TjoDGF_DXdBjaP|kyEF<zP`P^9pq25oy-gujxJrY
zWW~mffsv7s@3#H=RrU1A6VQ^}i4!MI`d67<9T_=u)~s22zoix~T=-6W`oAxi{oj2%
z+|Hl<|KHzP7KKT-^N%>L0EL%<?B7KfTUuCr=URc<1gqAq3o9wvQdCp~8v9uryZhSR
z{Bv_GPn|s*>gw9c#v}0{Z@zu~KAqE-4mPu=-riPJT)egXeVpf|J3EW-{uR@SSP;9r
zOw-ab611Wu=k~QOQEd@1v1L6yJ$<_$@;QJO@1Ht-`m(qF-X(wj)LgxCMZ?StG?p10
z6f|jfe`;jW&OPG$<LZ8<mTPR$IW2oi=kzCzh{J8X!HJ0rK|B0@y<UI%X%T2BC~8xR
zXZQNf7iYjh+o3;CY047N0OH3-N2B&sd}RH-CU*C=#fwVgii<z1o>$e=^Rq5{v*XFX
zxuVtJj1I~8KUOudZU&n`sBpnrn1G5QhQr{1R0!GdhZ&uZt*|*9Q26Q(NDG668>nz%
zPvnOeV~pHyUp+Y3yl);;Ls?K<+`HGBKbC$L)wwKRqQfM13zT_kY*`uJwluKDNPxUi
zAn+~WCp!~paf;J{Py9N9Obj4XS2JI^dew6hXoe>7aNExcGuhQER(NP?YVMoo*8aNd
zyN)Ml%V%`{-lwlK7c|RQm-+bH{amts`Nf5xqiFo?|6cj~zp8rSqbolJH&{8iy0)rl
znwnnSF8p!gj~^BB{*1C6_V3p%UHz{zJS0RzQ}g8Y%MHzf8>|k<mfu<U=T8l<l!?c|
zg9rD`<70SWziRdBU{}}HcRL>UmF;E&m%yu;TUuLR9%PsQ^3{Zafh}O?p`{9-v<MDD
zf2bco#q`3ar}EH{I>5ARL+R^lC!ZF9)&qrxhQ=K~-Y2{I#*GO1GdwSL{YX6jud#vE
z0aPX|a_!!8>!-iu2i`-W&)p9&E!eTcA~ikz^^s2Dee<{&ey}o$T{s#!ZK-&CO<-?t
zuWs1Je`{B+^!)tnY;Z}*mZqjAlZp=sp#A4xzkZeb3)<zV8N6)8iWMG<-Fkxx3N|cS
zv}nro>Ca2g-MSS8S~CqgFrcZaspM|y^~{r#R5#_`eo@Obm({xk?4o9N{%g+swj~#}
zz;l<UwAa6QHaq{?r>Cb)%icuj#_R~-xB1ZEZhv}H$(I*_plm3t?ssKV>gkfJq2Zaw
zdL*rCer(ts9~(P2Z|~Qz+7AcWK`V;3CLQJKm9ve4?oPS&wvMr4_4@VURaLu`l$Aw=
zgccn+;sTmensn^iwQJy_c7NSp5h<xvpo1Ik*M6THZhw0lXg=a@#pB*rH#aXoboel+
zza}a!K6{_+{mqOek(QR0+fF~-<n874=F_JlYXyY^b<bv|-vNbtcE60}rER&l^>lT&
z>Ym;tU;n4Dzxd2N+uLP3W4_I^t-g~Bnoo$;n;shy@+9x~<9_=$3l=C;e|vND-L}fl
z&u-dQf7{Y8YyGV7Tu%=V$mD-tugCY^(|?ens;at8rTY83yWds@FYl=<dw(z28{`DN
ziod_#@4x@<-rn7F=grGYPfx$?>FHVK;Lvb<|Kn*U=H|Dz-zn<8yE)yz8njmJ)Ku-a
zg34|;_Evq}RR8a1djCGq5L0gCw7Ju!rGYeiPuJVJc+sLa4Gj#xXXo!T{8U=Pr4_-T
z@;CS>sCwSCX;VmS?Ay|s-{0PD((&G$cJ@<7{kxsdQ*LkDmV5izMZ20G1)yEa@9wv^
zw!ZxJdVP3h<<8w}7c6i9?YDk^Z*S?VE1KWaK||I#IU$LO3m@)gxiD${{(n)@=6P2Z
zxpss0I)J9<K+Cn*_+(ay$5kx6x>3IN%fznk?yY%uty0s{UUjO^yD&YzZl(6R9Zu`_
zeCpaA9~?Xxv;iaY@-j_zb@zUoPaX5>|5d)dvopB2w>N5kU2XOKw05Ng#)8vl&V)ES
zJ9k%ato!*?d}oZFtGj#kmhbQH$AeaMetdk~_7*#j#Dmg4?e%+tOifMS-Iuqm3YlO3
zZ|ARXZ(o0$X^_~YbNbTz{r~e`oNG9DSiE`z=v11u(dMAt(C@Y#IN)%0j%D!Cqens8
zV)ZP_E-&*1Eg7)=e&=x>H#hg?Et!|Mq@ETtH8Js+Bqb#k5+1(1?(eV4p7*!6um4?Y
z_^-u$Cv$<cO~nS#5~!(Dmwx&3MeKLXtF)Wi>vk+UTJ}4B_VwAbXPYJ-Vp+O;`Su+v
zYhPSgIK4!dAvZWGYSlvLb}bW=D~oLv6%W?h7#VFkx)GG5^LD*dTmP-4g$0z`m(Q;Q
zEz|~O=d3Fl(CQHsIljKV&(6+XzIy$>TgrESGBb%W@Xwq%^VIqC*B>42w!Ov9C$r+&
zvou-Tsu0k@GQ0nNzh8enzW(phMrQW7Z(A2FS_G=8Rn^tESKe#b|KVu=sg<i%1-ZDi
zgjc(`wB+0lOHEB(ot(e>?KZLFUO}m;OTjC;UteE;eM{!$DYIt1dM7R_x)ijS_QC?k
z=|$Re*}PjAY<MJ%Tvo1J3EBi}Gf!iVN#>-S+n_SS_SgQO&t`AZ@h-nxdObBh`_`6B
zEj_(!;_)>POV@1M7Ut{gJH4K{LH@;yaFZ)nuWA|?Tv%<Zp>d-2&;FjRxwn&ZGBQ>q
zB_)BDS%aGWprb0Jq@_#0-z|TA-v0ldDf+(49a*_wJc^2%HQTy;-KS5VLc+q92`amJ
zOiD^lo;q#XvNdaTu3otUI!onpczo^BJ9lD0vtzn-?A3;#0mf@<qfIM6rP%)YaJZ|#
z|N8y<|7+#zemH{KWLjEUpfYUhPdUaddKMO-3BAu*_SN6k{QgldnH@Q;Iwv@I^09vT
z^-rFp?EU-g_Pe^r$9jW(e0o5Odt151w|xzhX>MRGDb%ekmlhRW`ttJf?7O>4<&NL4
z|6dCl+gDe2pI`H-6I61Qzl#BFw26DZ=R*0}|9Sj;d|`=+3qkD>(Eg&z%1Y4QQ_w1a
z>v7e-d#k^jl}vYde({>>p{6D#Q4x`fEmyBy+h(Pvq_pU0>VePpi@(guUYA*#<86QX
z%m02|9i1!v_WxFFzgKm7aePV17SL|`MT-`NJqI-g8}xK^b$v54Gj-)ahX-9-6Z!b!
zv!b1#qbkmvITLpN_xo_eKewmH*S)+dCM2{7bX3~EKR>5iWHYSw^z;n$^6GMr&dkhQ
z9r|p?4vV)pH@l~woAdF;i@FB~7$c`G-LYdw*ztF_x1V4A_dp{v7bj<-{hFZISl!c`
zqGEpKXJiB<CqH(5zt%XBAJhnV)P3D#32MXeyKw#U`3g3Lk6KQhI%VS&<mJ`1YV~T+
z$rihBgZ9rgH8J_lG;(ERWSsP`QtQUH+}s-*4nDqhzwY<iQ>RWv)d+1g1~ru&#HUY~
zuwZ5Ia?tr=SFc{}>gx;h^Xu!Aw_mq4`}(fmp#20pckW!ZVnxCJ*Ltd|uBWH#U+<AL
z2Cc7bZEekbdTMG`Uf#9U>-W8qtG?`O4%+PlI%q2^JKMDIkxOV;*sHtc_e1;TY`=WD
z>|g#Rce^&YSp)KsM^Iecytt~Ds!yLkU%hOZ+s2I>K|^|zCQY(A_qeE1uWo0I9%#Y$
zEZgdBpgE&myR1}IR5Z-Z!>`Ad&vn1QHhTN3Uh{hw+IXe6Bp>H1eSZ&pnoV5wThsOX
z=FUys{)I!3f#F2}$j^@+Ki*pY{$AL3o4?{qmo5eE1NHLq`je-5ZY8KC@<3tVs)U0&
zpe8t|p~cO>&<<%PF)$PeOyl^=?A^k^zyR&Iu1NUF4(d^n!UucWS>e^62=D-T4;Ls}
z4+$;A+tEeu2tPS7QTdp*pL?H-VU=Bs47e4_!Ob1);n5Kk9DMufA4Nq)E^hAZ>BWa<
zr{3Q7_O&Mi1H;Sd@pTtZPFBDD^iE=8qLe{`!|plK_dso9hPI91aeM=i;~Ek{9W;i+
z5D7tWTN>QCm2d;K?hSexKnDm)fb2Xls^K5MjpZXwyVgf$3=9kmp00i_>zopr07vcl
A`v3p{

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-8.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-8.png
new file mode 100644
index 0000000000000000000000000000000000000000..73c45541410910a8b168428155ac5aaa0dca4c9e
GIT binary patch
literal 19734
zcmeAS@N?(olHy`uVBq!ia0y~yV2S`?4mJh`hJ9%>?l3SguoOFahH!9jaMW<5bTBY5
za29w(7BevLCxS5J3j5`m3=9eko-U3d6?5L)t*$v=`uP9H=jqbcR{CdVTo%Y|yJY0#
z7bqARbS!lDvM+lVaT>SFbj^}lwA$t78AY!ZuY)vq&GFQ9@!Q%XKU*){@A8d<zrVM?
zx4ZxPvf1(NwfE+qm-~J@cl+y4cKhymS61zdoButhEm4ArfuSMOW{xcb0|P_3^8qFX
z1_Mb(ZU%+}DJ(h+3=ES6H!v_T__&Qq45uK8J157$z_8=ZiHXWqm7kvI?kr14Sm5O3
zly`D#padxPxh;yGbYxv$S9^Nh`{&P>*Z%${xXFtnxP^fs;=tOhbzFZw9+%(#NA8Ec
zNdyB!M9<kY<F8e1i8HEfV`O>77#JE(W^7<!*dQ?bY+6;b>cym~CQ{(UbTNUEAwkh3
z;$0&fIEjIEpIDo<Az%|o11Oz2b?z*A88q>Br1*olw6n98#_le&td?jvt(CFi%s;1-
zN(l>Ho;-hk`tV`rmoHz=vaQ~BukyL<+xz?DckbM|>1Ixgj`_!r$K|tMTv#~EvUr(Z
z%#H*0;SbmZ*Tu+ZZwOGbv9<kr+24L;?eA|^wZFD}`t(UeL}bbG`E^m8oSdINf4;ob
zd-{`yj?c<d`|W<Mh^ze?TKeWjpq-uFsk3K8XBwr>vDIPFDEyPz7QHGV%0OS=|8P5h
z_~~i7Ta%7*{rz-WKkMeErO(dKU%$|~{Z+sHzX|Q_?7i*Wr_Z0Cu5$GF@z?8izq{1P
z%>HHj{=dG}-`|yfI>B)LkjTPng@lLGK7IIbVWP78ma4B=PoF(|rC<NETdwAV<JGm%
z;qo;f8h4exUUuI8{~ftaGxSPg=gphPxBuUl%l@Y2?_yNd)Uy8n`|Bqq%3#4B+_EE;
z=Wsw+*fguMHyQESSJ%Z_dtPeg7Ju^o{d!5`v=atAwcl>0Pg-Jrzb3e@uFi<3d4J)~
z8GruNv`;WiI>HgVry|hP)AQ8%^VfG2J}&wFcDr?9i^1vh_W##hxDb%ee>nGU*Rjt3
z^QPHI>D)0go9+Ab)YRabnmwB~Z=O1D-n#mKpXX0XiJ$-Y_3PCj8~E*hEZFz!mA38Q
zFPFcmaj!di`EoEjzuc8wrLW)IKGr9@I`MGZ%g^WSuP^bOoU!SSgOgK}lv&P-x3{-j
zS8FsZ72Hs8`pMI$o|FFly1xI_+U@ry?ccvYuKKNM?Z>0yla?5zp0a3JbK-=@-ye_r
zt%{%Z7`OLImpnYg+ACuj^!<MQ{%dO@lkeN*-LW`&^ytfO{e224I~&)<?$%OLa<Z-d
zrjl}3Y0beReioe>%MvCQmz8ZRDlRVl^u+V`z7;Dp_I^HRZB_be%CR2F#aCB{d;i)$
z;pyYYi@)EmkI%loE;JxuLh!Nv*^eJTUc6(6Md_<6p0T^ju7=0grr!Vld_w7i1B~i@
zBIb)8+<#v7_Liomrf2D^D;E#*+xwhg>T*2Lq{(&dzKl&pz{QIfxwyH5Pfyb|&A6aY
z`|s!TNlX6y{hj^m%S)@89~<2I<ziD#tcu&a%UGWI`osP9Jricn)_(a(exI<KPr&Z7
zw_gr0^NUDsy0$KMwRn6@U^}0z)<?s~$80{GP?oZ-+R`Uyt2O)VvW^Z8RaMoMaeJ#;
z)<ie3owlv;n_-aHw3(gpdYVL=jg3vog9D6PGcUVUR#s+RTGE+yecjrAyI&shwO^<5
z91eJWZSB=Hk;Ye71Uh?9)48}Vc6Z3$s#4ReD=RLjUr5Mhm3OizeAL3k#PsCl%awQT
z#8g&QtqNNkm33i3<E2ZNOe#O6xVpKmirZT?NsoQQ{rdm0|9@TI|K*JF`4u%kKl#-O
z#dKd?9j<L@85tKBmvv>uM6IwjD`uHyukxI%_Uqg2{IB0`=dX_4UB<=7SN1I+Hp<Pd
z?b(@`%KG~Hl@%2;q}K5q4v34JH?Q)UWE!Ve7vr6lJ$q~p8}KM=YoC5`bMtaRF|o9o
z&u7iQ{k8x5W%9)Zj?Bsi1{W%x&n<s*TU<Xb=SGg%;@I6~Zed|zo&D0+pI=()-MVeA
zMd6_p;p^vpJR<CWWBb!5Pj3AGzsz@bPxZT<$3J}eVq%ta<3Yi@{r~^Ik2a5(@ofM9
zoyU(Jl{A}uR>H1k$HaN_^6u}i{G6t&q;zOS)Yesp_y68eXI=KjKt<Bd&aQ3${{1WC
zK@64T<9)K{>dpi;YdXbjpQ;_6_2$OLN&nv8b#F_2v3!1A(B`zWS5}2;dj|RW^+}oM
zt<m52!|C3=d$X*|*MXwe^VRkB^QY;>t}4G@8~*R#zjKuWF`K)^^<QnjUw3(-bNiH;
zGc`Rwef}H_N-0mL$G@7HK5yce`pbJKiAYMWOrKvHHeD|^Xu4kPoAr+-EIDxCz@&PP
z81va@)8eBob8ngO%36hZdV0<>&7RgLW2rRz?6T_jd#As2nr!I$LXIP1M_OCri#Inn
zS3T}EHz|D;viH*|?QgX+XU+s=#oAcEyu5X%rs=N!^QY$O>Tv(fX=g9-+y7bMJKOB$
z`OdDcpv7*zUVkhLYQxq>E!|i9dsX7$wyZllHaa;we?6hxpYi$G*;&Tvee)_Fan}BL
z*v_Y@ZEYPr>C2PJ{;$qizYi%W*ucgkvEcLb^PiO>#UH<Xnfc%4!<UzrIU^64K5|{W
zBMnqGot}Q(`u(284-dEBj#sd(`%}@{*0w75_O@S-y7f!m+%RNiXTM#4V6%#8&W(V$
zxVT?mugA~*BeFw|TTJJ|=JR%|!`4Q<{P}$T^#1;SK3S_JuH9lUFZ<hvCM7L8)+4EW
z*kH=6S)lB7b94IX>(|34ZAm)HHB~d%t^WV-`=!Ta%P)lO>d@c+C+OzQo3CzeUaoTT
z^l5K#{kSRHw{KtOKVQ$&%gbw$itYbDpSd_WH@2?<W#GM4UoW-G*R42l!ehB@v-V@x
z#d(KT3QsAp{Q2`|TcX6VdA8L(zu)h_zanDeqK}un^(EU9C0<`&Z>|-#CZnabRWkkj
zyi$wz^8bId2ktCNO+MJfs%n>ZXU5j->rzv-LXGCt|Eqj_VWBhM?|pwhc`q(~eXZ?m
znz5Sitdu$S_4g!<QaS?H#aJ%(pKo{U;o<h)^LD?_RQ!0@-uv$EZt40zAKNF-W4fOG
z`Po^Jt{k)3pxhzx`Po_RPdgSmw~Osm%RW6#_t@L*_w!6LE*v;<?wsDqg}e7OnMTyr
z)w%5~dg}A{)9260ykVS+4<0Ht<Z*6Ge9>q9?!uXw#-=GJ1or-XHv7}ZkAY53O=`Zg
zmOMP%uC1ixw0{4;U3vTemdRQaI2fm$3D{Zm^vb^4>U4Xib%%c3_vcs_voq-G>hSQK
zoHc)sFA~|)x48KExm7VcHwg&|nbiHMxVkdf-P6-^Rn*p1X=i3E+*SH|mCsBgt@wR=
zuC0sB&fk(yn|^*?sE0?#t*zP1nc4X={{H$3O7X|~<<~zuJ6l^t#buI7@-d#+T_r06
zCW{IRF8ulV`Rc5zt3G}FSom!54jn0-?+L~{VlE3RK0iNyeUWSTmk)>eS39@!W!>7c
z^6<aAyUVrp^!#pb&%gfT<73mB9|fxF>e_~ef$aQpQ~LY+|NQy$<oWaEpqi75o4feZ
z<OfwL>FKL0KR*MN#MAWS-)%VmWBq*LovEkAzP`HZeed4ATf0hEgUZPJb-#U2PuC9z
z1<A@__21f352SbwU-<j|{(7y@RWF+P?Jg|yo&Duj_WI1@eX^^<*3NS4ky!Zc?d{cm
zbFC&VQFLy5v3C2tOC5sBCKVqNewW4Uf4~2KoNn~CDf{>Df4P3$$@Ay0|NQ)XYw~fv
ztr-^&UCCaYv4@@e=&jx5>*XpQFfLuX^yTdQeHVKqjknbPE|ayb3fY=<b<*_d)3dIw
zTH4XU@%GkMZ*FnDDa)5H|MzYC{>%dnj9gq?L8qtbUR@oozxUUx)mb+-EZi*5dHqGd
z{l5!uZf*`;>LvR1?d|J{ws-6Q`|b!^8wF~WU0UjWb!Tz9Y33!Dsal~ypz3H-s(0wB
zkdu-94blZKFR4~mRIKovtR`h$wgzN(+}<ipE32rj+1IC){A}H5|K~$<-M^pdckBQE
zeRXZ^Y?aJYQ#83aI4;zFznlJlZ`14G4{|#B`R}7Y$*q|)N9JC0Xw#4F3`e>6_^x#b
zDu=9#v21N=$#`>PqgC0P8OM61mw)(BQ2Opp<mYE+Cr_U~{a*e5+Pl^7_s+7b-KFL;
zW5K7Vr(gekJ|7g_qSDf<qqb&Q{w^$#)e2d$;K73gS(}Q0>3XrCVA6}-^`yY(U`gR@
zvs@KV`+q+c*ILH}I~uHt-oEbL-tTd>zg{i}wNq7A=HK7<>hA9Cpql#A6HicGo_M&e
z>T$36mqXn88K<UbR{i;S{OQx9r-U7p5*~7a5=To5i|zM2#kaO*Pp_%1{d!V;e#ZNI
zd%HS2C!S5a9RL4UxM|*<h{wnK!xIt~tO{AV=;r2hZAHa{b+Z2sl<Knn-(yw&ZcQ^g
zf7YKLA1CSkfB5_Pgw)M9-@M+;buM{r`|I6rx7`LMnzb=IgKlrjovc#(_v`hpuC7bW
z{5A`|->deIum8K%$;rv2=!u7`i%Z6h4T-xR_gT-eDf)iUdIP96UJ#moe%{q1ox-NI
zze;$e&3y9rd~B<|KRv!~<y`A>ElbPD$jC@gfUB&`y1ELK=2nHQe6%L<v6`%9kxTBa
zEf;qdKc6yX3b^?`>CNR<*8dm%e0{G@P;~y%U;oEB_x85ZXA=?^b&Kn-3SS>*#N%ve
zXeecpG2z|5-+8L4s+Mbx#_Xxs2;!M$TsY9VxRjqYd&8-z+UZroGp0{pUi|#rMz+-~
z7oR>_b!xi)`j3x~pHADHd236i5s$O5x?hNcL&L6;my7gbcV%2y;0S80+5LK<{Pxby
z;QT!w*&d!c+S<|r&Vry2*_eF%)t#NiQdT7^4nMjbySps&;v&~o@%!!cdrOV)-Mjbd
z($elnj~{PMJ1bTC`kL?hJ)gR4W1c>H1}dtm9(AhEu?adbD`P{!*>m%3S5J?xyZO)P
zAg8d}iTn5OKMYR2^py2dU0t1@jOLjySHt5qwY0oIVXNG4v*@^7wa?er*RNlXuU~uK
z{(sEw^7q%;c%`{&4~eXMz5oB*cXxJfuKV$jJ@?Lzz+P$dvQH=OL_0Qz?yLD3eJNqC
zZS^!z5F|XDHB~=8?(wnS$zSU83+GuBF0%Cztzqgccp3*vCb_q_Wgh7ejM`tfH*8&u
z=F3k~d&P94GA=Lk1r=eF-8qd#YhIm6+q}|$zTK~Xzu$j7Ykpr~L&Ix_1BXg~7N7X^
z<;#^Fg^!=Se}CS6^W7V7x8GlPv|If3ot?$M9=6L*nLmI1GT+&&yrycc3Ru{*xxGDl
z!GeQTFBZ0cIi<b+#o~UuOTzv(3pb^nwyI2d*Dv0?i=9bqU9=<E*eff8L$~Eb`pz;r
zdGqig-LQ2rmQ%IE{Y<m26nqN^XliP1{t7Z=<??x#x<s|FY|oER=jSZoWYM`Z;nUO8
z+KP&fsi&uf?yvhh$5w`6d%$wPxmOmsa@Pqtb1npT9PVu364lB$)WYe*%ao^QVG%Lg
zJb&8u?b|oEGwtAE63gRy$fY665w6;O?BrL_P|5~@WgK^zzcM5G$Wl7r9hzAg7!r&?
zePo>$w$rv35*Qg6X7sSFW|?DC8MHcleb`*9(kHK9zkc(OfgvxTtZW;fyxkg5KgPh|
z!?ZiiY^QAnHh3L)b#?XC{q^<f{LBmqlUljOU!7E+U-Hc$A(3T`P{49OS<j$$KG~3!
zL8{OBmbK*G+~m48dVAS71Fx8rlqH+nABeo)|9@XnQqmk-p5-_8*YDrl9`Gn^ecal0
zvAeCRB~)KMIXO9MV^Zti{jaxk^-g}RoG`VaDf6J$RIQiWZs!$$%J7=DeS7)J>NL+)
z@%#6I%=`E6-_mb4&(E=Z{6=w#g}l5xD=VvIwS?cnBK{a&@F+tf@3d+K@R$IL&i4b^
zQVa|YMMXs-^788+JV^NY^QWegl2i7zH9KEbetv#_dV9P3LVbUK|G(dE=ePEqKYRA-
z6wTl(I|`G3{`$45>gy{|k|_D}<74#42tViM)@UsglPfo!9XPXYZ(F;$y+P>8mdxOE
z{)4)fs}D+96fBsgAHQzL4vW^dHZ4_E*SovRukR{-z3x|{>g==2rpMRqyzuCMm#DVY
zA1i%*e~|39+}k43(yKRYFqmsq>UF>7bMLu1mW!oKvtqt)jud6&-Y&wpx@713eZS|}
zvP@B6n)ds~zS`ZOw)v7JDo2kV^_;Y5@#3pnGJ`>V)7fUZyIz@s>d>tj7aw&U_nB?x
zD{Y>4<=NTUS2v}42OrA|^$}!ZNKj<uopv)md{fR%qsq!kO*6A=`_A6J9c^f62x<cK
z$y%5BCZ9ib>e5p0>0NiyCEC)?%~^SGZ}sZb)6-6!KObIJ_HAo@atse6H$y{E-t%*F
zLDel26O+ug?O9h(?fdV=b2#Alx3{7DYAS#J{JApy{JdX3pU;==`}uPD{E|OE3h!1v
zp9?B6|NQ;?^!@wwX=i6;-rZHY%&uS5z?Flc;pmhv%l{b}8Fkexj|>Qyz;k%VBc>92
zdwbijSAt(%SlA3IHf62LG&D6mCr+FQ%J`x(GCH1CB`+o{Ieob$bXCa3J3EV0CEAwx
z%v_Xrch}3?`TI*(XQnfWF)%ERDJ$EyXYXF_-0vShZhWur7ZNgM(V|6f_P@KhxE)mP
z{(iUHf3mv&wcGjobzgq^l6dg{yIWgN?_03fxt))Tm-p(GmBCYI&C0rEY$**+YlX*_
zbJW(>mVSJ6)akZ<%#MWn^|ngN%BAORzgz5iw(x<}#EBF6=8LTfT|MpAmdwSv(c5CK
z+pg(rU}b1%y_0j`)TvXKetv!~yY1=o=kXusELgBWX*r{@k&(*Fwz&BLtHX3<Z7MGO
zd)<^BvN~+-g^i)B!}h+i(hmoXs2=ELVPO%8T2uG&(NXPni@EsuK`Cv@)TvJk-fhdh
zowE6+h@4#A-Nzo@-o-y6x0K(jTz+bbX7Cerp?-P$cV+h5r}=}^!nq1x=lOQEQ>IT}
zZdv>c+$q&iRdp2<6#Ulu3e@W=c+lXiT=wb7NvG?--)ug=CHXjC>FaA}_vtDqIDk^{
zG~H;KS!-*5f6F{QP50HMrKfr8&#&oV<7Q|GS{J%HtgEXl$jPb6Z;nM`{p9MZs$G*N
zPkwv6SIX3D<;s<y`pwD7NyT$*^!BjN&(4-!k1b#6)XH^hV{-eX$&*8Om*uLes94-d
zKQ%=&YIoUMtCANB6rI~n81S5(W$NA7*x1@vS_&Fc);SVsua$nViB-xxZ;qH=%!=UU
zewsQuKC8pl2BoAdIb3REBcr}wuKrKq+NiBwpaF<~KOXb5va-IMnLh8LxBlLcj9cpq
zA0NB5A+h<<<Hx3zpHe`LzvSb6v#d(9Ca&)+NCjE5U{mU8Eknb=&d$!Ga+BxGd2=Dd
z^U@N}$tIbXmSpequc+7&wmz=*@Z%CukZPS}OX5wqK5slB3mWDH4@-7zzLsz>2E=4g
zTYQj-;eb=dhC9sQq@<XzlYJQnBWPT_8I(LOB<y4d72XV!!2_IzCVuPskp?(9vNzme
zMjjRg75N81CUQi)Yt(cC4YPwaqK}O7^iF;avYNp_5~N-15J)4Ax`La5fg4gKF)-+~
zG(44?p~M0j%Li+8YJMsQ9bg4H_~-?TopwkLRs;=#;q>YDIZAWv>-X8%*nqkzJv}{6
zzi)5PU%z34fqD-Q1H%-yJjo4QF?%Wk*YEunweYP<B|}4~s7XXx{lb);r3XN%{m#zf
zsWWH3e6x^&p&{r<F7vdrX_sGITs(F9^zfAKulGNF{`~dRX?<-IlMp*QJ5bvfG~_mC
zj!gUGS65apmb0w_jRov_KCk-8>({G)eSMvMu!(j1r$7dVr95w^zAnDqpz2xr`r6e7
zM&@<5l8zoZlJV!q$6c@2?FRMQw&vfDTfgtus$XAUKQEYbHVrf?A|fif6x3|HwIvhO
zPn=ivO7rdQ?eD|v`4|`q1oLD!sAQg*VF()XO-f3d_`Ce=t)*A4gz!q4cz{N~K;r^W
zo}}=~+r?;yue<W=>ucFQ`-%?>rs+n5>W#=|cK&P6=hv?@N<F1vX}MEHj-BDbvxw%W
za(C<!K%==AFJ1(VYxvEv2+a7OKEGCN_St1Sc38B()!+AH5zpZZt3p@HY%|Zi<gzw;
z`?mj91_lAWQl>#sQMcAsGB7YaD7s^p;CboB#^kB9XGcGYTBGdVcjEA2=Y<Ow^4(q?
zx_VicsJ51^?cKy`4-b!p*&(Y!JeT{;H7dWr&=AzgcG`AImw4~Bwb9{!e}BI|$Ff*N
zUOxVb;q_m$&tJa0`NZ3{#F(#lbfdSOxPAL}Vsu7E#=-)2hJt;z)!#DC&$H#btrxSS
z;Pm^`-EMcCS8_yLdMcLv@K9^(wWO=-Vxy<)#a>$I+<s+6pz`l;pq}Y+|M_8WZ*BFJ
zc7A<rZRzdY?K8`484j$yyd^W(H22n(#Awhs-nqH2mk1u5I;Bg~$#Yfs`gy;;zh7T|
zzxMh=;nusm%cmzw%rZ=FJN(hp({t0!oT?88*}bb)Ff;`9XgYm=u#Gn?Ft{xFSkJ{K
zR&LM;=I{GnhYlSwDR|&;cBZlWa=*DjpmDFW=Jz#BO+)uqe-GPT_SUQF1p~u@qdRjC
zXlbpzzCJ!46d(5W`wssDjqHAXeLdXEt1E0>%*t0+S7)D@VOaHY>2$8x%{%t9e%Q{;
z&=C2<_~_T2PemRcXk?x`fBt$g-6)Y;=K1$*o<4t`eSKZ*w_G_nIZ!tg)ZdKVQQ+9l
zFMsW{{{A(fvFbUqr%hYtZ})S_1=Igu*Vkvhy|wk3JqH7Ws*1Y0`^S$Tx%l{|&7VJC
zNl9r-+SysJ_xa`Itg*4Nxw6>3-|08cVNeJ8>YmDCPzx3`;_?06-L0js!;Iw)2Hi1A
zU}Si(YR*=+><0%LL1DIN@nX~BXFipcl`E^izq_?5^|WdK-`(%`UH<d)^V8R_qo4eH
zc)0!b&gb)jH>aI70d>LT?PA#Z<w8I~cDMX~?C08;#@l{^ObiX#n`?iU>BjB?jRk%a
z&v$osU!8e*nUrPG60_V}CBD}stx8s~@ySG_d<KQc&CThrHy)P@_VVhgt)6dJ8?rvm
zRyS&kNBP~->6+)0SwRI&M2E4|n$*+NKm%eMH*Wlvd+*-8uFlSj*VaatzPYh+b)U7V
zX=wHLcUPaBoZNk9{_NSS-@M5QT^n^Z@pta_yK4OW{6ByGj6Ga_yi{NV1B1rXvUhh@
zw(&}9DJUFBtX>_q_Ra70D%#rKi`{xJ%`i;nVqL*xXJ-d0L8eTav<TF<cyV#@t-aOT
z|9zUie}&gnExw26WWi0ER*T2J?<6H9xwyErw%BTDc(f(H`0?>^xJ~_|Bb}h32yXp7
z1xFu?=|(L9^{oE>{=Pkbb^QK)X1TYPSe3qt`4|JK@}1@gZrHSWGxuK&^Or@hLpJQU
z0L^-wnQ6SW<mDx&`TPEFZfIb*TX<YH>+Y_tR%LHioH^sO_uH*(&@ds$tW#69;}2in
z!3J&$%~`*Gy<Xg&h>Yrk=i_wV1vg%L+WHpM0aos}DLPvH<oWZ}!OQ(XEv|btpM8IS
z>yx#91sYa+y?+0?@c7!VZ1WFPaYQgMM4UNm5&>!`6h3M>ylu~(J=*hxMMOfLm?XHl
zwW+Lh>y>hy_x<bj`0TH*u7aBSmo8scjjg*L8W%SYI=yphs`l!bokgI!_uHGBi(g(|
zZXKg+ViM9TZGP?9+1cxVO2#sRsz~#oy;Y^5>*MYw-oCjx{p;K9_r<FHDk^qdTN}N6
z%^IEd)_0&WgR^PD6%`c|pMwUD%x3%Ut@>JYBX9Ff(7-Hc!1(fV|LYSJol71a;k=n+
z_VoF4@m+p-dGA7<7p#5=o{H=+j=Owexxf6=r%yA_&9VHJYiVie<>?vd;?mO8+^ia#
zcbregB7xsi*1GIUm#FrZqNiT%>kk}oxLf=EZq&}ArE+yY5<P<sxACS*v`y2Ad{por
zH2lTRC!_Ic`T8B;{+QR!u(eU3{xl~ir&Zyj7AI%tsgoux`tqejRbBmdzqD!Al%U|?
z(jOlZTU%OIq@A6$Dspq$!q=dI^Q)^uH@9nhW?fv=3hE>O{QUg&nVH6*j((rK{krY<
zs=WXG`zK{plF@0C?WqXv1)cjLvQR}g;_;3!E!bLs4Gxcw^<F;I%3b>Eie_tTYv$Ee
zp<O*aB|G}sk6%^a-&Nh_Z~r$0G;}geCvwr%)#0miZf@H3e&27C%u6b!85bV>k~{SX
z6!{LIj%-rWA|YYnZd)}=%bN=?YWYP)MNPcDckf=)v@;UDlE%;4j=$6bDURsaETuD}
z8{GI6*l>q=K2l@C`SFuqNR5fs4M;s!SStjS$B~;&pjHTMQW(^T0kwXTI9%5CBe#Bh
z1a~1fqtIJJ9K6%27aRmHPyiVx25QuR-OAH=;;W%62ciqD>4dXOO@sp_q|~pwgB<8I
zL#c!x)D2^p(F1DEf!kMve1_CKYeVVtGp=Uol{9wKjoMQ1%^-kjUfr+EbbdzFH$R`x
zFaIVG!1V3y?d3a*pIcQ+6flCDq%CZxZ8w}iG)S@e9~uuJ*CugA>1^J&&ehMa@6qGO
zppKTky*+5;?d&Ym>$cx++=u`*limB}T;JW_l-hl3OQv#teLX8HYvzj!3$5z^{VBbF
z{1qrX9hlkquJlM6i^$5ZooSqY>hx)EXy;+wPpSL0-{(F%KVLsS{=U-p_jh&%&$TKA
z%`Sr~kfX<rWu2R2S@mY)@iSFCrxU=j^r*))0yOk}X{q<rDN~m0*kR!rR8q2KmRatq
ziOTL-mzVioFPXp4xjpN_fySd|@r&L2!=9d+y0z|a)z9C*y(fVtA|0FAGSAL3eRXB!
z<x-oeTOm#5G=Kg$?}X@WIWza{*&`w?oqhk=+qY|H%#g^vyDRi~pX}~eJA#9Qx0b(;
z^POk2^Tglh=jL9XWtuG_E1Sz7KFK8E0K?DUzh58bx8HN@{e*1LAVk0^(AXWXv>9k*
z@9?*<wNW>}$9sl_O>^s&T56blY(>`9RjzWMANSj9>FfLJMsF**5x2}ovbDYab-R4s
zj!yLra-h;$>`@P!wz9IbqoZT%Hg;CllLkDp_H}={p8L<S2&}8Ct9sZfzOI6Q_SvvE
zwd>0G!w-WR;$A!7yveDot`@)b?(yT~`|)!?1Fz4{%#7Mqvhvgv&Elig9$Me*!gsZ6
zD?tj1h$rt}zh2!ft}k}0?%^TU-~S%*$XbQK>V&H(${)Ca+9IIk34FJUii*}%_!S11
zNJ>ghS|VkdB~p10G&Fd1b$IsCE>SOk|LH1{Z43A8u}Mu&*S58dovIxkwzKHzo6Ehd
z*Z+L3?b_YG8sY@=+X<!_7aVw{ObTw4eR|@l8^3SQjp9Rx4{y!8Yn7UsYN=Cle_QVC
z9JASn4j=BedH>?#;!QVmUR_-szA)XQ?9Gf<S6458d3kyEi3y6Jd6GSQ_I$ZpejhYK
z_$|4(xOi*vbHA@|Z+~}_yS^#n2_J)l=5^d9y(g$rD|pcG>GNk*0;T=WPfxF|3|7~T
z*>U0F*|(sMZT-JJxA*2u0p;*+&6o1$?yL&cc6D{tR8(|S_nQ-tk+C8uC}_&OdF!4$
zN%>v4*sV7xD{B>K0B*trfvamGgH5xq>6GkU=-j?4YHQZFg3yFdPfm9A^jxX^es{TJ
zGuz7-7Z=Ym%bm5W?Cq*^bFJ@xdamOMDnuecwU>e?Xr_@{f6szeZt<)a7Z!rnU91XS
zEg~uT(!h+rf3<u2qjxv=R2Hv|-0W6YS0`nbGvi+Md)uSOj=fskZ?|h-{v>X2nWz=L
zZH<ty@YESIBHkFDJb99@H>~i|rAu9RukR|&&b_naW81M8UZC6!wwB>DN_mOD08h%8
z6C)3*)VUM8F4%%vN!Z3Ji7i->%EuPdh<A<fDh5=e<Eb(dIvYyg+%U|&vB7cw-*2<!
zYQF@60{`dFpP<QRt&kN8{{H^y{DKS&4`x}Gc3m*w0Zl1@x`mVd?N)+TnLIeyJZZ_A
zH9DaAz|CoAi=GKEGH4XC>Q0M{*QoU4jaa|`->!Q#pM60cJJ7HL&*2U4R|hO?s`~zJ
zZNL4$8=cB53=BK!{N^gnu`XW+ntRp^UiQNN|4;vge-jfEfBpG<ey)KL1H+tV(};Hm
zS2DhSadC0h-Cd;{fB*gaxAfban?f>z3=HR74;1nH%~e_xwRKgWoNd&bf1nXE6_q6{
z?ko%p1)t|gZ2(yanvBuaJ-ctMLTdfbr_({Lnvjqwo7>nK96F7w8?CwT&ON-6G5gVx
zPA)F4po)qeY&;SQv(GL&a>Qk8=4H3LyGny2B4)Vt%e_6L$i%=9W4@ei4QQnL_O@J5
zyS-1=T1{SFer^2zxaI!yul@M=cx&Nfx1T?MS{8ROFig>q()s@2i+Jy^U%x;L5~Qrl
z)@*KPVqi$%suNqt3F?$DpI>+D=3xeg9h|qcuRs67mVJL;t(Tu)SX9(3zqwXVKWqwo
z`6++X*6i!E%J$E%`{fzD%;(~+($^)Qo_L0?404sVD!K6D;^M1IJSR)<TGrmqzQ2)?
zp<!+?^R*^c?k`t@{a5<TGy<;#30)QPVun5Yy4f3Reiqq&JR-a*XlYkcQc}qFyjWSg
znh4OKHK^yk)O-4>^z-ws*WP7j=R0w@*+_t);By84wCaMa1G5Ygn`W8kuLI40G&VMF
z{}Pv(nJHzE(BS0kyfyJKTj;u&oBQ%#Tv(WOd0FqG#f!IAf6u$RGWhwfb+OBQBqzIb
zGcd%=49=eZ_;~;8m&@nxd-~98(lWoftKPiHIXlz%xMGZF(9=^>zrNf3UQ1isJ9xR@
zRF%I^_3H!g?keSuO+VDa*?LRsS^^`(nM2Dt?luQYui3D{K-Ru)kITES=j;CkgIadq
z+&^#0y&YEi>dM7cp{rFy<1dPBoqK-=1H)zm*B5egZYB86HuDAfbz9EOBJcOb-`+&Z
z+SkRLon^ZFQ6VVx)&GD0|K*>bpSPFTFfbh0Yq|BHmyb_KE0^e%ZMo5)iBm;I#ZO<p
zlvo@~+x&8}zunH2zvoz&`%Ma27qe4aE_}m$c>`XC0x?j;UuggZz|9=9)|M6xZEbJ+
zzh8nECZGA?8z?Y`t0}B-ooNRn14B$_F!QyChugiM*gZWxJv<;_LfQL!wMQS9y}!5i
z!Gi==78VidH=jO#&aaRuEGz`g+#KFk_xIPz`2BU}HNFf7)_y!H9{-|Se_z3kX;Y_$
zDt%v8SXAp*e=)<e5;V1QulhY`l+snN<o=Gr#h~K$U^Bb-B(2a@OD-?>7q@zs=JfE(
z%ga|6xpqt2$uk5Lfd<oUKOA7@yA5hdsn4&u<f+`Gz0u_Wcvfm{)Y30sN<4$!-rD;0
zK{NlV*xhBz?k0ogtacPE1g#ue8^8bF!%*J+|NrftSNkpU=kMRyKR!I1wB*;<*RRja
zG`_Vty?>Tju9oMi6DKa5nyT$9EzH1Be+&{_QzuVeT=(}^=F?MCjd+|zwZo>U%(bhH
z^7Qn4b#?W0yB`mjgX5k^N=dB(EgY!-|8LjlbJlP3i~fJT9&eg|&*txQ`~Mdwsd~S8
zzYjEvD=II)-d(QJ#kq~=;?K{|O{>4<m}Xt^xL^POuWvs)1H%se<@=T;K049~>Y~Nf
zd~{7sNqO=8e*N|L`~R;ybH)c$ex07K4_Z;@vpasiT`hPV_{9as&(F?YesHk)>%ZUc
zL8}u$Be#e9Pp*vFxd}9BS6^R$^!Rbm&|1~ot=GR?aOM}?rKexW%rK)BG^MuOETUUn
z|Js2@=C}F&`T<+BLRHn&ULENaj@ppW7+3c*_42#Q<Fe%$4-d6oFUdLHC%ZNK`Z}lE
z$NS~qe|WuRi%IY?HU@^^mUjnN@`ky&wY}T<d|uM``^D#NPn|iVb5M|xA;9YClP4N>
zc5w#}9t5pea&c+7wkERp>SwdOJ1gedR%@xKxa`}v4^-T3&%4XD*Tu%#IvTXl=IYk$
z@T)5Vok6LvTTIua`dd!yu9BBww$m<Km?nTKiPzWGYM1^0_4Re==Creuqy-ol{GP4R
zJk-d{o^`B8va7G}+L@WgPoF+r`tI)T_^->?g4X5Dn>SC&reedry5G6I5{6Fdese&J
z1(xgY|8uD>CMs%H8;_)tXVu4};-FS-)z?=qK_e+XK4;F>Ue-CWGPs4Ao$tzzkB>t)
zCb=FxdQ{WIB*bjCZ#$ptr5;J+FBjeAGanu4JSU^Xz>t^!``cSkJ8#mYNh0Fn>YiPF
zePNfE`I;6z@yNZkW#x_H<fJ4n)+Gm<*;mKytpW}0>?(Pw<Oy062<n3$>y^IU-`(3A
z>f_TB6cl8VcgN!D>hSksHgk(DwjKnn0c7KmSYTQF475Jt)5nh!w{PD*%OrCVXvG*a
z8xN=$o@?pCz~B|*xgE5W6||rsDLMJ=?LB+<iV6!aUK_pr)s2nG*G=o<<Kyp^-OlBE
zKY2~i(k|y6S{GJ_>w8YWZ}`k_&aH&Xsw&VtT47<~uQ!{|mpnNk=sEp<^VPl8<*lu)
zmc<ne3{$wQ%io0@ZsQdd5O}a*Z|Lf<Z+{OSJQ%*`7-%AY^5n&n)%~;n{rL%+>Oa;a
zS$wrRJtf6s5)(6Xe!-V(DV^fIX4%(#&dxF|{${|yP+*l_(`A6!&|dYu;?2h6pk=h4
zK{q$0em!G+9<*{J+(zBpJRG!sXm8cmlJ9rR<G;$STXKZ?+ShGCX0z9x2v=obU?@&W
zPd|P8_U;R1^78V(|E>1)@wxKh;o;IRF9Ofbw~x29v;++b-`teiZTr0b-}Cw{_5bTY
zt7$)dD0sC>_43q;1FK?oelk`4eCCXgtVKaXc{u}vmuR|4#J+v|c2#^#TKHC6FJ{C0
z{j>h-1<b4Y<heEDqLaVv*C}>?J{(r+umAh?`d3i7_vy*WSGTsl4qg8~%gZJq_T^Td
zOHUJ~&X}<R6le41&Fkvx)0^4I$nby-H12hGce!=W?kHwa$WYF~Un`_cvtq7GoSLEu
z8avl8Gz=8ikJGu*w{*#pj4LYwtKRK=K4rp$g4pY2qSGRpRXsszJA3`!WtPRyG|bJx
zBf~QclSB5`)u!|FGBgMkZ{`Kf_<%+p+jEci$zEO)xw*?$-Nq*7^|iIZVPVq_JAKc+
zz3pV$W=$KLKf8{9JT6~<!hmP4b@@5PgxXIh)w_CoL+9Joez_K%AN##Dw)L{Qjj^$@
zsJQrYP{w&*|9|(dZ*N!s{rx@r-k!=9Z3c&xk9)*>zrDQdURhZQ8Y{1j_Veot3JMYt
z6iocjl6dgb+&_P6ei#1#_kBNi?E5b-FaP@SxL;IA=+TFl2Y98;R>beG%euesuj&6A
zR^d;#uxT3`2e04zZPv4Mb64NF6XWXcp8e*=M$kmV<~9}vhn1iemc+LBJ%hIA-3{5C
z=6kpJye()=*`>>uK_fyvJv{AS!`=I20{i7`pFDiH@ZR2P@u=CNVq(jz-|yL+BDaHO
zO2vUwCr)f&U%h9K4X=cOL-Mg6#Rx`*5BukQWL(e6EtYX-M`6^Cf`xu_t(I=sU;vu_
znmBPH-{W7Om;X&lO4^cgQt0dqLub&i`cki{CGYos&pOf}2pT~AyCc5-Z|L)Lb0@3(
zeVbpeUGo3q<Kw~`^4$LZ`da$&k!x#vd-j(X7ePJ-86LdcPqf;vTTIuhpoM{9iXG<2
z&?LS85pxbUv&Vn^_4d}*;u%pT<*ITUxa>atJj`$ZV&ieS-H$f5C7wvzJatvQ0z<>4
zvy$sG8-9A(B>c7f$;800W3~`~1T#CI&dX>fh6hF&8}2k;j=#*n!0;eX=kuaK1_p=b
zr+VPt2nXY7lr9Bm%mmcIXMhg5fK~{AJ2=oOFwme6bkGAdlht|wb?OZ~W`wOv0q(?r
z1|(pkP}i_%1a$!qq<}kTpurZ<pg@8mXk~(kB7D6DcytK86N9D^-N9u0lp{hFR3lE+
z3M~SS8G+UpfyRt-{{Q=XPL9dTAuMd#=5_{gN6`2WczQA$vRelpG~fXVXN96#<Y6pO
zHx9bQ1RPW%pvk&eUu*+M;kNHzuiqc$<I^K$nx#@-Uw?IdeEi0Z8&91%v*%G|`nfrQ
zS678TefV(U)6>)AKYu?S3ho|)CSY{q_r(+z7IN|OhI)B*?J9r2uJrY_m8Gw*9i1mG
zFTWl%>8qvX#VchJ5EV5Gw9zAUby()}b8|tR=!wsJrOo}s^<oNczw`!sf$%8O(RtRj
zze=`dUOtu>eSKZ*)pfDfd%s?bo@J65w6GXdPu|>|p8e;?N6>Um-h<9H;E_kKow(;9
zlFt7v-Z5#(w%psRik_ajwLL$6;&ad#3ut2qXz=W?LEb+`9nkDK19zcYGiba5w2GLK
zk&*9q^wzA@`|>g}HD|wD*Z<qIY11YV35ke|`|k3!OF(O-{{Q>y<?X%uS@td|(CClO
zvL)g>(o<42G&ELR__knyf@Ism$H)8Qum4!?KY!hwJ2AHZemv#_Em~M0sO$z>O1CO>
z^|jL2%U2<@ADcFBe){%pY{u^X{{GtkTS24qp!Kt$HPx}Z%lLlB)qV|q`t+%$qT<76
zY;TxAGs6d*<`}xZKpjHL-dO*??(4g|(TRzPpatfK_Z@EMf8A?-?}GLFJ<9g>`?F<s
zz6K5cJa7X|QJkG^Zk_Y{alie#3crAWfQgqIU}H)#U-!B9%Y{zYiv_JV0+nO`{{7?o
z9bffQ71SL2ez$!7rOTIP*ZqHA|3CWW%a>f7oQ1Qmn}IyDVZ!X(4Y#)CuHKe=+bYM~
z+dH_Xre@>wmiG4SySqwHojO$%@nT=@Z8K2sq`f`<<2+D<eOJlLMSJ$xtc~98cXd^$
zcFCEGi`~C|K5q|dFY(>ZHJi=GFQ+s6?6TnHek*H!e!Bi?#x&3X?}90>FE8)ESMit^
zG+TJMjdya%&$I6|H8s0BIyTfd85kP}gHm`##tIu-ThMF*Xb(<L56{}@?dt*>v<xag
zrOdUdyp(u*o^3U#*#+9+bFccn?v<*YM(|X-Hfn27NXQf+AtBH_#_!p8E?>Spb<Ug|
z`@AbF0=;~FuRc87E-ECX<Oy2k_vP*O`&w#hZlIa3dwZ+j9%pA^S&@Ez-lUKxw;yPS
ztWY>?0BX9dcJG%<vssl23a|z-ornd6kB?<OJk$!>t#atlp)FZgwOrlYZuM`xne*vG
zK@H=<b+NlsHs3VKzh`rHw)y$Q__w#VzGYl(@ov+zSLeZnQ-`sXjwj|A(lnL7zh195
zw^;|;!eVd#zwP{XqkBk&-?7-`XT5|WeqE#KG@~1NINt<yn-{1=MK2hUN^<a;1h7e<
z4N(bQ0`P?x1T>;o0a#aGfQPRLEZYFr9Y`fP*3}o_k`}yd<IrnRE$=y5?PmSlNt2ZL
z`T1oni;i?IW@2Cnb2{*A^7i|6(Q<NfyT0G6UjOn(^ha}E28WlSAD(yJjMs={Sz{l$
zr()x)Yin1(y}eyqSNH7A!;B0JdL0d4<Lmx@4F|2xyS&UdI3Zzym~PaQH;Rl5UXtL6
zlVAGXV!Ghr22eNFf4&`PuAsn~BjSJR$45u2zFc$%b!6)P{(5;~p);t9x4E5_K_fL|
zeT+Qg>-x7hHah?Q{{H&oetSJn&}c_fb93fK28IKr$_anhyLOAMtor&Y>;AsIwbA$Y
z)ox8WDJ0qUa8Dy6gO@0%!epAZ#Cy74=F3Y<L6eP_E?xR^T7UnG>G5@etHah#nK^Ui
z*6iz6)g25B2U<U<m3xAg02>(@ff_Eg9}cqf{mwC)4VpRin`?FVOD(AF3Yrwp;pXHF
z^zb<08!yd}ux_%tKWL>P-|bJIKIQ$at(?5OS|Py`)GS&Rx_a66`*pi7lsq^tU%y6F
zJ1pbdo134$ecQM4cT0Qw>Y$}w=B2z04ktNyctR2q798HTW{u9@ACLRDf7!>P^F81d
z^R-rPanKfxuWxUM@2&c(wZ&dT!vnOr&hGD*U{_aH%fuE2h67ip{4$N0U-PN+++6GB
za<)|>JMEQ}oVMRBlb)}}!Z3wHZ0GLwAo&eq`f)n;_WP5rN8HRYv;Fa)Icjg!*1G?H
z%j*_1F*K~!`WoCazvk1)(Egd``SYHgovjYqQ&)b&yx@TYuZ+cqX+69Q0lzkYR%HAF
zC%PO^MCu%qe7zpW63Ce|XG)o7O?kKfe;sHsuAH3QtqqCJ8;?JK_AKkv6iv|9nVQ<#
z(7jcqwqGtdTh;yfVOn1w1D=k}z_}(s^t^S!gNC^Jzonqzq{PI;aGsLN%F0*w_U;DN
z8lbhv@ArHL&nO89EHF+#H{-8|U+Amrpjimja}mv35i0|_y1OT<xT35L2zj%!{BG&=
zf1l_7Uy*dQ3)D*ATKf80QvY1D+*zQ0{n^>(ptXwT-wgDcK%u~0cr06Lnr^h3zP|p^
zW5;f7udJ@tR#S6}-kx`LWAgDX+w1r5$BSx*?Rix!*|u<|ar&zA_xC`XE<b(#Jaz8e
z+PC*5#6e5$7EHOlvv@gZCt*VaL;KscQCl~?-yaFu{so$QwSK=RxS5R?w3qPD-@l-p
zZEK^qzgxCG-xM4NM<l^R6irP{T)F&QT$2(dmgzXyLl-Sdo8?>pt!J7v3B0g8dVAij
z&FSZT?;rMxXl7+_(40PZZtRoux4(Y;xbgjd&<gf%|L<<io}P7Og`y`Y(>OUho0h%`
zS-Nc5y)U(En!pV(i{y#B*F&fHf46drzxkaXcF<HwS^4cluSuZo3}(5vV!mGPTGs|r
zF8%XSw?3$U+n&q%Hn6a%si|uY+nEz5CaAPKlq}|27q~WRtJCjQVQaHaS?OzoCzcJ(
zFDHPa^6swE;v3uY@7sNSe}6yD$(sBM8`gJwKKo783|@A^Uq#NoE@u1PvfE%k5}JvL
zt;_!1$jr|5H|AcppnyO^ec{W4&FpV)e}8*>xo-5f72ebJ%>OHhIe}ZK7RkI}tHaiU
zmSeTFu*|h6bXvG@A!w)@``W`dx8p0Hir&mIdwX|xcv~W9O^>vB-V~KyN#kR6ccy3t
zZz+2lRr=zBqjMY2#6*c%rrFb&n3<<en2_+w*c!SB)a}5eCAhm<*FS#Hu=)A*lDGcN
z_lcWtzFBxCZL=lInq$4v*@xSByZZaDKRG!W)ZFcpwa$8VWu@yrwL?=u%eost``nHk
zaZy!M6RY+qD%#|{IP}4#rQX+T=70F`!KwShT|saaR2bIGT8zBP5WRB4m|RzpJu1S$
zz_Y;9#W4iSJPkO(Qgyi>MGG6({J($i@9~h>zlAdOvGpnfsrKvGcK#4-F*aw)eesKN
z#v*Cc+0q-LrnjuriC#TNLTU={?4T6^J42$FS!8{6el3>I-lldsVeNz{-^QgL-bXcd
zpDkt9yYpWD?Cy8pl@`kFn11^6#=G_w^Na1~f8JTX;rhMjHF}MWT%axIi6I*p7(OV6
zY+zyr1+~4?0WKaLK_&(U2{%@51_pcQqnUpeH-Q$~ONi<)F#O@D-oV5RVlf=%h>!@4
zjg8$mkEtQ>(&fvKUu&`~@fOv&tly){B<3c{$juSMqVwR>4N#($Pvj3v0QC$XxN}4_
zHmZVFZysKe(976<Skd#;$&(l7SQgjV%-#r^1<k#)<Kp$p62-zF=Pj+bd%tOuQM^BM
za*9&jz2p7z)6b?A|Bsc|4ViPyp6Qyzi#KnksNBpkyYF|z{n`2X?_X;s@O-TF*Af2u
z`Q4j0SN?v#|NeF6fquaa#|~^tJslDqy?Vt84OVvc-&Ix&4Xd9NSX{Yzb7ku3X}z~h
zZ#0Waa6}{@$lCg<Q+?ituO<u(YymqDd4QUWkN^U$Cx(TK6RWmCz(LTmik=2mpM<Md
zug)^boaE%>RPyaj<od@eSFY^p@Be=AOhadP{Wlp2jtGV;w{NeWG)ZWE**^{DeGj_}
zu3o>sys3!^w9Z#iQ4v&C^U2%UEZSJMJGQd260{8;w59WcGylsQ8<XSy#^_B4^~a7J
zak*P?m>0D9xvFZ{tXZ?xz4$B1&k?~eWx|97<@YMxpP!ri`D+Nnj}xb+YKO+ft$Xt(
zXYbEvvu7Elc3rxB`Rmp2cwXysPm45dZDUJIORK)!Ob?BUS_K*iS-EoMub0c`+x&X=
z{5fdC=9=yIJBv4MGJ5*_`RcuUV>LB3e?6O>@AmoIF&Reg84q;Cx<SL}mUGW3u8#O`
zW?-;DH+q|fnOT^lqa$cAHZgJGuV24xe!053X8!#2)T-*s3Q(i_!GnaOM~<vmw(QvJ
zIc2+J&)fgsqokw+I!|EtyItO(*~A#V=@);q9OI7H5v=?B^?KF&z28HEf)-7hB(yee
zZ`Azye>;_wmA@Y1*5|SQ_TXT1R#sL}Y3bIkuC6U*Z=*mv+-KQTZZgZi_vW3sfx!aX
z>TjUgn9$HrP)p;}=g**3N0xK_-rnDT|HSX-`Wz7qBC@h;)#ulIvR@ssI&AHwXJ==Z
zzTf+O)t)^uD_5?(wJmqHT>YQI{yMR4S6NxvQ)kXxxwO<9)N#FAbXxb+*|S$aK0bc;
zuM8h(K{sdv`_m^+!21J18<>1&n`Qp}^>uOCeg>PX*RN-TmU(YZ>)oAuYfEO-)~u<s
zX3YXM24l+JEOc%c5ffV`svWlD_L{KOn>KCw@~~Zg)&BkQldjyquit(cRBu=H%r{JK
ztJcp@P)uN)pdu<J22!wo@3&hMj_?2d&id``?f#XOm8({-z8vgtyY$p4FHqzyT<GZD
zC-d>e{d@P;{rXh}Y9(i1Uw2h~e$Aql!OK@|+H~n|`td$lP(Nta?Af6)F>6e-udUd$
zDTtMo_14zx>l^B?G&(%(<_gQsUj69NBM~X7R~P3^nexQ0&Jr}Pxu^2;o?DYAP5N>@
zzJBH2y|I%(k;%#}wqn&PFLpke3!p;~Kr6&7EiHF_y%ueIC{{rsfpNkYe^JoZWKmJk
zSMT0^v-<b(xcup)jTv`$mCC(+eSQ7((@!tC%hx`+Soi&I`RjeZ-xdGQ*%}3!)&cb%
z?}o+4uV<I93Anu6|9bxZzt8G)<Mu@OEf4PP?QMH6bRYn<;p@YPg7x1%d??r%qc_*G
z_}QvsUY{g(*Z;3Odh{r0)YZr+h?A2uD>wJ*^!U1!D^{$?-Y;nHbb#qWSV+i{fB*g|
zeorbbEzP{N#Ivin_iM)fx7%))T=q48`Q_zhxwnFXf^pAx{CqaM^x+}a@8@M@Wq*CS
z>~ETUjHf?5Dr%OFSogX4_W3W)HGDiQE~?Xhcwy${WtCgmSy^}X$DfUue)_4QnTbhA
z@$++6jnCUG=C}Ldu)F;Iw97BAEbg~kb-(_9?UMY9I}VudWG?9L>zj5qE!fqym5Yn3
z?Tzsz_kHUA^K4Rn?>Ar1&&Q{wtLw|k%Ich#)!*GMeQ_&8%<Kmb625->R<-s2-|zR|
zJq|a%mb7ulaXucNjFXd8qqbyB1ohp^_aE&R&wh7jr<Shn)or=A*L@B9!^X(n(7tGq
z($#C%s@@(2Eyj58V1bpD6=-g#{P)k#&%Yj*uh%d#`qZ@^G{w;^uAg;rk?VDve1(9R
z*W%6Bu3vwBVWG2JZvDTX&o?9=I()c2hHcLm)+5{R*Ztm*-2Q9PqyO@^Z`@cRU-!c?
zH8oZ4Z&GryY5F-CS=*|T8<u_MI)Y3e3ZBm`Kb5vQ^ZmWOa{eOAmM=g3v}om?J$DxW
z?~}Do*%$%ZBpm;7>!wYcu3WjY1hmom^^CiD*AE;xF!erz0K>XeP0#>DX=$n4`nA#9
z`KtG}w6JX5zWw#1qup|E&z?QIDMH7~!$YDh$J@I*yt=q}vy+q4ovAP0y~~T#nWk93
z{`c?SPfM)aKV9pQX3<G#lFrI}cS*Q4H#hg)wjVz#K-)G&MMXhtwYF4$&wKjh$%-vo
zLbSuy1bBI!5{<7u+{WwW<8wv1-v%_Y0%~x9=5GA_`rhq$%y;wcx9nZ!49b%yPE=fe
zd1Y4@S9x@N{QOm`R&6PG=me?<CY8LqW4U$f*2<P8Jv}_7<>jyce!pM7{p*)6EB5V+
z1I<oeSsASQck`3?MLR>n!=D$voi<Hu>(;HjKUE%891~JBILNzIL{M0GF=*LuczCr;
z{r9`&pr~54O3T#5L_<f%r?s`U>gUtxd(TzwRPC$Z&d$!hdgI1GP)FflGka)o@M7uw
zJ%NRVg<5)g*S@^G%zIbWpswfGf4)EKKdY*$Y8o2{&o;{qDlgxjl$;zI8oKoIa{ua@
zt*4IlN^i}-Z&zAYwo5+c<cSjjm6bb-ii^KK?zcacwe{88?f0)ec(5R@@~P<e8<n4*
zY3l0wUcGvC({1n+9%w^Y?C!Fczh1AuUVPp*{mZ=CvyUFVp2W!TVdu1IVxT!B_dXfP
zGS7EeTefWjO_$xT`~5am+qJf~7Bnyks@A#1^+033pgjwqHL33=&z`+{)+{MdS@GC2
zarfPIpb3tJ3my5|ojpB0Z|$qyEhH>#yYAxc+n}L@)$7*zE%%#ysq}j6@+VJHM8(C~
z@7PaM2Q3a~*JE9C?AWnD&WMvIPabB|nQ>GObSTeZNVDeSQ8}F%?x2>^0RycF28JJk
zS`jEMD`Rj&MT~)=u0{3GfdfLIA#tQO7o;V%0%Vc<iUd|RkQoeZfuM~u{Q(ELctEW)
z1|CoYtU-QZ6R3g0!0<zo>Ee&$$R_CsvJun?vIEw5DSC8-^Rei1VRb(VTls(BHokqr
z)+kXSA*I=8&9t8Lb8=3+nk756`0(tbPm6Ze*m5#3D3q3#u3Wx6J>*>O)+kXyK|`(Q
zZRVhnr-sCwB6bD_gPsO(D-qO+JYWEk05!8g?L-C!hBi=ppMggiv`13{axT`0*RbI~
ZW4J}`DeFrc<3Q(#dAj<!taD0e0svv-)qns1

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-9.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-9.png
new file mode 100644
index 0000000000000000000000000000000000000000..23e75750e53a107e8e4acda679a58bd060eabdab
GIT binary patch
literal 21724
zcmeAS@N?(olHy`uVBq!ia0y~yV2S`?4mJh`hJ9%>?l3SguoOFahH!9jaMW<5bTBY5
za29w(7BevLCxS5J3j5`m3=9eko-U3d6?5L)t*$x$_5c5mzpL4;4UZcn`*nM4UJ<!M
zP*Y23QdZbn&A(l0XJot=o}BY4de$aOQPnHYl{IVJ{C=v4T-A`gx$Me`8*d(b{k{18
zz5Dlai)(KF-n#wv*P@$Cztzm0=YK`+-TCLQe{Pd(OXOf+U|3dIT*l78z!1aBD#pOj
za8hFf0|SGPTO%t2LxK^P4g&+j<iG?*28J0uOxz3%2U0{L7#JAT79U_@U@(vz)iRVr
zOzzw}1_p*7rx!Z6m%O>LQM>4U)YdFb4UHFFccfK8k)FWV&L<mmxQ%!HjlZ?EwO{{!
zzaN}3Rd^W(Bg2LU?Wr-M*0sOBh}N_H<L4A(U=T~*eA8#|{6vXm_xPW?H-Qt7kPZWb
z&XKguGv_6EE{S;B%K}bADiI6}5geS;vK0=3lMz^V(NZCuDf%D{pcJ?8&K%q7ZCA>!
zvF@05J+9h!clrCWGV=zm)fNYhese$VX5xOjXvGSTyu3UwfB)-qEQ`N9o1OovUA`{B
z(XlbdOxkr?_m2;U`Ath+1e~2`8(mph`DY)~^o~cX9wqaNood~^d-uNI@2pE-UGY5L
zFCU(mxR8m7>C2DD{n~bRar^e|v#S2K=FXiJKeadge!o9Hc$rV&biLRoZ{MzMYGSIa
zs<PT0%@FYJM`oM$s*0!$8#V+SZs!lby)AcZ(owFzUoQJ+-QKqL+4=eF7dp4U`ttH}
zQE{>I#}x;<y1G<63kwT(y<9eX%Cu?A(&tsWReyh1T6Dglt5wtKx<g~D_NlXHecSnD
zFU>N|4haZY;4WVqQhvX7yOep}n(z0j{qOEBzy9j#>bI_9ms>@r@7}%p@OSz8KO3K&
zo4dNDh2`&u!~A})L>VmDgIjha@f;5D^XuDH@-ittTU1a`(eu>l)05}VpPzPaj^<&5
zFDKRKdrV3@J4-b_K3=lz;Qbw1GZrmUYFElW(jjP7{H#YvSU5B!WJ%%UV=s5TURRvN
zpEymv{!ie+g9p#OYdgJ5s8jgAy>7iq#EzsKv)QXcRxaAH!{X_)XIi$lvH$;l->-Ud
zpWX4}$K5xloxOCo{QlbW_Wxu0?f>ntJ?V7x(Ytr+YJY#zG&Q|?&#dfC1h2H2&+72?
z*N$`wdv1zxsHxdA%QSo0+uPf%cWXB+4NQ30rKzJcMaA~x5#g%8U#~xX{(O0OT&3&$
zx?d|*PF}uzdEtpy7Zx_}`}-|=u0`RYnRkz=o;rQ{@`;JcrN7^9&whJr>$h)(kB@1Z
znT5@-`=#kRjeE!EbJn7Aa_i#uRt2WSDy}(L#48eE;QLYO`JFp4q9P(MZfs2cmi+hE
z*UPi>_pN;MCZ|`@*e(0onu%ZPU8il|zWrY1bJ?}g+x-|B8U0?`>-BHnzC9^9`Rdl}
z@Vk}I=l=Th`TX1C{~}YCE?sK5arq9BqyKH)U0gH_4Fh|nOfT*Ie$RU%>y$<&?qwQr
z^_%nW+qt^AX{o5V<lf$Pb%A5^ma4B=o|lySZ5Bxyr@eS^uvyBss$`{W*xg;Fb1ivd
zTK4bn2?z*Kc)4DFpZ=Z?O-f2iCD&uir$(iKTy)<4|DJE}@5jHZJ+^e``+dJns=j2%
z+SNpu&Gvox@S&HFPsn67UyV)c7=(1LKlpcuTYt}kH+~C}jCq_vS;^Zw_;{aeXhg({
zX}Zy?5)ZfideF@O<>&MHrww?v=HHK78@)YjZ`Ic=DJO;A-rE~p`ubYv=VxcV_cXF)
zYu9l;d~tE{s+gUd?%cf_8W5mRUS4jRalzqwT=iN$8H)v;lhsx_xASFPTGF{>Ki3BP
ze?Of6|2$v+<;i6KQ}^%RKdF4MHDYsG@1)6-pFVuJ@Y&hftE0ANt%~2jFKS!PN>GZb
zdfaO+A}F}<zyXK!@~uv%&zuPf3YuhNWAo(Mv$U+jREah&Ztky7Ci@$C2gLC_FcJ|H
zlWI$pu(Y&vTOYT#XTk)5$EWr8Z;}81Zuk41?Dc!Etq5H`?c=lA`L}N0ul*i-IBm0}
zprD|epP%2(@6zJW-`w1+daF;)Hp?XQ(vgZ63)|o1{`~p#TmAhlnUgQBi?u#{_wL;r
zI|>&c-n#$qx7$-+>-c>Be*gQ88xbIb4!850U%Gtx?Q!$`dpRxb?b2Jbub2JEmlw}J
z-Y46pa`^V`+aErEHvW40_U+pfQr_Iyc=+bwJy`~>9o^fCo_h7lT8CZw|F$+oq776^
zZOywIm6(_~X~~~IHCr<-I)T#to;`a^%HPF+qIQx=!T|=|*j*v{d%sTm^XJbTV}Y0r
z#_8u?T#v86`tR@WsZ*z_dVc!)HPpqW#qReTW80rkCQtg8zbkx_RmqD5%jZ>jrJtV{
zx;^jio9IH1ptVt3Pt^<T$S|9IcHg$5UteBIS(U615*Ge?D|`LR3k#h$-OSnbbXxQb
zJrl{`mUWFx+~Q{pc>ex;K7W>3?yO~gb5~7|ue({Nqpj_&?l)({`qP>k8UahariO%s
zEK&2F^<wMwxXb6}T5rv~toGaV@2{`HpP!vQT`RN0Vs+Tsp#T5=UR@Ju4D#c_g9mrL
z-}ie<<>xe2Rn?aZ+vP6(e!u^HK+4l+&%7qd)%{4kTX2|{i-+gRfkx)iS64L6Caq1l
zbNBAse3tVw44aj>cR1vjbaAI`zWL<+`}OAcYl08A^KZ{ruuMF}!phG6`dW1U)#dZ+
zRw=vpX&4w>_{VsD(v>xl#+4NnFP_h@FZ-lXU?`>+vjP-4iHV6--)^QqefxIp-{0S}
zKR!D8>&N5%sS_qFFibvn!hlCNVuOR(Y~SK%XD0Ud_p4+c?GpX;<;#`-f6o7Z@$2<^
z^|fmhK*9d>*|SyQ>*FS=@bmM}wJdgvi;J6OnB1nKX=oTY>C2nV=e0C6PQ<0y{{Qp&
z)!p6O@74dWEq!s}U}o})6E`xhxLTAp35ogz22M<rXxo^6UheU?+xh0JLRY8t$lKpD
z;5mF_Lt=B_+9*?H6_q1DKA*RjUHAL?{(q@gRs<f7*in$U^Sk8qw7a`X-M+rM+M7PV
z_S%j8_4^NRJa6~=Ove3vdlNU`?CBI%ms;*O*Qkw0GAU$b(9svSx34e!@WAo$WPdxu
zcYD9bEq3phJNEMO^0_8lF>B7wHkUS=eRjjmoMX=Xwkc<3o3Fp}xs6XY>eZ|@y3yMt
zuE&<oEquH6y422{JD=YC%C)|NciQ^(>jRg1i3ablsjZD{4n60wp&*dw@PtH(UH^W)
zHm&}a!z*dzvN`SSr0v_cKYIMwwD6G&ue@E%!-o&6zFrM4y<2)+Q&-p5IQ?A6RISh}
zD}&Y3`5B)l{&_Fmq#eF4<nFFgQDNca{}EFjy|s9^<1ydW6@ktlKYpBLkk}+;nziJ}
z5tpm$VxvLYA0O*|`tqe_eSQ7f=<Vm`WgPtV@6Ts{R#sL`B_*fK%*<OG5}V_y-<tZ)
zFmN=#SFyOMsY%7tIQ`s}o14?URU#igd^pR#eqYx0b-MZa`RRO14=Eii;x#**;K*{y
zto~n(Zrq-T@As<LTa~|C6Sg+WQs)1&+4&;U(yQOz-kyD^g;UC|X2+z-lR-(S_V>4w
zw{J)9+qdu2*RNOi|Nooc+R|c?sj@?2=gytGJ|2_4x+&FLH-6uphciBIKi_$0Q)+kB
z_jkJb`ue$dcZFVE6?%F7{(q~Uo}RwiYpT|(TU%GxcC&@>v?adyb~``(>@3r-_p0A#
zUS8%~^>k|ZmgM7nS62qRE4%dsEccsxWksN}=cNgX&R>4LUJt7ErEDrT?3ERN|9buY
zu-n^mpFV${{_C2ltE;P3>8mMaZ*D9!%e^(DDt}5}?S_D5d#k^{TDSY%rAB7<FHfh(
zXFWSJ^VYuF-F)(PYuI?DP8>e$%qwLQP*Jg??ESs9uH9lM@7|3)Z}Yi_jZbDpLj%Ls
z+}mM$tG{2Hq8SXzcj^3`;xE3uygbV|y)Wz9nw9_l{<dDT{P*wsEz%|#3i0vrpz^K!
zPGLK!GI(`$_3GN+-$0G5RpIO3tx<d+G{?3&EH5uF>*l7V$NFSfv++u;D1U#itEVUA
za2v1c->r#n&ds&{`nccz6)0T3zq_mIIa%F5?CGhgrMGjp-~7Mk!6T9P%}<{`Ep`2N
z@YMP9>GErej?}Yi1ScdcaO;s+s1>?OLqo$O`FP*eiOTLKd3P*Y+uC0BS--omr}FcY
zhYuH)->Y=rey6BA?aYjY;&By@|Ni|06&j|AhggmtIkLjBneCh$pPtjzRiUC15-Vzd
ze|!1n=H^cyK3urDIbHUg<~+T3H#RO-d3ig3|JLn`leF}DKrO!Lyq&I~=3Sq>y`JZ*
z`}_C*`tnlQ+}vE&y3D7uvoq`3nwiUdXD@p`ui9_2y8pFiemf0*{;+urLabuv7DjE&
z>gw;me%arC?cLqwr;i_Zm#_UY@!Pw*t6#jxxS3-HYE5NbT-2)OGh;#2)~uCjXJ>&z
z|Iy>eZ@)ie&pR6Q=XdFG+47A0`)WZsXvzM%AOAL=*mN`J+t<jW*Ee2U{Al;HS=lBP
z9}?Ea><qfSEqAiY+W7r(phi<{`Q4@4@7G1YzP>&@AYg)9pUlb+9|}ONyzBAxdnZ@F
zv%0~&8q^R!_xim3|0~`4`&LLAr)AvOkO-<o{@zHRU%M=JcbTT8Wu&F0rB%_B4waQ<
zZ*Se&UA{i++M1VZ@*W$>T9tUnT9;ipIaz(`j2SDA%h$(DdULt;=>N-c8xk7ZcqA9q
z|9u_5>+7}Xxi?d1yf`z{7*we891bWc*}}#vwPbewzR1qbPQGkIP~CsG=JVNI-)?2k
zy%BvqU=JH8FD+AVY;A3|s{Evqz2TG~r`WmE_wUCGtNC2mka*an_E!n0oIZ8(<V2Oy
z*VlZN-TSUwTO0j#ef?kWj~_q2y0>@tzt8jk2gHOHI6693z2EyiBqCzP#^mE!*VaT%
z`gf~h(~cdt_Ev8f(~n!T%y;&t%r)H~KYa??o_BXk-QOx+2?Ga^-&U{Rm!-e1tNcy<
zi-qkP>tbB$>h?W)^hiWPLL)vtzO}s_)U*|^`Fm??_SL1{;-Ra<eE<FX2kKpXImj+Q
zrSe~=uzJYuvfQ0JcTTOCc}&zGvXA@G`}gZVK0barZ8NCe$;->Dde|!d<oR>;!v-O1
zqfA@d+O$keLYDi_2Nl+vck>9Bytv?adb)o2{<^=Q5{y^c>_sEHT)^dJzFX`5R;`WO
z8+E_tbFW$6ofWsXW?S#xZQ%KF_M-E)-{*v_jaoX_x?D?9(NQ;Q%ZB-nU%q^KL~fT^
zdhTTbQPHJOPfyo2GYdO-@SvBcXJEga?UY%wR(*SWd;aHJPoAWJ66dRHYiBR>nW<D>
zUcPkc(wp{jYfT;>>kW>Jn|InTF(~0-)6d_(v+wLEob)eW{JD61&BZt$(fy4sg-@eE
zg@5ktZNAEGJr~+|rMDD4_42G=dola+vR<>?TT7<tMqBNiZV>!2I^ArxZ|(1ISFgv{
zuhrlG=hDIhP1!g1)$X3A7rW}n5tpOKj(JT|QdYjYDpb2y#`4m`<a7TtZEeBjSR0@0
zs+X6S$6xsT?aj@_mc`F9Kn1&f-5$;44N_b>F;nWrBHz7xCuN>D=g*%%6{fdaW6STB
zR(-!)Ui#^Y=i56wgI!%+v#ze13M%eag|4>RUA=>;E4a1#-A;G?{eL#u{dmA^`{jc3
zs*shFCRacEHD_XiZuB-EIXStm&d!b7D=RBCt*oMwkM(S<XNk(ZSM%9-u5ERg{=OfJ
zR9;?L8T|Zj#2QfV^WX3H;m7-AW52m-)G0k$Bq|;WN~>2^22Y(Z;lUfdg)$*4gIvG9
zx_TMZN1JC`y~=a4nn-wf<ADPXd;feo9ksV=YuK8Ihi~3J;JUdrdpf9Jc514&^_KS5
z)|>s)Q}6C7-SuwQ>n&MVwLoqC&{ZLUXJ?t3*8TYr)V-YF?uWzeZMm1PtPDOY+j4Y5
z!ox{Fe*Xsbu%~K;UTR=uo^w~0Aw1yvy4b7Be5LI=7tXOzK6vWP8J$w*OAQSSl5Gon
zdU}l3-`!uo|IXdJUqQWdJv~1~Ma8InH9O<#ex{0wie_F~;`y!k^QTWHNk=$9B@C~W
z$%RH{cD>pFG55w+@35^|p?g0Z;`ZTX($h0A2$*f2KW+N->6>>qX{(r<Z@+T?{-g7g
z&zwE0`}x+KIWm%M3tL)PKy8jmS9X`@|NZy-{Vdb$X>R>;x$}+Y7^QY`adXRl^C}7b
zlX4_=;SQ#Cd?MjbSMM>G`ug$X#hJ$GUR$0&eR{Kh{_7~ust*U*WpA<bNG!N>Ck7PV
zlS)23aP*yR<~v#4f1g%do6<ohh67G|<y{8)`sd>$M6K^TeQIcE2wKi)Y;3IR`SsOR
z?a#NWzP@^ST)sYJu2rebt?cXTbPpR$nLAh4Q_8+>&#UX}*Wb?D?fdfOOTO>_-)_G@
zW!}7X3l=C$zqzduG*&16=<VCw`M0#g0s<2BOT2`oq*h(I67uxP6APV^``dD7=a|iQ
za&|twXIt*=ZNEMqmoI&CLeMnp%87e*PfiHl%rT2CK5IH@$>DbX*B}>6R`ZovxBX@g
zsF9FkHha_N%}?LIuQxorRp(hb1H%S^&CA*KRRmw(-oBoTn|tb%DJl7<&z}$X^6ENt
z`0(3kla$m{P}|Mb)%DxwU*F&BA2#@M&ieh0+dPK@ii$R6U0JbkTkdVINou~cmWXPH
zWjsAK_1pUC@pX}tM8w6Hi)x3>DX(ttYGL7KXjmN+5i#S}*VoH`{HTz%t-7*ra&=YJ
zu1S+8zkS{-W$MK(rgPz7GrOpWh>GW{tE;E)DtWm`GkDpH?f2_~Ute3hHR&i<?#)fE
zo}QlHV*h*J=G~Wdb(Im1v-$m+%~jvtMA|j$s)L3&BRV$QX{A3r)C$VLV!BaF-n_|a
zZE4B4x+)Yj)^NDit9s|l#r<}dZfs26TJkdJ?0oz9v$M^wKRVj&ty8oA%Dzw+v%{g=
z16UarF#Y`Xdi~XHxzShGL|*=KzDh?!<HGy>|JTV{m#y%fZMN*5^it)6TI|RBWG~M$
z&AzfCaB=azS6mDmw%xfCBWqI;P=2p+dDhicrLOZHu3_PRw&;Ksd-k<87nS>M9=*w9
zVDQ<LaZ$<k&xgb3-m&TQFs+sm*}qLnOzfG_`uTAyVt1F#{roj9{ApIVsXnN?%*HGA
z<V~K%(OX-y=iY5C`u=o!{Hoa9W#`_x?X;@<v%@U!&WjDQ2d6qb3i%kAFtzznrel45
zedzkQyC?T*#?PBKFZ}KdRZR<v8#iMMxa{rsuP%G@{FgyYc<9QYrP^k`X{9>f5Bv;B
zU}Q*u4yu3#`dFuBC#aW$Mv^BcJnYiC_fkB(y`zI8y`1ssi}~|4*^4J6>|_(ti3t>m
z2%qjZ*UEA?w}!j#Y_rlbafZ{7Y~ryYh8Z+U*l^Ng0|Ubb38Cd({m5g9*&AY*L4(m^
zPK{5cW+<_M2B$&l#hjX+N`bU6__#H(GBmV8tb(|Oks-lQ#ZOcoq!4Pbz%{T_;PQ$p
z5uiRU0|WQM14X<(f=r-+aFE5^iU*5$LF1SVYRaIDoa8Y_%MLPlIT7xCBzY&04~TK$
z(FqozH6V=+KY#x0>h1=$Kx=AiL8Db$v#-zlzU$}b=cmt}U3&yH`d9b&>vf^$;vym$
zpPrlqHRft+YC^W>#ojGGZ+q&*i5)_Ri=;q~(m4{Dy<yR!MO$iq79BlyOv}O|LQ_-o
z)y2i_LBYXS_tpOXeDD9#>2X1e-FjtitqxuN>_cs0;=-ygFBazB-lnOh=BB8qc<S7_
zYt!TFRtl^8t%%!OC2niBdeH$Uh6h^PYk!x4n&+LJon5`XQ&n8u+*XCI4wJGhT4I)a
ztK?qwozm;ES(lfcwLCx5u6EbHACI_m@9l}qy}iwJ>HDywB8m(QVnK5fX8tYJJ3UQz
za(jDwQc}{J+_<>7uD-r&*VaatJ~=Uw`&G4{U*EZTw$ZN)4;z?Nf6Mv$^0IsG?QNlf
zffI|0i}nAAFKb!|aZmPjJ=5%KK2x>B%QE=6xi`z(iyt-sbr*mB{(buT_3*t_UoZ9B
z|9eqzuKa%O@}3?Z&`^SuNydaffBrmq{(Skhwb9z9rdO|gj9?6IVPJ^pFus<MnwF-e
zps>KD+QFfL=di_drjq#hc-wC`l3(4~x%toEzgv@!^Qo$-t#WSX`}OPfdQk}p4bNNq
z>-R6&zl<~c+M1O+i=Uq|;PIVj6A2o^t^fZ!erwj%S4M7`x{%Vwm}||QJ291&l~Xgm
zfBUvgUf+9v-QO$g<L!Tcx2^sbvOVu^$?e?jpxO>J45sqev^L_;`MbNzZ;Nj!e|IPH
z;K75ltV&mj=|mJ1GH*5jjnMBn_4CIMP{UXC*5^;3-W=C=Yv+@_vM$!TJy)*l{l$gO
z?CslGrA;yx^vPOhot~yU{Zc73v+0>1{Pnos{>yRsdW$WhqM~y@&q7p8FDGsD&$zIl
z@!Q+m>HqirkOPgq6z09Xwe|e&bE_ADV&FjQl@)=`rdd}CGOTNVZQ1w#-*2P!oV>iD
zSy`)!ii%{!cIDsR=4&?Fcj3Z?;&=O*+4)|~%3imzzWy+;`H9PyH(xOqGBz@jIakUG
z%5MpVPj|XDt9*TXJG`~E)yvCk)Apy&pKGhCx;}jP@LTJv$jC@9Z|`D{BYm>gVUOzO
z*L>;(byeTp-F^GER`|L#a<)|&r>E)ioxJw_e*Jpg=xr;ax93g&lARg~%49K54;?xL
z3g)B7kH3C#aq+jgcP?MPJax{T9Q*t$D*~f7BsB8L*{oQwK*2NU_qVsDk9*BuEt{Pe
zbahoIIL6i0S0^5B>+0_>uQ>PQ<m9b+cdbg_-HCK=<C&N!QT2A~^^nzJYlWVNl|W*d
zK%H{uj*R+#xtb4-YooS$&9DEr({H}r+J*)O(1@LseO*mw=6*5VsEo(Qdb_&2FE8<&
z{N&lQWqPr@GG1L-xin8Wa3W~Zh9PuSh$kl}r<aF^#^*Uto}{$9cu!LEo3o-*SUv7T
zv6Hj&*0i&;yx*m}IyQnzL<{YMO*=ueej5b1bgn;`lrMO0zI}XNUf!p#U$?%0__2Jh
zRcVliM~83~8w0~SHoeFMQS0JoJ#m#!rwY9d`NY7m+Nip_O?zU;!#^>*4sh}EUcIxk
zc<R)tPv5L#U}#v~aas&C_`KM?KP)jZai!+9`=X+vFF}P(LBWPSd-q=5QJ4%GUH|#>
zC*O0^tScV2)!(i>J3IU8x>)O<KYpypyu2)GN5R9XGF%J~w4AF#Kkm$FRQ2qYHotbD
zk@@`WBv*HL(2xqK*JD!r%m*~16THmlVgn<y%(=}sb3l0z)L6*7yDRh8mzS#o7q`h(
zzu8z^$HK_Kuw&Pbl15d}<YPU7j*gBqe^<S^w>KKpfB=ocr<@eB{dy(X%g^uHhlhu^
z7CrUKy|Llo!#}mZzh&Oslv?$2>2z@CH*Rm#ym|9fzp*khJP6vrcG`4DO(V!tu5NBx
znwp;O{c^g6e<u6eO+1?xoRhQ0`S<7Z_WFknKuzZMZ=hlJ+TY*4z0bb7YU#7HvtJ)*
zWDZYbU|?8qsPHF~_oQQeva6e#nu4w;fjYc-d3juXd}SHygO~TM3SGVI%a@Y&Z;#H$
z{o4KN>S}Fk>)Utym>Jf2sYI-Mxavm6mcqx!s-8@ApE702k{vsC1fAb`!M^6*yLU^s
zNw*c=%PxO=OV!`szkS<+1q*_@%@`Vr|9-jbubQU*@8_q>QxCW;UiWa7#)c*PgVwlq
zi%pH_zPcgN8Pvu2{r!FT=Vxc%zTN-t*Xllb`*m%+(zC9$U$_tux<2mimfwsF>*g%;
zoxLja@-n_$P^0F!eEpjxatoDqYAxeXUFkVl4dkdV*P`<+_XOTp?9MOQws59#y49Td
zGiGSaKD%u9`+d9j?B-(F(PilRLMq1WpjPgwyfZTlqjnT5ymaZ(l~tkIo}l!&Xwf2&
z&)&SradmNdaaw=>l_pm1E6e@mU0qzJlwW6LaA1ADi8U<qYSraszM_(nD}R1|ZY@*)
zd~W%bEt$bfmn_M6dTQ#b=<Vx{^++!M`1ttr9qEzv+z;~E85lNyFkbqo_#~6ImX=pw
zVBk`@+2;B4o}Hcj{KB(m&z6C@@o#Qye7+|?GTQLZbNl~0xAZYFFid|k2~@v}islRM
zYFnK)(VBt5p;8glHUQWC$c+pko$C(ZycdwLlMPf>Lt7`1x?i5-PC0BX0C=(;+`w>(
zXvW);!P!#jRxDig1GxzVN~04XQ~KCiGH}-hU>$C#oj+p+Xl!z2`uTaPeUfbpEsLMM
zI3}GB8j=MyJ-)uU=p4O0&or51niJTMBI*%o^>h70LZ+mho3rx72@lYGtel)2sP(Ze
z=VsBt+W)UsuQ#dxSM&47k116(KR!IH`t@@8)m^38XJ;5XA8zNrzOVK-XyRx6zF)7J
z<_8NJxN<Nw9G&ug%Dr!IZ-W}&s%mOlW@cfNL?k6whOLdtd~#yqtu2|CS?{L5xUjIR
zt4quDr<Ru1r8$<xUk)(yYpALoy?1YWe!OYsC6{h-{cFDFcT-MPtZ4xEF79kfJq;Sr
zn=wP8diM0`(-$pXytVXon5<>dlRe)fHY7BHM$kMbt4*!ivtWV4&Ye3~#qQqb{M+<;
z3}|HT=dWLJ_Y`#6K>aW7!eb&2*TwDzjc<moi@CYbR!8Sd-Jh7Eq9T*5D;m9$#>-q7
zL(km49sTy!)?hEMu6woLV?h%-paB)R+Ao2i{=&i?#o%hNU@B<7%fZ2+^BcTtTpaiR
zQMdl7>(|52+kU@ec|Lki#YVY`2aL9#PAGrdw#;{S*5zfsSyxtERQ-B)6{Lhu&$&Ed
z_H1o^{q;g`@7=ri?Q!bO?fLW5&d*!B)O-4=%a=dTIlnSy=caZ0|5a_xzaJO7t0XWi
zY+799Q_-)lu6oZl%MI$4GSy2k5e2ul!!70I<>y)!FLSAmi<|eiA`&zx(kE;E3N&l=
z+_<Z&>&n*ba8QM~IqmGG?d2~oxq=1&<7&T#`pz_ZD&(GE3$7PWJXMR>|L0S8-Os1u
z?c17~nu_Cu1q1?KnIxp8EmK(;x3_9(+;-4tQ{-kh?XWcgRaLu|?Ekh)OGhUpFK^wY
z%a=nJyYYsu404q=&$}|uw%R257*BgO3p@L2*KV;}dn!M(_HR^LaDa*7K<kzD@$p|@
zUoX$FuKTkiC^-1^9yJq_kd-S}o;rE5Fyh6&+}mb1bIe-X+NM?AeR#M%b@NToKtOxh
z?6b?1-TPK}PF4d=+JMFv7rXbLO5410#flY2YPq<$LLwq61Q&0yyQjp$aKLHKN3q2F
z`)WZmsY{lqR7cm<?F$MD5|NWzci@17XHZz!v`d#Ry>Shit{1x{=_uFQn4Om%t`1up
zwd?1z*`TWCZuR@Ula{2NopsWHM>lfQk%u?q>;G;A6@SZorH$()=k|fJZnx(9Ubn+2
z4HzyyzA!JZu1i=OF$;n&8@*g#8d>`4%0}_<NmrKnO5ZI!E(@B=@S9_?Fz@azO=V^0
z_51(r`t#?HNy&=~MUvT-pe7vysPH}3E4|#cTTIj1IvO+vvo&j~RmqD4`{QYwPo91I
zXL5Y%(lpRuHE2Xy)q7gT*;%Hbv8%k@Z_Rw?SOkKmfmc2*G~)uV2$8&P;t{meYwDB<
z6Be|zv>2WD^z$q8*mA1q!GXr0+k5xyF-bck(JN{EY|r-<FCv<e){;bWik)$7LI||5
zoHoT%nt}UeU^`nhovt4Mbv9sKJy0o3u0alsp?yL^LZA>#FK2$bz`bAY+&iXIH*e?f
zfBQynflSTsx7$IpgmdrmhA@EBIB2;`0;p0T&U&n+Hl$-M60xpP(}{tBVKStr3F@MP
zQp151P>U90T@6|f7+l9dTm+iGg%|{CHzp_^<(zgi{`utj^Vjd#VZqAA1}a$|K71Ip
zyX>v&cY8H8x4gW(S2s7OuROjz=jNh5S?g2h&-*hnGD=yMtniy_ReJIKMk`QIFIcfc
z<Ln&E;E59_&a$oEW@BS>WwASd?#)e4o8EuC8Xlkd@6XRqA3th-{Q)W+w`PYwefl)>
zSdU~^XJ=qg&?Hb1wz(})at*ldoU@TF`}eoEQM*c33JD8~N=s{df~Iv=hpja!dg76L
zYs<@~dB!C#0$g2Pr_QYDm9vd9&AI{_^#u)TduH9(u#k;cYRT5@>#MS_uM;=a$_CY@
z545)D+%&4JsL)VTJ9h8c)2B;cyvP7esJZvaSiZLv(}`HHxB7e5r6rzA<?JgzExEQX
zcJ+x99@T}ap3LlgQ|8Z~f3N=k-_!CPt&k`=7ty>Gv)4I&&Kw!gkQAtW`S#XUZ`<d$
z^Y@1)CN8|SE%)_>cQ0SAyl^4l?VX*UYxbLna)BBT;XBWq@nL0QnUcZJ!7(9G;?#)~
z7SF$e26by{YrozpK0o)fq}lAXXP(b_FDc5K4H^oW@#)@nEpzkmxVSjgTYLBJeS7@$
zru_SMpi0(zy57{~%b#1$S6q4K`JC61qJkhh#2)pyzO%Elvnqb()A?=B9-H4EH}S|?
zg@9%pYQNttznAWz_1W@ym7A*zsQ%^#RS@6a-hO@|EGqDGd8+Tl)U-6ONw2Q14u4hp
z`uh6ovrMx=McC5i%e^P@91ciKTv$|GJayi@byB8TE4-#^eS3NAQT4yimZ`Rj7l8&0
z4mjzVAI!S9XXh;Q{C5|=y<WdR>*OTW)Hq@6<CETd-+g#^c+<_CS9f=pcN)rA7P<J&
zGP&3zX>5{mLSSpwRWCU?xnHkVufMWAKmPYlR#w(qTeGMC`u@IN^YB(3v7O8e1yiw)
zN`m|7r%s&;ii(;AUYZrVtK?#rs5WT2pnZMR)~uJ$X6Ii!HC4Ox{oe0hlm7hu3tHf#
z8@1&`;`48;++r`TtPIxMep3U~vJ-pMV;Yf|nE2}Y`uUF@KQ8_9B9N7x9n?#G`SPWg
zpWn9m=2=%XKr02<`Q<_a0w%n=zJC3$udk=?xPM`xbLetE+3Ld3oJ&hQL4%8+B9m9j
z#G{>G{@Rz9mrI||EeB0C8l-O!a|9JwTM8aJ*?zxM9JM85BB;h)v`A@f)K)K9tC9`#
zlQ-Xd@~rINrG;yhJ|2_KzjAA9_S4s|L7mi>Z@1qM^YQ5cO)LZ-PhtfZ79GYyI-a0n
zT1ZG}%7h64&n!=#JjvG?7Re`L5%6r|x3{-nckA!7cyFs^1sX?!7CDAb_g>UEgR;ag
zGJ8XU9w_tcv@o4EHE`tsEguDG(ZN<gPt(}YCu6y&SK9m)Xpzd_@ApB0v3kV{4|Tse
z0asUrK7IG@-5Wh728I}e<$i)vZ3`0*x2**AXMQ|vH_f?W@b>n0|4CCOPhRZSEA?{g
z^|<0RaYhD>@}rv5BI7mc{d6~g+8AeNnR<hokI(1V>m4?Db9`0U+EsS7zg`^Xw=YTJ
zXJlZ|n-{#C<N3L{s~efwvpzjJ`RniZ``$AAoSYY5U0pr*f-wWboMzLAbq80nUVC`B
z9W+j6)c^bE&zI-z|LYu=V`O*`BLb2QZrPfB9i-y4&A#O0e5|ajQ<M7{7#Q^C2Xn8n
ztNoR6ZjPl@!GngqYj>Rb_h$3?DU&8Gs{8xPa&<KW!xZby;yX59xNA8lDq-)BN8MZ;
z903^_E7<sCKz*T>7M9XCHv;eOE)Vzc=y2<odwT{PC??CrB0^V(UEP*@8&nF)S{Aw7
zyLS(?Y5~+C;}lkV(XGF4!us{=jdyb}IP3(iPVl>*apm}NchC&>jg853?}{=oFa&>y
zY*EX&vSOlK{hz}0a%P4HN*?RA?3SxX+^_$?chcm^r4J4;rlzM`=a^~z{o0;$cUS2$
z+xNTQ@4Niu<m9QdX01v--nTOC>@3h2m|MTx+G)DcahGiG-nsLGnTLVl&77zN-IyH#
z{kGp`*x1@$-BVc{x;}325zGHNJM@l!dV2cn1!sPc_O8CZu*b)GOFukt-23^Qb=0<;
znV<={xV=@eUurL3y7c6kn*;~Lj+!^kPo+S?^x+UUXl2CKs;^mBSB1XrvIF&+r7Q{-
zG&MJGEqv^Dbw%Lex||mm7QVW%aj}xJ^4GKG_g4fib`vkn_xJaoT+PkEpk=iDn4YAh
zWYwRK$JbXBs(J=5_Y2L-TQ_OaB$+O4PtY*Iy{gx`PoF#ijjc>t0$PXJD{Zb<IA1)j
zVxddaQ7IjUhRBNU3#JyP2e~*o1Kr%*cG|qY|Nq~1DbuWwXYQZxRJ~rCb!ElGu(eUD
zE8lc%+fw%L0TaWSLm~^a3$mI_Yk!r1{CaCs>S@v1bMx!}t?cRH*_wCv*PQ3AEiEsm
z$Jbq48N7U5Mm+;VLw0di6KJi-s?gQ1u0`jEo}Q))n%*ccFK;i-F`I4o>&4>JRp(Al
zR#){5T@_;ayz=PrpADG|4VyuO-OI%yK>djvv)N5eO`sg}e&6qPM=aC+EY#4O)5X1Z
zQ%r^;8v{duo}capJ~^8Rz4ITxe-C$XXxR7j+3ezZ-_M%g*Dx>$n5rGFw|RrMme#H(
zbw`dJTa|Tn6<;nh8_$IXMrOUA^B5Ymlb@cN8nv@%sdIGY*#giYw%`4XEqm@1pSP|0
z{dW7-)YH>~#CO$yJSuKg@nHcQznqTes<^$o`sD579_=};$(4R)255ar%%`sm4WEkd
z*M5Jw@AtdnjNjjG=a*iOEw^0hzQRK%Fd_HG21n3Rv8t+FDk~EYx9$4<ZnvnQVB#%f
z&@v6zZn2jq)#qPn<CT`#mh}TPh<PR0|K$1e{)gN7r>mIe-U?Con{#2FZ8c;VAuTPf
zbN^Weh6FXxxc_poh@U@yN*N?HgsqFwgiMHgUi$d>IB12zy}i}1_kO=;oT_~O!Gi?Q
zbWgv{r;fZG57~bEy|e%SXY;eOvzOnm{~zl;O=si#+OH3q`L*=){J!5UpAYIS1TXi?
zJU7P@RPXKk_v`iPcl-<t1+jj2mpwcx9)G1vRQt=H&*!y`jf3m|d~E;s<1v3~YHH?>
z4-Y|8ooaq_GH!kT_3iCy(3DZ}^K-Mz^XIYg%dG(|I+<%-eyvZ|TE<Roxm&LkC<6Zc
z`2(6XYvmSyH8ni$qV4xP!H@RkJYr)o;Fj*)#kO260+a+6En4(u_j2*ovAeek2?>>a
zc@YT8tNMGtOv*gJ=ijf_TQe>$;<noEJzekC-s<wsZ=Awv7B%$`4loA)Vq;(kZdrG5
zC1+S#+Ok_)v%{Z#EPH!PQ(JqrOf?GwL&48EQ3+Sq$H%W+xiVGm{)WWnSJ&6a*U2(5
z95^{csf5>07c>>|<=^l3uU9Ug2d#ZezP*WDx^!vghX)72YffJ*?zh_9&A`AQes*Q{
z22kNLzwVc(r>EyE>+*GX?)+Qz{oFiT?ZXBlqM}PLE_SyDshwgiw7l#5O4ez+ckc%E
zwxp$3``i6=Y3Gxj^yRu;gl*NA01uB2<K65G3<aJ#8!u+OzP1)L%m6C+7?u}bi*5l$
zzj@vq#C+e2r_<xZuCI$dUwKzNzGh+O<z<=A&&~bycKdzkYKg2nI|}*c&zUrP_Ug*d
z&t5+6x4*Xie%<Ohb7WZA*|RS!a0JaO)QX)Bol@Ocx^d-{vuWC;t63Nr66UQ~p`jbU
zFJ|M$jnF<DXu9Rfl`BE^N$YOxtNs1t-Me)Mo7q?A-Q5M6dRgS!4VnRXIoaPXaC_ce
zmA_k;UYwxl4C-KmmZE(6{vFg3`|{<o|LfEG`$LL~iYj@x#!RVh3|;Kj%e`vJ=1rTX
zOq+Jh#)RR)sz*I6_}kPg&txxNyjWCL_U#3;iVq2(ffD2Nb6dnCN?%{Q3d%i;T)BT&
z8X6jcif%8jE>PD{&39JJD*@f*cevLS=bl#h8ycaiqVi(x_Is0d@7}GXtbBTTG6O@*
z(rLQUYW)2CM~@u2aeL36JtDHQYYmf+y*M#ZnTv;K&x7BfNsC$8>n?tLeEe;$Y4)`c
zP%S>^_U`ihrAwB)`2Bu=`AVkKM#A&l`{hD&a@Nc;%U$*V=luT{oB8cl$k+XF{QT@}
zaoKeS1`YFbH`ueUuZzvPwq~YQ__{Y2<iy0%?Cb2*{pVc)O}}p0Vgl+dRDXYG`~H{i
z%k{p;RY8MC&uzCW75-BC{^$s3^p=&C6*O9DQuZcd`l=*Gh8+RtW+<IGb0!3JB<8c-
z<3@J53$skKRXjm!8z%ePt=yP=eBS3-O-)Rot`Mlnde;1Y&As#x6+i6_n>KCwa!PxB
z#=AQ^wKOyWQc{+H26~V6N?Wh?W?+b!T2x&8^y$;kMR#xCzFqgHMo37=q~=EfXl&^7
z^Yh_#b^AaA4l9F}8m<3X|Ns5}m+kU(7u4t19Ext4u5E05IW9s}Of2icfkr9gG@e#b
z28REu_r!nrgt|uI{QYvyiXRW#L2EBS6IoUN|9<zj{eLw){_5@g{cAlZtGzsD{eI7p
zdC}oJ#Up%Yn_Zo0oGv0Iwd&$x_tk}ukDWSqF08DqZ07YXnU|NzRC6#m9Nk*{{G3qs
zvM%nWn^;&_rdaVt?6F$~nk&4@?(gsa_07#-PEJm6zoSG)Rn>K|TkoaI{`PBs{P@wm
ztK2p49c$Rf{7>iRT7Nyj%s=OI%wdC+%{N0rLPF$XnHdhe)GOx=n{Afs#UczED@r>%
zEA*M^!i5XHe0@Xx{Q3?%eb2qU?PS_!O%szZi+&gW`jRQxws5k#zm-S?XyIE@QWB_#
zu=n4u*W$JJyB6Ky)(OAu!NbtdwJ!huKG3?eNs}g-<lHdutbhAv-lR#3K71(nEyf!e
z8EIAcsHLg7`RTiNdY+)1Uvk#;y2YLMKR!PG_2DqTsEEju4`mOI^-7y29AE%VKXi-f
zYAwHL>Aq7uA}}!U>0b{91}&cSJ+2aBV$16O{?fFwi*xUn+xq^=ym|B93H0=!FIu>_
zcQ>eaQ1<o~XwjROzdvXdg^{tb?6r8%B!F%8w<)t{&;Ir0WpGk%n1=_r4ia{M8{>C>
z86yLO#r;FA+}<@}4_Ae*zOvAn{kNsr?6pU3*Im4LF=|svCuj`z@$vrERbOB2dO9r{
zv}&fk|HjXs&*y`dC3#*lK5rBJ=%=un&w>L?3=H9Io9*803|i{t<>3+F<m5E-xr(~_
z^oUo+6(16K<!pZJ`QG2rv18S>kYMnf_c^T%33}IWT?K9OVe$a=PO(nZgE~yaje>w@
z*&%}!phW~-0-zme;EoGVXYf(v4oHh>#JWZTqactWP%a&mVIXo`2<h~rjl&SPlwh^Y
z(W6IKR(*YS?j75ygP?B4UDhd^)#p_lx*6+WX;Jv7W%KR^t|svKF=&YaXb^<KKoS&W
z@U;vZW;{|ly=Fc4L~J89mFuJT*X>=jcrmEG{qyI~m6?~9fd*E>!me4aw=R6tl68HZ
zuDQ9nZv4JKO}`>0g2&EWU0pMOetO!~+Z$R?upuZY2sB``blI|1wZFfm#)*rIFMsnU
z=j-e1{-9AjJ{gMzpe<Re!`5C}7rQ%TciG#Z_0r~fb3T3g6k`?(+8TJkX^x@m4!r9E
zLY{3kPCFBDyiZp4*1J8Q{XmmAU$4hsKhi1e9kV(8yxiHD#_qyuJ{Nv`e5{}7a_u;1
z=q`L`>gj1G4<B|mG&KBXrmwFLn*DoyZLL+&6OWnK|83qeX-Rbc-cZm8(D(cG@vlss
z+xf17dY7QVDubTW@(rwzF|%_X8_M3^TAFrt*2<!%r}*9`CMJG++}PMC{%23{az9OV
zb@#1VSG5Y?H1peC*p_?y%VB=|7Y7=d#cR%YwSlJzV$#x<F)=ZDZDD6&Ibpz)nvxQ8
z<u7RQZ&MSK?T-h|d~Yi&E2RvRTH1J}m$C6m#e~gY3m&uOE_7>}iZTQ*p7r=x?<|YL
zMZdnkU*FNe(Vh(2Z<d(2@X_PP`akMKMM0xB;iyCHKU#l0Y?lYkc7YZpy}PrM?>L{F
z4QR6T<yrIlQ`WD4|FrzpBXEMBaN2i+S^hoHqI`=jbM0z>&AARKoM+6Osp+{YeEq%3
z`PDx@B!bqlUR@o2eO2h{C(oZhFR1zR<0EMM4QMoC>GI{)cm9KxP*qj!YHDhVNxRJk
z?(9D+>gwr}wVqb7`Tc=L=I3*!abut7e_r!UzWxtrgn8wL4FM}xu3Qzo+^@43v|1dr
zsmynlNnr-Y;xfg<TWmnKtSbVo(cF@G88qLQc(~2;S9bdMDN{sR+uLv7S2%O()TK^g
zbrBgEo$~T>&-$gwpzd;7+OnYFU~iFtqo5^a$;bOFx4gZ%*&VciG$v+F-p;4fgjR;T
zx`9TxS}l?%R!0!KrmX74!uBus|NjfWc<~}=LGrhEceCyH7d<@%T5P5=b(eI_)m5RX
z5^Z_=ex`kWbMtb~!YDRS1YS7Q%59o=$3i!1i^t8IH@P@DFCvxDzIl0l);6F$Rc5n&
zKR-Krc~9kMnLg8;8yDgdrXCHw7V}paWQf?K9v1IOTA{0!w6w6Os;Eq<^eZab<h)4L
z)BgXT&#K?Gm6V)ZU0tWw?47#tq6TO?FSryINLP(85C@eZIEvl2BP$<4@-3)=4qA4>
zFrx=lnt}^pP=O0w<^-P{q=!MEky=>UcSs7yoGJQ>E=9EAaI6&txOj!E=!#P@H#hg4
zV{!3ct(RBVojZ3*UR+RA|Hj3@5W&fM&3@0vW70*%#g}!r-zjo@9^bh?lYwDf+)?}R
zGyj}^E;{h5z5IS{IA}G(x3{-Jqb2F(><kPc4k8itpFf|s&ptg(ca~l4uB@x8mLBaE
zx8Ci|(6G8^v(TD9e`<~%J*sJ75U_9GJ}!R#>$kRMpRbM$3!CQFE4B1?{{Gm1|NepO
zJ=QCI+GhWP1rDI?3f*G5PaZ#BysPx}t9jM$0^Qt>x&F0^lx4kkUng!)1gO*lt>WER
z`#UIskzt)wU|`@Z%i?89%F3X<HI)?=E8P3#Zf#0EZMojt+xznB_4`)!^zgK{w9MH&
zLt95Dq+ia~B=wX?>HB-J`TKq@d-Uj0$j+iv(3Z+Kik71Jg8$C$e!p+^@Av!T<>cf*
z-Q;IyW-bPGNpo*+JNHhC;el4rz3gS%^6#%(>OEb{&@gc0#*LGfoH*eD8l?p-J6`5H
z`_!Iq%Vy_Y0yV(1uC97{nBV@&wYAZwZOVUrdHL&6w?1gY*Yy84y_&x62QA|Pwdncn
zek@Q~nS8vDi-$+$C=<huJ@_htUq64YjM|#@ytXY-0yO*Z>&wf<+j4KOTCu`o=gytW
zzTEH9*zgauOfz(QUTo>BD<|(=+h1R=8@b7)Ezx3qGDE}aF5_znpyB$nvrL1Zo|-Cq
z>+qpNZ;tC<$G2GQ>!$blrXmrO&dsx3z0`a9s^aJ8KqG#2zh0_?R#k9ua|efoO}n->
z`Z;J+v*2h7%5pM;RK{Qb{{B||YwEkB@Uh$3xz^#Dnwp?ZxQc597#J8t(mY)pLw1$F
zUuRqWE#{l?nikWDN!QlLuRn9f2jueid%w>+Y&iSuvZLMNtFy1KoBnrB?C!FYpq;V0
z8X6vsj*io7^BEd;8W|Z)nK|?2g|L8tf}`_a_sqRhjMC94divzajsH8Vzvo?D9qvEr
z%Fg0+P%rk?m6cH&5)P)?AJ@{@paLquN?%>MD4oA2Fv;ozC<ePkwN28`%?bMdA+`sy
z4&?8qcZ>`g@?T$F-7L;{)NhVO;l1sz^rjng>7dLQ|9Gmk&%K>bR;Df%x)Lq!WBm0`
zWmm-`Dl03aHYT<H`u_g^|J%F&FIaWTrtk6mW{rx}>qYucdL#d|Zr>R3eHpJ|X6Mhv
zoYLmf2Qr%u6eg6Fm4#e#S-ffGHnFKo?qv4XH8iYi4YNpodhFdQ%?<0M*Q`x`u%+9o
zamwt|%NG9G_1pdM+`Xs!dHC-X>%YH#M)vq~oAZ{>cUt^-_}k|D0#)y6Uo74gSbW)i
z|F2*5_jjQ|L6i932{1IQ{{FCC{?%cA`!89$OI`-;PnO|xUw^vcuIQfs{Ii%Z*7ix~
z?O1qxV@C%^@VCmylN<OWo<4mFS{Jyr;^U*Z{^LiFYTDSuSeLy~NMK}OySp`P18B2h
zE4O&n)~i>qX5QSCTH9B+GX|7|^y2os*m`mAu3b@Wi6@>G@&2gW_4kRo{lya#m8<`{
zBqb*=K6Lo-`kzu^MsLh_zQ40G*lhON^R{7ai5V9cxq?<d?fdmgyKcEKgTez9HMLcX
z7dx}Evd-JKZJU{>sHmo%p5MfY6DRGf&8m)#ooi)nz5l!Ep+kpk`1RJVU;ll}e4EOk
zsZ*!gIxXD4xG6O5-`v`J6_0uMemo{U>B?jI(5R?cmo8mmdwP$7;c&nHw*=7AQcX=y
z(6*oA;?0W|FAfa}S#o)~|LP4JE?myPyQ@@7PcO{bx%oQ#mU*?`A|=}v3ak5_cw4r5
z#}05GO+`~({rKhgJD<<HEdTEVJ18G$hpm}#`z>e{XzKRcpdBZ{&);MpwgW9+S-E71
zi@(js7B6q_(uapwedpW7{{Hs%@|wuaHnlv50|ElhA6>6LzvhzgBc8(_T8s`G>|wgL
zCG#?<d{0eJe;vO6*VLw_CX@VoHo13pY`lKl<%cm7=oo{?-D@=#yY&X;<*h3!F8=){
zI3nUj=*3spu3jy@dcAOG%&q<P{~O+2oX_*y7PLGkZ83OZ@sA{au`}+VH3m)`5si(i
z;0fA5@D%2X1XeaJkWw{>(tv|pJRuvv$84~2Gca^7eDvi13XqRx^l*V3a7b>=0SD@t
z1hV5m3dq6@0$LG`jSZkxe*znrn7v!TM|psqPn4UeZ4wJ;Ex?l9O{w2r@7}U?D`;iG
z#EBC(-OK^4dv<j_8hW?b+q>Jy*jQ9haN&jx26t<}-(9tG<;#ob-<D<H-j)m6-u1Ov
z{*S}s<Ne`IPED&;t=jkfcS<S9+yz^<n1B|Fnwo}!1~r?Sn?Xb9r%s)!JHGR7o~nvU
z#`Sfvpb`eOBS?S$pP-K)KmK~N`TU+=>moP1?f-F9|I6k1|3ad-<y-`v#SkCA9<<Qu
z#>V7k%e{)n<v=b!B3`|rPtJA~Xm@dCW#y?;rzWW^UA9b1P0cO)`nszR54Zo8i4F@}
zwrZ8u+nbx+y{G9+R8dt`J^8XE>u?*dmagtpmC~}ZtlQgiz5M*b0s|+e*CZt^QuCj;
zM%KFQ#kSjdyN}I`Vi$#2<=wKo{C!wK!3HBEBb!{%0*rk%J6Ek*1=^ke-LmZbJX_G7
z5cL?(Nq6(Yi;6a#I(_=;y?c6|S^4?l+1aa=l$7=yYj1DY*3j@Uo1LqWKRs1&0|SG^
zv#jjwrzKXRVq(v(%1KMVw!Ale)-0*BGYl8ISLfuc+4u9A^wsOvy(c+2JD2``yB#z|
zXI=gdv=6rQ&yT{T%a^})xBoRUd<QoRDA0A%R+#TFH#I%^u;5EZxrI#8?z>qzIWiX_
zJmZqf-`r4KetG4TDI&fz3>@{QdvD#k)vD&l1~tDq6{7EZ{)37_gEL#VZPQXwS>j%u
zk+I_W4~JvB?&huEn3$Ld8m#zoI{shK`#qog>VDt84=Ty*f8RX+<!X5ROatN936rfE
z7{nfR`@UQ3-hXYXc6im6_<c1ui)$2;c@KZ+dHd$gl|Mf}o0h+e0Zp^bs{=K%b+_MH
z<U8B!<<IBy_pkc-gBg_l8JFzY6Z7=x)3{vF=>)%I9~W3u#j@pOWld7KTk*K}Z{OQ@
z*YDqOZs&XXzW)F2Z8<j|UDda;in_ea_wqz#_g{P6>zxlAS^%oM7cE*;Q!CBD=9rwE
zy#N2lq=a=_n@a!x{r>vj@Au!cem|M)KV`y%3(qB{pI!=D1O4b|cbxRy)vH&hO0>o3
zh3`+UuI_OzE!~=9HhYfWa+Q@kcSg1)uGqYJv-|yT-^xl$N@||p`NLVg!C=L?IhK!K
zM>80BRIQFWU=Lb_j=hv$QvCef%603`X{&(L?A#fdzyI&H<!}G|{0!TRI8oW%YtkIQ
z<#+P7m%Y99wDfJi{lAFP($c+kLKo*l3bUGx?4W&no}Qjj`|I}3nmt=oR(9>8MM`t+
zYNJ|PTj$lizP2{FuyCW4l$6bC;m*#^Q|HfL-;{c~<k1n%n{UfNo626jdUYw--}b4b
zb@DOr?)lr>^TWNpyFqo}v14w3pPBE!IKwa*G!G9d?ZFA_h&ZG7Brh+oFGqy^S8Ul5
zBCZ#6;mga*Tl4SRot<TR`n8Rt<Gt>9&}Pg3f4_fyvA93$^|iHGxw)V*;;!y))6!QV
z>-SZEe|PoS+1a3_8gK9Kk6-N8dkM5vb@}|dUGDMqpu(F$$~0?AQE~Cq*|Tq_&p&j?
zX?<7N_KnHMS1nj@AiHy;IcOim$&-P8e&<Z@ufHm|q0QmDvBRaymrZkTnaJNid*Rfn
zQ<rv?zOJd2cFwan7y0Yk>%af!3phOhiEln{_xkm1i6C|Vc_FE(sr%2j8a3Y()#0&a
zx+aj3kugDK>5?TszPZ(;JUcUU-#%6z#eMe<pDy@YWo}|pp*xrHe}981%e$S=<)%)X
zmi6dJ=U=-uybKAsYuB#L%E-82`~8k_#`O<Z<#c9rH<+@#Dcdbq^+GZJJ{!XUmXLJ?
zrX1iScSP45IMD3I$iU#^1}e+B7dDAXKx>``R-R-~JOl(x$T5pvzdu~h&Mxlqa{uoK
z=Q17+FK0ddM!Zdok-K4C%+5ve|9@S#z4db$&kweTr~V6WU^wx#=p|_2cxUnRnp$lJ
z0RfJP0|x05przJ^r6na_qK^KGpF4MM)w7xDpaK627Xo}|nRr@ST4rTue|}|N_{asc
zW!}9{=HlD!_t#xq?4EsUil&yP=F7r!)24}m7B>V227;EBUs)Lpn&I7fH!t`(=MU~_
z9L&s&+zp^Ee!G0#59`$tr>E;*Z{w8)O_gZc+sA+W__6BW&*xtsH1k(|HRf?%?l(6m
zC}<KWrGa*7KR(ub8I(3ZJ@NG4f9+b>-O}r^w{{jUzjXOBXwfHV5e;aG%d4xa*>m?X
z7~H7vVP^0Q^7HHK>h1<5k=Ob;|8C#^x9riQq|~%DP)R;%$^8F+o^$c@hsVXu0}aVo
z7C)=_b^ZGF*PzW}vgLOaJ-xiVF7?;{Nd}G4KR(twX~~{FHh(|Q{~wZ@yH?GAo{s0K
z6DKAdes}?tQmejZxw^UWeY?Ww{m_uNv5`xR!SjCD#-QNf(13si&z?P#JAS|Vy{%;1
z!ZmAj)_=RYI{ft8vh4f&YUAF5cC@L-c;5eaYQ^llU7r7c9Jja0-Ch3v+T8Mcpvj3>
z@&A8Ke{Pz8&!)7b<i&-B&T8j{7~0qvxf_l@?zdm}?c2Aw?@6G8DjXdhyZZXRW$l01
zCS7v3^!m#$FE7Wv4GavlJy-bm>-E=%TDj-#pKn#_C13NQ@zCMJd*ispbS5N9fVy)&
zvm_tb-)I(<h)`mAV3>Icl*U&qSm1E;=FPp|cHYXrqU_f5V(Z^}^Y!JWrI`ntSWlfh
z_pUT}_vM#+R%J6bTou^BP*M5k<MGg_s8x6F#H<HRL#|l8+IzX*+)KXZcb{Z}R=|FF
zU;jT^Sk33hz3a1#QoHox_N>@h{5<Y+Epua&Eu<|L2dY)4OcB}p>6CWdd<`EDj|sQm
zhSk;W3;(}okBwy8Lf3Aw+V|P2>guakt@7Ic|L^;1ne5EW!1VOz-{&(3Fht0GsSnxE
zkhpI9(w%eW$V{CwWyQL6eujpIla{=^yj)vX*O!%*byvZ|CQz5y{{PSOT6%idnE7oU
zeC0f}8eAN`zqc23pb2P?=1k-CSC^K0Th;y9aj))ouBnMh#+@C7*KOPxB(hj^5@x)9
zyZp9h@G=ck)6m=7^S@jD`}KM~I74V@T>|yMKR!OLt*-9wZ}&5$zxdnN;LrcJ^~>2t
zfsTzTK5x5x(<Y;-Q>MIVxBs(nj^FZmb-yxuWv#C*iDdfMta|7`!j8%qBL)V$?;nrL
zXFoeL6Eqtiqc?r!^L1<2UInd?zP|rosBzjEgRgg9$b#D*EnHy<;M%p}B&e)NPz>3?
z#0-*Qm<*{B(Au|00}4OYgA45z)k6mk2q`i!5UH~jtrZF`pTH#-PveRI8(laU7_MBq
zwhXl7-_7k*+GbGqMO0KY+;rR0rLHq)&g|;w2#AQ7@owMmysKBPe7UuK)25)!>F2M_
zFid_@U;(O6Vt19CJhL)_iIJOuf%|2glF9F{v6n7gnlgX>`YTsL_I|nK4VsK~a%$4j
z*8VN~ylgk9(HOhC40Nc=tu2|8_x<_g4caQS`MlldSJBbYtABoe{`%9?)3-LIb{iQP
zfsX8Y^5jW&)%i6YpdLWm&c*Kiug;p^4~dJLw`tQR70;C`S9W!FUc9w6yY$D0hjz!O
zO`W=O)he&*Z*MM6QuS5=&2Sf4%>}LG@$&Yzt(C8SW7sQg?#IqAcV&iQvWlm$nomGl
z+A=LIEtC3xe;nsLy|4(}e*dwkX>0ZOJXUsgZDr-dm&JsH7J&{0S+xqZkEn8f^7l74
zL7N<^4^36M`L+y{&iCwzdHeS5q$TV3|BDh874`D<{o11KSp`~Pm3BsA@7HV5%(bU=
zIvZFS4j6<-M{6&?ymG?^gZ1BT+=w{;ao?3IS2B+ENZQ^?PEP&`T3@qoU)-cGC)MY#
zSiIQTIQ`t0SLQ`eJa)#cv-_U&QybK<5_{Cm6&4&kS%%NOzpVYR;`ZBXj~zS4*gN%!
z<n1e0R1O>bdUN}}=^sHxZia@$bz8TFDk>`4-g0(!wmr^nbnR_f^|7-5H^cA$TlcX4
z#uGk<hSr*2FPAT~XMcU!-~R3QA1^L0E`54xs@&V@`tjdn<WEE#Hn2(F{r}DC{QB!3
z+`-B5K;CxHxd*DMsR8Hgv#w~|eETh~|Lazl>sPL*c!E|G{kB<u_~C~yuk&-h7bVBn
z{@&eYuLPRdVhjunw5t5H<lKCFdyVJYZ@=y8>U#Bc#_6Y*8kyNkK0b0?-}~<B)vHE4
z&U({VpZ~loW?h{8<AB&$-Pvc=mS5KN1kJw`6l~~|wO)4Qh>QRJZ{NzUUb~j{^3qb~
zxwBLy^S0l9`+7D51H-=JFE0X*9zB}*`Ptd3CllROYJaDEpD{zCwY~lIiHXXSzzw*i
zOI<Hsya<|FP<gp_`@Kt`iSJFDjBGy~V4k$(^YinkUzWVOSN;BKpRBdbbx#kE3m+dJ
z4-F50UKw)u_4@tm&Ybb7{cw;SG@ujUR~-QA1T=tFTY<(gK?`e2O15-$b(OriVfgoB
zfBls;k(*UKU%q?^?YS?Px_0&I(wm#pUmxidj@q2o`=)F+XeT~sV^ICi)A1&yuR_k7
zW@TlWWM9((ZFZkIb0+94y|{{pte||e_xruiC-<;(&j)SM)zZ`ije&<mMXj2u9lmPw
z=HTDo-hOV;etFy7gN3!yy?wy~g}wj({RXZ5-IjNE)z<9mT1rYz^}jC9-*afH%H68h
zYgesUG2v|5Wzb=1peZRyNl7hjZRtste5!~JH$#FEDE&2@1eGKVYRZtFb^~|``KSbF
f2mlf!Z}xlod%rrrc>i?<1_lOCS3j3^P6<r_Q}Q6k

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg.png
new file mode 100644
index 0000000000000000000000000000000000000000..da0b3d6187fdf3e9a0085b4f77d14b3351704302
GIT binary patch
literal 21515
zcmeAS@N?(olHy`uVBq!ia0y~yV2S`?4mJh`hJ9%>?l3SguoOFahH!9jaMW<5bTBY5
za29w(7BevLCxS5J3j5`m3=9eko-U3d6?5L)t*$x$_5c5mzpJIKErru~HmkL#1)fp#
z=5uxBl1;yAxBAP=WWlt)z?9U;SHZJ3Np^9}x09b5aBc~Q{3>7h+!{%(;u&e`>+j3g
z-J5@Jey)Um_5N>VyW{kBPkH|OOO4*G!+(F)*xolgY{0|Fz;M7M@7y~E28M>!3lA_c
zFc?U(iZL)WoYdIBz`)?+*2v1hkYL26!@$5WIWU2dfni1u6E_3HffSJl1_lPT#iLpV
zdx!<p)$L14PJa6Sy}rD>d~0iK=GRwOr|-#ocV}l&ak2Kdr|;gaOFrH=wd(H4$?Boo
z^I~`I+?o0E($X}(qe3=w?lLkkJgAvCabnc2l9g?|(#sYsP*}QT$qN7Zc2T>_)>@Um
zD!G`QYc@Ns?q{lL=A|PG_qz2;EsZm-`%^L3wmQsg_Sv3y(R`pJb$w^<?QNMC7rA<Q
zcwE?!cv!_#P*5=I?yjvM4ZYIlai8SM@7Hd>wJo<g^8D@1>HTSEXD#g%R?j-r!Wn+G
ze05Tn07Jv;JCjtspFDiH@WqRa>e<VeFJH81(U#QHVzO2xFE+iKJbCis;^*gLKkb<@
zL&EmQgXUM4mUi<T-tnj|8l0-H@0@F0u4Q2n5xOd*FeCr|zP*2c9F=HWX#H-7^VL<M
zll%Moe|>$ue184Eokxnr_2bs8jo$uh>-9L}<)6iliYPKLh!s9K!1(vu?fmOc?v=i}
z66oOI(0P2*rcF<tKM!AX_xySPw!{}79v)tL@A~oM?*4W^m+UHiy)5hMs?6Wt-g<d>
z1Ux@CcWd%-zMsE;-#%|!{cVj~pUldKhuc>NE_S=MzyAMK{xgd}`EEl4Gdtgk!pFz1
zzxiipXZP#lad~f@O-04UPhY-_TyyvI>C<(4OqkjEt{iA&e!KtO?d|KUzP?(zE_Qd;
zsVSOO&*zrEIUZO0HB?kgOiNGiT~=F=qJb+1Lj!Bf>L;(7?En2(d?mf2x>{Rbe|^O7
zo14?$9zVUP`1!e47Zx@jHshC+l$>Q(yK9->TrGL|`9^owD=j*}#Bd-f$LzLfeJrQF
zy?ttGs%ZB93)dDnHXGgF9Jtucs_xH@zt@G;d;$))@m}4U9iEz&re$n=x$b{_{ol};
zGiT~;eK1$kiGd-;!_)QJQm*M2E(ENN-5q9WY01ZZcYEGlt=VUnUAS<;=zH@2e}8v9
zY?FSo->%}rg1Ub{(^=Wr#9qIjpy-^k`R0_lbJu2FT{ZP*WSC1MD?>wTjIU6sp}6)Y
zHXexuFE20G*3|So+|EC}q%QsYlqn*ut*tl3SIJuzxv2Zk3ke9AaOdt_)w%O;tqES<
zclfW}?>EM|_xHu>@A=TQH}}*O&7;dSzQ4J-_~YZ_+Gb{9veso&)~{c$nY@(=RQjze
zetUcS^#hH}qT=Gq7rXc0Dla;J=1fRY(Wbw9E-rT0HZ={El$88-^wV6c(o4GA?<|VW
z-y3>$b@=sfZ*NbXGiS}QUTJHcH2qBTAFr;iK5f8rx9oQAtJ~Y(Z<Wum1c$HFoQVmZ
zm-bYCHmUnlady6a{LPy;xi~p5c8O|V*;$<4zHjGFOTGJbKOVMkO*+c8HfpO^{hyER
zfByXWa>n?4#-SEYzTlRng;)DeZIoQMWf2cU16S7ZKH046>*n6MbH_*Dis$f!oyE_$
z)c*c<`k#e#jI59j1B1?!DAfp!_?*iOkV1aS>`QhGQzEmjf4UZ(pLu;<?74Sr0g16^
z<s#DF_qS@hH?|f9hJ>h?o13SmrDa`P6Iu2BZu!^C{`M;uEO0QJ-K%ukwdT`F^{&p&
zi)UsUmwtN_`ENH<c*mnvkCJ)CPPOjdy}RzmL-xCc$7QVwAGL6Cb3c9leEITuRbGXK
zg`YltytuRYdDq^#O<hk9vddpty?)=ScXxN6K7HDom6df>$jV8Zce64)?VF#rW0{^0
zx0sk%){zcDkO!yfMlbvS=ea$I{p{S_)iY*D{QY=bzNolZ`QwTMU0q!&o*OrA-1YTZ
z^weq7mOY<eA6NbTU1`zzhOSmkr|S-lt=Xr}p7mwtleutes&;5VzykGo6;9vp6!*_E
z%U#uP_se5%_4jMf=hx@yZ<?XEW{2LJS2YKh&#zl`b91`3on4&$-!GFVSFtjjJ1C;K
zPV%t9l*yA9zq`Bp_VuXN_I7Wp|D134?c3+&<1-~u;@6wa=T$uO_x)T}Q&W>7!B+ox
zRYF%+mrU21iOTL;`uhHyoSa%(T9<x&d|Z0j*W7YryTR%6_W#!`SfG$zemFI@`$*^i
z`P1x$bYhInX8VS&4hzl6SyNP8Jay*GmGysL$4^R$pa1yn+qLHRYl1-@2wNMqbosoh
zQ}a?5CKZ;KhgVhYy0$JhJ73y7Z%!M({JQh@|6?Yr`>UNSVk|5y<l^JIwk`MeoV%h2
zE@^BiI4dG1<~8Zxr|J7&yxo3(+WPhDm-)_KroZop)1;7<L8|RatBaqX`}KYQ|Fx6V
z{jE0N-r<yfe%{p;fs0F?&n?gT`s(VpZyz5Y&%UuC@z<kneT_{q2V%?bF5R%f;Opz_
z{YtN;5_zX(FF4SYsi#wP?(Er6N5{s)%a`%XSOmP^_j}!@&6`cj-bAd8*%@@HzFS9M
zU%&RlLH4N4X}y2`{F!s9K1NnwU!Pan%*VFs%LS0Rp{v7g_W#YFICa{zXGi8e@{0NK
zSw>E7T}um#Y33!D?{~}PUBv>pxO8SbI`nJymoFu*E-o4>DlTttZM}Ti-+nD9Bqn|N
z@wh+xSdZkX6DKarFiiH++4SoA`uArN7x4W1W8~!M*tq1geNBATOV!r)_Sf%rzt`J%
z0_38&nvbq;Z*O0J=XZ~G@&CWyv(L;hw5s^9AjfR>p+kqJOqj6XzyXJ@HQ5a;r%iY4
z|8mJ&-*UI`iW@wKC(NEb`_iRLSC)E<i;9V@N<BR->&}jiV)}7wLRW{KG~g+Hb;UFH
z)|S9#Hr_1-51roL+UouF_4V-2&(3!5ZDh;d{Xyu^#l`NSOT9#Q?%ut6!2*YO@7`ry
zSurth&quen_xHyKFY^g}er~R)goMV+8pg6eKMHIAe!X7xY-W1M+9*@?ewOLUPftzt
z^7EV4-rhdTJb#^(Y1WFw!);kNH!a=w_gnPd&*!YU`1z;r-@kwJ?x=;Ssi~Tpnx1lU
za^LuC%wC^1;1LxQdo?qCUgER`dn68oYUt>g@EkTMDk|!!`}<2$QBm=j`Td$?`+tY|
z?Iq0bRV)r%?kD^BZu$MK+v|TkY;QZ8W_;-I;odoO<`lg*KlSX+&f=rD`s8f0SlHO4
z`t5$L*sE)AfB)ZmY4bc2tCAN9J9h7uetms?`HpYb<Lmd9&27#6_ve1?jSYz)gWP%~
z5>wLBZuRHi+H#VEo7?!+wY9H5q|2vnul-%-Jn7-nr>Q@F{hIab>C>mF9!A^p@4tJK
z7-v31$z`T){JxmS$9gA!xxcrc=kNu7`#%fJa&N7u{rzpyl0ScHwq{&(im&<DYGZ3_
zTKz3Y)}|t0(w7s;{TUY*xmLa3`~Au5*RSU^KG^j1>C=}tHYVTNo<F}&#!|`i)5nj2
z6%{-7{rTi=`}vIVq<_|TwLRxrmtWg_-VT&;R)(*S`?l6XWu@O-tEcuHQ)Zq`+q`~l
z&EsBk5n<uQEiEj2zg~;BDtOS4V>a8W?9GXig(qhymGFv0?8s?Ld~s!EFsPD_tA1;`
z_tPouZ^`a`G8a!yR)71th>MFWWM@&TsHmu>fk8n2-mla4{r^{;duPYRy0ZrwnXm4t
z{9Gi@ek$!~muS_Ch3z6TGHb+iqck)$Jigzr-*1+CYsr!&Dz?8~EdKT5aldTWnmc!5
zJTE2p+b)}(zc2FNzkgCT6&udYu{`XyNwjD8?%jWTA4nRf1*9-e@9cFeyqRM*dsXP_
zW##v4!<F57HsmW<7Cv%eWo3N{YBY(**DQ2y=R0}-{{4T9=O>BC$msC%^Z)&HTHjBO
z^;FWmJ(X48Zl+(|S6lt}ZGQda>C>lwdwY91E4SE-%l`JEH8p#V^~q`<HkdMN7O24x
zxjF6R?c33lw&dJ23SAZAS^xj{{i~}&wJ)9GdURTUe@I^5x?f*kt9yR>@F5^BZXPHC
zlaKLu201x3sl3du|2><DiRq2&wQl`=EB^ic{rYjgec1DJbLX11b@lYR#kK^iYXm+N
z5fzneOO&Yo_Qvqtp3i=Z-Fl^twQvga95(1FeSJ;RH0z3ilao_V@Nz%PnD6K7|6N`Y
zx_X*n{=Gd#?~T`;nPr;YGs`qvs{Z%w`#rV4zgf!s{&ZTu*Ke+sq}lAVGi)k16+Sy7
znf&6yLbt1{LVFpR*(4+-C6A@guT8sCe!tdjzFlpP{l6cFJr_Gf=HA+Ja>LCWP+FI(
z{SugbZjPnuJaJ*+;77C8oSkhhZGN|8a^d4%bE%y>cRs!OmFxW>DIIxv`NdgRS1qgi
z`Qyh1w$*bcCM@*fIXodz0@R2~J2z+LLg)5ZXU*?VnLd5`qeqWSDnF(4N*FpNCMH(>
z{dyf#18M5&`gV49u8P{a>fMgVeChm*(-Z#uH)oly9}fy#Z7Zu=|2ArfZ+raW=H}&D
zS640FvBSc5jzysFER#Sdr>0le)~-Hs#KkoCR>)MX(4ehZSGS~{m8xFE`r5km)f6Ts
zCJ{Ngbz8QWtc~982TG}Gesfkt=k0W5WMrJQ<j4`1xz^?DA|{E7i7ne%{Crj3-CdtP
zeJXkuprs?Eb3MVBN6ckGN%8Y@SDRS5OYYZxUm3kU57ePJ{PFJYa!|c<Yg_JYkdcDQ
zZW@-Bksm*P^z!$gK7IQ1nwpv?j~_1vRhe9zoQ0P>0>pOi+_~%NwCF3FQoVI!cU^fn
z<Ky!4op<(BZvOTCy}rM{f9}mquBKU6E^JIbzNO@4Q0UsIP}{068}ctUbR9I{xm)>s
z?yA_`+w6Y5P|m%xBk=Mv-^<_L-VR+KXWJ`d8B~6!uzi+Erjn<WRmqBbb-!~#g3fI`
z8@DfhQ}*V@!m_uwPF}x${ma_yuCA_<XJ;fq4b$A)+f2XS(~$g~urQ?h`@5@m%kQuK
z`}_Or+4=hdladx~%e}p<nVo-C;9@sW3SaEjD<USgEOvKU=D$Bbi^|Kde?D)&{$Mlv
z>GS9P-`?69{QuwIudi0G*Rrs<ant!w>aWNB_9ofabgr(8jpn!gGU0I5F8lw!J3yv=
z{CIJZYxkAS>Hb@DZU&iVUkh38H}}fASnI26A}>ce9}u-De>dmOojahg>XkP4>y<JM
z`v32*sG#7&W4+SeR{Im*e7|46et!MG$ntxY%d5V>)AgKXRk~_b$jU|QVt3!FU%wzn
z?@ja5moF=Qza2bv{(QRpnxZ4~nWmh&e?MN?y)WeIs!&k@fdz$+kG;IG&{@j9ZjY0*
z^VQAi{%2<zyUWSR{d&;Me`RB```H<W&iZ@5OahfS`~SYppJh?FXwl-uS62ior}ML?
z2JEdW{rUU1wykaK^K)}2x3{;Sn``~N;9Tp=M|!clJSP47`@a76?Lfm=jUG@-uTR$c
z)n$MCtDVB?DxRPqk*j#XxO3;um)q~x1v@!4H8nSz*8VEl`{58b$TxCzKN2e|Hhf~4
zps}Gq&@}5xKupY>dDZVMLDlrVd-r}FxBs_rZ}oRAEiEsz*}nBZPsd+b<jM`o9iXn`
z+gn>rv#;qKJ$m%!`@{Tqx}F}YUq8>bTFcfpR#@F{O3A<W_y5Hr&1Rq7XZQM0>6))A
ze&p?V$i^#a<Z^nt{`G5Xqg6fQYrjrq<C9sj`~AM?_xu0v+xP30HY*ED#+4O;T-@B3
zKRi4PDh}1Z-znX|9(MG&lupd0mBGtRGB2rs0`71-|Mf2~FTXtws-oWB*%^HD<jGSf
zPhMQ;+^*tT`uf_{dwZ)xcbDa+mr94fJkZDt>P!30w_DrN!eaaNO7NtV`FeXk*uTAU
zC4^VjDg@O2F8%#>yY=SN27z&L^FX=guz`rE=+fo$>!P;bEt@SQBqVb!3Dkkv^>*9s
zlE=N~RvWjkdw57{&8pDVv*xjgiHW`X^78VUgIew>J9jJr^_m|Y>D+WPr|NO9d5T1v
zn(wS7TA`~}gs+c#b#?Xhd3C=sQ&UnhK0Z2nYiIHDW&ZR13PTUFvaq~Z+;4XYlvhB>
z=gZ5>U7ekU5jDHBuj}bXY;ZU`%QX3Ng!to^FIUFxt<p3z3tJt&KJ5Lyy<bmhufNf~
zx~Yi?RF{C7ACs%OB7`}`^lq;VUjF6NY5m*g!Zk0KP6t)^AHrsq)HQDD@9!6`<}wC#
z#z4LCmBGtPK+V4k3mmhqt(ggmj@o}epWoVBz5Uwy`1m)x!67mA|BUZ$PWP|<|M&Z?
z4T;TBTQVL#nYVKrH)q(^tgGuhn@V3@(G*%!<kHl7I&5u}X|KF}+@<>R!g(f{llIQo
z^?^<3=+x|&H#aZemUnm6L}mA^ySqxG_SNiM@;Up<t!=rhd!@}m%}Bp@s%J_bt~H*0
zb{QixTgLG|*<a6Q=WA?eFj{cHY385&iJ(EBkB^U^zJ7gr_~zIfzUFtA@Z0|hSnfan
z8Yt^7TBNi!?{3uA?CW7)UtOJh*EWV(Txd=8`@P}o_k8LCHBjB<YeS}LhnE$dkCB(|
z-NnYGGv#Kh(&@W*W7qHfHcKmf-I|k=)vb3&?>M$9Z0)L5p{rLpHnW|3$8~Dr{{8#o
zDxZql{(LeyYFo}sxvCe6>E)a&1T;1jxPmhBjvW@E>tZ7NZ9a8u-p%|#>ea=??YFk&
zo>n)UA}pi>>aJ;r?X4=^`{k0i4=<D6x%>CyXPf0tTE2Yw=G{yo5+V^hv_!%Wd~JNR
zs%D}^XbotbGJ+$xWnJSB&|qhZN(2K#1PAA|Y=wj1(N0b=1_m*wrl(RKkO9x8P`<j~
zZ_Pm+58qiP6Sr^QzIit@!w#pNJ9nNsaRS`cuqu5OGdX=i!cI1>HANeWo_g8-`|<eP
zJ2r*`DxaU9zn<K0`|M5LfkPS_PB~6i^HuR|Y;3$9+f@4C03$04i^Xo~r+Jr_c%FOL
z6zntG%y+SSe_5INoTQJBj-GqxwDb0c#OA#Hf6LO#7strj*Tt+3Tf6Ch{og3X!c{*s
zHk>-xy6DvH+tK^>?elx*3o7OJzdNSmsT;kmq)dFyqO7Z{uD`wU`r6vpZ}g^E`}?1N
zU36#Cy50MA7Qcyj!Uq~JiD*v!c75rS=g&by9RL3P1GQ2kB4&iGkBfcw&)wbq^x3n%
zwZFgVmYp%+IXlbLd;6WDZcqgN`ucjc|9rb!n^L`J&QC4{2WrP=t~Do4c&MtWX(=f=
z8K<9{(%#<w>&wf<XJ?zom)+n0`<?aKxz^jSwB#S@5UhH)^ZAu!zS5wQN7=0>psH%u
zp~Hv2-Yvf$`>j}uX&DD2!;W*gx3~Fri|K+|Xl=aGYMxyk9RaVetu@WMqLF)N$Hz_Y
zgoT9{pEz+sX!80+i<Cg_Yi8pO^7881TYI2^k&B1t3aBOUdhPaEMsnH;2M?Ko%dc|A
zrz`yD+nsyIbSki*V8iC!4<^l-n4lZE$wf|1uB)$a+xE(;Do`mMy)6e+`sv+#f8|QZ
z+q=8NgO~YeeynhGY%D4+?p}L)_ro^nC(oX#$;;0_{o`GTj7Y?eWf~jS>4SROn|C)9
zximhtDtmWl<%0(ap(}%qF5FxD``fq2;-FE<i;LZ}-`v=^bl;B$PoFO3leN-NRdtoG
z`>~Ku&Su5k-Q}-4)#nAgy|q=g%R2l3c%<=BPp{i%jFCn0y>*wCfch2}x%KxHT>LDi
z6S2Utna%PI@69!l#-Ko&m0ufp50sX7oO}B0*{REyH%IKAK7IP%ip)!wFPj!W^YNW;
z7durebk~bwP<<S>HtOZi=ku>`N<IDM-R}3RHf#v^`|IoFkB^V9&l3=HZenF<I6CFK
z+v0oo?wvY)TKihvw>Oc$KVCX=<j4x|>3X~V|NE`~t7p+7rLQk8I^W$@dU<yKzRdjh
z_xA3N+M2cWdVGEC`hCA%iS`|+0*z}HD5jsAb8)6|y3DO}bFIrSX8-x~$7>GTnNz1G
zshDP5Sa9SusLTXqz0=clgVWNME%{s>3mU~VHxHjVbLOhh)zd(U@$2jB+2`lk&N57H
zJ8aw3)C8(lb8l^Vx#@U>U_b&RLxN)XZno84Q?-tYt$zOW>CNt?lUmx^vfkd>dg|oK
z!X0I=udUs5Glz?pSNG$tW_JElX`5Hp|NnRNSiy@6imYsGS;u-LLG83YIa^RSW6`2T
zN#8X!Gy)P66C>L)E7u%kVmRP5XQS`o21e$Ph=>(SmZ(%m*VXL{3JMYt6H}|NulKw(
zQQ3XUv}tMjlXjKAUzd7%TISDBPx<0YUtPJFyZ!F6r>CdC-uL_6<dT1DgAW^ky7ukq
z?{92$&dkiry1i}f%=>Q3l@Bs8Jg~aHueO?3#v-7wu+XaN%ZjF^rYVyqEjn|?M^#<@
z_IYXBsx3jm!BZzrT-eaSV48CyfLGc~r)>X>84_1lho6s&@eI1XEf?Hwnrj^n8UtM)
zx3}cShs3>qzuo@y^=qh)kI&AYt$QG0cJ9V9$4Sr5&Rz~0wE6ev=c#k&!aO`W!q!AA
zJU7?c`p)sQZ!b-bU)uW+)JFR9^77V#hfbiVnyMWhc70u}Y2~MsyA_XnQ>CXI1y2-#
z3h|F0KX&!^>wlf|<Vi}q%W9L~-{0$RynFd_aPslKt2Z_#uir6Wlod2NAoget3-`06
ziPj7Z4JSdVcY}n`@~(as@Kh6|$j;sn!wf2{q4EOYx&Sl?9FVY+4OD(G__%?RYb&T=
z290hqOr8iz42CLxqVmWZuO;kcLy}iiiCEXj#Ld9Kz3@O0ua6)TXpReHF}LEuB3_W)
z3~Hd*IFRHqN6QXb;~G?XCl9)~P|woUqWoRV&Ye3?9zX6L85w!B?|$KNSx`U5={y6&
zfv*Qtxz})i`t->p_tuuAw;`Vx7*_9^kTCOa>!+ueSi>?hR-~Puw^rG`&tkVW1H%KW
zN1IruolUzu!!S7{A|fKG>ub8Jt83NIr_)76L{#+k^+BDt<l}vzb#?m=SAzO=_xIIq
z&AhBu`r?A)y?ggSEuCj)XP4`?GcoKqHz6*xMlU+SGwAX%U(<>Y54@K}1O^6z+U0qB
zzlN!*slDp6es=*hwCgTcdE}wZ?6b>ie}Bt-aG(*?rn^`1nD^?cP;b!8N!_21$Fpr^
z7#IQ^ca$`$dV-wb=-Bw^@ndhBec9LbmM&ZN>gDqJ*ABIEe|@w0yq2Y9q_SJjg-=gU
zZ_T@F)&BYN<;z=BP73Y)^XasdQA&s1|3Af`hTX}NC!ZS1Ff?=*Uz1w%=TFViW5+<f
z4m&$LP?H%nHh<^;ix(L?ckW!7e}5m}+nqai{`!6Y|GM4pc6swknFMUjx_V_>ZZxRw
zd46uL_UGa?=bmz}S>`(%R0n!`dRkR|$=LXKe(krJIcBrlc%`3R`1hz=|C9mG+K7#Z
z7Vb?wJ?+(%m6QKo2Xz5HKRdg%{{O#hV+IC>Q;sPqON4}lL7k|X#_6XHA9k+&_2uHT
zv$OSo%iXX2KKI$Vx!U>p?~{&ydw+lZLg#ibtN+Gkii(bnjg6qXRYX)Y^_In&Lr=MN
zJf+O@=5TRwdBt>>J~+U*bLUP?4UH2E_r~q5S{1ms&B)kT_7*b}Q`g<aX=i7hI(N=&
z`(=iP*OQEe)<7rdW|`&A0uA-<|MOHIG`=Zip0_4&v0H4}{p6%15lP9FyGmb+S%>Yf
zt9^TOv%7Zqx+|bDlou~DKy@l8?t+4YWA#?-&@+?Dy|rbfT>YOyRaI3@GqY_+iuK9`
z7wq0$-TAgHG3L`PW_CW2-TTVk-dYvA`&+85G($k$rOTJ6&YSn{!nEnr%g@e#-P7wf
zT_;kBpP%2=-Tn4$8(UjZQPHIvlaIf;u+aI__wV~(*aig$Z!LcxryIR(&5@NyFV)@q
z`u={rrl#hvkH_UjB_t|lDsS5NdeMPN=axr&etuqmo7n2Y$H%P7-^~FHE<HOt`}XaA
zS?guO>VBXZw`E@y6%-uy?c2BPE<Z!TTNZY9Z3~MV3*X+@m>jhwW8&nhlDBW}><m75
z@ZhSTrCrX|zrVeGdt5&(;pvkn8DCypl(H_%>3n(hXv__PJ$`eoQr~Rd8Y>>$GD$>2
zV#RU!`k427zt1}?-CFzW%fv(pFCU*03wuRHN3+?!-|rOrSC)%16v(EX4%rV|3s8Ja
zBrz;(+Mhpvy0-rQ`SYX!kE~tIk44x0XPJ1~+1XV+Y!yFca;>R}3DgKPFbLRww=8<*
zx~*2zeK&Z`+9YjVwgyz7Z`oo3YRyj)5fWMiYOtxQYFb-IKYaKQ)G3%UYt|}uxeAAe
z4<A0gTgt$2Dl{)|osF$+_txsl%A5Vu)og8JjnmIvS>)OsvNC9?k?r^O^?z5_{d%ch
z`|W0WQE~CwGsjc8*GyXVHSO#yO(i9#;^*f|E&d&3mtPUNInB${^Wvwcr$hJG)%MC-
zhY73sXq275^iS-7TOI?$<|*ILi{$6O7rH)uu5I<Tx;-X_hK8VS=DYp>{~6hS{(3$B
z`tSGq*J}nZd$Df!JFVz;ZHDPO8<dolMI|L8A8oWOewJ}=jwN4iUS1w3%^&NPF2DGD
z+PAjD*W>GJQ)O8h4x}9KlfAq#`MAt2E^co9s^0nY<2x@mh+lKZXl`uYUz#t`#>LG&
zb@uGlXU_P5%AwHJVWm6tR8?IUyZ2u!K5x5x$BrGR<)U35O#;<fqF1l(bB$OZXA7!q
z7ry=S^75^X$?hw!BegXmUhFG<9d<LvthKFeTE*Ri&Frb0Z(iA7|34|&qU6N{CT3>S
z<YPR)|AkNb(qI3_`QpWkQU(bP_v(JX)s{?Zb!cQ|I8d5*pn(xI);np^B$JvS1)k5#
z%lth(10y14{N+8Q?B4g{$;ruFTwIfO@7@h<Y>4iTFDcnF%OrDA;p1aBuiJQE`t|ko
z*AvS9FF=LwpP!#krx*A+fhSNclI7QYdwV<k!GXrE?(WMM7rTp!h%A{hMI<#X&8kM^
z&WnqSr_P$Ss;7sCm4#&mXlmfbhQy7(j~+R)B5rThuJ`+XzsY6ilL@%LulDJ)XUjkd
zNxuHi#>1wHii*2_KAXM1XvsB4&>9kx{ChT_&g|#s=flg&wmCUDZAm)HRr>DE&APs`
zX}i~K|LdhCRR8m-_*}c%s7YV`d_FI}JMGbtPEb$d!L0(fCRI;RL!+jqW+U&;|2meI
zHx(~x`FiTNwzjvgUa{iEr0cu5K=ZUZM<Q9p&OD9UUB$@25WxVd_r;tag?t1x1sG=Z
zfa`V8#1pRGAE-eAYCwR^YGFEU3Ys}*NH7A``#Nn$Rz3nX1sDt@!3H0a(z))?1YRKn
zmTzG>Z8`z6NCs>XS_1;yKmes2F=xk+kA|)spjlUlM$kOuKp6z`3bauLZghd$LWx}$
zU|t6Y#S^C{Ts_CyldsKkZY-$#`%6<n!QtM$d!Igk4t{@c@7BuC&xFqFYiL}!vNHJU
zB3JIp>gv^Xe}C=zey_Up$A^bT_3PL4fK~-8IB~*5H+EOZ;WpmjfPe`>K|xoR`^$qC
z2+XxA)%v>Y%a@X!yLV@wn4q{Se*Zqu%wYY$n$owoLP6DR)z??4_S-jX2mn==*Vaah
z%F3>tFhL+SJsmVq3YrtSy1=pdlSJ0e1)yaNPIET0W#8VG3o6WogoI3TZWwq5xwy1M
zZO>a9xY#Z8@v+{eanhoqOINJWXy2yj+@@h*5YXA#$;Wz4I)BeXUTL$8%gcPTuCKcr
z+H>O93?&wZ2UgotP6}04RA^XP-MaVe<;#^TR%n1mi`)5RwJ!hNvv+UlVP5kWM>>VS
znH@GTDSqZ-`{4jHXs)`et82>a+1a-w*0h1cyzrRR8q5VMOXt|tM(zLqZ}+83mrT;m
zNPs$~ppj?!{}0>cL9O|_HJ{H`{d&3l>Fd|p@$vCnGcUVkUtg#D+x*lci2J5bovLbY
zzdz}1U0t0K&*M#E3;3l>Jha2tO;G_g($Cv`?m5;goo>G`|Gu5)^W~h`*VnDRxjFr`
z0gvxotI)mG->+@IU$^?&+UVIPO3xRALNV!7_5D?M?!;79Rf%PP|MY2-{QfCFepG-a
z57_zTuH4yKJazv3^`Nn|bup2Xrc9ok{Qvp7*xhfqZ|yF94O&99_uH*(FJE8NY!5$o
zXhAe__xA1EKYjYtwRJwIGWZkZ<mB|`|Gyi_{VQ{CZ>#!rQvK`4<MP&bKr4Ls^102j
zu6V@mD$y*BZtv=1S}n75*|Jr+x3`^p$9Bqbd*0nScUh-w<`h=5*v+lM{_^EZP<(IR
zT^P9k&!=u9BO{qxpFV$v*9Vc2k&{B6y%p99UA1Ii?QbnRySU2A%1>XuY`MQUZg17m
zbL*qGze`>Fd6fsK7rSA?YTpe^%*>(^5-%=%`~7}@_R%iUrE$ViQmeLRU)NGsKc2Yo
z_qDarshe+#NJ&LK1GQx3jd+}w`_G@YeEIUceLvGeSB0!RVlKolZ?{G|Z^yzj=QkML
z11BZ(gaZtq4zH%>$$Qi0&tDH&#d7lg{rE{GPfiFfUAlDTiWMj7?ycYdFX~O5y5F1&
z>ho(BH8e0>T^Z~?DP*aa=+~E*-DjKUhgDVW`g=#d{!id+^Zc?K`lm%f1yh3Jxrk=a
z{2EfHvR3^&_70_I(EEFPuWm?mE`4#qvGnz|(6qE=K|w)NrcO<buP;4#Wo7Wzw6jvB
zudn$!xARR+l&E^Wc6-QjKiQ*4kIuA8O9v$shFRwM^N#h)umAb^xwf@+w4$P7)W)P%
ztMYd__Q%sUpFDfE@RPQdmKV3UUPw~XBELBn3ul>TuS!1NCuLcbva$b0=EX&=*Vf0c
zzi}hNcczhRUS8g-dwX}sRlnUTw7ql132<}>q^m?+`nh-YqsNa$<>ljFS)M$3lCN`G
z$-m^nHXg~Mo3)(0yj$N-e|jpS8BtU(+hZ=(`V-XCgmoJ&vU$bMxPlWSfgUBe#|SFm
z4`3fn1l2d7E^vaPkKitRT~oRmgkA$eibIVJG0ed&prxFkitPZnibARoK)vjQPNvrv
z7CJ}muiM)vYrTwJz6LbT5E2+T(Qls3N>G>S?%lgLV_6s&cI5cYRWjjmKHSb9etDVi
z*Bi<GnLj=}1WmfBJbm(Hh38~7P$HRg)0KhY)ZJE*(`)pn*e@50Sik?@u6s3~eL>~N
z>aeww5+%MRgVs(l^V=-&xBGdd)0TySLBo2vpWwN9w$aV({MW9m4F3B2{eE$4IU%7%
z=k5RB;k0FDIA9sk{8VbrtOU>`J-F)Fv3~t}zqwYSeYQ*t2X>yBC%5NLldipe{KkzN
zKYjl`y}!Tz(4j+Hs=mJRj@zDinC<K9>;8<4jGw-Jn>K&`{HpKo)}EbhKE2}Kv$M0W
zF7+1w`RmuI^XL5y4Gpb|pZUz(?;rO33e)PmySuC^J|wI>zCHi`x`u{^qBnvJ4A+-~
z8ro`Vpk5(jWHdNyVTof^)vh~t@0zBZ5CAQ&kg_aV(kExTYF+H^SEu#&mspfPKQ|XN
z<b7_Q?P^KmGz}}OC{IsMDU*x~TV-YiTa<QvXk?eWuqJZzmm|XdE2_S}n)FXPx$fuF
z>7b_eionH?z@2KmjAMK5?PadrVw#GIj)&WLC#$%+xU49BeND<VYl>OkorqUk0|NuQ
zy1I%oq>WNKn3$QT&X@se)ZM&&yhn0z)Yh!bySqw1ef>IB#We3ugungYEn(~9*2>vd
z#k>^IJ-(9j+7i#nPo6(te&Ip@ubfSU*=*mBA3uUx@1Ss-FhQVK()ifSSQdr@PeI*6
z>_e@mO6>FV^Y0cM<^?SX+Y4$#NA0cJs-&d!=IB%vkg@yr?E|etSYM|g_UH=J>Z-4=
zZtW^v4O%h^T1asEwD;?4YcF>StD6))a>>21!O_mn?%W$C28O4nB(pbQ4#rL|`t>FA
z@4w&gy}Z3aLmpeo-^aDPyt@DY-*zr;?yKu!t=nINYJm$E0zgwV(|_x(5}32^;)?Ct
zw;$`3US9b4m?db`BxXA1qR;7jjxTU*-ct0`%QNWdsi|Mj7@xQJlXL#msYz$kw7*)4
z&u&}O@k7T+*d+6ki@)vHDVujQG870t{mYh!(&38ts;SunTDN6c{A@+?@xD{%&xboY
zHXb%snfhza=}I@(M_*W8AD6EOEj<Jc1-yBa(|*=%>F50?udRtpzV#Wj!VXkzXJ21;
zHGlu#Ww*9wua4fHCuN-06SXa;()D{uadC3LAcI5e)3<Ne?%A^^>23P?d0XZ8Pnj@5
z;P-y}Z#R-bW03P|K6(DWwTk<@##_tjpL@EFtYp2mr}FccCzJhG1ugZ;y0>R1XaV4x
zIsbKctUGpTsrT0xi~CoVy}i}d)dd>-0S!v>+x>9xo~8qyOkN+q-{`)%uC8xhUP~iG
z!|L*_`GW6mZgvN)#LLiLx#Fj>z5RZn<&2v*ZBp^%l`_!?mIuWHYHjRq9=GH9f4k*t
z&Tp_<E*1fr`pw(<R17r9wkmk}In&x}|Nj0qt@x0@%F3Gg_t#g@fbri5AD^CGB`+6s
zba1@Aw>R2%mWk%&z1pFxQi}2!8Fm=0jou#i`r2CATbnj*`f`w6eoB>ZM#hS3>ta{W
znIqHQ`Yw8V-qf>c!5JADGk<?PE?<AbfCtn?nKy49XsLmXjm?+4<@YlWG%$Yq%*DmE
zrTDp@?UxJAsda5rEltZTYkq8)SM_RTc3h0-rR?>4m)*G&qpGTEDH1*@WObPC-tYIS
zK~t{T>-Va8Rz2!ezp^Fsa?<z8mrJL2Ee!<?G|xCHnJ>sEVc^i(+Un)ywQ2j)=g+lO
zRb3Mk6F~)-imYXkOJ-)KmX_A0`QKl!-!HcNey6bdmy_!AH53#M{4?GcwKWS=nmju{
z|NVyI>a46)=jK>GE}GqIWqOc{lXK@9bKx@|*4O{_1_jI4#g(9`C(wF1?XWcyLaJP%
zgREb#XJAMxJm$6-b^WWBhK7fxrsgRuYheAOUf$ikUCJzH1)r?dioCnKK#IJ)x;Aav
z)b%#kH1(87>AO3TvAfHzf)?I2v-7{|HNOX*Ses{CJ<BRBy*R7s>oMv47tQ>3JD!;R
z34eWMWw2Gvj}5oBWENli?BwM1rT+i-dcB`BJs22b&VW+oA#VMQe}8^<b#?{@22O+y
zS>Hat@n+7^w8BM;7J(KHA35S;`~6O_mzP)2?y|RA^6pxFeSiP{!#kk$Cac5OPwVgR
zZ{wF=_x*l-{KbnGqxMu3?(ErUV`+M@tG_?|>#M7v+3nS-r>Ajoa7@^}d-q{Wv)R7?
ze;l`8_sSB~vQr6N8})V3^H_^>>^{s4bB;=KPAjQ<zv{=2ilfJmPp|STD%#|{NOkW2
zh&hVRZ82r>R;90&@JgG-eETUnHJE$N-QDG<(>8-TP?naKzaF;Bcg;;cmcNO+^>VAz
zYLn^F9gGYNF+IWDYkGQmiYooKW?co9y?1w)$A8%a(tH1YeCVnW&8-`Le?GKtlayJ`
zjK9un^(&rCbO$X~i}`5F$Z-AGEYs{SSHt5iw@ke*By{atSdHKPj4gZaRKMR__5bg8
zaDPpFSN@F+j-aK?Gd8E4oy8{~RC(~KNUL$$nSk5da@YT;VsQBR^4?z1P{X?m)8@@v
zmp;Gtny0OkYf>juHfS<>V^XV;v9YRWueA9!+wXT4fA~;vd7fd>6A#duW>8n-+S=&n
z8$u6%e0&@<ZhPwbb<jew2`Z-9*L>9d=Utg+Tm9yDXG&^n=Fd-0mwn}AX!!qhjcJ6z
z^k8n#c&+WH6Uv|oZ=S;ey;7zsbMM<LD=Iqv{r&yAyL@fRDYto!j*hde%h!Ph9YGzV
zZ*%W}MioE{M?ifjF};|K`@dg3Y?lwq$yxJm|NlDB;swyG)SAf6SN2pEzrC^X@v7g<
z3=A>TgSThSFv*+*T3sw2UlSM^83|hF-Y0LrPT9RL<4A`fXiJ2e|Gb=ApF!)--`?I1
zDrjdJr}wq-NG<{uexM1lZ*OnQ+NmuMTN?#(c1>-qsI>Iz%FoX-Z*9p0^@O|cevkT-
z%gj(vTXf8AvBCUc;WeO{_=yuIe!F{Fe?|26b&noDF8%T%@a$}JfBpS`Hf5gAxw>lV
zv-9)oBcGSOzZbi^?5)-{yTV5<?eXvL@4r7~A0xv7k%id>Sxr-?P6bUhPN~}C+|FlJ
z^u)vR8wUf!gIAVY4`kigu<+Wt*yvXuOJ84GnRvME>2*a0hB-Z&PS+n?VbV4-3IYw|
z%&Ywt`MceHo^`ojW@aX67#%eAuRgEh5U65j&@f)U?jWdQ`S*GLe+^Ad&&}!Qx7F_h
zE#pp+Xj4*FHcdMtkzOXq&`{+5DCDE%)&oW5<>6jlU7&p==k0#`u=B}GD5;ZQV^{l2
zLq+At%)87C3_Fyj-N@MDJKHSl^0Hn~9ocaCqu9c1jqgmW*Q}g!Hch*5H46g+!)mSX
zOsm7zMoka(1TFB-%*+hA%h2$ei*p)C>FcE1Mjp?(SO54?0V-ob*1EX3{4C*NU^t*M
zEuvY~)4gBr>XyvQQ>IK=($vIc`|rnNDeJN|vrMy}y;;Y|5Rm7wA*T5<_ZsfbtMj=*
z<Hec=1{ZF|GBYf=6PU1*ZMkR!Xu;){%*!U#-*QAnL^PC?oE{(R4Zgh0ckWeH1_p-U
zDb<Zrr%p}PU&F=C4XToQWv!<j;$mp{-+yG~Bkk`@t0On3ojQFwI3r`lu^!3Apcw>f
z>*$*|Z!V3yye;>3(Hlhuh67hMzcamlb93{gCGYqDk85V*-SuK;TjGhd%_~=|SYfk^
zjiKT4Mz+(YAiL(wiMiJgY9@z2jZ1KKbDQ>EnUP_I0mvV-H(N6>Fg(bbvyWelf#HWf
zu9>r=6D&e&kS4sGK+S0n=&}gdz!+$}3Ocift^0ztSAlcp%;D$HpIyDZQ}^%RUsF>9
zTEBL6b$I-zUF-M#@(K(L1hq11YHP2qi8OX~cYl3iqO$njcTY}EUKPE4-JLskK<n@}
zw<St~oE*`ySqQWm0pB>%jT;fE>FJ=c&RrjmNpG$HUk6%a3+j-Ty}JXN)R<Or7qs&J
z+ndPgzSlv0OF~N$HeSh2KQm*YUhFQ5Eq6<=$8z!WU%#Edf9=W1>f*c8Ky%cl+0#HP
z5IKd_W>`yfCv*ugFmUe#&Bm1)dQa1t*xug0Xz}8=x%1}D>+0&dG)*_U<i&-BLF@nC
zf8;d@R2hSYq3!?uNbbCT<j9d12ifIArt8I~NE}P8OV<(u#f8oh$>0|2@^>Kx1shg{
ztbBCg-oD!E--Y${|4-N5n`xX5+KpgU`bxxlTgAtu+`GF%?f-t6{O$ey`kUX^WPl=f
z$GOzh)RX7WuaDS0fBt-)!xtVNZa-bJU(z^j#exM6{Puq~ID<9`nHD|q;FY(F>6J3w
zwaPA97Su@;3%<v_zZiL2(x0NW@%!T@tNUMb=C@t);X^@t^7?(hR&jB2i;9bvm&&eV
zfCOtL%Jw7u<No%4mw*P36%`d{*;a2mys@W;2eeQDv=yMHre@u~%VLmmqL{Z*Yx4K~
zbh}^od#&?r`T9SF=&J}GOge8{@nJ#L*H=qtnPz7l?GpX;^=qkxUE(1Y&=h&>?lRCo
z#^Jy9f4_qFDJdu%NZpnTPPeTkFD^LBT9p)JoIZ2riuU?FL9a{~E?fxO=vGuzBqO#f
z|L(3(v)R527cLa9efIJ3@vE!D^+m<RKuZf&g|Cm>SPWXu0b2Li*x1PT)@-(~a~sdZ
zvuVL)W!qMTt}e4Yyu}7QntBA<s=K`0KRhUCQX9X#-pfDd-f3!Ta&dES-tSoP<b>c{
zo5~<ZN5`V_^64dZvaj#%-o9zmrY&V}ZzZu_VGUm9b1{Ga-)9%LrJt7rjjM0mxbfAE
zjmaCYtX2XIykIOHz&*-yX>q^Zs{H+b!vX^XZ|yE$|Lxt~Z2SFQQ?*`QUq4@E>JI6e
zudlAAO0?zeerxvi?d|VU{hMkaqZ{Xbt(XI<$^QKKILp2sG%zbFB(z9WJ8VVq^K*RP
z3yX{IJOu3`+H^AqR4YC^GxKr5n!?A&zA?Sd`V}S!HAHIzXtfwxJIQnZpHHVnziZpr
z#JIY;hS%(!y78h0Vr@Y9T(jNtKm%H^A^pN@QaUrb(Z*yJ9ME$Aey=*ebAA}#^~n<_
zK76CMV9wvlV%Ht(nwpr>%Na#kSYfNbkjI8V!}#De5r!fzqVmY2BcK)dpwb4qA^_WH
z3Hp2h)eJ)NZnq+MH5dcK27zT9vCPOW#I^<j_rwAb2I1H~`tHO;WhvXLEudBLp{v7u
z^YZed_Se;RK9_1+7`Zv^<+SL$z^ki5K@)$V5y|LnIfm61(6Qbaj}2%3?V5sZgao{H
z?8~k#TTJ%;`}G>s=y!5*()+bWP}%Lp&gb)jXPf1kBp>4e4HUh6`4Uvzf_54_dp~t5
zXgcLUX&#}W{p#0ix4-&+zdpQI$`sU1nlj5xR8%zc+L}lylMK+*!<)CvY&-!82@Aw@
zA{IpF@4b4Z&{7y&*gfiD$v!zr6|~s8q-4w9vzIRigR;z~)NVdmtB_Y)_wC!aDsb^J
z)#IQoWOwewTwNP|ec|6W>AVTEXV0#wsnM(K?`mP<W@vbQ=iFRtQ5l&vTA`~fwrtP8
zf3NOOR%K=7O6PVy&?rv3eBFv>cK)pI@9u&+g(17ka@!xB69vsgffi#$*GEQ1e){}b
z``Wwb&(#kbfaU;#=WR|n$iypU;?ZyaZ^z!Xk(<+Q?I>J4%Oo@Dl<}G-7LctmDB}#X
z7kW+A0__8sSO2e4H+q{7sHo-Q=DxZ<-d@(e?#`6-2v(@KYd7rKyLamJ>EUbszPY*i
z+vD)nD^_^eR(%QBo_F`lv)TE#ZtpICzYesL3^ZfAdi}nttLHaDX5*e@ajyZ5Rma!=
z-RgXMrg6F+Yz`JQ=DviDS1P8kUN2&Q-QI6+ZZ4KIPP5p;&dR#dwOj1gmdwkc_J_Sd
z^+kc=-Cd=@+w<<q+yc$n@BjC8J<jp=s;hrNOQmwmW_NXUb;)Xj7j8WSnFPw>4XqZ*
zv)dS%*;Z`W5a8+Q`EA>uKQ&92EYZ->@%i`f-=uTzZ_S%FEi7qbiRQtB2aR}~xyAKL
zGVX6oZU^nt+Ln9U=>FwXkXmzV{{1*+cD|69m^q*UJjlLi4P#@_I_htq-TLL$UbzyI
znvw$Qh~N8nN_+i@w9T3C@9j0>abCG{C1~-lO6Hpz8z(K<mV0|u`uTaFUJGbIHEwU!
z%MT9^SN(pw{plf%fBXy#!c#%#0=#~`dd7?ypJcz7f;Qzhv|7AAJnuQa<yvchJh|S&
zDg5UAhMPIx7M)4ke3M(p^VgTl{-9Otx-mNfw8PhhJUulPv|-nGo=v3ry^6<I`7Q^6
zLc9U9OfEgRv-r8*Ysq=@=7E~Z&KIAq0;$|E<I}wik!Q(BOSc5l*B)%z36>P#(z$*>
zBvBHyr~K2Cli%W(FIjQ|ve~jAX*~l&!_<I;zy0O+D&6z)@?PE8_&9ZLz3#tdj0`*K
zERz=p&gf@)U0?I#VSCoCEh|AA9{&FRZoS)@fnfpDq65Ds$JhOIoo${Eo|&^MeU)*r
ziS^t&A%+K5&P`9HG&cN8IoQMs8UuQ_^SK<agu#RVTg%@YhF-6iIUe6`qGx2v{Pcto
z>!F)dJbE;AFY4)Onfv;PyYxMrwN<RRt0nDq(#nVZnU;&YSyE<Azm&Q?GuXtze9x3;
ztxI31t=QbrS@`_VzYotNpR?byFW5Kdb4^aq*PnI!=f8i>+`G4?-tPHt)dWU{25F}Q
zzov(-4tqH>eO}=9yt^i)uR^9ypT2s{nlpC~Gci<1t_qKpXMA0M>eMMvMh4AtOft#3
zqS4yc7Ic(}f#G^@!&m$GnvbncPEI27^6zu1zuipVTJ<%{Qikt4FAu|m&>PK9B{?E?
z{g`yhH2YcxXzyX!n;HLpJmv>&g6-<<z54R<@~x$>!^-&u85l|wZBE8s0_`bXwMuJk
z+}^18x}Qr=8_qrp-q_i1_v?l4{paiV|C`j`pS|qu#l`JR%*^?_@);T;zkdCim61`9
znVp;a_QUT_D&^-L4om{Af2{laEA!{4r@7OZudk0^56bPJ(WCY2-}~NO?myqo{4P7g
zg5n=Pf1W&l{`}IlD_45f|NmRwes6liQ^`Gc30JRQfBky>e(<(9PGPkzmU-K6e|<VV
zKI`%_U(f=X!yJqZ4&jf#R&OxNyR+i+^Yht%etdi@*WcY8Tu@*zUyX&Kgv)GaHQRdr
zh}B_hgB%<Vq<)XMnPUc8Uk+LU^!0jt{YQH(28JD4>*JN~>?nL3dj98|&F8<|OrP&L
zDJm)|rVo_=RaKWdA7f+qVE5+WC!V-?@Y?XRueCvo#d$@Suj}Um9g2|{vH?`*eoLri
zV*)oE4t(O#0WBDmaAO58AZ&UnxdJr*kDcGW@X?j8fncM1K<0@ZlG8cw0GdyA;)s~n
zsOrSPz;GC(KS42MgAKDN=+F)9e8Z4AyX>?g7#JAZK;|8A0;K_vP6i1#uz7l+8+__x
zeUp<H8yOjiNJ*_~Xka*c^l0YkX}aNi-+g&`8Pp&<)+f7qo^AE1<Hy}yU0rj}tzNzQ
zGN|q;e0&VFAokVG&C5X}VxR`y)~#RL>cYYxhTjq00GbD!JbCexCn=x~7pQc0a%$@8
z?p|MUccQZUmWq!_p<!WKT3W9*eYYxmGXu2X-}BO$nZ{G+&Rx4<g8^t2_{x<lum5k}
zWbrM5k>SD9viJAanr2_qu(pnV`SRtYB~PBDfJSCEr=P!eZmzX{_1g|X<uA|Y*RLvn
ze-AVh<>lpd%T`}S#Rar&dxE0#oZQUJOfO&G(73pHpfyh$HW+LcE>;GGQACHeR>bRT
zYe5yrlxfqR<$V77H8d-0m6w-S$*U_XPsiO}?9Tu7-QC}-KJWVb?RM;;tE$3kJ`+?x
zXG*N9Em39BVPM#EXJ74a(9*X92OOq<yKy7p`NzJX&`?!RE-tQD8>)9Od$%w!MEIoJ
zhb>&S%ByVmUf<n!^QIqu7?7Hp+J0yI%9Wm$mX@FuhPB`CURV5HAP!1DaqHHt^V_#?
zU+%5HfBwulZhgpGfA5mR?fkEIzuz~xzdv1fl^{61mD^-oxqm;NmzOv9*6Y`==N|Ws
z-czyB?&lL>@C=f9-kgvB?)EmYGBmLN{B}EkYvt#(>DxX(KOg^5YWLlH?~EQS{TulA
z_jhx12hYmNN>I$Fotd%l%o(4>wb87MpoF{gCf7C4VC?ewb+?wjeQ>aOmPO&C)b*Wx
zeV`5DA<@yVH(lJjWlM<JY~PC)FPhuT`@g;LvD?z6OEWJm@dWM0>iL>&I&bR(P6h|@
z=Y7Xbd}f(=o;`c^)Y-G8+f2>OwDk4;3kwUmczLImd|dg~y-z04+xs-{*|jTHcmyx^
z1MTeO;^xj@(Z8+<lrQ4+%*?_%J3CLEIdf&Eak_}0;KDt7Z01@NI%$WmE174Weop4;
z^XID<EplRJ<0;s-|L?ckn{MWSc3jKwwSW5jd28}<KF^@AuxTnUpPZZw+CElOQv;eH
zs{ML3Trat!tLxH+#KTsJ+vYZd0<CpN^5oqrq9P(0_x4n3>F9)%mTm<dD^mG6tyjkK
z($e|g?B0I=^?JSa`^3#R=PW#vw%L;T+Q-Mo=T;w#tNZ!XtoF=&`}qy53=B4>*KWVJ
zs+C(j>*1l+>9*-lPfgVmUF*H>Y3kX<?*027E<L)g17zXRl5fp!iE^{=FfuUkEC#Px
z-jU5Oc4iT{p)LW+_c|?H)6y59@fASJnH5=d&L0p`WMF83ltvO-ezEc(EwG{kRDglX
zDFz<pgoVymuU*?!&B0*hQCqurcl(2h;DTXcvEYUa3-w}lJb0(b@Irx?m-n3<Q$pk$
z@XB^jQNjT#_c$0&8*gv{EmD#YUE>!J9<J^gwWnfZ8;|6pXBSJ>efd)I_qqN5!tVwb
zJb%<yi|7BTmA5MK@bvUNxBs<lYgh1f_XDq3L`6j>Em^We<vZUI-=w6ZJGLw(N_F?|
z9gVKPFDfbun*H3}&d9BtP}&44bvA4WU}oo=vVZ^n-R;Z_I~+?(OINK}abZW{W2-lE
zAdj)E@e>dcS@L{d^|`x;85krSo^oAp0)=U7z`;*EHK5^@0|wws&mpRF-T_o9A247N
zdvFxA{`cpP9~ue@4xyo;xqZivAJ^8>I>oEZyhmKW`Wp|64ntN(#)azld#^8>Yk#Vt
zT43ESJ0>v((74m%e*0@LFE77qE5h)BgGJ}S>6<xbpam>hd3kx;yT0b@>gra#Ub|gH
zP*Bm{-X7ElkBp4W%E>9Q%ztp85tRPwem)hyTmS#>r|;jxD=KzyadF-H5*Zx4I6S^K
zl$niZ!u<L3-|c#>ryI4!gRlMY3!BDuO{z|ys$qd+GaG1s#{Mi(&=Dh`?L{4e%AheF
z(9q`Zce_D55l>f|&Gvoz^r@GR&y~mh_Ulx=r-3%SfR^#{$yz<JS-)<bAHV&d4WL;?
z@wf`d)6;Y>uLxW`W#-J4GmX>BZqzU?Sp0DY8^fd}Yu4yIef~WA;i1;I`wo=<|M&OQ
z`SaI7YyFdsa(P|?t@3^FAOSRn_WRpgQ19>apT+L|S;zZit3DiLSM}`d?A-OZ&l)rb
z3i8S%(6r0r<New9_tkQ7b5B-Tx^(HuyzQ_5e!qYH%uHiZDXCi*gV}XjkDFAmX+<!o
z#I8wFRae(GHxExgHz%|B52zSCn-*MEwafeWnVH5<3oN#PinedN-|xFExo%1K`X10;
z^gdbZXF1W^^X7tfl6`%3)w}-R&*h(APjr_HEH2*M)z!swUWmbposqlY@|~T<SFc>T
z@-A-8WOaW~wI?VjsQ32oudkrxYNd~ka8Ccm$jr9o<>PI)^MXrDw|?G#`t<3qhxzR_
zEG%w3eZBFx+~l)qmv3%P=RM2w!U~j8B9vGjm}Fc~0IhE}HxHMTlzcm{cy0ZP{GCsy
zmEHcow{q{+t)cz4-)0yY8Qr>jMNU$(()T+P!)nC@#sb6gcQK&BqlbrD_1=Ou%0@*;
zhsMRNJJ`%_ef#`8+tvI3|BEiaSNXj3K4=_d>(;GO#%X7K`=vjKfU<&)AX9;$nAox<
zOH^vVTy)o)ui@k2G2!sT06)LJ(?4(Cyb0Pm`RSzk`rn}OxG+!8&bnVOmzy2W%F4QO
z=~B^OVFnw9)6Jl=<G|^y+fAlVow~HCi3v2J2wKjg;_B+EsjBL_bLY-g>(*U+adGk1
z?CW}<#PR4zr`~*pJz<;E&R$yPJNwI(VE>n`;&A~!K0SIdI~IUW{E;@x32=37{q^N#
z@#SKchI4KQnD)d}|KG*S&mUe?v<Z|Kr$3%w_iN>$!-uC%pS~P4pr@#)c<R)tORv}O
zzqjoC>A$Og-hcb=-#^e{C{3)~Tgu)>iHeA<NIyTXtEcD6?EHP8-J6oLR4<fnaCsq_
z!zVYLhoRv%XgRu}q2aB4wYwKBUfla_Z~lF|UOC&S)YMcdyP6#r_gw@xnj%1D!vVE&
zP;(1h(sk^XGr4u+#)_UEp4PTDEd>RK!otE^n^I4k_U>G^%ndY3cYj~4sD#9djmgKe
z-rw8%cHZqPSC+7Hi)Eacpa{y;9v&U@s$OY^hK0plKY#L7gc1t_1E?$C#w$H#-n?}k
z9UM=eJ_W7BxV<g6xbp4Q|HT$EpmVT5GxRq%r@scBj_~Q}X;FFk^|saDG;D0{ROS^I
zZx#{~3W<tZwPlNmtE=nEUAv-om%R=0_3i!j{r!E(;I|^6risoG+3F35=F{z;`z~TM
zo^EZ;4h;%g1ll-tsD*Qq-o87wMn*xPwYZ6i3qRjc^`4e-yifMm)9LXd!otZ3Y1fW|
zYM8jZySqwXU0XZ*(xpptazTgK`1*!=dUpEFwJN=t4QlL9m>`h817uw7rza=D0}iuh
zsl=`+0W}JR)%`+ze0rjyqC&#MuNO`(G6uDI#4g|by&lwwKXJl?m5puJmgC2cS@p-C
zySKOccI_AEoSZfPem<9%wXF)7^yT;a{i`=^3Od}zd-==D%U40Iv=<khLA&j?<=!rn
zwV%7L5nS}|NS<6B8ank&S@rC)-FNlc4;LQgeG$GZY|`gjpFS0Nicjb4?&|vT@wmLU
zzP>*%FE40NrR2eZ#_WHRrL5pe@ATEHS5IEQzTFoz1pfI)Z_Migi#gY?UAtzrA2g@7
zb7Ae78HQaQ9Tyh4c2Ai<zy5OZMlP^#9`*UY`}gl(Rz^m~<+%9x_cnFP*Kg&RJ>NQg
zU%!myrKgvhKwJOadZm^=dh}?u{}OIRP;1xm+L}mEe%iI=>Xj=o&{kSPXy{ax*pDAM
z%XZ(byf<~--Y<LO_t)i~dwYBPd(rQerLN$}ev+mg0UG?Bq8S`>>)X4#tJ&o$9&Ebq
z;_ePw)w*i!+R~dZ;-aFoW}huPTCVKo?!NuEMEj*nL98q+8b(GzlRyhzOW)tyd)Hqj
zEG$gR!s5rO;@4g`K)XYy&o;@NG;8+ksk3Ll&dJWn35koF_vq0h5h*DxPpjHrTl!=y
z7fqWcHa+|N9LvSL(q<O7&&{=7Ui$i4=AR!QLCf+~KnIS1PB7BbE34ZSFo{prYRRKV
zNubF!S=+OIuAthOyYRT&nj1GFKpPf}jf2zA%_+1y`S(btaMaGCrJwg$7C+Olw~q%k
z4Ga<*mUJ^}tE;<%4pTVT%nn+a{`B<p)myiQ=I{B~cDfccLbo=0d)Ap5hE-3ehCeB=
z038Lw%F3!~Y<&5}9B`AEAtWGRLFMOXD>rNixO(*}Xp-gG+1a4UjOU;Ud^@{!-SMC!
z*8cr|5895e8@<h^w6wIVw->bE2~;OfFK*|NT(oGBQff-di@D|ZCieID%T+!R)Q#G*
z;;y@GNvc`<;fDp^6&M&klvRIw6X@g9Q}*`OQcy!8<9_w`cUS*@zrTLdrcGt?TwI?)
zU9<$lWz#t>{saX%Ljt6+cSLsfokTh0MjV0upJF?|yjff!XngeIzk*V5%23eI@L*(Q
z^z!n0HQ^sK6O)LD$Q8xf#kz4*nHd^f=h##RJwG@1^@M%RO-*z3Gu)0VgFC9n5XB%v
z8>qVhYBn-5Fo64!3<f=*c5Q+LsFQHO0F>ez5<!+R90rw}BU;06{TU2rwLEGMOEEAo
OFnGH9xvX<aXaWG@O1Ap|

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-1.csv
new file mode 100644
index 00000000..74f9c366
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-1.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.88;0.916666666667;0.897959183673;24.0
+Oui;0.8;0.727272727273;0.761904761905;11.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-10.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-10.csv
new file mode 100644
index 00000000..7631d9b2
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-10.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.961538461538;0.862068965517;0.909090909091;29.0
+Oui;0.555555555556;0.833333333333;0.666666666667;6.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-11.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-11.csv
new file mode 100644
index 00000000..7b48ff8a
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-11.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.965517241379;0.903225806452;0.933333333333;31.0
+Oui;0.5;0.75;0.6;4.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-12.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-12.csv
new file mode 100644
index 00000000..be9df842
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-12.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.869565217391;0.909090909091;0.888888888889;22.0
+Oui;0.833333333333;0.769230769231;0.8;13.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-13.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-13.csv
new file mode 100644
index 00000000..c3f18cfb
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-13.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.965517241379;0.933333333333;0.949152542373;30.0
+Oui;0.666666666667;0.8;0.727272727273;5.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-14.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-14.csv
new file mode 100644
index 00000000..35e7487d
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-14.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;1.0;0.821428571429;0.901960784314;28.0
+Oui;0.583333333333;1.0;0.736842105263;7.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-15.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-15.csv
new file mode 100644
index 00000000..2df5c482
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-15.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.923076923077;0.857142857143;0.888888888889;28.0
+Oui;0.555555555556;0.714285714286;0.625;7.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-16.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-16.csv
new file mode 100644
index 00000000..5ef118cd
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-16.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.909090909091;0.8;0.851063829787;25.0
+Oui;0.615384615385;0.8;0.695652173913;10.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-17.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-17.csv
new file mode 100644
index 00000000..beccc795
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-17.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;1.0;0.666666666667;0.8;27.0
+Oui;0.470588235294;1.0;0.64;8.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-18.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-18.csv
new file mode 100644
index 00000000..0393ff01
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-18.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.8;1.0;0.888888888889;24.0
+Oui;1.0;0.454545454545;0.625;11.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-19.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-19.csv
new file mode 100644
index 00000000..c69fbb72
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-19.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.884615384615;0.92;0.901960784314;25.0
+Oui;0.777777777778;0.7;0.736842105263;10.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-2.csv
new file mode 100644
index 00000000..fd464cb9
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-2.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;1.0;0.777777777778;0.875;27.0
+Oui;0.571428571429;1.0;0.727272727273;8.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-3.csv
new file mode 100644
index 00000000..cfd175bb
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-3.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.875;0.84;0.857142857143;25.0
+Oui;0.636363636364;0.7;0.666666666667;10.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-4.csv
new file mode 100644
index 00000000..522017d9
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-4.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.952380952381;0.869565217391;0.909090909091;23.0
+Oui;0.785714285714;0.916666666667;0.846153846154;12.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-5.csv
new file mode 100644
index 00000000..0f196e3e
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-5.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.965517241379;0.965517241379;0.965517241379;29.0
+Oui;0.833333333333;0.833333333333;0.833333333333;6.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-6.csv
new file mode 100644
index 00000000..ef6721d1
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-6.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.96;0.923076923077;0.941176470588;26.0
+Oui;0.8;0.888888888889;0.842105263158;9.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-7.csv
new file mode 100644
index 00000000..dcc5229c
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-7.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.916666666667;0.785714285714;0.846153846154;28.0
+Oui;0.454545454545;0.714285714286;0.555555555556;7.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-8.csv
new file mode 100644
index 00000000..ca285c78
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-8.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.904761904762;0.791666666667;0.844444444444;24.0
+Oui;0.642857142857;0.818181818182;0.72;11.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-9.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-9.csv
new file mode 100644
index 00000000..0bcd130e
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-9.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;1.0;0.933333333333;0.965517241379;30.0
+Oui;0.714285714286;1.0;0.833333333333;5.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report.csv
new file mode 100644
index 00000000..0142b066
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.909090909091;0.869565217391;0.888888888889;23.0
+Oui;0.769230769231;0.833333333333;0.8;12.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-1.png
new file mode 100644
index 0000000000000000000000000000000000000000..5937a2720ad9db37ad93697890ad397f6980fb1e
GIT binary patch
literal 23937
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_eA=KR<H|3ChIz4feF`fT3l8#0%l
zFMcNRF!`8@WopqHory{+^F^k*ak_fAw_kAgJGqdfbHaqpep4>bIiGGSId8xHuXlex
zf2+$kYrnqj&bsNR_1=7~+84L}`0Ky-y1&=1fByOFmL5Yl1_lO(2MpGmxj~GA-wF+2
znun2vfq|hRnL`1@m2qZZ1SykX;s9}v3pju%i#7%(1_p)$hAaXgZl5A)S{0%@`}(Hk
zruWzHIycXD^}D;fwT+B|>gwt~ef)T_-~M04>HgUhCMewAwzcNxr|7yh^|S8oE<e33
zxAesY#m(LyCtUk&m3m4fbWKEH<>zNpb8lC@+xc9@Q&3P)D{xWE<)zECwD<30m^0b-
zpE!F#@QrP6zde2Zdi8?`30GGJy9=xPoq6-=($P&ik<*@T%elEJbyIFMGaJu|C9C#S
z|NHs;>$~0WU%lJ?KJ5O!+OMxxuU}R0@K9#nWT6c?x39Hu3J2w0-(O!JzI(O(nab+k
zCHw7r;(q@7{o{v5{l7n};`Z)x>yug8Ev{c>8|L-<#0ihs9R&xoXLodP{QU9b#iysI
zS6;Izc;Ik--?rS_)3SEYe!KmCUGVn2yCM5(DxaR8AOG*)KQ4a$@WpPuUp^j}UtZ-G
z>6`Wb^{cC^zn)O;e{pAL@vBQqyM=^=t}JkDHrc*&YR>I2A0MApuZ<V0F+_Ifr-?Hh
zh@6(Hsi^39OhQ#%J^S~!x3f&Mr%lt1UiS6%_1AOD@11-j^xyE=+1blCrJl|@H^=hj
zJ+-HYXRcqr{#c*v>K{KU`pu3>^vc`E)z#I-IXiF9yL)Asue7Lk*qPV+s=vHg_~+;6
z*O!)h-`bqspLTA}%6YccStlo{uDq5NIqln<n~MdN-By&pzZZ8s{`8K*$0@hB^%zPS
zr}f;c`Fu7zuXr&VkHi8-X0{U&i(g$`y*lsiu2YlM`}ySU);v8ueRc41zh55?^KVT%
zJ1aWwbg$Rj+PUWW^Hg5e|NlMz-QMqU+e^Kt=@hQn_l1L>|N1oD=qdW~`_AaGI;0sf
z<VjCUmAt*pcG~)wotJ+6_#q)LFF$$4j2WC$m&TWrY&mXO^ZV`gW1Dm?@2~&wv+9)f
z?QOnutxAoy_@4S{nt$)kjcvJgf4_$Jo5k0Dow`xy^pT@SB~NcU^SIxB-nv?M7Z-`!
z+s?kbyZi36_ct~kesXT^?Hk*2r|HMP+c-BhQq98RhKNqY1rd#a12Xn?Hdkxoca@xc
zy-{2zB0=Z0k*rmTfoqqD;lhOr)hsP7V@u=LH!`zJo!;c*;?feiyKL=sGj4G`lhW7M
zN^9rOm@#AFbrbE1KOc|p-M4<`(M@Z3{@-EVvG)Qicf+di_3NzP?+HF8u{M7Hz3kbo
z+~TVe54Uk~at1m$G<Z$bT6%A9_3JM$FU#fD|9YvuHS@CD#EBERI5+|_GFE7Xu39qB
zw))kjrQYkxK7RbTDL1<M+nbL!+^cqn+W!0TxT~|X@b1l>o2mo7;(tDQlCt;nIqOv+
zD<?HIHBHeD*K>7qTNSxEEox6i;jZ}Q&h30Fv#+n~>gk!XfB$|bXJ=7y@#VbIW;?d7
z4qo1uJ?GS=rQWfoORwra&62e)E4iz=<JJtrWRN*qv#+0fy-iY<IcSj!=hbzw(UZ26
zy^UI*TlDPA%J8^K*X4e5gZ}^fd%05VooV#6rG9g*R>tlwvnqQtBkk<0sSp1yx&H3%
z?yLLj>z|&O=nRT0t?+ekw#NSb_0_cg-=FMv`M0;_R((7w9=g;^w6(2GOF_XwP*CvI
zot>M%y}$pybatn(`YN|xDK1{#(1e5qU835{*m$KfetmhF_x4it-k87p{N`9(yc&95
z;_<7b=Z_yh-nHzK6thw8Et9Kjqr(p#Jjlhv6Oxj$<kq&_*WdCF%rs8_axFT4W!~Lg
zT2Wh8ynenf^YXH&y;WO}|Gc$L_w=Sab??^i>ANh&Jn7!+*Qb(eKb=(n_3d_k=yE^V
zr)Ot}|NQhcc(GgWmeSW@>!0%|WG~<rV=%9)tCKtZ>-+ol|Nj2gwy=okl`;*=$XHSL
z=c7BXtX0V8=jX4l3SB+Lx;)RbzJA88@As-xZ*QArlDX)_36Hs!#csE^=U-=+uUXK@
z%&wJwZqB4UzxWUBa#bGFQZo;=aCY_eg_V?S$&Ph#X;E2O`}^B0tI}1crt7c&_V%{6
zfk6N}pUj0WQSB`S51p>Ajs8CCxTlX#NUxM>$%_k$M~@s?k$ZdFt=;A8?S8*8K0Djo
z-#GnT$l*3#)xWY`udb|I+|t70>f*9vSK!hsljTxRPrF+G@3Xw`EE7-XHlD)0`tAJk
z*Y4~r{`z8ZzgGUeJ#pLjPP~5g_V4+Nvahd`GR>M|_v?jn>HB-Js@~IluG{s?ST54v
z|0gK*^t8~eSy!j1`^)i4oB1qu@4t4K-@YccH170q`T8|ao}_Hey&d-S)Ku@yxlzyO
zBt1JbQ_8k#3&=fErdb;9eKNnEPLDS!dlPYXu66k9YioliD!InI{r&Cj>VwVft6e&U
zvaYV0`swNE<<0E;S#NJ`on@HZ7PT!$^X0L1(^ss}P*qXMxV9$p*T>`Xv9YgJcK-8u
z`&_}!E^dC!r%op)ClPV+<r5|dyuH2M|9;)?weR+P_6uDV;yGzc>S?jPe?FaF6}x+z
zlxfxyCRVPD^Yd(fJ?hpsssC34a?97(*Qcw5t_X1C<m8mI|32x?I`4d=qS~b!biCv1
zelC4>X6E8HUg=jam(Rbpe*eE!m7kww-rZID>+AJ+Q4x`nwcEuU(oQ_FHeisM5+%MS
z_4G7Jd3kwZ0f7WQS*s`8@=i`tJ+?_FcypR>@v}3M+e?Mj{Y<8%&U`+v`rOtv;p^j$
zZOi@qbb5T1%=0TNgY)hmKYo1qt<sd2mzKuu4y}CMG&L$ZxyQ2h*OraBw?o!OT}_^A
zcx;YE;i1=`R$pBofB(j|TsB^*C);YSt_nSN{rYuK0r=<RarwO0>y~SKo%;Fq#>T@w
zvrJA#OiNwnH}_SPeZ~ca<lEaKcNQ)E`D}Lno-%PS4-bQFxwBJGPur>Mzn1&jwYAZ{
z>tc5H<las@+{P<s8aXYsOH4Pb$1v?!kL0>{@%O&HUCVuKfn#$|YGm4p35x4dr)r0r
z+1c5p9q*HUS(9qCEbs2FW7~3#^X}~6$(<f0zJ{5dZw9xxUd5L9Eg2I(e*9<{yQ`!y
zT24kL2W0TM`S$NOo}C(d!>DNQl5hK#mCCxhxXd_l!ee`?eC?Ns8+A^HtPVRn$F}-f
z?%k)Sr{Dd@Yf=2H=el0`@9*!;6B84kt=s+XQ^fRZ=WDap=ew<6&nc`Xae7nF{Q2{L
ze!HE2ciYR$%lkLx-rn=|T6A1C!-StNnpp3&1-;AI^XJoPP>M@RPFD3i+{PQc(5dy#
zt$m-*S#Q$uUhLi<HqWN=&NbU_H<G)$x-KoBU-zo8r=fwNKXs<zhbx<OB$KBoyYsDo
z%`Ku)aJKf%{r&OXV!A;ala7A*^ZESlwX4I{&bqZFbFr|xU&gaDGtHMi6VZ*@641!R
zdS_Q+ue7<}(^FG}zrMP<zIy-RcK-1H|NdTGA8)@k|9;$5?eMUmph@%U|5b*r2v9tm
z`}onLkiAu<XJ?suYlpA%x&HB3pRBgLyu9tN7mL@We*E}xSIy5&*Y(oO4<Br1SM@Bv
zQ+V9>X8c4Y*FE<%SB9^j_wVca`pk!iTIF8<`SWMby~YpUqAS(cPY+z|c5;(W?U#%0
z>#V11>YOh6ZLZ)y&nE6QFE@8^x0o)dIDC71`}?+6J14$g?K|5{t~`8R%_mRE<V{DL
zSsQMP#%^f1ec|e3EuGVsb`(Covahzff7|Nt_0#6hpYOi^tBAN>%!P}K-Ag|`@f6hv
za9A6)_0oxn%2&5!25-%{==Al~)!<$!Q=?qHCY#DnD+(VUn`K?TZqcGepnM#)HS6WQ
z>i3}u2?@KtZ7h83<{7j$YU`87j~{QeQ&V%Btmb>^Sg$mwA$DiWt-pW&f><y1e!qA5
z++6Fe+1K^n-q`4@?AEhm;oqw2OOZ}aO>vb^r<UZ}=iD&3TYkUx*Zcba)n^4ZReVf(
zduL}bzs-k+Xz``na&NB+UmrKiAh9W~{%`5}_1RHn@9(Ys`1p8r&4K!_SHq3B%<q|D
zk~vAuZ_bLdv&~;WIXOA+vGJe3fA8MfmVMpt{l4Gp-tBs=w>9Tx(AMnhVP9WewcT~r
zvUcyEpU>xmioTE?1&McSzu$d%>)G%3`>&svsJyl6YnH5K(UG?sk4{U?{QvK-xyYBi
zC%?R2YLzWr<l5~u$#0%b<y}+89a}jR4&-V)Z4M3!niRG+YAK(r)r#Wh=d|MX>^Pn;
z+%Ipx&U?DvQcH<Dn{?({m;14Di3Cj53f+=)l#5r!B4B>~znyBnvs99MPEFHY9UfmB
zx;A?IzNyQfUH$U%vT4c*0pEExH@|W`YG_~pMU8ViUuZ@~#;n`RdA98T#QbGy(6sqh
zrLUfe>8%W2?gy$Mj`hi|j@@0Rsi1J+t>2-q9zH%H7Z<sfK0L&lduxlQzwOs4LPA0!
zl9DsmF@&y-G6fk5a)aIPH=9k47xu{6MomktY`M+E$_0*i%i?9AGWOZo+37!I*mxu!
zh&kw-E@GXa<l2?-`r6u+d;;fJfSR{YPE6$D<_>OV;}wyUd&jlm@$vre6%!712r7qc
zO7R3Wm7UvoE<QNe4C-UF@k(di*pRsHqp@GSzNY=+hYugV%(BnErepi(!(mYKAtz^z
z*EF4#F*}P+Zp*Fx{dRlQzM7r?e!X5Vz3OGvdi~RzVv=LmO%Y03$J4>ENsNi3K$@F}
zC&b66XWySs-k=W8+uPf(=kNdf?3%1f{Jt8aV=r!OOn!Oq{oe2QR_pKk;dJuk$*BEx
zd&P7j76dMK12vzxczH{0d9|K;2HtzNX~#_YXMg{KbN$!X*ZqHge}Dbc)6=Gjhgd)r
z_3rZb*EXe|zI4ZKsrH$L&h2~F`M-Quti9{ZpWpZYhi%QeYLa)yVy<0n6u<qSf?d0M
zmmZZ+_B=IFxqVgG+EwfK{qicmSGjyw$;(AmUth%*Z*uXJGRc?#3S_(5Un?Rvr^Vft
zu`WAfy58gUwY7WeX866lH~k_*(C)IgChE3pA~!FarW3j7Xt((5kH_WDU)Z<4?8}S5
zUMW+r^82;h!`8*TloFYj^y$e-x!V!bmcF~Ydv*2qcc8Xm*qVriD}$G3{rd6}R6Bk>
zt-pWAu9BtSt9D8T*=<;EK4b5vQ`(=tf4~0g>+8^EK9bu@+4*EVzE8e(Y0}K=;tgjG
zN(eA$#qZl=Rr+d4?eA}yKR!Ind%Y@j^|Hz8{#mD|=}O*PKY#vwkU&cdORtP&&@qYa
zo$rF|Jl@~keLea1*6i!cetY^!{_IV!sMrB2eL+q0kd;AE8<UQj?#^1$(;cxfsr5Sl
zUhio-6H_BsMQlvk_3G>jzqwW~UtC=5<>wc6yiYd&*FSD?y*2x4f4{o3v-st^L!iV}
z`tp+N?y|R+Rs=5Ivu&n9Vv}CXjs;#*wN@q{?~B{dC8o0?f8S5H-R1B1&0N0ZxO{y~
zU0vO;KcCO9|LJip`)td;;^%&``)VRLZrmvMF!}zz+FLt|(`Vfl*NF%?JInO)m6gGw
z!orJXt;=3KpI`qiqkQe_r)ei<8ZZC%_kI2A4-XID+Ee-2^!EE38=cGVmQHv7VQ}ol
z?)UpX@9NFHExGIWgqzpJ8J-I|FnCOgtNWP>YLYv*^OerNy*T~+JfmYPf|vWPyYCYB
z^1S{3EBy9<9{j4ix+>JF{@)(=-Ba%8#r<Slmvwbj-1A*OUM`<+WTISMP_RLza<2cA
z8yl13?BC3_tqyyBZtmpu>+@GJUkPq$Z`U?63+wFclw*9`E?;+Hie|8gh{%$5xhjpj
zrs*!PudOw${+4rgrtxvp_~U1<t&KJp)e7+tR`a>gCu@CatMC50zf<(%?LY<7^K)}Q
zN7$FWiHMxGl;7@$!(#XTZ@;eYEKUc7Rr2w^y(^yw@2MzMRZ)4de*eE9P$fP0e%il3
zKeH|@aGdqqtFq?PRrv|$=UOlKn`>2h=iu&whfUWv8lF6P(yH#yjwS!=WmBG1?Tp-2
z{$4M+$Ey6@8sqeHJJuQ>+i|zEqod=(w%pq`@BH@sdbN7xzaS+GiyN=?MS~`T1M?y)
zcf*qX^Rqr*3HHx?a$=&CQA)?XipRX3_52L7MkyV?zPwy~X{q<>#KUb}Jv~=;7C(=<
zJ3Z^_s->X3H|fi>+4-Q(_^Qy=)0C8zr&^ci{rz-Wf0ljyzNY5puTLiX@9Mj`B{O)c
zUTjqGGM|h0_Ewj^-}^o5{5;!P#_4^tOtY6|US76z^|wu_r?qTsVuF|ZO<li!eV4et
z-sw$WZY1}=Jklw=Dqvv~sK>DT{k~||Zn3K~jnhra-^Iw<)kN4<eF<0>vvXZ#55N7N
z0MqPiA@A?){rdHK{OY2or@#XSXJ#nM%ggu5+uOzd-YM7E*qC)`$w}Rt-=`k0_;^(O
z>gII+udlD4e?9r^y08Tfj9=g04&Ph-ecBVd=SMCr_5S+%{r=bUs^5LI3a~gT>~FKM
zk(oW~&ySC<?(g5fI{Mz(3(NiGV|SH!{{8(ue5zJx$^F{zD~q0<IyKjNJ9LC0`}Vfn
zRZ&~BX8qO-Sur7Md*0g2%gZ#iw7kB)zJC4X<>gy5E-JCIv1w^(oqC(+6cjWm>)M)?
zK})?r7*y$<n{U6~wOcIn^|iHGx3;W2HBDDrGx_@IvzIm|yRVJd==A^h{r@4mN-|Az
zZ-po-Dq0mhXaJRH>hmg`{{H$p`O9~Gg?V+qGOshs{Q2|e%ir(!vrkXc&APOt6I8bM
z|GmC8I{fl7-{8q=z9AcvTz~%j`O^OX&wfyAG0XRQaqZF)Rh9|7sfQNVGo}cg-qh3I
z@4xCbzr0;e(bH3@pPrmd?vt^6wC&yR_xsJ)Mr}2E`0(Me`}gm+w6)FR64jdV|KIoh
zX@7rxU02pErVAdH`2XwrexHATe)_(<v-9lS@_U){YQIHpPCqZ#pZxCj_VZiv?%rZy
zXP-UCvUt|2(ABeUZcd-Q)O)(r?QLfp7@6<fa(8#HwrwwceQjpd*H<(D{QN8}FE4++
zhI6^!T%+}Szs*`1y?x!z$9>j54h{{R+}y^cudWzgUgmrH!t3$}2N*9e^%fTv6ioc{
z_ph&qM@QzpJv$?}=gqzTZCmc_88c?^$SObmbII8LnECyh<eb}PvQ{Mp(etj^DA?KA
z#XavfI5y++^YgPmd?<MQ`gL~Qub1lAi%xIy*_d>6Pu}P2@%1x>RJ|l_Z|m*v@6VQ-
zQ1<qg<n3)|cfa3PefG1*Oy;C-Z*E@CskYsgcQ<QS`TM+6)AjQ|Jw2Tca!W+SjLaJw
z7E0RJ?YaF&uCuc<F8=b8B`Tjkoz|ayX{q<@0|y*}*F+dzUK?#*{OAa0|NN6ro}_%f
z7M(w{jaPcsqods*6~a<dS*ya==ehOE<xZMBIX2h0XzvnJevhp8*)A?Ent_X2u3rbm
zn3|Q<ttaQ_-)CWCn<b>`HN#!L_Das39T(T$J<=)c+sY;C^X|@0Q1EnicN^RP|5Lo`
ztBhsQkuBNR&xz>8-1zb9m(=ZTvBh7OeETIedE@KsLoJ-3E>Phkm-WxfY_H2PJdZf`
zK^ruh%Wy7%hXXWH3m?CAe8JG5lX!DeYSgZhm!`KtgO9dVUv_+DWn{?XJl4R#u&L$W
z-{08>8W^wVgzu^Nn0;<9Bg2VZ&_UtD66oW;4%4>P{jEBB?3k8{ip#d#)k#OYX2woR
z77`LlxxH<ge*C<5xn=L~>E7OUb)j>6bi~cx$Za_@b8h=xujs#h_DH92>g{cIKc7rK
zqsPjSC&|Rop!538&COXiHY~ihHhQ^P?kx>PMMqE@?{Vpu_xIzs<(}S_dlb}Z&HMT3
z>AEsiuPHkoK8~8EdU})1wA<U(f|5|ax~He7r<7gIj;!nJ)=rop@bmX?Z5<sS-&rOX
zdnAqXc0BvywfdO!M4`NOe@;!+o_^@ip^)8WxnJMijh=0myDRf}cYpu%+}pP{r=Rz|
z{d{djEQ5mfL&H4`o7R|SUwiT5;$l$iCa&UP>lr=wy1F{hz`?!B=b*8j>&bs#TwMJ0
z`Sa!7;`(V$rS;tK5lg%N(*1uvbxWD&tvPbU#nr`Sg=@DM7a!lXdA8Li`S)x<BLf>Z
zZk%OTyX*Sf{Atzi_l8Gr%LzQ##F~H8P)SKCCh_B;R&J}RFDuM)ZY)SV+?M&`!osZE
z+tz}HPoAEd`ns*Jcy*Hq!=K554h$)gzrVkqo*JnYw8SHAy3*-QS5^cnpPgqLJ-_bP
zN>EX>{p)hSxtGq&G`_l{F!}5pOXJC_rqtBdf?7%aPuuzB!*X)gfC|s)aaAWv!_|+j
z3|@X^TW+*&#0CdY&#H-)J1?@Ak&!Vjd(TWIC8aCt<L&#O+W-5pSg!hwq3=AKNOk{t
zSN2qX&U;~D;~~Ug)TbB0uxZYeLY|KwKN=m|v1@0{UGskz7COJWwRN?UvhvgS@7G_r
z5ODP9(M-@F!0$bq^8Yrma)*FM%+Ak`x3jZ*xo)*%GaDB_|MeRilWnho$JAc0-+yIg
zu=@JjajWzHZ`~CdyOaO)rY$8egSO|nX+G8rl4kyN$y@*Bg@w*pmzVX%Rlhae{z37t
z?auo>lExv6TsU>3ws-_D^C^s$7ZhA5r0Vse-~L~~`FXaXYa$Gvo|zdesugl!j%Bfm
z=XAZ;O9vX6L7~IS#<nVCWl+`oz29xlDX%qD0D06~fA5k{Pfu%yuZuY~-+uq1MT@R1
z_m@{yRbBe?*OKFR%kQss?H1EiQE}lG)43oXU-NKV-M2S4tG--x58aj%`Sje}=$*yS
zL1S5_SywdrH%$CgCzUKBDEM&e@4Ich(pMI{^SipbYFb!CG&VMB1uyIQ_xt|;S65aB
zXI`_)zh`rGMW8cCe?Y(lxw;>Tx%c<oU3_<2?(Hv+y7gCiP1OR8dOA2XfTC$<ar)c)
z`|rQrr|vgr1!$Pe#3Te{X4sk;QYIM-US3{az2)xy`u+1NpGi*Di40<7WYmh-uwa&1
z?yAz)*Oo@wGc0MdR$$mP=g-g2+KP&fv(0iZ&9N-LvL!Rv)z#H=((Cg_j<|r_)6ORw
z<m1zGYg_K>z181eZ9Z>zc~9kMlj3JSra3n*<nEuA`Vu78#L9hTL!z_o-!GRXU+sSX
z`0-*sS*sUYug6_(<CVU{cBEg@*iF@IO2FQ#uR(YJx$S-x0vR^*^6)5louuM<@#4jm
zdFB89RM!4_xqOq3_xe4byjHyhjVj0OtpbfzgN6ieZOMEbR$WxIDJeM_G(2FMea#0n
zS};X3_{t(zZrzw20q^&IpLcCt>}qzo3WtCH{{4Eh`TUi=)#a^iZLc1-%kO*kQ&mk(
z%gQRM`un@krCw97EcF%#wHf#S|F_$%M`Gdf`E^l8yF|UOXHT6rVS+&EyE~EV_y5~v
z_xDS%Y38LPTi5x|xBK+*W8l`Tt0Ho8>n<<%&ptUx_0`42?VvKQQ&@f1Ej7e&<JHCP
z{Gd{KQcS&9{r{LV^K7F*9sHb}HG1*;)_`Vn-fq8tt%;TU%VB=|iV|kyV=q3Rx4-`9
z=jW??DvLogU7%=rKEHn5Qt#<mPftzNiruwk_1`lyjZLe*WPs#Nv#td6$yk0lt-n9x
z&5ezqp^$59qo0?FZ_K~HPs*lZgVz*|g<)%>G~@TxSXF#j016sO<Fpm2r>CvkCT*4z
z@b}l((pOhB@7DkS+tuBDd1LZ%lj?6dSJy-aZ%#iS*38D6_rsR4V74K{1Xte~1_y6!
z%T@E6^J3$=y1&0b^;E_Mh3!vQhpjc*w{PFFgo91b`tAP}+@78qdF=S{<28T3UYA^@
ztf&amcC1%Az3lzH+?tx2Gr|70Ps@BxZ#uKUvH8r=Zt>pKNHrrPqr1<OdJLzf&a^6h
zRbl&XQ|jq;H_cp=k``^$Ic@Xr$K!RW_iMk;-KcZ=PT_Ic>o(VOZ*P-4y$RGd*;(^*
zQ+B0`OUuUG+a|fUuEgvpIGB9j(a~{P*40(d&dfAkS884U&cw3liGiqgSc&zqOG~|b
zQzMtv|NobFdUg2vyqw!+&TTv&SG@l5@$oZIgs1)0{O$MltLMgwk4edq(>gmk3ZnNF
zKlfYz_V)Jt{G8in+1J(-M$5^|gV?*v-+$Y6cb;waow(y7^7Vf<Zqzxw=jXH8d8dQx
z{Bm!Dr=)K0D!*5GJYrhvtE;P@Z~JqgkvZ?ZXP0ZY7--BF)RNl%^x(mR%Q7x5diLk%
zXSv%l_H}o@e(x67pEXI<d)9#i4xjIq-`}~_y5hqEPJVvS@MT;-FGJ=+Zn1`(^#A|<
zMs3NM2$~IfKEM86ZtT{qt5=r!O3wui_eS)jot>p=X7+7Yf9#qF!>jA#<3UAbDJN)F
zuco&4>yO9%@!#w6mo~HWdrj&R)2%wYO*2<7X2*iZ$NQ_-$QvfL{Q2`I=Kl3Hk--xu
zPP8h0HRWE-XWyqMCm-LcXJiy)nsw#EdHer0XEzE-o8?@1b#-;<LMPU*@9y4Ct_=v7
zQ1s+P;n`o8wQX!-CY5}75xD*7#EBE*ZkNBm7kf-XH)e-{^Ks3nEi0~D$AA3z@ziYd
z{8hhKM{i#zSMh*xdur_Nve1*0RJW#_6ncAi_w}uNJSHlE!maA-tC#Wre@(xh{Nv}(
z%C*`W8YjMf2Mw=3KR5T)wY9UeuB~}_ZC$~`L$B`c-p(g$wd82Gc(pA%g9k4oi^I0f
zh0uY)J$(;5Iy)yC9=rO^D|A)J&WDf7UtRG`KR4&%m6gGz-`+&}&bNyN&EG6^YR#*-
z9~t@Y&reZ7!G{}dbaZ?s?KyW*NKS5Dx48bR3k#hy-&KEob#>B`UteF}udv&`j|a9E
zVByONLLKY=3DiA0!nyayqwZbL=T(E|Lay)VJ2h4N^rkf-$3vDpdvvtB>igaD(A8nO
ztnBQkuU`+}mV5g6arg9db39Ay|NlH+Z!_)YwzphN;s0~|XPJ0z+_;g8mv`#?`SVx5
zn_u_q<YS4qx3&f+B`pGtB!aqK+~RsyW*Vp4^li_&s^wW<-uwFg{{6?V&oa$U>A5&f
zH`?gSECz;T2Zj{u<^J=hEeV<5H+9pU+Y0v&wQ}G8@KM@4Z;ewcSLT}=8+R2vZ2I@-
z^Z5|=`RS~h&ugCMpADXTNzJ`ahKrA{EPDE_#g(<S|NpIja%#7H_<C<YKfljAmix_}
zlp49tT6p`dMrL-EzqWEJM_*oE9=fwA_3gdA(V?ruLVtgID=H$Q5+5Hw*Q(S@*{$b7
zeEr|43m<RExfuj1dQMJKy}BmSSX3`2;@`i2la@R@+`fF*{ws%aPF2q=;`InRKhM^*
z=!r*bYwJ$ADFPA_8lF=2b$gCmEC<bBr<|Mw;<fQeE;`r@4ozNZvnv}C4}*qeJd5r!
zdS};3oZeLO?#|9Hdqfx>I599zc)O%V!0+w$SDLYX>;4_6+59ZW<7J*{#fOBqcXx+_
z#>P$AAKlufo7{8V(rMivgG%j?l|iom{`~{>5$k@xHJ_>*ZFY5Ax0voEmC*HZcQ5|b
z{q+32ezH&7dxMzus@~H)epUNT5=lPRQ}}n=|5pcptqxy*twT`RsHErX>+9Ly-rQUj
zzklDpU$3;ctM^MLo1~nW5VGC2=EsKXPc`j7Yuev-@0Yu}B5-lZ_q*lUPftxfHPd)`
z^zW0C)vMne-lS9d{$A|e-R0LeCLae4-ulk93cbAC|2k;aDZcKfYh7L4sp<OjbxvOr
zkFQzCE?;Bd{G1P3dMtNp<(jlaR67i`wn6Uobe%}0)0_5`aqfz=Dtq(d)uhiyg#BYa
zAFgU-VpXZ!&%Lqi?JXYJ+uL$uca><~eap<m1Zqx7CV%<$dj0ZS@BaM!T=o0y_SDE}
z^J+ew<hfe1cva|XHBU*o<U-p%8Ouc%7rUR{qyw5o-dc0KPj-`z_u1Lz-*2RWrmenD
zy~KLq_V0<GPTV=xD_w2#?MJ(OoyX^mhfYt^{TxyD^Hb{Dh>cE{{_kfidv|B$>FN5~
zW@guvYu?=6?r&ZG&gZMdq>v2>j-W<C@N&OUAD^DGH#Zi}um2Z$>HhmpL$}k@_5F+G
z872g>2r%6AtEkwKl$<<u#*7sY54Z1L`}<+Lyh-XQ5mr{#mkZnFcBPt5(Fk+`Wui5a
zo3E^m-k!Z}eay~HIk&GpIXU^RUBx_$LMQz_ADr6WnX$05FJEnabt-7^A2eb$S=~Qu
zf8AdjJA?T)l|hAtg|{{)w<jehU)@#un&<6*H_#C9_q*lu&2n!oIoQlzy~e)qkxScd
z`^wFgpVN*WJND|w$H!G44zgce5vY89S4RhjWU|enW5;@>L5Xqw`#>*q)BOHoKS}-K
zum3<nnm(^m?X1;woybRqo{v@pF5Z%SobTw7BRk~8CKUCoKKx^6F=&ENz27<y)K)q*
zRok|2`kXm$UKLFhN&&S8C#ibB0?mQ^`T2S8wVhR8v*y~@+np_DY*>BwTkM8^KOXb%
z{rPNm)aJC_YilAGgGN*jwQyFw*?8RMR^HuRq37*>ui5wiUo~j-kl*gdf_rtpb47I`
zE-Ze#qwujw&JBaNx3+q_c8i66e|LBNPkBBD|CP43FAwwEhn$^ddUbbse(m3{*H^{t
z+yq*DB59m<;`nj*$H)7>TkSt|c8&5{OZ#<UI|>rFW?%Q4tmYdO5;8@u=7S?>q8zk(
zAnW?Nx1|SavR++VyE^movX!2b)mBApTm%}Nng9Qf`_`<hUZt~@T)Q$ZE^-A8)3EW$
ztni$ywi46>;o`ak?XiJMps%m5f47pHE3D=_Yl&6qs~1bB$6W%oyk5M>kWBsp8n~LB
zzwhF;wb7St`8~YCwO+pGzka+=_VTZ<uea9yt%{ts)Lp(dM84)j<88Bk+ix@ORlU~z
z`r@Lq_cWcrmzS1q&An{~>KGOl7J_E%j~9Ymy!~F4x2$zpNKDL}Pft!R{`2$m>g?<5
zRs}8X%DS>*;Y{On&{Bt0k(-x+I&eQfKYxAB`h5xSz3<BkA0MlFv9SHi1!w-1AuEG!
z?I>Ifnl5N!<=*A{E@DN1;?}&oQJ{gSkdP^_uCHGYYNuXY<O-U-2nm^DmVfU}*8C|`
zmdrBE26cfz%S5`w_1ArVem?u+BG+5HN>|S^%YF4~(eu}@SA$&P*vtk>kfrx)zk|lw
zEQ_CAxwp4^YuVc<P~5Wf%Y`^NIPAJ7&M@JKje_R+GyNSM28M=)EA5uo-``gYY8Ngm
zd3ovC-SYdU&1}3zpoW=KE0>z3<;}IAk>CuS(?+_{+f0&=_nE%Ez5V;IJ>?9UyRY4m
zWapDHh}~6UC@3fh9tUe_nepuG?AfKSuccPRXYMSLn~?1}lYNOxr;yxhy_g*dRo~y`
zc8Td`fkuH|URru~f}%6Hd6|1#O-=3C>%#T(*q@x3sJtw8ciFOnhlfDZ-Z!?rofWKX
zXn66)wp^={7Z0}Xv;Y6+GLO97ohz$CPqVPIOV`)e2QTpuyu70@**N)FPsn*~C8a~J
zEhUqEN=mkT1kIxA+1cIu@#Dvivy(TLybMady-m^}p~3yPu)5z2@%WmHcPgLHRWmRE
zFE0vN5pZzNr&HQ$nwpwdf33UseQLaA@iUXe#KdJ~Z*M(o6^}ERZJzH}`dc@8+l*zt
zvu8QAa?QN6vv~HYsoJyq?f+Svy<Ym`!$Z*2wGksD<FReI+bt9P=GkQKDtnuyq^#_l
zkgz~Abk&r~pHHXz1_e#Je*Md-`Ijp{Kb!gc-R|?Cbx)v0PBwo&98SBvEm!Wizn7Ph
z{{BCkG-G#d;pE{lIoc&^e0Nu=vAW-!4;A^7CQm*aoxe9#$}A_NOI$yXiJ93qBV)zN
zxV^h1ZL78%|DS$LqWH^;z{|`1<%9RtR8H0o*PE>FFBiPbNAmNB!~C;PPFA1oJzX#M
zb1h?ocI2@;2iCLvXPh*7GN|*`+SZo!_t#fYYQJu+5WB17qWb)rMfdA|pZz*z+R<)t
z&}0E<HvM>?tm@yp?YlBAF52~e-*1!jb28Vz_1pbg0h*QCTm606FBM79>c;u+w#hR;
zdj5R*g$oz5x6QUJUM6Ll_2gT}iCv|ySNY5|%DXGN@9($hxfX>^pk)NN_hnySXI1`g
zj{E#LkoK~o+w2p*SQI>H0F|kyrfOHOSsk@?RrLM0Q}&0i3OTtpcB$9Yl-p%(zbcs-
z7#RMWuuLfNm>GQF_L6khE|H6!!s;=Tb7XBQ0_^PU<d`r2{qsjeM&`||KcE$*J7fhN
zE-5~pI8$@;^*GI^C*?JBCrz3JUIy@+lY_(K^Un96m6-N-bN@@+`@+G)Geu?n`33%!
z|0=yeW09Z*h_CBF%N??wp9R(M1rMEEU0jyj<YQo9n5nF(>Dk%Yx$FPG-+TRzHe@R|
zEOGX_zIw{Kh;UGkuc@i&$@AyWv#MWSQkAtXJM*^PD0R~EE%ScwD|qN+`{{(T`OYc^
z28KI1pwe}B*;}LCJvp5WllT%76S+7!FYYRRZF6mH<Yu?Pz`%9y7cW|r(gPB^vcQq~
z`lqeg*I#{ldO9z6{WPP+Z<lyZ4p|qob9OmsS?LbVZ8<j=xyw}^`MQ%=(w)I``HmeH
zps}7?`|J1Lwow3exU0UtdYUCJEWCKZ0)^TS2ifx&pEUE^fhHinJZR=$R@E~lFC4Vm
z;b@m={>7P~NOHRv`|p>agUa6T_o_i1k#Fzs>wAJ$<ZLN_ALkkL{oUQE>i%+|=C5(u
znShd#EmdD$EZm%aKI_GWg`jq~h`jv!Tj3544WJ<;+s|i=vu<u$`fmUKI^FnvF_YE(
zuSw_c0j-ZrKc)%tMC74dd*NLwu5NCi8J4)~pwjMWm+0g#-*vY?pI7at9kvG4`vwik
zftGeDDk{p|1})Jz+{Sx(UF`0VEg6BOudn&u-Bs$nxsO-cY(>yguc-ZXw&kD&xSJI0
z*59>w*YM)~go$!bPffl2=jZ3kSHE?t&$}S(Z&Rq83R<)K-{K52$R*^i(gh_eG8gy`
zpw@jeV;LA8%+EbP&(^B!O+?ysMh5evpgzm)mYjYDCWalUpti!M)YC8j{IoaTEyCa+
z=E%UvaL4F)pX~4b9}GQ%cAn8=XUJ<>ud;X2P1lrc76FC^=2M=lX54gTIN<9bzDD|}
zLJ4Rrozzv&0~jdeEz_otgFV=C?(d6T8@)a3;v(0n+TnUrwZr{DGf0yrO}cX{_wKGx
zUMZ7+c{Y_IGBRt9%T@av?~^^fWECR=L&KWG=9{@s=zV*8d%0HVsud26OrQ>YQ&ZEH
ztgBjkf4y3LYeQml+SysEo}iKgG*b#%i1*>aL96O-Ye0>xzkfcT2Q^M>YAa7NGB6bU
zessCO3RKcq6+i0%t$6`0xt(-nW3oGFY7sQSSMuvi=F`*D{h8VMLV|)Of!g68J`{Kc
zP1On&k(OS~DXg|4`FP*VN+|{g28U&fxWlYKQ`wV5q@-SL+f(rH(5BpI%c3U}RL;(^
z1T94>YUTG_6}^4ksVSO^UtV5r9d5wDz%YST(BYD%l~vR+iP9Gr9A}&7U)xvv+a&jv
zN$rn^?VtfeCT8Z+2L~8sEsI>HYKMQju`lcDs#`k>lhr~%#d?Zt$w9B>zu)hV2L&T&
z2D$d*QSnJCr#F4M<gK51pn-AH63Bp!h~}e>wG)+GOCBBJR8?0$eg6FUorgdntJA_T
ziBV8c5VU|XYD>n#1q&2FOFluqet4+$>QZm<>z6nD`TN&)8!rdP1Qk_PRY6d>RB&6V
zVaeqyD}zDP%~`*{y<KN516pga)O-4uL)`i+d}o_+foiC~U$4i@-JWk>A2%r`7qr{p
zwjiU*T)Q6+m_ye@TwGioI$6!vr0|hT?wuVMzm}{)s*f&}eg`cu0QE?3Z!*ih1v1jS
z0JPEK#0<^<-%FR)&I~+Z&&8-R7u4=uut1^z>B*BPjgGx|bhI0^j>p5J12o8aG4Jdw
z)2^;Auj?Dz_~qAiiE7^~ILpAmutPBS-}~2I^S!E6gtLA=f1nxhGGv*LWbU0Efw#Bk
zmq*)Geo6r?<$t&P{WO)MM~`N{yR#FNwpO2gbhP{H@Avyxr=FhHca4XEfg#284x{Jt
z=kx31xW#lpD=xmCF+Q(hVG#jZ-YKRR16l#Hvf$yNNlW(C{?0nqBiYs07uGLlTk`Eq
zB&bICey6zq(c{O)-&H^X<a11RLJ4SUKWtsh%2QLdUxRA9^Yd&$E6?_RJSJWB|L^zM
zx9@g5=F^Sd=CjmmYS4VUT9c9&0j613JmTyBn)>f&VqiFs+i$HP8L+b`_3T{h@3Y>X
znyS70=jZ3v0fL}px3_>DG+9W~tsnF$Qy_DlKhnw=KWs@oJ?)GhBSRk7KU-#om|liS
zte}?5%vey>Sl}(-uxZJ471J|slo%eU{qVY^Ju{YtL4jMbA;ojzB(1bEL52e13#{A>
z5BeNmfC_z@?1!OepipH44^18Xc=k=!nEun#^|Qaex(do%T;h6bUR_;%`nq}aJW!Lk
zAo^rkxx==+yQ?;(o?exAcNeHgOiD@$Srww0duz+diI4MdY;g3QWfE9Wu%YPbsimKu
zo_>9|{QlP!8y%b3KzmL=3t~VkT5fDi?z_Sc%B-n3^%_cEUUKEP`Ox4u&t@evJKu{3
z2b;AbH!T4TMn%`XS-<~Z)c3pP^ZR72m(~6K^>S|cy}-xEdbj4^w+o;B_xJbJVQZsq
z?JQo-#xJ)9l<Pk~I~xp|A^G^|Xmp%1D1S{&y;<iCn#2Yb$*iobJ9Yp6{eIuH<V650
z3ya4j(1NaKXJ@}&Iz4XJ(yw!DtHa*j-X8w=Snt=H>GPM~%6o92(aX#0(lX!KB64zi
zo}kW8QgSkA@m}eh8y}}#;{^L7@*CfYMrL+USb!F*P1lPp((Ui-3tJzz_siY#`<b9E
zLDuE#KqD=#?(X+5Re|QGKotoyJKq$QzdxVPH#%0a1=a=PlAjc^Juh~uX0Y4k<^KDZ
znu2moWb8Cvh4`9}t;>97f(GSY-~az_yO>Udf+wgH5|xu%SM~MPN}riVS@-tr)Cya(
z!Z7*Rol8|>`f+RaRDRBSe{b)u&*!W`3zR?`Awa#i`1-%9FW+A%d2&K9bY0BN<ln18
zS7$vw*1LTRXp@@4>eHJTT_%Cr+JApM?gwq?08J^f%hv>eb`>n~oIGX9lqJsXe43h?
zp7U$J&2(~d%FEQfy)8GmsAv;tm<lwbXPkcS3TWLBzx|&8S*wx>DxeP6q>v>Zg8gs1
zMKl))tNUqKTK<HGqg8{)r2hVX(5jff-)`rFCY^1+-&q{Dx9VlT{XfvQnwpv#nU#<4
z>@4>3@(QY{*#oLc($3DxJkkN)bh6BE?kZX9G7U{l&q+_-zkk26_SB52Q_Mhl=dH$R
z_6gkLdN01bybS6oy|}n|Ytd7$wb9%CmU>OSG{Z1?Pv7AkqD;)ps-A13x0glV+m;(G
znG9;ygwLL$7a0y(NO!vqR59ERoW`rb&M$X`ncrr?9Lr)Y4Gj;_?u$=PPm79*E=@f>
z4U|$ZzFxl{RLf=k{PcADo_QNK7<dMOmYz>*Z)*du_<i}RYU(A?*Iu9jnSg)^fByWr
zRJbK^(yW-TrcZZevokOp_&P)B{P~o_Mq3xvH|a<_fL690IpU%lw<ki{JTD|9WXhvQ
zkG?#gU+*<3YHQZgwb9#Gc}`ZVdeF#zWmD?u=qUfCUQ<>6+MYi?l~2Y(;pKY;Au+LK
z6DA0(joyAP`L}8IH4QB-t-0>6RbO_m-ghe||0Sq4*2{hJbLN`xWno|ZC!{i;`1JJj
z*EgHbuPS?cYuE30yG>J02*}#k#q9t0YxQc-=*6$^@7L=_Z#%JRO>~t1>1n#DJr{Qr
zKE5*zG=W@KR|jg$sA%fx`4vAuSIVu`Ev|p<{r>-Tr=5jBx$|o3%}x$bLb$p*e0A~j
zbCZ@_T^)XUla8of%#Fpl8<UQj<lfp69pxVqGR3Oo#e$EIk84|6MsCf%er@~xy4C0H
z|Hst+{#JVR>h}Ejvoj2xFJ8O|DwfX8vt7N=x&76=>UV)PHGg#1f@<0muQuf{NSb7T
z7omx2hk-T^f|{zJ9;fxY9m<!pe!W=SAF`*S5VXD+G^6qH(NWW+BOIl#ubsX6tk3%0
zg-xlazuYN4ztVrc9cTqEXp_l8=k{gAe?X<#hx4hD%jJ|yWy{{)TH4Aj{_4-q&#R)g
zu6noo{k}7LFQ?twka+liujx#cm9c5lnHkIvE}tYfaZ6m#QJ;0J40&z)|Hnq}uiL8?
z_T>K7*Ar9UH+Tf4q%4_N^=joAJ<#~Y0pCff><dAxAJ2)}`I*wqkkoV0UA}h7s?gP|
z5)L+f`uOqVk56CEUh)?KHQg5I*ztRG-P>FJ`tA1nVW45!$|r)N8UYHMy+P$of$Sz%
zhM5+Hiyl3CWK#R<3uuuL1H%E{6JoI&CQX_YvOaDv)M31*#2A<4-Q5+nyDS&f^J8Fm
zz?Rz0@af<0_n^w8>T$1m$)6t|K^;5>h6AM_)j2meflBST%BSExW1z(wv(4Av4&PVv
z(`dI3sLH=SL6>de@uNpiZd!w6P0FDbPDmr7VYWha$w81qKb)VS`o5v&(@FJ7OF$#K
z(^7Zt+du8NT=ko<X{?|z2)5Ld3_|kq`lmNt*;Sei8ukA8@#FP7$2RGJx7SWMntGC9
zQ}%T|&!9dT%RBo(aXDdc>Pd#6Jry5K_Jg^$h8(h>d{5l|+{jOcd+yD#sSE<G_&hh)
z8Z>w&nSAG3^t7dgkB_AWm4ZBYNjaKj0%+B;Yq!|1$NlzG%=6<!H3AMS?oExH82}m}
zYv?&4#<(PWeVkUzjt!uVpP=<}WtJe#>w>pQFmI~;T~_-3-rNtMafg)Rn@SB+^kSpZ
z&(Ayi#t5Y7&Vn342hbeH-v9r8d-?dBc@qQ{ZpblYOZoWdC}<nw&Z4KF9@HY&?o-E)
zA79&>8YyL2l%f_2YRf6uZgOR){C>AQwtl{K`MT?7ETHvg3a?L#F+Tb9^fV$KdKf`2
z_;7xL?z@I1H@0R^e|CQU`n$W!y(fVNsX^7i#EBDU#(@3w<%Aj7Pg0geOWezKZf^sX
zEuhh!nIRDQQ)00j+IXdxJv`jLy7Ke0sI6I3{pMON4PNe-d39B2*2P7wpc4P#;r8@0
z&<GR5I>qQajFQG_J)j+VFE20Ot-JsGy=v3aS0Qul>*GNCimJZ7ndvDCN-7@xIfd*h
zhK7OP@7LF_dJQUv)HFe@?@f(4f(}m3&RZ)#KMT2@e{WBuqM{;S7)a_tRZ2I*rw@nu
zv)|m<2wI>4nqRs8$^PFDXV4ym8yl0at_of4vj!A44pk}Lh6<qmAE=AEulDz<`2BTU
z+}x8@WGxCD#P#Ds=314SBphh)SqCcp4s1>7W|(B0?guK*i=Uk-oXx((v6&6D08h$1
zPv`U|qn%!$7`r}6m&v1RneXgXnU|N%j0I)hhSyVcK??>M7=EOmm{jhdq^z8Jd)v0W
zyIS`4_O5PjahtoRrbgb{nB49R_W2IENTY@;>tds)rJmfDyZt>V!cy`hjT(Gr7$}~F
zaQz|i_+UnkpaaPLn!(F<=tl1-Sokl#x?JvQXzl&_Kc>v5lzzWrFzo7*4!m=LE2==%
zLT#(ykr2V{yF?aWbaC#z)|({~eAG?YcghMC!=TGkB>Y8_Lt_?nWfv$n$xUqH*d!s=
z`1|)^i~SQ0a&UdOUfh4&vY7Aw`R8@*-+P|-*gU`Y{;yoY0mhr@^J|OlmR=9dFk)ax
za5m{;uzbJgbJ6p;<=1TISr(`D*?c;2W{#z?XVE#!=TDZ+&Rcb*f`Q>cRh9_jr#G9=
zgBFUE_UG?@yUir?l8V3m-;!lMGbb(Xv(mEv^N?TLLXm-CgPoLXgHF^I4O#25HPwG^
z-~VUUE>q-TRr*R}!Qo>J46@vya{;EPSU#EHY?OSg$E%l}fnm*ZH$eqcQ`5?iN5v<r
z6hAw2GT7gCsx!asmc06xmzI`pf5XbaAhnLIQu^NhFIU&snO={tuLUi{)C^v>Byw|_
z<);(MufNT&{dV)qo12@Pgqau^UM~)0Iq`IQ{Jib=>#VomudBYbHG6vD<6}#+udnl*
zbhKMM{ZI?%&*k;MmUH=YGBDK4aT8Qn8@2V+kB^V-i{76#zwdK;nyxpfiGCxXSIObu
ztXHpIZOOg8?NTxW1H<cuj%+8EPLG?lYSpTkf`hCp*R4CZbb8#cjptXcT6L;bJTBr;
z2?N6c_0Uie*T9#G|AI<OOINL0wJGQ3rks60pS><^U%hJ8sx@(YceT7Uo11xgS?YP)
z?><HDlj>J|v0#us_(SEmTBX)WInjBn3CTYmJii4B4%=@Zir-Gon2_#pZB69oaCv41
zhTh5M=NT9nye?}nr93+`bEZY%Blmayb1V!ur=8WxS72axAe=d2dcxnO`L(a3BllDk
z_E|jYD1G<;0lU4&?y|R^y5s*WdUBG1p@H|J#<>R2+9FW2*cJU>(9CyAx!)$}kqgKh
z7d4nt9v*7Vyu0hG`#aDwiuZdy`*jL4GBC_{S<EqE?Y3K5{dT`zxWBXibVB*%#l`Lj
zx#T`eHT(ZR&l{J$xv@3x<nF4kuVTvYmhSv~&ieD$_4RvUakYn|_R5ODnKqS0=j?vJ
z>5;RwvVOC{dD4@o)8o(G&fh<mk(upD6Sv-q4^tQz4jj)ENp}F91@QabZhiZoC;cyN
z&%b|WzP<hD=jZ+J@2f37t-C$t(h|?iYilBx9%o@-uyb2%!8}Rj>eZ{34_kzb4soi7
zREdB>C(DF!l8ScNniE?xFB|3G+w<l1b^W<krK`SpFfbfo%Mh8KpnCGg#^m7O;K_A=
ze?5Kw|KI!1cZ$!edOkZpf4<*btEbbV^HzRnfw+mW==Iv|&)#f4e{O+ebJ1zt?MpPe
zcI^eJI>5~TMehXz!vzkLE{2`YW@Uc@C1U&EH_sOx5p=(D`+o6x+t0u6|KG<nnUR4(
zdQl+Di5^MgPfzvhe=2{sE_v}_?gd7M1%eqOjF;BM?mjc${=f3~<^J>M>2ANX=}0F7
zLxVp^%Y%c>#g~1}pMq9rZvX!K{(n33`!&V;K22R8k^sx@JO6w-y}9b^t1s{FTHpWs
zt~@w2bn5(nUzS^byOF&4dR+BV@9BCwUo7g@vQ=YX_+TjI+EDWPny$a?*AO;dsVUa)
z_ZYhdKKXV#|NN0o;o>uf$Deen&s%Y#x(O6xSFc{ZS$aM8_1nE)E_q9uWCTQQ&zsvP
zYn}Gv!^8ToMn((_KWs8g@?CB$^`8Fc$8q~}{q=ty@A>=fcI4(XU(gKHt5>H?uDrRq
zx%jAP_>$1oVXyDpuK)k{^1j;NF_llJMs7;+T(|Gnt34kManH0W&6;JFYjVGgf#Jpq
zsXzN${{J{`|BO5Shts~#bKgI?eg9wCq$S1A&xy{{viyFh__KNaXY<IdS)qHa3wq^j
ztxiwVJ#Bp6X7ancyVX6v-K%~tQ*=U6(mXH5&+g|FuO1!-2GQ#e^bcm;+>|=YEO(af
zwi}BsExuCu<6(R8_q*lKZ)LBKeg5xm`Te=KZr$4T!(&o2pOwbms;{T?>wli!bc}_e
zfo=Igc8^IlZ?of1w{Qwyt78A+1@h&-kG=U%rUd())Z6_gDF6T3?e|XYsr<a@dR+C@
z+plkL&!1QK>!lG`|H^~$O;c44xAC5qOrJBck(vD&NZYmO{JCPfQCF<<`fb16c(VCU
z#pB+}$GzsCcHjS-H}`k(vooHPu3Wit<@V~8D^E7Da)TO+>6_1*-Ck16#Ngn3MT05j
zKm%iGech9Z?yug8yH11@LsgT{ZA>`W^yl>cKi+z~UMwnkaUpT;ah>RGI-Zx-L~gFC
zK0Didy|r5d1H*^PD;i8srbXv@hK7bNJ$`~!JZ1tYil3aAC|`M|Jv}XKO+;XR{?AWO
zvt^kX80MSzDml3INCdtV1QqsoYCfOc`EJ*1qv~&OROIJWM((SryjTDK@1B3ZUT0oj
z=6iQ(xO`mK*XPg9%$&?8YqjS1&Hn63cYcazAOG``nW3TR&mVvJ`gdo&cs|X%w17F~
z=clJXzpk&JJJUFQS@Q9|m220=KF`)ZWl;U?jfm^S{F=womY>fUzkd7u%}wL<xus$I
z{{MZyy!iRK%1<ZNU&|VozPj?|<>hqSf7^;D|2e!|UW%c?KQVScgWUWlH@MDxx_L2y
zIpyA-%A5K7{~8rPJF{zd{MMYCM*n}#|39;t-)_g3%Bt`0=Enbh75?>_{*DJtI<dPz
zGxxsd=h;rKDY(AwcHVB?&FSaY?G}B{%x^OxJg!pp`Mm19mBq{q4$eWLCN0&s*Bzdj
zK5wRU{vN~h`L$(yHXjb0nPI3rJ+>_J)|Sl4pgMJ`-1>6|8ks+zvwr_%=ks~1qpLrk
zHQ#((u6jxC?QNE?*KFRDa&l6Sq_J9b?$*#{esh0KoSxu2+f29m-Olt$){l5NKHU89
zFrRC_*QS^6LpV0Pto=~@cIEPUT2J}b%y;Ge#&e?f``zge54WeEnPFI(9lN{i?DhTs
zzJhjk-%M<m)v~yI>)$8VPqtNGPB`=1PANWTslM2)_tdl5`SWhwy453TeC+Oe28JIo
z*&7%?9h1&~^5^sU`0Tay|Nm)rDHT6ImutZI=|MC9y5id9bIVTc{eCa{lL-UEg$<@R
z%AMjjCb{1IomTVW@bT4QYgZismAK2VB%E(hIk_fsvr+D?ExV3)i|Kkz0&OqLyuL1W
z@8j5Zb_NFC=w`kN-1>VA#N#Rw_kJ}#XOX=2c<NqZD+Y!SFHLSR?EHEyTHBV1fnmc$
z(;Ezy|9(7%^Ta{@y!p0FEDQ`9y`ZCjyp$an7#c2d2rw`#Fc}pd)M1ihYy0!bWJ$}S
z6i~JcTO0MXJN{2npWUw)pak-@ulD8A=|&kB7HrA8YXzF$|M2jzas9tPTt2)E47}c#
zz4$Lg)V#00e>%C}cABDdTgvs=^0WW{-v9sf*X#A?<*MII)C^vh@_cT&-=s71Y^{I4
z-(P=gd;Waw^?QuGr|F!$8XiAaJg!19c)6eN<z@SxGBDKC{k;C6$_iAue4hWmW^IFn
zRY}IaFH7~Gp3+`_CU^VYX)2PoRVCAOqo;uurrq6L?my|x-tYH7Ei9wFJ3Hpod^#yQ
zQ=WlAifMYn+U2$1?{2?$v-|C~+j_g-Z1Rq)`FM2K*4^*-S#RCCwe;ge6?WN@fU2*r
zrpEvKG=1q=ZUzS4i3~rdJUcgcw%=SURnL1>uh*WLZLVMac5C?F$G^V4oxOa1-L5wu
z85kBg3M$M$BwK!G;?2$J={GhcdQP$|ex~A?m6i2MHaa+XGAp;(lfU2Z>zBGQFl2bJ
zoKOc%tff9VG4bW~_3>@|^7B+8x8+1m0=2Wh_T}H(^E2u=1H*ym6B&N8fUG~vZ*TMV
z_V)9!<#(s9TD3~W6TI?MJ8aF0?{l7>p1!`6hk>C+ZYTFOHqe<npjHH^@%`z^$(u!|
zbzgt8+w<ksVegIq?#!_)zO>M}J!jj^wAUZE$4q{5ZhwUJGk<vohAEGq*Z=xaoFA4n
z;k*drCdRNe5fg9Sx&<mK`E5Qpl-)>d-}-HL>Fa6d=2|~LsXl+r_d6?tmoM|5Z}<AA
z`P|u0<n8_*U|^`>di{&_!w;3?VF}aD^MQigH2Yf0iwg^98l`%v`OKKGulD!4&pX!F
zzRmu5HotE2&CTi8*V=wKz+CxsYPeC!iwm2Mu`)EUos^vLwd9=T^OQ$NI)9!D-#6*!
z=jZ8vetgV+`~R?gO~J88^Z);xZ=86jg-60b0aWQs(}|p9n0zc{``xnB9fHbQ29^vA
zCNfMZwzj|DYzB1~j&uqe7d|>t^;@3JqhHSU(*<Y#r*n$Wom>&Pc+<~kvzKq%W|n-c
zC-VIDdIp9A>C+h^{rT;FJgAc2ec8|Y>AmXrcUvwqFgQGZVyeKv;E>6}!N3q8#mL0K
zFa=a!Gb|Mx6&~VYvZ-@T%ub`{^Xuz&mA{`iO*cC2e(m?OOFSoQ*@`hRgiK+$>C$Ka
z??+7a+pU)Gc04vJdvgOczuwHwe=fP-Htgj^28IPmv%;zx&M#USy!_cY>-T3&ug6Tz
zulqdPbJF8JYrVbI-_KP(pF92JWcBb0CkBQUJn0T*jhw=2OENDnvwS)w_|-K~Z)>uj
zl_uywyR`H3Vh_G#U|3MZazgFH8RPSy!L-b)tFA`9uKoRO?QM33hV#mdn>f$RG*&k?
zHT`-mJ1Z+l#1&LTarv+^Ficf<Fl$UbJ#A^^=CrTZW}D~7ZRclTnC~9fvX661#ziGi
z*|B|J&CgG}{+9mypZMv;GAZ5#Df0hpe&<dS*S6$1;P&a@dDHy?|DLd%PzwkS-hA%#
z8c>T-<>j@tx2@)zXJ1=m|M%rF`&x#Yu$YLKj0|R=6Tg<m@2{IGw>VHpVYb73yV_6o
z|3BMD?kag1rSDSzs8c;CG<2$6?XNYTE8AtuBHrzI+?TWW>oxhxX)Fv4r$7ZD=-95q
zeAa6&EjEb?bqy4mD)(q}+N&!oZ<gP$HBLJ-V@~loOHaFs^e^}JR)ZUvUjnB`Ffx4j
z`Gn_$+J)`;_jx3ZR6vcVJ3EUv-z~eHdS^#r<=?N@i(jwZ9#&<;z_3Ch-N9_)RPFF*
zhq(36fC}tZZt*lwH3b^R0JS(TEoNkJI0|X4+yhN-YxFW?GK8&*nfdv=y*;RgIXz8x
z^ZR|j(=ILXoGQo7z+h&@c!@!#{?Esq-)?0W-zhwv`sT*Q%v)PB+4$w=9G9zJ12Xb}
z+f!2o(QglRtJm**Hmm0I?E5~G)<kSn+FSkI@A|q}<H}D@xcoU77^M4+6-3Pv54C_&
z*YY_<UU#E5r=2aj<f;A?bjrn>o13*QWEmK8Vwjd3npgR3=9gDjv)7jU_}f+JPvrm3
z$napZQ$xs&IhMsi!NI}#dzUR!a}9j5cKf|m2SOMaHe_;4;ELXs6FJK?J1l>1<>zOm
zzZn=lL@GLHt#R!Zi`<yxy7%kT)6=iNWo9^#-pa6Y!>n1e&dfAke(zU%_T62j+SMuy
z3^!6(JX*iLysQq|H8)K!cGtCE!u~d(PR^H?mzO(DW@I>UOx;22&5Ff+r&fioF1qY%
zes%5In4LzCkM*A3_xs)KcXxM(7g#Yc+}HumFT3~E{!TkFK~d5)D+E;6fof-v(%0+v
z&x_9AyY<pzMur1!Pv>5cZXgtI2i#P_ZOsZ^3JU0&W1vK7`SFObw(T*ukC*5FGr4;8
z>P)lTTW-JSh{x9yu3G)~J^zBBKP+q+E^*awx6Y}0wen`!?cB?YT)VgA-ZuOD`}_GD
z8<RKJ{QRT>>cP3D%NQoPL~YO8d(rOxv42&oR;|+dXUp`%COhgSBSVD!_dCV@ZG5t`
zo`Fu5`S9@N-QDG&<aTnh`tv=X&z=7A^77}y^8YqmO8&)e$520&fiZ&xlutmTKDTo=
z`__HmeIGQUP+Glweq9x)VRNVWyshXQ0fuY+-WwRC8sFExudaN*_xq>G^Z%r*{qX~|
zSGD-r%=C4icXEsCo!P$c>)JQFUate47Ite}?(Boj?9V~Hpz=3gugA~7x3@aITX&mB
zJD=>P@As;oi|_y8diUR@rQXHgZl<Tt&fVtu`PtdaTeGjrRJ~YO`D|vo*^Aep&T`Q)
z$@G-tvgM!=zRN3vm-EP4nXKRc@0V47{rkP&i(ai<z6>-hetTOks94?e``zxZeY?Nk
zt1dpk$POBo0QFR}va^kAe|_nn`~2VU_viopen0=)+uO@aUthafcwDylAgg%Jh3hN_
zeigE@ED-zwYEI0vtxf|CP(FCR@7t~HpX>ksS`R7^K%oRmS@M5hxJw!&I4pyV>KJ(z
zeLidce9h)_r!FjX2K(pdr>B+gc0M;sJvD_#+Dyk2<j!aBcE3Ld>O#&fyQK*llvDGc
z2TBKqwZFbZzMuK;d;NcNf18gkeU{H=e0gzEd2`y?Q@rMPCNwg$r~Uf!GV|V^%DWp~
z15=)yn3#EgU#;HGCzC*3znu@;q`}>}gY5Eatlxo#dq5j>GA=BLDZLu{^RfK@8K6EZ
zsErI7u*lhZHSG1A)L&m-T0ZJfzO>wbeoWcTRM6mC+L;*>kIPl(H1EI8u%?}<fi3sr
zqob~&p`nFOCc3Y?{xLd#Z)xEnPW3CcaXX7r_a?{H|NXkC^7FH!Pp8MnZU0tY|GoU^
z^nG8J?*Fy(_SWq1IhD_5)_<KLsO%=PHhTNN)yH+>_wBiNYl>!Y*Q!;k9`#wjTM;d7
zo);4s8XEfL?d|OmTeCv%{<<0-9~%-LE-tL@r_;4aW13!U)Rz4F`z+pWxqR){oX^kB
zYTp8xUG-{ZX*MVi1;)n4e*bYRd%f<e)vLQ%xyAlmoymB^BBqJ;!U5g5Jr<sJALlML
zyPdOnm;L(4&1&3YIv${67gRTtR^Kjrd+X_0^ZREe``i7TI3IM#6R3Up?99y1ooPP<
zHm99^^>0ts)m1tX8x(A-zxnJgdwZ?&^xgVD$LoD2tNFf?n_u_qW#*+No^`)(-&gYl
zO>*i)ZP7T~#(NsHeD8Z;Xz0}1Z#UD|8mqqkHEYt7@cq9+yB7Tji5F*(_itb@DFB@x
zHAyFO(-UFa{Tf|=Ztwpa4eB<eot*`m>v?%;srS74e?N7iwyb!!15|6QjoRvUe_!q8
z)#2-VWGpw`OZ5nkEe!=71yJ*lJN|^-?>CdZ^>(Tlr=Pp?U?ynDy<2aWMs)7ht5L?f
zQCl+B&YZ;mZq?SiWw+OE-F8$gddae7YMax}dQAeg&Rqjj9vo<Vd1q(wU3bvhjsJhY
zr{CLCDQ|iDqPzTD(17ZcU_a06>tewpiR*U16H;cF-NC?^@c=Y(n0I&A(^m1gA1>$R
zZL3Po*?zwRYEnNw-hUo6X5l$mE%o`_@^iCHvtRYyE<7#^I@aPjsBHtvjG&GasH{_+
z9uri4W`d&gr(4<UpWgrf_x|O*)!#wmC7@2$zu)`+S2w4Drsme|c+>^TR^@j~!{6=y
z|IcTZiKeVoNksOtub@L*LqbDS|NQtk(<Jj!lsssbtM2dX`1&Wsv(5A8waeF8Ojh$f
z_2J>+&woCjfBs@||G9<ja#~IdW{mny>=`Us+1bUP&zh&7nxZNF$LY)eAN~JNG_uRh
zn4PyPbM4pi`?cnCt;^%GK|AUtjZ!??cqAu<t`2*8Lb?CUi;Ihmv#zWFO&WMkS{J+f
z*_O+Gr!$w&od)W4e7{?M{>8<`#Wxb$b1(QPyY-w14UY}ozAfo!SLwZ*t2DYm9pj(3
z_y4`UYwP!W)%u`$m51%}^He}JLa>M{XvmeB-=<*i^B={`?0jbqG%|x4GBJfmMSs34
z-#?pOzUG5)y&c1~vyuW0ZV&c+KIeUUnr`u@lj`d~7cByfPDxsqy|J2qdx_`ds{JST
zzh1W+G_beznwU<+hHH<P`OZ#TKDW#(P^9wz-|w5#&d%C(eQ^!wETxy%)<%b|iP-2E
z?+;4zb6-kWm*s@5kK23hasIBC%hp6~UG?rGsGPdGIz0WugM*%v4)a;-fL258|Mz<T
zy3#xC&(6>PKXJ28%#IEBZsqNMJ8hAM*^k#u4<1`GGhN{L^5&*7Xl&gm=f;LNTQ2)$
z?-l;FxZiFTr?A=+&>p_$#o5`}#Wz!@KRqJsf2QvD+v(5e*V};-*0$SuyRQ|t%T;A;
zyHj-f%j@g<pb;@pE!QmnM`7#Mtv8dpbvI>PTm&ji-DOKd%5LXw2Q6d)B?-{ds+#}5
z@5jF`1~n-byZ5g%_ipEtE&BCxIj9o{o`l+xIeBjRJxfqCTCU<jW67&4nRDY0pPH&&
ze8G`D^~HsSl`of0f0egBIy!pxljhS`^7ec@#v^ZMQ~hS6dmFDbxQp9se(!|s_dApS
z{rz2^vLLqV<x=p#^pA(_&p|^Xpy~uvJcC9Ae|>-df8+mLh8qr3cl{M(kj^{SBYAY?
z@_A99d9sXqdnzw3^PQcv|L-^Lb^HJQN;=vl>KZ6=)a-Un@SKWAou%hN&90Ac^XqrN
zxVN`@<596_5q6mZ2gB4;Q<5GWXgu1;E*DXL=dAht7#<0O1)wvXFD`QJPWt_JyFO?b
zUc`Hvj%L@R=G#9(WzNxeyWhuwrqD9(?ke5*``vDF`(GFPugxkv(jn+tTKd(>e%t-J
z--|T59^Ea!uj^;^a>*j^>3XiS&2qaAHnWR^nsj?_9`BV72NmZ1HlI8SZ)GkQm9;L@
zxwR!Tm`C1jPsEOb#J%s&JM-Iy)ciahuXk&Ee*Bi4o11Rb{eIgm>~FJihFNaZT|-bI
ze{qTD<Xy-4?S3SHsv<GlsxKO|%=6>Eytug7;@genZb{>`npyut7;0KpE&9M^&A_lg
iCJwX#ftsD_pY?ZkZMFAQI0ss+%i!ti=d#Wzp$Py)P>Oy4

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-10.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-10.png
new file mode 100644
index 0000000000000000000000000000000000000000..f733c0d8e70ef171f39af8a286abc48a721ce818
GIT binary patch
literal 23921
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_e2hBy8H|Bv5&ggoB}b*j21t-WX7
zyY<>_Dc4+4>$M>(r!9K5ZrV1fC|B>mSY6lrt)aTQu2UCv-P(QWR?_`)DVFQ+`|FD9
z`ig}*Qzu<{{j=hUW7@izKhIc7p0h5FEsi`Uq0GR*z);XI_ZlmRv7=nT0YqE0F)%SO
zFdQ&s5dd-f6dOQP0S_Y!0|P@tGKT_)E91<-$iTqxK!S+_#63=;)(H!*tceWXHrMdq
zORMsCbE>|*S=rIS@$=`;lgE#{+yDRbIo3WeCudF0?Q5r|YQO)r@n7b*H#e1UZ@aoO
zc=;B+qs~R|UvJ609I`DZGWGnt*loG5e?Ff-U8S|XeRaXZLw?g|E&1~27gK@Xu^;g=
z2V@g(Z@WEx{rdGy&CQ{!!*qS;*;uYU?JanEQ%dBt+nYqS!%l3=<&`qg=w0>cU8{K9
zh3fZvmtR`yy}JJYzpA%euTL@0zn8MzlP6+ZZuX@mo}SyJEeaN_zS}GRY|mb|OZVm7
z*4O{9t*Mz}obDI8E+%rZd;hhm+TnZTv^UnexU}fS?|ZY=x1wT4O-)V7+gn>zvgK?l
zHe|=&-k$Hj>F(Tb$K~r+xcAFxg|3=X^z4jgeSLjvYwOCu#csczO!l8-v;2$N%I~Fb
zZ*6^bVPW&R`S$Dc?(WhwGYk9r`nrGF?A<4~<z8JEYkl%-W}tAxm!sxuxfveloZciN
zEv=p0BP1lWCHXkt*_p=f+F@%h9P5?-`fm68Wu=|}CAh_O0y>3MP4e&U5y_wY<Kda>
z*TWwl?+^F!>2a4%?osobqhW7vzkcCD_kOvo+uPQ1iRrv3y}!5WYtXqlmZe``g}%MJ
zJA8Bc`LOr*_HNC&xk)8^tB!Z|_jgxU1TMa^JwJZ^>-@AsEu5QjqmN1SN}K!T@BMns
zcl*xRW;WhS3mltMdIF!Gni{&?Pd4@RG+*~VnTw~UYF}OIEnfTOqI=Z#yt}dMpO&e9
z-KQ6^!C}&u{r~^^^V@!zaC=wk>1mc>@m?*ht(mW{tvxkS**$7HlY*`!!*`z3n|g9@
z%bgBiAD3HGQ`6Jm-{0BY?cIDTXkFUbS#r-m+%3N^d3w{C1C7j=S7^P@xox&J>#EmP
zv(D$&_f!@q-`@7~@Avz*w`%@=y?$(yj<Bq3uFh#Af18gkUEgHo<nnTEn^k{%Qy9Ik
z__^O?)9kS1+uI^{7A-wqHZ67Lg9izdt;_Q!YlrI<KRVK>^1b%!tI+kw<F;f>+^BQ9
z<kgjvPfkxi-_q7LtEHty<ZA6|Hh#Grozq4SA3jX``|E4mZJoG1H?FJ<KK`{fCMIT8
z+~qG1I@RZW__c4D=;=*Ce~bAa+;bAwVOSNjbJM&1|LY`^w-i2hTc0bYAGfBBS6WL&
z#f6cPQ7dZ8ieKN}t~O3TSFz>q)9LY7w&g~<y0~a4C^#%!xKJy6-JGiL@7AskU%%_t
z(IZDrY|DLnclY&VdCj+BUylg;uPA$aYn`?A^>Tf$H`?<jOjuBUzc&2osj0yM0TVW*
zoLtn=!C{(x&BuGXp6|!kB|knSmcG9iD<~-V>HGKajEohF7BAkKd0B0H+19M9MZLk1
z`)YQsUiM_y(mN}PpPyT2&1x=Xo;L?%&bPO>tM8g^O?KcC*IOfHn&mO++WPqSTYaCM
znfdkA>h-U_yu2)BQINoO{?OjE)0?g=^%mcne?RVczx?$%mc>DP=TEt{IlZ5aPiBSB
zOrw{t*Y6Me`RVE2ZL7oA&lA&&skr<%_x`?E{k>l%X@#s<aN$A#D+`N;jZIAK?y{?m
z%<Oyej4MB-gszPWUAS-|7Y|R!!6w$w{dKix=U84|8|$@xy7c|)Cnu}#-t|f{IVSc^
zO-)VA^^l@uhqN;@7Fw0Q(y*|IXl!ik>gWjAUH10QKVFOKZ)@(={m#9*GT5D!OQhiM
z9rN5<A=%g0eYJ?cy)89z+U@gyzg{maN_GgUs*SB*<8S{r<bLh<xmj0NEq!xyv$lJm
zOxBeZ6Sw8we)e?^;}ZUogG>*Ooj-p*`R0K}X48TP4y^3#s{<Fiaq;qAJ#YVi&BMd(
z*$)r3Mr}^(-IR7#>*ag?U{JQmxg9oH%~wQFaN*|k^I6CHWPg1)%x_xpAtCkLoXAUa
zUvmF@vAF-#CLP~dCZ49**Fw(DGL3zG=<s1xPg(1-D_>q-4qX+ZS^DNiU}IyWRmFz|
zVQZt79_<!i?KjuT+}1B9X3naxwW|)d^RF&@dn@buy1C!p-d=v*{(lU&n9hYaH#cA1
zkm&4L-@YhnYZj<rdie0+y1bCiuS;Ayg;c-H|NqB5c$v?|4T*<i-k+YR>~2#3ug3P<
zjpS4FY<FMJ&3|6{_1i!7SNHbrKGq|-xZnO?gl+Y=kcmpJL0ir*cJF_+di}njP9fEh
zl|ibYl0w<7=faJR$yYa}o{nDiInD0p6Jb>ql@+nO%d{dlrEJQbZ2jD2bNcyfH#R1N
zN_tRK&ooNCl)wM)vX76CXaD>2^VWvM=1)&gKhL_qzrLPV)+(fxTRiObwY5`~-T7p#
zN<3a)Uw?f~<mM}@LbW}&m+y6PbJH?23oCwh=Hhw#|8HJJsh|9s9%RpMXlVHB%VmF2
zA)!StUSzbkv}FAM_xIPk-S12O|NXu?W@pi)C2OO%znU5z7uYLhdSykR^3zjO!3E^>
z__~#?+~QgP{`_1OzJ8v{N}riVUA?_uf9#z8q%5{-@~qd|6H_C9y;{BAB>$d`Y0iy+
z^ERJ*>i+*N*NxcVAZ?a&;r;&q>lQ3nFnjM-hD%OT_Zt}>ELgHDVQs|5LqC4}n9<O{
zQ2gUV;`Y+h({zoerOwQ{x@zX;^z*yc&bF!Cv{C1@&Hq22*QM6}`eL{(clP>yzfL{2
zSnfZ+?6;kon%c>A%BQF6f4{Z%RJ8b-CAXxK&&)JV@5#NrEa_;M-0L30XHQN}j+=ge
zMcm%1W7~3#Q%(qMf0})5jp4q1`_#(c-FbGXl{@cs-coI^M?c@**?HM#rqR)eX{pQn
z=f8`xPdOm~Dm3?2ZT<P}cK+Tn@vh!p(`~u4MYY3r==!hXzP2s*w$C)3$e!HWX_uGz
z%9%z^OXU*LNa!(4yS65B-MjdE-`=j}zBWP8xhFL;?Z$@0b*WEJPdB%-vrBt^Zmwoc
zYS41OxmF-&B_3)C$(<e|zNVR-f7a>g`qf+FH>Grb{P@xE?yl0}XgL{~9FW0!aeH2D
zJo`2FMo{rym9P8M%4J*I+h=!laBNSNum7`gqt5A&RUs$mSeKv6y}LF0IyApu*DGh|
zlQH=D`MEj2&4-5LyPnj&n_N{JTwUus%j9IlwA4R;{+ublU;BKU@BX^KJ-N4^z1@EQ
zTNHD{7I$%-2Xa#?+#iDy#p`QpMMXtbJ*5njT0T8F`S{wmyXE(%rbbFxm#x{9divS6
zcOQ?-ho_`0vHShTxIdYNg{4BrySs7uwA7Oli+yGqRmRTO4qrF>-Qxp|%u$<CI=RGj
zR*1({9L$Yf>NOQq^v|`a4BDK2exI_bde+57twm2yJ-x=8eW-;~D{|8kt?+d<r+>>@
z7A*l4rHssME0T}*X~pl`^XT#8uZOtxSNO~{I+-UeE4%j8RPF3@b1b9wR+V=3nb-ZP
z`1#|<i;c(Sigmj?J1=g{zP_i-aJMj@td)xAuJ`+XzdP{{l)1k8dEVVs`gMK%U+->l
z{cjP^pFe;8m9J&{{ZrPJdwV2}-KM3!eB5tec6X-_s0p^8@#dz~&r$jR{`|bU$dx<y
z_BP+&-{0?FTb1|x7pU=Z{O;7{^Qyd#&EWZ%!1y4}6%>#qk9TmL-ei(^h^6$+jf;!l
z-rAb|^!fAW7xQf|K0Q6X^vw;!xmKlKJBywMy}q{AwCYQSY3{8M-KZ@AcXySBZq2%C
zGP_$LdRtD`ogEvWou9w{#0d{qclXs*Utd+dSlBKiAu(f7ZO*+tk&{C9R+awz@uOnR
z`q<sumif$FbauA+YUg&o@-=1k_4TDME;zp5|9@ZE+gnTT?k>-Mer~RmY1Wn8x7Tk^
zK9`i7464(XW&9RYc3a^!RqNOL`v29J1vZtu40?NOt2eKdNx|zySJuT^e|>q`eX^SG
zCF%S<55JcBo||V|ZBqEirJw)D`n}(xR(+c+1u8?IoSgjivcLVyD=UNZ9vlDp`}gjx
zZTa`(-tYZBPp;wtBd9%Nnsp`M>8Yu<yUtqH?)~%idi<}q+wV^?&ySm`7i;Bu`_G5N
z{8F}6Tdu8(UA@@7f0ymH8=G`wEealNYr6L~CcZQF=(_L)4ve0cRt7K6+o{G-F3!lZ
zgI%?*psT<C`YhAzD=UN5OW)oKZRHaE^dt9Cr?7g-*H>3l*qfuLE&crbymt7ym{kD_
zn?M!F!DjZ?-TM13OwkNZ=?Mf?1-G)-uk@X5R{r_Qo>`W~%i4IQm#qw5zDv$gMnGVJ
zm~K?Yj}H&IczJ!xejjQ4cD=q~U)-ZlmzVqBzj;Wt^yMYj<YPS-e|&trwfcJ=D+|kx
zyPi8l3kwUi0v0sr#qV3A8@=tt%jNUKa&p!vDJcbsEYJ#FwM0xe>IKLR&*#_Adt=eJ
zG5PqZO*;Jrv$ezZO!MwUfGUbTm7lNdsr(!=|L_9G<~vLssgdg#Ch5o9<=)<=dy?_d
z%B#D}^LyoNqkevV9{%^&S5YysXIvYE)&0IyOgOY6aB;{I4?*8K7J-M`crRaA==}8c
z>(y<%(pg731lN5u_KVl=v|pT<n5da$pMFkeYtGFeQ1hXyD`=vU>l9UQv76i0zTfxT
zPdj|wm8IU(^Hwj5-n&odbWv~V&bXwGopuUL9`PIs2W)i=3<9=hU%wU}U%PZu>giR<
z$NPRg?zg|QtNF=^iO$C)WbNy0j{dHFv9SHi)9LYAii(cX=6P2ZxpteRosj@FpB64$
zxNf<ls-5Pk+c9G0pAPTYzkfd)kHi8-X0{ig@?&SwQZ?UMOEiO*Wt^X98?`aXb<=J2
zvR2EQ9~-WJ?Yvw2&Tab4`v1T0uL@Z?NzG@*0^{^^D^gES(|lz%O(wZVMKgGr&#H)x
zi}wBdm3_DV|KC^F*3N!)ZEf}ClR~PQCnhM)GS8p)>+9>~X=i6u<`)0?QFwiiQtquS
zAAcoUZLE&ZV)p2jGMzN{%Z8|}Sy9_^W=_+KU8O#+LMin3zKa`^kAplhRWCMbb@=)+
zUM_!=(pMq<xjLtV&d;;Gx;fon*1j%gb=cZVUtV4|Eq><n_uudLpfn#7yDO+_?;Xxg
z`5VDfXX0wVhW`BhJNxmmUah!2J8ti4X6Ik_!!!G&=jqqn4!06`I2fjCg?h#AD!KUY
z?{CwhCm!2Nr)q_QvcZ<p*VjVcUq64|f2vk!P)^Pow|+U@<eu9u<(=|NzQ4WweB;|+
zUtb6RQCWWF&oN^i9iQCW+pa!3+8w$jBXDih)>q47O@)rTu8G=u>UI0Q)YH>WZqk{m
z8*S$Lby?VSz1WgBHw-}ynBwQ>%4_~tets7E|KH!ze}8_8lqYHhE$P@*`g$3tTsbqt
zFz&X`EECV^`te~qi=JNDS)9H;erNIXYuoSFt+uWHcIRa9C1HOXMSFYu+K)%Y&1+R&
zpG|YRzcqXMy4c;zR;<wI|FE(Cf8E<#TeWY#Eq;D(ZQ9vcnZLfgTot=}TiLriE92|`
zUR`|m?7HdJip9^){QAEC|5|1Dz8A~q*X_#uJ=ePYRU^CH2M+mT61D&TevjL}G1oe@
zT>jFpUrY~dm^c_bFKMsev&d(rQRa^i5A%wvzr4E}eN3YC<)x!vXP<ce7gP>?JT4!5
ze|_X;H*x*AFB#K++&=r-{y^xOh>Ndd#P|RC<h?2_g`baan#%gmoig@ycV4&eEq;FP
z<)5FQKYjh`ThvgsXu}2rS65d}J-u_v3;zCi+&{}KcUDtV)0Y>E`<Lx_b|vHTvfgLs
z=B}>%{A}m5*E=p(eR;9art(w9r6r!Xb{401ZId)eXefGeVj-wt`t$R%-0S20^7^MY
zeR<d}pY`U(#<=~v%HFQZzP>K=&ySDgUuw8SwU*qt5fQtq#FJOr%%`Ysb}P5|s=B|w
zPQKIr`0=E9or7KdzdgH3UOp;hfB)&}>A2&^R8&-69O)FE^zVP^gjuhj`n|lld3lfF
zt6N)FpPOg<dfPdP$7SkDHa0Q0x95M~Vg2z|_IlNy-klE~B&^>b;^7q)AI~tyU0jD@
z(!aV@XD|EPuf4d~J^RLn#H!C{%~k)}GL+odkofBQ`uSa=+MvQyOG(M;`T6<frSYrc
z_U;1ZJ<m(g`Foe9o}RX{>gy{|FXh^r$gj8a_h&vl)XK%jcP-f8_Nf)9Z56sE!q9iN
zneXp!Z!bIZ+b-E#{XOg6p31CiYi6dMnK5zEE$=BB3pZ>q@SSfLyKmn<t&kNHbWUG-
z+;6{bvbz5&pP5FW!3wYGdTW_jxn8`vxp|g-{k}dK%SCZ}t2Di*>6qIdbC<7Ol67^}
z%KZELem$F=AF{8e5<Fm#c6L&Kf4`dFoEeM$-sw7Uz`->0(vx*>e*a3|^W~EFtGm0m
zv++ng_<AzU{M1zK>A$|eU%#*Rw^z~p;-sISp8ooL-u~-@X8tN!jX5t)s?Wdj;9#?9
z;UgDb8H)>7b>I8FxW0b=y12co8kyNwIkj@F3R>EAYP$aVHIbWNotUT`wX<mHw*33+
zx<s|rcF(t|{ItS%w%IJh<TfQ`<<RwUwsS3u-Mpvi1STXbP*PUD`%dl1@#Cwbwq}7k
z)~BXwFL!F?dim&RH>k0-E%)}aWxlglxpWFm3M$`wM{}-q`L$J{tHA>mN4rFWFE8^I
z6%tz1%+8;6b5m;7r<3ZY2?rQF>;E%7nwdVY(DuN=^XL8T|9oiPmUnlRn(wR^tJm-Q
zbfbQ*RjEnxF&@**OD?IWr%jzdfBwJE^Z&1?`ufWAT8Z}c@T71j2FU;^n_uD%QX6$n
z|M>AkW#_*W6P4Axr|GCgZ_9c1;^N}G*L6Q0vR~d+nk_6QmiFiGU*C+36`H}zdVapI
z|DSD^cjrac_LP%CmsbX>e_mhz_w<u9GcTu{optq2{r|tuc0QkHT>bssSBq!={{Hrz
zZI<g(P_W_T9LvosBQ`FYX<fb!)Un@~dz(kf<iy(Av$IV1&O6-3EA4Z4SE=v0IhMWs
z{r%bdS}rg5pM5>P{w`=p<4*bgS~UfQ15eJ+zkg*_=;<>v43$II-#^&Q?z=tju1`h9
zj*s8Jn=2|RF01_fEbVX`Z`|$M+j2p@%vH%M^Wwdp9slv|c7AW}?PbBs{qjyvp3Q#b
z`0?YfYXpx;6n}i=3i4x3ZS7h8{eK=s<wZ`@jM%W?dahpVt`shDy_}reW_EUV>na^?
zZO_loxo!4-@ArGY=amcjI(8O6zqjS>+8f()XM=L7X6ULZCnqYmgWLjY+4D-9nFy=<
zmCU}ctfzPGb+(kee12TzQ_<ix5r)DN5*b`#IvG`8UL^X>vw8W^c;<u&37}zs%Nr7%
zgI5G7f>by;JNrI8HTCR`jmf@FPED(Gv(`<2@{G~*RV^<+zj-US__trXeCAqRy|O0q
zGAIgI*w|(rYUQ4NT(0^|&b>W1*WP_{a<cDCqg0=3Ya)F;JUTl2`powK`;|TEtBh^c
zl`Z-A?>#v?`}&Vxzoc$&i!J`5^7WV0<Xx{p<CCB+Q01qT_0P++ugft!k2v;08#Hjs
za1K<>F)%Q|hiV;PFf^1T9_<p1+E??__x95>GlTb5eckn&m672c*Rci$hD)uD%<Neg
z7C4&chOY=%IQ!gQMh1`l(DC2H66mAD4!gD$K6V2Y(kd!0+j3Xu+}xBIJ1IFSIXU(A
zwy<?EGauz5261;s+<Y6kF{w4@w%^5y{_3+&PEJm}z0L0Lm&;r9SQ*|)F>y4MyuP!u
zIP1oSg=RT77HrGC4eE&d+yCA2xRgi6B4AtY>20}3j~r3CnfLV6)OBU8+~WJ*K8~8E
zdU})1wA<U(-rAbIyvo`W)N(yBQ8{$68*gh%%ZdB<<9~jB9zI#k*ChMen%nCvmrh#!
zu}r0H_Urwi;i*4AKd*M{m3no1`}%D;H;az<i3<xW-`=*h{QW)aZRdA?+{NHfbtt)l
zaY^*+YiloqS|=$d1or-T)SVgI_vg<alk96cdw;*%4I11y{tMLJJb&Ild|ixZ^Q(Vi
zVq(kIMsL@0?~{>xUHAK~xoO^=h{D1`E`I*-ZZTaE8JRVpa`<2qE2ubKv}ln@@iU+G
zx9@9$hIl~b#GReR_qQguw72g*^a$F;$-TA36Er09;o)J>C~)nckH=3<Qazn3`#g_T
zli`QDasz|Mc0L&kh0~j+=*REdqUSm-6*ROw%es6WsAFmS`HXSiYybInYj18&UtRe4
z*eu)XGO19_pTB;ss`&Uw?sUJ5<)RfUG-NG{T=e(<+4Opy-=fRQ{a45CE{ocdF)?a;
z-dfjgvAbKPn3<UNT&qxTZEw#$(7-5ny8hqKblZPF9?!BWUFA2|YAGwX*qv*I6%$k#
zmdM3!U|3?^`B)+;DJi9=u(WvR#{54I54T_4TV3wz;sT1Hg$oyU_4Qp_<~!TwTV?J2
zU#{I^E5p`CotkO9yr!lmC<fXR2My^|ulfDuvVZBzOQ1f&(bwC|U*E3ZoELii{ozeI
zy7Bw&teqYBsG@7hv4%Z=KApCz`LW^Fw%paA!b!Krqu&3WdG<9OQN5T5?`b+0w`5+v
zbFCdRgRraMVH0S$w275ltN7U&t>9%n&(6+P_uN(Wbrl=G+?q#6yR{7r0$jVruKs?%
z|9zp{$zDdw(pOXB>VBqzT9T2QQUcG-u@se*Tv_+`m!_Sa-OcOjs-P-U)q9$Tii%6O
znC_+N@pUh^)xEp3v+B*p;~|S&I8)Eg3XR;H7W(tkQ`59F68#${{-~2m7Lk*CxAphk
zWxlhotPa<Ab#v2#j6;H2vj2YH{|_27J$Y?c!a*j`a2H5_K){5kZ8<Att;;I5+}>Ba
zJFe=bYUqjpN6@Gz2S-3f#g1KNZ&xw1^Htpa{^aE3(5+dat!-^u1_lAF++rbre|-hD
zr2DtA^T}M;eBN%gl4}=e6nSUy^RUaye77bZZcBO1-ms*AoyB3-WaD(dqsNYAot~x(
zYUa-}%UyNigokI*UrBNC<*Pzhzxwd-FsO|Q%8j+ZzrFl?-u`+ME4NAYw;a=)8y9l-
zPfG=hEpqL?vLVqKlpt5W+Wr3V<Hde+tzLe;9)EqA@9aBlNBX7B{XipicXyRezVoka
z_p2$I!EPHjZtUvqEq$G&0vgx!DcapFuK#NDdArG}kyT%>hEL9!ZdsfL>RaF4U49)j
zY`85qdiyP5At4b_(WSx5{Z>Y9PTN)UbJH^4*~>s3(2tLfR{j6`eQVv{D$|S$4*&lB
z`}ODZc~CE-wXJPc>gj3bw)=PNu(-M=GWhqmx51!x_}Xam*xhBm_5Xe@ck7i}nm(`6
zjg?!>=VJEMITI!bfcnb$dp@>-@|tPpr6XI{#qY2C^zmchQm?5ZVq(jT)6Zqx+?4w2
z>gwsBG7dEMeCyb;V_E0sSpNF?eE!wd;rgIbc~VThSN;E(GjpxOK^^>%kSU->eXq3n
ztGVU(E-rHI{_?orzN&=T_!zjmd#IKB>YmEttE)o2qqpT;6pyc2`1JJj?60q`YK5(t
zvHI_uo10C`-b8@pLsy4|F7uiB1=LFX^W!6^<T1;+@t{n6WBvbsQdT7^K*RLc)<%Pd
zs;x?1Ot`i_etqQTw3VT&!`5w^ZI&Cfx9V%juP>Rle?A-rW!aC9kDHdiiwRvF=3D&y
zT<G6lU-N(4G8Xh3GEDFTjgQ^fmaFDJ@6E<__(l+aZvwY%X5{btsTNv#<k&H(+uP2z
za0;K9XIl-L*QxyVa{1l9%*bhyMkyUTi=K9E)H&_q;<DsNOpoEQO*+A=!*tglkKLGb
z)c3YpS9dpP5LA6$#i6Zle!t&uJ}q_TZ_p&z^If&S%aS9fadL1NTwfPktjo{OZ@w*e
z_A=ku;4#BD)*2coLe@lFoMT&kZEN23b+Kx}%Y2sQ+}xCRJYrwX&W$>!d1Ndu<W@dC
zHMKYQHfTUnu5_+N;h~saB`=qKRexu_^1AxPOG~|bQzO-EZ0_X#To=20&$jnBHZI<n
zdwWgv_H((FK0ZAgb8o-7x%v3(vg+^eN~>jsYd@V-KekEd^R?*wox1*iEVt&~22Dxj
zy}nobJvKRV+REtd>u!H)X6N6vSG{wZPGnL|O^wg?yt{X%v9q(!W@6=<(JiiDl~era
z2<P?t>tl8%b%|&uF)=fr{eHjx{k3-&7CNix=$rwy#$In^RIn^L$TZ=hj75P1sO5XG
zi4`>Xw`1+<kd>1_<>X{_|0>z;i)$i{U0q%8e%i<_rUPn>X5QM8xlYgV@v+{?>({TJ
zSMjJb`riAyB`+>0dImKzvF6<}+jtgKK|MOc+5dI1TkoX#^XI?*opp7UrjnA=a{u|)
zqVxAI&AGX0=QURsmlau8SN-~WJwD$mEa~zx->BVXYfnwlT)eOLchwqxF0P<uJ~Q*8
z>b+W9TRkWB$yz_#W}~EZDEs$3+v-yii;s4TFMnmh$|drl>bbU>n%m9I>HbCarLV38
zHnZ{GnFgApa_thixGDAYmi+s6*FV+#{IqkgdgrTaYggC*eH|ay|M2<q=Udk;SfFtI
zzPL`rg4o?<E8Y9$R)wvd6}@{;<>yuT_xFJ+jcIzZufEDKC}^?>Fi4(zc6PR^=hfBW
z->upfm%Y7ZbZp11*!51WT-$5^=*8{=cZlq2cb%JSy?mx|`l`UiZl@-zpU-`7ZF_pA
z@$y5558F<Aetv%Zq&?>@3W<p=(+*$v;={wkC*M`Sy|s1HlB%z-?$#~Tobb>0QY>sO
zfJ8^$AA!10PdxX2x#V5-;UGI`1mXIQzE4k2pWd`a<#>q7(^FHmtKRSZ9<sNpl$D+R
z^!4lE+j37IKklA>ex7ep{r{im>usjp-1e4>$^2iA|4bv-z`#H*US3caWA(fEx}QfM
zOT4|kJv=664rnCt>-+oh-QxP!Zf;Ju?c1JqR?4%!ycaa-ef;{a($^_H7q6|24*oie
zfg#y}A;lv7+?<I^ROa_h-Err(!u>s!pYMJ9C~cm%2Gslh^W!6^fc^LD^?DWd`ODcm
zpV$1&KRbES4Nzv{;^Qleo_=L<Wo_;Mf9s$8+AVLs&fCMo<J*qq{`04$My|6KF28-S
znO*g-t(?lmna1hhZsg6)?xNaZA;<e<MMXqZ;^X7z+SNuacI&;g)O&hR>71~&QJL@V
z>;w&-%rebhwx{y*sr&ciCz%vIIid1>ddLjl8hzpQjGmybrdz+<+CM)(@0Ob)AR(dQ
zIm@DO(Q%9Afs5T%dQ4OT@jyeA3!U3fUB4dAD{XeALr@ts-sf3#m(e?~PU7^Yl7D}G
zPT3>E@W6?Ial%8DIsv~|+h29Y_T~LKP_z75j>nrk(~=hfZ*On+|9-dpzAyWuTibM#
zd#+nLt^03KX&$m7!13R|f1nw+e?K1cPt^!iI=Rhzn$AR(&~-64FaFd8EeA;US@quF
z4yf+&{8jBY$>s5}-r~R8{vSK|EBpF7&}4g1X-}`TdDgo-J3+HapkaXR>iv?*COJ1Y
zsBE__deU+IX{Y_?PW#)(`(!WAFiZ~FRg$?jZg12~<Mgs@d(dE7ZN#*t^K7eErJtW?
zRrhB{*xIP2FE208es*T&ufN~#g9Z>zo<HwzS@dK=YUHm^r}e*{Q0`yy>JF^*09C}3
zwq#w^irrmyHu>+S)YB=E)2{0|mU}%vH#au6XkN{yle6n0&QH~zuJXQI@!I<M`Kyv|
zZv)LlFWXV;;LvbuYqolF&%KJry(+h3_f!PF-}AXo=k%puf7_|6X61!1^_r@pc{N!l
z@94$F?x1=ra@x{wZ*T9O_WsV!;AyEVD?dMzyR8$y@6PLeLc1BNs_lj3XWrgXnB0F{
z?*EU+{U`0hDvoxE%AE#PnW3x0Jb(Saeqdef?vl5+OkG`FD_i>i{{EhQeO;`lob#k2
ztOH}Am+rssG<4GrU*}UM&oChhR0#M*M9f&UXpxAx`0|O$?z`6h{&-y8H20PXD=X{E
zi|+D!vrR?xVj@79XpUv^mBsG;v$yHT@7t4e``VS2!FTN{=GjyR>F@iIwCbH13p@Mr
z71me3-m7@b`}E{w_u%DzR~s0aZR`x@Ta|iUym;}}&f?{Z7A?B6%y)Lk+y7-#b)&;V
zSA|@hrW<Wi@*<%BtGfR@pVIH@`E|cus=K<nzC6+?T=it4J807J`mPTj3M7+l4jp@T
zb~Y$6u74kxWNw<@U+gENU;OxApPcQg^!c@BH?5}YMn5z3d^E!_c}wwgzpLwFZ-3p;
za3uMT#If`9?bqwY?y9&`xVz@(rm*#KZwvRdw6KIvUwuU3@|MhCQOzJ1&>V=EUd)TF
z=eA~FfA#2S_sMzO40m44d*4+0@DS_Xuh*iZw&%^gwl;cs@N&P*OG`Yf{(L-cdn@nu
zHsABM-{*jaEK*NR@$9$x)N!x!x$M((b8jzx+rlYql5~XQ?Y+IxtXv`i=jYkx|B~lp
z@b|Q}eYv>bE@*4kRnStC+RtarL33B%-rZdtxj7BAfCw}|Z?*r>+%?KOE$#C_^B<sL
z@Ze=Wfhj3V<SL&C&b6%$i?9E?HS5ZXhouK<f?i!&xmeOTZH4D#HLd7vYySNC^93|>
zeRXxXf6?rkpPw>MPEyUfw4@W%_SXzvwxaIuFD@>wOZWCxZ%sJJ1S)~PzPkF^N^-6+
zXo@ImYu3xB)8ns!T3)kEvrkDZw*UVp_<r5*wcB!UPkU79AhbKkv%Y?ZUEQA@W_fp3
z^h%qb+N1-T6$j1S-`!UE=i~9O-)`rx4qqP!8W9JL_`SWo9W;FnYGi$RdD*rvc)6eK
z-oM{&zq+$?^P<IzK{W!Xsd#sHd3Y<AXvo&A(6jSwqe1Pvtyxz~o}3WWjoA_K{eJ!a
z><|0Qd!@~<E$+8l<t|?v0_wv&J3D)8#ziGiu;&&XCp0z&nuOYU>o}p|v0b}f{QUJR
z>)V@~tK#?X1BH6%${^Q?6DOXUW4Za;+uO^(zP_IQ{oP$qyON2CDd@{Sh6a^qjGi@V
zbrlsmR>tlwn{@u={r&a(PtLX8t{JvwM&<jx-_J}?boL1dm;f5l^7Qa1$o_rNU0(9^
zCZE+|YtQ`n_}KS&pX^?{_p%P3^32MQ;T~pMc`v+Z-F)^ZX+qB#HDh*cIKJ!jbp6@;
zYJbmSV&#&kudfFU^%&>eFerX{N;LWQww1BFw_SgH&w~HN#l`NRfm7dmdn$X^uV240
z_qOSBx0skY8*^`imilDZ*8lxFUDC2>$;!CByEysy%>MoRrxw4jW?A9mW1yLA&w1e$
z6+5mM8y%Z5%M>)SB)|T3Qc_Y+e}DgN8_Cnt^+Byr$7Z(5E%ue4mQ=o6I{nPw@AvbW
zn3;Xo#q9K%X_R_q_4<8Tj~+jsyypF}+W7xdEsN78+t=3xFLvYo{HR-h*8I9(nkV0G
z&%2v7%PcqR)030Qo6^o^otmznZ};=b<dpd96P4X(vCCB)U}0gAxV`P}vj$Mt_2s?2
zyE{8N3>q67mt|aB^lWN)oZ-ihALHULzpnQa*NI426|yo3WKhx5Q>jtgax%B&-+x#5
z=f{tV&!@E4&qzAjHS@p$hu{qfj+Ym^^A~@5;@SUQO;PdSp1<F2FH1b!wk%+wlbV6S
z1<*REQ&Y8PZ%jU3^`}0q$MATctnuGpUyYY~O*M+#lwx>uQ>yXNZgF$n=xrv!%l%Bl
z*T?OB`J0L1`sSXUz44s?m_g(0S5^jtR>d6al@49##JaxR0W?zrT3=KD=VSY8O<nKl
zdZ8g9Q;zk?u0A){+WXgT{?bM!){v!MqGxBDpWpg7x!)Ev;+T1VU#+K|CuoJ{kLA0c
zA8+{a^QWeX$(Lns)6UOZ>((o^(^hGd-&`wDUpu<I6*OC??msUC)ZpIs{@&i*=jPkL
zzqnkSfq`Mi^gEv!RaE)pY*s9G?_X8(^OM|bt*|vOu9aJVeE;;+)Z*;$bupGVx6NHu
zcMr6<(w>)5g;nUe$Op5Rk^5?XmVA2Rd0i#Colh1tKz{r{iM_o&D?9scwf&%_nD1O!
zCWv^{q@+E1v-P@n%_sMy**|_%q@J2`@^u{(6Vs&Hch(FH3?KZ<&)c_|t1>Y&tDbyq
z{6cts{k$7$1_lAs_2a+on%^z1zw1^dX#Pz%ZcoI+hYwF~V`gA*xYg0$4{rF?{YYFN
zZ1~_Ahl1vW8(+0HYG3=xCu_B2!2*S!KY#AL6}Pu4^mxB~`R|23bDn7Ke7;XVZcl`)
zRmqOSSD6_Y9{9~RO6|I}J%9eS)D#bv2_h%v+wXUBa@vx3n61C`^|iIZDJe@{|2}cT
zLoyj8c6ELH{jD{Be|_Cm_I6hEZE4kW8P=(%M5gLQemXZ7w4n4|$J*%atDM{U)}7Dw
zux0Y#a&>oqec9h0w2te}Gsd5v&)Z*J?k^v{`_|TMZ4C_%`MMtqqZxjFILtp))mzN=
z(+OoyIpvMFLr+dp4c(S=b9advD3W4JrtdFh5%2`nSAO&D)-tp6c}&{(=aV<6kv8ed
z=5&A1Dx<%@zk}8Qg=|jq{rc*v_w#deFMoJ=7&P^urKWal>-vTUhQ0rOy{`IpGyUqS
zP;F4>7c{%D%x~^0^ZPZymc`F}x`RPuu9sS?>(oj-yE-~9+}m5dcirv1)!VtmbTnSR
zkIp-9|9=mtt>rV*2s9)oWmmJq$;ruP+iZixCbu4mg?D$CuXbo;dUbJed)1d06LVxi
z-R+%4PeF_S-Zd~VFf4JdiQ8R!hw<WlMP*g5X*w%gxy6^QcstqOZl(JCnonh?Kq=>6
z;S6?=OQ^JLmx2|)qgp}Pp13vD_qXUV%-fcCch)skh6A#o#igP;5e92dGcYU>W|>g3
z!nvI<GnR?rjv*uC%&*7gqd65B7(7`fl)NhS<h{I$gJB2rwpWji@>$jWv0!9jQ0Qcs
z<mc+4HT#+?C})++G+$t3U|^ueGVgtvu?!3k=I6h@wifIl!9Ueyzc~~b8g{>!pb`yU
zPv^wI@REg*g`q%v?z9r$OCp}Cmv@LU>=52J?Mqga_{4>R4h#%@8k#F}qQn^)${Aue
z<cSmMzLgu2kMnKKyzB;Q9Zu7U4B3?83CfpU{r%<H+jDQ5U0oj^e{)l6a6!Qax%xka
zpmh?xt3YM_C4RZXvz>l_e-COaP0<e5`}*Rdv!kOUXk}$w^;=WWxO(xkGZR&0Eeag2
zt_}}h7qb)8)}Cu!?w7y+@3y+XU&Gf%Z};1`Z_g7@u~Pmq)1uYx@0VauyE6OQnu~wG
z-`Dp9HO)Ztk^ld`ueU0G)&re=*0!^Yi{6$K7!ff;Wu;RqS65fpr6rz|uk0*-zQu-@
zfq_B6_aduy>$$ns>YiM@yrt3e%=6=JZd>a!)5voYtXewMt^!(hdbC^o`k9%=bG0QH
z7#KX-ITSQOg_dM8Xra#EFPHsq?XTYtTD{tD_savccsn6s0dfs>JA6$<;B51Jzvfen
z3=9oln)M<yzkE2%{~9##Iy-;gO8xzRf+nRzP6Lf=^Gca`OoEK^?5p`{v+ewJ{rP_L
zY*x0ku>Ab_(=yzGfq`K{pMXP<qK!=qXq*x>t05w?gq2$?<HLi4r)Hb4-&OkhS(VhZ
z{rmSH-^R$uIBCg`9~I#J1MebPCWy?ktKBuP>Xqi(8ygRowl4+^&Q^V06<71ob!+bJ
zu*Sy5NlUz^>s98|e|+TXS+o_DhQSr%uMda$L$~Eb_P-1Don><I$;ruED?g`Qzr0as
zcT(*83k#jOxVXF?-t8Bhly+ysnz#RJ85tN3NM8Q;{&m&w%Znz|i!ga`fo3=y9UbLP
z3kwOQ^jw^(9X`drz7Djm^Kcul+*?r3<-~~-B64f{mwekEZot66kT-dIJVU+ON@uAn
zpUxi)-Vn5+;^U)Rdnz}Vy}9vlTg|I0D?tOjFE1@s^}KlTB4}ilPsZXw*5;CzL4SWf
zpPzMg)zrnN%nS?+FL}!yf?k039V~L~4p|#zYWw@mX3%^+XuS_;9j^CuJy77OtgQe4
zZ<cBHw5)4uR>tkEdU<DOF{sv%tNGw~^vIDVZ#_Y|JF~}HK@&6#1nT5JJw5$;yL{b>
zdwZ)vEp5<Bg0BbJ<#*h=TYkSbYGYDsmzXYSO#^7z252SnzMs#e=hd+?Ff>%ll{*A2
ztoiwAmVNy{-`i7lB7?Za^-2~ffzoI4Lp~0WUGSMi+V2+`tv!gZJ-|5%G0i(<BIn1l
zQpW9%Zf(tu+FiDmPsU;aXau(C>8Vd&&rVnlYRudTHo7A_A@}ySl`fq^tAdyJRegQ6
z^w!qw)fpET-P)Aet$h6cmdwesOfnZec#x2Ka+2#(uc?=+-|u}MnEdzGS5Oz3m7V?d
z$K&$XKR!M#yOJMNW}Y{SVR(6M?QAKNj0M5V{a!ve*bM5Bc8O>%T0XDp)jIj#v-9@_
zPSpx6`SYWYSHi&I{l4Gpq|Ecy{QdoX_bt%S`PJ3o*Vo1F2GtLHKOEwY+K|xr>gwv{
z+TrW&e3b$ht2%eTMOXcLx%}(1+4));8Ygmp&aeNs^5NljZ3P8~NmH!L^Gx&a#pv(<
z^C@=i^E*3>U)|Wa7-YqH`~Nm4%bMBw!)j{wY|FU`S_9=7)XF6an!oa#thTcF`ML6~
zexNLA>%G0)0aUava_!Fg^5P<BqB6Vk>?~7IBN?=2>(<8PcF;oC@_Uu;rrFo_to~Z_
z?Pj`F)t41){Bk;;zh1B3pVIR&!yGg*mv!ZYsGZ76Xul`z+?>krY)~We((V#z2T*Gn
zw0J1_c;D6i|NrLeMs4w!^yMJCyoQdBPwDGxp&uU|1x-JJhN&JO>)pNjt4{2$kei#+
zukWk<4O$(qoqcT$Xo4KnWAmP_=lRRpMAo({<mu_@-*4<oI@)z>Pvz&>wSu6?d4DOF
zVd9c@`ML=E|9>`vCN0a}-g-IFUG5@iCqe2dk)y|tzy9#>Fldth`TY8I6DCa99d-KK
z+uKtoOjrO~q2t)hHp{kp+q{}jo}isYudb||tn%{0Lgz_KYJPsI%$ctrZwFc^&B@6L
z56A0_E|Y3%YQEelKL4`c{$D^u#0*dg3z|k0*NX|r$XHQRQzNtT@t>ccyZZY<8>Za)
zWLAQf(_L8+2wLp5%zys6xz^=cc6M=-p1gnmeq-&U8B>p#f%5NOjl1j<PEXf=eP*UH
z7boY%8yl0iR(;LNy|KX&Gz_z&@bR9$!#kuw9XQY2TU!dF@2!iqmQ3D~c2+8U_7T0v
z>$@vHF1lR@+J;vhxQkbzoliEXnT>afWpNrSD=R2hfchay%F0`lj&gw(B2+!@H3w~y
zTN|_U)4J=RQ3B7Pc{Y`IrnR@Vc}?=0YxVS1)zllJud6^N1q4j^^XE@c!4|<uv+jH_
zeLF3ioq^%N+8Ju+&!;F~+Onv=sYKcV6bU<aSm?&?3Yl%5AC{7`WYOZqU$4j4drkr^
z2LNSG&&g_87Zx-|ZOtkTf2|q5ZqAbZ&wuW?cMvp^FYEH@`T6w|CJ5x-*l;lUcj@bE
znnp%Ot?sXtU!IoUck5o(OHg}CHTUVynQQ!Kg?;g#kjH%D)Ku-ScZ$!ibnBJUiruvZ
zG%PQy?)T#R{rd8)oIE^N4m2`vEqxspIjuDOb>`JoQ+o_&86-B{{#5w*7-;C)H0#O)
z6<2q6(D+%NW9rLGOF=8i-dA~m%9KmHORNPG_tpH|Qua0qG+#Rj#E6`>bWi2ysx7(^
z8y2LUnNb-2y0fPzWVzp5lfp+Xpaq+5y;7jv9$$`%$FHdW|8Lzc&|0;~&1s;70GiGP
z&Hg+*-2VC?yL^a`&l#lj44SmOwIy?L=;|=d^mB7=ZONPrD#m`l+pT{#>(`IR{h=!Y
z6hUi>K@+G8omx$@u4sIHaq;lgXZwD?yWAzJ{pHW+^Q+_c*PWW8Ia$gyYstgI?aK@P
zu!9Bw&ZkN)ms2j~E_;7(?a^-W*N={NgBIq3*6m(Xy&F2)Ece&`jcUOvTm4@bF+AY=
z;S<E}DXluy_i+@%1HT`??{DpuHeZz!`7d_2=*w?>9V)IaE}&J_ey@!{)%_jCmt_K0
zpu|@%M@${#)5f82Oainh1>}gL=jU|g<>mYJ<L{UJbx8yn==J<_g9>P^4QR~Q)y)mm
z-9I%|J3MMSsI++?meRpsRQV|d6m`$e%*>1hZLMv%Jwb6-!qMZ$SLfZ`l^F|a%{Sbh
zqR8Yi*Q#_&-QQnZ^gwN@1G%RJ7@sur+g-S|H5*jyzB<w=oEggpa(pyMb*GT(mh9_#
zdw;!J&Be<bI!z~Xifwh-_VqHBMN3L&f*hBp<jmvL-`6)SH4@316H7cNU)lw79z(f9
z+lwYvP{U-tV(dM}pI<Kft9tg^ew(3lx~R6^xZnQYkGneDplqM(HJwpKP0eju>Pp|)
zW}tXWN=nMx)ted#-eIdS*Lyl+%J+A7CoS=rX|%HzR4*wcdrxOv60p$eWF3T?1P*y3
zYxPS{lPmUu2K7KI8)A2ty}YtA*yz}fwcB;Ph1GmK7QX^{aEVJBheEfwept7dZpp(#
zte}mwJByxv%1Dk3lL`R^tb(bL3&YFH%lkh)JG&aRLMUWq5F!wdHN3g8(b=~8n@SDH
zILVkc4uzv#qL+6TKfkn#2PCvz)0t(0`MnBf`I--nj~+d`v`Yjmtmxds7`dxtrIV8r
zsL$r=>blaQk?GUNkA>OEk<;Az<>tDHg7T(ECy$`Rz3TV2*Y7_+KmYw!UhocNkN-w4
z3_Hu-Mnz2rnf8G1gg`QQ-|`>hln!f!PEg_pZLm5&&vw!hr&g|&j?HXc9UUHzPl1##
zacSdJsQvZj;){!mZFeQ#+_v`lylTJ0?fm|WA@U(@FPcn~j&StKSO%S)ZGL^0X*Otu
z189st``VhoZZTbxq9-1`GL}YbPlM7yfw1Hwz7snNA75GGDGb_4nEMm7ruOCK<)G{b
z%FtJLm%lez1zIiV;01DFVPRp_kB9A(WBz|Q%x~<e2<kU6rgSg}NlC4m4;s7uYXA4k
zWG5#lnKhth_JOr01Q?g3o}MOUU$>`?Pj(fzxZaLw@jD6}54Z7N{_*kg)m^2pP1eB7
zH&j@^|KBc9YvJGD-=Ni4r{>%5R{^zab`?GC0&P8XY-U?pI29Bad1}rq6VA*u&VG4m
zDQNl5Z5xHJudjz6ZsWbWqcAyg+SFsApm^9ZlSj}&2(*C)RPjR#gGD@sY#{$1uy@|I
zhgnEaQ1SM*t+}_&e*XNasigF1S?n5})0fW8wU!0@{J>g|>5NO<dZjk$cyG(yjY#7u
zmzH?K(>M>vzYNDyIv6&ko)+_+ZFV;I=Kt*X=bG27djE%i|87U=3AI}rC0vj8YUI7(
zNINi9LG7`NfUxVGW2pvGz9u~v3zJQ{B#(Bg&C&?;OiDSE(y?)og!@rew?f`LmkUCY
z0*+#bl?v+WC4P%vl5l)@C$Dzis&$X*_CGh9pSL<HuJ)Ym_wxO}WB2_ys-HH$_S?y=
z*W;oWo@8KX;Jv89^yE(Q`LnX+cLKjxJUcVf@==GfQSq}gDkpEI&z~!uzh`66V@3vs
z*DC{AP8grJnOyhx*HznnU#~@9Ug9~~=IfQ<nMSEzeKwy?{Q1yszve*;1H*w|86u3E
zGA=GEd2wOkyN~(xzi-Rbd^q^>#>V7HPaZV$pX-q{)-si2VA$~g%%wXF3^Kn#=K{==
za&5SB?b@?e@i>o3XJ#6!``i6Y;j?@)Vb|ZK-qWw$-6YPykg-GRNp8jeTjBdYO^qqP
zTN=5qrgE9j%t^Cm&5|iRB3SzSyv=8ysxL1B4{|axG<*g5ZPRJJ)6w~Rr{2!nt($v$
z+u0q3k3kdaDkmQu?KVz4)bi)E{r}?D<tz*gc3z7)CQQ?fPW$uYqx`P#$E5R@xOR)F
z`m-`H<g9QLRH*kZEiJvZB{TS?Ap=9h*9!{FPbPWmd4`6Dp0oe|CnP-l`6O?>pC_J&
zgoZwC;?~nhv|?a*@OYJ0*P<0)1nSrB+GQ0Q8XCDRC(`VG&F8PX4u^(@hK8+=i#=2_
z``nhy%bT9ht5(}-d-A%rE#Cn*1G|%kp7VS*xwob>-jKNWf9JO+ll{~BZU4mlwvc)v
zIl(mh+Mlz>85kTMKRIj6z|e5Xq>EvuWpSFC-<%%{e+#SoommsP`IIyV1H+F9sVAxt
z^>3r^{|Xb+kDGIt-@az<Z~Gqy`7dqDz5VBr_<oH_BL;>9XOk{tg?`&_5qx$(9`N6_
z|8Ri$^M}Ly(=7xU7(Nu5bTLHkC`gRjn)P+zZ{6r^XKv^3kA39Az;NLBMGdBu)oZt%
zQtr3;wD32-{hxwe<?rL*a!+0??mu_F{@>>wS?jX3(Vy1E?X|idSDpKA$K$@5x7qQl
zVM#{cN!~OoM9qKRoXzK~v=_VgpX0NBGeHG3QS|9rbpF!%|Nkui|M{$KqsqYWAyDe5
z<b+wXX5FcNzxU@!|GG(bwZBsS{rNf5zP|3)mzR@g=kK$etmf<G>+8GpI4E+R7F#e+
zQn`Bds^z~QkBk3&JRV*p!oct#Im?7`l8ScNniE?xFB|3G+w<k^ZF5=cvNc~k7#I$)
zWr$2qP(68LV{&kGG-wj-nf(8c@}J*qKCkBa?EL)spmjUXX6LW_07~`lnIeour**eK
zS+n`vsRND7#h=fbFW2bWwHKtSftl}v-U|kX3mhh03_E|lTK#$I`WjXH-#5<}{dm}Z
z{r3Ih^R}Pc?f)!fn#{<+AiXG%<wTF9@u#KwwJ)8&-`<}8e(nWEh6REdB8;F|J2T(@
zzw`Iy{`2SQZojkXNGAhBL;vDHmJ<scn~NUznm?OcesAUW@9p+~6wU9J1n>LvR6jfc
z8pjMf-)uU)sp{*iFR!j@-~aorJUBFT>imCSmRmlXk-X`8T=ml8=jV2QIK-`OtH!|a
zK~T!I0kon3lo{FhWM){u+o9|l_+;DdywgWIg^RyjbbtQwxcvGP)lEHewpLfKUcFg*
zJ@)lm(8^&+i-Lrxtyxp~WUW$ue0W&@*~o~2;fGF!NxsXCoyE`p{5WoZuD|}z<2_%m
zMMrK<^R+5{HRaW-Qzlp5+}vFJ^Xc^Esi&vCzH__&|KH2&Vt2<B9u<w;l;XK=*Q-^a
zoxU@zO0#B}<(k|tV_>+kLh8@{mj7Rt+dnOy|2t;i=eh5n+`j*>Y|@h8<$j{`v@D;`
zDgIPm|GhkNYgXu9>w;c6TdUL4bWdOQx1XDLcbBT?w|mv^K}D3Ld0vd4)ypMbJv<By
zqSqhjAI!SA$Q869M|azeMVA&|seG}pz36&u`O{h1>mr~3i!Hx9^<Xpm^`q{SWGWss
zzP!0Pz3%7f_-UqU3=Ad~ymk(go~(}lo2BM6W5YG;1>vV=nPz|L&96~bpI=i{b~AN)
z)$ja$KhvI_ojrZ;w_B_4#m%>?{d6VRf2tu!zX$I>p*1R!W;qdl_J6<dNEj%9v~9ar
z^%``z#l6DnHye+u&41b^op<8(`u+3n|Nr;>^_}^~>3)-zY}>Z&UR-W&u9!~5gzxvN
z^=Id9yQwx;n1MlRk(;2x-{0TY|NeZK-##XPzeZO`XlUx!S6643^s#b_J&FJSHNN;^
ztN60o-``%_q}|+<>Io`ctE$h=GF@%$*1*8<A@Yg_)01bj^Zi0YLzf;u@$>oo`JgC%
za$=%<)fx8mw6HZ1f%*AAKRwNsWoBTQZ`!Nm;MOA%_)^d)`B=}LlFPn3zun3<uKxB$
z<^B9hPzipo`u*NL-)?1R-rZGtcWJnMOxM@x&(6%8{O#@S^~Z1aubzD8V|cdv|DVhZ
z4Ml(coR_bE+3UsgY2~E_%qc%VJ^lH0ef`{-#_7wP+xaAIDn3}nM+dgu+?>8#qpRkz
z^!*c(>2m_}_q+GYS$;la{Q2+udi%LnrKg1bZ35rVSQ)&0S^4{WuRm^|JNe1$`862~
z40esBf0-(3CM9bboL=tU%sZj-^Rv|bf4`kRGt>C>ySl53T)Y2Vum2m)XZ2#irROiN
zt`4vJx;p-9H0WrT%_T1{^~hSA*;ak=`1CJ!ci!Hw*Urqd-Tf|X&-eTF^>KASpUx>h
zXSwtoF9QRwXXr(Nce%Uy(&rSq<?VRbHmCGjq~(JKW>6@_RJ~jZ3XOk1j@yS-?XhBJ
z<2i9VfB)R{`L)~f-u9Z`J0Vy7W};c{ttV%U&!3s3>TQ&EW=77|t6?*(N?*0dHG#(Y
z-|T!o&oi&zSmD6(!|eMtYm81V+aIiWVA=P7=eMfQuh}%kdPAL*=?!Cr@As<n+xX?@
z873dQvbOZ)CDr)fx2}J><gK6DE?c(ZK}q)S*WxG2-`}(4xBHQB&hGb{9w}3;+4=h_
z+4$w=7$zUv@mrLEVSXmBnL}Lt->-AZ?^R~6{rdX4zH4C0yE{91)g0t19yFG&d%xwf
z-_Gars=em1F)&DNWBcv*LOX2Dit774{52mcuC5B5D#6LX@S{cQjpPKCnWouc%Y0{t
zeXqE<$klUFcwD7w?(J=B%lEwgz`(E|G5Z2z(Lq-6Cr#XXE4J7Ddbxc4*Bxuho!A)|
z>}Ik_D{Q}0<h|6Lfq}tn6PvWcaoO@181J`I2?N7}%kH3Q#-)M^3=9sLEF26B0aA=i
z3=C61$(vzRc+iH)n&qJFv&!y$KI`N5UfPs;y5`^K`R4=OWv7P6RW7}^5wz}%jZbC<
zX!aRY8raoTJUc%>zHucZ!-B-jsF#dV-S2DPS66<y=x&^HV#1qUuh;$D|Nr-XP*d_|
za=)!n>ZvJj_Iy6)IqBx+^z{FKzx(elds}o=G(6?xB-Nd-R;~W@=kxjWS65bM-nz0~
zhN0oS-hZh$|L1dx{p$XGp1)pHz`338toXhUt)R+k=hth|lT|>?m`$mtKYh9EzdU+-
zp68^!-|tzo%hwbf>y@59+0SaF(r0D{2j>SuYrbxIzwh@o>*|en%WkJmk1adNt-mK=
zd)f8a^3)Fx4winLsKPE+kx=#R&CK|JpQbN8%gw;RJCWgM%d>NHXZOikt9jn5`F!@w
zY;*nUw_C&aJ_a>{md~qN_2wf3!vaS^h4}~GZofYd<gXhW5<Mqb7C%$*%*xJwEgKyj
zJsVW=@BMyHyVQ+=A;W{^#PKhWy7kkZoS69X_I7aDpaN>QPFk{T*|K{d&(1Q9ek}p2
z%7ql<58v5YTzn(3eQE6OvYnsLS%X>=Dw+58R8C4c+9mpR-sYO0pSJcfGBli5DnEG3
zp<7)4+<`{s%@rRX`OLGijLzGcdiNgt^tjpr&1><qjMM!<3oXu?-OjQ7Hw{<0ujF8M
zpi5NSsN%zeGcyd8K_zS1jl}k?-*%V1odp{C>r|h&;`<#~+5XcUQnn|cmF?}`8?IfR
zWtweN^5TNeOe0m$_`!U;+G~|}!uS8W`sbPX{*!NRZhn33-TwdoKznQ?tx7T?A2TsH
zG(X`vQDyb}&1U1mM@MRYo{m5F=jUhRx<5a*e%t@=>-X~!e@^fJ<E`d1W5U0`zn>!&
z&~LWg&XY7ua$!|tXJ}}1ZdkKCeO{$nXlUq6i^3!|zc~^4|C<?J-rHL(SM%ZEoZ4?U
zB~7zJK%E61IU9@QV?B}Quh%m$99TY`A=01U=EH$1`Q4ZOte?)Ses{CwGPo;XI$EL)
z&*FSj=bD(EM$hM#$L%V8JxxqED&>Cd_p?hpCu`Y?F))NoVYuniXZ>zROz~M$%WpT5
zjmzHLFv-1T(#*ztYH`0^)XR$u3=5KGg;h29FJ2kE{8^v%yAxN#<LBnreV*+(DY@U)
zY;V=qQ#+r}n|*S!dU%Bs1H%fQbO*CWPGPkrnU|MY{(Lg|^|h?5tfEJq>d!VFmpctQ
z<jF#ofgz-i;U>$xx?eB9yt!$t8@(+id$0d|yVBpFW}=FNS)*m~GjL<HDmOQ`Ytf0>
z`THUpS28dx_{4HTZ9~q@O;@g5xe}d!ZB67|I|hatu}Z;TY8UoYeqIx?anZeBpPrt6
z{q6eG|LrH0XJ?r-Osf6x`OS9ExD`(n7^F}Bw!i+z>E~l%h1m|dxo@rXH-k!#NlUV?
zuX|l{Z%yRpe}9%s|NF!EA+ykNDLccB6=`Q@P2E@fJFKe5&9fngX>axSbN~OG|DW>m
z($eg`0)Iaqm-i114XyhAZtuD0vQ;k@?)>}h_U5nGqU&Eo3NbKfrQh6?3Tl+_*?zg;
z)qg1?RMa&vq^iSz_R8SpX`r~6VVGR>?Pj`q<^Q=CtG~XQ3Mz;uy2m83G8{;sY^*Tb
zVZL3hQOb!4pvF`2^K)m*Zs$%fe0=Qb*6VSnb+_LMdI>70ljbnqbOCKB<<{Gwu>F2r
zwU}PajM(zKrqg4~B0()quYNWL22o`PP>;VtUVwpNfeF(R#)zFospqWU?<skGO;<N+
z%ZYuz-_7=%tQK0O!@zLk1&arB!JWe6pf1bFjmPCc>l2q{US1|?k`W+R`{g3oNa?B9
z8$xcdZ+`<CH~xG!zs}fmQ_|5cP#-aNSINmICnsy$C^9hQ*qmz!xzWNYd}&MO<vBH<
zPL^hynwnaEJR<!0Msk1Zw>LLM=kPHwnCUSFCHmX{EvfqUX6H5QW$N$uPd~v9N)(xj
z4q7?q=2)&=yLRpNxajEFi!?qxo1Gt)pvAy&!-U17RX2K@j;X2X*K4y)v%|LYGce2-
zV_I?uG=wLr9d;!;eqT)`IH^Q&OyF9*cJ0|Ymc_5u)^E7BHT(J|cP54gU$=&ki1+vQ
ze*Sb?KOGdeYwiF2c)W7eDzEqV_G+6*GBD)SFfBO*8n0RtwN=afUPbcVTc@UK8|U5G
z@n-k?eJ`)Ajb>fW%+S!gI&&%ek2S9^FZXZbk(?B`*e&(lot-!HcE2^syR!q-UD^3`
zTC|p}90Nm6$UV-z;7HKh@u2BW-S4-cp^~z@rPpK1Zl+qkSkSCxD+N-<#KOR!(R-bO
z#^-_MXRbx(&lUEwSa>NpN5uZ`OaI{5*twaPm*s9bUwP40eCe)R|Nk*)9raIWaC>q!
zJpQca@;Q@ox8F58JKNlUwps3__3`^bU6j+)_5CM>gocKe91~P_TN1iDO#1ET+&Al&
zuUfV0(S7BH^P84Um1Ai5TKxTPdHRbB3p1~+i3D{L;`UahK0P&crcGthIot1deCFHP
z+W&dTuWh@m{sHp`b54N<w}fkJA}xQtSiJeH+3hFa_y4c8Dt{NVz5G_@@~4-)_0Qfd
zzaM*$lQH4%4i@eOf<Nwk-#5MdeyzFv&y)Vwy88LQytt^GKBw@Q)%@KB4-eJ6j=q0t
z-R^g@KutQ|*=C?bJFoWJ&8p*Z<#$U#y{~OIlDa{ApsL^REwB679e?Gme(Wxj^tq*B
z+is@K2JKr0C1AyNnMup%*Hty|n|D3F-WJ3xyHj|4OU6YdS?jVh7Zy5yzLmXx?dKmL
zr!1dS<YiU%W(KH#wc~N$Y3uiUg5U3`ez#LS{?8-v%b-nHd3UXv+4;|Xd3o8sXdY;W
z>-YQp^|!WWPY+ugm3myZ{LIhi^Y=T(3p2bvE-BF9_P~7qPhZet$J%c<)0^l2ezki2
zGf=}5)C$eneAaBHb$MRhm&Nj+F|L_*wN=~h6rEN%>1%#>it%|HV^FIyGJWpUr>Cbs
zznMP&>=eylBhW6Glc2cW{ce{ws0&$kD|7jtzu#_yVkWNQVe6N7cdPfN|GNMG?|qwp
zKOTc3<nrF??`LM2YG049uVv$rnDFxQ^5v16(@KwvxlWv@?7j@tg!}QR`|~Al{inZP
zuRjkORbZE^SnzHKXz*0ot>?snM&{zDQ^TM6*Z&Fz^;zHS|NpP@)yn0Yu7*XgEuQxB
z^77{&4)goJzqhye<<jZPmMv2=PCIjAalhTJgZHx;t~oP0G;gc;_-N6pRjVu>btqqZ
z{bTL+d%G<D{doLZZhg$oP4^5z$3k6P6S?`(rqg<>qkp&8|7d^29slFd{XchdZ*S8*
zXYsgaf907DLFKNnwNZc1CQs9kkIT<JHAT}kG&HpE_uK8)*Y--AuUoNdmDaB>FN4=a
zZC#c3ch%~3TB}yC?(P&;7jq31@t&@yduwZU_?)U&E3<3QRepXZ3NqWz^68XaTf6mk
ztyr;c-MZ?Uv!>TYu3o)*w277b-?K9eIWl?&nKB-T>Br4ck^g-zXm;+l$h-5euZf(@
z$}I*ODZZK5E_-d)-rU>Uaz7uF&VSOWKJUkc^H;a!-Uc-<i=UnO8L_!$!Lnt`-ko0^
zw)RvLEBB?v?)_VGZ<o#8e&_G<`d`aUGA}K8_c3$%+-YjQvz~0<|2KEilY7<g&n|N9
z21Ph1dQ0U)Lql(-&#%2^6})NPdQDHz=)+QtF8?p3j2|wta5yl7cCx9QoTTb)ckOfc
zq7$HGwmkj(yp=0gdV+RJ?JRz7^Zib7<d%%UyM>?z1!y0JUG1+W>F4K3S{9}3Jw0LF
zo=>MhLu^0qJhz)(`|YN>czjJ^+POJ94;t&n@3Rq)t4Q2-D{J-Ew5Tl^7o&_--`@|-
z-u-r4barmH?lzCy++0vyt1{Ct*{y5Qi3Uby&}l=v`p?a^e!lPbyVH9rKiic|Tij=*
zRr~wf*^}z?=jg@m0uK_;Ex)Jf#$YDM$aLYrR_MN~&*$y`Z=7de_2tE!;&YauT@%Op
z<>yzw-)lZu&G*zf>-Td^v#(u|-Tt`G`q|Ryai?U<?@avr{l0zq-O})1Utdq}*59||
z-3&$NHgI8B|L1u9lIZPulE!I1pz*gq@5=YzUNF<GPiE$6{rxtF+jvjUEx$Jtl%YX`
z$G^Y5y*?|mc5UQlP%B;1zOF{ich;6`$7{deogV-H*LC?{chb(zdb+S(?$i>`$woCl
zK7fMO^3{sPMJE*7I|Leh4|HE(lxjTK%>I1Y?7UM`G=t54w7&TNbN>IC%zPFK=JzTd
zN4<W(=d+(x>8mZ*qCP)63n~$KB#l%+DMZj+X5z)g?&()n1m3Lqe0H)5s3cpteBP{J
ze_PYf&(EKKxBLCPi;LZ#UvTEXyI`hUkHkdn^?Nqu<sR)4eZ6OMXrM^t)2ZQ~zSsZ%
zUYh-W-|sxopxR+RYaP!`Z@1lErqNaM>WU`2Ou>Pw^B<>!3Is-Gwv;n740rzdbo%q%
z_jRCi01q7hSHrMowy^?3?*UNzP)s-K$&$%_QO}>c)c<)b4{B(Z+HLootoF5Ta{cqU
z<!RsE+{|998?hl_?QzgFm!I|9DT_2d-K&0|dUlp+>3a8{4xm)HHT(LSh>c0j`{t?n
z&bnfK*|6-*jWuz5tL7fRU-7sXG)#N<@$2>b?N*1cKexcKd6G)ITvY~Wr&ay$?e)>G
zckqKpz|%qX?B1<+%Wmts2IhRY&U(PTn2lwD;ERik-Rr(>o}YSSL*mWM<#Vr9sef^o
zt5gwI^Ett(K4-(Z=X`QD7SrRZGW{$bw!GPXzpnD#&gVvTe}3fbe!DGOw)})*d&+6u
z?LPPS)m~oeJsn)j{W!=E>T>36JSqmtJiE%@&r|NVF#;ugP!<BE8PKV^`~LrZzy9k^
zP$TZ*V)yH_m)8FNX8Cr@Wsu%GWw&!d!+K@+DxceYyOF%}|G(dtHzpr1t>e`WUw5XF
zU2eug=k{ku#pBoP-uv#s!RE<(>Sx~KHNP|A;o<i5e%o&+HY6Sf<)%IVe!brL``zx#
z>*M$H^KS9h+o{5D`z3(S`ppLLkO-(#ewf!BG%e$`zwWQyr~SMP(kp_t-)BlVe0GN6
zVvDC!g1h8wt3=MuGS!aSo)-%WgQKO_W5Yo$Z;h@+H_~S3c7a+M?<}>$)@bbe`!-+v
z?ygd8P;L9DJN{3SVd|+VNe3Djk212$1eD+LHNPA3<^BErFRrW%zPP9IbJFj(+x7Q-
zp8H<Jdzy}B*Q39;f6gnvS9$c^?)Pz9GA}R7xVkEI<L`I7#qEDx?7udv@JNTCYia3M
zEBkHt>wYiN=z0Vy3;b+89$8fU{G99SYiqk5o7qJ5_x~x{d-Hg&ba+U3xHxF0sqodx
z<zli{B^n@4@W|WkiP%w)xcB|}W`4VfnwQ@3TA*@%OUA`TH|l=B?FM;hhFNaZT|@EM
zlE8~gJSXou&TsR<q40>HyU5+$<@&Qsv%^Z>-`i{PY({dIq;Xo!r2iodH65!Kec-ZY
jU|1j%$4up6!k_hZd~0^ipLggXXx7@()z4*}Q$iB}S6FEH

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-11.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-11.png
new file mode 100644
index 0000000000000000000000000000000000000000..48d59207e3e8ae9c31601897f1e65f56708d15d6
GIT binary patch
literal 23940
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_e2hBy8H|Bv5&ggoB}b*j21t-WX7
zyY-s1;;O9GEA}q&+A0!SzIDsh3tCZKud+0&R<E6PDJVp9)rwg2sOUGp*Y$F(yD$Iu
z*&mtbDnh4KGULx5SLQb=K6@tp+{uD_Ghfd-ZFEe6k%57sf%#339s>gd!vTACMi!7j
zGKT_)FXPMrl7Aq<!~x<S7jOVk7HtenAjO6(0w8XmVgraO;2}|Kq}SbDrKz_gAJ1R+
z`T6<P<?ruxb#zRaKYxBrP0g3X{PuS~K0bEz=*exlYh!kP>XU!{KJERzy_<5QV|SID
zd=X@`<lDY;GYp+YwZlT*-PxIXd)vIqXOf;l6%{+W#P#2mtkgVpX1zYc^OWBIM;Y&k
zZOh$V`}5Z?Eenf?udl9NzOpjdc-J12jXK`bQg`Y`Z%k^<xqWSdqO;Kot@rb4zeVo-
z`|Y+?{JuSGd@?Jh$Ja%&a*O$t&VJI6dVAY4pP7@Ab{}kJ-+e3gf8x2@*(!g(CVsi~
z{r>Ue?v<aPg?@c?)wJwQMC`tro3A%cy6x`b^5W7`@3`A7?d_+JA9oL5ALqOA*+S>`
zUEj7QAMX>neK&9azhA4XzP?&o^z@Ww{=Ge)zJCvoh?p_UBy$nJ{U3v)#iw$Ds^YJ&
zi(TC(YyIj_EBC95i`ySPdURz);Np<&J16Jd4hsnh>3VIvNR44;cfOlA!-2?YshWCv
ze#azKRaG;epPT#Z&F1r4l8$oa-q{hDzxQjH+w>pXHzpipnyMM>_W9Xa@6To@<<HgB
z)|wVRayfeJSk)H8V;P^Goc#3p^Jgh3kkiWE-ddS)aZ%j&yUYFMpPro^9=<N-;=bD7
zBJ%R<_tpN+y16M;^IBHqv~O>3FE>m+wxa(3zqsr7Pb~4AoN{|xkKrtX#HP6Vzh9;E
zidVPsNG?)zZaX2d_|?_btLy&$IyF^$dY_!_s;S!HtD?8(RsH|_eQVy`UDk1@*LuCI
zjopyYsPeM@|L^(lcE7jVUV3_(Zt<FZTR6D6FK^4eJw@GrUXLEDgPRe<KSQ0<M%!|$
zb>jC{ZT<N1qoJLhotmPeBD0qF?p>v?tL7Xwzh9HAbK0nxo&Vf|ReLt)-oCOrTtD`<
z%KZ4#({y`tZ$FzJU-vQN^V8|^Ql~fh`1tf})H!YQ>&4>CTjdoMJ2vLtesg#C_1vH9
zVt4zTn`7CVdpqsvsi|_eBd4V{H8=bI`}5OxU(L@mCnu{1-}ydOJA98^^~FW5$2RF)
zUg|9#ydpqRSV}5u(xge3LcX7svMO1zQRj3^d;9FKudi3<Zm#&46uiH#_WE~DPR^HA
zzQ)b&^0il9|DF}7bK2|sdE171v0Vv_0bgHTE&YDC{Ita4UTO0xurAZQI}wVCid-BV
z0VgM^Ufo|`Ki9VU+TyqU_WxFty}hNWq~yfN$jHUZ8@kkM>Xq&J@v%FLj$YL>GYi|6
zn|*&@t=w;q?Cq=E<!eI%0|VDtTVF5J_j;#2f6A04+wWC*Pt^(y3J91`^yI|Cjt-8k
z85f<rr|bECeqHk9gy7dVH-iNQ1wqL*BV$EUQqq>p%WB)pzP`Fz+#4LZuV&}!Wmk4B
zjai?4ecd{1*6Xtk5}QEg@X1<L+%?;q?9e5yzs{=kmB*xO>*L>V_5Jqd=GRN!`Y+GS
zG?ucdD3CgTXm8r-O;^@No0q=0;Hd65=R*4Y+G+3pF1dPdZ?$Q~hlJGA(|qIWelFDt
zU-xEf?BO=vtpyJcNx#cK-X~l2@8|Q-rCy?~ZEac#3Jwn+K74g=?`}Rhn-`_CR|YR%
zm3DR(C`1wx7IcZ}u5#;@%KY}`X5QONReNLp@AI2$b@giKd5OoblAb?){CL;0AZcc!
z>}xt#*T=^nJa~|chbP3vrRCQ4{P*AT59};{{^gi-{))Q4zqEpubi97Puk!P=sNH32
zkN>>2P51PsJ9Y2Y@9hhgW}bBI_3K;7wO=l}|9Un%KV*HJ?bCB}qbol>37o9vyQTJb
z+4|=^3dIY!#Td-%>gwc9v+>KVIoQmuZDA4NJIf?6BV$F~kB98NGL}Ky;(AwRnPyKh
zPWSVyubr{${l4ERx3|qQ&0f~g!7<mm+|RoF-IeP1dzUYCZr7^*_GVI^fBc7bxhjuo
zshOvyXs(LhzV6kvwXdVZ<>d4{U)|ZcIqlq>l|@fatt@_ij*Exq%0lP%Em>E!bmR6!
ze0_a=|HDEdA)%1XX}+?SMJ|DXfm!$W?fv%t{(67ApDx^DIsr8`d!)?sbY89x0D0=@
z(W9C+Hg~S}YVDl2MI(4w&%e*}|7YCVk||}F)bhI4vg*r<XXodycbBVl*;)Mj+pf23
z_pG~j?|+JI^|vcK3Lk$t$S%L4{QW(xz(p>zzE!@tVOaa|sJK?}vYu6;tCz*>EXusH
zB2db{ZjW5ukB75YeRi|^^TAnFRdr?U?{8Ys+j3Ur23tQ*`S|f8NX@IOtC!C*%?648
z`uTi5sBk+w-#%X2EGJ;0Q)|pyc0QRE4-dDmuK4&U>+-VRPft!RKHScq{rA_`S;pyo
zQQPx$UtU``{lp26qeqXv+<e~dGQa(w2d|>kPkv4JvS;78apSKSi~B`{gci-1A<^2>
z^5Q@vGbnCLzTYih9kkSI(vsZU+g=_Oj}Mt^ReEKKr|{F$)BS&cdwco${Q7mR+~QgP
z{`}0kv0<UgN~cz?uI}#7KXy)kQWje^dERU7nW>S#9(C)R<lnOaWpIDHpG)d~J{8xE
z*x(>-mUBUW|DQz*7A%n7yOqJniS2$P<AViLb|tKh*m&s2j~_D{8W@V7oDc+;mB!Oj
zXGU$!npyn(+|ISLtx8vc%CygCjMt_9{q@y&TkdTAeLoI8wn#rWr|`F(nVH$qb;_rw
z>wmws_Efa^nkl!WlF!`SoZg#zds)`iRdTO;44++D85}n~etqKMwqx6JjdN}oY=4@4
zZH?i+ef!kv|NVLP{eFFUbh&YC;H2~U*Vo0S-P)3QY?F?0@iU+6zY-6(N#5Re_SMzZ
zXRpWCzume!ASPzc#@yR$A~qh%t@MiBur2?7UeS{ii8;5;W}D@HT5)odPVf>B!Q>vp
z;%8?HOaFh`mY*NHp^aBMP3N?cvRhAq?&_GGn?Pm#?y|RDkF_V;eSLl1d|U2p&&g^_
zvv*I~l^|<Xaw29|$;rikC#ib(^!N9_ytugi_NNCA5<mtQe|+THpS$kup=tA8t1kU+
zy7je&jm;ew7ndEnzaKR7_oPNHi`ts??9b27d9T;S?R^Ew?|aI2T338npc%7c!_MdP
zs%@?<{Z>5x((BpxUT2@0qIqnS&g19L)A#*+CcQnEjYlFO=eAk?o{w$Ur5I9db|o<W
zcQ{#Y5?Axlb!+Bjw~H4qPFfPU*lndlBU4`P{i@fxk<*rbe0*Fxd|gc5Ypc>%OHQ2d
zsQvTtxZH6L4vr5I(*&9Qbx%(+bi27J_46*f_<c3zca9%yX5X4}Qb<%cD&)M~?=`n~
zWnEphGIn>FRq3lKj~+kH_da_vYHQZgnxCI`mL8sEk~!(rG~Ly&uCBiSrOv%yZtcNl
z_UsD_96<$vR`|L#M~=AI{(iH0Rlq{0Rkx2FIkKYa>nm{cq3Y`^6WRPnM>;=!{CH8h
z-{w)2n6&ij)#2-_-X@h<%h=UKOe(n^TYh)iUs0`)6R+n^V&j#15&!?!bTR$7Hyh8L
zKY#wUEJyzSspX%lB+c{Y=$yX9E?@ItSMkg<n{>9<GZ#HQ^>pjKL#^DaLsy60+E=@q
zPsXCa`|F)kU$3r<weH`o-EaSIM~`9Tqk~Kb>_uZYG}JG6eLOT`+EUNSYM_!!F8BJn
zSZ#ZI`~JGuC-q`?EqQ#r|Mi!bmrqUCpMPsh=HiXX$5&N;ewKB0)l?~yj0Lkyv(s+G
zu<R^)8gzM?uW9|i8do<rEj2Z_t=ZSF)qcOb{J?<&CU28JKRY{V$*rx~r;i^$o?IIe
zGG&?X>}6+Xo3Bnj-nV^iS$%zd>6;sY@ArJ}D|>%$t!?$UjO*)SrHs?g=)S#vd-AzQ
zj~;!w<gLFn^EW7x-Fl^dy|4dYeOO>q$;+U(_x48f+k9w<7GL`9?d{d^`|D;IrFO;D
zehpo}K0E8%ySuATPFAn3IZ*%e>GaE6=YN@DmOE>i-`rJeqqo2M^73-tW8*)6|K7b-
z_TqwL{{Fw)-tBxYw>9r>ROzcLfnQ%;wcT~rvUcyEkH_UfMPKNK1jniR@pitqYrfwt
zm$EKfb8THL$PYVhx82yJBWqLfVOrC@wK4H0V~?&2UE(3=dFkcl<@vkR7|O*MS$?p4
z{d+KF#*7uF+1FNhPuBz0rCp-h&pzHhGFjdK)v2l4EBV;A>v)Un#RTlD`5Cg*OLT42
zRxjsvzN^dU*R9IDyzHdJVx!bkFP=`154*iB_x+QVm8R9-a(X2Uoh~o;FSl*7P*8AK
z8@2V)iHXXhQc|;CeLKngcKu(5+O<!frk|U$b8oBnt7~g#AM2G~-YKk}b$*^L7Y9ed
z?#TtlpsHz!hhXfk63^&uITwZfZ5Hm>Vd3iHvP9D%baj|7$WV|Q{Ox|KTrHG&e7t{p
zYNXslv-o{AS+};VeDwISY5qN%tvNT1?mjn2IU%r}At`d2c7upkh{x^i`Tm6s6;)r~
z-VRSb-WU4tQ0vtdfy%9|tvi|CJUKbpR&I$w+8K$d8i7ue)%~w^2r8S@{3!VO>({En
z$H$~hv!-PK>A8H}`_uW1h=_<;x9Y#$Ot1R!uw7I_V#SLW86a(zMNcN=-Ud|}TZ*1~
z{r&lT{`Qc|XXE0hrS3eoD@NP$NQ|@qV~QS&zyo<51A~CTz(7!)5VA4Jwe;PcNKmgK
zx_p97<);%8i-pzwmQ?Qlez$zS-TyzupjQ9mW4%#ZGA4q;j8E1|!^GsuSCbV_)LkoQ
zpMF$UH{<*F@7EVNHk)KzP>{8$2+$5+cV&uZuu1MMlec$whiiwe@hJWMWSxO~pUlTy
zb~|^UpZmh-^ZWY$(N|Z6US8rkx#ZiMNZUUj4rjhHn<kaqqoNtTEoW8K)>ZrdeDc0q
z`~5Dciy~!`QE>RAkZR_Q4T-bN^XIYgNGuT3jjG5kesqNM`W~g++uOeWO0?Qp9bd)l
zG1sazXzrH{VQZtJw&l#6rWXrplA6T+-gocg<Kw1zcPysr$H%P>Uth+{<!@H|tE4|y
z=XB8fdwZ|$F3+E9QRuWfZ0)5pGmSyX>hGu1`k+J~8@uaL)!sXNC*^NkmO2wx^-}fc
z@88*vkM(NB?%HyDmvcMc(x0B$D^H$y&Fye3fro=(s&=^F-Cd=Z8=2Wns=j1wF9mt_
z<>lpDb8l}ed4K)<dH<`cLW5&s<{ayj)lTlY?NWYHe#!Uu_up@P`|IoL%YRgsfBAFF
zSVza_?X9hsA06!u-IU_FHfrmuwpi0i$6eP%Z9Vn6{a)(nX(u=7gszD&^!>Ule0$#A
zl0QERK`of<>+81H{%7SDyK<nBx%A<oR+I8Xt-wVsRbO5#1QjfIb`-|l_L*tqI$bX|
z2-KF}njOAA{^#fC*RRLduiaby{oc9YON;yMwCwHeYk$35ZeFAEx;M?~{@&{C>*DsV
zdhsHo|3l$}1B`F)?X|x8_Ve@e>&0}VGM=58+11r`X<h8@FPHu8E4S>v__fG7<@~(Z
z|Np-4Fa7c&F!%1RuWfJ3-`-kU{ch)R<r<0PFK@Tsuey6|+uM@6wI^P@=5F}Rp}?Tx
zslV^XqD`r%mrYc5-*xuw#qIg=lF6Xf`}KUK^<R(6*T4Avet&uG{<O1Fv3n{mE{^?_
zZ@&I7L-^LL(DlW!e||jfe>rQSt%XIzq&?@<iyj@}TrdCa+<g1>+~RsCu3tAl%J}N!
zp+kp6WM$X3w6OFyeEa+Te)h2*NiHs~OV0eZQ=ZMbyg2vvwprHY>z<vR{e0H?$7Qdt
zuAa^%qOm|Tcp0cv&b*a&VS(eR$?E-We6p*!#q}!I%(p09q;vWbsIC0*@$u@vpn?q)
zR-MA?_pW``3|lh;RDeI9Uk}RCn&<L27d&(_&AOs-wN};M?&mN56QB}rd){4}cMm{=
z60dK}Sh7TAu1#gorT_c+E*0;+qqn#E`!qwhySvM;?<{_P=bB{lop&xR?d{pe`()+H
z)#K`ZJ{76g6qJ#9^L09x=E)bJz<klf>ToIEe{1EVPIZ&AHxZyxa{b<KvzF{<Yv_|O
zbYf=X30N7l^vaIHWLFoL7l&H8*S+%w)mqcz>oh&9{(ij<D$cI1i;Wf(6g)N4czNBw
zpXs_WI|2?KJXrPT<MG(zIrsML^qQ)*RMI#t<Nv?EyWa2ny(Ry?-PzgZ{<=|HF06^%
zd?}=QrctVhnAozJ#_6Z7Uk^XpB|14Z^3|1<ll|seE#(r`S`o9e2sA*_C8D{g`1!fa
ze}8^jRef3U>&wf<GL}VmK1jUZ|9@ZB)m2OX{r&xV_4<85PftzV3bJITvAdm}-7K5R
zqFLXHjhUF4uda#QY`y7ycK^pepU<z(zrRn)BxAyL_1Urd@%w6|ED9F<`u<-3WbL`m
zr>CdC-hRLC^4{<FUY9N?*mPX3+6Pp}JUKZT)Ex}pzUOx0fd<B1MNhjxohPl(RV&<j
zrB=o4+*I`J%*w^?{aH^>O}(`-xqVgG+F7saKuKd;?(M8=Ya+XPdO{Aj@s@sj6R8`y
z$)&Nev8$)2WcTa|GiI!a+M2a8<>aJQAuA_!iE1zF7T3=@IY|}NK$&Hpzs@N2l!w>-
zuSL5{-rfoYl|ldieYc;g73y_%wt2XRM+cv*)socH(_U^oE_Zo>W3$TNuiPE#^J^}B
zWnc$o)9-i7Z*9w+4eGmr+TqFnzrMbHeNE)%D{CT+L)SzE*45ShI$!^9@vW`d%OftI
z1=Y`-j46(iA6~>WNFLdw^Z4=O$&Y?5cJH4hV_7sKW@pjN<l}ui*ZzLD`@PR>vs|Bu
zh#4Qhe>Y#aaN#niR<39J|NmWob4TIg)psYUdizY*i#@ad-&g&~=J|1xjnn;#zuzsN
zy?lP%tv9!~pMN}qolnLf_x3i^g9i_)ReyT}>Hws@yR$Rx=clKjmOrSn{8sw<+Se*R
zX|o&yUMUlU%FoYC?d<H<{S-Pk$1*vt@~J3jNTc|AZ28QF28Q4r1&P7y<7|zyudONB
zTi4DfYh+vX#o*z?hsW;Uzu(f*GGm%<^ekR!vx?mO+uJ(3y1cF%PCBoz`#HJh@7L?c
zw&j9`QMNx_d6xOn<HwIn_i-fm?5y~>h?AS!c;CK#&yLI2m*{TSIW3|ab>+2L{lA~f
zHRJYx25o-)__5;|<I4*Rn>Xg(-t+g{ZF8IcCzcA&&dsepyv;oM_qVsp%HQ7u^)1!>
z=h=YVBBB>_!zAy{4WD^7H*@RyTUuDwug^?MT2%S*sJQRSprt+u2@5o%wyb!0b@g=1
z(pOWCpHB%2npF9?*WBmvv0mSeNk>5{IC*(ZudWU^e|)^(+|$!@-L{uI<AP?ht1SI)
zYGZRpL_hA%>(@rLze<9)=f#4eKv+T|qf1;rPp<Nb;O5HDY1_+!m;0HDYK0hB7C$pl
zR8&+`Q#<zO%VmGfYsGJF7+zlJ%pSZU!SV6y*V#F@%g$b$eCc(z&#!gsHG`K)+}?Kf
z%F5uq^KPGwsb-jyEO~f6c%;^%*${PDmu(?4gHfxfc38&GPfyKrrkm%-eSLZP`8jbG
zh8@Zh%uEa?L_k?d(Yfu;hS-fsNAoPcvoR=qR)P-rCSwc-&%AZ4S6Wn7cI|`-0ynp<
z?Gn{aEAi~>?CzeNdpl}pQR=MiH+Pq>&$%5oT`%@sLhAOkqg|q#a;<$I+y2X3<~LXC
z_O`DV-Q`nDG#Ls&gUu;X&(F^fe|)TWYvN(Ht=ZT83JVLX9(AhAtWW;%;NYg*=xw>$
zpiXO<cKEuIt=e&We(1_y-=q^c?dirl+j3o9U6)o{dwTi!TzPSEap-bC+18ep6Zh}O
zw{nYzZB9FDl74PZ^g7G6L90K8skG0|-VYj{0`)-r=32eFzkmO>oSQ|r`^2TCwQq0R
znty-a?QQ3+Kkj01NIR5V!I%>D`r6vdpvFng4FlWncZwxr`~Lj-W0HPOX7AT)(WmBG
zZ$JL)<KyF}&!6|7t{;D{;nhDOF|lR2x3_8f&$E$x4JwsQb8m%ka&mI<^M|hvTPq?X
zv!?d<x6Ff0th4Ov_bpny7}T0sfBU{3s9m=$_x7?sKR@5!nB3CdzWdOlrQXv)Er;A&
zTRa!L^@3W?SNGLc*M2z2erlrfab4Nxeyo}dKdhA-7*1^Ale5t{y(wfxz``Cq*J-IM
zJtwPyDoVS5Kay>KKAD{N`urTr#Xo*jfZX%(<44JmrB7bJUVUk)ceRdv)t42E7B2?1
z1onP7#Jz5})yZ>nEEj)!dprB$B3IC`iI{Fw$?+^64vr5|kKc;O$*ps2W~<cs|FB*D
z%F1AM-}!d2%l+qHYhvZjdud_gA;fU0UoV2eXzr6jo{bwf8XeoQYiG=T^M5BMD!;n9
zdAX93(v$b^*I&30aP-KLjLXY><$mwkmj8E=Yd2_c2{iC*XJ?nWZgt>dH!g1O%SSqe
zZLfjH)IOiLzq&TseEscvEAs#M?h1|F&3}5+mYSbM+w<H`KGqD9V*Yf9TmQw0iON~m
z*Ubf$P1`>x{x#ise~x8w$exNqP`PiMcBUX&UQTY^qodugzu&J9zrU|GbW28H>iK!G
zqFNyr_EdgW@dOQgUs&iIx~n9Um5psx%E?Jp&*zrgoKxOvr~vXPxBi|5pn-h%KABUq
z&DSd_E1M=9U{F<4TlVYM64#%fo`U-7tt~AX7Z<ty`t$kx-D~IPT8H=BeCjwgMRV~S
z%VMqcb8|qI*0Emc=YnRF?)xYA96Ee>Z`uCaTQVnu>emw|JXqP;wG9jcmU>UWR{#HZ
z{9MaowX0F$IuW35El5A8Rdkr&e$8C#@~SPjHzv2wtN&LSx-!Uh;lhQWk>ZMq9lOfk
zuWM%Kue$sF%F5u-&1t@%u~Gwr0M~A@(8X@OCe`0^`nR$3%Uucfw_Pfv>ZPHe;PCVF
z^YG8l&TdUS+!pehy<tiLJB!0IP}z0#=+Vs6({w?td{C`;;)I81(chU9CV<@Y>cm9l
zuCA`2-{0PDt^Z$F`{|^5)P{t{M~@$0-BFml{cqH?rJ$k2ZZX}U$H#iVKAG&lZ1wwn
z{r&yBN?tAskE?W@ZI)XkEnuH`h(%OCE{0di#G~+c^xIXz3!PX&qm6oc=hk*lQ~|~Q
z(YJbWdsg(@|BING`f};?IIoSd-`?E3x<1|>G*<oicz^irvbT4#{Jp$_N=ml)&9_@C
zrW*yCotb5r+y)vWIod7$dT#l>i@(0U{(69!A5>P%uldwj_5I!23l{=F9UgO={Vgpl
zSJy^||Nj0y9MlY7?9Ly%w<>i1-*2;z^++yOpI;N?+AZdLIeY4?2@?cL-`|T}zwg&7
zP+l|5zIJA7-hl?jPai)9Zq2$1YF}+mKc97TQ|hbB%lpl8ZY)?CynNTKV~F9#1$MQ+
zH1hB5ne^mW@UPd;liuCgxhi;hA1FtDeH99x&e`{KnV4?WlK1=n-&-s_!_aMh-LI8m
zdNC`e=|-=L+go*OQ);)}-!H+s@%v&{hp!J?8MHL!?c>LfP3!(tTwNXRZ<>8AWLwV7
zFQ3obXFod92`YKaa&9~*6EA#lpi#=M1~i+t&MfzqhW|VptC}AhuC0$>Z(00oMd|Bn
z>$c4{%MAiGoSvPLyj%bOZ&zpM#ZF;$lk#^lS67947e7A-N=kV@Z5coCCo?Ea1`Tj*
z%)RY1*Xn9AXuuvcg>qv<V&3WNYa)|tYHLArC}-dA|Nm~A{^?Di(Yl|nR<FMl>JAwu
z^qFOH^3C1d*Fi&^>hmfNy`3>Fb!Ot>wwb4=>r0>B<m2MvGVA<N3D6YJ*H>3RSKSfS
z4!g4<cT-CXOLFA2$}bn)V^8n<`z<;-a@x+<>vrc=tg|kAV=yfh)Ho^r`YQDLrw<<r
zl5cOzytilP&XSjtj_+%3YVx_dD)j8m;^#51%iiD1-IRJdO)G58i?W`lr>9Gw-gM@{
z!REWu!q>;$y|FFVtw-Wv;PsP})z8ka|5thV*W~YWFTI|e^YYTtW1Dn@<>cONtNH%!
zZrtticXw{y*p_>3ZS?bPHfCnmZfwi__U`WM(%rSczwO-HcM>$D4RY|`uh;KRQ~y8b
z*0$Vze?EC{FU{Zkb=pRq(<T`g4&?q^=-hti-sBYTX*!^Zu4V51a(Snlo11+nD!HCH
z+AVIo&9d^-lGpF2>&Kg^dQCBCY;1gXJAZ#^cKMGFiNa!HX<XuZZ@%7Om>{()f$>BU
zpPbDKRqtslGA=Hv`gSw@?lsWh38)*pGI;r(zM~lz7qu>0yg2{Y4N&oLxQ*8|`4~_5
z^aY&4YA3E=5AV18^}_f4cRx`2P+93QQOP`K_MK;!mU>%Nep+(;mtpd;6X(yL|602?
zYO9E#;6mf{b1%MLj}KoLvoq$kl9Cc=a^dfn%l_sv+8Z-3tF4XQ9VV(367c`uU)yW!
ztgN811@krbYY!bdq~dwJU%otAPEhdS*4p>?_NMk+d~~$?a_Jl;*RG1apGBpmSKrxL
zynM(0UteFpZe*7$h`zQt-5)g8a(bHX<$r&F$DZaE)q3)6o=WzG1&#l{uCK4OZJR%T
z{`Fl=O-(WN@f#8v%iiBx8@IP=W!T!NytiCpIx9dOm=hC~qjr_7yk5-EFh#(DA;ogG
zdHyt&tLtKKzn17*u|h*KIp*y;&;(nwT^*=P|L%_E**TWM&(F`l{^sW9t4lnEMKuB*
zO#41}Ca4N~`0%0JX>M^n9nZMu8JyhQm!F=VUi#$3#E|cM%iczLf^t;;-V5J&8LD7w
z0ZcsjT&~x1*q6SV0xHSxR=?j1nl;UiaesPhYHDOySF%=6(a%q*plRz>vAef5H8($f
z{aX9>wx^FDFD`z5Zt0Hw|NlI<mph$vyNtE*b^W&GzO$FTc#+ZC)^_Ur`SYRQ`|ba|
zDC_|Z6e%h?e!o-P51RM}m4<hA7Rw!v-kjFEWdE*XymB@-9%tX(RcdrB<My`PmsP$D
z4TcH~o91jzKkpUP<$v5O?p^ML{DV!b`9FX7&Nd5eWMVZbeB=Teo~!@!(Y>qrym9lB
z;(gz?KhyNgo2(mc#>&pVd#(4&i+lF%tN$Bb^!9H5>+7njs!OZx7^j~*u}SCp+)nGa
z7Zy5C`X|Ld>CKy)n?W@rXl!&<=;~FV`6@21N$c0I2Q^6ylaIYPZ~x!tdSTS|ytO-v
zpRaQ16w11|sFh1hN29*J-t*Fni;IKr#Cs*0{oL!bk4<GIsIO^Vwg!|Fssfx65*Dar
zetL3J?(rN@IWDB?1)2f}O<T3`%j?C*$Aczf7Q6KZbqcAfoGfM6+4?h4=k%pkZt+W>
zf*2aO8Ce{rP5$F(vGo2b^>WKy|Cm3&owZqU=kBW?9v%i&e0NK)$C}G@WP|3z<DPTu
z{C4=s+<>KCqCbECetlt~^RKVh<3pGE%oMq;7rDu0Qpnz_QupWEPs}!7-(&c4-{FGI
z({!WNUaq(Foa8&h;NaKW|6a4dULU(VEcsZE=XFD~ygMsEUQRsR_UqGW{k!vQ(t0j-
z2r38N`S#-C;<)MR|IeuZ&ylyUi+OykHyG3ksrs6gdVb#BwST|7ylnd|F>)HHlDoIJ
z`t^}c;i#=yQ$dr0H#euho*rL!@x1+i9eaEGrza=7PfLCI`Mmx0W`4UF>x$VMu3TW{
zc9;gLiajr_3SC|D^;Ky9*VEH<C#Ocn?Pj^F7rVQxwDe@<n~lfwek9t)@2i=#=YDI%
z{<_*-eYv-{t&7<?>Df0%Mn=$_Vvk|f*Q?>dIprT8x$gb>Z1yG{?|%D#6}z%_g<f41
zI(bP+|Hd7X$NOY2|M>VgHFBC&$%_Y3`?9a=MNV5fO*gtKXLHTZqV>PM-Z8y+``4o`
zCGYYwUt78AKYzd9U;ZoNp{RCPh0gA(udBk=MybC1AJ4qI{Qb47tHVWQW#0<g@yS>$
zxVyW2c?FN>srmN%qqbx$oN1h{rKRPyyX@^HfBU~GFV}xRBC&X?cKEVg{0tuYOdJh5
z>N+|;7cXA)^6<Fu;^N}F*J}U&{SInKG&MDSx!}xyccT<&h8vWLHlMc(ULUtN@5a8O
zr>8dMMuP^ue?O>vbwv}@ad^4wwt$SxoMrDqu7g4#bb$jSsMXxe#{22Vftp`mGC@t@
z>+52>`uael=a;wsj}G0K<a%{QpfhO9`@_S-w%6ucm1^C+JAcp3U8So*je}25JZ*nG
zXwJH{q%%9VqGCsnp<E(pG6PhhU;nPLbM~z5$1T<Sr|+z*2L)-czwOklxu>V;ex9LH
zcxOl9t*zP97cE*8!_VzuckFB8AJC$cYinm8m)-6?T`%+NtE+Oyy}i7ON_Tqk8J(SN
z9^NUW`sJMU`;3Q&TH{{F>@HiY7q@4|tDOu7zW)0dyP@v?-}1fxe!Y&`o;UZ}+UVt%
zm-~Ze%0Qz@?zi9G-v0XK^7+@w@7FHRxw+}(L3a5ov-9_@{PXj3^_ICNnUmalrIy-O
ze_P=(QR&s)-QRitA7*@@xpcYu-v9r8uL@l~?brAB>(}r5<uz41{Mx?S-=GfI&mTWP
zc{lEP_>Q@yOU#}h{|YL|`DCp?6VY8gJy)9f?N$^&Klk#q{(jKp>>j=u{+@q-eKpO#
zrem6Y%|}!_Y|8xk^FdSBD?n=~@`6_cD1v$jXJ?sSzOc~QH20Q?Y1S1FM@Pq7+w<p(
z=|n6rPCvII@o-z5`r_h4TQV<$dMlv*(yuR<{X@6s#Y!fBxt+iN<?HqPuYG%a`?3wc
zM^U)e%k})%LF*ch^-6CoeC!rEZK=ClrOW%h-{;*nn`>2iNjiVeLc7{u88<hjYK5+v
zQugM?!k?d?Ypbcb8K<B7V&V7q*VnJ0wFlYP*L8Jv2Cj?QIR(^#e{(Z9bX7>;*;%Hd
z^789vnP!91JZNwZ)GFNle&21=iu<#d`Obc|uw4!`cDiJes(04sXJ<jv1)rXue{Z%k
zxsi$W%C_9-v$IUSCr+FQnxsBA&vvz{_cRRygMf(>C*Imsx_WhOQqm&O2;U@C?^Qud
zy|lvC%m6jNRlTQW{QmYf>)xK7tGnl|U%wvI(q9p%3`&oy0vER_DJxI4tuA|ee}DYz
z>+7%2v#l=q@gb3wg=NXhT1E!XGt86zocZ(NLxHfU=+sBWzxZV=5<WdYpYJtQEA?L8
zZ}60}u!u;CR>+EkNs}hsxwY^Azu%xmHoHo*jSC;ST;5rnzW#hQ`-EN6XXh5axS)7>
zu{*!8oLt_Yzkhu_JUTLOZd!VCL!$Gp?^9=GKWE%I@ku3UCCa;v?=CI%URMAA-!hMh
zN}y4oDO#bYdL#@F#q6sAHP;p`TC_**`>#reK3VHDtCAN9Tw*#IHMO<9xwqF@nhFUC
z_2k}O<~?06?)C4-{q|>GTwLt?_SRP4f`Sd85x7<^Q6t~kW~Rl@&Uk*@1M1Jsn{0UO
z%Gzj9Yqla*Tv|H2rl#i3vy&0~YIbhSz0D(ObY$`0mBGu;d_HfV|8C#!Jkapar>CdW
zLH-8KWlWwiV@6W#_4mJTt$%ZK^Xx;d+_SApU(I+vuliih-Cd?f-)_&noi@unKaWd9
zBcbTonM|$lbvbr_J{%5-zkYGC`)tr?J_`$r#O-Z&pEX$4{@U{L=H}&{9UY*S;<A*J
zlb#(Fk2mS;?2L=QoL%oHt`m`vb!9~&$RLm_<m!GTZcaYV*Z){uO>LHVe9c8raIvtl
z&06HzJu7Z+)y&}KewBMb17FX2&F>lXN}HP<?GiO^Y;06BF}V`5KJIRhy#2k$|BaJ-
zEbIR4kTghW&<tNU=j24?_LEb!r)$RU+EV%BVf)!HFE5{+svVy9V;{qTtvbnh55t@4
znLRx{t!jU5adLJB<(trzK}TQ9PLQ*$da=0Q?$Y}G|6WyjoxZfx8#E5}@$vE1+1J-i
z`uEB?c8P}|sL=fU>}+xF{}amn8Ta;7-r8SZ-{n6Ew94_{yMG^(9sd0JBO)bLb-3)~
z$B&@m^R}|m>+9>+Us~$DyEOdAv)TD2udZl*eR1({?(ccF)u82ga<x^A3=9qRlj>_2
zJiDFS`Ci`Gm<(#C9N)DnboH*Ucm4iVFZG&w=T_*d5YKJ7%U91gXJBCXQ0~m&+5E(k
zb&qdV*opwfxmKm8Oix~Wc)0!P<HwH;4ep*l?|<;%!F4CsGk^?NV)Bquu{ScV{B|o_
z)&8gQPT!;?&~(eQQhP>5#+7#8Wf>S4e(e5z+`i3Rmx-BK_2g^g7nA4L&%2{$U=T1}
zFZR=}`Q76ByKYs2X5T<-dmcV~xN;ja1B1gc4<DZpC#R-&`~TOi4>o*oj6)%F!kw>L
zJGHNE<&(EtvtWV3&!0bc-iq5<<f`sBr{MQOpLtI-w?5yeAGaq$*1BxZ*{jS93=hg?
zo8`{3DtR&CVrq&f%LEgRm>nCOoSe2K9%kz=eSK|ha7xOO*S}Ak@Q_RfiJ4|yIkC0o
z@2{`Bs=ls@zWrMDe1>)IEt9Fb(ciw!1+6E|>(0HsZDsQDzIEqwJ?xo0q>dgr0*>H=
z&FpudG5&nJ{r;8p@%G`nSFF%rWo3Q2_xrtKZUs>3S@h(@LU#EYgQLkR<-4__x2@3%
zTT{_~4z#d!d)K>9=KTyxFG0Qhna1fQA09Y*UIH!1`TP63_asmoC}w9-=7R%`pd~=B
zuB}~dSNrS5pP!$lEQ^-B+xtE4=&@tFzKIG5EC7v6_}hM+0%~mje!o8+G=uu(<>jxp
zve$zaaY`0;F)%PVEc?(upEGunl9Cc=hGqThZ*OicUgX;C_3QPt+s5Z@7Kg4519fje
z3C*ofX61wl0{w5*d}o2ygk+wdXA4?V23md@x3_9()bVA$vqM$}spj6<G0_?{jyqFe
z{`EZBa)&SBCp@}0rJl}uc&Ifq>-UZ1e$afw?x~wVDQCazGe%JArp+2&1_lOlm;VkL
ztu@BG7%FaU%Z+xM&cLu8GzJm6CF5d`9y7xPPXPy`g`fhzgp;A*HVaG2_4WJnlv@}W
zR0JK2R)(vXo_nFh@WAZGvTkwfS4TR9Sp*mwRG2)}L={&ixru{<{Z1K=6FUO~!)Wjy
zz`0!f<%Z(tep_>Ihq-o%1op{ThHT4;-23U2wwI4jN%r>I-({e-7HFkTLBR&lnkZp)
zzm$NhpzQVR;p~g7DWdFrG67SyLZ|4*+kJg?)!Wh0F=}&KZ(QBaRM7DF{Mv6bRbD<g
z*bM3!e|ma)`NPBQumAk~T=lru95m^jd3RUor>{>{*+J{y#pkzO2A48Bi=S^vJ1YfR
z%rI%my4c;IWiG$&|NpmqbNYEL|9Li`6}&>i!dp{Mi?z14dV(eh7rl6q;XBjFHFkH|
z*%OyRWtfpj?1oFA;$za13l{>mKV{_>o05C`)HL1MDw=k7alW%m3S0R-SH<t&=QUk#
z?aj^U*5L*W3=9)E1syJ}$h*7C=oo0d4XCvR>Y+q#PJ8+H`~C3wcC{iB5-XgMYMO7M
ztHZ87J3HHWK@kH3gTm(p++k9n5xJ_TQ^UX9%3crZv`truoVHXvuENo|jc1~YtX)mS
zq>vQ>iv4f7MYWa$FZa{b)by;Yt2-yk$H2glqQo+xgoB?y9JF?ERj4*AD=TPX0_1B@
zTUySxYR9~`r|;jt-<a#*(4eAeXgCqHDWIWVhsi?<H1+{nu2uH#&dXhgFD`QBj@?=0
zdfxW?9MDAOfddYnm*&_1d%5xN(Qa|olULb5RhPO_!;*`jnfNYI?W&UXS=ZLg1g&;D
zJKKEsyuPV-L|;d>^UH??1O!OEuj`p)@_JY5+kfx585kJ+W*8>7rJb4aa2sfRKr-a)
zeRf8bUeJQ_1q&4VpL%+F8XbG_>FH@Lr241~QXi#A^<VQ3YLC{IU|?X_z9e>cS=RM)
zf5i`ghBcRZO*LAvXg~YBrm1eAarS3tXKyWj?zjEv<>mg<`}_M(P1o1=1Pyrp`T4o@
z!vn|g*-O2rzuJDkF8KAewX$m^85kH&<m_Oc<OW)k2O6M_+M4xp<??w!1qB=S{dmL;
zs)FzCDh)o^#H#Aa%+7ZOG!d~qFZS!p%kH3YqZ1RAOW*JPu4QIsmh2DOZgC>v4x=Y%
zCOG@+tE-^q#l7nHwxGpH)!*J+%wE5DS^53i>sQ~c+x_lRm#B8grW8+J2?GaZ_r8$H
zYQA5thR1*WqRqg-@aJ(MyNWDmrQgrb&+l)Dy}2oMYr#V&b}f({o5bEhr}jwP%R!yO
zya%*-f#JvR+pxlz_5ZxPR!kfW5BRKfPKF)tlQrHYz~G?f$iT>O$1z<ccB+YQ&`q9o
ztPFYW`l@@UTy#yz1Qo%|r@U6pxai7oAlE^BP4rQP5>Q?o^7Rx4sLp4g>6RSoL?fvi
zfpFXUc=kosJ3Xtz*Jr)GwbiQP!vav*^XlsA)7Q<t=YjTFedwR`^j$;F{e7{ir=|q{
z{q^<ga({VOS69%I4baSo^6~pyGAD!9S3G!-@btt)=clKpUcQ~b|7~FMVz=HY+TnVv
z?Ch(9m-|^2K59|^3aYVZMo!~au&w%XftlZC!R6)tpusuNz_!;EjfKbM>;Lr0{|2pR
z>6J1qd31ymG#v#Rm!D;pyNa2eZ^tben~H#~+1IbVySv-8=0^c&EiGueOUf)~#p&t#
z_diO3`U+=sE`N&#O=N@0W=#!^6S+V0_x}YgodRuFm^8({zHV#I%^>|f9}dZ`eg5a?
zXVB_gkQJbHj7Q6y+xbG1k``^txw&Y=1_RHasal~Tva)M6gO{zyzP_$}iyx>CFh0Gd
z+yS)y1k}BMb7SMKqNiQim3McQg66|&f4|*+YiIFt&{}-+`!&I(udnT0{I%xK$KzII
zZ)UXd$!dB2dfacH((^GxTwZ>?n(wR~huT#@J0L)1;hUSA-)HoKD&Vx~nan3Z&1cYB
zqCY=A{`$WE|612>G0#c&YQM*}wzjTxY-R(kw~N}Av$9K6JL^yjXZe<SOTDLSmA|`l
zYk&QIP~Z0HnVG>mi=T(}%h`T;KEK}Um$r$lb(zmp?eK3mK#PcO?Wz1MyH*fXq`ooA
zWtg}G)Zn)N^Pw3uiTUmA?bo0|ql=5(LE|#2YHFYvN6@6d`uv(j6DCZsjyl~ZYdvMk
zlqJv3&VJp<E(hAOAXojy5Hy1H>eA9~m6snL9-g$ssg<iTCmzxj^YZlcgooo5MwdyT
zJ!xMq`@g;(UmqF~F$2^U`1<;~|Nj5~b~`ycgSu=UvY^#qNlA;6l9NrVzGQ$l%OoG`
z3H<)<u4(Zz(3(K+&d$zBD)sgC{ck59U!$@el-mAv8r3p@W}83*EE6UO^vc_VmN{N)
z<CO*#;h?eJ*A_k2iUtM&lR!f<+n>I@y?wf&TlTdzg<Cz}O)6ar>eamkH8FpvpW4Fs
z<io?mRSz23r`T4Pv9hwR^qFZCwX<lclCtvFq@!GWzg~+5k1=jcas}_IyAE2F;~CV*
z#Cm61ds~~=B)|D~Z(mg*)wdJ={P}aKU`ybnS+U<uA1})WwUW-xP&|J=WwFtgMf;n5
zq#Z!9(9*)98@nrHwt0S7O3IR?q@*v$<?B5r-P)45`0efOt0On3fn0TESLti(DF3Bi
zQ&s+&o<F{oPu5E1<$8sn9R-P?De=Q?ymGhKM{oC=IB{a8O_aUo{P^!z-=%qj?DWl4
zKYu>uFU-!cbulZK&#wb7cmDb5scF&?4$#88{eM1nul7wySO8kKl6!mG$xUmlqx@fA
zTbtT*af#>TJJbAU7&z9|)qy5aRW#Mq+&(`)U(T)NJzei={{FvZ$DM^h&99rOw>mjM
zt)i{j*H=}4e>Z8#*6i!2HtC4!L|j;$dvTGgY4$acxhW}2c9pzbbaJw~wx*_M>8mRj
z&F|MN_P75V!pzQBa@Dlpfy3FE#_pxBuZ7OHt1bEWrxLV(=li|t^-0Oe$T?_3;$cwa
zf>upeetvd!neXf?%l+j+GX|1jm)YfO79<_*0?kd#vMyiOC91v5F!|Vu@bz))%*yYU
zP7hlXu`qpJr5k8r;I^EbSC)7R_sUor^**)-_y6=yTYQyRIeSC;c{xy<LtH;D<m#$W
z(8O$y-pjsQTQV>I?=_vNw$j;cIy1xegU2UXdEL@jnZ$OTiDCQU`2Xublgy&ppWfd(
zdtytug9>OvnZM0P7q{u4<om$v<d)_OAl9G1L~Rb;<icQh>_s!bUBJ~<p;PVa>wf<D
zQBm{rSK2FeE@lP>h5)ts>?)D}|NZ^?Y<9kukx`JWby>*1nx96yR6v!uxuQ4Agq6X|
zK`Zq)r=LIfA_ydUr%C4`tG1zGAg`3ki5Es-p+!1^4zI4SU;p*>_4E=@Ym6Z;a2kig
z`+dLHf!4lXkE`}o_n&v>1*pBuaA%2*paW?A#ogWIua{1b3(Ck?0UAZPv$J@2?bDN!
z)fb-zjUE&*M<xkW`S|qcoIZtQ4QNN`MOBckJ9sy_i0gn@_53qG@tts&uT}A^dNR>H
zC34#9-_kFyth_u|2h?aipnGZxql%eX*tFD@xwp50dIU+y$@x2aQzOBfY857*p2C=N
zexB{5B{?@Y?X2YomFU^0r!X#w*qF4k4#G_mumV{HS}4W9z(8PEuF=!vioKw5zO*wl
z7J|I_<>h6gV>{Mv*YTdL=6h<vE09r3T&Hm;bc^eUtqxoJ<@fvj+U4)=fHqLLOP}6k
zv;Z8iFDI%pdF-$I8?qt6@#yj6t7CQ+NydVD3=OlVs2*#0b7yDp-s<maH6Y_6W2SK^
zEcKdt>F4L?#=CexLfbXGStf+X*M@>3LP$u+XqO0BSi!r8F>+VQN+%~LQ1{Q(-F>yk
zM5Rw3KNe;uM@~D|Cp+6w6x2fX=++T*0F47*zyJLF{P$aV!41_De>S-=?5z5l1?s{x
zFg!3jAp}{Q_Qy7*(^}yqXxIg`<Ldpry_1$C9qoDvss&tJT-d@veGdiQO+E}Sudknf
ztWWm!McLEaa&7;9xh!Q_l)@GYmS4NcMSM-*Vz<mMFD_=?+_d!Cn#jeVN$fK-jX@nv
z(8`gEi`}!oytpVCs|Lz+(kFz<9n^egEJ!;$3%s@P^!wfK?Lgfkas9X}pbWjQ_IFx9
zE6D4Yl)UdSdU|+V`1}3-{71ijzu!OKlMB>H&{6PanQ-AkKrU!F_iOa_yigC1j%HC%
zX4@edsnlTe=fmMy7KMx2_~qB#um68{>!0uU>#u|MArwAx*_wG-jaeI%XeWq8Ch?rm
zUcYCNZuGVc(4r2Lj0s$z*=NvTonHLDHC10<WuBOzC>aAv!wu3Wg&0+;zr6uXc!QQw
zoAG-rcIyQ#HwG;ao0ghdFcswNJQZ)22`Qk-pU=<ELL=8))4PWe<h~EzCuqKJaB*=t
zu`M_E{=V3{y1K58jva~O+NU>d$-b`Ft_5;gfw564!^+_0eLANn<=)P_56b^1ZW*OA
z%rr{%S_R?G0<A*)QUCUC<%H0$bN@dqH`nNXvzqsahE|?Sp|kr1#_*;YJ;IJYB8Ae^
z4`!HLG;llKdr>1zM15AqA{W(TCuW=!NOm>s>*DTF(mUA85v9bebRsE&<=lJz<o`}m
z${KTSuRR}pHT2H=?{}VE&J8`i`uxu4Ob(e+E)71j&2-D}RX&f(-v9gV`=SGk>?!kW
zznv_-9vi;!Bm+YO??nZsCwo4hI~`koH}rSKvokX-Kb=rEE`D}K<)r2FIg@AS?OGZ1
zn2~|u^-4#U6PwT5&E8l0`<mUpx7%)CS`oO|=JOfjnKqS0eO9kl{CVMSzv@8?1H*w|
z83K%(GA=IKl7D~Sw~zVtzi-PFoltz4yEaXOfkBoJbS?mBHvGv1XTFm?lEzx5atsU`
z=1I9UT)A@P$x-ompGjwC8ms%;|1IIO{c_>fUr=l9-X?Jdh86o?J<YB7e=B_dud6Zj
zf4@fVtEp7;pEpO%ch-{=%KdBZg7&9e-dp{h%a4PBVNE}qpu+U{y2^WXzu(@e`~5ca
z@-kmgCOkLSTHRAjKW@&)$H$+~|NnEowv8$S!-qmCmxe7F7nL3#>-~LVulfBN<Fm8P
z^((a)7!sUKI~aaOuUftO@~+a?Uj2*=3~Sn}Bo(H|Rb{SPwW{bKtN4;#yR4?iRlPiJ
zw|vzqE%CUDM9#~M3=H!_LIXuym$v`NzIyfQ%2lgQZAv}8>F2ZA>#xhMTeWJ{rmC;6
zgqGbdS>`u)mhJaD#wTSx_XWNzWH4(g^z8HfR5Hm{%ZB^Fu@48&Z(TmW&Z_#&!{@iu
z1NF~0tcl$GEZ>fefk8?we;y+P!<1!?EGN#)G&W8=)Y5-vzCof>+Sys5_Z%1)4yXs|
z>mU4;egEIL?VBq;K9VUsBKZ2w|A+kbGt6>tJrUpk!}a83Mg|7yMUHbALCf`vPAIn5
zJo)FyE<43tzIMxzP6mbs|3!{0Cl0l8U*42@y8ll8#YL|7Dxc34QfFddu<K+KREW;q
z8Y)-)W@G=I`Y#vVFRzW>j*vSpQ|$9@&*yVJlE!Ikqd%>S+iP__wmkOTuGi~o{=SZ1
z4@)xoPV$yTDQdp6rffcMXT8|1_Y|M?n+YnFKc7zj{OxxB^7#FAJ0CQ0YeD1ch~xxN
zwEz44{=9$vughQF-L?Mw{QUVpKR;jIUH<+~(P`b87KKT(OfrLB8Zt68^j}ms*P!BA
zT3YI7@vvo1!6DA6a;yvtKU$=G8dOepiE0~_zPfT|wz+=ouP>hMe6m`$LJSNW7^RM=
zMtB;fotbgv%9SPl^X+~fum5x0=KGyu&q+T&KVR<L&bRaFv}i3GMQHlDQ}ueS<?lC}
zjS~(ufZU+jwWw^pb332qhXc%exvdx&Oc;2T9M<i8Hmm0A>iDzg>;HWQMM&wl?{|vN
z|9Qw?zv4g&1H*x~3;{-?<YPTGKTpU1JMp*d?X61n5(b7022c{sysY;5`T74R{=U4t
zJpHupcAY{c28IWdL0SqP9Jo_**|+lh-SXFO{yyZdKXKOl{+#tSPqjs7@Gvmk5a3mE
z(A)p#)0()wR<_mO&V1kZeQ!u;=+kuj-;sT`-)_9wdOhytm6gGIyIw5v>gQx&sOe!7
zQ~+%Yx$JL0mywz6$-3R|yaGjb{{40vl+<L3&lpyII;pPxX`aGjw_dN(($ccKrPr;h
z_4j@WV&jpRFikglS?%v{l4dzK?(ga0VPLT1mpUUYSoZ3Qrv1;8{+}k#|DytGvtC;h
zIk`{PdfBdBM!crg-`>O&9u>{Jxag?W_iy*>|8L2?Z5AF^nL14;a?<Mc`>gc$d~gD_
zSB~{cpV=<Uz+kqj>c9R&`@b*!e;yLwH{pHV_uW6wmG7IZ0-D5XUG8<x_WPYbcklm=
z4O<%(`kXHYl(;sfo;J$8wWZ|kEmO};-|tmF2bD%QHYOK;I;kF>l)}KUVn<ayXV~Xw
zXD{z4e4MlKsMu7wrPq}EZ6;N}+o^s%uKKOj_xC%W&*PCYSz%^3>B)j-KCgZ`+fS$C
z|7}`h$jGqZ-pcQclT_k=-@0y8_vgpfdyIR7K)%ec`#jt7>6GA2r}cJUxmo{u?RKO5
zdwW0uU;3@;`@6a6^D3A1fb_?$`aV5D_2h+x&c(+h)0fo${|DCg^;-1u$jxb`eYcbQ
zZOwk_nBS{NzE|<M_s_rY`{SSgn`2o#NyXIEwDen6R@SD3gH3z>|NDJ2XY*OJmva~x
z0_06QK#hd>xAWy|zg)EX?Hagb)heyk;p^`$Db|VDpz#0K`v0@K^>%5zy|p#^x#8()
zy55saGA}JT7k7D?Z+5?+0s}*hoM{IGDAfmrhK9a01Q&jwC^k$w;x703;mnz$+F@62
zM(?Zn8Fie2;lOj>W{wFD54VR`wVat@sBC_}rg+`%ce~Eav$a0So*p+%KYrf#`}Owg
z_y4Pk+L{$w{qk!2^rXK_EsLLlhB99letSGirTp*JTZZ-j7#J4Fl>htrSbuM1r=wl)
ztI`IY_<c6}|9xE#s<5`?-?wXK<BfWrt$oU%`r8{3*NNb;{(Q#x^_%kd_iWSWmWI`R
zXqI1+e7vvn)yn0sWQ<c!P5JWbYPRjaZN-yo9$)6?WjL^W!@78ee($0j*0i5*R%~Yk
z$IkZqbu%rC)85`)4_X}z3Zzp9+2vz?*?=<9`ns>HtzL`A6gW=Pi=Abdd~8Ye_jjIl
zJF>6mZofP2=H~S4_qx6xWS2jqy?)Q6;`6rKuk2)GSYWqO>($}Cxz`__F+P8$*ZkfL
zP^rf*SCNo*X2!(Rdb@SjMr}PM|NqBvum14W_5c4>KA&6u=}z(atLs4Pif$(N+g{pL
z`g%_3waCa#DV}cqa&y;iyQLMp%;)C`?+u9hq>zo}N6wEA=B@tfH@}o?vE2A#_haX`
zFPHtN7qMSEzo@F3?Fpy|-H>?LsOrm$TU*b~wSN9O{(lu{SJ#^jhxtV3<mJ}?W%`+S
zch}R0?egb9je?2F?rERTnx9|b*lbkwC8K;l6T^ezwfERgNaydF`1!nj{o1YjYJV@&
z=sGjkdiy<=6VCj$Th4u*TXswH``z;Rlb0D79R7yo-{-77+9kU6{p^nm`Q_I~ZCxd#
z45~1L_S!N}QrVn#_SBV?!P)ZqQCl=TKfPMLewpuVv(mnDSvdxVEBRlo9Q5{lI22Ry
zu(kBsd5gzATji#I^?Sj<aA0|GKJ$}n(fMn?a4;|&a0|<4e)8jS|9TiNzJ-s0q2?Qh
z00YAU6DAf028~|O;Xq!>4h#$pmqvvLb(l=}`sGTnf9jDA!Iw8Tr-N4d=+}Mhw*2*C
z@#j~o*I%>zwsd;jsRl;oOPf+pgGz(LZM>)d{QRtKV9LO7MZZ_u*1`GX-}m+QpcQ#+
z{Bm<*%kP^0|6c!p`s?-k?W*5wbO*I1=a%2I^fape_U6t0|Nk;?Z_8b`=hG>j$W1EY
z@wKIK6%Si|W*VvXO8=h5%<$po)A+-$U*0J`e|B#9y`5nWJd#E#@xLxjFM2vP{MokK
zdES$Hq)fF=Pt!fUCG+y7t=ZRAPTs42Ki8ShQYHC#-`SJu^J6Cd1eFB^oY$&umEW&@
zJ!kKYyxng>bpxm&ye4+{^Lf=q85b7Z`r$FDna@hYw(83X{raD$FFj*rX!zyPP~%nn
z{G4w)pX?-+{Jmepo}HaNeebthtIrkgt^R(__`FT<w+aS^fb|>`{2%sNzdP~f=4RuP
z7Z+4c!mEkCwJTSiY+~j9^zZlk=~l`N3|G{do(NaHTsqw-=}5<ymzUKKxAA&U(uv-t
z<9TU`=VYtn=DD{@)+RGBJoxO<P{UOG{M^}x?eg=s<=%ewZufh?(9qCHOCmR?c}@aV
z1C{4KJw1Khij9H6uKx~eHnVQr9t&nRo)eFbb{l72T9UK#>9noY@^MvPA1;lk&pbEB
zGV}VnShL$Xo4@{uUgueKJ$|k1=jZ$k45td8&$s_~Y4%i!C&sP~ISr!PVJR0DIL<Uo
zc9X05a1c~bWxp+dc}Z2)y6jA_zisIAox#g|JlDtVz4kfZ%KW6c-QNQY3^iP@f3bep
zp>jMdVcL1V=?QC>n`U22IWa*I)P*_LFF*g@-s<(AcdV~{oBi`_e%)kH(Y+3|;;ZuM
z)NrGe6B9NaV`XTlIw?8fYsopw=P8F;IDeiB-v??5rr+67nEkf?v9$c0jX$Q>|D4_<
zZ*TYa*VogL>2s&5dQVIF^5Wvn-0gRbYJPm+^5J7(_}b18>3`ntch0I+tBev4wfM|1
zSa|MVJL9Fb(c3|NV$0`qij9h%oXFYt^O>YcMu1zt+}?TX|1&T&oY!OAG*7PT#lo+4
zWy|N5ovQtQcRS~DMuvvAli8!C*zhdEQ-mXT7NwrE|NjTnUOhY8{QSP(?`C%jtA|zT
zFfgppVBFLxQ~&4V&TqG}i|-U3PdzikF!RoiLN-2`8OP=8_gq@c$l!3)WZf5r`L4ms
zd``xe-<_JhZl~J)U)Q!zQaLVL9#i%0&CJi|to0|W`L6oV!oUz9d9ERc>GAP?|HsFA
zi%)4Tzp~CW^OB1C+>)Sq6^}a4%(LCybeWOC;VH)i--KIRGGAU?>>jlxW8<}|_xJW@
ze`f@j4mnK4&(3)I`ufiOI&0P}5!Z>^?^Ug43I=K8oZy>qb5m;Or6rzozb^BgeeE4H
z!-3}$#TVu?ot<TRx=U31)f)ZyeS6C4WB=99u-UfKjalPnyZ!mP*-wso@iA?fSo5Ly
zto{^xOU6x{SFT)H^Vw*%W$`l=&s`-iH=TQac9!Yu^Yyzvo|k8sFDf2Z#n8|T+9Cb&
z@^b&B$1^6doKU;4I(+?~^Z)<&Pt%Ltb&dPt{F+ZELqbEBhOdu%U2`w7U3QxFyB*5W
z`Fp>*&r@Y&SWq-gH+ov+=Cr394)d-4qQM&m?bfdWjq-fETYkSs&erProMOL8{P!gH
zrk|e&>UqdjpHU5CV5qUPWZuLH>Y#!SZ96eh*|_}Oot*7=%OtJKa^mX$eg$<Jr^@j&
zFlZf<oZy@C^wiXy9}aOBAD1mpd3dPxX6g0V;-62aKY!57zwS#014Dozq~Y=%G)m>A
z?C`2_s&@FZKcCP0Utbq{c~9l%H@n~O19g6v9%o``==E#3!hBr5zGmItZ?|O1?-WWJ
zr};>k=gnzkW`FkaxcqvMksAUlc|BTdD^A}-Bn!~-8RzHOUfx;!+-H`_%0t3T3<r)q
z=J9ClmAAL+l{P=8xqMF0?rTdtC(kLl<Ov!%0M(jYe(Vek($g7MZpgg6Y^i&{T=w4N
zs!s>2J8O3EGce2-Wm<CR*_oM>XU&>r_1e_bRI^J7RBy2^V`6CVb#4f`u_^U5xSDzG
zJKJpSU3P|s^IVKUiKuBpo`Jzmo5iE`>Xj=g=jK?JUbByReQBxpO=U)g18T|+T5H1B
z$AOCMO(iccZM}vRwW70l7#Pg#7=sesWlKZC)<#VQjc=9ZK0P%R6c?a)EO~otD=1|j
zICgc%CFYuYU*FxeCKPRETJKxp_}9ejGy;wLyxZ}(PbX%F!R~jvvO#@qnVJs=r^@j%
zFqmmEGBGerIYvn-{lGZw_1f*{I@RYzyfifHn*aAr`pR|d&Rtm<Y<}zco*$38gJa*;
z*E39gq;BBA{OMNq`lnZd{m*W@oi{t}?5w4wudltly*>X}kL2X1r>CoXu3EK9%j)rm
zhlfGqI=$b1nti(-92y$>@x9=I=aG-S_!$oT+WGxnwQ<Uc37|t&KrMmu^K3U4Jw4?!
z%S7|}-14|({`2R_|9#;;RqnF=2gV<>SvVY+4YIGT0Sye?Oq-qi>G%Erc5|&tSKYP#
z`{i=+&D7~n?^VBF`=EtkLtRW0>jj3I|G)2_uYSLG`uu-imS-P5-oC5+{XFCIHpO$#
z$L=Ud-1qlwe){#;a$nHar(LD5d1NdM&f9*EnVY<R|G!^f-rO{f&e`aCYisuOz2EOy
z@BeXBKkNH+z1Ufx&eZLk&AzkDa%X|MG#8xt&u+=QZ1&<cXoq{zG0F6l<Fe&Gpx*sL
z=XOxL4P>5GfBpNt--}+YT)xb?oe#96s?Yx4k3GNN?Jn)x{eItX(D>;R*KV=QtE)oU
zc%`Piyu7^rjSaue2M5?Fg>Lk=Gkw<YW^n86NNC=t#&E6QSb>4}0H`Bc^8OxZ9{oI<
z{r9cc<4)KA|6ZT|;lV*rC>fQ%yYuJAaeKf0b$^X&e|-V9i##XI&fjMV>a(`-NKOLz
z=k#>_^Tp?Fr=Ogxp8n#(LeELT{<fyy?-cu=v-y1H&6dl4pe~|O=A|W|bnx=(>g!eK
zzwH12dp~G^rudBE@g>pQ^Jbc6hvn^f*!Jc9ef!JH{r$ncdfhH1Ww#!W+uL%BPpVFT
z@^pIqIbQQS6U^^bDD&HX33yw${eE3_8^8QK&;Zb?)$2}y;_6Pt<KCO~|NnkIV|+ek
z_1bMw&vh;@_dhS_E;BK1Z`IRHr}aQnGN3^$n}0tZOaIx+mS8Kwa3#B2Twib1s#RUe
z{We8=`|el0UfV6~XR+|x$5T_aU(0;{^?JRy?`$(&P|mrvwf;wYy~e&TOZESrJ%4wZ
z@9alsjL-j>eVj+$ZcoO|O;7LJfDUpfy{6_rFD4{3RJ8m~q5IogH#R1BuUfTgQTh9O
zM^}Ze&bq#S->+ATcJ10V!ywTqP{eg($;(TNa&K=tnz?-LwrkJlnCHh`1etv$*ne&8
z?jMi3yI;L}b?f-`xa!=%*w|Q|hz$?&&+!~M_E1Qtp(^j=qobamI^XMTy_q)q>c7gf
zvrHp5BshYG1!T)^B(A-Edt2sZwfucQ)8<vZTG{_6Cim8slTS`gHcme`$KT|1J7_@i
z_w&%zVW|h3SYO`TTYYOw=H_$J@BUr3{~Ii2nicZ<$Cu0g{)^puKi$6n&&;#v|KIQF
z7Z<roT9ssg#$0dpuUfV0&F1rV*>g1`uV0^{vj5lB^+6&>m;c(u@S}o>Wx>4ctE)mM
zrJS6kI{(E_*T5(D|Np&zd9i!HN#-RLS*sF{<$iNN{rP+zWaif6bL;>8%)GeB6*TZ9
zXIqtWq(iV&&w1CYRjWT8;?{q{9sk4W+s*X(F-0d;XId6NV>`d4=I5uFl8df4vsSOY
zHVdRR`|OmOg7CF(x82TLyH$7F4JA`kQ&1|Klya;`QnO3x@9*#a$NOZn?X5~*O<|X-
zQ26}p?C%qieRjWIfO;3p=M;HamA{*l+-Ip)e!q6R1mg`C77hp7>zh(fm%O~B3R*p)
zUiEK9;NqfpJD)F$-(M$bo)`0O|NnnJb1V$4-|s2Dwk9&T`VJ`5O^>g$EWcYC4$6#o
ziqG4E$~wKBPbS?;2KDx?$5re8|0w@|;=0(~X`tqK>h#!8yYK(aYfh6gOmbPb<53rn
ztd&Xm{n~Q5iU*A#<3WR9*~`9eO*=a)Bs4Vj&W^&F7KM+Z<Uu*U?(ggP`X|Mp_2TYw
zl`6vOerGl$9tH*N^B0Tz&n;}1({f@kW7KzI&tL$R6`<TaS>6BM1Mx-wpV$9O=d<|$
z9;?k>yZ`sQ-7jx!d>oYxs^%UXY&Nd=@L)~URxNkA$`rR=sj1NM7XL{l@9tPGpIa8?
zXZ?1|nfdniyWj7t1}QkqXPwiWCS_Msv2NF^RkyZ^YKN`)d@js2@X6Ki__LrCaDCn0
z@As-_8mIg5+5h>VauQS{EYi5NG5NSm#e>Gzw#VaN-QQpT>-+op7Z<xf@6uj(0yH#i
z^W}o`{2!kgH{_jbU@&0-75JcpKH1-{a_)5DzaRVS&&)7PzV`EuTd&mBpT7U@mfxRy
zb94Iot=kd~Hf@zN&%0w`{dP-m*P;`@-|wGqntkocKDnpPpj0?rFLqPX(JtO!RiHHg
z+~@cV!(`B8NU2=?Wnc5utE)n{_UG?-*ajM?W@hK}nIuzoBN0^W{(F1>U+&t+b|&@z
z{`AjDeR!y~^jg{N-0dQ+8xO{dGsvHp6lh>uQ2qVg&!6Y(=Ph(@PXh(m>$w-?tKVz{
zb;{J|RXnnqZ=G>rK}^}rRLhS?gg4)>`~CFi^ZDm@6h7YccH8ZBrFRy#%gxf=eg{+*
zdp<um*SPlAmp>oc?awT5Y~FNKEIQ@lBG;GK)<%P-z20oQod?PXpfqFi^-A#1gZy<H
zu04<1S(NJ5D;1hPt?ccsr(Z7npI_kET=e_x_T{0g!){hSpZocUu>X^T?D9VCe6rVm
znu1yn?6M^Rpu&E7T-C~N-*z>#@p^qan3@F|;cerUo@V>)hO%=zpYQQL+0VzM^Pk+S
ze(!sKU#-2-1--prF4=rKp=|l*!{N_I_3I2ly>if)B4|jk_V>5HH~yP3<Sg*ITgTnN
zYo2_p=h2m5f8AZ>@8e8zZ*9rAx+-+z{kq?x*W>GJHzpnJTBOmHG&^^jrk~BnBe$Nf
ziP*U4$GP%-!JwwmjihefE@nQ91v6|ai!Sc3|NrO!GyfXfch6?$>;3xrI=tk~jg1-C
z)<kan`|Y;){lD+ZyH&lXiMW0|__pS}{r^8n-|v>|M{UoG-I8;2(~a8ice_C&oY`kB
zYJPlJv};$@T>0Di`)dP5TtB|s{ay^z+qk$gc=@8x)nP{uG%|OG$5k#p_a^yxpYE#F
ztGhw7Qx<QxT<-ez_O|%isI6LUywYJhF*`P#`~Li4yS(1MKTq|=b8m0con@XMm$U!x
zx1*qDlh0hMt>0#J>+jo<ab-o|+sEy4RVyq$olx%1ySqyiRP*dAeH|uK{bu9Q9!X=n
wv-MgGc21#z6|J%i3;}%Wp-pb84Ho{f=L+7kn(x+^o1p1vPgg&ebxsLQ0E>^J!~g&Q

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-12.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-12.png
new file mode 100644
index 0000000000000000000000000000000000000000..2f3bf47936a562ea76a6c31d204b1d0fe37d1020
GIT binary patch
literal 23938
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_e2hBy8H|Bv5&ggoB}b*j21UH^UU
zSk&v>-bLHEvb0wQtrZI`-@4`M1+A#AS6M5chDBe!6cnPlYDKJhl<S+{e$5Yl{k@of
z?tG!2(ng<2Rkrf|HYd)Q8qc>>KU|r<E?e)kL^2Bl0|Nu!hReG^G{bj3CJqqexPSwQ
zvS?#qVqjo6V8|i>;`S*vfT#i<Mv$(CWDW%oSH_uvk%58Xfdq+Kji$^p%|5lw_?Ug{
z^K)~9`{is!1O*lC?d^a5`0---{JLGQkN5WWPR+d?wX^7Hto=3nv-51LQ*LjwDt$HO
z+R_S-ceQiPa%Y{Irn~yh&CRE`<?j7(h<nnK4<8Cd^<r+k44OP;UVJ>mxswwAyP0<=
z=iDy){psu1(1L;uSyxvr^_;A>w6sz)DRP?5>7wXuNk_SEZd=>P%)Trz^xobdkGiY=
z|NZ{;05kuJ`2BTNf4^RzYMy^DWxFR&#J1e*M@Kq6w@Di$G_1bcEB|cIUbjp4<=xiT
z|F5m7nPQyo7rHJca<N<QrK#HCd*rk?*1EW~=*91Qv(>kvVn<C)P08C^TUD~<Ofn{9
z$6J@Z@z`{C?zi9X_ph%0{!S})*OsDZXEf{U>swn}R|YP2`}O6r|74rxU({B9FMWG!
zYu5dJd(X|cU!Qk(m!_Fn*w@$B{mW+WKDjOT>bh9#lV39fg&V#cHDAlk@IdGECJ||A
z?c^RIA)znN=htVQn`0TZF{#xo@6L+v_p0^RdjB~du_2++Yl_Cg%FoZ1R?I%apT2M3
zJ}L9OIY~)LHn${_O%e~W{QUW|l9%`H?(*>2X1O675**k6es^>8@}g&FR;~_TpY{IU
z-dVQQ+p504TAF%#nrh_g)W}=A%h$X0$*i=i{Z$cLZ~XXp|McA3M#nPV+}K$4`|bAp
zU1#4)SrjZ_<CD=y?$HWgx5ldUl}7Zo9IK)y9bxNYR_ev>dhxj5{@Sk6*YB!yw`;Hb
zUV5;Jb<&dmf8W<vy;#_O=bCQxwlf=l1u5z1_}t!>8{8*jd1;pjL*_|_9qAF%Qgd#9
zi`ZB7HS6)?$H_G{H9j#hF;XGZicGVweX(eNzwh_Ch-s;8JQ5S!LMzj6Z(A9<I&9T8
zPn-SE&d!#;z3puN{=d&IK6|}>zuC0ZnJ->sBu7rGeAKBPwB`MW4+Y7$x82;F-hcbk
zT<h{#Ya%yG-QITg)KqQTZJTvYv#_(zzO%D<cFfMAnZoLRDm&k=4qsno`)!eHcTZ~M
zvf$-@YVrGO)J#mSsHmtcS@AB~G~<Foa^y5letz@U*Vli)mG<$`(Pe&ft=7GN{OD28
z*ICQh{cS$BT>oymHe%Y;SM#eGzKiWjU<`PAYHH}F6i><IErpNW*5``p$E|7OmDW;G
zabaX+)QZ}&;@6j#i;dIIRc!hD^ZER%%Y3C>U0gI26dV>VT&NYkZVo7_R)??Ob?fMn
zBPX`yzP-Eqda}Ic+pw=kg#A~Py}h;0+WLCAzSkS=`4c8A_<pb2|LLiz!2tmiHl>_g
z)X~9Vntjd3d%B+Q$JZr4J|x=yezUo&qhrGU{rjDqokeA3*ZR&j+qrdh=;~?Nb54DF
zdOFrr^}6m;x4G8kWp_1qT)eR{d8(?n*w*ap=U#7HDa#zRqag9>ia_T{Tk8H+t<N<|
zKey(3T($3V|M}M%7@31A#NL@kPg|-NyK6=4?lP;oKRceCnK}8@-z8V(*;bn*9AHR2
zHN`W&{_oaP)AiqPjon-IbxXm+L$lxIAMcZ``uTKv=t3vf*0we+1qFwP4<Ej|wRJV0
zjKzb}*`AZtR%TsY#l_1Tnvk%7OH60QudlDOpPiYR_co|%@0}m}{AQV)yc&95;_<7b
z=Z_yh-nDF!G_z6iF`la{gWV4vJjlhv6XN31a%)@e>u>o7Zf;Khdd~X&3ctBlS^*0h
zUO(TLd3jmX?y|MVf8N@rdwSEIx_9gM_f3{&o^<K;>tD&f^K2sT*M6T1DumwL+^p^1
zCzEw$#l&s-_uqY;!?=XM<RH_7W9QGGPrli}$PDr%D?9t@z{PG{yu4Ta?f))GJlvM~
z@K9^i=Cs~TX=k-wzUL3-xBW69=XTg+HD3`y!G)XC&%Ziv|Nn}+eC-m)W;V^@XJ;n8
z^NIi9E?*lmEj9Dek<L|-o0nx>Tk|qXTux5U^VN-wi<kM&Uw3J#_v+;1eOx>|R}MC_
zZ_T=@r5m>=qV(03oi7U?J$e+fH7iust|nq@_Vuva+j6(&-?yv%_w#wwhJ?nn^YhlW
z@k)FBvKG0zD%5-9#*JM3{N<&Kz1FC!g36cwf1caVGD_`g<CA?=72hXgx#;KT=dV8=
zmk<B;=H}kKYU}l@w|}?4xcR)@>WhorUr+Y83+$J(4O!wbQRMCC7Z(@*dbN6e$RZcc
z&{ZLxH#enT{_yayY1$cytvNS8O?$Oxroa8)5Kd0ctlQhxdQH`unsfWfIm?T0Zf*vt
z0l6o1by(;!pP64?uiu|_XGh^I`}%!mIX4#6{QR`@*7w)f{hix*0v{e~{dyz0U(>x$
z#;WASglp^L*GFzn1C<Vw^4?c<_Vk40<g9siX6EAgb-zwt-Rd{#_4y@rd`U@3CY7I3
zT3cE)tgNCG6%}vouiwA#_dDyUI*~z7PfeYyl6!lb@A`eeR%KmTvCyqoN;7<245)zI
z_ve$hZp@B=&(F_?@2&c(;+cACN?=aTn&ap9s%(FKY4(+v_)eYEm%`&~msWm$wleW>
zTh+6f>0fT=@6SBg#CmH(VsqW^x8|&@tasn6Wt|{)=?5PV1H0-~*6gEQqQ{OOKhDC!
zGUISN|L(QX+j3@Z)HxlpI_&Hm+v;n%cb9lh?n#Y&)+!!Xp!@pn?(G|MZ`XXi8ZLL-
zvi8@O+usch4L!?bBlp$pyq*_&Z&!lq)oT*T=jK=@=iD|E)eid-k=|pd?mzF#u0L*H
zUtKlcmOJ}kGy87c_|0j(AHRMz-C6wHOk6LfAi7*THc;q%{_}Hl(@ss%Jhn;4xb|1c
z^<M{@*+Hf3tE;QeZogmmdh70hoSZcqb8oMS*mx+nGAMS#w*32fn^I0D<=i%#ZI=6K
z#mP-N!3!K1lY0y|r=2Y-{r_oOetzr*Hh#Grozq6n?R=%W+VT7LeEj&)(7ODc&qM9W
zR;9157;ej*{qgbf<ypIz>`IWeskjicujc0BzmrtGd;0tPUtU`~`}U^?4-!BI7k_-@
z+Mm1b{h?{IUaPMBZo2cehK<b~7Z;Zuy1$=H_6HT+K})@!-Pu{3_j+CI?q`tvzPD_r
zb-{y%lk@HO@BIJox9v66@5S@4yq<mQHK=WHY?IF8=g-qY>0o>AuWxU&b8efx-}AZe
zx)j3_+g%Ba-xnOQmI5UTx#~BDuCA`0liK*@*V$Bl+Of6v{od~>k<*U#NG{H~xoPLx
z*B2HxD=8~~y_r70Qbt)p;Xra^6pzhT9q(fjsi&r#eElnCXVKjfd3HXT3zJm6LG?4J
z?UMIeD|FQov)o%Ro}8RK%eMNP>`KePZZX{{+TnWJ^CBJ}?+;%Yv@~RA(bMRA?>hvQ
zL8Z*s_xIyvt;<4wetIe@FTY+qz9tY<x|ZF3@gf7%pecTK=HjcXtAk7S6h1z7^7wK0
ze*1qrvLk(bdO*RlwfpAWf)^JQJulUMzgzD9ZMuHE-THE`SJ&3AuK)WwK59?J#^YA@
z_V(+`754lMyLa++>X#Q6H|coKuldyZ`dq5g=}mY3@t&BbJNtUo=jZ3wi|IyX{Qma#
z*8ckcxmSy=uY(#NHt*Kie7zEEbS$NVotxpi7C0cKkB3G~Tl(?waZt%6mwSC(thT+q
zeSh8SPQCbjYm$%my}YtA_|#PG>7bzQl`{46ooyD{Ev6f?JufzNZItQRXG$PjrOflz
z{QUe}+sG*B;>C-r;`Z*6t9qfx%Eq=VLw>e-{xp@)^>MLwc6M^Fv#+mPs~Nm3<MXq#
zS@-w-m0f-J{{8s3x3^zsm#<k6ySps&`@6fhb`~#p>yxRB{{8jalFc`6MC|=`D_iqc
z-H#6sR|PHY`uF?(|9d7aI<dP#c9*>kYG&iTvrA)Z?(ML>)!(lj=@kC@Y<7NCZS3UD
z>F4EqXBZrO%>3{5`u+1({atcwie|7$<|UQfySqY{`^_zqp8xRu`}fzj#qKTxHCIdj
z|NXui)Sd}k+@=-2?#;#Ab1z>%UBCa|rS<#&t=d!h`BfvkoX15o`#&F=-Fl^#Zq2^_
z>cz#ydHuTEbiCR5WOl4wP;PxaJSlwRYf+5=he;)`uB?n+$9dqcD+A*@$4>b<j~+kX
zns!#I^wky5*xhBJ3!PeR>Sk9wI>H&dx61V9!3Wb)U;g>|85G=FAuASyt`5t*u)y)x
zqi%hZ)Kemo$)F;9@4sKKv+nNtde_EuecHJ>D;GMqXT7?za-F*XI}6JS*KRQ>vz!@D
z&d!tX+7&MN`&E9y`sq9Ve0h1fd|QEM?5>iFFD@=N&AVgq_TJuTMn=ZGa-lren3y?S
zA{q-$PuI^rJx#aj*UROi($cFtIyyvHS9nd;TIt#?26DrfpU>y3TlXcOnPIp|=d|*j
zXQ!rm_ez^zdvkNMY5qMM5Wf1{px}YSc7~+LY1$1>PEYs0y*=N*sG%b3>#M8Yi`{yI
z{{8tGy1%ZrwY7C8)0-AfVH>$621QRiL^Xq4gw=d5Tv+IAnsP$m=dWL@5)ZdY+12dG
z{?l{$y7!~=84(c?UANB9G<MgG-WHOOuwc=mMIlQ(1XE8=a^05udiVQ%mrqUAE`51v
z>Frf7!`ADc-V~D@yKcHf(mMVQhD+j190mN`JUk(9Z*Bd0H9UT0&dp7rTD$K5-}3G6
z6fBFLOfYmi-Y@U}u};3~g<|c`r_;SWJT4sTmEM|hQK?tXHtOxIt-%=?D_&;?bozIF
zGMj#M?jM8q@87Tg_xJbe`v3o|3LZ3o+TNYQ>RG3zXx`eK-XFFmV&a=`ow130@^)`Z
zYm>_7@4lG&?Ee3M+d*Z^$H&KCpP6Z#b#qf{*REdG;}XiAr>1C5)(Ts*V*UPqQL5h4
zLbm7K1>xC#(=<Gr+4-;Ssr-Cpdw#rW_O&zFvmYPt-~CK9^X{&#*ZD7Z-u)dU?Eq>7
zy;;(Jbyeu)O{u51l)MbG{dh!p<*o0%eX`ceK<$D?cDW0$uC9)4J|yfr*XnAr^yy7k
z7Q6F*eR0wGc)$GhRiUd*YJZiSonsli|L?cib$`ExhfiNOB~HKG=@I+4DQufTP0N4(
z{@vP9xVTGP|J}BC4-PhK)?JD!y7cK6(*!dKW+sQF-qXXT>&0%V|6kWDVR$GvcB$9Y
zl2=zWb8m0cz54s>=g+}Qy{3vtOM@C@CnX-6U5tIi{<8M>x5}K|b$@?}*q_ui-T#q?
zn>%>6S?-pKk4d7sQ6a0t*6zv-?>$l|xH@d@r(X-pZ*EH6q~o1>dYW(G-j!FEdW*|i
zm-%pVa=yB=^Rw*z`g?mSuda``pKD)lcQkfJmx$(~yt}(V<%*PT)t2jK!s>oko}Qi_
zx-Q1D^xd7CufyNn+4=SD_WN1q=h>Ejn)2m{u>Xnk=l$brJ|6XzKUuYT=7sXNx0YsK
zU#F?1bxOJB&HerHyUX5smHoc6vv_sn=CoOMwY##euUk9Uy8PAj__~i7<(pqW^*b@g
za`V5x@9STmn5cYfSLtit+wbq}4E}z<e!u$<gJUm#zu*6TS8wj^mAigVxOQEf;klp#
zgU6(}+OMIYO5<=FZ}IHgi^JE)868{UJza0zeV4fRpmM0+{@;sVb!TUp?yC5>$bI*b
z`+0Hy8P_Ep?TUN8>&MUM^Mg&5s|yM?s8r7NfAZtw<2d^_bFIt$o}ZsTef|3UNz7M-
zTU%Q-wY0nn3k&5K-yWB*zp^FsvWSSt5_kDplcT1~-Ckc?Yg+y;=Im_q^QQ5~=U&@e
zUH<gsWOq=QottYNyv6tbzrRzJ-T8Q>Ogx^SpZ`6=KJSi2<g}&zcE3E5kM(@~b#-fY
zc<k;n-^a&#cQ1Y(ydpsH=&@t3E-m%Wy0IZ~(&yVcF*^dlz3%wVe*b+RnLqvf{2Ua8
z{ni!J_2a);nW-r%I;#84negTR`sOP!`sH5za<(Zwf!Ei?mVSE^xxMt5#CB`JhYug#
z+L+va{BGy<_<Gxu@m?(K?A3plIt5+&^^56&&8`H-317Yk=gzD9l?ke}oZI=XM(6KU
zefgeofpa@w=>2`Qp=%-xO>=Gp2nq^X)&JYG`ghRRS69D&y&ms9>0aIMT;1qxK37+V
zhr776Y)U)3D!%@2D7Uy?NI}7dc~!48uN%%b%UzXpv@7%0mdsn*^XG$VySI0Dhkt%{
zHh6Q|S(D^rJt9}*7P)Y?wzg*e`tlMqZnDs+H6?PIRmqD5lhyrK`OGu|4OYliJYWRX
z73t^aUH$X(bLo>4f?wa<436BCvh$^(-M=5np{v7uYkz&YXnwzD@u#P!vq1v}rrFbK
zYHCap54DKAeICZb#<t3HvRZlS{p<3NpH7btTOYUg%KrNL_5NnN1J}juys|#t{_D%j
z?vsAc5k5U#|GIqrpM~u5H5XnxJaqB5`?-XTS855Tuv*4}2F7)HmE}(N_tlnueHF?p
zVc;OD6%sI2D>P(ZO=arYS)uNIG8a!x)!v$XoDURyH~&64IoW+}^!95#lExyEk}Ipe
zzIu6Prg7A!lujmQW>HDWmu2RPc6M=BSA_;&T;vMMaiUrw9^(3OS0<@?Z>jxVW}15|
zMAd7`gekjTKlOWgXXoaywNXn!0~K0fYi7(c%Uv~Lf`F_|MZoE4x|b*W+pYZf_qX@2
z-{J!2Z9ezBX5_1@tNZn^U4BdMZ8Ou%OD^%XU#A}b_xj4p#gfKpD?BHwX+>{a^XJc>
zFZ2KZalg7c+<()u=$-q7b_+3`Xt?y?;(mrp9jTGWjvrS)`PIEo#xQbIis8*osmAX8
za;4GV5A)m4I4)Oxrlqx2vcA4vSV{_1vL}NYAG3O;&3E0>jofsk<kgjve_qG`H?k~#
zW)itM%~aKUn#p<l|9fukE?<A#@caAw`BB^Ra+{i)eV?6~>3g(G^z5CT#b-Y~J>8po
zJMF=N#=N)L*VerJDr1&&BjMGxwb@0_&Sciq)Wm#Nonu#fYtP4H(x4%YXZwD?GiGFD
zRIC5@XIa?VsI+4}k}IqJ^2ym`>?(bocIfco-u?Ucb8>PTo}F!OE^U_c;nuxvxxu^3
z-iF93fBX|<WPfb?{W?%HdahMzQS`h!HVSrjc5%<U4UWy|7T2G(VS~Zr*RQkd{{2k9
zUUYhs&%q|vy?MniFR2FaC`e4cz3t=2kA-KMFRhEUPQJaZ^8erO`BieA#SUlYT7O@b
zn}77%+uOeVa<)D%FD>=$ld<gCzkffdWuJLt!@`*ciA}fv$Q2eA#>HR$@uTANtJUjg
zB^~XWdEkIU@P-7(%X_QKi$6W_?4N(KrG@45IqUZ`+IXdBIkj?uRDc3qD|}tfu^!1}
zAt9ld+~DH9D(3tiLGQCGDt2hb?AUPqdg`kyE0?96ou!t3ZjPFP!37b$m>V|#emqY5
z{OoMrTQ%QVDW|4rCT~hRo8{!><Wo|z<>%As@srj(e{pf~ve?~aYWer}9J_w~`i*UG
zXDwD=dHwo~E3xsy>V78MazVo!mA2cXcYb5AIBwJyuLv5dEnrJV9oOY?VrN*wtsS=J
z!l$RF^Ka>;pPTdQ=H};j^*I;{!VTD17$)fPNEkRUv-9oA-0jrLb+_alFN4D`SLlfE
zF^uuxOIv%T&9$_&yc87`H|0iys=3#bWQ3)qwQq0RTJ-dkNIs}xdvn`bzqwX-kDkgq
z-zBP@a=WbSSoNK3HQ!k(x3`&AetNP+kCow_6ca~7$?H2ii?eQQSP1H}o8{ipFf$AD
zxBt84aVf}I+j38D%RPGJh|0~pr>CZ_D{JKz-}m-$)HK!8n{1}t-nRDE*6ig~)}CGc
z{ntALl|vT0@wT?KoVb5K{^#fC;gi*TO|q}8xxLPE>7>;k%T(HCzupfT=KAyV^J=$V
zsaKbm_ixL&S#-QlTv%B7_O`9%@9$Y}JHPwmE(V9HL&+74OQK(2TYGt9@^O=j4+(p}
zT=LG0?fdiRk4g45oxR`hRiBz?yZiVr!{lS2>NtE|jA!$!e_~={%W`jT0}V6Cy#}>V
zO!MwU6c!e8@$-jwi|LBU$gJ60{XOeo6Dw$xV$q^SCdJQu*5AIb2^!+rmV0~Iot?$^
zw<fo=x9>jm=;`U{rEhK+=HA-kdAObb`i8{ASGMIw*M2&werl5H>0H_8d90cYKh%{Q
z7(BM~$yg|y-ZVu&e%}^7*J-Jsq2*cD<?HNzzcIG`e8xEMwf}s(wKq4XuP%IiY?f_x
znN+AIs2N-F@sZr=ei_R}D^_U8S{Avi-}9;K^*X;rmzVpm&b_@YYD>mMP|r#?YRijt
zS0w}l9&9~kt!ZNu^Y{1n?-Bnl``fQ{Zs(h2Rl3S=uGLajZm~Pp3M(e4Ff5Ua-N3NK
zy7RF_Qc_Y%Phn~C&W-th9v*K0`eyTaEhQzVfB*i0M(0XOwwUGKdb08S>)+S(qqcZ#
z&AJ+NZjR;C$B!pJ+V$%C`t=(&81zb;pG&^`<mBYimzPvaUtT);dYk#{+x46CLa)C+
zyh%qle&3z7vjZPhbS*j7u;<e$ZL69e8*XjMTx@=?;;?RwN4@_$^XzLnqIxkA-qUn0
zZpplS=URJv`|5&+hjtY_Yyu6JHnDPR6+b(p6}+tH+1c6Zp1Z2Pt^(CMkB)Y08yEz*
zc8gtQm#=wHD0i}#(X#Z_l(@>LqEq!^qart@1fH8?DJm(sa$oIlEjv5Ao7dG<K~<)1
z<R%wIMMY5XfkuM1e=UA~?&{-y`*lL9UK-ig)|{GUy86^~{q+|YyH~gL9{GM*V)2I$
z1?%s=H_N@XWS(ucmXT2qbR6>IqoZH%|Nj@h+<(5`wri~1Vk@$)t^(<AYHGT&Db*V^
z3M}`w?9GjZ)8p$RK{aAV#tJ4TCJ{Ngb?ahxzdF#!9QWNe^O8#F+NjWl3m1aMHV-zj
zg1R|p=U84|{I-#q{mY%=^D8|jDsgde1iZVm^Xit&;M^M<6mR}wRM5P`$T;EMlQT1e
zH*VZ`Yg20Xv$M08FY}!Za^a+y`eR3rf<{_FVGe3zZp*!$b$?&&uRov9Z%sJJbatL?
zG_SN-$?f&2kzlcmi%OtI&3T*8KC6Dc`~Bm`is0pbRgZhkw`5*c+s^ng`FLOG!$Ym1
z+w<<KY~O!(ofUN0EGaqp?k)+>ptG|~C*OJZ=xFz^H=EC=L{5vVe!ErWcIvq~k)Xac
zXnfHy`Pd5I*=BiL)m2n9w6wgI`^^p7oOZV4=ciQP*=D}FQCluNI@<m9AiI3V-(O#|
zE-YyL^Y`!9pU>y7cJG%1CCSs%bn~m~3JVKCgQ(x$-d<kx^wi4e?RmS(-p=~><1v4)
zjAan0dgl_;nX%})mZhSiB52_GUd?CU+HW`0vo0;^%#OXkulDKV$BVtDYH8}|_@tkk
zb8%DZ=_{Ml{c~?@aGb2>TeP*exA*EC%i=GfER=qJ-l>_!%T;#%oAU49&KcI_>p-K4
zD^_TL8miLfc~^G7-?!SeTkPd=`T8#}*wT6~ipSS1Y~>bTRr&eZs?gQbw&mPhq`&Wn
z6R7$0>gsAx<0t(0&CTiAXJ#0J<X45Q1vThiUXQQ8x})&1N&UZ?+#4GXzST?GU-#D}
z<%9qzcl6tSn^E-S#6stGzRbVBzRohuo))z=>uJ{R%*$$^#tCT9{xHA&ninrJWbNx>
zil3hg-I{gPr2JjX)%EfJx7`<J_%6ZB@bb!$PGL~v;nEUMx!13*u1?RnZPv`rUlzSD
z?W`227B6~!E>|yR$AfM9r#FFy>wZ3)ogWnH4jCuxk+;A1=H}+(KYsj}v3!2rt+z9#
zrOrIq%syK?e4WJUO+GFzE?wu3N+j!?HrkqX^;6XyQSGohTXGle*kJ*k$%#3=@BhE*
z<j83|-|zdKSGCT%?2W;+)R_$p48?D6nO^?{ndZs7wPoebnxC7F?`v*q@&UDbZf;JG
zeO>nUR;p3zsgzUGbYGYCJUu;K`t+tV4UEipriHJIxp`w-ZX2KMtHA4>!s=(1dQZ=b
zs(-X^a#gL6ZtSir5z|r+9X@<_+WT8uPiOz`leGp-9_=c9eP`P7BS$1|Zv#zj?#bI;
z{yuK|b;FCx=htQFoHoke|99K%Pe<kl-`;lidVKxcZSVGezh^uxb>^<p*SmD>D?Ti^
zT|Ft|<Rn$lm~YAJYiDyS3ko)91}tdUS@ChvaWi$lIR$_Jo|>w?%wwVwsC7~E|L^y_
zw|ufzDTfXn^7;4Y=UzE!hDpxiIt-HM8kyO*q?{BI)rknu-}htD?OmY36W`fpR+XQY
zT;C{hc9v;yNXQjk`P~Tzn^uLdpSR3+_On+)CS`9Te*XIPs#AU5j;DX``L^@PPErxo
z2zan8SNL|!zM4pNzd0Ww?2Ddw{QUWI=f3q}YiB7bDV6;ClDYTqx7(+t>CVoMb#Z9{
zCBgW*pHG)1tAfh7t=ZQ>DH2o#AOE#rfkNu3DKD3OT^<q<F+=6$jg859r<IkI_H289
zadCT(Vbq?A!c~2s(cJar`;wB9rr1`0Q~4gg+)vgt<HCX5o1lEJ<l2>Sb5km)vy)x9
zujc2Sdy`#CUthbr|KC^r^~XPa{`@&AJRo4g>-XGZIv3W(?!L0Ox;%7s*x9wQpzio`
ze|gZ<hxc^7uT^{u6GWIe8hFw_KRY{V$*ZfYt7Q)d?k>xfOpbZGE_|U=>utNb>3Xpx
z-`+&}&bI?iY+pVz)A;I&K;@?=CqLizeeS%cXJ!UJeE3lA^yla2^*!UBXK-?JU!JNR
zUh?C^!<6rP%iczL2JNl-nzw(Iw6P>?Ex-j44;~luIu85FPfOzJex};~c+d<Ey%_hO
zpPr^hhD}P=npE`kl<407|9*o;Fq@j2pT2&reR~_Iq}iN)UTx?8|9_s_%bm`-UB=od
zUB7L)&rDFY-rCl7>iqfhq2JHj|9?~1Q}*_jrk<W3sHgwy>+9u5yTxC>xw%>Hc=YD9
z-X;5YALErUIPf_8?ygd!V;Q%%<*uyqWoR%|U@)3voPN$DXp;YNub6ka6Y}rvsm%ZV
zqgUEIY@SV}N!}fc*nKsT^?$#HPij7Yx%o)(zJJ@Fd3xqd)(lo-WoO^L*8A1PJ^S|6
z{|_(vd$(Wux~htbO7)$~%l%Jp(z!mjbNAZ^2b(ATljEQC;>=8At@wR=zP-7*xJy)f
z6==eWi)+&Q_3QoS+pV3b><;Ryue9=89kv!!^nga@KneHWp30~1-|Kry878?*`t7ZC
zMs45p&g%^-NCSJZ{9YV9JX2IaL$1klE}xjF9J<6q(07J`BdGg5LDBii>({H>c%`#`
ze0Zo8w4_62=eq_~bNimuNUQpPHC}OC3<Zh}3?~YN>^aoGMt?n`=Wbq?urIjSOr>nQ
zlu=3tsIK_^Zuk3T%!RqPrx_l5Eu(n7e#RbYt&kN8_4W0jZsPv`|8{##(U_QWTh)7-
z$0X1g?u$QSmc`Ge7^+<@m&m)iDfP6<Ut4w0MH`ck@2b09|2X0A*6iz9Pfko+X?5&a
zuQX`v15_4+=0tB#KHg&}WmS?f>9(9@(UI4mj?DjgWd7Ua<9(T5UR<nt(8#`}>T6c&
zxj8r2{=Kp?*!Eju<g}_UFBZz#R=xP~@p07Ftf`<`!I{SCueRT>yS#q?KP`KE`==)+
zI!{Y|d0Kz}73F@LNvn$48=hQX<#uQbUgjg|d1+PX>XNs&O#8o{o~AoFH8O5D%Uw;-
z<ZtQ8%1<ZN^M57UhOdj6wC8?n#QwV4Reia)x2=oYJL}OmMn*=^^j(i()#tP3lXJ>H
zK62gr``zwMI^O=aUqe=9?TVeM6*_52NdLwiqVD~2S7#U|r$kP>wKe;B)V|{9ev#9b
zK07<RI%jju&!Y9ez1}drc>C9*CMECjv0hub>OYVB?bUuqJQURqtI*k9_I6g-+9=hR
z|Kpi=m%Y8THT$}VsOVEcyKnFBuaDhbrdrA4d1|ip_F1Oc%U)hyzPjw~ty?>bm)HG#
zD(+doU;UWG+L)b2H)|OjvIHF%QY;b^6T7;)f?{Ikxb;Xp-1ZK2OzO+Js{uO-5<&B*
z#m~+Jet&m2|JJ^mpPx46Mh7qVEB*bT^3xMfP|soIuG<1KGIJKa3%OqX`K<X=b$>bE
zxmKZ|X7rB(HLtE{y1Kh(KR-7YWY_C!YlFA`za6?QCo*(pkZbg|oQo3_oo%kox2ZI`
zdUyVwo4ZO^FIu#y<k1mM+fOHyLF1~~u@x0NdJN?flRrN@3rdXFziVuqJ!|`MOZC3#
zI}7VUL0Wv?c6!d-)6;Z6&rm7+^5P=M*IC!sy{(FHcx0Hz^Z5Ds`Qg*`Vr|~-0A=OX
z;p@Ly#5p-Ntv(%^Gyzmyf(9!2?S43Li|c)fdVXtbcIn4QM^nzTGUSz<FFy!sOW&*e
zox3)AyC106v@&?PN#P@x(iayFE`Iy%?d`9BKA(TxE?*Y_ny5XY-2dWk`Tfv$cXry|
z>XWyR19flS-Q69!z=84Wi;It!{eQ^tVak=ulL?M6v8?~Bednarq}iVzyH$RE7P`Ca
zEod&n)y?hIM0dH1H#et)#>_yyy*TzW>P!9RTFo*{ZkuJ2xoA`B=~L&=`~UxWzCHvr
zL%aRtbp83$bRrk2`OeC?u)q;CpAG7PELflb8aV@18!s;}4_zN;yMFRT%fwStG*^YL
zo(Ad))P6iF4r(m+82)<PZ~p}}RQvneTg`dwDjT(@e)-=1`tkAp?8nD?LF3Xor!PJ3
zw_n$9_v=LNY(8157jw(+1)iU0yEW&gk*Ic<k9FCb3x9ro2CcMsd3kxY%yPfER#ngE
zmS5RfobKxGt{uHC2h>!YSNkn8bVYz;=<2YmZ*Fc5-I^5&8i)f8fE{Y(2CW~t{-8D=
zH0uRg6wq(?Yekos?y9r1&9g5qas{RS+fVu`KRpQq4W}j_<8gI!TNSsr%BuKT4=4l<
z9B^=TbIW>tZSA^mA3uIv6}EO3NIR$@9I(&{G_(s+_4fAm)tQ%<t<$U8w{IV4kq{`f
z+~q1=LRW<Zrlc$ZE%vDW{SDNXytTJ_JD;r8l7@x`k-hp13Z0b>Li1<J%gN<sU0*l%
zN%1exKoqE5*d?l+cCY?_t#QSN1Yr>o@X&~mkkFl5b$>n{KekEd@~Tj6<Gec-mp3N6
zuRmYSK4H)7vvUhSJaD|cHriZRPA>1y-@m>d9vzwY_Uyd5A<=o&_o;JUKWE%I^GKxw
zm$=@Wjqg4^J-y6-zTGm1My6x;@81{E4m-mmYjq`NXVK9c+j2qq;p-0bbIe6wUIboV
z7i&G)JU<T9XwA7@c6OzpxOjTbZL_&nrJthi$JhT&b?cExTot}Puc^5iG{6N)L78`U
zY@BJD9X9E?sGQupuXB0~L4!ZXjvqh%de@8@5|1B0er)D{3^Bka_tt-&O(v+q58jmG
zDJ&t8QS|gwDriV3uKKO1u)O^Ilv?w5zkjViGt+qXpP!#+OPOZPm>ySkGUx6t)01zv
z=iW}6WtN-u>B&j(7}BZf`uTQ$zg$j<zb>fkHskmE{r6c|SR`(5yZfvG)OD@=b~D}A
z#ifOlhsVUVTg((ROWoPu|NYmjxc|kw5)Lv2FZB|gY?>W5Svy?s@}^Yp&B@34`X3)Z
zetdR#eC<_GaIvtl&1z!hp7rkT?%9*o{j2tvb8>P%n_GU*kXPEwq?Jq5sIjpTv<@m{
zUChlMN#kRW{~IUwSeCt+@$&Ze^_sD}ww#=#+I@1G?rhDtJv%aQZdy9is&v)Ps;{qn
z?~60+n3sAc_m9^Hc?Cs9M^NW2BV&bG-klX(qFNPunJ=x4Hus%p6A7wFUu)`mPuB|#
z37G<#O+Po++WXgT{?bM!){v!MqM!+at$#sTt@87;%=`OlJ?%U}OEiBh-~Ie}!;hao
zHBC&uEPD%D*y7eJwbNE<6KHi$+@2lL<*o1c{q|G$p9h-Uy0fkR+s*XSe}5|b?e>C}
zN$!0zk6%F(l;UJ<t3sZhp8h=|d}EU9_I<ZI>-EFe&57P!^z_upZEr)qeg;|hFOx$-
zbArY4hV7o`KRrFYe6qU#F14GW1t>K&H8yO^e*gTbX<>20^rt8T14DtnQo|C5N6N;+
z>Ff8#J(_GUbo<Eh<J!T?eB!<f3kXbjQ+%J1fuW&(SM@)`J(_|N5*nUy^Bw2^`1ARQ
zSz}}4u9}~luK$hMQ*rU?InexD_Qyv@x%m10x5+XvFkEu0soC@B(W5UP4)a&f?P4@{
zXYg!1vM#(ccH_G87Z(&+Sy@k>KY#w}w^vtJgVtf)=1+a3;(yZid+o<ZN5K=}>*N?1
z7|L%=(G0$_E_U}8J!NN*YybWEDJmqih*#RIVomh+ytzus%CYy|-P}$|EasIqTT%D-
z*Se>#udlzpHT(LVTlX{y-EM0JFIy3^GN}9=Xn|>gd(Q1`zHe`DFR#sWekJG-1X^Y@
zS>69yBQyJ*XN*4|_uF6DU7jDl`_|TMZ4C_%`PwfNqZxj_SlmBF)mscy`+3SKZ@e7}
zTJ5kc=jQGbH3kNT9kC_T_m{E=c*@s&Xauzync4X~CV|Fb-rnBsKM6FY2pY8f`|IoF
zHIbV`HmCW5rZk?Pn|paf;^8k3n)$WV)Q)Xk-_XFY_v10?s&_k|Us)BZZTsiL;i#QO
zOPBf0UA6sQmA7T_GoS8YkS8v+R@bSOcy@JkT)4Nldhfd1d#kr|iRoy(d>@^szvn{}
zXwJZArV(gJ4m|no<Yco=+P-cNXi>=B-Q}wt8kt_*+q-*L`TKb}va`){gLW1@1ug!2
z*TBHQu*A70Zg=e+#*6nAl~ui_YAtQ$7GJjFEoibqeSXcSvQwbdyZ;Jju!CGe>3UrT
z1_pAM`VKa&$IRDqH!RP+y=`eJCqu#UC+FryvvQ01yf$KBc*(-3A`2R(iki;AQ10X4
zkoNcAZ!;$j1_vQVmAO^UL5H{KF)_Sr$lX=3ac`fzy&nT3gNIVXl3>9}r<Ropf{Fpz
z;|e99(RS)CmmX|kNX@0;OAgJi|F`nm+GtR6KQ&3U8<dvK?^QT|{P;2N?Y8{;>wbNG
z4Qk$S@$rSV^U0R{`SH<Yl@tR5gNJ?1<y{RuN&o--T@|pfsp#pcrSI<U29*Zc*VbHo
zy?*~X-`QrF=jK>WTEfiEx1#FnE6@U!HXg}E#m~>ZoLheHqW=Cri%MT#J9&NjbQuN)
zhVOcIyvr|u29&?OiCi1G*-h1Z+7y-2cXuMg*T-G`|L?o~T+3oN%c3V27C1JG$jh(S
zjozlAqvJCvWT6wQtE+3~qa&TK?(8g%ng=T4CoFr>G}Y<(xw(^7THD%o>7Ji$zCP!6
z*fO7)DxRCu&xb8`>y3HnJn7Yym5U!8?FKDEJtxWo&e$vyL?F$^S65a}-j;WF)!*OW
zvyb&i{`&E_|LW#+e^xfOR}T(0TUC8o0b2jMvG!<}=+?^5&rDW;eBogavX|ff&xU&y
zk9qfgy%zoJ(`kKG&uOVIr-sK}JkZFj>IojJd3t*K`Q+a<KR>;Ea&oelhsT8Z^XC`0
zGBYqRyyRe15j}MHaOh$;-mMuIog5t<L90DML*IKUKd*}3p0{p!;?Li|t8=6U1QbA%
zEb5>l>A^f#2G4~rFE4++a{0VV^Xvb;+;#Zknn>f=y;Y(5d%sKq4Za^Z;NW>_srPi7
zZTl-eE>hWf3zS>FD=~R+)qc6?4x0CL|Go;;(!R9B^VXiq&97fZAXP<6KfF6$;Axx}
zaqZdveV~m8Et!{>f#$OFPM@1&Ioa*%pJD-rpcf}5DsypheTtYjVS++(&$^hMi~jul
ztgWKr0-9mW*q(RS%GJ$n*@uk1s#|yOZDM3#D2N8R%`Ep$J>#Ct%W6}#!}WT#ex*Oq
zjL;0(Q&E_EZ%<_Xzn{x*e_9#5{M7N|?))|%8dNl`tfD?YKYzWEnLQ?VnqKTG`+q;2
z*G6qE+LFe=z@V`AA)f~qXi*+$uzywP>SfR8Rr?)0co4Lv6|_R6^yMYj%FoZHs(@A%
zY)(5Hbas|0D0V>$9}c(iUT)^MTQOtCj4igDAk%sa*;QIsg|A<Cb#?ganxCJ3y;$6T
zWp%jz+k1PX^Y?z8X7}fVbNKGx?{@oZhph>?xXAVD_WXEWX)~W*Dbq{l_iGMcUJq(X
zoPW&cp*2N6KJN4L^ZPS*2QBpiEh**;0aX$yI(Hb!+RXtfo({XTFf{DWyS*(pGnR?r
zj^Ll_vfmsE3=O+qOi+miRj;p|zy&M|LxK3*X(hgwL_C*X+9AfULwMh`FHuqA6Bi0P
zFfj0GsIJV35@%#6XNcX9C*FJk<Q|&tL;<;-%uOt#S{WD^Xcsx4!ach1?Jd)_vAe_A
z`D6m_?WqjiS(N(oSK5hSP`Y@hDfy1?#J9J%Ll?PlUR@dNZd?5gv`{W|OGaSs%}qxq
zKF+_j#nX3|Nnk<22GI2GrKR4l|9-#!eZ|JQzrR33s7=kyR~I_7%i7o7nfQx=fuZ4x
z&SBOGd3SfMbZlk=?KR?)vsvNX&Ig(Tt9rF^`MX~m_y2q*4H|qo-Y*~i|KH!Q_p0Bo
zEPQ+nwETPZ*+ypekiAu<Z*Oh&c5dUj*sZ^B1!!I_Zg17DqNk@~*Mph}9_KIR?q9lm
zeq9tO+cq^d-I@0P<8gUV1CWV{NyT$#@$<0H&(3~5rM>>n)v9xIt(W)7TCXa6d<-;C
zHaW*U<ATD`<Hxg4Pt)b%=ANtq>g)#w2F|i5Tx3=Lt|t67C?{XqTvE;c<iWva(6$h_
zUa6&^eIL`VuZau>&4zuyU%%e||DRw`*#(+Fnq``O?`oCZ?>EMvu1hl;?<AGKU$4g-
z9jn+f+qQa}lxfxzF8N6z%l%|U_2XiU)6eZ$Z3=2!zKq?)s}NuJbLleQ*~<)*kG;76
z|KD~o-6$2$Ump(hi;9UY+g18{RmI0gS@-trJT*;s^~U7m_pVlfO3F7kH)r49SF07d
zX$feR(wm!`SA%BKN?uM{vfugg#l`NS`)Vrt-)e`gS#fr@`TeU>p#IGly}N7zo>e~{
zwtodpj%8n82O2q)t9&8|nxGC|<`Y;`vxiUKZq1J$6`&0YT%4RcS8siDW1}-@kHD=h
zE2T^_7TnyN{`#c){42-h>(}_rwep<ACu^nRd1|`;{Nvw#etLTO<Ye`!6DAbE!%@~j
z1+?ZFv@`~^=(4r7_2of!`H=Vb_Le?81lnVA>iF^F6Rkj7vwr-jIC|tr#*q%etZQp#
zf_6f!i`|{|>&weqJByb;di+?`^WVRJa<|p{B0Y0Jwd|elOSKH3xu$b-EEi9hAkZsm
z?6x|5{k1k;>5wfMfxWWU*Irxn>{c`|2$*zbS84Y4r@6PcO*M4OzP6@ttLK|ZrF*-@
z^>@8x2lZ^km)>S5dT~L~G~<H9Oyl&hfPe|0{TEZU!$I@0phX_l@Aob@zh4uadV1Q`
zQ&Y9ySK0pj{Cv8~)02~r=T>H9tWW_hm|ln8@zZB@m)2W(k~jWx-p(=x28KIbnV<gn
znA!Mh|5EqZ&bTD|`ns;}?#q{!dT*`#oaXB0re$RnRsZ+vbd{GIkIP;D_V)JGC7!|{
zSFMfOx@+~<Dca$Fm+pVAiFpqm*XL6LEywWi=rGH<@nGZMU8S!@Bqe7aTKsj|m#4h(
zxp`Ybjp;j+%s&0`xn>QuGv(>2sa5}eJ_j{UY(E@ema-~Y;Wx)(;r+VbXRoRm7z8l0
z@m$!JdpjlaTI|~8p{v7;j%ED$@iFi8@jhA58gcNpBN18IwLd>U-_1I8srU3({r3NM
zyjBF&vmWm+y>)2;C4^gBvq4J&Jultbnw=Us?bEZfuP<&(IM_7HF!@;QT6H6%pt)A1
zms&W5r%afzK*}`h1!yTRX!^D8@2{P&UR_^5Kke+SrL#=4SEZkyXI1`gP8+ZEGIsfz
z07FB=@~v*5I(@JAcE*$s4-RJC-L)0e7o1~RoOOAb@2i`em%rQnexJ$em!J(X3!Pd)
z`|-}swGMCP61{X{qVm<f)#c%{p>_QQZv8zAK&uRbm-&E3eA{@Xrycqz59*BAPfwjw
z)pJGn#@_1fpzUJa;`*Sqf2)F)dPPky3D3Q?<>milvwS9A(OY|(vBCO*vFBUW+$kYu
zz1fTn)(_v;Uk8n^Y)buE{x)pMZEJ-|pgl&*=hs=SJq>EK6|^t8?f3%3`d3NRZcs_3
z28rY^C)MY#NIKdD8fyd%b?mFDz5G?U6;z&U%stOMX@&oMyQ=SZ%Ry@=zP-Jz9lkCm
zGgb&xHb+lTWID0Lb22FEW*Vn2E7b(qo#)*4qDfR<e*Lb}*UL&J!9u}p915kcu3Y@}
z_4Valpe8lLc1>rN3H<hd0<y2K11+drDy;6eq|_3uI<SpHLDg#tXzuUJt?c!hCMF@E
z^&8*b+`PN5=*fwR*HS@+-HuKkLk?RjtEg$IOOdP*R`>IH4RRjC9Y)DT++rYy*0+^Z
zvZs7{a&pp=<MQ<}(^7Zt+dq>}*6PmLO&|;JEGv<80IhzBoEEh`Z>`TvBTY56XUlF!
zOoJ?~y0o)I(xL4AJzY=G!s^@KL3)g~l}I{piE2%G1L3N%Ed-Sy#O=mai?wUJK0A21
zAE=>xYiss&zqwYb$vwBLPH!@)`}4zO6(0iwgM(K}2g9a{k4d2RzPMgYz_&LyLCxTP
zvuUYI9aBM$2vT-tnQ(7!wRZl!J)mJ-ujzVouRR6H>~NJ#;yD58$I01N3D|)Gfk)4o
zWkS-?u9tUq7H7tS`a=!3rzkR=n4Q0GB`6{a3kx%2LA#|JZck7=)&SZQp{S^+6}oB)
zXo36!2gaX2e(cz~Q3tg8-fJ-zD19t(Y2#3MzyJTf*Y7_+KmYv}q!+rRUQ($cW_OwH
zT5ph33fNOR48ePo|4AAhk)7bOyZrsNL#^Cf)6dI!1}$`Iy|TcO+115mNg>2fN{7LI
z%D%E9Q10%=oZHtvpSNG1c(`q8AVglvx#S>dJ-=Iz#KLE1XJ?<CWolLXYYS-f$Ta&J
zc;A9yQj1%U1R|XjvZuVcu@SW1BkkOrm)rg<Y?r(A<>lqlkB?kIOSE2HT^%kJ3fgL|
zpbB!~jvW@DAtcXr^*<iA&s-wFz`$^V!N`Sylb84EwYAZcWA>N64r^^`v4{XQ9~z=3
zDl&PTo~CP>cgKQP(#S<zFQ!0uf5F41Ha=NUGXYfYdLM=bm<02uW77E<r>E(HN~B-k
z->?7k^RxFPP`gGueBFw$wNX+Q1qo8&ptA2lnvn~`$vKvrK{a&c=Vv?5G6(Iis|Bsg
z>6JF0mKvEEqY8@J*(U`URRS+B^S!zy^YRuwP(nPQdrBY~yu9#_@siWl3W9=yn{uOX
zZ_l4TfBt+WC8fMuM^A0id3$H)<%M9E-RUZk1g-m5JiRI9_BNz6uI4vq1}u$(Rv3Qx
ze{1(=h1IXD{~vyz7a(>sT)HDL<W9$<w!Q_->sSmW)thE$JTlX3zL>Env8PXZao`yZ
zKa-0tonAc?4JRue>q?Rl6_;?0X_6M);=<-K;phgAIrrs{{cAOG3$WN8J%9PC)jRIL
z-+6ZV?N!sl=NF%6U0}ki<gm<l_B8AFdy3a?z5n-Jx#fcf=1u4Aem~judfn;^DGUq;
z+A;(fi|$oEf4Xk>yH&L|#m~;jR6dzF)3P{i(vvyG=T7>X-wj#$k%6J%>lFp2CpXjQ
z``+JIn=OC8>~?PEl@)>WDxb~tnP+3^E?XK>_hqqsXn_+0Lqe@d2SenRjKEvl^W%U2
z*uMX7E}!L-2_-KsaDE9=V_=Zw0i6q==vj0^u|4HjkK|M-eg=jJe_kbrtgNh0kGl2M
zJV9GzLB(^sTvf)~f0veeXXoGKW?;Ay|MipEp8B_|<Ns!@+yC#EPW(Qb$?E=opw&iC
zCc0mHXaD=n=9l;OR<o+JFfd$mZ|0bAT7SPy{{FvZdHer<11-QxKHldG9?0kx*FX2;
z<Kxfg|Nl8JI!}m!;fDpUk^`uNTln}`?UQ@6^Y_hsc6Ro38&L*^4GX1Q8vf{By?QnC
z?yl0M#~BzHt~u}Jnc%Iz*CaGFbmxO6?x5J%x!(GFza-BO4h@~kt-ohO%S#4^2LDy7
zG`bdDa{jaR)vH$_p`ocaH>KXJ`F!^JYrgQ%(9p=eRi&JlbFG4x`<<Ov{ch%yK9&0`
zzF06wAKamGT&>dTq@3tH)`a9A51!w;>~BBU_S=Wzx06>)Pj|SsCi1hnJTn6W?_~4y
z3=9ljmlc>&o}HOF(;)GX`#b*`28x^0&T8c=Ffcq2UO9bw!r!g=^}laN?x`s3vv|}|
z`tJXSc6%St=EUy!KZ~B6WMF9Ey{K@m!RF%;Vaq2Iob8JKFKFgFwYc9d>X8cr!vXb+
z3QQ>v54C3A-1OA_-S&)&O7Hi4_Uja8WMG)@(#$bo?Y3K5{kGq3xWBXi^<weMYipws
za>;#`YUTGT(~tE?ZoZ~l8NNPl?(22C^~&#-hVT3Lb$vK2$%rrPm$5XOtmb>_X8QcO
zfs5Tz+hxl<Chht2>2&4qx7#nTkKZ3taF7)iSC4o+K+*pH@Av1+?f+(0eSbIi=jZ3?
z|Ni`Zd3Set-p;4feCAjf`pz<0`DF$J!-3-&0_hHumh9SPr9P*?$<N|pi&sAr14E4y
zubRW8l%rjuGp$OqK=Ex?`)i4FJKt0}P6mb>47`to)~HAtr}<=MWnEhCKmX5T`+v#v
zs^9HYIr-=3=gSM7+wT;e))k#608Kx6d%s?rQ~T|vq(OoM$PFT{fxE9SbZ(cac+hx{
zRhEH4s)0>V;d)H5@4jDG*FSr1|GyFxAy&Vu-|bBQ_o3ZBB*BP*A;H<CgJGs&vfI8t
zPxb4c)a@>NyGPiHfx(1<SIOblmdwdNKR>U3^6$&b%bTB0i=Jj7$iVQy)1-qz(xM<C
zZ`aFZdw##$UHT1V+>>Xs^UsCv`!toyhmC<Dr-MyUVS0RBW!U<-x$|tRpH<)g9k*)L
zs!yBe|J6AzSDo|iR`&XmS64K}V@m>;9%o@-uybqXn4lNC>&eUI^UpOfG8bKsEnlk9
zb*Jw4+nEN5PJNcoX4w3EGFi0Je?s75x23ywS?zweD|_zV>2Xz>%xpZM(*5$j+TT3V
zW^eN2+}Icx=CkuY>*cU6eKlqNpC{@+Px{wQ+J3*zI{Vrh&*Ocv!LhM3+dxZq*X?-J
zwI$<X(%kCb@Auc=+Lk+8d;K0G?`b+GuZG9Z6_2Y>3|{8r`S=*`v)g<O4AP-{|4;ug
z|KFG8H4nMtPn7TfeYfVh^?lDtC2wwQJQS?@d|q|lzjyEd>8%c1yQ-Ld9Vl_#+>|=g
zEH?_Y<Wc2j_4~cWpwj5gjg6K+pG?*^G-6-~iP^iKWi@DO?aq$EZ8ws-z50V*Pjr_%
zY5V=o<m~l(%jW+6ey7-<jaMo}THdqhf+PD<_kOvbPxb2~ugzd!2zY<xH-qP-^|f!a
zCGG3}M7?i_)6BlM=A`-lpJ(S3ozlFSIz9H)oBdy}Mb9+Pj{^m~RrTKL@8^uq+XNp2
z>DRyd+k3;LlouBkT0ZVEzO=voKUiDU>$R8HL~gb^{&wSWx!E<-r1SR}=I{CFR`>t+
z{q@E5=jK>?PMS4qmQ}T>scGbf1jl>z|NrJ}yO}n-#E*etMZc6w!<X0B*MB?TZ}%%>
z?%zckL7|~judWWyzho(<6EUIw@Adk#uHvy%%HG~u`*{ZFJPglSCYeF$>oYGe+j^Ws
zfPujdWCkeJuUxfi)fWj+;dg0Y?e885!$->fKR=u~(<Q3?>WyyvzM8ek3=9uGFLPu$
z@!{cNZCj_bGczX6&fjNwJ+?eH?fksCPnwPOPfyoB|NH&^`Jg>SYooTV+WY0zVegIq
zF3qtlzO*iO_g9PGg}#$^|I2zi!@iz@A)wFt|DTW3@2xqaFkkblmBTds_<8aFe_aPv
zSfFKbj?HXqKW`OHonc#D*0tyaIIJt5%`E-4yZrsU&F8GN?SCBPzqB#=IA|AcY2Qqv
zRIjS9ueQq7-`?rD@8ipMHiiem5!dw_j;mU3W7=F(cI7q$ICgI5?>{rga`U%$;h;%Z
zP#`^h(9Ew_I}enJ!uS6Qo%@wrZ-;{SbiK1P43jVIt^Teee`o9KZMXAIgT@E)kN$qp
z%>Qg^c-+aI&*w$Iy2HQ_Fh4}}>%)87UKc!@nf~mUbp9DosmIK3V_=+i=0xiB*lA&F
zqn`HH|4CkYeD&4+_5b&LK4)F|Zs+r?>-TCtpMA6OxE!c1I%oBIjZWkymBsG;=fa|M
zr)mZ-t9hatfv8U`n3-zKYJSW<w0v^TFKbbzoGST0G1b3bF8AKa{5m~wuPt-Y|G(eU
zZ)`}Ew5=+68}<C$+|OUv*W2pv|5H?UBe9*!Z~M0Wb&WOK^X`87aG3u&s8MiYqVndS
z&t|7zSl}pWTeW3(JR`%0oniURPkPPoo%s2D{{CxG_xIHXi?}{JH#a(;>B+)&xv1yA
z{H)(j`TcJ9`X`wT3=8U3Z-3viFX?F4t?y@lTxjnPUmF$LIT2K0uDmyo(Q{Jd<}}cz
zlCAyXx=~Y9D!*P0zr4(Mw$<_7eEbXyueMjoDu~BbB<k(?aLDR)`kcaJQT?Z@)Jqr`
z9$a3zow4Zk+U;RgEDQ_@%B#0C7XA5nJRHW;cVcH?u&ZX_U|<N4Vq{`qnBoQ+?q4dX
zz`)>;IVwD;!{kI2Xyno;=}5<yH#d!Sqqdw7-~Z#NOzoG8pak+-=JzFU{nP^ujG53y
zvWbV=QbCjVGo%<8UQItXRc^t;AOF7ZpMPAw-lmzI|J=IW?`Hk~z5oB|uh-+}+kU&D
zJXziU+&Sy_b5v&9R+oLdU;iJpt1UdPGIg3x<fPT>_gU%h`QWt7XXd11y|t$q8Giiv
zwEp4Ol6O0wKRajrK1N%ijYo2le(g)|ou5u=7vIj^uIlO5D>XIs^t9AlTQXnX+L}En
z<^A68=M>vzCT&bU{_M$Q|8*z+Ffatj?_kNceY^YpzS47XIot1+f$9cOL-^XdyT#{i
zB~3B{a%)shI<m`7k+ZFOGJXG_)XdLJ3=Xv_4t7g-7C&F++|K7YY5Tn@?a$B7o{p=2
z8~S|5y}i}XXQt27thQlbSP{;0VtK)F+47WcZ*EG0R#T?HtBK>+u3Sku*u)CjQRY2Y
zkb&WqFyklAy<aYQOByD*{QB~8a^m4ORnKX<(bH5iFD>z$`*^ll?yhTw3=AJCRUGUZ
zcNRZ?_TezU|LtwL#ozCiFJHAv%k$Ej$jvGzLDhgw`p-{Kvt^kX80NdbYuef<rXM$l
zk(n*!<D;W9O)`VF-6=YKYcIe4-d`Vr*6cS)KR0Jf_I174x!Z15{n5Ryvh(%&YkfaI
zvokO}-SPRneErL_UOb;>Dmj=P=n~a7%DAxL%nU<ie!CwDpn_`ax7{T#C-uo%KU=wc
z-m1@cG=rBd311)g`ltEa*-xbB*CjA8*tM4aWvYmol&o!VI=$U{!?nw^OtXzrPD}uG
zVICjv_kVwH@Ab+%*Y|zf`sbPX{*$1h`?_4shl8LkH<Csv9+8ik7##LK;W<%d^?XjT
zQR1PNny1?FC;$BXY@Byz$JTHAKlbvUi}-VT{~zyT{qpnc{{DKpX7jmIlT^Kps=mB<
zv+Z`Cq+Lw~s~S5)!!PHCHOtfI*P4ZfhJspBYCbap(*GZ30JWXv>V7<&Q+&=+(y}PU
z?0(H>9w`%z#qRxa=daf@FdRsq&JgL(Z~Ns!mHh6@e%4R-{eE}5<uU_<!{H~UqovsJ
zEW$T+u8G-c^n8AO9jLwf?Ck9H`?cTC9_bX;wiRPw2${lg)1}Y;-;bE;w_7dW?RadI
zc4h`>y*e{H-<ik#_Hi#SGB7Mik_xYCIKN0Uc-fP6yWgEMy&f|;zxH*s=cLDd)_S(p
z-_BG%pF7=ivRY_`69dBvo^%JZM$q{)g^!O}KAjSrb$yme=A_AfR+|1cA6?SU&x<|y
zl7V4C5z7fRgWOwNzPz}otQ)l@B71N7`+Hk|LrMp;M$6)7OO`ELcCO0T*SBlYiRk>j
zp^YmU7#4hDIia>8=jJAp%u7qoRb5`@oBf@U;lbw<-51Oo)6ULHJ=!H&dTqLXeBAE+
zdjIWx<Zg#7W}Nco@ci`szMqm**%@zm*!|e~O#IaRISe;hva+(SRnELR$Fg{mO6;zZ
z$mgHa&d&P!-2U#5=ll)lySTM&84kFaW?x(L<>lq&my%69m{NpaTwNXh?|J<{b?@nV
zv9DWS_}l$VS+#1_rPbl<OYPooILvoiw*1b-wcGFgQa(S4fg!;1^fcYmYa%xn-AHT?
zt(wBN8q%$=x#ly|NcH!--T7|)a&wE%S*o98f8TR&bNcy`H#ZFXZJ!BgGcefApTl^Q
z1=K-3*vy{(<iy08*5!HIZs+apk+n8kzyDtqsMF}x&(6Rg`k3d0+NPqXr(!A|w(fk~
zXT7Q5;h{IXUa#Bv=hNxp4+q)9t4tUeR!D#wF2{aDTP|M@oSLd#{O{-U<=NNQW!~FU
z`R#7`eV;iN8!sg@G8}MIcX-wKxZmFHdR%pGpY^*PJ(9+1p#6pi8ks-;c-#**^2Uli
zY)cN=?MZ!)NEV{nVN24_&jXEms`<_edC1Agknp&WZOI`}(RQp?`uUV#zm>7smzH??
zS-o5W8aV*fnyky285(-M8$xbu$-I1Nv3vj4dxo|@AMACpyTi`VaGr}XD6#n28Bbqd
z-??9B&6*|RI&u5Gs?|)vj0^{sDLQE7+}xB3u4cY2^PPR|9W%p$^j3zI8&J~(KLf*j
zQKlt_va+&_($CGYdM&>Wbn3{Pi3|)0lLZw-udNPW4=S=Fca^-1dW{sdT)u1!4AS!%
zR&H3_XQj0|Z0#w~_}1=iMNdzG;sO+pyUN~1fl_wD<E)sMjCSvdi8kq}<xcC_!`8*j
z<ksI~P=2S-T}&@#Mr`?AQ&3-<&+f+quYQolQyCZ;7`z@+Qc8c2-2C-g^z$Ra{%gKS
zNFP04_ib}XczF7&D=Ven7RS|mJi2n-xBd1FULS=e7BE)6-Fm&~)ym~*w{y4qZcaOU
zX;<m%FK=&~Cm-uM`RVED$tt0tp`vpOe|&fd8rO0AT_gSbHK<ef<2%QL&ua>ovNI(7
zy;J>uFR1F9WtKY&G?tuxeqQ9xqEt2CSyMirv(~@7-2Z%k-Iv8){V(NzF#PdlVp+gA
z!!$b#G%%2}`K;N`zwhhk`^~kw`fhIBua`UDY&u=^e((3N0w;zDd%c5984UaW|9$^_
z@ArGB{p){S-umdV^WEL$=VzwR+j;J}Ud#@I`~SXe-~4*r?q#W`r-AxAY<w~^p3kdZ
zcW&eL`1;zaZ*OMmZo8rM_SV+Z_p0B|jsNpVeCuyeFAUU~%H4KT4YVKf`MJ5pFBZ0^
z-P)2V{pIVPkH@4z9qLVw`>dB$et!1y!a`?IyA5RC+~fPd->bI#dL<Y%va==cuGMk*
z`kH&S-|t!-zgvF47Bqf(X_0I9maMB<&1}4<zP!9_Up9|ju0jDeN-<40I_<b@`59L6
zm<^8c!VIsEOA0iwJuu(@(|1?-`+1<<lg;yg-^yP9bpQX~`;99;JOG6fs6eRu^H_d)
z{QkO`cC}TYc9F`-v*!2bfcmV?Z9FGI{&{+O`tzO7=be6Xa<XyBiwi0zS1zA7tNPte
z_4Ij_X=S%EmxH>9pk@^)9ejCpHG6ORulxW1-UkiPSU#JPd}(d;_A|3gwaxDoIRE<o
ze*VkL%a?<D^<u6Q1(n^F<lf%4^T{OdPoGZfKW~%HJ0YFFXJWft)rxOBZs+f}J>1TJ
z9y9=SH8lLGfBmoEygeU}z1jc&U*)rz>6@;GMXxQM_VV)b=N-y@9_!=w7Trvp4mzF`
zG>9cv|K}s`zc}U%a$F3rwjS*k7Y_{$Jvz}{ZfD%_{JmeV9pzM?6Y#s@>8YuueU*Q|
zUhiJ!J6jBtbKc&v|8v-0B>vZ>>HnTR&%3<LxA57_^nYiQ+xX?<w&dLWlrOir=I1A?
z?8)l>daG8g>au>fV{uvTn;RQlLqkI^?k<0ybahqe*4N?jwWWcvv9Ufg3>Ip1EsEGx
zl6i4k?(IigF8f8lE<QKge0>JU>{lz7Ut1Sj^YN%_X=&-($Jy)mZd<W#ot~IZ#0T?q
zwuHw8oMH~P+bcdkQu%qLeA=y?&1bXz?@2p5ODAH30%%x(&-%@VYj1OJZ^@i&e!s@p
z-}dVj_qugvxwk+QXfut|&#BLP>I@o?{QG%T=;}=g2b)UX-?PoVwI%YoZu$S0^Z#k~
zN|~;zt@-tG`SQTUZa?4V*Uwhj`TyVV%^4RL@yJ@4fW}<kx`&2_e!H1If9ts^YhGu2
zO^W~fDqOScQE+W6LyZk1Q^0x9p@*KEQch0t|MF*%#;5oH|Gj^Caj`q7`UdS!2wv`2
z`S0g*keRn0pR@n}XG_LKrM=bP{rcr>L0v1W>58$XS3@fwwu*mh)vr<f{bsYj-p(hJ
z&djkaZcdNdS5v9C>&2p+tyjac&u+=MxM*vdm)(xl*UE0^ZohU*EIMc6tXZ=_sm#+T
z`B;yL>%@P5e=koy-nUhLu2tzNW`3Iqm7ky0KGAWPuPp)fE`t3mRp(llpEEozGkN#>
zebGG(IZ8|{3+83t+?2Yj<mDvsxQd6uw)Iz51X_N-Qw$me?vXav`+mQ^9yGr)xBQ-E
z_O&%DZSz2x?zH~?IlJHO(gtP5cRQcY`||d-`Sh3~&$ou4-d^_lz0>~x=>P9=eO;_E
zs5!prwBFCV@9VZZ8uv;VDuu@sy0-Dj&f5KcpEbYD2M3Vxpg}Ox%fF&Fr}?g0waO^(
z&JLeB7KLm3K{<Z^zpv}<Kkf9LZFUy4iL6stJ?+MZL{QKcf4S)X{DL#Ts3ODc2JwZ=
zCJdmm0+gFiPFBzVz<u%mXZ!!g>~a<0vD&TI?$>_5Tk_^c;o7aBYVN~>gOWBC1z~HW
zrYiT_7%g_|Jp~<aQTGJRy<hgT)?GfgEb7_$`Sb6V-?s%RNNktg=4i|-Z)X!8TN?WI
zR+p&uwaWC>i!?sHTD|@mC<SC+zgPW!@0pp#>h1D%6_ZjxHA0{WXcsD<&4&YD=RMZ{
z`u@KC-{0TQzqq)#_^4?36VTAGT-A$({(pWlM3|>LFi16k3VcvPKdC-{&$-i`|9%{|
zPdhWi@O4ezVz=H`f7JfJ+x`CBo12@jM@4T)I2hG0ZJsx0ZrLqO*T5%#zu!MU%QQPH
zzW>ugP%8AEt{1s6=_p&REhx<wF9V%u7P+_Tt5yI0m&;~v%DTGh)^Sid1sbSsWM)_M
z1Z6HzvHSm9{{L;)3gu_n*Z*@r2WlT#W$%8wExK#bjR)(w8~UH~a5yku*jxSm&!6Y^
z=PxXD-hA25dhJ)g7yY*1B98UT&lmQ$DV%#=)+8f9Z}*!`b1EKn-pt?s_tT%x=hN@(
zD7;yAJNLTPy9>_zXQxHy%>+#b6hA))DwFGe9F|YJu)y(VQn&7=jEjp(USHD%O?!b7
zJ}3);(#*W7S1bQKV7HHWT@2b`x7e+Bm9h8kvbROQUM>fXmhJre?e^tWp{w8Q`Fsv^
zBJZaM&HSLw`|Ceapw>e(pOprvu=m#A8&X|;*Rh#R_2&blt)LO!!)?5$<*MIIT<F}s
zEctj}<>Ov+P(`{d|NcIC$&Bf7Rhe>?PbSLL{doBEk@)@@pkDbg>HIUGA;EpMzw6%A
zOEZ`SEX~``dZ2B#VX|A{tCh>e?(QzvpJkRCwI%E7svG(H|8~7zzkgrE#w6E35!a1p
z&2EdR&#Op!TO76~A`mp1t_f-y<!n4Ec9fA_CctN&&CVD1_tzIbXk@=8SN{2|x%l5-
zU$w2u-b8@TBe_xc`)&98y6?M>PEz&mTJ+;V**;M3W#jL6yT#W=Z`X_3mJ|7A-|u%v
z`|JNa-kK(3S5pxf8@u;h|J&{N_i1!3s`!4lynC{r)yfxFRt8^O6}md<!GXr3+UxfO
zrGML)d|d46)vHHAvr}`*Ze_au{`R&zY;Bb2;Wl1vF};|G=f6LHILt2||L@cE?rpiZ
z#m>$)*WY%(?)Rf3!u~qT{N_egpE)WXA7herWyQCT&iu9^pgB+1?Rj^*KsC?ZU8UN6
zw%=|f9qW;t|IA*LL4M&XjXj6>7#K9#uS1*MR2wY(C$Ar~Wwn-|=QYrbzo)C8%Q~lo
FCIG^QT(kfH

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-13.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-13.png
new file mode 100644
index 0000000000000000000000000000000000000000..687f2f1b5ec1395e05790b52d176ade976fd7b0a
GIT binary patch
literal 23905
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_eA=KR<H|3ChIz4feF`fT3l8*{$?
zydb08V(957X?aXYv-Qbj{}3rv5k*<qq8}$TJC#(NoX%MV9-6~%DKFLb{C)qv>i>K8
z-k*K;;nuZz*H5R4f2*>MUw{4a*ShydfA72g`DazsF$rY`1_p+LhPfA6L5v^I6&gTv
z0S_Y!0|P@tGKT_)E91<-$iTqxK!S+_#62$H0HQ3~7?>Cs7!DY+2!ObKilk{(@Ln0b
zyf4Q(`_JXlZ*L;MzPTAZapJ^JpFdCT@9(es@vz;x?#_=N6*sr7ovIyv?_=`cyKio8
zcHfq}y7>7y$=I&;EBCIyyu5sM($TI{bFH`M+`d+P-d5eStD_@eW75$%dZw;3e|}|s
zFlWuj{T2<k4{gict{)#C&&tleI`8hTSvHkLZqui$O-ntwNoRYicG#K;xwoZEG6L8_
zpWgj^-hO@gy-N3|r>BSi|M&OnDed(u5)L-4%$qE;A?NnBC7zRma?A@JIE3$hZGWb+
zx_8NbyPmk;|9=1Yp^<-Y&#Jh+yWINa)}EfOUu_#!^!vmKkJw!$C$ndFba4Fq@#Dp-
ztE)Ay*;IT;xW2FK&5emkyKld}9$z2YFJ~LFF2?fd+1cU${{7?P=MR5;toQ3hclo6i
zelvZ&-oL)JHT&v9XZE?)<$iZ}mxtHX?2$6dneoc3d{XZ1uD(9M!dka0EDFUR&%R({
zusFR*=jid{rzI9IS)%gy-|zRo-fTX<CFv+v?wuWh`TPHtxlRAEePhBwrm1?dQJ<fk
z_5N&jQvO^`ZLMkDpNgYLk5+CmJeKk3Nav@|pFc}URegD}a9i%}RUQ+S;=bQq9j*^@
zWca$6i}&_co2H+W`TFi|^yz83-W$VCZ`xA+KCV~F)T{RQx39bYxvBZgP`JG<wddlF
z!pC2ZN$1}wm>q4JaY2Ds%EaTCMCkgs*srgy2Cs|RS@PtB;M$m-L9x5buCmM5EGT__
z?e52@yil+AubWu8RXqRyzW=}E{oe1p)<$p3nVI}`scS{Wj%~TOm)TT)N-5D~Fq*{p
zp+7Nl+Q!`5$v<CRUESN?-~aLBM?+3dPRW4CTUS>GAAc;f@8>h=<j84~76l1xp-<=L
z-d>h>ch}2XYCr!(ZOKT?xox)p&!=wp+4}qcT#A^Mnv|T}n;Q9S<8e9f%lnj-lzMV+
zr=6c?n|HeW-JQ&$XJ;~VZkuU`ulsW2+$J4i8JV0<&(G(7dU`s&Pu_msqkZdRc0T%g
zqgzbZXj<ybb91d{JGFAnyl^34@{}o4mhH;F_TXT1Z)&8PlG33y@%!&(&pz5MKD+Ac
ztDXD&Jv=<FXU~$f`F0~Y?*8?jq{y&c_3s$}Y`(zC-LNWr{W_!6Qzs-A_ez^r<!-L{
zm}HuD#Y0h1k&A;Ppi@Zo%J%&DxpuX;7QgMc|F>dW?rkk2qaa2`MlN37(4}5euk0?*
zkKI{x^s1hop5M0I?DzNf%Ki4p-oEO%T(!@|ix<~fTVF5J_j;#2f6A04+wa#!Pt^(y
z3J91`^yI|C6DK@O^Y6uYPuKJP{JP}FheX@IUoLm`^i0{mf4`Hnv#7N6YTwyrJGZWm
z-o7q-&Z$pNPsf@ry{7xLDt1>%;a$xg_jVLMo}%o|w>AI%z1Q1b$}$J7i7>pnE;f47
zmb$-H>vK1ypI<jUzAkdP-`q<F8ksLwh`lq7p0;#d?Cw>yzrR_Py_sS6`_1N(_v&lE
zy}7x#k(pg9dRxw~Pp9=mcNV3te=B8@v7nV({9Zx5b=jK>-1>VKXoarQFfj>XWMl*t
z3fuGUmOMDXxc;`!Jex?<tSbQ-87r8WnM0R&2%6^H2-uu<wkUi0wbxI7eJ}m=<m9?_
zRmUX4#jWM#<*%Dgy(KYWrg8eJxV=?ee0*UE2@8~zm9MUgwccLOd~S~AV)Oeo!Ju^f
z@K9^4{r9u8OfTQsnr(aT`nKH2X-~fu*S{^Db4y~vmbm!qa@nV*X#RROJ3nN5UhLCz
zbE7LiJqdh#taoee@3QsJc@&BlaEmdR*VWa@oo3^cSpo8-g+)ZKw0T%Y#)`Th57~L;
z?P9pa^{&h^&7NYM?&n!wJ7d@Pd)2A8x6LxkU3KDw$6U)|xBdVB?Y>w4zm`|dCgSGi
z^ywwlznbj-d^o&G$9uAxZ_r$;(vanTve$QYbZ~eEE%%#il6;J3s&=^FT&vQcgoFir
zayBbMSBGVOd~|eG`1*Ui{gWq5SRiGZ_2R?B!(DxSVY|!TZppuISNrLtdenx5#%E_{
zE_Umc^8BSOa&>KV_{WbQyE-}wN*8;rQ`hyHuDAC0`~C63%l)oyNIV?#{`5p;ca!>m
zHMYNAECv<Z*K_lqmVW*APrdrr%jKqNXC!KWJZyh;bMx{pas7GAYUOOJLgH&awt~#b
zy1Gg;d|ix`VN%PnKH1e_YoqRl%r*aX(Oq6sQ`7V9t*yZ~H>C#W&c0=-KHE6G52R*S
z>FZT)y;7&9>CUeE_cOg$-ahX0^Yho+c%?&D1Sp38{`dEH_KOP(wZhiSh}xdF)~52)
ziwg^#qxRSBO*=ntt-D;M%cZrk`hkIgUH$#n)92SNldt=6@ak5-Nw3dOspEU}=#fe4
zDUsHe77a7AFhxbhTl?$xgUXnxn!#>UwL&MU<lf%qtH1Zlq^#@f)*kDX){fs-b8C0`
zdb|IBigjal1blveKD?QYSH)9QD<q(%X3z2SdsVi-zBKzwO#Dfm)0f2KYZg|1ezr1j
zv0K%vmCL`J*599Tu!;57hQ#K&pHIbESy}JCSj##=(C7yr4+HzsE3DZ^yF`y2KYpBr
zg=NO!cK+SqvT~!&=__j@FVC?oK9+m;$;ru}GHvJcdBwV~FE8)kn0veC<56+B<Cdkb
zrriEsSXii8CL6i0X6N<1(0jWQmR`9gk?c3$E;r}4S?KDpuMz1zhU$KEKJ5Ba#VciE
zuq}7CqI260-T2LEy&u1RHU0Vdx%u<+^UI^ljbj5RozH)MZf@GED=Uv}(lJgx#&i9b
zqH~+X?QLgYU0r?ldVKxct-C><-k5uPO~l4Sxs_hA8@A=&&ntRz0#p>wHp~6A;^Zcs
z;2i~t$vuXf)6bWc{{OTsKR<Ru8;@j?&S|5=ZM?<0t7CR<0+sXD<?nnRYfrZO`s%9j
zw%pmA!fH#hcTd@sAZt@`A!b*}$;E#sse1SH_xHcNw|DpLPY)g>fDA5vc!;$>cir1V
z)8@TaUHaX0>uU`qr9&=mZo71Ue>lwFn;N++YHQZBH#axuy<Qi$_tm%j12c`&_mu6l
zE_l$u$<1wCe!q76@m*Ky-UV0HUaqe7on>+|Vp{5-KYz}c->-SR&3Av@-=5st&(50P
z{}RRA(Bm$y^FUtXXWubz{k==Bt&P@JQ*)bSl5~VaR3qTP+PAm!_v@bCWK#Af;_0cW
zr*mVE_sNQiiZ1Q9|99iD1S2D(+-akv2P;z}jgDzVZ_A0h{`~ax_ieu|3LZ2}(}`T9
z<l6P(=kxjH(cx>OOt<FV4paA=b778Uah~_tlTq7pR@VIdw6pZ^EQ7?RQ`2-;zq-2m
z{+BxUKADw`%<NeQ8W>+)SvgrNeBGKOM_g?G|M|QsV4>5h+sBR_TUGV-6}b6O_4SpB
zZ2q4gA3uHkcyV#R-K!`uaq;D=!`D~6O)9gNu`2PHRB}DG{O+{BqFNy*UeBHM>+9>+
z@&A8K7t@b>v+>;d^XFg7a^&xyTK=g@(m1V0=k%p^`MMXoif5kLq_e%Ax#;Psr(5rB
z*kG_V=Vs9D?fKXL{r#Q4a$fY#eYdvdzAh|(+NnNof}xtXO$5V_<%_t*KJb_P-NAKw
zlS$$smeN;OPA-0XYist?=g*&C%(uO{)O-4u<MQ<{o}8R~YP$Y>Q0Bh4*nM^6=CrJv
zo0h)1zJ9%wX;#XO7?zzyPlG0_`I^-Kt8sO8)ig5;+nROt(%$d)Rv$QUz~pW6=Vxap
zEs5Hib@KS}<H@xpC0myH&0TeNw)tx3cE0Uv%j)avOJ7`Ye82Day0W*omfqc6p8fpX
zTq)D6E4pv5-=2K#(c{NoKb_WJp7~o)+3m%?-|sHh|NA^&x^2Qz@9A0B*Tq(SILLl?
zm&VrY>wdMrzFb`5Ir+=2?DdtkvB8_u&&&DFvAFn{`JeXsJ(Je`U2^=&%3#yVPbs-~
zcZI6^&nuCh|M30$_t&=7{{B|=d~SKk_q*k<C%Vf8zP+_IbZ=E@e_pX)yng+^pUXi-
zpQuhmz|+&y{V$u{ul+t3)IQysef`yoi;MI6b+_qwv-8R9Sh}EG`+9g$_{MBey_kqe
zC7+(0oV||oz+6`b#(#~I>@8H))UwXbGJSPt=jL6dua_-y?XLP`_VLHZ$GeK2daY_c
zsC)X-&f@1&^yBS9R|dJR4qJQa!NKOQFPG2HdUa)`(XkaJFE3R+of>{+neS}t%B;Av
zvrN4YxA9)yl6g6%UxAN<BjEHjUDKK$1+8su%XZa%a`>HX?+~wD`EzCP^1S?qlXjK8
zU1gYjEaT6QkGJ+#Z)aj+y7NxuPESh<3&^?C^<png(~bV}WU{}Oon73-i4!xq0<NwK
z4L&_h7vzRlll|>HOJ$DV*qEFeIn8~?+3EW8XPIO!vMhd<ac@s$*2P7xyUr(GSm2n)
zcx01KID=-$iV55D@6UV0@bSy5ySul8LTtkZ15iuh;lqdP7_18)x%9JZ_DGp}9qkss
zexy^_H0Oo^udG$bzJ2?$uB@2o)+6yy%Kq_}uao{5OUcR2TlQ^!?YEgxTeFrPIN)&f
z$dMHlA0M5XsN9}&`<nUvn#EJK!(Tl*+PyvG^4YlfX{kGp?TXR1JQ5=<z?h=PBJe<7
z$G{-q;>C-<9(C)7Y)o=3eRaii|G!_Wqsu4QRDL=ku{im7-_pwc-|tm}D;HH&)y&7o
zdZV^vOgz>jx%k`L+u9~3SH7C8c%trFIs5dZvbq`Hzkk2pz{qTpaDYM9qQF5reBG5L
zo|8>VUxmEAx!GMiY>h|h?<eaF+WF<b?Xugs`~2J&MxWo;|Bt@9D)e#-r*O%yFPU4j
zu4?(-Jr<PQGf^e=^fcel)nQks$JebiN<For`un?8@%#Vrs(VjaqUhWP3gcJT*Uz72
zp8sy^*^SA^V?K9n$-I2*b^FUF?`mK2Du8l8>7~Q7OtZ6YZc2^XRkBj9`pw3Yx4*0E
z|9or*dE(R4)7f8NU0vt+@Z>Vz+0QoirbdF=302?TtV}-Mmw9zn=q$tJwzRXemd4lp
zbhZEgXY*?B@Tm3EZ!7*}u8wNHd0KzJPJMkns0XyvYidz+`G*GwP3$vuO(iR98Ba*`
zFfuMEdU|SQ_Vsn3YTT_)=H<3^QCqXDDnBjRmV0~JyT8AF{#+TgH4D@fcyV!YYER+p
z7kWRNzwE31ZL=+Qe_idY`A??IyI;}P-o85b_O_@!6&t;#Xe<m}9d>uaYPU~2Izm^6
zRsOxOJLjfR<g}$-qT0(=-uv?E*4EYkemv$^RaIT-JzZ~m?SEEov5^1&{+7PGv(uzJ
zQ7dlGj$P&N*MSO_Gcye1Zu`tK@tm#~8w6_0FZC8*AOG|7^Xu2+>(|;=f4g%o_)>De
zt(v{PeeJK8%gt+4UiYRs-QSu$eO=t%RWoKt^nch`|G)0-t*zQu-+q36e*Lqvv$K!&
zNOtx0T{}0|`s-zX`^qi5FMchuPB}j>_W!@{`%9mk5X`;1>ucNF@^^Pu?tZ`TwsMU`
z@|U;U?^oSDw(V`n-P#i`UUN5m=1^cz@dPz=Hl?0k_V94~?z3+%?k>-lOun);JN$aS
z()zE@=hwgb{eFLW?f$g0Qn5P<4la)UlyAQNFGKj&tkCtvv44I%?teLJqOFBR#H2mv
z)QjHSFkCPH?c6+DP;dX__3P$G8DE_|boj8Su<+uR7MA{oZ-2kv&;Ir0B^MXhrNjL8
zbDqt*yx4cP*(~ewb<fVuem-mc<FeNm7q@eXXe{uYtd{xw+}zAtX$Kk@Pfb?uXXBS!
zQ~dl~<r;bWx;;9lFa3VMfBnYf<5hoOU0XXF6jmP}AHRR?vu4zm6^|Z2F8%n()imph
z#?ha-VtO$v+IXdx?OOljxO)75#-Dd~7K5Vjxa=P9>3Ws2(vzo5S@QUJzxS{I*Bz_Y
zO~1V~{ro(mV=JP!=UEj$>$z=}+;e+wM@I+8+Z!7XKYn)vRI)$PS8Zx;-uo{|QB|_G
zma#xCb_0XQuh%Qh{Ox`&0TnxmhudC$y&gaP%XNkeiHF-(#_zAwirlnB$~0>UsJ(Ap
ze(q}R%CNOjpstXrXa1g#ZPRq4LG2bzBcmY8;%8UR+y7tF$}O&CVG-eP^ReaijI*;$
zgHKLUHLd+s^7i(2e^9CM?cLqgptfe^=V!Ali_>Oh>BsKca_I13)8u13KY#sNm2q*=
zCLM2C>#{4I!s;OlomfHr1<(M=!$Ym5&(27moo^rS-X{~dK5p+6W%oX5xyQ}?b^&K+
znO@zVA7A_RYWS*{otr?G+}xag`uK5oVRb*B%XN8f2?+~kndMfwf2)0K7+3L-6*QK>
z%*ONKSIXwsp!(|X@9*LF_tmQIJa4(N=4a90Z@2SzJ)c*-hfl=s+mFZn*&iMpoMlnC
zh>cI?#j9!M)?Z#<_Xmwk9B5<?UFs!zxBPxB$l{`BXI3h^_hmdiHTBlU<n~ozYiGTx
z10@Z!+*=vX&dluU>I!OR;{_FJx{;e)8XFtCy1I&X&z>-2#)?^{*{fVSg;s^EoYW<z
zyNX*}FXQAS)m!^&ch54-UUq4zx3|~*uSL5{US0y%dH?@?x1XvL83YPr504H|Un=$V
zw3i=`%Y%wrmA_xPJC@I@I`x%-9h6PK-z~qjEq6Ak@20=+$D!o^Ute9ld}gNc)h(I9
zp=%-n>+0%u{r~qnbamKTk?dVFUu*BwR&3DGV3zyKt<W4XEw!emCMc%<$qB*9%I<uV
zwZrv_zq|<CUJ9z?Gw<%&%E`}f{_o#EH4~F7Au9q7{&{Zy-%#2-uVicVrj*W?cXn?6
zd42!C)KAaOW`o8vPEFBFo>%)Va&!6nxc=mK_xIli711p0?6cq8+&p_#=;~QJi=WSW
zdV0F_?QLflI5yw8b$w;<@z<6)H#Qu+vOfO)le4q0|M>A^$1`t>(pOU|zg`XZ-COnb
zOl<kxR3;`SpNNPVE2Fosn`v2`wkvLbGdusRcXxM#M#Ub#f1mH<<mA&WrhBH1S9;I3
z?YXyI+})SImN@x*`m~>h`~LmPPQJYj<lft#t~_J>`0?XMtN0efV=+4l4z{$nOUK8@
ze}3F=ziV3bwA3yU%}1rPyT$cqB^~XOyuA%H5R@%9;oIBWAXi(z-&1_}v&TH<q<43A
zn&(s-gL)iQ-`-@NnyQ`t>B-6DKY#!FMnufWys~2AOpC%rxBtj-a&pGSUp{ig<?|(P
z{h5<gy=NUb;1ImTL-6uqcmCo>M>zZEpIov;<@2-I`Lo=5rDiU2?FOk3mXgX^6}~?2
zSf6b6q)C%vaxWL}U1G-X;q^Y-#id0vY|V`8*Hdq8$z0|)*Get_-X1jrg9{?sVP|Z9
zy;z*~`PtdLw`%_La<oELB!Hp@6g)XOYkt05K0j#9^A{HvFRT6iZCS#>reoKyU%#>K
z?X1P>ORry_@g+8XvYM~aw%pk#C#zT6ZlAsL8-vAhqqcZO&;V@#TQcgnEsqmBLkgF6
z*qRHUo}SLXp_hMe&#SAeug}%zU?^}mU}IsJpvfa+5zx%WyDM?`BG>MF1@Cwn9G<yC
z2ZN7cjQ1LC?UgpyQd4tNR8-uQ8!f6GcIL$-8DV*O{oC8N7Ck*>k`HRu-rTnK++6GX
z2T$dl?Gn{axm`BvSoNRFpkbM9xuEe8$yhFiJD@@3nb&S^PQSV$P&xO;2FKjn+d^w<
z_ROpK<azwHghj!EoZHiKZ+CTfdvCmZYN~eZ+b&V<veU=6>Ud8}t<>3`8-4NO#h3T|
zCJ6}(n-)Fs01Y%LDk^^Z{yjV*Vg@L~-Q1jhzvyh{)TrL=N|twGeos|)=WA_kU0L?_
z)~nmw*Kf<YS#-NkTwGlJ_O`9%@9*8-cHa8qE(V9RL&+74DN(Plt-UN?|7W41bK8sk
z|NrK@O;@(Jw?8}2HadU*-)%+D&%NDP_vXgNPoF<uetLSk@q%6ZTiV;RZ*R*5RY1pg
z&9DC#={w6L(8;MuNlEF-rc`fMc6QKk9C$?K{QUJZW=Nc!WqSJcx9z9*e!mB5QE1lx
z`&0f#LQqg}-G+*nmsJ0LJT8B0OXg&^9*Kny54W$5-Cg$U!(slZ%I<y9R_Eq&1u=Xm
zcVl3jkO^wvO-o%Fu+T{|woB)9(BoshrseNqYX5vZ4jNaub8Ws=saNr{Gl8IvQ2Mz!
zJgb5}ef=7`GH9vIG<nM+7ehlstD+|zaWx-ZugA_!S?)JC2s8wgaZzb&-rcBfG2LCs
zrfe)M6>C41b#-)HXkcWvnfCv~Vg6S)HZES~JA2t=b^ok`O|08XWaLyh8D6@J>oCmp
z`()9!V~2%ga?IVBb?>F?aSbO{zWID>-`8$2-JrX>N~fCV$Nl{AW692SZM@Q2Ha0Pj
zkN1C%Fi$-t61%4&Fm`v@*IjRWe|@{ZBKqpq-y3wiPfyn`f1NhPW}ebgLk0bPKNj)H
z+pXD_d;8VZ@c2@0`AhMWe}f|IXqV{aNvhr^wZBTXe-#uI1PuqBn{U7V-rnlf9ut*L
z&9mLD6|!PM<>zOflh(!TTy(IReRasnATA!BkWL}hFYk80ubShYmF(a*&t|1~d`;lf
zQ&WTcWGttc=f}Cax`OI!FCQPDuU|d8L2cNRlT^7lIWI19?f&xf`TX5$=UbPrldJs_
z2pWpFEPfVpZjL2rK(klU_?U8z%KrJsBwSrwD&E#@&%CVm_0?7Hz`#K0Af(q+t)>6}
zJh!(heHF55t6szg2hgzQxjB}iA|gw|)<(Vje!u>E#`fgne0x6};$9WBv<oy$D<H6-
zql2UL^)+91KA8`@-k+STzS^x<3N%2Rkg%XjL~~IauXNV6HIZ_;{4y2`(&tsW9qkqm
zcW`L<^!)t#w6n7^54Z8IyvEO<`H+vJ!ACv+-X2hsc$#jsN&Y<>)9h<Lfq{XOp8PUa
zRCF}Wx^m&+;dW73*|lYFZ)M)!SNrS9WdAJ*2bs>!G<NTmGA+8jJ~a|7mT^%DG?MLa
z`!!_OuXn$H{8&-^{9M)7tKnNSFRN{5{P_4-Z}7&Xqapk2{)%khe|4ReC}hm+(c{N=
zcS(4H1~r53ygSs&{p-i${?y26adkhRirh{;KQ9*4vA*nYzjkBt@m0CEx8-eBS5?(i
zQ*%@IpBM7^+1b*UmsEY{+r{ceZ@cp7X!qB5yWeO1{q+^pGk^O2{d#}9pDwo5-$F7n
zRzz*hDn0z!+ruMZu2m^$1T=J2i09qi<=3yS4*z;Pe}Cqc6@j1(6|%%*qRHN{m7JWM
zf!p)$f_n5XANSjbU0&uJ`})_{*Xr`}@}aB4d>=l1XjS`b3#hdgx3>xutg~z?H?7XC
zso7)q`;GBmP!_tnditklXSF@o*)QE+r}ymK+|{?XW`l-}!q>-LJ=QDz^;&d(=EX&>
zzyAGxZ@a5eGWiRr!~O73Yu3d@t*@@FU9B6v?Zst(`>UUxp59vZHEXI)<fW^1=jK>S
zS(mK=$xE4Lfd-R){d_(jH2DK+$4Q&z6zuN4vA@2aSJo=zXqRa4>uYPLs{6~yT9tUb
zzP|qYo12@zo>1=JaVziE7EfL&lM5?@mw!3H%nup{J>DmK`OePb(9LPSXXjdn^GciT
zdHS8@fPD{RgHP6_C7#E&<r-IhO6f1fH-LD1dTJzSAhYJ{)$o_Al<n;9-Po3^<})MV
z+nbxoH8nM7Ci~mHEb}?N>C6O0=QB@FPw!2QR5LO%I{Q4S$8cKe%w46gt8CwOiE8KF
zFpG3@YTBrC8Z@1<F7<xh@3k9sPTwiL9&2uMUDmox;`AmT2Zx58RbN+SSGu^gY|OoF
zl6~zAXvi@6zN4e#vaGACo}HO#ysmV2*;}KVn^KKMwZlrRk9~T2x;Hg4?ZJV@ywj`0
z*XQNjHapzL`+3FdA0Hn-dvvthe2snOea*dgC#UJfX6c+Z5)>57J6-<v*3+%E%l+np
zrjqXND$P6n_|YQ}`}{oHxb3%hm#@G5dd8c@{dS-^BlCL|hjS}GonM)I``Kyz{Uy=g
zzunH4KE283@2{_Sr^(w?TzG5ixh>_S(BsFClXsQBf49xX!s3RAUd#<pvnYA?<Kz9i
z|JD8clp4IJqEJ{uB4gj*Z_(S!+WBOS9zJ}irlWJ_^+rYo(~^Ts6Q0Ug6gYTK(+QlY
z<oe~$=kvSQt`1u}>(;j1)xzq26|&tI_f!@iJ#ysEmyO*bnv2+Yr80hfdAUx{@$s?V
z$?Mmz2ldov-+Mo|<i!O=&!C5gTJvw1?L52GdwR*AABFv27rXUNnm>R3>)*3Xvq7^_
zp!pr?{5=a}b{6ft=IZ7K8lnI7a{2r`i?F22%Y37Dm#qaAxBF^;SFPda;tJZ9b2BfZ
zKB~37-Fp(Kue|-~#EBE*ZhwDsGx(T<ZrmP=*yEZpJ2qUmjxQ`MJT=$4yzBSs@b&ZL
zYCbq_PxZI|yQNE9e_iV7X`td~-P2Ys(V}YqNmtj$$N&Fzeg7W0!{^VR&yIC;bX>Pz
zKVpN!?y|Q*pt;!1X};UbK%MdX`)W&nd`Q%d-F4-)C4++(hXTW<IcH~^dr!)`y6R~u
zk9$eUmL9`(W!F~)Ej^_xzd!r>I#6FP?aYjYo72yO3ev1QJ2rBOXcV0OeeTSsXJ=P;
zba3=PO-xLj^rW<J+J_GXvHNNw+xg}FO7CZ1UpH07G~>d9Yr-Bba<H`k+`i3E97_JS
ze-Kvpd(kQ$cft1ioyDNgJ60O9E+%qX>QakkN~+WK<F8r2-?KPsYnG;kMZ~^+`!?l9
z+u7M!6+iRo`n~)Azu&ggZf<+a#dQ6Dj{jV%P(wpQE?(ZL^XJcB{Z79A&&9_QZ*Ol8
zcXDcax9@k}*Z241yT$dd%`{H8>D!)mR?4%!v{%}qV8QY0yGmcD^jzGQd;8MYSqu!x
z4h$)l%l+q1TOu;QZ|a^qw-xR;v2x%0^l`RH<{~CmF3@n@u9BCN{{8uUUW9#qI@`(T
zHE;9J22Z-97QHQpi;u4?ditfsm9@41f31IVYq$LM_1<1yUSD@C_nSK@HFBM`aQUr+
z&FrdwP32T>zP!8~R5QN4x!FB*by(<fzqukJA}aCm@pG+8y%xLmUOL(>ez|lGXxgUu
z`MJ=KkB(m5Q&|ie`TY0q-=rlImED)^*gxe^&Zp{`HM|}{@9*t3t@@JD+S<BPZi;|}
zgoY=mCwbgrdEjEVl@%W!fq0<K{zB*WQ`fJD_ez;w>JU^8*;7&IS#+1tJGV~a^rn(`
zcXn>sBf{{&iGgv#Q<ZuFzn9xzos8{U_y0i6?q@k3@A6DbUIc(T+2wajuk*4$y0uL=
zx#zm2)4IO~mFgiYgIxdp`)5`0VL{#Bui;bmVy%vD^PZ+NQ6+SJ+}(>mbwNdcvd^yf
z26xt^o}T9UE8A~U%Hw0b#ecW`|8?+J_VsmFR|GD;RNB)kZJzb+&d#h03mW(R`Q*J_
zy<alfB<IEkk?pocPdctYJ!${>r2TEQk+f6uY<EZh&b+*=^3CB*I-unjw$<ORY)n4B
zCF`oz*%^k;o72u-(%=7Q5vZ+NS62sWxayp~^n8B(x^}rLjo9aW3@aCMi#6yhcWULD
zv?O$O*vnT}SIfPgt{bg(defdV&Rwy)N?tyCHR<z@$Nl#|9Io0|^HZgAKljGEzrRXk
zZ*R+u-C3l1_AN6L)0K6x){@DfdUELvP!(SFdhPa<$Z7K`9(9&nEm^%PbhVo2OS$Ai
z<32gtRU4C!pW37Ynnd1O^ZeZ0O*-DXQCmLTNc;KeY25dzcUUjn{yp)}i92e(vnp)9
z{rLTUzyH^bhqS}ie26If`YLp7)K;%c|M#<jM(bCHuh&vjJEmOo=KlWp-DPjRK1xiQ
zVqaeen&mc5I}=b+vZd_Zot5+JetBMsf8S~7rX9Y{r&OL{LL7?#L!@6t#g3$;q$v|7
zESRY5zH9C8f4|>@MpRf?SzkVEm*1CcDxw|c1Ik38i9<QtsyiEMpPrhUdV3pa`10Gq
z&qq3if4#5&KYQJ7-h&4ZX1?+(U3)#Q+Lx6}<ieKB%b<bTe*QC{MoLc38jw3?%#Z-J
zg<^m24;9r8yHfl8?sDDeZ5b~vER=igKgVL?yLbNga_;T|Wo)auKRe{AUMQO8-MO(<
zPf5w?m_+}Ejg_C%cxA1wysn;d$M@{*$8#nhKOM7w|6=$4S2NS+d2T(IdU{%=&m@bq
zGZJs_><k92254thk$?Qlpzhrr%hI>Eu0HO&z0`a9ma4B={f|{uRd?=+QDvW*c6Jsh
zw^V(<TfVj6q0{=(b+Nm{#Pwo4zQ!;-sQUjyFXH+6`PV@Oe(CFLnRj=Uf<{!;d}l4`
zleMnea(7?tZqS%R?f1Lor>5!72Dy6g*K5(I=G*Ugzs)JEmT{y*5H#M;C9bz-o^AEL
z5B4$)^Mb0XE`e5wfW~I>@9+EdYW4b%okgi{@9qxYoPK^<e}BK4-<%hvb*;A}-Ls18
zV%8@dY|6U7Z!c)_X2l8(+b<WKL1i>3uUuUhd;4|6&nZ_{hx;3+p9{IX%r|snlIzc(
zKVSa){XTqc)YhOo%K{cUMQuvy1oavZHnV5Hy0S9s#)gGWO--QXF1isL96)`dW;WhE
zes0fORt7I$m3Mbn)yJdapqYnNesisij=k7^zwR<<oc8VQ?aM3WCOlaeaw%SZUB9gL
zGEnAye5`kqj(5M^uNC*||JQEMwJLkF0<@}NZ`IdJn^I4QY)bKbdt;+BXu>!rXHD9f
z84nBRRDFH*@~rv&km-7{BGS^UV|Es4=HJ^>_3Pzw(9qY_6@kv6K3%VrX~^a@Us=l{
z7jALAkeNoQG0oriW?ov-DOdL+(e}@W!&-rhTFmnAt#R!Z19dU;CR>YX1UTg0+H&#C
zOk>deBO9;Oi!U!PgF=9bnHeOqHhTN6Tk2|RtJ2QS0%_L@UA1J9Yxk=|t=u40+w$+P
zOFKJj=dKq&fBnijH^&kbTA-K(jmLq;+P=NHxi$a3-P-v5al6akUt8$hE+QZ>VcB<9
z1{Fhok59&*m6eoyN=iz)&cD3BzkdJ8`S$xYBR4Ind_K1v)Z+6A2$--kU}2M|mse5t
z?}O~}5~nwvQSP@%I@T|rZ&mv0$=AyF3_<0KcN+7_*<|c0f1jtMq|~#2|9(zRPD9<O
zEe6tNIUe8l1r@)wQ81rm!|$;%>8Q;$&?>DjZ*N}*HKBg|{yiHs)RTC)ZRY9e`qH<z
z`IeMyx&AoLp8v$f#qPepzrFQ6*u>hqe*OB5xwlQ1yMY>+xwlK+-MN`v3z~D2v@BY(
zGIaGcPCh=ffB*i0QqVHb$!cle-rUrj7w+QHa=qB-*bJ-ER}%8_^6Otedh`f1Ieptk
z^7M3l^KH4a9h=!Ix7ZgxYN>qKD(*AWDAgw+VZq7i`tw2luKf9Qx^GfaQrFkm{qM8)
zZ%RL(cj(X|pSQQRo~{4?JAQNN>uVz0?{CYUoq27|OwE7=4JT(BFJBq6bJNcki~ECW
zW8M2?GC{Sxuz)~9&h4_<%+H>joc!$N^7&>HCr$(nL`~5MJhbP_C2uuD!;7!8tKOb}
z*~H3yruO^YbkJZFXpvLY)~wXBH#Z&@{=qjg_FYX=^W>hN&t@+RT<o?i<KiNa;Vo@#
zvtC_YJsULQ{--{z#}HI6y}Z7DzGnEkIVUG7x1XG<JzX<&)s)PutESF0%bm5e=;<lm
z`{E2crlp?I{p0l^UqMsT6I3u}WUMgDyR$+obXCP(=1Y64%YA1Wxq_y}UTf-lPuC0e
z@#z7r0?~`z<?(AZe<^6F`hM;A%zJw(*S(dm{StU~wz>cBZ*RRndK!V&G2XvxU&qri
zfBt+YXXpGId7yNAXUE3d%1W=Vu3jFr)N5yH_>X6^^GhBb;VgZB?{4nz<@4*Jo}Zih
z`Nd^!1_p*dlm9$s_K1?PsR(fImkWJ*YO3wE(6v!l*S;_NbYDAk)st)Mf|h!1%C(OD
zyN8j1p<%x?lZTYbdCdp8mo_`Ka=kp#DZI{e8=tI|ioCphf8)!#x;jw%$hQu(GV_nH
zpu;7FpA%=E+<ZMw`{zmdlet2|!c%pl&DQ_s<lyl5y7N8M3;zuFWD0^>Gja1B=l}Wh
z`H5L$V<V^ucKt7?V{rA{Y|wPs$45uIIyyYI$}%u87`Y`SEfNwE0(Idk=5{ffyD@k+
zKUo)kGIry-(iayLSy@?6o<D#7>bFx<wL#0UZu6&pQt@AD`@Qz#qoc1bEIgdMPL6?r
zVf*bXD}%4@tNq=hr|hlNu*5MUVuq8G)0V`;Z2hILudNLZ37PWx_lgx7lF1-3)0`U@
zw$}Xp^>tU(*HzKCU#p(aur7TSGF3PF+qb!(;mW-3+}qn$I=Az!JD=-e&*UL>^w_bi
zQ&Tjp3LZ4vwo%ys_uK4WUtT`W5|@=-yI_IB-v9r8=P^F{`~7}+pN!>~3(ovYD|(*f
zg{PjL7J9Tx^!<gIpcSlP7i0fD6Le77`}^H)tI}6f_+%^;Jb(T9d>&LDc?O-IXFF9p
zTo2Uz-JE_tY_3)5mDS<;b8V}`4!84P2erF*?6A1LkBN!t%d6GvLG|WE<$jw*>~a<0
z8PqMAm%sday<R*2-X6)qE(Qh$hh-o7=X1tRQc_mlTK+z6{p+&#_tq-8c6t1IJ?(b!
zdE4cotHU&-x8;Dk2yOiG>n2PP=zpu`Gh>0EvRlUYcXzd7c5DDGzm&7BS`u}9neXh7
zl|ibxcXmv)R$yRYm?<#-dY){#!<X<A9^IQ#PiH+m)S8*~`^V${*B_6|@1ME}w1juR
z>@!B{FWv<uHqa0)0|Nu8>wbyXdcQ}HVIFAm^`a`nf!xXV^>w0}K`M(+GccqGu}tt;
z;oQzA8Oy|Q$BdEj=GWKjZ*wRzFnF>|@Oc&L*=w|mgJB2nwwH%m`K-#`NHDT6D0DJR
z@^tlDHRGZyD0yv{ZN2~s7YbJ~6Ym>puALrUw!ZxE`~7~<;!#j?2Q4+-lzJL8MjM)x
zv?zM_+uPe$CmwD)HC20hQ*-mxjmhq^)@3@)t3d1Ojri~P=qaqevA=%*s*sh7YJPrN
z>E18L#l>}LmTC5vQ`+k@E-&*1tzJ^`WapC!SR1t!v_1titd)L#-qqRp`@pUH*Voog
zUazlj$-uzyZ|4t_Ic~wrd@jy3PT!JtRtmJ1Z_<^e-r})4i(J90kbiy2e0p-Sdow$K
zSW?oWZ8<j=efUt|88lTZR76;KvFBtp&`iE$r4%Upw=LohlL8eVlSHJXUTxcxaIk4p
zZuHGfsgqT}BcRgeWv%?4tHRgM0}bXzZceidH(+33n7}FMaA^g&;RqTAy|t@!^|$x;
z*UvOge+8OWT_3ksL_%UkGdn+M1rKO~^Y}N=;)`czXB#glVqjoU_`HBSOv?7d0cOw$
z>epYd*T4RJ-hR4D<g}%r0qSNp-bpH;!MsVJWsv=Exka^>2&?;PXli=a)zzI7<zrxA
zNKs;$P}0%S5%Bib)~lfD30Bt3gH5bbHWeGV#B^4?ySsb$ytb$B-@o6O>)_C!qG@P2
z5wship<ai{LkiS;1Wh&9{r_8jUAFJp+1am8P1OeVc2<LyBpVn6Oe*>K$hH5ie#{O9
z&vj-DAN)7v-rm-u$H<V!{m*uHDa!<ts{en#gIePK??QcNn_Yc!a`M*7&uP~$Z=AF{
zDfab+h0a`DTwagw_6tr*i`%~D?f+Uvhp-}#No)CJtx`%985(?=7$&)arlbP`CLI5?
zWQmGoa>>t6sjaQ8nkp(T(q=gyGPdX4wQ_ZJUHUPjR%Pq{txb#y!4|47S1nmN=~P;Q
zE<=HJjpoazJ$g#s$_+~bR|YNJl5$e$@4w&gK~3K5pIb67KY9Fk@u#P!y(c9lC!408
z5|OniIPg{D-cs-BueRT>3!ZORYqX?{;Y3BMYUr64N(>Lo7I0r%tJJXMB4~?&Yq!|S
zw6n9Sp3O`bk&#)Wzwd`rx43@T^>wkK8xkBngZ}^fYg+v+=jzH}cThLr=H_(J>ZrTL
z=WV;XyHDSk3@XHoBtADR30xbs71SvUT^AGie*gb{Ro~yOy}P^o_1Ek1*Q?*}eV$c*
zJ+?gaXqPC+-M_xRUJjZqDtvql)NQKxB??OQA9pZM;+v`+e(lfC&-pjj<=os9wWDAm
zvnZ&5jN~pyoi-$IyT|Y<vOs}PlU*?*CYX+yFXrAM37W>ZwKco+!2w3lK;6~V;nUaW
zPqP6f$_MhQr|&Y}+*iBXYr5Xrs;{qBhOdtUtv~M+Qr(hzTFkv~f97R1)7)Dj2M-<u
zEu}j(ReO2)y~^W@kAbEK!`H=t=E;ut$(FvkVd(yf8Pw9<tRwCKT2I9;UlXA2Kkv%H
zW_C~uS5!YP#^2`S5n20h;qkRgf4|%951PklU}XOC?RNfZ&&g__HDRmIHZrq^tPazC
zduyw=b35NvP%dWW7F*%i%(koM=O@|qf(#4{C(an<?q8}tzb0t?{(rlgnwsuR`~U5B
zzLZ_f4kjih70;iapNDsg>3(_Ct$*)g6=;Q%-(0Jeo|Dx;(_le4<`o|jKr1azPt)b%
z=bx?uT1#nYXgJFxbJDJomqqTcS-}4Asb+uj;9xT-M}yV~X@{@dG41-wV0X}D*Y^8$
ztMAwUj|DAtkIvt_)T;E=or_g=|9&LP+E#@$v-3|=`TO(ve4}F(TV@-l_eq)Oz2TCd
z6tX_fcB)pW*XFddyB3>*Hg?U7UB;_0zy9COW&ZQmZA?D?>i++K+r@OFR6MKR@BJ<!
zC%5j`*Vmw#P|#eHR@j;qg^!Qjy;wC(FLu?PoyFPr_tk0zFY5uVy}7fqcy;ynce^S+
zE?TnR>GH+J?x2C({<o{c)`Aw(-oGdX>JXjLyUZrwS@oci{mWr~`xVjK^Rlk5n+qB@
z0F7P*FZTnr2S8J}M~=AEemben#mTvI@zystHadHHdS+c)GZQrA52{xC?f>nt`|*Ie
z^xd7vNsw8Ig-)$D+w?<LOz@jyv2e+fCDu{upn7&@>MI5%Pdhuis&6;bzrJ3-A2h4{
z{Z4WJuP-kbe|~;m+r%Wq&d#pyO5wXZma1xMT6%hZ%I<xjc|*{WFwiWjaoU*+=jK{Z
zoiRhh^V9e5-*4Dep7AP@26Z;(Yg}fZ;5}XM<(HS2L36%0HYS7S;6SSxRK2EL*ira+
zPv7Ak!c5G}s-C&GwiHI+0}q6PnjPV@pXfzi-&OFi>2@8c6<@!|N7{i;)@lhT<=)(!
z9v%=d0hBGKYKLoSX?cOxaNN${4<0}S4Gx}~s{Ovg7Bt7Ogo%}Fhb})a?^Kn!HkFsI
ze%0EkeQhhqqy-BUe*XNq^kIgwis{~W*}r_R^D!_q%r=ajH~*wtN``Aa`%JTjlGoRK
zIXO8&3o=1tL@QQk96fgI)p`5>Q&d2c|F^g2hhJXi`}ILH|Er1aayu7)4Otc9c`5#L
zP0Z^D2b(AT<5EgYOa%G8jaS-cTm1ICxr-Jpx>T{nZj#;pcdOr?od&k^QrNutCx5~0
zTobc1=)B$UHK1J+pc(TU8xlbSnsq;)iigiWaKM3A#v<VMw%p07k>y+Ffkyj}N%+n%
zIGFo$N8#fq&z~>9wKW@3BiH|{*}h;?$;%+nvaxa-6;N$9Gj`eBjt!szz1?MNca^?Y
z^8`&e>6{Ka*u-jkOH4D!#W?-kp2c5XTwPZdKR*YW1ei2wQpoPI+}h7)&3}El?0<EC
zeSLWB-{0Rs^Pr*2{bWJ2@}TDAhlhtt&)a_2(9?U@cMY^rGNo*$Sp$!xkxTBaEf-gX
zt_H0L$i2126I7kYmfxM4XbRfxq7}7eg__@-6+4TcgO=GznPyF?`tssoRxz~Ju6nog
z`IYtY_Mj!Uz0&5_K0G{p+2S9lIQ#K?Q%`XJ#9f@AL9|ClyGtJ)Vhvpz75e>ddA!^7
z68GF&TVDP@Hp^$~6}!c!85?dtNcNOf$(<5n*qqJSaQor<`s<+KlP=Mp<!{qcZdof#
z5|NZ#sXo8P2-L-5U?`ZKa?9}rsHXc@N7O#hNTmje<S!4~<yU20T?HD!t*NQ8*;i9*
z{8hLW6!sdE&ofV2lYf67Xn<ctRCFnytd&Omz8c9`Ay68hJwcV}#FLYgK|9GJH>ahR
zXoBp{bDZ{~Y3hs_D}H@_on9gd77Cokp#WMb_v`Cx<6S%;q3s&pEEB%ptM&&?io9OG
zf8FEb{pls37Cl2=&@>K(rQXx8t&83L<<n_>P@c9ddJ^#N&d$60K0P@(`C=-lwA<0B
zW5{7^W)?OrH5JL4$!fl*UVxm(aEC2&5w{q~q5Io?D%n#`P0^gR#9h8NWLoOZefuZ&
z$y(n#3F>h(+*#x!>G0^$qm;;Lx3*+1&bhfsQ%~<*+wF*Hkd;$LJAEV_%HH48^#qN0
z-~JAA|E6s|k`7&By0czExN2+*K`~6+K3uh6ySD4ILCb7@eR+9nYxZ=%c{ZBKJ-4gC
zyCYh7R)HGy4pAwc44W!GCV}=>JU>4_{N0_MQ}yHR`pu@LraGj89C1n6n`MGs?Jv-7
z*ICBteV{Ja#it;d9iEX%JSX1o|G#dYZMBdcC=hh?yjdnpQuTiI=H_O}SWsuIA$p1`
z(~0c$dzXPC0<`lo7PK3>A$o%9u?C&kT_K8!idxaz)+8k*h3qIu{Q2X@j;$MYycfIo
zpIg8MN*_yHr*SB}-}AZe_507y&wsxK*<YMe7pc?`v$x80u{X#m1=1;<hM>_8hJSLK
zj>t|(0VV!Jt=wDF&&zoRU0mb}DvY#@jEtJKK_NInEK;rE%gf8|i{1Obz35B5y$v+o
zz$<TO)2s!S4~tyHeXT=K*`(-+$JUICPTAMiTwEEvyyVpt&9#x6-9XDiPE1rbEqZdI
zM^6~kI^#|0v{nEuN4dPr*EIW@&i1F@?^Uk{&G&MP>%BP4Zy)mh-d^JsP9Vo-PE>u@
zprWGkqLE$Bqwp^?zs&)aR#3-KY=SD2M@GhqZFzTRJ^Hmadb^g2%8`ShAtQ!6JvxF8
zpp60_A0G$pPP3~2w<r7O&(F_6I}AWu*w#jGKX(8YU=qxqUaelAb$XiatNZ)+v++nQ
z*s#IC^Af0G^Yc?GXhU8z8}F$HTA=W~<1vjx;pXP_>z9^#o95rM*<R@&WtOwTtyc=v
z{@A3W-Mkvqx+qYNRBBMkzP4uOEYs|17r{vboB%*&S_3%os~8ytZOhI6{q60i&!2-+
zQl9Ycj)<JLbgp%|RS0OUVZ-c+n#>+=Z*5JDoR)LD>^Eq9(BaxNP399zJSPYJg>a8Z
zK=zHF6k<#{JxzC(UG1*hn~rvizyA08{q_IZ@6RpXv+Dit{{3kV>=SBB8zfwh_G;v1
zxCR%fTBvOmJQ5<feV54Mi!RQ+E2Xb$EbHo3o23!xnY3h?rr|uTW2<&Jh+co-#$v0)
zDwtxZ!}R@odtseov!KYkayR+@;%74Z=AZw|_g?b6WaYWN_kZ6_pI=+_cI)-93?l}H
z1ZR^@2Fv$*J{KLAEx%$v&$2kJ&*syKGjlABJ&Vp+K7VpdI)BZT3I>J)RaruepUxPc
zPx=4%`}+Et*K4;gi`<-6`D*2IqtsJVWJ<3D{(Q(^A90YAk)h%1MHQx$i;G-eURfFZ
z_woII-?m#mncxiCGox}+v0Y}8q;XnEmJI_#f~{#M!^*X5&vNVUnV>S$INfzh|1Smx
znb)9m0sQ9Gd^#yp^<v@I-`>;p*6vT$XJEKcVS4KJhkr}g*F4qU`EJ+iO*KD1`OGv@
zH8nN0{B%P3_4oOe&t`skb#--<FcSmA>&2cdCsL=!PTPL3N_+d=vglje^XC^nKDIP^
zd!FZ{qut`^hgvv)F0cQ!oXek+fuUxKnxFzG#r^pB*uLa_ulYTX)nRMB=5aAF+z9Yh
za`-pv)vH%qvaheZl+3`u@Ooh&+X>a_F_TuUS`|}pkagv{b>~#4$9$T2e&woFr&`71
zA`X=>FdR4@8Y<!%_)_s-P-$uDs#U8t<=otqv+w7#*QM>NSFKvLCT{PpmX~I8GcPYo
zJ#YKnr>J^T{faLZ4AKXGs2o?TG&(6KI*&CWx#IuxTa*3mX4-!HQ2h3B#*}o2YilAu
zhs!fFF!)Y3KhMCx;B{GrDdpLjnKLa4AGN>ppJQRTIqj@gz5)ZogXGL9(-ZzK&9D1B
zJ91A&VV}jLj?#DkAF$hd{Qma#b9eloMNdvLFf{O9R5{lGS~~=aE4z~a3!3>(9p<->
zdE^4}1}H{BW3HE%oo#;y8chK0t?v|OWMGhYpUg2~?Y3K5{WhOYw7&!GzI}Ofb2>sU
zxzAF~{{PSO#$|7AY|T5lyXxz!nCiD%cRud3{<L*{?OIq|?cu1svLbM%O=ZzJyWekm
z<ZP|1-)wN6^knJuxKq*jd#5rovps3z)?4vm3IoFd_e`O5hpeouqW62hKU25=>G|vH
z>*+r~KTrSn=jY4o>*MqG{e0##%S6-E)O4zxFayI64&O&S9+N`C!=JYZ`<>uapA+yh
zkb$A0f8|LQk4bAHHY#0S=6iZi<>yQL>;Hq+I$Tm_WMGh9;2G02RVDd&pKoq%?yv9f
z=kNdjd;j^(=j~>z%(Snsvnqc#XLkO+orgflO@65-%L(1>cP4E<Z)XiEiq4wfpR-8g
z)pw98W`3IsyB9DsI0#=*VS4gv_4;$+`#w$m^CsQ?w4l4p#f19vw%^aZumAs>%ZH7D
zA*Vx4P{BCu%!%pyzAWXx`~Jqp#pO=y3=L`vJXt`oW?cX85C7fycC}U8?i8ICQfFdd
zu<KJ3RA^@BKi6x1Z$|mO%H;>|fsDITa@qIir|J7+8liE_^kma%z0<F*uD-n7e}2t#
z>-(Oep`mrZF3*2<Bf0-<T=m<j>tc65+kO9U-qPbN3=DQolQ|~5ySw}ON%i?>7C1J8
z%84Z!U3bcE=gzb!OzN|IHpAxMkH?~w{u3@Pc3-}0m(}ifyRw`2ipSR&HnZ`1%{I%u
zv@&=(kG$QV^>J=&3=H#GeV_Gm>@IsdOaA|l<3B(4*UtfE&+Kb!z`K27V`sL_vaK%D
z+yCd&mb|-FbF0~93LLCTUQEzlw?oN$n$F44@Yt!(=hxc>FZc8P{LJ^+Z9WDD>Cnah
zr+)w$So5xU{^{-e|Guqx9ev+xQpw9pOAiIBKA%^e_wQN$Keg3iYqJX2*Iiufo_=#v
zYUQt&%P%i>?^ii_uloI5XFf}n$H#h4pH!b8(>almVZkG*zp4?SWfY&Eo!xv?EIOoW
zN)^BDmw<P>UayNOK5P2=&i>cyb_a!rhs(=*7F}>;Ut0eD-p{A{^^w<RFfd$rVe*T?
zbJF^{ud8PoBp!---w>yneQnLj>-+zGol|s5^JePwSgAMre?FT%(>y=!+pX;NY}J2%
zeLWrQZyS0Hq+i4Im-mKADK|DGT0ZVEHY#{<0IaR*_1epuQctrTf4lLx-0YfZ(s?@+
z*YE#VRrh`O{k6sQ=jK>?PP%pL7F+e!ty?2EBskuye!n+o+s(AuC4LMH89lRH8h9iO
z7W_NUZ~v#D`R^i)pwQ5%S67GUU$PX_iI`CTb9(*B^8LT>mb|%9IQO_t^fn#Opy1%k
z3F}?E#l9Zr5MW@i>z?J(aHr<;*_EqSt@<Ld^Fb3gD2jVzEI&E-|9o)fOqZy()EnLS
zeKl*785kaHUgpViqC-$w%hoCF%#4Y%^LA-okE_m2J3nvklfTCLr>E<muYSLG`t`VK
z-Q3&T*6#oEs@Z$vzdLg*i!W_VKK|9>cVX!y>wigaXV}*=Fa-3?|Nrvw`MrUij&`9^
zr42gq`)v0A`?}t^_}LjyJEpX>^mR?Ht0c(uMH-*JuCKREpI4dI{5NiI)zdYb&z<_d
z|Nq~TmzPxiZ9cj*Col7xJ8NI<?{&xTm*q{W|MA3`nc)NHn%Ck79#58uZj7|EmC9{6
zGuvGM_uK99Y3Jrd)_(_W#(!%6|FeDZhlA|X?fmE4)qYwX|992FU##LWpuMhXZ*FXS
zd3AO8r0?%<mA+oP9W)RAb^9aGoZaV7r}dxTDL$`Tn#aJ9;j^miSV8{nQj5=LjEfKR
znm>87`TV&?cDWgn#%WJ3dF%V$-j@5h-Tu$QOOLNgTNEVRtNZ=d=J%V;U$gV~e02ME
zBe{P|_I17Vxus##bRs7iCLc>#y>{EFD=UNTzX+{C)F*Qo8SP~4e)v9|>}mFQE*GQO
z-tYD6Y=1tPy!1}v*UKv|&STv9{a&?k&5sW~lE%yG)<$p7`+4j7zG>6rsx(36FYEH?
z+wuDx_NAYnSNY)}d+|BT=P6fK1m3Lqd^R{de7a%su^qof85rhg_L@1w)&KoEr~cp1
z?6q(A|Np1irBwX<T&@Y@rvuFVYl>@^&n-J;`~6PvCldyS3p-42l{>|6OmhAEJFVtH
z^YPVTYgZldU|=|)ekJ34gUZP@k(-TjZ*BQ?yjx7yYto)ir?f$f8k---wzD%Z^hPh{
zo4~EV$3Q%;BC+|a@i~j+wZ~KU3R^KSd^l-xi(%)}Y0+A?ObiSgCYs)2u>AMqu{Mk+
z4(e>ow_{>qV9@9V?e6eWc3@y=xCBbr3rt3Z2X&aF*xG(PA}ncHl=AD#%gNW)MnC^N
z|9?%N-LDs*1j5@_`|+r_amIxOTQV=J&9y2$_2J=RP)*6@!^^<X>;2h_|3XO3`|A6r
z7x&xEQgm)hxgJ}7_W$4e|DW!9z3#MJ^_z*B!OK#f&n@?xbY`BdHU5fc-%|#LnzEnQ
zKU7(Lzf=4f<dC%u5>_P{`#!YlKk3q5cVg}Kd$Uv|ZL3PA=|)dmKEKY&w(5(=q&IuN
z-vhO<jPma6m{arVr07g}1_mkS=?QC>*M7gd{ou{+x7%*(?S8Y#JFenk>#wc5-|f;a
zEiL`}aiR*lY)L@X_jhyS|9zUi^ei_6L+?a}pDoYM&7FO2uC==7y_(NwL4{TI+pXcv
zk3sFB<@2gmz4^$%upm%SVg7-)+waf2xj8-k#)d@CNtVUWR6Mh?v!!LCqoZfDa*I9L
z`~9AFsT-(ZVmWafG-jLj<iteKqNFx{`FSdl+j1f&Em^i~*};#xQClKjOE56}&=FFQ
zKYV9raq*9b?aQ6p`F4IjXB`|GI#ng}=BCt1DM!0RdFO4e`T1#UA0tD<d8P7$w;Z~~
z_0KJEY~EDy@sZCw8_VdtovDBCu}_byEzrC+f3|VDA86IZS+m<Yw*RKBo_yz{c=qu>
zFPRw{ivIlZm#=@<>&5eFrILf$fi6+)pz!eNprZ2M@Av2Vtlw<7R`>ng-OEe8r`voy
zBFsC_y7bkRFK=&`+x}lxJo(RIb$JPf2LFWE{S0#RpWNU&^XcV7p*3H(q@A6`BWq<6
zyv*lh3#ag<_3`^l<-T8CUuU}i=h=Lt>Thp;ZT<azzrFtcKSgbPvQgJ|Ffd%uuw>pe
z@0{iHIX-hN3_)=LN@G3p_H}Fj*8gb#em>&QXZ!!fYCbb2fLg4eN@tR)w^7=e8E>}T
z&XY7ua$!|tXJ|O)+^}YO`n*cD(9lp&OG?de&W(is%?zNnvs}%GgL8_{SxTB_g_zy1
z`F!Q-)zmXH3}65J#m~U-<BO2O>z9q}auM&7%Wq{azf*kPc6Naj14G8FJ#3@J+VCvX
z%_dIO4uAIN^LhV%IonICLRY`p{eIs}lgyx{$C(%!x`Y&FpZIuOet!14oodHr%VUo9
z$<BUuc6R!Q2L~&^Ty)pAm11BB@%ik<{~^<)^wpI+g~w%g{(80gb8mi)vS-nq!sAQ*
z=i7mX0gNg?J>l}_U|^W~kmrP&LE@nn&{n7AbBetFM)~^s`dPhP0_q~pw5={<UCzwV
za7s{N_JPa(_H*y;tzKUG`daqd@2{_~uagJ05?M~D8Kj?^bLHAKvxxO;*ZKyERDM2d
zu5BR7zz{Nz;U){HSe!L$7Tasxs4Xk*vxABVeW&{@QQLB6ifV_MM8xl_sr>tI*Ps6e
zl_|l!Yyq42>*oD6JIOs&h9yC{^8fQ$@f!6tOew-E)~=0xo*GvC?2PB6lK1y&=boQ!
zntg5lzmmiA?HKHI_11i0V35ALCUP^VYv<K}QH67Y?}GgM`+m;<|8u@h?5>iv;*0G6
z{dl}`)he(1`)aTM+;f=ET4($Hy6SEBs$TQkdNVONJOwp`H>aIFmDnyD_A+qRnpKN5
zy1e*5W*V2ix&n#|N#ishP?@0ee!p?me7o99pn~XAhxZx=h95aaY$?JouCI@8<B^;c
zxY#ZA-JP8`^LD=lRRMdx-O7eESL7HNLVAo9W}i4URlE3MtN62TxAV^*YUSSidfo14
zpg!9{cKMi>7a159B(ZQXFa$`wXJ%qxnBvx8!lWI(?#$2U^XG%sPKB-xyIFp});ROh
z60d$%1_tT544Eu__Wypw6rVM<e7EDVQQ4atphyMv6&Ls0MS+Y=So}$90@v>c)AokP
z*Ou=4*qg878MY>3qFwE;CDGgSKz;I7bryz(-s6%JxMmw9I?XcApBL<BxwLNWvSn)O
zb4!9iJ7dnwv)$cvnUUeZF;xexH!qjZ_j`YD@AazVU!MH^F7z`2lqhsrJX+7rG*;ib
zbt~_+?Ck7d5m!*P#pT1wz%aXwVdaL@)6<rMYMH8TG2K_+85tg2c4`QTI6X~wbJEc+
zw%4bp>#qkT6@PBVpv0|Px6U+9_iO&je{EO!`?zl&3=A7ia!lZQeS3R;T;0#7;JE#I
zT)y5WG&J<(?d|!kYRn7`z5Wd$Hv-*dr-rT$dkPxfijUq|lzOaJdV1~myXLl4UsgOQ
zVPM!$XuAFj!~9ZEk8FaXvr*QS6=&vJo8Qje9t%<m>aA?QQ{=t$ILO3P)(g$Sk<cn0
zH{*8xep_yFy))}}zngVhZ?_J+d`-bpcaSnK&@SSoAEg8s7|3mE{+M#J>h;><N1f_n
zRXx3rmfQc$T(x?&aqg`xz27YLcfD8?68`(Xyu;EToIDp=_WXLa+Vbm_;LUHh-ChRT
z7Ib}G?6>>%|9fPu%}!6(_n#CJ8X8)1Oi<ZviSKMP>9?PA->hH0YSpSo_mvyYZ+bRW
zj-lae@%Ovs=`SuU1ns;7H3aNxf2BM<H5HU1&RM_T<1^pR*8a~!er?-j^$(aogmVfs
zs3lxm6KVNuM)Ib!X1AY|@BbaUtL$ym{_<Zhmp{Mct$+4z`Tf{~oQw&7cd&3T;QVp#
z`@ZSr_iN4Vf1dQe*45Ad<<(W~^m&!ftmf}7czCGh^X&WJkTlD^wIp_TnWRlc!MxgU
zH`$KImESFWd3m}2wi`*^C2wvRR=?j{UiYy({>pp(*j*;+^J~jMecmk@7nSbrDm}fh
zU2fL$`E^yz`{rGbueVK~Q|MN9rx3jVW3F}ixeE)OKi|q;zxMMFkW-e=tI7h6*_6G#
z_4LQ%{`1!F_gsFkqx#)W_4q%J#4qnEeZ3|3wpnRu=}f!YU+(9M@7I2R+Q7``(atA(
zX_@crH#;8pfjY%zFS3~u{#r0IU10h1%zVG+`nbKD&fERY`A`fxCgRWa`oH0z0wH(X
zO||0Z=g#)meOb&SVW4n%x&QfT(RnjfcD`ITyXabEdg_Y{3oU=Y*$iq*fjWRQjZ(eZ
zc%`SQfZ`T3b@ud(@%b};)^De5zh7rPS>68}XgC$rt^Mxv|M&j?vq3rFxJ<E6)wee@
zBR8i#{q=hN`2&s2#<jn`Y{|H|=--V+8b(D=PJpJ5#p7!V<EmaRjj8|pwes)R>z@xW
z^IwrKzn!~1^+<=Hq)A4=x;>vx{rT8me}>om&ID#Y3kA?V)@`@4R+pYLs{QpvrtpX$
zD68r1{c`Ebl`AR7dL%(Lkok{l-UC${3>jC%^y6YeLPJH}<tm?4$?pGpEm~ZCPJz?k
z$5XY#%`Bd6y&k6>wIw4krtD_w*X;W5<@Mn;54q!ite(HS_V>4=Gt=k&4DSauqAo7;
zoxQ*6%%`WPrPuh*G+Mf1)heyL{eQpx+FJPdm}qEdsO$c^zg?iUV(a5euZFsomX;b8
zK02~Uqbup<rKPUze6n4a{j77>p0~`uw`UQ^?3K&sMeQ%U=qfIH_3G8H{p)u=o3&`y
zu3Zru5)Q`Cm2BuetQx`4d*{*7?#WM*??+~BK5Mr6|L0kz*_#p$Hi0%0S-;tEIBNU$
z-23}#?^QhR1vNwEf9(W~IfJ?t=jK?-XHVn5a^=dE|CLu)g@T4=s=mIO`t9xQ^`EEh
z{{N%@|BSS=v##3P{rz(J@|wuaf4*(s?>p&E_4~b%TQUMc5x)I?-R^&jSFO_e{buv|
zsC2JuUrkj{g2tCbTt9a1(_^rk#lV>H1a!)VO5~=LlgF#-0!4mqum8RM%e%YQrlzJZ
z@9ZqzRrYq)^Lf>J-D0|{?B9VJ6rk<>>*M!>)F`|6<rGL>ni?KA6Ewm$|M#8epcMP$
zQMdlNGc%3NE0#SyJ^eXoY!DRTThpSpWL%6gR(*dzG<)~kZPD4e-MZU6a&vRj&d!>u
zGSe{Gt!vQ<(D{~2y{G@`2MsIk`~40y#%fnGZE?Sy)!*OW&ucE9Gb!)xuBS7S`%ca+
zzo+TOU?#}Obm0VO|Igjs<>x=2xBtI!o_*Dq7jvrL?UXb~a5&a4Kfn6@UUSfN<vHv3
zb4;_ZU6J4ZxX=0-XrNfO{LVyBsw}@-8V)M!Vro7f{d$~7(nw|fzF%4Y{@(v@Yg_f@
z#0<maO{evCKLHKrnrAGVsO<ji(`o(l8xju}J)c|t4CKxwo|8cXP+QZY;z5Ixp`oE5
zn>{D1t^HaE%JJ9t|NGi*x81c{tn$UecB9NoOL*k%Y|h($j{$W^K@%5BED6FNlu8=Z
z7OY#RXMVRNc$v@4O$YT|{`dd?(Jxc+pmFENW75~7>YvXo2Q?SAUIR6KK>gAa6BHx2
zW`%-gVnD;-i`{xpJ)50BPvzycwb6doZ@0`TyOjwVelELT`yHg9UAF87+gX#OBONi7
zPp5v()(%?}@qF&uu0<z6$L{R^dwc)d`0DR>%Z<~|&5^15@z8Tp?)JN8u7OLur|VgM
zIKX_py3gLc;K2bN84H8tV?8IIPLH4WzUH}g<%33cyKm2#6YkDoWXxbXXZ?N;D50y*
zulZ!9um0<>{J#kslaH_ayz}fV)9eqk|5(4@W4t;2d|Y<!!6w#h+q`>wD$8zVE*Ei~
z`2AkBe)hFBE9-4fv4e`%cXxNEAMFyA{_@o%``Vg=Gy66sA5Z)G>gsEof5)Wr&#Vev
z{YpN*{_oewy;Y@b{Bm<tEZ=N6d}&+m?LV*g|9c&Eyf)$ApP%wprw_GqORssm?RK7K
zS5otSP!=#&VDNQVAGi0@=J|hh4!7~11_jtP>xK58PAJbbNObbE`FNz%Zu`1*deh^o
zGC{mI+wa#^zT5fSsP4~?oZWA?Wy_YoSlFI+T6eq8|9^ikuZ`XguH}9l<Og**b+_G6
z>K4=WIzP|0_)4IA>h`;3-mkB%1y=%{>hn&31{k;6T|YHd+qmk>3%1Rmx(QVCyn6Mj
z=yvY*rMb7a-K=~*_w$Y9{-^(bzxRKBZtnG;rfXt$8iBg^ZG5t`#N%r={`<D8w6xUo
z-hQ9AZPIxsK0G|U`M6v)Xe{{UrKR4Wake|P-|yb6|NqzC<bvMLCzEWxTyVDh^WpI4
zpXclCK-CGTcm~bN{C>axzx%)Kj0w!4uf9by<m`|%P7?vua2HpHuV3WaE#`WATW<H?
zZ@1U)c(?0ym#B7_h-;w8?VQcNg^xPbui1m5>FD--U)L^j@0U9&7M&AV^RYW#XPM8;
zARZZu4Hh2`Fu(5K{c_ptE=FcHk=R`&no-+wB6Ift{dN>I44-szlB#Rqo_g#1pU>Ox
zzft@BZg<(+TcWwQwrGM<?<05nUl*f{`y>n(tys4%?)mX=xAWsgTm$!fK4*Q@Q+;ko
z$=h37Gj4CoHLUpX;L+3R@p%TncN9MEdiCnnqlfMCdZ5T%6ujII?1_hm+r_!X^>RM^
z1&vg8>({>Y2AA_;YokPO=kKotc}VQ?GT+tq&lYv-Y0Wat4*UP3kzGy$l+hNYpP%R2
zEvDNw&$e3ZxLkFPVe+va|4;L|8u$Z4MdA|K85pJ<&ZhQQ;eY-YSt|>d9^eZG&7pg`
L`njxgN@xNAU^_%D

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-14.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-14.png
new file mode 100644
index 0000000000000000000000000000000000000000..0c9e91b82ee8046bd3148130b71ce3b7c94f2077
GIT binary patch
literal 23869
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_eCLL~J6zmL^wbN!s0I8_&}I?vp8
zZz<bLg@ucS1YH~*Tml0O7jS5BbWBxx&}=esk%B@~1Bb_PHZShI<t82tpMM|D|8{(n
zw1>uIm;38qpISQ8()jaC-Ng5Ei=RatlTc=0U|=X{n0t*C#Q5=Dp#ek}@G!D4FfcSE
zb0~ngGR_Q)3=9kpB$zlr+~WccAj+bRfr){E;ea8F0EpYCNSam!=arG0m*rR||9NRu
z|8Gy#w>K+KobdSh^XJLq$KCD!{dgQ}pBED|C+GIHQ&Y9y|JwL3^V_?-+PAk|T^YQ5
zi{8=0z4NYTUS77+XQt7qX}Ys>ZeQDc-cH-ItD_^};i1;KdZv*te|}_rFsJ9^dW#0@
zL)&t<%g4vZx3;vb2wNL9%cim@YWj4gX{jeS>1<Ec4qG!J_qLQtMu1f4)4QL~+pjOb
zUmL#EYiiK{e}BKeTD@M&f1Zu`9W~8_o7>iUPF7RBo%i5C<GQlz^)o(ylklvsm)QI5
z=l72v1N&qwLv|LW_R85tP1leAR<&lyw}}%c?kagX>AIPqpx~#EA1_{A9X@$&<%b6c
z*VVqgu~GSES^2H}{ePFq*;cJcIXUUnMCEoSCMFR%xpl{SrC&epxA*%t=hEya^R92r
zzW(ZAyZp6QZt*K?qs@;VJ-V{)?=SN^&+<0qMsLl&?pIbDb%jNt_M`7>CI*Ysn{<vI
zJ$h1N@sT4gZ}033E`E0AVwb4)mcqwwdq1DE&WwFzf2@g>J7kdy=h@lj`bTf8)LMN0
z`t|CMkB>#ArC(n>Cb76vSpC%b^XIcOUR+$<ers#?@+Ma9s=MXu<MvKbcIS)TS>*cr
z+uO@;Zf?H1yF6bvdYjJ8DBaVS_SOD2$-1KP_3iEJuYb*+X^_~Ib9<Vh+v8)smuKhi
ztGt|>cYT3lvq{DU1<7PkP+eUa>>jx}?drwF?puqVdX>Js<SJkHW8t;6(dE~(cgCKy
zUC%A1GePC=`}+UEN4rGtUek@<c4p(RASD}{nA_WOgTKAGd3l!zL*_|_AJ;eNoW8N`
z?Z%p~udW_De*E~4A3tXN`0>MJh0fEgYinK>^4+idy>_F{X&xC1gWgr2&TY#LULCeJ
zBzJO2oo>_?gKfF9<Lm!kU3@k?zBX0ow2`5q;jv9RpKm1hFU`0wC@6SrTkhua_i@{w
z?k;<46uBwIa9i%|soLRHIq8wpI5{~DcNRT0vMhdPqV7M>r|f?Cx|okuZ(O^@Bu{Vh
zS?)L2=iZ)5--w7Ao<2T4fp@oOeRy#2*d`reLBYgp>*L>VJ^Scrx9?o5(wP0nj~`$D
z%FvfzuKJDP`t#XQ8+Ej=uCHeJuUB%AX~C(f+OOwTznf_2CT*Vg<yP9qM@O@6Y*^^z
z>?|rFv0{;H_p1E+`>d+Jt#Q9SzwVdk+gn?MQ&N^NF*A#bi7nfddU{p)`+K{Jo_4K{
z&B<AlbNkx9+TS+cCSJ-5?YI3lBkTIQx4SkK=YC(bWZ$RG&d#dmbIU`v<wUZwvuhVW
zJJZ$E6Y}}l*{vlnFNxUux%bHget&mYR8n$fLjyx=YpbT3n%iu%+@kF8)nU5VEv7y_
zJ$-l9uE6b6UYEYRbF*~mgQ~~JdV`;xnR#`gGyD46%gT5>9v*59UF^o|dFj{J*L$~}
zoT527uJWnqT+3oNW_CWGhmkw3=R{81Rq}EXpRCo3Bb~ytjMM#AeV-gu{r%n51C7j2
z-@jkKe%~*zr>CZVzO^oHZ&lQef``7}w<jOx+xz2Dw^sbVJ%<h*5|NNt(b2(C`u0{R
zJHOnQU1y)1oE*9}D-`5p4Gj-gZn2QRzrLClKl9mMrdhi`=KmhQc{Vq%hMt#r{3_}B
z<HwJy{O@M)oam7>4q5Ie+uG8ip`qb1apJ_R`}_9ZzTZ&%{M^g6+wTR<wJHr+;J|qO
z^}fi>X;Hh&)*k<PYn$%rO?TqHU*FfCZ^EXs^!@tm{;wz1=fAj}zdv+s)Yd7w(PpXV
z=f(C)n_v6(_V(U+#tmN@^&%MV{P_8^Qb*dNU;!JS%!&yU1WfbpL?k9A{`z=a-n8aN
zfo{x>fb45)0;lOjs{H+%xGL#r*QVTP-`QrNDJe_N&9z=W*Sh>wGr!%12M3#{Y6h!$
zmM_!);mmKVa(a_V<|UP@Ya)Y9v#*t`?e6H9pi=tgM&RY;{^2Jlsb1Zf?9R%{`trg;
z=cuh&Q^oY-)>xIky7R^2<HwJyqPDK;ld)WMYisuE+TY)9?XTZ&_xp{pZo~$M&FSaE
z4!7~D{*~>@y1HuVjvW@RE-pKE1*%@1ETrl+<pMLm%>vEfWf?a%B(8h@^u@)+v+V2l
z$yGiPOg%mA?CWjYKkulj{x`Yg{k_=aV?7t$<!hJBv#nm`F;PkL*7J?Y$G<$C9>2<^
zQ)pGl%1N8j&aM(vcFTBkV`J9URabSdRvOFK|Jf)cEPQoeZS~#i_j}EAsuvgg8C8GF
z>6Nt(+nRMX=<2FaP(q2X`|0}lc>nc3KR<6xJk0j=?Ck4T_tpRZCuLQ#f=gU)jalw3
zjp}c2tZII2xVAoiedOk}m8Gw*P0D-!S4dP8<f*eWjX|~2;?>!6Rj$`hu9iJ=?AWWx
z{&s;G87q>Kl0>AWRxz{lf#UY6?e{y2H>IBTnzSwV_Oj{mb&;l7R{|a%>z!(x?)Ucg
zcK`UAkF8>QF)Mz4e!e<xZ`GtFmzH{K>*<|)T&jQaZS70ntb6gEI;Ss9kFQ%<`T5z(
z#KUb>uU0Pq@_POLtb<Lgw>Bg;*Zut(&dSby|IJF)31XLiaPcs(t6pc#KH4P;D)?B~
z*k&oa_w864y)9?vMxE0ktHaLDu`WNCd-uu7$-SwO&u*sAFV%g0d3pcF+}kxjpH7!M
zZdv@S=l1)J8#kUTla1V0v-5gh=)GMDs@JbcB%hmSo1JspOjIl6LqvLy;c~yZpLYGJ
z`uggs@wVLAiq362bmKRt^?v;N)f7|$*8lm~etTE+%dSZ!b)bSWc$tskwA7g|FE8JH
zjbGB}$c=5eVe8{^_x*e(z5Z_NqeqW=a&M;{?Gnv9J^6Lh*4p1?lP!zWl5cOjxg~S5
zyYIBrnM|x)63IO?O|z%1{ylwrZT0IW)07he$&u3}&2naBNA4_o+SA|Pe{*YgIG6m)
zD=UMS_ifC*?K8tbG4!_Tb=KDx7CJw>wA5Sf?R1^Uq?(!<pY3^f?@ViNX_>*q$~B`~
zT)!%(I9Ghzl|Av3s^jv%*mZSu7)+cvG4Hh9uNTV6k<(U&tej+7|8LLjU8}>_@A}JY
zQT}eub-i+SemRq$pPm|jzgs^4_%7+a?<QB*1podw%OrEsMxE0?e*T=9zyI&G+}U-1
ze@Winb~ZYH@6)Yp44M6U5eN1MToUaCrHb5JTLMc;wy0zt=@2|M*Lr*O?ecq-?$c5;
z-`v=EYL@Bh+q>N5YeND91Al$F>~GsAC?WA;qmC}yyr^la$vuDm{@uIo{7mELzTXQ!
zJaE*F+~mT_Eq3MedHeU<)&(u~%DTR8uHRg%r8hUH-=8>Z@|K*NL6*hON?x~_CLUq|
z<&;%1J3r~ZFMo1kq7<m4;gML-Cu_YbW@nL?hsOm_6X?=X@B0O}XUvcYT^ADxYCpWX
zx;nUI&&S8dPai+--f#1%BReuDXU)2}y|1=*-<(_U<3pln(7!)F-=FyR>Dk%WU%fo<
z?kfE{|NkHNZgKr@5zn7LfBu!LWqbb9xi$NHB#qssrM_I;Z&wt%(<do%+U@%dYa%yS
ztu>F|SCe&f)6#AE_t!DA^W6!v-TwI>$S=pQPF0^*;dE>UPhm3SgZo{efV}Yav6jy1
zOD&wjS2iZQ_ixL-zHaLL`SacPe^r^T7klaB<Kv~jzGOZ<Gc!2%)|QJeE-t>hCenCo
z&ds3G*VjU?t_r=Jqt~=1a`P(B$!ef7Y0;uZBErIpUtL|jI_YQ^7Z;b;MLV<ndpe%0
z;`Z*Usj0EKc70uJbnr5ti_gx^{`%oC|NV`(n3<Tqd^pVidhhppm*3spy*2&3+}m4Q
zy%)Rn?pph|YWL;Hn3y?nl~1RN<k}}4;RszB<a*xr`yF5B6PK2HZ>|2GXPR;0z}oJh
z-{0O|UG6XMJIlm#{r-Qut{?yE_U+x>)t$oXRW%3dzg`Uw-a7xv45QR8HUD{Q)<$oC
z_2uQ|yvN2&OiXufmA$y&_<rB-b?<h+x7(U`HwskPJUunlcGp?UzjZ%9pSS;dT7SQW
z|2!M5&{ZK_+kXE0{ob_dOUByR-C@W3WQ%v_ZcL4|s`&6Amv!&$%6ipO(cNK<Osp!N
z%l+r?dpe8ZPArSSgLsXX&B0DiP1n{$F7}&iwKDtqI<1fu6OM21RQI2EWvX^~o`uAn
zO**kV3LGtqpN0JV^mJ?1RV`jQn~3@K|8_3(nW>cA<26NNVR(FPXzuN8duK0ycJ<6m
zW7C`)2EKExu9k8?I&i=N6f=k0`NJb3Zt!mRm&&Mr%l;x;RoA}w*_pYzF+tPyVolP{
zNc76v$5nrO6PS>&;P%v(XhC`T^-Qc>FD@<hzO^Z}dtS{a&!b0=Y8n|CxiYQ-<%64>
zmfHRQQ(XJ)X1ck|al^7V5s}lL3g#6*JF`;FcUH!?H#cXQ=g*7Uk}>gBv4ly+glLA1
zI;TY)K0Q0T`t9xQ>edc6TdTgmTYGV_yLSA(npN@p_Z>QXIF_;O(UDF$^B@V+tSMb0
znu|Jx)w6DFNCed;HMO-@HzYduN*Eq8tvmMeyZ5DR6B`>F*SF8l%v>C{HcC@N!{g$`
zi&{ZTI*iiK>D=D-_3ifiSx-+*{q=hN{=C)8qHF6Tr#+Q=U9@(IKyj`E%Y=Ob4h{7i
z7c5Y?x-K?4zV7GJQ&Th-_sLqn+J3*T_%+`o+v+mO<dR26Iz`@ZPdeK5>ruD<lo>Nt
z^h%p&U0mcUWt`SyRq|rNh7AVS?=G11PULB>UbpqnL^}lq2WB>&3k{6SB_AF*u8r9l
zG+E8}(iF|$E#>dy)<$f6)OK6FwAHfcNyqiCo_A~CxlNz>|KIohpn6!%XU2lf>E~C4
zt`5_DWmcwqOu}>0{{8#4LRKsQHORi-Dem7@`g+-}(%1J&Ho1688KrbQJ3D)M-QQoJ
z3N7yT9E-w3rt3X!Z_C|VH^cAMz3I0Yf)=~=O8Zqstc^0&jo#+tJzei=a=-1gRkiW&
ze|&rl@`Tq^t)*92hwo-<Ri9~9y6U*uwA7X9=jXk;xp}$Y9E*jatHUyXeR(;{vUnM&
zcKrM4wEjB1Sk2n~cQ`%eZv;!70kthzSy(b2AM4eM+q2{LF6VZ>r9b?#%_mKJug{R#
zY^cBxvMI$A)B|DXleutWqVnBqp{qhb`QX~N+}lBW<L&M3K>~$^g;KUvTY3!hgzu`>
zPPn(fe*f`pudlE7|2TI}(C6Otii#be?$Xh2@zog@7e#H&y6U?-OQp9vVr$ma>->99
zPt%>88mSe$%%|&>?^?asT`zuoeC*}p6Y~7r-1k5JeSUIs@xQ;nUmt4a)_iv;WQm7h
z>FaC0)!*J+oMD)}XWLAZ%t?B&yOw|&^Tp54#nl%*J+(A{-%q#d@9*|bUcThGT(wVK
zUEQxgpU>x4d0(4-wq;-S_q^D>RiPIzUX*+I_&_7`t-aOXdAFaRsy%&{dH%YWmzS?D
zdwc8F*6itZ|9+<Tmzh`Zzr#7xDD_hP|KIVlwpAg~+w=Bj{*K*U_Hy6vcb_@rk4e;i
zzgr%+ePgb5Xt?~PUw>H-RI&&#Oj-h})c*bZCuLW&<Mti7z182R8M?*pDk-cLu3T&X
z|4*>}pAXHiznf-Xd-3RKx7^!F`|j@f#vIeiCA#Na>Br0d_Di$ezD<}Q;Q7gF{)tXu
z^*wbrtn2^n(Tmxk5FdX(g?)uOCqI99Ny(N+k00AI-Qu_Zvmo>GGEEDM2!7iy0bSXC
zz1wncXT7_#6O^H|_w`w?b?=u0Rjg{hvzEl}E?b&0n~|9f)XI~xso0<wv*W?Wx<5ZY
zZqo6Vuldk;tWWm!*X7yQ*X^qMy6RZJe7*bm<pB$wy1KhB$JhT|+QuubX1)LHp;qqD
z{dIq(-)X=6cJg|?!@h!tO}k27J}P8=e`%?A-0@>7YHF{ZoSZ!A-~ZnVrtha)FHJu`
z&*<2S?Ca~S%HPeoZI#?}dum5V2glnR8xKEzb!7GWeY4(77gAJIjN2dL;TN@kKZ8ZT
zUIc^6-`eom>ho)Y7Q6Rf+mLwp%Q5MEk6+acFE%6|zOp{vUQ|2GhgaGxBqe1D$Rn@z
zh3u^=t^Im6e9{v0`!&I*r|AZNeRUPoJJX5W^kRB^-Ni$#+@eB4i`3^;94bANc6Qdv
zh>c0J%yMUadw+j@m#B8u{e88da04X?N#nF7E4~S-dTH3$#9UtPKYjiB^<1J_DyKJn
zd9k?v)s>aOTCuyfcumt;8MM@Er9&eV$ZOBe&tJdTy?<5s`nXebEI<49e|*?3zba~L
z)~nmw*YErHD|@PTxF2Z5U`^!aCyyV4h8LD)*l$<T(D3k`ZMIkY_r7lu`ulz?0u{E5
z%xo2VH{bkP^z6*ae}8|k&cDBJ(w*mXBKFnnto#4B{BHgKzj5qb>Xm;!9yhJ{kl;JV
zB9NJ#ucY+!ZsA{FUoY1VUzhRVK%-XtzCEi#RxT=fdP>uKnvPY~mla{_Vphspm#uJW
z<ubqH|L)GttJ`v;&(1J(4h#%j6~2Dnxp}s$RlTQyx_E(sfqCJ=LPA0zYokm>b)!O3
zPfrV7=+s*B@sTU2wRL-Ye)#6JvmuLII6YTZ@4urt*Sh@Ls?gP6_W%Fuf3!<9cyroW
zP^ZAToiFp|rqn8sTN4g2c-Gf5e!LRwzccT_gXhnezu*5q4m6B$d71Cmr_<xB-t70A
zYc<O-xowtN?kc0yQzy=!_vg3y&;W8=j_>wQ|GZv#aVRi*HAnwv@=%_ZDk(2NKjpf-
zZPk^Ob8~K{oSk)5#=7iG?%nVA>+^4I$xJ?U_^_{oLjxx_xA9W%>1O9`zt6e3qj2%+
zyOUJCLBkSf>i>O~pRDZ8H(AwNtoXd`_ZjK)Dv!Onz5V>-8SH#A2D!JlnJOwOss%6e
zS?1KrmG<t=&a|JOo*vtlYn*XGVf#1J>}y}D_@vEp3`$>LGqo&wVqj-yx9+FVxjB}}
zan)~4gO~fsPPVVF6PA$3`1JI2de+rdscC0sOk8#R{e^|j%c8gEsVONPVqsyKap6M1
z<wdUCn-dSSt$&+)+YB_Mb=7dvIepd7$u*zPnjhPidwFHB`u3;hv)GRuKYsjmjo>kf
z;*XD9h2`Y(YHDlG`rH3~5|tM@O*3M{g6p~ee!bQY-cgX4e0$r+j~@%qGGAKg%$|IE
zTjlq=<@r@|p2ZGl=30MWmYaX{+uPf|=jYk_o}8rW`|Zt5P;i}`u0KEX#)gG6EeaRi
z{v-GC<HtDp%PlP|pFf?}pPh8HYvzIl3c(u^94{|+=P!PBMYI2UN>b9I%GYbR`y6iL
z^<C)H>Jtz!0Tk#{wZqMlkN25&c6P4Ywz6{noea4NPv%|k=->c3ZhimhD=UM2&(1RS
z?US(t>CueYv7z$GME5h#&d$Dj%Xgm5%_(}Zw^B|{I@;3KHfzQViO-+U+p9;P-<W*d
zr=3sMXP!-E&-(T2H|E|pb@wmoUvIdwy54t|$;lhra@G9jz4>}4@9AFl1D4YaYg!pV
zW3`e!j3^_y1{|^s6ZF<ZY;-z3U4MV(ZW+s>72)gS%J(ZU9Ed$AA;93U%b?(a1Fw|H
zi)C-QM72sT?=)v%cqtAY9+qH69|88bZkBgv#fujit!-_mw&jAxAJ%#o`M?KqgZG@h
zx3@a=_BN~1S0&=wyKNz3ubNWtKjs@(eoDEyZLPoEPnEUaj19Zn7?>39g2slW%yL%n
zN}H{S-CYJMk0<-vy{wRBX6KuddwWxEG^p3QEqZ6s($%pK54Gn1-T@xf?SHy07gVvW
zyyrJbNJz+}=!wVG6@ktR7cS)D;0V}P^YhA<%;2-LOkZ!y_FE}^wZeMRp|e}<XBwx6
z?W_42ve=FH>)YGm(c5x%CLiza?VXx?`_}gS`?9y6->ryYP_TVywuj-;+S1q8UV>UD
zMkyU}6%Sjt=(*R`)y*=^o_4SDxh!aSBl+)*jmb}+KVN=&y8d#<(t2)w{_ERvZ%?tU
zF6%Gd|L0TpER)PdKYmoWy11-JJw1(!lk?)f+TU9e4l<pcZy$g0;zdw%=K9<BQ$Qv3
z?QOZIrfOf0wRUrHY0=h++g0LuykGwMGT+%INk=$%<?UkL-rjy4G=Oqurt$r2h3~>9
zFg4U0F>y4Mynb-7d6SNJ<>zO<uY*z|r%9RTt=U=p{MBWD`>VnJwokYHJ2TUGmTmPm
zkb7=!PG254b<+Cv>$}AD-);Q!;^N}2zP@W07rTGG<gLGR-76K)Xu+-R`RiS~#a8;x
zHjCPlaWQtap@G4L?B4Pq7nc?`9*GAV{~VXEzp}XBZq>@*<)Hpb)P{tExw7rjo=gs}
zF0yhv?3!%Sr)Xvtc1$ANeERF($K)-GT<-2J4+jlcGBJsWi7lHkLn8OqmXpczuYX$`
zza?WLXn0A+vgpL|<LXCCuda`efB5jBlzrWv<GcLre!A5E{W={~6_?(g{q^ns$nC4L
zzb8gco2DQC?%G+6OdHptWQVw_m#VUsMJ{h|ZM~eme(y6eyCwV8zt1+!o(38MQuUse
zacfIv-fLwgrH~y3iGM#Hmw$D4_jWEZofSSajaHVtyacKtRbHN&stsyEbcyS)Td+U@
zR5!fe`+eT=$~zf6CthA&4hp4}pt1ZpmYa*7oLIPGg~r#{*Zny;In8Tof)<6W42s&6
z(&^;vyfx#ZQtij1;(4#1pPRedU9Qqa)oV(?G@ZyPs@`It>N5FQ&qoev&-2R--2?>%
z<96TAy|u-2Z`IeJkdP@(PEH~sB1;|}?S8%U`Mk?BjnnfYUW118w`PT=o}A=*@ZiC$
ztE;A#y}R@BV&3sS*{Y96#Y6YiRD#Am4GaPV1qEN-+Pa!g&gMnw{mJV7VOLj$f(D5}
z9@2>j`1<<#^)oY#ZEwlhR0R0j|J?%W<QzEQ@buJF@3XT^FSqeZ=SA2vsI+S<FkG4|
zV_Br3r{@>FE$8B%%FkEUL>jxgx_VA}y`QL&!@J+IBd38!6Qj0x@JgFq3HG<0x@zBV
zJ3G5qS5{62RU@Eekn8YgN8w{o#9Un)ZGQ7@{`S>=FE1?>6&GK=V~53dJ-10Ao72vw
zY~Nk+agp8MFTs)1mWIbws@^P{X_Oi?->&w`-s*DDpy1nETZ>oQ8X5*(ym-;7_SY6r
zi^qGqUgoVWnV^ve(6HzCd)5B0udfepX5$qR5Lj^D?zfL^^|z3Sh#65^vq~?2?(Xjo
zKRe5GYyJPask+f&cXyRuzPdX6>+kpbv#+cO1P#`OY)CjLVjE^IBqg<KUF_~xU$4hs
zUp~KX)iU4NyRLy!gPolns3&#k@Zr*LZz4fmp1oCHFSYSXn^b;E3BSE#hXriFvFhuq
zr81U99+O`0zjS|n_s-(ytK52}Ksoa2>hP_g37x;+ZiD)-bw3`m_va-Xlc@do^Lf;c
zf`w6AG8RT{&B{DIO&8Q3*jn?mXl>lysH0t?#arjwR&P7jC%ZaoYu3uFtE)bJ|9)M6
z|DQ!4A0N;D_va^QjPZ8pk$-=GXTP|xP%CD~hFe=Q7r(i=`Spi~hokn_?M*v7Yw5MM
z(YtTu-P+>$_0?5S`up;rnO{py%}w2J&V@TWi$m8&nVy|%9sc$8_5E+3vmDsp!`M)g
zb!mwwsPRzwDW$&@?-=4fozq5kc6QHRuix(%DqC1s2-22#h-Gv6`?$xCA1BYN`Q*7h
zIci#J8;@j?Ui`isozq4WCr;F~6Ho5hsB`+ts?gJ~3&Yn$6kguu`RMUu(6Hym<8sBi
zzu)bC-;)}tR{!shx$SjX>oSScn|u-y7VND0x+=TU#ieCq?roFoYiDA1m7GkzfAHWz
zP`l^Zot?$&N_UsPH~aVR-!h+>MtR3UjZw&C(uLg0r>Ca&=H5=bu^~~ebgoV1r9WS<
z$D6OU&%A%q*3NU9UTl`mX(K^F!MxMu@9(|cT6?@t7Nq>{uF|~I$;rte_WOH#<F?=4
zo<INg;~7sL_uHFIOPy(czvgmo<)znGw&i}l8XmuMZT0iH<vpp9%ku8-$~(<3YxU&Y
z9F@pTDV-lbel)zhtF$;;PDm(;OGG0<FK*9^jb~3zR*(H(|MOF7@DdL}VG)s(eZSvX
zZ!c@-mp6O(@S$4#zM8mxUIud~aUBN9a|fH*x2BvF64i+aIB)-d&+T1aQ?*vc?k=+`
zeKqC!Mv1et&BIGdzUa#DPB_>EYK<=Qo&D^UkV)Phi=V%Kz1nzOZuir__k7#=<)^8L
zY6Lu3mOJ@Y%&rnob^m!^BJ8uSX#D*7b7$T9u(h+4l$A@Losr!8^Vw|BC}(zTO3IQ|
zVQW{-umAURS+c5G?yV(Tv#+lzd3g!cb2$F%!GnaKzklD~@^1<kKmT+US^K&>xs@p?
zORj&jt^PK}(5+is-|uQ6mx#uLucyLua@K50Jw5HszgJgQE@tDE+M)aU-rn7y!YlRk
zw9Nni{;qpk`T1FCwcn&GYoo*e|2$v6NA56amNWL?!Gr7m$8ShzEPH=%Eoe42YHL>B
z+fPqUF5XxB`_+kw%2B&YR$eb=Xm}#vz>s1w+dO}oO6dByyRRksZf(szE%7+3eC?;F
zr|*CJxVz-#qT=W0K%)_$#!K3{IV+F#N^6(DyR&`o`!71~eKK7g9Umg*>Brl7ezJ1+
zuBh0d7r$?fvU}g1g8QH`OqHvv!{2}7_HA4;`$vr{Y%PF8$=~)5!OQ(#9u<$j^7s4w
z^=l$G?>bgGMLXPYTB@q`G9}CD`tjFxzu&j|)z#J7Dk?7f_U+r08*OK2XI1_#X4CKL
z2aW7D({65i%f)nk|F-2mGZ%qcX|1g%&!0aZ`W@7IF6`lxwbHP&ivx{n|N8!Z{n2jm
z*LQXn%N>v2oYuQ!|L$YFG8Pver{CRGYIH2)_O{%WRXz+2h6)Tub2g`+_X^rne%veS
zUG9YZc{Y`Kzkm47G6{TlXQyf1pNiOBC7$*Fex`3~K7YA+N%6jK(Vw5FZ2kECd$@;3
z$L(ED^3J|~{rkJU>h-w4JL+PSk{<E)S3f%=89D9gE~CQjvQ{M?m+n7yoHWO_I_&AG
zsh98Vtqxu2#0r|bI(YElr>|eH&NNO3O*{YndOd!nmEY@YYfa1F#fWMKxq#B`Jex`p
z0RaV1Da)diO~1YM&ZyZ=_k7Rj398)P`sLQv{QR^tZ;F73h>GVdi^4_6EtUr^c3bH&
zQ3=Fr<CR{v(7FB8_3PoFx~W4@88jy2Srp5-`{EyiX{j$k12vTz3<p{nm=q3s{!*B8
zXZtJ9*uHiD57aDwmgDg%&$Q%4z}x%#<9~jBzW=2|%<XNdJs+*yPi&P}d*Aly>1k~R
z1&4M%*-M~R079x>D!0o{PEwt;<kVDcYpeaPeKM9QJ)U1h+oHGT+%)p6Kkqpy<<5@6
zb@{*7%dgpA_BN_l%2X@#_>CQfi=UmFySnP@tCy?S?<?B<d4{3e;Wl3HvfGQ@`>SH-
zeVOH7l`C&w7n6LfCvauZ(k)eAvr<n@Il1=lm6gG^-x4FIffiuQv#ox0q*E9){kP12
z{<@jQ>94NG*I(7&|3}H*-X1hrIW6^NxBk9>#csVprSBLDluHgWO?Ws(FE(n@maMB<
zv3skoCjZ@(dO9U?+I2n0a<Av-=ElYr$<_b)IJ++5{7mEJD(}M;udR=tzbg6mwzb;f
z>z3@OO-NX9YkR(aa!*|S->)gRWA{`9=I{TzP3QC_VSk&6t7heaR${1VUQO1?JGwFX
zxCwX&cPXE&)sAWJZ*BFSmb%ilTTJe@PW-+*ulG&b#ZXmkHz{xC?IoVV{kP@*e>lu<
zzGv-+E>UfpX`o@S)nRKVeffW%d3X8yYgbo?i^|Hr6}01%u~=|-ce#2skLM}u<6@rm
z_UgwZ*2e7o)b^X9;fhiN!-;}JhYyR&%C7zKqoP;F@>1?y)Dfu*v8xvrJUkS&r()x?
zGcy;<*;d`zQoFP0Y0B+w%lziP`gZX1m6gF&4_n29O1CPisHnK!UAgY-uh;8A1;s3@
z(p8{F^vA}ZUtV7B>g>F@E_Szwtn6CQjAGXR?W=ue8m$Ui+O;j`=Awnp?Nw{+OJ9Yo
z+HGICx%73ItGoN_CnqOoU0E?v$~^B)l(?XvVselBjT?I^H@ET0zWQqE^=jF(w`J!%
zAE&One}7~0@h@L4``_PiF7@=ZN}ov<X=fzf-rDNDHT!zmT^)s&64%>5a*OM&@Sd(G
z7k&pc_IP!5c(shaq2a}=Pqj2pm}Fn`aqSYhSp9zQ@>Xu~s<p*$Z*ARG@$nJwc~*vX
z-`Bry`g&Zx{>54I`&V|AzTT2|*J`d^Z4_v%d2zqptBYm7zrC$`HZ%Rp-|zQN-@hN<
zD`k4=cK-ggF*}PYx6Cz2Y;x<7SZG`QZG}T4)2o}CpZoql$oN2W=Wg}d9}nACg{__S
z>)YGa>-YbQ0u>CP)hF54bbkK$k@4tAXWaAf9g|D%WSr}N{q*EycUh~F3sW?MMMOoH
zy7fxEytA|T*Q?d*L0!G|%+Dr+Mk+ufL7;i`nMSEko<CpCE?41jb#=IZ+3Y=)pR-O*
zQq8)xWhEQG+#1c`Wh?6b{^H`}1FfI{b=N?P7QVi^`q@fyuJAISnTw*fX1!cGJ?_%;
z`St5&nP#7oSbV?!f9(C5&%N97@6UTw=`d+mkY|1U4!gofEuao_ueAB8O**!pPALC+
z(9C~lTjiIF?q9D(=dTQ39~ZSPXJ(hE_A*)PvW$O!eu7fNmzS4q`#>(<`}JD%t2;Y4
zCnY6KG0hHpdSaq8s1Nn?(^JqIhqLo+qeEARg>KEdTJq&ZAZXzLXly?F!#;E0Stb{q
z`E8f9%T;-}c8gtoc6K(XJM#3@)YG{|$M5VcUY&b;8)zVE(V|5m>*H+a+E#~oPtyqu
z2$-;F(V{J-ufxKBx3sW?t`75c?G_8YxhXYtMSvnG?|M(ux%lnvZO~j>xVUY6d_2e%
zUteDjU+mT!veZk|)zwuqc$v?w{q_4nGwrt3-(Gxpc$kZa$LHc_CWc8f*i~N6`za_W
zxUB5$t&{hb|3A>ktQNj5W?96>q-S@_@0&We@fd=dWhE~!sTmqxT>G|NzAi)Ow9(q=
z?PiaU_nXUFmwl<)U(R4&wt1&9pR85NuF}_ON=iyTpm8u>UQ^IoA8E53kFWdkp4_T*
z$WzOdn{cR=yL!#;l9!WS-rl}mGhjgjCkKbY(JoQr!)?6A)Ai%cw&l*gwKcoi_TAUd
z4WJRWk{1^aJ~=u0_>W(|q;7AEEzUY}{J8Y(ZNAI>=I*)n{rUX*Sre7rXT7?*diI0~
z0>T0U37?*w&7NhFnUr>R*3>tZt}ZSWw(7|}pcQZ*KYskUOV7;g+K(SUcATBOvF2w{
z^6hPsCK(gle+Mu3n<*Y&bMa2`d0RCNjT2AK%)AU55Zd$Ul(w3pqT<b8>+XNwYCqE`
z)d(~jZJKq(K!4ANrklG;vp3z&zrF1&s3rU4+}zus5u_>F;pb}pd^~Pm6XV_|lL?wH
z1P#mO+%B8V{Orri%gd_2zf&_Zy2QfDI&+b0_pIshbvIR1R4QtH*4NI}i`Z}=WM$A%
zkU=0<Y{|NM>J4ZN`v)f{=d-8N<IO<9<>=_REa70&GWUMDXIEAR%boYdKQ8w5$M-W5
z$$j$ndB48CPWPIolWCNGE@xBP*{m*c{k*8HS*gqX=4P#n*;#b?IV;1uRLNrLc+P*!
zph5O8FE4X(b6-BzD-G(^t`Bzr%{YO^0rvm>Hv6@nuJ?4k(2|lZpgzvIxz^slcJr4u
zGO>aZ;Mv*c=ePb<?zdS~`S}^BO?dL2CmRC;!;j^^ulF;4{QNmMBI1VcZBVl9l{PQi
z?V18w+_R^maQizh&=NAxw0hp%T|0B{@2xJ6-BECGvA;e81H*^>PwV*=Gz(u`P?WVU
z^8u|&iU?om#JYXoZO{Ml+j1hem!+PbHZ}M5%2&^M85kJ;To!N$QpogU%%42(>Dk%g
z%l+mS`EDxx@gec&j~^90KHooo4)*Zq$o`}aT6%fEgJBYr=k_x`v-W<A@+|-7ku`b3
z1cmzg`t`p#d3g3bti8|3z|c^?tNw3pMKEYkebSzL&2}&UJ@?FQYHBKZc}aEs@0}GN
z7p<Oa4(gvhI@&ENC|G#7jDdl{Lz<J5v#Y=VdNaS>i&8DNJ2H$atdn-dsg@qyb?xEd
zc2OA_9eaEG@Y~wq>p;t}^7KzF@tl`ea{oK1efY3le&6A%%nS?<{AL@ac3G9Ym~bsM
z#e-#n$cgFt^FgB=iHF(xOJ84G8ypfc<@NU!D>NjNw<I2ByShI9{??kmzrKPdT%vEk
zRy~_xoq9?Hv^Jsq9Seg(Z_e#)Z~yO$sPqj=iJH#LP=4V1B)fvzJm*(}4nZ1fYHssu
zK6Qe|FU<H)yx;$Son7s(9k)PJqz4Zk1Q()AC)nj{7Mz)BygG2P+eta)mA9|%{eEw?
zQR=BXON|*Dwp<7hs=v<gC%DF;{O4^4hKXP9Rlk3EW~Q-K#fJqdpjOU>e}8|gdV+fX
z*VaT{-CtjSc9yBPY4){{^>KSk{{5*04Y_^4U%x*oIXU(>7Z1;s?Dcz>EuUW(wKjVD
zwPt?16;rjtvtC_US@pQre2TJr-xdp31_lO&ScL`;&>Y#fx3|?jH|cm6KRa`Aj%BgR
zU)$!&YilB>+Sk{ujo9dP-tPCBUteFV*VosB7JwaY=P&R5@A2tMu>Z;X_v4k_dM-?l
zuUpB)%9U|tMc}K8i`ySR2c_aA>MR1D)!*KD2JWtYzc-v)T+b))_Hp_8n11_zKi*CO
zE%W{J*nppk3wc4~%7!dttpOg@O6yhDG!5a$v#+rpxV$a*_N84c3_Fy6RI@SckYiMl
zt@`n>{qio*3i1c*6dIOzulLNFam|(Cfb55<OTsVh;$U#Fa$@jo1+7zjIz9f{_xtth
zgO~fQOgPvCT2(o(`kf^!E9=f%x%c<Qp11kjv+w`E>Yu-VgR*he@3-5hYKN~Ak<$zc
znz_4(kKuvNt^`JgJAw{DFAg*^YsK%|1DZ9Iv#rvwu!zXMw&vpM_4`)&&Nj<DH^*|)
zl4f@PRaIYKotkO9yp2zG)#vBuU$5PM@6vhu|7%KLUpskydb<n*1H=Eg8Y#bppvvU=
zxw)5TnP!)qxBc!h$*TO_8c-Qn|Nr-V&`jZ*o13#gJUHm(;c;P_ZnTJ;oSrAh{zZ!y
zn`T~8DSdaxQrDjuRKNz`X)|v<H{V|0lZ%_XIC`GCzue7jy7l$-o|i!Dr*{-4hyR$c
z#H#ewii(eqW?2?5D`o}hdnv%E(wcQ`jb?I>Rq3lGYooWnI?%`rYLwai`QZHZ)m3jt
zM@LYB+b3(itmx^f%AELxPOQ22_E_?2u`@6*T;kuAu=E0`Ai5q`?VG>nW81zTkGMT2
zrAAi0Tsj@J2HW$}!^7>Wo|T`UeZ66qe{YXf>8mM1!op9VKYt$ckbwajPaPc`ps5qx
z=xred1slY4A{HEMX4m$gXY=aX+Sx)vLMon&jEr)(+1S{;KvON?Jp(_kD>W>+@a5&@
zuSbOaGoGKDyG~o?>}>PvQ?<jt9OBjoP35eM{`l|f^?144@p~!)C*8@r&JC&+ZwojC
zy=dmQ3z%t?YO^ccH1}4>WOe^*&(6+{EkEw{s;hME;dXv)3k!?ZaC<k8S%r5umHqz?
z3axaX-}~oh%X)M>{R`w!&;&JjS=rgEb^LvNrWm?S*N+EH?0{xud8N%NwnT5wo4aVy
zqM(W`c9X2`#2sW{VA$b%Zy&?IkV}U%15Vqsmml<6_~>YN_UC73Z|y8ze*4qP;N_=|
zA9r8sHFc88(IZDP{{8t0swq~Vy|mODH1xZ=^!2sAYdj1L3`@*o7(Ew0pI;x>Ev6f^
zHR~#<e+3$m0WIDEjW6rP?gA~ynzRHoz<O;><f_Qc%Rs}tpP!%4{_)}AuK)jji%Lt+
z-lh(kt6O5Yu3<^Q*H>4!R(;I^%?f~4D}ZLnK`rNA^LrP5zu*5pYdW;n05!(<*ZnoA
z`B4C>HR9|4nwIZpVqiG1UoPAsXkpCGqFMI!|9o$Qs#(w&F|#Ph4oU8C2hjW=g<Cpk
zTG-HH56Y;6X<GjrGhfTSLo|GS+|^rKvr9iba0GS3r)q~!Tc6)%BMNHP#;YEVWxTns
zb~k8sAgBNgUmv$BcK5a}G2K<V(c3JF{`k%|TbX%z85bvK;IlI`LpP;(?*094x18y<
z_3`nMo6|x)JUZlRzXZ;;C_FUr7sxkXbPlsl$h*61rDHQ2Xnu!J)@sS&cK+2K6P2nS
zb*jJnwQ>KyU)iB6gIqxk;RZ(LFXyb^ukf6#W>xT@VfERA&FrCjt4iPA+Z*lN&UY2G
z5|)))Y(?DOs$DfdKgF&W1QqD#FXirE3R<26DpZ@Ao9|Bh|L^yEP@|5CnOW6yXVKH3
zZZX|2m%R1wUadMe-+n!4ZLQ~IwO?;GpP!U#UhyG8RYfJ^^fX=YkoHvl_&Cs9uSq7T
zim3^I4XQaWZ7!*1eR5%;vsToW6`)Z{?eKLwrd?kX8C?78%f<5hwae#PmuLO^^Al7h
zhHg$fyF2PUXoe~Icwgp+2L~rDvH$-k_?Se08EAd}<72(C51l802E{>T+Osn=%eT6L
z+M;{Cw=+KJ*57wwOXg+Jz}nyM`~P2E<l3#``F{U@&`QV9?Rl}H`f)M3QCmPIvPs^Z
z9lN8>Us~!tRX5t~?fw1npaF$VDJK`@+}yM>dV3yd5u?gq*;(jS($96*Kuyji<uA<|
zJT8IiB>DP3fw8;GLP2X^R|G19R+<Gb^9givY65LEXlY>qE!pJa<=wk_>zf-JojW@_
zv#za~DP@we;O6G^*B_6|UvHPMTj4j?%5xH*yq%8csoCc1kAJKD{0y`~Y|4xo74UGB
zbx;BADFZbn>VCg9Z*6aX{qOht@cDMNUyjSyYv}0s*xA|jT`7Ech*ecZMZ?T2Oxe9J
z<nyz$rdd}sKpRIcFZaK`E_U~n2@@1Nxi~mJ+_1|$;}s+gO2GFu?y^ttp04-u&CShR
zyu4R$Y)l4~)44Y`ID&>%b`(C|(|34>bW>B4if8WaZKcuo_SIHPCT~eQD-}L_iC*OO
zT@@b}-L3;A-1@~O(hhv`c5B#pr8I(<`Ec>^g>?$4ZYg@|<?8C1d9+Kk>iOLAFTY-|
z2Mzy4?JRm4yIwthU(KW?cXk%<*5&8so~$z0uJ+c|uUad$uWbdH1e!bf`E%)m3}qG5
zz3<X*>0ak!U}%Uo^qn{Vq}!5A*Z(Xp%^FJH-U|Kr@grz{!z};aniVTFjvhJk;=KL;
zDJoktFS~&jI$d7odv$>$^VYn(zt&v~-j);TS%3a>;acZ*KF?p)9ZybA_g}bhA!yR@
z__x>Kj$Q~?|26kZ;@AIf*?sjABLhQ$_pOtkjU(rqtbH+G;V#>RsoLSMW~R>z?3FSN
zSrwwmD{bZjT1mWq|G!sR!XhF|8kyO%Zg0!or1N^+wadFovn7*F5)ZL#fBN`X@8tRO
z=Vx76q38)32>bK%^WCOX&>Hyu*9oAUv!wiGnbIN9klou`TS1fDDw%I@Z3QiV`1Iss
zM)ZaR$FnmGAFsP6EGoLxZ?0A5qa&T5<(IuureEG}zyIp<dHeAH|Nh37etmyGeskK{
zptG|~udWW)pKD(qcetJZI%w+U#*G`hqd;3HC)`_lo53jMguvF^+hME2)&}*-SZ>L@
ztOjbF{rvpgfAcKRJ_1p#5D#H>zbl|w(G>xTy;7!LwpCvWww|1CzdvkE#KQFXwPAmM
zeVx32|9;TQjE9HYmlym2wctLSPnBGrr(DYY?aj@_px*YQqur|l7B+#Vj<2cS4V`V4
z`)mJ3wP2M}kJm*E5BPqBTsl0-%u8$Xv8@aT=6?8oe`~L_`6?gDf9vjcl~l93Oj1%-
z{`zFH|FTj^P<8)qLWwnpET|H+=ZCK70XN<laBTQgb7m1p?g9BIbVY#U&Z4K2`uqEj
z_pi_2wQsQj$iStaD;*|%d3!q?G=RTo(IU{=c<uCab24LvKq)+Wf+Ew2CnqP13JWiu
zX`H^SR1>5r&$;bI)6@wQ7Jx=@AP&n5ZsSlWeRbvHudlB!?*g@{7`AIVvrPDYzdk<u
z`ns#q`Fj>lR`*|4Y6&(Vu#H0jwAJX{-Q8bLX|D(6XwX8QZ8<mZ)NM*XKkr&9XqnQE
zP98%JTQxPeX{k$*teLFl>-8GsJcc`rl8d;-7#J8D>f1^xS)WYyx0|Q}8k60mbNcJ=
zvo^n8EH2-y1F~_uW-Qx;8#f{%r!C!<d;8S=`|%q$ZZyApY?BUnhwOxNOHVUwN<S|L
zUKV}(JxGhuwh~DPE>W$L!=RBGh7=zjCr}I%x2M);*B;*W=F9!(U)z#-c}w;8JkSvO
zF^TP8r=?~dYT?Wb0YzfNloJAsDWENZH#aT)_v0~t>gj2|mc`G$WF$w1Nriw02NX<=
zTo_(nUfvIy*SxtoeRayoNtv;HATLKxQ9Rc0=FZMw+v;yBH6RyD#<X!L9PJXl{PXj3
z<Vd(4Umpvq9UeV?e0i4$Nac1#=N`t$T_r1>oSjSG@BOZ2WfjHBB{HGEzdu^~^d^(4
zFE311fd&X1yiz(CKE2!he%HVHe}8_)-3IR@Zup|_%raqh`1)m~oFL=gHSid+fpYQz
zd*`+tOp{X1&$9)!RYCiIJwf{pK$XCW6DLg8fl`KpSIP{AOUwP`d*y6zEw-MPdmA*J
zU{dqrgUKq0d}@bY1ZceE#6;z*i(I+aMs9XXKR4&%OyhJ=F$~&vpzPjv<-|ng%e#C)
z_M1;sT-VSeZSLng+YGc#;qJ8XH4&g)a@UV`i+{c7F2Az;{k_Z(MNqI!IUx}4@aXa5
zuMe8})pq|o$S$8U$q7`mGM^A&RMFA#iQb;)TlV+b+GtTJsaFZ00U(Av*ESA?wNYCy
z{rLD8G&u-bXteHW{hyERpvlIMkB_eg^;aWc<|jLVm%!ZI<ofsb_v;Oe%u_%!$Cnm5
zx0n3<lzMelsCP3Puh(NOP(%KXPaB5<Xz})?rQW9b_iVOTI=s5RetjFSG-#L0CLQhG
z)u4baFqTwmP|3WuW+rI0+O<@WuXnggCh>skXh`Z;F)|9;mYe<i+uKi{KL@9zJn`KP
zO75|{%Pb*2kDjQ<?9nS_ni4rJ=XTj|PzrQ7HcgND#1hZRc|WW{fz#7z2-!bAS&`|)
zG~H;E+*>BwQ@h3WuYooNg4VQsd2ul_1XLC^Tsa}YxFrAnzW?j@TK9iiweP+Czgdj3
z4&SaaCW(leFWRwC)c4@j2Q#j?2?V>|c@@;-Cd_LZWxguVhu3UY#v&Kh&WW>@9jRC)
zvHB5HXiT%T;Fk^&mkCEVaNM~sf9z)~k6XZw`;xUb=VliFsI&WSy(ir!{fXuGy7%Vg
zcM9GAKAvfu{_KQu|Cuv0jVG%-pHu9Yx98(AuU>WrhBeF81QpKPeD?WvzyANP<J<35
zWrM<O`MfI768@8c?y^(m|9xl|og=`&5FziY<RGRSHN|hP)m8g{Z}aPCJM&qp%(X7}
zn<P_oLUE>HvfI*Q%nS_If+urKxOMB+o)3q(JttWfKYMageg2t+?Q&83_m{l9^eg%s
z69YqU_~Jdh@8f@+3g0*B^}5|^3`buvFvuJSoeQ9Mdb<AkDVo7S!NHT2`)xMW{hygW
z&vSj;UM&kn28IoGvs@Zt>V7^2tw=4pox6Q$?eA}r=6Nx@N?%V?iQH3BsOB?cLjAAh
z^{YNiVPH7mo+-q5X;<m%9(ntJ&fo7<Jnr3+b#>K~l?)6GyjNA2o~&QFZk^xmvbS2c
zYzzz=<fKv?Vya#)UAb!2DOT~A39nwg0&(Sk&RMl;RZPXhR#hK%28NoLP}e|_sdA6>
zL&L+DuUe&bdYbO(XS4J7#g*?^wQAL=S65ei&&azx(=0dY+nwU`D%;h6wtMw6ZxHP9
zFUpyuKKV`H!$=0Rw(s@pY=1tPd^4Hf{<>YCTP0h{*;%IbUkw=;E|^q)=3!u1VB)Lf
zkalj)%uZqTx)=YBbP5}1Ut9BujfsK5Zkk&q=e77>&&>DFJlZY(yhFJ!;`u-Rx)04;
z^6%U2|8Z2`YaR~+!wmu7M?5D$n@ybgET1@k=eK&Xz~;|~!>WEP3=B0gpcvJQnPHZD
ztL8=B>uYO2f4iMO-9nIo;X|QGC&SIG)oVYUQ0}jJ@$WFd{hWEW)zjc|md|D+fBHQC
zzfJP-zS!5(_N)$HfA0JK|9|fk9+&-j>-xU1gPe>E4PP&+#I@LEU0LBX&&D!+er=gs
zzua8evKxw?pDuapKV7^1-l+yg=AwhF;vp4Y3=9tzn{*m0n3|gI{C=<c^W^z|RQ~?@
zdiu}L&&Kut{(O0TUElnEO|hEqtSPf*&GPE!WMHUiQ7dFq@m#ffb@3ri^(QUDek;Cc
zFfbfAekFxT#WQS8#Kg?Y%Tn*{seE~Ve?4fW$jgbKc)y^cchGCn#^mG6wrw-}`}_O(
z`~Uyme||H4zVD<n^X={DT9=<YYkoiGA;=5;msFUZOpDGtc{6?fT*qd%r_W~R`vr=8
ztp=%TWS4spdx4Q*0cVB~W6@dD>rb@fe|pt@+dThihjL%WhW*dyRX_W_|9>s38Z!ff
znagC336jQXPrT!QU21<<{^rI->xIk=4#F2yn3mN3{x;LT{$Kk$|M_;d(Rn*lJB1k;
z806h2b4)nc%>MkCbp9FZ_j@iUyaySVx9jDynxCiR*BwY<U^vhQvi#@M>FHlzU440Z
zx&OY;bKfsnwMxtW?@RyUHye+qt>632>-xIb;)|~0p;bN%3=fn|IvHNx+gm-a=F>?Y
zDHDzIJB99Di%#TjzdNl{SpC_I<i3-S`|aZ<erJ)ittwfydiCbl>vo&nsQ!3V+&JUH
z0#GAxu2t!&4-XIjf0dfT!0;jRLdw044cXV%{ruQpKS%!mkK>^1xhd`JEYR%C)vHr8
zSKQp3{=7?joyY5IYp?GtKfuVo#JQbs=ciNJn^R6simCm2wesK3=f<V4u9)QCOWF69
zfnh_S>92au{~!D7&pfyLzO&}{?fd7p@B6w|#dEq|td>n^(Yu|`pXL91mcJ?M>MFMK
z2U50GCDU}Hr!AjfXJuRU#beT&z2EOyKAGTbly_&xoSIK3r%FgNFlep27~gbtRp@Gy
z{ChUhIU8M<y083x!I}T*y4~+iZM`11``q8%?{;aImX?0~I8lXNwj`kH`@6aE|2|Dm
z?d4=(==EF7KSAZ^tML7^IEB^LeC2yF739mBzpvxZYc8KNDYoq9(u4nI=kJ?Y`T1Gu
z`n}(>He6pHzu)HTmEhDKkp7^>`&qO-+jym?8K1LIW@hI*1Jbs3`#me&=xsR#cjT(y
zY&@C1^I@Cxr(dtvKQG_^`>xgZ=VxY4R#~}rZSIEf=;+z3++t7me!q7*ZFcT9&*v-*
z4aZh^vYcpOWPbJk4`@Zm4gD^q(9qDxy;Wb;<|ZF(V*NS2{^#_Vl8de{Z)|*Q)gQSn
zCvwt~Wy_Ww1dZXn>K9aCV5ku@?PS>b^V#g+(9qDAhM+9DBzU=>q-D{QcDc_7XU-JW
z4l}tCy|3nH)Nuxe1L?k#IVK1yyM<J>oS9*$Y<{;Sc;ElO@6*4%x#@Y&{`01qpP%-8
zzgJ!PcI)*^+j4LJ@?LMZL*(`Ovonp=Wv$C%`Zvp8SK0Yk|61SA%j^scPk;QJZ};zx
z^i+u_!Ak?#PkefM`t$4f|5nE7=Ro^7g2KbMpSvD5CGp#vo0?rp@&A8aFMc*N-R#Eu
ztE<D$S-oCU^S=7N_jJA3Pe+9PO)S!0U0M0^_V)Kxe{!Fz{cQKQGhtwue_&S~qmA9k
zjiNK2US52W?ZlqS&ztVo{Z4&$X6D!O{aII6h5q|&|KFHhzNX;i=PxfWtMC7Hb-mP@
z_=1D1k-JJVkM+sUj@w(MTKRunEU1=DJ3lYBUi;qf_xtVj_x~w6XZ!t5&~rA1hGR=s
zW$=987Ta!o-p1JcPJ#0|yWekQDjqa~YDc}@Z#Heoy=_+i<FLGzZQR~QX7*=qx8Fav
z`Mh29{%^;m^Hch5zj^E~ds}oZGClR=Bvnb{G@os^vR3=dwfgF;e{dGOJ~=Ka@Zj>p
z=KCUcGgB_#Un!7qx%&U}Ta*3mB2URi*!N1km7D-NFW_)H|M?k)$*-=1>c;i8Z?h|3
zE}g#VFrRfu!LF@;pK?E`{`O`jyL^oSs8Qh7D>e13`F)$x(o#v|w4UAZj0_)UUdv#9
z^7VTB`Jd0{@4t5I-|zSH7ik!kzq{imtiW&c;egfk@>`k9K@<3@pvi#V=*6|_UqrRT
zuI$f0#%@=!C+q4euO3iM<J9|&$79l&S*F^Tm-())-;;51k;+N!^?N3Ldwbj5;$CS5
z1H*+Krmq-wemKNk{IFHrEW-YAkMXstm}{UCl3~8jV%`bSc{`V00`*I!BNy{dc-(Kl
z55}t%v|?cR@KV`<fuZ3NhXAPJWMW}p(C7u7?Bg{mJh;Q;+GWsExQWW{%lzltW!~LY
zYWM%=`R6Yd_n*^Vzvt3}8{+XbhM-QsY_r@;D}$Hw$lKX`etv%afh(XiW3v7WgYQvL
zDGBPqN*bkjl-(`8{^$PxzwzsKzuWa@<8ir}MyXz9_bQ*OoP2Y0b1~kE=Up@(!-4ea
z^}Oqs7oWE^xBvh1{B^F5h0g8IxZ{5~t=seI)Sar=Ydt4jT<o5Hb5m;Nub0a&FLv)&
zIeD-8{ajFM`0=sc(<jyE$4vam$gse$fb&|_t@8V|(sTCS$lLvP(`mikPg=#}R>bdq
zy>53<czC$Hyl2q`NA{)V@9+J5s$U;@YYzj%1qsdx{u%G?>;x_1n)KwX`TaAX!s>cl
zwW-Cr`2BU2uU0NUCCAUeASKH9iStg~@3%8;tII$YiposmbiYYUwr$&XaO2jkTO&6l
zINqy%zc(lyR7JQn)cEM{`;p|<Co}Wk-{0v!K0NfClzMuas%KVKmXyr>MXudj`xqG-
z&MPr~GCVWa+Pq!9t^zdwX8nGTacF3$=cH-6(Q2SJ)x`&vr>E=3zm{NN_@PrIzJ_;8
z#m7gWRz$bB{<$Y7CvSc_E&AH~+Jcu?*{3J{-Dz3;Y)SI*zMDCl&t7|+zf<j`Z2iWv
zGxO~j7&MNb|NrIV^Ls0fD9qPlN?~3Tu~DhCv=mfSzT5x*-<u7G`Lf@ZzrSZ2yQ}1+
zu)od42Rnn8`}yAAS9|?)zLoh&`<hRUj0`_mu6^Zx@X@nx?E#(na(V}&{IjpEIeB5B
zvvKOFDWJ15{{H$J{k$;#@2l|7v+w^=+nj!WUHtC<|9*ouyrsXmurRfkn}MNslCi?;
zmvf5GojlSh{Q0SVz2)cU=g<H6`1ty*|Lye^|9g(w|Nm^CeyD|0(jdVBRO#qMZc<4;
z)^jp%_uFZpnlPb=fg!_&<wO;zhaMCfI<-?+J?+tvPTp_!924f*RzEw)E`P@I`JBmt
zi``N`pEdW7jg39lBe{9r`u_|J4gUI!o94+?JZSuCSGIg^*(uxacQ$h_XJlwtb~1ak
zSR0;YdWvx5&Z5+F_W%EUd2vyBZPeCN`+mQh?KxR3v`UA8VTA_crcRmqKOc8~yOmvh
zr|@{{n;RQ5@9n8%<CmM`E?>Ll(qcvihohhZaK2mca=){(<##4#uiL41|Hm=&Nh-%>
z%VU0hc{%y>IcxpN>i+9Kv@kFPNS<rRVG>sJ@%a4gZ1E}0<yY2Uy>jKrlF5FjKwZR}
zo72M!tQZ(p$S`i=wE6qx^2@us%cHjE?Y&mDzwYm=?~Du&HhVPWFcm*L<C&YA+x+#`
zty?0l6V30}Y-S2(WN>)OIl(vK=BCt@D_3T2xVOl)`&TWfi1?)R#dksK>1mN0lU$p>
zK0Q7C`up{#|MO3FH@lj_p!)m4^PBmT_XM1DWH6iby?))#)=$UP9n2bU-MUp8mu8xN
zZjOrQ_jh-%|J)O~IqmODfAc>tnIBw!bjXXJVME~AS*F^5e}7;9MZ$Ly!%dc7-`>vt
z|8xHTlb4oyU$0X9^|;@D-l|orzP!C%KKH!!n+=DHe!tzG{(9~9e-}2ZFffFi+mw3R
zDErzPnX(&+Q{|SPT&2~uXvG(S`DUQt1jU76^06m#iqCm|`e(iP`^(Gfpn^!bf5#Cn
zhKBQM=?-R%b$@@Qo|vF0X_^)C?A+YhZ@1mn162Xp>-SCrH&-5mqR4`IQ|FqPokrqu
z6^VKK|9;bn*<rBz-L7oC{eM2m)O<KNRgRZ|LCdXyfq`M^M>_=u28T=*59JL-PfyLM
z|M&Cd#l`NRHS4wC@0w3m^Ii2Nf`MVfMa~Is4}LuEKfm>Q-0a7F)_Tdu`+Pq?J8N9=
z;Q^>31RH6lwVrY12L8O8)n`qwKasxw!);Q^(JoO?7ZKDTJULlCyuyir;YP(A#+4g5
zh1Hf+etu^8bV~56>seV@MVCC)pKd%ZclyoE&Ds{S3=BCjOiK>UtNZox%e%YPYs-E7
z@73#1<p0LV@ZhpjL&%Lemc>EQ(YF)!Zrf(&8VIVk)*J|7VAzn!F@Y<3TTUdXmRYks
z<Km(^c?JeMT^5g4(3*ekur(PQ_SO9S1Wqbj1QbNWqN8VnPMVAOpRl(2`@7VB76yjd
zJq#;1?5q6^T8eoN6t_|Je?A@$4h@~Uul9FXh7kk9jUOx?t+J(80wcF(g@T5+er=tq
z9iDb)N8!!#`?a7tn#+%!fk8U_vlst|NKlWAN76`Tv0Lw{J3EUv-z~eHdS^!=sJBvd
zT6cR$l??;KjTL)@tH6-}8ur=w_uK8w1rHCs+4Xwe&Oe_{7k@a&9$sYvQpUo;zz`s{
z9<=qC%%*08|4dN-PkmlR($eEMH0pj`p1*9@F00GSd~avW|NN+1->-D*|G$hOUGonx
z_?`frsu1jNYkE6xcP?o4blKZmssI0eKYwFm^5&YKpHw_ULqlEDWek&CZf(ije9`Xy
zv42&oR;|+dXUp_MCp+#XBSVCJ`Tg4RHa^)|V!BZ&KR!GJrHHU~F*8q2R)4<d^SRSs
zUS9ruSpMIJOUb|3?HKB(GB9Q^f!6jW_gSjl&e`l+_kH*MrP<fleXU+Tzpe_@t+`YC
z{jTU70fuY+-WwQZHN3C;zPs}K-SW?q=l@Ar`{Reh`nbJC&t|5t`@EA|T<?te{-0+-
zA(?r3nJ?&U4$uI{&Gh-X1#e2P$4<Aa{gu+KyUpWxpX}!E_o|<Z@BiWY_ur+Z-o@W;
zrl*7Yyxn5Dm)1sam#KQO5Yz-SfAPBV@7L?a$0XBJj?0$&tPWdyX=m|s9$71s^?SeF
zvg)t@ez&~%)yn0|Ks%SNuZ!)o|Mz3h=X2J)eY>B}tNwIUzs_)N^maecSq0(Y(_da*
zUjM}A``z+*K8ptpB`+>0f_7;3S-+dXt+ykgd7m1?wSHp-2Hykub)RQ{d39C$_nXb<
z+3dex4Ua!t|Mz-5s6e=xHai#8Px|x1-5xZ=WmNm?OU}-x(>y25&fBG#KDRUs6#Sdd
z+gXDKJ2#)Vo2?nVEak?AM9)c}xGle18h*~^^O-kWF8fvfe!Jbc^3xO0aO%t3+uv86
z|FZx8@BN_jA&So!9$%7ve%?&e?67tF|NR0T{&;!0zkj!w?yG*?E+u96KF~(`qLZrA
zpDdjock1i)`1#l4>uvdMJ~;d>+<vz#+O0=oB4|)+)#`PpK%+Ky3J&vHK4@V6bS2n7
zb@ke9QO|WQFZVw$=q@u6l>auJ*7NrD^-Vi7W1_o!ZAtU~>kMn!nHt=3KR!C@8X6i}
z_++B{y6YdK^Y@k(9^zELVjs7&D76`MSi;stuH9lspH7dD+yAY+{(JdR@qHg!_y5{?
zdwYKToXTf2>%YzrRCW`|y|v}%>f<```}Q2XHAOSHYt^b%kG|c`Umq`Ro);4s8XEfL
z_4V};TeCv{{<<0-9~%-LE-tL@r_;4aW13!URLP4A3oYJmxqR){oX^kBYTp8xUG-|^
z*KG0ln!>=?*x3I+Ze_36UA203H!HW;pQ|$&Z&<`Mv0gZ#8@I>8)9%~crDnHtHvh6;
zAGukLTTI7eb=X=^Z+T5=_3dwOZ$Ixfzjs2|-{#}O`JiJ0LEVaHXJ&rhnD*1b*Vp&&
z{P49=Q(3vimV~d5%e=quuT}oe-~Io8^k-gM6Z!Y?Wq*6yv$IT3=hy$ft#Wej_j|Kl
zyTwv(Y)Aw}?`!*2t5$6St%)sNmJ%BuJn7G?@cmwaBJ*FoW_qxgQ=q|ZUGD8|o|9C)
zr`4=^F77(9{`dBJ@Avoi1_uXE1|5o+eSKZ!yPeNBWn5hJ>oKT70osZ3_t#gD8snlT
zC)lPd#+F_U1&y$M-g&-O@AsR{{(3u~Ogb~ivbZ@tYF|yI-mVvma<*O#%Raj$<Km*N
zX<qmCufA4xJ9qoFTVl~U6K~zR1?s$e8YLg=5pkW^$jrXXd%E6N`PkiMXKTOTonHC*
zS?voQP@4Gl{r&u4KTFlSyGl<R9+#PH{eDky4?~U;6U%~$*_W63?kayj@A>@tf62D>
zUtV0a{C=m{IN?A;kG#Fz_j}d(puyd_<@YSJudP{WpLblg{EWB$-YM4ab||yU6ga%w
z^?Kc#{r~^%d@{-VRX?b+7gziB>Yv~H|5sOic`?y2`B=*I*s_!L|G(GgU+__O?>i$J
z9y2lVaNE;!*6+`N-03-4ZE5oHzU;GG_FY>OIeFEpRUn%utNBK~e!TDZyVL9I|Gwt0
z&FdD^{dB>ZKlRcQPf5F)ih0%VcFNR#xoG+2g0m~f0ksFNFBp6sVq;@L<FGz6jZ&NA
zJO0W4|0r+y;Q({-<6iT1TmPN2e!s+fx?c8LP&Mb=#&dFlqBCfqQl|3BM9`orY`Db}
zRFcgpyOnAAcFSd>`hS1k?EC!=q=3)*%?93Cp!4%~zFM{V)%CD75gX50M~k{n43Dc+
z1*L%K{omg0exG)3j-}<F4~HkKfNF%UMIO`jVv8O$vakCtQx7`HSJI*&;aHF4WbJi3
zl<xmLSN`b$Gk?vS^Xvz9Su!(SV3|{XuQK!Ms!%_>pHE8T{Jyl?|4{^u=|3-?ZJK@U
zf%(t!dzI;F=jZLccB_e%`&!kVJ(Zt9#gb;1()+#N<F2iV4E|p=g}>z89m~7B%g=X-
zYMZ@y4NCLP#<I!B`_8_)y83$MpI-BOGeTE~UA5o$@7L?iRbOB6$k|wU7Tri}Uz&S+
z+t2Iuf3I)t`+eZg&(HQH(^|R3%_45+ZoeBOa+Iw;mZ8QZ-GO0NL)_k~r|I^;BSBr=
zxn;L9*OoigKbh!mlz6CRPQ|0n*EM;uv9X}a2*kUYzyI&2JH_Wy|NQuPv+Q>6b*pz5
zocYgAi_Qb}ewRmY&zosiTUGa=S$@g7b$Zb`8(qb8qo#nmX)6}@odWgguC0xJ4oVWB
z!HM^^@2j(G*MXW8UtV0~O?!D`W3r$9-!E6LUVXalcAod`ZMmC2pR;}rYA^l$et-VC
zxz_7HXGiQTO69Y9u>e#Nfx6y*-<H09^=i_d`kA+Q&F@Tjc(^^i-}c*y4T*;@E%lzh
z=ijf_JAc31z4`yY-}M;_Vyj**t$eYtz39io_UE7H|E~eHFQxN#C`RXQ4Fyft_5aCd
zKESr>%G>P>Hwui?&S?1Ae!a3Ne0`j2x0r6%w%prdzu#_;FT7iNT~s@4jYiiZjcqs6
zW<NS2?7yb|T$iYJSAOm5XxDx@+b-R0Hx~VPB)&hwXQt6o35$Y+!Uv7)*W}AD`<ja~
zv+-!`DtQ^SCFka*8+E_mc7qDAqmxv<yB1aaFWdKgetq4>-|u#dzrD3p`_`7sU{LBk
z+F$o&@zyj@6C^M;cJI0Vx7+XU)96}M@qBK1*JMAdl`n2>&AzxT_jb~U2M3Ry*57|8
z;alP3W1?5DUOjr4-#!ME8(f$B%>{ena67-gm|o0{2fsf*XyzA-|8;447oV(^$l9o_
zTHEf|{RVkRXPNKpu=+Dc#p7d4vahZA_mP?3CIFPtT+h$5?H1FG60xoRrqgHp?MBkE
z9?AJn>_r*m7p>CRbBK?DL8JXTxZw>N1b4`UH0BtY7#OBN+T-L1|C49ZpK|Q;2f5#%
Osb^1DKbLh*2~7av4IEDZ

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-15.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-15.png
new file mode 100644
index 0000000000000000000000000000000000000000..c86b30fdaf8ae4a73ea2d0af4d685ed498bdc978
GIT binary patch
literal 23940
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_e2hBy8H|Bv5&ggoB}b*j21t-WX7
zyY-s1;;O9GEA}q&+A0!SzIDsh3tCZKud+0&R<E6PDJVp9)rwg2sOUGp*Y$F(yD$Iu
z*&mtbDnh4KGULx5SLQb=K6@tp+{uD_Ghfd-ZFEe6k%57sf%#339s>gd!vTACMi!7j
zGKT_)FXPMrl7Aq<!~x<S7jOVk7HtenAjO6(0w8XmVgraO;2}|Kq}SbDrKz_gAJ1R+
z`T6<P<?ruxb#zRaKYxBrP0g3X{PuS~K0bEz=*exlYh!kP>XU!{KJERzy_<5QV|SID
zd=X@`<lDY;GYp+YwZlT*-PxIXd)vIqXOf;l6%{+W#P#2mtkgVpX1zYc^OWBIM;Y&k
zZOh$V`}5Z?Eenf?udl9NzOpjdc-J12jXK`bQg`Y`Z%k^<xqWSdqO;Kot@rb4zeVo-
z`|Y+?{JuSGd@?Jh$Ja%&a*O$t&VJI6dVAY4pP7@Ab{}kJ-+e3gf8x2@*(!g(CVsi~
z{r>Ue?v<aPg?@c?)wJwQMC`tro3A%cy6x`b^5W7`@3`A7?d_+JA9oL5ALqOA*+S>`
zUEj7QAMX>neK&9azhA4XzP?&o^z@Ww{=Ge)zJCvoh?p_UBy$nJ{U3v)#iw$Ds^YJ&
zi(TC(YyIj_EBC95i`ySPdURz);Np<&J16Jd4hsnh>3VIvNR44;cfOlA!-2?YshWCv
ze#azKRaG;epPT#Z&F1r4l8$oa-q{hDzxQjH+w>pXHzpipnyMM>_W9Xa@6To@<<HgB
z)|wVRayfeJSk)H8V;P^Goc#3p^Jgh3kkiWE-ddS)aZ%j&yUYFMpPro^9=<N-;=bD7
zBJ%R<_tpN+y16M;^IBHqv~O>3FE>m+wxa(3zqsr7Pb~4AoN{|xkKrtX#HP6Vzh9;E
zidVPsNG?)zZaX2d_|?_btLy&$IyF^$dY_!_s;S!HtD?8(RsH|_eQVy`UDk1@*LuCI
zjopyYsPeM@|L^(lcE7jVUV3_(Zt<FZTR6D6FK^4eJw@GrUXLEDgPRe<KSQ0<M%!|$
zb>jC{ZT<N1qoJLhotmPeBD0qF?p>v?tL7Xwzh9HAbK0nxo&Vf|ReLt)-oCOrTtD`<
z%KZ4#({y`tZ$FzJU-vQN^V8|^Ql~fh`1tf})H!YQ>&4>CTjdoMJ2vLtesg#C_1vH9
zVt4zTn`7CVdpqsvsi|_eBd4V{H8=bI`}5OxU(L@mCnu{1-}ydOJA98^^~FW5$2RF)
zUg|9#ydpqRSV}5u(xge3LcX7svMO1zQRj3^d;9FKudi3<Zm#&46uiH#_WE~DPR^HA
zzQ)b&^0il9|DF}7bK2|sdE171v0Vv_0bgHTE&YDC{Ita4UTO0xurAZQI}wVCid-BV
z0VgM^Ufo|`Ki9VU+TyqU_WxFty}hNWq~yfN$jHUZ8@kkM>Xq&J@v%FLj$YL>GYi|6
zn|*&@t=w;q?Cq=E<!eI%0|VDtTVF5J_j;#2f6A04+wWC*Pt^(y3J91`^yI|Cjt-8k
z85f<rr|bECeqHk9gy7dVH-iNQ1wqL*BV$EUQqq>p%WB)pzP`Fz+#4LZuV&}!Wmk4B
zjai?4ecd{1*6Xtk5}QEg@X1<L+%?;q?9e5yzs{=kmB*xO>*L>V_5Jqd=GRN!`Y+GS
zG?ucdD3CgTXm8r-O;^@No0q=0;Hd65=R*4Y+G+3pF1dPdZ?$Q~hlJGA(|qIWelFDt
zU-xEf?BO=vtpyJcNx#cK-X~l2@8|Q-rCy?~ZEac#3Jwn+K74g=?`}Rhn-`_CR|YR%
zm3DR(C`1wx7IcZ}u5#;@%KY}`X5QONReNLp@AI2$b@giKd5OoblAb?){CL;0AZcc!
z>}xt#*T=^nJa~|chbP3vrRCQ4{P*AT59};{{^gi-{))Q4zqEpubi97Puk!P=sNH32
zkN>>2P51PsJ9Y2Y@9hhgW}bBI_3K;7wO=l}|9Un%KV*HJ?bCB}qbol>37o9vyQTJb
z+4|=^3dIY!#Td-%>gwc9v+>KVIoQmuZDA4NJIf?6BV$F~kB98NGL}Ky;(AwRnPyKh
zPWSVyubr{${l4ERx3|qQ&0f~g!7<mm+|RoF-IeP1dzUYCZr7^*_GVI^fBc7bxhjuo
zshOvyXs(LhzV6kvwXdVZ<>d4{U)|ZcIqlq>l|@fatt@_ij*Exq%0lP%Em>E!bmR6!
ze0_a=|HDEdA)%1XX}+?SMJ|DXfm!$W?fv%t{(67ApDx^DIsr8`d!)?sbY89x0D0=@
z(W9C+Hg~S}YVDl2MI(4w&%e*}|7YCVk||}F)bhI4vg*r<XXodycbBVl*;)Mj+pf23
z_pG~j?|+JI^|vcK3Lk$t$S%L4{QW(xz(p>zzE!@tVOaa|sJK?}vYu6;tCz*>EXusH
zB2db{ZjW5ukB75YeRi|^^TAnFRdr?U?{8Ys+j3Ur23tQ*`S|f8NX@IOtC!C*%?648
z`uTi5sBk+w-#%X2EGJ;0Q)|pyc0QRE4-dDmuK4&U>+-VRPft!RKHScq{rA_`S;pyo
zQQPx$UtU``{lp26qeqXv+<e~dGQa(w2d|>kPkv4JvS;78apSKSi~B`{gci-1A<^2>
z^5Q@vGbnCLzTYih9kkSI(vsZU+g=_Oj}Mt^ReEKKr|{F$)BS&cdwco${Q7mR+~QgP
z{`}0kv0<UgN~cz?uI}#7KXy)kQWje^dERU7nW>S#9(C)R<lnOaWpIDHpG)d~J{8xE
z*x(>-mUBUW|DQz*7A%n7yOqJniS2$P<AViLb|tKh*m&s2j~_D{8W@V7oDc+;mB!Oj
zXGU$!npyn(+|ISLtx8vc%CygCjMt_9{q@y&TkdTAeLoI8wn#rWr|`F(nVH$qb;_rw
z>wmws_Efa^nkl!WlF!`SoZg#zds)`iRdTO;44++D85}n~etqKMwqx6JjdN}oY=4@4
zZH?i+ef!kv|NVLP{eFFUbh&YC;H2~U*Vo0S-P)3QY?F?0@iU+6zY-6(N#5Re_SMzZ
zXRpWCzume!ASPzc#@yR$A~qh%t@MiBur2?7UeS{ii8;5;W}D@HT5)odPVf>B!Q>vp
z;%8?HOaFh`mY*NHp^aBMP3N?cvRhAq?&_GGn?Pm#?y|RDkF_V;eSLl1d|U2p&&g^_
zvv*I~l^|<Xaw29|$;rikC#ib(^!N9_ytugi_NNCA5<mtQe|+THpS$kup=tA8t1kU+
zy7je&jm;ew7ndEnzaKR7_oPNHi`ts??9b27d9T;S?R^Ew?|aI2T338npc%7c!_MdP
zs%@?<{Z>5x((BpxUT2@0qIqnS&g19L)A#*+CcQnEjYlFO=eAk?o{w$Ur5I9db|o<W
zcQ{#Y5?Axlb!+Bjw~H4qPFfPU*lndlBU4`P{i@fxk<*rbe0*Fxd|gc5Ypc>%OHQ2d
zsQvTtxZH6L4vr5I(*&9Qbx%(+bi27J_46*f_<c3zca9%yX5X4}Qb<%cD&)M~?=`n~
zWnEphGIn>FRq3lKj~+kH_da_vYHQZgnxCI`mL8sEk~!(rG~Ly&uCBiSrOv%yZtcNl
z_UsD_96<$vR`|L#M~=AI{(iH0Rlq{0Rkx2FIkKYa>nm{cq3Y`^6WRPnM>;=!{CH8h
z-{w)2n6&ij)#2-_-X@h<%h=UKOe(n^TYh)iUs0`)6R+n^V&j#15&!?!bTR$7Hyh8L
zKY#wUEJyzSspX%lB+c{Y=$yX9E?@ItSMkg<n{>9<GZ#HQ^>pjKL#^DaLsy60+E=@q
zPsXCa`|F)kU$3r<weH`o-EaSIM~`9Tqk~Kb>_uZYG}JG6eLOT`+EUNSYM_!!F8BJn
zSZ#ZI`~JGuC-q`?EqQ#r|Mi!bmrqUCpMPsh=HiXX$5&N;ewKB0)l?~yj0Lkyv(s+G
zu<R^)8gzM?uW9|i8do<rEj2Z_t=ZSF)qcOb{J?<&CU28JKRY{V$*rx~r;i^$o?IIe
zGG&?X>}6+Xo3Bnj-nV^iS$%zd>6;sY@ArJ}D|>%$t!?$UjO*)SrHs?g=)S#vd-AzQ
zj~;!w<gLFn^EW7x-Fl^dy|4dYeOO>q$;+U(_x48f+k9w<7GL`9?d{d^`|D;IrFO;D
zehpo}K0E8%ySuATPFAn3IZ*%e>GaE6=YN@DmOE>i-`rJeqqo2M^73-tW8*)6|K7b-
z_TqwL{{Fw)-tBxYw>9r>ROzcLfnQ%;wcT~rvUcyEkH_UfMPKNK1jniR@pitqYrfwt
zm$EKfb8THL$PYVhx82yJBWqLfVOrC@wK4H0V~?&2UE(3=dFkcl<@vkR7|O*MS$?p4
z{d+KF#*7uF+1FNhPuBz0rCp-h&pzHhGFjdK)v2l4EBV;A>v)Un#RTlD`5Cg*OLT42
zRxjsvzN^dU*R9IDyzHdJVx!bkFP=`154*iB_x+QVm8R9-a(X2Uoh~o;FSl*7P*8AK
z8@2V)iHXXhQc|;CeLKngcKu(5+O<!frk|U$b8oBnt7~g#AM2G~-YKk}b$*^L7Y9ed
z?#TtlpsHz!hhXfk63^&uITwZfZ5Hm>Vd3iHvP9D%baj|7$WV|Q{Ox|KTrHG&e7t{p
zYNXslv-o{AS+};VeDwISY5qN%tvNT1?mjn2IU%r}At`d2c7upkh{x^i`Tm6s6;)r~
z-VRSb-WU4tQ0vtdfy%9|tvi|CJUKbpR&I$w+8K$d8i7ue)%~w^2r8S@{3!VO>({En
z$H$~hv!-PK>A8H}`_uW1h=_<;x9Y#$Ot1R!uw7I_V#SLW86a(zMNcN=-Ud|}TZ*1~
z{r&lT{`Qc|XXE0hrS3eoD@NP$NQ|@qV~QS&zyo<51A~CTz(7!)5VA4Jwe;PcNKmgK
zx_p97<);%8i-pzwmQ?Qlez$zS-TyzupjQ9mW4%#ZGA4q;j8E1|!^GsuSCbV_)LkoQ
zpMF$UH{<*F@7EVNHk)KzP>{8$2+$5+cV&uZuu1MMlec$whiiwe@hJWMWSxO~pUlTy
zb~|^UpZmh-^ZWY$(N|Z6US8rkx#ZiMNZUUj4rjhHn<kaqqoNtTEoW8K)>ZrdeDc0q
z`~5Dciy~!`QE>RAkZR_Q4T-bN^XIYgNGuT3jjG5kesqNM`W~g++uOeWO0?Qp9bd)l
zG1sazXzrH{VQZtJw&l#6rWXrplA6T+-gocg<Kw1zcPysr$H%P>Uth+{<!@H|tE4|y
z=XB8fdwZ|$F3+E9QRuWfZ0)5pGmSyX>hGu1`k+J~8@uaL)!sXNC*^NkmO2wx^-}fc
z@88*vkM(NB?%HyDmvcMc(x0B$D^H$y&Fye3fro=(s&=^F-Cd=Z8=2Wns=j1wF9mt_
z<>lpDb8l}ed4K)<dH<`cLW5&s<{ayj)lTlY?NWYHe#!Uu_up@P`|IoL%YRgsfBAFF
zSVza_?X9hsA06!u-IU_FHfrmuwpi0i$6eP%Z9Vn6{a)(nX(u=7gszD&^!>Ule0$#A
zl0QERK`of<>+81H{%7SDyK<nBx%A<oR+I8Xt-wVsRbO5#1QjfIb`-|l_L*tqI$bX|
z2-KF}njOAA{^#fC*RRLduiaby{oc9YON;yMwCwHeYk$35ZeFAEx;M?~{@&{C>*DsV
zdhsHo|3l$}1B`F)?X|x8_Ve@e>&0}VGM=58+11r`X<h8@FPHu8E4S>v__fG7<@~(Z
z|Np-4Fa7c&F!%1RuWfJ3-`-kU{ch)R<r<0PFK@Tsuey6|+uM@6wI^P@=5F}Rp}?Tx
zslV^XqD`r%mrYc5-*xuw#qIg=lF6Xf`}KUK^<R(6*T4Avet&uG{<O1Fv3n{mE{^?_
zZ@&I7L-^LL(DlW!e||jfe>rQSt%XIzq&?@<iyj@}TrdCa+<g1>+~RsCu3tAl%J}N!
zp+kp6WM$X3w6OFyeEa+Te)h2*NiHs~OV0eZQ=ZMbyg2vvwprHY>z<vR{e0H?$7Qdt
zuAa^%qOm|Tcp0cv&b*a&VS(eR$?E-We6p*!#q}!I%(p09q;vWbsIC0*@$u@vpn?q)
zR-MA?_pW``3|lh;RDeI9Uk}RCn&<L27d&(_&AOs-wN};M?&mN56QB}rd){4}cMm{=
z60dK}Sh7TAu1#gorT_c+E*0;+qqn#E`!qwhySvM;?<{_P=bB{lop&xR?d{pe`()+H
z)#K`ZJ{76g6qJ#9^L09x=E)bJz<klf>ToIEe{1EVPIZ&AHxZyxa{b<KvzF{<Yv_|O
zbYf=X30N7l^vaIHWLFoL7l&H8*S+%w)mqcz>oh&9{(ij<D$cI1i;Wf(6g)N4czNBw
zpXs_WI|2?KJXrPT<MG(zIrsML^qQ)*RMI#t<Nv?EyWa2ny(Ry?-PzgZ{<=|HF06^%
zd?}=QrctVhnAozJ#_6Z7Uk^XpB|14Z^3|1<ll|seE#(r`S`o9e2sA*_C8D{g`1!fa
ze}8^jRef3U>&wf<GL}VmK1jUZ|9@ZB)m2OX{r&xV_4<85PftzV3bJITvAdm}-7K5R
zqFLXHjhUF4uda#QY`y7ycK^pepU<z(zrRn)BxAyL_1Urd@%w6|ED9F<`u<-3WbL`m
zr>CdC-hRLC^4{<FUY9N?*mPX3+6Pp}JUKZT)Ex}pzUOx0fd<B1MNhjxohPl(RV&<j
zrB=o4+*I`J%*w^?{aH^>O}(`-xqVgG+F7saKuKd;?(M8=Ya+XPdO{Aj@s@sj6R8`y
z$)&Nev8$)2WcTa|GiI!a+M2a8<>aJQAuA_!iE1zF7T3=@IY|}NK$&Hpzs@N2l!w>-
zuSL5{-rfoYl|ldieYc;g73y_%wt2XRM+cv*)socH(_U^oE_Zo>W3$TNuiPE#^J^}B
zWnc$o)9-i7Z*9w+4eGmr+TqFnzrMbHeNE)%D{CT+L)SzE*45ShI$!^9@vW`d%OftI
z1=Y`-j46(iA6~>WNFLdw^Z4=O$&Y?5cJH4hV_7sKW@pjN<l}ui*ZzLD`@PR>vs|Bu
zh#4Qhe>Y#aaN#niR<39J|NmWob4TIg)psYUdizY*i#@ad-&g&~=J|1xjnn;#zuzsN
zy?lP%tv9!~pMN}qolnLf_x3i^g9i_)ReyT}>Hws@yR$Rx=clKjmOrSn{8sw<+Se*R
zX|o&yUMUlU%FoYC?d<H<{S-Pk$1*vt@~J3jNTc|AZ28QF28Q4r1&P7y<7|zyudONB
zTi4DfYh+vX#o*z?hsW;Uzu(f*GGm%<^ekR!vx?mO+uJ(3y1cF%PCBoz`#HJh@7L?c
zw&j9`QMNx_d6xOn<HwIn_i-fm?5y~>h?AS!c;CK#&yLI2m*{TSIW3|ab>+2L{lA~f
zHRJYx25o-)__5;|<I4*Rn>Xg(-t+g{ZF8IcCzcA&&dsepyv;oM_qVsp%HQ7u^)1!>
z=h=YVBBB>_!zAy{4WD^7H*@RyTUuDwug^?MT2%S*sJQRSprt+u2@5o%wyb!0b@g=1
z(pOWCpHB%2npF9?*WBmvv0mSeNk>5{IC*(ZudWU^e|)^(+|$!@-L{uI<AP?ht1SI)
zYGZRpL_hA%>(@rLze<9)=f#4eKv+T|qf1;rPp<Nb;O5HDY1_+!m;0HDYK0hB7C$pl
zR8&+`Q#<zO%VmGfYsGJF7+zlJ%pSZU!SV6y*V#F@%g$b$eCc(z&#!gsHG`K)+}?Kf
z%F5uq^KPGwsb-jyEO~f6c%;^%*${PDmu(?4gHfxfc38&GPfyKrrkm%-eSLZP`8jbG
zh8@Zh%uEa?L_k?d(Yfu;hS-fsNAoPcvoR=qR)P-rCSwc-&%AZ4S6Wn7cI|`-0ynp<
z?Gn{aEAi~>?CzeNdpl}pQR=MiH+Pq>&$%5oT`%@sLhAOkqg|q#a;<$I+y2X3<~LXC
z_O`DV-Q`nDG#Ls&gUu;X&(F^fe|)TWYvN(Ht=ZT83JVLX9(AhAtWW;%;NYg*=xw>$
zpiXO<cKEuIt=e&We(1_y-=q^c?dirl+j3o9U6)o{dwTi!TzPSEap-bC+18ep6Zh}O
zw{nYzZB9FDl74PZ^g7G6L90K8skG0|-VYj{0`)-r=32eFzkmO>oSQ|r`^2TCwQq0R
znty-a?QQ3+Kkj01NIR5V!I%>D`r6vdpvFng4FlWncZwxr`~Lj-W0HPOX7AT)(WmBG
zZ$JL)<KyF}&!6|7t{;D{;nhDOF|lR2x3_8f&$E$x4JwsQb8m%ka&mI<^M|hvTPq?X
zv!?d<x6Ff0th4Ov_bpny7}T0sfBU{3s9m=$_x7?sKR@5!nB3CdzWdOlrQXv)Er;A&
zTRa!L^@3W?SNGLc*M2z2erlrfab4Nxeyo}dKdhA-7*1^Ale5t{y(wfxz``Cq*J-IM
zJtwPyDoVS5Kay>KKAD{N`urTr#Xo*jfZX%(<44JmrB7bJUVUk)ceRdv)t42E7B2?1
z1onP7#Jz5})yZ>nEEj)!dprB$B3IC`iI{Fw$?+^64vr5|kKc;O$*ps2W~<cs|FB*D
z%F1AM-}!d2%l+qHYhvZjdud_gA;fU0UoV2eXzr6jo{bwf8XeoQYiG=T^M5BMD!;n9
zdAX93(v$b^*I&30aP-KLjLXY><$mwkmj8E=Yd2_c2{iC*XJ?nWZgt>dH!g1O%SSqe
zZLfjH)IOiLzq&TseEscvEAs#M?h1|F&3}5+mYSbM+w<H`KGqD9V*Yf9TmQw0iON~m
z*Ubf$P1`>x{x#ise~x8w$exNqP`PiMcBUX&UQTY^qodugzu&J9zrU|GbW28H>iK!G
zqFNyr_EdgW@dOQgUs&iIx~n9Um5psx%E?Jp&*zrgoKxOvr~vXPxBi|5pn-h%KABUq
z&DSd_E1M=9U{F<4TlVYM64#%fo`U-7tt~AX7Z<ty`t$kx-D~IPT8H=BeCjwgMRV~S
z%VMqcb8|qI*0Emc=YnRF?)xYA96Ee>Z`uCaTQVnu>emw|JXqP;wG9jcmU>UWR{#HZ
z{9MaowX0F$IuW35El5A8Rdkr&e$8C#@~SPjHzv2wtN&LSx-!Uh;lhQWk>ZMq9lOfk
zuWM%Kue$sF%F5u-&1t@%u~Gwr0M~A@(8X@OCe`0^`nR$3%Uucfw_Pfv>ZPHe;PCVF
z^YG8l&TdUS+!pehy<tiLJB!0IP}z0#=+Vs6({w?td{C`;;)I81(chU9CV<@Y>cm9l
zuCA`2-{0PDt^Z$F`{|^5)P{t{M~@$0-BFml{cqH?rJ$k2ZZX}U$H#iVKAG&lZ1wwn
z{r&yBN?tAskE?W@ZI)XkEnuH`h(%OCE{0di#G~+c^xIXz3!PX&qm6oc=hk*lQ~|~Q
z(YJbWdsg(@|BING`f};?IIoSd-`?E3x<1|>G*<oicz^irvbT4#{Jp$_N=ml)&9_@C
zrW*yCotb5r+y)vWIod7$dT#l>i@(0U{(69!A5>P%uldwj_5I!23l{=F9UgO={Vgpl
zSJy^||Nj0y9MlY7?9Ly%w<>i1-*2;z^++yOpI;N?+AZdLIeY4?2@?cL-`|T}zwg&7
zP+l|5zIJA7-hl?jPai)9Zq2$1YF}+mKc97TQ|hbB%lpl8ZY)?CynNTKV~F9#1$MQ+
zH1hB5ne^mW@UPd;liuCgxhi;hA1FtDeH99x&e`{KnV4?WlK1=n-&-s_!_aMh-LI8m
zdNC`e=|-=L+go*OQ);)}-!H+s@%v&{hp!J?8MHL!?c>LfP3!(tTwNXRZ<>8AWLwV7
zFQ3obXFod92`YKaa&9~*6EA#lpi#=M1~i+t&MfzqhW|VptC}AhuC0$>Z(00oMd|Bn
z>$c4{%MAiGoSvPLyj%bOZ&zpM#ZF;$lk#^lS67947e7A-N=kV@Z5coCCo?Ea1`Tj*
z%)RY1*Xn9AXuuvcg>qv<V&3WNYa)|tYHLArC}-dA|Nm~A{^?Di(Yl|nR<FMl>JAwu
z^qFOH^3C1d*Fi&^>hmfNy`3>Fb!Ot>wwb4=>r0>B<m2MvGVA<N3D6YJ*H>3RSKSfS
z4!g4<cT-CXOLFA2$}bn)V^8n<`z<;-a@x+<>vrc=tg|kAV=yfh)Ho^r`YQDLrw<<r
zl5cOzytilP&XSjtj_+%3YVx_dD)j8m;^#51%iiD1-IRJdO)G58i?W`lr>9Gw-gM@{
z!REWu!q>;$y|FFVtw-Wv;PsP})z8ka|5thV*W~YWFTI|e^YYTtW1Dn@<>cONtNH%!
zZrtticXw{y*p_>3ZS?bPHfCnmZfwi__U`WM(%rSczwO-HcM>$D4RY|`uh;KRQ~y8b
z*0$Vze?EC{FU{Zkb=pRq(<T`g4&?q^=-hti-sBYTX*!^Zu4V51a(Snlo11+nD!HCH
z+AVIo&9d^-lGpF2>&Kg^dQCBCY;1gXJAZ#^cKMGFiNa!HX<XuZZ@%7Om>{()f$>BU
zpPbDKRqtslGA=Hv`gSw@?lsWh38)*pGI;r(zM~lz7qu>0yg2{Y4N&oLxQ*8|`4~_5
z^aY&4YA3E=5AV18^}_f4cRx`2P+93QQOP`K_MK;!mU>%Nep+(;mtpd;6X(yL|602?
zYO9E#;6mf{b1%MLj}KoLvoq$kl9Cc=a^dfn%l_sv+8Z-3tF4XQ9VV(367c`uU)yW!
ztgN811@krbYY!bdq~dwJU%otAPEhdS*4p>?_NMk+d~~$?a_Jl;*RG1apGBpmSKrxL
zynM(0UteFpZe*7$h`zQt-5)g8a(bHX<$r&F$DZaE)q3)6o=WzG1&#l{uCK4OZJR%T
z{`Fl=O-(WN@f#8v%iiBx8@IP=W!T!NytiCpIx9dOm=hC~qjr_7yk5-EFh#(DA;ogG
zdHyt&tLtKKzn17*u|h*KIp*y;&;(nwT^*=P|L%_E**TWM&(F`l{^sW9t4lnEMKuB*
zO#41}Ca4N~`0%0JX>M^n9nZMu8JyhQm!F=VUi#$3#E|cM%iczLf^t;;-V5J&8LD7w
z0ZcsjT&~x1*q6SV0xHSxR=?j1nl;UiaesPhYHDOySF%=6(a%q*plRz>vAef5H8($f
z{aX9>wx^FDFD`z5Zt0Hw|NlI<mph$vyNtE*b^W&GzO$FTc#+ZC)^_Ur`SYRQ`|ba|
zDC_|Z6e%h?e!o-P51RM}m4<hA7Rw!v-kjFEWdE*XymB@-9%tX(RcdrB<My`PmsP$D
z4TcH~o91jzKkpUP<$v5O?p^ML{DV!b`9FX7&Nd5eWMVZbeB=Teo~!@!(Y>qrym9lB
z;(gz?KhyNgo2(mc#>&pVd#(4&i+lF%tN$Bb^!9H5>+7njs!OZx7^j~*u}SCp+)nGa
z7Zy5C`X|Ld>CKy)n?W@rXl!&<=;~FV`6@21N$c0I2Q^6ylaIYPZ~x!tdSTS|ytO-v
zpRaQ16w11|sFh1hN29*J-t*Fni;IKr#Cs*0{oL!bk4<GIsIO^Vwg!|Fssfx65*Dar
zetL3J?(rN@IWDB?1)2f}O<T3`%j?C*$Aczf7Q6KZbqcAfoGfM6+4?h4=k%pkZt+W>
zf*2aO8Ce{rP5$F(vGo2b^>WKy|Cm3&owZqU=kBW?9v%i&e0NK)$C}G@WP|3z<DPTu
z{C4=s+<>KCqCbECetlt~^RKVh<3pGE%oMq;7rDu0Qpnz_QupWEPs}!7-(&c4-{FGI
z({!WNUaq(Foa8&h;NaKW|6a4dULU(VEcsZE=XFD~ygMsEUQRsR_UqGW{k!vQ(t0j-
z2r38N`S#-C;<)MR|IeuZ&ylyUi+OykHyG3ksrs6gdVb#BwST|7ylnd|F>)HHlDoIJ
z`t^}c;i#=yQ$dr0H#euho*rL!@x1+i9eaEGrza=7PfLCI`Mmx0W`4UF>x$VMu3TW{
zc9;gLiajr_3SC|D^;Ky9*VEH<C#Ocn?Pj^F7rVQxwDe@<n~lfwek9t)@2i=#=YDI%
z{<_*-eYv-{t&7<?>Df0%Mn=$_Vvk|f*Q?>dIprT8x$gb>Z1yG{?|%D#6}z%_g<f41
zI(bP+|Hd7X$NOY2|M>VgHFBC&$%_Y3`?9a=MNV5fO*gtKXLHTZqV>PM-Z8y+``4o`
zCGYYwUt78AKYzd9U;ZoNp{RCPh0gA(udBk=MybC1AJ4qI{Qb47tHVWQW#0<g@yS>$
zxVyW2c?FN>srmN%qqbx$oN1h{rKRPyyX@^HfBU~GFV}xRBC&X?cKEVg{0tuYOdJh5
z>N+|;7cXA)^6<Fu;^N}F*J}U&{SInKG&MDSx!}xyccT<&h8vWLHlMc(ULUtN@5a8O
zr>8dMMuP^ue?O>vbwv}@ad^4wwt$SxoMrDqu7g4#bb$jSsMXxe#{22Vftp`mGC@t@
z>+52>`uael=a;wsj}G0K<a%{QpfhO9`@_S-w%6ucm1^C+JAcp3U8So*je}25JZ*nG
zXwJH{q%%9VqGCsnp<E(pG6PhhU;nPLbM~z5$1T<Sr|+z*2L)-czwOklxu>V;ex9LH
zcxOl9t*zP97cE*8!_VzuckFB8AJC$cYinm8m)-6?T`%+NtE+Oyy}i7ON_Tqk8J(SN
z9^NUW`sJMU`;3Q&TH{{F>@HiY7q@4|tDOu7zW)0dyP@v?-}1fxe!Y&`o;UZ}+UVt%
zm-~Ze%0Qz@?zi9G-v0XK^7+@w@7FHRxw+}(L3a5ov-9_@{PXj3^_ICNnUmalrIy-O
ze_P=(QR&s)-QRitA7*@@xpcYu-v9r8uL@l~?brAB>(}r5<uz41{Mx?S-=GfI&mTWP
zc{lEP_>Q@yOU#}h{|YL|`DCp?6VY8gJy)9f?N$^&Klk#q{(jKp>>j=u{+@q-eKpO#
zrem6Y%|}!_Y|8xk^FdSBD?n=~@`6_cD1v$jXJ?sSzOc~QH20Q?Y1S1FM@Pq7+w<p(
z=|n6rPCvII@o-z5`r_h4TQV<$dMlv*(yuR<{X@6s#Y!fBxt+iN<?HqPuYG%a`?3wc
zM^U)e%k})%LF*ch^-6CoeC!rEZK=ClrOW%h-{;*nn`>2iNjiVeLc7{u88<hjYK5+v
zQugM?!k?d?Ypbcb8K<B7V&V7q*VnJ0wFlYP*L8Jv2Cj?QIR(^#e{(Z9bX7>;*;%Hd
z^789vnP!91JZNwZ)GFNle&21=iu<#d`Obc|uw4!`cDiJes(04sXJ<jv1)rXue{Z%k
zxsi$W%C_9-v$IUSCr+FQnxsBA&vvz{_cRRygMf(>C*Imsx_WhOQqm&O2;U@C?^Qud
zy|lvC%m6jNRlTQW{QmYf>)xK7tGnl|U%wvI(q9p%3`&oy0vER_DJxI4tuA|ee}DYz
z>+7%2v#l=q@gb3wg=NXhT1E!XGt86zocZ(NLxHfU=+sBWzxZV=5<WdYpYJtQEA?L8
zZ}60}u!u;CR>+EkNs}hsxwY^Azu%xmHoHo*jSC;ST;5rnzW#hQ`-EN6XXh5axS)7>
zu{*!8oLt_Yzkhu_JUTLOZd!VCL!$Gp?^9=GKWE%I@ku3UCCa;v?=CI%URMAA-!hMh
zN}y4oDO#bYdL#@F#q6sAHP;p`TC_**`>#reK3VHDtCAN9Tw*#IHMO<9xwqF@nhFUC
z_2k}O<~?06?)C4-{q|>GTwLt?_SRP4f`Sd85x7<^Q6t~kW~Rl@&Uk*@1M1Jsn{0UO
z%Gzj9Yqla*Tv|H2rl#i3vy&0~YIbhSz0D(ObY$`0mBGu;d_HfV|8C#!Jkapar>CdW
zLH-8KWlWwiV@6W#_4mJTt$%ZK^Xx;d+_SApU(I+vuliih-Cd?f-)_&noi@unKaWd9
zBcbTonM|$lbvbr_J{%5-zkYGC`)tr?J_`$r#O-Z&pEX$4{@U{L=H}&{9UY*S;<A*J
zlb#(Fk2mS;?2L=QoL%oHt`m`vb!9~&$RLm_<m!GTZcaYV*Z){uO>LHVe9c8raIvtl
z&06HzJu7Z+)y&}KewBMb17FX2&F>lXN}HP<?GiO^Y;06BF}V`5KJIRhy#2k$|BaJ-
zEbIR4kTghW&<tNU=j24?_LEb!r)$RU+EV%BVf)!HFE5{+svVy9V;{qTtvbnh55t@4
znLRx{t!jU5adLJB<(trzK}TQ9PLQ*$da=0Q?$Y}G|6WyjoxZfx8#E5}@$vE1+1J-i
z`uEB?c8P}|sL=fU>}+xF{}amn8Ta;7-r8SZ-{n6Ew94_{yMG^(9sd0JBO)bLb-3)~
z$B&@m^R}|m>+9>+Us~$DyEOdAv)TD2udZl*eR1({?(ccF)u82ga<x^A3=9qRlj>_2
zJiDFS`Ci`Gm<(#C9N)DnboH*Ucm4iVFZG&w=T_*d5YKJ7%U91gXJBCXQ0~m&+5E(k
zb&qdV*opwfxmKm8Oix~Wc)0!P<HwH;4ep*l?|<;%!F4CsGk^?NV)Bquu{ScV{B|o_
z)&8gQPT!;?&~(eQQhP>5#+7#8Wf>S4e(e5z+`i3Rmx-BK_2g^g7nA4L&%2{$U=T1}
zFZR=}`Q76ByKYs2X5T<-dmcV~xN;ja1B1gc4<DZpC#R-&`~TOi4>o*oj6)%F!kw>L
zJGHNE<&(EtvtWV3&!0bc-iq5<<f`sBr{MQOpLtI-w?5yeAGaq$*1BxZ*{jS93=hg?
zo8`{3DtR&CVrq&f%LEgRm>nCOoSe2K9%kz=eSK|ha7xOO*S}Ak@Q_RfiJ4|yIkC0o
z@2{`Bs=ls@zWrMDe1>)IEt9Fb(ciw!1+6E|>(0HsZDsQDzIEqwJ?xo0q>dgr0*>H=
z&FpudG5&nJ{r;8p@%G`nSFF%rWo3Q2_xrtKZUs>3S@h(@LU#EYgQLkR<-4__x2@3%
zTT{_~4z#d!d)K>9=KTyxFG0Qhna1fQA09Y*UIH!1`TP63_asmoC}w9-=7R%`pd~=B
zuB}~dSNrS5pP!$lEQ^-B+xtE4=&@tFzKIG5EC7v6_}hM+0%~mje!o8+G=uu(<>jxp
zve$zaaY`0;F)%PVEc?(upEGunl9Cc=hGqThZ*OicUgX;C_3QPt+s5Z@7Kg4519fje
z3C*ofX61wl0{w5*d}o2ygk+wdXA4?V23md@x3_9()bVA$vqM$}spj6<G0_?{jyqFe
z{`EZBa)&SBCp@}0rJl}uc&Ifq>-UZ1e$afw?x~wVDQCazGe%JArp+2&1_lOlm;a7x
zWnf?+X@PYQXl<|m?QOZIUkEWg*miQh{r)a7-B}k?85oQ>nLO04Y)n4hqsPdQH@l(X
z&9AT5b6W%$8dR7()V_8tIVKs)!f=P}cFD&i_qi5@O$<y76I>WhE>ThmJ@Y~dlu&N>
zIlchpJCdA4>Y8t?k^XW+@pHeexwpeyyF>!}WGq9r<wWlNbV}RH$EPHFd+qNsP+JSM
zQm3F`187Z@u)1GLz*SK8diHSkMb;Eic0QSasal~^^yBTmzPjq|=;#==IjuLY?q@1!
zczk~Cx0xz09~^83^^89~J-z(l;r7>metxcc+-nY+^v=AytMt>?r>g9r_3z^I+b)Ak
znVrSYx1^nw0xf2kv}9fEZqPE9U-$q2TfRB{yq5nw8_)_~Az|UIsi(zSTU$Lr6NHOi
zyvXpKY2+HayX@?V%b>6{5{cb#2~>PcT5{n+!1kxC++tI5Z=af`J6lE5&MwY(mPuhN
zzvrs>{rkM8>#e=HIo&$kfPsNw0;izEr4@O1cNrZ6t+xTSwm?0U$jxal|9-z8KHsiZ
zL_%VPGg3|SEp&C*)n{jC8!sqgU|>-Ayns7Q3N#{D^>k|Zms{EEL7legDv{HcipNzr
zI=AsmRFSo-iI^0!B0#bKEw`xFlHlcjnwpxPb#-;;MEMvP7*dp2CX{gS^M`}hF0KmI
zW@TjsO-z7%4Qflv*;ehC*Y@=N`}Z4j9UK}|Gz|?Wf;I&-)ax*LNP)&aK+Cnt-rae*
z>+r=zuH3OZi(Jp!exC!H$UJbs!SmAm`hPDs{yo|)u6pt+8>s41S87;t5i}FuC8}Lj
zvOeqDnwg;0PG@JE@1EB;^^WN4sCIt&uz-L7srPj~lT2RkN`3q9JvRdbgWn9p<hHak
zGahaOjSonMoW0M^sL~5sP`+S+LjO}wPfw#`FFrjzt%Xz{l|kyG6si7e{z2{0+7b*5
z4BMB)?k>x^e(taM0no7KQm?5-D;Di%pVu_i4K&XF?Ck8V#n1h=KfS!%e|mp^|EcNv
z`ktTx&p$sumwtHQ7(RQc_w-lW@7D#tzP46&tt0~j!-<?7%#++eYw|z?v{75LUanj|
zFQ}kk!@eJnxItC$-Cd=@2b)+`J(=10u7D;Yw&%rueR<g(G;VZaqH^i`z2CLW%*>Mg
zLE9}(B-~;21kD6ze|>co)V#P?{oWR|IH~&En~T}&_bw~HUwi%PyLG$YUFs6m4%w9A
z$tz*tpzPikGFi>{%hmAsk6*MI7#RLME@W4c1+Db^`T6<%4Y4;jrEV>F=)|rCvSX9j
zJLuFNiF-M)=4((6pnqvXwyibByBHV_+`qpq_qNe47KR<VKfb@YCg{MxP<|oNbDLG!
zn;92d!6hvR!vj7m<(I3LWKKGjR-nsJU|pm6a%qpAlDBdL1A|OJSkTcPJtl@c=3NPQ
zwLnv>3=AZ1ju{RC$^mMmkXFT^)hCZ<Uu3=0vpRfz*4tZKttvh&0F^zjuC6|P-Q0T~
zXrI-G{z*^YHRRmi7n^!&O5opLU#~9rmv?n_1ufYC&3q^yzrQ7OGH89pg9iyuPfT=v
zdTQ$B+xh$71|~0d>z$$<uE)yGzB+ihpH<<b7Ui#?hSJQ)Y1|67RbMVJ^V=-Ayxbo&
zI0qWo_L`!x@VI>apFa8Dp!F=hQl=%3j&Opeqd?>Gv&?c=F|+gSxFus#5wJD;`n7j=
zcbnGyC;+Xc1x<HJndPiFJzf9)M=4NW;f&7ZZ_%KMY*5*(siAQq_h<h8zo4a4pzR8i
zrr6ilZOyqEq`&9GA=$Oh|NQ(6TAd5B0<@0tXqj_6UuaU&qHQ@h7j4*J;2AVkD^x^Q
zcCBXcvK86a*OhPa1Jwb>r?-?lfYzUYy7zBxY}{4!v@5&v?ygeMd|2)8x7%;+EM5*;
zi*J6vCb;zVwY`hK*8KT+9F)%6_++&_e?9KEPwDxXAucb!Ud?ybjzjG#pdApPvhdB#
z&F?dMK^1V?^i1Xxpyo4ZEzzGJAAfz{|9`D(x0vUod$r$VTU%RKIySR`*4ssG%URha
zs-1PHg|mFiyrtgLwaVY!xwXH3Kd5i}^vulQoyE_?`sHlDJfC0h^-J4C*1F7Rs&@Fd
z8=yr*xAs(imR&0dDpKDV<uXiM0%~yE|M}1in#BC}_V#PgpwY#}?x1lQRW&uxj3a2$
zUwwYfq6rfwSVx`ileL~QWy+FgXJ@}|WS0YNS&*xKV+a~SdUa`Ox5~>84-ZdT;?&Aj
znG+A`ig|f@dcwo;3Zu&;(4Mp}m;GN~kFO7nh?oKD3VeNi-GBf8f4iNWok3kT4_VM^
zu%x6#Ny*8kRbMhdn`M%Z^#p!@ch|J|8E8$QcV}nkB$fL5`u?|*kFQbL4oYqRI*n=>
zK(kGt0hS391bXG|LCYMkwed=Wig3_a?`w-5YefTtfJvYsne9*C-rhdl&@KDgn!>G~
z?<SS51@-FQvV*J8Q(G9He0X@c>Omv>6x-@DR#w)PJ~NG?b`~vFQdZuYbd+oF*K5(>
zF~*HauHapD*FmdtJcAmUSno`0Z)@|K<Tu~$?W-!J`gX#fKYuP2Yzdq+EB3qT<7L^P
zR?^uSis#R#EH>J*Xn(Vhv;!y>T3T3iV|RtjHqQ@BNm-JVl=S7ee7(n{TU#<0zrDSE
zb>!wWkgKljDt&Do<-gQxs>)x}^T)UH$y%wrT(1zcqaYD9C4RV#SMK)u=<R+JCr-??
ziL&>cAOHR8yEJc*oxYjs=g+77h1nUlE@tKO`E}ss&ObjrHBCCg0a|#s|IerH)xHS{
z3qZ?Oa&K=txoM4cl>h5%Yg2nJF7cdvXPW;E1IN0$I?yDlil&;H+vn%!%el3@r|VtK
z-~YGlxU&$b`E@h(RwoCjRkStx`l{;h?<OtTntlD$CLK|ohzpBzFD`O5&AtXQHzj4s
zu9BCFPEJ<W*3|SYeRbuc`Td&3{`P-EnA!PCu9_A+a5y{D*uC`iwb1!?wI%=lRD$;J
ze7{${J}EgFIR|Y>JPe9l(5mUm&(E$d^PPQVxxYMU#y~RcGP``uf~2Eept*@z*5&KE
zM75V0CLdc7zCLc9S^3@4>0xUk7N*aubOS96+?I3m$`ViEUKvZH-pBT!X8nHs(-vPP
zR?gm#eqIjL<`CD93%R-~6f`m0qxZ7!)|Sl6|9eems;zW(o6gLz{owIQR$jL>Rwl7s
zXJXiXIR5`S&?K{{_NVu^&Ysv(?w|tNQ08y*(Zy{#DEU4xJGrI#0*LkJFHxIAH@Pqv
z9(&QuZx?WNRp?av`nsP#epJ-_{FU}for{@)fgwO`KD$cf|9^kKKAWAdWn>g2Yh4zy
zujZ%GE)`J4Zm#IfGGS%#a?ncs&FSaQy$Aw{-f7ag$f|8<7|1JSa^i&%SZI-spu?-{
z>(_sMeLcMd)EZ;R3!KKG@P6O#b)dEH*W;>v)&1w4c>!uKGu&CCBj^BHe{pwr`Rk?A
z<AO3WR)9tk?(8hyUHkOpWc9_TL8Au+%#ld~RX#pFI;T$|Sp(V;dQlZ*>ki&cF5)^M
zRz3gBPkblb<!e<utDa1BPl=rN`nUAUD=RP0)d4kH59pqn!l+_q7B($)W$x{5pdLX|
za&rET-qc9&rdox`r>8KcoS$bqX-Uq_O*?D(K_z<j=_!m$A~q(itb=fq1gt<-ffh<J
zFfb6<m231gxneJ9oG<OnjD;X?etCJ>=-7_6+jYDrtNET<@Cszq64z-Q3f<!RVXMQ|
ze);`=zjpb%JD?2|?$W0>87%+@?8}L&Odk8|{)TKwa6Eea`0ALQMUt_g9z(<IDXPaB
z-rU(4ytn$hS`Em!$e3vy3QN7FUi$g@x$!O@kkEDwZ<Yz+@wK6#h!7GIGTJ2q7FO`?
zVT{~WveL=P3Do^_b$4IwF;VH$$B%{C$&u5J^~uh56a}?VJ-T%S9YEv2*Y7_+KmYw!
zUT{P8#Gg$r3_Gj7X1PrVnfAc!gb-wH+8^7LPHTme-`?C@4BBz^{@&h6OOlRuy#&<)
zE-o%?;h?^Ug6<|ChL_jZ&p*~D`}(5n>20~Tf4^LovMfqr3kA!s-Q*&^CUCJ^=9d>2
zvu<u$dTmYQV$dY^nVH6*jwWd3$i>C(*<W5<l#EpaWjg5-Lgfx>J~I}iot*{VT6p^X
z?)P?}Zjrct+!auU-dFoOEua<T*h@;@cNjfAJTCnGet-U>U%%h)pYO>9Y9#0=c(Y8n
za3LTUG@Sc2dV5}|het=VC@8b-kc?Dnu=(@h@GOhMMQ!}@>+aY8zq|F%_xttNLHiI2
zAGvJJysXBo4N9~V#3GY;PH3;+vq(33TLx%Rhe^f+F3{{VXs}K%e&3p^udgysOi+}J
z0j1#v>61c?D%IcKfF`^_OR3HHJr=w5f|eVDmWNGCO)Z!Ta(14IH_L<+(B#kOXJ?_2
zYp&_t!w7QUhwl?K-#56pxSZIQn|ps>Y+YSlS4YQ=L~-rYo3><M*K5}Txvaq0D3xJl
z@bW&L)01*<=iLY8{}Z>2QW<6%rFyM`aA$#5A^xa;d$)2z=-0XbAC{YIbiY~6dqhJk
z&!y1W{Q_fn(~KTrM<0<w>FEbEOfDL@9q+xUktU)(D`Sz1>ai0uP6{Nu8uoQ@_bBNd
z?B$43Vpckl6v1-tJ%93lCn;r(Ik(rI555|D=l%CP&o1YNo?d-^=W`~9OevQJpV?-*
z<@YL|M`iE-efNFQ0Y>(e`L*9pmR^qyUwD#%p@H|J0@IT{pU<6+Ex#N3yW-iInU<eU
zC>s|)JEL;a^7)*}v-5VX40_DS!0>vdBg=`+=j~?itNne=Zr|H&w=b;-Tx|3CjPXpH
z%A!82S1bO!aJOIepoM|qz^@De#!VR)7j4PEzwg_}{QBRwWr|KHzMQ^)4Ko9SEFb7x
z0MKmslL^jzCwnA~wM^w07&gq4a%s47<;s(z;_*I{&dfAc_qYFB!e{&C!mYoc*4n*I
z;tUKc_P=_XTk-!^`2Js4W9t8YjoepLspda#j+*bRCnuEq*W3l|Pr1Ce`a72&2Lr>J
zel|gc>G5@y_v(JXy;Jx5ZRX`=zMxEaZmzYur<i`+oR5!>KcD~q=X`A&RR)F+g;FjJ
zTQV*xJwDd^`@~-J`!&XAXPfI+YB4Y*IGc7b{ES|;diCX9rLVpE85tPXv{y+gOpmL|
zT(xRd(Lq-6CA)T6O^>U3dE9RKs#RLzaTST2ml+ut=7)p^inuOq|B-$5>eZF2R-M|E
zdV15(XS3H|mtD7N)v8TZUtb9=yIr!(Z|*GH?{|z(%6je#d|Aj~)>P=(=liK-lC72v
z_km*{4xZn-e14r(^_z#!Z>b0BpKn+bx%pYX9UB9Klv@5gMh1o{%N$uwoSA8CoOr0E
z|IU1aM5nZ~vqJAVFfbfY57O5^_$&MVzi-<&SA2XVQ+P!1^_~9@`Riwx<=%QCzW;~o
z$;pfi4AP4n=P-hn>ld9+Y_ECp&yihrio1O6mLr`E3=RH^99d2rYURGXDfM*!o&1Z7
zT<=vrpDU!!#K2(J$tI`}ox3$uuKLZ!{yX(wF1lY{8@(MNcU-2}=iQ#q=XxZK)7D0R
zS{Jw1>UwN>?7LmB*VX)e9lsuyWb~cnEsIjrd}mGBeBRD_v0LvcKI=CVR4RWyo&NdT
z?fm8O`|EZ-XyVp_#?=wY37}~I_xt^M|N38-zr4F^{rUO%^M8JRzP!8q{hgxIx-%^b
zlV+J@2E8<7WN7HWsBo@9#j~`u)X(B!%bbEkoKxjk85n-FNcl9Voa_?SHY$B}<;-kz
z{n}q&JlpwXwQPkL7&b6U9Z`+&G)g-&<I0sQOZ?~C{XAa(=eW)HJH?)petv$w+_{}^
z=hJD?S~iN%^mC``^;*l{Z#Ekz9B2T!L9=U7*?Q-8KFbdWnD=s9F))}g@G3d1+xcu(
z&DYiOXV2IF`wWVZ(r@4I6rca|kiUM#ffNRY18o@sj7G`FdTM^2j{kS!Z`s>hmFgu7
z3>gfdB$|0y?ep{V|4;mVd3kyIY2EEQg-Q$z4<>`O6g)U^r{uD4<@dYguiyNA$X|cr
ztoi*p>ua8Bi_YL-V7MW`tK^`!|Iep2aeJ+7tG}K3zVG|qkkHVl>Gr=P`)t46c(e6-
z+{-H~gY|a3Smf2u$-q$4!zQQz+7@!z-+nG5GuxAOyWe>QitPOR?KUW>$rPV4to(FR
zUHj8Kg~e{YUZtg_Wp_)jTUG1t{Sw5+BQar`ZuGL+-`^z7a&Fw;)5F8SV8<_YMq04!
z)fG+qpC|o4O`iWp1=MD}wkC3NpRDz=UAv5UO{>4Xi77lPnt5^2QLFFY?$`g{l6%`M
zJgzcznoi`T)$8|J>F@dA1ZuAw>y<vUU6z5tY*p2N{fG8{U;6(%B))IL`?~MDf1WGf
zH(3QViPgH?>zwWPJAdxp{~H^&HY)TvUkoU5ZAv|DlzVGS$=h3|o}0ekt9}kDjc#mA
zF8*{<Jv=Fefnmjts(Q|_&(F?Y-ck5CXX8<^sd7uNDfin<s(!aq{d!#WTdVKycRruT
zBW1F}%x=<?1<ib3{c^USPRIY-w8oH;VZptX-x(*V#Q(l^-Kg%*kFEC@_XdG{nP2yL
zw&l|)!JAI&?Y?re{`K1JM)~*lfC9esTh;e>bJOQlF6#m5k6ZP9dV=c73k#i#k4dI4
zssH~EtnKTy=;e`{(@OhpC->W${nRnPSCM?L;&Jbvf8Y1VKmRw!vUrk;si|q{x2&wJ
zO$i5^_Wb|%`)1DOvt}>nFfatjn|6R23Gr{|%h!InX!YAQaLKAwTC2m?-&<0w6R|<z
z|F8A`XLalC(s+AoYxHx&)6;alCz)hkT5>M#@-pA-enABWh8j834hB%F4+;$peQ5|T
z{6JA`m~_Nl?(@T$Gexz-uH1~?SMxLKI0M6h=f2Gx6CNIJ53g!DGs95X{C-XGy4~+~
zotbBAeUd#rZkm4lyzlqx?bq-BR~5B2E42FM)%NL0f0tSoKLZVAzApUsc$P}}->bI_
z>;Ew@ERZSx_w%v--pEczyWm%)4Lb4rZ1(^Ax*k+vZOOlH*UZKn^*meqltJ~kHzKYR
z!D0RRjPdI?<?rv=rq3-6tNYL_za;s1U*)Tn%U{VDr=FVf<<-?}+ke}NC)Yf_%+Jek
zVEKl1@eKXmMLDc#Ki{m_&Ipd3?f2_uS{A3hy}KT?Iv5m4rw+2q$NaJZWuo<UUsqeb
z7LO@#oTe8$%P{%alIrj8JneR5U(elsciPR(>DTXdeLu)9e@1)#o=L^$ZMR?9$;hz4
zZl%_%!+UeDKRjc6{!Fj=y&0fVk6o@JA??hJiKq2;>#U91dP@HPkK<nb;j8Qa|EqjH
zxBSzc;`3M6fz}n>OzyY6w5#;>oYHHNk(*LH-TLL`uHAM^D|ngD&lBDo5cNqR8_SQJ
zA0NzH{nc-NDc54T@x|`P&Tn5X`%f=ozjl66RW;iaP!YNz@vu?VmlwCTo||j^{B`{Q
zD$uU3HyaM~iO$K(t^dpPGw<%Mrw`lZ&w&~R6P4Z5KA$x|zreBCsOn2b`F<vb2gPge
zv7M04-!t*^dHedcTldxeUZ&A?X0G-2dn_lM`E9qH`#QJmmge`n<?$ykGcY*(4a>jJ
zS$nigbnE-s9~bh=uaDZgN=O-0VFvBBWuBz6IqmGJD=UMu<@KYsXn1~lwR-(B-`QrR
zedV%p3=CKDzgjuy?fGyhrs831>9z9~k9)StP5<imf`Q?{^5A^tC)c9$*M8w(U^w6w
zme2g;$K(F>FkXBM9|J?pHx2;?h6N@}EDQ`9y`aN^yp$an7#c2(3J>Zqneg??m0<tW
zBOQV-Z*EQpt@P2a``B&y>&4>FuU4<WX8CRD^te+EjLerdrJe?r28Y{tPyhM(S=+#r
zf#HgNuePm&^T)sM>+L}+^4R$0=ERoYHU0m+{{QsX>-XDLzuD*xYD>;7zh~)bRQ>JE
zoBjX)W!~PFyKc{?Q#z5GRKnwHOXDgYw))I8Qtg%gJ&l>+!_TMjhhM+EQ+)pH-12)n
z!yI@dja1@)U7B9>bZYpsZMXBhC-q2~YMq{@dwNUe<x5+$udAHASN(pjGoPhO^6|d2
zC)MZ2O#BHd3ko=|RoyDTU;BE_-Wz$l--7A}P(yf4?C$6Ds*N%(EV%W<V^TApm4<EA
zmlOK+KTltJ#>&v}%cG&jtN8gj-*!IPNh<k!zlJ?KJA3-xZ?{&TE8JWC{haZ6o8WI1
z3=9G5IVSi&?6ZD%;?2#?#w9N<sGNjX6Mbt}t~}Yq%Khoz@AuQKlo=SVs53ngu6nt2
zx>3@RjxR4Ss~>LT^`4{?y-mmS(h|?fR>#eAZ<VY~W?*>m*`uL`srdQ1vk%+l=WWZq
z{p{WD_kN+Fp_7(GZcg)@1gZuq&wYA&`nnYx1A|@v9oB4S-MBp#%xpX-9v$sA&b+iF
zXXn#tTdU>cs=hv48d0BlZjNQ<^>wjkw{tds{Sm#+v*>#KTG`Lf`572a6+WMD|L@Z5
zsS;0&T^n*5M76_GE-Y}IX_)LLSM%W@sG!PzTmJHrs;qU{nP7k0(C0gYm-%?EkK23g
zbH0`NNpriu2N)P?xL*Ha{jfvjcv!-;^L*12)-E^AzLs)gf+DC3bF5!}{=L1`>p$;U
zU;8%u=h^(a$)KWp9caZ@<<qI*MkyyIY&you&`@<!a>Cb=bC%Cj4z+OpJQcnV)Dld;
zv!gKkZT(|u`8gYZOt1ery+_{O?(eU!rz6wnPF3}umh$Dr#hba??;6$o_`v1E$H4Hl
zogvcyyxs4dRjXDRB_3+=nPIT-+`o3lOKYRIgZjjl&*u~y6+JnTv+w6KNt28Kw|=?3
z^Va`oU}!k6$GB;pT-A$(U+v14&n-Ju`~B{A&gF~@4Q(g0M@zBcS%jwuNA4_2J!k*_
z52(F*cDDKXeZSw$?i5xJtI}a$SfRnVsZ*x@&&QqLZe<tWDLkHfW`<$rogIa2d@?hR
z%h&I@w3v~>;i$>FFAVctgO~Z7j4i)AHGADowfn!WZJ(raT(&%>>f4){pU+wAPge6?
z^`V7<Awcq6Lk`p9<Nf}RkM$Ox(p-LJooVJJ74^9#LGvmeb)K1LySwQ!BZI?JjtRaA
zx3*-yytvpsYD>n(YgO;>?altq2reCRn2MjB@$~ieo%?mxtXU$i6Sv>1TFn#;(#AQ#
zH{s@{)XYmuJm-F0<~#e^J7$Ih&nJp6%x5|~%k*@YsP?Nh`tkerl-0-ntDj-BZKWHt
z#?5y7^L4YI9QER3+Ay)^L-AStDfX6(n>eprxw7W7(Q3=$XDXh%N?vX{_x$WE)7R(g
zcYQoB&oEz9JgkbLp%=76`sL;2{!5Q%Okg>oc42k+`akFY|M8!u7rW~k_r>`&pH7B^
zhAs_XANRWEUShlKH0yUel%w<aes!Ox%E+*wXqs;Hw8+hAPd6OqTm40YHw@aXUjrKD
z`F6Mbevh23)$=*Uev|m`N$yQQKM&ONkgGnU8pgm-V`s^{i4)X81s&RUVxqEf`MWzg
z+wYc1T9@U-)&Knp>NHN3<7Z&dIwm>6H|6Q6sXIR$;x0ZeTb}apQ0vXo>#@Z@pH6@N
zpqYQ&mkb7m07FQ_<vVDU%1hbdRpV6c@MnKMpZCAMF81=C%Fl0hzuyPy{4PDt#L&>|
z*KmdTxO{!hy1n0S$&}wIlr&EBkuuMl)5y&J?Bj9y^&lfR1Xl8TwANOfzK2K_pyM;n
z&$GR}v-r8sER&Uogqau)9DB^;(b_9-Z`Uhreok}woS@y;mUvE{Q*y}@G;#o{HM#uQ
z85pFeGpyW@d3o7V_kOwTy~$Od4pw*8?BHi$m@mq-<j}J-GbhiQHOuO?si~=EmlCMn
zVqM0>(BSLb5OQNv>S=H_^V)Z|+1k783=QYG7=sc~(}X+&gPk^uN9)xqS5nT+u`Io2
zAM^UsQtz9}j0^|VlpVCzgs+bS71^6gUS8UI4Jm3xXYnvFnAtG~CA!O&hJ>w+nhF}<
zD$9L(YAPr$K=D}e_SRNV%06)H>W)jyHTS;0yK7A-+RU`xx5V+UiP>oc8uxj(<8hx(
z%npOy?{;N_`r0xz9}Z5H<7Hql(_&;|V3=}@l2ZDCaoX#(+s}2X&x?3zXx26V@0;|M
z>(-sSvNG8G*7H3-9(4!DzOAoknEFWFz=8SGt?czruLS#_-F7=~cG}rlOG{s0dwF|%
z{;?j($xlyDSNB}CYL%AN;|~uHgT{4wzx_1(c0D*WH1y+p!2{1DAA9jL9Qd{K`@L%8
zloJy`hpK>D0_W%1ZZ3Ly%4e2|=JUDbam)PY&y)ZA!hNdTW&00|KW4LVI4~PzUt0qj
z7`T}>JNMJ?`~U6cT9vN4YyJ1j<>H&E)1Tg}e!uoX3&V!Gm?qW>3^o6M-#=gde(&`8
z|Gq5GK6<=;SNZ#S#^-H{=bn$<QINRr@7w(J>#^m&psi24N?-HHSQwnQ{T?$ndHw!>
zzrMV=X&jxi(e>8W?CE>I-?QHT<EVbt_vw1Evp}7x+c}$kXPM>B0(EIFIP;&~l6l$e
z#cR+G_o8Ex=_$u$%Y8t-`-RT!pmrO`Jgfft_j|t=y;`|^nR7cIXh~I{{l6c3e!tsY
z+PC}tzTcqn(<QFmVwqQ0g|hKVO?i2FdHow3ewz;tuu%%#=xt~Etl!Px*4vTLyibkc
zTEDRZ1MdM)N3`VqJ<vS*c{cm+Td&8RuK)kNKK;XkgP>3{Dt~w9&yVBwe*5eG8rA;#
z0%{j|PMV#+&l1#UZR3%g1oF@6>H6o3&)ZHvIaxjZ#f62QlY;$iO~2nM_CIIy`OKRw
zm;FFpM5D}0OF-%1<<-^KtImJf|Nr-X&;U*G8N=gCqPOSGG|djn+wrjN%lrHGmzVqd
zgM0P5T}sMsJs!8W<rbe*o&MzM^!RhU=65ET->XpOxBU|Ews8CXy6QH5`FWrLpjE5a
zodU(xor=f3H|ziZ{d~swe9G#z+oGQ9Twd;fUeH};V%*-Ur<+defu>|YgIG5Iems``
zvzINwR)pb7cDJ~`-l|orx|I8EiuU&1uX??<TiDNH;kS>crfR>I`TXnkdU4;`X1bu9
zb8Bn;kM??veP5R9|2=#D?lRxmkIopM|1<kIkG$QUjGLRD-nRiA<WPD|&3|4@NNA{N
z`JF=dx3_L=OzvK_YSp6h_xFyj3SFIbef_>)uNLjvwQGh!qEn!V>&B9omloyT-gY!|
z`P^;Sp3gDQkGlvm`%19?+SuJc9(8xWdiCno@#}Hbxq-2<u{seO9^{|nIdJTukWNEY
z-p5BrJwJ86*V%eAZT8iFm1k#}Ms7%O1Pu$wmfc8Pd;9jb%*$%|`+la)t9rGv|4&Tr
ztt}^?oSbZ&er}Gx$?0~`faLGzp{v7E4>qyBytlXd)|Sl8=c3>JyKMhASjsdj<oAy+
zm;L=0yY+s$egB`CXVL$^-_tKHa+S0y$pDSH-s)eqYSo*~=k2oRYDQkaK1F5!udC~W
zM2;^1wTt0L1ry7HdD&N2g-%L2IZ1W?i=VE6PwxN!d;juc_kNSiODeKfB_7ND=6?F~
z`8>$Xt;grq|NEJFagi%%;7QK5D&<IrV5y$-u2-v8e>%ji|AagKhts#4>GNZXPO8qd
zEPlpzeoM{IPcbDIU2kTsUVCj8NNe`lDK!P*Yu|3Wows(Y?zS6BrlzK#R5mH)SdXM;
zm(t(g-~EsG$!6PImA;z7E?1%O`PtduCnEdoe!T$oE|$+J^0F#_Hz&EzQmy=c?RE*q
z8!jvy4z|}frJgQ%c}W$tdPKeI--^J+MelY#UlzZ=PSQLt=H34P|9s|H7+SyIQ+#br
zWN`HzP^Oz6UuRi<w=^7-8SfOIw*{4TdOM#?x|Iy-?Ol(n*8Trc{{O^vvAfei&GFRf
zv7dI||C`sGCS{o9vTnztE*@Dclk)qu<#H7d8bQW`2EnqIechUNc2-DeXzHCEg)=P*
zA4SQ7a(vz2*YWjFib3ne-Q_A(gw_4dY)Cu|3fku{7Wbc9*e<8##9+p#@5G+L04gg$
zxp}g>|Gfv|i~c{a|Ci2Z^8q|oo4t1b?{~Xj-q`p!DjQVIJvi8GT=C(-ny9T>?sAnW
zZoN`dq2n$7lS<y*v0Og4EXvRN?Upn1?d^BJ-&YM%aG1|Jr#Vf^uBKw$u2-vWZ57oH
zTl4u`m}}sZtKsoyK`G$+y1n1;RnIg|_v5qw^Fie#s76?%acN`nahZw-jjwHw$G^J2
zzy8<v_wz3<c7NWbz3v2PXxQe<1?TxcJ~M8}JJ-Nq!T>7pK?!}bzg^|r>B4_M_Sc`8
zVVHdF=N-3RsjEMI|J^OWKlkS5^z~b}B^+$pDrcT|$HMyUmf)^MCw{-*Ki@R_+Le8B
zPn|)jaJpXXrlg}?yuYeIY5uv-@fn86pvjO@x%$h#=BZa#g>LQ7-|?^wG*HdV&gU~p
zrtC%{sM!7Y_Wr-zwU6yg>i_-epOgCVP;2S6vfH`aMO-%?j2CB+KQAfJz_y_J`@5e%
z&)3ge=-i$L3b5C6FUVKF*$C>Csn4r;WHsM9<HCZNvYV-vACCxczF+tI>Cfl$&+jOF
zyy@+>+v`g2ENqvXrMvwOs4Vt;er~RD?XNF?KD67PS>V{b>8MzA%Ed*lFR!hQ22Fdt
z*>*b*ln+2@#^&pl;GYNi>o#0_9<{S5)vZ@5G<{mx+gne+T=qY|z_GdL_uK8uLsy60
ztb9KA^ATbHCkNT(ecJhCul+OywI0}IO9DWJ{q(r1mEXSYYG&j0`gAZg3pB#p#w$I|
z_S+3*=XO5d<9)K9k4fi0xmW$(_x`?Gd!q|_d%s+=`E)|r^3R9EpO5O-8G?G{pfN?z
zkYMfaZ+~z6H)F_I;B~i-yMfm{`B=}RE5ZJ{yUO3kndIKul5ura=*IhXzeTUd*Vk@L
zI@+~Jqbq54?lw(7n~z6sJzo>CanX-+<@<s`O`{u0-MU@Od=?94*i;r>++Y9y(E(=u
zHMZ}b&Cb{R_4Rdl$(tJ+Gp?<P-1zs~ZSnhm-<5Z(dQTH^{dn+g&3XI(f0Dl6E!U6Q
zo)^0%=jNsxwcqb{gGM;B&sx;{_^@c#uBy56xAXVc28y_Te7F0(7^t^#ab@uGMWL(1
zjvi=a?hcQuTzc+J^6@_1RjXHbgJ!2J-fp?v_3iC#@wHJ~wc2>4!*pVHY&iG*`NMX3
zy?uY4>Wk;z-ljXtJU=dH|KD#%LCq$gxmH`h&FI$Ow<F`qiomyz+vTcOSbRF6+?{uK
zmnf*_*;V>FOs4wH#-lxw#&&1xwHWN2LIW#WWf>R(_|`+4+*BJZ{A17Rv}Lt-tnLZW
ObhM|dpUXO@geCw9n5gUk

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-16.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-16.png
new file mode 100644
index 0000000000000000000000000000000000000000..ce9614e2ca666c5ce282d6f8587298b46ef05fce
GIT binary patch
literal 23843
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_eCM&#<h{~y1fQBzqsc|w5Fgn*;f
z7a0~dUr|u<ZSo52<XEJjQ1p~bi%o=)m2qRxl9(l(99&FF932fMISaO2sCH*&vDk0_
zCw0HhZcfhBNiSaita!3;rls-cnRk6|ls}teInD4G2Ll5GgG@qt2_uN{&yqs{M9Vlc
zfcOt2n85PK1sp)47Hten3=9kh3|Ry~+&;wy5LLj#$il$D(2z``))PUmuB=qPeNJls
zu5<HjSHHWvTieJe=-<D8MLT1DeLOCo|GV(<<HxDDw@uTJue;s<wS05+_q?0i*7C_(
zrIcvK1y#o{_nW(lOH@mv{N0^RxzXqC|L;-JR8n#}+AUtb>xxL~v+Lpw#hZ@pf5ec-
zd3&4fzCVBdhzJQS+Ew~G>(P-;$=JAA5z|ypZ?c)D8@<hETW<D&21dz{srmYQJ~Z8{
z{T_R__WRvex3{m4tNj`(suN*wHFpy8wA|aX3=*BX-v0Xj{(WBg+jh(N^%K8bZ@;+u
ze*N^*OZQZMUKO=9OUklniC*lkC!ZruzExIMF8%n(b$+grlG2l+oh46CO%=(OvnW_l
z9e;aUuJ^{fYroyj-@h_?d!APKx;dYoon76~z|h*>zS?uL+OHpv`-5$kpHW--z4Ys=
zt5shvx|hDYV_Ew0lIzEhAG5Bk2wZjhj^DQ2)p2{PG}oQ)n8lEyS0@?Ez>pp}ZRw96
z6_UwQrc7D#_V)JIpU>N0-;{cKOWoh9y`RrnOU6FBe{4_X=a6MSl4oZctDn8CQg8A3
z^XJPqHYSUTi$A}5Ok(lJ$H!0KzkfeH<HfbLvu|z5T)fD&``4ZFemUDI=J|24`)VSq
zzrDG*CUWzY&FTKSk(*SGM(LiuG|#r$B<Tpp*LQbsKmYYw(mZcY&h2T2Zpp`bF3!&1
zS9v!#?^**Rvq{1M2Fc`*wNa*5*T={2EP8tB;o<hJH9w0=UtRH(ulup^+M3AX+u1uK
zHTSOn{Os&xmA~)n{|8Ui3bnbW8@cJo#$T6|Y;0npx8(%Rv#B)NCBh(ilHtek4LYZ9
zY<s)4=IN=a$DS5RPCuP0BqU_CVAGb>!OQ!uTh{!3yZzWEoy+^{|MRRmWqx~`@7-Oc
zm$&+U`nfgd=A|3ka_jzn4PS2-U;B0HMxE0~jvbRaz3Ggwzs<yDweBu161TUVeRp@a
z?X>qdHXeR*X6EG^+j6Jr$G_V;H#JgCMdiqo^YiaNIX(TnjD4NW(c1WZH8-Dc6xWGJ
z&^c`+YgJ;<$|Y))n3$-hsj2B(dVfVDGrQF3O+GFzEs?v+)}A-x7S}WR`uci#{rm|N
zCak+|VqEd4Q@v*2ddZ`k)|C9e!~7$CA-5Pq=;|=v@_UubdkmxY*X;%C3VD32S5!)B
z)qw*JQ*|PP_Evwt_VV)by|?~-x$K{Hd0DTLva+az#EK0Y3_{mL1lm@AyYlq(^t*2#
zJ$jUKd)v1+Hy>~9-%_@^>QSe9$oe?j?{nv_-Yu^BeX75g*Cp%sdlq+zYHL|oL|7I*
z2}ns<6162`;n8mK<v&ZUN?uIZRrYq(i4z{IEG!y2IzAgWZoIW2vDtn1uF}`Lj<3{-
z-E}24IO}fEx~m(L-M`Om%I=jkb_1ESyX<XE-t2pZ3P-!e!{6T8s_L12ecjiaYSrJ~
zR6U&<Uh?XS=GXW4?R(Q7Ms7}xe062z<Xc;_mnR?Zd-?giz5n;ROIhFF-F<a`|Nc#>
zr<bkY_si?z#fx^gO>=Gpe13j@|GR(Na&IpakFN=wsuda(5ix^_nORg&aN)VR*4h96
z{k7XZ)1q)u)|C|tH*7FqWo2ENaS_Cun098y!;5-rub<xf{`HYg;k&V4dko*{mFZ1C
zUF*Blj4kEYmzS&J_wRFZauN{{S#sip$JX52*B+N2m}#8;<yv(9%DTV5w1Sp&{C>W#
z^7FH(y;WPU|Gc$L_w**4x_9gM^#w~aPrCN{^{ZsxStg$M>wd3&b#3kHJ3EWD{pZ<a
zU0Tw)E${BD&vO`4_(~2kJvey({{8I8|Ns78-Ctkd+S0PZbFvy2H}~a!`+qAII=5&2
z`|~quYu41FXJ<5DuICR9T@^Ah_jcB`H8Yizl}n$Uk<7inFIK+hLn9lX%!)TRH+%0g
ztvx7T^T9E4+EPwowH1DItyTpu@2ie=acNOmS^N9jEVJBMr>1Hz|MvE_wuXiWJD<#j
zE>Z0*1rMFBu8;q}>$s<fM?kNXX~~NVidR>M`{&-?cJ<!g>aQ=C&(FHIr*f8Q_B1K;
zJe`;8146dv#U4F=Tw6)$(A{3Go%6P61TX7(xA%LT?>w7G=Qf_g{rc_v^4IR{EdF{U
zxnHyV-5tB_duLw1dj0qOHQCqKNttF%vHSHxx%B<LSXHkn9+&O<Wh@uz@Bb5&dTL7G
z)m5QWwZrvzrOkX6yZ2vn=C>_zE{!{XT)uwIk|iozb8m;Go}T8rH8<<|oSbWGBBgAr
zwtxaz$}~$OdRxw~r_<w2%HBkroogNb`r6vyg-)$^-v0jfcJ;w#_SF?1A5}e>=src=
zUryGhA|U(vx~peq8h`z8nBRNX&ey71T3#PNe*E?4^ZBoj`|Wq_zUEo<-+bx(<{djM
zK+(By;li%o-q4JU72n?8UY@`IZx|?tYK5)Q@VvDtwL7lvXX@2;vC+P>Oak}S{M?d$
zUat1zQSn*!_4}Tko4dM=SK4dRsp<ObfBdLeKfl^j?)p;wmpk`Oik!9-<n!WZX96D|
z>-~Dh`236O@%2~tRDRx)ch~Cguh;9j`1tnSi{@5PPWd1!!NBLWlKa}G)YCnupBgnb
zHa@$s&{^*FG@ZyKozq69+1E_c&&~N5VP5#iB{_0h<-ecL@1Cyu`YJW&wpo1L&!yK3
z{pMOd{a70l6VnyzK20z7)#m7_>-8cux0)WCae2AF^zCiFPftzVdrdO=OsBAVjo$vS
z!)?61xwq3UEO3-N9lkay_0OL_KL7swJS$)S=i$b8Zo3w#%)j3!YklU)$;rK`k!iQK
zWWM{_%*Jc9EqC@*?eJOo`+govFJJiMM@91OZIRn@W*+}EWmiJ(-Cb9ooS1m{#<pCu
zoEr~9C#Oa(^O&e~Od>h$+?<#1{yojUzi(FpuawD&h-s;9Jd%&%#AIc2WAvuq+?ebx
z6+iRK%J}{JHs;>$kv7+hy}k4b>+1uJ%+DSj?T&jZt{asSqc{EKrKR1+KTVh*5WK`g
zu=wAf%JsSH-W{4Y@3rdE@1|Q{YbYrla&dF3()s;jaeq&0<g%=*tDe2NxmoV@x|p4h
zK3YFGGt<~^_no)*_um)Mi@9;9^m=UE>!9B|{a=3degD-o@eoUL<g}09zng>d_;It^
zUtbKj<<8!Iuj+I<FN2X>?1qN=1y8J{^!NYSBv<)F@aT~v9+TR5rI#_Wa#d`peLlB5
zC32cuzuelGokf*vs{edEE-EUz)Zgysk=GK9jg4`qjglU$OpP=;21?R)*PoxB{(jf*
z8~f|`i|Ix!S>)RNs#QGhLqz!2tkA8Qm)+F;=3H14xjE1C?8&IDSxakveyS`vEM=ZI
z=hQUa)mc|p-ThG4&M&|2-{0S><M-EP-QTx&(c;BZXUte39#`S`^z?N9(%Uy~M1ZQC
z`St&HhOLX4x$JSTtaX^)bnkxKZ!@YRV`Aojf@O2}&9wy|9yoelk}bbe=>08xMS$Y`
zaxW>9j0N?7U&lx7C|G#is=mH{ez`);-_Uy}U#DJK5x7amTfX+o#NX#qjX;GY`;${s
zPp9u~<rWWH9kzB$>Fcn!x3|Av_G;(M*Q<SJo5huf&#QW+DVe<KNHc3gz1FS-#{Ul2
z`&Mtz@qT=)H~9Crw|j4`i`yIZ@87?;zt<+m?x_fL@0YuJa<ckV{dhauPbZW?EwWkW
z`Rl^gMy+&gW?L1w*sblX>jdp^J=5G<A;r(ng@%MoNlH!*T^*(yx-!Vs(a|yU*70M#
z(yE?Yv#w4${q$2*{Q5XsP)R0jo_A$&zg^YoEPf7-3yb^hR(-!$?QdQF?#jB@-CL56
z^Yuy?K3ewe^=r@cj~_pRs<ca6{%%M-9J05n^zU=~|2y+IBKK5mEPHon<?r|V?=S8S
zy1gy;>gsTP-x&su>-YcLb^f}k>F)CP*M59_yw~o*{$H<Fzr5vN<ulJFQdr&Z%Cobx
zOFupF?Efgq$jB&{dwXm4^78w&;pKNrr_0s-NCcHNS6798er5Lj%hylO=hwfQ9$y!D
zu!*(w``z;8nX}*T{~xF9-go8I)zzg>P6+lN7mJ>@^zZNQ_d_o1p7~mP=jt0*yF@gV
zJgq7}J>k91^5C0N1H*rZlk#(fgoU?eUDYamalvt}b$Qsvq@#QO&8qnGqcC<~jpfyY
z52mHQytA|T)O7v%TA{0!h-!yrJUGz!>&@o#CY7I3B$Gic&Aq=~t<Ji;>+4$^)A?y<
zW-L^6Zp%0|Mf07z06QDos?gP8QdT7^4jnoabl0wO!QZR$3)WBD^XJOS;O*NAJm*@K
zURn{j7*vSAy|vZ5v9VFETqw`Q$*HMJL~~KMxPI2<WxiFvUM?4vmtTM4#0eAD6{|v5
zgA4_^;mgbA^OsrmC4YHwag)wz?K{s-PxtqoZFY4{<Ytrfb23|VZW`TvZjf+*p`Rfs
za+-C6h*pS4^!7a8!iI{fuWxP!E4%lFJUrBTbw!|ZYkT`{<~N|Yky~PrbcAE7MxfK<
z<NensC_0-|d`S5D^XJOK$H%11a%NQj>A8H}`_uW1ii(O^x9b1>d|vfpVLPb(Fk^-U
zNSkHRlL@)Ee|@{14{G|x?kIS;ENj=r*QYn>e2<vETD5(~YG$Q|Gp!6vf0{u}mAJiC
zzdoJT4_)ZQx;6iP-2T7cX1kY9u&MlXLSk|9@xG;%`$JcSTojM5S-510%G&t-aol1$
z7ghu=zOpXXy0x`+=X|!Qf0k&(7f0SX#s8U+k@3~__49vyeZBne@9)_^KRumgkl3W=
zKX1+5-R0RgH>Ix3n}0_XRFBwQS1<p*Q#Lm3-{1H3pn?NbhWO35TiY&IrQv(`SWt4$
zM3vOj(|o6DhhGbiuU%^Weot`hu9CoJHr{pCk&9G#rA$0P71?~d+AE7(x##Eh$yz^~
z7rvzQ^))+tANBJ0-uVnGV|SOWnk;v1O=Ph5G@Xl&j&^@NBJ95;`~G#SsxK?tdZm``
ze!nkTJA7RUKbOB*>M4=+xjLtVzQ4PBb#HaKtaX`>cG#K=TQV=3Bp>4e)sCPF|4!_#
zOI3UCaGjLDaarn2T;)?yRu-0wzrVg}#qQd2d>1o2-;$r6*(*<;c+Kr_EP;oEVXAhx
zA1IyetNm?K^P`}@G<0<ss1VtjdU{&P`|J1b$A_*C3$3Zy<JKpmncQ>SrTnD)lJD>C
zzTW!w*4FIHe^i!#`E%6R#wI5B)|QKhTDe0vrFgE5*!XBytm&lVu4^JT9(vw>Pt|+c
ziA_48D*_aKzb*@3?l-sO%Zor&Rn?Wr$NRR|{AcAB3%S3qw)EYdohIdpT7ipNc9pzb
z6uY}D^U8`qyW2i93>?Mv<3f&hiGteI^W%ShetzBje$C>$yUXvN3ce)lZ=+aWUtjy}
zX8QG7mDgX>obK-|UcN47=b{-iB-Ve}n1A2y?VX**SKoeqetx}}ZdAstEt#vr*Uu|^
zb7SHB`hPc9-~GC7dbDEow>Q7O@BhE{a65nY=VxcH=k8BF&UY77-90=kvH1PI-{+p2
zZOdK$`kk{|d_2P(cLqiU&#IqKr%%<5Hsh7Gx{{pNKhL)Ml*D4cxmG*>3sr8l|Nkf0
z{?CWz-@ijwhrRss^K;zWN&k0Mer4ZrYO40{Ij<irpI_&7z2}XhqT-|{#dZ^ukN5rj
zv!VRko5;D=<$iT_b((wu{$g@+>t@W5P*qW>VBI2L_ro!GxnF2O!3MdS4+l-I&yiaj
zz5Uvoo10D3&&hnRk=-7(J@0PF0tZG=xoTbZ#^bWt-(O#Y=h;-66g+U4Yh8XW`|pj7
z$*Gak?0!68?v=B>^*sFfxw)lJPl@)*T7R21&wpdmQ4x9h_1xlmD+(VU(>#}NT>r1e
zH0z4S)ml}1yPvoCPdq<2H+Z?<+&%9e#O|rM`25C<B}-If?dxJL{f}jTxic<r>btwU
zPfIL5H`n_0nVH6NuX_yT%9WIql(yvFHe0`2c>TU#SzYy0I5;^!{&a7hlJey%>w(IW
zgG>r9*Dt?i^Y_bTP_@;@Be}@@UWN0ecxH!o9?3;^wZB$`tPIM!vtuKu#sBV(W%>7|
zQCqWKu3o=ylFHtn&t^w$O6knHx@zf(6CO{`%naWD=TrBy^YhnFm>^*L^-A!&WV8Hx
zF-yIsUb?a}cx(ClI8c2D>dMctEC%II-}!d7zFVhj2D?3c_;8k4?yNt5{)DWFFpQkG
z^tgO|jJn^PfS;e9hOUdT1PzdYdOhdnST5dK{QT92hlgKXT-;vt<V4}!<eDE3+gC+y
zURL$}-P-m0|3zKAc=6We^!~JSb2O))Ui$Iz@#UHJ=1LkG9%pBn?$-Ui@0W!Bz8{OK
zzP$nUrGD0Iy1Dh!)6>iM)&5>p{{G%1o9A;Pc9pEG`~SE6Zt;0rJ9aMh>Q5)tO$#14
z^vc`E{r&yDy!`ZT(O+L)E<Qb7e|7!;f2%@PPFfYde%*@~8K6J_^*la3J-s#ewi(Fj
zSO1D=1UP^a%$Jv!L9MJdUg=j~US5vck}<KVsYygs^l72FqM>1+Y4){{lao|KHzv7?
zYKQqeKR^HaBG+zE3&k}5UQFt#DHEscd;K)*<&BMt!`4JB{QviTy;kU|DWJB-g$n_)
z76lHV@@%rd9mrdrzh3hToVWSh^P7?H-@kvq{{4QxHTATZY4$ZAa6A0p>+9>+zr4JB
zb>!x>RRIf|{`~!0`hM^CRbgwRG_RE?Uk@(|cVdVPV6*up?!dND=k$)4bt2d0?P_j-
zTFsy)l#FH3k>tDI@7L#p+Lyv|a(PTlOg<42Gc@D(?fH4W{$KL7_3`iXwr5;ay1dYt
z{qy?zzo(y^oqheunVFaGR6d{kZ0GZN#?{~6e6)JDulBdk>uYO$Jv=&2&a>UUGG^zd
znYPv2B6pRn+?actN5bI1;@Y`Zr8V;o?<#%m)6B-}b8k;&@9C#S=cgCEx}y2{R`&Xt
zzrMbnZT)V?VHP&FS%+G=XYVR~J?rJ=<;!1xwJvzj0BVePc61mpGBT=}m|WSCbMw-g
z=<Vmyt8Z`f-COnbQfbeV&)%p1NZhaa+`BRNcFBti2a_waJ~!-$(VPF-RU-M!&(F_&
zD=Kz;{QTM2{_mH`)jLxomt|aBWVd~1!NVraxIH^I=HA{BqxaoL;q9%h#@ljdm*21b
zzU%o!8}=h_Zf;(G`<q+N-Cb8p-ru`BMLYc5larH=v#_wt06Fwnuk`GXkB?WMc|UQ&
zga@BZeSLgPK&^Jo&{b17xwwp6yTwfJ?kY7__nY(K*GwNTFQfduU#Df>*|AYGY|RXi
zip0dkWl>wR(!RX7sHUlT@~)Zfb?>at4NJc4b8~T-@#tvx@0!?UJ~NYEU0Ip@>Dk%r
zrluyJkB^R?P42f%Gt0a4;$q&TBc01?etuF*KQ{*yJV%Zln>D}wpXJf2J{ilTTU)c!
zxx{ob{`~pVlY9G}WmQmBZLjBjNFU_(Hqao)`QqIZv-ul}b&`JwgGOx`(hb;9#%T{L
zlrT6f+mLh9NH=!ZmtAi`V~=vSRd@b1F)(arO?F^lnCbNY-(S;&0}ZdYX@{-3QTqHI
z14Bw2bnrKk2YqN*Avk(}-QJ|6BoQeot=ro|7do}}=$$nD`0?YW-00KO_5DAa?Jj>m
zE%)}T3kwhDu6grJ2R!b&Jaf-+`?E(ng;Q^DQ}dlQ<>FF?1G&x&j1w~F+E$14N}FHX
zRr>nMGGFPV$B(~$xqN=vp1yy7f1lo#dvn{`9Xoc2+}4fXcjxZ9ijR-XYhzAtN{O6y
zz3BF~(DiY9OY+q{J3Bk2>}qyoU0=8M!i4}<7M2wS4-bKcOVZBGsl05uJT%MnUeA+)
z;;-R-GL|7b3cxLB&@kFE-`ROLKf(vficf#5w2l*JIN?*lqu=0@eRh^9sA<B+E4AeR
zzwi4cWBdO6{cBqM%m*~SdTOrq_UpecE_OeC|9<>*z1UL?ul@<i$*t3k-lpL{&nE75
z-Os1upq>XOCudhjN5JZ^wV;t{+v;x_pfMHe@^wi`NuajO{M+}nK&`rIy3teY>;K&@
z>*?s=D391v@o`a~ob4)JX|s$Q8xle7=3CoxSNGff@~|v=vSa1rJL?o!8S2wn1Q=#s
z`}g;EYUDI7QLQN#m!8<9W14x%Wpn!ZYwGiB7NyUtJeK@-W$<#7>}xt8_iRo(duoA}
zs=dAaRK3_+**_m1ZWk36UVONn|Mk-8aYgs9dX~Mqq6r#q0W~g_`)wAna*N&BCdJIm
zTzjoT+ttNoMg0D{xYPB2KDyif`|)^|QEHdpJe!r3pP${mQdluTg<*+&>;{GutCNo<
zKtbD6SYEtyTmGMg&h1yWW{11FxoIgVI3y+}cJ=mNZR3^R^R2S<{x4Q;u@!lDcb%GT
zzCK1TeAer%D=Q`*I(*o)>`lb_(#dMRms+{SudEDKpMN`Ueg6NiyFz34@}J(crQ~H$
zf1caP$C^P>%%3iK>%Y9P&>1u)8dv?+wEu(RU(=oU&&)Iq-BVGh8@0tFc)8!#2zf!l
zg^!MQzwWpH7jS-_ZRnPaz|`~eVxOL#etnK*v5Mz({rGDK8ks|Pm1KgN<S8d7RlVQ)
zea|`Nt%eHf{`0PQ>+fAs^z@Xbd!G!*wTl)ly0Y9~UR6zP*{@$qj@~W5zt*)|Ow+_9
z1QdMY@ih-O)_r?(v+B*p<Dd=_sG_ngeil+vvc;`e>Zz#Nr2GEKJxWSSHD&v6Z%Aye
z`toAoiWM5IEiD=v8Xil%r(di8_gQ|fRjJn1sOM*AF9(fwrJtL_#m5I4AOj8jS8u(&
zEq8WY%}3YJRUw{<iHTf1JRvSFEmr04*8Khb{r8>kM>>T=7rXJcwzg_&Xn44Gi-j(B
z>jfpf_1k`be}8@RdArp@s$Lof1_3`mKM()>?CjROySqYOvo}mBU}teyHrYHs?&$I3
z*_W63&N5E#1J!#gR%n2R$P^VFO|!0CSm@ji8d(M<nd<NFt}dTnx2p2<v&?I2B0(*f
z<8`{HFM-5BQC#@=Sk<$c>6fmS-+x-P(z%_l>h0F+TM`em^)r4<KGqZX@zK$%3mlt8
zw(q~W&g$vu>ESgsdmcT0Y`aUsGia_=Y0#Z_e|~=c^<=VtO60V-%BNFBZiC`(Z`IeJ
z>+51otG;Ax&AfbU@wX*QRE{1w^5V(K$ypZ{wd%#~S+O#BIjE-y8mhQg{oZzM?C!Ad
z_v`mFF)@94xqSYr>hJGB1F)bm$Ge}sJv;*DT9s}AHJsK&1jg<vxj0oj{LAn6`?HU9
z2!h-nvL)l9$=<M)oV>iD&(F>M`s?-j*OUG20yn3fz4Q9lmzT=ZPcK~+x?0P|CT6++
z{A-g`y{{~G=U*GW-A`EEuVi~~fB*I8^Xu2i*Z&E$t@;vhZ%?J_$-nV0*U#_1xjB7x
z+1p!Pot+>%!IL?Ezuk`7kkDB7<01R{yo6&Cpq4*qa4~9I&Pvck*X3otpbju7FRYE(
z8MM@EYSH%jrrF?Ord_44SGn~{otmaQyYA;xanRsS@$++6ca^@jd8hR4?d|YpcK)!B
zkB)vlq1+EDwyY{XEV#BVcJ)l-^j8nt<;%9;-H_NUWtOudc)8!peZSuY=j5#EleJz3
za%S4uS+i`bw@I01m0W($*-$UR%rNsx3#V{T?(MWkM>^wPOPS?l<lHuEX5;-7u`lbY
z*5l{T(?2~wpa1X2WB&fy$Z4rDdeeXYdcFQ~sC!M#9>}QPxi|Orf@<{7UoQJs%Us^1
zW1Mk8q4?z`)#S)&ojpB1pLa?mgNE($?(VYd-<@-F)9Y=%(<V#+&B6HFd~B({S$@AZ
zUFWn>`JKY!rRPg;Z_7QlNk>>hA_Fvz6(=Vsn3!|h?CflFb8-E+FSp7I3O0b6J(k7K
zdaCc9n``a6E$60BE0?HE-^P-cLCKNRUf$oo|M;h@tE(h$Z#z3d(Rt4+tGYisb{0H5
zRQlTgUb)wL|4m1`#ibz=J;y)IwJ!gabAMlLHE7Utb6W55Pdj#4B;Ve4b8q$b^KU_u
zF(0kee*bvf-<ulw?5z3yFA?+p6ldMu_Vd;1^)}Z)^$KYEYJnqj|5J88nGY5IlXRoD
zoY)bgcX_F|c>hyHMMcnX=`&F8>b8u1-JQSxr|ZQUsd`N@aCCHhw)_3Q&l%+(9yo%U
zg<Rr#Z$95(m>{()f$>DqxA*tgyLO9#CPS(owu;+a3tbx(3hKmyMtl2?W?Wp<nv|53
z_u~ercsSg~Yg+m$q<s1U!{lQp&Y$=9xA}O4_x<-WQ1Vb&=`m61dhYBypkY@~U|jzt
zsO)y){{8!ZYtPOy6_u1+2}&$y&F_b-i`jYSwUV+jsPy^!=kxjNvf3LH53{X}+ZzSS
z+wbq~-FuClon1S6Th8^h_G=FvKCJ5L-Y@qxLQYch<>uP&@9w7dfO^@NOXn!LcKz7%
zSyWtn`JJ7`%XjSm_4W1Zf4|><kGQrqI~+990&0Wb+gpA2G`FbMlaKRMvM(%X{P%Tz
z{ZE^={rmTy-__LIeD}Y7{ym$wcXkHf-BlWVc9yB_Em56_08mR{p>z9|ijPV2pEEFM
zDmE~jC^E~tqv5$KboI3JhB9AYU7c)r?C!g)sam1CUOp~=b;UFN+?<PBGB1~WdlPwf
zhM_ZP=)aMPHLvRa%*cCtDn$haA8y@K@bJ*2C&hi!K71&M-Bse*&L`_tdVh8J`e`br
zIX6B$<Ms`WyRied7NGfwL&@9r55nqxFOG`GU$OmuXK~EVqMgS}UEJMIZ(1XAJY>m}
zOG~}0zTYhe4Pdsmw1DDeTkh$nMK90HG}e6g{$BO_uTg2Yw^?(<{N8L^`6=b-kt3j4
zyMO=wz1vm)>!teo<Sp6P{Wv)}cfDS>`^xtGc-@#C0iam}t9z?LSF8NJYPzoe|G&8S
z>}zW#8oEVq%kjLP&BV~d$T;EY9J|`6NkKJMVV{cPn`^kmbSf?%&%d>0C6|cCf{n??
zUp+e7{p<62`(T-xd6FvgKVPjk_4h2AopW=Ori#ju<XEr%XJ0@6em#HE>i2aqyY)0R
zHLpINXI1JoEp_L6pF4T%d@>WhT(6jrvfO`uSV_s2viJAao|>w?y7u=sE<V0#^XJd^
zn`^aHP}%Lpp;qpfR_6}$+phr?KrWp^pyHiNOlL(y1B2(K4-XFq---81H2b;NXCIr&
z%JlQ|K)q{FMyLyL3J92>lKJPy$GFFH+<GJy3aNT!{Q2=w$|$9SjbBd3-rn9c?@q+w
zHs0V)Ayt)=wd^`ue<tdjzO=LW`K3=m3=PtZEDqBq|8cZfx_^~=x#g~J%%9iJ+N`*9
z_tggnn?Zf-yM@PPugi91-`>_^X!o3B=dZ(0-Uh4;Qe|afd2yhT`PbX+_d}NX%oMq;
z7q!J>5@=%F{rUD2v(4A{7{1(hxM1-#ok*pZ>n%Me^-3Ba`+NOgHv8-KaeJeb-FiH(
z8(v!<zaHe}#KUdBKt;too3x&b6BM0;?tJ_3@UY!<_5Wwo|L4ftR)s8f>%9bOgiO^A
z*Q);ZM(*u$pP7%g@}J&xWp8ykXyWa7pX}u>QEijlTPC2SyZ_&>)u5{3=kMR3xynsC
z-tjdbTjeSqG?vV@W?0gu7s0S;&ZnoRy(fV>zuMvJD%QqtO6k-&{pqIa3vj1+xA(cp
z{&tmj`CtG1^mOu*-+D)GZOy)1nsa+w>CaD3O}6v%@PypnmYdph@%8%s^OAOdet!P-
z+wJ$KrAAi0TDkmE=;gDkqPDJ5Sz6t5wAZ5ONrzj%obKsOpdrogpJc7ePHfTvP2OkE
zUg|yl*PZYpafkT#?w^#4XPf1|`g-HBeBBSltH-(Yqqm*OzByGpd`r?%F3<nvyl?L8
z3=Urx6X@g96aM4I_Wb!}@9xZeWT>K9|L+ed)hzR!y{zi%tIXqlvcG;lpRfA&>pY3%
zEj2$sg?wjZc<IW(IN@nad%L!pnj0r4C#ZXId>7hy)a@|mkB^RSEqLfu`|s!TSJ&3w
zF1_vU?tXe(uJ25vqmP@PcM7Y2x&Qy4d2G3~late>D|26Efd>CUnMN~s8MqZKKf`~X
z&B_}$BHrHE=xk_cn00qo>8@|}o3%n#EO>QwHK@%cWmB=?`Y&O1za_hWPu8Dpo*(Ap
z)6*w!zm8q5!ohczN#XkLj*bb2$Fy^D?(7I`X6OI*Q%<!!`14nb=TANwU4Qrf#6;z)
zZ#UC}*A}0gq#8F_rBBM#%ew4Mz}~8_clfzI?2c_s{Bvh#F=!h8y6kq)IQ!F6Q{#?%
zdwCU=@ATp`Iy>7uyi-W^%f0INng9O$w0j-1w`%LT`S$Z)?PNHx_20+X4WJ4gJSw$0
zt@qlR$i<V@{j(0Wa8~{Kczo}zyt}(X&)a^Vv+w`EYS0)mzs-k+dv(8apPrw8fA!lP
zg^x{gZWw?D{9U_50>8hzyZ$#nA49&Tt?kRh{PrPdXPI8zU7lb2_v`hpzP@XqwI{{T
ze0Ij@^~&4dd;W)O`=-7t&;INPJJ`f}bzQ7AX!a&BFtF-DBYVlSGm^DmuZFLR-M#HR
z<7Z9K%;7Ts`Rmfo&RXfz%Ju2{_v?GV-&-BEHEZb(--S-CTQV*xfre?A+4-(KIXU_2
zia=#ncJ}P^^K56C=g$L`KyAFzzvlFu<D9JSA9i<F=~qyHWAk~t;JH?%DLoh8@BhCp
zf8S3x(4@j=8-<gxE0^rIi;=f3^Lc%J{q<j8U#CV+ldFDXSo`51yWDM?e?J~qy<WQ=
z)GpMG+~fiptlO4*+ob$m%+X`VvTkk3j5`i;@x7|ox}|S!1a928@zhl9>7Wk$y4c;T
zf|h!%3S8Wlc6QcMDbuVKX=i6y)%@518UnO_zvr@T#r^5ad}qHp$S!}Sncr^3BvtRM
z$H#g>t;kQ$&%Za^ncT?4dSzE>w(oqq*ucQRtQ#8^f`<D+9TyD^kHEmdTYD-u@2*Ws
zT9kEd&B{rt-m8+1c4>vJnQ?BuJ*XLx`TE-0tb2QQ?(Uv9fBt-sE8KdeUN*AJ1$=#V
z6*SiN=H}+?_xJWj?Jiqe_V(7&W_Erp0|Nu!_uLE~NpcgOq(5_aahXx|_0`fJbN<!-
z{x<W^&(E`imU_)Bzh8TuN6O>`3p@MlPft(JUa~}`e;a7E&_<opHh(@GPJ44><FeY{
z-|Xgp=Tj)XKHK{7fkx(K-qZEel#~vEhITGo2)Mi{)q8W^-CZT`wN1m%GZ)#O{M;a-
zA9pAF?$K^>-}m?S`c71G^>J`$01fp>8l`mXEO|L;WA5!MtHaMfFI+#D{mF@m%FAMR
zmn};;*mUgt`SUlny`2}Vtf+YK#<pCmk{1s)@3a5^=Q5AH-JL6|LQl7}w9IH|U<h6j
zpm=#pX0UPbvoj*+K`SJlTS_MT%(W`*IsNq0PCY%nb30=6`YVm5>BVN{+%{uo<N1(P
z|L6$k=SSW8vp})N!pb_c=I5uGAb*F)RUTDQQ(G2sf9vmkzqG5ry;)Z9@X)fdx3`|{
z|NnRW%{`UHUAOaZZaQj`fA5ZnM!*5k@Scmi`|N)Ee->A-m;U(h@Y%ZE??4L$j%~~B
zw@mPxXOp?B>}{5kva)YLzy!_6O-m|&KArBHl(gvl^)IjHU#|T8Z04)0t7p%#ES?2&
zMY~+piJaTp&c6Q9+1dH*>GXKBrCw8w9334&<8RBNx92@O(kUGG-Zv;{QswKl+kGA%
z>-F83bkrvxU;-yMxAE0gp~j2d`@jAAenuj>PtG>$*O!;cr>1JB7d<(VSoHK%s@HVA
zT)C<jipHs@M2dfYdir{wK0|@&=^3+sOnz|RAt-1PXiQ<l1_RJ6*Ho?0PnGOTyr=8U
zGRd4&_xr8+_uwco{kSzVW=QnP*+$7)mreN+F8@l&wQEJy*H@rkYW45qa@9V?&(2)D
zx3@aDW)cqr1H*^%@BQ-3kKVsuzhT3M*V|^BW>1@ClKJRk$BAEGU#~8Cc}ecB=)S+-
zqUTx^I>qiP`FLYr_VsmE<?rT%&yQnZV0bY9iM+hSrAG%EnXQVRbSzrDc<;5)bul*=
zzc2grKYUHZ#l^8lyF^oOm+ksh$;`mOP;bsM!Ng-;@PX?~(p$MiFLes5-<g~PT7RN9
z{d9K1uKoM>J2^SsnH&#VhWXzGq_{36?bDmB;ofzh+>2%(IpUIfdfM6Nbxh36!L{$K
zp+2bR$&X@TW%ZnNKK+8a{ePRCp!n2_+w-E>{`vX&<=a0$y|FPF)X!B?QVPmtXJBaP
znK)y{ik23ZyXE(5?UpAU_$ugdNnz*f(4z1)t3l2=c<|t-@88R}@2&Z{2{du{(RrrL
z$>6N>wedR&7RuFrxfmT|%fP^pxAo*?_0_Sv%OqpnrnxY9HXmx`);2K-d3|l|=cw&z
zXQf<SU3c#9@9LUl=muJWv)HZo&gtvxVpoG24O{kxed^f;Dmia%O3lB^2@20?H#Vhq
z%hi4f{Qlf*i9Dl9Z&GryY33!BxA*toPnMf-zy5#h-m0%f+gFFLpV!pf{PiHad<Dw{
ze!CwImPJo4F!S3?cw{(fckEQ%=rB>OkR871ObiSSvt7%7O1m>m1XWirudEEdwZDG9
z%FAy3eHZTStycBCySqGmUCd5U^Y`o=%iz*iR|5OxY(edKURkS<?{|v(A3b_>=QkG*
z&z0=;dzYopuMOk3|FhxU?)P@O@%v(em-$?j&fl|ePvz&dBbuNw*O`ax>(oj-yLx)A
z%(JboS$BJD_Vg|>U9Fevqw_$^RY9$$oSU0gdQMgYjo~>tJMY~lZJsv=v?wHYcNwTN
z_3GMM(75@uELmx@oPeWUqFd|!R=oo)yiIYciQ8Ryhw);(qOvY%QOD2E&zG-!3z}<C
zpI`GS?G(rb|H@{tqm25}VPP)=0|U8hf=9K2(mpL$T~j-RJ=@>j-oCo@^)=8;V9}Ek
z3pb^nezo;_TyRp-BKO^Eqql?B+JIUoPEJl=emw4fePd&?WQZvP1H**MAE_mbkw^E{
z{tj6gqzYPc1nPPh6l@4v8?`h%zBW|aEa$@W`Sp69pnM9N(X9FTDf7dFgI3kw)_~eR
zpkafk&1t=V{#2Y~WMKGk{^;_DCZJjXG$RR`Xg+8Ceu@gHg#;S6{r~T~{am}+sLD@I
zE*@xP1}$~+oo%LRV-qt8WdG44M=}nzaK5^+G1+Y%XvzMBg)f?>x}~3=H&vyzwY5@5
zKVrjzoZDgBa&D@4ZcaNJG+E8}&O_%(udc6Oe`%?A_OTwxbE2S{B*lqkf(dAiWsl*j
z3k#dg^6#yw{rxTT*O!;SJ{;!1y4ancm6i1+Qbn<Ceay~HW_fpJFir(k4KvweH(YwL
z@AtdQphCv{UWIdf&Bs=ilbdw*e!1i=WsuOI^76sK=1EJOTDdB7<5vVIg6bqsPft)e
zy$-a?KtWisVTrSgOABb$12lPPVG;59+1bmWk?Rc!j-@Xz9sO&vrlEmheJ(RIv#Muj
zXD4`4=TEYr!zIv?08rm+OYQHn@3MVjx=}AaJw5&Fef|H{X1TXO1J9F69v)&{|MvWR
zdwtJ$W-D)QN<FQ+Mux%YS}V7B&A&u8hD}O#%kSDSc}Rhpv!IF0@b9bA&d$nwbfojv
zj>5&iUq+ma-MFso!vjZFcJ}2j-yH|7r^@bPYw$U!`m)GPoRQ&#3Wq{w$&U|-tnBR7
zy8d2XlMLOa>%|5=Jk$zW?Ogi$TIJU0&1t=h7A?9|vE{mo>Asy!j0(X&ye?@^QuEfD
zeQ+zofwdF<RP&m5F-&p;jg*6CZEJs*P1T9Kw72He6wRWYF}r@h+pX%kapOi%lKJ-j
z{`)$S_n?(0zu)g)9lky;(<W-k60Yq(co-CvRmwv(wCmP0{-|ESeeJAL!;*{K`g<0D
z2CdW1&H{CyM1_RFYgM_$^+J~W%?;U*;OH52e_t(VM(FCwV0YW9FBfiZPB$%i5dfON
z?&|J7ePc3c_k@we=Y}PLYooSqDSGPV>hAu!ncogH^{_Sjy58Q8$E2(N|NVaV?YkY1
z`9QlARK2H#%(tsGDR~h9n#YN+|7+^MpNWCtfW2I~!zD#4tEl4V=l169-jsS8v{0BY
z1XT8?=-y!jH6v)cn}gcr%BX`u)i;&4+R!F)_V?&LaEsYl<hnY1J!qCObVGt8XuW7%
zUF4?_(2k(`DLUosDX*`s)e2tL11cxwY^zqp?XA*^+_c0j_tujWAI)=aEJ!;$OH)O~
z1++I{XVKFy?{>ehx_V<ppz_mGQ@s@x6+r_9rEhK+y1xPyjz*hx#2r9OqJF>M9}k*w
zYh-3G`S8FIG|KC5`}In${kQA!^=n^UT@9*eKug^2RX&#mO>O@E_O^KY&HeTJK^4hd
z>+-A*4-SGxyG`=%*?@KrOxKIu_0|*==rbdiz1{xh%Vq!9z2^4<3JNwH{{(7oI=AzM
zCL}CS0S^-0+_W^V>gCegQRi=NPQSXZwi;x`{JLM6U2j1P?~fdD$-TA3^WnpXla_c*
z)zVZ`a}!qc2{_&-o1Z<Gfq}sxZCd901{sS22UYKBS58b+F8%o__4_BQ(pM|O*T?;O
zxBES)_&qz<Iy`^>-)*n1tSpXx{qxCW|B@#s1bJmF0w#TVKEM8y#N(@Zpoz3gOFFG<
zJc9oI`U;wuJUhei@wRKA$@!GBnPv?&pylRPrK>;-i|haYz7Oi?tGxXC{eE~w#SYLa
z-AhZoSErty1}dkI^+*;+zXmN&EqZ=#?cVC|ug+P&4>>o-a;kNC9%$Q<xL(YJFX0)m
zE)J~bs))`86*NY>eWV>!KvO~B-3sUCTCdK%y$w9x^5a7yX!xbGvlFy+L`YZ|w1Gg&
z#N^AiYnyU!n}HU<RepZ9>;J#srrFnYY=1tP46ZB}I<tFTI@rvv>e<RA`svobfQ3$0
zg^yY$O`4Pk3&)kr9V$Cx^lZQ1DFzLripa^WtA4lB9khZ(zWxtrpU2J^J@;1@<?ldi
zSV5Bn4-dDmcI_6EGE4%`gJxb{1{&z|^6{CX!pg!@kvrceO?4+Ps7K{L<t6ipqut`A
zzrJL)wzXw_d2umnXVKDYYonKghE2}QFtj_Kc!$r?(Q(p}Yipycb@Fd-Tias@+Mlu8
zw`lsB)pPCZ?<L!V_RQG_F5^{T=a;+k_xt_zZ*FeZwy=muJvHUxr>CbyMMamUo}Tt{
zZuvdXDCjyaQLT)hpPp{tJMT~{xA!D25se2MZFF>eCY5}8;#q!u^^<iG;no!&7Bn?C
zKYjmxe%oT+$yeUYTEEgf2GkAAI}%b^uO>Zhq3B=Plv@m!b{40rs;Fdqd~_64_bytr
zNJLtCHE2EFq%S9w`!hg;HP_b6e7FC9o$a3whqrH?*Cnd$^(%W`|7ux_0*6cSj!Oz2
z9^&HV1<ecY*%lA4bmJ!N+wpAm+1_b<3=9p@m)!2nKUtNU;abl=)2u-!eqRh|SP#_x
z04>~fZsWQ5@$vDmuh;M2b(@8ib!Gkkf1uqFI;VH7{R$eoF*=rUXGfvj>Ek_;%Jud2
zpjFJ1K<?aG{Je@~>d|iT*Psd6w~C;y;fXg!Z(UkIo#t0pS6|&(obGw))z#Ihk<+-u
zbY5KDmT_^>EW6rYxog$6w7g`kN-q5P_;~7+DNAl`&3=75fB)6=`L)aT)&Ab~8nm}B
z?cAJ|piJl9F9&K=w(-fX0wtcp!ouxa-53}c6gHpU!kBVlfn(O)U0XrDwLO)evktfM
zg4Vgc+wr)MXZ6d){dPecla89y{i!%R&o=sKm+0jVLFFrJqs_}fi=UiNPt(2p`Mmvl
zyV_r%b^D<GK5cxmvyOd~2PKR9(^KbE^<3e-u{C?Tm|o0^&(F`VE_!-uRovbxx9KI(
zxi>aE{NHanQ)gwY+jM4z?FZB+$xYo77u3qLj+G&=b${J@&=82I)`#l1ZYj5{6()&D
zO0HZ!zs_p$X;9;$pgZN3;|mb$Uma1qGb5E6B$B^ebeCUQ^z_uJ`S$x`^rl~*K0kh0
z-68{!F{z&_9VUH!cQ+bTEG=5J=*x@6{aW$+Y9wQYKn1?^1XZRJM>>T?rKML(8mFa{
zXo585IZb=f1Zr-x@k*tXNP>lerg12IeSQ7<t*zO{yFjgG26IhsmI>eQ*T;iu6Hqt$
z@$vrj5=*e^fN2~Gpv-b^uJzYb+Ur3xSD@<R-JPAb`#wE6Ir(BLsNCMsr(?)rYi1TU
zEj1O%8euh`6E8r{W4OZ<xrkc~<k0=?K9%e#mzH==S^^phnwGkA|NeQ$<?H{HO=AW1
zz|>MtF$jr^tDoKk8VLoBOcxdwUcY;6lMZ-8?1Yo4rx-S6U)S>t+Lm+EW*<AKJF_+Q
z6hqLOh>aop!CX^A4q1>@$wUSG%uj}U_RX=W3<_TEclF#{YtR~h$z+>r(bJX|K0cNj
zPznl%OG@4>6I!{&L5mfBJ?^)kVqKp1^z`)et9w%;B?CYK+wkRt5aW{Y^>JDe8$cE7
zQqX7`JP;+AH`V?wD}8@&?gvowDy1+|sbPv%s8{;=d1qf3fo!<5L`TpeuKsW7-v9r8
zdwF=Aco75^ZqYGhOZoWdC>Jkp=*>;3pfy2Cu3aad7FBN9sN=2d-gjmJ7s$vZuG2Ua
z-tYUp?)U%a=jOiN%nRNceB#e07lxfhPrclxgG_rMc0vfWyo`b2k8Mh)wZcizDDcnE
z&$GY3yE|z~($TJ$|9-y@Pf1B(3kUVX6m&QFFuc6Fdb(Sm%*(5?r?=&T%6ciQk_@&`
zu>9IhF5+tv54UCh`0z06=BA~f?jvZH`O3;*P)QuMHEZd^!|mBWK0K6+RRcxI>k~rd
z4##>V7lS$_$9g2?POlDGxhV7UGSJH8UoRH-U)h{~o@W(kle0q<$c3DooV(ud`yCWh
zf4}y-p{F7!x>-{?8HB{dmYtn#zI;dB=VxcRczH`VD1kg^4vMFCxhjw3<9(nRz^}*U
z>vv55|M9rIlu=5@u|C<=?sAnX%-WzjbAni863+=xPtSL@*~<L;`#^0LE^$2_Ppg6l
z4SKP=mVlOVfVL*bsDj;oQixHd`rDhRJrx_DotgRAkl$mmTkn+}g~^~6$h6edf~g=U
ztW)=9nUDgSo%#IiEG&m<c=s@ZV(G*837YR4T-@AFZOhHQyDRkHzkgjlJ$v%RwNGyX
z?O<uw0=cX}*(epXFn^oQ=}Eb_<?e%;Ung!Er83MkNOW2S;m(p^2Iag1hLK7QIk&cW
zf)`P3D|qO1xBC6wRY6O;-1=l@I!*;y>d~(w=m1&`{PObh-TUuv&7Lk-^T81`w=?O>
zpU>yBzr46887kNC|N6bT?v<hUzsuL3ZQxV*{ffb`t4liY&IPVz54;2>-{MGG)e#-r
zbunYnLbum$rd=x!x(WMES)pPWba{$|zi4u3%!01$0_85biA@}vBqUhgz2|@Y$B9i@
z<IejYJGtj)ENkrN|CYUHJkR*koa+7GxfwRho8{5~T5K(8kl^t5adh5J)w8oqPfzx@
zo0)le+0zrs{b%^=e;nrW<6vM|)2}9|&@Ha-x7=^;EBXK5w(mcCkX?Sxxw+Qro_uyc
z9-NtFx;p4FBLl<hm7Xjfxw*OX>i_*zIeBMi@#iDL{!b=2^R2uezbz;7uWmIXL&LGv
zf%n?J>(@Tjjz78edfaSL?XZ+vTQXO!TzOK^T_$k<|1X#Qmxr&96LtM1Bg?=bvletN
zz#IVvh6s6IB?rCTZ#M1udM$eA*K5(2L92CV7%1M|Rq8!SCvua@WHsMY_J1$ihgNto
zFg#dn(#eo{cUP&J-<%%{tMm7Kbc@=W6$)yjA85-GV*GSHBs_e1?C!Fua?A`25&XSI
z4thJEObQ7NefsC~dH>SVQV_Sl#xFE9RBy+FCZT1_3=DSbRxQ%#^5XwEebwsK!J(m3
zpPrtc{`stV{Cew{(9qD-udlAE`fPuBW`?11^}C(vlWtG?<Gl1Z;|&fqHA}UV!k*t&
ze9&Q#KK$GM`n-xqoo_a_&(D^3Uu?s?Dedg6{l6p_7&2z<sbphd2$-cNr~q0hujW7R
z&%)o6)&0-Cxw-kYGzSC2j|i!!suA@sXW##mHccmT(qVr4nz_I2e;nk$w6FH}pGV^R
zH7bo57!sUKI*k?j?S5r|qKN;l{f7h0pD#G`Pqh$aVE9mI(#a6HB_r_Gmdwu!f3J<+
ze(rYu{@6z@3=9X3UsPdAS-p1Ksl)vCe-{4cxBU`O_3ce0T<*z>#r@~b*Z=$6BX3`~
zHu}@LxV={Q|Nr}5{QK?p=h^YUqgd5h7#Oa(Pp%OBHN!C3sPxs9Ii=SkC9TVH%5EgK
ztDNlC-#26Xy((>HcD^$|pU;nfsL9CC(0@tgT*H+sSDwtPes|Kp?$hKiudnNKi|L$b
zV&%THK7Rk5lFPm`jZ(d`va+;n)fgB)2+lepIYDLRx^?G19+#j0xZi%?rNs;k4D!K~
zIVY&BT)p~qkEF3t{l7n7-ru*MYhAwXiw6V40k#aG=?SVQe|&r#934IT-{0TQ-~a#j
z{_`2*^D3TVIuR4j&9#2MY<AwN4=oG~2i!A-7>hoiHGjTl^SM(G4mKBG_BCIs(e-OD
zNL2$f-v_-H3=9`oOgb5M{(80g^VIb<s`kHco-g|Gu-*K|{o?bspMT%~zmI7$BLjo<
zB2ShRYa%y)TB=|B()qh}*_#)0FEBDJ;LH$W1jU+8#D)jX-_y^{nW?+|&ZZ-s3=9qZ
zi#=IROi*+#I?QYSWN!Jr%njdv-~VrCey<{V-=C-Y;R(<<X4v^=)9FoBUqS2m)$jj2
zR~{4^I(7cPFUu{T%}CyKJ+69b_Vsl;KOExLh6bBUL&^Jlw*EFBUD){L=G@NTZ|fTP
z<XUw8*(WC_7k|0v{(R$cxz#7Cn|fre&8}X(db9L;tn{0`9}aO#+Ef(W+LAfhZ?0A9
zlM@r`zZw}aF#OQTFv@qiu{HbppC8BV&-K^;c?`;)k(<+eca^-H^y<|qlPhy9i;I3f
zoxZ&E^|jY`ZrA_+dwHRAdraX`(a2pTnd^4FT4nS7PVr2;+NxRR`9}B47#MD>kovp7
z<^PZ4_Rosv|Bl)B_ig_3==;CICV}R=MCWN)KA%(k$-MrvdF0lt&}Qp`URi6i)6@0O
z2m9Mjm9wo<@%(nL`n^oehl8Lp+t2Fd60aT}1_sgVFZ2&)U0oFln!MKCc4N_{#aF67
z9AqzkKDYeYtn77>&;QLWzc+KCbNjX9?vrFH9yGqZySu#Z=jr%qrfLifCRV+64wIg&
zj{lpb<~wW4HR}c8r)HUEfBL$<-d25nO;Op+)ah)$^Y{Hsdv<>Q{Jr09tv(pHzwYm+
zCzJiB8G`hC_5KrDqataT<l<-l_Y04di3Uj9wtH2tx8&U1bg;1c&Bo(u^Pm2Dz5YCC
zRmlCn@5*1_nQvX5H)+YXZQBmU<>uy!>BY?Wey>`8cJ8*DYIB7d7^D`f2`VtN^R4;+
z*_q$=O2U4Pt`JBuG`pm)m0SE-{J*F1MGsrWmn9$Xdu@~U^V3t$Nwa3nVyo7T+Oopl
zt$~5zL*x||rYFm0=Xr&OhAusR;^%Yl;-b_qFD}YgoncQ;d-dv-)SI;t8<W;1GcY{Z
zyv&p3#EQVhTDDGUXJ<{7&fjAQ%KgUa=jN!qpI;fdG0F8__4~bhzTL{syuB^=@6vGj
zn69tSpPidKyHD17-SM0Kt0&+2C!X#8|0Od+L(!i<{_^$jdcAl)t-Q2?Ipt`V=+Cd~
z>*t2Y*P70?Dm`^!q4V{hx4MkZ%rsVa4Se!C{(sdui^n}|zxP&sJvB3Z-pu#4@2g*4
zTIwxV|K}syai95iwza>%#rE%iJ4faJhm-AW3=f1OuIo3bt645%+FVm*a*JW6eSO`x
z+xh$V{Cc(eYdL6KB=p~B`~Sx5vLyj8KYw|7S$+SntLvrK%&-6VGjdx_<gtGF`Eh%z
zR4f0li`{;w$otuunZfni_kO?It*^iLOVByX=W~LdvoSOrTe2#H=lizUcH?sv%GcxT
zYtLD|UL#X*fN`d2c9`DYFPA{upXz@cme;b4+w0iO_Vn%c`{#_$+XV0bc1$`yrQi0O
z$L_MXMbBoYr@g$iRMI>zX4|c-)jsp>{yOU)oMo8o_U%sbd6n%)B?TT_e%O3p#BO5B
z<@+lI5-wN&e|}5Y-zM;sY=nKU)LY33)$ewyE4%ld*-`lT)%9JaucxiAeVbkR@u>Lb
z!+h2u1-rKXeaii$`rDhC>~a+f>GNyLj`c`RK5Ks8#<`vE?2f|6cm8rQG@Re!Cati3
z|G%np*6;Uhy~f5PF=3I0QU1L>Zo&%R@7Mpgx?X-ObNQXx?{`)GnHd;*qZikzf7!Kb
z*RStqe;i=%4__M<+BuPdp}~K}#d(aLlWuNKPe0Zp`L$nMKW>f+Xr3KZd$S$i&BxEc
zAhq31RzW<bz!6l>vb|nDzwTF5|LH3A5(b6`lQXw~OX2V;76yg{<?JntMRy91hr)RJ
zPV5W}cC{=V3=9EMj7$s+Q$T5&VX2@31A{~6sPLc;lM_`{e?A^JuKMx<l<h#RkmvUQ
zf6A0z2?Qk&X_?=Lxb;&$JUEznd6}<O>8mLdmEF@0HnED%kYZqvn*MC6+=7)q-j(m4
z4eD1MZsR?@Zuh%c|9|iQe;U-TwEcEN`SLQ~)90+;&rz9aobLDSe*J&Yc^=_0g|5@|
zVrQ*hw@d51?e~~v{`2QOJ6n62k>SUiPwO9kEjefT{0Yb*QH+K)KR(nv<c>cf8Xhwd
z)JFC+DtmK7Cw`xezwOtMsxL1ls@$x8zqk0qLH6`REu5AwmrT|&vS(m0VbePp<^TKL
z?)>J>;<t0R$AT&coBw}4f6XqxSDD_%CmSU%?^*Pqk$qYD`+Gm1>eol!+QYzbL4tFF
zKWHxuXjA#5Cuhy?pZW9i^XBVu)utBf;`i58embdsS`L(9L>WJE-YL7C3-Xs+kHkck
znecjI<JPTPBX<-ef=c0_bQXq&V=fIfKKgq;IJx!9&HeZHclwhP6FnzAJw09BGb<}g
zO6L9|*Y2%-j0_Ful^8!6o|$c~-!5Ag0UEHhez!w8G&Iz6(lp&@HBV4IV3U5dOEg=S
znSo)x>$|3{ji3hT!DjaKlao|uT9syPyHj-f*Is_Ty}up=t+6*Re|M+k%?(3PZB_M0
zH(Y(^U;S%+|1PsLFg*S7bH3fbJJM4no&>u#<TUKswTnmA%4Boe*;BRO?@pI3yOFr|
z@4LIZmwQjwtNiovxU^0AuP-lO-roMc>Ywj(m7neYb_NU#^AGH*W3(|mX(&45>E*+!
z5wA1P&N7v>tEpJ#JA0bvWVNO7`|DoYyaQF)b)RS7PdPWo@@w|@yXEnqL2Mp*yFF_P
z85tG?7O|z+&aM4+bEZvY5vXmIez1vkrbXeSsNerT@V}qG@yGM}f6skpnP`Gqte{F~
zsrU4>J39(*=5D`hlyzkVmk%EULvK4nq`$xY-;!0URvA@(dg3$BX6M0w?2MN-r=Pd^
zaDdtJ_nXbeX=i5S?ECpl(yAomSg-W<dF%g!N=SXiP4nLE|Nrl+UD@)vWvA|z-`~r*
zoROhn*~x4N28M=990Cjs3rv_;7#K8qK?jt1DUS*d@i0jdj@((43aVPaytt^mHfrms
zeZSw$)(l=2Ql-PdutI}zQ>RS%ox+{ZW@Q(>*?2td&ySCp_x4n_@kmZ`m#bWIX)z;%
z!%>s<Ul``QU0&{g{_Xbr^H#6lXLbL_G4n|($K|SXetmg4x%j-TdGK<-wV>WifaJM`
z9Hz-?zFwc7oh|-!QvLe+t5>c(IU?+TW^upWEYSX|0xJfF6*7#QIBmXO2?jNNqqgVm
zy;ilq?(eJbj0_Jpdo<)Q6+b`co12^4{PotYTOzI#&F|N2W(sCxaCpi&!8hUOr>84d
zuFTwU4|HZ)EvRqsN$HF4g4EN~R<2&1y<uO{(XL;AOMm`P{Pba&6z_r*`9C(lb0<C5
zw&XbA_UYew)BOSeez2TS3y6;1eeU!cP>WIJ<-NVXt>&9oe|uy9_vJ79T85gan1Gjz
z3}&ltZcblb|Nq}qxy7DB3bP&V@2mZ6|Npan<hGofQTi_RZ#EtWb%gfS{$BUFvR$q!
zBX9THZ8>|tUX!ny#=_8WDso><W!m|9bDjBZw_I9m5*g|mC^A*<(dD#XUtWSX%oyk0
z*)gZ~+fC1V_32;iYJY)x9+f{5r$;a{e7O09=Y-mY_3`_8q|J1akM*3~Q~7z*-Ll)M
zhgvu*-)_AQ>NJK|*)TAykVtnhn>bZF{8<yX-ih4pcc-~_i=|$VEkBz&J$70%pVbOT
zL_!ktJ<yURjb4UK7SORXpU+wA+g5$?SRJ-@)BAnD(@ss%oGQo7z+h&@c!`5h+Bo3$
z)Ko$A+d<vx_4|Iks(CDZ-(%91t5=u$&$oMdZEf^2zqwHlIT;xe9v8ALIRx5$`t0oN
z=T9d4uZv&3a^=ZR^?5Vg<!eofpPgCxpoD>8Lm}q`u4>T2^xfs}x85_ft^B{&#qI_>
zLxVpzV^AWFG;v^=qJvfrMw-|npdbo5v+2s!tELh08<SlB+A%QHL~%^uTD^Ad**iOn
zrPtJNxVE?Y`zCiLh6Z1^hL8wQ++On5PrbP*HG8f7w;RbTSFQ58zpqx?M3R9ar-o_C
zp+1{WC)Px5)iS?R;QaU2sj1q=iHBO=?0&!R<;BJBtjn1h8hTe(E@l6*=JoaU@ol`)
z(+rc3rQF+7c{6YKTcgB7Euh}Y&Y#a_Yum~(Fyw^X<J>D4v9l;uZ^wfsP%R4@DJi>K
zdOfD>W~$|j1<hKvQXplJ68So4RT`P?%>&ENT#L@1E9_^n@KSP)i2dJ}{=u=ab0v+_
za<-hWyyz;vbl0u_{}{B6`X@A~J((IFcT#itoJqOc@0x*@MeHtnYm{)Hp-0}{PCIOk
z2WaRjwB%UeVz;Hfv(2R6e$IWfe)+0Zs~+7~ZaBZ`*;F}(hOfofW6M*2e0Z37agi%%
zkkYR9SIW~<Q$cn2Iot1d&djkiw*T{xU)y$B{R8F?;hX{uY6;)o+_e1lV)5p)X1AY|
z@BbaUtL$ymeo*88=_POdv$5rOLl1H?Cj8yO!o7eK+#D;vUu$mv^Q8Z^u73V6udZsR
z&nY}+HGg-;#YHurXWu^qYNeUw-dX}$HffaNF|YF3Ot#~3)o-`Hyu93h+l{1dP@AFp
z{oeArkKOTC-s?wi(@CFO8n*3b+UzYE7nSbrDm|^(E;DKQysE6`ee<rz*V`_iUsqLj
zr||fetgBj}BQ8EXJPg{2zxMMFkW-e=De?j>SuJ~e>*<cieWyVSiy!RR{eGWy{GUhS
zmv@!E2KCH9eV;QkjqQu(RlnbB{`>v@dQc0<EcaH*aoKXvIMsf~cwvUu$0Y?C)E=1c
z|LI%x_0`ncZ#UDM=l?#Xz5dDmf3No&<=ohiv-zyqO!NG>x-X06Qy&~?oM~B{25J_m
zoa{BfH^cb6jq%}j{_~OPbEk@Ghdr5@KJVm~%*#eeM><r%aclj4k8%2(LbtM8nalV5
z{dOA^GoazrFK=&`?@j-8|Nr0nHs5X}gCgYe=JfMt=Gj_bk1da7<CU5+(>Q&ZYq!|f
z<6^E8FD`ap?%d9|^T(rZ&|>OmyI!w54H{JV{eJ)ce><Y{_nIzt>je*LJ)Ii<tiS$G
z^1A*1e!bcM{~xH0x%p~X^xEQSGmX=qeK^eTe}7+X@yn&tmn~bS25O)w_uFhbct4xr
znlq!r;%zA>CoNjFYL&&K4&`gFf2`epZ<octACF(lgI0GPG+e*;ThzrxuHBC|oz`0&
z|9kiT-@6}i$NxAK|M$+@+uQX)efj-WXI2C*?lQ~0_2+7G*qVro3AwknWV(iih8Et=
z-F|hw?+k;5D^{)2`t|j7_?oD#tLpx)TD?wd)#}yVCnu|my9SD!o~Em9Rq`TWPSvZG
z*|q0>ets?vGTYDc>6BkvyY+UhSg~&1y84>4rq@NTUcGwsP%HQUS7#V<Wb_U)Wjp~j
zU{&OQp9`9uyDjqX{OfBXC%1BoFAH5Ab~CYE_S&w!xxc@?{d`P1|H;SW^8YWKzX}?2
zo^7UE{QTVCh|M(%mMvTM@BHepwWkiXa$jB@zJ5#o{kpl^@BBSp|L3?#_O&(tK4vbT
zJ1y<(tf$-e|IM8Q9^QO(wA(o8NCzl-zsiS(hTcq{Uwh3ec+<M|nx1uESH~~a=<@$k
z%J|_T3x|X9^=-MgRZd=7>TQ4RbN8YX`~TkFzqI`Qy_G9hdOkll_wv^4>o&jNY>wPh
zQTVs;`P}ljsO@=k>;C=%sgbm;Drr7FVcnijr$8fYKkq!Zn_m0vrn-21O<`Q^*Q>nq
zGLLqNg2o2H5pH_<(b4YfvotIJuZy~!yZvrdc6820*R1Sp(AgL&C)Y%74ia$%B{aR*
zU03Q$-rh3(ey=+J+4=eZ7j6di*<Rk?U+-u4^GV6;Yr5|8wI!g{TZT*<IynRy+}8Qd
zHhXz*Z}q(DcRTyP{@Iv({Mnr1b0-fpG8-2@I&!D@ye(*Ox9nc!^EHv1m;KuzTYkq-
zf8UR!y#0T_fl}qp&*!X-6Am=Q)O<Yp^*E^BUBBm(*T28_|J&MDeL1nC@bRY8db^+O
z|NncxdB(Dfi`}1pI<0@cLr}TsxNP~8d)4pHPSFg$v@!Yk*0iYj>}zX0LqkK={N~Ki
z3|_Y8YvKF7-=AII|L<$N-FDY*vC0nz*^N_AP3e)bG&*nhJEza;)e4!S6N*YK3Bn(g
zN*dG>UR+qX^W!mT<J?<Yc<U5@)&DtO|D=JL?*y;;oekH1S-;;iSub|inysK}4&+o&
z*K}3r>Y^ip?kR6>Y?L%k^D(<$^I64nd*0omS1Xr4yAtewwuzN{)9-h?)8E|KX!+%W
zvw6m{z{PG)Pie1T6Tf=(>geZl*LE#Baaw=>98d~a8(;nXZn<&!yE`&vHxfO;HG*p(
zsEuOzpn>^Xb)UU?#)So-A;!nYdQU%{9zXAW&2#IW|Ns5A|Mr|Y;qDwp#tbG<fe$J%
z)#sL6veH-oby)u2gpZGpum8OB>@3sl53~P(x_`yb&O~PCK0MT#ZJT#*PbH{W5^<df
z8iUNfwq|9$?J0Ip(F*FRty`DZyl-CG*;%F*mksOw{8$sWw`%V3`vr%2L8G*PAHQC=
zTW@vv`g0Q$ohPY)T4cAj<<74Ed%ZsP^$vdU0C+m6o^9TGx9qmAYhccY>#PUdi`iHf
zaK5;@I=t@N=J}~dIs|WKE}wg?O8rZ_e4Pbox`$JJ&W3Z(`DCq3rpHxf`dK_|d9(d~
zUFEl%>7ay_v-|C~Y}xV?itQ<<b+`Nc|M&Ou+UV`zTJFa|exs5X7jiZp6$53Ss&8**
zD)-wM?S8v08kB`Vl|aA!zlwd|_r72I6?_oj#^mE>GnOVF@3VZn<uXX`ovPPsL1Ubt
zWNY*5#p0ds_x%QKjx4R?)ec{GrjcE4#>2zy&s)XgR_x#V?!rRn$$RQ&-uikyem-a*
zqu=)1i4H;KOG~|{@A>!Z_0HGpc7tkje%>wKdOKD4?S3TiS-;s(^Y8Qg^Lr{k7ybQu
zJsmVF)4<4V_h~;bgY=4^?f01y4xgQ6y4vFDl;Ezoy;Y*RQCl=_ZOe@Yg~8FS*W;qE
zT)isl8Ypr*XR~kNAx`xx_RH6;TleGI_I;sWUR+#!BdJ@rOTX@8_t7nxm%ALB*+ki8
z3LO3xf+iUZ3mzO;<UL)__4G8|?zh|T@B8s>`~Fy+*j-yRy1wT>ufA9LTy*#QebpD&
z#qM6@JKOB&yWQ{O{=9IvkIDu$K}4@!z54pkjk@1&yBBG6fer_?_;^IPdtK~qvE19+
zblZ3&gZ6y6<jtEl-yqQ`Fg7;U=F0`=qbrxsiz<0_Wo5?gZMlX;PfjFVT;$5T&z|4r
zgTu$A`n4-xTv+IQaaHK*q~CA1>w_XY2{fj7Jf`HLtLx^pv#;du*Z==}6f}+a<;~5_
z85bA1Ufi61{?Ux&KFzeVv%Y%%3ugSFxT@=r_8SI<hN22yDvugI`_Fh?dQN4V#pfrW
O*=SE!KbLh*2~7Zp$aqcw

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-17.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-17.png
new file mode 100644
index 0000000000000000000000000000000000000000..c6ae1b7389a2f1a59d2f5e9dfbb99674a0db6bf5
GIT binary patch
literal 23883
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_dNj^Ee+|35yr+<g1&jEz1sHopG6
zaHHD^1Gf{?HfpO)4Dzu1>9TZTi_(&-lb$L^ZxT@y6xx)%xMidM&6N`m{{HTMe`lTE
zb<;Bu=gwStT(|q|+GlgVTRtycmwj%>yyAQBKX2<XbYoy(V0ge_y_g%s_;B8lfe|Di
z!NdXL9~W={Q5J0sObiSR2Mk#RK-@mX1`t)i!^pzGz|fG)p#b8_IFqK;VVaPvtnTe|
zQu}wEn`^y%o^7?3kx@`xUEQaTA1{{QuPr~`KYPLih1=V<W?fxnUAJcc?7h|BPi@OB
zeRs!lvG>P<z28fJeR;VmV&kHsr>9hJZ~OXY^LejHN=iy0Ya$Gnd;5l_)zvausAvDt
z=6kShL+<Ujr>|cRS5#D76}-Gp&41pUi%*w!rbcekIh}j+)Ku-%+uPW9rKUKBR(`)z
zeE#Lz?f1ieetLR!e|`PlKc7x(1uQsFy4{mAVq0$Zr6ry#w@F(RELeSatNgP)d)+R@
z%e$?w`(ImAGezBBE_8id>|*!+YfHVS?~&79TAPxxL@#d7i><ycE-f`RH6>3^O%2JG
zv#HpS9dBL!&S&f0x8FXWw_okvFQ*m0ZqBDCCl@y~FtoO}uP%Ii?AM3G{K2-%&!}zv
zUV3*|Y1NO1?WO<zRF=NK7t6`XnRQ{o!P4zJC+FM_ySuA2ICj3EDdUNl8sl9I4CglK
zcyn@c8XeQHw2a*U@7L;Q=jN`SsvVwnd6{q3>$TgBb{*N@+sZAzs^sORS@!jHv$lKw
zEO_?%_3Dq0k89i6-CNvi=q9Z0H)a0(`PVO8SnSTfHT$}sYnRB!UGL-eR%!arv)NVi
zbJMrCx0hQMKU-1${$A9+n#xsMqoysb{rxTT%8I~Ox3{mq{?*(l@es?+ZMw-l$9kog
zUyrZ<+jjfTD#vEF%nJ(~jgGCT`ueJ?vorAA9Lv%#F9O#_ZS{)XU3T^N`~B;`zP^6{
zV^m&f*8A6oTDes{|Np-KzvTVi@4MDU@2lCF{B@~oMa7P7`S;h|*;$-kqRC)1iSa{!
zV&t@qxwn&l&N9vJ>F@9V`0=A*XJ@BmK;$h~clYW!hr{D*Q*}-oF|+fXS+Hu)=G@y?
zRtBrb-d-{%zFSPUC-?TV<@4)4Wqkhme7^MQO+GO(b2jRnw)yp9aptXZ7nhcexwqfk
z-F-dx=epS4K7BHlJ-N5juC5A|yB#?#)yc`pXJ5@vpL=^M&vpu{2i^Vt^z`(-a@8Ln
z9X+;5=km_t^xzE%j>2MMX_F>Tz8v!Xtdvc~hK)L>U0hsd@JgFi<ZezmDI_c`{P>rh
zp`l^y`pmQsFBbP#)y5llrAEH|x0C(Dc_(olhE;KUcb%G|shr$nmV4{T*0YmTy|1hY
zRBml+(=sp!Q1zM;aDQKI>9aGE{oC%>|KEFSYxeRJCp=i$*tB$Xe5PuJ2ED(xxAf<y
z)bQOuepKAtwzl^7x5_ulYwxa-tNjvqb#3(Z()8!A-nnYlKAk*y^4Dw8`748#dU5gb
zg?)Q-Q&duN<+HQ1vu|!n&8(Z-Cu6y2`MfHxi4!Msac~4gM9g^f=+TzS&uQDsN?%<m
z><y0GnAEy@+3Qm8onh1UVq?m=)|uwru}D2XFILv7<ioDqs^bkJ+F?Fhv#(E6$-S}R
zVD{{so10!PogR1T<>lq31rH9G%xkSaJ1uo(_VsnIE-Y;Bleb^Dv-tV4YWvKs<?rKo
zWh?^z{rmUp&*$@@JBw1+zkPLm{d(7KvAYHJ*5&W6d_Hf#UMqB!hK`O;V`F1iM@PW+
zyt^eI9yqSQ?K96N(lqM|$jMDjO(9D>1Whw8IBZTkTa-Qh+UuvczL$P_a&q0es$&x2
z;@0x=^4CpE_Zlh~r=JV)@#%4LauN{{S#sip$JYG&_uiHtxVbs~>oMtk4K+2lR&MdK
zzjw^Dulc;bw)V3{{OxV2k<)IU|9kcN$FIj4mVEuS>sLhZGM|g#@wH2>N?&P&uZuY~
z*Lu5@dEOdX>#_>lbcUJCu^Sk6eEj_RbA(yJ0|$^F6%`e;?(Eoj=+L1rcgyc*{`l}P
zYD>n%YwKcH%UBk9{Ca)(%HHqyv~O>_x+OE%)y?hIo12?|eZ3z4^<MS+%nuI^o|>jR
zd&%v~;(r#l%S}p+oMn<ZY0=`vqO!7Yqr?RT6+K^FSvfiF%#4LaPfx83Uhc=m#dT?+
zbNiO6uUWd0n_LVH4b5%*l9Co>U0JbE*}ZQ?-rZeU_xJ7n_Wu6*e*1qB+~Rsy=2#Yk
zlAvdO>mrb+6crr>1qIjTg=l_V;`;K^($fEbzh}R?vQo+{XU6MV%c?Ic#B?GSxXV?#
z>@0fvY1iAed)D2%_g}={_Un{mJ(7$0?S44eR(}im_~_{6E$5Su_r2VF-Y)p%rKO>3
zqfDQknHj9?)^p*;#^kH3LRZgT_1Vqt&j)8!b@kP?zrSfkZ+laEJMR6Q;4?Fg-II^^
zh0e7q4O#5Q`}6nj*T?1Sul)G<cx%EzrrbL_0$I7mO18egzkh!lpX{onqg^X~XPbfI
zf=}LV4X?CW#<w>&v+nNNx+Hpc+@eK`rc9WyU}y33SG(WuD=u9-`N^;REPM8kA3x4A
zO6_uTb`}*EUw+|2fUHG<LwxPmsi&rBF7}$L<v9sdI*G^E1a8f~9`^WH?^N^rxVN{r
z`_HfYwNgwsY6&a1*owNpza}l=64laBR6O|jdEBJir7wM})~y$rmJ0Is<v%|^UtJNX
zZ2R-c<X<nB&)-t;&<W&v`@df%H#Ilsf4RnVf<v-~ovooc=ylW9qNiSuA3siJVrD)&
zQQ7^@HQo4qcOs^xW?fs8d2XKV>uq_To}4_kN$2yM&F6Pb`}*?o@f+K6?S8*8?teVT
zuJ+d3-#>o*2-)4YCSv2E?Co0lu^WQ2vwIBF&&@I1mOFb@=<2F9#>Zw%R`;)pty}x+
z>uc%T+s;l<biOlfeeCXQKYsn1RrB-H%=`8K@8;e;TjJ_zxj%My+02!}%cV|lI@2R*
z9P_%JM=~krwpsSIHHPtZKbKyA=fug$d2Czm=Ax%w+n=s1J$P$la{I}7w!1gx-p;wV
z=jLLy)0=!A9%}71Ja%TD?d_|7Pv73RxAdTtQA)=~ozpzhW@ompDSCS9*zx1X-`v`&
z-MilB*O4PfByMjz+rlY)X=`j&>;^trs}xY(d$I22rKKQ+CGYRu&8_tC=+KPWv0-Py
z!=~eA;pK_m=f6(6^}A~CYYio(LoRM^yL5j)Xy)%pja(MBHS5`(oyB>t*Tw97^v(Lg
zo12^CcHfb;skk7b6>{QE?f1KKuh)Gqo`380?0c_44TEEwbRIu{p1$wbEA8#MzrMas
z&$(@uzvpAybt#4vn_UTv{~a{TP2y@kx^B(9?6z^^#z{*AmEAPz|NY6!y<hcOH*(t2
zjmgKg($CGwdu>(rX2psX8ns_8y2~Bs;NkfaF-?%!U-$GRL$`nb{>5E?es=cvw%-;N
z9~Mm0i(RGU+Vx`R^LfS5;cKHzL6x<-|2$CM%=1308MQ5E<(|sVyGjqwGDvJXHBEQ*
ztE;Q;f2nitlUdow%${|ife};=Xoas^vt)^i?e{yys{$4tD&5}O-5vb()m78-cQI=t
zH>>#`m$t9lQ&Us(<%Dwoj%i1aAAfyns&?G&8F%^G`Q@jn+%3HxyFIm@m0Rpf)$%2A
zd#iq3-~Vr^s`s>tHJ?9!{#?a==yv?mxqIS{^++n8-t^@lyZnxKG0QgSoPJyGaBhy}
z-fPh-0u;CA+zhfVdvl?YnLTgiyy%_#Zf(teUReJ0<8k@vhHBn65ez?;FX9&az+duq
z2iNIMCW(hwN?%<$x%lm_($`O(KYxBP-}dOyZt<_T^Y_2JvNHJ8Z1eTEwq!28xY&Jl
z<mR-jo12!ty1II~lxbGVjTjco;%6a~)qJ-k9At8Jb=B0<^V^zr_0rz&_f{`hu)ySP
z^66>1la@qn%{qDf`0?c0ySqwFOJ9ZL-rVHMZ~x~*?rK{F1qXinKO62<K9_xaZ*O$<
zw>KBp#qKuAy0Rkr*81)0b5&JTUM!s+=XLoTsMxCges}r*KhN#Wc@$4i)4lxe?(VA_
z5}mi}dA+^8J$$}htx4u3mA$`St&WSo{`%(b^7U$db6$L8{Qq=%yx;Y@OUbXUtej<2
zxoKPO?PbBs{dV@A=iuNd$iBVMnSJlyZ?|{-ez*JTuF~wQ>tds?t`7hH!tD8%ub+;~
z*S|O}Umw!Q#2T`%=BG*S=d<SbGrqjI7_~ibZlA36vu`(&PH!st@ZexHSJn2S+NC9;
zyQ3Z+YE|`I?l*VW%UKL}B3T3;$ZI@p4h{;M1gdq;&9z<~y**DWYRih_@xuOdEEb-g
zt{-1+up>3ns{Y@ePtVS-)(Tyf@%7bJPz%TI=M!PyxmKaaB&O=cM(OYWv+35h+-i0I
zv!KYxys;s1mRats*MdhH8yi7U)5b5qZo`HRuk+>`UHJEk|3bKTWZkbXFK<WhSh6m5
zch;F1hEn!*d%nH7x%j{Vhwav!=E{bKfvw!)*N%3JZ!LWtX8ZAou$PBNKuSu=ET)jH
zSy!)YO7*V&bW;7-kH`J%t^1PS+}OBD=d|*jXJ==J`_3}CILETsr2b#c){Kivcb^+%
zTu|7~kQ6yhyFo-JBEY)rjYnxiMb+1LccT}(_lGTXYQ3_+k-4?KeK*saBb~ywa!U-d
zu4str$HfS%`(4?Pc-W-mMZnKrzg7h<c9SwpYRUf7bNRaWsq+~X6&15?ou6wRzBX!W
zP(Z+hq~zq#Jr#wZw$QfR*Q?j>yR<5F^_S=K>+c2mnpf9GPJ1f#x@hYZf#OmJmI*rr
z92)93ELfm$b!~L`{Mv6bwZhh{@SAJ(^7;Jwve$f*tjqHxlS}^m_-OL}`@QP-SC`MP
zTlM5gO75*Kp55a5*Jc<dUs>qP-rCx_a~|8&PfIlNizDxx<NwUa$S7ry(7?tcv7niq
zKkMqMP*B@oncv)1d#k@^Jv}w``dz!F+Gi#zyYE@&|MFe2`mQs7e&7Eewl(W2D9_Ec
zEOrAm*Mqljd~JBlW740$e?zxsh1UN2`CKb_S<kNW_v@;@zPekm$;A^?U_U!Qe|_EG
zUn?s=Ka0C9V_$d2biK#zZMl2vX866lH~k(%(C)Igul=ebHmCXO#_x*(Wsk-EcC*&i
z#=qWvzwYu3!{m^CHI-{4Hy<<AusOOV^RmshjXK_-hQj%Iwxxf56t0ci8)ck!=E9oD
z&0jA2+rK<6Utd!C((CotBI_kJ3I5pz)i0M$7ZDIx;5*xFWys2)yw`lPR#Tp-uZ{J0
zi;HJ4VoP>lSP`?c=+&*QtNCOs7EDxj-?esi*xFfsbFG%Xy}f;T_5QlLx>aFoX9)=j
znN)qrkW9X#w#)mc!ruD-b^W>KIX5OeQ@33DTz}rfhYz!^ubVqfCvuUHsuw6Dn7>&y
z(MT`p>#M7A_Fwek_r*+0U72*WD|40k-d$yHSKY7s?R)a%$yb+_p3c2r-^j#zWq*DB
zT>E;vv#~R}#P!#`ySqF4{5)GJ<FuaZW|P%?FCFa`4_z6gTKe+R(bwVoYJPrsIz2w?
z{k^^0KTrAcVsZbe^XL8N*L*t3D}S<T@yrY5@9(YE4qvBXW_C@vM#iGRVR!laeeb^g
z{PZ;V^Ru(2$;Ws=32S%R+e`fRe;!<X=XU+{+X=eSW`BR*|9|b`V)w1Nx3@`eyT3Ji
z`n!F<^ZGv|_FTLkU;nmL`u4WVrQa17uh(Zdr`*6WL1picN8O*kf4~0W;o-Z_zP-4+
zdwY)|C^%p1PYnP4xZnQE+wJ#v?Tg=CwpK4@$AgP{PuI^5uWwi#wRP3?oqGHJ|NC8X
z_Jo{}kdkNIb79N6KRd4TS3f^D_wvur&!4`2J^K~ISCNMgA9nTjh9)H~a(DRs?RLIt
z?XMD6cJ|i`+vU89&%V64EjRk?Y;*t5&(D{iy<WKc>x+xdKR-XezQl9#mh9{6OmdAA
z4lq1DH#fSOo&Va;&(CeI^~>AGO-p^b_xrueH#R2ktt)+f%{P2q%*7ucALqaRDWV${
z!pX_`>+^a0t1AK*hdkdNxg}$wlu1Ux-P)x#c0X_NpLl+Le)#ouv9|9X#O|rM`1;0-
zCr?u5S`<26`oEv=Qt{q9dbZWyrWm^2-Bo(|=H~Rf*CdngymN7JamjdoZmwLpdR*Pl
zry>6}1cihieeLI3dGf_;?uO4Vnphn!#rtoqeAKB9N@={(W<Klpew(#qKU)Kzw3*M}
zUtfbyPErLm3_%V4KR-XOd*=<Rx1P_h*Ym9U`}O+Pnx92iSA}{{oH+5+MCJCnKOfz7
zqqcY`Dk@g}`FK3`c+RyoGrgwitbBQSdG`N*e|LSqSG_g=zTMgR_VH(Dn_oXO)A({o
z^~+03MdjqyNgAh}xPCp{wOedzYUHaM8yEY{vsuX{ss+j{TJih#aEa@!*_?hp>tGYB
zRn-?zhkogso15={ka)lU|GuniYgX>7{r#$2e_z1UQ&Yi~%(IQQv$LCJQJ6IATd{Fd
zQ`40#nU}3My<gq`@z3Y;tIOZt1C>kH)n~_Q=il4&>i+)yzrMZIK3RLNQ&c<b#q{{P
zi?-kIJT6^O&~;p{+6NSsM>>T~3m!OxZ{Kr!Vf_9&(7*&6pUeua&{Z$?{eBnx^wiX;
z%I<u!wpAgk!`5CpH`h9JYu44*@6_x6{mHt$ZEf1QIV)GJ(73ujK0f{2oQs#1dW(vP
zELpKaWBYDSPfyQPk(-x!P0?8BHC1b6#>GXu3LZ9r+FP>LWh){#r)kCR+Op(Jtp0ZI
z>3XrCZqwiQ_5Z=qvnJBGwXN;dg@w*h`)YQ|RlhOhl`wF)6kp#^@#&;`EPug=&z~=w
z->+Hx_V)JGnU|OSdb9bw%{O^r;l(qJ(^q9)UIrT2`t#>c$^XCKSBI^QT6wL+_<Fck
zxD!KU0GrJ(aR;`II;Vg9__1WyzZVx5t5tt{qn3Vd&a)dElk;Bh`}s`z@-km(VL7=x
zCMG7Ih=>_00~R*@JYWAW88mQ^wY}tJ5NJ^1^ZNR~r=OgheEi9YiHE0X1|PHee8xEK
z{=Qnd<2D5k8ZvKhTg%DGX?Sx}s&VM*Fw@V^&Khfntufe^JKM3DZRghhzP@i&eA4E5
zCSPA&HLm>h#L&*pZrx8Izxj5#ag|R+g@uKa-|c#>CoCb6!6mAd^6JXU<g{~hX0E&b
z{=!1%W!2x`sVONPVqsyKap6M1<wdUCn+qSit$&+)+YFQwuNwxP)7Sl+T=Vnk^kds{
zLGIoD^!jY}Bgc;)e_bPZOrrSVAy$wVYieuHe!pM;J}NJAnr6_Fj_bMq{(SZiUK3%M
ze0$r+j~@%qGGAKg%$|IETjlS!+w&{rG>aY1%r<}DmYaX9PuAM!{5)IVokdT5-rd>h
z>)_C!8M0zR=9Lu_XId04y8TD4v$HcU{_>I~DxV*9>(82`>OE`00)^lu9)gz_yYm-+
zdg9qX|KyV=DW8u?=g)BKm72N8wHu@YG}f~!e0|=rKH2O^lPAaKUM}7nlP@>n%Dw9y
z9ULIXtzUn7OXg*tl9DYaC#&~!a&Z|Q?GiQaxB1j@b5m+}^zM_B)n{{wYR!<bECPj(
zu()`7-H(UuA+IgV-pqJ;VPUgoz=DR4U%#4e%iaC#h3DI^rfRj<L8TpNVCvJ8lX2(Y
zrmeGOIJdFqp+9&qcg{fx)ZyFa3ycgi51pE-y*24*m-M#NlhymHzP>7b&dtPdN3e&H
zks*bPnVs*-0>|dO8|yMIE;64}&CD>NQV=>OY=}PW+u)OXd6_S$jLyhdk#jo?<eyzC
z$5m8RPHf9v8?{yIENBERd|U47;^*heH*AUq_5E&co4f3z+<%kF>i*MmZ_hGH^>Ule
z#8A$|$l|aJG}LRFb;U#4JTGK-*;`OYTzy`}p^sK<d@>rhx24|R_UQ5B;N0z5SGB@-
zCmrp&`>9a(^rX~CxzoAeG11F==c=fxs%AbpF>zJw?rosXx`4m}r&g|&nU|N%vaSB6
zdwovW_0=E4mbA=Xy?;~s`E?+<vbVQD!<XCg?pEFI6PK6QzrAg1{{4Nox1G2CxQoFd
z?ND+BV@lNP>+7%Q@Bh0@(Yfu#{{MgT-KHzs+uNU=XB(Zr_v^Hxr>CB7tb21~<EPJ`
zFE90;ZnR+6{+9Ok?BCzsf(9Cn?~<?o6X-k3Brqvyk&==UsG-{0(voq1Uv1Qmf`y<l
zk{dT7&dxGD{rcPX)1V&7+uPf<<M-8+zmWiquWYFJ_{jC|x7+!*_Ec_m>ycRa@Nhe5
z5aic`X8tL*)!(A6&ductV)#(*#=tlsQ`V*;U|Q<Rgo90zv0XZ+gB~C2HO;?g1L|5<
zeLAUr_u72B+Nk1ZX96dy`I@Ako5Qmz=+oD)p(}%y+DwzTtqR$=aU-a3kE?jddOdco
z$a4SrVZXn<-CFT63Dk}47T4dGY|6&QR<-tHSyxBLg$71un`!mm@0Nq=i)FsELH(7?
zhlg6Xm&nMea5B7f7uR8!>37Pa?Z=M_$>f;3G3(w+*FQNSX#4d_a92-Hh=W7Jp+kp6
z#Ko7Noo!zI=JTt4U%SQi!{%C*g2vZ>{`j$E=Q=iCDGeK&n8(Nazekv-o)Y={^ZEQ&
zx3;dno|}JV`+v8)tJd9XPmPS)nA93=zIe(<k(IrSl@D9ROP-t%1oe*B@A=df{bRzv
zS$Fcky}79swq^#XP=9%O`R=v-9UTE1la7A*{eC~FHqr`O(y=M^^fE3{t&D$veok6)
zdb)o0hX)6>LRU=zjUO&@;oSTAoVDEZ!o7wH%l+nF;@01@py=r-&FXJ&PEA(tU$kh^
zmG$xVs;a87-@kfxe|ma4`{kvjT)ezjA06%f`f~aFU2Er?=g*U?d?E<yBUu(b3Fwot
z4B1(f+AC>%OgU%Cp83ZlTwPo$-qvle{G9gn)m87nz(6ie&cJ|x30_mRmV&yJR<*yr
zlxD~7C|C#@sgtoR(y*|ISR1wV()#`XUR}(4er|5nzn{-TmwJh|wzg^-7z79k3ck9w
zb~c}!&5P3elhyshdZkQ7#Ke{@SfC)P8RWt%WddqS+uV|~sR;15|GNd$5Iu0f;pyq=
z{%2>IUOv_<y*}EWVM&{{0)x?9o61ibii(cW+w-o1My%FE8oRo>dQN)1zq7M*Rp8<_
z&{*-V($}kMe}B8Rzka{nzaPoEF*^c432w1l@11Yik<-9paeE?qrA#kP_P3k4Zr^V^
zJG)nRc5VjMBf0nX+{|_Ov!n1aXlm!`>Tvz5Z}YdV_G{%51r-S`EiBvh+$M?0%FcaN
zCaxEA!Ck&q<@Ba6m%R0t-qMTSmh<ZJ^8R^MuQYpQt;62l+FHEY*3vQ(l&DKzO_^n$
zzph(cKkL_*m!K{vsNG(EuhL!GEGOV_8?UH<zyi=nC#b6t5iuibYgXyu&)z;hAtfbS
zzP-P{9@HwR{{C)P(bKNFpHIbmrA)p2?S3xl649Kr?E0%JCuirYYopCUz4~7-7WZG-
zk{Nt`SKZ%VCyyU@zq%?kxT0dmxjB}LpPrt+I(&WHtsRAn)%@qZ$(oHAa134_w-=P^
zJ&XQ^|9bsA>E517P)U}QoLu_!lqjf|m%s1lGBN$QHTnDhURx|Z!_aMh&8JS#0Hc_0
z6sV(kYgg%NP(OTa#73v=Yij~ePEw71`~1wz#T%24ukxE~1&X0RfB$}c+;5-t=f}sW
z4GE2Ad3RoviEpg`|4+)QWJQ;#_A;~FTN>r>?pW3Q*kG1(W5LbM>8nd$Ut70rwt0To
z-(O!#e|^cc{cwP}tGoO1$H&J_^Y7VQT@wlFU<5a_@#g)sW&FUO%%CtC)W_VI3mSsI
znH>A~*Vo?M+i52zDCV8MzAiSqrnc61U(L@m@Av<Iw@v@_CeRel&qv+*mqOj0oSHz|
zW*8g<&A|Nl@nZ(48hATnTIx(i=e8N%)Ab}zZ}I_k`_CVhNY*)RRQl@5$ErJ1wZrdi
z$n83E#3ea$TIH9E?y;x${ri=j964?0>vg;HD%M$-zcZPZI`hB*hvKKFM6ZA9=-^1c
zy)E<FnwdK*J}x@GuerI|_v)(9vo|-V$G$Fme=qmX-@m>`yF~ByZA?1Kl^i)u(xPC&
z?N6_+t_BT<Zb&?A^UA95QOnQI=k4<&>QC(puC5KziQaZ5Vp^(_lG2@N@9*uso&DQy
zu9f8NZD)UdeSLS@@#DuqTJP<x-kY~Q|GwS!>xM_$<?AwZP8+S?|8LjrPgCXx-`;li
z`TY8K+up6+e$QxH>ddOIuXgI%m%Ny8yLwU*?vYJ(zc~ee|1b5P?(^}{QQv@o2|s_m
zUVrzNtX<8GmiG49POV&(wq^`5{IMGtQY_i|<*r;>>K(eoLl86onD=^B=;~!<Z*RSP
za&mIq@g$S{dodd~ZZxlbqvYBJ8n&KgSG#Mq_k|sWkDt7Lz1m&A_RF&G)#|c#H4&3S
zb`(66-sYQG{PB_NT#Ld($$wV_E(VRw{o0pyc2-wU&y|;#mw)~BdcAh~xjE}fCr+FQ
zN`iGi9=1#OO}(+Fa`Uyd(aS+yjQsoi<X$&7H$Q#<zW(s9%UU)zF_XUB&fmXNx4)<7
z%dLIs=jRz6%Q!hn^`({H!$Ylm@BQrR?+;%Wvoq*!ypK<hlv&P;ZEsdCpBMD;(NR#J
z=<WUe_qXmzIM|f;-m|Of>#LXX|9?%tp8VtI&&svh78W<Y{s&EHfX3w(yYpXN6M1=U
zET}uaJwIO7vdHE1G~Lftd<+w$m^d1A(qTh`m9mEex97!5Cda&87q--EYP4P5^>wkO
z-`+%?onhz<>cFmv+<aw6Ve-@S^Z!r#K6mERlat*A1qJ0!bBk)Jc*Z@?;N<7OzSMhq
z$&(WkU%#uqyQ_54l3!n6->+Kuy0%mSwiY0Bf>6i0zXElio_N~+|MPj*^Lf=%jMM$D
z@8~-<Rr~a&H6h1CmOQ(()Vu2U+wGyN!*p9)T0q^lZMmn9A9qhbKhL+c{`>v<{l|@N
zZ;N$&aBKeCmBGuk%*?_P6B9pu{#<<Z@89qDt7R5DxAS@V_*}VLet+%1zrV9jPExh1
z{<h}$$7}0iwO_7ZSIErH_vJ^_{<^(AhPU?BR_}@vW=P=SXwZ3nW~T9^DX%VX44PIg
z{UmyULu0gE-DEZ2Dfabsz4G>P;`(t{<m>-TeD&b-8HJ~F*8f{wnH6;F$M4_TDk?{E
zW3&37ef|3P_54Yz-`B<L*0Z$yx$C%X?XN95r;F~++;N#t)=K5&`i}~lptADRRPF5d
z_x7%e+PccB^wp9F4-$U<`t|C|%ga)xSyTS~`Fy@ac6sURYqQMr=YcA%XJ==xc4%bc
z;^3H|(ko+WboK92v9#cOr>A5)Ose|+ZY^kFIAEdEI(AhSR#wkRpfOj&bD#-qt++iq
z)coeGNIcw@`QpMtP<v>xTdzsd5f0FZ-=vuG1MAG~ds0E8o;6W%Tnq(@4GbrWg6ue!
ze+&OQMbG_uUBbTDVzVVB+d*Y0sIJ)kZrAHJ=EB_D(+rQjmQf6^pRq@HRmjRk4Gj#k
zRwW+x|Nm_EnyxoD>-JLb>0Xmog|C12;*VJ6rzaB))$W!{<X!vp^t9?<Q+3a-!pFyU
z{<~HGHsNpS>uVslzO*{F%y+g4sMK8_A3wkT-_F~UkM|f#ndL;Rx-Dm0b>;P^Df53$
zng13v)|7m#C-CQ|r(4s`N~NBjc6RMw&~Vzf#K>t?-`=d8XIuU1$H&J}d#kpBrUfH6
zr@dT0zwT1M{XY$RdwbB}$+Xm$m;LRpHuKxfSXa#6@OmM)ScA@Tr&g{>ORlaC2h9k`
zy`HWguXlRWo-)o|vAarMK6*9j^Nr;GyB`i$-P=>CTDhNlW8&eq64~3^a%1<^Se|{$
z%*=dsUv0Hy@|Rbu*Dt&E?ocat)#tP3sgcv<>i>K!xmvP%Rp@Fp&zEw^g~old*2^{~
zA3wE8r}V{zgIjB^uZ!KJ<E<OD<-?7%qg|qL-=|(;y>R>Y#7`&gsQJ#Su=)1mcK-go
z?~+@?*TuZt_~z79ZIIuV{IBPIb8l~S__~<DoSZf8KP(C!G?cx+H}{pHie~)2nyh<!
zc7puBtMql&^>wko9=6M?{QWvlB6&;J)m5+GF*981W?)h{&B@Ono|CgiNLbjk=!wVn
z())G4*Dmv)zwW_<1luncoXgj=fyVhxPEws^UB0gB%ZtLp-==DZgL*k;xwCGwpP#Jm
z{|eM~*!9k=rKM%bO6#jv<7&T#K0QA_{_-;4%MFaoHg*Q{txCNL3kz>;&7Pi=oP2d#
z?(LGd|HDGpL<D}nTRwkV-rZFTo!hI{*jIi^*|poga&zu&v!ln3y*kn<T=n4~`_&zV
z$=7#vbZ|%}+Z;MJO*a}eNWK1jpqII6et)r_q<-<+f1og3KELkQu2Q}DeRq;49WhKk
zmT`Su?5gPP>s}`^Y98NV)-&I}J}!25+1DM9%RWAG1&zc$t~hz}<T|}@O~+-RfsnX8
zJ3#Xwx=~wBWY2wlZSCb&Zt->1dJF|?>ubc<+^_#13#!kqt&ayS?Rb4<WiY5MU{&_!
z#l^DYeX>>0W~P5RYkvR4{rmC!c0U%}tNHBv^z`)ei{G|z3WGA;+nbx+Te-!<&d;;W
z|H044;J?z=_T}I2_ruT5GQGMzKfd<kQSntVJHbm*Zf;Ho6??+!eqXHiA9}myaaD0$
z45$<Uts?*paj#gRVf*7jGpKB{`~Ro->blt5uN!_|IdbGk#<Mdsvu<r!sTH;cl;H2y
z|NpxxbamLO+n^Z%@9BD>mzVjPR(wbRO=|E;nFJIRZ20!}_VQM4aZnMoDt`aI>nC5#
zF(`c%a&={}yZ)XJO`xWitGoMYiN*1CKV3mHpJi`uOng@95VR}Ev%YqRUEQA@X1TYP
z_|7&vxk<<N(+TCO_j|wJ+4l0r#>Mw49`k;Eb=CXybp7y?lT^1BKljs(*x*oDSUAft
zx$SsiQc}{FW77F6yr=7Rb$17!n`1du-CqvWjan77v<uV~0Ikk(>y-ixV)e<{u5#@b
zTj?{?Xx+iz_e?S`x$xV5nIKp7LUF1_pi}g=oQsc+c2Cuhx7&VF_Ve@e>$m0J&U$uc
zW>;5N5U7dw?2M#t?5+?;N5`(Nu1ni;Z^yiyJZVzM<}_cBcF^LIi;G-KA0A=_sj@D6
z6R<h$Y)tHzn%Y{^^m8(xH5Q<VeYg9)9cZpCdRq>tF92#x+E#yi@!{cNE*>7A%fFcz
zCe2`1c{=l_prGKgyt}(r+AaToppjWEeqYV9l#`R5z1@D_%(;!n@ZiCN%bZ%d)GRG;
zu6_Ia{r-HN(?)Bfx0^ja-fuqFs`S&ZJ>?A7%NOr72F(HQDu17+q@?8I;LyOy%WJ9|
zwZ%Z%JkRI*zID%ERXXIUq{>Z5I@(paW_QKMMK5n}Uk{oc=H%coQ1zZ>a=4Axc)DJ!
z(YD;#yGmbI*}mKQxk1Ld>`cjv3kO9s0uKE6^-JpZw%Fn<6*V=f+uMAfpPRe)+V|t~
z^)n_ayU&W+nl*F61OZ_Ifdnowos3x~nMrBq=goap3F^_=swek!_Vt<B+1bTiKYIMQ
zw7k6h_DZ9$H4%w9x6PW_ct2&-e|qBi`OoL`vyD<u%~-HNVX}FCT<}6C*3Xx`^=B?w
zvLxj7?y~#g^`L@WL@VUPm36VV|9s#7-}LsjT<_A~Z*Om(opyHC%s)Rr&jyVmotmmW
z8#HyfYyImJ6P3^2Ex(`3#LV2AdpocAz#Oa6Q#N0(1gjYtU1DKnohhX1HA6hU=Aw$K
zYGtkO`hS+7-sR5s`+kF#K7rOb`K}IId*<9+Yump0Q>LVV=Cp%1rFaU9h@^ChXeL#C
zd6DQh&*tUFdn)Scv(4{S95%_iazaEm>I%s44I2!C_g0k}m%WMTuRq^o_-y<AI^(~;
zz8XJ0HP!g$=5%w*;%6pHy`~zijoNB-d6}>Abp7~!4}UW;gm3QI*=o=Ek5@%q9aM;L
zadTf@<~uuNsh8;batF|~lV<R;7oe#z+oh>DH>Gy<_Fe@o7g_2p?pgnJp<c|64WJZw
zcE0`nt$&sKZ5I9f{2Vj}zS7PUv_|vC?%&7z89#ph92^mGgZK8?na1wD(&lB=E-5}f
zJzi6_o?eT62%4`uIa&Sc-s<x0Z|7IN(wu8we{ZqBJ_7^82mep~{0f<cFD@v`T9^4u
z)eip_5xzAmbo;*Bn*ZZh2B~f@o2nH$DfjlvSI>DF7#RNC6>zwukm|>nKY5<0PDFsZ
z|GX04O{G6RB>w#Iqk_lh`{&QW9v&UppR_?sGUs<NOk&gQKjSlV@3$;X|9>8tlc!8k
zsjshJ|C^JCXV1Ih`-}_>4f}W3|4FX6tfZmgF=>xov)$95&oy(Knwm;JK5||E8?@$O
z^<4Ag{qol*sd|eD3KrfiV_;x7A>rxi32ON<^V>Wq)ndCN!KlI;v@33D$<bZ69v*HN
zm66f0x3>?!eR{h7>mMH<=h;uuoNN>Oe&>7dX*w4V^V`?VUd_(HaNw<3>8p^^7Z(&4
zpFS~(Lm@L@MSx;!TU*xSW4&^(L1q7n6&lyS2L=Wj9m{xptT*ezg2wEhZM@PYPfv+%
z-*(+==EbsCS5|^n^1QWXWH_O4dwc%>{q}42C}|okKF!#0`+>CQ`<-^%75{Q5WP-+r
zK#~36U~}H*hCiQ9>w~)at7Gr(DixKHS@Zo~^?BWfJ>TzDpPFa8TdwBA!I1umm)@?*
zxw&ao#KuRmR>BM?IC@n+R`VXXf3&(}`hHdx0nhh)KKJ>}w_DrH&hItJ?(di2xA*tQ
zPr9->-5<2}=<o0E*WcXSEGjFzHg0d#%R4)ZrR-{UyxaL)?&$I3yT6G_NUR8tt913Z
z|GOn>d)``hxe5o+jKh}9%U^C~uLmuflq~FGU|?`q=D;w~q~=EfXgScNl*nnI#hE*c
zpL_kvX8SzHviQ}y-R~})nyL+2(7Gyqf8D3=-@`#eb~Qf=uK(y40Sz$x`TN&2=?F*d
zx0~r&F*`Q6^-3+3v#qkI%L5so=EN{@OZxeFCR??mx2+M=jheD-TfgnM8FJNcHb!fL
z*7^RpohXMo6im@dUIy|P0gq}0EuB6t03A}N!7}Rs31Jo4y1!q;x8~js12x*dy}22>
zEhlpCr&HQqUS37n+mny;nPyyY0Ik3A@aO=obb5TeKRw_oDD^&jIQt@NiYPmuOu$sF
z&?)BmaiEFZg9i^r?JipzSNAhD_uih!;^*h4s(^;Iw`N@py0@p&wB$v=T<dbb{5>Dr
z>V7<AUmL$aZr{E=PZ$^&emsA4xj@Qyrjcv<`FU4wZOsl{<|FADG+i&Y<mabU(0twH
zna1f;tjqIw<!mB6Jv~7KW`_<RR`m>B6$0uVsQJ!Xq8Ga><w+(eswBJgA~H+f-Ldox
ziintT`x6r@*NJVpKY#!Bp7iX@%*DrgrFS1{S2=p*$cm7aL9<M=rxmj@GcYjB6kt^8
zU9@;{YER(vb91-m-ZlfR7c@>kcLlWC8MLNaL&Kw;PxjKr<l~^h-~P9&!`80Sjoy~x
z@Dv;>j^b-fsvb15e>tVS{>9eoahI3Ruha6}q~i^0WU}!}sd$10=Ttz0{BpO&A(cr;
zQPHM9fBwwTmI0OVE*uIk1q1~b-rAbII`#B4E<V0%hg!Kotyxix0EfG~%gb$fwG|W&
zB;P)8z`-*pC`brgDEyCLnP38HZ_3sGDg68E_4;+zGN5VVr>CcXz5oAT_}g1sg98F4
zsJuLH|NqO4e}`JRCq2mmdHIj9pu?pXd%xccKH4Q}yDQu@_g2Vcb^mMAbfaVZk9)oB
zD&2axonPC+!os)Q9@H1Vv$J@&Zua$cb8l_UF6T}MCEPDF|JBEbTTc*d{j*lU;nIs2
z7Z-E!@qLS!H)oDca*tl@t|d;bT$&~(A=2h~Uoy7W{jG9!bzS;0LfO49<Y<>@{?0T8
z28KIbW&gjIZtYjGox`~GPwfYhH6~i2tEOzrxw$C5{_oY?pIb67KY9Fk@u#P!y(c|-
z^a!*b47A4YYTC_BslT31kH503G}}EJ)Iczje%G+%V)1#~<wv{4SErqwRrTxTa#10n
zMd$5)`*=^&3B0~8Hgtglqi4|ne}7G@zvZ~PyMu;yt;*lc0j+MTez(*8<HwJZ)k2_1
zWqZu$AqASL2aU@<Jv9}yYIkM%`+K)Gr}xKIzct<a``zw!W#xBEr-!YJSt+FIwIY6h
z9jML$tr^ze_oHcfJR<|c1NnYyg_i+4i&AwXHauv13tHgk+AU@oAjrVLFkx!}I}0cz
z$=swdsuh&!X<j~qHf>aZhSc1qGcast-G82e;kr^oiW9&6p8}8&1H&CbmI*#DMLm0s
zc5yK5;I*6nCCE*jk>P|3hr-ODB}=*_V_6vPu$3HSV%U)^U_}>4ld|pS<JlKXdB>(|
zhi}QdYXvH}S-C_4zP`Hp^!032e^yX2?S8VT+@b8vjfIz%dTXnxx$Uj`8gzG8Y3L#s
z&fL4Zu1<WMe{WBu?`*SB504JeOl{HAQ=nZs-&SmNY-T$((|Ea)lhc)r$?mfDb$2HI
z0;StCI;UADyt})5b>iVRtI}6f_++h?9B$`dUGeb|Xd%q|9~<}oc*K3T{C=%f-Jcz7
zJQ54G->dQltqW{qW{=6`le1Y7wKXgA`@6fKA-s9j?<_&nR$pIV2aVUhtLOz~;k0R)
zzjZ<D4y)d7y)Ggn^Jd#0&>EEw4-bn<NN9MTnyx=TYD>mK@wkeIeb<WL-LWivb;T28
z#c}!iIa#|8HnVGMYI;U*&kL=n*rBr0YpNEg%d*6C@|C6D)2*Y_L0Nca>Md)9c0Spl
zP9as$ilEqiH8;1~SXo8Y{`vx1jI}nt{%<I^n9haS`TJJBc=5tI>b$#r?ULl<eV{D>
zla|>3`{8^{qQ49@;r94gZ|p<oNl8gbA*(_(&(1P^-FFSNI3T5LrddPHub0a~1N+DN
zWLMY!|9wAdPsK)+mv_tWgB%B1HygCnYo%+q7-(tAv0mwN_t%lza%L7iJ+<`j@9(R9
zW*UK(8-cj*?(Tkl-v0lTFX0(hWp8F^g|B<FvG(e!(5<Pbr&&iSgFJOJ^%jGYC%?^y
zhJC-^S%cPlyuH2sdNaS>ipB2zS+B0F^z!n$G*Q`o%9JTfKr?U)7cMN{GHtGPxt676
z<k?xK!H3&;K?4i6-)<yV{r~&@>dxYH&r1&vx2t-xa*KVru`l6ZlU3!XC6gvkexETH
z5>+diJ5+xD`0-+9`n-$h?f<X&@S)&t@p)TNzoG8`-}2VhR?te{iB{+4+pk};MCIu5
z<JnJ6Oau)Ef*RO)cXwqT>yf;*HGBG`Nt0AO85tSnZZGeN^vs0RcB#J@ia=8ymc?!h
z7cP{tE?aYLP2}QUY4cSsokCLPd2_B8N|ZZ+s>+qQx3}e;zP&wPKe^}Hy4crQlP{^h
z&Jx#)DY(rK?nX|@WIplma64#yaO&x4z6TE;1T8cQTN|}>#R`qJF*}1mOAJ6mg`i=;
z)nRLQJ^m`972+`oG~T}bX<}mHq$Qv=!ss2i{U$QGElZYNukqdg@)jclLxJ(K)1QrR
zcJQoy@m}FF+l0KkyEF|A13}9#r|CwEh>9-VvBTo;$K&#omYC(<$~fL93mO}fGRs+U
zZEf`Zi&a{ot5jaDue4iN_Tqw~XFcmgq{{e4-QQndySlo(9$)<B@$1X1^=0PKpkgV{
z%et~o?e*k^qJL#mZZT}ix~gUS`HV4WQuEYw{q>25+g={&6b5Z~hyit5O$r`3<lf&G
zJ1zC@#j2?7dAi9xYCba_Y^%Amqwv$`&%tkRZB_LwEGz^~TSf<fl4IS^r_-(FCV>k8
zy~}<s5gQU5*G6ymySuA&vI>YXEp??sBa>Wiw}|GVna1h&E>?l&=yw*U`_8clJbCgY
z$SI%&{Gf%yp!H{~*Ma6jzP-8G)z=rcK5j3l@y9D~7xVp2asQ*okKboN3WDjG%qJ!&
zI$znA8@)DeZ&c-{Cl{Zcoei3-1}%)247<!OU$bD5Yj@V8Bc0&c2{B#JO5v66{c`Kf
zV0C=@{94d_>g4_V_k-&Ahlksj7ye-frHSvUlFQ|kONBwJpH;o5y*Sj$4VnXaxBLCR
z9=(@+xAs(i{@-glQ){KO+jM4z?FZc_$xYkh8FZ9q9V<g#`~JH1pt)jE?N8Nj(^76(
zD@+oRlw7GkuR>|@X;58JFgxXz;|mb$Uma1!dZbc=L^5a%|B9@ut3ah(O-+r>zM5L&
zufnaM4Wt^A&ofV2lz)F8Xe3`$RCH;(d|gE4=VxbMfMSN>PK%D9gPQ-mH9K}#oSkK=
zz1SP1sepTvi#TWx0w~m=4(s0J!qC~-d9jUG+GrOK$c5WAyjdoc->(e^jWTDi-@8m$
z-7lrY5+s!uG>t=HsrU42@9ysYddXW~Q%A?==H_(JoZy{(MbFR8y_m|xz`(GhQOA(O
zR!`4wT54*EBv@nMG!BKyYQCplfEs2Dci18qaf^YH(EfIxO7@gfQ#2<nahI!fnU=b9
z-~Nexvex%bZUX7Mv&cu%;nCyAsgcueZOhfJudhFP{P_I>>C>CQq3EDCU6c95Jlkp&
z&wu~^<=qDr6en&Or7~znZFy0;9~7|@Obt0?K{gTBK%4o=aL>ItR;6B-m-}CTcXxN`
zt1Ft4$#<?rPg}|<td<f`3UbvYC2y7qs@~I9q@JGk>+kpbQ?<kOo}Qh3eQ|GUq+|fd
z!wp|f2r(}4pKqrXu%H3dZz+0uDit1v63m}ouiw8a{rtQZP<f=#eOicdNy^DdR^{(v
z+@^zK>Va5lC&Q;#tJl8*)ecEXNp90Y0sBBKrPEO1^fcYzjEohacIb^85u$oA5q5TV
zdAT~LFTJ?9*m#8#$cdQ~RhdrQ&fov`*MC-Sv5H*C-eIHtI)V=CVs=its0vcFgLl&r
z$da{s{>Vps9$mK8-!d*Pa=o>?e7y>2HD=b04GWc&m5p~8fs|)XOl9%_ZKSCBlF|Pz
zVq5NOP(lCU;bG$y5c#R9yApaO44pu|gKjb1EoE<`=GxUpE%%>)?bg=ptD922du1$x
zl->Kzyf6a!@{Yr_9n3~~cPv0%7tjvD=(_iNzh@omkpwLRwfpga`Rlv8*3DX=2KEFo
zkPDNN7RgmSXbib-|KR|$PY}3fWsFp6XlZTDyuB@V<+}UZa%Vd^JIk&CNgX%~iiObC
zVW4ddpsi^4>;K=~`se%o`s<+W1a*HZwq{;dW7dY6pTu)Qd;Ok8YooWXs{j8Fv`m%@
zG>2?e@?wHs?5-tNrLQtBEO3;J0fk+I^hqH`mFR6bQQLB6K081Ey&1npGaK)f6@kj8
znU`FqrKT241%+9jiZ{yy5m0@)IqfVogPCi3gBJfWFnstvLGyisi<{f2ZMko6Y;>-x
ztLy6N*^?-)eR|WD?CW~%V4oKl8>KR=jNQFW=k%o9+enFgrb*@{cp_&5d7>eClMBPm
zU8Sp+`Okm1E$8GU)m{Jp{VoLs>X#Q6B}2eT^Z)gGbKNUL?|+xCKij~k@cR{mVON)Q
z;GGLy%N}?Y_+%+}tW?S?)pT3j*(SAC`l`k<Hfdjzz(tdec=!e<*@X6l7B*_FJJ`!n
z<-(<OA}NC9-FyDWf1KEqHSWCcv6Fj##<IqK{%_fP#`BCn&8go1eYfH)mxejz_bPWj
z?z4U+e}0aovAbMl3TU0Giskb;#YK;M&BL;67#I?4O*<JXpUq6)^#9-Q>-PJ;UW>lG
zCUP@q(0ry*s#l-Ys}+AfwA-(F(89oQ;8%ta<ED&@i%MQyS^4i{e*N#;GDRm8L1TuK
zo=kA&JJ};?tYs?4z_4N7ESH8W*RDNl6_4|nbY`Zpy1(7e6h7N87k>Q(6=e4}i8C-{
z>{<0z=m7(R%vI3208&qLEB;>!-}h;1O!?i?$bB`H%Y0@|nl)>dOy!e_Uw@ys`Rr5m
z^;PIWPDX}?uNPIAo_sp3e?B^Y@6_9QyLI2*-hO^Z;p0ndqqnP^d~~$iIPp-+pUd`t
zgIkxgFfiD8P3D+zZEbY=pC2FPcYQx5oxdb>br`sTp0h$tP@&$pw6yfr*6i??h71f1
zUoU7dKe^<s?;9E#s<-1oQ%HFD^Gn|Pe@{FQ2@QREh+AJL(TaiL!Q)k0U5i$H5vX6e
zYnN4MXlUfNoJh0#HJ`ukIvg4r8XC4fF7{B#>~mW(FK>E2uUc)V?MeHPDw&4fgqlgo
zlWk_E^mCnO+F-cnfAQOs>hsUYRsY!et<dC@u|oE>H9uGPGcq(RJ2@LPSg<rxh|#F{
z*%_ZX79X9ztNYEF5xF^Ss<{9I!-tI~r@S}(yJWuq=UJV&Jr?dVg-5Ku*MDf1UsC(~
z+s~u=b%CE!7#I$;WeBA^fJR9{aV5X2{(>X>(}(TydWA|LZ-8R7;NhVynU|kAe~;dt
zH+TE}y4^=Q85kP+7kjdt2#e00>MmFL#QD2?-H(S~-rU@bkTX0kGkO01KhGtt%ict7
ze-gX5s&wD~zwe*-S-(4Rec!jOTz(u33~Tz;J}P|)T<n(m>B&jU-)}Y>SABW$X2W4V
z&q>qcsx<TWehp*ek(j`(w`0MfU?v6z`K6w77+0=bd2;Xfd$Z^Nd7}RE`ug~1=jYG=
z`T6<s`2BS|e?FUSoOx-<l`B_5s(ct29w?i18Y_4P#m3GR_Onn_pHtwp)SZ!m!ETwF
zu!85Nq@!Ivv(0orKRfIF|KH!spz-K_76yi#2DL)Yut`0#)@EC`Zhd)wfBnCI@BiDK
zxBHzlDdpdvpP(e2x9{gOF3=j|nkj063fu1#d7rcU{f0-%M8o`kO>x(v7587?*;&kI
z^TFYL6CVSEuft@H3EAs*s>T0275-`S{J%QxGKDV9e{H|tG2Z|G?|W?nNd|@uplo?&
zhM{u&uS?VIO7<ro@4Lq-%fK+JK}}Erl#2iS{A^!R|Le=kn?<K}z2|T+F#NEX<<h_-
zXJcW0uOj(g<@330)ga@FFZ-H5JstnAh*gc5fx*mWGRK6|`ulBGhp+dWZ&&+i?)w_`
z(9qDIFa7IhCHLE!RlnUDzN_r*tZuzsD=sC2!g--5i^unOcRxRw?4NdFfg`A#2oiD4
z+x>Q%&m0TG<1)oQpmhped(=<7xVShtHg;}o`Q5Dt?{(|%o8j2Zw$yjF8E7kF8^8R&
zaD8QFhKBP^YM<R&Vt1FF?XUmy_|K2y_UAy^(=_|q67T7HE7z^_aXvfG);c_<&^2m%
z-rjS2nfWXfWUWe0Obw5lsp>uL$*a}t&wV~`KYwNL@@18u)jsF4Gc@$By7=GwM}PgF
zWV`P>&p*9=|6kd@uWR#FJ$IG740^b7Qt^3P^ZL)`^^-vh`FAj1e{pf~=A4_GZ2o?^
z{PN;r_em-5_kKU8*e)}v@bR&yPbT}XJ92`7A)v7LpU@gmzoYW=vztlXx>~kgd)wuz
zG|KOmhOgWE?N;f#`=!@oSFT>Yy1!q=^2LJYOS{Y8|M@h1zfQIf14BlMRBeOG$?*NZ
zuKLU{NL*X)uzreZ_O&Ok<NsIrSw5ZeX47ds-f#D7KA$}^+gu+M@XdSc{{DKpa``;1
zWRU(TQh!w=JdJX0Y?xDcOj6RKAOWN;XYbc*nKw73Hb4G$Be~z#?liCYoe9_D>uvY{
zzWe^#PW$w8b5uNYb90;b-nw;5Ct`!b`@P@e%x>pw_O()HU@&p>RdQhCkqG$zyj{L-
z$HBTlk(H}foqBb3wfRdKZZVw``~RHY|720Op4ag{+3S^OHl?1Pq+)7n%KI&9OGaRQ
z4+A5^gUu^ESx%fazdvWys#RY76S?(vD9p7gJ#}KDvi+AC{O8WBiP*U4;Jr^zPhYoU
zV_>k$p5@ZeBVoAcl5)zi9?6|Am(Bk4_kF$n=JfM^pZ?99{`B<p=X<~3JDt6L@3d{X
zx39%leLc7|qCW539LtwCHa@PJ^LK~ZN!j|1WoPEwF)(NxKmY&B$LIG}98s9B)obN2
zO+S8K{QqCqXId7gfkruY?b=nkZ`&dskm-RUKYv}{KhOBQ&E|u3>*MwoU5iYAT7Ca_
z+^&+Blho%`EIMcyyxh<C{=VAlkMpg~PukafTFA)ogXP*+?gt+|`_>-NnJ?FC=J4$7
z?CF2M-PSiwKeuN8@6gp@Yd_8Z|8u_Oj|a`(^OyV2xBGc@ecjcBzfIhFCoV1ZHZFT}
z<IAh7+9!XPzuooqTC{QXw>Q6{Ki;eV|F`nz)9J<Uc0QkGWzN80q893!ykq-Yt2vd=
zX6}60CSCOHX8Q93%>1AY<3%@9r!URDz3t~=`F{Z~KfdCXu`tNr|F>*j?YEo1wwm9o
zP_BNn(H+zo-+azW+k2YM$r*;po34gMr@p$fQof4w8lpZq*T68JPyWxc4<}V-|MP2Q
zn0@cJ{q=b@pH2q7JMb&>O2+wyJJs*^O4`*_9P5z`-hXXv^!A#!+3}~n_4iJZExWO>
z>GImQ`tb_)H>aPs`SG9`)F?2@y0Ri?-_K_&SFb)j!!Y^IUoM7*^IP1c71r<nS9Q+*
z|DUbbzTL0?FXB3JXYq5hSqzmA8riSy+;`c}`suvtcbb(_3=A1}q~2ODTpzJ<(Z5<_
zyAKB+hpr9_O;TZCcp#j$CEa0C%C$9-GtF|N{yui?7E|?%t9&|jOaA?R2S2Vm%*@bm
zY;7R>iB|Er8Ql7NHXQsVnLcOZwa1&lCFGA3soaJ;MW=PA$}uu9+&CeX+aOc_=Oc{w
zw)+AjLxaCOBNGF|6gSX8K1&4^7#JKfSvVLN0;EQT2X&Zinm4cFQD={grBUs#FP@--
zMt+{Jw{w@TEdeDEw&VMLJnEJ-$q2Z$C3CXhT&vU{A0E!MudicW#>UWaY-#0E_6)6k
zzwf?(cF|oPbbQ06*Xwpa`~UC#|DwC4*Him#znz$(8NBK9Ics%K&^i^o6;JW~A_fM#
z-G8zxZ0A<L+xhe7`TBif4m`3}Ch<QGi5ESc8vg8BbiVJT9ywd9)6;ZMU-q}3D`#7!
z;`!}f^?OhYOVT_q#?S8Oldd!T3=F-E-W#r6-uL_6?FVm;mfg;s9$R)(Re#S1r@yyi
z%kNIzwQJX}A0CsM`K&bdR)0UIU;p#;rDv=R4aYnhYMhFnp98JCnXHn(?`ImQu-g0W
z*6M?We}8>F9qex#`mKV2;lc`z3H}eh-OfM%=H_POoEsZdPR_9`o}{vM>sH>rwQJX&
zZDQsAbg%mTR4Zjr!Nl|=x$5IlapR&VC%(MDZ-2O*-+z)$^fn#Opy1%k4}OU0My)C3
zVPL2c<DAf+`0mb5%Re6uUtZ|key8&J+?A_Vc}?1qbJGaireZrExv%DD)Nuxe1L+fY
zC*&?T+AW@bVS!`ho{B=yDO9@K?`*1j-|W5KZimS0^JixotIJxKok^RWyG^eCw5jL2
zAKhD%|9xR(aImcVx4hr}yPGQ8&k#Wc>4c+QqM*{JN7A_H|KIQF?XqPN+54-%zk7LU
zsW&K%u$`Z4Rhsqd+uPmq>M!r~{P%D&KM%tJ^$qLd8T$Q;a#+)TektI*Ru#25&9{wD
zc9v%FvXnzDoG-7hzi-w5`&Ib<S@-`uGoNW&UH13Z-|zS5Pmiy&bZ+O<&5mJU$e1#R
zG1C9}oMJyUzd18NaREwW$NJ^>U;AhO=kV`zoqs>)|F;xY^EuJL$PB7<Qcq4&l{8NC
zDZ8D!9aIxCO=f0rc&zAf?XvNCo5`zItpc^Agw_3WHvD&N`10naF~8l9gmae9=k!RK
zYR%5ySNZDIE2FeCGrrdRWoKZhsp6dQ^~(Wf{x#n>TEE>A{BGy-dA=6B3=Af|am=H|
z+VCvXXP-DVRlE4#&*#hC`{gpPt_uBjxBR}(ER&U&k{KBsTsbHBKKb#u|NPeLakC%y
zS?eVq@AC!iSFQN)0Ca@cR5@M-2CZe4OWA*z%(5!Ydbi_oUrg~?)1Sx8_f1r>e7EEA
zrRDzfLBjwuZ7Pde)ma!CP8G1F2+uG`bOMdm2K!kqty{ZnnVS0Ck|0nQ@ytBi-A$Jn
z862K+Oz?g1a`}9}_xJW*-c|Z~>$TrsUx)AKXJDA`%9J8J!#Le9D?3|y&Gl>7mT7eD
z`T1<N=nO6f1}*=F9H!ILbiI9jeVf0E=|)|7&kQOe#24l>=|*om(<Q1cwMIXF-=4bq
z*njmiY&NZQW7fFIZhyXR_LEjGKBf&5_xvwDt3Sowj&T#`m2215eKuNcS^P}Jb65HM
zednHoW_JARcRlo%XP7T09#+NB(3^E_O(dxQw)A+$B$g9u7q;i$|8xHTAOC53vAeEu
zUzD%^^D!hebZP$meXncoCAP~>yPdz^7POhMeV!^K!-Aq|y3x}jH>W+_aF}oP7Y*OA
z&_EH_rR_hq%(N=a0>wp-q_G;POqlfjzT{s2`F5a!NUrjTY8V4UjhQ9$CeAOfuj@Ov
z@tj-{xY(%t-JP86cgsLkKwS0Pt&rvlKLdl-G06$ODNj#L-TC1Vck%DH+tVK&YQ0%{
zJ+}Dg)9KG2H1n_flEJ_bV93P6z@X9losp4&!Asdes&T4z__IHs&-?ew*@8~fc(eQc
zzL_SOK}(M_F*Nl0HJC6Rm#?n@^;l%e?-WW}m*s#W^<Xpm^Na5CYe7bC2(0AwXss<c
zeGk+#z5nBw`6LzXur;9ZM9^S~&pex*hlH6J4jg;T<I(Cn!$9%uZ1eM)%jX2`4+{>S
zJlW4mv)}exMB4dzu?Jr=FeE${QV{+2<+A_s^7r?$_a;|;`d8gqvjLPS#F&;GdUj^!
z<Xg9HvAy29b*pBV5~$i@UB<-F;OpEFa${5KX;3Ybu-CO)?CWm^h7XyF4q9tcPfv^7
znB?00_37#9*Fi~Tc`L)p4YzLHIy2LF`N3c8*>`uB>sPBVFx*IC@o4?}_O`kH{y#<F
zxc&9G-+tbzRja<dy}jLOG9$x*W9klCZ&obsJGClwHE4M2+WNIIJB=P6>pi{i_q*A0
zwpAeoRtyX`cFYQ|YB&$tua<gZf}*5pR>-q+b7#NZc3Tgm6x3UZ&fB^4(ql%318z^}
zUXTVy!Xa+`GjF%wpV!JQo_0O9{Or@|@$;Jb?RH#R3{s}*z`)ROse+e+re@74Q2)>J
z;}KzP+hcAYFVFvHa`o!fnP$1S+<wmykFP0QwfgUS{slpQSlBY0;%dKMom2H{<;}9&
zxtBMkp5BsuUGMk%{q@KCWM@A;Jzd>%)v8rmR*yRbl`k#xo!$HGr`fmb!J(m{AKwce
zNRRyN#m{iy*UsPXb{m(xxUePTq7tYfFyF3rQ_<5?KJ#oWpU*9iTjoE1p8UTL?NjA0
z+kasEv6_X$LD(Ss+8UYSGln<QX6Js|egCgs?C!F)_pSeaxm<iRb^6nHyWg*S(892x
zE~bg~0!z*J-S^M#e!p)vXbdO&=yCR{udk*WpSLNVdp>qYLE^rjXY)ZJ={wsj_tLu9
z-Jk&u(CABZ^7`HHc71tySv@*uqbq2db?^6k*86`P)qnMUx?b$8&FAf`L497(d2xAn
zcRjt}%zyT>zx`gv`17yV@1JLU&O+Jx-Hzm_tyxpg&9zQ{abaQQ+pX8HRsI1vCD`BA
z6ttddciG#bKOc`jpId$}v*3>H_dApI>ppg8-rZGt3$!45*Djy=c7K(hgVqHX9bjZ%
z;@r-cd3l*{*`31UF$D)%rN5XmZm65X$e6)Y_j&gHCE@GiZl=$#HT$u1{k~sW|6cF^
zrwu9)%x>pQ-dX(onY;b3K+q7^%gf8tPwQ^?nRKV*vajXqHJgn}UR;<{`|T!ZuoKh)
z^qFa-dbo|(dlD#aL3{a%p3O{8TRyk!)b0HJb5BlIe-0W>1$Aqym;L{H|NmJ~4oL2^
zRI{!Ac4kfF=Ayq}uctpa&^XhswhG*<&j}Qfv@A*i4W)bQ?Nrg<`z2`I{(ryr{QLD9
z)OCB+zx(aB+eS%8IzWS3;jyKm|9%{|f7T|QcY={!X2SA$Ra()xTd!KBgADAmc+~Ob
z?QQevv1O52Sy@KO$9h0Dko2FuYzej^3?^CK;`(~4R;}t%?zbu0+jqa}_1bP>KZ}L`
zKAxJYEiLo;R`z;P-KZ@Zdi(!;`n7fc@7?>g_kC#9|8w>H-F>ycADuBi|7Z1aP$Mei
z^0Kq>wrM{<J>|W&%x7j$NNA|&_WO0!e{bz5eB8Ba)v87D`|FOb3SIr``ucspUM<?S
zYu5~m!lXbE*Nr7FFD-Iz=R2CYeD1bu&*zxu$6W-OeI?j`ZT#*ZkGi{Gy?XWQ`1QEz
z+`!n_Se=Ls57wXKIdJTukWPbJ-p5BrJwI)Hue0@L+U%?UE6>g{jogsn2uet@Wj7Mn
z-oCvp|Gr)Ro{w&zW+?yP7|>|l6wP3x^mB9iO;59DWo5nkzbEVJD$vl(-m0%&zrVe`
zUU~X%{h#CYKAY3dzLK9`_v>ZmwKb7-zi;1H^L)4W`#qhgEgFa0cu(KX-yi!wFf?>(
z?YEohYmHT3|C%-FN%;O>p<Ro9xWtPy$on=hm=xvS-sU?=Cvwx1WZV53U4L%x{~KNP
z{oUMIvu1(jZb1WY#pi9OyLO9Rl`jW1C`w;n1C5=6)J#-%H`~GUa@Fc}r$8fY=WE{;
zgHmkKN!95o&(6%0wz>T2>FMH&uHvby*KUi-Ugp{@w$?QG)4$lQ+ivIW-g<4@jil}?
z*RG{qTNCLyNzyoNiAEQXjD<n$u9B7iU)<W74Vte7oju{4Zu#rQ;>-K%|IaBprTOyO
z+UP#ZXEQ+Eha{E+VL=6k-WX7R-&_6N=Kr71@~?j`cJDv8^ZC5ljLd8)e|~)2`Tbrs
zXmIz<p3mnZH>dgjEd*uexT=>+?-U-FwS3UPTy#CQJoW$I@8?yg#{|`%nV{$lny-6y
z|Nr0nmlwPDgKF#DZ#H@V`@R2vb#t1OWl_qy9gn(rq|J27?^ULQ-03sRL{rwfEGB!|
z*R5%1XN81@rvCZy5j3k4CI9_yd3@d9*YWi)ilet=OazSyPFC|h_2J>+&v%N?KYg*d
z|J=fMIV~p!Ge&(U_6(+1uU-{h_BBsEHAPeUkJFd`Kl=ZlXk?e0A)UXcaP8OfdzI?3
zyGkOn*QTDHCTW!7(Z(Y=DRgz%(-X@5XF!vN(BT%(NuZK!%VodQnak%+`}z5K`uDr#
z=U-f0Tzn(3J@<l-vRluI(D2yM{o9g`c9q_{xk{sJ&!<z`KX32<d;8bc^82;s#m~;1
zeAq5OPX$yX1dF(W2Ev&6Z3^~2|541$&UfZOBeQYZnHe#KM@4_0E8jPnU9RFma=jhH
zwX>1}4Qdbed_L#BI&5vxr<3aIKNl^s|MQR^G^TGg|Mr^5&20Nm?*Dww8Z_Ls^_rMY
z#D;5+pPikZzI<+(SD;Ac`@P>crJbGi>-yrF1;x+Ly}Y-#I&4kEM#p&n&1q+)=Dd`!
zF3SNeFF5x&f6vEbYofNU`uFkc_4xT$SBIy6cyQ2j(qTSpo!r~o&hG#BdjGo8JM7QS
z&;P%0vrf#84F_-K?S4CLk%rli*Gvx<TQW0UU;&N4+5f(I9yE6PX3J&2?7hOjl>2Qa
zaSE$FIU?*I^St==t5={gwx>sg{m<0>emnj7ylTD2$NSHN(($#zcDbsIZFh=JgL=Pr
zca@(0^78WMX8At~rKP2yabVEY7O0!%E?XJ`>eGQ%b%BxuD96{luf8Asx){`?SnS@P
zXW)IjPqz5i%jL`0t<&3nw=5b|bIdKjX9;RAz1#o)U&*^Wm2=|{gIf0&9NAMr7176|
z;;-}9M~8<`fAaVAmAoAf+j!*dY(N8kZM@Q;HqDc-*W=IMEx$ka@Av!votfWW^434=
z%x^p8Fu%PGXrjfq{N0^91&4WWX02Weny#yVQZLP57O*sLKkI?E*@nq(g|AjF7u#F)
zRSQ)7Z^^yA?MD9ozg@4_?OqqLG07EFM4mOfEuucJBI$2&*qVsIn%B|ywW_|n2+Y}d
zRP3nu{vSt^PEFA~dZ3ZHo0;Ec!@nJ~^LDM2Fi3E?xYT?4qSVvVj()qHA7AtP_I<r+
zI*~ylM}Kes4BENdeYgDnUeM;ci_3gxCw;$Lu3z_MvHV)o#~p&oU9VofDy_@e|M#0~
zpvY0{_j`iplw9(3y}mBCdt2^pv1WFDy|}ucPuVv2OPjA-v2LB7T-}d{kG5R))3z#o
z6$0{vgk4R=#)5~3*zV6~m#^9I<I?nfAtf&^EX=sNDs<!DZ@0xk9x}|mwdGf`-o77?
z7DaAO``RyG@u2b13FUsBs&8*1w`5#g^y22`^ujkAkBb?no%x~ie<i~Yfl$|nqGb#W
z4widB^SBzlpp(A6l);TT4gm&+1tyU8I2pp9|1<E;o!m0bVx|OWKHAgO&t;ucLK6Tz
C%7Bjm

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-18.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-18.png
new file mode 100644
index 0000000000000000000000000000000000000000..5dcb3f6c0cf1b82a6d8b48a40aaa5054eacbb32c
GIT binary patch
literal 23862
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_dNj^Ee+|35yr+<g1&jEz1sHeP@3
z+^m>=ZQ>irNbSiUnkw^a7F`N(61<dk^3z1!$gT+-oHwI26LpgBPiJfX{=UDixHfiO
z_Kb~lX0AN`w`{g_@wwk~K3iQs^mWg<-?jIq86M+cU|?X7Nk}hY1Tp?uawvdk8D|C%
z|A7P(SpK+x14z`Oje&`Qf#HB5ivWn*r`Q0Z3V0Y<7#J8Dl1bEhA}H(nI^Emnr2d!8
zwJdhCt@;v>lCtE_pFd9?KVB?f|L0?$yt$oS+_v28r>CZt|B0wK-(CKGTJG&vS5^kQ
zO@H*T>ip|1nU_NrI<Y=IHPw4t?(3h==TBF0b#Yk{u`$VS`m9xF{`_Dn@VoXSUgkh<
z;_Yp>``52u@8skZvfNMBcb19f;?v&3r#GcUPP@HHR6Fd%wp?Br3xnoWpWd~K$6eU{
ze&6b%r>9oN@2{)+dNn+BfkWf#yvafva&BKc(kUFAYo2g`A$)hX{h7+@o+bP3dgA{6
z`TgUEhW|X9RZ&}4x%Emd^`5R*X&dJC`@{*4*gX{&vuAg7aQyu7<Hf0|+AFWwWL!|V
zzHeLp{drltZ@=Aszb^RuySt&=aw4Ceob1lX$jHUdA3j;l_shrQ^2@9IX8LBGe|>9f
z_SX~2{V(3!-2Cd=+S!jDKfbyl@$l=sV)dKb*6u2Oy=<4Aau(Bsoj=k_7#ZfIMoxS5
z_;G4aU{TSge?K1cpPgy!t{t}K!m(cIujj1ar<8QoOLL3q1iZYo)HMIz9+UjZpB|pM
zem(s0vEJaAm^tp!$vtX5GZgIY?bk0{SpEH7*7bFByF@e}mEO0l{uVONrn2Pcr_{GM
zH@k06KOeR}Zts?yo0~$ix9WITe|vNB#6;z*%l+lozs^tj^W)>D+~{Kxy|UI}`TKr8
z<K4b9l$o9H%7I4a)Skert3pH9$JstTGc&lIPxjKOsoGbUdW+Zoc-S7bJ@2mU`ln$_
zzwObB*x)ef%l`j={lDKWpMQH->gj2gVewHd?d{pGudO{b*Sg$oI+KF3B*TA+X{nO8
zx7kixAGi0`j~_oI<mKfjPna-)aq808x3{+1o_jbuf1lyB)R~OTY$*Yu_ik>>eRXB!
z<aN10=hmm5o_1_o?&sI*_g8KC`RTNNZ)&8Pnc207X{mDce?FSLwN_F(bYoj?+53BM
zx78f)lT~x?lR366cXQEGul~0>r;QX971iSR)u`p)+w<(k#^janet&v;I<9|j#zm#%
z$Z0RHtemVFv0(uxH@ET0lP5D*{Z8YRGC2`3EmcWL>CCUMulH_?+*7e}W%&AeufMmn
zw3OH`n|bhYzx}(fm1i}kr7rzl%Ku<~t6l^{$kwdTshYuV$0Ty^?6{ac`)IfL>cGWr
zT)e!Y2?-0lrf4j*tNr!j%F1B5-1=WH)wgC}_nSCzA{P%&NJPX8t*|vK;`Ua({Pgtn
zy0XH;!cDo+)!*KHyx|_TJJj~ykH@Q`x37DB>fF`4-9f)jsjI8Mo?Ct|@MxE)sEo{-
zH#awH8yN-ZMs2xpX{q<+KNhk!6#?gMKKCdoD~k#UEZDHY;OMbqS(lgj=DmG&W#wb3
z<(q1L7KQs>e?6^e?YX(uyVr@tWWTww@zgxq-Bu+p9+ckx(#NP7wq{1w)m5sVQTyxm
zUN^hBDfP1U`aO##tNUjiXkg5=;r>2L_jJ&7z1S-Yo!Mn=t3ryOo$>r$cPZ=pySq{b
z2@QY#{{8xNdc2mE)vfH^Y`jt#4-d7P-?{(o?d`9Ry7gBDE%oB!<_=CsSfHe&bY*LH
zxT>03)!np9OFUP_?cH_g&>;~KktIs5T`Lj~x6QIFUKYK3%f9$^wQ=gcv!1+KmEKcW
zy7BYJkA-`euQO*$Io2b&Dt!GsCnqP6t`jFbw&vfz_x66n<>mgb*KWTTw72SO$c}=<
z>#z4!ets6UyKL?8pSQN@p5AmP?tA$D{`KZ;Dr?`bU)^t7`6;FL^I7v%!OQ!Ko}OBI
zXJ_$h&&g`Hw&l*gUd%SZ@&YS&gS5T9eSa!58_$IXMrIKqp+#!Gvov&ceC+@ISlq@d
zy{wg6JnQT%(^C_b+n4OO^SN7ozjjk@^x0Xa!6_+A{N~%Owg30SS-$2&BO9;OlAN2H
zJa^gF9+a<op%^)BX{WIIs<OAYR>kh#mL2Qj(xS35`FP(fyV_l+rs=NkleN~;(D3;E
z{r&Y-p{uu4d`!B!I{baxaZeAAfUmEvmVS8Pcy(=b_}kmtuix8S{q^PY`B?{>SZCQ*
zZ<8|3QhB*P093RdJ$_tUN$JqlUah6`wrIre+VXDy|2p59My}57e5JPfpnU%4=jX34
z7WZp~uZxM>zIW>JtG7STe>5|F-o+Oe7k|CzF2B;fUrsA-PsOZnl|Mct)_y!Ht`)m$
z%c_u-i{@AsXZ`r_P|7&1N3QP2!`Z7oyV?Ewk*un&zPk4Jw_U&A?OuQTTh;S9N#EYw
z1SxuTW#!^mS683De?NZzpHJP#dZm~D{QNxoa2u~y#D)c{YxmdvHAy)kAgUealY47R
z;JZ6JOCKCyTpPbXZgbk%px4*ds@}czTUATT>*L3dvy9XG>i&Fm55I2Zxz0YgTK34%
zqnV$coCIaQoSZdI&dyu&@7sYQS1Wi~k5<?k4bNM<N>|6#{Y<^OD%9I|mPz2fJ(XM2
z&&$>R`}sU-N5R5p=jX3y<CXH5bZWZ(`X4_k`mgU*+5Ua0`OC`sr5kj-<7+;)K07;m
zxm&N)%a_aNUt7Qb-zrvav5doQyuZF)j~A7Zsad>S%)#x%18oBanJH1?YecofK!u*L
zghU3PoXv}Ec{ewu9^0f7yx5Jm_}7=r?WL2|e2u21&U`+<{@&I#<?ru-%DkiE@f9-9
zpPZbWxBvLjqf2j<ru_W$G;Vij<?E)YQPIggmZh(zY|OnKvM%Ok@?67XGWK<MUVq9q
z&A4#j#<pBGez`Z>YR=9wJ$C*2^(UvNpPyr0elGX!*%DVz%l)#}WivE`mr0!7bmq&;
z%dxN7`Q>tQZkw$RUvCy)|99*4cTOKaegu`GNk_T1KV4aR5R?s0&a>UUG52=Ptt}@P
ztDWBD^YBn>ui>#XvrJE4{d@ZMzP+UfrEDrTY}7f;BWrbKtB#cwsHmSIYhAYF<3!K-
zRbO98-rjch$H&K)x5j40Zus{8e!gDZo);JEPEJxicKrD9lGoSH=2m)mbZExx*kD=z
zZ_jbF@bX0O^S@QMKL1+vesM<!hp?pN%WZEK_uGMjN-K2L4CC~3JJ#+ldfIh+KjU)$
z`QL6m)iX4_D54c|;!g2-Te;WkzVGsX`_cFP@9alMI*)DAdHno&`o5pfq_^k(`t~+E
z=eAk?-mlZHOEIL_>`Gw#@1PlO0!kEHGcUUt8X8Vo^6+rGcKyFUdAav1pUXy0TWXkm
zOe6i=oV?d^)o%=4U0q*J_P6_J;g*oF;P|E<iHfYqX+4IYzJLF|%P#-k9`ifyNlA;Q
z=|nD4a_xH2Djru59lq2{6jbsb@0Y*+=H}*n@3WdwTeFt#sr<aF^stnD-JW;*e&>a*
zjrzLmyLHkL4qgcZhrhqShac~g6_u4;yJU&V-VcYkwc_{vDc#=N+Z%dyRj6tDIhnO_
zd#!wrOPlA-si~>?@?vrSu4zY)9({Rgs&?G&8F%^E`D7-j+%3HxyFIm@m0Rpf)zT$(
ze}DbDzW?9Squt`wYd(Me{JDzt(CzJ?{PxAW^~>p=-t^_7yZp{|G0QgSoPK-1VUA^S
z)!OX=3!SpAu9~_n_x7^d-{0;A*>3;z57hQJes!w){F<O+Gjs}*86V8=(u+7?e_`um
zEuGVsetdj<bz`!7|F-Pw>!!}1Ki_@-R}pdjxGNKt-Af)F;e2{_c6jcsEf-e=F21s-
zvUqFORj;qFuZMqqb=5dWuW62D@v6+r%Vycv?_0EJk%+YP>RG1QulD_Z7aR}}FzegK
z%Fk(@L1$-~K7IW7@y305cX!P)O6@YszqiI+uJXyYt8xMY3*6-@UEc5gKCkTEot3e>
z%QBDm$x2xkJ<)x8{r22*j~+k%dP;l!lFZ)^54W$5+M4z2eEq-T!vdR1UIx9rvoo0A
z?#F^?@ulD1-d<h){@yH$!bNfQe@oZ*zyA8>-ri_oHJ=YZ8vegpy?$A?{Y%5tQzE{z
zOg!!Xd}#KYWAV_;PFX?Wz}nn)KG`qtcE5i$ulil!>uYO6SBL3_u8q37`1YL3@2A`U
z{}T)<`nW_i7Jw?8%-Qev{q|ez)_dvJ*6h+B9}>6U7K@&?^vIDT(OgyAKmGH1sa3Z1
zP%F3hB)>Tpg_lhkcWmZRIA9-eihcQ#B`RwpH@nTXDh;~6E;e*aMqq!waKEheveVP`
z<I4?pq()j*e_QkE+1b@zQ?)X$t_qbh$(UgG`;9TE^gkvsRWCMb{k~tTZf(o0R`)-<
zdZuxD){6@ZXIYi5dM$ROv9S>p@ol`)%QkG-@H%h4(S?7n_%DQeN7j9Ma`JZcjwO1r
zyE4AKxF}_wH>d3Ft)&MJIBeJEG*?zsbZq4ozjm}+d~51yG25?Kg1h?r!&6dHW-*0K
z)e60`Dpb4n+s*V}UoQKvx9&?mGsAF`&S~X4&(6*c_nmEa_07%Arup}5w&vV4y8GOq
z;DN(-hNQ@8+6^K)5dpWi<$9MkR8)O^b=7;ZTW`=pr`9VQ5}jMy+jld)Y2g&M$y;Jj
z^u$9{KQ2aC&F8{}h0dlaCj@@}`n4)>v73}#&5rCpJ(u54pK?8;qM~Bft@AUD-TCeR
zY-nm~5)l?&{OD-6cJ;S6n{uP?*L>~`TNksETU_r>kgxggf17kpn_hdGrK$MrRRf1Y
zv0?+m{{%-zM^FQ8-;YP!p(_F$Wv$Du<nRCc?3%1f`MWzt$6ma+xH$9P``Yh!m!G%)
zA9M2L$y+-L7mMjeExEYZeYJBt9~U=w@m*f6r+$I=o^9GOSN<6@6VsLb_4Qxh-;eL?
z?2Ou3v{cP+&I--oWf|Y!-HqCqbhLE4|4Xjo4-XvIzYgB@`%b5x@&A9{_lGX^677|@
zk6Z3H_tIg0`#H<<lCLNCOjP;#`!}e^^y|}U{m^ATlBKV&`F?$UegDIh&PgT}9}>>a
zHutan{VlXxOn1*V%c?Icvg0Oh%e`Io*I@3Yz506@mxQg2x<2>I2De_RsBJkjr|HG6
zIxb&t6Z?DLwTa5^CRJZDrfP@#tqxyb#>?ezSo$iYKUe2;P`{k*mBsG-ptj-au(g-I
zyu55${LJU?uh;8;J)IsO6T9ouuezPGL3SIKo6gw#>6A7X2M4GN6uK%zb9?FU@9+IT
z&%L%zUHN`IgArS@1H+1(o10!;TH5{X?d|1)%5FQ>t`1t-<u}J-;o9i!%c}R+)zz&E
zTH5vK@nh4hD;ko?chq)y|5Vsp{ywfh_xk$y`OmB^mp+$1|KURcsQB#`*AMFyQr(hu
zb(M74RS!w=jagT<*2`B-*Ns*?y(wg&Q>)3<*>SPEN-j=RcAqk5&YE*`t?z&PE3OgX
z@b}l(%QrWtU%u12vf|?-P<IcM;x8_Cug*0teB=_lry@{PJ1pe+xw(7)JvlwyA5@!`
zy}ws$?eE!d|8K{iKYza5OrL-E!?ZQ#vp8#?pPRd@=xJ9{Qj*P~<NIoVZz+C$?seXL
z{dl{r85f-{FZU0>yQ_3-@^QYue?Fg=dz<&AZl~;~)YHrA|Np*kRq|p&-H(Uu(%bHD
zOm2U-^SNCAhs2(X+wa%CE|tE$?Q-c?#l`pI8Rob%Fe-Rf{d_w8>HGKV6A!oTJp1<I
z>TrF@<SR?P#jl%B4FCQ4y#3d|-|z3Pi{G5qdv3n{`-^%{Z=YRle;{;S%+1#^;`V>P
z1n){q;pgO>sIvZZr;KgYmDlZijnmJ8dc2>$e)TPFsOtLgq2TC|BN~c|2bCAp{{Q=Z
zmRatsrsn3a7o7Q*?tJzo<My_-&(6(VUHSRh&S$T8+}&0Fe%+s+pF!2~t&Pd<v$nmw
zzkh$x^K)w*o7rBzxw%>H_3>V5_0yZa9AuZzI5WdAu6|e9+f~}(>oV@_DBS+Frb|qB
z)sG()u{#PJd!<ahO6z8~a*MA@JluBuZuqIUlh^-ksQLCLvh?MpqmQ}n9qkt1+t=&q
z=XY&m@^O{F_kSzczMp=3se8Yi(XkcT*VkFq{@QZeD!J$O)Q*l0j@<kE?mm8XWcB)e
zvtCUXQdCro+aKcL>$ZPCgGIky1cS=o((u{K=T&)uO6m&>oxdKF&iDA0&G6#FLg%a7
z^W&%LL<aRrnFgh#EIBvN_VufMA)C{DYkxkSK52>h{hHv@({zK+&N3C1lw2ueS@dFh
zeBH%Et=ytQLW|Vr*IX(+^X%;G)hQ<@fr9VbySuA@zuWB(>bUQz{Cs7REBDzMhRVKM
zr|ZQ=J$(2O)H$fBtpyeLk<*qQm#g+U-Y*~i^V3t%a0Mt&f=b_)mzSH?|ErO;D)9h~
z4}5!bGryvT-~La4Y1Wm1`F6Emu7<~JT3JPbELjt|88pJfDXg|6)81TJL&M|jEYsb}
zzxVx;(BJoCQPtO1OaJ}-UA=en&8?uir0(ypmHzYXCf#{HCt_dC&bt49%kNgd-y6ry
zwY=g{r@BeT1qI(329C^ZJO!nvcgz0z_ICB@>H66R8W>lFtemteboH_qFEXB<nCJ}Z
zd7PT6y|wmtS?Ic$pSymaoNvGX*0$W$lE!HoT3TMbQYIHx1~1=|a#Dzul~q$q>(tvU
zr=XxoSyxsp6jJqCk#w|6D{9M%bMx)jt9nn%xV<em>)xK7Ueon-HETf;UHtr9)Yh!2
z|Gw}4zcS_IB#<PiPf-8APB(g+kH5{wmS5lB>%UyDuQ0FfSLStI8BjL8TYf+D^|iHG
z*VfDgmF)e0udfdGH%>bfusQ84XlU!_&z~><{eB+~>fNn<nRYK;GnSJv#Zj{0bv%RQ
zkxe>}A3vV_>X&mn-^@2RH_x79Sv>1-JOA#rzu)bC?=#yh*QcUl2PX%IL1JR!vYMZt
zp4tEZ*?)6K;o{YIC#ib-EccsxX8*sh`jgfD<t8h;^93*Sk^Fq8`20-U>TeY?#rOBs
zF3Y{WO-)7RNXqGHXF(l+Gjpx4>%{N718Vv6$-KC>uk7uuxbumJ+jy7N{r#opKhFl#
z#x{*VbaJx#+3fXu(_UR&o&IjuYduhxgiBN_<<*sy$!TY1Ok8(7|Np<g%c8gEsVONP
zVqsyKap6M1<xQ#Hn-dSSt$&+)+YD5JTsI6lr?2}tx#sWJ>&Ld`US1ijzWwR-+3ZJ-
zA3y%OM(~(K@xMQn!g6wXHMO;8{q6rgiOP$drWv%P<9e=M%#MUEQSG#x+h%rlcIzq~
ztV&)a<lHuUzwh@u-t)?-d>uQBpWoZ?_Uw&qxwBthT->f1y=~3Oxz^i3!PUwoYSb%b
zY9y@YQ!x9!vZCU_*U7V{Oi2MX+k-cycnXV%q;!dBChaPJpVudE|L)@~A3r~ED?jtf
ziiw(0TUKy#aT$REJ?rYKv@<gd)hsP<UNy6QKmGMt=1I3cO9=`lc8O{~`&u~Ds&v)L
z*xlPsPFC*+={edZYTR%4YsJkym7Ak?drnrH`RVED*)o<zpzslvmd>vG_w#wkYs;D+
z8(v;m*sK|_pyA`!ucq5_cRzdK`Szo!TJ8Jwox<u;x3`^L;yHQGyxV8@d}pvYZq&9O
zJY;LpY=}C(%eIi2!KhVKJ1pbpr>EvQ)7AauzP`En`J6Zl!wzK$W+sLcB5XVo3mTc(
z?`?>^xX3l%;yW9I!e=Gu$ZxU(XapE}TzKZKW4+R%!orI$TnM<iZ7nFyOFa8J`}?Qo
z-j3Q?lsaqs&Arvzb8d$%_nZ4JA$5D&(Js+Vxz@gqZU1Ge`OZ?gz0I`p(~}-OR)%*H
zOdJh9ug}ah&bqQ<qFK(31!Zq<Y1-Mv`P+V-^0<^o!oXo$?&)p0M?sy|yr-w8t}8p*
zCA$0R<EUw>r#IP5yA2r@t+w{`^76XWA*dX(I!w2<txZco!J(B)G-z|$S(EH*Yoga#
zu3Z=Yc&!JgdHDa7^Ydasa%-cuURmxhpL=uD(`~Z)dU}4_a<k9Rv)!IMzx+`lW5b!2
z+aH)tY`L~JdbzTDU&e<A2Y<b<|3CZU(-Y^<`)^J=d&&C!p2aaciz?U18>jXB`SYjb
z<)x)OE8gipeE1MFCQ$VJ+}n-srpMO>US8%qb;5)N9UUB?j)|h8;;qf;{bD*13x0ln
zuC1o#W}JTR%dWp~i|*Hc2bB}2rt9CAwRUrHY0=h++fxzf-Y0W$neS|qnjZzc(q=xO
zkr{XS+9hvpZoYr1@Lk9RriT5-pitB{Gz^@Ux-#KllVog{&gr1ZYQ84r?_z2{om8*-
z^>X>$Yx8X?gFr*MmzVjPR)2fLvnuG**RP=~gO=J%lea4IFf=p-wFKg-UaDRXohzd5
zKQH9>x3^m}E-Ha~vE5?2yOK@W*x0Jpek|+i=m_}#@2~B&|34o0SH0PI+@$nX$Xts;
zCvGvF9ZMe<D0?z^*zZbUJW&#K%<#z3qbDUEzj{`bd;do>JO8Vh>GJ|pQkF0=F^PzY
zExU0eBKOvolgabLzpstok}(l9nqyP>>BRBl>Ss$$b8ZAYeE1O59XP)0<Ye{Nhg!Ko
zZMW;W`B%38ce}f4-M#kI$f$iaJEP4PPx&aavX`;)<<jXTA09Y@T4(F`ew!8jW5T~#
zck-{TiPQ>PGXvCz&b+*A=i2^`j)09xM@!z_u>`gJUAsgAx8>Xn*;i8uYQ#<gjePS;
znRqPqni>=kFab2^`u$$@`NuZv%-NnC=@hPdxpaESww%b+^YdaWKRpQy37G<_l$I=6
z^4iWWGjLsurEcUVmxT)#Ms3NMX!rk5@%FF9&(B?5+;6w)(o%12_dXfW$ljvGi%qM(
zWb|*C_^C!JSwv9q;nv@Gm-)`VvN_$~)zwu~Ma9L@(NQaO)s%mq=l_54<mBY*YfBF{
zv4Vy+i=LcV_~1c;?Vk^ae?9KEx4D&je_t%9Zq*81wPeEv16DRREhQzV*xhBJNlA;Y
z*ZR*g@w~b^JUk*|MpIK$$Py1hP~d`+UdHShGghR}uMIoeEgqhbu;A0v)61Wooedg5
zyS`SQA?UEE0K-hbc{Y_I^789-qqk+;+fxau_!cc%q;m3Wx|37Ws_^yen%VhR<=x$t
zb${PpP;0~A{%;7kn9hYaH#c8h5vaWVZ`8D<AhB*S-Jr#8y<fgu_FumG{l5PGeyh?~
zORmRN`_4AYEs_?nFMAUqsvYL@_4RfC(%;c<R|W5@sRRu-+S%P(+dWa`>bh9#t8YQ|
zv%lR>muaalr-sLQZjIfRbMwmX@_gIRXN*BZg15G2KM$)eD%zBklmr?d0JVWZ!v$M1
zFN6Aux^a6VK)v~E>*Lq6%hv=jGBSd?j#n4E^S8FPzI@m&zwhBsRTY&LWp8iY+FiaL
zG^n0;ch}2PQ?-Bn{eIuH=!u8z-!GT7f|hv9l3V?nlb1L2`nuS!zh19@J=xzbaC6$(
znAg9)z15bNmk(VT<ofX8L#xtPQ>N)gFPmpuoprd4ca}-!q}91KHG7_&nF*Q(3j{T&
z=Gj!Locy}{%k|eu@9yke6}oyF$n{T8iRRwf5tzUK?>10J@BRM&_ZCafFm#(=`)#I}
zUd)PVy3wor=33p_l-dpIhU>=fi&-7MKJ4Tq)!4V`=jW|8Og^^4Z>|+6$$*B^PwVdo
zwR=HhA!a!@9+Zi0jNe};Wt7s<C91v5Eccd1`MWz-1rHiPK@+(-ZDr}}YwNbnHp>la
zX5%gS^u*Kl!vW^5-rlPh7rUF5zl*uLBG9?``MJ=;ZM^wEEg3)XCo?Ea290oR%)RY1
z%j9HoY%?2gPwwrs4-XFJoxZ*%GP$O<)^}gc&oeuVpWpeG8aeIb$B%~bwO>Pbz3S-i
zH{X^!`{U!|v+wRMmzI~8|9mCbf2Zu_O*+OE9}<dRUQ$htoYvXX<MVl^L~>7R<TAgx
zR&o8ila6*tZ}XivVM2n=X(LeADEsF2`*qnmr;W<*mR{#QU;6vo+hdz_K&_K?F*_ec
z$q5Q3=G-<rJKNk`TtDv1jq-wm4J%`IZnCWXwI%!Rxw+Q8`}gl(8L+VFw&67W_&lA{
zMxb_Qblldg(B#|OB&|wTxW^vvlQkCCi`kL*SM#^u+mD_bOI`+n9M{oN5WTPXx!?M?
z)@5%pa&DWwzP7eFT25R%J?FOB?(+BFcHNz4TYX3FxQKlHpN$)JPVf2oY<Ax1;JD@6
za%b!B|8pt#uJ!vp$vUTvzP`R*9=)&rf8F-yDn}=&diV7A_rJWhcJ}R06D9}*?<hzF
zHH-Rl`(&-3{rbJsd%DlZM@M}F0w(<Yc02#>Em@0#11;_Cvz=PGDs9aeV)$b>Fr-+5
zh5$CDbashoE)tKcIG7s?8ar7RYb^^J?v3aX(~Z(lQ+u|oKNeIvWL$8#yv(<_lvB#O
zY)wsV?bjcV`|p3Ld%uL4ozG(um$+Wd;cc3^dU1PJBp>gqTqAE;1e({4*?)aSp!39u
z6Rj#gExA|o+4t$0nU}Zf85sp#T^)Y?y#4>0!yAQWo8^K=rb74CRDOMV`FL_|LBWPU
zfB)u3)JL_pw|h_Old*iX&Bn;+Quc2-+o}^1i;s4TFMn;($}Rq_>Z!J#p5M-*r(UJ?
zUte9l+{|zHV%r-~mGbe?(XBZ*jo#kfeSPbmgo90a=RLcAeSQ5p{{OG(*OPzz{8_nH
z+rr|;*YBX=_2=j2zPh(}ch;2^53j9rXk>bId3isdoXv`*-qWjW*%>@|8Ce{rZH5gD
z?(KWHB6|C}9>aBI;j2SdUecA{?>$`))Yn_)KYyKZ`nil}XJ%$yTGILH`T6?Ozt5fd
z^yDOHkh%Y9E0^dbmG#A2TH4!RUs~#IRq^3L>G!>5Z=*ax87gn@g)0t4t6*yZOguPU
zuGewc*ZtWMSM$*o)B`#-(|CDyjC)DR7M;^xr9Q4%da=8fl;5unH_g5l;^EOzQ(K#Q
zds|ISP06n>FGIeU|Nr~FT4!_aZBdqWwYmN?ja&^44Y|0vC(oZhfAzchb-zwNmXNh7
z32<_10(J92g>1LD{<W8vm)rJjPdh8+Szp>KZIIA#{QR!c*C{<0udR)~{B;HcL$U)y
zisf>@xs#TJyziU3>CSD1`%J7{cRqcbZI-(V)cL-%qi|Qn$3_4Cd_Et-K0lpJ^LfqJ
z?ax+vW<GxZe*J_A0^3Vh-ko**`uFw!z1HpfRrq$-lP6DJ%YA=xa`Gmf)1|48{BG~B
z-@j!4vF0TfrLU$eTD*8`_4mBcbup2$)@30D1siH=YfC>p@$8kc3=-Fi@wi?XwLNd`
z&f@2*Dn35Sy11wnH1gTdz~BjL0tVfU&q_3Vy3?nU-y>*!++LHcD;lC&Aty=~w=7to
z;CTr&sCUc~WYp1a@#`&|!X_mz0(d2jT=wnTmvv>u#5R8Ub&rmAdrx}Jb>r)^_KiB;
z>F4M9o_1zr&|?u`i1a(f{_x7aQ2&=jC2!fE-8M~k_9|bk=-ig^{@&hQuh;F)vk<tx
zEmtym&pE-Ouk9zT7lNiJIXEu-`}_Or?fm^KOI}`Dxh-~6N~g-otgEZ~&gD;3_m`7Q
zzEs=#Fb&j+ycAzNX^Dh&*_zk4|7EkkULU(VOxeB9=enU;-klX7FFQ7~fd=62zOzZ|
zxp-lrbMW177Zy6lO<%s}S#aEKP;2qU#l@lPVl3Cj?Txy*DYZD;9yF9z8!>IEoNd(#
z_kKC6sxK?T)<!LTd3kyEvokY66HQ-F>+e5t{=EOr;^)&+BY*w*eE#Z=!p9|Ztzl)y
z)6>(ZtE`RM>J`2&=3~VEoSR0G)1GeizVP<a&f@g&>2uWQRXl2wzxMgrS?!a*Lp#2{
zzP|kRjcvKFKRrF2nI|tHvEtj?+ovTKUyrZ1y;}DC{QT>;^Y?@12cAs!U$%N#G-$-p
z)9brL_w2$S9};^djoqfDu5@naTldtu?9GJK$gG>2mL4}dJzf9%uJu#&8t%>OpA!Ad
zEce!x$J>tIumAtIG+%p9(owGd)bMpN7gvR@R{49sIsx0DSV+I3=g&`1gS*9aO=^FY
zfaW@_%idf#Z~tHC<@)DGBo<HA4v#CBXP6KNj_itx9Z5+^QzlGU03Iv+{qOgC)7)Do
ztnBQs7q-joN;VbI4)X!!p*fbtSN2wam)_Rj*EcQqHfY5AHv9R<$NOLJ|Nl3C*E+M7
zmX;+et*>4Mjr~78KR-TrxnC%#4Q*#I-=ffI<Hn7*HYT?xB_&<imV3M8?f)>)0PxjS
zp_ixWMuVm=`@bIVm-jFKuAX1_<01ReBS&7`*qEGkXUE1_CYg_-#03QvlY886+}KmO
zxs6Bi(N{~am&=~LEjy?AICb6K`wtJde|@w0eBAbPsi&t^`b@H@`jYYX#zyDT*Vjt#
z>L@&wxZd`0bNcyJ-qZEu!ta2}^sB4Gt7Y^-J=&*QswYhH@5O*JOZEG`%Uij{tJW63
zy|vY<{@<U{^Q;W(zV^RwDt&jya_`S)v!k}>%>{Ltgw_2r9v$ff^$l!p<=x)qd*1f@
zoPEFFS%Zd<3m+e=`u%qMRQ-6n{%wzs_h0|;@bK2`>w2PkF%h;^Uv@mKw_vbYTK0Vj
z!O^9Px$zInt`+XJv|ksxz=5&!#RbRUWj>(hxRiO`8qmD`Y5n~nYooUA;hW*_ySM7A
zN%Aos)9h<LqFNyn=FguGnzz2XCerw7E|-|j3RUlED<U_ifu=N;`OI9@#w)F5VG#iu
z&uU`j2DN@b6QZwEO8jORrFMZjD%0btJV6aH&?2Yg9?-B=?ccB0Z*9wsp7os3^QD*S
z->(mUy|}m-G)!-ncSqy&CeWnXt7d+?g4@qF9+$fuoxgV}s7-itQ>s?vrX}0*@2>-O
z3eC*IE-&~0ZsE7L>g$(l(fKQjpP%dM?F~IQ$8xH=zZ|HU3m*6iU%&3==JeH7Utg^X
zT-?SdYqbP4cIh+IXx+iz_e^qch49;cnIKp7LUF1_pwn#g{A-I`yQk>K+igE7`}z6#
z_1ki9XC3R2?CR<Q)kY<+u4saKEsl<kU0q$5`0f8Z$eKT8$`UEltQ9VuLaQP+E&`2}
zetv#F`{X25&@}EW^Za+O7CnFcdNs%uiHF-j=@B#<w_=4x>gj2|)!*M;{q^-VC~9Rb
z3LF|68#Alo7#xH?H!QhhY_Ftr=*rq?^Q*tVyuZEuJZN5dicaLEJ-^@W2DKK|EG%wJ
z(T~5UqOQJs>)#KD`Fm3%mzBQ0mUd@H;j-l8eR1!<^F8>LXHtIb-{0T9+w<=FxVW@%
za&Q<dT)1#q>gj1|hue5x-n;%a#+Ls??~*gjL2Dum`%A_3<4kIQeKBn17B^#LWL%bV
za#Grh3k#oJTIzjlTW;|7yx8@}_m;^`INZ)Zn@`qi1`{inM0|XF^6hQee!VR%EXlXG
zf!6t4|Ml<BXMf|QBOJk-(|m=6gp!z;n0yX4vHD(K=6iNc<mMpT^&K4?>z}9e7;eqJ
z4jP?`yMFZOQAv4u`R$cPpk`&xZ8K(ezAqW|e|{8xe$=f$%P95Kj0Fo6CY$HSf%-h3
zPie28v1G}Tkk`A*?uY*e4bFikqpz$AJ^knV{{N=-e?B;`x}AS_*Hx4Jdv~6kpMU?!
ziHV0@+}&sQ+yDEqtN(R}pz;~p?{|`!n3;QXZ|4;sm}60R$ma7IV>KhAODwFcGlf*W
zW=xN-yQ!k8T3PF}zHY8w#D)VQtHaKM40>{Q_H~;-9}cJe{`OYxxWAW|k^cTan=~Ug
zE#c(iGIH$_F}%CG-28aI{P&8yNs}j^jn3bjDrK6L(j}&w)zsAF6A>|EWz^PHlE!I0
z$N#4vlPG?2Lh$nT{P^H)IgyiXtIH-Er~3u33eo)h;V}Q~mBGtrou00L|3f8X!|KRm
zcMgR&)ia+wdD5!zQOlu2hqe?xb_-n<a`Lt4guJ`EK+7?Hz1@C4raUupSINqxq$HEH
zGZLlm?nGXSuU)|{uD2%Z>Z;6pdn(txm9PC02<pyPe}Cuu)z1jDtnvO``#PSE`Sa%=
zI&>)SM&7qKH$m;T+qz1xudZGmwA5>7Y50$4v-3;-{3t91ts?lHKCjX({rtSIFD`R4
zFfja?{O2*VN7S49`{UdB<-<x!wjAGeYO40`uXp`^Rv+yWy?ZNkO+?_f+~uq1n=>#l
zd?<Hj@NAx9$-2k4Dr`f7BdDQmdh%K$Gy9Xrj~^Qv+&zEZUr|wU-O2T!#g+9+Ode88
z?id-Te!I1L>7Ad-OMQcaCjI&QckerO1A`B{zSpudFfjak_wVEOhrZpQw#=t0{$Epm
z&tJZUlZ)#TXl~-&^FKd7uPeJJV_OvhnwxTQIZ}F?k%2)WSw&S<Q&G{8-{wQZ^_3C@
z$t)90JYH5!y(IcNi=9s<0Mr8i^Cu=(KYrhu#qRyP_G$#HRqnc1dtY2X4m=NT7S7MW
z&~Q8V)D+EE7Zy6ZO`oVL=x}L4z(OZ3Uf!#1ywWz;)<$pl3k(cgcYpDsMJYWO+jylx
zGpW}<eSLlX^{J`adAaMS8ZBP?Wy_LR+gDaGobcGKvUibY@Uj>0cE3OOB8lO_wA{P9
zLi=q#od}(OdqNz`1QSq4^U2A{Q)kS0Va9*r{r>;!?(MDKeG61)A3S*Q*MnyMJ4`3o
z<!ctaxw(0D;p1Z~<sSdv6&pI;Wf9wl@(rGsv_Xr7LKix<_UN%O<Vo*3ecy(uW6Ae>
z)&8Ktt)!$yDlb2uw+F3rQuPEaO+7cq^6L6{`?Ir5y|-px4?924w)EK<NzkC%_j}dr
zA3b^$^P7u@=Sueay~{x3C2OO%Ut{LCSuj;QJnPk!l~s>>&8MjQ&+D;pWnf@X2v%tD
zkTT1e@$Jn`WzS7I-o?+(T%2QBtn$~ix$@i`%hKzy<(WsjM63S&d=8rI0o9A1lhr^v
zvj4buEuUW(_3z(5&;&DR&Hz+1D!ccEe1CUW)*h6y6pR%cJZ^2x4xe@FZteHGQ9B9}
zXWg><ctp7BQKx#|QXK{ch6nlWl^8>}3=9l?lr8CHU|=A3HSnlbP_)o;y)|7!ctXjK
z$NlzKw&g~HlIP9M>DTX;-(L$F%k%W~%zF!3-veqwrJtL_#mRXwx!-o#V)y>EfU67)
z3=Yp8&c4W+BKrH=+u)^MQ>U2c$CbXn7klvF!Klq?y>Yc)LvwF!@hpCJW}=F!n%b(g
zv$IakHecVyBe@7PS-f`py-Vlq|F0>1eeLA+>FqKM3=IEcYNY%YgNBH|yu1uD<J1&Q
zWzSc4c5c>--?!%f-}m*PAvox?u%@P_XY{t5z>10;Dl3DQdUbVnUOdt%e068>^Bx;s
zQ08^M$g16YZjPn0Cum7Ubld_5#+%!8>+9=1FM&ohmv{<?|Cq3(>g%hOAuEGG>q?7R
znHd-uW(qK>^g<egpkYn<x*v|ezrDTOBWe8QVY~dQ^z-w$xVSF;`}-TTD96>^y*ej;
zXHjbIy*-x9TA;Gsh<{hY(u<%n1r&<;dp@>-#*RHFrAC4VoJ|TIICx%aWM)_K1g*Zh
zu`l6ZlU3cH9g`+ce)|0R^O%RAfK_v1@NDns-~cU0TpP7DsGwj2XsW@nnQbL#oa5Ts
z*{|~=7#SJmZnLqmc}<!$X%dG50|Ud4<4O%nE`E7=`RkL({;&G&{}seO%(%Fy6&!m1
zzV8RE&uVIFQt=emi}`Tl-=CkKCq2mmdHIj9pu?pX&HQ!&tz4ouyFddIK9kjaFFiXu
zJGT6|*UPTbt<3Cv8Wt87z2Ww4-m?nNZYul#ALLoT8D_b&mif+pw(ZT8mBErBXYaE!
zs`P>yu@4?3^glg$@}$wR7nhcLYlW<s;N<MQHSsW8f7$D6YlA~VLZteyMF+J<YfCUN
zFl=8EySpsw`nkW{4}52vtxP)FB^h$@K6Cj&uf;)2y)r*PI|~{hzcbB$u2ra=ot;+r
zx;ZMEW@cfZpPvs;N?Nq~?4_mNUw^;fzq<7GwZ3aS3=9k@W-*MOi^bzA96`g?y;7!M
z-fTXvrJ~{jTCFLjAGby?cGn7rMy5%i<!_nS)<lAq+E#sgvl28EbYnx}uJ8A%Ma9LZ
zZ&U|uut+gj*RUk;>@3r*RbR7Q-Q8b<0t>X9KKr`f-jBzmtN#D}9{UzFfx0$gqm!!F
zlz{vDYE5%)7?@^Wa*40~Dq6muiGksOy<E7%B}FT%sL#*O?@!#l`~ALXZgIVm1xldw
zn*ETA12juVlT93SEmQ<R-WaW-=&?D6aJ+){nV3I5HB}q5*j-3i7}UoOT^kj;Z(ro6
z5O9-qicUFe%I$5rpvBv-uC87_&$b#g4Wt#gsAXHu%||Cbn&;kHl6H0$XfEsK=JfEJ
zn^M2N+x@=k%8d<)&Y(RZii(P$L4uMmF9O|PfeI9(%{t-^puH}jnHhDzIiP_v(1LBy
z3Os+ipHF1%zlF!wF3q~S>g9`zi(lQ}zyDt4b6L~eTOq%{y)EAA>Ejau%4@~X{Xk=S
z`g=Y!fyzHNUMWynQohFxlwFKZZ}~fIUezm2Q2yiM<135)_xt_+>>C>rxp;V{s60JA
z-Cs9)+ZAv9y(R9iEsLM^Se3n5vCMb&tIPiOzFY4uaBQA3Wy%uW=xrJ{HZhYzRtBja
zJ#qvz-tp?r&d;)Ig&7zaPMk4%D>~ut@9(Q!I)$W6v!>|9?|Ty!x4SI&>$|(r_v?PI
z1#j7zZyyhu+R3`UuGana&nJ`pOMZMv1kF57`tp2!{V9pZ7h!!A?HUj8282~1nrG)&
ze(t*l%J3;=GtC-m{{4IoTIF-BM{;rf|KImPbB-!6|9-z8UQw~*)%Er3gO+-&Og%kq
zRlvfgV|}vK?yo@|C(uICz181W`OGu|%|(K^pgFEXt=yCTarwe}H{YgehhKYkcJ}*>
zUQq3lHa(NMLj^Pm^y}ks`Kw#A!?)(&kL#5-zqZi1-6Zvth^ngU%LfOWL9_A8=hv;e
zaN&Y=)ah?;Z%>^wXU(&-vtJ)%m%sAn=H{<Qg#BL}=C==7?l)J(6TGfiR43v>^6w^A
z?pHrPKKAnS+qbxs2~?#<F5^>}^yKm5#n0ze`|bbxZT6wVhfCk@{l2RF{XMJlcXJLM
zIt1!WdB~=ppBEYwH0jZ!M<z)}I6zZ=pceD>b+M+kze?WT*y!x(={adhLjyzq+u&ns
zmTUo)&Hp-$Y8iG`d|c!=*J|m73jv^k$JOEMueI??hb(g8?3J~?_S&MyT2Vv8V-l#L
zv;FDY+uNrbx@BKmQ@GXh<)qTBpP!%K{T5W6{ZK!(rTm~(!Gi`+)vxM3?S#Z*E}8H5
z>-UGPiC8FUoVLP$z8$En2dyi-TmS!W`IdQ3tz0j!$JdAc`}6bewD#6kPtbzghp)ih
zvRj`y`S_;IpC2#PXBKm*Cwtn~-~a7FS@zJD%*!UZw@kLDF87;zYC+aNJEL5Nm$$aA
z77`NLQt~qB>Dk%g&1}3uIXP>}-rrlBb92*5-`QrM)kmQA6DU{pN}KOnTt0JE#KuMY
z{{6}ZwXjl7PFnZ$_xJbHzk~~DB2~C=udj_>zGB4+6S=k9m+)<0n8m=raA!@~+gmGR
zt-tFxfO0oz1x|o#J^##Y+}BP`)&6>?`25PSwNapYwvA7ARr2vZkRMC8g8HZpjLcg~
zUx!6bD|LUJd3V>=9z)Pt_1m8|CLcd_{=EOztgDk$Kzoe-{rTzT<5RK~lu$v#YFqQ}
z{(`6YZ(JS+n^?D&y^Sh;dn<I(ma?}|k<*qkv2s;x(G6PCk#=Usw$qp1ii(OZ^_y#z
zd8mcc%g--tZPeB;XU*@w*nHkDcz@mBm{QQ>2WSJx+gn?&Zcg_HZBIPh#(R11_j{{%
z?AT!)rOd#<FyUtEEe4~C4+&dyZ-=c8TN^abrgBT>WwozwZU&d%Ee&tG3R>U3GUMW+
zSq6zs&(6(Vy~wpY>&c0Upvk4xXJgCnE)~@dd-3!6{P6qxYC+2;)qH1V+}MzqDf1tc
z{QlHN9$R_a<8BLRP5H-1N3H7r?a>Nf2O7ahE%7YB^8c&m9HnCo3_q%GsH|KBng9T=
zwJ~HUI2~lS{^R>wXHRblcTmwZG79py{Tkvn9c1VOvy)qzFMwEo{t6J&0o>%mV0i4s
z;(oiJr>CZZ24#Q#_)+oa$FH<k)?A<xIY4bbyNWAlh2OW^`Py1qUi~(oIzBx+JNu$4
z$d(<PkxC6dvrIfUZrnJ_vN+9cIw;>h5KHOQi}3XHTou2+4(c$m)J}$=^>Maq<M-Pw
zKFt71%-x$@7%Kn&{SJyvP+@FU_9nt@I>^=sY9Q6SN-{x9=-2Q0)OG04p((c2Wlv8{
zJ^fa_{M{YNST#@;Bz;1t`9gAXa%yB4k~Kz!kB;={ft+_BcY^A!1Q6>-^@%Cr4r>1M
zbUdrRTy#&3oc8*=bmg0k$KRzyf*g|<xQs^uv}aDoJNNdssr&cufAr{4-j3eXNbp`*
zg~_L<Fs58z7duI%zP^6@eUOnUxigI#M0BIR?Ai}<^NCp!EqtJ1CZcxF&hV*}j>`uv
zJ<hzmEc5xfxuEf`9>cuXy5J2D#w)BquF9OK%5>t<(eA6OLbc~wmxJa$gYNCAw7nHE
zZ7SnbkRv?$bp#!%zQ0?`#LAWN?afWC=xsTOFf>%C|MRiE>dOnqA0Xp4?a&c)@S3Ir
zYOAJ{NP>j&0;h2(tl$4{*S-4xwW=yADJ7a<VaI6_%%D9Ct!-_u-tB%L=Ht`DC9bCf
z8pAZ3mYR8GMWAGeA}9*BoDgDsa<}|`>EGIae}2Z@2B*4)Gy2{v6STwErIc`jjce91
zWMcsZ&VA=;JD4UVU0)Xq+8|Z-{+_NUXwjuy%?C$UH@CEcRFLvZN~c*S+}m57ePu<U
z+}({ix33kSw_ToixGgmRBCq9Lau75;;?^UvaGGv(*4bI6pgCv1c{VFev#+fPT^%N6
znAGCdBQfz}DkwqjXw)fWO?h);Bd8=yJ2&U$wm<uRzq|b9<>k_Ue=2LgTy%eRb#*vf
zD5zRh(A{)IbV5rD3#g`Bxvu^}Bm0acpqA+grcEvkoZQ@(`R)Hqc=Zd^!CSa+Azv8C
zUk}n!IvGBFILx1YXGfuwQA)?Txz^94>fYV4<dwAwd3>xlc(z%t(FP}w?=mN<9&6b1
z?N&Bu-Nvu4ub2P(`+If3LZ?Yf{{H?BnkfeD9c1H^nQ<@_?DmN|f)1eN+DpBsXWiRV
znfJNDB<Dr|XmRl6WxlDAVQk@`Fn-{+$%Vo5;-1Q4&~^uC4x7B`hy=*#4E6joKXG}a
zq%6s~eQjIr?I+KlFF$eOgml@)O*-DzWp4^rfL&&;9LzQ$YHQZXO*%KXz5Qklir+Q5
z!E6&ch1KJ}mxCN1DGXf_sOHTw0kk0K)|Sk?)1ZFQ@Av!TK^u78dZng1BGTrsFE1DW
zzkYA7du8bT@ACC$8~7A{zhW@#>XO!ya@C&Iq<zqEWv{}rt{qpGO7yA;Wo^j|Sv*53
z$K;|*r?-%@sc+}U5W}#etgqG`?B%F(;Zi!0lpwHkzkSbVZpoen1^bPERm?Gd{^4)U
zyYh<j73WSAzx#XdeeU+V*FIESTN7#d=fh#+>}zXOPDZBBo%(v+?sY+r85tN}uZUzh
zaoOK~ZteHG+aG@PHNQJWOgHMuN%i?>wq#x|IwI))q}~2cBC9$J1H(1f%^VXzYY@Dr
z>+$y2|Gs_y*@9+1uj}h#C#$f_mIS1on-jV6BLhQ2=@lKOCEK={fz~-pN_lr@XXT%d
z$BRE4WH*1KAH8kO!)bdN7#uENRmng6d-}dlQ`bLvwR-)zE>Ufx+*@0&TxkjH-O0cp
za{zQMz?CN-4)f>VsQ>kH`Q_#Q^SS&u7#P-crwJ-dk16uJSM&Mootn>QU*6c5tmZdo
zhMaAcisv+)$Vr}))t=7(_j10LjVc4fhrn5`4O?<=n{B^W^}7At-haPdXI@_Bdomd0
z`_+*wC*p%+W9Rb8T7^{cFfb&@nw(_V`C?IbP-y7X;`6rVSFc_LaqT`?hK7b(zTflN
zYX%<!!;c-aQW|0k4zjLXwd&Li!{kjbm(70G#I5(^#B&Y-28N7Zvr-z?#O?jH-i~cS
z<<AFUuNcnGou58GW-^ZegPra(wUy^Cy35DDbY#d-n&sMXW|pb;dE4(XeAaI^Y<=fH
z&&JaF{hs1&cZyCIu`@qV-ZM9)bW-%BHvtbL8O&Pls}<h-uYOU7>B;Q-f6}JuM1ESx
z_^Da`kAkdq*%|%1kKL2hnG^25nUM0`i=S}=;|`YBlUJ?#!tnahM0dH9j_k5u7XD_J
zDR7Xh`EXE3or!_Lt}jhcp<7JXYj@dOyORC6x3^WkUc23E4hI9n4~to@4LKW+idDW?
z*lt(y{~)`(&-;6Oz2R~)rB?!f{ybklk5gD}O`-R_@As<p@Bjbzz4&(S_NUqLzoTI3
zrb6)7jg861rLV5cseCq5(mXF_+wHvFDkr=3_suZBUt`?N#(Qe#^Lfz^H5nNi`Y-96
zYq)ad$`jCtxPRTJ$vhGU3fy8kCz@EfjS>zt+$lKBJJTrDD=RBY%T|qn;e+6;qmmO;
zR<2ujuJE|*^v8YH>n<&3U|^6B-pn~cW##(y=Y{=kCjR{VJpI9e#+SFYW-oPTVqm!D
zym<$Uwx^oUj0v}H-Qtn4FsT3ky?%cByh=6CO$i5^O5WZwHNR8f+zLwic3zt~CP?S+
zF-)IVnbyW5IY~NihoWns$(z!*w@iP(-@m`yk)5F-Z9yc<iK*dnGuPKV)&6<&eBHFe
zeAa6&{uAH#q4m$d@B7yuNMT?&@GC=%(Wv;@nVOg0@xLzoJvZ07TD^pUA%ks}YeUJK
z8;0CsIzKM_l{8LE`Fz$~zfg&R;lX2&mXa42V#@E9R{nmwUHa|cf8Y0?|9U-szJC4B
z)1otY7#Jet&nh|S?R+w6&-Z)PFR!nU-}ia$`z5PZY1#jM>0kWiqI-J3?Kh9_@9q}=
z`}sV)%7=mBfwD<A!^@kS(?R?Gc_fWgw%;v_?pk!>toi*pCnu{vU$MCF)Z%`-sEOZM
zKryyz_3F*1^>&-ws(#oiZj^Fj!j|moda=7oPM(;k{Qp&I3IoH3$O}35IyO{)fA{la
zfBhW!|38jbem-lyx$5hylGoRCuU?&+xx%ve*^^7&`o6cf<zC;l{eIo=rNPVncD~tk
zdQ-{EOEHB<MJwO!d~Q_x>&up$n>qX5GB9j#H2qo6`Tt{o{h8->-*?vhzJ34P_I+R1
zs(5bCyQ^grTJ-H^`t$sM&+<2AU0vl?{y@q+FJ_v4{JiD!s<if2ef663X6N&HmM<1G
zgW5uKDjs!Cm5^j$&{}sgzUk^R-`QJoZW_(b-4?mjJ@dl>X8tFA*6&V)hR1Hb_SgE|
z4&~C)Qr?dfRX`c$*SEK`<Ntk{p4!XFz~JjQnSX-H&sX95XL(LmTl<mk#neqzUtiVy
zeI0+^Q+@7~xn;LjUi>GWzXzP``fa~uY%xzb&|vfP$>h`?kp7^_`&qO-LDlkQKWp7)
zcK&l9ZMxg<7_E)oo>y|`-R}4ME~fANb}Reyt?czr%lH4j8}<G9xw*4dR<2!}yCpn2
z8ni#>+1>K{XVqrsYzlnN!qBh`RF*GrY?k`>=Rq^S*)9DprO?pO%J+M}o4u0Z7S}to
z|Ig|DPyT#9@BjSV-0M|mK0Q4>S;f@UwD()o)~u@qJq(Nt4>p6$;5EN9Vb!WtUi}k6
zB_Jq@UtC;l|78aMxieR;UpK!My)o&i)Nuxe1L?k-IVJ=yb_=a)IWx!7_<DSO?Y{qi
z->09OW9fO%{`01!qg|kh?8>iK!!Pfv{oUrh-foA;>+@&lTAR<cE{|*9EFZ46^R521
zzF(Kw85o}a_&MM1-<{V}C7uK?^<+QMC93`Db^L#;&1q-7rt8H9g@<pyc0FuL;<-7N
znq5lq|9@RC{`GRX`K|Ytm;0Zyc-&L-zWToR_Po2FZY1}cTBZH^^77^V{r|20<fg0t
zZ1=Y_VPKel;8q=DP4=Y4+6JeWyHDnw04fyb*M2*>CUUdXyE;&M`18E}Upk-7hXa?M
zgECRw*VXZ+QTE^O6mQPCxyfgSfnx2iFP@+N#qQ4A^>W#nna0Z>hJi9%eq7bdrE_Y(
z-CTN(mx008GxVa!yWHJk%jefst=s$U7O2#_S^xj9aq+V=F*P5LX5Qad`|m@$eMr?F
zHc;e8=kJ}GKCg0F;@hv+<Ilg_{eB*wtkshq<8vo2E%i38`||@-3eU8w{nZ}V1R6AW
z!X5v^X;Snf9*z$$KOD^GlK0>A@qGx#hL3yy7r*^@Twebv-<tVuzTbFG+%3O9ccQX;
z+MgdEd9!V+zMQze@7vZrKOS}8%-j7|%i`{=f1g-C?XCWP?(g^e^EaQf(oR0!cXrwA
zyji<;?dp-Yzjt>%1H%uW>`jcHZe_1eJu|~Fd(GS3@AqkTDSdu+Hrt31v|N8}X>Ge~
z*@@WlyP=;<7#J>WF}+#tw0`~i{EGWM{52mcuC5B5D#6LX@S|nc8_5YOGi|HO=2blE
zY&+g9uJ1Q#&!11HU*6c5y!df!J39k|Z}eoo37^kd>p!1c9=G`GWk2iO-s7ozg{>GE
zKAbeU$*}X|F==gECI*HLjixslEWh1IhV#T1GBYsDw_{>qV9@9Vo$BMI?7+a#a0yf;
zFEAMu9@JryB5V8YMzW-BRmrcfucvRzz5VR-{Qot5HlI#_5=d`fEoQB=IpJUvmk%hv
zd7t*;zYtUNefRydppCkq{?YW<vXlS+-v9p;)VKuYsLadDQjg1)`%F4B(^&oY+wJk7
zsj$;}yLG&$>zx%1kD2&<UbWuk<^KMsr|o;nz)(~6^ZExXtKV-ne+D_Ew?V?LrlRa#
z<@1=bo2ffrE}K0`<?*rJ)1RK62CdIt8ooZxbCT`%JI0`vFsL;u>~FJC=`%BfL+}Hk
zHKkj=->Wvas@{0k>~_lXxn-w5pSQoiq3pP9`I2?()+yRedeXqm=W%~u?dQ|+|2A!@
zWMo*NDWov}!k)^{m$qhKS2>AXm6Y6RU}XOEWU~J>TR8>>6HTTk!aJT$i#AF>H>XF!
zP|4G%{M{WD&)nSH#mU*(*_#U<9s(7@OV4pIF!**d{G1V2@vyZ=&en>Vo$t(viOQ2z
zPEXhOpLFHQ6%(s{p{v8PWtbTl=DRXINuFVzAIE3=<pO9))b{&z)vH#mnxq0+-Y^MN
z4OD@e?AI*V7#Qrj@33au>PBu-ac<)|IZ4&qsPxs99MBO+)$%b_Uk@&gsLy+MXXnd1
zJB!V3rc5sV5xvf*=yv=X*{{p_85mA|{A^$QXXkZo!xPK97$W(<e*L;~_3G1SW*Qg2
z-}^mn_uFmJ$@|mK&wF`oZM0nVn~iSg=i1d){rdiXe_#FOo1Xt3PUh!fIH0~^TRg-4
zSx;VYo%!_gAt=PFzP{p-x3jst%=h#X&&i;M<5s!vSJ&5>?*Dl<9~4+^TdUviHP_$!
zC8&*GKJMBM28IhNmdu;_&RM-)<1^335>(rRlGvT9*K4!i{6B2Jr~cTZ`Tu{;H_p7Y
zgh$FmBYjSx+cdq{Ssx!CPrn{pes)FRVl4wp1_l#ZrW9Gw)(BAV;K|9!#+9F*xc!!A
z@pyl4Z}I=X-=DA9eD2hZjmeu|E}Ok<-8#L;$NS@tU$19iIIw&=L!|rnyXE(-<aZzD
zvwpH}_q$siml+rwK0h&4U|?{_WZ__72#{iAVqlo!2HKdmRB%*yh=<9hiECnZ8YLg=
z@mwFb_tG-o*>CoKzX$5yEIrP|(9k8MAboP<ak<&6*X`0eE>r9S>aa}HjRvjPtNih>
zUE5ZQfg!}_v={$}OwgLXJ7u?XcYZph{kb>4M%lCIjN$Pm@%!s6pU)`<WlAo84hDv)
z4|z_w8Dw5s0&4rJ&n*c$9Odil>u2$>#pcrq<(bCmeyq!x85&LrDo7s;_P3q7ulDz{
z+}qo-*YHaiEJ&0G<#(17ZU*J=?p(Qc%`9sD+O@ucB9)JO&9w|f85lz5G2G+;HNa=h
zn&tL-ZPeDR8|(}X=auxG?sI^a#s2#B%k8yx*qV$R@w5NStMTWqxya!4?cn*%_th%*
zO=@PyQF#A9<}>%xe*cCXmaSX2X74?d_3qA2&q?!atJi(4+?;;?-{tx1{$6H3u>5G{
zR5^x(=2^DYWo&#h5ibpAsWNU7{PO<3{r}JQ|0k!Op0@U*(-(L7T9eSwP*7ViYJT|%
z#r7xDqVrBpi_ZJGFx``ZVa1%Mr>CcXdvnwB$pmLDTd&Qbp(3t<FBR=_m-)}1xA*%!
z>&M6Y&w~a{p8PF$dw+d>{I1g1)7s^VIz<^6=KG#&$YEh-<2kV*@vu?Zn;U0lo9o}s
z+3X9d0m9>JP0jCBBriSA%+SzP$d;lUxw9zsob~%XcZyEyMsCRnEW4RHJ*McSs^y0R
z%#er#HNqLZ9@j$JEfdrdo}QX2X`JR$_4U<Mv)o%L@ArN`H$^j8%T|nmA*X<838%%k
z8_C62L&KlWNbWn?!YO=dQ!41VAQOK3KLtzOnHd^*Ph~r3y=jjA7FYRn>d#~5`zC_A
z#Qyv1{$5(_-tRNlYU?3kCWZrTk9j;=eP@|y>PBxn<EcLP%7(Du;K{;%7K;5gpFEzO
znHhZWB?CjkVIc+4Z&!l-m*(H!m%S&s>eIjK&YBJU3=H$dn3f!Rc5d$MTeohxz23TY
zt7ex{{+^F+tjm}f8hV`@LT-F|dOA2b_;SYH(A8nQzZn=lWGXsnttowdZRPs)`CIlS
z9qnqXWnlQRML<C`EINAj&f@20QU4Rxrk|ge+RwtkAl=Kba>KvBzn?Fi9(QU}>gj6{
z^<OT!2Zx4E{rC5Gc!m)J!;KFt9<8#4M+76cW`(ZX{ccy=)~VXzX^)O{-mHGV_wwrS
z^;~}J3=Gm?pv)2p>W}eAo9TesyL&1>ZvxfKkB)SL`YOebd(FeDY#11BEZ8GlCA^{N
z>8Uy8_bPWjoff?*<Km(>n@)rJ+1^DD8rj3DOhC#YMbLUiMg|5l+nf#lGeNz-<MQ=2
zOOM}BsQYz!{<2-Wto&_09%1`EM?9v$an<U-@A(%5{b6Cta0A8VoSIK3Z&tltdwEys
z>yj526o0?loewG;M76_IJXft+rDgSaMd0E~>tc8Fe*0<m<$7>vXz0iHf(OzgPkZq*
z9N4w<^EqqdnjaswWL?z)ZLQc}_jgm#(^EcktxTWKDfR<xU6=p&p?#{{W&00|KUTAF
zI2apLe|rNO^SPO|dhMs(_y6kM-Cdr4!}{x$;Np)*#h;(Ee!u2H3&V!Im?qW>JmA)t
z_4_@O=l^-4o_*vv`>!uACtvoruU&gSc1uR!zMp6F)27FkdG0QIdugF_JCCfD$$6X4
zK8usr@B8)Y%j@g<pl&&6Y7^9|+W+IIzSOtry3x~&&)XPB=WY!J9Y7#wTlM5YGyl0@
zf7`8b@#nMG@0|wfPT$VoUwdmy=Hzv;yVHJrcnFHp>s5b1PMPd)XBoS@%(tCSw&=~q
z<Imo1zn@ofC${|VRQ<Y--I=$y<=)z!KY!P*U1w$(K30Cd^ZC5$P0%rl%<Jo7x81M%
zJ*WEJ&evZ}88_t3VPwo;tNT3r{u2NBb~m%v@4fbW=lVULy#Br3|4;jH8}I3`=-jE5
zpPxN-xBnH$#w#@iI;P`4DW?AKSIfse#zr+iK7hK0ksFg-=T$zN=`-6*SJ|z{V-hHC
zcRud3F8cLyc{-?X1?nKK3|{{1=kxjg|Ns5HUbzg^wmrMJ-)`38J}WIy2ky<y&BbR;
zucv%?aB!w!vKzQhpA#qoYEgq)y4?DE4D|Q?NLsh^*(}hI`_A|KeoOW3{`qV+Xwx}p
z_-A^2UFE+Y$L*ip%3goA?)Tg2>ho)iqH{JLjY<a@2pXLPm966OHHBGOS)d^-(9-DF
zfA_K_$ciwSWO`52(Ok7^Ro7vD`<l6Z_lr*Jc7w*^9)3JERa;v2^Q+bC#nwh`)dJ<6
zwypbr@7}KsYEJL}wbQ!nO~jnKUoY#w&InxWCi?c)*59j-uZh^W=;Ey{nU}j(ty=YH
zT6A7!#B7Vgq`=V7P#y_`1rb}bLJ$8E4UY*72@e;atnRPZwMb){Zgg15t1Bxlo=yqA
z_G8ZH=jZi7GijjE<jn@<p}^SKyB~h6TD?wd)#}yVt=!`OuFhn<VE{_6M?mdYPrGk(
zmx9`;ZT9Qq_F8d^>-o$!%iVOh?DpEi>f4}QhM@j=a=-1jh4WV@AMcxKmK*i#+}z(A
z(|$Vm`uZN8AHFtfYAd(+GXME@FK=vo9F@QGcmMw%{h1dRxgLHT>~CwT8@1&`e*N#;
zDknib^P}D3=|?&QK_jkGcB@vc+H^gxdTrsdl-&5>Nq=62@AnE6ng8N7(}TsF0u5^G
zYJY$8oV3(?dfl4m;;s|xe{Zk%zQ3<FI5-%T(w9|#e^>eKX8PuekB{0OAM25vye;>3
z+JOefm$$d)yY<W6ePOiZwElh@&_J`@_nqfc*YEvys#QF0M&#zSwcmZT!`7Vm`F#F-
z-EB9LdS{C1$L%@hbMklj)mv$^bFW3*&e?o6C^~xf&CTiRo@wXi%v_{lRPo_K$?I!t
zA1<!`{tlE;jOzdW;h+2TgmV9x1C7kZmps*%y7$XjzFM)k==a<0-GU9hE)5JOg>P?d
z^*%q(7IgSV?V9KP(&l>U^J~jM*&{lCuW9-H+VW*SGbhQG-!WVrzCO<)@Aup7=ezay
z&A6SnTNl)8d$;3p-<#d<_wD>}h+Dc((kv$;uJY;BKfm|?uLf0;ptd-ug9RGQU4PwY
zv3viyrPJeP2`ali`F1=1yzTcplQn~vEh&C}F8j=ubz$q{=B`?`3e>`%X_R_OO8)zu
zV*k3oujA`q6i08(n#wL$p%A>x2Q<X_`OW6@&p@6#$S$wr#9+px@5G+L_UhHEqQ76S
zr{CI=`TDQZm;XQd|DX8x`~7^-4!GX0+wa#|-`!OjoxHa6^)--F+jym?g{}^J`r$DD
z`5lFiK`n-yT`!k;P6Cx=Q-b|YYA&BMiIrO{W&7Q-(>n?u7oAXSUvu4Ov0Lw{r_<x_
zZ3v5x-+#?ITGVyo^!PeUPzt!c;T!0X+jn<%T7J3UJXs|=e{X5mB9HBPcQ^h2_j~<k
znfkmB4-QJ&R1_TRm!I#gzt`mc&vWIVQJdN~=h+Y3vSenuz%!@#oMq<aWxjqkACGK}
z^ZU|n|3^_+%_rh@arBmqi!aQ7f_i_?&dl6=?AD=H?&}qIHl?0^v*9qGW|z|YeZTX<
z*2mrbP&I`gG-PgD{mrMg_HR|Kt!~tojFM%^hgvv6Ly*_1{*+#iogTV6%+zMzvsu}n
z?p41}eQ{x-=Okx7OO>~`x1Znt@Adw5g?HG+bRs@1+^iF|WyQr?>vq4JwMgUIZ%`Hh
zyY$P;%j)*OZ=N?wI?@4hLG~WuU(WotQ$SNbKOXnTzb=0L>Qxb_GWzkj|GeGrH<Q!n
z*Mg>gvbWu<dTrWg{o_IN=AX}IgQo&6E_Mgka(^DMgL<54vva3`rnk!9-?Mzwp}gt!
zy4|35FDPw;h7_Mx-~WA2YCh<QX3%i>;z&^41j^E-rKLN6KAR01;e4~>abM+=iS9-3
z_kLfNeSKZ_U#YNlF*BL@EEEp6^PlI|-*cg$`tGh>yHwuCFDrYy^?KTq6BBRNe!pv+
zbfg0`M!tUUx2Sh}KA!`naCxZ=@z|0;xrzskGF2}Y{`~XYem<x=0Ts_;(K!=qzu*0?
z{Qow?hIv}0zjYa|-9IzaxO=j{-Od-6m-~Zu|1GNh{q3mT?>E6QwO_Bg*4EYrinwmP
z8Wt@IYGoWQe)alwcYf{bXxH^|d%Mn>-CpzKk@)@ypV?+>C2T4RHva$j+gzsn@7L?%
z&1}3{yGmb&ZOOa4>qgn_+-^_-cJ$Ix@9sqv|I79zAM4R9yPdmzk#jqr>+Z6*U7+If
z$Ho4-EysEmyY+&K+UvhIzTI|P%r#IXfB)aI!b6<uB6oL}>)+a*AI~FewWZ?a(&<uX
z?Ft_qS+r}{u8I!_*}H@NESG|os$JYy`#b5$iHS!Sxpqs{*1y~T|KB6;_+LR6R|YR%
z<U8B!=(gK=(K7XaJ{}eJx4BqwhE+T!U`xiuMGrsLe!m+oQ}^Sc>-&3qyTjH-iSDib
zuGeSx>qXMDGc)Huu@_~KU$jbN&mler295UX)b33GlehjdpJ&4ap0}X6Voz5;mvv4F
FO#mKzR8;@~

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-19.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-19.png
new file mode 100644
index 0000000000000000000000000000000000000000..24ce33c713d4f2fe7447c47f579ca42358424fcc
GIT binary patch
literal 23940
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_e2hBy8H|Bv5&ggoB}b*j21t-WX7
zyY-s1;;O9GEA}q&+A0!SzIDsh3tCZKud+0&R<E6PDJVp9)rwg2sOUGp*Y$F(yD$Iu
z*&mtbDnh4KGULx5SLQb=K6@tp+{uD_Ghfd-ZFEe6k%57sf%#339s>gd!vTACMi!7j
zGKT_)FXPMrl7Aq<!~x<S7jOVk7HtenAjO6(0w8XmVgraO;2}|Kq}SbDrKz_gAJ1R+
z`T6<P<?ruxb#zRaKYxBrP0g3X{PuS~K0bEz=*exlYh!kP>XU!{KJERzy_<5QV|SID
zd=X@`<lDY;GYp+YwZlT*-PxIXd)vIqXOf;l6%{+W#P#2mtkgVpX1zYc^OWBIM;Y&k
zZOh$V`}5Z?Eenf?udl9NzOpjdc-J12jXK`bQg`Y`Z%k^<xqWSdqO;Kot@rb4zeVo-
z`|Y+?{JuSGd@?Jh$Ja%&a*O$t&VJI6dVAY4pP7@Ab{}kJ-+e3gf8x2@*(!g(CVsi~
z{r>Ue?v<aPg?@c?)wJwQMC`tro3A%cy6x`b^5W7`@3`A7?d_+JA9oL5ALqOA*+S>`
zUEj7QAMX>neK&9azhA4XzP?&o^z@Ww{=Ge)zJCvoh?p_UBy$nJ{U3v)#iw$Ds^YJ&
zi(TC(YyIj_EBC95i`ySPdURz);Np<&J16Jd4hsnh>3VIvNR44;cfOlA!-2?YshWCv
ze#azKRaG;epPT#Z&F1r4l8$oa-q{hDzxQjH+w>pXHzpipnyMM>_W9Xa@6To@<<HgB
z)|wVRayfeJSk)H8V;P^Goc#3p^Jgh3kkiWE-ddS)aZ%j&yUYFMpPro^9=<N-;=bD7
zBJ%R<_tpN+y16M;^IBHqv~O>3FE>m+wxa(3zqsr7Pb~4AoN{|xkKrtX#HP6Vzh9;E
zidVPsNG?)zZaX2d_|?_btLy&$IyF^$dY_!_s;S!HtD?8(RsH|_eQVy`UDk1@*LuCI
zjopyYsPeM@|L^(lcE7jVUV3_(Zt<FZTR6D6FK^4eJw@GrUXLEDgPRe<KSQ0<M%!|$
zb>jC{ZT<N1qoJLhotmPeBD0qF?p>v?tL7Xwzh9HAbK0nxo&Vf|ReLt)-oCOrTtD`<
z%KZ4#({y`tZ$FzJU-vQN^V8|^Ql~fh`1tf})H!YQ>&4>CTjdoMJ2vLtesg#C_1vH9
zVt4zTn`7CVdpqsvsi|_eBd4V{H8=bI`}5OxU(L@mCnu{1-}ydOJA98^^~FW5$2RF)
zUg|9#ydpqRSV}5u(xge3LcX7svMO1zQRj3^d;9FKudi3<Zm#&46uiH#_WE~DPR^HA
zzQ)b&^0il9|DF}7bK2|sdE171v0Vv_0bgHTE&YDC{Ita4UTO0xurAZQI}wVCid-BV
z0VgM^Ufo|`Ki9VU+TyqU_WxFty}hNWq~yfN$jHUZ8@kkM>Xq&J@v%FLj$YL>GYi|6
zn|*&@t=w;q?Cq=E<!eI%0|VDtTVF5J_j;#2f6A04+wWC*Pt^(y3J91`^yI|Cjt-8k
z85f<rr|bECeqHk9gy7dVH-iNQ1wqL*BV$EUQqq>p%WB)pzP`Fz+#4LZuV&}!Wmk4B
zjai?4ecd{1*6Xtk5}QEg@X1<L+%?;q?9e5yzs{=kmB*xO>*L>V_5Jqd=GRN!`Y+GS
zG?ucdD3CgTXm8r-O;^@No0q=0;Hd65=R*4Y+G+3pF1dPdZ?$Q~hlJGA(|qIWelFDt
zU-xEf?BO=vtpyJcNx#cK-X~l2@8|Q-rCy?~ZEac#3Jwn+K74g=?`}Rhn-`_CR|YR%
zm3DR(C`1wx7IcZ}u5#;@%KY}`X5QONReNLp@AI2$b@giKd5OoblAb?){CL;0AZcc!
z>}xt#*T=^nJa~|chbP3vrRCQ4{P*AT59};{{^gi-{))Q4zqEpubi97Puk!P=sNH32
zkN>>2P51PsJ9Y2Y@9hhgW}bBI_3K;7wO=l}|9Un%KV*HJ?bCB}qbol>37o9vyQTJb
z+4|=^3dIY!#Td-%>gwc9v+>KVIoQmuZDA4NJIf?6BV$F~kB98NGL}Ky;(AwRnPyKh
zPWSVyubr{${l4ERx3|qQ&0f~g!7<mm+|RoF-IeP1dzUYCZr7^*_GVI^fBc7bxhjuo
zshOvyXs(LhzV6kvwXdVZ<>d4{U)|ZcIqlq>l|@fatt@_ij*Exq%0lP%Em>E!bmR6!
ze0_a=|HDEdA)%1XX}+?SMJ|DXfm!$W?fv%t{(67ApDx^DIsr8`d!)?sbY89x0D0=@
z(W9C+Hg~S}YVDl2MI(4w&%e*}|7YCVk||}F)bhI4vg*r<XXodycbBVl*;)Mj+pf23
z_pG~j?|+JI^|vcK3Lk$t$S%L4{QW(xz(p>zzE!@tVOaa|sJK?}vYu6;tCz*>EXusH
zB2db{ZjW5ukB75YeRi|^^TAnFRdr?U?{8Ys+j3Ur23tQ*`S|f8NX@IOtC!C*%?648
z`uTi5sBk+w-#%X2EGJ;0Q)|pyc0QRE4-dDmuK4&U>+-VRPft!RKHScq{rA_`S;pyo
zQQPx$UtU``{lp26qeqXv+<e~dGQa(w2d|>kPkv4JvS;78apSKSi~B`{gci-1A<^2>
z^5Q@vGbnCLzTYih9kkSI(vsZU+g=_Oj}Mt^ReEKKr|{F$)BS&cdwco${Q7mR+~QgP
z{`}0kv0<UgN~cz?uI}#7KXy)kQWje^dERU7nW>S#9(C)R<lnOaWpIDHpG)d~J{8xE
z*x(>-mUBUW|DQz*7A%n7yOqJniS2$P<AViLb|tKh*m&s2j~_D{8W@V7oDc+;mB!Oj
zXGU$!npyn(+|ISLtx8vc%CygCjMt_9{q@y&TkdTAeLoI8wn#rWr|`F(nVH$qb;_rw
z>wmws_Efa^nkl!WlF!`SoZg#zds)`iRdTO;44++D85}n~etqKMwqx6JjdN}oY=4@4
zZH?i+ef!kv|NVLP{eFFUbh&YC;H2~U*Vo0S-P)3QY?F?0@iU+6zY-6(N#5Re_SMzZ
zXRpWCzume!ASPzc#@yR$A~qh%t@MiBur2?7UeS{ii8;5;W}D@HT5)odPVf>B!Q>vp
z;%8?HOaFh`mY*NHp^aBMP3N?cvRhAq?&_GGn?Pm#?y|RDkF_V;eSLl1d|U2p&&g^_
zvv*I~l^|<Xaw29|$;rikC#ib(^!N9_ytugi_NNCA5<mtQe|+THpS$kup=tA8t1kU+
zy7je&jm;ew7ndEnzaKR7_oPNHi`ts??9b27d9T;S?R^Ew?|aI2T338npc%7c!_MdP
zs%@?<{Z>5x((BpxUT2@0qIqnS&g19L)A#*+CcQnEjYlFO=eAk?o{w$Ur5I9db|o<W
zcQ{#Y5?Axlb!+Bjw~H4qPFfPU*lndlBU4`P{i@fxk<*rbe0*Fxd|gc5Ypc>%OHQ2d
zsQvTtxZH6L4vr5I(*&9Qbx%(+bi27J_46*f_<c3zca9%yX5X4}Qb<%cD&)M~?=`n~
zWnEphGIn>FRq3lKj~+kH_da_vYHQZgnxCI`mL8sEk~!(rG~Ly&uCBiSrOv%yZtcNl
z_UsD_96<$vR`|L#M~=AI{(iH0Rlq{0Rkx2FIkKYa>nm{cq3Y`^6WRPnM>;=!{CH8h
z-{w)2n6&ij)#2-_-X@h<%h=UKOe(n^TYh)iUs0`)6R+n^V&j#15&!?!bTR$7Hyh8L
zKY#wUEJyzSspX%lB+c{Y=$yX9E?@ItSMkg<n{>9<GZ#HQ^>pjKL#^DaLsy60+E=@q
zPsXCa`|F)kU$3r<weH`o-EaSIM~`9Tqk~Kb>_uZYG}JG6eLOT`+EUNSYM_!!F8BJn
zSZ#ZI`~JGuC-q`?EqQ#r|Mi!bmrqUCpMPsh=HiXX$5&N;ewKB0)l?~yj0Lkyv(s+G
zu<R^)8gzM?uW9|i8do<rEj2Z_t=ZSF)qcOb{J?<&CU28JKRY{V$*rx~r;i^$o?IIe
zGG&?X>}6+Xo3Bnj-nV^iS$%zd>6;sY@ArJ}D|>%$t!?$UjO*)SrHs?g=)S#vd-AzQ
zj~;!w<gLFn^EW7x-Fl^dy|4dYeOO>q$;+U(_x48f+k9w<7GL`9?d{d^`|D;IrFO;D
zehpo}K0E8%ySuATPFAn3IZ*%e>GaE6=YN@DmOE>i-`rJeqqo2M^73-tW8*)6|K7b-
z_TqwL{{Fw)-tBxYw>9r>ROzcLfnQ%;wcT~rvUcyEkH_UfMPKNK1jniR@pitqYrfwt
zm$EKfb8THL$PYVhx82yJBWqLfVOrC@wK4H0V~?&2UE(3=dFkcl<@vkR7|O*MS$?p4
z{d+KF#*7uF+1FNhPuBz0rCp-h&pzHhGFjdK)v2l4EBV;A>v)Un#RTlD`5Cg*OLT42
zRxjsvzN^dU*R9IDyzHdJVx!bkFP=`154*iB_x+QVm8R9-a(X2Uoh~o;FSl*7P*8AK
z8@2V)iHXXhQc|;CeLKngcKu(5+O<!frk|U$b8oBnt7~g#AM2G~-YKk}b$*^L7Y9ed
z?#TtlpsHz!hhXfk63^&uITwZfZ5Hm>Vd3iHvP9D%baj|7$WV|Q{Ox|KTrHG&e7t{p
zYNXslv-o{AS+};VeDwISY5qN%tvNT1?mjn2IU%r}At`d2c7upkh{x^i`Tm6s6;)r~
z-VRSb-WU4tQ0vtdfy%9|tvi|CJUKbpR&I$w+8K$d8i7ue)%~w^2r8S@{3!VO>({En
z$H$~hv!-PK>A8H}`_uW1h=_<;x9Y#$Ot1R!uw7I_V#SLW86a(zMNcN=-Ud|}TZ*1~
z{r&lT{`Qc|XXE0hrS3eoD@NP$NQ|@qV~QS&zyo<51A~CTz(7!)5VA4Jwe;PcNKmgK
zx_p97<);%8i-pzwmQ?Qlez$zS-TyzupjQ9mW4%#ZGA4q;j8E1|!^GsuSCbV_)LkoQ
zpMF$UH{<*F@7EVNHk)KzP>{8$2+$5+cV&uZuu1MMlec$whiiwe@hJWMWSxO~pUlTy
zb~|^UpZmh-^ZWY$(N|Z6US8rkx#ZiMNZUUj4rjhHn<kaqqoNtTEoW8K)>ZrdeDc0q
z`~5Dciy~!`QE>RAkZR_Q4T-bN^XIYgNGuT3jjG5kesqNM`W~g++uOeWO0?Qp9bd)l
zG1sazXzrH{VQZtJw&l#6rWXrplA6T+-gocg<Kw1zcPysr$H%P>Uth+{<!@H|tE4|y
z=XB8fdwZ|$F3+E9QRuWfZ0)5pGmSyX>hGu1`k+J~8@uaL)!sXNC*^NkmO2wx^-}fc
z@88*vkM(NB?%HyDmvcMc(x0B$D^H$y&Fye3fro=(s&=^F-Cd=Z8=2Wns=j1wF9mt_
z<>lpDb8l}ed4K)<dH<`cLW5&s<{ayj)lTlY?NWYHe#!Uu_up@P`|IoL%YRgsfBAFF
zSVza_?X9hsA06!u-IU_FHfrmuwpi0i$6eP%Z9Vn6{a)(nX(u=7gszD&^!>Ule0$#A
zl0QERK`of<>+81H{%7SDyK<nBx%A<oR+I8Xt-wVsRbO5#1QjfIb`-|l_L*tqI$bX|
z2-KF}njOAA{^#fC*RRLduiaby{oc9YON;yMwCwHeYk$35ZeFAEx;M?~{@&{C>*DsV
zdhsHo|3l$}1B`F)?X|x8_Ve@e>&0}VGM=58+11r`X<h8@FPHu8E4S>v__fG7<@~(Z
z|Np-4Fa7c&F!%1RuWfJ3-`-kU{ch)R<r<0PFK@Tsuey6|+uM@6wI^P@=5F}Rp}?Tx
zslV^XqD`r%mrYc5-*xuw#qIg=lF6Xf`}KUK^<R(6*T4Avet&uG{<O1Fv3n{mE{^?_
zZ@&I7L-^LL(DlW!e||jfe>rQSt%XIzq&?@<iyj@}TrdCa+<g1>+~RsCu3tAl%J}N!
zp+kp6WM$X3w6OFyeEa+Te)h2*NiHs~OV0eZQ=ZMbyg2vvwprHY>z<vR{e0H?$7Qdt
zuAa^%qOm|Tcp0cv&b*a&VS(eR$?E-We6p*!#q}!I%(p09q;vWbsIC0*@$u@vpn?q)
zR-MA?_pW``3|lh;RDeI9Uk}RCn&<L27d&(_&AOs-wN};M?&mN56QB}rd){4}cMm{=
z60dK}Sh7TAu1#gorT_c+E*0;+qqn#E`!qwhySvM;?<{_P=bB{lop&xR?d{pe`()+H
z)#K`ZJ{76g6qJ#9^L09x=E)bJz<klf>ToIEe{1EVPIZ&AHxZyxa{b<KvzF{<Yv_|O
zbYf=X30N7l^vaIHWLFoL7l&H8*S+%w)mqcz>oh&9{(ij<D$cI1i;Wf(6g)N4czNBw
zpXs_WI|2?KJXrPT<MG(zIrsML^qQ)*RMI#t<Nv?EyWa2ny(Ry?-PzgZ{<=|HF06^%
zd?}=QrctVhnAozJ#_6Z7Uk^XpB|14Z^3|1<ll|seE#(r`S`o9e2sA*_C8D{g`1!fa
ze}8^jRef3U>&wf<GL}VmK1jUZ|9@ZB)m2OX{r&xV_4<85PftzV3bJITvAdm}-7K5R
zqFLXHjhUF4uda#QY`y7ycK^pepU<z(zrRn)BxAyL_1Urd@%w6|ED9F<`u<-3WbL`m
zr>CdC-hRLC^4{<FUY9N?*mPX3+6Pp}JUKZT)Ex}pzUOx0fd<B1MNhjxohPl(RV&<j
zrB=o4+*I`J%*w^?{aH^>O}(`-xqVgG+F7saKuKd;?(M8=Ya+XPdO{Aj@s@sj6R8`y
z$)&Nev8$)2WcTa|GiI!a+M2a8<>aJQAuA_!iE1zF7T3=@IY|}NK$&Hpzs@N2l!w>-
zuSL5{-rfoYl|ldieYc;g73y_%wt2XRM+cv*)socH(_U^oE_Zo>W3$TNuiPE#^J^}B
zWnc$o)9-i7Z*9w+4eGmr+TqFnzrMbHeNE)%D{CT+L)SzE*45ShI$!^9@vW`d%OftI
z1=Y`-j46(iA6~>WNFLdw^Z4=O$&Y?5cJH4hV_7sKW@pjN<l}ui*ZzLD`@PR>vs|Bu
zh#4Qhe>Y#aaN#niR<39J|NmWob4TIg)psYUdizY*i#@ad-&g&~=J|1xjnn;#zuzsN
zy?lP%tv9!~pMN}qolnLf_x3i^g9i_)ReyT}>Hws@yR$Rx=clKjmOrSn{8sw<+Se*R
zX|o&yUMUlU%FoYC?d<H<{S-Pk$1*vt@~J3jNTc|AZ28QF28Q4r1&P7y<7|zyudONB
zTi4DfYh+vX#o*z?hsW;Uzu(f*GGm%<^ekR!vx?mO+uJ(3y1cF%PCBoz`#HJh@7L?c
zw&j9`QMNx_d6xOn<HwIn_i-fm?5y~>h?AS!c;CK#&yLI2m*{TSIW3|ab>+2L{lA~f
zHRJYx25o-)__5;|<I4*Rn>Xg(-t+g{ZF8IcCzcA&&dsepyv;oM_qVsp%HQ7u^)1!>
z=h=YVBBB>_!zAy{4WD^7H*@RyTUuDwug^?MT2%S*sJQRSprt+u2@5o%wyb!0b@g=1
z(pOWCpHB%2npF9?*WBmvv0mSeNk>5{IC*(ZudWU^e|)^(+|$!@-L{uI<AP?ht1SI)
zYGZRpL_hA%>(@rLze<9)=f#4eKv+T|qf1;rPp<Nb;O5HDY1_+!m;0HDYK0hB7C$pl
zR8&+`Q#<zO%VmGfYsGJF7+zlJ%pSZU!SV6y*V#F@%g$b$eCc(z&#!gsHG`K)+}?Kf
z%F5uq^KPGwsb-jyEO~f6c%;^%*${PDmu(?4gHfxfc38&GPfyKrrkm%-eSLZP`8jbG
zh8@Zh%uEa?L_k?d(Yfu;hS-fsNAoPcvoR=qR)P-rCSwc-&%AZ4S6Wn7cI|`-0ynp<
z?Gn{aEAi~>?CzeNdpl}pQR=MiH+Pq>&$%5oT`%@sLhAOkqg|q#a;<$I+y2X3<~LXC
z_O`DV-Q`nDG#Ls&gUu;X&(F^fe|)TWYvN(Ht=ZT83JVLX9(AhAtWW;%;NYg*=xw>$
zpiXO<cKEuIt=e&We(1_y-=q^c?dirl+j3o9U6)o{dwTi!TzPSEap-bC+18ep6Zh}O
zw{nYzZB9FDl74PZ^g7G6L90K8skG0|-VYj{0`)-r=32eFzkmO>oSQ|r`^2TCwQq0R
znty-a?QQ3+Kkj01NIR5V!I%>D`r6vdpvFng4FlWncZwxr`~Lj-W0HPOX7AT)(WmBG
zZ$JL)<KyF}&!6|7t{;D{;nhDOF|lR2x3_8f&$E$x4JwsQb8m%ka&mI<^M|hvTPq?X
zv!?d<x6Ff0th4Ov_bpny7}T0sfBU{3s9m=$_x7?sKR@5!nB3CdzWdOlrQXv)Er;A&
zTRa!L^@3W?SNGLc*M2z2erlrfab4Nxeyo}dKdhA-7*1^Ale5t{y(wfxz``Cq*J-IM
zJtwPyDoVS5Kay>KKAD{N`urTr#Xo*jfZX%(<44JmrB7bJUVUk)ceRdv)t42E7B2?1
z1onP7#Jz5})yZ>nEEj)!dprB$B3IC`iI{Fw$?+^64vr5|kKc;O$*ps2W~<cs|FB*D
z%F1AM-}!d2%l+qHYhvZjdud_gA;fU0UoV2eXzr6jo{bwf8XeoQYiG=T^M5BMD!;n9
zdAX93(v$b^*I&30aP-KLjLXY><$mwkmj8E=Yd2_c2{iC*XJ?nWZgt>dH!g1O%SSqe
zZLfjH)IOiLzq&TseEscvEAs#M?h1|F&3}5+mYSbM+w<H`KGqD9V*Yf9TmQw0iON~m
z*Ubf$P1`>x{x#ise~x8w$exNqP`PiMcBUX&UQTY^qodugzu&J9zrU|GbW28H>iK!G
zqFNyr_EdgW@dOQgUs&iIx~n9Um5psx%E?Jp&*zrgoKxOvr~vXPxBi|5pn-h%KABUq
z&DSd_E1M=9U{F<4TlVYM64#%fo`U-7tt~AX7Z<ty`t$kx-D~IPT8H=BeCjwgMRV~S
z%VMqcb8|qI*0Emc=YnRF?)xYA96Ee>Z`uCaTQVnu>emw|JXqP;wG9jcmU>UWR{#HZ
z{9MaowX0F$IuW35El5A8Rdkr&e$8C#@~SPjHzv2wtN&LSx-!Uh;lhQWk>ZMq9lOfk
zuWM%Kue$sF%F5u-&1t@%u~Gwr0M~A@(8X@OCe`0^`nR$3%Uucfw_Pfv>ZPHe;PCVF
z^YG8l&TdUS+!pehy<tiLJB!0IP}z0#=+Vs6({w?td{C`;;)I81(chU9CV<@Y>cm9l
zuCA`2-{0PDt^Z$F`{|^5)P{t{M~@$0-BFml{cqH?rJ$k2ZZX}U$H#iVKAG&lZ1wwn
z{r&yBN?tAskE?W@ZI)XkEnuH`h(%OCE{0di#G~+c^xIXz3!PX&qm6oc=hk*lQ~|~Q
z(YJbWdsg(@|BING`f};?IIoSd-`?E3x<1|>G*<oicz^irvbT4#{Jp$_N=ml)&9_@C
zrW*yCotb5r+y)vWIod7$dT#l>i@(0U{(69!A5>P%uldwj_5I!23l{=F9UgO={Vgpl
zSJy^||Nj0y9MlY7?9Ly%w<>i1-*2;z^++yOpI;N?+AZdLIeY4?2@?cL-`|T}zwg&7
zP+l|5zIJA7-hl?jPai)9Zq2$1YF}+mKc97TQ|hbB%lpl8ZY)?CynNTKV~F9#1$MQ+
zH1hB5ne^mW@UPd;liuCgxhi;hA1FtDeH99x&e`{KnV4?WlK1=n-&-s_!_aMh-LI8m
zdNC`e=|-=L+go*OQ);)}-!H+s@%v&{hp!J?8MHL!?c>LfP3!(tTwNXRZ<>8AWLwV7
zFQ3obXFod92`YKaa&9~*6EA#lpi#=M1~i+t&MfzqhW|VptC}AhuC0$>Z(00oMd|Bn
z>$c4{%MAiGoSvPLyj%bOZ&zpM#ZF;$lk#^lS67947e7A-N=kV@Z5coCCo?Ea1`Tj*
z%)RY1*Xn9AXuuvcg>qv<V&3WNYa)|tYHLArC}-dA|Nm~A{^?Di(Yl|nR<FMl>JAwu
z^qFOH^3C1d*Fi&^>hmfNy`3>Fb!Ot>wwb4=>r0>B<m2MvGVA<N3D6YJ*H>3RSKSfS
z4!g4<cT-CXOLFA2$}bn)V^8n<`z<;-a@x+<>vrc=tg|kAV=yfh)Ho^r`YQDLrw<<r
zl5cOzytilP&XSjtj_+%3YVx_dD)j8m;^#51%iiD1-IRJdO)G58i?W`lr>9Gw-gM@{
z!REWu!q>;$y|FFVtw-Wv;PsP})z8ka|5thV*W~YWFTI|e^YYTtW1Dn@<>cONtNH%!
zZrtticXw{y*p_>3ZS?bPHfCnmZfwi__U`WM(%rSczwO-HcM>$D4RY|`uh;KRQ~y8b
z*0$Vze?EC{FU{Zkb=pRq(<T`g4&?q^=-hti-sBYTX*!^Zu4V51a(Snlo11+nD!HCH
z+AVIo&9d^-lGpF2>&Kg^dQCBCY;1gXJAZ#^cKMGFiNa!HX<XuZZ@%7Om>{()f$>BU
zpPbDKRqtslGA=Hv`gSw@?lsWh38)*pGI;r(zM~lz7qu>0yg2{Y4N&oLxQ*8|`4~_5
z^aY&4YA3E=5AV18^}_f4cRx`2P+93QQOP`K_MK;!mU>%Nep+(;mtpd;6X(yL|602?
zYO9E#;6mf{b1%MLj}KoLvoq$kl9Cc=a^dfn%l_sv+8Z-3tF4XQ9VV(367c`uU)yW!
ztgN811@krbYY!bdq~dwJU%otAPEhdS*4p>?_NMk+d~~$?a_Jl;*RG1apGBpmSKrxL
zynM(0UteFpZe*7$h`zQt-5)g8a(bHX<$r&F$DZaE)q3)6o=WzG1&#l{uCK4OZJR%T
z{`Fl=O-(WN@f#8v%iiBx8@IP=W!T!NytiCpIx9dOm=hC~qjr_7yk5-EFh#(DA;ogG
zdHyt&tLtKKzn17*u|h*KIp*y;&;(nwT^*=P|L%_E**TWM&(F`l{^sW9t4lnEMKuB*
zO#41}Ca4N~`0%0JX>M^n9nZMu8JyhQm!F=VUi#$3#E|cM%iczLf^t;;-V5J&8LD7w
z0ZcsjT&~x1*q6SV0xHSxR=?j1nl;UiaesPhYHDOySF%=6(a%q*plRz>vAef5H8($f
z{aX9>wx^FDFD`z5Zt0Hw|NlI<mph$vyNtE*b^W&GzO$FTc#+ZC)^_Ur`SYRQ`|ba|
zDC_|Z6e%h?e!o-P51RM}m4<hA7Rw!v-kjFEWdE*XymB@-9%tX(RcdrB<My`PmsP$D
z4TcH~o91jzKkpUP<$v5O?p^ML{DV!b`9FX7&Nd5eWMVZbeB=Teo~!@!(Y>qrym9lB
z;(gz?KhyNgo2(mc#>&pVd#(4&i+lF%tN$Bb^!9H5>+7njs!OZx7^j~*u}SCp+)nGa
z7Zy5C`X|Ld>CKy)n?W@rXl!&<=;~FV`6@21N$c0I2Q^6ylaIYPZ~x!tdSTS|ytO-v
zpRaQ16w11|sFh1hN29*J-t*Fni;IKr#Cs*0{oL!bk4<GIsIO^Vwg!|Fssfx65*Dar
zetL3J?(rN@IWDB?1)2f}O<T3`%j?C*$Aczf7Q6KZbqcAfoGfM6+4?h4=k%pkZt+W>
zf*2aO8Ce{rP5$F(vGo2b^>WKy|Cm3&owZqU=kBW?9v%i&e0NK)$C}G@WP|3z<DPTu
z{C4=s+<>KCqCbECetlt~^RKVh<3pGE%oMq;7rDu0Qpnz_QupWEPs}!7-(&c4-{FGI
z({!WNUaq(Foa8&h;NaKW|6a4dULU(VEcsZE=XFD~ygMsEUQRsR_UqGW{k!vQ(t0j-
z2r38N`S#-C;<)MR|IeuZ&ylyUi+OykHyG3ksrs6gdVb#BwST|7ylnd|F>)HHlDoIJ
z`t^}c;i#=yQ$dr0H#euho*rL!@x1+i9eaEGrza=7PfLCI`Mmx0W`4UF>x$VMu3TW{
zc9;gLiajr_3SC|D^;Ky9*VEH<C#Ocn?Pj^F7rVQxwDe@<n~lfwek9t)@2i=#=YDI%
z{<_*-eYv-{t&7<?>Df0%Mn=$_Vvk|f*Q?>dIprT8x$gb>Z1yG{?|%D#6}z%_g<f41
zI(bP+|Hd7X$NOY2|M>VgHFBC&$%_Y3`?9a=MNV5fO*gtKXLHTZqV>PM-Z8y+``4o`
zCGYYwUt78AKYzd9U;ZoNp{RCPh0gA(udBk=MybC1AJ4qI{Qb47tHVWQW#0<g@yS>$
zxVyW2c?FN>srmN%qqbx$oN1h{rKRPyyX@^HfBU~GFV}xRBC&X?cKEVg{0tuYOdJh5
z>N+|;7cXA)^6<Fu;^N}F*J}U&{SInKG&MDSx!}xyccT<&h8vWLHlMc(ULUtN@5a8O
zr>8dMMuP^ue?O>vbwv}@ad^4wwt$SxoMrDqu7g4#bb$jSsMXxe#{22Vftp`mGC@t@
z>+52>`uael=a;wsj}G0K<a%{QpfhO9`@_S-w%6ucm1^C+JAcp3U8So*je}25JZ*nG
zXwJH{q%%9VqGCsnp<E(pG6PhhU;nPLbM~z5$1T<Sr|+z*2L)-czwOklxu>V;ex9LH
zcxOl9t*zP97cE*8!_VzuckFB8AJC$cYinm8m)-6?T`%+NtE+Oyy}i7ON_Tqk8J(SN
z9^NUW`sJMU`;3Q&TH{{F>@HiY7q@4|tDOu7zW)0dyP@v?-}1fxe!Y&`o;UZ}+UVt%
zm-~Ze%0Qz@?zi9G-v0XK^7+@w@7FHRxw+}(L3a5ov-9_@{PXj3^_ICNnUmalrIy-O
ze_P=(QR&s)-QRitA7*@@xpcYu-v9r8uL@l~?brAB>(}r5<uz41{Mx?S-=GfI&mTWP
zc{lEP_>Q@yOU#}h{|YL|`DCp?6VY8gJy)9f?N$^&Klk#q{(jKp>>j=u{+@q-eKpO#
zrem6Y%|}!_Y|8xk^FdSBD?n=~@`6_cD1v$jXJ?sSzOc~QH20Q?Y1S1FM@Pq7+w<p(
z=|n6rPCvII@o-z5`r_h4TQV<$dMlv*(yuR<{X@6s#Y!fBxt+iN<?HqPuYG%a`?3wc
zM^U)e%k})%LF*ch^-6CoeC!rEZK=ClrOW%h-{;*nn`>2iNjiVeLc7{u88<hjYK5+v
zQugM?!k?d?Ypbcb8K<B7V&V7q*VnJ0wFlYP*L8Jv2Cj?QIR(^#e{(Z9bX7>;*;%Hd
z^789vnP!91JZNwZ)GFNle&21=iu<#d`Obc|uw4!`cDiJes(04sXJ<jv1)rXue{Z%k
zxsi$W%C_9-v$IUSCr+FQnxsBA&vvz{_cRRygMf(>C*Imsx_WhOQqm&O2;U@C?^Qud
zy|lvC%m6jNRlTQW{QmYf>)xK7tGnl|U%wvI(q9p%3`&oy0vER_DJxI4tuA|ee}DYz
z>+7%2v#l=q@gb3wg=NXhT1E!XGt86zocZ(NLxHfU=+sBWzxZV=5<WdYpYJtQEA?L8
zZ}60}u!u;CR>+EkNs}hsxwY^Azu%xmHoHo*jSC;ST;5rnzW#hQ`-EN6XXh5axS)7>
zu{*!8oLt_Yzkhu_JUTLOZd!VCL!$Gp?^9=GKWE%I@ku3UCCa;v?=CI%URMAA-!hMh
zN}y4oDO#bYdL#@F#q6sAHP;p`TC_**`>#reK3VHDtCAN9Tw*#IHMO<9xwqF@nhFUC
z_2k}O<~?06?)C4-{q|>GTwLt?_SRP4f`Sd85x7<^Q6t~kW~Rl@&Uk*@1M1Jsn{0UO
z%Gzj9Yqla*Tv|H2rl#i3vy&0~YIbhSz0D(ObY$`0mBGu;d_HfV|8C#!Jkapar>CdW
zLH-8KWlWwiV@6W#_4mJTt$%ZK^Xx;d+_SApU(I+vuliih-Cd?f-)_&noi@unKaWd9
zBcbTonM|$lbvbr_J{%5-zkYGC`)tr?J_`$r#O-Z&pEX$4{@U{L=H}&{9UY*S;<A*J
zlb#(Fk2mS;?2L=QoL%oHt`m`vb!9~&$RLm_<m!GTZcaYV*Z){uO>LHVe9c8raIvtl
z&06HzJu7Z+)y&}KewBMb17FX2&F>lXN}HP<?GiO^Y;06BF}V`5KJIRhy#2k$|BaJ-
zEbIR4kTghW&<tNU=j24?_LEb!r)$RU+EV%BVf)!HFE5{+svVy9V;{qTtvbnh55t@4
znLRx{t!jU5adLJB<(trzK}TQ9PLQ*$da=0Q?$Y}G|6WyjoxZfx8#E5}@$vE1+1J-i
z`uEB?c8P}|sL=fU>}+xF{}amn8Ta;7-r8SZ-{n6Ew94_{yMG^(9sd0JBO)bLb-3)~
z$B&@m^R}|m>+9>+Us~$DyEOdAv)TD2udZl*eR1({?(ccF)u82ga<x^A3=9qRlj>_2
zJiDFS`Ci`Gm<(#C9N)DnboH*Ucm4iVFZG&w=T_*d5YKJ7%U91gXJBCXQ0~m&+5E(k
zb&qdV*opwfxmKm8Oix~Wc)0!P<HwH;4ep*l?|<;%!F4CsGk^?NV)Bquu{ScV{B|o_
z)&8gQPT!;?&~(eQQhP>5#+7#8Wf>S4e(e5z+`i3Rmx-BK_2g^g7nA4L&%2{$U=T1}
zFZR=}`Q76ByKYs2X5T<-dmcV~xN;ja1B1gc4<DZpC#R-&`~TOi4>o*oj6)%F!kw>L
zJGHNE<&(EtvtWV3&!0bc-iq5<<f`sBr{MQOpLtI-w?5yeAGaq$*1BxZ*{jS93=hg?
zo8`{3DtR&CVrq&f%LEgRm>nCOoSe2K9%kz=eSK|ha7xOO*S}Ak@Q_RfiJ4|yIkC0o
z@2{`Bs=ls@zWrMDe1>)IEt9Fb(ciw!1+6E|>(0HsZDsQDzIEqwJ?xo0q>dgr0*>H=
z&FpudG5&nJ{r;8p@%G`nSFF%rWo3Q2_xrtKZUs>3S@h(@LU#EYgQLkR<-4__x2@3%
zTT{_~4z#d!d)K>9=KTyxFG0Qhna1fQA09Y*UIH!1`TP63_asmoC}w9-=7R%`pd~=B
zuB}~dSNrS5pP!$lEQ^-B+xtE4=&@tFzKIG5EC7v6_}hM+0%~mje!o8+G=uu(<>jxp
zve$zaaY`0;F)%PVEc?(upEGunl9Cc=hGqThZ*OicUgX;C_3QPt+s5Z@7Kg4519fje
z3C*ofX61wl0{w5*d}o2ygk+wdXA4?V23md@x3_9()bVA$vqM$}spj6<G0_?{jyqFe
z{`EZBa)&SBCp@}0rJl}uc&Ifq>-UZ1e$afw?x~wVDQCazGe%JArp+2&1_lOlm;X{%
zYmM<PhKgI;a--d*Gcari4J3qa$+*~~$ILLnQ^3J!A*j?Y;bbVd&BBs$ef|DC<rW48
z6+s81mEkI;=Uyl=JTSYltXtgr)saqN76FC^6($cgQN@)>ZsMS@yHm#F#LmFLFwDb{
z1C*#3Xu9SbYox#2Q2g9)YwqnZ*DjI3J{il9Z8?#9Kb_L{^6@Fj-d_8=4Aj;Ft<)(f
z*Z^7+C9Lk35^xoiy`DXseUUXql$}o|V5(N=6#aO+udl9pJ32Z>ZBFZrtNWP>8Xlit
z`)#Jm%LfOWK|SM7Pfss@c)0!bpP!$r9`~AqCcQK7?kfHC^{Fa5X#KnR{I<*BQf6oI
z^DSv-r9g`rCM{VPyBoC3<=6fH|CVn~Kd<FK&jz%DS4dcRYwBsS*49=}&;;S47cVk=
zXBxT2?k+of;xecVGZKm2a0yg=Oj>f`LcsQ?tlVN#a&MoSraN0j)6Oo=ca}+EE5GNe
z`2G95rt7V}xjEfB+<<|BVFIV1!=)8@cXt^b1Fg3KwYES#l*r9#FaLhOA3oo%RzyN#
zg)>r3^DT6B*wtreXB#glVqjoU_`HBSObRq2SM_vi_?KJR>p`8i=_--amWsz!I6AlS
zOjMDztBIHtvLZmS|1Gzu){@}mewvz^o^^F~=S2A!7#LENSSFNk@bia*)-J9J)n;X7
z1x-wVd<|+#%h^`#nAi67{rmSDa~&KSR5T3@CxSKwG}P-bc}RiAK0wR0%HG|1x$E%7
zMXubjJBwV;+kT$|n#eqGz`^s<{Q7?{H~u}^Ev|a<DjTTkQdeqNauGBW-zBPDRkA+o
z+M1c5)lO$;o9~|2H}#I_>!@~q`LKY10IBzNJ(Emc?@E39?>#pI1B2fT!{oNKGcz7;
z1C0+zhMc|6&ZyE0T2Q`VfkOXNPft&yV=q2EJ*|aQAC*DsqZFzBYyLs)(b^IW3=G?s
z#O^N3x_<7j_yN$c=2EYzMk^NWXP?(J)eSVx{_O1Rt;Ns%wm-eR+<$t1fB&iJ`ud)r
z0na}_KbL-Z;21u8srU3(+wa!}zrMCscC91>1H*}&9n6#5Kx^_q1GG_FvtF)TJ};=C
zV8gy2kGMfq@ZDXd!3UdIRXv&6`L2K_BDUwnetmh_9W-uqVxn^C`@P?_%*@P^{XyF;
zP9)r6^aRZWXMcTl71X@ASN+}=v^c5y+nbBo>-R1zzh8U(>brHj-(Bhw)ehN|;>jyv
z;Gpc@7cyDR_siAr_>W(-85kJ;JT7Eckp->v`}z6#{SC1<H>GYZc<98g1+rt4*gNRd
z9*KK7u;yz}4xoQ&LQh+JK)Wp%e*C@-t9V%d&%0~I#KG`@&r0WH*zrDD<6Qy_4r-1J
zj0|@i(^X=pn)n9Y<XOkckk_uSx_8P&*OW|9b;EqhYt@X4t_%lq9mLl}A5|y;d17!>
ztOHdkfI>j#@$8GNcY0Qbug`jWYpYeohXtUr=hfBKr>~oP&janV`p`e=>AQxU`}<;3
zPfZE@`|In~<^J-nuCAaZ8=#pF<>U9aWKIUHuXykv;pvHq&QDKGy?i@=|J%Ui#csV*
zw8QmS+1XbIFZZ)5eAJ@+6;#>JjGV@;U|aR&0yDqOg3HVOL4$Lkfo-oT8Virh*Z=90
z{|#Et(ko?J^5_UBXgUfsE<ejGcNH@`-;P@{HWdL|v#(!!cXzjG&5r`mT3XO_my}t~
ziqq5e?|+m6^%c(OT>cgfn#cx~&6*k-Cvt!0@Ba&0ItALUFlmZ?ecjfan?d?}J{*!=
z`~1((&!E-0AS*!Y7>|}YxATQ2B`w;Pb92##4F;Y;Q?)`xWM$WC1}|HYeSKZ|7C%rO
zV0?N@xdUkZ38;Jj=ElZdMNhl3EAQ?q1<i-m{(igt*3RPPptbns_iKVnUtin1_-oCd
zkH@Xb-ppv@lhyM4^|;?YrRQUYxV-#&HQ!k~4z;U*c0hp2!Z$ZJzt89eRlsS}Gnr3-
zn$MuMM1OvK{PlhR|Fy2&VxE)k)qam{ZEaoY*vtl6Zx^*KXJwbDcGjU5&hjnumU>Uu
zDt~w9*8ckapuX+XGc$vC7C#T`m$Uuye15&xFKrW9>oT9I+Tq`BfEE$m+Ee*icC8?&
zNPT0J%P?^XsKIUj=R-4S67$>J+pj@`Mi&>mgT`f4)zm;Uj-W|@_4zf6CQO)M9d)`-
z)_Tg6DNCN6o&CCzT@JKmL9Y6ZA!r2Y)upA~Dlb1gJUnTMQ!7_xPCTS5=H=<>2@l6B
zj4qQvd(ysK_J4gnzCJV}Vg{%y@b&d||NZ~}?RIi@26fpyWI?OJl9CoBB`2F!eaQfA
zmPtO=6ZrkzUDM)cpf!Qsot>SNRO;*N``=DJzD8v`D7F3TG^%9)%{GAsSSCym=#{qz
zEpxoq#w!gf!a-xbuPu746%7mmCV_@zwm*G)d;4@lx9n?c3b%T`n^d|M)T?_7YMuU2
zKedJN$%luBs~$A6PqD2oV`XJs=`+(PYG=_>C1vHUNk_T%e!UhA9%I~?<O<$ZcOA4U
z$1|vriS^F3_O>>!Nq+O~-oC0rs&6O!`Sa&e!Ir>DvtqxSK3<j$Y9*bWp?Lm$%3`A}
zi}pABNIQUHp{0dIH+EOZZ1eoEl$0e&Nl9Oh%h!8My0s;9@!Q+mS4VD61G(zTuF}`m
zQT|K4rmFlkJ%4;FpRAS2%k>IDI|>p(Q{so)c;#-dkKXP#apJ^Gn<#tF`SIVczDx54
z+3B09e*S#QUznX?>ta?epI--F?)>x9Q`4j)9H51F`~Q6EUhSKZumH4dCHMBWlbhC9
zNBO_Lwl=lr;u6ovcc%HzFmSA^s{>7<s%WaIxqW_qzMNajd%E7${QZB+jyns1nqN0l
zZ*_8jT18v4udk~9{%+Eet=ZR4ZPF3diMX&h_u?W~)9h;?b5l~5>?(P==;UN|ZB0$j
z(pOh5n%}Qk>~H@!gqfYM<f>`G1BbISjonLMUkjaYS6lM$PbFyo&i8xO>ywg`k#o?7
z#KWM-1+AK{{QT_dGT+%(mix<tW(*|5F0;$mEJ!-q1)7_fWnI3mOH_NAVe+vR;p^kp
znU&uyogTI(VqyBcN;lBLz->7<uPpHt?v=4L>V0ev?*HkZw)iTsa`uMw^Kzgzhq!)R
z$kkP$po!TYy_bErwq#!Z-)lNkZKbo@bY_O_2aiv(^17w5GKuXv6T|ky@&DI>CYeRG
zKfS+o_QaNQ2NlqUGJl(oE^gC7$@hWT$t}$nK&(H1iP{{x$%Vo2*o$U<yMU{!LZ{l-
z*ZutQqoU^Lue4X{T+9p%3;}BM*;OL{|NHy(+3b8RBcmW$>#~r2H9w7Zseoz(b472K
z2`ht_gI4NqPCtL{MG#2zPLs|>R&7JWKwc@66EBRwLW^_+9bR2uzy9m%>**z+))+%x
z;4}_}_xpaY1Fe0(9#`$F?mzF$3s8HR;m#5rK?l(Ki@UqaUoV{=7nG5)0yK(nXJ_&5
z+NUQct1mtc8a*grj!Y7$^6}}>IeiMr8qki=i>e@7ckpg<5!V5+>iK7W;yd9kU#sF-
z^<<)ZO60WHzolPZS$TP`4ye(3K=;%XMin!&uxY6)b8l}0^$3!Zlk<1<rbdD{)hbLr
zJ%usl{5;!9OLA^*+F8pFD$%n~PhngVu`y|79fX@CU<I-Yv`~tHfq}rTT%)JS6?;MB
zd}(K9EChM;%gf6~$9AmUuH!vf&G*!TS0JO7xK86x=oZ%xTOGFc%kTI5waee#0d1gg
zmp;A8XaP82UrtnI^4MSZH)KPC<I&^CSI6uul8goQ7#e0zQ9ai1=FZOGz182<YCy(C
z#!TZ-Sn4(P($CM&jd$^YgtlvVvrGt&uMGu7gpiPs(Jm3Nu!46FW8|)ql}=7hpzfcm
zyZdU7iAtY7ek{yRj+}O^Pj<GWD5!<%(XAus02&9re*gLT`R}*#f*YzQ{%mq#*je>8
z3)K5(V0d75LI|=p?T>9rr?tXK(69?=$JP6LdnYYPI@<LTR13JcxUhwT`W_0pn|v5v
zUSB`|SfA|ci?XM;<=X!Ja#_l<D1|K)EWdV>i};$r#cr8jUR=z&xoPROHIa)!lh|iw
z8iP8Tpp_#R7rSSFd2vxPRt=Qtq)!NyJE-~0Sdeyh7I<sn>G!+e+kv`8;`(t{KpA>p
z?eDaJR*=^(DS6*v^z`t!@b~-u`Hz16e!qXdCl{!Zprhc;GU397fLzdU?$_w;d7&O2
z9nGSk%(g=^QmMh_&xgaaED9I3@yoBfU;qE^)<56x*Ix(iLnwUYvNiLv8nZSi(M}MH
zOyW7Ay?)Ok-RNx@phX=f856ibv(KQxI=%RPYpTA!$~-YaQ8EUUh8v_$3Nflwe|rO(
z@CGfVHskkL?A8lfZVXx;HZ3)^U@FMjc`Dv46H-8vKcAnSg+{Kqrgsk`$bBEaPtbhd
z;Ns$PVq0$R{e7`@b#+}G9Xk@mwNG!_l6_sTT?^#00%N08hLyp~`*coE%DtU;AC&)3
z+%igKm}!*iwF<(W1zLspqyFvP$_b%g=l*|KZm!Y&W;O2-4Xr$vLTC32jNwf)dW0Q)
zL<*&+AIvbhXyA6d_o7Cci2AIIMJ}qxPRuwdknC#M*TvnVq<65FBT9)`=|oZl%enXb
z$^V_Clr`quUVA?HYUrK!-|sxToEv(2_4%F8nH(~uTpE04o9UL{t9%}nz5n;!_eBR7
z*;D4%emhxuJvMydNd|@n-ir!MPxgF1cRIHGZs_ldXJ=+wembFST>R{e%1O)Tb0*Ku
z+qE+2F(U)R>y?fyCpMqAo4v30_cgnHZ@1mPv?6e^&F3@5Gi@r1`mA29`18Wue$|5(
z28IK_G6WbmWn5geCI9}uZy)pPf8UlVI-&S-$I_+z3=Fb-pmPC0v*AxBIP;zCku=sa
zm1AJoFi*;*;mVaOPmYSm`%F4B(^%c#{%;AN?UxI;{(@R-_cn<$Fs#`B>S=Dp|6Aev
ze_f5K|NAv^UrnW&|GYVBzO$a3Q0`xI7qma+^4{w2Tz(u33~Tz?1Qn*o*HzxD`~CJ#
z-S4-VmzVj1GU2(o*6N;O`f+nUK0f|@{{NrzwQW=x7(NtAxioCaxTy5_Snux>d(H3H
z7@wVOu3xFez>wf<+QINMde!RHmv@!E_UdP3U|7>$C8;nyt}1iYs#Qe?S;d#^+GRC8
zuIlA+yXC7^X^F>GBywJ6WMG&d5*jGty0raA_SLIbSFT!hYE$azO+TN_UVmM7-Ktfq
zHdTFnCA92z$uhsWvuwZLF+M5lxi9c#A%j^{p=Y1(r;<swS~lDVj(s?Ie(Uo2byn4H
z9zMUN9;ko5VNK-bXZdz)3=C3g`STbV7^W<9WI1tWrm=D2p_cwT^9>T6($3Bbz30Hd
za6mmsU;p5*?EC+|ZQoq+@sUj75y97Y{y*fepJA4J>xuaOAFd}SGcqtpFLIp22wJXR
zbV9Mc=E*-tcG)TJ^0ixzbTTkB_%Cu~IdQ0!`|_sL)BShyFD`PuSNVLdkUA3sgIy<^
zph9%+)=;_XHyiu!)PK3?etB*5c7)t<nPQ)Jdp@7*ku*+Q8~tfr++M5evE{MvcD-I#
z^Y?Z9dRUUtcapa(N>THjHD&X8JL|=6y{GuB-%L=c{P}eH=Wn<3m&fm~+xei0TMHUj
zM<geJqW$0R_viiVe_j6a?ymLc=jYG=`T6<s?(+9{icag!v?xrPWs({6(vXp%q5q=7
zxds)_($Z2ti-#?93J!5jm1AXK_|YQe)1Y#)OH|va^wpI!v(5Eue|_<6=abd46=Go6
zz$kS@HNw*<?aYiTSFSAapKtf`c>SN_Hs9|QdrtcK`T26^cD|iYr$uYoC_>ZEovPPs
zEq}k+Y@BeQ0pteFu0>_*o!j{=KOA7*%WcKLV8Xzw<gjk%vspD?SI3_{U;pnjC_+lV
zeZNzD{?9}H`V|LK7#I$;We6}DB_Hdl`FT42--*9vZ*NtqmoPA7Fo2S1=4G|d&(Hrq
z@%QEB<>{w&x9b!tF)%!s4AN5Y;J}@d%f6N0@0P!Q^Y<Zt{fV>Y_vfsyd8#csgNK3P
zh5)aUgWmo>pVq|fwX&`LcINxO?|VZ+L!YMG|Bmdl{dVKc*6VREudEE#+x23RS3f5M
zLro8xpaN)H$Yp=~xs1$gPuA^z=M^Zj^Y6FYprj^Ke8#Zy(@AyhPxBNOyY+gNmX?;?
zExm44t-tq65F3xgglW3b%W8jrlQhe@aeq$_4+Dc8ztkCN!LnCZH0^($^#3$@{vQ=k
zoAuh7$jN=O*2{M7GU7F@{`MxO@Th3!#YIQ0zJI%4|9?yFZL{#W%G7B(k&{-h-)E)2
z=Ytcdy>hHq`pkA&1_rZLRsZ!L+W&p&|MQUez6tN^zVH5du6*BQ70@JB>vFGiw%_mk
zxqJU_Y}neU(C2(Hpv1K)^|Vp$tt};QZ<%^-`hKtaIjA(cu`#*$(@FL4q!b2*6+5cx
zIm13bJ9~LY;p3c*N5!VfExo4PZ!@X--A?uEan*0FzQ5o3d>)UK$qF;ONlz9u^Lh2l
z*?u}5|8LV8Lq>)L_f~#qoTL)}`_^@%x<5a*-ecSw1oCBm-RIesPp1TLI<2?+%FX)M
zYquNa-`fKU_|k7x-`~wmpI5o82c$o4)%WQMswXcjbS^$7nZBg{|39#{uh*iNM{Z6l
z?Yo`aZ)^5b$NXMJ^1X`3y?_3F-yi?{-yF;0Nh+qMrlsGqva&WM9BkV2|KIPMIh)U#
zy`00q5Fl^b0cs?~znw2%`{kn5Z`Z&jt5#{P4qtz7NwH4E28I8>*8iW?t+z|#?X9iR
z&kavc)AgQYl6h&#xwy;Ae6#xn6&M(5<V-slK&d_`G&J<3A-M1ZMX_Ph5qG)I4`<F4
z)egIIGkRam&#2=J3<sY3HgimPc(^^hs^!cKLuK>(HO1?8zuR?Yo~`vs_Vl=E`tkF=
z-><h{zyDuV)Yh!f>X%pBrzibgYFYdYG?e+e@Y~~AD&>E#-ZHHJ$H1^aru^T}$NGCC
zJ00zUUzIlK#P74&|L^O1P=&Q6|Gr%_8*kL}Z0%D9)!*KTxK0Fz_2)Cjuiuovzh|31
zw=}HoL$myn<l}vnuU0O9C1ad=YRZ>aSF>&ZZ7ZH!^Y}79FT;W58`i}$^m`ZOu%`Wd
zvtm0VICi$*ubXLEoc8wadeG`%P#~Q;$SxoA%LbH**4KSqZS`6_roeHUUhFKx<YP;!
zzrXXe+mU@ecl+IGH#etWzt{EsAiMk-?e%*m6`!}=eq|>k!vedNTCWc8&AtBcjPdz1
zz2^63fJ!}fxr&6eGczWh*4wSKHfrlB`TswTd-aE}uK)k9^7-8IPj`yXUtI@US9CME
z-}ch3(${lJuSG^~O7V2-mz%qG+byl&Wj;SocyB<|CxvV*KXQJ2FmLr&zxkzHi{-`_
zyB|BheYxyEy@>tV`9)RLY)?Q%=!V3@Mpa*4+}e6>uJ!ZR@&BtpySm<NILs$HCoi}D
zFVoMwyStt~Y?nU=Y7|UVc2E0!*8Kbe$7Z9dFB#?gnHU}vuf4~1LOOrX#LwsL>(_4G
zSNnUJM%S6S*4yu~oN(s1-E!{h+_GDm-|v>kpS;Y#;P5vr|2}8!(Js-g?`MBp$S=P>
zYU?T?Wl)6~wAYq-lFH_^v!|}C49=F<kJ_T)`RUc_^~-!`o0ayJ%gQk@T*?1x<)F9c
z!=adphpna8&Rab0*(x{vtKSO-h6Brk^O>Jqi_TyBg@b|NfLmBT^OGNs``5#G@hyA|
z3^m_41Q-|=m@u(0Flh9G4hQm5c3@y=xHKv}sKaE!*DqIs{Zo&02)?|zIUTgpN5Af4
zx8<)Fi$A|wz5bfzx24nLPBkzxU)q#<8dMq_ZsR@u=jUf_15*ZuEBd|Kwhqo8|Guxc
z2d&6s<CmKgTYlH{|M&X;(_gROZ&&?hqdTZAIk)_trKeH#w>NM0|NobHdt2_hJ)chL
zL~c?EkFPC_t9aPzGt)@5SNiufW`++xpT-}4{qj!n`LlD&@9hk8;E^;^iT`zJdePIV
z;m@|+&hwtsBW0>}dYbO(Et!`uZOy)}a`ImF`?=11mMY1|`_7(JpC2>vC#Wna;Jj9K
ztNecL>p6RG<n4Y7svAHJ;We?lpU<l{%DAxL)(?+K&3slGwpCwF=-2-|ed!r1L&GnR
zh8nNp=jVLe`D7=l<nR3&_U!EJ>3hH3T79l?Z}s<c#^-H<zf~|W1gz(n;Qz4C`rU~)
zH#ZxXyttrp5?)R8tzEhDWD_g*r+>fSPq$KLV7Q{r^hCJo<<jX!Nk=-qyu7S_xQ*9)
zl1}tC9nVWkJSSTnH_yFQvNoB4;lXE*h8m{g=jYBoY?q(6E%)}bce~&Fg@%SsS`xWA
z&2ti{8mK(?>FMd~R%{FmcKvr)vzc|{_E<2p@tk;cwA(oI(vqB=Pp56ImXE9Y`fzDP
zedf72mYLVr#hTsD+5GiK^g7R?>+x%4KR@SZU^rFye7^m^OS7j+JTZ1{$Y~JO4okVP
zz;UKwvYTAZhl8MkD*J8u%S)=V)@5gc{cS^^?+jk%<GDU=@3qhQR^}(o?fxEMV5s4G
z{fqU(4wd6!3DeH=O;1?6+%)@I%83bzpf1d@e);+L_ExX|ykmXs+w7lb^Xn#qitcrw
z6<?K4r-mD)oS3lb7%M|V)k(<-UrWweK2JH+!uj)5_&!ieF#XPs!tA&8kEP}3Z2U33
z{^#@_d3(FRzrLQ1OrJYd)q7gXmlqdr=5D`hRP*Blmk%EU!`F6(NdNP8zjIctT4j`Y
zsKsZ7!NPO@+8HmcjouFG6I(u?Q*2c9<V4QCpU)&sG6LNC<@U~7|DS=O;k+K>rg?Hz
zFBX2aD_cId>{RXdyW2UJGcq)^oy;CB#fE1Qo+2E%vnchP{r^9p_UhT$=I8hQemA>Q
zSUs#thk;>*2IHnqnfgB;cYeE-U3{nTc<PxMhM9ME6teNj%s4Jzzvt3oMh1tYChNX1
z%y$i5=5sQ({O;83bvxDW|GKt)lFD(}@|db`Z)SczXRSY3&3Dy@76yg@$#V@kOplNE
z`#(O`TYO4$`IU91nU_@5=avM`t9aCTW}fZtrpt^B4o^8I_$J)ilKJxDV)v*m85^%v
zy}!3N`#U4JbjV>Ues;#w*VlLM*IBb>iMUSOey?gZQ!q#y=LFw`o10QIFD>z$`*oS`
z>}&6s84f(3D84YC>Fg}i(_Nz4uh!_t@7q&WAN#L<hRwE>Zp<1t+wITS&3<y!i;ro;
z#F`JqXZ5GpTQY9qymIBrn$Je7EsLM2c<w5Bx#`^Vv$ITJpReEb@w`04d{ObRDu#w$
z&<^RBmzVo5J)SXv<%HUW)#2;^od5sFf0|zGu4~*E=hu8X84?=0G<<#B>zaFs?XuIX
z-|bM2&fojheV!^K!-Aq|y3x}jH>W+_aF}oP7Y*JpXt#b1Xq4yM-SYcAa<*2_=M?)*
z;=d=kH~suPP|riI`iyEA14E6SCG#duPzM!sXxoX2%EsmI?&NI0TPA5;mJ?V1_baH=
zI8~0HfkEq-<OJW8r>Caw{BVf7__%C&%ELpgH%qU_7XN%Y{rQ7t{&in67#IQ!Aq|)B
zpiwF>WrtUdQ?<jN{rP;}|N6Sv%X=z6zuEnMAE@)Y^f(hkL$6=M73Sme^)>7Ee!C@8
zey32<IL$}OJa0}TGyAiT$K}_9jNA}d$?MTtTXFgxB3Xcr&p1EN_VUi+=RUJcRvr>&
zVmNT@F^@-Uue`loueA9&&E<1~c3)fKIeAXWB~Q@E0jSpG@?&RUke<%4azp0jWlP=r
z<+ArCSA9BI-C47PpMhb%DASTd&(6%8JZsi0tJkKcrkY(!pn8jS852W;uX97ljZLYi
z!PU%b-`Qqs@3J#AoabT;N<>W)@(c`i+AJQeSFc=2IXB0$^qPIl>q|?$Zz?k~98gns
z&{`9|J`Pl5Zz_3tY3ntls1=>X!@yu>#~768E?XKBwl-=iXnd<I_vxvrptu0VW69fF
zTR|!Nz_F`4E-}~K`}*##HKAxT(|X?$$G;|Krx9q}=iQFSeL68a40gZUl@01^%hY^0
zI8~09fx%3Rk%@s}$}vhx=?BJXuh(ur*Qq`);-#Tk*ZjY4(pRoqckar{VDnqg_xyO&
z9US|%zMf&~BXt7@=1;e>*FU`y?0<IK?Y!A(XJ;)feSPia?d|!;dL$=5Jw09BbJeO<
zT2_xgJUk2<*XjNC)9l;z;Ly;}kM9K!Jdb?r#m{iy*Us<vs*O`lOaL9K0%{4IpJ%(d
z=;<k+Stgp#=a$DU^PfLY{_hL-sdAU?KQR87&BEcpY><6z4QOECX4>rBPrvW~x0`EK
zy6Ud=-!GSoZ>COvdawHZ+6OHR8|q@3ST8Wt{QrIbeD(Xi)93&DvON3f@%CNi@8=nx
zw<(@`K6Xbz;=aFc^V6@#mivOXKJ6-f%_C!BaNhQN%-rPl`~Us=^5&*-bk0WCTU)cI
z@BMzydjF53`dQzn>&4Cjb*66TZ1$aHmOBg7rMckDe|AgeWwRHrK|9=wj!CAc9G5Nk
z0rl<|I=6$`Z6Nck`s?5C{a*BH<??0D?R=mmRekpVe(d@EZg*+l?)UqCgT_ynxOR(W
zUR@Q+#w#`D<>lq|Z*2H&J~+TeDRiT^o$0fFH-lSmM?&*HHHK^b#tIC)2S6RslK1yO
z^XTW<?7wfl9(TI_|M&Xz4-XE4LdmH7-JL%_j@$d~uls9M`|As+UF11wcK$v~P@lDp
zM{*L#Kc}bbpD#XdJN@Kj_4F4P7J5z!_O~_tey7;~oXzJmZ?;_a19cINGA}IwrGuAO
zS6{C>|7HLG-}^xWG{t8Ok1vVdo;TApJ1lR<!?rK)@7rHq?(Yxo)$4XCDZBM}+}@U3
zd{TA#lc&?;&+(eynP7geLYd$8OTgR0?f2`d+xX?@fd+t9tzLHu6jygD9{1j?|Nr;%
z8RPRQtJiLedaiSMx&L`VcbSQCd#j#qI;{tqk^v23+5G$QSo+Uiwgg)dhAY|K;`(~4
zR;}t%?zbu0+jqa}_1bP>KZ}LmKAxJY{aWVpuh;9veP^5Lf^yESt@S_J>oxX$S*ri{
z?D@OPd}lv8V|@P4?BhK0c6%~zZhCs(26T`^=`}U~c`+fOp`zt?3f<q{y0J02d)2B{
zi^|{MJGv@#b=LLu`+mJzv}@O{83u_?fg-LOOI}`DlzV&I(ahy@w_STa$2>poBFOA3
z!TxJwcmH_Q-Tms-t6Rsf$5rPB#>U3#L~MAFe~#zCv4=uB4OMv`A074l)cIa#>&>*;
zSN~O>on;!iA;A$eEFfEUBXRBR+uJfPtL5+enKrNL)yn=qF}b(4oP2U}vT^#kIsPW6
z+d%`8zn_P$4of}Q#QO5y-s)RhGB=-#e)sRP{oi0I)2xu+KfYY{_h0PR`|0-me`cOV
z|NnkZzqrU%(yAl_H0FA%f7Pm0Z#JK|%bu$ldHwnnmHof2t`8D9y8PEJh94D7EDPpk
zUtJYCDdprO)%h=ex&}VE|Nrm(%ZuInO)@X3$Xb<nEccuH>Cfl$ATzffpIiU$XXeF4
zuAqS@Ioqm~BOQXJdd|CEty=x*5V!sl?)V>0-)^SQk10B-I@7ZF8Qb|SH9tSalw5SZ
znYDWDwOJso*=MKJ6ojvRyX|(~+O4|VZYY_Wnu1c<q?BVllA2vge}8}XKi(&sZEscj
zY6`ntg~I1&XMdlF?6dpz0@S-$KBvgbs{GxY<UUKa^82;hB^YnGuy8ooUf+~@y5!|0
zRnY1Y^{Rg>0v8v(+xdK1{Qf#g^SqdM`~Uy*nPXvS{eDmJwKb8!)ptOdZhCy3W%=FG
za8PEvQ+(bQRMzS3d@|`)GN`wAJ+4~!|3~@%6W7J=P6IW^Q>Vv%+I|0TUUQn1VUo+b
z9gn(rWUWlf@7I>gRXk_}84nr+%U<?%YuedaA)%qEcXkxcv?zQOB@fE+b$?&S*FPx+
ztrvHft5gwI_dBy8@h~W8pTAh#e{NyBoR$-V8Kb@vdj<ojtN`Wa$?E?19*8gc|GfTR
zI-ku4@K|m3+Wo)Z?S6S<<Kw7oP&N19V6$<>hX-q-wraV{Ri?Q0N==21xA;#gd3VQh
z`P{N7KkK(!&dj&B-~E1HHAul>KI@$3G%359igmkQt-7^UR6A_V=W}7Mflsc6$DakI
zfa~k_e!o{e(>UFa&;HK`m6M<vVUfnAjmgJlDjqbxwmlyI>i+)vU*F%)zqr`_d6)LO
z6QH4Cn=cof=l}T3xFPRc1A_?zsK5s$^vV8qm2;;H|NYose`bbZ^0l9L+<K+1{`CEK
zxBULxo14?uZ{3z~uxYEDdEOlh>$h8iyB3}J{eJ&^)9h<k_Q^eU2BpI3da;|5j&||>
zssg3?=RU`07$$=zLrUf9FZ-IOUR@QswLgEy!#2=BH8VS(&m@_$8;PJ|_ut$5|8mzp
zwlk^!_oshO>cc~=rPs=C=WZ8q-FPrwoI(D)q(B4Pg6i+@e*QdPKX0LPdm1RfUeCQC
zU;Snys8gmsui}x_eCv!03u4M{rdobHBE0#2-S4MApU*$Pqww*jx7%*7E4{O@U2c}{
z_B)`m*z@_hxyH4>zWn*nZhvNhWAmn?V$mrV7rDN?wl*3x?e%8c?L1IE0Hqn5uUCS9
z9^|jvaP4{2&Z1PeUa8RZX=QJ3J^gao|NH{S=Az$kw=WM}9d@(w`P|P(g#Di!WS948
z=aaqm(-hQtV3#ck02TJr<EmDE`?jl@jo0hb!PG3!2yYv&^fcRVH<X>*`FxM}$$ma2
zo&V%s^?Tp@`)citF6iz3a>?e?31!Pa9}a&$s$XXa>Xn1W6hT9RwZFgpz470SA!mWt
z-8$|DUi0K*J&&#g`|Iv1e;;R(duvO^)m5Pz@7Mhny&hj*yD{l#*CLIsq}jRKH2rKo
z9=Y{=O~l4UKhBl!3kEffZX|W<b}{o=ESO<aS#)uK{r^V?nEBV(zI!%1U+>q~*Wo2^
zZfwlBwkC4p-*30Y@Be*Q-mU6AO~m!%!M8Q%?f?Ht`hK@uKWckk?3SFHn{L#8zuOHO
z;mkg3QS;-&qFuYH=E~pB-(MRj;`;I3?)PG#-p0k1!OItgt`0kTppm&dJg#!-xi`tj
z`*c^WUfm6vow9hl<#N}zx3|UDMs3w<<CPB6iP^E?-1p}X+vWB4{duY{o_l+n?kw~C
zxSaieza0fNn|$V4ZT&W*TYuk<j4LYw-#%`at6E|4>4b83-rZfIpqgh_>FY3=>NgvY
z_DCArovqhmuyYCxtZ0>GU<lw_4{dT&ZLsi<{m)%nR@+!D+Yg$K_H^}gS?83{1ORf9
Bqp1J@

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-2.png
new file mode 100644
index 0000000000000000000000000000000000000000..52a027d3fe396f3376b1314834c2aeb9868884f2
GIT binary patch
literal 23879
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_dNj^Ee+|35yr+<g1&jEz01$JU*1
zKjwGB%4u6qtYN2!;?F0-Q`>~PCWLuU>(4nE)Z*fCVqNd1-rAFXy*&5!+y6TEwRq>c
z#A8Ki%jCY_&doD@zURE<`r_E)V_)ZduA9F-wa1W&fq{X6{YGXih;FFoW8wfYjte+|
zD2p}*ko*Bd76A~qPq6_+74R^!FfcGQBy%W$xH8TRj0_A64<ty`YBVKkYu3qa#>dvL
z;}+Lj5xzdItEXqm{Q2{1YHGgx{eJ)c=f}s69zD4&cWvC>U-RT&zfb%B@9(DE=(*PA
zey@XU?!2j;Yna@2YO40~oSU0YZp*d(ey4cSl8z1zQN5TOFM}peofjX^aPFkU|1Rbo
z+Bvt&et-J<HPpkSBkTIQwVJ`pmXua%CPhxuIb9UJE$gb*&24KBHnT4e483Rj|Ig>D
z=X1+Lmib8XN*Fk--}9;K)030MmvbjEP0PJK%cinu(_1!PsV7<GkJ~Nt*H8R%z5U|r
z`}Okj@=s4pbPin|c6Ekfa>>(EqU(=)WywoQt~@<mzdBb~P*71`UOskrneNS5?L3l?
zZe3p&yL(b@`S!n`PV2wAxp}$QbiK7QmPHy03Jwn+KFqqaW24=#7mHKQYwq=YR~x&(
zZm(SJm%!LP6@hnmmxss1%#kw5D7c*aPWAS-(B*z}Q?4&}^<}suet(M|L&IjB(?KyY
zb9xNDe0;9FySv*o|DMg-sI6YJ&GWC_&fh=xn(Dt?ov1Ays$NqrG_i6A?eV?TZX6#U
z?>oc5apT5~a=AT*vrIB4{rU4}Pg~nO+v-)ZyUVm9HY~Va`~BVBXv?A}7p|@jFMV);
z@$6jd@Y-KrE_R7(Pg;9*la8!Kfx}|={;>UZfA_50Keba>{nWNx$z+qdKNWjF9+TdF
z=b0a`oJ~YCJO4C8x6svLp?7zcPBqOAleMplSslJU?E1RcuLs%XGY+@$e%~|Adg`6u
zyD}~+d0zVe@4J2Ix|o}}ce_NjWmfB}9y)w@Yw~fv)bsOf*LpKfn8wpk&vSZHPws8G
z)7RI<X4llz^z`@lclP)DH=hbx7q&J^?)itW*W;y6Z#uKUvH8*pt@k;%&9-J=_q%H5
z`TY7KSMKE7+kXChKHv6M&BvqS$2RE*3kxUfoHpvW|5wrVO;%7aG3U0~@9*!+qxYqs
zmz%8WEtY(HTjbuVt;frzrOuo%L140WxZY&rbid+PS5~Hcul@Qebp7$TO(~rlbxxPO
zyL0o&+1b}yT3crxIdVkgYVGbe9?2w~(?)`Vf@zPB^~T-SiQRSO%G&7bUu$b>YF5Qv
z{_^1Cary7R_AL`Vy(#E#G5>@4t$Gm*AzQOTr|Luo9h1ntx94W|?4{n*R|PJ1<KpEF
zO-NYKC8oQo?(eUccXk%b<<|dr$PV(}#EBERcz8l0B4(VLuD{-{_ScJ7S68nq+qiM#
zrrc<DKA8_U+`V>(+W!0TcvbN7zSrl@eZAW~>DMWBHMLi7x8D!@`RS>sjLe!dGmW*4
zjDpV2HoyMq>FMA<R<hP*KDJd~0#Z_zFflQSh>0zmF+(Ev=BA@-W8dD|8v8gTY+cOD
zRWH--2IXB@>MeeKZj*GcynWnE<Mgn0KG{8avu_zHv~r7wot<T>>M3oW_vMya@G_sO
zpHHWketQ$iD`le5n*K0ub86(PTU%FKmAqImS=~SD-k!>p_x!!y-rpbJ%*H!u|Ni~^
zemvq1T@i3Fd-t!eud_csI=cPN{dKXszZ~M$Uy*dQi;J5(I3Zzyl9JMuwbACXb~QI%
zn*}fP3EY}>73Aav3lv0kA_91&OfI~+x%uv`rC+Lceyp8ql-jj=^*qC4SC5`Me*Ac;
z@7)}p6Kf(jhiuP_ZEb1M(9rOhIB{au{e63Hzi;^b{QT>)=J!MH?kWvk;J|qOeC_76
zvs>!^R`q}0nj1YWb?4tZ@%6Izb9g+w)~|ovZ(8~)r1tOE>#JgSZ`+i5dfA(sn^zY;
zK6Yzo@$&1%Y!mD*uyQv@+uPgsr#7?kURvPTEFvVd=vc3`wvLX^{rdlV-FhSz9_<#-
zzPqdR)FjpJCHw7sLf6GaZp&Srd3jk^PtTQ~pPz57{+_q@|G(c-MkyUesi#z4zWc&j
z|74<jO5`*(|9NYowq~siTN|~mR8UZG(h|S9R+-Pv%+!kAwZ*FR)sh7Z6l5)nT(YmN
zxp--*cj)%KyU}v$c6M=BSA|~Qn0!2Bxu5LT{QGh2{Bl>+=hrN9?H0>?cV}nTl@$}0
z>~{)$duywxxcKsp4vuj1RZFUZ7P)i^Red<fZkl_`gje3~&ewf1_H{Ab;(Aw-`)!xy
z+}u=o_nTi_c>eqPNpiMT8E<ZE{Pp25|JBvu`l6aaDz3k63LmxD{r^)uRU^<TbX7>;
zwKb8ZMNd3>rOo};Ms3}-)++z$;(oiJq@+c+w&$-8TIzLo%iFW(EKlCqS!|kj$KvX`
z*yyXPLMQLvzrXI+OLb7$2C{pZ@9Zh&`ElXD8JXEKZfr=@irKN@)|Sl0Z*FdW{o>-{
zTRRFDKRYvX@wK(l-n%xxR@Kt-Dl9CVWu8B8-~WHr;n%G^*Zo)fUMwIjy?SNvaxD{+
z5JN*lE?(ZN3!U4)e7zpOI_2aft@wR=R5FkE$yU8wIz41_ny+czoe0a~XIC1T*}vRO
zpP%{h(b1?K1q)wYU$5_}6}@fEqeqWy>fWjDjGcaO$+KTxNs-e){??7y;Ls~&dg-#i
z{o48U|027^bT2LQo&DwWd3$XOiyvY6x(!<<94k*?u+Z447qL2Qt&yFbotlBc1sUtI
zGvJc4CpB_e)z??g{`~x$_j;MnOi-C~-uC;P?8y83YI}2UKl^;%{=3Dwo14?`?(6UE
z_1*UR#Hp#;d&^dTy2h%#bK5bA;&*o}lW%WZ8M1QHajWDW%i3RCu0J(j6~BMq#@yRH
zvQ}4ef9@)M-LroE`jb<&r~mx>{r=r+cm2YrEctwUb9(<wv)ox5bxxm|V|jUN-HQtg
zk8R7{T=q8V^VRV9%C~wV;^OH!x6M|Etu2b47bCuAu66mWGc%2)Z*Mz0O*h&mYm?4t
z5siQY63J)gSQf|J-M{DU?P&2e3!U4gPH#H%;o;%f(^?@b5^8E{&djr|4*GFwiQnB_
zrM<bg(;gk^TzN}xr(T46pN!#j{rGPg`*Us@J%0Q+c~|-SciU`KRE~fQj@eamGI{pv
z-5ZuZtMYtTyZ2_Ph@fDilCtvMX|+EdwjbN16TH+*wD{p6*6pR&*Tok9mM!@Ar*eJl
zJ3e{4oKH_rr@!0%-mbsY{P#}(cVB(qel@N9l#(1d?c?Xq#_{!kx864U`}@23w%pm~
z_iHX^^D<nLi`~#rzhH^Al>Xi?lRzo%#fuEjOD85OPqi-3+rBM-|KDvor!Va&d_2W8
zJ8XNYtaVvPNXQhse?OA@lUdl<s&u@&8<$T@Jt?7FUthoeb@8(^m8WZE>}n!TPty%P
z*u?tv&*$^I*RBp)+I4Gd_VUZi{j=ZQ*;&5ynTl@owvcmkEbs10^qpf7xYTQE(A8C;
z`PKUuyY+&~7?Xkr4yCWIc#3L;1UNZ0&8z=cIaN3M+p^oojvQH$b#)ae?O$6LJA2V%
zP!_VYv#WZu@p#PXq~zq%x3^5!$DVoDw%EPjYtpCZ=j+42O*hYvTVL+=>gwv{^?zT-
zN9`(EdECn0-hO?#!k)jO_fEb}eRE^uCLM42x*rQ)pGy@wz3EOJd&=2aSF`v2{PZ;V
z^fcYA#n1g@tx8_>z1lhX_3GH&Wpd@=^J+eMN+uf}X=ZJx*V>i9_}{_2Z}kQpZ(()6
zkmY`JZEmfL-yc_3S10%P+T@shHIe)Oew%%6j^*Mxmc^@lXPZeGr}fM-&0aQ5H+ogv
z-l|n$YolhJb)8_E9cG$&$%R{74;0c#Nl77#-FQI-s-vT$=B?w`)<&y(nr2;@(BI#G
z{FhbftBhM)GH>lFT`gDp<>KzJY6ph~P?K!$?{~Xz?Ji&c?d|R5w$<M<zPz|tz9l~2
z->SR2`|@f1{c{$*b?=i|$u3vn@c-xe`aDUeY5MW&_Evvim3X)<FLny3@Y+}VJL}Vv
zlT~lGUf;8Co%!ba|8>5zOin&#{-?cu&!km<mmJ%YdD$fOlt}LVeX;51<`hcL7Zeb9
zaBZ7&J0GaAT5`Yk`^wVS*H%StUbZT1?W>Eq=U%>k+He2wg1`OWB{r3xR`|>`(!BNT
zcK&`)>l9Q&&9x{z^mgOXX{j$iJUm=3^5xx=UtX`Y%Jwp`a(PTTH^;L0wkhL|?HmdR
z>;o>bFK=mKSsT6GZ?1KD*!H};Au9qD`}eEOvnurpUmv&kWkSK}O(h>6xjsEJGgwqR
z?8+?DY?G7|0=2(hE}vzVJFCY~D{xUuT;)^It+}_q#m$=)zB&E;wGR&uo7Vm+xvt#7
z%*=dsQ>u5bgrQSnVxsw7yUYcDzsfIIKYh!eH#awzZ!hqS-CcI|#>QmR#6v7^Z*TW+
zY;4Rc7s_+5soBFNqOsugbp7nx+j6U3tz0f5F24N4i4!8ME3`satw=pR?bnyf{$Ee3
z&%aY5b9_hP<CMs0?mN!TG+sW-By-Wu;^$chn^?0hE^=LUKJmkYgL#ZcHtB>joSbdG
zzU<wdnQs_AUU_wSdH=B<$;CB4Kdp3ZX5-@LFK4~sIa#gJ#v}2|i;G%8OFGniXDxYn
zxIO#EhD1;wW3gMWNzoIJ>pvuyub;kT{>2X;K8S3cZ=OFdYHQZg1q&2h-Q8DvOjJ5G
z$8vMd?Q7TL>(^dg9sc^f{r^3SXXSnWwMpl+>9wa-o{G<YHE<}@DmF0uPjGZ}1U1h<
zmBLi*aKE`$rI+;g|9NyxR;Bve8>3?{o}8Slc`yIzsi|LYrq9<jGz<ha^e3r$o0PqY
zD1C9kF)=Z5-Ev1&Tg_9qW5mioAFgq5Xkg=$S<%SM{_4ZS!%=&ywu0IQnU|Mk{{Qzk
zYHQY2-|hadxQgH0FkJt7@~+=^y7i3z|NFi_bg7pps0?|2Zf@}Eu(d%~a^Ix&7*0~D
zudfeX72+9R^Rd-yn$F61cXzLj+gr7Lj!xjDHa^)^tlVNN>i_@Cy0>TNbu)GUc_nAH
zFKx?>UN66F@~-bo%^I$(iTu25vRv5uxLED5H5WcTJ^l5^<NoDY_sxI3-F_eBiK&{w
zZrRt@mGW}=8`b_Q>Ce?U9kf1f@0Hcz`g3h6gFp?IGc%1%tH0&^{qy<!ub0c`$HeXm
zs@i*p*HivRu+*8jx}T}6EG!wHpPki;+q2{LE@k(=B|ki~%_mR0F5a-^po9Pes13BM
z?CmP&cD~FjD+2RguL@bY$T<C6#_>McmG{=qpFbZYuw#csucWctF^TP+?<U!K$lFw0
zNWR@GZNBV>r{Bt--RTt-J3yr`sAZmUaZ%Lfw6nUqvs8M!BQ~e?UgzJd9kymdYNS^9
zx|pt4zH8UT?tZoXeqC@<(xP1@FN>~!pRevO2kLW*>&N*NiZ4@g?OIX&{oSqY`SXwU
z$-drt_Q}b~r9VHVPSuZ(i``Z7@z+%CaJ|~ESHo}Zum6A7MitbI|MdCu<>mA1s!qFa
zx|gN)WpDNOSGTriclGss<B)IXlf86rZ*~5z+I2BIuk5KTK0C)Uxb)SPi}P%&zdY`@
zuiCQv>enLklv7hYL9t!>=SN}g{e6F@z5V{?=HlP)cAr<Skx2e>*8G0O-DBI{hTN_7
zc>S8Y;WLK<gNi4pQv37wuW8Z|j_o^be|>qWoZPdk?Cq;x-cP>%`|+5+_WRxPb?>jQ
zjb83OU9WPB_pjH_zREw)3SIT2bX~W6-4Df3<4x@?EgqAu|8()2XY=yw;d`yz;-Et1
z=dWLC)(*Cw6%{)cEnX}tFaKWf!oJ_{tk2FcbUt|SVAYd}?m;odSzB^%hkbs2{(2KD
zcg*L~JGr*i-$LHq*$JwZ-`?D;?s}U?#v<V6=Je|m6rDlF_J0*t^O=wuS@r+#cTjV2
zef-^BrI)v6UpGlS)UvzEu9Zs^)QA4}=d-_Q))kGLKXb+O<JPe8O5G`m_w4uI_mTP2
z(QfgpTeHLatt&vS3@bA=L&L!3esd>%`M<vTN{oKF_xiZKDLsMP^X``X`%}5S^q9nU
zYe7Ll!CPCirysxD86H=udeh#krKP3f?_#H-OTT_GJ+Rr8z&PQ{_2ArjRj)KbDeZ7O
z|Ml1F_v^h}&$!@lJAe59e}6;QL>QW8T>*7Nc2#^_wEA~YuaxPRqvG)%lkQbK=3N`H
z(aALH3aD?kDdps%`E|cMyT$dxJUlu;wdi%j*{0dcl8$y|9_x{`s`#)#D}3D=W_G>|
zP(gTa&(5^7v!*V(<vm4X;fD_ep!BhC-#)F76%%w$2OaN|E&cT+bE<B1*i!H5VKa?V
zLl!tN&b6<P1GTF^K0bbRcX@v5xj8?l9slv5nLlK2Rq5B)*Zt$`elFDtS+M|Q$+<a}
zpFV!PxWsdE(3bhP1w}-bEc2axZ*pyXeUErtg(GMv;XotvUb~xb+(7N+21e#9>*MV`
z-xd3<iP;&n|KG3G@Am(%ThH7&+2-RBVNe$bRQNhJv+dmV^e*q;-`}raT^(+kaX}$;
zO++BS&4&h%#X6CjUi|p@7*xuYy}h;6YpT}W68oLS&%<tS%QelursL}By0Y%?FRSu*
zbEfG=F9Q|PuC6=p`g(YH1blsUHFQfxASlPRa*1AA>OFl+&P}7YcXkG!on;!_DWs~h
z^j+1?=v^f*7nx>Xdr|-Y_xvtV?PY0aXK9+4gt+&~fQClC91-@<cyOR`(!XEKM=tx@
zzpZL$o<D#7zQ5n1-`?2h>^s}+>ht;a?>7G5Rr)&X+M39$TU%D1nyRgCZ*On=<3Tg1
zkH5+E?zyj1uS^wiV4K3$|BrQoo6c!abN}Qz`?^0nPR_C1d~%lQYRke$Ew^{&@Be#k
zOXlTcE$!{I8yXmd#l+H1P1DW(_j&&R8E0pk@4lrQz3mKWP~y+)`2R+hMNbSOH>DV=
zdQUSsZ})qRWx<1n<A(gQRw=i(<z_oMIr%K}nd!6CYwDRlKR=&6HB}qb#0J%sZ?mti
zdiqtyEcaH*tE;Qii=LcFtf{Gq`K&s}w))zhU$0g#%e%Wvt^VI1P?zM%>FMXMtc$&U
zW|paT==%E;mEC>5zq{+};?ly&!C|m);lgFE-C}8%m-)uszP&B?)s>Z#S0$^=jrV$X
z{Ku=+>w9u<FDrh2F7I@{8GlEAfB*HLN<D_pE-m#|v$47J<JYfQ@^wEBZoRWfCwN1G
z<NDiwem<YStl;6HW7~2cKYsjp7W)$CcD`fVazCH5et+ka&7@}yGwkdC>E6EA2kLXg
z?X8-5X{q<@H#awff@`vVyxrv$fy&02msGa@w0-pW@!oyQI5|0=Eu9``bhJy<*wN8(
zS;E1lW$EYVJ^S+VvYh?o&d$zfXU*@M^h%i;wQ`9XIXXJ3>FAsZSsQh=N80?HikjN4
zTg#qR?YwEDaB}Z@K|w)~<Kp6{zr4JBcGT9anKG6|GZrjR2;NbU`1wY1|ID?~+jni9
zZIs%j8NF@I$w{i+oV>iIhK7dEj?35kY?~*n?l*%^)@p`L<tK^w`1s`8+p_!SJ&B7?
z4l1wpoo93N#<tvLJ~JPEy_5I+7V`s{(-Qw$Km)Z0BzqW9MrsW>WEm#tt%=&|r5(O*
zPwH+N%c2$K@9%xzr@(N)7E~oV>@vu>puj6<^JCguE>W$L(>u)>7+#7)hkqrQ(Fcb;
zuAAlGTl3;YMr&K!scpHS+G(wKkxxv_oSfU&UR_-syyxt{zrRy&Z?h_YSHrKp+jw=@
z+DW;$HKpEv^fyjDC317y+Lgh}mz8QV6r2}uU|13@t``%q*sXU<=4Ca|U{+yaA*hWf
zvp)I40>@3c(c5yh&CJYhmaPt7U$#{{X2%Cv`Rki>BBwpwcxPMg)s?~OS8sa;IXN}C
z^-3+BWtt7@tTQq)o|>*df0kM9D$C+$cM8vHmTs1M?-I0Q=RfV@XJ<fiS=ZKpii6DC
z+j7g_R=`Kfc4YtFBfg%SVTrm;o4CWSt%--({(ifiFJ)D-;@|K4|Cg0of~wv*mc?Jb
z-OksJ-j*Zx`gpH2C=bW(EK=oN_1n9mVn^AV8w=mu++4lp_siw;uPpHtK6?DPwvv()
zsEg*|(ZMHUu>drv^6*e=S6|<?H#ax$&8y!YvMwgly6jEBx|p5sZW<~nDa9my{PgrR
zsBN?*^|V;8jAf9rTTj66Z*RXoY?s$6es-q3WKOl{5{3uwdl;A$?poFS*r0Pd=-!^n
z%ezD(r!76!E1muC&(B{!9`}F!a@l|PTKnp6Yo48(yIRe6R>r$KJ2OL;K6(9m^`oQR
z)jFWkWzpirpr*jyACJ1%?Y8nfH_vwUx3{;mPfk+Jy1cA+noeZV`79nDo-a|4?}`Wt
zE^K6GuhRMd@Avzw8<X9A=i7n$D;F2JcE5XJVdEjh5Y(?1!EkBrl0u%18#fvq+p%ls
zog3!=Zfs0`b#ZaKlCrX>fWU$c8w`#fIg)XDny%dMJ^S+iPEz#_*<F?k8eg}wv(sF+
z8qyNK-ohztbIo_IRcQUcpUXk5jndoEU*GNz-M;Ge_r%C)ph3uMXEicyT#J$&;%Yv+
zf`%>M-r9P3_4<9U#O#*rSNlHOIK7WcTyIV4>1m(}G4Hjql2XWyg2cc7e!mAb{kg<+
zKwYPmIX5>&ZAfTTdHL$<YAK_XjxKTib)fM>-KdcF`+l!GUU?^n=fq6o^e>OP^;ea=
zyaa097d<(#aK#FZukY{2b8>Q;*VYCt@|kHAwJm3+le6>Il#@cW-)^Soy?%av{`%u`
z)jq0TQv#;xL{3rl77JYw;Fx^8?<<G2=lkV`Zi0e>al7y5-rVH6xB7cnNXQf?CnpgR
zktL6gcE7g&|Fi$xJlpEaQR2E$OR}!6()6CD!^OuJwmNL>mg?_${bjq$-d^I?-?N}g
zR9j0&$EUHev8$sa0Msb?@gZ^j?|DY4U8_P@FWa!efR&YXWx~OxtP2Yo)6UO(d-2<c
zhli`4%}ftj;vvY&#s+G(W?fq|(=7K^$>m>+3YK>m87I7Za$=%$VPWB|ZMn0>bRrgj
zYCbJ3uSqfgd;9ytw`N@}d2_??>dIjEx3{-nKiJF;>WgJuT;w{-x_q6KY1Wf%@uxR^
zIjKHB1C*Sute7~j?$^tZuXn$H{22KB+}y9PR<F-GJxw={`O)!y`Spidxj`L^lX>;a
zV@pp>(_Ot|hsDvOM|YMQPFfPRHA{8(-KE~szkEC{e|nS7-ansCpWJqOiss~B-`=hU
z4KUu>QJ8go-Q4K6ot>Sa>^0Lk9n=Vp-B%N7oOUJvH1tsNG6>wA-%+?&$}DF^LjyzY
zr<3ZhuCAVb=+L1nt3p>t&x^0A*^_m3)zW5m{#7+UKfSuQclWy3-OJ+Z|AsDh@4p5b
ztZQQBUiM<^u9+7u1eCtM=DU9Hw^^WJ9MjxeSGKOJ|NrmP$B%(iwL(SY<kl5GKbLv5
zOZ3&<-P_G_Z!OUbUbf@bv7<*b@9nAl1<FFZ%kx30ep1Z;ssDcMoMB(T4^%w8c##pi
zyUZ8V%Ztw6yHwSC+Kb)q_kDiBmezA|`TV+7N4v#WyLO9#hMBkJ-d^T!|2ITCeBG5>
zTeCrJ$MD~vj_;ivg&_G=p{v#E>+Ao1x$Hm7AhAhIFJ^`BY_pwrU1bas8rpcJmx03E
zcedH7dA7Uz<ZM^<N}Fe$n`4=Ech}a{Z>Q--hwQJbooibi#&7#&LQ+yv$)_itXXo3;
zUtJx3{m;+OR~I-oTi5wB{5dSa;IUlIe_l?`ZO{<>$B6L#b+yU2w@F%+thoKD^z}8#
z`1p9x9Lne4@AvP1dwP=&XuNLUpHHVlt_ng13We4EOn!fVZ*FI2_iW|zc}3RCQX|t|
zTv+(*)KqQIgpH)+%tytB$0SZ~@_Bn}>t4C?tE)n{=gd~Iv%42DEmf}mPvP}V`TKqz
zi<p-B>G}Ek)5UkUW>4R!bDD*XZC3X6bvviIySPZ)-sZbG?d+MSr>EO~la-Ol(F$Fa
za&Er;`>5^Z@8cf7f1iJ9s`m4;o~hd5pi#&Lj?H(bg|CgedShE|8^8R!!0Ri6m!Fwm
z|F81&ugTx$-g!Ma<>#lTAjb&`KHOIG{@&iW+vTsWoV>9u*DUA8gKaiuX4h_P%l-EL
z{`=D1%<OzS_V#(&{d%FC967D>aj*HEY3hIH+}f54n&#MEn!o?=wv9TcudEI~pZjy7
zviqHTlT}Vn(>1oUvs+gE{axN^XD270MkdxXOTDMtY_lwVHRbjH^)Wk>x<oXSnwpx<
znBT8?eC^$fi;F>xCQy6q^+v`AX)l^s6%Je0{MZ0$`Zlq0zxw%netC5GQZG?Zjl0}`
z{x>VJ#g(6*b@lb_dz&n-6A|$B_4VsLlEyKyO~?A>_2c8?LEX;nd+%4jd~tE{q$NzO
zTz59*2F*S_UH|o!mBDha-TUQq?d|Qaf4{mqJUk_338?-szgOWLxjC(LZFf&k$kwc@
zpx)=bqBTdR=|+Rbra)bczrVhIj*yp;(W$ThAAN0p(8GrhCoQ>O_xo&aWlGAD>)-ZP
zeVt_J<~?1{_i7=Rh{l7j=fZPx)@({WJ?+iESJ&3AZsV2SrThBg;`S~P%|)WxVJ{vW
zY+m=Y^7FIOYX3=BR)_ol|8;%;9=XHk&!5kZJ$Ufoy8rQ8GA4d|cXu^t!n5k@tGu_L
zo}63^no+y4F*#~q&Cct^3=K~N92in8qPOQwRk^w%@bGJiKC9AKCnO$cmGA8m)xP)f
z<L<Jzt3E$JpZ)C2%v}W!o6^qDTML@NDSvmTe9!wYI_`ZkT^$`CBIfDG+j)MnatAdE
z*2U~xlzhDJZpr=E*Vj*1xw=07|2b}74Zf$JU~2&ympGI>ZvSw3x&P}{@wf|rzu#ZK
zCUWzxW2GT00vxBMs#-5ovJ77rbJ6<!p2bq8SsE%TF8lWF+mst^XJ=<s|F34#@9GZ+
z*=?uY-1e4>$^2iA|7<hgix)3)adS_eKY#w}ccA9;V+mQSl7O0;J)mK2&>)2ObiJ!T
zKR>ta+n#sV%Co+-SK1_F!tv{EywWK>7yD$bgTBsUU`Pf9$MbV@Cof5v-#2y3o!bic
zZ7M(A`S@|RN#>$EJBzaqwQ%mL`MK%ekH`Hf?DLnidp@uE8-I54<SWPS-;Y;RRLpxl
zsoG@y`uFkwr^M8Me|)U8v$NCO_TA0R>8X*^UY|R%x9rIYLC^YLcF&@BcPv2_<L~e9
z!<TwZy|OY`ot2&a^!4lE>F4KNeQ|N|*XQ%=m%XxB8@>J7pP!#Ymv{)8=HH8{{PZNy
z!J$C~G^lg(o&HXP*<a$+VwophS?(_n>R|u;^t9MkLs3J+W0FbcC6)d{KhOmBL?u@c
zk5}F<=5QPD<n`;<OPOXZnW*f(%44F^q$j(W%QpW^)H!|WXt#Lqryzy~ZblY|w#i={
zEq3l-rCw^e>m&2$yR$YcuH1cfL*n6*4-Xulo}d4J8gpUp?P-R`Udt$6ub;6;Tq|r1
zsEPqix$Xb+soQIc#>AZ4si&uTP6CbLzW5_%S@dLrq1x4QiM;DwqS`8dP1QXoeSCa;
z_rF{9j}!iWeSJOq%ZrOEt&TlAJKMDWU(MC^@$sNBxZ9JD_ZUjq)l_V{EoWbM=k=#0
z^M5Xx|Mq^}Z{OtOeW5drQn!@7jY>T=<>cDGUtV6e{gxOxt?KKmrEz<!UOqWFIcjrS
zZ`!#zD{pR2fBk%Z{WX94zbf|j_NnLR#ZF6ox%s@^<-`2;b5<3zH_TqhE!MyTT7WTW
z38?#fYiqXL>+m%Zil;a2DdXG)>J~qGHR<yaVgEay4p*I<W2suXpL=8B<6|MRx3}fS
z?yWLC`W7_!yRWudGWpA`?DeX*-(6bjUG;kH_LRtJ^J+ew47pmed{xLwCC`;|$%WQ_
zb1W7XK0bDGlTPW23kSE>oS$dANyl3^YRiWkX-`j0jr%_J3hRa2zbAe<aYxN}R)x*C
zAG_c0+x;@RHGFN<(~WO#ZOsPxZOQ+7-Zyu5hhJY88(dPd#r=mx$%_f!-rb%3#!y8w
zd|eD^oD$@J(1`!}dA7ek9+y}B`*of~@|LQvuV%kvW(ewLU{W~D$<H5NQnKaI<Hw-!
zq3xyjYroG;J2PY9g9iz=pH3)$U(<G|l{@?8rKO+=l&WuUDo=kC)e4!AdwZ5$?XKJG
z=Rvu7|Np=FtKONlw6rW)VSV*$T=iSir|0HIUtaEi{XiqLt)0Pq%VIY}L&IB})B6`K
zUVL?1?(LAb|NTINz@X6$Q01O@xUF)HeeJK3RlDsgH`o3yb9HwI6}(kH9=2cIQJ8#v
zS4RhjWU|enW7pP3o95gwSpPmS$lNr)zt~SozxeS#P?)CAt9-VsbX~;8L&=klY)n3$
zb$*^LXu$b(BBST=9fm#edny8Bcb9$L@wn{gr_{BvyRSX2=<MuVrx)(&xGZvW8fX;!
zUhVf--MBqBvgf|OzW(}B@9B9}dJF}N>ubc<+^_#1o4@B{n_13{1-#N`FV4&~o@G<H
z$*Szli;HE?&&{p+b~F9!+wJ#H-M=5tZ~te*y{gx`Pftxfz4+~sPGQiLFKEo4l}jXG
zecax>pZt6b{wHm1UpDjGfre+Uu8+5`{rPnIs(^(}p#GC(@v{@hkGoG+^ZjJC|Ipnv
zkJF0l?r8YWvw3x4Ve>NI*~?a}(6IgU;jmTxzdfLe_3E0)%dZ=LKDn|sI(&25*`UkI
zd_&j8SpNL^^W{Ny`H)^I(@A&L^6%{dwcA16Mn&f~&^!>Rk=)eW3|a)E8@0tF{rtSp
zzrVij^>cgPl6iUA%Cfh&sy-eS|N3(Ie9&x@(XkiT<Lj@6$JZ{MYhAvqLT<v6bs?AH
z<=6Sovsrm|wt4pFXJ<F*c=y|Wn{luHf9>{MtFkvM%<tC(@2&oRtxHrpWKD$O+gn?`
zK~q&eK0RsY=DaMNv#a#=E70PD>3Xpu!orK!L~hn{?~?&_qd)~q*40&@$@x`bYiF$r
zU%&40@qW+(39ZOYOR_)gGxwcka#6Y8W|6yGrHgB~*wt%mqd`3qP^jk?9lx`)cy;dW
zZL>_Xr!88v2;9W8F82e?GX?}qShQ%-mfGKC;lEp2SVGsw#kzKjh5r2XG;~FPV(hLG
z&(qU%FQ1!heRWNwak#i`e0)4;jSy&!#bJK?HK0kbz`(#$Q#2>@$=R#`H74)xtF@~7
zvVw`3Irz&yh6a^qjGk3#buKO~D}$H&Z94zbzU0LO(B!ga*qRxY&*zq(xv<dLx1eAH
zXl%sO$EPIw_d#}fP^0hlwY6tkIE8(d`_0{B_g?nE*}GZqdX(M!X1u$*dv-?$hp>P^
zf|IkeZ?~B4nPtASgZ8eUy|YekLbT^B_9X=m56QjOi{F>?>+9=uE)k6cCMG7IjY&sA
z^UP<bYKMacp#0`q#r0P|woy>`n`0nrRbo*2>51XKefy4W%e_8F>f^_c$F}8O-dUW!
z{_Ee5$K}(mtO#7@)+?o^qH=_Vg=NN`%FnaZd}qzDEPkd^9S7>soj)m&oON|oYE4be
zo^{>5y{2|{c6pyu*2L_*bYojC8^7F}i~qj7y!@<HJk9_#I0qV4N<TLTv~c3t)9LYM
zoSd8|ua!UExBfpUI8RR3pT9D4^Rl1s>;GqO%fCPG%{S|^HwI^CnHujber^UD;S<#g
zF_5qQa?v;bdf;NWnV<oE7B)7i+uQCwYp^VS*7Ne>;`Yv-9uv?2SH{If-~lgAPR_Xa
z%dhMG#C4-m<SHI8PFD361Fdtqyed?CbM|$;{>SPnDl?|XRh<;k4m-ob$~v=&m3!7a
z+v-`Dm-|=mF()uK_V~VWa?j7V+wc4Q|M%DT<)x**&(6&By|yOO_v53ZzN^F5p84|f
z^4Y7a!}EXcV>s|tC;8n2|E7B8&dyG&;%7aF4jtN3`8h3gO~l35vJ>9j-JSjF%F16)
zr^m<mXGZR;*|})(V$jfj>B~#5m*Q(zaEoXx0Hr`~F`a_k|2LBRGY>YgT2*{V*yKM6
zG&1(@-M^2?4uAgq5fKwBJ6%@%{9NecW4(9f1S7ZS#fs|3-C4W)5NN*c@^b&xpceP-
z?=LPoi|faId2yMWfq~)A<Ufy@J-lQri(J(G<^;5IiP~HXT@`Y2?fbGz|EKH6-&-5|
z^V8GR+hwbMRWdU$Fw~o~Oc3#y6@1|KlJv^Y&#u0_ygYVtj;w7}h@G9C9P{PBfBuLF
z2|b$ihl_!M;fK0X!xD!}%Ept^*6)qGG}(UAEfp1&6Zh}me_hAK%$)!0PB~~5=KFW@
z|0V8C;o#z$q_Y0}0{^Oil|i!?EKrEuS99}qonGv&Ct1(Wo}8?{wd7@xtBcE>EwT&@
z442%ToSGgze*E=<Gk@jWF2?O{44#ck)`fe<Zd_OX<wYQ<nRWjB`K#YvU0rQe`Dw{*
z{?tn<{^r&1eqUPZ{q@D-{(DbfF)}a|Z1<gQ<|}Je;_=$ZNQKFR>&fZq{tFi_ytO5B
z^6_1~(q<Z3TBp9&hJ;M%F$9T8nPfbO+E@74Ep~U=*|l$bC#7wfYnD69YpPc1cRvP(
zODFndt^d8}*Iw_{<@36T;ep<duuH$!ozL~KW%A$xjSs!LvJy15b=yV(G&At)+uPS!
z;miGGS=rfN|NVZyoLk}j{{Q=o($B4Fm#?$9nXFQ}TPt+clv7i+%lpr<FkEs{_WTpa
z{Gt4#-QB0}85mtI?S8*+_2%^RpefNwOU~Q<_F?Cjo1*gd)m87v&1qK~7@1Ad&&ga}
z73vKtm0P*RO_Gjq+^zrrx2w0e^sTmmLBRTbzgEqwd?vXy?`{;RLmaj~Ztcs<%U^%J
z9v|K(V|nS32qObSLrEipQs$8kL92oX4Js!$>71Qy?*IAO*~wq7^E`{(oEG};&(Ez{
zSG7P3T3_AYzyHtQzo2@&SHkd+=|AO@m;LQ^>+9=5qki-2|Lp|Le_veezB>K<yuSI;
z3=9kt<_S2cyuH0$-}SB6RIQ~)yTzBUcq{C0vrv6r#UsB{pfTHjWi!}WsIY{Wfq{YC
z)xV=!85kI7y1sfKL)f$R?(T9>3qmVkK?5iQ1}*h^c{Myf)XAwSdiPxG@>Pz_Y^P?K
zu6A;Ay0S6ZeXdQVQSU0yGWkpV_qXUNEC#j6L5&#D`knOi^SJo<uI(y){pFPQdeERS
zs6nj)TDGz(aB*AFvok9b54XKM)XH7;`K<ZZ$NlzMhue5ReSNCR&cJZMUVMIAa0aNP
zsQ<U;+S=&llT^LECV}SbR)?>D1)8rrH`jXko12@nPfSqs^6<E@E%&yFoSdHLs)&t?
zK=nuEr<Br{msEBAK}EJlaLGZhh1}wL9+M6oI&^2+^OKX^x8<I`e?NYbN%^}N)4V%3
zMD0{o=H1-|T4n$mM2$Jfz`)>O<-*{(5VYQ1V)41T*4e+my|pTNF(K{jtfl;RKO8`#
zx&Z+b`eZB@39I|9aBAg}yB)qN#4~z(o^SIhP?7PaSuaBK%LQkCP$*t~y?*~XQ1LV=
zC2|^QSR1sYdQ!=k7lEFjL4Mn9=VzO*_nU9G_Q(;JpFe+EhFgG&g+2j?AVno5C)4a}
zA*ZM5f|m7yrW#I6P&_qRy&tqPu1YG*!J*;!w#LTBNlRK<SilSV|83+@&@?H2=41Qw
z$>dvmtGB=AbN~G8Z0Xlmp?|;c{~x-$?5&81h>GX0&*$xJx9u-^IZ0*bEzoq+e;1Ys
zBB052P;0vXT_|XlbBbp0meSW@*Dr6Jv@0q0{fmo>x%l|}F5d08tNo=>{q0TOY0%<{
zvbVSH9+YHYU{EMc`*Z*LSH7jLiuKwo6GW`){_JRKZnmAKuBLWMVzGAkI*s^!HK4_p
z%Y0|s+{(SN!7(r}P}Az#ionGo>tc3VuLGG<zUc1%+SvEWp8d-lb?fDAShZV0qxWm0
zw`YBScQ^0!a{u{y^78VaB_@+V?dVo+aZnAg&g}Gb{p;)Z|66r!ZM1ciF(?f06|k$c
zf)>c>Ms9Ke4RIQuw^=-4f<W!RpU*)n-FB6|U1d}G$zu{5kHiAY;%6(u)<%JbcJ*R*
zED%(7d-3o0`|zBcoLloirSF7eJD4YdX6i41#$^{evF`o<?>A`90kn|pdVGEC`@P@i
zt&WA(2BNxAA)xu~4ngHBI|`FQJsz9CpoYQ!iaU&+tz4p784nM&ZqEr{6`~31hBbD9
z3izH@YrLB@9ACV=&?jqsX%`E_4(%VcYz#XD8C7Jfz67RSXJKGCa9@~FCAKOwXz><3
zCWd!S`YL<pTyte$xFpEru}egAWlWSfBSSf3>;?vgcM>gp3=9mk*(x%SMH#4FNb=s6
zQ3oT}Zu>H054_z`_IB2__3`TuxASZJ&$C$-wRKfZt?`qU;G#l9@*Urab91dj7rAg=
zT^k(^DiG&dm4<A|2+X~`?d-(I`8PMY`pz~3?cV`aCzqCbzn)uu@8gP%81=}diN8Pz
z|BKFHR#1mvb>iVRP)`9=wk~$>2aVoUeLAWB{^!R1e?EEJemKAkYS4n#!fn4_7Y*ta
zFLZ8?$>o!`TO(zfmGS=GUMaJj8Q?4*wZ#K8^gUHO{9R=)s8Fw(miJrN_Uo14s=r^a
zi^|Bn+4cw2$?p(U7Lkz9@H{nDdwSHCjD_OyH6Q0)1Fa(lt+EAKp+3K6QqFEg=Qa&R
zMaSFQa)T=>cBrgOI@$%Am3ne=^3|o@)2pM@K_$+-rMImW-1}q#FD`O5O*<nIySM7<
z);*wN<@WaV`+h!?etU0kG-&w^XdWnPYu4S%RiLS+xfX>^&TTvsRX|-)qhl3YW`m~N
z%=6xG$xi}pWDwPli`krhe&2FaP<!xY>@Hq~`L*9>f`+dOA0K;p|Np=3({v)0JgeUC
z{SKO@s`~nBWyQxwSr-?zf_7Yee0===<torJ)|{K0UOqV33>sDdEjG%zxoKtf_jjPm
zK=rTaEYR2zm#9`nPW;Ls)!e(gzRtS_+F!P${H0lg$0cWe+a>S!|Bt)7t27uidHvxq
z|LY$gAI~z&oh2kB1e!NgRZ)2{+21ZOBjbhb+SKdoV!eEPLN=$Jy|N+E88ocmZ}YLm
z?#Bb>(sy?vu~&dc;Nke1LCF)eco{U-bXtGEhK)_k_xttxL6d`^@u|eb#7`eT7B1=Q
z7T4EOR0M5<k}}PjGRr)F-NnW3tE0E)&9W?B_U+Bh#Vsu?o<X3B@|$OJ*rZ$F1nlzC
zt^u^}7_=}lBV)y}Ug_mqv#)1eUgoP6wPnSze);#MGRO7`fGWzY+uPRO{`Bqb?b8yA
zOJ85xc}u1A<gR;5y{F&#25Mpa5ng(mq3FwtK+~KX0W*zKg9-{Zcumn*cy)ESww9LH
z>aew!Zs+e`dp)k&_vxvrmtS37{l3!n=clKWRi2)kdpox>B4UQh%QG{L*P(ac^jY1d
zHCMjmjW^EQUB<w`aHmi5(;pu*BVX-b)*jm#mqc&R>+0_Z?eE!I`Z~<j)m2kX&8_~=
z$99#KzO&6hTU0=!Uv0e7t4d#A`@Ut~r>CdAe`U|>e+?SGz7+4Mf>af6yT2i^dC{Up
zK^0r}O|sklaP{4{)A$$|8g5_mn>YXDuVtC8_3SUr8rH<^jRGw>0!?WerJl<8@!_FW
z>8mMq|9+;2gF3CeQYIeOWp5^=Mt<Ki@7mhv(-Mn2h1GZI%G=lN`Sa%wXlI3IkdIG~
zm|n~au@F#ljIaOubzZv)sO_-Vd%LjUv$M0qUteDzzCG`*iYI7xB{dS%+Ht?##L5j?
zY4v@}ycH`nK*?vanlET43CJny_y3EUU-xSz8;`_;RoMp`7-t!$_kpH-@9nLAeW;aN
z$}p(~v<&U&v19ixOM#nbdUx3-EOc&Pm3w<z)aJBa(9FMX^fu6Hnp5-b>t|j4@~~Zg
zRlq_g(5|{?=jX3?YURrO^5WvFo12%f_J!8)nEgGa*2ngs!fe0(X^XECD{pVezi+1-
zyDMb6UTn}(uc==SF!L`d_56Ninr`&J{52;{JY_HKl401vZ8z=9iX~?!omyI`%TQqc
z=WBH?Xx(dg-~H_E%6IQEPF!;0ga@eH%8Ugyxf^z?+~sp(XJBCX@SUi=oF@esk4P-$
zxBn9`RVy@TUChoWj~_q&`1JMcb@MfN7#J8FUe?G>Q2G1o>t#@(1R8Gr^<wd<na1f+
z(^)`c6lN(M3`VJ^L_l5mZ*Oj9#)6tL4b~GBcO|H*sH}+FTLpEP^%O-WkGs1{w-!D=
zwnYz=I}XU65@39?_xruezrMcy`s?+2&`5V?EU4+xa2uq$Q%H47`TID~<UeTl*RwM-
zr|L$VZD0T9=H}(4GeLPZPtlpjslT&xVrnFkH7A~&oP2o~$axIqj%_cRSV0bbuNZre
zai&%2DwUTTkIPL?ja>IWe`)gZzVDlKKqi%I#IjAeaU&vf+R|;gw?Tu~8#iv;e&^UG
z9dOHe!nviV88+qLxAO#TRlEHiq{V1kiKGK)Db?lopoT??4-YutiECi^?5g2eZ=QZ`
z&cz-{V~{WBS{8#=B7dEhn)&ERXJ!a!ET>`02?55GmzS1i-Q2Xa?*HHN)YH>^EsLLh
z$w-b2lL`SvxPqyX3&YFX+t-8UH+L342d!5@gyFG<H~02N@2&c(R0DFcWK0`}!qG0#
z%dOnvmv(`om!Vw4nPmc~00K2oA3c72d6x)CWx0ZL4<l&Q&B@t0bXABZXq~%5BNM1p
z%}$P-cC1HovYRNVy7B1b5p=j$`CRt;fBl#p7qX=x!Sye-gQ4i{t*u-1KtXdLc7o!u
z29UWws!s@%J4||Wd%J(Pxc;?&e}Aij+PguA+jvDKC1)O+3R3RT$s_ClD$5O%k5!Z$
z-;^5-Dp=flBqq8+<X7@sWX*nZVj`$e2i3}@udls)b91v*^|v*kUg0#|=&UO%0;No|
zLZYT~f+Anc=!ooukB^Uow${zEt=@L~)2XT2;A!2Gmy_)Nd~p8y^0Iob7AVO~5R!bv
z=TTF$N3QC{!j$XwUoJTN1c55L6b4D9hL+aW%-`SMo?Lf-U+r!uXJ^?pAgKdyPY5tB
z30)mF%OJ4{w9evw{r|gL|9rn+e;u?jBJmK**38RlyxLInlXy<7UcV1izGNO~V3e{b
zSn%oTX?0Jlq9+}o>El~lv$H=uIG7ou3Mwz6PYN)q1TXUeO<IfTL_9F#_h@G0y|N-u
z8MNJHTI$lmsi1((Q*~yUpmKJWY4GN>v(UKRuIUU}CHUd{1ikkSE^cn8w&jAByVlj!
zb@lY@Nfp;Vy=hDOdAWA5&kL+Cr80nqopnx6%DtU;ACyN=+_;p=Fw>^;lka{|p)$eH
zkPYOChGZibhMU`RXQ!Q+@o-zt%S%f^djmsv7Nzz|8mskcfwWGLl2mH=^7{M#Tf0AN
ztbg_U-{bX?7Z_9GWfj~43zfU1qb`cXa3%#wJNk$guJ$&R@-?}Vad(BAq3Ml`MV&%Z
zRot>>2|Zq!w5E$Yq>wky<$`jMfTI|5^MSvA6X(RANMLFGJ@?}A$8#*(-#;(jf4KTs
zvD>`j_uuQzpO!7Z6ZpU4+L}nqPbZX(v#+gDIcfQP&SdHQJsX1_Gcqu|Ug^nl!uY(+
z<iFqV@BjC4?e=@K($3C$x^nrvQ&(077hef<f7)*UCy`a1g@NIk`(%y@pkcS*<$hoL
z>wn+A|7?OYpC@RNT%}#6$Rq9CoXC|Q85kPAUQuCMvTd80{+<s`lTzN@*;)DNq<Zm-
zh3(hg>ql=}^KaT-1_p=6S2gkv_bgeX&A=dY5p*uV@9FzKO<n(F*XwnsyF|5(N?%>M
za^=dC6UzN-?$<w?nSN<?_<Als4hDub{c3^=)8p$Z?^V5Cd#CJnZsz@cwa5D9=jYws
zrRq6NCvsA!u==z4|6b15vQcGV_z*bDrD03nT`OTVpC1?Yn%}EXUK_Plt5S=BA;H<S
zli_Ffs@1D6uZ!L7)z8Slu%_KjQek>rRpzQytBMY?iZ9u<%W8UD)k}A~<*Qa{iN{qW
za$aU+V2}?F4HR)*+Wy1)>eZ_&SFJkr>FMdsKcCHBe_eLns#U8tRegOWwCr}tGXMGW
zY`@<zKKa)3-@;3e8FE;JC&|oya#E!_q(ZEr_u=39+5UDvQ@-6ee12>H;=p-~k(<-b
z#@F&NFqrt>vtedn(D0qiF(GnuTI!`Gp7OiwGcPSUGtYMSo<;_ShW@32aZO*R@B4W+
zKkeisRm(>m%GY-OZ<ha~@b>oh^ZIokyC<nLGccIBOtxVDbR)U{=>%uKpBMf%^I2)|
z+y5!(6b5+%6r--)VoQBzo5}CGzpM21p1<F2tNO7pFx1HSDmiSsm9^UD(+OqyUH?BE
z=3kzEejY-u&+^%fKYyOvpWjjV_}VVj_ph$5{`~iSy?yzeLic^&wyqB?aAIIcs5R*n
zU)V2aYZbiA=j6@w`Ew1EkEOKBmU&Ft^W~Cv<?FTEjS>zt#1tH46`d!<!0<!E_YseW
zudnaBz2EQsd7^Ibxxeo3ri6n{IuRQb{{H%U`mFi=IVUHpFJHE7*`;JA1_t?so^u#I
zC%t<0YEHo+PRoZa!dkXm3=AI(O=mKAPTI9=m(P4V+t1I>`~Uy<_wvr-=U)9R3=BC9
zYK5F(lX|4h^|o%^`ttt%`hWl4|F=7D_d91&%E2a9&`$HbeLtUZ`ExKZ)J#zmRM>u}
z$orh#?>9VBCK~4VYl^!Tt+@aC&dy>!n-31}oA?+Qd>tlpOvqlhQ!W1Isqjym=l|7l
zmnn2<{tJrz{r~^I*EW!3VA!BI%cbGW982T)UzeuamF!PG-gl2vmVsebgPI^X)|yzk
z?Mmv8^+?_<I<4zHhl7FPhs7+H1|B&Z3-fyw$@eOs&t<Cy8CQJS*Zk?}_<u#LYLGbQ
zm~dKuzs>4!(C}F8r@8NI)I&o<f4=mupOxHiYgYYsYxu6Rx3jwScCCN~8;i&HcXvNO
zne3l-VS(e$$9>j8BCdJ6-){4nWukdprr1ZW{?Es*J?bZB7$yhB#?Fl`zq|F|y>9(|
zGaQ@QK<VY>m6gG6JrW<o^_7_!8qPPVeRgXB&3E+I|9Sl9$8q~}(fNC)nr2^H;yqn&
z<+^n~&Sz&DtB1!Fx<+l!+k0*=GoOWmtX0X0so`-mmwHcs_G<O|bDz)K&(FNPY-#0Z
zwa>Zi3=O@jF8=ra(O>^3+3x$!^G|Qz|5vu}>)L!(&s`-igC4G&RD9mny#BL!{p8Tq
zVWvBnug@?{-c<ARlg-~RmtS67>^>>w{oe2A6x(G$OG}<Vne4yr$O#69fWqE?LTkd-
zMlG%U{Oo2@x2~40*WPxyDvk2HrQz%Le!Err?tba@SV^N4kJ=iQlaB1NQ||4pem;Hw
zpVY`?CI*MamtQcec<%dkbv<Z5ZuVa0s-<fpH><_}|8>3il;-l3>9J**8~#6=ouBsa
z&(E9L>-S2%`TF|0zQ66)5J|B9D=+j9dQEzGxczyL@wpQR8kxb`Ua#E_nunH_*?wHE
zI_Fbl-j0WDd;a};{qyeoy6xxw?ks+;=9!h9E&b-|wQFe)54Bdl-}`;j&9vFMmn<0>
z78qs;F@iGEFMInx9}e?=>t5s$8X6k5K5nn)^N1Y<iT|F)|5Fu@EeW(Ld$Z$Q@-+SU
zc`7ScuFTwUeUWSTuVfYu28Q{rzDf?DR38!=8d}u@%97wH?v?tw@OVu@+Ol=))*Zap
zC8~YRij9H6E_;?sLywH*rc25x&(6%;`EuFpPoUgi{OpY9r++i2i)x2~TC=CK*YBOS
zE%)}d_^Pi5mqyg*y}PsX<&BMxtLFUOp>|TXeq-60`F0Ep8pqH7|MKzqy%k3k=4<s@
zIfSi=m<S5cnWoucppKKGbK9EFTSZf67^nMnEjn?1|G%$uDxb~d{Z{?;)zr=BthDd{
zzV{uphXu5GhPQ8~S#H#?Z*O<Y)!*Lf`S0OmeqM$H>KoR@Gx&QH<*=sx{F1SS(Ww64
zpEuj@*MY3~dv|@*)~u=j|D6AS<{-O#%rBeTUtdnHulu^1?X`GJf#WpY=xK$Ik1Y*f
zALn^*fA)1yEeYDibHD5Rzu)iAgSNsJpSRt9WhW>mR%%Hd-kW><;ThxeXL!x;OxS$h
z&YE4WA|dVEoSCQfcI$w~edParX!q(5&wp^BvGVuZ?VsOlK7VaJ=p2!o$^EvM*2V6g
zQ+h2ja#u;_u|C<^Yq#Cfy1dNy_XY0_i29_Ejpawlj|b+h{%SYBlxwlv_;T<6&Tmg9
z`%f!kzvjQ#t(xu0z3TU8I|P-D%HG`gwKebVuBX}YzoX)+UM_vJ;V_@*oV?unpG-gJ
z*;YS0$S!{d)F`;P*ggI8S@ZJ~6rGLA-b9q|XJU9@y!Im7iP!7*&-;AdzJBf2zu)iM
zy9TD*+f&)A<{($`ps{q_`z@FKc0Qk1?KO{$fkA4!+i$-YrKP1`-_QQo$S=1(YU?T?
zWkv>u`2mY<nJ1}iPCtL{%gf8J<@MwCSa^OqrM-Sh?eA~AedV%p3=AfDy;cr-dp;bB
zsd(7Rd+of%<DRW@)4%$?U|=|)emR5r$+YOam0vg*7!J5y%V2);<8l9b7%v_)NL%xZ
zLx6!{fe8}}1A|5{=<psdWd{a^hD)QugE~wmd<E?zOS!Tl@a5&@{!!cW=AN(r_u2B-
zi^ZQ$X|Ff2_;yr0{tW1Fn`OSUOI}^kRCen*(ZtHFWnjv{V4`<c+twlY<K6dl=KXfR
zGTQiLXT_G^HU0m+{{QsX>vro^zuD-%%x~_jx#jmPJ&n@O&5<cM!1(gQLg#gRKAqBu
z-DMIUUt2n_{@+iZ*=D+DXaAnY%<$pn)A+-$U*0J`e-`ABtxQQbHYEN$B))Hg_WC_W
z+wWCnPf9s6!!UARP3640UoXGBxTx&8>HEFv=M$XyPX74#xcJja_3)HB28Iltn5M1s
zzTGXq&z7#g?RMVoH=9oDRX%JLe|7!cuGi~$B#oBX*-d(~pqbC>{k^@PPsjh;w51YM
zh6pLlzp$tB^QE1|&s9#&&fhol=jZ3?>-T=kDu~%%_xID4VE?JMpbVqM^h9{a-*2~#
z)6dP}k+-w)G%A00N5wNYH@7)CJ3D)G!NWs)zTc}}dX9sEp|_La=Zv_Tk4Jl?Ott?0
z{(ingP<fKd>FN6ZldfF3Vq&q+wOcG(mKjtLFg;10VV)nyXaDCz$%_k$<@YMnSFKt#
z33T3q&!j6?ubNhzgVzJycUZHTbt5;aG_&!ZnxyJ&lzM7P&d#UPzE;b}pp^N^X18-T
zfBg}?&a>!v{2JNM%lR1?PJR4rU;AgLxt8IH<y{On8A?k_LG>=EsQmqYzrFRF4TqzC
z-`!pAKV2{O(-C2RlZtm+GB01+o`3)ApV{YpKk?76Nnl{GYb^cCRN*u!S=-?B@^<eH
z*DlX8%{I!pvB77qm8r10pU?ifzt<}7gzx`#_0Kc&{U_&G7QedwZvX#(d;WYnEoqh$
z5&0NYuRq~AQDyafPO(wur6n~#Psg8YV&yhUJk+xF+y961_w18Dp8x;n{7j3&BsLz2
z37|^Hd%E7)8yk~1-_F~e`sBn!(HSxf3{w1zo94}{d^R&AG!)cmpJ|dA)clv9X-WF|
zd6gdyvKODTe4g^<#l@R7pU)bnoS4ufYh7j={~uIB#xbSX+I~2|{JQpypY_`*)$ewu
z3;QuMF!)Zs4jL|4DyYD~;E)Nbssp4LnHU(RxQz-A@h~}|wyEgpsX6ukeuCPopf*VD
z_q*nk)&19fiC|y|2xLkTw*2?waq-)&*Prcp+;@6M;p0ntDnEnz1E9igsXH@6Lsw?p
zOGdliWxlhgS-;z%d_AVvci+d}d=<|=>vuc8yu7Ubd~SK%GM|}24>=hb78uQ8yvd^G
zH)qDPv$LO13HDnVzk21$lb-5xryQ57)+v5=X61tt28IAjrWE0dUoV$m-d+BFOWxh8
zwO{N0{<`{}nc+bCM24Fz&(6)Aee2dOw%1#?Zq@8k%HQ`hjdd9lL&GUyh1mx{2WbTd
zUryNT+Aa3=Hv_|m$S1BZW;=iuS%!ySPpCcGCHnRE>rej=Kbh!jD&=s}?nmXf+ba4Y
zMFI`IPyWu&u3Px$Bj*I)1>3fj&7B^3cCNL#=cT>X-%IWCzrDFx|LZbu{V#?eTXt-?
z#LSQrvN`>{-~WGqwQb!dt2mf7?yLR%tp4Bg`b{}EH*JmU`1j*+Kd9ec`}<q$^Ur+N
zZ#LYi`~CK2)$6tPUvxMb7^ZHn`T6P0JX`B_*|LbG?wOlbbuH4+vOTi=?3T>So8IsH
zo%ZI&M$6}OiYM*)f9^%?uP>gUg6M>@-bN;d2b)hyPVik2zrRk>swBg$Uv6&Y=Vz(A
z-)=ko<KyGcx3bqi1vghJ7#IQ!&o$&IX@{>n(<&Y}<97aj+io%4Q|orWn+58#vCG#K
zKq3;7nD_8=Ffas2F<#<W6SLFk`TY92sxL1lhOLcCy<htsbWnn}tr!DCP6^WzK?_1@
zqxV#{gVvko=x=ewXH9<|Gv7B+W##JC-t+BhFRhK<?laS9=^<ezh6BeQ^LVuS&ap5&
zJKOxc=JGi~`@@2RCr|dX((JeW7V+%N%;1AB85j~C3n_?x`*PWTdHMT$*?W_#KK-li
ztl7ZNz%XBoX~`j6X~NgJA>;-|n#fdi&;spET)BF6_J(~)N4tL2GBEtuBA_4|79Bks
zw6HVcf5O`8@9$DU9roEh3@bN);`ZtE_;Z_5PhX3w|MT&9aA@e%eYL;CGK?4)Zv0^J
zXq7F!5*WEPD>QG<$78>?PSp-i`}5=D&GP%TmlwPDbNR6|Fi3}g_Tv8#d3}BSejZsX
zlf~}+=k`>7-gLL@cIuxWA1mK(y<T)$cY8>c4FkiC6?=rMls6PTJq2ox?)>}h_U4R>
zi{9*dy>929Pp6AN9Apo#G65-rl*sED85tPJY;QLB&s@9xo|XE%iln8-Z)nv0x;%f`
zu3c7_m;2w(nE&}vx4vKL*8hJQL%QZ4VDJSEm(B|Iw>7<;w>uZKcDwBDt<?X2zk|kM
zHYFYHQt=E84RuYIu`EitwIy@&MZ5dQ{#C77wMy%sEz=L3?6{YV3=#I__iM}Bc%`R_
z=|-g-=@109yTaDR%+w5C_GHiJbEkVGjXxch|F_{%@-KEfhWe=tj2TR6=jY8$?z2?8
zowM1u?)&chOS7-9`&tb;kwb6yn@x9Wzuy&|BfxO2-+KeYtcLe>-*;Djzgzx!^87z3
zYk&N3SRc2y=-JHlb)R>F(!TlrpJzcKnR$7cFX+sOgU#&EZ>G=BEqGIUJ$AZX?XQ$>
z-EAJn`(!tRnpNWaf4Khrw<+~>(YKrF>9cdUd4diMTN}Myrs~DQ%3m*+o4<Hn`S<Jf
z;$xEODaU2YeL!=GJBy$5NSo=b-}~*BRe$~WyXD2NRxStawa>i1F1FA9-;X_?&sp>K
z?S4M5`qNSUIz!MQK)1K$g6iZmGYlUqKi~O&-|wOWjNmQyAa|DCDLfA96ia_GW!z9V
zhmkRZsqXXa`%A*t$K6byUu*Vb=lXrWvi`l^|4-Ywo$svK?VQP#pPxN-xBnFgYA{F|
zr=^_M-R?8#PRV6o%hzi*gBmDvYQNo#+?eD#ulCzbP-EqAJHP*=IaRM#?tHy&Hz>T)
zmd`Ca1v=Og6f>>jaUS>g)n2b&_W$qw|7Rcf+s^|<h;8+^GjDEgF8=%VdisL{jWZ3C
z-J-T+1lH#Sib$Gfg@D#$dF$;|(ck+eXx;vQzd(Zul@A)(U-j>PyY047(UTLPL9OuE
z($IfDj@v(Llg>NA$SyNs`MfHv=-jPWt<pgT_E|jY`11C)`SjSb$gHd^qvB_0Y<|61
zEd6IMTY{|!gGrY6G#$-Vt5$U>_uCZh?Ym#~dTqC`pT)v|A5TrymX-k(hoZVsTQv0c
z|M~Q5>;B)n_iOL_(5nCE>iN6-YJWdEV|@P4>f@l{gpA9}&c@rO9qkh3y|&D6Zd6EU
zsOa|lb=7}w{rLE}d)2B{i{kg!9bFZ=`qlOI`+mJzv}@O{877%Qfg-LOb8c>0<lN48
zG;{gfZP%X9v9GVY2r~Ohu>acl-9H|6cfWe|>eun>an-qjv9Yl_F*`o2KgV<6*h3+m
z2DiMElT<xFZG5k@^=8`atN$y{&N7YMQIH6#k!8znB(A-Edt3f}yZk*L-R4z1>g4|$
z0~%w!vNG7X{N0^?)6?u(Sy`|CgLcpA#OyHGTlLlJ_qVs#D^K68|8u<FXLH)wSMu}g
ze!a}RwkERf_wD;?o}l4Powz*~huitj-_GA3`#&%=bZYIlo9SzfRbT&_HR(zC{$HV8
zi+;Goi!;dkHZYhJ<=)=rJ4q*Y*Oz45{Tf|=ZtwpaUG@Fl+*z|`mAt!S2^x4SK5sky
zXt(%v`SO21pDzbZ16^Mq4^k7j*v)hY&&yS-*PQ~5u$`}cR}4zAMJH9Kr(9bTDQ$DP
zOH{k)qN{l7>b2XVvX>q07GG}~{OMopR#2a1>$Pn+lDe;4yO#Ft%}viqGmX=iX>{?(
zSQy0aDp~pe#jUN`?{>f6cV@o*f9G^ipY8Jg`u}r^PHDcpwl*3xMtrC8`P?Ly1Yto1
zhTfRjX1Soc+~)tE&+@N-CLilLx%2tF*^JC=DTi7(cYeQDZCv^3$(uc&&qZ!d^Zi?B
z{ccAxXvE@9;c;2Z2Mx?c*JI1UWu5Bun4tPI7Zy5yezki2v-|)5-Uk)&J+jtjyWec`
z{`Y(T|LW#6(45!09gn&|JtI&b2INkkc{Y}^)@3o-%f4<+J39;1N<Y-X37XW2lK+0U
zJihMl>-hQ?#nD?bCW6KUC#(CP>kw4_bf@_I(-({T&n;}1({f@kW7KzI&tPifk(@L;
zZ<l89a=*I|#25WPUjN6P&*sB{I~9+6v)Atbe9rpirKP8%vO%YkTv+IAT=L?=ny9T>
z?sAnWpgBY6aEt$>lGoRCm(MMW^0R)sMJHl|!tVF`szC}4^I7LKr%72BrL5caYSpi;
zyLRm=y?1k!M%SKCr?h|G-v9UZudU_xYt4(FpF8`oU4EX*&9d9M!6L4^N?uN4=C>)>
z`}{{SGdtgz1C7kaWp8f86do1*d9HllWOliV2g&tz4A;&|3N)xa*z@_E_v)~<MW0Tp
zum4=M$o|hmeo6DZJ67{=uZi5uw*Mr^BcKlE)@x#VF*~k3es*?t`trGDUV$RuG03#D
zvwmG)T(h9~`MH<(_Ex`o^~&tUYfwsWHkN&StoQV*tE;b9{^>QpHv@Enu>HP&zg};y
z`uYmghV?AEk=VX8_x84**X#dY-`e;40C)g=nrpY1X~gZ^?RSGjj<VIqGSrx)J21>@
zh}&EBG~NDpWE;Qyyt!q!GS`+n)jyf&ZdCZ_$efBtov&-&O;B_$x|urt=@DW7Gj+e;
zPJceHT2ENb=L9GnUn^{vtIF7Rr|9&T_xJ7Z?kWY>a-jJV=Qf^`V$nGhK~r1l=jU0z
zTCsT3?Y!MfL5o=4@B0nvcs{AV|NCCl{OqTvrb-&8`7}pbmA#p9+27t4q&Ii_UC<b3
z+Vi>P=aTzvr-8bzbFItco?i#G9%M=`ID$Hvpsx3?+pqZ~jZ{wlp1$&K!C_uW!z7n)
zH<J572{d+B$w|;S+wS-Ktbf1X|G%B>*3#*5vp|WkUB0fu?*Gs8>G$?j?tIuLz3FOL
zG$<GRKk?s;A!mWt-8$|DUi0E-XC7S%_SdcY`YLow#>GV$x3}ePykGZQ^m=T0Y+!hJ
zxQJ_D&gQdbM?2N$Mf{($YuBzv(f5CaU0m$mpVY0pO=I7WqxxdO%l&lO_+%nvDjqa`
zJ$|?3vhUFbM&>TP*j*yJ(c5&k-LL!o2s8}8vE=2YMH=_^&wc;%`TY1d`+mQ3-Cg#!
z%PjYn2q^V_TrB@LW38lnpG;&(c=-Cy$-m!j*Y8@S0h+*gv}CfM)~>R*QCo6vZ<Da8
zDERp4w7&U_+CM)&x|Wufe*AElUmTPhF0Kq-z9{$hwxb<_%3Yuo@#CM(j|a_1r|<i+
z6jaW;t`1w<^>+LHeHI^&2zS4{y!^U+@yDa$;%8@>uCD)cfSF$el+iA3PCpMi&eiq&
zJlpQ%e%o!JeM;&-{aFvRuh8OJzk!*7;nYJ@D)+2s{bzr3adJz6qnsURI@;6K&t;uc
GLK6U5W=aVF

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-3.png
new file mode 100644
index 0000000000000000000000000000000000000000..9c48ff3bb2c4c07e8b449a6e8eacdd7309f8d177
GIT binary patch
literal 23938
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_e2hBy8H|Bv5&ggoB}b*j21UH^UU
zSk&v>-bLHEva*+YZ50VE-@4`M1+A#AS6M5chDBe!6cnPlYQ<jdwYuMGmpc~x{rAHB
z`Ev{Pi4kg^d*}7L%cVS<HS_$O$q)A!UpJke+GEJXz`(%3ej_s$L^o8kGqNx+Ff=4{
zD1i7f&J2tU3=9t>m^eV(;{pyK%A$<{r0akoivWn*r`Q0Z3V2A=D(Q80mTBs3$;b28
z6+b_>(!F1<tD|GW{Q2{1YHGfGK5u{j>*Hg`j-A?;yEbO$r*-nL=ck>YXS*pkTGqPE
z=XH>c%J+SKv(0={PfrW|_U2~l?QL-t4_Q5fDk^qxiR-;7S?TF@e!V`!^OT<dM;Y%3
zZp+<W`}5Z?Eenf?tyxzuE%BUuY1bZ+jXK`bQg`Y`Z%k^<xqa<GBlG1ITJPg(KDzGx
z|L=FzgGTl%>*MYB{`>X%)NJ$oO}ACpbZ&1mEqruD<u<Q`!GWvqj`0`Yi&K92o`3Q6
z{r~Ok>`u)zUal3sZcX4~x0k1;YRC0Yy<w-M<TPDB{@X1z8=DwAJG)(FZ=)ue@=KYV
z*t-7h?d|F}-}(K1+;4wnZ*}=pz1S$r;%8I#@85su(4i|U0+nljy<F}&FSu&*mERzJ
zTl4S7JwHD`{QA0BQEBPbzrMa!-+lIO%I$4g*VoN`@@vZqPKRHQW?y4vD43QS+11-S
z)zFQTlk?Wb<o0K0W-b=h4$F9atheg@-tU)o9jWhO<rZ7v(kV2{JU^~$yXT*RXRlwc
zE_{4UQ%&vI;$A~HVKpC6WL&>+VQ+Q$*38RptlVN>cD<ixTdkFTZqBZ%udBYjySw`4
z=JeI!>*J!f<wQ=}8Z~X{-s<mJPfkpHb$NOJ^{?i}b$=>uZqrTfIo2n;di(vl-^*^_
zS=Y$Sp7r2BqtUSyMNdzy3SQo~DfRR+W%s^}r>CaAy0de$-M=5nYooWnTX(%^_oS+L
zah(VS&tLcd|6ATJS9K!y?xxh!GOP7f4;?zRrSx^!(-RYw*LpKfn8wpk-If}8Y+G*s
z)79bY&Ft*#jvYUK{K(OxOC3`+!#Ah-_80$nxBGohYGm4h2FA>gspZ>pXGd+#TADTc
z$mi^Pdv<Qjz5VCk@Aq=K`~LmPPL7<`+1F<_Ep?{){2C+I-+cW1=G$^-+g5+up?iO4
z@$!?iOjmEry}c%8=cQ!p)0=z>3O1aaYrXyCRPE`Og^ye&{oYsgb=CD`{irP`BBrHU
zmA%RM^z?MPle4q0lao`|t9_x(Y`jL(QfGenP_Vh~Z`Jx-G5xrlS65a({$;19rx&_D
zv+Bc>$^KQf@t3<&BUk?0$zG7ZkXwu)bX`oOs`s=hhHld4d0%d&eSCB@>&AwKPEJlD
z0s;#bxpuGepKoVX{H(|Qc6{AW*W6oM0$p5Mn3$MEq@-3AJw3HDe0>}!=2pl0`1Iu5
zzIJbKwe7cwm-0gW?S3xFy1wr1uFb`@-xnR(_lc8}6O>Rw*2P$|va)J=Pt)n@=m^-H
zc6Lk2%S$5r{o48E!?x$$6%iCvtgo+cZEMrAvWl8*mRpn^zB)|zy2aF|r>F1E@>&;t
zs@JOY)stPp1&cQ(AJ_7prUOc=*K>od*_ISMJhUosahpo!-(O$jZl|1^6S;oxw^@Gk
z?bb3fvn~0cb0>S7j`v*a^03`yZ%h9CC_FpUSpDj6&y}{--!cv~FrJ#CIT;jJQ}yHT
zW$&)~`YQ9`p;q&|_rJZp{q@sn{nbvbTwJ`op$-lWhYlaUy3|`-)}r9RYqQB}zCl-4
zg^Ef^tvYbPK~yIq;Opz_*U!u}zI$uwm#Uo~Yv-C|PFlTsp5d{pN6#HUe!SFI)toKm
zSdSzqsWvq?i%LkW=;+|sntS`&+xrch)6c(}TYfKau2pHs0td$H=W8!7^W9qZHmd*g
z*4*f6sXPDPiLaMcH)m5>dj0y><FjlkH|_iV&id-AQ16?Y)5H5@EJ67^_x854uPvE9
z<X<$g9_XDvfBx}JjLd8xPjd0`g)MgL1;yX|`hSs!+juV@YUSRVc2+9&?5xmB_vM$#
zRlQKWxoxeQ?<@@^C8zZB^RD*ET7S9dE}wZ}f#az;mYbJYUl#v!(OrIOYUC`7!bMrv
z)~uXmn!W2<YkRx*B&(7a3tnDczPjY)rB@dgHZw6ZmwtHQxHf95SGTx+*j%g9ys9}n
zc36b2jS2-t`P*AtuWrkYetUbn|NQ!YJH>P&7Jy2C#KUcq{_(kP&AJ+tle6Z~;lr_a
zR|viK>=aV<dSU<nXa6#vnTr-Wx9_?)9hA@i{rOq-=i~9Iw$)|pZ{Iuj`qkUN{#VvU
zoA=7uM$NDJ)LHfA#X=?5t|b}s-TURPhR4?~6;kzD5wz6n)HL1MZT#}<43m$oNIgAm
zd&u*%HNRdi_ww)vxV<embXCa8l-p|M=Q`8Q&sz&p6Sg*LRn*p1MyaQk+^_rX`}kPz
z<v%|^Z%sVR_Vo1h^H=x9@2`_GO6lMd*IRR3uG+`4=*fkJ&h1<3{#KoxW$L{)YU`wu
z>g(PqDNB-)lTFjl$^8BE`TV+drITXn)xH)B2n#PhIays>MaAXf#fw~=oEQK7{r&ZB
z`TdnCCnsrzubZQi`TE-0s;^hWLl?X8nr2<`*je=S(!IUaU!P8o&w6;Mb(VeozE@XQ
zt9xn%FY8H4PPVOkr@AwC`n@I3etD%tPTTkEmG;@$=Kj3WW>+?!w_AO`{(mgDn9hYZ
zUg<Bt-|yGf(0GxSuiLO?!m;uM1`CaqdJ)=TYYgn{?9>z#4#?Qm+yEDqJ*kn)qPAu|
zdvkMh-fK1ASt&ZFjr8|?Xv&U!e{XMZ?(Ju**YEpeaqi{i<#+e>cXoPidVS*4)6;v)
zR)4z2s=adCF^S@5XC#wvZ(A9$anW(B<Q~h)PfM;pHD49Je%{91+dOhMH*$Z@GR^K;
zzkWTa0Nh#du<7=$=$BoSD(bAu-<bq2^D&&3I`ie_<-4!(%h}wxu`M@jeO&Iozu%(Q
z-)&7wPVUXUop!WKH1G7}S4~@UZ<|e4^%hIMz3t|f%*pP)(^6+Lv2sZy_slfSp0@h;
z^zF6PubWIOJ|rYZPLs4MS&<$2^V8Gb{{H@(JB!n~;%8o28N9r2WA5!9d3(Fi+p1St
zUq3k5{Or@y({gX8>qI8i)YSM~Ul)6K8aq4tY$jH&8QtRgRXN4A;@hso=zH#6e=^qn
z;lqb&N=k=vZ>rC)NzyrOG*v6q==r(1#nI(&Z<%hdXFfO2_Vw1&cN>}6eg6IVdG_!3
z`|mgE?VSI6N!<M_aq+_HekRjWCGG9)Ki@6Czccsp_Wbzd+uJIi&n@3`jX~k<MON+|
z?5g)JR(!o0{`E$3zowR!*Cdmg9|ccOPCmZ&ZT0)T>ZdoEq@9sSJw5Gg?p<Mjn}sJ%
zc+`HonJ#yngM;Hk#56Hxf8EoQ4BciLrGDCF7rrjW{O<8aX7(*9Cxt*Inf|^Xi*E1o
znyR(Zcea^T<)<ZS=jYYBXZc-O<jVc@)YQ{!rLX<?_&9V`h-T=zn4i<WTPGdi;FU0N
z`1|{NcsrkL$iAA&qsNcGJ}Mp`GSet^(p@tvtEj2k;n(I^7H_Hg`btDL|IUuWPai*C
zeB5vUE=o*Tcyadib(L?E%G717N<1c&+^_w9cj8}A=6XGM(yr3iuj2pznl7dv_h#d{
z^XJdMmgUIbKehZ*m85Oe7M;_V)aTbc+EqOB#3r5X^~{@6Pe0pw@6XTAt6jUrZf(n*
z{q6nz`slBB&V9YQ%vZX9x3<6i-z`0cl8+8D9oXBY7jeM$#j!%sX{niietZO#T<*8G
zW?w&b{`~pH_p272p05A;#>Ql;(pOW8o}O9?%G`_HdV?-6^S!#rmHX=2=<v|hVZNJp
za)6p1$9ko+|NZ&d)zcGFQnF=L`1*D2a#bFUjg6YOjz2p)Th;UG>hS6P{r$&(-P)R+
zeQJv4tv!{SZ*9-7Kc4md`}gqQ-`;*b$S$98eO>IWz17>x-rZR_QQ7_8wYt5wFLlh!
z!q)Ho7S**)-mYfHs*sh7{{Q>F-<(&`d%E7$b+NmzEO2DruIH6|dt2!HdwWd_AGz%P
z`D}Jv{PibqZf<rLR`dDrqv8Lr*Xx&O*{?KAJtg8h%f!?E@0ZDbbFH45*&V)r|Nh$C
z-DPjT{QLd>^}pZm!&ir`4O#5Q8@ev$=HlCPE?++#U;lS0sOYQw{Ol?-zs-b2xphAt
zviC}vdSzc<clF|8_q%e@Ig!)&WGo7z9p9I&TYqF-(sk{C1q~`MudEE-9wXeayPJXO
zPP34`#nI!(v(L^leRX5w;$0;#7df?ZRsJ#ic%)N!SJl_7P0a^&Pha}^`T11saJ|qK
z0gkJ~)?QlR*!<<FcznjGDVj#dR=9KuRsH>X{pzmL*SjmT;?B;o40dkkyLx41aBRN<
z9|uQ3x0tR;&JBaswl=lhwT~QrzqWUX*Dw6}^78WcIS(gUmA_kaaj|>$ogIasU}j=s
zy7NxuPS=hd7NQyf4%7AHuT9g9{&L3nyoQ-sn4qAbCRe~zt<a!uF<p=wUVJ`p?_VZ!
ze1>6iO5`;69cQO%PnR;!TXS=BdiK3Nm09=pRIWOo_~1Ze9^;WsI^hf_r|Zw(mV0~J
z6NZmhUR_;1-K|$@DJX5${r$zo&0WlTgHu?o!p0-<$%%<tK}$N+d}b_I=-i%lVuIqQ
zuU|tCxAB_R{3y8oLvs20=||>Y+^}JT$kzGB>3vb#a#kKV;Na@&y3%8!(y2+R-8r|f
zmEW&jK2<yX)upB0+e0s}jf<a_y7Sns7=6PdG4cY8OY~U;9>|GFNUXTEHT(7I_4|Tu
zZc4qn(3$=3$K&#OcO8qKoKQ^e>65pg_vo+PmkZ9nKAqN|I$^?sUTO2Ji;G;PY^%21
z+M2!m!i9kAmlp`l7kQei*KPeX@!tLW@t|D)|KH!z2L~9}#_S9dR`<IyMKgFy`gysv
z5gV0mz7^hm2vm=}{&nP?UHRhEXZHX9n;*I=#Pjj-{_8W1)30nwJuOly?cHbSHff4x
zuv+Mvh`{*zzgxYg>8xBAyL(mM-CgE$bpj``@yo5L{QPWX{{4Mf*VfFuZg#w1zWl8A
zrCp`j>*bdT@BY5jtO3*ry6MTkI&}52)YH>4UtU^T_35N~@YeUzpx)kM_x@|l{5A`&
zt`6VL)~Y_ss&v(HvuUZIF5|0<i`)C;?bn5_4$J)Y<>f5P;$?OJ|Cay#b~}HaUaaQc
zxOXi__}^&qrh%H4fByd6TKL#aR6p)c?%jjU?7@GQY<;ri=~q^TTmv?i2CwOQYtPNK
z&i?=Juasd@3%DQ!WrJJ0O0!pefBpRVa<8dcnr3F82H7OTW4ViVAK}0B``g>kH_HD0
z`l?wsDLAX{v80&TGPB%U86O`V)r#7(B5Z9`>E(4&osX5m)<!-3>im9F>gkloX`q(O
zqN?E4#m~=KmA#oEBqRi?yR7&9-&6T{Rs8-stNMR6UAqlLHG^DYcb8p#cXzjG)t8L*
zxoUoMR-B%$zdB}T(W@&fCtqKGXJ_&2+xh#i&a<t4_eAsMN%i?t=FgwM@5iI=*>;n@
zrWr4Me`~Av^>wkqAt6)Tf85w#zrXD5t*LLm?JRyCwmI#rN$szatLtK;t;^qCS-=0^
ztBdc_uAiPe!Lm5*@9+EnuT4~T|8m*i{_d8)=jK|M{{Q>Ex`jWvXW##S)$4EH*fw|7
zZvM>LTE+r7MwSMZmsi8%Lznr?1m)rFJ8i4JzEVx@u_}M}=9ll2um66%*8ltCasRsa
z*VjZY2GzS;y#Ks?_Er9YR@j;srR%!m>wc<+8gF7}XZN0T{ijQxy#2echwtqyeqQqL
zPvy^Fztk)pYy%@AW-MB?NJL!xx!{GmKOfzFXPfytIyzQ;x#%7oQ=GLW?`~A_^K)1C
zRDO>6TzV(-?(XvNc{Y_Mg^yg`-q~sFdi%@!`|+Sg-U7#Fkg@$=A0O+ToErJ-#o~TY
zt-C%xc2~*8t=ZR2^6u=guCi<85(PD9^<sA|Y2%evv)q67P%C%n{<^;@->3fg@kH8Q
zVZMER++6GOZ#$aHe|}0`pPVctBvkU~2&d=&|5hGnzZNb3^5UZNF^STbmt51&&nt~i
z?<w3ZEGQ?p?(OaE)pzDr{QY`;@}H$H1qB<f$7`vmu3fLsaBeZT7=vfM{nckP)8}1W
z5xCf-<VC>Vuh*g{{gY#`DtQs`_3iEOqg|rGhue5X1qBy=etv%UF8$E;aj~Ghr}Fac
z_WRd1rJfGiTUF}n;-Zm#ZOyN@+wX5Fc<98+&i?x4^7&=5n=>yj(+XQNW0~*lWwpP*
zy<FHX2Wpp^=HIh1&A#SioOZ?|@U5!Xlz@nc8O!|V>&3^%i)w{<OiO*)sXp(*$;s-W
z%X}n3gBAQX9~!tsG!|@5KcDsQ&rhqOCmmJa-mKJ#+;r!Qgna#<jjKXeFSD!t^<sAZ
zzQCWKo^CCF9|vk#+u7O8GDvjl`c|yX#LRqkiRa|qo8G_f{|M@}g|Cl$b$|c<>*}-b
zYJ{(gd3AmL{9j*QDxa)9*ZK7H^w;O@|6gh5w|h~#pkUGRc~xG`Y`m9RIE76T4lsmo
z-($Tn|NcHu2bYaUVgZ+^)(WqwT3Ye@_H0T!y9(6vczSB;t$nq-L7sn8_vy*W#n;wG
zXCLd41l9d}tG<>zJ0qzZxyhxmv9YVCr)2kR0eSiLSyxxB%(%D+)S~AS)mqXmuAg;s
zk}9Z$GRrJ?m5{2Jhu7V&MaxTGUGW4}djJ1@w-?n8^YNW+7V6>A!6#<}>Z-h4xqM#G
z|9^i~|NiCfNS|MO?JEPjy}kY44~O}0?J8Y8%OrEr`hCAnCI2sdb>(7@r16y{p2Aag
zqr>Xz>VBQC|F;;_Pl&v{HYUC^mXk5XA@jqFc!ta)n{*yOemwcfFJ<?>89I@hX5`%5
zG;^_g|E{&aAGXV%N$$5zJ9Ow!&;I@UIeB?aQ%_AX{QviT{n=x^(y?!+=|m=hh9&-e
zU0*+Qj%D$zHIbWVO;Yuq^?ZK)y*GDvUw=H~_xJbaYooWD9XxnYt@zoQWl2Z7(%#+K
znfCM3(_`CmjSC()Z2xAOeeFvXpR`$yLFwyjrk2IeOziCJ*8LRnn{StUui`Op@Nz%d
z;`_DVXEro2Ot!DD3tk<jYn*(nCuDCOJHMPs?CvtthYuefyMO<FOH0d)XJ=>6=9M<9
z$j!gKZDs84vQ>Q(E9x|7%0IrHzu$CQ?(9BU>s`A3d2#~s^789HyGkUVIod7m8xb+%
z<JYgI`~Q6E&fb|Cxh&yeQ{48QB`+sw#_ZUzG57Y5A3t_HW6Zq1Ztlk1+k5{1`)zL9
zf5cMZ*}1vZm$z+Cy1gxTnR~z7vXYmV)ZF`IKyG<*e*S%voEsN>W*8jIt?S>h!(#pV
z%$k}#m0z!h`)*7+>XVSLKr>>)f|vL9?gn*;j-O9)a%uuK^L-At@%k=wY6YnP1^QI&
zaI@rNJ%*f|oa?r&+!;4%HoMBo@1{03cSQ7JZoGbNRQf6;cypTXWaD%{VF`&0E^)ma
zx%xkan=3!3Z7-Xw=4%9sw#dzCrizM+YF1Xa{``8q-t$`VmluJT*Tq^-HqVcH{Q7lv
z&h4_Z7bjnNo$d2#-TF>pb*bCi&Mxtsyl39+wK3HUbCM+wuLlp+S~MG?j_a~5WM;V3
z3K|*w`RS>7?sVgHzprm@etsv;!mvYIf|-fILmZTq8kyPeZHZmz)S74YosB`^uM%{`
zHyL9*_~or*z0#thqDv=C5V*N*EvS86>e<)X+dDP)cGS+I)UNF}H>daK+zvb5C;L7r
zb$j~JF40Z7)~=6j-<eKU^PQA?dzMXQQPgxMhH_p;7KdG>@9tQd=G+L7Hp>Z^ZI&w{
zExkH@UgfcmR%|>H3b(hV-rkm!lr$-4d(l&`@ZE=6x$l1~)IB{ZHB#<$?(ML*x3&iF
zovQ+BxgO~d1dTO0IXOLf|9(BFDd#y^ZI)^FwcP7-f=*touogOe_G^6Prj)>ce|~~G
z>|bAAc8}hcvora4cW39s+}pQym%o?2{rql4EQ5mWL&H4`m)4fPzV`CQ#$+j*iVbm9
zFPCo7bFZtbn`N3k?OyeJ+tl;(?k4}8VVL~n`Sa!4;p>(-mezA~b6>u;HhQYEJ70h4
z{=eU5gPNc_c38Bww}W~;Tzq_>5xK1i2bs>!w~r4D3<Nc2uD^Xh1=Jyl-kulw?#|Bl
zw+un!D~TUJJv|L-I+*3&TJrF4d-jbDiCMR|t+o64L^$>2q^H~Zinlk3F#MS;=)kZf
znw?K(LTcox>H6_e)0Iwd0=2fz&b1DoU;Az5yxMP(+rKXNpMUMm&COSL6egdYXKUTN
zYD!IQZRnng!v3f3eKLU|AyfKfEEk2xRUR!3SHJl3@^a89kZ#l#kAB;4GsJYGO0H+|
zaBzHxdOTM|PHx@5zrU+>{{MVF|LYN9|BP2xR$7(5nj)qXQ4oFnq2nZm2~{NrnI^nb
z=}YeD?3`$L?CRO4$M$^$4KHCEQT%k{`PbUl;<`~wqPAvfrk|Vh>ElPw!q~5`uZKrO
z%sAF7{d{BIrza<OmAnM?5#E&Ep8fUh{>bgCUVl%FoHk8A{@t~+8ih8lLCFqrl}|-w
z?P?-&Z*93KoxkUynB9{7>fdLZW={i+0I7OU%eb{AGw=1`!-qq66ePy(C~(|c^)={V
z6YEsV;<Txn!ET?Qot>-_ySEB7dK>id(NWM);3C)VSIzu(A1wNx9BY_kRqC~V&!;X>
zOHwCtlScZvIiRZL{=QmKdHMNoUQZSRRhiRtA{R}VAOH%!_`07<Z~xj^{QT9&<MQF1
zLaI|tv%^3mdrwbKzy9LlV%tM*kA7$N1Xfh+xc;tuwpnh_`FXaYl9DSQJV;<=V_Q}6
z@zJmM_5W92Uhc0R{kn;jJ7jBCC`iAfqhr?1O-sw(+<15~@AtR2RX?9j4_)ZQ3L2?Z
zP;hwo@ZqaVOS}1GEFP5J$2lTudrQuuz~Q{@_c>i6nu{757@nS+8|^#W>}ngY^rW@&
z43iGY3NXC%J2%G?G##NEy)6UOm%6oOrINC;>dCL^F)?#ig{@t6xSfA>+1p#7<oWIG
z?d9j~|Hps^vOwu=L!$Hczfsecg2cMTbb}7J@qT@?`TVj~@Avih_gj^{Sz&&!!WlHK
zEG=MP_9jA9FD9b&^)=t3-?!hc3SQ<TdGy#ZEi<!gYr7|^TwN1seDbYc+@2NZ?SA`A
zOMSWZdYt#B*k@;EUfo@u57L!<tS4}`S?--Ie-Dp<kdP^UbFG%9ot^da)6>(l%yMT%
zZOK@8v|IdjGr!%1UteEeUEs+4^Y`!9pU>Ne_siLWhG3`ZM&JAL=h34_A)C{DL4%-A
zPfZQJzAm=(?Jd*4KcCN+vMgEx%21*@5eBa7LyMf8oUSbO76*0ef4$j!{>l<h;p@Bh
z)&4$p{J1-)cN!5f<J=s}#i^&KtxP{Z@79LIW;NegPqL(?rB_=PKYQ_fetp>adA3uH
z)BQY){%ZdHTWnbVF6QcrK<B`~z+Gi;XPM>QSy6t!HoRL*_fo(8zZVyI&qyrR-}l3b
zTU;;X^Ru&|tHX42Z*Fppuld+IO+S9!)z#svBQ_?j`?fj#{IwZ|$sw!5bU{PAGmTO&
z<?sKytnl%%%zuA=f*f)?_DJ2|UzsN+C~C#**dSN^#_;KhiO%hOvX_2+eQlb3O=oM?
z)l*l?E-&*1jRk@R?c3$+A}(IMXjS)T$Fp;DS7%*amHF<@&Q<aI|K;viXLx7G#&Bt6
zC%kU5xpsAR`1u>#a@qLh-fXKmJInOg_3PK4oSS<)W=Fxn-1up!lJfHMpU;}#U$Uz2
z#*K*N+uJ1V>-K<ZkB=We8lJcL+;iJd_q0(nJHJ`@x){(XV@F4a$oy`@V-eF*v#zds
z`gMnP*qR-gw_OSg3y*Em`TS(E|E_7Z|NnkJwn+!nCb|11W_$kqJe|`<jEs!WZf(t8
z_Y~9?*_L~GOJ;EK&rhlSwd|~{GrL5!XKhYDzw6rDTU$@3oSJfSif;6^w-TqP>zhwY
zoyo||wnKM)%+5`q(NI~dD~s0&tNYFHp00Oy%fBPF>R*4UMC~eBxl!kIOMCln-TPa!
zr(gdjYgJ;fEq8Y5>uWo8`#U=gArng#ck|xg+ncvOd6B>U-zyQ*Qt#FM&fWgB(|-B3
z+}Z2*|GSlYxBC6wbe+>irLV7*M%R6K;JE#}%Ed{l-aY;O{V#8AU48r0g9i!03mh1W
zKR$Bp&-I&Q@$lF0soLQ_6O~*+4U(V#e!staOV+C7L`!Sy%s)RrSKFE~sI==vFc{5Y
zX6MT|IZ0J3V#5N^{O9&kQ1YB@mRs`aiRb!c!&#=;%T}yd5p7p?u!%KveVncDY_qdh
zRWsh)*!bz|*Q=BL?J7_I-aDI5)=I@wD`3F^-`i^2cGmpd1aia1x+f<le){~mxHf)m
zl&PzW%Zo2BFIWA3yM3x|wAuAt9UUB?B)I?Iuh+iEy>f1C@yx!yE_9|*>XqgG^8H^O
z9UV_i(Y);Y+JEJS4F;Z<HYOjxGtJ$_r6TwKVt0PY<Si8+ABD&+cW7jadtY<($Pta|
zZ*M%`t@oR2m33i3<Lym(cXzGyn5Y!BEobJpx3`~1&C`#!+x}f8@b0eCuj}joo_=lk
z=g*%#*F;4`p8WdV#LB%T`?_A~`+KohSA`a5PdCqx12qKN`Q@)&TI#)b9y5bVD+80l
z;hTFZH><3y`uZyFc)^u*vC+pQ!gs$8T@mnbTmSu?#p!cxtHUlY_rJcg__;~(Gau04
zf90nqJKxqWPq!?77E)2M<M^jPKR<g<x^5YD=+L2(r>8&_lf}*2^|8CdCWWkz+k0Ez
zr1P@wR0il;09GO9i@oxP{O8%MoE~2n$#3^#0cgNf>U!Y5n##y&Q=iP}S`xFf$o2jH
z|NB5Am=7K#{QULn)VAE8KYqM;b91xjyZ4}ZnBzvbx5YX>I5z*SX7Dl%EiJEw3m1Z7
z=IY<m`ui(n7RT-`>+0^l{P+9)^`OlE@zGJM>Thd~f4sIPQu*ckb%o4qJRg2UZO@zA
zV+bA;i4$f>;NfWCd46W5@uVqFE^ic?UM>A(wt4=&+je!2kM&Mf_m}IHHunP!&&AjO
zo%-a#=PwE$=dAy~wlYZQcFL(Ko(B&e%zHhl%4Gfe_xJx#jj8|s_*f|?C+A7I?_XYC
z-lTK7H2qPYb;XATOZFdcRsqdyo|>+|-nRPNiln1mpkd#prlu#aUxVtu>?bEC?kag1
zw5sp&s!(lE^TxGHBye-u*(v7vaX)|m_MYU{BQf#Gze!x1JKv{1GF9;0TlMwQionHF
z?Ca~UHw!T_Gpl-nhFm3{n-o3q01dqetNC2Gu+Z5w<%Gb`U%yr*9&VGetJ%>dqN(J$
z&N|`bS^nh6Y3JtK&!04%i6MqVfx&3b5&lD-f5U7yp1#;CKjZzCIlP^B*S7IUE&_G4
z_x*mi`=vw7?QN+&AFbR^e3e&w-^L}Xb>ja0cy@ldEAsV!77D3)soX3(IZ1WWl2cQ)
zt*!REo||Kt+T;0Ewk>*V&P^lF`tzQXK$&jc{crazBI@7X+A3vPl(MRCW8q^rke9!{
zx_bF~eEr*RPYjcL+W2H=J=x~oC-ZTa&Bt`RkLkZbtySBqEpinP7}v(_jhbnkUY2cN
z`YNQqHe%XRIoqlg?)`G0@;hv8)Y6ximuEjaGxOKq@Atpn&fkCX{CR)Nq9+qlBS9mK
zUr#9aFL`x`QNa?_lzTWuGuUm?maMB<vAfI8CjW(uab4GQEcaUOH#a7>XkOK;m9y(2
z&QH~zuJXQI@!I<M`Kyv|Z(F-MeEqT=wGIvqx3=YKC->Z|`FvL8cI=*t!1w!puhThw
z>9W85+*Pyk!k2nYRnfeftdn>2;$nBxv@;Ts)0URKy|r`N`#U>>r=_l}{QOMrwod%M
zJFoW%?PjQ|wilA0d3#4;a{qC;|34o0pR^0BINBvDcY0my?q#8?!#scezkXm{?Cz4c
zw@h7KT`ODq|Nj1-eSKZ5r=0VoqUYz<rk$My8ckdkyL%gGJU_nvZ|J4_?>i0Mw8Pi=
zl*uzph++|7ko1F(M=cjrcH6P`_s8S%rn$FFSXo(LUUZk=n{6th7ZcGft`C|&xw5zV
z`|NG{@%#4V+`e{YW$<0Qig`AbLHc{Y1g&~!#=_3Ne1-MZulH&``#wE6**$o<U+DjT
ze{Jmy=3A9|UA%bl*3RPPixw@qva9rU$lL#Aps|6_RUsFr=|-ERoDk^$s_s9}r}Vpe
ze%-H^>aMP?FOPHzS3Q~Neq}|V^7UOGJ`_kM+Z;Of?Cfk%T3-J?Fv;9BzrWZ|M!)#+
zzdkwJRnO;D>)o`Pt{eT#(DTuYi;K4wKli)3F821<4Gl+<??@awKi_`+xw+QWcM5mc
z{M;0_KJIPdo|YDt@ae0MD1fR<P;Qa0`Oqk)7xQB4xvkmPUp+e7eR3W*!<`rN-Zzy#
zJjA;9@3-5alH=Oi=;gu7{W2dN>8yIxscv&C@Afv|^Y;JufF>qVPfhXcxB1j@ul9TF
z({pogFMj*u<73cJ`rCVZqglB`0{Z1_^M1+mG5CAh+P-|;Zy&Zb>nf<8sQrA_95m1a
zT9OjEIql@}<KWp7tNn-Ou2J4;X`crw1h!^h_X}R;6PS{+M6U9QAgGWAjhSU#S@E#+
zKuyrAD=QaE8mF!BoUEo5y=~2(KYzZ=|NqDR>gsU+qS-Y+KV_brq?&bUNhcex)Dq3$
zWh+2)0bE?5kuy+_ZLVEy)Yn&6KU+!86$VXrM{Uh|IW;`)qIi7G!da%-rz95J|Nj$w
zzwY;1(7eK<N(Z6cL7w&XJM8NI>;N_6dZo=zZPKy*_v7)e7mNGvY^!|Kss81h_4^g+
z=jVYcuP#yTWp8h92hUXX^<De&^0I9oXmn-o=X2Jeq2NV}7lZ24r)Opc-`!Oj+{z^i
z>I$5lXB!>5IxKW+*42_HCj@n4b_A$;Pb=ZQ_Z`&M0}Y&heX+QIRmR0dph+z;-KZsZ
zb{6mUeK$khUv6vO-6-R<GXW_nOI}@Fz1%qc9H@oB#lsVllClJp&cc8H_)!6xNOSEL
z3*A}tG-O49A}I5EPt&=$E%)}7Et$dL;<oYe@gP@#7Fj6w+bq%wU8P}U6g1N~{o20T
z-=Mj6P~5ij$p$$%ICR|;XP9urMxpck8Ge3#b5MkRviu7gh}v2F-0WzVs4=L5leDSW
zz{$l09vb1~<jl*p|Mw#~IdWR&)m2j^&GY8Gys)tO`t!Za9{0{ZJ7-bxVF9Rd#L3TZ
z{_o#EH5HX3Ci(a7<lNYxc=fl}xv!ra?)W^iQE25B{}xgH^Hb{O<^J-ZHq_(y@AJDv
zwbR=8WV6=A>`cnJZMHT0`nRe(($5(!tG=uNjVGO)ZN45f^t3H^_p>V<-QC8JF{-My
z@7M4DXQb@bV{mnKxcR|@2f>3%r>CDc$-8so%q&ywlb^Zx`M+2B9g_eJ{ycvC_;D#{
zMb5{M9}8!zCnE;f`oF3B&oj~A|7VkC<fbK@JUk{li=Kl04VupA?C<yAv`_kb?ceZc
zXJ-2T`}5PcSIYE^xBlLgx?eAst8Bl&t8{hdtt~50PFC*+tyt2G-?!)Im&^W>Yh&Ge
zBog24|6eC8AdrxAyKFY|vnwlumql;S15JOku(8cr<k~$eJihkok>kg!Ykk-Mw~XD8
z(6};aX&1;K&^o8go12#2+*iB%_{YbOAD>;leqR<SxR{ukeGfLV`hI_R_w32Z>bCc0
zx3sW)K4<-YMjNm6ET>kknFkIy2un$2X@#%LIo2cj_~ZYXhR0;A%g%gxd;9tnz1UkR
zCnp_EIX&&Hh<@CiEjc$Y`OLMt8nd_R>$3OU3^C`8o|)CD{@|Z5VZwso<$jtbCLz-1
zc_FP_qI>Q!f}&Z?f8HAVe?Ja?oic5y_jD~SEiX`~Z@J%GmA`k}cR4gNtqNM&_3Z5I
z=ePcSJT8BIPvz$=`S<s!%vWJ%U|{%j`R?arhd+P*h)79QT`t?4ejYT{b4N}va=D+Z
zsD9j?wYv|2X6q)a`>)ErzAo=}`Ri-G&(F{Q{^Bw>0|Uby?{_~LCJC|g%U!v+*gbS#
zO=W+nsCHP%>)msId@p)>YUft%@O5)?Zu^DW=Yv*N&TnIw#MD{LRWbXEPW-+a(0qON
zq_xiNd?$||Kc1YhYySNCP0h`*ljA{aFuyA?d2p%N85tLTyY*Vt?x*rb-<p~|MyaQs
zl-e^gGM=>iF3Z5c@MHPz=kkYV3pF-2PI~fH@=ND=d;c6^2?@}oQT5&PN4v#i-|n%j
z`?Et#KW@#34<Ax)GcqtJ<Q_SGTw71ikKg{!hU+UO3W`}Kh<LoIntDU@brmRQ1_Vs_
z^XE@Y?)tdBs~#Wk-~Bg0&F|BcJH_|K_2brjdwcu-!&i(93<b-5XBxS_y|vZ*wULnu
zlLyz6^Yh~s6%|3f$>Y09UtiNSGP?A&HYH_Ak0D6x)%Er7qxRMPtpYU~*1qi(O5ZZq
zD7DLLs#fW9KhTQO@*~&QMqk}mTYdex*%CQMmDWXz7n@doN&&6o%9Wb{Do^)Te=pm*
zI(GNArluy)nx~zt6Z-9bc|>kXxv1Q4GwF$;(C*l&TA^O4r>E`pPG@3ZXt?cK{xjO0
zVd9sA?DC+Fh*iOZ29=km_4i-dSNmJV)3)kMz_y&5pmm?1nF`bFYa!?7*@8wPd8N&K
zK<)0Nq@<YNTpS!1r1SSId_J$*Z*A1pONaUG*G$z8&w6!bW!3Ao+ou?(pW9;L%D}*&
z5WC}fy3_O}9UUBR@9w_-de`0E<*O48Hck4s@9DQg-1-?;SA~KWvPqd{ElE7wrm3QG
zBzgD8$H%jOe0X?kZ}oQ2^vb)tyH{6#e|PfQ#>~rVQ?<kWq|Ni5@NqCOI9MHdzV-HT
zS%JT@MnQ{0Rt81wC`jzOW%u<;aMi1o%k!4&fRdSfdnLv&Edv7sxyyD(wK6a;&~#xm
zO+xtb>}#wCK%>u>cd;<+NCvfXn^?J*l}a)+lr%9+;@g^k-)^lpLxZ)Ng2Lv1Ka#Z-
zSr`;L87BGdRa}`ECC<oDejqG%&yBd_{qpJ!3=ArQ4wqJPc&1+71zH*Ypf6d#3Y2BZ
zTOsbD_2$M#=e5z>!y1`br>J_1fwFA=o{w#h9zVW&EBE#`U(jgpww#+HGBRt_=T$fz
z@0a&qyo!;5q2WvO%nQL8|Ns466|k@gwASa{-QC(68Xno#)?9qOe*Ze(*=CvN=2%Wz
z!pzRMqU!6bQ&Y94xA90WDt><M<=pan7uWCqx2p8@wUgJUPnTg}VEC?Q$GiN(larH6
zzrBfE8@bsHwAxms^wky5@bz(5L34X^EsNctbI2m{^6Pb@w`u6;_)H2}=)~&k>I!Ps
zzPhq9IBFhf$^V39FPf%0JwG>hvPx@P+b-Snv(4A%+zwmjGgHMATDinLbe;rics@GX
z4eD*36XjuGU|8bJGC^cj<mP2PhM?s(ptjcA`}^aK)6QHtE?>U}v;^D0AON|Zd8-|^
zX2sdr=F1(QGB7YW{BjguBU1I_Vf)u(()lmeZohYFdVHOx=O!I*(C9Q9pNxj5RmqD9
zDw^^8YUFM|KRw-F-G5$)lT*{5KY!+Eg95_CokL-zfSlYqDbuVKuH9l>TwIr$Sh-Cy
zE+{-bJ3BmfcUh?|@9F#Z?<e1GXkhRRs;RL7FaQ6p!{ou`JKruAv|I}``n>D##Wj(}
zph0u}y<aBX+LF2WzySx(OG~|{+icrk@o|yL&Rd{_1Fqg`zg%<&HND-xuTt}!m2qi_
zC#Y5W`ej6C?8bHFFD@vuva&Ay@a}klr*U4ywP*kLfr_`5%*)F%K?C=v&&{!%>~{4}
zv4BI+ixU%-xwyDKMa-KpK_R(kUCho!e|~-jt<{t^%lVM8J@2lStDD=h4;gz^x9;BC
z1ggEFL2fh4y;IM)2U5)H^=kb}f1nwm8M3FMF!$b`Nb9mU1<`h;uR=hBDvj)N6I5K?
z-9Zg<P#v=R?4_mNU!TvfUlqDKtnV5)8qM!8dM*@?uL%SVZEwxG`sGgXc})w8i1^yC
zQ$ZE*xw+Qb`S<orS^^quxwa+}6y=}^^y25|GH+~1tom?}T~t_j@-}r)17L~ayM`qJ
zUte9_TJ<$+s(yT&eC?NsRbO8%y}P^oH7JVP<?CK#mEW)Zo_VxO6two_*SEK;6A!no
z3|#E?>)Gu5ieI7(3=Hoo?=X6{etLQu<Z$!c@Kqt2x-mO0G<GpCFf{bETBFVn(qi8S
zO^P>KZdAeTU{ImT!0_+qw!FKuuBkE{kUh9ReS1Fx6T^;fKF>{8K^+`D7KRCapnWst
z7c)JttN2a~(dx}+Y_NWq?YVwwsi343BMZZWhM-BOmX!)J6tG`leO+eA0cy(8We*N+
zuMJFqqS^XmSt;Z8N4K_SN9`_K%O_*80JJ=+=;^6XU(Zfh4%&lsC)ntY?1bFg+g7@C
z3V{~rgR;-9t=X$VJ=#sF-O9)BZ^@htT3+$sK|<=uNv=!1r(gU1e*gQx<iEeZf;!Bg
zRWYDtEgv5rmtD!vz`)>f-YA9v)RmAj$pG~+UOqV33@R)^Q((*I*Zo>2{~NTNWvW&v
zXivh|_xI!9@BKaxG?V-H_xIhmWGo6CuC4}c(b)|enc4f}QFqjagho&gT04B*ov%{h
zT1)5dx9F;8Gt<9Zi_X{7&^VF%bAJ85m7oTof`Y@ODc0qArup|`*6;arDt7JjJ3EU(
zL!BTi&fEXDIa$`s#v4>qvu9h*%|)Ow@t{^NQ4vwmrJcg+tAdyNm2U;Lo)v7px0gGB
zmY*zg?asQgA`rAJCcE<NEK|^I7-$*<yf5hd{Pmy-B-89`dscs~`F1nis_M%MHeM+e
z&tI?C?@#IZm|<T1EypzL$_Y_Bm6d*Tt+e9y>_|H|r!qVnv{CHR?h<K-eSbcAgO*|?
zAM3fe|Nq~7(8T7XFAv-0wRCiRN?%_K{rKqU)jgHPph2tT<9&Nqf7OZI6>@WP`t^Oa
zze6^qc!DM@LAxP9Gifg`se0D8FI(*1zpCcvC%N0<Ya#+?o9FLaZ3>F-m$AEe6()W8
zaG3u!XmV`2UhI`^xzV<tPAG#GAA!bQe*CBa&GCNx`0>}D&*w#jgo?tmLETi)61y##
z!KN7(96*y_!Tz>O`|bZl$Xb_8QIQ2LUY?>KZ`c3!^V8GIC#(BwDJni(ca0NN7pK3p
zYVerU-`_v4{$C|%(Ipo*_vL1OyA}8LR=+;f%FV^gJGH;RU%7OSeSO@=j~}}_J1=$!
zDqmR>Y1}Jg85Fy#<l>i?mq7z+M~@%(p7iJMU)yc|GMgve0JRWyh%f!kQ1tUtDyUhZ
zsHiAqoYoVzK5i|qwAqS`i;JYJ%hp^klqh#jNLZk<vh?+}ywkVABc<2YL_W@%d_(nh
zmAHOf$!$=&EztMc&iLfQLTAvthf(^uH47FfOw|Z<(hgr2l9I9{Y)!<%@As<x^Y{H+
zc50gL>Z#h{_r6wrdVXHt^VDSZ{@b4}TnO;Iv@&>kOze80-AS?UFD!KC;^LY#e||hy
zpIJ=MWa)j&?iRgeU|`rGdilxEnK>1+!oK)V$Yb`Ht`{pJF1~!J_w=mK&(4D8yGu&8
zfEN6DUP|t_T?WdWo|Dx;u8P{4RT}<UGko2gCHtTM+;Q(<GrQ_vS(i`G&##{_K_K_W
zhJ(q!OTqm_qgMCVx-U;l@4Iy;>m|re)!ZjPXRaxS+IiyCRPC>SKA&Ih)++_trUzOh
zH`k)jY5)I!yI1=rBrE_eT3H*t{nVy4yQBP9hpkQNx%lJb<Ga)PWv#>N>gra3wjF6&
zSw($*e!iSr3$z-0e*M47>&`+93=9+QExp~z0ZIs4v#+o6o~}1(3215gCY`5eXJ22O
zd$5VsH2GN1?kNA1lqH}UYEEG_4Mjyq)2u5OK!XFI>DRx%z7}7-x<1|>cOUXyRxhZf
zRy943`NV^R%~yAoW`lO!SQbCKvdnk(mCfn?cgyeBW`<o>pI-x7Y@K<ig>#m5`8v=V
zw28{@tE#`hTW9wDZuxvr#EQpNIM)9D23mdz8u8_oHq&W+Y!9l@>-A1se3e)ky`lPh
zo^ITp2yy+mkfU9qp-a7{Zqa+W?$(yf%l~^#XDY3XjhfEPP<|kN(k<^>8Y^?8t}`)|
zAG-g4UGAM7fvKlIy}z~AV|%%Sil&m1(|McEK2g&_ZITCkp4*!*fLMP%gX%a21_FCS
zja(QEkG+`eZx?v9OLVGrdEU<-KPqZ|{#y20oeMMq6JRx;T_te7UG0~5yWeXW83nz)
zy*+$g%+5=@R6wo7?F!B;6FeuYfuhbh{hZJ1Adu*tHlB;D+IDtvpgI26Mqr_3Jc16O
zcJ<fS*O!+{f`syd+c*^D>wYY}wk~${_Ip*{>V9)PUKfF+?kwUFbnu#@u`qUb8EDl&
za7M<8O(`cAy}7x0ckNTq4#U%+!mdDAGD)DSq-2ZEX)h#e)coemxTXp+X9u&9i?|Mm
z^`GbEC%zL;PEJ<!?6?27L+5l+ZN0I-&Br5mbwDFU2XeipGpeYmxlKz2<!aCXKvGgt
z-mc!%NbsIog}L6-8B@N$yE|!#&rGA8wV?d1knBC3aY?{Jr;~LMZW1Y7u1imoEB0EJ
zzM2AB^a=9jm6gFp$9AmUuH*gqc)$PRS0Gm}acSdF0PXwg7Sk<xc!)Li{JhwmMNdCv
zBu9oxg@DQ{1ydszhL?ADZ~ye{EO_r{$;(Tbv3#JE7ClArSOcgZXIu3}p$24}WK0`}
z!qG0#%R7soU)lv~5i@MpbY_`ge!nId6cLXeJ-W0@1f+7iqH_;p<gSvHPEJlCt3otE
z3*;RdnLd5|SP0sR>DDVX)lC#s{(E%t2s+%W|6hCk{`2$m-*4pwcRD=&8@Vv-EPERj
zH63Ky1HKaikd<kFj8i(S6*|k_-&@<tEuM9Lp6#S1POV%k9h=#@IyyWap8_dg;?l;c
zu($gAwH1MjZFVK!+_v`l{Q9`VZM@!#A@U(@FPcD;5WNzHPG@JEU!P@~UGnQoCTPSz
z``Q{%<K86c2uH7kq0(AdI(fu*;>O10t4lnE&(5*Docq(6-*(B%%gbLsI@<l~$z=a4
ztHalutO6~`bMOMWu&}TY)LWYz^Z&zPeq&EXP$|Ti(!n4kCADgP-7n3PUqQP*oSd9w
z)_}U(2iBetU|f=VdYY7Z-kdfb$wl1adON1Y?<jBt?WovM`1s3><o>0Jtsvh8DLMBr
zRzB`E-;#P-?Cb06{-9O=|Ni_`^#t`Fr)r0T)`0NJSQzxK2B&djNu`FAb8{j=W#XR7
z&v%|Nu8iNmPs%K3#j#%L)0@_qtOJ#i2hOH+FicvJd3jmZtu2|*!ayvw!w}qk_$PVk
zsqBP~4vw4K*5=;c2AVn)6cjXno0J+kt?b>MmjPgx<+<+SQ83NAG9fi`Q||4z)gaeO
zM(^TL5LWl|`3B(%gW~Z={oA{h6GFev{r|AsT%-HVYThFnT6r#o&h8f&!<%OG2s`?S
z6iQD&m|=3!!0mYNMU6BO^;sE<TvU&pm~m1d+10SGi@Qfj?_e)SloGSjiKGaYbMN_+
z|2s)3Ys|U5_I&Ww&^zzH-+6X9H}v%C^E;n21<Ya-RJgp%_w?NIdpob)dSCZ_w@kqS
z#+&K$Ym4rdUJuPMVqi#cHtArne81;&(e>E!t9J7&i_`jSKAku-$I{rd=$z&AC(CB%
zt-4adz;K`{OMvkcXiZc8{e4^e^LM}9W|DP915}2p`OllPxX((<{@2BREek~kh7ER7
zE)6<STQuI@-oC!}&+YsF%-Us&JgiDyB;NLkXJC-!0i6plLB;aP1ZSh<V?AEI><kQR
zma_>en3|eaemp8ZS*7^dnUkPdQ)hnLEoJpDFD>1={S7Mv!>jdGmD2b2f4jQA&h&bG
zeeE>;_<1KMt1tJQtY-P?gmU)x`L*9}mb|~Ww@H|Zf#LOHN0t*$r^nCRe!tFo`~AA=
zTU#<GZ%jVEtoZpk&q+tS#nb=%`1tdA{lDj2{+tX9HFMYm6?CJvoY+zL*skdPS@Zio
zpP!xep2x+&a3g?M$>HC$SFc`e$-BGjQZfSr!|R1{Y$ujZkDIk>)vB0+gRCpptvk1L
zdfcy#=U1*;b*fc7F5*xL1H%FJ&`=TAz?X{uqDo6kSFKvLDd*;<oP9r^y)JEEy=v8}
zHF0})wY)T&yE1rr+IidWK1J@6@<Xa*8hR6ACM8d{nVZtjb)IR1Va<o)w=b8^KPOlH
zW9K)|E2oVWvahZAIlG^cp`q>M>~sbOhNYPTj7G)J&iKqQc&Pkc-Dk#x$jxa}%>@`3
zK6G9=?Y-gOt?m2&zSW7_W8p4Sc*N>^{g1=)%Y0{>{XD8)7x*cKf#E<~hCsT*yoyJi
zGDRm8<#*O!aAbda(Oq7*P>F%z!Q>19#!Uqe4{gc0`APYE^p=c?<@YL=AL(RZXz*X;
z$Z{eqI(O=Ex#~B{-{ot+Tr7EgZ7o91@VLxm>-T#=>!l-KPusIPeEqr7>#@^!zuTo9
z|Nqx@ZD^7?(tW|bPiCg)WVNSnHlIJYB5?7h!+h2%o^f?QpYHkl?e@#->*MuyJZOT&
zRUz9F&&g^#|Nr~_`SSdKCVQ*DpZoLkvvK{uKVRP6wcdWG$Qx9nsrk+dsq$f9c#v$;
zVXWX86dOBN*v~>yeNKVXQg=oM2D^o9!U~?7l8$!y%(XHF#rJ%>+Di+a+r9c(7#MOI
z*a|trCiO@ftC^abzP!BL|KCUX|AyynzsF2U`S<7N%L@yg^L9R+#^uieO+VZ3Rb`*E
z`~8MT!axD!hOR{`?!LaT(3#KXgTwnKJ_ZI}hh~lm+3R+y#s7U3{`vF#|2FP2g)Vdd
z+J3)d42l#j14#yk4T@4O4QFN;D#!o(G~K>vf9&qEdz`Wi3{nkjf(p5}ww(O)^Rs<X
z{jV=CZx)@_^`67Q!0<yw%B6uv#=^k-Zb|UH+V6L*szJsTeLidcTs!`!7podG1B01M
zGslF}`ulBGhp+cLKhO5_-uJcop`oEaZ=SE4mfUY^R{eHsIB1n?x8AN5my($n7~~f_
zvVfY#pT1o7Pe0JWxbyY8-9aL*dHer<^O<3wcwDB~XI{;xlU;k%Ppk-B3<}=Z^1EBl
z-SgJpI|a1;9kdPV{=V8aUg>Y<`pV1<4d<KLKD)KdwJJU3U-xP9pC{_}CvWHPpKF?Z
zZAtR+zLo3N`8b1??uN${x<+lu*m!R5-|zSBb8l}uJ2gCRrmFX}C$CnoKgX@VXM$$%
zvL%I&**@p8Gc@$By7%AvhkyOA;C&xj^`Gp%|2J>n=eh4yJgv&!L_AzMsrbCDdHwhD
z`styo!>;aRz79%UIX5@?%r?`F-CgE8>CN8n_rRr5*_#`4YCfHuDj~_hptbH^d=qFF
zj!E7fi|Cw<u1nolem$Yw|72eEyOUe5$L&7%xBA^q^=3BSRlWTxmM<1GUs~+m|L4>6
z{W{q`3=AvEU)46KoV>p8+twa=`?|H|4(q3wW?y?U`~IIaKg*|6-fTLpSNiRK)$6rq
zW}EAS0)Fn^dwZ*&&rF}EnGDiD{ncO92v4Ju7Z>If9+P}|e}6qlTh89E*D|lIiJbfR
z+l}OYU%S)2=J#fp->XpG|Nrm%>pSh!&&^Ts^!4?fyLZ;CSvnCL6yERuUuSkZXS1)B
zIs?NMcU~ojUteE`|9<W+U%Ta8U7!f4xO#PUwfRdKZZVw``~SV(|7=mWp4aZOx7RAq
zY)U;nNyT@T$;!>ww`5+vmCVAyz%U<V1}N2sgocJz^?(Y$%=`Ol-FhTGPCQ;ykp|ib
zUHWaBe*C^`h71fJDlaQArTqBtaH^c5aoU*^XU*@=dA)A8-sbf4exDA`oc{Fm^yh!S
z-#`C){r-7jYoo5lRegQ9G@>3f+MRiQ-QB7=e|M;zjIG~Vc4odk1B1r#x%K~kc;|;D
zO*lWLN><_Ybp7+|>;Jw6RakFtZ$H1lvH9B1TU|zH=Gj`i27<%-oXzJmR=@A=E<Ycc
zK6k48p9k!q)$X9BJXXhjW*VvPt@;|(zyIwWmHR)wI5RVR&|LFc{J`T$GSQ8ZcGj<Q
z8$hx1`|bAlv~zPJtG}-XO}c^tsp!K&_UU&1piHzn{_m=DzgWd%CM@-yo_1!2;mdn_
zt0(clyH$EScYEr$H#fI#e^mS7Ap7T2+UuX(DL$`Tn#aJf!hcoQuY&yBr52yh7#Bb8
zHGc*w^%~jbW=I;RJ=t_x&wF*)+E2&r|82bV`0A_s`|IyjKA&sz{Z8@L?EHN{(?F5G
zCGW0P`rOj6X*!XUE-rRYU%htQsVSPlcAtdSAnKDjjEr{Dc7J>yUiLKmJC}>mY%hP^
zI@`ZrE-$^)_;vG&d-E7UMW}JkjSW3=w!6yK7C%4t^VjwL^QOnwSz5o@;LN%_`gZ(&
zhkeo8^D2KlY%e}%`8?&xiHSFBKA$ztxUir{&i2;b^$ZL@VpeZw{B%q@|H+@v=i{^2
z=HK6^*`-wc{M=e|#!nZV`PUZLE}vU=s`mTc@J}WT3<3ME-Y$2F-<ah3_IFy%i^IoP
zhpk<8#Djt1!19p%^9?E|*F<hMDt&e3*70sJU9U-de!W_qd3l-d+{dx)><kQFqxbSn
z;MU(`ARbqdIQOgZIg8}A$5ZzTTQM+vczNYE!_KeQqP1<A7#KE8yn36#^52igaGv-=
zW(J1&woEJx3>v+lQ-Qpc9T*rIE^!DjFf1?`6&}=Kl45K7^-8d$VUkPLw>LAzbfcbh
z$Nx#{v-|Y|lt4=RYF{p$Zj^AKVN1?UBT#9uA@Q(L{l7n4KD-PJU%elD@m~n2`TzU=
z`N#eC^A0w%r(cgPKl}gh{r^vYy<UG_uKLZylatlcpU*A#n*=I9e!t&e585B6y?&38
z_cWc8SHt7yipNzb1~2pRe0*%*QwD~bx}VoSR9St$Q(XLfZuvS<0p~WJlhgNoSsGLM
zbn4Ex+ip)%S?tz(YE$ZIqug6tK+E(zH+{cX{d|Hm-^m*rlZ!u{R1Z(7V_;apAJepT
z-nYBu_pQ?Px82U$4XPVJ4dLwT?{+?)$0KF3!pv^clLgIuUj1^mpH9dB+q9*Ukzs+I
zkiz^+cXk$EUg+Geaxyx9@6^iA&r;X#{kEz&=Ka0BpU)VdpJFS=z;H#I=}GX8$9>jD
z)!*Lm$Xc0r8o{fH<m{}hO$i5^_Wb|%d+9k228OSl3_n{y8-aQx43%nseL1-y@$e*-
z)6;alCz)hkT5|5A?`*T!*Afg2KWu~)<{!ATv$*)j!}jI5x3}&5{cd+~Xy{ZGQ2jJ1
z<!F~^>AcM~KR<2lV`OMJuUvlcmP5C={<#K5=1mnJANkBO(TvX9nfmr#`}DZl3e9Wr
zvy9XIZf(t;e%9=Ej_to`*^};k4bMLQ=O;5mL(!d|&-?d(NmFI}=_9Bhop7{ERMI3P
zAnnYIiR|(<2G(yj9FF=OyQ{?Wc%SU&E5ZI(E8k7g48F8FeEruyv(Nc{>h-rbU|^Vk
zXjdJhjo!(PqBEXuKCBw?I`ix-Q%R!~4^S88<KyGY%irI7ZSyWW{&!T}=h^pDKt*>p
zzuk|7xXPzfc_fXNtSMw<SP)mlmSQ`%_?+cTgG8r&pQf${wFD*2^X^3bzW?JGd%DiQ
zr}6((LBkRI>;4v9i%d^FIZ0L0wyLD;cJ6i_dAmJKlbIPD{wg|LyS(|l-RxDXR)Jbl
z!fHM%Hvdm-D0zKNm*4(R!8yz4b9!Vfjb`WXt7PMqnsRZm`}*gv?HL#zZ1!$g13E-1
zV{iZ6%;j^7?$>_LJ(S77upsf1)MzO-Jd5y~E@A6pW_~_zZx3p(etvd#^ZR|j(;gk^
zoGQo7z@X*TkfU^5zP@JN-fy>L%I_3P8mIYy22~oF*`IwpF2DXu1_MKYVXwCBf%J=0
zG=o8%{in0C*PYzH@9SEXlZD4+r_ZykezxcHxzkHLCu`X#GBAX+87s^_@Z;m-%R34m
z&nY^kxi#B&mdQy^^|@2j=T#_ePCviyK?wsxfF)Ck@C>uusH!h7CW`4st=W2SclrBU
zwUE+b_JKK;#X-Tr!RdRKEmLz1e6n`?y;TQ77#IR7nNox!w&g_5GRX`|-<x@P+1B5n
zrs5OV7qcBUr=11$$E;qTp02<CZv6EB@@oCLt1dEleS3I*^L@3-jgy)ga#ZC1#C+y{
z>hIT(!(?h|`g+fqtaEcLJtyhK?ppJ?a&y|*U!Uja{rSv(ApL0TR5^x(#j{Ma!+w2v
z8T`^vN`-L~=a*Mkwf}#%|37)D_w;pNoxXt1M+*%NeR*~Db*uU1Hxk>Q_F2C>aV<Lk
z@5FRZ28I=LQcq7yy|yOO^38_BTDD%z&~Ck5_A;NDlWM=;HDB!B56ZHWpEQ@dy}!9R
z9ki+OxLk3kC<DWM|8osFOrQ?xgM-b+MNdwgnQLu+J9m5Ru|C<^*W>GLL7m2>$C()#
zx(eA+gd=wrrRweZaOh6qaoNZn1&L*MORvY&{d{Wq<3Y2wtrP=8NDsK-^0*e#a+y$-
z@buJF%m05qUj}XZ&%bB$``zw*HNQC#FE=tUBrFzI_<G>uaryb#>-U-+mo1Mu)+0Ij
zSg&;Yg9D9~e?A@u8<`Ul#~hR>e{a)wM6&1-)xNYj{d~#0JC>8xd{=#FVPM$s(SkWB
z5mdB2KGs`&N^|*@b*7n@RMh8|1c62l&djsj-E^6e;lMFf2d$i2TQXl>Tzow0{fv1v
zAL5kc-!U^BNN;6Wxxupd*^*_;mYu8e_4VyqbRs%`Z)oF628M*o0t%wra&B${S2I<Y
zm-%LYXJmM=*{LBU0yRyrGc=s%Vhl<&H8q`SobEUGEB|%SmWgj33=A7ia!lZQeRXv>
zsL0ld-Bq&oD<W#cTh*8u8hZU3LT&`Q%T5hl9rhG7z7-q2vnUl57od2I-Ced8l(IJz
zny&l8Fu$CbXzM*?z3@7-cKEt8t>SSrtl#ZW<`&mGvu^jhS)jf)yL?T-Qg@KWUJam;
znvax}(m#4`R=r+Z{HRkstg5H?QM&!_$W^OX8<)Pi()-O)f8UQsA>qI8%R4On!O3%>
zVb8Z)*_L0g1aE%3?e?<B&1so;ca{G7_I9>m^0AbkpPqV7TD59b*Ex%tA0M{l+$>sL
zyRY}}S5T+!Pc_Sj%4<6=F*9tad$;%dJswFT70^zp4T*<ADPm2`PNT_czNadm&z=7A
z^77~I_P+v`9{<8$!|+dyk?8^hXlXELU|`$LwAp|Dec$iD+;48ycR%~TUt-E`rtbWH
zuNpMwvqpY;0;37T{r~^If4*1!{^@f2zb~Uceq8wO?(XMjjL*kBFBaE}nUP=r`}WP!
z>#>(NrJe@$cbM7v&J>@w4S#;)_4@sGw$<Oxh(+g2EPHz^_5I%O=k)77cHjED)O$L(
zGi7!=XEJD>p!oSY%P$w4jdO2p;r&&0ui|kps6&0T@VM;dJ(ZtJUR+QFwcB2=-@otN
z<NMX`_s*$$wGuS46SX~W?&E%YyZ8Hk=gocmZuk3rpz+hpi;G;Nwq{LrY-UUS_2s3!
z^?A^VM9@(R-_z4{H$U#Pe%8dTcVoeN&W5j#c{m)HKg_=WM-9{kwfp^M^TG4AZ?|6m
zbpQX~`;s;l1)xv@6$tkKKK5T;AHUyczMU<oT{P**v)TFQKz&w4=e8%H&f%x0r$65*
zKA-yO$w^78l8i}Dt_1s^wf%l)vhjHvW9zqDf<awGP_s&Z-;boKudlY=GyePj|G#|D
z0F6xX8N-*?)<&nDoi$ZDZ-?UF-`~%Fd3pIVxL4o3=tPI0@}+ILw_}P<s#gAdI=%QX
zulbW+^Lr<p`E5h0@4Vf9f8N8x?cf2RSF2WkT5kVW)BIjV^0)i-|7|{>F}|6#dhIpK
z(_da*E<PgYz9f8o+|D<fPJ@mo1r1{L+yDE)R==Jxf}fS)>#aveySrDdTJ`9Ja(~SF
z$J_5!y?)dp?6;zJPtns;R>$}J`}NxO@-pA<)B5}Ol)aVz_fWn|zxJhf{paHCnU|M=
zI?Ml`86Ixu*N@tk^V7UPa$im5+^r`ktBZ$*h8~qIzZ1CItnAH=MXOe=dU1Dm`NpiP
zt8RT=y?)=W73<dNsrk$Z5OEFEiQTm&<My`P!dsck*M7Bpes*^F7LeIruLNgb*W35w
z(V|_uc76M}^?F=%NO-t7x0ue4*~ZKp3U{z@FPIm-r=oCD%_D2?+-*10w${gOPV*Jh
ziJ0*0?CkV**|Lb&-?o9q=Vs^co4I^m)hlKD@Y!a$MwOqQoSA9-T=?v#g=)UDuKcUK
zx+*ksLxSV3^7r%1a&N8qJZ<;?FaH0hxb;e1wX^&C<?`hffs6lq+rHm-(w+MMe<QbK
z1cG)!fyP|FEnc-s>-U?@=cCfSu6;FCJ-NQ_>uM3#k1O}-G1$#xU|jJWlsHu)H>I3Z
zuc`|a`T4#6|MxF1E-Hf#-2&}<T^YRG=Kr71AT!?<KA&G-7qum0;=R4q%ia6sKwYc3
zrzfo2^=j3g4~Mva9unU-q4wKN_31H1o@wXi>^x|!8^6y+Jhmio+pVnCThpSpWL%6g
zR+YaKn!Wq&w&?8KZryDjzP`SoRHic1FxjnZk;ngke=l!LK7OkoblO)VyWELAm7nd3
zrY-KbvjX)lG?&krbZ)No^BKu~C-0Wu*L7ns6J%rxI1kz<7Q3tDB)9&a51sSuv#zX|
zQ~hoyXb|{Vuk`fa@AumatNWcfXZ?PTY4)`%a@#?f?&<XSbFt-jr-Cx$_dCV@pt8<e
zZ|9P4GY&ShKi_&i?sWa1<Mm6judf3)$8V-i|MRYV|Lp}cL0jsy*X>YpZs$9DxBUKG
zcDV}h^bKebY*uFN+Q`jnp`oFY=6Nw{esgwQI}Xb6ps{QDpLdq|&VDx0UGC(OPGQg>
z3MgnTf4x{-{9<8ymq3H>f$j^8QVovHY)?VC`N_%2=093r{Qo)s|4e3n8_-zo<*3*1
z_x;YZDtoizTGZyWvqlvk9`MN7Sga0PdupP)+|0nmZmH1mmdPq}t;^44E}uK?vY)l?
z=jZ3ozuWzOUf^Q4ryCCQ-Ci)WjbDD=>UFzTmE|7o5`DdAb7-Il=%|m+pcJq*`~BYU
zanH`ooP3zy-o|qis7BD}DtU9mkX^3gLDl(>(|>(`KmXs~-|1goT-^DnOZyXOXqeyj
z%LVm+H4JNJ8!IsI9;kdicRFbN>&ayQxaUt@>i;~JH%>b<qttGD;9|GZy2<t5@0O>3
zdvh~;t!~7Igtf<erOnUzS-+jKNaNGL-|y4U&NAJ)-u-6)C>1XCp1vkxV^Z_Jd7w0J
zdD$@S%#1a0d#mOizh83MH*#xM=-bDjatbtCaG;TSvI;13fl_w;@9p)`uXpgDop1kN
zIUUqKn!ELG*==3dz?=`)Sq~g9W@A~v_~PE)>bifQ=cm88u<&N)^10Wl)V~~;tJZmZ
zy#IWs`n(<Ip7TkWXiSeSi}bVkc;wCY`*oH7em*zOyR#!__uFmRvgI!pwx^xe-R=XL
z4A@!x98@OT|9Qv{8u7~6cvK9Od3Ke)o(7us0wsJ<76PRif7`Dibsw7L*L>XxYOe<_
zcDp)rY3%MY%fDYPgY@31`~5ca>Z;JPdzH^^J{}RS{BV#R)Ojzh;{~-I9NA^3C_1-2
zSvoy#)!x1D7C1IfswtRx3pB!;c(^UK-}c*y3k#h=xoOYGW743C^z!!n`~5syy!H2*
z^xJ&$;Isepq2^<E{25TM{Bf^&+Um92yzcL-wg0xCmqB_((DwUG35U<lFkEc$^-6H}
zySux^eP^5LMs3Xs1%<)Uuh-+_*F<bwq|vqLM%wJ$E@6M0jo&P_!`5hkM$<)NcbDmI
zyOGrWsDYVJL(P9)%$N7~_gj28z?|K``{%RS-F1I|iOO1+>42KrIs5;9J6gW~_uZtE
zlT=*;YYMFIe?D)&|3>ZiyWQ8;MvLo4Z__EeU;F*har=KCqm23F?e?r#w=VAa@o%^D
z<3(Hp_xygh`>3b-+>nx2S5|^{7Z?^iIPhp{c-%^3(Du*nSFc_@0?khOS-;%^+Lr3N
zI&5uM;^8(?ZgIUepZ`|=c-Y>pU;p#8>+Nm1-OtX>7QdapzqasEr@C11a=*2<&mMK_
z>q(hrh5Y`puw70IH0QY}dV3zY=E=LeOZ2#0b&g^3u^#`=^SK)O142dO64@CTrX0?O
gG`XqQ&Hm4ybbia~xt)(eOOhBoUHx3vIVCg!02-`PMgRZ+

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-4.png
new file mode 100644
index 0000000000000000000000000000000000000000..5cc847011e10edb0181d88aa265359aa85d553ee
GIT binary patch
literal 23923
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_e2hBy8H|Bv5&ggoB}b*j21t-WX7
zyY<>_Dc4+4>$M>(r!9K5ZrV1fC|B>mSY6lrt)aTQu2UCv-P(QWR?_`)DVFQ+`|FD9
z`ig}*Qzu<{{j=hUW7@izKhIc7p0h5FEsi`Uq0GR*z);XI_ZlmRv7=nT0YqE0F)%SO
zFdQ&s5dd-f6dOQP0S_Y!0|P@tGKT_)E91<-$iTqxK!S+_#63=;)(H!*tceWXHrMdq
zORMsCbE>|*S=rIS@$=`;lgE#{+yDRbIo3WeCudF0?Q5r|YQO)r@n7b*H#e1UZ@aoO
zc=;B+qs~R|UvJ609I`DZGWGnt*loG5e?Ff-U8S|XeRaXZLw?g|E&1~27gK@Xu^;g=
z2V@g(Z@WEx{rdGy&CQ{!!*qS;*;uYU?JanEQ%dBt+nYqS!%l3=<&`qg=w0>cU8{K9
zh3fZvmtR`yy}JJYzpA%euTL@0zn8MzlP6+ZZuX@mo}SyJEeaN_zS}GRY|mb|OZVm7
z*4O{9t*Mz}obDI8E+%rZd;hhm+TnZTv^UnexU}fS?|ZY=x1wT4O-)V7+gn>zvgK?l
zHe|=&-k$Hj>F(Tb$K~r+xcAFxg|3=X^z4jgeSLjvYwOCu#csczO!l8-v;2$N%I~Fb
zZ*6^bVPW&R`S$Dc?(WhwGYk9r`nrGF?A<4~<z8JEYkl%-W}tAxm!sxuxfveloZciN
zEv=p0BP1lWCHXkt*_p=f+F@%h9P5?-`fm68Wu=|}CAh_O0y>3MP4e&U5y_wY<Kda>
z*TWwl?+^F!>2a4%?osobqhW7vzkcCD_kOvo+uPQ1iRrv3y}!5WYtXqlmZe``g}%MJ
zJA8Bc`LOr*_HNC&xk)8^tB!Z|_jgxU1TMa^JwJZ^>-@AsEu5QjqmN1SN}K!T@BMns
zcl*xRW;WhS3mltMdIF!Gni{&?Pd4@RG+*~VnTw~UYF}OIEnfTOqI=Z#yt}dMpO&e9
z-KQ6^!C}&u{r~^^^V@!zaC=wk>1mc>@m?*ht(mW{tvxkS**$7HlY*`!!*`z3n|g9@
z%bgBiAD3HGQ`6Jm-{0BY?cIDTXkFUbS#r-m+%3N^d3w{C1C7j=S7^P@xox&J>#EmP
zv(D$&_f!@q-`@7~@Avz*w`%@=y?$(yj<Bq3uFh#Af18gkUEgHo<nnTEn^k{%Qy9Ik
z__^O?)9kS1+uI^{7A-wqHZ67Lg9izdt;_Q!YlrI<KRVK>^1b%!tI+kw<F;f>+^BQ9
z<kgjvPfkxi-_q7LtEHty<ZA6|Hh#Grozq4SA3jX``|E4mZJoG1H?FJ<KK`{fCMIT8
z+~qG1I@RZW__c4D=;=*Ce~bAa+;bAwVOSNjbJM&1|LY`^w-i2hTc0bYAGfBBS6WL&
z#f6cPQ7dZ8ieKN}t~O3TSFz>q)9LY7w&g~<y0~a4C^#%!xKJy6-JGiL@7AskU%%_t
z(IZDrY|DLnclY&VdCj+BUylg;uPA$aYn`?A^>Tf$H`?<jOjuBUzc&2osj0yM0TVW*
zoLtn=!C{(x&BuGXp6|!kB|knSmcG9iD<~-V>HGKajEohF7BAkKd0B0H+19M9MZLk1
z`)YQsUiM_y(mN}PpPyT2&1x=Xo;L?%&bPO>tM8g^O?KcC*IOfHn&mO++WPqSTYaCM
znfdkA>h-U_yu2)BQINoO{?OjE)0?g=^%mcne?RVczx?$%mc>DP=TEt{IlZ5aPiBSB
zOrw{t*Y6Me`RVE2ZL7oA&lA&&skr<%_x`?E{k>l%X@#s<aN$A#D+`N;jZIAK?y{?m
z%<Oyej4MB-gszPWUAS-|7Y|R!!6w$w{dKix=U84|8|$@xy7c|)Cnu}#-t|f{IVSc^
zO-)VA^^l@uhqN;@7Fw0Q(y*|IXl!ik>gWjAUH10QKVFOKZ)@(={m#9*GT5D!OQhiM
z9rN5<A=%g0eYJ?cy)89z+U@gyzg{maN_GgUs*SB*<8S{r<bLh<xmj0NEq!xyv$lJm
zOxBeZ6Sw8we)e?^;}ZUogG>*Ooj-p*`R0K}X48TP4y^3#s{<Fiaq;qAJ#YVi&BMd(
z*$)r3Mr}^(-IR7#>*ag?U{JQmxg9oH%~wQFaN*|k^I6CHWPg1)%x_xpAtCkLoXAUa
zUvmF@vAF-#CLP~dCZ49**Fw(DGL3zG=<s1xPg(1-D_>q-4qX+ZS^DNiU}IyWRmFz|
zVQZt79_<!i?KjuT+}1B9X3naxwW|)d^RF&@dn@buy1C!p-d=v*{(lU&n9hYaH#cA1
zkm&4L-@YhnYZj<rdie0+y1bCiuS;Ayg;c-H|NqB5c$v?|4T*<i-k+YR>~2#3ug3P<
zjpS4FY<FMJ&3|6{_1i!7SNHbrKGq|-xZnO?gl+Y=kcmpJL0ir*cJF_+di}njP9fEh
zl|ibYl0w<7=faJR$yYa}o{nDiInD0p6Jb>ql@+nO%d{dlrEJQbZ2jD2bNcyfH#R1N
zN_tRK&ooNCl)wM)vX76CXaD>2^VWvM=1)&gKhL_qzrLPV)+(fxTRiObwY5`~-T7p#
zN<3a)Uw?f~<mM}@LbW}&m+y6PbJH?23oCwh=Hhw#|8HJJsh|9s9%RpMXlVHB%VmF2
zA)!StUSzbkv}FAM_xIPk-S12O|NXu?W@pi)C2OO%znU5z7uYLhdSykR^3zjO!3E^>
z__~#?+~QgP{`_1OzJ8v{N}riVUA?_uf9#z8q%5{-@~qd|6H_C9y;{BAB>$d`Y0iy+
z^ERJ*>i+*N*NxcVAZ?a&;r;&q>lQ3nFnjM-hD%OT_Zt}>ELgHDVQs|5LqC4}n9<O{
zQ2gUV;`Y+h({zoerOwQ{x@zX;^z*yc&bF!Cv{C1@&Hq22*QM6}`eL{(clP>yzfL{2
zSnfZ+?6;kon%c>A%BQF6f4{Z%RJ8b-CAXxK&&)JV@5#NrEa_;M-0L30XHQN}j+=ge
zMcm%1W7~3#Q%(qMf0})5jp4q1`_#(c-FbGXl{@cs-coI^M?c@**?HM#rqR)eX{pQn
z=f8`xPdOm~Dm3?2ZT<P}cK+Tn@vh!p(`~u4MYY3r==!hXzP2s*w$C)3$e!HWX_uGz
z%9%z^OXU*LNa!(4yS65B-MjdE-`=j}zBWP8xhFL;?Z$@0b*WEJPdB%-vrBt^Zmwoc
zYS41OxmF-&B_3)C$(<e|zNVR-f7a>g`qf+FH>Grb{P@xE?yl0}XgL{~9FW0!aeH2D
zJo`2FMo{rym9P8M%4J*I+h=!laBNSNum7`gqt5A&RUs$mSeKv6y}LF0IyApu*DGh|
zlQH=D`MEj2&4-5LyPnj&n_N{JTwUus%j9IlwA4R;{+ublU;BKU@BX^KJ-N4^z1@EQ
zTNHD{7I$%-2Xa#?+#iDy#p`QpMMXtbJ*5njT0T8F`S{wmyXE(%rbbFxm#x{9divS6
zcOQ?-ho_`0vHShTxIdYNg{4BrySs7uwA7Oli+yGqRmRTO4qrF>-Qxp|%u$<CI=RGj
zR*1({9L$Yf>NOQq^v|`a4BDK2exI_bde+57twm2yJ-x=8eW-;~D{|8kt?+d<r+>>@
z7A*l4rHssME0T}*X~pl`^XT#8uZOtxSNO~{I+-UeE4%j8RPF3@b1b9wR+V=3nb-ZP
z`1#|<i;c(Sigmj?J1=g{zP_i-aJMj@td)xAuJ`+XzdP{{l)1k8dEVVs`gMK%U+->l
z{cjP^pFe;8m9J&{{ZrPJdwV2}-KM3!eB5tec6X-_s0p^8@#dz~&r$jR{`|bU$dx<y
z_BP+&-{0?FTb1|x7pU=Z{O;7{^Qyd#&EWZ%!1y4}6%>#qk9TmL-ei(^h^6$+jf;!l
z-rAb|^!fAW7xQf|K0Q6X^vw;!xmKlKJBywMy}q{AwCYQSY3{8M-KZ@AcXySBZq2%C
zGP_$LdRtD`ogEvWou9w{#0d{qclXs*Utd+dSlBKiAu(f7ZO*+tk&{C9R+awz@uOnR
z`q<sumif$FbauA+YUg&o@-=1k_4TDME;zp5|9@ZE+gnTT?k>-Mer~RmY1Wn8x7Tk^
zK9`i7464(XW&9RYc3a^!RqNOL`v29J1vZtu40?NOt2eKdNx|zySJuT^e|>q`eX^SG
zCF%S<55JcBo||V|ZBqEirJw)D`n}(xR(+c+1u8?IoSgjivcLVyD=UNZ9vlDp`}gjx
zZTa`(-tYZBPp;wtBd9%Nnsp`M>8Yu<yUtqH?)~%idi<}q+wV^?&ySm`7i;Bu`_G5N
z{8F}6Tdu8(UA@@7f0ymH8=G`wEealNYr6L~CcZQF=(_L)4ve0cRt7K6+o{G-F3!lZ
zgI%?*psT<C`YhAzD=UN5OW)oKZRHaE^dt9Cr?7g-*H>3l*qfuLE&crbymt7ym{kD_
zn?M!F!DjZ?-TM13OwkNZ=?Mf?1-G)-uk@X5R{r_Qo>`W~%i4IQm#qw5zDv$gMnGVJ
zm~K?Yj}H&IczJ!xejjQ4cD=q~U)-ZlmzVqBzj;Wt^yMYj<YPS-e|&trwfcJ=D+|kx
zyPi8l3kwUi0v0sr#qV3A8@=tt%jNUKa&p!vDJcbsEYJ#FwM0xe>IKLR&*#_Adt=eJ
zG5PqZO*;Jrv$ezZO!MwUfGUbTm7lNdsr(!=|L_9G<~vLssgdg#Ch5o9<=)<=dy?_d
z%B#D}^LyoNqkevV9{%^&S5YysXIvYE)&0IyOgOY6aB;{I4?*8K7J-M`crRaA==}8c
z>(y<%(pg731lN5u_KVl=v|pT<n5da$pMFkeYtGFeQ1hXyD`=vU>l9UQv76i0zTfxT
zPdj|wm8IU(^Hwj5-n&odbWv~V&bXwGopuUL9`PIs2W)i=3<9=hU%wU}U%PZu>giR<
z$NPRg?zg|QtNF=^iO$C)WbNy0j{dHFv9SHi)9LYAii(cX=6P2ZxpteRosj@FpB64$
zxNf<ls-5Pk+c9G0pAPTYzkfd)kHi8-X0{ig@?&SwQZ?UMOEiO*Wt^X98?`aXb<=J2
zvR2EQ9~-WJ?Yvw2&Tab4`v1T0uL@Z?NzG@*0^{^^D^gES(|lz%O(wZVMKgGr&#H)x
zi}wBdm3_DV|KC^F*3N!)ZEf}ClR~PQCnhM)GS8p)>+9>~X=i6u<`)0?QFwiiQtquS
zAAcoUZLE&ZV)p2jGMzN{%Z8|}Sy9_^W=_+KU8O#+LMin3zKa`^kAplhRWCMbb@=)+
zUM_!=(pMq<xjLtV&d;;Gx;fon*1j%gb=cZVUtV4|Eq><n_uudLpfn#7yDO+_?;Xxg
z`5VDfXX0wVhW`BhJNxmmUah!2J8ti4X6Ik_!!!G&=jqqn4!06`I2fjCg?h#AD!KUY
z?{CwhCm!2Nr)q_QvcZ<p*VjVcUq64|f2vk!P)^Pow|+U@<eu9u<(=|NzQ4WweB;|+
zUtb6RQCWWF&oN^i9iQCW+pa!3+8w$jBXDih)>q47O@)rTu8G=u>UI0Q)YH>WZqk{m
z8*S$Lby?VSz1WgBHw-}ynBwQ>%4_~tets7E|KH!ze}8_8lqYHhE$P@*`g$3tTsbqt
zFz&X`EECV^`te~qi=JNDS)9H;erNIXYuoSFt+uWHcIRa9C1HOXMSFYu+K)%Y&1+R&
zpG|YRzcqXMy4c;zR;<wI|FE(Cf8E<#TeWY#Eq;D(ZQ9vcnZLfgTot=}TiLriE92|`
zUR`|m?7HdJip9^){QAEC|5|1Dz8A~q*X_#uJ=ePYRU^CH2M+mT61D&TevjL}G1oe@
zT>jFpUrY~dm^c_bFKMsev&d(rQRa^i5A%wvzr4E}eN3YC<)x!vXP<ce7gP>?JT4!5
ze|_X;H*x*AFB#K++&=r-{y^xOh>Ndd#P|RC<h?2_g`baan#%gmoig@ycV4&eEq;FP
z<)5FQKYjh`ThvgsXu}2rS65d}J-u_v3;zCi+&{}KcUDtV)0Y>E`<Lx_b|vHTvfgLs
z=B}>%{A}m5*E=p(eR;9art(w9r6r!Xb{401ZId)eXefGeVj-wt`t$R%-0S20^7^MY
zeR<d}pY`U(#<=~v%HFQZzP>K=&ySDgUuw8SwU*qt5fQtq#FJOr%%`Ysb}P5|s=B|w
zPQKIr`0=E9or7KdzdgH3UOp;hfB)&}>A2&^R8&-69O)FE^zVP^gjuhj`n|lld3lfF
zt6N)FpPOg<dfPdP$7SkDHa0Q0x95M~Vg2z|_IlNy-klE~B&^>b;^7q)AI~tyU0jD@
z(!aV@XD|EPuf4d~J^RLn#H!C{%~k)}GL+odkofBQ`uSa=+MvQyOG(M;`T6<frSYrc
z_U;1ZJ<m(g`Foe9o}RX{>gy{|FXh^r$gj8a_h&vl)XK%jcP-f8_Nf)9Z56sE!q9iN
zneXp!Z!bIZ+b-E#{XOg6p31CiYi6dMnK5zEE$=BB3pZ>q@SSfLyKmn<t&kNHbWUG-
z+;6{bvbz5&pP5FW!3wYGdTW_jxn8`vxp|g-{k}dK%SCZ}t2Di*>6qIdbC<7Ol67^}
z%KZELem$F=AF{8e5<Fm#c6L&Kf4`dFoEeM$-sw7Uz`->0(vx*>e*a3|^W~EFtGm0m
zv++ng_<AzU{M1zK>A$|eU%#*Rw^z~p;-sISp8ooL-u~-@X8tN!jX5t)s?Wdj;9#?9
z;UgDb8H)>7b>I8FxW0b=y12co8kyNwIkj@F3R>EAYP$aVHIbWNotUT`wX<mHw*33+
zx<s|rcF(t|{ItS%w%IJh<TfQ`<<RwUwsS3u-Mpvi1STXbP*PUD`%dl1@#Cwbwq}7k
z)~BXwFL!F?dim&RH>k0-E%)}aWxlglxpWFm3M$`wM{}-q`L$J{tHA>mN4rFWFE8^I
z6%tz1%+8;6b5m;7r<3ZY2?rQF>;E%7nwdVY(DuN=^XL8T|9oiPmUnlRn(wR^tJm-Q
zbfbQ*RjEnxF&@**OD?IWr%jzdfBwJE^Z&1?`ufWAT8Z}c@T71j2FU;^n_uD%QX6$n
z|M>AkW#_*W6P4Axr|GCgZ_9c1;^N}G*L6Q0vR~d+nk_6QmiFiGU*C+36`H}zdVapI
z|DSD^cjrac_LP%CmsbX>e_mhz_w<u9GcTu{optq2{r|tuc0QkHT>bssSBq!={{Hrz
zZI<g(P_W_T9LvosBQ`FYX<fb!)Un@~dz(kf<iy(Av$IV1&O6-3EA4Z4SE=v0IhMWs
z{r%bdS}rg5pM5>P{w`=p<4*bgS~UfQ15eJ+zkg*_=;<>v43$II-#^&Q?z=tju1`h9
zj*s8Jn=2|RF01_fEbVX`Z`|$M+j2p@%vH%M^Wwdp9slv|c7AW}?PbBs{qjyvp3Q#b
z`0?YfYXpx;6n}i=3i4x3ZS7h8{eK=s<wZ`@jM%W?dahpVt`shDy_}reW_EUV>na^?
zZO_loxo!4-@ArGY=amcjI(8O6zqjS>+8f()XM=L7X6ULZCnqYmgWLjY+4D-9nFy=<
zmCU}ctfzPGb+(kee12TzQ_<ix5r)DN5*b`#IvG`8UL^X>vw8W^c;<u&37}zs%Nr7%
zgI5G7f>by;JNrI8HTCR`jmf@FPED(Gv(`<2@{G~*RV^<+zj-US__trXeCAqRy|O0q
zGAIgI*w|(rYUQ4NT(0^|&b>W1*WP_{a<cDCqg0=3Ya)F;JUTl2`powK`;|TEtBh^c
zl`Z-A?>#v?`}&Vxzoc$&i!J`5^7WV0<Xx{p<CCB+Q01qT_0P++ugft!k2v;08#Hjs
za1K<>F)%Q|hiV;PFf^1T9_<p1+E??__x95>GlTb5eckn&m672c*Rci$hD)uD%<Neg
z7C4&chOY=%IQ!gQMh1`l(DC2H66mAD4!gD$K6V2Y(kd!0+j3Xu+}xBIJ1IFSIXU(A
zwy<?EGauz5261;s+<Y6kF{w4@w%^5y{_3+&PEJm}z0L0Lm&;r9SQ*|)F>y4MyuP!u
zIP1oSg=RT77HrGC4eE&d+yCA2xRgi6B4AtY>20}3j~r3CnfLV6)OBU8+~WJ*K8~8E
zdU})1wA<U(-rAbIyvo`W)N(yBQ8{$68*gh%%ZdB<<9~jB9zI#k*ChMen%nCvmrh#!
zu}r0H_Urwi;i*4AKd*M{m3no1`}%D;H;az<i3<xW-`=*h{QW)aZRdA?+{NHfbtt)l
zaY^*+YiloqS|=$d1or-T)SVgI_vg<alk96cdw;*%4I11y{tMLJJb&Ild|ixZ^Q(Vi
zVq(kIMsL@0?~{>xUHAK~xoO^=h{D1`E`I*-ZZTaE8JRVpa`<2qE2ubKv}ln@@iU+G
zx9@9$hIl~b#GReR_qQguw72g*^a$F;$-TA36Er09;o)J>C~)nckH=3<Qazn3`#g_T
zli`QDasz|Mc0L&kh0~j+=*REdqUSm-6*ROw%es6WsAFmS`HXSiYybInYj18&UtRe4
z*eu)XGO19_pTB;ss`&Uw?sUJ5<)RfUG-NG{T=e(<+4Opy-=fRQ{a45CE{ocdF)?a;
z-dfjgvAbKPn3<UNT&qxTZEw#$(7-5ny8hqKblZPF9?!BWUFA2|YAGwX*qv*I6%$k#
zmdM3!U|3?^`B)+;DJi9=u(WvR#{54I54T_4TV3wz;sT1Hg$oyU_4Qp_<~!TwTV?J2
zU#{I^E5p`CotkO9yr!lmC<fXR2My^|ulfDuvVZBzOQ1f&(bwC|U*E3ZoELii{ozeI
zy7Bw&teqYBsG@7hv4%Z=KApCz`LW^Fw%paA!b!Krqu&3WdG<9OQN5T5?`b+0w`5+v
zbFCdRgRraMVH0S$w275ltN7U&t>9%n&(6+P_uN(Wbrl=G+?q#6yR{7r0$jVruKs?%
z|9zp{$zDdw(pOXB>VBqzT9T2QQUcG-u@se*Tv_+`m!_Sa-OcOjs-P-U)q9$Tii%6O
znC_+N@pUh^)xEp3v+B*p;~|S&I8)Eg3XR;H7W(tkQ`59F68#${{-~2m7Lk*CxAphk
zWxlhotPa<Ab#v2#j6;H2vj2YH{|_27J$Y?c!a*j`a2H5_K){5kZ8<Att;;I5+}>Ba
zJFe=bYUqjpN6@Gz2S-3f#g1KNZ&xw1^Htpa{^aE3(5+dat!-^u1_lAF++rbre|-hD
zr2DtA^T}M;eBN%gl4}=e6nSUy^RUaye77bZZcBO1-ms*AoyB3-WaD(dqsNYAot~x(
zYUa-}%UyNigokI*UrBNC<*Pzhzxwd-FsO|Q%8j+ZzrFl?-u`+ME4NAYw;a=)8y9l-
zPfG=hEpqL?vLVqKlpt5W+Wr3V<Hde+tzLe;9)EqA@9aBlNBX7B{XipicXyRezVoka
z_p2$I!EPHjZtUvqEq$G&0vgx!DcapFuK#NDdArG}kyT%>hEL9!ZdsfL>RaF4U49)j
zY`85qdiyP5At4b_(WSx5{Z>Y9PTN)UbJH^4*~>s3(2tLfR{j6`eQVv{D$|S$4*&lB
z`}ODZc~CE-wXJPc>gj3bw)=PNu(-M=GWhqmx51!x_}Xam*xhBm_5Xe@ck7i}nm(`6
zjg?!>=VJEMITI!bfcnb$dp@>-@|tPpr6XI{#qY2C^zmchQm?5ZVq(jT)6Zqx+?4w2
z>gwsBG7dEMeCyb;V_E0sSpNF?eE!wd;rgIbc~VThSN;E(GjpxOK^^>%kSU->eXq3n
ztGVU(E-rHI{_?orzN&=T_!zjmd#IKB>YmEttE)o2qqpT;6pyc2`1JJj?60q`YK5(t
zvHI_uo10C`-b8@pLsy4|F7uiB1=LFX^W!6^<T1;+@t{n6WBvbsQdT7^K*RLc)<%Pd
zs;x?1Ot`i_etqQTw3VT&!`5w^ZI&Cfx9V%juP>Rle?A-rW!aC9kDHdiiwRvF=3D&y
zT<G6lU-N(4G8Xh3GEDFTjgQ^fmaFDJ@6E<__(l+aZvwY%X5{btsTNv#<k&H(+uP2z
za0;K9XIl-L*QxyVa{1l9%*bhyMkyUTi=K9E)H&_q;<DsNOpoEQO*+A=!*tglkKLGb
z)c3YpS9dpP5LA6$#i6Zle!t&uJ}q_TZ_p&z^If&S%aS9fadL1NTwfPktjo{OZ@w*e
z_A=ku;4#BD)*2coLe@lFoMT&kZEN23b+Kx}%Y2sQ+}xCRJYrwX&W$>!d1Ndu<W@dC
zHMKYQHfTUnu5_+N;h~saB`=qKRexu_^1AxPOG~|bQzO-EZ0_X#To=20&$jnBHZI<n
zdwWgv_H((FK0ZAgb8o-7x%v3(vg+^eN~>jsYd@V-KekEd^R?*wox1*iEVt&~22Dxj
zy}nobJvKRV+REtd>u!H)X6N6vSG{wZPGnL|O^wg?yt{X%v9q(!W@6=<(JiiDl~era
z2<P?t>tl8%b%|&uF)=fr{eHjx{k3-&7CNix=$rwy#$In^RIn^L$TZ=hj75P1sO5XG
zi4`>Xw`1+<kd>1_<>X{_|0>z;i)$i{U0q%8e%i<_rUPn>X5QM8xlYgV@v+{?>({TJ
zSMjJb`riAyB`+>0dImKzvF6<}+jtgKK|MOc+5dI1TkoX#^XI?*opp7UrjnA=a{u|)
zqVxAI&AGX0=QURsmlau8SN-~WJwD$mEa~zx->BVXYfnwlT)eOLchwqxF0P<uJ~Q*8
z>b+W9TRkWB$yz_#W}~EZDEs$3+v-yii;s4TFMnmh$|drl>bbU>n%m9I>HbCarLV38
zHnZ{GnFgApa_thixGDAYmi+s6*FV+#{IqkgdgrTaYggC*eH|ay|M2<q=Udk;SfFtI
zzPL`rg4o?<E8Y9$R)wvd6}@{;<>yuT_xFJ+jcIzZufEDKC}^?>Fi4(zc6PR^=hfBW
z->upfm%Y7ZbZp11*!51WT-$5^=*8{=cZlq2cb%JSy?mx|`l`UiZl@-zpU-`7ZF_pA
z@$y5558F<Aetv%Zq&?>@3W<p=(+*$v;={wkC*M`Sy|s1HlB%z-?$#~Tobb>0QY>sO
zfJ8^$AA!10PdxX2x#V5-;UGI`1mXIQzE4k2pWd`a<#>q7(^FHmtKRSZ9<sNpl$D+R
z^!4lE+j37IKklA>ex7ep{r{im>usjp-1e4>$^2iA|4bv-z`#H*US3caWA(fEx}QfM
zOT4|kJv=664rnCt>-+oh-QxP!Zf;Ju?c1JqR?4%!ycaa-ef;{a($^_H7q6|24*oie
zfg#y}A;lv7+?<I^ROa_h-Err(!u>s!pYMJ9C~cm%2Gslh^W!6^fc^LD^?DWd`ODcm
zpV$1&KRbES4Nzv{;^Qleo_=L<Wo_;Mf9s$8+AVLs&fCMo<J*qq{`04$My|6KF28-S
znO*g-t(?lmna1hhZsg6)?xNaZA;<e<MMXqZ;^X7z+SNuacI&;g)O&hR>71~&QJL@V
z>;w&-%rebhwx{y*sr&ciCz%vIIid1>ddLjl8hzpQjGmybrdz+<+CM)(@0Ob)AR(dQ
zIm@DO(Q%9Afs5T%dQ4OT@jyeA3!U3fUB4dAD{XeALr@ts-sf3#m(e?~PU7^Yl7D}G
zPT3>E@W6?Ial%8DIsv~|+h29Y_T~LKP_z75j>nrk(~=hfZ*On+|9-dpzAyWuTibM#
zd#+nLt^03KX&$m7!13R|f1nw+e?K1cPt^!iI=Rhzn$AR(&~-64FaFd8EeA;US@quF
z4yf+&{8jBY$>s5}-r~R8{vSK|EBpF7&}4g1X-}`TdDgo-J3+HapkaXR>iv?*COJ1Y
zsBE__deU+IX{Y_?PW#)(`(!WAFiZ~FRg$?jZg12~<Mgs@d(dE7ZN#*t^K7eErJtW?
zRrhB{*xIP2FE208es*T&ufN~#g9Z>zo<HwzS@dK=YUHm^r}e*{Q0`yy>JF^*09C}3
zwq#w^irrmyHu>+S)YB=E)2{0|mU}%vH#au6XkN{yle6n0&QH~zuJXQI@!I<M`Kyv|
zZv)LlFWXV;;LvbuYqolF&%KJry(+h3_f!PF-}AXo=k%puf7_|6X61!1^_r@pc{N!l
z@94$F?x1=ra@x{wZ*T9O_WsV!;AyEVD?dMzyR8$y@6PLeLc1BNs_lj3XWrgXnB0F{
z?*EU+{U`0hDvoxE%AE#PnW3x0Jb(Saeqdef?vl5+OkG`FD_i>i{{EhQeO;`lob#k2
ztOH}Am+rssG<4GrU*}UM&oChhR0#M*M9f&UXpxAx`0|O$?z`6h{&-y8H20PXD=X{E
zi|+D!vrR?xVj@79XpUv^mBsG;v$yHT@7t4e``VS2!FTN{=GjyR>F@iIwCbH13p@Mr
z71me3-m7@b`}E{w_u%DzR~s0aZR`x@Ta|iUym;}}&f?{Z7A?B6%y)Lk+y7-#b)&;V
zSA|@hrW<Wi@*<%BtGfR@pVIH@`E|cus=K<nzC6+?T=it4J807J`mPTj3M7+l4jp@T
zb~Y$6u74kxWNw<@U+gENU;OxApPcQg^!c@BH?5}YMn5z3d^E!_c}wwgzpLwFZ-3p;
za3uMT#If`9?bqwY?y9&`xVz@(rm*#KZwvRdw6KIvUwuU3@|MhCQOzJ1&>V=EUd)TF
z=eA~FfA#2S_sMzO40m44d*4+0@DS_Xuh*iZw&%^gwl;cs@N&P*OG`Yf{(L-cdn@nu
zHsABM-{*jaEK*NR@$9$x)N!x!x$M((b8jzx+rlYql5~XQ?Y+IxtXv`i=jYkx|B~lp
z@b|Q}eYv>bE@*4kRnStC+RtarL33B%-rZdtxj7BAfCw}|Z?*r>+%?KOE$#C_^B<sL
z@Ze=Wfhj3V<SL&C&b6%$i?9E?HS5ZXhouK<f?i!&xmeOTZH4D#HLd7vYySNC^93|>
zeRXxXf6?rkpPw>MPEyUfw4@W%_SXzvwxaIuFD@>wOZWCxZ%sJJ1S)~PzPkF^N^-6+
zXo@ImYu3xB)8ns!T3)kEvrkDZw*UVp_<r5*wcB!UPkU79AhbKkv%Y?ZUEQA@W_fp3
z^h%qb+N1-T6$j1S-`!UE=i~9O-)`rx4qqP!8W9JL_`SWo9W;FnYGi$RdD*rvc)6eK
z-oM{&zq+$?^P<IzK{W!Xsd#sHd3Y<AXvo&A(6jSwqe1Pvtyxz~o}3WWjoA_K{eJ!a
z><|0Qd!@~<E$+8l<t|?v0_wv&J3D)8#ziGiu;&&XCp0z&nuOYU>o}p|v0b}f{QUJR
z>)V@~tK#?X1BH6%${^Q?6DOXUW4Za;+uO^(zP_IQ{oP$qyON2CDd@{Sh6a^qjGi@V
zbrlsmR>tlwn{@u={r&a(PtLX8t{JvwM&<jx-_J}?boL1dm;f5l^7Qa1$o_rNU0(9^
zCZE+|YtQ`n_}KS&pX^?{_p%P3^32MQ;T~pMc`v+Z-F)^ZX+qB#HDh*cIKJ!jbp6@;
zYJbmSV&#&kudfFU^%&>eFerX{N;LWQww1BFw_SgH&w~HN#l`NRfm7dmdn$X^uV240
z_qOSBx0skY8*^`imilDZ*8lxFUDC2>$;!CByEysy%>MoRrxw4jW?A9mW1yLA&w1e$
z6+5mM8y%Z5%M>)SB)|T3Qc_Y+e}DgN8_Cnt^+Byr$7Z(5E%ue4mQ=o6I{nPw@AvbW
zn3;Xo#q9K%X_R_q_4<8Tj~+jsyypF}+W7xdEsN78+t=3xFLvYo{HR-h*8I9(nkV0G
z&%2v7%PcqR)030Qo6^o^otmznZ};=b<dpd96P4X(vCCB)U}0gAxV`P}vj$Mt_2s?2
zyE{8N3>q67mt|aB^lWN)oZ-ihALHULzpnQa*NI426|yo3WKhx5Q>jtgax%B&-+x#5
z=f{tV&!@E4&qzAjHS@p$hu{qfj+Ym^^A~@5;@SUQO;PdSp1<F2FH1b!wk%+wlbV6S
z1<*REQ&Y8PZ%jU3^`}0q$MATctnuGpUyYY~O*M+#lwx>uQ>yXNZgF$n=xrv!%l%Bl
z*T?OB`J0L1`sSXUz44s?m_g(0S5^jtR>d6al@49##JaxR0W?zrT3=KD=VSY8O<nKl
zdZ8g9Q;zk?u0A){+WXgT{?bM!){v!MqGxBDpWpg7x!)Ev;+T1VU#+K|CuoJ{kLA0c
zA8+{a^QWeX$(Lns)6UOZ>((o^(^hGd-&`wDUpu<I6*OC??msUC)ZpIs{@&i*=jPkL
zzqnkSfq`Mi^gEv!RaE)pY*s9G?_X8(^OM|bt*|vOu9aJVeE;;+)Z*;$bupGVx6NHu
zcMr6<(w>)5g;nUe$Op5Rk^5?XmVA2Rd0i#Colh1tKz{r{iM_o&D?9scwf&%_nD1O!
zCWv^{q@+E1v-P@n%_sMy**|_%q@J2`@^u{(6Vs&Hch(FH3?KZ<&)c_|t1>Y&tDbyq
z{6cts{k$7$1_lAs_2a+on%^z1zw1^dX#Pz%ZcoI+hYwF~V`gA*xYg0$4{rF?{YYFN
zZ1~_Ahl1vW8(+0HYG3=xCu_B2!2*S!KY#AL6}Pu4^mxB~`R|23bDn7Ke7;XVZcl`)
zRmqOSSD6_Y9{9~RO6|I}J%9eS)D#bv2_h%v+wXUBa@vx3n61C`^|iIZDJe@{|2}cT
zLoyj8c6ELH{jD{Be|_Cm_I6hEZE4kW8P=(%M5gLQemXZ7w4n4|$J*%atDM{U)}7Dw
zux0Y#a&>oqec9h0w2te}Gsd5v&)Z*J?k^v{`_|TMZ4C_%`MMtqqZxjFILtp))mzN=
z(+OoyIpvMFLr+dp4c(S=b9advD3W4JrtdFh5%2`nSAO&D)-tp6c}&{(=aV<6kv8ed
z=5&A1Dx<%@zk}8Qg=|jq{rc*v_w#deFMoJ=7&P^urKWal>-vTUhQ0rOy{`IpGyUqS
zP;F4>7c{%D%x~^0^ZPZymc`F}x`RPuu9sS?>(oj-yE-~9+}m5dcirv1)!VtmbTnSR
zkIp-9|9=mtt>rV*2s9)oWmmJq$;ruP+iZixCbu4mg?D$CuXbo;dUbJed)1d06LVxi
z-R+%4PeF_S-Zd~VFf4JdiQ8R!hw<WlMP*g5X*w%gxy6^QcstqOZl(JCnonh?Kq=>6
z;S6?=OQ^JLmx2|)^we5&c^5;)tzD(rQPUY1%6;D5*%`Va;oufMW`+rV0uGlJg3@&<
zCquz;7M7H2^7T2YEes4Qf)1BfURO2sd9B3ofbYhtZgJ}uKR!NY5nyOgVe+sNRa}`9
zCC<pez;LIK$BCVuzJU(7V_$H647B8z;m_yXySq%+dNVXwH`SldlV@aMC=i#Ol(O2n
zoi8(%gF#`gLIVTCyG55Lt@E6vv@%8NIuk?rq3e_4d|xXWnJ{rM9AH#co$3qr`U382
zZ<7S9K$#FeRY3a%;ba8p$_>fK`L<?Wb_2Bzr|Cq7Y)bJ2<;$-A{_^bYxwp-(u8)tu
zxhXZcpkRYs{hvb6I*Hy@ptAlF|NSj`3X5;-uip<^C>pb~2-NKdwdiJ<W`DVry*~5u
zGT&Lo>3u3M4>U4^=2wfJo?5!lx&76hoyAqZ-){f<dj0;aySqw1eSNCR&cJYBZ@2$p
z%`Y#P&wusi=4R0POwdAI&!Fe$=7QEr|9xNo|ME=Z^eM{je7tft5g$K(ytOH{`_Q37
zDxRWRAps#FQ$Xu4KqCfEGeO~=*`*huS@Q0VrDsq^#){jYK)u*)xu6#EB=E>-)|C^Y
zb}B2O6;s-|IWJ=lGB7YWSh+BGE`+o=LBprZ=hs~Vt!GF+#sgYc4H{--VrDM=@W4^l
zwkqW5>FM8Z>`OY@b!$&$u~Y~js7R47Iq0>pUA``2{r-Qu?$vzut^N6Q`XrUpo4$NH
zt)G2if#akl&h31jlRiB?{d{9BwBAxxQ8{t`{P~@S7#SEEN?I5uaXozaa8=;qwx}%`
z3l}U<0IgeWX6FyPx2N*z+Gz9ZmpA<R``30GF9*j2m7~Xx3xhTt6r5LTSaRXZ%gbM{
z1p8+m?~`3;Epv93>E)}d!@oZ2)?bx-dm9%I&lHu|T_q=ze|L-Pdrex+3);M(57O5z
zU$<gY>glSI^`J(&n*Y2tXJ?!5p4T_^hUn|6c0SplfPet5_jNrJOdhwT=Kg=r&A`BL
zZpOFz`0Kali?#k)EZ`9I;>1K{E-tQ55%VTYP)P1s7qfHGpP!$#Ra9K0&2m0uY|p!E
z<?80P>_bMa%GUjRn;01w3TE&5%k;z8Q})t=Y4v>bnx;A(?H0cdYDy;`=iB}?c)8!y
z{{DWi>3X`JU44Dm{`~x0`rrU#`0S<L(_fvp{~xkCY^}^%Nd^W6kNh3XlbrPTd}tEW
zjRH-Zzr2|~KeV7=!@ggyv_W-s?5>i)dwVKXJ@HmdYPtTP65k{F4x{J7S65eq2YloA
z?Xmmw!TIaEyV1ML-(Q=Zzi%bK-H!uT-|hST?sAu?cF2~DK+sl#!|nXxi`{y^oHf7y
z;fpq?l>5Acc@o#t)6=j2`T05j*1D9FlcIJMEMyi16@il6<)BDopvO)TG71Jz7NT%}
z%BZcNMk+0L0AUGXP+hh|^!mEk%eS^>gEGt0v$MmeYKKo-pWkL93eqrd(!+NRIk&g@
zs(MWcm}^xEni0FYE;bs}iJhh!Eo1o)G)=a|Q<#;VUE6z_4rrmuz3TV2{Zg;5uV0^Y
zbCafpMMS^-za4$@_U}AuL1kvuw1-R{+w<;TS>VVFS~AMcFL!03b316H&-Uw;;PSsW
z?$><oT@|u&(c|O&pxMo;?{~|u?kG%tdw>7^tIweI184y#sD1!#A8KOd4p|>(8@sdU
z>ALG2pkg)s<+l5mKudZ+%|k~=$Gp@3|9tl6mA8vwWMrJQ<j&4w(7L6npHHX1&$4}f
zZf@}LK3R|zwf}xT_uM9JQ?cRE<HuW5Pm6(v!9i8liWM55<@|H4%lEA=1!en}k-PRX
z7kzl(D5@J30@{Lfb#-{`>FjH3R@&A6dhz@H{_B0R)+Y7;YW99UXT2(N^Rw8s&o`g9
zy9^pstN4)Mc`3gBuWE9S`)<%oaNuIMbsrQxOJ7|H{P^goY4Ni&yQ4sR#U|WadYj?X
z)9LY9x3*-0mMZ`I`@TN=;v&~cOZe@6I3y+}u8Q8iu1j2h-Ltc^LG%Ao=6QEw*QUR`
zv=lTY4(jy(e!o8+G)MXE%}r2c09s#l>Hfl(FD@<yjo}>sCaN8F<=NTU@3VTrkuyDy
zxkClizy{BUZOsnfntk05G)x3qZ=@N#OvBDDuAN^#tfpp<-Tyzutt~Bgu10~D`LwjK
zfL8qSN|{`Eb93|8CzJhOfyRuM`^{DH1og61o}Qk5KKXae&rdI(oSf|C;jsfAj(iG}
zo;-fM`1!nQKTvP-(4j+L9yIf>@}F-9nih6)c7FQ!@na9!=jZ2#*VODuN=h;*dg1}v
z9kbZ2H|YAhSku~HC2#NS4F34><0O^(`uhI2!pGOBYy%aX?_6KnHN@<ziA+B?C(y&A
z1Jpmgx;i}ja2qdZozbyg>F1>~$L@m1qq8nA>%IM{?Cq_S5{pf<ukE;{Qg(9Jy`$aY
zcfT=%3h3@jxeS&iFD6KtWGpx{(-_nVQuUg0;nY-Z(6qCtcG!!%<@c{j=kHm#DfM*L
z(^FH+_s;wC^RxFP(0cQ2HYO$^lS*D)(G0)7`pCM7>((VNCNwoQJ$e3odeh?G30I!9
zt<T&Z1L{`h9W|+}Q<I*!O!TktlG_ZIwq}PPJ$f|r<)x*!_Ec_GQdSm~m0i34-!Jb;
zS9X<VgBEZ5&N2Z_z+71sx_Wn%|IVVPDt~RyAOFfHXQT1*y}~5>`nuMZmW;z~ymGhK
zM{oC=IB}w;O_aQ6{JjrXzlC{&+Ecoj+UL)w)Lz=MsJ^L0+97OR%t}ynfM!2mURr9J
zbHiY+MWNIF|NnNc_Dx7w09wVqHhTN1O>1^X`L7OJo6>W!g;V&>w0>!Gzq-0QP+LSr
z)5<F9^YioN+*;n#^{&pZ|5th4S%`sw0hFdYIX*u<y?kr-^;Ox|*G*coHT(LhO*&7{
z&c41l_h1vNY4Wk2-BJE2DNC$MUoGhrRtGJyHO;zmq5OXBa{YZjoc{j)UVioJ{`&f}
zvrN4~J8ag+?FF^oKpC9h?#F_pq@;I<^n7B1qVttyzS3)>wt86>KLZWxf{L-b<@akd
z!!93}uV3TT%9Z)(NGE8O251=~Xhy=lUv8b*_q*lu!`4JBd_KQE?(eU!!OMJRf(Chc
z<?U=*AKQaAXV&YTw)iTsGI~Sx_dHO`L0msB<Y<>@=u)q#Tl8M8yR{|r^8a4bnMx~b
zqoy-6lpjc+WaV*7V`UDcKXCv5y4*WE0#i?adVg!J$M$ju70`^Gzy05msOg~8`+(1L
zd-DYl>(6HaVj2KOE)0gpUOeu%4?Ef=I@P*7544iL=I5_vuhqFgX*j@YKD$cb{e87x
z&so3MFfs~~wJHf%7qj!yE)`H6zFonYWx~nH>e^OTQO4=#d|n5EMDMimTx8X@vx_Tz
zea-i^5m;y$kDvo+4EO8n>&r_)Z7PPm;5H5g`I--nptbIxVprX7j>qdFu<AuTf(~9&
zG#1A0E_-=3JU%odV+CmO&zqZ@ch^2WF;RK#X;7EBKv*(KpsJ)~i_U2;Bx}@sXHB`L
z3NmL0vyqFq4v6)i=jA896U*n<X?cRya->8~d;NPhXcYH-S|mt5FL)P^f}x?|CLQnG
zTU!E``OFj%7B0S=t8-cj)RSj;8MBK=VR!laX)2&GowwB>J(AJ8cobT>M7_R2xWbT-
zC$7mgSx^4(>$59^mz(6?G6C&1SnfA>lHsx3y{VD23=*BBLO~r^1yv&#hR8h?8$s=K
zZgD-0>ThpA%P!rePj9-k035I@Cn_>|%(trr4WWa^lb3o;^@0bYAzRAvKG|0{H>*Dc
zMdpbIMlKAXaoTfpt*2j01^HozucT7Lo{z_*e?4gC7ZDeqer+jOm{&51=ftI@-k?R2
zlT^L6w6wffxkM)P_xDFjpWb9r_2q@hD$wdO2d|V4hEMmZ-|zfqSO2eOeJ;2w?C@*4
zBGZYj+1D@a0>u+UxkH--GpG)HFkjL64x{H5P~wl-5m5c@%|sPZtq>1hDU$#f7Z<5;
zP~T5M)yRk8<>lr5ZvAp^FUp?YmTUX{PO+3-O@&k_SbnLIi})HrWw(qcCnjdy+q3i9
zn#jeMm;1l|^71mMX9o(biOTL-PfkqCj0FuUHOxLCQ0{Q7S9-ac@2rexXJ+P|malrD
z2wFTVt{-;=l%enKtzI733i5i8lJgzL&hGBZhxzU2Jo(iwUpK>(3)FAo0j2c|7Xto%
zx$N(`?*Gf>^F@S&9woSfH08OraVY3UZ@cp2<73byPVA0?gIoU`YUP$P%b9VkUw-|y
zwb9EHVdnQRR{s5Z9n@L?&Eqn&@dW()^HbFm)UKJT9UiheOc%V@c{M2P3XCO{8dA>9
zi3F92dn!NQdB(Uhe*Zoxvz!&jdZkZqT4S;fR7M^+o6^BBX+`GcWuS^5S{R6>b{K-U
zg8!4e^i+02M+e8vZEJIHZv)L13JMCEzfDSwoL2Vk&dUI>%ko@z@hF&PU73&?xheNH
zQW~GE<_k~b$&gY-&6#C_ZuGW{TU#>!uitCUziHLJ&-Q=bvE@2^yULa%B5J;9$3o>9
zjNwf)dW0Q)L<*&+AIvbhXyA6d_o7Cci2AIIMJ}qH6AdRT9_vby5fzs>YPv(v(L2R~
zC6cH6z|X&lZ{j_YSz3#Cf2~}#tLyjQdADnJt<9?ZYWe-n)@ya&ci(^79seik+s*X(
zG1YIkiq7I;V7MXBtK@Lb_WPYXg~w$}`_s?OnW@}op#&<GCe5k+c5~;)W768DatsU`
z=1I9W*nB=?{POzx_`8pz^Y@zi&N4X(n$6S<UiRdKa{n3r`X7h6{5TjG*7UmxDs+qK
zdbRV(zLNX@ZTtSS2ifK4^vPPQdGgu)cyMNh;o_jjj12R(xkoZE$ovJJ3&8MtWgv@3
zZf<T|#lu#WlXEPKKRuc3|7?OY-^$zZyGk<e>Q*x{G_<XDyw~=9eeF~2_>-mAW2Zko
zJw5%@6wQ?@SDqAfmkHed|BUhZCGP!lqH_co7$W3*l^pbTzuC0s>$T{eZ@1mPv@Q2`
zkF>cSsBtz)CvK00u$s>a`~RQq!z;WP7#=J(>0-#dxheHnzx@A&)%klqx<zft2>cYn
zz;K`~ON8;$_K@)K<-W7crphrhFhub48ae3gd@?B{H1z48&*%M1OG`oA{u;l~&``Y{
z51NFQF*7jOty{H7qsxo`<MmamR|kiNPE9>ME%ozR^Z51FF`=QMsb61RRrT5a(r31r
zZuPsJ>630xuGxF(F+&c^<H<6UpPW>w4yh1p=zaKiezw2e&y;UB4xiuJzu0jeW8~(v
zv-fLw7#K|a?%6OiFlhKL=9n<kI6dvrkxuzt_Jxm*oS9|1dQT$*Lqq>k$GE1i*Y|y0
zo1gme(NW7k9}ZvN`M+8Ik3#P4ZD;lCK6X!1XJ%k9b6IS`{OLw=|I-J}{QoZeW#+dr
z;J5!%&?(Hwz##9wm}3HH95!@ynEbB$n^I4Mrax5uSQr>;WO|hxw%y8FZS(1bviz?9
z9}e>`um1iHA=hX3>&2fx&+X6O*qD5Mm+JdhS63Im-Fp35pY^*F*Y|zf3QIB{mA(Wn
zc1!*A<fP^6HJgp9zPxy|;V_@)r0H>0n)!RbhW+~fe*Wk4_WKV7Gchp8FAbc-2#WT-
z-|x+y|L2MN%gf9CpPipS|L5oD%l+ru?fm&{wsGdAC0DLo390g7V0fTx(q*jR85A2k
z_i?|y-EsN)nx*cH3=DS5+=LZ8HzghI0!6{+XJ@_d@2dqZfc5HUVPME<a4X~to75v~
zZMJpm)|a=p=l}aC|KISu-S3=9DgXZbe0gJIa^Ak5&$#?K7#M1%xCtt3zf<IW&g%6V
z9vKS*^ZPZ$U5i%SetlzOGM~i*hWAZ;3=F*vi#aB&Ucb*O{^zOiPn+le)oGWntJwS3
z_WK><`X7howG1Q~7&a(Mxi)~7l*j+NG~KRbf9>yY_c&!47^E8A1i`WP=jUhplKNj?
zUfwJ^t?NC9gMs0Pg_LUpkCcgq`MrwddzH`UR#k(HE4u7!{`7SGzamyONE~xaIIXu^
zXLa~`zx8o@Kiz#_XC4|F`tzlK{jB6ZOSS5^Tf;%;R&eX@*>EWt6wV6+Sv;<<i~am$
zvVYox1C2W$_gM#txaRGCyUk~gg`vBAZHZj{pO0O8)K9#)xHvdAc5ZC>-L3cTb?fh&
z(a6lcEOd3)%L@yg+xX@Gnd>VvGc=rUa{KJoGS|BNTz~za$A5ktw?7x1zjvx>_O&IT
zm5b}v`8c1QXKOt@zOFKATh7jNd;fmFZ~ykz*3+WlF%wn2r#)G<dflnd=k4dO3|_u0
z^RnCLTy}<r-c<+xd;jpS{}pWaedqb7*7tw<?fd&SU)|HH^i{~im6M9kS*q86FRz~-
zx;pIYZszMRE-v1jb90l;-!GS6URxVIDdqj%@8>{8RN>=ePnS&gTXp0F14BR|??0h6
zprNbG%gb&ib?a)`dd+Q@tI{aHTN=J@=d)R*@9vjgkCn8kD2T05IoZfAH)Eb{^|R^w
z|D;AHGch<cUw*)>;<@kF)%9tIS~#=!GFL5K6S-OK{*PnkMW0Tpr%#V9Te<!Jv)TD+
z_x4oY%wE6u)!VNxFRT08ehrZX>%a0q|De~T#KUb*zg+e|-@wQW*7kbscE8Wh&c2r2
zeq63P=Tl_fj)!e~{{4FW^Y8om{pbE#7C%$*%*xJw{r2j$YiS3YSV6PPn{KAf&b?&G
z$gn^$ON8;#{`&vB?Ct-2IQ;cn_acwb(9p2;aeF<VM{G!N{P#8fzo~d!MdGdP`TNf$
zPt%Q_rm}M7%9Yze6Gyv}SvVLN=DYSPIe=1qNN8wiRnMIIe?LJ{?A9mqbK&utg0!@w
zU7}yVP1BFxcg>K2;X~wQ4W^VM9fDKk6pho)obWZjJ0*MlUbD^V=lwqYn+YnxpYQ#C
z?{xP1z0<C(jlLdR_4VM=i2BTPb1XCO@B3Rd=kE@yld|<&%f8IFXJF7ce*XWTkJIn1
zIHE9Li`U9wntuGe`2WAI&$KK~1I@P|Y-V5od8=sZ4BP6mu0<!z_kHZ0Q+Q1B>$mDJ
zFD4qFw=ur||KIn^D}$HYd^{rjwQr_XX;#(ucYEdPZ(Dlq`**UPjp2cC#C83K<LZ{n
zm^Rl`ncQHQX`UbV?RNhDGjl9Azk3(18@1&`{om{LPZu=vY1Ph)+gtTCeE+Y|y<b0{
zx3~A6t_Ru~ae1+OzsmdjTVG#`&OiI+=H}OVN2~w;{r>#v^!Rg@&*uccy2HS5VM2%~
z@56iBUKbpbOn=fQop&NKeeP6dJ_`j<C@q~HH|yHk=;!_Qf0CCTUu~RlpaE3iR(`vg
z{`wkdNzt2)$K^nS`R8mtpV5ijq>_BB=VVxP?$njR%j;gKMqFOzdwO2=yO~eESuiuz
zSk-)(eMo(B&M#|Grktwx|6{5@omBVU$^3eGV6!cA(fhsM(|&w-C~2JLb2n<bUhJo>
z>uYuO_kIZ~yOG$=<+pv?{<_AR@9*w@e$dSS?9Jx$=T-zR-t_a??DP*04oVuQ_3Vyk
zWcV=iS_1Qvuh-+xS3aM+{aV!iy1zjpuFuZRy`8}Hq>)`N;`uK>>$g*?-|bxfB$I(*
zL1OlX_bs47`d#18{y4ziAHFs!v~wZ@LxcZ{gYy_YCq-^fOTD!vv$S7aH)@JX<<qI*
zpvt@I_-;Oa1_r5ZY_baCF$IpGYPRb2^7(bYqWVu)sh2P?JeZuhfwAbc?)H!>76yg{
z<?IcNMRy91hr)RJpeZi9T2ML;kYZ$FV3^_t>ZvRhRA69m$Q%_O)M0X>s_Idvx>3=S
z6JK6k)z*#PcILVL|DQ6YR{}u^<dy92N8S3MN-Fc}s!&jA@bGYZ`oBLvMQ2DcFi1^X
zHdSuH#vk{-@0;!}Uu)vr#&dGr?sv2P|K9)qG^i<Q`|XBu@G_s1=d9n)QJHC5UH0vM
z{r@f5*Y(0<3SFn^L{3`0ZkN`1`~Nk|{N~PD=39H3k>SUiPwO9kEjefT{0Yb*QH+Kq
zFD}$P<c>c9s;odwWKU2tMkjik4rs7pSLy3%DmSa&?=AjtkUjm*jzY_qOD1a>*)uSh
zu;?9(^8fvAcmCeZ;<t0R$ClkpoxbP8A@0&_P-Vl$FBc;&?^*Pqk$qYE`FTH|>eol!
z+QYzbL4b3Df5y8zJ3;M`Nl(t2-#@db^7E$aan)C?*ZI%4t9-R``6)S2h7n=>#CfOg
z_gj#^+IXd>smwG^_nWk2+qP}@Hg4UzHF86O<Gt$ldxO$h7#iAK8ftt%YxvyyWM=NG
z{S7J`JSU}|o~G)Vm6i2M_Wqj4&0G5z85+(jF@7>UGuPU@UA8RZ*4FIl*6;TihlYlF
zP6F>K30o5p_}=pLbp80(5)2GKbc)2+@NTL2_z2WA>K4~O_vGZ{%}=LAUwd0y@bW7A
z^rXK_EsLKmsr~)!X3plb*B<BZ#8vJyr7*9F*r?RZ&VQ~)(zxjV-|y)l7i90xzP|3|
zm6gGumD^S4=R(W&dG(jUWji~1*}j7%+jec_W;N$_zOz#_gN+gowS0MbIeqT&+OMnQ
z&*s;Co_%JX?e4s{|9-zee_DV4oQ2Nq(@gak7)(6QHLO{_`MjOAu)5!w>HGgYJu~0l
z{_*kt`0W3$<Lm$T9Nqut^!}7XEu1g!@2^KLp!0UWohGR47LriJz>s0Va-yp0+068y
z(9o%!!s?)g``2&w924H%-TnL^yZo7(>GS7;+QXmEnxB7gu-Q26%#5!!f7uxrYN|LV
zeEo8OnSagqjn;3s1i#z)e4eibFQ_XJ2O2IIEzuZ;UvWPB#Hp#;#rG<oFOA-wmw9oK
zE9hJmpIIg=FC{ZFIJk07@O`r5ao=gv>oJp)`)$pVkN5drUgm3@abbbYuNRA_%JDKV
zXf4ZJ%KpP-mQ`uiyB&}FVrsu${rSv%|4bFjZ#R-JuMS^7r~2K_nKqS0t?Dcc4W|m&
zQiNw1Bsziiqfhp?+nKj^*)lctc@;@=)o(U}az@i-Mh1tc920yWyj(ut@BBR5%bQY9
zZ@u>W%gf;H{GetcQ;P5m<8(hzV|4BHYuA=(bnW^1Y_{kOE(QiI|Ari<)6;aleSLlR
zeoZ?&>*`x(h6Cvn#TVu?ot<rdzDrd5)mqTP;=KCUfAuqLHm!7H*0{-Tf4*+^lU6T2
zrVSJK{4YMMKgHgTaTDj2YuDC&Hd+mC`R*!vyX)NZv$ITJpReEb@Vq?3d@=EmDu#yM
ztZQo`K^?fI$1|p|oKU;4yZrs1^Z)<&Pt%Ltb&dO?eEpw~A)%p5%irI7U2|_?yWFhX
z`TK37^Y?yjpQp;mu%HOk5{}%Q_Vj`?|JpAay<wq&BCbo@e{2CYAwhA`BWbLbKEJkX
z()at4d&AeqfeIqI$|I^_3=B19mdu+tzr4Jx4ytrk1THoze|INm``t20^Sqe2>bG0(
z6rI+c3M!|yj!91NO?i51>dpsE+(p0NZcl%BsP$&)_1NN@snbC%&Q)JB7#IQ!nOGPY
zG<v@?GBPlDDLY6tOw|s5w&(LX@9lYaFD-KIezW`izL_SOK}(M_F*Nl0HJC6Qmo1M0
zby;Mp-)xk$F3SN$s$(<T(~Iu%Ye7bC2(0AwXss<ceGk+%z5nN#`D7LCur(g*<Mx8~
zANb6(*?CBqiQ&Mp$2=abzB3FIeP^4UJ*hrFW_wt0@MK|s8^eCvZxLzd=fxg;$-t2C
zSV%$i+n3A!%hS)#%ifz@_32-AXUzssq7Y+Ra_HHanUinbx>fah>(;HBT}t`;ex|W5
zV`6CVb#4f`u_^U*P;hW?{@%#VX{Emz7(QewI%ut_{QN9(W0LFMub_#0P*Pdm%CK_7
zty{Ow%rstp?-zS^?Cvt%Y83{C8!0RvtzX~WwbtMNrwAOkpd&@*ty;C}%e%X~ohCCf
z95|-#p!EhcUbQN8b<yKq^J{C@#_TkDe608MzTfX==iS{ET42S%aAU`;u&RdhyX<Oz
zrJR_cC~2A%^6cE)*>AVq)&nU8byuSEb}qg2n33Ut+taxhq`{HU#I1MY?e_cgTDis3
zuE&<2O`RS)t(nhi#ihj{WvUJg3=NkmcsUpt$ZdSqoXXkz^_u0w7GW*hV{RWW&;Ms~
z_3G7`X1TZAe$Nq)EeTw;`tN)G1wnsU*fLz=YQJ8cQ*=u6X4&oB%X=z6Z^^u@_V?G<
z(>FFIZ?5_INyRfXG}JX+#xThxYHQZki+1;q{i|BFYL(VMTc#g6*-<YU86xb<@7I>M
z@yX6gJ3A}&$A^b6udWUUZFxR9S^fE);`3*}yuAGRu>8Lbmy&<6+cDHnW?;-<Njp1h
z>f(MotJ^u7ee3@JzQ4Tq`MJ{S<#WrT^!9$abf@<FUC{8{wSMmn3{s8nYu{H_e!pA(
zdGh=}DQkcHaOjt_EjlKdzUK2zZgIUc+xLB4`)1ecb)Y8Qtu2|8L5cQe`uw%!Z$NFf
zxV=@W-MZU6et&zr`TM=<=i>W+xZeGDX{mSdwaE0;*}2<1H>aHiC19DN6N;6;UM@F(
z@ftLUT>R_h^7P}f<vyV8svDD!^T=A6tl#_XmQ{cK_q*lAr!<!@Nj}~O>R<I)zuU3r
z^EvCUeY>B}tNwIUzs^uMdYjMdYio@wK0NT5Z}(UE`Of$IesB8!@AvZ9-DMzmmfa~l
z4(b(4e=%j;P&bE>F@vS<^X&VeamkyYO$k4CuHW}7>)-GF|E)m<g4yky$vcamKXbSL
z6$l#RdU<(y`f1(mK9la0T=up6e8$+g<i&+KrPm@O_tjL+tNnJ<XQq+r;Wl3HNuaph
z`Fh=MP<W**pIdh7cK-gkpqObDkMnqcZ}0W$W&i))|9|#zzx_N=gxuX-etu2l=Ayq}
zucseqV4P`JTQ$oxJFGk>P(;$QC<WAn>(<|A0qXj#+yCzuXjGx{K_mOCzTI!P-8M=(
z(gA9^g~wH<{`<1r{wb)>`tSGq`OD{3X+`I5y=s*XGLX;y&xbGX?pjZetIEvE$}&nm
z)&r`6r2p(?ORyDTFv;i^*VkLMYE_qVpGDH%zWY_L*LFYdx8L{f<Eg3IuVp{q%3d#e
zc9y9&Xxw(!*7_gq^&0y=wCevkd;adW+}n?OjL-d;eY{7)a8bt9RafuZr2YK#^y{@{
zJ~M+tLPJHj-><8_duvDG<E~Y!RxR?MZ+8^5RrlKZU9VOx+O=!f42!~~KoQrCB`+^6
zirrmybmj7SyRJQ-W1b&(5oGq1V84~oyI(Bo?t1m=)vn{$V~TwPV`F1=A~rn8KgV<6
z*h3+m2DZG9kB)kN+W1~)>&>*;SN~R?on;DYJ%hH5%a+|pTnjqp;kFrQ@EFt#<^LN4
z8e|1EFVoM>={G&i4r)UG+mm&5l}^M41>34G9=EsUUavfTxBl1idauc9zOUrwm)*()
zZ6&Guefz$e=exb%@99Ks(Ky`3d-`_%{@Cw<p`lZ2zuin<YpnYE*Q`lTK%);`i+;Go
zi!;dkHZYhJtc~98H%TXQ)01S|{Tf|=e((QZUG?qF%vrN$fllQCjl30~x1A1JSt45w
zYEYz}o(38`1*w^+?0#)G&&yNV>(79O*v{9!D+Z<5qK`+#)1RH0DQ$E4)6>(%4_n34
zR<GR_mA%ZhTWqaq@TY&VTescL+r9PLwi`*^SFT+HZwHtpX`Hr1ql-tvKw+*`>8jr^
z?(8gnxBLCRGqcU#JEvQ|TCw=j_Wb*EYCfHOd1<LPXps0$<@32oED6Gb3Jkn4ptFy*
zW?u)L>L>sD=VJGM(8$T;e}8|c|M~H8=l6TnpwZnodp@6w+??inx6u0Cj^wzimrFs@
z7&q(x|1G{ATfQ`Yf8EX>kGfy?NgAbifC|Gu$Ls&NgSugc$;VQr$CjOZU-x}C@2t!x
zCnoOv^Xas4&W#NqM}RW4QRby3Tk`MMt(|!dbV3-YmHzSZ@$^eeJhN*-hkyJ8odUP;
zeD1Y1k#bcp7W&LG(LCJFe;yRHi~Fp!+GUD5I2doR?BS4IAShu|QINOm<ucGFhvxW>
zfAjzUoNxJ{ff-c$tlRqUob`Lq*k|@y)BJljpb}w%qVuM#tE*%Rj|fWIR+YH*N=-d$
ze&5CuRFci9dbQH>>y=>R`hS1k?EC!=q=3)%%LU$9nMXPVcYZph{rXzinuv|(tfNI;
zCx*vWs@DJiULU{x+q>QG)6UJYw0yJS@FbPndAoDF7I`f9n_F~%k$uf~nflBF4UCco
z2@c14BqyKN-*0pO@4NEP2blS5-kfJYu*;H}=>i9+eF$oL`dPhPQX1#?<+%Mn!{p<A
zvCoTVn`8#PH~(3FuQEOD{Jg!_ZZ)xTU#q&aCG+x|EtmZ?yOiGV{T_F1O=R%*sww=S
zR0!Hr*CncL_Tn`trSCPCO+Mat_SMzZ*DL?@n%|oN8m6_~_wU#1%~fAtfd;ibi(V{j
zUsn41+RyFvzqfDg`+WdB0zR#kTl`w|?cD8mgG7$9)yFc_n4~)}NHxmYRy|3#{~ZbH
z>dq~@mASUuss71Ccca8ZEprMEalWp3_uyc2@yn&tpS1}4ov8c$cKY*q)q0PQ_n!x)
z<7<WOGDRNS?i8K=^7ghlXk{j-mIF<gfV!Mw(K!=cyTz7Pe}8BB>4fs;+j+Z}rk<V#
zN;9912>U<zegFTzsQKAXPfZ0y&E81R-hs=0*190Qx!do8207E8&n-Wf+;2PW_xt_!
zvesoW&#!MNdU{Hx;z6UNRY^u%&Bvp=ZolS}v#~h&d-}?|1&4Vh?P@B%-AL}|kv7wr
zYgKyc_4@tucE8_e{rA_`-xnNqKbhqH>4G!=(+!9DPJ>1wK%H{)I|a_5X_+stufJFR
zf16=LqgLr}T?Vr|J(9*<!G4xYUtC=5esN9Y=0&BiuN|%X{Wd(N{BG&dE>Z2SMH*eX
z+iotic-SKRYTo9gqg{_~-~U&3ac%VWq;B198vA}6)fWq1=A+5RBM~4|aDcJ&_}!Ar
zzOMiO{q6RfYX#bgqQC8a-S0=BarliXCnqh^xVL}q`^x8Y!$B$5b+%b<SJ>Jp(cSO&
zRexM8|2Jc;q<fD<U`TlQ`p?O~-)`6MTBHG*!FY5;*k8x0{9VkJyt}(3OfmvKembpx
zeRl1g9fhu?rKKM~9Of5aKCde4;zH+kuqQq|JlqXR5x@W0{CLoObo#z8OBcoNE_3Y`
z)9re@{r*0Xhq^K^FS{yRe9={0)OVK2%IZG{nE6HAWeQy`?ydg5C~|X}>-TqeyOaAY
zm(4ItKBoTDpY=fd3N5bn8<-gwPCYcG@-X47|Llvh*X;6gnJ);M5chQTb6Mw<&;$S`
C^;3%g

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-5.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-5.png
new file mode 100644
index 0000000000000000000000000000000000000000..9de5d2626d347abe8816be4a8847e15c9a3b18fb
GIT binary patch
literal 23921
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_e2hBy8H|Bv5&ggoB}b*j21t-WX7
zyY<>_Dc4+4>$M>(r!9K5ZrV1fC|B>mSY6lrt)aTQu2UCv-P(QWR?_`)DVFQ+`|FD9
z`ig}*Qzu<{{j=hUW7@izKhIc7p0h5FEsi`Uq0GR*z);XI_ZlmRv7=nT0YqE0F)%SO
zFdQ&s5dd-f6dOQP0S_Y!0|P@tGKT_)E91<-$iTqxK!S+_#63=;)(H!*tceWXHrMdq
zORMsCbE>|*S=rIS@$=`;lgE#{+yDRbIo3WeCudF0?Q5r|YQO)r@n7b*H#e1UZ@aoO
zc=;B+qs~R|UvJ609I`DZGWGnt*loG5e?Ff-U8S|XeRaXZLw?g|E&1~27gK@Xu^;g=
z2V@g(Z@WEx{rdGy&CQ{!!*qS;*;uYU?JanEQ%dBt+nYqS!%l3=<&`qg=w0>cU8{K9
zh3fZvmtR`yy}JJYzpA%euTL@0zn8MzlP6+ZZuX@mo}SyJEeaN_zS}GRY|mb|OZVm7
z*4O{9t*Mz}obDI8E+%rZd;hhm+TnZTv^UnexU}fS?|ZY=x1wT4O-)V7+gn>zvgK?l
zHe|=&-k$Hj>F(Tb$K~r+xcAFxg|3=X^z4jgeSLjvYwOCu#csczO!l8-v;2$N%I~Fb
zZ*6^bVPW&R`S$Dc?(WhwGYk9r`nrGF?A<4~<z8JEYkl%-W}tAxm!sxuxfveloZciN
zEv=p0BP1lWCHXkt*_p=f+F@%h9P5?-`fm68Wu=|}CAh_O0y>3MP4e&U5y_wY<Kda>
z*TWwl?+^F!>2a4%?osobqhW7vzkcCD_kOvo+uPQ1iRrv3y}!5WYtXqlmZe``g}%MJ
zJA8Bc`LOr*_HNC&xk)8^tB!Z|_jgxU1TMa^JwJZ^>-@AsEu5QjqmN1SN}K!T@BMns
zcl*xRW;WhS3mltMdIF!Gni{&?Pd4@RG+*~VnTw~UYF}OIEnfTOqI=Z#yt}dMpO&e9
z-KQ6^!C}&u{r~^^^V@!zaC=wk>1mc>@m?*ht(mW{tvxkS**$7HlY*`!!*`z3n|g9@
z%bgBiAD3HGQ`6Jm-{0BY?cIDTXkFUbS#r-m+%3N^d3w{C1C7j=S7^P@xox&J>#EmP
zv(D$&_f!@q-`@7~@Avz*w`%@=y?$(yj<Bq3uFh#Af18gkUEgHo<nnTEn^k{%Qy9Ik
z__^O?)9kS1+uI^{7A-wqHZ67Lg9izdt;_Q!YlrI<KRVK>^1b%!tI+kw<F;f>+^BQ9
z<kgjvPfkxi-_q7LtEHty<ZA6|Hh#Grozq4SA3jX``|E4mZJoG1H?FJ<KK`{fCMIT8
z+~qG1I@RZW__c4D=;=*Ce~bAa+;bAwVOSNjbJM&1|LY`^w-i2hTc0bYAGfBBS6WL&
z#f6cPQ7dZ8ieKN}t~O3TSFz>q)9LY7w&g~<y0~a4C^#%!xKJy6-JGiL@7AskU%%_t
z(IZDrY|DLnclY&VdCj+BUylg;uPA$aYn`?A^>Tf$H`?<jOjuBUzc&2osj0yM0TVW*
zoLtn=!C{(x&BuGXp6|!kB|knSmcG9iD<~-V>HGKajEohF7BAkKd0B0H+19M9MZLk1
z`)YQsUiM_y(mN}PpPyT2&1x=Xo;L?%&bPO>tM8g^O?KcC*IOfHn&mO++WPqSTYaCM
znfdkA>h-U_yu2)BQINoO{?OjE)0?g=^%mcne?RVczx?$%mc>DP=TEt{IlZ5aPiBSB
zOrw{t*Y6Me`RVE2ZL7oA&lA&&skr<%_x`?E{k>l%X@#s<aN$A#D+`N;jZIAK?y{?m
z%<Oyej4MB-gszPWUAS-|7Y|R!!6w$w{dKix=U84|8|$@xy7c|)Cnu}#-t|f{IVSc^
zO-)VA^^l@uhqN;@7Fw0Q(y*|IXl!ik>gWjAUH10QKVFOKZ)@(={m#9*GT5D!OQhiM
z9rN5<A=%g0eYJ?cy)89z+U@gyzg{maN_GgUs*SB*<8S{r<bLh<xmj0NEq!xyv$lJm
zOxBeZ6Sw8we)e?^;}ZUogG>*Ooj-p*`R0K}X48TP4y^3#s{<Fiaq;qAJ#YVi&BMd(
z*$)r3Mr}^(-IR7#>*ag?U{JQmxg9oH%~wQFaN*|k^I6CHWPg1)%x_xpAtCkLoXAUa
zUvmF@vAF-#CLP~dCZ49**Fw(DGL3zG=<s1xPg(1-D_>q-4qX+ZS^DNiU}IyWRmFz|
zVQZt79_<!i?KjuT+}1B9X3naxwW|)d^RF&@dn@buy1C!p-d=v*{(lU&n9hYaH#cA1
zkm&4L-@YhnYZj<rdie0+y1bCiuS;Ayg;c-H|NqB5c$v?|4T*<i-k+YR>~2#3ug3P<
zjpS4FY<FMJ&3|6{_1i!7SNHbrKGq|-xZnO?gl+Y=kcmpJL0ir*cJF_+di}njP9fEh
zl|ibYl0w<7=faJR$yYa}o{nDiInD0p6Jb>ql@+nO%d{dlrEJQbZ2jD2bNcyfH#R1N
zN_tRK&ooNCl)wM)vX76CXaD>2^VWvM=1)&gKhL_qzrLPV)+(fxTRiObwY5`~-T7p#
zN<3a)Uw?f~<mM}@LbW}&m+y6PbJH?23oCwh=Hhw#|8HJJsh|9s9%RpMXlVHB%VmF2
zA)!StUSzbkv}FAM_xIPk-S12O|NXu?W@pi)C2OO%znU5z7uYLhdSykR^3zjO!3E^>
z__~#?+~QgP{`_1OzJ8v{N}riVUA?_uf9#z8q%5{-@~qd|6H_C9y;{BAB>$d`Y0iy+
z^ERJ*>i+*N*NxcVAZ?a&;r;&q>lQ3nFnjM-hD%OT_Zt}>ELgHDVQs|5LqC4}n9<O{
zQ2gUV;`Y+h({zoerOwQ{x@zX;^z*yc&bF!Cv{C1@&Hq22*QM6}`eL{(clP>yzfL{2
zSnfZ+?6;kon%c>A%BQF6f4{Z%RJ8b-CAXxK&&)JV@5#NrEa_;M-0L30XHQN}j+=ge
zMcm%1W7~3#Q%(qMf0})5jp4q1`_#(c-FbGXl{@cs-coI^M?c@**?HM#rqR)eX{pQn
z=f8`xPdOm~Dm3?2ZT<P}cK+Tn@vh!p(`~u4MYY3r==!hXzP2s*w$C)3$e!HWX_uGz
z%9%z^OXU*LNa!(4yS65B-MjdE-`=j}zBWP8xhFL;?Z$@0b*WEJPdB%-vrBt^Zmwoc
zYS41OxmF-&B_3)C$(<e|zNVR-f7a>g`qf+FH>Grb{P@xE?yl0}XgL{~9FW0!aeH2D
zJo`2FMo{rym9P8M%4J*I+h=!laBNSNum7`gqt5A&RUs$mSeKv6y}LF0IyApu*DGh|
zlQH=D`MEj2&4-5LyPnj&n_N{JTwUus%j9IlwA4R;{+ublU;BKU@BX^KJ-N4^z1@EQ
zTNHD{7I$%-2Xa#?+#iDy#p`QpMMXtbJ*5njT0T8F`S{wmyXE(%rbbFxm#x{9divS6
zcOQ?-ho_`0vHShTxIdYNg{4BrySs7uwA7Oli+yGqRmRTO4qrF>-Qxp|%u$<CI=RGj
zR*1({9L$Yf>NOQq^v|`a4BDK2exI_bde+57twm2yJ-x=8eW-;~D{|8kt?+d<r+>>@
z7A*l4rHssME0T}*X~pl`^XT#8uZOtxSNO~{I+-UeE4%j8RPF3@b1b9wR+V=3nb-ZP
z`1#|<i;c(Sigmj?J1=g{zP_i-aJMj@td)xAuJ`+XzdP{{l)1k8dEVVs`gMK%U+->l
z{cjP^pFe;8m9J&{{ZrPJdwV2}-KM3!eB5tec6X-_s0p^8@#dz~&r$jR{`|bU$dx<y
z_BP+&-{0?FTb1|x7pU=Z{O;7{^Qyd#&EWZ%!1y4}6%>#qk9TmL-ei(^h^6$+jf;!l
z-rAb|^!fAW7xQf|K0Q6X^vw;!xmKlKJBywMy}q{AwCYQSY3{8M-KZ@AcXySBZq2%C
zGP_$LdRtD`ogEvWou9w{#0d{qclXs*Utd+dSlBKiAu(f7ZO*+tk&{C9R+awz@uOnR
z`q<sumif$FbauA+YUg&o@-=1k_4TDME;zp5|9@ZE+gnTT?k>-Mer~RmY1Wn8x7Tk^
zK9`i7464(XW&9RYc3a^!RqNOL`v29J1vZtu40?NOt2eKdNx|zySJuT^e|>q`eX^SG
zCF%S<55JcBo||V|ZBqEirJw)D`n}(xR(+c+1u8?IoSgjivcLVyD=UNZ9vlDp`}gjx
zZTa`(-tYZBPp;wtBd9%Nnsp`M>8Yu<yUtqH?)~%idi<}q+wV^?&ySm`7i;Bu`_G5N
z{8F}6Tdu8(UA@@7f0ymH8=G`wEealNYr6L~CcZQF=(_L)4ve0cRt7K6+o{G-F3!lZ
zgI%?*psT<C`YhAzD=UN5OW)oKZRHaE^dt9Cr?7g-*H>3l*qfuLE&crbymt7ym{kD_
zn?M!F!DjZ?-TM13OwkNZ=?Mf?1-G)-uk@X5R{r_Qo>`W~%i4IQm#qw5zDv$gMnGVJ
zm~K?Yj}H&IczJ!xejjQ4cD=q~U)-ZlmzVqBzj;Wt^yMYj<YPS-e|&trwfcJ=D+|kx
zyPi8l3kwUi0v0sr#qV3A8@=tt%jNUKa&p!vDJcbsEYJ#FwM0xe>IKLR&*#_Adt=eJ
zG5PqZO*;Jrv$ezZO!MwUfGUbTm7lNdsr(!=|L_9G<~vLssgdg#Ch5o9<=)<=dy?_d
z%B#D}^LyoNqkevV9{%^&S5YysXIvYE)&0IyOgOY6aB;{I4?*8K7J-M`crRaA==}8c
z>(y<%(pg731lN5u_KVl=v|pT<n5da$pMFkeYtGFeQ1hXyD`=vU>l9UQv76i0zTfxT
zPdj|wm8IU(^Hwj5-n&odbWv~V&bXwGopuUL9`PIs2W)i=3<9=hU%wU}U%PZu>giR<
z$NPRg?zg|QtNF=^iO$C)WbNy0j{dHFv9SHi)9LYAii(cX=6P2ZxpteRosj@FpB64$
zxNf<ls-5Pk+c9G0pAPTYzkfd)kHi8-X0{ig@?&SwQZ?UMOEiO*Wt^X98?`aXb<=J2
zvR2EQ9~-WJ?Yvw2&Tab4`v1T0uL@Z?NzG@*0^{^^D^gES(|lz%O(wZVMKgGr&#H)x
zi}wBdm3_DV|KC^F*3N!)ZEf}ClR~PQCnhM)GS8p)>+9>~X=i6u<`)0?QFwiiQtquS
zAAcoUZLE&ZV)p2jGMzN{%Z8|}Sy9_^W=_+KU8O#+LMin3zKa`^kAplhRWCMbb@=)+
zUM_!=(pMq<xjLtV&d;;Gx;fon*1j%gb=cZVUtV4|Eq><n_uudLpfn#7yDO+_?;Xxg
z`5VDfXX0wVhW`BhJNxmmUah!2J8ti4X6Ik_!!!G&=jqqn4!06`I2fjCg?h#AD!KUY
z?{CwhCm!2Nr)q_QvcZ<p*VjVcUq64|f2vk!P)^Pow|+U@<eu9u<(=|NzQ4WweB;|+
zUtb6RQCWWF&oN^i9iQCW+pa!3+8w$jBXDih)>q47O@)rTu8G=u>UI0Q)YH>WZqk{m
z8*S$Lby?VSz1WgBHw-}ynBwQ>%4_~tets7E|KH!ze}8_8lqYHhE$P@*`g$3tTsbqt
zFz&X`EECV^`te~qi=JNDS)9H;erNIXYuoSFt+uWHcIRa9C1HOXMSFYu+K)%Y&1+R&
zpG|YRzcqXMy4c;zR;<wI|FE(Cf8E<#TeWY#Eq;D(ZQ9vcnZLfgTot=}TiLriE92|`
zUR`|m?7HdJip9^){QAEC|5|1Dz8A~q*X_#uJ=ePYRU^CH2M+mT61D&TevjL}G1oe@
zT>jFpUrY~dm^c_bFKMsev&d(rQRa^i5A%wvzr4E}eN3YC<)x!vXP<ce7gP>?JT4!5
ze|_X;H*x*AFB#K++&=r-{y^xOh>Ndd#P|RC<h?2_g`baan#%gmoig@ycV4&eEq;FP
z<)5FQKYjh`ThvgsXu}2rS65d}J-u_v3;zCi+&{}KcUDtV)0Y>E`<Lx_b|vHTvfgLs
z=B}>%{A}m5*E=p(eR;9art(w9r6r!Xb{401ZId)eXefGeVj-wt`t$R%-0S20^7^MY
zeR<d}pY`U(#<=~v%HFQZzP>K=&ySDgUuw8SwU*qt5fQtq#FJOr%%`Ysb}P5|s=B|w
zPQKIr`0=E9or7KdzdgH3UOp;hfB)&}>A2&^R8&-69O)FE^zVP^gjuhj`n|lld3lfF
zt6N)FpPOg<dfPdP$7SkDHa0Q0x95M~Vg2z|_IlNy-klE~B&^>b;^7q)AI~tyU0jD@
z(!aV@XD|EPuf4d~J^RLn#H!C{%~k)}GL+odkofBQ`uSa=+MvQyOG(M;`T6<frSYrc
z_U;1ZJ<m(g`Foe9o}RX{>gy{|FXh^r$gj8a_h&vl)XK%jcP-f8_Nf)9Z56sE!q9iN
zneXp!Z!bIZ+b-E#{XOg6p31CiYi6dMnK5zEE$=BB3pZ>q@SSfLyKmn<t&kNHbWUG-
z+;6{bvbz5&pP5FW!3wYGdTW_jxn8`vxp|g-{k}dK%SCZ}t2Di*>6qIdbC<7Ol67^}
z%KZELem$F=AF{8e5<Fm#c6L&Kf4`dFoEeM$-sw7Uz`->0(vx*>e*a3|^W~EFtGm0m
zv++ng_<AzU{M1zK>A$|eU%#*Rw^z~p;-sISp8ooL-u~-@X8tN!jX5t)s?Wdj;9#?9
z;UgDb8H)>7b>I8FxW0b=y12co8kyNwIkj@F3R>EAYP$aVHIbWNotUT`wX<mHw*33+
zx<s|rcF(t|{ItS%w%IJh<TfQ`<<RwUwsS3u-Mpvi1STXbP*PUD`%dl1@#Cwbwq}7k
z)~BXwFL!F?dim&RH>k0-E%)}aWxlglxpWFm3M$`wM{}-q`L$J{tHA>mN4rFWFE8^I
z6%tz1%+8;6b5m;7r<3ZY2?rQF>;E%7nwdVY(DuN=^XL8T|9oiPmUnlRn(wR^tJm-Q
zbfbQ*RjEnxF&@**OD?IWr%jzdfBwJE^Z&1?`ufWAT8Z}c@T71j2FU;^n_uD%QX6$n
z|M>AkW#_*W6P4Axr|GCgZ_9c1;^N}G*L6Q0vR~d+nk_6QmiFiGU*C+36`H}zdVapI
z|DSD^cjrac_LP%CmsbX>e_mhz_w<u9GcTu{optq2{r|tuc0QkHT>bssSBq!={{Hrz
zZI<g(P_W_T9LvosBQ`FYX<fb!)Un@~dz(kf<iy(Av$IV1&O6-3EA4Z4SE=v0IhMWs
z{r%bdS}rg5pM5>P{w`=p<4*bgS~UfQ15eJ+zkg*_=;<>v43$II-#^&Q?z=tju1`h9
zj*s8Jn=2|RF01_fEbVX`Z`|$M+j2p@%vH%M^Wwdp9slv|c7AW}?PbBs{qjyvp3Q#b
z`0?YfYXpx;6n}i=3i4x3ZS7h8{eK=s<wZ`@jM%W?dahpVt`shDy_}reW_EUV>na^?
zZO_loxo!4-@ArGY=amcjI(8O6zqjS>+8f()XM=L7X6ULZCnqYmgWLjY+4D-9nFy=<
zmCU}ctfzPGb+(kee12TzQ_<ix5r)DN5*b`#IvG`8UL^X>vw8W^c;<u&37}zs%Nr7%
zgI5G7f>by;JNrI8HTCR`jmf@FPED(Gv(`<2@{G~*RV^<+zj-US__trXeCAqRy|O0q
zGAIgI*w|(rYUQ4NT(0^|&b>W1*WP_{a<cDCqg0=3Ya)F;JUTl2`powK`;|TEtBh^c
zl`Z-A?>#v?`}&Vxzoc$&i!J`5^7WV0<Xx{p<CCB+Q01qT_0P++ugft!k2v;08#Hjs
za1K<>F)%Q|hiV;PFf^1T9_<p1+E??__x95>GlTb5eckn&m672c*Rci$hD)uD%<Neg
z7C4&chOY=%IQ!gQMh1`l(DC2H66mAD4!gD$K6V2Y(kd!0+j3Xu+}xBIJ1IFSIXU(A
zwy<?EGauz5261;s+<Y6kF{w4@w%^5y{_3+&PEJm}z0L0Lm&;r9SQ*|)F>y4MyuP!u
zIP1oSg=RT77HrGC4eE&d+yCA2xRgi6B4AtY>20}3j~r3CnfLV6)OBU8+~WJ*K8~8E
zdU})1wA<U(-rAbIyvo`W)N(yBQ8{$68*gh%%ZdB<<9~jB9zI#k*ChMen%nCvmrh#!
zu}r0H_Urwi;i*4AKd*M{m3no1`}%D;H;az<i3<xW-`=*h{QW)aZRdA?+{NHfbtt)l
zaY^*+YiloqS|=$d1or-T)SVgI_vg<alk96cdw;*%4I11y{tMLJJb&Ild|ixZ^Q(Vi
zVq(kIMsL@0?~{>xUHAK~xoO^=h{D1`E`I*-ZZTaE8JRVpa`<2qE2ubKv}ln@@iU+G
zx9@9$hIl~b#GReR_qQguw72g*^a$F;$-TA36Er09;o)J>C~)nckH=3<Qazn3`#g_T
zli`QDasz|Mc0L&kh0~j+=*REdqUSm-6*ROw%es6WsAFmS`HXSiYybInYj18&UtRe4
z*eu)XGO19_pTB;ss`&Uw?sUJ5<)RfUG-NG{T=e(<+4Opy-=fRQ{a45CE{ocdF)?a;
z-dfjgvAbKPn3<UNT&qxTZEw#$(7-5ny8hqKblZPF9?!BWUFA2|YAGwX*qv*I6%$k#
zmdM3!U|3?^`B)+;DJi9=u(WvR#{54I54T_4TV3wz;sT1Hg$oyU_4Qp_<~!TwTV?J2
zU#{I^E5p`CotkO9yr!lmC<fXR2My^|ulfDuvVZBzOQ1f&(bwC|U*E3ZoELii{ozeI
zy7Bw&teqYBsG@7hv4%Z=KApCz`LW^Fw%paA!b!Krqu&3WdG<9OQN5T5?`b+0w`5+v
zbFCdRgRraMVH0S$w275ltN7U&t>9%n&(6+P_uN(Wbrl=G+?q#6yR{7r0$jVruKs?%
z|9zp{$zDdw(pOXB>VBqzT9T2QQUcG-u@se*Tv_+`m!_Sa-OcOjs-P-U)q9$Tii%6O
znC_+N@pUh^)xEp3v+B*p;~|S&I8)Eg3XR;H7W(tkQ`59F68#${{-~2m7Lk*CxAphk
zWxlhotPa<Ab#v2#j6;H2vj2YH{|_27J$Y?c!a*j`a2H5_K){5kZ8<Att;;I5+}>Ba
zJFe=bYUqjpN6@Gz2S-3f#g1KNZ&xw1^Htpa{^aE3(5+dat!-^u1_lAF++rbre|-hD
zr2DtA^T}M;eBN%gl4}=e6nSUy^RUaye77bZZcBO1-ms*AoyB3-WaD(dqsNYAot~x(
zYUa-}%UyNigokI*UrBNC<*Pzhzxwd-FsO|Q%8j+ZzrFl?-u`+ME4NAYw;a=)8y9l-
zPfG=hEpqL?vLVqKlpt5W+Wr3V<Hde+tzLe;9)EqA@9aBlNBX7B{XipicXyRezVoka
z_p2$I!EPHjZtUvqEq$G&0vgx!DcapFuK#NDdArG}kyT%>hEL9!ZdsfL>RaF4U49)j
zY`85qdiyP5At4b_(WSx5{Z>Y9PTN)UbJH^4*~>s3(2tLfR{j6`eQVv{D$|S$4*&lB
z`}ODZc~CE-wXJPc>gj3bw)=PNu(-M=GWhqmx51!x_}Xam*xhBm_5Xe@ck7i}nm(`6
zjg?!>=VJEMITI!bfcnb$dp@>-@|tPpr6XI{#qY2C^zmchQm?5ZVq(jT)6Zqx+?4w2
z>gwsBG7dEMeCyb;V_E0sSpNF?eE!wd;rgIbc~VThSN;E(GjpxOK^^>%kSU->eXq3n
ztGVU(E-rHI{_?orzN&=T_!zjmd#IKB>YmEttE)o2qqpT;6pyc2`1JJj?60q`YK5(t
zvHI_uo10C`-b8@pLsy4|F7uiB1=LFX^W!6^<T1;+@t{n6WBvbsQdT7^K*RLc)<%Pd
zs;x?1Ot`i_etqQTw3VT&!`5w^ZI&Cfx9V%juP>Rle?A-rW!aC9kDHdiiwRvF=3D&y
zT<G6lU-N(4G8Xh3GEDFTjgQ^fmaFDJ@6E<__(l+aZvwY%X5{btsTNv#<k&H(+uP2z
za0;K9XIl-L*QxyVa{1l9%*bhyMkyUTi=K9E)H&_q;<DsNOpoEQO*+A=!*tglkKLGb
z)c3YpS9dpP5LA6$#i6Zle!t&uJ}q_TZ_p&z^If&S%aS9fadL1NTwfPktjo{OZ@w*e
z_A=ku;4#BD)*2coLe@lFoMT&kZEN23b+Kx}%Y2sQ+}xCRJYrwX&W$>!d1Ndu<W@dC
zHMKYQHfTUnu5_+N;h~saB`=qKRexu_^1AxPOG~|bQzO-EZ0_X#To=20&$jnBHZI<n
zdwWgv_H((FK0ZAgb8o-7x%v3(vg+^eN~>jsYd@V-KekEd^R?*wox1*iEVt&~22Dxj
zy}nobJvKRV+REtd>u!H)X6N6vSG{wZPGnL|O^wg?yt{X%v9q(!W@6=<(JiiDl~era
z2<P?t>tl8%b%|&uF)=fr{eHjx{k3-&7CNix=$rwy#$In^RIn^L$TZ=hj75P1sO5XG
zi4`>Xw`1+<kd>1_<>X{_|0>z;i)$i{U0q%8e%i<_rUPn>X5QM8xlYgV@v+{?>({TJ
zSMjJb`riAyB`+>0dImKzvF6<}+jtgKK|MOc+5dI1TkoX#^XI?*opp7UrjnA=a{u|)
zqVxAI&AGX0=QURsmlau8SN-~WJwD$mEa~zx->BVXYfnwlT)eOLchwqxF0P<uJ~Q*8
z>b+W9TRkWB$yz_#W}~EZDEs$3+v-yii;s4TFMnmh$|drl>bbU>n%m9I>HbCarLV38
zHnZ{GnFgApa_thixGDAYmi+s6*FV+#{IqkgdgrTaYggC*eH|ay|M2<q=Udk;SfFtI
zzPL`rg4o?<E8Y9$R)wvd6}@{;<>yuT_xFJ+jcIzZufEDKC}^?>Fi4(zc6PR^=hfBW
z->upfm%Y7ZbZp11*!51WT-$5^=*8{=cZlq2cb%JSy?mx|`l`UiZl@-zpU-`7ZF_pA
z@$y5558F<Aetv%Zq&?>@3W<p=(+*$v;={wkC*M`Sy|s1HlB%z-?$#~Tobb>0QY>sO
zfJ8^$AA!10PdxX2x#V5-;UGI`1mXIQzE4k2pWd`a<#>q7(^FHmtKRSZ9<sNpl$D+R
z^!4lE+j37IKklA>ex7ep{r{im>usjp-1e4>$^2iA|4bv-z`#H*US3caWA(fEx}QfM
zOT4|kJv=664rnCt>-+oh-QxP!Zf;Ju?c1JqR?4%!ycaa-ef;{a($^_H7q6|24*oie
zfg#y}A;lv7+?<I^ROa_h-Err(!u>s!pYMJ9C~cm%2Gslh^W!6^fc^LD^?DWd`ODcm
zpV$1&KRbES4Nzv{;^Qleo_=L<Wo_;Mf9s$8+AVLs&fCMo<J*qq{`04$My|6KF28-S
znO*g-t(?lmna1hhZsg6)?xNaZA;<e<MMXqZ;^X7z+SNuacI&;g)O&hR>71~&QJL@V
z>;w&-%rebhwx{y*sr&ciCz%vIIid1>ddLjl8hzpQjGmybrdz+<+CM)(@0Ob)AR(dQ
zIm@DO(Q%9Afs5T%dQ4OT@jyeA3!U3fUB4dAD{XeALr@ts-sf3#m(e?~PU7^Yl7D}G
zPT3>E@W6?Ial%8DIsv~|+h29Y_T~LKP_z75j>nrk(~=hfZ*On+|9-dpzAyWuTibM#
zd#+nLt^03KX&$m7!13R|f1nw+e?K1cPt^!iI=Rhzn$AR(&~-64FaFd8EeA;US@quF
z4yf+&{8jBY$>s5}-r~R8{vSK|EBpF7&}4g1X-}`TdDgo-J3+HapkaXR>iv?*COJ1Y
zsBE__deU+IX{Y_?PW#)(`(!WAFiZ~FRg$?jZg12~<Mgs@d(dE7ZN#*t^K7eErJtW?
zRrhB{*xIP2FE208es*T&ufN~#g9Z>zo<HwzS@dK=YUHm^r}e*{Q0`yy>JF^*09C}3
zwq#w^irrmyHu>+S)YB=E)2{0|mU}%vH#au6XkN{yle6n0&QH~zuJXQI@!I<M`Kyv|
zZv)LlFWXV;;LvbuYqolF&%KJry(+h3_f!PF-}AXo=k%puf7_|6X61!1^_r@pc{N!l
z@94$F?x1=ra@x{wZ*T9O_WsV!;AyEVD?dMzyR8$y@6PLeLc1BNs_lj3XWrgXnB0F{
z?*EU+{U`0hDvoxE%AE#PnW3x0Jb(Saeqdef?vl5+OkG`FD_i>i{{EhQeO;`lob#k2
ztOH}Am+rssG<4GrU*}UM&oChhR0#M*M9f&UXpxAx`0|O$?z`6h{&-y8H20PXD=X{E
zi|+D!vrR?xVj@79XpUv^mBsG;v$yHT@7t4e``VS2!FTN{=GjyR>F@iIwCbH13p@Mr
z71me3-m7@b`}E{w_u%DzR~s0aZR`x@Ta|iUym;}}&f?{Z7A?B6%y)Lk+y7-#b)&;V
zSA|@hrW<Wi@*<%BtGfR@pVIH@`E|cus=K<nzC6+?T=it4J807J`mPTj3M7+l4jp@T
zb~Y$6u74kxWNw<@U+gENU;OxApPcQg^!c@BH?5}YMn5z3d^E!_c}wwgzpLwFZ-3p;
za3uMT#If`9?bqwY?y9&`xVz@(rm*#KZwvRdw6KIvUwuU3@|MhCQOzJ1&>V=EUd)TF
z=eA~FfA#2S_sMzO40m44d*4+0@DS_Xuh*iZw&%^gwl;cs@N&P*OG`Yf{(L-cdn@nu
zHsABM-{*jaEK*NR@$9$x)N!x!x$M((b8jzx+rlYql5~XQ?Y+IxtXv`i=jYkx|B~lp
z@b|Q}eYv>bE@*4kRnStC+RtarL33B%-rZdtxj7BAfCw}|Z?*r>+%?KOE$#C_^B<sL
z@Ze=Wfhj3V<SL&C&b6%$i?9E?HS5ZXhouK<f?i!&xmeOTZH4D#HLd7vYySNC^93|>
zeRXxXf6?rkpPw>MPEyUfw4@W%_SXzvwxaIuFD@>wOZWCxZ%sJJ1S)~PzPkF^N^-6+
zXo@ImYu3xB)8ns!T3)kEvrkDZw*UVp_<r5*wcB!UPkU79AhbKkv%Y?ZUEQA@W_fp3
z^h%qb+N1-T6$j1S-`!UE=i~9O-)`rx4qqP!8W9JL_`SWo9W;FnYGi$RdD*rvc)6eK
z-oM{&zq+$?^P<IzK{W!Xsd#sHd3Y<AXvo&A(6jSwqe1Pvtyxz~o}3WWjoA_K{eJ!a
z><|0Qd!@~<E$+8l<t|?v0_wv&J3D)8#ziGiu;&&XCp0z&nuOYU>o}p|v0b}f{QUJR
z>)V@~tK#?X1BH6%${^Q?6DOXUW4Za;+uO^(zP_IQ{oP$qyON2CDd@{Sh6a^qjGi@V
zbrlsmR>tlwn{@u={r&a(PtLX8t{JvwM&<jx-_J}?boL1dm;f5l^7Qa1$o_rNU0(9^
zCZE+|YtQ`n_}KS&pX^?{_p%P3^32MQ;T~pMc`v+Z-F)^ZX+qB#HDh*cIKJ!jbp6@;
zYJbmSV&#&kudfFU^%&>eFerX{N;LWQww1BFw_SgH&w~HN#l`NRfm7dmdn$X^uV240
z_qOSBx0skY8*^`imilDZ*8lxFUDC2>$;!CByEysy%>MoRrxw4jW?A9mW1yLA&w1e$
z6+5mM8y%Z5%M>)SB)|T3Qc_Y+e}DgN8_Cnt^+Byr$7Z(5E%ue4mQ=o6I{nPw@AvbW
zn3;Xo#q9K%X_R_q_4<8Tj~+jsyypF}+W7xdEsN78+t=3xFLvYo{HR-h*8I9(nkV0G
z&%2v7%PcqR)030Qo6^o^otmznZ};=b<dpd96P4X(vCCB)U}0gAxV`P}vj$Mt_2s?2
zyE{8N3>q67mt|aB^lWN)oZ-ihALHULzpnQa*NI426|yo3WKhx5Q>jtgax%B&-+x#5
z=f{tV&!@E4&qzAjHS@p$hu{qfj+Ym^^A~@5;@SUQO;PdSp1<F2FH1b!wk%+wlbV6S
z1<*REQ&Y8PZ%jU3^`}0q$MATctnuGpUyYY~O*M+#lwx>uQ>yXNZgF$n=xrv!%l%Bl
z*T?OB`J0L1`sSXUz44s?m_g(0S5^jtR>d6al@49##JaxR0W?zrT3=KD=VSY8O<nKl
zdZ8g9Q;zk?u0A){+WXgT{?bM!){v!MqGxBDpWpg7x!)Ev;+T1VU#+K|CuoJ{kLA0c
zA8+{a^QWeX$(Lns)6UOZ>((o^(^hGd-&`wDUpu<I6*OC??msUC)ZpIs{@&i*=jPkL
zzqnkSfq`Mi^gEv!RaE)pY*s9G?_X8(^OM|bt*|vOu9aJVeE;;+)Z*;$bupGVx6NHu
zcMr6<(w>)5g;nUe$Op5Rk^5?XmVA2Rd0i#Colh1tKz{r{iM_o&D?9scwf&%_nD1O!
zCWv^{q@+E1v-P@n%_sMy**|_%q@J2`@^u{(6Vs&Hch(FH3?KZ<&)c_|t1>Y&tDbyq
z{6cts{k$7$1_lAs_2a+on%^z1zw1^dX#Pz%ZcoI+hYwF~V`gA*xYg0$4{rF?{YYFN
zZ1~_Ahl1vW8(+0HYG3=xCu_B2!2*S!KY#AL6}Pu4^mxB~`R|23bDn7Ke7;XVZcl`)
zRmqOSSD6_Y9{9~RO6|I}J%9eS)D#bv2_h%v+wXUBa@vx3n61C`^|iIZDJe@{|2}cT
zLoyj8c6ELH{jD{Be|_Cm_I6hEZE4kW8P=(%M5gLQemXZ7w4n4|$J*%atDM{U)}7Dw
zux0Y#a&>oqec9h0w2te}Gsd5v&)Z*J?k^v{`_|TMZ4C_%`MMtqqZxjFILtp))mzN=
z(+OoyIpvMFLr+dp4c(S=b9advD3W4JrtdFh5%2`nSAO&D)-tp6c}&{(=aV<6kv8ed
z=5&A1Dx<%@zk}8Qg=|jq{rc*v_w#deFMoJ=7&P^urKWal>-vTUhQ0rOy{`IpGyUqS
zP;F4>7c{%D%x~^0^ZPZymc`F}x`RPuu9sS?>(oj-yE-~9+}m5dcirv1)!VtmbTnSR
zkIp-9|9=mtt>rV*2s9)oWmmJq$;ruP+iZixCbu4mg?D$CuXbo;dUbJed)1d06LVxi
z-R+%4PeF_S-Zd~VFf4JdiQ8R!hw<WlMP*g5X*w%gxy6^QcstqOZl(JCnonh?Kq=>6
z;S6?=OQ^AI_wnp&tOqV%TN{0O7YoCVWKd(NiIsa<sU$-~NfW~)zS0*L6xVt)G+3)C
zC~W@sBUxLKg+ZZ{VUpioy_Jbk;*1RC2f||a+;BYJFR$Lfz@Q@NaA_rnXX@o$9H527
zeaQk=pooVLPt$%8GRRso*DsH11r=h3`!Zu07#_^ee|>FjW-JrK9l<}<WxqKT7#eoJ
zn4l63UQg%5!0?iVk%gf^eD1Uo-%BE%s+V_&G3*fDH|<MSl=#Gjf({G}d>Wc7bHFKt
zA$CKac=H8D1_lO#%g|SDNIuTDHS@9?sC76^Co*JHiYF*vcJ=p{XK&BFZFY5ieEiK#
zslf#W8|3Q$6oS@C^sWMx^_TeN4$pS_{rx?ttu#eDT<`0Pi_VUYj-Zv5an)~4LF4Mh
z&(2I#k+mprxVkz#d|k{=P+NPhb-7>u{=eJm{(cQ#8@=6c-@ZLhK*dV=$4rY>yT4z8
zLG8-yYiln4{eEBH6Vx;V%}4(K`@Y_)_*oBh_F3D`E-rdoPGCgD43(8mtz2DQU6+=4
zPQJ3U`1uwaUIqpR1>cLT+O6m2TC00<@$!~N&oj@DySZ(x&rBoFNw8|^P`e6f)#=f0
z@#|-18qd|1U|?YIXy;JS1QlA6$)JTgf4^MzzqP-9KWO!8zuhkn(Bkccgaybo)a~#!
z5rMPK^ZlAnF)}bTd}-E;(ERe@F#l`N!0YV%eJl0%{|TCu5;+YtuFWfD;xP#_%CoQL
zr_HwW)Ai^3&9hnA(!%od=TFOU3kC*;34H<%L5emuF`#iu(5!}t$P!j=v5XH74xXBA
zzJ6Ef>t|I`)AsM*e|#GwBjcncKYmnz_Yb^_WSJl`%dU3UysB54Z*OcoT-v@EG&o!J
zbyZx=N7t>nx5FA68z(LCo~~D!Q~&Xit7p+xP#OVOjK4k{<`3PL6WRYR)OVK2#V02x
zZ>{{CcKz~3q1{Qb?=LKL=HlY=dU&^Aa8lZx4Qt;1uVrLlI3RiX-}~29zb`MEP%pyd
z!3CP(aCCH(J1s0El+tr?s&@Dk`}#W2y3WIGymD_rJ(m+FPKd~@?O*b3d$<7u14G{A
z?ePrtYAc<ku6#OwFnB}Iii(eqZtbbuT=wS1!)-OMuB-$N^uD~bRMqq1#fzYkRX!Pu
z2U(j-UIzXB`FwuX)m2j$n=&&nFudd~cL;g`+IO(XwL4^Ol&S6SH=9B8^`P}Wpmn(3
z)Ac}sr?RsC|G!zL+0(MFtyvkjx9a7coyDM9L$2n7<Iy8Wmb~=@6`z?s)(V=SVIWW^
z|LN)J*W2amR@~cL4QgqFRuX(Y$S%L**4^^^wNV?BTD!z_L2DX7%QiqOk@x+4COxl?
zm4Tt5TCUt7XkpFIPqXan|M}jYsuLN+Ev{FxKnavSlOOVdifqJ8;%HG#&Al-rwQl*b
ztdw#4qgz|Eqjs0A<&&{k02+ZUdV1>9*RvCrgBmk;f{pITPRPBzZKX@6(5m3&eN|sy
zExolhdv(UeMYlGkb}Jvhza?|>ER)Pd4<00>o}A>m)NAUc>i2t}2PXgh^%c}bW@Tr8
z{qeZ`^^cE_%dX@Hm6_*_Vi;atTRU6IBx6DFa=(`k4mN{2q+KGKi<Zx;dbLje_w4+A
zfm5|YOaA;Q<draRc)#!WIw|wKHGhA9-+c=-bbfVp`1N(MyFvBC-VcYkqc$WozPh@4
zxpw%vJ71;1#j4KTZ_!o1UM~OoY<9kuhQ^89pY!Ygt$cX6U0XrHVbT=q@;uZ0dolX^
z|9pyF`~1$%;#W5|E(Td~-u}PM$+Bj4{;-;wJ==0_g4RHJ2DNgDg66M0C#$V2etxce
zs~;#!+Inv<cK{Xbi(I?2zPz{ynyAdKJUh!2)JO)c*}AncxgE67wftVCyJ_~dJ*&Ug
ze7l)$RrO^B8^4^6=dai6_owuH%rFN{%w=6UA!?_x658)cJ2$5?JR8)AytKPS+5yyB
z1}z>+KHhhA|Np=Fx=~v^CVe@`F0Y}Z<5T+jTIk0|M?uq1pkb=V$9i|K{;CtZE9B<p
z^y~X-e}h)XYiD0u1DYTQ_1L_p>v{gNHj%Zh3VC{Z`u7|Al8$!W+Ee*CcC8>Na^7Fc
zWth06UA`{D{{NrNph?TJx3^wSbeFpb+DVXlO62JA<F7wFJPexTe?Gr{-Gm7fc1NB5
z_V)JF2@@88R_Hi3v(2)t-Zro1lP73r(W@&fC#$@?u+VwZlA52NDs$%R$J>DxN^^2@
z!o%@8qsye4nwl?niqF67xBnLq5itW)!h)s|#r0wWGBQ@w)YQnVeEjF<=dS*K(1t0u
zKADxE<#bn81cDZOE%TqhZmxB?mYrSPq$ls+zu#E<XvWkdW}x=cUX8o#6HZUpe|=`A
zF&8K2#Ty%ww^n`4%Du6{5i|_5qww*bzQa4DK^-{H+*?};qwlSYwU$iYl6F=qeD)E&
z$m_c+J}$al2ik^L9k`2Ep`A}QsF{s-ie+&cD=RA~SAhB<O3KPxla6wM79vzV?llK(
zl3N?I^V7QPpiu(Ppm{cxcc!(swRuhQn``y-Rn^oRqOYq!CItjc`19vaP{9_#Nwe;J
zFnv2Mo1KB-z}gvV=g+4oU)r*$zNtjo0Tc;4c39}f?h2W0o*$NyvSiWX#b2+-*LzL^
zEe8N)PS43|Sr-;GMs3Y14S%f}zHZKv{m*~yxOWgVk}vD>>G}Ef6DA1c-q>(3`FH8-
zYnnzzMy>9zm0zBg-goO>)=N-(N;UWC&zWodXN7(7pOD9V;?z{_uXl>iuXO8`(u&=+
z1vD%#tnT;X`~CXzt(-hOR}M5XZ!LWt7CEgn{B`ElRa1KmXBi|m-TqYg_!wyD+BECR
z1Ql0zchLA*o@46EOG`m3$=+9afXb9hyGyJE6Zh5p+*0;73N&9k3B-t;wscSB=c+Bb
z5gQhyotaS>{<^cLCuF(bT$92_E}#XQZoN{V-5y_#ipQ_0|Nn2@F3?)F$jxb>gaDe(
z1<n3EJly{JAiI2skIxyT^bDG`ytO5Bap>wW&Gd6~Zf(h&3@XNczuT>UHtW}q$Nixz
z0u(`Oia`^o3!Pd`vaV=+eR1*d)o1&Dzq{Nes{Q59=ku%M_t%}8qB&X0G;7Jj!|lrp
z{;-1v0M4gME|*g-<t}@FZ|%`;@z;-zc7qn?g4XR`Q@tBH+bs9j{*7wEDqH<u7co5G
z`{5JB?kTN0)%S4}!vnt`zwdADl{R0M6ZtQ8x9H1nd>tyTE-s)|)qbyyKuwD~iZ9E+
zeYA#pIdH3uKm)+1jYHv>1ZYtT$Pq=)&*{p`%lGTY-!J*=k_a-;>-pyf70_B6(3r2Q
zn;WRRe`>0Bc+_-IY4boVrGvq!@>2>Z>YkmMnHdY(THA1Yg5s`(qsNc0&bzxSGZxgE
zZ@4{0k;!AORq2+xzrVKVf!b6Da!&~`K56E+yKrl3HmKNrb)-``GnNmObD}}2JB3uY
zWM9|Y`|H(eE?(ZyX*!WpY^%$*ua~hbT2eX_<hVQ~XC9~izP@Rxkx15@SmHVP(k_tm
z7|I>mUNo_SD(m@*vG*8%e!1+g>e+AmZHCV2qS|`ne*1qv?&@%ZvVE@CbVe05HMeQ0
zD}861f#NMGDJgGPZ)zlXhpoa~@9B&w-{0Mxw8Uqo(au^>y`+%rJ)Ln$z(S{!br5b6
zIOGY0IBbjVrKiaidqIPGpp^}=yUSi)Ss83}Y{%N|I^M!+J|2r-fjqdxrHw<OTU<Y^
zTTHj);UQMgM%tZ4Pd{ZOM}|p-fC5&*)X0V5<>lr5pPrpv4O$@-vN8w}h{qb<+}P-B
zTm4O?24tLMOdE&7(Js-;JBy!R+QkDB+OFx$GQs>_g|mFkhsH;b9$nfc0v1+u?qQ7F
zRkG5_$qCeFb9HrH>CnjZ>Ep-3?BvL4ZvAp|-9$lo)1#9|(BWS7d)w>xpP!%qek(7y
zmF4l@$c15N+1se7=^)b{@SPAy2Jc(`W1P}qt<VWd{Gbh1=jYi@TH@5owbHSft*fKM
z<MAnw@+B^9oC>wSzFd59ak1^L<eS^pKA%_ZcetJ3e=$Tpr0qqMY0?pnUKz`vv$M^w
z&oa#ht#AO1@n>IK6WA@LYf|*YqgTe#XzgiGIw%m9e8hKRN8#fuOFV_o&au3l`xCUL
z_T}Z}pzH_A&{ubtzc*P0S}o_`1#)3wVPVyehwYPN{(m^kZ|tcE>Nhc_bT9}>Nv)a>
z8oT{!|M$yeCnqPFHK1npfwd<D7?-4;o+f2qx2KIyb``g{-i~SUI|>{RxA9*7@$vE1
zU8S#0*1*g+R9L_N-!4#V;oslipw(EX=G*UA0kvy(6+P_&Z9Q~sW?Nb~6%-hGYR)VZ
z&dfB<etBsrX!*`<8-=g0uZJIQ<Gs40FgbGC)MKHbc-S$MN6<kCw1Eax@k0xPMLdRV
zApak*ciy#!Sx8V&@%FZ@xwp-J{`{$_r1WT6>>8cZm(I<#mIeF#z*>*#j7!{lr8en!
zZ_C|{NaHD&mUzO`I1k9b498PC7&fJz7W18Lb~g9s|LphYn%As)|A&A7Zb#_}wObn{
zT#xo@<h|fXJ1|v2?Xio1u<M;;sRmNMCOsDmlTErLk9Mlf(g^fSN;#9#v2l@v`%zZ6
zLf$-=3qq0tj$((E3hL@5ev4m{aC~?tuXf(5b&u-yKR277w>m1W_MGka^8LSK_x(7k
zpEket+sUoh<DwUyWMF9Ey{N(T<WBMVv$ExP0>4*0J2TVrQHQco@v}23CvT?DpDUfe
zXJgP~Mh1r0D+5_h7@xP9T=)0aRoi`EuSH*8;yKyo>y_Y{MyXzXHlI%X`Ot2^=0OVs
z!+~EJB8;0dE-os0abe-RkNNe#Z_CttIQa6$#^gy)9yIfx>yb3pGL>Us*x<7{Bb<Rj
z<~QhEfO%4`4OgyRd)6u*=P~KbOk;I_yPqk1mQN<^`n%M7`n9{8#2FYec1S(Rt@wW{
zeBY<3G39qlBlp!*F7uf=Y1XV+GKEJ3OMjoY`Rr5m<wf8@PDX}?uOPo|I<0p)I)Crf
z+j+Znb8l}uyQA<iXhL1(<fEhA#)*eo{(QFoU);K!g@M7&Yca=!X}ZyAe|~(F-}U{N
zbp8_8ZZTDVRtAQg6>fqG_1>kWrMI?Z2ER09U}*SyL4o<nByT;>(9qCx_W%Ecgoi($
z<gNGf#Pg8Q(5Fq@dK!sV3=9t*uhQyTwBn0E{n}l-tU^OWBe&&5n%%GY{B_si(9qD(
zu=R1Vhe~Fj+md;C)AM=NYCCODUe~teJK$zuchb;vp3f%t)^x@j68HY^{PtwBe_Fro
zpP1hkQcol&m}X!5bM`m`gTvz|XN?&c8ZMc1G0e0qPE+%n^JC#}VRgSVYa%zFlICDw
z_z@xXL^Y!RZS?(LVPg7ma}M*{*UbHG|KlM4rER&l|2z`kuTg2lz>wf<(q*jBZ~HBR
z&+f+q{=4=c4lsZIaF~C(g&+gNheDGshR7WSiBVg#zApT&8@=t!?fm_*k6aiS4jjLz
z!IZLk?Y2|O{WhN#{^qy;Q?RT2eH>iw$&1DP=g!yv``jaIUA8v*)4I65R@dXIbKmWF
z+*k89JAO4R$>=-Dn`VWm`OllP`J9#ZV)y=YeAaI!sDLJlK3$8>Ut0hFpXL8QpS5jN
z85lkUN*$G)Fl*MVJJs*^{ygblH_5K{SIWOXKWEz4*ZunPa`No_eU_8ee7$^qeU}~w
zMXu9g3+72GSFc{R{P*K=@t=>!!>dFX7#<{NnJ`XL(GFX4VoT;_qx^e&zP!C{E^A%3
z=8Fdd!vVGok?9GlCvR*_4vvlnO`<)M|Nl|`^PA1*)jXe_pFbb8Zs*zT{B<8dsop(P
zgt6$f?)E2ZHlI6nppm)w^I7xd8eO~gf>bpy^L@~J!N72V!=#I0=dV|*KTlm>qiX;A
z=J}!@58JQbzF&Oa_H(=apM^}585tO)7X`AM=#e!3v{b+LrStdO+w<Sgy}-z@Krlmu
z5fp1@=G*^w{=VFQ{yg37cQzgAWMF9MUmVDCVu53G(c@n8XLHN%t=#^--TsfF`Q4J>
zeSe<nhbKVem|^FeO{X_ieSP)i)m82Lf8Uh{hlWm_|L@Ck%V#r^H(igbURwP8+|Cb&
zxV3H77#KbXO1U<GRuq6TBO9O04C{A0lwAX#Y`dLz`bej6@t2G4&p#fQUw@*ysYlM%
z>gv_2H%qU_zJ3c@IV@>WkPx*sYbu|tRmzVK59>c088I;Y(8(~#ce$~%`1zk7$L-Jc
z*Z+CE=j*lT$jxcKR;90|yn1!Y<jR|yn~Q%woxVKv^t9J^ZrA_+dwE^#?wG=(qLG_Y
zJlE}dwF<P;ccxWo)-1DJllx^13^!It{n_90|I2dwr^WMs$L#w&_x+RG_y3hmS`xh6
zPjsG^<?}hkpUUgMmq%{R3f*g6&?{$ab$Xia>C681bMx-*QuX|HulhZxh>|qVi}AC1
zxx}l7hk-%#`UCxgSr-?%f;QynZo9GQ(&8(XFBY~JU5_n)IxBl!<nw>A<#(qZY-YcH
z)P0gn#e>F|H#eu({X88%%~Xwn!Nh{s&SBD%)$xC`)O==axMsZ|{M0Pd>`%S<HOlJq
zYl_NlrcST=oxksA+OxB>r|<oCYxTXj`F6FRt_1r}H3aGR;Qc4GMn%#rC&JJE?-w2k
z0|k(_ZTG5PgATX2S6KaK<8ih5PuryPPP|^ff8PE7|GvMzGv7GfZ_<)&+qT_{%gxOd
z(}|ey{a&^H?A&cP)#eH_Fi0(O6IA&7`}_LepAYlf$K>zV=n4r9P5t`n>g<v}R&KE;
z@&CWZ7e8zjUsn73+iRP&o10QSL8WU|_1RgbtF7G{7#Kc8UeREB@@#g#UubCP(&Hz7
zKA%4y6va<YOq8!W!=9cNwk9GlKmX^ar`fX13=H#4dzBpAdL#m03K}IJ>$y{M*>~r+
zTiM3d-`=RapI-?o!S7YS-@E7At?bOZyGrja4VRDU`a1pDnVFNny}iBu_|5*+lka>C
z&vyU+lbNBR=+B??^7Su!y?8#YytIHh<>#lTKfkW8pF7hyeVKDRpQKI22dnt#z_y#4
z)0b;>)jXEIe?l^SPGJ6i_kKCc&u5H3|9xL?Ki8`Cl(4@|;QJXXgO@KWe}C`w$L(_`
zKY2aBCWC>&uCeqlQ$@|BWG#c!%iWuKCsclZmb(A%x6@~48oz#5cXg3#_n+(af5Z8#
zUM#ru{N>fv;dNhE$6t*G9qqEY<mIIvS!*-fsxKa&{>ARj+xzv}nR&Lm--Ye@e!spx
zuI}g4ImPEJm!9KgVBqx(y(sW5cQ;@9oI<y}9S_^)lwOOpe9*uQ3Z<B;mrFsR@$biR
z`>?7#R?KWXCvNBOpPN3vc3a-tUh{h=<f`9HG|Rp9<c#t8Gm})kjndA{$k}=|Y^GJ|
ztM<4i&^Z5_ozLfa=JgvZ99VvseZOXn(aB}|gB1@f`~L6zR`vNco2FQAsFO0iVXW}|
zUUhyOzx+JI<YQOXmcG2C8vpy&^-q_)^;6qr%T_!n$^QLX{6zWtd$#;`KN8N_{eIIU
zWvVqhe_tgVzuX+d<YPO2i!w0G&*U|8h^znmbx!%c%IvjYUtiaE4NQ4=XD6?kgIvXf
z#?p1~w_Nty`Fvir*E}``2B~dqzx`flhpkyreZPml=0nBRRiRTQI2jmzv`D>?oS-t(
zG&^jW@9ePe6&Dw|dQJ+Dt5nUsy=`szp4T537#1XEUtlac$SVG%iCb^Q_PSp$m#_c2
zV@<geI|GB=Og3qS?RSd2m%1}BFqmy(lU6t`TOI@B{Z=YrV0duZ9W>3jR8WC|!6B1{
zgMlGHijj$dVG1aDGmHuk+AvwO9JGB_*}czaecawln^I5L{QErre4xAR)bO~<rS~?1
z)}68O$;<%FK7&dFyPAq;=jX>au4H6bkeC_ul2NMreeL_|$}bn)jZ;occ(d#Ex}W?1
z|K1O3O5RNFw>3&VHRa8o&*wZR-Q1j>{{QcH|J`M8i;jwhr<|Omy7Sel)t~-+KA-;T
z%F4`JSGLPAG@RG_FBRwid`_`n-M`QC*NX}`xAUD9-}j*vR9Wr(dM$dg3aA;gDfRTH
zFPHt7M{m#boV54*J!^LPnu24!($gpVS*=w1%*^26{6J{U*Dde&{k~>hz430@?bPY9
zWhc4y_XKP&yB=Gf`r*OB(vK5W*ySn`s=mFM8UOFo^rdIH85npcGW=|Lc5d$MK3Quu
z&wDkW&z_lWu3!CjYxv&BphnR0c~z_4d}Lr);3%jt|G?Yr_veB9bz?)K=OoMGXDXgq
z+1amUqobo|gG&Cr-|uOcx-l?hc(9x}{^e1(e%g~06JOrm4lWy1K<(B^OO`ELcJJfa
zS*FpiB|ufVkb?Z-J3EVuZzQ%ajon?g^Yb}tP-{XZ^WL7yNhwFWM8D44T=VnO);>mt
zhVx402X8rai|d~|(8#>G;^QNqc{Y~Oc{@|@-eaF0S6iTYEq<19x*uqv#aXl4Ikx|%
z;VSo)9Lx@MiE0~Fe0XqXhM_X3WG%aq*uM4K?y|SDKqG&h>ho57zXL1Vf0{$e_5`%D
zz1@4mwac?ivyDn#T=1D`qzW28m~U5mt@2Lz{$E%BJTu>a^3Bc7udlt^|NkFokBy{N
zNk-&jCI*M*Cp;&rtbV`QY+U&0NX^gF@#p^h{A^tJ=f~D>`~Q9Yem>&Q>HUAa)qG}5
z`1kksbEE?L&9>Wll7>kxtZM8G4Q<X1YnG?at5gdO4V`IGn55=6CnEoUGsDY!d#mMY
zJ{+7=`|YNrX;uiRv%n)~W08EUC-VIDdIp9A%cnC$`t#d-I8Y_O`?8<)(|OhJZnj(o
zcLhvGOSIuxoNww}6SLFk`P}ljU8S$5iRnhA+^_w9c8TX?En6`LhL9-?H(mOy-|dJg
zK5J_E?MAY3*_#_CxwlN3*?3Pa?zfA2d69u(LDH<Sss{hXD}$Fm>$84$;%a#O-2A%F
zvppvz_uHE7t@?Uu=ks~9Pfk`3uW({uSizI-VAjYfthOZc@-oYxPbR;<mX(!N^r%z)
z*~a5?r$L82S;#Ulg!D1oWSLj@>*bd>H;r|px5Z@d^`CE7`Ww_tRB<qCv@CuGZj4st
z=H_-SIx#zcUu5G-28IQnSWc*I$ho=c%9SfuqVun<iM(saz)&MrDfmn6!k)^{Ya%u-
zy7%kT)6=iNU4Qz&{iO2jER%*wwI4pe+3p#);)w!-^vU1$*Z(;Ed@QUm+aWjit(E>}
zQ0XygN%r-1uWRnDiQN3}&vNO1e;7Yx7CJ6vXSlH<?d+_n`)YrORrR=eHsmnvt^R)Q
z|DW^!Q(j(Ln!Q)x@5kfv{-L3vRo~z3J@;I;>czsHf4|+{{PkLN{fkH;1_rJ4o10QW
zjS@cFFBiP}FJ**^x(0?+b@<O-8N56V6c;lLlZ(FHOjob`Klftw*H=?P1<^$Jm?Tz)
z1L>2E6=plkx2rWuIWYm$cq)E=?rhoZ-06jnk3HRbJ?^yb_B%l@LFIJP9LAe2pbe$m
zdOH-h-><6{(~FrATYlGcdTd!FsKx2k&&I$Ys_X#j@mI(TFfc4IVOqi%v9l=kob~%X
zC9kjP>PBrjvG4c0*`AZtLaTHb7;d~^@n9~vQ+OQIWjVR=xEyGG;<C)k%Op)Q0_1AH
zTm%~_J@tA+$PM=GZ$RV5pU>vk8GCL@I@$&5BgXD3Ir-$|WNjNo28JA)a}6OkS~!I-
zZOObmr{>ei(ri;xQ_GJ>gg@U%?oa*p=BDTzJ_ZIeJ;tC!fBU~BRo~w1yk@;j{r&#w
zC)h!WB2&>pE9cxC%av=_uH7CN9X)%I#;0eq^TQIf7#MDtuz0lUMsL$GH8uTuZMJE4
z*miyfhWTPlOAdjC@I<x4u0+T0tEmJhl_-u0T&vfvJv+y;_|@9_4cE42U*F`;#L(dD
z)({f${@&itpHAzigW`6r{l6cNSFT#+_5R*oZ4*fbhMXFvC5J%cRcoTQYMI}wNWOdP
z)KqQbygNJI?0&!R<+ZiZtjn1h8hTe}E@l6*=Jn;}{%t&xlL8mJrM|nf^Jd=ew?=t)
zc7VDoJD*OA*0PmjV8{u%$GI0A33@voG~KED{T4J-Qg*lWdQ92PRLd6&nzd}DK+2d{
z7#K8quT#+YJh1%Cwdnl0!hRMDFD2)Q*#CX$9~>JyH}mqc+%4xTFS?2^-F55#KL)L%
z{s|3kPp*c?pVeGGXHxF=yJlx+oBPi;%e}Ndem|&-a(cSH|D=%6(9n`&g34}7LRW`L
zzx|y1X8rP2t5!X_uiS8c)3T{@3=Ln4zuzrSe{o@9=Cw7EpiV;E-m286r>4%dsVq8Y
z`~8m3d^=nFKM(n}ZI{(QVE$mvDbV1SaBWSb<*yfuH=i}T{p9=p|Fu@-?_#!>-^yJ6
z^pdy!*}LWUV-IpNCj8yO!o5K7$Gz|SrkCHZHMjqH(*IglKmV5(7nRfJ6dtphzq{b!
zp_<px_fM_c{caYhN#{G;43uc+)qcBKbv&;8ZYikuwe3byH)s!3_4~c$bsxLque{Zd
z-DQ$Kw=`_q&9vE|eaoN(tk^CyY5DxRs^)$3uE*Egf|zA@3XgBexTqv+U3TWeLg&x7
zve&Qu`~&2a<#UR>tjgZZ0QIkSJnlPf{eDmI`yJKqcB;q!c_e-rwCO7Eu2nNT|G6(O
zFWVQ*1I=*#e!su|*4FIlVQZsOkIR;y`T2bQe#dxWhS$d>1sdEQnD77T3tH@0`|W0W
z^ZehhR<C~sYIuTLp*fq+n$5H>&#U{gSRORSHPf!PYTKQn(<&!@&F@YzK5t_TYE?$2
z&z<`8^z`R9)90U^q8V%i+68kG6t}zI?a~HyA<J%MF5mO_+ig(H#8o_O{qpW^_1^Sf
z_y7OBZ}acRV^D-#-dp|s%q&yw>+$uqY&;SZUS3|lJaThd>2WdFi4&FGmw}paKOS{|
zzT~a{^w;b4=Ru<i>~a+g-t7Plo+`WboH)?PT>Nxu_%r|dU%{Y0>zn=m|5d(PxqQ>r
zu;{hL(_UU){`|vXe*gFP_7=ZfI(^x)WopK0XHG2cx7&5_em283XGVwSZ51CMEn2l|
zmBphD<!i5htlfTZm&Lyyk6+8JkJ-8Do+0R1sEcbNH$U2RT5omq@Amp1?T@(Qe;m61
z=T7eJZMx?y9{238Jkuel+!eMq>hIa)Y5MVT`MIa2Xu5`mh8F&QyZ!pwUTO1nD^{)2
z`t{{y@S3QttMdM?TD?wd)#}yVox<v3u7M)n)Ae+3ZOsm!Q}t?PcI~;!&(B0bX8Tz_
zow93dx8AN5E7q-BS6y?~^t#B^t5=UUv2y==c7`EGM(-d~#se|^xH&5Fzt08D&fOMy
zcmDM?k&{`u#Xuv)Hxt`sukG5KdwW~%=VQ|OPde4-{kU-c>bBh5pyp-qvok*<HrFgz
zwrttE^Q*(wo@!#{zO>lAe@pJ|vbo#u{9RuEYq?40r6un^W-gyQP0e@KlkNNe=1zKY
zuloJjMXueT2nR)PseEW?=*{%`wb!hIH?3Q*=?NNrSgO(G|D}}i!$lSj2WHStHkFf;
zRK4x4eePa#0+h^_r=Op<a^*@-&`znH#m{ZN-zkpVk`Z{f5Y(Um?ZdFE{k0_h{5(m^
zqLjU-C#>7^=@e*)?dP56cGGLW-BcHkuPIDBH)rQTW8L_DHsWy=iQ8^vt=^gzwI$<X
zl(Fjj`=Qyp-)@V}&h6IS=8>D53#w~XW*R2DbuBv4z{m_bZD?2jxw+QQ_x*l%dQatN
zyOL>(`>eETe}6lBQhoj$z1UsgLE^dP_cYxY%mf*kE*#hj-FNl*y#4=;^X#j>yqHsb
z&Jwh1;#j}@{Ob36%_pn*o;qj!evWDOwJWmQANN^5TRJ`Nlx+E(iGRP}w=ch28vg6+
z>*?M4`*ysWq3GNOE)47c9Isyzy**FTIL!w%{`Tix`TpArX1evs%sj2X-{x=|@9DYa
z_hy1JG-&Yn_qVs#XJyu|job`srAyk^)u{Q-+H&o9?f1LW<NyD<F8}LJ+Syr87q-it
zTH-m`sOHB9P|#YwTCuq3gkpP#K!fjr?hA}kjR%|ApD&x8cWR1eu-T8+7yp0G|38zN
z&qBfcUd7|6*YEdy_OmK|wdGpW=Vxa@B?6D6kqRh<2)fHmytvps{mP2Kn>C-$PF4Yx
zWGk1?n-%PDYx?>5`Sb5~zn^z;vHSB2&ir>5%yjFKn5eye&!)WGqg|q}_iPRg6sdeV
zHT=`}`v2ccv)}Lgod+6JJIrUT<GJbWw%f}zx=LPM(PWn?I8b%|<8)Agz{t#&a%P6%
z&Oe_{f4=*^4s;ISf#d&b7}m@-R$%Bo0BRqK=|(+SGTATc`BRtrKab@>4b4)!?Vgj>
zzSd2ye?GT7?c1B1*=uzpHYBV)4w~ljvwk~ek;bQc)$dc!&N3}s@BY&PlnS?IUtbfk
zF{ydqJT>20SFA4^mc6;LCT?%l+~fBv9`}NVY41LMy?(#l>hSgF7C1IfQfZf~$^h-O
zs{g&cKKk_ze((r*I;fuAyY+6_ZC%&EoDbJo54abzu`CdLadEMG-M7v2Q*UfYyqURt
z?zJlQFYa=cD#B_$CpgvTY&iFvPtL|-dR$eepT)zLH{0*mRleK#+^Fu)kDT3aw`I$g
zpHOU1Ijy_h=l;Ih%S*kdgKN1T2l+u=&YX=$#Xy;7SNZ#S%KbJ*po9;~LZCDQI#qYy
z|G)3of87ac#9dtMetq`R+TY(S-)^}K(tD@ub}ndGuk2psbDM8Bl6U_9_xtk3<m07v
zyxQUG&NQ;i%~<H%{_LoD{F>c+-#s|kJb6$3%v-$XcP2bM+@9WV`|ZSr#KWN6wCCTi
z*E@f|+kJU`{C<AkE#7)NRrqbc1n^nE*#I6A0d>j`^O}REWxV#+{k8kFpO-;;MbP&9
zObLh2&M;hT@pMXXmz-^t$k|z@+ELr{VnJbWwDfvxIH={V(Y5GC+U(peP%Gn|rFPgF
zjeURL=8NCmRjLiDZ69^V|4A}TJvAliKm+4ZMs}Hi@;kofcSF9szrX**m6gF4_f&pP
z`u%ph{=Uz1--~!p)6wjD^!N79dFA&ikG|XeK5k3q<z*RHSA}l;{cg9o{jZDt*Jc$S
z=@4`+E&Xa`zwLhA??oD2k3eOCpUuZ3i;AD0bA5enZMS1Ho2dT&KSg_Q9`BV74+#$!
z2hB7UzFN6lOxCJI1LO%FdAmIkI|>r_zCYj0Zx>PX(mP%YRL*b7xVY#>-S4;EAP>zj
z%Z<8gC>~o9cyWp6<Xy-4Z9X^@9uagGxx2euf0k)>Sjqc)do7;LNbZs}POF*pKZK#C
qW7VP$T-FQ>3uNM$sXR>hv;NZRHM`s={JsvFwf1!Nb6Mw<&;$UZUTcm3

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-6.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-6.png
new file mode 100644
index 0000000000000000000000000000000000000000..77e39f16e9f9c8f73b7d70b1a26c4d1bf0c091b6
GIT binary patch
literal 23923
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_e2hBy8H|Bv5&ggoB}b*j21t-WX7
zyY<>_Dc4+4>$M>(r!9K5ZrV1fC|B>mSY6lrt)aTQu2UCv-P(QWR?_`)DVFQ+`|FD9
z`ig}*Qzu<{{j=hUW7@izKhIc7p0h5FEsi`Uq0GR*z);XI_ZlmRv7=nT0YqE0F)%SO
zFdQ&s5dd-f6dOQP0S_Y!0|P@tGKT_)E91<-$iTqxK!S+_#63=;)(H!*tceWXHrMdq
zORMsCbE>|*S=rIS@$=`;lgE#{+yDRbIo3WeCudF0?Q5r|YQO)r@n7b*H#e1UZ@aoO
zc=;B+qs~R|UvJ609I`DZGWGnt*loG5e?Ff-U8S|XeRaXZLw?g|E&1~27gK@Xu^;g=
z2V@g(Z@WEx{rdGy&CQ{!!*qS;*;uYU?JanEQ%dBt+nYqS!%l3=<&`qg=w0>cU8{K9
zh3fZvmtR`yy}JJYzpA%euTL@0zn8MzlP6+ZZuX@mo}SyJEeaN_zS}GRY|mb|OZVm7
z*4O{9t*Mz}obDI8E+%rZd;hhm+TnZTv^UnexU}fS?|ZY=x1wT4O-)V7+gn>zvgK?l
zHe|=&-k$Hj>F(Tb$K~r+xcAFxg|3=X^z4jgeSLjvYwOCu#csczO!l8-v;2$N%I~Fb
zZ*6^bVPW&R`S$Dc?(WhwGYk9r`nrGF?A<4~<z8JEYkl%-W}tAxm!sxuxfveloZciN
zEv=p0BP1lWCHXkt*_p=f+F@%h9P5?-`fm68Wu=|}CAh_O0y>3MP4e&U5y_wY<Kda>
z*TWwl?+^F!>2a4%?osobqhW7vzkcCD_kOvo+uPQ1iRrv3y}!5WYtXqlmZe``g}%MJ
zJA8Bc`LOr*_HNC&xk)8^tB!Z|_jgxU1TMa^JwJZ^>-@AsEu5QjqmN1SN}K!T@BMns
zcl*xRW;WhS3mltMdIF!Gni{&?Pd4@RG+*~VnTw~UYF}OIEnfTOqI=Z#yt}dMpO&e9
z-KQ6^!C}&u{r~^^^V@!zaC=wk>1mc>@m?*ht(mW{tvxkS**$7HlY*`!!*`z3n|g9@
z%bgBiAD3HGQ`6Jm-{0BY?cIDTXkFUbS#r-m+%3N^d3w{C1C7j=S7^P@xox&J>#EmP
zv(D$&_f!@q-`@7~@Avz*w`%@=y?$(yj<Bq3uFh#Af18gkUEgHo<nnTEn^k{%Qy9Ik
z__^O?)9kS1+uI^{7A-wqHZ67Lg9izdt;_Q!YlrI<KRVK>^1b%!tI+kw<F;f>+^BQ9
z<kgjvPfkxi-_q7LtEHty<ZA6|Hh#Grozq4SA3jX``|E4mZJoG1H?FJ<KK`{fCMIT8
z+~qG1I@RZW__c4D=;=*Ce~bAa+;bAwVOSNjbJM&1|LY`^w-i2hTc0bYAGfBBS6WL&
z#f6cPQ7dZ8ieKN}t~O3TSFz>q)9LY7w&g~<y0~a4C^#%!xKJy6-JGiL@7AskU%%_t
z(IZDrY|DLnclY&VdCj+BUylg;uPA$aYn`?A^>Tf$H`?<jOjuBUzc&2osj0yM0TVW*
zoLtn=!C{(x&BuGXp6|!kB|knSmcG9iD<~-V>HGKajEohF7BAkKd0B0H+19M9MZLk1
z`)YQsUiM_y(mN}PpPyT2&1x=Xo;L?%&bPO>tM8g^O?KcC*IOfHn&mO++WPqSTYaCM
znfdkA>h-U_yu2)BQINoO{?OjE)0?g=^%mcne?RVczx?$%mc>DP=TEt{IlZ5aPiBSB
zOrw{t*Y6Me`RVE2ZL7oA&lA&&skr<%_x`?E{k>l%X@#s<aN$A#D+`N;jZIAK?y{?m
z%<Oyej4MB-gszPWUAS-|7Y|R!!6w$w{dKix=U84|8|$@xy7c|)Cnu}#-t|f{IVSc^
zO-)VA^^l@uhqN;@7Fw0Q(y*|IXl!ik>gWjAUH10QKVFOKZ)@(={m#9*GT5D!OQhiM
z9rN5<A=%g0eYJ?cy)89z+U@gyzg{maN_GgUs*SB*<8S{r<bLh<xmj0NEq!xyv$lJm
zOxBeZ6Sw8we)e?^;}ZUogG>*Ooj-p*`R0K}X48TP4y^3#s{<Fiaq;qAJ#YVi&BMd(
z*$)r3Mr}^(-IR7#>*ag?U{JQmxg9oH%~wQFaN*|k^I6CHWPg1)%x_xpAtCkLoXAUa
zUvmF@vAF-#CLP~dCZ49**Fw(DGL3zG=<s1xPg(1-D_>q-4qX+ZS^DNiU}IyWRmFz|
zVQZt79_<!i?KjuT+}1B9X3naxwW|)d^RF&@dn@buy1C!p-d=v*{(lU&n9hYaH#cA1
zkm&4L-@YhnYZj<rdie0+y1bCiuS;Ayg;c-H|NqB5c$v?|4T*<i-k+YR>~2#3ug3P<
zjpS4FY<FMJ&3|6{_1i!7SNHbrKGq|-xZnO?gl+Y=kcmpJL0ir*cJF_+di}njP9fEh
zl|ibYl0w<7=faJR$yYa}o{nDiInD0p6Jb>ql@+nO%d{dlrEJQbZ2jD2bNcyfH#R1N
zN_tRK&ooNCl)wM)vX76CXaD>2^VWvM=1)&gKhL_qzrLPV)+(fxTRiObwY5`~-T7p#
zN<3a)Uw?f~<mM}@LbW}&m+y6PbJH?23oCwh=Hhw#|8HJJsh|9s9%RpMXlVHB%VmF2
zA)!StUSzbkv}FAM_xIPk-S12O|NXu?W@pi)C2OO%znU5z7uYLhdSykR^3zjO!3E^>
z__~#?+~QgP{`_1OzJ8v{N}riVUA?_uf9#z8q%5{-@~qd|6H_C9y;{BAB>$d`Y0iy+
z^ERJ*>i+*N*NxcVAZ?a&;r;&q>lQ3nFnjM-hD%OT_Zt}>ELgHDVQs|5LqC4}n9<O{
zQ2gUV;`Y+h({zoerOwQ{x@zX;^z*yc&bF!Cv{C1@&Hq22*QM6}`eL{(clP>yzfL{2
zSnfZ+?6;kon%c>A%BQF6f4{Z%RJ8b-CAXxK&&)JV@5#NrEa_;M-0L30XHQN}j+=ge
zMcm%1W7~3#Q%(qMf0})5jp4q1`_#(c-FbGXl{@cs-coI^M?c@**?HM#rqR)eX{pQn
z=f8`xPdOm~Dm3?2ZT<P}cK+Tn@vh!p(`~u4MYY3r==!hXzP2s*w$C)3$e!HWX_uGz
z%9%z^OXU*LNa!(4yS65B-MjdE-`=j}zBWP8xhFL;?Z$@0b*WEJPdB%-vrBt^Zmwoc
zYS41OxmF-&B_3)C$(<e|zNVR-f7a>g`qf+FH>Grb{P@xE?yl0}XgL{~9FW0!aeH2D
zJo`2FMo{rym9P8M%4J*I+h=!laBNSNum7`gqt5A&RUs$mSeKv6y}LF0IyApu*DGh|
zlQH=D`MEj2&4-5LyPnj&n_N{JTwUus%j9IlwA4R;{+ublU;BKU@BX^KJ-N4^z1@EQ
zTNHD{7I$%-2Xa#?+#iDy#p`QpMMXtbJ*5njT0T8F`S{wmyXE(%rbbFxm#x{9divS6
zcOQ?-ho_`0vHShTxIdYNg{4BrySs7uwA7Oli+yGqRmRTO4qrF>-Qxp|%u$<CI=RGj
zR*1({9L$Yf>NOQq^v|`a4BDK2exI_bde+57twm2yJ-x=8eW-;~D{|8kt?+d<r+>>@
z7A*l4rHssME0T}*X~pl`^XT#8uZOtxSNO~{I+-UeE4%j8RPF3@b1b9wR+V=3nb-ZP
z`1#|<i;c(Sigmj?J1=g{zP_i-aJMj@td)xAuJ`+XzdP{{l)1k8dEVVs`gMK%U+->l
z{cjP^pFe;8m9J&{{ZrPJdwV2}-KM3!eB5tec6X-_s0p^8@#dz~&r$jR{`|bU$dx<y
z_BP+&-{0?FTb1|x7pU=Z{O;7{^Qyd#&EWZ%!1y4}6%>#qk9TmL-ei(^h^6$+jf;!l
z-rAb|^!fAW7xQf|K0Q6X^vw;!xmKlKJBywMy}q{AwCYQSY3{8M-KZ@AcXySBZq2%C
zGP_$LdRtD`ogEvWou9w{#0d{qclXs*Utd+dSlBKiAu(f7ZO*+tk&{C9R+awz@uOnR
z`q<sumif$FbauA+YUg&o@-=1k_4TDME;zp5|9@ZE+gnTT?k>-Mer~RmY1Wn8x7Tk^
zK9`i7464(XW&9RYc3a^!RqNOL`v29J1vZtu40?NOt2eKdNx|zySJuT^e|>q`eX^SG
zCF%S<55JcBo||V|ZBqEirJw)D`n}(xR(+c+1u8?IoSgjivcLVyD=UNZ9vlDp`}gjx
zZTa`(-tYZBPp;wtBd9%Nnsp`M>8Yu<yUtqH?)~%idi<}q+wV^?&ySm`7i;Bu`_G5N
z{8F}6Tdu8(UA@@7f0ymH8=G`wEealNYr6L~CcZQF=(_L)4ve0cRt7K6+o{G-F3!lZ
zgI%?*psT<C`YhAzD=UN5OW)oKZRHaE^dt9Cr?7g-*H>3l*qfuLE&crbymt7ym{kD_
zn?M!F!DjZ?-TM13OwkNZ=?Mf?1-G)-uk@X5R{r_Qo>`W~%i4IQm#qw5zDv$gMnGVJ
zm~K?Yj}H&IczJ!xejjQ4cD=q~U)-ZlmzVqBzj;Wt^yMYj<YPS-e|&trwfcJ=D+|kx
zyPi8l3kwUi0v0sr#qV3A8@=tt%jNUKa&p!vDJcbsEYJ#FwM0xe>IKLR&*#_Adt=eJ
zG5PqZO*;Jrv$ezZO!MwUfGUbTm7lNdsr(!=|L_9G<~vLssgdg#Ch5o9<=)<=dy?_d
z%B#D}^LyoNqkevV9{%^&S5YysXIvYE)&0IyOgOY6aB;{I4?*8K7J-M`crRaA==}8c
z>(y<%(pg731lN5u_KVl=v|pT<n5da$pMFkeYtGFeQ1hXyD`=vU>l9UQv76i0zTfxT
zPdj|wm8IU(^Hwj5-n&odbWv~V&bXwGopuUL9`PIs2W)i=3<9=hU%wU}U%PZu>giR<
z$NPRg?zg|QtNF=^iO$C)WbNy0j{dHFv9SHi)9LYAii(cX=6P2ZxpteRosj@FpB64$
zxNf<ls-5Pk+c9G0pAPTYzkfd)kHi8-X0{ig@?&SwQZ?UMOEiO*Wt^X98?`aXb<=J2
zvR2EQ9~-WJ?Yvw2&Tab4`v1T0uL@Z?NzG@*0^{^^D^gES(|lz%O(wZVMKgGr&#H)x
zi}wBdm3_DV|KC^F*3N!)ZEf}ClR~PQCnhM)GS8p)>+9>~X=i6u<`)0?QFwiiQtquS
zAAcoUZLE&ZV)p2jGMzN{%Z8|}Sy9_^W=_+KU8O#+LMin3zKa`^kAplhRWCMbb@=)+
zUM_!=(pMq<xjLtV&d;;Gx;fon*1j%gb=cZVUtV4|Eq><n_uudLpfn#7yDO+_?;Xxg
z`5VDfXX0wVhW`BhJNxmmUah!2J8ti4X6Ik_!!!G&=jqqn4!06`I2fjCg?h#AD!KUY
z?{CwhCm!2Nr)q_QvcZ<p*VjVcUq64|f2vk!P)^Pow|+U@<eu9u<(=|NzQ4WweB;|+
zUtb6RQCWWF&oN^i9iQCW+pa!3+8w$jBXDih)>q47O@)rTu8G=u>UI0Q)YH>WZqk{m
z8*S$Lby?VSz1WgBHw-}ynBwQ>%4_~tets7E|KH!ze}8_8lqYHhE$P@*`g$3tTsbqt
zFz&X`EECV^`te~qi=JNDS)9H;erNIXYuoSFt+uWHcIRa9C1HOXMSFYu+K)%Y&1+R&
zpG|YRzcqXMy4c;zR;<wI|FE(Cf8E<#TeWY#Eq;D(ZQ9vcnZLfgTot=}TiLriE92|`
zUR`|m?7HdJip9^){QAEC|5|1Dz8A~q*X_#uJ=ePYRU^CH2M+mT61D&TevjL}G1oe@
zT>jFpUrY~dm^c_bFKMsev&d(rQRa^i5A%wvzr4E}eN3YC<)x!vXP<ce7gP>?JT4!5
ze|_X;H*x*AFB#K++&=r-{y^xOh>Ndd#P|RC<h?2_g`baan#%gmoig@ycV4&eEq;FP
z<)5FQKYjh`ThvgsXu}2rS65d}J-u_v3;zCi+&{}KcUDtV)0Y>E`<Lx_b|vHTvfgLs
z=B}>%{A}m5*E=p(eR;9art(w9r6r!Xb{401ZId)eXefGeVj-wt`t$R%-0S20^7^MY
zeR<d}pY`U(#<=~v%HFQZzP>K=&ySDgUuw8SwU*qt5fQtq#FJOr%%`Ysb}P5|s=B|w
zPQKIr`0=E9or7KdzdgH3UOp;hfB)&}>A2&^R8&-69O)FE^zVP^gjuhj`n|lld3lfF
zt6N)FpPOg<dfPdP$7SkDHa0Q0x95M~Vg2z|_IlNy-klE~B&^>b;^7q)AI~tyU0jD@
z(!aV@XD|EPuf4d~J^RLn#H!C{%~k)}GL+odkofBQ`uSa=+MvQyOG(M;`T6<frSYrc
z_U;1ZJ<m(g`Foe9o}RX{>gy{|FXh^r$gj8a_h&vl)XK%jcP-f8_Nf)9Z56sE!q9iN
zneXp!Z!bIZ+b-E#{XOg6p31CiYi6dMnK5zEE$=BB3pZ>q@SSfLyKmn<t&kNHbWUG-
z+;6{bvbz5&pP5FW!3wYGdTW_jxn8`vxp|g-{k}dK%SCZ}t2Di*>6qIdbC<7Ol67^}
z%KZELem$F=AF{8e5<Fm#c6L&Kf4`dFoEeM$-sw7Uz`->0(vx*>e*a3|^W~EFtGm0m
zv++ng_<AzU{M1zK>A$|eU%#*Rw^z~p;-sISp8ooL-u~-@X8tN!jX5t)s?Wdj;9#?9
z;UgDb8H)>7b>I8FxW0b=y12co8kyNwIkj@F3R>EAYP$aVHIbWNotUT`wX<mHw*33+
zx<s|rcF(t|{ItS%w%IJh<TfQ`<<RwUwsS3u-Mpvi1STXbP*PUD`%dl1@#Cwbwq}7k
z)~BXwFL!F?dim&RH>k0-E%)}aWxlglxpWFm3M$`wM{}-q`L$J{tHA>mN4rFWFE8^I
z6%tz1%+8;6b5m;7r<3ZY2?rQF>;E%7nwdVY(DuN=^XL8T|9oiPmUnlRn(wR^tJm-Q
zbfbQ*RjEnxF&@**OD?IWr%jzdfBwJE^Z&1?`ufWAT8Z}c@T71j2FU;^n_uD%QX6$n
z|M>AkW#_*W6P4Axr|GCgZ_9c1;^N}G*L6Q0vR~d+nk_6QmiFiGU*C+36`H}zdVapI
z|DSD^cjrac_LP%CmsbX>e_mhz_w<u9GcTu{optq2{r|tuc0QkHT>bssSBq!={{Hrz
zZI<g(P_W_T9LvosBQ`FYX<fb!)Un@~dz(kf<iy(Av$IV1&O6-3EA4Z4SE=v0IhMWs
z{r%bdS}rg5pM5>P{w`=p<4*bgS~UfQ15eJ+zkg*_=;<>v43$II-#^&Q?z=tju1`h9
zj*s8Jn=2|RF01_fEbVX`Z`|$M+j2p@%vH%M^Wwdp9slv|c7AW}?PbBs{qjyvp3Q#b
z`0?YfYXpx;6n}i=3i4x3ZS7h8{eK=s<wZ`@jM%W?dahpVt`shDy_}reW_EUV>na^?
zZO_loxo!4-@ArGY=amcjI(8O6zqjS>+8f()XM=L7X6ULZCnqYmgWLjY+4D-9nFy=<
zmCU}ctfzPGb+(kee12TzQ_<ix5r)DN5*b`#IvG`8UL^X>vw8W^c;<u&37}zs%Nr7%
zgI5G7f>by;JNrI8HTCR`jmf@FPED(Gv(`<2@{G~*RV^<+zj-US__trXeCAqRy|O0q
zGAIgI*w|(rYUQ4NT(0^|&b>W1*WP_{a<cDCqg0=3Ya)F;JUTl2`powK`;|TEtBh^c
zl`Z-A?>#v?`}&Vxzoc$&i!J`5^7WV0<Xx{p<CCB+Q01qT_0P++ugft!k2v;08#Hjs
za1K<>F)%Q|hiV;PFf^1T9_<p1+E??__x95>GlTb5eckn&m672c*Rci$hD)uD%<Neg
z7C4&chOY=%IQ!gQMh1`l(DC2H66mAD4!gD$K6V2Y(kd!0+j3Xu+}xBIJ1IFSIXU(A
zwy<?EGauz5261;s+<Y6kF{w4@w%^5y{_3+&PEJm}z0L0Lm&;r9SQ*|)F>y4MyuP!u
zIP1oSg=RT77HrGC4eE&d+yCA2xRgi6B4AtY>20}3j~r3CnfLV6)OBU8+~WJ*K8~8E
zdU})1wA<U(-rAbIyvo`W)N(yBQ8{$68*gh%%ZdB<<9~jB9zI#k*ChMen%nCvmrh#!
zu}r0H_Urwi;i*4AKd*M{m3no1`}%D;H;az<i3<xW-`=*h{QW)aZRdA?+{NHfbtt)l
zaY^*+YiloqS|=$d1or-T)SVgI_vg<alk96cdw;*%4I11y{tMLJJb&Ild|ixZ^Q(Vi
zVq(kIMsL@0?~{>xUHAK~xoO^=h{D1`E`I*-ZZTaE8JRVpa`<2qE2ubKv}ln@@iU+G
zx9@9$hIl~b#GReR_qQguw72g*^a$F;$-TA36Er09;o)J>C~)nckH=3<Qazn3`#g_T
zli`QDasz|Mc0L&kh0~j+=*REdqUSm-6*ROw%es6WsAFmS`HXSiYybInYj18&UtRe4
z*eu)XGO19_pTB;ss`&Uw?sUJ5<)RfUG-NG{T=e(<+4Opy-=fRQ{a45CE{ocdF)?a;
z-dfjgvAbKPn3<UNT&qxTZEw#$(7-5ny8hqKblZPF9?!BWUFA2|YAGwX*qv*I6%$k#
zmdM3!U|3?^`B)+;DJi9=u(WvR#{54I54T_4TV3wz;sT1Hg$oyU_4Qp_<~!TwTV?J2
zU#{I^E5p`CotkO9yr!lmC<fXR2My^|ulfDuvVZBzOQ1f&(bwC|U*E3ZoELii{ozeI
zy7Bw&teqYBsG@7hv4%Z=KApCz`LW^Fw%paA!b!Krqu&3WdG<9OQN5T5?`b+0w`5+v
zbFCdRgRraMVH0S$w275ltN7U&t>9%n&(6+P_uN(Wbrl=G+?q#6yR{7r0$jVruKs?%
z|9zp{$zDdw(pOXB>VBqzT9T2QQUcG-u@se*Tv_+`m!_Sa-OcOjs-P-U)q9$Tii%6O
znC_+N@pUh^)xEp3v+B*p;~|S&I8)Eg3XR;H7W(tkQ`59F68#${{-~2m7Lk*CxAphk
zWxlhotPa<Ab#v2#j6;H2vj2YH{|_27J$Y?c!a*j`a2H5_K){5kZ8<Att;;I5+}>Ba
zJFe=bYUqjpN6@Gz2S-3f#g1KNZ&xw1^Htpa{^aE3(5+dat!-^u1_lAF++rbre|-hD
zr2DtA^T}M;eBN%gl4}=e6nSUy^RUaye77bZZcBO1-ms*AoyB3-WaD(dqsNYAot~x(
zYUa-}%UyNigokI*UrBNC<*Pzhzxwd-FsO|Q%8j+ZzrFl?-u`+ME4NAYw;a=)8y9l-
zPfG=hEpqL?vLVqKlpt5W+Wr3V<Hde+tzLe;9)EqA@9aBlNBX7B{XipicXyRezVoka
z_p2$I!EPHjZtUvqEq$G&0vgx!DcapFuK#NDdArG}kyT%>hEL9!ZdsfL>RaF4U49)j
zY`85qdiyP5At4b_(WSx5{Z>Y9PTN)UbJH^4*~>s3(2tLfR{j6`eQVv{D$|S$4*&lB
z`}ODZc~CE-wXJPc>gj3bw)=PNu(-M=GWhqmx51!x_}Xam*xhBm_5Xe@ck7i}nm(`6
zjg?!>=VJEMITI!bfcnb$dp@>-@|tPpr6XI{#qY2C^zmchQm?5ZVq(jT)6Zqx+?4w2
z>gwsBG7dEMeCyb;V_E0sSpNF?eE!wd;rgIbc~VThSN;E(GjpxOK^^>%kSU->eXq3n
ztGVU(E-rHI{_?orzN&=T_!zjmd#IKB>YmEttE)o2qqpT;6pyc2`1JJj?60q`YK5(t
zvHI_uo10C`-b8@pLsy4|F7uiB1=LFX^W!6^<T1;+@t{n6WBvbsQdT7^K*RLc)<%Pd
zs;x?1Ot`i_etqQTw3VT&!`5w^ZI&Cfx9V%juP>Rle?A-rW!aC9kDHdiiwRvF=3D&y
zT<G6lU-N(4G8Xh3GEDFTjgQ^fmaFDJ@6E<__(l+aZvwY%X5{btsTNv#<k&H(+uP2z
za0;K9XIl-L*QxyVa{1l9%*bhyMkyUTi=K9E)H&_q;<DsNOpoEQO*+A=!*tglkKLGb
z)c3YpS9dpP5LA6$#i6Zle!t&uJ}q_TZ_p&z^If&S%aS9fadL1NTwfPktjo{OZ@w*e
z_A=ku;4#BD)*2coLe@lFoMT&kZEN23b+Kx}%Y2sQ+}xCRJYrwX&W$>!d1Ndu<W@dC
zHMKYQHfTUnu5_+N;h~saB`=qKRexu_^1AxPOG~|bQzO-EZ0_X#To=20&$jnBHZI<n
zdwWgv_H((FK0ZAgb8o-7x%v3(vg+^eN~>jsYd@V-KekEd^R?*wox1*iEVt&~22Dxj
zy}nobJvKRV+REtd>u!H)X6N6vSG{wZPGnL|O^wg?yt{X%v9q(!W@6=<(JiiDl~era
z2<P?t>tl8%b%|&uF)=fr{eHjx{k3-&7CNix=$rwy#$In^RIn^L$TZ=hj75P1sO5XG
zi4`>Xw`1+<kd>1_<>X{_|0>z;i)$i{U0q%8e%i<_rUPn>X5QM8xlYgV@v+{?>({TJ
zSMjJb`riAyB`+>0dImKzvF6<}+jtgKK|MOc+5dI1TkoX#^XI?*opp7UrjnA=a{u|)
zqVxAI&AGX0=QURsmlau8SN-~WJwD$mEa~zx->BVXYfnwlT)eOLchwqxF0P<uJ~Q*8
z>b+W9TRkWB$yz_#W}~EZDEs$3+v-yii;s4TFMnmh$|drl>bbU>n%m9I>HbCarLV38
zHnZ{GnFgApa_thixGDAYmi+s6*FV+#{IqkgdgrTaYggC*eH|ay|M2<q=Udk;SfFtI
zzPL`rg4o?<E8Y9$R)wvd6}@{;<>yuT_xFJ+jcIzZufEDKC}^?>Fi4(zc6PR^=hfBW
z->upfm%Y7ZbZp11*!51WT-$5^=*8{=cZlq2cb%JSy?mx|`l`UiZl@-zpU-`7ZF_pA
z@$y5558F<Aetv%Zq&?>@3W<p=(+*$v;={wkC*M`Sy|s1HlB%z-?$#~Tobb>0QY>sO
zfJ8^$AA!10PdxX2x#V5-;UGI`1mXIQzE4k2pWd`a<#>q7(^FHmtKRSZ9<sNpl$D+R
z^!4lE+j37IKklA>ex7ep{r{im>usjp-1e4>$^2iA|4bv-z`#H*US3caWA(fEx}QfM
zOT4|kJv=664rnCt>-+oh-QxP!Zf;Ju?c1JqR?4%!ycaa-ef;{a($^_H7q6|24*oie
zfg#y}A;lv7+?<I^ROa_h-Err(!u>s!pYMJ9C~cm%2Gslh^W!6^fc^LD^?DWd`ODcm
zpV$1&KRbES4Nzv{;^Qleo_=L<Wo_;Mf9s$8+AVLs&fCMo<J*qq{`04$My|6KF28-S
znO*g-t(?lmna1hhZsg6)?xNaZA;<e<MMXqZ;^X7z+SNuacI&;g)O&hR>71~&QJL@V
z>;w&-%rebhwx{y*sr&ciCz%vIIid1>ddLjl8hzpQjGmybrdz+<+CM)(@0Ob)AR(dQ
zIm@DO(Q%9Afs5T%dQ4OT@jyeA3!U3fUB4dAD{XeALr@ts-sf3#m(e?~PU7^Yl7D}G
zPT3>E@W6?Ial%8DIsv~|+h29Y_T~LKP_z75j>nrk(~=hfZ*On+|9-dpzAyWuTibM#
zd#+nLt^03KX&$m7!13R|f1nw+e?K1cPt^!iI=Rhzn$AR(&~-64FaFd8EeA;US@quF
z4yf+&{8jBY$>s5}-r~R8{vSK|EBpF7&}4g1X-}`TdDgo-J3+HapkaXR>iv?*COJ1Y
zsBE__deU+IX{Y_?PW#)(`(!WAFiZ~FRg$?jZg12~<Mgs@d(dE7ZN#*t^K7eErJtW?
zRrhB{*xIP2FE208es*T&ufN~#g9Z>zo<HwzS@dK=YUHm^r}e*{Q0`yy>JF^*09C}3
zwq#w^irrmyHu>+S)YB=E)2{0|mU}%vH#au6XkN{yle6n0&QH~zuJXQI@!I<M`Kyv|
zZv)LlFWXV;;LvbuYqolF&%KJry(+h3_f!PF-}AXo=k%puf7_|6X61!1^_r@pc{N!l
z@94$F?x1=ra@x{wZ*T9O_WsV!;AyEVD?dMzyR8$y@6PLeLc1BNs_lj3XWrgXnB0F{
z?*EU+{U`0hDvoxE%AE#PnW3x0Jb(Saeqdef?vl5+OkG`FD_i>i{{EhQeO;`lob#k2
ztOH}Am+rssG<4GrU*}UM&oChhR0#M*M9f&UXpxAx`0|O$?z`6h{&-y8H20PXD=X{E
zi|+D!vrR?xVj@79XpUv^mBsG;v$yHT@7t4e``VS2!FTN{=GjyR>F@iIwCbH13p@Mr
z71me3-m7@b`}E{w_u%DzR~s0aZR`x@Ta|iUym;}}&f?{Z7A?B6%y)Lk+y7-#b)&;V
zSA|@hrW<Wi@*<%BtGfR@pVIH@`E|cus=K<nzC6+?T=it4J807J`mPTj3M7+l4jp@T
zb~Y$6u74kxWNw<@U+gENU;OxApPcQg^!c@BH?5}YMn5z3d^E!_c}wwgzpLwFZ-3p;
za3uMT#If`9?bqwY?y9&`xVz@(rm*#KZwvRdw6KIvUwuU3@|MhCQOzJ1&>V=EUd)TF
z=eA~FfA#2S_sMzO40m44d*4+0@DS_Xuh*iZw&%^gwl;cs@N&P*OG`Yf{(L-cdn@nu
zHsABM-{*jaEK*NR@$9$x)N!x!x$M((b8jzx+rlYql5~XQ?Y+IxtXv`i=jYkx|B~lp
z@b|Q}eYv>bE@*4kRnStC+RtarL33B%-rZdtxj7BAfCw}|Z?*r>+%?KOE$#C_^B<sL
z@Ze=Wfhj3V<SL&C&b6%$i?9E?HS5ZXhouK<f?i!&xmeOTZH4D#HLd7vYySNC^93|>
zeRXxXf6?rkpPw>MPEyUfw4@W%_SXzvwxaIuFD@>wOZWCxZ%sJJ1S)~PzPkF^N^-6+
zXo@ImYu3xB)8ns!T3)kEvrkDZw*UVp_<r5*wcB!UPkU79AhbKkv%Y?ZUEQA@W_fp3
z^h%qb+N1-T6$j1S-`!UE=i~9O-)`rx4qqP!8W9JL_`SWo9W;FnYGi$RdD*rvc)6eK
z-oM{&zq+$?^P<IzK{W!Xsd#sHd3Y<AXvo&A(6jSwqe1Pvtyxz~o}3WWjoA_K{eJ!a
z><|0Qd!@~<E$+8l<t|?v0_wv&J3D)8#ziGiu;&&XCp0z&nuOYU>o}p|v0b}f{QUJR
z>)V@~tK#?X1BH6%${^Q?6DOXUW4Za;+uO^(zP_IQ{oP$qyON2CDd@{Sh6a^qjGi@V
zbrlsmR>tlwn{@u={r&a(PtLX8t{JvwM&<jx-_J}?boL1dm;f5l^7Qa1$o_rNU0(9^
zCZE+|YtQ`n_}KS&pX^?{_p%P3^32MQ;T~pMc`v+Z-F)^ZX+qB#HDh*cIKJ!jbp6@;
zYJbmSV&#&kudfFU^%&>eFerX{N;LWQww1BFw_SgH&w~HN#l`NRfm7dmdn$X^uV240
z_qOSBx0skY8*^`imilDZ*8lxFUDC2>$;!CByEysy%>MoRrxw4jW?A9mW1yLA&w1e$
z6+5mM8y%Z5%M>)SB)|T3Qc_Y+e}DgN8_Cnt^+Byr$7Z(5E%ue4mQ=o6I{nPw@AvbW
zn3;Xo#q9K%X_R_q_4<8Tj~+jsyypF}+W7xdEsN78+t=3xFLvYo{HR-h*8I9(nkV0G
z&%2v7%PcqR)030Qo6^o^otmznZ};=b<dpd96P4X(vCCB)U}0gAxV`P}vj$Mt_2s?2
zyE{8N3>q67mt|aB^lWN)oZ-ihALHULzpnQa*NI426|yo3WKhx5Q>jtgax%B&-+x#5
z=f{tV&!@E4&qzAjHS@p$hu{qfj+Ym^^A~@5;@SUQO;PdSp1<F2FH1b!wk%+wlbV6S
z1<*REQ&Y8PZ%jU3^`}0q$MATctnuGpUyYY~O*M+#lwx>uQ>yXNZgF$n=xrv!%l%Bl
z*T?OB`J0L1`sSXUz44s?m_g(0S5^jtR>d6al@49##JaxR0W?zrT3=KD=VSY8O<nKl
zdZ8g9Q;zk?u0A){+WXgT{?bM!){v!MqGxBDpWpg7x!)Ev;+T1VU#+K|CuoJ{kLA0c
zA8+{a^QWeX$(Lns)6UOZ>((o^(^hGd-&`wDUpu<I6*OC??msUC)ZpIs{@&i*=jPkL
zzqnkSfq`Mi^gEv!RaE)pY*s9G?_X8(^OM|bt*|vOu9aJVeE;;+)Z*;$bupGVx6NHu
zcMr6<(w>)5g;nUe$Op5Rk^5?XmVA2Rd0i#Colh1tKz{r{iM_o&D?9scwf&%_nD1O!
zCWv^{q@+E1v-P@n%_sMy**|_%q@J2`@^u{(6Vs&Hch(FH3?KZ<&)c_|t1>Y&tDbyq
z{6cts{k$7$1_lAs_2a+on%^z1zw1^dX#Pz%ZcoI+hYwF~V`gA*xYg0$4{rF?{YYFN
zZ1~_Ahl1vW8(+0HYG3=xCu_B2!2*S!KY#AL6}Pu4^mxB~`R|23bDn7Ke7;XVZcl`)
zRmqOSSD6_Y9{9~RO6|I}J%9eS)D#bv2_h%v+wXUBa@vx3n61C`^|iIZDJe@{|2}cT
zLoyj8c6ELH{jD{Be|_Cm_I6hEZE4kW8P=(%M5gLQemXZ7w4n4|$J*%atDM{U)}7Dw
zux0Y#a&>oqec9h0w2te}Gsd5v&)Z*J?k^v{`_|TMZ4C_%`MMtqqZxjFILtp))mzN=
z(+OoyIpvMFLr+dp4c(S=b9advD3W4JrtdFh5%2`nSAO&D)-tp6c}&{(=aV<6kv8ed
z=5&A1Dx<%@zk}8Qg=|jq{rc*v_w#deFMoJ=7&P^urKWal>-vTUhQ0rOy{`IpGyUqS
zP;F4>7c{%D%x~^0^ZPZymc`F}x`RPuu9sS?>(oj-yE-~9+}m5dcirv1)!VtmbTnSR
zkIp-9|9=mtt>rV*2s9)oWmmJq$;ruP+iZixCbu4mg?D$CuXbo;dUbJed)1d06LVxi
z-R+%4PeF_S-Zd~VFf4JdiQ8R!hw<WlMP*g5X*w%gxy6^QcstqOZl(JCnonh?Kq=>6
z;S6?=OQ^JLmx2|)w9&dRGnT<7_wFv!wcZR3)}Td5S`ix(qNX!4c&KwIybNgPlfATy
zg<(fB6O+;Fe*0}gP7Dl_I22x9c|A#LS*ajH0ejBXqusJ4e|{7)aWFUtF{;e%nh;{P
zwi}!VE!Y+^gH}jWb?GxWAntF`V_^7jetYTbYg_af8QyXHv)x_GBEWDUw!~x7T2Q_#
zRb*%=X<}ev*wO9hy-O{#YssX{7;c6;obldOrfa)TTmX&3vrm}<c5H)ngI>h;ZpRlO
zXH&Q|8|*&vR&~=?>&gwu$N9EqUUmbu4yWlvhHOgl1m(-F{{Hgp?YXzjuC9-dzqu(j
zxS(KzT>YOy&^n3URiLu|694@zdJ2ng?62PsS|}Q`vk27f2es&CnPz{vmAyXm@-p99
z#_4@3FAp>_gXUL@o}OB|(7FB9ot?#1zu#{E`g;BTth>8PKYe|w%Fe)WU~jkoVa+cu
zm(PFo=H_P5`b^M5UC*HB=jMXeO8<Rd|Nrt#<Mb)Y?tHv*HW42`e!R6QwfoSaLn@x4
zS|I@;AyYu>FF+#(PcuO=nAxQlp;_|oj-_W%M#hTUpFq9XZMmQp@+9!cY1Wk!qIN1P
zp%qiwxj8Rm4l*z>I9RzbcrJvrI6=dw%jef!0<C9AKE?xDR}C6wWMXD6{qVq1*0w6-
z>FMd;Z|qAt+I4GBWwBHUAE-!?FFEM7uwA|`V*UPqyYAI|_O1Q-bowNf)0@70I<235
zVS(eMCC=@9o|8U3J^g%REwtWJRZ%%{{`~o!hZq?c8cJFiCUHG{_;6L=;<l(Q84DLI
zPynr4Y-Z;VySJzE>e^`Y>z6nD`TN&)8!rdP1eK%5j|+n~9Tc2bYFKjN%gf7OuLS#N
z9`BP~XDxGfmg(iItHZxO>egSCdwUxf56={p*j*(jlYe)M>w8UF%?rw!`XGJn@^vdV
zrJk-TSr2NYtNG7cb9T1*?s<JvZ-~CGYUh&;3J3_`dSBNw!Q^pUYVQB{+zbp1=VpAX
zkH3C<zF6y@#R3jNFHTHU=HlY|6ftkY1cl_Dbul{^{rUM>TSdi1+AQZo#`e6sR<3St
z%RXe(s%+iAw~3K~p<wo&zf3=jJ!LN~m{!j>uW72&(QfhUpr&;4alY+OgO~eF?eFjR
zny#no+11x~?a$B8r4J4;hR<H=J^j^r`~M-U!`8~Im1JOG@W|i6JjqFa&xa;4-6+ts
z`OBN>^Fs>?HthTLN*h#H$L=Z#ytk)P)e~>Uq?YRsD)Bv%?=X5Ue06m-c)&M)-yXX^
zADq9wyBoc`{Qb4r`TJJ#+x<9j_1(VT?=E+VYKLse2n1~<INZ)3zSynz%USdLAHHZa
zFfiQtyn}fX*VEI}umAb^IsewWl#`R9b`&gR7G-2$V36c42SpkKJ$8!Fw@d-$zL8RX
z4m!UcGhfTSL-hK(*vq%JW`i=z)3dX~r)q~!Tc6)%BMM3g^Cmrf*N}62o3E<Zlz_Qb
zrJxzHtLtK;L7muXy3sP0|3K4ZOFV^H+1a(dr|Ezes@$u7Z`&{R`uh6yIX5?HT3AH%
z+yC3qCvX4GqZU+VR!w`z<gq>P?v(|O%%CNs?EG?97CN_sM*3{OUI{M$d*go1=iXHz
zD;GUJ-Vd7HtonYp{OXRv<hS?t-@p0{T0ejmfP(4=(DtDwR_>7XakjBLi=M8#&H*Y`
z(_e18e+jgt2h==tbac!+{r}Hre_naJ7)D0MNlWhREC#Jxs`~kK`ui-~=jY}IAMcX|
zSyB7%=X1|((l!+v9zA}%HTAR@co-a1Wvy7D0b0&K*SdV)>QYd)e;K)JFLTj{2ack;
zQ6Zo$NLN>f$DYo<wq~VW?XMTV-|xTPCu?m||F356=X2JpA~!#aUHg3VdArM?LA8nx
z37(hY>;I}I_qgu{%>)N7c3byB(X;f`mB5dWj+z!fJF`0qv{!7xy`{GqK0TctpLJ_X
zCTOYhzrXM6vo9`kowS7C?uSESV&bak?d!V4_18T+I~z3rFJ+#0Cw6W6%S%f^Q{tdb
z|L^zv<3V$j-`?B=RR*B-RhRBBeEH(yV$c}Q@o%EqVOO4=o&7$m7aTd$^O!qSKn-m0
zeAw3P@U7X`{XoM+p!G(Y!OJx4?Bd$_<-=-f_SpUZQ{39pa_4FkXqit-3kzt)FRzrz
zg*P`he|<99{}pJ=Xu0296;DtvOXcb5>F1Mw*ZlnS^2y1`ULGDh;Ni%pFzLzT$BUoO
ztM&u+CJ!At^yNV_|0@6acA#ltCuirUj~_qwkbQoBet1pIo}{EClcFacpxrTx-Fkzr
zuZuOU{Z;bz&d%VEA3sh~sjsi^e=B@^jmkDq!THYhrCmeJzM9DNb8`YcJUT%A)2pk)
zvk$lNg4P)w>y>_9Ds${Ecsx4m^0MCBpUU3eIw`T(H2d0)TPkHIcilVMEq?bKs8M>S
z`%*50Wyy;PQYIM-&df9hb%IpArd&8RRU0(zEUF#$;%@o<tJ3*<7H&#Co%Qt8)bhRa
z{`~yxJqfhle4CAlNywy<S64K{udhC`F5<d%$%_e1O-)apKcC*TxOc*pCvEF9x5t3G
zm3c=^D(lpwCoU8HE4<`3!=<g+;YW`i&3t)j>8(ALo0XK6MP+5z?*I48d(xF%rP-jx
z+rG0*Koc-mR)wzK9p%5X=&8zI+w;f2^2ym~ynL@P$-cg>wWTHFa2v1O?e)>y{U%PF
zsA&@=?-_sZ!_{wL-k|oBZl?D6^C`8Lwk)b|Dv@>wTNkqu6dj=1&zF~$n&#Xvm}^n!
zwEzFV-K%{Q5*C0~v9FEZernU2-BJFl!`7zsTx{VKzB8>~+T5?Mt`5`|QPH%riu(Ng
zd^xw4_jJ9h^XvarUUwE^U|;~H=}wN%Pfsu3ntgp$_Vsm>mTb+werl7>)3dX$FU~#K
z#A=#+tY>$We@e;{tI}6XI)&9iOKeTEu3RX;U%Om?-w&t1zrUAXy}G}?{_HGMZ_o~#
z^>KSatv65x=ePT@ASo&79U?uSn4su<Wtp$^+NiBwmc`FN!@8hi>~8t}+RU)a$K~tS
zIJI(RK049~TBQM6h6tLGaPOB}XZHPW`TVdo5euKsuaEot>uc~bpP8URUS4@So7Ttn
zpv{@}dZ#VEO010DQ2jj*)N&Blj|(~4B^tWaYw8xgm+NkA$-Ml(*L0@R%G#*u%naoR
z(kEGY+|pQ?BXymLq5RPO|Lbz^><COf{ptO!wI18c9aKOwcK-H%OF$he28IWGp4*!*
zfYR}w&jQ3W0E}E143E8d+;1Otv`ciVb$K3WC4J4$U&~&rbAi%ufYp3<mB9P^YQLVd
zey?F<6eMd^60k02=cQdLpvq~xf-}p6latl8t*oMq)6e<54g!hZY2&%bs%>W%SNi&z
z?`tEl&@vuD2hbSq*VosVmx9_<40*wA918L^9~wbx-9g2!y5Ag+*F|8}i+BVbyryU@
zjNM)K@@jZ|Xhy~g(BhvrH#hIDeR^V|^4im&E^~pfWRgHtNy!$S(_To{sQJ#Ca!nOv
z&JJcH7jYdB>p#!SPkbkq&#%++1g+&riJbQO_iWH8?)$VzkbGY7E*=F#L&Hrv-nqB7
z1TOQLDIzRfd^uO=v=XQ%&+sy47mvd3^7qqJKw~;@t3i4sqj&Krv~r1heS>g?At6s(
zlWVe`{NdMUR|YRP$-QL)+H0`fZ|)?+W4U`%BWD>TI!T4HGcYhHs2aI2MDD5B2x_Nu
zi|c7re|rO3cIhsCdefx^;DB8@QIW}GzFjS72pu$@ywq!|7d#LR*;0=8$-cU|S^Xg>
zGEY1(a$x|C)1I4aJ^flL$PYVwC6yZXd^{%o>p?TWh`9LlYfHhxypl;gCoV1Z1}&1D
zr0T7urRBxSB{HGEzdu^~^d^(4FE311fmW9}c%^hOe7aZte&;{C`hPX+b3uJx28UnM
z6`4+K&Atxm*)uROlsmLZFoWvA2lEx3?=X690VV#J9Rbzf-b_>x)e7<8l`;u%adD9f
z2lf3FRE>NXUS3|_@76E(_M+_RZMnAJ?-Wbf)l^7@g5{SQxrnb3RCddFa$;iEy*)dx
zt%+QGdAa}VFE1~HdUl||nyBoa_2k6F%vjK%Qp4;M0_6_JdZm}E`OeCCc4lVYY5A%b
zilD`_;`(t{KpFbp-s<Intst)lDLLO^?CkEoe3;*U&XZs5@^v#jxj_9U9#C4pa3SFD
zm&^X1>;Au7K3_yg=uv_zNK>9`8;62!^tLNMK0XFb;>7MKIJouCp;m4wvz!^n`sLSO
zTN}MR5oUf5W98qk*FmiX&^#_P8&AN$KR;DHLG7BU+TkIq!*s!WomYd?xUr;CL&~{1
zk)SehPvz%3&lp$6@82h7mb2nmuk`6nYfRRG%E$v}Q#u$Xt;oE*3{>$$3j?v#4ny!(
z@PCq*p2|+>=-{}yZEf!DZJ^mgK|w+Dw@Imy)5_l6c^Lq9S)S`I9tG2^D-%*9H|5?&
zO5>B&eBo(48B(gKIkQaAjoy}VYfI+;^?R-PH?7+D+5XQvwp@pASJ{$8M9mlNSg1UM
zF}!I;kFcYUNTKxfgBd0l4cw0RUerhvQJ<Bu$VIhtqTyu4V_iuyqT&)qO?L=7dZ#$B
zMDlbW`1v>SO}s}kOKb7&ua&EIb^ZQ3?{>|uwON&4Ex+H{dadsJ?)y)><NqXmyO};e
zruywx(OEnU3^xRNl^o95e!p|4@VIPgfBLyOGnM-+lt87@q&c<UZtnbeOj_Gij)7sr
zJSo=(o6l#AUtV7yfA?{8{$5kxStchzvzeN~%buK2?mxp{|Kl*19|r@&ntnGyg>Erj
zuXaA!S91TqZQp<PAiMmWK3QuuPd>XJ56;XmTpaY6k>SnWh%yESnZKZO0T^Dd3}o@h
z&CQLgc-X3Pa*k#3rzeyBpG|P)TX{QvS4rkw-D*aLhPKs?_u9U%uYIZ=f3oy??DVIn
zr>CEqqPcSA%9DcbGJ)IwpD{ka#JyimbdCT6Lxg;<l7rsvH=Fi+y%xRm?Y7&Ow&mXL
zkv7)@HO?mK#O<*VR`WSw|Npanc!d`O!-K^pT@0BwH>Doym;b-8I)Becx2P={fuBMc
z7!I^$i7<ZJ9ugkD+;_IwR5@k_h6sLMBL}^mPbP(ghCcoC`MiH=X(@=?U*i`V8mhPB
zL6gujW(Eekb*mO>bb0ZAyuNDn>fq4Osi~)@rG7qZ9>3l?CNwlO_3Nvvsy^Fa`ph=d
zt$w#NebVj8HG3~TX2@ZAJXvP)langdAr)c`y$}D+&-S<bney$%;qzPj7dy^ljNF`d
z_I?cy1A~d*JsV~Q1`XfE91~_5r>8wS(kZ{ozVOkJGqX%r?`dRUXy{++7}xam`o6Dg
z^HV=QI%@gn!{O^Y|2ND3QOLc$?W}&?$L>k$%nS@>E{iRgKix>~fBK-A|KEkb%=|V6
z{PuqeI)xb-806g-b4&n@!-lR7liziJQ|f8Z^oOb+3j;%qOs|r|wp&@NZ9bh)mf!XN
z!(smA)!*MC<ofJ>z4-Izx&8SY8<Vf^QhopG>gwXRTdzOsvwnBt`o3>lVM*qr(wD%+
zZmFN1oV0wsX0uV%mltm~9Om<!G(E0LGk@>buwUQb&;NYhe*d9hCI$xirGax8LD9bV
z`@Pxo|2$EDd3m}2v-9)k|NQ)Xx&M5-oj;$=HqN}X<jR#RAyqyM3=fn|x{MV(gJNUn
zKJK@-J1$>ev(%lDfx&K>o3MiCrlg}?peXqK?5y|weYKzkuwMNv3=BC9ZiSp-lX_&W
z&9-jc`ttVn{C^+i{~MmS`<*i><=>y5FK=v2&fE9%8J9l?14GReH$jE%cZ$5vS-oDv
zBV%D;e!r%;Ytf3^uWxKj=CgRf@V<$UfuYx7F~@|}>-Sm3|2!4`Y4iNQI_>gx6?^~M
ze!pW}|KqT{mVqP#!v;ku*9Op%^7vnurrVY5ul@b)9;Yk=gH)rNAUM|k{QPWRQvd7A
z%bP`~b-m|sFfjbEkaBI{kuuRRzgLlbuk!ias%nsNMVEcepPr8YSH!9YiDQllr}cL0
ztPWrAw?1y~r@Qa#%tJ#%f4=mupOxHasaE}VYdGlK3U2*98!jb-!g*mJi^uhKv7etz
z_D_3opmFEpKI<S6*Sy_txB1MmFm#u%Es?AL^Ra7>`iU187YE12&W$a<yY=3^ZvA~T
z8kyObg{}^Jd10Y*8^8QNbA4rIhKBP^ZlB#+=31AZ>#zUw_|K2y_UEGW_f9p<zP1Fk
za&g@{ALq04Y^|rq*HuPs%h`Eu@89qD?cd(odRjC*W}>S1v?r@puRHbmy#4%@!ONFr
zUUvJO%g)fyyXxS7?;rm4zk=<)?>zt1`u<P9eShEPt9x3Nz6yD`a#Ha*OZEEi<@M7;
zSBG8Q&3ygE#l@R*Zf>&q`{nY>Yipw?rM%z!{T!%>DtvtG>5|EQtB#ytU<fGW{U@{r
zG<21DdD+dRZe1-~uet4VRT|}YOT*Xgd^W4}-Tl(*v640w1+g_MCmY%2X3Vp#el~so
zpVY`?CI*M*%MX}UJoo*&x<2ht3upFT=BlM@A~&nu|8dN`=+jB{^y#r>E4TlDHakD<
z-k!>v+3WYddi(X|Wp#hsuOX6P{Z}67AM~1(c)0E9m&^X=8yK0v+Fq~S?)UlG+1Ik$
zkIPl(e2UE5@vv>rzhAF^{(WD+|J+~8;%6$JS=rgI-(J0TE$v_vD`<9k)6KNmxtA;%
z85SsJi7;N;U;lrXz5SmLhrfR7UgQxP8XC4fZm;L_hz$vj|GvimHx-YoNW8T@fB(7U
zX}ZzVR93EBxpF&b;%HYg3kL(keAiwj2T-aH2@MUc>X}pj?<XjV-TGvHE<9dSkd}6|
zOZ4lvY5MW|t{E~ge2BcP!IW~OLvX5`qH)@p6Taqmr)00+YqmN4yx*sPGeITz^S$5i
zoz7mrciOeJ(br?Ez8+i}QJ;Bkj%DWkeSfRw{M})7Qnr3;*_ZkD3=A5_&;S4Par(U#
zM-=93@me`d(~qAQ|NqzZnU=+Ap!xQL&Ft$xZxv0QVOw3+wdjQTzK^|g3Xe&C{Z{?u
z#YE%tHpch=|NDM<W$<#Fk4J>R_RX{^&8qtTZm(SZZA;I6|4z2EF+32CxUS!DT-|aR
z)8?8glN$^(&GX~F-Ok^CW{&0NckjY=qqdx=|9idu>4IiHt=f5Ud#j#?@BbCL_v`2L
z_V(V>^*}o#E-!ZPS9yPb>+5UL`DfqU-26K4X!ZZU-=9C79)HgA`JCWacNiEhOb8L>
zeRyx%>w;sF=}+3E^G-yj&z;K5XQ2QJrKQv3W?fqw{k*^aPx8{^tBn&5G=K`+%5OK*
zUta?)DSET<xEyFO|D4U|Gdhu*RFaSNoD7T3ow_o3dEE=uh|9}-PtU7<H}lCi3udMo
ztC|n952;Vi`DHE2lvDNoe@ykKlj`0(nO`ptY_?@CdcXI3+K&$pC5_X3?nX`5i~Y29
zeXXwk-Y-FAHxk>q{I+k~U)Nak{oUQq51RR(z1e*J+={@(n|?l<o&Mp$K}qAZp55_`
z3?F7*OJIKT^?LmI%I9;pUyIsb_cuty_1U?(w-cD2G_uP@Jpbiq{dP+AyPeCQWHK-;
zNX*{wz6CT$zw7(i9|zd`!`DWIc1~nqXz*Wga2})Qq{z)_skgRdmiCM5Mom$vd^$B8
zRC!k&-_6I*z#z4aO;$lXroa(Y%~ri$KELi)RR8HJ^%4e#2a_{5FczKG-5yfK!oZNA
zoV|gu=uYABP#90&iJgJLt`?Mz1Ed(47#OCwfqE)S1r-<=95P3R2X&a7sH%F@scuyC
z<iwX(SG9Gcx1D)z|No~<>6JiG0(m9-`%$+(sFKROx+)Y@8azDQp8oI8Pth4t3=C4!
zmQ9sgu<^&e@B5~^%h#GXxAB}@xBK0!|G)SDKMiV1+J3vC9K6iu<T>m2b5v&9R+oLd
zU;lqg_I17Rm_pZSI+2rBuiK?{-u{2hGQYXAmigA6W@PyB=F|FzUrWweK7RsoNED-C
z$%_j$54qz{fGR6c6WJ5gjM0hSrUM#m*j4&^n##@U_j`*!9Ar<wv!l@R<&w!-M)nL0
zCM<dfqx^rr+nv96v-s`Y?XhJyQ>X9waEQA!8&uh_@yo@C%X=0*Xk=fOetzE1r~37g
zxArhFToB-#;GgmC&Q4G}WYUwf=J(I+sr<a@dR+BY>vjI~?J8fbTz*Oplwm{|KXKlv
z`~4Q=uQp!kX(}^~)BPqb*|u%ly^UM9ZjIcK;CQe4{obH-7KVm4mxdZ2&>B9sKAD;O
zYJY>u2G2>Ur>CiUW@Tl)lD)qsa`V<cMuvv-N{pWj&&;(pZ<j5LxV1HVy7l`##-X91
zo|C|PO2XDe1irUCJzYQkwFCph51k_MHN0CYK0X39jk?A4&pkOgdGph0(bwMA7QDR5
zK0WF0Qp@6JOKN|AyP323?6t@FJ8_l!OexH3A~q^Dv-6+pku)y)|Mz=3$OYN^v#+mv
zd1YlVXyta*`MJ=teO~=#aM{j|UbgRG$+le^xmnG*o$u@v&0wR%LoHukUQVBTy!Pwr
z__O(SpJ$($XS+M^?Z4me&!5)cKWCwH`!rKM1_l$4a}8^jZ$58lEv)W$X8Qg=PtVM^
zw|{)RKR)~a>-hTrJxBNdIlVvSPz&eF`}^yW3+TMvZ>I?=yM-haF)(CUu$-u>dNwmX
zC^U3xr?5Jx;r{iTJ;#K1cXvNO$S!~8X8QcOp!V?Rv*za?9BejDJ2T^J&0lr~hMFqQ
z317b)VCG-*eWUf;Ey3@0KA-1n!3*jN#DRtjMoTn?;a8l`K5=TQcJaN+=S!ov=Ve}8
z<O(`h#b=hu%1g<N3=XcG6MUcSc-(i|^m@$X<bGST<l}w5mzVh(XIxld^XtXpsdBsw
z3|h-Fm$LsbnPpX)^=`-GzL?stSARY;-#=5u^4pE%%d5lJ&#8X5bEZvYQL8!&L&K>8
zwiMwR28m9f{pgeZ?RMs^UA9b3eO^V9T=kocpq$ZknUTTaDaQog2QQb;_d7q&_VT9G
z(_63o{_-+-J3pwI$dn>H!#Ld!)EHfR{o1u<8eMySKASB%gNuPd%fBIq>GU*RZ(m>E
zy<gML&bs=Rnc+bCMDd0BOrV8qU835r)`Aum=hesltDj-BX{8&p#!Ytn^L4YIw0iL|
zZJ4;{fALxUDfV`Zn>eprySDDL(Q0tZcURflUFV*kon`v^eEqJ6=j9pZi;0I+F*NjM
zU0V|g>cA~Mo-u{xgxZDO<?sKT|NqB-nqKU#Yup#*>;HTV2@PFZ{{G(UntKb|<!0T^
z-)|e8zxQkVJXJ=91x28iaOCE+rx%?0*M8CH4GRqvab4Q}V+*JW35tszNn^G2`L$(}
zzTcPJ8@@gcR1nEk9#IWrV5l*(WZuO2<>h5{P^GgXaIsPOyE{4C@0LlL=f%WTzukJL
z=(O%sP&uu2Omc#6%F|O*cRpz1F8cj;d-}setv5@r#}?mAoepYouKJR}zz|@_#KOR!
z(fgf|k%7TW*+Hsds&@FZJ)h5cZ_m4XX_0I9o89mC%{0jjT6&y`p`q8W!Gz(sY<Uc*
z%OX?#W}~EaSq>;t9h=#nUUZjV3o>#;U?s0dYi+^ld!VlA{XfslC#z_Ot?^hNw->bk
zz-OM#&O^dX3<r)q=J9CtonfHpJKOB+N%i?L+rxr`Cky-A81~zKi%2^^FZSR|28M*k
zLJFeazFhWSo_>B__TJ>GPyebrYc_xqg&5P4L(k64oP6unt*X~sw{F$!Qp(@=GmUi_
z6GMZqb3@3DO{u4Yf`fze_eO3`EB(#D@F7#tL2FIr=Vy@{lU(<H1x?(8lFIT{hLsy`
z-MV#Vrt$K7zu2>5cbDl_t1vL!NMZ44{rc{%wf_D;Mc}vv9Vs$z)v8rr-re2pG?|g%
zz%g|Ptv8_Ys#T$@iyrryUt7C2W~b5PW4)*M{eCw)@9wV90xJfF8#`u&RW+R7Wmo$v
z<-`O<Nz<&5XXob5e!K0q9!M#uyAqwZbLpkWj0^|dp3c1>4UU8+ZoLz4x8I-F$}OID
zJ+}O8>h#!Y&3slXE-eNrQ*~fqXt-3t%fY}vZsW7&RL<V7*DN2l2y59MbNhIC{y&qe
zSFg@A%f03HdyaT)N#Ls0f8X;j2>Qdqmf;dt`}OLaqEnhT%Wmgh-c$K`OXg*@zrVho
zzOgZRbIs3BDxRUCp|0sNhDk0_TeG%aw7Y-oU)8ErtF->vGX2oWj(W++5Mf__zqY)M
zPj*(?*;%PSK0JJRb#*vs%k#;}>d)^KpFjKM<>k+Z<^OHCl>Cd`j-h@s17ikD+SyrC
z7x&v)-OkzUTlfF>{pH2a&y`j$pIa8CxA)7XJGI~Mf`;d=^?Pq%kZOEi`@XvJ``z--
zljr|QS^MLML%*DD(J{&NHJ^8Ki|d`)zVGYWH@jZ112ySxZONPrO0+lA=dUe)18TFy
z?X61f*4^gu``g>i-|tmF7vKNG_3pn*OTCM)MW(0D&fVs@IqfVc0m~GfP^|p*a=H17
z*Pub<;$JV9ryrLs_W^BJ-I#owN7l+@{oZf4torM}-z_gbrMY}b^6@@U|EkaW-Htt<
z&sl%%+x>iA^{1oyb%wgp+k9SMTWehL;epS5yT8iMcfQ~Ed(;1azn91EE(5u<>`viv
zP_J0}iz(xVx;c!D87y_5XWs{nOWp)+O8BvJ{k~sW|9<cPZw)FC%x>pQ-dX(onY;b3
zK+qW1%gf8tPwQ^?nRKV*vajXmGseaxFD}d}y%rg{ucmTd?YEmgGmTUaxAA&U0>$ml
z*XwqJ!YgI@+_F=*^Y_mM#Z0SsoX7ind#_h7`~Ua;|Fe(#?dO3a<nHeB^J^kE7ybQu
zJ^erf<4n8Ss#&JlVdXi2B9fLxDWE1?xBfm0P}gtW{(rwfqY9M|8rfg<?S8xMwo%fN
z4p7rAJgzeJ-<Rd~PeFawf4|?)Up}u&D>`@URjYK6fqeFVK74t1*Lr$fRc2OJmQnJt
z9#9P={bw&*f~^RHNk+H0zTT=;tGbl?ERy#2-LHDRw)=6v{l0e}PfgW+E&KUa_IlB?
zvrM%?<F>oD*8ga)*Vy-=RsYY~^LMx9-hR|$eD25W<2@3Fi!!dRx_aLx?dPYbU#~6m
znHdxk8Y;T|eqHt5TRRFLcdc5rYLWkZyQ843y4Tk4dbMiNu3fukSQI7&inwkpd3kA3
z?C!FoE0@pPb?x~a^ZdArAhV|g`>l-L{bEsf*Q-~rb{)SSQ|ucU8yl+=vEf1fIi3T@
z9t!C+u;qPxbky_H#`ii~Z>G(@`nU4zEK^YH8MJL&w(LgYTF@~Mx6MF<$Dn2?|KAwU
zAS<YOnSO3gzv*dqP!sy!o~)~@bRsq=*j9b<xV<g+dgbZ6^}m+adremJeI+-)>{cdd
zD@on&+xOKx-|hW=PbX@N#^E;J)3@{Y$9@kC4V_y1?PmH~W7XHcW=(nm8hz+m^ur}y
zoI&2Vfx)C;ZS;1(Njj06o+R7u*Xa85d;kCHs&8**&YCp~bSe*M<gNI;?R3z}64`Q4
zgCh0xG|=EFNX<lL_iMX(UY^oke+D$fcE0vqF(}0reLO0j{_M<5X`9QRo}Mm#*eag3
zdhNET>}9UqVrxx<KmCi{y6tw}?yc9h-AL-ba_t&;JHRAK<Fq9jT|5#73UjSWSN(o*
zXJ_%d-S79EnQi{wIo<Nrip7_<=ii@G^XcTvOG~{$gT!|#pU+KVNe~uPVBn1boqe=5
z`#R`UKl#@`7rXa^MouRG`};fn&ySBgzu&6{jqbkL^Z8ul<}}~Ch1TzOB*#^~Tnd`T
zxLN=IZ}Iim@}=?n>vsNl)cv|o(kR6PR2cp_UjN4()D1ICK9({)w(R8ly6?MrXJtM)
zF>&XgPp6G@ZfpQK0+gYRGA}LJl7GK$?aXVS6T(2P^pB5^r(as)nOzGy{NpF+6u5=w
zbFZz5l&gBN&}Wv3=HYh!^Pr$z+-IfLE>qOO!FYpZ4~OgmK?$3Rg1lWXmw`4pG{<-R
zoB#jke9H$7%%Iw5-PV8StlxviKC{=F=HIgcl?W3Qoi}A&T_sa^L{QSUs>H2VYU)|@
z`!=4Sl59@ZtCf~tuLK*{|NHZ1-|u%I1$?$&F7VFEJklY!^V2Eq*Vn?<L~J}~9WClQ
zF+8qPwf_J2`uOeN-tB&$c5aTP<(mzMC#l@d+nw9B$YZ(R+@b@F>}$Tu)Mp-OV3agS
za5&Z@Ir+5yew+J$-<5wpz|3Fs<~;j>U6#yD7dSxeLr~Mx&+6rp(m1~_$L;?aCLiyM
zeO^4<Bs1u}`OorumFa2c=k2|AtBIBSTGgE`nU~*ex$LLerSyL9_qc0oB7?tIP2mTn
zLeQSNE>Uf>7q3AneXp@>^6|d2udc4XUiqij{N4=EFs<#rf4^RDuKM~4G^p)a^kQNA
zveMVrer~V-y?txn?*rfw@M*2w;@6^Y=Wf3nByyCkK9-@zB;A2Qs!`6i>Pfo&??_Nr
zcW&9O%(dlC^-m_c8zmlUnNx6x^L5R;2M3#rUoM^gtVP)GMBVSV)1S|))_Z)s|2!xi
zUn^{vDe~BMr|9&Tx3|qfD>Fg09B9G>)a4Y5&Y9@iEw;4!`#Z}|CzLne&fC2-_4G7Q
zn)!4@*#F7z`~Uw%&Ch;%YAPsd_C|vC4qW!L)&=R!-F_D|$eI3pZuz<7e%ook-|x4V
zwJwW!etkpH(^E1P4;m${N;2YVJ|5k5`!%1Ojm62|(^uXtILs?)S5xurMsh!ow3*Ia
ztI|`i*YBUV`~5!azrVizzTmL?$t3Sj7o7Q@ZaB<$8Z;6C>Xe(`DR2f&%Y1o#{k`)4
z+YB2TwMu{MGML@zku>fK_Oo32;^JcWi)$h`FDiX~?P%Tax8X76cT10UiE4K((&)<F
zc5|7<!xrIJ^EM|P?Rs?k{=c$|YooU(b?a`^*!Sb8zF6=wA5AtMi2#{`1B|7|@0MKl
zb^ZVEZ@1rEE6`39{cZQ_em??@!*5JEIcbr`z5R3FS3aK`4ob1Ev(0k5!q!HK?tZ_o
z`r~5xzZq*K-FqYgL&C$?e@_1WcDsJpA`Q?C#-k&`{yJ9W?_##(-Q6W&k`eIn(`o(d
zvup3{D0D3?E&cf6Fu(Znc~w~#7dp3tJ@Mh;;cifh`2El3$Ajjh)AxN@x+r#cnQOP0
zZr9uG_xFK3)RlR8*;U!%i>~6LzOzhLR{uG`%rD|DQ|NMWZ}s;@k(<+8zrVZNo!n=+
zY=&X-G4-GRtOwdxXmPFIz|6pK>Y*u>hY4r>XK%l`W|wr)t7OoGxTmY1%Q~loCIDFT
BRKEZK

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-7.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-7.png
new file mode 100644
index 0000000000000000000000000000000000000000..9eb502861399c60ece3a54aaf962e0a9b1cc2919
GIT binary patch
literal 23941
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_e2hBy8H|Bv5&ggoB}aZXa&81_C|
zI(zMQ)2>@uS-IMwtCp_VwR-8=wy=vqA>rP-+i$IM^bTCQVo}-M4AG7HTlIUn*4>x?
z`|OX*a}}Y}Dl4yl{&=GKOpNj8nZ-tP%Af6ewyDR^je&uI;Q@p7Vr~$l;JHErnC4+*
zVPIfrNaj!gab=tt7(vP;m^eV(;{pyK%A$>diGhLPfFX+jh})+~npOqxm9e|G<ydF`
zxm^0~P2|@%H-jfmocQVU=gIy3{dGScw%@M1vtx(F&24L^YKPzZmi+hfo12^6x8<%5
zUhXFu+tq&M-u0K4m#?n*`RUYL>+LzWuN9xSRrl=b=m^-DbaalMsq4(2Us)f_S@Utf
zMMLzVZMoa^<KyF5+1Xe7&9$0kQ(5FTeY)DT)RUWZwx?=`t(lN}TgoIOfGzat-OuOk
z*O%X~4gY?xdi}5O@7IUN*M_oki}{q!e$tS7dz+f?tSL#m8=2X6-HQF4c<y$#%HO|<
zUtWE`fBd+6<>zOiS679aR(;8c-Boh(^~OoJ-QC<?Jv!PQciY9q<;3yh?&0fVJU2c&
z*v!8B+t%dceImE-X6^s?YjxF^7YjF~p4Q60x98LM@8J~{J7$?=F6y`cXK}RnR8CM;
z{PlIQtKH=)U7nwt8@xU5u86q!@-|-SWxLM4O}V}8)wQ*=AN}fC!Rheq(d>(?3<c9t
zBfGl0CmXtXdV2o)`~ALY`Z<}k5gVPP&GW8Uzuz<YqUyh7ornz%OTDLG+f(`Z(jMPW
z?Z)x(@xAi)aT_;ol*{cgoMlnC=+B=&d)nIMY^zqp?k>{`TGDa7_WP@=-j$!9U443b
z`quLIaYv6IUtRwGUevan$gZtX)0Xb7{+@MZMc}L3+t*+Jdfhnj5X;SNy2(AqdZm|}
z->><+>-L>Bj?HYD7Zx}g9b1ugb=9iy_4A6Jo?5Ex-k0(8)YMm(mUi3y`QW@Zdi%R=
z*NZj>RmF?zL@0Rvy8r**^55_G-_O0fDfP6>YJJ^9hYxSfy>0gN<Ye{5-i#9_@-$et
zrA8jxmfQbyb@+NSJ3G5$$B!RZQBg^8NX-o2U6$Kl{Nvf|{GQavv<C+oB}1l`Z_Ax+
zRr+d4_UtF0vu|!%x-s|mpHHXt<#PA^`Q)7(Ijys^({Nhq%;WO)Hom|6Iywxt<<7RP
z{<cH+{?6j%CubTj-<W%QP0Y?q$=0Vg`4kjvI62>b|H<k4^DXQCRCN8`SMzhz^<@31
zEhi$TrCOD~O5qaKN^x>__6-UOn)Pa5U^6?v*|gM|9UUB->;6`)&lS^;%XxKm_48kL
zii(P{>oe0n{CM17T^n!Ql^Xf--%j>|^o87F454eILd);hZtpR?wWDzHb+c}9{jkT!
zdPRkV7Bw_5Ow|Z<s{Q@#>dVW^ZEyYi@wh+h`ntJF%F3bw0t+r&2nbyf;JCN?`?aU1
zr^micN={C_z3tn(yRSF)Zz)?{_2=X9(CvA#*XPb%y<1%M`&54~uS?eN_blcT)zZ+=
z@USd;5|EOzBx*~>!lmBRm;EfYs`;^DSNZ#OCr)_${QX<o#3aPf(D2rl%*oNatx8|*
zIJQzJe&3zY;H<kr>#puBPQO04DZ5wN+z(_<JD=>HyxI2*6^?d^2Ct3Us^a<j`ugv;
z)T+O|sd_p!yyVptO<oxbgWmLqahp>kK`Fwj<i&#I<9(Uu=2*VG=O6X<=4N+hcD|5p
zIXAyNogTj`>1bEnZPSbk4&35;d*1ykdvjx<czjLZRISjUjEogbOiUtzf(zHh?tXQk
zkvVSrOq<G0tHRf>yKo_Zm5ptc$3&&98ygm;ot^dcn%>&$r?<X;{p952*x0W<hU@go
z?Ck8;WovCUR4`6I7qYkNtB8!unga(MT;1GO)&BmL_n&Q!WwBfS-mlYMU0uEWP%HQD
zx_7h9^Ve<7zFswFeeUf|I;Y=0|M%*(#a2Uw%)R^8*<G8W8T{p}`TZ4sbFDzd)~6>Y
z7pwWs%J}{5ZQOZDhi4ArIt+P#{`|3-#w%kH0P<u(!3I!CaN$D0-w%iRrR-{Ui0Q?w
zFwMTEk$!H@q<{YmO8@`;etKK3Y4$ari4!MU6+i2#`~SDR_QOGTDVvH7o6^tgy}b5?
zwf@Dz_LRtJYQD3U+}fJGy6o+(b)|xWf|Hi?$y#R}>ygxo-nPc7?9GY;2OMN=DgsuA
zt-bW<Xm{xPxV^9C)D;ySudWWi{_t=+D2;5*zaRJe+uO^_=hv-b<rdShvy1DMHlOyT
zTw_)6^1erp9*GDFK78diHO4<`ie7Bg|DWgUO-f&d@JgGV`MOWWvdHE0^Yhmi_uH+y
zv$MGR?zgnK@cj4no8H~soqcA8;jb5q`>$+H_ZQWVv+@0HQ}t!Vz8{acr|QK<g{}$-
zTo<#`B<To8udH<#zx|&NyjLr2<?H`!oHS|Dm3_6<Q#FItu5Md7w|LW!9~B@qrLV38
zetmUys&2H|-#?$vOWD`$d3JvOdR}R>6#)yK)_wc?`}_3^3!OvPL>O+(yzEx_>B+@~
z&h1<3{#KoxXB)jXdi%7J;_KcaAyXbbdSsG*P6iYM>(-S{im6}rrC2~(dbMWoG7S|K
z7ehlsE>6yi|Nj2|de;2@i+8)<hqZEvs(9YsmV5cM{{A&lTeDVrPF6cLU4Q<!cXwBx
zxBnl*Ev|Rv&(F_S7dSF|2JI|*Dk3ia{A02H$+x?{sM%f*H#)uP%Te+8jC*@3v+nHJ
zIIr$k=HE}J^`kZ<G@9kySP)<L)78<@@p^SOV@eCpK4#_vj+&(hqc$eBe*E~+kdcw`
z*@uUR^IlKWjZV`!ZDg8t#UTCMoWf}H%1<fDk<%*Q?R*|{`q!72$vL;p;%h#(9xwEp
zYxVS7ZB9;3SFHOq{rGoVqo;1yi_qL^dThq!<^IyQxA{IjHP!Z-Wb&C#Vf8(F`@@>q
zczbehr=6Ifn0Na6n#kmu+FIX#e}10*`T6<XYj-`ur#$(5duQ?TnO3E%HtL){GsE!k
z*18iD6pwAo-CXrG>+{#^@zrnjM8w6@b8eeyhpj1yo);v(=I!n6vt=xcByMjzyUcgC
zP1Yuz(;|8?HzbnJyt%nK_U`^YZ*ND7uTgYvlQ_NU%!b6nF{ib{)@0Pw)SNjt*ZT60
zQ%n5!R(%CI>re~l%UgO&^&;5$<xIr&<Gy6<PdO>{`0?Z9U8S#|ZL_hkxB)UaW=Fxn
z<k_otZ&>=g%JXHd?^~;`jt+x~6DQ`Kw)^!$IXQCL%AloPmet?Z+}@=fzHY}~>4Ilx
zB-h8j<CC#SICSXH8Qbr79&gm!I{){Sxcgt?;wP*58cj=;w70kaeAfK_j@--Z<L#4g
zZ>xO0cKe=d3<{4gvU2ZWR=t0*;^))pSC{!pySlr3Pjc&#Sjfc6wPS1T^SR|Ik<*U#
z$*zvsS+sL)^_z{yMMOoH`rG|H@>qhAkx}lnQPP8zsgXv<G@`fV#9e=Wdiwiazby(L
zG)&WpT%_dM_2TFA`Q_2!OT9$5W?%PH_nQ+?Q}ai6rDf#mu(eb4<L$QRMF^|;1k5x_
z4cVG?Rr=oh6BCt93m!P|N*FlET9<_!?Gl|jW5$Z-^XucDo|@`idV9tU2~d?&{Orud
zS65eGF4^<(@$u8gkGuEV{aTS7nUk|-UCho$Tf1+rEqHN3(eqMl`Q1|QZ{aHf6xWw~
zy}G`Bef{6p@lks!HXgUKx3^zkuCV8C*u9glQ_svW+@#|zU;Aa^>vO3_r#IdC$9rO`
z_VnvjhYuaPvMN+N_x`@v-{0TwUs;v+>=&pKJAQYn`uv)pV>5I<CNMtma~0Qlz*q8i
z2iNIMCW(hwO5fbLxcKd@t=UhXKYxBP-}dIwZt<_j<?CNOIXM}W=WcDuTzqk{`|8Ti
z&$6zrnhJ8*tE;QiZ^W?dEP5Jrd6}<i{l6MlS659nH8<1jYghh$zrX&#fdeLQlRrN@
zJ88)*)9h2nj~`F2y}PT_wDeU-?!7&c{WhOY=&rtd|9*VG&8Log)$eWJ-rDNDyZrsN
zb91dtv#zX|eQW)8^|?on9(_4AJkIm-H)Xe;fUQ|qzuf=-@B1#rl$V#5-rAZyUCK1;
z$u-xNwZFf;y1cv}R5)LcufO~H^{iR8)!#B69qE*l{}5mM^=ipmb=zfrb61_5te*Y)
z+FGm1PfKq9;Hj^#-@Z-Os^r4%_xn~?zuW1)HhO#5+NiA|TeCv@^NRiA_3QurTweF@
zXS%3PM8NlZ)%mlw{d~9ky-C%VjJ2`5!`%DjN~?1=rbb#7JUHOXx_9=@eUo-~#jY)Q
zcxcj+$?E?13Va#z^qDvc*uDNem@;DqsMc8#yxi~At*xuO#B^VMynW>H@&4DJo}OOG
z$F^O^8`L!2SMxJuWsvIHsI6Yj?EKf#=hrS<8NB?I#Nta!y<cAqj}N`QEjR!9%1YDh
zYdXBrW<Hmf`4-zYStuwttc}`w>BGarqEb?`UVS^s{C536hT5%9o-X&ByK8H!H>eqK
ztVeS3$H&LBzrVZ7#lcaqdvbxYkdRQwj)KJ4Jr#k`+j1@j``a$vvBSdE&25>cL+HvN
zSCF9~H~8ECHMv?SlYG2yYHFn1L$mmOHCeZ|tbFwNv1$H2o2@xFjqW}-$he@eogpc5
zns$STR*1*#?fL$N4HZ>i-`$N~?A{+15ivu`EN8`s4+Y^3b1e!N9d8zK>y=vi=xBHL
zqa&SCW;rw3_++)><Ks>9?nEfN^%V5ZFZ@;I`A?FUpWi?Dw`K9O7Z2Oz!x9n}ELyxc
zbWcU$(-RY&x8=T`oxktmsj1puK`|fVYhG0wIqj*`>!Phs1d2-?SSIWgaA>fONJv=l
z>e|}X`ul!3Jv}`={CJ=2*VpU!?<!?KIa$5G$Iz<mO~kD4)&Ku~fBpHqeRxpNB(uCb
zD_pz9GSAE~e05=Avy-!PtbemtUC@;6J9YA&wpZ5I*Mo9BGaJu^MrQUcMNhqaXPI~g
zFZa7T&$fC?($TJv?f&n$ihq1aT>pCV?%#L%^o;-i`@TPPsh6nl3<JmI{`0RL=C_}-
zEH8Pb;W3X%n^I3NJ2h4N^=bY6SMHYIUz>M#*UGxTzpl^K37pi%Be|&Z^Rt!l`|GkU
zE^57QcDzrv_^kG&ZMo6w<(Ey~{e7u<11Q&D_2kdKvSMNC>1mlSFD(VNNH1@FpZ)ja
zad|1@w4Qf+zsIeO+k4AY!{+9e%*!_0HtKlWR(}gQKhL)G%?(3Pf-_D#b74*7<}au9
z_rG{PzrL*WrPu4PMcOL$3I5pz)la8}KY9OteXq3ns*sgId9V58Y-T)DU%OOIdA&Y^
zWV4|HL&&zA$kLaWTz`LmfBnQn<-6BFDM;Oa-j!{+w=eCDx3{+k2^1C<O4(Lz=`qX`
zzN=b4;okQA`Ny}tzP{f7^W-^~K1-kf@Sy-y`huF~okFTxvaYUrU3S$&PJCn5Rju{%
zRnv8&)lP2;*;n(^<m&9W*j*(T<?H_}T(U%^^xd7G)86k-IN0>+{{H>v=2}mGrss3C
zTRePw-rX(L-}8DUjgMu|_MEKt^3l=mRRIf|tjgcL`Kn$2@6WGauh(x)KR++J(hC%7
zPoF<ue%|i)n_c}Wd++(Y*j@Ja(p2qm5n0){f_C5D-(MfQyKL#M+JAq3UR~tMeRhVS
zbLs1ASI^D0{(9NpzH-a%dtZyRQ_jze1x0u1lM{lucXxf=^|t)oot4$^b{<!*kx2gX
zcKiLRyT`V@ExB8J;>Bz3hR+-d3@V=b`~PeLrGtlu+jpORdvSMpzGU*1rQYJ#^Oe?r
zdp^JZ)$jNF%WL<iot28+QE+f^?5BM5_5T>ccNV3tFOL25<8lAXSrct7EFvcDIj3Iq
z=7!;V`ETdu*{&{re(vP;>*hxpU!6R3_^_y~?An$Vmi~rsf4|?){`KW07Z=whXMWo$
z&t_d-oO^rQEbH=h&(6+%K5PBsu-6wCw{wYTEbyGHmiheL+{{~P2O1bpO;+z`<Cj}g
z{QO+y8hQJ=Jvyf^vCG#i*qD60>My8dTNkr)(Z|Qf?_c_?8MS4_qeqXvT#v6`S@`&v
z=DGaM1rMD}b8Z-1tyQ(R`+1B11gOZHt`}?b?m_IHii@vr%viESMb^G9=F<QDe3y#%
z-qEtH{x-$XEp~U=)tScWcdkh$-+AZa;^LBVyiZoHTs^M#>s66@O+gu%H(#f7X`Xxm
z3d|QxtPYp%`){p$wQ@PAs0J02`FlRLE!ofBz$b0y^Y_=+;FFV7ukI*Jc6D=mb!TVs
zx_927dTV-oou+5i=d<RZ^6cuGNYHr7shP&$8bCK@N5H{@2dh4vRF6HLb8pX1uW33f
zUtV6GeScr=uK)jjgZlDkXPf)$Ms2xpW~TAwkm{G0mWs;Bt&=oPJ8}JbxNEoA)YQnT
zHye+aJUYTTRXf}-_4Kr>d%xdXeW;cD^_iK*v+V2l^~qQ+irZVI>E0)E-S$|!eBBBu
z)2tQw_xJsJwR(NX#w6FbcXx+xPCq}bzrSD2Z_bQmfA4f0IN)HKeeKP*H@{yc@A>hl
z`_<ju+u3*|9(+BSb{$lCgGONX)&BM>nqQps^V8E`Z@1qsxnKLeQdVQmn@;t47akmJ
zHZ6SQ!YgBO;i~TYuou_Y&)19Jx2BPqeO1s>uT^1dXK974Suw}5_|=Jt%27LumV&y6
zr>1Hz-!-3!m1_kk$ygRITeN7=l?9H>bM0!Qyr<~|f(q$Hi|)KrQ&Ce}<<={u6}YHH
zD`drjMXuei4z+SeZA$6fmVY0V&{mhcyfo=j`QAHPbFIs-tqNWJW&i)b{;J;7LOwq`
z3+k6Qv-4-&+>~1Ns8ih};Q)hY{ePxMFPG0RvpsO|{CWTTwcqD%%e}oU?d+_V-TM1J
z+^FAM_0^>KnGdKt_w@Ai>GS8$|Mz+R{}pLxXK7w5QNA8t6z;?j8Ng=qOWc8Nqt59c
zKYlFP@$bY$Wi|Ic8MW|rG0$FHT%7lM-|u(UmzViU3(Lvn{rUUXHzQ+(X85`}Ki}8?
z&o;}u^CD||%1NQiD}&WPudn}m`pMbZ*Poo3dHGK5_q)$-rq4I6{{HT(#j}5ZfBW9v
zmg@@|+?Z#(du7bdO*5^_*G2BD*|{<IHjk9aiM6$FZ*AQ>?{FKhG$>j6-rG~z+uz@x
zy{{#Bx!=s|an)z9tPVear}TQPnu5ZCme$spR;90I%rs74_WG-J#fJqiudSWk+0kL}
z@83T)6_q1fa&BJAxv}A3cJ=LTzIS((UM}r<^4a_JABp(-zgsuv-Y$7{<z#MU*5`&F
zKYmoq)juSWtQWH*;n3m3z3bPn|M~H_eC%o6(?+gcA|H31jj#Wk+9j%;mUA047PPL?
z!K&m%Le6co_xpaoD?P7V$=9*7_<7v+x4k#^)$V?IbMtb|=xu92wdu$2-^~*f6PFb}
zK9=_ANN3*XY84fgidtV`Vd1l<_4ns^P1DI_VrKT8sO0L?FJ}wt5ZTnJO`bIAOmzO<
zR4MbkoGvllERc$fj1?=Rwyu)2E?eX2<yExR_x#sMw`>$N_pTQd6kHauF)1#7dgkS2
zGjDCpp1r5?^Q;309D>(G7=C`SxPR8!+2*^q&bF!C1d2A$XcH$Vr=g*t;j`uQ>%2D3
zTkPIHi%-^SMiVQyRD67V^6hQeee<To#V21Xul1c}a`MKuTs8lBZ@%8idvc5Ufy`-%
zx>nE_?E%RiMwF3U0}fe+37TsnHaeZ2uD?HT_nykntHRgEZQrlJa3J@fgaCuXG6PTt
zLCWOCuD4xcx>a{~nlmuW6o(EEOE9C40H3%5YI(ePk<r@Ha$;NVRQ-6n#ok3eF)?#;
zZeKe!Rr~Uuv-51LQ*LjwDt%QVt-ae4GWMD&^}cX9Xk;emHfV^%XqO1Xj$94}2BWo`
z)6cIee0=QIhQ#JuTeFw%*kNJ&^-6Hxb;E)O4mY>y-rgoEEj>GF_f+lhUAIKF!`>|G
z&yJj?bNW+69%NYb-CGq+L&HF2_r8#|QCmfXgp}&*>swn}S4M751GTb!ug?ivd9}iL
z(&4jL<3Yny5fL-8uC7|Tul9G=>1n##-&AbexN%c%boKXldsBb!kzLQtkfLVOCho9o
zYu;TeaO=b<r6aE5VQY_`dtF`KEZgdB_bQ*uK0P=0cJkjF8<RoRvG;VnREN@fZhrpj
z+j4JDQTLbYFSY;wXY(wx+*K_tEUqptD?(R?aq;n8ySKM`Yr;XMv-9oaFJ8Pj%QSo1
z^|$#`f4|=!e|uYQ@V`Gl^KTm}DJjJyetdMa``6=s`z@K5)p{iioesD2hyVWe_UlD=
zc~JRlUOMNt=n{qp^LrSW6fRp8JZR849kkG?)o7PU<g}%rA*XkDcK&)Y+5gLz%l^C9
z+LykX^62s7t6MUIj~+js9x!#%`t|F*rfNOi_~*n#<*vTIYZH~-zg+Ux-}&y9igoF$
zDYv%guXpVhTj@L7ENV-}#oX0~3JM3Zd$$L<xU_(Z?~Q-j<?Aja_uDSZyu9q?larI9
zHY6PMm2GGDWODd*k(JwF*<_nOMKiOoV-n%!)3bjcleephxVyVNJSAnxpTB=arKDEP
zm?4pSYs<;x`QhK!#&5}(`0C2a#d|70pE`bA{cNde&W(VF4<CYtbdK-R3|{tP{r-PJ
z)AeHa<W=w8_xJkiu+pz~I;SsvdV2cqE=kq?<sO+lC%pCdE;-!JzdCkzS=HOE*Y6x^
z|MLAw-RAW3VH=Z<Zb>;Q<U8N)Zf>oMOG}ri_Oj2<&x1y`L8IQA($B9edU`7J-k!=y
zOHNPM&;Ib>pjPOrDNM}Fp^IEN_kO=uE%$ulEr|(})%{;BogNo-b5rV6Wp}=(XJ>~8
z1_r*mzJ9)tuyAl~?WITes^4For0OjqB(%u2TkPfM^Y-P@_T}$lY=6C2tQEU!OVP74
zE9Y1iuSz=F1#0!W-|(oj?=|e|==gB!Z{Fo)zOSyXp1x?&BIr2eRIO02|9{`tm%h5P
zG9){8Lqa2HWOI&Xv6hC02fzKF4WOaG{xa*bHy66~_pR`ns-<aS62i#H2%09jzAm=(
z!2!ngzvtQD8WFwt?LZ@Q)w7xDA$uwcSy@;#>i_-8y0>SiS<a0KS$`QO2)%1yI8pNH
z+1b@Qc39-z+~oTC+1X%F#V0DN>bcHdSV$;jZ&j(RT}?#k>uaIEzrEd>f8Vb5*UROg
zfh<sZ+fkUj{cqH?rT+GRL%PLugB~C2{rcsy|MJ!E_x1PpgNEm?$5s2zHp?xN7O>B|
zV<D;?=JWOSb^pTOv)`@?UKe9|^ypDdJ-u^lyC<q#T^DP8^sQdZjs^a9KV7D!f_vT@
zW52z*d3CwJeChjpvB}5#LU)(Fy_4nd<rP#?vc+$n%}O!ds27ipcF(e_-4(SpYw6K$
z@z;C5-@E+l>+7p40+oOM{{8y0zkTTWdA6V=*)CuAW7qTP6DBOUwKW^mbON=*ca^?g
zrX9ZS#rFGkmsbQX24$$#9ut)^tJVey3kfX(4LpCn9)DeZe$Aq^v$J+y1G(SM&TduE
z(yl{?510P>lBpZL&1Y}b*Gp}@(k7LkQo?WV*kN&Yrm?&IpAXGdUtcZVQ~B9z(rf>h
z@8@^#EPlQ!Y;6=MM^4oa-%|M4ZSUW2x1+XXOx*YXUv+<8!ZC^3Z#UDUb`&g(+Lp7@
zs`ORH>1n#Z-fTX<rRHbR+PJ+@s@~H|w)Xe;U%#<2Idr+7Z0P#9*qfVDFQ2#nzXsI1
z{`co6sIa{qd*t8W-`OuNEYu2HGXpe)VpI9)#f62=QTyxmrk$U+_S)L$-M8{?ZSmxl
zGP$rac=?wD%={W^YHr8-WG~;@Ssc39jrZ(a>u_Favpp}rvmB5;#^9i4nt4ej`SvzY
zL4SM~8?O{-q;G<v^POqyBR3!W@$1*DKR-Xu{`~y>?zg8m>41joKrP3TtAdbmLSZ!@
zgX(W@4DIafo~>LyugH2?Y9wd`^4X=O-p4lS2un)Nd{%6DOycw=pSf10d*sTGc8Olk
zovov&crapGs$Bh_!t0yz_y4^XF)j7ouGi~c&wJe`Yu%F?32K|f>?}IE)kaC_(2Z@m
zv&{4J^y2os*!X_I0)^n6MXANl&PZP06}!7^X3ot`Ge12&y<0Z<=clK~Ht84_JaE|l
zG<0>C>9*Y2iHF-Nuay4zQTX|Ke0}Wpe@|+cfBB^ny{ly9MxE0xE-pKC?{CeXe*K%Q
zb(zVw+}WkCukF<B@9hO?wXObEaX0V%y}fzslQ;F-|GN<}E%jc_XW#8lPuefvmOER2
z|DQ{_cdg&=N!B@S^!4@i^60t`4;;6DSGhS!)w`#^zaP|+y8Y?FgM{E61&PHE53%;=
z_Q~77`}KRN_jI3+kB<5#BrN#(?RNg%Te4OqCtBLuXK&bGu>Lq(!<7rH+z!)<9~@xR
zjojqo+9h)F^LhLC+tzta)dG#Y`OUF-SgPaJEv73XD_eW`xL(kb4k?q21uriz-@S_k
zG^Mj|-#$>UGrwa0_R9;M+f_VUxyAS8-F{*wt{->h<KyGD*ZQSQz3S@f*1ZRH?@yfY
zm}^z)mA~)jvZAM_o<@mFO0Il$b@l7z^XqoKi|F*7ZI=1=)>f_Xb#s1wd;5B$orZ?T
z%}uGh^ZsUv%E{?@f~veb)7;(Ms&emdPWP8g-cs@LQHkvGf`^CV-q##Gc1)}M-5t$$
z>*MxTWnEb@@iu5)VRgmFM^W2yW`28n`*~E{iU7s!-&G?2{`&eA)b@RC2%6-)CMqKG
z<k#;eR_-m?*Y&=>xae$}b)_IXd_#ic*SELB+xg|MU0UkBcOEmtk`@Lgh0{0pRBl#T
znRa$o-0^}dYoo)DNrdlS9l9#y<+A?!OTESCS{A#3Mk8)+P6rKinPy&cVdWCp@v=5O
z4KzjU;?i>b(}oQOo}aATy(=nq=*8{=RZPowz2BOB-D{GRNk+lv3lA3@Wq_^)XkF%5
zq_FFo^N&tp^)HXQ^<VA#{VsT2%+8p{R$5_eG)`{{k_nzT$$Prq%e&?GL(k4K6_t_E
ziI0!JxlLDIUVg4+vD(qUf1lg`{}_>Wdz&^#%<s*%rLRI<-Q7X+cA%KqRsZLsdw+7t
ziwlmNoSeI!&#S(&zrJ2KZcjw|xj7##?#(jIR{49^H1ENIM!ERc*Vaxpbi2JR*ZX=l
z6GIOp<AkSk>}sPX1=U!EeJaXtuHhEbsknSR|JIh3px*b#$H!lT+A5#V+Xu_k%#&1^
z|M}{EQ-9B***P~iX<As^$c^>tfA;n3-{1Qut$tq@vs+J7Q}gQMc~+%f(^7Z7^SP79
z&M!CR%lC>2Da-xmhaK$_-I{)0E_7W?BxuMwAYejGZEfkRE1JDhre5`bzlQJXyS%G3
z8&vdw22Z-hbVD{IIR5<o+k28*pUlih|AM$SpM0PC$yC7;G#UEh;$l%Tv1e5QP6-JM
zR5C$Bu8-&79oGx^_~@wW$x?Qmtv?fWPG8zt{QT0VAch8RMiz%@lm9qcEWN)<z1(uw
zH|Ec4XKhy8x%=vch0dUA?{4Y!*z2+#*|)d#7{)#4*!k=5leYmYgH%CP%!7l?zrJ3N
z58YMrQslN?<R+I%pfOzc=i5)rHecUk_;TOjg2mHxqt#x%xAdIUD{X%6>+OHp?623y
z?hae**6VfM5Y*@fRSk~KY`;F8*1tQ?Cave<hQz}`cfOsNs2n$4{r?&D|2h9r$I_y1
zZcZ=Hw$Hs~(q9`fZRtGQ>Q(9I=UJ7#nGv=&YN@1gTE?|Ck-wf!kN@)dy#49(=lv@`
zJ(-vq`RmW;^Isn{^DldShf%?_<RH_8r&F}U{U&Y6x~dhsv*>8@-%Y8fQzEBb*K^$N
z_59r2*w~_Z6^}Y!*F~J4u0LPpeYxVb_3`u9CEwn*_Vjf9<vVK~92#zI&(}}xiL3wn
zRpfT;jsnO0{eQRVoW3;K-)`o*S$SbowL(=i?<VWy9l5yJ-L&jYMC7!ke6m(MroF$j
zGk99+%GA@-<ZgpzoL}#ow40%-+J2J!%-dTsgZq!m)&KwdeWhJk#nCQNxznJrozT@`
zp1=NIKd>%#cgfRJqOR`l)h+#he}B)uzAjc%&Uw<O=jYdp=|*K7>yca)y?tHTyE`lA
z*ZuOmbpL&)p__L2I-gQ`h6!;j0t}IU6%{)cEnYlz!h{7AmECu({r&Ivd(+xqC9JHh
zFBi7U?aDP3(GK(J7T3Qv$Flg!V)y>n+tx>HT$FSB+Lp}AckC+WSrj_y@A=@g>zx@3
zJNxpL)>p5_)&DIO)d+C7yv+A<10%DIoxyyY${^6x`p)9zixw}wx-Iv1$=m;FQ}yHH
zuC5BbJWV&+q~t|F|5tUtIUeQT)$_OI-CgzKMFwaLir?<Xf>|b+kD|l{1r?Kf+;802
zQ@Oc~PxjSUTd#M^p1mzRck*%Sy1Vx;E_VNV#`ye_sOOtfPur+@${45hfPB5H^z|+|
zu?aOj*@u7ZEPf6e%Imkz1C{EpuCBK2n?7aAlUGGkWm0CD=dXKov>V)PI@HR&_u9^~
zw^6Y>3KXvvGd5)3{TRF9+<g1>=J#uYUte2$c~|M{l21=OL8Hz6w%=yB-+p_0`|F$O
z^RJfQuU(#VbJNR%?DAJ`=kH(p=jZ3@EprVLn?Ms}cXyYsE_it8)y>V%OaC8ce4x2>
zxq9u7hwZBZ7q|WT_ICC9eZRa!wZpF5+goi~{VnI`j~^M2j&#O758pAhbcxyX<6F7J
zbXM@mT4lVtva+kI>rykn-3sIMb1zQo?+0}Y_wdc|_rx>uk{7%pKoL|wo}FcS88qTl
z`YHs}195b8ytTW0y_inKg5c$TD;=BJ;?x%xAG)$K7}T=b`{j~1sO1&1yDV2S`OEG6
z{V!jy-+%4f+uN6I_&tikwO+pGzYc0H9qX0eTKL#4a@taN`PvZqnh%Y)%|L;3uj;k#
z*H>4)PfybYjreU%KF$Z~7#bQH&N57HJ6;G{bg=zimG@lh@-QEt9?&`(PzS#H`@2;k
zD<^@v0zZCKfZBJaSywJhRCeD|@X+aQ?f1Lu4*tGpl6xzJ-}cJ{xvCe6poJr|&GWA<
za_ydCUthQVq%60H#)56Rx3iv|nc3CV71YeeTLNmQMs9LxY-|Jt;I*~Uv2TTig+a|c
zkakh6kbsMeTuUDwVg-fM?d|#DpP!wLjr~$nTPrFrzrKxE`qe>pdC<HgXioFZ&CQ_Z
zGpH?D_Ws^l=XO3#1qB7)_uLE~NpcgOq(5_aahU;XSpS&w@9*#Lvq9~`Nvhtn%J0`+
z=aDoz!otcrv*_umnM;<aY~Lnd_haEkozq+L?%wK=x4&2N=ElX>pYJg)c~@1OE@M-1
zq2%?ovo0<!67}`<!a_nxQQLAdK^>TPwM(D9s&rVVUMV*r>1bEwn%xy27rnf_eZ6MP
zjt!tuAXV>aCWqU2ji>9y8g0v+y{q(fmF>H&pBrRstFDy1xNuNJC*s17U%#YoZ;LI?
zQc+QnxV_DHx!>G9*S<fWUq5T2viq!ArrEO|JV<!_{(U}|s8-4>v)rt-^Yi9Ds&sX6
zsjyW~?g1@<`}pzW$6b16X4iiF__5>c<c&2yi;{0|lQhYg;Qm`!-EW3?e9gr>wcqcm
z85mr6a(eptDca%Z_Ix^}t!8Lwc=Xr0yWg+I-`t!I9<vHt8}+PJJkB6`d!BFM@7&wl
zW<EPRdo~j**Ni!q#k0CZwP%4=lwG}E`sBpKXY;DxftCs!+m^fCGQn@2P3Erh_jyXn
z%AlsAX5gZh%AZfC`z9qVx_<r3tNE8%xy3-^A~Qh-)%^T4vt7RK#+w@(4?q6V+1dH*
z>GXIrP;fOiHZJp+sI<(zU+&qFPGPzCzCl5gK=a=|kB{~GUR>k~GMtl_*A&!bPCnlE
z^~e7+63PF5Jmv?@l?QLjiJYwL&No>*TrYT4i00=HhxuoNM#xT2*N^{R%h<3w^4Ogt
z>skIYPMS0cREo5=wPig%)(cAQ*R2&mBZgBngTH`g#^znxRPr*&)!jY&&5ez(?(E#W
zWdH8~alM!bP^r16@^j2>`(G~>&oa-S_wDWN>5nF-fR;Pf@3OAr>6kx%zLT@_`rCST
zc5%M5ObV-AQubDT4OtbUx&0m2{hH6cese4q=H1=3Gxz@9>hihP<>war>oYJg6sYff
z%<K^*V^a~}-Y*w=v`f_XTIjl%n`_^feY&q5vf{zDbxy5Zn{usV|L$RAU}&h9V)Bqu
zIj{L3_tIvkR<4&vI)&GHZsU`+QjwRJ?{9orS69cy$5-ZC$I8IKaHo?)A#=i?6K9^>
z%w9k3&y)TqW}Tg#r>5!7zW$emg=NXFJLRAin)BcF)$`;>v9PguO}d_bLEZkp%}!8|
zgSs=N_TqXm1zSHqyRk7DG%2s7q!g6P&cM*nGjYa@6)i0+wjT~K$1P7f@Kw;^lETi{
zp+(_qR?AwIcsM#be){~mc<bJppPTw*t)G2!o@sM3IO}|E{GN)9a+OaeM#tDPFfin8
zT^YQ5m2*3vWUSjX7Y5Jf4I2zvTUs&>xADrozP2`c`HB@9*S`k_1{xg$iGfyKW&iy3
z^>yjfQ=;3qUH6)IvFz2Am0H2e&aAZt4N~3_0<E7>?zegL>rUGj<%T7JK0ZCmd}c0U
zX6M^+mig1|{QWEa=i99-1C1>N1Wd5|@ql?d!>5Dn@*3`aGF2ZAvIpC^6>VQ_lzM7K
z&CgHUU;2O|Y4Z!c`o|m!lkQc&w*_@X*!g58sMP-Z`TW-Q{P`*?)6dU4HC221ukY{I
z-`t!IS|<e>aRJRkJv`hF8deX^$yt*f&&bFK8bbPV#`ye-(%09j9yCJcP-mO@f~IOd
zJv%#Fa5-qPYzkNTAD<VKL?k6w?yde_6}!Fqd!DFfkjtg}+waV)erE}qx4gM2HF&a`
zuSw01g4ULniX8LALoA>nz1`*S!yX=Ly}H<)|Lcp3%2%z-a&Il+64lChe605lXdL%M
z%a1)}pLZ}X+VAWZHAOSnjayvLC-}Ddyb33On~z7%P64HyKaUOgK`vpS&azz!R{V}?
z1r;*1TvI(DAv}q1|NnoxZ*9v3O$BPZ_sM7lFYAe`eru|#rnYPA?R~YoLF*=Bb{1(`
zSVVxDHGQ(y(;P#Y85kI5w&%NvPY8W;e}6n^wdTH>pH~*U^Ru$DW}cm8TJ`m6_}0wJ
zYM_y@NhJ>sFoLEue|~y;`NBeH(2DWBU#~^~dbxc5mb|-GKYx9i#LU3(;M~#W4^3tn
zrFNa0W4YKg`x<C1-ZaqEdgOHd_-p_FeYXcq@qrflJvi75TI-}6y-mZ$CT0?7(F&-x
zxU|F*G^6S^54321!on9#Q{B?f&zq{!+Say9S3hFIf}Go7+j4HIcz*o&G3(NjPVE|x
zAZYDyc9!YsolT&U-KT?LlH1no>(dO~=313ry0$iYYyJPavvVwiK}{9Vh#qvAC9Iy<
zwmxR(CbRr|a~P+BgM~eI!=)FE>~a^f*Y90sey_rLe*M3lDknGTfSQz2CK(e{US3$}
zJZXtjD_3Ps{E7g@xfX>^o}QkdVtO5DpMip~V#5+=7nc^$R7Tj^C`}Cw4{k9X&}?bw
zh6Kmb*VoQ|HPNZBukX)gW@1wD?Ck7h0j=V{vynp~(<J#AkL}MVlR*o|W6Lc-i+)c}
z*MHqA9v85??5&7|gofv@*X#G&Y};S(ut{a-EzrzTxe}9y6ll?@R{Xv_?%!9Xot>5W
z>B-4kdnz}-ei?BxcH_FT7Z(&+Sy`99eCPiD-rlL|{&L$>-`?69yu0je-Xk6c28Ic8
zmzVor|MK$k-Dz{}YOR`A{d}&_u;k)IWp@z~ktZ8%G&MbsNyP3d@k~ri1TD90<CV6#
zwKjUYUtnNhrq#6*6O}{v)%={jPLhFv!Tj89{RVSLahVd}`k%*!RlC<~s@Br8v&~<B
zzh7S-ZI^q?<mZncFYZ;ppQ>{7$dQbHe}00dNmie|wAA}6sBS5JeXZ{r$YCjFcNjev
zgI2|XhNyd`OhLuIhJ{50Xziq!e%u<p*j+0U4mM3%0va*>_U7iQ*xlPevAj9`eAbT-
z4|l!a_gh3-diF+jP_>p~@UCG=;MrNGTdTfig|3MR1hx08zQ0?0cX#>gUh{hwe!t)U
zKCAqCY<cF<E>Y0T^RKV3mp?q*zS?uL8fYTD;+H4`1H-$DJB*&~U834q|Ni{Eo*TZ*
zM^ZOt$A!i&P#LqPm4S(2$6C;0)8ylQsU?yO1>QNgx9KkSKJke|fuZ4c+WUKZwPJVm
z=*9dnUhK`tkRrq)z;Gb9_|1)t|GDLZRi~bOQN-{->_^ZgZOK@dX>JUR3>FJ|RGyhL
zeeib>Uo-n?@CHz<Q@90WK#D8$8B0*30ByU=<JlKk4_w}sd)sIi3&Rf8AK!Tx3Urw~
z)V`ch?oTP<1UWm`k>TW&xXD*67I!l=L_hHMT%S@R$k5=^!Z1nG)k|ysMOTIcx}eqE
z4c2T6L3z3W%??^@sR22R%-uMHRVyee?sRB}ugiFQYbz*!f;#f6LRX)<Ztgt~wAHG>
z{bW(O186nIrKR4h<Mvj8+H0V-azd(Jps9~OnflAie6y~tnc39b44Raisv8~le&6qP
z?!COyW+Cfhc7o>8j>}d1fR?2#v14FhP%u7S#JD7Sdmd;688k=K%+CMn!a`@QxIH`O
z)qFa6yY3BWyaCjc*qD4Aw5nt8=X2Je^@QKv-+!M48cPRNRiK4e7Zy5y{qy;J_Q59B
ztP2Yo^<sCG+|FiUU|=xX>~lN+<;vyrE=lL_S-4<<!uF^8|9+d@#xK9Fp@G3O2(&zF
zQ>r(pyx+cc9%vFg`FJ153cJ5wE{ojem9vTH?CiX?DYg61;lrw)pxU#fWD95o>AAVq
z_pe!js-ZJFm+vuJR(x3CHAQ3L#l`NRm743GZq2?PHs7umw214~_xttN|NQ*?_1o=y
zP*ZpN)_I_*GxvVEs}Bw~t9pW#kM<bKy#>wGE%6i%|1n`n)z?=mLskaOGR?l0yH=2a
zf#Jj(qg;lce?FfFjePaWT8I7r_kI7?jEhR1mwvzBzy8CAf~)J}<Cl6(4LUtdH*{Z3
zWv{gPyKUDtm%I#mdTws??{9A}gBA>e<}AzK-2rW6`uFR#zGr>=vc>NGplMLK+u`eC
zB4?ZD?^|mM%DXdTm+>l00?jtPXqT@GxV|p->b}})+aC{_t%{y>fL6&KIpPAEa_sEv
z{PpFszo?K<QFQjrjmhnkCQZ7sr?S{I>x#$6j~_uRa=tulmtPgU+;7qn=XO5NNnD~@
zPd3&rbZP~yaZ*)Py$cJ+V0Hn|Pai*C+<e|{b$tEb(1#Dfh5D7{{_=C}>*E$KT=?nZ
z$HFCj#m~=y78`8bxKYZo2)tV+aIxFU?Ca}5<27aP?yNj=#Km*c{{8!pe><5RHt9B~
z3@u;eBk!OWw`axW<^I|#DlW;#`>wvax_WEkVK&gf%Hw0bpRM>FmvQj$Oi|gId;3~$
z<?nBAQ+q&b17dO~?M{h(d#IH=?>DGwdFL|ItU<=A#G_ZrH0ax#o1!8jOD-+-&VG7o
zYFAg+r7ltJFXyb^zxaARKK$pWr(27jp1K|99}zJ_Wu-$SQ{HK3XJ=JUb^m!KrF*^J
zb(L-fjml_fc+}O^Wm??g@I1Tj=d8NJTS3h%H=pUx(>Do9MqRXbT*j*qySpsZ$*F0Y
zUhJx~v(2@&w7d)r4S#(;Z?Ec^duz+ZZ*Om3T@z^x3iq|q+xM;g8nPn5@zVXzH8F1=
z9BiKSk537yM&A~{J#X%!MT;&~Y_XeUxBuDdyS>x+7#JF)FZs=zfAUvKhU<TpnPv@Z
zVs-|dxBI;Y)V`^Hzc>7F8}H?hkB@&nt-pWAEfzMmtOo}gZ*9w+t#f+U+OJ#k?nWJx
z@SS0BF!$$<!pBdZKVKfTHOq5SQc{vh{lA*+3qWH9f4|+%-)^e{3dfnT%jR}$2w3P8
zwYzNXuCljUo*;(K>7av6thTqrG=p4>)6eZ$`_;wOb!G5!KhRFONs}gptPazy{e0FO
zG~@@GJ_(Nn?Js$Ab93nKvRu$GUi$fYS3f*FTzbFuyQZ1hw{6!z-LjOjnPv?<l147M
zx3^tg6}ozgd462(tu3I@NYHxvsfnhwUoN_9MQvH3<~L^rXpBGO;vy;2tSMDrUOdby
zhBgzb-tByTWqrJT>gj2|zOzg&et3BJvc*48z4PPwrk>#biMtp<i_;$+?FNm|fhJF`
zt_nT<Vp85}-`Qq=??+5tIms%e#FC+ayGH4ypr^Fz)bkIb7#@WE_<esXXvJ(z<-ge7
zf-}GIb*Q+yxxHGseBP-SMxfMtM`>o6fEB3CQ7=c#?ogj;916!IKwerEvvbp@=jZi7
zgB|+u_kI4lB!Ub)_2hGd%In+P*WauAo$KoA`f{SXT;RT%pGLb>K+@(4-YgSNPFB}e
zQ*+y#cJ|bZAdu*t7M+W%+J=UKUteE84|UiQ9YF`s0O{A)*V9WtZ9;~;plKWm@Av=T
zcWqtlYEY~Cc)$Gl7e!zL7U&2%cum(^8@sy<v~D0UBV$F;lM@T?>@4103*KXR8dPc*
z$VMg!RQdSy=$wZ6A7l+^OXx*akU2Y8H@S%GfLQ-|W`5#3F-0?2#k1e;*9x7}MYZ*|
z{kGq3yww41wLRc_Y6_!@nOWGh)Rnonw}A$7l9H3x@9s^F1UJMLCZC?dnDYJI-APMw
zZf@FH%MYrTvQJN8T#|8d(aJgqHwhf_M0V_ro+el9wXFQKWSRf`bs%p(IXT(r*p9W^
zb-abud`>KQ1#<Ng*J&IIpry;J!`7Dk`%?)jqJMsR`Z*&xGK?(*)F)D~-Q>dX^78V2
zP(}RXM+Ine)#B5jTvO1z>4?OH`}O~0ZL7bj)PRhOjG4xvpz1yC%FWH`#=AgmX$Esm
zZ<Yz5`EgK02nh*+mU@92?26t!jFG!aRysL3g)H-tbai(J4funK)$HWRX>R>;a~(xN
z#lJ_lj-bQ6+V8Q~?>|33|NT~8@KUrBe>S-=>@0ff<u)B;?*p+DLdoDw%72VgI;|B>
zf(Dsexy7^2&$FGhWRYw4s=&o=T|GT#9-IOxU*bBAQ=#_Pmy0hhF1Fp3d~@5{^!c@6
zhuitjFM!C0PJ7X03fg!kV;Q6yz3s{@(`?W-MbP+B_O&&EtHais6g~0im9aEh3`-}E
z_)hF7e0*h1q%o*pnEMm7sYKE^?Zu&1Ztxzr-R19jR)M-)4pAT%a&mHl29bhd{vTlG
zH}F&h^@mtfIvIqdq*kqs-o9){-Ro;>xi~osHz<KzY_8<ZGNE0*F5>a=e$W=S(tm#{
zuYdad{CxI}4T+#dQJ}4ujj#YSWP7spdK_r72vjbC*8L|YCQe!cYSvs@>J8ep$Hpr)
z<zOf%e0R*#5p)18cv|W`J?q|{%Dm4FCOJ0(dZo?7E-&*<jSOQ82Q`2nRBdu$@Vo}9
zPV?{CEIti#6gUBZyu<)b{2nPOOLA_5raM4O;7*)4@w#l|CLM3<@^>XGoIvW$m4ewO
zL~YGFxk=~dwzuCvV~7oFbc5L@curPZ`U}GCG*kd7m6@!{bOJQlRr{-Cd+Pu7d#(95
zt=jk5{?9wMT!(L0*^)#=%@^%hs62x)ylF;{u%nMiq4e~F873DE+>ZBN)JPLipOvx5
zMYVIH;bg^QT}d*c;u1$qcL+Lqr#P@g@^l~g`8V-Ryhk!iYw_-{m8*7j{r)@ecFnG}
zS(RTczu&q4_g(qVN8<Zu)PB3Eem$-_w^faqfx*mWF~@}B^S0*YcM9F_KAvfu{;Wf}
z@5Gsz#*<aj=hv3y?fH1jtCyXDVa;+kL51@+pM8FPeI5S&$F=Bu-^psepRNS^r=FUk
zY5D1d^5?_y|28xUGcho{UL44BVv%e2rG?JzyN>Vw`!>J$!$J1hyen=pFv#+Q&IMSW
ze7w(dQZv7ug>l-M6;~=47!Firi7*C5N6!|It5EbbN<TNp=I4{imQN-)zxp;^FE*<D
zbQ}Z2f`?fXwm<xv9sl!Gc+uU`>#09KJ)LQk>Xnt1Rdhtq{mNVW&u5HZUR><Xs?Nf|
zaLs)&$Ar^*yLIySehtgp{dU`y+}mc4kM(*_*NdH`(k-rku7y+h)A|2@&Wp|yVqo~8
z(W~SDT4C|=@$vc>_oVapOcc|Nnqni$z_4MVlxxEu-K$rxW?o+AyYx5%1H(1vW}XS&
zdOKA@Lqje9|M?so8#~uqZ|4)``N5%~Q@QnaENFSjz|hdYdX+}kqD#(yw!V7xDkL;C
z_2#D3n>C-$UVqIO9vT`Nxwop6^K!1$<z>F7=T*O(`Q)2Q{Q55z4AKXGs2o?RG&(6K
zI*&CWx#IuxTcBBF+ixF=-#*TmknV78P2^{Dd1eNN-pS_Y85kJ6E^9EQJUcUUrbXeS
z_ILhsEDSfNoz==$U|@KVoH=27!r!g=wXdTi_f!<}+5h=a`tJV&c6*Q8+j2j5$NyRM
z<Rk+_1MfwRa}74%ZX{d&c+hNL0?NT>4)fc`JaS=RIB@);22;wzL#>%tS6yv?w>{^k
zQU3nFWu3x|3=Hz1P+q(3mKJC?S^GQtKOYXiytlU+A-A~S&dUD(&-2D*Z*FYOJGr~+
z>#LaRw_A5U?z8^1b$#txSd!VpQF~=Y;7ps!qH|WS*YwEQT3Nr@;5_Nc(&=%hqVxAo
z{rC6x^FN=@um3QGf#HCArbxO2DB9oe{r*hd{-@`!FE1zm{QNxq-=Ci^FE97c+xPRC
z&ny#7Q&ZEaa>5J@KR9|H@pw!M2@ik%<8lA_kH_WXUj~BWXXQl}k4bAHHY$Ol0Cb4J
z_Wb)LZ*FY7q|C^`AiW?krfI55^6@_3+}zw>-`>uy|8u<l%;xiUvsGr=*Vlno8O+Y#
zxAPDv)ypppWI3U`{m!J#=d84u+4;_#HNQV+k;bcUAXUtK76*1OU}kVozM#SM<kjl+
z=fd}Wn)>HWy8Y>g?ecN?_2+HBpOOFfp`FWzje#Mj!%a}ZIPJ`d>HEGc<-ePMf8XA6
zCw7Jgw*`SLpjb1m|M!Rg?tHu2s%>|QP7A3sF)-Nmxd|#Xv+<tlHNQ8b{9fhqd-p)b
z-6^^3`}5QE{V|QuIA(gX>9pQy&_2l3;p=O@@4oLF8X8*n>+<|(Gm`sG##O(adTy@u
z^F!SFYrf0?g>!}o<E5?H*Fl+4(xM>Y-Hyk7BCZo}=k3-NR`)w|(OrJ-aryc^O7A(1
zs=mAk2@g-d9$UV4`}arP`k)gEGOw-*wJLcr;o;%-|7TC1U|@K#dBMd!f{D-1&HemX
z{=bF&zmNT&uSMslo}Fd-^2*BKRjaix2W(D1f9~n@_<7TGqt_MZ|Nr~le|Op2qNAeW
zDJLhX?tHas^`}3d&!@k-vNH45mWwsF85t55XMOlD^zZWge^buazAOHDu6*C*{QBRw
zJtz6iwF<3R^<+-*xs&(*-o2lCbyeuscLz+XzP!+h-lpSk|F>jU>Fa4KH>=<81r<^0
zcXkw7zFaa{%g~5{Ata`GKg(*+_On}CGPm7G>h|gndcLq-?o@2~-Kp8@cBak!U4FMT
zoQ+>DMqJ*r=s_d<vh?%wem>Q&kGwX6f#JdflOGJ8lh)ULT|Ltv@le$JhB(daYimxL
z@B7$0r{>eio2k=dU%lP`^V#f~=J|2oZe_2ps;>R@<z%qGZRjzOeg)GX-Ww*R+}Mz4
z`S;6Z<AehZU~N^e*IwRJ`MK)&+l|NNX4g!U&fB55e*eF!y8plLuP?4YH^<U*(yd#!
zs;akc-5R+e!SP=8`@K2aZl=vH@nc}f=#X-4`11b#{&(m3?f(?){kupbC^U5H)z#to
zmn_9}A|}-Ty<UH|RXlFSx3{;~f1Z(gdYY<dR#w)lx2D<G*1VHoWMVjw9=Moe!tDHg
zmZ71cQ{|MO&#$ioMe#&s_qrE`@^fZJZcK9ByZ7no>FY~*7#M1<nRGEo8Ya0cbwAM~
zX<T&K*Zk?N?Dc2g+}u2QPyI7c310br@Apr)vez#yeSNKTdR%RR=C$})#_4{yw&(Ac
zOSfO=S9Cmnt?b|D{0t1IK7O{Z|FhIw%kac<uV%gpPft&OetrMH(zJ7PX7b5erF?jB
z@O4eDt0ZWCdXdJb-uxQn^f`rYd;iMWRy{dmeE!V${r~@h8a@6tA6@n)FY}u_>)zh#
z^~dj*`Au41|7js3!w;5gU%4NA^z2)CKxe)jubIQMv$LoF{dQa5IQ`t3-M>S-#dJT#
z|Nk0q`C>t{*Zk$->*Ic2U0)ZP589f4{?bx!P$~E2#YN?lzsuk5`g$$excb|hUC|%!
z)&Ktsnu;zyXZd`Jl{o{0iAt!e^N#Irt>zRSlic~RO}gk>Wct$vW<GEzy<9qdS?TL*
zKOf8gk9hg<6_1300;s^9SNrYeuC3<xDwM0=Y;*^;j*QRS7<*6CIXS~HdDGRf=+swN
zR?1g#UfYs+dDHWG)oMF!&owa2=ac`l?88Zw+5h}n8D`)6ZGRm!{uA`>z^}|J3FjN`
zRKMRVX;)KmtVc3<`?aOs(`(*l$Dj7r-#bON?8d^T%WL1Rk5{<AxB9!yj|a_`zu#;&
z&bqQ9XW!3fk~S3u$9g0mzYAwzs99!ugQ4>8*XzaiDxa_2dTo9Dei7G+JBy#2&0wf}
z(8zvm=f2B+)=%eEztgOgVqnO)A@#<3A!r@ZyINzr4+kHIt_}-LQej|tAe^-!-C<J7
zwKb75&2ppeK6dREQ}v9id^&YY?(J>&KCU~=%+S!b){*@Lt9Z-=P&IoGG<&k|+T%_4
zIAs|aexyj{G~6jVtvgkYk%8gH38|b0nesb@Fy5Q)3ycg6{_>1W3=C7;Ku7&76;xng
zaL8ogU|<N48WkSYVX|o+XbE1AjHS`us;^$Br|EwFdA{DxUA8m?lt8ME@B8tn8&pX}
zZOxhrDh+;ocnGScS(mXfG_)<vT*{uIv+w)f_fIdn%b%T~=)CFmy4}zI|9k%*+?4FM
z{RZmjZu)%ATHO;=e*FD@-~R2bt*1r9V<xJ4PkXXz^}17^&)d&m8N7U1X7K$Y1_ry`
zf3hoV=N6x{{Q2{I{k|{<9$71s_#cPFL6y}LP!o9)s2Ov5n(pb#{`Pb8?(S0c{C2PU
zy-dxAgOcWXF@9Drmvo)sXJFuM^xkmo^1k2iqTjzcT6Q~kdTiNERnVfkySG4<&B12&
z>qp%u$y7XOe0g(odfm^{@zc!o85m4ln4SpFvM$d9wJ=mFKc6)>&cC<k&DQI2U;AEP
zUhY4y>eb3k$C()#*jyWGn6}@qs|NWi@o<}}=d&|2C#$SnyLN4PPHt{4sO0~CuX_Cz
zNk)bRih>IAm%H`%&6ud{zAXR#K2X^(Ddpy-RL@DXX3eTPZk~NDXKga5D)(rp;VFK8
z?rdVa?6k7Cx1OG}e(w_+8aio7<>zOflRzuks?U9TdiuH*8v}z~_Z`-3X5F|w7NDll
zqodu%m7kvE?0h<{v|2u<>g&O!5%r*xaWe1kt2Miwv-#_fXk6uf7sE{k?XWc`9vo~o
zPCnLir~d!nn~CkR*KWPPwKdzS^wkvgc@>N96)%UD?a%L*fXntq^s-&=V3a?oLcXxj
z**Nvo6rULeinYJKL_RN!|NAQZ^X&V7)HbJ|Ul+am|G(d#Kb_W3e{o@9YA-hf1Mehb
zh1W0NY(9VPNT=}Ur~37lpP!#U|KsE1>$m>@x_;k2`J?{-Px><r5}kg1e?K3&fWDo#
zJM~D1py&)41_miU#!d6)RX&>u>J&UW(mB(jFlp~!ex@bW-``b!ILKc7?PhxVl@)=Y
z&Vq5phX*~9#%Z?k{}~w==EpIm*n(EMysmxYXZ?0c^}C(v!hYbc!1d7*ZFm;vC)73-
zJv}w2{9fhDYipxH8)a(0-!-4C=DX@k1Or1rAXAF4<+~k^i_V%}e{v(a|Ll#8$(Ofe
zUgnW9(df7Pm9f;FnW3R8GwLOyT`#E3WBqQ2a(H}g>As(5^VK~2Y`@+3^6IMg^Lf>I
zYX0+L9&$1=EHIkGc#}oVXU2qOzO$b_ne4wVdiBbcCp*>W%{VSstpmy#4@wvq0xX$Q
zge!i%Tz+|T`uQz6H;dMOwX6Mg<t;PAf%J(CH(5Z%45%^sdh6D$nq5ly`+laeE@NV7
zI3=tw`@p8u(?P+(!TEb5H>Z{UW?=Xb`NZ|bY=_U!&TdXR+Ew-X^mP68x8tY(msji0
zS#^=Y>)XNeoA0YtE}YcNkfZYcf6Qm@r~Up7IZRu(ZhgJyOcuE1yDoP3y3duH)6V|-
zJU{QpXZ8cjkFrjcV@Oy$%QQRe*SELPFAb$s88>l$d3V?P|7ZLElb3o=U-#AN%W?U7
zo6ykEmv?u6x0+x6VqyEUZ@2T$UyIKFyD;68fnmj*)YH>audRu+{Bprr+tzDwXsC#5
z;7dijTu^X=;v)H2&&iwV^XESKTkiJ$>gsS%LF6u1*eS}uFyHrFLk<(DZ9hTL*(mGE
ziZgSq&2Q&!k3H5aJ^gxIweI#iMczw6<#bmeTZ(Yx&Z1Pk9S@rB)ct-NxuYPl>~87x
zn6jIxpcbc=trP=8NDt^BL$AlR4h#$pmpCS{B|JSf)$;wG&zIIlZ{Lz}QR(-)-T7+1
zvqD~OWMD{GEUdtLpzyft^z3yz)sD+m=N#*koxRL=cG`snj+I|7x@&`s%n6BO4oZ~2
zv*|miYihp#=UJ7LU835TR)?=Id3i~7vbz7e4=oG~8$Mbv2PF!t`FMa%Jo$7|{rcLg
zSFSucBJ6)Ax!-o$&CTiI1y&3UH+HaiwA%jta{1-W&CjFW&zQI8f1Hy18)k+B%Uc;%
zZm=wVwq)D3ZTG5jb91{EotT}!FS2nZ14F`P0R_=*IX5?5xpL)7bpEw9k$3GF7;2(8
zCU9ln+fx~~CL%Du_UEUk;G~kN=%BS`+cvY}XJ=M!|93Fz`nuTDa-0kdW|E9SiF>QR
zpF6F;e-0>aw}Ot4TfS<Q*52yx>n@~#{J=SZ%lgv^<;_`FSKX<2+*_Kh9lq|&j>5;A
z-tYUpEP8vM=o~%<2D5d`rpi6oyv~2VoupBUhg+}I)Sbo8({{hzc6vwQV^DYH>9pv)
zm0v0t7&Zh}s(%4T!p;Xx+(p0NZcl%BsP$&)_1NN@snee>Xy#k>B?F|4Q-FbCfk_-_
zyD_<q&-q5t`Fl(KEFQLa^=}OP^JTfcZ)s`iGT+(TF4{eJ6_1_rD(nAm<`p9Ljf_$g
z!{cjBm(MBk+IF|>wn_dyo7`JlJonfAH7a{^LnnTpjb~73Xy`>r_a2FfVQZsux18U;
zasRwkt5$W@_cPd?o)uQbz;NyS-SYc$7dp2ui`<+BY6w()eKmEec6i#SCnqhx-zhe(
z{q^O~hj#llUuOJk<Uep<#eqSpF>-U-(-({T&zarMnG8B9=;fWA#dq&zE}uKiTYs-f
z`Tg2*R&|z!uaAXv8r&XK-~SzVulD=hKTp){Bem`9E-ZHM2X%>F*StH_%Kdq5ey#TI
zce}DdO**sOTPdJK`|W1>YuW0%rPr5+uaCQ#)UA7IU+wQVd%xfNc~rkHaQps}mzU<0
zUW>e$Haqvyn#j$d1l%rD<T0=A*Gt}CRdMxyzs{-q_3~!naoNj@T)Ru&+%R-*=R2Fd
ze($z(kMGxhzdNVsl;+DD8<Ro(tH*uTdhhpq_S^gT-OlIpYCd+y`<$Mp3tIorBWGiA
zdAa}p6P53Fzu)&}|NnoP*Vn~@+$mdr$ME_5`hRS-z6@*R(?LOU|IagX(75Eco9Xj;
z>)x$izi-z6fA9aF1GPfWn%z!$cW39%i~V&|{{8)({_D%jn?<K}C##s>EeSqn^Z5*@
zRhd4wG;ErF{Jiw}wPwM~d`@miJUmGS6t|!~fS~ZYnYn!Kr*F6O(?2~qS^2P4{L=37
z_h09|tpESL{_~H={m)-4?)Urt?yhn6wKXyIf4@o^BseVdpFc0{?5wM@(IT#(T}7ZK
z+@o&&bD*x@>-GEXK%)wB6%QJBJq8V)_DC2iftqep!{cV!|9$BX>a%Y8|L^y6&@@_D
zbne!3kst#P^V{2i^54?wakFO4nssJ|p>n_7uNQ3f>lq{XSs8e5Jv!Rmy=v8}M;*$2
z5$hjszgPA8(T~Ud>#O$^Jv~)*e9yOA*{++@&UT&F+r1|5t^B`-@?H8h54r0<7jMtK
zz0KlrkMX}}hRSX|8c|!bzMA((?yITXyHzuInMi18=+U>^@5gO7%e%8<(W+IeUR+-8
zzcK6Ts$E}KuiLe1#kzHRYJPJfL|g-PVs~xHxV|p7@YTxY>%Lk(KRY`d)VZ{HIwknk
zHN9Og7A@MfYuCGvrq^SFL&C$wxy5vT%r<7;P`HDIdqHFLo{GXrHE*oFbGO}0E3J>)
zoaPH^J&Wl^rL@bIMZEsDE%)}ev!KCa^?4PKobAJJZ_5QWFVD<0ex7{xQ{${zvv%39
zkJ_rmEvDnqFK2scTkh@Bdqv;p|9d(A(h|?fyN)lPTNX9TBy-aJf8VxyPO5&t*SuRy
z_tb{O!=UKBUJGh3&aeFz`P%2?u6@f?K%);+7irjCyv};SU08vEHwLt`O~ref&d-SR
z`dvz(WHxV}ZS}Hc%hY78%Y2@noBR1r@%dEHHizSL%kNcY-rST58a$n6Tb=gg#Kf<9
z&bvOH(*FGC^ZDn+^MA*HQfy4k$D=bXi=VN9w%>k=sd(6WGi&wQYqK&hE^^I2J7rIO
z_}aJIZs)Dts=Mum($=k8XPRb*O-eb|BdOV?#LULyvD|O&D?6+5cXNKf+pYik+1cM0
zBKxdft@!fxwz>NJnxb7LFDHQpi9w^55{x%oSU4P*udfPSUGnyp>3RGAe~wrEdvS3w
zXyjx`{r`WG_H{My_I|$y8r`*izo+=xn#kbtJAKygW=xN((gaOoe7j%&|4!-k*q7JW
z$LsC;@n~0a8;|59P+|E0qx}Dgd3Se#&Ta#ZzkS+$|8HJ%nv`Wxir)S|pLnFrbjt5l
zrh_sx$oRLnx5sBM`?@vl>?}~I|M~H8rb*_dDEaSq%j4_*zK*YdQ9Ro;ds@3(mBwT>
z-%}qR9tH*N(-n*RPARs_C^<2hG3q<9XRxsG%gvdc2ioB8bMt}tqW{n9|E2R;JZJ#b
zKG|#ce?DjZ^2*A~QQ2o_o1dSc=xmg7V#1oJty=Cfg)X2e!@$LEsh`i9`%eOuWXtDO
zW%=2Dy>e#0z5VX@`>H_-ocV1_n$x5VlU&yA`E+X6R#EM+HJ{IgxduL&8XkA@{{O%C
zudm(v``zxD#_4{1)^9eboZNOhZ}uXMODlty%M=`7d~JI?UdkZBfsIFEf?@KpC!bF1
zpD*A4`>xH01I+TjKQnH~JJ-Nq!USp`f|{O_{j4(QP8a_BvA_Pzjg86If8J5^opt56
z@4va__h#PQoW6eRwuFOCTjk7iZ<$!X-4fij=tTAVz0*yzuU*+I_mmlw3a_t=1-0>b
ze^t#g$qah$bNt4}<jqxIUzN($KkhY8ySgg0w155nf4|nm?X_xV<Mo;(Q}tqD=G|ST
z|K8sJm%H|{odIYBd~WK)L#<!0mEF$WF5<fJV7xek{8>qX2Db(7{c=BVp0Ashc(^SU
zl$~DBy&zxtWFn}Gr#`3Pkkx$aiVqKBs$MR&eAptq>3-esr#qj|JN@J1<IQik-CkFE
zN3mUIlJ539Mzz1c`GWS%fNHr1?Dn88=jNkg(J2=fxq{|6`fNU(c(d(x9w-Ze(u~c=
zBf>xbec!+T+ViNLMX7H6a<Tc-K>KyKT=qNt;9zs{?cD94LC%|%&*y%=k=+0E-|zSS
z$NOZj|1@0_v(t!Ot|Fn0Pj;4ge9gvp-*z>#^ZR}JmzrgMr@*<5Uw)qLw;Rfb+jzZ~
z`_29I>-GBQ?{>fU+h6zB&g6pL&L@*>zFcs&e6!*3C(w`xs8h~serEz`TITPsufI?H
zH)F_I;B~i-yMfm{`B=}RDZzf4RbO5Nnq*&FlW})f>BjqYzeTUdmd9>PI@+~Jqbq54
z?lw(OD`VI5H4z&Z{rI+he{9L?Yin;Lb?bKN*M00hIz=<Mi;<a4gk7e<;cg+Qs=Bzp
z{{N!j<$j>!6T07SzrXLtx$=F%I+2@}Xmowge_nmB^0_D|#a>+IJ9|;+>ae5lcE6AN
z^TOReD*KqAvYW`&t5;wDxl#A~ZTBLLE>Kxu@$rao_qn;&;%lR~>#^}lh3xtB>Gan$
zdGoxOz}VPWn?D~8A6>b8UR2483kyM>Fs%9UAqkWs_Sy5>{Ydz@RKIp5sGPsJ$hAA^
z_uK9IAP*(o+LBp%Jf`HLtLtPn-&b<>9}X}d6?B&gEO~!#Z^pGXkr($?e}6P1xlc3g
z%#4qo|AHAmD6Z-{r2U40p`oaPm&(J0&;B!N$L=*yFN|LanjrRc^>bP0l+XkKZI!C%

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-8.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-8.png
new file mode 100644
index 0000000000000000000000000000000000000000..c1cf5eb2c38444dddd5cf81e6159cbf9b2bbd741
GIT binary patch
literal 23951
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_dNj^Ee+|35yr+<g1&jEz1sHeP@3
zoZS0iW8a&Ul(jxet{z@XF9kRW2F*V;>8Wz`CJ{wJp-tI~bCU0uOYz*>Z~yDu*W#V)
zB#oyT8-Lw#Kd(6XT;=@YxaYf`71%!CbN_j+WO5G!0|UbW#<D7L5aYr8W(FpZfFX+j
zh~KB!0HO+b7+Dw?7#fl}6hK@VX9h+F28IU`OdKHYaRCPqWzj~O)&`%YX=i6`dVA)h
z|Mi{4&#x?Y=XZ5;J9YlNznz`kub0c`zx!4A_|c=3+uOp{L=;}{|60B|{k+`GZEO2v
zt(TQ+$^})$FZY|fs_5w{P4_;TO}WwM?f>sl(Nt1$a_tf++;t@-^~rVdhGL`R{~s~D
z<G8);?!KDZT2UdPMNwO`G9Ml3d>I?JDq@=I=}mX0>BjGi*_NAqpn>sa$kcNEeLoi2
z{dmAURWsPF_V>4|()oK9*8Kdmbcb)yflay5!fHMq+hYI!`y2Z<?~lRrx2BW+{W7Tf
z`}_Ul$BScj7OnJ}swHJvv}9e(&PQJ(Jl`rSE0_NKl)64wNlEF+<Hw7$udh>${(PX3
zIrjIheYMq_-oD#%zy5#h-QDHkFE1^fsvWM!%EF>yV-wRWZGLU}{JL3hEK^NR?p>dK
zZOz5S{dTK9KR>@Z`}(@B?(X2fzrF_Fd6u^+H+pOKb-%LOsw*rC$sc{+Gcj14-lTK%
z=+ToBi;o;}d3$4{^XByP*FHTxy*2SL+ur~Ge!q-;bpP0&pPxfFrFfp5Yi)k@wo0wV
z=dWL{-q@HdDlPr`;xUQEA0Hn-eg6FU?2H%p_U^v5EqAq3D_7;+^7Hd-L5_^wTNPUU
z{oU0yk(;lq4%gR>-DPq!O84}odwZ)*la6qFeR=u#>tC}a&GY8u+@5CWmVB(|qV@Yd
z#g}vQt~W3;n<N}ykW3C)>Lq%0Ww86r&FR-CD!Xq<I?7f0?oOn9{hy83*2Pv|&)yk(
za_{=j&(BX+`TM^9|7B)=n+MzSUS3+-cXhhd!-o%V?J8Ye^z6*cdrKKS{MioJx1~lN
z+m_q^bamKTBRf00W5<slKXUx|a_7{Q;hWQZ`-^|P+x@;LHF8<~|9_x(-j+K%YHQZg
z%-KsmXJ1^@x-s|mpKrJG<#PA^`<0y>Ijys^({NhqO!avcN}<2|Iywxt<<7RP{<cH+
z{?6j%C#UJo-k5uPO~l4S$=0Vg`FMDAoSdxQe{!z%cFV#?E}MSutNOa?da{1Zjtddf
zQmx9~WPEylKL606Lq17KNvmG%3uR{KGntk;v!jD!bKYI6^|@lYQ7NyktbF{-&d$!x
zcYUVYha<xN6}9n~yHg`G|LtV|aNbE=hhbIF(k`#5TB^xCW;r(=Y(2ZkwfoA3MCaDF
zHZ22#fTLZa!Sn5EOP-yP?B8bp|IcPnterUF!OF&_rK98X^z`)b^>KSkzP<_#-+kjo
z#LaDM_f~(edZWDc?y7kek2tTci@jZ%{`}WFSI^p~!otE||NVZyy5{F6E<V1nYilA!
zB_&rrJ3Bl3<RsOVb#wXT?bhVo-KA+{6vW8L$i>Ya?Bmm8mUrjHwRK@@qt+E_ot~y!
ze056D_9@b(udbXdUH$-+1_H0GiM+b6wtD^TWu-hG6O~*;7Q69!UfNaqde63#lT^Fo
z>i?F`wX2Q#`}@29)5smyb0Vi%mA_l_?d|Q?KR!O5Wm{b~>-*%W>ThoX|Nr~@^!@ww
z>-YbQ64eU%aBE%M-m0h#2?u?@Z?FAbw)fAc)2kvjE;@ARkcfoDijEGB(wCQ9+4*EX
z>^gg-Q#f>MR%mN$tEPsAM=O_T(BEHQO_PuDY%g26H!iOxUfplbi&v}CdkRZ8e*XBe
zFg94TmvN?D?XFi>RxX|}L4cK&73Ax;x3(7lHh=Ku=H{yJcgsVU`^k#xL|ph<e1A=(
z@!H7E#~#<@-kz2knP>m~di-(CUPjNiUrYaPRP&v+<o&+iep|Dy2KC8UPBBjRGtIjb
zaeG_t=c;oIMr^wh7z-XhfBt;qn)?6$Uftin-^t18%8tV1*4EaS%jef!y0FlBYr;XM
zwQ+l+Zf;7Q{N;N4N_M#lhi$p5GcPae>gl<1b94IE<l}s`UoN^!SrjbTlyXw(<+(4c
z^*<iAr$$aw^O><=mTC5?w6n9;l?n<9PFlhzYn5?pOQu%rt}Rw2FBU9Vpdf2g5uhEu
z?#d$9?vUkvb7#w`+u6m1t`58U@Nj$R?y_7^S@Zkb+sn`A*RT8e`FZxWHIZ32HY{AS
z-zjiy)K(F3@#P&I9O34xmQ)2TPB}U0*ZKN?i%(8g&pt6haozW)CnhS-GS8nUSN+ED
z>4}MlUvJy~c~@2S|H&n<ulX)^>%F8tzh;q~ZPkj5i;Gs?dVX=S``4@C@hekKPFfYS
zbJM2u^Xn21w`G2Lak1*jMEAUv=Vt%>a@l|Cj2SD+-rjn7ull|3#$2!Gb5gFYiIlRf
z+LCp3)zVd=t54m(AHV<Kuhqx;WLH;yewO+7*Vj|??f0*)y}z&4wBkd8sAiDM+UV_J
z=jK?JzPO;cHhR0Car(KC)nRK@?%w+<Br3Xe#}13L^K7H-|9+XgI(x3l_4z0N${aa%
zEbGz|PcB~GP#>QjCuira_5bT?zuzs_3SBkj)O3A)Pf+<3SN+!X>WV<;UTO2NcXxJf
zEq@<Z`}67as0|5?&(6+XUiI~r=cH59bXV`#VbMRo+B5I^QuEB6`zA$9Te^PVFR$X~
z=Ryy+@qRsHeE!Au`*oN9{QSJN?r+uKZ@2Tg`1tnSjOJFbUGiC0f`QL#9XF_e@9ppJ
z=j7orY3G+Oi{4)HGAKE6+RCuCvn;E>t+~CcQ&?T<^rkbP&)dI`y0*JKKl%2ypRZQ0
zx9KbX^(Axr`{d;0$#1PT<=iw{e|OcM(t}>>)*2q0V_AIc#<pCo&{a=1o|8!Sn`iT~
z^k?s@tE<y<Zksi;@fJnztNNPt`1R}TPft!J>&5JNu<c#gu0<+y@1L7%efG)8$-SwO
zX}7jyuKU`|#%r`KcXsINu$lS$|6a>3U$|q3Me^-!k^5?P-v0DtS3>UXZD&)?&boSI
zTP~<137ni7xh&ye(=mzUv~zP_zWVnx_x`<I3A|D!CnBb$w(&?liV9ok#QOO0<K(h;
zcV?anSId2MWo2^CZL`P6dc7}~oh&_QRq<iL&YGW_+<zbK7MGTnm%qF<JAC_7MMXuB
z!OtEY?UuV8bH7zr_qun{`)sf4fi5mBojpAz(cez0&zCs8$>-^*sb_Z<KfiM=c6Zs?
zxAz-1r=PESTU7qw0Auh12gc(2wcjh(c)xsZxAVIB+UwU_IE8ysBafXwf4=7X-SWKK
zdp@1gKDI6Q^Sj;etJX3){94Q{_JMy&iTmTN*W-d;Ut23GE34}%WtKDJ)3dX$uYLRb
z{r>b+aKhb`e*WFIcOQ?-hlhkrvHShTxIdYNjjc+@yT5VywA7Ol%Jud2>t7c?KUaIX
zR>q>hp<7%(Y@t)@mq*?DyVkCb*|`Z+@=sRx&$_lIvV6%i72W7<A@A<&yt^y0SK8d~
z`@QP*t3p;5o&GIrSF_{S_xJ1T{{C9&+|IWuU}2MxkPyh2RXH~|Y34}_3oq6RU6t|e
z&CRH-S)r@?%*)<H{QU9b#m3`u#k$?Sy;rwpU*A(^xLcS{)=I^5*YkPR?@s*t^!)t$
zuYR6)ca?r!U;o#;TTJ&;#PjFRpMT|R*?#|&b>-e3DO0a$sV^t{+ZEp3>5~*W?e>1g
zo14?WN98v%v0mAf>YaOgoA2-M@At2*%6tAR>-M&_$L~&EKCjB_*bJYK35*Zscj-kO
zu)omzSWD;hr5%NjuPk(C@86bvZOz2_^XI$o|Ee-wKmOXr<l`l;u4q0zH#d51^!95f
zCMsWD6KT9P=Vnmp>uaG`SA|~A)oXflbMtD?$!ee?Y0;uZBErIpUtL}Ox{+NjARr)M
z)whkAm(@IjzP`Hp^zq}z8~2sHy*10Ga+6u^ttIaAwO{(K$_WT8aF?$Qk+1u)u<Y%v
zrFVCiXFoqTSIRKyNbcL~w<n)_^ytx-U$56M&-$Hsxb5XZcKIvZ`g;m43v5a`DfIT%
zR&QP@lY-ZauB?l-{`&4NsA+j2I)Creucf{x=h;@9)cvXG=l_wv=cC)KZ<EC)tNUL&
z(kZ+(^|aVrtI|`sHEs?L4bitjm18r%-G$okcbA8)jauo}D+OvMxNo;yzJ9v>|3AT?
zqVLnw)60!gPc6xsEnoM;QQ5uk$}H3Dk}od;w;vaap0<>ko$pTAh23*sYp+~=<13e#
zj)tdI>8mTc*I6FCQ)*!N@8BsvM@UF$OV!t`(l<8(V|SGVK0MTFTQ|Gn(Gkwry;Y`1
z4?dWd`tr}u&!^^EZ`TT2vtp`tc-DghjlUjs>zh=5N|8(s*_7hB_v10?tjo*J-nB7Z
zpLS-(LPh7cj8juI*SQO@v$3s8Jv~jzs$|8XLx+Oy*kvyG`&E9y`srK#e0h1fd|QF%
zT<h{{D*_jrl)Z^~dv9-aV`F1pxlo>KP0b!IF`X5sr|V~bes;F%*UROi;^NCsoH!A}
zy5iJS?bWHLr-9t?<>&MH%Psnnzr47(N$0fkooDCfM*Ge(xws~Bvq|~8n5`KXmCiml
zNI1Z-ogpc5ns&pJ^Yi0xZ_D*AYp96&`s%8;vU^`hBNJ=L{<_-M_V(ROZ+?7yY%90K
zAn6E)sBToq<Kz9;Cn!3bRD4MI`RmuJ#KUc%T%G-==kj&$OXo8xDk@gpIzP`gy5Htg
zM^jUih^*||MXudi+1J)=%8kBX`+aWMnuvwo)AjC#`EIYOjhyyW>UGiHB?85@4lENk
z3OF>>Z&<KE;p)2B==j>NQ%_CRUd|_L_2T>e`tsL&lZ?~-B$G@2{P-C1{(B?4+=c1!
zbt{h?aml^0!I4{B@5+k6#aH&#R=2jc?wrRq^~(~C{Nl(vC;2}!GBUopzJC6%udkOg
zv-4#f?Gl}3kl3W=KW~j~^|y?lpPp*w&A%f0?8C#uao5#LzweZeP5bxvef{d9r>CUM
z^X8nJW4YK}u2LoR?y;bxo{1_yfB#+`wAAa@uh;8CSA}SnzP%M%`uf`5mnof-OfoJg
zoSkbOzJAZAu36^!@3x-(`1pA2=dLZ8myf+}f4SscZ6>dRY1S2w!b^v<uCB^_d1-0X
zrj*Wk6^}Yi-u`ww-Y0u`Md0F)Wj>N?qqd$h)v!4^MKjoD+eRI4+o~@C{c^S?e|{9M
zjoBG=d71C!9!cXbxAXVEydGa)TKdxK?bjl8mD&XVT!ZSrU$2V_2rS^0He2D+DU|n`
zPtIn>EA_QYRczPmGrVjzRA30%Rgwwnfc*ac{`!Z9hwoksT^AF%+;8rsYipw~?}@j!
zw+9In78Zi~cRhxA!gp0`C*0efKmYi)*Vop1f1Nz%(kJQjA3hXp&AlDgEv6f^G3n@*
zqNk^3mtFOc65m+#)N8$b)pWgBt<#%A*2U}$xjH)xl&Uu-AD=Q~#tOf=R(C)CeSUhn
zKd96B^YioIyR9oTE-rd?YwPN=_xIKYE_SQTHBLOl61%S^64aJo?l*T&-P4nk-S5}^
zUi<CM&0=+bPk)<_Er0&}`Epb|{?3<)Ys_bJ)?Qy1yQ}Q&tVN3#+a5ap@9*!e+1J;J
zY(GC)y?>T@{<_S|%T|`Xy>)A6@$$N#PsRJo%y-AVYtf0^^y2>if7|<HEEnlUZ@aVQ
z@430wrJ&lbg+IAx-~WHr>u=xKHh0->{+G42j0JLxEDb6zw_cB%ynp}xHa^)`X4~D@
z$L&q&34DHTZtVWfJ@@9<|63_v|L5Y@zpt*YF8%n(wZF`B|J^<Rm}8cDP2F>@^yBCA
z_RBNfzD<}Q;Q7gF{)vx|kMFI!VO{=i&bj&a`tkAiQ`lFibMo_tmy~RI^!TwY)2)8{
ze=Al7FW0iLh~T&XQ?M%AuiGs5R>rwGmb0wO*JbbPvtC>M{oSeA=IcR?-nrK0%d%$I
z{r#nxer^t^VSH}B{rin|Z*FYdq~k4L`(>hAzueoetG%b|fx_xopKP`J`Q-%<4|R2S
zUta1x{mO>K!zs_VM{Y=H1ZA2>`zFcFuX)V=1k@QXetu4_{DWTnzBi>gK1oT7{N`9F
zzWg80p1Cvb-4r?7suL26^<sCucyn`e-s>L2ymBQaC8aI3zsve}3xi7bP5Y;CaB_b9
z<=y&Z$@j0U2P#VrGAX=Vzx<ZX-!GRz39XGsa?$qtb<vmNnH}1BBo~FpRk|MS77st%
z#tZ6_eSUs^_b&a=^>MNB^?$djyqsHp@8YGU-l2P|N?qODw4%4={Q7!59@J@QZE1P2
za{0U>+0Bug)3oCD>{#YEcUA50Z!bZm2B_a&{w~He|6a`H<^KMmZ&kggg;Z4RSmrxh
zEj~V8R4*oCTI$P>$K|h|oU9(YEhloSUTjqAsVRX6n^;S~y@@<K+uYy1PbLsFJYbrA
zZMNLw$NlzUTeGfSS?(`i`}wRnsBQ7>-QCqQjnhvZKkokcc)$PEx;)o_fC;nAa;w6>
z)&4b%tNWP>Ds2D$`uh1-%4TU$)m{7hTj+edT9uvWEjQ-eH2VATxcsjF|9<b~6Y=}>
zWU@b~j*+sj+w<%D`}eP=m8*kVT)V2it^ze`x<s{K9b}geY2^}~q8n`{Ygy!?9k%Ae
zx3{-LR|YK=`99e^KW=O0Ww*=A{XxyFS65drH%>p7@$u17E-tR1kdP_2@3yqGu!OD-
z^9A*+e|~xzx}zX5c27lMx48bbZMnCvtcf(9suLL$bZgyo>!rcV{i1djE&ca>|NoU0
zA0K61TQk$i*}3$?14rH1T_OH<KbQRa`da<v`gjMM&u5I+v0ME3`SWGFeBFg>Yoo7j
z$qcUjdNo|`_xj-FearmkuUqCjdsWQNqEDYcU#|c6Sw3`qobAn7c~5_Nz4GEv5cX<!
z|Ig&1J}p&JUVeVcb$QF8BcO(J%K3SBWo)ai<lg1C|C124Jummr;lsWT4h@{#+{US=
zr<v;S`OtK8Lt^vlyN`}``yTI;J-h$kSN+M_;d+yGqs@X>g=l`hQ+$3VXjnj|`2WAZ
z%Y0{>si~+ONjW*`XvnINlV@fcAJ>WAcIL*mTs9tw2iNwcot+hTKJo9bugmi8?otb1
z7Xun}F^xa;^78Vtv-9_5f*R!Sc0QLAmXOHc646M=y1FWLng9HG%dWqFaIkq<_VsmY
zN=k=VSXgFUxDar8kt_G+y1!NH-{#&n19dYm8%{c>Z~8g8=J(s}$F}8O-k9vZ{i)_z
z=0}eoKQ7(Jk=(Ph;^QJtetz?P`}RG1KEJ+9ce~DM5v`CDug#|G#TvPGi5PCn1vUGx
z+bF!fz1@6U?reU$9}kv2pJ>8<WR7KV-mPz8Ik&f+{qo}C;VF8tx1OAtc^TvuCRVN)
zZM@R6K0ZFa`|Nu`dHMHWO?^E)4A$@cHcK;Z&kjy5E~8d1QKP%N%gxpO=Y9Dx)5pih
z<o&+i>oRX_Sg0AZV*^M<Vq)Sluc=yTUtU~PGc>$-)lB!gx7X(emGAr9TwG=-xpr05
z#xC=jnUr;HO=i*4Q>jf&O+FKqT+bx;+oqZ2-g<H^@6nOYWjQxDsYP$gQ8O{Qa^%R7
z8S!;LRc}`H$=PPz+Mb{P>FMe8n%dgl+}rCct0q;~_Ilp_YMOY6CHeNYnHGhMt{3l~
zn$6!(tdsmh6f~^MkZ!<+GLU;%p@hMqZ9~n^BHie1Z<f6+dU|T<JlpDff14N>%2|^g
z7#Jj-{{Q=HnsA_D_BQR99Upw3-(z4%iGhv|C-R^V04q4(-jLY5Xz^lEDJiYn+d|jH
z?EIp4(y*|wa8quycGwz^uV&TX-b~EB{p!ZX$FXbPeA59By)Mt%bKD*@GLw3Ho0{*e
zDfgB#9Ef#hV4RRR*Sg$~SK92#udlDKZp)26di3bam&@mu?dkjX_xI^-xi`11y>a74
z%I&og8xLJw=P^-fdu`0=O(~Jnju+kD7P`Catx3MRCnqPTlwHk^tSc)PUbqmz%EGe3
zp^+);)|QoN=jK%2HeDX(WqPk~NkQ@7@M~)#Ll-zOf;#NAzrI|2c6Rpr8y}OBlT&YR
z`}Xc`_3>|&=5gW-Cp;>6^c#4x-`?74RrY2E8?V%o>2Xz>dryP9A8F_2to(kzKHjqE
z$%hF0sxKKofBt-VYO40jfV=UB4j<lH`a10CnVFZ9@2=nfZ<U(wEDbxmI6*<dtecyb
zIypIQDSsb#cD{Z5=VxbwOG>t+otg2l^tbg>Pzil)ZS+)i|9QL1dO+hV5qoNWZUT*j
z_ez^*-Pn)_YB}H9n!ViL?x#!S=Cr+QAKzK4z{*gc&LY4dd99I|JtcD5r|0MA-&=ZO
zlMZOesrcEMi|O-gm!;3EJeK?S<>lq3+1GSTGcUPpPCM(hTuU`RK7Oi3;GyK76P4XT
z?Nw#>z86=+<4f;e^(^}JB@>iAxyAKDUSC_gwcz2Q-C@ZI2@9@Ey<gJN!SVI=_4CO;
z{q6rQIWAux6THml;>zIVCiVaR+_vK5pTyFzWihu{1CM&9jB`%TnjXV-d3xsGdhKg|
zY}i%$dKqZEl7&S>N5{v|(D2rd!o|n!*1wP5U+~cB>Z(xhokdS4_4oU)dc7)s|Gq<q
z51W>~iRdq#tmb<OR7>wHPG5if-kSXXXLp6h?&m+fX-m#cqwRTao{u#rNi%<XwR-)l
z4-XG#-QKqLUd?CU?H?5Xn(n-RW~OoI5)VP$xIGcU%l%5D<pl*7D!F#OIMmAh>gww0
zT%uY_bRsvc$ho-*)UZ%_`ReLwPy@niipIhP3lv1P!+b!!zvGolOxT`WSs7gQ^=f$N
zu9D2uv$H~X7Ci;kBXN~aMO9T)mi+j&#BHWg>XwR+Nv&;dSq~4j{`z!U|L(Q(GmYK*
zZNJU%nx?Z7)a{PmmIJCS-Fl^-3Yty2=bzl8q@=W`Z2#>Yg^R1cy;-?pg+^;ji-v}V
zhpN|<3*7p97F=HLzdYhKXh45!R%q(!X}$*!9t4e$ZAm`P*I#yfd;ay)`uo>(iE3-<
z==d}?Hg<J%1Web9EqQQ&asBUk7KMveg{@t+VS@oHE9=UDg-)Qr1tq<U-wre~SADyg
z9=atX5HyPHKhFkKuU%UoKR@X&!vvXk4Gbp=K!wJR9TvIw_C$ilt2U>d6%iFx^;~EF
z`0?Y=ty!V6b~O=Ov#*EkE_=Hr|Gr)Azn{-%+1G=rj-_q9(!1VX-=qT)i`r4JP|7T4
zMf$u-HQ(CrwKX+YHYU68{rPM*C>7jp_+glQY=y@}rB%_}^ETbSpBFxNQ|f6gJw3m|
z!os}R9+j18XJ?(vEC2Y&wf5W1^i4Y6>-Ybw+Vpl)%E?9d_ExWs-kt{<61=r7_jOox
zQqrPDix-!^x}phc@PI}OuB;5cx+&FLH)@LqC_1mLjb6^iE2W{J;4r`b-_EKpFBWdt
zU|{>{gtEEq{vSUouC9p;{{8K3@Xt?AuWro_kKJA7TmR={yIYUM!t{BSZmnFRURSfH
zPP%X*05tHNzxV4j&?t^+?yW0Z-%SmVo7msquNA&-&4&*Kb1jSAyr=7ho}Xt68rt)n
zV{!4SnVy~>XvPMVh345-YlW|ine^mW@UPd;lg`btTot&u4dnW_w@g8uy!U&*&lA&&
zSpjNZFP5HR=oVk|u~kebVu6@$)QYgRQMdL~Zr=Cf5w~viHlNjDYlA*MIvV>n{p_rz
z7Z<y)4qF?wDr)PhKY#yzeZ78v)|(p}K|>+e*2lju6W^GBf1i|1#fB~s%|+MNMr)^^
zn`2e-Vge{=W*Voj3SAwxZkx1uUdZ06uO+{}WZHhY;M~>OdGX`p<EH87WI)ZP;%8?9
z|Ni=#|J#=F1Aj7uLNlm~xiR;)&m4=3$+3H@zV_taPP?$cG4FKv`ncSh+FIXvHkD^u
zxyA2%OO2fN@#9Cs`!%0^XT9p^?l#_*JG=1lv6;5j-z4Pa<v)M9?7v&~@+KYQj0+0I
zPfv-0CTx0oe7^3KNCr*ugsqK=>)&1T^V95YzC!Zy`8ubKKwYEko8Rx(gE-&s6rcA!
zU;6vo+hdz_K#h}ivAdr|$q5Q3=G-<rJImB~x_<n(8|4KB8&-y_oCF#@&Az)Xc6ZPI
z{rfe;*Uh<YI88S?P3N@H-{0TMqvMu(i6-CPCTWz?;U25*H^*SQUhJ;Szn;JS-hK51
zjr4#V*U?cBy)XN^-uk!JB`*?kZkuIaUsoC}CoP?wbK9)?+nbNO?%vy5eK+p7%KW-t
zD>v$#-t+mKb>8X8b$+?G%|K22+q=HsufHELE%nv4wXe7Rd2p~f@4e?F+~b;aED8^O
z{jMFpZpI?l?pX^KD183={r>K))+H|{fSOFKTp}N;au_@~V>d9QSh4fTTzGV}J9I^W
z;@%&Ry7OLxQs=hZ+pnISoE&#N$t3??%*Bfrx7WOJYUNrPx3_ARRq3kL-WO&VCO>)o
zdbRqzibvDFSDVXPm3T}F*^qE>_BP+F;-8;V=UNmVO8(m+sQl#l^XI?zMQzOj%~8C(
zy!`7q>-QSf-`=b%oj7qKC<WI2d^&x0-_#pB3Kw5n6S;U(>giSf^X=qbH#avwegD4x
z@~>cR8=II(C2wvRZhty);>5Vy-(OsGJ|>|XwME1CxMswL1=p?PH*VZ`YNE3Hrr)cB
zm-k7TWIWimCVG3GR@9ai)AV9NU7elNo}Zt8|E;ZO(DuC8zpvx}f2!iKx3^zk%F52Z
z`=4F?zZ%e>9B3|fYu42}x1NGJ<G;RKe0aEhYsyKX_0Jg?PAWDqoG3BNy`|#0DsJzt
z>xMF0v#(DxJa+Y6m8f>up0|(7-`$B!KR@s4mdwi~@9tQhonZ(b`@grRGQax1WaPS-
zog#vQ4>#^{Xk?o7q_l6^hYtm@JBwV~`Q`lz?}LUgRj#fMfB%i!w{_R+Wm8~l0hTzF
zJZ}FmS>6BD)9LZo{(ir|{>{zJyN{KItO#(Nma1yKOvy5QUCc#x`I-f<uCCTrQE}O~
zZ{MceXgfPQtLkq#n|}X3U;pp%#xvV;!v%JHOt1d*<YZT0Usy!Mj6Z+=#FYO3^ZC5o
z@r?WX_C9+27}U>SnSXy@)Rv5i=jPeIF5Gi<b-4Gh)!8xs|NXVycWqs)c5=_Qyt}iO
zU1wpCU}jRdY+3xQM@98_$(kik@3H-Sc6$2zZT<I`cnUu~J3Bo2c;D5hr>B2?KEGbg
z`iG6Oht>1f_1W|0EHV4{?;jT@XJPd8JBur8YybaR|K!(hdGmGNK0ZDlcP#gxKP@$K
zowacJ?Sswis((%8R8Gz`P7hh=#QOH;X7{ODp+W6@vLZ4vI`Q%GpeaLTx1I}2y{BI)
znG?1)D)ZbNOHj0fMmTDIe$rG>aF}FL^W#Ix_vtY+e5>>)uVeHCRqk$mGAo%_xpv4+
z5fBkk@dWiGk6SDkRCWW+KY@6l&iBD)_S4s|hl5(78xjwPY{>}pEV|3+omnSwdQ-{2
zKR>VR5n*`X#K1V=rAn=U-@EOvJY)Ov{v4=T{w&AiRUT-9>Fw?9{@@aa{n4#$y2(A)
zEuGf=H>flZSrZY+$jAtqrKtP=w|uHjq|wc7-QxPwR6<t<9liKdx9I69)nuPp?+xy(
zTIxOB>sPklB$ec2J%xX_{Xcf_7idX9hoJJMk{(`ZGtkJ#s_^ymK(p7|)%zurO;S!w
zNZD>%^rYkZQ&0QPp7ys<N7B3^H>DJ2+ozrq>938LwiGn!=H4%7RrhB{*t(dNnU|Mk
z9_x|(^>+LHFR$0{2QAC6EPgg6H4@Zhxe6MHoomgoq(v`+!3b0jdrbmq%D%p?a!vfM
zl9f8AKiyJ&;rH^&%E_y}&rSBXtGvwrdS~(TX;1#@9obd-`cg^G?QNxBUtJB^&d<XW
zvb*eUO3%gU{Jm3ic6W>GzuNo#-sIHCs#hzQUkbVW7Busxvb3`2=vs@aFDu;o<#bPP
z0u5<i|1{US{M06$tr-^&CC^ShJ+1O?c#yb5{(JXJ%EhxyG9P`s@mRk8kKxhdT>A0*
z?j+ybntgps(Niza|No_KY|Wm&E_U~_7cVmUKWwc3U-$ObR_&X~9zpYLDzEIREcTsk
z=DRif`n7X&t-qeu-|zA3wXNYX&>*SiJ7$JUT?|YLml2~;rZqnbwwK!f`>_}_qVnKD
zg6*FVhs)QtDY<rKTwLTj%eH#kuJZSFm%oW>g-po3J<BMy>o)s&P-b2_J<jX$-L?r6
zCWMqO-*qoKfA7*gm7lXtP0<7mGaYAt7QEa~Q%%jyy8K;8Ny(O5TQVmv`+I*~(bH4l
zxrAqDXM>Vg|5tVYc|OJ8)$_OI++6hHMaEo<LZ@CS)1b%4dShQJDJiA&eB_XxZI*lK
z!NKOe``kV6UfE-N&N6e)ncm;lRbN)jtNnIU<aNxhl9k6*Izf}L=jK|2W_qt5W}4Jj
zm@Hvm|8I{~`MWoT$KQT>dOB)r*3{!4g@lD;W7kb;^4Xkr7L+Awe>`jlO=@1Zy1piI
zaksesvI;$hg2nYU;%m6Y^<IERrEYD_-dgrHYOYnOm#~`8g~$E&?=F_z-j-YSZs+qa
zhxzSK+`k{+D`k4A`u*PJHkF?$w#b_2&1vJ6UUqkP`Ras&O|LF4KJNSfFyjNwoy*m0
z|9m{YDs1hnUteA>&foXbO;ju70%#1Y_?geoA3rkw{P-C6JbcIG(j_L(kN1LRKfb-a
z4Vt0s>gozw?ABZI?M-Cu->=s}ZK>;wpHHsDGwhQ4>G}EfN4v#AQ|zFYKWL2n*VotD
z78Vhp6)=B(elGp>CG+a)@bj-zO8jQnRBi&zJBP>DhJspRS=ZKRCindN@tD8%_uK8a
zw&g~zdd}$i%1ia{*N4A;e0+RsLt?X8&JBgro4(vg?ti(s->&HPGtfBO?)Upv&$F%0
zdU<InXs~Wu{{3~8pPzwJ!{ueZpDq06T9tlzxBLC7;N^Z@ot=T--rNMO%PD<*%~w=A
zEad8{P*8_1bZr!PstdHdCgC8{RISicrWN;RtNG4)@vvR~+F^eCHAzRiGA}Rl1vS4v
zJvsT<Y-jSlJ(X9N`AYlFw~Gx73<MP_pwa%L-QwCB8XkdxfwwlLcCW5=a%x%?x_VjC
z(XN#>KR;>3?AV|ew`axCZt?8f+j2p@gw@^i)~{cmc6Qd%UteFZ4qWV3_2D49sHo^t
zoybiY_xIICZO@wv8rXJj=hHMWFbI9m&ESzFH(^QoGj|u48Mn4(tN)(!@9*#Lvu!Fr
z&3JUQ8#H!vfJe&Y1PeR+>`kesXB|1>vV9w9wa`YL(_6Bxp6ZdczE<+$!ok;{?=dcU
zlUAHAV^eXV<n67iE-o%J8X6dcrKGZ=wqzuNx-ZXamp=Jb>5!+EDK|mMwX0&y?wX&Q
zUS3|_4{Azqa&Q<N?G`t8ZsRcwUl(JzEqC^<t=ZMK?|MHsfX3Ih<ln#d<n;9OKYsm^
zy1gy7IP1vq<I=acfd<s}Ui<!he*LV6hudery1IJygb4z|0s;x3#Xqx5GLzEI&6)Y8
z($&SK!d5-GXJzE(WgkC&{J2Zc%<S5aA3t`SoeUb|1T`fM5*plpPgeJzH9fxW<`k{a
zQ!K2kGw<vy2K)PZeEnS&6&01}`@O&S{nPfIrnAhUk!hJ*uhg@p)8mYyx8-=2{azcr
zeOB7pSu^)kex8+cbJI*NQLP#N_J2)|UN8Oe;o-A=zuy@*HZ~sHmb=|D!Edfr>aNn)
zX-dk<z5xLfG{e@+sC>Kix{s4n)Aj3Le$Bu9^YioB?D91iQch1h`{dl*+cuw0D5w4Y
z_Ezq=Kb~Q+ihLnq;j_En@5`1l%gNvp*UJG7aYaPTSQ)gmOVYM#%klr|$0Um1+%Wun
zN_+i`OG~|HuZi3|>&?y0vxQW>X1L2$9`TuJbTnpf)z@Y3xfx>48$C0tQ~hB+VaALV
zpn_3H$4A;M2ej;I?>)wsx3;bZt**IW|NrjSDbrNFr)gMOMJ;yk4_odxSLN^3_FV}F
zn?NbhwESJn^>6*Q-)1~JH+OaI?{BKVRU|>n8Q;H?w`V(Y{=9!;VxoDjIcPW}@6L_4
zf)h($T?y<IQoXZF8#JwNRrzVjuClkUw$*OWyIb<_Pi4Q|UeJ<B`;+!|4NHz4Y-TV0
z@**&FMZm%2*ri@m@BGSB|GT&5=cl~4phY3Kw_Uz+UYdb{;m2;ph9ypy<}lq;vpqfE
zem`ho#jKRq7Zy5y`uOpq#Ef^(pD&*<LE!q6aIoQmj4Gm&<Yvw^seb!)(!4(tuc#?1
zI{y3jFYddrgv5+T#rGK*7#jBPuK$x<5v;7C;W25CU9;WGpU*vWo0^(Rett?_{~I(|
zx_Ykp@qYR1i(I=!1O+E1Su-#&Ea`7)VL5vI`0Iu3a-Xb3ne+M>CUJSjuAj6kDfaz^
zh0a`jeADL7pTGL;)z#spe|{8hmp`?{b6!x@yWfjkyT80x+<))kD@F!}g5|#RY$8D|
zo%cpYs!SeQA{qe>3l}bo+F!T#_^z$l*R`~?PJOKn37OJk2oigBef|5WeR+4SKr1WO
zzU`fqwq>qO<)(Lgzu&Vi2Mt#4P~Mhzca^(*?Uk=Pc{AM^JeSUxA>ljA#FL#*reHSv
zlYaYu0q^hajeVPSecjpz4-!C2p7I!<Ebg}py0#_~)I>??pLpf%t9#Y&K?5=GF3ki*
za@ob$f7b*ZR6zBWRqd}Wd@>dao}f0(*8KZ+o<aR`wo`1Y%f7z79S&Lobas~M)y?Vt
zpg~CIcD}2icK3}N5!d%IF*ARCHaq{-&Gh-9tHaiQx!}y737SDQO6|H=_dECLsj1qw
zeu4}P3?~HseKcO^9h8!?<lDQuuS@T~ySp3I$?~kfTU7n;=ku*aPrX1>r-hG?fkyD0
zoSkh!eQK0y@7~_syUO3sOOge3wts$l3R=YZ4zw;e#i1r{ckLa<i}8xertkKCkJF9V
zpb(lnzvh#t?awEZw+D+cFfe@Be%OYJt9C&veaT$#JE|2F0<>IG4KknRkyCSdHv_|g
z`?v4ytuFoZ<Kq`SW`=hiYooU>E9aak$H>A^aQ)5Q-QlX<_f~g{|Mz(x#K0iQ!l=Sq
z_U6XI>v7e-_J2M!`^~di2^vU<-Cb7ouvJ_{MC3`<_T1ZMw%_j*|9aRi|K$Dq^=`dV
zFZX`G7d+3V^3ujChJt$^A0Pj(U*j{aB)@7pGeh}->yzUA-zyoJGI?mdy}v&m)aZG4
zXXn+u)#a@0?Ac#mU9EcDYrduMu^VXR-XzdaCuov%XYuoE4-Ph$zPn?&_xHQqzn)Hy
z-%|EA>gTUdlbC;~?+Opv`9+V3;T^-Sgu8lnyvr{w@th25D}okWF7=u^Nu~7F70>YX
zaaaHU`)&^!y0a{PcI7}L^VA6w7Mz`J4j!Wj*_h<&>h7L>sD<+tXh3)#X!ZYubroD;
zTA+etl8Bhtvu!r<`)W4jM*sWwZ_<*;&1owOA0J!yLD3Uh)tDq7<9W^n(r2W=<e>!`
zZ9FCcT6q(_E$8CDzrRguf0ck*z^`s@UJfeXKRj@hwXF&f)e8A=V_(oxuUlI(gRMgN
z7#J8*WJ(TtEp3;p^2p!!a~Y^`0xdtBq;h)GmshLTXB}u@oV3KbozHU;XwlZj+JAq3
zmVSETsj8-S>iqfhI}d?s6`mG`No<0Gf}pl?)V7?J4<00drYM-%`9k*9{JgR?J6u&o
z#bXi^6O+w0ULKw)Dyk|f0-!AcANpMxJeOu(UiNb3@_Co~WUXV$EkHf;)#2-3Eu9`0
zbbDKFZ2zOZB`+r(|0b><H$`Rp@voqg|Gx>#gpgk^7Wap&i?Qr~7wS9P>?&yCQ|4v0
z>z6ko)k}U?@Ak*-t<p?CHz)5jXvy2Q+}rn#fhu!_+-3jnU;p}Txw~S$Hp_$%tD+|z
zP0h`=)6~_}PDw1*4qpeF1LET4z546xYuj6EV|RxI1_rLQy7uAW;m~z5=TEaUFnGl0
z{(t|vYQATciEP%--w!k+R)#Ec;mp0Y#nZa%O+mC>>M4<*KYpz6nQ1g>$&48ipeb-r
z-Ly4wQ%WbO!M`=@>ZyyfKtb5kX05Oiw5$#^=nv|)%&Ywt37U^zy?);%&?4@g#p$5I
zrb$<}=f|I&V;O9keJ$ktJX=sQ<(0Jx`F_8Ce^PRCaOs-0(K8c;58P+|KaY_iFGVuh
zr%HTc<eK>XafOA2pzfjH9E*h~PIw$WcI?$r@%SmZ|NqbSjNYDi_49fA^;5OOPl5Va
z(&pDLEOZu?lA87CpLyP$6`!7-zW??zLqo|1N1<46#y_%uuCityZsRSPx!?5;qh~Xh
zs8+_kJ(cFU<?r`?&pOz|y1j6TxvJ@&-nWbji+@C2di^q%g+YN?u_47{;v@4`hJSJ|
znphbMjw_Ua3Zx-l;8Ana3n)NnUP2E~2k(0sdtmL3vbVE9<HOACd>ZllYCsDeYif<3
zt^|eae~p>%_)cugy$xDw2-;U-Tm3EM?X9h$Ya$GD@9nuc@p1m09f7{H%|bmqIyR-9
zU3F=x_v>bUyALZi*8Tl;YM$+GCnu*bKOXmk_8RnEVF#6-DKqsNO5WZI<&`qIurhdg
z38<j8D)Dgb7P}hkZ(Dl3|L<Az`!7K2IzK)>esz7kJ!p4L)}<w#-`?MUpH=+e03)c<
z*<JP)H1zWIQMZ29zdt`gJ?eEaJBzMovoJ6)7;WOYoe!GSzIHo*Kd2$Q{b~K5kL_)I
zva1dpaPS0=NG)>Z-uvs->hi7gil3ib>D<l-vcm5FpU)|`d1WjDI5{~%vpk0mA6E4Q
z)q^D^TR@ARKr70wT7k<Sox}GSEh|1O=n~alHc{FA)vK$k*F6OlGVky0{rdO&{p{m?
zvY?rtd)4o4uda#wyzbiPo9XjkzPPv;G~%K1^1S{3DTc=u-vw>=*-@Ar{$s)ttI}7X
zg><tFlaIx&1-Ery809eh{B&C1wDeU-ubgev|9{{2Z!LJ}<aw$7|L^$L_V(3zcXw$8
zE^3L|lCiMp>8Z>!GYreO&I5JT-1}s1ZO@<YHC1aVXa>~1PX@H?O)qwr%FFc^K<iY&
z{i)wxQ?)>273Evq7#J877N6e0=rT#J>V@LpFPHsaU0T`=ngItj96-AaY$`Vi2?>?_
z_>icoqVnSNdHe8;j2E$MQ-6PZ>*eDUvN`SSl?9H>XJ?su``i6oV)ySya_O5Jfs;yJ
zTu}53`uFFj?Y8rfZrREsM~>`{QfFXbm@qN*1%r~Oot+(c%<A|1{h$gTR5(|Cf47!f
zTn{vDZD(iKcct*(pGs8~6%8}9u*2>A;h&$K1?`Fg%>`aw=6m_vT<fV5CMbAvad3RN
zVV8NvD+tshd@x_*F#Ckl)Ae7UnQ08FnqFL7yfy2p*4p^}aYwsEFV8Sc-qUw@hjdd@
zlZt2Vtu2Mo_twQ)OD2O><%Z8*q8E96cg4p=x9dPV_39V#NIUS!S}g%hVtP;00qx;A
zIZ1VE(orr~SJ%v+pPp9z|NH&xwdnknF*}Q*HYOd7UB4VOC9z~r<>y_x{M_7=RX~f3
zuYT29seSD$$fO4k5`O;tx%5%SVHMN853^tCUgu+AXoxlpoj3nv+tO^;dUi>(hLV?;
zTt9yN2wJ~smV0Z-iWM41j~sacN<AuD^X^97-j*ADd71Ck1&+*Hv#!2ccP)5dO{Hi3
z+0TW0o7wrjerb0g_Zq)tUtbp*5)z`-e=Yjbbn}|6d#_#s^)$V2o%(DX`MzZBi}wnL
z*(Qi;hrQVOd|q&`lqqPDD6gcEi@M*O3;Fy1KFbmo5n1x@@9*r_*Vb;*dA;u1<yE2D
zlF24{cPzF)O+MB$asK@ISyxsldV(e{_f&qq({yT*s`r=U^7VJVP5@=jloH7@r9*#y
ze$GBS%M_HtR5H)bGTo%({qxh)&l%Ax0u+7c+x=a4O;}WPX`ifh)}J3AL5ZtZ%Jj?K
z^7}8l_4ftb-&Y%3inl{~V|SD?D0N*-y}@9VaX|sJC`~(j9cYaxsQvo&&CTHNcZ&UY
zUHx)Weg2AqhlfBj6VJ}fTzsgNJNrn7;H!IkcdtHc`~A-1r>CdC{`q|Vb?x<gl<Mp2
zLF+u6+xdK-{@@4oeczup^0Re&CHCgt-so;I-AhNi#Y0yHsoMT{(EKv?QtZ~k$H)Fl
zXB$NZ{r;lI&hW0`yo#+>X7iGwmoeN7cR1_+?%tMom~E=|@%`D`l@8xyoVet~2@l)9
zUoO9l1+`QgtW^&4Ie|*e58sK}AbL`S@rcA?(1I1vY|cEJ$|sK>KmPdi_3VZ7HFy{p
z7#t*P<R++q*5QCggjcN4u>JL7@u|7i<yF%`QS(47rHjF+@R7^WBS$ih^+>*q1?{_S
zxIIC0SAwdF%8I<ZyPyucJw=nrW3E-{mb|;WK;0Dvh6A~$L>Qm!|NnPAs4@Yqu2lD%
z<MF--RE^wO<Rj<+T8a_7yX@uH>+#_c5i>xwg^Xp<j@qYZW*YB34YIyKcxIA7m5)!4
z&S|grMqrK0d;}fTd}d6zrwZckU^a3U*8#EW`6WN`omk>IS;Z4H?4)zLsJ7m?-~Qi^
zyE@#U!JXVw6Bt#@%)+LnuJoO4_UZfg@SL1CzS}qIbc1))rW8mTHGtx5(v$b^-+!|O
z<?l1P&TJD7wQ?{20pWH!z5v-o+|JyS6Z#*1eRgGKFlZJRv~3}Hx!*~N$J_30(&?2p
z*PFYF8I&5OW-2x4L~ZfVjox;pm0Ns@vOC|?b8~Mm?oEw+831ZyH*7f}!nmaT{k>Du
z_2+|zc`q&XUS4hqaz|d^G708Q$;bJ=zPQ-@0kl~-rD&#7gNS}y%=2?|y^+G}Ue#;e
zzu))&53Q-GshSRI{XZ~E=`vLCo~9F+k+A|as^RMH4jTUd^zmaMXkVsVpUg}@QIJZH
zULQdR&`#a!_n)7g{d_AgBPe1{{4jE5*je^As%kpODG&Hgh=3NdF);kGP3f{$@B|Gx
zvvP}NoS$bqY005h?$wUXY+XG)KF?2qlrM2x#;LHk`unvL6P0auCEwh(_W8VOKTsxG
z4v`OA_M*u&=Y|2Vyj_fL)RqgN^~}G%WX`p#janVPKJ4@~UC?w8ue_ZNJe@q^J2AsB
z`O22e;IlIf59j`5=C@e@>J>dY+WqUvWdAFx!`GLr0`0eU$O5_W<HwIxFBY~>iv54V
zncvV;5fmAmDP0UgVq(j5qqnK-t~)(Vmy4ITbb}Je#oLvFSthv4Rl0y?T0vdghlg0N
zf8rL`%Q!JXQOde(4QQOb4;EmCY){Ub-@o$g?Ch)C^W(q1zV6S;B{D$;wCOK=T?}Xk
zpGm@jhLUwcpoDogrHf&bs<)VK<R+Km=jTdivoERp`wO(&Z<a}>(&<f?c6xzaU_M!s
z$zxL5*;y+iH>W}KT=W#pW1ulAh9A`@CX_oUDJ!Sm-nK3Gwwk@Yy{ntsy)E5SQzJpE
z&Yi(7+aW4x)No}*p!2lUliPB)zXvCoJV~PlpBV;<M<HCl9!8Mxzxe8Mxs=e_=k-7C
z@}5%qoyBa})g>Kx=Yn9#fvE~=k6i?WUGE%AHIVW(>A6^#Y|<rpv{P-CMqsC*QJT?_
zh`^r3kC+yBco!%)O*_%Ru}MO#@$>J)H}+3B#=-Tx?Dgl6Qqk|fZMXj{iN5;jRq?x>
zQ<gchoY<0ix#;=a@^xFk?Y{q4k6os~;oHsh`7z~pOGRh#FfiN@;8k)sXZ?Q9ozm;E
zTl>?`&6%m(Z)0Sfe$HpooZ@qqJ6|rFtz|05z_4MSluLun?>C!Y-rk=7_VMk!-MYO}
zrl*Y0+e|(=S^fEn#eJvx>%J`J^5bA&SkuoYsL(B@>-GEF+idHH5<3|fWF<l80?7aW
zwtfFu#deuV;7wP2mQN;}nPIp%=rJP$!|RofEFQkTzHv1lkE)!UV_E#^%Vq!P7o7Rm
z-i_Z?lKED*nvtR5*Xp=?ZQs||eq9}Z_UrZd`A<(zPyh7fWagzMo_#i-PTcyNKEKxN
z?(XvS4_X))4*bdxU@ZFibo%qR+wY%yyZ!z=v)o%LZ*FXSd1q(wq?C`3j!N3s)%^Q8
z|NqWI!AuMc^2;4rJi5hnjq>j7=)Y6_`K<ZnJ(Zs)EoWk2Fbiqsn6Q88u3c7Zqqnd7
zBEi6LplZc*#-f)?r!QNzN=rPZz;V^;)x|HDPOp1YylT~|qKB>G(+p%87(RH0in<1d
zRCVkRi;bPTYSk*8=xsW)^Y{I%y8Cd|s#RL6!`JI2?($84b!Fwv;`6qX?@W9mJyni9
zL0Mw@lN&1j>Ngi3+RTu{BmXC+`q#_ln~%%Yt*aIK`ibYnEYs|N&ypD!79@UpCdt6y
zkSXQTaAuCBv9OxYj}w16h1EbiNuTnvFfi08ef=b~X8*Uh`SsS_;`-+V-DNhO`z!zN
zLp!KJTKBO#eu|AG1H%SIsUwmTKzqj9Wr|L?zmqSy;8^+PqPzDT4hDuFDpD>DIx#y8
zbfdTZIq_FaH|ojU@_U+vN(>ASCT9pRZn_#4{dD7Tx!))Ly35y^+}%~G4VNoAV|e_@
zIqUalW*8=4+ok&c)z#I-cT2B7UAOz)sq6dyeT5~Nk4j%AD!Zp$TH<N>`^{$KtSc+t
zY&gv4Ica))on`+1zh%F^zMjslw_^b;uI4a;qW#_e|Ns7cS#Iz9{@z~W`hS1U%(u7S
zTmAi<?)E#AI)&Ajc}`ZFDksdq@I!+45s$~Dknr&5Ey8{$IMwF_ybNSuXz*Wgki}!t
znuv``!OQ*5?y3BIX}SOWk{1^iUQ%XcV31zm7}GQrv~a=G*Vp&gmzR_4{~WJBQ+(cb
zy2?!Z`a006vgo{>OAiS{)6a>u+waZVeBREQnT_WJ$PJ4$vc7{<G4tD8*u8+6!GZaL
z0@IUO+3QY*@Bel6&!6Y^=LOwm0@Lfy+kQU-iWDv%HU@^A4mLpr<Fqp;rtkmrwEs^2
z^>uU0o!A)~*cLdlc+57-HLCyjr~l4;yV|O4cZyC6sWUM!*mbfADloJ2o$)olJEi=7
z?e=r`K*rsv`F!^0sqlS4jVBox8h9@%Fg^KnTL1j3tE(?>PCsAszWTm*XlQ8Nx6SjP
z-bn608&~~ys^46zr;EDvR(+Ylz;NJrh5#dIg(_%IhonJ*!@FIt*NM1Jyq&+_R#?sF
zgyC_S$?EfKHYvU5G|IZNA|yOK{d#Qq+RfiDdF!VhXkg5|xhWOYJxV;>_V?`R6ATOw
zJ})@9M=)`@-`r1==l@Z$|9R5?)3@9C>1St|zPzz9dDUv|%K@9y&z}<wkC`Z@8?~l5
z|Nr0b{<pW~7C)UDo_2DQ>ds%UR)0Rkt)Fsgie~1W9S3V}GcqJBUiJOI(7(&`|4q@a
zdC2|qUHSgm?`xi0drs<;wGOLT_2f?R`Lp-`-o2lCbyaBTy91_KS5|;B;^k$&-q+W~
zPFAUYzqcGz8uiFpo2k#QDN=P~V`%7F{e60ZY5qN%UTO1lV$nH)F9Wkc>nL|VpI2S<
zcI)+Z#sBA3zdO0Wu{rCpvL~O_iv?d^TvXow=c)c_DPabNS97c66+Ay}U0<vF_;`Q(
zYuO9hsb^=I{(NS>e`c_srRwfCo4n`#-F~l1`}4E2r{k*MhNiDCe}Av?+067)5+MCc
ztLiz!Ch^ExnWWDtbo=%F{d|zN=={B<vrMzYp6{^zb|ZQ6`J%_Y=FfV~@11yG|NnRC
zyYn-R)jflPgM-u8FI%R@Ev9qg_xt_x&zjxNnS73uf#GXlGslFwzrU{j`+3n_e(mOX
z5!Y3#R&A>K`pVbpcoQr4r}h7Tt>5`#QTL^FvAav<Hs{>jq~bYQ&G*$C)7)EIzDY1L
zF&uafG9x-~r)p?u=u|mnP~iuPVnJoMnkR<x^JYeFOmdyO_vz{B>q~hU7;5gBbTCNT
z)l@8XKhYy;T=e;@`SV?`*PVWIbMxeyf@i5eKRvDd|M&Z6&|cHf)nQww$JJJ7UW=b)
zobGpPYxZ`zbo+IlMc3ok%6@*%&%ki1@cDfEf0t%Ym3U&jG>-kmr>CbszmETJ1*))q
ze|u}3abZE}zHN(mHm9HW3lsr|wefkI&FAXAzq?y}Ei(NnyZsMG(9-wi^Qu;zGYnql
z<GDU=@3qJI*5)V8?fzb1V5s4G{fqU(4wd6!3DeH^RY@y=VyEu++vzin)34q8yQ=c@
zv!9?qlBxM{aOrtaCi?R#eE+J=bq86+Q(j(LDrubN1Df=D(!9IuZrSbJnYPtsZ`W4H
z*L*k#+TvsR{Z6s>TxkY|SCdyQvb%G;O!l13=QDRI9`}Muz2XOr>}kh(BzL~qbo$b&
z(A9rF_SdiZQn3{j`Q`U2)z900k9m7*cK*JZw%=|juZ`Y*E;4=YR8{Y3DPLY(yqUFn
ztx@W!DgAp`vf=fKV7f!Y`8NLg;2$NEeCwAxHTb@7o}cY+|F=Z5JmIg-s_p3xpdyq<
z+DvD$d;hxF*LQXn@B8<4{qv{O<InL~zX>?_^4hoS`V-z?TN^D`_v7K5;&YagmPILM
z_iH}$NSSCXcJD9yuFb$;cl}jv!=8`Fq%Hsd`FuU<_3iEXU5ifK*;)MBx54Ji1?Sf>
z_cNEzExKR(eX0#F1H+a4uixfg2wxKs_<NtE{I3rmSB0+DG8AH9_@H_9wy}bzQTDYp
zK69<Me*3t{wR@7v`hCB$Kr;i+E3Q9eWN`Q!wx0RPA#VLMt>SSJ>3@5S&qcg0jC|k1
z$G}iy_0`NFZ|~P@Ui}OV3^^%Z%^dpd|NVgRzPY|&U^tN84>|_OOWA>eq2UsT00YAU
z6DAf0294fP;XxfHk^cU+Uqjq_Bqq+YtzPEZE%x(~`2HD-`|Yei31n_^eAUaPJQ4;9
zpatWg(je!?hBNc+_cH}EGdTRcwBr)9iOBu`|Gt0z@wh+z!-Io2ORvX%uK)kNe&@em
zuQwl;t4{g!<mAoD=W{2kfU2N>zu(W_mV5izDed)VCaHQCeZ3m~yj48z#1zfoOFK5^
zTQV@rkN;=7XWlv6?|1H0KA)S-dSrs4^QWcywVL5^m8p5V-)>Vmxgv1!rktCbd}f>J
zf|lA(db9WYJ<BH(oQ=xf+?Z4I>7?jPc?O18%+nLrF0cK5cl)`U-EX(u)&tcIpoZ|R
zt<~>#syDOouIlYqv3#+h`O;$d{y(3l@7KwVV_;a(&vIh9N%^}w;E}&i*P`=N@9n9)
znZ17RE1B!N%in``>!tRyGcbJZV)!ZYZpY)kGxKb%K|R7rXJFOD^Bc2f&C-e3pzwbG
z|GJgNObiaSN)C1lLA!#K-FiIc+tnK7+}NOUa#QN*Nh-dxOjZ`xTwdmT-HMHY!LFa>
zgt|fbyE`&<KOSb@-j@4r-|u%Jp`ogtvrMz6ser42=Q{EGYSt!$>irY38_Yl}wT%-F
zH0Z?bv6!spdum#AUgYlY50{3^$8~+3{_M=m$z^YErEWfJ7Tv%9=`5A<zgKS=*8gK*
zSRhmW@8@Ivy^)=ccEKzs*djJ2xw7#}O_4NCdvcIn{tTb>n+@0Mrt8IC+L(OY=IfQ<
z(s|aYr>1;)bv4`e|FYuAHIFaz^DrD(zF}QFL%(-X4r|)aHwB#6s-iZh`L^*$PC7YR
zJ^jy*k1y};{%+O(`_}b+)9(LyW)3d8Z#DDV%?OXHRCR9S(aervU|2DI4r8SM^Et(S
zpb?YxHBYrcEx}{G(%Y~7GvD{|pk#Ob&*}9ie|&s=d42r;Ii=SkBR8dZy7kM=y<2u$
z_i#J^`U6iG7y{}!CVc(!X7hPa{{hsJYT*=q^`>4z;qI=|(}(%(LFKHvvU}f|XS4I?
zIX1JUetB{6_0M1Y3=BWs2r0aNxv*U>>V0zgt<2?j%J0|CE|6ki$e6K*ZL|~{o<+FX
z#Hrfh&;EQq?|*$=ET~)hX7~GjGc5{}mL6wfXy_7Bn0?~oaryb#>-U-+mo1Mu)+0Ij
zSg&;Yg9D9~e?A`9wv}RF2=RIB#s4AFB=yu3P-lPVvsu}n*5=o0dlua(Jiavj{5;F|
zdp;XwURuKC&%wYj^&!s*HG{f8KTPuOSS+7Y<n=acvYKzvB~SIIo$B*Wyt%nq+d`Is
zA*7GtCd)G4+0*1~tCqNSi)F9<{_gJXGI>bppk|PMZqAh}SFS{^U%ApVP^9wp+U;5f
zq6`cn^B8WjOw)~?rsg~AN@V`6Etzla7#M2gDg}S3U04&jc}>K|MdyBfdU`th`}L>)
z+fOFX&N6A3RQu!eo9&))Yn~`DNS|c4zy8PR=VW1p*$%$GXRY)%gIbJ}mUvIsdtGyH
zP2}c(f0j%C|HJqpvM_NeJHw3?X=i6mwX6LVQq{xe*^tAux9aPu|9{T^2Q}HU_X_+y
zsXpH)G&Hp8>#MEjp39cqNZk3j&wA6>Yti*jB83<jw9;>GN}Xw%9R@0Cy!tOCK)dzl
zXK4m6OSxbB{p^d2i;K@$K3DnqVD820Z*OMy$yz_#cswSFmEpki$;Jw^9Y7t_iVqKZ
zWGsz}pPxHhb~|_a#^mGAzFv<%zjph*sFxoZ7#1YWVZ7-Qwk~ESxBec3@;im@VtO$%
zV$1KEPLHpv<g@$nz^k8)fk6~fNms~2S}sfEB6b#~p0oe|r{wJ|)3dY9&+q&FZg!`z
zdRUbX1H+9MEFQK6e?A_6ek*(Z*}~(p(+!i4Eh&6_OwyttL9YJKN3fC7Q?ECK+-Tqa
zW-mNhY)U%X_2tb?<GI%5=azU**0ND#V92pK*AQ|8RJ83Vd_1S<l;+lK-&rOnJ=Nz<
z0gW7NPCviyK?wuHhC<E>T(iw`qpH5V*m%u)nY#R*=_lHMGcbIJRCLhFIXB00<;s;S
zH^&7BPhO+}s<%QDv=|s}n6P-X>PBzV0aY`b?`_Gve5;m$;l~;Q1<`A$X@ZgA!Dgq1
zkO*I2-)CoL2B-f$yj3rD*A!bJ28J9XrX`1}zP_3YDzd$&>&0dxMQ!N9lMD<AkA)RP
z%dP~vgF1sdUoM-SbsZGq8<UTx-LL)bdwpFjIA!O=^lIB4cpghcv?VP5<oDw1fm2hp
ziyyX%KkKu8cj8bh_vY8@c0U94wGXn($Gp7Az>u(5NC7lbLs2Phm%Qy>)$2JGk2<Hy
zB`^MQ^L*X3SFc|A%(W_ATzjrtf1kzGtN*^U2WZwYF`Fo?-}^1f&-Uw;oZWA?WnNno
z2^vq`SNl8d%nZZGeKnPnmaJN}YLPLYyq%41^tL-0^YfGIZ9_vtMgPk&*32_q_l1FB
z&HU>3dqJy-JuffwHO{%Q0hA)N!`Gcz;yJnKUgh)DUteDSyx3nC^3w1xvwXvT&jtn)
zhRtbbPk{yoa<|=7+yDRX`^zhXm*3iZ+27uFdTd!FXq_Zz%;)uS)d&XO1K;=m|GVe=
zz3QJY{p)vy)zqx0{{GJL^BLpoKku}1i$A-4|6f_z-O}rz{ji|^&Vfee&v%N?U$y-9
z>-Bp7^Yd&s9~FyU61%(XX7&5MpS$D#EGnyid1)!AGqw4w+3h8u(ds)pi}`H7T=1D~
zmfO5<p835BWl)E@>`vivll*%&vQ{N0K<&0)uh*~t{Nww*YW?N&s<J?1HrLihKmYN#
z|NQRv`=X!k`2B9TK4|<Dw7Dp3ZB*)o1&%ZAYJVL+_xS)be+qPz;_{}{({FY>?%VmG
ziQDW&HdDf13udMZ41b=P@Av%v?(XLEcE58z6vtP;-TLQy{r_?{ez`fIPy!VQ{q=ty
ze|ddf|MGJG^V6d9W~%J``D`|*&zgE-f+E;IH9tSue7{pX)26bhjZb!#isjcU!Nuoo
zzdt!+eEy7|_1h_+E+VK|)vdp8M%>=2wcmaI|K9(9w)*@UqvJBgKD$a^PmA1~_Owkp
z&*T5Uzs9w{zL<b|^*0u27$qI)*phqOY<f(QXI$OSr*{et^Hx6YHUD(Mng6O>`R}*e
z(|>$;2pRxdx9ioaKQI03PxYGLoALMief#q^pMAF7%357|&Zzd+7n#B%f-kSG4hJ=1
zO)@X3fCjN1_uKC~ct4xrnlq!r-fa~hA1zw7YL&&O6Ux_L|5&^I-Y$!WEy7vy>tl9q
zI%f#l`g(Co=H*A9PV29a{oP*wqy3S0{I5&*|J=#FwM7%uS>9iH=EK9o-P3fV|D8>q
zrXL@dp8M&^N!QTO(8A-g<yY4A%35z*v1*l8)%SO?YofNUD*O9t^?JQkt5<h(3ag2@
z28wu3*VDbVEjM~j*{#g%+H;kkpNWFZ2IZ7nTf6o5?O3sH-MZSEw_C4^UA=nsXcH^<
zzh`F{a%A)lGOc(nrXM#)W&V$IL9=tWMZTSXeNE(KR&KE+m7ky8Ol+6Ewrg+hY_r@?
z&t~U8Te*DRuM_95F7uu3Gtb7d_}Q7CE}LsscurQ^S|7JHD^yG;V#2$-yO;aUHhaD2
z={x(sm+hAZE_U16?{EM2i%HfMjs1V$=1*4ne!sq6OgC!ELg)5pbIb3o{JUb+s#A8q
z-)z1%b5d!ouji-L@qe{k18Y{T=Wgg%cVKw6Gi+^?s^>JF$WNW~;zeBl{k{L+*0$=4
z2WYGLLg#kS$ztd2|JR7=Muk-0`T2bQd@<c9&|KKdi;LaedL#m$8!cJAZkLw+o)1p@
zKD6qm%&+}+QgwRFq?yL)c^`aEPuD;1Djqv!?Y3K4YiEk-Ms2y~bCSLM>aD!pZ?8q&
zPU_YT3J#texj9YMGwsZbiHkHY?XUk|^5(|IZ;OMM`&B+@WH-vcx2J#3(-({T{pQ=%
z7M;>uzNGm1Im>4=l8e6IE$<d=@O5cmxKa%2!%f$V{d9<1zh=?%ekoI}=ku!betmsC
zz3}m|r~iJxKYyfCc=P9T)}W!ot;gT)c-&X{^Xc^B>#^mj|NnkJZ~Ohu<bAcjpH1@C
zTWOp2;lV-BzJO2i|3AvVytOqO)Etj3yQ#YW_ucnq8OsEf-JW!5uRC#Jp>y%~yXDUt
z+2u|g=@h=aE_V0Uw5a&(Yim41Lqm`CN>A?;R$uq^;{j&=C!n!wcf0MGmzPyOndoj*
z_~-~|5Cs&peRjWI$W*;psKk;W{6VRtfi2;}0!L78Hm>~igtt!dSN*@|_0JA4^Ml4}
zw_N+R`~AMzeX`c;wt}iT9yuF}W_JE_t3p>7J(=j9c4b8%Y`jIq^ZB{C#kVq-KizWK
z@ARLapEv)0w>$mHia^UZ8xEUgEPHsk{rRfZ>sG}^Z%jIB^*$$5#5Jz=>(xJh@BgoT
zd#n2W-szUb&z^iZ%<n%5R3m71Dal%wooQs3+i|b>&(eQ?e=o29|4-7ks$|`cM_r(y
z;nU9iwqH8!<r!W-<Kb{%F1T0ud}-z9XO=&oOuk-ec~SoVkK;X(#%XiU=U!P6IQRaO
z`?cTig7!H_Wpj(^M7%D1e5`l#Wk2hs8eMz-|N9-eInDR&>p;6Jpj7zslB#ytni~t&
zFArSoR(h_aN77hrb@=+Y=O4}QmIQ~bjSBt!qfI*R#H*{TjSC(eP&t{{E;}u3ZPe5I
z|K8reX7$eb^YionPeh98#YCj%ZogaR9VjCGr<C!-$2p9Q84RESxcUG8JeRa8$tb&(
zxqRzA&c7Rv%bou5@p18^PW5%4cQ&)}o=Tk_J5AW%#_;#s?eX*K|NZQdHrKnIxBG3>
zaoMUD3vU*k*1Zgx40w0P5>zJh*Z(*S8u5zG+2{(&ka>4^Jq1mB<?Vhu4KyJFN;AR!
zwo~Q*JYdhRT{l%b929q@X_?p8#roO*{Q}av{eE3FXcyYt@_Uy4HXmK&YCaq+d2u0e
zZv0_T>*0bUJE*X)e7SUbR{nbHj0+1?<YShVJ?=G6yRjkhW^%u+QOS!7pq<2^^Orys
z>6f>+zbiApz2vQbR=MA1(qVpkoA^JE#Er|}-2sg$-ppFP_R{wJ`~83OnGdk7y7G2A
z!;J#tv@;r@vTjlJ_jj(Bm-%*wt&I`|g+bxpuh+%3!`5hYEz;O_Gi~;xBf|b`YR`3v
zYIlJ~(_OExi|y9kc4Lvng9hfVlatlO|Nj22&u8=Dz^%u5`+h!K6u-aD^?09bciP!m
zqPO$+*M7YFzHWQOrWDUW5&1jkzW@1rUcc;q?e|5cudlhDo~GM<xBULzA0PYc_gw2a
z+|IARYW3>tKR5pUc3a#vP~`o--+6_XJk>?#T9s;nPH^OrvDi@YbZYpkGj?TfZY<ih
zYgfgWi|*Z*{jAr5wq#vg6}md<#)ibBhg!K`*VKcCDj%JW|5tQzTkh>em7kv-{dPM)
z9@K0)dSzvBcK^;FkGi|vdZn(~)xB8Q-lg1cv+2dPwb7uOXHoR_yrUbB%SE4=Vfgs+
ypXE#sltV;Y!*4J$Fg*Pr1!;0qt($%JKl3W-!;9<;%0cT~7(8A5T-G@yGywoH2iP9~

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-9.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-9.png
new file mode 100644
index 0000000000000000000000000000000000000000..6dcac17745f4dd9b697547131937677ab3171be8
GIT binary patch
literal 23865
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_dNj^Ee+|35yr+<g1&jEz01$D(TO
zvJA>L^-a)Kj?|j$Avnq3E-+JLAxGxc7Q0QV-hx7kiq+bw(!cjzPWbTe@5S<U^G}za
zow0Gw%$3Lgmd%bnYx%zT-0PUrJLX-l+<*SI(J=`|1_p)(<~Kch3=9km2khAySwI5G
z910-5j57mB{(%G&2Z(!IzyU;Av@tM&6dSS#fVh2%4Irw3heWNBUT<%0O}!oY*#G*?
z&FNPcyYsucxt%(H-rvs7?$^uZ^WXg_eEj%v>g{b|Ya$Ad_kS(lT>U-o=C-wcves!O
znsPzaam)SYuKM)!w08Kqm`%CS=k5RRQPEUVayr^AUcT#!Nb0lW;tj={j_rTMkjH&{
z+ugdF+FDT|p+#1uuQDzz@sx~>n-wul_4KAY({$ta#ca#XesG{sGGuDG{+<s__iDe#
z-mQMW_to|F^W$p2hKgzgC|u2*#5^tc_AHCSq^`GYJQ5GG%Kx@o=J!wha=rax_WXKz
zdHJU&C%cEP4!gP{aB<1cPpRvVd*#VXO0M*tu2-2WEGVcbFE1avx61VBEOuV0C%3L|
z%e@_xQ@;D}zu)g)-P^nS)HL1IHkF?=6cijDK75#UX-TKuzaNi9&TDS=d|4U0IjvW&
z_DkSg>vF%?-DROQHG8DYa%Q|TE1#5mdsX!Iysp>Ai_{oqcIUf^GaQJVma1uI7k5lT
zRaG_f_qVsRY^%3T(~n=rD{b~-Zuz~FFNFS^Jv%>ty;16^jCXf-X5Lf#d3fgf_3MxI
zN-y8B!=m5pn1t^P1IN0$x;SU&@9*wj-Ig0IsvC9X^}gzFZ&un=etL0gs`jnT>HTSE
zXDyA}Tb23p(o)T9S&`Gey}7w~qO$uc|M_-t*YBVB@eve(J%&=&Woz!$d_F6kSG<~y
zPi93UGy5rt#j8SBuZr7Sb!w*Zaz1&xHKN*KD~g|=`}N^4|JJg%x2)q%ul0IaIoG~^
zpUTVn|G(#Jg|B<FE$`)}rF~bYi#>e!@Ybf(?xN@C=3ZRNaKeM_fPGtP<gsnJ{ZChi
ztu?Z<vpaVD_;D2#l@y26%<$c1x&6gIzTM96O^r-D(7*_a=WV&Otx8`l$)5e>bN0<m
zOE>1;{`2j2zFh9UU$3;2Bd2xt_L@#hovA*rLdo}cUq^?*w%plwcbD(hy}vQJ{p3XD
z_Kmr>*F<bQlx%%^laGf-$I0pX^H0t;UvF9Wr=sikzM`jH*OT>Qc3g;<mTFb@CWA{%
zC*#neLq0)4L9<@%i)?1&HJX+>v!jD!bKYI6^|@lYQ7Nyku73W@R#8zgwm&oN!x3Ts
zirP5iuGGkvb$6M6q%Y(aV+dUv6<U6`bb62BtqqCI*Uh@cbb}rr>lKxfT6N%n!&IHf
zpxR$wF220H-1gSLKcCNM-QKoVNm*G`LSn^+4F;hr0vz{NeZ4eQJ3Qv?qeqWYZg2bc
z=H}y#{aeabS3T-f580j<dwuHM?A_w3->3R}d0n!8zh^O*sFsF>Ma0d`>ES6UOQN=9
zEL8QLw&Z7_RmqD9yGma#J8{B;m4!t^N5^O5#*Mdj6fTb5ZB_be$FY?<(c8|124~$3
zT6cYAu=@3>O|N@pt;0a({QmZKZ{F;Ch6+c!#lzP|ZB_AneQoXMTWZnUa;lzA4KI0h
zMUz*;K%qDNVch1_$X9oEZoaiWe|_@tzRYiLZoa(dANBU$-e_hvo(cQ+?+3+|tGj!3
z?)3$Z%(@X99<=?wy)AckT+K(<&@~Z(iHV6^JUk&TE-kxCUM~9k`+N1>v`b4oSH<n!
zb?DF`5fPCki(I=`B_3{@WtiL+y?e{P_;vMh>b|p{yjqpsQ&_t3^T&^cdzS}EGaJ?Z
zD!IBk++R^qk&BBfC?#ddt*zP5znMQcGt;>0_1f(r>*H)iHG__P-IafD&(3RWA|Ds-
z+m?HJlg{?*f49DWeC1fflCOVD-)^+~`9!$(_uK8Of|vIdJw3Jb&d%c1o|DyX?J8Y;
zy_ju+<poym25EbH`~FmBHl7O&jLafJLW|UVXMqCP{_mH`ZM@RUSh>YAzP`G8YNB%c
zlKpl*q3dEIx8<&m+?>|c({p8}ar&0p-(|HQ4zf#`WK7tUdRpz}w=b;qFBZ0^L{3xl
zo3rB9*6h_~Z*Q$D6%-Vlw1iLAD&y9cOs(i`YphCMELgBWLDr(cK|6fil|`=IA?xGz
zO3SG$Dmq?W9e#bGb2})BY|XyzSN;9n)%5wb%YJ@-o_%diWY(P>8<*^N3Y=?IDk3kx
zzN3R9+<euOs!NM}W*Y7K|L?bH<);*0S*t5w_sH1QM0|dB_HuH+?XsAiMU{8Ig~^5I
zpReDPcXwCjmlqd*y;$6TWwAT|RE<C--`_SxPdfJf`Q$xSGuSP3RY>5uIhLk1KMHy!
zjotX||9tShTB$5w|7YW*Nt3Rui?zO6`~B|9ZN6{kOg=ly)I0fD56C?sd#g%+{{H>?
zdVKxW9fglg^6%NKjo%-~$}Lv1_5Jnr^V@hN7d<-K{d%IiT;RJqJ4-)2a9kU`-Oo7v
zT*&KdYgO;w`mL&^<@NF7M^Fh`_v@v4_;oAKb^n)rvFhmVzN|jKX3>QU0Y{G=(=ss$
z`Tgzf<?Z+DR_}hd%Ue_{WP(cW%}uWQ`~Pgpy1Hs9C=&DU?E#gU`+hv)){WTU@cG%<
z;AS>n70;)qrUuv4>^c5AZqn`Fmu7$2vwu?Lw59s{{{$63KNtG=Snt;}#^+ybzh8Ix
z&(F_W>;6{#{dPN_i;r*L#b9m)<&+Pi5)6D^E4i<IdV0FIzrUZ8hsUIyPqrv}d&$e7
z<j83&0~fbh7C-B`y~}g5n&jzCXFi{|e;;*icX@vD?QK6loz}PQD}HrFbNl_rj~)fR
zvD%b#(`fzOReMSgdaYb*cx;Yc?X4Tza<xKNJ=u6pBH3?_#lzB{U!_bk5^`>vHM8@V
zMenQnn)Ueg>+DZYPp6-oZ~uPVyR==4ROa9BleIqc<m6;fk$Y=P=DM%V?EGfia%YFG
z4x5?3@8_}X@`XQsR3zWt7P+rx=j~5Zb|vKA-E}qP{Jgt2w&j}T-FXo>IW=;b$3&%L
z63J=j=Dd9M?`iJ+d%F^N<!o+5OiOL!lYJE>CM%m;Q&V%MPuBX<j}uG$_f~!F$-SNS
z=f}sFxAd0kMX>Y97);lT{gko4;$za|$B&bDmA!qn%|=D#h=^v;k(eC?2a{)K@7}QV
z`QJ&GKF_-KTSH0dkc*q!F5TZR7Wen0MlSQ3s`c#6&CPkQ*TwC91<CJmyYIZczyH37
zR>+Av#piA1UI$g*UH;|AvhROQ3m>^8M^5|r`Lpr;y5DPWo7MjQX1XnR_V#;Kr?Yt(
zjO1cBG}JG6qAdkV6mpeM1dkp$;xVa>Uw+-6pPzSct$jYXJSB44u^!3Ab1aK@t*!p^
z@wlj{=u&_CzgHehG&VNMoi<8(urf8$=-7$-_wT>{wWsp)y#o2)-``(<bhJBkOGe<{
z4~Mw(UatySxoBJN?N>)Sg=d*&U&~!-8M!)a?G*F;xb1lnkB|3XzgvEP?W)k#_rBD*
z_ed;cWM*4Y|Nq~s3k#bUEnYlz#*7u>aTShFPfhhMy?x_G1gOs0oPPe=s?gP!O7;{!
zK6di>arb`PZ!@wZV`Aojf@N#>&9?;~9yodiJv`K!fBGMnn9hr@UY>t{ef_$={;zkp
znC_>D=g*%%|H{>}J^$(4n*BX;wo%hkUoP&qD~jFelNLGc_Wg!Amc><Tw+AeA%DTF0
z>bAVQt7?CLyBlP?{nI~CEq46s)aCQ4ypGM#DNJU3FuzML;(+~yuaC8KPG9=*@$uD#
z&g}i$vahX~IDh_p_x)c}rt8ICy13ZA^wSg1r)Ot}_uG8xaO;&?`t0oN)uF4yR>kk%
zw<>)7yu@O`Cue2``_4AIx~KB9h^Xk&8#f}Zu89nusvRB{5D+ly+s4exYMw!7XPG{I
z{P^+4eR+3x&9bT7WR`ntiMxF5mu*+&1Oyhi%h!gy-}`-D*}FR{V|SNj9`BQtvMhR{
z`}X?nx#u1|e*E>6_WC86zaJiMUmdkI>(}}Ef5nFdHl>^tdV6PQaIchU(d$K^((CKH
zyV1hxepg<v-~aAwq3_vucXyj69%AX||FM4GudH3)Cd*A$_rJEpbMlwR{r0b(oSdBZ
z*qDil>CUZf`S;`A@B6*(-OlH7Tl4NlZOytGbahpz?XI(yf9rmJK5zf^_4@s*92%K+
zeZN<IdCS@F_v_aOE_Ta2JImCn=t;-z+-}{|m;U|zov-=g?y29}J6GS>+9jf?<Y`s;
z>51=kmIvpQ8W{dNoRps<BrLqO>T6c%n;U_#yGjB#CLOie=WA2<XUDpjos(WA6rA2v
z^6ri$D7;0r!>*i~s%@HaL812F&*z{p>oL>{Ue*I@N^i}){LF9OtZ?JBGZ!u_bT&;r
zC30Q2gPEE6>Z(v}UTHI*#KgpvdGl>9{JX_};ks8`-K#4rZ%6M~a&E45_LmnIrOfl@
zl)b&R^uPg!?b@8?%8H7Pu3aJ*mwHd%Qu#T}_V1U=UH$#xDJdzlm_nv%g<e?|stt0(
zuQ!{|2gx2cOgkeHIqj)n-sfj$S1<FOopo(Z<Sgs*by3@LX1*(yuqap%&9G7Dw5S7@
zn9ho|(c70<IN0p1`ub{V;9|Fxpu~A&!@@&{563c=9ctl}GY^umEL!3<MPnhSuv*58
z3k#);QaWmCYp?DoOy-rhyJK2+?B#dwPuV6mHa5O*)6dUa+b&-h;ppht)!7-?DWp2Z
zwz}-*wzc{D|AuLYt+{ZtTReZ|ve~uuk<*?^y)Ih&M4&j=fn~x@0f&bA4GR`1TwNO-
z9$)u!>8a`Z>-l7@UVOh_U;dhJl685WWOB)y8yijDZ!da!>er)g{V7wXEa8<l%XoOG
zRm!$%3#k3HVS~Z-y9*}07kQei*M0kEqMd?*!{6WE!~g&LyS4s*-P(waPN3xX<mBY7
z)!*}U<M-KIeLH#gAsMTZ6R&?gd1qI?==7QW|NrKPt_*Sol_4)LFaP@CF#qzEw<EH8
z3@547*Vl)x3h|7u{W|sCuGe~{Z*PTueSLlZ!<5cRCKVqN&d#+Cul@Zkv|CJf&o;}l
zH#4&1CYt5ms`zU#_s(AZy^Kr3)<&)LtBP3c#;Y5<E5v)6&P8E=n~Cdc<KMryxESP#
zcYD9bt&Q4x%2dPV<`m6fn{69)yltz#1oX?<mb|%PxHe{I(B);mmwP0QzueB>|MGf#
zeQD`Suh+kymU;X;Fz;Hzw^Q2dL0v0pvz&mJmzLhWCTmfkaJD?k+t+R1eufmDV+{-e
zH#enT-C3Oe_V#vvWw)M!=<uapqH}F3gQB<Pcz&<@`{z%{QZLb?$B$=USrKS-Y=>{j
z^goVO@9*uEyS*-YyWZLIBCqr2^FV#K+uPQP=|(M?r0SjZ^wd=IH>)Pv=p{WpH8sxu
zi(c%mkZGwaYkq#pTxGu3s{GxW#qRxDnwp+-tx9*j{jDFcpyAio*UO8apIf?<JGfIw
z^~%=l@VB?NdM|eG|8^_w(UHzwB`+swg{)ZMH`l82FR0tG@8>h=xA*q`E}J)LUd1EM
zpFe-T{CwVi|3lr#d=uec=jK|Meti{s^vIElmj2q`-!h+{o4Yb^zJ9#j){KizmzVhl
z-`!QZHTgK--%qFY<=*CfsoN>LDfRTS`v1T0Th;v7Q1|EKap`TKUJs~<>Hm<}bFut>
z?ekLU+uJUeepOt2Kb~QZI|HMFXVuTA)1SV7zdrGB+s?CZFRl*PmrTC0vpD^_`NZqL
zKn2lZe)}DD@q4Sb>c#AMa8d8)?X%hT2SQhcoO~T4ZvX#J@vgKKeooGbD(gRY%2=13
zdELHubNcyLcXk$k`uf$ku%T+xhYtluj~vlZR6MA>;O~dS{Ije|S2Z;^f4$($zjWub
zFBzAY^*%c@bMemN=ewT0-f?$V`Fl{!n*HcV=dF#&?z6VNyuW{c(era_9h=!+-q~3!
z_xgCRwEF2yUk<X%XPlW~7*`MKCaex$pLJ(P;r6dJU835{e*CD2-BS_RD{byqST~!M
zTWm$*;kK3Uw10j(dA;7juKe8`tMYem3R&M@TIwBl{FsWW>dPM=A5Z%C|F?qe`{}or
zy7$W&9b4f&UC#>C0<%i)xjnU`qk|*&_O`Q+UmaP!e&4J|(}ffj7321YczC+)-_Kyt
zuNT3f^0zd6_VW34QH$MrFI`yZ{Pmc0zQ?a@h8GtWI$zzMA3s$q)T>w8JS-&zR4zV$
zwJ&6Ins4pbtKpNDnBT7n_MWa6dUlqnsHEgd8Ox#<pvG?#D>tYwv3y?DsnRo`iZEnl
z5GeS*y}P^m)Ku;4^Yd)M1>u&Ag)c8JU%v92QR*oT8=IKR%X}xVU%$RfR9o%zrY}Dp
z_rE^UDXbN~ZVqU)qWb;ba8T(x(>NW}vX-^0iLkBy7V_=Q&HRcUe)~TGrdd}4=G)bN
z`FcHG+sZ1c`rDg}XJ#5def)Sar?A?ROnY->4GoX8vrKm@|K9gaLVw?nMWDj=-{0TW
zdpF<w`svx()pdV=t@NL7H|fsvIT71(X8!x}nE!71{n|KoF7@h9C)Gi93}~c+nT@BQ
z^z?4oU*F!Y)(&5naiD>5Rm8?ct3p>Vd+{RU>4}NX?fmlBx<s|N<lZ(5T@|8v_3xAO
z^W$@GZMpd6<z-MSi;Y+6#g~_tqxMv6Y-(x}5fyz}W~yjt7zpyh$w{iA3!PX+wZnYG
z^<pkOI@-Op^mUkN{=JygQ&T2R+4ueQ+e<5h)j?&@|KIojhpY<G1W7JjxX`NLLBlk?
z*j4KDYl8m%{yzQ7b#a07HlKT5v+>o{)&2VS`~B9`(_*IC*L*-F`|*FTudZJH^73*}
zcTOvQ-=05z{*?Ux`+arV*;$&`N{rvHf3mKHVbcPh9bfeuc#<Ngef;>*v+(c3!|lG`
z-rV#(H^=hqL}m9o*J}U&{r+sCyPV;}hY!^h6b`hsw$3bidTQqXKhN#c4!7~HE9(~5
zH<Pt4Gx`7P`hK5zHkCeoGL~mz%kQSntA1y>IsLp`fAYKA+s|*wynL*srDaCW%}q1C
zrfSW!EPgg4_4G8!+uP0_Xk@;7>-xIb+pjIx#P7d%WqthpCnqN#|MBC;j%VH$rLU$`
zzTJA=XK&S4pNEH9eG?KEXojqqurhdg-%PvOs$FvXnc4Yftc%?}tD}QMSU@1b$=TWW
z^fcYGzrMcSyKQ^!?JH}e&0~*y*zMnPrvKwv^ZOFFxA`9Llf64_xfy>)e}Dh=pGrN3
z&knV6tJ&Dx`SI)5toil-Zf?D^Nhf$qM&SC}F?%X5is;APxv>q@KZyC<uqFTgy&Kzd
z@6~?4D?QKslZ-&|vokvrZ_nOX`a10LVt4-FZ8?#Xt;_R3Zs8KuN|7?p%Te>0@xW}q
zyOUGX_2VXnh8Oqz`E+_&$jTr!4UH2bx=~k3-ru`B$D;7iW7C;arlj1fdaZkTM`3dC
zng~N-5s?(oXwTJEp=W0pCi?^hO<J8>bx(igS>{QXK1&G-CU%MIzx!G^(<rrTW$f;4
zCnu}-b8>MR9qkr32eqwlZpoY+z1wrL8aUcyEQ@AbxDX&LEuCHW^XYVv*Oo<3Ix_F?
z+p8I{pyA`!ucq5_cRzdK`SPQwTJ8Jwox<u;x3`^L;yHQGyxV8@d}pvYZq&9OJXCAZ
zY=}Cp%eIi2!Kn4=>FL=wH>H~AOjq}p`}*eQ=X2sL3_Fx1n3)((h_LZUENEnAzqcWF
zW75$)i|=d<3ZIo47#J8B3V4zoKs54r@XT9nywW1V!iz6l2)MazEvQRa;@Q{P-#<O~
zcGSis*IC<d?ycUQb35#KpX~dD)a_|MKRw-)Ywi2k_Ftx&?<|$u+rFMupPy2q$xr|q
zZBB_wKR*xD0|xbax8~js`}px=)vuS!W!EPkXkgrw8@(-8TTf5#Xqk4{nu4v`aeIE~
z%3t546FKea#yi_`uda<YzkAy=C@E=?TaU!TsI6I=CMF?_jEq_#D<;e`&0aRsIQ?GH
z+03a?z1x*6@5KC`Y+GF>sukh^YD3SrtKCxh`PuEVJv(+-+}yU-w))$hZMFA0kFzou
z3FjT=R=6CsyKHTrob9TE&Frs1O(VDI%J%m5XXjW3zu)t@ujuKiryJ|e%rN})`Sazc
zr>7e)*tNf<y*>N%G~H8kt+yZF6<_~1)OWU7sFPEZl9Cdrq1xKgk^w4*?d$hFJ3D*%
zj2RMVXBZxS{cXGV(^FGH<;2s|)8F^WDk~`+5*5>r-L+(~dw<sBW4%&#H9J5fLuGGo
zfjU(|pz`;nMY)y-<AM8<j4TezKrOt;X-k_}xzkECH|co$&N8_;$Flg#%jNT5%}k$H
z7+wGBiY92(1k@K=6S>)Fh1bdJ*Ta{3PyZHC_v1t2(IZD*e0X@c>gCeuG2x|?=3144
z#_lg4YUTcVLb)H*%q(AX?7#ts^``gy1O)|O-QU0e_^0`GzdZZx|Ls`jGjq{ob^ok?
ze|~N+k;zlxWO(T=uEQ|X?~_H_jvW?~$uW0h*1eame{n&v^z}90i4!Msac~4gM9fG^
zPTpGh*sZ@d?)LV&hlg50gJz$eoK%*VpKo&g>V`z;*7o-7J39*HUW10!K(+K->+)~A
z-uC|bc7H|m)vdob=y;!=rd#|vZHmo2rKN@n`g^}j;*+&n0_q%Zy&hN0Eq^I~@^4Ut
z9qkqe^`T8mUxjS{DkvzZ6}M-{x%u|%<Mvjq%(%Gd)HL1Mr>1Hz-&y?JYtp)yor@fs
z*;bakyaXBxJUL1A>%Hptm2=#)k{$f!*{qx%SLK;{dRpkWH#euM`^&kyx~|N>zt79Z
z$LH%u&u&na*)6UgmXWbSOfP1I{=OfFa{q$j;zn}+N}riVpkckDCnpxZc#+X7XM0OI
zN5y{rF$q@}mx{M_+Y2ANeSLE?I504fi<2`jAYg*mbiK8pLfxwLRmiHX=jPkTUtJv@
z-X~)zA|tZ~)Y-VbJ^y>g_T1ZMdw)FY2Gxk5aZd?}6&)QMr7thJ{{H^{`>yw%lhsyM
zeSO8n%^e&NFriCKcU2p&bk?yRNx9tb@9(cqpI;lM>NO=GAz{I%r>B=cJ3Bl3@2{^b
zukkZzKIGzP@KN`lXVcZ+fBo6n*{0?1Vn8)tU|`^+C%^KYoSIgJuV3ff&bKn}?yjus
z>*j)*8|UqQ`+R<W{`#88%~y65CU5^6HEk(Kj9XkU1UlHYWcB-f{r&w`Wp7qokE`~T
zHqR@O7O*dS6CtV}7xVS?b^pTO(Qj7;uZyufdi=Pyo!z~)-4j)=u8Xxk`c^My#{z%*
zzai67Urr5=^V}G_E$8Ny-R1e9v;`UzyuB^=ZkE57SCEfS4=B3CbfaEeTIvmI3q@_s
zTI$*@_Hys{dzW{WzP_>|P??p5<;CXncESB}wjyF;%i87ZezZNGK4HRwTU)cU-{0H2
zDqvyLuClkQR)?>D)o=gr!ikB>puxHo85b92R;>vVmXcbf7rX1l*X!}um(Q<Tm3DU4
z&TC)a-VV33vs)FkwCm8}!==BzWP-Xpw$<OR{QCOZH1m>5`0XD*D$dTcjRp<*RzW6Q
zJSM%~e<^-_w`K9O6=7?mx;i^AUR@o&HSsXp-oM{&N9`zBSoh;0dw*WSF^SrLKc7c!
zNN9}Oma`Hx+4cF^*<XJ?pWm8u(`aqfR<EUAQ;W9FH_ZkQG+C9tT2b}&)u->@udm<#
zZ&l&rW108%R7UNu+j~3oNZsFGnI|SFf-(bWwCd@(xzX(Wa#wbhzBVa-=Cd{L?yak3
zkB{|cU0BfQH`i(@yIh6C#*G`T%HGTXwZf%Lvog-jvCO)$;i0a*I>Wz29)^@4VRb)~
zZMm~OC#zMi$-c0labxan9yyyExj$cBUERBW{d!P$#<Kq3p4<C$PJ<?Kp1oeb-!EMD
z<HwK3w&fbv{iy&=0)hte=GFbm+@2gYEtQR5E=MnZUyjacqlptIX4;7-_iWTTePw0v
z@z;gZ_2cUfZ#yX@B-E1{`K(iYUV-lKce~$%2KEXb9x}JNo_l+n<mpX52?+~!R()NS
zUFqV|vN89zN&dY%F}q4mCf`4J@ZhqbrC!g@%rstCYF+-$<ln!4%W8gp$~z8fjBeC9
z%_CuOAh+`Bs?grt+i5Q@ER-viwXeGqv!~)?+gJ7X)=Q78-<+iC-IE%rrlfQz_vg8}
z)_b?Tzp$_wG<g)e`&w>gOw62(xwqfk+k5+US@pL!h1D{XYyW&aer%J@=V!C?cj@}q
z&Aqh^JSVli6jZH%{I)*+e(ujkX7)StCZ~WJa&~rh%d)Sp%RBAt<m59^$@NStx46wV
z%ep^1UjNsR-<RVxMI*7Psp$-;+ji~UgM-bWHWO(4^7TeW1=Es)OcS2IxxYUiR4iRw
z<ofjxxBiZ`tAmzy-P)GBT3Fq$Lbm(jB3JICM~>Y2vawrCcNH72RK}|-E7$2cCLiyc
zx_<roc@>X3XWx52w*)*2I8n(p?}pjVvrE0Fm;Cur*#A}8y>H6=`SV|Ymom-LFfs~S
z?l<?+?EHNzL8F}4T;1GORegQ+>*@6PJd3cT$H#i3HmCK1N?W_yUlnWk`S_;o-~XTY
zwg2i59|}A{!+Lk8xx2Yl<=$WH&M%p~CFA0v64~V*6P4oD*Bm{1R5N^CjOIH~!JTzw
z#l+j7iG`IeokCH&N>+Y*clUKv+=c|l?ax&rp`(+hUmO1U^JmXBQ5l&xzy5>fGoGKD
z3!040y0YTowRH}SOs_64?*~;Hs@~HoY}pw+I2l<SrftrI4h-(?d$=Nc`??;(b!FFA
zMQnVeE5E<^`8iNuZ<+7xWt-E_gNjkmRPLwe=j%`ZK6mERlaq@(Iym~DwsMJ1QdwWT
zrKP?7^{1z&tx8@5toj|dIjvV^rDHSO_PC5+<pL=T43M<|QY!3=UfZ|Kw<vT1b&}rg
zesA~m%*@NC>y)jmqNb%TwOFR4I$b~h+V1!JR?jlc)>2V%*|%@srrc;dJ3Fi5XFgrO
zcmMzQ+jiQ`ZEv}luJ7Nb?mutMj2RNGt*s}|pFbb^{k;AEH-$al-rm+$RCN4)r??+9
z1OX}v&&)KIJ088aYU`5yyN>Zn7#w(<{`S^ZqhlGTr|G_|@?mH&RAAUN=kjuY@1U;o
z<6d#^awp_BGO_0U`~hm({QL9MH1Cc@?5+~e`hP#uyPD4%H$N%f_bvMK6qW5Czkd(+
z@aVX`Yf9eP*ROwHw^zL$_jgBKY*0|ps^hk$ucqjnE{dJG<1(L&g~H4A9~Dme&9__o
z;zh>WdwZj&YJ~>1^T~?H$mqn!$Aj7<%I<wvj&_S*E}e62ZFKgzIhI<1i&{YQl}xN$
zpkbd$CP_y+M7~cCn&DfgH~BvEq${h#^?RjEy;`|Mi|%SDYG`;&G64;^7Wyf>_l0x{
zse*XCvQ{C^Z9Eg#uU{`^p0@@xi0jfRH0jAMrfIkS7)(nAjUr@LYA_sVWnfY`?fFk(
z&ZX_IPR91F`+uNj_p=<2cX_5MCj{Q!-5uV_ExzxeL(J`MsXZU9+)r$kS9{;mC918Z
zpy0sHCv)Nb{{QQYQco?pQTFlC(Md~Ig|4=;+V48grZT0+^Sfx<?5!m)gFNfcdQQrD
zb7SMW{NL;4*X&O_E7dDwX%u_>#)iaZP>Bob!meJwuW0w@8HR4o?R>t4w-2}TSI5r#
zGt0j&SKhWNWU+hywY}f(fkweKqqpVcy<P4z^U+5B)0;q(ZeL$qbUxlEdl@uzn|sUT
z><mNa{eQpBuKW8n{O8Y~n&t2AY|`<Luld+2SM%Xu$y{rOC2e{U44dW@Jw4?)DQsQL
z%GKfPtJcKtDp{#>`qM4d7iBN6tem{s``l!IyUN4-uPZ-4oBHIh){$MMuP>G6+}>9D
z^wd<7?fg7EA-l`oru1BVy?+0^q}|-&dN1B?zdtQCvg*~!<(EP)uLaeUDod+-j-ItB
zdeU*MM^gFprYrkutFM2OwJtlcNoQ-$%}dF%Q%_H;yc=F5?vQ`p{gZC-Y_r@~g|{Ee
z*ZokudYel>e&3zso1pr#=&6_I|Npidil6(%?yU+nG&GcZn0$X<?X8`~>0QSsEUEeV
zX{Bqo*etW$S+B0GT`g-}_F{T`-NY}~i<5dTc8O{S-DPK3BF@O-FiluaZrzL-5~?aH
z8Amz<^In6hU*EY_p$88hta`Dq{apkvs8PAdwcDinTTbcwdw<*BE?&Gi_4c-9J~JPE
zJNWrXr|_@$_5WwDTg|JesF?Z6uXOG8`1;tNpPyf!q8WT;e|>#F{~2}vc_BGDYs%i-
zSU6*b#MaEqYO%lfhdw<$J$!4{RnUMpucXnD<iDN5>X+{RJvm#x{!gHxp`lgXpB-{F
z9~@0HFCE#cr=;X`Orn1SXf6Y!`gQS?JHBUcznwGr`01Ga`<31MUffKd@4NNfQt#<i
zK9ek}zGS?;vC+Bo^|jKwIto7}uD5?IetvFc@$++X;dk_6cP$BB9abr$uc>+R>QgPt
z6DIlhVpP4RT&RA(cR4G!SjF1nv$ITh6+CoW^_+>}`tRfA2d(P=?YUR;*>`R1?y&6Z
z>#m-htPYwev;Ftuv0U!<yt}KO&#U&kU;lsapTB><K4|8D^>+LHuzfW@ZEp3++s7Sl
z=fA!#c6Z1U55cc5E<SGi|A67cluLIf+x_|Ae04>jGibrX_4s;l!Ekf4yK(xtDgFKZ
zpq_haUF+>g_pIW&nDq{gOj-B$?N#%iw`Ro(4ci|Nnn5KrXz{?+RiUR}H~gG(Wp%j!
z<>mh2o72vQ?5n8+4Wa(~{XYEcEYsjS%MuPYfrf=ZJx0f7w#-jYPG;TMu&}AQd29N4
zxwG@_<Cpu*4QgiN-Q(x>yyfI%_0@iJtw4RHFF&8p2hFt`9eV+48=Bv*Sqz#}sFa)V
zWL?Omc=>hxvewH$<MfBycsJ>IgF60pKOQh|&y}nHQ@Ho*wdhwjH!lZ`9tAD+%DlZT
zcb0knyrkr0)7)Do{f|K|&foiW8fXp6jT;e9&&&+2{PZMnd*0oUjY+Pd>*HcKr=1P@
z`s!-vVmDsU$Q-wr&V|_WyHBO|y!XAl%oj9h`f_2rT+qo$s-T3W8?z(e=clK|v+o$z
z|NE15d0Fo=|M}}ytk5vcxZtqdfBv;cN4rHuM3$^rq4D>}<NkHuIy*a81uky$nx?ao
zOH^w`#Kxpu1rM9V^yAj7jo!Yh^7FHGdR6=O?VDwqJx$6iX9c@_O~BPvp}`>`Q$VB3
zd#k@^-Q87sYiss&J~^8e2M!!CvDIf#=&W>@^nRwipkU&wYinmes{Qr-?d^2XD1z5i
ztyIveEaQp~3BocmIj5#-r%#$R>CUaX9}nA)ZPK~Ct2Em<?~cXgh0g5jzgM$Q*d={-
zZsCIijF-1&hYJe|CNeQG`DA3Q$h^5}Y2^O8+FjqL&dPqyxO3u@N(azb%*J<@mU=Jq
zpKk}6aR!Z<P0<QH#UpEVC1zjE%^TZtUtL@K`s<GC=b4M1oDjUcueLgPfdeCG);s5R
z+1Zs7CrkiMhs#=*eTlk1zy4pQTaQFy*0nX6PEJlf4h{{P5gQg{-rBNqre$$j*K<)p
z!G~Yx^cXHHdwc8H@#Du|@7l4$;_>6hkInp#ZAv{2n!$c>pi%Cv{~U`%&{CG->#^lC
z7c5YiY@Qz%ye`J_^C|81GmacNBJz57-TmwTQch1h3u?_>SrvNv&-eZRP3`~vNbb6w
ze{<7OP)qj7`T6&soS1mn#oc{&zx_XptH(=^bO=71SN+bgv9a;kw%qNO34ZfzGIy1}
zPE%4=_6-P_pc%PoN#)O{(|wbY7F|F7<<|9=e|~=U-I{e3G)(AoZ%^gf!~FI++j4I|
zEBtfhh|A|sr}bwCE%gGq5j6aEd2e-j@uMT0{m<1jHBavOdM$cc;p1b=A~q(0M$SNk
zk*h*i&oWFtR`I7gt;f*4U(OUXQ=WQyn(58W>E@Qj&rFtjPdDSY|FZ!!K(@2!=_%g%
z;tV^crJm8PQT<^)Vak*xlhysTbaZ?`vpGk*MEAxqzPz<{HE0|Fw3=?+?kzfzn_LVH
z4W*3JdaO!csk~focg3|!ByeliRg>~}G1tF=GTXCrb64-J{=Te2U6O%;;lcZN^7d>;
z&Y$;BOiVP-G0(oH11dn@icS3b>S{1(%4nB%&F{C{tqLEtfR_=}ZqK_5n)2+o+Y4F_
zX@An*u3^d1MrQVsCnp3!tCH5N4p})V`u^J||JMgBY>M8^C8~8|+uM?_pF!(E|K)Kg
zWKOVI-mu;CJZQF2Slw@j+D)s94-0B)YHZk+{r>q=Q$^*7=}%Dx28Iv*E)1T{PomS*
z&c{`+ePUg&vfb0iXUhKl`>+3HVPjiXb-x_ygL>(ETR6D5CaJ9dzQBLq|H`7-3l=EE
z?kYL?x(+n!lJ)%T#^mE$GA=5)y0|R4#mB(FAgOF<7|6-VS@ocieUIPK25IGnC5}bc
zS3g-7aUJBGrsn3S&!0cfs(yM(RMxue%v;x)HYbC#zSqWY$(Sft`{m;87+VGghP>^d
zlCSpnH_2GHX&~1+wQ_-m+g@K^|2<-R+1n^rSJ$0&{asy?4BcK|Umt$BjW_o6^|jH<
zSBJ0PwRLaYr=D$~8ScB~_iKOqF)$dNn5G;3?|t{w>ng5kC6){Y(lz=onXf-LTO!Y>
z(wmf=3>qiQ`2X*3-sgrtACJqwy1RS(>e#!xN=0R4*6`c?IH225^Wh--sd=`$LCqDB
z{)u<qzIwO&eb~=WPv2jd$>89Yq0_lPo8h0H-GbeJbQKyrs^0JY4qANn_Wu6(NnehN
z$7j61w|CMKIom3Y^mB7SD?!uF%~=UrK9zoco>ld?HJ~B4-|u$&7Zw(-t7T<ld$sj?
z+~v*Z?N(n~8~wVGUG74csJ2P!DUrP&k4c}JtnTkNM~Q)fVS=WBg9>P#yZYOki7JuP
zmfqZ)p8f63%}M`e9kfY5H%BXG$A)S8@#~(?uaB$!{cY<0{rhK`WG(_tsvWCWseU#y
z{mJ|H>mMF&e|=hif5=27SCgVA9;NT^-The1%)r24B+S&YBzAY%(v^2X%RE@Q#g?pm
zJK5iErTYAuPhqD(3wQsO&0we7DqjW$267h&W6@e;yo;gY)}~Z%x9JQF+ga<+Gca6N
zZb)(JxBHa=5@KMuBgitr=cTD<ukkJph8?{7CVla86K7;N;liOXGib?@Pm-}L40qT{
z4l*(9NEWaH4PS%CnHd-uEU2@p8H=Oou$Fpg+o~eFE&u*Hv)o%NJSHlEa_qZ(zw`Ef
zyOr(b<5QBo9W>RJb0fgA_*saDM+c~FBx_x!)4U2)iW>3X@6l6OePet6e66rGEA~`=
zURC}59Ty+pwO3bHe|@!jJ!pI!w02J=^Z&oUt0Ffq15GL_I=8)eb8|Cj<>r^u`uj89
z-rD-<>r+K`&<c3*`E8e9O!l|CIMX<NOV!t`yQSA-CoS=tYxVNfRPA5)|NmQldAYxK
z`MW!y^_8GCF_oXwTHD*bCxPsrF+;+4js<Ap;i(gsL5a&qBzD6kkX@6OY}jD1{V6M#
z$b{V6pT2*et^yu!pJh_m%I^tUjRYFXl{8MX2sZ!~5}bk#msXU$y=8Q4Me^~!UmuUl
zZ_U4N=R4mnR=)1XLeQAt0?1NL_dc1xl9DaQzfIK&y|m1Cw$Xwj1_lO&&kMN2q-;MN
zV6J+*_4=1%()lmC_4iEx6*r*aX=Zl5DJrry6#<h%HY7OqzvULwSs|?Mr=h9oSyxwg
zP83uvq$sgWDCy|v2v{4n6*M`)%Fdqs@6S(=uen4t7Oaciz3W|@sDQwOjkyU43sf`>
z4JR@%F)%dL>o9pp`OY@;^|$>xWn2FJce@UOMvr257P<ca`@SBulAM*5)pL?w+@2R3
z|F&|AtDL+Fipd}9N)1acvdh<i2AQi%)@NN?GgHlX))L>@W;@^YO}!)fI*OfNE~KEK
zKx%y*&vcW&yHa!izh`G)U^qA9SH1o9Thj$w|Ev{oxCEN1;Ns)^7BO$i6qV#2z4(1=
zkgB2#XjQcIW5!<9t^2n&F)}a|bnmHU{Ihb2yYYf)`}yBBO?6x9J^k7;-`Sw0wA-Hs
zFY}q$-`@{ffZ`dHld}diH}m)R_uaQZZH)RqAKRn0=e^B1%fP_kkak#ff=SiGR`D$b
z51l~Wlk;}J*El&jeR(=PKI`HlSI}x^E)fj{PyE%1WVH~;G`7cF9#WtMX{*E529=a-
z0d)?(zPjqYyX@^H>HIwlzu&LFe|25K!$VQ~YIcI!;rnWTXWiJ42pVtN_wQHsyE;}-
zgxIWWSmIn#vgO&?+2x1J%J0{17t@J&;NS|f;@Tlm@XR0;%jnVKj;h;ahGfzH@$3tx
zykl2ahi^?gD+Ov$v2uw7TwN9V^!032e^v$th9B-Hi^3g1>pYE8PpydCTLtRsf<|0G
zOQt?QJKHBy51LuHwq~Z2lM`s2+*IA@Fwinb_g-FUvygLhEJ0g&j?34_9Pg7YUSbC-
z^NddyF)qozz790-3!2$sX6JkH;9xUoAaGvQtCiMuZ`SYs7j<=2=;e*c$3X)udq1DE
z&bqZ_<+r!DpJ#2Z|6d2nYu4rOu1rvL{&I+0KjYt@pP<PNz4(1K$Fo6ACZo+hxAR}V
zTt5FADE~cpkg)wJr~m-91P>f=@C@2l^YhB4RPViCE_s)4nYTIp{3_>mK9Ci5zu#;Y
zxy>tO;?ddJd23JQ=0k@Mt9puRhlTj~^njM-`^~kwd(n!KfuZ4y&gD2p%Yp|Dpd1~z
z*bP+gtb4jO`+C^>dwaj$Ex!-m&|{uI?_S;S+^g$ifA?Mc44TM2F;N**IIFxoZ~uRa
z;jzVcLGx=%JcYx5OjuI&^%ZEo64d9CT`S1Iz;NP?Q7*&JN8S1+rLRIj3+n&>`@Vl`
z!9yp{OTXXmU;p7l!PWKg@k_m@hn=3L8@jKivRBsnTi><KDJO+MD}zBB0AkDUE|sw?
z(g<G{^Xk^t)p~JzG+wU10PFkY#IFoe&AqkdW#2W>-m#RjnPv?hmzeo&7J%l3K?_KC
zm%aT08t(b<@GxkFsF1L5>5B`Bs%mPlKof2m882klrrzF`>*eJY^!eG@t1AMPK{cko
z-OnYUu^-Sf)Jc%}hJ#J4w%hb0HZ1U)W3h0_k|owr>YyrgX6h>jB~Lp$yQ+6PpMUxN
ze!sSjP0aVZ<@2k)zgzqH`FU*}9UnV8yS^)h@9tQts;Oz|>G>(U^#pW_>4KZoFE6=*
z78Lf$T2GlVL&KAcgX6;uyUH_OMbe<I)_jf2>=V4F>%IK)@-i1M@6{QG$y>6nYJoNv
zsCrMka${ri-oC>-gqxb0R6KKUZ7Gbtw=ULNG8xpO2%r5#FY-EQu;g|fXtQ1YA|Gi7
z&>)CguM}uhmWz)sY^G7_mZYOxuCA_`KR-RKdOo-O%dgk#SJ(Xf6tywwsO<XX0Slcb
zE&22F^KM;!Ztlq{b8RXwUHz)HQ~TOhkVy|7B>epObLqp3!>Xpc-=)9uz0SwL&@kID
zbl&`vZRr`V_3Sgv8cJSXa^>XYjM|ja30l&;Vui-hW5-^BQjd!5rxVJcO(~!uFSlN)
zm8Gw*m2a8HC937|D|=plHfWE?rFh3B0Slc#e*g9Lwe7a}-DPVREn0M`V#~cr`*yrr
z{`TxNu$`B}=FLA@1+#Na#73v{w%_M~wnTuY!kydsu6}%c{Oj%f{X1{5u(D<zXkY~G
z>(V*BYw_1Dd3U3ZN%YFw-^=}ZV`K8u=g*f%ZO!tW1R4X&zh|?30caWZ-;c-T%WYIZ
z`xIx!E}Pr20W?~-IjwhB$x9_q&{UGn>7Yg?R-0R5x=|sQm;3Ku{ME(Pb!GDLzF7u|
zO_L@~3RxYdTl@R%cF-K@)%EfA;jw>zeZ72Urg7-*vRu$~d;0l#S2rXcF1cU(T~kl*
z9a4hkk+X>aEg?HKRU0(bpL=IVAZY#D!$YmcYnJuf{qi{4C3?AqQ`jW^oQ$Y;m=9=X
z;rqM0vAJC0dTXAZp8oph^ZDWT_tk<{O{)3M%DAy1F;nJ0$SZ$pBaf}T?QypSw50sv
zB3Dpq(F$F)B<t#`)Dq9~E5~}J|L3ncnd14@c$W;r4qm&dUsf#PopdU_K$oGw`p?($
z+{10WTJiJtXPYZuj$@p-<irUN(Bf#xSWsK5;kL?UJ||Gy>BD!Tws@WtVmu<T7~~_+
z%*(!-pHCh?e*E$A>)9*cYw&>D5i@J#CZvGIVsGc~U%O(3hV8Exi%-oq&v%;+DmEXe
zrF1eFWnNM_dh8fzLQFCiv`4lfdV=b%1XVS)Rds)VK^+!7MU}~8Zxtx&clGFjI<yCL
zPYE$T`TPC;^;xFb;Fj!<kB=o|K~2<#*&x-RtWx~kZ||p5+Fab+!JuUq+TnWJ=ik{`
zoL({$)CkX0@aA#q@9mwM8i{1hi6foD#=AhyW7zIE?L`x)T6*waF*uI#=ab3)DxRPb
zBAwGkf9sU{?f?CltHTW%<k3Afg;7OM&u?1lO5fRLpT2(&kBPa%yM3chH>mN;kWw_$
zsNv16t=^NKynp}xn>8qVuh9)=n~-$0Yw0ftx6|<j$Wg@Ytvxwq`@^r#o}8QvTAu*g
zVlY|V|CGezZTB|m^vc`YHLn5%(FCzbr3Rg-Egoy5wqE-A`T11saJ{EzXJ233n;Iz@
z02<qB_;NysaY_06ds+bt8bEtCH>I8ijjDjgZGxsrFmI~;UH0|G#pVy7w3kvCsnjq<
zE7U9f{JgU-j6jaPvq(qKA+G*!>E8eUetUU%oOlrg7H-lpWJ@_YNflHIfQB1p%#aY(
z405rvv&+lXIelqG;9{c{P9T+;6IGc`?0&!R^{@YxpPyCcLQ<X4ejP!Fb#Z%VT~q}r
z+QGZ&hy=JfTF)Q(h|6OWDDfX`V!gGudb`TXh>c00nq5g**?0%oQJE7{nLOU#+iRM2
zMWg>+#J1emJD<<Hydm+h(F%zCRMlMxyz+K2pi=$xG+of{1<+I>X!`lp)zzT=2E7u7
zPRedQCtetVJbuSv+72e8vNsW+^_a$KX9}X@b{3_A`ZAzZpYHOtOXBucr3SQu+<HmL
zJBHEI!{Y)ozs-b4zu4s}8a%l`)whm<H_L<#8w~#bc-*hK?*GT*@}g2wuM$A5ZH7Fz
zX&efmVa;Q`(#t`e&_6#vuY3CZ{QT>noe+6<EI{S1WP~Cp*=#u>l<W{!{nj-1-X73w
zb@2axe?wOUD0*H3jWGWFlzMe#usbt5-<bzmV7Gfr<50M{DfRLsRd3J;=k`hm(5U;d
zUg_1DmzQnQ(QaPN0$Q`D9I4cxl6`N_PS9k+#Z-`2c6df6@qjAnhW+h6m8>d8MnT(h
zvtM6Z`|0!N;FOdnyt^YJr!AGWF0%*$yKMGEO=eJ1ONpG8bGz)fEGYk9o2JPO%22_7
zAzWxY_MH@BO!@rmEGYHf-UOOZ{`dQR_|sEUO|!17;8_JOI;v7S87?jNm-n4-clYb>
zb+P}~@3rp#v})gb`+u_-WgWg<WlRzgHD9!2p{UQnsSjpcaT5r3z4I!l$4!{mG|GHc
zpbxLvtc*o2s+|*OEjv=NN@DdRrqGyX>A)`?A}$k-Zs53cU;fz7Rvx#29rq<`ZO+Xs
z{!wT5-Fi>DP5Kkd?{)9LUzI65B3SwLYWQT8^!c@Ac{?7qdG)e0FsxawCaB<V|F?vV
zM<U?=k7?0)o}1IoetI(5Kke0(m6o4QD1SaI|8GN+FcSmA>&2cdCl<MOUs@Tw{MYgQ
zf8XX8e>lhvTEy=;shQu-!Z`ihnky9y3<s*RgcyUOqh~*#UvKAWlzwiG&Br6cmQN-)
zzxqC1FE*<FbQ}Z2f{$5Kwm<yq9sl!Gc+uOf*VBG}di(T`EdzthVbHk%PiI<{W@Tk%
z6&(?Dzw+Mx@0ZIjudWVfRcB#fxaK~YW5Q{@-8%VuzlP=Q{d#Rn{(Za0$NT-a=iQy8
z(k-rk?ntNbXaE0S{6*&pF);kl@Kth%+MYL;Q&_F$#Xaf#Jrl#$MoqO5WnkE_aF$EM
zAJeN>uV!9f7rXR00|Ub~=fyk|y!CdfgocJ%{{QniI5u{!x8BYt%JYLmL#J}<?O4$A
zl7XS2fAuPju0@xe|15p=>QzW+XzI;PsW)prpS}K?FFZ6fG;(iMDd*)}tINy%&(EuV
zH}lChmHz=R3mMFsI6eD3Ke<e@)w1C}aO}gs^IJh%udClYe17ZrMUC?fYa%y4TW`n4
zz%WZKe;y+P!<1#7EGIzg=RGH@)xP+*#B;Jy_O&&i*q9g??54R@a$bx7^~`+#%%k1n
z&p#aIkAMD;zwSdbC_MK6II8b8kB5QbhJf!Qo)e4v?PfLe+x>9<&TsSKfX$Z+&Z>Sa
z3=B0gzDf>adNDK1a&OhVr~_?L{&qWmx`iME!-qnXPKKLVtJi+|aG1aT#Xo0$+bQ#G
ztEa)`EPuUN{Q2|z|2B`0^+vy*wr6$t`g7m+|NncZ?)TfDx32FCJIKk%(D3!5N?eOw
z)t47OGmTW!=az;Y>yex+TXsXy^V6el{by^p-#c}nk-7Na&*$M4UJMKm7MpY$E0~&^
z?tDJ4`qSk3e^mbd`g;1$&(Fs7|NeY=eO=%DZb`73|GYV~X3g^I=VV~0X;CX=Q}JB2
zdUf%ikH???c-+7Kiv|P3f#X+Fm{dH&)<jHvd3kyIy*-sL@9(d-Dt{OAav}pm1MdYD
zy@Otp3LhU^x^0`;-{0TQ-~a#j{_~mX^E@Y=nQw1D*Sh?iule1OhafNXUs7Ru@@#hg
zxybanQx7(?KVLRG&nr;mYc)s}BfHFl*b9sd3pg``7>mAM4S%j3|I@4P+vfRCKOE-I
z-?0Dryy|D)_y4bDRbysgFmsvAF=3{0`ZMqNUzgh7mA|=h(Rv{>gM;t|6{aP%zrW42
zum9Kn?)(fx<><Vfshz@%3=Hz1)UN2<_M}ZZ?}YXHJ(m;SgN)1D^YK{C&(rbi4x}(J
z9B2bselvA?>ep9SUtV7Bzwh(h_e)l-(z5^i(!cnO;qjF9d%t;IUl&{auvI*)%7=mB
zfwD;_!^?Ynt3ivJc;sv>w%@O-?pkzW?e=@KJSVF?eX+RzTyno{*u?KFlE!I1t5&bx
z{CeGPvm4b9Tg8nkK0Mfxd0B0)Rq3e?LFIq1Qd1ZhK15zfx!18F`}(?{AN%X)$p8Ow
zyz=$h?VHlh&MJ9%N%iX0shKNoZccyx>9oH8>uYPT@7(_X-|ywl?R+~Qb!l%(IXNk&
z^lE73yPeOCa&K)h$-kGf?=1tvhCtI_^_>4d_Sc_zZufm>&F|ay&u!oLb*+l$biG(D
zo6w?jmd~H$|9h6dDeLMgw(<v3#%Vs&bfc#&pI4=2TlK|b(wn{C?^*tM&}>}y=f|9q
zOP*6DBpDdA)?JKmy1FWKHE1_Sbk0WCrS2=gKWOHEcFy|!8Pn@Ao6r5Ve!s`Kw6yf=
z$B8QJauo?x-`~xR|MzKnYA+`PL$BXr{s}5SUxn|V)hVpL?knGmsUTn0{CypN{-pZ+
zIk9Commd5#JAdEI%FoYI*YEw7wc+~u`299NpG;2e0qGA~yq`tevyESV-erG#+h#W2
zQy^_?x8JkUjoy}1a7V8C&Bl}IJOBN9{rT7H_0P-q|GsPW{rQ=hlT}u(U7NchJUSY*
zL+8of@Apop&CcEC`J9EJ;n)gKmJ<gWnP30^bHSP4^oD+y5~LXVsx~+IU=!=l>GeOS
z$5cFQeR*T!W2^qiZ8?#XmMmMg>|k8CnC`27K?Mee8ZpyOhMg~$%?=6;4Si`?^zY~M
z<-yDSBu%rfw99=yICG|`c9_YH=zTRmqmDB$97y+_%rRl2vU^xn%b7Wr#^(1blK1`p
z`#$~Ko132Z>_2a+`T1$j_j}c#{SlY8<=+0~z20tz$m{cGXBw-^T9?K2Z<Y^N-}zVn
zTHn9R><kP~fBc+p_wSDMREa0SO9R<Ye0qBN^XvHkR-kR6R;90|?Ao=fbl<i`Je$+c
z`vr>p{B?c*JmYf~ix1YVkK0@HY-aki>ifUrc9p!GbX>lE&q2e>%Y41>@2kE3INw_R
zq<zh&g^Ub8Sgw8Le!%J3xAK6_e7RmThi7MJPyhSvwm!&;zjxP1ZOxkc|IhjVXB^pO
zLw?!R{`zuqecjj9Y_Ffsudkb?7ds17ScI>S^Srk|`?~J-JCkm1PQQM?>-)an?@oK`
z@10V7&T{#cos0|%3|DGN9p0OJ{b7&sxf5Tn$Ist<&PtnIrobWX+?<)-`g=`4yQ1X(
zeQ5XU56{1_z_If8+wGsv7@xng9yEn^Gr8aP(z@8)b1I+BjNFvsd8|)%_S$W?v@S36
z{e8iE!!rN*^K8H0F+Q1F$j0)c<i`W^R)3Y7U&^&uZhX1-f9JO&!v0f=*su97cB^K4
zGOzmG$qqqfqp~+Qer?UWyX$Fo{O_o^nvX}{Y&gs(Iwvo;{wLGVdA8Nh8rkJe+)ST8
z_u^vr^v`F_{bOTekM+sEeizQbP_xYR7DMIVuh)z3RX$(4)hyvagNW<IoyE`1W-;vi
z|L^zpo%=5PSwDTZ`@LSJ6az!X9jUk03)e?%T=cKj*zUu@$DymkLX%V&7#;{`ZAo{S
zlyYrNBxq~Q-^Z@qVyd2Tbw8hO$-lqv;Ky}`nHd_6tqo*9!73gz0aVW({PlAA{C(FR
zZ@R}R%fRp>MJl)9PR-}DQ{@;L7;c=9%59J-zf%a~z3slh$k5;~&&b5UFvShDabqbc
zO*>?=a4;|gNR0{)>M+?fPp<yY#~vwDt=eB-zz3!LJYR3;E?XJ`N+4{<_kB3TEooCx
zaBEBEWWTvqsYf~lXWG}-u`Xj{XgIdCaw&U;*1q3&--9-ToxHHn8B|q0`~UC#e{j39
z-}c*yD=ULHe?Die?wNLe-rT?6@7v2-m7EX_kC~|IJ?+V=)$2|bpSPW!d3o8=%HsP)
z3=DR=|72I#&MiJ?`Sa)b`h8&zJkn-5@jniU7abK1e*$VFPwJ60Ry#dS_jIto?NmA2
zDizOf_p0B^)O<K7X<t|4XZ3PP*BO2WhTcZ+4c9L3`~B|rgEvRZZs$&qExW0D-u{2h
z-&=Fb@6Ft`YuB$I9+Q~)Z4CBSe?O;R|MT>vXRHhj$2=NpoQj{H^L>79?qrqxeLvGc
zh1K3~w^ko41ht1I``bl+t6*Tbu!3WP|ATF}^G?6Hx!Jhp#|M>@b1aJ|schZ4mA7y0
z+O=n!Sh+vltA0P#N|}MdM2+c5GHBMuDC^3KFYoW$E4%f0Owx(orsEkD9DMn~4>8@S
zHKjbDihy%Mf8x74J1yUAIDBcLbNijb<FYGPt@4_*CFiD*=cc5iU2Nwg;q}18-3hr1
zj&_Tue|T^(a!*C!GM|}~bhqExRQJ9awah;Qs;%VePha)S``^8F@&7N33=Woc|CaaL
ze|J-5`xzprAf0fuOLXPx)u+$QG%mhh`#rT?wk#rhfA#lwFE1_i2Bi_U^K;E|qkesR
zyL(>!WlPV04=3~UFdR_dur8j#-=oNfHSOn@0?unyQJd3z+jym?tqfic+DrWM`uh7;
z{l7s~_WeK4%xBtGm;Jp}`~B|p>2Xz>hue6yvtt+-GN#O7jPwU}j?{c-O##IPD2=K4
z%-C@4pZ%Z1zteU8{ha^bQdr&Z45-EWY-W1e$w{h`)@3<mw{y4m$XIS-n#|1L@L18|
z+U3js_H$RQTIDm#M02v5Z`OwYjtyVl+%)F5`QUKQ?)RG>Ia{mQ`THtgy?O;IoWIum
zWoKZhsp6dQ6|@g>{r8R5Z?^=$+xPpOuLUmygNbh(^JuX)Jj?XiCr(Y(234&~-TUP-
zudWLHcDMY#&pex*my#J799%gk_&(Y3xbL*-^_a=Y{kCS0kM(+ges<P4<-`P=PbZY8
z%JDKVXf3N;%KpP-mRW98-u}PeVrsu${dvrM-$WJ5Z#R-JFZZ86r~2K_nMSEzt?Dcc
z4W|m&QiNw%6efX2Mkf2)?W|k7Y?+$+yow~yBBwL+Y<D+ZW@K=9$}z$B!OG?Hyx!m2
z3)&^L_1f>RufzBAGce3|Wl9mAVVv%lm7OiU=K8g3%QU+7{CqZBbOsj#gO-0o4%6vr
zy57FNzRh37bfd1kXJ$B%K2dyOK9g?rwliI#+EQ!u<M-{UtB?IxKf`9vN;hVWo9y=I
z>t;Xs>BYyiVd9?u#b@=W*xNB~;=FS0+Pcq1t1XM4sd(-xf4}eC^Ru%|U;EeZ`sXjt
zFkehOq>7=T7j(7-sB5?Mc*Z1_6KWT>=imQx{{J8UX?n4{u5n+KuYR*JBs6qs{{4Ng
zYwj&<mz#AvZ?|rA{@$<c^Hdob78HTH3z3`Co?dX~U;9PFH!L(z#C2)=k1aFJa-%?T
z(IabZ1}YOKeZMcc*MGhpxFD*#p&G`(P-AAvyonRkDRpk=JNx3|V&n36cXGDhEdx~n
zan*0PLYgc53=CSwBq#W$JUuma=YuBhqT9LKQy(5`y;*uaw)kf1^rs7&`Br_&U|<L^
zWMW}p(CGcn$jHFprR*TpI8{6R*`Ckmy!+*BFRcn){bu+3eKTz;i<TZ|Vrb~~YcOFt
zE?XY6Zs)UEGSzQ3N}A`zfFc#tSDffBw-RLJhQLZ*kJj3P)Av@d-)D9I$1(FsD%xRd
zJm%ZgURoQy-DjrJ(nG>b3<r)q=J9Ctonv8mcD6aF6BDyPEI4?wu)mFAzum8lwDa>~
z558nzNO&xyAo}e}u>aEX_xG~*CRcs>SKV2&0hB1jn3f!Rc4p?}Teohpz23TYt7exH
zsM=y(#>CLz>)a4>V^ivBP%V?N*R@;h>u&~z51EP%T5D2IPmA1`<l6l8>FMd$K}ltK
zE5phSw{G1!Gt+qa!C&mzcXyZTSF12E+(=>ZX#M*3wz>Y^FG1kA{gvErJ8jjfRbSrT
z-tIJ+k>S8GbqB3CCzSiotO{LSbePxt%KEi2JB=P6??1oq_q*A0wpAeoRtyX`cFYQ|
zYB;~E?(eVE7Z(;v+E$f3J2!Xs+ikb?KuWXM@0~U~f8Wkaj~N*bxILYFK^hzhP274X
za<|`|*2*oOc0IQIZ0hvbY0Z3AD=sYtDN}V|U}(5h!An6?v*uLJ-mljzAGQc<*&cKI
zczOOmldD&+&a|uj<@S4ycx*}Fs?~qr^DhYc!@`!~6j%9l>YSoenm5aC=U(2FdU{Lt
zbv<S_o)bF?AA`DGDxRUCp|0sNmPIMIwq$O;Xm|hEzp7QMR%!jSW%{9$9ru!vA;P}=
zZfQ8Eh6EkScceoQG-wdEE@q}?@Uka&iqD_zku?4U8uz=D{EOX=p?)d@V+K>&*;!K;
z_uE<B&e`l+_kH*MrP<fleXU+Tw=7C;@0Uw=O0UO?&Jkd^*6+Q6VOGQYy6?LyzuztY
zJbC_~l(j#8IDk58$0XC&eBQ||u6M?K|If2;cD-Jgd3l*HXmvCw(aubtms#*;>-D(V
zcD27!x^=gC9Pg9e{QX|_bMgH@T>t*NwA8!!T4Z`EsL$IirVC2IGDRm8D_^Z#Zua6e
zxR3Jd<?{67vgJOj!`5EfS^ON-Y+Jwg+byg9`tNtki%)4TUsC-19B8bs&-&etJ)h56
z^Y-oj{ciW?qxyA*pcBz<Z_5o151%e+oL2M1=KH<s{BQT`|ChYDpqP7W%gH|LcQZbp
zx36#Br^axt-&ldc_dtH#=h<IgUDf{mX7hPA`|nf3<4)H9y<QJWSvS*W=Ngs2yYuIT
zyFF-#%Q*R1PtMM#(>y0h=kGC0pI4a%3Vu-E@bq;3^Ty|GCW9I)KR!J4oD}S5sak%o
zGX0#z<DNHLF8hIch{ma>rr7-d^ZDiN?eDA3f7$>4_x{Q^8;=)#x#+$;{rtR{rrBZZ
zcE8)jBW0ptoOZ?o+^g5^Qd;cR>jgR`?c-7L=SRik&y-$|oqj#O-uC<b`ue|x+wWCn
zyY<P;1PyAP(q4ZCG-?x5|M%<7`u~4FgNA@tuiX~)T*o-=%!!BX^7Ho9{(g4JTi@5$
z*B8{6b(gD5Y2JUGVNE+zgIn&$M@L;lLqiLX2)eJi{xLd#Z)xG5kH@dugC-Z6lR?Gd
zBG+!Qqp8zl!}fnGum4_tRD9ou*8RVB-rk-cKd11RWc}9}6P4Y?a&K+<x%#+H{JuR0
zZ(Ug#+`Vemsz=*y=dF&Hwy&!R3=Iwa^7{Jvh^<+ne}9FB$A*T4hl@{E^VRBFq%ln|
zHmc;sg@qPhuLNKJHRtoQv)Z>nW*42({F)8QLxHievHyR}%3i0rYW3=FR&KFBS7$Qb
zu!w15y>LP|ZjXhh-M6_*&2Hyx{$;;Da<dw@n2yKlu(g{G^I5Mct-cLfKhbM`@5JMN
z`+p1PuLh0QS(RozJ2Uh1#<ZUfzP`SH=ZCM2nhIKr8ooX*^ZvfSR{1-B_y7OVpLuOf
z<lo1a{j7D*&N4lnU;q2I%1PVrcP6`bi>3bf@DLQeukBZ@TD1wZj;eH7N^E@aq(861
z_j?73%zyEk>A_-7fd;pAxwp4@PEz%rR<q{0xa-9F-`nfG-{0FC92`9P++6GB+1J-q
ze!H2zIpgA@UysjOzu&VZ@2=I~Utd9LjI*w+V4JQOTlsV<XoT(4&hxc;zu#>3*W35w
z(VkzgR!iGl{`B-TXlyVI6ye#+T)V~Ang)OR7rS-a?Y!MvuWh@L)P3dJwX|z%B0VR~
zG)`Zp(FICqvAarE{(o_6YxcXn-|wB7ZT{Xl-SX9n#h3Qi|DRLy>Ez36Yoq(@e!T#7
zACg!Sgas8CdShmr<zCub{oUsKonradKa-F3oV0vCXL2Jmd)lEEPSBvQQRSy6Z}xmX
z7r8mj_iv%~yB*1(5ev|uGALCRKc8EkcA$ZA=Z{C-ulpsfN-{u&;h*38|5sOic`<Qg
z^6|9kv1KRg|9`K~zu>djt@qT^>GAU(9&Uf$XZ`NP-tYHjpPa0|Jo$KE_Sr4_uC0lj
z3~Hs%Fi@PV?jQI1@xAKzXV=&Nea&B+2RhH~K{J2arza;R4U=5v)qcAvQ+g#3G>PHD
zaX{^X>k9^7huGLy&^WBmT&vRN_>O<_|3AuGK4@SD)jn&s{yS&=eu?*Vz3jE1J;|UZ
z0;p@6b#)bJCI&R9>eeqe_pJGS8&6P4HmB;<O3SZTf<fclZ}$Cu2U5Ui`{e@ftjs4T
zChq)nO8fQour(1I&sj%{x=x%PUuOwQ0nz)vz1#gh?c5woP+x75%I&<}xm}Aqrt8HP
z9bjZ%^IfJs@4^B{Nt28K&^Xd*{rxugf1WEZ`v3QP{hRab2X<L9GhJW-wGTl}Pf)M5
zG|ul!yZs+U(3t-7;@PIz*B+SvEWcCeo_2oT-fOp-Sh=rN-Pu$58B{E3b}7Bz`#tX3
zn#kb)Ra5vun*{FeE<fKTs%`e-H7LzD8_PaE)_eNZ)z#N4|L~gMnE*O9*nZ!;U9UG)
zeSO6vX{6#=^kQNAvfSI-eqOKtdwpx)?*o5+ezq?G)w5<1w{y4O4H7xZRv*hyW0LN`
zFsmVMZ`IRu``?kEvD3L_w=&n3JJtVq*lt|-=*XOcL!7T`@?v9SL6s4RcQb$g-%oEg
zp9du@P)&K=>fHoqzLV3U^Jf10`+Irx_Pm*f$!>KYn&p?QTc-ya2Nu(f0!?u|12rP@
zcE6o=ZEf^(P?C7uZ$IyS?fdHN+I3U4!_&^pFyu{pd1GU;pY_`<SFT=tdM!HN_x842
z&<Mlxi|+DgK|RZJbFJ5Z&W_kwl*(uG;Q**2(%<vJ>F?Xp*RNhp+EYLC*4OLt^97aN
zQb5BKA08gQywrR8o`1hy?|i*(w^71@27cZxpjjw>yB`UB)^9e{{QErr{GFY}#ectE
zPhY)u+o=XdX1h=Oc^RZv1Z}_1lyLa$9LvoXPp1TT#qF&U)s5Psacf&{^qcMX>yB={
z9v8hPV&fu>u0=P}X6JSZ`&lgfXQ>^wMq}UCwfUm9RbMnf`TJ3K{GTMl(pOiKE-Y|7
z%E&GgP=BY_{9Xi)jKv1f(E%4XrJhdu{dT+lzQ1qt#l5HLXm&mNd;90S@_Us>-|c=M
zw<Y`fx{S-qd^i4nw_Du)*Tw#8vkIS_nCMzs`qj#Q+x@!Vi!{0(%`LyD>1Xrt$fE4)
z>s)Vd%k5TlZW94D>6&jI@0X7U73Tc5UjhnWtz0fP*Q!(t<cS^$!$lE03KE;&pJ(Q`
z38;DL9j^u2N4zEL>Z%)czu$I)JT$|uw(74TsF1(7CUWzy<DmKtR27NXR)5op+L96Y
z<;~5_7SCoRcg-|TubcEggrTNm)uInv)(i{_WT@V~{#kF@Iw5hwm*cgdnP*Q|KbLh*
G2~7ZyXkGjO

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score.png
new file mode 100644
index 0000000000000000000000000000000000000000..e41995a331fc90eb3bf1a8cb12c32e71b5252537
GIT binary patch
literal 23917
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_dNj^Ee+|35yr+<g1&jEz1sHopEG
zn0$6tYR?4SW}T^?OGGC5+XZH7Eab@Cn)36+G#5c3Ma61u)t=h>nFbaA|Gluje*WpM
zv@;Rs&O9mHfA`t3IiKyG?>Sd`_F>hz%KhhW8y%BiWME)uV1Co1$H2hAaA0mT0~3fg
zWDx-I`xF~MQ~?ho3rJZqhXRNz<IDik^+1A&1H?Tp-~gg5+DOydptIC(uGOZuYd-p4
zpJ|+aWwATItDD=Y^XL8T?CgHMTs}YVcj4p5k5g}N3tJOWc)S0r|K{xLdN;SN^_y#z
zTB0czR2{$EclI(aQ7w(|bupWAqtDy_-=m_bq~vt8OSE{`6_M0u*Tox(Hy!)`h#`;j
z_O`qGYHDjmg@hLEDt(=GX^E#~Y}~AfX{x6;-I=Bvzb|H6ZuWx%jglc#%k}qsXu4PX
zJ@#(#dD~al*Uyiu{TeE&5uk82cM|io+}pD(3X{6tvhhef$SQx^ZkfM+;+OC37gyh}
zmzS4+dUCS+)m5RFR|GCDd3i~7{c*26c}dBY-QxOHxx#{iit_UEu{(=YkIrJ}m3ngP
z`nKHLK{@5C|Ni^^{?)y`yH8EkUT#zQNkc)w;o-xFS(lb{+Wq_SSmeCsX3v+kv76I+
z<tm>D&b6%$ySuA2xTa>0lv&P<S7zHM=iXiwzCNz&wecb~hMC>@ZsH6FBB!Nl+S$b&
zlTcMveR<yg|CQ(S>(@O!Jw5wy8*kO~x#dQ?j@0-3{QP`%$;(T#tjqIeZTI|F@a*;L
z)rF6bY3k{nTik2tCamT&VgCI2*DqYyTV1|2`?{ZNm&nIm@8{W8Yx&Q!*;Vs%Q`!4_
zYj18&Umd<aE^1dvX4lrJX-n_!F3)~)V&bdI%lof?y>49hr{d-|-Q=EQeX^^~@7H|Z
zb^FemMrQV`2L~FBj;)B=n$^|U7j|xrW$B9xifbb_I>qiPx!5jWw_<Dd^?To<^1{5{
zzy9;{v#RI+-}nEQ+^_w<b8Ymll9kC{m%3I|?AVrbbJ3lh#pxxQ3`Ua}3yyElIelZ>
z+l@6>SA`xse*E~4A3tWaw6yT7(0Tjn%F4%ueD~{quidC~nn%Jwp?TG(bK7!*x98n0
z$(>wNryIS^WLxg+`*pw1E<PI`Uz@6P+Gyj(jmI|WeE#vce|hG8K|#S|+j2oEaQoBS
z+w;vWi=G&4%bhK%9afQ(9yyJZlhg3$r>Dl1pP!i?@00Z|ygyw({#(_XR&H^r)0=#j
z`_1(^*u?4^5i!Hl%gZbHu6fpl1&+ry=?Du7CSF?`{e0`$MXudGB_&&4|88k%DcQSh
z=E2AP_V2#dp4FI^y7c#RxdU@s^&%KT)<&65)eLq!CXst%!@=y?uH9lQ3m+fj;^hrZ
zNLb)CMPs2|?XMSCRtC%E*8lsN4vMsi6DM-<@PtG}%+Ly3vm$P9)yq#$Pp>O0EG*oV
z8@;>y{kI$LQM*HJ|NVHpDt!IC*XPb%z1uzM_bGK%)t7V2?*$(15*3w^S@Y)RW^E&*
zAl;}f7bdBCU;1MuYf}+$-sW?UlCrX>fWU$c8w`#fJC^nMSa06jSJ&3QmRi0k=cZA(
z@5)l|ong<<&5bSRT4!4JCL;CxyjWSQk`KFbtByB_XovZ1&AvWOWo`8KbJ??VZf<%x
zH9YR($;s-b2?rWX=CxLzotC=Nd%E7M3k#e3<ZM@+xBqW*_qXTj*xhBB2O1bZegA$v
zJid0R*Ho>_-0KS*nRO#JJlOU7_O{&FaWx-ZL)XPbCMG6=eDC7Yva9Uvs@mV*D(|LU
zTH?7XaB<tALx)5}M3yMIcCAP}+&0Uycv<xBEphtS_pP6-=37*H)%e(sT{nLI__1T%
z$}7hj&de}$zIgE>7bj<6K)?hgW#y~;YOA-`GyBcATf6;UmG{Mq7qwz`Y<T^AU*+d#
zQJd3xkN>>2P51PsJ9Y2Y@9PVeW}bBI_3Ky3zVmD%L8<W7wY95bb{1)tzq<p<=iBn`
zzWO?cF@>+>Ak%|m=g*%{zS+RYY?5$*p|z!Dh38~7E^hA2{`P;DBpz<dJlMn<wYO?(
z(UTL3FW>VAf4^HkKj(JX=CrdSl9DSgFZX{9%J1y*H47Y@*)*fK<xI-+jsMUtSLHD+
zHS^Jt&Q-z7`#{+tN?cG-(eu@fjf<E0&tF&c^wi4a<9%FQT$ld+{k^s5sh4il7LSV;
zFJ8Cxb8>3Ry0T(nGdusPxV=?b_xJ7n_U7hdfBU~7pP!$<{^sW9t2+vlJ?q;+C99U5
zU7Vnx;JUn!lV6v(zPz-w^#9-Q*{7yxN?DbxcwK8*@?yfXv$L1G%h!hNEPDEB*W0su
z*4?}JKLwPQ-1_C#_S^mPu&w$M@bS^n%UjMLZs&h}T7Q4Y%S%f`w`PStJu@@-a6A9?
z8HUMMc9p)CUiG=k?%$7ORaMoMwZFe<MQ_Vll^bmRJY{qG`D-%_lS8)W#a>+z==|^B
zzh7Uk$D8Keu{b;1-2e6U_2CDbSYzM*{`z{kqI27dh>b~AKOVMEwJy(-wJ30SeQoXK
zHIbXIEc2E2G%w%l;_3=2O6S-A+gbPPrF!^vE6;WI!M`j!y1OqwIXPKWN@~@O8xgH-
zZCUT{?fv!bc7EtGAIZ=)5rLDoq@EVr`{&c?Rk6Fb%`(Ycw5RfO*7tXJe?98f-;!{U
z3FH=DDU%5*Q}yHHK7RZtXa9ZDops*%mx^muH|u!E*Zo}j?A+Yd$9kn-zg#~5TK@jO
z%YJ@-p8faN*I#e9-xraQsoA?-%)#x%18V~YnJGcyYo4B-E-f!FFDxOE!6#?)Vq4zJ
zOG}S!(h1(2=3D&hOXl{{$!fkv(^6+XpI?7(>zeZS_l|AL{rq%#e3i`eCnqQ8-9LWx
z=+YadDK|Hz#_bNReBCrPC_1^vvh>xIjk&i&Rt6nSo@;na#=h>(>rdIH85a)R*p|!2
zFZX6!&DU2~k6pih{mJR+=jT|LpUb`5TjJ_zxBu<!?Xxw5mr0!7bmq&;%dxN7`Q>tQ
zZkw$RTWfT`=5z1$cTOKaegqY&H9w2CKh-QfcxzYb>XY+qcW=zSopWc$#l>o;H~Bm~
z)Y@x!?943F(^vnVzP)d6=|L%*iVdJbT-NH!)-^#(y+9>>&i#G1z3Y8`xwyMa-`;li
z$H&K)x5j$KZus{8e!gDZo);JEK0Z1MQdsi(+S%Mn504Jbm>nA|>;LUJZWdmi=zad{
zq)WeN-6|Ck6iif7R=zu}_RB?gP|$773N3ziMsj;;__~<F-{ud#yu2K@`_9|j+s}(=
zg`Buk`~9xm>!9B|{a=3degD<8@R3V$<g|~UKO2Mc_-(V=-``BP<<8!Iuj+I*FN2X>
z?1l#GfKRf$)8p$R`R)H~NJ>gl@jTqlAO7#p&%3wweLiQsNyj_+SWn=&IhJ>?*?zl`
z+||`}Nqv6Jqr#p82ORoSB@I7Z*`y<x{N(-n_ocP>_EfIl-Cz6rTjs|{N40{Mbi`FW
zWZhmGx;iX$ciG#LKR*i3&a?eJ?aG`rp{v7A%{E^jZNBE?<KwGyZf;r?w)Ph9`|=|l
zf>H(v4Zps>U*9Kdy((y_mzR&v6>j}K3qCzPy?j@0PR^QDp{tjjxBnlrI&7`i<&VdD
zrPbx-<!yhxSiCN^u&{7f(bKN$dTHAaH8QiSc$VKSy{>yR{$La9-g}xW<M;3T_jP@J
z=EX&>a<BjV`LpL<<A-n2mFnxKUtH{ddXo+)jMrIDKdE!N=(o8-`nfrAuXRIKOo-Z=
zwRCOtc2I6I4?TZ2CjRZMt)F-7{`6$B|0#*ds&YCEcUHb=V!hM2PBuI-a@w(ed63(y
zwtyN)fByWj`L$Mkcg4p=eKMAdgw_2t^6%{dWp2}~D;lQx_hQyYZ4LVS>ucy@w_cvv
z-5^`DZf#i!Dw0;L&^UVR*s8F#QM=yn`z<0OGG$q9&aEw;lR{R9>Hhrjqhiha@b&YS
z`OIA8JKOB#M0dHJsax4uSYAwYm%CW~e(!Qw>#~gJ=jPtpSG(J-Po^^X_t$SrHvjlh
zvG>y{?aW(sKR!HM6}NZSzt8jk$C$V1L~e4iE_)NO*sb@@E{(1E_v7|ff4_F5Q~2wz
z*XyfmV}n604c{3C2Ol&4TfKhYtaX2v9G{{YY?66N<?oNj{Z@sKT5kX7X=q^BzD?Gu
z<ihUv`&RFMzb`uX)|SAxx3-3^jWX@eEB1@mumAgXdfnfz;i4J=4&Uz-`_J0;^WX3H
zpukugx!J9qU%sq5XJcyQt?l{ueOdR;-nnnm?ylIi1rHBRS|Y6Occ;LYAy1!)qk!G(
z--9VLW~{inI(&8Ta=%x%wyy3H(|z^v_L1b{eV_)#N<OyjI^OB$=Y`(eQyIFmD0OYj
z&Y)&C-b?B8YnN#TFFPTz_|j7E*H^>iLvL@(&40eK(zN)Q53j6MNbqvMQrjjA1A~CI
zQClx<NIWbeCN}NWx0B3o*Z*Uv-TLIIy8paATU)(fU0T`=svrs<AIp4xZY~!OPs#4d
z1<FD~LLoZ}5@YvN1kN_kzZUFoyY$D83RgF`WttA5YokIzhJxJSZ~xciYN1T>v7U*k
zk#Y~s^6%{dMSR-%d24qTKVOx4dfH37_C{v*U91A9H^ne6NjTVaYgcJ@7xR(JpysWV
zY1R}jQLQCyywX}WHg`l5)O}_=_^8l2QQ3V}#m7gp3=*5#_+(cpI=7v;em%Tb+Wgvw
zhlgVyr_b3JH>uw3@ZrOkul)Ob-ah>GwY8!mB1>k>kPy|6i@CWueR}R~P@S<g=_pt1
zj)I5FvUXj3eR`A5^@!=KRoiE*W>#uA)5^ef=U`J)Q^@)_+uEN`r>_cF*ko1qX2t#b
z|996~d%U}|Gqva9#l`NI_uT*eZnuAY&BxYBlO}CRJj|vWvm;=!dw*CvpR9<O*t06B
zkWZ5r?KzuTsBM3SorPsZ{r`Wj?(g6K?d|R5qS|2@kB)TCGD__#dwXl?)6>(J@2V{d
zpV7?DUllw5&fVu_B{P41-~WH@s?gP0e|~(lDt$F2YJ1+?WqHXf4Uc(D`t$d1=u$7y
z+OJo`wSt%R>?(b|?AO=V@#ULbJV6CEs3O}}`+JpZw^-b58QZEWrt3X!Z_C|VH^cAU
zz3KNDf_9g^4N<pU6S;ZWG`-kWs@~IHd^|4ie|_Kj(kCYbd*y7SzTYYC4_h1cR7zxC
z&Z{dc<!(nzTPkN;wZgq$&Z_Fmim-JtD_>q-p8f31Oi=Ck<@NggyLOc<{aUqCbdvps
z<)$-0*^rBa<3by+bjYd@&F!VXzrXkYJo#GC<cZhC8+r~(2ry`cubZ>0<mIBh)!(y@
zbO`3XUKO@>m9V;B#_4IgFYm3NKYu<*;Kz@OUMW+rV-njt-%Yajcz<*A@#Nd3udglr
z>FM|KXK#8%#g1EBvzLRK<}RH=Q9FyCmhR3{>F<u%S+w*z|6cFudQ(#)R|PC|n)S+e
zy<Y6D7bhkvdwF>UJwG=$|K~q$5sd|Pe}BDvb8~a%yF(#+Dhf+qU-Pvte|P1@#l?HK
z&9o?7q!+hmMVF}ds^aJ8;`W2e>HK{^-FBC~-8FUjlH>CAF?Dryzus&<zwWokwby4`
z_9Y+Zi``k|YG`OE_b~bWy}h?KCcCe?{rvQFe^6`w%gf85>*H*5@9&G<|L0S;`|j7V
z`rDnh<=p)8zW#r7JD=>Oe*1qFcfZ}<o`3yr`Te(oc0Go_-tB(BColPS*{*kXDPO*_
z9;jpyV3@Q7RIB~__fN_!XU6S2a(k=3PBL_h-BnWfSM5_4xE%WNkp24i)#2-}{rvpg
z_Ll1Zvd^#h3qn_ge6+fL^t}E5IqM{EIy*V3oP1rQ<lZm$^;hEiGc%2?s=uwNsjUr`
zSujt>#wNzl(9p}n;{!*A{htrb%Y0`qd+;E^_R9t5%ypKwx3=Z3wk&>@@$Syfbw920
zw!XW&Tf6?>pIH`#i?-$8pSLU*RL|YnS)6@gfg{M+<G%_YA3M28r}o1^b}8eup6lz^
z#qNG}YO1!BdEOme+xd%JyFtxaalM#;$H#hu=iE;_*u<K3V?*Mq-(Gb!pSH?RI6u#J
zwO;J5iaQ5ERnGN|hMu0DR%LHyEcstAyX1M*&d{naFBFq|Kz)zP%l&t+H9ofEZf8eF
z$AxXVw{70}?fLa;wdTJdB^8w;uk}TPCSANP&hY#qD|f?^{qwUvUkUclys{z?)NsC6
z@tD`Mo}WS1s$|8lZ*NymQuSU{`1n{?PtTQ`o6}?OPS3i!YU%oYzq}@Wc{V#g>*b}T
zt3p>#Q&Lu*s_f49_t)$7Q5zB(ot&J$JelmjtMBHX%HpXykwKT2`Cgu9TMg<~XMTTo
zcb0Yex~MG~3nh)ymaP1CX{ooijZMtu<^I#xuV3FKrmJ;&)0Z2`{V#ufe5@6}Zx3j&
zqWaxV_f~H4YcDS^H_g9iBWqRSVO#wz<lCE@>#KYC?f(RrW?u`LZ&&-}>-G56K})@E
z?XBLPc6OGkyu7^c3<E{q-#Y~z9UZf-t+|<d^ZV7~6(5g^UtJxp|MmU-`>!XTT{qP{
zKkn=6>;ARBzD#^#_x#AF)YD&%%h$iSSN;C0Re;4!VSk&2j?HYDhgvv6t(eu(_tsw6
zo*y5(uO^b2jVIvgsi~oRt4c#xg?L&PJ-M*ZxqVC0QLfzE+k8PnrS?BRKM%jXE!Q;p
z7>}!~>q^IFHc+7^rXROv!2$(WSJ$0)eLZ}9Le9=I4PE5I32M>1c8gv8`T6<QijPUT
zcXx%Jooyce^3qb(rSGeDhFX=sTQgNV{8jz`-}Aku>42IP+9oC;zrVk~erc)q*CWFI
zpyGDYzkjSpF8kZRt!ikVKY#wd|Np9UZ*FouJInO)^!U1$8~?v}k#Tm0q4U{UropXT
zqEDVbU;g|3{`jp~SG_halLl4KLQE%`j2>Lv&tTM%8hPyaarL8L+xcXTZf;IDw=8~U
z0;<xZzyJMye|Eck-Hn#^_Sp>$48me!X{V;^=Ytv_GkB%VcHGj9+jFDj)s>TfUdR78
zs{HiC5Hy~VdTNT{dE4)EZtkt#e%$c;ySv%9w&i9!IXU@k%em<@RV(z&9LwS}n^I5r
z<latuaG){o?dvNmAAgm(wmv@p)%ErHpPrmduBoYs`K&s}rt;FBZ@045tgLR`DZL)6
zW?*mu)L_1{Hv0OR8HUQS>+k>j``dSW-d!ITmljSA4ugdY7cNUZJuU6;udi{pZ*R+e
zb#?Xhb;&C8<D;G(|M6^geoyZ0Wx>n+@=gcOW<PTL`0>{@g2yC^|NW^HmXph?sjWSG
z-v0lasJzH&nn6oCuIK8->`3Sm)lSQ~ZDwa@x31E`s^mpN&TX^z`+mPGJ+EBJ*I`-w
zEN1)L-W$70SHHZtxLq@R-JFwit+#{R(#j=j)GKXnCamUDF#Eo;qT<2V*|TQM$cU@^
znHsz)#Zy>BB&AD4Gig`(`@BAR`*$CWXHJ=ta<A&O?&TeY$-!GP0zoPc9XjN*HS6k`
z8HUL|K|zyN=T@zoe&rdX=gZpOjt+yPU80|V?edvxb@j^1;NwqDPCm}U$~rUYXxB`4
z`PwTvx3-*Idv}TFWS^g(p8EF5So&mStmy3RHQoQ`lXurw8M~SrB`+=<6wwGc@Z;An
zsoUFPi@z-S@=I#+zSr50j&vT|mTR1ONoD=>GUe-X49_Eueb5Gt-!hy_;6WX+b$r3l
z;FI|C)6=MJIX6phgN83{tH15}%gV@*$9=4Ufx)Pik(n*y!GXr>x#3$fF1|jumyzMb
z9_TReVF~m>Vuxkh5)ZQ-J#s|D#3W=}?rNu2F3H$Q$&X;exD%h{mc6~DdVAZ|mBGtz
zN8CIcxvyqt&TYTT75&y{mv~N2xxG!zf8LynOBoL2Ix{d%$ee3g>;`I0{rdX)>bh9#
zqsNcGUb%c;(Vjj=X0{XCa&K;1yJN==k=tt{HXgdVE@ESnd2P(;O(~Jnju+kD7P>xe
zZ%MwoXJ==plwnd!*7bF3FI)&<Wnoznu+S;%+M1bZXJ?gOHeDW?WqPmYNkQ?~@NaK!
zhOP)uyt*zny7t$Xi_gx^&cFHb(W6Hxx3`tOzgK(uTcvfJIKv5_3LgCipX|4{wptZE
z>0slRTl4?l_x+NweSiM^G0DEBv-k5k>r+#;ryu`in0)NS`SbqM^<qyoy!t05C$~;F
zdYeZ1yE}5PL9KGr+*=`>oSa=99RaJu)`|!TEdq_6{`>QDmU;fXq@*O1;%7eVZ{ODf
z4e@}+I%|G@y1Ome#l>aEp+`r%#X(J@+&eo0K|>-N5)WV5S6dD0Q=OV;``cIcc^RuF
z!w+@k28I(`zP-JzetJ{LhJ=GXdalz_S9(rXn`NBdXZQ1ou<hS3m-Alx&$C$x8pzGO
zylj?jbs1Zz=FeZhR)wq#k~_^WYXxeqg35ONy<aB1Ugx)Ivbz7O+TY)zb`&g>tNW3t
z8?)oXwyP2n5-+wMiw2Fq|NZ^_d&IxX{`N079+$g(Wo2;bqa&PW=iC2Z)_1sBg;C+}
zizZfu%bs$_1;oYGlY3UrKE1W}F~6M6iu8GvZlLi>4vv6`h#5)A$y*B_yY<(`-Q8aI
z@KEcj=<Vx1Jvpf?FF)Vp`qd4I&aLh3*>`pn%Dq<epSOlvTyKT<biKIkd*kl^dtJJE
zSC#y<)XbZkQuFTiOgbLC#Dwk1(&=%R4mPuc64Kspx3cpdI{&IJ+8?<&ZDqv9q^La=
z8<+Xcezwg{NeMKAaCv9(^DC>v^+h#<TyAbk4gUG*scHGU7|%;jPfs_^xS%jqE7Z%;
z(NQaKQOmvR_qP3?J#u+YbPB6~x#X?CGG=Gdsd=`$KRr3Qc*P2huWxUMcXoEJ+-H|r
zc;5DV#>YoTxp;Z69%|+OdQ?1q$J+VE>3wpwUjnD<#YR~cJqhTOu?$%mq}nTIdrLV-
zW&iwR60R;T6>sad7e03T`sQYEU|=A09MWs5*3$ofp4(eheo9%j_1t{>c+;#aApIgT
zGHb4_jRp+`e#zLLd)sX9k4N3BVs>r<je1H*tmx?AD1Cb?^!K;7pLf0YoUFFetyhYR
zn>#olU_zIO=At%U>8xjGX3FJ$e|vj*`uy6kqut`+2?^j)foErDgT|m%UgKxbe8|Vq
z;G^z8&!(%t|N67Dvq2#Q>SYH822OhN%UDs-(KPGIg@euPpf)C`ms|bq&Bf*O>sEmV
zvcA2!nRRE!#@lter!RrTTDiqRjhd=oFPC4wT7Lidare1arI)hT?_Jg_ZN7`QL*BY<
zO_!)Ps9&*s$KSJMS2g4J?RoV0v8cTK`)fx%CcV0{a`L0H=jZ2NSD#;_bb8a5Q`+m7
z+|Y~Omh<ZF?(Op`pGo#g8oRx{wY7M)t)`}@p`jtD8x3mlbc^d}-P)3wb#>KLG2N&o
z-|toXzrMCMc(Gfrh=9NX&_E|>NHQW~M%4Da+Pj~<Jv;*DT9s}|KQ9Mr72MrbdU>jL
zIH+lo@#Mrrko!ZIcuX|e8@7^@mpAnKx>!)B{`F*kyTHw9XJcOf`u0{^US1y5JAL@@
zA*js(>hjF9t<L)U>+39&%t@<rYijn`{r^+^_seDfS2s5=2c>$?b@og5*XunyGjs8+
zt=ZaYYHs1{VlKAvN`LuwJ3ss3q1Imy+vRO`HA*IbxtTs6G)SCvbJJ4LIP=-r=C3!O
zx4XP4_4Jmkt6EcaA}?L7`}XE0sL2bGmom*dasPh&{(rwfV~xuzKR?U-`|E37x!`Yt
z<D=oXd!@}+fm%+LpO(l~JYYO}?AWUp7Z-y{m#k}RR$3N60}Za5|DDIM<FEw7i6v@&
zb24&nn@v{p{S*Nju}{9eP12@f!|hL3SBFc-$H!0BkGCs+cgJ#jZRE7nnwpw3*W>Hw
zuCsdd_;GLU?X*8XKBiq?7YiE5v-x@@IPdrtozpyWHaB8+m7I*2ma3$ze7Q#Nm_%~q
zw3X4@*Ij?C7r*b%uH4D0Dk`8sNYI2z)VI6k_a#qnIul!dxAboD-EFzEH|m^bVPl)6
z9lmbIG<O#liQC(JKR-Kr_Gq`b?KfE&nVeN2E0g@@+r5q2o_w6|@%#7rS|KYQl=Y;Z
zo(3|ffsy&nwD8qoXK!rFZR3-D6?lDP^6@jR+~Vt^>p$%auBx4+8@cHS$Z<+acc#6+
zvGH*B?><>;soUGm-rAadciQozM<s7>JG(A+_ny4%)!*~BUpKsYT)sX>=d@A&zMso(
ze|j=M`1Ur?l+@F0@8*`@Gn|$>^ViqcyLIpHuit;WdQuMVfz9K6vc-S@URvtCtm5M%
zH4TjuHQ(=+=e^~Vu}C;{_^|Inr`A1k(hNb);yMhG=l0e9-cs=~2~^sF=09)mS{1r_
zRqXCEtGYisu5XmkjoK36<8y{rez(U&rK}4J8bL+nD<PAzHxWO7{d)EBxcvTyfA9IR
z^T|w55!H+Nu`74-?U+3kfyet~KS$UXJ@NSY^XJZe>mxTWQ&Ltg{q)3h@6TtmPt7!5
zo*kQ#vII1{5MTH6>8@l|v%EViOtY`8sQLK`G=+Hl*MkQMKY#y@-~Mk47eD`W6<N!o
zBe|6+DNC+@v#t6v!O*Q+OxNprA(yz`o3H1>V`AnMJv}w`(Z5BD7hhcwsJuNDG_TMl
zuD@=n_w=mu^K92WW#twtsrH|Ab$xvN|6kYl?~yxv{`~pu*n<ZTuG@cpzI{AsRPOt`
zyP=!Ye7Bdea)|`Yx2rAr@W2rijjt^k9K1Lb7&guEoo(hhDeLO0r=>jZd#k>t^b~I0
z9rg6o)cjvRKr@)24pHr|5>V^KIQ?A6WHsL@_Vxc}-z!g>rtU8XD$RBDLsm>sshqo5
z)y5`fx?U`(VhX<deU@pqiYKp>$&Q~+mrs?PdIehxpkOHw`&;qPkB^V5J{}b>eZTj+
zR{FU)>k4J3YK2ZpjnwR0>2Y$Y_w+CCcE1OWU~+MCPF%l!ea`J^{r&xZ^X=w7`uA@C
z|GNIvZMnOf4s5l*9lXpZ(8s6e(4j+5o<D!S>i6^c_1`Sq+WBOsOqj3$G?MuD*VoI7
zT)RtteaY;9yf$uc)TR5ek3o~(AGemhjgm~>l6rbt$zC;v0}=uZk>^$hFIUk#x;$A`
z|GU|V?GBAh=Cyy8`Oem=|My4AJa3L(+@2Nt|NYWFdhq#7$4{2=f1^K7QQ7|S`}c4U
zkB-~BrpTRr{rdO!de!jze|MC{1_cGJI&NF}X^GD1qPsJ9-2L|czW&Si9~Dme&9wr}
z^<`dP7rQEGX%}b=43s*4{d)D}<YXz!q9uAUJ0`4qye0FpTk*3qfgc|oy}HPiTT~;!
zfsv7M(h@;sw<SCFPdSwHsd{D&uSd}OxV<J>S2RSmLQZ^L(6V5Gg6E|cPGOs4mc25T
zK}WmAueWdto0Pl=;FUCT*|%>WsIF?`mtXhjXt(#I*L)FKpASb&Te>;@{IaJ@85qQw
zI2v@+e>N9*?GN>TS5)$r{aLhWx^q$aYDMR^jPvtscfDS>d!4nw^=-M5$$QQT7JY3$
zd3#~e(^H@^segZefBpS_KWH*ub6f15ij68Oqqb)Coy(u7?k^{qe5tnmp_^{(u8>Rj
zizlf_TbHeQz5VZXzH9ND(|X<dWM-~Q&bhI{5#;4&Hr_8+!{c|_R-TbqywJIQ*^ajh
zo!j^5`Tv{g|L>+<(UT6)5GttKzB+7e(6*eLcW(L5wYr)tKP`2od%xVPi;LSq^Q=>~
z!?S*Uc?p^mt^57f95jIN>GS7c&`4wCw0%DwaohfQ(EQS>oWX-Pb^}9-<<ryCr>lTQ
ze8bnpe2my%@-irL+S9Gx7uH_dS)3j|eUAFPibuQTuYG=YR{P}d*bdNO+3OqIa$kRX
zdO9;tUP5BUx3{-XODw(~UvGO9T!G)t->-Xm6KJ$z+3IDpK~sO8Uf(6Ur3-(2NCZ{l
z(^6MDxAUz7&BRYnjRaM6$IVVp)BU__{S&>0d-wXExIZ(?y>;dB#^d&XJ~*%H7meFj
zv-9{S?eKLOPftyq^zXmv25iG(UB@RZsrmV7rE9m?EW6rWudc3M{`U6v*VE(cCVu%|
zoz!!&OH@1PE<3{#aYh!0X~J@H>t@W5P*qXM0FM^d{dmakJKN0n;K74cFBZ1vMe`o*
z5(Q<VFF&8pUtRtE-Syn~l|iaEx2;_nynI*f2b;P-JO2H?|9{!*JZBFNk6F8dW8Z$g
z9uJxfGA(@-0vZK*%>21iSY1R~diC4e+d*|cX!PRxzx=RPF42&^Ri(N2_Cz|j@qCP^
z|MTNxNqPOJXUFC1LwtOC`edz_vCG#4_|7sZT-)8zF~RVdat>%V1El(woN9US=WiCz
zpL{gB{_g#Uhli`a-AoT&Tm16UQn|@0eR8%@x3}kq@2&b8!_VzucWi6opEox*zq+)v
z`?&0OP+RHhs!+M(-d<isr8~X&j6lO6A0Hk4dawFDsM!(sI%acP@45N*^Iz>`II#8I
z550)z=jL9XoxgA8*6iz9pk7nqqZT#4IV+CKRi9b>_S)L$uXl>izx@4v|MdO)_si9M
zaNPU%+wD`+_2;|a{`mNK_Kyz_Z|y8z&Lyt5M$Wb>=DWQN!@QuXs!O0{BC|}hSNYGk
z`}OPf`p}g@s&DV@jozGgc2a+TznagC2c>nb(UI<1#dR^O9U7TlU0B!*n!Z`FLIae3
zt!jU5+4t*}_SJQ<w_i8>oZ{l{o_(xG64Wu&3R$6GZ*PCM{{P=qp{v8XZj0zd1ayn*
zgC^NcGA=0i&NOo6l{O10DA)j60`v3p^Vd&KP6kzr*H6BfV~~1E<m%e!a8P&2?)Mwx
zt1E-uk4gOfcwGM1v)TDuN?%_yInO-l&Qz~ozYl-CxY&Jb;$gPj8yg&_rM|rAE`OC>
zzUINUv&sFo%RuW2Y^%RrxwO<fbW@5aDDFQ$I~$ynvu2t9{C9<OUcAWI`}JD%t2;Y4
zCnYCOHBR>fb>KlYo>us}HBzQo8Q<RA1TA#{HN~9U`9QIw6}+q``@=qS-`QqYo%wB-
zfYt@5dQG{o%y;&df`?8|PftIeTXg)-&(EuKZ*QArnB2B#(V{C09GT}@m3noH>xTsd
zOjxvN(U-^l_PcJWtEsI@J39;11p=)tS>)RN>d(*5ppMkGyt}KOot?dV*NdOOer0`o
zb2ID4hJ~P*4P74>8yFaPYMSnB&>Di$*VjOkIaUP^8km@wFMrv`(4g{+(X%eC&c&r=
zC1_F8`Iq;1m#;rLU4Oo2<fbK+-|v>6eQ>bZx1eAHsP*sZ<yDmZ`(e90Xpzlqv)nT~
z3LpC%?~~nY_g>cF)jIR?WB+gtGrhbQp0#cs`;)3k&lxqt*33A*t6N-umR;?y8HZZA
zL8E4%p&sLs7XigDFR3Qq-nKG){k-ds<E;5lJUra)+s-HJ)5yfyvwr>hjk&i?m%BMR
zHEqnjUGnP6$?RItXt$(cQp?KF)!>yujEs!S5)L*k%e=fS?b@11&3WN2E-lxKjgHN*
zDt#p(FE79T^`l3RdiwkOZ`(+oo~CQOEq8V!Gket*`?^0nDnA|-_nm2!>Jtz!;pA-d
z^&o#&KAjrwla!Ry^)+_)`_=n5rJhdX64gq{y1p(KRHDq1um59s^zHVXn@O|G^YcDE
zKc8Rp<V2!Y=&BUZin5US>w?N|Gj_k<cbkQcP3rcxyU!Xd3m>&qKAV~DlajK8lZ(qp
z)oY4@{{BCkJbiq={F)W_x7e!wUrq4ds?y2I?tGKY^W!e>D$U-Ud)uu4vAUYttm*M}
zH>c=CUIGnbDY<sdcz1XA?8nFZtM{0DdU`%vyZs(`K+UyV%+%4*QB6nZOvvi6vptf=
z#~%MTPVTWRdeZUo_V)GQLAZIgyHCzEUalFsYD(taU0Y{bm9E-Z^Yc^beQ|~zvr^Ca
z{_*-Cub`>vsqQxiG)iEWb7R4&soK?hnJ=x4HV3V*+5i9F?$?^S-qUnIO`Kyrl8evH
zwf6qCo4@qop;pj{@Y%W6*SG#%+;6vPXYq4Tt5DO<6SP9}$MW5ek2n1I`BPIz=gqFS
zpt(Uc-&s3sm5i*cqLzA1EqcA~!`tomU;X&__|>(wvu}R`WwmqjY+qkoF3!Nfuw(L_
zkBln1-`?L}f4H3=G~O-udR55EN7u@&f4&#h4lBtH-<afjbKBf?b@xDPEbVz2Rd^>o
z7x`fJGV)*(Yw4dKh1XT0K~3oX{{G_!O6=|JTU%OosO<->$b9F*GQq^7E+y^Lo2}vA
zb)VdeW*<4?^7Hra>bw342??vt*RnG(F#LP@?#J;D%UlBjCa6@_vekb2e17t67FO1m
zkB)Z7eFqJfhFj-@YIxUfF-;{UrK@EO3=AhEIy*bPJUlKi^V>Wq)nbd02f1r^oND>e
zUAG#U*+pbzbnNZz!*8FSuK)VQ#l?B{Q%+8{S^DkHch_z)@I?60tIP}x55i^}rFL1B
zyqIt?HN}%<f{8}RiV056&RgsLR`r)=Utbp*5;EoW?-eUFB$Kz){jD<1xp84@&D~w4
zpfv>1x3g8xXIQ765}B$S{q5RZ(1OyuPTlBjpy~C(+C1l9f)1B7%*?_jtNUNuSNr?U
zGsd5f`|YpnF3%6&UG?>qriDd>e9ec(XojB;n)#>LR+oW_cuhIwowq}8Zb}VZ=+t_<
zL=6;4ktNgj7qSR=zTf+Op5Hth(83|lNuV~(+nbx+CxKR>f>s%Un!jrzH-{|ulLd{q
zq@SB}aYN$a5>UHaPw(8;^#=|(fQFDj_2$)OzS6cI4lqY;Oln=`H+Pl!y$a{bPft#E
z1cSz0jasei)Ji<NdU~$BySsbuy4yR8mv@P1D!qIkod;U58n!M*v%bFGH1m?n;Wpmj
zjEoh>%N`%^zy9Ij;jP8b{Y3R*BJS=k5C8t|Zt&XV$H#hCMQmJTmUH8PtN;T;gHOl#
zZ1a9=g<sYwOI&YmO5K`pu*qa=?W0chFGqy^@AyQ5lNsM<+AZP*#S@w9e@C@~LZI*C
z*%wR<4F7X>m%qPuak0DcE*^#*s@rmIPP(X?0-9Gnkh{71d)`#N*s$m4|4+TRl!3vB
zlZk`j!8XgPFE9SL_G?Z$l~!WOP{3WI`f_TIo|3n60|SFhKv+;~j~)|49^<ZryE<$O
znHd-uXtIhM<cH%w(n=UVfO>>IdW;Ntod0Z@8DhE_CUM$+I-x8X3o5<}q6Hj`mR?se
zJ@-P1;epr>uS?pJu`CP<!io(kUK1y2rIZLV6mVZ)<z{%$=lB9-D4|8>6H0!3K5u_@
zTW&NckKEjx9)5FE>epM@>opAxFRs0NZEZAYh!~WY6%`e$-fTQx^5w-vo>fwy0?(#`
zCtvFA-QD3+wZp^i?Ww%Fx4N8_ojv>OtE*LCuZDw0oooO7d_HMO?eA|Z!`4QD)=stY
zNG>u?Klfto_IsD~_y1Y6HT(Lh>(i&pFfcHb>)G)xzxd?j<kDYXGS|lKjY>T=Wui*y
zyE~E7_2aMo|M%S<)Oy-k{QTMi$7awnnzOUbL368<LUtCV9zAjdwD989ot?#Q^FX!G
zgoQ7frn;q{n=?_RwY7Dpu71FRhMe2e_V3@Xk_l=_U0TwqUE>i{QnCd!`a9D&-74IG
zfq`KHr=Y{76@GKAjE=1cUhenn<8k?|<?rJ_lZo<mKNePfd$V%E0)@Bt_s6&M%ZDxX
znrgFcebCY_v)o%#7^i}g$4vIv4VPXtvddin4Y`6!G0;j9m6Mxv_I|nKEoD)#K;`9u
zM&?ONnpnB3a^g26ILg}B#dvype){~mcpYeK11L6^IJ>xjr&_|+Mu7@t&<fE7j?Ezp
z92iSqUpxENWKBZ@Lw_zaGqWmaVg|g;;Lb)4g-ny$UnRCbpG^Ms`MiB>xdmug7F6Ht
z|NnPAXgLMAd)~?|ZnMq4{@)&zowq<~q+E%~Lkcu|4_XrA{vFg9&Ahb4^VXKk$**5V
zoQ&PLuI#}9MpkzA<saW2FYq*87kTa7|9uP$3=euT|9>ytx>qvrggqCdN-v+R)shDf
z68fKddU_fidvR&0w-!?6RR*cNLZteyMF+Ld)|OykU@$*<Tff16;ujCLE1%9E4Bl{Q
zMaaq^kj4N0eD>e|G<dn+)c*edcRQcUc?RX=tN|@BtNs0L=Pl5}ulhe9+iz{je4KHX
zfq}sx?Xc_wld6ZU;-L2T)isg9=k0#40nODvogSZcagpn*OG~@CL^KpUL3<I>&dyqD
zRr+d0`uTZQ#m{=$c%_$Bzuy~PSXd}oEd(-+?J=K+)YVm?-k=WtQm?6B4zkOy2wxuu
z>Op~45$yf{@Ata0^1G$er|HM96H@hBk$-<5Xvqd>f$IAG|7I<ZXJlY_(05#RLdlAd
zm6M*Gon3ynEcNuXt4*xjGAlsShbN+TFoW{+0Xl3F0mbrY{nAInZ8(D`g!f6t9_Zas
z^t9{Rn#jeVlGmY;X;s+TSv9qrpR5EqvwVt9IeW_MYiqS)cWnWU@NQ1`zq&fyAJl(+
zc6PR`<-cRS(pT3+8n?EzXjFfD16t1o+Q`!{C2f|oVvc38mWql?zwNgfeR8(1JZeGN
zC2iVMCXelTcdx7nRGw>5==A&h`|FL&?4Wg5pu%YT-y8Auf48m*U%zg#d;hBX|NlUn
zXRd6?41Rle_w}o3_xIJV3SB*|?9GjZiq35>TE*io{Q3F$>H<gR*j*(rw_OKimz1=b
z+wNZiEldQJsRs`p%sc)6$76n8X)~Y3#>PqD0jJc{)2d!Bot~F%n|^K%XwdxXmdxPV
zUoV$yZj(02m>?u9ytVRkT5Ef|_aso)e#Q(5-#He6bFItwtt|y*#hH=I_A+m(|6ey%
zBhYEFTQ6vmGWPWAD=Qb@+gts5_xpX9=hy#RS^4?d%eUL_ht0Jr&C9l(U-PMxPu^~g
zV>6rQq<_C&>q{ov+&VkYHX1Z$)XMJ(+L*I4XsJo@vop7&ltDGj&D2{ApN@*hXWZJ7
z37S0m_xF80Xy$3slJEEH;~zeJxGH}CK2W7JO*eX#Q!AI0b=jNTwdp4(sh*muJss5F
zH%dLF;oc_$;(}HPa*OME{IWKYwX2DksulX_21xU*Et!{d*9wBF={H8X3=@~I%T+ko
z|NSy~SJ~TD-`?JSeUM%L%0lOMlhjips%mPl9vo~2tyu<5AYQm|;da#NZMnCnOqsIe
z+1c5v0~fo^vaQ}Wui_DB?T?4;pb0`8b=dZ;ehdr@3dX0eFuF{tsj2w_8j<>bzdpR8
zV#m9^-{Zc%yBq!d+}z-Zh#56CH8Lw7zqz^D%f}}qCT5OXkHkVT-KY%Erl(t5SA#ZF
zfClRf4Fe~M2nambSo>+l)F)=3miSza%j^@n#r0oZSs4tP0G?r(44RNz8^1pel!R|=
zOy1jfc!z9LQ<Dm4u%|To-oDyu$>c3nU$eqzKhcW}x32%U=XM=vC!TfSGF}CCKAC{U
zZoN}<qs>^^*+HYnpgzc=MT@r7{44@3La6%t^?K++C)TwQ8y{`E9=swz(K86N)O=cd
zYpdrZzd05UUsX-LBl<cEWKu!FhChG)Tq@Y|aMG;U&!%tNve_9J4)o4YJAXdqu<@2f
z^-Vs~4xmVAX<^Zg+~hLbEH@}5WJ*$U^4II}^`4VJO98;EqGp+bW=^jx^PPP=%KvDW
zsOn$a^T)4#1CQb>1g!{A1nrgh`|GRR?e(#{!vX^XGi{>sJ>z3OUw!B14YHFrQ~mt;
zl)W%J!`4JBd_J$*Z)^7TYqsC-fX207-Po86TILy(+tkzq+9m^9L^Un-?zO60TQZfC
zdye(Xzu#8#=Eg?Qu=U$pTU9+bZrli3R1qBzxhbXd-;c-rx8){*0`iRBWj~jQ4GE5*
z_0X}q%ciP;7}HW$Iy5rL<#vl`E|N4(yK}7yGz_*fSlxGqfupCVCum2<zQ5n1Yrox0
z2UW|f*VX;~m3eJV<f`E1eW0e6ar(K88ygaLeZN;NDlT3goek~_?)H&(04*2UmU}zv
z>8YuwCad>@=DX(ER=--e``xJxv+RDoP!`pV3K3TGxiH7FIAlvkAZRk;?(XvPtvg?@
z+YO3X+y8$)zq-AB{hz;ouP*Tv=9M<n>3wVu@=LwmX^XECE2TFSKlcOe-g$n0e)v?a
z(2%`VUwiakZo9Rk@bUj%)0s*uo!zE0Gi*PgK1puk7RR7go^`AYd9C~Z$KKwM*sK-u
z;Qm(WiJ9*kJc3eEmdvYqwX#PK)IL0*J1LVL+>!Y4oT&OJrIR74=c2oO?GmlfRT}a8
zYCe7Z`0>Z5uV=6Li+~!s3w-SOJvM<htbq!pkdP^$?Tt^*&Ng4{4Jy+Lm^ZmF%rwcI
zl$4xoTKw!xj~**16ZxJHirpY2EF8MO?l06~zNds3RjjO{USC^#`h^jwrns|2N6_J3
z{r_4}WajVr*w!a&J?-LCkkk&xNTr4;da+T~Wp6HMuivw1!v=%Y^YdbN7CkNceQK_C
zx!ZJ3Pz%v&(-DO)H*Q2kPMdl$6|B)SQmMgbj)mc3ZxFYDJEc=E0>t_!Y4lWf!pX_%
z-jhJ9I3lM#{q?U(uKLZ!+mT|RXqi1lli4FCW{%G3pxfJWpT2*;e#ed-uk(^4#lX92
zPdqV7Ww^Psc)7~S`}gm^tp*tx8NG~0!L?h=_bY@e+<XDF<CeHBwv#pG55GR!DXeai
zd&}hQjg8Lgesd-m9?RXE8YyL8SHl(x8YxoH-Q>a$xg}#FXuC!6^K+Wv>taCN9Czu{
zn~WBK1M%fVRVI)3_x6S^a9{-03r|l?J^i8x<h(lzbPU;^oVWiU(l2MrArGoZ#ipw=
zd7PZ2TKeqFOr&Ue^7VTB_22LJuWxB-K}2A(!!(`9MHemvOx2AJGc+^=?VPKrskw72
zV%pNc#crtqtsq-2DS5L@D8FBO{p<J2&(A7B3&I!}7>xGo2s*5b**WQ=DoD`|)=fts
z%h3MwL_Xs4*fiI=JnLW+>#eQX(^XbxTwIiOWyM4#Wo6?XU_WI}Oa=Q1v;(65UBtHB
z*E^rjySyRsu+a*L{8ZIl3B2-lG0JW|0jH<wZms&7HP@yxNZo(ll~-3+UtJZd-78_}
zr0mvn;)M|?N@Con?O--4dlO-rea*)>{ai_O-Tm6{nZLfgw5tEN2b7<`zPhU2tOd&d
z6U0C+baHBvt9Z~Ta^3#J0cM{da1((sQmLV(we{t3`Ffwizy0?AR$RCcz^)C>2FjaU
z7(fG|$9knfyVYLY*;%~q>GN}QFJD;b4BFCW`{%=9$p}SIO51WmDA^&d`mHHwUg+<y
zufhNS{RJ&(^91ebD}8xM6*Miu%+7b_ffm^9{?j-VZf;7wJW18tr2JjX_DTmSvz!&j
zdZkxqUS76IN4t47$k_$9kxC6J+4uJB1eKuB%-|TA1YS$nP~YZL$*y8#6tpcj`}MW8
zpaM4~<w@!8h{$P6-`?JC9RhZl^h8Z&kGHqBrbbT7xn1^K4wPiBP19sPaimi?_%DPD
zjmN%|LX0V&pPij$mOJbACeRS$zu)h#*M7gd9Go;#f7HLdTRA2CYwiD!*LhwrY+BDJ
zuz1A|!K1uuGq~2V9A9GAG(+oA*z_cmSs5!X?h5Qp%Gz+zMOanKv*(J5>apOX5u)NN
z9!cHlSm3@yp-HFB^})Y?2Iurs44Mx8J@?{q;kh}7zkl9&|Do+;OXc%BzgO>PVA!BI
z%cWsX`Mt`WkNd1&$)BHNY3wdnnUZ#H&P)}{=W~jS9`~AuW!W$=B-omEGJr<WH~s(j
z`?~$Uuh*hMI|)H+Rc0Ecdi7boTJh&YyZxF6Ees3?eq{(TZpyg0sN~g^mH$5G*Z;mP
zQ*=V{<(-|ylb%d)<~!LVX{==`$H1^*-Yl1f=|O?K3=A^gLFWQoxpwVYt9YEpq%$*(
z)&1>$rtsN*x$x`nQt#>4?r#!jV93}b^)$EQ|E2JKpQgr?-z|;YS5vvnXXd0?vu4Ru
zKAHIS_j#MoK2={|g&yQ&WN7$$QHANrr_=i9qx1Jpy`8sP7qq!;N8#g3YooWToP2b&
z+c@!1%b&~ke}h|>voJ8&c}?b+aBXdL`kx;k<#&BQCY`?|baj}jKPv-6&I&a_g?iu8
z($ZU7v%_B+GB7lJy`aJT<dV0(Z)j+!-i`-NA>rZAFL~?#J@GswH1z2qZhf6ZD+Y!K
zk5_4REn4wKpnm19T~?u?p^@8iBF*mCeEz!YaA;^~XxRF=*h3|=&uz)Pyy^M8YPFrV
zC+$P3WEy%CY9=L5wwamI&vl+@gW;b4#cxll&p#tq{bT31LX%U*3fb4z{9N77$k4Ft
z<m_|?28N}XLX1Ym&(8SFvH0lxUEOcajL6MtQ_Te!7(Q$?Ipw|K-zD??KhNsK?Xhr|
zDLi8Jz5YY9JZKE)=TZH-z)vX*3<ugWgwh>AWjiRY<agCyaAbe_uw7oSPzmG>P>dEl
zJhUbA@-ye}(cAOpZogl*`$#7PLqq>!PnHv5(YaII<tm>zf0wWO@$k!=o0}1GhR0<l
z&;S4DxukX3o2cziV)s^+?)(4u{qsKScPFmz`?i(KkAs0>O~2Ylr7xgt@af4(%inJ{
z8&`dK@n*weKF>+h<Ek|C_kImy<B^!at+!*rp<pHk2Kl9)a~M~yTzPWu_j|MF|9PVR
z^7{JtXXoe7|M~g(^7#FAJAXc#ZJc>&$(1WtLaKZi7#=8_bQ&vo2F1qC751}GRG(Ae
zwA7uEfx&K>ny`ZBrlg}?KC{hqKR-L`{r}%z&;m)XeijCXoCdW*&ag>6vesr>w{CrT
ze}DbIfA9a>owxg)Gb!cYpP!&4owx7jGcJD)28Nm`YJv*e?-Y5Tv-|yqN6JLQ{C-Vw
z*P<2oU*FkT%xCk#;e8Vy1B0)_WR3~h>vpQe|2!4`Y4iNQI_@%sF3o>!zuz(5|NrlM
zZ39VYwgjyvkN<UPx?Rcs<l}w!IAs|aW;Lh@Du7b)pP!%YOX`1pd3m$ww66CY4hDuF
z7PDL$c;sv>%<oks->ZB+m#rFPT=8XJ^QWid{}r*SF*7ijxlHDma9V%A&Fb*=e)H{W
zKh1q#qaGR>`tzlK{jB7ETeIr7Tf=viy`9yqw`;|vWKcLS^knh){_gJQCzJitE-Y{a
zl@mcCu6euPZUZ$Kj>{DL$kqS(*tJLf#EXlIgJWao#+KjRdhlMi{=ONG&1_3S8w#(i
z3~u9>{}-;W%*@bmzDez~TTATjva|j5e;)t&aoqkKD0`Y_Ut8imU2o;Obw18#=h<3^
z#}v9oZO_|#ZZ9*Rg@UYA$%(1qaWhrDr#*SKdi}Z2=k4dO3|_vh^0V6KTy}<r-c=X>
zd;jRK|C4O@edqb7x9|Te+xK;CzN+W0l9xdbS57KEZ);xv*}Q&o=;|=j9n9BXTwJ_4
z=jJAxzh5rDytvqXQp)?i-_I$w%S<YKeC+9y$^Pq(oM2!GDD3?wv?gqA)Y8h&&u%7l
z>uTA0?QNH<(kQ=M8oqAtw_By}?w4MVUAcPo>i&Ke%NGlpFYPXW|L4>6{W{q`3=A11
zQnd{#C&Tyuy6Q8-AaQNE!}=+v+1H-Dj{jffXZdu>n@y+nc)#7R`F!@wY;%23z&G!$
z`}^zZ%H{L4l0o{XNc~lf@HEP~v0+Z(F-b{_f&`GZoV{PKf!6*uKmK+jx!>3BG_U!c
z383XA`+whke{H9I`nfqOp1HZX&3kX%x}_7bLE-)0?{Q|gb2j^0sWUK`xcMqMu<=L)
z{D0mqU$^66U7*OyRjW?Dy1Lr@r3|;2&WZhhPVaxRs9VqLc%SU`$}^i%Pft=YH8th^
z7PTcKu)c?Zk>SDS6`m|7&YIt!vuf2Uul|YLdOH;6T9uwUF;Ut6%MAW=XVye)Ty*f>
zr>Cc{Td^@P*k#XhY3PwKTy#k}<yep8&X>z(fBO5r-hOlXdB0EpW=?;4diwLd-|wBy
zUcYzRw%ps-;;X(MTpCfIcW#d5%NrXXSIzmmL+zw&{l>C0^X(WIG>)JD|K;QJdn=A8
z%-8C*a+szcKM%CnZKh>$8fdxcu3fuI_ibCm12R2O<ma#J`{x;-x7mEKZhhR|qHB@q
zPpj|$j@wo8a+3PIibV$vgO~gH-rrYy{c*mv`APelPYW3tez08o%KhM@XW!ZbI`idv
z%^aScojv{Ux7+&0>F3t${~fwIZ0)D{|9{T6{PCdKd;W6&`F20AuCKeA@VALu@5H60
z-o|BbZhU!lRr}=c^0&LbUW+!a{`Tfq^v8Sk|NmD0d^)}O-OlIJtjrl0Ow>YMlXq-?
zYc;3x+02~}+oX%W-AsRefSLbHkEC(Y&D7~jb8m0^d075mz{`)Xcx5aM^7sEOn^*ho
z=C7^h_bQaD-)wXTH3T=Gv(omSrgL(JVe+P{VbQ6tuB?==;=G2aPtG+k%;%H;v+To3
zmD&INS{Y{F`)z-HUd^YILGKRy%Dj?szTr;w`@NEOH5JEtB!l-~TN}N-=52QTX>a|#
zQ)J6-ENr^G_N{)r!u`$Z=WTvGXa+S3jIyq*$l3Sv*~-<cPtPz+zVnxhq2c@%H))0S
z`~Ov)v;Y5R>$Pw9>;H?mPTX1i+-w#@<%34{YdiN{_OpIEulk*4r4$20#vQ4*)(h81
zY+UrO*4XaD!N;JT-AO783=f2}wxl~uO1ZWsa;8~s)ZfRh-D0Yqag|S}ZppvD@8HLE
zhnX1~j;#%3KhY{4H-lS$&xV7)B-7_?y!Ln#xP<(XB9+^4r|7iqR5?Zlh8riOavNmo
z|9ph;-gaMLWN7f0XJlevnBoSSJX|WMz`)>;$-=?F5Fj-wJgCED)4X{Vk2-r~ERAY^
zeeryKZSCiu=j-j<<!eho354zVz8{aeB~3B{K$8`qqm+JpcsSF(zK(Sn8$-jfrIkzB
zGqm>ozWe^!MR)nL6BL~{y<WHb+5dm<{}<gYy`I`{`|ZRO&EQR+&snQ`rk$TR7jMN=
ze7}f+!EX1T><Zht)$exx{CU29Uzh`rtd&Xpk3-@`Pp5`IyB3}AJE=#`*6Q>$-P4!-
z?dQtbR;hS?yI1`l)WVW9&x`T1`}w5n3_k-yZ=?5yYnS)^es}x9o1<m7bEn6a-Bi`z
z^TFxwt=RIrQ+Ms!_3MYnq-H)VjlI?1&*|6yJbmdID?`IEkA@nj;^*glpP!pMStWnp
z&ooeBwfEbt)dvgz{`z`4*xxqvTLlBdg%unV{2zR~oqzt#&CSL+H#Vr8oMTx$NoDKS
zt-O6}*RDO=#LE5YUiJH_R?47)iRno)Xeq97(UTKj-ru)B+|KVmNhf-nj%QGC@Z|?T
z#B`(9l=3hz)QE9T=udoiXQ$<#4~H)=bZ);>`F!rmRja%vZOOT51a4EYosZmC^E2u=
z1H*yziMtbW7aZ*tPrtChF>+5uA!s+0?)E#I>fSedueaMF^7{PQna1j})@5hXX6J5`
zt3Pe(`R+&e*5rR*7#SQa>;5h8xBu>@%JwrvP(eE3XqPCc^Z^x>|NnkZZ<j5L$lhQ5
z{oTt;OT9s9gzfxXtJ17r-`?(?SATh@=f8)O`FR))sBc&o&(QB*l*5|#^GgBewW_Gi
zX})cIva>XUm!%wP;e2_0{e7$c-><^=&$|ETnfXlH>axGL{(iqde|mhKrE@!<Zgva<
zL&lUjjFJA&=M?*?`OTRDiVIL0JJv71|JpzMKZk#(>-_sU|G%ZMn$L*_MrKf@lX`NJ
zs-$t6PucC<?Vy^FX)-f|!(&B<YnP4B+e}`yY89v@C9Lk3v*EvE!<RQVjrr|<B%HH+
zKBq^@RBLwrzRFjxUKypGnenyeFFON6O%>;auU`%@^RM~7(faL{;CDNp&-1n5WneJz
zjRQ?yjTUPR!>>%Aed5$q?c#qwpD%asm&?4mDipNY!)KPs%1g<N3=XcG6MUcic-((}
z>-D(VkNd3kl8^U+c6u0Be0X5<>&4=!a=Z)-TFWYzvi~rdWmTH>ZpY)knBudhKaZL3
zo2X*>ZpY(G%l+qrh5=^UR2H?WvoJKADqu?yo?(#a1R59#_Oo1Cw|3bwHTAhAL7*<;
znR&Lmn=UglI6UQ;;QQd^^7(%6@9n+3tMv8OYrns~4&Tquz%bvHDMfgOak^htcDD4I
z>({O=)9Bjs^Vw|C8C(nuTK)|=OsA*mdi(nNHh&e<jk@xl8B|1wFU)7sjox;qOH^BG
zjeh*TJ$3c5|LSMhY+C8YtZ|dw{(Rl+C#_z5OdBTd`Coiie~P^w<0j54*RHMmYy{dK
zuj09@{QbUj&(F>>eeGYr>!H6q!+bIEuquXz-mGhDB0>GPrN=WSv7Au5us#3&pY#9!
z_)pV|-F1!oqI~_Ik0GI<OY`sVdtGxcv0ZlB?fm_=(fND7w$D>#WLQu%O*eX4<mR-e
z8xHfW{-WU<78)qxy0rbrmYG(iS)jP+ku+8Vl?ju+-<RC$Ki>{i5Xn^@Q4M2Ys4=r-
z-o*Lk^>uycHlC9!0v8*Vzq^yO{cahk3W%$IyA{%0;b&mbIwm>6H|6Q6sXIR$;x7LE
zc6<86L#;PUug4bud^-L4gJ%A9UosdN0t}g07#K8qzcVs2FnB3DNHtE?4uAIN^LhV%
zIonICLRY`p{eIs}lgyx{$C(%!di@$qn2yWW*MNE~GUay)C9TVHK#_W|nf>`iclos-
zBR2$A@_Mw^7M#8Z>Y3jEam;*@igwr<kNI}BpurNKc{V!_2{SPqIQE#wqt$nYf#TWO
z=I1q+&k5Qe792czvY(Y^zwNh(wDa>~558nzNO&xyAo}ggW&h>n@9$;rO|JU%ue!5l
z11M35F)cat?99x`w{G2Hd%bn*R?RLYP_@OnjESMa*SR6&#-`NMpjswjuWPs1*WU~b
zA2JmkwAQ4ao))<=$+h|G)6>(hgObYfR)&=uZr!?dW~TA-gTL6b@9r+wuU27TxRJu*
z(fal6ZFBwoe~Q3y`|EMP{k&DHR(*MUd%M$QMur2&)E%_mtXSN4YE|fJ(D2r^^=o5x
z8a+PNdwSpRceCYet3nE_7#MEsm=#{taDG?a-(RUGCMZgpW`#UEH+S~iZMXG6N<qDq
z=)9dvFFj^tIN<hl?geRZBpl+_Kl66`{duk2;%V1o%g;WY9zU;{-)_gH#UN#>4h#$p
zmnwKEXlmA+0`>naKOPa*wms(d@$&qCCReXsooSYP%kB3Z@%Wm;RjdEL=U))?hlMS}
zDX#YG)j3tKR^BYToeSO~mwjFD_xt_z$NFSvKRrEN-E-BdRa#b$I|P+4E%Tk-`|YRM
zx9h>7p`jn&3m!<1{OrZgaNyU@-|u!Cm%O;JCF7zJs39=lu69$=(^Ee4Y%HJ8EstB~
zKYyP5zYpzG<u2QQVEnO~g~LJEAp6=Hnc_2sH`8Y4e%gKiuU_o#vbFcE|9-h#d^2_W
z(|5byuY1tKu%RxdiS+_Y&G+5+&+dM|Z#HNQC;RAe_NuS1rW&8ODV}>ic1J<tzMp6F
zK_Tfo+bs9ey4c;I0S?gUOLOx2-S2jNd3jkqI%lJ+RoR;vd%xea-v8sM{;TiP^<rmj
zK5u6Y>hnfz$(WdTch}Pk&irRD``hnzj6eT+{r-8z=PZ=1-|a|_+L|@>++6GQ7Z(;*
zzTJBLTIC;*Q-b|%P3Kyd`|U1!TlDAS@#k~P?`0O;vHgB$vVPsi?##QpN^fn;oxN+<
zE}!{!f0du_e82B^(E&#GC7^ZamzVjL-6=dCQ*e+~`im*!hPpY7j2TRIpJ(4+623m}
zX8QbEvmZOx@B5YY@AdwF+Moi#>~_xNoyE_ex!eB=1PyV$yu3X9wC;AFNq0&v`&zzU
zv)QQR#f3Sw-)@2iJ3$>lpP5Fghue6)CxPM?G<8<=Y-W1e^0{TFZs+fxdvdb+bI=ef
zs9RgT?El~U|IdPQKysg@nr-#BGixF@7ybQuJ^jIf#+i1tRp4HIPN0aSWl;)feXF<L
zP8I#VUxL={|MzRpzhAFGUAI^LyWeiRZIpDR12m`=9$Omv@5gcbXKm7XCm7jfCM=&<
zr4^mK^{Q1m$iO~}M;%|@-Zq~eTNas>m1UHCtOryBN&nf)mS8KwV3O4>uCKRh)v7M#
zew(7befO(guk9B0vsn1=<Eg3I(lVcKWv>_2joPB2xBt(lUt9P8-o0OY--lNHKUdG+
z-B<hj(HZ0Oe^ws{HKH;uFFPA=oA&e5Q{HRKd}aoPgocW4zh77V7c>{xwQAL>Me+OV
zj;;z_{p$MqeZO8U+O=!f42!~~KoQrCB`+^6a&G54nz?-LwrkJlnCHh`1etv$*ne&O
z?jMi3yI;L}_3QZcxa!=%*w|Q|hz$?cpW``j?4giOgInImM@KzBZG5k@^=8`atN$y{
z&N7YMkl+YPNU~)&64&0oy)FN~UH+brZlGo;|KAwUXx$XeV59VNbNWqBvu9;xz52f=
z>*^}d(9GVduU@~uy}e#}`fmN7<Mlq9)6Tw<pI`UuC1}32?)UBcYM$@*e!r&^wMFA_
z8}I4c`TJx42Zn}D1<lQ_HCBE7Yu2PE;roAub}jnh5--jm@7us&QUuydF-a$K)01S|
z{Tf|=ZtwpaUG@Fl+*z|`mAt!S2^x4SK5si6bl!)2IjBKV`uZAZ>=dMCqO!Z$4xX2*
zR<An+8euzM`>q(2VvA0yPEUDuW~Q{w<xfvf7hiN0PhGusTU7Qk*KV=3roo^7#cthp
zJ8$>aYuj!lbzix54YU!!a}wyR6^$+)84H8hT_r33zqqwE``zyM`_9ZZfA5@b`Rm2v
z%lqs9&nY^k`SRM@=swG5GeF&kB$fnWK?R217*KxSTm9YU|DVtDuYWFf??1Qm`MlYT
z%xo!tetg{d{a!U_aQDrg&*vgHr}_RZ1ZC#9s+UXe6dsqge9*vLbUn5__5a`R=T)c2
z1l6CJpy>SR)#~-n?*IRL|MFt@eo$?_`^_frf4}$tuWnA0vMfqjx8qS4kF=Ri`Mt_?
zkUM>5nP|#dm&If+`?@vl?5vQ`(9}OaKF&1Byc8w>{cd@D-QU;o^)HH}w`5ENjR{Ux
z^F8(9;o;ABiqAiNvAF--!ge_=Ck8V{eJAz|rdO|C6<zi<Pdzn7Q~Hn7m;XQd|DR}N
zmzyD-zo&5R*YbOn>an{@BD2?mHr^Vgc(n0IP6}Ne_Vk2u|CtvT7aK!|TRbO$O0q4N
z{Z3~tpF8d6=jZ9)@0Oo`adC0+jl}lc3qGKkyU_61(EZzzj&_yaySYlEYtN@s+COja
z|9kt_*7Ezc=Ecv>oP5|WKTiczBLs`Mf(F8v`E3gJKL1e+nmaqt$ZVW;W=2fmQPH30
z%J)rXm#cV?TyMv4?X09ggW7{VpU;8T-W7d1slNVm(IWdl5BWi3`d0IAuZi5uw*Tb*
z&*!W`!(CgiiRnaaxc2zj+1csK=azW|id4Se`+ZZ|*;&7?FRoco{QTU@dwZ+H)<kS{
zjQ8K1c2;W6O9|_;oUrwAd(S=2-}CX<ny9U-{(by<J%0Yx)#2$M9vt+XbePXtC-?TY
zv-|(O-oLK&4*Rq7^Zzg0tP`_i!@*m5yWdV*q+#~sHPeH|mds2SSU}@%_P=kQ2aTP+
z*>c%0d#~^><$jw<oWg2PjtKk5JTHFz>J?~=?dcI=|1)*J-%fu%uUhZ%@&5CmbbPI_
zU9Ku)+nu7*px*D@U8SeLyuAFmS^kegX=y2F92hjU1?r}`%a(?K`gB|J?plG81SrSX
zysy3={kj;`q*(0UpJ(6=+N%8P<?`k0*6D4(TNVwfIp&t%vjnx5-tGVYujJjG%DM4}
zL9P1>j_j$Ris<7}@z?q5qr=0eKlyw5O5To#Z9MXJHlP8&HeP8^n+7!VeEx3v{kea?
z-~aE-{PvQ!{#j>!+bM_n?QK94Eym^V?%XLj%zHCy^;*z$UHy}KX$G@^rFr{V546oT
zOm-`LwQ{-G-m0%!pyGc^?(J<i^7sGk0`20A*qG!BDk9IC-4;=wSCRC$IBZQsV9o33
z`&w0BUIgZBJSuineE*N5NvEc09zD>=+|A5yv*F*4*?GHGN*E+KTwLlseNpP^X-B`^
z&X2G8efz%NG@ZyGk)yx2e+I4X=)PNie{aV1b+H$h`OZ%Iez#n|?#p8NwWg0d1eLp9
zy?Rwzm$U!xH`hRsqt@^D1kWkC<mq~SU2ONZ+}mQ!?EHFhbw8i7ZSI#gU$<i2Iz73%
z9}gdGx$LKHRr)Ff<OvD8nu?7D4-c{3pU*B|v*E|3>H9)TUR+q1adlPb#=qZgi-SC5
zn0sr>uVlS_KOQZL+?@8cU%ui&<D(PG{W?|O-b8N6xVY%W&CThBZ#EtmGfq46L*@TU
zh93f<t`9}a7#JKZ_ppH*-k>AGy_CU?ISv5^h6N^&_Ba{BpZ_!b`?*Ob|7_lG(2T#Q
LtDnm{r-UW|w|B19

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-1.csv
new file mode 100644
index 00000000..81f0fd88
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-1.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.857142857143
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.8299319727891157
+5;Mean of F1-Score of top 20 classes by F1-Score;0.8299319727891157
+6;Mean of F1-Score of top 30 classes by F1-Score;0.8299319727891157
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-10.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-10.csv
new file mode 100644
index 00000000..133d2853
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-10.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.857142857143
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.7878787878787878
+5;Mean of F1-Score of top 20 classes by F1-Score;0.7878787878787878
+6;Mean of F1-Score of top 30 classes by F1-Score;0.7878787878787878
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-11.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-11.csv
new file mode 100644
index 00000000..12e7af6d
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-11.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.885714285714
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.7666666666666666
+5;Mean of F1-Score of top 20 classes by F1-Score;0.7666666666666666
+6;Mean of F1-Score of top 30 classes by F1-Score;0.7666666666666666
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-12.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-12.csv
new file mode 100644
index 00000000..bf630270
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-12.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.857142857143
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.8444444444444446
+5;Mean of F1-Score of top 20 classes by F1-Score;0.8444444444444446
+6;Mean of F1-Score of top 30 classes by F1-Score;0.8444444444444446
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-13.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-13.csv
new file mode 100644
index 00000000..b0824652
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-13.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.914285714286
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.8382126348228043
+5;Mean of F1-Score of top 20 classes by F1-Score;0.8382126348228043
+6;Mean of F1-Score of top 30 classes by F1-Score;0.8382126348228043
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-14.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-14.csv
new file mode 100644
index 00000000..9f142c0d
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-14.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.857142857143
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.8194014447884417
+5;Mean of F1-Score of top 20 classes by F1-Score;0.8194014447884417
+6;Mean of F1-Score of top 30 classes by F1-Score;0.8194014447884417
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-15.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-15.csv
new file mode 100644
index 00000000..441e24d8
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-15.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.828571428571
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.7569444444444445
+5;Mean of F1-Score of top 20 classes by F1-Score;0.7569444444444445
+6;Mean of F1-Score of top 30 classes by F1-Score;0.7569444444444445
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-16.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-16.csv
new file mode 100644
index 00000000..43c2dad0
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-16.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.8
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.7733580018501388
+5;Mean of F1-Score of top 20 classes by F1-Score;0.7733580018501388
+6;Mean of F1-Score of top 30 classes by F1-Score;0.7733580018501388
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-17.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-17.csv
new file mode 100644
index 00000000..211b411f
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-17.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.742857142857
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.72
+5;Mean of F1-Score of top 20 classes by F1-Score;0.72
+6;Mean of F1-Score of top 30 classes by F1-Score;0.72
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-18.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-18.csv
new file mode 100644
index 00000000..11c46e22
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-18.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.828571428571
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.7569444444444444
+5;Mean of F1-Score of top 20 classes by F1-Score;0.7569444444444444
+6;Mean of F1-Score of top 30 classes by F1-Score;0.7569444444444444
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-19.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-19.csv
new file mode 100644
index 00000000..9f142c0d
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-19.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.857142857143
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.8194014447884417
+5;Mean of F1-Score of top 20 classes by F1-Score;0.8194014447884417
+6;Mean of F1-Score of top 30 classes by F1-Score;0.8194014447884417
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-2.csv
new file mode 100644
index 00000000..5dbd75e8
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-2.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.828571428571
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.8011363636363638
+5;Mean of F1-Score of top 20 classes by F1-Score;0.8011363636363638
+6;Mean of F1-Score of top 30 classes by F1-Score;0.8011363636363638
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-3.csv
new file mode 100644
index 00000000..4d47e5bf
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-3.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.8
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.7619047619047619
+5;Mean of F1-Score of top 20 classes by F1-Score;0.7619047619047619
+6;Mean of F1-Score of top 30 classes by F1-Score;0.7619047619047619
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-4.csv
new file mode 100644
index 00000000..c557de1f
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-4.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.885714285714
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.8776223776223775
+5;Mean of F1-Score of top 20 classes by F1-Score;0.8776223776223775
+6;Mean of F1-Score of top 30 classes by F1-Score;0.8776223776223775
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-5.csv
new file mode 100644
index 00000000..2e90b7ca
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-5.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.942857142857
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.8994252873563219
+5;Mean of F1-Score of top 20 classes by F1-Score;0.8994252873563219
+6;Mean of F1-Score of top 30 classes by F1-Score;0.8994252873563219
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-6.csv
new file mode 100644
index 00000000..9ac22152
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-6.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.914285714286
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.8916408668730651
+5;Mean of F1-Score of top 20 classes by F1-Score;0.8916408668730651
+6;Mean of F1-Score of top 30 classes by F1-Score;0.8916408668730651
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-7.csv
new file mode 100644
index 00000000..bb35623c
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-7.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.771428571429
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.7008547008547008
+5;Mean of F1-Score of top 20 classes by F1-Score;0.7008547008547008
+6;Mean of F1-Score of top 30 classes by F1-Score;0.7008547008547008
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-8.csv
new file mode 100644
index 00000000..2711eaca
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-8.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.8
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.7822222222222223
+5;Mean of F1-Score of top 20 classes by F1-Score;0.7822222222222223
+6;Mean of F1-Score of top 30 classes by F1-Score;0.7822222222222223
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-9.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-9.csv
new file mode 100644
index 00000000..3cfd0b10
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-9.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.942857142857
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.8994252873563218
+5;Mean of F1-Score of top 20 classes by F1-Score;0.8994252873563218
+6;Mean of F1-Score of top 30 classes by F1-Score;0.8994252873563218
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats.csv
new file mode 100644
index 00000000..bf630270
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.857142857143
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.8444444444444446
+5;Mean of F1-Score of top 20 classes by F1-Score;0.8444444444444446
+6;Mean of F1-Score of top 30 classes by F1-Score;0.8444444444444446
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-1.csv
new file mode 100644
index 00000000..3ab1dc38
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-1.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.481481481481;0.0625;0.385714285714
+Oui;0.0185185185185;0.4375;0.114285714286
+All;0.5;0.5;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-10.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-10.csv
new file mode 100644
index 00000000..8d80fe42
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-10.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.452380952381;0.0714285714286;0.3
+Oui;0.166666666667;0.25;0.2
+All;0.619047619048;0.321428571429;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-11.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-11.csv
new file mode 100644
index 00000000..509b1a44
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-11.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.452380952381;0.0714285714286;0.3
+Oui;0.0714285714286;0.392857142857;0.2
+All;0.52380952381;0.464285714286;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-12.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-12.csv
new file mode 100644
index 00000000..16efe97d
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-12.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.413793103448;0.416666666667;0.414285714286
+Oui;0.0344827586207;0.333333333333;0.0857142857143
+All;0.448275862069;0.75;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-13.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-13.csv
new file mode 100644
index 00000000..1505ccf2
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-13.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.5;;0.4
+Oui;0.125;;0.1
+All;0.625;;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-2.csv
new file mode 100644
index 00000000..fdf750bb
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-2.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.48275862069;0.0833333333333;0.414285714286
+Oui;0.0344827586207;0.333333333333;0.0857142857143
+All;0.51724137931;0.416666666667;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-3.csv
new file mode 100644
index 00000000..67a20bf2
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-3.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.3;0.5;0.357142857143
+Oui;0.0;0.5;0.142857142857
+All;0.3;1.0;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-4.csv
new file mode 100644
index 00000000..f344179c
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-4.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.366666666667;0.8;0.428571428571
+Oui;0.0333333333333;0.3;0.0714285714286
+All;0.4;1.1;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-5.csv
new file mode 100644
index 00000000..695d8c1e
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-5.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.5;;0.357142857143
+Oui;0.2;;0.142857142857
+All;0.7;;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-6.csv
new file mode 100644
index 00000000..18266185
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-6.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.4375;0.136363636364;0.342857142857
+Oui;0.0833333333333;0.318181818182;0.157142857143
+All;0.520833333333;0.454545454545;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-7.csv
new file mode 100644
index 00000000..509a2121
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-7.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.46;0.1;0.357142857143
+Oui;0.08;0.3;0.142857142857
+All;0.54;0.4;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-8.csv
new file mode 100644
index 00000000..e42443f5
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-8.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.462962962963;0.125;0.385714285714
+Oui;0.0925925925926;0.1875;0.114285714286
+All;0.555555555556;0.3125;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-9.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-9.csv
new file mode 100644
index 00000000..853c41ef
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-9.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.480769230769;0.0555555555556;0.371428571429
+Oui;0.0384615384615;0.388888888889;0.128571428571
+All;0.519230769231;0.444444444444;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix.csv
new file mode 100644
index 00000000..af24be5b
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.458333333333;0.0909090909091;0.342857142857
+Oui;0.104166666667;0.272727272727;0.157142857143
+All;0.5625;0.363636363636;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-1.png
new file mode 100644
index 0000000000000000000000000000000000000000..5d94d7a9c8c9780958f5ab529a52853e0f2f3fc3
GIT binary patch
literal 21985
zcmeAS@N?(olHy`uVBq!ia0y~yV2S`?4mJh`hJ9%>?l3SguoOFahH!9jaMW<5bTBY5
za29w(7BevLCxS5J3j5`m3=9eko-U3d6?5L)t&F&u`tSe8>xuC!<*z#)wS~F0+!E+o
zDVcR^OJByU7a|LP?p?+aT<B|@yF@AX=e7h+CEaN&jfJPV^6IUO)VdbYm^wl8#-e2k
zryf23?rwjs+^@l_?uiWF`QxQ?Uw8f9eCIp6;k|wDe&0EsB+;hGz`!u$*x8HB3=9kf
zrXmpx3=C?E4=^z>7)Y{;F)%co)Y!nlz~JN7$jZQwV8o@vz`!s$FoBVQVMY%VHv_|g
zlu<2%F~nBv*%RaG>B+^#HEI6*`AW*lQ|HdDJ@-0nO@yMk`F1J&^78V(KOXm+p1Z%R
zboH<A@Ad2J>m%2Osj8@~*s|qIlFcONN{cE628IJ4)qG|wFwMTEVQ3hrsHo`W?|;2R
zP<hJa$&2g${+jzWs{807clp|oxz^>|vhy!4YQ1}X=gys7eSKl)=h<#eIVtq_!(sla
zN1f_l&YIuX(AGZv#=S_RJ5i!-F*_pzgG~DIKH09Go)9muE+JuIRnO)A^TRSSR_N_~
zB9wb`)6#R<;cFrmR=?ZnKELkQ%Bt`0YOmF~^++r{Z~s50va<5i_wUnH_I^60J<FnS
zky*}-1utG?e3m<PaE1~K!-CG}y;WOnY-~j2<@2*YfBO~|6EkO9?(JpG?ELet*Lrz*
zl{`B$Gpc{CMWNHpn>V|9d$)>)Pco_dQ}Ofn@7HI|@9){rUSI@D+$M!PckX<3adG=B
z)9keCa)N@1)^%oWi5V9bICAmuOqoA_e%{`%VYQ#nnwLGV`FK=()tWUS^X+Qi+_JT`
z6_t})cXxOB><=pEnoT1Z7)%OXU0pXttu?*1Hf%M|;R_3$+h6UucK*D7`Tg4M>-PVv
zVr65?dVX%Mm#1f7NXV43x3`uqSfCIsFV?;ET-`Y{-kTDjym#Tq)TvWX-oCxtZFhfv
z|J#b#q@*MfVd3Q8zotd!UA(Z+*)-t*gKpFokMs8b_uRF8_3C*}t%)1RFBYBe_y3Qx
z|NrN+>(27oX1O9VGBK|W<KyG!+STrI`@J%FdCu|I%34}p*W;?!-ZkUD`hCUf`M<tB
zd;=;43YhNK|KDp>`l{sOyZ29@F0K9j?P^p?<l1Xd%Ne`7x>P*h-rl~xyk6G2ETpb(
zU#xsv;*EDdf7ku<kU!Vs`i_CYqOp5wOsKZL{`$@RA3hX3eg1s)k|jsh)&BnWc2k57
z7eD{{^7`N3--qAcmYW;j-qv>N@L}iqwclpmtrQg%J$3f%U*}p2V^9e+r{`#r;nz|<
zW%s_2)YPRx!NIw?PoF;Z^7ju<Nm-J+u&S_d<EKxbLPA4Rt=Df`l>7JB*IPS_m$&iD
z=Vf#A@Pw3<Y%wx6ep{Az{=|uZ%*>T;y;5J>_l2M9(sW{An6;y$gX8FtBN@-m%(SZc
zu_0Ie`=LWlOP4Oad2Y60a+{HnQAj{Q!tAU!*VoUl`ub{V_PU*JXJ?yVKR4HU>a=Og
z{N`F^K07nB?5|GL7LUNdKq-TS1~tDqE122&UaVX`@6v|E!zL*wCa~2$>+S^=pz1~Y
zRtDG3ecc=#wk~Gn&f@1<#>T<!{c@oZ5i>Sz+9V<>nrd!lZvOk^dh7Rlf+Hg%e?4gC
zFZuMuGjeU1?<^Bfe)~Tg?usl_`TFXr_syF(y}Z0GP0<V%5fE7L<41+<w;RdNY*$Qv
zu(*hUp@3<3+1sG`cC~t5jj0lCJclown`?dkXQ7z^JEs@}gWr)rPO&pbmC8XS{KN!C
zh6gTsVNI=Vu1(OA-(-ey`nfB&&h28j{^`x;^I7NT+4jk?UC5ZZmtCxLMsh&HLdTHM
z(35A+`nI;VR((7w{`C;I{)^Y^_lLQ<w(5v+yH4w_`2BYK)Cm(7q|d8#Tkbda(RtAy
z%^K^Z?5`y(blkCf_v_R8`>!l;Y%Y0o!!R@~>{Qm)SM#dhT|6_>`04ZK%R#o^h-d9R
z9slo>_}{<p>#y^g-%*g4mk$jIIdS>&<%@@z8rY8K8^?rPz1%c)>eN|QrK^5@dAWFN
z_Vrh{^Y@3&x2xTfbd*a~Mdihllaq^zi<LiS99d;=rL3vxc|E4M_tU3OU$*c6>s$T(
zUFnAt4aZtFovu4HwsxO7d)D`U{r|n70;a2r>+jd~^;dn(?=I1c-Sy(@_4w-_9v=Ss
zZuk3JT{_FSr9lPj?)CqFp0Cfkxhd7l&+ppx`1-dC0vQ{U4O~0Aj~VbxoigP`n{?iW
zwOgeu3Kpomys|R*)A#S!FD>;>m1w)RK3?Cm>etKVPoF<mKWy+rJX|?AG&D6l#do%u
zFQ{<z^6FZ(YL!X(yO`LzpHKN@6wiDD6|5>MM=l;Nh!j^YeDr@gZ$AsSc<<4qKnI70
zNs}gpgoQ0TbjWG%=X2JRQljTSe*Jp&^7(a9=66db+x>XJe7E?#?KTze-tOJIcYpf)
zdFtfJ$=S1w)BBeB%v@A{zc!p(Oh@5l5u<VXxsZN2+bzk*`P}(g3$jEac4TO2YpZ&G
zzgN9}UiCZ6pTB=+e|&Vb>iypDDxUM^%`0;a3kjLB@5dwVzrS9u?~^h6w;*`AU*@kb
zFQsfMHf-9wIrnYx^K+p|NsI1Pzqjqu5jV)WVc_cK_Uc-6{?Ze>JR+K(N@;9JnDxr_
zTxx3Ssue3PoVWj<V=X2uyjVQ0!qL57?&_PHo3|z&X7l_Xp7Qg@j~7$J<1V(#*J-T2
z`f9?*$A^CW_yMZ4E?&GSWtKAo<kj07?~6xPR#x)KX#VSXwf{UbJ0Ga#u_}MJW_JF*
znM&L%m|4Yq0{8w?v$v1mxN##FH+S%SyIPaNM=pDRzuP@&N#WyTnI|WyYH4U(SQEK9
zOLvpr-Y-G!c5JU6?!Vs?5E!WVa(n!~&(F_aKhVfr`ncEpT2xBykB9A5FBZ0M$-lpk
zP2Tw5jN5s;eK)6_z0}Cep0Y7QL{f6)lqn*mZ*NUidaa~zu!#5F=jZ3=zklJlpwO7d
zIWI5o)alc~|Ns3Bjf`A5&$fD1@N&PZ*K4<bImj-5!hq-N>+AmE@wHoTZO>nCey_s0
z`rDg}OQ*-JI<2>R%`xi>5ALkG-%{}7L!xQ+HJ^9y-mO}(V#4m-yRFLJtax{KclQ5(
zf1|c!OkA{R(Uq;);hy_N6Wse`F7E&THy>28G&VN!)d|h%=an|o(AD*olat%^X4B~_
zi(I)&UtDmst^Rgp`TV+7&*#_2fx<B$V8Y_|TPs9GMKw)LL*?Y;ii(Skx9%|FaRy~Y
zlT4w_EWAe<^c+%CmnKTI1qKBr-Kl!L)-57p#>bQD^KbOk|9m>#?fbjCy=J+$B=q-u
zXj=Ps>-9Ke9kFi1f(H(Zmn>Ow@ObYp%i?D~z1t4A^GnC>E;BvWC!3wEt*^iR@AqlC
z(LLGg_g*U~FE=;Ky_Hh_*5Ceb$wxNs%YVMluTDx@l(;dXXJznmsn*ukZI9*a|7;YL
zl+4_cef`|K_ja%HpP!rCrgHfB@#7!9e>ea7^zq|l52LbocV50Yo?|pa$z|`_=<R;R
z&(2KzQeQ1E*|t!B|DPaGuq!Dksdzqp`gGT$F6}S(s^6cyeLMQ}G~LUM%<L+j$;Wyw
zt_ofK<&wAl$@};38}c`OF8lQ*6V&XwwLO1+S9iCnXI)(#s1&$Y|GyR#<d^>Ye)kFr
z37PV4_j|j!mc?$)?R;Bvk1BfR-rAD+qupU|q>k9_Tc?)KtMcOH<n;3Nytw(i-D*&k
zF4pZ@`}<q!t_vwXg1gwbbmo{JHYoY?qtN!}lgU+oJ|5p%@X+b@#z&8mK$&q{siml>
z=%-Jgf<i;5?kan`Dt&%!*zWT8*QV)4=UhK><j9Lnr}eTwJa_n;lA4<N<;6u%>u24L
zM_jEfEibm+&bxeEzJAS>D<QqI)?xYkelClh7#bF)=DF+jy4@vLL&G&SG&~+3?+?$+
z)RaDHX7ujeyKUtx`jMMjl(;SYb4<EEr)`W7k&svc%ErOV{kG;RSmxie0hzt)^}5T|
z@AocmX6M(^&^Ymp@%*GKi{1GvD=J>>e!s8yL+}DSP%ZiU-EMzDLBU=B|NVaY`0?V}
z-``$d4UfNS|Np1Is=9jiw>LM9c$_6AB{xOrfa;;AuU~6>M(r+JYh!Esb^rh0`*(dh
zrR}LL-TD1~eSB(a>aMTXqE$WR<m9Yse{I>bcQ2^f>KWwa)ur<C-|zR~1qB<{o&aUx
zlHYH)gIb0mAt6%^&s%7iyf{$&;RQ}F6RXhB(6&U0WA*<&%O`($aL}z=Ot+_9zV3zr
z&*2+83Kw5o<jSqAqjSch?$3_9rT>3j-`^9qHcC=Ed|l25!^izUKOE-oou(Tt_5FVR
z{*C$f?RF=>-~WH##r5&_hm$r+aEs{}czJvGvddK*;NajeaO;!F6cG`Tczu1ndEUOC
zX~{=A1dpAZtS<XSWX1Y^`+qk!MCh~~O)>=K4xRXYd#-&J5)#UaoxHX5b=c!ir}fQu
zmA}uMGIgrylMB*&UztYK)z!H<I5e!(x3{;ymSAciq;sV^QNoDFIXtd%>AcEklC~cX
zFoWx)$B!4!G)~Vt*u)B|Ta}cRzaA0xfAQ(Get2BmylHx|s~Q>@c%@8ET<mWsHu(47
zn&tZ1=;hw}dqX~c{J5>(b>+Rj<P#GVv#ze1ns#o^%F55rRu(@$2Wsl>E_=JB<YiFl
z%S*2F=FQ{c;knW-Uzg#%<-wmmdHZz_9whL}SOip7R^HlCxOiUex5%@z&HeXQeGMuo
z*r1a6^3qZ(P_dw*ZDbUr9kwQ5ciGz~j~_oi;hwq0V?#{yQG*D9#$9V8Hae}}_iGg>
z#A56Je&yoj-D>^s=kxj6hK7OGWp6I*sr+nG`YL4U(xsY~mXSYy{`~au<HY&%=l}Wh
z=gT?k_Zm7nXB_>TerafH2d|IYdu4OF|JumS$KK8O7(ZWlXX)#(yLG?ce){(9+P2)=
zpfVDa&7(G_^)fLriO9<4-d@Dm+ngu?s`{d~=dHaSUmqL2E$8B+qupDJpZmoYom8D=
zmOG1$S8B<*xz^s3<SHI8+J3)N3=&lHpO=&E{`c*zt=_f2zD(S|fB(zq>mi|`E4OS3
zu`YiX^8Vgl-@WEp$L%6kT)wxr8dUFO{r~s(*OSTqpg?_lW1}-WpG?5<KG~-aA1>^Z
zwbn8+3abA0CNM2+*`2$0zk=F4kB|3HznTSVB7qb6`}+U8tG>K=_`>~ArB&spC2=($
zUAN}ljauy9zb)GT`~Cky?`~{d{O8Y~Em>E!cqNToY^%S8oSvq8b$z`3*O!;wb)&bH
zTv2|&Z&CcL=gyrwpujpi)7V|sy6no^?f2K+xDiqM>Wb&3eCcEF?(L1fU-P+_jbCof
z!^7>~ljN%37=mgmW;UJ;f7dLiTlM|mr*Gf(Y5Y!@I(_<P{xIf8`HZhbL`0TkUS6iD
zpx|)u;K5nO>3w{1HY-4lXB(Rs=Qf^;pPrruc{V(*5>zZ+ouuk*Qva`pm5uGyzu)h#
z@2UJOA}_zbPuAM%S78AE+1cjd0Ra;}eg0hf?2II+usJi+xa@g|zxem}_v0shIVv81
z<JLusP;s}|T_u6{_tkzqU;i)oc%STKm0mg9sPa37?RW0n`SSU^y|${Vt8LYn3zPlr
zR<g_21oYc}oAGYXXTQpd4WC#hXly7D(~a74;ml0qulD~x+uz!p-d|H&`?bIRk8}0+
zccC#cb9BVI-|hV#7h8B#be4Jkyjxo`7hhW&{raeQ{FO5^jdQ<06wiAc^!K@G$_as|
z&!1=C+fzBI?)TH*zm-lWZM<<UJv9D!RR6K{xwp5?vZ>s3ZEf`Ox3{-@PqO><Liy;C
zBQK6g=U+Lkzkf}?-7gPNxY^b2Qc_knO+6(NTlsV<pWM#Z3H)o0^_xamEPs5w|Mf(7
zxr?BXOFbn5sz$bfOQoXX;;GZ7Et@n+NY<tzVA7R!vDR<z?haoYy}j(phQh{u|Nm8g
zeSbe*-EU5Smsi)jozLYwH~ET({r9(4R(9sM`Oxt1>-zeayI!v=elj6((dFg-ufN^S
zpPneu)!lvhNT=}E<@SF)H8nNMvJK;_-<tk?>0cl8{oP$zi>T`Xd)c%V6b^h**|2F-
zkh<TT1l}-arPD_(L0#s1dn!SN{i~JBQzY8tDxU~~l8|#d-&Ig&xbTsSsEEjmwcGCn
z<>jrLSM$lUYqgu6g+;{r{r`65?fK{iN}C`DJ2^GoeRSKl`rC`E;qjr{^X}d-xpuUo
zx;p#Cg@s;TUO{DL+uHc$*R^ts-|AZ3)x}j=Rh9MT#zsCl%?EQlHWb_g6;|%@wO6*y
zeDLSz=cn)A=YL;k^m04vrMkL0J{iq3phla9nws13e);RU+wU$5T<o?odVAil7mNG9
zyxaZ$)#vl}*O&Ru&f0TWr1yIL|G9ETDII0+@2x#M+x&Hx_PT-(Ct{*Yn?xlfDguSp
zJU-q(Il)vxNN3LW0|y+=&b1D|^#ARnKPQy?Z*;AERjv>ivvZoFb6dvmZ*M`Rh*{p9
z6{WAQdH%}njeCD@@7C1QVqf3fynJwR%gj~xOVc(+m=rzn0F^QGYd&$ZiUshCM68&8
zUp(^NyLYp!%h&z+`?oTC8~5%%pH6?hmA(Gukxt=Td#ksvTD3|<N@~@$wb839KR@e}
zlhbQ@#q#=m{lCp(dNC`u->dRYKHfKV`t<3|?$3VR$hcw}kg)LHs&1X~@^agMKOTSj
z^yyL)E4PfTPD~0TBO@0FN5JoIZ)I&oOcpFypr9MGBLFlma&2Ag>Whort*bm77CSVy
z+N&5C1Q@5En=*a+^kY4ek6%1w*wL|Q@#3qy%k%9z7dB2v*vZDF^C$7_Z1d}Xetw=Q
z#S#+}5HP{+-;d<V>T2sM4Tr^!jjh~Hg{&sLBH_H<M^=7(yj>a80e%yE=Y098jaY`x
zV&8u}e*F09vuAy`-zoC$O>So6oiuxPbT4Qu?A6`=&B_Ov7#L<5BsN`J6S?@v5tr7M
z77bh5SY@}K06)LJUteFB$9@0tX7hPa2lVH!U)QScByC)ge7rAePsPT&$5-rpG&>zU
z!lKj{@nm1}alW-tTfH<jHNAX%rl=e}c1+8}B;@jP|LfCqqtC6L-_pY3JHz1Nnv>z5
zpPik3WcFfw<6UXL=iJ<U^2CV?_x4tA&A7OzcwTg9=+aA<E^$k3-V7S(J<w^9#2c2E
zx322Ti-l=tXWiWD?&5NzZ@#amXJ^`(84GW2PG23nyDZ(-+}=L^-@kuc92^s_W?enZ
zZ@=c$sZ*bSoHNn$5oBVxa70v8^kml7YZ=?4)*A6RxAVzbz5aSte)hKq&HVGe?wK$_
zfLG2YB0RQqs+YI-)~c^rpy>Vm?d|2)>-X0=o_~;|u|ev<dHersc%{u&6hA*#s`rPP
z!D9cWO-7<3A{jR}BxYS+cGmUfVZrPTr%s*9y4wY6u9xl6`}y-{)w7xDpqi+%s%qZW
z`KhO;-K?#>9$TJyX^Cgm&!^L;&X|$meI|yHHH`VjhQ#J$z0%KLBr-7gOqw}!<?eU8
zPG3B1(7S&9dcXO0v5Ws+SsA?TajB<=N5KDoe@k!YZvVS*pM2E|McwFaJ~waP6p2_d
zA6!G**x1avb8L>NsOa-Q;=S5c&*zrQ*s`=&{CL<t`_1zpzxj4|FFI!wfX1_~uZxwn
z?O`kZ^u+V&^XIq!?XTMy<Iz<5>B&i{&dc@rodMFTuSUH#NeB#_xMbJ%z#lIb_isr&
z%(gamcUWs{>$ZJb+S;LzKK$0Kt6q$ZjHTc1ZcKLfyfjhS{hZaYV{J^U8AHPVU6o#C
zsw&pK^rY?PC2GHC<~BAq`hL4vzu#hq=7$d-GA5nZoojos(8S)}{^!r1H@8lmKK=Fc
z`St5Q&jO9bJ$bTX$&w@Q&X*tt<G$`<X6HMRwDHBa+xgqGw@2t$ReV?g>Mf{xPkYhG
zF1KRy`~3ZX!zNwXmV3L{E;`w%k(HrAxbTS7nu*HpuTHAZ56Q|}wajOx(#!3ObZl*7
zCr+FQ8je;G6&HVfJ-$BF!=vNQ-MgiSdCfE4-r8#VPF!Ao{kgf;+2`h1a`Ey`RRN96
z-n)12)2C0HtjixBYTXo}1M0|2_P;WL<`s<%N=iy1!or|d>8lS94{w`$hnt&w>a=NT
z*7?VJBu||<5#Z?9*woy7b)hqR>5B^skNp)A5-K^VI{n47+4<YHf{Hs(FKvclvWSq-
zqD`BO)<$l2yS**<@)FO<uY68QX@f=^7fjU-&w6)f=czMiu3TK~E-EIrY|R=SS6A1Y
z=Pd81%5N3zoNHBjsezGsOWs{8QE_olDG?r1*cw;$QuS{2`@PHT`xgf$JX};%US9r1
z;6g*)em>@PXRls6W5MmN5;5t?)2B<HJV{YiSHE8A7Zo)tc2Vf`zrVj<&v<=j=jMAA
zk9&*bUTe*|_bS;$gKN#QR;JaN3lA{8a%%zyc1ROzF=(ugVMY%NHv@yZ^P?+2kokwC
zbgnyq<7MH2B3@8Fg{gFEdMf1snc4vxrFgK2R|P!#11if7oSa}`T8G5%+`x9)bOL1F
z2W%5aKO`DNBGxs622L3!gKU1_;;|uy88o2Sa1vyGfsu+|uRIc8X$`7PosjaHfng2@
z>$L2IE&<S_63Au?K_Q*%4o%?EM<E>shB-W)!H?aM_#D}&HYuq@tZM{04%_5M?EBwG
z5GDB9<J<G@uKM@)_v!oh<HJ^ma&mHN>FVyi@X%To6y<X~N}E!@y^aCReJu5!u4QHx
zcHZW5kByCuNzxIH+`GHJ?m7PNX8Qchqg|q(zJ6W%wIVNX-J->dOJ7~l)Q#Na^6}$G
zFJIrQD*_jv+ueVx2^2bWI+T}jl)t&LFm!d8rmCuIXJ_Z6B{yzFw6?Wn{rd9q)~3|c
zm0u@Mn6Q9TSnbNpnzOS^z1K!<y>zTs`sw@k`kt?@tegxQMt<`q$JO2a`s0;zq(Nco
zd*{{F)u5K{j~^A$v$t>G{^-%8ExEVNWNj)w%=vx-QS3+c&&N5@@qxWi2|PI<=<Xx<
z?Afzb?)`FE*VfF8t#)x~dHdt$lqpj(j`c{+vaQ~BYioA+Ys>hWkF8qT+E<tR%kM7p
z_xEpYZ_obz?(Xwn*G#lP24R`yI9K&ox!*>~-rnB!$Ajkdw}+E9Ub%UG=dX;Mh-OxX
zhRK;Paz#&_I`!o3+t|f-j~_pdrC{gxEd5rz%}z=glo)1NpiNp#nlNF(zrVj<Z@Zmm
zoi0D=)f@1f2RI!~<gOKesK5WuB4zi!8(Txe!sdOQwQJdnF4&aC*Il3nv9wvvg<D&*
zLn9(IJRzf2TH4ydiHQrNwq`ADXkfTqlKj=S{=R=~tw|Wj*c}r<t)A-d@5<Icc<^9z
zoUokSx<7wvrcRl1V{88XeX(NQt`8qR+!|N@-~eN!ju@zW`0CQq?p-A>7p;rk{p!L(
z=U*QV^IzSX9lmtwQqM_F&d#8CJa6~=%sV;Ae8<|&{l~h%a|Dk%$_4vmEQ6*_o$BT5
zyA@P+YonH^+WPwbp`oFZmPqIAaLm5G?&_}6*Kgu-Z*93a|KAsN(D0S{{hG}xng#{|
z7cX8sb>_^L+dFNQm7SL^U8=YJrbciJ1A~R2dya{epy0w8GbGN=u?%kKmk;ys=(u$G
za%e<EhW7%MO#Ef)jjq*M-D0|+;VU*Ci3Od)>aPwoGFQD?x!fe@h5@gn(UCdrr9yf$
z6F^<@yu7?mpFgiIT~`j8M&sr#K5&A8p}<c&eBG61e!CTC&iH_)B3G^Qij0ix>gw7w
zH+f^klV@e`E-hTAv@v{r+^KWtrp=!}A2dikJ-#mT<HwJnQBj{-vGfO*IIq3DynJiL
z$0XaoUoMxutyyKka3IoB>EI+4eSLjZb#-k^%bn+nFI~FyMriG>H~07NKbQRX*VoI>
z&dxqx*?;Vus_>euhYue{ZOfV2)!i*?E5g8Vp=C!-W9r5Tlk96cp<!WJA0Hh}x81&K
zl~=#ruN6*CPEQ^`UaS|pE92Xnn_Bw%+pX6ZKR>tY>9puCACJqwzLmXx>iYHTca^?g
zHdQ-3?u<JlgNY&U&I7XI?We^eCS6(TE#50{|8I^aXom9HI`x(P4A8XzXJ;=5%`SOQ
z*SosFvH8pQ{r_W=kM(S{KA*HP<Nm(duFg)-WZ%~-!Tu{lSBLHT{ciWytKspnZ;mrE
zF!Z)~i$_c{ss5G|8WM8Fa`~S0^Kz*vDH)HBbXGm?H7~he`(0C4*Ee{%A1JA8DSYg<
z`}60|pFs^X+g~phgZhv6YQM*VnpD^4m@qIrf7FpHm0&kre*-85-?$O6blEacoom{+
zK7N0kSU0FZD|^dt`(*;p;efEPX|dJk=h=eB18!djrNY$dv1Qj-YZ(|8WETEp@}BhU
z%*@4IU0qSvlWPC}{a#dD9PHuI5&K(pddwm*-KZPe{;dzYowq|bdK;+9Ju7R%u)tI4
zU=gq0USH>}ppd?^qtMIOH#8_HXzlYk@A>EN-d(-+ZCm1;&$qg|x}^T@*uDFDr9VT%
z<3C?6`~P~meEyqT=f2LYODniy#%mBhS!2VJ`$22YoH-+vz0s=l)e__MbD#hPjc@0?
zwg2~Hai6R;XeMu_8JoZV`Omi&@G?B8$i2NS^!B#gx3|2!yr#^a{d$4mLc>g>{cm@d
zy<JuK_}I&()8jT(yFcs@R8Em-o2D0=RbJ=i)ukiWoww`dvNky_h6S9-T^CGu<TQoe
zo^ls7cTx1z>*>>{nkFV8lSIVCmT?NJX_%UZf@U@jG%|lZsXkvrS=kvhyuijMbK`<D
zI|D=SoYP_vTSH&p-BlW#ld~plO+;e(pQ+(-f!p)$PMJ4vUFqv<FE4rPgJwp)emKm3
zeMfrif364d><kQ>KUgpQxLM-)W-Dp&l<VtaUtM0_zh}>$h~}#<A|fIdRU8=!%I<w7
zUj!~Nth%1?_Rh}Wz182%zTUgKUmG;b+0eic{J!?l5ze>w_WoYfBfYiwCJQ%1!?BKX
z!Ch>RL=ba^Xth7MP6n4@PK{5cKphnZ14&NMbYt6*l^;P(4H&=06k2;9NC6eE7_~nK
z=d|nv2bdTRbOt2sWLw6;2wIf_YPw8TEX?`?YHBd}Kw3qKywkE3KpiruO)V_&rVH35
zL30yk{<WI^=~I!asw!x(x~{Gcv<RWB?3?BK+j}ZEgXZ&D+1XEDzaAd8I`nWm|MhEY
zqqFB&XIxO&xpU{$ie3rBNBp(x=SYHzO$T8$p9`~0v!~3Mv0}mmfu+lrXCLVhJazJ9
z;QqS5ulDHK+sA|Y&^DFe$s$?Xs*ss8XM$#hudR<?ztFk;*14?_I<IbQTr8#^r*qgK
z=k43u+xM?H|BM4vlUfM6uQ_;YV{&`g+Nh;driiGjsd-IGN=_D)l3Mlh^78D{({xMY
zq{YRT@7Q6nd)vv$>Z`M_uZ!AMvNE<&)f3bKo?)2$@4;jfIZ)H@L5fsWRl(O+S3iCD
z5KvRIXYJYBx1$RS3vX@9oy{j_6S4l|?_a-G<=)<ARrV%g?eW#CR)s`GMXj$kGXpsV
z+cF3}b-y_mKsD>0JvN{g3uqLpq@<+x^QX_C;g9tV4GfWM!)*V2IJ|1j8k6Uab2vaD
zW&vtvh+*^=)8!Yt^<HY@l~(bLi;J6Ok_jp#lFR)(JUT$5gR9r=@>;rdY1H1Tt)Q_5
z(4ha<>+$Q43tQTQnryRnY}#a0SzUcS<NL>t8)faMKY5bkJJ%|doloXMm#B6~T--X)
zh)reX&2y34a%SE&Ex%hjUCnpa5>WNg+1a`6$Qe-sR}OFw#*BC0zI|4;ze;+)1uyrz
z**D)iB4S3~j)!dEx!>RK_pkT2`{`1CzxKQ3`sx=8+fyWtRpxSDoB?VdKX9u1@vvR0
z`;xYn*14+Qt66JHr8cZs;SuzAd*FvJU#{qGzq9DclN8W;i)$roqK@~;s(QNj$*c^Q
zKi3CNoka_?H&~Uu$<U5kC2L*gV`*tw3T|7>nIi*gTj-YD-&ea^N38qM;lr<O`zEXV
zpEBT?Yf<=U4ePb-_v^Ghvu<z8-TS*B4HV-Sj`R}KYS{L<?$^uZQs1r1-psgH_dA!B
zoqe_MY_myq)zcFzD=T}8#r0w|x{oeOJlr<(Zv-D`MF6Oyx0^$mxbBy#=izq#@OD1g
zlDAv0uZrDWrlq43QdPC9tE=nFv)TE#*4^Ej4I0W>Y?ypZLq)|UH8nMAb6W4V+}q1M
zC#(HkIOWVt(6W~YDQEOHoI8GMs<vtQyO`9pv{x@KE(XofhJ{UAv}n<rV^5!@+5Z$3
z7hevV3I)}g8<US;*_7)2_3iEO%gcN>|L&OUH`gljKm%jc_Pn`W-Q7>0JzJ)|Zikcp
z-Y=8h?frg_t@>PBlHtGKhZ_n4-$2LPr%w;>mG{}Ptf`5~ou836=gEnQeR51v4xXN!
zMa9LS(fhCO?%uvq9sYmaj(@*iU)_}I9sIub%ZtFjzwiIwr}5bBEvRfNQ0kkZ)bg_<
z7`&JcRBQ>O^|-+OAW+j5Uq1@8B+su!)9LyF5k&?DXb%fq#)A4icuG#>@(@(=LPmZJ
zTwh3OY>>JDnzPtlp6|}j%)7vQx*o`XH*V+efBQml0b|YAtKm}Sd2<%GH@Y=|Qz)qG
z7x9D-v>p)T-Z`L>8QFZK@)qPODs)O6K&yMayn+G(Cj9yHM?_L`<(oHeisQCdeonhv
z^?EHAAK$d~>({RdTMZhXT^qgqTGhX6Yoo93udo04`}gUrty+qTj!Ty=O|$Pi3{FTc
ztAuqn$3HhpJj9|KyDMbl#*LsMq$dv_E)-ODyAr7pdiwnN>AQFDR`Z{?=K1{kxXa6Y
zFF!oo4q8^V_y51&WzU~Id!}V&6}8-N?xjhp-k`|@&~&Jj>8qxF>E}8?{k>T`WUb3G
zuC59N&2J?oEmF}mGYea|aN#Vw+FjdnZU#NyT3A@v)!n^0d$vvGCeX0TQt#<mFD@+H
z_APRA8mK)7n(X@X_phoaXn5gBr|{IdbJxCj@uK@fNuMJq0Zq<)@g<A6(tO6+w?{gK
zPn|m#mXot)?T$%HK0ZDU>iOpH`<b@)S3w!5d<U1xn7zN9b1Vv-_W$|R{pr&uQ1kcg
z-QCyqCjNTVtsfE@xzeuo*NxccFJG?w@Sy<IGN{?_+RFqg<FR!CEBgZ%yJa43;{`Xw
zLG#_k&(3UoeHh#oytzzK8r-v+)1fT12D2=${cw;yYG2LHU*F!Y{`9FRG$iE4SH+d*
z>dr0iKh^?jim08tem#7-|NM0q>t0>ay#2A5lbd_<-|w;IcbDGVTmAao?)Tf)u3fdy
zJ@)S$fB9Zca87#SWG;1gd;a`yZ*Qkx4~q``e1A<?_S(x0uCA_=mVA4A`+7Fdym|9L
zE%_;P=B&BA-2e3L+qcc`M%13a|2_D=-5gnvDSAt)zrTBRZ}0Bd+y3@{mu$aRwfbE4
zp~Hu#PM*AY(j=kXt?zDc&!2uYDX^lVV(;<7Pft80+ZGC|`<=LbJ9^>5g`YlrxR5@-
zcG*N__gm*yuUHX~m$%NXUoQ5&-5km64GatgN_`Q{rbSOYLc_weOiiy|3yX_e_vK58
ztDBpahK9$akeHY?d-m9bhKAle_xt7Y`B`_~-`JR3_51C1Q5l&vX1TXKCNVKHi^|Hb
zJ#)rq_uSjYMn)k~QLl<-_fAS+WVmp|)x`xgCjnYr_3&`JsF2X2FJDST#l*C9b<dXF
z>yb2`GI8R<rY0s<c6RScp!~%rYxUw*_WID>Wp6_wB36J@i;7;oaXahcBG<02F3?CA
zXvK`IMS+9A?bj)7ywb}Qo!d-a7{}*;)0w1ujm2lO3-RFnb${QSdwX^D^i7*LPn|Ml
ziDvLJ4Fv@UP!I6U#^X{?B&CHwvEui{Nqpz^((}b1KYa=+D%vz@^5oYx>bkmT^)61T
z`yDao<Ye{v-y?o~eZBnbZ1efwfA)%k0vpzZEJPnz1C@E8avY`rt?<S=TowRcM5nPK
zh8dJ27}P+m-2>Q)`Q~7e2zGwCE6aRme|g+*|4P69XSY?!iv_DzY5o26dVSWtJv;B*
zy(??$!obk*`Pl_cr^5y&si#Ch)8(L645$<Q=TD7ikf&!SXf0Fv{Mu_1omm(b91L9^
zk+%232brh@+mA<ttA4#)Zd&>(1eBGGcn+7Xsr>wG*W*6xFW+wGTNku2Ffe?5enIn4
z>gj2je|~(ddb9EP7tn${3pp{dW##v4uQMt$GaN7kt;>>$N&rRg-(O!>f8Mcw|NcIC
z`+E(_ObiD$YHWyUc3#eLdu#S`W_G?Sl{L@L&E?|b%R3;*$iNU|(JmGN>d%1Yli%Lo
zfB#xoZ0i31|9*p3Zu<E2EN)|GaA-EJZnWmUD|>h$>ow4j(dw(KK71(XmA40VGEbg7
z`Re}u{h(yHVS~ZhS*E8!9%Wcz-YymaYVLk}d)u`3R|#lp($3BfRDyzfa+RN-Wqy8k
z_S5Ij#ZLqn88QM?BGw&zDBb((*RQN|b1Xsg$BWyU7#I?`?7A<o%(X7RX8ZllW6&Hy
z49m;V$Im~oyk5P2Ur<!ktZ(n{uV3ume=FBa>+d(`Zx7q$XI;BLJ-%+`ak*+xQ|;H!
z=ku@bD$NG1FqmbUJ+127o1g9PUOszvjNgEPVMAd?<JO|5UUzH1-~IIE%azpWvCF3E
zMqjgd{+;!DYsBWX-eY~TtFNt%*4ESW1I;x%IyS~tJ{4UXw>N5a*xE~Lx8I9;|NGg~
zrzg+$8VE2HJiNhv+SFppfm!zT`#_yE&~m-pTU&OnsC|2Xe>`Xjj)zBwS?;YRVQZsq
z_JIae>i_@i>g~M>8uvdp*ZTVFd-LYaQ|lLFU@%GJ>y71;wOUgBZs+qw;^C9N{CM2I
zdd(W2l`B`49i6HInt1@VlDxdUKr-Hw{{6bXf0g%iJ=1r__5c1zWrDL$+QZnEbq5!6
zhDAio;FGnwqEHK3b@=Me&f>Z9XN&KaUI#7sICbjOq>yr#=xA&E9SjVcL2VG3SqZjZ
zuLM^;of^KS^!2swTjxJMK3@9bf?{m#*Q@Ea`Z_v3_J2M!dwF~7zp7whXvi+kXqq}_
z&YEXuXTRR{dR_4OdA6c5GN4(--Nia$-TyxJ*T)3dtNYEFpu)<+GUw}_SC4BBm@pg&
z1g!^g=3WC@KQ7kodhp;uEltgfpdP?u8RI&QRou&8Ijz=v9^Jvnz%ZxRnR`uBQxn@u
zbpwNdu+^dS>;L_XJpcR8=kuZ>B1_WF&bk_TBQ!Mh@54eBHMLchpP!ZGLMIdceXwO@
z5I+uD$;2ydc4O<@*YdB@3SAz7Iw7D%3WycHpq|W&7cVx)eZS}~4_?GHO*i_>VSf7;
zpkDlggUw%GEbf1G$y<M`HE5vh)|SlR-s(FQk9(u`*X><-{&5E1{fsRO|NJ~(e+@LT
z4{G}Cx={Q1*;&vM#V02xt9pWlP&OtX&ze)N==yMys`r)M<?rolY#A0j1R1mI<1y*C
zxAy&drQIuSe$G*O*ACE-H@4;e!Ox|SsAy_xdV<y_`}p+iDu2K3@9*!gZ>G-=4GWuA
zR9t*@U99!(onqatpk*G9j&{HOwlnAczQ3-uX6^-DOxcf*^`1I)Dkw2=p~}kO<$k+f
zE}Lyq@WA2nuNh{!vy6<5O*1d4<lfnFF>iI7vU}f)eZSvL-oJnUGQYW6p0BR0on80$
zYxv*i_WuJjGFGUpT(QFA^|iIexjqaGf95G)O8_l$Ssk_(v}g;wk6`1*ja<CESHHZx
zyfyXoG^_Qon^HP|eSe>S-3&AoDPs|E-uC+(F`bBna!?`YoAm71Le{X#%ALo0Bo~*y
zzIM`pXKThqr%9lN$V-<j0nLD2f4zQx-YK_vii(O+8<Sd(^-3>ay>8d3ZIgeO->+T%
z^z`)C)8p$dO6TuMy#4#tIqUZ!K|z!9cE2^V{cwO;OIP=5xBk8rr}cLG>@It|>%m6`
zh6g%f>*I9!`T36?KYshxp1pfP{g#`X(_cS0*v!Snwd(7w`{Lo3@}uQJIWNBUYv@|g
znjh$DVe{vVb0#=%&#ZVd(S1wV+bG*F7o4@Uv_KPrB~MNWii(S8zq+zAYIB-z@2T%j
zJu;R-*5&W6fV#_1PfySO^yDNcr<MHudOiF3xw&QXlP|9d)dr0b|NHk3w1E87RBh1k
z>EEB{>(>>=n-wxM%s472-HXvUtf-wbZQ80OOO{;gJ@Oe#kAKbeztYU@Y7y)Aew(G{
zGb7=)?cS)}Wp6=ksl)C3*-uYRt@?7&-S_q9Q`+l8($bz)&aDQ`2A-d1YkKSX+1cse
zzyACC+gDPWfuV1Pl8%<vq^ntLFXnBHN|kWiYt9<KDWy|OORMDh-11vn+gn;PK0G+M
z>(#2&AyHAQuC5Nxet4)Aw9YcF{_oeSuMgkIL?wudioU#+y?*WIA6u`-tv0_`v6#`F
zg~8!+a9EgHe*Sx@w{~`R+a5p9zP!vgYC}RJs1=s1`*l<5={NiKy<WH5B=eHW-ansC
zd-?cmQB7NSU}12JtW`;XpP%2{<K}sHR`AJMncQh$U??zf_YwT{>({F<FE5+k@}Fy!
zYF%fy@87TNyM@PPxwyGk2l`xny0BetQliAEbLZ^Vf0pKMSBn4*BkigD3|c#O`?iy=
zSogQLx0f&Vp8jg>_IsC<`)wYbP-J4bu;R_l&F-N2m)Pjig(2dIiQ~_=-5wrjWR|ij
zSrN4@XXTnTYd*&vxCfdh-oJP8{i&c@!Zdr@zQ5n1mo8hDb#qf{QSoox0PEssJv@gm
zv~UW8+V<{zf(#98<%-!G4jn!$DkqnBz3jsSN8A5@KBw<hQ&)FaRaGtHzPmmDzFzmy
zpvQIl%b%PO<dwAwnL2gqsgox!s!oq7y7&0+x7+!up1HTT*}l(~Vs00Uc=zrdsD4jM
zS_B&L0xed(l>a-SSHjRKF)^`EMvj5O_t1%n%3q&M_SZ5s4GmuAGx5vqFt3*{Uv~BM
zY{|VC5EHW|zW#5hqN3uq^L%!dpO%2C|3!<Go<4c9BK!Kft=|eC9pS93u0DPG^yziA
z@R{Npt~H0+o{LEL#?^kky6e}g)v~rc3=A^o1m7$5baVvx`1F8QAs%k$zg<?OucH$Z
z6*cSa9!cXg(4Z?TD=Vl|sRCNz3fg)EnpP`+9|!9El+|rcJDU@&@b=c$)89T8C@Lyy
zX=`7eWtt6|ck`WP@^X%5Wb)+)tYNjmn%zf(UWaiqFdVSa4qvzCV`K}`Y(~!M%2jV~
zZgv;zc0D~^|N5t=r{DIKzPfTUECIAOj+u?;!miTSAu%yJ=H}+0^<Y&mmrgHvzxR9G
zANHIC-nfLVSyx}}(fa)8QPR_=Pd7HIGc52dbZJrrjh%V<`Gpk~70rFVWa-kIs!@}^
z+%3O9_qv2t`MWzyw#8+AV0xW%+sI?TXxPb<Cqc$OdG~JJjT<-GBqbOa8a(GD@lI2b
zwX2Ef7S|8U%37tRrDc+L$Kvcf+vvNyN{hc-U|`5F==0i;pw})QakcYmy?9vhvok9{
z$8s<*>@ecex&B}S)9M{NBD%%(uWd>_9TFJ0@Wzb@&>E}QT_uHACV)mjE<Rul3k;mN
zcEhSQYp(qG_}H}iTMm~t1H(Uiq2<TcALL$>cX!vzFE1~1@$+9_6S?`yQg3n4$f<k3
z+}h8x?(MBMe*hZ))$?f<kGML&eM|NCyk05OS8JY2wJCNVU9@V|sx}EJ1_r+4QaaZ!
zJYc={{`+|b(Dp{&xCGxB1`8MNW?@)x5wzGo@3|c-sNMVUL+u6zh6DdW&3bSrMUYDe
zWsHTWS!~c~2#(Pk@E8qb^n@Pc;NU6$m2u6f-(JU@I(-_{Pg<}*;pfkvnnp%JH*em2
zzUSTIe!HNUm^pg8-x&S;{d;xv_PnnC{_w)W!nM!y@9qly`}_O!{rmT?30o~BBm^1<
ze*b>*=48<9e8!;`PSEh2kgzbcw+PD1mX?;UuCI@udtFsk_2r9;i@Q2I1HZq!yS4s*
zo$c>8n?Y57Uf#M}TeH)x&CSijFJ8R(>gML<({v&i$=CgG^tbugvhU|J>D1Iz(<8}d
z5}*;?IUUOPTzBAI4E1VH*~v+&pdLZ&ZP3Q5f(H(uRkNVNdu{EtHIbmD#%6hUH0tZ?
zJ%g6}%?0&KQ`6J6t*n0a+bz1B*d@Twpq7Vw4CVRO{rc-vK&uslSBI_ray2~u<}JTD
z77O3J$vJxL*sU&YPbvGlJ%9fG{rYTn{;V%1=NiFL{HVh;0%Ol$ocz+IOSLpL181A%
z=H!BkaM%=jF=C_O_0|08?%>EPbZHC?2~k;nHEQwQtgWXEcx0_gR>Ym(kaAKeG$iE3
zIqUaZAR{OKwZ9<)I3|Uusi~j7eOq_&-Q&l})^+<pEq_*Sv5YS-E`l~0#DZqUm)q5v
zu;~=BGaNW+^2Kd2+BkRr`u+dF>sb#SI<zI{<|e6Hk5!xJe}21oBY5VeHRt}m*!eY|
zI%992oUDGn$~QK+1U6JMfAf82cD{@k7ZzsS+_ZGlrcH0eHidsrlxTZ9Z~yz}HNP@^
zAge{hclkQs-&cEedw%@xZB0!~XXo4R$2DB?Bl5RR(UXogKG{{LPI*0j^5n%NZ@ra;
zei<1nY;0`4fEHjpIWckDx2`U(r_Y{ceR*;5`OlVKW>7~y<B?mR%*s=zyp}FocIy@>
z3(T9h?!*ZXR#sNeNnPFDQ>RZ~zG{`$?Mik3c~?F>JRBMlvgGUQ>!9hAt=|MCBv!n5
zk&&8~cI)k(c@rltymToDRK6(L&P|>G?$pa{yqMwQ(vp;vWK#UhN7k<9#<t1TiHQp@
zUAmO>{Ok-v(Cz~*4UGWs0`)gHHval@*&o!v+gtrT>;1jG+dj`W&0ZFrzxV35uZvu}
zMMOoHGBUG)=4P!59yH9WdZo!LZRX?L#$)((rfe_MYR12H@A(<lHSfQl@dmU30<{wX
z-6m*#JZa;JvuEo*WuKpCyD35kG+H)IKR&N~P4IHRGS;y5aeJrCox66)5*6Q>My`yE
zj9vZx*OU8g%L?VsF+w7z&trqi$<wF3Po6yK<>$BV^PDYPOm@3?PulnU-R`R1rSbdg
zZtbZo-n%Zd2efK~A;Ab#;?3z;ETl7|8=Uf;9k2W_bmc${4F|VCmgEpQGz}U$1`nI0
zXmm)~BTe!NCw5)HSbv0PKn8u7CB<Wo6nLI!4hP6dpb=UI?CX`lB{gW=8i$j?tB}B1
z6yzk(lo2c(;N#$0`ugEPL6e%Anw~s=zWl@qkJR+^`JZ<^dXxl88qMtdVF?Kf?%cVv
zCG+yKsPnQW858c@xs$cWtw$p9+hYqE@bu`BK+bC#ORqCCFo<S*x;Tcka0+ipJ1eEC
zrlzH$;_~w4ODV&omZGAfE9>L;TdhBR`t)UCf18Ex?(Wvs(eb&xE!X<B1!$Ys(Qfh6
z20YQ#zrVeG{oSFL0W>t`d#6v<8nj+=>5?THhK7NYM5LuxU$_w9JKqkpDPiU3TcA}3
zpfTU5Eg1{9->>_<hIN{XY5u*K<YPUCrGFp;+|V^rIas<exwp5yd~mS2H175L_v^)U
zqprM`giR)9OG$&u_E|gb+===6;-d4}S*Dw_`#U-|$eMfC)$RN9_phjcfWqpltJ>x3
zBBoBAy6o=#NKhDqRtS~<#aLo$v~)hk!qWfQ@82b_+Qo0*SAR}-n)>Q<4`1mDmKaD+
zZ+nm<vHDz+yE{{Nr)0*=028itH|3>^MK!X-Ps^<Nta$s8S_vzoX!w?0F4J{O>`H_m
zscn)7pO|rRDU<K&<QEPs@80+S+w<{Vmw(Mixp%euh5mi0mfQEdK~diRd3FC+P}v?G
zJ-h7vz1$SO-3kee3<3|Ts;fn1WZsy{2?;&Am*?c_+IoEcbiLSBp{v7Qg4Uzg)$QAD
z_?g{CiG|^STg^r`Z4;9a^SnDBq~5=NU7RnkyE=URw9`*_tq*tVQ8kHRV7PI@BmOdI
zLm#NfNq!T@eQK`Xb6I)jvXT-Hsk_%Td}f>ZPAYkNYHHx@!{Qtf3=BUef@*++O{{Xs
zxw*N&?tR~9{>Jd*$B$M;Pde7c?tZrM!rqlDJ*TB=+S%1zS@-?V&(D)UBdR^OWcD3U
zc4A=2IU?TAaryFPQv-tqpFS0RkEpNTziQPg&}8?C6CR%P_io+0b!%vIb2EQUysfS6
ztM~7}OX+KBPE3vT^7O2HP<%_0SB!yyQBP6PQBqP;OG_&#Jbe0Z-*@8raiFc+)%y<}
zataL(U%hv4Y+zvEyN}U|FVD<0F4`HhYTdePzu)iI_tetUo2FuFZmw-?96WR8%&y+v
z(ER-Mpw7{;V{U7swq}Jy8^wb{J3)Ehuk}S)Sy`ZUm{+e|d-dw->aOnY%Lkj;P0QcK
z^nbRHxyQf%+WPqS^A2y)Dc9Jnb6R%8qQ#3%>;Kh&#>?i;om*rf0~)p4mVbZURPFFt
zJA9)RK}#M%OVvS(!6GAXZulJ%7FJ~vwVj8T_wMIEmzVp8$Hw06SXZb6Qkh`f|I2l;
zK|g4>J44&W1V)Ag<$Y1jteZhmaf5^LwEc&U4~&*Fe7QF^9Q^xy)haDZ8NS$EB`4d%
zSs57Kv^0FR-<Eq@t^M%A^|f!azi<7Y@yDB)L10JC$3=lN+z<Sc-(B|hQjer@$)h8j
zu{#P5UZ2j)z;H}~=~}McpAXKm_H{9{&GW-tTv|YT7hiibF|bHT>HK#%u<Pu(xz?tY
zpHe`(n`~|8Hn1`<$Z;{gHUpWregEHFR#sL`W8>i5++5IhpY{6O3<3!m>yOznUHflc
z`Dw|ydA6&k$5nYwGRePZ<Lc&iDT$Gxf!*!EuX@n9!j+Z5Q>RRMA{V_WrSsLRS5Jy|
z)|4kQG&CFn+kGkhzvt6=w$)n_4l>2=C~$m!e*X2JpPz%afuB3)xA*(K>V5lM7#IxN
zKB$#@*8lrF|LVny3wQ0ZdV6p0?c~|1k+*ghFP}7da&1W|LxaPi*?0ajGkOQ*=B}Mr
z^9j_;Jo~!v!M(lJpdHw+%=iE7ZE9|=Eoo(FaBw{EiJwt^!>?bzKzl2)PEJw<?RC9g
zw*2zSySvL@f8YOquaS{aO+hOIL&6%)AEptYO;Y~;{bG7C702Ipc6QD(O68ib#=>AD
zq*L@AWEAK$h7B7wBwmk*oVIk!7L&gp`|Gbv)eisB&Beg*PV<4hpqxd)gL%LA{QY(t
zH2<RN+1%VLce|*lXv*Zt##-0e7&vU!9Q?%3cpsFgW{7<NWsNfD$0pxEDTP784YU%n
zcLUpLdw~rM3>yTQrqw?X1WofMg0nsc@3i^_;AJg6Y}^bC(hCoM;s;4U6PmG!U$Q*N
z#0IGH><xdI89@pa6MnMG2{JJ-NVtL4&$#88Ml9R^Zt4F0@vN+@poK3H5i^8@g|A+?
zP;maSm9=$fL<D$mrm&jNgu@RnY)n4hcK82}kB>n+k`5g{{ItaC>)-eF@z>YK*DrW~
zF~R|KS`4WFe{F3vXpS=e&m(azF0P=gtW|yT_I1}EM@2`2+Q+XxJw4sk-Mu?|Ms{Xq
zU{TSgU%!5BNj)w0^x3mjd-lY1i|d=!TH76$(gBw`*&9F&ZQJT^8JCy&o;rVix=Lz#
z`s<nL^DfRZ&Hgfd|DV(w$@6Q!Mb`d$xg4}s<lDQutB)N!miWE)?bhoim7h{T{l$k5
zA5L2G;zh>Or%zWdT<Cc6<VpU*@^3E9tPBnftJkjw?fNPzF20+5@Zdqvpq`Yp^w*2-
z^1RhK6%{+wd}o!Mx2&qFx^m&df;Vq+%6CixuN8Ut@Zqn!@9WGr&E6o%B*wsC_Ibti
z_^n&EfX<5m^#+btI5{;{|Mr+`R~yC5%nX`bIR0Zt;bYJwaqx1#-U>czP*EZ9z{<+%
zNr~0oV{`qM$LLMhi{F=%!gqR8+uY+vWXcY~Ljk1*u?yOM&hU<n+OrM9AO%b@85t|`
z?(BGIdhh!6=lAlG_&g7vOHSgmUU-m+;eealtpr)C5|4I1*-sL$U%uS=+VHULqSr58
zOi%$0w)5B8Za@F9Xy={hf9_ZMoJmw?0R?=@5=L!ZUEj>iOu6L$f1cY<ojB3(4UP)q
z-@^6Jr=`!UbaQlc{Pp|(f6%Pt_aA3xn_s<jX_2b;w4Mq+>xZBO%&2E;8_UehtfjAC
z-v9Oc_tmRbd3APncJ=g3`EoP*c64;KsfERl1I0cw3_x+TYVF#u6~)!1rCZm<?|)aW
zFTE7(otlj&Y*DI_q~zq#(9osb;`*yLZMw8KJ~46Os@1En-n+MM#R`q@6`r1*I;Stq
zG){j~v@;|&b}eYPFKD*(&As>P_CGtHotwM*=jZ3z`uhI=e_h|drSfwcXsGw7c)Ur~
z`F)_A!mw)P%8Q^unCR%$tHal8>FN1_X6f$iEWZ0YVw!6E;olFh|N8p+uHrdpb)uYb
zcAjlCFE1}>^qs%{hcjr_?bO+`SC92dyZ?MAXA4d*$-55jlJB?wx8u~QQz2ntW^e4K
zPMs>(drjBb+4;Ne`Qr1o&-1qb0nhz1@GORUosIh$av^ac;U_!TFsB2b_(81)1_R;?
z1>`~kOPK;r2Q3Xx<tto34S5NWax-kD)CEv61}(Kf4gw`fhQk@)vI|`FgAyS}#J@&&
z(A;9%#ROZXy?gggT5{`F6lmt|c=+cG&?d&y({%Uk<FQftvxnJR;olzn9}k#QQ&V@=
zukRO=TE4Nr;VZ|M?c2R4ZQ8V{rdrX?DE*vFd_0q!V%@z))qwhYZ{NP1WnI2*y*{&<
z+kq;UprD|T=;+liFE7_NF}VV&A1gfe?%kV}pC9h!b!x@ggJ6eMu_!4ifi}m+$FngU
zV3?(ShaVD}%}?cjfLGQ)%TPq{G_bO4khLy5@vuNcN5@B2RyOYT<Vll6#KoUCYcn%l
zU(0s-i@2OFlNiI@9fhD()p3vi1hLf|7Js-3TR9tlysW$&l=R|%91;f|I<)u0A#SVE
zS5vOnd3t&lS;)l2uUxs3|I1%V?uceq(B$^26)OS)11B!?oBQhZX~qZ4mX?;F(d|#4
zKZ{CBuU@rE3$z~h#6;z)cRQcA*`9k^q-kmzy4-*MHBfQ+^L%~W?QOZiK|zyd&7LhP
zEd2Q1^-VgUGewpzU0Sp==H18T^Qy8!-k%lE*wDa`9yu+p`mHH156_*AM|a(Q@L<8c
zipRX5ZD=YgF2-qR0tyQ^{`&pf_S<Z`+FhU-to{GKuK)EaeE+Ho7XpqRIkIBevSY93
z+`W7E*FpZe1uIr)fVTE~$N!pC_igk1%0Hi2nL7351m{^4I)Qc}XJ)SS^7aNzi-Ot$
zU44BZ7r(1|WBq>5;$z3$Kr=g__3YZ~_bfWx&i{JjaXHYAv3FblgO<e1oVoIS&2#H_
z>z6E9GO^}#PG<wFgK^rK3!urct}d?9vNFEi_q#;3zx;Z=9yC>T6;ww}nX+X5zc0&A
zojLR6#`#S;Teoi2R91Gr|L2+c*2>RmzVmD%K?Abv@-+|ct>3;q9CV(?y4c-Ya&8*^
z{WN|5l|7Z8LqbB9TwNXBf9o&PhmiRA^$Qj#Jbm_T*YT$2=B-IbxlGN>UM=pollpc8
z)ZYiq#B9l!SgoU^<OCWMZDeLI`TWdxeKH$6d+Fa_rJKzYjahUUCM|jNDCzE=%HY)0
z)bcz3K%0WEUcCxB{UbJZ?!Mo5->=%VDaiiU#r`ez|LbIJtF9#fFMfV*<-UD!`FlRL
zfu@Q7KIE^zu%qyCNMz*8d+C>#`GPkXT)DCYbb^PudHB?+Q$YpO`ns>HcmE4w|1(uz
zYR$B1VxYDDkB|3%m+<%SD9D#Tw=#J7m#OP(j%M2^DmwoE`@X*P-5tyRkHyc=Y1-Jt
zfJW-(_$|M-K7M^;W8?3?-+ClLj<?I+xM}m|(73pD>(=S5f7{L{J1I5t)cNz@CF1v1
zZH>{J&L?N{!tmcy{ra29cimiETISXL$^<oGZNuW@*RQYt`x<nHm)+kl!QZc&@B7Hh
z%fs{H#>V8f_d*BemXws7cv(`_YdzO*XN+F#zM7v4`=&lA%*n}F)79M_8XmrU)+|uR
zc-4|6E;n!9WP5igF5(H_f!w#Zwys*aGB7i9<+hxgk2b!&wA8!ELZ+*?_p3zxr<3ZS
z3CGwy6&I6jw6spW{xkpgo#!QAUxj|3fBV+0l3!mkeP<dS&5l343ABj6|4CVc;Yo3Q
zskd+6h87fTxL)Dm(NX>Tu*~bCoi=@ISFHGOBmL#2rBPe6rrxW1t^4%(^WD<M^$rJ^
z9+)K`<4H|TUAbpZ3@a;Z`JLx=^&joO-AFE%*<btd*M$ocKx-jHMMUlt2L3)X)A)V1
z9)q&5l+-F|^Sp}Q?_a;}+-`qn<FwSfUn5>_7TdFEkrOX3FN+Stzig22)~@{;)eTzO
zvv8r})~#D#zFa=PtiS%x$K$`g@Ba^4EXF=hTTRXF`nuT5O|0B*HFq2KOJp{O#>cPU
zTm8MN2Q;6$^R=Ph^3Q$!jQM*Te&nqWEU=neUK9B7uZ*_m<z>E;RbqD*Jze*^*L2N6
zrUwtZ<Nqw$v}x0p+TUgU{vykkEj#tJDD(BTwQ|4nZ*2kfB6W4&Ha-V!Y6Uf=mfQb5
znH^nTzMYMoUH%UngT29|qi-Z7C0DIp{rShO9fgl$pLh57U*B2$yyWdI)BcakmZ?Qf
zTl(Y2kKJ;&@7#G~dhg1WB^x$us5ZO!{QUgsORV)oB~EihI5h0Oym)8ye2tvk+|vG|
zM~`Z%tGhpa`V=&g@#S^=|0vJ_EVJ|Xt#s`cd-?PE{Q3twLDQ$8n)&{(Yul$xpAOm-
zpZ)pS*{E$fGne_!UiR+YJHfls4ZkPPo42m9k#Xwu>AR2r`u!W!wm5Rc#nsKtYm$|<
z_0?OqUVZGJ|K&?bX=!QZ{e89XHiA|GfBpJ3YDdAsW4+Sqp08fM{8*JfPi5+qDJM4R
zEM2ms=i1w!Ed3mf4CTw+1q}@iPn|n=txwk4X50U7+xLh1`1Gt=wF;D-K?{|S9z6=0
z)W2@oUVWtScST0V3eeJ(UTO1JbIb1q`ug^QX68Z1Zyavp1?826yIGF$#p@LLdw2x6
zxwUn5bzQl7^=aMY-$%Q}ZR6GkMMSK4^(t%Y_U*gvPfVIOZ{6DH?O8uRJ+&%+)&r{i
za&MdQ^76hsZvSuN?;FparKP5&X&D;_Z``=?)!VmM_tpNsa^uE|(A8mgx2j5a>xi%S
zW@9+;eAevQrs?NoK&4N`jf~99i=WTiub-^$fA8bm&`asPpq(V3+85ebQdL#;^7AWu
zzq#gT(bX$gUL0!WmYXl~?%lg<tJm*a_4oJp)!Vm+b8>S20?jku+?>AqduD!qcw*wh
zf8Vz6U%7d6Fkid#=CrdxadGp)*2QFgse9Ydz{=3TdxtCHc%Q8F)CSY~e}8tf>C89^
zX?cLgBpZ5vB=L%!0X3WOHHpCeqKASDN$FrIn?(F;1ogZQ7=Y}{X@ParB$+PWI1U;t
zfi-^Q1b?xEl)(6)Hb*mPA0wnK<<$IC9@I*LweHT%v(4U9XjT1f&Bf0T?}3L399&#l
z4jno)W$IK@t>^sQ+`%p`M^?;{zNa(&^wUpYT^Se{US3-2{p-nOf48T11O){_n_i|C
zAC?CB>wtmSPG)FlkHMe^)YngtfJlHEISq-R1|Gv<kUb1-f}ky+Jj#%k9H=8Vk~Q4;
b&uA!p^Y7iJ^@|x87#KWV{an^LB{Ts583(97

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-10.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-10.png
new file mode 100644
index 0000000000000000000000000000000000000000..199af8fa2fe160d7afb8f1b2a543de7a411dac31
GIT binary patch
literal 21390
zcmeAS@N?(olHy`uVBq!ia0y~yV2S`?4mJh`hJ9%>?l3SguoOFahH!9jaMW<5bTBY5
za29w(7BevLCxS5J3j5`m3=9eko-U3d6?5L)t&9mRef0n1ch;297-vCO*G(}_F-|d;
z&MaMW>5Q)S5+$SAlMV(7PWSQV7FNwZwSi^3mvQN=i<{Os7N5Sj<)~1u&zIE+(s~-!
z&%e9dzbkPL`E+7$O#J!d&BuG@Z?5gzwx@djdE4tr5^ahM3=A`l9la;az`#&o#-hW(
zz%W^G0|NttkJ|wz1_lF3Ms5a%11X~t!zoCfrM>55U}(56V_Ows|NqbDP|NaWHeL}4
ziHgv3y`MND7#J)X7Q6SairkzQ{`Swkd-s05+x?y+GPK3L1thilYRpv2`hR~y_p|+L
zXX9pIU{Br{;bS{LQDWIV{^@SbtPBhZMp8Nq3^E-@lMMGBoRqO~l@zZS14F~fj13G7
z1qvn+=Ndu!An8iRBeFU5+xev;Vq#i$c5#f1jGw-J3#+KuVU~NV<mTslTQVpA`towI
zRq3k}*RO}qwJyK5`~AM?y!~%)Z(r@+FZb!=$BFy*?@vljE`4`rr`KP(P<BviU9e(>
zhN`-{wvkZ~x0ud^*|TRWDJgBK{r$~bZuYEMt8VA-kA3&<UDdyz&rQqU#e98r)%$p#
z?B<*K_xIJly1jk<r_Y~F>;KgpJ#s`tRn_%yJOBQu?WyKs&F!03C@o#Ow5U*X{!8A&
zJG5T&CdljW|Ffy;+nbf&-rl}lt>v)w(^2vG6~W8>ii(SOYrQ|HrKfjoo^AD&jmgK0
zZkNBkwe-V>0##L2O+7uoNg)9N3(DT!TA6sb?bfc+?AGV!&YTIEZI)|N^(Eu%Z1eYv
zK6i9<TnLY^UE0&b^Yh0Kk4g7xKKt5!yODfrN8#dM-`-ZUmcNY1*bt!V<>mF{(W6CY
z&iLrY><C!D_uDK!8H)vr7AZyQh>68pb$-8B?Z0v3#;6Smjh{Y${#nfWZ^^1Un;lhO
zvv%&>si~%R%<9?0hYMf4$as5Wqx128`Sl-eT#u{vUAlDXEW_kBmCzqM-oLrI`PP=q
z$x6z~Yae<|a_f~+m6w-a8@2USQGN9)Rwl7kEvr|r-uL%g^xc}zXQiym*8KZ4eg6vo
z`F67`i<h07Z?E5dbkU_tLDl}k;Tb0;D1yU2?TkcaRn@8;J8s+yW-5^U_V)Jju(eSu
z)6UK^dz_e<c<rs|&nJ`pOCI-{XZ`*4HS5-vm04F;E&cWN_3M|*=WqMjzh?dZe^Ez|
z9({FX<>a#;O|z~9WMr)P_U>->BiWnsjNIX&kr|-y|MBth)s?~OYh!nZ{r~&E9>ms-
z+~l%x<3_9ce|utLVlr%2ZJabo$TO&>W{*|*yEQ#MJhnfdOun_he*fHbwh;Yq5l`k#
zovK=2|G((*zkmOXc%0S!=B)T|!?~UB<%^4ptDa1B|MFsS|Es;<?*+TKw9Ko1XX!iF
z>gqEovF@dZUdOzVx+?ho;Gxi`j~*>r?B4(C_4@r`fq@g{YQF^Dt$aRr(vt1>>!KeY
z>%IKz>uXg{{k>l%?b*9Ga&oBe&Rx51{rUCx`~B;ST)U@CpT7L$WcAm_r1Q62KEn{>
z6&E+p#>VDUZ*^5w)b?-{bMx@FL=8j3z{kh?r>pSF*+lIB^Qk+o>ZPjhJex>6JG*Pe
zAtiIWV;5T~B|KbZ$m6_o=gwD`m-m;h4P76%SH<(^&!3+@ehe%s+Qf7CLL0BNir}VI
zn<q^YnmxfZ@eqrsh=_)!rl+c^>MXNdDaF&CHUIy9=i=kr_T6O8wW}2uUo1WM{OQxB
zO-)TjkAMFBdF`#Z^|wDiKks_K?|05I_dc1Gz0&4c@9*t>b#Za~R~gaR=SkOB^i{ZY
ztUi{saYfkLsILD0@VK~nM#jcp*Vq5`zLfueYfwmtioU-7-Y=KDcYQu*{q^H<`PUQO
z<u<N6>Gbu{t5>U<+4;3>ZSPu{mA(q;l{WX2uldlJc5co}W_G?C`Ar6{PEJixTeFtN
z?k>Aot+m3z)3cL{n>)9ztE)?|s%QWH{hKyzI@LS9*EH|Wjzh_(x0&YLxR7?|{CWSj
zL=AQI<5j$e4Yc;0JGw4VR&YbX)hW6Kbzd&Je?6tW{>1U)?)rN^G}-<6;Ox0yH|J07
ziC6db?%wzBSN2@H+FSE3ADcgA{`~cw!s@TK-Ok%wY58zV=4BCa@#XyXe<n<L%96ML
zZ&_=5d-jC|jxB3eKk>RAwR7jrlZOu<es=us-M@>j^YHRsJ=n}Xb@uFR<9)@?{UUY5
zTHD&fDspZv`f6Wy>BEnYk2gi=?0UEBwTkE4TU#g3o;|zl{k`1H@qvL8zrDR(ela`5
zn=N6|qen@H4R{{^`T5x`F>&F<sZ&!o*WTQe>bAG)Yfqo7wUm6_kA<asHf*?Hz;pP-
z>C@WfJgcUE`BJhtet%tCcX#*4i|+C_b7or>FALnB7n}U##KdEb%<OMWoc~1H|NSyK
zQKBs{Dk>}I{=T~${QTyB{`~1VZ~y<!Ipbov>ThohRV3x)<l3fBpT5!_#862-KhIWt
z&$s9E>+>RX#FRBPPg;cq1SG`N|NZK=J@4+C<jBZKkojx=?=j~&9I-ubZsNv>o|VDN
zqmFxdd-uxOR!Q(mnQZuHe9wR<`9K4sn}b8c#M!g6Wvd_en(O^I-}9=kfi-x_-?P&u
zPE6#HG&-{5<1y*pW4+SShK7d6+IXec{ML=!^kk7D_f_}I%#~mN|NnPB|Ms?AxA*t<
zYV$<a)zuxFTYfK7#-?J!sb^i<#u*nBl-1OZSyX*lktnhM@6G(%+j=LYZrarF^ySOU
zit6gwzaGDQS$VM`Rie$X=10NdyLa!-uqa$KanhuulGoSH7L=EpZ_B%zbyr<W>(qt_
z9k;Z!WoI|m{{Chf6C2xmak0Df`hCAveYM|mui`Q9?7#bdJmNll`t<1+H#RQbSn$v(
z`P39mP~aIR9AGG}H<o2!<PKl+CVmS$pNxT&Nk+n!{QLJL%yMRct-gHua>kt<8$Ukk
z){pugzpG?r;QBaQWgVR}761Q!e`}f>)40k0^P4w0uOnO)Uq9}*-)32MX^E%X=Vxbo
z|Nq|qfAy@BkGgEXTySnXnq;WvGb7=zxVGZyn*IC{c6N5l{>Atm(9+N_Q1hFUVUl;}
z#)nUzjCPg040`wee!E=NiGtEnUGWX)=31v8IeJvGSK8dn#@4p?+uPgH`TPHVV_m;F
z_qN$$_kOvy?c29s+>q#;{N~0+v)*Z&6%rnHO)(AMxpU{S1&+-<6DA1EuD?+C`|b8)
zU$4jKn`B%#Q1N!_^)-+4_kNuQN(ga#t1O@1k2v@2dv55=$?E=6j*gDU{(iroFZ;Xp
z#I0SWt1m9~7C(IT>eU;YQoGM?Ozofj;6~m5=W^oW=@B|&$$x%)Y+1AV$UR2xXGs&S
zwQ}$7D!n%S_|#gR`vyF<zu#`py1#Gl*R%UuTU)d4?%E2<*Oe6&85bA1Ueo_4V_CE$
zY+cOC>+$t>pJ@v}n8C%x_2qHD{i_QLoll)RH%+Cox_Wi^`nX>&7WacHZqNU}A2g|y
zzP}gSZ~t$Hm$&!T{q^;)S6is8bZlk|truQl(tR|kw(-rL%FiOw(yNy&QQ7<F(`l=!
zFDrD!x_6bmUA1J13M(t?%Xhoqr#;-w`R3!Iz#07wt*6r@+Rn|fT)eaRdDgi(mR0X|
zK3{Wt)8@^kzrJL?o_(XctLw?Tck3oi5(4RcIz9f{y}i}B`wU8MY)IVouuXc^AG-j{
z*Vory?+{eJvMN-2Yu??cg9i`pdOojuOYUv6rAwB)`1kw$^;My(bDY9%ax=?UJYc+A
za@m)QgX6-Az{Mr+?pWTt7Jqifu3b^~f;RR4YMjIhW>#F((3^cUY2y0z>*K25n)b@u
z-}}XM^5x~_+7=cO+wT;0gF;f)zAlE5k@1>-#k3`1Yokt{J?m@#=R@<{_e@ha=G-*0
z{rBTB7dQ9iV1HXxe}8{js}c|Gur(Kczu&+9$PpLcnMST{i5V|1E!`BM6SbpY;n&v2
z?Ca}7d!<ajeBb{+Huv_nrEAxy+5LK<{PgM5%nJ(~C#jg5n~REwoH%^g`SbJh(^XVe
zRXr!ot9qr$%ElJueC__fZ|0!7adp_*pzrVQzAfXwI@31Jq-*tob^IEEZ>LO|BGHy8
zalhtsZ{h9S?UJRht{Bd%`;~dvfG7F$v$Jk<tx7?u_3@dR#%9O=exCo|<ki*H={nKd
z)|`6YWB+`zzn$T$YiqM@zFrAFw$QmfXIt%;i|(Kjj;H%*(wRAymo3WQ%`q%{6R|jK
zZPc*~3!QtF-TNe@&2kLh?fadltfX|vqW<5Wx$l^!Zq2=Ib~tIHgjn~{9smFR?mgNq
z9$&Ek#*G`?>rUR<SG&9Laj&`5_4xX|6Q@rPpBlXW+o@{_mDSbKTeGejeLa5r_H5IL
z&>lAKsY!pn9pu=WdpnF<Oy|OljmcjxdF!9Nd^wntlM~c3I|gd(eJI%b<5BmnkH@5^
zPMo;#$&-|;t3tiE->X`^H=l8O!k_=^HKVrY&6P6ES~6pX#Ov#erqs&%?XUYAvOdmM
zRYfJ^*O!-B_x9|ZG-=Y4=g*fvd6Kd<<D!#k)|CnC*RQwx`9yg6Z!VtnvS()`S=rcD
zg|Cl0b>hT@XJ==B{d8JC``4G3uP!WXW@2Vm^*nj<q?WF(?)4N<?RavM>Zi}2H`n#c
zYPGYSwv6CuW))m<W0I=(mZYOxcWb}jeRX&D_FG%C(>MQJy?$R%Ow63Jx3`wQyu3X7
z&ySB@zP_PJNsIX8Y&87+{VS`hPv5>B{r}hX{USm_Nz1JrQ=dG2y3)CwFYEHM-fL?j
zlQ*CJare7R-u->C&FuWs+S}X9-rQJdRr>11arycyvrMx?R)^_+eS16H(b4hS4%R=O
zZHX_o-OdaC`|Io1Z@2TaUte2W^{`cZOZs^^)0`Ut!fHMj)^5MI>e<=Z-jj~?$*vBM
zt8@hk&M-_~^LWJ`{e3^2=313b>hJg8sqeo(NL5wUs{GxYZ*Oic?vu5iRh1Vr<F)a5
zo6kLa)fta(ssCShxA3^ERn3nLcK`nrtE#JKUtbq%RrY4aEVEoKb8~ak+*=_JA3pr`
z>9qdVnx92GckOz0QholF6@iPNynnymZ?0A5hX)5i?d_|pLba>!3+Y|{`T6<Qf`?95
z*T=^zyY*~{^#A_*zfj(-Ei3oz-Mh8usn^%n*Zp&EZ3(=)tMuyHX!FunS3FB!U)y?J
z_kq8LuI|+C?(SP#G8eB5UcM^x@-iu#iVaH2%2(G!8hh@q{d)1<-s-P^zu$ko?RMVf
z21aHT&&}!Q!_Lk!y}CKw|8>0fiaBf6=qz2b1e8Jb^z@e1HC-^^5fu~5`tsu9r|;jl
ze_tCX{9`wRD5&IV;S>giJS!Vp)~hQkt?K^lSmrx>*@X)MAP07f>rb0Kdp4*`RQmQ-
z=;!C>uN$AYQI3y~xBYr0c$Qu5uB4=-D_b&ytMBt^Ei8L`3uNNKX7<piC{U<Poi^>(
zo8WIdcDVP;O<J;k|G!&SeXmyPNPyCA?C!Fwpb{u}xu54Gw;qXw)$jL)>*?wJ`uTkR
z)G1Ry<yhvsJ3D{9j{m>v=H~R*`+mQhJX>1ZpP{p%wR=VI@;)IUp)W^-{a>8c-#=yg
z^y&XT_Sa|p|M$16uW#DXq>GFD?N(h|8x2bPSr-;GzPi4CeJi)PmZIXpD!G5H(R-)-
ztps_HonP+CmzS4S|9;cIZ{McVeKaX{erTCYw(Y9@uh;GNOFq_faaZZ<Eyd6MJTEPu
zU$-jpaNEm1>vtEV^Y<+DxBnZ`*w{GBqHxin!-q}t?pSQiy?yPRak<<c=GDKFdByZz
zo|$P3>fAj$KYxAU<6|KIT+5ZO{Q_!2F28am<mt0#QTu)Go<HyZ`}_OwzrVhMni2~^
z0|V~;a#q#f)=Zi->B|Y_eve6C3lneJZ<($ayJ}<d@mKTz|5={5^Ql<1pQM_WhQ@^l
z2b)tR+7>Nd{Pjk1|I25y^TUFICY_Bsv;AI`xB2~=&Fl96tFk_K&2q}xgR4SUPkZT`
zP*}L}+&tUUQfstargwXP`ug?imzS4QH%6G`-?NcyTPSIqwj%B9tXKE<@Bj7v{rcl_
z)jsZhG8cEh-?zH<_cxF~T2^Q285jiQ@Bh2)-Hyk6zH_ZY)6dTf&B<AF_R($q{eObA
z!`1|xo~B!wxn}am4<7>l|NAQ{FTdV*wpr$Z21anz`f$~X6&|KpS1y1W8P8`j^>wmw
zPk(!6rg7D`o9S!yg=?P8On>tDaq{PtMlZLsUb=VhUfCSYGhaR)m(RYjA<?S%S<kzj
z&*gaK?P7GJw_O3n4!_+GhxppBQ@7>Z40<QLY{kC1|KCgY*Ztj6{ywhu+s$-P%VTc(
zvpc7xbmHUhufCKp*Rr^cZ8g`$gom4c{`!@5YfI*&f8WKPOB$y|91gjuK7k|r+|u~{
zb+>jFFIV%KvEb}%^X$93N+;DtFTTDp***8}uF%|DTQ+{yNnEzce{Q6X7_Y2VNPNx5
zR!||rBo@HQq7!mT-g(;U)vK5J&Q_C`m$#es_DJ5Ik8XRvUW*1r@V9q&S5KNGv^D#>
z-`CgI!{6T8`qtJqhBcM<T5S2<rO)S8`@P@yd)>SJ|Lb<{-hI0=?OeZjuN6C!nATdI
zl%2bFfto2r<>lAU%rt&$s~eNLHS227+NiBpb`&O8`?H2>C@46bxBWgxuI@)7sAmo;
zh`vv0$ZBk8wLg0OdN?O1CrI~+iOO$nWf{T)@9(R<x-r>(U+2QE3kjC&Ok)4G+}fJ`
zdS?2(hZhwdJYiyD0yShRD=Kb)MqwNe91>NGVZ6?EDD>*0!d3sk!&(Azf>!LW*g>P5
z7ZVs69ynxdn8S>HXv!oa^uhD__1BK|N?+YmSzK9Jd9&Jzp}}5LU*8{;+TL!zzmAPp
zDrRan*fC+EH+B>*maF;TSnbcukTB`#>FKW<+2uBTH+gV?BO-J`<>zOUmhj11ffDYw
zxjv$|_t)>gwJkUMeP+ncCr?tU{SWFrdi2Po{$EYC|6#qbwNa_>HA8lSMs1wics71F
zSrt-Nwr!eDWYXW~zpgqx4*4s%VU@$p<b$(Jvsd}ewJMwEdv#Ud;$x=e=O<m+nCuQR
zFYEfc+Ozk5pPOs_*0xpa`O~LM4;*j+nI7@3(OVJh{fOqLGLV2_npXV4l$U{lL2dED
zL!qJq0txRm7jX5;SYEmp>>&E;&d$wymp_;S39fZoOxL!yHk9TnCNPRFKFGvypb-=X
zpdmko$>4BJ$e6Rr9>NEWCKo8AW^Xw2Z|9Ulhn$WcKd!By;BfEWJuZI!>&tv+>s8*F
zr0V_T(W9Vu$FE)uwg2}cx%K#5yV|I_y1Jsm!i%#^v$eifhsb{D5MW?nPg?K#E-)}K
zYI9oeqeqWKWMtNC*<#}A;-X<|8+&(G>Fy^#=huF_S#<wm#m4nsv(0j6efs=)?zch>
zMs9|N>^tjXcW)_r>IEBq6Ooi$S@!l;=A$E>w|14jRy|*MT(&&sTlvJg&u7g+jm>5L
z^Vcn(U-zr)*}D}LE*uOE%o~p@AG*3a{PfwgzJ`W|*9`gj`CZ-Jvyb=5TGjpek$TqF
z+&p~g(xuby=$n~^Ik)iy_RHC(NE}O@yL%TX$P0RJZ_l3(8kCr2ntiLMy|p!Rdwfr#
z#ICQ`qMyEgt(~8r&nso(aliimU)Jxn-|v=hEq?BIcBb+1IVY_(<OG=*9yq+&$fm8W
z?fviHzo*Ck{{5RO(dIYDBJknHd-v{D{dm}Zb$59_sI)jg&(_P!3)I5>dQ?3AM$KaP
zy1IR!VxsWzv6Y#Zms!>P_%MIJCcFCqCWZ%6)2B~Y=jZP)dOUC5ylZboCCzeXwDC%(
z{r!5Nkr~u|`TFK&@aD9$msYRemv#5spU>x4@7NK+$;qj9?w%nyh7Cghp0v`}*B2EL
znIe7u{Q2#9>wDha-M!j-x}MqkN{gZ=9na3qT@4yiym#+jxY@(3h6YxK24TzUZ)?uY
zv&}XxTiN>j-@kw2H9Rw>PF3~Hy0fEj>GO+QGJ|DpDlYtby?lOMl<zE)!1MELr_P+2
zS^RH)-7n9XGiP$~@RZEDZYBU8R}SCBcKZ7D@O}ICnI-@H`O~WGO+@SQmbNx6Tie*3
zJ9nCK-z|T4N3;9rq6-%;c%6Uz;o)J>5XzeUc4cp7?EC+(nw6FH=9~155hiJ8BqDXh
zo<4apWp;Jx(d8VB3_Fg23eTfQk9v7}ZtN2k6VuYw^?ms8;kDLRH*elNb>c*Tr)OvB
z{`vL)cHa4EmUCl)ZS}W|0}YJVHb!nv%Y1ulE2#PW_4&@{^CqhtJ$^j<?X9h!K7QO8
zwLRh~WK8_q50S)(2vDFeYiVJbYg2jYm)iF;XMC0}TNd?wwn^rsX?n4%l->I@3=9G$
zT>&-8UR-dTYh51p_SV*|>F4E^E?Wi~uQ%(yssF|7$E~f|rww?(<FFP53p~qTOF(jY
zb#3UmO{u3%a&MXF#_x-<w6x^n<h=On>+7p~tIKD9-m&9`-5=0^-Ilt)RkeRU9tVw%
z{`vdYwCYQS?cXn#&H6dkr{rA~1WgK^xO+FYv$NC7$7fB!{3};NX1jS$0*$@RG*17w
zGW*-BtEZn8E;a_G`3DYft|lCe(J5jFO(=m%TfVkqD}R9s4h92BFu%nVJ|$oRntl+F
z(s}N1093FDY?#B`&%p?qkZNXSXkcD=u!s+&1XNBjF&sE}!6LLCiQl+^?X=~E1V#pi
z89i*EsR^g%r!t@rX7B+`OhEL5<_Bar7*AV*i<AQ?ApI6#E0N|dczT1sx+C#9vawVZ
zpft>^m|)4iyvAim%1NP}J9eD7eLFfbGV<xR`&F;ka&dBQJbZ?M;lS1dn#^G{o0^#R
zemKPa^qA)-1_t-gYY8*|Hm`bmg;CqYB&1tRH>j*^+ur3&3=HcO{iHYOh;^&^&s+28
z(If6{5&Oe~f)=IEuMInR@ZhH}UqGr&QcsD9iizENbA3-`F|Uk8!0m0h!PE6(pFDlK
zbee8-*3C_+;h)187_Lj)TK(#LCi65EP{VeyTko!vZc$m;wJ$F(UtRqCoR^>9HBeXO
z`TY7gW%s@<H_s<+d~so+vy@rR3{dN;^7FHmaeJ#kMa$Q_<@aOX-ezQAxY`oTuH!k&
zD7CArt82=P85IZL#@GE^3QD7(*4X<!pZnzM{}e7=wk+$<kB^|VZ<c>AXY>Dq&FovN
zzGm6}ezRH1IIYL-#{=f8D*~NYu3Q;fXwAT&eq2iD`GYTvt6jUrx_Wv-yu7;n=GjE%
z{chuxPT3eCA}*e8{BQgIzrJmW8GnC$HG2%|qJRbu_vc+$(3rR5A)BmS&5u{0>DCox
zbL<j4FI`y~92yc*a&T*ed%qm0+tSqBoO?{#EN6vP=_?Im<I8C_1_m4MSiZWpcJ-V&
zGR5k=3_H{=CRny-KXP5H8@1&^Gr!%6DN{s_9zPymF#q)5?(<i#er<Z(mKgKt#^2xH
zSG)B}nI$taGIDWn>{ye{%&_X*ySux$R)5c%y>ZW;J*(?t<4j)3tm|a+{uST-_4w9^
zv$ITtGc#B6$y%it{{xL7U0E5Nb#2Ye%;JpO+twaBbSS5eBb?#E4A30Jaryc?&(cp!
zQ2aLUT4-=Y#EKt3Dp*-qKnd*O!-u!FWCkxiFDxvqEG{n2D`T<Yj@e;@Ed>vqN?%-X
z1huplyY-3)3NDnjE}K!v&G&Q`XN04pW7UU)>|cMqUVpo0k%5wuQ(K~jrRB}E|4Wvr
zMCyovrXoUZLm3X3o{8({SiES_lsR+OoH*g38?nJ5FE6jFqvOK2x3~4H-|a4ce+^V;
zKYdzy@a^N{{nv&4Z5DoedprBzpPy3pb$j^aY*xhWt(uz6z1n(ttxLs1_p;z+J{LEo
zo}MysBB&$gImyY%Nkmk1>69rVPoF$l0UAB~^ZESNl9xeutKaW^b#--ksJ|>jgVxsU
z>w0Trb_RKRdS2tNb#-%F6}!7^mPO&BZFzUABA<8m_J)RpTw$HPe$pf%(8Sl_cK-0F
zs9B{oFD@+P;^Mm0C8~X8XK{M)yW@fuxy_{ux7^#5>h0?0HqHBU{=T2f($36Scz1WX
zww|8f%a<=f>G@vW@3%$I*Sy%zRI!hj!N5Cod-&?`^`LHMQc}{IWH~vxuD-r&eX`ai
ze|~)Qo|pXc(o)bQQQFyAr3c@-y1Je^eR}fz`SZ{ID7_w={`X%(`lBhlVId(?7A;z&
zw<GuCqoYxKDmI>-(cRs>%x~_hmBGv7zU&d*+x77N|9{`-&(>gI;7gd+IN6c`x)$L6
zzS^v-tEOgMTa#%lCnlD5w{D~9;hj5o&N9iIw9IE_ke<WTk6*roOxKH@GHu$j4<8Ed
z7M<2Tb@JrJ&FAe_|N8p+c8hiTgDIfK&#O~%^Oeq=IyGtk{`#GT_4W0VZ3~6f{bIiS
zkTgyMrK$SAujBQ1-R~0BHmUhhVEf}i^R<nja^&^3wORM}{B-SKn>Xj1pdtgq4x7r#
z%1<9YXqdly`7-lv+{9*f{;Y#dth21k^LB;{{tX0m^|$3lgC@|Tc9*RMjSPy4i-Tr6
zeto?jzy6Jy3=g=}KO)CFZTj@-TwGkIdY?ak9=$zW#mp?sw(83T+wXUZFJ@1fGG#^n
z{e7Te9?&G#>x%hywO6*~MuUc`K%*J@Rei5oKt-^yW#y+Ob$>p(&))dx(W7p;$M4_Q
zA3WX=85ucg$+2GP_zycky<utdyeqf1X0N?plO)mB)!jXH`t;>z&iGti9qzw1>*}Rx
zy3t?Gn%~d(_vfeCa}GYfu-DhtZq2>D?exCmufUBJ=AD<=RtGM2%et~+;@KNFH>d0W
znz!=8g@C2Ymus7wUr$>IYHFu$j1ZBMsyg_%Pu5zk`{<&B&Fs^6w?97KudSis0UDvW
zu`#*y(-Y4~9kHoXrcAN+4-CAh>YPw|7}Q#p>9CD6u_}2HASy1dt*Uy|Dl8%*<L{C9
zo9Y~!H*cOgabhB`XYH>q7jJFN-kNvUYW93KUa1$)X6IkqRr<Q*``vQyNl{y~R1X_`
zIcNR;M$GSS{e1y$Zf#a&Z!(_cFTM+EnHThOb8}zbka&2?gb52KtNUwNSVUxIW}Z58
zCL}9sRq1}u$!eJ|FD<nydeXtf%zSl;r?6?}r6qTMCM73d-H_;<y<^gnK3VHk@%!td
zHl=j>&9__o@9*!|M>>V8o=y#a^7!%M8#iuf?YzFq2~>F>yz%(y)zi~-FK@}byrt%6
z(bFeSG*nbvUSD4y{{7wE+-FZ86}@ba7u}lne*gb{pypxuy-Ig!^Smj$ckc#GsLwP`
zfA#D2dh@S!Z+aV885lt0+eePLsH&-j?eNdaTIIVqbYfTBnYRxgF4PQOmT_u|W_{JX
ztE`~b342oib&~@%$Zd`mEG+{_s|eKh0VV7P$od2W6ThqSpacr#E383nbD(#293Z_S
z)b$OZWZA4J5L$1e!~$>jw79pxRz6^Db8zrZD_(FAyzT~MKOe}+;HIqs%c58Ppw$=9
zW>4dXjtc~vIUp-w>aq3Dn8X+u_`psAne5Qo+6tP2b#Q3dvv;qkoZLF!*=C`?Yzz$z
zLA|g8jm){nK7aZI9(3P+zizjbd7e&ue0=Gf8-d*7dLfyaD<ii*Gyn(agiUOx-^};!
z?CJ_CD%zx^th_bhAQNbrfs&Hb?d|#d-|T#UZ*R2sG#${u_0HUOe)(%RHYTfj*8jeJ
zf6A08OBO6pu>E*MxT~*k-=F&nvYJ57i+Kzh+?}c&uBEBzSy)&&X~~Hb9$T}o`w6T2
zUAeY4TK~1p#*G`hy1I5He7?FOP`UQ=S#!{UN~w;Tn%l*T7rnf_LCH`=L?q=LuO$OC
zw@IzR-Ir5+zPIFM(A)d_<2R?B-SyxbxHMgD1R5Sz0rkwL?{O;yCG!VT+w<?+ZOyvs
zWtx3$izGic_vXC)Gw$4p@ttMj8NAGA;{5sXOV`Z>_i8RIa9r9~TmniH2O4iY4sMBz
zjQsTdyT19m_wV%&8<adc(%CI%pL~p`vby^9`ue}wOP_^?ge-aTBn337^K5qhx+@#|
z`Wjdn4w&lc>-)>e$vr)0Yiqmqwsz5n2ace6T04AQNUxNsR_WdSf1c`F6+CD#%ekQ-
zF8;h~1!zUrfrBAmt5@&YvnM1VARy1i-v0isy-FK5ZhUodar?WS&*yo?em*K5e+4vv
z7`Zv^<+t1U>+iIzW&|gdCtmV`|2`b%2Ne!yBN7uIy7qtk{(b+0<O7?&2KGvu?|V=<
zzwXycv%EViwq{?~GBysLl!B$8-DIh!tLr;i&G!<h)zH$?a(eI9tk#Cm)_FCbJhx_E
zK6dZ2gJ{M3z2D#1vW9G&FhQW&pE2}-Q~yO7-)=G8D~nvYXK#$J`{@d5#C@1Sp!`kx
ztCAqueRL6`0N%duzt<$taIA)!nwxVw-&O7Pdp@P-ZH!U?kBGe4c%t^jg@v=M%hv@3
z1)1dCvGCl#H7+wVlZ&4}+`*wiMbp|kdb$7nu!4dOF|n~%m;1}FjorQN&QH)#^Pb9L
z&`{&sTU$5x<=@=os_fo(1=O~FdV2coiuS&CNW|&r_#AHI4R&&B@|$O~^1*|IrAwD;
z8XE_%T)FbvUp3!ZOO|?1e|2J_G8Yd|$YeF&D@!~l7d`Lp?F~KL##{RRZh7?aJ~`V}
zjm+$)jvjUWey@5xXtb!<$HSu|Z`aFZtIH>c_JB$s=8e~<+v-Pe^SQjt_wuKwr>9Py
zym-O{fwl4b<L>S*-)?#SY0a(oPTxNq=C^<G=H})}b<swj-7hcqR|oZ;o<Dl`ZXJ4A
zd$^r{y7cR-tEYQ;d9BOnyUGbEY1gxHKPy_dy^4{6!2*)8u=bt6ik%J=@qto5yyJ(Z
zP)6^rA(dm`?jEH3*3U5)U&oM8Aq_6%!A?4)?DYJAvJ-J*f(#7AbriuS<Mb?O`~YLA
z+sVgvzuy>xMt>R`8$W&eG-?0-{cJoE3*O$|9$)Z((ITa@^K7HnMsEi-nWRj!mh67F
z%Uj)Vj=}F~Z@R!;-K6zw+FDv(+1J(t#>C8NYHpr7ZQ8Pq4vwYEm#>cAo+m0-{^5Zm
zXjt~l3`0;Grl_b0R4apqcBIX6Kx5!*e~XEWYbz-^S(m>H@$u<#a&nq7dGg}(_Wxr*
zN&fM%Uf-SZ?hgbQU;p^{_|~S>Zcv+xSJKD@G&JMs32qO7h90h7y?QU0h2a2b;KLhK
zA_WCadi3a#is!_M6SJ<bo2%wGXT{p+?O_!;B_&%HEnb{^>{yTF;spy7RMpjQv#hE7
z{OslC^LCfF<=(!sGI;swVq?BT>-sr(4`0|(_!v|G*nT*`EM=ZI2Q<6qdFt%h(9h4#
zg60x$7k4o*gzVfTc6!Zx@5sGXTkqVtBO)xEEc^Mxhk%ljEucBQ$H)7_v;M`!#ev3t
zN?u*jd_5ykB5FfI<Ga1z<3RIVs;a7|PM=<VrE<0KZnibz@il><^;n=;(ti7Y5p9VP
z+pn&RjRxhrd)4o4t<MQCFg(Xn15DYRe*V?;__{zhw>D5e9@JaRzrXL=+xvCD*ZR$|
zSU5XxmuJ82w;44xHK2ymx3{;oZEf#f`CZ6TR_n4O<Dycpl&RO|^z+w1^A&m39v&T_
z?y~h69tMWr8;(n@S+hpx=kMRsrN4jwK0Q%l`c{V8A0Hmx+EKVz<>cMFv5VdNuU%Og
zy!JM~td+{k?Z;cbzP=7xLzW`ZmUe#LT1IBJ7xw>u_TSo?9X|7RQAQbW#PL4a-7gMV
z%FD~owJcu7mCnM@P<vB3;px+-Cl4Q9d}qh<<;zQdFI7=f19j;^laJGMA{QMx<RmI8
z3bOE0zIXkpf8S5*@86=A@&4}a?M=<irs?NobYpjI3Htu@#2cv%fByU_d2?eU*Y@`}
zH@i1BHilX#Gcc^Pjf;!Z($LT_pErMg{@prFMMcGH|NkFg=3kL~ybm<&ur=$d*6iYv
z_xJ8TyW9k7l=RElYSpZDE=|4OQ2KuF_pFD9TB}|xY!BI8mh1W7`zB}#>(Zr5CWVh&
zs{I5R8njB6@?QJ*_xIPg+wb4%iPf<AJ8%E~|E%)NX{o86K}+N32P}5u1r4Bdc6MrM
zXiR8tZ~rR8D{ZE;egFLV_fyw?Ugh^jY6GaNSpWa`eJ)<!tGe6oD0LrQ1X`Xj+sxOx
z>`g#BpR7scrxdV#Sxa+oZ_B#9ZSC2Jva)SK!NJ-#Y9=NjFJHbqb@uGm$QMW}x~k-!
zpPxTHQ35pCVq;@da@p5>rCYC*_#c-?ox<uRcT2B_{*vlDvu?i9n%Ldj%HG{s30hP3
z<KyE`U%p&<c6N5@t1Ftm^X+2i*M6J1XYby(maYs8tESvspRr?(Th5CM3$^t0!o0k?
zO4n@I5P+z|mfUZOa&v3*^72~q`|p>_{!h=9zq+Ei_xrtSP?gin#;f9Kntd(A#ieCi
z{{6gK)yd%Y4rs~2+25PyG~SIjdG++^(v`u>Z`E94U|<NDyJ3R?ue6yDCnu*><)<ZI
zec#QTIn(Uy^(CH@x0JjLlC>;4vdgXNKm%jer6rxaN?t12+uNt6rGbV}BO@cPeGN|q
zB}sp~pDuf=zk`~BsS<5*bw5*0GcGuAa&m@Noe!UVmwB3T#=Si|^LD>A(~aA6<6bZ$
zg9T%Cjpb+D<C&E^LF1XA{<`)1J&T__NttU^>Q(ysTIlt4v8IWKT8i?yGVbo$x-IAC
zq8~ph&dxIR*3;7iEr@(}W@hoh>n<VbW&9EMYroG83Jxy)@gec)lP5R!<b?cs%l{d)
z%;RkpC@X`U{^d)_-#?$vuZrKluj>1|wI?U5ulAj7R{v^_o}OM!uqDHSsN(YS@T8<g
zLc+q@chpTyx88|bXPA5}<ID`h>9un&TnKpmd()hmvCP*trJnxs;V?gFTnV&jCuDox
z-J;)r3=3jAO|!4P`1cz;4+|Q-6Vr`)ablu!)#tP3pb<6D7)di5@2W4A#zsb`RI3;m
z{_#}T-ZVawdcEQ68RPRSoZI<+J!s}%)BRxGw8QQE*;iHsa`Ew9o2DBLTEp>r+l?C$
zUte5wo;Y#huUD(rU)fXn*=z1@w_Yi=^I{APA?amnV?kw>yIkdyRqfiIvy9XGK7IN$
zWzwW1;dLtD@xi}euTPyld$ncpGmlAfRWB5`W?Wo!r*dB9vzbM?;PUx|a(~R;lgte3
zB)|O-Q9P4=olRRs<;kXf_fPPE)@6XK<k~;$`LyV~z|YUlZms)U<tZAzMO^B+ehfoH
zWQEHMnK!o*&dxUX&)@g+S!liOznRAAC6A79Zq2{{Z_)48mX;U)|GocT^6t*g)mHKh
z3=i(Sxs{-*rnai=?X6u;r$t{`<}1z0#&+uJ)vIap-A5PI|9LDQUNU!c`gyNOSyxw;
zUi^D%+h^9x3=Gu^4;Jy2@kW5AYIVfAnV6ZU&Ym6pZuexB;(v=YxcyQcS1V1IKElAj
zpm%H?<LeU>l|zeU<KyFh{{H=X_4<9gUetkfGBGiQY)(7N)qMB;ez^sko}HN)tha|(
z!oWdLP_X{j9EOI~$(NV;g4R=?jmXQ(n;J9w*vem<e|NjBJ_VXvHNRKk4C*R9aQc4U
z?l)+9d*eQxwRv}US(UyD+4*;!iiqDFi;w>M&xkMtZ2k4^?dpBCzi;)Vrlh>M=q|tY
za!<fq3zq}8_Ec`ZwmyFSnKM3~L7UUgmOP(Z4qAP)EH?R23un~6nw@U_a%<1dHov`R
z)x+!Y^;aMF+v~~8%lFFL$4$DjDb*V^3wOWfbMLLK+3KFBPMx~6tMs+cY+(k5`Xf?0
z&l9dUghoWHn5gWYb$3^(5s!1}t1A<~+}>WGuBr-NaPs@@cHhd0=>-KFKvf01d`*D)
z-IB>)ecyqWe~IbGtpPRTL1V>V?}mTBTR#8M<Hx1vZNF!{xv>$n8b(YnW`%U#4#)VK
zk4Ht%vokPQ=<nXQEb&;6BxqFW-?#1iHMO<9_y7B~y6*4S@YM8l(7GSc#9-RFIhnV<
zw(-fXvaSBMqWt|m(3l&jg<*cbCKy!2%(Jb|*{8NVZf_N6Xu77RMnqnIed_6HFI&aq
zF2t7K4Sly~&k<gR1ToO)?VDQ(p!x8wuC7h{Z1?uepFdwnSQs>fqZ_@==e*tTHJR6Q
zZf{#VO+UUa^7prwm)+y*ex~mH`111d+kbw2czAf(8D0hk(7f|*vxvyZ$XAz^dbi%*
zUGj3#n>TN?<_Iz{9GJQ}`v9nDyma}p_MLr|pVL5NF0a&B7#ik&?6_cg!!*Iw)iv|#
zs?e%GACH69XHA+UG<DiEEoEhA&=L^Px(Cow%z42q3=AtwcCR})%cgSEzu))&YpJTb
zc8lpw>OP%cxqi!*khVk(EiJFf>i*lFi!d^*C^GT8IzN^fv;g4JrAwgo$-L5LFJ4?+
zJgKglKg`9Y#mUL(jioIELxcTM#W<5&`)aGV=HI_}?=l0!fp<Sd78bAg)DU_z>{Qam
zm=B?x3=9l?t4=Y8?XCK%r|p@Zp02H|+<b+XVaKuy36||z{1M{Sy3JprH+cE@TzS2I
zzg~EFxT~96*jZ3c@_8hXy+P&WlarG{tEi?-nzU%qA|=oeBxp!BYFkd``<09g0jU`q
z<}}}B4vS3w`a8k2^i>FG!mc`tfg!|_X<G4y=mV$Dox8@Zzh{AKx7f-RD?BDnoH)y>
zbXC-rjKuYtj0_Aj7M)@a3k#cO8UY%Pys{#2mQgC#K`w@d|NX~S{#yO1;p(PTZ_qM#
z6O)k1>i%KfV!EK_@0>YvxcXn-*qAH|YU@2X6;gTN)cNz%Ro>p+9S+(V@?u|G;)$e<
zE0!!-qP2{Tq2caEw$qj&l?S|heb>J7W@2CnS*gVz5f~U4TI<Qcu!<Kn$B_iufx}=S
zy?Z}9Hv_{Te%@)tkp3q}#JNV$cn5Ug2HfF6>Hs0;x5(&2VB0ZcxjFy%J3^y2iw-Ra
zdG_F7b5UvO)ftA#UtX<VpLM7OT-k%h>H6({ok+W1`}^C<{QLV(oj-s5&(F`I!orKE
zOqt?cR~lD(1k}4)SGc?E?WI#wwL#0LcI>e53`$8^a%*e$@=js(tk>7pipojL%C3F!
zB4hSO!{lQc8X6uaPo4xV@hPqO^yK8K@b&Y|^6%-$%gcj{vM)E1`!g>u^L=%D`}@!x
z*1ticW(OK?EIt^8yVd_nZqJ@Qpf=UZD=UMqZQPuGKI`%_->#mXEp6JKQl?o`YHDh>
zWL;h56?^z1Xij^_vA4Ik`>&1K8gzD+Y3{MZhYqc|t^f4R&CS1_PLH25apJ<0lhw2T
z|NCp!d*yn3{n|&5l1g7)Ir(gdlxdcRiAhNH_jjfb{bbldvzG-5p!wafuxWq({yp9M
z`}gnD20U{u3Lj0nE@4-*!z}NPh9_vL%ZrPPLCJb{c7)C}uJy$mk59NN2p$MLBG=FH
z`O~K-4<82R-MM`E@~*!@Lc+qJ{Set7A02&lYwKz*Ztl>Kkd$IxPtmyNMe73Rf+j%=
zdOv^q6y)gWxbx$mKQ*tvd2@1dZv6M3U9Q4G*1GJ<VSf9Z*yzx*zOHq}me*JKfs?@u
z?Mjy&)!*~p-rIXS?M=|z35d4xBq{T}n3a}SRs=dTv-5={B`xCO;(GG%VPfr_h_Z9`
zamzPdFDL=^&gXbMKR5U4&f@gh8yCCxYZ)4DJe2I@>^ybeymfc(#LRAeXI=ho%F(32
zjEsz>&kO(ksg!J6xH<j&sl$hz5!)HoE_7~>`mU{|b!lJiZ<C}W9bWN=CvJrFbo)&s
zoZI<A3kx>}1qH21Zf$M#^7am{sMx{8#H8YhG9zF2YvrAvesissg4WVBHa3FR+o_zq
zem%VQ_qVH`o}SLVcV}P8%b>Z|<>y|;nRzvX$JR&~qM4!ss?|XqV9?y_^XH%`1<-(w
zw)W~fyVs_jowXFS3?lvfys9@FkC(i;VF+r%fCf;1eSICi^n1-#P*N*U`1Whl^VHMR
zGH-3k1XavMMMWY)LW{n>zP`Hp`#ZDeg@qeye}LM3pds>;Cr?_HzM2A>vs@Ru8<Z1Y
zU0XZ*>^@nmk_*dxXM-v;&>|1eo|?|ii*IgjKD#rJ9W+$QPy}v<K61UDwRG9CTP9JL
z^5eUW)6UE|z0YrZ-rX-Z)93$vSs5k{ibI)>y;3?ey1^q!pc!sER}T2TKCI(Apo9t=
zF*hM{I=^{g;i`Yg<2{L3N5EHI=nzx}4F^sXkFU9SFW5o!@%cZu3f|qZtoCQT$^sc|
zX?`jbfjnOiD^e3UT&~K4G9hdUz(c`>7^Cc<+(K~408itJUyqR{3KVRVN{|;L;2d)b
zNK9P#=<#Dw0Re^l{Cv>b=F7``r`x={>~9}hQnCd!asBhhj}@t>r*(C929}k5bM3dT
z{k7%KpFd9?Jz8X%eQidmG+#3$=@S~{5to-=KW7f8|LOx;8_p+hw`O{LUF7TQ>#y&t
z{r%+m^YVj_m-)_K_UBK{^4#m7EFVK)XkFW;?BAcCpb_G;H$bc2;`Ua(oEjc?@ytx)
z)3TpIQ)UkjwSrdLf|kh_=O1$fFRNe=zLqreYq2Ko*;B6mzsWl$Es4(C>H786)yw7g
zYs(KNCnYDFrkoG}^+nneV~)M|`05N^_W@dW1*%~}SBI^N+`Q~;MMT7m(rO2X1F7-v
z@9ZoF4FWZ@@t(@9{tj6)C2LXO(9SQv?@e)-IjH`OdAw=UrYG;;$LHO-e?Pu0@x_r&
z;i*>l|NQ(68esqZZuj{#8+-eB&>C&fAk&u2%i6OxF9xkq0aq)aY2EgA_nn3Q{{FAO
zo!**yTI}o`%V1@<o`Cgndvmtg{{QnC)Y*1&I+Qwp{Vt^hMh5i4_jKWd1B`d8-|q!2
zxmo1eowH5WvdE?Q`MImv>-VbV=fBsUzol6jJP5sR%R$iS+P0jVNyebC$DGmpwCi}E
zZ1Deoe?zzD#e#-(?d<H#ZqKj#m1&xJ$;Gz%TL@^s(a-u{FV#UkZ3BY~nQ^zlD{4Bw
zytx@{Tm5Z|<nQ<O|5q12J{DTxlaaCF(&fvb{brjl)IL8qcT<E87ccML7pC=pzlMK(
ze?K0y^2y&n{BRrZ>9@siZWz{r_Wp5kZIav`p#xgUp(EB^R8;ij_3LWO?JqxoQk8{3
z^_qiHRwXMy6MIvph-3?B>*$0;Ma?>N`0(2K3TMupyY}+(a#0x>o$&B*&;47Inb~*(
z!osFqx_tRG>k1>#Vzcx1|8tDLffCrQEt#OXsq5=vPj8L83fh$3kR3zxa;cL4f4{#5
zjdm?sym)K<|GKyL_ut=De|DCsX~qQw&s`60KghnmPWP}u$>+1?*$)mhhX2%CEe0-B
zlKV?N@J?VR{cc+h8lMyEcI_6|zxL>8ckVXR>}zMFHfTN4$zJ!b16+P?yk0K2Yxiz#
zL&Lz%&Q8&HlV{D!x}4#8iQoRuhvm<&t`66qI%UeAmycy7^`%%DU}NJ);&{cB7PRhQ
zU=Wr7oeOZr6|Hy!HF{u*K~sgug_!f>kiVb_Us$1bh}acX=!F>4QcjS04;)a}j0z^I
z?%c5><Jp;+*W#BiU3&89QCIhVxvh`aFfcSID<=FsxO)9QEpc)2(zmz1Zu+)g>i<$k
zh8<;7|5hJ;BOjv6bWMKG*K5&P7Z<gHruPoF^WUzvVqjPxrIhgZ9KZb^(BOCWy*-tn
zN;_;#MB;l*Muv5UpxUM3t2Jm1_ui_npk8g(iwg@umDY#l0vqa{uibv{(ga24C(oWO
zo2cv#+NO1Db9(>Y<*W=lj$Mcgt!G*DKmYtZThQd#yWQ{YJcIh>Y()eF9J*N<7_@pD
zzW!euvC*kl%JkCO?f0@|r45r>?o~dQm26Ag-^s|ZP7^d8%%bDDbm`KlpZ{;|{yk&W
zEB3y}^PT<VOcotsinL?6q^0bnG)**X5#MZG^=)D;y%%R~?F!_Yxb5qb7L{AVi6=!b
zY%#f<b~;S=BV)1cgw2{ed2*SoI(@j0a)1Bc{(9YSX49|S-wP`DoBexHea`lI^_Dk}
zpa0(beO=sI&^rD9|NeqnpkGew?+0!6_4W1r_35<!URzfNh6~*vJl{>)_v@9mshL?8
zsK@yK?|0k2$Z1POwZk$FwQ$DGl4Up`4VpiC_AIS`<F{|$^7iY`fAUV6BVy93RjW$Q
znqGggcKf|oTV!^Wy^UHMz1?r=(xsoifB$}ohmpZn*Tf`b;lhP-$@PD~PA_|Z@9x^~
zstG^a?Bq9qX0l3OUwaAKLRS0z?)8@y6%{+~)&H-}y|KYDGcz-8h9U#Qi`-v-<kozB
zeH}D?Fw3emYx?oYlO~x|d`P(G%fawMFsJA{Z>?PdXe`Uo(J}pQa%$wXWj-?(`OY?b
z`Tc(V^Y{=3hJv`-y3T^XzrH@VO~1J*HELVV%q8cfWsHrDr_P*tQ@5Cz;fw8?gP(Y7
z_krip*Pb_zU|_hx+Z+5IyqNFGwQI{Pi=SyIDLFYhI(m6|T@sJ4DZF>x)YKHTup2Zv
zP*4CGs1AvZz58^h-gNJ!OP7L%k4k<%ovy8;<Fj(*%2g{@8veD211+3A;I`+h-k~#R
ze5OvBqM@wp>^)5<aDUz3DYIs+dV72O{LiJOrKMV0T0zdv%}L40=PTEP*0F+$wzKB<
z*SL0zy?nWR{<ZV=|JOWuk^<U>DE=oqHC;!Li6KGx-i;@qf#S7sdqMl#Pn|qDQ6)7c
zB?HuJwXNO;TK;tHx|)j0ik&+n6%`euc9*@4yuISvx3a0zrez)Lku0*1c?TMU03Cn;
z$|z1whg$9D_=2+Vh2v`@H@p4)^)<MxY+Lo2`}gA`BO_O>TzPS!bNjhpw-}k(G*ncc
z?D=j{`)f;7bad(0tKro>{BkxCb#--ITwJ?;uy0TVO$eJk>Qy~->sHj!BS$hG9B7n#
z+}YXr?(uXj1qFxgcgtqW@U??>P2R8j?F;JpotbG2DsKA=o^wYiu`n#?&(6sSsi>$}
z{_(?yf}JsXrY0s5JI{kwA0;2-S-O1r?&FIVE!tB0I*eD|?#>C@H%*}CkMu{k=Bu}E
zY1P;N_j}C9$oTHD8jp-cfcd?O#h~?up!5pb^D)P7IcPTL@4w&g-QFdNgX;e;g^i7k
zpuw}{A1AB(@9K|V_3c}k?+gP+(60MON4xJnF27&99klsDR8%zc-=Ck;Yvgx>y5tGQ
z(?97Q0u92=Hp~4aVO{s<hh@C5oZP*qMhVHui&ZjDOi&cJonIdk9-jUE-QB1y8556J
zl$2}%?P|%rz3uI!_lfGDqN(P@larH8D?g?5Z?vucR`I6#SAAh&;jdq>*Oxvz!r9;Z
z&bsW)gw)8c?(W@BDrN0zBBrI5{_=}|dB&P&uHSRj`-lB*fEq%*70LY9zP!Brw8Sbj
zEbN(Fc6RpU!w&<3f+i^`DXGl;dF9)#UAy$0Fa11n<j9GqMW9h5xySeG|L=YE>XnGR
zeEq@eTZ}=AA99XJ%bU!aF=NG+EhbN&KY#t<;bG9;q{9y{G%~Y?#Kpa{)7RJc7Znv<
zwSN8e3k#j^J_gN#>72ggZ~s?i`st-zU0k_0H@Qv<2?$W|1l7%6UR~4l<JTo0@5_92
zq%$ic1H21~k(uqqN%i?Azs}qPEk9sbwPwwgJ3EU*LqnHNn<jSj*s-j~$9h2xh~F}&
zH$8cNz49ZdxPK>*9y!f=O60Vsd=ZnjBpzl1E$v$!w)WC8-`Q98*Vo@Iy&el1C^9K}
zaw4zp&^%YrY9qHj7ZW^#Kuw~Eh!uwp9ojrEI4<tp#f-m;7cYKnfA;YG`|+%-ta1xa
zhi?Rpxg0Qn1Vc2h*qKG(vI4wdc=p1=SAW4h5*~2l&+SI@Q)y&=#)cYZP}@LSG2tiM
zG|<Xqs6vngxDS*FN^duKU`0-X1W45Eketqa2XF-r;X5@yl?JtwZg4Q3Hs9a^>Rcft
zkSt8gm{SGWN^uw@x<T+;!cR7k(;1+ADI(2vethLODEl)=fLB8IZeTxc4sJ0>xE)|h
zIKyxM=fPXe1?;l6Rab5YfAIWo60xlQ!e)*LhMtvc*M9vba-n(F?Ad#5Sr2T3Bt)40
z1m$~CN;%otm*-d(gBF~Erg2qOUv}&7vv~h{)~s2eQ!73`J`UOuTvu1OYTdebC2`r=
zt3kW=Kr3WGdn5`9HavR#I5aA1RbO9U_phy+j6vl~Kw8=|FE209NQ<iXv=#CD>%4q@
zuYP-b`~1&cyLMTLii)mWxX^Lq#*OK`#lOG52Q5NX1kVN+7H(8hRyNJPrjweQDp@a=
zpWL~Deap6OUf?S3@7L?qm1efu>gw*@V!EHcnOtxNZBYg7UA}$!L)X3^cWOWGe{Wm;
zO~cmq?%(HC<u6~V?wxC0p7r(BRZtV(&#zBKQ(4)0v0Lw@H#awLEq#4$^FA|0MaQ#e
z&w`rvx3*@71_xh$TA7%bcx!L<_T&HAL5ugMPE~C`yl`jnb1fsIOK+Mh1sPYfU%7tW
zd(x%Lm-ku=>Py;IZP~uOLGH-=^81&<>-WEY{n|9`j6}Zw;Tfjc*Fe5Mb?#hQ|IgpQ
zLAyU#Sy`=0UQAF@QrcDXwt<oP-(_1iUa2LH&1|Jo``_>T{iMJGv=^00Oz+GR&&eU7
zp-UegZr3(2xN!S2BSXxRYuCcAUca7wX^H3EGXDIWqV;RnhWhyQu<^;fFq}7I#tXZ;
zZ4IR>rKF`*Jr^!qc(<rFUoqip!-We0pfTBd^Vk>;FvMrA`*-oijTIk0eDHhx@ZrOv
zoiSM%884>&o@ZAZrK+mh)zbr7`*KV7`v);lY??jlWm~;<Yv{j!|K=WJW@5T?eD~qx
ze%obxtG~ax>~BAH{`~yC@B129864!rB_u%S=afp>SAJUZdq<|Lt83NwyXBx6{_@w8
zR&NI_iQ6#IJ9h(U*Z11!?dOu;oVWjP^E~^|;lsOQ*#4x~UzwojtXE|hTWBG3>h$T$
zYa%yKnLj`O%dIj;P)X75GuzDf@-pAg61TTzPY((TI`?bVjvW@Yf4^S0Dty#(-0i!p
zb=iqcI!BKlm7IP5*Vorm=gtK!mw(-Be$SvRcK64%to{t*DL+3w{q*^Ba6rI>-}$Tl
zo0YwZIC|_@RbraM{inVDMf2@ycg^uze(KbzJIT4ZxkVN-US3{B`<pkcT<KX_TAG!g
zzkfyg>UHa`G4tCj*qD5L)v8sm7OlG&eIbGI!ph*~TM`a3f#x}r=e*Zv-m`f5|J&X^
zKA`T?r_Y~3bCIs@?x!CXyg1OvtfjACK7ac3>C3yixImHm;=;mrAE(Dvc}`1xxqN=z
zq|;A>TwPnY<=j;A1kG-%$l6o{1TXiSI)DCr&^Q3U-H!vwd>c1z-1TzV?5YQu)ohI1
z4UZl@0?ph$eg0fqN9WA#%Zv|Lr%s&;S`@Wv)v7C(E-kuoBO>?Cj*E|zHFZwE`gFJM
z^Ru(X?M|mR-C1~MlTP^o&^q7JKR*gRFFo$JzxPt=y#4<@{;WFFI2!HFZPEcP|1Ywd
z8?_<fpym18{QT?P`ukSAc#*-%!jf^MLr_aYBOp3@_VLQY?floTtPBS2gTGsLI~O!L
z9TGA{OIzDI_VbO6$yKjbE;lK85dhNm<iy0PuUEsL7VYe@Q@;>h@%r?<-{0S_KXk|m
zbe=%{|G(SI-rQKoDXdm8Cpa!nZ~5hy7vnsG+}+!6-M(%8*J7^UcgvF}PsYyseE$5N
z%Fk#1Fx_Hd<Zb|M{B4)3^6;Ln2g=fs=TDzHb?NhY`}Hj?EK{dU0ZmlRvajDKSMh+c
z|Fh0%&_E?<88&E+e(UwP%c0@1OWWn^BC5Z=DV%@()~!{$-|Ye|hq-cQrZH#{{_8&L
zcL8;E`#=Xpy{%+iuzRBmhr^|rwL+qzqFOpSZ$5F?)c^VD9vTwzVxqfTU}ok@m6sRY
z<*z<C*c=)Yv*zq<b8Sn@o3;Ny4M^SSZ7;sv&Y!Nbbm`KUx3brVR#xtetNj}48B|!f
z5i~z`_1d*v`<r#Ft)m}4d<fdx2DbIJCByDd$Jl!h*+}UyOggtELQ+yvOI!Q$!^7>?
zvj4wa_D_wRR#a4EbF8?y_-WD3ErpNW`aeqN?KmjAZi#WcWa-_~>zV)m{e8C)G(COJ
z`u!Er@R)_qo~3<1f4BU;?()kkU%kpY?9a(y+uXo<;O)-m^De)<ynOea?$Qqr9Dn}&
zscB_(EBVi?>~(=29vyr#77q;n{jWArd3j2EeTcVr_wV`N-`-vhYI`-a^MCu{>FGH!
zH4?P^aG^SL6@UKQgH4e-f=mUV9@?eLmqWwCKyCYy%5(L9n}2OOt@pa<&;8lgt*xv;
z6H1oF&q{W#v{h4kW`CEP;Z0iu>w&|?=WUm-TBRi_CRWwMFKy-{D=T|zd;a`&yWd%T
z|1nY7{mXIr`ivVJ62)uQuUMfm*P_tr@v+|BPb!)BHQ7e&YgBb&kW*4t1`TVM->W?S
zShjWL%9TYsW3)6iKU(bHu_IzyYUZgan&LI<K|7Y0EpwY+|F3d+GI*hle>Yo|^)&Ws
zdnug-{jak!*DYA!Fm>wGRjXHDUJ<xhW$w=@PeI*^sZ&=jUFv%B<jG&pX6J_l1}@CJ
zysUCh^N0Oa&t|5BT1Iz^&)d$jEM5kh$=(0&mp7=X?Ji%t<kzpN*wU+^)Bp4^T)4~;
z;UItg>is;>mX3)N7d|~by;`RJ{od~)qN1Qm3AC;$F)>j~L*vC4#>VHrqCf9H&dkgl
z8XLP7bZ!CYm>?}}ZBZGSH8W;NfHpAgdeo)OW2<_hdV|XgX&rI-={yV#*K7a({Vru&
zwZ$y|-kKddEEZp1w{~r4QPHM-zu#FOJ$_tzuh}k0!{b82Pd2li%nY!G2#AlTK?7>H
zfX2u-2u|auW%h1iU|?tiwPO;LO(OO|&XI#O<yzR_4H|Gu8JoGF;y;bUWv@K4IXZ&B
z2(_p{O)my$Ll1Pk*q*{$yUW*KeEskbxDDr!k+GtwscFi*dG~a$^K)?pWn^S*kCC1m
zsW<)f)3=@s3=A(H9Bj6#`jW9d#@fUr#JQdC?X>L0;AT!kVh(s`9B9!dLxKdTZF#_e
z33OauA`9p|#={^R7}`KVz`z3<A7lVE*cccLM!bd%{~4$6ljiZvJ9LPFfq}u()z4*}
HQ$iB}s65!d

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-11.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-11.png
new file mode 100644
index 0000000000000000000000000000000000000000..726881add70a8e83e8bcf6377732d5a1c25ae07f
GIT binary patch
literal 20975
zcmeAS@N?(olHy`uVBq!ia0y~yV2S`?4mJh`hJ9%>?l3SguoOFahH!9jaMW<5bTBY5
za29w(7BevLCxS5J3j5`m3=9eko-U3d6?5L)t*tr#_0j*2&(p=ro?2ZzJ|j`EeeO|C
z#W^vq>bnXqCWWn?c>nE{St)wlE7wT*eYG{*v{OTz^Qxq~?)}aQheV!QDVtq&+%_||
z^8ddVyU)M8%=7qd@zcWncguFmuK#}Z^<Jy0cR%au<2FmQC2}w@Ff996^o@mqfx(8C
zk(+_xKnjZv0|Uck!3_)y3_flLm>3ugBu6ENQ;__$sAghdcwp|{FLzac|DU4RbFs_)
zWLsNWVx|`_wqX)uV9<N;;^N}0D=RLRTGuBeEZFz|U$xV;<_{eL3=HB0duOdSdVX&1
z?swM@)L%?sWO$IIBi6n0xiQb-E1w^J%7CPsW>$s<?u`*T%giH$bf+x_sbiSY!^X|P
zAnw%sR1#U$&NyB%nQo92DD7FCY2_BzvpQGJIPd9M^ZQrU#qOSC%X=Vqs%b=8{lSeK
z5d|HWE(KLqR%&W%dv8uZf9-bu{<V9nzpvV{BSNgZb;46cyB`mjj~+exve*3Hg`c0F
z|9s9Bqk3rS@5iz_7A@PiZ{PR(optH!Yrg5{<^+0rcCHCqEm!}iuvgmLud%UlSHZ)k
zJ$p|4dG}^vyWA!1^?Me*ySw}J{rmApj~@N>^=s+3Eer=9{#Y-$ZuO?)O{%J@QnpoF
zZf(n59lAQ~<%NaLS+}>X71N1Wuw#eCT<dbbxVShIxx6)7wuDTYGGW4k{ePb7-`bu(
z|KGpw`?Jr_v-O)N`5>;s<%J|i#Ex})_UtM7@*;3;^mf0aM~_y0x#(W{e((2Hg^!O#
zZA$6<_2uQ_t=ZRaIf?ai-<`gF`}Vu@?SH*cK0DVsytA|O*6#B4lhark&K*>CiZO3X
z)X>-Wzq`A9``+xUTeHJGFa7-dTvSA4N#y3VlLkC%BR9KE`qE$j$GNew(TJyc{*F67
znVBnNPgK3z`8*^dV#SgrDpRLT%eu70bJyE#x93<m&v^RaU^5ptckwq9n`>V)=KT15
z<zvQ%g1ZqqVxg<Ud^tHewKOyW!osHg`?|i~bJE+ta~c{L{yvufe_`+Ud#nBJ|AzG2
z|J$+lWK;FWZ{M!{`}=$9#EFU0vn>i2x%Emd-I{$p>(!N&CXsRpcXkwJU0XAATkh>=
zZ&n^iadma|^6&^KDA>Tn%zSmBGyBrz%j3W8VC5D&ar*S?JD^~w`}J~p(eM0wdm`sr
zmxl!eOjr}P`q86DQ|8aFx6M1b66DG$Q>L6ae%#&P=3`6Nl@$w*%h$(TUhW^>%*I=C
z-uC;6>({UAr5rtSM8nuPc>lj&tC^UY=i1hWfWpi)?Tke2my7Pdo=o<?ve=#9^U@N}
z$ts@4>F1`X*#7_X*(5S=P5JwKw>Bg;|N8!ZJ-_{*fVa1{7Jr*!)3;e_&5IWqYh!i>
zef;>5i<>(*D{IxSZ*N!k^zf9vx$$w+^ZJiR#YLs0vdrT)r}^%-Pftr*<=!usb#v3w
zv~zP-%Gdu1T)+3*EIv7#6<fA!@wz|V+n8bUlqpjr+7cz6pPOsk)z#JW=1tD-x7}j8
zMp@U_<!;HmeC)^f{r_{N^|iE&cn%wIadDlJW&S>C;>5%+Z*E@x@adD0-One&yK{q=
z`<Z54U6tzM<|bAB{axuLp2Dql|9++)HsE=DsFnNJv$L~%`DCpmN?%_y-S_8{xBB@r
z#X0x)-JOu~<L6IFMn=YEbw7Xpl$_M__V)JpFSp|BelAVi7||nXoOa{bx%u|_Ev>DR
zbFE5uJ=qf+9L%e)zn<&--|E_5Uksa?n|t@{vAKO?PvvJGeSQ7Mm;LSc9(q5e`hlRL
zPvEzIXaD{EEh;Ly^uvdOt+}_u4!84PzqK`6)zi71@9LSE#-&eA2=>a`$GyI`cCt$J
z<frf7uaC~#d35IXMlXZ9?};ss9wm7OU0)Y#TKOrZ^zE(C?{|v(?f!lVzHK*I%{Qo~
zW{=(PH^#QV-)y!jc+hb8dC%(N|9`({|M~IJs_e}S9kFh!k{1h>EKxDdyyWuzZn=Cv
zx9_taf5CMT8=dUz?7Dh;xAy-0`BPI(%`JLc&c%<9kFU>oS6Nvps;4z~_UzSPzLdDS
zx@u}@oG`P?xnaP{%9{D})6?)0-g3tShfIxmobTPccWZn8e5=w|OPbmFSCziL_Ug{g
z&0@MyOVsC8IIZ9RZ`YFh|N2d`uj$BI7P*|a|G&rX-;ZR^q_ryM$$##*3;4~m(R{gI
zF>;bs*_#!amzUjiy7vD5!x<)-lR%}{+nbx)j~~ce61FyKmU;fXdo`bZWo@fM#JXL}
z?^UWRzP2j*BE&m$=1frTS{1f7%RKHIhlR26=Sjz<+ZN{C-L<mn>nkoEo{<0l{+51t
z;JCYX-`{W1Q>RQ>k$Zbv+2eit_H}i1TsSw^di|5=$7UQ6JJgmgUAiek=hXT0;Z9CX
zudc6O|Kv%EZv4KO)6;Y>_sLp|h=?pXa>V8AJlp6=BBG*8x8JMsj<5YXb<(6sHlLol
z`6vHLe96;&bkY2}U!JnoWmhIBI;%|OkJR7yW6`@EkNNHvpSQiWqj2%t8{u)4t{{y~
z&CRmq%saGF|KAA?3i@)!`235n*W=YwDp$ODlM}i2TG8XM)uC;PFOGByi^@q$NUS(6
zSMBrv&vW~&RbR7IRa9PVK5rMi+;8riS?fU>bf$5wFJ76wLzziTEBEWGtFtT$7cKd}
zt~N!Y4OBh+{dvBA+utL>At6h|bfaF}|Nn3MpFe+0%HPGvT9^4u5|NZ#nR<F!=D9hR
zWub;K!HJ0r>wdjdm$fKxu(Y(CRQKC^YxebZpi;vm=?I7CH^tS#%l)c8om4M<c!>4u
ztE;ECiL|R+T^W4*qj{s(<_Mi_tSRYdW-Q#X!$MV6RdCZf<8&J(9Sw~M^XJF!EUd4u
zzx}O?N5&%H{hrT#ZG5t;>i+)9JT*l#YJ1+?x}Q(Q_kOwLU3Ps!$iq^-Qr>cx1BXP7
zd7RVF&%641{r+{~@wK6sm-%kaJ$>@z#r6CDW&Q5lzGFv3=&F#w%*>UuOfnal->(U_
zE`N7rneXhJ;~;C!&NeUqQM;h%(xpo#6(15zv#<H+Mr{d*h?wzi|Npw$k4MG5{QRyd
z_uDLbdV2cp)-{{<Yqax7F1ofhTHC@R;&2;pa9y1p_sLz7`T6-%r%dtq^>*@t7M=4V
z0s;#T9XeF>`1$$y+jH0V_|3IiS^N82*?NvCa~Cgq9r8_TU0<qH!BHKt?p5LI*KNOF
z7rofMf19qt&qLh$8ag^Y<#$V`|NHyC{`HTKkGc5xw*75N_XMTqnwpv~hxzR-e(D8C
zc8lp=n(S}4vh3}xmn)ago3wxbem)tC1?Bf^!{uwgOcW9pHcdRlBH6aEm0SE&(#DK$
zZ*FeeuMxgBN;N({{_pw!fBOG@S#EzZY*(kh-A@-*R@PVd_wQFZdHlG0YisML&!0Ez
zZl5@1ii&5|tCh<|goKi~BhTCYUL#lWfDx4V=USB(-Ll=WIXiaQ!W}zqTvLf(*(G-|
zH9g&X(yQz1<6l;q<lG4O{r&y+-ED~y+lv2vv<ffgo&IdfdA&oqQ>RUnYD<*ZUH;ze
z-M-&>i_^}|I`;XzeZE9nV$O{X2UkRHUM46fmp8|@`r5l4{r3NEtccycZDYnorS|iZ
z;m<dpw=)Kn={8@l1RrZ;W`DD-_R~pqx8r@Xyxm8WeCAqRJ#qfL`MkPcnTw;gW*uu_
zWbRRR?~};Bw#M+??)P?!^Y8CFwzK&8oD%UBYxMX1IJ6-`r|oExp<Lw?!Q_8`ev04K
z*V8+<AwuWai;IhU*R0VwZ18V)%i-MZchl}vy<Y3)=-8;d{N1-x(=s`DcuZD>u1<Ru
zo{;cBb$VvSyPeN@;^X6$&CRdp{aHFa&S=k`Jw5XEe>PtF{(1WTKSy`G-F7>t{@>T@
z@w^~qii!vG_Agqb1a_vdzfIuF>>Wl-Vp>a=EIG2H;9*mu#DCsM)2u57adkgaK{Zyd
z`8|VGAuE%%<lMaE;q7hACu^0mCUWz!7x(t=zPKV#`SFd7$>-+St#i0(e}DPBs#6&k
z7qxyoYkvR6wyA4N(<ItHe!U(qZCm}#L`ST9W5GkG#XEM~m|>PXD{#4=?BS%15}~U?
z3}0PYnf&I~*3%EaH>}=X_BLv9;9|F98xjxqe0zIa`ryHX$KGzgpSLD%?=7(<r$8|v
z&Kn7;6+ePfW#YGYYjqM>Sy?5ot`0Z<s;!~%qU+j0FE6i6y`o}bQrquUt-iQ1+5L7z
zS=qLY<?rKm@8>>s&ExmpEn7@L)_?r?vF!2mDE8O=+0S=cGl}VGnwnmHadY$XkH@6*
zCGOY#&fWQTciCGbaGJ@wy6RZ=`n_oqZHZ^*+uzT)w`V7)W^QO;c)V<Oo{^MU&WZYr
zyC-%QKks>VcD6LX%?F2_xv7k24C=D2UtL?9ZIW~2!jF%~<w3Rd;|~uHAA7xif8Lpy
z#>Xv6UQAG4&MO?Vqu}6+YinnJyx`0)>FVlw?AO=Vy>WZ1B+c)ZOuo1&)mvFr^{AfB
z)YdhI$;Sj%t($1fJS|b;*aFAq9<9(-63NGU3@1&V+}kH>Ed>f!v)o%Lx7DqzZf%Ir
zDNFo)Ejr(njaMpV&#zajkIk_x?s<5)U3%ZXeQp^UD?VQKx4#*ie7sNA&B3AJ;xb?9
z<Zo|o9&6zg?rCUXSnNOF?peL_+@6M3uDAF0-Uc;xbi}#?cbDZJK7IQ1i`(1Re>|nV
zUc$XkW@G5d>hJGNca^`-V_{{Lyu94soaga&tskItq~<>_M@3y-+Pz<{^x4`4lg`bt
zOg72Ab!Er<eZPAyT?$&fW5<p|wfC!D>w=;t`}(@l2RwzgQ}!}_cse~^s<E-r&C9DR
z_x7cw-n|o*-KE63kG{CIb+uvQA(q?QPEJ;r7VADb!=mt!>i^h-OQ*7~Srxik3Y3(;
zuFkr;YC3O3YisMV8HUL{zrMbfW@Kb^`~B_h>9y<ry;$5Yb?@H2GREvnOFZ3Xo8|UI
zZOxLbtE&Tt%lG~N_r~nd`g~M8USh6wxfv5Pb8pqxSCanrf49UgeyXX{cF?`5pfLU1
zoQq#xUjF*+cK&M5$!f2zub*%C=Y#Xxo15K3SBG8A-F|o3jT;fAZ*N`wX3f6;@3&~%
zpHC*wvZ>s(d3k^Km95#~b8RYvc9*}O*5BW+7qcVb_l2e}_f045`}s`zZr$&<UOqlo
ziqG4oN4JQ)d;NTVeOOA$5>P4r^YioDb@OAYs&>8G`CRU9+3j4bk{1)C%yL#dJlw8r
zW)_ye|L-<X3H0}+e|^!XH+Qf1$y#68mKz<qHtOm&mcB?YZ||wor!Rkdd;4nN*=Eb;
zNsAvh;$0DNc9yAW-W`j-`~QFcza{&+9xDsW4W=+3pB^2t?s*lDIJah8bkg7Rq3P9?
zm5XQR?eYZm6L%Co&UvnQc=z;8^>Mb<->&@o`}^x5ZhenQd-m)(^_L6O9NDnJVE1E=
z@OST@&Cb7eVxlsr@sN9WSLmcIb$_dPWh??fZOUh7XD|Qy`ntA?ic9jbp1^iKS(B_Q
z8i%HK%IuwFea5}H^|V#>w>8UrW-gj(oSt=MMc}shYURJ*3g4YM<Fj<h5)FO*^V_oW
z@9rwyntopHZpmfebF<9WUA(y1{p!x*^rz3BX=!SDg8EA;H>cg#`0ZW&@K9^jub0ce
zempM!dfo1KMbD-rE;@9`$@aqmW+NVFLqkI;yP6%KR+Fl#>dMg7VcY)RtA1~LxA3^^
zuCLdk=UPOc54e^Px;o6)&hFW|MIk{!i|*Wsk<wvLlGTX``}*oCC=gC0ZOk~<BWc9r
z9K6gY@an42tE<EHzrMQa4Qhl>RCfRJ@ArFcW8>iU`~O)zJax9Ur6uF!B-LHd=T(~&
zK5_v$T2JrXyNgHH#qR#{Zuk3DnU|O8NWD({^XJc%)#3W8Dk>Vbwz0LpzFgdrc{%4H
zsH?tj-@d9R6W!<71RpTHnDDS`u5EP~sQH&`c<|(8b!`oe6?d%7pP!riSo~+z1b_R#
zA<XQ2S8i@jF9kK)FD!7(y0vBHwe|7qw`N~|H9LRb#pm<u^R8zd*!%b2|I47*JvY~S
zYvE(Jtr-^&oizTOlgbP7>U!_y(r<4frF7UA9XuquI&SYSHQ!k(FZZvu@SkaPRBYL)
zxF)rj%4zd#tFvBTTMOzBZ%I7Nwl;2W)TR9QFScf024%mX)6;b4+IY`6nY8hS)3pXh
z<}Jy``D%YYoz9}OK!_t^#T5HCo&5ZK-&rP}j*gCH^9`EQcfQ?r`^&xR_nPMB;nwBv
zLNYT~Ms3Yn3QC!#Syu|aeJPNgVj5BZ`}Td4+*>Al|Nr|93Y(CnUZU#f&wP&U7r$J2
z@$N^Ch!tBlO?dkD?OIT)E_7AM#Vad==i2JVq+eYX8oV{@s?GcFtq&(PH8-2)-ZHWM
zb|X1zYt~dYez`YqG#T?68(LQf?X4;W4RnB-e<>+THZNy>VD;+a;`UoxG8cdNP>}Bb
zw9TRUDQGw%%QWlCg(oK`SDJ8C?0E1X0o3gK^!an~w-AQypdO8445K;Qp{dCiEq2<2
z2aH<WTjn+XVg!vJnnW-#>=2OBIq%TS%D|9dB&EZ^5W~ScEq%d3@L(eEH0D2_PV0l(
zuTIX+q5=XB-n?XBSQq5z*w`myx#-^B>eYU8t*$?nGKrYi*zlC$^|iH^FD!JPYs<^f
z;3=jbw?@&q&7xYWAdy9for9Nms!HVAYtnfe_f1y!Ulq5v>fF4x!?hm{vY(sR6ny0P
z@$6@3W}chZ7JO!&?d_Yv1v^S#Ut3xJ{@%HHZO(r|uGpG2_3itwuUn6u{42OYX2F|{
z3+B(C|L5=Dxi-?rKYjbQ@8P@1Nw>CSK7ONV;o2)@ns=jmd(_%<^O_F-{Qdj>gzvhY
z*KG?TK|`i79Pbk<*&u<@@KiEl88k3<tXmbn{@okR1C2_`%5!a5Edo}Dt({}b+V27$
z2P=pb+>ockvPPPlk$Z&%FKF<sh3&NQg#<<h*npYy<0t<zkcQPB%IchVIKaekpjBXl
z4Rb#SBWR!&Jm9wQ;3pnX@H40_J_wS(kWk463Vw#kpaHlCNf~qQ$b+nCILQHuqzRkK
zH=OymYtEuYN}xPyVG+^T*!b$g!sbhtFKgTWzi}g?va)hz{QkP9+e%+w^Nov(d%Ew}
zx3|$RU+=Jz6J%mwaCLXjetK$ZSATzaM8u4s;NYv<^W#%fQdT4%?+Y*KTfhHb6t|d8
zfP=#U*X_|dVx~Da0xmE2pPneO?c=YnuV)wWuWM-l4HOn0Th6gP_x7^X)6+CHH9bFm
z{5WaJiWM4Lv#xq2AM3fe%y;&>7gmLZg<XAp`%*rKE_UN}b#sgR`Q)w$$oB<`=PF!w
zBpv1Y`QwL%nb|e7XV0H6pD{xs_vR+o<Nfmc-|P|Bi&<e?{q4ol>2bT>>|45Y>8bPQ
z_x~|J+zT4z-f=KBEp1ig=CoB&TUXt!*j@HE=eEA8zP^9*@xH4qoWdd7^X_`T+g<;^
zj+K=alyNsjt*!d^^Lc1cP*JY=gQf}>4u%Hq!eh#Z-k|qIr`yz>nxe_Y!*j*>yiM`R
zzlRPTD*1l5e0AyTYp2eizuqOP4a)GKj-&T9ot=MrcL;*gkNJ+KCZ?Z1e@>PD{{8#*
z-1R3wRn;-+{EVBMQa^qDy7x)xvvYH^zdu)WZp%2*AqeX6KYIK)w|A!c13^Uw2EAh!
zy-iqHSXOM<u;I>+pP!%S-qscp7hisEuJ!AGzu)g)RbBh-W_qf`u~1#kho?XZ>w^Ml
z<m=o#+idf&sHm!w$!o%1yUH`CrKfwZs*r5``uckI-Cd=i(qz-7O)8#ki7S>Y0rief
zojMit_SV+WwNYES*5BQb=<IoEW$<!6OZReTaPo|KZ5?5neJ$kdEYr8gxVX4L{j`t@
z9~YMvBO{|J)2F9@U-bLh+UV4c5h8+ug%=<9$y%#*A6>*QSFzxZt&DwLjPERyi)UsU
zfBkaVKfL0tb332sq`ZAUpPjxp+gdS!k)fbj+907JuKsVSs=9jil@)=L>Y{Jjnwo~n
zT9tr?4OKMN)!ji}J9OyKlecfzzPr0S`|7IDr{~0_rB`3L5a2t<B5-Zg)=4T)pFKNu
z{=9$as*sJh%WrMT+!Uen>hA9ErTe^(D}hG1o#uShJXH4fR_22PjZ)@$bNuGnWJaH~
z)z<db)YRPe_gJ6o>Q-*?S0^Sab8&J8HnZ_wS>V`Q^t`*fJ9ux^*OL3S-)|l(dvjyq
zi4z{KZf;sSIzFtdtWi6QmTt?rxkymiE#$_eo!X$N*E=G~=sgKEEaW*^E%W1}qgJ)Q
zwj4Tqc<Qui%lzhA-JE;;^y^Ra`*+{4HOac-5xcA8;;XBxr%s-%tgo*RYV;I8J981#
zZTdO8s1Q^rEzk;GrD13o*xA`B`fl>1NlDi;LZ5tic=+itCuiraB`+^!&sq!)$_Gw!
zt|lCeS%Xw$^Yl*s4Jt+$3?xBihF(kg1{-D&tKlRl(G)0x%4f*1J*doq6#3wICr~UM
zy<oA^9;sMzs$fSg@IW&J-~vj3X<GV+6YeeCVmcG1PoK`j%sh4O+}OP8?Rj@a<mBG9
z%w%L}kZyEmTVvGP+B(awwrXeLBpZeUp;IA~1vXX*t}ZSa@9yk8b@F84w-5$~1H4C)
znWr61y7=ScV^IFRDE9ihm$&!VN8S3MSo!zwU)G%+8`XSfELgNiY4=|zXXmTy<LyDU
zU)KG7dzqM+u58H+){WZoqUs(O!vi+w>Zku~%o03<9v|y9&AGAR^tK2?L&K_vt>Ry%
z@BibvIqhuF_Po1aPHC^#FfzK7XWxBv5i>hq#)AWmudc41o_1!&!dqLjUvE4vclrDM
z`ue^3><kP$IQ#h`CYdB2Vi6S=*ETf#xafBI+gnRpxy7@7e0UhOt7PT8nopifmn_Nn
z^5SCD-m0x;IX4ov|Nr;*_tvDNTzh{!>Xx!BT5@e&taf~S{L&>$EFP6HFv#_lZ?I`T
z&c5bYue7$7me<LXC#@<!rR;p0eQnLeqe+1^HGA&<*nHkj`>?^3Y17io?`=x;E`4+3
z;<x8krLR_0etu?E^W($Uos0|&56W!p5<D**=@br)iK)3*zOhfvR!d)BzqPgXX7BaY
z;r^if9u_w3ZiR=3$Ijv_t3th(`_DHkzr@fWEyO!5eTSl$RPLP}8$knEPoAWxs;I=2
z%-8-q{rv6QzZX4jON{w;W3sycH0ym;Utg_?+xts2R+`~~#qRR=*WTUT{T4L9Tz_}{
zX{W{W9=35rT*}wI_ULH$>Al@oR|G1@?kI3%=aUKe{OoM*WBb2fCZC&Qx!A2&YNlCx
z)z?=i@87?_<ufD0y7^&iqd@KCvgDgLZ_ctVUpG08rM$@5Mrq0tHQ!koFD@*cWt`r3
zSDowkx3}7d4M0P(yZ=s}G%00cM9KTT->s@vF*Ha^^mEuYA2*8-uTC*fJj9|KwZ-H2
zx3`=Bh6u^Yt$XnzLseb<^_Q2IU)|ce8Z?Hk8?z&T-|okPU1e`yy;#Z2z+nD-Bjf9&
z%)ObHmvwb@U20<GezR@==X2JeW^GV#FsS2kx9GI)EQ7?RdG-H(7Cm3{VmU*d6$8VJ
z*8j_P*!S~9T)cR(tFLe0i)}wYKhOU6=Vw`RTwEMz98=A2PQ}U3VOvBF|Nr;?f81Rc
zMurCWPbWb2?CwXwE%P3>Ri2b(U^ozno{2%_MNG%$YX`Now1S+RnwpxMMI|Iw@X1<f
z*xK&B^tr#cck1-%(|>(^U4HTHZ1eoE=jY~%iioJJzPf714vVMHpNIdlTGt1%hr2NB
zKv!SiwKb8OL8HIs_bQz2?Cf6M-oD-}|6a|};{U&1uiu(*kcpLrC8nf0Ep1uVmlq2^
zKR*v@t9AAEh87iVV&j!6IeNW7d`~kg!vWsB+uL%Zw&l#6G-;BEyu7|=S65fi>aevY
zX=fyIZ*6(mbxv4ZeEEwPFSur}|M>X$>aw@DK$9{}O-(9)ziGd2<CkCe<x9!e7Z(rD
zkuG8c7giGP+rzcP)=cQ{?@vlj&P}eXtLy6Qyf{ray5!G~kEiD)KRncWYjb*kT-D2^
z-FfHFo(-+4+O=rWqMV0bliGNtmn~SJpc}vM57$29cg+nTC+Zm+2cMl~8hmwC=-Xqr
zw`Ql`uG6fntdz1YTLUUic9p)4E193a|8JP8sw!xj@a~TF>(?tODQzi!elB|l^L0p#
zY4Lcz*`;#WS^(KKgjy8Y5#XWho!L92?;T`fc)%7O5TIahzrX15zkmO>y%oK=zkdI{
zipRXV(c66X?b|nfPumjs$TtIn-VsUeUN+n<g*T=up%rtzV-L%M+DRW2Zr;3k>g36d
z(%PDuJD(Ve+AcbM?%Xt$tLx+cFFL+9em`hx=JKl0)l;TURrNIDaaL7Tg-#4+U0=60
z>*}hTa^}<Ke(t}%@`cp9E^tEGd5vv#-QQnN51qQXIelyC>uX&7ogEzkZf<R#K7D!<
zS8{(>>1rLZZY3opy{bDKlaHrtjQDbZnSaXe_Q%KjK_eNnEQ^<c#x+4rMLRpYU%y_j
zH%&OeaC_g;qeoAjIdkQ~!RGbP%3{UzcQP|PaGLXR((eXFW>6>i$&-}Z5rKgdL5<dh
z&g`u0?B0`#ii)=6-?y7OZJO7lUFGlBg{}_E{QBx@S$yfMD;H(U?<~B!I{fv%-|r@?
zgszW^wXOPc;nC6Vw_$nlI|>$l`uy28Z(|^+TFWbVdu!|E1C7j}F$&PYNn&E6m#=SV
zSlG0nprD-Jy|UI}+~RsyCMvs&2nj7><CR+B*v$6yoVd97@~W?|ZXODqIX$k*bFNis
z&~&|6lbRm|plJu=v@-$k@9n+1IsN?Wy7_%Bpay?;;TNaHleT1BRI>ei#yDzE#l}aE
z9)(0jt=h81r1aI5lX-D*ant+xL}R~yyPY3iRke$Wnb|b!ipJU5=KdQuZmjzM_xt)k
zvmdL0ih_n!AuAUhIpU(KrWUrt-^;5jc5&#$!|nXxJJu#2@4L05@Nwwbi*p4wFfbG-
zo{Lz<`0O#Lv5BuOfYg=%b^jDVEvY09mv{Z{Ees5>F3N|F3n-l(P~8u54ug*y$cNn6
zx-{UHQk%n*f1su}yocG(VN0-ig61Sxj}+AFY6JHGLB6w5`od$Q!~$CQ0&4E)q4&oK
zI1${u0Xq@gDQ<Y`AYb#L5!{E&Jiz$t+uPS~G!GmECE9d<M!td%4;<6|8S|RT!6BQ<
zJMCut^x%+?B`qy1tnBRC1_lA3)@)VPuhjnAI|>(rW|}8V5MX6tIgzz>mH&LZTYD;t
zch>GMeXXXizrHAb-VbL@kgEeqO16Zpi&^>OM@4IEtEQ=GXzlNBp>A$%R%LG@9v1%o
z{vI@c?$#%>GCFUk>vI43pqljRQg3n4`hdMvUpKwY-WYLZL!z_qe7o4T#2d$6UteDz
z`~IvXq+yo6r+I7cZ8K20;_2zx)!#o|#nsgnRIf@Ir}dcS-U@lR(a_MatFv>Xw6tZ>
zl36C1iy}9t-DK7ATot&uO-WgK{U^UW?EM^!3_A|4#W~5UUAnKKf#Gh==d)JD&(64R
zpFVAxmc9M|S<l|Qg1ckt%$Y0G&dyqyb#+zQ<F~iAZqD65=gys&zt8ReU))#w+obMK
z1!$bpw(5(<_WS?-{uUJxS(0^i)yb@_uYNwCAMWYtsk+bkT_Y$_-g&TT^XAm8QKx&O
z*M>>9EfiMwi}@zg%*K0ZSLtgNPtcf4hoCZO%xiZo-oBjS^RyTi(5fl%$1h4(b8&G!
zdHy^+@6P@E_qY8m0!>3zeaQf2YEbVuFmPg5cX#MgFVWj}#m~=ewN5)RK~c&usRcCB
z_~S=Kbn-J!P(nYztEZsg(AwJi^w|0N_W8H#EFV66`0C!?-Ey^G0&72=RR8tqwEou{
z$^Eh4cBId*4Qoq`xj0GST??p*E?%^DzLHJJiwS)4b~)x@At5CwoxDFrT>JLz1C0s`
z2@8itL{wZXTjO)MjaSukx!>GXS4?AM!G0-P%c!lR<CB<}SeCs1&!=v?KOYX`EU>j~
z`-`8SJ88i4^x3mGqXb#25|2qGpU;|y|B_nQ0|{(49*G5$CJCvktKUA>)zvj+)~r>a
z)`o>e#H1;cCoiu3{cYuzEmyYPKX3m(=3NbF44YlPX2FCB0#{cCyI;zmZ?q?3vRUpe
zlSm!0ukY^OesjA>3snBbbQp_C<z8PmmyJ(mMd9OPFQ1&8ylv{8&6_q&nKUWscK(|i
z8>4m<ECdZUO_(6y88qLn_R0cB=B@en<4Rv&0~gc5!BgkXT??Av?7O=$xm`(FSyWPT
z<%SIgq9P(0Pfty~wJEjRtw*9TRClJfGH9p<)B>EW=6mVU(eBb;Uou<U+qHFdedk)0
zZhD)%G2+S7)c+r})zsX)r|Vr^6S=wM*%`^Jt3tiY?^Q0JSN+a%cl^f7D*}~EUtV%u
z9lk!y&#!OKo;_C<xpJSKX$)Sua`@flKxl$DiMW)X9j>aTre$cj@lb70P|zDG-Iv?r
zyN!#UoH#wt-ozxtd%E7<KPk2>??EnuuDW`(hK>8#BIpPlEz3Jl)WQmPwDBjW4E#Mv
z2`TmO?#M+n%7_{$55Nn1q~S!6XFx^t4wnN~b$@o){r^+^_seDfsuv5}LD4#O+O${K
z<Lg6vrA(i^ef#!}CKCfgjNx)SB@-U!#csXeu3O3pfnF(7FHoVV^7QFbO%s!l{Cz){
z887ExXgEA|YeZV@!H;vKHpErGH3hG0dU0{_*O$xZpEBUNy-mtA>%~EK`77-5H4lzR
zGBGfO%nOzmJU7=m{BRrZ<<t86*MQa`Jl)pb-k$yT)>gk6k_-&z4q8XdJGheZ^^J|m
zuWoEiZoS>y)Kv2AO(gp{4hDwjN(q&0%k7lbL~mc$Cu<${@Y~zl+qG3xjx-uGF)-{X
z^W%*Gbtclz&s%%Ao&WZ+Q$gR<=hrN{awUXU#^OTcWoCv056{#coGX5J?%|b;*{7yx
zZi-q9TEVd)@o>t<h$%B>tT;E<dbR(2J1&0y>pwm|o@?pKz|i1ToOJ+HHgC(jyUH;6
z*oz+@AAkD({dya(G$^_5{cwmIv?c?zJ_@8<=2RqaSYY5pAt50V8JRT)4mgy)xZwEm
z<;&@|d5@3vf+o(LoSZ}i1Qb?ZU1eAME93LCv*LH_KR-JQTKLk`)ReL{N>p5Y`JX?3
zyz1x2%)Klw#mm8Q;Yg>jY2hQ6bbnTc2I(*yb=Wag`w83X|JPMkS7$#tF>%+^Y0)LW
zzGUjg?TG*liOe$122DHM-ZyjROwjOl)V7?JGmX<<9ha}alD&TKvSxOEEnVHSg4<sj
z`0+=~Q!p_JDZgL4{n`2X@87IsV6bUee1GPxZMn0j=|(SGvP9+R@#Ef;7A;zIWmTwl
zucR?(4q(-X8#87|96fU6MsKf-We{kXYE9(kH%!++!wS30a&vENaCCHZoV3KPS1R+z
zhlgJN{^9*{w(AbxwQRp!fAjPA`}OM$laFN_XkY{t;Go&t-Rs}o-95W%@B4kf{hZtR
zLYvumpS*v+{=tI;URkS<`?cTihR(ly`gFHA2O~pX_R%iUPai)9=H#r&J#+rNzoDTa
zs6^_Mw~t%-nU#g*1!w|mrg3^s^3I(*L6(PvOwo<;ytE<lFlcGc)6>)AfA{VXSZ)>p
zS}~E_Z>ts`A8(p}FJ^1jRjuvk--nm)57Q1`cSX71W)WzX!qCtVG%f-vG0X2&x@(86
zxv(kq^p*Yf|Gnmy-``jJ=~Gcv7%M{sL;9L#%<7n*k8j@-%cA1q(2$TN@pV64xy5uY
z%(JZq4RYN6hTJDAL@YJZF80<tzmhTg)030C{(if?wd`%w)s?}|cg4N_@bIvdS<Z|@
zhYo%D`FuX8v$rj`u&@x6tQIX=^yRGieGL<nEkVz}ef?@$xs8Fr!mq4s+nTWKorSBf
zY8^Hxd32=n^t|K?3mic+5GpIZrfPvI+q=K7-n@BpQ-qFa-1DG*#k&)Ov!@HI`@Q&h
zTz>z%hhCH7YQKhxiil`fTHe%)@eF!<YpZGcIhm(VpT4{r9zRvZ_ScKWS$B36?)>aC
z&t_*#w5XKSs^jwYe}4JOF%%pwIJTUFn+v@W04hSV{{8v6>+?BlP|!Sjl(akBW7P+%
z@FL#wM_1UiZEXH@1#OfBEvwWtG1+p+-|0^2^;j-m-mSG=3m4TZ>YJVW9nQe8+2XNa
zqJu*N7dQ9m-ud?R_qP2lI&}DO?*Hl&6BM&9FYA@7eq(rhcWCPK6)&J>H<%_L<KdOD
z2&nz_W#<!jhxJ!Mb8C-|aNe!||9AQweH)t?&>{`@b;lVQb{M|7w>Nrs`TK3s+T32E
z8>7~W>)LGEyjj)r>+9?5ugKKY)`AAfRMpg0ZP*Y{S68>~cyH?SKaWebs(HhoUul>+
zW5x<lA-Qh%JJ8&jsF09Set!P$S{*TP10s8uUtZoi70|%?^gHWwtoJ8KF+9+@ek);X
z-rcCR(c8C4pFVdktf;7{^|*_Ri-xkYb7f^^nf|W)ySqZgx?KeY1*gtCzO(pwibPvc
zaq-jV&zFa-jRGy%iLd{=m5oOt;r99+J0fPzoGE2fQLuFV!&7s9@m({&U$gl0^Yfrd
z+{((zU+;Fm|MGVG{b|2<g{2-`sgn`<#H(3?fni?Cfd)n`P0fwmiJ-NpzP_RDe6l(7
z70#SI32Iq}L`7xYe*b)ay<Yh~<MeYcn)&SlJUlwy+P;2ub@giZemPKw?C#`6t=!^T
z_V)43Y`nYTwm%o~%iYi?WBF*p>yY(vv0<x2@7H`jtNQ)-v)TEef^=2r>aZV|55NDv
zbk&+4KPs-S2t1spV`LOGapJ`AT0e#ZUnfqSxUi>(XSbpIUZ+Pd%Byd0&0gNf%nnL?
zR+XQY<f?vOvqop>k|j63Nn4k#5z~uVq3qtLp`zk4>B@3{dDDyw4sUO755K#sbn4Wp
zORroBNlj0m9)0`O(&=$Q%l+nFS?Vp$D{mKbyifLWkEHRH-R1dT-`u>s@O#bPy9U}j
z|G&+zzr3gN^Onlb&${=$2Tiep)+;Kz_f1i`x+?T^UgH*{>q1=V=jN<5%e@uz^&<nr
z@t4=u&fZn}I?cT7!vja#uUCT4&Ad>$E#smRXo|F3T>sk3%gaUO<kms^tlRpJCTV{6
z{54~Sgl_Dvkj-glFU>Sg4_O_id$;oWT+pQKslVU9LHn~pLPDU~chK}Us6YGj>2%qm
z{=O$djM<0Vc)h&6gTun6ExAAK?EdffszGa^FR%M}r}#W*U>%g_!9%AZhgSwK|MFzA
zzm|rE$71*XX)30<w?aU(24(N>tqofn<@xKa<hNH>SNqNuW?-m)(&I1awSR3aC{-Uh
za)j%<r>Ez}>@7>~*XjC2S{AB;)@Sxgo5y|p_wLk6#?>oUcubr)5j0NAa~QO2LG|yq
zH)fiep8Pf+8m8$)CY^GcmzbCswIQJqG$ML!ZS?K1qW=%u<xT4U)qs02mzH|xX2;w9
z`Ec0F!{fr=@Aua)pI;aC^XJc5w$<Bandh&QwJwYKT*JW7@Vw}i_q*U_J{MPouKx07
z^LZ_6>*(cvb3s!wpw{%o#o)QRSyrX1GOvT?O}6FVU$_6?*Y&gP>-T~BfuNGT{_pGf
zt+l_)cE?W+-d&apn)-HhbOhPF$hF&~_E*W@xB2zj<@a8Hyv)Y%;MkL%R<}gE<z^A@
z_kN$ZXz}9Q)yt=^jNZOZNLaY^(-TinqZl-)pLzYy<@x`X9PJj5zqs%2?(*yFVt1eF
z-T&bbcUiq%&5sS5#mo!`BKtWK^_H7O+`M@+>;Asl*4wwY=dYhLM+V#^dT`6qG{H3E
z!h$>Q3HAAh+jz4sENFbJ#=_7r`D4cgV++#+&{X8lPftP1EOWW1gT{h?e|vlR#6;z<
z|9-!JebHUM^qB}F1B2GtmG2Wk%ZS_gWP^%|Hi2f+qN70zpN)8&FJ8PTWnZ@k((D6G
zZ7*j7P313LwoJ>;E-w4p8qhKg)xX>L!tU>@eOqU2&cM*HyP&hx4b;MWeZKzR=FQ6)
z85%Bs)O0%k;6p>`&9GBR8)HgVf_B%0KmE`Uy1VSHw%4W9{TpXr;bqt{5!5_xXJ6y3
zds^YI*cwo`F#ViNWp%Z-mewglVP*yfgHG=~&8nX2{`0PUd3ky2oH=VAJxT(#2ZYsp
z0xmD}ooj2#z#!AccG}p&Hesr1*na*nVRgTd$!flHz%qRePbKGwZ73=#0>vF@x4_Y(
zM?nM5M>>VC?kG%7_vK_@I3U8u4+`~d386tjixLmFWgcqbWYK0|_{ZNn`FC-}0nnf{
z7dN-4px{E#=xX8PW1v|nzxj5t4-Io~Z7F=f!^ps}uJ<tWwV$7#t9n|OzXMHw>Fr#f
zD6uI*M@v_?^vD$kh61a52S4%f@keNCYWD3@VPI%*wzL67oAs|r3=BJXrF70ec>0Eu
zfq|hyYWaFlFW_G{+i7FSfD?<(`2)&MpiMaF6WO4#q5{P|;JI`LVkg4E9T9Ms*6F|}
zl(8PrC=kdBh8aEJ0ZPqk_S0|HpVq`OB>s03c+eBnHoCWGXH!!XXm04}v13~5>dWu!
zySuA&^7QH9JJ;{4{T+Ap`>ClPLAz%(tgNE6!`Fq>)a*HQ=n$yGyRY`Qma?+5taaI%
z4?9{~SmxT*MuFD4tlfTZ)!}yj*JsV|heSoqGBP#}-JTbFd!JahE3dQ}C^@7`wB_!p
z`}^zq*L!ms!Hy+7jjm-=_Uz0|P*dq{1ZXgEYj*hFuh*hMg~DA>Pe#MY=#$p_Befqo
z1Q;5m?{tZ3KY9Fk@r@f1w`a_sKR+ocX-n#9F<JY%J%^J2ORQ6Q398fI-rD;0@Av!h
zUuImo6!i4@^Z4IKVkN+V`>3aUgORcE)isgEpaorddt!H&ZF@U);{5sR_w2E`x-xkA
zoo#=Af7jN~@VL4vbn?}#tDn!?ub(t&lGoh(vLGigh(GFaZvnN-qSih=wl-`v&*2N5
z!s=S3duJM_gO(BT+yB{cw*s^_dEf6mP=n#;&!15nlUkSg&RzzZX*)Sdb?UCR)u1kV
zL9@07@|tSxuRov9&wh1frIby@hFxWEv$p5HyR);bUd||`!>vbRVddv%ns#>guFa@q
z0<Cp;kR-F$#Tm7g<@M(7?r>07?9k!Er(0Kc+5CR9*@)+H*R+-bb<iwB#f043+cIx&
z%PmWup1lAuslIDdsz{%#^|H9VRV%~RMuF<7fPf34XSXLFZkx0uc)4Hf#eeUbz)`yM
zTKR@s+w<3ddwctKZ)$34=B+K6qH@B5f}l3Q)2B~w?tQVZ^mSOIj+m>9OU$QP%l+mC
zt&iIa8sYBg;kmjx{C(H+>K7LjJujU#zh86o_zq@}XCM>jUS3{P=FG_f%?Ji%Wvv2j
zfOzmA!86FuukYL2+siLq3c6kQ{M_8&`F6Ea=FVMfntg4B=VUeUy>5AV>$<wSPWAfF
zHuDwhcHLY3-R$SOIp8f^;*Wa#1-E5i_XDNj9fgleK0Wcg?e#7)GSbV_bK_g{vNsW+
z$uRdmnLrPZ4waV^-Q_NZ$JZ{MF+&10NLT&s&BnL!TeCvHzP}$o3AD1x)y+-I$S5c=
zF;PoH<HD(_+FMgki}gwvKH8)^b2n%a00XF&Au#lkeSKZ*rU)HSP512l{QT`}0~fn(
zYXD6e;v8~0@^!x>J1E^eaGG;5!82&8Rw$_Bj8x^Tylj`R+p);9rL8UN<)x+JTh^<C
zhq#^Qh;B&Giz{M>4<I8ID&WDmL)H=V8bPcBDWGHmojEUBur2qtRW(<^gbNn}Ktsc3
z85a~l^oQT^g3K{o;4B3id#+#y@6$xm%EWNss6fXZdC+hwY~cK%;6nI{E7%YT@~R?`
zNua_LrXDoV4xR$!X*}^4Tv)+eCns2iyov~1c!GwQi5&X}ts{U0WQEHMNkXGI*qqn^
z8XTN3VZnn339M{vtDM{Uy!`$5zbSlueSNr(PY<XSv|xb(sM)r0<Hl1bPwss258M3Y
z>{@F-(C|`2ccI&35n0)_Q?<jj?Cj#8(=+$?)lQu_abcgVby!7=lT(x5e7m)c%<QkO
zMdx3Ac)0!Rv)TDty1KqIXU<#|y?tHo{WE8LzP`BVtQ)=U3TTbW<9_>BTd&7mKG@7Y
zb=tIN9k)v)m_XrvM6#a)|Jo)zg>r7qpC2Dr#qQo_mUCmlf&~hmL5tmbK{G;2moEqP
zFv6?5_1ZxrZg(Dpt%*>SmzO_!?AWbifByUt5f)yo8@&xQiX$rb`*?w>Cujo&Xd>?Y
z{{Q#ProlHY-8?i^g;(0l$I;O-YG2Jx&+^Ao;E~1&o7hgjS?_)F%o$J{JY;KD=<bhY
zZ*Se)7VcJ8x9`)ZPa(_wWN+Wte!p(@q)9?sb8lbEi;s_w2Q9dGer_(J)CJ8EUd_@q
z&)XW6D$(XQ$0Bg$=d*JxgF(9-e>`k|yDo8Kgw`Iv)b$TvffKeksMbIoG54zd_wzZZ
zj$-4NTeB{9_pMmxpw{av&zRm}1f@gs9Ssc(qGDpxr0whf?aBQ;^~Ub<^>Q^I99!Gl
zv)|p>`E;G)%0sVXUYg!v1u55i5+%K+r-vssCFMqMY~EbtO&aw#U&~pS`RuLw8niZQ
zD`+jmccto^raXr?faWcCPRiaP42o2_CDGgSUR_%|`|gc{&Fo*V1p9~LT-J0ld!ALP
z7sy0U&rTyFqmcD+dy9T=$-3%=JYQK+Sh&&1*x0n<!vpO-&fmd}otPeFdq)jVW;UJx
zPtVRtlPBjUBf6m?GBP@zr;t0McXk%Py1cx9)8@@v)6PnnW?p)-==zGdy}Lk@>qooA
zZ<}Uui|d8d)$Ie#t#7@rHyt#Ecz}0Z?Cvrti-HBmdZm|7R`<UZR&@T<sUXlw_Wc`^
zk7qqR)M{1qq{GR{NyW3@=2OSMU$3-}9yyY6ex5C8emwX8s?gP|>i_@SX21W-CGS^P
zR!-hk@^aC`!|kB4%~^)YZB^gjt(|9EZS}5AwgFtF6<*V?j@yzkQO$Q2s7nA^C&9(f
zA08Do%c}HMO1YfA{_pnq-DPhl9ZkCU=jUhB`hPXMb9<#sH*rU7zhAfe(&fujCrnrn
zxY!LeWYE>yd-b&b{+izM7ggY7E0E5*Mhj!nljkMS?#z`tOWxcFls3;>bH(so2WY|#
zR`?Z$HM15&+kK#d8GVy-_rk)WdQgE28`=KAH!U4f+H*wAYjkg!`sC@;r7MG%-}*Oa
z)-2G17+Kq@E1jE}7#P;IG<;<Tbr7CDeY({8{hrTV-}cMdXEHG4#iag^HT=!p=X&5*
z^Y?qz{=L%X*S6)}F8T2xG2Ne?fnmq9Uxl|B7z8Up=K?4)U3>rM!(skgdnz}B77kgJ
zzIt)D{C?@TDGUte5}?(#2Y$^3ZFJh2ef=6}-z_6E8>sDkAXG8o@44#tdzZJ%Re6B6
zGWPUbX=G;KQv16s-JhGGpn2imqI#A!|2NnEE_(}V&)EOjpt7>~`8h5=zGX+57#OCy
z9r$Jce&6qPc{`tqmA<}q*37KpLjtI8-j-;QpTy80%>^E(pSFZsTo1HH@z?A4|KPUk
zg@w+b_5QcEW-p&JM+UU&@Z3Bl28IIVHBa<1|Ni=V>fE_&mzH{OO*tvFJ6EjR6=X@(
zmlqG0++<{!vv9|bh@(f3^6l5t-dWAYG!2wiR>$qF`t{uYf8@Ku2cW4S&;<RrH#b2m
zlP~cwGW0!r{Tj6FY4^rUmxAV6m%rN;H@)GhWZsX4(tm#{*G6siYG&uZ#>{UMkhlA4
z*40U>-d`@d%Yzp6`OQ#dU??y*|6?5?U-x5SQE~Cr_3`_=^Zx&Td$-;v^eOZ4kLPzD
zoIYR6GDcBYB`{st?PZUr=FDepYwe|8%~23r_$_>rn#QYV{ZpR=T)#Cd!s$Sev{iQS
z>WyqEi_T5Sns!2Gi{^_UqeKn+J@@TrmEViK(8K=j;itOXKM#w~+n%=!dUyDF<vT?~
z!$4)Xo(Gp(7#ivhs+He2c)@%veSYn-2M->|eUFHow)E!a^w+P~@4xo-_4S|pq6`c+
z7Z$`T{dv@_FIRD9UF>eqUI@?sYxdvQR#tYFl$5M3%4KLc*lruKFY$tT1n8^>-d~{P
zy?bGy)DLjw&jVWFcfjpN^HXV1_PN2qc-nk}3kL&30(dR5nN#yqX=H^N8)_hv?1`Y<
zaD%7!@&Qnl3R8YaPUk*o*>^+l9o~p#`{kDG-5YCZY1!4&6H-vH0W`T782ItPcT-bS
z&|3J*%l)rkSm^w;z#=3z_U_w_Cr_R%vXGIB*VNSH|NA|q9At%qq@?7n{q_4dZQd*@
zExr2Dqok!vmaN#cDJXcE&&!XsrKP2yk#EonOwefAl`CH=)}%&CnPyEf%fF|y{PIgF
zdCQ_D7ppfigUW5QN4=_tgw_2r-rw5`TAET;woOIT);6}Vun@EwvroqI(&K7%-&sqt
zudmb8(ee5H?d|UT1Cy43I>rC~{N%3}X6Es3VPN1XdiwO~r_Y~3!%NvZ3JMOOM#0LJ
z7ngcZud2!S@aQ;n=#X62zIE&Lwr<<@@A+$44shUhn14&SdhHr$sE&)5w^Vw*P35N7
zrNQUsS}&h4L4a4%$VE_45Hu=nWo_L%_r6|)5(`7ZgzTK05Eqx0;}tG0Epz;q>&5TO
zNtt)!Mg(YL-rx4?l&I+F(73pDzO&6%?%Nj!+Cga49t+C)8)p8iTjLZRJ)4P%$>ta{
zGjr_v*&B+V`)#+^kJ#YgJx%B0art`C5~J|sXWS6GxVgA4y}iBN_E`SiT~Dj_uGfj*
z7vs15bG)rklEOmJl5)4I-<pS<+xcF8cz8H3**yQ=p7+&CN=mz8*>ZAnrd-+HA1Gm(
zHAUs+udlCb&DzaD&iJ6Hsi`T)|L)Jz>G3A{_x8x$pFCm0f>Wowwr<(7Be%r9?9B|F
z(?L#7PV-~mg9i|l-FjYZw%pUG>cqg1b3}T+l8>)%XnOi`E^hAF<hO6%YU$~PB_%CV
zQdU;|`}xYZUAwGGOG|CP)ZX1w8T|I`Te-)x&2lHDM$R(LzUDmt^0|x+3=A6t^KCLp
zK0P@JTH6=4HfpJM__`hQp42@&#40K(y0h=}*|VXZo}E%sQX-<FPo?%tgEoIDFTcEU
z(j=kU?{~{5E!nfj2E4l2r2b#c+4=VI8#ivu%Fe$0@9*!>;NZoo-qXHhdOza@HJ}$<
zx)iiFc6V56YHC(qURX`d9?&-aB}-JU8%|3-`S3%`A5au)ABmjylq+>w>P{xmG}kh}
zxvQAj`Bto4>B-mbEUe~pp-<NO%Q5NvFNbBn=|j^loA;!D-}nF5w6~A{`SYi(TyRLp
zlWQ4wOP`;c%RaCE%ZrP*Hm9Fw?*A<M20YITK5k?7%lGWPhipLe;tYqOLGkurQzR&F
zF|>iIyaZ*Fh<)GzgkFISHO!#&jVu8wFAf-h^yjo4%X|PTFBlBKMoTC1Ps@iap@Hxh
z9{j{hjJd`pe$0@42#`{QqZ+wX>B-E@49v(_v0b0}?~=ufo&Wv&cW)ohd}l~WBysuH
ztygco9qeDdc=6$zD#JEc&@!Rk3kg5LdoRqK4t(O(5oBUukZ^0h%75$DEfvqy)Kt(y
z%IWKu)u*PXXW!nIdv71l7vX*Pn@=bFsRJ!W^z!yD{=55Lc*YzyJEk!EjEsy4Dod9x
zt^Dq^C*{$R&U^b<z9@s0|E)7OG11V}Jb8OMqqK6u*XGF0X)D*P@mcKN4?2BfyFNR^
z2l=gAx2{~c&~bCx*;kt_Atmcy1sj_fZZVw?-%=SEcoytDwBHf5QrZnvoX!U?H9`+T
z!3_<LZ!Y`WPd)q)w3J;+TG}?w-_H+}oW$4hNbGrM7O`yqh5Z~63?;w6<>ubob2E8P
z{S?Oc3NgGjEIJIJA=`6vt*>6W^5m^I;{(;VZ{MCec``61Wl2+WGidC(tE-EB-};p+
zJ$LThIm@ngR~w(KR{P<FuU@^9>$k7^vI4X$p|zz&LrKXgfA806QPI)9_quciHZ(Y%
z+oS^;7oIzJ?%iz>-(S6Yb?I2IG^lJoaKPc{kt3kPN8Y}Dn|Hid&NgcOo=;t%(_=vA
zE^u*iU7BH-91<1vs_>k&c^;^#09weIkgxz$e1E@RAMdyP@{3v~=GN`gIE;;qKuwgT
z%a^}y=C_+LfByWSprDd3FE0Mxw|?C^KhPlzPft%5m6xx-zcVX48#JGFcUP(R?QOZB
zLYa%3+qC@Mo%Vm#o2>0zIUEcP4M9sj%HG{sdFM`y?Y|$7@5)V|ITMt<L8GFe3C)j>
zkAJ;a{r=^fo11TK&!7L=;`FAF`1tjf#m_X1jf1<zbT5H+x82HKpLuDC=eqkRZ(h5$
zY-RBBRU0=3f>w2`2wV(4za?s`m#?qytzD(r`|sEr+?Z=o=v4jvU8tjDBY4W}<;#~{
z-QAZ@P1P=aa$=&~ee29iDzUrEd=nEBLAGXPWmVafeSLLR%C2U|s#U8*goKnlK}%^L
z9qkSc3|uH_oHk>xq5h(SObVW-PM;2TcW?jn`Sb4DzsKe4Lp(h@LEEEjtG{KuytGtH
zOY2gXsCLPN1B{`ep*v;k-`%mCI(>Tf<72&5pU;|?{`ipi^Y`!7D^{E+^>K7;to#4B
z9JC@y+AIfjlnbcGJ$dqCP^)>mUhJ#O)ogE0Nb`nOR_^@s=g*X>Q=dw4b8rNtr7g?K
z%6j+ve-gCLtB5zxzZc@_+Is2o<=BT_lR(o?6DA0N`fvXq<)=STNMM}s#lL&%ym{*m
z9de4@S#<RASLb%Vlbdv|`)@A?ZKC&E9?Z@!S0Y{i>7=@8>M4=y^A8_BY+CoH;_tWH
z`Rg`*`cwoudIdBAye@Y4vtLyokBVQtd9(6<tqjANm21~t-BI{hL`v$FnO)_ll<Tke
ze*Jvje)Z<fmmiC_{Qmu0TT#(*x&QokUuDXi4lq5~ly+9Cw4|hDxA^NvN4twGWV(8L
zOQq}IY&<R^Cbo=QTyICOyQ^#EoW~d4<wJ{$H@`mr_3PJPuU4-Io$IiD{Y>NZQ=4>R
z_f}oKFqe_J-CSzTv14woE-n>4?k+ATUY5N2^z`)Jed~`MbBmmI^|6iGvkk)E5*Q0Q
zJ39lTqGoY%b5ET-`SM%C|KF7F_uG8(*#7u?UfllT=Y60PVCKx3lV`rQU)ua#{8`oo
z<+pC#5)lx1U??Xc@uKSP5t&I<bB-T@cp~lWEK@CQ?aw#5MP+5zT9?0Dv2S18<KzA1
zz43diLhJv2oxW)CV)?3dhRMfPEM4lVzvqL~`t{NuMDP6wwRCiJ+*SK~+wmW3qqoPb
z|9<Um@fVZ+PRlnf4Xg*w3j5nE+_J^w?Tw9~iIGp=zfV^IZ9Dk->guh1wY%+py->dX
zk(HHolMd(@rn(n9pPie#`s?fKuR+@}z4iA#`F5*U+FV3R>Q=Ha+mB86Sk`>{R5W$^
z^xeIG|9-#!z1H8~yQIAS@Zl2^mH&VKddIr`^2;~hw!4{_nMut&?8gytK;in`OEGbA
z^Sr#hL&L+D@7Q7C2|C6F)P;_SSn=#xn(u5g-{bxA;hvtIpxJrf*=BDSKCgQ|xBSb~
z>G7|gPLIC^nzSl><g#_!wpYvN*IoMe_xIHc7ZyA`-2VNST;o9%Q`69uD_7<vZ{51p
z%g^uKM_W!#&Q)vHgm`;*-*)?+e7x`ECLL83l`p?`J$m%$$@Ax+{_(EZcz5@9P>GX&
zZ%^F$MD?5^cD9}G>Vo8q(|RslzHB>93v|v7XgRdH|Gbd0vTa)0+MqqmcXyXp&)K|u
z{(<+h{9If?rKMXz%QIK4($bCI=JWICPpkTWdqAT+iHF-HcX=l~_;5_^`;{vprDbKS
zHf*?HdhOo5b&nn;sj8`ghC?se`{%A-y*fBN{JQgfP#YRl{!N`ab*Jsly-Sw3tX;d-
z?)!$o(<dKKVr2NRD|oqI=A$E>t5&Ttx+HOT^|ozcmzVio=C}W|AbnotvfIg^g@&Nf
z@|&AdLCfz83pe`BvsnpRnBnQ^IcbS&x7f-hOI&z)dGqFr+}n~lS?4rpN_I>7dAYs+
ze!cGM?40<;U%Br3%gf8BPMNZVQ&=tI<D;X$9{1aCDSaIV+6r-Dp|jijo3}x2%mZ$F
zHlB=~<mK%RTGBCf>eQ7xcSe5v_|dB3!vgJ?ySDv@AMX6IHSey~b(v|YJLNQTBBw<k
z0BwK<6@PQ)$n5?5?Y5LrO2?*6n?PHQzkL(SZ3i_`q<7p-2n`Sa?%8Zw`s&JWvj~H3
zu<*yQX4cI&p77!7(WHUvd@%+FvqM4)^AkD+7#N_foffv!=HSst2{(8X1Jn$HHKU{;
zT^(502h>vnxAJ)!Gae)(o1^Lk?h_#^1U1AMpnWe;8vrye)c|P>ow&I<z1Q3?{ro)B
zDmxqSM2a*AKYw^Z!G=qhF8zA)=itGET>Sj+Cl?={{ItYs?!A2+3=9gfdny9!|NTs#
zKgZg}CMGa2u(l|#0<?FHLE@NNIRgX3VUXJx+CU5W8F)a$u?!NB!~H<>Tnq_ddkz?Y
l8k!A>pjPat2A<#cl{+5a*u^mS76StVgQu&X%Q~loCIG%JX`TQ8

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-12.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-12.png
new file mode 100644
index 0000000000000000000000000000000000000000..2c8f71aedc02712b6b877caa6a587da00148de6b
GIT binary patch
literal 21544
zcmeAS@N?(olHy`uVBq!ia0y~yV2S`?4mJh`hJ9%>?l3SguoOFahH!9jaMW<5bTBY5
za29w(7BevLCxS5J3j5`m3=9eko-U3d6?5L)t*<%v_0j*2&$sseO{z0X<56~v>fR7=
zV*LsajZ;xuH(ObyrXS)_{<L`N#wSx2Z~7VO^<s+GMM+LeLB7<-i+lBNd!6mi+#LV@
zy}aFSyV%_1irb}cZ#}Nt9lQNg)&Hu!yw&f1*2TX+og~qw$iTob<Ji%A!VC-y1!gQd
z3=9mD1vfA-F!;C~U}9h}kYwa$U^tL6Dlwdb<XPH#P6mdC?mk)TWx>n+VyD-d=iCTj
zWMsUadS9crft8_w*`n;tj9KRSb$7qLfBJN(eEpw^6GA<AxNtBuFz<*v8`^ol{{P=y
z^34C+*|-@P*poL#_}rbJD6#Av|8)0eRtAOyBPksQ2APhdNrrn5PRiJ*CCw|wz|e3q
zV*>+2fr3fIxkiw_11TmE3=9?%USCaESadOgk%3`GPeZF$a7;|hGmG!67SpfC*T??;
z_IC4klLoETOAZ?SZaw9Cz-g(5me!>1?(R#MFK^AbsI>Rzv)NW9FD7ttaiwgG;E42l
zbeP{hBqe2um`=okJ$r2Stve99$$iJE^XJ1$O1Av@`}gV7r%NYH5Xil?<>jW^UteAI
z*3;8V-FN5i-L<cuK6~~`{{N5mU*F%aSM!~9;`niQS*wx@i(I=;{bk&v^;k|PgeyEe
z{O^au{I70qUhX&FZtbB%PCtMCe7SP@ydWQ+o;`c^gv7+?h>IK5hnkhV2sk^_*nMyH
z_i63z?Oa@3A&cF3tNpnhSX)|KGvD6Y+SSz+^!nP`sZ*vbX=G;Cvb2nh-Cd?zzFRYR
znTC?mp|m%DetxccHZ%Ro{`&gYH!d!AH%&Vu@%80pcl|vdnrdolwiG^gv;F;M^RI8W
z^QX?3QE~U&Svegx`=m!!TAaSEt*uff854L8Uno9ryS(h}Elne%pz81MLjV8!`}J1#
z`je+md$%P9q=pB&y1EvXmTvuLrK;-s`PtdaGYpeUPU~*JQJCg%bwm1jxzaZ`0!_27
z82oKN`{+@UsEA0$_jh++U0CS6^6Bofw?Q5r9giMA78Mm$_1snPu<6$J{Pk|VQkl26
z<%XB+nW`PGWnvQYe&6qPa+Oa6Juj`_|8Ld&`hStRx3_JLG`F#d@$~exs`;^jiJ5u*
zCmvb;QpR=K;^N}6)@44@=6NBGj*asw9&z3+zh9embJNm$wclfTB@7(q*M6I+q^$h)
z_xt_DJ2!CsPTnzTN&Vl~@l~(aZWj?3U+&z_cQZ4LK`ZI(EYqUm;?0?h?%cgADkry2
z*1GJ)kxt?8E&Hcxhp!4-8wCoZ(lw6FY)cPKRpFI1a+&nyald`s(>Joh(>V(7O0+GU
zGe_p@ySulm)`#}X*{XO}R#txc_ASiGsfp+Ch2`_>v^-5BLvPHNUi0zs@z;l1xx4!N
z!vg~+CM74Aem-k{yRgmR^h9O%E4xawtNjmW#`e#?q`!Ut-s<nGd}o`j3SB+zY{m0)
zbJw2!`}ePQ$(rEhewmk-`AS(9EwQn+)!$v`=GLaNGVySm=&kxt$L7}8$C5U#D0_RW
ztFJFCFK^wY%a^~NRG;rL>FYlke}DhI-)?2^dcW`Ym#5R?U#(m|Z<AT%il~^_*r~H-
zt$Ok#<@Jpzn!zSzZz5{H-Atcln9SxoO}L}8GjO(9?w0K9de#1{YNt+|m@t2S{K`Um
zdwa>Yg_G6&!z$w6@BKcntE=nFjpY8=vb#-9OsXm>8U_XdbFE5uEwZ$>ViH?7`_LgL
z&r9+DK8fqb><GAb?_Sl<r_;awd_LcMQr49fiNc$9mA+o~|KIohR>jYHY?t@0o-%#<
za!z5j7xSv$ZLEAAn3J<+(V|6Pem<WsylIZZ|9^i)g@hIzY-ShUv`)C%W|^Y7`SoYA
z^{O^DHfv66XI)(ty6a(^^p)lQ^G~n)y?y^*-*!IPONUyy=f3mxJ6CG9VfCU#N}l5X
zmBd6uUR+rjd@c2GJOB0B`TJJBd6VNi&n8mZJa5XEdd1U+4?Dl#^SRF~|6a^9|G<J8
zIXO8{o}6!23(9h}Kc7y&mRipjsi~=1Hb--v+sXUS<!q}o?Cj!nqqbaN=C^S;Q6w~P
z-n?A}51m$i+_T5#^{1{MFPG2XQvBSnSHkeorpA|7!{e{s&fmXwrg8eMJ-07J7VwMt
z1Qz}G&B|J(<~wUiGdusQH#awfBF!Y_ga9aMFLvt<DlFW%Xwf2*%u6bs;`LJhl22sa
z*|Bl%c^1*H$A3TZk~@B3u{;0O6@kvJt*yJh->U`%^y>Wk`zGnN>3Bx%C|G!Ip6%+N
zpP#=zCY`_K_MgB)e!CwFYHDjmrKMM=ot+hVKlj@qZv7XH>~a^5%h%`Z4QIdpF6#Y3
zEghXL{|-byD$1Ap^!c;)XQPCZe*=AInXJ69F??N&X7|xW?((%?CcRcwRn2^Kq_gVV
z&2&*=;oya};ie`LJJQ+`Ph7nks;Q~@>e|}beKMAdqVxBL-rZe({nOLaU#IW?<68Xu
z+*B3Ye?K03d3XdwMa^2~H+NOP{lADw6=6Z5!9wdcZQ7*rH(prNGj?~`)iX1VuP%1y
zzgzu&?@~Q+yRTP*ttvh&*t2KP8>8}=omF37y?nd<{<YWZ_peJn-gh!-<BN0F??Y;8
z_AoIsXKq^8oV`;dVzC=<Wktn}Jz3Y*RGxgy%FeEBY8q;3X=(P@y8PXgqe+1U1qH3o
z{=VD&epTq|u<1N^<ZHi7R8mqh$+=;m8?$4B)9<yDcpgZJh>1zHB}!OYS{{3Fu(@}^
z0)@x7^Y?Gn`~R?AzDGKL&&7-z8y0?iHakD+c=+0=)Ce81#qRxbZhn4#OV3M(FWa$W
z$CZe%uxWx45*aqXUM#-0@z0-{*Z=cxZ#(<q($emSuU=*4+}(9G?RI?K&!@k9#g_ei
zeBD+{>(qt_ont!+ANPFuQu6v!{=T2bI5;^CYietA|Gj&B>g~O~w<n}jR8&aZyLWHd
zJ{ubw9?xU%?(RNq^KJY6y6gxYF=acudsbx+53xQzCY^7xtL$x-?CBFH4ESWNQvPoL
z-@otwzv{zD8zuDj{YcvRd`IeOvBQ@yUw(0UdH>n{;^#UVTD7<3-L*>o^yH*j^7C_Z
zjq~<=bW=7lxdJxwumR8G`hU;sdFt!y7dyA}9ov|Ee9h_m_5W)hUs&io)i^U|@|`;|
z%G%neJ$!vljf{+V4)6G3TL0;!dT$%Aw3NU7-z}wg?f)&FIb%jfgpSzZ!-o&w*pTSF
z^t|--cm4N0K;?w+rge)aH9UR!GV{u+(9>6@FJJy#m3dmC#IeKt_BmJ9L|&d@kl3`b
z;$za{?Ca~?&dxIJ&Aq)X@;WCsx3P{`_t)3|!FA-rM~{-0EL%2h=l?HXN*4RgwQAeG
zef!5_()kkFVQV&2zP-Qy|E+pqSq?^S(Xg19oH>@o$6j1pJ3DZ(8}H+#)8jVjS=ap7
z@bLBP>>er8QwBZ%f2&1*>i>LeYc_B9(WEs|TUUKj@5}ylQhmNeGaIkbt1By$ckJ3F
zb?@Fia7sCE|NoALhK9kh9?9e@Yoo8LrTqQ(`+Zwt%%5Tb5s{QFSyxYGTv*UJaq{Hg
zG-<ZuVF3XNf9svDeNBGfQ2Ou?Yx1EMPPfTwzC8Z^{)@e*>m8dOUzfT0oUp%5;*MRr
zrg23aJ$lsb@-p9EzqwXZcmIF#B<1kYqf75x|MK$k`nTp64hn22IQs4V{roSlub*EL
zy?vdps7=X>fW?W2+m8MJUH|{QK~ML?RZnKWY-DEdkuuGa*qnBD)9E>drPFky(<&+}
zC2gy}nJn{}nRI53<z)_TZsR+5?(lRUP1^J6l(t(~*tCy-KA)E^eRaifUga~%*>A(w
z$K{s1xpDEwpU>xeA0O|({Zgl3saf8gj5YE5@1^PJ>!1Jie>!)h?<|vznYICjs*I;k
zpFX`JcK5cG`uh6oPqXRF=x%7$4hjiLkvMkrK*@RA?-Hf2ubD3Mo0}zZ>}d9D5T~iB
zsb_Qg`CB>PKOUEt{`&g5`856bxR=GpuHM{JxjArsobBVE&*z)-$=l^@e$%bL&j6I{
zBXq=)kM&3%`}z5KuVL~riLKe!&DwaS)0Qk<DmlOI*UFCvnE54`+4;7ZMHSTCuld}Y
zxG@6cPf%VxHc8d{RE)ln(WWyKw$}bGd;Dy6z8N?xn451mS|0aQaKjw#{>%fShI(y9
zcZ*KzMr}xFJk}$*_<CHmFQ_u<?7Y|`X>5{r$D*~R<proRIBR}?&6Fu3swyg=dK}b>
z-0ROcJ@L<bYnJQl<JTYSmDW~LI`nI!hHC%g7q_>se|3HR`WZ7Md}o{a>PBq|sHxdg
zQ(HTA!h{9WbfZ_f^-6vE`0?Viv$M7T@W|e{e{*xXsDQu%P$i|R>KeT*=OU<p%)Gqp
z<+t1U;SLTBDw>Lljz^Ck?dtEJu44QD&u1<UjsOpjj%j+aTJiDmubs6DQ{Q|Hv^1E1
z)Zj--?3DbMmzGBDELtj8@qiK3RDOGV`}W9v_5bT!U0pM;uZx{!mOJZMuk`XGM_i5`
zJ*sJH8Y(9z_vzE8Nz<oKxBK}-n3a|F=1ZRf)uQ6!(%)~lua4ba7PY%<?OCJ8{O9-I
z+E=@~jYm?cyuAGFjg8KwudiJ_Z~uSI*6i!6%HH03b$NL|6EpMMLarTNZHb_ULSQo+
z@0WMG-)G(4mJ4cMY_0yDXPR}z<MHwS@bmL*uP$=s_PjL1FnLSCL#JMO`?$sK{oDE;
zpL%<9v%9Qy*_7?u%UAOI?+<fzb+xMhx2Np=y|sL@Rx@_xPdWSbsCazM#e0(*l0lWs
zyS?AzWNoWL?$`ZZD<mWYY8%Pg*TtNjWjcBG?Ac!zHvj(i_Hvh~_LEnyRz06r?bmPr
zZ^xfMf39pyb_X>ei=UkVHL2dzdaYP+zy5!0x0r4a$mJ)L`&X=3apG6VGy8ukch*E2
zS5{VLetmWI)$Q%;Z*9$9UiJ0W%IxdwUftNZ_|?_b>Fa|Jglg#NP3!LN2FYp$FIy40
zIZetarNhbD`Rbm^Vo&k;so(y7zyJEgMCD!2=T(~|9ANOg^ycQ~(A8nOcWb}j_4__i
zeX6RmvU9h%{<Ph@cgMuU`23wAbJ$?Y{Q2wC=T)}(pI)KzN7rHJpTB=i>;6<+T^Ae8
z$jCU$D7DLPj>W<oHzHWs*+K1!s7)!IckbNza?biasG7a<=jZ3IkGl0w9Y5}V-v0ld
zWxlhQb#!o;W?wsVZ+WwJz;Zv?pTB>DD%+z+j}{dd2NxD@JZq&oy?b~0dp*xz@9Y0(
z%er3;5$cKBmb23O{hr|ezpn2u`Sm5!^OADE&7yX>Di1w9J*(1JQyx8je07<x^x3)A
z;r0K2-#4xPmeVU?=#-atr;^EoMJLAT?ygc%Vd2H;^J~L?e|tN5`SRs<zg{TI+EfHQ
zeE4uvgwC(i@&6WW%e|d-YfEO<jSUN>OfnX@c8lGt`NDX=VD+>~>%;Hws|7WWGcPam
z-1Xz^_w$OUlQu@YKd*JOuiAFiKIyz2j*H#<ul@S^dTa4>KhI0y@wH1I9&UequlhZ>
zUAKPUFE3D-86-A2IXQtE*PvpcY~Ie#E6(s&9s7FFHe$z`&FSZ}etmg4%f5c!u|C=C
zzc-{ke?98f-%|cQPE}1!OI_Vv-EYnWm7l+Uy?Su4IqSlL#=XmWvrFFGFf4t4FZTJl
zxxqCxd*)TW()8REr>FDNz53>+R4L=M9=m@(lJAyYkNq~s$fxAtAy!c8YfIFyv55gy
zu~wz8mi+ipF}vC@d~MWHzqwW)cTQ5%*vY=S?Cq^(=8dhbtybmlWWFbaD(#AinbzOm
zzsz^GTKCaKm7kxTG~n@_Zx_2Y>uS*cy1!S}$J^Wf{c_pM+xs%Re9eNr)!(z;-Pzf)
zT1!ts!2#5@1LYXsnMST4r>3MVIeT_HD2tq$s(p1;sP^5G%f4lEbk96{_ikO?-(Q+m
zR#CIfaxXP7GMf}X^U2<!^|Rsq>Dm?g0kIbo79IjMU8l!Yd4Bx(vFc%~_!m$*yM6oi
zv)I&2N2QniREU56@#*yVtREj9T2+5rBUkgm(e}@W!&z5XP2KnFl{Tnnb8CP7{%v`8
zqh84_Te0ikkMdpl_xJt!_xt_Vuh-*O=ic5{Hg9IJcIJkfnwoXq&86SoL`tpka%pbm
z`uy=Ds2`#dIltDp_E$;v46RCbp@*k-etCO4+`9bTl^-7;Z%sWdwl;o$+@+({U#v=A
zEXcjRZDs84va)%qXF@)$GwwdRDDiMx=J|QHpdLAA!~s!-goj;!EK_#w+NEV?7IyF6
zy*;M4JMY$fJ{z?)YwEeV*2~}T{~zb->Y8<b-(FDKv?_gdqq=GbpO@5{-|zRw8>gSU
z0t#_=`PvZE>}y*-pP3`iFICFNq7$=m(uAk4Uabm`t8_KZzILTY()f+7ZcO^t?CW7~
zZ*9H0#8bH1pLObq`}e_yO!l{1S^E0g%ZcuC8^2F!&}wXGUH$0s<Ha*(NL*bL8LaHy
zx8-{YLyUXvuP=e^e6l}O+Ps{apUQAV?8qv8b>(8W{=O4S9S@xR`TO_l+4=h>?%ut7
z?{cOPNfw<L;X|SUwgT(4#CwCUx*uR-IM7(odBHNko&hwP0~+OF2N{$B8B=TqjV&!a
zSi}b!_+e06d~g-Za=*Ekj`d1|3h&CQs$11o3=ONN%$~h^%NCQb@9)R+N}KJ`JHFsx
z5g*GMuMLHd-Fl@=Pu;uBz%V1_XqRZ!n~lfc*z#H!FomgRTwK(u^0JX#E})r>_l@;T
zuWgl|(?A{fdzV*~v?boC<|+$}-G49WYYxY%$Jc*fkFUQ9>iqmI|68@PuYTSfUdGiz
zQ)0w&E-Yx2GSAC-eltX`y!?As`MIF4yb*G8a#ugS)(t(M-*NTp`|T=u-w&jM#z_kl
z?tp`dfx$w6X<G3ELtX|3kiQO<UR@V!UG2{}bw%#&ZQtfGX$jWvU(YY4^W34i^>tT$
z!)oz;_pWls=P#%M1%-tGSOzh2#sdmXq>(g^?+KRdOkxZSd@T)6Wk3UQurW3c-f6`P
z4l*$?U>o3CdFXcjtu3B=tG|cc-BtSZ@#DqT?{+xL*L-l?`Fg%(vD?0V`-%z+FW%ak
zeb$1t-3c6hQ%oY#_UozZ==gAQa&qzVUTtFKe)8<uvPNe1tl!_>PQPnrXc+kS_xJF#
zvrJ9X&&hxaXWObT7d}2de)_JOnORt6Wu@Qkb%mV*3=LU%*Vn~H?XB7h8zAE1<qiG)
z?X79zA(q_R+t%L6y?pud*E_}ML1R;&pPgNO;Uk}n#RAuEvCLarGG|$puF`z|AOn<m
z3Jj*+jawVJ*)1<GudAbDL*LHbyR~g>Vyw&FT<8>5KXv!pS@ZiLg@qfJ`Onw$w5tF2
zC$(Q(QgY=&=k`_A-`^SWEN0rT9Lmqg4RX}`dwa7kFYC>^x+>N9-p=Cm*PlM++}jgr
ze!ph3S<a0GX=i7xEPHzkR1Pomn;Vr@@#{e|Kd4W?_tPouXY*Q`9||clFz_9bd#`i`
zW4vVA?zayQw}Z0g@_AKW7cXAq;^Mk=YiqV?@iQM$QPIq6Ya*|ee*W~yr0!2eudH?0
z*;%HSFD`ap|8I$m4A^yg=H}t=-o0CT%oa4*aeDIP$;yWfKx0~kkB@myYU7by6kq>0
zbp76Mv($WNspRM9dtRDjSsW4(v0}!I8Ltb(`dYnPK*_OsPxpn(mxIOiVl+(WO`o0~
zTemV-HS<V^pxI+(_r8$4ymg>Hpl482)U0Rc=B~cEIsNqM)33Yg{8uS~2X9YojZ?Cz
z{<h}aJlkyJu$Y*dlevHX{5iFUXU4>dik?}QmU!;GZI*e-#l24^aIsr&&av9s+Ej_Q
zO`A8XdIm4|3%$I|xAgnna&24NyJ`RT|M>(OuN4&#cwo|>tB}CR@W7>}rsm1x$H~Ui
zrcY1jHBIH@;|nV)+Ei3jl#^F-e`oP>9kK4F=H}CPw<RC%vnqPh0cw+o=|)8y_n%{-
z*nM;nsBWHA^5;jPtYwi)V`HP)?PwjbUOC$+v2NF!H*YR|78eRigbeIS{oXBy+jxT$
z6Bml<$K}YLK7T$uC}@(Clhc#;@AW-TojDWY<<-^I)wSle?WYsUMm*p_q0%!3JgRDH
ztLpy#0yW80Krt7!J#X%{_3`<&XXjW3PZE)pU0eG4TIBnyMQos498x^jy8POQhlfE;
zk~M2|w&vZ9^7Qod^7ju<N?KI9w^LX>>*l6ZFK_Q)P*Xhf!-Ipb?(W|H?99x?@pV64
zx8E(BeQj;@^0&9QXMcQjbXDNuHWg5VaA{xkaz9zgwuOFktuikxaGYAaX=+OYD?>x`
z#^bdfr>E<O=j5yjTNAPH&6^xnR@ThJZM>inn6rCgV!Y!2{Ccst-z4>v$lAEQQQp(_
zuKJqaT{2ZWeA=#$dv(qgoxeIik|({kWfk+y&FTGCWp7rf&#Q3il{Vk@y(ED1M|S96
zi`V9yH$XuY6f_CmWPU&Cy{K-~mK{%ae_Q7U8i%}eY2E2Pfo9-@(_t%T!u7duvNh_6
zKgh+*iV2qNdV);2>W1cpg{yvnvO9y18@R4`C<iJr5#=Jhv@?(d%_#7-u${IP08c8g
z=sZ85>I9m<0?i~maLCv&hZ&><I_Y3w;uk89#0Qt#$Top$CD1gN3<u+BON*zfhn9Lz
zKXvq|Yg}C1sS_tOw(dzkKaY!xYt!K~3=9sX52i4#KGMo9{^iqY{pnKbCz%;!LOq*P
zzj04Jy^=YspkTwjs@J-yX=%5rwHO!{NEO~{NZl9#8qX6I6PtE3>2F|Q;KaD9m#Uy7
zA}1#Y8roL#pSR}EpPJcUqqbx$bZlmOIXiz};B>v%Cof;F3|kwO`Sa7$>z_jy7_RcX
z4ZZq&3#0cWQ1kh?eEpwIx?vR+J3y^)Q0dOe$qDLJf>PB)W%pZa(l<tw{P>W_D{mL`
z_t)3Udn!MN?60e}{rP0_uaC#&*MEP>z|f#|XeIMB70}2iD=TYPcei%&&waJOx8&S3
z0=4_9-tYbX<@)}Ap`D$bQs#McuC0$>uN%GX#+v!FX00;KzV>42^tekeE-wChGkyL_
zw_YhPAD=Znml+u>EZ-e0;`5W=0CMPs3jw-udm<tuBbQFA|MhbDrU;#`uC7gz^$%Oc
zQzY8Va&9CT-&+@JUHbOc)nBjMc%@%0o1J$FR5G3iO;%|ge+hEoOe0rTR@T&e-KB4C
z81CG$V@2ufYi5sorA&kF?kb%+Z(g3UoPa<;mi*UOSA)ySw(XqE#t`Cd5^-)}lugE#
z)YH?XOtYql>Bp^k@#2Ni^_4H=?ZU&a8y)98yyMNb+2;A6PSV+k-DPjDtc%^vB`eJk
zP+9lmAv<Wg$1GV~FJ{NP<4+wIpIaEkqVqDTdu!6suAuKprup|`jvhS<n#0K3^-}Hi
z4^SWW@^b&xm7kw2JG-#_{XNj&ZRT%gh8X+QzYKF`&Rn@<iOO#uj!>_yJ6tq88yg!z
zuKM@$eEqFGiwhncXf)z+=H%owdwu-)@zY5gU+nw+ZuOg$Obn|G^#rZhm*;LcwJXKE
z@>7a#{Jt1XO-)eKQAJZj!y_><F=|i6#!Z_yg9c7(f4|)xwJm3+T-6K3uP-hx-n5*L
zfnk-!a^8s4rC-C=MroRugm_Qa+Zy@rob~$^p{v8Zyu2>``uh6nj>2S6LI_^&r@Qt1
zr#h|&%b6J(B7e*a`f8bafQy?uI3glq=ILoVk&9Hlr`_n;xnoDhsVSPXj8adjeviJl
zSmNK`_x162T^Jb}f>)V+PheyS5WVqQ4wSTA-Q7>$zaJkL7stiPd2yNVY`xugFD><c
z`sh*6D^P_wzy9COE5BG-S!dZ+Z@aZESKHs;-!$(|#P|F4`~BwGREF-4?>nU_t;4`j
zkb3CQp)F-^qg-8GLG4<Q+YdA{Pn|O-=X1l`O%Xa`d%s-r&bqj$^=!r6U8T8ou@Mm~
zKn<AZ=jL{GbOZzhOxUz}^VhfA@4q@T(>UwWlFpmUQ_aEIzr%K3^VaO^dZ6<1<HwKJ
z{LMH~+AME39pCZ&UiH<5&h6gojPvi=)c*Z?{nxYE`Bye3AMcv)AbJE;3a#2{ntkoW
z*|WZaf`Zo!%gf7K+uO5`_sLonK5}XOHhJ>o#g866GMX;gwvd%u?8U-%xuD~HvY{a%
zOYYo}{i}EkwiX~J_}TjojtFpdey4eB`TMx7nU~$RW?kJR`Tow%&80t=O0+GUXIl;G
ziO0poN!e6v=##Nb+I)`R{?CHR>i(~;Mdx3=>~F7|pPye@UHy97?Y!WkqEA!*yIER*
zis1(iZwfmNl$D+9>gtvr`}^llio`M1e24F!K3xL!7~=L;ojiWreRui$u$r1ZpeY>N
z>TjSf#UxOP;wi2#Y?g7sA%E}JX*`E7yt%pAG~ocl-{<!KH`*<}Bnc{(S3D~!F7~bs
zTc=W4Q4ukHdiswK52fsCc6`0w%*G4qT9$mjTb_MwO=Q*MUUQY$Jv9-Z?$`eQ7MY*%
z{_5)KQQPy@g8Db7r|BBMo%5y_RD(3He8b*bRaG_Zr{lHC%F1g`!xu$w&wF)gY4_P=
zIj?UQ*G8MqF6TDOzUBj(dHDAB_WHC}eBB_O!Y9w12?-0Eb~Yk0@uBMWkB}J-(EM8L
z)yKlKOtY6=xf1evz4y0^D*_h>z5ey<SKK$d^{d)IdYN}#tKRVE&mXV5{-6%y+gn>#
z-^p!iZk{@4&YC%MWM)g>Eq`|hG(qy<!2|7i$1g5+FFnj_9#LQWdhK@5AYJM{<&RHJ
zPBwdO#eC0|gTcYnJm-disF+yR$45uO^8u==s+uY)N2(TArKK$k3JMAd2}y~4e`RIx
z(r@2iE}x(E{oP$DgM^0CHJ}+wi-HB)^6%$e&iVV}aX)Af?bp}W<+grj^FZ}kfx@>6
z@x<rn=9<?0C^&lLh=#WI>0c_}zkDfCRa1+)KHH*j(KOxYWm~qGu(GgtOxjiUcGd0t
z{jueD3fo^@S-JS`?s9EI!@#q%&BJ|sdd?Q6ou9Y%>}>PZ;p^i-BMv-=FMviA+jym?
zMQvZD44ShC6+;_0Zj9QP)VgW&W>FE5CA`vRE26jOT`ScQ>yC-Z(XRuI*+`q^T$mnT
zw-PiWR##UCn$|WceRU;h`rljIa#yd7-mYb36}36-ENEuG>iauT#4kN_+$AJc?63h(
zwf~`;&|$nQ!u~c3kM&C5uC`ji@@MO+I<4Qa@f-TjobdroOMQQLclzIm8QP(r_A05U
zxY*g*EqnL-&CSiXb{0P`ooRjw(yG{aT-9kt|Li-Apmi>wb_QAPjtd~)&**{oal!di
zf+_IoaZm}sFd5Pg+2Qg+1{5!_77eJK0ctFQdWoRk@`VITc2KhkrXJL80WG>=cUD;S
z3#FqsontO?iw1oe1$q|}y{Xi8Y~?FZggtNoISIvNSQiqhQHAa~kQW+0ef}&eE2~>y
zUtd{Ssi~skGTSV7*Q38KE-ojI9(8SI<JH=F#(+mRYKzDA`*pjsuCH5rtXDew!GXqG
z8<X25mp=#q2hog4VyD-HySB8pf(D}(E?fv2G{1A_j!D4-hur)7_8$8D@7?bATS{IA
zRaR9^+gWpGM<HmcvGjKC_RN2Oeu7#cLBYY`I_~@3a#1_KP;kRfro&cG@ZGJg-mAmc
zgNmy~ix#PPE?l?}R6nZu%m9tmgubwtIB_BuH@EiYpITa4mlnBpfBA5jUt3f2q?KLH
z4Fgs-wydY8rtW&&XRTEi#Mjpl+BvWOUuEfw3kUCAc2KQ&+-v^EmNjIPpt9SIYOWP5
zptUKS?B}4141!%;T1wB{y&L=R;lo)rm7DzLSSZ%l|Mz~Ed~;JOXk7W)+UW4K16mpy
z0eN}rKr?yA@^?IB+qq-MiPNV~&zW2(5TnGxaG-HUZRG}~-W&J!R)fYqudWI`owld=
z`MGOPr%#$Zc`>LH@#)FQrA#55{QUf-FE6=zdU}FJlltWC*Zuwd{dK4MJkSV8&Y`)+
zpmBi(vrc35QR9k!zr4Ks^y$;y_5Xk0*WY>X)Ku-S9}e?pUs(}&Z6m0$d3#%K*2P6f
zL(kp~gbZ_h+rh4l)-jzmYZWWESjN{^S62ltKBn3q3>tPWI<5Qa*4EXa9DL@C&)z?u
zPJ=3?ZMnCX{rdVk{6WqtHqa=>)j7+TFV~CN5s+o0uYZ2m9-E01C%(G3ceh;4hlAd7
zi&w1h01ZT~kK6m@R`&YH<JI5at&Psx>AHU3uT{^^%q*Uo{-6S!lqO{7Zs?P<T{XY%
z*U2;;d;9;BZvXiCb84j|s7{-7Wr^oxqwT+6tzHjWD6=+tyWh)~FDL2Qy<W9pL%`0R
zJ3$?@zrVhQ?k>yCy}K)voloY%pP!#|zg^r_n!PpmcG&%z&%UkaH)=t;t4z$yq7o7r
z#@}AA-~Z}yzr9}h><14LRMpkB)zyzbbNfEmy8KkqMhy##9cSM5$=mC7A6=yA+;*cU
zT1RZIMWIt;V<UL{w?}gEnl(C+I%1-tqEm1AJ32OUadWSKVj?T|9u)frL%ub;wew0Z
zJ9NlNH*U`jt7-G+uV1o6rM0CcLjK}}nKM^TnIe+y0qQq``ifs)U%$Oa$}DFEsBif9
z*Vn2CjqEC(xwp1VOq2jM+jIK%rk|Hvx@3vP-Q*rn9$xXxs{GxWhlks>)zsV~BO|l!
z?%FzO(xfT#=B+z&#N~CBu)5!sO{u4+Oq;f>p@G3P_g0ASY%|@h`%j$kFwMGhLTa7L
zO6PVy(3HhAz1UU8>E~9&@2|6}{Io<&FGeFjKi}2OE$r0JFfmXp^Bswk|F);*XVKAP
z$Fh!giJm%lE-WBm0%(XO@9wUfZ;l^*`bm8MDeLz7zpvwGS(mT7SN+~L_s)($(17OM
z^80HgjniHnlg{6>X>w5kq;a;F2{d3LDlWc!$BrFE*FAlFwq$NORs7|}MWf?)@7^`7
z{FLH5&*tZ*-z#42U<WT<1eLWG0@bDw2I9!wKeRPy=!GYE{0%%D1{%#Q=oA30f`k}_
zHd2RP%z}EP$c3l#<B+eAEEJ<u!UxLX3<Qc<95uzk3l^cZASb|TjspH^#o(mrz!7n-
z5j5xnlfhD_G&{4b5mxuhcztc{ub<E7o0hx?07WinF0A-j&#NmdmBYistNjHT7#19Q
zQ`LFFfCn@<r5nBNN^-yLvW>~dwM<PzCrz0=d9j#o)Qhjz<F`K-VPsfQqN+PBQa{9Q
zH`|)<_*(F&)UjUa<@)>o1hpkbOuxD^*qz_@%LKbWADpev2{14`ICb-@(8K8by-SbF
z*T-y5KYwlg{(n(fl>q@0?0&y7wm!qd!0`KloX+!v>kXxUeiW9zy|wku(|h;sSyg|_
zQ9Z}O!0=ls!IFJ<oYI%CU$26O9Ao!Yf6rrOVF`KE!@#g&9^opg_~*B`x3BK4F0ZVv
zK7IbY|HO$CLBoYx{q8@!VVYq3<$`n6mW+vga<*Br+MYM#Yd*G4nl#Cz=0`!bFF!+r
zSNb>JccQsR4jno)Wx|97pk8gn28X=7JSj-4EbigX`tNtkqjr_7w6V249kZ|eecacV
zm)$EXD?!;`Nl9r-#m6Mjl!d6BTWI2S@0QEU{jcx;|2LnNo&EK?-R~wHO$v;OnUj>9
zyfyha-`%?3Z)cfgPO@Fj!O(E|_SWp_Ve8}8{`gVh>gwt_2{aM7ueREEhJoYlZMmy2
z)F~+|i;9Vb<$X5Iyrgn<eSCcMww#IEw{KTjS^4={)vuS!w`N{e`}*?o@j1dp3}v|+
zUR_zac&>GM)}a<otHMVuHa0d}QcsJ`wX2P~yv+CV_4s;SeSQ6EKS72Duhf3FY{+6d
z<a!QNvHQ)jD7;yzAHB_oonP+Cn#j$kV(Q-AvCO@-1yucBD^T?WO_1){yZ7tA-|xde
zl&{Fz@VnW~*4EZE^^}P3OrxXsf*BbWMBUn5zW&yh%*9b#vu^g3zq@mD*PZ+K_uqM2
zTvTLI_{as+C*8MiU+TKg_y7M3Z*6S_4a%LZ=#?@Rk&#*Re*gb}Qs)nC{1Dlq2AT)}
zO_o*rGc!C;(fa*wbx#k^&!0c1N`3$Qd2*tJRpqBAs@vz=)$ZD}XU~`K`~Ux)bbLdE
z&QrPPMaNfUy}6eFYF2ys_*}WT*nR5Uxw)S=1ipMEzv=93^Vwy4<m-MoZcaZB8maV~
zYqgY(S87H0`Z!P&-P)R69{Rhau<)Vo28ISLLbavh$~%u^UP**bjAgzCS|IggvOlP&
zu<PZr*&*xW_6EKFV_6W}y*2y#tBdaPq0MZ(B64!;rs+m&>FWA|)~sDy6S?^6>hSCj
z4-SU!xj$u!$j%)BY)lO6=Gx9{e){s|N^WtzDN^T8pWdve@1K&gWLNq7b?ovrA2uDI
z5b~~2ue4{?iFJ&xkBY}%dAt4oy7P9weLyoU>yBGheOVz_|ECZ%FcrN$FZA!PuWL_x
z{VQl`Ys>oo?=PrPAo})qP^T<I!>N)72N-2-DlVk0SrhQt{b}qXP)kF_H1pDuGjI3(
zdZi62%3ohw8(dYjYf1M}kHo}<Ma9Ka=gnL9>+5UKB;>Wzy{f<ed@ej??G~DP{npbb
zCns0ETDg2(^^QqPK>fa*J9mNxG<<hVTJr1b>(}%D|5;vCRP^PP_Ii&=phclub8c?B
zQWsbA@n}%4C}^bNOwro!(RZs}uaz=PYB{?)et+F`o3w(04MD-dQzuVOHr`kK+%Hl`
zjFp{z`p&x_A0G#e$)%hS*qU=QNH=<0NJ7E_zj-z*&(1d2HZTb2?ChMh<lEcZr_Y}C
zy<hu%?pZr7F0L)*@9!1$2Zr7>O<-kZ4ZY=?JHO^rXVjLAz<2JS@04DT1&ukF<=jwM
z`KN2!n!<PcnHXjqmFv%xFw2?2#m&97;$zb5h`PFclO|0P5fVzOWlx0n_f$ObSL$|l
zcAzB@VQV51KR@}FdV1Q+KR-YFecuqcJ5FhidH%dMe))Bb%xp2Aj5*g|y}3EP^wX1*
zr{m=LxVSDIm#=>_rT+~(!vY&zBh=f?0w#g7nQrtppUlim(6W%r%Y3hH$-Er&ySt|+
zWU*WCnun{7tcl!wWo@)MXmtUoH~|&WXJ?!H|NZ?PG?BjkcV(E`ZniZ$c36N){_?w}
z(?LrY8X6dO?%H*0P4dQwFBjeAV=ot;n`^D^xhi(|H`VLfk>}Wbm>J$2#oty~u9W{u
z>%C0g{=a3Qg5~1Hi&EBQYd~F$jt-8q^K5^g@>{{RA^QMm@>fT!n~8}DR9DH@{aAR#
zD(#P=Hm9Ge<7yjG-XsPFi`lbGv$gc}{0a*TpRSucV@Ag1jH%E2=NtY>2Q56j9$#M@
zTD->Vjnsxqmo8~NwXn0Z`}Fzq<$r&F>+ihx@9*!Y@87QnHMphUc&)RJ?_IG%<Lb)b
z<7qihPE3@tEP4|9UYMbvw&usfcJNA<8#9g5wVvL%b36L$&A*O|r#}7n`~7v$iqN;W
zw@<I!fBkxV{n{;COhEG%lS0<V+0M1A-F2nvx)9g%^Yhp9$y&vH{l?I6%DCi30I#go
zm9(7u`)WapJ>Hlohp6%iZrGM{a}lq!S;YK>7xz>agO*9Zy12MK^SFe4-5$`KK>EB&
zx9Dv-8!JN&=kNc!Z2!Nn>py+_c5O%DV-?S}QCly~G)@O)<E{Dk<1QV2Ua}^B|Gh1i
zj0_*rzwKh@ezqz5z^U`+ub-HxytVFcm1Nt(U8S$RCV`f{|M*b>T5a%t-|uyr{GW2}
z?%E1!4+buFdwDH7f2-Zezsu*>U7Doo{RPxo-uwODX1m{6M>+(%`ueUl^V_X3Og{GF
z&(F`Gnie!@`u67L=d+$OGce4V9y`C;wDwmCsI?AS<!)qT^yPN`{+HYD*9E7gEdw<!
zwq{??I@Tk(Og8_<hQwQYtG8EueYI58ds@bq7Z<CZ&n>^QI$R&LKJr;|(W~q0*MEI|
z{q*hI(HAdXjM`VTGp_Du>fQSPf0ur%wynFxz!2j9t%6VNO!{@U?5nFnxwyGE+u81I
zS-*b$qeqXXOr5&)>FMdOmrjo}dOKtLouclrH4%XeOF`X{+TY)%O3gRRoppA-{?|NC
z28MMk(>dlg$4am1>ES7Td1>jLr?I<A0@Kpcz^#@Cw{DsyfErvUPo8|LcYjl=_e}o|
zR)zzSg`F2HZ<r>uwzj_f`~Cj)`2WAcU#Clpii>Njs=9(!o`9zR)#p_lnitH%z_25!
zY%hEEr6r!f=KudG4;oJg4ZeN-`1|P5qeeW=iHV7znh4Zba9FyyaMiCjQX67oV?p~1
zR;<vd{q=IWRoR;vOS;b=1hrP0nws8N+A=UStbQcGFSYmWw%aAQbGP5DmSSMIA^Tpb
zgm0?chILz}Zi>)JwbNo`U^oyMT6JJm{QkPuNhOd{%i}IXLsl!>Y0HqR1G}yyOD^d?
z2+CLg|2($`jptstaN*QU2?mA+Pnkz@I-aLaow{^dfB%}J-QuekEO1!t)_dv6$;qG<
zBGvx93=Lk+%}-_C$ZhbFT5Zp^8ngw%z~I8YU}lB|mjpM=X}-%8mX@{*6n%TYUW*2G
zqBAm9Ec2NO8qK<u?Zv>rux!PbhN%-LCh~^0wzgLN`FI@E8)y<`VEEsCY~`!fUm8GG
z#qKC@Jb3URD40OA5^vt*q^74&-|gGZC#zN1#=yXEec2`Eu(-H+DldP(-+%ouzkSWg
zQr^Q8jwS^L1_q}3@G>y$ek`Z+Jm4jxwxQw1P5hh;3;`>(Y(X&?`c09MVTDn~hB?jM
zd({~j7#`%j`6r{p!0@3SKC0t%pa`WC02-B944S@&bqcCc=dFkt<w5TRfJb=}yrOhA
z$B9myKY#s;7a2c){|0sU6%`e4ZOOcxy8ZXB*XvCyJ|wWRu$;JjIk>K_4m7+78dcmJ
zmzTHh-^c#?74`rBfkwt_YHF@5bY=&Q>Kr|KH2mxDCnrFCZ->OhM9@0!jEogxIuQ!y
z=H|RI78^nWer>*TC1mHWU0I;q__)^`G|!!yn)>qH?)TTk<7*OQ-@mxHSjsr9N9AR!
zcpPXwBNH?8*EgHbYuVWR*)?yrZ2>=MnZpse?+I`54(3eVom){+v9iIW>PrSI8=ID*
zqT}CRUni@8W(?T*WCCt)%U%20)x`z09Lm$vv#Yl^G$G-^)p?5!FFeS^uwYj7=Cs~B
zckYM?3MR@HmzRfERO~2wb7P^fx?jx2e>S$Zpb^{`UtV6mwvmlj>PE|IA?G%pi7KGB
zVYp@WaTjpsa7OL_P*<sqdogx%=s&-+v-sE7>+w@3O<LqRS?%S6gUzolFF&8U9nwb1
zx$$As>o8SNcM$6UO_@Bu{htkHd3Q8CS4D1KHm~xTr0-0lr;~1rh=^z?DmpecHom&D
z^72*RdybIKCC2!SzPg^C-{WJwmp?u}zP03K(9`G7LAlN}`<hPq?EQb==7aW3+5P<z
zymN=ebyrhJe_f98H0qK8OGih?Yya!tY&;H11E5L6s{en#pN{!|6}qn>a&y|s`v3o?
z->naI1_epyn_FAG|NlH+pL0y_x&x@yT`9TY$-fn9zO!O3%4A(x0h-#>)YJ0=txLGt
z2O6_QY$Ygm{k={Ll(;NrWM^*JRq}F?UhJ+LJxiA_2h9;Y%@dZ9S@Yyc%F`!LZrpi+
zXw1cbw5j|5w_LJqVe#{GH(A#7+x_wo6cm&)%b6jj7gKTc_gbwvubb3C#V3)=0RDbD
zt-thJ`L8dTwLc!Vb8&ENs4RbQZEdt^(G!oaZ*B%_hppMsm!47&>W*6oRNra7y0bVP
zG{b6WXn5+>DcGhiT!ZdxJQ53*`OaSDJzek9*RP>fRl7h#FcT*x7XQDxG5NSj#s!6)
zJ9dDkg|tfZK|>~ad%uPWpTD&a6gCbxXZ%ZLyN?FFx?A_~;X}~a52$|%num<rTea)+
zIcv}gPtfG*u6zFWf0q<LKj%4VUiG`3LC5Et<w}7@oMYs_Wo%f|eSTe6cQ<Gc-p<!5
zYHGJkqAnfnKPqWk^(FQD{l)J5v%R~|^;IJ+=h_(F%vuadglKc{2^n)%*&&Z@?_fV|
zi99yq1YSEeRYOnD&-_k7^WNo+ULX4F{~W#-?4WvkTkh<=%Nx8t+|J*Bvzlv#63Fl1
zby5dxBOr^cV8iF&wA<zo^0g3ooCY*miflQk2qrWF1WLgN1v*yQfhNZoW<bXF52-pm
zcR*f?MdWZfbQ}jfw*YZG$Vtd1gZ!U?6qK;J0Z_i_>g$`ffB*hHd-jM32`%!SZ5CU$
z8?@N;;lqcZKH`(NZ`Xomag~&uX3m^B{m#2HGmSre{W`U~yZhR@*z9YW7Ca!&%XI9O
zTC-t;!P?l}VS#~xS&-2_&`7(gy87zu>+7E8iOb5aee)&<lzPqYRV)S#r-Jrfg63=P
z?X7<L`gQcPvW*)zo;rQH_*NNc4$i@JJ7RvctE+30N^4u&s@mV*W*H<lZOgqK_HNtf
z=jX$}zq^}z?AQ1A>*Z{#G9Dgkon@HpwlWuOdDl+$#|ogSh=yj(%#CNNV$aPo%?2$t
z>*(NkJ!ALo-G>ez1`UJEwJ2P4C-=Y1I+d5}cE1by`|Io1$Nl!xcKW8IENSDDT?N|t
zV$j3&r!T}7nk8eD?qD5HICR{){@<RWqM|Ds5)TKRw)^pb`R$#Z!R>sqmo6@L*WPn}
zRT~><jhG(Fq-Yyx`q}mOZ2S6sTwGixNk=$lgSLBt7MUj>?+e|Wc6MFnxxPL&&}P`A
zem2y;zjoH^Yinm2Cbxk$Kz@C3@o?Hr#DXoZ_v=?FfhNh%R#sKLI@HR&^w{T5pVpk#
zesp1>bJdH5?II!~OSa#uI-M2?U8rS#za}^?F7CQrCOc%kWlT1B9ul-7qi3#t{XdK`
z@Y8bNe|&uW>iYWmudc3M&MR$p;`Z&^X+N*548FQ0GZ@sD^YZuKe)GTn{y&Spd?{gN
zVX-)yEDcVw6X)4huS!2Z&n(%!Pv+tb!{k$U)hsL`PM$n@>g36dJ1^EgKR0(%gbo)U
z-@Ye?^}pYme|>%3zqPg1%g--tv0Ja#+G3>jS&zlKK~36eN0S1}%C^<i)Myn<>+1*4
zuWmeU8*#Xe_wt>c#h^YiXzcOQQT5&GkZI9he231Q@tJE`?6x*~`?S@oSF61Ie!u>D
z10(a4i4zw-dGaKP5!^K`d38l|_C{uQJ`FRou!|Qjf{H!wt#P5CUF;26>x!SB15G|B
zB_&OnIyJR+Qgv0;E+JvzwXc2WSOlJ)rW+g;HH(RfNyW3@?$?TcpXdJvH61`>S_hli
z*S@~KD%87~oqyUAqxo#{C=0T#|J2bI2bG}g$^E}4Ow*5FcjHFH+K7!#H*ekqt^RA{
zl?HX1XIJjral`Im=KX!On<8{TYwD-zL?&%sQ~CMXwT4i+^qtRNod*TFgK74)keHY`
zj~+b|ty4b5z#zN{bS}WDSan0gi_0!fS~9=x*UMG?Hy69}i;9ZIe*M<h0|~?H?Y4(w
zz~khgHB27@Em4a}P<enn%ZOAMVqF~tatmZttI$KyqQXMZPL?(M{k*(DQ?z}u)@jEh
z85tPdoeun(Y<{o8Sx-+76yDlf{(b%7$;=Q?JGCa>5WHji*W}REVJlNlPrJ1>dpc-f
z_5DlGnxl?}uk7}Jzf9hie}7%&=Vzc@uAr?ZdzZ5?tVjcu){L+D!`8*D1daXd`~B|n
zhQz}lCp}mtu;E|A)m5QVRwXMy(}qP)JY?-^B6gR*-}ZeAbbXZjfnV{v%imvH=-dv<
zt)4;O-`#!s{=I)UD+9wi3C7p;Yh!i>^-7zEou6mBHo4#CQwM17L9#7ze<vfuDpAn7
zB^DjeqeqW|7O#T(my7@J-&@^(a@U{#7XNmAJm46l9dL5xj1J?;9}H45<vwk>a5HDY
zRs)mEso7J7T|ZyBvi^98)^o<`3X2}G@aJZk=^kZ%a_Y?zrpp)9I;OhqoG|(O`~GKp
z-^oAd<bKC*e*Spb`pR0n>(6)DZ9f@T9e@4#;iKKV3LZA;#q3zHVS_>J-m1`ce)+Pm
zB8&_UwufflQLX*?bULUHl$Et=TmJobC1=t$XTH9+R>~;FqxZOF-Jcz^%yM5{xwf-7
zot2&a`j1--44XfF`lPkjW!IK1Tdo~{>ih0pV}q)us;cYS=<U~TZOzu!WnZ>@dG_~r
zccb>#?X|JB%{KAdU-$RP`}gsSvl$p(xg{hlU}9#Tduv_%{&mgl{MTOXVA1)0;Q{lt
zwb9$RRDaI{W!c5<{p(6>6cik8Z_mG;KEHO^iWM5-X9O4+u9)-I@n5^QxBBb%`}Lq%
z#!xwae*WqE_uKmmGcmkknSJN3b2ER$?QOY}`}_U3R<Fr1o9)&kv9Ot)|JARrumALO
zF)+Mac~D>Q-QC^a=RME4wZ(I`S?(m2(2x)d+3wEHKp!8UwP$!4E_~R)e%jXL2bUNF
zLqjI-z9v?NhN}UEtNyP5&DBe|v2rsoa3}Ils|IzM5)@f<z8?TB<!wj|*}%ZCK|m|w
zT_ad4cD{s`-&c82&>0!vgcxyRu5H9J`|m+fQLA?Bu-KY=JIv0`j*FlF`a<XScQ@a^
zy1IInW%06k_5UhCYsBQ_<W8M9vEtjGO`D8BJ@?q%WmC6r-wqn`o~Z1uWpDq#ai99?
zWKa`^yYQ;o_Zc%JKph~^Qrduk37`Q(LBWN}?tL$Arq5ryExxR58)$sz++1sI6&076
zGiP3%7abS3uA_q^H8nN!(h^V58mnGu^Dm%X4=Yx9_}hFu;(T|$D5#~D@c=Y-Eo)tt
z@$}SG&?;+{Owc6zub0bBlaKMp+Sl#5wQq0r_iOU?e-?s<oNaCYu44p^kAQ{`K+ACB
z_Et&m=hsezIQFPeVpP;DDf7HFo|DxqZ`s(|nif8CNli<81=<1fE%(}*nNizvD$oDk
zbo=eEACLRLUh>vo8NNPl)ru7Xg@qsg)*F810WE!I12tl}`1q!+U%x)MIwE4m;|kxo
zw$))jfBpnb4ucj*f|h1SZcYQO9w`Bhx5eMj0+k679okwEtgNhD92_gI$O#B2?7o|q
z!d#V?w{A)ObWUR<BhUn}s;cVBB}-gDqe^wZUM`pFPgH#a>IpV#>*-BfzC3+tnZCaM
z@sG21ReoOfc>n$S|9g|2e=l%s2Gzh%PfypjwA^{@aRe)<pzmJ!TD-Tax_b4JB};;S
zuZ`X=bKJK_(X;mVx6-Pp4Y9k+K$WfEJe$bJhHJn}b)|3auiwunWAWfh+48E8xeW~s
zTGJW1xwuqLo_H<%E@pA*>uXc{wq{*Db;3?xTQPx=Awki!mj7CZpfafVTD}dmgXqnT
zjaR>M^73AtsO(<y`I+zX-gl9ak(+MjaPjiizW90P;@;|V(BS(ib)nCnKR<o{J|1Md
z?>hztlY)s8Cu-^IhdVhnEnd52ONghZCl^0|`0Z`Es(*i9`}XEdPH0Go%?F8n`}TEp
zbX+(&S$*o{$&WMa%iqlbjff{6ZoB%&O{WEvH^d%wneS|GZPnD$^4gqsHYhQ1;bY%-
z)AeG5l9CoZ-ZRrU9dwRGWo0F3-NoYCi;G-0-OK?^Ii_yE4O%Xhe7w(dQrh`>Z!Pja
zJ_4_rWaE`uQhu+}y=-?ZXfXZHpFbwq*K`(tf0G5O%XE%}?$=5`Jxv!hK^znmRPy*3
zZ);0S#{GS@uWoN&f4S7gMoYi$>}>P%hHYolid&3kpM55>0ko{Cr-$e0(W5Wx|NowE
zV`F1d@gYGse&3!`*IllpgA4}sz(C8fqqgNlZhfwzre+no<=u|j-`{Hcg{7ocHM8^E
zU6FY$4C-8nJzB*jb|wkDq8U;&NFa&=P|=d0_~u{{Kd2C4;8_eRbXo%r7V(2@(P?RT
zDi@)|!oXnA0}ehX*3-5D-~k^9-}&gue;_Rk2@;^9MW@9Ue<1`eq(Jq3tH6dk%-~ty
zw!ni-3<r`{SX`|~b^@p<gxb{58U>2bSDFkfR4Xeh*Uf8+-W7b%=&$2lrG$lHPoF*8
zRmH`Sb@J)y>9Mw~2R7XRt%+&{=?5+1+aSO+tvUge)ejhGMU*bsu_I!VN!Aq&P-pV!
z=9SU*|9&ivtN&XX?!Wk)>5=MbOI8Li&-(i6>biMsuTD(W4i}M@e*G%*%F5#B=Rm_C
zee+*$ZS4yF>waJrbNRe2oqc^}Z(U-Rgs+cVH;?I+K>dAQZ|A?i&z(LUe1BhUtSxVZ
z1mkKx9(lVMO-)TM9-b-Nw{Ks)oSC7*<LJ?&r%s=~{Ndr@>|CC22|L-D!el>u{(O1$
z`hBlnWil}EEGTOI?Fj19Iju<8$vzKzBs8#^B!HIwwzs#})YOCo1O&YNaiEb|R7mJi
z(@aKQ@%?XZ+6ru7Sg~Y@i}!TBwO7vZryekk5nSix?G0Lnur2pCXz}I4hYzhvUR<dC
zs;i|18`T7D=ll75{`K<vwc#&qcHdq1_4W1D?)`FAPbRuwS>`JZ8k;gU{@l24{;!4x
zR)>WP7v9=YxOiRM-dC?yG89alF+<|$@#EQdb`*ljOwh7iR~MHTPfkuQf1AGjwy2=s
z!Yfxo_I^HR4O)3u_xmkq{4GFSFQ&lC+{`QtG%gGpH3BVT1@+!ep1jz=$o%E3`TZ-;
z-d?q261#BVW{%n3|Nnk#>FclG)b%x9R8%x-N5R6Trlu!PpDyi_wa)tX=BAdeZmE^N
zfk6Ohw6;@N{mOEG`O50*)xpdCZf#2SUYac?D*AHo_j|#=zr6*Wt8;Fyb@tCsPdD9u
z>-JuFg?`LNmx@<cG~eFX=nUF>aA~Rc*JIN8FFrgx{OZEO=Cm_23a{_8E`Jx2mbT0+
z|K1wQ;%A_>#J^sxUVmjppz_)I_V)|pTwPm13(gIbk7;OXdgkx>*akXU<;4ZXsne%t
zzrMECZJ+&Wg#^Zc<9)JUZ)LB)ySWQg`<$I`9}n90R8zBujZbEUs`s=PQ^Vs5t<I-y
z)-*Q{4-5<h4G)E_jaqtKuG&Xf&F8|-;^#8YMa9Ke*Z==_Yg_K@WBu~${q26bfELZK
ziQH_GduvP7?s$fCmo8npvZFBBcb3V?i_c!ZT-hnCu4QZ-9KJ4Q<+l8)s$HN8{o-PG
z>sz3LEbWZM+q=8NQ&UqXE!nim2xNTd>M*~*fB*iKt#-W2$;jQHk_ifDZSBjOQcth4
z`S<txeQit2NYKeESy`*@)qM5^Z4osy3#<P2=HkW0?sLzbKY21RDr%OPUd#&3;AJlk
zG%|yRX@!J^WuLE!*%<`dYO`t6rY#8vnS5uNcy@Mnc6E1Oo@JW-?w7M{LHN2A380SD
z!Gi}sef?UR#m~)MEVKSx`Tg4E^K7fbK>W-0|NktWGe^dA()8)me|>qmc*zo#+}qoH
z_y7B~8nhf9)awP!=m+m8W@pi1nDlRLQm?eRA15cLmX6MvlA8bj{%*RN18P<T|K5^$
zIc59pt@-!umVX27hdOWfd(GqXb#-;16}x(IdtPLCdwX979Z&>XR?=_(ub_sFUvAB(
zPerLIDH8j<8A3HRGy)tP9F~4-XkfVcw(RNi=k_7-o_@94^X{&C@F2m}-F>xlJ0EDD
z8fYr(&yPY@HnwY^%Bq3&K;pSMmRj1{tBdrnJv}}B>BEN$7c5X%{_Wb@=+&vGr|l|v
zIVrgM_qVs&v5zmh%U|u4HkYYCclPYn=kx3J>g(&5pTDrsId${RlDD@^oy*y-$gf+G
zASy0?`ts$?LA$3<pZ@sA;V)ZnzxAuFt*yPfHrjme-*2};(^1#fMlb*Lsc7$yN8P*X
z{{H$~=lYc?zli<8g^kJXuI}#Iii(bfg@vK>iud=|m}gyCaq8Ruytw_fzqf%#GIs3P
zp=G|6ot^#u^$3QnW4CWdtE#F_y_J7=*Heps2DQ0nvlr*Py0(J0fr0jjEbg}}nqyw^
zA))m3HDB$pH5VqSdS_K>PjfuL^dRNj97``x&y`!mK_RrO_V>1;;^M1Iy~W*sZ_U2`
z<@x;jRnF~v{5E0B{pNz&6TDI;D~^3;yW{E`&ogV<v}Iqulq}!2|KG3I>uQ;pm{!HG
z?fJ~~NPS+#qjj~bs{%j%e?NQT#D(+getE7AUteaWuc6@qnm+9mR)1%8{8yW*6NBHp
znopjt?(W%#+j#x_MciCmPULOZwzIqU^3PQ5@Kb4<LA%lTZLZBQOrA1x=1Tp2KNelu
zxM-0Qs4en?mmzO~ns;MhV4#<;Z|N_cxII7CJ#KAl1MQYJ&%alab^g?;NoUi7GcsPp
z{+?%7yDO+VENog$O^wXd7l#fx-OSmh^*?s{)Tt}??D<o-Z&p=v1FK0vsP5Ujm5U6l
zt#4lx6B1f9V}^vPipq<p)8nu0Dt!%_sQ~rbL9=cRjLdQsZ(d$r4l1xgr!j#VpS;p$
z8K8bAsC~ROd-<Y8i=^&KH~bcslwA4gQ<18Qip4E2Z*S0S+lLPYpzgq=lCQ5qQ`6I}
zTbG<T;Q?CjeSKYQ-!{+^=*-Ma(5{bJCYeev@2l4DzPs+qm5}8d{pZ`Qee>px)_j*W
z=OdI@q;{;DrUcr@UHJG|=I3W;{f^uJ{SsXI>WZhQr{}HB>HVO>=H}+~?0b7Er>={<
zD|Ed6_TIgFr%s%>@MyPq_VaUdZ*5BLo@JiD?!kiu-G~hix=~vUN~Syf4V2z*{UPo;
zH#c{1NXV45v$K{SI^@L4%BrcU={a35wy0|BsWUT;LG86Ydu)z3>r9+Dv8%uTdJCuU
zm(S<zLCdDHudloM_V)I#2ifH<etmm$GuXME@9ML&vq75}5)Zd&+S|uxUt1HnIqfXy
z$Ofss>EWAiR>m4JFzA7X)j?-TxcAHLeLd;UVT<BtJ)jZs{QZBo-SP^|%v=fDk2qzD
z$lV=<&WehPph@C39?3@*>4#c4LH+@i8()?b1O`rA=0AU(ZS}VmJ9b1QCMN#+aF`#o
zEO@!0mzUR<hwbv9HEW>aaF$u_s(*ifXCG{0&HLW{lrw^XA>zPX&}3ntHY2FKFXxRg
z=(Yt7E4OWA2lWvPkIL!Ha0hi4L2Vueh6oN(o$n4vd>+x|zxu(=unjIR@HX(!8+_RK
z;AWNtQ{dm@$lcLt9Cw*PZ9;~_kTzz>hC6uq&(F^{k1GV7ZE^AS!+YR<QN#TC^J{8q
zL}X=SwXc8w_;KR=`SELGq^I6|Q?~o=)yWJD440msp8gdy)p=^`-#>q@?5q79wbM)s
zG=<0@aZIh8fq?<s*=1-0bsQOZAQEl|K!-zuhMgD^BtRXa0|uaWazi4h$vdin=eNE7
X2Md)geGNto3=9mOu6{1-oD!M<e@C)f

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-13.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-13.png
new file mode 100644
index 0000000000000000000000000000000000000000..ed86fe352af2b6c26a8cc50558c7845a51dc7587
GIT binary patch
literal 21331
zcmeAS@N?(olHy`uVBq!ia0y~yV2S`?4mJh`hJ9%>?l3SguoOFahH!9jaMW<5bTBY5
za29w(7BevLCxS5J3j5`m3=9eko-U3d6?5L)t&9kLdg$NBYGxyCz7>jHT`8GfOO{$p
zndO|Rep=`>*Gi7Fb?ThKg@-iNeXgw8&f_hRyWxxt^VC$?vxcV)*B&vtusEag5MyfD
z-+v!c_ouV3crj`3%{u$*M@#+A&zhGSw*C9&Z@0t_8}KkPFdQ(^`!<h(fuUiuVge%r
z!;GE=RtAOyBPKBhhK7?I5ey6rYRaP$!zoD2tNj@m7-9-uTu_{AQTS-qoZI*B$2&SY
zUVm~&qq~8Xp@G?=<i&(pX1P^o&%J;9cCCE<pNSJfT_coO7!EMTtbVrY%Fg2F>wcPk
zsL$BIz))Zy)_wHKXUVq2S3e6fO~46e@j)hr1C0?nVwa_LI>lD6x(G=?Y}^bC>`u*3
zWkC8EeB7ErcI^z~6<a073r%h-jGmvLuU|grIn$ietJm*ab$569?P@89t)aIPX8vtn
z<$Azrs)nZK#P06yO`A4t$+)Pr_v10?UoV%>4+#lT=|1XoqDV--_RGYi<m9ad51pPq
zfByNq=nkir)vx-~Hw380#KwL-%x}M<`ujVp%1=wWy1PXM1QslxUl;ZGSnuTR+qa*a
zZ?7*dZd70T?ZaXI>}zWxU)|ii+{V^6G$dq+lxfzD>L`YQr$5$9u3LF2_28pNNxf30
zUT<%2zkXc4eocJcPgfB8(o%0xY3bF)&(EDadbIV}VkvD+&50^Uj~{>i?RNh4e}8{}
zy}tin=<jcDH-A3U@TyhS>AAy!L#9t3JzC`4&X;+1mZ_GO)}_h*b}N6s+wFgLw)yqy
z_j{M`tNs1zvcLV-Hl1nQtM$Xf!)NdR_xt|;bw|6!wG9me?f-t6JU5N?L6NAKn3kPg
zTw`P7r*GfFDk^qdTNhh>^Z5GM-C?%X-$LHr+8Vk#O!scx@3+4`9Ogg$W_#u5w9>b?
zLhbDAxHvcha&p$3n`fK-Y^?>$G>*cv5^W3b+===6=H}&JYeKi@-Bt1Y`Sa(ej~_2K
zv2v$KwAuZ9BJ6odd;K1z{QP{$wuAF`teQD#lF;l4rd3}uL`6h2G&Ma{RaLz_JT9Cy
zzn^nl@{o@G|390ZoSfd+@-8pcm0Et<GCm|^O4!<{r8{<5w6?Tpn3{(E{q^<ouF}__
zMAj`gd(xyu>GLYxYJYvXxF&M*lUJ`+{r&y@^@oRt&3?bVwbgrX)z_fc*VdZW|Eu}?
z`~LrHr}g)*nP2}e^5x5y;idh2#~IdbJlZWT%`0VMpd;43vEpOW>x#t0g^3bvh41cI
zCcn6_(CzXv-(GjQ$|Dxl-`4D1*0p*|{r|eh@&A8KKYL?K=H(u%(pM7A?EGeRe?GeZ
z_TgD3X<fD^abrYJ{=T2b?gbZG-QJ#Wt|IyF-MhBs%a^aT2QgHVe}8-XH17B8{C$Qx
zV%>)M_iSEA)Ya`16cS1*d3ovSqR;2foH5z6cW>{G9Xq`5CEwpy+k4=EgR;5#b*pdJ
zqVpy7^z@F2$JZ3j+#ht6*}G*&T32_ss^@u|&pmO~Z%u#x_>uAL&COqLHlJ7VG|jpa
z5EwXd&z?PBPHC@S;XPgN*T3KIOJ7~ltoD-**RZ#bPd?Uj@oxG3+|6qyOqj4>#}13y
zZ#UCtndM5IZoPWP_WPa1A3hY=emKB<Yg_K@y~`g@dGnFy+Nr79PoF(oHe-gw>ly9s
z?TZ#K-kN$^OxCh!$)V)?6_0u6+SkVgFZY|eglqcmb8{>gZ_U20Wn>g&XJ>cqqoQ-$
ziQ~uJ<!e4Trq<1rkz?durdfN!QeWTS)z#Ii@KH-?w2Mp2y^6=YPoF%=IMl)!wK=VK
z$$#$1dGqE~{eHXs>(lA+S_%pW^gbWI`ti$`keHY`RbO8%t$w%DJ-+5+Yw7Lz&e#6^
z{r%P=IHvPb{k+|!ua_-ZqGFnT&FB05dV9swo^Nh#_12BvHf8<#^=B*E`DEAJ*8cQ#
zdi<+rv-88Ms&>sX$y_wcG<#Lt-l|z9nUl^MZ@pjte{WZJ_tky1)w3UGUs<tm!v=%5
zcXnPrV!g?pNz5nk*B@Uuw>BkZWl<@qRo~v;&VF%W;jb^3{Z&2vZ9cX<J3oK@nKM4U
z^7i}gOej6fYkuRiSpet%zxwAEEmHCn|M%EB^^{2I>ubK>?^WmTRD69}fB%(k{e3H#
z+4(|#&M8cltNGyAD{mjy&M!ahXi{KB#g0jnCW*+%_?+0q_U2+jYI^$g-|e>>8W<$o
z7A|)0536|7$jn~y;)0^>-!GS|p3O}Ea?xFWW&HlSS$4I%)codT6!Uf;4SHCrSJwNg
zqoH+mnnc^z#$$T1yIwq>UmtdRTkh4Z+2Oj;+k8Oj>Djrt+Ap0%_aq!-N=-}4y0pae
z*KzxQik^G4SI#p0_uZM}c)$GgFZGI%ldQ_$t$BHQd9?Gj`O~@Q*Zs<TdwaY8y?gh{
zW?E~l_nT`~^?L30FRxawe|2G@^QH)$S65aFE54Rm^(x%t$<wDN4<BB9X2<g7%S)?W
zi;9a&KRxmEoo(hjS>69y10(a6oSQ~>tKaXfdO9_Hjd$D9=PO=ViSKqRbvbY-R8v!P
z;?bmwH#et?%FC~J>y^^9w2YLm`Op})CSswibr~qBb#`_}ZONFZqG@Clw0`fmS^NHe
zi&j-twS0QKcy8~<<>BcOI%0pn-Ohh?XXj?Q`agx9sm|BD_4h8Zez(K<`@QP*W;r(!
zY|E~#iTw5LcD|^DL`121gLcrb@3yL{uKIgEG(9^v*ZV|KP+VM`mWGCg@x1x-^Y7Me
zOjdn)(OrJ4q`XbVhEJb9t?{m3`a85_Zg=crE2V^mm%`S^<*u#uwx5<S(N_24A^Y8`
z*K4nt{yucbX=~P1ulcp#X4=@;YylNW?q%%!a%)7j!(N;<zrUsOhG5^y1q&SZ|NS<b
zPsU<F^6@^;NqhG0y}CBqy!PME=Tc@lGgNL*xVqF^-1hgI%~tjQ_Wb(tGPzc?UFGNR
z-{F6K7hKX2>;8K4RORPqnr3EUo}Qj9YqH;D-Cp(RQPR`r&u{+`5fh91GK-Os@zl9<
zdd6{9*H#2B=IYnIdu>Ca^X!joyiz9&c%D9a60tr}!maiC&Kstyl$pfzW+zHm)&AP@
z?A+Ydmc`F9etmg)E%$hz?B$ig%h%LD($&(Mw0rk%FE1|<8JRWV@wK7W<?pT>>y=)6
z+{MM^#j@FXt3Lg9c)Dcy^4AmH<pNJn)4jSXRJ*mM<;6jE`76tOXHS_kXU%cBY9CP4
z`kv5Q`%Aw5PvO?w+hL83jZ#J_9p~oRp6*UrEg2pj{#w21`T6<&Cswg#U0I>1udhFQ
z{-<eA|3ybc%rG)CnlgKKw(-8w*I|)5Vy&&Mp%pnVonP1gTk>$CvU|$Lh>-ntwVpw<
z&2pbSd$#QTzTfB4_Agqb^!C=)*Nd*NnD*vV5l2XN^|v>MpfJ6%F81~eqtvd_KM&jG
z&HnuT+gtzt_x-j+3Ae(+jfMaIR30|qNq&ECuUoH_X^*6F+Ktq6JB%_jGuyUr-+pm#
zb$RlmBb~>-yu94IVui-xvuDq4h|oDU$FjKR@$r7?^Y;JuJbeB<ok!a2%(EY&+F=rJ
zZ*MoZ`~AlF@rQ?p%XV>xT$^Q@-E(zy`0bvj&!0#C|Ie+zCm}*dEcwccK)0~4X`m|X
z-=E6l%gcP-Dk^qdToI_8{P<XJs8xD;z%MzS{QUgIX=i6G`&Ut29e=HQ!=y=*)+DpC
zvL5R-zn4++?#@lCX>;f1{`qp*ALN<RoUgC0wjE6}1eG7M*7g7PT-=%+e)#_V`@haP
zAKvk!dV}5nKgGdyva+m<+*5;sf|4YTwH_$>ez#nDYxZ?BHQ!k&5^afV;`iTM5xaYv
zpp;bB9J|_E&vw-Rc`WaCcUNg|>gj2rpu%q7pHJS4{pMO7`+VL$U&f-~K-%r+^Xv0K
z4g!S^sKVWxeqKu1t;Zni+L}xr8H)=i&YUp;wKN|8`~BYh*VotSbF9nH`IR@Gy0s;9
za^l7ap6;VbHs5X}ADg7=ed?~hnc22G6Sh`<PJ8@pcD`BOo{w(I`ugj&mdCxlX`CS0
zmdGPza-yKT-27ONWU`97y7XM@a<e;k@8%vV3JIB#xG`c){dw=NudbdhC@nQ@<CRX^
z^Y7PdxA*t<@`{U#KVG~2-lm)R$NOa4rca-Kab2u+^2J52$67drdGz)57w6yK_v~Mi
z6$6u)*3<KAuYfAuA3uLe8mFH#;W=y|rWcd3WA|?9wb9$nE?vId8(;VH=#M9p{d?xw
zR!jNLHd}gh1)JCZe|G=>e0EzMwzkK%`dh^Izu)Ia?f?DGdU5&td!YEabm>yhqD4x{
zzrMU|+rNK5$ou8x<)DbVvA4Q>>V4*Qcb3nu%QDHmbw$D`rQ_npWOro)g9|&}Zo3Ui
zOVfY$zxsUMK0fcnuV=IKd*bW=Ugg`o{+<`}wEq77z|~>8!SyvYHF}a8xVX4_43m#Z
z^h%i;?b)-Zr%%>;TIKFvll|>7ckJ3V?dRTtZ*L-%_4LkVTv;*k;menqcdA~mJy!jG
zZ}_`Xv)o%LC2wzC{qXIZnUq;hMvsKyp=B3~#KaCiXygdVd3kAR)$_UKCIA0^U+vy6
zmvwnr@7Zs*)!#Jq^!#pb%f0;M<Yd#VD;i6eEYUDD43w0V{Pg9^l<nKM@7cTe>-qYB
z!3!5IEZZd<;uaS-FK_o-v#oh|qgIEl-E=eU&-L#vdH422GPChaXm4-dmUDB_t*zOw
zx8JY3yef2c$mTTPudl9pA3S*Q+YZ(k#lr@m<hwd<Z&lU%z2CPKK6X1h&o=t@_Wba}
zZM>icZ0Y-Zv1ezQPFCraFmwV{D{lRAYabqNk3Jq)X<hav0My2N{5bg8>C5ZGJUu(l
z&9hzo_V)JGvAfHb&69pwJl81olt{HdQ(xx&eYLy3->WYD@W8S5^I7w#4GE3ga&Ip?
z+|Iw+bFx}dadGfuHD3`qxpjAUmuLU{^t7n7^lJS7U*WuxMlOtuj9K^h?PcSUSP;26
zZDs1|Y2Ws##w;s-elGLkBG*;n>*vW;J`tQcWy*=8PY<Oh{rf%F%6FE@#O>R+gX+h7
zd#hKMzP`39czGYF`u_Iz_G-VmR^N89#x#C@e*W~)qpoYCw_iKbDSUN_r!cRCfy2a!
z6SHn@S-FJ!z0vKR#mnpd{Y<}G`~B{#+uPTxWIj7H^V8R_S7XcXrvBaAbn4`}b74hA
zn`~@so;-S#^s0IT&*6Z?#D#6V(#N)^h6w)CbZBK_W(I}i)isg9j*gDAED9I($yhFG
zX<=z?ZCzRZ{$A9kl+HVM?tJ-nJAZZXa=%&j_4}6j%v=<;HS6Wi=ku>WIXPKWSa`9T
z@2nfY%K|v->gu?7ctYIV+Cbejb93{#_VxGD<R2eWW_xvO>*^)k@y&r&eXmxUNSNl|
zi<xUxdg=cEf8}#+DuX6{IicMDVqv@7r0(u+zd05Qmn>1)nsYO#`1!f3-1>VK%rs7a
zb<tgZ>g?IGZSxrmBv^DpR+PQHC1svBXI}L?%eVLTM#sg){knbs-?G}@-!!ePqQtsg
zLCvSAtyxP?PF6pC|9<?}S644Da_u(ByJPXX@&|w3*PvhDSC_xPck0B63r|i?R*n79
z|9-wRsD<a@(Q&qL`sZsI7TbP(eVzT|!^5b(Ra>{^-PQ8^^=kEc5kbL)pp2Bi_v^HM
zzg}sxva)8LnPJGq&wu^IMCH=cy4!D5K0CK~)%_=YpFi@5>An2&^71UJ(p8{#=tO1r
zsQusECV@(8Q1?hvQ}fi>vs?GEFLi8YyR|)k{;R92)7NJ{){?a<@rd1Bc6Fw4`jjbC
zmVmmzlh&MWUHbo$pSSnr4ngHF{q=vG%kNb#w_VO7EGi<BaiD?Gh{yTj#fwr_B`e<T
zc+97&s(RC=`{%pe?_c#<zq<gcSB~GbYQL1e0aS8V2}i`ltT9eM_kkx&bkXUfs#jNq
zdQVpOpLR6q;-1RSDH3hV{N`%K$H#wtdD$J*ySuQ^dFsrWEBWpJ1ne$*d+E;3V$SfZ
zF#!P+?p43H1+@-A$p_TexN#$5c6)yL`+IB4?^U|%Ms0bpbfe#~!-t(~e|-t8so8UF
zUF_<8wZF4KEtCRi$Nj~|<8qrn`!F7NX>L7T_UlXL-Y=KDy}Z0Gfg0kP!OKn@KYsjK
zaO$O2_9Z`+;-7y!Dju()q~x^RfBv;*e!CTp&1@@OyTw4U^X298`B~@Z+5Y<Vdj08|
zLn2qN*Z()ZySqI9?VX*$(q=gUtHaj5u`zxgb}QlPs?gW7Od^*1&tG<Mm6J)tj-0Jo
zSA(3Knp8A3H9aSpl)ehdo}u-ZMd;zFonPMFjgH=)clE`^#arwCR;`WO8+EBQ{mZSb
z*~@#S%~zGazE(C*^-RdGmB!si7d0}oXC3d81r^~O5e}*X8v-=z`6Ab?Tj%BBF`>Vo
zU;b=alKK6b&G%}*$Ii7ZcC#*j7vkyJd237N;;OH&PM$x1{@&%orUADS{yx>Ozxd_l
z<*yIh<zH<)E;o7i?%i|KpZ!^PwE3mYi@2{G5i7P_n(*}1t5uf8&raOE8+&<~@8<7Y
z3VJ~~+BExG$*%l8$B(kIv4H}+>eb5SUp^j}2Q~0EexK5i)!5Lg9ke=3w^!QS@7=q1
zQZ^ME_AY0BAoc3%>gl((W*;{<3=x#l0gZl$e*XOV@)XVB2q~61F$oC^%yMt3@bmLm
z`?Ibv<A~Uy)uR32m&1-#Q6_#@<rzVPNQZ<L7B8q{U|=wi1dSZ=wXmJGynthnDU=nI
z<4v=#t%%&5_UY57P2Wox7{WF5_5EkgoVn}yyy_?K-`D%Db8LPp!x0ghaCVky)uT@J
zH@3VC4W85V<JTRRufKEeas#t+LTF>!*;$^GqPFE|=I7`C_FL8^Yf}*bs!-;+O|Aa@
zcKcgf*4-W5-IxFT{QTCIclQkA^uE2z1D=}Y+*n}!e$VB5msbSU|M}Ry@5dwV*ZZ%p
z7nNH6s=pzW)oVKI-o1ODzJ8tk{AP%*x%u|j@8+qljNM)KZC+FCkDotdw|~F4z>&Gy
zf8nXhii()&-*r2W+ZK4T=rAzIaGX!DWCsn_^0hQPm8tM$1`XS0Y$))(x<3B?y<i7X
zNU%3(UD=fCUG0BR^J0P}yOd5$Fw2_P+>Eb(IUQiqf(*nhJXpksG<<jPf<<UO62I{S
z&$MEN1V)Aj4jd8Z8daSb7#Jpl2KF8}WNetj42p(^lc0gU0tJ(ZbB%1=3=9WSK>95t
zK;8uLS8Ui2@bTkEE*>6GeSYZh;jLwFZ+XjYFL@cXbH|P;KMPAsujcRn8}_hpx!>HN
zW;Wg@j~*=wT^%;FQkxHKAbZmK^bLy^E!vWGRqN={qnauzE-P2Ae06>O{A+8Ym!F$!
z9slW%{@yQ>W|?NE8OQA|d&|}D>ERJjSGVu-wo*`Vtt$q#FuFvwL51Fq9TuKJDJe@p
z`NA;ySjOXHz0+-u@BMynb=linvDdzSdv|xWYqwbDrza<8nPgrHJ$pBBqYDQ^1G8rC
zhBN<m&X}qle(LO5UqeH~Yli&%{I2fq*{7%JS`|Gxk$TqF+&ujG`T6^w)NS0jvFgXe
zc2K8VvaK-k`MNyNpt^-XHOrdV-DRK}{nOX4TP5FLSlC?p`=~_Q!gqIfuMS%q_37KU
zYs~yM3+C7V+j*zf{?7;J+`GF%i=UlYd1SrU*TX`J3=G$IzIl_w%EB^5lAnWPLZXCK
z)t8Lc<5ktwuU9Ug7t}9j8?rh~H~0R&SWi#SSC^J{m%X{M@W26w*ZY3{{3&HywZ*MZ
zW~G|%tQQXsHeY{IC&LKNT1oxwcRqjm^yJ~gz_dG;FJIoZS4mJ%u&bkE!@tu1|NdTG
z?k|70^m^<p!{oNO`oE>Gw}ILvJ9b1oKGwVXjc$lFB$!e9%5jphyGjC&_sQnQeV#CL
z=E|ML&tLVL-<z;~`}eE9JEXvgDq-ESgI1-lrufab%QX%Q3M#so%*4cWDwgfcxpUK0
zOtY@6xb!*W(vnUiBcnC-wwaeyO!MwUl;16#zG>5@oOAzwzu&K|t?ljT=;-(P78@u(
z_#HWa-oLJ{&MdjIvhviKGiyG~*s#H1ZS;1(ojZ4$@$bsNyDL<z+chyUaq7I|2b<YL
z_t(|Fj+eKqi2#jJHZ?cre%l<OBV|{!Lr1K;sHiApb=X?3_|t-dpfPWSZxw9W4-PcW
zvMygYY4T*#q9-1n;`iRnn>B0IhYtm>n_oeD#v(#OO5x$*o|ig>)t|h7pI^Ms-|nZ&
z?d|#3LA^QI*@nq&ese4mH{ZXvw|eS?2@8Jws3?7P#naBtF1&VqUsD4s!-3Lu&h30%
z9UT{T6h1Eb^P}+f>^qw`ZJIJ^QqtZ0H#atVd3y(^r7de}YEto>Yh8XVcl+ICxAXVM
z*45SB+E=?fC@AR4mdxPU?Ke+XOYfOKe?HIQ3$o>R7XJJDJN~!yS|?C!$#m@9r<Hzl
zQz~en_S4hTQzuVeeBnaC(&fundr#LhdtO+$v9|Tu;(ohTU%r&oemp8}RsL=c6BCn3
z&J6?KStcjbIzMDR3zLNg3|GXvckjG>d_t0vl3IT+S+eAYNz^2h+*>BTv(4UiJ-fO#
zdb_t>LwxK<wQ@uW^5$y7!5C0s!Jr17JHT4_EI7!7x4?(wE2e4137rD)!bbp9!!(1Z
zw4^}gB~NegS9c^nxcmgkAQxufjNo*jh|h1Q%MM8CbmI2y=$kihrfw^Le=io)1(_kq
zz_3HkBK3e)Xh6V%o14?8ORAq_W{?TZY)<{gziL`A`<e|K40Pl6L>%vv-TXa-f#E>u
zkxXV#`{&2U$DuJXF?roz?|XT9eYxbV4=Ty#&6}5XZ_iFOpBW1d9dereca~}PvVVVn
zXJ20C`|8HV#e4Sbxw6QWTQ_>!o2YwS3=gcFt3&@<<{p@|<k{KT*(W9_PS4r6Xz^mx
z%1<ev;eAjqV^{h6b&;FXGCw>xX!bi&M@-hDz(G(@@YUtz{m;(MUcRgJ^{bW3=UwWz
z|5vd#pPhjrMA%PugG%P17EUcKt)Qf&q@A}x&8#h3On7CjLf-HHzi(dcx5%YSmSkL6
z5eRCtURxiZzq#Jctu1U_%*yF;Ri202`L8dZU$;uiG)qHOb*WY!JHvw~6>O(1Eou*d
zJg20rJax{THII+?Prv!^r2705NgFlv^v<RIIVv7MB~il5-+#Mg{@q<$t;*l!{LQYf
zufJPz+1IM#!-K6m85tM?-dfZin6#u*Sbf!s6)WzfZ{(A;QV|yyZ*6J0(PN%-BVcRx
z^{}w8X=f_}0s>|hUs)OKZfR-x%ukA;Aa>EgBEIWKyWM7+=dV+rSK)N><jJo7e*N<K
zr~jUP{_0iKyB&!V(`~*zIM`fNy!o%{`uP3(UR_^bA9<aPA!Ke(4^L`J%8edT5s{eB
zuRkpcd|nXCqVv+Jduz?lPe$jHOmlCAJU>7GI%r__vafmM@%rCy%|RUx-`QrSxqJr?
z9{lw6tLfVshKB6rsi&u9-Q2YF?2Y{Wf0v1Bhuz3@Tj95^Th-~M(~inVo$6nn&Cb77
zvuH#7{yHNbXKpc_4L9vIH9f_;UBBNgj}P@1WhjtM?z~`Wk=q=4Z_?csPGQjS>D&AJ
z<8yCqnW)m*)~2PU<#qDp$x|m!25!&0`{k_peGOe*Uw+#!6Lyup4!au6&cJYW&SkbW
zpDtB(i|L9;O0Hb$J^fZr{qMKiuP$=sUb<{q*4I~8cRg&AHc33h;ycS^<rz!uU%?FZ
zRtyX?TK_K#srQov)xsj8qM`4$sd`V#I5|nxELl%aZ<a;jA~nA`6&F8;ebH*G|NA;V
z+$@lR;lY$SMhT1z0kI!7ot_umwRytFzz`6MwXFclt_{o^uXnp~b8~}6eGeRPsI0Em
zwy}xHzP@hlmp{o#NuZX&zrVky-%OKe6Vr`aayxIguW9zRE4=1+7S#Rym3exa?$mvK
zi@`J3uCA_`2b);CdU~!LYUKvaYk*XIes*?xZQuKSzx}+Y>rI_LJ$&bF_g<-`&*xS9
zZNFEw8q}K#T<oT)tn7SuSLx;Q`?cxUz_VhE3<U<EdzWm_y=}HOVxyC%r)O7p_hc1U
zH@8*3v(2Q8(|XME?o>oR@9gaj4G9U^c{beBvlHY*$7VK7Q`4(fb_EX{SlQWM&n>@q
z@$L5ed8htbFo6o7b;a7@>!!?}ec05egaNu1V0Kbc(wbyBIk~RBzH8HTqf4HgnCLxE
zSy$Kh_qVr~dnAod-Hi(gS+Zx3jcLY(18IBe{{AW|ESw0cSnswpgC_JJIDqDJ*2V4y
zwf}zp`gN<P{KbWXyZ$B>6&IV9y@~LhVX)ArLF?(umn-{Zt+h-|L*MWFy^c@bZjEjA
zw-+bX=ZEaA`kHfSt}&=kZFn71R<;dPFZZysu$(a9k+rS*vgo+~T&vJ~_wH3aY!%nr
zb>I5^p2d#MY%e?2=WXcQnsL!d+B`30bK2Q;8SnbKz|+eck7rALLTzG5N=ioUC|C#@
zw2(5*iuq!-Z{NOMPp3s+*;$<a_07#-P<{I5=H{;lnE65Nv{ljD-=*I1{pxUliQ$3O
z^QTXjHZ?UFJ^uOg=e4(@ppd`5F81q#X8yP@QmU$|pbkgXmlq4e<0_9@-P@e*f4Atg
zZq?7H(@nFlt<m1YeBAi}Xudiow|VN^xoeY;_ucFf6&H{HGNYlPp=dhe=FOW`J$t20
zwZ89Izweh<_O&$^LG!(9*64VO-zyD`iCME}k4<W7>dL&kyH-VRUbgSwuk5#XcZYv|
zetx^9yN5>yXq3Qrwpr{q+c0);g?r*E+ZwlCsi~YU%l+r?dvV(4@S#In^6pwaefI2@
z%?rff_0;M+4-dDeZj3NVIM879z2M0SK~{G5?0<iLN*N}#^vT=nbst?cY0@O4=bBnt
zyHYsT<oyr<w+kDY*;nn@5pnY5$!i-A9dcT_Y?+pgO-y5B<D@0Y$NMt>|NDDw!j;YG
z{<VKT9tRcVXZ!c>-w*24gF2qy@7M2F0X0mGc$`6n{@JbNZ*DC7`};d+Y%8>6duTJL
zG0z@+RbT4ug@w&ZN=l$X4_W)V7)3=zFJIr#u&`-CK|yPN_sUv_WoBlcI&&r@AYg)&
zdET01z0%Vy<8yM>fW`%R!zW!?7i<0X-Q8&K>3UaJ1~0#|++SYSwkiZP+E!CjBO)yw
zt@=GG6jZT0oSvo|?Bvu0>XFTvBLgbtY;9v>ca>~>m%K6J$)lo|N7r{vv;6<>`~K{A
zcXn3&|NDJw+F7ZcyLZ1{xBK0tEt!`~9`~Bhs<Qv)29E3-k4<?eJ$d(T-H{_Ms%mOs
zJN&)8x_lRhPHbl9pJx5;;lqWT!fK$|$>}!krN@ntmNnd1eXwaKsPKZVU_k3QHC}-A
z$l4r2{(^c83<*Y{3@*dr-Gb6Ff)#dfdERNo3(y)l0-)xm0n4IS{m4D82&EF_z8cs{
zkQK;{7(zWVa8^w0ykNP(g#)y_1*Bhw1B(+b;OJPhGBh+VEL`;u6g?IK(>UfbGp^>^
z`|H(eE^hA4-%S`|n7PIEwtN=}U<GwNKvi9})Cx9;YAK!P2b|x578ilrdvFhcnm$L5
zAJ;Z82)K9e9%#(#*4Aw8+Icf(NbKCPV@3V{e`b#>D=UA^|Nm3|Zt;2BtSc)fW?fyi
zwCwFI(10jtHY{@cLj$lS6E3lxely>@v#aY;6Dv2Uo@?b62ld!MD-52UovmN}?tbm}
zxzqGwwe<DZ8{OuUvsodi?B+2kuI8hws;a7{g+;`9+wXH0EnckuUwp+ZNC|jnTkh>G
zNk_Rr3iR~+CV|W~%e|FxW`^Od9fglm=c=2Tg#`u%J~fLszf;f*>O_XEjfy;;l$0bQ
zE4%i}l@L`G6%7lE8*`+K7(h*4iy5o()`zW&(KI(VKYHXy#Bm!N8<0xf=xr}fOjMq3
z;~o_?>)YGg%O#D|rtIDux3|jd;i@YQjLa&Y_Wyo7R$U)B7nDeLoC6K`q0W2jtC^dJ
zCm-*-+QKP(Wr1U}SFE+Qb@Zes@88F-d@LjD-NL|NAy8e@WngU`&B(}@dW@NgDMg~K
zPtLaL;^XChbG7pG^Y?x@#65LZcwpc}F`bA74<01kEj%te)#}<sXnUU{qO!8`(}xcl
z#_wLf%)A>nv8RVeH)cnGcG#K#P@!qM{{Q#?|K`{IdZ}Lf>7;s5Vc|MgQ&0!(x~0Cp
zzNm=E6v^}F&u`CL?~#+UW>?wURqXOL8-lLa{Cqn7>$T|o%ws*0pg|ff^M_dt;3T{A
z7TfFT@pTvV_y0*U4vUDWfb|r0YVB49E_Qn=_x);kJZK@!uOE;5r%s)!>S@H|eDvti
zQ>RY{hlNdhb#3kHS*F>yWTwxWwQ6JX@mD*a&%3;%@Uh<Sd#i*&4)a^$+AWrKaZ&5p
z8=b=HTdKak;_Bz*<_0ZF0ZlG`Uhw<c+UV4c5h7w@Vebkd)Ak$dgf>h$nsjlZvO8!3
z^yla2(f8|BJ?nqpzAqvyytt8>{ngg%al0o)uMq>MO@V5gX48TP4rk|Dho3xoQp&Pu
z$rA3h;aOR$4jn!$Dj}iaX;t=ShTmMPr4uFy?A*0$Rr>jPAn%->qpzmsc6OHOWzeYo
zGGFP}Kd#5uuRYkzzPkGRyQqCNJ3Gr?RDi6Ad2UtmVnIg-2Wa^1c)xtOhet<HaPZWr
zQ<qMeBJ#Q}`FLMwRMadZV`EVfktN4^rB@d|K9+h;Tv~c{8?W@Mf4|>v?*okz|NZ@a
zdUtoXT-6K3+7AcW&5pOUwXMp%z3uutwbc^fj#AQk{pz@FIWvWXgtpZDEPDFniH3<u
z$jg^6L1PYQEA^gVu6ug-@cRA#RvD+C^O*GS*Y*9=EYm(cISHx@AH>|bdw1%L87qz)
zIl}eb)6;Wf<`%7@4-XC+CEwju8tmzLGW6_5D{xCD;Y{9!fUh9GSqN0?3Lc6%_w`l?
z0|NuQ19%}Bwqh7mrr{_P4NwLXL3tZCUPVl?j9ex<KMwf|8VF;U(F3j+4;e?CYXm1%
z#RN<CX&j6U_-cxFjtKWYnTw!UykGa*m*4)+22f2oX_C-ft5UDJy1Js$(yiY`7#SG!
zX2(wF;5~fd#6;z*dn$`<|NVFjN;gJEMk<~=ckax(wq|Br?bpz1KS72Dt?*k(Gru;k
zO26Ll_0wtn*HgpeF0Ke%{N<>4{0Re|*Jk$i_O@RxIRARFxc`lXGXq1zsm-s29zHtS
zZJKgI;OrdB;Qv3**PqJa=jFW$non$>$;gl(Z`1r#=8e<_P~-62T<h>1caI-;U+zDD
z-62UvhJ<()o#zSHRS&W8O1=2-@UUp!{e88&o0^(d6}T}lFod69$M||-yWFKkuH7Xc
z9yq>^$UOD$&*$?~XU$sG(ZNye%g@lDmHv(Soz06p`7+*!;N^ay4h{{64jnQ{IUx|K
zBc`gRwkrGjI?zm%le4pF-Jc4OKN%KWdLy;r&!0bAN?(WdN*cSl_sL9LzI^$$_3`T`
ztNUktdUEpChQ#JQd-uMzbY);zCBi$cc*E~*x4nDzm=r#8@ttFF@m??^1A_tUeb<bp
zw6n8bzFa<k+jkQN2EV3ntA1^+ZvOhX-(E{q)s>xJF2v8T@9b%}rQG{Zf~K)Auls(O
z-#+8nnVC`B^X7uan5(|NTIt>|CuLu^Cu)0Mt?ToW!or8<1`G@vHf0}(+LkkOUeznj
zt1AMX&F_{>esyJKaN2x(_I0Z_W?j{?{dOZ6G@G|*@nTTirlzI6db|BTXdTwpq@!G*
z<ylkh-v9gi`{^SmNe+e`ReRV^Ti!5D@SSPoy8Uk1Y`ec-f`9)09e+6+G$QTX#uMn_
z(E)0QUR@h~eV4A8Sy=4uve1;2CEwoM1T6~)eRan)>xx0;HU@@}wTBKlsj8@C{QUG3
z)Md=bSh381{<^rmRk2@o@JgFyyt}jW7HBT;|KIYf>tdr56BE5WJT$(iK5}(+1vR3#
z=G-(&O-nm<{=EP8`*ph~O`d#pMd0G>((2H2>$aZ0xY+&cm&^X~p9@qyi=UkdjEkE$
zY4YUULsM0*u8j`Q-}iGFs3VeoPR0|w=JDCt+0!l0PtgoMwI$T1nU%qyd#|0VgsA9J
zR&Fs3BcmX0alI+CXV3oi_4V?zv(4kb?C9y?*|}?1){hSltNwny4w`KQHAF!JgP=LE
z*|pu>-B;Jg+n=3f>RtQ$+g0iOJqv&QsQCHo7byJ0zrKE!@#a=SYg^l^7Z(?Y7Ok!S
z_j!KSwKb8g@n?&l&n;gSxjD_t-+y{Yp=<O#i>ulU2XwwgDBanXI~&wfS+Yds=+UE|
zla!Q|uP*bI2Bkk~^Sm`5ZoGJr;p*;wyN6faF6Q9DgP^e((0UTt`R4iaK$8K!v&~l4
z{{9wT=-zjJ9q+Y0m7hUVpz%hs@oO(H_kaE3;^JLjuSM(ciqFVc@$c{Z`qyu6ZoXb(
z$G~7Q3Fn}*$I^44e$cP4uU|hoIr*C5VS_CN51l}n95jLK<>fVH`t<Z$wiZ&m%_2HG
zJ3oE?e0gs9y_MJ2Mr&(mc&uBu&g?g6nbh0-`rWHu&#^3an*{2#b-xSWHCKNI8^eum
zTPe%|>*|Dr2d?J}pPi8u6%%`Pq*FL*SIJ6HTZL0tEn@rs4~O}!s=lnawJmq`Lg#iZ
zU0vVS*4C`s+t$WaJ{2u}fA8<9ymO8>O%vYU-0Uva?ds_0c<SugtDq^sG<oB?$y3>u
zUs@14@icD|1B1n6)UodAUoFlraBSX^c2>$0wDJhFRO7SIM`m_Dk6jz8Lf6OHf`;DO
z5<&SBRA_+Kgl)~dd~AvJCi~rNYtEcGqqWm-ZPZo~0f7a!)!$-D_S;r}(=ady*tc(=
zDBJEylO}1;JAPwhGHAK%?2R2A9Q!UvG00p1t;PL*ulju2npJW~*1bxvMj0yq8zdww
z3|hP(YgZHDJzXy}F>zs6SJ#tw@AN!D^RWNkzq`A8?R<$h7Z<lXIXRi6pOaa-bm`1e
z@3Qpo;=N&0_y2jS4_ZgJrSkK$BKea08xot1jEzleeiV2H&9y4cxz^_$>#H%xwtCy4
zLx<M=s9<ooDrr-(fsJ1-$9P-valYj>7Pn8I_GV>eO+EJc^XIj<^;JzwuKfBBUQ3mI
z-Ou0l>lC{m513~cm%O}m^jRs7?<|wR>+53I|NML-^sFM&wO?OfPn|b!9jI#?ba|O?
z>HXU8E2FpPEsIV5^5P<>b<xHvz3l7j>$mr;df0FO@51KucG~jt@}OnVlR%@Bpen2S
z`@5}S({A3p3F=s87BewCIKS?j<eK;U|HpwATAq!_3|Qsi;NY<Hbi>V?Hz$R>{2mM{
z6aW7H9-fr6h>MHs$-{?<w(f`9cu&8%zrd0C?X9h=gRU2pl<`Kiwzh(%v%=QL=^i!+
z*<F_FdFkY2^{G>)EMa73d$ITXJ>#dY^Ar^oL8)+F#UswGxwo(VQu`iX|2Ncon$E@g
zf1l;|{{Q#;T6w(fuNRBE`unegW_JaZ-Cn%8xjAY}#>Bi`FV)`O*!XzWb7qDETQ6+O
zjRqN!_U6UK#Z{lrnrqvr>FD^pzP2_vFK^x1=6BKC^QIn6+PUcJbkJ&V10K+1tDKx1
zD1~QTSrPb7U8rBqcGa)1ufu;y^_^L_K68du=_<Q_Ka%(Uc+`FB+_`J=^?w%H|NG$#
z8s1nDxEM6A<vZK#?3UNOG8O@#wJ7~^wp&t83V{le{QZBofkrXj-rjz@#@FxeuF|bl
zU$cJx_@QBE7k7G^?q$&U$n^bxmY%8nY2?e$5c%fgqKjAu0`C0cJd_L>1~5CX{QuwY
z_o?T~KRxlR{c_Qri;HX1KA$_+uV4T5=u%G)&+C2m|9&hs%fFZNd7n;t!gaRScgydG
zhJ;M{`u62gDU*x^M~=9FN?ecwy!H2{+%nDI`BY3de&3%>-`?Kbyu9rFz1XyxPft#o
z)z^M_;28XjjiJFd?(&6&&g`x(E*W=r6k65&+2Q2mG-cMTRcqGhEM2lB;=8nU*_un2
zE=`#^bLD~s3Z6mt_tjqAQJ7r%=0+f|lt}<+d?7e^>fE`xwf|OKIWyB3v}AY{sOB|H
zYT-G2VfFfbTJ`nyz0&6Au2gR`-_5q>&6}LkH#asOdMj&PcIEf`{qe2FObicxZOOU0
z$>_f8jCu3c>Ba7f_`WehCv~5mo|RP;XxszT-<hoLzshf})vGHjC%g5_#XfURT^qIa
z5~#8E<448W8HUb!dU~Ke0?*FO41Slbw90rl8)%Rt`|hsNs&6;bPv6~F_qWP4@6L{{
zbXJCjzc&^ioTRsBx0az{U}tBi=)1|2CM8|Y@D$%Cw)~6mkLk)fI%j_E(@9Ue4xZ-x
za*$pA#m)5jTi3muXI~%p`}_OrA08eCPu8DQpTFffs8OhOb{+4vA0HooJ*~fA!_qRc
zTU>wJwZ7-)=TA?R=<4da^yA}WNYh6~e$J|YZ=^QF#KwXeU7&T~pH8Y<mAsg+g!}zL
z&>ZSn@6!wn46C@?D=xlRyZzp(=={A`?_FkKIPmVxS01r5p-&lCZ(2L$Xp-jlP)-I0
zhQ3v&n8WVwD%IEaoWAc&&lO&V9rG?EShj2NN4&nacK3^K$;bON4GjbH_x)TJ6B{ck
zDH&-h%*?=G(CKW`tm=8ZU;g@=o0~z?0gDzX*?v4CJj)=lDQZhb;`^113<0Sb8|F0M
zWe&?s{(Apl)}texTzq`nzF%QrSWyIOXl`#PeRIPQv|_7UTt6%@aH5j3vT5NX7t{QE
zcjAIU^F*#w*+J2sy+KP)@7e@KXV6%7lPCkj|L$Wef35!102=BB?NQLt@p*i_Km7Bv
zv!HpeIdkT4^=DpR7b|*BfPvw`tB}eAr_P_Bt^!)!(agrX>&3pd#1lyyS1ehwL~9uv
zL&M#VJkyF-d}{dmJpUmZ14DsXsN9A{ix#c=HHm>CMA{_c+`*&wgc(2*W%c}G3=BW)
zO>lG$z(Xm>!%7b&b)JKIHuy$|kh>wEjWrw*pdLNi6c~K|9XcN`Fb{R6A3pek+*1Pg
z>_AgsI)Y5lU11H)nz<X#{Msqg+S=OH-yfckuwc*Ly`pk*>$YZJkNX5_EWT)DmkS68
zn6PKh9#F*!T88ua+1aP>_G8;-61_5h{wq+Qo<Rg#11~%=Kx^v6iHhOj;h^Gg{r-Qu
zKr8SbAMXc`=z*4vZhpTmcK4Ol;rdUXKL?G9c6D|J78Pw`<CQAW%|EMG0q%|^^`~zD
zt+x}^4g+mSDJ(3UwB*DIkFA-P-9TF-j`d1w+n8BdMP0mj(Jc9JJAZgV!3I#)x2ydX
zar}6{{Q6y`ue1LC`ugeP$B8PSnI7kMzN@#kW?x+$zFvE;YrAtZXqGnb>8YuprF=d<
zJ*8(39|kRyy0s~_yHCb4Xyxb1%F2~>e}94Y9F@K~Gt)R~ciCDcW#zRGy(YEsNGi$8
z%Y(Ys;q}UVE#Q8m;qRZTPiGz}dwXl?G~MV^*RNks+vD8MckS);qGx9$|30_>fAQbn
z-=I#=+uPgEFPjM3@&Ou${`U6vZJF@JZoI9nt(niy&7J<+J46>Wymz2f4|9m;WHFDF
ziAVOeH4{~K?%th!V?!cn{^qQyj+i%S*|$+jsSCJcz0tjS>h$UA{QUh!kLS&sckS);
zNi$}w(BJpN$$Oek;BvpYArTQP7A;bmo$ayegVprn-d8QqfN#IEch8=XfPjEB8+-fv
zyZ#0_IXkcY|NrB0`S9IkZ@*j#_K%#uR?F7i_4>{^*&*tn@qjreuB`=Cx@NOC7C%21
zi#`Uw>WWO(l@*}rYtXhQR#w(eA3ki*GoLo^^ZDy5-<ZnCg41oWDR0<vzqwad2CL8B
zc;<|c?_8^`hmsFrA7l@$l6!t`?&L%XtKw%pHa0d_mibEW+`04R?)UpHA82G=`&(30
z6jUNqJ(=jPRm<ys3^W)V^PG)OX2qjNNvi7V(Z{*Cxj|*>hYtm;Y;0bW`edz_friVM
zEIG34KB(REtVZ2`-W7NG+9eAXDE$2W+j|md%rb6oRp!r6PtEf4{Jp&|-`t!&_g(5@
z@Q9#5wN3L?s??CN&+dj9r=1Cyt`}Q!J+?ga#f61dH9t0hrhh>jYW7xtH~Tv8Z7*og
zCukZGwI6ut@@3FAgV%Oq-L86i+q&Z~Uc3k%SWh^}1e)C}eRTyC{U%jkGD_dwxtVq!
zGz*t~eO+ix%^uL&l3AwNT54);#_8wQOsZbv1&Uso4qGXmmxp$*77`YoI%7t}Lpx1P
zO|#x<B@eR;+xX?{ZWh11vvadq&W(bbzr({>)@YSHpId&bnrnqpTjGsst`$jtKG)Ws
zID2;McaZ>J(6DEL!ndpq33_&}sAJd)poK~a94=SoL4%yoRRxV3Twb8;JtStx2%Mmt
z6;}O=P+~zWKLG98LtaHd(XctP6G4*)ct)+TuB`%>86=G4gVjS8F-<vi$O&V-UBB{9
zczo^B7cVkE)9;@?ehdW76AKG3PCnij`(;P)a=(?1&1^-5g%?+auGaf~efci%@R^2|
zme=aAwLvj4bD-@x&^+tiU8S$?>@03Q4zfmF-Ca;naM#CU(xBDQpt%AsfB);CLVST^
zb5XxHbg`CRybyTWBUILkP|02P@6S)r>ff_BKwH`J?(TZI^?KapEt!{3$!sovAEz6&
z#RIg<Xo=_KGkYc34?>nr;qFAY9{*<<<9P|xGX^b>I4)nW^L@sR8xgjDJ{$&F!*h7Y
zFX;jYXfCbkD!9Hb7Brn-Q(K#R%(~=7!d*EDiHe)ot*gJSDJm|0`u=@<+U<7vx)p1q
zx4&9GzwXk(W_JDGbFT7&W@q@0$noz?PfyoYP*`xL!oi_|=kSG#i`}(L`9D8D4;pco
ztNju<`{SQKHNA4SQOfRpA(Pd7wMx&uY6C9}($m-Xmy?rAJ!WfbyY{yJbx^A`^YXHn
z6W!%N6aP8eK!YAfj~<mW&$|O!X9bQV_N0DQCzOHr{W754qoDEK*0#2+kB^R;-3E0!
z%iqO-_SSy-_HEypnc?xE%sb}<C|Q7}_05vg&(GWY!jO@X@u?njT6((oBq`IZl9R9H
z>}n!F>u~2<l}?#APfuQ6e)ikRYQ8~_kM)*bk1f~K);|60&;I}ac5m9WNkl~CiOKq0
za8`9#x9uRP9bNV9O{Q_#g9D7b@^*W07TK|1W`WjG{`&HA@uNpcpfz2*(q=lF&p$le
z{`K>Ddu<Dg8)<ivHfH?z@NiRv&Z(0p1J_1v)q8FxE62#q(D3@sfktN2@^>++>gw4~
zPE4Gnx96s<scGoLhYzp$3&>fQ`GA%mdU$li#Kx+6K0h}%`2N0H(9Ce@>uXav1D2+p
znXyn<-S0*ZXp)zclM~byTJAUZ)RwrblHk%J`0D8tS*wx&7nhb}z0%7cAMcO8|70H4
zfp-<psy7>te|fw8zLu3$6lhX^U+wQTzkmPw^{SCwZbFXs=WGTBp}U}S0hScqXM6wr
zx%y#)lH;=FE9(FMyZ%FOwHV083|x!1uGQ*@b;rcy#5-)L{+<`9Bc>a<$;Eq`&c>V9
zwqyopA6V6~*{1kwIw*2wI&AG+H9WB_-um)-{r<R*dv=w+UIrQ#vAZ`BI`zX9VIZzA
zwHCAlXSV)2A79_8-QC@MvQ{a_BN-VO+?@{mntVOJJ{HtPy0Y?e>f3tVe@hq{cGTT`
zyt*jCj_KO`J-^@W1}zKPmV5izm3Svk28MOAOxNmve!U(K+QD;nwz>bmfB!(cMc&w|
zG8`yvV>@jru;Jfn&=Lbs_T2aT9jJ=tj9_4R&;^p%{eIu-cKN!9yu3WnKmlm~9H_fo
z9mUY_n&)lkSN8+I;z6tL{O$iPahI<RnRI1qb~q~=+odE%h6XR?gum-SYs$^<6deAa
z|NdU`s&)S@`u6X8@???b%q1_JSeMLnThcaVX+)fvZ?s>AE{F7C)8eU@MVxZAPw)94
zymo5fOTiDb(st$CT%{Rj5bicDxJdIB%f%}*Or~@{|K9$2jd6gneZjt(^Pe|<Y=8g$
z?Pu3i{d@Dz|E!xjW5$b>wtv4|1~m-t<ZXY?#>VhLd(FWjHl}GyPEXedbtggl{`%x>
zSKY7w9}CJrj~+h;?eeYt{dW64IVA>$4A+WDyO)60vxtg{g3P(LCi3ytvzv6*Ms4*v
z+|K{~;tK|beFe|XNY1q^KDIh6KK}lj>rXx3opU%a3Dkhoi{16&@Av!pCbByUAG_t=
z+TsbCaZgBC(C@~<kdc{~n8?M={drYrc=+liOO`~g_dZa>wx2&jTt5!9eecVc%l@EM
zr&(KULCbWmt+_Z&H+ssHDNmXOnHU<b9eaO0A@|;%NO8Rw&^pFhcjir)uwcUm13O<1
zh73WSqH>T?tHalad3c;Ky&e%cZK+}Mv5ec>a;?hW$@~vsWH`Y4^RLLmXJ=>U?>PVI
z>FKRCKZ`troSmDmZ`-oPWa-kSrl)T(F#KybjX3w<yQ~fa1H<J%`#_D?yB7+x{=NWB
zU`x2Mb2BhVC-P1+2DKYD2r^AGHUPI8BtRN+TKJ|JUjR?O_wb1^Fqk>9pO!?@ID6sa
zE59xx$sdx^Ne2~O3Cb)w=?Pt+6^8~^5ey7BIAnFw7l7La*bR0*zVhp0WO>twa}FT4
z9WVgRKAIJ6ZBG65+AS+P+qC$Z4`>$>Xjz4a#|88IHN}S?gXRR!obdro7`(c$u$hU8
zDI_H1%9DM0+oM5aFrX#Fp!J`i%^jd2?U<OF%lFlHgBC(1DDUHn0IkP3dp0yHYt=Np
z*j1p3>n|@Z-rAggzO-LkSNH0nR_@TaxOF#f+;|<A{p-uiSvHlM-tGTi2O3Phyxjjf
zXwlk2=k{0a@^w32zMndGBdDcszdirH9jFwxw6p~6L{ZU%ZsYHfG~SYZeO<Pkb-@FN
zxwh3|3l}Z~O_H1L4&>$KjoOwobJFC=Pm6ZieB~5Y0}b!54qJQaKqGVSz3KX(us+~c
zbMYW(0_WD2%*8!DJpQ@{1_3W$z65pYPfk`}UzxMJ?5&8DRMp|%t5&ZL_Vw+3x9hdu
z`l^VC8B9z}B0@q%hl{tUfl9YOF`k~CNl8gp_SIIeud1oplm2@x7Z=y11&+;6igs?P
z`kM9k<8gVbf(H$1esflU7VB%@v1ANxVPLr7<82?daM2>ChYuh2zIyoZVbSipTKf9t
zMRP+}hk-UDYierFiwX&u0_v@Sw({+4iv^{l1Lv<^xuRiUup!V^L*vBeyDgyISNZq%
z%`!^uGRwWSgx~Im!`H80t3I7nFMW5%Qu+D@ZgBGH(3dljl95^CJzdXqRs5cci<|$3
znVOh@>M~FfFij`&(Mr&~KWI=}OfP0d<>zO2Kb5`#trc!)uK9RW{MN40)!}aswQ^s#
zRkN|#b29TlR~MIO(DuB$d6hA)uCBj8rEA5<r1e!LC0jsM=-u7r_dl7w0e3xn?_{xO
zzqzqd%DQY#_}d2uo2BgQ{+RZ6c6VR?_V#vYZ0y^u7i!<%+q+4}yRfkEf2B=$Xjs^(
zO**C~CMLJS!o!#U`t>V%U)$UbpmZVq@o2IXXg%w%UsX?^KCR5!x^-*O&KNHbkAUy*
z?yAOCW>sfqW=>Xo>6Vm~^rUR}*0Q%z>wo?G`#Ur$YSq8Lzwdvsd<)Kub$WJoah{%@
zr%s&;N=;q5Xz}8wMLSFW{3u)-vGLI6__VZTpFV#M4GUY=(ZS(g`|i%pO*-D}{Bl!n
zzYVLa+gJAPj;7}+&@%F`@9)PeyY*Z+HB~z_G<4}iW%pHk_Qbs3`+Xj0qs{dAx}B-{
zyJmuFw+({vIz`i$G&M1S#+X`LTR|&Jl9H3Rmc9<-m9x3=+J=#_SAGApGczCWY)g%t
z7myY?O+CT$(lp&@(5WPAV|Rmg+6Uj>mJ6Ct1vR8z-QE3t?Y(7dL4{8PXh!7cXYiQC
z^*iZDyF}w;*RIx!-}h(zIzb7E6>r|;tiSLy1e9=dmMxVx;rbi_S~HmdDNv4tXKzRl
z0~J~fhe0J&f^x}*IgOw~t0A#u0|UbbL92*!pp|h4+&Ci69RRHegGxwR`K^^l)(EO%
zK&g(QO>hH)#OAcKQt|wZx-ZVmG~OrIq#XM;Vdg)l(@F`925k*b<2fP@Yz60c?1ktW
zv4G%UWlt>~osju<wKX=grkR$$3ek<*bL0BqjKbgF-+%uqP_t;&s#E#zYfny6-6!YN
z{rUL+`|W(PL0(>6&!1NngNj(e4N(q}kuy~^RaK8}XZ|>mk(upB6-S2SpW5Hz^?!fs
zX=`78aIm@7mgj~9<7(C(DO0c3)>cr<v8lPa)>ek$Kz&GX@ZwFIjC!R^SKVB95L`-c
zZ8$gA`t{B9`Cq>pFfg!P*m-EbBWM+v+lvHC=J`sXejPZSAs6}wnEu>2HB}pQK+J>*
z0-+%xCb#Czn6cu<jR^T3o)7VR-rSVrh+rsrc}aEe=X2J*ul@wE)if7e{Ux}80ko49
zbPA2%T&t(A7cw*`3v6JpPmi1iI=tiR_3P$0kN#TT*2cE?=d;;eeSKj80TVz6T)cUc
zbM@M_s<+oSr~8A}Z0s(7e{F$dGiW)<iWM57A|fVM>7k)hK~rb0E-o4x8XkMAzh7%&
z<$hAOyZ4^@g(w5p7d$LF44~DH^QzzNlrGzN>GI{Tzh18g?Nm5*_H1ZU(jrjDKYd>1
zv26R(n@XOX5L8uF&3tlV;;;Mv|1I~MYX#nRxzM@Y=J(YrS29jaPz254fJ(&j`?cZy
zHlI2+ZQ5j#duvPD?s$fbJey^V4Jw+}*3mzI{+wlBUpHC*!{49J=TDtKf4%2qwalBF
zQYS4DkE?J@OiVm=^5n%nS!<J$7Xj!0fsQsPdv|9gsHHXuv=e9d`+d>cVQVflv2v?;
zT3T9y*1mv_5|EVC^gMOqL_kHw4$unP%*)GGR)2qYw)S<y+7C0>K((yHrKx&hSy`(-
zefks<8F@3~_w@KW&C{Ded+XN!+LC!0RH~G|4qN|g@ArGJIm0ha4R-@A8w1TsF5i}T
zm<==!1X^8xZl3MypH+W89uJL=U%zOP(&2JW2HoZc)&t4c)<mvay*j%{_gbg0I%rVy
z#fyyfRnzriMWm!wJwD!FeN|aWNoww6&>qO2pP$>-+Z8?O0PWjsZEdZr1??T4miqF`
z%gb%=crt7wnxFFc2r_+madq|dprD{B)2A<=X`F7h^Zfq5j<vUQx0^=(fBxtzsKs}r
zLvWU5aoXhWTggdD|E_LjH~`u=wCBt$Q}5Q+)>-!T`@;9S_si|7`MC+Sr?&dt&f~%M
zwZFFf`}JD?>x+wzm#r5S6<zx3RTi(b*_&y{c`aD8H_U0&bYh4Dt-+r(X%WBup9`;r
zTNk_cPrLm#EH7`}^?#O@mYa0ElaKZ6e3`APuD*K5j)?gBzom<FLqkKeGBS4jlxC1=
zczN(zKcCox=d)(bI(_b3n4@E(m$x@)irq6PCkH%hGkyB<&(F_;4@vp=`#mT%e0+So
zy0+=V{i?55!?&iM76Xs=TNEw=ZEN2D|6epapUj2y`L)Y7Z89o-b>-!>_ks*jQjFXm
zihci<NsEduy>caFZOqO~*}v82*DPAGLStu)9_T0xP=|ce=FO(*=jOOQ-*YYh?Ef|F
z?Ch&otndKMm4Vhoh>D1;0BxV??7Rq?`R|jpmfGdL;A=wH1xX$Aes4C01JA#`zrUW5
znJwdZpKMomw{g|GNt1*?+Z{mDUcbJ-zyHK;>(;HaY^%3%adVgc`%`)J*s-j4cXmqI
z)%++uU;FBc=F?}-vhMGz{q?Y2J|s4F?c3YivrkM=j05MOpP!zBMuF>oJ{1oQ57)M`
zikhtEdufU1WD$V}YeK!x?UH6-h_Z~gU8bn3>$`L3PA^~ItCyB~gI5#C*+x}=d$aRh
z;nJl`L2IK=ojxrpEnR&!8?-_ew99RY_WARtPo4}+Nm-)iKX1*KFJET=ce^PAYP9^=
zS^N82=G|STr%s;yXyapnzdg3NtGj#lo%Pw**MZswSC{+C`|BzzJHLGSvS?=v$m`F0
z`TW35ROyed?AeFgctM-?jf{+JwjMa(0NN+CV@HI#|GYiVHom>JH8>;V1@HUU=d9m<
z;R+A8{dy&M(vz?Ag498c<p<9}*;-h5@wd0PtFJzO{Mh#PY;RZB)+O5OFBb_d<6vai
zAQ)fMwE?raWi@a0t5>h4%$~ja#0d}E9}k+(7V*Y|mxVpg%E}UvkhrlzPDJF%&3iJS
z)tjLC_xQS>OCQ_0dVmW0w5VS@Lk}K2xU1x4(BfZ5yTxs9`$q35SZD{Di~V{nTFNwQ
z%E!;Yr9ho&>77?K4}E=oJ^SykuW?&fty=Y3PFPOv-V>7tSHA|{-BtSg{Nv27(@%ra
z(w2dOea#x3#m~2KgPQJqljh7>^W;g&`dgs><-un5_|G$T?63gsz`J_&Y8?07@9*wv
zpWf7C_oL+Vv$Lm8oVd`!Dg5PL^?OO{^>;0@4+%3ggq;)b&zxb9*!1f4>#5VHKVNzE
z+O<<pi!>D#9q;ZgpI-8G<=dr8m;V3h`UbT6=Gn~jDKloQICSXH|B}9IO`s+K<xQoR
zr%pdseR-r)7_|Kzw9TvT&kwiDGd6DAxa<AC-%$_pqS?T~^zrKHdE8uFQhU1#USC@q
z7u-E9)%0iPe#_!#73&fsr>Regoc5FxwE5|BE4R3cXYewg%#yzA@%48D8M~+3GBYGF
zhsS@5iHTXmE?05j#m@R)FV#V-Rj$|GG(NKk)OYLsv8tJMGjhuZ)JFrgpEgJ`1-?Fx
z)UXj;#xWP81qA6+ftoiMeX=JX9v(hs?bpsPZ&qb@2fU0?`o*1{o1L7Trc9c2N#{8~
zCuiXEb8}}uy_0dKX!qT`czz}Z1`l<=ITz;F|GTO4{N0_Mo0XK5W<9-=0XZ;HqWcab
z0|O7JpT!^nT4K&%0F?j*)&X$Wt|1ZBqGLD=nxzA`xJETF7`*wf;Qf|2ZO2751_lNO
MPgg&ebxsLQ0G*0xcK`qY

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-2.png
new file mode 100644
index 0000000000000000000000000000000000000000..14f6c8fa91a0de3182720ba85d6a892a12cff2fb
GIT binary patch
literal 20579
zcmeAS@N?(olHy`uVBq!ia0y~yV2S`?4mJh`hJ9%>?l3SguoOFahH!9jaMW<5bTBY5
za29w(7BevLCxS5J3j5`m3=9eko-U3d6?5L)t*tr#_0j*2&(mke&OU8$IZ13{THqPi
z-VSH+5WS$YtLBFOnwPP2#%Yi6uwy~XP1I+f)(HP<J86-A(vu}2Qwk@2OupPX(QtRo
z|9>yu6#tr&8*$HW{&&0TJNf3@i>vmokISF9{Q2*%mGwDoi4sf<3=Nq!F}92h3=HMY
z2bdTb3?v!385j<vu;?%_FiaNQz`(%Z<2EWWoPs27-8=>ch974i9&Z17T7Q4c#A5TD
z8vzR!E)0KiN29-im7#%E#;zvfdQ9<IQS1Ht_wTR!@sQnV+T;%%0t^h?JA%%J&Mba@
zF7{*g1N)2(3=A72W}i)a^^@nY!PlA{7E<7Jb1{LDAwkh>_Sr9N-iwYFnIVgsM7(Qc
z1E(>Q2nL3T6H~J`Jct1?8Pt>$4rY3Jduz+2$2L?~{{4FW>sj;rJF27{wuW9ynE99a
zoa=$6;3-q4oH%^gIWjVGmUa2MdsVM>-`?Kt@9OHh>1Ixgj`_x-r(V5Mre4L*&RqQY
z`T5W9Tz?!}R=?^ujVR#q_xG>;|M&Z=i;LU+=2|U%^eBmyo&EJicloO=oWf7uzh8gp
zQcz{ZgrBQ7|9-dIUw{9fO;ulCsm900i;9Y_3|kwuZk`x}g>3z-hh19LIuS83YYdZ*
ztw=uJ7qz!)Yu%rZ?xk;T1agb%Tv!pfxa8d(%gTz13l$;Bs;a7!mK-_aa<}BN@2N9q
zuEhWQB>wj9?(0X5nOBL+3GQNN5?iOi&(AMwR}=C2`ugy|z=?8oKN9a29+%C!xTy7B
z?f2NPudn;RzP5IAyN;ZASp2+s^Z5S%dDt$Wb#G6lmzUS2eYL-1Otcvac;y5ibs6$F
zS5{WOy1IIL?b^_ik}WDP|NQ*S#laEa<<-S=_=3B9t%_&W+pX81ynnBM*x-kBxM^@u
z&?A9O$NFSfH#IS-s;jSFvcx5Lna{=2>#@%dNgmSq|L3{AsGQupSD8E3YG1VYct800
z;)91olQ-WC*<F^as-~u8Zyz5S8Tsq?{r`HN-@aPb)zyJ)C^;@${^GK~{nf?&c3JtG
z0`^u^Rb~DE_xIM8%*nMmpPrnodNwnCOWs{8-}!cP)lT#J%rJ0V8@2V)xw+P{wxS0v
zaYXD$>gw)R^{oH*dH&a9()k(+3J%6;XD%F<uh;Qh6}ozw^NCm2*3RDd`<?Y%yV_e*
zFCUXH`S+)?SK8cf``xnHW;r(!<mVfub_odyeffA?UU<_Thx_|#MMXuIGBUFXY+5I9
zEnz1+lbBENwiA~2_VKQ+uD_m6kAHKUjbCof_Ip*{J9qA!Ws*7R+WL6?m-dRMuU`*;
zzvpwGS>Bx$4;~~;KO;Z=`1R}IoSdAm?(W|H>)YGa{`P;b?0dW4IV>%08FzY@{h~MD
zi%UwjOqx9T>YmEtyQSA-TXYr(vFOZLl=JuOzrVjlg@qS)bZ~%@O~3888Q0cEt9w?x
zSlDh-{Vhk<s>DNB-EWOSifQJhBU86GYW?`zF4)!8rSkV%`}-}Kmqlb{*V_Mm=`Y&0
zrdQfL>&uIaRs|0lE<f+FPkV5nah65lqCOc*rP*hftyrO<s;;iBqti2?l=VWwPWJPe
zmzVh#e^m+CE7_*V&(EKlmbR+;`#UW?y|CNca!b#eUVriT`~B<7=htZ+Hn_4iJA7;Y
z{W#y*W>+_*p8j&y{Qe5h$!b}5ca`q+UvTi&DZ7?}KR*gt+1O59z8vi8>iX%+mn&Dp
z<JV@d-y6oxFL$L|f8UC{ySp@XbbK!5GroCpa`LbJ|9{)t{`>Kmi;Ju1<J<>9YvT9E
zWoBl6`t&L2^|iI3+w)>gv#<H&-rjcA{@+Lby+5DL?&|9c^YG|cy*z4dYI?f1scC3j
zT->J*9}G-mB-<7~dXxk*&PKIBjClvo(W6J(5+&T?;^rA99AHpZQabeGQMdk^+x!3j
ztA2bdd%dZYSx&~Duh*i#eO&52UCM0s*^a(GvrnHs&9Tc5@y*Q4+_~}b@qX#V#KdFF
z{5A>l+B!O0{{LSay<KXqb-9_1t!=Mv^fn8b-|OrDzCPtEw(RHM{oh+!SPrLcmP|g@
zW4LM4rZ=~@=iW|padnmKl`<{*vA2KK?XB6<6;FQn`qh+)iOJ{h!`H8~J&elU-g^4#
z_8P+qmkzDy&1t=A{_}KR+P}9m;&HxT|9|hT?fL8d=3049;^OAMy3AL)_Rq)TpFV!P
zxTo@S$&(X;o|iTx9^O*(vuN+%Z@0NPI10}8KA0pbBJ$$-{Q7H+%<NMpPgeH)^!<By
zNy!$wpHGBAAvEdV=N;jbc9p(frarI2Y3b6XuP!g|{~IbZ>B@#g=jZoXR-H-PeDiwP
zxml*(i`{yIii$SH)&DI86-;KcePef(JS<#zvclzs97n{Cl(xhd*W>H2o|$R<^_2Gd
z7p>xP8}d(|JbCfu<>hZ*7j<=YJ$d_f?W9RUt*xyuzg~~Oem%Z^?b_(=xB4Y*DmFxI
z&wKmjx5L#nvAe^Z+xbFQhpoM`%vZX#y*>NEfyP_ga%Tqx2Y)@l%>QEV_j|=0kw1U_
zoV0{pz9zu@PC>Jilaoo!kAk_j)zidJh8fSBH}9K2%lUb>vnQ~|D8-p{d8ci@DIy}W
z1eAr7kM(Ta?@;vW%1SPN{_DEi?=0%K{}<ujFBj_J(eamip6bfb)nT7LeY)gt|M$tG
z-43BTQCmFxZ9cYGmA+cCd|s8;zJ2>Z`D&U@<RX6iKLMVeo}eOu=kSF?t=y@bZ<>_9
zi~0HUr{|=w^>J&Xwr0ItU;lUYy8ZvEZk@_{G}+%Su&!<&8;^v7Cn#|{IyTnS)PQog
zCn#)HUanj|FDN5pg>6c&oNd(iJH`F?s^8m|zP@%g^?ShFkBb7$A6{agvZBn(%Zul*
zL62?qHwjR=7Pvhx_VLa1`KCOF4b1ZI<y=`CeZ8Zj!=Uc(*YNho|GwA%zrG@V|GteG
z7nPQum#jZ?tXI0X>gy{>f7`E93LhL`Y|ouv^QrUV*6eUln!UW--~8M>+w2}0%S$U_
zcW*PyxS;U(!b0a`?((%McS^6vy8Zw6x3~EDxt%Zc0zz+Z%Qen1o1M7%W)Hhu#eo_2
z^>wYkd!<ZQ9WsrSl$1PHdObEhruywxx4OE0#>?a0PF;KO)A#S@S=ZO)zT&U1ufLXH
zDak9g>WBf4WZS~m>-Wcj>gf{`mA~G~UVrlX^>AS|p9^1JUN%iTBjM`m`toXc{MFLy
zvCGe#@macL$%?YKw?LKm>U>7=#6Q1<o3gL137o9vD<UtS|37NVrt5`w>VCgn6~BL<
zn$L^{D}$G>s{H)S%g--tv0LwyNs|_d=|-&xTN}m2#dYaeuk_nqu{H0n$Jd8uWUN@U
zc=6PkGgqFSZT=dRR<EoKE`8i<u4Q5pG6|&d(xpp9zF{FDQ^a&47P$3FoxFbi`qb?~
zxfc_5vd>Q3pujXWdP71ZD2?oXx69kM`di5EvbQqZ>VLo8?&aZe;oMwn)6!QVy^_Xm
znVFfO8vEbh-%nq^)~>Iw|M~m(>-Y8lcPl9=#gwS8==$@g=5EE~-mKf()`qQ(db;84
zkGtPp(o#}h%&UGkvA@56TmJoZyGmcb0_E~mp{qeP@Yi>DZ~yCJ3*m1|e6j6zUT`xT
z@0WMG-)FtPwsw|ba$DKkTT74iN@u^hu@Mw_v&{4LJf$p)mfWj&%-bt#9j5Hov!Q?S
zt9`#-X@hDaMn=YE`*$r{vcx6*{Jg8{Vs~Fz=*%8`zSnEV2HWPNZ*Ois{^7$1gB-Kj
zf&1%f4<9~!_{IJG`#*j<tuNiqCu?+Wj%Bh$TjHDB+t0tax_Y{xfIz~T8HR@qcn(|C
z{@P-geoiL&)|O1StgKaqKRzUe-{V^K;>yZkx6{*fdw0Lvby`DH)3B?nOY83UUh{h(
zOE%`+wNgJP5bktSs6l_<k3%26e>cB$>C&6q({!WLdL#@F{i~YlIa%%IcHh}%XE)r;
zIrik_Wc?r6tm0wcIt&a9F02S%-nY`8iJ4jdSI3403l2z_=gqmeB{TT&`Sa&r+}XML
z<ICmq!+zTR`}5ph+HCgO9k18zK9#Gjt7{5sSSlMCUE<*3F_ALQ%lY#9`uP(lPOSJ;
zx~9)xa8Zz=qN0>_*_y2D>(*Yl5a2t{CepoM?&=iHU=c~lmACWv$9{f(e){z3)9+P2
zmo0sH$#rx3`D>tBTSNq0tOPIj3$3Zyvu@w7tnmAMs}}gpwc_IBy!h|$@6f0yEq#6c
zsne!ey-EJ_yRh*4ySu8M_iMk;t(CbNe6u|$YD>mKz1UqZ4)fbzSsA=s#nZW+@9N&~
z_q6%>`Tu@8tq)4@tHais6hHH^{rlx|)yt*ROaA};e)@FxRQ0Q&IXP>Bf`UYZg%?{E
zKRa>ywD;fN-^1P9j;YRnd|H41l_pkhtynRGv@;U6Kc7s_y1#F4+WC2F4U>;${Qvj2
ztFQ0c^!U2WYilE#yP4&5-d$N4eC)@^$Go%8rsc0QGB)nLxY%7fc2|iZD0!?7(^WPz
zySC&1zu&#va&JrZN}HP<>zB{BcX!oa*-|?7@9(OAKc9p2`pmJoxNq&6hd=(-RaREE
zolP^IG-=Wt>%f>m?XWck8EWQvcQQbQ+>Xb6);(`;Z<m&olyqAkx0h%3*|eDQyQOZ9
zj*Z>vF@OK=JGd%(`?{6(de;(aKOPkanUr>RR;s*p{l7hea&mbkudltG^nPLX^>xSQ
z|NoP|xbpL}r&4PkJxV%!|NeamtCAImfB4(~O}UX{_W0%U`RfjypZ4`*IB!hAT&q%(
z#6v8iVq#g3j&y<=iJ;IuJI6BkQoj82dwZ+5U%GT@%Jk{W7rXa+O}cdHl1bVb3Db-V
z4M(S5^|`r!{lmlUpf*eXzMspYw&kpJm#+<xlau>)J%7sE?L|+$SXo(DdQaC|H^<DU
z?D^dCSN`?CCdXC3HGTT@>C27B<${;{%{56r#`8Ps46n3V#>-1fcl~@e`{~=aZy!nS
z<`35?ir<*jx@XTGP%$X~`QyjHn3y?gzOz#5|DJ2riP;fQ{r%n5S65eWO+4IIbi2E&
zYs&oj>)m>#EPLWhuZDj5@L|IK{q>^nPW<AC*s)^40tMf>R-tCIeK)6_os=k1^={{L
z5ebPEcD27&_|Lbidb9C($%_k$d;kCYeQR&^_Ox?zR<iL*?WlUSgJ<Ewg;n40mVaGt
z|JQS}y8pGA#_1+mS2Ws>ZogmixffJ8PScJ4bSc98@#Dvf?P`B%7#apjo8<)TulxJu
z5V!t~!=ZtJ6SJ<aS_-OIjvBX0mc73RDg!kQ3@#+@c{AIx?ESskgAG%sPhbA=@$u|S
zOFW-4g-FK7$Ctjl6Z!Jx%dW1jOP~t=&Yc+B|9?JbU0BfQyrY<%MJHy`f&~h;zu#=$
zbTh}x&u?0Ld;2oq*~=Ol7$n;k?kat)Wn>gIapFX)@^^D?|Mgw64AiFxTN}0XU^Bb6
zqN3w$^ZaWQ6rHbZO7*V&b~8O{d*0lAf4@cN-rThG(*G5Uei{Dz>v?hc{JN;@>+7z9
zS~*LWsBF!=d~Bcp+NiBD7S7+Fb+Kt%Tkk%k-^j<uH!V@Zs_e}T*8ci;JD-F4oXh9e
z{c8HH8@b8FxsB(dGrw($eD=*vOSk3SeN{H!K{eswBvw||%u`b|C;j^@_I%U*kVzp?
zQLm<%=KGfae!D&Uc%Lk&95Tzlx5hO4n#ZJ9*VeA)leNlteQhnM4(U$kG`^W*R((Rs
zBx3@ohzI2hK1S|$s`mErc6N48kDb1k8usmLxaiIO_4}WlnYsAs>FMz%73^$muYSE=
zAAWsZ?A6ub`cI!c$vD;{DP@q*ur2TIs$XAU$KUIX;9%qq{d8aP^ySOJ!OMIC9UL0|
z3VRgTUym)HJ54Wkm2vvH7q8dv5A*cwytOrZIUBFk3ctBl>*mR=YuI$`@j2`FSGe`}
zEckxEKAzv^14H)OIR`{}r_G-~pNos@RPTKI`g{BK8iAUj-{0LeEqHK%J8tokB`$lb
zzlWWlXA5dC+&o_W_0>{PBVzr&U#sHkem>=%x7bQCVd1G$PSchzUmjQaRJ5|XI{Vj`
zm+R(<t=n*GYxe50x3{uxZCSZ`Ig>i5yahSHU9Qq)b@=*g7Zy6l+N#F5I66A++>jFU
z<g4bvg9k<J*v_0gH*JYm{r!4S<nOQB3u@`DS)=oNYgc#o)cNz*uUVsWb$xvN*6i!o
zrs+m+Nk1?5`+MXxPJaII*=D(0a&K?*-go>}Lqn^*iiU=Vu$s?=?c2Av@k&2?^^##n
zQ`Pr(Yx!iYKKSzZ7477mwtjv7&h?sFdV1UTUtXg$apFW!U-{FgPcmY=-rv~hY&P3>
z;>3xfa^+7>2;R&wyIXwT_UXHaFD@?T;^w~m=H_P8q9-1*_H{94vwc-nRiB;<4hdQE
z=+UE9ca}Z<=)+zg0V>CGZ<$<6WysT0QE|DwE%)*FUDDDf852N$nKdg5+}WvrwEm57
zi>0OIsWWG`v@eO<Tb23s)zzrYX}yR0+jym4J)50>ZI)?v$@SQB&q+~Rvs4coY{|K4
z)Sg}c^=kO3GiOS6um7;{;GxvSyP^TcAzK)v!uvMgm%p(xSe;kSCIZyL`}p{{sGQuo
zFJDShQ&Tl{b<gg*|KsE1tpyLAWUWd(7A{<vb#2YeS*F=x?`l8^;PJ8Ew-3E0S(Ut4
z0IFF*Lo6>ZFTc9nUtZR_%qM@($2KM=CQw<k{Lbpl0-!M|fpDFo=}TO@#XuP+YEQ++
zqT*svLBWMvv#+m;-k!(zeCL$?5#eS0@^wEJg37Se)6+8l{`&gq+qY|Lx8Ga!^78W6
zx3br-z2zG@=j@Ifr_31`3Xax(y&C@N#>U03uC7l1Reh|ht82>a*{frBm+ic}*kbjf
zgG>wuoMNsf9E{Ofzz7;h<rQOK5OZpNDhC=RWAJfne#)}{&!_Hd>*LoyJ3Bl6!)rDM
zhHKO2&tLD{&bKoE{=Tdm8y<@8WaFJyt&m`O@YmPZvimG$7y|a{#_fsVxBIbR^>RjT
z<pfK|&(F@Pdj9+O@6(qrC2v#ayt%Wp_|y0A<zG$ay!-q8e)(6Cn50)%R)Pxd7+c=y
z61G)aRxf{0(#|g*mXWby_40=yKY#wTs`#+r@BY`}T)n|x-47HsZ93jGZ{EC5pH@ZM
zKb4b{GkrHt_3DlHIow=at2Ta@6A*atO4DNQ^5yBhd-6SXz8`SCy2t(}1H%Rb$N&n+
zp9hNg_bg)sjgy*0>{zsC@7`EjR*Q=V8ks?KU^5$Uj4kVS7jS44xC(B_npXX8=kcq-
z4Z?yO8cspR3(-afc|dM!W@TVVFp|<?V9;qXjd<4x8lG$w*l>rrpMw!JG~LX~(9jAR
z)Bq`Am`uDuNJEeu;2;N$ShDDRKcMUc8u_N1K}?`j610u&^c#8c;E0G7M~=9(wzQnM
ze?LAjF!0ufMCYl`<>lq|`T6<p)_%Xs_xR_}pTAzm|6jGQ_V=pH%gea9xPsdGWI^4~
zsne!~{j>^mKfuJm(AC=;>gCmyl$2zWeom&cvT|kp|9_`WoY?WCxaQ~6=}{XJ8vp$H
zb1K)m;==;BJ{e6<DcdU0IF+cF*fRC`H9>`ih0E@?hi(9c5_jRz<s9Yj?yP)zdb+ly
zWh5sj=cFYwW=L$!zV7$<SnuU)YoqmFT7mLuPEJni+3?9~zMw)7R0Z0J$;+?bvBP5N
z^5xm5rf70;bFV%W8z~LS8K!r-M75theY*6=kBZ+j`uqDIJ$kgI_IH`AZPk}W&m(pe
zEd2KF?rQP)nvI9v@=BQ$aD=D6+xcA1^Af-PpAYQm`M#hT3Y{aO*&9%r3Bk+#zP%Nn
zglHpVU0D%0^_{u3bu?&@<FJ-&dZ~>P3n;68>@cvljy`zs;L~Hx&CRJ2ZGE!VWd|S6
zuYP9<>Xd;RfS2}wa`~i5i#BX9xLfo2Y^c?>R~!)x3|9(%{`~pr<3~;NcduV(-;bO5
z_xJbgb8{@C_SNjny1FWK>Fa;z|NrU#_V)Jje!E{Da&qs!2K0iH?v6zVKYjij460*3
zetv%b_V)0!D=PwD-P^mHjZY?GspZ~ZuU7xMegEGw@%Wm++TY*SUfOt-5i})ZUi9gS
z=Uki0ONnciEP2v&oQ0h|{D;JboZ67f%Y3zM-fcc_clp=X*ITQ;W~HX4dQRdw98g%e
z@zdweQ>RW{`s?d!P|e489260MetfL@bW+_k@lcERzU{ACK<+vk<JWw3fg`hN#)Sik
zZ{FP8EdFOoTuRCkv)o%t_Uy4~Z+&N7_GZG_wBVGKl-A?2mPIaRv(NtXJaGT~e?;x`
z_Wk}zOZe@6IDGv05!BqcSMj*lzNq^u6C*c6gH+yy1&*^Ui<f~0cFq`|_xSbp?7NrX
zR$GvVM~8~0y1M&v|M_7R6+3KfZ9#30wQ+lQ-TC?G@ng{7DX4?>_SV+T{rNXHxgKug
z4epn--BR%}>G_>G-Ov($&B0e!R!#<u-Es=6z4-C*F&967cvaP|O`A4NnKmu$e*T{y
zAER~@Eaa25T5{n+0BDHu>?~95@_m7e-BuPpKDO)iy4`P*+xg|M-7UYb3(9cS@Ap={
z-}_yrud}1$0<Za<f|=!6vY>Rg0B6netv1K(wrcII^@}F_xa@EL^2|)*NlW(sd8+@k
zZ>CkL7APiTB-dqZP&s+~cC@Fbr<a%4s*?FzwwScLtu|ukm(wv9la;N#c=X#laJ;nc
z&`LNM^X_Zd`g+g^gN=>NllSlQ|98B6|MkU1XF)+hy%~}W3@bSA7$r>A)X=!lBWZl9
zck&ZPhOnny@0D79-myw>b#nvF6P!AEvhZsN1A_zaqiu|*(>7;5I?}17r?+my(O-Kf
zO%ejNn7R1*r>|eX9@M||oUFET!-flq`=6bi{rcVR_t&=N-oCQ4IQ{3(pDR;OPm9`;
zadGM%Q3eNI=jzbEJ97_AS|X+!mGR@lL-E{=j~+cTDSZ_Jn(pxO^bG8mv;Fevw0`!D
z4T*feZ|0cES`;`mv-5||x2rYDz6NeO_1k<p!FqoJHv>bK*mk~%NhX<>R76EZLw{|&
zoWJj<8@IULmE?ZgWvQp9z3fz<7Z4RS>sXKEV$<wv8K0k><@^2q{{DFFur(JxpSNEx
zsO*+;cUS4E(AC#eYjZ>y8oCpCr&SmHZn(P0mHX(CBO0crp~w5>^|$|B+;2DOY+A6B
zQ`6xeFD@=lm1w)RF7~y-y=}SCrEhOt{db;M+AQStwYAzc&)FFmR?NI(m*9En$;ru~
zAt50Tqt+a5=RbY;u=B%*5BVPVN}Gq>-BtSbK3|-giOH5bmand^UVi6JOtCsI!-|O+
z8}2ywR$R>J7SsK5!I@vv)HJlSvs3h4@yh)_Y;0|{Wz2aVFFHQYx_sT8aGr|l>eIJx
z|DLptm!V*uu)5!iBb~y0$>%DBE%l{J`AwA)Joj&n=oZ)4+b;HcR`$BU%*>U1G8PN2
zt&P5Yy#C+M^to20Ue{xadoznaeE&XudU)?oP4<SYwT{hfp#IR|8#gznZ!LcxCw`XW
zs%LM7i-u=nVj^hD;mfz%`PMayHq`(BXT;;Isj12LTU}lKblT>Zeb(;^zJ)L{m`e0>
z+-<&nO;gl%(`=K>Nn*NDOU|6}0o4MNL<9vF-nbF5blEa3bMx?v7cc&L)UCgz;Gxsq
z>i2uQ`ufVgU14N!Fnzv_arL4t_co<^A3bs;<6sjj-|hRA&t<pf+zfj8@+GK&Im;w-
zk>_N!mp9Yr>z1E8^-t`;eLe<;w1?-XygHv2bLv%2%(V6UetF4Smxa8&wKcLi)Omy3
z;%AZ;1q)U$XHeIOZr+-GU9a@Tg@ad$r~i#CeB5iks_gBpW%GWYnQ8p%*X#A`PwWXa
z{I`Xj;egW*k%iSO47=|zGBC_(1=n*64;Jx5CL$Mu8*>>O?l6NgEVp99PIfs#CI*HX
zJs^eM3kz5MgEi_v?T-y?r)@7JFv8@y$v3Dhfc+h8EdUXQf-2I6lOU&T5RlUO?r?yK
z;Xo3H%T;;g*3pNK3lP_diiv3%8U`vVDuSj3LPDmP<=iN^_}K3MpJHAK1BZnR7lNv$
zf`SddzP?`G)6>KCU0+M<lDGa|P&IJk{CR)hStb|fmfu^Me7tXFt+$>lxbd}P)xoab
z-m9xZS5KKRVZnzF1xuGNUtRzIAE@WDtL$ym%fjE^-%nq@e7ReX#6mUSSsLc%;oai;
z;C42sa;*LJW#jwkn3y&H{{9B_X1n_P!(Cijii(TB9u<#&@#W=ZP=`(Pdp0Ym<jvYK
z*Sb9G=clKjQ7$K^CKXLJHMh67wqD**_;^d{>uX;9z1`ixF)?!v-{=rj77-I$Hf4%P
zdxL5AHJ#djKc9nU7OcwNRHWt|Q>t*`U}$KaVj7Y5f5!w-?J&?_*vF3_zZuHQ%O5>@
zH1qejw^mhOGN!&ec>cV9cx>rZzqwYa^2R*QpdstM-|wyNleJ#8WQohqpFcx?pIqq%
zX&CG-e;>9wY^{id#0!IaD}&X4f9tj^e%9kR$711`Gd{j^ECQ>)zYBeTZ|__1gcPU)
z1Dey2tA1n1%EAJg;e300`}JkMvwil;Yd;WFWMB|`)MXlR^X5%1K0ZBjIT;z9!v=bp
zjK3x*I&Z1_Tje=v`}XZ}^?wR|=h@uc_xC^}^Q5|JpBoDtna|EP_isylv2=P|5NL>{
zzy6Q&+gn>#pURDt0;THi!f)B4pFV$n`uK5h-ks~$ukZVtG-=W#(8v|2e&-g`2}n#_
z2${#x^*nX@^ydHX&F|MF$6vU&Io-dtz5Vsn@VJYITDi~eQk|}xz{n7A7*snfSg_#E
zkDs5PzrC%mrlfS}-+%d<500fTE;#nveChyAZ?qSeyuNn!;pL|A_}Z<z%HPMm%$8lH
z4Q>V(?d<31m$6)=?A~Y5BPuEy`(eg|2M@U9nbXqKy@RI4&ktA~rVDBYdwF>UK_*k)
zJkPkZqj2Y6Y16C{&)0ia34;vEd-7`a`fFFi<KG%gn>~B=dAr|hE+s1|D{sxbtoHQj
zQ%jwa`x}$nbIfKdDJ!qG=`VhM?xX?FT+3oNJ3G5w58I?eR)?+SvY%M-=7wQx>DAEC
zeQi@eYC176=o}GUpDBUbTMntJ+O=rWA`u}WCC^hQPX?x?E%Wm7dh`45>-hg#<@<t{
z`(-{oHI<8(H}r5Duc~KbW8<s)`}Z3e8EvWmU-x^T{htrbMn*<5_ohGP1Lflt4?z=8
z2b<Zm54CVw)&1G=*Y{myWTcn3_vZKJb$=>!V|E0z^T~o{jZ{{~@2>-Ol&#9&t#Rv>
z($v=We);m{sdMMHt>3Tp`I5JO=Hp|%uWoK$4r<{aHu&=E_4?I`hudZuBsK-V|LFya
zvjoL;zgEq`*_z>d{_#UW%@0v=@#U$fr)jFHx-R#d8??9T>y@S6;=Qug+wO$F*^+tL
zEqYr{U{cbexSEfyl@%2$!q>-DJ)Ih^RpaYY3SK<)>D#xkprA>UCQZ`1tFEhicHzZI
zb-$zL2r9e9d@5B^R(|{bbWu7ed+Qtt<rO<~RH+=^2QxJByDAS#uiOs>7gmEa1agUo
z+&{!$U?yeES!EAO9b$)+oxVF9C|cw@+iazCJKwr_Y;zu5beAvvD)Jy@b=caXuObgv
zK;!MdzP^6`DszF90(dnGsCVl6j)8$e4N*Iwm%m7^X*;&^7f2z4fh0(k*dbW??8FiA
zuF<`PXoFf%y#=m(Kt)XiM?c41Qo6yQZtjAE;5A-g7dbx;`3qX$wLt*12nDHrgV$dU
zt*xzIK0YBH9vy%F{spa@;FUIu`Lg4@{r?zdHlBctj1_<W{1K6nSyT7-m!`7v;zNIp
zjf}4Btu6-@Wfm3@i`{xJ-Q1jhcAqS`gh)_K<(+oZUQf-;EKE~Vv#Yc7;vCCjP$%%;
z-{0X<Q%=3PzdwH7ym?ZFNiFwkKKp`Zr;hi_Uk44z_}l$Fl6e2_?()^;@9$aF|Jwta
zm-z9cV(GGFStlkaPXAh*<_hZAEoi&Fvv~P5{rGiHo}{R%sCZ0DN=mx2F4h{fDkOS)
z-r6rWcI>b?di1DePp^cbQ(|HwsF6C~uJ+AiVRgTdzrVh2t^AzE%EIC?Y2D6eQnuf2
zB;VSQ*j)AfT`lXobEcp?x<Me^BtkoE&4lUGr$2i9_-(SCon2RV_vLSIZ<l^~aZ&4T
z^Zfbq*X??xHP@>2lwH}gGm^PCHaHp@8h$HK^*r3pAMW7LaIgCPUai=}(B33bl}2gC
z63|K)QE~Cr$;bQnj$d6B>OFDdL{PKFcZcw6aMloe{Ko$;XoZA@#g01_1qB;;4qw=q
zd|a=pPtmz8<L|GplT`Ba^Fd1iX4zD3I&7L_7QOWP&I`#WUUjg6I%#^aQQ_L!T2KkD
zsp&bt?$^p^=jX52i`}(i!-fD?S69C46GC2=>OGaZ$_Y+LkGj4m5G?v@b3<=hYVAI^
zGzK(83mR;hF1?}d$3ynFx3`~9T(c<Pb2VbPRmC*-))ueg6``xAz1#OYPgPZQ<$?tc
zc6N5(j`yZM|MUKJ$X6-wK*xbzQ1O#{YfGVob={vGV)}70FAZ@Fn}*IizO(pwibUJF
zIhM-u^731=ulvQt#r^tpTHiF|g2L}QS65fioJJd;Y}C{22+3^7K;oWdi5C_)f)>YQ
zWv!}RvtdI3TCa8H%$Zu6nj7DL2TlFo`3YKCHdQ+uG<VD^Z8k*(G`Um${vK!$^6>22
z;(9SFHm9H8b@#Me<^~1^jN<;#;loqs&0Du-jn2}gOK*Ocwy)bGrWdoqxt&iFG#Pzm
zeY`!W<2u*696YH#b?Q>kAZmL0^y=+bp(|}(UW?AZ3hFN@yZ2>WTNC-}_V)F8`~Q|L
zzxR16s5Cy{6!SIpe7BhHr74=hpg#1|XV0{hl$^4!uM6FtcUR`z<A)D_e9+d@^E*9F
zH`vRo3*@7!udhH;RG_JbU1e`yZFt{nes2Y@v>9j;=e*759?(4Kj~^9#zg+Tuc4tLv
zgi?a6ZB<D0ww#OS?f<U<EvGv>%QV>2v(s<B-CC>CS0^rCzI-*9h2g;3%Ia!uO-)Zv
zPtU3ECQqC8>_Ud;{#xC09fHbwKdoYSmtB26zy4qQ^T^m8CA`xTB|vM&t}Jrpw*B#-
z8N>!vqn<%=ar0)G=dZgSUw?Nh$kdl}{<@wwnD5PeZT0$ntFFgY`z9aj0Zr0q9X5D#
z`_+||i>u%74c87|SMrdDk%3{=xuyLa&(F?Y{_t@7>!s7<E_Dj4pUUm;=(w<}^mUAZ
zF#|));n3_233}7n)+oF8O^IgsUd_nJ`0MNS__-F!3=A>d4Nv7_esydJT<m65^u%N7
z?ee#`QvXY6FfcfjKD^XW`hM^Ctao>IT2*{lP`gGawf@sdbuWMa>kke#$C}zQFw8k8
zsxQ_0Ge&B|yy|zBtnBRCMn*x0+xe%TO$!bRnzXC@{W?$ytEA*4tnOFxR0QPYGfNp)
z`^~kwwK2K<Sg$l_=JC|^>*1ius+GaZK^<^Vdlxh?3{qa8C8hKI!6)(FUq63letL2e
zl>1jNXJTMT;M(`*Cd=8`=GPbZ+r4^~$-r=j<!$KK=bzYKx69WBL`BWwle1ZI=T1!f
z^j@$1f0b_UC|sO*{rA7$@4tc?7?+p%f@VXnEO2E0`sQXZs06*eE%*NgOIsV8AFMnK
z3~yqjHh_AH?sAnbTeGf$*LSUt+gtSePx*sgGONSZUSj6AS-{3CrJ<+iryI59!b0cv
zFXyb^XB_Pk1&yY$@kj(b{hXGTHtqK(Zw7{c9QT@^%Ed@+08QXY=kE!8eQj;<;Wpm&
zFSdf*37TiMv55gSNB;i$`u4V4uhi0acXw;6skz;+`@MFSd4Al|;_ItIPd~ZI#L)2S
z%+jr=Hzptd@?vp++{Xe{&-Hsgb%93AX3csfuuf%V-QQnTzu#^LO*n?fRk}|4^5HQ5
zYS(VDr{|1wZ*3{c6$O<LX%B;2-W^=Z8|LED(kE;EY)bauzwhhAKR-LG{Woh~bly%^
zP~hI$nynfdcQMT5oPG>LLnLSoRm`n~v$IUSK`RQ4jEvU3C<QIw0d)u7-rm0dL7kwW
z;II1s@BhDib8~Zei5&yOfxSDo90WCd=USDPoYvjGBKP(-E?(ZL%a<=dY-cvxSH9-M
z!PMC2-~p#wTeIT}_HTMybI^q0KxoE>JI&tA*S6oU)1G~H*@X)Mpn2ur@AvC(@0Z-K
zajGde^1`Y!OW6z=7#g?>GY?pmyqFNYPFO@_$%6+8wZGqP7r*oVcK&|Qf+;3uW^LXw
zRaMpc3OP<r&Q-z7`wrjOka*Z6=f(#68b5{uQ#YoaomJ!?Fz0Ja^Rbn`ihp*y&3y`*
z>AU~$n|W$VO3022e?OnMzrN79-6ZJ<hbO2lS@P=2%A((~ej0OZtG8K|y!g=G&(2_R
z{y-zMX~6@B_KolN{r3C&>ud4Fo`AU#N(s65_C$h;s<5zWDlcbcue&H)erMr}7a5n=
z8J4|?08N(k+yC2PmVfWfhgEHp)%{<AhKw8>8jkfyDtl(#+_V%_0@+r7TM@gvY|@f9
zZ*tZ~Za%ifl9A!V{Rl|f;^O8u&ADN)HgdCDTOw%f;-n?P%l$MhEhE88v}(V{2FE>-
zl#^S>$}RR{VY}QVUh_K%^^<@5+y7ni^Yio9M>>V0w&l$HdpG?1{rdev!onbb^vYNU
zffm%<*;#ybS7|nAGHJT4JOjgneKEggwLPC#?FX8Jd~tE{)VXulf}H*2<m6K)PhOm1
zn7k$Hs+RA3ySrOn^Gca`>@Is7bbg+#Y5l*NUI{}dQ2MF*_GV@5?lQ|7Ur<18O*<<E
zYJV9T27(It9!cYp=X1-aS?lW;GBeC*74O}}KHV(Bd%7NIEy&-uFH@yVvz9Dbq5_&Y
z1Zntu-ah}9>H7Wus&wP_{FwCZ?bX%O_x*e}yXbN7a=+3a&zsr#XBn9@FhCP=YI^$W
z;^*h4=DokOb8}Hq(Hu~L*l_y!rG~3(B0(8t<)yc?&GW-Hr=6W+uE@X;)8h`xFpSz}
zW?}F5exEn5;t^+RTH2~5OI(&NT?$$t-65#_<=^l3uOGI{mw^f|hE->lW^YjQo3lc`
z{!ie_l`ChN=g+gTsXJZ0bm>wf9_Ni4H-eVCYA@$tXt;dQBD7wQH)7trd0zhh;Z9CX
zcE4UIgH|wJ%71?l)b#=_w6e5iU}&&EBBU>sdw(Bjq2+r}$@ieBrt5;Og>6FU)~TCr
z=7{do0?lWwnj^R2)%ErDo}O0f>h3dV&Rmkm;Lr=2*PA1^LGMcx+so|<Q>RQ>vi*Kt
z^t^fVx;i@x&m946n@H+3jhIyO=SSh$8HUa)SFY63(z@i#Z@UCEwwii++PZmC3=DqG
zpd=@^;gr<s`|PVvP6jR0J##gfnc=`oj)->$QyI0@)!ji$p7&IK4habXO}l_b!gZsz
z6kMGGvgF~HhN*Ms=JJOfJ$h8iu4adt?<|)MObie1gL*s5+1E_djb622fy2a!6G1@)
z8rr>cC+6w1XJJ)7?R>IxESwn_8csj{(op*EPo?K2(CP(6=eC%F_`?P%n{S2$1wHCn
z$;j}aXwAVQen0+*%*@Pl`&1Yh8iFlt6OJA`X7zg#14D?kNyNK@hp!4VFfbID>(%p%
zF);k#$LQ|h>`d7G_9-kZ%(}a4D-#nFXqCm$<Hxnt)t@&VpKDhe)hlH>slB~DY;9EP
zwcH3caD(%4*D*~qGte+gkdsprw8;b-KDxZj_tmYf*-MYBs;PlSBAeOyuWh{^x4M~~
z|JB#)@z-x{&E8u5J<l}j%8Emem-)<G^!fSu-MPEn4lpqg(Qml9Iem5Y_ji2BwZFfG
zmXvG(EuizAZ@2f3VfD8+7w_yW1}*XftuuLcug4X#TS7CsIrUpVcO>Qloo)H|*DZGM
z5371p->&Vs>*=)Uko|SFe?J`N7nL*4x}tHn{C+KHT8QWHjwADDz5<O<Hb~`te|I<Q
z>Z++s%*?XKtV>^|+?Nv)DmwYxy87FiPoF+r*^qd+==Qz(|Fv&#Y;^wp?d|1*&FuR5
zkHp*{BXx@oo;r6fte~J^=f?*R5+vIeCLiw$eJKa(NiABWbhrNhU%toB&(FVpV`K8y
zGsfp%yjs0}-6hM_(x6_mX-r++zM7hvQ@y``{kpY1ewA+Ywv1n2UP@V&fL2e+Zrl6k
z(`hX|y=yI;!g~3Kt}^s<Ffwcq2;akg`uur+R#w)h$Ij2U&%a-%37QoHwY~%e1wk44
z@HXdmzRYK5W>&pkyZy=g_w}8|>-T{=xH~4s?k>x`zAlz8Sv-3|Q**O+4bP0Zb9Ftl
zZf$w#y1x3!3Bj)~FS~zzb@lSCt=Xai0uMI)y_r5gbaUF-lGkguYiVnre)#AAuj~7#
zOr5&)!i9kCmAR1N+?{vWUN4)ScgffM?h}KuCnp5=embQ+RZdt^a;5KVGfjQ{^N9<8
z_sLqPY`!TXDOq_id!9{YQ0=cTfrW(|K@(!fdZnk|etu%2@~`Li|5t9<V9;JT`|L77
zWw#S)n>EeN!yO$Rrx(qh2AYUH;1u(*qX6g3*QWX=19jwiFICUy=jI0QulqY??%cJ$
zv(2V*2c&{VRY2?d_>w`%Y>H;^lo>Nt=*8}ulD&78F(hh03&biuB>2uSa6H~GzkUBn
zTWxLc%*@Phe~<OcuW#iRe|2G@GpMnkV*B9$^RMIf{}%4pVe$6v?(pjG@3y{|mylS&
z$js&u)SBPCK6rT_&*2Ma&F`<-{eItXuKP=i!Gi=6;cJ|uwq#5M<(i}2;@als;evvK
zQM=35?kau#%s`)?|G2n7&F8b`n{MXJvajFw?EL)q8{W>!Ubm5b&8Z!yXRZDZ%4G~#
zMuL{iulx0qKi=5NDhkxH_)(z^9hr(~X8rteQ6PLMNYNw$W$O@VKm#&1gEnsu9y0=!
z6b;a^anLdaJPQOUGpOOIi>!57$ybpFD(3fVHiIT2xcT|ZL8C}Zmo8m5k7*SrD3-uW
zK_ZYwh(H57;HgUqrogYqk(V9VD3xGLL?C+yRJPK}Am}^>cv5)E)`+yfJ4A4d0?nBt
z(<^Tu2U?Nd)YSCk;lqWx(c40HtWT7fWnI25Z_h`!tLtK;eP@{j{{Q!PYwhoET7Un9
zutP@q-V~IsR0OpEFouD&m6abi9ZyY5dj(qiy)pT?h@fEM!EDglX@9$)OKxq?Uw?CR
zdiI$ahPU?D?_acd@z<x*<HLSFKXnQewhp}8i=X@H#_x+cdGe%}hsOk!qeqT_T6$9E
zd2_bq-Hm#=(fn@7WYB2*uF}_8Pftyqx-C#uRTbpoHXg}EU%r(5{;|NZ88mUA>OJkn
zve|h?U-!jyf~I}A3tgMHCLQIftgO_uv%6>a?D6BpJ9b#)-rpDN-Y>WI%Z-KxhO29%
zzc2b88WOVP&z~C8tScuH|EyZQ4pf2t`TJMDst-Kd?!ddf`g`8itgBv)jg5Sd=USC+
z%HJQeZ{NOGcXn>Rbouhul9xfCA$U-i1+)_kG%2rmXD2ggh%P~KU4^f6S=qLx=H}DA
z?Ck8P4R~a&%g#)x)WNcXaMiQ3vu79at_BVJEoeJ^{`~a*e*c|?@$vD$%ZyndOZ={b
z_M@$h+Z&a?_v^H-?rzhB0}P;b22-*lSV4(S>`@mRS`og}%ggJ^?(%$4mv8;vZ?kIm
zgs+d=_3zi~udi0GfAw^F{JuA@BUnL$w&t5EKc|5@qI}8e=jZKxV2C=#^JUZXt*NKQ
z-rn5ozB&DTnFK##(cI~MZBxOyW5(&s4OL%WER?gYvgrBydH(+``|B3sS{hehVVBw`
zZ?8A|?6OIdCKcW8>go!KiK)4HeS^?7@F?!O3g5#E9GgR8V%A)_67oADF>&Fg%a=hz
zn-eAoc<$f3)z;W}^PvePhHIm?PD+#jwc`)}2#>E_dghEz>5B^sPd(oPUX7Hs!*8xt
z=7$FdL8Iw?^7iW>6JOfc%iXR0`#&7w-gGnP*6#B4ki8>s`!&^lXQ_C;y0EYrG&-Xj
zvB3ef{$ajdZONM(hI>CAljh>!0Bt3lQ++vH0u-3sg-4ajJ#iPp1#<lTpZNFBtNj-F
z+cd{)w(S(q%FhFnmVh>{7^k1RvMKd6Xv(Ovy81O}jOfeD%cXC(UXOd18^r}O{{-fe
z1fR^zm#VRcj~{oRtma$95&NzSR4}yeSaq;zXT%de#M&$@gVY(2&BNfP2WW;A9Ge16
z(?}V_2ak5+F(^^AvZ4ai4Ea{?=kGtgy}g}J-tNtzNJa(*ZN-GY)6MVK1k1_Ey}GpY
zwCdY>)ql$v8CL8(^)JToH~XCKhOhCUWvXJjQ5nzA%>|9ktX|H{z_3b@>Dv20UoQKf
zI&tE{n#j$dy-~W6n~q!!W@5Nv0IGu;zFK=v(+T|h>uc$8+477F3mieE+J|<54Rz_D
z)!Fa&{RRzcCmwEld7zQ`*4FIltCzDftVqmQzsjEJ+Wxn<wt9maXMexn*Y^aq@tmBT
zGBz?WI7}7X@Gtk|B-N}-OFFB*yhxOnwklaMO*dNYutAKuA%jCNWD;RgNL19Sr>Cc{
zPCq{n<Z95?)4x9+_k)(d6crV1DSYe}?k~u|5Td;2WbCE%`L)a5yvfmx-sbau-|uyY
z&1Ronrs_RyMfv-Cdb4C14v2brd4U@G2G4rbrS_b>Yb&rp1=Ne~l{UXNJAYr~JM;6W
zrfP%M6`h@H9d2i5r#DNH;lNEBTid5EU%oU5i;7xx=+GhUs#vCJ)hj+SzW(#`GiX0-
z8=vf|>UTSr-}(07LBihO?{@$CaG2k;;zNS?836`{5OdQy-fQggH48wCgx~FczpkJ<
zBxDL`(A>_KgQ0*+Z0GKFDftc4^kTK@>;HRQj{q%qEj%t8wZCq!-#nX>`XLMq1%amj
z1Rt`?*A!f=1&vVu{QTTIXeVp`#*G`hdVBXO6*Dtju>tj5O!tAOJ)(Q_K|{JyQp;cU
zg9`KmDWKW@2#)Lx*ys7VvCZRyibQC$LIPnBDE@Vp<bY>4mTlM&(An9^#mPBw|Ni}p
z7A@M6c(|=wZu;cOi$6X-{u;DHCm>*gjg8Hg)YH?7em{Nw{55Fg7_@<OneS{Z4Gj-j
ztC9<Mc4|jQ{$*g`e+xPnpg1%t>Q{T+x-~tJ{HF!#eQBwxx*8f9&N5E#+p}lSmHqYg
zsVONjA9kEM;{#eoW>xlPhLVz!*4}Feo7q7tgFP>Sh8O0{S+ik-0cdweS9ka7U;a~$
zZUhhg=RH3+7c}BFY4YT$6DBBlc6D|J?k;<4l6S`<_wKH(my+{$y;PfPQRr0q`r1`c
zim3hljq7{%r6rx;-rQVlmV4{Q@kfszgQg0<d@1prY2=!inE3483~tCu%5@nV!q!A6
z>g($tJ%0T5@tT?%5pnV5Z*OmZ{eOG;f5X7*{4&Sm%TtR^T>A2-(CQ<5$L1*!B0CL^
z#_YPV^W}kOhb~ygtiD#{H_;(?sfx(4O*;<>*{s_p6uWh0^lH~1+}WDXM5gLq^c7ex
z*zF{^=e_*7+23tV>i0aflR1C<*^Kw+`>X3yHi@r4|J$zo-JPA$a<`ZJ%YS`+{k{GA
z>;nyqbq`;)Sr$L@n6zs3>i?f*?s9?_tjVogwaUxT(6Fnc<Ab!nhsTH9_c~v{ex0PU
z{PNAr^@2Qiz^e$GJ}$WU>sQszm~{<>(@(3ezrK3cE~~|#cRqY|b+wj`&XpGz7k|AH
z>|c5+n}r)<>e8jId#k_mN$_)Xf6jf+1FAnk&5_vMWhe9a*UruYC#7Yp<xO4{Sd=_H
zHMQa6>FN5vx6S?r8WI7m^4nGV8nhea@pFDNP`gqw<@&l<(7eU{h~nbUx&4JZV`T5K
z?b&FT_2R<9XKETNmn?D74qtZ#G!VXKjn3ld+qgj5#ESN3ZvZWQo@t!^s~0r(qrdOR
zBi;Va?(X2q%AK=j&;Bd6D?BXhRN7`uJ-v7Ho`3!i+Vzl{lA@ui>MCFVXXD1tQN9^>
zKd>+`l<TUhy5{EQYH4YG>fO3+8)z&?SltiQ9aV{~&-#6Gvij9~_v-xD2L}c&{Q3Dg
zXuMyp|M-bJYr8=Ckel<^ZVq7~p((Rwty;52$JE3`1JW0;Dt^|})!kkDdu`0lpuFwT
zTeoiQ>goB?yFPYznAvRK<9)J|ufLvp`|Y)Pw$&=0H*emYv}AMo`K)hmZf?5$7SyEM
z_wQHse#;}rj%6Kc;asL?`2y6hjPNjEnx-;!+BDEg%}*6JSvff&IXP>}-rZSw<cQ1u
z&m~{-_Fr8c{yXk)+UB25GtZ`dW?gf6x&Q0;`~Oc<+57L;YsTjho6~qfHD=4ScDX8#
z%F4=9r%&&GYIpSL(YoGiyyc$~&jv5^+4(%W`>r5J88>HGGwWtZeJKGdK*XFMU-=8l
z7z`4SuK5NwZ4+?I8_K_s(8|UHS{dwgfQuKD(ijZDOOLo09^~Q$m0ApKAngf;CVqG2
zK_)gNf<!@OnG-WIpEoQ6)c8Zz4o+Y#4Wd#zTsasR5(qlz08_%5rQXw<Y*|Yde*5+<
z!Cz73ZpH?m|Bly{5*Q7howxtb^G)PJD@VkEwV;xOfjf~mECbpvTXW%nE@(aV;fxKt
z9K5}|RZc$s2wJe=IM4Tb)UJ}1c7Hw`PVi@rZFygQ{*v(i`&X}C_44-q{5R&k4#;PW
ztGTaSy9VA-)nq+Up|iiAA7s^!y6-x+Uw_9&N3T9|<Vb=)vzXg~S4_rfXC@qfeDTCY
z<);M}O}4TO2W+!4GXryT*QTABaWQlKL8&zt91gr<@>?FPzxPYfhUJV51`W@+%A3GN
zDk#M7Aq9w2v#1of;lZPvz-W8p+S=&U?YBkc<ktQA^{e5nr>AFEZ!hnmGY#{)`K$SO
zS#%h76+P{`wmx3o;2eLdf(1wTU3o_C2GFAB%Fk(Y?d$Ds1T!{Fa5%tJWik8gGSJrK
z+}vE*Z4u_#`T5s(zu&j|#fyyA*4E4`D*{1-G}+m!@7F22_g#5&bMw~x`*xt6d_@*A
zU0q#4nVFdfEN9P}_2t>@e9+dV#Kc4?<FuYnpFcnSTGbn;ej&D?+rUI%14G7@6@gVh
zpHBb3`6y`i@!Fcm#p?5Gf<WClFRx40@AoeM`T6<px9OX2h6D#MzH%kRcfMULXh#;P
zzm{=PDKtF%_qXiK%!^M>P6qX|vK}64y|trov6}C!C2Q8`=tgf_b9tROgOzlDCWC_K
zsdMM1-F_Pu7Z=wq{{S>Nv-55qXjc<xud&KY&|0Abjm)6|0So5W|BDP>=JWAw{i`dQ
zpr$`){!j(9ED|&~4q3FU>dDH=YE}Dd%c@nYOsc+Qcm}z-wZ-U7xBKyc8Pt+F+{XL*
zjW@ea>v5A7HYpv3N$a*pfL1I822PZcl49ES{?=A+v)R7h)Ahbe$8XD-xhHOY*}FS0
z&Huev-2dy))RMo-i$UjI*#G-+*gPyOY+3sJ+OXQ+->xq8o?cTAnp@ho%`7w|L}H&8
z!}d$JZml|V#)nth%;(|5hoE89x*reQt*y4LT<PgOP3I!0yC^8Q@cF!Izjl84cLn!X
zhpz_>K0ZFyJNfX#3lkKb!RuVFUY)sT&Vt1UnI24@JbCe@OF?Vn_uDNvYE}Jh&6~2_
zixw~bdyJi54z!Zu<(Zkrb&n@boXGgR{>eo5D>rVu_+9Pm+uJ8+yQ-0yo$XEb=9?uC
z54HZ@DYGD&E36qbVJvH12HF@1Iw!%?vvbnq$)Ry^@4lbD^#60!UN1ktYZn*0gZi$Z
zb$+wWa)W|`CV`eguUMgRe_w8HE@&}bYU)xWBO?)M>D9-Mxyjm81o-;;f(G{{zTV2j
zB*rj5aIu@FuCA}EtLv#VXWkUdxBh$Z{{d$H5{tUekG^JKU-$Co^ZDUvX=&}<w~~{R
z-o4n$aA$se-A~u}+OJc&xVUO`zc#UQo7DZOSR1j?srvi7y-zpZ-j;j0k(nK|?Emac
zWA{s6RT&Kp4MFQbZRGm%?}Iiwo}XuXYkU6uM~@#{e_zzp)4+Pb-_NhlMy~(Ur%!*5
zx%WtbHgm3Aw#+U0c;DCF_#Fj~^?$!kck7WTyuKdPt9$k=&3CTV*L}}<Te=cVB2rUR
zt3DiLpE_~kL+RIdcW)Qdk6ZKRP0n2F@^{l-D{jxfzfRG)?Z=_1CAFRh_EdiU0$PFi
z>gsCHX)1f-)`O-JK#ky!A3tX0=Z9x!ua@C!pV_@d;#vaZ2ji+Q8B3QgeR<j6{%f^+
zVo}kiJ#p)~xVis+)7Q|La5nAonVH7#e{FqscJ^{+cD@(C-|y$YaqY^LCEvb%+r6Jb
zfu-cDvec?ot3W$*J32V_e{5-Cx&JNNvgXHzc@>X38$kTOzu)h-Dt$FY<>il$k5{c;
zeYu5GcuUGjA<!^r?XNEvANSj@`}FD4?jP4*%4KY5kXyGny7=bJn_9ZMS5Hn>H?8|q
z;Te>Zv*yy}%b*d8W5?V;%`|p?xhc2bUc0li`0qW(ishh{GoTr_&1q*Z9ctwkm6u;%
z|L>>!{{R1Wm%X{M@Yb!UukY{w-?v`yz}u_Wub+Ne#M-kvMz3=3z1w;Y>({S;|Kb1t
z-p^OBUIlMl_4Vyt@_IWbJCDSIv$M@lzy1o!7y5fXG=b(i@1LI?04fi6^wsU|?drPJ
z#LB&;^mW+&xAW`&?Oe2IQAkkGBGB@0=Qf_eva)Sq>*Hh#&PD&dR`Yqs;fDdPuB}DI
z#anZ4n@ycI?bX9}`7j@!9?)j%uWxT(zYxlF*WDmbaNCwGpneYH<HW?oeQ&=Pt-1dC
ztL*JNci#N2dU8VWe$%&=!OOL*tfGGY{8_a7Zh4vGT?R((7Y8q0zC3l_yn7F~fyTH`
zPt&bSF54Xo+7EZ~<j%L1`E??P&({5Vxx8WHhYtm7V|RyTUthQPa3r(A*@p!$PEFNj
zd^}x0{#)+;>B+ffv)|v4ju#dd{(Dc?qUJ||?<^C~-{0TwU!T1}3S7Sz?dJuptq%zc
zduD#^%9WDa$uWB2?b{h&zkaRya$CQD!Ooa{fAh-U^saAa=jXdoeqn**_SolFWkF-I
z9EvMfuJrQt{VKhB)v8NRPEO9R^ofa?bL#Zzt9S0a*?wW~rcFU+vwaH-3%A>DTYTIi
zBrHtJ#^%oV9aA}l)j*5%tjgcT9N1S{S}JSDzux+BYzqTJgolCM8%wOsxi7Yh9{&0H
z*{br>lKa**!9hV+E?ih3YhCu^m|onT6`M90ot<YJy|?P?Bo$W|7Y$3x$lu@Jf8V<~
z0Mx49TK~TeG=+I$|NKx;JLke-RTUM`TKve!$gGTv54I=&o|$Q^rKk4|ydiq$-Mp*U
zuKluGtEj5#+S=L*8uRFrwN_hx88kxw^48XD(8T=TICXRLaQlBh7BBOgyUP4tg>&5c
zaB1_rDVJY{goTBL#}zGyj3giYwPFsaz>V7KCD-rX+uI9TuzYT=_0$<NUX;u2zWe{#
z^t*Z2-`(B4wdQA0?wuWhy1Kfc!Nc2cugx$_{_{=NJa3Mcme!P+Ggp?rzIHNid-km@
znWxU5fB(Ty@b1jBw=X&uFfcew2Thzmdi;26`TKjf*H!Kk4-E|kofT5|`|Wl<c`mNc
zpytE|iOalVyW}9P!fU!tGmh>CZDivCEfqZAl(B(e>kZV*gEsyYO(GV8H^dzk=-6eS
z2U?&GZ9ak;0H9!oH7`Mp8}Rt|VXzwnKrJEg05YWUSM=xz=i}bXox<up^Z5URH!87O
z%=K$+Z`an<T^oE(UQSML`Q@9M&)pPeUw{3Tty+kI!2wip>Ba52q4~VbYHn9g&zmX5
z$^syN9WW5v$;`kY0Uqx+0CiXy62RkE2Mj<-z9A9R0A)A~YKk+ofzmMpsEIYIfg$0>
be}+{jOqTOKi|uA$U|{fc^>bP0l+XkKIitu4

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-3.png
new file mode 100644
index 0000000000000000000000000000000000000000..00214c78080d713a5b05264a9e09c2402af98693
GIT binary patch
literal 20264
zcmeAS@N?(olHy`uVBq!ia0y~yV2S`?4mJh`hJ9%>?l3SguoOFahH!9jaMW<5bTBY5
za29w(7BevLCxS5J3j5`m3=9eko-U3d6?5L)t&ExS_1^!F-x*G+y}RA<$SoqxC91<a
zbJn!5S+XZhPIg_{^Zt^7==H}zbC<aITCWUg+C6P$sgd#4#i?2IZf~&))02F`f6&O#
zb>i1we=nZBbJj6Ne@9x|_0Jz4e6*-tpK5nqrhEJR_vQPNjd>0WFfcIqJWefTWME*J
z*Ve$wz>r|XB*wtdaFQc}fq_9yIf0RZVMfoW#E=M*xz^==lhysh`sHjxR)^_UR#s+y
zd~`It=I{Ic|JNxxx2?##yK7a@(ym=4FBk2t{yr`7=(=7|)RugD;<@+7qwZfHkIRb+
z3M$S%TXyuiRNKONw$)irPfeAwtJx7({nqsFuh;8e-PyUh?$^uZMr&@B{)~uaU|`q~
z*UZK{W#-J4yGmbYou6mB>v5m;x*xZ`->dewE`N9B_xt_p?P`B{Oj@*fv8b5XvXhh5
zvtM3Xni{(8^rB`~28NK8L8@2RMt`5RuJ-@m@1gtaYTb8CT5@Y^_Uno6au?a<YZm<Z
zQ?vP0i8PB214BXVw|93}Ut1eJU829I=gQB|&r3f%aO7UKNsN)3fgxskPY=({x8H;w
zA5A{qFR%Z8l8*ZUCI*J<s_N?Q`}XZqJ@)s{pA?C<qM{<56{n(fir5(rxXRd8g{b?_
z)0td-eO+v{qM~AIQGR`W{nKa9rb+BCc-WL<Hv7-tzo(y+#!7<h5HI-hBG5GN&W<zh
z;&&FM%377I@Nt@UH!s}H&8_p}qm695QZxR|TGyxP#J~{a5Lvpe>*>>{Q*UOwxVXG{
zy?(!*;lAwadaNug8ag^_eB!Q872LqUP+({_`|K5Y<J7dYR|guIwRCh!dcMBB9j@*-
z=fW)0Y?)+r|9MwlU0r>3b+~@$s*sacr0y^Vw=gg`O#1SD|Nq$K{`14Cs&=WoJj`!@
zWn=Pj70<)%{NVus6OQ%Cu0Gl=u5D_1)$s0(?fLO%=h;U4+x=Yf?fw1rpb$Q5em^8I
zaN;tbnMqe4M|3r?GBj{&cCVZK<@oiRG3R<DjZ40~2y~atzP|42t*zOro`!~oTwGj}
z&ZbSCKK(PxjOo*-o8{bCaB;DF_PaYfPn|p&n3A$YOh0aobl#4GU(yTN%^rK*D`a2@
zShnxquk5XvmzVi4O-qz8;&HD2_Gagcwgm?AvN{Y5F&$H7b!N1?z5^9Fi<`lYSj{JP
zN*pA~Fj;UzKwei@m!8$RT@2@q%HPG*em-j+Hl1;Y?&j|Y7AdFkGKrmXO-x+4XV0D~
z)21!^`T2SFy*-tnq&#*0eEr#H-A;TGc)$PuKDQo;g_gz7UL0!W{_~$JM)}ax-^sjU
zr&_mf-@fnvzv|L=cOpR{>FC(_rfm1Ts#lu5(&m1QjEq`ZT3Q>obKN-||L>Fd-cP5r
zU)|ce`p=&~Q|8Z)S1d1JW2l?G&_~ptTTDbG<I0M_tjo)KudRz+J-_akXYQ>n7Z<s9
zn<O3Km}_4j7Z(>-Vsj_r<Mp&7$B)1Mc02!iBQyJ#H=ECA{r~q@ESznJ_%aS#W=8JR
zQ>RaRyZ6goJ=QBdb^iSI>hmg`zTdCkKg%q4m8f>u3ip1wTN@Ial~W93U+mknckkSP
zKS5C+oxgW!OAE{2ACLRRLRlHEC3Fd-9y8!cO;2B)eSKZu*08x&rIS=*cN91_Ha5<(
zt=`6S_`-4ddL7TIzhAG53J541HuxbueYU2KP6=1!V)y>Ayu5Wn!or~u5i2|=tGzrX
zoxf#+(~PGd9v<f6<=wiAr$1CoR{dXf)V~)A3(wrhF=J(A)wHvVv$VAI^7g*$E?=wS
z+4t4*-@kt#^GpB#{hob!nQzsrmCI%3>g*8D&(D{&sR)SPo>$uAJI5kW*}d;d8?UrU
z?ky9mNV$YNI|{kDxi7!FyL+u3Ye6Q9&Xk!=O-!DbF8kZBHNRKk4Dy0q?Jm2YPlP>#
zmU>N{;}q7;C;R1Y`TdvQ@7HhNloPX<TU;;W%nZX<mzH*$<==ZFG2bL}(xXR@zMNE_
zFR;nxz~1loR<Bs0@%7!^*%LzDBATB{azq&TepGrsXO7I%=g(h1IXSs6`QpWkv&{47
zZQ8WSB=HbS?wuWhm;Sfv*xTFh{d~^))~3|%H)Xq3zdru;<L6IJJw3ngcZ&Pp?fo8?
zduz+d!Z-HL*BY7Gb=HVnU-aYtbHBM(nudmfzOzg&HuKwgoM7^DJkX@sb^X4KO+^4G
zXYuog&o;|7NjV{qdt-y+B$I*%4rgbXdaqo$Qp&#WkE?Uo-(O$X*6_r%+Sf}c+S|up
zlHXsm+-K$@zqwW~_x*miJL3e%L2(riS!JzCR@})xwzcxb!giCoKNYgpWj<!JeFFmn
zy?lH^Hm9BCh)iwZo0k4zo>A&4k=5M|)y6!|adB~01rHjm%HFJKYGT@&b2F${+WcDe
z`@PG3XPccg;MtmgKW_WIs?|~^84IRrhrgPgzc29budi1ZxpoW9cWBPm{wHv#Q&>G@
zsh4PFb+xv=ef+(9_p+|6n3%WYA)Bmak&FKRKbx#dUMxsEJInKza>HD!Qm_Aip4*$2
zya)(g8+G-O`oXC;b`&n2G<ovV$B!3_=|-)n`uZyC#)gGa+j3Uc|9u@__4%y%)s?~O
ztnBR3v8$p_pEwZ^6f~)(rsm1hr>R*xjCh<`Sy`p5N;EdJJUz;=&e_qiF;Svz;@r8p
zU*6rl&B4!azVFv7?c*Qc@Be>q$HO-1o?Bb9r9VGATil}`zwge5n>lXF{pR+(dGn@d
zy>$5U6)RR8xzQ=C-jjBAmLxM9PeISqr%x^aegF3McJH>_+fw)L-8=Ste*L?Wx9j)+
ziz+*M$fW+?e_K7ha~p2v99t2%xM#~2lj9%t_y4)n(bZ-2>e|}ZU*6lTyEo6an#Z$k
z{`~oZ5)v7&`sdG|uXyst=Jfun{gH_Vt{tnl<=wRc<%diE-`1u`w1JAIyH&5(cJ=g3
zQF;3G>C0ua^De2+uThGRkKg<CTC`Q!n;9xA>;M0Y+L|?0OebQ&fddZNaxCFG=H}u1
z|9tA^leJoM=8TVLkb^^mRq3lG{`P-EoZI=PeyP8_chZ%G&g{0I&lqcIX$5_McULyL
z&?D&Wt*xj3D;8YMF`J#7`}E9AW7DJ~9I9$+S?})bw5s~DBFAj@t*zO|OBSA-q4b4^
zMJLAautCYQGm>X#7&@=t_iI&L)l1dm8_%5a`TOtp`@T}kpFe-DirKk|i<|rEnn>fb
zbFIUxzrVZs?d@&Z>n`r@t6jUrp8k{BVfFg@`tbdAe?`Q^md(!F<+*U-!m1Yw+rK=W
z9<QaT>B-E-b7A-UeXm6}6%`e!c=p?Vn~}HksTeCe`|FR#<*)B7etyH_+S!WgYHK?|
zo9t^kPGSYEH!?)R&!lZ$nRRs)C=0vwN<F>dQ1t1^NiJUAt8>fmt@OA1>GJaBOD;aX
zvYLaNRa#qHPaZ$+ZvX$!=A-_Nt2d^c6as}!S5MEC;`6rZ_V)I&RwW*%r|Dj9m#<sV
z(!%09!@#jEG2`Q-qnmE#%(AcF_vi0lRnP3}>q3`$O$FD?=J#ui?|PYke7StSmb$t-
zsL7@B^T!VjbMx?h`}WN;&7P(LDiS7rxl?>zQ$^*7;3iP+{rd8<`}=*r*IAXkNVsXd
z!`MvftH3nBfJ1LZ#Kff95+(ls`@X+dFLsy2)z#tV|9)NH4-&k+E!TKe`1-t-_IBy?
zb8`xJy_5g{qdjnQns4&SNvcodjMtr=rW@TOWtt^%-uC;P!WS15mnYA!`?d1ozS`=;
zX`3Z4FY`4%H`h9yN8auZ2N##ouWxU&mn>T*C13w%<HrZh{8F~n-%QTUx6i*A{2;6L
z=hNwJXVZ*x%w`)V9AHR(c&Js}HvdS6pm^-$t;xsv9v_p=Hv#2)Wp(xCHs0mcN3%CD
zF){TlSfCJG&&0$O(Hwg2MZ&{X5^aiy4N5+rHP1db#}eGktp8j3^XJdZJ39(zndQ!M
z>y=u%Vui-uZ@02{eLN;z`rrT~s14)j=m=_uUhQu<ZSe2AaMSB+YlHv(`f6J7A>sJ-
zMI!mfFRqO?zq%$e`0=sc%TG>DzPiLySXE7JRo>lQpn4Bfk9tkj0;LR4iMe<&>-F+y
zXCzx&T2=%v_X8Dz+j4I&+gbcP>(i5yyWVcQEg~eO<O$N*)z#%yvT4zxMO!j1DqUS0
z9bQ*g7iQOWdr|XK$(*)>O&nA5E-rG7+Lkj@uI7W|-P-SWv#ze1dii7i{=Z>`g@w2F
zR&Q7HpSLD(v74r)Wh5sjr&Yy=1%Lkh5fKnr(9pn8`{klL7eD{@7oG*CMMXs=w{y3z
zOg%j<YI9oeWy8n*_l0*RALj!lkA3_0-P&2ad{y}Rb@6pSU9+#P2@D9B@NVaGx#MEI
z1^jJ^E4-)ctqNT|Eo@E1!ne1#XaD;0^48|`{#RF5FTc3heRc8kb6J;`bgE?j`0%jm
zaj&^a)t3xjX|pqieXGBJy&k{XceWW9506Rh>sf~mIe~f=)!*I(zP`5Bcdxl#U+so~
zReyhff4%SbyUP=m-M?H7kI($}<|fE<eX`ce+<K)z`KVXQG$<rw%D$h^q;+F=h1|P$
zuj<>)^shf2_n*$&4zl3Y<>mcxl}|-mTU#UldhBp|et!P-KR-W*t`5`v`uh6$OxwHj
z|Et|u5va_{!jf@yRp_g0YiEOM0x8q16}7*=f!bMFS5_omRem5PA}V_F^l5M1=xtYy
zbP8Wx5vU9bBtt{PtUEh4F0nW3xx2f3J)gYY8ok(Epw`o*CHw!r%?I^_-tBs=cYMBR
z%-lz{8)|B6Pp8PQ*|W#y+d(b&KhX_AtnBRBUtV0~;^GSO@aRzUo3rA}mlEGuCZ2+V
zf*|LJ>BVTs%gck>0$JDB%}qNyYpG`NvK3iZS5>{+`P`)PQwpz~O+>Gh>84+W1){4$
zS1)_;AOY0sadmb5^zmb0VBo~dmPaoim9;LLqEh?)Zh2qfj^&RMu58H+-kN>gPrmNQ
zLcjTTx}LADub(eh_am{gvhwAVlaoP}ctpgEv@<gnKA&G7SO5F={Vy*T_n$i6K2^QJ
z<-j4;ko9q~prl{__j>)y+4=h>?%%)P?#Bb>xA*tQZ``<X)6JZ!UoV%JUiLN5{Pg7H
zs@UDzvaYUL3Tipu*-_Z{`vdp&y(0hrUtJq*4sz^db^mE!j_cq5&l71j`|L)$)jzDR
zRqfbsRr)I9#)ibG?Rj&{-riF6{Pkw@c@bIJwZGr(_Rrt{cbnbsH^!|kEubb?S6A1i
z6BCt7Kc6*^j@kJ<fnVqQaVedcYcq}0O-f&dfLb}A=3kGbvCMJ1zh8pi-rnwi^5n@=
z=gxsUHY@Y)?z*+Vet*{0RjHvjclf#Y%Y`2AlP&%BCQ?;R?bXWV^CqbrFG>7ZzeQX>
zZq38P?XN*)-@84Z{j|N?I*W>nuP*nOmuy>j<3<Fpq>)Scox*k@Vd1&glJw&D#ejIA
zl8SrvSDvHU8=9J$eBQH&iHN*-b93{WgIexiiV7n`SBG7Fa&mI&=9?zP&wM1?7Oo6l
zzRGK=)~kDacke2H59(TLn3{&Z-}`;ux3{;KOB$yMth*EA;n4xgexUFWR`<Jdb8|YV
zDqVhb`~8~Fz0-7~mpwZ>dvoTR_K#n`hJJr{S5#hp{n^>(tKIwMs$MRgF7r^!-adY+
zR_LV$MrNILA_cxB8w!q|n`60HJig}Q#+eVMXa<W&NWA#6(&%MB>m^1;MzJt1<J?<Y
zJTG3nXjS~IN3QCHqV1;>%31gJ>;%OHs8M;p?)O@||9?IU%{OTM{p<7o%XfE`UcR@t
z`s-2g_!rA&=WW_ybUy6P!BtUPvu2iTI5)@AnSHg)#e;`LS4VAKrRF<J<>mjf!g*Gu
ztCW32>zO(Wo<{B}eZ4GpcUk6_7Z-1B%bk5~ZM6E!e$%S8(c7<mdwcuprd03l)h#o-
z>`T)&-@LLtKfd<w*XzGttzOR&aUfJ7;o+)3=_fvY`*v-K=VTEHi4*RdZEy6N-&^tY
z^z_$nZf?G{yL>&U;jk)H`|7Gt@2jgqH}A5U()ft)8Z*Dmg6VNpo}eIS<B?c!YN~d0
z%*^M>iv!O)95@uJ%@+wOaK2s*58YXm>O0%)?5j-y$C{d&L_|cEu<=So#B!YqEGXCj
zYOL7)d@?y|ciGxsUtgz}dNxEWBs`oIvNkI8@v+|Er>CY~-Ctk7`ZQxe8>n>Mns;|r
zev*cI$p#x{M(*otqPAwuGD_tNZf<Dj=Ht6IJ-$veK0bc6H{%_){gQ>T9N`W}9d>BN
zhvk^enm&E`j~^AR?CjbK3J!sRfw%Tlein`0oq1WU^v#XH#>U1~k(-w-TD*Abv}t9w
z`Hi<9Z&zku&^z*`pmeEX_JswGpz0?nDaj=LoXpQ3KUSolpLc6x@^RJmzh5lwzp~h!
zUsOayLs8Ljv0Lw@ZMnBgp3g0Rwf%mb@$1||>o?#&wZ=X6)o#5~t3p;zTKWCl`Samn
zVPPwOC%nD4HyYY8h>4lA#J=ov{?%1eK^4W@+uNsCy`P=GFOrp&_1C}O?`5S0>wmx9
zo^^NER!~3cR`&XtzjWR;@ri*P+QoP6)z#IYmixhGcI#s`wY8$s(yQlMms{;)duyMX
zn)<R`zAj+CUG1EGPZe!!V$AQBOb%NYlX-6Tqc+f3V@Sd8Z*PMmB4(@#S^3CBPEzuv
zMV;Z!ojWI~)YtzPI?lwzRPyIX;oncE_0_^(%Yk(45YV=Ykd&0%bo;I9vA1Qrc@AIr
z`1rVfRqWoXuOWM@N<objzsLLkewz(yM0;v&{r&VMNMA^SrKP3#-z6*N&!7MJ$I%-(
zX1uaiA<^4%F8=uVxb(+|#J4v$yZ`<5HMp+spX&OrC2yKT`TXYDtn8IGU*$PjO+0ro
z6T=;6Kfk`9;Na5td%v$LdwVPOlT=ua$*cG8-_LmWdo#DVo<-mEv|C#;f4$v)|I4lH
z^_joEyxep%2UK8yh8A=qHY_-@CE3;SfEK&7dES)+jm&HHm>Ci#E%l!MYU6Ra&AWQK
zPn|redC_#&oi@g@-G3KdZjh9eoK$jh{RvP6PMS37%cs-&uOA$2UKPH6o|Ch)X~F@9
z%F0Sj6O%7e^A7zL+;GZqvYM}or?Pur$YQtNHM+~@?EU-gHmKZRtGD>h-w%iR!=@*6
zg4)2}@0QQMni{ca(cj&=e+7-SZpF*>%iFK3{QS)F-|o1ub<3MYA<dKJ8~5z7nQK$I
z=}NYelG2va*I}vY>DHxlK*j&;v&%X<I!^D)n`>1XvfNMBGbk`{BB&X)V#Nxftsx>T
zYl;HyMCD#t5!mYesj;z9^xaI=mtS694x669X>Y&3TW`u*j#IzH*J*QcaIBbcUN^St
z)EQaOAeeF5nSh|6Np5{InlJkUrcIi(XvGQ*R(5vpNk+!TUw^;fuWe#-B{RD1KPZ?r
zjg5or|Np*!dTCv_%K;{a1FaDo*|d#}f-YXXC}o~E$8V0s!V4DymM&SMp{whA^5n_B
z&xk>?P(?+>NlQ{sPkZ_I`~B;&<#(5Ag|5oDyv#RhZ`D>dez`U6a#bg;JTFiOjYP(D
zh%$Olnx+%E$aAt<=F3Y<Pn|jyR8g_x+WPqQe6m&+cc0tuZ#L7>@rjI#1Qq8~CQk-+
zX)_Ksv5FQ|o|q3B_iNA!U$>^Eg+*0GWlEJ_QPHMgckfB>c0A_$`+5F<o!6i4@G)|y
zzFN2Y-KJeEQx=D<jf#wAIu*FP?Cl!8gUXRt4>s+*ks*@0DtNhH*z|^?lGD1|BVw6O
z2{LkP$byE>VmM@V&O5MkGcX)TDFF{Nmdv>$50YV+eDNSCa5k`=HWmQMD6;6BKOmwA
z8svVFz{v2x=|w^%n-zEl05TxAu=%MZNQPlX4>-HG^-cZ_l3_?N0x8=ea1DzFP-fd9
zz%(sAp-TYn2t`oYiR6f*7Yd8&LC$0FaRa$k{E!r?tHBz;L$6K;KJoYnGJz%}z>a9)
zo0h(y89ZkJc7%kL-@AU0Oh8=Ryho28i^|BXX=q?@b#=}B{OoLa$=i9h)n5)U^PkAu
zuC1Zr0UFGBc5d$KMT-_0t-DnUije}vquCqI{M$Llv6&6jrtRwNyg0|Q_{rnPi$P=I
z$NOZb?|Jun{r<3aK3UM%Xs@hwm~r~Kkk8M~g6j6Y9}aP+?bXd|2aWz}?YO(UJp1aZ
zP*8I%CT5O`rka}D+NiCUW*8=Ksr~&eX#HIK`h7WOv-kaY#2vai%y*JW#fJpYFr=oY
z<}B0fu$?x|s~3Wc?v0C@w^n`4`uXEW#)k(7`wZjb<BuLYmi7GHTrYor{jaw+r=LG{
z{``5tbzN82$H)Ks_wV}mv>k?^c^uI@`)YrKI@MaCt1Nom-Q2ADrY|dgeh$<?XycJw
zBwzn05H!;G=jZ3Gd3UXP<?Z+Rye>-xh4KTZH8<F`m6e^#cJDp1<8I#cL<y_9KNTyl
z^U2vn{Qmy_dJ`-6mv6W8y(iVw)O<N6ou6@Hg5ve?9nzpVqX$lFI3g@9EkAwzs%!Y}
z`Sa%%aZ>vF`lk8!VnD@>T;&tNpTB-(9qkeY^$J4w*VTS~b@lbHuJT||=F+l29)W*c
zk-5x&{<@vT&tF|w=*-2zF+l}XFvRXExmf@Id;RN1cDV`D!;eN!gyi^`eD>E@Rt8&@
zzM675A~Ery>iUhh--^#=J9Fa11QpYa3k$AfKR-KrxnArpi$kFs<Mvj)Y!#0S$jVwZ
z%QU-e>C<W+P`Jr0Njp0WR3l%$@$>WZuZQ{Vr&Rg6xU_7`ySwVmo1EpX?{=5Hopd%W
z*u}+V<@I?Mg^w07>e<`JPYMYLDA?NnKu|00JRbvtc=)~9J>TBm4rgU$_44v60u3Q)
zs;asM1_pBR@l8{Kj`;gEYU$|s%r?sn3JaT-yk^A;kJVvog8~93%rei<du09C?nMG4
zL%=~-H#aRSt0+**zEfCTL`rJalqn)hmoC+`w7gk(@5aXDtrZ`WmM&YSrJ{1gP)t~O
z@re^2pa$>1fB&NP)$9aKolK9f1GS98Y^N=S<W6lnR}D|^X*w5|cuw9@@-iqjHC5Bb
zCI&Pd)6OS5=iTS|+}GH7Bo<hezIrh=JnkZBQsCJc$*ma|ow&txE?oAv&wW+ALl_ih
z0Z&g&ojPH{f|iz+p!1%7er2yRL|<Q9J9}5@>#%80cglj)=p9+bCw9gaTr>-8uxWO$
z>ngao$o12wPoM#+Wd45p*LQYqK6Lo7?g}0Th7cAx$qijkpFPX^_2s4NG0#s74B@HY
z#CTIL3Lbu1S#qGOqvHZ-)cedCpVi)s3=E<j$JumdpI!Fx@$uCQ7CcxKyT)EyN9Rhn
z{=O9#E(HAi`EzCF<z=%B5}Q7K`ZVWU_N67ARbO8%)!+XoDEIcZsr&cupJkrEPStzb
zl&6as7_=mIg}*zW%sfrSH1}3Wzx}@-sk<XKZrnJ_rgBr>{=a3Qfrz=*<=3>=?^*Qk
z?{Dk5>6>qsytts~>h8X}`un?Cmc`4muB}<AKELMEq<BXL1_mv$e!hrFpmF4<&!11<
zwf?yI{hGx`yT!9lOi+y4S+sOs<ugfDb@l8kD*{2Cs%^QqpOySO*vt;f`k>i4DYKjz
zp!pWBsamlm@d6AC>%_7**fbw!U$e}2ww9Wjo2RFzRpBF-&c~oJn;f&*j~+dmb1c5%
zA**ED!mqEdTla3yxf%5K_V)5W#cywIy}HPiTh_8@Nsb%?1H%s4e*TC_CWVh&o<4sb
zU!r^M;$ruwPoFNma3Ns%$EvTdR#ts|<>l>NET#YN-BSD2fs5NNPmf_@C|LU<p|Xu@
z<3&(4X<G2WK~+^%)6VYSqUSL$<@a6Mx8;&S&*`||-)`q?8yH;3e6w!%yP)NMbJxAt
z%E<6E{rS1MpivBP7CZf?^k&8t<B*O9)xQ^yM(rxe?A#jBD{USY7&s9$hAE~SWpS+j
z=Tq^ycC}Hx(&lDs+m_F-+vT#HhvC7jTU)c2m%Y7Z*}HVvvaCx>JjFs;%7YY_aj340
z+?*z5QLsQvC*r}E&O`HTt4|s5oSkQT`{kb_M_g{^nBA@a|MzLE7Q+Ij<gN?G6*=s$
zlY+~H)qE~YQuQu*aDZ`Z)>W@bB64!;9GlrRH8njWBO_m3SveUrj;tHECxYMpkHO_~
z28IW#Dsv9(iipa;w`XTkQW9u%X!+y!dp`Gp64aC_B5R|!`+a?V{dx<h@R#fR|7|^D
z>-{^Lq28K-VMgnH&3EUOnXfHyY&OZbFmuhe1+cXM3%cc^cN8oX(~Egw^6cr;rJcg+
zS&xo%PT!NC8EyFI^ZfsNwmC5}G`N2{(ZI^ku=`PP%e;k$K$Dsb8v39LwE$dmB2~4m
z7Y=^n0hO;Y9E_)p4O}@GVAVIg=4?3m0$l%trb9q1SbdLP)e2Ze%xeT$%dMDD$+nDx
zk%7U-4V0^oij;3W^J}M2Wo2boe}8yE0chM$L{xO?+1cjt-*)YOzb`s2E>8UK$FE=a
z-rIgC*AV0ilZ*=rYa=(i6&4n9@$!axd39BNd$V$F^!8P?zrQVwGcSDP!YgNUBlFFj
zoyAgCB`e<T{eEwg-tAOKl^wR`;H|yY+r!pIEj@C?<>=9)o|BT2lCG=@)$WxvcDubj
zU;pc^b+NmrNknhUnW^$}<8is&eXH(DgJw`e3RZ`&pVr^sAFO`r`t|UQ8#jUy<fY4(
z*T1SeJxw=ws#fTg)#3V^y-UH<&oLc0U$0-cM0s2OeY@7y)|FmUwfr7WoH()Xarmnz
zCnw+9Q@Q!qmzT=*_5WAbGuyB*ax*k=>7m!4KSb|mKRq>7OGjtTh0D!C*`W59X4sm8
zr%s;S`9l5QpFe+Oj<3J+>FMdv<$khvi_hDJhc9UdwF4YjpTB><{?45{LXXAuVhUvT
z3xUR}%ii8v>Mma!5*H_Gopj+Ks96`2&#rB2yZ6YHIB*XJwfcL|6<2+8Q|hLhIZ_4*
z2SmeO?*vx_GhTB>@JgG79B$*Cd(3aX-CF&9KNg|1^L0z^Z_S>bV>Vk!Non1St>J4T
z7Ct*W+gj{+c#7!mdUgf|Q1>3x3)R#-X*g~A^yO2gh`74CYFb!COad(rU}ooAv0=l8
zBetL+6421rA^kjkNRuz=sM7ZnCp=u;-LvoPD6}ek)RL_JeajXTRdsdibJEsjYe19A
zSFVJ#wzOE>O@4W4sSp1@PEeCD<K!gOStgm2rs>75TC+x{wY@$2@2{_~E-Y+*EHnFT
z*~O!;+Y&)zhoHg2yd4kQKIy;{P00q8l|@fad3ksQI5|13e6FIdZe6<NU(NsI<9)H=
zz4O{kBM|e^8&@^67K7T%3<i?2pebu`(;A%K1v>7?gOU=18mK+oz@6B2!59<`C@Mh>
zTWBL3Yo-KcS6KVk`S{7dkc90cSOv>kAOpmm*iVyWG`MLE$?w4}^BNmM`#{5;Tl4PT
zdSw*A_wRZAzvHij0?sX3v}lbU<5L9<jT5hg9;ktn12}&p&&Z>90MH8rcnN~N?OpTt
z+1c4ww`PZju8)fa4X3@`et+Hfd)4cCw99hAPW1RFrL(zSFZ}|pp^nt`zJ7k!K(n@|
zrfR>2wneV23|5!5E<4k+{fI88C~4r{m^AVCySux$W?j`%Ra4W_)AO4oA}kE*J!PJm
zVR&m_ZS~6Q%a$&Ec{6?f)eb>r(12d>>#}rE46Jw%wmwc*US1wl*cd*0{d)C{8xe2s
z><oVS^5xPv>->8*qN1Xiudb||w50g?xv7<V-!*`Xz>P^=1^4&Wa&dEm3XD0&l$Dib
zk9%)UJuP;(;&E@({<^(VrddlCEKmRqVu2<yQzedl-LII}1?eWh7Oj-+j%`bP@#Ev;
zrE%3SE+|%3SHE7ld|psZ&7MPt4{uF7E4BB_C2uVqohzsH_s2|Ix?2a*pz1P3YiQ4U
z^Cm~KZDC6bORtov*Q6`U{pJ6DyPXf3g*UDHQ^Cr{7U%x;T_@Ob)Q0wtrR%0HahI>X
zlDVh;|G!fwPhPyYx7v5jm0D1OKF|tkS$}wV*sA8ohRYFgardyatffsd794KpUmdr%
z%I|UM>uXaJB~G0>wd>L)TP{$3<rk8YS_NuTY@Dp_pLKSY>C!l1LBWM<qql2WTi?!H
z_<LRK?v%|pMFa%{Uv163wdLZ&!|hY&&0DADJImtO<;#~-H{T3d?l(8PUc&qssJp7S
zY>&C*+uPgMb8&G^nKI>x#Oc$ggT1`E7A;yNA|s>YdFsrWD~-(TArTQTEY`>GuQTFt
z2Gz>RXAF2$)zw$0ot*_L89Lwh{08+S!HK6jC1uH?#fwez?pVyVD0Eu5aG{r{XJAy+
ztVxq6%RUEn_`1dQ!?LngIXOA0c<!zK9(H|Q?AKG;>t9@tufMu>`@L0Lv#)0z@00cN
z@&YYP@TnCmcLc3MirSRYspdOt$x`p>TH4y)4<9}Rr3|Z*7Y{6sr)@rYdi9eh*Fnpj
zK-K)!RiRN^GA2fC$yk_rdfL>8A8`{Q{q!*G#a0(+j^x>ynKhy3=5Js_^!OFSN;f3v
zfjY;q;t4$;gF5n%4jX7X7u4^=Tjhg#*RVDM+89Ci!pBekp|lxHv9u9z7Gw{E7`1I}
zW9QfZ+gbPXsrcWg`t^Z_+jv2%Pwv<MkG;Aobn^D?+pnrJF)+j!dN1eTJ$&KBMCGen
zGJ|cu-AI<QELy@RXQSZ>nlqTJ=4(>^E=Jp%g<-)RQBZrt@#kif1kfxZI1^-D(EyE;
zw<TKif%@J2_J20qtN&lit<A!~u%l|4pWwc)*P^Tbd_4Yj`~JVa`~QB6?tJ|4;X}}x
z8`i0e3<<oT!47ZcYa5e~U)fjtJE)(XjqTN$nZ{2e1Q{5vDJ4|0c`xU9eQoXP<l}u)
zt7^{Av*qIC)I8qBz`(F>{!+%*58LIh{rUO1^vMaq;}M0Y{(ZUZKXuZiMK4}ttUkre
zu;9+jy$9yDzPq-;B*AyCRcP7nSV2KSkaJQu-<&dG!h$|o>s9Xka$NlU*MEF`yjDjL
z)c%Z=+5nng0u9BVnPKSV?>~M1{Q02qx68}@vp+pK`Rh@)zKDQ8LTV=i!xU|+h<OJ;
z^}7B2``5Jak&Evfi;J&<Kr2BHmJ7~W;5k_hv`S}<9y7xO#TRiq?N2jb<G25_z%cpP
ziv0WgK+B(YmAriP<?`0-@Zk9Ozu)h_exQ;0>V`z;pFe+ss(WU3zANAF*Vmu@{^irB
zNBjm12i87)`V_P_=-|PFTpSz$At6)D^6%B$d@ZIMrJ}FDUdaC5y?ei&PLDseu;_Zq
zOOc0@RK34Ene4wRXsK7$#YL@IS5^c*nq&X|UESVmYa$mjGPA7+TN~BY+Z%d$neWtD
zvsRVgt8`x-zW&;((A8IVm%m@V?|maP`;(`sm0_$56%4Dt9h5T3m;lncV~0g+Tbq`u
zs;h1Fw=37yM(giPPyP5ezUHH=Y38LPnR}|fzPcW~Eqb#_g6~Wt*X?)9W`nw1x3*?a
zf0+$h#L{p7Z-<k!^Vgrx=YxumzGP*$o`B<hvZBJmi$SwqN8~4*UKz4-(#fk#3;}gz
z@9(V*T^$CR<S#5NoU~-d3<*$=BKcU)#cywK>sR-KCWqEWZ`XSrbhmA3?)1mU`$1*C
z*5?9MPtanDqM{;Du_m%kWo6pgSy3Aj8aHj;{Por9^<I<aRXpM}&AqkdNbNG8nL&%9
zk4ot<G(@iXA@UIWFuazn?cc7f^XJZm1qNO$wcWpbgGoYbd;9AjA0I#c6eVB#W#TN8
z%%H5<pU+vp51FjyyQS`LmFLp!8Tw}DerbbD=7_)?px10mTv7b|+^VRptC*OWuIw()
zm$j?;@#`Lkd3xpnP!ITC<#XA$H#RQziGO}(rm<DspB;I7zh3j6CoU(q?*I4y|K^{Y
zYaPDqD+9v=FC!zPl<l{@dv3oilWZ$Indaf(&@iv&ljq)_&t`-A!;c<6-kN$^tn|f&
zhh5h3^G;kcjo{?uTotx<7HFmqv|dS3QSsBaZ)H};(>A|s=C|9i?z(05w>2u78X7Mq
zJr|XK&b^G0A#7vP#A-jkzM9%v@1Ea3e_HlUSF^IZ^)mY{Xei*_-QBO(?S6OZwEq4z
z=J#tpORX-;pT@QZG<|P2+gDLh@zl9<`(A``ru|XW=JPx1xY{IK>IehF2bF*S{+&8|
zR@boZ;UU)JA6H*o=*+$~_x880ZIvHFrm?NLa^*@<<=j=Ft54-^e|<ZD|K2B+psBc~
z=4Q}Zk)Y<-#KecD*9FDJmuFpFW!d}n{r&jAzrXK)R?Wn4>X`k%kNlvO0e;ETe|PVS
zT(^AZ2hcLN-S77mOKJ0YEk$eJuX>$vWyM53Ih%^B*DJYB@7G$s$L7NU=BnRsw{J~8
z-q)>H^8Zn{{*+m>RwW*8^PH4*WyQkF%l)TYysvV4xF&M*4-RdH9i8m*H39r~KNeiR
z@$c{NuNR#8BSS7u-T8D{G-#CBqF2_wF2>W-6KCyRc(qi<vdE?M)s>yEUfZ;Kzv<hV
zd)o}u9Rtm)?63Q4l6FQS_x854SFTIgR&Dw7=Z{Iri-5USrKeurSQ)(h%NgVI8U_Xd
zi`{xBser}|_y7O5``_R9_15Q3pEz-0SLth?wcHF1_M0CCx77ar7V7BO7|ema>YtNV
z>^ILQ@=+aVOyt{}n~UXat7d#zw?p3BI-;_&^40zQ`$2P-hYe(`_sz4bjq2>|1T9Pm
zTN9CZ%5C1lg$qITFdLuDis-zZM>kIXect~6npSRc(A?VPQ&Y8NtK)5dy;$7U-+$ei
z-*yRT?)lEnV$fnBP~E+L|G!_mUNbTr2z5ajx|6Zqxg6`Toy(*v`)aH2mfg<X_4nKD
z(6v#fpt-1%Cr^SFG92rbPQR)gdF~S5wJR%wx0bz)0*yDHI&tE{%HZWCudZmOrlo;O
zO3-qVWxli1ZoLK#lU9FwbMbEZ{k5&!;#oH~Bvw72TVC@0Zh7|kdA5G>lY=*>`GN)~
z8XFryewd`{ZBqNI#P-7hX4QA6r)M%ToJn$J_x|<x_3L@{|0+QXIY8xIV&X#BJjc~<
z^JnMU|9Y_))G7om=irsMivg`GYU7h#b$54p_zO*^*@@4l|BYR`%y;&x;^*i5Uj8@_
zD!g*<?%H}s?C|udpyhL*w%$D3>WJo0N1vHSM?u{ZHa?k*Qcex_quCoyJ=*{L=zi@s
zUg<L5?o;|te|&sA%RFChfBUJ4OJ&#e^zdxWy}j+q<J{ZZLetXHEW=nB7z+OC@PazD
zpfcXuc3<voGt-<K8~$)HF&sz=^A$W4GmUMHV>8>!yXE(<8lSg${3FB(G}0tvu^{nq
z+snP*?_C!5w@C!mmJH!%FZm1h$=k=-|NSx<H1l>XI^R<4oT#YiNdq2UDHD&!$NRT$
za$#UNB`d4`Jw5Zlr*GfFyu7+VbEF@S%fEhcaq*-j$9kn#r=On(THUkBhJm3W`;n0K
z&ihrb*Y5gyEqbjUGXulv$d9S#4dQpQuUY-p>t>D_Xqj_r2rmOe!_QN;30K!de(su7
z^0DmCk~{_nS5Q}QO7($VSGMt7l0T@WsOZQorZZvt_U%bYNvD<@FfcGo-f=`q2Q(ho
z0vbGDvP9+S^XJ(Q4m5&>KS9IFrI`#2Q>4KSfrijK8-EpVm}OD8XqIVq8d%1fX<GUQ
zodi&l`t{{y)$6s}r_7(fe#Q(5(Aq@b*=Ac;sW31w1W&0xaO%W~0+!WHO-#1`emtIK
zkjQk9i=pAa>+zF+r&b>TEj}nJE*2FOTnHMJ&Ahw}G*1SadA|PP?0p7?19L&XD0tYU
zlKKAL-l``P-SsNhB}#0%nWLqnqtkzhfnkG8_68g0o$PC#JbCh|&Xa+mp(yknWA=pw
zj!*wiVqn<83-ZG0S4<2H3^u(_e<v_9H2imF$1$&!^ul7NJ#uq6kr#Ce3Ec0+)5zrp
zwVxq9WW>A{xc}-?D1Lg)eC>(Y=J`Xf+f{r>sI0798NNO)ymqa+Vge%r11RZiPCp;!
z<J0r(%uHo@dHJtzZU$SIz1i`o`p^0QfBHeKqx$;)Mr*FvLR$Z6<?Gii>E2rXJ#TH)
zR<Fy;{jYy{dHL&?%l_G?r|E)=h#tw}qg(qW44s<Uc!TclDqa6Qx1bv2KCK;BSBIZI
ze%!s8oxiN-=dWK{W@cg5<?lkOs(z)u-&pZ6>Fxdf@%sD!6h%&ZWd`w~wiUK2|K`n`
zQr2Z_)O=<*e1BCB8mU<E0Hy9;`1p8#{HI?lgO_V5C^($A|6db1^+nkYaLYgGs2zH5
zwV9ni>)aem(E3%a&{ZY1tyKchj%~wJl<_Y8vmJuUS2iZQ+kUy=d_8<gJ17(%ID*<(
zpiZ@4^7K~@p7lPgaXC^3%F51@t}JkD?vDF@Gkt#M<72&`B_5Y9T~hIEOI)#Ffdgcf
zdhpp<rlKMuCA$5Ou7UkL<Mqpgt+}_ua&K=dmGbuX-u-0xZ=|_y<S{V4s=FJLkEd+D
zd1bl(e4($)moHx(xj7BAsI!e<zV7V#$Ll~Qh7{EP{&uxT(s;_0DN80QyL<ggPXCTJ
zG6w43EL^w{RBT*d7rV9W?Jc42(l!+vW|?Fz>J(OA6}md?=`WpiP0+yx-Y^ons8=>5
zI)h5SBY#2rAF95-dU=pt-sG$09U{ih)b!V%e*YmvO!4AfNczLk`}8V)a$@4@Rp*5_
zUerKLA+LFra4-gx^vD}+R!Eq-_`Lo9nB)EO+jsFyX<iw;JSvu{!Dzz7iHW701;P-M
zWp&OUkkSDacc9U^1BelBp2ib@K?6dt5pIEH9Jb7$p*z^zH)t#zH0T2xb_12DpkWS_
zaXZ?L@Ijm_;x9PsZ?Pqg!E*h5Kb$}V3?3dGfBybW-G2M(Vt4+xH#Q#b*?u?|l<^wa
zc%_!y+?=khrsh`s?99ae{{E_OZz^vtDEaWfv9h{48&u(cK5K4T^(6x|m{ESWbh_Q&
zFPDo}-TP|b%E160@E|x^cI?<OEi<!gnK?H$BxYS(Gc)b{ytVJ{?vDS@yh9OGmcj?o
z+4$w&NPPbKH8dw@P1(CUE5CgCvU=D2{rmU7y0UWd<>mgfV^`f)08cNhiD=%6F@`?9
z_}iOE&`1?%1@5ta`SqYhrt_-b?fhnb=qxBM9ayJNoT#|_Zd}rxyzQqAcx3JC{%rbQ
z@noX=mcqwwo<UDfO$BWx0Ci`-MBQZt#db`GsO*|Kb7X%0`ZZ1B`{&QaGW+MWw6K7>
z|J>qwA-l`oPMJP^`JX?3va5w{7(hDE=AM5%ZE0_}{`Wn(-*(xxwb8Fns?Wc&`~AM`
zxP^Hwp#0dqbDqCo-tBF^pn;3aH+B|3*Q@Nko45akNrIbOo61VZX14H9=cQg#LGuWz
zDk>W0=HD0HHS`B<OgqpT^WKbiu623X^K*0O9s?~<eLlZ_AMR22U45UQpFeHDGuO6y
zn-iPPHSnx3sF8<%dKt8#Y|i)B>-SIFasTDz<zN5(ey^>f;<7dSy54X00!L6TC{PT`
zF_Ds#T>0Wf258@ty5F3DjEogQK|xcdO<VTlNy_oc<l}u;A06!mb+;!>5bzA@m$L;G
zE}+t~^!2sSsHj;W)e|QMCSH&C1m#YJOuVD>YWn)mPp-dlBVujL&Y;cd=dZoIygYQV
z8!u?(D`@x8?{9BU|2B+a1C1MsgIl4=?^mI%mihHKyAaeWylYw|1quz=*cD`!8C2sy
zN8Jr+yz~WJW3@Cqm7Jlp$15%_4zzgv@%-SRpeIkCE?w;29~B|Wz)+ydvgZGXXS4G`
z`@7!W+PZtu=hKh!r5GBzR{!|kb<<uWo@LGd4K+WDKoicp%imv{sO-K*kDY;Gha%Ip
z`G5X=K7VUta(mjjIV*2%&Cb5LDK%_53&V;8&^R2^wfQ>H+k8y3uU+~3{r>uWwZDZn
zFfbf2RZRGM^3&7PU#IW?<7#JT2kP#CW>amezeU7~F)V0WSpD=LN5p?nZveDo?(2)i
z{a%x-%HFJa@E~DV1ZZGMaKpdrn^I4Q?60dWeRt=k;kEVg_MjMRON<DYU|8S;YC$O^
zcxq{BU0M~o8q~FTePW{Wub0c`f4S^$uW4iyG;`)m&@y}Q(4F}qzju>Bt5H)^QZk;N
zni{n+sr9nq?6b>2%dS9q{oVD--*2~zN=UpgDZ3t9zA|{Z-}TyjhK8N{e!sK+`}_X?
zGO67K51nT2*R$SP&BinhG@QCBZf{l9=d<SCKJ5Gc|N9N9>7SjSuOA<O|8>>e<@4*J
z7A{<Py_BE9;pYx`4>mO=MMG0_rBD3yhNqHRH3xPTJZu7O+pGKgYo-5uJJr71Z_Cz3
zY;*!mR4rP(Sa*d01H+ElT>IHxH}l(FxVbs~>gw?I-E#e1T|slLN`IIrGAxMMaN@3U
z$d87tH9w13Sy-m*I(8~;^UHs~-(Nr0D_#2PisrusObiXDSA7U>k+1o1F!g*SWOi4>
z6O=)%%rY)0@JgAi@X2Ck2(ejn@Dq>dKJeluGjQTM*7Y?UM?G=g?zhjzjT=EDWlYS>
zSNBvFgO;7ooH_IQZ?hd+x$Hqxtp6fDZAv>Ub@b>_O%sz4O-;>LH#aW_t!DZ5_V)Cu
z*qWL>n>K9%E#H>T+u`WmCv)-6&f=|gf2%-Cu}fcH(>=btKo*p#V>(2$H-MU4xQDg8
z_m*8-6Zz`K#>JO!fTn9e`_p>O?_JoEd3oJ`#ybL_*|Hr1+S@WC_Ev4Jsi`pmZQGc!
ze*OBS<m9cz&;6DzUp~F+ZGD@z=dRD^tV1`a`GQs}UjOH|!x9t{Se7)!_ZB}tr)g~+
zy*2x~*;=>q!{E7rBVC$@Fy>amzgBHdI~!D2w@<G2%f;2Z&P@hY`U{#)gJxg9zx@Ro
z5sF_4YIs~;<{P}f?k{MD>2g+yIkc24+3@G@->I`_M<@L`)XLrWIQ-FZ`T8q|`R&(y
z_)xI->$T|c_!aDshAC)oV(y(C7c+INt$$Cte&g-8Za?O<loXFiQYIM%H?P~4y_o@8
zJuYRMmGSr2S1ul&JzcA8`N8E~v90VHwvA;a3=DjmK<5I;*;auzF8C$e|M}3&#wQc;
z%2ZHL@Yb%<)tfeNo-4NN{jIIuX0v?-1qG+qoDE*?x3c>CJ1q^33)j|0hpvy?o4xLS
zFlb(&foom<{e4;*8UaB;lah7x_5C$9HM_dHf(i;YsDKtvvh&Fl{EEBx`T6<P?)`G0
zv4!LE^=s13&YD{NcU=b`WTmfZ#KegcyZZXB?I?U)^5_WXaldz&nVDXGer0pa%ictQ
z7DlXGxsr>MbD|2bgn`5VU)T4GNK3E&`}=$L|9^k`KCcd0x#-^B>e-;h!=O5pd!tf<
z=OxhCL*^wF&=^BxWF%;G``6e1`}h9t@7z`Qz~bL8g~{@krsY$XbGw`?&hEQ=M9`ai
z)6DK!(K<PL9<v|*THU!U<45x9uth;W+rzf7@Mq18y5hEVlaP<1m+R@D*-s;buavkf
z{-FN-@8R|4`3kA~9@>?EugUrI@b~BD@9Z+wcVGYAdHyPBsNC^+XD4UepIh7W=j)ul
z)W$2lCGl|Ef?Q2aO;839*b7<;x@nWq)TvYN7R+C@YSjWa?@4{K*4OR_b9;kS<fw%3
zik*3+R?fh{a5!TF1H%SEsWm4Yz<F7MSB!zd%=xj%Kad0i&tlMoz1t3UZKDgIE}?`Q
zXuV(Wg#=eNP*OK@I?%<V16uKjBmr*jLd=zvTK>Tu$=pM>5fdB1(?13vRXHte+D4$3
z`vyU#u#|*O&>~EP1d@ekFIcqNgLJ^$`|e;Dj|pi0yX|5EBSV6+36bWu9n<^+(!n6%
z25LIHt-ITt`s?-lm^~GNs;a6|wpCk%goUS0ow_vl_O`!|3zz%N1xI`7s}Rr<Y|w_C
zoE(#ni#f7E;ke-D=JeHz7CE)Hwt~iglaiCC&YrzGc6Zs=$~zAaw}WOx=h{>Ty?psn
zC;y*3Blq7`3l}P031+z9U-#$Z@c@5CrPf6UvobR;F7uteCF`mdsLy=f=5x=!U$3;6
zE?ENFxK}G@oq0(Gw85#JPd2EqaN|jN*9hf=h4F#H%oATPpI^uIRV3lWG~H-W`dzeW
z(SeAVm^q*|qsx}5&9x|e)OP${+3j2@yP6*kKE`XnK|L|RBx3E_wMDz{N*SeiT&PG(
zOG~iM<Ll34U^w9B^l`z(ZQIN&=bn>$?6*9)ZhySG|2z|``5B<p;V|X(t5-oWF){rg
zfBg7ypzMx})EdTuxAtj4L6h8ir9>ay<XQ9M$Bz}e(>!nOtu9}&TtMjP(W9UlEoWO^
zo(cK;e!3Z_o#FUu!gl3gGka)c<jwbu$qVjxPM<Jg0k^o`7YY0Ne>EVtFlICSsIl`5
za&&aeP#02?l$2aJkBLoS|N9q0Yxn2RKfnCsWcBtcslC5mEbb2p4;MH2_I!T*x5}Q&
zFW;0(Zdkk4chaIyt)JE^CGa-9yu5t%wryd_$9f)yGBC7kT(?f|XN{fje7n8(_Z?q*
zuX*b9>C5-**|T8d-{0TATc-CPU;Os=_SKs=8^3V-{_I&=<TTa(<Dch07hcN|!F=Fh
z!HbjX^Lf6SFfg#)*t&C<C}^?;R4Jc2<)s_3!Qs+X_1)p&;o92T-izJ)r<HtN`Bqj|
zwrFRJlu1T_#_}BSKu3;>$a|$TXU>Gw)$Ic<3%R`9|Mb(MmAiID9q*S94-E}X*stn6
z?ZoS^r=EY-w6wG|`1k3w{^?CRvK9pnb^GJv)`we{y_ujgb=owkz0(RDK{L0jR<67V
zT8|SQz53g?vZc$Huim%MZpFsUI^Kqcw(<@el8$ycbZpkq7C5DIy6aX$>d(J*^()jF
z8639U-kjcVWMl;1#%gPO_r=cd@9(eAyu2*)`@6fK;kJv#i_2}m%~S&>F@d9Id3RRK
zm?5F6rp9)!uXgX8IWmveFJb(mD<VIY`7=iZL&?KKtZSpTt~zc}Kc(@4LQJbYlNdv#
zjT~rYzg6k0kQK|B7z7&|SY0enZ~AhGTmQwUr>FOBi@3hK=xG;dtIN(9y`#sEYnz&e
zE?v5GSH;Jq3w5BWs2)k<Eyd6M?iQc71uch(ikg*`l~pxo^Ww$MpP!!(FDlyf=<#FF
zg!tOHy-|Dqvt8^`J#@n10MmjiS3+#RUJ3qxBkAm1>u~Mxbyt>nP7VnSTsUWr%-&zG
zR)bbCU#Odw`trra#i!1n2M>{7kE`}ocIyGH99`SY&d>Jk^{ZExKy6mgfg#1u&RqQU
z^|fj0DG^XTz%8!#X8UW_hJVM3H!yhY`eop-{`%@on>NMSZ>YS#ul7^bUeM0odo`bZ
zJuhuOZ?}5M5|ydbr>|bP(DCNYn~i__Wh@uTT9>`JSN(n}X!sK}wG$K?IyG#4oUW&q
zzW#O41n#X{t2QPd_nOqz)%B#r3N)&&8?(dU152htRLdjB#RmOs+zm@s>xLyJF4WT2
zF8%f8rQB`%zh8nQr!9T-=+T0Yt=!_L-hT(Bh>Sn)cE9Iq(SG^L-K|&NK5qY?Pu>YR
zr>E)edcW_tNzM&}xz^=+AHF_l=706+>FKPT9Fv-<3<d@q5e!VA-C*9+^}bf=Ut7Qb
z->MliBzDHETkz5P{hr{%?fln2K0e-jZ2f<U-fYmq)2-XLv;V98@*=SI-_Pe>US3?k
zK)nr})0bu%r}M;03fO_FlMOB$3JRvCp{%T|tJbUu@$~du|NGBv`zz+Z6mGoEk9+^_
z-L);5mqUVrF1_}Bo45UUe62pi25Ba-1_jW%x7^&dr%s(}Iu;xhbmi{dwTs>Rv;O?}
z*!a;n{oIRw`+osmUZ;HP*KgTkQd(B_s*zo8$J0vYiA~iTl$gC+7@B%yt;1MZSwVxw
zP4@z4%$}{i|Ni=}uC4`tPoF-W8aYj_^2x;6|KdOk=YxYM@B8tnTkf`%l~u{pQ&VT}
zXHa0;U?cG_V?%?+_1l+XGBa0ZWo4E8_>c(NZarzrym{+D)xxGtL2uu_J$3HfwetJ5
z>g%ts1{E^p0{^1B#dJa2;}?OJ#1%g~6X@pF_V3qgebC@0s3~7#H{Y#CqVV)}4hH7l
z23D7y_u}p@Te@`Rh7AGI=6O7~{++Xa584`X_3G7Ct5;t>F;O`*DhhPy#utm{y>X`T
z_VXr8Sa9r^8|WMm&~m@5tSpm~7Xdr(=D}9zE?muWh~2wo;=xa!ccd^dIOUz6XM5_z
zi2!HkW*fQwi^bcwZPT*0js|t_j&ut5&Xe8?X#-?zP+~UU$;`ljy{gC7gaC~%-r(?V
znb@f6gtM*T)GR8A+|~fu18RgcB!VjV8yvi0DWEZ#1Y?#(AC3ztGB8{?+ASU$6tw8#
zVs~vr!@$VM$XnZTZ|}F-1}YAooxLnuerKVgb6du%D=Tm9F3-0=f8!q5At$z~I$e(c
zpYrX^%~dN_1c2s<)<!SCaU%k>e*5~m*jl;g-+zN@@bCBQ<3W4SLG$sTp-)Ro%U?gA
z&-eWsafr{mg@M6k=d@{Jpb?s<PoHY(=}l7+6%)%k)WR9Hr()y2zu#_4%k8fGoMvij
zn)&+L+Nw7jkE?k8{Q0wJ_g&B;>a6T+_9s$r+CZ%!X-?N>(3J7fW5-slSfODcCN92w
zXYun@D_44|`_0+$aAWlLysIZBDl<Rynk2&q?pXKR|BINe7rX1LyqAPh0waUK)2Qg^
zr)9fMQ%+1+@bS!<GY7s&-`rikUd?aLjbt0}Zlk~3`(!MW$~Gl}$7g$679GsW&Ypbv
z<r~9yC00+r|1SOX<mCU7HB0RJds9Honnf|;;nN>IdQ{bO{P=P9ZU3hy|E;T^f85O|
z4|E=p8=tII${)*!c0Sox#nnzuO?ojqE+qf?^Ye4#+y74^PH*~UV>Ssi_P2qt{qVvg
zM_fcjM82H<$<8mQ(|-8kYqRB-Z@vzSi;kYHl6hrCpt;TZ%P)D}ly5%n20qryY{Hy5
zYns{lU%k1x`EOBO`{9L8o;-=$UTGtjdw*Z-+_`fd&3Bobo1fmKQ)x3#dfxTNAHV#P
zXn*!BO;t_p)Z4QAzn&bP@bvrdzYFKFFfee;oi<G@H8nN!?X9h#r3p(``<Kl(NNk!k
zX%eV9@w~J$c=?r!7Zs<UUh3G)<~a$p0~xf{ceZ(cSX|sZm6vaBZZ6t=x9Z2k_OI`D
zzi)fC$O(MV*q0;1{wvn4^ZWe#{PfdLgGx)c*8O<M4%#?6%cgRZO6IvamY=Hje)?I{
zXtrke?&#oUJ{Ljf==}M7{`A9w7oeVI{{Fwq-tYe(_xM;Z_tVr?9#E=sFf}y=?Sjb4
z&c1r@-nuVeO0HhN&VFcW$yY%kL&Jmo3LTxD7t`n0E_3Y`%LFYVef26REp6GJxcn<^
z+MS@}biiUBq^%9=p&c*)HP9OpK{3j37?c4R+Cb65zyn%M#Q<*qG8lmUlOQp&G`y*g
Y>3ARC<SHu2z`(%Z>FVdQ&MBb@0E^J}>;M1&

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-4.png
new file mode 100644
index 0000000000000000000000000000000000000000..2e320c9a4ab949b4a293b859843b5baaf7251eb3
GIT binary patch
literal 19227
zcmeAS@N?(olHy`uVBq!ia0y~yV2S`?4mJh`hJ9%>?l3SguoOFahH!9jaMW<5bTBY5
za29w(7BevLCxS5J3j5`m3=9eko-U3d6?5L)t&9mRef0n1_f*k>`&=jI>c|>h3cB+>
zCMq|^$=S=fSZ?aVXL-v4JzH-XO^tBs;C^<^Bus3Y-?C>*f_g<~Jo^;7!O&FHQSAJC
z{`xyF+caK1yjQ$_{qx5MAOC(^e17Ni;xi|=zd!$cUbZpMVF3mP2A{`IUvV-pFjPn}
zi7_xVoaBgLU|>*FPGDqUn9<X~%D|9dG%7Kig5-1IR~80_1C{K2G8Zl`cGrHgH~ad!
zwQRgnAt$OAn}Fh4tl+@`M$?=d8xGyGH!ujW|Mx>#@w8`z5(~otCaqOFwF;k|naQ=E
z?O!_^Hv>cW#+y0I_RUX}Shi1IuNNe8AjKqtfgz&fY?|@jgOf5g&OsLC;GLGf;2;wN
zgMlQk7z2Y?P#~|^oNkCV79ESTJBy#|S)AL)aQ@S;*Xv*3&fj19)r4Vt=%s|2f0>^v
zB^=c3>h6B}^y$*SzrVkJyZ!#P=={A)=hyx6Y;A4bbTg+#hks+yQ?Fi0W4HBtzs>se
z`SZ{3TrrA=rv6Um7n^hF_U&l<KOdTRmAzdhtnRmB#R`vu2M<cw)$CC7pSR|~0f)KP
z<$iH-DRt%FuJ8XBs=x2YqN*=17J5z9TDf6Ez`lL^*3A=Ru#l~vwa{s*4!4-7Xy%_E
zAG7Z6+8VY#Zmn(gw-u$YuT{O@``sk%jKo~aVz;=sI1{<NH9K}hOfo5a<Z`#}_uErv
z&RluiZ@(^fciGO0w1(=$&I`r@8v+*Y*|VqQ!2!m#(cAr6TU)DsJZvw$9$UV$@bR&z
zT_r1jeS5pQ-~QhXxlIvzCGq#}-Q)ZJr@#J>Gq;#dKuyh_x?eBV#m{m%R6c$7EbCa0
z<g44;*JoW_rK+#5zjVoxDZl^Rum2yb?A{l0cUNiX&Z5-P_xED0%irmg##~<)`}FD4
z&{xaj_t&M}>pQ*CrGqP3qRnr<-C8-@svF;<N?%@boit_s{PhbKD4d;b?%$U9VsXFS
zB$d6tUajWh;hB;s@u&CnSrKt@>y|ak=hsE0pPv`%<kZyF-ECU?tK@FY=d*fq6wiG6
zeBNH$#N^7=%O4^{FIr4}{<lxgcGdHF)qcFvW+4?7JIr!!1ibrh&g1;|*VoJ6@7J&A
z6joaiwl=Ej^I7w&TeHL8-q`5uJKL;uhWFoJUrnpO<+Se)xV}34{ib&(Kk+PR(v8?~
zU`6!yb%~pA_ONn`-8jz8#l>^jpvO4<oP@G_pNW)NP6m&h&5aXh&z4>dDV%C#Y}~8A
z@5iCUoNH?$-Fl@=drqA2czj&GzU1tYgjt@G)g;YkpZ)Rc_4-&_(f-Y~zssB_J$(K=
zJ!DnL$t&{q_V&(`HrD?BX0$#&ARs};vgn8b&*2}>X6N(FKAX1Z`@QO?v#O(_W`P_N
zx;pIU@qfSX|Cch&x?<4AC;O@(=lZ(X-srrYPr2$^?{Is!tT1qOb)B@tUA{IXf6vFZ
zrluy7>Tfx<pH8YzQi+d`7ZnrJQc!SMzwg&7tCANB-tYe(xBvgY-P+50wL#GW3a9Gt
z@4Wo|xA*(cw~O7lapSKill@Jyujx$Vz8mxY-d<5b!G*uy?e@RDEw}h<iOr<d-x7ZQ
z`n4+W?yhi?=To)AU;TQ$KK%c`zi*SbW?#Ryz_IzuL3a5S8#ZjXVtMrF(Nky7?p^eH
zCo_|nPw=Lbmiqest*xzARbN*8-P*{^{%Y;^dzU^wK5kn2Dg=~tFa384Tk19S%e&q0
zv;O}2%EiZ5cJfbQsaEK!B{yzFe0_5>cyIOhYw7cA)9T-zSJXB(zT9ejbgIVB`^D4s
zVy8@)u)wWX>gBxZcZw;FleQE;_uHCvb=8%M*=D&V&(27urlwl<q^G88YG`<bt_le(
zDA+Ks@|ooC_*1s5)f*DJCjB*!jEtORl-gDH_SVwL>i)0R?S2>Z|KH!M+w<dXzg%#(
zDt|X8DLL6R^^}O`^Z#alj!!84`}O+nAASLG$K=1AoNCjz(0jVxr>|c_0|O`i`towI
zzuixly;WZ)mDr_tUXsq=vv9Jyf7ZJ@J9m9NCLL>5Kjr@4@Aud5Dt(>x>&wek@%#5F
zDJg+GQTX^6$P*Xa<?B|M<=)y+HB0VrX!VA5Ze?ZLYWv^HPyN&S^TWf#zfQ;hQ}X2E
z<qiG*?r!O6-R&CY=Hc35YXV|o=9Im^w|1%b^spB;b356%!_OM<R907O8yg49T9sTl
zZ~uQybly%^S?jVZi(I?Eyja}-YHE1gL=|3XGoR1T&R*VE`}@lo<MS^L^V?5RnK$)G
zn%AML6P4Xn{;uzwvgF&_+uC}1ezChs0_WS+dg+Su$=k*3E_)l4kg&k}S>NgK#csTN
zKcBO%`up{I>4O7|H*?IkW?%Q?<mAk{w1m?)jJ069yUCNMPfy;zzyC_bQm?5g5^bM8
zeR`A3Ev9qf%gf89|Nnl^esN)8)ZVJCNl8gtYJL{=|EhI4a41w$PjA}UwBWqFb!vWd
zR#bg`rD<pwczU{icvRG^vNtytE?A&&^!Ra5sXk4`)z$T7ulc<T`~UyVS5;A|_#(Au
zxxv3LFL-93T^3*eH}vi8?bk0XbXJ|p7kS?H`<!<>9`k*DdD%U_?&s3Kcf{js0{{Q}
zzF$;G=+PeO1EQKgzt5X8Wy$h+RbK1&eBx5%78el^Sg<+${4}Za=g&_+n-=WgaKQDv
zym{Unp2Gz{xM%KGPI$O!ZRBRR%gcNxf7zcdFWI(GzV3(P_Ip*UYgaB<u)yK$Z1d~t
z^J|pq>+5wRHaM{J%S};nb#v3w)%E@S{Cs#oz=Z5PmZxRk-bDWW^?LoSz17=`ii%V`
z8yg#6U0T|0_xDS1uav3Rq~sH?E-Y-8tA1k$s(Q-rRWAP<D0AuO+4URjW}i*FA8na_
zP6kw&adL9Dtl=u#nhQ#rpFV$<t>fb2(keN3@ZiBy=g#Sw#u=5ZbT_!NK0ba@$(tL7
zpVgl$vFJ>hohV^d`Dsa9<x|nUUoLrfb$4&xKW*~l#rNy~-~DHP@6aKqpFe-D+_59V
zcb3V;*X#GMn`>R3b$OZZw_-LvnH971cAb3rz47$svbRyZayAiXXPE|nes)$=N@~^b
z_xt1HYrjqv5*9X1IU%4MzweG>%2XY89$Bl9?RSd0ot&IZa&8zrefI2=LZtcQw{LUr
z*VvT5i*cGJ{o(7^PzQ&G!{=M4y+0!&C$~=4x@?Nn{avN2nV6Zcu8G{-J#T;dc{$IZ
zxmKlGDRt`{4mj<+nPV2ZHYzlK@7HO&N?$K)X<<1#$1?cRPv7pjR;8EJ=hrN9Zs$9B
z{rdHPtmh|PSrcje^T&@D)8p$3pXxp^(v8~U(agqs>EvYfuSbOaGoGE9DP@q*aBW@e
z>V37pLD_khRq3ilixy3pHf`B)xoV$DZ%#9=4qrcQ{rdI){(axCt*q?q=;&zUaE-U-
z*URO<9yIg6`Tyqe<K*~%n*JwV-QT}|->+BN;lB6ZM*dx0R8&+nW#-Jxd~?;z0}YH;
zMNc}y)<&huTUUKq5w<2`VfFjH*Y}<Oc4cL-c+TZVj~=CLzIkPLdH&^RFN^f5{)ycQ
zDJ<NWDAD$D{{KJ6U)<ZfJ8*AR>EoH{^9*?o8<^$Y$p~2=cQ@narlp0So_Mx@w)^wJ
zd2!m=S;rQ+cF(a(kD2-P^>t}bMKiDB5ohxEcX#>L*Zz9B-0k<bx4g5@rk$B(diuoK
zv!?TEK6x(onyPiIfswhV_V+hQ`PwfN3(wnrm-zeZtMR!xmX8<hKJfI{tJUj4721s)
zv*Z&K6ptNh<<_sbGs7?$B-kTwfA7Zr`u&L#ZH4ddSSEjdcJ|m=^ZPk>DjxT`#l_7t
zUjFWzmz;@|ghWQj%AliH<{vn4z}qh4iUH5#Uh{hfj~+ehxwzO}8dS@^j{l!^<mge!
z!otFD|JS*@gGK+nziV*r|IG{QVyzcvU0ro-P2}bt^ZPZIIk>rvSB0)lOG!<=*?)UO
zVzZ!(Oiqui^|gx6XU%(CT38l4xAV14pFZ8N>dT9+pRJ{WOk#T8fq@f2t~_k;Pka+d
z_nr@jxZ4sXj%BakoA%@9Pf6XVEe6-t#b&>`x%v2y7mNFQ<ZP=Xc%{uu_~dL}oO-!f
z#_Qi-yN^eN-9A4%+xvds?{oj60s|-h{r~^j?EId%y;Y#rf`_N4As07y?~WZ7i_6~L
zYCD@|{O8Y~o?Bb9rSI4MUVHgHWB9wr{q|<yriirJnT*@p)(Q#<CEY2zoqKGSX|~Ki
z2h*O<``z_KHtqZOEBi4h`5t_8H`?<67Z;b&s<5?Lulxf70(LTmEq3eW(br$k{cp-2
z>$)Eg+j;Zz-v{lN_nTvpc;v_tiPBeB47I}7<&?a?clXA|<o3gc`~Q6EHmvxNu-J35
znp;A`g20_csgL`t-xd6r#_ykK%wy)VAm{zw@AJg;<JMHa+v$FHS7~rW#EiqQ@7I2x
zo0OcqHTSmJ*%^k;kB|3<2L(-f^!V}AsZ*DFP1VvgFbHUDZ2a}y{{PBpy3xB{_!U@w
z`t+&fcJB6-uH9mMQ};jl@n`kf+2*V3|Nr~+{rmN4y3rwft4cvdV${~GsjEU(E}Cas
zy~=a4+PWRAF^Y!`uI#NYzq%^a+k3j+)n&f3K`o)&`}<<A$Cl5XSNAKk^zE(CUMbT_
zDz-nLOs;y|YyRcSW&i9iFD`y7jM*n^T?T4^g9^s4PhW<wezNlA?d|#dA22&6+PzPo
zU;8aG+@I;%mh9_#pqirk`@5^x<LlQ}etwpDdt0tm#fJs2uCLdZmzV$T%)bBcx9FwI
zmYuqNJG$Tg-;Oq3>17WdBy7#Q8};}1_v_vI`zlWQ_HF1hPCxhJ?e_a&YooTBRD4Ki
z|65Xj=XBuyx>{B?Hc(Blx9V$9x0r6oVmIEc`S;`2MsE-6l`@Sf<=(;c{M_8h)2C05
z+LEy_^YXHlb$@?>N|Hs37G2qp=<NA?e(JX3=YD_xd_Mo`-rn86zP;7<ta{ig9s+8-
zzq@nuUp4D=b!+SB&d$zH-@i|vK7IPi-|Kk}2RJ%5y7fvO-JWW}`Cr>%rjwHsD1cUb
zP1VY}u%L07@9bsH?R=TPzP#k(=MP^Ww|7gyLnlyKdAIz2=<c$&Cgty9Y=6Jmyeewz
zDo_yuigZIm!*Bf$4%vpR4)ax1R6KR+)TN!p&!0Sgytw%JIZK)3Irozm^vPO#P1^VW
zU-fT`JHeg?S$B49ytOrZdHtWq@>Ye9T2wMWJUCeOpppH_)2B-pyZ37;DmtE>WqMhA
z{hmdjI$3|uhbFn24~{>7d|*{<a5-?uHDrBU>|}NSYxn<sGq3&qb~_gb#|3uzngy}D
z%QBC22yVKWQ}yMd`_(;_#ULkc&Atwbf-m20=VyO<a`M~vhx{?$gFd}q9lkye<lY`h
zW0kr84}U+ecsgyfrisawhc<SqFaEu{vU2go#qQZ>XPMsGRk~W`<>&ME*AFx@UtR7m
z4{8AY`t$kx)dh~szB3FQ1qB7AtjpH?T^&&Hb<HnMrz!H)8wxzt{pVddGt=0#{9R11
zto5~jTg@;1>@QAFNzu^M^jz*g|Jp+5b`{Uk*VnGDi`^ZvI!rg*S33OVfkx(6H#RQz
zn`^bSrG<r8-Y#a+o71hT|1bJ^dS0CDZ?}@){!hSMtJ0#UQxX?#PCvh@{{KHC9%p5@
zo(m@?DwiIYE!R*~Jea8eY?7*X$#L284|^x6Y20iMUFs!zdG>)ti<IVCm3G-i__<8)
z_6Egd+L;-Ov(GNGEPi&vfCp4@PSp;-Hn;rVO6&J~f|cF-u7H}0|9-y*Rdk@{(Zf?`
zO*1Yycu&_0oo`obl6%W!u2rd5^0A)68#TY*Zoi-P@zK$&TU#{wd%qg|`}c3x=X2Jk
zg^yg8E?>Sn|NcHuBcpxwB>f+9MkyWL>0A-Qyke)`J~=tL>fO%gu-5U-^!cFy0TT`{
zKegnu^pc-S@#jC@OrM|m;6Nj&z4C7V|2keN6A$0nW>=rjuV2@1|1Sbm6#e_UzJBVj
z7R@`?<^P-CT^+9f_Rh{=P>XMtdH%acGb^`EVq2Ycb(QF)gt<1Alh{soW^4$^3tb&{
z^~=l4s-B#joRgN!G)}*DIOL@I1di}|OT*X4fg&DMu;kv^5tw~#&BT(r{<zg)Yqw-x
zR@<6!@zBxDEi=9BO4ByqG)XwX0P2Ls*Z(zT<le!<q7yUCzFj9jKi_x0U96*{V~xq}
zW>9xGYEw!lC~D_gm#^BfBO);|aaHK*X{$n4KYR6ZA=4C-i1Pcj+aEo8^yT00_t_^V
zD1Q3<x%lH5n|Rk8pY+AMKMQUsxas9IZTt4^aaAu>fByWLd2LPPx_M$+5mU87Lza4p
zUR@o2{%UZeaBEA8hMt~Zzs;u((CEX#X7=4xUJcO-2@ktM)<%U+R`;JafBt+WW#w2~
zSq9M+>F4Kxg695_2P!5J^BNmkwZqm%nSwIA4lk3Oo{EYKs6F@R@84Kk(F3^x8wx@>
z!Vhe1EO;7Y;`gq<ft8`5b%V<b$rbXT5kt3T5dT6#C7YBE0|Ue4iwTSj35p<dA>%kE
z5q<?<UIc=AguPOxK@JWLtCuq~>~N~Ath}{7e}2{XcWZBL%?>|dnz6x#nejB|wYAa9
z+vTcGT)oV|Fhj-EG}O7Buk@=)LL!Tfdd8I%6IEWWTt4p-ulbz^w@zBzJk-i<TJxhI
z-2d>)uyrvnUuo_*;&1<V$?W`nH?LkU=(MZ-wWEs5Z+pr~Azn$NBUdjMtUBDzpZ)L8
z&u{<Ng^Nh3e|JAn)HEsepmg32N6?tU$DBFZ8X7NV?M{FBr`$BIyQZdQ-OcLtFYF7}
zYA7f?n6)S0Gw1sORlyAm3>yT#B~-G3hsc}`eB!ZL#>l_`8tqyE&aYoZ9=IGlcyQf3
zra2l)N{6lnfAD~WiD*|tX|7^IZ1k<I+0S2TGE8&D7J!DJkcI^y149HyH7Inr85p<~
z6DrxJaWFD4_z(_x28IZp-pRigBMq?~lG8cw&<q~Q1;v+63)^X90kChFrlluz3PAh-
zvJq`;&iV0^e;FGPF}{KQwDAS_z;HwB6qAUw|1n;Uj*XxW-Gm7Opn6Y9$?4_GmrrMX
zPM=@9tWVZjOGCrMH2d0>1C7jE>;M1bmfKzVIqmmG(7>B<T2E1NvHt7pCuAY+31?mN
z;zh>U+2;O%fq_+Tw_XR;Gj)G|Wqy8kR^0ae{QrNJgNDKuEmAsq{CM`CA0Kb+C|qn+
z`fADjy5DCX-stJ!0gW;I{P}a1b@{raq@*b`W~^{*W{bVLex~R~c5a4->^s|XZ-W~8
zEiEiZj~(-xv}n;H5izl4oWg1umzVjb&a*Cj<YJn8D+H7q_UzrO>IurOQCqW?-rSu2
z`swueZSvNsr$nx<i42xD&kG3%n4q#U@o<}zWzmvLmoH!4oPM5bkN5LM2bmZSIK^B{
zSR1j?$<EHMtFv=s|IgpQvyXHL-rAJf%_nPBa`1DXy!|@)`agkxe}CWJuI-t1bJNmU
z=K1SVPfxpf98`jQ`BLKQ>U#6=RB*rE(a|w#U(L^{|0YEWF@k&&<L1^j%QSo0sj1r5
zJ=-%cAN%*Kb&hRy*d!4Ffq++A4;*liwX2EP|L@mom6yNY?+*_QoEWt|?`^@H_3PIk
zI(&F*@$+-5_wj2hg7U86xqJ0f=gwXG;K75S#|IA{G~#h?=a=92pc2&ZS{1&2-THmM
zP9^@?e!uQAzx^Kt&u`zft*xWYX0JW-dP*s8x$6NYh6hs9r%zX}um2zPc&b+Dru}t_
zX0v@4yY*iB_4PGq#0AurxwWr$Hygj)nnQ=2+Kava<wsuEd@c2^3tYPFNa7E3aA>IA
z`M&?t=g)7~PfxwJCQ`~UsU@!NXR2xTHJ{vDTPChwzrKxMUeEJe>hVe6HC|hZ?{2ex
z6x_nVP%+{0@&4CGI)(X?j~+cLZo7Pq>aI6$ay*0fR((BXbN%}D@XpT8s((M9gIcby
z*X{OOxNxDAQA)?2J$po?q_Xz6B}#nz{^xV4UKww>%K=dAt^2mRDC^pqm9tE<t$IL%
zxsj2Psq=*8<ks;@o4xq*@-m<F-R*gIwPv4P_Tj?^@3`%LbFEedFYi-%d1q%aC|N2g
zDTzo(Xn1mQb5HK?@89?HnKZA2!GXHC#KeV0Mn)zTA0C|E<-a<)Qvj4K8yJ~GLPC}t
zIpXp=!qKsD(&WjYak~i<1U!TM{Q8WHjrDJK?EUlU^r@34FYYLO{3bbcby(>6dA3t$
z&3g6W$+sy}M4mo-R(0pFTP8SThu7RJo^6(EQt-gRcb-k8d!I~TM#hRslP7Pj|6ix7
zs(Q13wn^rsprD{F`S<NWwf&?m6(5t<#_SB5Yh51p^wiX^p!)b|muOdK=f%I@@4qjY
z`+R<VoUBzz!1Hr+O^cp*$l6o{6hAu?`2ODBtE<EHgWuo03Ys~J=+I`GrUL47UtaDX
zo|Ux<l**^+MrXafwG}kfark#drKMgSC_<0-%ZJCr%mH;6F8i8i{`>P2)Tr~0eZ1{<
zUT{^_E>M}WG5Po^uc=xfS8(g^DfnuhX~?3(z@T7nZ-4aoacw)heP@y<O`0SlrR%xt
zai8^<qvG*Xep`VCho;BZRUZ9ZA`Vinb0m~k?95TMa(HEhwX6lrM>L!S6?hv2q;$?Z
zfYSj-#Jq#b(>d-}zqhTdtkg6x_|SC!*4?ey;ahWVUSc(7W?;C^)Xx*4dTyTW>YJO>
zr%S1yWM){iYRN&P-|Xj}US!m^v5Dap(+TkN>s!5?iGg9AqMY=G9JATWd}c0Mv}h6c
zwut(Wn3y%s=T(E!<f@RBlcdb^)~pO(zG}gO0}pqA21M^wzrPwDU%PZ$?rqReFsNCy
z$hBMRQy2rob%|Tr-=A+}^akrnJlqz$=_n}Eq@9_u@OJ+G*w4?-247zn`}I+`zLt^E
zrH2-?&n~;WyFB~Bfktq<E&ZGfs4N4uBI^EpJl?fWmVx1cnvGS0=cOwvgF_=CBA#t;
zuK)dZyO*cu#S;^ix8~e5vi)`=*~`o8(vOdix2Bzy%DuDW;=><n*64r=JJ491Tff{|
zP?K%nzI{vg#mX==Xdjf*Isf1z<Lbi4$GW<@f|8OJ^~qQUz53d3_shd<w(rJ`8~GkT
zKGr)qQ6g%0+1kSu-D0{|_SIJZw!gkEHro7d$>eYE?nWD$GcYjR={wG@<2lPLcNP~n
zxBd?C*9RJzKYjWXl##LG@Q>2#vCCgwU7h{^-(SARyiz6_U*$}*u3Y%|`1skmCJYZ|
zximkOT-V9oYnFE>g5UPb1kmVJ;iDtma>4iR*W9~zPh7^F=kcWHdNDf!9336`lIL2L
z1}*oSd#W^-q2Y7R%}uV++w)2#PM<!#`orr_3j)s<__FA{tm&RQYgSa2e%RqQ-qLq>
zEZ^SS3wCntpX>4US38B(K^?lw&kSmQ6qx4Ty0YavGegLnvbVQZ#_lfTOaA@s?d2Xx
z;}{d=9h0+@Is+!nGRa)jE?4F8`T6<sA1;ae>;9%lv^_gJ`*}f)lT%ZU+3a__UhAd%
zi!v1OCU;&iuE=RFU8uTyW$^N>i;G-OojDT{5ivt$W$Ni^U44CFpn#UQU#Azl>&5H!
z`@_7vy5uSzFqXc&bo6F0I|D=Bxn$;Rt(U4UFY^@@6<zxMUiJBhU(4^;hWpMo3oR<z
zbZt%K;@9i<#|1C<yJ~#iCis=@>0i+d_0|jwGg|F~@62~+1J%~9?(Xp)wzhJMXFWXB
z%9k7$7YB--Wxlh^E`Ha29mo@3^YQ3ZUl9g|3YC7I2nL27+IFrlB-hRKeaFDSaLx%^
zOGpvaYy#H`0vl|Yy<0%Dub>9afuxK%cjS??DX2LHYSS=aX@f!=Gzy>!PLW0D`~e|F
z(EK(ye@lRxfyhlF+lYCM$ZapQmXK5PQ%R6U<Q5pX8R)D~RIek*1ez-cY3Byb=RuoD
zVE)2`pLjsCp$@F9tg|c%7dbgOiAYGS=;+{Bx_o*3r#*Rhcbz<a`gN22zkmPuj+ed7
zd~M*z09^}k>ub~TudlDKUzB$`6=eAafpF7^ix)3~hE9@_lR*QqPoAWFeSO_u+AJsF
z_qVsFZSrqz$?WRvER;BX_UzRafs3!~E`J~Nc}4vGeQD?C=^i$C^Z4tltGmxwZ?Xfq
z{`!vG+uJmCb$vNGIlFp$r-DY^HFb1+gw=d5Ec2ax%4WNJzueMeV)}79o>EpN87r@^
z3SGVI#0ihdX?d|AUneN4@=m*HFTOeHDA&&)KP*fF|NZ+1Du1@++ysru#$L14iQ5wa
z>TvG;ey{rA_3rNOsk3KSN4|fV2d*u8j1Ny$Nli&v5xF^SRm{#!he4A)Z`M!0esQt;
z)OqvP{rme{TR~yLmDiDxkz8C{K~uFtMPy{wq|d8#b9HrnT326w5EQG|cf5I%!^+M+
zU5cNNZ(5>+Rn3oro%geEZc5eC)7$spQ$j|@ie2UJ*MVkDcJAC6wK1vn(W6IOs=w#y
z#_syE>fOOCuxmQB&2~P2`gH2ABlA^4SB0GXS5>JSxyhyU)s?{W^K8BMZc8}G)Lt)V
zRkFgZS88eby-N3u8#jJCc1C!E3kSmiQ#}O*hxGIFbWP{YpPyg9*QW00Q}NupyF&Tx
zek|Ct=ajhNv0iEQ!v?3mdT^9O(tS*BGiZuM)~4b@;+hQ`J}i39!p<IFAZcK29Ub&j
ze({Eik4ZOk%y=b@mdx2a6*NBOX;t<nV(0lnc2K=$<I&8<du4$mbNj}}$NRJY{`!i$
zg;Eq-{qoY%tXo@Nrs{rudvmk<q>$x)bBpFb<^#{`JH>pQ(Z<Nk2AUJ^?Ckuuv8jnk
zRb5?MNy$l3QE}3eIdf!E)6!P$*s<eEbxKOgi{tY3dmcP1^Ry~`HHC|d%d7YJ(W58R
zHcze6Sh*XNRUb%QU*;>#D`OD=8poNa?Ec2T=>Got{gWn5dUM=&mWijPrsl2f`SB~K
z>6n^+U39wHy6jCrO3D%?Wo1yh-m}MMZPZq;=xsR{R|GCTb$8NEZcu_1d$el(smLuE
z6PNkVUw7q7h^&2GjBfO{E4Q|0UtQ?T-u`{(g=eLQ4L}Y2YipxlACu1C^We96&W(V%
z*5%h`nPyL!JXu*^U*9zUUd-p`=dUmBx2t+;o*oDaOUx$4S|PL9Yp)#pWuJXz#l&g4
z(PdX*&52`g*tpNRgPR92TU|JcKWaL`TNdE53zYRi{X%FFguLDXtt2^m!D6R9*lUM`
z7N#pCSO#v-yL)9-sCKwNvtPj8s?u<OM!##@a-%`?hT`XbXJ;55zIwSq8d9u*3QBN6
zss;-515Th0HFEg~YQ`WHb8W{?{snc`8D{i=oXDNXKP??%5L)>NZvP-@1a%p)6>AI-
zd%@*0BdDtiD*r&afg!;NR4#-2ns_v#I~ZIpg9A1~=?f32h=Dm3R**t%MAwM!V8T8H
z4VHqMn5f-WJ9}H(Slg;E0bgHT4c(d*3R<&K_5bg8Z`tjYpVLa;+z51ZbmZdWyEelx
zdCKhB+0WKSFo8X;nYrQ2znxQXc3-F4m}_c!?ydd~8kUKx`RKa$(<yDxTp(zUp#apG
ztNQk4<)1$_XXjdn8yXsV`S@H};MlzG$Mw^zKsoe*)b`xlW=oeY)l^h;+_-V$q$Mj>
zXtcJrW*%zcytO4Wc;@qW_xHzxMyrqYNG`T4eirk^DtMVs;MrNGTMHk%v9hvyPLeXq
zSus)BT?^#J>Tf3Rm&HJmL7{8&R!9l1p{91s?%DhI>jjnFGEPs^wJLcLF!TAouh*hM
zljmvY=4g7R>U{@|2flpyva73WQ@ggOlv&P<rlzJXH9tR{{+YVT#+zjgXq5TorKMG0
zuZDlE|Np&y(vnAyl4PyRe2yMHsy9!TfnlDmva&O1Lh<RTsj|mzZ^=xq->dWb`ugi<
z&F`<-ntgp$-QQoUf|hn=U0t;lRM@vA-su1R@Av!AkdP(U)<#>;dH?$L>JJ|Z-rm`H
z`G|Fq?Q}Ms!v-d0Zz4?d?nF4Z^Ig5MF?s6Lsj8k<wZFDVnPx4y9$$ZVYA_4KftPdk
z{@1d$jy`zs;L>Bw&CRJ2ZJ-J8XFGS7zrWVV%x+Tiqrmppi^Wkpi<bWS`g-|}9TvW`
z&CWiQ0{3=f-blSWv6K-s5^!zx`hBZDK0f|>^Le{sk6l++g<fXnw^=Y%JA79`8v{ed
zzCC+ve*XSFU21*E%1M8}Zkl6P8>Q|y=faxE%_hmmc)q^BAKxve8#Ldp_RFi)>u*ix
z@xHfs&1<Ly*$10gLE#!#@sPE(y?uJs-qh36zPW+={f*k+5?EPSUc9-vdFipwpssTK
zn;6fk4+q(0k0~oFPn|wJJ^q)r<vN&I^ObBWJ}dy0wa;EVIy!;|ScTJB7#gx;-!{9|
z|9Hs$_rqa+zGQJO)B2EWLa}9K+f-J@?X60k7rj2t7SwCs^={W|nPac7t<^qkQ1a(T
z;cru(!yEQLpTE9%WA+Z^>1=CumA;-<<#tRSG*iPXWm52{hk>CWUpHz?K)0B#%rVfE
z=$tt*&nzE4e0Xa^Vzb|TySE!I*1o>BcGJxq@t9Pti@Qp*K^9q+yqF+mnw27NU-Du?
zj@j&2S5_)xbf068y3c!pvx{E}Jp={&_WO0w)!*N3?Vq~jo4@_vkdr4*N?8;vSiOv$
zq2cn*q|Sl^4UAe^TA;p1?V1G(98R7*+11ez;Nj7+<g=r$vGL`H!vC7t`KKjHRDHi&
z{x-QS5j2Kxntg3ceb$DotE*n!+`K#}I9OKh>4Zs>7TviM(_ejKg}3yYna1g_y7l)3
zR8;J+Dt)Cg`|PqGKPo^&!l0@vcl+ICn!(F<6m>B$RO~U!y_NCcK;tZ%%1wPTmWwW2
z2vAj52X$7wyu3Ean`d59S-NCN#{GS@-$a*z7VOwoeYw!Bzi$O-CBv?-*P^#pea*_f
zw<i)b>GSpL*7^Vcd_KS0xt;ITot>NA`ear%v-4-2n`8Ov?(XeXUtc}_@_U_!UhW1^
zi*0T6_N+rKoS^UpEyd}THh*=bQ+SqPa@)Q?pS)Sw*mi+jXfbv5KCSeNi(IQ-tz153
z)~r>A$;Vdg*b$L^eO+ifpRCNYXHP?|tZF_SWUu;kQvK`0cKNI~H#YwIdOdz?#mA&x
z3ByAVcihg~?fdfOOD-OsD>pVKe?4dYUPDdoS=0T<7w>Y8$<Oa?;M$mcoDVdSc6)n%
z`0B8=F}AW62ith1V{BP1B5!ZYjkRU9ICyTZ_0@&W?OZ?KSDu_Ndbpkc`q%66`LC*<
zKY5bz@KEa?%O@_=DkkmT4XT*i_~qZd%4A@$Y1w>Rd&c>v@!$SD?zh*{)bs?+@O^xI
z{Ofb4vuT?%|Ni>AEcSi7eBA|Z{XGjnV>mA^E(Q(FgH{x11}~fP>xye-Wo6|@X$b~~
z8#_%BKw}u7esN80ZRurS^Oc|`U!P$yYw^`pp`f87P|+l)?6#ut@iEY#_PyHgv7jDs
zW@hHD_xpb9{jN1OHrC&v#>;Tv>8g%vok9nG#z<|LSNkpUZrSbJUq2rAgJ#^g_FlWU
zx7sx4hCypv+pGBhzouthTa#IzduE0qXpU&nqD5csmfyFuIlkED-w#gEGTrId^xFC5
zuYGuUSlcGX^OCpz-X(kX*r=+hS+!_;u8Q2e?AiJG>n|_&f4y{i+$0s-KOYWf-PuvN
z@_XgCo9W(LL*E=^VwiC>biPu{&X`*XpfQZh`}6*uum1;HkD~Q?btPyt)vZ@5^X;vz
zlTNM6&^I}kAH&cP3963uayL9XGjlPhhdA3jf8B-Gb8ISuK#p0v{a)3@$5GpIR{sCJ
z|9^4CAsq&W15b-Gn?>d2K?@OA1~2!^y11xS$|OS}KR>@cImc|a-H!*&t9PAS8N6J@
zGjvtR&KHHM>p!zzW?%>h)%1G25%+7q&&@HLEoG9i;PP_+>A$|^pPX}FMD^fGm5ixN
z_c-z}Fg!?#k=pR>?d|7NUW2AQ4jw%C>)r16dR2GI@7FG$FhL-6UChoi3Ez+F@7NQw
zapT5SVQXg{j)1f=*Z;6(WDrgM`RQrYzM7qfZ@l0C|J{`A%N9HBr`u;-iF~*3cOGa8
z@YbHn&#dOV>VH0+4vJ&9emPywRe_7!{N`8$zS^;xv$gp7xu@D(3<rF9q)b4K@gfQB
zpQ~gZ1nCHFFw48MVr%yGtpET1PFm8&D-B+aHeD~)XZNwo{`PCHTnPcK0FpM(E2#)M
zyfOLsmmA6bprvh(kM~bk0S!TemihhrJpaFjj*icyDRbwpHO;;@!%Url;a`t!#Jqz`
z8CNe@;4pFG#Hh__y*!6O4Hi{Tb-y_QPEJj~zQ13;)O-4@PYUNRTnGSly{cX;Y%e*j
zyZy%eC;v|C?+0b0UvIbH-;#6F==bLJpxIa7ITnH6@7M1Ktqytm?Aa^O;#yzxyGvxP
z%VNIPFfcScFM63Qm3D5<%B!oxv+wLEJaz8ewT;QgLF<j4K6#Sy=f_7-$29Hitkhdy
z*?1%tyuH1Bb@cYUs2v3hK|?~IWOH{{>E&;4Z_DmeTb_1y7RceC<&K4qTtJy^bNcyf
zcgyd`zN)S4kY+fbW0P^kc*mB5pb51_ix<E3_ty{Ho)-&RA$DS-a@3ZLiSw%8SzccE
zbNc>2t}9ord}_7Ly<hIvx7+#Nz2|2b9)39g`@6f@r|vK?By?T?8FcF0xv<;Ya!=Rn
z&Aq+t)X9^Dpn8g7-8^sRYrN)n7Vt`&P5JrjSg&;HVP12Kd?yBm9TMIxpm5f<vWhxA
zUH^J=zwNR!XM9A(#b4jqS$yiunJX_YF8=!O_xslm+vUriiZC)T=*{;2p5Qyv$hG?0
zo4}-`MPfP;3i|6mSH8cqv)G8o`QpWkp!JE`%Q+YtE?)$tHa5@{BB-NfW)=oohQlXg
zq44rg@di-S1GJ=~sEUDsA^eCCztrBZ*P=^buid_@N{WGDhs=DXFFbzy5z}vb-OSm>
zZKnmAiCQ&BZbKGmzEEZE<jITAobd@VXLv9R)Z>^Vw?Xe)1l!A+4PE{H*Z=(d{PgYH
zwJTO=Jon*YU^t*M?MAbzr+c5w#Wy!MPn|Ji#i2t^paqklg;BH2a$mh#$;j})#3W+g
z!KaL?mu&o%ya6=CGs`6N5m=^#Md$p3O$}2gPhNa;b2_N$qNSq~5)v{6wBX=auk`LL
zF9rsNWd&6SPMtfqjeYf^MM|KRiowhMR3jJ}KKus-#B%mE%Y0|QdUJC#7eD{?DVo7o
zb`&Oqx_8I><@G<$30oUwS=a^&isLUCwe9WW!OKH=rA%HdIxf`)n%;i&C@I~Cmw{n=
zGXJ#nf~o^vUS37tR2dl<=A3%TsBL9+>*jP8h6A~vNlX23e+CAI1DALFv5a6~cu=2#
zW1bD%Hv{!zV53WKpo2L?_CY|MCdj-N+B_Sc2|93BFbK5Ty;u|LkkPk4$w^6|g%s8A
z_in$E9lN`1>h$U1E9ck!{T2JIbWNYC69dD77cVkE-RF%PH-eUz78Pv*B`02KvlX?!
zzdfz$&)@gc4Yc5giHS+?$F8$!!O%t3l5L6d>%-U2)BK*G3hEQ<91*SFur2rYvMpOo
zR8>?o%*?_jiHM3W-LSy`v?yY>S+3UgQc!o}#ful+X7N{7g$Adjr2JHWzYNr4Ip7qt
z(PanDe#HgV=W{1bS`@px?B&nr^Y=g52wiRbMZZlNwELu>_w<Pq0h`m#f)>5Be>BUz
zbt8WNjLXaYvo9_21f|SZ*Va~FOy0a{lZc4O60Oix8Wt82=WRasbai#Dd&j2J0SXD7
zV>kOlPn<g!R!~r|^5cUC36gCK54ZEjfB7@hI9<!YAi&@D>lN32ZhVVy<F499@It2C
z;^OB0`TN(qHyk`T6uD{BrZ2a$*MmmT_U+pzzV}=cE4R$Q$`=<FN||O&xmWpI_UN%=
zx1^2z!9$N?kGgCl7#SI@s=wu|{P^cj&F|N#lE!I0R%LHi{C>axf7iS6J39)Ecpi7j
zaVDmM1`R7Ftl$4H3e^6SJ$7!6W%0%0rsih-9XvDU&edJ{=D0@9zn{;ew&%?SEdcoY
z`@8ofp2GowffGM{`n09~e;sIGKXg@y=I2{qUtgcDB5PgtW>Im8IXGgUWXWF^5ENY4
z(ZSKa5ww+J=ks~mpXYq|P>_3LgX41l`DHg=>??g8b~DGUwY@$5!=7e#{!?k2SJwak
zxAfh^3k#jIE-mSNc5d!!_4zfM&SbxbjVF2En{5r6Q7q_{Hb`gyEj(3KQv)><C!Mpu
zX=`a2DJUq&#mPBQ<>`|rFTUTe56{S0v1jkztBc+F*T(JLb>;WbBS%&QE_MTzFNY2t
zQt@2wH+Rzh{rms?`6JWU+uc3+Y+CU9dwaEi=*{g04-oHo<hVHZ)|QJ08ktQiKc&c8
z79IJg^8N4c@7kK0C+qGk@tizm(xgSTzrU??Y-Zc_uuZz;Ft7QPs{Mw^$6oAuz3#H@
z_dCh*w>KuYg9e@?C0Aa!5b*Tr)6A=@LO~O?ZoN{WY2MG)ae();5T4nJ{q?y}d{=uL
zuk@<o=jTB6TTxLFD6>90I~%kD0W`s-|9_cIUjr)x!;|OFm;d-tarF4{>6Jb~L6e*p
zhfV{H4@iNUwV?5)(BcwxaBLmB$uHIVvw}|yK7K6_{`O$gPSBt*%82wdVbGe3$jHcb
z^VsGn7#Ur<8r(4X>|E>XSA!dbWo#-gTn%oR4H@tOjU3s6w|XH)jz9w$-HHM`?U5H7
zfR=rrTZCLFf(!x;CLxV?fo(8kQTl!yG&l>JQk%wM%Zz7i3RGHNfGjQm8OIH327)pH
zw6GnDLrgHA!$#pk0s<Cv3ae|WsJJvXHiG(}RaL)K&;R~(TEFyu?RQWT<>KH7C@9zf
zTIFzdwt4)AAE4Ef$;bOZgWm-O8$gBaojWm`^N&9Tr%4ab=G1TJm%6ySXW!dX+11r`
zDSQ21HF<e?(7eH!1tCh>+TQo>-IKDd+H$Yvv#;&nFPA}UlC8?$t?{@2dxg-F3GlFX
z-tBF<Uf$lpPEJip$;qmofq{Ws+}xL2IEA-lUS4K&Ue++F#jQu;p@CV|mkiU)OD>=-
z2y@HtWy;StO6>y8q4!FggI0k|0!@YW%2)=yeEIU#&CThocjjh;Vm!g{T;BSyH4%#P
z^72QI9Jz7)&)>hMNk=$xZ*FpJ=ab#F<|jJ~%L>1_R-na%wQsJh4EFN(4-W~MVjJUm
zX+z>+Q2GD#^z`^^rfWbM>wu{q#^BQ5Akd16`*pv4XU?1nYJ!!$z4i2hNA3T=-$A1S
zudl6@J@@(R*U*ZJ9cAzCWFDFu!48^sis;a`bDe>?Fye_R8?V%o(%08KC;j>J$0X~D
z2J#qDj^rg-&?swy;<_78=Ao{N(ERxE<F7ZH&x2N8g0@w#va)LF=#=beTVk|6cwY7n
zVWw-TpFVxMv?g-%oBwm>%+b-;*O#>@IMBM8iQ&O1v~eG=)6;Z8MJK42_v_1L|F2)K
z$G@KFE?0;!ZW_n`Cuhy?gZG?m%e|d-dYbNZn|(^FVi*o=eVz3`CUSq>-fQdQ-y4+u
z`tq`Sp0JEe&B4?Iu%#1v*?jx<?c4SJUNxvEw>ka%sr&cu@4FN6X<q%lb5G+Azv76f
z-;{Dv2sG+;dt2`1dwZ*|F7Xr&_vd72D0+QyaeLL57Y_}lO`W=QqO$w6N<YX>FHnEZ
zI;RA*=0C@5_MyXv^{eI5&&`>bC;^&H`1AL#sF)Zi4cC4?YYtkf|98isLr$qFDH$Ig
z9GqUutDW5Wfxiwkw{mY!Bxni3+gn>fBM=~43wjHW%B>-09^*#co%;X3?+3jve{_Ts
zwD5sf$|T_Jt*xq_xK~#EOZfQcD5#GOnuO(*FmUJ=*T44V<>gpgT?PiN5YiT0T-lx<
zf4AT;Z`SQ?YhPVkyBbtySz1Qkym@o!yxgz&$9Aq%ugfrrsNaxsQs^&eQDlFAzml@@
z*6Qzhx%c<oy?U96Atrgw-vxo5;BHdYE6t_LmSvrpVW_32cMUdIQdwDP>DDf&?Dpcv
z$H%kG^XL8hwtYWnN6y;l?bnX=N?+YyU*Ddbzx%D((&fvw4GaR3kM~`*e!pk&j2RMp
z|Nr|P{=YlT&?Msj{cmq?f4%H)|MGqP|J^DpL1h&u=fy`yyS;5ico`V{A7fN=s&oHG
z&AGVPeLCt&4Uk!nj&_6gWUbD=zV6$`gU#%qDLf;d!==K^3^BnmUsKN;h%<VF79fMB
zc=GP<%6xxs@2$=0{omf)Tx^zmOG90K`IY0bppICZs*~sZ`hPn&ZQcx8w4fWi>&ipZ
z*=Ls>?G~T?iTA#yrY08;Pl-hK{e626|1x7ZAO+fiBx_w}(PQ~I^YOYLt7K;MH>hfw
znudbbK;5hPd^YHGqjvbZE3dAu{`&29e*A}z|E4G3*pQfYXUE6Tz3dDJEJ4e}KpmBy
zsWq?GDhY0|IczGw;nU~Opn*GHIh!3<mdh^r?7uyBSINqMAN%V;gMoT86d4!_%&-5E
zTf=Yn!(qAK+)JR|`oZhUN=hNi{bc2=xEKn!%yw3{W!oiy<{}##8&ltH+;lT%*Xwn=
zx8&WmlC>`Dxxa#e;lZSJKUEL$+x>Vj>9|hJjsR|Py(uc~>)9tPdGR8{)!jY(#2p5P
z>vG=`D%-O6ffonfHoc#~$dF)4(`AR?xg3s&d5xgfIIJIqrOALiMdplq*&)1T0B#qx
zG(43A^)z66i9tPGq^1f{{WnmXhtL8`qE-t*X3Gfn-#+b`Ge-tA0eW|LdHB^;p`g9Y
z^?zT-i`#6=zP|3$r%zg6FRzc^fBIkPreE_G?PFlzS_(QBzzWnP+aM6GE9mC#o_%#y
zXjgA<C}c_3)%EfApjP|a+uQX&?>TeE2eeKMv_<jird03To1304!dL*XN4kg^6oTst
zZ*R*Dj*6NkBqSsvEv@YdTAmXTF+<H~#sc5jW>YKQz1@C)9jMy8x;p&&sj1rfQX5oO
zMs3aN>gh2l{TFrw)V>pY{O0LFQSGo3$DjY-TAr^MSX(P`e15L}k}|%fZ5dZgmTCz0
zcJbY6JSQk3=~1@majMeAgGMV}xJ<j?8yVOeChi&;;1QlVrF3D0pzM-O3xZbac)eM0
zwp#H2!ph_Sp5B&9x305)(3*XI&E9LhHvg{O%Kq=J9lq|%7SLu8(C)#?%AIlhYJQ%6
zU-tT%@80U~d6)l0MMYh?apT6a_a!DEZ(8kKwMy&g@#CwjzrTxntL)zQCC2>e$H&KC
zU0XZ5>dOno_QMPB+=($YH<x~WUk{X^4!ALGWPknj_4OhP8N0W9?aq1Iqu0mnH8Sc0
zO$W^~@jTqlAD*1N_}pCU<)CdRyLLsTpPOS?#J?NV^u2J>)YNok_VsmkZx=3HIPbL@
zXp8Xc@1P|zUte7XZJyn<X_JlU=7a-6iho`m>y>VlV`8vhxn>Q|7lEcAg}zJ<Ztly|
z_2X-9+1LMjv-6$)&6_uicHgZpQE_p1V&$$Y{rt?gSJv9>!eNF7>{F*s_44!M`(p6H
zzN@>t^y4Gf_1pU8?f<<lm*I0?eY#<N{QhZA?k9_|@yTd-R(*dr_x?LU4p5-vJjwr_
z0Gezpetzz2*6#B6^U}`D_;~ugimK|%TU)b#eR(<gy4&~Y?Rh6R>8Prz{=NVB=UjFF
zc^;FLl$HOM^*ewU4oh<$5qkLN=jW?;?yPBQV)DOzeSLiCqa&QXa<);-Y&;XbJihYH
zy<cwS(xpq!e*X32<KlgFe_vhRmwcQra@x|&%geUz^tWEz#LD2HZeH}nW9jnc*^iI)
zu3EkN^PDID{`@SKwXeJLc_**5*@>q`E0-;E^ILxT@;`r%UG@L>-O1Y?qc?qB{C+*p
zQzuVO{F3ZxsjTcQDJj|2-5nepJo(&w`}Lnb6|Ifidux5@CI^Ltt<ClG_7zyo?dtF6
z|B!Jj{QJAR)_3Qqu3WT8>4Gyy$C@=dvK9pj7Y;jE?<{!O6cilHY}-@z^}#`A&u8;i
z{T97^+~iN^p+iofMyac-YgR@^KvL2oz4(1^w)S7!q|@5+L$40B1oK!<<TUjuk<*@X
zMg#^1dinZ>78Y*I%FY%Q5?Z9_-1g$b!^2S<lU%LOY^aTVH$R?@Wxqw~t0_jt#>}=n
z3=N8|uCAZ~(~EZ6+S*emO<FW*l8~yJn$+9h@9yrNWmmgPOG~T5VBy?=gIVmCm-z+<
z22NbGc=6v~E3_F7?4LDjR!DI0<LiH&8mn#^pHWKK+T78>@%aBs1_q|)#pxf^L0yI$
z9HMI;95Cc%U|?tq1g%qcTam!Zt_A7|wh3-%@O$&*<YX>R&cKR_9na?`+s`&gZ2EZo
zDC3{q4s)LHeddT@`116$_}hDXZ!e!~f65_2V4am6lNf`ls_M%V6O~u3UCa9=fI&e+
zU_*o7xlKB`x3+kmJ$rU-*v7hRmo6=OdwV-*>+!;c3%fcy1O5E^&U42sUcA^e{hZ9*
z9fi(|-Fkx}B4#8dCx=Evytw?lonL-S+1n_~xqhu}ZCM{49K5x=e0{}97Ax&(9L>y(
z+zp`Z#T6eP-4EM1O+S7eXqM|phv2F6=dXkMCfV2ZQd3eYYR_%b2@Ma|wzZ87Uha4G
z-{0S$?clo6+s=H}Gk<w}<&BjqSAr&qr|HG60?nY^*-;2uy}N1i=D%j~3?Iz<G8q(J
z9+!R}t2h1Io12$kanF8#XQ%S?(@R5FhrPV8(0S4l)9h;+Mn*xEm6ck$x}i}~vz~wM
zm$$$6_4Rerv@;T(K~+_|K-+0SD|Fu9+dBy~U1MAQ%_lT8RLUe{f=cGoQ&Wp9WI*!^
zn>KGYO*p_%?=QPSv@er`FJuFQ$FIPnphg@Q7gtDl`19hwr>1Ie((#UrjEs8=DHe9s
z{M;1&`@%wJ+lOAiKAu|9(!yd}`|HZ(vUhhZd*$up_EvqpbbEWgt^H(m|FGiX&8JSC
z;yEwGaEqOhyW#k=v$Maxy}do`d(z&DkD!%4UESTEv)*4{58kBl{QUgtt=4n>=G%dG
z!?(4uoqvDz>QyaG&A^nDCD+eS(F{(Boc8MVYu>XwFDz~}i^@bOu{;nI76uJHi;9S3
z{QdQHZQV2f{{iJMFD<?LZNB;X`v3o8gO~YS{Pp#9^xZ3R^78-PzcVrHR!m_0u&MHM
zny9E~=J|QHac=_y1AqPdyL;8@)l(--c#ye%{rc;_zrPn16}|eb`slG^uP!h5pJh?_
zD865sL+s5#E<PPWrVmCL7Zg&{(q4UdcsR~q<lG#~;Joe8KY#v=n}7cF>B*^)vrMzY
zX20K>aFA*0^y#l(U0rQ=-LB@xf@#yHZS!Z~VAA0)s|nfA;J0q;(w%eW$cT!Gy}G#A
z9W)8A0%{d|Ptyr>bZnH8k^(h7Z*R{({j@0a-k!=he}R81OJ84md1<NlEZgdBpma24
ziioM1*{gSVcU#r}+mn@*b!B`0{r&Tl8Mc@+iCs9k_1pd2oSZdcx=~9etNT~Q+Lyfn
zC3;Y~DJm`w+ADeL<jKIiymkKb_y1b|^ZB<88w{pSotpXl++3^bZ)>=?xvy?c_Xq8O
zxV<g+)z#J07e+G4vU|52JXlm5W5mF~7#<n9a>^8usne!uX=<L#xE~rC3hKbSy0%W5
zJh}H<?=?imH`~d~z#!qq%FVzay|77CW<>%cF8=I=kFI<K?}8Bo<v&pW7_$gLm<%aW
zaPvVeB{OG*S3f`%E`vc2mly+s*&(6Cf(1>Wttt|tIt&asEnH!E`A;4mZa=2&$1iVZ
za!bAryibYO#l=O##wKRw%$apB?QLvg1O)}_UP|xN*?#*i-xmc2hK4VXj&kp<{CrHm
z*4@SB#LJRjOY?syf&G09yhQvksGMYI19_E!2Q(DTAmMfZbYczUI3x*BlktE7$o&n8
hpqi9nRKsumU(!=P)H^L*%)r3F;OXk;vd$@?2>{S6*IfVr

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-5.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-5.png
new file mode 100644
index 0000000000000000000000000000000000000000..dee01ca35e6efd2352e1df0540d6c19a1833a3d7
GIT binary patch
literal 21693
zcmeAS@N?(olHy`uVBq!ia0y~yV2S`?4mJh`hJ9%>?l3SguoOFahH!9jaMW<5bTBY5
za29w(7BevLCxS5J3j5`m3=9eko-U3d6?5L)t&9mv{rCUl_p?f~7d`6I$a@mhwWN2F
z#mt?mzPA=lQw@@u_E(M5{D|t=qJxLF&gAhfSb4=~?XfdgoPuN2yf^cj2+O*hX7img
z_w(<?`rpskc6iC|%+HHIfBbQsPuz2>=P~Uvf4}ToSA19OumKMv1H%Cmy>D_13=9pM
z7am|@U@(wm6=Ps%IH|FLfq}utt&x?1A;E}Chk=1%a$o`@1H+6SCT<3X11TaA3=9lv
zi$}E#;Sf7>_8v0>1H*pH!bdIV=Gj)qu8ZBC7t6}V7B@Y6u?{HGWe#)-t6$lYdHHo&
zZGL`!?f1LoB9T*DG@Te2WDb1wTIUtJtK{Xb`^^6xn^+kdnm0!1EQ>pDz!SW_eYNsI
zaBAWdV_@JrlC*KgyadlB5mS3vz^O+if`P$8KuG7gLlZcG3F$B}$ej4<wIN`q2Q=Ze
zdIbjs72Pbm#%eMBXt((53k#jU$*~2bPF0IYs}I<zu^~XStGoN@qeqK+dU$jrH@U3e
z_iNR@|Np8*#l%h}Z45}U>@2@u8-DTP#i%VA6F+_W^y53%A3u@sQ2Fc)0h%$fv0vYA
zzyIo-_4_M3i=T&tgs9Zl*YnET#S|76e){$;%+s?oCT7LY)tlJmYXUZ>pAS1f&-Urd
zmn#n)a@x6j_wDKkhJcqpZu49ZeYqteFmU3rUg_n2bFDHDxAFdZ*e-u%Ww5$#{Jxlr
z7ccHAc{wR2CdR{N)rLopl01WQa@OSServXL>C%_$>;JCa_w$*wbwAIFs2NHnd?FD$
z*2Toclsr1ZnR|1SYinz3)timSOU~PVUs3t_S=H~i+pn&Vx6i$|=VnxjVQfU{&Rx51
z{rUCx`~B;emU@fI%ddaG|NlL|#Y_yp6S@Sh_a;i5I(ahi{5;#W*=u)|zt{6Tb^7$=
z{{DV3od|`)245bw%X>`{(~Hr_&(D`^J6K;BYIyYMQ8U+TKR!O5I)DE9mKGLKaq;X|
zS5{_SUe+t?&aqj>wkpKY(eayH+vQzyox=6=!t8`}V$8+5T}`vD1mxtbDJm|WI&tE{
z`ah55C#A&BfBf|6(pGNqSM#dhUA(q7+O+0JLH4B9RY$L04So6YrI)AY#%;bcja-wD
z^;~>*cD8BqF`h{}>H^~8%fr@2W&Z#7_nREog9{oP3hs)Cih53(SMi8*@26ARpFV!P
zILEU1%SCs2&q;Ug-p%b=vtfgQtX)mS^Yin!Ki}}t`svfBnTJ|9cfDS>drR(Zv+Unj
zRtAd-3oq`s`_-Xzn)A!s+u;irE|fAzU~s)wdPqv=xkDrC<tcha=gyuDO-x*PZk}zn
zty#teg}uLCtv+?`+_fhsCvQzXE#~=ObCZp&?bl<{`5C{zz5Vq4`}Wg6J|3^As?t(Z
zbK6_>HR%4n+O4Ip!(MOvue<5erAu!tg8s-Y{a^p?-rn6pLPA&8L>k|%e!o{F(!o+=
zLqgZ3ujVgbzU=Dg2q-AnU{(5R$wX!Mtk2KRPFk|ixjpOOpPyEBe|D((&MLX7v^w!{
z+qW8?kOTGmdjcXNG+u7sU$fkQ{<?Q}cfWqO`~AM0iCb%bm-Wh8hq?F3to&m5`1{WH
z`+l2bUQ(HBQyC=I?YeN`LN5=GfNn8ejZN#Ag>;@ju&Vv_<>faymQ`kl4W2xDv}nr~
zlhW7Md|h2#cl~@e`|6g=;Ju&ES>M`Kx|-*3!1Z;pR~I_7n`T|{SRKCp+Ct~{D;pA>
zx8~j5bw)a)AZMw*;vCCjx2vner>|bUnv0wJ>8n?()O=^XST;NF(#GWDCdJQuT3cIJ
zx^|0As?$F3@9+Ei*O&e6uTJ*2(~OUgx3=e8cXXO=^pq)6RLsrIx8~iA+M0DW=<%`M
z($8njU(f&lXZgQ>-}kSs{{D`OgJZ+@fYn>ptkF?bQ#*C`tgoJ)-ZHW9w!{@HR(SZ^
z{Z!e^GW96KzlKGNlnxv4D66X<moP|Z5R{S0d2@UF`Kmv+^Y@$P?Ru%UIPdPRW2@Ki
z%gU{Py>>fK_tB)1_xJ9eIC*mAm%_zKUS3|Ow#>CGK9+HDQR~MO%KZ_yxwyF2{NIy(
zU2n1XbiKCKt5<I<e(pEBxc=YI=daBpW<1;ffA8@lM<m3$k4l*5&6zlHVxsN7>hF2V
zCMH)_#P8pC_W$?5LUukG0~N`6^X9en_xG=q_xJaAo>chY0AscNGu~!Rr;r=RdZkTM
zPl<T`zxn%w0Z;Akx7%M`SlDb;{!YhJOG6{z_O{%w7v1Gg9zN{sJzekW$;s-fp3ZGN
z7iXDff4P;t{^arF$L;u=vZu|TzkYt*FHiSAnTszkFIV-vckkY-dwX}={riz@`}4`<
zN&k%RYI`OoCRV*#xjZB&Xpvp*uZZoBCM?-i`a0~N^MXS<V%?>=Pxn-Q7Lk=*+tR|K
z8@DGy-EYo>qe&OvZohx7WZ_9@ah2AV_~Lqe{ngX@``7F&e*WsHc>ESQ>)Kyi&ds;a
zkDVSI5wRlc>Z+AHc0}k#ZMpF1X!qBr)8n(QuZz7_%*HFV<l5Tk@L$CXlFV{%Eoqml
z@>m<SHR$%XTu~8`CBNV8_TOFpJ}fC|kzC~y!L_lwuPr-q>g?I6Dz?8~EY7;WZ!Z%Q
zlS$4EgV;S46MIuuON57qzm`7u`T6<fCz#d=O7}jR6{#ck^VhFeSHt74?kIe`M%u$~
zwwbS^qvNm7^Z&2uxBKNWbLLD?da66PS!HY1Rj<6fyk8%W%fJ02vZ7<EcKEB6%jX3>
zKR5U58RPROE?*7?h34%1eJj7;uaE!u@#8F;%1u0nFLa4&r)-Sal5$e0va-^1l3C6T
zh4S+9zi;#FFY9i<;}jL?TJz`Q@l$8dUTt7xR`JZs%R6=c{Pgzr_Gjnk>w9{6cuY{S
z{d~rli-%{6SY-0?zN>$~-(SBq`?{8n&Y8UP0aG_#TrqjWYZld2a~?fPI&8r6`1Shz
zX76^r)>|C5HtJaMdE0b}w!}9#HXdFPx_TNYng99qdcE26+7AcW+vd-ozp?1)DKB~B
zy7_N!Z<pShecfzc<ul30CnhSJ9S5a`#o5=_wH-||Ogl3pF=kK2MG4!gErE;Oc#|I-
zXgv1u@$p`M`#%?Ue7{%S`{6^u<4a4u%c{6SuDrXuo45ODQiP7!<B9HahSPMT%Wl?P
zym)bX?BuDlW@T;3ynJlO%Vo2B?%cU^N~UUR_%627w{PEG5xBT*rF?$=`_=0Xo;rWt
zT+L@jf=Sku6CXZ(GTK%0GAZZouCKF>?=O8F_ITaycSc#))?{8;5qS8;m6ek>mc6}Y
z^p}f^t7oQhx>WA1ErvF>w!Lh;QWD?q6!%Y@IrHc4y1c$F7H-ibi8h|Y7j(DZS>)O+
zmigty#i$(x3vFy|Ma9LJOB$zT+}Tmc#mjruTYv8ov)o%6y1KsHVmbl6Ql=%(=a%34
zEm$CW?EhZH9fgnGOml7o1O^6PTkooQw{LOz`+J{0e-4g`nX}Ay_Oi6IvosYI9lyT5
ze!Yp6`^uim;+?y9pT2%Q{Py<z?P^g4HT(blTFu1Fe06Vi`O>9JGmrPlM(wHC2+|sz
zzc;k8v2oH8R&KEsOO`D0nItMDwd(2V>8tDh{`&Og%a-ShLn6O<ZBSBH-dgv!>gbUp
z8X6iNCr_T_;^z<d^6J`E_O|M1@#IO9z8n$uU*SLBZkBEJwwT!1sne#V#g<2}TCu|8
z;lqcwc9*YTv}lotjLe!hZ*tz=-tPbW{QU66ZoU656kCZ{i&qpBoIH8b?ft#Iy{_G2
zlI{HRdc}V(EOb5=TYfh+WPRM-ikC~L^BgwlNj*JHa&7c>Gaa$+hfklTURfD@Jmb=m
z&cYWL7M_x`t6T0pT@Nh(ZvX#(M#umCKD+7e?sDm`udkcWGRaK(^E&>&QBhG*PxA3T
zN&WqQHhsL6y<XD(&j;sJK4~=#O-;jhdp`R;KFBU_0*YLJyPrp1TwdNExZF?n@w3_a
zW|JmO>XEPibMe;ynd$Qkb;P<26A!V>E(?jtY<l|maq^E}zh?dV`0?Y;q^7O;_w5cR
zZIt-@?Cj=kPoF-ObaZrdi-@=(dc5|}kHW*ZZ{P0d?A-av_}KB|(sFWg$DYrxkJ~8k
zC+gDJT2%Y@>-Dzo?(W2m5j^(x_J@xiJ<7q)Z=QC3UapLN-JKl;51SGt+CKjMeqY+Q
z`kP5jO-+ww@iU3GM2Y9;=bMY^My2@7x4Y}%<747C$0G5(yCdsd>+*9MH#aRUe82a*
z)X}3y-4YWMch<&NJ{1MIakhE>x+8**sx)GmHh`Rc`}S=QFRx8<(R-`58fIP5c>PUl
zvbz5^x!HELyAn4>^k@bzi~0DSYu%bH2Uf-H-4(bw%{SQo>gw?QNsXp;e<}{&y?gi9
z^Qx6MH>XSM>FFKY|L^PiqT{mC(%BVNRZ-L1rfmP}=jqugC?Jr)BWZNRpy&R!pM}q!
zGVgKiC}L${$@uf*<Ep^LZA{F}psFV|EiLQSm6cqaoPqD}?cJJl(`e_;oiBUM?_GGi
z{r<Y2pPy&{`ttJA*RNNN&)Y1{yu3_POUui5mdVENj~6gyU0buVp@CuP^5v_SEOE)p
z%hS@--1sv2&;63Z?Rj@qJlpx@w{2UTrB$oBwDR+_U4Osb{`&9t``34N7Eb~f|NJ%|
z8bIyeZ*L-1Ra91lt`4jE`E>f%H=ECAU0V}b_2Xgt(`Uy{O<wil!NKONtE;B23SXah
zId0e6a|fH*PurIN{`MBsQUz5eYQD2pxb;e{3SQnfulk+kY<vEFf4@b~wJP;`dwcu!
z6BCu6K7On$FE3yE;=;ja-jC+8vWlGwT^*)-^ytx-FPF~;HE^CheY*7fy=wpaHJ^Lk
zdL$IPk1kT5SK*X<d)w75nU_Ph=fz%K8SL&oO(!rWX3kfuKdsSQr~Lc<>hA9Cmo8s6
z&Anyfx&QCe-}_ys9ZlM}?!1<5|Msb?_Emj-1uE2T?I>LQ?cH5%&tFd_`<rB3P`F$B
z{chFYuh+kxRG+V5U=Sdz<`a;SvEo>d<l^YOok!0pm&;Av%N`aMb}hBM;`{gS(-S4E
zN?(QSd@g5M<f863=fa1Fhrb>X_J47={C;Rf#g4d|kFKxhbuRt8<o>si+dGSwPt%KC
z_2fy))924u$M3KE_3QQe`s4nm8gJ^`IENPg`%{^GW`-fCA~@D3n_Zl9dYZ0VP0gN*
z%Y3C57d}3AZF|3zNk+mP+v;n6%59QHMn*kqzOy8@W?eP9SMiuPyE-s%;#sRTPft&m
zHqE}KvpL#&)wVr*Y!=7wuRC_P{C@79&*!Y&-rm~UYghYgN@VxXXS4IAUcP);CbhI!
zbFR{wz{PEWyUTKe?M<_;?06)SczT*{Z}q#K%YA-tOg;{3nd!vr*l?$C_pV)1dU|@-
zN_Q;%_4Rf7j~_oGmh*(Ki^+`85j%YO^5ti}2Zh!BB(AOsHC9qmsyp9*HgRIY!&No4
zwV>GOl{9wy{Os)I8yl0SPM)mn`RelWel?#N3v8>uy=dmQ3y6uC^Xu#D<^J}6LrPy=
z+4%XyM|T!BwpVYr-wz86oVd(q=Au?^aj##wk569uuVh#9V#2+e&%Rr8Zcg$|p4-#j
z-u~;$%f<e7KV6*LcmlWQ-TiXOTYqKj?y^b$KC|BMxB1ioYI9ceiK>10^eL#Wu5RYH
zJ$r0kf7G6<?a6QdXM^wW35w2BX3t)&zyHsrW$_UaGtS;_@||S@GHS}KS-+0U9Xe<b
z*_Zw3_3PEo=T-ZOb-QwMauyX9Ui|X%GAJz{HV9cArrX-mqM@SVGF>lr()R7!_qOv0
zx3soq{{8h;$|Pe#Qc}{E<l}t2ayAjV(c7-5&#zf@cDDKJ)$8|NIycukbbnoKHNUu;
z;lKRVed+US!)BZ1UYZ_XxAMo2imkb~uiZL+_wL<3<&wPmlG$y4{?v$yh}_sB86LUn
z;rsXXH!}~cS)=2*>(MvPUMbT{7Z<x<UEs((``fRtuTLBBq^76ej(J@Fd+N8nm#o&W
z>R{r&e&+i1@ZjZsQ@_lQoio4wUuCvoXi$)nxVU(iw)*AW<@s;#?hb!^y#IQito4?{
z$8Mhc*Is;mW8>nox3`wg&fj<Q+~Ss*I%3^hPe@r5EZFzs5%=5M+s`jM(DeAzhYu6l
z+uMDk0|O`4{r!5q=sYJUXP}o?S5Z+>j@YjEcXx-2b-OAmDn6Zedu6b?tZh}u%$YN@
zuC1B5)z;WJSghOi>#M7iRkr5ek9+s--KjHYbc%a}m-|Kjw&Y&M5vaJ-^%^MsOqj4h
z(m3tKqoduE{(WW>n&Us)EceT`==_%-9v=SnpqU@!<l28fpI3dqTduioPDp0cr|J9u
zxZb;Wuj={S@>5HccG$i7n0lU>oi8LXaH5c~@Y-BfR#q=Rzp#vq6--P_Du2K2-JF@3
zc}<^jdR_J5D+WA!KOU35W_H*B)I+kjw=aEl#dA`~-m22p_I7PkQ&4aE+P?d>-{%Ge
z2VY(8FCSc2*Vn|tEgBY;vUAt2tao>It_oW_3)IMapZL&fb>QN*tSc)X##rk<Ud6=3
z^yN{v{;QA2<*&E#N`JZF%zv}mV+WsA`MWia&1{-_dVcBW=4^cTWZuMy3zsZW$==^7
zte$nWOBB>OEe-$A$jr7P{ro&oE2Qq<&-Bt47aXO{assllRtX6U=PsL^es<Q<x3{;i
zcJG&yvaQ;}a~RYM2;H6+JA3>2xs0r0b>i{y@kfsyT^Y4COUfvvV{be21FKh8S5LPp
zd$Z!fgM@1Sr)>%A*Pn{qS+sPS-`rK9tHU&{t)mYfJa}tM=H#=}%c6Crojw<~=li|t
zSw^W{*VaTX1~sNiUtg>GeAfK5PEG#pZEMTk-C23#M#R}Umce>@darJ7UjFRd-0GXT
zN~?^z3%5?qKOj0~-EO7_cRqdoe0t66#+{%f1qx$O30Hgg+M-2DbFIt$*!g4vj`zv>
z?lsfvXW_2rI4W9@ykN(wn4BBYUqOST4;<c@x^ff?+B1O0NkJoB>`qNjWuPNkpb;`=
z#e+qBpusN&HRXe=SklkWyE;ub`pTNf&DwR!mJA0rK7ID=)sK&lU)|om{?)a$)v@m!
zo1V&OY|uJ5O*h)4<V8R=KQlwZq|nu2FE6^wZ~boY;DE*kEytJJyUX9+3N_8Xw&i_-
z*3Cv{_BHWeDwQig9u<FU%d)$pv-9GgpP%2_^6aj7zxVqa+ZM0wRbO8j#kW3svuV?&
zEhR65UeAAhox3yms(WK7r`K}U>}zW@?d|QY`<E5%+`apL!FipRZGW}8W|?N++i<?_
z!vn`^{)Lw+D=SxKUS9T1t}S-M9p-T7MplLf=0x6U#S0EFF&t<NNU&tzmdOAbQsxv}
zxBB&70g=Ac6B87_$uVgKPS=ZlW6QGK1spsDv4IJ9BQ!ST>4-!)`~(G8fr3iJxkgY3
z9!LQNmxYAT@>Tsve1U5Tmh9jWN)Fa(#R**kpfPE%O7u}h4$f)C3P@v-ZAVtVLLQrJ
zF-5frtRL)^g$IiGd<2=W#U)6-S<`ppnO`y8O-)Qkj~&xeP;j_+?;facu`T!Zy2>-R
zx8(+(pJxkdRDe36+ivGwwtl}Scv*Z_)~a2luhrz`<$wPEt!-r$C9WU0=h^QNQIQA+
z28W3gCq`{ZXjD>C+LCcmY3I(Jnl?5uD_5=zw>8()^sN2;Ep%(vRg>y(IeY(nIt}X6
z`^~e-y!`&b!DdjN`Sj_NN&UYXS65d}L&LykcK&^F{i)__4uaz2Ml$cUe}8{(O*<>4
zs-mKyrsg(DL{M;H+1p#7v9eoRv%_~jPfJO80UDKDw0N;;{=Gfg_tGyd@%;4p^W{ES
z>nD#ND|=?$+OpEEPiAHA?QJW=*T;$07#(+QVr4kMn|F6tX;E=;a7f6Mt!ED(c2;)l
zxiHVRddke1k?(ebhGxCIyuSSTeBL`~=jB>)y_gHza&L<W3MT5VQ^~xsArUmDcWZ05
zZ<W+>2T<TL8&?0lx>Y5KonJ0wb=X=^Q8)YBxw+QS{nOKNH}fRh65p2p_>d?nD!MXw
zxu4nd-Me>dtEjld*ZoX&tq<Yr1rJ<z*e>JPylK;u_wVDE-MxQ5zAf>^m6gFy=T$#B
zAqXlhe|&h@)!Q3dP_W_J`uO$Y@il=*j~<<6S-kA4oLKkLJHKNxr8a3TI>5y6fNlEh
z+1mX4{YG!+&6{`a@zawhPfkpf=<4skzN7H5is$$H_5167J{8xE*%2^V&396NfB#ph
zr+1%weP7WvLy3jqK;w<%t_!D6d;k3TGxgTzPoLHtUth9L#rDsK!)9+m?TEa*b)~P?
zZ;7w`zVnjpDkab;`J59wi=UUgyJI<f+oMO1wC6oW)V@KB-Fi>iZVz1SW>xiN1*pMx
zIc|Sltz_H6H*a!Y+wvUV5cj$Meeu%j5La+cnPERE<m$TE=(DrUxBrY;TLG#mtEzT^
zYRX&R-`&;jKDubagb79Gbz`^u+n+C$mX>xZY2%8xy;YNzl)b%m^6XjP`St&H`tCn;
z$Vt|w;zQT>6<wfNqa6o%Wh??*U0uC=e70;86%o;}w2WN1a3L25#{`wRcC}HNnVDvt
zH=OxxRSp|`IVPPSahvCGKv2-6KY#wLVV$vl{rak}ua<_c4!fE2bVJfnuGl>l7hjr5
zr-Jf0ds6>)4r`Q}DKH>l!lcQQLBr1IwG$IFv#KXE8&AObdA6q2-*W!``FtKUoMx7D
zW5JaxA)xWYyLaza{W~+$SX4}Gnf1FJ&dTn6S58h=H_g9i^Y!iR@V(XF&A!fj3!b&e
zczSAT)wi4JTeGfexw^Zr-mxQMwpngaM8u4({YR4~c6;Bv^l<O@dzW8aT>SMQyL`r(
z8HT@JE}#G9+3ftRBOQWffAjW!4a>c~&G+8Dds4<}J#qDaOI=-EW4~E*ueJh3txSil
zkd7y)qJH%Fv8cR!eBS&eOH^jNte&!c`}SvNXO~}He`?~Ab+Nl&Z9Z?eJ8S={KI8(i
zS~bEz95i>w*TQt#(!iAiG;s$uma-Di&(d{A&CjBpJ9eD7eLFfbGBUOAe&zGITzq`n
z4xeCPIM91QlY33j&!0bM8K?WrEYqrFXjrV}yWz~g1x1#njiN$Ai<Wv%fA!_%<!^Fa
z3=BIOEpi)EH%5R)rbR_XW6h5K%0GJaXw}13aS;&_6@Pz!)BJlelhysh932~d_otnm
zwX**Izgv5&x9=)>sid#3zcuG(kaqaGJ@fjR7<L?-5EokO7oFf4^!eFY)0`U{RxgVH
z6+BxqFPGfT-JW@{iFMcKbJn1^=an=%vTXj*q>B@k-9a6$uP-mVe|~m$^8ESp<?8<w
zf@Zd^|1M-;a1ecXg>{;W?>w8x*4Eap{{H=MK03GaWghJkm9i{a61F~W?eck5UY?$w
zQs#Mc%<}H6khLzm@x|ZY|N5@d*Iy2C>t|e95qN7)<>otg?@paEB}B5HnW3O)&A}o*
zzxV`@=L7`>y?lJG%rs6vCG-EoVgA&O5hB9E$(QZQ-b6^YE%cpjc5}=9n$Krn-P*eP
z>-Eyt*Fs-kTU+|(#>Us585kHAoGSdq<UI-0A31dB(CKwYtqLEt#Kgpih=`<IzPG@U
z`Rb}rZ%Ii>v$u_njj8KE{i@XT^x4)K3<r2SSx#Ht5s>aR%fA=n+|C!8l(Z-*Ia&Yq
z^QijIJ9q7h+jiHWXZ5`52L~8IQ(Rk2v#<G_on^XvSv50**7<$4zqjPyx0}7~&Ye52
z>*CF%O8LxP8dd*JOIjPXb=8@uHOqWwuUfLi#l24^@b$H|Yv0=c{WAI7T<hh_d}q%x
zYxA3Hb@KfA^IKjsGOU}g7rSeP_jEn8TuDjES%%4NbKP22J!zYvG-ZjHZdAsL3k$2>
zZoQs!PlJb_e|n+>s6O=l-_pVosUvo`_`K~@+Yp8Wygiyu&mU~zy!Le28#VuVYo=<4
zYw7CxzP+_|vI;9ZyS9;0P-kc7sdMMTzQ4N*8XQ_1vC#=MzObwOecVlFb_RyfIhVyE
zrmwyhy)9>DM+b*){JuNSen{u<SvXBMTFcThQrbK(<Zv6WY2~LB+wXUZQ`be_t7rWX
z&(6TG`9rza)#p=K!%|X~C@CxJSLfW^lp3`yXQuD$?(S|-)PP59c0J8K`r+mB`TzDc
zGBGeLe=-G>J3~eD1+Chp(<WLoFgT<tf@|gp36|`joXRkH#Y%TK2IyLVi3yAh4;(x;
z%wY!U!^qV<pw=4F>?ud~hB?ffVz9aU0)?fV({9dRt*N0Akdw29iHYgS+qY{kTnNa$
zz3uI)=b*_+Jw3ftyLIc<{d&24{wdq{e|~;m6~BL9Oiav{y1&1;{`Rb5TE@Z1(13p+
zQdg`yuHqr9Y4)`<%l3w?je0uIxb#)X)2B}@-+oaAJN$@T_J(io@2@w_zNVq5=xAtY
zIB7{o2glaz>wdy&J{Q)-?p{~bzx(~ZXj$vBJ<C4U{QY`8YEw!lXsq=4yy|ze&aKRX
zSC$1hTN#zU$>&d=4D|Fo8T#AR-Tn1JcKML)d3RGJj+w^pUIkj(@PMuS!vjaqIRDkv
z;oCFc-`TnO>yN1tZ3{uovVHsZefsw8S_30<$(I)wPk*a@KDT^J`TMxDbFHt>IcTi`
z3W)-PseAP_wY9zf{ri`C>+j#csS==M9r|u3sAKo%<MFGD-T8n1`t|BSBQt2OEh1tD
zs2{<~!V>ZO+0&<)e|~%fmHV?yG8ZKu?~9%OypRRd<h%2rsJQs)!-s*(?q0rpxoVG1
zGaK)v1&+;Y_P@Koe?Mqg0aP&=r=PoW|Np=8*BftcPG7xZg-2mwp<3TPLukKa<B7W{
z?Felp9UY(8T_qcDK707%<74nJ+N;&;Pu;$~+v)mha6Mh1wA^oQP*~VB-{{1|hoa{{
ze*eDzjY-1GQYq7{kcWjPnU`E%zI=Ht-v0ZY;;cJ6Hon{Om@hRY<wnf^=kx2s+}uC|
zhI7+yvw>UTC**xMFflRZT(kAupZjWO_4ju;d)}gQ$2TS)4_O~)`+B|qJe!q^-TPO$
zc8i())e-A<>y=XNKDy}5o1CA&eue#r>+9Ig!N`ECMRBd^?U$FAy}Z4H3kx@Hy?=9a
z`stYWhxzTVG%~YaSs!noef!Kz<E@E@*>dmfxcCdy8&dV$xN+mH4T;S)H8tz5D~G}A
z-D?S@@9so4v+)MS#LPK2$1?fuNn2%QXHQShYjwivepk9gwM+i|C}d@0^P04)?CmPh
zApZ8dWwSv8p3Llg8k(A(zO&7?MxLqLdG|r~wKbZD4ZbY5|Lghp_jmJ`nX=#<eBsno
zZPU_MA#0<ydfmKvlZ%h<+A`nSB4T1`Z<9AhJb9F4{qyUG!~EHom-&JwUG-vjftDnI
zrt7NS?R=iIjN|lUo$Pi0Aa(o^InHS+p{v7uKYsk!)!(nb-9IR3lJ6o_Pvf*R7kVU(
z>#pzERsKHD`0fiIP@Am4;M}ZNcRV7V@WERJ9ebB?B<ewm9Yj$BDL}Ax!QdUE=7kEY
zeu1(igMlPSJztBa6Ussk^ae)@%W2CAki|ow77Kc(xLL7q)i1Cs6?_D(*g;v1!N(1w
zyA0~XAWBNCPBu{S3zY{KI$$R?hITGmy!h(A+Ujb4<^!b$H9rcf`5C7^=+@r{3Zpl+
zJRyvr90*>CazLpZw8#mox$xfTiUkWCHg4PqYRYckzTL^$d28<NZCvr{T3TM9afSQ)
z>t`mnC1#wQq`K?twdl~rZoH;BHv&NOF`Lu-CHo%)fW2w3RC8M7{A@u<$(5|!Vj4<H
zPTgX<lV;DJedzGvsk3HPoqhc8&*$@7Ykn40R#wJ-`>~_&@s}@`{Z~7;^Uboa-v?T2
z^5siO>HB-J^XvcpG`+uE3)BH_kiLVrdw1P5R^7@fYU0F+(|z}Kb$4$~IVl7h3p{!9
z<h5^&%<P~{2pTdey`8&#<|muJ25?*@l~tAMYF^t_`ufSUXUkTs(8!+M-rnxkBeBr7
z`kRKa@#j^K<2EL>f|jwIon!fV({XNY?y0k9um1J*_3bU!SBLxS>FIs?_HAF=e7~!X
z;GW$^_r_8z1@V(7Pcj}I>6~R#Su~Sr)s*GSm+vZhx#-E0l)YcCMO#&VTC(rgD{b3v
zH<CeP`o4wFc|a-f0o(McQ&sEh{~Nvi_wSz(kMnZBxw{_yJa7Mh&z`+|K@$gY8}EbW
zY!5cGXTP|x@Y=R%y3wHN=d5dMZoZe=y%^Mu19ih@x81oDQ&~|lCG-22FI(jF{i~{W
ziRnfyG0nbq;_ltQUEf#6?cJ5P^Ql<r+gqWw)!(kXyu92r{hSQ1gn`5EvbU4w&%bYK
z<9ij<cRj#+4y7nQEi5a$Ht+7Pm-~Ld+x^J4tGoN^>Tvz9FD^QBi|cLK_WjMx;O%#c
zy5p)|s-B%^`@7t(@iC~nI?(v%BFpO+7Z-!p6Xo3E;^JCY(YJs9|J3D-n>TGz@$8i{
z-Swt&e$A)OZ8<j=@k*O%C@VW(%CC+U6&2MqHxHMTlmty!_DY#<DSqw;n&JYbowKG*
zO-)y}<wn1~xA*s~`5U#sV>O*DtgM<E8Yh;$eRFg3tqqCJJD<0-v}mZRx>{OVnsMJn
z^afAQEC2Mw6Vwo^|NqzQtys4!X!!KvqSj~U=dZuG*!}gHnZ}zUbhPyJ^or*mI^-lO
zDjNF4P*yHqkcr`e!<&y{4-YglhlYeKIda4$JKE8)anj_;p!v^+1_sYdFE1|#&0^|K
zs`~b3C9kwu#^YnXX7hKIzJBFj|7$X+tzG?oZ}_Aut3tIU+ZJA39e(@H?{58l0Z~!2
ztjgYGJnO&s4pegOIEY%9FJ7=fK~-H{8+(Dis_^l#tUEgjXTAn?>KvQdu08Ua1R8t1
zx3@a`=clJu_5b#OD&gSeelMqn$4%_-?_acdvG&tQZEkQ$b4)J&+@7MRUcPg!LRW{a
z4Js?!*3{g*HS@AsYisMxp3_I4zM35WbZOfA{r~sH)%{Fe8@D$qdRtE5)~u@~$7Rbi
zj`c|Hdbw=2Ppw=vXf-7`F|uLn1=<|%lii)OyS=>~)ZRTgSv~%%RH$q=WVsx;wA>ip
z#99n0z!+xqfHN<?(MKkR0|zHqgw{d|z-1hBnS)zEOFBVgV+R@u6twUHkt)M;1szP<
z#>T<c<?pWe+y7kxT5;DaZ5~!wxbfV4`}MO-vrk>Udi9<&3j@QBw6eKMCOpo`$9e)k
zKRf&N#p3>~Gcydm{Qak^Jbm(HMdao*&^)_sI|qZqQf<)q+=5Rxw;rf^xpexLf`?AM
z(&m2A+w-O-N?c1e&AxVpncrqX`Tg4Keab8h3@a>l`w8mB?g}~F#(Q~9<mNA@_4iM)
zl#`KJb9T1*?ZgxYh8yhJ8|E~}a<7@J?!PMg`nsob-#>o5xPJe?s7_@jh6DRFK(fm@
zUSD6oezLm%wCX<x8kxCxc-9;dWMp9YQ&^_EL9XHfBWSJS@jltj+op!yl&}A@anj_;
zrWqF$s(JYt8obiKF_nw$y4@bjy#_Qx{qNsDE>6yi8xjwvY>W_*mtUWEch}1J{dJ(m
z!xGQQZ!BFH7#g@XXE%m!PV)uLnSkaE)6$mN*xGJQKF$Xkw7$H|_j3CDTDAQA{AxZy
zh6XR!rl&G*_FY^tefo50SLH^v1_J}bvIo04d@rntH0G7JyL0a_1A_(UrPZs>zvH}C
ze!q74k|ip#)@437Z{9SU-RrgguiEW>wYxLF|NeG6A2j8+bjgwzZ*Fb|mCaROUM%#S
ztoHKR?EHVR*GmcuADSC5Fl^YA-L$pnsTXKwrCVJ8+Qr50pc$XT203=Bs;bNG=KuZm
z_0^4yi|zh?2?j001PvL27W^$;vSdZ_@xH3}d%xFRFTH%}(v%r9GHzKgGMMXCuRRD_
z6NTQpS$pVle^=L}?(Xhi-{0q7o;Q2;>ivJ;=7WaRrA)I_;^X5>-`oiFo~C2?^?j9l
z;&m3#gf^(U-dg!N?dsa-@4N23zOgY`$}DF_Q&SVD@cjAnXJkL9bco)b*VWN+Aw0fz
zY1-LYp)YQ|d-qPQUyPyQl&GZS%CE1lYpbcbIXXImW^yVjb_4|lt=pmbqy9IdHlJ!)
z_U49Rubgev-m0&cZfs0``ug>1-RNyEK$Fh<YJX3eG9~4k^3AES!fS$;`(^(4@bLQH
z9g~*qEPk$KZXVv**=crks>;uwKVNRW9vAHA*Z1t)Ty0O#BGD^*DnA=tpJ`XSD<&qV
zK4;BACWaYD<v3v@zGr6|yB9w@b5YpeW+7-cCiC*LSq6!RO#5viO@dYN`|D;V^Gcgt
zxgKA?RyTTE#+w@(ySlnAfd(~xJnqjv+9hgMon*zlTP)(>!GoZ==cRXE%m4q;KFc&a
zEKl^`bNm01XJ?sSUgkSnW$OP>*6G>le?=J%=zP=IaBXe0y1BWztE+3|Z5taKlcXaY
zZ*OjPpE+}8xa{{XQSC2h&F^PCJ2P{-ZQOD{Sx}40=l9?5_w`?HH@$i8$U4?*dn!MJ
z#tAh{O~3BC_xyT%{neGh%daeSZrA?C&Bu3b|G%&Lv3n{$?&@P_U~n(O+qU?WdU>_>
z$y28$E%BOpc9l<AY%^%t>@3slSLf^hZO+^GGmVvv4OHAL>pz<G^KSQf@7Ns$j*~(b
zyY*^+)3!Y)?!(OR=4n;V+JddGQ&Uq<-oL-!XZQa7`*{xUc$IVc^Lcyy{QP{|-)}aH
zN`)sTE)>&=SRkew^}@gYS8(gO(vmXW4WMRBq>dOX8=IE8y8HdQ-?=mG(*CGv>(24w
zUi&E~Tak^S!T99avs2sK-Dj5h`}@EC_-V=V<=Gb(xkhbH^KFg)^{f8>`~NS0zu$ko
zUA`_Nt+qHc{W{ZY(4yTU`S|$wpTB>D=5%)@?O(s|mlq==<Eps5RXbZ_3kyHKmpi^C
z^YW9|ud^?g-LL%)YLWcDd!2<LMm~T4-);Bme&^2K_WAkw@KbxWt8>>+pFSNlAGYQB
z)2EUB)0cno{nPa?_S+?I{g+>_$6r4))A;K4{QF(JJGeIdc3V94seb*>ZqS(K(q+ry
z$`<}kpI^J|@$vrbD=PvgExENd8??$J_1E8ti$45(K0o~Tx3~4*e=;<jGEO-m03Mrr
z3#!SN`^|l0vM9Uw$A?5&yP6xz)@}*V>W4IXysx{PW?gx)>3Qv^lj^rNrFMfxaeI1r
zJSQbeXlZE$<>jq2GBSGd{CRj<8fe5B)NQ-$Z@+fOjvd)`+g2S><XR(ZU6yfqneVlF
zOW)aMS8c!FS^Vzq?%8GiA0HpjzPc*3>eESeP^me4trU2H>dNKwKtuM&dZpDpvu<u$
z3aX4ig*|AD>C5f>Expp_v&_^O82(+Ck8Ku}ky-QLLBi~9pmxI6>v7uO=S-L&uyn~1
z4R!V7X$ybf+glA9=o1nuy7}2}o{eVr(WF}85BujU8XE_LmPY>h`PsDUOUCPspd}}P
zfq|fj?YPRPQ}2K72yKexUenaX#4Bm!B5j^GB~fBk=;~=IFYoLu_VVz!09r4&{eIo;
zDZMt$O-);Beire{T7`g?xpW9BgO;ZK{qeXTG&%*EidY-B_tviOR}b^sueos};%@o<
zTF|7dUfiA)s@~I9l)k?9>ruD<zYi4*3<V<0?0i>1>pG7daRDu!xRhV-uCA`GZDJC_
z$jCTp$>rt#umAk~%*DkuY4z&W&?eiIopB){Q)ZcFFVhTO7U9h0d246!@-`mHMW8{J
z)nRK_&1v5(yjv^+)ItYEVBzCqnQv}v%(}3kQRU_G`E@}~PEFvJ@C-v|{XHL=G`~w*
z6fC&4EqC?J&FR@UH>F;Cue9g&y4@n;;_07bTk7iSKuc*r%VcichyabQ7C$=^SXEUu
zlc`((G7G2(%oi-f(zQRF*8UY~9vie&Z%1LWY2KY3XTE~^j0+r@K`XVdZ4*}aTT%c2
zUr}M<MNn&DYxeb9bA)AN-h`aacoUTX>YH@+^lW)IFK$)c-(R4apP9z#TZ*1~UFOp9
z-1T%?^tzo{?{02h&L?XXvaI&jmQ1t#W!vtiGctTj?q~A;_4aq;a*R3cLx&FKtSi>d
z{~h~IvhL4E_t&?7)&G4Re|nB_?ky88oy{q!sVlvw>phiwe`#rV*!s9wQ0wEtv5>V<
zrbmw-*S53UcgN1t)ARb5xsB7g<#v_7|JQ!+$oi}|yI#6HKGr*R(xjkwA7!n}V$7;o
z7!E|<e7w3S!EU!$#Kegcqjs0AomcfrbLrBhpe4Jis;XYz-j`PdF8*@P`u&TI$K^IZ
z7hq&y&^og&xMi}M?<IcwKMRf=anX(4b;W9ZbWo7eVFM9K$(5dy)ovDdFffEz2`yiB
zejV$y)vH%enmie_0-xXhPXK5k@t50n5f2|eO#Swefq`KKmrT;)i+r+HE1cW;zR9sM
zFqEaQ-_DV^&P#uT)-10`ooT1@rZO-vJXoQ%_rRympLZ|w`UM&IS^SEP;ZA_ZhB?kl
z#UsLRO>_LUb^|C9ve)lb3l9%>b#VzfcL21J>5)M829=j*W*W~jPVW;E77mSwSOHpO
z|LMs|P}bht&c@)dRPkUDUzz>}FX7ey_11veMq;{AH>xv09^uk?p0J(i^_Q2IK?Z;p
zQyn_w<m%#*acYWY*1bJD_qMSxFeG$&>2KJyY15k4(7?cnZM@RUPEJ-2j$mZ?Q13Bk
z)jlu%4N=>2R{r@@)7sLKacPMsNaLo>o2Sm58~e^u*1BxX5zuV&AH%6}2~VFs^_;Zt
z&nItQIh!9{wY-NX98KD}a9^!7LqT#f@3i6-UzoHtHCJxR=VV|ASgE!5Kvz%Cnm5r*
z3<0U2rn`7GKLZ29ftxpK<#iYsKFEV+)0wy#7}%W}pUQwb&aj~yqGrR9N0~WMXVXDL
zI|1N<YK;wZkb4l|z6EHS5wy|)G<36p4f`Na0~Z&Uh_v+Th6aYp>S|Ewa(i3u?pKxb
zYroB8<B?c!;DAGAW#!5H_v8Qm`Wl>-^(ytZxR@AdJz&=DZEN@J*>hz>qVwOU`t=uA
z1}{HTr?OiKJf?m_`(Rg3&y`<aUxShzv<GNo6QilA`Rdlz?48e-E?<87>ebN2ZoNT=
z+jytWox2vas-n;O-Gz4fx)q=W@xR4HMM1Og)!*NRhJ;LMYHkLps{Q@#<)5FQv#zX|
zsCoW12Y5h7;hV+={6pNQY|D>y2uc|ywfKV8L0?(q%B>r*;lQ#3v&{47+5LWF{Px~n
z(DKAz%>GY)fFkGt+xEP>R-pNREv-|xo;`fHP*B+|<NQ3^Q)kYsx$t$*o;{!uRM0xp
zTWJz)prHzOxeAB5R;59Og&T{Ci+!uv+`%g{pvx4_9&Bd6x++vVbbZ|2WqXUCpS$)r
zy!hcE*1w-l>w_}+63@w?cG!yW^>No8->>_<)^D!W(r<5XXFoYH@zckTpl+{K$%_S3
zrcCMj+pvlOG)TAOAX*D(8S9H?cK&PAbfZ-~udWKcJlWrFC8!$cm$xi(xs-porS#R6
zi<g#qr%JS?ot?F`?(eUcpsgLZwq~ba621u;xC6}=pp1wA$$Iqov1#5N3(!WE)6@0C
z9UU9FxVb~uMwxmB`T6yIt>>4uN{PL2Z?QW+D=TZ}yE{9hHYT~Y&O1FZFoBVwp!qY(
zg1gn6e0<yfeO}yex2jLp8ocW1*4FIYb%J7IX`i<xOjh%~vNn2q(e~06s~}NZZ*uU~
z_Wb$Z-rvu^T=w$PQj{t8RUf`_zI*rX)&2eZA3X+bn$qXz=YMS~Ws(uFtp4w>uj@1C
zhKD+VhP{MeURv4>TIGIu+Qf+q#p5a#-YIr+a+)$}(xN$YWM;R%tN#9O>d~Y?4-b#l
z<ApCTsY<pj<QCUEarm(F+uPfx@8118^}dHq>8mNPuC5M$SZ!f+54?b2#$UFFTUC;9
zuO#za?ms^)Dr#0&clX-Ab^m@oH@a?J{%+2_+V7x^eyj5C?wYjZ)z#J7kX0sL{{Gv)
z{e8Fl{ghd=vNp$0GX|}k0S!q^tbTrOE~uLdS|EF7rt!78cZ`jUK)sc>=7o=3K$C07
z`{lzE5*Da{`lnfUc5K{L@^aCyudhMFE+<c(Jay{Srgi(ZKz+sB`}<;TtG--#adB~~
zM4Om?+?rjbueJ2_&Rt30W)7N7STI#P9JB^GYHQZiO`A7^npVEE%`|m%&fGelwDH8z
zqh+76k8}t|?XB7hYG4;XKew{%?Jdx9V$-@mKaAoxUfz}){r1kz;EfwMg4S)s#Kc_L
zobG>iuJ!j#w_QR~!9yMrn}ye82cp%PW}VZ%+`j&(N6PfotoOn~LP>Y^PtV-QhO}p~
zdd<P6pP*4D<RNO2h^a5$?S8-QyFh>^&*2T<1p-dC@yTYrS6m?U=lA{pAaPenDG8d+
zLmsjLRXGsna4lNZ4_cnWFc~z0^S}YL!3Mef1QqLqM(e>vyt8A-S3~6K|KJvsrBvW?
zd;&!}@@T#DqY&uoHjtBWEQkV+KY=`h-N~Sw_#nY6SZA}{^+njm&{xm<elvZ3=79!A
zE*_pK)2C1W^Y<@kuOp~4v8^84lBqQp&M(&jk6t#;h>eNOo(SrKv!V~DpVpn?g(&GS
zfo9Np<?Z9r&&|0gTYhI@zx}@(%ie>E#?|5apk0Ii{`~Cf>IzCqTExaL_ouxst*^s0
zf`Q@A19FOYhuU9XHg5BuW#S2Hr*2Gcuc@g~0ZkNLJuy*vYwm5cudlAYwz8R93kvQB
z4sRwVtc~98mzS5<)z!6WTV+K>#*q%eTbtASjf{=8zwpGx#jOfoKkwXJ>-5~+1rM9H
z<=$S_(ZP{jsOovRjTf}B^V+)D=!Ml5R-jCjSAe;8D*kLMw>W5AOG8)J7u0|=zh9F)
z*#oq7($&@V)s>Z#&sM&B_YO4VG(Em9^U!1qK2Sklpz!U+GDVDu&(f>aJaRS>(c5w+
zf~TVV?S3v<<})*?n7{jI(7W1oCcKfNptM}jeEKYMcXoAWfB*GsYokGX3+~qaehV7J
zNlaXL)>dU|_5AFe?x9ZL)U?sP>FLv_OaJ`&WAwJNvhv#FaA6sloWIZA<!eJ^t;?=F
z?zhj2jSj8q{q(L__xlPjaB;1qsi_ItSDLx|mR<0_fB&Y>Wjk}~)Fc(ttSc*=k_*bq
z!~g&L3+nR!`BPI_Q4z6R+I#)a{ohx<u$7So59dDXSBbE#`V!DDXPa}YPsVal`n<|z
z#23}KwoaZsd$!&GKgGN<78h=<->@NoonP*XGrw&JsL;L!u8}}pny#)c&`4IUwuVMP
zQPCzRXJ=6X0R>O1+Fx5PUAhz!6O&Ujckvts1`&7Axd3m!e?D(NedoQM#m~RI+x=e4
zz#yRX^|h%gKY#sN6}~<WR8aaZ+J;yxr3z^SCG&=%7Ta80TtP)en~X>;y0tcMze;$O
z6u9_F>Sywv6t*sA<;vjYSyxwuf|g(u6l?%(%Gj{MVD{@BJ8t;Z^-35zf%cI$v2ugf
zvVm5iZNFc)`&hsH`gO6pZ+!vvt3Vm#=&@s<@m<jNltqgcnPgwnDVDp^2r5b$uuOjb
z{kGL&v0Lx1XTM9{-U^*x`|aj?x%5!ztP^N#eB%jOly#yX{@>pHea5QS$NL|zKY#M5
zYq0SifmV%<)iQxnfwOM7#@;9q%@F65-hBI(*V+j_w_jv+?#lAoA+mGjY44pA@4BaD
zPUD-cmiEYTdV+Z8CI`mz@B8=7o4=g-Ud7>`1?N6*{Mi2f{M)}54^3Zx{&&p+@EX(}
zP+c;6Vd1Mk8K8lCp2eVua*JqwD$fzYz;J_u@wEMijt?@HGJL7&>AUOa&Y!Q}et01>
zJKv9jFb0MLejE}1H)dQ^vXtSwTX2{+eQSO7A8%#`fgOJT_9p$}mhEo%DzB=lDrJz+
zur2TIs#B-D;{Dkf7)qR2)&#$~zdt^{{_j@MOwEQ32BPBPzpK0$8W^0xmM_=P(+gW4
zx7Q@^j>Xa?O9VDBFdV2<Oqjc9$r6|H`?a9uSBpTiFV)}QUEP*@yT(?R!J%Q{-dBG(
zBK~jAy=@j667phR^}C5Gpr{oT6x<TQ!0=#>;D&$8ckGDx`|B&H7kMWcROXzTs{OQR
zXN|cbgM&jN@3eY_1W(W!rm(e9OK0cri<~-jD!9G%_V)6Y7M815uDsZM-tO~P5k>|F
z^+U7osDjqjuUfb6+Nr79Ta%7*_2*7Y1@%=yv+@0D><k}RmtWRge)*;0wHr5Xyu1F?
z_uaq72Gx}-R(RC@{&sbdYxf>G_H~h)-Ckc?8=RN7uBoZ1#>APy!M(eyD<~vn%JCZ$
zmEE@_9&Rh!tH*fSo~7nMRz}8!U8S!<3)b#dKA#(R`|#nzTa%7*t&QIww{qo5yBUfM
z3@>t+>UgjHe!qYH{(rx`A0O|}FRV^VT2%G@-Pz@wj100(uJ8USK41nND&XYo937jS
z8aWL#iwoL=>fR^w&_0BLp}>vtf5(Tv-|yQ$wgc_$y|mO@)${DxvvRjDUA{bZ-n@Hy
z#mo#Wa@P`mwm0O1(vA=J4^U#-O&~FWRz@30=`b+lw6LAFzW|zsmvC!lWoYQVknoco
zB*AbPlomHgN-aOv4>IupRJm!yzeW&W+EQ|ZPyO7JA0Ho|I&&sytyF7Uo0g$r;QYE@
zFD3gyquZd>mj|2KS7%>e*VWf|?aIpF(BR<WTaRD8dUa*Fzr3Xk-`d#S-`3RETXBPI
zT=3;f$=cZ6VV9Tr2K)H*eER%(>YO=iHf=JxTk*Jet=#mPGgsca6}5EPvaAaW99OMb
za|JYod+Acp)alb#`_H%2l{2sYmSbvS@*{V*8)&V$Tg}Igg4fs9g37_7q9T*rTPB`C
zQBku%15fGmD&1zA<z{`o!OATLs!-*UlaKd>1_e#JSM^#qH9fsrc60G_KhVPapU>xC
zpJQ2k?s4Cne)kpz29_OHSBJ0mo~}2`s&rMgj)sPZq@*NhX&<N^9oGLhf5)UHv-5U&
zf`;<n-Q68+^Q=>S-i5p6_ty$4yPbGiwDm7rP6s#yKe{%D#>K6>aU-Ji^|iCfHj0V|
z_u48cJzBH=`}h0xpjlonZtl;wzP;Q1KI`-}-Bl}A1f-@ujhw%E^TLBn3<?KA!^5?0
zZ0=;+*x1DAP4{l+leJp@SvO*XLvL^IuIKZrZH`GxNrBb~fafy)d^&yGBz-ryY)P}K
zdRSgtySJ&SY0t6d=H|P%&tE&%D-G(&dQMi;)YLqgd|P|{o<+-+simf-Zp}S3mw}O+
zp@BhMNC>n_sj}DH#AL_z`Mq6TTz5;a$98phU!J7uZL`gCuHV_&=KkH{`e7Lv8MoDQ
zi&;QvY{}Z}4R${sFz4Rba4`AJ`u+c`-Woo9_)yo5ZOyuM(^O)sUM@}F^X_0XyJ^}P
ziP)NtN40cyL$9xkwcU1prm_3<*s__R)#a;JY4v~p|LgVoRjXD7rKBvmzh_%x11m#=
zyr-XESW(fY<2OJfPo9(2wpRJn)a*HR>Qu>>7lHk)??7#l)X1*>e*3qk{W6w|43m$o
zSh><OH8mA9{d3(8R2PG$7#o?{t9qiREd{kDrlqdjwk_=L?sEItx3}0bi7_ykJ?i!s
zT()FM#=Sk2r%s=~{N?3k)xW>fzW@1CqpGI1%ib{}IC$}{T~<er9C^{itv5mC@8|RO
zpzcR#Z0y=in~c^olwJaDFuq^+`)qQ~^K)}Sn`4ZOjY|*nnpbR%n=8r4&A=f2(e(gm
zl~`8Rs!f|VmHhaS_<i=B)vH!*$+>Ctz0NrOT!^D%;~c-`O3KQrp5O15&j)Q_OifA2
zxV|p-*4FIl)&KME?gFjcpLFHX?FZFgUMNmKz4Z0E-F}ac_nQ~4-sX6KiGe{&N9W3$
zo0~xs?ze75fp*z!*%ETNoxl8ja^y4_zVqfbZ*OdLo|c;V^3u|%T_r1zZ~OQ6_ipB}
z>_4ezuht80U|`rF7;h3WspMg+IA|BqEbH>T)xUM3x1Cvhanh2%zrWA_zGu>;NmuUN
zskwLjwxqrkD+7Z8q>lS|{dihq3n=wN%abGF*&7nXctI-^6HUOC9k}pkWJpkE(fNNs
z*@=MxS`rCL>HK$S1|19|0a9+}{P@bxi%1362K)sXSUb2_;E4Fw2+GI|Z6NIl#wLDq
z<v}JkKpl|1;SV!}&!WR{Y)!<*L)U{H*o&;@?wi*XZ*?<a=0B(7N(qbxZ4IIk91#w$
zBf#Y*$a+xyxIvI<TKxk-MFs|td9n-k?Tecf5)!gRd)<yh$2Y%>xV+5wauX|ejcqUA
z_S)ZN@%{(ZU%h(8^zGhq|M~A;YnJS2X6I+SQ~Unj-e_sFoPzrJe0`7u8CNsUiQ%xS
z{FHLv?}&RFpX{sGnhTgeK9`MP`g;EM%aW`gA0F<T$ClI6aFy{`pX};Ii<Ch7JycYV
zT))i7FlYI%UsaZK{d#4sx7}TL5EPOJUNIylChq$G?{}>&FGB;PNw|eHIJ1H(gb(08
zC!_`d2OK2a8M!$UPEXgLe)u718|tdntM_i}mooJ#EG)E}At|t<=Ih~k{qpwf&Ybaa
zb#c)!F$wAH?ELlRvj6#t7+>Gsv~zP-M(6Exy}P@7`r(Hcj`d1M-?{#@2(&EadQ5Sz
z-mVu)UteGMKY8-xtv!{WE&toylx5^@=##Zx79L-FHG9r+u7>=Qk{y$leECwM8?z%I
zGc&X5aj*H6rQYJI>gumwuitO?wy^r!n~Sg4?_cNK&ZnuT_ioGe>Q^h5f4Py||MJ!9
z_1BtMxxZWq_J4U?zCI)<XcB1cP4O?=P1e^E7z1i*_Ds`>T(oA5&ezx1&tJdHc;O(Z
zwFKH(rmpUOd71BI70{;r6B87xp3O|(l6iSqSih`U&WyVMf6KqVxfz^&ZB6FZ-mJX5
zu)Mr=YJPK8{P|P!y~4|@i;Yia#iK__ywYZ8Uex{+;uRBkpmX}t=JR%|mn~Z+7QH6e
z)ZF}at9V?1k55libF*o}0fw`)Oudiy%YVP2uchVn_;~+y(B$&#_50%#6&1Vs`oa<u
z7hbn~{p!`1CzJiPjEsT~9y};zk})B!`mO2C7`?^cIZMR$Rk-Y^`kGbx@{()ta=+4k
zR#sL`Wo75t=K0so+yB4wYGdr~ve5JMY|mH3_xAR#TE9MgzFn=&vFh*d-o~wZ;Lj1k
zV3Kfv!S=%eX3)CZtgNi4yZXw?&Y&q8&=__rw|Lf-6@gVxr-qlj-}}AlO?u?CZ}0A|
zzH%i5G%W<0FI*qD_sfH3{;cos?!No`>h){Wq9-0xr%VA2j)PW|nI;|KNKH-6Jk}%m
zwroFx&D81Bwav`J?(Qo6EaC6rQIMa%`oV*Q*!sU;Pn|y>?&;adCug(b{r>-P!OMIu
zs!or2B>3(RV?PI@$0X3OVN(;+*}2x+kIG-zn|z#4R7B*(!ge{(^q<PhiSBZN@9*uM
zI(hP9{e3^2JUu<%{jLA=(Y^NP)9JfD9+Ot}T)A@Pu0NkngSwu3zun57v}Dd4nYZ`%
z$3K1g6g1<ek_p=S&d+~+PvvKm<YPRpE-qWXuVvo$sQbD}2u2-jWYquYQIhW*i;Iub
zKfAfRgO+Y~b#)mP@$O!5kV)a?eKBoaUEj*eN~@Y58?JxjxBKBREp_Mh^f@4-cgE;V
zoi?qiC%*FO)OQ7{e}5}4X5*JzbLy1W_ZzRSt}eaoYrfLGUk-G-)7|*(_o`OUnl&rx
zuZj@E=2x#@i;9RmF_n{%d2=t%X?xz?lB=QNFF_kPca^^0Qt>g#)YKGIGguWp>6n;(
zgO!oH;db$P+vUfO9TU5rBx_ONz}N0<XlN++7_^@Zv`H;A^r@koq~y!ezHa?}5nH!z
zeHRbfDl1?2V`0_zcW*y}rY0k&Esd}HdGx|u#<}hK*AiM=T3+1Pm>l<*mzVe5+uW;n
z?yR|;x7!!AHV(9io>N%u#lv>_YwGiB7J-J$zg~~e|7`lE#l3~$4ro~a<YaYieSQC#
zGiU0)E8f<xr?=xllh|?p*gbWRj&Oq3M}TDXvif^_ZC7VA{;1Eswgz;{jm<I8(#Xql
z!g6x=9wi@`{QmgvFPFS;+pO=EHqUx~Zf=~nKvGgt$x+ep7of9!KsGk89ykp0{h~!m
zpw-;Td+PuH19dn+Y4~6>`|jiQKc9;K{dipd)&2edE#pBu^4$C7uAVi&f9F{x^S?!F
zvo{0<1x=YW>5<{K<l}t3Ql_h}CO>-oI5aG5*<$zpDxH%1n^L=VP6yT0{HZ+ue97T<
z{?nUuOwG-!bF*`DLV|;XXRl9Gw^3qwkoe$0<1CxXP50`4=l1)HsHv-;ep;0I@KCGV
z@8?gRoY<t(D{cO6&U(|rM=rVd_C$gf2VLK`Yu7HZ{esMm3l_(l%$hU_)KGi+^y$vy
zee(9}U=5O-py1%ew$<O}T>n3N<Hn6eJ7c1D7A-yg<J;TYThq_W#a6%F`n<-^dhtOf
zrWo)3XP{hk=#Ud=5r%Uc&qS4@M~`aS+QwE^R<2sR7Su8Zt>y$}taZEJefq)j@MhJo
zm&-wik=!jjE(_XZ+r}rmYXAR#(f8~B@4dDzR(tv7m2rEkw*Hi3oD=8d)D#pPJay{S
zrH9-3LF-|D{`|RW)v8OIQcvIc4cdUq%F0?~HCOJnPJGQr*T`v0V|SOGd|I?}!2*Z)
zx}Qsz)bF3~acS%IxYZXIyMxx>ty;bM@(jb|k{1^gL8AhoT`}`29(DHZeOcyq0OX(l
zyL$WjKttTq^yA-c{5!Y&USLVdmQSBQf4x`z9yAy|%QSo1vokXvm!7-!?`qAf3J;GC
z&|1Rj@pX~!_x)bS#mx;mrse3dV_MeM(Y94z3`(XuJb&1I-NYj(F>ztq`FU#>EmFFA
z?V6UJp5M}?OQq~;b{wyi;d|d6U;OM$Vf^7uI^`OhbxzA}Pyy|<2TkaJhCe`kJJ2vc
zs6G4UO%AV=$%?hxGqtC6Usq*jcu;(Md;awc3!T3n6_1yQ{9Ll?)2AX;Rn^Sf+j8r^
zYn)pL?vV+`n?@LPyS`&!fHq*1O`u&eXp;(5fg|<k&R(!6t%KC;?ky-S9|9WDyMo|`
z0H_6(#^EwozMq4UfdM*FQQ`7J9^^I{KLg%^f;Z`q20Elyu2^Ak&muG=M8a17To0%T
z&)d@4s%c^pGFja}Z~Eu<wl*ytoi(xNc=M;7ep>XiN{E5M!K&avL*4JU+siD=BO+!f
zDJ$Q8dglYEpT}U(0|^XJ!<2zX8PX&KwQ~(XW-}y6fEv~Z3_xx8hD1<6FdPOAt1z^U
dcn#m`6MsuTe^B+eih+TF!PC{xWt~$(69Cdj`P2Xa

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-6.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-6.png
new file mode 100644
index 0000000000000000000000000000000000000000..417890386c43873fce0a4935b5bbc6300ce33011
GIT binary patch
literal 21073
zcmeAS@N?(olHy`uVBq!ia0y~yV2S`?4mJh`hJ9%>?l3SguoOFahH!9jaMW<5bTBY5
za29w(7BevLCxS5J3j5`m3=9eko-U3d6?5L)t&Rx|{rCUl_lH^!Y_|%yhHSa$sPuPP
z%d%<Px4cYxtZKAG$>h1Y>x{1JKAR`09a*{0xKpiT%5<N(nHzM941CW9Z9L}XD=f=;
zIxtw^>7##tA5J%(E5LfU$n5y_&mS%N-PhDcW-C8y{~nbtJ3CRLje&t7LCQRxpMinl
zz}0{RMh1o%JxtsT3<pv~A{ZDL)D|CLVqh?kWEEpzXgH~{fq{X+$E}f-fg!<&ONW7h
zVRGQ8mLVKs&mO*EWMF9E=99Bok$k)_c5=0O<|UWL#>VSU?ycwmr2}q@iVq8-wq}){
zefR$L>(%-D|4vg{-Dcp*!O*}Ov--)ZJ2Q>b*Hy~@&==BSV9+_1ws~fi{b2*2z4Chf
zEZ}6M62ZU_(Q!7-*!JKgkBwPUoZyt?v4MeMgMg6Eb%!Q!Vgl=a5~UikA`+wll<u5*
zE$jdNalIWW{vax@{%`5qJ3BAmJj{@__7ltLH{w}htYTR%k&!d++_^Jl_UzT>_iKXd
z|Gtj@dbj-k$|Xx&%x3p0op#;x{a$rfclYJ&^?R3XPCx(YIaiEg*XmpSrV%Ry-@SYH
z>)Gu5E4$0{=h{>TEnT|w)A#S!ANSj@^PH@9^7{4g=jZ27pDk@#pZo3i{r_?L`~PhE
z_2uPatI}61mMn3ZH*elKIWdMS7XM5Sn}*uyMnpxeDtvrwrT28bsI6I3zrDS^TrYN4
z#>GXhAp2(;r$2f2%<WNN_tdFVJtqkX34O8u|JnZ5-s<iDejK;Yy1p*fPfjvmw}I;m
zDUA&UzB_mBeEHyDbJXs#wO(FcUtTQke>JcAUEu3$YqzGH6ylY!2#~M&(75+R(yk5P
ziptB&fBbr1|9|(h^YhmqIpR|L{cgFRlxV{$Ej_(3C#NPRCZ;E^U$6e~p&&IiHTK&s
z*KV<sXV0!Zbo%bySo?oJl3PEU=iXW(XIpjR{CWR>|NeD#cLygXKHOTNvOK9v;CfG@
zgqDUzz<j&fH`!~ezP?iRw5tBL=Fgu$Cgty9B-<96W?%D|^zYAe`_tF2hqonukPg=k
z4hwr0kkTt}ANTy++~A;~NvBSoGReJV^7onf{=!EbiPPTi{~veo;K6fpZKrpMbq0sN
z6PJ};J5@Ve%gzoY?&a-$d4Xf|l(}=)c64-{zW2XXJT4$0V1je?;Wl2`edkV|47|Uu
z_UguDcU5)u*Z2Sb+y3v%a{HIR-|r7kOH122|MVrE2U4@`>-Sw;6KQ-nZL{R(=jXR?
z7Z(?oZcCI%KR3tFtyd~_OV-s>5_UB^0wW?`tXcR->+QY0w|_jh|NruWS@AQU#es|6
z+)`4Oe0;n8zEygH!Pz67!o0K3rq%rW`TU$**Xf(va%U@^{P5|M(W@&flV6=aefso-
zl$_h!-Y%-G|M&BG+u1bZXJ=+6=UZ2QTO%kVlT-5k-rq@&{k*-6@7%egwfDO|uZ+b7
z4h{|jE-tP&x!htp26yh<>FKxsx1;O+%3F<^PBF$ymoA;OM15X`Q~sWhZJ_Y3{+3hw
z<6-+G6@P#KsZ*w$IDXu{{@>^MSNB$z*Z%!_{nyXu^XFRT#4OyLem?6^3+Jxa>vqd5
z6J6#zd)bd46(F6nEQ{4Hw{E@Dz{o5jC%5kR`~C6J+w)4l6~s(3zLu~yVxyCsoLpCL
z@7C>=)z#W+YHqX5^RGQT+`ii6TT@e$*Y+otwZFD(+O$bTR8-a8-oE<xiHXWjpFdyz
z^z`)bmHoGxn7Ef|#y^P(30X2}l8~%**_pbW7Z(=(dL93Nm9V;B#;GZqpcK92zgT4H
zt1B0y^Y<?GxBKbx@83T^N&9tvbFE56<mK1ztNopIpn>t%kH`IQkJrVffa0Z7`RG)Q
z|G)374%b&zRn^qc@c4eOTHkeA_lc7y1Al*e8@fF&w*A|>*xk4K<GT_iUftcj{nhpL
z`tkAcckBQE{q^tnd)ae8f4yEG8WpulFLsy3mg=f1Egc;n>#{cn4?Wj3n?@M8{`@uD
zw)$Jfrza<GZOxwUH`i)u^}C(!&FuWw4m2`<J)zwH;?K{|UH$#npPZbm8v7&n$8^_g
zzUFtIJW+QHmE0ep9==c3d41g8Cof;FymTq(ZteHGzdju1zq&r&-c!6w$Fu5juX)L<
zE1Ih6>Z@aSm-$KCuX@+WE*G#l?JOv3Y|XhD^zh+BFE6i4o6p;=u71Ba{Qds_`~J!&
z#n`5=Ie6;y>D@2%xBvV1&xps_y-#N4m#Fyoc-wC`l6QSRXC1n~t~U4fHeXLq&sX>M
z?%tMve_cZZL$$ow?6sHb%<}F;oL#=jOh_lj^svE`ckkBS-Ce%A`ujUjuv}dktp4@I
zMdxmD{cFPhHVeb!YeO%!YE-<tv(u{JLBqW2cb0qq|NA}ZNSx<ZpUT40FE0W;|NAPb
zYAPu?ZB9EIv_5Wc$@jbE;WPAV{(L;XHT$~W&tJc+Qs1oD=hiEgd9aDK>hIU<r5_$R
z-pnz(Tlf2|mzP)2Y_nXCP3szG-CMM9#R`vm_wI?_dVOVOvVGjlh0g7-)^5LdNx9!<
z(eHP={f*PkT)4G0yY$Ts!@WNqb@SDFtlBc)`)i<dV8X*yQ>IQmnYMZ5h7AFnoSa$r
z_UsG_3ffZhvq(33o6qg-`P1jmpD!dV{Po%Fe6LB17A^X6OgjHXxBk9>prA?K`)sdY
zmDqpF>TufTm&fJnLtI>1+<GJwS0+vTdWc*9#kSjdm+zL}U&||Pc4K|*&!^MB9u<$j
zQNOyibn5?|%a<*CH8XwQ#ntQgc};w}sHUc-<lUW}TyN9Q&)X`$zVF@L-K(Rw=ke`N
zn0kNlrn*(P+ph*DEW8!AK5p&G;N@Pw-rsX?OMEdqf8Ryj?RS#qYia1|g|+j^etFm~
zf9m$_=+Dp3Utj3luHrdy;>4(JIWwP~o&9{n4Z&+A@9tRs{qeZ}*6#B4pFV$9jh!L(
z;_B+@cE4UI_sZEuO-h~!Dh6zSKACJ)|8LK)@9*>PcR5d*Ws({6nZGe>^Ua)ZTc;L3
zI};caGiTDINgA8hZCvfU+RNL!^xK=r_VB{OkE*}FeE%LE7Z=z1?bEhrXJ?21wv5`A
zv-0ure(NuZ5^hWX#(2tyxiz+G8S^+V_nUiZ_4<9Q!s9AkH>aK5B!Bw+`RnKH|L6Sg
z-M(arOI%!>mbP~AY_r@izh1A;KHewGSNz7go$u;d^ZPN6&o{n0dFITO4-XGt-B(*(
z`r?A)!Gi~@9yGFlxtTs+Q&rWK-~P{rY5MW+0#c^B|5bMD30UqoS42Qy!9->ERU0-;
z=uOF%EH5wrZQV3^@?_0TS&aVv{y%^Gu-Kz#ru*GHF){Jh=Jb9pE-sl{+jDLz%|5$q
z!-fr6{mK9T{mr_yW#!-36D9~$R#dz=t-rs-V*QdOE|!*-;aA$H1|}>#m18#h)%Er3
z_y7C49+a)7PMNYq(m2gyQd4tt>2cZe7l--nuRJ{5{`BR`%>NDPo>}+z?X|J7`Er=w
z-r}=hfG;Q$ZAd%}%H_6SuLRFBOm1uAkz91<j1Q>BK6&!wEThz}MT-_~$+>9+im6He
ztVK6uUDc|rs(Mxb|9kz^$&;1s?d{DbtYrno>)*He^_%P8K75!s|Jq8giKZ1F5^BHQ
zOg|@8xAu8Yt`x}VOP7L{E?IKpc2{@z)M?X}efUuDdrDnh-M+H-_j3KsR4w-;@3}L}
zG<!?#Z8K1Pb1!UvUG3Mmx5FhRCHcIaFI~PI8WFJ~@o-!0$M0t*&Ds1{ENk_qO-6?e
zcpk_9|24hvdThBQue6y7s2DhGz?1y<*H^d0ZM?k~E(AQjvND+OI;d=Ldwi_7_h`5H
z^&c||Q|*2}5e8MA$AbNBQ{UX(ef{ALclp{B7Z(=^v)N~7SQak}jEKmv`TOOv+uo|L
zJ&Mk466}032G`a^Cf})kzxUVz$L1d6^m7(3H3MSj*M6IsxcMf}?6YY$e?A;OcBqwG
zzbY;!W=`Vfn>~e(k4f&_xw9=%;@Hp6&wG7mn@R5fc{abN?CmW{S65e4%P&#uYZeE_
z$Hy;@+gr74UrlYT{?3al5+#mpNIcA=udkncsD;zb%d1OJP%yEgvQkpoJa5Z<VOiPS
z8#!jb=kH9EaNAw>wkPp$o8<aEpSle5@7W|@SrOQ_eED)g5s{QXKOXn<)#lvaclX1`
zkA_y|?{fD1d^Y>o6wP2Bd3pKd2L~FT)jQAaVdB0T6cv><$G-laLC=4&NM0!ugSe`f
zs-O_wdOgl~&z?O!eX`b4GiS~`wy*Ygk7@QbiP~RZ45PMYrOH^9oS1poU3AL-pLSob
z1iQ8K$@Z+@_v=*Mnk`$d{JS4t_jBpR_3`$g=FQ8OFWo#nI}Nk1=`8k~tOja)fJ|2N
zoh4yi{%+03^aE3WKWOIf30oT_sqEfova9rU8Vd`H#P)ktt2b7C&1$a?;eCAQ{E4Go
zYtGyMzw_f^yZju3U$@roIq>Q8XX97b*XO@Feg6FWO{~{;7C-Od6jqZsJKNm6rlzJR
z@9wV98?k>cy33p1xqDZ(PHdU)?6i`1cW!1}Suye9+qbzatgMpte;&(gi-bS5`~Ajv
zv3tK<+xqqE3m^BIOZnUX-E#QcyLE@sBy>6)o{H&4E!lp*F8ceu>h<sTeD-T?X|a&`
z|7!JmP_tld^!BV@UtUU?=gkQU4xTz=#tPf&Z!7%fT7CNZb?W-{>;HZ1uh%d!x#H>H
z^h!fZ>(bio_g3}ET4y~yHI?spPyCzut(lkAc;##&?%lh0Yft57DYKjv^7VfLwZqqi
z?5+BGWqW@7*38StB>Nk*QzY8n?Ru?ux8N{u)TWe9v%EViZf;J`zP&AX*T-YhrgeWR
zzP`JA``^rBko)gdJmv+pbd!(uto#sJvSQcU+uK)rPuKhO`Sa=z4_}6_UbDuhwYBxu
zw%pmEWb$fnVd1;;_W%EUJ}1YrCiD8b*j>Nh?cQ4dzpnP*&*!tO%hzqoySvJ{oo{98
z>1m%neAtk0wWIjCUusIqiMw}WK_O{c^u*)m@82Lhq--iS#MS*w-I{;@-p&3NEvw>Z
zJ@;xp`+{69WmmJ~aMiB(bx$*HZdzJXTe~&qrqS2e*ZpO!%R&~r^@<1zF4T+NwIXn_
z+qo*1n8we~&!0Yf)>qcL?8=pu!B;n>dV>NhFfcId>Z++rxT|Nry|K~xe*OQwprH9J
zHG6tom1pVeYoX`o*}k>cUNLXa9-F00mYleKJ322fZ`r#2Mm)|(j~<n>tumQEEztQ#
zbb}Ww3rohIA0JnRub;=n%xqfvDn!<<CgSok-{6Rd8Na^1Uf#+re(LaH=ls22r{(Sc
zTc)b6{`%+h`Qd+mef@eR*gx~vmzQ0=y`iV4>CXLYv7(KQS4u-c!J+!wn~Og`KY#l0
zVc^5hM|-%vd9EyW=l2x1V_UpOc585D;+0*c*`TJ!uiy9oubZsy?=`87Uw$3Cd`&=J
zUY=Fin;DZPO}etLwtDZcSF5X@%}oDt$y@*B!gjey?d<XbOdcW;J6hU!rL!(A@%(jI
z{@;SR*5#)_4e#H#?{CSzu6OjvkrQc~Uv{d`3uxz)HL3koVw!o$#r#e|Gbkc_XPKO=
zlmB;cZS1N4dq7?UwJ?8uc{xe%&*R^(l}@K^*0iv=@zCm?YQ%5T+*={Z$9gWly1II6
z>S;00OS?*6o0Pl=0JS8eHY7A&TN}OnzySx}83v9IA3l__E?ZOg`}TdS$|vg<FDox<
z{~6KTdfKY=)s(a|GZsF1lF}<{eeK^y^GmJUi=RJvqG4(p%F4?6%|9mp+M1bVZ*MJ?
z&f9S?^6;@xtBMZ`s=mBfczL<Mwx*^hs0X5Qb2<0v|I6pjo40QH{JJPmJM`U-$9(C0
zl4@4v@8+=a%jq085D^9!^e?yF&I9%E4o96SzgOwL{cf4`eC^DpPo@!HUtKk}<<!yD
zz54R<^2p}U<`YGQkzZe5zy9Ur<<!kLP14WFNVYAMG)`NQcX!vT`}_C*`u=`>;9|Fz
z2O62HzTYjMI(hQq@c7!Pk5*0N=Ha<AN!1(F(#(E!Wu;Z^uPu)rJ(3Z-|L)Gt;Qal6
zx82&7dwSVMy<@j;NB{l(J>1EuY15`nCIt^1&dxGD9TzjT{=oOc{Pu62Ok}#|($uPD
zUHWQDT*X6HRaMoOH`C`|{e0eD-`?K7y?m;txR}Rh$9?M_Kkm1`c447&>8mT6wjT~K
zOPS@&xV0^Jb?NJCFPr)8E`-O|E(PWOL)Jcl)qg*|FWF!BcT4hdzT6ud9A&La3O=2P
ziLPu4-Cy@Nds4z&tI{r()oc?J7M=n%FETGL^PDtk(j*m6<Fqpy#Dkx{cUZKeNcZor
zua~FkMw`_AsaPAoKW=sS`e`MJy`UcS*22ebrEhLrJh`}K=BfLoX`64Fq?{1Qy}vJZ
ze*Hg7R<QtHk%$%3;>9E1y?ZyyEO*wQKYuE+w{ibIn_ssW6e-L7=U?lSwGIgjTQ*^W
z0H|=ty0D;eb9;OC0-J-s?!K>E9=SQ~<=yi8R}b^s>*(w2tM{Mz8r$9aQm15nrAWkz
zZJ(4tV+EjkaL=ASCdJQu()qcsN9?Wo8nQmlcKYul)iF^H4h?B%XDvN0SM9SpZ0)5F
z4-e0^Rap?W;J_i#mGS%csrk-Q(bv~^b#t?-wqRJda9{23RmIQG)d)HBDjqE26^Yo9
z#4BZT;q!U>^H&reJYr&E0<{KD-oAbNrZZy}FPBb?XqWbbUk-(#n?2@a*@MO&by_r?
zt~>kz4PY99hmTrVPMc1E3`c^7p145<Lk5$S53XW7-Y0wc*4AuM5fK%6dHHmHc7}r1
zuCA_<2L~8=B@7&VXPN9&tDTUrlZ|VQ)P}ORQMR8>D4&yKV>qB9DJdysnAEblosoO-
zfmMu-j*gR-95~=`b!G7Joy{u~+xg|g92^=pw+B9cc4p?|H;NWV&&)LbdZ+ljWwnIg
z#96amy-~cf!*{lsrjpX3n}=5fs{75ku&ea-oB#3q!@!<dBNbq$8?oF^7SwmDG%-DW
z_wL_a)oGqwoScQ<1m-NN`}^zq+s)>=x31iDUQrkq7kB+>v3Jr=cD-)!2wfuYwCn{3
zm>3Q?X>5pLzHPz)8pCDbz78to=h(7bSy26c@AaF`4!m4^d}ZGRVuU!SWh)#!Wa`>j
zTD$ZAzu$8~YRcZ;vaIH4NS&C#$dI6@60xok6ov;<Kmi!R(;58M9ciGh#WZ4FBiQbR
z2a0%o1eqW<GBBWoImksG8)BG|M*Jj%mfr%83$EC)BZ8BYlZ%66!us{=4;?-{b?Vg6
zx4(}ZJ9g^qS>Nw>%i~*<_f~(OHhXq->-7bW&1WiDycG|EOq{coP20*U3RG>^)a+?$
zZU!}c9h=!St*xU41qDN2JwL6#|H>lQ?kA5Q2fwrc^<i#qPCsqHQ(gV}+1b_K6t;4J
z2D7j41T`pbZc6p?@(QY{*`uPVrRAlls5r|Yu?f^;Ui$mU(W9DHR=*~l3~y%R6_J$8
zJhfwOkERm?gU%A0gGRqgHMPUmOlWU!PfAXHn|trxy{^vAi_gx^F8%T0;pskWTie*(
zWp6Ka>+h?$S$z7`sgQ_>il6yzx}d@HhE|Kk2Toy*TzEM;Hmdo}S)m!cY(?bewCOhG
z=jYje`usU~Z`Ic)@87R~KCjwu>C&a4Kh9mz0|k1)+|#E|Pu{=3zO}5rzFx9zp|X2l
z%%@+H#%U+6Uk^WT^ZAVGd2T+wYq8~bm-@}M0(F(O!`56_6S;Xy`TIEC$W2dH%{!O{
z8r0t)kgijtucb9<`}XqIZ&szRZuEzzou6l0^>*uZP;aHOsw!^N{GXqnTi4ho9pM1=
zIJw1i0%~gZ*cukILfrEC<Hw6Ti=S(4nQvQtt!|G|VPWB`i;LUkDjqayzxsVMeg4!$
ziSR9|EmOfs%rJa%!rwoi&x2|#=jh1Do2u(Se*eDzg-JqO+`J{Hwg*OR&zpN~UF_=6
z)nS_E=HZi4B-*^Zy+cDnmfX1$W14pdRKKj=@_w3bwAZ9QdHcGPhS$tMQx-cWu<=T*
zaBODd%XM{iwJLbvu=ILMYbz*uu(Go9ao<Js3cKUVUtCbUnPbK)XLDoW-L%awKRi5~
zb$MCuq{)-Ne!1))e(U?b+TSXkzO&8t-dTKA3uJsmhw-%pUP&XD_4|IU3JMA`DSH#)
zDPC6Q@9iC2QL%%GiAlxt=g*&@u{co~8J+U-@~<y1yRQygyQ*OSjT;fHtgM-@uB_zZ
z<eaE7*RD3|-o1ODK7A^(D8IHQa?{NmDT9Ot$^I-!kWDeqca^<ewa~d8)by~b`m&-{
z{rjCeF-w;%yLEoHMd6}LmoJw-IKart#<t3}TP*A1BG=a6M~@zTc}zP0%HHqyvh#26
ztKF@ntSl-ix$?n-1W{4Z%%`WOf||Z={c^FHUSZLoxtj#VbH7&1Iod6reQQhRsS_tI
zbPB7BNJ*_abH=Ci{k^*n?eg-b*Vo@UI&Wd<>abTgH!lYbWc>M4vvcRpmCo&av&{47
z&8v9S`O1FEQK)fR8}{tkGiAn%6-SO7@jCD6>s#uvMQd~Y|9@P$j*gB|yGmZBt}hkM
zxr`{dk3@2copD7fU)qkW{HA;mJn;l7Jj4!3p-vQFE9pT&7Qw+fEjyu005p9CF1R?r
zMIFK*=SLyGCn8l5prTU&$s(twr&5soz@>Bj!KC1pZZX|SvuDq)sjZzleR}xAiud>S
zib_enYMIE$(D1s^TP)(~xw+QMZ*EQx&saW*ogpH$vMKc&x9RDn+-o*$FgQEkKK|#=
zpXcPb7#Mc+?Z{~awR<W*rA(bREzacVucezd8SVXWh?|R#FKn(=DX5|9JJZPZ=+UEm
z&skYnU+(+;?sEG4+GTlncbz<b+&%a9wyTehcCUZBn1NxP@sjYZ^G}OKOakfZm9hM^
zNi)pHr)Qb}{B{3-&i{Y$&d%biyUX+U{`qvetEZ>L;(XfX%=h>9N?Dbx0JXC$i=VA1
ze0;3x&Bo(j-fq7i_xd;^1H;x9Z}EspCaI@HrcRlnVQBbq(ed(kcUFG+Qqn7B>g7FM
z@9JcKyOme2g!D?A`>hUNf9==T*RtpCZ%*$ITNANRJg&kK)P7}`uTk*#_g}hf*|j5&
z85m+@vNyyupB9f;8@)X&BxFiZP*BO27Z<sXUtbfcJo_wYXuADd`uy6kwnPnM<I4;8
zCLizX>gd=|e|L$e@ZFlvXK(GV|G%}8fq^05^^TfGRnOq%exaV8Cta^6$=Xza+VG%i
zEo1-3W71bQBsxER_RMMvI~!Zr4)?`wy(N#1a2B)kGVIWsn6R_$b<*OC*VabAp6D(Y
z=;hTVBqXF)<riB2<Idf?`nU2Vj-{@*t@%;V`dZpFYl&O0ROrfl28XjZcbBi<_y1pY
z`?mP~KVL>AEDpS05GxXKsZ~T<S$XlHs5N10qh9{``581Ym$&a{TJ`UK`+qAYtNX7C
zT^+WpS5ZO1Vc))e%kJ_s6ujM%eckWvt*ylwzh5q&|K(owd&^9h6~61bHJv;`#g1I%
z6T!2y&CfrSZEa@bos=j6>JA?M>FMdY>1NKZ=kuzws#Y*Gyp{-VS$8m1culwOO;B<H
zjXJ%%yIWL9NXe6nmp8PeWD6*aA06TR`s%9p{Q7@8FI~R;^+7ZLs_^x3rnV&v3<0Ni
z<}{XW%-WlKds|mm*QG_S-7<aqzg~;Zy1i}frAwE#RDI35TXNYKG+Z^W`rS^h?`z&{
zXQ;DgV3^TbADm@BU1!6h#fwE{Wos`cbBpU;In>H6d+W}fJ0_*CLVV|1eVz1uZH{&u
zXlf$dEP#RG!K9c?2bdTZY<m>jvhLxo$R~UZ3<1GdX8>UtJ3;Z>t&A;@Ho`Z5Sx$cb
z@UXD3t;gl1rM1n?&F_}quNAl5mw8zYG<IEASNG}r_wbmQIb7V_tMB$-1r<aLuI}#H
z@9yjb`7e9@UNwGxeqJdPkJ)Cqt3KK8`}4_LH)@NAot>Sy?Yzm87w@b6{p!ul&0c<f
zVL3T#K*f5_4TH^chmB?^u`nD+%Bu3pe|>E&Xgqe(q)8(3^7@`#U0p#Q9vx~vGZyqp
zn}@x$D=aMR>g!u)@^h9=<t8cfyft56Uq5~Ry#J-v^DJ_vSyMJ`+5{S7D3&|H1oHZh
zb6BTa-p+glTMGc0deN`$|MI2e?X9ie`ul!7a_ygQR~r=>8QIm<wMjgDk_l)m;OEcG
zpP!zF|5p%mYGh?-XthY@4fFHsyR|)k{jSp2R$I#7-nv@%Cy0xS%cSs;3n<B)on^ZF
zg=KvG->qKW-dC4;i?^5g`}?=Hwq_phlb!zi+7)nB7xVnnr%zAbzmH#d_x}C(w!{}F
zCMr+gQ+KRK^3&I^SB=lx6rZ%qF^gXMH)dV`tu|BeJg@P#Obr6f2!7A0--=h-WhsLi
z?dyu|?Ch+{-^H|k+nj#>R)4sfo}Qm=)t3v*{5AzQ?NmZ<onQKEMK37CHcVLUyW!KP
zPgCa4e}5q?Dyr&aw$|)LpcasdY5u)Gi>|MY-tL!uecjbnp{u9No~`X^#N)hl=~68%
zt)RTTb)Xoj`ughTa_Q6Wf4;8MdcAntq647z<hpGKvhMAvY)yK4Wo7WKJ(a~oH5Yaq
zGM2HciO9XRC9tSy)4aN0nXN4?Ck`KW1`W%#@kl1wg9gGaEiI+&YJN<$S(j?)%E54;
zH1EU&MJ-+3P%p2py=!;uh{(*$<l^TKcW`J>(X_XZ-(CJbEHZMY%1ZzFcA#10u=R0o
zKV)56(wVpWt=ZbRy-}c%F_o2de}BEYy?work&#SUp1;3;cw*wh)466|O{@$JN3VQw
zTO7N)?COPu&Ze1{RAg<dLJl50=;iGloR_yQC^-1-bKf}@fiGXa1kLX-F*9FX<jTD@
z<Km)2e;+-1RPwmj{8snsBK>_o7VRp3ziyswb=H*?fmS6iCOkVcb1@?`+lu)8b=Ut`
zW($ET<_nLGc7Hu%d|pFY*}1T=5H#qYmbPqH`TIQk<7t~uo_+gisdMV(IiO+2O`A4>
zCZRVbAJ012#M;%{dv*8wec7)zM=*j65_{B>E2VPs^l9(T&Q32MpEY0RT)7g`?y}nG
z_xJbfzeKpWw3y}GD7aaDr3_TBGpK=D2M3(yOief#gDim7-2g8z0Og6J0RmU+K+RN!
z89ktW4R>PK1)P0FP^zG*L1--<&=Q*iPBWBBNa;y|y@t~ukqFa_lao|m-PyT$b9<xI
zgb5QKyir`x_ILmP@Bcwv!iM~PKi%H%{XTDVdt+1sxF-kdE$bAqgBJUMV+7O`0%f}f
z(A>g=2@4t;7=HfxrDbCi6B!vfeQ)03Hr`$T|NRz~kkF8qm;d?uclLt=jkmUB2DcVh
ze}AWIZoZvsy<;<5Y`1%n7AU9d9Es!%D=FC$wk~Gnj~^AR?CjdQy1vb9yg_AU+mw`)
zwD#tmpJ!WCUVeRsVRFf3U-OqoI)zW2I1zAup6%AOvr=E*-@l(IqZ_^L%A1>;QzhE=
z?yda%Ec|<em`fuoC}-g>pR00xe0q|Sl4Ncj>ycb+mU}DX-JP9$tkYCXGcGtxoH+5B
zealhsqL!mmmPe%R)k{CxCHm>Zhk%@%HG9wAz8!67Xb5UK^U2%Ato``=$Bz}6mzP;p
zetP2CKYi-dl^Zr}i2A-J7u0gxaqj7pCo5`ye_Iv3eVudl^>wjtkLy4G^78Vp^Y#B0
z-`!oF4V_^A_3dr+!#%du-$1J_zP`FTdH??Xpm~<5)27Y(tRQwsM3I3(>`{+tL}g{=
zr|;j_UwHTaz5Zc?k|!r7p8jT-bHiY5?C!8hPo6$qdU3HkXjF{vISV`c>vg-|1ugfR
z8xj$*LR32}<Jy`?P{U-JPGnH8`X)Q@xXBSo*08|9iF@|$)!uS_W$^L3KSe^q!lrq5
zEM%=pJi5hng9-~bdU<(0dHOWfKK<XHpM2MQBn+JvyZ2vfV&xW*m(TY<6T=wX!oU#o
z9Ch|{|C|dK0zmzpe!E{QKvP(tG3}~18;|Q%-`#xPPW!OIsx7K6xlW*hsx>CJX>0y{
zySKNupI^9k$BrM9uK)P`JHAB9KwsZK=<D{t4`04qsr`O;`H>?obFItYEqWQT6V};_
zTWhzb50q-fFKx?>-kN*++QPRtHYP{ytt!P?dS~@NJ~PwUh{t)k|NMO^jiGToX1TYv
z+^UU`1o<SQ<7Tu;h^nBpQA&rGxA)XZlalha_4LA`qGlaBd{|UKK*96W`SaJ`-Q67;
z7M5oJe);^mRR#MetNXv&`~6;ULc)SsCYeev5AEjBpSI-eEK_f@*}lwdJUbS>pB@V8
zZxqaZeQWFLHa^)^o|DyHzPPyf+uS?F#l=%+&C0URe{`hN%isTcBQv{*goK8tltsaU
zs4W=_^X~3i8M!&_)Y-G4QBku#efk8N-2T1w_V)bnl$0f)j-8CmnnjD0*2e4%0<F_{
zadGi_4b{y?kT{N%pSro?W0LP|GhazbNvpy~El$qPQ)kXx`R?v+>pREKo-O<YTHpa{
z)Zf`zT>9yWr)ky|kL~yCb|34PfB!+ydTrF!AW+t;`kM9h`E&5pfK|zbJ(Zuo91-@P
z@qL4sV<RgA11S9+IpU(KrWRJ^mzA~3d68=DkBB*j$;V>8{eyP*Li;yw1CLK7o$=cc
z@EMd#HVCBq3Lc8t(~Y~U1}lFUeB8jv1vE4VDn}S5g90?cP{nVnJZK<C?2yPpynQ}m
z3<8yS4JSdx-3EbcpfNzuVzw5h)25&@fgu6+_~JB;4Se!;Yy9p1hS>l6vAFL4@B6D=
zyT!D$wJ)Ey|G$QfSL(#wyLWFovoJ8MFk0>>DAl%bWAgD;rLV7nh7^zW$*#7o{^l`>
zi;GJ{L}bbJ`1-puomm(b9GeO%g#td$iAwnU(!c)F{QrN_L7gu7`ac_a4sVdpzObNC
zuI7W|-tYIS{bUpw7#zM@mUb2V`}0%EvS>+M)l1dC&+Y%OEU+;#2?4DX6Lw=`Xei#m
zcG}cp>j6-04k~bM-#vf6Jb1a^)dw963<Y|i9`6;+LuqGcy}Yo{d8*v~ZMn0Vn3=N+
zTo@P_!q2Z{z1GZcw*s`z?)Ufi+qX{*zbRk)W#Xkvmq3#g>Ad_54N~dfn99X=S+@ss
zuK^80-M=57n3xE1QI6ScAz|UGi{1G_GvNytE(A4_joUdG7y@$rbT>$uWGv8)-j;Ew
zh106$$A(u|RxbYf`ugi9CnwLctKDUmb3-9MK0cjKkfA}!wdtwUoP8Hp^!N8K^P9VB
zW$<#VY7GVkhGh>nbNC8~h%7lSUw`N3VFrdB9G6z#I{%XM+V=Z(tFK%Md3%3<yt?0<
zf*Uy@yFNI7JE=Z@#<lzA_iGk|CbDkcya}2K%G>df?QZ4sxgghBmA$EO{a#XB{Fq&W
zf#HVb)&o&{DmKbhzcB<&*FT$`AGX-7S8LAa*G;dp*2L@#0<BsA=|6hp$coa}*FdeS
zdsVM>L9P7L({wNY{eD0G?eBN@_D1LBwKOs`tUhiRvF_kX)@z^7+pmw#-x~^wrdcML
zMZUjp?XTbO)+YlRw5k2|a(ULB9UK2f#Kg?0`toAoiWM5QU$2I9adEA>w%69y)>lrK
zfx&e3jvW!8c{De-HorL*3ol#<0F^<tzrXE$QYvkhb7A%ReXC@x%U&#>Ul(+^jaO7m
zY+2^zWw9m3AAM(=WgcqbytOg89W*tOc)0E5(&=%N=Fh*swaR39LDrk1Cnp4L|NVG;
zeb0_bOF-*ATwPtgJUt6F)~T#4e0&Tv{=>z^_2rcIdXGtRwO<0a=H1<OsCHiczn@&0
zqS+f57}5%_?dDj#c(G~uyBJqj*Oyzb$4zc;Z)f9`TH-s~EcVkbP!)LhZY*f%ApYMc
zanM|<d%qlLUh(TicX`V>vvKs#Hmv?NFLGkA@R|!30%R?Vmbm@;b=>~n!UYQ!c-hZ-
z-e>&|v|`Z6*jP1G?qb}Uxi3T+62#Jd1VJ;_r>E(H=Byq)eyr*l7#PUK$$7DbQ+P|^
z<6~aydpkP=eSCVHZ_hAHzOu|$`s`fm@V~#mZ{O}e&nB{0+8i|K@wPK`b=X>ytScIz
z6_sYXt9|FpN;o^y*gb#m*K4V(AFl>Y8_8N0xop2vbXxU1H!tti{r~^wi;9WGUH-_x
zkf4ft=s4@{`QyjkeP^3pJvmwZZSHda`C(yU(-tjSB(sd!y-!Bd-rim}e&3&0@<*KJ
z%t}yIQ(NWO%(m-spY@fE$?mLdY^Uztz57sR_St3o|Gv!+zk2@V<>jiLUte9_{iO2g
z@t+Nu3=Nwtln-JKKC`p1#C(ziSyx!Nu}{`|nQONgXm%Pj2JrXC_4xX=mo5dBzPxnw
zp%tR5c(qdHba7VW*Q??2C(|}-8W;qyva*5})oRU2KE@we`7k6dBXrrSRtW}%bt?M$
zpv9%4xBmY9n=0Wpb=qehX)~Yf>+7bfR904IetB_`Z+6G?r%z9&Z3cDvmMLZ{FBgko
z=aX46u@1DBufDz>l=7$BykEV3Uyy@C!>em+qcao3!@|mrKJMu62aVFp+yYgLl9H82
zzq2sJNM~PLbCF%X=D~%so$*)B23^js?(XV(^7d`)!o7ZTt-d{;K6%Cr&?p$Fyo=hB
zF|n(=J2WUrNnc;Ty*lKYf9S6jzH|0n%<%mQnj&N67R$K2%vU`2#lFPDY_b*w4#~%Q
zCaRcbT{)5XZpWRgBCRJ+o_uv@=V#G)eufp6&1}4v7C1J`+}ii^nKZAw-5pQmU1eBW
zOTX*;B@CVBT9;o-?zc^gj}EQtKlN*+m;BaFRW8sFg0``7@Xnn(C+Y23`~b8BczxVn
zpV!HMetZOt)xNm6cx&C?s`j-~ee(9})aTa()z#I3R!FF<%)Px0GzR^3ef?i=MMcF)
zdPioj4qtDU>%+kC=hoGA2Y>x~z5eUh>+#lGriyz_{Rkg=S6Ny4`Po&e=H<(mzuW!Z
zPE}3q)t#NipT2$D=5Idj{^#p|L$>p;F3xHUjfq)v;)DmNQ`(jYT0%5w$z*kZElo{N
z(2B`Ps@^^~PZ(QRM0AVkf|v98&9%B&UiANAyZn}dhfbi{>EflO-fyepZNFS__VVxm
zb@&&6W}91ETdO{wH81^q);#<7x3}T8atsXXT0zqn!OQ*la^3r6F7B!PthHB7N5|*p
z&6`>p8U+zA_NAT{yP0Fw+S(dgEt7t3&cs9s&?NDmy?a5!V*LF4phbLAMkyVC_e`23
z^z_M-9Wh2PuH;IA=E_4?hk+)6L*wG+fkN@|@qTT4`}oJldM}@vs%={Q%;)kiP^)lT
z?(JpP@Am|Q2E1k%CV#mWo&WNj_4_N^a&ODnsVy&jd@O2j)z&|M{!E!LVF747{o9+H
zpt;rXhx=+~s4*PSId>zY<irFl-T&?Tn++hH|FVewKbQUOLwDRiIa&Sdz3TUx1_l@Q
z&8+zQ>+99+`SGbKDHb{HQ|8TEcj%DQ^xHXCR&rjme!pk&ix(Nc-@SY~%QSo0ks~gk
z9zSSIkXwIGLezXvF)(%F#K5J+zrVa(JlDEBEMvZ1?XJVue}8{(o|?nJV39n#ZC&i{
ztQQv+&N9iI)F)@V>cNAArAwEBW?fdUT>0%YXiDnKml9BtZ)|Lww4{-l9W>+c>e|}b
zAS*$05=)nA>g%sRbT175z`-)R&6_PvL5o>~x98o}vc0!9+WhJB=hs0EkR5iqaeE@p
z+kEaZGBOeo7hk?<lTm6~+N$dB@4gl1m_@htcXxMoUhEWB2dz8*`;fmrz{{&^SINso
zUteF({_x-+-}8G_uh*VBb!yW3_3J?`D^_kX4KuT__xpb5_1Yx+7G*Vo#yV2d(_f!d
zpTFnD$FHxigW77QHd+h}bB;@LPAf@#zY0rZ_EY(Ta979(M8MO}+1kt1A}(IM7`3lv
z=e(Lvp1<e3`}z6#*6Qzhy^_Xm@Av&)2dV}^jTMFkx8}@B@SSH9`TN`3U@xz(XXoeV
z_sgE2Z?AvYKtxt{?a9gN*2NtR3|B1fS%m(!+<Ks>ygWQAYSyF2k3l_N(D3%9*4hnh
zyi!j#WJ)qHIOHaF_PXWod@6Rg=(H|qa+<;K`5My*gYaJQh^xL!bIfkLZueqfVA!xq
zN`Hftd0xy?uU$39#;fue4txa-tzM~UoH}=I?a9YKfBy9H@wu|6@-t{X@QM{HW=Tpg
zFf@4TY-IBWCxM%r)3sGqT~$?8tDa1B2TcipdRaG}nHd%wn~<=RZMk^F)6T2<+^bgx
zFJI+5+w7d26a#~4AJb`5i?s(%oj-s5&CSiG_5W%>6A4;cUZ64i*Voq0HC16?U<d{|
zWBT-T{WV_R-k{Y?zB7$l4{<Rx{0B|XT&-xlx-B<)u64OzVqzkwB^I?kZ>_Mp--{!i
z!c*fe?<{^U1#0mgxVrKq)9W`kH&0q3Yh9LcV?*L}o9hNVH*?IUPMv!7$OQ(50;_8Y
zJKLo6H`M*r1Z~4wx9k}Aninr#%z7up&=A$ka@ur<Wi<l>1H-ywFMlU6GBo^G0xv~i
zV8ED1!a4yC8c2dpkfYBtVe4~%`(@~T3Tn)BfoHyaD!Wpzt=7UZSaWw*DQJ57toeN%
zdwct>xwpeMZrph4{Q30-dGGJ-efsQK*hABd3k$O9``7e=rnncpc#*L-W@pgHj~_vk
zQ&CZ~*m$Luym^!3>f#bo73<{G1Zrn4bZ%c2ySoh3UIlH?Nli=BQdf6BJIi$Q{Orv)
zuWU;7K0D7gx-Id>?b+t}b-we@N<#a7YYyJpRl0hbZuGJxOH_^?Kkf}$pe-UKw1`t!
zE#vXA-l=i3=ge6nXIo{l1++F}Z`IdJ()oK9&NNQ9k^yynl$4d%fAGxWU&g`6fMXy%
zAGB{ld+)dFN2jXXEj%s@YDMq+`|WmjTyR*}vO|Xst(M=>3YsWLP)u9Df0dWgw8@hf
ze|vj-b>7`wd~aiSmx0!DA3EeDDk8GNbF!Lf-`ks;-RtV=K&#jO{Qdj&PVxDbTefV8
z`o5kQG)M5jYWno)>h<;ix!xky=wJIgY4YUIprA$Va#bf5+FDpdl;16#ZdLkf$)Q6|
zppL=jw6mA)?XBLLa&pq@Dz?=N!2{BBHnOc=fwC?>bbj5hm1*bZtORYv2wxw^cl_D;
z`R_k`?GRKpsrr(k8?nLR<HwKRj+_xS0PV|awMg!|aQwLY^K)}oU#R=`Ci3^kRX^VC
ze*fh`GryLJ$rdNW(3y}4w~$Qlj$19DbS%Cp^|V;--Cb7~zCAP3c>11W_wWB-bh)9j
zvU1X@ZM}yUI=5fhUtbRzBA7XICTMBnrHbfnIhvkUb$=?Ro?EXAj@TKiXDaRa`|Wn=
z@3-5nw}9#k<Fqp?zRcRN!5}p~ef5F`2ND<lo~9d}viYWnm{{3KyMB55b^reUUcF^Y
z$jzHKL5nL_+uW=D{mpaIEVJCGr`cJ|kQfHdw=Z3~)XURz<91PTanQiw!-o$+i$_$R
zK7XG5{oP$HZSBqT%b%T*1obZ~D=VWmr}f_2l39Gw&Tqcm+DDHbalPG~c6QR)w95^Q
z%szEm&y^sHNj9F?n|*y9XjW9sch-`{?)|sQi_V`t8=951>hGRTVRbEA+gNr!nSg|Z
z1u8Eew##1=kFQxcV}=B1LS}c_+fDQ1x97!z_Lxjs^7i(2Z6l+gi4!M+vP@v$M9@g*
z+1cjVUtV0C?t3yz8dLy)TLxHX+UxqxrcItb`|*?O=jK|cZoUa>Ch5lPxbQGyb=cZB
ztYNFe)?V41?hk5k{rvf}sJJ*7wB9iPo{jCtBf{7JF=k7EM?)U<uy{|xoPbw(*)CtV
z;*vyDQ`44`mzT8WzUI={kQFdpFBUW$JmK5h+t$?_D-!E}o{k3zG{mp7WzuT}4Y6?-
zhBdJkf7EjV?e+u@y?|E-fuy<@Dy;fDLx}}GW(*pNQ9zqc2Mwy=7{j5iL7-#|Esnv(
zHE7(w6||ua*@f5&W~5Oiu!|@(2vVp#<(zhN{b^0?JMc<hU(-}mb2GnRv-!`TKUcQp
zMjt(POv~Q>|Dxylx3+lNR(+W;fByVGfB%Y#i!VQP=ulSud@7a8vmu@7RmsQuy!`yG
zfqJFj0jBTw>(`$-b7oe>87XH_z#YBvW!6gkE2Lg-1$B5XE^c?e-N49vWp%jz-jBzm
zXIU06+gtnT$w^Rwdu@HZzP-J@XV7YRZ+T_@{e9OTyqwbvs%F*|<L(H1t^ZqEsOnjM
zr?4F~cbC8a@3nhnzrJLqrlx9YX`PCT@w|lCeKz}x$u$R%yRlDx?y=(H<_--ASfJ)R
z>&ESU|9)jpoi=Ti_jEnJ=T-2HU@OAp!`vZeEIx1wV_{XuYf0qNoPYM&uuS`_Zx6o$
z6@5F-iHeGzynTDOQ}tY{(l^Ifzq;&ifA!2vW7C=+1z%rXJ-rY#>lr-PE{j=gCo@BW
z;<+0cS8x~6A)lY0Uw@%}iP!IyS@K(1K^a>w<?gQ1U(Z3?6U%niE<>LA-1Jw@s>B1d
z?sc(S@06J{Uv8MNcMtzzgE!y*l-h^BTx<rZSJs&we06zw|F17EA79v3{ywf((s<dW
z>_dkRO_@7)ZBr9dd+WRCZ8;OqrUget+)({(Q}<`bukY{IU%C_oYBC>_&R<jD=i$)-
z+VJvpdVJQ235wsoO#*kOGJbq`7+QNIs?jt8G$+u;Be@83V+tz^i^rr-pFe|I%2TIK
zy?Nfc_*oAdpUjFqdu-N5Zg$JPwPk09{MXml!|(5_ojP&i!wD;vE?>TS!-jyvZM?hP
z{GZE!Ci)_LeDh6iZOsnnm9+|)tmb>^;$ru=);pg+d!}V-dbREzsEs&p-a2M>J`Dqd
zfJt9I9Oi!w+Vth)1KJs~G<J8{&GYM{x37D*|9{=@>-c*srr!^kg6GCEK0Z1MT32gi
zWCU7J(%ROhWo#ULcX#>r`N^AaK6&=c;^)@l=YBVH%yeUR1aOP%l~`O`6{_9N^!i$K
zerQ<OG$A1&&^ocJtHb>_ZroV)a_RJSZx35Cg5p)|QBS#`*QDvwrwa)SPn|I%;-%%v
zl`Hu=r>XQj=Hg;t5WEdK7vS%Q!~9pJyrG?twb@z9pvpw&NF=M+nWIYIvx<s~i+?;g
zwPlM5bmy?2j3@)c1|hCB@jp+;|5GwIHwP_&54HLq^=BC)!;U)3$BT;+?6}s%S3aLx
z4q8H#dv{mp@9*!+zZEbrIOw`Ge&x3R^P$-+_tp~7QX$XDYE{4AZl7zb!f>Fpjpejy
zK*HZcxAXU}J=QDzdS3OrixU)`LHXc-=)wcPT0v`$_y7O<{^`Sq3s0Qzczbtu`0Z`E
z#osnCFkF|swE9**)9e2^x3~G;ul+t(uIh!NXHdVKt%!htLl-Lp!>V4U*Z)DSh+Qw2
z%?54GuD<=@;o+?%FM}l89`0#mWLT%Y2HZ@abZ)-=`qb0Yz`gK)e}6+Kll)_Mmxb2V
z?X&y&L^z#akb&Wf(wirGnRj=Uo;rQ{@};HTpw`y^`}gi14~hL(FH>LZvHwn`vtQZ^
zmi&Np<F<z<wp{Q@zFcyevyU^$c#FOAv~rDHS2d|uS=n7nD-?VW-*#PnOul0B4C95f
zf>T6qiIlFCG!WsNcVGV8=5y~G%qtK6EU2*C_PPD~^Jly47QA`-d)E#-x#K#gFM(PP
zD}$H+$|zxAh|kE(oOt==myFjvlDuU_-}zZ|JVCo93=$gb{(cEwUvE?W?ajq~wZFGy
zURGmeWBZlS!q9N;+U9isuWxQ%Uc7ee)=*zxU)fvwjHm5Oem9i9zNY*3_ICf`=jX0w
zuiyKu)J93k$-4aAm4nUfQ>RRM(k#ft(6DaV?ezyi!_u!_zc$Ujw#KZ#U*10M;lqc2
z%oG_G1aCNT7i84d<l}s;EiGGiA3L>4=j;qaXHX=qi{F1PK7@hcgTvjrt`7$qnfYzf
zUte1bYQ!(u{rUa>Y4hf-`|{-rpQJRyg5Qa})9PP*69t_Pad}rQD>nnf?uC!8d<_J*
z3wpT37#PeBN$LD|IKaekz>Oo~Un8g{U^u)2wD4FtWWyh3uvYAR<B&PK?6g1!Q?!B1
zJKz@4{8XMJf`Q=%2jgjbQ0tc=K?0;dr-f@;{Q~g(ICg$pSMYUrkmC**fXutWkqx&Q
zY~G2zT+?2jZ#FSE&whDnsgy~^1Scma(AxZ|Q>WT~*mZike)i2xsi4tO(4hbg4Ggk&
zH9O80tNYJe)6l@M{`{Ahm*s!HPALa1I!I97H%rOK-~al(z15&8xEC)nM8(8FyP34~
z^{=;Z3g6nhZr84;*Voow?hsT4ZLH|(>iXT6{NcetP&+n8Z~E@q2L~Gazd6J*Fmf|A
z<h?u6DGb`A{OR-OsWWG4dU|<#U!Gx@yd~wNkgRRhmb=-<d!?6WUtg!GqvKQk?aj{o
z1Cy5QtNpE|s(SRrkGCD50M9uh9^9g;stQ`7Yh+|}C%3V&F=|J_LM<(=l8=v$maXUI
z<qeI9xS?#DoSnT|N?Ka}<*apW4Xg|f=Ha2COF?@v!`H{jz5V#{<GaVp=2(~eEnK(|
zwC`F;NomUD$;!(wXTJGYb`Ug+ZFc$QZLKR;uY%UUueMcEa?+dbJzX!>=#qa)$(Ch4
zGZ&@Lt90w_?bXuM49v@0mz9;ZrTDp@a_tRPuxHn;T<O`^*ckWL(b4hUW3`-{n~pv{
z|M}V3%b>+4H`C{98XI4ZHT=vD4e5wxQ5l&vx3}k4Z@s^(^mOf>#VM(&C!ZGCUYRBk
z%Lz&we@;M$v-`LG`t|E~oUowa#b+i7v9WWP^xbt!{P5u5q$RJfuP={~-v>#ga^>=C
zW*VnwJv%c~4m2Wv?aj^2xA&@<nT0)l`ZOye<3q%Yx<5Y(Bd0CBapT5+n|bU%-)_IJ
z;`#95L)mNX`k++V(EB5)tKi%m%Ob0}pb^XMrsn3Ls_pUde$eW6mAiMh?%lO3YVF#!
z{eNP<e*K!2m-j8}{MoZpQzN~6d}^Ll-;xBmeAmt&KPpsJRYB{$b`?GCs#gF0`T2R!
z#<X{zr|CwkwI5!1>sFMjo7=A2?^~B#UhaSTY0=4t1)zmnlR&+9&r2(Vmrt2AY0;D^
zBChW4t5>e{tp5Hk)YY|BOh4|<!ce1l1#m9hR~709>cFgxTKecw(%l_}&W47DTDrPd
zk8}##z7rOBVEc3G<jIfU9p0o<uCZC?wCsjOixz>#J^%jx{`%9?(_9=J7eHgvm7mi<
zZ9+A<%VD5Q<?#Ra{r^*@PhY-g&z`dLpc53_U0=_$E`Mk9;h%FG&&BESbw4AL-*|!4
z-tbA!H{tpm0a`2w&C*B0vo|D&fx-b_X~D?Nz#y%d@RJ?Xb!6aK44OPX8&LS_7pQ<?
zkZ=R#d1+7?1uY#Ixf=}s|M}d%zP-Wk%B4$>UMv1sS}m$`S-wP%NsJ-+)$7-_wk#z|
z%P+rtt;n$LsFV%^Lr#ln#J|P{R)&UNfen9{LF)$?+5!*0V)6C$owVf9qoiIr+gryM
zzl@nVbLOoLiOuWV8~qM_-(CH(@BVw^^m7`frdR(K?_CUX6i39|1>3fTO`0-m)~nl%
zKRjY$=71b>1f+W1{r9(SMfuLLxOn|=L$BZlE61dyMP1$9rYR=`SlQWsS6MJL{9mzh
zrRUbITfKaI-fXagl!kK`)c^knnwVSP&d6ZUa7t8;4IC&7o1V)5&;|A5FbY?W2nX|R
zwZF?)Sy(hwR9s3+OXH4%in19qB;<Q|UhJ#5xw&2;f$_rI+uK1Slk3asG?@1}?s)Z!
zBZ5IhT6(o^^tKnDo}S(($Hnl2l}YTv*~n>2MYY3Dye!!kdGy!zYuCc|{{Q#8tFJFC
zAYcM$8N{16Ii}|3)pN{KP6&YJDnX5ndDZVMS=rgMe|&hTrKR<0*YmTp&A(oY&et?D
z3UYLGlrl_exwbA=d;00rFP4q#nlzn2b;yE+&h1(M{`}-$lLTsffyQ5t^-3@Al{U}%
z^yDPy1cs@TCOs;gmm0Zh<;uXIph<C+Penodt3cbWUa#N3&N%(tj`P`BSwT)tO=WLx
zEM(;tdokJH?jpDTo&`@&PuJGgUVV6;ID?hcZ4-tGDyiw|rymw*=<BaPEB@o(pU>xu
zEM!1aM`pRVR6IfR7NT-;>;C+y0j;E&tma!Zzy94FOVCW9u$s>V6;Rgw@Zcb5FDS?-
z;3XyU^?w$wTBXG+ZRRs+%EXBaJ32UOzg%=bb?Ovo{>bXrMaJmF*=+wESh*XP><(SC
zWs8ZZh{%gmQ?=uc@BjHsI&#|5GiQAIzpYuLvol6->a=N9TkQXSx%{p`^=@tIl@)=D
zzx;l`fA?+BDKd|`^;hNJ-?yvm?X2IQKb_V;{j%iMhlhvT<_j@cu`_Zv+&(o``|71j
zm!3tf;TG2e?XA3c@uJ*YW;ULHh=>{I=G(u&C?_fTva}yG(PW-?r{Mq2Wy{>|*Zp35
z=<s1%yUWXbC#Od4s`|QWp*r&}zH5*yxC7KsU%7InmWIZKOG~|P+dNOK53v7uL^yZb
z|LTvw=31A7PQTEN-L>Vc>sw{_zM2*L7!KrdL@?NZCe@D~J$mZ&>CYMcU0s*vT9=0e
z2ZJ`3@4US}Zttr7|Nlh?1_t)uxehu?;KGFk)8ndMZamKWgBxmfg@jqojG*A)t(BkC
z`tNJZv8&w`qc`0w@6L<Dy1Kf3I;Su7NE*xST>s=rN@z&Pi{J0}f43_8{LFXjwrzI5
zm>KFCULIW6&n0%@>{e6L>2v3<U9?CkG(0@}%nZXxOJ>ZF0QF85EO0Q-yK`ZQ=j1Ps
z`|VFXEXerw=BC_!#~&N+RX&#m4d8>eiHPY$EZDKb!qm*{)%5tfi}&_chek)QuKWAT
z_M0)2L%MPT<K39(|GPmg2+->5+TUgUk3s9U+xX={Gd-Y{3;woWr)=818C2?)p8xjm
z`k(jT9y~|@?Vnv8zWy3$H{zm2N}!cj%I<wvs^9NjzOVMTRF&6)*9l!0>?8EHd9yJb
zcn&(#WXBHhDzA+jH@dx#4GmoiT934RejVu0k=xHK&z?OCT6fyj-Cg?l81K;|M>NdM
z!-JRm?R~#jKYrhuUTO1JM>>VADnBiel9CFEi(A*y(qeYrzU<A6X*!XMPMz`sIpO5V
zlc1?ECue8*-<EG%K%K%H9qYGcdieWaKh`S^+OO4b|1ZL}>dS>MFE5wAxv}wgTzG8k
z+S1q8US3-2-PPH-Ge15wG<23#>8iZDyO#1wn}HUXva+&z`T5m7SwHzMXfdsWdHJIw
zoS<>IpFe-TJKJ*k(j}9$GZMOyn_S%c<#NB@DtvtG<*lvRT-@B3=h;?=1O{Gww^KW8
zO~C%Tza=j&D3%}9($ew*t#*ryyve*e71B1yIU+8)X3``f(7JL-Ny&HH4jga*l`Ep6
zqPr?SChfl7*4Cz_qw}Wmd}w_9`c0dRmM&dd>BD|*zJ2_{g$r-(t^V#@Q@V?fNsNKv
zZcJ$CRM0w(xV=@CTaF(;zPsOkU3~rDP`~BDg@uK3Z*8l;h2-R{(bCqI-_38W2&s8j
zBwWR4DOJ6BzH0UA$*GZVza=k%sJw92)YKF-JGk0bL*qp49T)jYx85FikuN)>RL;PV
zvuyMCwOo9B*WTXVzV}xC-Ca-Z@)q%XBD5zc_wT;=;@#cdd&PS0@2UK}@A?*V*YNOg
zb<paw2laC2_x~=~8S}3C-~T$FFNx|bIt&bdJc^1oUEdcpb?Vev7KKT>uOB&fY}KAU
zF}%FIa@=?O<?Z!OZ|cdZu}V850SY{I|9MyDSQg)TtE;QKYSpSscXk$oe3{4#YX3j#
zc70d;?99Z=FGCz18+WhWxihl0wN=W#ZVwx;l*-F@>)u|ydiDQH*EhAlzFfSrG8i=3
zeC(K8`R>CH1Co;$-_JGkVg<E>_3Z58JUu<5_SNiM7qfE_q+R_Av>9Vt?(E-tQcq7i
z`LJNcwryb(Cr*6#?arN;$Z1PaTSf2o+5DTwZ}-DNSlutg$*Bo+1cCkkKf$lBuMba3
zTC~h}_O(j>JDlJaNyqxQZ!sYuPrm9Mx^yY1f2Hf`O(GagA?1W#S?jRW)YPb5B`fdM
z{m%XR?ryZCq-50Is;`gj7QOwjDV>2K=fS<x^R%_JK!XB{zpq=f=E~>u_VxFt+aA^d
zcSbtaYeg7zyS`&!0JSSX{iGEMKiNTv%FJ2e)i20^CbTOhvJh`S2fZKk<ju{^$F%*@
z&(AZhvbT`{Hw<3f-@o6<$!W^0S+^9w^K)_r{{Q#a`pLZyX**-|rmtsbWMEjrEw1-s
z{r-QiCRBfae?NZW#EG&+`4!5bom3LXKq-#lFer!^+5|x-1oA*6+`vZ%_B4PFcmrE>
mzyRchhD1<u8r8t_+kWc5&}S1PPBwxjAw6CFT-G@yGywn(Cc#Jm

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-7.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-7.png
new file mode 100644
index 0000000000000000000000000000000000000000..dfa65db25f95cafa4cf07b2abe74d3f1686cbbef
GIT binary patch
literal 21146
zcmeAS@N?(olHy`uVBq!ia0y~yV2S`?4mJh`hJ9%>?l3SguoOFahH!9jaMW<5bTBY5
za29w(7BevLCxS5J3j5`m3=9eko-U3d6?5L)tq!>w`tSe8>kpO8KRRW}2JV@-OfvDD
zM%T*ZxJznh-Hf!hD4FcfKJ}rk;{25*PH&BZ6FHTp&RQ9q7?~2W?Ael}RMu&p%MyZ<
zI2XnI`Sb6^@tKy2Our@;TiD5GZwz~LKJ`8StbMg_Yrh>&l4w(8U|^VW?CeEm1_p)#
zQ;`S;1_rgo2bdTb3?x~_7#JE(YHVO&VDNEkWMyDTFyhi-U|^UWn83)uFr$Zwn}Oj#
z%BYs19AcFgRSXOa56bQTd}yxw_w%`T(fhQsvotj{UQD_pJrxwu4_NAcJY?URdHLC-
zyZ5hO509_^Yw8*%o7g45z@T2Ra?)z9<$iN_J*j=L-(v#<LxGW4_t7iACEF5T{SB}c
z0w<S=35*O6Ty(^`Uvf@!=?c9LQpe!q*2K!tAgp+>h*t%i=#&pKF&yZOS;fL#+RXw@
zSu2dw&(E_>w|>nOb9(c6yVbS7zgbpEIP49bm@xBi>n_*ER;$3cI6ZT7^QX_Ay=oPY
zyYTtE{rdcUKi!rtUAiekM<i13QLp*E3r9MIzn(EZ|KiKb%YSw;iFZ6&^)H!M>{ZL|
z-MjbwdZqpK{rz}#zc~Ssku%qXt$w%vf8EjJ$4_6s9-e-F-qhLBruDVow(tMz+i(AG
zN8YZNYL(U1tG8?knKy4<pPU%O70Z8ShgCxjbtA&UmT3krTT%V}-K`CY&HH}8vo3vq
zFIGEz-IXJq!lkdSXztv(b7IAn<fl)cPFk{KhsEEQ{`Em+W!wJ!`@TQ>|G&R{a*_f2
z4P0MHX>2I)+_`h-%Xay?3(wBZ4vmUhRsDW%`1U(R-M6-8FTWmF?d#mmch&m+o@DJ!
zGxXN%zjOEQ+kN$)&zf(o`B|i@qVi&P{=UKsD;N$K&QLm{nk>=A#m!xM+1LE$wWzPJ
zulr9b`Sm69=g*&+H#emk@i@;m%blcR`}fP`PhY=IO_cc4y?UOezW#RYP0Re|t};$P
zr(tLq`1I-1S+>>N*6n;I#oi~7_Ve5Ad{G&hH!l)*tnr>`@$q@)UFCy^RFgMGJbC|q
z{f-?LqT=G(=H}t~`~PlJxq0pRj~_o?yj(v2n(p>Hi@x8lkN<wZe!uQXr@xQhy<0bD
zj!bG=+O1n@XJ;+-oUHb8Zuz~7e|~=U+!W(bQ?tja?9GbU-DQ?l8V$jV4;)er4hvKB
zta{MM{^d^b`IG0*`*(}$U)%kDpSI_xFJHE3Z#s1N@Ykc_@h`5&*OxxoP}t}<-)?Q@
z<z<-%8W>NVII&^t`FXa{8#ivO`hK@ub5qQL35w1lVq(h#mE8hTVwKh$EaDZ3Fz`L9
z^!(AIq^Z-Uy?Q>sew%D}M+Z1zH8nAvonsk1+dO~Tm-|YmZ{LpA-~VTm-H!*%k!!=+
zd*sEB-@XkpT*{(gK^u=G$fx(q-t@bMm6dH{cJJa2{P@3kf8F0HGiI#VmV5ivwdnk%
zCzw__G_nSVtl59^<jKI0kSR`1PFMC;m-kAW`@P@uxliTgyy|xsFD>;heQ`nY><q)l
zb6l^5hQ~fVaoj=o&-->kFK=(vzyGGc-&6Vd%KCWwyEUKBKGy*|$#<SjBs-tXiqD3R
z58Wxdojc1gxs6ZWPN)0mq754iRMpg0)&Bk_5;>iLb6R%6eDnN!HtzgPUuP#u6crZ-
zmz8b%_2uQ_O`D8LUtV&}y|v}y>-GEBfnu&LaYgz2d%OPqdVO_Ms`uKsy-~lvy}cY7
z9=p_Uu2twS7O6SWN81JZWUZIA@k*b%dpCCJ(xpY^<>9Zdtu6g}HT?C1gUwMp3KkwZ
zeE90V+G@}J;t9w5<*&EP*RA;Y`1tC;#cq6cLRXGFJ3D*ooH;uD{QRY_u6X*+G6`HA
zw)V<WZ}Gps@BhDM|No~yC>=L8HulM7?VUD#`tl`9R4OYfPMke^_R6DE20T-zPR;!D
z<Kr2jE27LhI8swn+Y%+*5)&61CLQ5WR#7?f<I83L+~fOyz0!XCYV~@vS*F=(Hvj*8
z-u5j#zV_;d2pzZmb$@#f9XezsZ=Uu1&CShIZ}rJqr)|l<e{aX@b-QzNRaI5D{lB*@
zclO22>HdfB-o5+d#p3=q>;9gv|5yByjr;PS_v@>3a@HhnjOft}UM8_~=gw`9=huAd
z6ciIn+mdnd(7XS&SMI&LyPMauZTt4^51&6ze>Hvk_U(!%Z|tq!zF7YArh_7iS-Fpo
z_0BTQp0?!wyV?|qHc&|wTmSd#tBZ@<RaP!p;xgB|9Gvp?_4Re*_r<jH%TH5rb#u!)
zJIl1{<5BUa&!0b^!S2{Q*Rt5n{_mH`d@>db{`{%&oV0%Z`d?pPFaLh8+W+zK{^?)t
zzl`(b;^)8K%x|}1bNczL4-XD*TWg`RGIDcT>3@M0rrk%AqN8`FoD}k%V-eWd*;)1N
zX8PB|{Pri3Hm(R?ALk=Jt4Gu6x<g~DlrfL<{=eU5&#QW+Y5VbraMXr`#<vl5b^Gf6
zeht69YtE%hL8ciO9G*UXnstBQ-g&j(BH!NK9e#UT?&erwLBWN7bFHraEM8D{>GEaM
zsxKL(Z*Bz6wJr}UDA<s<`>k2+r<3YlUS5}C%kM7TntlD2XynnOM<*@W{eEBc_1N;c
zOw7!tX=fxvMMXDG%&~p^?p@w*mk*bgdTVZKkV;w{cxA@Xq`<{)y<h%(KA(MRism+6
zmFMT?u72<!;cms_UQlUJ`s9QlD;wLbxDPs>veso&+S}Xr{r^|ZZqJ&Pe05c5)rW)Z
zR~NhU+kUy={OQ}bYmLn8UruSSe{t6Qeu$G(Q`)&XnuiUh%$lXueRPp{T!o{Zo!z7*
zywYYTE?*A*|KqrQ$=j{hCxu-Te!utoysqwU)1)IDo|D?!+t1ChR0c(0?5>bWQ)bN2
z@T_{Vuw6t%Bt?6Zn*Y2t6P4Yw-rm~E#m`@U!}v;ij>#(}87s%ms^xq3+%e!e{NvMU
z{a!|9HVNNZCWg<>%uJSOOU${u>uScOC7psoLP>wV-Oew&zW3|3Xg3FkhK*TQS6Rs$
z>z!ejuSqb;y>+GH#lrR;W_G?CveobRe($-rw^~}P`{)e&`h9^RAt^S0J{)e_zkk1B
z))kG%7Zy4nTjo2vCpv%cRSC148HKN|XtLX~X1$*5Z)d0@)(uMPyWj0P9kDU#sO9<D
z7KM*2uczeR-*<P%vsu|atJm+lrJ<*{?)1Xz)uP!OYHDkF>+9=-_t(_cMmC2Y_t+4i
z-IjR5fG4*4?bfPiGt<9(IL!b0<?{K{wr}75=<#FI`hPXPGmTsm6BDaGom4M9YkFP7
z+B*95G~LPj_wWDp{r&qF?hd9s|NnCy?3FfuwQBXcARnKew_7ztZx`}NnRqZVGIsU%
zU%#`n`0BRYXi(Yb+AS8fEobJft=a1S{{E&}S3KlvJ~ZlHZ2J8B?e_a3A|gxb{{GUm
zwvLY8o_7`0^w?Sad{y-JJT5M-Nh-S0+kDc`&s#esrM0y+^XaLnSr-?z?%BIn_NT^I
zG0th(8zk7cl>)X-)ee6(H9YR(+U@sN?f>&s|JALntM7h1Z~s4L<Hn7*wq{R%c5d!!
z&ERDkmX?v6oSdglo}9RS`}UgJ+NZByuik#YE?QAhk*`YVid$jf#$Bbam+8gs%J}>1
zYuWLh|CRnvzP-I|TJ*%Dva&Msc%N+6r6rwpzh0`Zjo%;l@83UA4V2r>c7?w!G2=i3
z<E}?t+Fx#Eug|=_EjMaU#m2Jt_tt8!-xCzP+%NS1zrUbB@w{}H-+s;WdDVWw%l)pl
za0=(VU9s1;`WvV@^Xc<v<J#A=K7A?@6&20={_gIshi%e6d(F@F)@}$``uF$u*Ux6>
zUpv^${`KYZ`B^tNrGh-iCvUgr+S=&ThYvfijouy>5i#T2+uO^xY%$rnd-v=2_5XJt
z>ycDmeRb8lySuZWoS0bk=i~9K8<XAL?S-;lTv-`h^{`dE<fv$P#+Mft%U-|y_dWj5
z+UV`m)~{cGZB682$7Z&b-qZE6Zf#jv_5I!2cXxNM&b+*=uZkt6VRQQVQ)kcm#_lS)
zxF&M*m0hLTy)u?Tfq{WpmzVV}xo_TccX#>veSg12^GX;vIJfgnRnd*w;=wCz7IJ@I
zZSMZ?0Bh0T36+(Vv6E^yczJo<U|-Gmv7T|2h=jz7mBGtT-M=62=;#P4miuHZ7v0>P
zu5Drx(#*ztsY_J*$-{>Wr^nYt?ydTI>C#ef)BJljpp?aL`(*+ss%OlQ*qV3u*2Vtj
zsEj*1HZn0YPn|q@G044#4?CxypSRU|dD5;O{`2i7Ez#fi<IuIfUn>_GWL;l3x9aPw
zrRMi*g4O-zOi<~SvyIw*zi#)PJ9oZ(K5wsWXc#DKU3Mkd-*&0HT%}95nC_*y<@YrC
z`NQTh2(gNtTkJVm4V3u*|Gob|^ZvftPai*C-2d;Z{@eTe<1b#kxG6#h)S9}ovpD_i
zT<h?&vrI3GhQ}-f6=5Gge%$u^gLvNGppUOjGcG7ReexvZ-JPA2>i(bp-tRi?Xwt^D
z=U46M+bZ`p{`0f5riq7Ga_{U2v@U-)MJ4y<CRag0!CgO}&Hj4HTR-#kG+iz(u1i}o
zFN0cJpjO_k?DeG|PQ<cTCtR&xbI@sP-S4;Nw!dC1j@nhSQq6bPlI8QNPL;jc`~6;U
zSlF~llP8BpM66JD@AH@xwIyRAD9LqcuPeB+p>QIock=b+Wp{P|c_B$ji$JY+&rQDK
zVSg6Roi%G!yL??l{@$<C^7edmbLW#(vnqbp<JKpmdDuWiR(5US<6|$+*Z<orBrN>)
zTGGB>uU7y1Jpcb1P-)e;xRh5kd&8f<e|`O#PM<ne^681^wS=pRLOLO!R>~~v@^v6*
zs(Me$`1ItYmX6L86<#@;h|9}-FZan>f4LT&uW4r&2WqCb%h!1nhMs3-WqrBzdR%a1
z<jl0Qvz9KOUl(=hy|jOrNcit>Z!c@F-?NBM)@noMn(mLEK3#fnuz73hX)#wfw^jc0
z?LcK-?$OYreSgdEmWm&p+O46f85k2Yhl!aPR8(x(V33-U5>kEl)Ku-K&z^<7Jbm|W
zto`3F!An1H&%eLUuJ+f7^XL7;R)-3!`-KDsUR+wC(w?+Q#`MyPK;^SDjorn%T{}BF
zi;9ac@2UL!<oR>;!v<HDcnY_+wP~4{ge>=)3u-YeZs!qhX>ZT|`|E30M@K+T&YEp`
zcUM`z+u<y0RdQjPZuFOP*6&|@K5u{BUA}gSm~NCs)eZyCqw22ml}`khE?=Jg{@z|M
z508N7=jP@<uc)fBDri}EHt@DdkF0gr>+9>ob8^-+H8)S4G-*-d;WkZU<KVs3-`9Qn
z*KhkRVyXW`v&>6J-u+&)Mu%6%A^?=NFD>={`nccz)k*dFSGM1;Tm9wBmni$`#)}U)
z^@6h8=JfN^zTA(UBVYR^FxoKmBd1E2_I0C-3kq-V><k7KaM#vGZ!LW6=DGj>!OFwD
z<{7uQ<-WSKw7c1z(>S!|)tRJ?8CO;W-rAhrZ}<00@NOpVb*b0a#YSyT>lG3f7L}IP
z_U!8F3c9{7)-?B)$?ofOLZ3dHoxiT^SK+Z9NiGhK3)j|0=jNAXTwd0DtXFz@PY(~T
zjKzmX^2a<4TsxvxYJjWuBS&1$&bPlW_V&}ooa>+}?Zwsb_^aaaH4C@jtMZmM&%2U7
zzjm4Vy^7{Xr(8o-<m&&vjt52e_4xW&RaI3!xvNhP3hGzKZO@x)V`C#CES#ME`O~MM
zl9DZDZ*C+;$4AdSbm)+meA~)`Pft8kQ&Kdvv`)R-8ku~oXX5<%^RKOojb3c`id#tM
zN|fuwr|;gaQ=eDi#4BZT;m^;{vbH)gN&o)+`}F;L_~~i7vbG{u79Kd@pc}El;rre4
z`DQsc7F=BHZe8WEgJsjEO;<K1yPM|RxUg=od%xVa$Bm7Rp>g>VZNI+1Uw`P36R5@K
z+{P1_l(gt=@Uctpqjyf3I(23B_jhI2tE#F%DXjYYJJXMyGW|^4;!6S-yLI*Vhc~nF
zibzVneDRQBM++OD%nIqe9gXIOR|MVH96WXUwDohgC1I;W+Y(>AxVShp?)B@}tAD@S
z?O*@%bo`YSfy!_1?Tzm2>;yGw=h;^0v_{6o&C?O{p8EGniqs~%g$E9?X5ZPd@!8qg
z$FC?nc*Mla{Pm>z{1c~7pT6jPP&FtfrsiDy{jTqxV&dZAmANi1ElNsCIrsVH?P8kQ
z`NQt-tKC}g(CP2z`Tw`<b`SkKXMO*#4km8#)<;}BYyx7guHAJ{=F0Ko?&;^|th`e9
z>r3YCkGDAZ`NPl8vwgd*a>Wk!(7!uwc|X(yjg=^gTf0{L`jQ!)7_xAe?a{SiuPv7|
ze*W}H<z>^gxNUiNqbw~g%W5Us5_dnB|6REC>)a#!3=BI2^7HdeLHXfzfA{tO8YU(o
zmX?;=e3xjyxwA7^tlM?r!i8Jqjvs7hzq+Tg`1beM-DOkT+uQAazcJqZ*~{B|>eQ*F
zj<puXprO1u9m?A>B}}uXoH})C%9JT7+1i?#fnHu+hYlUe;lBF$^XI8^=dS(qspxj4
z{r^A3OMmCy+Tyvp{Qb2H3!QUwd!<Y-9cW~pI&E6o_TuWStW{lIT_wk5%VR#AKO<@A
z%E53Tb)9>^9H_LYso4YSKixiQYi=HX^5n^FpO^X1Uw7q7h^$qKhoht8q$T(ER<DlU
zp7-nW{C`W1^-5=de|Oi*&o6AYS+0n@eE#+Ghg!Ks<>c1wtNopIXGft`&5sS!bRrii
zI=5w9Sm0Rt>&$d1&}gOKk-+t*BDZEuO*=nt?UpSjq9P(1Dk?57U%uqx=ik2jyuAIL
zlIL^FwQOx;-|zpw&u^}k>gubjK0ZF4eQu6rS#ZmwD{G_8Q&Unj^z{5DtNBjazkh#H
zQqq=;i%P|ES2`nlUWM&rWN7ftJ3r6%)xEvD*X?-3b@~3+h^VMl@pV64cbC6k_pQ{-
zfSof;_Q%iX^S4%hPTQJ$``S~xHZF$glOH`w0(lpd7dEGz)$^3^^V*Q0$F;_4L*?hR
zyT#{i`{dXd4ya^iX72j^Znvy0kA)%E8mkN2a-%(iR)?+C+kN)es;a+DtD|=oEnVFH
zK%lU&(96T4;EREblA+<ni_R;Gt;^m7tdH9(W7}g@`sfH}?T?4;+w8CFiwZ6O)z7q=
zFT{tts<JY+EV$*}yLZ#?8haP*{2P<Cs_^l#>2Ej3uX?GJer<tc^XX4Jm)?4x(|4L5
z9HK3z5$hU3BfaWQjZdX+oRkHP`Km<hSR!Sf_vVG-0=`};(^D6n9b{i!SlGO{{lO%U
z4Kd7|VtSxT+@gwOh4Z>^dWLi23ko(YZfCI21&s*K;ozK>t#FVDG{(#+#=zj$c4Xy0
z(C{CFfh3rZYUd0k7P!h5meZyaAfwNqF+z2xrl(R!!-<m>3s?O|;tMD8qS^$~9{?VX
z)YuTi9NYpL?FQL=pmRdPPBxI^7$$><D^on?ys}5)yF@gj*aRN91Py&#2y*FMKOmwA
z8Y&0bT%e>9v91y1xD`v5xD*x^a`Es?S-*b$p+kqJOq>|_`uC9|M^2nQ>wCDJe|^cC
z`v3omii=l&G0nMQU@UiVCCG0NQe-At^x~@)FWQ1~^V*o5L3Va_&u#KHMu3{Rx^a6V
z+7fTvir$u!dCJ&A7?i>Fig%a2y)?@-8#Ly0<3@yMP)Nv>U1e`qWnNwe>I|6fI)9{7
z*tG1;jn8WFz0&4kDJe@dAD5;12r@A|aM8M!F!OJz-Ro;>C%3n^CnY82<i^Ftb@laK
z>yx!Ed2(W6)^Si9>+kRH*$)r3UY!>m7q@QFqD8OjCB90463_IVYu4z1y79cyW?Qn~
zUtHY&_Qy{VF|n*)UtZ3#EM6A1C8O|OadA-*sL@ehUmv+P4AdS;O-&X5&fwRf>BPV=
zr$gD!b;k7R>Z`9tt-PDH^^^gRtZmhoJ=g7jy;%I|>({Hw{WeASJ~uTtn<gA!h%LWc
zs->lMX;<m%EeQviWGxCD*6;lm^_4%U9~A2aGqv^frcIw7zO*bqKmYc}RZpHgc`-A6
z-o;s_*-u`+th`q@O+P;G``^3e_t$=WeEjv&>2X0hIcszci&-H7BD0b0G-}zt%4d#6
zVC}Cj7jw7YEpt3?UHK_RvaQfD+R4HglzQfzIO-=TXI~e?%F0@n`}FD4=X;N3ZJk#v
zWuUL`A9VG$M$XMmuCvYaueI??PnkVi+tY~0IW;v^OHVH>FK-<a6VsFT@8eVNuZ`Zm
zt@rj+kRKj6F)=ZT2nZxxFMD-Gv-a~@^Uye9DXCRw&iIImiQUpIxxce`xsF)3le6>r
z%DWE_x2JB5Fe!TCvAeAM=ptqJz7@5<zk%A=a&<o*YW@EAZuff?&$F}5*MGbD3Y=o*
zbSR7M?3Xh2^0)muWzwWcCYhI1JomqUGjGx)(6}Kh8=KdpPoF=3eZ79amW4&cyLaz)
zy<9eXOXA@+ukYQRoq@Nv<(g(+(<yy>D|8a5&0JYoxze$jt?ap8#0CekZdd0v9>d3h
zbJ<wM7#ODSl(VhUP*QUG`0=Av*_#=;>fi6&iBVNozkP1DUG1)*;9$_GCo3!K%Fxwe
zSyxwuF8vJ}f(nnTT$;D{YgqK{dA8Lel9DS=obX^}XJ5TzN5t#v>#z68TAS4U`JolO
z=~oxH;CkE<{&Y>$R<F(J=fk3+W^r+Gi3kZT`tqfuwY~jz@9DE^f1N)*SGzU)^0MAv
z-`=k7l{VM1w~x=u%X@Wa=jOPYkFK^K4lpmX?_Ug>4q*VbXE-@Iy*xZte46v*Ny=`Q
z)mrTQa%-+!+m;)>Hg4~)MaLrMgJa4?W+NN-vt)UsNf1!s2=cjK3)5-S9Zy6aLYnMq
z@$vDu^|t(9UH|_d7bj=offEc22c8~K<zB;;es0diM@PH0w+5eNW|%Wo`JOAs=ba^u
zqEb?;o}QkrZEt`7qBA1{!*s#vx*K%Fy3@|gSh#7^rs8E0|5xwX6Vq?|ZAMdb^V7F)
z*OtA#mHF(<Of5~#jn?aPZ*P;btJz`q^NH}+H#dXr?Cf4$SlAr4HmX!po|U0srsCdJ
z|6{ftn6w0>>&y(ptIHxTUc3nE^!)p>+#WP<@aq2l{c`nx3SHgYZp}^K7*X=z0Hdpm
zOU8!>2ctHnbTTn9mE5oW{_^$u{rj%;Gcz!};+(FxK?UprUEQ@s>9=Zsf73KI4Sjs9
z_wuW&tG_;I=GU^cj0|4pbMaWO^w!eXVY@#U7Zq*EyK80p?MCt}gT$tLmCt1>tE#SL
zq(?I_tU4^EbN#_5*09}WZ$(5!mo8bNB5Pf?=F&&s*=8q`HforeU0YZC>B&hW9_N=Y
zUzWX%-Bl9!{@&i)`{vo#eCAq}T0PHZ1O@WRr`$T8pzgevxA*y-Vz1lf>n6;eJ-ey7
z`R%Rsdp>!YW?pjHxpQaPTSrI7sqZds$qW`15t(6~!Ehk8ljXE&jF@!qw(RSE-|rOn
zPntAIL|nZ5TyfT~+2`-x{X6GvTVhBxsK{LUTG~8sjhgSQD=YFD9PWZ<PrlwQzkhS<
z-;am=r!z_S?rJ-|=)j~p|BaU}UD8^66f{(EZl3LGW_G?6!OQ)&eVbqR%M&z1HQOxL
zN4oiH*3|y~{><;p3^7&*4<4MFW?uL2XL|094F?^Soob6BeFVLNet&ygdfxW?i=*Q4
zTYkGd+>m%UMWSt*Zgg6CT~g8_9kK4bolmFjlG9>%V027mVRpeyme(=CWya~}uB-}O
zJ!S6Pwd-Pcdrfk3axy7<6QQcAx^lq+hrhqRUS2-GZq=15A$RM3zkPLmeS9pxECa)p
zV!h~uxvQhzUs%|@XwjlAMNhqUKL$;WSe3k3FlCAeXjmXTwsdORxj8E>i=Tz;N)P?d
z^&p;|fnoE9a<9M7C$V0;u`wA`3l+;nZ%k?pTN9CZ{n@i;%OW?YWnNno`FwAFXtZI?
zkB9BzW&sQg4<^NII>5xRVBe$QmURy|MLywUU<e3Dt$YupfMyjf1ch|2J2bK~Gzc#|
zP{a!=#2IGvfGTHo=SLy`K{Y*$e@IH_x<eCqk{eubqqk9Twj54Qu((<evW!6u(vsM~
z25qBEoiYW~kZf#h{Pgu}Xhg&eBO{}%+W9kPfaU`-e|&iO+-6_x?=sNfMO|Iprl_^E
zED9Ih-pCXSTMN+D)umVV!>=7&iUon@JVWPhOg^4<b5m+pSJx%u^ES%-{QSJqW<IyK
z=db^G!~XXh<F&9>!Mv$cmo_r9zxwj>GN`;yN=lkCWy%ukcRLmztGyx)3W|c6x3^|b
z2MwnkIpT8k*fFn3ixw@qvNb#0cea`D?QOZMFV?F0%~`QA`FPmOnzJ(uof#P!Z|y2w
z{pZgg70=vTTQ2S>d^~01#D$H_?6W>Q_%(pT^-%{)_T62jpFVsD@bT$cd-n8c?~4~N
z-rAVl-X~)j^ma#ZaPZdp|8=@CJ3h=g?my3FWls-}tE=nHE^SXK<FuYXfBtMKdwWaj
zU&||YNCPG^GV;}pjf<tsax$*pTkOt%`{QR#9i1y*US2jWe&(|^<Km+^&ucy&71z?%
z4*ve`?%P|owzi<sac}kaxFf<A@*q>@bSMk0*|Wzca_u#*xA30h^S%Ery30>pzka=3
z<&%k@za?&rSoLQ4F1uIK*Fa6glvh>Jt&bihRaRDpW_|zmZJX?RFF(J&d6my3*G6u3
zn>TOX^S91HQz1P-7H)=y({uX!`_Ij>3|{&7%gf8#9*54fC|m@ZM!TK2d+jYdmC&2#
zfBst04@s!vyDz@zxBnNB8CaE>`Lc5T%B(IueSQB)S2m@dE{@xtdRi>^-kwNlvz&mu
zymcxk!Bbi*ckGDRxpOBM2gii{`}gPW+W2T*{hQ^h>|SYuJQ?Ewnj>2ks=a%gu)5!i
z#r<}xKFzvtAs{s^ZPkVi7xEVVJ~!7obz_8xlvLHZ*U+iJiOTM`wnpoS$yye<yuH2s
z`lY4bUq2k?U!8q@-KP&9E`UZL0vEg8Jg2Lx8yXfi&8=UqR<Zx}7Eqh~K&M60#NR6d
z7l(v}EnBigB|6&Evok0t2sFZX;DCc?P+i@=O`A7|#>MG*LfZ&zxp#J4e78Dsa~gP@
ztykI{GzmIY1vF&C%+41Q6*cSbxwk7<uGG@fD%yG0&2s|-!;UjwUtDw+6chvvVs1=6
zE+QkdX37+ir_Y{gSz6vKyZ7bg<*Bn~t#WSX1Fc$^lR5Lt?_F!O*YCL$784o)ooU>j
z4{F@{we!ngo22S(l5#?TSIXqYB>VJOCGe^Pi&vqRtHah_Qtr1|v}KD4sFCsX=~FL%
z|L}^69d~csxwA@NcGauR(cAM*oj5UJ{rdHwp}*;IRi1{1hE;#RUeEsSyowzZuMJWr
z84FrkSX5P1LMr`=iZ;bA3Y`iXHmF=v{{G&tACLR>GkU&qf|~$OlI&e0uG$7}2d%Iv
zFcNY3DxbXpyw(Q1G9t0-0=}*exC4S*>|pD_fRe==j^LJcji9zPv}@x6YJ`CLSq&#a
zPDXTCkjqS@l8~n}_^&&-3<WtUAmQr5t=ZRKwMpj{d@%@M7t@V;@<MSzpYMFTyP$3$
zXhv#l;$b#-e&(+XV1I&2&J8D^{YC}`NSTaeK6*(@R&Nlwh@3P@=;+a-ng#{|`}XbQ
z;^q!^b938zz4p(?<5Gr6Elo{LPaZ!8%{(l0ZqNGt?d{ZaZ}0Elf9K8}ty*4bvo}q3
zVdr{4!L<NX)PjaPdwW9*3N{1<1)1dBFaYJI^7r>b<EBrZtXy7R?mNT45mdKvadAzV
zHf<Sbfa3BpUn!f44R2$*k1o2lHah#`qoYPVhp*k+lzQ6xS56<KJ}NvSwI+6VS?1YU
zrd~ciAvrl~R5Z1;ykd8kUEPv-c}wo?ZCdMl`})F4O18w_Zs8QZvahyUH+tKdbq6Ma
z21vAxj6N~VU-B=ZOMs!_^qpO$ub(`8xNyb{iRjtWr%zwBc=6Wc<9xD~MN7iIfByI}
z@bj~?rH_tu7R%}D>xTyhUUcofc@xx{eUS31>Mtl`gO*ve@k-y?`u)Yl!)1G{)cxmO
z(ck}P(VI6pppyUh_xINiG%{<?1^L?E-u~zB->0*-W}Ta3sim#G`l0_autONsA9ZLR
z!YF62ek(jKTb}Xx+1W`;*m$Kf{`~j|YH;1PJb3V+ltDtny4~-rKod)Mca?%>j6w6%
z*W;?!iuphJ1IijZ&WMVOpFVwhb<pnZ+qb{1C>0VCGD$rpB5PL@p&h<1#M86W%iH_v
z0!QZCmZzudZ{Pjw-R}3-etdiknt9MPGrKlz#!jYX9E=PFN_{t$9YpQFy=rM`d9iGE
z-le_Y@2v*Sh|jP4wesEW_xrNe&$g-D#B+GX#c2XxIYHS)@5zBiW~+h+4YARlo+m5U
zZ;V>|d=A^0)2Ang{LU4zv9&d=`B4B`d~;@|@pGT!T3hn&MolXD^W$UG*N1OF9w|@~
z-_5o<`FJ0wK8w9w|L?Q>-haPd<Ltj>+x7)7_d998GuNi_(;n7q<@amVJ+toZsa*TJ
z0Ng__m?@2Q>`p{NLc{aa`SamrW!p}jKArpg?{oYAD@*o+s)b(jdjSCf6K0uatG)d0
zFF8-!GkQZpqmEd28;@ktw`5BZkXQYV2+mh}b8&IIl9G~$y!`s)<9#>Fiq4-s8(LJf
z>Fu7EmzQgsnufOX$p!@kOi;;uabaQB)m2lgzP(u~rW>VUZXT|wsd?)3>C3maX6Igi
zcXPA*#EBETdU`?%3O00gcW<rxTlMzFM(4-J`}Z%Ha%LtdAu_DR)j>PAF+!)Pc=P-}
zpmB#+S66S%xoI@lqR`2Awpr-<xV<K&uR?Z*zuA&`*{$~Xx2wl`rKirHuWxQ{Ui$7%
zr2f7ii{vUEG+I@k+vNl*!X_J9A6(VR#w(?vsOZSa$r(Ct@|-z2(=$Bx?-xry)WUi7
z-u~R%+oJYXeRb{Myl=q)(2_KZq%MJH$rG(HM|f})m{cjyz>O);@Yb9~2ds*oblClR
zq5SvDW&dBd@BdpCwl-?zo;@-9|NUAmWuB)~US96bFUY{K;Fye+YlcJ{sCFuQd+Q}A
zA1v{lJZ17^Wlt>~osiqxa=*UWeBP?4gMs17&MuMDYxJ+!wu?ph+x=WJukKeSXo?*)
zF3NLwgDhx>Ja7Nsvb`UVN%P4lGB7y2wJhl>`1$E6sF^0F8?_|9?&s1=A16!@*!%gM
zHJ^ke14G|IP@n7q)9Vip55Ky*yL{^LzkmLGxt+iN>cb8Oh5{Wfo$C)SXdV*Nje7Cn
z;o(rZ`+KXmH#IfADsW+7U=TmQkoDTz?f2J#rXJb(<+f}M4Y>(gEdgp$2ns%2@sN=r
z;Q5)j2j`s1j~8S#etogH|5Vmi&;$Z#O5<o!pp#P*sI|4wxm`;|#l<-7Ou-WYMh1qg
zvkO_n9v|!7TKwD()UtK&lL5`MgQl;9)%`#-nxK05>Fd|8Pbe}m1T6R15Yv3vT<Yt`
zkDv);lk96c?)<C_3<pH^bYEb}y}j+~-|zR|zer?Yh+%md`uF(<me;S>?++^~+QcVk
zv!bbqY4=&TrT6P6*M2z2zU=GwtKspP7Z<snI&<dAdHerswAbx$0?kvHBp>4`eR=6=
z)4P|?o*m0iU|>jie1R$Z>Z;IP@Av(F^77?MzqwW`GcPZjdhTcP!BWF(>*Lq&ez(gz
zJf^U9(c;Bd*Tq_c29rUZtZQqdmz!o^%Q(^@xOHECS=qKbcQ}|C8N~Z*H^ekMbFZoV
z{A^|P_Pna+bIY%+iQMdc>-xcFcF<ZGR(AH+i~H?@92^?n-Z;`Je090MysNA0%g^WS
zL5p&-OY{Bx{U^I~Gcdd|Za=2y-Y*C8di}|6ZO^Jlo$4VmF>97AQQ7^-YZ4O^)0aox
z`l~i<2=KT0*rM|CUiJIX-DPjJ?xx?{Q#tjL7N|je=FoDE*k)(pH4`QX$l6wI@%vTv
z`|b9t+j4Jf#h)#H+-trn_x3g~fB)$rr7qR$%IY37F`PLB>Y8RWZB02TwD-@a)3^53
z{#JeaeEa>n%NG~Bm;U{Feg5}76DA1!{qeY8OG|6llE;h;4C~G=<P39iYLYU~TO*yn
zCopzbNnk+0ggbZdz6F&fzpn59R~q<tj!k9Iq$ls+*WdfB)%Uq6lc8ZTs0Gz77BRp6
z-%cH|?xv=ukcfyC>-YUyb;&aA&$1O7bF{eDuDY^CfSG~8LcU!rqMc86)#N%U(=3(M
zS67|4|Nm#t^V)wupL6l>gdA?;U9I!x)aldu6*3z)Zp^x~V`FS|O3D%?Wo7*z^B5Yu
zAD=b9f8}=m{@m+f;l?s5eqZMwHkVqf4VvQvRa=?AzrB4P^Wxvf<MOXBEOZ8qeyD&_
zgH_=pm!+TemTAQ7Dp{Gg<6#^3J~@Vf@-}|?bq^1>-`-mL^XYW)E%8cv_I?|!pIuuU
z4Vs?>tr%GB-hU0$t|)yS7W{jLRq3idd-s~w{i%?(ue<Z^#>dCUK?5+S&Y$-WUgk4V
zrS!!GM^NFi@6RXi+m)4-mA7^jE?)VViQz%LW!CIA5*k=xKN+{Zy}f<4|9rbopFdB&
znsxO^r*Q12!>N3}pw$&3l9DTXrOi(n@PNiyCY3xo!l|mJmIYc5@^<TWpPMI)Ei6El
z{1w~pcNV{1xBJ|-$-lqfuU{{!9rj{+eBH%YS6Am&$KS1dKDVp8`*QB~yUW_;>mpoT
zT|vu7uB;4Je|vND^F_y*85)cwt;^Pca?y<&5v=U&+N!Fqhue6A)6&wWM$32x`T6zT
zxqBD1h9S1}YN(cmMnF{5EYN76?`*S7(1N()&6_rv6g+SMt%vlUu6MQH{@)7q`87fJ
z>wd4zovjl7@B-88i|+DQ+jylxjT6x7OVBu_%FE^R>w=P!7R{^q<au_!eSE*|w;7s$
zd!<ahK+E?Y_uH=%)egIH&($K~0K?Ja$8YcLHc(J-0L}g`@tiCoF1{Qz0{8LJ(NiZ+
zt_(@o*eT6$K&S7A$isE9ySJpBl~Pqx(=sy)n*<sHTNk@K>(-XcTibG@r(Sn+ch|PE
zy0tF%Pzxt$wH;{aCp-bvmc!kPk9(nPCEG3*0ZQ}7`ed_j+wOJh7So+FVZwss<9(S|
zSA{MUjhF;l$)=^NyVmXby^_nmx3=fUFa5T&`1!5c`VS8rgO9N>G$?beDSdtI<l)24
zhK7dQ%=Gp3UESTYpPiWrs>qm_nX~WA@9*!QWuBk6ecI0_CnujeapJ<0laq6gPF3lZ
zG<Ms#abwi(vbEl#5qz=DQ>RZ~KF_u~ta4BK`FW?#pI?7ikddL_=gCv2f{ypeUfq!B
zy!)G+ZPksw@aIoXPX6_DdOT?GO42wj<Nv?EWvrJ$^XZ^vtncsLeP`wG@88<imi7ML
zUNxJ}&jlHcS678<r>3QaRo1+|wiYzPe3zGlfq}jFh|+hIX6%(0Tg%Gt6t>SY&tG?L
zu66dwNvcxzb$imz&Pu)Bel%(2run<7O5<V+Ga60H-bAd8-5thn_hSL1_q%R$`gtvD
z>u6y$p9`Q>wAJtTUZ3d9!f@azX1n&wzu)h(k9LW^y1IJ0mzP&aR8-dW_9a@sS9;2S
z?R35lj=%f0-{(%6G-*rC&!U|>|Hi$aYg--GmYDJ8#zxQ*U*&cV28X$;U-SF@{PE+(
znVH5@Z~4!+%e9W1J7I#r?fUz*-|vD}Z-EA9GvD6YTK0X#s`<0N1kShEasaeU*UPIb
zDLHv-=4G|N9}e?Rs{8M9a6{tZH+35s7#zNSdwV<l<ylqH)}YW;vlg8`eR{IW)|{K0
z!jeCH`EupM!^2Z2Ojux?ehxI1Zgw}K@Vx!E;M;a{<_5ocQup`k_1C{%uP^^%z`#(j
zqx-K&Vn)UaCuirkw?NCN>i;~Jf4*1E*f_YgwY7}<Zuz@An%zf(Ue=j{mKjR6Eu5_G
zf9mvUZ=|_w(6nP&TxRCVO`A5ERDF37_5I<QS9=bu%GFBU7;$cAC=&yN!SNM=i@#h6
z_Se+Z^aM@ke)*mDKvPqbi<^6M?!^i7=dX{i{~LPn;K8Eu^64s|HZrK6^!8o(qa&Q4
zW)Bw^SJ39Pvnqf8#XV?bX4lfy_1&C)ep~L<3A1LcTC_;%ZsBp+(yu#87oFo?)6mc$
z75ePw&!4Bxol9f(XE>00RPc8K>c~Zo_0H#5M=d-inUuT;*qU|K%eMMk2q?$Rp1m40
z#_{y&&1>=aM=?%ZNiW-CrN80acHQPL)rp`e5Rb13eE05MS6A1n*^P`01(MOYX2j<v
zZ;Z&1_gF0;E4%jU>hSEFn^LU`AGORf%Uu<>w<`11m6cQDHeSXtC%(w4^4P8?BH0^M
zUf$T43|dw=Y0{(+&|ZaiJKc@b&xN$}$;#N8FfhF8Q5Mqi%(}3kQAkK=%7h64Pc2WL
zJXzK`?aS}%LN%Wm0gpF+d3QHjzWz^P@A>uXW#SS-Rl@#9N1UBy>izci_VO<m7#LO*
z_i1fN&}$cs`1$iE$gXMn@#`*K3UYOI1&t7cR>>`HV_{%O=(5t^@afa1oYv6D$eG7_
zBp1&#P7jJ;WccuZqQ%wv(zpar-IjiCPGCmH3eaRp+1p#7p>0-H*3h`(!@TBK9&#`;
zFzETs6^{_zee&Ji-P>>3>hm0)a5O0pv?!2=mw}-@nRi<DiqA~1`{&y+fObul#wGO1
zT5nson}uP)J%xisym?pWGchnU+$#8C7s0^rU_WTY1u_=GblTLwl>@Yu3OvdT9$P^k
z3&{r0o|Dwofb>!V5_YnII=Rq|HAKyXgJzpy<KLjJ2BecJ5`i*YMAS?;Xduc#RaLdC
zyE`}`VL?r8t*DsTvYwuvto64yrFMf_tSf`nfByWr(z%_ltFtq(uC8ur@$c{N_07$<
zd&M7a<J~RN|0DopjD?`PYDDt!zN^2!z8001Uj5)f!qO#6GHz^0Jay(w$oqSHSMSl&
z)AM6xW$o(dxNtQ*er+>5|Ertn^Fynuc7awSEpp}FT?p!YcZ=&!OO)95ZJKU$+#O~s
zMet}?hcXwzahKR#B`be@d6|6OEaij%XrsY-+wXIpou8jyzNYZ;v96w;JqOfR+JnYG
z9~f=VyK7ZhQK6xxcI?`-r%#u@c##3>+q(D3to(G#UMzf4$>UygEd>RK`1-$JE!S&8
z#$S%|-{}N(dmp4|1?g<ww`%g#sZ0B0tyd);ZYz6hTlHmw?E2nCi<Csg#8yRaPMg~I
z^vRPG=g<59`}YqtO<<hfck0xstkVC#8bAY8dc~EMm7Aj0PQA4@Y&Fl}3l|r=XP53@
z>OFncmMtOW_bQjiRu>d(VB?Wk@Os^DKUY`RsO@=k#dIPTFthW$*m^x~_looaGss#7
z_caH#P^QRd{d%#u-=zLu4X6?M_t)3W*4t`+7VUoje&6rBUU~aC{k>l%B_${4cFxp>
z3`L=hft!9jYkvR5x7+#Q9v&V`lU8X>R`;KlC}Da_Xpx;Fc<ePMrwKGx_4dxr%j?$e
zVmXDF9zVM+(4ywY1~z`VHOqWwgBI=7)zz6w<-fkRR@L)(zx?`(KfkiFhRMFVw|DpA
z_6Dn>*K4<1RdK9H_P77L1tbs<74_<cV#w<7^>LsIHTL#G=XR6wcXzbbbMo?rrll?8
z;^uxUw(C87-PH59pMQLO3>v%xEr^;qbEWqBJ)4d_{tKTa|7iM^5wvQ=LU6OaW5i^a
zoGU8=K@$%_L6g?5U9!XlQoDe%fQqKQef-UvH?{Qjx6dtqbw!g`)+z+llHQUz`PTOQ
z`g3-E^K4d5nl#DlEw`A?gri9pCn!4WJvsh#3usUleb5_E)lqUiw*2M&|Npjw2L0;)
z*S)>J|9)BB;Wl3I7K2Ok@Jx|s1#kM*1|B(mv;xl*`Q77Z&(?j)zQ3<_Q-n?wbbhXU
zjqhx;ZA`0uXPdpcy?wn|-klYH{?zQ;xpQUl^K+o>CtnXR^UwG&<y<S+g5<KsP+?vv
zlK>~DCLtlARW|CDmN)e-PFeyQZ*cpbe|y{7u=R1Zfyrz9BbpJja2<=6aU|-2ib_%j
zufZcd3l&!V2W3(Cq9V{973888Z4nY^m>Ru61VsgMfeI-geFS$Q7qx^&;?c+3ja2-;
z%0p@cO{eQvmku3Bfs}-x*-Jc5hL4nMVP6kCO*a~}%GqzO6=<WJtW`;Xk5A91&!5j%
z{`>a!HmJM*^XJc#SzEIn9qH84(lYv8DANZXcY3tKl+q&j_Rh%2NYFNfT_rCUE%l!M
z>bQLUmC62gEA#jN4SV_W<uaSqn;|uq#i9eC{Q`LAAwS&$6=weP?aFdNtLOID{RM6Q
z%l!A}=eBQ>#%US~3J%fR^QO+9KVM~~?`$(E^Sn7mMn)zD4-RnGx-35oTAVd~Czc+`
z@jh9rq9-0xum9V)W6~1PSOFs=<F8+@*XQPfR+GEAwJln-C<odrsjI64^-4VbAIm_J
zfhgy+oAJ-_m)zU7>F@jDl$x3fDx>c1oHuVC7ccMCdwZ+1ueNUnZL@x0G#!0$)0VLB
z(Ys1kdU<=7KA&5D>nmhha$Bv1HE0y&0cceTXsJtFT-?-Kd-v|mJ)Zq)alhTAKR-W%
zc1?YKef|78e$UWv!L#jNF@tiBUa_5>omKHOpQYa}FZaLQcm0U@{hGzM^Y_OpDk?_p
ztEpTHnws?Y{k=jTl->)B#3v_!*6&Ae%h{N%t)pY}-Za$r;?t*3JtswN%Zbe051K}M
zaIpF6mdxO#%a`BQO<DiqumR6)+y6KGeSfX+2ZxR#GaJu^21e#Lw~C62OcD>ZkXGhi
zvP5g@UyF;1TD4}4POqHpu4VlZ`k+QsgK*)I<s9z4QcE{&GE!Aly?M*a%WDeiIwkl5
z*5!V4FI`yZ4C+q$&Nf?F`}^DTH;V%oyMdDErAwFIl;!#R`i2GuPJFlHabNe(jh3>Y
zumi7#`i?UHNN!Pl`#ZO|UPwj74$!CqXyd_$hlfEcWk4H69h=!^{yNj=))?xYmzOuo
zJb&J^Gc%PvkG{9JWMB|d0i6rr<>`6x@Av!p-)HkOH2g}tx+)a3ANSIwOCbRP3noku
zSh{?<wvEl5vc9896KBu<`{eq*+TSS~Beo<R<ysrD@zA@7*=D(KxYp#|-KD9l>|9t_
zILjn+(x1P7MTLbIyLOAk-fAyq;96t<<GKC+mHYqyegEp_=H+E?ZUnylIsH+*6hp)5
z>5K2V-dNzstg51-p{Tg<RPm(Aliv#Idj0}+Sxu+i+gtq_G@5bM^s8X@hJO#PhR1_O
z0Jmgc*ORrWxNz|>BLl-%0oH5(fBgIXerxUTGTq2cE}-2e+Uxf`dZEb3pl93{@r3Vl
zV8Y-2@VH7>Mn=Y6Pp3tjWL?n!wc83DH8%V^zIy$>Rr~+G{lB&Ry<z0^|MJJ<<ri60
zE@0antu`+p-MH;#2WO?%{+t<k-$Z*klZ?0gpA@rbVc8}j-qNj8lX#tM_)Md><!rN2
zJy*G4R&a{cEs>IymZ@`g*4O{|8u$IZ7=Pu#zYq7#?|=L6@ay6o>-e>*Kkn08cfMX!
zLSn_1EheF1VXtm%Oui>4#&F<#z}{DXI3oTRzqw&J*RJ-~*Q8TRmZ-S8x&|I)VqoC!
zZTM<0ZI*N4vcLV>i;LZN-&*E7d)e99=BHnlRDlM2_aBndx$kgb(v@4cR_R7>%Q!Q`
z(5n319MGB{&}f03U7V?@>93c|=kKv~VPLq>xq*LL-hPSAyLLr^77H%(oqeY-a@tZ}
zX|s$wI|}2ZWEl=fzk2;TG(P_QwQGXLQul7LbEgSzP?<Vq$_n>>xnF-ipSS(@Ip_8^
zU+c0r7iO7ei-?FkSt`iHU=>wRu%W5B`R=V*vu2fmHkZAf-tbiVk6psm>({f7_sPyO
z%blg>KkrT9oreV(mzVke`gS{i>a1C>S_PRH8qOVie?8&tot?qv`S-3Y@tpjw%0^Mq
zapJ^@f6Npa7C3J>ao7Au?E%o(p_8-o?U>}$$Z2XmGZx(4UH<yk*6csdtPBj_pMDQ+
zu`YkN=e_0s8s`dc@9x_h&z$i|O-tK$`UV5Tzjo7zeFxubgH8xo_Oq6in}K2X!bewr
z27*@)_i%|ZFqlDtl8NDf8%M-G$VB(y6$y+C3CbZGYM4bqtM9P$jYH;G*=vD}ZUdQj
zz%8QrsWe9f1H%mt#?$7Y5{4l`0;E5ug=<>=0&qo)o!{0K{M;SnxB~_t^KNit!)*qe
zcVaHrw3p}qnwXhssjIsO1_pBR@`gG&HGO+?v-tk&tgI~1YE{sZ-@Cg?gB=_izP-O+
zf4$hfUv6zf14F;Rm)9xh`nhlVK#l#JBhkSvGiT1cwXb&frp=o{*>}+*B~TCP{k^?X
zhDk27uZM<&WE|}h1x>9cB`1f5g_WHz{POCmH)y-$<(DN}zrVTp`JvnjVFl1Cm*=4I
z7v1P>8j$Adq$QxuDw0MnpP!!x%@f?-Q}*M-!(CNhR~<Thcx&$MZPjc#o}kL?(xpp1
zefRr7Evy4>dkkGci{K9&a7ax}-Fd62sR=Y~GIi?ImyeEi=f+8ki7or^;X`}Xv1!x9
zu3o!lcg1urFC#YtgMD~h+`2|)_Ep}~_43|+{P=O*<7IO!i`^0v6G59LW%$~s=|nDi
z_AD*=`*v<n?{>q?zI$N{ckPPeYd^gB?!$r;FH2rsTI%igtFyE7;*E{TU*Bv#ziQjI
zu%%0vf)+h#X={UqvXpCYutKa04`04ufkOYc2M-di7Ybin8~yy-^Ou*GXP=v6`RmhZ
z{i$>3zFjrrCwR7agJAxegIt`PfzHm&?$x!mdtX;n&os}UH^=Web1vt_nE{~QOMA`t
zyXBzPOZ4rtv(4XE_8xw?<F!dbY3bG_-|o6C3|}8NX-W3=bz7t5?>T@b6W!!W<=1oy
ztAkoxd7wtdmDBqB?>sXtEG)dWyL^4#-Ca+&UHJRq;o(g>-i3vQ|Ep}i7k_&b=^2!g
zlCt~jLtfCbtpw$JGnD2SrFPAlJv%fY;6YY)PEJT*;6x!IArVng)tBGay%iM|&C1NI
zeDQo&<>zHm($coKrt8IOo!&HM&YV9NzHc!GCDI=|fBdLex@=k2!$YmRYJP6YR{#F_
z`T5lwHe4vZ*Tl*Vn%!BoO3T&VefO>RElWTHa4$<%?bs2)&L=ZL<>|9$UX%Ld?bmJD
zVzPAUQcX2Ax6;y5P?|h->Xb?PxjAKPCsi_o!d&{}wbezSardL$;;WY|ak;)eK0GI9
zP1)O9OOG6J+5Ve_rNXaHH*(XFtL>?g>jKgur)ejAeRnrn*}d-ysGTxvmJ}-s3wT-S
z?y|LU)o)FO`!ls!bQl;GfHo{uR#u)meLDN|oI{74ws&2VUAuPe_r3M=?P|AFetzaI
zm7MMb3idRss>Ojbjw_WjFfc&Nf_qWTteZi_1cQVdDCbHqY<en<&Ie~+^uhptX7AZq
z@o~}i_6EL?`1tp46@M(T7S*{dU!ub##*oYr@vpUkbxW@)xQqdn5#SI~O!x`uPw*^m
zy2|+K)hiWGRaI3`FLb*5<&B#*Z{C`9RV$yLSysi`I{N*--|M!wH}XB||G(dVuGP{n
zUrMfj|N718=*rK^38f9IR%v+#RaNaOXMd!6xQ+MoH-QU{KYoAH|M%;AY-lJb$n*J`
z&D;*WVmNv7B&gdk->z0fNa)eqhYSq=mhReR6&f0<X=%Ch?ym&iY558Xr41b&9H6y5
zw+}NgNH{#@;%{nTWoYOPIQWV8kC-9@LqlT71_p)=f?5&#8bQTzLn4dLf&SXRU$1j<
za0FyztXQ>rwQXO&oNd&`jT_@6Bp>XrxVbrBA%QW#*|~X|ZuGN@=gd<NSaXEWm1pE`
zc=YHIXvOc<D_1J2H5eWUb3`=E->l;eI!0vH?Ah<5j{aIcZJHQpY85nyR8X)1)R?++
zC&tvwY}efD%l+kjXPJ2J|MRJPUj4ty)|QqP_5c4x?XTN=+&2Htj)gmmpKDoJMM0OH
zOw*6oTYfq7i)G`vCQYaN4hNVPfL8Au>yiAvHVHKL2s(cQG_wX88U6C&B50O)>a=Ok
z%I2j;u3EDuBr9vxzt8jkXFNSMwd&Q%<zHT{UjORK%HVaMU%h$-T5%6r^$J=~3tB_B
zWQmGy%#MK1&(3CVf6m(Q?U)%ag9_-37tl)oxVU?<@eh8#UcVodzc#0zzc$M>Tg7wz
z{(rlal$EE>pTEBL_qWU|D+1SjK0n8DF*7?KXs&nCk}Fq2zP`HZ-P+n3wXbF;c)+3l
z&&T#tr%zv9A8+p&6c#p3hOZs8#{2ASbN|4=z_)*2G_2j=+YGA994@`p3UhO7<Kp5f
z`S~fe|MC6$|9f>#gU+Lg{tem(T4J>|`?}utZ|U<YkBP2Za(jJ`lu5>fb91eqXKCx|
zUgg%`v*6v`-LGF=UA^vnxBk8r&z_}$h8{iyGdUbrNMJ08+>$YI)~s3Yc8R?{)XEJ?
z3_d<R(bfHOwjy$J>pnj}zk92@yL<JW$0yb2U-|m_dTjl=HEXW$+y7Z`;)KWc^FKa5
zPK}(lE@o%ai<1rKnoS{9yI$?@Z=i8L&}ys6lZ&qx%YBjln%r+&cKutuUR-`|?$sY3
zA5R6zxV~j(=c`$;kKsTbM+Cziov1Ays;a7|PM<E$et&oO_NeIS(8x&8&V-$}*2nBz
zwEzFV=)Kk7>t5^wZCi}qo|k!MhGD-=-huE9Y~Z%Q0bkI`E%WBB+nRlS*I&0pFR!jS
ze#^tw$Gt79tE=0mbNW&Xr?A|v^(%vyuUfOl$Nt}s#m6^Fo9C@qy7cKod4>;+KKx~M
zEIJ3y-_6a^GdB<S_4Qq~VnxB$qsNYE85;+)va(h^of`h-sCazFvokY6qb#6i*Ei`F
z{#R?a-vf1B!1Kc2-rNNBLc`X@tek0_zAAiu+^)jM$CPcQ8`!VkxUpi+92r+vS4|U>
z5Kd0cTbt9**REf^a^=M)R&JBBHxZ?;ulX`EGJgNVIu*2BQd842F)^{oLZ<3*uX#vx
zboQsfoW=&$A3JydExEnFzCJZ2rQ*+*-&e!qU+(>W4>aQr>P_vf{;p+i9zNSF_tTE_
zXnWKDn{8E8Tz-FlfBnzT&s+2F+kv)`S5{V9RexJ^ul|2+>HB+kF9b8qZQm}oGd(RW
z>+7qlp!q(~I`RVt9F{Iw^5Vim=kI&gEn4KH9k%AeQt#;^($dxE_nkU@+BENu1*jc*
zbyeu8Q>TI)9UGVV&HZ&DUVZoGIXTmL7#gn2+SkP#ZsWbYulBcyxOn=PdrzM}l`_qm
z(kE-Z?D@RvbB}*aRCWi=U;g=1b3IIlmzP({D5az7%Zr80?EKp*-`~0wWol}wX=4*}
zdt2`1D=UM)em-vxI*vf@`LZQTUTnW#7wqcVdg#z0mAn5A=6-u~^VZ(#?Z<kh(_eJ%
z?FSWiW{-Ng!ZI^gf;RI{o%%G3n~Uqxn#j$dC9&P&`r9gVBO+!TI(+#3?-)=Ud7f?c
zl!+4`a)nO<t^WWW9`X9xTK*4LU)q3bnjbqqeJX-(a4yX5@9!^{tq<A%|KILevuA@g
zh;9FNT)sZ0u&~go@X-<F?}_T5S}^B`wCI{wud*y<`1;G*4=XOe3_2LW_ET|ac=+i}
zYs`KdUTmK$uz`W$Lvd+oDHj*lrwo2RzA{<!i|tDwk{d2+Fff=s>g{!Nc5=FM;lhK9
zaq;o*t^TcecW3e1I-f5PdumQxTN@o374_;`*?!xnw`MI`y>8t!m9KAZex7)|G=0~{
zbGHBM?bUv55M~0k$v<m|t^sW^yR{`VFIU}fPC!sl(Cq6+jvmc?e{b)u($~{&JAFUg
z&VPE7j`D3c9!VpY#>PggsxK>+`OJKjm7kRrR9U(6_zY|Ch)06*y@)4vsi#Ct&CORY
zSa9I#wHr59ELx-l>WFG-d0l!Nds|ye>)+MvHK0Q>3LhU^xn#+a+~?mOJxaQI?b@$9
zX^TNM)Q94aA3u8e`d&TM%3b>NQ|i$pM^>y@;qm<Z{P4uYg|GLpa*M6lu_GchG_<R)
zuWYM+?5>b$sV|?LoLpozS4&S1bl!`~-MX*WWaaCAEEEzJ2A#cecAjl?{lA~fLAmkC
zlayY0`+bk)b})lNdxK!UPSNxwUteDbE&tTg)V%oh^>xs6M(pk~O+&+rZ|xWv=S`0H
zo~BdyH8FCU_LRtJPsKL0@yV{Tt^TH=uI`?{@8>emM!hv_bZWm`bnpMwvF-5cA_j&H
zjn?Z=S(dz*(8ed5_2r(r-<%5_g37mQLix@t2CW<JtytZ}x;X;0Cjw9B1=RFUFlJeF
zt{>E=fVGKy1b?xCnuZL}{?LkqpLqFx^X+o?JOUjiw)p$uzk;B4Kx0P-2k77cTid;{
z@8qSVR&{iAl<hRPiS%23`Q=+j1_p+ghg!LRy<Wfn*3)~SMcsXUdDE*83xgU$2Mok^
zGBYqpxE%mZ-u5(rhJhs@5}-r{YFU8VZ=kHg&<3)Nfkzp%7j#s^jsJ}NadFw@N1j<T
QFfcH9y85}Sb4q9e07SCIM*si-

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-8.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-8.png
new file mode 100644
index 0000000000000000000000000000000000000000..c66ffa64dda34c1ffd1df5a8d2f320b5c8645c76
GIT binary patch
literal 20418
zcmeAS@N?(olHy`uVBq!ia0y~yV2S`?4mJh`hJ9%>?l3SguoOFahH!9jaMW<5bTBY5
za29w(7BevLCxS5J3j5`m3=9eko-U3d6?5L)t*+_+`uP9H=hd@i=klNK*?Ly#l1^8v
z%qc~!Nx@gvM6Ld!oh@bDK4nqZv7q@KNfL?+?c}{yzMu1S@}!{LsXY>NpBWtETX$c6
z-@W_y&Kl@d$5+2E+<&+1cg>!4mtQ;C*sj0+d)8S49%lvy27}(&o7EW@7#?JCL@+Qg
zs3|8fGBC{OX<%hwNHAg&V_;}FIVv%ng5=EMo5BnX4C!y~?hdd2^YOT-W%=D*rJ^Dt
zC9dasCxPNR;=sMV)umsrhR1LG{QK9hSHIuyS5KKLEGNjskiZzeYNyrfBb~zGf24lc
zn?x`$MD(0ZGyYoBmN=uzE=GbEoMJLIFfeQon0+>_s#*17(o}OP9R>!5$rlqC84?st
zBGxssaWgO+NMX@oV9<Gz)13P4daH<th=!qIU}IzBr>|c_Q&N^(TNhh>@bR;=v(?Sb
zw+qF;d-v|w+wJ$gY~P)jsQl^s_vy1|&z`0qAGd7&;;shw76t}~ix)3O?W@`O=<#Dw
zF|lP^wwQc<b=6x^QZnoMy1SMATW{u6{rmY`R7U2FLEPrFvqAlm_H}#w=Gj!b%C$!^
zGIBqC_T}Z}qGIjHSyF8eH~nu6bz8sp+bpZHH!G&;Mq5>DIkc86y_PWd{I=ZNTT)I6
zEnTui!_F>ll8C72QZe1Aj4LYwZ|x|2%zD1?_uK8OLsy51m+sBq|2NDy{oIunPT?<S
zjL*khyR){-y+uR(=+UD^#l^v8W!uuu%~>gFoc5w!zAhj!abb>`bhm!&k?Qw*m+#nN
z;XB_hR^5Nzlk1{8T%P`|D7d*P_0xwB0XaEqYR{ZL?QLjicxzK?_qX@=>jOWZJAL}{
z%gf94cf`lU%=z{8^>RL0s~vCV3!6k}h=YRe-R}2Sb{410+SNq3y1H_4a9nWaw_UPi
ziOSDkzoy+PSorA0_4V`PYCgK&ExVoj>D#xk#KeWGLRLO{lgYTFLDsr#h390oRZ&}4
z9j=&dmiy*5Gc&Wd?L7mY(sy?vD=RBMefbj7FK0Vt(xgQjHf#|3z3=zC-M4m?uCDv>
zkp1nwy|?d3Zxr}vc38CZTfC90tE-oXN5JcAYqusH<@)>Q^ZBg1yS6?%I~(NXxfX>^
zd3kwyzx8LHTCihB#H1-RW~`9T-xD}<=FF-`o$6b%uj{Fw=UEXkXX6Q5b#-?}Mn=_R
z%uGxv5^a1k76Gp|?%TJo>cc_yug9eGGoGHB>gD5eW%>NNRo~v;o}RJKZ=TJ{iOTL-
zM>+(vuB^DY^e;=OfJwxTMR)Gp*;4*KuJ-d;b1fa6D~I{**I2*X;XLWfIqUZsM>+(f
zwq{LLd3iNFe(L)5`q`VbG|J1%+vV#&9AuwmTfObm=g+2TXCz{)-){ArCE37z^8ESf
z)2D}b7Ut*Y|NeG~N5a5?nT=<|{~hJ;@4dRWcQ+_Wc}`Y)*=v4pLw@zgqvD|<A)uHL
zPS5vc(TOo^OVrTU_uqcEY<BJ1(B*z}Rp$N-@0mY;eo%05szh7Z`Z(Rr38523#l@{#
z)=X4(e|2SLu$QN2U}53LWBu~}CyE5^|9-h_DgXC?OnB17->v7KKYqM8c)8zH3H!=V
zOKPhlx8&cC%e}p=wBqdHdA8Lisi#EF&M<V|w{KsnRlMsFWv3WJv)R5^SA_;AB`x~&
z`SaAdbJza=^W1(?O8orCj~_1%kFO0azf;(5_w$Lc?UxJAR)vpP9<E|4DlZQY3!7$S
zWb`Ka@v+{^9fHbV9=6M8Jv!3)>tVb69CODRN}8IUzOzg&Zp*zr$5wR8q8&RTSXo*5
z;#*r=pWCV_C^%SJTB;s9-)EX}VZoWt8CO<J{P*j%{_p<zmCqzib8ZC4T9<{Cm2KO!
zdGp)n|Nnl!KXvZhw?U^}I3ji=b#-;Ac=Fr-*$`L%xAf=FpD&kAkGte9U#sG|Drjk!
z^NFnc`}Xep`Ak~YvgpXn%g0o$DnBi8>y=s>oxk_$!}zt2kN1by)a<eQ^+MTc8uyEf
zi`$iym9H-Mmv_1*TC_8Jt&NS%lc!Iget7!wW#zqWHy0NTZEf$$%1XY+(cAN;o=ppO
zadDaXKKc8*yQ{+2&-;7)_qVr~{q6rQxo{z%wWUQvMa9Lrjc4N7w96Y34~s}itx7)L
zH}$7gnCpS2%yW80=gyxGPfT3+@5f{Q-`g0O*)opxNS-=-_Ues|$y?LTN_qYl-?V4%
z-ml+o=fA$}Z*TkD$va~H_U+prJ$`(3Yj*h87Z;u9*L>=%y>0ItmX@|mIK9ie@Z0|9
zesirfRaIRN9z3|~^}5|0k$Q{j|Nqm{(z>)Ja`T&HR#sLoZ|~rglqG+KTiE&KLekQf
z{XJjp$ya}E{?@9mS-JQ3#oAVX+tTkl%fwSVY|VvJQ?=j5>+ku{w8U7xFLGm2>z_Y=
z)?Lw^X3uQk7#KJ)QKD_)%$b>AUSB`I<J+z5UN&ASiH#dK9(#3l_1oWPXPcj25xaZa
z#Z{r&j~DmbZR!^n5t;IPPGP0re7oHL|LgyMy}c!K^2Mdz;)l<kJ^SOw<9^w`nHGhM
z9=?B{f2Z)ctXo)E*v_+})0g|tw{y$MS+lYHecWM#bAN8--`aArqo>E@&)>hj=k5RB
zIcZ$NdwYAnxr*eyd-vMbuV2419>h>d{{8Lk(zyBu2O8U!FJEq$bwwlj+L}nW-DPii
z{Qdnw3HDp<qQ#4OXP-?=Nl(9heBI7xQppbvG#)#xzdvWs&u6obDfinXg{%xZ%E8BH
zR`>hu_Rsf<-Q3y|H{a~}ey{rdr+OycHa70*XAO9E?%u6!Y#jXd_V(+bB=CCu{y15y
zk_%0&++RK%=FdJgMRU@Uh0g6-rlz6Q-`-p_K5w(Q{{Qd$laB13q$TmV-oB;a#RWyr
z|JPl-f_9g^{c?y~e?{<ezg>U7-S)Q8t9h}oeM|QBbzU1!Tn)XlD%3lF@7HN@)o)GT
z-rXH;Hrv<ye$D2fpdb+`DX+<;tW&;syQyX#Y+|i?wQ~8CdGpro*kK_mE}ngLRVXM!
z9NzQq=e|SL@Arn=|NSx<RQU7C+r`M&|Jf*4`z0{<_O`PR1t0!=cU9HW`r*PP>)SC;
zpFWkW{q@E0(BZ?f|4e`1Ex#{$J*K!faC=^C^06MtZy#N|#U#yUpM7y<<>ZOer-#4$
z>~{0d-nCY*FD!I+%g9(^m~ukk_l^6r*Yrx8OXc3)W_suD-QKUSuUpIf{{4P`{LYhy
zOzQua_V@Rj=a|i&IAKCUzJA80Ghe^6oj!m5{FU|HnHv)Hq;#g-JT+C@H1Cdu=l}2T
zln)zxxm$jJW$Ni^-^~AuiHNL-+?@97#p3=aPoFNmxj8-i{=V8tOAa=(XP=y;TJ`y?
zdF<<%ySuGQUrnj|{nq^NkH`I16(1HXG1eD<b7ke^zwxUlB~QM(ueRFu+l^$a+Fx6C
zmA}uc7j0L$x;A?IpM0j&w9Pl)WalpPo4abq4vVErmRv}QO*~g|QR9sJfkUpwJkIX@
za#yEl27mc<TK~4Vx>vfGot$OSk$-}>4;^x<tg2eIV@Jfog$t|RZoU5HYIwY5&EX4-
z%xo(%FE4vqC$BL(bahzfg$0gTmzH$SGR<DLVS~Zl+V6L7ZONRRc6QcMMd!ARmzS3E
zDZYN=&G~-!d%M{BzhAj{c&=Pn=v?~eN8$8e5@o3m-o4BF@A6?w=4Fn^1Fnx;7w^ab
z73ZtNulGnAPnj?wp}z4+3#YJ%nAo!Dyq&J{wO=NFdw+lZfddY|%`2uYQS+U3;_zYT
z{eM1nPkzsox-sD(6DTOME-&kySM$lUvby^9arycyhg!M69%Pr-u(XT>m1T(%v+V2l
z<(SP*J2xk@Uh`p>sCLLwFVVlR<NseOy&mfx9qCx}=i~8H=g)`Fx2sk0l#`PKMZumu
zdrWd~nRo_yd3CA0JgGiEBp_gdZHn#RFPC54-oAdCUhJz4W$fbTCH19_iaxl)K4nEg
zS9dq>VS}Fh{eQ3R_<Ak6ca~|k)OnlFJ&6)+8}sg3ElxW-%dMhfN8y(jf$fj~{e53A
zy*2x~nV3#Qz`NpOOMia3?B5%;HA~Xp?&p$^kNfSda(@4K+}~UF_7*7J&afz4RQTsd
zVe*d;58bwAUG4ez_qTNQw>O4i>*I3olwOZ@TOYT#M_Ap@;-y|d*le?0qa3r@pdvug
zxlN+@*%`~{b%lk6&toQUt^Az!_*V9MQ&2ggY;V8cW_jGhxv|YpU%$={Ssixvihg{2
z{I!Is#!@;{Iuj*~c$}}tmd{=0KY!iB!|ks@4UO&Fw@;ch$)xa+i>iu>hLKUw`aPez
z*6sZkm710YDmp;*^Ye3a=hkxXV0c__uehV=sn^x@@$nlsZv2+tUG(kt!;;t6e79y_
z4+{#Kq~<eY!Gi}0OP4G;asPh&%9Sg*I5`8SYK4aEttzek^>TUYKQrlqd5hiqwKOz5
z=312orKK&qwl;eC^|)$ZVKtu%yykZnELfo68I+Z^%5T11?4pxhJv~?URDOQ){(b&`
zyD|-FDV^&H#yny!3rapeJA3(1D|hMj*z%R$)Ah10E^0meZLW2>mYrSP?QOZ2TR4TM
zOqj4>XYq3_OUuZ}$jDFMzD--detk`C?brGL|F}PV_|R{c@D$g&x_x;&9<rI{--|gt
zUBCQB+Ml<-UGnbjiLCwoZR+&t)3@c^Tr|rx`_=aQb(cRqJsr9>%Cz+Dt<Z%F7oOX}
z8l!aBpyc)1?W_FeT2(!tTfU|6vD@A+m%MN7tKGeB*DI}F8Oxx#*5zRZ1shZ{e|&gY
z_4n&_)1oIHywYZ8?D{tS{&ZUZ>aNo4pFe+2{qgMO^wm3dL>%vzzy9s*?W?OowS&+1
z78lolyO}<}^qWe8@9wg<m)>r_zwYkt^4Fiw+lOamt=g7*ds*%8Zz}^AyMbEli`{xf
zBqdj_-~TV_<;#~v<>l9f{cRS4Dggxrhqck$!|v~^{rad|f0gHCwR8JaW0nZ3`(->k
zGjmn&@;)|RsV5uey?g&(DDTROi8ZygTT@O7mA<~_dv>;Y_}ZwgSJuT^Z_T?KwKeN%
z(KX!%LUZhDqw@0dvhMBKd8}7@xm&N)%KZELy1Ke9T@8=deR*d0nSH-rY5)Cl*?-s9
zYte7>U(K_r+_Wle?W#Um>uDAKLVA9Fetl_YXQ}Gz>+jsTbLKBjr^5yz0Rao#<!h(B
zpBCu%V?D!CP@!{TqB1DZSy@>#@9ZeNwZDG<v3~jW9UUAX#}z+2GqJtB{a)Sg+`BcO
z&(1Q-oi(raTV&|^xL8ou10~2CHzG{4uAI2Jz1e6*;NmtWX6C6=r!Kv`-2e39!_Le7
z=a=1h{^s!`K3OY|NuZY7Zwswun-7ATQlL7{?#BaWP+w+}NyY_*yT#{ii;9ac%h&%|
zIAw~6Y33!D;AK7+gZ*uno}8@y`d;<>sqO6A{tTTBt)Ev!ZeBKN(xfjx9{0a~y?+0+
z{{H@Z_5W+%-r5T4Pi?xHQ}yFv`_(m(#=bKQ97|tc3!Q6KYEt~nM^#nz=J~_%J48?4
zj9;I3cbBHNwzsgF&xDd^`uFSGbY`DTi=SWm&Ei^BNX^$*S3&K(Ek#ega_{a6o%H2q
z`uxlT4UC{F{Oh&o{Fj^0+XV*%OaQe%Pn_`Rl`wPy<^IX(@2o1=!;T)8(uuinak2Z?
zJH_WSZ*9qxGE8dud;6Y8y4|_G$;bK5&b1D&tgHlux5~-;_v3e$y$zacRXWEsH)h%1
z>hG(Z+xe`@-pmLJ3i@)vncs8L-@=DC?YBHXKYu-_Xu1FY-}bznPsP&xB-KDA@UL%g
zwGSJJ2n#QEm#cI!zgsdnC@4tgT9RJW77q{)RDP+SyJk8kwiy)JmuDYXv`9(Tx~#`E
z;%SGTxHzZ;0fm&=Y+q0pBT=I2-OlGBTeCt--`|V9ySx0la=*<Y+v;yG?v~%b+9zub
z>TMhfWfd0@SyFzl(tZ2=y4|2untZ%ZQ%~<);>Wkw<LlS9a*MAje0*$=$+e>um6a>2
zzrO=@<8E!uzPdTxfA5Dw+}{d9BO+F4g|5mtF+tI9o@RotNyLr}P}TeSynTNC%m<s#
z+iBa|+qe5q^-LG@_}p6)dt7~f%_2r-wihohF5dO~-EPx@2M(rrcOvH3ew%6c=Y#Xx
zJ3E74Uth2Pkux|Xrv88auITM~zh13gza{Z7n`!p7GbfFUbJL~Qyt=wNej?lJ7Z(?s
zL_F<a;}&0A_4SpMechfV|Es${7oWFH=MPS|Z*<vFq<eQ)>E&x{qd~>W+UV_m+TrV_
zl%(~>tqxlYDveC@@7+1Mxn<_Lx>sk?Hm|Jz|L@nQ)B0b3KA$hVp}|NYVWH1I$xV0e
z-ZicJQ}OfX&yN>##LM1py`FV(kt-;AL3vnITzs`_w-~69$hxxP;hUEaxh!rc+^u{*
zx9VZ5_?LIP-)Ehep!n&_my%CsV&wIuN_kmyrrf+a;pw|~>!!!oMb4WyZ<a;jqRq=&
zwbw*#%~}<<c9xV$#)CI27s#-(vAt>)kGs&!Z?{5JJ1pbE0>^XngaQ-=HWYZS3SYl&
z$r6>ys;aCH4-TH2$Jd~}BK!KftgEX;?{_Yob0J|T8<Ut`WUrLzmp7Zwf65RjC~RzO
z1hrxI?AbHNR&>E3g@lKj1lBd2YAgudmoZ1n4m8Lpc1YRjy2D=v(4Zq|ut=wc?X>9y
z$WSC`u!wu%!6IJJXcL3l;)7c3^?yFLUt1Ho_`!pOpFe(BR9i7Lcu$!>f4yz>w-xUF
za;u`ZzZ2cb#yc%rAz^B>Y4)`j|9-zO|7OC#pyuiCf4%nm-REyI4;<o%c&cDwapT|q
zd-v|0o9kow`|I`is~ZxX)BP9UIXlDf@Xg?Yu8qmZvo0<1JU6c`c+aO(+UMpu?fm_y
zTfgLSuenvV)YDfdCMtvc_V@f(?bc%}A1NnHZQk6^x_9s1r>|eXesXh)etG$Kuk!Pg
zu53#6PWL~kxhi~pT;}_|esirrMt%PBWzCfDx}8tub|^rCK}zSk!vQ9S15O+f>l&|{
zFo4El*|@_))<$ieW6L^aaoyivmepJu?%`Dn%TryOpGswHC~&>HF821#U<XU3git+2
zMa6UTm=YpEffd2QJ1u*`K_&(U14+=poS5_DkdL5IIEEQL;80Bj2N7sgjz#DC0c9s_
zqjZD}YG7q(Xq^*_a}+Q7+0Wz0j-5Jt)^~69cfE~g4S3GZu?#l9Q_#FBboH`dUtg~d
zUmtgCQ>ypO^~t56A;ASNUSup?woFS)%j@!T|LN`R?Nwi2Ej>HiJpPO2z8{ac&(1dY
zx3jZ*erMi<2@8(P*T?8aZ@aQ3^D?Miv1W}<>8mTA@iiY?Bey4Ut~m$_$~hl359Qw8
zmU(iLDrlsnre=?drk0kMZq$|wD*_j9DSUjadzW8K%$!Aw7oWdb1L`3?J2O+tqF}+L
zOPAg}{`>oTct*wwF})bjNYuwi`KKObYyb^!rrRjRY|EKxV`C#CEuAg@`O~K$AD^CW
zIX4&m{rx?@;NIuw=dZ7e-EES2X-RROzK%{vUERJvfB(uJdwq4ay1BXe&tJddj-2;9
z>Ue;OVZo%^8<X2-nPe_n6}sB0XM5)5WBdNreERgsr0PpXudMYpmj<iTw{J)1-rg1(
z6*WstH)=`k?{AsU&&{oR(8wOL+)uW>;5k=?3kO3(tHoo%L_fbiCMG7Y9(ER%69zo8
z76lLX9Jl{|r})#?uUCWpZA<U{1^K6unf=wj-|x5ggNj0F^SqFPf)ADbYcoLpTk+)6
z=g&`{J`GK}bNlw~eS1wJBO_<o)$Us6Gjowv=&Cv2twL9aT`j#HyIg%<g%fCqphwa;
zBqU^sUG1+I>-YcLwP*GQ32;_kwkO`?73v^V=A%cCt}JwB2X$|r?{zCI+_<ak?JB+4
zT`#VN$8YVwUv@ip*SlS>zns!u|Kg~4{GKD$8{|OwL+{CniON=0UsfEBC@lO~+0V(r
zVevfqz??ZUo<YrQyyq(Kq|dKiW}1C1<7k)YsdMM1l{||LcXf3I^*qYTwq;#kw>InQ
zs?5K?zW(}lJKr?-mPvbYOKa=O$jxcDwq#y*y`Ss~$$fg|ykTc&nTBpo^KIYw=TFVw
zPp9>l$_Wb!F6`;ydHVFJrB2EHU8SpY%w{VoDV?jlv#<7d%I2F_w&&j$`o5w5e_d-^
zTNbGDwyW8}Cu^lL`)t{{4dD?HD;6zUwCT>WryJS085+FSVIPrUVrEwLgpSGBs(=P$
zqc$eBhOLWv`5|<BUhLhH%f3-Ni<Z9I^;*v}XtJ7bibR{3e%zaaxBC141kIc|GwbTA
zP|LfyKS3G)fD<V3o8{ihIMBf8<>hs0p>sQ^@3&=(Nosm}_PaYfzx{RVms|Vu^YiTU
z^K7}exPlJ1@m}4Kcv$FpcX#*Y(D2w){_sgxR)uPV+I67T{X}K=D|@TUWi1LEK+*i?
z&mR$S@$`GV(F}~-3=G_bZU-hUVdWOf`19kVm%o2_Uf#MxhYxSfx~jD`|Ngy)HhFpC
zbw5IH+17xDPmNN$#Ps9Vm}Xx)arttvtaaIyBb~yfXHBn9dAm%fuYr|;;mOOFE1x_`
zQB_x;zU%y*oyD?JYcIXIxA*s)$8m9SQr2Z_j`hh_pZvT=13Yoju~|xIMz`xb&_vc^
zP~J}hRWP7b2%CLagH(@z%7%;$G0dQ%vEd{r(QgnyDSzEt;08INDU^^}-qjB(Ll2}t
z3dn3c1|3wD7d$uH+&?cb4>Y^s=jYe?7S#W!sMsN##>T*)#XOxSB7Lq^sh9rVFF~D!
zlWZ6ctU6~FkygL3W@pKPu8xiiZ*Fcb{qVps-Jg|#Aw)?}dP9!c>|;HWix(|gRJ<*s
zK0GF7&GY&7afykEpwW8|kB(z~va6e#nA-m~H8)?~U7nwNYl~;@?QK*0`}?KL^VYC(
zi^ZIbW@HF4+7d20|1_J9Cl@E@#S06a^=~8{J#r-DPz&d-kH@5^&YHFA++6F|N5$i>
zJUG}a`)%{hoL?W0%bO+~U;wr8f|vV+zP+{e>w{)~&@|EhOWT<l7_>O1^F>TDDSHzk
zDki37Y58-`?fw6LWuKjIAK!2DsRI<_$K|Shil3hgb#iJ7TNksk^z}8%H}j`XU7C7&
z+RLBM=U?BDco;N%yvl2;)-3DtyvjR#3<r*GWIJuTqvimp_Zkv11vDh$+|D=k#=fer
zSvPacjvha5-2)o?HsWz!9k#YeBLCi=owv4Tr~fa!yQ}o-mdxO{_xAoi1)7UpQ4nL7
z;CX3B;p32qh>CMtBdWi@n>u^;>_dkR$sAk1>y_5kHIczLZ{Fm4?C9vIdM<EvnC{bO
z&t_R?GB_-CX?`lDb+p^f*~zKo|KIP~*VaUO`S{p8w-f(8`~2Ozf9E`ION{w&BfkFc
z)*~OcW?c<>duyxyt6K~WpFW?~-=A@Qo-JSU|34otPd(7>7VEr}BjVCbF>PDhy+@+f
ztX{t_YPtXXYyI~BRxI<Ked~Dr@3-clZccc7?bgiVj2jyk*3{PeTFWy$IK|1y8R+5B
zarnmk`hP30t`4`(bX(z}byV5OlZ%)4>fi78*PGw3x%^PLb#K+zNr@6(zP_b5>{V4=
z&1U<S-zjvj^cQ6a==|7m!E{GXbLl$wvgG4^SDRS5r_7wWQcO3>W746+hec&&*G6tm
z(=;~^pKDcm>G}Nnbw58pe?71IUEp%Rxu>dMF)%D>D!$oJx^Bz89firRuCAH)_EhrS
zzF+q{7gV8SW@duQsaMz6uiuz_{MF3#d76diF8vcdu%C~CA?@M&DP8APnZrs-wt(v0
zow?`cSk5v|?>jtW_Uzf9PC?=0V{^anS-Q9DVg0}7^?JFB7#I$y?o0tymWv(*x2#)u
zNvDXNfk8tblK;?JI!?_`rNBi32jgke4;=!a`9`opp5EZ2?#<xYZBV(O(_#vrj|9sj
zHJQNWndR+-nSV<aK?CMKJ|PJS3u<a>MI|LyZq2?vt@7W-jT=EzdGGJ-l|A<P^XISY
z>;HP&R(%O*X5$6*jkac8^#aWRzP!BrbdBt4W$*;(Ij)F{7cYAG`i6#tOj+hXUyq-k
zA2e4v+dO~Yi=Fi!D{i;nXMnB+I4VBNJbzwIO^sL1?Y-68+xX@6Jga`aTt0Quq(v7l
z1la!j@wltAbLWrw3%Ht0BN!M$ia>)blT^Jyb8$a@RCor3giMLrlCdywv0LWjW4+>~
z^LFg8aCLW|zxn5?`2G9#{rwgV>fhLjNlUMuF+*bM(xsVyethKO<u!fYrqci_;JP*6
zf6Kx>_js`Q%zS%LH}ujH&&lU@f?BqG4_~d>SNq#*(!T%yesjkyR#Hr0WC%F<_QpnM
z-&rPsS679~9=p9IGx>g<U1epZlx@|PV|}vP_4WUaVy)HH-6w@?&%0|Rn_g<8#KHio
zz-G10nIpr>!ZJmIpMzsUqJ&k!g9DZQ_3w5*fAaeE>gDsQR{4C^($NXY%39^*>|A=;
z*L>>B2ykEroP7HH`RUWAS0CB2ef##>>dZ}>Hks7^D$$MH<Py3nMDud#|NH-c*MnxL
zwp4x1+PQP*HD^;$LqqIQ58LVE$K99v&DAoj`}D-~_qR(&jvig<+|CE;KAtvN9v)Ze
z3L1S^^PROs&bDgG%Ntz{pr$alWx)f7PWLL<tk#1${fy_=^=DmJaL}^<_nXb<x1^nw
zS{t#^>E_LwlT;2HfSOEy{?w$Vr>`!1dkfSHJ6xEVnF$INx%xkas;a87U-pKofEva+
zPl}}195~>>%Eo5ZBWqdoWY7Ajj*gB1H@CJ=pFYWm?aIHqE7WYZub`mdbDO;T`)W7c
z%=zZe^zX0SxA*tgU$_w9JKOB+zkk}ERsa8f7nPP?{qOJZ*I%#4@1GLAMgWvqLW=(W
z{(gOmX0S>2H675v#HE?$yO%Frs%d0&N$v)poXrYl_dX3B9iMma-tBt3?e><Wqg_JJ
zyL)>>3ko)X@~oI{)Q#iU*T=6v*v!7V`1v_6e}Db?vx|kGL24S2duz+Z21e#7Q>H9&
zZs*g~(ecU5%sh4O+_gJ9i{Jk4m9vckwVLPIR*Q&;ENSDFUX^&bP4%3(xcKtb>vnmS
z-z}Y9oAdtO-dA^bZ@+WrPRV)O@8BWv<1Ov&uYbK>zyFN&Rz9$0$z=z2NpOqlT=?<v
z@zi<q*4?=i)7svSnEKFrcDe33S0`woyHD0y%@Z`c>?LEIc!&k0y+C)~ym?-JeqlvL
zMJs=wnQMK0;YF>p@9ysQ?g4c#jvhTa-Sl`@3n;!p&27aq&!h6cGBGf0V1Se<csj4J
zMhB>H=~fg7tpTNSSpN*%3q~%Sh%gAL^#X2`fF1Rr;{r;lhg7P8)Qf?NM^J-@!N;u`
z)PDnY+d)o;Hj@lZ{6ytJF64eFxDeEdUJM$P30)m_ZXVmIgW~Zu58r4mm;>n}J6PV>
znA{$=KJM+C%mqve;35vR#sjGphTeDrx3ZAD*>-H@BT#b<9t^~`!q5#u8Z`g~!_hgp
z8_)dOC4sH*j{C5KSK4fa|9m?xF0M)a{ryZ#OjkCi`{&-<^K;H`aWS#1Pft!}U0XA=
zrluxje_btTV8yE7fy2zYzBPTIhG9g<W;sDOclYd{pPqL0_lHMB%(!&v(v{WW`l%@?
zD`Iz-EtQ)-b*gH4c{#7Nna|hP*FjC;OP4QS-I(mYHg0d!-QDHe-$#dpEQ#A&mHGPG
z+OFQ-(29y3Ma9LSVW8J1CMsuLSkS2XJ)0Gj_qBH7@4*K3_jYy$`uOx5z5$(NzH%j`
zy}`8fRY>lQ4UV(Ta)Vx9Tf6?u*$9??4n~Fz0-NRe<9w92<=ix?tf<g1GrMN@?CH~`
zGiFHS-rVH+`}=$S%eFs${8$mUx5}#K$A;Q720WnkDBtfC_eX8dTl?ry($nY9r@vKS
z&V;jYS3KS)dl}R`IdjIRSJD_X+ZuFzUF_T2`+vW)26Z2<$Jg(bt9&B(^XJc#=g<4=
zMsEvob8B1qJ((4hCk{Bx*~q4?u8y?G<Cv?igS<t-f@^Ccl|4Uw`Eq4(za40(@aFda
zKOXl_I%lJ{CU|*Y+WC39hYd_BKc#$qb2Iq=-}m)b7rAzCx-)I5;06W;w0`Yhr%971
zPn|Gf0jN8DZ%?I`h6ZRQj*YFYs%K?o<+uNTf4yG+miyN3l9!7%Y%tjS=hJD>Tvz1w
zCncb0(K#Z?3mQcBn`;%C^ykUR$=}|J3(3jl{r~^{Zu$JEtyxRi<!b`Gr|Xqkxc~n4
zR@P4U#)?4Y(iayNUb$`+5&|+J#v?3j+TX%Ek*ut&;B^q78l$+VNM+@j_5Le@mUdNr
zf4BC@lN3<*ATBQMTX9V3)lk)M-@kv~zoIlwloOOqyLZlETb+4%S=OyBD-Yku-~Tr)
zf6_TsB_$_GNy$^EPZvkL*jM^G>}HOctBcE&N;!4EIiPB^?9Gfld-jz4{d#@1*Ho?N
ze_S3lGP8%QkK1b$fB4i75k&?Du}3}EO}@OpAMfhwI?FVBTJ4$z3mh^tGrM|vKusZ)
zmk$m$pE`3Uq_A*f?f(1q|MwpG$tQ2O=KH;Be@92hRngnmsjSSpy6V-{)zi)L@2y$0
zM(6iFkTSFUdv8AM(+PKIW@T_ty}ry>npeWW!PC>zs^rClzrOEo-n==>x_n*j{)>y<
zv;Y11d24fee^XPFil=S$w-8VVbz5%q&)>hbt*xU$^~cGRnipsJ&a;V}U-xU}u9BCF
z9v*H#ZNRhl+pTPn8zxPfbn5H8^(LT_UF^}C{HdE04l?!1+sD0p`SR4+v!GlTwl-?%
zx3{;g=NvzK_T$5FAD<pjFXhUW5K!}bYu43EXU*?}R@+SbA!dDcmg(hRUtdq1F$1(J
z>g3t8zT5AX&5o=4`LuYS+9D-TBafl7stPo}b@JrNrSFW(-^H}Md0TzXEo|eJF1vWW
zv!i3fe*M!^LCJB0K)Pv!fq3^FMh1LkF{sdPfOb)@C4h!l85qQz4ixc%atf^2#8#+#
zv#k01`+GKM#N+Mu`&ZV-+k=+U96fr}s_02a)|C~C<>lq+{(=k)4;EQ|6<nAo0h(`c
za&juUU;91tNQdC5Q>P}WJbn69)50QR{oZf0jF)pTIPA2(oiy`n>!;^e8oq*tXs(9G
zgL-nHB|(yHiTA@6yYYf1Wvbrq{XWOSnSr5UQ}HY1L!jyS7Z(=JvZ>tk@6YG+Lbnee
zKK%7zyS!Cm8Uup`d-jHy=3wS)`)Yq*Sr@xIX#4M<KVQDMxcI4sG6Tb$?uMsQbAEMP
zxPL$X_qVs&rN6(uy)7yt64GbP#K5ql#*a4wR5GQVo3rxn?(*Bm&n<h?Z~rd>)Q&Pp
zXxO}roxx$Jado3L_uaXNS2Did`FvimgF}Ool9EZui-4OsW~%DytDW2VUftZh{LtaU
zpygcYeu4}P3(m}u+K_c+#lp4G+p|C`{Px%H-?Mk`*1Wq`pmYJ68*Ss2e)9VD>ob~6
z3<2vhHpDbvh75KUK0XGT7dtnPi-Dm*^G95Z8V4WWHD`X?CvP$t7-Cr7h8}(Xh3)n4
z_xrEk*;%}``g`8fXV0wm<b+s#p8e*szrE?(s{6Iy=c@V7Thr6S^Y`O%dC)*VC~X@i
zA6rrR`PuXmKXY^QI%Z}D2J7W)p#J=egY5DlQ?){`Y{?A1x+-+_5xf69G1HTOetIfp
zl+y9)%F4wvW=OQQw1E1cRlnbE-<osN2-Fa+{q;rjbEUDd@zZB+k{k>>YWA?7HnlKK
zu>JjJ^R9<&(%_DG-rZf{U!r!GzrS{2p)+WK<=5BOK@HY#xrK#=uP!WXUbJY@mg47r
ztnBR5U)~8_6=GPqje%i-QgPPXq6Y^UK`X_=ZDKqxoz~yK=Fgv+v$IT3E5>+&I>%q1
z&Cb`-*Z0@o|7VlR%SLv&01pq3&d)Z#-)vUBrFAWVk>Sjt<s7li!P09!d?=8$C|D4)
z4m?$S@ZiCvb=mVk%NPzGJP2B(x8#!ct>WI#(&7vWVse7J*p{0`1TXiydOLsrTF~(E
z#n&>nRUzzrG6AQj>7L&mUs186?(f%dS^K&_UFX;t7<QN~H;XuV^5m+(#ciNjGSK9+
zqoZR{d3pJb<7t~;{{4P`|C-k_)@44ELe@rY{rs-H%=&(U6vG1@lZbT(S2AWlKR0*N
z%^WT+uAsQMd7wp*LceExoc$=Lz)E_HSMf$i9tMU7HFKmke0y^<SnvAExV^iWn3%Q{
zKR@^R-F8sev9Ybny1Hs9+wMn?9(m7muc_Gsn%OZhtN4(>D`)d#(s@pX9Y)jiVppY}
zo@NQ^0W67G=leM1qvc=M#ZRA}vwnXiI)Crdv$M_T7cczX#w)!g{k$Bg@i8f6b(pTK
zUCoXob<>5pmix|L7PdAj_R~j(hEK)?4;*-9EG{JG9Pg6_#pC3(maZd0jM;a0m4bqF
z)8@^po}lrEcRL>QmA<-ia!YoPjAhWvmoKZnTyzKJg!XXLKVPrMSH0PI{K@m@%UfDl
zJcAw|>n(k9La_Gt+wGtg04kd5>h9X%>r8U}7#RKtLvnhUqhli*zucOs+To`Rct9gA
zlS+PkNL;#P$%_2@`#{t7K9v*GBO+#i)`o)C2Z5Rke|_J9n(WWc%v@~$|4(qYxc;{N
zzhB*}ejl2YwCLTw-+7=VOrW{?Gc%1rLq4@XpH81{E6>32VAq^qv)Z1|tM&s8RbTeE
zUpr@x%-^rq<3YWKk`E6YRaI0netvoini9*r{`&s@{oC^IuhWa&m2qy4rIcCD4A5M5
z>B~#5x3}k)|1h)MntlD+sj1pepFdxI<cN!I#0Cfby<aB1+w=LH(DSFNc?=AjKP(Eo
z{@@B*_Qgf6U44Dq_S^o|sjshBRaXZshl<*e&^WLDU*+X>m3K?8YueiWUG#15+ikbM
ze7zn&U1GjLV$<RN^7r?0LBmxK1Q%u(WHnEnJbCf9+}qQ3?ajTt&8p%<g5^0528IWp
zEKL(YMY^P<<kGzO?Rj&h%yJ^?gqau)oUCwpAvH&8!=lBDx0bvN0<GhL*42LV?be<-
z;{!?>@Av&)Cs*-+5mw&qV#_`=!|>P7=kraouj!nfXB(ZDm;UMA%gf7CCE6A(UJNT6
z8;aaP3C}bEwBAiu*Z1Sck5PN8wtjneSNr9e>J6Y7n-3of(*5`u7#>WDc;vbm)Ve!8
zO?R#>F9XAzK7YYoZAJVMskuvY%x+u8PX$f<g+7(rkac}sZJ_5bNV7tvl$k+GR7&T1
zz&pm*HS1F+oMT!2<VnijpU-B4mYarzg#7g3VPH6*GA*K6)w7*X_L8^$-X)Qn(^hWS
z5b*te{eI9G=&@dD>*_29hAGlgI@cdu`JUjJF17l{kBZi|wpa20e@$oOm0BWS_rtOH
z*%`$cMg}d}^t~Bd7A$b+?Cj*?;hD02{dy&3<*j9JZ*j|QPdv=__2p%EM@Pp`A3p{<
zI5bp!d$SUp-Tt4QZ4RnIK7IZSs#zXAdQ|e~$48_8Hj#5LORZ^U=YIuSk^1K5X3)&_
ziWM5Y(&m1knYvj*3=C62V_?(t<JW;))!M45tLwYB>T8gjTidOz+2OAWBO@b0YeqIC
z9tQP8o<4h~WosJ?8Y_Qwb@kP~)#bnUS(m*DxV|p->YmDC-`Qrq`~Uq~9as5O6tv1C
zYHL<#<(;&hn%^6yPM)01ALi=nDrHr&;#i-o_XZ}02lZ3GD}xdgp2;y>U5m6c5?9y7
zM!&wccJloB^OqRE-&gZwqWhMzw^5~UZ++#uGq-q3^?|HAJ2v{wwOZQI!2#+6C@Ly~
zT3mT~c`J`^$-25qCY^)9;pryKUP!O3b=dFk@52)k9=OgwfBd*RXj#R>!|iXALA{Dw
zTeH7@x$J-Y@KhCES*s9G;@efC$@scxj!k9IB+$~j%m)V=pWnT1z;iRlOjKNa`td6a
z3<Xx{Iz{&}=h>VXU*Fi6tfirG0knjq^7FII>+51ca|^Y<&F|MNUbIMQYu?>k4|iyV
zuF_Caa*D708XB2*^3y5XgtK$4x9`#CWMDX_jM7m7twt|6Sj;115s-at%|y^_`KycW
z@>h2hK9*URxcR2n-g7_YoWoq6%57M*c=74qlNcC6B+g}QK$&vG-8GRt7kH~w@0pZn
zXX?FXRtAPShv7q2Ws&{;{pVTFfBc@`T7JLw`^wPOVO1XvvV%&1_TnjJbGvuCxjKPo
znDw?F1T8x7UXyMmJ;h5{K%n5<@disv%SlVvc%`Of@`bJn34DKV@6<VS)&wv2J9+x_
z>3=&uzOnpYId@as;a8yXqKFeu+16ZJ8$CV3<KOG``?FqMS&4I!?37Kvu(}^;GSa%t
zCoV1yR4>@r*nBxE9>1dg|G#g4xwyHvCLibHl`>gz=K2Ps<@-;{GB8+#|Nr+Fv_L*`
zbK1@0TwGjJrcGOR;)KU<bq;<xn-yoy__X_f|Nrmzd)0I0KRzVx{eG_+RQ=xFRjTTF
zb#-|7^>wjR=goWf;n_FP(DjdxkHu>?JGeT7#ypOKmdD=SlDU|XnN34e6I6a|+JDm4
z+WPjx%l{X<_h0+-^Yhm9^Kz`Lte%rV867knm3w>Jr|;jx%gVN0x^!vE<jKkL^`+OA
zcuu~uueQ4M&5c0N{KmJpx0kOBUcSn`U+&elwb488eV*!efQf+tROW-$NPYQI0?NcT
zHZiNi)&~9l_V(@X8#!h>cUs#0>FVsf_~>XiXx8O$JOApiwNbl%KAUY?^yGxl{iNq@
z(s>tdZOsOCJOq{9Rzz*h>gw&i`sC!~(@*723xoQB+=a)orIr}KUxz$)wf)F%opxU7
zWr>H|V!y=P+M2zbSK2J*%Rf=k><tX?UWdi%gH1c}3<-hv?SKYVS_L-5FoVVrp#7Dj
z7c4?+Ou&1`Kw~%uoFc%h5)dY%jV%olgP6iBv+nNNx_Nm+kx}KRlyrZ_r)%Q(*PWZk
zbjs1uv2pYA2CgQscR|hvwL)QQCO|7uK>c=|HiwXpACYDjIQltanUOncpiwMP_DnDW
z4Xt5a(t>UfnE&LBveV}MdP}g^Lf>zu&(~B_bMu{THg*2|`BLV2Yi`_#khQ7!u;;j}
zWs%FjfB!(M;XXY*t^e!!@<k5>6&V-;N=mlisbM-hJ3$)`8W@>N&YE7&`2Oy0)!VJt
zw`5(_0*%@K`}gm;P2Qg$A3?h&PTTRRf`|CdMLgM;d)o}ufzZ^{?CS5IuHx$Iy3(~<
zOv*HCido*Bh*ujgFY^s<=aZE=R`un@Lch6IFTY-ozkZ}s*jwiF+wJ$Wo}HOF%OJ67
zUgfiy-aC|EKL)vU>YYugr=L80xbVh}h~G1&PoJKYl(Z%FwAkDG`}bc-{x7*s<>j>K
zyg<;L<KOT1=YO8DV~54p*Vp}Jtx6^&N=&b37IOh*?pBM%2XA4N^tJ{D9~P}I|MR2p
z>C>kx^X~3a-L@BXtJ3d9=OZtI)*S_$eEQ^xhJwO^BNYw~4LpZ0G%~ZFD%qELc^SBI
zaj$y);U6a_tAmzzfd<NZrA&9Nv5b}lML%fnK-=CvJ}xd!_1NCMd*9yHzxM0vYtzC<
zF1%7Epar%?H@<<Ed#+gF;pyoqUc0ZWs{u3)g1S@Z_t75@+vPz++!{7EF`LuRm)+Qw
zeqPRZrje_0+L;OK*S~-2f9nyr7(VmVBtqIO=RzB=w9GNTITnTYl9`y8&i#}y08OV{
zS>V{r9anyTUoB|+5vYR^x;pIS`Sa%!e}i@(fQq%`<9(;joh!5W|9=1fb#LC}u(Go5
zJd-UAHvGg>JEb=_HZHa*d-KBJ+voH4+KP$`uOureDNUI;ap9glHtntN;M-u1RIdMd
zJ-!~aXirN^3)F^Lx9im^q2F(AZ}+$V`(?6|v$O26T(jA2ywYm3&n~-jCnj`#+~1_U
z%b!4Yh2WWg_{Vt&)QmbYQJIUId-CqxyO$WhjW|Eg7St^6>FE(-e6<F&tE%7rUxCDL
z(Bh7|KNYHKYOkKn&eywG6$;sGcto=M4z?mcy7>9It?$jNzGR%8Zy#U%?M+}nzyy`d
z6B87Fy|4ejdd3V1&<fGrWp6jVkKdXV3TgySI``A;hm>j72?HL`ii}rxcW;;6o+Sy&
zzzc9Lf7sW5Hf{3k*^i~??fdsD`(}>W*_p=f#m~+Z-YENeHT*VnSY}M>*{k-@fgzKK
zNtnwYbUlAPogS}O83$UZU0C>0RX#s;PlgD5eiO0;0yJ?4U6}x$@B~-*p#A`8i4X&x
z0tvYwCuYe5xYkij*vSUk9g18;Qee=uiL+<VR`Z*a@xL%CY8G^Np87d128IYu#@F)q
zDjxIh+`04Rv)TFkR{ULmWWNam!_@0H_lKYP=k!x4;qT!^uH7O+LW@8H=HK7lJvWb!
zfnh}hM?^h%0{-)}v$L#9SG~Hnc6BSaxK*_mLxWcv+i6pQ4gb;}9%@|`yL;Qa9gq3G
zzP~>owEjeolks&vXt`D0-(M#WA9ikL=LgTvzrDTPx;hG^_uHyR$_anhzrDTvb-R4s
zg}vYJX?ub?(oD?EnHw1x9A*k`_;>wKD|hJry4uorcW&C5Wn56ujoTB^mS~Zm#L(c?
z3Yvj#P<{F3<>jbNDV?A(9?)9y=kx2YowxtL#w_>Niw6gre|@>^KiAfkfgzyrgIc*K
zXyIy6QPGx)k4bw!pR?w>ontl|w4`fY>~5>fG6sfpi@HBM{N`9ZG${M^<)wCA?7b)N
zq&OlbUAla^^lE50X!oJUM~e@8zu&vuC8`Zt;#^r-X_?u^(D3Qm^XKZI)w3I$nwUV<
zN>|+UhNn_mwFf}uf7qIcg^tZ^phe}X+t^uHUd%1OcadGbW&tBJn?+(91H*zvE5BrK
z04=JPwJ!77Tm9Yc`L`1%Jg%+|@AnsGVmQUxeJ9p=DSt$_nC_(Y>+@G;ugNi+4GQtK
zk(=G>|9%zUAIQjXfHm}&d&~R%|NpUmpJ|-l_w39}Wlt?Vy|No(va)Mmym+B)WX|C5
z^f0Jz_)=Pjfq`Lj=r2&3U%jw!)sGCMX3Yk0)Pk1lF-^+`*M*S%>=7NC<4mFg0u~%O
z;=;<tcIx`|@QD*AM(r+p%i3>U@nHdIQB-vP-q5S7!$Dh(udR=-KUd3p_`;c)#-)dO
z%|VSX(EK^5pQ{_aZOYH*C&4XZ2V67zcJB*8dsv@N4KI0cfU&i`eZKh_RTY&NACJq2
zpPr@*T8akR>7lLd4O(j<9$%CAP1jO1`_jyf^B5TTeL&{|Ko%XYIe2SZ?(Atgk&C8G
z5jlGNxc8(*ixyp3<jUPEW$Gnuo~QHm257@<{lA~fv#zaK`Tbt?`YUFjeMg{m2nQOO
zr%s!eCjb8a{{2qQ&RYu}I^C^!+?%@JvU|}%CWZx*qH!*0oL;qN{`~n_*Va@X%oY(7
z)3UdZ|M%}7-{Y^Zu1=mkdv;B2t^Qv&oeofw>FAX2zgA;z8rGk_ef#!X+j3WL*<zv_
zwZ-H2x3`zi&9(k|fSG@V-&`xchv!5=3pE<N^f3BT38zXyi5ts$#SNO*H+22KfA8<{
zkWl+Nnfkf2Px1SnEojYKQE+tTDG8B{9!GpKujE)37AHoX+d5PGtfk_gjVn*{)Cb(u
zTJ^E`tmxmO%PUNSWme`|WJ?-}Ez}mc+;ND3_1ts*=YPxgi`O5Oe)sTGP0pW(zvon+
z`~4zCKkohay`Tod1BHJT;)&VWtDBmdYK}EGH`^Zfl`zYh0a_m^svY*?vcLUR&}dv=
zA0KFy#;?cy_C0qFYl6~dfk1su5kDtqV0HEG^A*w2v!7S^mzI^ide|<1?aWN$ueY+-
zR~}10J8P+C@G=c`b@%A)d2c_~&H*(?9T<K->edel3wvgI?b4;9yVqOV+sk+J+_-Q-
z!BfgO&8Po)Xk6Sn`T9SByUX5wk}BVQ7c|_irKMF>!><mSse7Pco4WzjcbPWrnQ2&P
z=+ahh@wm^X8#itQZG?-8irQngOWw9BWLm1Gnb|k{^UqfuJLVQSZRxple)E&3>&J(=
zySw+lf2i{2AQMAE!)*KdeO6XhQ>IUUF1fqp<s?uCZN`ih8<UTF?fSIx?bWMS@3t+G
z?(FNEmU|mChjabM$H&J*V`JCu*s)`tZOdV3K;CEu&A@&6Qj(gQx^m;jz`X6ztgNh{
z{db=}f3|&|nwGX|#R`wo($cPujt@QgH#fOXOMUs|<m64c(XOtpRy991sAyVSM^6$F
z7hisJbNcEH8v@RrJqub*^y>9%(AYX?kN~uK^<w%rbI>eMKw;s=YwP3JPnslTYHA8<
zP5=J(HaI9~(sP;9o1PT?)T_(AvEiWbBc0QqT8vI_vSIX|^zGf<)o*Wa2d$C>^_opn
zP6()~t7l(c<~z%xFiGD&@xD?5Bf|rOWzuVAgEl(m-rnYWdt2`AXO=&I{*3Fr78)BH
zYhK#FV1YtvdU|#1I)|fjpmOUlG(o&M*i;FwGTT7wvmYp!L^L*n@=~+F1}0{2&^kmU
z2~bIQzyQ>#kZC)%@;|8C#b5wl(aoO7AC>@G_zB}LJjlfZYLm#cG>A$>D6udgOCVWj
zVB+^z9@KhmNCb&ma8z$#f^=q}d|u+rZC_aU>OaU&3_Kub9dNwSEGhxvD<?1-Jp28A
z|M%}A7uxmW_Pltn$+BcM@3fctUv!zo7?L?6m`~gP|MU30CPN=MaAaC+v4z6d#%tHY
zJcB$vJJtN>y?K7~%UaOB$?NN4|IK6j<q;V<GblLtuPyI>iH`HO0{`p7Lqj!{l@EWe
z-MjsQ#n*b4HFg2v;p(2JPMrAg-sO*qo!!0r!4C3|?pG&BuK0hiw6xUA%j?s3lLrYb
zYwRY>nzd@uBq7jTp`xPVzj=HN5A3sYb3t*r-fY?%P}r`q6A%+yrar&s(*4T}3=$5-
zt+PQ3x(_&JY+z!3k2SyrH#9J=*{~r%Z@Txwg$uJXGCo+&n>1<Bj2RO4XLuxb{75|y
zihGB*Z{Jouof=+q?B_C`AM6iT{Z~$41fBkHul9TFT-)kv_k$T58XOKVv00qn^yQMb
z{>sIR7vC0pec#I38ngj%=iNM3cJ}N;Eu5hBHA}sx?>Q%JU$^Jkxw)&my14Gv|NjeJ
zNZHlhUAyk)ojahBcr7I*r-KI%f=0pPYQKiw+?M;rvhm-cc<+|!da;*oZOt|<dlS*x
z)~01>7#Lsw_bYFF`L{QbscC7i7PiY>`tb1Z)1sXradGd8<Fd0?->doTyL8#ItTQtV
zrR-{UJbLu#%eUM4t5>gnZT~mcQj(Fo0kjcp`Mj!EZMxSkE%n}7_}J}k_4~b`5kfDo
zu5EdDSG97BSIte2oR*c91=_%DS^O;H`MJ5E9_GBdUzwqyp_S*db8|zBiZ+3^gn>Gv
z`FlRL$<=&tOifMA{QBzZ-fw#tYCx^6ojZ3%ZONDjIv@bl3(L&R1T6ty|9jV~S6NS=
zJXx`CU!0+#;dP$kty{N(P6|==TphmtTA!>nXzSk7)6=tGURru={_*!Y49uXJi?>BP
z-<&$-wR_vPYjQRf8}=4G^*aA?$`q06TU#=><=+0*DXgAzdefWq`L)+xOJ!eMvoTh0
zdhLe?j^}Uu`1m+?`svj0kdTUFb^rgCTU%J%h})djo1XLe+1YPzx8KkE|L61hxa((5
zo!Z3CFPHQG*X#9e^Ti7`ojT<eJ*oD=0mk2lTDjf!^T}8wcyH3y*51AM`^MzsAlv3z
zmscITb?a8n_S?DYs;aT&_jGl2%YuU^=ic5H8x@tcJ4WyKg@w*`&*$3L-~0D+`TUw=
zpu-hzKP~!MBmd%k#s&tDU6+zTb#rB9WmZnk7t4M1|LY>BEe%~AR@u8gZg14KT+oi{
zxW}N`R?xJ;`T2(r9Wu$hq;mDzwW?!Y-rlCQze+$IVsX8g51?5-Z&_K{yL!e92J5$M
z32A2Iy|gLyv`w<3qhr*rl9hcjmW%G!{eC-Zy{uKq3b#I)%EQ%nDxc2<)mi6%2>aV8
zdd9siQ&31?{1CA{Z?0bazB_N@))=RsJMpyW<lD09-utE3W2G#MmiW!Lduu8uDEP3r
z7j$xmudnYs`|DS(tXQ+gXR&+#w_mettGDT#zO=LWIghR6h58@K{MR~#)kS1w*Crlr
ztL#-*QK{(rK5ezUps<+Owe0U7*zHcrHXH}-RfTkM*T(MNcDp$5o9_MXcgv!;KmNAg
zY<+oYY38>#H=}l!<!+ySYw_a6`LE&_s+KKW==kvAL%YWhA3ofa8~yd`*S$sePfyp^
zHa7<~Fn7J*_q*z;+&`xSOb=4;?kd&N)C8S}vFF(FUg_oQ*6CfnawX%^63=-bi=Ur+
zdEWm2l^unT^M1w!1_owjW?noq)419uUm@Vf<M5|jwr$hW&^VE9V_|Wlc#pZw_dCU)
z9ev;4-`Ah6y+Q0M)9XxzFA*szON@++KnIyr>|Jc2tLwWhSKHkD`s+Wk)@3I)>Dc~y
zv3PsUdRA_+7bhkvgEqX?^qHEQuim`*^EG(}4u;ylg1m}~idp&j-zD?2vp>t2>#D1}
zzu)_P9%!4(l`A2SuYWg}(n)A|otLR+Z5@5|=+RZ{)?K@@GFa8q(9keyPsPShpFUl=
za%BnVlpD|>yO!3aJ(ZtLl8^O7@B2Q>G<!?=`#8|d6sYI(=<(yykB?mcemKnk>&ayQ
zknr&3fs5U~{*Y{JT(V_L$kL@t<C5$De!X5AFDxf_@2$~;tA7KNkM$UuJ9@IRvYt9~
z=E|q1r>9Pxn)>CIpW^{0wjJ;4cJ+33U0USY9TE}oqV&(-@Atz)LZ)zWae+2vzI?a)
zeOOu9HnW@?4~oxb|Go0({l^It1g1`({`%?k_-pR+wM!m7O5&Bbi@A95B50GBTaQHI
z3(dxVi<f)1ynOl6%isUIly%{wBc=5mpn=$f&Foh%U3#?j;@=k+7jM$>-nen&|4O_6
z_dyG%Q%_IJ1g&G)TfKebYpdSW^6!te85mv!AMck3ojk%PYn5Vh!Q;R91}$xEQE~C-
z#ea6c-v>H@1vCpO9$yo9X{vwOe5=w`pngeL7nf(a-PXN3cSh!I-+kMB6KHciXmoks
z&u7xA>gvB`^!4?@TQ8R^QF(iRe|$4LzuB)jeoml~vF0DildGManl4?w4BBve?3mlm
zyLqA_A}_wYynO2X`R{Y4&z!k((ITa*SFcvqikzON8=Vq4&2OHK=Iw2uarndS{NB4Z
zJ$2aiDNw)o`MIg5pMv5Ov_zoltfHEl+vR1x#$Qj=xq}A0we<8r17D#*L5r3xQv>ZP
zxWBI!RJ+bejttxW{@d*hiOuRqBBwp&Or4fm$#hMB|DQ$s|No1gv?b{%*Zl09J39;)
zFo}U0KNbhBsvbJr&j0<C(8Dh;FR$O}!twdX3^oP^hQpvX%>l<h8`-&^fm%)s65s`m
zhrw074g-Tsi|U~R2ZR(E7+?(>EDae@i-!Sw`>KUa+dyCg14DrXQ{eyO$mV#rG(yg?
zf;7ZH3PH_Tr~{fWB(So9T4)TA7T$#5<$jX+bNuF7rGBZ}VF+r3@_`x-7cK;(rlfp1
z_0`$gSyW8yn)dZJ{nOiWZ{MHHz`$^6rg3`7zdt|Yc9um%%urHNs(O0sgDWU#4SIY*
zn_SvJBSj26;3Y>A;7JAp$jNOIpmCW41|Vx15<%@hhQpu%Hil6R-|SZ;MHRknY=~rF
PU|{fc^>bP0l+XkK?>~j4

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-9.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-9.png
new file mode 100644
index 0000000000000000000000000000000000000000..890af83ce89d3ab091538bbcd44c5ce60c74dc9a
GIT binary patch
literal 20507
zcmeAS@N?(olHy`uVBq!ia0y~yV2S`?4mJh`hJ9%>?l3SguoOFahH!9jaMW<5bTBY5
za29w(7BevLCxS5J3j5`m3=9eko-U3d6?5L)t&9mRef0n1_tc43?}oSpPBfX`u|;Hh
zP_ei6*<-5OOOjT+375+2@Se6dMI|!0O?AiAX)C|V8hcBdZrAZXtGdOfL}Z4SN#KOH
zfBt3cxXc@HQTcm8rL8=_T=4wjbGGxHt@c#TKW}?IO`=Vafq`Mhv9mXY85kG}Oj&do
z7#JoCZeU<w@Nql9#K2%6$;i#Xa3Ez=VmJlKvxjdu85kPuWh{$a_W%3!TD0<Q)z?>=
z8X7OU_LzAoB``81FuM221YTa|yZ*-O-@krk{r~s3WewLMT_*+xod;f~;YZKSv#maQ
zzVZLUgG>wul5)&uuUwxl(YA7ZJNM#);B><)#=sz!wE3n_{sxt(HC=AatPBhZMp8Nq
z3_2}rr%f*;FfuUA=wah#VBp>v#4DyH2GY=Qk|Sb;fvc<Q(!R}l2e$6{b}ReV*6it<
zmotV$9p#;NGk!$`i%v+#p+inPcka~G)%7iYcIM*j{Cz9s>wY-?{P}a!&72k;@sAJN
z<+IMrFq~yuy{)LY_~(1B7^Op@PmfFKgm9FXm%qKe-QTwA%Y~DZ)k6aU7Bn<4*#3CX
z+|}JZdHwqJU0q#Ip1D0+f9Bt}?fYN0ipK@4kK6m??c23~{?t@fRasR>F$6sPk=drb
z>c_SON5{rv{qpPiWUVrec8UIaxqSYWh0g3}=iA38AM3ezb94IBXV2Uo2X=~ziFr**
zN=`04%xkV;Y8u*a`)$UzcXwYunaMbndpk!gGb4BSl-aXq_sLi;GR?lGVQ(M*{eJ!a
zyxnijO!M!>yx;qM-mmZP*I!*7e%o1WJGZued3kwz{r?}2`%TN=#T-3;{B^s0UBRU_
z3<oTCxOQkCGvG;0PhTCrKJMGru)Dj<r>i`D_UzR8^ZuQkokl#)^J_kJs=T}!9zS*c
z`t>}AADFN6TDD=s1;rHK83vBe&&>^Xa%$q@<~Gf}WfEI_*3@r~;+ap6`|Y(<RF2%d
zTo4()sPNH$e{DHlv2_x&&n|m)b+xvcS(v4zrI)w&W&8g>{XI9WKmYOL$BV1i?^|^{
zZ@2IK`hPp+YCbqtPi{SR^zPkQc0QR4zrMbHn;g8{@9K?>$y=+wW}Tg3*sOM%^~lkq
zD^pKTyS1-&_vYnH5mJoY;XaOzjVdqS*Z<!gSO2&4=g*%nkBY}%Sw6o`%k$HhFC`q2
zvAfHze!pM8K6tsGW$~>YE<1PboMlnCC~xOev9+<gui4q<-ZD9Q<j9N5{`RUVI~(f$
z{?fFuiD_ozRZ59fTywC9mqlmBvWkhtetvzQK7aoDdj0-e+j(WJLh|?hT()V`CX>`t
zB5NZzyIuP4G;RC#?e{95%dU;y?#IZ;=r_||uYddY?MX>VS9X`@e|>%3ALP~A+wsm}
zSy`)u)4RL_|9szB{r#PnheyEXw6i70Wy=LNH5dtONa%X>)tsGACcwp|#mU+E>OyCB
z+b<WKqxM#9Re8DZ_q)q$A~%=(_>ky3&t~V930F5HI;Y36oqBja-|fWt^V7c^=fA&v
zUX|C~-R0NUZoe0mbs}ne-rQro(#xCK`NMw9Da?Gg=d+*hJex@Oez~b<(}F81b_fXx
ziO9(KoY=*bu_31Ucd)<h*D0IT8&91z-~nYNQ`6A9yGnx{9UE_L$y~h5clN7he!C0L
z=hy2UHn_6XTRgV>ZfVw)6%(iFL@tWmUA8jua9h^ZRiT~b3l84uy5BNk=1k4{`ud%_
zcWc|*$G>~`F6+{g&UO2KWyxBVc$~NWK4(|i+f@%9BzV@dY!FuWdlCQt*L1nMABk62
z1Rg#a-qgJ@?W~lly87wEhn?3(Z4Fu*we`x5!sM-)m)+v)|8Bik@tC*t{k_=6#>R8=
zvX)MpH*ejNB`TE_6(`P~J$t1fRicfHi|fmW!~Dh57c7!EkgB1fVZd|PVAJN!y^hUn
zk_#6uJQf~bn|gm={(Za0uU4-&dv$en`ktT9W`Fxwe!uqmhMPHV-{0Nsee>oG*L?F+
z%U7&eaU>!wZJD5qOwOI+^S0kM?%8AW+dlu+mXj~8tepJt-MhS;J3B5uyb)jb^XVyH
zv1LC$*MFZeL*j7SX359L`^_(1y7cC@dH%hemiBh(udlC{|JdFC>GsCtcEyt)zI`+M
z^XHGx-%sDZnW;!xm%S<YmKr8`N6BU9+L)a|!OQ)oe%YTcFWI)R_V>4!yI!vgKHev*
z>RDM?nRR#9R=dAnf-5U4GvD3WX;t-Qg-Yg;4#B8hB`fb$z1IEt^QYx=r-F;;=2|cR
z|L3{ARmFz|Mn*;|p8NLgdv$N`ZoA)ajBWpXI6UcJ`R?#Zpy+Uyt8{U7b$xYv`})6u
zGLu5q$L;Of&oO28*|g2;*Va6p8g7zyMnY9Z<;B+PahE45yQgfvd1YsDdY<^Kp6Hf!
zjSa2cX%cO9|NoZn{qyN`)yt*Rzr5Le{?_)?l#~}&RtA47wfy<>=c=%^v$(jqMP+2x
zT#u{vy<hu%u37G_6#KLn7Z!rjPis8;sr0L>LZ$3#c0_H<S$S=3w6=<hOZmOZ<!1T!
z)+||~a<}-rZPow3-({V`{QUY<Uf!#Ie|78ixYY*^IP}U`2Bn{y^U!hA)SlhDcmI_=
zxH;{tQVOGZCwuRsMK^QIuC54l2Ib;o{qp(s4Ntzjyeujtv}ktTF3<UOzgG6iS}!|r
zz~MK$jd#%LX}V7zK3q7z{@=}$;f<dnb`&g>t9&9@`sPMpzx}@*d-m=v{qVq1H*Qaa
zeEpw|j~+iZO+6(d*|w0CTkJ&I=FD?*EI)nxI8kM7#73ui^XC0JZvSuLw%ps7!oq~+
z*M6H>R8(Y=aY4azQhR&*xw+Qr`uh53XPJ6WnlfR6f@jsAkH<wtL{j)8A0O+z{NP~o
z*MGm?ug<={&Tn_ysUG&;T^!5rEpS;H91)Qr(U$n;=H}x&o=%JIiQ1Ya>2LRQNuosC
z#>B&Hi^JANxn*Rm`1t$%eruWU_5Z)uyUn#K?P=u}2Nwv})<&maSr>b|;?Kw9z0K_W
zRyn`lY(C$k7rRTsZ1&k1hRJP(&(26De|d4y?dz+ny^79l67Br*W_CZH2tV$#erLeO
zBatx2w)&c9c;lyAdnz|4ZobJg`)nF0dmP(S`Pu7k{+StuOV^#ewJEi`@T}=|iSYQ^
ztrI6t4xSji{!7>OgrC2DNnKqXZvOT3_3P73BSd@HxSu9TwDBAcxV<gcwEA04ubgev
z`hCAv?b*9mR9t+yq;XotpC2E&`1!A&nQ2^l*7Q24-t6q`Tot!>SJjsn58rqnV3qh^
z+y3CxRBcfC=<4o%+g@zxk3yN+Uta>}T9t~3i!Xn9dHL$d&1s<G_wTQ-Q)kRr@$BsE
z)0Zy?n`T|Pu&ea-n_jUs@4w%#4-W{Ku&ez2x+_;ga&K&KT)+3*tY!Z5*S%i9KhDw7
zanh0_M_fcjMW<$LI&}E3Y5l*NtLx+A@7=q1ZqF32Zno2=H+Y&^1vPH}`T2Qk#mA((
zg~w%I-Q2wV*4FIj8*0D5yW7>-dGXuZ+orX@N_yq(<4&GD+11~Fy^)#y$=kQO@$vCL
zfBkwj|No!mPR`DAOH?)b=gg6bt^fNq>+-VRY5MW+Hk|!&`MFEp%}uV&?EKTFPoKUm
z@9wIotywSa|NrctrXRoV)z#Ij%irJo=5Df}$biRr`<<fhSJ&3A{(i68f3{ifrEdLw
zD`c(9Rya1Z%`!-As`~O`VcOYQo|D}A<<?%0ua6a0^SQ7haPgbR8vFD2{|%G1Dw!~U
z{`{By>oj$AuFNz}-;#WsZ)^VjdsnWzy{zC9JGG_!ecauu*K4gxUQF2c>y@^unp)QH
zZ*M^*(kzoqC4PQ>)67dQ4<9}RwcNyXqg2Yv%Wc2iNS3lJTEfJ{bY-D4JFlEgg#Mln
zO;Ou&UcT`@<Z4y@ZOyYYGZ*hFeVz5=!$ZE;FaQ0ST`*bA_sQ$mtCxCDU*$jF4ip?&
z*VnDpi`})txt(uS?Cx!w^%$owSh2z*FE0-yyUcIyDmC9(86O@T?CR(UxV+3)_3y_6
zH{S32?Pve*$6`=};OqPQ@sqy%`F#HL{rmCe_iHx)J<oM&`47v8xVX6RCzcVFm6bN^
ztC>D-XGrDZ;knYnDIBu5s+5(LHS^V#l~!eMW-Rlay==n<gRd_yyMKOmc5-`rJE%cW
z`tDBT=Creyg8glmN||Q8_;_6YI;gafm0hdmJImsCQ2?K5_O+0Ngav#u77G?FQmU+|
zSg~ToiNyJjZXdn7t8}tT?f<{uzZHh~9X+_B^7FG-cXn>J`}ZSxu1#goB$JvS1$RrY
z#}*YAUtYie->Q}tmaREAgY@_R*)*@>5vT3{Kc9E~ez*JS!-J=U9h4Ft+GJf_wRFc0
z3)^2W7K5Uorl#i0MR)nk_xJX8b#+ZTn|AsB|9|CM^X^7nUhW^hx9V%i_Pp4$GmYH~
z3k$zpf5@KqH0aO$)&BGCtO_19Ec2hQ_p)DpUp;T6+3d6X>{kD<xK<TX7am(W)vZ@*
z=~V6TtlQgiCoR$6_ruA#o$u<}?e|t~zh4&}U-PlGsj11N@R3Vvdwceq8ymB3Z(BP#
z{higEk34Jk?6Em|?3k8;LBPI!`?&b|%YQuh)-5V4t7~p<&MRZF;fUE`1C#V~;A{ZO
z@KR<uD;SyCGG1R>`_!)gsbylKt=7!o<$jXM$NNlk%w`+r-LYuT&AztA@X_PPz1iz_
z9?Q71W8>eu?z~ba26cbGhO3{INb~UaHlAgYnRI1U=;?~*bIad6W@TmN^Zzl=zJ6ce
z=Crdy{@LzNr_G+7{pJ1r`#Zi~i|*yO`*C1J?CxzBx97({{{4P``HlRKkB%N|WM-dZ
z;(a~nkKUnIS654K&Ax8-b#>L(SK>9|5AT-W&kb1}cDAFp*Yw%Bx!EOeZ(aTH<%@|~
z{=J%u*FSu{9xpv_-n_Q;>(>_^mo1-iBks>;6(gfdGpx(k85TeDS?t;^*0y~4@{eDy
z$H!m#es&c{#14(+eshhE^-8DT$T3TPb7SMNmzS5zZc9&1l>}9%hLxXEk`FX69@|&@
zdyYx)jLgf+eB1W#-!CX2kf5TbHtoi~;^%&g^Y8C-`~B^0@0l|`>SqMPFRh8(+>>>6
zm86`U+%ehmJBe>@Z9Tp3?RoibmSPLzgxarH!`sfL8OK#V75yENm$yz(NGPe~?X9ni
z)-Uv)u6GQSeilb=PE%zHb98Kc`1*A=kG$QT#6QpH*PG>-&Hi{q*ni67-Kn*AbdI~O
z3|!ncujZ5I%^WjT6_pcb&-#K|o`3%QNs$1xAeU~~V9?sy`tr@q&7Z!0E&Vnnv1wiG
z?yR4mo=RDjtVl{q+LCyfjaS;tM>lHA1@ZWrg;!UHXMcZp_tuWW#jmcffB)v?A(dnG
z_cebV5%$lxx+?V7yWQ_a<mK02TN{1*`^PU|N*?jV&Ni02ydmeNQDsGihLzPVyJt_I
zE?u!g!*{09(SHmtKSypzX#Do>?rKr(uqjp9hW7UHmX?;P|MovxwR+v8*|TS#{(DCu
z;o%}sW8(5M-^pM0FSoG&`{nYt{US%-I}~l*uM!$N->!B`?rk$r|4G^`=fbI}+Nysy
zx~;GM{q5G4%*nU5WIlcpdC2GJd#lYibEJ$?I`;kj77YqyK1S|!sn5^N&APd1>7T!U
zWsh~+N0&W6H}^Sj#Lb&GXPIP9TIMq|=$U@>y?ggwU0FFfC@4roPHr8j1rr$=S@mpY
zIw<e97d+?Uh|rk6zfGsSyxe!TnQvWP-5%51t)Sjp)%UyQrN6#p)_%WRuBD?Bvb*dp
zNYB+Zk(X~?J}eq=r{YfC@3&RoZl-@d$S(h4UiG`ctyx#+*ce}b-ovJCYrFT#adQ?H
zmJ<d%vi5a<_8b@gzv=H0VgEVh`;T^uXW!V6xa<AC-*1vZ(X-5VcFa4;EEb(9(S;|9
z%FC~N>+fBXb#+zdu^!2D^TgI|098~~UtfXx5u2AcafwJstVo|<8^&+*p&@Kd#KMP%
z+pVj;b}$tc6+L<SG&E_?kIX+u<sZb&VrJ*d`1a;z)UJ}3togFPfB#;cdwbifOG~?}
zzP?)8)5Ej($D?j3lZ**wxwn>BmA;C(*BZgW$US|DTd!1CcX#mCtg9wTM>x{`*$;?<
zI%-?<@6Yp3TA^?*V?#|%P071EJB1$a+`04H+f+&8w4Pn1ua{ZB-}8CTa}6DxkoWiY
zUfrDTzxUUx)!#nG?X6mwdwbg~%i?8m6%SiK?{iCaI&esJb>!w{^QvBH=J7J==@}RV
z%r?*0+xoEK>m2LybuJOVUK_vpr=_5<;L7cWmoHyV3P~&edsI9=<LoTcsEtXjmo8mW
z`TJ3=v#E*c>60fKy1KrludW1seRXwf;bXVAH#fU)PCHvv(K}&+0I0;CZJxjHMfMsV
zj))yPE!qpR6k<ZxoX*^^XYXF`nhRxhb^HFV{IiskoBQ&wudk=ho%?pfh1%QOayQ+~
z;o|1j{<>qad;h7l&6yt_98`T)|K^4vD?5AkwKb7awpCk<jEz$_-wcU}h<H@`>GS8%
zfPjE`r?=SDSursrD5lvT{hO3$$tP*#!ph3(<>j@h|LN1GH}8K8|HF5vr-x_hvSqiN
zgVx9G-I8>aYi-QVOAlAa?XBAN@tE}1qNiS<2GOJ?({!Ux8Sv;vZaVVt&i%UIYlDJ=
zW8XQi$lSodu;P(b*_#y$o!hna^!#SdoXN$>8R+HJb?MTjDRbuJ+|R$X#4~C`LL;BN
z-I@gp6ioB(MD$9V>wT<BKGqZ1%*OlXq1U8a+w<4k)&9!(_vfco>8mNfzP(-j_;~;8
zuh-+J&!0d4SdV0|;`OLNjtB;Zhz?`1o!*xYwSosYbfdO-L`Ft(@$z0>6}tM$*6i^1
z>pN#GRZNXNd|bYM&Gh)XNbhMn7iXDfhpde<y<7A7>@36Nwsre{z4{b8<>*bGX8%X5
z3<qw4GIZ&S3y!6)t{DFH{Q2|ePpiU5EoE<RJS^J&XiXP*l&dhTnYDQ130cr^s!4?C
zgX{72S7(`KUs)5m`Lo>`UWSBROG`_unjaf}eSN*W>g%i6iNzNZcCs;ru|{l8>plEj
zkC8!ZyKA=?s0&p3%_Jd_Wer!rAI53_{{8#(VMWyaPy6k*tXmbaHEZhT<qt%J)%~t`
z>+gN?Cey+-CT7m&<pB@By}7x#?CmYfYAMlGKbX(2|H3YO*&?(q^!4(+lSS@}efjWV
zMG@oavuD?yiruUNYJr}c*AxtL-l@3iwNYE=*tT*#fB7;}b$zte|Mbs{LZFdh??m2d
z*$SWmLq!&y>j#phz{8}?t=gwfpFVvv*nw5bEN8~%<qcdRe;5xKi1SX%UU2Y`sOy1M
zQ5+GW-kI{BxF7JFfMSIMEQJ_3bbcK2^CHq1A*wx~aY%;AAo&DElZbVVpa4FQLbO2(
zkcKFonx9I6(*+0PY14vk0Z8;PFhmgJB5E513Q}&(ybWjm?V5nzNV<M&YxZf||1Vx-
z?A*CC^TB~ezQ>l9mf*f--QQm;0~fok3S8U<$_SRl&sMBhvEt72jaE!z3=9D&DNBTe
zg+&Dg7v9{Qe){lXXJ$5@3)6I?^?sS|`}s`z?0oxpJ3BkoZJ@!L#qRynRC=Y&{Wv)}
zx%l|5E$+8lwPJ<F<#mU(BAQtl8d@!qd9QtYdwXli%OF)16%92tw@D&`f(y&u-pYJ*
zr1RF6%*(EG)6dK>?CR;!+4?i<#)gHUbO)-Bk1txhSX5MW>69rVpi1iC!GlkCXk~+j
ziw`)>DeNw|xheJ2hYtZIC0lCGoIdRx7#MhKSLy0LS?jWcmHH7I9IC&+yIOqSHvHAM
zU8S$BT2?24`a>#j@9+QL^n8U6C=Npkt;^qqoSvrp^!@wy2KP25yZ`?7`Q*8C*Oqur
z294ugT_3+c=DDB0|8$kBtHamF9FLUU&cVpAK_LB(l8?WCxPya3=f{Qy2FbRCkB|4y
z|Ndk7{JN-p`}S2m>Qp~vy8h3f8dWtlEeneX^LrJ^JNveRgEutB&#!OKo;_YY)z#Iv
zw@-h1pph9g@;ps1R?FZ2e9_$R|Nrj)zZ^6|4H|j9b0_BYGAU3*cdvZG-u&ywj~91#
z7ONgBE-rq1`?OKo8Hv)@*L=(GRi^JeXIcErXYb!{x2xXme12tp{QghAJA^=)?SWI>
z@3-c2Eea1MuGz5R!=B?TEG$#1q&HO5hAejL^|F1}t-tTWEYoaIalCZtQqM^|hXWiP
z8;gpHrc9f*%&PR&imI=#_>M1KvLxfu63?nH7u`k0#mg^V51T2lfq`MegwwIjq3h%J
z3UMDhKgV)$?eA|>D}5p&W?Wkzzy8geoc7jtx3}d^KARRC5fQQSxU6keh}rD3|NIWv
z#~<F9d|X6EW=-Vgw43wmRXycvzf4@Tc(G~934y);e!ZSv)H#)jk(;4GEAPYv#j2lA
zr%#<SWy!|m<6gfWpM0mOsmaC9AD)n~Kt)qo*?GC&+#nB+jyrenUR@oozcymyq9d<e
z-Q7VQ`dL<`t8Q)0PM5#Gqj0fXkHkVb+p3I<i(EyE3;mo9Ffkl(n)6ZbP@k-I){6@Z
zK}~?Pv}I0CPE#gLTC`=0iK@E#?eDWqGAD`YL@YSm&abVZ;n6E?9`^WHulJsNGYpfj
zEO2B7Ra)ORD!cb(JUGw@>UzbN-(C9se*OK2GcH^Rh^>CRb$aE}YmN}h1UIN;K0MSq
z%Pe=6m~PaPHEVQQ+d!?`&{wy%u0H%a=FINDUc1}o*Z+%L?mvH;3aB@%+Beg#){61;
zt7qruuV<I5aJYBx9%ur=%jWiC_kKBW_3{4R+a;1r3<<hdSA_=G)a-fm`0?pG>Xw!_
z7hcplz0kSctEcq+y}wP}Z(}>NZA%{MgU0^E<7+k^sc_x@SCpZl`)N=Asm7l%Rtc@G
zt)NlEQzuRod<$V<a1ed8iScyW=FCq|PHJgrXly<DYxAK)PPU)V7;|xQPTanI`z-VP
zb(+D;H1ze)C+<%>I}23afX02SN?)nS%gb-gxah<!uD55>bS8!sNg3<4?5FcaOuDkC
zvba~q@>7#;SV+he&<Kij-VVpk&dygC7q`b%JY?;aFg%oKKl|*mW_Es1)PTkwL7j}N
zD}&uZt-#Z@Tow!rJ4*CqH>hNunxc8?{CWN2i}%*W?%tAckO@3OzA2>>G%}~EuAcqp
z$H%ChMN7?cZamoVzmb`JOU_LrkQby(v!;ZtkJI({Ki?hog`MF*>jt*draNj5WZm1d
zQ%Ol_%9JTf&YU?Tbld*t6XBaVW=D@4vFPcSHuq~w1a%?!9_QZL5;$Ei_Rase^>Maa
zv#zeXQtrdR(6H*{Q|4(ZzH_ZYfByWrblp*_q9+}9?%WX(5_)8CZ-FE8)m5RV|K0RD
z+SJtKwa4x4t*uk1PECEcgpnash<93c!O7<de?vb%J6n3c_PeI0rsu|u8<)N--dO+R
z&fUA-vgSOGn~tZYr%$hNm_2>^^gVm_=)Jnb(9reyef|IF<9)Kl5~t6f-~Z@&>9uCJ
z#C2MN8<yBdt#R!Zn;Ox5bxUTjsHo`62M3$8uCAI|`v){I<TuY|<uc#dv&`7*>+35k
zLT2V$GK6F;t>rm$a<V$8ZK-~iW2)!W9j+Rl2M-<uHR8Wqi_W*)v$)_u1EUd-b7yBK
z-*0sll@n>3Uv9gdxBA6OCWci8d4jvxrmqe5+MQ~idP+n$W=Fuvl`Fsbf9K=n4NXZ|
zGHKGJDO0B|eRp^F>(%S`U20<GF1a3CzOwrJJ5k$G28Mu>J97?b>8{<LanVUoP;i!g
z{l3HB%I{UW>qcz}@bc;kTNkskjaNGB)D+FCPbbyA_oPMcXZ>)Sk>P;OAD@+fVvG`8
z-Q2W{j5b}#{rv3g<vo?3WscpsbH}9gRfz9gtFL?3M_*ek@$c*U`q*18j0_FlMJF3r
z85~lN?&gSfo*MatkAWc|FauP;2}tQ&cR-tv1ebgQOw+O-h$%8KG@Jx0l#p6}svo&=
zk-Z^?88T4`mZyn9;o%*ju(bf#rb`!s=d2hQblMz3eikCPSU^*W*j)!|2Z#mTNtpS!
zRI#$Mva7c@G$CO@O>M2HoZPyt+1KMf?9ku;C#ac?Hz*)rLQPGLh=9O?e}8{xpPr_>
z^xgdV^VdJ0Umv$Ndi%8g{(jJK%<cUBvB&%6^}l~Vb!vwz2LpqMq~yw{r>ASHsktdC
zDtdW(UTk1w-ct9ss`TZhrDq=V$yg|qmzVcSnR@X`n}vjhO%v0NS~5F-UnHnf{Ppc^
z_WkV(7C3-fCfjmvi^$5Zy>KBQH8u4mC?Ty3UVddo;Nq?wSGb@h?nbuk-{0PXCO<$E
zTf)N1o}eMW-DPh<BTl)uwyZppym-+f5mC{n24-1TG+5c$wG9m~DkkjxbV~czr_=gd
zD?g`|zPRwvXx)ilAm=w64f*o+VCv~<Cl4QXzIgHCH$#1WeOFi4%-7e}T9v(t*!k@J
z<Hw6vuiNFN?mur!zhoPzDfN2Y?sq}$e6k@C5i91*nNzekFBMe#Ea<wuvv_&bwj9uu
zSo_C5S?gQd<4?T2y!`9!{Qa7yrlFJ7{jc5ITYYtRdH(NjpoyLzA0O}fb}Req1!w+~
z=g<4s)z$5Kx9c@1@PgML=K{O0)#9;OVpY{HCMG7Y9(GWNyr(;=!7k^9!P>~pZj(U0
z6VUVysAjDFeXyBb^>5+q4S9EW&9W|E$8-3?=kxaK|NZ^_`t|z#VY|!To+^%<23p^-
zpzHL>lM|;;5AQ6@&(Ht;jk~kI|N4)Qk4wM22n00?D=RBcoj)JGHS4O1=gpfpzx}_v
zHG6ukWA*uYwxU8pi>Aj_d2);C7`&b|r>_CrI9z=2)5nh&cNRbQ>UsX`*{$vI9vK-c
z{?32D_j}yd{QGgBLjGR;|JwHJFF-ZpZr0f*nTzu7?wa~DqWx4C$OvxBq9+}Fa<;Dw
zrp=#Ue=iy2-@Uvu=FQXdd|Fr2w0!w;Ha?jZKYmoqwJ!IIi;MeqJ>$Xx$Iid6udlBU
ze7#3Y7@X3JcJhW@Ugirb8QV9mS+nM|or#H#j?e4s>%+^+wjFl*o_l-S$+XRyIy!6a
ze730mwua~Mg_oC?KYjXiY4-ZPVe{tATe?sABPd#4ty+DmmQVX}YzqTJNTG8ZPoSe?
z<D^NG-XvF6R(g4Q23Az;U}9!g^^}y9^z!u$O-x)^yFb3}=h7puL8G_wbw3t1H8q8-
zkF)ihw15A8HXexuy3yNS9B5?zR{Q<^{q?%h+bnGKPm6-qLnJ7ki)g;OG1(n7{ajdB
zc<RiVE%qmEb#;ADo;>;OubS_yC9K?HFFrgx%*DkuNd+{R4QjV6_nRBCzpi%a(xsZJ
zs;)0zzWnwz{OG*;f0dwlYTN2>S6*CPoGQ^4SN+!X>gsU+!otF3aho@T7Wp)Y>BX$b
zyu2*);v&~mr%nZBWUL5V8?|&@?Cx9NH{Q%CDlXph6Vzf?^`53-Xc(yOKQH9%t*uvg
z7N`5pFj#oR{mquVyHV2Sc_BGDYvxtIv)s9J=gRQ)aiGaSuUa3MR8SH-kaQ+*gPz;g
ztgE1LxgS4%7=8Ej^DE2Pvc%p_Ed9!gK=Imn8#WmH{=6wh64WZ@E<C2|G^5}39RmY{
z8l-cOLAcNb1s?-sIZ5}z!c~7jy@3c0P<hC>nh6vRZ*Ole|7H@v81pvxVPT?i`ni&C
zA_0uw-rrx}D{XF7EwzFLqJ?)_cEUt!cm;s1fJe6rR1+}xfEKtkfLj_^YZ3wmaf1qV
zQ2!O`=cJ4|TK3?id`Q>n`T-L9yP*Col8cUBun4UKt=`gU0nOS*w-6JoV2jDFE%v9L
z76bKR>gwvaI5;lMFib9ac4lT#{rokcLIPY-9693R>f!<#)cf?|!-WP$=2JXgN0F+C
z{5>Dr)O=<vICI7aH0JW_&F1qm-|p@#US9S6-P${MVnEZU7cXA)^76X0A@T6KCrd3^
zvq2U6jIKE2t+l_)bYpjgaB^~Xb#_ivadmN75xcu=mPO$rv)o%D&o%}I26lCI6-h{&
zW=&~oZU#*Y?yLQM>$tlAyfs#(uQCp|@qYUJd9sRW?yV4h+b<KYt&3fKZ*O&c<LY8Q
z(E6oSJMh#Kap#X8cMp#(o$5EwCR5(J_SY7W_KpsY>K&7oOjLFUEyH=g|Np<I@g1#@
zgp$7I;4Px+3t6d^@Av<YV`XK1bzx!i;lg?I=5cXzUoO92TfXuBBCkeJ+(vX5%Uzx@
zZ{E6wh6bU>jEtbB-0^<-{SPeLc%_$_W?%D|v?_G<vUd5ph~VXZr55dH)3iU^Jm1Y5
zDG3@)2{`)n$&(YOPp>|*WBc~)wZB`B96$d0^LhL0dn!MJCjXy4eX411fB&J(q*FHM
zkIq?a1YZ8-H0NT%Pn3SFzKV&-m4D~I->Y5^8jxU@t2nT4+o~U?r>wxb6cZR39yozA
zpM2eqgNbXl1bj|sWMo`=kIe_vH#g0?vLdGV!<R2t4m2{0%FC}Wetz!c>C>m{c5nP)
z`oC)4r+J58fphDLr)CkL#`<itT$y7=#>QI{4mKI};~M|`ZgXy)t@dGql3!mkD=RBk
z#_lcyr9SifHH#IU+irY6eg6FQb91dtYkqtvnt%9|&PKM^H#R0$z2E!&%d6GvU)}%z
zZ@bFM4I2W~{pJKDCN7+u&d$(~Ep3$2!NtWjWy+Kk`O~LQ2YY#S9XfniR6;_-^VEqG
z0a;nA4xfL9y*>!)l`;j5N9#syIq~r1TW&F(3p0(=W8Nh$_RHPCbNIrJ!pC2Jy<We1
z!2$=f*}m7~s@F=H=dF43CdV}UnvZeXnG3@HHV@BaGBE@!)cWPPSk}7i%7ul_pxN^?
zXM9>)S~OHuT{AN?z5M*Py*JOiq@o+K!J(aBJ}e+$g38MJ|NpY??AT~k`fACqudlUr
zb$vB8HNE`(^*`pUem<|-545W4toi*l?Q&Hf?)`FCwb$=i1R7@YpKm8xbvArfu=JXl
z#_6xFhR0w1@$vE3pU>x?HsJZaZI)^Ft985IU22!FdvQdPi6OvLCuT>0zs<)MP;<{P
z`PhmL8v<5`tqr=qF81y38#!h>cUro&uUMgxnwqL<Xc*XU_iM$ZNs~a6#Gsk@W_JFv
z8{dDuUJn}ldiwhH>W#_AU%lOaKdhu=i`|b0&0IT=bv?Plmi_L|PSEr+sM7oU?RLKE
zw)VERtgo-G`puAJU^w@%r(Dph-e$L!on73=j~`RtO`bF7&4mol`Wl^cD*_kmRq4g<
zD!Dj4zOM4(@9;1`-U#=8xzOo)v8V35d;Wa+{rdlVnbKJp8j3Bo6As4s?RAaVUso$@
zTeaoPTkEnn8}2`5WnfsLGe>H}yIrsKKohC$e6pMRMVG%hZ};0rQ&ST(leKvnJA*@O
z@v(HlLp6T95&rgnw=gj=iHM0U1C<GBn>Fq1;y??q{{Q<cDkZh*<Yaa0;w}aThNsW2
zG=y$W^Ub}z%@;JJyD|AVXfYzMwAqU%CnwLctKGHl&nNGnzkXSPl!s_Y>0E#CMSbV*
zA3ri)U0KODe+MrEL%__)N1pGd#%@kK`{hA1zg4vq1B19@b?8say$5gYuirmu^5oJN
z7Zg)dQ!Q<BLVi8wzqzaQwU71veYL+qQ{~xze|`P+^?H2h_Pp4yZ*B%pR`=KYc+*$>
z^x3n$_6Hak4xC%bnEmijYt@5B_9ri2t_)inwX*E(E!A&7vmfk|IXzwfy6yKnps9T=
zEiJFJv(2wRJly{Eob~&Ro10QW4R|(QsgQTqeSLj(Kc+-8FzB(KKUl;I3M1REQ`YVO
zSG6{7@2!7{6T(j|bZ$2(dg9UA(vtD`SnsOf<$blcL8CQmqs>8;$@h16v#za)+!=TK
z^5x4<ZZa`6oI0~|>*<e=kAHp8%pdo$K-E)!@0UrSL9i)Po(QZ{S?M>|s_OOH?NjE?
zT?=Z-PAd8T_xtL~&(Bojp08X!PwQgXMmBDS1hIRrFQn$&N@#6sd-dbvW6`2@_5VK4
z2U#^!{%rAOU-Olbo71AUW=&nPN&D8NV?Ud@84N&+I-7%~*M!Gay1w7@xo=y}%_7(H
zpMSsK{~FY&e7EcMx!v&@87uz%eP93j%uM6(5<3Ql16wV(9_;Gx4?jE0v=n5n?`$(r
zLvQ!)-G}YWX8X$5ez}-B_xYEXmnSWGb#?Xp^8JtA)*LWlI1mY1(ihBp?cLqoshe+#
zh=?qC^Csu*?d|K2*rokhsKMuV)N!?rxbzVQ28MITS2Di-@bIu`(L5>BEDZ$(hu!7x
z?cUezE`J}Ekg(v--@m7M%351nr`z<;m>~h0B}~jY(jh2im~=#SzZ%1XQxSWs!0XW3
zH*)`7lqV*&{M7lE{8DQ*w%@PYeXs6!Ztl%ZORu!P1C@B7`I^ARZl04s%Qhyf`%k;^
zzR2m}n#j#p_SOFOwv%HBC<Lu){rC5`b<f-T`{&1Z6$a`EZZONau^@DH7-)6xq$^u8
zgYTBz&IPSt%X~h=Ah8KljI_(wMM#_F6jX#9?i5!4azeTP#QF37kB|3HR{;%7E%%#y
zX`XHMm36V!o<UVryTaDRWZs&?!0<!+TEb4Y<!qqk2fY%8PTJw?rX)(N3SB)-<>ix;
zlf67VE<8Bc{PkY-`<b5<&QF*i0O|pKzgs?k-QI6ezbD_R|MxTf>}+%Y{eQpBo~9F-
zRR8Vj-SYcuZ`_EuTlsu0XcFz*9LvR)#m`oRt`7V4?RLI?H7Hg~Ex#J_f-*d4j<fLb
zF-=?BSarWS7dnO2r%ar<@Z;m-**`x$1x+huK9@F1=_q@1W8pm8>a2TvDnTPzp!Fr7
zYzJB^_+!Q#Py^-Zsi~hne-6&cSp#ani^talZogkw-Ff|~Vjcs-<_`-3uRplL_WEx5
zebAW9-<L0szPi4C{f{3NscC6hpp5!#X1b4c`t5DGTQe>$>b|u-e0|)lt=Zw7A75Tx
zZvE%?Lg#j$nbHglca%za{c<;4x_tTS%HZWj+sj{F0rhf3EtDA;8csjI(r|T0Ve;De
z{rk?ml{U)>czmo^JI{%M!9sF7M{IL2b685s5>Q{y_R|SvXwRstt82=vS*rpUyS)T0
zFa7)d{`)hUObiTDW(QwS0IgTG|NCX~q)C%Z%HPH8-1&Fn_pYw46p1z^Wo6UKPbuks
zf(#8@?vF!$TAC(+mYS-nx*8f9{(3UmzvRgYLC<;{_Ur=<j9k3DrO&=FFfizKs>+#E
z-7UQiT1Z*^&4huWzzUR?wQLfmZlAj8X3kPOEk*{01FN)b60WWce!gf@iJMznP;jv4
zU4{m&R<_foAr%L#?k7twv2O~kso4WsW(l%ZNoi4%8XE&cf{^!`gOiq=IpYJGfcEn8
z3aYEy_ip!lJKvc`uDVfM3cg)oU|3;b60z>!OUBhZHvTH!0P3DMH8;<-HDzGXl3_e;
zYN49|S}+M((tKxU@znYA*LQSqfQA^)&NeT<HU%`B7Wj}++t&83+!`(}E>QXBJJYB&
zftBGv{Y8t=I#Ia|QCl(=7C%3ysiWgFS=~SE^Ru&4r%qkEX3ZL-{>=OPYFW<-Ffcs$
z6jE{E)Y-FBRY2<iq|9<|RDL(*aW<Rn+uGVHYG}&9FsIKnV%@?+%wa`EMXvLO7#J2f
zg;pHs>gieYBAAIGAQLndX`b%Sz`$_es>NT+2nL1+^`L$kxXY%Pu#+uMkck1g2L|nf
zfCtFCuHzke+V{gLFfb4_cKPSepDT-8xn14ewUw10?>Ro#s?_W2>+92J&z?O^Kfdnb
z{rRVwK+Rl-i4!MA?W@_Dl$0bQB(!MC6cJtt0|!v|9#n1H=$V;?MMg$~Dqh$kWYC&E
zP~Ud0b@{5gzrU8sndjazdHU?xt~YN3z}=lkJ>`OV_xHtmPuB}|a%xISN>cF@6co(5
zzHY9X-<%b`v(2Vfz5x|pYopEEH-ef%)!*M${r!5~H2GMM(D64nH@ky2BYb&z`RkL(
z{&9yyBjrJJODi5t(~VZ+=jR74P&~e8&mIv`(WPsnx4*ivF*#N4_w@o*PxHGalV4p~
zx%ltz@6)T!%rH#;vVH$wU(m9!M2YG3jAAa$(4iH~ZUQ?STilnQpkn9En;g)T){$-e
zc0U|$Z_B;RZ~te3b30$`m+UYzP{%T)@a4;wTpS!4hH?S|3Wp6!{`~k@wD;bc$jwvc
z&tJd${l43YHs<Expw)mkHYQ(P;yL;Btj$+Joq`0#a~T_8i!$!qzI}V&-=y3-I|4yX
z&<_s}U)@_>-ku9u&d0^YB?6j9S|1(>8eP~Rkj|nbFE2mWx_sS{ioCpawZD)4c-Srv
z8WYwuF$pPtey;RJ*^dv2;045=&ze7d{knRh@%lZWw*8I?`TKsl-LLuFdpM#nK+D^~
z!C~cg#><y4t9tfIneKW}*)M0iYG3W|Rb_8)fhylWfBwj9v;X;IGN@IXx9?}#(xpo+
z_x#h}{|7YX!^+CK^Gvcd$l!=GPg{DV^Y;Xr->X=B_{KzKcM*B{_-BTRiHTAB>-KKi
zyjfOkSN`p7zGkz16B84k+dl6UR==`6KVDQsB;)U|uUVksrrJI^+g0-Qe*zC4JjnOh
zY_{)Wx86x-(}Kgore$4OQD`_lvl7(jUbREfx$VW%>G5GfL6eU4$!fpsSKqyS$r244
zn>+u&D<?n+Tv1W6sJwi-%3Ry(u)n{*hgVhYy0$((UdchU`rXdwUtX`@Z`A`@337Rv
zFR0A7Dt{NV=<BL8V9#_IUrPY3Qg&|V3yq1HV`Oan*1yQ#+dH_ZXjAQe&&g_;2b)+y
ziwc^Wnp8Z$-zo0j_wQFWXkhdGy}h?~m#?p_udlD?l``>|<W(zGb9R<#szh7fo{w(4
zG8Pwlytndz^2P<6izR-8+9i2;ef|}om4-QHv!9)vy}a`CGs~RpTU%DzCQLmVdM)O!
zD7cU)bZb`igv@09sl1-0s;+Kr5;f_|=kxaQpZ0)O-yS-2$lLDTsfr64h~bxX(+C4`
zuy#CU3^;#)=6H}sX3z&zoQNr`a2mw2h6~gsN%v<IT@t!F?A$yit%&F6=FYWc4QW`k
zNGaW)aViVgm7rmqHP}`c@HDRY^cZPoK>#$B0vb&qav1|?SO*;A)G!EIHiNv2b$mz}
zyr2WT;Yxhc^y$lQ+=yUhV>@;IdicYK52JRMy=Cn`ed5H0C7zQ@PU~)8;nph!njt;b
zEA4&vx&aTU3v@lce($RA_3J>>IR_dTZ|y40-nrjD%pJ6+u&bvhBq?c;l9G~1^|zeL
zii!-7icP7fEBn2DeXoMnd;j@S*xJ@M&-@H%!8E8(xNi45E6||N<Ky6!(^vLZm)Cwi
zYn~QADHzm9XW%Y8Cbj16?d{nwFD(Tv_xADWQPEUVa(a7f>*XVz!do*hFEi@j`>;*=
z%kBLApf1X<4~O|r=Pc&p<~B_~Cj(kxsHv&>?W3Y|n}&r&M7Oy9HD2>O0sp!;Yk(pN
z-;mGD<G+6X1Q{uA<6c*{uc)X9G#cCf5j0tlmzVeH>({+sxHl+(GLqP%9@7ZSB?_mX
zzJ0saZ?2W5s;cYzeZSX%3YWXP%U}Qd{XYEeu2R`UbG09Ul1^w0$^-z9tbN^`DW7%X
z_Cy?R<Goz_{cgH^_Qgf5pk;7rXJ^eU;#&<`pK>5c>z8bcrKRPkPoK05-@SdCdq0n@
zzP^5I?(HzpMl?{f)ck%;Fe@u7Xc3*?9E-$LmTQ_ovtHbV$CS!ZOYo<lMTGcP#hte6
z4+RZu6)1w1LbmZr%N#p5$Fdk@BtPrQii@e|vmYPpy|p>LKke+Srv`FDLW{1gjn4l3
z?CkVfK5ftlQG(+1+X-J^Ty(ar`cfeA`{QwW)3h@)aE|Zne)3b~^qDhL&ZY$?CMI^~
z{`~n<OG9JFo8kyg(AeOLM{PWki<+94R8>`P9{=>|6KFNShYtm;Y;0b?9<O}6a^=dU
zZA-W_Z*E%3bNIp}Rd1PN`~QB6Ub<}As@mV*rk4wfIfL>GX#Gpr@jhA8k{1C-j~>-D
zHV%eNcLhd8&6+fM^4s6OvrIsfA{QPWZWk31Ns+Jrb~8P7^G(pQdB~2D7pL|2Pf-Ci
z5+_~RS6lrRw3ht&`RkxbuI>5pvi5Z`>-YcL_2<u@bGJ8yx`FDE1+CoTS+}-iMs3NM
zxM|ZS5h<xvp{v7IW?x_Ttv1JO_MJOk_x^xpOy4S=OWS<YdFI))&Fng!zkWRK|N7~)
ze)h>ps!^NMdRK+6UIv<Q1J&DC!{cjP*KbII*3%{t;2ET&$B%2<+3h=1J8AM{S*f*2
zuCA`)ru_Q)`k=M4iX}U>t|3-rbsO$J=yVh`K+j+x37T{id$a~uVU4vg2I;{!%?d70
zA*KGb$+KtAPCGLr@&ETJQ$%*|-1+jvL}kA@q6`chgqW_y@A-I4x~RA~`1!fH`dR<A
zKh9=jSnx{g-_E3O;#y*iul4WMevbw1qrAO6|N27b_Bpn)3=9FBf*bxlc|O1X+BDth
zFQ>HEuZY`Q6}6{g<L2copd}3(Vwf3U`-|zvfrf-%Y`dLzd4i%dr~rO2NnpdjCwI&5
zU%mhDn>ncTI?^Es+HD0|?e`{=kztj@t<|Uc8@|R{m%X_FYK857zb|^ym9^34tZZzT
zk{B5pij))nUVn778?<lb>x+wr?aXR^6zE27a%oGn$WH?GJxn9kH8!ZOT(QCf)EqrO
z&lWU5^Y_bTf6x+<D;tyDQ&Unh?(Ql*H&2OyVTDV@q}|{Z_%C0+jM|jad9V7tZF{cS
zY~OBi{jm4<_Rcl2W@s=L5fNFjVZ(+)=TA?*6U)r#eQA+vH)y5H-jBzmRrA>Eemrak
zEl7QKW~Q>fzP|cd0fvB!Ha0d-9zOh$ylKS>kLTy+?q2j<HDPC)mi&gI;^M7IN4a?A
z?P8kQ`Smv1DkwO--}`-@-M=5nys}nTIE`5t7^eD8jc@*X(Ov%KmzS5NED91<-adTz
zaOu_1@Q-;;3=XXc6L)8?_{0e6sZL$LK7VHRnjEv)piQr!DNS|1IS=@?7#Mae(5mnL
zu(;oD*8@A~tiQ_2BTdIoobYgUbBmj}laXPS+%=G^?t>HO+EeDB^@O~=!B5?hr})7^
z3Tj9TY=~h7waj5tHlUsjsEo%^5%UmZ5TutQt+RQ*o{GM{|Hh3Qxp;V{tY5$W(BZ>d
z%iiANmYY6t;zG~KYA>fn=LPmknLc^;Y+0|g`LrAQ>gw+Qe;l{JvOeD4H0z3oY1Wm1
z-{0PXDkV`-(O9c<1u_f_{7XGu978UBKXnR}0zsW0FCU)}7nhc_^Ye81`T0SepXhBl
zmhTH!u3QOPp4=yIzwW|?3r2_UfCkN~zGQe_+EMs;%7h6E9y~|@Z4Bw^>N5IUHK*4U
z6jq={WG<nu53l*11^4TI`)<v;3L4#A0a^>NEB<gB@7DD5a$EE6-m(*um0i1Hg$8I<
z*{v;^Tzq`{T2^mX0|hNH)#v~F_x>IaiTztBQy+WkiPGguulrXE*Ed+q7IK{^%zb7h
z_uSchIeI>^mv?6AJ{RGv-{K|AmArZ9A*t)9*Xo*v=LThORa8le?wY!2lj<hcM?Qx%
zSPuUFd-!MMckWp)8-G9iRFl(FY4`l|&pC(hemMGj&hMSy|G&0v<B=2+SeF;EA)!%a
z<*HS$_}ud1K_za^vgP07L&L(f%*?_jPMpa2wzISI+Q)Z6@$veeMLT2emh~rq7UEqv
ze)anG({Iblv&whh{q+0qs@1DsPx~FWw+ggGNXou$k6iVejd?rWH*8?%W?+!!JSMkh
z+BC7R@9*yquCA!qQM$)^&yPplpcTtq-QA*MVo|2@pmsv-oXammva_?7f71?M7jfLT
z`uE%IUqPGNPfydGWt`sk@in_NsCbm#d7CS&uyA8ncQ^B`e}6uokDm9qZ1?UMwmlo|
zv!0xoSZ*_KU4@O@+W7r(p#IsWO`Ce+ZtH>4(2Wy!+1BhVexCL2&Q8W$(8O+4)i2-k
zo&Ejco}QhvX3u6e+Z7%Xa^hiuhMnENzT=<&@B8tHdu_x<r_9Vu(3D6|?DagS?1RD#
z41dxyGc&XD^TQn-8?Rowc1^AS_~Mnp%d@Vm2%NOee(T>aFE77(@nXl~-&3Yd%li1}
zsF$bb#PiRMjmmZ}YGP$*=w(TsT%DA(=+foOpmB?~HnyWjj+}V>5wt2&OGjtRFOciw
z)`y##ns#+{ZMt>8=CiM*4BuRfLZ`a@@p0?JQ&UqXfd)K1gK~4%f>zUQ*kAx!nN<Dl
z4X1>2Ow62RJ~NZDPC0_xo?2R3myY#HKmGjk%8eT<cI>c_wJ31#^z;mqZ$EtT>F&Rv
z-Knh>?S~UvjoJ?<vaZ>jem<)DAZSM0@A{2BmBye@FOk12y5@EvXc?Efy1S*NrTN?7
zhzN;*i@P3{*{!j(wEWpOU94L98>l#vaASo=yv_`F5c7b6Rs;jX4Gz&Y7aTyPh8su3
z!bVjm1_p-1D?qJo<&X_d%%Y%UI3RrEkU3TMAT11SfuN%n+-@|BN`X`|K#gA5gvkfT
zFbAWy$p#k=28IL)ka;<6UBT~BoKTHylfko3Pfvr&=nd_Sa+mJiTUY)5>3+e>D-v4S
zv?3UKcGmnX+R)x0cje+m!8eKw+m6nc!|98!4b!HHc}_b2{PGgd$xSx1=7Bc&@BRI5
z_dz+fDvtH#_b-XZzhAXVD>Wr0V*mBs+@j0x^*3B)&dSPC0gW#nl=YaPqN2i5&GEu<
z&%Ijj_}abMSy@x2Oc8mLc;FaEglz(7yY0^!DeJN|bNtdbv@<j8aMsn;UA1!M#W|M6
zyWYyZImpG!vPSMf(N55oWVUJv1_tI8F%Qc?&C(5mS`iBy%Rz%xm;rcz>DPw4yUVq8
zbbJH_1y`+K|GvaVRn@hyu+ULL@<RFD6$vx{Ih|KZU<}C4UcD{%_O+FB<4-vh2&}6D
z&D9@0emwj7x>&3Fe>EH0nHUrs8(6;-^0hmIwzb~6eS7zsq`$%L?(Lx6>_?9r(Xg?J
zd3>xlxU6j3ty{O4e)Y;)hkbs29@Iej^5b#;>6ay1R#s82uC8;}-Mn&T31}uEFfb6b
zA-086c*^YA+WYV4m&|j>KPZ%#p^(4`o-MpneEx5?=<A=)=U;zzcJ|j7i~F_g?c+5y
zHLG5)-M*#b<D-T;zINxUSFd{c`(J-^b2DhFoL9~!;`DU=@X*kySJy9H>I&La4BGaq
z8@<g3)Pni)5}Yqhv#*uhu3=oT`{N8Y25^3>+#C1w$&-?wjQfuF%TK@l`s%5v+MvD5
z-jhJ%Y@pp7`uhIt{Bj{hMVqevKQq%<OI!Q$mdwj4o-bd%1dWz+adS_dJzLxJ)alcg
zZ*EQxjf`CR@$qr*NnvXu6t~}ATYj(7J^R|4iz@;b@2Y;)u=c}@whIod+zm@!hptie
zp0;Aa0ta4R-no6^;^L<t7G!*Vb(QgL_O&$=@4pA_t!26;U-Q9HJI3?6y;0VqBb}fb
zthL)fi>*4<=UrIf*!<=9`~A`J#_8ums;hT<d3*Do7h<SlW8`i~J>15-tLkgk^y-aS
z+1a9EV#{XCn9=a<;o){rhwS>!;^$1a7B5<475li6T`nLwdGXixuU=)<{{4Dg%Bm#e
z!1Xneo1YX|lsr7d>TJwh#s4j#m2DaaW5lsu>E%5=Jfb2Z8pg((Pup$(-TiA`^}Cmw
z{?4C$eSPfiWs#fHG(j@HZ#Qn-xV==LVS_Z2SObH!S<Zy>&x8H^{2YFRmQuXEWf~eD
zp8e=ZXV~vnZt*Y2<?A!f%rN}_Gw$NWi&=Sj*Loz4-&NglSdqXVmXXjY;Lz~#@o{Zs
zWoJ-$9I)mJ4i0|${rA-Q^W`tt>+AdTwL2F-Klk_icTnE~G-CtWFn@XDvSn(eB_)5p
zb22C@NStoY&CNY^=FF89fr~+F{Z|Gre|0;5|K7F5vuDlPQuGwGqR(gI#EDg}RxU4j
zb7P|(xCV^go(CF5d{Sa%nskH%G;vZ|TDtx3=a;-I5*TY^!o7=c-n<Dak6&J14jSI~
z42p@FGfgjcRZ|m_shOFUrDddhpUlMTudg0z<z~L;Sg{+lk^;0!5!4LalzJM}oZ0{H
zmp5qA0JN51)+{MrIh!Bro^w374_W~7`}_Orudc2Z6&6<RKfd_Nm5`}Zrm*ZueER?A
z-@2vCmc0Ts{&$tWHc2@l@b=EmU`<U;&>rSRix;om_x9~u(3FL%Yb&UCykm!jshQcU
z6BCuQva&9nn5bNxw92*#l)Gd9mP*UYu2uD(mht`FUB=_~zg{T2y1So#{P6{7)kKG&
zGH7zqceYvSu4iZeW&KOvefecbX68!J7Vf>(-&d_z;la$#2U<QASO2$^SIXqX1)auw
z$`al!_J2M!gU)++`t)h!dy%+JDV=Km^VXEUzV`C>`~CZ0f=(5=3Ytj0nLZyh#5ZZ3
z{WMiGv#{Cb`P0rn-~0<SlAW5G3fiMBBqYRh=FC2sI=SgQ3=S7S%k?=qIYB)Z&}P}V
z-J3QAojiH+*T>`XUr#9amsst~yKD9I`SaJ8mU?&f^lZ7cJ@@u9(CG5DYxlm)EIDuU
zx#!fWQ&zek*G6silCS@>Q7?AalDfaYPQL%1{pH2QYlmB{t*owGyQa4Ma%Rc8vV(Fu
z3=BCc68)Jg)~pH1$;olp0p3sl`o~!r>#{YcFHD;;W5xde|Dw~+&6%hIS~6E!S~|-p
z6}%W2wCDFg17p>Th3z3hL7(L7y}p5J@df>>*RP*``|Z0c@5**R{r)?DC*$9+=U$u6
ztzEZnT1oB94O_N=_Bl>E{x~o@d-c4!UzvYDoz_=dmL&ZKT!l7mWM92>sq5e0-``)6
zlatGn-9NebZ{7aVyyD``U;qC2`1o4eH%a3(4K+2lojZ4as@l8Vd|_Mzmly*BTEp!9
zlbH6yiF2zTR|f?J9oWt4-Y>TnbmqXGJ%83cOE3=sElHZVdu;+}^!E3+x7-=oSy{WD
zTIOxveLD5PuU}Q3yPiH4zLU58>ie+g_kP&b{P^Hk+s-RpcDgohuOMijguteZi%Pmt
zTQnA|-Lxs_@^b(EFD*ZQ{HUd=8CYCge8BB{R~MJ1OkecA)rNL<`%WLX2nh+%P*OVd
z>%?l!;AJb~_t*V;yZye^*R`uxU%s%=`G0BNUQX{828J6x{*Z-*Z{NPv($Ls&>(;GX
zPd-+FR#Lwf<b8gA{`HramowX?D(dR`^78V6Rta1!`}oN9?d|RUpP!!(-(UAv#dG4s
ziJ(kUS-JD;IVaCmt5yY7R_;tYKd<(>y}9*5>}|W(p6@^>3?(Kmyqf>_*Vj)~dsnSo
z85j~WWyxzs(9toV<pQ0;>Q9PxZYh2aT7=@ee($%a1GS(G1KP+B8oM~Hzh7tn{q?fe
zWhb5%X=-bqele%Hw}F*`AtWSZNw2i|spp?pZrm7HSXgLP@StJRq)BV+_}ZNl6C1nZ
z6B84Ey;{9~OWE6~w>LI|S`A)4K2xs0zS_bm%=F7|mWk)mrAt92-89{3(Bh1l#_3w-
z=G#xZ+kQ#2IVsD)Aid+G%J)y7ifsRUIPA8*_RS4L-`Qqwm-!d9SAx<OgFz3dEtjJr
zQN1BS4%F<z(X0bE^FWQs*@^;R>vWKsBZ-{`CIR3P<Q`CpGjn3q#>+2ybw%^B=yK3*
z_`P!fWI<+17wnAb>gWh?b937sW3Qy-q&Iza^t#@2GIjg!%fE4CU|?9eZCjYQe%zaB
z*}G%(TwPsDPj9^lUVVAMz-%Wo1A_!;<tBqc4=7X<BtT{!FaUK-8WKUBBZkAE1|~xr
nXz+-E2Q*mBFsk9ke+C2ol=$V(i{CIXFfe$!`njxgN@xNA72$d4

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg.png
new file mode 100644
index 0000000000000000000000000000000000000000..e2f11e6e50cf2226de9232b1a107136d292e7fb7
GIT binary patch
literal 20421
zcmeAS@N?(olHy`uVBq!ia0y~yV2S`?4mJh`hJ9%>?l3SguoOFahH!9jaMW<5bTBY5
za29w(7BevLCxS5J3j5`m3=9eko-U3d6?5L)t*$v=`uP9H=g&8PewK5xXJ({Jl(S*G
z6Q8T%(+P)G#RmV1yVzo>8+hf^gk9@gW+YF!&=~Zph-+sMhpE@GqsyjTzH#&S_xAgC
z;q$YlkKML=Uu*Mj`|Z5zS6|mw?e(s#+800n`|&i1Hbn*oh8f4+z2anGVAvteB*wtd
zaFQc}fq_9yIf0RZVMb2_D+5D<(Wu053X;zyUs)I!4zRZK$zJ;S`1tyhJDHi8MTLZl
ze9!eB0>ysBfrZZPA-l`oW|!5~*Vq63@wmTbP0%4_Ck6(c2T`Wstmo!hm!DnV_<zws
zCWZq^IcBq0J~!q$eC6}QOBov&7#MuqnpqhdT5sf-U6$7A6kEOJA|x@faWgP*FFaVp
zZvswYi$S`b)`d2=UUF@QrZcazKR-Y3mPwCosIGk6YrduUxnH<Hv&LpFDV@#r0lPRN
zG(>;?{JH7&TQ6VVt38s&U#>;xzg#}QE+{W=U5=Tw;%VQS4+q($j8Zz5`OjasW{u9j
zolM~!1)<+IvT-jxboj7y_4jw7x3}e%etP2h^yyPg4Gj-}n~yDSy;7?6_4RY@>*LC-
zXYSXjezCCq%cs-&t80IM`}Fl|XkOmBJ$v@V*y=K9l>W(U%U<<hV?tcqyf$9xWy^eL
zXC3Vl{q=Nu{FN=4!DnZi`#ZPsT-;gwJZ1asOq)|1{`{%&463QwlehnG+0rFTUc9gW
zzx&&pn~xvOWK8Am=eWzv$bEgv-Ms4yo!hshot1j}?Afc0$K@{9e!siis`S;1yXE&o
zpP!ri_2u&UR!(C5+^6;U`T3Xc|My~Xze)Br9aS~8SIg(u6<u7z5VLO19GRoXk84|4
zMEv{rudA!;(ygu8`jvO~RDMp`ew+JmMMcGn?f2`nzwHQK?zb{(Yu2XQZ=?3r?3}qh
ziPJ{uh-tD!n~{;xm3_6<$D>x8<=*m`v}w~O5dnb(nU|NHG~ihqw>N6imtU{fpT2)T
zzAf>C`Z^;ud;9yEDZKJ_F*k4C^z!lws;k>4BqUVw`K<Zwf;NNG=k5Qm`S772-2ZTH
zZ1=I3Md!q2W!FAEJzZN*&+p;GhhBbuVbk?ux8&Wm+M09o)1>G1ACHQQN=dykiCY=8
zG^yXy!y_OpY})UC+wU=~+ZeeyP4eohP~#l4*@oHIbdFc}`Sm4Av=zR)W10NmK%?8+
zTU&eWYJW+jpPyHHHKcHAP*6}${omK|e#ydWJ_cIh>vF!ly?y=1$K&#`#)dP}o}8H2
zb~ep;-_K{#;r>V8=G@<RcS1@<b+z=qefyUE12HD`yuH0$yz*`SzMsc7+{`&PMKf3?
zIWjWRt)gPb#Z{rJyU$r$THf4n`|Z(ryEW|pd}x07^l9pzFPFUA?&g`>{dmxP+HTvL
z2ZD<0X71Tz<9X@+zi;Mye?FVd#ldkwd;Ok8=k0#`OnUP4>C!uQVt)So`SR=a`0&+X
zYrh=kw|{YEW$?N=X6rz{ck7W@xcmLS+b=gdIXN{wdi3ba&Gh-1hgvvo^mHD-+xcA1
z)zx)n_4jwTw&l)Vz5MaCn2l`NH#enz`tl_tCudFand8UZ4Gj%%ZA$I#ld&v{EIxnY
zgvPh2Hua_{Cj@N2TyW01yKC!hJ#NK>gC?xqbBv9Rr_P?e`tk98>uq0OUG>i2`*oV%
z9E*j9$;UFz&N7|!PkK{LZLMkbx18FaPp5NnaTT5XQ&?J4TPrFqzMN0i>czb3cNfLu
zYaZVCwqH?ORrP4A@zJRoKfdquooxn6AQ>4ec9p&LI#DESUG^qmZ`Ie3bupI9Kc=0X
zWw|ZBCs88n_O`WJAuAN>>+4J3-;1^X|EGB3?|uLO{l2xUbah<q*U)0M{J=E_n>4wu
z-G6g?yZ>VM{%iAWt4n@;$-G;BzxLI|#qCz*@7C1){q^$C&(B@m-IrfnT&x=V<MM}i
z=diD@uEy4=?}#}Tf9<5`p1y^?v&}wz`V<rwH}Bov?{T%?Zl=Gwv2pPdZbk1&_i8@-
z&b6zJ3SRDa)z|#)lTAM#f3p2>fO%Ee+F3$ELLsZebX{FtH8nLo&)a^Vv#adws($-_
zH$F-muA8TQEn(@>rJ_IEZ!cJ&AlbHXv3tK*^_u<r_siA)DcqWU-A`02<ifYNx2H~-
zvLtM6)XUxP_XQUeY)HPpW{nOgD>=9Gg|3a-TJqpPqxOEy?!^ZWg&OlX%gM=kd3pwd
z63FNC_OGu+=ZC(&wsvd6L8iZN^Xo4^IXPL?lbMa@!j{a-B_AF*+W!CZ`PYxf{i>bi
zs#6VFAHKS=F?rIz+b&)~r>E(Dz2vRG(s#DmuJ8A%xo!1o9(Ag3Nk1?5^Y`!FDep9P
zo|>xtdT#l>i_-af7CN`{olM)j(zRO*6nha7628|=18%L)IC198l>UDIg@y6)@yEYC
z`ts_k_vZBTVf*X;URfJ$-Yah(mwj!`#gC7Vn-)HDSza4o_cQhB)2EqNRs^d4u?}L}
zS;Q!DYTuqcHir#(l$Dhazqq$|x1gZl!!18b-{0GN%-8&G3JV*X6e#s2*L-|*6qHkM
zZOKedNlBUVYfqrj^YiodP0HTfFjUsjIaBduqPt8ot9*<B&*2+eGACc$Q(1iY@ZrNZ
zHY7G*-njq&zu#MD>-c=WUjMGJun=TY8?SWQl4Z-Rw$=ardfhD~WJ=)LC{wY0@k^Ur
z-|gGC&&|Q1VWs`Pefz{?pWIs!sJz&@ov-!S_jh-*Z{(OIKRYv1b>Dn3-6#q3yCst!
zudo06HT>}X`}b#<=g&*dxx1^h?QB}|L~8|4?eKM1Zfs0e{rml{ds|}0`+IwLz1?<O
zrk|^*sOZW9M`loZ`}FbS#Wj(eOMZMv^bEScuXbz6%b>k~zuo5I;3zoT`(RUQdiv|_
z_v<eI`}=$9ym@*r4<$F6<=%Sn`Mmx0$^LelCwHFAy1HuWysB54pt@_WRcX<lF6T*1
z%*@{Z)dG^tW}n@-t?1MgO;Ck6Y0{*OP3tzU&RzZK)2As@r#}5MdGh4qi`i_fteU#I
zYcEtBjOdjz^{SEInsxQk{Q7?{f4qJ^zdp`1``VS*^1Dl~TnSmaY?;-$|G(ew*ETi1
zx>sz^ZmWk2-&oZD+f(@Jiss_b)nRSZr%(U*s9WD^+uQs5@2?13JL}^5c>BW!|8A#<
zn8ci(u5X@WHhW{m$48guTdX^!KEEcZ<n^_)D<U>7did~RA`1(P#NFNH=61i|7%Q8b
zUzf0{*bulfNEKAL_a&d3Yn?7}tTmopP*BkA?yl0_RiUe;Bqb$Xw<T`acIQsa@&EPT
zZl-5$S~szY?ezKc=QYCD%~@$*S63&VyP=I=KChy(QZoJAoI<Jj7KMuvx8Lsl|L3{A
z>c086^Y`D~@$=bi+4{TNa-$FDZI?EiefH(@gfn^DrI-87)%sYvrpxu+jvTYuzMy;?
zoxgW!;^8*SI0ehRI~J|&?XS;SzrT_`zjm3jd!L4d#f^`w=O=}%kF%|;s(N)jzP|Kh
z>;e@rornd?=T&)~on?C2_`HpBe0==d`}^a&#dI&Z%hxVBa>S)q(%7vnG2`E#pPO#x
z%rZ=F`}60Iil=tinhDdVPyhF^zy8Iv=)8q%b(HP?|0zyQOIua_{oN!Le}Dhf^z_rm
zkGlsi_nWGss;cTaX<p?s$<~$@i&<-)&#U&ct@?7I`u*PJVQZsyzL7g+6s}YB{^sW8
zYX0-q%rs8VdU0XlBt4r}4?n-KkdP_K3#+QCcKOY<TKeHb!Exc9$H)7{vzCUhk6Zip
z_V(8|)907=_|CDo`1118Nn5JF=c%fwXxQ1s=|*iSSpVN`ht<P{IVaDbH|IHQQ1<>_
z?w#82cionHP3?I;zy6*9&*6yub$davsjQ@Q$fEYwmdl0m^?x=7F7*;kKG?*%)Gj?{
zrvCmvmsZ5=-1PB`@p*~g-`|(t`u6krd}-b2Z6=^PKk*RD<2N@qAA4}Hx%bo4)6%xp
z-%R-AY%<ow?Y;Hl*4EV*mwJo4FJ^uH``7FBvS$w|_uC|$nQ6TI#NRd^$)J?UTPr`O
zJ$^Pj-z;y}OEqO<<IN_^<DQ9{fSO8fKR-S7{rmCz_x%~osS<4$cbDfMzJ2?)gke&P
zVevDc#i^&KwQb+NePiZjwc~adFJ5drn^yeC*qrC^j+e`3_uSiCExmr<uT>wv-OiV0
zX6G~6vu97wg$n_Xx8JYZ{la$lXDJ;fF)tN;{qr9?mMf%$u8Fuf!z6Q3qC}fv?XMD$
zMHx3XEZmrNRqOHe_&UR|^>Mjd^6%eU5xaX^;g1iA;ePVd7e1K(-uS#tvPs5;12?v2
zPfw0Ms2qRTpeKL--)k>!Y+RhU`DV}0&(EcI?%a9ITYoRO>@=Hw_QSVtW=zb?y>qS0
zr~R^haH{s#%jMu^5+gI4#M#;A=1tAby~lc`rM1J?mHhI(YM}Q=N>eMP_VZcuW9#?-
zd)0JvdM+!Ywt~We6#)yIR@yT%GEV1-xOwyDu?|7y9x2l-iMqNvx6jYc_UiBZaVT^C
zak=U<A3l62__cMygb4{InU{`$qVwV7$H^^iZBq6Bf8W=aT*vd+=|ItS^PRVO4$lpn
zaxmxfv$K~MxprUKnjH?R9DAiqi*D`9zOHxl=+VsE+j6DM^X7os**lA$YZ)2_{{HrM
z^7{4b|NQ;?^!@ww{&qiI1O)~4b_q{$NlRNMWuCXDjaORimr&Sa{rCHC?Wx>c_2q@4
zyu5tw%}uUTwL&lD@Bh2(>FMdKYkq!ubzx!ip+kpa3b}VUwI#lIxBGqA)m5Qi-|c>%
zb$OX@)zhirTWWuo-K}`sD`i)+<JPv^*FVnfJlM?s`mFi=D<2*nHqE%O!0Eng`|0m@
z%kQtuyu6HygG1xX)0g4e_V)4V=jUDh_V)JGC7!~;=X)1b?)h+tTYpED(1vBU)!$y+
ztA2mAk(vF=S@ZiDx3*-0T5f#uc59-xW}Uoz`SQn02j^OsXFWXB`su@m3-|y3E9aFk
zaBy^V%(}H@W!0A#3#Z4|MSgvCwfL*<L!-IY<$lI#X9BLS3cb4AUw--5lKR-wfvdxG
zfBycR{qoXMP=iLwEN8{3soJYkPfr6Gp%uRF&8p}FqM(xdP1$ac?8fBdtHRbsfm%<$
zzQ138YiqXmt`B;f-|zn)XaE1t=6Cyk=as&@6FJEw^ODL`?Qp;HyQR|~U+3~t)7AAg
zPCqxLzrX)Y+3uC^4;t|}TUuIHeLAWBb6Zc)q5Z5HVFd-C@^{^*r>C`5R9upe_g$T+
z>^^0}gas!~c$B`m5m@}}%*5r(m#3Ydw^mFyD&y6al~oU0#X}Z4vD$t<V+@M^q~zq#
z)nU5f_xZdQBpvPI;^Vuvul9Gzzdx0gRaIiY>I@$r5@Oz(cQ<MhsO@ZVEYM7pWwBN1
zs}-)@V!vK2?l1ZD#M3iqzFqB?2hIGa^0vSJ@$oUJHM6(st4Zaj6x-i#HqSE2oFrHG
zBeAmT(@jkWrG$q{TA{0!1TJ=a`EvREYv<-#KYjjuIluj%fa-5=0)2dXa?ED``?h`m
zO2=k4kPDfZnM1c`g`S;Zc=)C6-al>8+eH3+1_k}Mx3`xUK0fBT>%;8#|J!tCpI!Fh
zL&5ULXa0Q=_PWn&erJJWGh61<Q&T~$Ta}lq*Y68jAGf#U{oe1dKn<|)_}ZltCJ6LO
z7&-+821;3#tjOE>R80K*o!TkiX5UG)yO!{9lHYv0wI3fJ&wh1fB}l>J?EEF%^3U&W
zOm2U6Ztm)y9-iao>%v!u`GOpNbyaArX>QC?=XSo8rLV796+i2lG-=Y8Bf|b3lO7i)
z9<1N;{QUg&pfvut-~QU%@_R2&X&!dDdGjVHVelLd@bT$k<C9ro{ceY|r>Cc1wxPIw
z+#2h5JDT55HE}#BwdT{))3fifJbU`|<(ZkrYYu9;mh9ZIgiBN_<IavkP`zf9+QoDD
z!jF%SL)XPvmcF{;IoGQ6(t$?i(hm<D_k!B^8<X4B{O9@X(0c6T<n-m;?)R_mRlmP_
zV`FmZvon&sl14`|KfXOT*LrKlMWw52qr<<xzFz(?C(%q^ULIuH$B!SQc9*RMwg0Eb
zRh<-E$F=Xl?}_emg&%zwvlksalxki3YfD_sN7v)0S>h`mva+(USk$ia*|ou8mj0(w
z`S_ZTtyN!NExo+l|8*m~T)_K#dqcP9#nyhk8vg6cW&f?&*Y$F5Y*=_f-6yc@@7Mb;
z`(&+O{eHjy`mtW=s|y^N#m}GFD{2xUsui+BjrZEi%gZx2cnR`~=|#74iB6d?LE+{8
z{6abVx;@H1qBTsN1yAFw%HFJ48@)a2$A^be`|I|Gt&7ooc}Qxnn(wTP%gcPTZfscC
zoz7`2TJ!2m+UAw%=jZ);xBES)$Pn1jAf%A6(B+?bN@YcbhN7Y)BO_yt$?e{|HJ{H$
z?Wx#!ZjR+*P}cqV^JmtT6%$v5tzFe6s=ceKY6lya)SBP#_s8q+{W9rZ{r_6qPbZW=
zefw7S@ywn1+WWNFpD8CSJi_HPt-ZY+)Yq!4uFgKx!ntmq*t(6Mo}LDknyUgAx2;~@
z6eJ=evu1i+m1n>Gza3#~A{N@!{@PLH<uKFXz#-9<0SlWzBP#j%`Cs4OzJB#GV*zjJ
ziwlmvvrHb&mhj@_omQ=o@USa%O+=vno)1j@Y>ejOGBRt{@BbHNXJ@x=9#=q`z=ncQ
zj_?Ct8w)~rWz0Ec2O5DCJEZLN-Qh0-Xhc#<hk-$-h3&NM1sp?5TCB(W<*&~&%@&c8
z(z3U=5BFzhC}=e@HU_1&yT#{ixp;W?s9j%hu!x^!P0)t4vr=DQUq65KG6Tbml!u2}
ztG--xkG18EkYHRb($d!EHR;gd!|Qjmy?$`8x$pP>c`EAayQ{eL1jWUduMA$kt4c}_
zRF#MOFT4Wk6=&Vww|DjOz*YZ#Jm#<cbW;8LpZ(b;eyQ?|t3^awK#pN$VcAh(w)FJn
z%b$1cPWQ~Zw4`(O@&`hq+F^V0-tVpY`fA-gr<I?-e%-70KKfGW_x98&GK`?HvqW&n
zF)}15vgmw2kSzrnYirG3m34L1x_L}qf%o^-#@ez@S;WRGwWEqFuM-?V4`=NPd*9h;
zD!5^tKCiS{$yX7E)8LUir;H7En0dj2zMyft4H8nzH}!)C=?<iTM(83qvNzme23xF{
zu#;U*kO?#*43g(YAH*ZZAS8<fq;$SJ9AIKN;KUK}uF<^(HoBUi$jUqIrv3CulP53!
z@uPy3ogFmP6c`v7wYx00^SQjVwD#`1>+<gI61|ls(Ux{*#=>L0(%@7Xw|CdBl9!8g
zqqj}@VHM_nfQf;jtFQ0cmdwjn_Se_@&bN!5H*emnOG~@W^6%B$eE#Fx?R?Yxdp19R
z{uJF=dt*al)vuS!OK<0H&jb~tW;ruJ<+fSwtrxfR_nW>B(`ht~U|@*w$y`4ZR98>a
zi(R#3iOSKVM?EKjs!O+CsmvoCg15G0UQV5xeqw@RS6`prrk|(IpTFKCX?$gOdA_Q;
zy7jT@Z*Nv^*kGU=wZ#L}GSvK@%nAzTnCH`Uqt*QV{f{0yW_7Hlrba|qc(HEuwihQR
zDo?jL{^#fCt?B3GeCJqfJn?qt&Yh>uoC(>Qb#>0M{2dS3ZoV!1`TKYLUEc^Ea6A<r
zm0BZfUA7`_Z<SW~x;d9CHm9AHxvj6Jtn94p-gjk&VKNu%3Z{Mg_GR7Mvvbnq$y+Nv
zCdt~>MC>kmdnvi!cG;@X)mE+6<p)4Rz3YlIGc&okxU@{<L_|~$8<c!`aj{#@zV1)O
z&)>g6y@9<i>bk{rgWliUdv$%h{qcyqyGplaURG;uYm2*hXKhylXbgDABio3XGiQGK
z_)*j3-Rsw{Z^X^1{rxTT*O!-3yGmB>*|SHlYHrcfQ!l4Q=LMdgrh9c?ZS~US%U@3o
zj|=?%?k>o<(3L??jovNGQAhx#`*j=<b#-;8&YjaUnKyOn(;IPf6rI~vl)k=J^`Mbm
zud4UYpBhj}^Y+%(%dgk(e<zWDf8SnEow@hht?a6wPp9iw^=)baxlG!!^3xK(xmHh2
zrp=#Ue=)hKsi~`mXU4Q?YM!eC7rRY74l4GeHmCK5t%+E8<w}UB_`TAp)2A;#bH-=s
zvSq8hrfO-$@7rURb7R5X-Q}Rl*Y7z8KYw^L8}FB|*W=^A*-m3+0hLitvZU95+FnIZ
zPx&R!oH_H?&*$^IZPkp7f?i)+8|>!RcG>Cs+UV`4(l%=v8Erc8m`~mg)Jl-EtrFSQ
z4(d|s==gxfpdK7-E`4*u@Mg|7rNeP~dFwuX`s7tKd)o2k9E=P*&V7AzGq|#{a+YQB
zvSb}~b@!7ePj+>61r-!*P|>utjn&lD?3(}@*IgU2(Fxqv=j7qJB3piE;Z*JLRoU0q
zO<Gd*_0>rO9^J@IM_%5#U;BM-P*Bj7C7zRmcHO?@2pY{lI^|op+icV9WpR6}K%+QT
zWp8F2I(&HQoH=W*TnRZl*ZTU#`zIzUo7VrUk+rD^P*hZ06}fp?*0nW}FKR&J;l1Yf
zUT}m@y0XMm7}V$kHTqWuFTb)fSY6h(DkOj3&t*(ZOeQHOCIs!ge#r@xf1@@eGztj`
zZ7F!@G}ofgNl;KQYHQZisI6H~ZyZnCd@^tUm&5BH$raaqx#&L2rgGCXoybL|+1F0o
zz8wu}ovQiFSTH+p*U2lt3r)e5$D=NPL9a>Mw{I5`7M?m|M#LMt;^*f|v$k{<KRD2+
zbiB5v#w6{GM6aarvq{f2UPnMCB*4|okx*W-Gte0dumGsu5!k@Mut9)nTJ-}#MbNAn
zxBvy0Ye+iVj;(wHn&n_HkOY-}VuwKG9+EtYK?SGXTRuNKJNa(j^!@wyU%GUOD>wi4
zwzW!1N-+k;3=9Rf1*aQA6|AkJ*YEk{wXkrK4a0#|&}or7Rtc_dZlJ*S^7k+Q8p6PE
zp!7&C^R%;RpwZ8%)2D~0bbk&1`SWKLXnb8xPA@(_{_4tL_vB+efqs5{m+KZTT=?qR
z+S&X5{mM4YzZX+iSGOv9`#Le5hyvYwR)&JP3-@aMzGIf)88p|b)Fk0RgZH)wLqkJQ
z%QtWT-!k9XX1=+%w_QE0zkkiX+TT`h(>LGTQvbgWG=2<f;Z4yD4q56YYWwfU<6j?-
z%dh|XmVu$c=+Ii`X)2&`kDWVrdinV16#YIo*BX?5cx5aCyr=104EDEOy0iFs){PB`
zQ9Fy4URxjke#`%TwZFII+%($z<59PiNyY@bzh6KJKl9z4ol6U?85qouOX+-n@Qrb`
z-(0I#_xJBlJ2z)#^6@^=Tl=cMX5Gv&J9_k}Wv~7BJH<vk&a1=L7D?sb*sw5aTh7ZL
zuMZq>xVk<*o}Eu-hnYD81H&nq?femwOv>IwJbm^|Y^T`k3k#h$-G0l(&tERJ|Kl;~
z(3L@|OP4LP>TPdn5wUWAdTMIvqa&Qf>bwj)^e!gsY=8a8b#dvdD}np#{+bj&^ErC_
zxcJWVPyapo{NaN}(H(;xZ@KCZ4;(A2tp4k+kJ`G5iJ4jd^(}^mOPkBz-*bAMy?N87
zbw5ihFRrNGp~p0>WZ}`M9R-OCw?=HuzJBfJ=jU7N|JPkzAAjHQ-|hVUFQ1&8yefA0
zw#;G<Ufxg#hlb4O%nUKsywYYNhue7P9=mk;GN`r_Kg*GNvh-s|z@$Tm4qaIvZx0%2
z^qa5o=F-w`p2MJ#<2m2_y}Tx!O#{t7h2IKhWr#Um;qpT6&bEVEuO{A|VVJxn;ULq}
zB}-NWE_R!=q@#nw)!jY&*_oMEg^yZpZOL4mzwf8p=jZ3IH}l)AFw4C)<=YiT1_#OK
z+Zb1`*b=urFZS#E`|+Qjoh`m)SN$yq)Pg^G@+2s3SB0-%XPA8K#n0#S^-In@`X_Q=
zJ|6=^+QaWtHl5dH4l60yvS{(*?mK4b=VZ>#G(MhrCU1N8n;RRYtjpfGo{zq>TH@c=
z_4TngT^Jb}qKi&9urfGA9$n6H_i*Xv6S52p3$}n-i3y4(5$_s7%@<hn2BkFxs`3~n
zUj)@MhM>k8D8n|Kgk<Y$2|L+AIUg!djzQpgRgZ(9X-qv;b#?cTA3t*O@lD&mfB&LI
zi?)=#y(M(s-pnklY<KM4T?P9W_%lG)0+bd@oj-Htiv7Qj{Ge7VsQIlGvSI<KlW?p@
z(yIPnP3QXLQczX1;Khp!P)_{&`}_4TFE2lR`EsRR?5>Q@&(2P-?aSZ)Hw;v`%%2~>
zFqfTA=E8%6&8pz3i%F9viHM0UTRy)o%Fxho+1>Wg4WKaME<C!NV|(uHWlO!MYiVkF
z78VvxTJrDj@6~~e-J}eYTFi29l|){bG)n0J#Z1mVPz>JPUB23}nXPZ*jT;e1j~vmk
zw2b8B<mBS!);<^;DGdtH>pN3VPdj<}a`48D8~Y69<>ikaIg)XDnyyvRlM|}v4eS5a
zyuG>EU0B^ur>Oess?fQILL235t2`#v{rPxYd(K`{L2#)XzUJVqjmhn=uC88Q^z@Wv
zuX*;hGaLUV85tRw6g}|(6)9I&g=$~?yKL!FPw-fH$(*YoojcAgUAk0LLu18-ihzI#
zJcln_T<or2_2<XO$DpyK^!c^hT&|xzd-m#<%*&u4v3|E>vCHu&*=(4lr%>lSK+{i`
zm-}D8wAB0Q)2E?}D*xX9|95`fub1kenbNY|)unczc+pw5CEn!K^XJRoym{mFI5IM_
z@9j}gxJ7NxTgxt2vB2ee&D*WlznrsvpYiBO=dS1Ts=dq}8Z|VqGBikA7CrG;==yT!
z&Yj}6Y8o0VP8@GweZ4sA%8I}zh4Hmtr(RnVxmZ*?OvBVPbW(~$8)#sE=FF8>u7rfH
z403&XdV0B)o~30ZsOfjv-+pc2Vz=0Dd#9>`UG*eOUhvwQ$Y9g#Yb8?Fm7kWF<=hB(
zV>of*#Hj6gbB&CQ=7{aezq>2cY_{*ji4$Gr%71)FyqRNmT%GZM6~B9*OkhOBjAedv
zUse2{s#5#oVS86^Z|M1XwqKvk&W}5(JB<@$$+}|O>Tg$`oSbZ0{LF_})+*#utNCtq
zb#-kmEw6(I4^CS0<x9z2t5UCr4<CN|@FC#$x3^o9j&?ac@9yml&B$1BtWS2eTd$Pm
zG4q@o3-;CiUX^=$8>kd~d1p>Hr2Y-pDayaLW+tfD4jQYuu`!v8pFg~)Xj4#duxa_b
znB#RIzyJC98Pw}*ZD|p?In7i2S}JHz@71lXtCQbcSm+F@_}-N5maF;TxcB?LYQN(y
zE-o*wMd$B5WxbUT)O5Je#L5jCuWIEMe|4l&xT~Y%!m7~KS5}2;AGb4`{dSYx+wc&N
zKVPrMg9a%)FWvwD@4M6S9%=JF(BheOyx}Ghlb*bNyY|Qt7gaSivEAqI>@1!uwf2#W
zMZtm#5wp#5r_7&Ue=_-QYxUj|CI*HBOpr1s+%&>K9Mq`qRuq_8Yoo-%0B=Qry1{6z
z2v7mXFrx>YbBXDkfl^oNhmH%jA36jW7?29Y1qYen7CALPl><2jwxHtzYB2~dCP6Ob
zeki!GS|MTTqM63&s|p_<TQ`r*>);&A;uu@jDVuKGhzR#*T$=Fx-Q8K{`SVsUZ-k`n
zR*-38JDDl!Q-W<*B&~Cbt&s*=?UbNsqg29=9MCZTHxv~WiO9>ZfAApT=kMR3#G8G6
z-QFjK(&l*~-{0L86%taix3_0yWnEeP{M@ZQmBkZ(KY#Wt>(Ua>tP2Yo|NQwAvbU=A
zZvFqiR#jhC+}!>o2-NM1=vXba=EaK)-S~Ymg@uLCbi1qM<)YHp*H)&Uo_17jd;Wd9
z%8H7N3kw`q#qHe%nuZ6Z!F9XeU3ztO_0^TZ>c{t0R#t+#wcGOUuDWp}!qvs)#gR_o
zU(aUem%O^7d38nL;VHkjGJ#U@^_{u5w`IP(v=lV*851){Wo7;Ue_2;nOa!ej@SSZY
zTAkzL)032xH0Kx_uhfza8w`ABo1N86@SSPoDs7&3<$8Sm+GW18<7Us^$N?G(fcDkJ
zH|N|ms;sKgGBdko`0VlH#WQ9|fCk&$`(!jP+Wz?Y^JSZK-i4Es)n$|05;J~%d0F-0
zAp6xVnZZw=Ki4)k-kefjd`bY~J}e#Ar)Opw|9aeSKV{OSMHd&lXP=*E3mUdh{(Wz6
zb?KKEfp@E3ua&YWSir=@1X`zZJ8!q|>uYO`zt*j30F5d{_+-|<(%04Xb#!!WJ=WaR
zlp=8~RoCJD-QC--t%+3j{PgYHwaNZ=D>o(|x7zmp{{Hw&t;btJSBG6)6S+A>qD{?r
z){=8`tzX~&|8KjLX;#W5*`0FW6jyju>HC>8K0kl_5Rv-+^=oO){wYU}xbRAw`Ly%P
zU)xjpdCKI;i|^ctsjRN{o@8WXB=diF@pHf9P2bAi-qN(Oi2=<PJv%=?e$nqu;I(zv
zE$!{?Q`6JMrOux^Rg|-TN=FCB@&EN-F1mvz5J2tbs`q=p&pCH-RjBrIf9`9mLcP~U
zZ`b>_l`mBk?4X^u*tAtuU4MUjTP&rmW%D;QARu63KjY;~msD0BS?~Yh)2E>Ad3UGG
zn6cu`o1C9Neps9<eB5g;c58ps)~xAU&#l%`OkiYq;P&eJ`t`rQzP9fD`|Wmq)TR{A
zjmKTw+_LWODm``LL_ySxeWkC%ZswS|y17lOkb8b^?&L%X&=_(}O-;$`wcAgfKE3*c
zzlxk~RfzeW0_V>4iK#VR0t^h?g-5fcs=mEhxo3~f**TV%4W~_>y!gqJ6wvw!3yX+J
zQ|8TEH)V>*)925vzy1FE{XX~H_fJkv{`H`lUqnb~(SZXFo<Tc{o?cn%EuMRC&&`#I
zzds(A-&*-OZTa`qoy?$S*}CGhvrL26$L%%Ax}qU#U3TW9+IJkC(n+8QU7dDzR@S{e
zJ6DCSUUub5h^o4}wyy5kjsI31SmHVP%hT!ct73PTN!e6v;5mE&v<Bk90f$~G(^Vnw
ze?~zHigmwM&0*yh0}Z`$i|bwK6jm1z6kHg(I&5X=>M+0O8*k5*uLHGgPEJytWtKb3
zZ=TIc&=`Pgx0sY&O~u0XH!?3QXatQN{P<DfJI5lhY<KM2+uN_NUcWEuNw(4{aGIEa
z*;QS_9p7!7abdyfeSRq^OCHxoz5}h#Yyfx76YY@8(!#4!Iy1V#g}lIqJIwtYjPO-?
zpkfykXh?0@gF=k2PfS$4wIQ*&?)O`B(4rtv=l#>?&!w-fXo7}m<>chn%~N7vIFMTW
zQrYRSfl0}W08j_A-|p9nHa^)`KbTJR^zgK{wY};!zgO^7gpom`bm>pm^E=F9q&CD=
zzct<a@7HT7vz!_GemvrqY<qYkY-5tE?T-h|pjeKvaAsg=m{j~y`B3EMw9EqyjG)<=
ze?K1gJKa`RQu^|8`TSi8X$%ZI*s?d=Y4&Em_V92!ckShG@vJN?FTT9IywpOOfgz^5
z;i+8AuZ|5-TeGZceiUrHy*>Z_x(O2|1kDj-U^sBKIP(Cg<S|V?#v^M{aKJEZ!Y0t#
zB2{(u)#2;o*3FV*U|4$Y4eL9dl5*bZY->I~KCZ2y;W2UIL@9%Wh8(lmLc+pVca>&?
zX2Apn1*L4OwrDTsU|<MH(&LQ~)egIIZEdt^(h&|>%OaP3`}Tpx^Fgs*`1n}n<72&_
zzJD(V2TG_(#Jht}^`*Xk{(Sky#$?m7Hxc3ftPBhXL~6traymIXe?21XzoSZufx+Cd
zI`rGlJqJM@W>8B;)}p{c-EU4o)y)+p55;dzkFU$T_4V7kyQ@7Xt7YEZRcclDX9sAY
zzwGU;%r7r4X5HBEP;~C)yzQU4B^Veic9<mSMr?2Z4c713vnOPKU2W*Pn4K5w{!8yz
zckI*C(_c?0_pivhx~i+QGjOg|X~~BNj%VlDMxUOhd->8*@2h*OzYEPbS5<W_vrbiD
zc<}0@oX+<Lmm0nv;?`eL`1lxTc0^P{qQZB5>4O7|pvlUI4<CY3)2fh_k8YTyoDcv_
z&Vl+R>tc6{NJ&L4Dz2`qoM{uyzz{HP=aw?dsxK?%RXpm<mRqOt@@jZ|Xj<B`v~zP_
zimX#v=`~fW>i662QzuSb7#?36I_b-e<o=a@bFEs>eLlpkFOs!7qM4P!fP21D3BO+M
z1|=mW&@g4t&TH!PYZhI&a3N{`tmo&f--l#mtO#2hrMmJ**R~afbq|>s&VVKp9$aF}
zJ~c&imTmPm(73Sg`r=<-GC|`}+wYd$cKzPn(Q%>v-)H%`w$<NeonvQU*kL~1ETXfs
zb5+E~Mep`}_A|}70UGK0^x;Fnt>bB%UmoVS-?QrV9Lr+2Ng?}ces;eL-!NBy1{=c;
zF5YR?1(^qKZOxvZV>a8#$!W^Oi3|5ue;2!TyeD3S_25c{4AJLB%@Pa@2afJANszUv
z*buTVc%c(3D=TZ}^>wl0ck{2Wi{;|u3)@-rw2Qaw=g*(vHvJC|x35k*+U1wLxB7e7
ze7o9pKjttrWIqPY-5r;&e`8X%(tgG4)?+K*6#wjY^FICe`~CIh_bT0Io9F8lE&P3~
zSGx4W14mvd6OTzDJBw21+Ei}3P!}%D6<__<)HLtTkFI`phAH#b#qI`;5c(zWE`NWG
zncwEYBFTk18(j{7l6ctKDA2kf&!D%rwwB(n{SI1Fwk$RoG@-SlVBx%)Po8Vz_uqRN
z%3J^M=W@^@B~})ej2jygCoS1k`uf$CmBF|6R)cC*6;Cg3@5`sAYWvO>W?=Z=Z5r|J
z;8I3yb#?dJ-`}pDnyQ^D(WVu;O2yNv^3#$@lO|nR?9RXU_q*N8_M9-bv5EQo>}>G<
zy1$@0$m-scf3Mf?&pJ2964Y+kl5$e$`0n+fncbtukAr6QKpo%GZ*L;c&M<WT`uh6y
z^82;rS3ff{FuXgxbbY3Tecc|=fba8p)qa_onZG`txBvQle!Z5hZS3JT-pik!o;FQ9
z#BzDv_08%2x%c<Qg2tKWSQeXPTu=bz7ZCT`+uL*ZsV(=Kss$R@05weH<=3-vi@lf{
z9(VEY_xtfL_Ut*r%a9-zXYxue=2n7k+@6Sw7ccg0UoH+>FeM}m8Xq+T<yQTDKNe+P
z-}7`@^p=8$hfd$xUi<sot)0c`3qKY<K4$s%Ya=te&rE3s22itAFL%SGOP8+fsr;O@
z-8}zZ%*&TA!Np?3>gSglLN}-Ru8rQl?#A2K*Vl)ion`8s@5I2cL!zJKZnHOdbmd<4
zdt2MDSAsz+4D0IlottmJe##UPP||q6|NlO@>Nkereu4}P3y#F>V$1&W;v#6Zvq|wY
zACOsPzgzc||NB!Z*|zY-i;P}5+gnqESr`^vxo9!9R*yFVv~JPQFDxczPT2amwa)E)
zp1VHCt<j6!rJ<yBXzFEV28JC<(<&~$$lZQ-+3mdDXF*eN2cG^ASy-*{wITFU*r~M5
zqCZ!$FfcHz*818Iy3}jxX|GE!U%vG6^i(WmW>}|f67g=~73OP4<4!BYa)fnuc7n=_
zrw<=4{P*|w^m9i*b7V=KrV*1$-rO+U`{|T6Xpp?9xEM5N0U9bOeSNL;>lFqD4O4L0
z%(!~N#$VYRq^!%<fEI_?nldnW$ugd{-Jz2JotOZv*PAkX_UeCse}l%LRs}EbTfK~h
zfgzzQsD5&FRMf0C9?3-;HW>W<JpX^l{e87lCrw&(b91`zItGRbKjWttTaw<J$iKHI
za&7eXFb9W*rluy7loJATZL7Dr)YqSC3d-N`>e|}XZ{Fm9Mu5M(xCnBO-yDmD!s>n^
z)jpHee7y?W7#L#e7cE}AwdQBh(W6H}EzpxEPlCD)*VaZapQalvR()q*?e8ZKA1-uk
zW?NbH^%ZD5PfRan#qM{zyjO>>4_odxSLXM-8ylTvtx5t8xAB^mz6$yK-2VT??Dcz>
z&9DC#xjJmER_|>c)1`77Hf`FZ;(5RR|K6(a?`kjB@*bXWHZ8cWt}fGumw{n=@lmNY
z<aI=P<!qxuSA|^s_4T!=fPliwL)*9W$XEnqUtbs6&L_L>i<s{6E6msK>@4>FJ&A$g
zffANkHP8^_iHXWwe0=-fd<HGKhWAa<&&|1bYist`JH_WM4^348)nSE&g`ie9M?|=?
zmDR2-`kV|7Gaq)bWgqX8T@}85-l?hD&rR;Fi8Ma`&6{<Nar!w8b#-^pob#T_&s);Z
z%k@ecAKUo1UA`_LE^gi|v)orDbEZ$9uB5E|_3!ul)1OS!IsbHhCIbV*x~bEqEnBc)
zfzxA0M@J(bXZL=&y-zHwzQ0>*ntjb<(w@D0zdo7lpY`U(M!)MDZsr_~d!E#<czRLL
ze-T9n290?)=PT@)<ECS59BgN2*LtkBwpRAGzN(>NAZRtivokXni|IyzT()!PPQU9D
zLf(|>J(o)51dYXsJ?e6Afla2xeK=@hZ@=F=4zxV)<A3?uFM+0+ms~&%22k0syjY}s
z?&+Owk)WBG1HCoh@0Pb-Gmc#)3z{GNWS9^YHA`hBXv%+9^YrP{ca^?gcI1dlYC33X
z;_;6=Ha?j1zk2SZxWli&qo8N5nnd`{Hq+fQ;m?PMhi4h3dJ)~txUwQp8MLtScK&|Q
zV3X|cr_Y{c9q*HUb$PizsK2r1AQQs_D^TeST5SC6%*?)xbLPmXf=8TAedIj!<x9!Z
zB}**!&j0lNe!YIlzRBwTubTPo0z5oAn3$PWJw>%b0^0dxL32*a&9|SQ4_?T%_sMR<
z(^8-|v(6FG><zO}C&3>3zFWC+rQiGYGL}V4o}Hh+zL}k0OGU+H(v_XX=~vf8f_8+2
zZ_T<oW!9`!PoAVKUAolrTD<5Ci^4@wTeFseG8i*EUx`Wf_dCV?R%LH8UfJ%J0`=)K
z4mPoRd3ann)XEK-S8#Q4$+)^I6tvnmS$_6ewcU4rJ`DHq=>bi9WnNweo&kv2xhZN(
z#=?h(+r@u%%{|sDo&EOK)~^2k>lYR}hwiJXJbLUHXi#ElQUB6TaNl6ZqJxw4_Us0&
ztLyCSJo?VK{M{X=`zMStE-3IynY`Ha{L-dW@7y~(K5qK14{m5NBp5-$A(WTMDKV^T
z3P8yZHnxs$N(^~!jlKpQ&~nv{+EVaUB*5$6`~UyWUk!H9tp0dZ9JIQk>CKy*aDT>B
z7Em;SmqLJ&9c*+CG-w1)<~)rn-aJO09F!B>MQ9cQee?~#K?~+!-|qujHa2611ZXyk
zk&zKJlb4j7Jayi@x{HrNi+i)Kt~!~wJ^SaUr)hWFQb8k!35x5oHsG%yVrpvkfU1?a
zy;U!l&Ca{j$jtubm~=iUO@hYaSB0()ds4{B$$9G3siNCuy$!4k2TJp9Z_5Qu^G}*I
zNkm*+-4iq+CuN$oL{Qlcw8H7AoOS7|kga)lZ)LujSN$$<wps3%XS4IO4z+N$_TAiD
zy*=&BjD>}dkG=f)e7^bjG@T~!kdB9AbLzMAM|GmN`OKR)udBDWwCCrK9~x?EZqeIv
zE>2W-@3Q??e|W0O-OA^4R|PHY0!<w#^@9f7<*HsNf;u8?i80Ua&)n3?#?8?1`c9v$
zHE6l^RPFF{nR_BPr}e!(c<|u#+I^eT&ub|wJ2y5qwr&HjP1{wv8Z@>qYf<pvm0DgR
zWDHMRYR#4{CakQiqEh@^T$2(dtg60bbiPY`b!FwLvuCd!=C^+XTBxw};o<h|7Z(<S
zf~oUd<TcRf^^S9?X=$g9A76f9$NKf_lYc)2^_W1@)^@eOR`|{~^Sd2~*fbGt{?G_M
zq_yeX`SboaZ{BP@wt3SgncMou{q6rQVVAE75EK-gWtu(h^0sDn{;W?=PFB5MyZy=g
z_w`>VZ?gc6v56IJU7vYlN8w_#ygM&U%D%n1*)1n5A`<c>`M{PfCZ0jPQl@&9cMrGo
zuMS@Bw<>1mCQt*vp@Cuf+w=DS_hemLvl3KZfr`85|Nnl!KXuluRTCx%Y_H4(uM#pZ
zdOo-O)j8|;B~rhiPLDUqxv?Rszq6<3%C6GaQzlM)xaC6a>uYN_-OTCg>Dlwb^#7mF
z{-9NRm6esC8Hc<*ACEcxma(ge0IfJZbm-8WW4UIt*?6T?W}jUqtnRnMsg-Mb@$6}!
zwLJ%%Vm>aqIM22k<VjF_u8mJt>*b-@cPCGtEGjDc^ao2KVj+8FMTN(tb91eipPOr~
zt*Z+fAk-FFz~wW?BJg;>e7V%^z17==goHo?ykfdhB3XMO<1g2Drk$O&GJJiUlxfzK
zK3VH$6_cy8vQ|AiH~008{3j<S&a$uH$0ujAV!{Lg&r8bvHj6;Zo4YzYLCylz|HuD5
zJvBA>`@6fUD^F}c7``SVur2XLpY^+d?Rj_CeT<!^2ab?OtJa^2#JSL+L~i%ppR6p_
z<?p7PO}h;0Xr!N$S)RK!`+6D6n$<I-BV9lXB|d%o7M7H>NJv<?`)>NXJ3IY)r>Xq?
z^?H4H%~`YDTN?KE|GWCPgU6J_9<5^Ie)h<9F=)XRXko&EB$UN<;B`Mp14HPurRc>I
z(&WI=3l>vrL3x5f4Q#MeMDtTQaPh^#c$$=120{jHXn9k%Tg_+2gCDP-JW09vwoKNl
z<V5RcCI*Hurvty_LAyFqx8J_H$hG_Qt^ZMfJee5^{%ZZGJ^Ds|iXPLo{}FpCHom&D
za&hkMZ7&ZrGOwG*$H1V`%n?!l@%8%sS)ZSson@5T#l*}ET4EaR&k0)l0A3=vKVnP9
z#8n|H7yW*>+uyeOn@R#BLxZ-{fnVK6yTxBGY?qs~eEITU-`=kN`}=$L?{9C{%@bpI
zVC7sL`b}`dzx{7-Z-2dfe%+<R{PsGYpbd9T&CQt`85kToL9(vhVxUGhXzN?@8vprr
zQJYdac@7ucJ;K0nT@*C;%rtGu=jZ1^%ek|zubay!W3eE<?x*YiKcBimjgc>3N<ga)
z!2@&}&J~k)FIm6umse(HCdiz7wclfx=bFv-1ufNT=aY>wv1Vw{PDx35@#f}czvSoV
z=kI@Z{i*M}ca06InGX-O?)rF4`s?}nf158nKEQAH!$CW2&4nIG<0p?FKVBrs#NZXZ
zv*;;!%ihK}Z*rC{T^f7&wa|t;hfC!_?fxxEN4dVfyzFjU^+jWgt%ioj`+dLH+5LK<
z{Poq<)2zlU3=FAfOZT(AKFn`_Wu|fZm9^2^mA1RPx`O5i9$ao=Xb3u}RQ|o-F8i9J
z-QuV3-`{`3G|X(a@Atdq^FcG6_W%D(j$gsR@L<xq-|j8)bw3`eexGTa-uLXxOl8kg
z=g*hl5|fo(`{KomY$J1q17F)sBi=pSl@HpHe5UNKIcNnRZ*TBTcjT!v(};JC;HD7L
zFe!LpV$9b?7qM5bF;!K&-1=lz?tZ^7T2w1!!ri><ZM@Q5cdi@ofCd$MrOm^BetH_Z
zx2m-C<t5kXZ8@4B@2jr{4IDFoR!iL4k_oB@m-)}v^Y`}$DVc4azwbq%rlw}q+pX72
zzPt!@b#aL?Im0V$=HqXlb!A!(0|UQ5=v;umTk>|lHS?Wo6$%=R*jM}e$}(T++TU-t
zr`@0Ay%9Y32U-9~sC)J1?e_cY?En3625pD{RU0|dQ|HfLFKL{%qWt|mFF(Jsp6_pN
z1}7#aMs3NMn79A$w@LTsxPn$j6wHm@mNV1F)>c$n`nAO8j~_ux;kV`7T%_#YCsLi`
z;LxBIx~k-4_LFDNw2X~|udWI$mfHWYO*&=!?WgbG*FQB+a0E>Y>nz)HJ^t;Djm}?R
zT@Bt@^mNX#*{0dgZq#k9sja=br?Oa8T|N8bqoY<eKQ@%Ty|whXT(wW=>abF-@^|1W
zFy{HCOP54ML_#ubG&DTg5?{QyxOiDi`o%@AukP;N{_E@O=Mt-<x34qHy|v`Rg@E97
ziJ~SE3?KgA+WmXRs#6SokM}!k>06mD7TwgS@#@U3<b-FNM2u4whpkRL+xk;%?HSP?
zA<=lXTT?ogEQ$<aZWPU3bLQ;!FyBlu)8a5IhiQwVwe*y^+YhzgmOr=qo!-7r2P|Xu
z&F{6ZIk)q<jr;Q7ckh3`qy0dktfp(j)~%rj4<4+0tf;7X@39(>q>+oTy5E&as@`9Y
zipPT%W)$tdTlMGT@vqn8>m_%#2ZNeo4;0FBiuieXuO96d|9eb7X2%2Dd$F>zvQ<AG
zwu1(*K}&Y-eFW{@dUT`{w8FHFS9({i{BqFpNCAhkcXw9C?k@Y;vvtdsn6IXSf`YMn
z%=4^Dy(XCyJvotge)X<hQJ`)A%Y0|o97|44290LDy}f<??e7Ibp!$gK(p~UGlBTAn
zUGmngTW1-kpA(H278hS`Tm5at(xpe!7gziG_UfDtiix@7d;a;RWy{ner!DR4<J+J7
z_U+rE-FNTqYoEM<otvSdPS4adG;e$K(W6K2ZQQoaZ0fXWS*NCGcJ=g3DR~)v`}OPB
zyLmjX8|B@xsI-v_4Ga6#BX3dQ@b&B0uKxb__na+wK%E4>q~mgHPEJ<O{`Tf3Xs7zD
zS+hi>rB`3N6eMe37o)1Gdhhcz-RNbTHW`_knQ3WhowD9n_qQr?+S0@A{HGs(T(M@2
z4`?x?il(}{`y@~ezhsF@?#)fE&(F=h4BB@2>4~SPsA%Sg2M0m>eR}LR-vw1!4o{yx
z1+6vI($cze=Z?<w(@Wpp-VR#hd9PUKbWp&A|BtS}y1II=;<-&a`5K#bPD^i40qs<(
z`h3<rG%|7}XhG<O1&*MZpQ7So)3P@=<mwLHa|IPEi9Y5L*OM<Sa6EPTbZ}hUJ<;=;
znwlRox9Gio^JdSwY8G~OZFTkI>LsjN-x3%Z7$m?4DKy{M$j<!?l>cA?7ZO<6z|rM&
zfQv^5v@RQ}5+niYpfMZ<Rm}wwQp@*27IYhcL}glRBN`!fI+V|*Z2)SD76>qfB_wo$
zRstX-K&cUG;o%DwUm=xy8^{?C6y6-<;sICoP`(L~=C&PM`5x3fU@!nLRbWr#4@-bF
zDta1N56n<@@4I2k`eo6yX=1yV3rx^6k62cJVK+wvLr-Q##)fLH7p~9G&);6n)sVcA
zotuFHtR0l_A1JV_IdDJ-v=B4VBx3J^ty@DUg#-pJ<P=uBVKe*Q)R{9uBhxo+dB04$
zU-#RWTU>8TwbZs3{pat>|F64#?V6UZ?%Ch(tNa%hzWU7(v3J47je(P<Oq-VW-X&+!
zgb4}XMJ{yz`1~&Z*X#M^$;peC`OVGxZt@_3Wlh|KIdj%@b#a0A%`RNHune@vU~*J+
z^wk?TRy=v~L~b{G^#&$p#?|62?d`8;rqA10EycjVoUyLJ7L?2^IC#Sn9t49{zheX=
zlh}oRP(pQdbmZdZzPvJc`JX;@HMLVui*6biFZln+zM7ARMTcQm#m7Zvd3RozpR+&J
zV9OC+E6>Q?06HSzVY~dRFE1~b`Lj0o-nw;b%G|kYPn_^*ZEejwHAVB+uh;9>|J-$X
zxj*QjfT|Y@+d=brp!Ey8cHMfv=i0R}&_Wn5Kfi0B6}=@d0zhNuf4|=kPft(xx0$q-
zBf`NxJ#t#unh3@1x9_HQf3265l?AoolaiA~g@hK(m?81>$&(dp*Pea82ed2)besif
z!`A)U@0uniA<4&j0xK(b-Zwoz*LrzR4-aS_7`ih|I)9I1|MBE6mW}%kty4Wz`T5z(
z4I2WApP##G{eI74MrJk*RaMvf_5c5d#)rqpumAI>X0A<TklysyUEe`#D?lA4&!Did
zX<S@fCRJZDKx6COV!FFN-q&bXPGAJ>Uz%6@?Pm722+-EsS*F>b{cNIQVxR#KX|tRQ
zb1aK%&TZE5=H=xD%?YKQowaoPy(({Iw;s?MppfY3*S71oZVkP>%=a>Ae(C4u=dbUU
z-@nStZ?gb&sD-xn>f`go8`jUS`{g;m_S;OeygMs;rOjXMd_M28`Td&3pw%9+yS}Vi
zKi4F4(z$uIt9R|PN=-|P`?$yY{hnY@x%}?#?x|C!F8%VQBs4TM^I#LJmbUigi;LZT
z?We8fh+t6hw6wI$%Fhpvi;J6ny#D7?@u^d%g1X1ysi{ljDju><oigRc)$sVM*VaaF
zEq@<3|8u{L<)T%qwAMy%_XABQfa-@vX7*J}mK>?}b98L%leJzpYZmCt5zrKes;cU#
zbLYYW11EweU*&4k4s^cB*syBVDwBi*3`>_UuRh+?+ze_M|NU^7Km6}*i;52kyz+K`
zW}OFbojBCOS@+oA=3|S>&pki6SXguzCh2XBD1Lq}w6JjFtXZ@E^u52a(Ro_x&%MrP
zPo0`{{PD$aZ*SKgd%x?o9%ymQz4-R__Uu1DKH9wxTD@x3mj})KSvNK$T2+5r^F969
znVChq@5a7+%#d*JU^BaE-W?0jcChrCPft$Xdu;pkllqLqhYwf3kt<V3VEh1@dAW7_
z_U=2~rH_tqva+&jnweco|I=sv?!t$MhfDwbD4hRs#R`r6*>|d5ug%KK`}S|w!iA2Y
zO%QLl-+%Xc@{}nmr#F>6J0t1r&-O*O%p_vD-`pS<mzMh#E-o!La{YeuY;G!_zjg24
zx<iMYK;zQi?^Wmb-#M&TGufJ9{frqBOP4NPxnl=tr)=!J;=S@e_dT5!y-Vi*|7Ty%
zo%2&wRn@e%-hJBl?c-y;yVq4SzL<CIS{N%k`|sZNmX?bC?=7H>Ri&k+pn;X9CZ^S&
z6%!agY%F@}6&e!q<L%L|zP_;Z^yN}gQYLkOD&GH?X`KG$`~7-tE302^?@iOrNNnA*
zCF59+<lTAZ0vd0AtS@qMb}s$+$aVimZgIVe{@K&!&tKnf_se7b{(rkBO`hBve?N~!
zhr!ORUvBM|Ehe=e4zh!`&KziDR`t}>)QsAg)XK%p4O(#V{wFId>n0uVew$Axc<;Yn
zxqRLw(3ttv@c7JYYa;EAgF4xY&TTOpIhmOv%bCJLL#M7<wW{XWzn{<NuimGoq_pUC
z>Veb07rXVzR9^o4(knA_C8+j3+AR(mjB;E5R)j@o!Ti@*nR@E#?oXdSUA2Dw^}FTw
zbv=uA#(>t2b#-@Ny>n;H%gf7OAD6EWiHw{Hnqu^wZ}+$D{oh;J>%o=qmy7P8MdYd~
zDlh*0{QT?d_4uzK>o;x;RCeom@y(d&uV+@)s-WQD+GC*Z`;j9@wD+m$>G^^7M|yjA
zpLhE{YnD{xw52<CSR{Y`{pqy+)OqvPUAYn>Dk>_ud);N0Yfb76($}t9KLwqL^6t*g
zI&V?XM)qs#VpsqD{axGGI2dG-pI;wnY5M-`xR<g&{vUUCb`Fh=UAxqKde-}UdrzG>
z5fB$QukQcfa?tqojSY!y^Mqblzq#>b-mF<#+i$OZ^eE|lM0E6QFK=(t)Kem^Zf;(?
zzN~%w_3PJHFJA0enZA16x@&VRi$Uvoy1Ke%?{bSzto*Sng@GZb{J{Z6RTUM`VH0lB
z$}fYOO>2LZ{QdL!Jg8OmY0mQbby3mV^FrO++CZCXqoP**{r&y*?fm^$udEDK_5A$&
ze0XH!OetyUT06}>@Rro-O`C$a#q~mbe0r96_wFcpIr)U%bnm?F(LaCw1noIJ|2I}|
zI_M;t#piR?r*SYc6bM+G?eq?+tlSy4Hfm{C7niBI`RS)cnZLiiy;o5B(<-+1R{qyl
zSMOCvOnds*De?5CJ&dn!Y)t<3{eHcwr}s3SkGqe}GR<bvN&vSu7^X|FdG+d*T;_&l
zzO&1&vT>(@g%!$7BMiEI-!U*SU{s&r)()t#0qS-=P|y)%V*|O1fd|z1IN+GEfeEtj
z4Lpix0jh_gtq@QrihUuL)(xnWcvzt0mmRV>5lTFSnn6gdsOBqIuS(|6dG+d5PaOYs
zH&A<!@zCMJqGDppwrtrVx3exH0<@*3`pK;i>6JEe{dXrbFfd%|6juN8e18466I%}-
zJ}fFKdR6&)n?0!U*N~V~#LmEA09pgYkRSmXj6PrhkpOkF7!HHl7z}Noh0hE;pm1Q2
i0NFXJ;lPIf47&b*gLl0%n$5t#z~JfX=d#Wzp$P!+ER&A_

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-1.csv
new file mode 100644
index 00000000..008f483d
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-1.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.962962962963;0.962962962963;0.962962962963;27.0
+Oui;0.875;0.875;0.875;8.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-10.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-10.csv
new file mode 100644
index 00000000..9aa800e2
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-10.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.730769230769;0.904761904762;0.808510638298;21.0
+Oui;0.777777777778;0.5;0.608695652174;14.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-11.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-11.csv
new file mode 100644
index 00000000..32a7cebc
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-11.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.863636363636;0.904761904762;0.883720930233;21.0
+Oui;0.846153846154;0.785714285714;0.814814814815;14.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-12.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-12.csv
new file mode 100644
index 00000000..4a541b09
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-12.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.923076923077;0.827586206897;0.872727272727;29.0
+Oui;0.444444444444;0.666666666667;0.533333333333;6.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-13.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-13.csv
new file mode 100644
index 00000000..4862ada0
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-13.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.8;1.0;0.888888888889;28.0
+Oui;0.0;0.0;0.0;7.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-2.csv
new file mode 100644
index 00000000..7c4aceed
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-2.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.933333333333;0.965517241379;0.949152542373;29.0
+Oui;0.8;0.666666666667;0.727272727273;6.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-3.csv
new file mode 100644
index 00000000..ab546737
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-3.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;1.0;0.6;0.75;25.0
+Oui;0.5;1.0;0.666666666667;10.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-4.csv
new file mode 100644
index 00000000..bcf9e3bf
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-4.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.916666666667;0.733333333333;0.814814814815;30.0
+Oui;0.272727272727;0.6;0.375;5.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-5.csv
new file mode 100644
index 00000000..e4303ee3
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-5.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.714285714286;1.0;0.833333333333;25.0
+Oui;0.0;0.0;0.0;10.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-6.csv
new file mode 100644
index 00000000..8f3d332e
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-6.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.84;0.875;0.857142857143;24.0
+Oui;0.7;0.636363636364;0.666666666667;11.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-7.csv
new file mode 100644
index 00000000..9f28f5f8
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-7.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.851851851852;0.92;0.884615384615;25.0
+Oui;0.75;0.6;0.666666666667;10.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-8.csv
new file mode 100644
index 00000000..a7efd348
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-8.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.833333333333;0.925925925926;0.877192982456;27.0
+Oui;0.6;0.375;0.461538461538;8.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-9.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-9.csv
new file mode 100644
index 00000000..24ffa0fc
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-9.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.925925925926;0.961538461538;0.943396226415;26.0
+Oui;0.875;0.777777777778;0.823529411765;9.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report.csv
new file mode 100644
index 00000000..d74decdb
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.814814814815;0.916666666667;0.862745098039;24.0
+Oui;0.75;0.545454545455;0.631578947368;11.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-1.png
new file mode 100644
index 0000000000000000000000000000000000000000..9dc5c6aa0f992c5f153707bd83b494896e7e8c51
GIT binary patch
literal 24783
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_eA=KR<H|3ChIz4xqH&rJ#Ac3#Ub
zKUY|u{xRdQisjS^&N>$x12pIRyQnM-Thi?0DW85xNKr7T&-s@Kr=>~y?BrzQ^Y`WV
zz5jmx_HSFYJ!U&&^{0Pd`mM?~e*N{wwX3fG{aa-h?|)h%nT3IYfx)ccNeLr}ktfe0
z0HU`kHh`!Nyo@0EhFlH>5I4t}0i-HHnu!C%y)EDXqHeS?FflMN955qM>yxUD8#fkN
z<n{iKnQK+*Rr~8pU`WW6KY#u_dHi^>ZuGV%C6PPaw8Pd+IQ;N}_WC`OE-$U<=<lC?
z_~C_nd#i1)^~zd@{r_>?eu{a1oTUsOh&$;?fyI>#iO##d&j#hy)iU0x*?#Q*MaDm=
zeC>zdK79Rp^@R%orWqF;Cae3Od--Y8(M>v$)1GeA**@>Uo)3q(tG?eYFTEaHo_U~w
zvFhj3>7i>PHfrZR=82eY*VNP$veZj-@26ARR>jYHuD?}MR(@Jw5wgI6QP#5PN!Rat
zTeHKb9iMMiy6W|g`!%1>ie}puK5Aj(ms_J1x=KSs!-J8LQ7dp!%e$S=<!t}|`Fv|n
z<!90D=RIFvUw=Kh-*#D-sP-y{MkX!}j)0VuCAYTauD-cB{q><%Zp+xDZ56-mJTCP}
z8h<%sd|t!AAmF^+?=@{al8bI_&EB1xKHawZ+lhw-E26jOMQ%I!s*>Ty@6TsnGBMn#
znU<P)VuGU4F%4y9XX~;z7oN|rUni;^rlF~M@~gJyy8BJ6+#w5{SZhBX6~B4!Sf$dn
zt=ZwOZf>U}7XSVIUE9zw(7BE0;`I2sl~-4XpT2(m`s=dvb8{}9*5AM8`~7<R)3xy@
zTR4TE6j-G6T>SCz@zouL$?M<p$yh9~Dt(o4ex9vX^tLrt<?q%UYUS28H4XLj^sM^*
zcKcNG{5V&4_w?U8Z$JF=^Yg2_ySLl@`QZHX*RNG|e}84&+q3h}-@jAm%vqDa|8H3F
z^K+rI&2mk$udSJ*_kERHpUg_}_?kdLLBYJ!;yMuur#Ed$ILIWb8+9f3?zY_9prl}Z
zde5S$ty!6`udUUJ*-_v(ok@XRz@g#xkp+&;cmBogt=jtP>gwg+@7Krw{q;5Y<)x*?
zD>m&vCNcT4YQ@(2|8-Z_$N$&Qm6n%ZU;p=Y{JQ<_eKIRgP1VkRe5`ktUF|Np$|r*B
zZ%@?@_Y+q43%S3qHgus=Yqr(1Z*OmJEqdy8^ypDdRaMu|&(2<+sO%oH#6z%uTQeK)
zrF(m;ukNib@0GW|m;863b9>2y1C7~M`(&%Wy;<2Qtp4iV?)TT;+}s?xF2=Io%sBnr
zmFM&8=P_T6-Mz@QyNZS9<)ifTJO33uJw1K@%hK3aS@+L3G%(!GW|~laft7oQ@7?0_
zwyPpGF6uG#^78t0EA8W>qgmJ1%<K};T-4CO0CMc#-`}ry3ai`P`uF9s|EmiNn-?uw
zBqAWNV8aH3(A8nSpaf-PY#jS`-IaRV-FH{X)qV*y&AD-*H1+t++7ri*yK9H9o1&7M
zl9KV}#>Q1)YiBt*IZe@zw{vxMU0M42TGXzR%x&?@o7wqSg|Cn6>gt-bfB*hNhYnp?
z<}00hXUE00vCV9}F^@y0>BqlY^|I>MU2&}tkG0X;r<H8{9T4W$BeC%F^Yg3g|NpyQ
z)ARB1@za}hY=6C2+|}P7URAZr?&lNX^||5e<8(c%e!X12cb$IJmKE1m%V%b0N*N}#
ztO{AV=+Dp3+8P=jrLV4B?2$Cy^G;n^+4*oAZ}85dryx%nrJl;Tu)xvF-+%wJ>tEXC
z>n<GW6c&||T6MHryqZ^j(v^L+)qlV5|G)RuKeN0$EB4j?*0QpSTDWi_7Y|R!&reUk
z{`q|V^^cE_<K}yp*|*=X{XREpOUA-Us@_@(3Jwn+KHT+uUbW3W{^|AYZG5s??S~hF
zQtmN{?eCj|!`9z!<re>PkX?R7-rZeXe0*W|_EeT0mn~o6-Y<7+XYumYcN>}6zns!u
z50>ZWpT2+pekCQPD=UN5bMNlDnmgaQoiB8zQEE!$G*CcnU)MUn?$^pC+V$7V-`rTJ
z7rSePOQ+Df$0cuXg<6-r`H=DY&%gCCJA;a!oe5kUwG|Xct!-_qoZI=<1+XcUKjh+I
z`1$i^rH-^!$%-~U*;SzOF#ldmVq)U0O{v{NLPA>#9y+a!+Z*-s^YiH?hBa4Kg?jU~
zJL^Vo3keCC;y2G`rL1*X#+@C7Qg$^vR{uWU`{MiG1I+w8{PL2LlSQSaUq^{cN@{w(
zy0vw6+L;*(PfgWcoqc^B7Z1;se}8{(&AO_k8@DH-SITtPtHQGP_twssAt7s15x^^L
z7IM5#c5D89yR-9bqq)U&F5KB!e05Evv8T9mU^5%9Ny-TUS2s5;JG*;p=e<ts`S?rD
za%<k*sQ<sN?>DLcSF<)^qtfm01S2D(FE5wRUzKpMsp>%^`<LhQ>sQ6^ubX92xG1jT
zA#4A)g$ox>(u*_Q`Fh>%O{G1;>V7L6o7sMSJT4!)H7nHi+l}O11rM9V^yAj_$y&df
z9$)v-f;0E_wzbdB&R$;h^wi4o_xHT~{jV?aoc!gozkTZK8Pk7#ILx0KIc;9WBhJ>=
z*4T}2r^Y2O=M+}cFf<JO`uci!Ow1g;m>mn2EK%9}^;&e)mW+wl*2S)_`T1$*t@Q83
zJ2EaRndaY%VdWMJIXz8RR8Vl?lqn*)cXx$8KGu8r!NKO(-+TU8Us>SD964>N=VZ0a
z_xJX$dp9lo_q^1Ulo$VgzrSvNzh-gJQm>W4%l)(h7Bqmu^vDsHtE<EPQ%_Hus<Jj_
zXVCin|8_~4WGrZxtMd5y`T6zy{ePF8xBKk_Dx>)A|13B)ReSd<%fd%3$9g0ezj%=m
z-Z8D@>buI<*Vl(XKGs|M?2P2roSQ-A_bQif%e}o!GkDpHZvA~1E-m#AT^nWEfBn(k
z@Aoc)>WFE&(OPC^VcFN$T|G0?cx&ouvD|xmETiA+GDu4@)Mrmim25x!aAVEUF41Gh
zj~{1YVVTj)&cADI^tPOt8+A@!SsQ(Qj!osI+`CUsPVP;Oe75uXykgzg*VoT4w2*mr
zT7Ul+i*p|zAHVyrufN}%ul?|wo12d>e*5X^>E6`Hv=<i^=ABMXPPU!r9G2T_`0Plh
z@Ue#lGiI4)SFJHVHe<>Zk@ctbuP^Zweq3O2rbAHq&b0M$dvE>t^=sClR_@ux>F0K=
z-K=xkB;$fY^zZT_yZxftVLNo~Ykq9djN7xL&_X8d-JP9sw_V-bq}mTB8W|g({q^;A
z@8O3Ardd}$?0P@fy1XjKzV=s1a^$qiS1XstoR+J4p$M{SQ|f7(Tl;^%+kI@4PVfQ;
z#>@Nb>p!10zds}Scwg+touzMYUA2(mn>=B{gKdBA>?~fEd3hNqZ2tUs+`sN=@Nz%X
zX{j@3%#bL4cgOPjrz=-Ng16;FJ}$6W_ws9L-sX~*mvZuxeXh-4zqk7PEN*eViY@<t
zJnjdD-Ph~!<+{74oqyQOZ<is%*Z%Y6^7%HmV*g2{f0h08&9?B<x1BW~kBaxEMlLIT
zeND~Q_HJ%$Rn;!bsxK>EzgKqen{j!$fAyR4)6;a->i_*&7P&bs?{xY5d$~HNjr#3=
zt+-ybsj5~xYz@fhnRd0iZhwm0oF;jClh0DGsduLFOBx-Cn3l>Vrjt?k?`Qh<Qd#RV
z6TbGtXXe@7&gNw(;)~tTaJ%Jm*D-JXy-U8my{)aM=Qrugv)TDoUnJ$N%hu?ezVzec
zV^I;2C)?I}PuJ_}>$`SkWw33Zpn$-GjcXDPHkp5jOzBUJG&-i?KhGxay0})zi&eip
z{QRy>QuPj56{6X{nsICP^{{q6*(sAIE!tW9{N99Fs+pITcuIi^Js!zL$K~r|K<SxJ
z&Su58x3^z6vdiswwC(EZ@bKT?-cFq|Wl84cWvQ<#gw=csc<ai$`uody-S)?<kK1dK
zaDZX1eSI7!Cudi8ckshQt)a_&ByIowcr3SF+RxMT;+2)bp?j-JzrMbHJ~wurO{GcJ
z6^+;(1qavO^PH@9a+A*9Z@04Z-p3adY+&P+Dmj~6KPNfJYl=pp@9os3DJLhzt=Bnn
z{P=2zMy9Ae6&tf}Zmr>)`}@l`SuRe_o%c4`#_T9?e0;1o_}-pM)4V$t{n{*bb#?2s
z<0ggdC`jC{ZS6NzJ3Q=g8}HY*+wbox-TFtn?#Dy+zrS9uUlqK(Pp<Aq;`Y+q+uK6#
z?kfHIdj0;atE)ogZhw1wI~)`iw>QbzR-KSoT>AQ2Y<Mg~p3SZV#_gS_ckhgtwzS{w
z*NL}JE@z&dW%}v!=hL719A3VBX;t*3BPcjHbVY#T*8KZ%`TPHFi`tsC6jaLeN}GrI
z`1G8bqFEd~@AOp`R@RlS-D0!s>-Q~My!h%eUujVJv^DE$P(nh&wr?9VFROV5?XCKH
z=hr1`)0`Ut!OMIuF7uszWoPm8*XwRdJboo#ztUa4Hbhw6@60tjP;245{r?zdcD^gl
z{I*k`cCJ@>duM0x>FN66N4rErSBL3d|Fq0^_Ns`DNnSoaAzofx$4|ary?)=Se}8{x
ze|&T_YI9mIsG8rJeLd^Zk<M8rnUjw7N-uwRcenSh8*|l+jf1D9X1=(vP|kG8^5x!>
zZc8-z&Ne&wus}mi?bzbKOJm>8sr&QMT~$qOmo7ISU)cS9wVP|+U4Q)N=jUG!n)ywN
zpZWa#bXwo4@KMX{x7Cv;PmcXxr#t_!-(0JgpU>NepPglTbzf~Ys1ssnXed{{YgZts
zSOrx@Wp8hV@Achsxrvn<)L_ui)bw=km%IA&^Yhr(I;SsPT<pG=ui?Dj^Bt?$c%>?0
z?{7$SuKoY_`>idRlV4q1`?~Cn_wH27sXCEClcvm?^=o=IQ$aDP-P`i{`pGR@OxDKj
zjk>$5^s=zO&B9Ady{qTkkhL!JnK^T2xC~ET<TStec59tlxmLRMN=0qWn%c%MzYbJM
z1TXWMXy_)Y6>{OU{{A-~vzN)Hot?EbaIstFtu2}B>^?FwGFH7<*gj>#go3Ld8O}9+
zd-(8S+;!{e)zTGz!Xu_FeR_KO>bSjCr_P+Ya&2w&*EgHbzk1wn9~Kfag^f?9;%e;_
zz1XO|)!)OMoSN>{{mxzg*kaC{a0@;D1$K6Judb||e6Q-YZtbU&>Q(P{KDXJX8?c}O
z)HT|cd)sT*kC{@IMN8UvrI*>&{#p^bI!r5QNk^Zowc5)hfs<JRdq0~U@>BPl6X4;|
zas9&cw=R{RpPiMPfBDi<@7+uu6%{+`{{JmkRad`1VYlAa?CXA=ot;|I+tx&F&s&>x
zwCm*k`|*=Zs=j2*wJtxmwzkZ^o!{m|!?W}A*PGw337)Lx3o4^hdjhv+T{THM(xH>z
z`zPGee)~;c3s6RwSNkopwWUQvPtR|u*VLeUdn!{Sr`i4gQ=EHq)6vH}<5vr-`<>Xd
zM!W8Lk73;Y;)4ed%AKCGeeJ$`+Q!hFH}k*&2T)#!ulu>w$k_Pm*6i@Pw$<0x`W|dz
z1!cL^w6wIJ7WM!3ycTzR`Kb2q^Ru&;U%3(jN)J*t6&v{E?bi6swaUD?DRo`hIcwM0
zU$0kQ?zNgZU8TOho>$H$;`X-O%lGzHo0h%`0cFPEWj=*-E#f;jzrJy>nSJlN^0K!(
zC&r$cbGN&ursm7}`hUTnpPdEul}uAk2>ku=xc}y@;|Cg<MTLYG2`anoU^?*h+<g1@
zvsymc|Nq&4T%{v_-_K<|hO-P3owoH!N=U3&=-j?4@9r+E@^^Fg{r^|(`Tzgc!h4*$
ztB)_8EH9=L5umB58RsvxcdvNt?y|2p?k}CJXH~Dcf136DR8>t)&(6-ytV>He>;8TX
zul;h-9n|z><ClB0%lrD%bx(^c?$>^QIXiz}U{=<uX?n4%p3kfHv;Y5RGpLQ8dwW}K
z`QPb9^ESj+9aYnwIddkc4mfo9@YmD&`!jxhc`0R@H6^a@XDY9p&5vE{s$xJ*N26mg
zAFb0P!}>~IvlJu?IyBr4d3tK<)y3}oe?K0Vm$I$ea(maUt=Zb9rdJ<-n|1Ty^XJQN
zZOzU;F+s8F_uK8MJ%zKUoWJ?L_Wr(Fx!ddF_uJhrKT-70Y2Ms;b7du^D+`_3ujfXD
zuZ=3bnkN~$DrBO{+NiCkUh~{MJxzCVYUHY@ty$Y%{nch-W;V^bq5+EM-(tI2xy7z5
zaBMDlbcA#L-FYgShK7Od{PJO~T%uR@R+q2u2la4%e|!7u-R}3BV%Hb%nPBX3bxmY2
zU;E=(-vYO0g@Wp!Z2SND`~RBV{#{u0=i~9%<fu)vbnl&vZrCy9v)KmSs4WGonaj6k
zU)R#recN?A{d=*5gv5#)HzHJ3R5A`UFoN2>hg!MU?|7dbx-rR>m7P8N^fcYbc^|B0
zZL30#_sfURwJNn)Co|8o_}JrVS1xU>wVylZ{?4bTr&q_m|D*Ugt?oI)jb;X>JICUx
zUaCGlIoX|)lQXZl+UED0%|^#Sy`ebuX}>?8x8GX!HtPEQ)#2;E?dVea`#*k-{@li$
zX=i7})yMvSxqSY*Ot-S<43YVtJ7sLELjM20|KDcXe5+Eg<^J=htzZ9M^tii+xWCxr
zM~}8tf6wc0*jDy7%6Gn9tfHb~xU5Xw-dkI<m!F!d{d#u(zQVJGMW(jZ-$G^@rG9zX
zE}!-N-CeoYbBpVFq|JODAMgMEOTr+b;dsKAmKGLJi5}O#GwZ5W?eDkSKYjgr)%N=x
zWlvCvV^#WU39q!-i>u-BU!|Uuy}k7`?D67$JFVm%Ha?jb*OscQs=6L-=imP<+T!}k
zV0YW9FBdi@A1`^o_j}b`??V!cGcPZTE!FA&Jnhu<`3mxOH8)=0(YXG}^3S{7@7Gma
zeeQNX>0N=vmCfn?e}6uoU-jvvy6vHGH@CJvIa@7HE^cm6V_@o(DNnA&z5@-WTwdP4
z`tDLLQ7x6zoA%V%Zx#|3Ud$z`m2q`d=&v`M&)>OrcBZlW>aevztz4paj@2{lFg0Xj
z+0iSi9~a|q_j3uT4DOXO^;*C8+pHzs&9?5nQcFSOE#-F#+h>_(FI%xfW3F9oRQ0zv
z7rR8YL)ORH)_%PjK55DI`1;t>({zLPR(%x_6<zx0=jYeY=ht65)XEL&W*?WYzf*c9
zY;DxbKI?ZEzP!8)>gZiv73y96{oPgZ_?m^+)<$PPJ2Ug<s=ZFFTwNU<7kVU(pS*s(
z`qEPG)0=ckUtV(6)YM!Rw6sereBGMe?{;~sdQZD@a<aN<{l6Mns}hge-`~Dgxz9gs
zsh;ur{{H>@{{6}hT^|<<GJcL_F=#Z=bFx}$w*B?jQ^VsfGV|LkU}R>i*lSc^X>V`e
zD`DvL_SV+R^K7f{_}!}i|F>K>c2`I%w|Lm<u(g}+xc~n4_Ujqr^Dj1^x4Ufpe$V0u
z4-$OmT7~}o{T<xi*j<*}+TQ;9%uM57KcCN!-S4;m>$T{-WYc@K-(%n2*yyak|Iem>
zzwiGCm48}MTULB~e}Dbj=<QjD+jv3aNw1&mb8hFGWm&vz-=9z3e?QOvAF?`Z?UacV
z7g`oSTak8lR^H^tsn>tM->)AZA7A_7Ap5G2m6MW^lS{wfEkAw#e*DRkC!@CI%$ziN
z^7>n*>)m>#x;i^A-q~3!DlEKsSLy3l7Zy54?I>8N6}D!@qodusxBC0}o%{BDga3Rx
zFF!v}D@{pRd8)d<oT{oSsJ7_p>e{9Gcm=3PTpPXJ4^;h}ny$b8+1c5k0TxhzPEz%r
zGGW33z1UqRHtBqQdD(rjTW=7kd|VZ(y>$8V*SGWchh}B1k}}D7Ab9H2)6>hNwr0KD
z{eEBY^K)}U_tjMX{P6=+S^s)&|9@tx?__oVu*qt^pb?m@Sy#P8wZpD#%f0>OsCfK}
zgo90S`BxYoh^0KYt!KP(ev{7Q$B!pJ{pH-wH?!vFr<n^DC=~zrkhs0{e*OQwnfLeY
z?d<3<`1kLhnvTwykd;A4ZT|oHtfr}X@@n46Nvg}Dx92^R|No<%laJ5r=jZ3<qS|35
z=WRas+}vHh{<z`)ACLJze>luP`@)5Q$>#ZS!JE^3C(oFXF-<={Plm6(^6Av@JGYJ>
zJ62W8CvBEv&?{|jcJScAW5<slH=Ta$<KyFJHzXeRS?t#9(<!9t<KWN$>NjRySkO4r
zviO<l-n!r4-<#W3e>0glapJN2_wS2n1|6~a@t`^Fa2s#jZEG36%Nr68XIr&>{uyh>
ze`4vX@bw@|XWG~A%Z^M*S@QAYN5h#jXU1*s?Cdn;Yd`$s$B!M)7$q$V7J$0OKcCOv
zpB3A0{}0?zJu}1bm_)K!{=J+we)&8p)2x(JQ#6x5Jv*Dt#LVowv*_s=<$jwaP#wJf
z_sJ6{4BqekJ`ZH<!Gj0Y6ci3j(Tlxhl6U7ukF52z<hW@)Jv_!aHw-}CPGJFoghh)M
zomt@6>{C_sD}Gk`(agKMN|#lCf49u3l}k-S;{>QnAGFkKCcAvig)=jakFU)Qn}77m
zm5|G;!}WzlMW0r^)8G4LlBc(~@x+M}m-);zTDR@`C(Aju)!Sa)*tl3Te%~HWE-oWh
zZZVUo+Tmu+Y`jIY`w!3P{@n26$B&A+>?*6@SB1?#eddhM=X=%fXGU$!0wsaT_Vsna
z`)VpbKbh>m>#XeLnKLup`sH%}eeAEFv8VF$tPdXwE^o~a-(3Fwp3du=JBycR-rTfQ
zGiJwz*S{?*KRwajx9^z5=Gxz7mzR2r2k)sUoUHCI2ckiIka+(#=Qf^?R_%R;;?I=|
zEo49mDK1`^!ScA#GpYPld<+hJg%&bhy}hNoH!?CjxOPYaWBR1v^ah>Rv);F`GMtE&
zU}gf(l*BNi&!ara^7Qls^(rSSxjred2-%u-b&lRiGv_v*iH9Ga_{Q^M(w6k|a+WfD
zrLV8ORSPSt4O<hT*nW6ncwD9Ga_^I+YX0+d+7BOWsb=_hjYEN<Xl?Lvzm<`j({61@
zY_=+Su|Uze?Zrv;`CIn(Ep%=_^|0W?!vYOEJG;|m+TrU;wrU42J5wrezMAnmU%NA}
zwAr3#Z&fsPb$u7R_lN!c^)+;fhv3iOzgJg$e3W%_)6!>WW)|NyO}~Ct%I6)A`E)x_
zHh*-qdv)F4U$5@(-*1+GujX){xV*f6`{9LqtH0mdP-}ET?!f)I`F`RI43UxB^XB%+
zSb|!PFYf>USME1m+1}nBR52wV?+a~YVzs%}FK-`LS663M|F4EGq&(2YrDa>*-BnGj
z+*NCS|9n3G>LOR}xA*o&Pn<Xr)cX*Tl3KO5`g_*FCRR`<^U<S6CfV0?*5AIbu{G=J
zrE6=WLw6KBoL$y);)F+dgpa@f^@+;vTM8e$?fv;|wwH%T!0|rWuMgYhwc_{HTrZV*
zcZ!wadLILm!gVh{ziFwFT>Sj!Uk0T_PMc+(zwXEp7f|8vZ~Jx1?O%_N_h-Mmvoq`B
zqSj~U=FWBw_1d>@pH}?7J;y&exAST0>G`$u$zD3p$Q&D9I;T(GeqEoeb=Jj2u37i@
z?G@9FD!H7+!@=<(>T$1#q~ywj&Fs}W_cx_>?<#q@DD(0%O;giQZZVx5>mC;<dot`O
zD>=wC;kCta!z0I!pO$$1>RD0c{U6P^2Hcb9Pye<yeoMwgDU*x^4<01^{P81Y_qt`i
zv$d3zoP^c=zC?U~xqSYsJ3EVCU0mFLJ$L=J?f<jxuF|{Po*EgouV!box$^Uht~JLR
zcw{UB*!kr`+WBNna&8!G|Dfo3@ZiB&#_4^hrf4o!^_~W5MCZL$R#pa$gv_-pb~|tP
zdyUsrt)+V^Kd<tds`cwpx4w!esNro_vjbF>95~=GRXf}dRPY@CyyKF@gezA<cx5aC
zKw}sCYJQ5y$gFwsB4h85N8MiD-n$>Yo-A8_w{-e6oybK>u3Z@y7rD+d&!2bu*O4PG
zwx3QYuL@Y$^y&He^?!bTUS0L|Rn_yk<u-@fKL0g2reS1sDf|2GUTO1H`S<sA_4S2i
zWUOFfW(L(kpb0pux<5Zevtu_TG$th_O|h@9Yi(&+k$ZdFt&Pd;?z`{T{r3I;^L%~C
zVmIE_)>cgg1qV=Kd(^2uWzL*8rT0PgmXA-*p+kp6BqUaVMqo29FPmkWJ<a|0lP4**
zf4^J?btajZm_S1_pqfqEEN4g3Uxo>y>lzqNlr}XtgL+cA_x41_*L-Y^+M2cW#fuEj
zqQAx8-`xe(;0K%8uWm?mE`4(&@b|a3m*3pnyfxt<)7iP!paF#9+v`&!XW3S76Vr`a
zl6H31%azOL?OL|)H>l5iZS8DOm$+Bjd>3!We1pU$P&^&$l}_LJ_iNeJl|f6pKof_G
z&TTtN4JR$RapQ*0cI)bIYnJ)V)jGY&B;&#Yo!d{(&JG7nje!Qd>i$%ezPNC3?YEvD
z9?;yDscGoi=<Q)uRlAn?&tC@`?CBQQzgGQz@A9v&ufN{+``zUI`}e1vpSRYo_Lqi^
zj!*9GZF^sRzP-14ds1>TsM!aaZL+QYcBPeDd`s=`vR+AJH&ABsnyNK*?e$k)peZZ$
zc@<9U_x)P6%x~_hX}Zz7u7MK6r;i^4-`?5^8X^}~_sh7sDfQLu?d#2QZY(%CS$+2{
zK1m~&`St&HZp*p3XkYDbEenf?NiqMY=+)^72@8krud6+J^yte&t=wK-UYDZt_bzqq
z7R!8lYpdMd13iYIhB0W`!}iC6=Bx_~8qM<WtpSaFoSv?K9W+30{cgwMt99@0?3A*v
z+XKo_GiFGDIxwJ4rkdZJ6+b^e&pzD7n-?y~&Lgp4qO$ucpP5FWJkBMivx1qOFXQj8
zub>=rYisuNtlfo=-Apqtxg778zrOeTz13#9w_d!sxEM52b$3_k)EP5YEc2ZmS7r7@
zpMe3g7T|j|(*v_)28HRro=o=dIsDLIvbz7b2)v`&Z%=OmHI|b1{rmMgdsXs@35uZM
zaL_OwXxRM6j~_GC=hs|%J7ZevOhIM08K0k@mp;A8CnO|f+x%|BV-eF*L9Ms1JG8^r
z?8u5<es_1d^yy7!7Wdn|iu!i9{61);w^K-U-LIJX-*3&6Bd2k4a2SZ|#T4lF_w;~9
zdbea<J+)-{^6EF%Dk?{=tckn~8ra{OcYR%~n*ThTWm#8O<sFaMSF>}Y&S@T5t1G!b
zZNJ}1mf>rcG|igg9(%k`*7*6kxx2Ieo~up&`pZH$cGs1NX{k!e%6F%|zqR#r_V0DE
zyFml-*VaZq-)3WHch5qGZ*%&2x%Ic--raruZE49bq+#&rcYo$s$?$!?8XmuMt+aL7
znvFWAK`orzpa1^;zI#u2xvKXx33++>%bU~vw?AFDaN)9)larpkxw%>Hwv2VznXm7k
zpPz4@dU~2^V`Jm9-S77mXO}-Xz$h#znAjz*|L*Gzh62@+gG>ddJrU#2dp{iF&U>A8
zecf6<St|`y)uXQ?dakXF*4EQ|r!T)dWMvR&Fk_kj{CBT}OcD>V{QULn)kSytzo&oi
zoyjL-q2Q?%x#>yhZL8Z$mM?#OV`H-1>*GC=pc?Y}{nFRhLPJ8PfT|KukIT`~ab0O(
zU?8Z#`2X+w{?&a`Z|o>sd~HqSVy)0sE9(FMlY8y#<TORyf8OeA^J4`C1t%?0cJJGv
z+uzmo>DE5~`F2LfGCn>!dc9=MBvtRKy`Mzo<<~Q@a;5Ct@762za^LTF#nIPRhwD$(
zjSf3KP51J?+TSs!4<9}Z3btdt(yu}7>Fdcqe*UantF5AP<m-FT#NE2s-B)&(=U-hL
zeSK~0#-yWH_Se^g=J>p)>wWzt!=RweBEYbHj_+(U&q=SYu6|z1<9@h}H?^m5>+X<V
zDbsboe}H<(puS!5F&@yWkj-glgFZhy8@eUq;_G|md15j$YfhZ-=zn^&TYS38`r<7v
zE-o+r{QPWH@!^5!_q}Onr96WstNE_me<7!UZP97}L%~5oU*`Y+<6eHhc6(D(Q_N$l
zRpIOPPH);I6FhP1=jZ2N-z~o%3hK8?NomE$$6Lzq{rvIc#gmhhBj3G`|Nm?HaijLb
z54o78*Kb?yGjq|79Tu&vttZc)KOg$t-~R8D!XD5t+xK^OcYQu*ZJKa^0W`m<?mzE~
z#l2ToSF6UpkuooN5zv2pSLy4No{QJkMz4Qq%E)l6fnmqfITnRZlQ!+Ko>shbyW_s2
zU81|+J>H&i(aE)2?COzD;i>cHt+W6C$N2QY=Q|reTgLxdT^Tkf_tTS;i!WRV*j^fW
zch>dm-yi+=(%bv1@aL|co*r$v?>|01-lTK7H1$#1?fv!pmvldNoZ~mgV&SW+tFzC~
zvt1RrdD*VAx2q;h5CEmQA0Hn}8K?D}n`>R}dpz^{y1Af|a$8O$XkPVbmnf(pSIPYH
z;$q}G{nZAqYxL*dXY{Q4b~F9!x7+!khTuABRTefjuSsgYvz{29%RDo~5LD%<`OaDb
z8XkUfV&bQ-Uqd&iodr$ptjf8$Y0{HjOl3=dChDBN^z!oZ&7Xr98n_u*4(J}QRGM>j
z{i}0&?$hTR++SfSJ?HLP&^nLW-``fcbP9#bcDx3yF!^ZZeqyQmWOL_UDbpwK->?7s
z`}^zb@%5ptT%wzDcBh;a^1K8pMqd9BJ9zM*(Xp7%qHX)LZf;7Qq<7Bq5h$NsU;lSH
z|F!tdX}!mKB#V8Idw6*TB_%DIWs<pQ{k~tP-kwW7CebTps&zV-U)JhL>CVr_@Bie;
zTNb&z-}AZe-LBVqe?J`NKQ-HYef00l%gZX?9ENm%Ykz&YcyY1&)~u^qXJ;5XZ%#XV
zNq_&JMf2<bMb_2TX+>;UpmX}tp32W9|NnlEzg*1TpuLb=tRdQOs#d6q=jyPvms+{S
zZLaA@Z}XX!TKQI}WO2#+dv~v@KHqp;ZuhH`RSTV3RVw#$ZLItIE8A+@;fDcfX=&ST
zv$L?QNIu?YbPP1?bavC-o14?WUW?8@xk(2!8FfA6^4C?dySJ&tewOIo|LDWR!=Rc=
z=XB6=zqv7|%irD6JiY15gJ%A!oXs^qi`M@xDr5Zet<EBU=IuqU-2J!Z*2nJt*0o(U
zZevpG@lD*~dZ5vxN&o(rCtP0_3z{H*^yrbzq2u!Pe-_5>E=#TC@zjdhu>mx2E@_;$
zBJpq=XkEj<@B9CI?)ouLB6&;E(^J~-m>JfIf?``;Ny(|Ou<+L2>g{g*a&Ncgy}h*+
zG!EkA<n-kLGyk0}QlJLQ(QfhApxKi5_x7&8wXf>yt0D`TS!TJjZg-}8d3F8!`@TN@
z^3}Er7cS(KF5h(pG`X|LwL9z9mQ2v#_i@hRtgKbHwq!1zYhA9Tr{~9S|L240+y7Oe
zYokIzYeb%%oo!n5#H0VKrl#igJAY5kmaqR4SXfwSRrY4ayZ!&`O!M#E*{Ww`6m(3Y
ze*<WGs#nJH((CFcZ<alKTXyc;N2BTQ-+y>`7_=H?eZ+InB(Iuh&GWhCTZ*6ifmh9J
zW_WI>$NzY_|NO9iIa`}`J3s>??ecXWEaKeU+E$;QYJ6f#)>W_6)6=eknoh0U;#F&l
z&(1Qns{ZyybUrsjOrKr^L($eX@8*Fff<P-nK;0_r!&;Sd;~%<RD_m-6uNS^1!m#w!
z70=*hK7l1ATR>i!Yf~8%U;B0HtLy9Emma7IlQPX(GSfJHRqE+!tD?59`t#?{m-Y33
zy}!P?db()#hYtn1k(*p}qqkl8@bIu{>M0S^+*=`vii)>(m#-JoiCFOXc>ik8$!c-x
zi#H#hq8SWYm;h?J&#(P9GbuSawddlux3|BZHNT&6dt2_!dF)4SPW9SVQB?coMWCvx
zs-~u<=d{$96W!%5?kIeGXWPq5OS|t?Jm&rS_I5a^c9AW=vk=tm{`~xWIB3aN@-d$N
z$0k`<Jo5K^Y}-}-ew|tFEe#C~kAnvfzPh@4de)T{3unxb05ypX4GmXCZ(qkJYqg}6
zTYOd0(XMp|f8X1ZanT7hX(LzhfDzQ=m~EDOX_0F;s6oE{q-?jC?y7eAx(MU+b0H-q
zTR^1%s9kw-k}7D?Pf5uZ&?H~@?=4$QuC9#^e|l<a@YbxWA-hU4=h{|>c~8^1xGneg
zl~tkI;o`RO@$n#6_|7)F`uF?&^;V^?G_0(mDnCEFy07;4mb$-HfB*e{Z&mQ1fr*J}
z)7O0r4JywVEo*;mk+iAUka=s%N={Br!)d9hmGl3tjov=1`u*PPPtMQ3-_p`D!(FcO
zh>T^?k?h-@!s@fUrfSV>XkaKlE?YjM{9fhrG&|l0`7g7I)8E|RfB(yyo0nbO+@$L3
z>w}kg2!4Lh%s-1)+AQYtzI9J7RXVIYX36g{(<s&E+S29AXaD>Ad-fz%Z;)cJX@QH~
zW`Y`l?S~Vk%yM3Q-7)<<bJ33viI-Ofs|T-%Fns*_b+!y&d$wOMs4dujIB{3$>t|c{
z+5i7@xkt|S)|J)a=Udv^K*kBn$>l|D$w+*5X6EFlpSyZ`zWkcgW2k0kb`3O$6Duw+
zpI=i`bLZJfQ2P%wd^I&Z?qkOMNt2TPeV+e+Mwh7etOExef>#761~2szHO{!8FnQXv
zX{oi--~Ybkes52u@5e_+egFRYdUpT+zxkgZ_uHrK{CjO}wD0P$wLTXYx%&S5^V9e1
ztE*>^%h%T&y<Ym|#l>gmtlyh3GBO@}Sg_+P<K$VhvZ}tmN?o*QkxxRx0?qJsb1Gjh
zo$eDAHS7BIFPF~0Y+~j1nQK+*12Sl#Q>)MIZMkRj_y2uX_-D%&lh2pD^=E>*11xN8
zvp_>#_x4uLo-#$G|GS#9^5H!nk4b~pN-QgRc}dN{;6h7l>&)tRJCFCs+uut`NvU}A
z|HMS)XGg{3!Q)#$KRq>ebaY%+^YhcP+}qpIZf(g_GdBLb>OD6@%qgR1R&_#uq;G6a
z?_acNQOK^6%&D5eZlDgy63@w3mU@eCFFSeiWLIBb*g~h)E8FwqK`kXvKJl8ax3={4
zwVm(2D0#}){a84!>Xqi!+}mNkvrI0Q->+TnZ~r%Bv0Lw_8Jj^1cX!Oa^NmqOS=o8z
z%9WtGgrJ~Fpls!D_w$Hy!<RQVgF$P}K+|s5bCss+#je`1!=hK-KJM=B^64do0_i6w
zsfI51lLajwUH4YL@`)gbb!&Tm{Iu<xK&yuTz03RU_@b_^j*FXnch>Hm#m`q&etwqs
zeMSD26%$WQ*MEO4{@3mN{h?l7T~*)Syxdm1K5lQxuP>SXj;)|UvbRsR@hjZiSpUCH
z)~+Vv>gw?C5#gKDe77H5e6D_d*xFgqyR)vYI{C05=CVUD0|Uc@_iYT5c+YvB-E(%A
zjGWxMDN{tQ>+EOelbO)p-_Iqk_vYHU^XL5+E?l_oW;r7RL&I%BMiuEf-`{-y{{4Hz
z^F3b|Z1#<cn)T_)$;YMkjEs!ob1FcKxqs|VmYa~n!NW5}W&Pv?OZ9}JZJazjAyrko
zuK%55TYc^7x!H@|`?EeiI@;CKvnR=#fq~&k&z3DFpy8?S_o~;s_lu|SgDi?&KPPsh
zUg?7ajIAv#C(fTgf7Q&`IM}^kuJm_+Rr<`mmyQH?i|dCyKQ}kO;41?I!;Xu~d}c24
zn``y7L~^?dlZTmzeq4-em&nC7UTK?apuzcz7cZ{czj*QD)E<!7l`WaU*FS-J;fGqe
z^K$h;>+oJaV&4_C)XV%GCn$W{ZtN;uZB_p6jaB~Pt;!84!L!YBLCfW|EG=*5%1wBC
zd;9A6{dMcgK&$aQJUWi`N<SBK04<HE`T6PPzu)iAf08(t7d}-hH0bK8(ELlrj0_A1
zzAoDRC*GZ5;+K2X?_d7-_!u-~rgC<+x&QBPZzrpOrUx7y9i<Es8lIh*x%kG7i0eKt
zI5|0Y{eHJwR9^o5t#Aj22GDTD^7(a9pg9;&k9ewfIH)GCdb{<yh>Xk}VShme28I)&
zdB0~~P}S7Z@~Zy+?(431-|yFluMAqM61(Tgw>!n>Gq0`+JvCXqA2deS(!wID8FVCh
zcfZ{)5710BXr>>uE&{aB0Mw$0IDV{G8nk*%RaLc+m4$&pLHtq8+h2vOF5=E^Wg)9V
zJh{d7&V=1QE?4c-Z~N`W*D0(F3=DtX8t`*~at(#6-WeDeZon4I@3V|$u*to<%XGOn
zLxc3Pf`^B+LRW?OO=n~{p~|7KGvN8Txy8F!7<MEwF@1V<J$}2869dB}4uzdp3_Q;k
z?c!kA!MN?!o15pXs=jD2vM?xgGEDMz^;|XUvMb1)<}%F}K%>lX+gLD$rWqJ$v$7xA
zkAu+G$Fnc9GBEu6w=M7Ptjnql2Y3(GpI;}>$ih${EIZ)|B-8~M9P}I+7#Z%k99NB<
zVB#9IRAwD3Lte{z72Z=XmGUxK1Q;54wIG3gfY(8M&FiBIC7@uZ$Ic0Ahi^=?taaIo
zhwbuVCnu>+)sMFeT@~U9T0tEZH7j~|?(J<WGcPaW;^GR*$XEdypI+?V|197t0|SG@
zyN9zcv)<AA_v11D)fIuxtz4o(@9*seEeyH3I{fw1>G9W&^-6#J`Fy_jq)C$}hpvya
z71avyP<HRTvNCx2mt)fTFY5pQo_}p^w0eAeToD5U!<~H=(&v_e>M3>qc~@RtT@6}p
z;2HG&-QB4(XRZVdb66EVY5@(cJv`j5t*h%h+dMza#id0Bv~;PfyZf^G{F+7Y?(Tm6
z<T5BWibP^JY<hWRW$>gW8#Wkhe+uf^9)1`w&!$qvv-tVB(9h4##y)hO1Zo$5dU`th
z+M393qCB8N+=*pEPFHX5R6{q=s;Peae=F?&{cr{?&1aXdSpXViG%yJG{r&y*hlkri
zYySG*W?x&g(s#DmQ-`PEfN>OGle6ply=v2(8wQ|tf1q(|m6MxvKrQC=dp>okygbmz
zJZZ^?4+Z^i4<9}}b<(6oJv}@>fBw7~Zo$C7Friz(VVz@2%92;t*RKZ+v??kpMr}xF
z1g*?UI@+}|{rtRjyAyx@{#~6TEg+!a>E-RM4BE2uV4Ew$$z_tpX)it=m%rX8YaJ7A
z0qUEbIpg#9_x=B%WsxEh5*nVMwK&JWrJtWSRV7>+R6UfrFq~Xg`1sh$tgEZ!?yip7
zmb3EYWcBRJ%Y4`EPPW{g6#MExBQqB#=gDVR`^{C)?#YR4|6dKNr{ymHe_y!LzG%^e
z{h~}BW}pdqMMXuq)5b<dDLof|etsUhr=n0)Gss2SEayYU_Po1RpzR-@GybZS?%LPH
z$iPrAch6r2o6w-=GAo|GZ{D4d8vOIq)2*48)!yFNcsTdxmdwkbDg52<c6m<%?I<`q
z-ySsWz0S;gy57}qZ*N~+7i%4z4ccc_B)zU7<ubSao&~PmVk`6R?gDkuKr0aR_x}k3
z)vo<=wjpaG3_UM3FfyB@pOZOy>=<Zvz^e4s6d@s@lJ9rRwe9Te(&vL(FB1;$V44JK
zOkM^J0)xg-?(8T84}koBzyI~t>v5NVzu*5pD}0d)=h}#kPESuwz1*$8Z$(QBi)sG7
znE3j?rseyY7#I%Z_G>F#Ur_b+)hzq^f1$TQIg49dZ_7d@P@rEsBsy9s(_m{EwF^j4
zQ9{$baMX41$Fnb){&j(dZqCj!1ugX0m~^z{yzTcB*S}Az(E?@K+^5raGi}PfZ5FyB
zz_C}#H0b`mTF{IWxTkEMzwPM{Y4f}g(53__sZ}*UKdmf!dJ42Z&NeIO)|Qn`O--Ol
zSH0L>pvjAESJ*)%X4>``hL<-tFMqfDz1`Af%d-Ce`wQyzo|>k+8Z=n6O#b)l_4~u-
zT9uZ3c@YR&gb14M?H1Gha$LTC$1N3gb<j%DTU)cIgGT?v<0>4v#dHEDtNE7v`}1>l
zoHD3Poc;7xoi}KqQe5?0)7F-j9lH1T)$SG&5)uIwfuLb1xtb4-yfPLamR&1;bw#uE
z?X6JVs4W-X+}yl5$Gql8!P2EmGe18&+ttxALFMX-K<C23LeR9zmA%#9XGf_+t<YBZ
z{r!FT&Z4JZzTM8(Ha5Pz)yB*WG!1?k)P(|Vfcf|5XVvSq+eM_MtAk(9v?^T%T5$RB
zaJ%=Ue}6vvOD5ag0*wfqoo!y;%I}#4>FunK+?;mziWI2paYyeu+l0!`&oV(P5bf*s
z{QG&n9yBpLY03Bd_3?s&f?0QVYy?e~vdh;5gsu*|+QKQEmu2fcT@N%pz9s*@UFe#K
zz@ML=hc_~@g4Tx3wJ!I&bo4^Wj}M8V>*MYw|DI)<oppJculZIt1_lO&?Weagx=ebv
z_j_FK%}uWUHXmE8%HFK_{eFKuXo7l*X7H40)0Q=}^K0qq`fg4?A2w0RH7`qd|KD%3
zjf{*yqa1h3@7K<<E?*~C{l*Zq2<g?ewX?C-Up??pe8r&TX=i6w^=xMPm)Gm}gC?Fq
zL-4=8zFuyeehxG@XlG})?MmUVFPTf1F4eTNivz7ScztcHY1$bH+mA<tXBj59mA$*O
za?2JIPtbm{<KNC1YM(O$CEm9h*V!k0`BF01qR<J{CHnF4@z=xr_8EuUc(uaU%~A82
z@t{=Z*jWKkJy-SPVf)=_<!^2T9+OxbxA)f7V>eY_2c@5%S9+VDfq|jG`qWm&CkGmt
zcfH^D8?=28G!5+3$`!S<Xz8NGi?=2n<?5BS4qLzP*Q!-vYgbLx4!`%Ms!Lp7&l9wm
z>-MJ&8w@;yva(jKem!-w_O+#;-H)L0^`AdeA7|uyWmVox{uRGYmVtqx{%A?%yvciK
zE*AYO`{WkGrz67t8Q<UCjoMYR(k%DZk{2&Bwq{;-tN-_Nxys7g-`{R+%bg9Xf`7l;
z?f>@H*4-<=hO7?ry>ztFP7kz8(NnzH<Kv^FpmiC!H#Qth{$2X|nx>VN)ol0I>Y4Xa
z`}yj(f*PZLRArx3`d!m^*ZyUFVk=|H(^FGH5fZY$uJ&%}^;ppA*FIV6W$|@Ck6u+X
zFbHsN=ev4sZFFknHQ%+%V|SMs9ec63->xXy4m3~o^XJOCzrQ9eG0VM`@$b*iJjc|R
zmzLhzSNq$S-xJj0$(x?7uEfL7e|?r|_Ln2V{vMOAt%+1Vy$Mv~_HSG2HTBY&na259
zwihp61f?I)OhHc%&(-zu@%QU~ueJOA#+X;a;6Uhge0B4`W!FG`uqS0Z%^G?n44wGx
z|7-|b8@2SogM{2WI|6Hee+%stQY~7ujNkrGz*6t&*Oquro-$*`ic3qqv(L;h1Z_55
z?b|7&x+Uo-m+kjE#Z@1Vii4KFfvRjyPR^S$|3N*bKeds^*4_5_%ew#nzulniV4Ks=
zuSz>RYgO=aKfmcE!MS&KeEffGme0g1n#)f!Hb^I|T5@jEB$d#!52F|!xb66Hf9sMZ
zDxqsn)nEVD6;sXXGHKDGMPHsw_J39)393l)Cd62CfYQW)`~1XguYNX-L*bZ2?T?4;
zpeY<KaXlS*dHMeK_4(`eEj9od`1Dhy!<=8=->=_(ugV(~ymxkP<`UJKa#<DRn;+bH
zoeV~mpHe^xY;)S#Q!j%+nqu0c7jcJ0Ma_~j&zo~O6(qF7Z@UXa=9Lu_udR=tk0ez2
z|L^y$X=kNC%~-3lHxYi*nL&*g{ava|9<5xWTe7d~@k*I^Bqk=Fnyx>eOGM+rH;sr5
z34YVT;|^MRosKVZZ*7^F8fh5|YNj>3F7alW;BWU+Ww|%V+5+Y~La`e_tUtC-PH8KE
zMx9h%PIQ->m>Rim|N3R#)Ah_Z>wx61YlgE;`0=A6a@tbR;BDonCxJCJe?qr!)aeFq
zL4Q)T)2QLkzu)gCEwQQmwBs)?$eGusX)}AgytH)v4|4_vhK6Wi^ltHl|JU!$bq|lc
z-zoq9PJ^0)H4D!JCatbTkJ|bcu!=bLSZ!;%p!LX1ues||*2<%+4(v!2%~{&T9lBx>
zk1YH2#ZI!Kt`e>>UD8|?M|e8kOkrt!{=Hpw|1w5ij`L@aUVlBO+V9=x+PohsbA&6N
zN9r*!Opsz^VqjR}25PRa6jWefaL8KqG`GS${pP0Bk1rPYA6q`ZPU`eD-EI|6tu^W8
ztL|yQ)&dyKta#AKzR5(EfgwQDQc&T%?e~~DmCt5wOglSkMfmzSlbjnHF4@iWQRAM>
z$iNV-tj?5jVS(eu-|u!GU*b9W(Sv6GbKfi&7!H`7>dba{c5be8cuZmI4+e$?nd!oe
zo9@^BKDsJ&^(I?328Iu|PhA>#q|J2R?R-9OhJAhAHg`q_hJEdGcCe+qy0S7bB0?hf
z_O{-<ySt9cRlgB5&APH;gTLD3&WXzIX_-z83=6c1lpN~5@4i2^{?C<Q|J*Wpke{!{
z`>~uj)+@c)mWhF3gY1(drV0!U2hJ&~_ci1g<=@*=@$F`M^1&unLBWmJ<EoFIRG%*c
zS{?r>g@M5#^odUckCcgqTc1qi%aS#F_Uw_cC`jm$FjVpec{X&a@bZMag~w$JpU*8n
z)?feU@eI4#DxLU!Hq-Ru<t{Jx?>9bgWBhK<=W{zgpR?X<tH!|aLAK}-$B7w+$&a>N
z_Uk?_U%%(jx5fQ-R&v#EHfreV_Ex{&YrbyRt5rI_91IL0u6{C%Gwti^O5WeA?S6fC
zclmd<RtAO%%tcBLv&?d(^7sG!CU*UP-S4-cx~))&fgvIKiA%$mS68*)?f?I8$J1%i
zNoQx7KD~W?O{DPldsW$Y>i_>OycU_BS_lcQM^Y0OI=3Htb93|K@cq9+W9t8Yy|}0H
zb4SOIN8S2Ke}8?wxYT?4j+e`3Z?aKkVE7PQq~wrweVuIZa=%{n`8Ask{cia3;-YfZ
zw>Of@=T&8;7|qo2=VV~0nLdYOg0G+b-!B$_zg*r7irNjmMUSKe7#I?s2k7=UY{|N+
z_36{6N6q|p9kFFMRin0MeVw~JBGqW-k0+D;gJuaZFx(KkYUEJ&WwE@g+T_kXd-iah
zXJlx&6Q;|Y^5(|I`@duu7*6=EV`OAt2%0R+XjJ{}O~sds?%Fxk?{+?a^y6`VKPXJy
z`ebG<J;}h(uy&#_W6@dD>qlBRg-^{tKigdYoW<jw8Rq$ME-o>(U#}M4ul=5yZNtE@
zpsPs9;a=VEw=b@&4F37KUB1pD>&gnj{Jmep&de}WK4<g!%#XwJ|0W#eWMpVqb)u6Y
za$}OKN#30ue|{RDw-LU(tF&9qcb1Eb%l5pxN$>9LyeY-cz_4P`9F7T#7A>my|M$DH
z(xN3xRPNP$K5OxE$>dYl!`H{f)}4-HU|8^L)wJyo|E4dWUsrXf_WRwys3<Apv@;!l
z{`|3c++%zS9LpJZca@5%voJ8MQc`D1xv?Sf<J0N!$CUeRgm|S)IyNRBciWtHR!J%8
z>8YuPg^!N>_+J12J0eD`N?#rM@$vEY9p8RFpYQ(m*4E&8Tnr31qAUd!?yKqR>%Y3b
ze*RlS28IT$71J1tF8i8;g8uco-Fl#?S~ffH*SYH{Ml&UhQardWGcqvT)|#y1Iq9w9
zzsR__xD=zA5xdKB-|Tw5E_B!7P_@aOywYY%4DR+BXJ1=m@u)*tDJjO~kIwDK3_0wN
zl^?z7s4!OIJO4?C;r3y3`|IHF_)}nieVgl68>UT#kB{Zo@-Z+xQOlpl$iT2fO`R#_
z-kwUs%1=*p*ZI%0v3z!Z{``9mpfY9UwB-qZH_!k7=lRB>r>88wUI{ke4O;nbCuNc$
z&~N)K;uI*KMk}lLHTcZ8v)xttdfU;j!hRNtag|S}il{R&Fl=-6V>z)Y_4J~=ySt)e
z)(0>5tND60T+@$*fgz`R4#x!B?{|#jYQJ99UAO<!Dea4!QcuIRdEDPu`}m@}d~e`l
zx6mD`@7s8#lb)QIXqb4Y<;P3^`dP44(tUxQUry%oGT-h-X7*zr9v)8q|Mz=;M+d+C
zAA@~=KAnDXXJ>It`Q6gUc|r^fKlCgMSyb%p?dR41`w1#}7df}{ZA>{iDPmKKXUU5T
zigGm{4$d%2^?LIBd3v=E1H%LBCr1P)bad?5v&Z87p3jf=d_H&jn+7OwPR(TK?9kBG
z?vC7?cJ$HF?#0Q+`z|i=oSf4S@?7g23s!BVq$?`|14BYYWUb43<p2LT{_&jkdl#1@
zlT^JIc}`aQ_@J3Tt<s5s;lb`FE)6zcE;t(&JUH;;;$nBuTJni1o<E}|tNAX<zP|1r
zt1JUUk%J%03EA>Hf}m9V=cRvrSFpeB)=R$x-DLzpCtGYbkYr%kU|OUEt_RfT*L)JY
zE^V6iWbOq<1_kyfE)AgV(9?7xHy!<IS^VtCyWQ{SJ#t}SII!(RC#aW~ey99??Z%p)
zpS-d`rX`=5VOV%8b9ri_5d%X)_7h0mVU}}4;O(ug-SPi_U7vU|<xzkApX52U-)<H@
zndt6zd71CyU$57n|2Bhx;XwI`PKL~Tdn)(*d^Y>yV)y<T28m88o<jXLpFDi#*;xMi
z_EviR{(n_r_k>e^e0Vr<`gHMjnIey+TlwvNC{%rUAz1qQTJN!5Y4`ngfA@VgF=Al&
zp?G4Zxl+!pEt%kQ_W$4S$EU~FNlKgNffj9^IDOjBSvO{fLEgTf&sGF4KbLmB&-&et
zj2jyg?-ZTZ-I#TC)sDa4Za?1p{a*J><8-&Pvn)U7vNJTiU3Kff|Bw9o-_dV29+&%g
zI{u$g-N){D7Z;br#KdXKyCh690{)!d|Hpex{QiBHWOuaj%gbe7U)OtcbGm!Cn68r2
zqZNz$x<HlYjg85V4{__CId+19VM6KEe<EvcZOwK+JIgeA``xnB-!z`a)%|=r!z454
zPU-d7*|GCYGJ{0K#it*4cR9kTK1U$;)|SrW^7S@r4H+30+*<jKQAqIP<oSP8)coc|
zJe0k#IrZ_e-om4z;YVD>V@23yO9GaD)!+9+NlZUZ#$B#5W$9KvS*s(_`Fp1xo58>k
zpd0!-c!QGCuP-l!r^l8>mb|>As<-RKq8ruk_bv`w8#VQt^`8%i%YW!BcJJ>yZ}(g0
z->2#ObISHES)!t()Ya9cwN_MA^ysCf-j83e-`^Kob~Cm8947<A)j&TMkLTy+p0=-h
zIyGEtt-7bsOdmC~oEsaQpGWK}$^7%oe1GTb_51ClOtZG!ti84_R$5T-=g*&0uW@m4
zo%#-H82u4=>e2vC-X~Kw*}8!;CTQ`1gh9dqvF|raQkJb*v*uD%W@ct<Ed#@Yb~SaT
zCH4RR-IP-VwQZ7*^?;fq#}2h}D?gg8tiN>W(vM%S#~*KE<z5uGx9aKgxLhmI*YZ=R
zOmSK4*1M|U%j3R|86W&_|N8frk-@=A?(gr%^0o7N9m}+?S~+-mdp|y@KEJ2(^E21S
z$9fm<*io_hdf1Z0hlg4xs(8i}9u+P8`E+`CRQ}yvr7@LHr+&PB|DPEbH}~US^Ls0{
zoIf+ucrmDR^5Zg_>yh*O{$F5VsNtXeoAtww4hw7U&2Ma0<u>TV?Xl>y{dNOX7yi7v
z9#pyi{~G^aRDE7W(yPy)M)toy&+Wr+)!i+<e)QGV)yY>@1YX=#`nu!Cvvslj_J0a=
zVs>o!6SfD`BIvjKrNPE4HRaVE28MvSDU)6m<ljEK<Iktl$zNVv1eY7Pwq~E1Yi-`f
zCoA>!)zxlLYy9@(sjn|B^#+x>prU6={_j7Z&p-Zfn7{wm*Vo6VhQ~>+4qMwLsO)xR
zUiCXk<MeZP9%)8wPCMJB+-ISrbgWfb;lR1X%lTaQdpcz6mpe7czMnlmJAdELG_CT4
zyON=|l@-q0|F8M-`ntYbk3`_UwUL|CK3<;x&&2M}hr>7O|Nq@=5$pQDrm^PqG~LHb
zr^j`zUcb+ZjbBb?_q$!$BI4r5K_@r-<zi@%-;yP*Fu(R&WK8wjt)kmXUtQ6hq|)iy
zEfzYPq4MKVar51Kb8m0^_-6C@Wj4GF3?cbfzs<dH`qZgY_sx?h`<}nPK7M}hL<WY2
z_bYG7F?M!<TDNCrnXdlxvrAN4N$Jt!e)~Q)Ua62<_bV$H7y|Z&zGjd#O7Y;4G+J`$
z+iAVsYYu(ha*tD%f#FBps$6hEd{d5*f#JrvRk;mws^9H|@!q<=05xvi8yFZEpv`<1
z4y>*JQDMv;(Ljeu$VKV=J%Y?^JRN0kZ@JF3Dot9y_gmNIb5`1R|9(97`d#<oAUmk0
zS`ocH&m`}T#jmfg#l5HLoIG>|lxD7+`NpvG(Y5IO-s^GIx>a9aiGu2@KllItjR&<T
z3x7OpKi(s0{OABPe@{n8E4TQu!sD{yywYYp(Rn*n!`4QLZogkwz32PAYQy4ZXI4aB
z-Y&z?Ag}jddfg(&X11e?`|Y9>6{^0!lVz8$DF9VjA3q%CcXv4gYS6sBwbiit+Z)hc
z2^SZc(kp=%*G6xburAAqsd(5LIa8j2VHNZ8gwTtI$7O<FzBsz?_d97&4YB9{zu!-9
ztNG3nIePTy(~p9Jg@-uRU1po*KKgiE-aj{vfnh}-%Zcw>GA=I4xU|I6#RYVP$i|9~
zk1Rf&P}Y8XeW7!E#p|`(FUj#UFsu?~{AAlBZLTM#7b8*o>q}=x$D~P<IyyA8v{r4&
z4-5>{iQQ!aTAdz}&ce{}%B3M^F{mbI<B<>mHGb;;{&ICWa%*e0vXYX${r*e;SXo&`
zzcDg2$SW~!;uX`45?MZ{$P2U~WnRUj&J!s{f`Wmo!`60y8d$5p%(`^x64!4Ah6DT)
zcPHd7ovIz~)-PuZZiwgJ+H#}z``y#m&E{5ZeHpT*J|rkes8`CgE4J+BQm*<_vVw*W
z=WqM^_ct>`Ly66=@5k+b*+@6P31K-A25P%Kdh}?9b$Oo8Tr1OW_v`<2y*@kJy#LUl
zLluvE&9(NHJv%e=B4}dppJ%huqxAdr37`)1*}qH`H7;}Jwnmo8`5j!fs8`zD?ft#I
z$;WymLH&Xk7Zx5)`~Lf+f1QxO?bi@c5nglq%F1BS9^$Thd#jh5>M<~cc=t7gT)Y|{
zFFRS?zwff2weB>XNTJ8a``2&yw|RbT@sUTM9;4433qz~&cQWB|m8ol@wraWcNC>ve
zRb_m6f8U;aGBbn2S4D?aFWzpy-{+$y3^M5CWcBc<`yvXu(c5~a$5m;r+xP30giS@k
zn_aKh1;)h4D7*Enc=T1CfnmdEA%)N{kGl24D(`R0y?t!+dAr@r%R!yMC!mg`f+-UV
z1A|8|1E>qA?7+a#aD_vFfnij5D2K^S$7^e&#jnRz=WfZks03<^9G5Bf@tJ9)dOMks
z!6A%ug6xw!#pio>zuTpK&hq&j3Dc~QD{CT+K?4x$_kN4o=FZH}ux91Vw~S?O#_8vJ
zIEB@YfVv~$v8ACdE^~^{SzcThyL-p8S=mXqwq!=m6JTK2bXahLY{H`>oq?Ov&hB`z
zsQc9Rr_Y}sXBCeT0FB?Ya*L-GS}`!3kYn7$d}f}l^{p+L!lkdStlY5Ixt;InYX*i7
z&MFRN4U;BK0+%y;SFF&Oq|ym$_i_g_GB|wWoFJR<_SV*k^XJEBRy#U6{<LCX_#?2B
zqn3R|=<2X3Q>TXBii?Vh+PBa0zr9b~-N40+OL8us-<+=W=x+`m(}uY<pNr4xPuV_~
z;U;5OSC?7!EYOjLE-ohd_i8q;pKV|N@4mg%-|y@P&Lw$lV`sRr?%DbI^0L-tXTC{T
zdN#aaczb($|No!!|965;8rmW7_v`ieejhdAx3{<7fAe}*`Fpv?$9lW>e!o}U?e59I
zaAMxp?CZz={QSJQ`un?^a;oX6lT<u6*&aEU_Uz2e!ZU`)k8}tsKYF!#eP2iZJ;}YX
zyURdha_jfK647R0sGA|fc$3kp<b}ZAs;^xKo7s;qa_vsKU;DjxWAgE1O|0CH7PiZs
z`c}cfFu}C1;f=!UYiqj|o!gG=D14lBb5m;J3B~p!8xjvcIwI_U=353x6(om$2aob7
zJFIFfeSPid*6VT7x=~v?Zf(szZg^ZqICz=Q$!`%13>)rpPRM#dFmb#+WvURl?d7z+
z<#!6*V@j`v3JL~>g^7VWjA>_Q9o>?7d6SJI14E8|Uqi~xBb~yF)6UK+yyz-EHUISa
z^Znd<I~11r&zA!&)p}IIz_6i~bArxn+v>6{nU|LxvR>w1^Epmw_BBR^gmguRO>34c
zQ33T-a`m;ex>P(Lb?fgtaVUg=VM8*<1fA&JWw}qDKM%hZ7Z4DzkB@=DnwxP_>ej5Q
zU7I#-^1AKq?S1+>%$yY~G`zgLv~urnSqqxL1NGjmdl*h``u6trad-Jzk=5br*KI(G
z+VhuE7#KGE<(!~n{rQY>^50)yK?7V<^P{)t#rDWroAp^fn*pk+#g;QOG`wA%wvGMA
z!q*oTI)layL2ch|G2O1(?|03Q^~p+ei|KT<%T;OIe$2>lpzP_~3#-A=FhS8d>CTSA
zjX5_rSv;BGoOEMDV&S7s^|Wde28J8!AnmB@6f{B)_@%wy`@Qe;d3*cY$vNWne;&&#
z>+9>Mot?GyuHAE9^E(2SmH&P+pAfTeWGp(de14sjczjLao6YC#K$Y@}`2BSyudZmi
z^-75@UAk0IaN^07O;*YO|NUK@cX!wAx1V$0uUDUZGUabI%LnH$<J-&(0jB=;e@ni+
zyKBwG#kDAYe;ufxh}fPN>oeO-ciqlsvt}5l`~7*yUw`7;jDOAi2eu0-Fjyx1`}6bS
z_Wb*xy$XMx>eqKJ^PN3yeQedsrG_OhE>!$_xqP#QB11@T@CJsW18cY6lghrfrjuQ+
zVu4dl&ZS+YuR(ny^WV2pPft5~zW(25P(Xr4p#t~U{e5wBbNZgo=d7oG+xz?7?!~dY
z%QoK5+wHp8try&zKQ33jrl$7mtE-@H707xK5fPWoX=fiTne5kfb8~wB)$5;crq4f`
zIz3j5U8ca{%DPzVStgl6d#k_qv2u&$l>Il&zINoOc)X17ER#-9PiyD%dD5q+>#yH(
zfAe`eY0y$;&~cEjuC5k8di1Da`nfsp=R9u}kL!5cXRRk?mLmZg{9xv@P*}J7-LAF2
zW-+Xga(7@TIuPt{E4ns%d*9-IyQ<akzh5q&f2{uh_j>pBaeEhqt`6InadFX(@As+~
z7e7A-G8EJ>QdUX=4dgtX8V+uwJUGw@8vA^|=d&MZ$Q3j`ASeimT%TDcntJ>Hd;%@>
z2Xz+>b8l?{4XJ|rxbt3uta%J7-uBi0b~`;yH~HV6pM~dbzq?G=i%mK=$1)I<&+;d!
z7$zKO0FSv;JnsGYuwDL`?e{yvppM<1ACJ19{swLEy|};rKWL2WPTB3;kK6bE)phHa
zlRYk59<%4`wdjq{=T+yGO|vY1c4X!9c~YPPcA;~-TU}ipsB0Tn{dVixe{swKtegy2
zZ=IT|J=sTX@|?nBlA*Wi-|zkIch36#o=?wTUt7C+%lRf&?nzBeO`vhyr?>xojsI_I
z`Qt(J{;$R685b0G{`quzf9d>xe}Ai&zP|SNTCJD2w|4Gq!(_KfCsQUBK0Y=zU)s7X
z2gKo%wNiO~eZ4+t9$>qAWo6~bCnqO^#%8as4p--uHuKTj`D7B;{Nj&~j(Rq;@lNX2
z-?yXYHm~`e2~VCrooc`T^}5}Y_Uze{^77Ks`&Pybx7&j^Fs#}MYQnnYe4e|s>}Klp
zPyOb3cO<;0>-B=l-G9H|$3OhG4K(I_-u}PMy^6=Zx^?T=c%_c?NE$C%vLt18+D#RE
z`~80&e|>%Z_@$-Zi%VZ$ySTuy`Ru)-@Av<`y}!t<SL*3`{k>l<tq5G~X7l-sv7q3`
zKcCMZ?-JEs<Uil;<JIu^srE)QePn9CTomn_lJhRRtK-M#`Tu1+C)KQ9&)x7|&4FRn
z&Z@7kTwRW=3SGVJ<yX&1N9LB_lLU=X{rU3;)LAgey=8K*_WRw4jY+OQ>p+bPP>KfC
zPas8%%xoc6yf3%i&g=euuUh}xjpTldUoRFvJ|>+H8gI${>a%p|(!#%AuOFXR{Vp<b
znW%PH$PCR#vv+5`-Ti)_=(e}pZs&o<O+P<B-`~-(v-r8&Bo)wPiH44jPCdx#xQd6Z
z5ql~=iltk=UbA^o^6@@UJ>t4K?d+ob`};l~5%%v8Y>;(nU<fG&<)vq5XCJSAzjwRu
zdU?B=3ecPrs9F8^cz^%%`So_od}a!<%T*-g+}W|QW<Mz3fyOUD1C}!7cM1(NFD(I0
zSlp?2-23!5s1&#R`{nYFyYK77K~*Ja@Whc_R^+_x_d8){O%e_??D+X?_F_;t9})IH
z!mYnYAb6Qir(3U7=!})C%<}F?%=A$^)-Nv~yv%3ihl+=-;*U<M&%g61o12U4(bMVi
zeVW0`T=v)feRQ|{elMtV>Sy&*MUZI&^9~MK1$NM&$qd8fq+>mj(Y1=d>i<2jce}nW
z_VK>o?^bW9{rTx>U_?YjV)WXmt&76f$6Z_<zCL1qT`ee!7}osw0P6|}3SL|jxp~Kv
zN#2hpdFyqmdQUr&*e)w}xShZM-QC^!SAG8e{@#B(Z}-}o=*Y;MY43BUs(9A?`FQ-}
zV)?%-YHrUm%?8c0_*p)k($R4veSWQy=Ohgsot|~EyTdB`>aQ&Ip8n#}Qg6^i9%wZ7
z$Jh1svikdeJTj}dV=y}}D9|8NaMtv?%iCL9K?A0D-n?{~U-QYcN6Iv7^ZK=ci`|yq
ze`5dfi15aOhljXsPt%KydRTdOmg(Z$+uJ6pc-H*=dVOQz<71y*2bzJ7fHcX!XLIV*
zsco-buLNmTmR;=D+r=wwmQ(is_q*Nt*Vf0!|NAqq`W<M>#O3@vTV<t1)!*L*u8-UM
zqyPVpey-oSn^I0r(ml5+=jJA_+kCcPE_h5zS-oG6Vc%?J1qRCnrLV7jTyFnY6I4{@
z-rlzMgWrqw`+jACx@PC>|Nl9=Z`+O?7N9Y==kx39WUAk6{P=G7`(r;oK2Dxr`)%ch
z`=07^MRvd6S6%YvhT$yJY_Z~JXFBiy|Mwl#9ozkOTlAWUjY?75awOB|Ri?>Qy;vBy
z+;1*8RrH$Q>$v~#+jddA>$^%{C;j;FaB5oSl@)<8RWFx<G=oOcudEK&=d<~605mb`
zGuO&=mPzKOo9h$r?kWX$_21vy`?#6kPGkSxyu!jlmzv^Pw_aRayf}V;9cZ}1eZF1o
zq754i?0&!54605S2QT-F=GihkZ<i)$sM_M`lwj}(iEFpm(H9pNC!e?d4%!=A`}{sH
zL$qe}_WMi;ug}i4HsAT<QTJrfdS6ynR?odvUneE^+nVkC{ciW<O`A5Ucurapx;pIS
z&*$^w|IOO8Y10$&{Xbkm+qP1+-!1d*v;X%a<yeoT=XAZ;N$X;FPkV2kc4o$s;^*f)
z6B84IR)?)k+5h*Ociqp^@oKBX)_P5PGW+&VP&IHev0ZlBmG$xVE2FpP72QZ|SN(pk
zI=@x&_xJbnpFDk<`)%X>y5FjvlT=Pm*Z0@k@t|o*=H+Ez*Uhu7R+F#&61eo{@jltv
zPo6$iUBBm(SJ6q;=_<X_=6;}^XrKYj$Za{1OW&XO*55m2PR*y2ptaMJZ*9$1|NVA*
ze9^z3&($}loz=SkyiGdKBkRhFz<+;^ipTqaCO(&>o}T9E=;(N9Q|jp_Z#JLzdv<Q_
z@7jN>7;ZHAOxkgXkAcCXJsaMoE<5%51p@<vucwP+2$j0m|M|;azuDw9)BY}KfrY25
KpUXO@geCyqr0YTe

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-10.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-10.png
new file mode 100644
index 0000000000000000000000000000000000000000..949d2e0992e263537ab209749db7473c94d76891
GIT binary patch
literal 24827
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_eA=KR<H|3ChIz4xqH&rJ#A_Om<f
z<W18hXC79uoGQ?zY9*lc^mAv2$`!7;B3{2NCQtjJAh=Yf{fnkhQN}s5;*6YUKYt&7
z|My>2_5R~6*VVSae!9u~?boV(aqEx2-ur!b-1qOVf7aOQCie(3FfcIOI56=xD~Pe9
zRKNj5-)LiCVqjo6V8$W<;%-xH08txw8Ce(@7#eap6hPb@X9h+F28IM_CJqqyHi=p%
zJU@Eu*r|s*EdLdketP2h_3iEOz`(#ypFdCT@9*E1b92(|)Q4JYV|E7dwL7oh^T{i3
z`Xfa<yEwjf=j!k8zD9iic02#I{Qn>ApPrxBZ$G?n`~AA;NlywauIwmG-tB!hEUvDW
z@lJ*L@&6YY|D^J@AAWoM`t|UI3m0ZxSut^$&&)};pFZtKjohSjIyW+IZ$st7R`D<I
zcE5ksXZ`NNfkx)9pHAzqcIgzFe)pK<2EBirTwFn0v#x$QrM>>emzS60ws-gROga28
zV4+iM$&(WkPrs|azApBrT>Y&rnd=_c{r!4<`dU+6U0>%mp1`eHS4BibmNYalOw|hY
zD!*GgeO~>)%G`T<er~$`eA(C6*I#cuE*CsiD>P(9fFdgki-wU=(A(SFug|e8F8TN8
z=N&ym_dT_8Dw)sD%&dAgGhIYNVnzD=+A!yKzR<h7O7Cvle0rX3HOSw4tH0;mPAQjT
z`1h}-csB!s`MlIfDXWqdJ%*>woVn5`YyIWt^ZD6NPfhjm@+zwJ?#kX?@X#rAT})(r
z%}3Y1?S*k2rLV8~PMkQ==vc=8e}BDve6Czr==}BR^!Ti=udaUj`t|FsyDu*<2ZhY*
zzu)hlFS|e8xbTsSr3{~BvPt407Sr5YSF(3Av-7Qp+go*Ob9(=&>H6#2<?A9`yTwAY
zvQ|x+G|43Ij>XgS^W!gGyl81xZav4k+^_c6my7N4bsF*U@uoR90(7IdP1(PH|D?&2
zzn(R}pK)(bW!Cj|bJNbxn|u3d+{G1vi@!YT*4I)}I+XkKP%C$8<TNq8m=%wXcJE$$
zdt2`8PtVWir_Y=oy4+7T_wKGx*KV=1Z-W?~FfnlybW7M&Y`Fb?b@=+QW;Wh0|9-z;
zUH|`|R`j+Uz0hyhC6bGFv#kI2{{H$lUg>{Jb00r`T>AZP`R+P-)2u10!q%?pl{U{h
z)+1T<WTN|?yzqritiH2MJpcas8vOLs)b+1s+}@slef#~o)jM`rEM2lB<KLg3Rz*)b
zx<s{~T`c?X;NY#@<?E}yyjaL7tX8qczU0LOJ{gOG(Bs>k*T?NO$-Ja;xAOViS;pyo
zS|KYQTui&RCi2&x&*zI5?phtbr=qaGK{2-Cz2)`zRY6O=%=fJ8j(z!AQa~V~+Lz%I
z->wA4?JIV_+vOd)DrBOeo2RE|+-;r6O)k1oTLLyF9TgD}SimK!m2sef(aYQWbH?w>
z{`M<_m-}^fbp<&%G#ol~C}go4ukG(Qn@^oORkU??%>S=*%2ro>x#)g%M`7~yxw7fs
z73JmSYk$ApK55CBGd_F&e!IOYaB-WHlT*k72S!&{*Oj@qw?%EsiR_DC-ptOws{H-E
zuCA_0`}glZbm-8Pb+OjDcXnJ{8@t%8H|B9j*qVrkt6oO^x+|_3<dS=P+tiYUzXQtL
z`earXKR=gwpn);Gwue(#?ZhS>+g~phclGy&yScU5{d^+4J~w=QoUUipub0dBuG5d(
zv*Y@1`Ij$WN?8^ySrxi^SraR_mWGDM*H>3BpP6aA_no@2aq!`G{_s{VQBVLBJw28A
z;laUECr<2mb^S}beBFg5o|8qSq*keVPpjaSpLAtovislX_WyT2`e&ARXGPuLUz%1{
zQ41F?<l^B8S?V?Q%b(BZU;p^{IPSda^7n_|@B8hyHfn3o%S%f|1q2p+_)u`S^m?q^
z{C019=fiEhlMg?<V1B<wIl1Td^MjhZufP5C^YgC<&HN$z>uOoq*|qEc{aF>UaZ%N`
zH!J5_m+!hIYf<2^e$S__SJ&6C|L~#U=kMRzN=i<#yGkxzTN{1%n`O=ogQ?o#e$!H4
zPWHDed>!@U<?{JnyZ)rt9`BQVb!+Qtuc=y3t^Bs<-QALWoUeb|x%2-)>2PQ9^HqLx
zt+WCbG&ngsUtJlj9<ISWVS52POT(W(e{81lN}Kr{ZsQHk$XF4zEobG14F<V4H@R|h
zaz<^*m>9M`Zfz4Qx7RKKyH{6MDz_hAcx`R8ww9Kcy5F1&eX`ajb$=>)B@7Q;{rkA;
z%kO>v|NV{?H{ZB%V^?o)=~__1r~)cTjMLABTwN7<b#1gcD;rzZ|9^j@wq{M8rW3hH
z&39JJM~mI%@56k2didmQRvhb<US0hB+^y~T^PioWxww^EJPVZZFD`0b!o6@s;9@sW
zF{Y%fEGjSmKJ5HfgJTtcr7gGS-VQ6jU%OpQCt|@=?eJ$m_<YjRmf8LN5-h406Y>3i
z{r-P{KKp-te?NY*n(rlU{XGvZ+L@SyTx#8|R(_|@y{~WLv}w!SdZk_-m#+```s(V}
z8_E4I|NQ(MwJD|3s{GxW_`07*A1iIC{rzp0ef>VIkQEE;YJX`cD?3kC_rK<E|98sb
z<hVD7`R%8qMpixQR2LBwE4#UEdUfwyHNQD4jvR3Tm1c#7g;w?d_Dq^I>C3g~{LGJ!
zjz;Y+TgxS)@gQsd<?jz49qqolDb*X~-nG%&!(3cif`Wp!l)et@mA8*`ZsRF@`}xxO
zfW>aTDUs9E{O7INTm604uIRXz#nWcaT>1OmZvXiDzgtgD(Oj$-yK6<jLZ@4MtG5dY
z3twH}$UId)K5o*Nx7+W(`g%P+e6d^amj})Ks}c@2{d&9o{+FBS^E3bb`T6T%yL`yj
ztk7`V%*;$F>#{YA7B7xfjJhPc`}x}V{c*mt&91(@y!`5}((Jo+zu(^4mOFcy-`rLD
z`+hi`o~9ezD`jdE*ZuuowSRow&!th@^VZ(D5wSLQci85%vzMmnMsKP7{7mL=F5`_8
z3_qeb>zuZb;p=~@9lp-Q&dyFvLE(UmO~r-WyPuw(?oEwcR`>VUvm>3td9RoG%uLcb
zZFJuD`<(2^|Ns8>9)4&5GXHpCpS=CMZ`Cz5dkQUN($3GbmCFrZ6OpKM+URf_Z*jDo
zwDjvjzMET3kImS!#pH2;h0ohtTWzmNCi{4KbzOftJ?q+<nIMf%PE5=@9lky;x2Cq%
z_u?Ygvo9|%zk4lmTB?+3)|AD6tu4>zKRq=y?=-)>U5?i@olF_N_L=7S^NyEIoH+5=
z!-5%W*63`m`&$LFU~SaaJ@2ZYpPMUp`}_>U!x7U`=T*JZyuOKDzUG334BzIOpGE!O
z-tYUpZllg=5v`CDJQ4;6YW{w`{_Mua<mtBC^X~4FY(JbRBqVfa+I-vUYbN>k?)>=i
zV}^YFpNm^-Zf(gtwn;}=SUCCIJloe%^JdM;IyGHCUxx2^=-z$ja;ND=PkWr(bMoKc
zt>y3IivRto?EfZT|7YVyozr{%{d&DFHT<((&4Whvp2H6f?Eik5?7rJO{_z_-=X-YQ
ze)sN8*WdSJ(MFxqTXJt-OG!!DvG(+d69(@6a;1Oko}3UYesx8&|8L&SO-Ds^A}(yn
zxOgb{=exVRds8EyU38cK8s%TMK7XoKD9C8zv@-?KcGcf<k|U?>e7o)TooW2CR#zgX
zrE-bu<<$NAnZCVru64N?U;E)RGmVdD^D-3i$8KndZu#7I%v*o&l0I2$Ej>NINnf7L
z&ae6+S^xX(_SDE}YCba-ELfnhy)<@rS!hYgmSw)PpB45rG%)n1wsMQ_>r0<#JT3L4
z#NwKtpDJVHmv~Iney40{8R<P;FLb6+s?9sLD{G^}=USBpd3kj`J3G5PHf!3Flatl6
zZ)`{e6(n-?e+ohA*{b5h0;{q&D}KM<|9{i%YilBdWv$CXf`TS3^PfL&@nhdP78gx_
z+|{(RyJsr#H)wD5_iG0lnM>c@u~b!2(a_WL12t=Q7Crs)<8gnrO`e6Ss_W%tzQJc_
znO@yrU%$Qd=clKaUtC;V`tMKW_9}J%c{-;zeYusre&^r6P0h`w6(1g~mizr!W^&M~
zkd>=%=~*xJp8l;WUD3`iu9Zvl(j-;ynA7W?)xNm1eEazT504XDr@ejn=jUfB`?@`!
zo}XX;@$vEMJBlAZe=ffJanh1SuHC!t-Yi@dwRM%0dET1*eLs(_UHvrv<6(aL7uVzK
zL-$sF{c^#Xf9Kll`}_8SDw_EEzoDzc)_%INEq;I9uD{=I-<|gL&CTFr5^JNkznk@n
zso?KLR_-0HF}Kbh-K10d<)V9@_<X<YYilOXpC7-?pXJnv6Bi~byHA-lYn75~*NWuh
zeNyImb8c<PT+A+C6W}}BEY!!R=hRf~a_4hTy_%YuuB-~x){WTUaPi_rP-{-gBx8Y9
z=_?Hb0|WQpH@0L>R$1xT%$8UCaxTdAD}$G3U0&u}_2Xgt`kiUXJ*(^g9F?p666ib2
zMAQAZgk{kZyZ?WRd8JG|`0aiqY!lx%X-n~QzqJt?okCZI1kSZ8jX6ErJb#^#s+WeL
zVW6g_rkwcx_4|IUV&jompz1v><LoTcTRRFDUt1Tu+H<m6=BFnoL4jKJ<%Qx)r}9~A
z*62h|Tbg*dt@6r*i4zq)^O8Bta&M`$A6__PhD852@$#+3zdjz9pE_g4i)}g<77>4c
zeLel{&ibP}i=Tfv$S$7&YP&t19zSK;v}fOb+<WpQ<@)~kv%fcZPuBxA=|Xpx<(9s=
z5!fqb8sy{CbA0l;b<=ZiZ`0J(^(}pUZSSMxMRP&zS$?}84xXN#R#jhCoSSR?JSshM
zTA!Tlt5Sv<Kg;8xrdd}`y#95pSNiqu_xrCe^PLT9T5L~_zoUD4Wy#A+la^e$a%F#v
zaD#L+1JfO)IrsgREnlAf_0`o^_xA3dSMi8*s&4eP$A{kC*qD6k)Tv!>5(-XlDtUE9
zQ&cm^Woy>eORGXxn<O3KsQq>`eU??}svg5tF*`TK)%{HE&o_Q+Q2i~ZSI#!-@^b(3
zubuoH92c7T?N+q3v}pIS7w~Q2=jZ>v>)y^gw+}qte`u2qC{lQ(Oaj8frfti+y9(58
z0hLjU7A-Q#xUfL`-Qt{^n_gXB-Y+C11nL>Ae{3;lPPv61?*cnJyH}T%cHgUdty}x)
zq<Yo6ozHEy>4vPBaBF-1`fqP<d++)%4^&>a@yoB<SNnUF?`$)zur)LKWUbX+ItiT2
z6WIIN@Q`0-W+oRW=SQhudtx>6@9nwyxE9n<4QJrw=fD1b|NnJQo;-Q|>B>?*Su0RV
zd3t(!`0Z`Ep^IENfBydMJ?U7F<l@cg=XY&A|MK^Tf4|>fZ(`*Jl~Y-to}8Rzkl55?
z2x<ts^~ub9yLjS%t>?eZmNTZ`*-=>a?Pj{DkkFzXJ1nMZ2D|<I{Cs*UxIMo$^|V-j
z@&2gH%*;(XuQ$!NOzydUKBk~x!*QeM$*b3YJ;&4Vx?eBifUcT>K|rsx`L*fsbt~7b
z(E&B4($CE)%nsgBkO+#U$jHc>|K?bipZm(Yxa8r^f1jV956{Y4weSDGYF<ermv(;n
zu<3fSTWWq5g<C(Lyh!igw<|BJV$XPkTIFp#l8bV0Z_9jtZ|^L#+*zQkxH5S8F1<PW
z$8VOtd2p~f?z;8vZ!zcf($2kewX?JP_1ymd%AcQ~ug<x-2~>F2{rPxY=56wY1&&;t
zoEJ|_RE}kQ5cK@q++ts+pYQAc-%b`fVt&6S_?U$691BDD<2*b(S2iRb2Bpxsw$)+x
z>;Lav^1nKFj=$6Cch4W4<mVRGTQg;f$a?YKd;i4l?kfF!<NndfdRF^2_s>$FpQ^5@
z>Dk%Y397p5{(cPy6+}{oNiA(Wl8>sqt}k8pthVC)-tVtouiqb*m9=V`ZuGL}^Q!&q
z|Nq$>wKZ#L?(J={#ec<%<2J<C99OfBjEs~r%b9WL@Zqng_4j8S>yebQt=a-g*u0WP
zPiDQVidj?e@Q~55m~Y1EkzwmfUb7U`3OY1IgB!7%)BXQ`JT5O~oYr%D*RImnTBfE~
zAAg)>`SAJk<-1B>XT7+v5L5*A80Jm>WchpV``g>kC*S`1`ug)9oRR19PZWQ8o95!u
zVpaO;NfpoQRiUfb-OybewKZ$flF-#*m2(xVe|~zpNyq!@>hSY{d+S{j5*E1i%dK6r
zW{r$}()NOfhoo#OHe9-NX-`@8q$Nj=xX9YoL`>BV59^n+-ScmXcDNs?`&oX!cKYM0
zxsO}tIIb#td#lJoCVXrEtE;PD|M~ej?)T67&u7go@AY4P+;9I*>hh$!IUoJ*F&#NN
zr@t}x>Z+;Q9@e0i+sl_Pr{A?({{HZR0}e-z9n(@&bYy1d3vqL66Vr_<xmg>(Rx5Os
zhJ{5$^tPOn-<s~fd~tEHRo$N*udc3sUikdOmzS62`j<>w_wMt{Cx6bYjo5hTb=7lm
zN%K#}><8pn1RjWeyX38}8NaW_%fq8!_U*?v)8|h$bhEAg_Qh)Bo%!|uR&LF{zN;>N
zZ`Ic0u_7=3@7uVqg6-L@t=ZLo%l<B(U$<+O<juLvDSOYV7kzmV`1gJN|IZP1pPqQm
zwJP=6w{PEcS$W0S9T7d<-Iw3p-EGTs>(<t6)8u13tt~Avg#|yhzPhlm8Pt_uzyIGY
z)8i+netC7(`{}8vm)qs*R@~iPUcILL++V|*9|gWM3=Y0Nf1r`smTj@Ripq=W@pT`o
z&V;TGdpSFQ-^BIn*T38KTF*0RW75$pOTEQ&Z)|V`RWH{Swr5}0+b$(v`z25^*(BqF
z!gf7dO-)TH!=xjj_J?-H?X7xsbMx{(S?guh?{*%49V2v1!gs#i->&4!IsGB~zA*j#
z@bGZlbGMzdzCSF#Ut4~2x83z>vEuf_3*+`yy*zLK|H@>4yO)CdjEs#-zq|<a42p=D
z0cr^>S)#K2UD5M%bA#{itBrlD7q-MhFml?{ub*emoiRfKG`zDqZ0)7=`L)ls<-NPJ
z6VwOO3Sale>>u-ivz>+t2Xxn@oSank>7=@8-W>~2(Y}7~w^>WLn{D0u<<^SF*93}c
zhlO;D>57PoE)8DpmwA4kZPd=9rJ#c2|G)41CoQ=iUmtsVx_)>w8!t#r6D#+t=kx2Y
zEpqJ!b+M1j*WW2UW0resMbgo(S%%4N-`?I{ZdLj!<Ndw8zaDk#U)h!$eRh_qw)@ub
zbup2Gf`YRwi<i~Z)`o7&iHw}KbY1LjEmc+5tE)nTudWI$JuX|mqU7ZztHMVupl+XY
zJKxIq{dIBkUleOTXUSz|<GBzXU%PacX?7N<e6ucJS5s4CQu*nL%-iQtdq17h-u3_A
zZ_|PY4(rR=^qxL{zI>vx`zq&lKG0y*ZC6k`a9!%@X)7}>E&{bcw*7u_W8>m^mCqzW
zbz#->x#c1<GHWs~F9VHKtO{D%_3GN%)gL|-%(bhH0+l(hZ@=7ruj+K}nq#})?^`Wv
zUH0PX^!RJ_|31rKT^}ERv|If8zrVk?mc9-HB^gk|IrdKZt1F(M-V&&!umAUXe%9q>
zy++2yrseNquC9x{om;eLPSyXv-=DsIy&BXe*nYQcc2aV3>GQeer|#d6KY8+G)V`XX
zlO|7If5UWr*xIPB&d!T_DnE+|3oril_4Vru3!OpT`Bfn+7fn+2-nG@=&+pvF-y8Dp
z@ALBW1NFU?l$EFI$J?o@s%HND^t7w1YnS5V6`&GvZS;0OP^U{Pbk&k+y3wG)mFn;B
zu3lQ|J$1r_1?ysWpW3AJ_3iEO#qRxKpg#UGU+L78lozw}_XTEUt&%d$dLnp=OGE?I
z%6qZ<{l3eG`R&(uP1QPi{J4AWtt}Vr|NlInlRe8QwQH7X_Od=%YfuFa3ej!3x0ivs
zm#y65-+nD%V=z~=p8u2kK;5)dNqPDCIoIW_N=}Gq1RP*tWu1AroqzY*-~WEU_dVVx
z>+9mu^6~q3^Tfo&Wl>wRp8b42-`vyFb6uJDbUo9%yUWf0|2S^%Q&6x$Gh)Mnl|f6p
zDxb|vKXY$ywQb+e<MQ=0+U2TFw6wL&`t$Si>|0y2XCFD@vN`D}*W&_<GurF-Ji2CQ
zW_InhWzLNa2TgKsU14EomzI~8zaArXykFk@a67-b?<^C;rCw8w7#SItrJS6!EO4<K
zXc#a2>#w)>_uv2W>gs71H#e#J`ugBC5r&@+F!Rsgl{Tx$eP3YV^Y~cr`d1R?KJPA(
zo6voAP2^=z*D>KB)Ada!PIx?i{5W~jrcHbDKpjCDzV?qFKNg;4Hp;l50CL*r^Y-;e
zcY*pdAl{9Q$-Rcha_;T9*&|_i$RzX9kty2Y=boIOf1iboZ5EfP)(m&K$|E)Z|9+4A
zK6&QM%zM@EZ9&F1H8=Y@I5cQRZ(EajYs<>Y-*30uK1)4$=8Or*XHQR0H)mvIRMXNr
z#Up2PBPAu}&(g}UIoH-kr&oP>k*F2EE~lxf$p>UW@UouD2aW7!?(8hSdn@gGoR6=s
z>E7z^W`Ti$>x%1NE}iaERkf?Lr^n>!sj0<V_s;tMaE@iM&+~J0eV2Mo^$7@=pc%7c
z!^)_wt0ZkIHr%d}ITka6{mAj-$6wnh+^oH}xjH^AHFf6qd)4Q!tPDO5N&-!++_Su<
zYRy!iUvnw<9jI$=oOVXybASDx!ys?Bw71XBySr=V-s<mZ(dW<2wf22|Z7rzJA3OiN
zX7I9@Z(mK1&3Joz`|NeGyJt;O^`2Gp^V3Wa4dTDOy}f#itX0X1>y{-wI}OA;4?i@x
zySx1RuUQNyY^NE9{|qQ)U?}Q5{4gLVXU*+qUIqqp@naaXBn`9MQX|9vs^~B{+&d&8
z0GcM*_K=SQL?ca?DENDOc?HG9%;^%<R%<`J5LBI(d2W-mDp?`J=iZm@Fnx(_^|uob
z3szKre`mg7Q}*Vfr(Tvae4rw2XROye<J40kmNI;5cbGqHcVl3jkUrO@GDtUS%Y`;x
z=_@OP)p=#DLj3K1E_qwZBW>ox*Y3>M?)>rN$D7-Jf4iL@`xewwJA3?W-hr)$9|nMu
zW0ke1m%sn@8HUMMHY7TWYKQs!`}a>Pa?_Hi?Rjf=7C(<GK5JRJm~FE4;j>5WS-C_4
zPEJz2x*^e-SHi$ywt4=(yyM;d{nHOWyl`)C_4?a(k}3QT-k&qy&dt#9W=-^VKleTv
zP|NY_`ue}x+fPrNKY#wSb8}aN=5JcLL_bB?Cmv$?`Sa(?J3EVa2Ha&86coI*t8_J&
zxZazM@1D=E4_h6!c1!j5JXbfjR|nbULozZ}e0z6yHE7WAU=wRsclYHtH#hIitKWNN
zWw3kn_Po%Gi(K<>7%C|%$0iyoD?5X1Kh`V#_1WxvQ2S=Cb@??=3xJ80E9P=xg_bx&
zj4cyKgN?SOW#qI}O&c4V?cNhpBeQO9S}G(gY?^z^#P;iz;JnxU^7iX0KR;U;x;ku@
zd48N;sOHaKzd$4Oa;N!at(NTAVIgZ(;?c~;TXgqoA*hW68dE&lExtPWcwf|>ijTaj
z4HXm)WcOYVPDxn;YSC`2IXz7mG@`rAfBw2FS3-1Sc6^xCceq)F@xiN$tlSRs9?KjT
zkeAm_?pZzi^wQeL{Bkxc?(MAxjm!S~_m7L4J9u~5+bxBU-TG_e?rg97_~<BTrmLyB
z`RU`wlOOMzWuCvTql3eDmdVNFyUXX-t=gP^epUMUd2!qK2HpRsUAlT#h5WSC%%feR
zd3Sr}Jl5PK4K8M6Z7KrhT9sb<@bK{6L+vW8?Cja^?(EbGUpHr(UhFDK<Fp-X`+Isq
zb{0J?`Sm3eG?AbcysQV*Fv+^Q>See7z6mO+si~PqIs{jRtenKe%pAJViFNPyd)0E!
z3wIhStX#QL$|Pd~s9DCu$^~j!Uc7j*>f=%Isq^O5-Mp@@{%*%(KHb<|AxFDJFF!ik
zZCd}YX8YI9&Q8!oOvuinR8gIX09J0Xkh8N)zn-&xU(v$*{QhN$#V1a9tiSsn?`Zz?
zwWSXawRUxO1|Do;1$EfIy}g}%yiZo{ZQbv;=6`?R{~xwCYO9Et*s_KO22f(_RG$}6
zRJ7@Ot^Z6TS3^TXP>?4iEC7waK07-*``eqFa=DWyPyYJlvj6IupP#rmI07y%a=p6D
zS338`hKHNJGCP#*U}jP{&&kJk?ZQImt(BkCYCj$o2i5tD7B5yk`StwW-R0V9YHsZO
zav_h8^<Ldsoc{LqcK_mMXD%LU<u=W~XR{SF7Po&|YUa5)mQi~uHb!m9Sh##%)vHy%
z-u?dZ15`Rl+12bY%e(W!Orh@4kxo!Nfx3Bbzg@o-x;$!Y7N`r?#wYvg+EI^5Ny*8Z
z@4h=T(-@>e=k%oq2b(wNPPebG1C5!3hPzrgg+Zmq_FKlr#-ifl%dcDs0S&rKN=kwn
za&k2v9Caf%xxC-|ecrY8@$0MK?+yR=@82xr^uAx;-mc!T!C-6t{eNB0w^x79J9_L`
z*8P38pbm4@*H=qFKR=)S``cU4i1WOvSDI5bgVo&EUwtZ~9p>Y2^RXqa_G_r`Y%|}r
z(c8<`R)0Jy{`B$V#h^}?l9E$qW+tf3^Xu#D<-F2n8K<UbuG{9^&Uf|s{Q7me(c4zU
z@2}(H<C~^(-F_+e`)<6$@b2aY$vt+z-x%vgZSml@`OqL`nziKYZ1dNf&)Z$@64m~4
znBN}MYF+p3^Ru&;L4mO%Q2FSQBO3AhYJUBEKHoI+k_u>4OWG`_V0X7g!2^e0DO0bf
zr=|uU?~@JPQIH6l+If9_{q;LLi?1$pW)HvJD{a0ia&sD}G<di3x!l(5>wfP2a-m5{
zi$H^NAjjt4`!nl*HP4hp*jfNJhCD+yhEFT}?S3Aykl_QB^!=r0XPFxFwIA-0vAmS~
z^VQYWz3bPn*Nob-!m{?)mfQPuP8-?T**#mme&4QDR&9K;Su%X>KVK~FKQqs^x~IRt
zzw*;b^}BtUk<%nCi<VfHznimB=d_Ef>(d`GJ%-0N>0DkBsJ#Ao?9QU6qPMNy-rIXS
zVp=L_{O$Ut_xpaIi<p+`HC3zhXz|~-+wb?JMuG<N=h)ZZ+iGKEbjd=7@A5KV>B$o(
zKHT_z!UTcf-DSDOkB)F&-xa&NY$m97eRXy9ZrS9cU82V}=@{qSFxdVSG$CGSA(Qsy
z#YMSNS?jVhb8M@>b$zw|KKJhH$6Io48YM?g>+I<%iQboeU2px{-KDS7Wcb=6x982h
z{prV#3Q)smo^AD>yzS-h<F;SF`0{bTz1g(Xnb+g%@8<6OT>GlP;!OSj-|^c^^Y{PV
zwo&IasQs4v^WWd!cmJvRfm(-lc6Q6c*T?0Zc6N65eR*l=*_p=aHrp)A-pqJ?|NLC*
zbkL|f6EpMK^82;Vuf03a$gHNMbZClB<fYde86OnAXkvY^Z1S8rYnFOXU*$8?sOn*>
z_?>H45d+ZIH%jE*-WD1Yb0^-eY^G7_l{JyZXJ;55zN(t>=t$?MuV1e&?zj6j{d=`C
zD7j1u*;VpVdt2$YlP6AG*qD6W=32k3by!_p-Mag)udiRfVugmReO=7@{r`3~H8sV&
zUbJWtsImY5@B8|28SRaQkKNWrZg#u6D)e##BeTu5_Lde<Vhvwozg$U4NyXE>Po^+h
zPE_>i*4q2~YEyeIPEz$=_sRl1^!!{KGW2|^tloE)$;G|j@4eo(ru_Xqt@wR=rs>D8
ztNs0L=d||r_T7Jd=gcz8T~+_*v3y+r!{^VRZ(TQGg246t`Y}5Kc9*>knr~MN8t&O%
zrs_52LIWdn$%hAyy3yOtytZU;DC1CI$g`SlmODwsG~>d7*AjildZkZGJkBcL7_~Jk
z_VdT;Z*Nu#tNUd<J2TU&^3#&E^YhkD(~VwL@$u31J@5B`23#jjoG5qNdzy}>XWa9Q
z&W?@?JBy!}e0Xs1^t<Y_vrH!~Njp0$wtAuE10I*@aV^W2EO~MN|G(|;_I&nZWo6xY
ztn|v7$lz(Isn*Mste>Bodl}SIW8;<5Ffj?)w{KsOh0LdqA1`(at8cn{|8DvHw;Rtq
zEZEU>VCnm}D}$GVW-1aB6F+_aTzvKKWq<ohnZ@4I^+0oOdHesC@yb{Pcu&&-X}0Ox
zUiCH0Q+(GkUTL#4kJIn&Dm6Nm@%q}@@UOEN7?K?r?vz}*bV)_?_VQ%Q>DAItq8GVz
zX4}=R4qF?tr=k$Fus~8$^4I6{_M2sE=80RJ|M@8Y?B>Tgll9~6THD%otv&tj;+}o`
z#Q%jCeZ1T6eLXcTE$-Wn<Nfl}QzO?|3!C5i_xHDItOWm~DbuDc1NDW^&$C?>yL;QN
z($~u-Oc40_>({FvA0LAX-*fY9t3!{!ys)rYNLV;@Uri;bcvtnBGGYJz{VJJfW*FXl
zr@!0a^`B@fd*(@B-fTXfb!SH*s2%v)k+ZR}aS~`&rMjmWWE5zv2WXDv%ZrPkf!Uhc
z+N+CPx%d8jHXD?HRCc~=h|Q~$0FN}UoU=!S;eitaW5MOZIF9u1Yj<rveQ~Mynd{l-
z*wV{a2QGHYyuYtjD|FQrQT9hxpw%UN&IuNMJo=<JV0D=8&)>hZ|Nr~@>+ALS(49q3
zb8hR!?h2Vyay_>ErqzDef`Sb_hT*mC57&cgi6z{{lPo~<IA3%BFKzyMeNE)zjmgL3
zt{P67G-=9=87tDx&U(53|KIhuCm-)Il(MZV*>+pbs^rA$qUY83e%`YydeU*P^11BY
z!sD`_nbIlt^>y37U0&}0{YHCg<g44;*MsW0#qRxCS679ChAlv;HNNhrD`+s_&!0ab
zI|>pbr!D>Y`T6U8zu)a%Rm|RSdLg%1!)(8;Syxp&LBldXKR>s<rXRmAW?E|HTcMJ@
zUtU~1d{y=N#^Z9kA04flsN||rxu1Ju-QQoUt+pM07!Vc~)_0qog=IzY^K(YWUR({2
zKfCSjOyhLW<nqZ)I=26QJPr@NymeLd_H`<;UnRQtKl<?SFlek==XB6?z1W!3<?rrj
zp5FB305g9@4yb>-{&!Is<CkyW3+#-xhprBj>$i>DUG_FrUVBf`Q?LHi=jZ2NUlqDq
z<?sFUgzM{KK~vd}9zC)-bX>mv&%)T<WvSIXo?1~`R@~Z_yLzT^`l`am$8PN`UjFa<
z{{No4KA0OGdvQB||K2xt3=gsdL8)FzNl8RpeEHqo<=JOu80NhO&A~_-r)j9DxO~4~
z|DSjD!kC>!p!s*u4A0k>m!EgN&Azrqv;FYGmzS6Cj;&a>WXX&8|G%z>-p%FU<vkl%
zzN&lguUD(J;`ZzSHJTNj+bUuVmM>ejDt31n$RUp&Jp#>p#a{ilKJ@FWtD)=TY;*7J
ziCpZ~`zd1nq)A0r@6O-z^W$-OP~#@~c;Cx?zuyI)o~9f7T1i<swdW&;^lY=-ODh5w
z@A=m|=kAp~w&!kI#yz|A7c~6pZ~ym8>g$+&H9L>1biUv7xv%Wqot4LWrFYATJ+L{p
zH1W@smBFC#zT>jndwO{OemKl8cl`93GbN=vi`Zs@hQn%peyV!E_xqNNi%RQD*F|o2
zOFuVf=bN1j2bR8QVpZ@z{qCiwe9ebOP{V+cneD~u_4|U(&N2l}_MV+<9d2i5H_N7S
z)AgUC>(XVX&;I;4NY!gfz;wM>lhRiquI}!j6nD8(SpCcW|Np{yrOm!rCD>Vm%Jnso
zo3HFD%?@237h6|Xx9j)2-B%YlHs@>y&52xE>J6If@0Bog3SRCP`uW*eP_uY%_4llY
zhgw06mRY9R&q|G~tbOKMh4xCBURvPT3|dN{X=WC7Od|LGzF5$Dgl)OEr#-H8m=n8l
z3AgxlQ2Qn*XwsxflTsq5$yGiP?3K5_mka7~zv?x=7qGwXFKC`3bWKFy{=eU5g9i1=
z-rfSOb(1@ud1*=Ky^6=YUte5wetT<ca6rI>rsn3WyUX*ht_t-wG&G!Lo<A=sDG5~D
zfcje9V!A<7wL)W>zwgbwx@zjX{r~Ik*8l&zDqvxgS?;YRpuShe#YK6Ot;O`?V)$*p
zOh`LBYw3#@8K&9Sd_c|0T_r1-n3+XoW!Hjc;IG=*+Qxo;eI2xjC}go4?^NCBu=I0t
zE?!#dy*2l?+1AX<$F91bzkWUZ^Ru(TpP!vAy<hu%W!&DXuD-soe}8^%&A)F4T0^n_
z|G(XQG8PLO8X9E&#xghveQuazReFj?(&z|izQ3iVMdI|PO|^diudR(fYy169GMAW6
zhLe-i8RdSPq&^wTM_b=6@tk}ncl+HmCMG7Iqg|qBt>5n{R`zH95xwiu9m(I{-<$8P
z`f3DPopAsDeG%=jGd3R%FsB`E;|<@t{`AfYxe3~Z=a_@m#aQ;2N=izm9cW-&R`T-F
zvHSP$hpdUX*du3q3pAAkYP#(xOkRI{Z;9N5!|nXD^<sC;5K{G$h>wqdTwoDXob~43
z-rFEmd#lUWfBpOO`TVpqGYpqGHnXXjm|Xes`}gb*9||t73e`3)e|IP6yta|irPr2{
z$v!zbYd(Jb_;Ht>o!z}3KYr{uJ9#70z}iJSRn?<^e&7FZ7P>0Lu(7dmna4yW&<I}I
zhX)7MY;A3C|I)kr{iyxV&(F<Oy{DP*N}HMd|8;%;nST3!Gv0oS-kxWgduxl~(Qa{b
zR&Fs9)9h;|^7Vf{rp8}4Og=W_cK-gmEG#S%?S~(lvHN6Yt$KNP_x8@NE+dddPOV(e
zmQIf|dinBYT>Rzk`^&k-^-R9Lx@rtE$hAwv@a^sG=AcA*{Nv@zm(P0Z?@iGPTa&@W
z%<MbUDAi}aT`g#3$?^MY#>SWTd^{$-%(Yu=S<cN(Y6b=uT3TCY?tZuHw9gEKgDGig
zRd4>En5g{hsCc|d=;|<2RxS|(M@PqHK})@s)&BmL_Up?_HEr$JUG?G&J7%PwF|ASk
zVZI^#yc}qCUCzx-piW%anuvubC#$c{zP>K+?WD<*L8%lp^&Y>!4%AKpWfM>WeSK|h
zvF%IONp^oeID>{MvhMHO3mRetty!C2_iLqFzua5HbkL&R0_~konLX0dmIVa|i;9UY
zTe3t2l&j{~eCl*(czJd8bkIVozrS9uUw7O^FM69#VPPStA^}g6A5u7XX{q<>xV=@s
z9(C)-+_wL8LK(!`l7D|+j(jR70|UdKyLUe|U-<jy4`^A`(K1jTIXzAH?!3VJOFV@`
zSB0EhyZ?*%{hGy7rigrfb@g=a?|XZzUtd`nEZ5A%$iUDLeNtE6p(yG9zrR*BKQ?4t
zTk~?`y0W*o@|xY}{*PPi#=E`DH0#QQ!w+|?YFq|drhK25QH6cZ<XM%oOD%0|Vl*{1
z*G1Ox%UCGL%gc-EMqODucmDkOPR`D;o8N<$HE&m9^5C<WfAjtO_wP5J`}x8#efF0x
zB~MRJKmWRpiHS+i`lAQ~1H*^%<2DMG0umA$o^k32i~J5e$q|;2SkcqNv;Mbb@w1-Q
zbIslR<*rUr^%jwoth`yqz`$@q_T|f$pcWyhd)F_ge?k&u(e60Q-AS=;4m2`zadLu&
zyH@9hg-rv^=zm*Qa?YrFXXo;1I+2Uo<?DV}h4V8oG`!Azb!FwNOG~};rWXb)H9T=R
zIY~8iO@v|YjSUBr@9rvnEg~!X_Lr@dRn##F&}72d+2-ZC@%!uco||v~{@S;oi4!MI
z(%Z8zfA`yMuggIm-l4ZG@9wI0`MMjWciUFGGn`yl_V(7x%l`JEMMax#+bG=Lo*(}I
z-{07`pamEcCJ2BEY2Ah%dHXn4E|Ckh-|tR;YdGiby1d<Q%|h45{bidAisN;ncc1>Z
zV(M4|S^{>wUp~C3Xp;(PSs7>@pUTSo`}?@KxGo)NWCl%V96feySDKT*hsTAv<@Z+p
z_)&3v9}^RkNzIP}+rM8fgQn&{K?Yi9I?JwhS6ua5Q&x8N=f^ZbuCF|#YcIS@#nsgn
zG;JMs{qMiu??IzXOSre+nOFVJa&6RBub-cuf~s!N^hDCpuF9P67v1Gwo;AOJ1vJqQ
zO0E9$?Ot78em?c}jU9!Hv#zXIxMYdSJJ5LT6UUhKvDWVzUO1gN(Rn*>w{N$Y?y11r
z$K|Sh`fb16*g6HYF#gY51Ag>TTTsHI<@$IEmevn|*2lANvmUs7ZEbY%ZWe|ed0k?<
ztBg`lJt>o9Xs~Hwn8a@T=fmNhu}lmx=8TL#zrJ1{&8f)1;K?$<CTqtMv7NCj3^DA{
zrO(bBwyOG~!N|g((8(~#-PLo|yxXn}3=9m{Wt%U6iY<EVOBjH_bEaq`1;oK8LT_wL
zZkMZip*U49HVTw)bGP4J_V94Kwyo{mwRgAW-oCP@vY3^XRnx>IBzAY%)r*VWi&thb
zFfb^*|8Vv#Q=VA;pO5WXS63|sRV@DV?LZ4WUR_-cTJN9z_*gG!{gSHZ$&)9uE-Yy5
z646`~xY+IGlarIH9`~Am+5i8q|LbdOC$HDnw`5>o$cv5PeSQHn$_(nve|>coG`Xj;
z(!F2q)TvXKKvSYimo8liTG(Ki)N<+aWzblttBZ@rB#`wxc36NG{k*!k*gbC^XamiJ
z)i0W+I;;E7o1)U%+PYI$KX6ft3}5@Fr>E6DL2baOZ8<Nw<R@K$R4tyH)6Z{Pp8)a~
zzf!{!(DY1?A!zMW-Jg%{phX<BOtYui{dmCq_4RfC#>U25`|J1f$=j`&Wtv@;6TiDG
zH}}>SO>r%D1_to*`llCczu#H>@NoO<t=Ho&|M~e@)pJ^E=7j~0RZpjet9Y{W$xKjb
zZEvs6k(ZNOH)V=QYFgT<^XJd+I|Qo7Y+4wKM3t14L6al4KOQuLf)q5An{<R@sz#vG
z-m0%fw!EkB-@l)HyP<)>GpMS{3cSN+yAG2F-`P2q!Tt9Cc9gxj@o?ASi`#OeQ&Ur4
z#{d5{-KzA}k^=`EJTKkcoNl|#zW7;>%FbJ$Yyz&>K#Pa3t`7hHA`aA=_nm3vI@>I_
z$X53BP0`m$?0hl-9v&Wi@9XwxW?oZ0ZT0uRJZJ+@;;|m^sP64eTefV8S@rCFGs7h3
zc0So4508%HpU#}|kxVXmcgJ$7PGk^hD87wX+U6E$mKd~?!zQZUGj`otP>{z=_M2<9
zGFbh)euH`5ofT51Sx<so>-lY1wc9~+$-cAAGLQGk=AB;dKVMH?ULMr7p0uRw?XAp%
zO{`vieq~!Dx8=;-mVbX8pRCo5C}Rc&h6&dT*j3u&Dju@x#_fst`uh6y%l`IjFI)(y
z{rPk{sILfGNiU@8<uQqkPiDo=;^$gsW?_GSeZ72gvO1_XuztTM_~XZqJFA5l7#JM%
z9`kwdnPyyYu>bR+IqTY*l^-7;e|<B3{#8&laXqfu_x=9=`&P%U3|hLS=&4ueiU3E@
zN?9Qxp(~qGy=%W-4Y&CV+T^v}=3PTfD`;%xU=wS2PWkQJ?U@%BxtfK5wnyEG*})8|
zwrIL}3X<nXt0c&jDlN9B4Z0BCw=?!YeBr-8m7p=+lP6DV1ukj<Ek*kI>)w>*pagd(
zC~udw!tHIjpiN0vmv{<;O1NHW^RQMf(Jhsq)1v$K7e02|ns*npw?!*pK?7*ot^9uN
z^~J}Yot>?%q2aM`;X=?1WS^XEmUk^Ezr>YYW}N_9fON0=J!lUXXonPNhZkt{;?Kw9
z`9C)9|Mg1y>gsTRP*Zq<qVtz;xARwrt`7V4xZge|chcm^pv?$xZ*BEn?A8m~gt4HN
zTO2$GQvU7^?|RVY!xN`J<?LUoKEEbt{oZf0oSdBQOv}H&FP4*&lZ%66f{LhaR0wEt
zhK*OM#QC*l<)<Z}am=u_QJ^`no7<%ERv^cD*9wE0<)=Trk)81O_xIIKtz4jWdYd+F
ziaDK}oD5p2UHkoR`K^t~?Vz!T?f0s@H*VZ$zGYtK<z+8FJUk3qZm0rUeKp1K*y6i;
zDnEnDf$$#_mZ<s8S`oC=YnE;GH{P{iZ@m7L!!XmneqY*|8K8Y$FXsRMvs_F+PRA3p
zf=5(PaN#oF*`WF1st1kiA$zMzedkzwY`eBO=cbXUR*1*%Z*ReS05>E!g1CFDzJdyO
z)mRQ+&~nbRvrKKbt&iQk%`Ep;iE}onl=-yFM%qE;<-F>57pLh)e>o!T4;mHR^?u*)
zk{1^gedk(*zI^!-w8Z_=<;$k&=VU~+!``%A`*b^hzoxNqFlZId-tYHTSAKr>a^rEi
z%k1(s3*Oz`?LCQ4#zMi9i=Y4d4Le9j>eQJtdlr_0l2>KqJU)d<PaZ#BoIbD8ZU4Vt
ztCf_LN}kUxUseDApH=OzEr$*rdh+;jvbXGVzqvtGRl6QNer%d{MglaboP50Rs<6M!
z!kNbDS<lbS_44<huJZHu@9LcQGMgXeFf%YP-0AvM!*KG%iGZl6SzV&q%Q%JAUVyf0
zwed=aEOcT8jpDwx=#f@5FbJ3g8r0jV`~J?(%{_)ud#kpt?%nKt?dZ8VmXEiADzgV+
zQ_|-*l|DGYSo;26toL-isfNcyE#B?>owqh-XAo$;RRbe4Xa`{SogIasA+Y=mTUGCA
zSM>M)Sp?cjsLRjIJy~VxvSqt=fqQOMc8ZFMpFV#+eemMFDJHKcrOy5LpPzw&;f+D^
zF&@xdPHtpWRFq!m=kF8KnNNVc2^!(NxhYjEXi0}#j|8Z*1zI<EYQFt`(1wF+YooKT
ztO(ro{a!U_)adSo<vv$e1UiET&n8Wt9J(>d_4=p3zrTC$5^(XFrn55XXjkUpHeR{g
z>!Y{(A?jP_s|*YbKURa<0)BJv>}R+K>DNs37X54c<fdN4{kq?4=T$zF1nomAzf;%_
zT2Trb<eVN~SGbiEvMv|2*C=vYsq<^l96*oZuNRB^?@aTbV-Z+aSC@5T!$OsnvAfHn
zHY7AonmjocwC7~m+uPe$JGb+hZ*c=Pu-2d6T<&n_@Zqg#XQgaE9uc0j#5DWbiA_3F
zH3APU&YfwLYLb0zY3#Ih>tDRc0L8^*b^oxmv}ICeIV<w_{dAjO`)wv0pUjI@*$)mh
z&ay6Fmz11*b$z@&X!!~!C+Duu=d4BL<?E3WJZP_AyIhsW>aevz1qB<R6Z|VfRtD`1
z125#<lzJMpK-<g5C*<a)RMWCI5no?kK7Mss$jTtlvPDpLaqo{u-KVDO&yU)cv$Cb7
zMW*jRsOj`?pHA}i<R$-_?$`g11x@74G)@oMU6y-wb-4a^?_CT3t@nQzV#vmF;QnDZ
zPtz$=rYr%k(lKNxI6LQh_Mh^%;IL59)Y9_uxBHorHyzYnd0=&Nb2GT(^5-v6yQA~E
z7?OHG`(any+M2yO<Km)EA3uKl@$u`~%l;yurtktAJN^#P<Q{0qU(?Deir@avhAt7!
zNw-x&_Wj__>tZlUJtYE~THc&~{@mLjkl$jOXD{LotE$=sn(4ot3KH7kX70)W8ezS*
zK7KxuQ04!>-$Ajt_uH*(tFku{dDB6e^MU>@O(u`0r>1VrzOKhBXA_Z_m<XysxJ0#{
zd<))D@bHcvsGL0@dPk)B!tJfu>Zdmq?dAd5bN$6K4u$zOpFH!XgSZc@c4+QO06Vq%
z#N=`Z&?uAVCFOn_rPG^Y_Q!i(Ul*I75(!edE^r=?!pDyvH|cnT#%e!3J-z(Lk0083
z$&q5<Ci02LpHdip{{4Pm)$`}4r^UZzLEZ7Qy8dhvHl?19`&JGz!(5$hA;|gI_O1Wf
z|LvW<-SevdkAHmL)pIsy^TtFE9s3|}Z&N=FW&2A{G=yb)r#Q<hb*cCzE{_*prqLxj
z$-+u@>STFK*BOt?KdnBxW2UUs=gof&e%Jh;@Vfe%>CGGW=D&Vaxc_e1?w$AEpEq5<
z_I7UNo6kG##2FZl34nLZ_b7sQ*GoK}xc#B7S6JAzXJ=<G-&_4%OIzD}TB_)+atj$y
zZIL^R4^;UUR=74S6RB}vfSwCb^Yv=@t7~g#pPOU3c)<dN)|QqXvX2Waa%O-++QGBJ
zwE?ue%QWlCg+;F2C8u?_->?Ol({TEU=z2y^U*D^j{q22gKmikXPMc|oV>6po>8mMs
zlR+XooZ<u(9v|<&er09w)M?YwzH5L)*ENLiVM{sMB??;W0$P%?F4j7>{BEgM__~;d
z$ufNHYX0+bF1LV`b{*Dcda`!=y`sNAKcBbP|0KZ#s--^E#0e^}va*)-gVZb#sW_Sq
z4uKfiJ&$-!u>St`_VOfE?=AKJ>pU-gy&k_Fw5jpytE-zUjX>&;J~U-C%DG|SJJ06k
z+ajIimsct}w`mv}UR-t(BrP&MJf_Js@eqse9E(7HyB`Zc^GT17_k;H8g7#U08Va4l
z>RFGDbe8plMywtPfo$!OGzQIpy_oE8r@7_cnn>f?KOc{uI(hQq?)Upvr_ZZAwu}>$
zKt<ZaSv;bmX0h?h)m;3`Cu;?odYXQ)lYv2XWASsp-R=wxK?l!o)_yL^7_>IZH23bV
zuZw<z)|*8{%mAr6I$7}~XhPtoEeFE^=L*+`BS(*db{m0a=h%3qmUvCo@|*;UN>HN%
zw1}pSM>6U26b6R!<Eo+_vy@kEJiD2}A@fJjrHtL}AF@EvbFB9=sIEW6t)FpbhT*En
z&C66?URdaS>iqd|AD^CMeX`k~r!X{hXX~t7dDof2LGyvo8ttc|jE~;GUoWa1_G0sS
zJMAxa3ZPwX%l+nF*;$-!DZ@8=IVheAG~)yn#7kaYa*f?pvauSJpctl~)V{|Kl00zr
zpz`^KE33o({g#6knFam)^fYvR++Odvq^AWIUoQLGOU?qd!w)?DaDrjy^Le1t2%eN!
zaod7QtOs{(j2tFSo?QRk5EN(ck3bTD#A8v$O{u5F&dxSpf8iEr)%Nc9`#>wfFF!ds
zId>Mw0gx0eZx{3V`T26&d)xEp?<#w{s`mFc&q-~3va4QRUVhtD4s;wv(x)zlo4ZO^
zgT?`>{yc1#Ulp^n=+>Uf%|SsySJp<G@BMtv+RP8sS6X1PN6Eo&j>W=Np{sYv)&G1t
z9kd_K$=O-e6Ewq=m9;ANF(~de)YfxM`0%0N?VX*$lcr3ZxDd2*r}p=^b$>4}_urj&
zlN(gn6jwgUt*Bq^JzWp9lDVj;Xv(BXO7ZdWrEhOt-MYW@b(pJ*%MA-fkP9Du=wgtx
zuiFFK5qWl=ZS=u|2SH1)zrMPv>Z$HO@5-T8?yuAL|2g_h6J&c#S2&A@gG0l!b91XN
z?rmo0KXw29{SP6a;PX1A&Gh8E#azG8bul;JfkRZJ*`4jgjg84q3oJ~su4q`!_3M?j
z{x<1+p@j@+gG=K}kiHnb_SDE}cb)%CyZjP#ZbezyHm#5q0c)&dEM@rST9=<YP?DN{
zd71C7zu#`Fo}KtbefM$3h9HCRAbn41Rnx7NVhkF*&+FIa-q{i8JNr}d+oFmmk`tPm
zn(o(vV(NhP$7hltYkEF*G2GmqKVM8guIA$3qut`#y1HlYfOEWFw|iXE*XZ+hzt{N9
zvsrm=uC@5i|KD!sYg<@EfHs9a1ZU|fE#Y$*BX^gry|p#F{Nmqjxwo^ft_o#S2em&7
zEcYlmY}&L*L_(tC;@^e_23gyxD-T>i_UeK1>RhYRFL%rD$ClJzT@?yi@Bqq%3=A=R
z>p3ROv#kbgDfja7(kk)32Rdy4w2RBWejjK`Qd%99$^&HLJ}P~gsO%0p?Lx{Zr32LK
zUlFM6dFkEV-CsYSw_jcQ`Wk3$!`WbvYj%jNw_tws`t|Ci-qT<G{eC~Zq-2YcvGLTI
zGgrQNkpUXJIXzu}`ug?j?<Rwlv#hsZR`T>)9^7yHZH8R+8^hi1ptvrWxkt@GMbq3o
z95mNFQQ7^<B3JI#wzgZgpz(?Zp$}c&8&otkH9a3be3*4{Q7dTGUGD8|zLTcRoVoJC
zg@ChjEH6I;msg-vb7D>8W|Nc?0-!yH#_8v#q(-jWd*MRB*38Ro<&K~ctvwClEGIxq
z*_L{XgSJz>y0dfh?SF5#-(M$R_v2t2EDl&ava(ja+x>oD_q*_wL9OLZFufiH1sjZv
zjrDi!Pd?6fbw%J|r0`$vH`k>0SBb2B-JRU`pr$*tpuJ%LN*fK6pn2fjT<hg0PI!P?
zVMP`)praA4tPa-)jRdU<TRZDmk7V-q8Q?fQsLcdg%>&x3X;t=S#m~>rPjAuz<(_VF
z{jl@%Y`5m!wTiwctfHvs=(jxBca}-v?b}<kr-RfUIN%VvHY)Vv$B+A~B|)|q=zf@G
zuCyj>?JUr$_r2fmRfAUWg$4vH*s#ICa_%>ikgBR(ag|R+Sy@;_c3xi<s@>Ys0$N~k
zb!G7KFUO?wGk$-28@0b~Z%xgfXSYGM>J+X1|I<H!x(u(^?e;rw|9=mtZ3*6%b2ixX
za2xMs`F|hSpFV%S`);GQqN3x?n>TN5O6|_Nx=Pg()Uds}F4kIAUHx^Z`n(OvDWLMC
zOs<}D+W!6fYiepjRtBl=b}#(-?RNgwjEhRXvrJZ=`0Ls&rfFt&O;mmoXwwX+Sr3}6
zTWJVNM*WXJGAeoU+kTlKrWX_OLiWPjpn!k{%jefcfri4)n%{r3t^UOYMOn)t7f@f|
zc3erx7PI_&IY~Yso0Tj7s76e>ve=y;G-(K061%_dZ^-t%*w8f*7vJt!<~w`ZPo2xl
zd@naLvw!(|Jzjk0{D~74LEXgi+uZ#8*Ec2~FZuQ+a;kp(KA-2Hyks*moW<kywY9PJ
zaa*&d-rkoQS!5w&RsJq!=DET*Hw^!NU0;87hG8=3a1EvYljqJ&Q~CMp*RHoefBxLr
z2W}!2=zi*Am}yzOOop%hZgR$z6@j45&1`%!6&I8B=FB{K_H60x(<e`AmVk<%g0&yJ
z7+zjp-hWqF!_+j?IPJ`ZCnqOQoi|VK<)4|;=gg4-Z9V+`{e5^qz=YSAR&!5J`n$fT
zhbMGp&{BzXdo_<)|7UNVx4#Y)5<Qjs>;9~7F5@W*{rH06<jIp4)92TMCTUk@U0v1H
z+pGI&tEk$N<;zcR(gDp|fz~eHu5)o|VdIxu1KRhPn3#BLLt^u7!`Ii>hlhlO82;Oq
zIO$)>Q)gxdh6h|CU%4OboK$tw;PlnQ$;?kqOjO?Wdfo0V`S<Ov-(COb@87Te^?#hd
z->Y8#u~JD{`RmK&^LMT7mooKQ?ms^)C}<LB4d2}T+1EkK)xUfxxxTg{d`-kc+v;x_
zH#Q`?JqOjcHl2q*wN&30OT4ha5!BcRZTB?Gy#)%E$H#g>ODO7oy;R?QytuQo^Ww$D
z?x3X%*KZwcX1}^6GZ?g4teKtv+REVNpw&^JU0Q#CeHGu!k`1pJ1k)WDVr2FHEGt;N
zWYhj&MTRMRKigk7%e#~Dgl|o_a=$I}rjnOIM~@%ZHZ;7rHEeHHsqLo|%AgrhDbuW!
z$0e<Qzp;MWntlBmX!3WVb9>g46B9uTG?J2&r_Pvh;_i9|28IIP&o>w>3m!DM^+*I}
ztW7;VZIh07JHPz584Qs-i&7`P2JMZVr0UJ%4{F<2nDy7Hf4Orf=KAlnn1Y9eb#?n>
zl|flzhm%}2o6Dq2mo9C|ysUQpv9P+I$0X1k04qEDZrSst6`+ba{qqY3N!zL|po#Hq
z|E>i4i&o{lnhWl+#Ypz^PKex`cGDJAem4X?+sJrncX|G9cTnLJaLVSJ>kANTogE9P
zWx<fl0crxFH}suBGmH!dZIJmL9!8K+2Ov%32E$Q}pa2~1fg^IcjaS;F;DLjyo12z`
zg2VOr`n_^>KNA1`c-)_N{N1gs-k=6~Lc#*jXzY(46{%@yw+u`f7#JQz*1VBB5WVNy
zt?a1HX}ymgJp#>e{r$fG|J5m)!B@6q1}|N*<i)btd6QI@E?*8BbOlW>tzN%xRq%4Z
zm%ZlqE_{1?du!d_s-HhT=&~~~9N5}j&ntd;L*ikR{Cj(x7%%RvF27rJTDR)!)$p$m
z+vU9`2?+^JnLBqaXdQjn+NeoOKyxRcc5zYBCeXnF(a%8502{{X38J7CPj}D7U0EL=
zZ+^dKbJ@E)FQcNjWK2v-PLBPk=m}c!e7KGG>q+(b60^lYYbjh<PKbima)8^~?R>JA
zCMvs^9G5NMAuBE`yY}pC^VxEsA+--0EGI-~7^nALx_tTSVt0PeAUC%*6-^tPJ8y4%
z_)s8gUFMU1ex9k7GAMjJIVPOm0veEzu?PU2cU4ofM@7@xI(pKR*RNlf?U_G6ej%uD
z+mJ2DSR@IW;`{x6f4riiB4|KMhOb=(G_p2n$(=hf+n+yq@<hZ6RDkXfD->TN1X@!A
zYDY{~_Xo8GR|PI^%YJ`oX}GxF(O>bBl9Hh5%v00#<9qg}HZA$NKl1g@*Px&|GvoW~
z<NvKPjw^(VGA&^#DlQh4mR^13N(ks6gkC9Atu67J(|lW7TQd*0@#dY6-CwtN(V|6N
zKh1e3e_5_AFTudT5WZkVJj3~^S5CJ@u9J&t3iV-SWd%)Mf(`~Mc<AKn?k-+=$C=-D
z$$9(#F)v@fT(?zJJ1pb;JX?^Wm4%>!um6bTge1^L4>A3?HSBT~4l`%YoMl~}xA3q1
z-<N+RyT#)w9J$5yLSA26Yg+Lk0knI%v$J#8*K5&Nm;1|0tATuC!_FAw6TLle>fwhM
z9v$u8TJbSy`(JLxpxtG;wV%(LgG>hv#c_#hX_%RXb#`_ht@#VmSMXKIp)2$0si{Zp
zwiP};7PTqGQ_>GyOsmI1CdEbzKX7+QVzg!;yV~@SJbC)`<qkpR5XgFP&@2XMx%b^<
zQ1aiV<Z#O4{k^@Q?Kz-h<h;DRCiVCCgT~2Cv#;H-l>$%f$?s<0Aq85X`T6<z>n)tZ
zU(Ohx_m~9Q=i=(-mi6PqL(sg!Sz%Cp{p|sdhh)T#f`v6THCNWh+h3oxe*JpTrd#NV
z31)tvlz*e0L6bRpTTbBNHeOKyfq)EKE2~>uL1kJ@H^&5{2@@wS{P3Y*`_~U23L>X1
zb#CXoX&?%6i9OR2o|N?T)7P(G&%Jy8{CTLB3c)JL6%iX36%`lXy;fXQ6!Y8l=YNBr
z>(;n2GaT0YWAi)clAkp@V?$8Uzvoi>1NPOhct~>a^Xq>yTHVvb;|W?T++7nF6?JQU
z{j6`V*%@MV-EP}5FicssWs3=D7uh?*Jwl8@Y>O5x`trX1e>7-5{)^L>(%08cJ}l7C
z(pq)mdFhJ_j>XT;1m4|Ms$Vq?)T;k>^4z(wsHj<1B`*@bYs8&SjGUJGT_Ak+*VorU
zQQ+kRJ}^>sZhiWf6DK@cTU%f5e!t@gXukZq+PQ`)jW1qg96fq8^T~;cpqc=*viZrA
zl(+Zy$8SzMyQ$g+)c!V`!>FlTSy>4hxd0snw`PrwY33yt(7@#0@AtC5XMh@QxzMK8
z2RqoHs*OWj+&s`sOVrk^llSk(pPg-f{nOLaZ{<J(H5#QX9qcde?%uBEJ8Ox%d~JxQ
zr{|}S9|M>B&E1lAR%*99sC@DgUC+4jW^42}zZnLO=WRasfcxYVCr(@yw|7_A`ncTB
zpixeTmk)V5&Wh>9XvoXUe|>%Z{MKi$U#~tcUmufweO+i()vn&lpd`4on_=V4X}Zy%
zqfeaP&(ND&uRoFdH^_fin;14my1BI-I(+!<wZn%Gr$$cWleJ1Y3>w^VxT)ZfGi~l%
z-T3(U?WOki_Sfw|t>LW-4mn{PlU$!Zd$w!s^CwSsd;_g4S<T9rwE4q_f>hAyUGWjC
zBR4O5IS~{%M$Qd4bhNa*s=vLt`10~{?zNy<BffU$z`#H=Ur-G<#g6Gn+TC5H!F6@}
zmif<r7j^pd>ENQGO`r{;QCqWaT7X8<19sKCk$VsYs+)K0u;`Vs3<6C<{{8iJ>YO=i
z{{H@+eQix-SwAS<Ptm%^d6)Ug)2EqVUR(ri{@b)^6R4d6T7?4Y%G_NH4v{Ws3wS*v
zh?_u-mhd{G(%08Q@9(R9E4MhL=EFhuBCEN#wqypctUWh9uFBI-{r_)fhTR{8B^dUc
zxVN_&G}n8#;4m-f^hK@kb!$N98fa>IT3T98QfWV&_`0X|*O$PAgoKr~`!4;flHqHA
zdtaGh$F!d}Y#A69RP6ilh#NG6RaaLBI+rpfWyz;cpSDze&El1}i?J?ybHV!kp5*T{
z{xHikeAvw)!0>@7Gcyyk0pQiu)yvoK{}*+2RcP^B+n-M+gXW(>rh!JC7F6tD;bz!#
zAbb7ZWya~}Ui|%jUtdIC+{MKu<H7<*S37fUZEw(s*({UHMW8W_bup2k&A8igZ{O*g
zYn0lhq^umeGDtOaWsqz6y~^cw|9&K2|M&9pa?_L(0#{du``6XgfzmJN)FjZssxMxH
zx>cYpmv<{3_kQ~RJv<|0#jf)A>;C@!E?)U(rg8d}{q^;&ZEdTHo}PMjclUPCk$Yu#
zCaHRte7{?+t)SrG=;+wh+k3T7)>_Z<{HD~?pp(5?TUs;>3<AvWRV;Svl?q+7o|7TK
zW)34GgZ_t~&*y_qvjiRR@v->(ySuAFhg@`ZcL(pS`daeiL*m}w?{;V1-L<vs&5eap
zrdb}7K$GVOo7q=ae}4xWf-5R2+LC+QZ0V9EE8P3#CN25*_jmTiMXsQ3H)y3QXz$I}
zS66TCEM5+3N7-Hmtt?v`z1`2Y`di4`TU)12o3;$JaZ63j&ARN(g!%L5zm7P)3Dgz`
zjqZR>=XiH_w`u9C5YW~;?eKLavgXy_a=yO2>@I6vcIEZ@{p&#6c`h&W4F>Hwul$?_
z8Vx!T33BbZxz?ba*N>0&PF}x$eNb@l*0i&;gzDEbG8|1{WU#q)a<aN^`{BgWx3{)N
z9KXIc`g+xyjmKm9KY#jkr|;(e`u$IzKTij(vfcXaxc$G2yPi&quKQlh&dwg)%*Olc
zZt|}$FOyl>*#5mUw6wI$%huG?oObx(hG%DHK92JC^V=rF*Dfk6n+qCUx^}<fG4JV@
zB~jht`rC9)Z}OXOm)qLX62Z*Iqw&SEU&b<tm7P8M@9*#BYxjP+<UQ^3%M#mpCYh6-
zmRPM#KHm5D-5G|4O9xdW7#=+In`fixIlVT0<)^2ocmInC2w0GOybn~If|{-+)wdr!
zNRYLu2#_|*+415z7aw1kmsgjOk&#~ZH13+(+SvMY=g)(Nf<y!b7e09KKq-Ic@8|aa
zBSD8f*w%eIsUEs6#uBt>Ytj<Xkm-?5;a3+Iw}Vze|0=MM$-1^Ca-p%RYpw63FE5wR
zKecI%_OD$G4Ab2j7#iBSxws~&%(W_gwP{{{<TTLvnr*z&ry$2Ug9Z&jCtuCAC_Gep
zr$bN~bmA*$S4Yl`0A_Z+lHEKnzg~~O{_XAU(z~VCS4M75tNQtL`qupW`-IL<nLK&1
zVe+vResir_)2s>~xh$Ny<a7DeRq^}l7H;*Ls-<aT6O);l2|7_NBy!r)88akWTU&S9
zfsUL_Jw5H^iHXYMbDutJmk;X}(*?B*K)Y&etG``oV&(1-WYAD%;b5rPao~W%)isg9
zx3}l-U-MjDMFlii14{FtGY^(}PtW@K>FKVQ%VviJ1U#^McT76}3Mft1|Et-Wb=9j|
zOgHHCG+odV%-wyR-QAb(?XCWLEjoW?*xD#ib$izQ{+jjseywsb25mnC9U}`mWtf#)
zEaT>;R8W&>RmjSqjAf6sG&Ck0et6-|&f={#KR-FipPr_BIemU@*~RC-e*S!UJAePx
zPft&a%FC~RzyE(6XiE9k_I&>q1_#Lpt}hrKuqGuZgAP(!x@5_eAFVIy|Np)Z+STqm
z-)`@PUmqVI7Zno=%UGLqv<sB8V`Aof`uzFo*6eUq6_pI=@Q%vLs;{r43=$eZhwz;_
z<8!y{cCMF)M?gEDtd~jfe7o8&zh1B3eXXdtxO>m$si~2mBlb$q+kW414KzX4)58PW
z$TMk)blwifX{nkzIzFH^n%`vpYpbcb85$abf<k-!o<*SJinPPm?Rj&aok2q?-GSi%
zH;=qs%)fvCsvdQ!ckP+;V)^{KprD|jiRX30*Uh<||4CdYV!@X$Uz|W2|Fyr|IDXu{
zSK549YNS>5w>4Z`Trun2cPf~egqUVu3(3pN>)bc5=;^7Qb6<LRd0pCB{JhJi?$?)>
zr_P@*x1DEIx(YP1?KjuTbCOlb3(x_Uf8XZUYnR+%ojG%+_*_+O?bEq$uSMriO^sCj
z2TIz<Btg}Lpr9aV*#&6u)im$UjtkZc>%ZSEkJ?eN@YlDu(NBt#laoOwGl5Rq0d18A
zC3VmSF!MVF&I=!d3U(>etQD@^VxV#!R4{>#(b%|gBj~gR&_ow#8A0^+JW%frbXsxh
z>1m+8XVvGk=G?XG_Uy4yRZ-b-HfX7rD5z=z742_sZWa|0Su#6smuL3%byvGYwMC?)
zqMlrzFn#*+ZMnBsReyhXYisuO*WY$++_-Vlx%g#fxwlM?9zVW1^YSuKhCX!YP|1S>
zjJ2SX4Q_6F>dKt^=ElZf-)`rZ{{Q>^^{?0KuRlE84mw8T>dIhu-RNz5p43Y-IB?!9
z{jJO3aB}IgWl?{Bf8Va8q@-hSZ?CPPaRM|%x<)g2S;WqrJEx^ahV8BTx@KSP?_KjI
z&z_xa`~6Na=$Ho3=|Yj9(}1T=nv`_($dQQLTU!cc&6AJufM#vNA|hshmes6wY-YRm
z`MiDpT&vPko7Q~Z{#n*AsipLG?)J#3+Tq)nn3>n!&f9&q>igYt?z1<R`^%qxSt9oH
z;sQtJ)0=cav&z>V_uJ=%t`0lP#l^MBs`ORL+nbw@=YD(gBn4CguMS(giH%1hA#`oj
zRgi*5j~}mHvqoq8`}5}aYm)Dl->(hx@aTB@{(U}Z^D}4z=~mFlq@n)aFOxup<Mqc=
zwZo%gcb9F=y1p*==g*&!TeGiktNQvXb?LHYaVP7QGiLo`U|^^O-4US0aKP0<r#t)x
js5xcOe4P&CjDO@S`j{^UM6C`74cmFT`njxgN@xNALM^oJ

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-11.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-11.png
new file mode 100644
index 0000000000000000000000000000000000000000..0e251d65a94bdb492f87901ade6b357315b58be3
GIT binary patch
literal 24791
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_eA=KR<H|3ChIz4xqH&rONqI}@De
z_s`ng({JfBDVTF%#3E)z&H4T=DhtDwG&_09r(Y6M6b$Nf{w2a`c=qNT>DiV4{(Y$3
zUw`l3`;D#F)waKWy2<<P*Q$MS>yN+Q`+axZ_wTQN*4XMM_XsjDFfiOWF!3@gh_Rzq
zzyU<xXk%bvU|=|4#v%aXZc}UkQ5$#}Sr`}?8ge-lK-?T>21W)3h6HIQ4iNV?iCQPT
zK6>QHiHAE({}q@1`jYwe<z@GY6DNN9{CRSJfB&|;yR$B*D$WjD7o*vJcwu;4rRs9;
zj{@T2>g|UYE?J_|U;6l1?`8XcANil2ogL2C?)>;z?_?EA89vjjD<|Fs8Bd)ZAJ1TZ
zf9=Qm5{CMjhaVRF{`mE4Xhy~gDYKjvn!(GSlvGA0MNZQ>T@*bnT0bGK;vwta-|u$s
zdcAJ9Nx=h$y?;KP)(Ts5BXoNq+nUq$O-)T9TeCv<embRXRsC(v^|wk&N>2(bLKZkM
z%32mZS@rwg-s<vY$LE{n&U(G$e$D5zq1m>TpO&=oNG@6xx>`#^!-J8LQ7dxOl6O0w
z%h~?_^ZC}M)YGBc&wEOn<y?5&Z@<oKs@6(}MkX!}jsO>zmRno1ms=J;d-3RKw`FY7
zw2I$09+%F{H2(T#^LZ@;gMh!kzFxkt&^dIupX~OxZ#I>`kF%8FD}8-U_p;f{x$F)5
z?eEXgV>oa&J#tzbpR87L&!x+kw-!J5tNr)$dDPCLr9#5OvG*rE`lTDQBS2I;?234N
z&BUj<bHtNkcbA2_xU}>b-r8TkUr0#Eq~t|F?a!yvqc*4Y*3{PS%`5-*CK41fRsa8f
zH@^G*s?QvYK)!b8V-mhI3><xDnS8wU?m#2+s_5<OzP-D<y6EYtmlNIP0v{e~E&cPO
zP*qLs)!Xg&!|v^=6crVn`m}ia;Z|<(E4$0{Ykxd!|Mc~1Xfqq{l|`=HKY#z$wzQ1A
zU-x_Mv$M08Z_B-%_3h0~%h-3Oy;7!L`ulz?@|vRYa9hp8L#>;1yt&2oLM|?Hy?ZV9
z{=V4C&(F4QKC^mN?Cx#ba&Ip?)XM$5M3bS2fstj0FOQtfjkn)Tv#+hF`}+&zgRA@N
z>!)f4tF>$W&h9a^jBN`4{r!D-GaK)}OWO(y3x8eT|L^Iq+AAvpR|PHYGRwWSMAA6z
z#YK1due)M@etK$}c}eB#+uPxy+F@s|8J54fu`qOXn5LOon5L%YEc^O>eKMAdlw7+i
zw#eF4Y?w4@(v`i{<-Riv4krIy=-giN;6P)J?0r7l>Tg$;cup?)ez!dP+#E}-_<eia
zXGd;Md-?gi{rSdMo7QJsTqMWnyz9%o;&uCjTDe5?s$!?_zV_T$LE*r+Sqx9)N)9sR
z1%JO&+^-e7N+r2RNLYC9w#ZE>owLmI*D1MnX(%W-JUu=AdIKYK$)_it{oCySewl1l
z_GZP26CSKAEE+mGK37+VhwrcZJ7wa;hgs!Y|GkcU8}{`^a{tP}#cu1Yt<Sx4wzIQ~
z+L|?0Mbp+c_VKaa;IFT)iV6uWs`>dz)5s_&_tut+n^I42`eP+)QxUMY>T6I+%91~S
z|B8x<Ed#~e<z>EkZ>7v~UPvw9lysCU-1qwB_xl1CI%Qp6*1N>}Zo83j(G!o@9R-fe
zY&<8v8LIirP&mEm%Z=oIO+7uo%*@PRPbT~C*%rGwtyksc%=CF5ckRo#xG3&@-I8U?
zvYwonxGHMvs!z|)uV1i0;p*DxaO3oIUv|y^@}-1V-Y(|p>FMDP4h^TK>8?K5%&x7g
zt9yI>OMd%53p^*QX_}aXcu&*$C}pRz(z%`Q*Zcba)o1_a-rC|>`}<pHNXQf?XJ=6f
zi4|O;S}%S+pMSkmSbfht@38yr_iMk;joOy8GH9unrh<aQ!-o%dJ)c)?W5*v}*Ve`>
zt=4{cVgCNVVaFu4pKlIMTYvj#xA@nC?D8w(_EvH6@qrS5>2cZe74H3Vx3*?aUwyZc
znf=Qt?e$=Je*WqE_wV<bqOtJYT<h%H+j8@M%b4ZNI5kaI`}C$SC)MZgDAoP*<+8tO
z?BC7%il6(HzP#kB>OHMQc6s*ob+>jFFL#fA{=EL`s?b^1<?FJpuUiX>BNLMlS?jWr
zRwIU;+~p1oC(fTgpL}ye;$f4V8wRayZL3_n#kjb+FJD_5Eh;a+-nCmS^Xx3sQ}gZj
zFY$i3xa{q%A`6+UtE;9eDJz%0x}y2^&d%V+$NR5$2r9?iwa;_e|DIj0;y`Jku(0sr
z88alV@9OB_@C>@XF4na8nNR4-AXiYCl8~_A+xz?LudWWyJ~>G>>&}jkrv01K&&#>G
zyT5*LusQ3>iiuXGua?yQ{+4-ej%C!2f`y=b|Lp8+?_DBYpz?a5bGw$3l2c(}Vcypm
z{^XwP`zHp^Hp~68zW%Q_x0ud_Q&Y7!*RZSE+Q!bW`?ZowOlJkVT!lmZzn{y0eSg2+
zbF$jYR`IwG8S+w6S}!lfPTu`)m$vtDi^@++K!(fL{|UUhD)cg_815F=&pJ6t_0^S?
zlk0vy74Pr9Q1<p#=D$BbK{>PP`@6MUwwU<Nvx&6-`z3f<U*%4I`#%BGQeU1_pC1wt
zaU=A0+*{MKSr&zhgoK2yEO2B#dhFP%M@PH8e0;7%=kHy5v|Bv;?yk~P)Ai@Ct_{22
z-Yu>l)-9$RvLV57Yt~gSRj(-lUS3_Gg6res<Jl)BD6XrG`ze`qW5Yt7)0du{oIG{P
zlqaw9D%YNmtg71eZvX$f+RtarwPJT|u_}MJhKZFc<NQ2ZFAon;{Sdk?#?tfBs?gP6
ze!X75I`ME@)r*DgQ|#;O{(ifi|Le`>^CtEGYW{vW%nvHtR?nNP?w|GM#>TF$uA<fq
z&+BjIZBIPRW}11)CH?%o(A8mUOP<dy&-(rC?JTR(Rr`KC;?|Ac1}ZqdSLoiWes2q^
zBS2{+DJf}7-d(G+vrN6Cx944*rW?KK%XZcTW#$L@XE*6QF0infwmxR(r5`_j%xGv}
zDE{!kaeL|M>H6l=QfF3ueKj+9x!=yUvyD=_HtL+V`F^K(UFzT8-_7~j57+#BI$iF#
zW#OZi+wTht3y(c4n6bC|d)1cMjY+K=bx!k0o1Mw6^zrFAZkclJnnbeSJey1zzV?-&
ztEU~eO78LW^!&K%kC*RkGgH3y!#y&VmvVp3GR^K;zka=D%#IC~)!)|KwmQAZ=WrYE
z<}LN=&ws9s*?B4V=flJ8z8@bQ?LGX^;PbPypKs_XDIKzq;hQ{hVxn2jjRcSdk(-xY
zuYG@O>*?g*lE!Hgr#GFs>~H@z>e~fpe#!R3iPQAs-(CE7xBR~8wA7hQtXwk~nb~IK
z@B4X7#=7jys^{0XW`{p6u<)s=*>n5T=jZ2Vr=6W8DK9Vo`EkGfu4(?W&CW(lOI@^h
z@!6lBpU0l=m$%P5HB~!ZhR=OlT>Nvh)6;ZMe=<9k^6#IQmzR;ae%zOg{~wRbOP}6!
z=Joph@1my7{r<3--!4Ojul?uC<@0TB#r~8^|0enAn`PmrZ~JOK9u@CRja=qC+e}SY
z_iS!#RMafXsxK>Ee^++zn_--OuHsGk>uYP(>i_*&R{8l^-s$geZYJxTHtM(iHsgAg
zQFX0$=&BSMzV?}h$!)hk-Q1imeR`A6(^FILPUDxgx)L!hl}k(~qwe3&^zEf{txApf
z+7F+ZX?#4Jm!XI+c0<GMmd}01y!H1k;ghw}Ff$9A^yS&?{HiaK^5%JSbWUGt;S?4T
z5qYw0o%eLTuCA_2TQV=(^a%<GJlMD<;b4>b2c1pFHt9$vPf_=mTmPC{RIB7{t%|yO
z_RC94L3!c$-3F`DS1Xc__j!4GUffgpInU$lB$LWdDZJ8VKF;lYSB3p;7FxgG6U@#p
z7t+or`{e*Le@y9ZDbuVK&h31ltor5U<;^8~I)&ADvF*1$di3Z{w#D%)!`H`2SrjbL
zi`lW@$B&Am$BwNkcz8%FdfS?L6^}UkkMk~HvLxfymdsUwi`#yEfB$})p8q@>Dch<o
zdU1PRguQ=qa&l_qw7BZGrrY<&7Zhw@<CmNBcBB0{LrqohX=kpL&D0ECHRZZBcVS_n
zR=|RWX*!XQKry(mc>X;*XGKND>(SdlrA5}CA0JQ6HeY|NU;cez`+@W4&zBzep2Q`t
z_ogiU_)4#-TA-qI-`{W1+t*F2KMJbq;_Ls0mcG7r^)SEvn{Df2cbBaSUq7$z@7M6P
zaeHqi-`-dI`_(z?_a)KS7Q6FHCU2?x`|I^8?gPE<;yMq^3RBI+PjC8i(OrILY>n00
z*xg}ub#*iC1T}PZeck(HE`EG`Jak2XV(E(uj`{olZj0KUx3*ob%ENb-NnlCImQ&Mo
ztAo!yjcRIYy0R(NTQ_2ZLttQF*6nR;UtM3n{?^uPZ36=X@837}RBl#TS@-u>UhT`d
zQl?o;Rt7K6`uyx{)su<t>vpFl_pGk}^Hi?-jiK)>6HV{m5|%|v?Ee2L=9Mz>;J5t}
zuuOd4q%GOk_0~pgbegIa8ua$o*4WdtO|zFJ9qrOoRCLtT)RYt7zkc7ZRct&G3sk+Q
zWxTz$_12cm$=B9KFZZ0Rmig()Nh$lfJ-f=^>%9yrpViaD6FF^Z;^DT+D-)(oQ}fJA
z<}k~@r_+9T;fog;{okgSZ!P}y@woid2@@V{)3LCKsQvxz?3X+1kGFD*e>uo5pK)zX
z<gcgG<3WwB?Z>~XsjKh)XKVfb@VU9xuRou+4__O#^~yqLcGH|20T(Y`l=I)UD{x!>
z{dJSo{a5+TwYpy8v*q%kR&G#(LBr56(7j*oYAd&R%xj&~mo6@L-^<r<UhDaeRc*Y|
zRk8P11S;45|NH&cp32RyuC9Jw_U82NRLiMap<a_p{`~m3KSsD=b~6Lh9kn_4{gy3T
zmUVWP>8opNXV0to<T+I{_}Jq^?`~{NK6T>6j#mi<r#F>6J0mHo72;u<eeKGttE)|u
zj&Rg|yO|Cu?t2VZMQmIYSNAiuKi~MRLG`zsUOC&S%gg=CzjpF-a9nWaw_Wn%$B*nj
z_5!{w{QUgicir20=k|fe`wwl>0maJK*Vn_{+}c33THW7YFCX{Yhoz(}VdIr5Ia@nL
zGuUl!_4lxvnmzaGe&?=#Y%ym}xy3r31$K6JukP&Je6Q-YZtbU&>Q(P{KDXJX8?c}O
z)H5o3d&_gzmw8gASyS5h<=5HO{#sG``kGeIl8!!EYqgg_0w;3>_I@@z<fraGFT}&6
z<NAf?Z=EVnPt%oqf7vMY)D9+(ii#a||NoY&s;l3huv~9z{{1*kPEM`xb#rcQ$y}Ut
zwCm*k`|*=Z(#}ZCwXeUo7F1R9+k9vc(}`GMe!nJovbz7Z7Ea-mp1`lKu9_A-IpHJU
z`zPG;{`N>-3s6S*_4W1g2@?cBWkku#OQ8I!bNbTr`St78MsKg0Q(ZRKrZQ++YV23z
z^q!BuW^(iKeT#Tjlk@fKy_t*!k1w)v?>NiC#<nVOvD>dtr}d{!oVajZ?Cw{0b{6O5
zf?76Ctz4SQ%F37LbBpWk*q1m(&-Qx#zdt{%>i+E5_y1otucVPnJHLF`^K)~z*8D6A
zw|+i(k>3ArS6;fsp7EZvfB$|^pY-kR?b@1}o|l*T2LJu_)wJ|g$o1CGS1oq;$=Xz0
zcwLo#eV+8qqi1gJJ#qZF`~N@B?M>_d)lAh4b^{fk{r3N6EUo2{GVxGURFtwTTB6Mm
z^YTzD_c~9F|DWgoukdO5@oaYfDT&3M!s=-+XEZi8N}1)%cy)F4^3TuDzyAGx|MV~a
z<E5WZzF_owXU(U>O|0Bns;Wm{yDr|o-}U;sSle&qKbLf$%RjaG^OMbIRMgb86crtP
zXPaGJzyIH=e!E{D%5FUuCMY_`_`lp0RCcfZ``z;S`+h!?mbI^oIXzAHa`AcF<@4+R
zMe0UxyYlVr?e)9=own4!p}#+Q^30wd9#9?d@Zm#H7Bxve#sf;p`uqQEYU7bCiY>R*
z3*V67D4D$O*UZg2+U~nbnRaaCP&kmg%4@3DtBZ@<|NVH(-z#Z+EH`$pRcXneABFwL
zv(sAV&!7M5%F4wHo!ddZ+i8Z!a)a#B_kXYb{jD-*cjDnT9ec&oKY1&|_TAM9T-0J!
z_U1(u&+AuLSFgXRyEyCWs!2<(t`4uBt62T>)6-2l-d9(Jo(|eu@0yUXz^z|yZBI{+
zj(yVhgo8~|HWeHE=Gna5dV8{ps*1{s4-XH6^5w4b_wT+g&$+qj*2d)aeZSxB*17&#
zM*j&<(AKQ0lMX*Tam{X3=;~$N;`&u@pZ|Zm{eD`dy`R6$$Chj#@3hTFtt+_&rWf0>
zZA(2pZJokfP~&asvSo3lzt`;JXJ%#=6&7Cn<3|Orj730ZW@glujEkY)=f+Oe3JoeK
z*Z>-!dC9u}^2NpOrH_tqUR@h~{qebnH#eu-%6aOhzW@C4$)7W8BQ_p-UG-dC()_bA
z`vEx?fd^*aE_v%~`p>iJ>hCX~eS2~I{yL*$px#iN`n2Dl&)aX!yK8m*efG6AA9r*s
z{r#W6Mt^?e&akynar<Nczg#|lld1CV;)XTbf4cO^*{=Hk_kF$GY5)0lYmL*-ow$De
z`>MyvOT5LqH*VZ`Yjb+PyF>K$yt!#-W-OdAVL~<^-~PC_x3`B+)e8M`*8KjCXBIoB
z&9kjum2-2`uMda$x2B($>;HOgr#+}h;S^S@_$z5qu;6&YmmfbW{(d^GAJ@OL>T6c*
z@3-4Oef@gX_WK=WPf&>iYI*lco4>jm9{*M9N!j~*Z^IrZ_uHx^_ptFwJ-N12T~*ap
z*{$cqH|066udQ7zXIu5+#>V7b-|toLJ*S%3bMec|%j+$t9slX^R9k-nzr5X>(!42e
z_VDlj{ciW_dtY~6+&sfthVSc}o57&Y%)F{sn*AT9&YQPxv3tMQq(g@eO)<}pQ&m&j
zRXTll!NaCsUtT`WD&OhU%5`#+&ieW1&$zg|uTDDJ6}7i&tKIK6#@kDapP#$>>gwvy
zjY+QCKgu)Y`Svg}<|QBP7QY_sZ@YB+{krJI?)}%Y*Y8z(c`4!i#l`NgkBY}%kuARi
z>XB(183m=En{)Br-s-JIPra_LkB^V9{W?|U<=5-+*FQZy9lF1+*452TtN!1gUq7GE
z-<okzskN=`Rj2yA0@=-_udnTT+-D8Sb#HHP_ura*JuE0_5~we+HS@CD=Cre?g5HX1
zhlO+sshSi&^ZEJf*D9ZxMw@iJV|SGVdU<uN3R}BMD|FS1b-UjMtqfXP^6H8vs7cYz
zCmVEsU+rGIi_g8zaoz$|^6U5ii!#l+5)c$L>Djrt+Vb-9zVmD>y?^hFTfgU1mt4gI
zMqU|<3$N!kYXAKCGxN!biCOpe?fv%d?(4FP|9-#UpM7&vs#eU74N=?k=DxJEDtWOW
zeSU4&{Mv6b?^QmRWo2j2zO^M&${?XZD|FQotI}5*Ha0Qo=jUBLZ~y<zud-ijx8Ez0
zUj6ai?)O>G&&{p+`E>f%`~Uxie|>c|_~Ihht@Z!wa&K?*l{U}2(j#dcBmQ01y6noD
z$jx7#PLF>z|No!mpjOnEFC}N^T8D4Vx>___Mt}9a`v0{*fBkyZ%x@R)^wd;PuH5~8
zU-Z9!|GfPCu6=rXdg`1xHD}jVnr2@MDJj_k>N~%9k#Ti(xPLpJ?4?Dn-61Q3R7LgU
z?yRjXDk_?GzrFU?m%yT;O^X&U78Mj+XjAzK)Yv#ZT|Yb}<%zGP``1sW^|Sx}`U<Lk
zLKix*Zq2yp<ml+=<>hth(o%2GD1lz=t`nPdKm)dm-TT9)YK30eRhqqY>C%_C^Y>r<
z`1ttM4T;YE0n_y3?XIqijRp;w$W=ZO3|$f6XlG}ab$8d+e?QOHr$t?!q8WT;OJ*>r
z1-UkQd)QL1satA)m(_keDy|i=VZn8FQ-&R^H-DaqXZW^R=k$*sKT>x6yRgt%Eq-5(
znuf*+8M~Srxp%+cug|wCd6D2XMI-Ug-@m>Q5i?dsZCzFQ@8@&hq@+cw?_OH!?Ylki
z?itWnv9OFx&Zp<+^R+@(rOd1S7CCv!lqZE}?En2ZZ1d;CVKozzD^JeOzJ6s@=xG%d
zl^LSiVG`|!6XPnMif;dAXlNLBKJoFf-esPX)zmC3Zv6Q1W5=^g7KM*mB<*T;WZv1a
zQ8RMW5>5^dgQMNz=DgBoCZJS(?e+Hh|8<u)r~3;F3W6OtQOWfTsAp!Dcjv{{y@wwf
z^h%kYx@I`%dHGWth3TsU7q=B!$fO-?VqKRiC@6UB`0?W@DJd0q)vT;;S;+7`e*F0H
zEcTQO3mie+;OFz}|II43{dhze#M_vBTq?Qe=BCtcNyDTTu#2L%tvNZ{d_5-*kIB>1
z)6M(sey#ZV@Avz?@6>H=@9z12uNq`53p@Mlh6aY<Wj>OZmv{;r=iRaBuZ+BO`SRHh
z4-fn9EPCqW;Ly<7(__-i&Tp2PnOUDXPjva$*VkviySsaKm#Frv1q&2}1q2ejrt9U(
z)qHR?E`JxZecQ~v;-F4z)z??4O3KQy&;MQW)}MLhN(d+%PEFH&oi%&z_lI*Vi+z^+
z&Gl*J67>lPn4lT4VZq9vrCpLX6&r5X$Q+BA#eU@Y@#C*;6lT_5Gp>$LOG%mW{a*F?
zE9+u!v#_$x{PXkkY%Wo)8O!HYoyvVTqo;?*IPHwY=l=RXhd~k9(%wFMUF_~zOO`D0
zd3|$h_VmoFtEPfF{jWb;rk<Lzdf&cd5}T8c^Icx*Egrn5qHwahzZ{4L@j>GK+nn3^
zzFM{S8BTwuRA?cyEP8uhT)Z%Y<#8jm+5DmG3<~WQGJHpm9NA%egMpzSJCO%tB4kHu
z#I&hz)e{*Rio}mKfTl?{@RnmtvFwaWN?MeZoE*BuL(o!&FLZU7?sD%<XD=*tep+C$
z$%c8C%G<lUL9-lpca`q$oEkfSs&@FPhXpUDhR2<J8B{b^GkDpFhXn=?<r?;zGI2D-
zy#Dg?a@M^)JI(U$tmu=q&U$fSVb!aZ%X8Kz-`J2?WFb>zA=A~}eR|8?RiUe6-h#Sn
zcaNXVIk5Hc!+^zZy_@#VRav@hS=N~uhFKRDG<Jz-D%IE5i|WV4tc}`w>CVpL^}C;~
z*%jG*a_+-tpXS&6{Is&-<0FttQ1Po9z3tA1$48GIJ^8ReLsRo*+uO;G-x&VAt0~^a
zz;NQsudlC5pPUfvm9Y%^|L^<$;$1SJQuy7Sol@p`bGSq_9&D^T)WZ4c^XJR0+~P$G
zc6oz_LvwF$TbXdMN$xdhNMUQv&7kUUZvtIhTI8x;D7Ln>X=!SDa*OL-X=3FTk(OS4
zb8~w2-G6Q?5t9J-w<No`xa>HT6csfKG%oKu+wA38^ZOw+HG4n<kDyV!pP!!YUibJz
zh#tcUJ5UIMW+0}eYTDS?Ecc$68ku!*Q7dRhB=?qy?cXn#^IrSUu~=C7`Ps_U)6-^|
z=g0AdYJ#dPr&cbx)BLhlOK#kVkhLoDXlCOrx_h<Is_;<@$fBd&;;Wt8`J(nzeDqyy
zsGx8lyVpF(#igZ<NAl6en%CFXzPhxudzt_Ib&rqtXFojDdc9OePKA@<rn|Tf!_K~9
z8RwXoIX#B!^7O*L_1af_SWxx#)zT9uJU|mBIyyeNx3^tg<~!TwTV>__Um&Xz54Umg
z@lEUR_n-DU>)M)`prG`etX8?^_m|85rT_j^etmKA@at{YU)`=>n-@C${b6vA?a<oU
z6N_zJ(~=$7c%_y!v-7V?KHeu~SF<Df$Al#h9wdOOrqt8Zu3lQ|ZJK<HXZu${K|#<!
z$hmp8tLy&$S_$p*fGTYLeLtKgO_?}xp`fzc3a3^sE*_qcpP!z7y;uFda?bIq#~Nhp
z>tdSOc!Q>Dg-+3rw_{~z*VfVkPw@l=2e1G2E9Gcx`Q4>Uy{E78n5Y!Br()x?^Yh<t
zvr|-b1eIi3VQW_W`T1G9{@)+axXZoD=d%499{#D8N){0me7N=Z-DSSBuWZkccXf3I
zjrTV;Hm(X-*fg*HU*%kj!bhvN>c#8;b;Ch}-A+zUSJuT^zrC~b^5VPs`~NNjb$eDt
zZeDii&>;~4fdw5M9JW87O!o5g`?l-7X7Dl%E32r)#6*yXUS3*ybxox4*?G3N7v~lg
zZJJm4OmeDrxE~`UBeWf{wpZFbZfhOG37&EXh9_1B4<3}VDp|2D=jI|%0D)@0kdP@V
zJOAw@W=wqd+v}Tj&dxM;2aO(oes=cjm&^X?tKaYI@9*DL`g+;J!|mCiITz+f>V9)p
zY)U=7%5$>X%)I)&v8A9GS?JsjDh%>sdsH;l)YLA&JvY~SdFJJ1CpYQv%Gp?4F01_f
zEcE}szgJg>>w_lsKvM^+ZEbC1H*VYr>SBUA$Xm9UoSk9l%y0W;!Ze-8Mc?mL`-7%2
zYro%BudlBMIStgnh=`bRYioA-+0VB(r}u+KhV$>+g|3f_1x<M!?H1pfe4MXW);i4J
z{_hsA>3VaQUVoL<C8D`VeSS?4Xt-vX@9bq^Yom5v+xz2D_ot5^1Ls<mhAeX71a+Q4
zO_lrmYPS|XcJrNSbo6T3iwg^X{rP-;Yw7DS(3IT4g9j%)`L(>{W$nZX6Be-XN@<vx
zg^BCOg(M{{0u3qX#_frCeQoXM7i?)g7t`n0E_3Y`dwGyuKICv4@7C1QVxXaqsEtXj
zbw3`m-z_{YyYAcPXJ;?Ba0*}9km&5{?yl`W&j!@O1x*2h8llqWc_q8MEeakufF>wY
zPfrVN=aU7E>dRUbIDmrY&d%bi`)aGhZ~M+RTbX%z8K^vXxA%M8*4*1+?)`G1PEJjr
z4suHii)r??H@p7dGG7q|TMMAZkY~)sP_)wD?&lE;89w9GQzHGPcn7oh>6|vQv$K2l
zdj0-$VY1Hce4ugfnlBgK)860P3u;f;e7zE!cYKS^Y0zMJ%#MPC5z|0b^yV79V-m@c
z(=u;tSa|*Mx|p4xX64TPh8XzGzFB_1HeKhmk*fE!J<oRj`*u73*d`rN#Sa?fjFJ-+
zOqAhk&%C>9tEad3=Nsi79vv$~S5LDneKjTf?z_9YedpO!`fSa*dZ%w=(owGD$Z3*h
zIWum5s(!cgILKpFUo!f4^~qYNottl8fA-hh-{;<ZEsWZhGjpTPX;A5{dw*~B_Uqqb
zcb9?uvnGE3z1+%}m^q-v())XR<F<Qyc@<U5&b9mZBRM&8TIJub*Y8fVzP}tafAIBc
zc;4${z0x4Z`_3{cjNVuOzi#{f&dZmUdiVDC_rJWkdHL;67cK+@uL{vDes{;RKetcT
z`q{7V+~RsOik_aDdEkJ<=ey<icW$*Vc+j93xTr-lZqJVE$;=0?USQ=upsQ|a8R<P;
zFZAW5rC$$m>+e{*I(T^>Xqt7(6p{7GhM-Jy<Hn8sHE%90^<JHMdD$$(<hIq`7mjoa
zKYjgr^>MlCH~R0tr&$#|Xi!-hvNGs;&g-1X)21y;KHgWkM&7z?&7VJiV)kEO9qvDI
z;zUr|iL3ux%F4>R^BSnTWn~rh|M&g>>ny{PE-&+q+FiC5l+hWP*(%oXb8-gGv#DGc
zSsyl4BhYD5$&(X;+n-LHI5F<__m`L5k4fl8Zc>Rp4jFuohYUVDEc=~(XUE2OyWiVw
zPu*MfHE3ti(=9bWi{9SeetxTsjm@36`H!wF@f801SpNTqDjs`#`}L)*EiF6#)jmAb
zdTVd>cF;6g)z?=$w`zy2nE`4MG_&((-Q1KKcb<{K$eDq$;Pg${m~Y(i0+XyO9>*lY
zcb~qxCi3&H{`-sF`R7`ddKssmyYlk#a?|Q>IiT)`Yq!|mceT&c4jw$%)zR@GB5qGb
zq30(nckfOi)slyYSY>T0KCJp3x4Ueu3MhYFkIxXZV7@q2{Gq0%=CAYh{}zKfOpcC@
z>k4H}v#v}?jhxxH^28a?pzXWe?^o6R{l&%0J9Yi~^)h_zH8nLQudb~0`Tl)<{om8c
zprs?MjoSBb2QT*v&B<AF=+L1j&!0bE^?UjJx=$8vpkcQ3^Ky49pU(wN4}i+U;N^am
zGWlm`nNHFx?UgpmnQ{F5udlCDdoFIvy}jw{ECz;T2ZlREe)DWJJ!jg<p5A%qw!;0S
zqg}DzKSpoMS-HryJL}RCPcLup%k%61&3yUb^PK~g=cd<Z&y!4_4eF|ym|V$?P3wR5
z_3Pd*`zM`#Ul+4e&(`+us^hkWk6Lt27u}t?<L0;b_w`?1st{NX8d!GgmAbXNe0|o{
zRZG{!?$%OKaoM+TA1D<a>yusm`T6<u*A}305htgnQ&Y8<o8{hG5wS7p)A#SwReB|j
z)h_={6-%32@BKX8VG?Ly6EsF}v|GH~RzuOiAOJkE(qHJ8e7rAoXVFv8G)u3XZPa47
z-bw4%ub*X}zYa8D`t;P)$tu@nH>^I(pBy>u+#JivQ>QaA#BeAu<XN8Met2eIXnC3C
zu1`%r-Ok>8@FveR>x#zP+uQxY#f(Et`(ef8p6ixQdi!VWk<7ZbMzg-Y{_Xw!@%#V%
zTCEkfW=7`irQXxMCcWGFTrT?gb`CziX@+XI%O(D;dU|@g_bwCl&dWzSg=6o3i?@uZ
ze|u}IlyzCow!VooW~=}ex4E}MKw}uUCm-)Il(MZVS$12_s^rA$qUY83e%`YydeQ-E
zRNO7S9{cNIyF6&LW&5|w%l*IKXitrNb$NOJuP-kbFLv+G`ughXEX(3$Y3Jvyjj#LZ
zYXASw=0AV_fU1DVX-j{8e*XI3@Av1g?Sz#V%V7h5uOA)lmU}&2KVI+jrafhxy8=Pu
zd9NmY{_(g!{&UjafQ3$z_S|p1u_4iUTi@FPizyQ)PJH@}k&zKJLEU3m_4R7Fac=p$
zJC=LDUW?wO<Lz(r(PdlKuDH@yS0*mW>EHN6n@`?u4X3c$iA_4C@9x~(T629}>?R#=
ze!CwFj+<$Rt@*G^KV94*zn=fOa&h#woR=SOJT85GE%xiiL)zi%zC@ILeB`<|Zg143
z|NnX3+}j%sszY;f*0}%p@wnf9OZE46KK+WGt=!^av(0irqc)~lS3Gu?y}k7R-*<b@
z>HpM@Nvw_9`fAm0hK4sv4GcS;PSFT-f)36d>ydoCE${BGQczjw<m3dJhP$&x3ba^5
z)qC2D&*$yK-{0H2{^mZnUa2ArnOSzVyKc9pdwF&J`}@8={dJymMn=Z8UBR*Mu7<~l
zUR>mATKlVnSJLRn<EEcKK0XFbGnKu)we-e~2-`m&4&S`>|Ldx-wX<GbTf15}dRxYo
z6@hZEgM)%L-TixVHfa7I)Ve8qGXpfIzBS|Gp{;sKN>0Zl`ZsK>{G8S+WqRuM{S!BR
z&)$AKXYS+Fb$9MRJly{EjPd!Ht>>Peo?h)U>Bl+i_ZipM#e$~aUMDi1OOBB|c7BfK
zVmaHYiaUkg-rkq_?f*O|-1Fs2N%(Z_^a-Fk5|r6MO{Z=#-A_@^Z*9#keRpT)>UrD@
zF`ar53`JYd%$o<AQ35Rt0gX28`}ZsR>WV;TPft(K>W-S48c=3i|5^La39EHx&yP>-
z64hP?S~l|P%1Y3r>EG}7*9R~6d%1f3zMy6{-aULX&igz*)@z!5O=oM?Rj;e7LMP9k
zKmXs?_4T01x0!jua&qfH?d;IiVN!-kEzA7ou1Y&QOH)O~#naOhv?RlCj>W=dzO$?5
z_MGDbm4%1fcug}dD1h2ZU7ej14c)BE-dr%hU$gk_?d|E6asuh$S}!jh{d#e+`_vgT
zRvbCv5;<+DyL@fP<KzA1x0iWO*Q<KmYYu9i>&EYkDZf+LUibU0IjA)S>c*UzX>8kf
zc}HRL-jBzmU)|fg`_{JH)e9CVu(GqS4qqP!YM3utyx27Vo{g)!`|7y8RaPZ0CWz@q
zE%BPFwUh0A_2o^e-nJhOFjqZjWDnU_Q<-~jPh_{ae%Ql9t#{SRb)vSckgNNVcy^Yl
zH)u}s)|Qoi^K4cw^_~t|T^AS_2%6%HeH$Dc9J)TvcB+1S9B7f$OrzA2cXupxV|Rtz
z-ku-+`r6vq*e^A;wIElRW?%F9e!qS{D1oh5p#fTw`1{-2%Wb^UUw*&e|N1~9GZzQP
ziA(oc8B`4UPs}t<KQlqm*=KXwSsxFNj*U9nm!E&hzrF43o$B{{L38eEDk?{8e!W=y
z?8HRnxZ8fSOiqTZi@C|d!ZO49-HyY1KA*ET|7_B*e`)sFxf^khF3osb8+-QY=Z2W>
zVz~*MQcqW{@%HvMW@h6tSn4&^=-<D8&-$$287y}1Hxt*3G2m-IY?5{5#OuQKbJ(AJ
zczAeO@$+-bA~q%+yMFz;g$&>IIa1Z%-Wc+=A1--)?QC`}XgpfdIIU-8{QiBMyu7CW
z{{2(4vAMG)=jNp|bFIxUe+JdlRer}LgoTBZYierttn2RXHny{~%ln+NCSoIKDaGeg
z+UqN}_<MR9{{MNt-e;-TRG)-|1)3o%CV&R;Ktn*DzP@L-?9={U`_up4o=VVi4Buup
z-ZT6E|IG)jl1SV2cU$glpV!yc`d(b*>ih4{Pv2fC(=*5A>uauFFFiBE@Yy-*_a=;t
zjK>}p>^RF<{O3pE<<;T(!jh7iOw7!_KR-P^>#e^xB`7#}@4jWz_xp?M#bms?wl*6y
zLdYemm2zuqb~-3k_CH>}Y}u^oaaAYp6dspVGcdR?MKAW&mv?t>FIlpr;!iGUq)a-0
zPvR`|{Jc|BG?PJwM?}on`FvjWnHElApQ@@|$N%-qSSH2Qd~^+7>Lof^Ki*DQL?lHk
zWJLnVl4bt$^Nfs)*8MDJY&acxEarH4Q$2I__jjQwDN9aG(OkSK^>o(JF40*wm78{z
zynJ*`&(bn7FfdRnWW|JE-`=jiyxjkFulc=znMSEw>i$+;pB$(1@-V;smCOG2Ys=o=
zTA6uy*{^rI-+y_ze16uK7Z>G<#X#dw+b7?)Ygn>;`RgAaA9HbY2PY*h%DT1&+|N*M
z`10mvFla3mXsN*UWTol4(aUb!hye8n@9r+2UXm%0zA|WO$o9Ng&|vMlxAL`L0zs@>
z+w<d>^=|?#68`rt@3-TNy1F_pZtmS_yFp_muH9mJ=U3$4*|AY8WW|GP@xN~8?+^9z
z>Z<zo=H<59^>KSa)6o5nt)PX+Z=Y=ASBM0qZdtpU2-B=9A0on6hv{xVxcFTC`nbKj
zqIbW#y886Pf|Tq9nhXpKAIhB>PBJ}Tl6EgGmXDu5+{>#gd)j?wc0SM)W-GUNS@!ei
z&zE1g5ODp?Zm{tk43k*TrGNYV`*-!4V!NsfH`Po{Ln}W$`M7I-Lqo%AKO4|;=s$N2
z`8~u~*x0-#UH9BDN7%sfHVYe@magvE*LCOST0hTve)i&G_pK=>g<M@+Vz$aMFfbIk
zWo51U_U7i|>i2uEFFww_sSRY&y6|)BBBp~n4^B=_p!Q?d?1>W>E_UzVwO4cQ<}-1*
zk5+<ey@~E}I}cuEW?*>WHruLnl~wt>IhRxKOyW?84A@gqD5@FcB5j`cC1QKs-zryE
z*PV6!U0st5-K5R)LN=$JjX7<eb7Mibxc;uKdqIOrOT6=6oSLeAe}^#0!@L`FZ=2bE
zI-$JowONWhqe?fZMD@4-8*=jG$-K`EZ*FXK{`>oT`PS?!D<(QQIhoY`so2h7RQIRi
z>FMeI-|yGgFFRgPwtH2~&P}UASC>sb2a4kB-S0lt%QCuLs(!zBxv;vQhNWfXB+$Y#
zQ0r~dmF52OtgNh=4-PbfYOJKBq!{CcpuyaCyWfY!#LUT#XJljqjVpl$Oh9w+-|tng
z4_h0x^yTH{ueV;03oa-q@SCH=z`!s;`_4Dxh2Ef*rIRL2+OzKW-|zQBca>y%PS4wE
z`~6NaXnyO{laq_ZbfYxv?BZOzL_Xelx47T#((L?wEAQ9;k6r3DHR%1ly;paazh8ZA
zW9DTw&_G0IXXhP8Mh1oxtvlj&*WF>fxOBoq(W%<u*A}^UZ@TjB<8k@xkNfTGY*RsN
z-0Q8+Fw=ZNJOyj%2VU!sXC;gb4g0q*S)w9qTV=BRG(&@Q((P@zma&I)`x%%Rc4SVP
zG$~|bQtDjm@9BQinHWx}awsq~%zpOb;^P0}cFVk0&AI%P;Q;T4sY?!8#vak_Wng01
z;F#)pwP+Uy!w$w5O{IG!TKGUonU;GJ20k1~+(d!u;7y63Nyi@#+e24{Xo7MsC_R68
zczEipS+B0;{r>hAGz{F-)FdJ$wMs8`*NYby7h8syg0fgODE_v0+5h|D44Ow==+t^;
zcX@tmOH0PtS*D<A%&nQ1)j&H4CM|jLBn340+sY++X+_}Tl3!mkL9Mi3_y7L`O$wd9
zK7G0j0|Uc${dH}dUtIRLzq&Gb`IfY^QlYCtJi)8rQ&Uo2?En9FJ*dsq#LAs@q(jil
z*B7*06g0r+8FY4*si?H{YJa<*E_ZjApFepSR9h8^#BSL1;>*j+la_4QV6gq^(Js-+
zhaU#av#C_^{QT@}aJQIl%tPl%Qs#MUxJ0!wzP-8mO_Ya$f#Hc0%LE-r1NH8%(#!q!
z|5kwfxH;|YC3g9m1^a4$gW7z*zrVl!@Nj$RVmIFYx7k-$Ej>Hi{JFzZ1_lO)caGv~
zbU+jKrZqnb_I|sS4O-l<a&nUnXbBo<Mp@<Mfkx&@OFn!k=zn|o@ZqVGCN28%rR3+&
zpEtuTKq1>L;IK(iNy&*<$^^VvYQh8o(9R2Gx1NBFNk^}2PWQildBdN-e{Hw%a&Sxl
zO}q$!=7$PyD>bBC1nv4bBJ7{>{M_7i)-t)bwgkGlwSl@otCNrSaq;j>Q2{McO8#B^
z{G8{c)w~Q03<cI8eLp@v4qY2%+W#&TG-WeIGk8no=d|mWH_nOOs8{~r0Ap)QOUlc4
z?)&Thf;y?&Q)R8oLXP*zu73;)vkA7w|K2|@s(<35Sg*}8K?l^hc5-sEnYMiS^3xKF
zxyAKXRD65{TK)i<!@QXH_t)31uC7y;HXiGd1g&X_EkDb^z_3G3_W%3mMVD1<CoymR
zQ~N<=jSgt|-7Np!nz`2HyL9K<)$Rffwp@=b_nZW(jaa$GG%PJ|UQN5XDHXJw<<|E6
z{A`d(4ta-VC+Ji?Y!%;9@iFP@>Tv(_HlKT(oSnZuogNQfuYGZGdzYxTnkQ%s=GnQq
zt7puR01X5$_n!}1TlQ|>@4TZ&k3N0l2}((pJ=O}5A^YoU!ONcm7q=bjmtPNBn)dyE
z{q^kidzXE`Uw{AVx|EZXK$~SwP1j#99$ypq@#9C(91y4*Hm{DAfuZ5HT)D%hg>Jo4
zQ5zBtn%)jw7Zcenrn_k&sKR=1&57Y;>$cq6(=Mwr9N;}zf1ZIMT&dxSQ@_oj$)cd<
z%6AurlT+Kgv*ulPg_n6O3<~0k4Ntr#PMX2aa^OB=>;?vgcNJXV#u}-6t5Aytkhkfv
zqifXGK~q2V=KG0%2#?uQ5tw~_U1(9!CeZjm^}C(!`}S>rvJ#Xawoi?I$9Lk}+uNYk
zK&E+jKx<h;7rXU>`^z^s9i8?#|JD}IwNYDxGBQ?tdU|@fR_Ll1cgyd8U9mB8a~c;H
z7f5_p$;(BH-TQ9^$%Bfz*>{T=m!zMcx9k1B-=GC@Z}0DqXXld%*je=S%MoG!J71FP
z|9-s=+8+j5zNP5gmT_lCVb;w}OF>KP!e>J(mfhv=udN7N{N)h0e#XN?ty#CWtkjFy
zQE)jM)aESO9CJJW<;vyrE`hS@gb4!MpIVo_38<;r!^Fg-;@QeAeyy3`ZiQnr+ubWw
ze)H|tu8ZBh3N%S;obI>mty_=8!Yfxoa&K;ORrQ)OLFMY2$l#3|H-a`9UD;dxeRh;O
z*c(r8Su23{f`R5LzunH)R#rZ|)kaOt?eFjJ*URtME}v^%o^`N^wd(cS?IOa$#lf#<
zn&r*{4Ydg>yLn9d_vf>}WU|ezv$M_pb)&WvwDNmqLHaxkZf;J$e?^LsfuZ4!-gUMK
zKR-XuKGq{S%OJ4{v?3<!<D;XKmVCco9}n6JGFi<xWT6wQ?T-h|ps_18zd04buOqkR
z%;XZ$SWx@>8)yp>XzCKgoo8G9>d(*5lk{4b9d74e?ba(Lcl-LPQ1991`TJIyf*P(n
zW7qL2Oe%T5_j}gsYip}Mom9WNGFbg?{r|t9(j7G1bLC2itW8D0%9Sf;8K?JkiD(uD
zXa9V={r;4B^VVHk8~u9U?{}B?RDS;Q<8l9M&{CxBd3RMj+4*E9sI<1XSLevf$*r3*
zMP%vn<@c{xfqkeG&Mx5j>Ep+Xo6p;=1}#Ka^_p_wZu$MS|Nj1d{pRLoE^hA0{r&yA
zrE@Hc-Bzw#+11^Bd4^%~m1Vxt;F&?YpG(rt%~=_{yG+y6G<4FF_wV0t+*^F6Ycr&p
zJN1=OMOW7sw8(d&lB-GLAr?@9erreJVo;ggDXd;4+g@l4?!18pd$vEFYgIbQ&@KDg
zn!>GxWhZyt*;)Mj&NpTT28KI*MY#-?1rHiPlOCY48%0G$(Beu^XJo|+jkPg5gFu^2
zSFhi<D(mX1%&V(H&G*iGbhO)hQkR(St8F$qIzFI9*M;HNwbR4boR+mHa8OiK{Pg+r
z=|dOqO}X-_YrbUt&N2oDhCialPbz)CrS*k<DW8zdd}6Y{-Adc)ZyBHpZ%^gsMT-_)
z*_Ipq_viEZlR$eTGC&QstE;AhoV7Lo{=a3{g7;RHdQN}#bH|;3e}AjSaw#3{77w4O
z<hrHsv0MM!>+9p!uUN4{M{e!@B|pRel>Aw}6x5g0f2nakd(%J5sEhX<*YPT>4qJN(
z6eDcBQlQmzmtI_4T>9pQA!w1~Iy2~U-EFzI)lP59%d&lYd;4@lH~HEx6K{X&6jncV
z{=7f0l*t4Y(99*bm`(w=7HH9JpR9FWl?N!97443(7EG+D*l}%L>}t?l?xZbcZ=)io
zEloPwRk=kscGs4)v$INrUw3wO1#Qo}3mU^*x_tR+$7Z%)-)`rBy_r5A)L&e;i;Yia
z#m?gAT54);wZFezeR+8~Xx$lT7N@YV(0r>K0|SG?_S0J#Q=XidSoPy!`_`(jS)jFf
zmzVjzy1jk9*EF4($)=!vrCPzuder>qt!Zgt0j*#LO;o(Uw>LJ|Ynsl=soLSMc0QkX
zxm$nV3Y*GLD_pz9y88RiKl;JXz`*d}{b{2zTenyGKmLBd59;F2wJ!JDnsqhk?yl0}
zT}x(XU0&w<-~3w2swL+vWBC~FFkDu#RniO$+A6b-l_9Ui`+uyrk59<ftUu*%*Pqy0
z?w|tNE$MIjHN<Z^s6+XH?c~<x3n12?zeF|p^Ew%ldM>uh*R6=!nzgdv;h|3-KYsl2
z@$1>E{vx1F<_lu%_&Y8)FfxC+7M-uDrRCLc^QnVNRBOs*Rgf(|xbr$0j8adDfMRZQ
z`uTG&gFux)OndYq?y#(^RkKVoCtXej3GMLP?!o|CJZ6@2V*-*;<^R9mx0bz)0=0py
z%HBlyO$X(j2l~5InLLhmiEgd_p2sU^6Oovh2-@HVTFUb+ctgU$IeOsn2h%%3%@=NO
z%hf);sc09dk;!oV<une3`8A(B{icJgeZaOubyot|snsW@mOI$}{SxeXX>q@u*6B?#
z`{TW*>&51!MS@hW3tq>gP*_+9n#i#KvjNoe-?3vyc3yI%7<ha7iKj)W3_t&Vzpv_9
z`RPgFZ_u#Jfwj8fY!i%9PsMyK2br;5jcp;w`Di=Z|HW6A%f+VFs@MG~W}emXM!=wf
zdxb_<m$X%rSOAORs~cQSt2=J*;L-A0y;N*9)8n?#4O6xBLKb!zmB_^Oag~OMB#IPj
z=4m_-G*;LYEW|SJzWlU5v)D`&Y|O>u*B8ID+<E@{&WDo={2t6r-?>syfq}sxi-m)M
zVS*GR69dDNWl{Iq%8RGzMvL{^{mQ8M^>X>f9N!ZTyJ2eqZf^3JwB%5g+T>1lxe5jE
z%Zv;Rp%aA}Kiw%le{^R0Jjv{9YdWjGzH&X>#;g5y^2wA<29gX68%&FoKudW<cE8_O
z?K8_nlh5wQgPeY528Nu)b9S($yt}ir@Th2b2R{SDi9$<3h2L+t$FGUns&zY=fq~(E
zupi5b4T*;z&8vRb`SbJh^lA|Xh6mLrI<p;?`OTGTZEXcjYreR)Hu}xR<8pzE-Fmrx
zrx?wYuq;ZMrpCg+uu4gt=}Gzi-?2ZB``doKlJ*_s=YYRYT^e%k>@d8o%)r2K+tDuu
zG`8|arsxsJ3ANA9&UUBIuQe0Xi4YJJtbV&Sd```$lNVQouGaBqV_*nzJ;!olfn#&h
zlM@rC`W-)Y`gC_AGyAa)LFG**k_-$1p_YYQ*JR7@2$tWgO#k!axP9Nt%gc{{dU`tf
z=clKJwZFbtd_H6R_?-3o9_#mejBh71F)-X$RPSr(ku+BGvwpj!;?Kw9+Bx>WUMzmR
z@wi;~rAwD~e7{%yc-884r!KWHFgS!hIU)$Ex81+LySse{Xxo2&5C;Q;rGh%slFZA?
zK7PBMpI`X*?e_b9pp`@FObiU$T>V%)*2nFA^zZlk{^-1&s@K*;2JfpqJIl22_1f*n
z{(iqNpFX!VOiUdTT<aJmtx7V^%(Jzw`?@;*=-2D<@@Hq8_jh#Y@B5*2ZGF6a?5>i|
z*?GG(PX~kCuBy(or0nf2!_rq*Dn6Z5*WSbL(JyDaDE<7r!dEMoyQxh+`DqFR!-4XX
zoeVdhe7Wr3f7##O796#=HPqLE#=pw=u72Y1SRJ-jNnc;z?#F}X8>!P{7lp14yI<KA
zsy4aP-|nZ%QcgyOhTK41<|pp<zXDT?W}Y~Gdi4hx28I*4SB)Hw^~wHTd!CV@;m#8&
z0R{#IQ%gaG&FSa++~sSx9NPALUbSAI{l6a;zg{d(esW@B<SZTrh8t3rf(qATihX@%
z7%cqrb5G^xM?J>pIx0Uub9Fg#H9TJS``z;RZO51y7*=VhGd%%?r{7$wsrL0h9=0!b
z>y`R=Ejs^bkEHRVGsfq8?EgIEkDMdGz_6lg4#xyh?J$?e$9hlCxBq;`_~P2=?HQMr
zc)GZhyuPOU?A+YhYd<nDG-#dbWYE;o>iT}a-d;(`%ggK0S@Zinll`n#*3^D|b@l1?
zH>?Z{tJY^#O5dw5`}K19@w?^sWtT2pYM6Yi=fwH*{l@1k7T17d`P$m(^g<^Fh6P$h
zN)Bzj(qi#-KT~Z!olw5Gz_D4vx-7>e`<jlDQrNl}Nnv%rp8Ega>(9euWM%MjzaDw}
zy6)`x_5Uibtc$gNx{`sRVeM35#!tDQK7CqL_xIOLIc5fi6-`-^3g&l9f>VrU?s&KB
zH7Kg`cD-EozQ$K=a;Ktm+Y$p=28Io5jXWo*+?0DX|LN1Gu4<Dzw`N~Iwr=;ksHN61
zsYWwF)5u(x-&$-=JKLq)XQ8BY%=O6mO}2ao$_(t3&h>SeD?j?6bDn8~ZO!N6x1jJi
z%>TVOH#+3BvVydE-k)pF85kV$K0T8J6<S3~4$scc7N4x{fA7(+CnqN-|NHavB`*sD
zL(b%^O0H}6zki;um(vbk*Awh-Te|u6{{Mg9FLrEZ`*<U{f2j?mP<q61;>*j+i=(&a
zMaS4bY!QAmH9XF<P>F#dA^M3+gHH4|ombb^?mqg}s`S;7@c7!Pk6aiS4s1Ko$#Apy
zyzS$w;qiAL{nB2)M+meR8LsWi+uP=HwO=kum}Z5vMt{n?u|d(TPexK$&8K7jzc0&S
zsbmL7?S}^k4Rdd8k+3L8;E}hp`F6kle@DlU4~O|5pVr^sb8fEn@zU$D)1PWGGBmuO
zB<$|+>GS8uKcCO<2bH{5B`*ZLr|ER6dQWp{=aYSOkX^n<GkBRxU0vO_<17pe`<(q`
z7&|*ooIc(C`JA=>IqUa(a{8IT1uo}=j*d;6Hq9{24%3O-V_{YHM#6WN$;odX3=9Xt
zPILxuP*QU1l@fJzb-lPT`S_2I{q-{M_k8wqanXs~q%zASQ;6U0N5V8vS+URCkL83j
zzpV%}J715SZPk%xeme=zNmJH?mZj|~d;2Q(0waS0`xBQ2(5zJ<C>4W(z~bwbVC}W?
zg+~NGUf=)ElzTEG14Fd3Iup1a_;gY|zi@BhVz+yovJ4DG4t^}4C9Fv&C#goq%r{Q=
zd$aHNJ54`OG<VP8m@v<_`dIDvyW*#(>#yJP4P@G}9!cTlbIYQ{)R-9<wz)y-j-<nF
zycgHS?*8$0eZA~VAGLo!j@uu*nLc0EU9K|4B=?rdy8Zut<@9qhFx0fq;h6C3?Cj&S
z^Y=;GR(<K<6jpPYr1J5Ea{rMhCnqn?zrXL}uh;9-pV~UM@yp9qR#q0CP;3v0`u(7p
zf028?T;TS+yPz)Rm)F<dNBb)?Gc?FI&8bvAw9I!lxSR#eV}Lf3Z!CO#OhZSfXV0ED
zCRYx%azB1HJHOAW^i@vT+Z~Vly4!fAkLhl|BeXhfZP)Gm{kHe2-|wAaS)6ud%}nF_
zWef~A)~)*czvch8?fZ|)RlgD3|L3XxWAXhzTwPp5#Kh7nS9LfxvmM?4=k)#~zrMcK
zzT24n<HN&^Wp8iIu&plJl5tT<NvY53)e2Ch*&}Ohrnl$Ap`0Eb28PJ+xBdrL#qI`e
z2r(|Zox44!Kj_`l>G6G@lhr`$V7K1<>N#1>wXm?Tvc|<_PQfA0i_3gxgDR}cQo;-j
ztLA3OD+mhO|2*lR^yo;Z=siZ;XtTUK65%n0t}!JST?;QbvWG_ff7Gp?^zqTr!Y32m
z!=heaSm?ax>$T|29!>^^t3g}sS+$iG`Omj2yqP-Pb-G^cqeb0%U3<UZv(CD@Dl~Kd
zVSf9X_VY$nUtaupv-$iZ{raD$)2@4ac_}F^TCrlqrKrHbK%LlKCj0*VdJU>X%3jQ2
zU<i<X>e5j1?#|9XkHh0CmtLxxq%!ej3Mfrjm-H?5o_;L9?(^&&|9-t*9JttR_TBWi
zx3&rjPMkkKK6CAY1q*8A8JQRk@CW*_oB$>7nLcW_laG{Mj}`BgHt%C(X3Hs@@9Um+
z>eMN%wNs}}3%kM2z)+V_q~!4H`}_HC1(V+0*=d+|W(KG^q7$>jKxv=lr=X}PsrdT8
zr8*HC6kc6j9bWh9>ayUC{{lTdJx#K%tl)CDf7j8$`G3pW_xI%)7?wP~xZnQY#pgFA
zQkDm;WnQvni^;s2PbX)X=f|1k-LdHE?l!N^b(Ip+i;?i0bVM{fMsRw3UFFiR*VaZK
zpBf$~x&QCm{KXqK7~HFP-0SuG%p6N&&=hH_eQtoupEtkxc^M9T->@^Dp})Ul^Jat7
z=N8{$JMrjf_v0JM{k@f+pH030cU9TjTOZ^9e~mAE)TzGA&VP5=+ehc?{}nHNdp)*1
zc1_$~D^PK<HhOzsNB+B8Uq2k?KYpl{`*i+M>(W<Oe!N)RpLAh?<H~cq3=CI2)mHL-
z-*&g>wElh@w|+TUP`R-#cK5M6JByQFTv!;mK5p-iCzJg**~abEi`@k(b45W#&(Ce=
z?f={G+5h>lB7T2eOy$$58?&yik}ynid9(BRJj3E=XLRQ^nPy*GWAUg%St%*Tf{E#k
zjM?91AI^5%_*kyRa^vH^pF6)jo1MR`i2d5!z^%4SpZ<J44;p$-I?^Hd^!6;%Y%%-4
zFZ~}M=C|+p`~ALs_vO$p=fzKK&$($7SM_q~j$f}<Cx3WwaO3NByWI*43wtCC58YkQ
z!0^Ly^)|*&H`C`I-FiJPIx%{=-&`fnNfBEz0=IHb5Rb1Z+<g1?wp{7+cE58@U1nf#
z_!^dbpL6e;HEaIV8k^nxQuFuM*P9ZY3=BW!t$Hgsp`+vH=jX@QL~cGce|^M8B_$=h
ze?J~)Tv*_^^zYnub_Ry4(OdZ@C_1+tnV{&bmAn7VrqfzB{;%g=096mmZ?S<2;wf(h
z85kPguDQi_V(0UDvthhA(5%&)8l+~v8)zR0X6t`cc<_aZhbU-n%P`?U189BMm6gHj
z-)?2Ew|Ko~^CQrCF<aiV%hw2iYN}nOuiYLW>jiCS-I#K6l8z53$9bR4;h&(LxA*I{
zinm*@FA85D2db}*{QrCZ|4~qjvR%He;>-*~Wj>n^2Rb?;b`&Jal;0`5xFPZIj;GV2
zldi4`E&Tm<`|;}cd&P~@&-KhQtv$`i@Z;g9{SURIOfmvMON2z37L~uhSNP!|`*Bc}
z#c%(oz{LgBpt-g#RvOd@7t@V$aXAv`E-QL>S84ag<m1O$#p7m7{mIC%z^Z^NOjNe`
zjN#P2xHr4s?*r8kM}NQHAHOg6(h|?Wn3xzjc|k$-IR#EzGB2yi)&Kc;<rynO!z+)5
z8vkxF-7YoXSuQR|#N%rOyT$eUl>2QqU8<9{D(TpMuS)yvM+SxkQGyEh5AP^^ob>Qe
z>&4~%^E)~;G&MUrIu<Qj<n>!jRP^YjrQVNUuix)i>c+sZ!jI*I*{=u9{7DBI7(tDn
z7uVOvySS{0-EF3%^y%|w?YHp(0Rf5f3=BUMg%oZlTwLT@cuI4*%i%WO$DQi)I(*cG
z1qHWeUF`xlu)Nl5>gulDz|X+&M_?!SwXmq2MX6t2TvP@%#4j)N?Y>)ne{W6h<(1*H
z{f_=}S5;NLxFT>dsM1>XVfh_FLE(Ry(f9Y;Gcb4@UtC}RXYu*Xh9~@78**AVZQ7)v
zr`NZ$`1!FbD}$5&|NXvx!@WI~pFzzD^LrJGFJ-5nn<M%5_V)FU=9_3J)qVTR&c^Vd
z`o<mohU4x>Zbr^Xeg05njn=Ilg~?yu-L+0TGeZ#6FW{54$|>7F|IZWkk5_{IkAjNu
z?Y?uZOznQXSp4Gd?((R|ObiZNpKy4H#@2qlYFPQ{iN)J3mq86P!@55|xL(`;zG?2R
z1MV>%=@edE{QO+u)2ZRdR)wwx6|#jd7Ph<n|Mz#Zfh7Y&h&<Dhu6uRA-=0V@0vR;J
zrm|@1S6{|Un^I3#yj(i{(W}+#`wlj<A78iooz&5zM-7vXbZEu>XJlZo)@KZI)!+9c
zY3ldf+uL$&e!tmlT_DB4aKd*Ts3RGq?7+a#aD@Zh1!Q7jVDRV#oewxFJcPq!f^5p&
zU8RL@w_bPa7Sml+_V!lc8N=g8rf3FlvK3=sNSVrT)A5|`_d7dYuiO1-PVu?Uz{PH^
zXJ?r%PCq~I<E`xVsnsS73@2vIx+#~CZc_a0%nXA>CvbP<YG}Bt%Mr`xbA;dC+S;AH
zZl~HZ-`UfiaxyX~Sj#ZpWK{E;BVn3-t*2XW*NU3xy1KfUf`hD}@f%PnDYl%Mq2Z07
zg7twnH#aZ#ooyDl+;1+|ZR?U30sHtE80=k`QrJNy4XB*C-QCrt<T>fbqi+382BHiM
zDf1a_GJ*=npFe+2-6k#~GG#q8!vX$@-51ImqPAwaMn*<1eY<q&(x<OyfBt{?$yHfX
zDTh;Le{HJOl<u8>roeFfq`Cd|KTegmIVZ?2Sg|5w^YX~4Q>M7MxO{$g*8KObpP!%q
z|GW5NeLce)owk%}hK9FU|Ni_06=ym96DPBr;JdJ|_V<tZ|9{Sp*jrWF%6&1u{_ocl
zDMlCf)&4%aZ(a5GcZPX)cHF3bzju4Z6c&btH<7!`a?i}Sx8GI%e%{-_qA)ejNh-IU
z-{hp7n<IH#rr4)P!cb}5zF)68emt9d@%Gki@z&PXkFQqyZDeA2(0)>Ig6sn4cD{?N
z!`DmLR21k$ZPEC4xBNb6U;@+tmaBTPFsGlLfg$oS#|geod3Se77^QghNSo_{1|i#J
ziadCv&2;>1J|4;GXJcT9gyirFc}NytA{DVcFE*z7?beHnT)S7q?k<xlK4WN@dTL5e
zKPv;n?YRsq+0GG495>d*Fi%RIop-bPxNP~6(C}DMLBZ72R8WU8<Jy`?pV?-*r-hjq
z4t#se;W5p3j)h^?wKbCBu_b{&xBdC^XUBsk?xbH|UT!RScu2>Ooq^%@bcU0gZf;I@
zpKX?_wI{jii1~ZfO_{O`3}s?WDyO}?yudw`Z;KW!@|dKu@5iHV9UoQ(2J1G4lbg0?
zUw5mkt6Tb(m6i4BYX*i5n*|gi!&Zl_)zH>ny=Cu~En8|}=5%#+En2c<$)#_;w`ZB>
z&ja<|Hyq}epp$)nUoB{-)yAr?uefd_MXio68w11b`3xsF8K1W?1`XqZ2DpB1D}8<K
z=#7oZk7p$Jb&Bamr4(8*Fx=Rel~&y#zl%@S%4L1r-Xu`lH{;@>8|C+Fli%FfxG~{i
zQ^kvg?VD`n7#MQG?{V%0M+1+fk;<`NY4Ow3bi1ATELA{bQR?$5lD4@sGc>&Q0yjAe
zc@bmHB)2x-q<p(q{odmLpU<0ZkClBqZvW5l)2B~K*VaVdep`I6;4tsR>CfleH{^U2
zmQZL1ja?UhJSu+N?)MvEP^J9q>udMreshzqtOyK@ijoo(oav*s+W6c1`}Uwwp1XGU
zzx}H+n(1?GzdM6{is@!s28PhjUoQK*zrVM4@qz^kzrMZ}2Ne{c@Y<4j`O&QGb)A;Q
z&yL9d`_P`#|I+>kLya~g(*)*c=jY4U{{Ge*wl?Z${J&4rL1%LPytQ<CoRo7rU+?ny
zbynTNOb%BqSh*G0?^L~ByD{zTtcnMX>{>^TtARREr}g*OY+fI`EhqBNpXc`dpn!aJ
zZLRdz*Vp?&qaC1g!!qyhe!tK9*4AwC-EX%=n`B+l0QKf8-fTR6>U#M4IB>TrY;BaQ
zqoX5e?9b2Y<&qh;)!)KuZRgj1i;O9|nOb;&k=^C(t*whaC#zlDUH(2|L&Cwd@9~?{
zd}C@p9=*84b26x>HK+RB&W$xcKY9JO{rzTh;h&Gk-RD}BE{fY*6&MpEQ~d1A&vTV=
z6%Si2-tBn2DDiL`Xz;`0K?C!nU9Z>OUbUXHVO1duivl}nv){#CrLRH5uiJlZonQAW
z^UwGC|K(p^UDb}-nk5Qq$W_1JYi?Ek4rFNO-SYdkN=l%Cobb5HR8Sj*jZa2m>C&Yi
z&so1e(j#dM8Xpi81V`=?&&iKIo!0N)mV5hHczmrWs9^;fQU&#KpU(XEz5c&>T>am#
zFK%zo-;#6F2oyQr?-cu&yu76P?95DIP(J&u<|)L?#?t{BbLlm|Cm~<=Bk@l0dE1XS
z)8`-U*54Pg@4j-sjnLoU-}^yhT)Ertiq-$VeLv~Ti;IPK3XdO+&fhCq{ch*;wDg(A
z>3(ynUabU`q!Lyo8Bd-+KYnLt@#C%6<8HrtZ^{rlfgxb++L)b2CsT}0N~X^VT>AI>
zz3TT*_Iy64UB55y?k=z2pdwLIL&KwuS2}FpTTriiax=f(k7)byW;WhQr}g*$iT?ib
z{{DK<)MftN<y*FFxwK8vI89}ykD8=;Ud+#J8<UT#&Gb=wd10aRrn<ksKE2(3zpi@H
z^y$-m=Gj<!PEv{7TUB~#L*n5llf3m-ey|kRkDFtXaY13{k4N37x8E%|%<CB!7x(is
z=zz+Tr%!uN(~JGJ)|h!itpzLhf?3f!i&9;VnB9-enjTxG`M=`vvEGd(FE4@0-8cLH
z{}av2zrDb*`NyBn=O6c)-@EbXdDevmj-c*^mzUSJ%xS)$32FPd{dKjVF`B6Dd9u7x
zCO6*bmj8cy|DSHwl@)>i{#^3b@0BvmI%0g@Mp#hry#4>0H4z(?etmf<9AEo2^r!OV
zlSeMP%f~+SIQeYfvW^b>|3A-9R5|(m*Di)1c}y$|W`Q<mxVWr|+L|>xZoZ1=oyzBP
zL1R>)A#+e?;qo%y$9K!`_ljzVO?h7qYE*zyG^l=B<~v)$Ai-hj<q3Ja-)^gTzxR7m
zzwNh<#r<|xd3!z{n_-@RFYJ6sRFu^9`1)GVxPxd~)W#&&)|pECcCNm*@Atdt#M^nh
z--@}qx*FF1`_s`e!@4|A#Zw40S#s#mp-=80t6Rn6I*xXW=NC@fe9lVSs_cyfs2%}j
z(qG@+N`sC?l3={y$im@Z8ooX6ZpOVmm7o(cZh!gp@NoO_1&+;&il3hYHMcAN{d}H$
zYKmszgGTma$9kntf42tZJJ9$Ar?A?Q!sD{ylhu5?{N`F6?KQs_vCkhg`*YdfzW4s$
zcjcg}5;S-sQ*y!a<DKI3xmSHa>3??qK1)zIgSK$(`EZCEREvW4DYedAmG$^oFKEc@
z&ySBFQLcXRxC%wkD3tELZ3`AC#MS+LI>RW{>&xrw`uA$T-vxJ0mrV8(Qe?1h=)S;M
z<WN{x2%6qXJ2PYBRq;jtpV$9OFL`^*^xf|F`?zjT*N>NLZEY3Zc6C*#cGcHcqI;{p
zc71(){kUZM9Kplw{Qa=5fS};nS*G3IdOKD0c0QRDu_?t<rtC(dVa<;ZFYfLA9d`E0
z{`&tr-fp{nYWviwQ**za3-g?G<hXpjjQy{R{in9CjohpTnrE33?AO`RQTy$t`XrUk
zLx&E%xV1HV>hmA&pojvEI&}ytKLU-$#{d6y{o|u<{k+f5nG-(CFfyKC1Wgx#=14#T
zrf28*eL1N<|Hz8K#b&>6NttGa{PO)L>~AB;Ev~m_L+;B<OGW2hUlVD3Yg?|g=cFUo
z<LhOm&GU5j%cV{RCB)Cq&MscFCTI0N&?#~uR+kL3uB^DRA@Ok9_x<np{Z9J(>+93=
z?{_|*2bwbZ^5&+olG3j7_i|rfUG4t=qyPVk4foZ&r|H~$q;q<j?&>XXFF5n}s(5bu
z^_uCyZc8Sn3Cy6(RsZYqd{9w&aa-<fuJ<kfUaek#>`15Z<3FFz-+z<c-Q5iub1VG!
z^ZD_O$K|Bo@B5wCBX4i_?PmIXuHSP@E_rVJ{cgAW@jltbk(<*D)6dQM@%Meb{L!OF
zH{Q<MeY8tddr|7?X@$>brXO3_E+<v`>PjalRe**Wf4t4FkA7IZHhQ~W8^3&9<}|ln
zsiRA$$AS8CppkT!y;WZy9bo3~0ZoivSs4tfg=YViy0$i29MshZmH41pz)!bdi;0W7
zA2DCPvRBU53RD4uhAY0jysXZ}&HZ@udAn{<b!t`mYRgfF-7lBTegqn-4)(KD1&xq^
zhT(eTY^}cCDL((=%F4^-|L!tun7XO-w=ToBdv|sgPwv*=XOVe#S7}f{z=SKS!}Tq{
z-AJAcs#rC(wY?{)ct&l_nmVWc-_NJ(K>~FjyW>@KqqcZ}hQ*)!c--%wc4o#zP(AYU
z*4FHwb;-wiJVCo9M8w3@K-=5C-Ok_tWcvO;shhH{u2S*bw{!0Mt=HpbgA%Og-(O!R
z?<#$*)-GEXQS^TA_plio>;M1rjElRMCJ&nXo}}WrspjXWCr#XX9<$7HXMtSz^5*9B
zPZ!<gLub{#xv>#cNPjw|y<TN{Op)iM9fgmV#O<x}++X*15@_%LuYY^KT=G77Qhoj$
z&>731^-G)X*Zo#~KEJ-sDEr!)PqleF9=0uU>y>(XKECGT(I-8|=R83B+(kr0R6vti
z=j?vJ0nNtTf4-ipLHC48r}i5LhK7<IY%EJYgsx#=U<d`>5x_vz?)B&Y3^$&BHJ{L#
RrvX|X;pyt<vd$@?2>_dU*xLXA

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-12.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-12.png
new file mode 100644
index 0000000000000000000000000000000000000000..1718a959cd811209d1d438e5f418c65acf7afddc
GIT binary patch
literal 24799
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_eA=KR<H|3ChIz4xqH&rJ#Ac3#Ub
zKUY|u{xRdQisjS^&N>$x12pIRyQnM-Thi<#|MIa<)T3q>4@<t6!75KK%*lOr;l`QI
z-`ns1{`>V?T|eh~-@EIkpVr%Y{q@hPy>jcn-+Nzm_x}3lpTBPDF?3^KU|>jKcFz+B
zF&?aMW?*7qU^rmLA^_rVQ)~cH8+aL67#J8Dayb-0+#F{HMvyLPCJqqywtxeOy3t0O
z)&?7WGqW(h<8MFCUwwJG|LXYtbzNOuljhH#UsF@FCHMBWJ9^yLGq0`+EwYfQdO9_{
zXtxOe$B!S2EM#u&uit-s*T=`lU+35Vp8e_hdHwdo3qL+S?mbC{uU*PKFQ<Iv%~Pk>
z>o-Kd|MtV)s=@xu!-5@ufBgETWnvQ2D`k4=%F5v4-Fsv<>Ud8}-Kl$ewYY))o)1m;
zYQM+cExjHqWs)%=uI^{*RE@w#t8QB`Uwdlr=;*jAZ0)SL%BP}pZL6=nE}J-UVv&W6
zR>+D8eX`bNS8Lzj+^l~4vHyI#yQO#5@B8&?)z)Q8mu9}Wun?rJsi{dsKwv@8Qm>cu
zs^4AweBOTj+UV_ZrN8fNDSYf^`|U>Zs+gUdxJ0#<G&C@{y1A{Y{rzp0b@@8IxIHs&
zt3K=4e!f}d>?~97^ERJ*n3$QrzS(>}>&Aw}Rngnm-7YJ;xjlcr3}1WImlqRrXTLee
zd|>|k{5)}n2iG?1cpq-#oowhfbLPxjTeGLz{eEM-HfpPvr>Ez-e9ywiV!BaFyrycs
z{CwX2{718M+#BEB-K}k86m(2N)}|t$v$IpmEN8~PACI`##_kT=w{KtEcI)bIYd|5h
z_y51&H{bovQuCdq(tcPmxkt@!&WdHev#WB;UtCbUx;otd_qVsfKR-Rax-~moR5vPQ
z<;s;_US5}O=kH(p=jUf_D=Vwx&-2>3#r0O?-{1G^!(slXuV1fj<CR{OdV1QY@883V
ziZ<>0_bdDCeEayfx3*rMV_96Z`%bo$ZPk{znvbroE-pKC<F{l?)H!`=k!yFzo{GZl
zrPgI{0{;E^`Bvxis#jN5E`ED^`|6B~i+09xHN-eDF#c0&<B@#y?f0#%*;f}hGJ`xI
zWsuNtYMSnB@2P(ckIlHFcW`wxJO8T0!)^5$w}1So`1@G?f5Bh7sxKL#YokJEo9ACU
zGt>C%3FZEZyX%}<xn|i^Zu<58{d%vdTCvv+%irBud3ANTww|7!rlw}phJ?mGS?gs<
zN4qMw$Qq?|e0zU?{XE<1tVc&W<zDy8ST1sI=Zn4m@$H4(<@vtzY$D6=*KU7yZtiL>
zQLTzCGi|H4+5LXAIcCMXU!wYPca#%6rr)bR_ceS~#KuRu>t7dL|5d}r!g3={xM5GT
zUc`a;E4JV7EIu_=`?SR3B}-J+=T6g$T_vU)wIX6;5*G(YKr5H1Nx=h$rAwDqZu$GL
zUH;0-V0BklS4{;4hs4ChRe_7!=GA_SOifMQc`J79|0=)Tp|-zXEY7;KW8>>{eVczz
z=<n|jTOX(EdFsrWD?dIy4qfcV+uG8y!l99=tE(&M_O{%uH9tSe?DuQumk*n7S1Tea
zs#;%P-`d)`GIn>_tv!{Sqj$UYO6@$ha!t(6OQDy0zwFizTGDZATdwxYpzjOc^hlX{
ziR;B&IMB$v{<nm%y5E%4$f_?F-9_c)*Z1`B)c*N+Jnr_o*xg~1zI?gtUmY92r=oCu
zx&5Wfmrb*-XoRi~^JV203ke9A@apR7<&m4yD)0KIr7d&okyywjs->Zz;PCX+)XNhT
zou^EkSa^5+%kulR%TG>L*ETT;@t&^tRmx6fW%BX9U+3%p6`%c^dv8zV-{0TEOG>sl
zIXjC=NUZ1*)qeH!`TXlAC#&zB=k0gD{eI2o-l(lvOD`?;)>cq(c=+()uIKZrZS45N
z>)P7*<@MSRFI>O>U(_*)?dO|=%humM+AaR|AiMmEy1&1;`1r#9{rOpXT(*2g`1-h8
zd#ksvzPr%5{mUus^<a5^{^|So?^jY%y0X+;Joo;-ySeiZxATYZEP9#}InD0hkL2y^
zTIbh%>RhtA{#yClTTAoq?phhLGHBi7lK1ywcbC2Wl=1q{pY?Hjqdq@78$8#lG-QDT
zV{2R6s^H~*>jKym@*nbXF#P=avr<Reu4YFYzx=uj7Xr5C+zd)gOuV%%ceap_(3Xmi
zNub=$$}KjfM6>3~%3ycCcIUOx+rvUarufaZS{l2%Eb~wcr<7&UlGVSDpMCND?*V51
z9eR05$;qP9(yyb$B_%aIU)|fgJMHYOrK>_$ud4q3j*Exq%E4y#t!ZbabYpjg_|7uf
z`K<8UySuAr%#e_^tBL59HV=D#Zf@y=1B_?qT8DRw>0bKt^Yhh3uH2r}odOrT^_t||
zFmQEq)3UR>w|1U%V$a84=0#bzx2^s6vA;g!;i1;3ty!Uc?+>J;rM;T$Zx{IRQ0vzN
z%=|CD-><*kz{qS;`6*@ZheO<QZ=Ic;RbzK$7hR7nfBHfqGcz;m%8H5m{{O2ET^|?Q
zZ~JYAUfiA)OTDMBDt><M*URPeZS<UOZ_i)P$}P6Ssg>*1?d|K0jEqcDPl^2faG2lH
z>e*AfKOdYUr!7^VSK*YHm>8a0z4iKy%u7o=y?lH^4!7}&ii<Dr7T4F()bz~X`*qqh
zoybLBUteGC(8#pzn`N!MUgRbh-RNy04-d6o-Bp_H>f)lIs_J@sd;awnPGOUh7XjDp
z*8kx#&AQ?-Ej9Dh6iraIw|e)}t#;`%XU^R9|KIPgSHt61`ph(Xb!llgsP@=f{awq@
zFpyWuB;e<#r>dT-!`EMXy?*~Xw_d523)|&_4mPoVJ*~h0#btl{t4*xjU+$LQUzv4v
z)w-%nmoAy)-LY_Wci-)_Wl46~`P(}R7tb=wU9~y={HoH|*LHnAXT3G~IG^uqGvE33
z|8`E(k6$NcnpLq!?ET*F^FUR^*1Wq>8#iu@+F!Rf?fks8xwp4vzP`5B^4D#q4HFqZ
zEKiG^R%jt3cRGA+RBBC4jgNyvgJsQ+4YzlRYKKXj-sJQ5*VnTvgO}gA<~!HwYQ(hE
zdDZVMuWw>xW|L??oCq?%|M47~%1dv*|M*eyxWMAfzS`e5x7Nk%yc97lwT)l?-8LID
zvulrKHf3k`7-nW>9(!0Y<JQ*f>NUp4W=xqPvi|h?D{CT+K^j*CF1|BueeCXQKYsn1
zwaB%5*5>r{yVh>jIc<`4MZ^7fdC|Q4t3p@bnI>;rb!Cc9<RuFkKI8g-HT`dul$CoA
zKQxGpj7)octQTZK)Yh!ZyWij4-EF&VzGd;UjXI}ozFrAlm&$MZWkR8aOxn>dQMtGG
zYrn@PM^4iWSusJ<qF}+#SF6{b=@eF9SCw~ncey!V`(YIol^weF_5b!{-rKYD<HwJN
z_v`=f&Hnl2<>lVgNHsOJV{`25?`^d)HN84TKmMMDOyBFO+PSxN;`iAczb!HO@9*sY
z|NcIEbhKOU?f<{;>!nX`I`ew{{&!Jjw(k$K%hz16km37$nBTr)%kEF6=iV7Vd0YJG
z$=lkWkGl1xPH*zLy)D<*&8_YBuAUyA;y*tMufIRuCu^L3ZqCOW@3-aN_Bq(Z>f0@*
zduQ7FySuMPOiPuk{SvtTYs&XuVe4XUf`X>_na}p8#m~+dPD`Ds6}oDNuDn^!jEy>{
zMf75B{Q2>?Kkv0w`MVq$zV?~c<?F6XF+7pmmB3gpc+Of%fA5z`R%LHi?AT%9d1-e3
zzLyu%YySNBxJk!bSltg)oZsG+cXyYjl~vT`<^JC-+#DPlj&C~D%6<RH<`a^qH>LCh
z?yLE^XPth~k`t!iC(fC(CiV0*P+pKLXMS~U?P|ZdR+_4+uAiTu->+%veQAnjuu092
z0$yn|pMLv)JKpX2><21&WUb4tF!S3KT+PkCwq|9YtTiaB8mFB(aq**?@2n?Mf8L46
z%fFZEsatAS`zzzZ0>@ni51WL9gha%}moIYdUKO*msOrzh<F<0<b0$q%^z!oZ)oEvE
zf!Y<fch&s-lzC=`;jW60i=y`iFY}q08d>#r>-9VT>JA<}C}os#qO|{SVV|dF=&CEF
zxzp!fTIyZBce8-J{CcNWuFRL0maa>^{@JeN-R0Zq8Y(JJ+)jTh`1r`xcZPxE&(F_6
z<%7*TfgeAA?tE9_8FX=x>)m&6EI`eaUTO1d*W>HoUc36K|Hr%C@4tLLZ@)TjZ&lTg
zhwXQ-ZOy+Q_x1Jl>*wwNuQAQOR*`die|`Pk%I9<QPFH<>rJCGhmUE-Pxs-9o&lgRs
ze_Ug3o;|urr}oQ5_dN0Wey^{sojiYj{5F4<QzuSb*qD5L%B)$dlw7-3Bp>gq`u%qM
z)n&fYwqGtdXWiPeGASu3WL?b8=pw!ALLwqd!q!G*K0MUg)z=rcyX@_i1&+*DR|dN`
zHa1$`IzCM|TE&xB%B0}6_xme53X?%aO!T&#!0YQ`^LL~r_pGk}^AwcqeCOF%y8o6i
z&6)yg#`4P9MDW{w3D_pSZ_<|P?|Exub_Pw=4iB4aRT^`8wt4<KAyqF8L&HE#O-(uR
z{p<JrTE)gE11j3H?(QlDwMnk6k6(XsvU>KZDVnnk5}T^Nz0rIbR6c9X8lA{#OCKI?
zuf8&2;zUKyykw4TIX9Ks4=<cCL!$rN^zyC6zyAGxKXt~87u$3!EF%8?{(k=3o%|!M
z+~Qvjvdd?Ddvg<1aZH&u?b){<_ntgSxxPRC{O=9k)AfG6*?c}^cUf-fn;U_>Ql>#Z
zK0U`LugjYzYh9+HtLt0(`r6)S$&2QK+T{FpKO8(gJ+12g?9hwZ@gOQaa$29f{ku|z
z8b8b9p{7|^PQ3ngtXKN=?fm^$r|CwA?60fco*aKq_w>q=mzO3jxpL)-eT;BJbTb3f
zA6JY0bA9~%uY;Psi{1HcKOPa*ir%*7c<bFxVf86fr<Ptl_+VP<%QG{LwSty(WL;gg
z)HM5A#*-5he|@>^Z<>3{L^3&KWsvILKc7y^-A}ufcy5lRlyO>5+L;*-UkS?#2rOuq
ztMcIF<h(A!|3D@~UQX^^>E7a<+Z&J9x1>f!?JQa<Ws<RA%^IED`}<<g+x=ei@9+D1
zZ7nUYW_JF4&+JZ3(_Ou<_P3UzqGSI4zuT@C%J`kLmI-GIke8P)eR;_hRB3{mJ+|NP
z6wBQf(+cr;dwYBM?{9BaW2^jo<!qyr-FgD{*ZsY+%vV}eJIqJjZ_b1g&5jiFj(a~P
z5|?k;V$#~uQo&n$PjAZhyt}VH+UZ7bTch33(%%01dVGCoQPC&g%2z?{e6mw!%vka1
z>FL$Ex3_5pE^7Jn_phpF^6|c_KR-Xed+Yg^+8+m)`9Tehs?TT5O;b;a_|CBiJSK5<
zMWFLyx876VE}p2L^0{{Q<%ZASZs)(gnLa<%!=vNTqemgjd?cTqpC3Oh_2uUCc9*y1
z-nKdSw`%Fqr6)J7SzY(6$1u*m_~5~Va;N9?uibai+L$5F4pclEHa0ebn%|&$FEurF
zW%c)WR^{*JM9)6d%DviSqSC2Tr%ru)eyEjuUB1Lp@AF^dHzYI$1qXk9yZwIFiwg^_
zs=ln)Rq}F?sCL+nTbA=hN`G!&?q~iwDQ?oAzkf|jUIe_ovC;YW_xIPoyu1wR3;E7A
zJ6rm&#`N5}<aU1fZ@cc@-1<DN%&@pj|I^2h7w`Z7SFRhe!6EhZw5uBu4}bal{r>X|
z`DS+hFb|Iow_d5ITnyo$QZZZTRQ=!A@p6+D_WgV|+vr%vr6r!0R%r<d3qTFcUteFp
z{`2$muWz^WRsY`4eq19IRc1fkzb;}&LE_RSODgteeEGKh#l5||kN?w~UvlxM@6WF`
zKXt4<J;6<>&1q*r1=;Jx{dSj5OjHK>;d=0{btSg%5C49*+dsbc>(rp&;H@=3i$E#m
z*T>`XS678<zrC^Xaog+tb3Qly{bX%+^W>>hmp(i^EGj3rZhqY_Pvi7+S7sO{fBAG;
zKl{anh2|yK9~ZT9i%&CrwralR=}kpTqtzQ`cZ0GJs9fD!_4QKz{=dsMCLiCmc6Idj
zbwR<wwsPxd3fI-ufx6*sywc0I->-{4Cb8Y~=bXRy_+=~}Y<zpHSGxF5i_UZNCze0U
zjFps}=312&*|wFQon?Cc&9uO^QKp`kW|?O1IX7W%(owF+X-i*SUHyE;J$oesgMj2?
zJ%M3iVSVx&qjwY}@=6-HWM*c@?Y8v{N=jPPCuh6LYpT}D^z-xL>Q7D8UOv~l{MGFI
zeJ2a|p8M!@P9b!6S+1o_-|JiMUte7<{rJdr{og<P|NVL`^ZxkDkH_W9doxewZL3hv
zXM9w2?)ZUiSyxYqE}07|62E-;vN~`6<?o3J2@8^vlc!FYu)wjIO;cIfxm#R+->ZG=
z!=Ij-Dk>whCinKX)arxpOaA;QoNH4V^!3%%&pV1MzP*X;cMtNu{{3f3QQfn!bulkX
z_kQl~iT*j0If0*v<AeCOOWyjL@%w7LJUj|!-+p{Eeg0HKx4l(gKUr<O^M3#Tbzfg!
z-(45KyKL?8Sdo|i_ifx)!}bi+ko#Nqw_Uz&$2!TIbD2~2o>edU^P}+Z`}+T%BkF#A
z$((Ch?6z;;zHnK2#n@dDJ>A`x@9nL&WxDn2>ub~EXFjbhEiuIfKYCwXSlGNOZ0)M`
z`+l7=J$`cQmv?ugL7l^P`MMQ*tG`#RDL?nuFzE<~?;MMZug@=VY_?%rtgfQ+V)^{K
zPgQ43v#-5)y?+0+_3PKa+xcA1GiYPdQE)%)))r4t1#?|td-{2~?Nai!UjikQO)5Sl
zY}d2Z)YO!+EP7IEe`sgi-l|tuS5NnwW3jOM{od=ZV}y=LoSk9#cvf=doc@q~pO}8W
zxVSj(x!cZp-yfRauPMH|+s?dNthoK~!h3tGUxWHGll|>p3hpy9HZJ}1qtG)bB4Wm;
z=jYciS)#K2U6Ht645%cGd8-$`#6vK0+S9L}XU?55Ln3rlh-db-H5Zr9uY0vE@7|uu
zsLg4;TA{0+nEhiu@V3)X;Xr)E$w{hTpG@|D^>+LHYoIJ~D|@}?E|VL@XJ!~yeLN}-
z?ytIbi*<E%U7Bf}z9s*@9cUDZSIXo<{r}(bo|iyf3{mZ{6^_kppb-I3FXM5)eb&cE
zN4a=;uRiX#e`l38+bp-_xNLdGvokZT3LZ3oMri*2{{H&&dHe9&+j32-zrB&U8n-e?
z)z!r%<Jy|YPhY==-rSU$8aZuO>FZ@vrig(0`Jt=BuEv(%1$Dh&Us)L(wWDBRpN!?A
ze}8{h*Dg9gb&l{BUKxvk_`07<v#zaK`S<tt?0b7EL1ow!&ETRf^QFI@(q8|fkzMY>
z0>|b(_at|Kh8o>^rIzx^T4mhdSDPpPcK^R$t3iDmP}|OTw%N^hi$RT>XEW2kyj(v2
z)!g!XfdvH{mif<L*T~Gis_5w{P}V<m_;BgBH<5pTJnmnYzx;mHYu)V|rQYxRy{_!-
zt)<iB>mvXEJYNs0qeb=OV%YiRu6%oYdu!%pwX<_9FP9eHUm2`^cAjl?e9gz!fB(Mk
zU+p{F3^dTPr}8tXwXpr<$D&t%zu%v}e*Jp89}k#AR|dIm+_-Vq?{~YOzJI^|$&-||
z5gVOOo;-Q|&8+a%VY)|;9Lf0i=Vw=EXW-voUrV2y5Y&y^69H-&ot&h4_m;Z4`tu*P
zH`d47tE#JOtEst7oH+5+bp830CQaIsbd<~0)%EVA!Vvxae>R!r+*qK$?}wA9c38;i
zX}Y2!B1=F4dUI2%mxo8d_Po0(k<)&CeZAZ;`PhoAtE;juFY7fjGWzoMdc3x&X=tyM
z=_ig<RxXi%xmKlL&YIs}k$rvLs)&t?YHDggmG$4h@9WQRTedQI`KrjxX|HZ<TzqRw
zCTIvN`*@%1uRov9hwdmyT+g4yP$0eO^UVDWZ_*>Def;?GWZB<|%I-dmOsqZu0TV2%
zzO1;tD}VprYb9@PTy$}9k*Ke)7ZwvsTNS!GZC?Gq%E?ovJjvRgbJOVZVt4+}+xP!H
z%fik+yNQ*1)~Tu5v(x8Q9(!|t|NX}^_W%7hyYk1wcHfMQ6({H0?_U|adz+_^kBN5p
zIupM3!+SoR($0IEoSeLO-r;4wvwbcv^Ytw#*zob=$HKEq3qL*aG)_9gae0ZSaPX=S
zO<@6n1g~j2nNp@%DQV~D)yA&Bf3TU|_x-)Sz9}h7K7RjhezZ%}nBVTlf}2}1Ctv@@
z*M8U}@6L~1eGhH+Yd>e)8FO})DX5>xEv{Fh+uhS+VrOTkrmcPYwV9!z;jxDW67ur$
z*KHJ<+4;@*+7H|O|MU6!n%5tX%Y(X-J<{gqB$CfuTN{1$#6)G^$!fknJByzB{QL9M
zHz8rc%7BGUl}{$RpV@xD?scjC%$YNv?frhw*wD~W&BEda3k%DPO{u46E%Ti{>*M3&
z)n`smnmIGmtw$p9)O7uPCMG7IkdP^oMkyU9Pn`JS{CSN<?u`uxzr4A5Ib>DHNfuVt
znGFpL!OMIkKR;;ZpH=z!+0LzJ-|d|-YgX2;FE5i9Em{=w{NE*S{h43Bln6^oW}cd=
z{XDDM_Wj|V#m{G*n`=G0OH_N-f&~h}I|>qmw`PSJr<@Sj{?nporwM;Ye}Dh=N{3Cq
z*Q9^ncjnY7qxXBi&s!P1ypNNM%ZQa*%tTZ>%*5aB=aSoZ3_+dqH#asu1I-G6B9fDz
z-yGD<{{8*^`EB#=?k=BwZEf`IMXueu?B)kA_uKpGb#{-Tb@@A!ySqw_RlTQ~{QUG3
zOoRB=<?p^^Sm)d@SYP}?qBv7esQqwa)t46!znU^msMbkd_j%zf28Jg>?S~iMxDm0P
zU7CR*Prru|V_sxC@99nJetSkRH0)_LQ~=GB<Q$eopIdR5H*Lz4B|COlfLgJ9?ao(M
zho65tDaSbHhJmF_pUn9NJ<s3Y-cCOJFrZ(~HZL*NJPmnTWQtAtt1ByuEM$Ckus`tc
zWnfY`Z&mwiOVpN(g}$@RRt7Kk0}bTQtNG-4`?Z8!%?=s9b{W3*M~@$G&fQ-1H7k5~
z(bH3RKNN13E_hpDab-v0<Jb56CV|FR%icto=G+K4+9f)9|Ni}6({xr|TN@23RLx_G
z{qC+h_~cwc@lXFoCf1NmDV`ve%<OzuuC0yEzxDCa<Ht`6EVk7D|2KP^Kif^_ADcg)
zeapn4U@dKy1L{12hFkuAp8x;M+oC7WpD(Zc{4Dd&kB^}Fl;giTh1E};KkqND7jvTZ
zm0o8@$AxciZ-YvN{!;sYKNf>VUqK^XMn*xPp%y1+=dJbs>vW^GcyNpBg~Y_nd3I*z
z<I>-=m-@}My0x!%cbAxM)#*M#Ny(R7-I9`$R%LHynC0JFV}8FTn3I$9)t#N2LBn{W
z8UYX5`VI&0WO(pP(1GDe<jIpKH|cmkeE4u@Y?sdIpwrWIr_PwM;^pP#uU9UgR}@|U
z>4_(3dSY$VR?ui=@k+0g*RO|*YKMJ^sC#lk@aWN_FHcNVma?hX@OoX}<&%@uukI{P
z*NxodB5PfCWs<6QUSuyLBV%0lo|#I@;1+HF)7#r}gSY41HAz0kvvk?Atc#0W%}ZqD
zR5%%~_v=M4e3E%?(e~p<g=BKf-I#T6r0aitNc{TpvU^})AZW%UA_6qxwfyXC^XfOB
zKkfVKJxvERbSfevqa!arU*`JNJ(b0v%JtKelX9=^em)VNYhND+YI*H?yY<(%_|?%@
zpZ?yU<E<UOuH<#v6B+-BcO@nqY-WG`;o;#|S5{7T>ydaUW~ZWQVG#iuT;5sqbW6@n
zBTyZdTbq)y1k?uIoPPclsP8k=D0PZ`eI2OA28|V}XliSFE4%lF9PJVXji_^pYQ5O|
z{oZGb{?)yVp1!_U9~^8B-I^6DsuAFD@ZiC&zP@YS`ukRZTB7^xEDNv4mS^7Fl&TfB
zW(H{dl$Bd-$69|MpDW7!Hj6+_;Dm!sS`ix-fNK2mdzHtPb1eSPJ0{`k=2rE#ZhPhD
zw6E{)$6vg7k&Bl%G$CPuR@j;q&*#_2sr%2{leM;6Oc&G-=MvLdF=2uLXmkWTi2fZk
zMjHSB*K|;Sc*6z*Ru&cwBcmXHn~yD%CQsh`uKLxLm7p3nB4P#;Gjr%NA4${vdojh&
z&V0<6J!j6E<@4*Jo}Qi_?%>eSC8oQ|EcaH%<z>F%Yvma>fpUJOUqQhJP=8@<^!8Vv
z_RnmyToGAWUC(v(@9ypnH#9V~s`;@&$~<q)xw+P_4>U5*vMyf-8W#BZ`T1(sZn3=I
zTXnpPpP#!rN!9zxB3EwPuUCSvUoF3X{J6Vq)t3t$g34PeKc{VH{5V<7H)v<k(<@st
zFXwFEe{r4F)m5RFHzXc5$+=;$UC(Wjh_v+Vw`I@I&At5P<>l1KX>B}`lX7?e`T05f
zKm+5e%gg&glX`x0t#)3WH*@C79Xl+RE?c%L_x3i>@DFGz?1D2tXrQX<{oe1OY0SIj
z_iI0W|9<_>&f=@<<LyE7KefNVUANf}%ByB(VeEV|0liYDS9X`@$L^^Jv@U-KDr&x5
z3HApK+gVnvUAHV^V^Y<lPW3OZR<8%u8(DXEZOy*ht-nu0US9s{+URgWK|wEX@5^1H
z+E@11*XQ2a;u*Z$uXL-dS<Vd5piu7ZZN8w{n}UK3Dm(va##Y6vsHuS_^t!scFCXm|
zpE_mAlI{1ZyuGLCT>SO*we7A($z)K&4%AYu`f!l_>WV<++`GF%=hyvO8MZEF<@<fV
z{mSnYwy*yC=jUhB!bdKkp?E_>Lr{yU?$1Ye(99jTxZagzzO(PVQ{s~{@mTEM9|j8Y
zjmhq!dNC30e6p90^-7!O-?J%wapB<Avd_=XW?fq|({G;5%If!f!$DJ<A0HnFl`Fr#
zzScH03_LsAeDV}d57=6O{SWtZHtd&RW~jV!T)rMWj%ro9>iDj-v$G`I4<~}U-`i^5
z-r9QX`t|D~x=~l=*j8W5jh~h(DK9Vo`RVldxNzCSZM?>O?T2f=Ty#&nzpwV#@#DvB
zem<F;cYKS^=^iQ5Q!zUV4n|B%U9@OXQH|a)iR8#>nO9a!y#9Dy)YezCa_4?~cQ;$-
zv{Ap^uNB!h&F|MF>zp=P>NR!Ovz`Awoz_3LNe9&6(Tm&jB1%qDGE;`HJ@fLi-jgRz
ze7I5W;n4wVNm-V@nv#8Yo^7?yzM7vtUte9l+qbdksaJC3G)cRf9k)MKzuS2nG?bin
zMxuY0-yDm?bMx)%&;FYG``o*)g;D!zc5c);?c(OPOZWcf^#1GLK=nCa`{A4$8xH1H
z*3|3)jkMq2R~xte_Wt_)w_m^b^1lB6?TBfqarJ*ow?94iedXbY2B4AgyVrW<?e9fQ
zOPytw`)b>t2M3$;>V=o5o}LB@tINB~^S3`;xNzaJl9!jB-Pu_zcYBUS;i0eZ#r0wg
zo}Qj=-q_gqY<B*>!fep|wy>aJqSrK?mtSu%6quGAWGcAr>F0NCQ|f8Zcn@f%DepC6
z2>R&jh@Ne^x3%>2-to)t_L*q}N&so+=Dd6*WRiJF<>#+ouP(aF|2_PB?^HfnD-}<z
z*j-;tZ(H3?NlAHeq*GY#_3>V5b$fgJ>+iq5z8(&mg_~!y@_KxItfQmjy3)YFz^=~D
zi~s+9-=Ez#^~Rpc&DYjOFVDKVD)YgCM!DC{PEJ$w<M(A>n;$GFC^%_J^6|c%y8T^U
zpKk4o-(P2REaT;+rPoX6fCryHgC<;^TDekp?^pAk^<v-ecg4}ymix<3)sK(U4qJ1f
zk(oW_^x?yY@BUNs^PO#W_5Qza=If7t`26{ERJeyn$Lsszx=~APtG|I}^jF32-xs}G
zNYyLj!GT6laW+jq{@qs@1_f&t0fy~!b)&a=Op-Fmcu>mY{`gpLYER+T-7#yUw&wl#
z0UBso8NA#i`<l*NyV|JYXJ-OWPty(EQ}I#yUU{6DjLe!7Cp`L}s(MeGqO!hti;IiP
zi$ks4Ry999gnr+fch|}@Xmi@xyge6W3fLBD>mLdZ3i`6X{;xM^g1xD!Ddw?N*0nX7
zr#Eeq4W2lcTU_tO-SYdP&1}3PQc_y+@$r^2d_RBucyVQA@XdGc<^TU^KW@~1_#qcl
z_`dDSeP=J*vBRRZwe{rr^XEgq^V|P<P}rjvyDQ`Uy}h9MG1H6-3ZUuD<$iNNS=_s|
zHCr|Im6UnSkAnXBywYYTBtR<?;;&~jG4wDp7Tosq_MW^XXMW$)n0L7o@;il8^M3qT
z8?`m)<D;Xdm7h{lQ&K?Fm*>kqRK`89d477o>G{6RzWZu^ibzSl+NQVL{qwJ1alhhE
zJ}tLj7c+h4%*v~e=h;*SO-tSR&gV`RJHOnNl1!V9;Haospo+2f_qUa0Z*PI7Wu2Uy
zp1gj&da}BI)}0-NR`vh>l*%r5Zs!BdSc2ATY|D+FsuAe)@87>kOExASPuso!&7n1)
z^I!hq@wl}4yxnThAeXB5v=UnlMFWF?NhYbMMEVQ;9v|xkt@Z#7jrK|!yDfI_2Mv>e
z8la$7*3;9|r>k6--LU#Be{$rsb8{>wPoB=i5W}IskY|04`{A2?q2*<kyFNAjOgnq?
z!J9nOsxKL`76lIAV#Xl`yuReRrIX(N8GA&tuC4+tE&#1hvH$;PvsUP;DY>^(Pfzol
z1R9fxe!iW9k8hgcvt92E{sd}=t(j1g=_j<@bF$jbeQ);{ZTPpV^tDOeogJ^O+=7B8
z2?+~dT@z{i_xt|;rPZHi7`i1N>p59=TiLy@BKBR)dF%VPkN3%5wtl~7@$PrKyzke3
zpZn?g`S;iAj`c{&ftpHxe|-(!U-uU@1hzJEv)kshvzO*r7Js?yZ~yYReEpR9^XGGk
z>*<`{v?bvn)7|?2f3KImgOwL6!`9AH$vivD6f`|_{FkV9*ojR#>tmbprp>dh-nHwA
z&9@uL*Y`w#)=8+mFIP0nyHgQ+yv#xdH1b>cyP<)h^xd7vV-kCRy;^;9n|1lSIrpkw
z>qbsndR)H#&#tUpfu*mnO<nR@F8QOojBQm2WK9KVk~sV4ySuwnBd5vLd~oc~1&`0g
zpVMo&_fPJe`!mom;Ny+QUteFp|5b8p_}Zwa8{a%S+8wnyt#`@)-#l+_Zgv;fj{`NZ
z-GBUeyZ!!_^z-v_`V~E0yTw95V>sE@bWHQ^MC>kqf9?Oj@AjV4|EV35SR1$Z*Q(zP
z4X<4p7z=K9c60>9#LNNB{ewqRqe0Wf=jN=OFhRif!vW^)YubvQo&q&0K(i%Rw&&l^
z-nKq+^D-H}cF>GN*~6KWCM~M}_j&&H((Q^SCMNE8SL%I#wR-)kijR+G878;2@yWg_
zJUD08tW{-iZ)JXecNbLgALh5OiT%Al@apRD@V!-Ex0JpP>y@*;m0auPb*i+y{?oJH
z@Arqt#LNK=%>919KVCO_Tglq)o}MX&$CPt&Zf<g2?B4(Fmw8cH@aJz9>CY=>YJV^P
z@*>do@0ZKrYl}gXypvV-eLiP>Yj5>-Df7HHRS^xJCBoZ28mFHFt@4m7zXKW=xm$j}
zQbym{`0~}KrzBHAqaB}~o_@Xe`@PGLj&|?8wlnXp)m-cHcdMQ=F@!JT7HhE4-Mw7B
z_QOGTP*Dn+yVBqPC&)DW+LeEQe}mc+KY#qlI5kBx?s@o*nWZtg=lZol**11p$;B<1
zmqlb{*MhvV+;8qB&=8$z&W#JN8-Bhq$-LyUIsJUt>uYO6_g0nu{Q2`GsE`A#cYAC0
z@ZrO#Z8<Zew&$&#sO+9~YfEO<y*)dfoSe2mdspiI^FlVKo!#T-mJX`rR|YP219flg
z{(cEQdhFOKiN&Bn=+*1@UFwsyF0$e8*sMLZ<mIDZKR!P8^70A_3Yw&I`jT?L%_2@=
zwH>*a*G8M~{di3J)&2eZ!`4JBw0^h4dH<hJ-C}w%D?pKVZB3-y@ytt0I`36H=KcES
zX7JlvTZ01vCNwoSUtR7G8sGOeG&G!LU%wAD*SNo~R@Sn}rCVG-?CGhgvCZH2W?o%2
zRj%RzBPdy|3Ru{*E$8MURqtslGA=I4n`|wn9~Z-K|7QbesltmF8K&9Sd@?gLLEdL#
zW)_u|UHg9j|9e;MY;9vfm2NASXvktW-l@9Lpk*qTH>IB5l6;(RYv$!+S6$CvzaIYi
z`T6kA&(4<q|N9*@*9w~E1TFJ<aDXxQ&W=FPm?EF7)slvW2ARLH3=Tq{8|GLRALEg=
zx?+-l?@migi^S<on`-_3e|vlT?B4J9vbn@`GMt>8&M5cWB=yN!Kim5D$;rvSQ?)`t
zt0s0n?z28){eDlewm<Wa;9b}5NV4<Gne46pZZ>h^#AEmG-xtviJ7e?XL37&WWxm(<
zu3x>gMs7lO;W_4@bupIxrIM18X%7xGf|@xX#divi%ch-~VfgG&D>rCK!?9lJYTI{H
zKR3wOR$VE1dFkjBjle@ce*KbaKm2f3aPs?mdqJw?Y^y5PzW;u|-aPqupDC}DiNV5!
z3qi)Uw71U=TN^dA^7FIQ>bQv$C&ryWDUqC%oZJf<#3}vw@gu1DnLDp%s&=?k`{6{;
za?1X1nwpx=K)tP%F*`SL^6;3rc8M5XT@`BV+{R=0^5x5$*UF#n)Bg_|&(VzBv?TM!
zhJ`<$+yBqp_y6DTobC7b)$Rs0IW^<<?9hzZuwZ56=4C&>@Bd$W^?E62DCnH^dlN=R
z#$yi)cARCLj2MsdfsKg0TsqySs%qEu>t8;7f4RuD+h=dpSMa)riAt_MzrVdbtH1xx
zqryL5zLb2v<gGu``rVGhENpDEj8ad{*jM{|)|4qC{ri2>(w0>|?lt%67Sr{)xhWMi
z+{VexZT$UCasNz<!bK;~ocVI&|HkCwXS((GWvmKYo5dxfk<irC<a4x3)E8t)kEF3r
zSlBhw|9T7smZxV(|M2?YpKyO)EoeOb=BCupbupG}V|E4wFY^i9o_F`oEzt0-l~t5$
zmq_6Me}7AVeaQr6CeYNbS<a0IRhPO|YJWUzuX?p|`IUXO)u8kZTDJ!3_V-E}A4@(5
zTI2g*{S$q82P0$Ssk3IS+OWYuRaJFm*xIOHKOXnnGI_kexA*Hw_4zNJ&#y1DRV(`W
z=_#l%J<=(Bb#uDE=XAEhX?n3yUte9l{Cs}>yIcPzy31XBKEHk)Gdo|(Zw+q-28IXc
z-|5?P+&zEZKQS@!dX9PhznZN%H!r=F{OUW)B=BgL=-pr5^?$!!_ww`%e1C86-EHqL
zFYiA$$MUh^3efP_5AC0)*(c1gsQ9n|G}|@HG`nie>e$`eZa)ZozW@4)z{6`}d!<aD
z6j-dwUZBaq!0;j6nc*bk^CfBb(qj4e`NO@uy0WL;cW&o9dHlG$YqwZw_Vee@mtVLL
zaQ)40&;sXpK}Hq!Ip^Pe|Ni}Z#Pgaj3pV>!Rqgup^z`#mdqzga@VOPB_1r%;C(BKc
z;o#w!qOyK+f~9&w(Kb#Vo)9;;w(EcASeKu>dT#dP<Net$FD>or>DiNI&A`C$r0>g@
zlDBtvhkw6Uz23cF{0R@pqS*CwVmIo6dJnBFEho;OKY!IsTig41zkGRhuvPlZy|<18
zdr#L31+980`pUq-u;b=3-`UIbVs||$liaS#<iR&ZCo<@0m+0kXzO!wv<=)ufc=6)J
zb@vx9UYy!<ahdPzD|;%7uYc;5Hh=Z#Xm?)jdJ#!U&6k&?cX>_KGJg+RyIl~RbAMlK
z?C!GC*zFI02|5(5h}~WG>&ayQDRbt$G2=gRZmzXy!U2Zx-N$;RwN+GHgw=csxD|xe
zd;%JoSWEu@{hnUUlfHemR_Lk~RbO9if8oQxz)-OGh2H<;f(|Nszu&92s{FKM(&Wji
zp4?(Opw5DdC#ZoG5HNv_S87S+=VzK`X4g!GtDKyg-tGIHcl7x2-QPq71QrM?yS;e1
ze12FvpKQtdz2CFGzPbvk%HyivnzFL9KR>1kN~)EI;_K8(JV7&1|Nj2oyYBbb>+zs*
z7tiT=J3&*vpf<{<r>B=s(~Z_rRCGMrCHncsyT$!>muBbhTNz*fH*~4@^sxK;YOik3
zzrXt0#>&rWpt*ZbPtQAyj0_AXns>zQF1*8dap{DK!lA1|E<QTiU3}%+#^Z9AllyJU
zlv6>2y7g9Pm_bgV$I5unC^4Cf>PNMLLV%Xr7C`0`7dbV>yBR8O?W?WMo6f*s?t5{O
zYv?kcnRoP<878<3IDA^LE_U~`GERnq%PcHUuAjHhS8ripP!V+av_f!F)RQtnh63T7
z>pP2ML9@L~91IRZj4J(IlR|8_cY~aeXT`RVnSp@;X=}#y#Ov!~K`XsNca>y<hEqXl
zxkFHS%Dj2+uH_x?lLa;CKzk9Sq*mqK-SzUv$HzNEOc@v$CX^enskGPqertYpRj4<p
zQn|mcR#Zr6(bnwiubxhizxM3x?5{V|=X*|?G<h;;$%v?CkjrBC{%bEUFaLT>I{!ue
z|KIb?a&9QZ$Hx^hFfjZnEi|3u3|grSS~9#f`#NZ@bkdS}w$)nN+TNh~&?(cVEj!f8
zo&Ds*L@$5;>(|ysiwX)VdaepxJ?+t>M_)c3mtUQJe%{VXDFy}xhjoj%!}vg>0h2_;
z#GY;2<I*WqWFZ3@g;UA=_vdHU%}q<SYdnG`tNDg(OmaOt)A;zlCPoH^2Ad9sNzNNL
zZZtZ!!o6P(v~KI`?fm_jpfy?#n)yLPh^%aEuO1w12CbOMy0+%!#@e^Hwr)*5JuPO1
z3<Cqh3F{Y4Q=LJ@xLc3J!s~I>zT9Fu6I3FnEd>pXPYsWos3L1s;xS1?PVU{t+KP%D
zK|w)NX3o^Kx3~Yz#m>OM@JWE_L}^D)Psrgm-me#&`88EkTtKUvPfSz}UF5>~_1)du
zUrluC>+Ab-nVFbWJYT+i3Ep<|Csoj)2s8~2T3om_`?}tB**?%15-9NgJh#8PGFY9J
zjm>M)x%u|*H~!sO{9NVaRnT6eAKFR{PcF1@3Ww~iD(!z4x;A?IwJR%wx2B#JyMB2i
zQU&zn!@J|NC#A)2Tyy#Ve^5}#rk$I!a;9<mE?sYL@6$`O{@HLSSe86FAqZMPrE~tw
znJI>D;(9RwCnu?fu8A<ry|v}!;=66U(jv05a}O`(op9ypF)lU+h6B7WudJMGRa*3)
zsp9jqv#SCZyXl2~d43>xL(z()qg}T)rFNISz4dfk&9NRy(8PRf`CV1dtn2IMf|~tL
zo}`4&etLR(_VaUdK}$8(nu5}IC2zSy(Ti5`xC@h1y+PCHppF+8FYi_H_?m^Fwc6q9
z<3MY+R5C9taGYhHKQAdc`Re}qdQf`d<m3d+l#9yC&)=;MD#V`{y=!<9(9FgQUizGN
zb{1&uA87Z(-(RoSgO+E0`S<(%?psr}LcLaptqp4B68-Y1TOU-V=tgh5GCjWT<mL6C
zw#M}1vJ+khY)<pljoI;G*4tGfD;FK@7QY=J2&xpTAM#PMEee#mi7Q{IxfyH3+4|#I
z86!i3{r<PNw?79J!oeTzZ<cmvU}U)C)UINAWo!2JJ9;eOf|`M0`vp%=aaG^RA*$1}
z85?Fl+&`)9NtxhwQzj0E18kuxq37Q!F+5OPz<sSZNx*8*h2+PxZ<+pebc^eQ*1mfA
z`Gs`~sg|6#{eI&5_iZ+!pq9G+(`~z%HzgnE1FaSUwa)+l`+IdqVRGn-0LSR<d0U_U
zm~Ea98Z{7=l3K;Y$^}~SQT6?9xouX?y*)coYm{wQKqcRk)a|hhFYoT&{%-esyQRyP
zflJwv7ZXlR*Iy4Bq?#uG`?UW4kiAu3LBnUfvQ{CFkN1bK4qN->cK-gIw^Y>CS35Sd
z-P)Yq@76E3Ry?l4v0F?RG_+gt@K9@XoHD4=n*Q`=oi}LaAJkTCZE4w|dw*x~a?t8*
z0RaV1t*9+4K*L<TayCDvT`T_eCA0MXy;#s}?VX*)n{&;Jo_H)>zC8Q&wY6Ox9TQYQ
z6<=XtA*l0nb#wap=qPol71j#u{Bj|nlHl9zd~I#*(_3xK%)*%2crKXVuUQP*4)gF(
zYt`$u+eM_MtG!>(w5#0(>aR>xcK4c8_y2FXWU|dI&^$3{SgDoYGwaflPS7NzW%08+
zm!v>N?;gGLY!g_y#Xw7=W?2+20<8kdJ~>Hs(vt7@>*ECl1wjj{L0Z`5YXYvW4!^#{
zb8=p$?dj?I;R~HwOCB6x3|$u!3EBg-(5V$Py9S!ry|nZ~$(I*_SJy;dPX2vsYj*bO
zX}a6DxG^v=D6BudnbBp^yS?AzK=WmwNlmNrcWXeyMecnvpwXi#^X9EP+|I9UYa3hq
z{9Ne9q@#J6x}dQcBV%LGB5%+{A86o3uKJB3XoTw3#l`I^FE1=~p0wn{hl2jMhYuf~
zI%(3PGiT1gL-8eplBb=WT@`30)#vl}+Db}Jpb>dC9*G5;)6Z+^==j*#*=@U0`0R}2
z(&fvw?d;-`kN1HG74z;`fEF#!GR>Y=_Ws`5FJDSLC+*+A|M<6ahT7-Mz#X~3dHf2J
zl9FED-oYD_j+zuca;g1(xBS+Y%*k3ID;9W8R;!e4FVtoMRhV*hKN7b;ooih_&Co6T
z`nuAsg=Hsq-Pu|E{LVK}UGqou=}m^B7Z(&kUOYA5e!r8G6KMJK+PJ+@7cX9n+L|@>
zSik)G@c7zLP(-}Cx;nqo7CaRJ+NYOW84)o<Mbp&u>ea8OZi>DxYUh&;^6=>R^XE@d
z!4`AXt@|FOKa*c4%fP@;f5fLUZt~ult404xKDo*8>4>mDXc_@D+XWh^dhsG-YxZ@&
z{r~^%Rsro!yR|X79W*ZY``vDTS*wyAOTS)O5$JqrX{DWB`G*INp3|E=kSgZn-@MXh
z8dg?T?e5YFnFmGf=l;uh$-uzy!`bTO=UF)p>%zXIPe^Az@#^a8uV;+UuSh)Hw(Iq}
z-6m;gB<5NaI@$mIGI=#<1Ov2g_wDWNr#G#Mj`DBklTGQl=q_LTWLwRpC7z!?e-1v}
z#;fWHn!-HP%6+%#)TgJXw-!G?7cDmlv{QJG-g!S42|2lSrLV8O>{OpOL1k_9cE4$<
zD_uH;<Z@3>(Oi6UbNc;DRf`rczPi|*-*={w>&%%mvu<oy2-^2q`|IU$(5U3<b&kz!
znfLZocJ=m#LI*ljRa9QQ+x<SQrsj|CT2O_1;`OH-21(PbDWKQ|jl>^3co4M2AGA9&
zXsOrJC|~)y9}7Wi%{7CUfi?xCo}PAfN8#fu+w<eYX9q3y0_`!bdbjgAxUP@iR|9HL
z3JD1nS^NVfiXWdh^~Cm1{KZ`N_iH$4g6H|UxuDU=(DiY9@94dpc56@N=l}BAM!rGQ
z@942J<TbsVw9CtDQiv_2uDDcxebS^!A$zU<$NpCS^hQ<y+>4#;Z#VOHDyXX1;rZ!}
zLJ5dfZwGGtG2rjK%)YJEAd&p#VY@tNkQ-FW)zsA3)Ya5}{vzB8YU611pJ#pq+VHve
z>$PamSmgC}v7t*mCf?EG1Z5Zbf@qcrpoMp_yUS)7r~Bni2lZ+nu-y@h-Eish<*QpV
zFN1n0ptjsDT_%soYQ9?vA0I;!I`RAc{`H_(-FiLla;LC*(QZ&%nW6qduAqZf=qk_@
zV8)3Fid@{>!Jw5vD*_a^&p*`4{k&`@$dl_HZj)%aw=UK?a@tgA061=UW%&8yaewh{
z&^QHy`N7<atlS`{&Uc=-hxyY<_4yu?<SL(l7PbER8?~$Sb(!{QkedsdKcz5q_V-Uu
zjRbXirs~Jr9X)<LzF7M7CUDEhL2kM_^NIEQ|7m%G`U<z-gY3`CuQY0yq8t5f)qYUq
z?yxoF0A<LA+<)=a<#Ms9wd!?$ikW9Myb&;H;9jB8)g^7!Bo@G8`056i)9Q}fJ9xCb
zRxcG>&Gfh}bi-6Fy^w`nMkO*aeO#p>B8eh}nt2)z1dSCo1q-pvyDvZO&nz|*1sikm
z`1Qr_EO(y&zVqSa0>1}y(|0nlFfe%ZGB7eQ1SvZ(Ff?4@5MW?XFa-<yZr#KC{+Ukn
zHXXUzkKM~b65w+IzFhqA<+6YB%}uEjRXkh2`lt!>+k9}Cwv3s9VU?0P)03Ug=XD#O
zw=ur9CQ|t8tE=5@ywYK})F+=zNi<?$NXUNT(!e8SqEU9g_WKNz%pjSX4+n3`u`@8-
zaI-ArJ#lAe@#8M-bprAX3=<v~DLH(*oxeX~YgXvC;|vT8`<Bn)n2>n5?WpbdJHnrz
zpFjUigMs0|_X)z+8+_(knR0P+FV4Na?c&<#?KhJ9Z5O%qN{N0unPOyE^yGw&F9!od
zh^rsViT8EicYo@iU-fF`*>@m6FZgx3li}u$!sKo43=9n0n&<3bV_{&pVfo~U-~``i
zXJ?C_xBH!=6R|--N$K0I?DZBupG;mHx;iX!9uEV<imo}F6C9h_j-HsPtUb4H>h$U2
z%<OzUg34|wnMMo@3sx095?N#YZin)_J)h70_}E`Bb9uRc|I^dckAHf4I{DX^mxa$}
zrXQPIeowOeUS;~W<17pe`<(q`7$uF<eCCwh%KZ4_aew%Yx-S>qk0<xriY;BbwDA4j
z@5e&JW2Y|VWMpVqb)r*Q;q&wJ{qOGX&M(|s{r%m&B?1f#MGk%}9+#K-K7PCX{=G-P
zZs+fpZEbDU^kZRQ$myQLF(Gbm)zQD-@5^t$Q{=rSa`Up9-?L1!A6<*i@BRILzx_F@
z*K2hAAi)*GY*g~%!VKH$vOllF_jkQszu#__dA^*WV0_I-*ER9`?RJ&C6f(bC5<G1=
z$nD;KEFN!fZB2f4W#z{wll{Xg<R{44R=J#?XZ!d{uz#<Q+T^F2j0_F$CkZodI{9+>
ze7WWG>#D#}yDiW!1~jboMrPGh!3kk&qg><S;%Yt|WZ!sNZ@0_pu(kU>i>&rh6P{o5
z$<s@iiGktvqA0c#{dHd!pGYy9IDLBfLrVsR3Ab0JHuT6^e~X^a%)qeoq^SY}gF{x4
zl0(}0d9wX>zcN~L&)a^Fk*WXlu@DrdCnhRyHj!jt*kD?u<gjk%vsp6?5}kg2uKfJ$
zsAT#a!Ozdmc6W5FUcb-k-R}4Ma(dYr7(xR5SWbY#bFNjXR{g&Zhxy%mrA!~K-F~l2
z(m3tN%=CGZ^*;{FZ?aHiU<eSk6jaa-Thno@S9-dA{j-_ri=wyZU0mWhxufI7wYAY_
z=31LaKW1cL2%RF#7!(pB@_zsSIv1BIQ>Gl5oxe{~eQrt6&tI>uu0EZAlbeAdB>w6r
zvpxUce7Wr3zx(|@YcFr_<YPUO6X(yDPoGoh_7fb-YooWHd(^_f;1CMRWzuFk`~G}7
zUGZe1`y$6?Hp8+vH$Z)P7ne0LJB`%*=1Bbi_x}Gpc#H%s_nRwWU-w7sy50XjpFyLt
zr-B(77^1b+nV#H!^7N_e-(O!h+p;k*1h8H;a>(2Da@mO#qr$tT*FjNrr{uEl{hzaZ
z)P$YecsvuW7#I?wQzxl-Zn8aMfBN+4ZXY$_?Ca}#W6SSu^(x<SD#d7H;^8)tWw#5{
z&dw5bmnn2{>FMs6pIR-`@HU~wWsa<1zT1(9k@Hv+s((CtehU;H?eg!Q-`cifn!AHp
z-kl$7&oeSK+<9`=7*uFIacMX++gxAGf8L&>Ur$a}KmO<E=gZO@3=B8au6`0(Q~&Mr
z{Qov#>tZCA&#QWscD?@p@B8k}Y`l*)9+&g3gcM3g1Sh<_yxe_z-ra3G>JD+LAJJaF
zXVN1V28ILMPINLvZp(?hvNpQB`*rE7E1m22{n9$x2|9&jqA=s8=kuzMtzN%x*U_)x
zah0l|sXMr~m$$d)+x&X5*f8tL3a;%>?runQ?vb%HQuCQ1VE^}}|7K_^DHQzm;9zs|
ztu2{`1rH8L*ws|L+5i8apy0=c?efQ_$Ja^DwJz^_y>7SO>0l-XhWo1OeGN~ZKR^EY
zyuCcA<Slt|L2;T+q>%SColZVkt0T?)b`rtMd^-R9`IFPn$-q$4KF5MdNO0ox>Eh4l
zmdDL0zgKxvjul+s3M&W-rlzJEW?x$qv8ST2<joDkStgm2-cDp-XjnTzczJ@WOOKSP
zR##WoqU7U!A0NyAx42jNd~Qca#HJKa(5fN1nhytc{5cpHYNpTOn9wd)rNPE0BVk+h
zrGs6*#$b|)W_<RgC7va3Z(ZHJfSJL8??fj9XyWh@C>4W(pzzho<zZ3wk2;het*`%^
zEvClIz_88Dj|E&0Jell&?@`rax86O%RtyYJ8s>0-hVYL}QuW@p!!G^YoEx>@?*`8S
zMYEWtpn`4nx1QhccI!{mkB`fI3o@-o(pb&U`t24SA2tStoL*?%(Z(yiD0X+*$Jg=y
zt&C>+{Q1~l-?RC=opqnhrxO{swq(ZC|NVMXPMCq=2cM;&!r9s8{pR;;jH|x95ENGP
z=}_@}G|^qI^W<c8_xt;5AAh|bfBsZ;6OX)|&8JVF9!+rOTe;=iL3VkUemUDkd3SeR
z+)?=W#r5^~x6gB9V_>jnvHa}T;yc?6T+Y7R|Nq~QPp9>hA0O)tjEIn^th|}IqLo|x
z*je-YGNrGs+<bGZ@VKlvue4cDbly(Yu(eU5+wa#^@A-bO+OYW9nH7=7>HFR?Fl>ko
z{r#Ww|J(ffZrg7+l<R(;jz6Yf_p!U9LqkXB%%>2+W;Wig`k&M5J3&*(yO^(kcz8JZ
z?X9hb)!*J^TwLVp;v!ReB@k3;N?4cW#8f<Ny(uBdz_4lEt@%x%yUX6Lh}@j^X4~z&
zn{rF<oYvnjGg-~IYxlcd*_&U3SdSh(`t+lt!{T9!@FL&YW}pgdxv3fhLx}ZNI|n7D
zx=)kmA34$~ti6Z1YFo~o9fs?6JnGu<Vo~>_1<ib`w){IP9)IM~(eB45l>66gxwg=`
zz2f!S?Uy8k85mYA&8p`Lb8(q(SNmwwX}xZ}*j-0l#bZUP-|sEIvMO}-rMh<cx*vS=
zQ@^~p`0-}?{G;*zK21NnZu*odE-o&Cfq_f6E?TrGVpmCK&EK!rL6yjx3zm!w3#?9c
zGQ7OAv-s!n^?N>fE&ZzEsWkcIkv3lGvKKPm)Af4q|9NI!`1k8|_r-3#X1mYd+M2Db
zq-1Zu|5B8rqvKCICKiSU`9*U$CV-N+(M+Fh$2&k7Q_4I~hMA4$#v{AgeP^ajof;aY
zt*g6s13v@9p9@c18os>0Z+~0)$eo?V$!BI5f|?_s?S?Kj#ZQ)Q*<!Nq->=sZ8xkC^
ztPWrQ=gMl|<w<`RPnt9-<I0La(Z0Gnf`Y>TGNbSBw`XARIKH^P{?Fp`n+;F+EsbLL
z$jr<HEul2bzqcpj&W=J6aq;|bx4KMpVs;ozQt8xQw?j#9|DR7@uh&Lz@6%qt$Efc2
z?fY(tiHUnY9+RH>ZKh>$+LrwL`?%_FE$H}h^SithL&N*T;{6PA@`CB<iPPq~Z{?kE
zv|If6#^Z9*pP!x8-v2xF?X9hk_y2pn|Ira)f1lcUWp8gCo&W#ObFbU$cfZ>evA3!e
zR9r-D&yy9re`o9KhwbuxpskGeyUIZ=f{X6*M;ACY2hEjcU|2QTCrI{P?rzEH@pY9w
za<*2WawB$kS?|u`=f^HAbY2{{x9a0b_4z5)dx~Orm4M4!P|@=#cYgi9N}0MJ4+Hnt
z{oV2Dly>sfRiTDSM>=j4pSMkZc4lU@4QuwbHIao!1l?VZ>?mMixnY^}%lF}I!HtjK
zhj46oT>H8B?OF5tK2Q19STD}1W_j}S`TYL6zrT)l2r8f2Zkl~fr|#F~`N!Jj>m+`^
z-(N4beD#a@`V;bRZc5$r<&t;d*Q?>jL8bNe*z(>-j~+=FCbjI2XJq)$9G1)cWb=8u
z?(Fq@w;kH%H`mH_lFG)6i;J>^74-N0c$Bt%d+u$sd9~kePFc>#(C}*Qt$o5(k&%%<
zf2ZYadinF$*Vmg3g%}t<*oNL#RuB{fHR>War%knw-<ag;;!^YH<ME3N9Gks<Tl4cX
zFs$01C9B}v#?z_j+!k`H?q=%r(29B2tU>cI_x-o>f(zo?$_xw)w<EXmPAEQaYYyY>
z1@$s+{6uQz<7oYl3S;(&20Bb8XjMJ#HBUOwz<6<8?Cur8%l+PLy&hM1Ei(P+aryd~
z%=`RyKNLVURq5+%y~lc`-S^l1O*%PAHFAa&1H-E6vu?^Mgx{%pz4qg+?Deke<Mx8;
ztIq$w_y6w(wJ7=Q|9qHXnCvD~@t{#qaAU#4Ll*CLJYJM|xUKNC?)D?ALRUZfc00fS
z`@L%Yv~zPLO|ySZV`lhp_-Xy&P?L-c3o5=`bk}Bad4F&3;|I<BeV{5!uI|Ufjt)?R
zW=-sFGf*R3H)=~qN5|qmE3I9nuf>v&_w{n??=jH+%*^0W`aoojmesQv$y%~|Z<OD!
zeY~KVuj~8$`u#Pxmv~NIv}4B(8#^T>KZ}Pgpj`|$|9(7Pd6t`j;p#+&pYz0YqeOgX
znRIq^=<oZXB&HuH<1Sa3vh=T2$qRw}y<fv_J!WKZ*sA2Puf6c`v7?7txflD-w-Xc$
z3<?qw6m)fUo%&5zORH<C_w-}e<Ll?X>S16An9DIC7j%-skp@O)P~+#~`uP1F9TB_B
za$Q`WJbxa3YyW};3l7;aFnn-UaoBcnk!$y(DZzf7ZM@RQg#B#<XZolqDP>(<B?@j}
zO^pkVii%2<XJGiDSR}q??Utgar(RrK><(&(FY}!(w)_3Q>Yulk1+O=o+x4~I%gbv~
z;9@sWr4{nff2XpN+MmnY_SM%jFihxk|NrlY`~39e33Iy`ZgQojrUu5u$P_<6*Sj)!
z`LTb$-^VBJt^E89)SSrQ^U-bT^>cG9jc;wwk3VXk8Q}8g&2N4lh6CR>?2KpV@9)^W
z+2HiK!<rGHpn;VacXyYcnPI35>KDjbmE3q!XaDo0|D%=5=XHUK@ch|UrCFf0`xkeY
zzu$6<m7yW)q~HXtUB6zfPX6@dWZ|vM<wqx}dMEw)@lo_z{kP5eeG%XuW2dmX+w*gC
zAD_}*-xInz3{=QIy5P*;`|t1X^u!_th81=!9-@2ye!D&KWJ=PfCnpUnKRxk!J)3Ds
z>gj18FL~=9y&4`b+sw}27h8VUw5z*2`ACOg=pN8`SXms?lCHR#k4LrM-`<vcyW-o;
z^zsKL3=9)ygFBK-+&~8gt`r1!0a-X07$!(DGBGfW3NsAhFtI+dtMv7wTiNS-#dM=w
zK#h?Z$$g!g!OK#rbr={<XfbYTo>Tp9CupzMQOoCZgcrN@cFi))b^{GSY`q?L`dbDA
z!vs^)&9(>5fo3@j6A!iQc-&|GXw~X<T^$|8=PcE4ZOs<H9#ib=Guuq}v@jEcLzxBB
zCT5>G7KT~Z)<}xSmIVIX_UF%^9S@qglYV`92`VLZ{MZ>7ZYn#JHQd~s?mpWrcah&*
zE75J`FD@*sk!4`0>tH#-7Z4OA1S)5?iHnN5PEz@JR6IT<QHz1$gdO81W>Dey>GNmp
zTzw4<jd*s326-j%h3^@*W?k*tv}u#qZO}~kb@S){+fS~x&N6A3lKZRjn~%$$`DYy&
zwoT5jTlcf|(>7rRYlpzVi)sFwwKO$5J35}7ot^)!^z-xc|9`tL{{N5RMkLS4Zww5#
zum1V@8MK%Drkt`m=LFdWwZFf8wEzFveq+_wS6t$YKxZ>dJejhn_V>5hwXxsd-A%r;
zqj2N*d)4_LH8>d<Zf-7nduxV$eO<}>d$zY1KUw25NyT$p`;D7t=2#l{Sw5Q~VVL9+
zQ~UL*;K#Gpi??TA*W=>metb22ZW1fQ0shI#3f2zoe6owe*T)%Fe0UJCB_r_7?)UpZ
z0~4SIu+5hX&Nt=w85lMl6PzHMa(7p$VakaK66Sd^pg~AJ%O?{g%yJ^;R6OduDaXse
zunCgGKiWaExQFS6yt})0e7lvs*tJ_MaCg~Ti)S;ElTJ<1yeY@cz_87lF^HF7;@A+o
zlTGEc+1*Xw`>fw}tX{WEO9^z!38=$(aZTjr8D_ar)6`iQ8r~ikoS-w?qA&?`oR{9N
z7mGgS{`~o~@F1)BkuNVVCqF#Y8aaoLfnl3I<D}Hh>F4{*a&LuH9RJdhf6qJRvK0fv
z8yyypX;Y_60ryniy1KefRPn6&cvL)c1{VWE84u&6RM2S2pFe-RZgX>Sox0A*kdUtE
zuxU-$+9=Rr9GTUbnVCOf=7@@lx_WwgE`2+D8)!xL+ldSe3GIRkk=ORs{{Hb|aeva+
zS64;1Aw_NEEFK1iZT5_lQq$*Erh$g>Km%N#a$jFt+r2UQ_%XxdGQzr1TTVPGVPM!$
zd-cpW2Ky3OtC9}TxFM+RdvTHL#`pVvAG@(JIr(4{>&FYu{HfJ83=B8c?Gdg5M}ve>
zibs#Mx!yG0Xt8#gA`c#EGaWyhk4JL)*%%mZPX!M+Kb8UwDMQAZNp4x)IQeGp_j`r^
zem+mH?s@yDzy441lc!IQu8G{d?e_CM58I@b^v~PZGu(WnZs5T8^UG!b$B(-8`)a@4
zR0mbcUteGE_nT{VbVcCeMO(I*C@C4u^a)FUbANw5Xq0Dn?Y_5vzor<?TvOlAP<J9L
zt(t*h)w7q&=l9*)TkY=X==kOJb$w7l0Sd3o%gc_MUXKwjes-qQ{?9}Hn{t=yKQR6X
zV`5QYKQrIn{@1s+(rcr(cJ2T3R39{{`Dv@S{$7(dK3OS$`@bb(>MRYb3c17__;!4~
z7M*-{mg&a>%={r8{l1`1)b#kepK0;Cb8c?>@$-DW94H{Ktc^B*b$z`&XtbmJUgh#j
z`^xXvmT$?vu2*(DcRQ%h2<pv$yph~Lb^ZFdz2I&Y$oi(HCeYa5oRUkPppO6AUsZO$
z-)!FTX4C0M4a|HUx3*@xPge6?RQ~?n#)N}SXW#8lJ3DK~k4N2$JtwPydRi9W?-VEh
z{Pc9{x9V><(;xqM+~03i`pRW*)z?Kkc33<+GxPJ@&wD-`;x4>Xc--}H8}H)0ySoYx
zFtQ&hy&k(gG+vk?^f3pA17F3fmCF~EzP<(;e$D@yZU6Vn<sa|=|9k)9>gw<<Sy#0{
z4LMM0Q}XVP<+C$0g+UD?7Z=b#&bmFHPJ!AeJTevrUf$l1=a%2=lr&BQjSna(Jpx6p
z=VY~`Pp8Mr<=)=b3mT#WHLO5Gs-QmZDdWHI|NqP1^Y7Q|i`(<>XWZPB3W}U}JD<;c
zacQadnVH7wTwGkIzWYv6VdIey0FAjw=kGDJ`}5)Oj_32LAAve{;_)>bYxcX#RjT~@
z{$3t5#&tVyx9-1h+xH)RadGkE9gq9Ex8JMM{&uJM{MmCx>F4HHe7zF9xc2uq!;%*l
zPMkmA59-=xuiv}v>iuknRSJv?qM~;erA|7TGRgRy#bU4D@ArPcce3*N-0*)jcXyRe
z{T8_)!7(TxU;>Y{*_xW$pkB8cyL`=u?RD?ic%@W8X=D4l%lqs9FUh;R>;5kP%*@QC
zxyET{Jd9@g80FpB@hLa?c%QG)OrJ{&o!e9X{`&g#cK-gq-&FMV^=H~t7EMy|+*I}T
z)sn=+Z6{Ty#{@kr){EO?0b09M^zo?p^!(iq+oUJ$*|X=<^YXi;;ghCMpRN<T>q~Sx
zTf*-GE-?qw?L|*db#&zJ+k8cD_nV-9ACL7)C%?S36jbissQ>?0`_8>>j?HWze?Fgo
zTsnWx#-r!2E^urHbuXq&nUZr^XZDll&!^Y#sr&m2G)A)}@2-`UNydho(eM7<-v2lH
z%8J0ne||2V9w%j*b)_SHUZt9n(!BbAKO;6Kxqf+hS$*HHSF1m{t4;1)+;6w*(8Nh+
zYkdU;LHlu(Jtw{YTFUt0E(?c)Y54lMy&WA9TeGg3?X~lqwBz$R>&3pa%|Juupw7ZF
z-`U4@zuzaV9kxc}{(DfP0+gab^^@;xGsA=f4PMI?@0Q)p{dlkX{ZYB<H-hf+wIz2d
z9`}OATh`87xn+yVy8ZutfyN!Q&umFL+Qnt;T2mapw)Xqo?T5DAExWDT)zy{s@6S&`
zLBsNQcRVJkfF?^?TU(#@gRJJ(-y_g1u7B^5PWs%^FwoE|s2%}j(l2jso6oCw#A(R1
zp_xOVA!{9IAaPIS=Zg1xzi)f_^>90Xzhg6->+^GSlmGnq`0>x@^T(%X20uE$%-_>1
zZ9eUNIVj(O#xFnvmXG_a_0)W4iOjVs?E*za&3sTPzI=Y2)c)Uh-!F3Q76T2QSiD%!
z{AlO%dAC>11f_q_u|J@2o>%dxv*KZ^IH(rAxFT>dmvQLTW4+SKlTRM`@$qr;sVSPG
za{7BdIDtl?qHA&;9Ub@l`E=Sa_0*IX*Vo7I`TcG;xO3{MK3Bzwp^QO%A@h@lM~@y!
z7^nH1nPHf`THodW`Tu{;zqqwE`%d}&TG4I#@%wDJxVg1+R)?+*`||3lcGcHcqOY&7
z?>9bYq1?tVF9+)iC@IY{%@&&;Q{)*_bW(L=%E?I<Z#EoG`tjl6#l6+v*Unm5|Nmd%
z?cD8CK}%(BznQysl1gX4{XdJkFN@`;=0|T%^PMtf$`Q@wbA$v1f4|x6ui`1x+S+<?
zYxZ@m^B?;`5d|7`5>$3O0ve6o|L^Pi$4ABE?>sxte&CrU6Vn7{&~y=Kjs!GdI@@;c
zi^=|Woq>zpa=&dg&APJU%j`eu^D30Y^kO0sZ-Y+gwOJpzIc-bsZL>)#o$L4ivog!O
z6H#Y-N)40{pPilU9vOKvtkxE!wPZ>1l@)=Y>5;SV>hITnKl<zI>(le^7oWEUiM_bF
zIo-tt)cksNb+!2akMjQm6ZiX0(}~=4G;*45bXex?h3#@uo|AIEUS~Z}Ud+Oxzz)h>
z|Gq4@cb#unyD0beHqm>Wf3Jqe_jU@aAN%=y{{EZS#l*#rUs&k;_|NC_{mK2dX7_5p
z-<7bht9i5eyq)Mb>z7L=Cw;$L-rpx{4cc6obZ(C2$KUt=+kv`c+wYcji)x3toSvrp
z_>A%S9%p`AlUG+(3WHJwXqfTi?fd_>9eN(MJuj9=-fqt&on9%^E^qz4CSBd#k3l2p
zRbO8nZDf~|08Nap3|{UwS<Tn%x9OVb?RucDKB&Y8%>q8%eqC2judgHDFId{PssvO4
zgN7?!Twd-kA|`e$eSWPNs5&iqbtSXAvFx(1`BBhN_3}AIUZ4>Y&@h~YZB@yeozLf8
zTp7Il{h!^83EHWzzeO|T?A=-XTunT_rts3P($`BCEKpb(zCNz#&Bo(upo%ppENq&J
z=Oj?oWcmNk=hN}QVPVt$JQCmU5w#^_B4}9r<j3Rk^FbZwmzS1$U)q{|{nOuLJ(80_
z6_}=uj!)LrRa4(=zh8G!zy9axl&h;kJtx%^Ti?%Kzt_z2&4$C1etmtdUi$i)FQ4_B
z4NvY>zh7&R{QuwI$$R$fIco=+`&RLsl=Ab_)03>?F%wL3Z<&BxcWHC_`6r9}?N*um
zzOgYGr1r_w@HkJsolhn$DSUj)b8pqxNp*jJsh*yuyZX!D%9l&0Pnzs+XPJ3pLt@bG
zvbQPw|9<m6XaE0C%C$9-Pk-MjILzzWD`k3W{{A12x=%``&zT51QA1Nh!vi##HK+F5
z&69U_7VkeFFUk--!BZ&wL(H`M3=9mhpgRI?FfuT_Ea0Vb_xjm?#z`7q7H7VWm<L)a
N;pyt<vd$@?2>``H1or>{

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-13.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-13.png
new file mode 100644
index 0000000000000000000000000000000000000000..d98c1c9f4f8af9a85a3dfdb45b41e8e8293a671a
GIT binary patch
literal 24658
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_e2rsw&;{~y2Gda5{fv<Pfe`SwjF
z_l;JFPGD&CYK^F%rQEL3Yl{QCLN6|JHP<~CXj|sBN+v{e?KP<oe{a#PCS{!wQbL7)
z|9zPKQ_5Je%lhKJdHwEk?(2T<djH#a^2~Xa=WAoXr%ERGFfcGM9AN9aqX%Zhvoo?V
zFfcUaawvfKInE4>3=9kj(o7s6?ri}F5Ot%CfeEC`j70#%-KN+8qBii7sI@XKCufaJ
z-|fft;miH!huz;-D=I3gYHx4<^T&^j+uL$?#)_@G{OaoJrv(;YUaemLtV~nx(c{NY
z3oN$O|F7%MeZS{(-@k9$_iNVw`%`2gQ}ujqxr!%WyK}F!`L^9xa-KeYE`DHbdG#NA
zs|Ncs4-0nu{qgIUmWfG7uaxPfD=UMGckhwesN+2?b?4TnSNRR}_kNjlull|1-O}r^
zQYIM_;wqntPSpr}wCcA7^R=h;j*gD2!q(1;tNj`}*S7lF>$-^(Cl*=AXoakp&?jqM
zb~X9^&CTk!Kl{(OyIXosfB&CPtF|s%x-|2}g@qt(O-)TA0s;$ymU_LMSN-l{xBk8r
zYooWvmHxl8rSP$v?Z+d+tAdtxafxazX=q?@b#q%)`}^B0>+*GaaeHRmR(;m7{d=>@
z*;%IE=WV~wVPa<f`sefc>>C>rS4D4Mce}3a=Jx#gGJNg3%HPk+o&QFTy}{o8{vADr
z18dVGr?v4)t0ngs85?iSzOJVmvB6<=`1-J*ph>TzgYN7&+AY4i=;^6nZ#JJV+SC8J
zIbwU>T@gu1&Ey_FIhz$nj=1njoB7PI|F`qnx>)V_`1tj|=h{|>t>5#h%kIa6=A8ao
z)5&VSlMX+eVCW{S?iX@-neX0j)+H|{yt=x2dF}6SD{Fp!s`_%#J#<S(;L>Hwv@|t6
zA0O`z|M%yosI2VV$H(*9xyAKX_|Lcd^<r`Vlh?0TxA97^N<BU8)A#S;MMazT{d%Q+
zcD{Z5+gn>N&#^2n+I=Tm%C>3?8=uUIjt-9P-;Q>RpWdXS8@DIoXt#Lz?QO}&`JSGi
zfB&4(`c-~&t#0kB-Q6XoJL~pRh7+tT0uS_)PE1hD+rK_`cNnjf$pv=#ng##<{$8DP
zbJNa{oASv$C*KO~v8wp6K*}uVNBg(l{{HKGzu$ZPtM<!_i>soxt}@HNw`Qhs`m2q{
z<v#C<Z{-p-sr;1k_4RfCsoLTD))l|Ivokop{_oaDj~-2#G-**QxA?0Y8<Vxd*359f
zujt&C@&Di7R~HwztNG1&vGMPTiON<bFD{hMz0bF|>g%N^CnuMFzgwRD?#|9t0SlYl
z=il6%o_(;1b!Wicui9~YcDNsypttwioZIU|Rt7DNj=TPJ-PeCS92^_=sxefuJ8x*%
zzoPoxPWRANArlSVJUu<*e(OYU^U;mk60kApC@9r&iE3pWXkhg6_Wu0h_hEkf6~W8>
zy1Kf892^=B9Xb@U*p1ir|DVsNPMs?Hy8G6TuXFfTSN-{T{OXRv<m*#qpMOx4mzS^o
z`}O*yC1=j~?EQSsdR5@!HYX>ikOdBmuCA^tb8l~p+L+|pH-GuzcK+4n@9%YWbxqp8
zfB&IFhpw!Pwa&e_=jPh@#csVZpF_gdMm=5i((Tw?am^r?+}qoxmSp}2D0AzTTFNc1
z2Xf=}+P+R<^;4U4Z2$du+|}P7?&j8J_wPsY`r7O3VzoW1zTHgUo2MVQXUFx`@-JV$
zlrqhlvMO}-vL;q;Ee#Eiudl9NUK6=_kDR)(aj>#mPe3b|C@27mo}S7)F+uUvi4!~C
zJ^!-%{l3djPEHn;k^-f*N?!R%S2iZQ|9x)%f9JE0plGi9`%BZxDr(`vg<L#5Axpic
zetFcb|LV!f$#L@De(~-1Yd-fzZOvMGX{ooif`Y@thYxo>pI2>jk3W20dmF#JUi;yN
z>-YWgIwrCGdvkEv`P)ak#lJpmmtR%)_ZJr*U)aAtKSMVrxqf|fGkACT`?9Z~`~oUf
zuC9-dfB5hrDDAtrwCpN*x#;cf?Ym`*e|&hT6~1nc&go0X<?G*=ZTT?S-)>^b*YCg9
z#qPecH9LH&R_LkHd3kqtWnNzwD_1-B{r~m*|3!U%b~bpfRVgTrTHD%I1uyqo7r>^F
z|B#D=;pfkvm0Nh_?P3nM^M_|-tcco{vvR`*gWTKOd^tHeqc){<URxKtx`~zBYnO=K
zt1By&+Yc|iwl-Q@OUrAy-`q><Vt1P)9%AX0vAksZ=W$xk@462M*<<DNl9H1}rKMlr
z5|fnF^n7(~?d-I(vzD$3UA-!Ldma}L&y|DC>|4{$O6f*#^YNW!vh!Kxw|93}&zK=0
zYgZG|D{UV3{M_8q2L~9>&b1Ej7T3S_=jZ3Ei(I)qr#l5McI!3Cxnbby=B8z5cW>=H
z>BOFozs!rWZf{%rZtwRv-KZ@dtHaly`zSi&%o(5BPbby2Vs>nhtNGyg_uudLukP>P
zujW5*&GfjclZ)#!GFB|{4)=Yx>-9RBxyrh_zM#6``~CX$udc3s-KjqB!qIN=tvNT1
zO5fdywEz2M^6~Zy-`?KNet4)Alrw*QdAYc!hsSrOk*ocm56*q(DtGqV{qmTW`f}y+
zc|j2oH$s2My|pZxWs*5bNLcvlhD7J1M~}XIbhO*c%j?qZ{QYZ}dQZ>#`|GP#z=DR=
z^?vc~-qZC$Pfybg-BFOZHScbeprD|ar{~3QZ*Q9>9%A8@wYpMzM*F^VuaxPe)W}&z
zsa@aR-+wQaSGo3kWLnxXxrzsjwLhOu*9u<N14=GVtz4P!@9p*S@d;^W;|<wYQ|Wo>
zdVKv_^LrH_BQ720w_nr5%Kd73eBH(6^XpcD%BbD%_XS^F6&m|>$<n2ncXkwZ_4Spt
zW_VtgnYX?0v72e`t&sHd^Fm)=TU+{kZh6-6KG|7jxwGtkzcF4LvC+vi>&k};y?gcl
zYis}ge4cf8*Vd%u<gImotIp1|jlR7t_wu#1(Zyf3vnD7rKkz@hN#}8ah0U$-^>Mj1
zH8nmC4h@zyKQ`RnHdQ-Z>hva`zrVhoT^YRm&Nkn<R#zjYrN&h}WDSr0|L<?_;fDsG
zD(HBn-#nX_->PeB_7qykq}|_FD_0x7HY!!;w9(;q{_^bp-rlbjJU73Z9-Faci^<~x
z3!k^Qw%Tr!O!o2e>bm|-+cf*y84DRc<E$$h+rMqizAhCXA0NCWBe3|}o5=0C(^6-;
z^-4W`@x$-j@$FS#v$lU*?A||XlB%~<`{BfA=jXrQ7@v}|q|ib}O<VhP&Yc|>EoAtD
zSBL4YKYnj-_4eccjMLAVOiP`aKCklF)o&jT^GmlMP7GTY^YY^Vz2EN{PfMNY)XFuJ
zk(q6V{{BCg=2#RyTGhWcdVAinhXpfQT3EJ!`~3X;>}O|ZOUuj4fByUZ{_b1L{paWD
zoHjBvG<^2w=jV0bu3QNT-d9ukxWHoF>z}3XHYXkJl6jx(^KJe5zrVlF?iSat`ttw#
z{{Oi;r;YOWd~93&wkocj-}cLdLJOH^?ecXWUX(vAo^!YQ#O>clPTqc9^x#0_u}wOc
zx8+7po;dO0HeF@q!!q`DcfS7Kn0)-qOyhK$zTLUE&4M>1I9^`l%Dw&D-s<mCr#GE>
z+;9JG>%2Gf?rVjvl4w7in09W?%WHP&=VX#2r|o>)XMN{ZJFj$_&S|4oZgDgFe?J!A
z-ga)TH7GEiotyi5D;vYkcEyMT@hzXbj-A%uzot*tT1!vQZ_<}*(fO4<lJ(E$mZwBc
zQ}dg%V!;B1?YXhL%R);^wk-3X|E{pFp@E@)+o4wO`$ya-8c$0-DY3Zb=cmfMaZ5ZV
zX3HsCT1K9pt{*<rDAi^i+m*G^;d8A@gS@=Do}HgxADlI9iDvM!j2|B!N}1)%m{;@3
z^KRwyxmGnlHdvLtS-~z}^I_HRYilBdWv$CXf`TTcotZIl@n_#zCMQjQ-qp0TyJsr-
z*K2R}_iGCrn@b)ZVpUa9(a_WLbL|!j-C6YX%ah6eRd@0%R8?IsFZT~WJInOy{`&gu
zxj#QWy*$G(x#Z&`*X>oyeP$}1-t^_y>-D?;{%vY*HcdG(;q|=VkLOGdS{1VL^(}qt
zrQXxORi!H0*~PVTiC)^2dO9Ze`e&;Wxy!e!HB?ldxSjr1@bQtW?+gRSpP!#!Z{ZZS
zSts!0=g*z%Dm;TOE^@uQ?u|w0+NjW8Y4dC0@wHFQu6*kM@ox9~FQ3obua4VWRrO?|
z`<-oD^Y6!feSQ7<dHersOtY_5yt%zT-X0VddAYXL-=-M4Nt@;DSh$PfP7TjNrhiK7
zWS%8OPW$(Def`ebA0<)S^XC5f^Jmju<p4Lgwmw<wWmm3*h-wD8$Xb_O`SJ1b)n&fY
zwtqex&bqZ_Wl~a7$hw%F(VrsLscL9=tc}`wX_0HUh^*||vbVQZIySSd3SQpF#LQe=
z(xV%_&0~_3NyY=SY4=tZK0XF2VYcPmT;wia`=u@0?AVTD$K&69JT8Cz$;rvZB|U+Q
z-7*h0u}axgY>=z_@i52!hu5WdcXw~ix~dhrGRU>`)s@1n=K1$xRK2DIBqc2h3JS8Z
z`?K%ct!ycSgobIl(aTC-U(5Xb>}=Hjy1k%!0hBNfwQzzOXG^>fXKvcGDJ61R8^8R!
zKxa3%HkF-c6>n@x?UvzdPfAL%`4w+><=o5P@Aro%B`u1ME-2XW>+9?3Z<F^6itEK(
zXqT^BadUI}>*e$7f})~k-F{m=dGh4g|NG`$Pn@n7yCvZu)75pc(V#@O*sWJYSom?_
z^3}6bkN3%Xd3y)n-Br52a(2e@qut`K5A)lD(qW&x{W@-Oy&c;kr!9SayuW%b!~EcL
zm7%>-rk{50Eqr|J*SFjGTT@SqU0ol4|LvXW{HKewVs~v((KI#v%72~Z!8L^jhI+ws
z`RbQ1U*1~wHmdafy;y(SuTxG<(|!H%;JYK8!lzE1+Vv`>;Pj@FXJ;fqF}XGC>ZMtx
z*(OC#JZgWvTn>tg9>Y~JJ2!zkL;d;2Zw=DV$@EGZyBVjQDd_Fw=is;is#RKATC&fv
z7x-=A=jZ>v>+a2WxsN`|Cq_;STN|~MjaN!TTig5g_WbLg&)cuB|Nr}bS6A1i2M3$i
zSN3d5J-y0*zMYqc$AupsAMZW)xS%NR;SQsQUq61V@Sd($_51DiuOE-gzit(e`*34>
zz(S|2`}_9Z+Mcif@=|uzmlqeM43k=ZeS5pwEce!mh>b~Bg^ya6csr`>_WW}0Hiz}n
zrAswcRE}i7`25YW^7XZ~a_cW|N<F=c$)loTN8R7A;i~HD_owXED}8anv9q&ND}LXe
zTibG13#odYxPL!>l1bT{h`ILl_tt_cYJR&P3&eDzmTbRQ<sH1t=i-r0;nbeMUMW+P
ztSc*W@_YZdTgGp<<h6KwydUh%2@?d49zD9!XQt7q`S$yDPG4$b<=&Ee+pPb1-QG)=
zE~P|X3%y@_Ok(}}oev%)^qW1;U7i2s6i>tKeo*P?laR1L$~<q)dHeq{k&%(0w$!<~
z*3YjkFL-!JD`-i_rcIkR{oPscu<5n5+sjL}f5r7;R$RFfQv3Vub}6fp6@7BHtMp=b
zWjsAKbzR*#YuDI+Z&zME`^!Mz^WVRJAO&S_ZY=!!`+N4UFE6t$ENEQjJNwzM2Q{YW
z7ACjz%YWN-*K*7AG(N*(KK)N0KVH25|6jRo%#MK6)6=eQNId-I@Av!9Ur02w^M`qO
zbbzW%E{5=31rM9D1y9xg`#fK+TVdbVYtcr>GA=Fgw6sc3NLbLuFTd{B*VnKA{QL|`
zv8sRX7eC%3993pNUB513M?vD!B}*#)UU=~~|Ki$c^Zv)N`(7;iJp0q@ou4DiCQX_&
zWyXvZX=i7>d_KSa+WvoE^?PM3gPhy>O7AXx?REXL)t>+Vet&&BJzmSyG*mlm%>{1#
zJqzUP{{(_coIY9WydD2eTiS1kuRE${9T^!ZWmmJ~(BZ>hFZ<hPK07m0$~dhDl(Knc
zt-iFatBP4y@bHk)v6!#6>5*aUcwVy<6bm{u>|X(D#HOF0_v`KU`=CUzJ-77rwa~1r
zRmb0&79To)-oNzqHBiu))cvWDOui%bw79R@zTiQ_@qN<fd1pS#Zkls{!t*D$&vtZh
zl)k!hvQ+w-Y4)|4;t02`Syxp&v#+iBxXbC=sj1qjk<(U%ub;QL>VL<90}h~E78x07
zx$kJ+!$Ym6DJKM$E?rtF`%T5Ov$NBx>dOkP@O5kCY^y5%YKE_yQ}*u8%KUvl)sBC)
zdd_Xx9P;+o)~BGBg2dI;;n$CLi|_6G{QuSJ^+h!@%hl)CTryp*y8G&*xqDbUPFv<P
z-(D4}9X_E9R3cuwe0lvYP=ar4Z0zdo4RvyAV&j!s($mAE8@cJps^k0OLRW<Z78GpQ
zmV0~JTlTu;kB|4iesXd$$l=GQ9^RaOzUt1Ts9pQMFQ5F`c6-)Ut@XF(#;4pl^<9Rc
zTEL-U|Ay)Db&)?mJq>npYPx+(?!5i~Jw1l6Zf;(Fz4d9`|G(vH<M-eD`uo<_Y}<8<
zJpO<0{rXhf;QG4Q+po93w*T|taOv6;@8&4H&b6HgvbX;K@A>Y(UtV5b`s|G4&tJdd
zO6yumULH=0iJ9~5-QCxM7p|?3Uq910T}wsf$*jqT^F!MCWJ9)Qg@PK*>rDODEe&5E
z2kKhc{d%GN_U`WM$-9f+_6sVzWjs348CTE7EA_-s(pFK?5!4a5Uc4@Hvs--a*QqtN
zwWa56zk5vT64hP?%4e6C`BuH%dVLSuPTT5lJFfot@worA#Nva^?7MkidU|?ZJTXyu
z{co{zUte7fK0nX4^wAN{yXE(5<E~FKIF@m&NAmid(~tKo{WMj6Lcg5ttJ2&luPbHi
zKA$xY-}|a~bGTu-h0Lp~tEYnk$M)}+%W@C3jg5nk_sdULX>D!QtpE4N%gd`sTCe=!
zA=a;NZ(qOqzR0ypWMXP$-2M4CJ3BiApPrfu>UM#O^Ss;7&dy$Lntg3W(bH3TpY0j$
z%$vc?^rv;IPGpe3{ogIe`sLRfCLeq8^?LmDlFUudXBZ}%6g+SUT@w)q8chfZnR0H9
z<>K1k-!i|xx(X^e{{6oH-)qvnipRWbV|E7dN|^+NgiPTQ(^&z^f!@<}0y8pJfLdGE
zEpKnhT-+t9o%QU@Osj$i4X>`OT>SU<_t%@x+Xdg=mTOx5?TyUUxSd6*t}ZSa*VaUS
z`ua8W=BCut$Z5OE-maQ5MI>}}m~ZInu&c4<cR~H`*H=~sM{UWN*e7GTsP6Bt%Ds!v
zPo2ZPg;&DBA-?8gYu2?jD?tU^y*-tnB5aCga8bz|>94O=uYYxrUH-}f$L2k8k~=2N
zpFbZo^uQ-;m2rPxZJzwC`oCYpK^+@V%Wk$=?j~Ee<9)JU?-ZYZdD-9o>hAaZRzG-<
z;5*+gmYIzwV5(MV$o9P0*7o+-Z*Fe>_3^lT?0vuef4|+%D>em<Bfh=0)f+TY_V4rj
z|10YL{?dxuvja4$_V)Jn?90o1XIU06dwsZex!+uq>Tfxq4%DyT_y4am%e|#xY#a>g
zzQ4V-^{&|Q(<}MyemLygx9``7!~CVkWy>|p%)-j=*KYsw_wUp>bJk4N4%f1@{5i|{
zbJo>WOJ~fG0F9U#8XB&O-@gwOJgVN)R(MU-(u&-)B>Ml8Cr@Pd^ZowzcJ-4dDMybS
z(J(R!0_Db_ph;otVpgtLu_D^2|JBs+xQlJP(qDc)pT9b2saMv`O-q}anm}W&y7BvB
zI5|0A-P*cZ=XB8heYK`(XCy$)&fHsD0^Qu&KqGcbmn~ZrxY$i@;TnfVCQvhP-_K{#
zw!dC1UKO%(QcX?Gm1VxtfB(L(Kfi6+%HZXzA~&bKy0LNbtu2|0wL({A9Pg6_jYfv-
zC`epyp2bigz3KD3{S0r?Bd2}*`0-@f?}^IpK8;MQJ^=v}EUUh(xV<fZ|KDpRZ*E+4
zadDBTudf#t6H8kax;ibc=A-N6DN~-j+FtXs=<?p`^3U7%|2@mX&OW<|m3x*}=&Bjd
z=T)D3bASK+$8+}o{WiPu$wYUbjEog0=iBdJ8M}L%r;m@x>aev&eC>z#{Cc%I?{9K)
z@?N_(-`Qp}m-)_~_25Cm<HwI5M|nSfa&mIokq*ISo|Dy<g{%xxQ&2cCMJMu-N!FDU
zXXe@d-ZgK3GdusRxV=>~Pn__0{QiA@m#B7{T-6K3&6$_g*8i2|YtOv1<74UE!#{tl
zi(!9KWSV`=gs=UuPSlnYSH&bHGeLdju&`;@Ym<_adJaD{u(PvUSL(pVFP9_3*IxPY
zsQCKG>y!QMGG+MMCC&5Z7#^FkHhTN4iOTM?)O=^nD0+Ho=AWORXCFA=5WLWd_4AG7
z{+XZ<dtGQ`Y<%|j`~CSzNl88h1sgayI1ExxPc!wMZDtA@S3kZ>XXebAV4v0e`~>oq
zi>vEQMd!8|Jv}}4Th4V|ZsV2q>6f$hd3tK9Z$Q8VumPv07=rqoGtKkoMc;oD*S&J(
z%4Oy6@2P2No%(tszV2u0<azV*l$4cycNRU3sa^lP)S~=d%;lZM>A@?5RE0%EQn<wR
za#n?{&1&P3e6&rj-EjIf#*ZIAe%!_9QTG1po4Dzbk&(~-e!p*C`s#|Iqod=pgo91X
zf|hzcd%1jmS+q5%Z{8zoeeKWN{CeY`pP!pQeE4u#^!B{8|Ns8pytcXed*0<;rP-iP
z|MlO+udb{NudVAfOnZKA?y~Ib>z1XQoTL`NuLeYe_#kn)+IC*)XQjNd$$D#D9~D^m
ze1CU$ubnzWQGe>0(t9DY3=J`l3M@pVrC*mNGcz1`+iHn1Y4TuOV&t{b`<&bi6Sf<$
zL#9@CFrm+$oVYw`(j*aa@#RTJyG}kVSW)%$)y~*SxuC)O_QMk&i(XL8yuYuu$U^4T
zy}iG6*StBlCT?#OU%T`AeZR8urcZkAGuJAVuf3V|JHwxqf({H%B0=*h-D0|1GB2x@
zzPjRhxQ+MnWq<qJYT3i>{L>FVoN)MIKut}}w!i!S{mKsCU-b0U-4B(UXBWIJu(-0L
z@bT+={*x|UzHD0dCc-r5M!?Z7(aHPw@AsOfv+~;7=<IuYD$Qex{qC+h`Q%(d@lXFo
zCf1NmDV`ve%xpXtuC0yEzx5M7QS)zhnUC5{<{z6spMA^3pkOU+mUCfa@^O=_D;j?v
z%l|*|w&=<8=gTWUKYKa1{9fQfr&gP7{&Oq>>+0%u6+Cp(3n}+>acS9>e}CPfR_^MY
z-ye_5UtJZd{r2we@QD*AR{eO`4jRY>mG&PW9R<}1j~+cTNk1pE{`Y;I(pOhNgK42#
zGA>4!^_@835gu{o#0ik?TPi=N?frT!+RMWu;Q6_^UoX1LuXJc+GB1&PcZ!wadOrh`
z!g()0ziFwFT>Sj!-v*^bP6G{-9y#IyD*n&geD1mZZL+$5*1tbLv#ze1`t1Dt`QD*k
z`}XZy6|!=YJE)WbMW(WQU&e<A2iL8(@>BPp7xMhv+^r=qgG%4r2=tz=w>Q<4jfJIR
z?Z>pPo}Mcg7CPJB+MauR*}B->S;u-Ly?lMIK04Z+|H9^uhY-U$dFKrbPb|+>@_hXG
z(dgKYww*DSX8%4sJpAhJ?(K^fEqe0){rU|X47O%p_nU2=|IOmr)8yCF^<r1K^-5`4
zSVY*_*;%ezUHSQ0S4YQ%CnqP{ZUc>yTGjvCQ}yl5%hLPVy>Itl+py|%Kcvt0)a=X&
z%lS&XEft#C`L8`Z+<tXsuzIhA;UV1`kD!8r4WL#8Xh{9%r>CG=?Dn@4Cp@NVhx?_U
zpLZ41$1_SjrBVOy4`|*CG*svr6c#qktxsm9*HkS{1A_ojt&j`9-|v6_(PEt$yNao4
zD5x`WbyaBS0tZG`c6Mzmt0-o6zL2V_U!n8o&)M;M-R><lKZ``Q!+gA_>s>w6%6)g6
zx|$kjA}09hsi~nG5*$T!A_7dauU*;we&1_BvpMzt$vsNS%6s|t-`-QX`PbLi%U`_6
zXl-lLGB5zu+Lu7HZ<E#i<F;Nq+AXfFrsl@VEf(V8(Q#{g{`%P6WtCrkKb;=`<$V3W
z;H_C#gCZhkFflQSNJ_3;KCjB_<jIq9{kEmALO`{rj*d@bV<Tw%b(VSlI?Li`6<>V)
z{H|?2Z@2o>)6<~I0ccBNOXlTetFQ4h+<eHz(O{!)VG#k!kk{5mf4!MLf2Hqiv#!3r
zX)4$Mzq`9T+|bYvG%^M10G^v`{rW&7GiV}EOh0bT&(F_SyLOA^9p9?sUHtsq)k{mg
zK||!WpU)UyH!Zt={J8tw-R0Li1eHOldpqaH$!fkqJByxP*^+rV=llMP3$3oM3cb7`
z@vuqG4TJ59Zj(f$rDwmbdwy>2<u5NUr$$a|<B^<{yZ_J6&#UYI{{y8g&_JBuT&tZ|
z=gpkCa>ot}P}QD$d)uiKCoY_sY5euWVgBr!n^LR(|NXwT@Uh$7`u~4FegA&_&d%bi
z+w<dFTU%Gw{{D8orl$J)yU?7RHGDD_3#3f5R)nvQ+g0&#5va>j`1sh%nd$QaXBwpz
zeTj+n-I#Rr%avgNms_vLf!uU;S84Y3ZH>(Ar;Z<Y2X(q!Tv{$&y0oR}sTXMGZMIo1
zXdX8fR7fvl<rV`?8Na%|etuJPv+BvO`!6lM?wXXeNXjf{#f}{ov3n{4Jv}`^Lkgfw
z2<m7gOUy8In_u^9<uskhMeTA`9-zqpP^7$EK0oW~s?cBWcE1nVnB*G%|L5oD*^iEN
zW?fk^F)1l&ihjJ^-ye_rXW3M40u2iI&NkZ_>ndZCF~O~0Zf()iQ!A5?_krdh_++h?
z^h%p&-P=?7>cYb2)$gC3oqcspr14yv%AoIe%je(PnhokeX&V{_etmr%G^RAmJiqR6
zz3{`22fJZw0T}8H*%&^p=(qoO12lYH`YNP9_v|cFW4`voJyNEp*4Dngwe{Hb>(@ne
zqpr-ct-kg)Vp^&sXc+mZczjH_?BO<EkkUV|<Nq7|{`S_`&dv^8TUswqjZC|;BJkOv
zR_<e)bc97kr#?QO)ME%42(Pq#|LW@M^*67BW)zNX()s-3asTdHpq5;6<TTCDRaZ>q
zU+eGxlcaOnh>?-;*`uS~>p-OdXw-eSS+0+pTifxC&Q4CCA$ZWJe$4G}Z*C@kdU`s2
zRrvaMWqqNm!z52{I`iS-;k&oq?|d%zxWMAf48vrbSD+Cb%ldzROkbDFS?_*+Jo9Lm
zD9Ck^k}t3AOFu8S{_pP6*J(0*?Kd|hHb*1P1;l;7y}y3{?awd1ys!U%J7QWYs8_PR
z?D^{}4-01e|Mz`=-tBvp&t;P%r)A#SvNHPj!DjZm|J3|WPuDlMv$I<kzCJGR?ZSl%
zmzBJ{^z6>gV!7XQED8^Oea|hfH{;XO)3Xm8aQJ-I{QeH`Y+YwZhk>g1v@cb83_GOS
z5*T;9RZ&;Z{`u)Cs3eH1dZ`K-Az1D=cgmzmk4p92Zg0yK6&L^Bem-`YkECh#H6P>j
zb0xf-pn0O2+S;!_9{2x$`1qbzJD=<%m8p8Mzh>3Wtu-<-DtUB-v;XbmW4)8-&!7ML
z`>(IBL342G{`0O#=kHm#V1dH*Z7Wu296fU61!z>w^to5gy*-hyudM|YTP6ty82aBT
zDk`3uu7BV3_4$<@9UPvQHYOjxb8GRUMSH%zzrB5Zk73ldoSUU{mzTV}6t}+S=<(yL
z0~R{nlw0pPS#8(<f4}eEs`~zJ?Wd=wv!9-t3hK74wzaXj^EUs{l`WaUf8XZUf3D)Q
zx3^zk+S<~x<KNzjk4bNDZg#Kz^(FA{udjE1P1Oi=0<{Mo9&X>7bd+m-KO@5?X9mWC
z+c!6*cB_B}f#aSRnB?7wI3^Lk|Mb;Wp|9J{-`||>Ki8_%YjfJ!OD``kH%&h$vo+^t
z(9v%3{ST9$rye|bu&bx%ONM^rrX?zsv5Qrel$^x%VlF&9+`hi*P3h}vo|9&oW|uu~
zeb!(s5c^ZnMpf1I|DWgfpy_pO4UH3~>lde;owZ3v`?jU%P0$D$sH0|@alv8X!iAr{
zew}*w;e`JFe!sa^Q{R3BO)d7DwI6=S#T348+j8I8%XaLrXl-phdH($Q(C_^Ae;yR}
zfx7?i@9o|7`JA<B#svl4=xsjB{pNnMxPNPFwrZ@DlzGjMg8uou(q<<l7Qel{J^p$z
z6T=xs#)8|P-rkd!<h<{Dn)BW4<aU=%A@iDlVQZsSR(yN}Dpib(jK2JSzdzmjr;UDr
z-LupCP0#mj_TN|YQ$$MY)i&MT(Vu_)iu<*H(&_beF*|jQjX$q?Zd>_jiO%Vw*qJ-7
z^2ym~yu4H+uzbrFldEeYgMWW}8~pax)~joy&0AYqPF%kp4oX8i3LlsJ`}6a)m47>*
zENGPN)6>(db8m0c3S89k=kH%t&*bBMXTMe4Y>j+=|I$yn2}_>Oua5&Q-#9r*HP+mV
zgNJ8|itkLLqsj9w?<jl>nr;NmizXlIx%lGZ;-{})uNKpdda-u<Jx~Wz^<*jQo2=J|
zBc?4iPCxhL$w~$WaVCz2+kKy#3(D@VvTm1&{n_|4ZSBnmGI^#|UovDZ3LKVtP2Kg(
zC8qtbVsg)QQzyOu29?@ZR)u>1`}fbP;=_Wve?QYh*Tq=g-gkPs{&bbQ#pi9et;-jb
zk<m#$QyQQ6V{zEJ7|oZLW~um1R`V^Yy<Pt_<!|ZhYoJNa>!p25mZ+$zsewA5zuwpX
ze_i(6FuCVgkL2XH``r6vKHhp)bJjZk_VGU1%b-sG?svPq@7I2x`|0`l_t)x=^+?Jc
z-=O1N`}<qy{e88ie|{9Mjoj=8O0jb+i@#j<w|{wDzJAL5`SZEN^>j{e+EVb)$@aqm
z=IdW?Fh0nVXkvY^EqHB|sV8Wl9W*)A|5iJE-IUbGxOSGiI<{3`3V2UeKI&9o_cL*?
z$3&$`d*WMf>?nL(I`{U&0u60#?c;x$nV7EZEKZk9{&FjOed_J^cXk$oYPHnJY4d76
zoqWCOrQ6lD(czQURrej0FZ}W%(07hS;I!10-qZEgeY?B6{PZRr+b<WK<$kY;+Is5s
z#yQRmd;i+b*?uPX>Z+;7bNjEakFURan`?dC-dl^`K04YRwK=VK$^UBpH#axCi|faQ
z#Kg>T|MBDP_WN7X&(F&_ujmPC;(*3*vajiw=G}?dUH<;s|9{`@J*WRuJ0<~IHxh2k
z#t@?qif%s_mzGD59&IUqAJ;2ueJ%I)udlC7i=X+lwzRxB$S%Jp)pUw>xZmk%x|f?+
zxvwnupP&70edOk4GJNf6XJ$P7cF-7<oqrs+U-vr8IU^&ZuPr$C-PY@I!5<$THBCOo
z1DY^@%v_w6wF*?R-rZfUt*7VLZ}aIysqBBZ(DiY#p!Ffw)<%O;SpQp1P0j1Je@@PR
zzyE(+VPPSt<^j#9Z_T-RX{)Z0QP44o{tX*bPmA@++1`46|AeK_+1qdD%>A6Y&gS05
z#qM9<Y(5{i_1skL@G6~2pozAu@9*wr-Py76bsFQj;uy(e=jT{1o@ZNK6;pWn#EA>#
z_iLXQ?mKhF=lTTg^a+`lm-U{SuD|~K{rY(CX*wUHp6@DsUGnbE&ee8e3_FBCZT-xf
zcWqyS=7IkH`f8eRfT8x|QSnugo0olie}8@D=VvF6A9oL4=JRpazC&l%JkH9li&^Q?
zDfH^n((YxxvzNVikpW6^R;90|fQIN+B_3{zQ$Lfw+;g(pEZgdBQQPy@zPh^l^!fAt
z-|tng2Q7AcYxnTs!>D~VJ3(?2mEE&$ZOP2Kw`Zr5lM{H{CvHy!s0Xt-?d%>sxAgYR
z%ga^<E_MS=!rA@(5`6U7u~QO@=USJ)I<3F|N}sHC(H_2zVvVUKFAsnH`1ttLDN~j#
zS)vj-ZRv5jY9C=WpMu-Vv#+nK`h3>>>iT&5wJ|$`M76`N=<olt$hBK+W$f;<S*F?3
zj#thy$y{W9zb4qW>Px`xvbQ24B1;}TNcj5hZZxP}?&H(*?EL)oGiFGDR?fKh$y}VI
z>K(GwOZ57a+I-OZ9CrDd0MNXRR>+D4y3yM*US3+N6}4r>?MHn_yTz|7_uDMGxj7xw
z+c-PRG&m}1)-?V2bq5YOxVpQ){{4P``B#5`|M0)RzJ@MzV!gT|&>1uVva|R(s4w#N
z#zyDdTU!cwFMj^|^(ttk%AU$%P>8PzUq5fr;>A<#>+3*8n6!D`mG%4ot#WSX(^ODU
zaIY6<m~g~OA^qGOL+5rr)3dY9%@q|Dk8N6$^ZxSw+TUfx_iMk;1dUHkm>>Wis!2ZH
zSNYbu@>5FjaoO@24Gj#z8<Si=zuW!(-l=xRKbo=GZ+mc$E-ia)ckOD-KE4xMEv_?y
zCJByj>*?V!PB_32ysIP=G!&&3wgxl;ovatLBS8i{5Vi68=eV7GCoV2__nod6>(eQu
z+OvNB`a%ntb*84@-rdcX;cI_+Z}0Bwzd+;B#$|6JE-!Fo7M7CA`t$d%Z$-t9%&V)W
z&NR=D+t#mbWOV6uveB^_H*Q3LhRRB#Yijm<{P?jjT0Qyds!-6vhw%8?tBdQsyt;lq
zxBs8HDr9966Em~#L?u_Btyx#kOi*<8sj8~l_BFQh&FT72&(G(3P1DJgGRw*M_p!fz
z#{2#M?QZ|wo_{~@)|SlVE^+-lE-{^qtZQpB|NVVmAOE#d*1BxX&d=wpeH|Pc3N2*v
zvJWg-wrtkDz16c<tk4jakjT&qS&<M28IyYV)pGBj(p?oFlY-aB*@9L*1TXOryu7cr
z`txc1{S|ZUZEf%F`Sa=YvZSM3Y6b=urf3Eq`||Sg@g+-^RQ$;W4W-S_-<KJ+B_r|F
zG~H~FFCrpl?0i12`pl6|Vc)d0Wye4E%UY+g@yTR>Mz^>`G!mMcntYaeP4)Tx?d{nf
zNn@X|uxqCO^%x2)PtTD4;q}2k;r_l_&?3E?n^Hm5+}fzEUct+J0<W)&z57d5T^*Ee
zUAsgA_t*U``Sm4p@6TtmwW7DJG0VB}VAthtmD(>C-K(C>Ouw?Pwi?vn1g%-K`}st;
zSJL=c@>$U6(}VR-^yM9ljE$$xnzd@f1_M=9)s<muqkjE(+;7X|u|96^my_!AUp${*
zUv^im=xCQ{S9ka2Bb~xm7rXO&PFE|OrWYFpDo)eq*FL-Tf8%kv%jxrLmoc;RrBrKs
zGcYhbIR8%Hp7ZYc^Ztp6iPztl*Z->lm8@^&zWUBG30&$m_0BQx`ma~Ry*xbw*T?O>
z^X>iJ-P_O2v3zW}Qh<Sh;fMCm)9e%GSX6vi0GiI6Wtv@;vpRP7w%bnvpYPAUvf|;j
z^=`dVMHVvGO)rXo)NfX7c+yZDXq>-Vuf4rpTUGVw)>H2nI=4T0{CM#q*X~_kKY#ul
zoRP62`)e%7b?ZAACNZC@{`UL#@9Lc5dsP>1s@vMe{`~axbJd)NhKAL8HmnQ`41aEJ
z<n!QTVPo@}blr8s9Bu>4-z;owTFT0YUl*R6YyJGy^Rpix9|x@$b9Hlz+bYk%z)<8~
zRkiEeySuA@zuSF2`3QGW8_1%C;pY}cOb4y>b8>Qe^8ESpSF@*11<mR2-m5Wp^_jTb
zhbvQ0PkVXMU4HM$tIP}x57K6v<<8nw@^aGc)H~BS6f6TarFeoyKxUiee!8(O@i3dK
zyZi3C{=U9xhHkUXa)UlUI~)5JRNNfx7Qg!|PSeQf)BpdkB|QzzS5`5c@ZIkvwJ7uQ
zvX_0<?@qi;VtCM&dw*YSzum7Fsq=3a?B!6f1TEAAjR|@A`ISYpr#wG57qo6}b^POF
zy`n-wi#UbVcCb$16joc|(8yHvppku(?eYJ-ySpa3EMohRz9I6Gz}>>*va90uR^^E^
zGnn%pe)`{nsbdMKegjn-MMaxbG9Mml1@$3RR_5Q|$Hm2UX@O(2N&Y>XqsNZz3Ul)J
z@VIcd{QlY>KPs+oWMX16Njkz|`}@siP`CNr?)P?}cEl{h<hHo_zoo3~?9Y!mgGN$6
zu`qQkX=!13dw+lYq?E{MVmc8ESh>YKc5P{@3<#LuHC1cr)z#sk)dLp}G%`=skGBJL
zCOA1c*Zq|D0}bMRdU|>}Xi6WnzRYX7-rB;)$5#5!x7%iK#=yX!ps(2A@$2jL_~I+?
z`>fwxn561mbmco}k)W`@O`&osXkC20)f#3{ZaP5WN_Yka267kCk7{LLV9256Hidx<
z;h6T=-DNK)y2}N=ytEWFLJG=gpk*(YE?>U;3)B!fJKH=wAYg)%v-8!h+2OMGbvDyi
zfi|6d;=6xG??Kte+xh!J1v_Zr2x$H4gb4y`V|Rns@PpPmgR;w{Ns}jEUEs(JS^>1!
zz5m+F%get$o1Oov{{Qd!W;r($;^XHPfl9;DkC_(jpjrgfL(jgxE_A9^sEQ}3bru#j
z4K&TEp{wiL$}N8F#6;z(^X9Ev8@*jiNy%wa$m%d%&_dY9{q|w~a<)aE6G6L0c6KR7
zSc2*<PtXu+bakhY>XQNs(Ab*iB~X)UQ>u6Pj|ofEd}pl)TIw~+IK8iym6?Hop;CZR
zr9CM*IkhM7`@6ee|9-#!di(vl%WrOO2CuS?-(Lq^ZCv{0Mc~ynk(ZPI-`bj;eR`Vi
z&HzgW28Idc1}xg`phBfr!q92`{(rl~^kOtTH|cnTM!Q$9->2niRq|qjil&Xto#g)?
zJ`^lnvII0GTUS^2O_Yy;f#HcF%Y@egl9DUic%@%GY?lWugaHlDPE>YZ1!{y}T|NDE
zUc|qD|KxtNv9Nf6CQ>*-(?UN^D>Xd1uqJXdXvJXG^>wl9v}JN{Zwmzl-pBrW(5iec
zP^TKS=qUMr@$++@lUDOHFfe=wcVRfW5LEb9eSIZ&cr~brzA|`u*6C@w>vktwwkO5D
zyRguii<9%@!>j$<RnG2PwD$7<|BMU_4YFzH=B%7)oW5)8(xpqE2AS5&u}qM$Dtgl4
z<m6;?%h=dBwdZ0hw>W6>23EPe*bb>&o`1;st6I8qV-q6-LxHnZ>8mAvbMNeDxVNWr
zGiVglTlBAGf%qC3&~yiAv0m)%vYlJc&oFehv$NavdfjdnPtc}~MXudb=FEBXYID+2
zuD5q~2FqHNY}lFxDq7b+<nrL#`{j~%)UJ}1udc6OpFY1fY~jL%zy5qa52{Z=tK(I@
zrc6-bl``=FO@`;>tN{(=UtaF7t*Gb-n*V<E_;K-fM{r8&(N?g$vcQqK_WRv(P$x;v
zXT}21XvO}2zgB~4jM@(e+1J%A^_qI=)z#IY_B^kQMF1x!CunAS-;YP!@9J0?7#jB5
ztZRsApJkezb#amF^*80mWy>>8PEs`s0aZ13;xH%e7#J8x-tsh%WeF&(MjcF>t!(7R
z>%N__2jmMsK5|_fz1{ER$&;Ybw|6_A%l-UyZyG<S4f?}-=i7A+Z*FXKo~j)lHd)R0
z%KCVF&_D}l8tvNJ=v>SHpjm}orP-i;9-t)`QCnAmhBf=8W}D})Td+U@B%XbJomJhR
z9lBpZjh4!rx#A90UtcZ#{eFM^%9SfY!)c(Yice2Zzdorxf6vqB{~mSghpdmYm9?*n
zac<|kYW;rC;;^+*FSp;XEB@-~=NHz@#=9l`yj-uGZ4_wV9H{sMEz&#G%DsJ$8z_V8
zpWgg<+Pu17nS1~Jdd<bjS(tr)XYq0&At4a~0R>M`KOD3Mf>+Mw$Fyt3zrJLazP{$W
zHfrmoJ3EUvzcnv<;<0r3^6b~w)^>GtOi;PHD%88Mun^QYxw_cBKRQaCfq`Md^rttq
z71;UZLO`3b>i$%url#(^m7JUmT7F&o`K<Y^t=ZGXKx;Pd*F|sKxN-ZIc`q+7fBoX(
zVkyg_B`Pn!->;u;cx>@~taZ&f-L--Y3=Ah;f68Hq+)=O)RFHNGtG{|*|9|&1y;v>J
zUk{r3MFa&GF7uteDrl)!)r*DgA$zMzeP@}xoOTUV-id03c(C)yfF>M6KvR@jAs&0H
zzFzwI`MGK=m#=%jT<F<ZrncYK$L`*?E$3#DcQ&Y$`LxSM+Ck;zzTfXIZ_B+6nhIN4
z{QMlK!Cms?grM(iGvAjlUs~1t*Z`WGFMk&!svY)b+O<!o_4k8nsN7pyF8=*~fBnzT
z&%t|HK<km;-QDdyiBHx_#gmJl|N9Ml8=DwSP0dqh&g@xQ3Tn7kM$Y3?m;~x2J)c+Y
zXaE1tW+f%1lJ9rRL34ms)!)_}I&|pC<HyO~vgzmM1Xfk;di3})Xj#D4+}mM~kM&*-
z_P1Rcxj8NK`@6ed{{GWde*XSl{pS6g&5z!I>gqqDPk%B@nmBRcmMtcr8b(;%?@Iao
z+U35p%~m?Ka)Bm5u2)KIcS=ZDpaN>-6lTA_vvYHgVbt!jwX6G!J+3_kb+gK3z+E<t
z^Y>U^Us&k;>fYYn)AZx@l6$lZ?o_|u8@0D;YufpFYZ;l@UNrODfmRZizTf-(-lZzg
zf`$2YzdS+P1GD+LxhJbEUAAmjTO6p){8<6%icN3cyjL~zn`rLbfB!+X?HhyQXFg}=
zSYBSMtE;O!ebvv;CpI%aS-E`PrF(m;LGu`(R+6%NU&!vVw_Eb>+dVx$KOVHC`}MW8
zpm9aeBq%7p@?OR+%et~+q5l3qK_^e1Toti#(dxes4mMBHW1Toj)q7RM#-v+YGAAGZ
zCvBD!P*PIDcm7&@(Dc~>rVI=W|5o_TwOSdh{$0PpJpbMrDbuVcL9X?Dm1P{)uE*D}
z1w|CEwAmHVS~$>hy(68%zg{k%A5+W3%xqfoqX5*mo0fX_Qk7N73x(t!@bdkw{<BOx
z>+0&VZfsbn0vcfht(2HFd2(!R*qVribFIrkV^rI>fV1xU)0@K`4jn$cHSeyK?bj>8
zla`dezIJkx&Qy)SLyPlg8l{?4f1Bz&EpOe67a5>6<)C4Sw6tYXW;rX?@B8HinotF;
zom`cDVS(c;^Za>9$;qH$zPWa_QJkEdyMDjhEh;ZxkCfm+i}2j#DqXU#tpP191vN|S
z{{C7SvNC9A*kyP5+9jJ(PiLK)q6ymBbaPXxY2F=+uP-kjzq&kRWe_OxL0g4DHTus_
zPlHcS)15kD!i2*=L7njf^QWi2+0}bR{=@6_`?GFtO0_C~Hz(`*y0ukbUp+1J+<xVM
zujU-JXAKNLif`zwY@0M`Qpnz_uXps=81iO({w(!B_V?pYZ$t$=ySlnAUG}%1dpi|W
zh3@eD^hTuw#HzO=X8-f-+e!@*$zMQAOv>Kg0u_BVH8nPMHMO6=$hLyYV~zgx%#T15
zc6<MRyWQ2-cWrUM-6|#5t|w)lAY1-5+*WD;E${&~slfYSK_eav<`1?>G=ZAgp!M5j
zk|33N7jgw1W|?Fz>XkNsh9qS7;{h|MegQRh{pMIqy!{lU`bTqKH$%|QqEyhVopT#c
zU_`_WE)k6dPOV%!|BC3vSZqHHDw7I$w;xscQug-N$xUnS=z((e0p4A@Oec=Z*U!1F
z3NmO1XI{5r1c>!d=F=0=3I29JT_%0Gk=%cBlg{<`*Dr0&z8)PZ2HI3EJw=__qo!t$
z&gn~_@z<K4pET|4{>}OwG0hdc&HU328%YPy(tOXLeKkMt)Uh)#Fcegup3Jx;=jNvH
zzp|h`=WjbbUx4hw*X3*YfBoKE_wdO3o$~+hG^i;kL?2+#Td+t&EAItIl!M@r70KEh
zbGvr%zIx!L?b^MV>2aIuhO1n9SC)1dmB_^Oag~OMB<eg0x)ac}d<Nshxswz={rOjL
zBL7kYOUv_Tk6xGhoqJff|9tQK2bQO1r|+B~#mL0Kuw<E=U0ZqaH2ruvVRgTr^LD>=
zKy1%RA-B$_7=3)u%%7HN#lWz@sz}KpuHs><#q&AENpEj$y|}=!IpfNTz^TbbGkwI=
zm>C$hx%#o3cyO>edHvpRU7E?Oa_2BG$ln2-3lO~QNMgI}w6}!}3=MCm2!C%lGvD5R
z-JVZg9~l`KEcMixo*ZE2@431<JiVHSf#E^*sZIt-!z33_DH#|PH0f<114F}mMfG=#
zGwo`tM8w40c9*?fRQ>(k#_#v4-PcBK)smfjG9~HE48zD-0t^f*`sQ#<xc}#wx#<47
zXEW2ys(Tn185(Bkt23oMKGu6vj*)@k24m49IROTSgzFQ8(;dtrHzYXP{QvWLW5L5i
z9UV8y@7F%wa@nu@+S=&!N+Yn})j&%ZWs;BetSqt&i;Ihksr`D@Fzd<+9bYyEhLCW-
zn5NR}vE@f!TwMJ4xc$GvGjlAB!`4IyYKN`qm}#7T%<}mh;l=L#eHRzIr&s$hFeGRf
zJ>og><KyGUXN=GHsL!w2bm>>&aanPHn~yG2rcOQj_xpYM>oLW?)6`fP7*;8(pKF*h
zWr|C`ob9$9_ZPeK%Lj2VFjy+6GcAeSoc8gY_4}N{|8vXlbsjo&NJO29fnl4wAB)HP
zdwU-@vdeYc&fBefZCz~i#(iaPZ|(T|?KW7n_`I!ow=fd}!_|qx-y3-3?QEW%n=5@i
zzP|QO#pB+Ki(I=qI(|Ir)=xUz#(QyV_Vpc4r$ukFQDtD*U}`C-Q2P2>@5{@}k6-q;
zk9}F}Q1$JN<ld^UUB>4ul#OQkOk2*vz_3kCohfDV=5tos=d50@$?0cgV8~fMX9s90
z;SJL(CyW)=MsM%ivuDqb4~O}ax8E%Tg?9c|q18TW!t?8XWqN_!c6+fK+ll_VFN;s4
z7)_i$J^ZC91H**dSt$)ZGYlSD$1^i9>^y0!z`)>;Rixwqa=);;-<mDo4sq)r@l>BH
za$L4Nrbp6P&3iH<1H)}4b*3k~Ua#x+oU9hQCvHQ6<DA-WH#a66Z0hLP@$FW2@|_)p
zH>LO)7*;Hs!!e=!UZuKK`Ma2pzb3lNbw+K?I(j>QzwG9;vt7mKEY<72@4lZ}=mbs~
zN)BP`VkCWMnXIh%d#Cuk>-Tqe7iV5xCMbAuZ}s;X_Vsn!jxjSZtkP6xTC!q=2I%~O
zjt&i7-Cq0uKhGDwTDd&z&HBjA%N|YK%fR4pHdI;u@bB-S0Ne3=UiG3iYjo1i&Jz9k
z^Jn3=o9W?i_J2NSeQ}xZY#l!i28IxKKb8|6g36Ch>+kPzm#;OEGRu(=R`cn2c6PSA
z%aK)~tCK!GIr&ll|0n&(c|r^fH)hS@m{9fg)zQcO_WO?R-T&|F`oQgZcc&}|C74h@
zmJ{VCPoM6#{eH*zb}|D4!_@#~<|osl^E!Rhgw5|1I6ry%^r-IkJDaY4PcfP)VU`oY
zbr}?@tKHa6_?q7pndzg}#v>`T`~AM^J0+KWqig%YnQpxs+lgbn()&MyVs3U#1semy
z1duyexy6oLSsA>2hkfa*D;k=bp7{z43<<lhobcZ8@80?Pf1e|^W`)ivJSI8&?*F&>
z_0qi3W<BcjDwLj{1fB6QQ8?Wp?c5y6ySvNpKl*o4eZI{4z2Bm`gh38cR%c52`ROTW
zhC%n;_0{3}`+mJz4bK%P?0&xyUcdj}FR}0O)o-_ETwN6k*R~{nf1P3Bqaza5WjRaT
zKY=zg7^a<>F~cM?=+Bqs_GcfpFfcfjJ~`t1!nvKVSJF7`$kp(8S!MUWo@PEP4J9Se
zaS%T~oz`FMJzcNxFt2$^r56K3LUz$39*?@Zx;;N0b%RP%(AxaumzS1qEO~k9#f^>0
zHeW6{8|L2Ha^n2?^WSDLFdPVbazt`MN5`H$dv-i%;(pY`t#{&^1_Q%^vQsk|Iy*G<
z_4_T0pB<T`>b)p<x!*<5BDsDR28NvGIXhUim6G1v*cccRA~M&iv`hZ~kK-TT?SAj(
za^%udZ&0HAc)^)JwbBXfDkTTdKExfrUael7etsTE#&wd4XtnQbv);VByMBt4Ffg28
zv=me*zgrqUr}SFn$9DTaisvjI_h|igm#;1P^Hjh7<e?M>h6CG9bTZ7eudka^b}KXb
zPX3)88~vTw85(3J2s2*Vka##^SIJAU@6XT97O#H0H5?Jx;p^iJ^X}}3*qG!xb?^Q^
zPxTG!{`|1`e8zaQfg}UN2Hheh2e%#x!TU9zeL?Njy05F_UDYOc-v9sa`^U}m|LXKv
zKAQpBa{(%@ZpsNWFx=>x!!bcjH|ogz|9_spxVbsqXO@ZPB$ZB3)>!5@SL*MtuifVN
zYmBw$a~c&rIdS6j>F&e)_Ipm<YnQK+u&w^q^Xuzt_sMF$i|YUXyI(0O$-wYO;K><w
zL9^^@I&u{c8Y><&vV-$lue7;aVq)Txr>V;qis?p)Y`<5PePwlc{^n}+c@;^Z1;Tl|
z-)@W8TUC0e^7-74|9-ze{^sW9#bs~j{LE!%XpmiX?7!!a{QBR~Z}xt__wjW6Kcl*j
z-SI9iE{TbW)0THh*i;n!Ic)#OIp@ZPg{Opfxb?|MzP`4$duQ=;x6{*fm6aadNbc`_
zcX#*k7Ea+ukGl2G9Xr9mFrn1+pU|3JrLW!I-rAbnZ~N`UHx1Fa+OJn<7^QmMsr`O;
z_TBkLsa_)D;^9Z!U5<eAOz!P%z3TI8jMf@5GAuZ@@*|^=;K#}H|EQ?>&x?5}d|`9y
z<72&rPp5_-Q=J|o)Gk+*G4-$hz8^}{bRvb0%M|-e-P<Q?ee8Dr{<+6yFfartU;W{|
zK}qS?x3|*M<LfF*-rh3R+xcYDjr{$87x~S#3hlFgwPJDEFP-mq%j0YQ{e1p$x&7bF
z&A*o}T`DLT7!neax_-q9jcK~kV)6BVOW$m}oo8L@$H1_nvq;HdSINtukFT%CRj)l&
zH%VpU$&^R4^Y`6cS*#PiP3Pa&`2VJPdp;h^xU=J9T7TsByjT~PC(oaU-_+L7SYhGT
zz`*dqd5SROrwh*fu4<D{ev<%YO_#}PzDXArI7Zu~U7k7f)2B~b)v2keQ~MYh8stI6
z6C*QQN_7jU^zM<jw>#D&Dcmil+trbOeh;X2z8+sM%Pp?g!^SHW5>vJHWzd@ctG8@1
zkuuMV>D??}?s{a&{^-}=_s26ZEJ=KHq!U!8cx7vcuRC+eWOtvGtU_vP>c=ma{f{@X
zaxe0ntQHs(v*%{D_N5IO7Z-U<Qdzg>)2SVgy0lll*`9e>ZQZU{tA2c4UoYF*+WPTY
zbbhF1+P611FD`U$&-!zj&Hadd?f-?03^(#Xsk`p4)_>Lyb1aJ=y;$6T?vl&yHYsTZ
z?`b-n!hRNtVmc84AHS^LRr>l^{h#CYM>Lnune@x%?d|RT_WwTihhEFy@vtpobDD3D
zthL##Et$fC_wBa6p6D*u30f#)(^dZK%gc`+kINr_aIiUet~3Kf)+8xug~RRq{gWn5
z+VN~w_M+(Rd4~1>{z%x>RPe}H7})*&a{0>h%u7o==TttM8G6mVUru(Wj~b{1>Du~w
z{eC+&|9LX8yGlA&uiK>+wmwdFv0HDKa-YQ_w-`S*28NqK$;?lVipTf-`}_O&ionHM
z*JhdL%h~^Z>Hm0fzg-uo#O=Nu`t7^<iS1cewc;wDP6b!uFD@+H`1{>%_rk(L&??i*
z>lqk+IIiBv`03~K`Nt<HI%};heRs!ll1e9NEyWCm%AZfCoA182E_Qdtzn{;8=dm#`
zWNnlB?fK&A)2E{IXKy^Y?7FmB&WU3l3=9Xpha{hGaB-P3Wy+B`mc?3e`BiUjs?V<x
z;*~aAQ&b~0zlD#1A!omotis_o-tNT1ZK09-|9m>Fz1Q#c<O_@p4eys9V>@w}-+s<p
zLC_HQnqzDyem<W+AI7@}(*CB3g@b_s+AaqrU51r{;O5P!Fr=?CNW;X#bnn+|(S{ip
z7G&JtS9@i3xc;}h<@YVV-zk1P+23wu(HksP45<Fs@!@4)F!g?$!#_bgZ~xzK6_0z(
z7nQ%iSNP*$`|<yO&i_AR`~8lvyKHI5nOUaVe3nlpbaX^)$q1ZN@u>6SionG?-fp{{
z^!3%%!sm0#kNtkXUw(7?`Mz6Q|4w6O_;C2C|KY196(1hVuqaGg+VJA?a(|h!8;OOt
zbGIK=?za&V6a=+gN?%_)dS_?x;?&dA1O*G<Y&`Dv{oUQ<LoJ+zACHQsr`9nrtl*4k
z3iUlMUtcqIvpBm<frCudi-jK#vdf38@ttX;+ST2y{YY8q(UZykecN(xADirNH}lpW
z28IA(&I#``KR!ANYN0^85+^6A7M?LY9%8vJ`FP*QZ@2T8+sZL8T+v{9QeE+8<ME`6
zi(D^m&%Y08A9r*tTC_;(xR|Ku(M_qRAH80`->=k-fnkLw%ZW13p2Fk{3mh-53|{`?
z{{DIwmo?Gb^^}x8eg3>!CO#k_;H3lu!w*Fvh1-cA9~~|H^>VrUVz=H$E0@pf@=+5O
z6fAvprL&_0RP4Xk)Ye{I!UL-7E4i+jMQzOr{qp9faoE}@QRB2T9ecmsTAh@Cd1?4;
zy`#VOdwF{=E_{4!<L$iNp^xVmg}eCt+P$^z|8G_X2PrkbITGOB$F`!Ur*wQbzZOuq
zy<pECo38He<bQvD8rJ^$V)0@@v)0?~85fnfxVay%-F|P?r+YUyr@OcF$*%h8FC`=R
z|I1%?Him@VUteF>|MhkCAMpdl&(3r%?zgk@7Je%QiUw)(ydJySUq{wNZU!~(FK$de
zepc=~sM4NS`D`XAX&k-v<>lqakNfTW>}r24G1X&WxZ-iHA>{Jb>v7V-%l&$d&)XPJ
z(~FhrxBpkM^l$yI<@x6$V(R~XHLU#f<i(|>-Z7<DLpN4^eI;R<6(Uo3M9?tdK!c7C
z9|MDFJHyIlpl*@TOdp@QR;J7R=0>H~2RCfNUHq<^^}U{f;lMiYhLFpr_4miTO}@P~
zTl~EJ|37|n*ccd!CRaN!Ff?4@5MW?XFlAz4VDRV#4W|Stj|va*FiBC5++SDABWa`(
zwJk>yG+OYu-`;MS@9b%BH!?6NtY$gkSM=}a^W%5R@5?@)TOJ2$bYxv$Ckq-xFuzx!
ze0wn?gTu8e=e{xQUUYMF`tc>6lOL_y{jMu}-A*+nrE}Kr_kar8nDV=&hRMfzbo@CO
z7;Zk~IpJqe`RU1u*xh9@MJH87vqAmli>~5F&&)JVzPQLWat<E@!zTBJH!Q`^&-HH0
zz3sNQ>Z{h;@;5g&Cdo4})OE0&@C%5Fl5%x*4ZYUg)urS)2{Zz-$v~8WA!R<pP0nj;
zqs4#z{26+Un~O{98zaMm_7lD@tR3fCl`h(|XV0ms$jHc}|DOH%Z%|pA-pe*&6RV)$
z$2-O6kFv|xOn4f}ux~#r_rAaHXYCKTSI3m1uA!xM>rHAHxB+}|k!$zaee0Jjc~W0r
zdjEeN;~S|qUg>FX1sTd#Oqw+5#g&!8+m4^`WJ*zgabcnJpX>F1!`DP^UUsSXMgG2@
zX(>iCUtCytIPL!R#qRy!l63#yZ?_*s3NbKjO250SG%zSg$hPXsiEkQ~+LKj0C%siH
zGX>QYpg3{sl@h%kSDoup^ZVorP;2nep+gmaOQ%OLGJH7vgy)1GXxrh7ySvMIWUWlZ
z^y6eeRe;Y714S{t7zuv+KLy*4Gcz=-DP)62xwM&%T=koc5&LQ?W$J!BG)y|uVexcI
z@FrU+28I+!_I_Lp$=?&C68`@BYM63jLdMNasaMuUoA=rO`!T~TH)`8)CWZ!CzlJLe
z&*#_IfqE~6_bQ(sy|FQQaoO8j7gvX`2i25dGv5TfV?4RZxBt!F*Xwpanw7l{Qm|*-
z-&YG-rj>SP#>A(bj0_3K3)xgogPNRMv#<Ag>+M{Uq-$?)uea;Pq8XOOX*y9`G`cS{
zG92hrb=Z{i?#|AO+j4Jv&7UFn@ojo%&MkI^hS*kylbbGGx}>3{wQ5sbNQj8%q$A?-
zH4|G`GB6}O7f^`YmUnm8iSy^zZ;A^D2-wKaz_6Q(aZ)O%rUBJ6uTxV~MSn9eY*;Oz
z5E&K{BC>Sp($H(>Yqw@xRC+s+fgxeJphD!eh0g6iemw3^K0C{F>b3hdpU<91F#<L9
z!J~}U^B7KU0*yYI<=hZ>e5`kMMD+f;T2NGgf(;aeV#}Es8e~_OZDaqj@b!(2$zR^x
zwQl2+mFgDP?_=h(P*C%kApq*Pw9D67+<wf+aDeaW<O|siUteE8z9I4Oqm9Sqx}Tn&
ze*9s(yqvOIPe-tyr79>R9^g|2M;LhQj@%-;%<%Wy?eQ@c4_j}_CAa_h`@UYjva-@J
z{oEYcZ?^fnUM@Rv`tyGKhMbS_2@NuzZl=#adZ3Xx`TyVV{Z^%~j?AlmCpp);yl-Rj
zakt3GNEeqBqnT^YStJ~2SP{SfAK&jf>tD}LrWi&3w`KaFxO(neMurvh(&yKj{rd7!
zn3a|F;{N*opcJtte!pGXnHhrDW6NXD%r@5tkK<MQ)E{7fV9hDeAQKQ2Bn0Y6U0WM{
zeEz>L%R%D{NAIOhj}-%TbU+4n3o|)<-NC}Gz<#Ih_uGwSZ*Nt6ILNMj^tf8?tu39}
z>vkk<ejmH9rt;69=l1=F`R#39U0*L>{cdOamseM{@6~?4t9ATd@p;>e`)YsRNba{?
zRQUK9sMU2$*xx2_<Nma>v%mu~rLV6A1_TJ4oo(J9>~CxO?A+YlzV_#z&##vQb**J;
zJ{$y%+-2O_lKJK3Wpy#Vm>oACUtbq1&CJf%v&?t)F;H-Ua?YBFjf+kdp11#BGpFPd
zc)@DMg$0fx;^N2mRDRxOb>3TluLx|+0_0G3`I>?|1&4WWe=%kZuszqn@T4JqUZonS
zJ9u2S{EpfF@0-utb%PqFJ@@ujyT87+HW}2u`v3R4`*gk7q<ecRH(rmcc6B)d8rfd8
zdR-T&tpXY(1NC^{?S6l3P2}c9`S<q;3K|wXH~<=%h$%cOdU0Ls?jNsKuTMJGBME9)
zx_}x)wwLSwf3H72JAa=fC`Q88M!9-=dV*#IK%>z!%=6<!L_|VlW~+GeNSSCznP!QY
z->)gI`Et>{@crKJ$3S7FzyD9s(ZYVaUl}|S1`41t>he2<?tk9q*LVMZw_D%O=Hroy
z-*2}k&#(P<^Nr5uXJ@-X<JVRtF9blb{pZggQ2&3=$79mB|5Wojn5r;b$ygn>*2`$7
zPZ4M|_Vtgy-)`&ge9*+L6}LWq|Gra(+~RsZTwGj}1eM)F*8F{J|1Y`dMq+#I^Y3{#
zHY64u6%DU>Zph5W<MHbH`u}r}PnkM3G;+3ScG#qoDU*)NRj*0PJ=DVKsW#cus_e~-
zoEsY!CjC8U{od!(r%#hs1}|6hoTQR{ZH*`B?9iC1mrJMadp=3kdr}*(v>G!z-<pWs
zFPF`pv}ezruIuIZYs)81pFUkDdfOZ8bhd=!1)O3IyxX&`uIlJ`Tes;--tM<yA7A%M
zn;+YhdU{db-Cczj9N9yw_T(OJ<9)oo{%`i4uh*iZ|HOgDTq8H9xn^d*EIYdiG!1)n
zy?M?Jfz#7;yUlWMxg2ieHUE9$ZvDUK^?jg*^PYWgHl1D+wl)e>>AAWb>DJ#Tp&h=i
zXJ75_W8v|&p&zH7OnJ29ao_5aWhuq>!7fMS|Nl7dG3iP5-x!9RxeSae9!i;H2nY(U
z4qtz7-FJ0QA<&EosG6>;t24>HWirb&TkQSb?{RBlc5ZsKL(#d-WpCBjMajqeK!vr0
zNk+ib(-Yq9c-&X<|L^zY_j|whJ?^vC%iH(!S;U5fgJ$PL!otMN?^Ptf*?it^YFgCJ
zqSU1`mG;%Hy2i*Z6OftPZ~G0@<IvF5?Cj|H`T4o~Bo$Cf)6mgb^CRopn#et0E_rWE
zIXOx9T+zFo&)t^$&3!b<Tdxx|*uKB+FQ{)Jq|9L53GxOgE9pjU>G*!XzJB*T`=Tc&
zKx29(FE6Re)&Kce@$sm5@~thIg(no-j~wfj*6y?Z@t_$zs^K|V?P#a^Jc;0CKAq?0
zS|2}aem|zr2Q-lb%6FhCt&5vdPlKE0pibB!ZvC9gKFw^rUD5e_O+h1X{<dF3Kn?{B
zC}-T+QMh#Gs_e(ddO<^GACJrTXI@?w`m5^Y(&>+0E}wtzQ8hOg*Q2Z9@x7Usm%0A`
z_xJJM@AtYv6GMKsUqb|$HVE(FlvQ8{6&F7~K2E;2Ch~TT@~{2>fA4qSo_9Ct&W^&V
z*TUCC2)4GiPQCW(%1YtA)!+N>?X5oE#w-2k&F1rc6P4YMU0CRx{QYiue+Ot<;`q|(
zaZ=OcsxozAcbW9rd^#avS(NhS#l_^=X;KCW4tENV%Zg?{efo5E?WWL4Dj!d(&p!g1
z{ps4eHT$|-W@hG`x?e8^1vmcx_uGAvN?=5U#NAz`tG~(o55K-Hc5(Lgb)Xr!9bd0S
zKMvpjD-^Wx;r8FZ3^#1j9T<uZlwOY&2Q@^y_4ie5o-PbJSje#K&5g7Bwuh~a3jL?{
zAJjVpjdevuZ_9~XdL7hGD0_R$b&|@*uh-*`gCgpk`^_bpmzRMWYa06c_m|CI4$^wA
z1k`%n_w(88vvT%%cXr&^km!8$b@ltb<{+^bS67F-xO{nWQ5lrD|9{K>ANF#G?=-#G
zT}LCQ>Bq;VzU@%%>rnCB_VYPY!s|JVj3*dDHHrP7hy0+vaK`m@u}l4(>i>Sdp8V;_
z$-;-N;(6cp9zA;0u;#~y9Ul&HKW-8B>-c`JS|60OZq)z(t1VmpYUT1{an)}{L6ZQ_
z&dvrE_K&vj|C<YnNxAAbf}l(pwl?Z0Xjal)rqJce>TvzIs+UVEUa#H$==%PDrAyy$
zt^4~66gg8PrOfkWrpJ~=f;2Dgx0B+PGU;&Uvs3}izg%AK-@nXvcHX!2i2Zf7b80@F
zytv$dK4?ZyTW)=HOpJ`+{kUai_iMj{Q`d^ceO>!%e}l%(!2`f=HlKHUes1n|iHz-c
zio8L`)qr~H$M^kyCk<+`fXe7^H`C|8xU=(f*#El>8+tc={h`aS?e3qSpC>mmvx90}
zPf&5o#w(?wKBvH`=)CQBm8VaidQMXDe0^>0WN!UE8y?v{efspIe%;6JC8?*Uos_G7
zGZ9o3o?H{TdD6Pr-D;o&WRdsh$4AfUda;uZ9XhncZ?4tJMs~Rwe?Cp$?-RB@Zm!D7
z?fsu+jZ!>{o=kLC1J&h0`|JKbIicL|^KSqDe_qCX5(Ww<PoKX1<~m59isz&?5gV0u
zzF5>fDedemRnSV%s;{r6*8KT+JTz^-L823=Y~J(jR`$uI)8l5DWL{Fqys*IW(*FAY
zpn0p%x_Z!H=94X#{k%a%J*Zi1`QZRF$TtQvjnn;(8k*lN2@YBvwzlg!sD=a8Me3k!
zHlUygTN|Zn|NG|oNk2b7ub*EZ%8=uz=6NTPoq=J=VaP-&^+pnB{byehaO)`h%|q>=
Obq$`belF{r5}E+p@zBoz

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-2.png
new file mode 100644
index 0000000000000000000000000000000000000000..24ced04f4f030932d44a41abd10997c9f8400321
GIT binary patch
literal 24800
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_eA=KR<H|3ChIz4xqH&rJ#Ac3#Ub
zKUY|u{xRdQisjS^&N>$x12pIRyQnM-Thi<#|MIa<)T3q>4@<t6!75KK%*lOr;l`QI
z-`ns1{`>V?T|eh~-@EIkpVr%Y{q@hPy>jcn-+Nzm_x}3lpTBPDF?3^KU|>jKcFz+B
zF&?aMW?*7qU^rmLA^_rVQ)~cH8+aL67#J8Dayb-0+#F{HMvyLPCJqqywtxeOy3t0O
z)&?7WGqW(h<8MFCUwwJG|LXYtbzNOuljhH#UsF@FCHMBWJ9^yLGq0`+EwYfQdO9_{
zXtxOe$B!S2EM#u&uit-s*T=`lU+35Vp8e_hdHwdo3qL+S?mbC{uU*PKFQ<Iv%~Pk>
z>o-Kd|MtV)s=@xu!-5@ufBgETWnvQ2D`k4=%F5v4-Fsv<>Ud8}-Kl$ewYY))o)1m;
zYQM+cExjHqWs)%=uI^{*RE@w#t8QB`Uwdlr=;*jAZ0)SL%BP}pZL6=nE}J-UVv&W6
zR>+D8eX`bNS8Lzj+^l~4vHyI#yQO#5@B8&?)z)Q8mu9}Wun?rJsi{dsKwv@8Qm>cu
zs^4AweBOTj+UV_ZrN8fNDSYf^`|U>Zs+gUdxJ0#<G&C@{y1A{Y{rzp0b@@8IxIHs&
zt3K=4e!f}d>?~97^ERJ*n3$QrzS(>}>&Aw}Rngnm-7YJ;xjlcr3}1WImlqRrXTLee
zd|>|k{5)}n2iG?1cpq-#oowhfbLPxjTeGLz{eEM-HfpPvr>Ez-e9ywiV!BaFyrycs
z{CwX2{718M+#BEB-K}k86m(2N)}|t$v$IpmEN8~PACI`##_kT=w{KtEcI)bIYd|5h
z_y51&H{bovQuCdq(tcPmxkt@!&WdHev#WB;UtCbUx;otd_qVsfKR-Rax-~moR5vPQ
z<;s;_US5}O=kH(p=jUf_D=Vwx&-2>3#r0O?-{1G^!(slXuV1fj<CR{OdV1QY@883V
ziZ<>0_bdDCeEayfx3*rMV_96Z`%bo$ZPk{znvbroE-pKC<F{l?)H!`=k!yFzo{GZl
zrPgI{0{;E^`Bvxis#jN5E`ED^`|6B~i+09xHN-eDF#c0&<B@#y?f0#%*;f}hGJ`xI
zWsuNtYMSnB@2P(ckIlHFcW`wxJO8T0!)^5$w}1So`1@G?f5Bh7sxKL#YokJEo9ACU
zGt>C%3FZEZyX%}<xn|i^Zu<58{d%vdTCvv+%irBud3ANTww|7!rlw}phJ?mGS?gs<
zN4qMw$Qq?|e0zU?{XE<1tVc&W<zDy8ST1sI=Zn4m@$H4(<@vtzY$D6=*KU7yZtiL>
zQLTzCGi|H4+5LXAIcCMXU!wYPca#%6rr)bR_ceS~#KuRu>t7dL|5d}r!g3={xM5GT
zUc`a;E4JV7EIu_=`?SR3B}-J+=T6g$T_vU)wIX6;5*G(YKr5H1Nx=h$rAwDqZu$GL
zUH;0-V0BklS4{;4hs4ChRe_7!=GA_SOifMQc`J79|0=)Tp|-zXEY7;KW8>>{eVczz
z=<n|jTOX(EdFsrWD?dIy4qfcV+uG8y!l99=tE(&M_O{%uH9tSe?DuQumk*n7S1Tea
zs#;%P-`d)`GIn>_tv!{Sqj$UYO6@$ha!t(6OQDy0zwFizTGDZATdwxYpzjOc^hlX{
ziR;B&IMB$v{<nm%y5E%4$f_?F-9_c)*Z1`B)c*N+Jnr_o*xg~1zI?gtUmY92r=oCu
zx&5Wfmrb*-XoRi~^JV203ke9A@apR7<&m4yD)0KIr7d&okyywjs->Zz;PCX+)XNhT
zou^EkSa^5+%kulR%TG>L*ETT;@t&^tRmx6fW%BX9U+3%p6`%c^dv8zV-{0TEOG>sl
zIXjC=NUZ1*)qeH!`TXlAC#&zB=k0gD{eI2o-l(lvOD`?;)>cq(c=+()uIKZrZS45N
z>)P7*<@MSRFI>O>U(_*)?dO|=%humM+AaR|AiMmEy1&1;`1r#9{rOpXT(*2g`1-h8
zd#ksvzPr%5{mUus^<a5^{^|So?^jY%y0X+;Joo;-ySeiZxATYZEP9#}InD0hkL2y^
zTIbh%>RhtA{#yClTTAoq?phhLGHBi7lK1ywcbC2Wl=1q{pY?Hjqdq@78$8#lG-QDT
zV{2R6s^H~*>jKym@*nbXF#P=avr<Reu4YFYzx=uj7Xr5C+zd)gOuV%%ceap_(3Xmi
zNub=$$}KjfM6>3~%3ycCcIUOx+rvUarufaZS{l2%Eb~wcr<7&UlGVSDpMCND?*V51
z9eR05$;qP9(yyb$B_%aIU)|fgJMHYOrK>_$ud4q3j*Exq%E4y#t!ZbabYpjg_|7uf
z`K<8UySuAr%#e_^tBL59HV=D#Zf@y=1B_?qT8DRw>0bKt^Yhh3uH2r}odOrT^_t||
zFmQEq)3UR>w|1U%V$a84=0#bzx2^s6vA;g!;i1;3ty!Uc?+>J;rM;T$Zx{IRQ0vzN
z%=|CD-><*kz{qS;`6*@ZheO<QZ=Ic;RbzK$7hR7nfBHfqGcz;m%8H5m{{O2ET^|?Q
zZ~JYAUfiA)OTDMBDt><M*URPeZS<UOZ_i)P$}P6Ssg>*1?d|K0jEqcDPl^2faG2lH
z>e*AfKOdYUr!7^VSK*YHm>8a0z4iKy%u7o=y?lH^4!7}&ii<Dr7T4F()bz~X`*qqh
zoybLBUteGC(8#pzn`N!MUgRbh-RNy04-d6o-Bp_H>f)lIs_J@sd;awnPGOUh7XjDp
z*8kx#&AQ?-Ej9Dh6iraIw|e)}t#;`%XU^R9|KIPgSHt61`ph(Xb!llgsP@=f{awq@
zFpyWuB;e<#r>dT-!`EMXy?*~Xw_d523)|&_4mPoVJ*~h0#btl{t4*xjU+$LQUzv4v
z)w-%nmoAy)-LY_Wci-)_Wl46~`P(}R7tb=wU9~y={HoH|*LHnAXT3G~IG^uqGvE33
z|8`E(k6$NcnpLq!?ET*F^FUR^*1Wq>8#iu@+F!Rf?fks8xwp4vzP`5B^4D#q4HFqZ
zEKiG^R%jt3cRGA+RBBC4jgNyvgJsQ+4YzlRYKKXj-sJQ5*VnTvgO}gA<~!HwYQ(hE
zdDZVMuWw>xW|L??oCq?%|M47~%1dv*|M*eyxWMAfzS`e5x7Nk%yc97lwT)l?-8LID
zvulrKHf3k`7-nW>9(!0Y<JQ*f>NUp4W=xqPvi|h?D{CT+K^j*CF1|BueeCXQKYsn1
zwaB%5*5>r{yVh>jIc<`4MZ^7fdC|Q4t3p@bnI>;rb!Cc9<RuFkKI8g-HT`dul$CoA
zKQxGpj7)octQTZK)Yh!ZyWij4-EF&VzGd;UjXI}ozFrAlm&$MZWkR8aOxn>dQMtGG
zYrn@PM^4iWSusJ<qF}+#SF6{b=@eF9SCw~ncey!V`(YIol^weF_5b!{-rKYD<HwJN
z_v`=f&Hnl2<>lVgNHsOJV{`25?`^d)HN84TKmMMDOyBFO+PSxN;`iAczb!HO@9*sY
z|NcIEbhKOU?f<{;>!nX`I`ew{{&!Jjw(k$K%hz16km37$nBTr)%kEF6=iV7Vd0YJG
z$=lkWkGl1xPH*zLy)D<*&8_YBuAUyA;y*tMufIRuCu^L3ZqCOW@3-aN_Bq(Z>f0@*
zduQ7FySuMPOiPuk{SvtTYs&XuVe4XUf`X>_na}p8#m~+dPD`Ds6}oDNuDn^!jEy>{
zMf75B{Q2>?Kkv0w`MVq$zV?~c<?F6XF+7pmmB3gpc+Of%fA5z`R%LHi?AT%9d1-e3
zzLyu%YySNBxJk!bSltg)oZsG+cXyYjl~vT`<^JC-+#DPlj&C~D%6<RH<`a^qH>LCh
z?yLE^XPth~k`t!iC(fC(CiV0*P+pKLXMS~U?P|ZdR+_4+uAiTu->+%veQAnjuu092
z0$yn|pMLv)JKpX2><21&WUb4tF!S3KT+PkCwq|9YtTiaB8mFB(aq**?@2n?Mf8L46
z%fFZEsatAS`zzzZ0>@ni51WL9gha%}moIYdUKO*msOrzh<F<0<b0$q%^z!oZ)oEvE
zf!Y<fch&s-lzC=`;jW60i=y`iFY}q08d>#r>-9VT>JA<}C}os#qO|{SVV|dF=&CEF
zxzp!fTIyZBce8-J{CcNWuFRL0maa>^{@JeN-R0Zq8Y(JJ+)jTh`1r`xcZPxE&(F_6
z<%7*TfgeAA?tE9_8FX=x>)m&6EI`eaUTO1d*W>HoUc36K|Hr%C@4tLLZ@)TjZ&lTg
zhwXQ-ZOy+Q_x1Jl>*wwNuQAQOR*`die|`Pk%I9<QPFH<>rJCGhmUE-Pxs-9o&lgRs
ze_Ug3o;|urr}oQ5_dN0Wey^{sojiYj{5F4<QzuSb*qD5L%B)$dlw7-3Bp>gq`u%qM
z)n&fYwqGtdXWiPeGASu3WL?b8=pw!ALLwqd!q!G*K0MUg)z=rcyX@_i1&+*DR|dN`
zHa1$`IzCM|TE&xB%B0}6_xme53X?%aO!T&#!0YQ`^LL~r_pGk}^AwcqeCOF%y8o6i
z&6)yg#`4P9MDW{w3D_pSZ_<|P?|Exub_Pw=4iB4aRT^`8wt4<KAyqF8L&HE#O-(uR
z{p<JrTE)gE11j3H?(QlDwMnk6k6(XsvU>KZDVnnk5}T^Nz0rIbR6c9X8lA{#OCKI?
zuf8&2;zUKyykw4TIX9Ks4=<cCL!$rN^zyC6zyAGxKXt~87u$3!EF%8?{(k=3o%|!M
z+~Qvjvdd?Ddvg<1aZH&u?b){<_ntgSxxPRC{O=9k)AfG6*?c}^cUf-fn;U_>Ql>#Z
zK0U`LugjYzYh9+HtLt0(`r6)S$&2QK+T{FpKO8(gJ+12g?9hwZ@gOQaa$29f{ku|z
z8b8b9p{7|^PQ3ngtXKN=?fm^$r|CwA?60fco*aKq_w>q=mzO3jxpL)-eT;BJbTb3f
zA6JY0bA9~%uY;Psi{1HcKOPa*ir%*7c<bFxVf86fr<Ptl_+VP<%QG{LwSty(WL;gg
z)HM5A#*-5he|@>^Z<>3{L^3&KWsvILKc7y^-A}ufcy5lRlyO>5+L;*-UkS?#2rOuq
ztMcIF<h(A!|3D@~UQX^^>E7a<+Z&J9x1>f!?JQa<Ws<RA%^IED`}<<g+x=ei@9+D1
zZ7nUYW_JF4&+JZ3(_Ou<_P3UzqGSI4zuT@C%J`kLmI-GIke8P)eR;_hRB3{mJ+|NP
z6wBQf(+cr;dwYBM?{9BaW2^jo<!qyr-FgD{*ZsY+%vV}eJIqJjZ_b1g&5jiFj(a~P
z5|?k;V$#~uQo&n$PjAZhyt}VH+UZ7bTch33(%%01dVGCoQPC&g%2z?{e6mw!%vka1
z>FL$Ex3_5pE^7Jn_phpF^6|c_KR-Xed+Yg^+8+m)`9Tehs?TT5O;b;a_|CBiJSK5<
zMWFLyx876VE}p2L^0{{Q<%ZASZs)(gnLa<%!=vNTqemgjd?cTqpC3Oh_2uUCc9*y1
z-nKdSw`%Fqr6)J7SzY(6$1u*m_~5~Va;N9?uibai+L$5F4pclEHa0ebn%|&$FEurF
zW%c)WR^{*JM9)6d%DviSqSC2Tr%ru)eyEjuUB1Lp@AF^dHzYI$1qXk9yZwIFiwg^_
zs=ln)Rq}F?sCL+nTbA=hN`G!&?q~iwDQ?oAzkf|jUIe_ovC;YW_xIPoyu1wR3;E7A
zJ6rm&#`N5}<aU1fZ@cc@-1<DN%&@pj|I^2h7w`Z7SFRhe!6EhZw5uBu4}bal{r>X|
z`DS+hFb|Iow_d5ITnyo$QZZZTRQ=!A@p6+D_WgV|+vr%vr6r!0R%r<d3qTFcUteFp
z{`2$muWz^WRsY`4eq19IRc1fkzb;}&LE_RSODgteeEGKh#l5||kN?w~UvlxM@6WF`
zKXt4<J;6<>&1q*r1=;Jx{dSj5OjHK>;d=0{btSg%5C49*+dsbc>(rp&;H@=3i$E#m
z*T>`XS678<zrC^Xaog+tb3Qly{bX%+^W>>hmp(i^EGj3rZhqY_Pvi7+S7sO{fBAG;
zKl{anh2|yK9~ZT9i%&CrwralR=}kpTqtzQ`cZ0GJs9fD!_4QKz{=dsMCLiCmc6Idj
zbwR<wwsPxd3fI-ufx6*sywc0I->-{4Cb8Y~=bXRy_+=~}Y<zpHSGxF5i_UZNCze0U
zjFps}=312&*|wFQon?Cc&9uO^QKp`kW|?O1IX7W%(owF+X-i*SUHyE;J$oesgMj2?
zJ%M3iVSVx&qjwY}@=6-HWM*c@?Y8v{N=jPPCuh6LYpT}D^z-xL>Q7D8UOv~l{MGFI
zeJ2a|p8M!@P9b!6S+1o_-|JiMUte7<{rJdr{og<P|NVL`^ZxkDkH_W9doxewZL3hv
zXM9w2?)ZUiSyxYqE}07|62E-;vN~`6<?o3J2@8^vlc!FYu)wjIO;cIfxm#R+->ZG=
z!=Ij-Dk>whCinKX)arxpOaA;QoNH4V^!3%%&pV1MzP*X;cMtNu{{3f3QQfn!bulkX
z_kQl~iT*j0If0*v<AeCOOWyjL@%w7LJUj|!-+p{Eeg0HKx4l(gKUr<O^M3#Tbzfg!
z-(45KyKL?8Sdo|i_ifx)!}bi+ko#Nqw_Uz&$2!TIbD2~2o>edU^P}+Z`}+T%BkF#A
z$((Ch?6z;;zHnK2#n@dDJ>A`x@9nL&WxDn2>ub~EXFjbhEiuIfKYCwXSlGNOZ0)M`
z`+l7=J$`cQmv?ugL7l^P`MMQ*tG`#RDL?nuFzE<~?;MMZug@=VY_?%rtgfQ+V)^{K
zPgQ43v#-5)y?+0+_3PKa+xcA1GiYPdQE)%)))r4t1#?|td-{2~?Nai!UjikQO)5Sl
zY}d2Z)YO!+EP7IEe`sgi-l|tuS5NnwW3jOM{od=ZV}y=LoSk9#cvf=doc@q~pO}8W
zxVSj(x!cZp-yfRauPMH|+s?dNthoK~!h3tGUxWHGll|>p3hpy9HZJ}1qtG)bB4Wm;
z=jYciS)#K2U6Ht645%cGd8-$`#6vK0+S9L}XU?55Ln3rlh-db-H5Zr9uY0vE@7|uu
zsLg4;TA{0+nEhiu@V3)X;Xr)E$w{hTpG@|D^>+LHYoIJ~D|@}?E|VL@XJ!~yeLN}-
z?ytIbi*<E%U7Bf}z9s*@9cUDZSIXo<{r}(bo|iyf3{mZ{6^_kppb-I3FXM5)eb&cE
zN4a=;uRiX#e`l38+bp-_xNLdGvokZT3LZ3oMri*2{{H&&dHe9&+j32-zrB&U8n-e?
z)z!r%<Jy|YPhY==-rSU$8aZuO>FZ@vrig(0`Jt=BuEv(%1$Dh&Us)L(wWDBRpN!?A
ze}8{h*Dg9gb&l{BUKxvk_`07<v#zaK`S<tt?0b7EL1ow!&ETRf^QFI@(q8|fkzMY>
z0>|b(_at|Kh8o>^rIzx^T4mhdSDPpPcK^R$t3iDmP}|OTw%N^hi$RT>XEW2kyj(v2
z)!g!XfdvH{mif<L*T~Gis_5w{P}V<m_;BgBH<5pTJnmnYzx;mHYu)V|rQYxRy{_!-
zt)<iB>mvXEJYNs0qeb=OV%YiRu6%oYdu!%pwX<_9FP9eHUm2`^cAjl?e9gz!fB(Mk
zU+p{F3^dTPr}8tXwXpr<$D&t%zu%v}e*Jp89}k#AR|dIm+_-Vq?{~YOzJI^|$&-||
z5gVOOo;-Q|&8+a%VY)|;9Lf0i=Vw=EXW-voUrV2y5Y&y^69H-&ot&h4_m;Z4`tu*P
zH`d47tE#JOtEst7oH+5+bp830CQaIsbd<~0)%EVA!Vvxae>R!r+*qK$?}wA9c38;i
zX}Y2!B1=F4dUI2%mxo8d_Po0(k<)&CeZAZ;`PhoAtE;juFY7fjGWzoMdc3x&X=tyM
z=_ig<RxXi%xmKlL&YIs}k$rvLs)&t?YHDggmG$4h@9WQRTedQI`KrjxX|HZ<TzqRw
zCTIvN`*@%1uRov9hwdmyT+g4yP$0eO^UVDWZ_*>Def;?GWZB<|%I-dmOsqZu0TV2%
zzO1;tD}VprYb9@PTy$}9k*Ke)7ZwvsTNS!GZC?Gq%E?ovJjvRgbJOVZVt4+}+xP!H
z%fik+yNQ*1)~Tu5v(x8Q9(!|t|NX}^_W%7hyYk1wcHfMQ6({H0?_U|adz+_^kBN5p
zIupM3!+SoR($0IEoSeLO-r;4wvwbcv^Ytw#*zob=$HKEq3qL*aG)_9gae0ZSaPX=S
zO<@6n1g~j2nNp@%DQV~D)yA&Bf3TU|_x-)Sz9}h7K7RjhezZ%}nBVTlf}2}1Ctv@@
z*M8U}@6L~1eGhH+Yd>e)8FO})DX5>xEv{Fh+uhS+VrOTkrmcPYwV9!z;jxDW67ur$
z*KHJ<+4;@*+7H|O|MU6!n%5tX%Y(X-J<{gqB$CfuTN{1$#6)G^$!fknJByzB{QL9M
zHz8rc%7BGUl}{$RpV@xD?scjC%$YNv?frhw*wD~W&BEda3k%DPO{u46E%Ti{>*M3&
z)n`smnmIGmtw$p9)O7uPCMG7IkdP^oMkyU9Pn`JS{CSN<?u`uxzr4A5Ib>DHNfuVt
znGFpL!OMIkKR;;ZpH=z!+0LzJ-|d|-YgX2;FE5i9Em{=w{NE*S{h43Bln6^oW}cd=
z{XDDM_Wj|V#m{G*n`=G0OH_N-f&~h}I|>qmw`PSJr<@Sj{?nporwM;Ye}Dh=N{3Cq
z*Q9^ncjnY7qxXBi&s!P1ypNNM%ZQa*%tTZ>%*5aB=aSoZ3_+dqH#asu1I-G6B9fDz
z-yGD<{{8*^`EB#=?k=BwZEf`IMXueu?B)kA_uKpGb#{-Tb@@A!ySqw_RlTQ~{QUG3
zOoRB=<?p^^Sm)d@SYP}?qBv7esQqwa)t46!znU^msMbkd_j%zf28Jg>?S~iMxDm0P
zU7CR*Prru|V_sxC@99nJetSkRH0)_LQ~=GB<Q$eopIdR5H*Lz4B|COlfLgJ9?ao(M
zho65tDaSbHhJmF_pUn9NJ<s3Y-cCOJFrZ(~HZL*NJPmnTWQtAtt1ByuEM$Ckus`tc
zWnfY`Z&mwiOVpN(g}$@RRt7Kk0}bTQtNG-4`?Z8!%?=s9b{W3*M~@$G&fQ-1H7k5~
z(bH3RKNN13E_hpDab-v0<Jb56CV|FR%icto=G+K4+9f)9|Ni}6({xr|TN@23RLx_G
z{qC+h_~cwc@lXFoCf1NmDV`ve%<OzuuC0yEzxDCa<Ht`6EVk7D|2KP^Kif^_ADcg)
zeapn4U@dKy1L{12hFkuAp8x;M+oC7WpD(Zc{4Dd&kB^}Fl;giTh1E};KkqND7jvTZ
zm0o8@$AxciZ-YvN{!;sYKNf>VUqK^XMn*xPp%y1+=dJbs>vW^GcyNpBg~Y_nd3I*z
z<I>-=m-@}My0x!%cbAxM)#*M#Ny(R7-I9`$R%LHynC0JFV}8FTn3I$9)t#N2LBn{W
z8UYX5`VI&0WO(pP(1GDe<jIpKH|cmkeE4u@Y?sdIpwrWIr_PwM;^pP#uU9UgR}@|U
z>4_(3dSY$VR?ui=@k+0g*RO|*YKMJ^sC#lk@aWN_FHcNVma?hX@OoX}<&%@uukI{P
z*NxodB5PfCWs<6QUSuyLBV%0lo|#I@;1+HF)7#r}gSY41HAz0kvvk?Atc#0W%}ZqD
zR5%%~_v=M4e3E%?(e~p<g=BKf-I#T6r0aitNc{TpvU^})AZW%UA_6qxwfyXC^XfOB
zKkfVKJxvERbSfevqa!arU*`JNJ(b0v%JtKelX9=^em)VNYhND+YI*H?yY<(%_|?%@
zpZ?yU<E<UOuH<#v6B+-BcO@nqY-WG`;o;#|S5{7T>ydaUW~ZWQVG#iuT;5sqbW6@n
zBTyZdTbq)y1k?uIoPPclsP8k=D0PZ`eI2OA28|V}XliSFE4%lF9PJVXji_^pYQ5O|
z{oZGb{?)yVp1!_U9~^8B-I^6DsuAFD@ZiC&zP@YS`ukRZTB7^xEDNv4mS^7Fl&TfB
zW(H{dl$Bd-$69|MpDW7!Hj6+_;Dm!sS`ix-fNK2mdzHtPb1eSPJ0{`k=2rE#ZhPhD
zw6E{)$6vg7k&Bl%G$CPuR@j;q&*#_2sr%2{leM;6Oc&G-=MvLdF=2uLXmkWTi2fZk
zMjHSB*K|;Sc*6z*Ru&cwBcmXHn~yD%CQsh`uKLxLm7p3nB4P#;Gjr%NA4${vdojh&
z&V0<6J!j6E<@4*Jo}Qi_?%>eSC8oQ|EcaH%<z>F%Yvma>fpUJOUqQhJP=8@<^!8Vv
z_RnmyToGAWUC(v(@9ypnH#9V~s`;@&$~<q)xw+P_4>U5*vMyf-8W#BZ`T1(sZn3=I
zTXnpPpP#!rN!9zxB3EwPuUCSvUoF3X{J6Vq)t3t$g34PeKc{VH{5V<7H)v<k(<@st
zFXwFEe{r4F)m5RFHzXc5$+=;$UC(Wjh_v+Vw`I@I&At5P<>l1KX>B}`lX7?e`T05f
zKm+5e%gg&glX`x0t#)3WH*@C79Xl+RE?c%L_x3i>@DFGz?1D2tXrQX<{oe1OY0SIj
z_iI0W|9<_>&f=@<<LyE7KefNVUANf}%ByB(VeEV|0liYDS9X`@$L^^Jv@U-KDr&x5
z3HApK+gVnvUAHV^V^Y<lPW3OZR<8%u8(DXEZOy*ht-nu0US9s{+URgWK|wEX@5^1H
z+E@11*XQ2a;u*Z$uXL-dS<Vd5piu7ZZN8w{n}UK3Dm(va##Y6vsHuS_^t!scFCXm|
zpE_mAlI{1ZyuGLCT>SO*we7A($z)K&4%AYu`f!l_>WV<++`GF%=hyvO8MZEF<@<fV
z{mSnYwy*yC=jUhB!bdKkp?E_>Lr{yU?$1Ye(99jTxZagzzO(PVQ{s~{@mTEM9|j8Y
zjmhq!dNC30e6p90^-7!O-?J%wapB<Avd_=XW?fq|({G;5%If!f!$DJ<A0HnFl`Fr#
zzScH03_LsAeDV}d57=6O{SWtZHtd&RW~jV!T)rMWj%ro9>iDj-v$G`I4<~}U-`i^5
z-r9QX`t|D~x=~l=*j8W5jh~h(DK9Vo`RVldxNzCSZM?>O?T2f=Ty#&nzpwV#@#DvB
zem<F;cYKS^=^iQ5Q!zUV4n|B%U9@OXQH|a)iR8#>nO9a!y#9Dy)YezCa_4?~cQ;$-
zv{Ap^uNB!h&F|MF>zp=P>NR!Ovz`Awoz_3LNe9&6(Tm&jB1%qDGE;`HJ@fLi-jgRz
ze7I5W;n4wVNm-V@nv#8Yo^7?yzM7vtUte9l+qbdksaJC3G)cRf9k)MKzuS2nG?bin
zMxuY0-yDm?bMx)%&;FYG``o*)g;D!zc5c);?c(OPOZWcf^#1GLK=nCa`{A4$8xH1H
z*3|3)jkMq2R~xte_Wt_)w_m^b^1lB6?TBfqarJ*ow?94iedXbY2B4AgyVrW<?e9fQ
zOPytw`)b>t2M3$;>V=o5o}LB@tINB~^S3`;xNzaJl9!jB-Pu_zcYBUS;i0eZ#r0wg
zo}Qj=-q_gqY<B*>!fep|wy>aJqSrK?mtSu%6quGAWGcAr>F0NCQ|f8Zcn@f%DepC6
z2>R&jh@Ne^x3%>2-to)t_L*q}N&so+=Dd6*WRiJF<>#+ouP(aF|2_PB?^HfnD-}<z
z*j-;tZ(H3?NlAHeq*GY#_3>V5b$fgJ>+iq5z8(&mg_~!y@_KxItfQmjy3)YFz^=~D
zi~s+9-=Ez#^~Rpc&DYjOFVDKVD)YgCM!DC{PEJ$w<M(A>n;$GFC^%_J^6|c%y8T^U
zpKk4o-(P2REaT;+rPoX6fCryHgC<;^TDekp?^pAk^<v-ecg4}ymix<3)sK(U4qJ1f
zk(oW_^x?yY@BUNs^PO#W_5Qza=If7t`26{ERJeyn$Lsszx=~APtG|I}^jF32-xs}G
zNYyLj!GT6laW+jq{@qs@1_f&t0fy~!b)&a=Op-Fmcu>mY{`gpLYER+T-7#yUw&wl#
z0UBso8NA#i`<l*NyV|JYXJ-OWPty(EQ}I#yUU{6DjLe!7Cp`L}s(MeGqO!hti;IiP
zi$ks4Ry999gnr+fch|}@Xmi@xyge6W3fLBD>mLdZ3i`6X{;xM^g1xD!Ddw?N*0nX7
zr#Eeq4W2lcTU_tO-SYdP&1}3PQc_y+@$r^2d_RBucyVQA@XdGc<^TU^KW@~1_#qcl
z_`dDSeP=J*vBRRZwe{rr^XEgq^V|P<P}rjvyDQ`Uy}h9MG1H6-3ZUuD<$iNNS=_s|
zHCr|Im6UnSkAnXBywYYTBtR<?;;&~jG4wDp7Tosq_MW^XXMW$)n0L7o@;il8^M3qT
z8?`m)<D;Xdm7h{lQ&K?Fm*>kqRK`89d477o>G{6RzWZu^ibzSl+NQVL{qwJ1alhhE
zJ}tLj7c+h4%*v~e=h;*SO-tSR&gV`RJHOnNl1!V9;Haospo+2f_qUa0Z*PI7Wu2Uy
zp1gj&da}BI)}0-NR`vh>l*%r5Zs!BdSc2ATY|D+FsuAe)@87>kOExASPuso!&7n1)
z^I!hq@wl}4yxnThAeXB5v=UnlMFWF?NhYbMMEVQ;9v|xkt@Z#7jrK|!yDfI_2Mv>e
z8la$7*3;9|r>k6--LU#Be{$rsb8{>wPoB=i5W}IskY|04`{A2?q2*<kyFNAjOgnq?
z!J9nOsxKL`76lIAV#Xl`yuReRrIX(N8GA&tuC4+tE&#1hvH$;PvsUP;DY>^(Pfzol
z1R9fxe!iW9k8hgcvt92E{sd}=t(j1g=_j<@bF$jbeQ);{ZTPpV^tDOeogJ^O+=7B8
z2?+~dT@z{i_xt|;rPZHi7`i1N>p59=TiLy@BKBR)dF%VPkN3%5wtl~7@$PrKyzke3
zpZn?g`S;iAj`c{&ftpHxe|-(!U-uU@1hzJEv)kshvzO*r7Js?yZ~yYReEpR9^XGGk
z>*<`{v?bvn)7|?2f3KImgOwL6!`9AH$vivD6f`|_{FkV9*ojR#>tmbprp>dh-nHwA
z&9@uL*Y`w#)=8+mFIP0nyHgQ+yv#xdH1b>cyP<)h^xd7vV-kCRy;^;9n|1lSIrpkw
z>qbsndR)H#&#tUpfu*mnO<nR@F8QOojBQm2WK9KVk~sV4ySuwnBd5vLd~oc~1&`0g
zpVMo&_fPJe`!mom;Ny+QUteFp|5b8p_}Zwa8{a%S+8wnyt#`@)-#l+_Zgv;fj{`NZ
z-GBUeyZ!!_^z-v_`V~E0yTw95V>sE@bWHQ^MC>kqf9?Oj@AjV4|EV35SR1$Z*Q(zP
z4X<4p7z=K9c60>9#LNNB{ewqRqe0Wf=jN=OFhRif!vW^)YubvQo&q&0K(i%Rw&&l^
z-nKq+^D-H}cF>GN*~6KWCM~M}_j&&H((Q^SCMNE8SL%I#wR-)kijR+G878;2@yWg_
zJUD08tW{-iZ)JXecNbLgALh5OiT%Al@apRD@V!-Ex0JpP>y@*;m0auPb*i+y{?oJH
z@Arqt#LNK=%>919KVCO_Tglq)o}MX&$CPt&Zf<g2?B4(Fmw8cH@aJz9>CY=>YJV^P
z@*>do@0ZKrYl}gXypvV-eLiP>Yj5>-Df7HHRS^xJCBoZ28mFHFt@4m7zXKW=xm$j}
zQbym{`0~}KrzBHAqaB}~o_@Xe`@PGLj&|?8wlnXp)m-cHcdMQ=F@!JT7HhE4-Mw7B
z_QOGTP*Dn+yVBqPC&)DW+LeEQe}mc+KY#qlI5kBx?s@o*nWZtg=lZol**11p$;B<1
zmqlb{*MhvV+;8qB&=8$z&W#JN8-Bhq$-LyUIsJUt>uYO6_g0nu{Q2`GsE`A#cYAC0
z@ZrO#Z8<Zew&$&#sO+9~YfEO<y*)dfoSe2mdspiI^FlVKo!#T-mJX`rR|YP219flg
z{(cEQdhFOKiN&Bn=+*1@UFwsyF0$e8*sMLZ<mIDZKR!P8^70A_3Yw&I`jT?L%_2@=
zwH>*a*G8M~{di3J)&2eZ!`4JBw0^h4dH<hJ-C}w%D?pKVZB3-y@ytt0I`36H=KcES
zX7JlvTZ01vCNwoSUtR7G8sGOeG&G!LU%wAD*SNo~R@Sn}rCVG-?CGhgvCZH2W?o%2
zRj%RzBPdy|3Ru{*E$8MURqtslGA=I4n`|wn9~Z-K|7QbesltmF8K&9Sd@?gLLEdL#
zW)_u|UHg9j|9e;MY;9vfm2NASXvktW-l@9Lpk*qTH>IB5l6;(RYv$!+S6$CvzaIYi
z`T6kA&(4<q|N9*@*9w~E1TFJ<aDXxQ&W=FPm?EF7)slvW2ARLH3=Tq{8|GLRALEg=
zx?+-l?@migi^S<on`-_3e|vlT?B4J9vbn@`GMt>8&M5cWB=yN!Kim5D$;rvSQ?)`t
zt0s0n?z28){eDlewm<Wa;9b}5NV4<Gne46pZZ>h^#AEmG-xtviJ7e?XL37&WWxm(<
zu3x>gMs7lO;W_4@bupIxrIM18X%7xGf|@xX#divi%ch-~VfgG&D>rCK!?9lJYTI{H
zKR3wOR$VE1dFkjBjle@ce*KbaKm2f3aPs?mdqJw?Y^y5PzW;u|-aPqupDC}DiNV5!
z3qi)Uw71U=TN^dA^7FIQ>bQv$C&ryWDUqC%oZJf<#3}vw@gu1DnLDp%s&=?k`{6{;
za?1X1nwpx=K)tP%F*`SL^6;3rc8M5XT@`BV+{R=0^5x5$*UF#n)Bg_|&(VzBv?TM!
zhJ`<$+yBqp_y6DTobC7b)$Rs0IW^<<?9hzZuwZ56=4C&>@Bd$W^?E62DCnH^dlN=R
z#$yi)cARCLj2MsdfsKg0TsqySs%qEu>t8;7f4RuD+h=dpSMa)riAt_MzrVdbtH1xx
zqryL5zLb2v<gGu``rVGhENpDEj8ad{*jM{|)|4qC{ri2>(w0>|?lt%67Sr{)xhWMi
z+{VexZT$UCasNz<!bK;~ocVI&|HkCwXS((GWvmKYo5dxfk<irC<a4x3)E8t)kEF3r
zSlBhw|9T7smZxV(|M2?YpKyO)EoeOb=BCupbupG}V|E4wFY^i9o_F`oEzt0-l~t5$
zmq_6Me}7AVeaQr6CeYNbS<a0IRhPO|YJWUzuX?p|`IUXO)u8kZTDJ!3_V-E}A4@(5
zTI2g*{S$q82P0$Ssk3IS+OWYuRaJFm*xIOHKOXnnGI_kexA*Hw_4zNJ&#y1DRV(`W
z=_#l%J<=(Bb#uDE=XAEhX?n3yUte9l{Cs}>yIcPzy31XBKEHk)Gdo|(Zw+q-28IXc
z-|5?P+&zEZKQS@!dX9PhznZN%H!r=F{OUW)B=BgL=-pr5^?$!!_ww`%e1C86-EHqL
zFYiA$$MUh^3efP_5AC0)*(c1gsQ9n|G}|@HG`nie>e$`eZa)ZozW@4)z{6`}d!<aD
z6j-dwUZBaq!0;j6nc*bk^CfBb(qj4e`NO@uy0WL;cW&o9dHlG$YqwZw_Vee@mtVLL
zaQ)40&;sXpK}Hq!Ip^Pe|Ni}Z#Pgaj3pV>!Rqgup^z`#mdqzga@VOPB_1r%;C(BKc
z;o#w!qOyK+f~9&w(Kb#Vo)9;;w(EcASeKu>dT#dP<Net$FD>or>DiNI&A`C$r0>g@
zlDBtvhkw6Uz23cF{0R@pqS*CwVmIo6dJnBFEho;OKY!IsTig41zkGRhuvPlZy|<18
zdr#L31+980`pUq-u;b=3-`UIbVs||$liaS#<iR&ZCo<@0m+0kXzO!wv<=)ufc=6)J
zb@vx9UYy!<ahdPzD|;%7uYc;5Hh=Z#Xm?)jdJ#!U&6k&?cX>_KGJg+RyIl~RbAMlK
z?C!GC*zFI02|5(5h}~WG>&ayQDRbt$G2=gRZmzXy!U2Zx-N$;RwN+GHgw=csxD|xe
zd;%JoSWEu@{hnUUlfHemR_Lk~RbO9if8oQxz)-OGh2H<;f(|Nszu&92s{FKM(&Wji
zp4?(Opw5DdC#ZoG5HNv_S87S+=VzK`X4g!GtDKyg-tGIHcl7x2-QPq71QrM?yS;e1
ze12FvpKQtdz2CFGzPbvk%HyivnzFL9KR>1kN~)EI;_K8(JV7&1|Nj2oyYBbb>+zs*
z7tiT=J3&*vpf<{<r>B=s(~Z_rRCGMrCHncsyT$!>muBbhTNz*fH*~4@^sxK;YOik3
zzrXt0#>&rWpt*ZbPtQAyj0_AXns>zQF1*8dap{DK!lA1|E<QTiU3}%+#^Z9AllyJU
zlv6>2y7g9Pm_bgV#>)7QXWueC$o&27?ao*xhC3#p2GmTW)S}%y3=VRR3@4j+mA##H
zTb1E}udu*`c>Di*<_a(|OmJa1x!BDkYvOHJh6BDEVxONYz54O-aZUvW22Yj=Hd<am
zU+?IF9Ju49L<=7%g`3fS2|s8!o6Ob!qgp{BK-K*f*AuU=iv_Lp3f)zb2^vlXrR5Gm
z<tg*#y}OooyiXR?pabnikdj)JcX!vzA0Hp@3^8S3V3<(;<5?Nw_U`+2zkRo6T@9M3
z<a%X$etc_7OUBz<TdRIPoxZj5b6V}Uo9UC5Jb990nsLFwwM*pUi;Ih4HP5g6|Nkuq
zb#t#zpDx3|z)&9>!~6V#`uv(j!OQ(J-`?5^+TftFGX4C#Q>RW{s{i*{e(BPsD+?YT
z0xcxIbouhu($`_GE-oIEKtrxOc36N`eZRW7IX!P4Xb;VV)i0W+IxqL1KTV~zwRNYi
ze&C`O8NT*UPfx3Rf|`I)+j3rV$xphn#8WtQO+;YvvojmlConKDDDW#aJPF9jS<_?q
z>f+*d&`RIG-)`s60xhur@qigLG~C$OXoXb8<izhT%gw#HNmX2noq>Vj6W^|crx*5q
zzqcAxOl`d$ce#m`Tg7u)YUYOr2SIyMR6N`HWGAV#wzpU3$jiyCn=(ZtH7)Jb`Sa)Z
z9b#l)Xs~HvD3VoDR=&C+(HXQjj*FA?;v&~>lcFacp!WLS>hEQ?yr=Kqzn^@&p@G3O
zsH)0}5mZ{&N3u+inPr+iO|Je=;oDnVPnWhY1`WNQI(5nZ|4;wYS64h68yhDr`TYER
zbx!@eJC>eBTS2ANzb+01OOwPyETQY;?k=tleSK}MY3Zww+?$(@el5{S4_|Xy)~duq
zQBl!y&+m`RmfQ^2dHv;oJ!mga`%L5XtY>Ft=AFKD=~B_kS@!%)9(<riwW6Y;+-YND
z<J6vut=!_EnI6z2)oioePZ`@253{+tyFdSs!K_lcb7K=D14DtcRq3lGesk~aXSlbg
zax-XwwYTVB%MT)JWI*%3pk{dN?y{Y_^9_^RYHDgquE&;pPP(-<dwDCjxR#~m&8ulY
zKRvy*vv|2x$%};SvkVLj4snNNC&*MiY!%;<a#HB(`uKQ%`@f*&`CpHU$Abp2K&vXe
zrf4X7g8DJf&dy$b<3<E1YM1-Z4@1;8&)<21GThD{YXwWt3dGv)cgt5rZeFJ5Gh;#e
z{Ms;3GaXdvfOdwgD_iO{_0p=))gcR=Soi*T)D4>RK0QtM>(lA+pT1}_FfjaiTFCyy
z>dKnPU~X}}J!!kOLRV#ce00<-1QdC9;&xE2s-WTiD^PHZ<idO3&R9?@H6K<Fi~RZi
z=9r)Z1H<+Uik^I>Z*Q4y=VoMhBFG}Za6q>t=#s1FWtGsAPoo$fr2SaGL~&>Ak=$Me
zCWZ};qMlcacXKf8;C#_kx_B^FzBR?W8|)u}#&Wjj&7CxPa_Ax#&b!6uZ9je8tLx9o
zz`*dsd*|DC4R3C2be^ge8Z=qW7c{>D8q5*Z3b}A?ZFH{Xzh`G>gElF&wzaKtXk=Oy
zwRP3K+V8RbQlQ1Q3l=DV#G|+8f!3_*eg&08l{a(69jd;+Tl@RnZvT}lSAt4eP&fF~
z)6=g%9+%($^f+h&A#{D5t*m`rjB`8R)gK=pgO=@qO6YZFCr_Tty0D<}+nbw<FD`a}
z-6|e;VUcS$Xcd3#j)I5Nu7frnK1r?IcK_03f4h~}<EniX6&3SNgZ5#yw6L(Uuy{-Y
zO}??q*93spnlAl1$F4T&?(XvN)nRK*%HQ3|x!o&c8T9hy%UiojS1Tzgsd$1azL=Of
zp!KF--`xB>?HVVjF`rubjqk+4X7*4}N$~gE?Ng^t73uc(_FipZWCks4$+*5Q7PJrv
zGyr$>*s*(;szA$w7Q6RnJvlLP(vti2|6`9y^p}B#2u@GajeY1mX_iUmqApSGtaEcL
zw{LL+)l%zEZ)Qw6*u*-^vUnM2&Taqyzwe_qrF5#i{QLcWxQj~*XeS0}Bho>3`H-)#
zu9{|ES`r;~{?pUbp(_FuWi1LEKnr{hHnD=ZU*Fx0etv%b^b$=IS=*`*)9h<sZtN?2
zd+XMw)YH0a1sNC^PQ3n<!!U6PXaef?w%p6Y{x%CiGmZa#zrQ|F+1(`fmdVoP%R%$L
zUjF`|*}Tv-5gVhUPV4Xgv*^qjpRJjf-M-%~pa1Oq{PoA>s(s{ZJ~UQ+d7<cORq|qj
zil&Xto#fviJ`^lnvP8q!7!itA4IY#F`}^lrK9l_W=kxilj*bg=%kQscWM+Hu=H_ND
zZtltb{r$S7b1aM9UcP+U)!%>p#>V8U+j66OrOo|7Gq0fiM0a<WYunn!PI~hG{rio3
zi_dgz<^}cq!lyiE_Hc7+yL9PN$eIX4(BfRsXsuc9ttDKdS{av?c*Y%1yu$^qFx%zp
zZsb-zKQ}kE=i;rc*|E8EVmIlPzq@0({V%9Itaq(6Yml)j@c?-dw7PD>1Od<zy4B(9
z!%9lFgsqKQ3fgvhH9S7_>#M6<tG>R9j`Ke`NmbSJXt#KIw49ijnx~hqZ)xe?qOzmA
z?ksd}7ZDOtvbWzaBlFhRbM5*cGk>;cvokOpkT(pTcReNlS(a-(Tcufp&Br6cw|1AW
z2Q5C+jozkVWfcXQ9DKk3zn&*(c~se(8w;<kjefoF_q*VBKH0oXThpv76G}4Y^`8cf
zg<o2#5VR@96IL<bs5{)o+tt^1?%_o?kEnv9{>$y7tQZ&={!Q@vv`0;P!fMgKl22|j
zY^wU2W&8Pzan_9u3*YT}tp^&qSNEH9!QcMxlPqBgi4_kIw`c$U_I8ub>uJ|6FLY*?
zO#X7wU4EzTe3Q&cfByWrvLVsgGiZ0&+bsnTowhI7RP(dw?VX*Ur?sm<Q?;;QTYG!<
z-Cd=iSzQ%R&<=vsNYDan_uEFPr$CG4w{MyE;zh>S7Z;sDLmO#n%cRV5R)F@;f#zV@
zc%`1K%D%9`ah7@hyrkshtNZKgL6bt9oSdKqaH8_^_1@W_3is148)*m7O1^gax`^y+
zYe1{?KubLS{r$Z<WM$CKu*;w&o|{rnXPug&37YA+xhd5&?~cXSx3{lfT^6!3C~9lg
zRM3_qP+bq2-HqCov$Cb7MW*jRC{g^|qmz6+dC9*9P*2i(y57~D#m_;D^RBKA*Wd2F
zYpGfOy+8kt&+?gkMRogW#)jDmyOyk*G)X1&Jh-md@#X&3B}-I7*PpAu{;$KPn%!m6
zqD70oJelnOtV|MQeBLA*YYtgZk8M6bxba6|oAtA8916!IK;t{BVs~%r64TX^mzVFC
zkH2s8*Ci2T;Hk%-8!SLeAwlcs7cE{4-h`_eq_W)`)Ia>den*Tk<<*syS=ZOieRgK%
z<l9R@nszX5cNJgr<x2@@)&KU>AfbZhyl#d|OFV^h@9Z!{68iM-_j_=xzTJAg<k6AN
zJ9?nD@&WmhXqE|HQ?)YB&$E>>O6fRs=n!ZFqNrBLiMPuO9v<2ms|MObp1nhtZQ=Ip
z>weQxpF#uRLav~L-M=4?@92SQjsw00(Ip4LPJKQ>{e45tr<3ZFmblARx=c&mS+{>$
z-rZeyPi+D@@Xi7oNry*|AA@Ez>V70XJw4t3<HwKJ?;P8t1KycF;rP>&44+=F-|saE
zG_dmxG(6LAJ9-|ELh9*hdtbc=nUUwu;{<a4hyS;Be}19$+WO<;`O+6yQra6BV;o!q
zL+)G<+|r=b5qLaIAj<X5vDARTDBZ0Qq7vq7n%0ICF60WGvheYPqL3Af7jZ1^@Gf*_
z?4Q9naqc9A4}bn`cyirj0pr7+JAYKoEk1v;cHep4`7Omv?`=-|_A)RsFa#+(FfcS+
z;SgY8P%vd;VPNop2nXxtAKq<wdYW$c!l<ZCu(bg0^0g**f4^Lg*p?Hi;u(}^JNe`h
zW`3IqOJ6cDG^{$&$x!)j=krHrjL-L&W?ysJTlIBO;^DTb-%h3&Mb6-1V7MV=DX7rQ
z#@ltb{JyQ4?<^5^`I>@l#~B$IwgvjdFdLP>yR+j_m-Z2M28Jg)=5S2-`|Y-V*xIP6
zZw(n38s2NFGo{?vkXU%$_WO}PKR<7_<zis?VEg2VsY38_zurTK4rSclmRs`rn(nt7
z$^9z=7rV9A8qM_Sk+C%L7G`2#2%RX*_-Xh3zw7=yUOulXYx8fApI7`VQgSfMyEEgh
zAOl0gTLtxXpuw0jKFdOul*yH!pB>$N-cFiZOsAuxWAC?H+J1IFpJZHJ6*^6wnSo)I
zQaV%0g$0g=MNdw6El+;>^y$$9jm*hMIs_wU@h~u~ST)Cj^>v^1yAJF3dyMP;JeEKH
z<>lq%pP!y?toiwAhFxvdoXTf23!l#|KQ_1g-psd#j0_F$CkVSc9P5!3UOu-h%I4pX
z$D-ThYrkClcq6&rH8V5wPWAh}g;ztvQ!||y7#3(1J>od==jZ3e)!*Mm$GpF{celAF
z3qym<1YyQYTQV<K{C>NA`;LF#Zs)rvCMI?XGcqvTR#InL623mJ@c-ZM$91>g5z4-{
zM)Ur@w6n8ze7zR^_}}mM{hQBOX?H_|>v{u^td&XH`FXPYe_dVw=-2D@{m;(Mc6T`<
z9$zE)`uh5Qz1Uqxe9iApd8!F=`y^pTP(eJysx%9<x<m9H`x5tlxr>|A&s%)G60AJ=
zWJ;wM1H*&ePh1*uihjLZe*ER~`SZY0n>$7LI_QiC>-MZlmL;L9!zNCjE-qj5!ST(e
z(|Q+Ig|2>Yb5v{c$s_9XYbIT4VPH70ZN)UkPmAUMY8cJ*dGhpWXayew!;@`Uk_ySk
z`~F^g&cNW1SH#P~z%XIf9F7S$H>V$8+;10^c)R$#t@v^I`Wl(qFBd_vrsK=Tz>w2B
zhhswax}9ojJ~IOT)!f@tS$Iq`{m7om&q_*<Uael=_xs&${piPx3=E-Dgc(19!gIOb
z+*9-I|9m(MTHRLhdhPb4V?C0E&t|3{lmGXjUB{1ufg!}zkL5&{sP>}5$H$(YpI`ZG
z=8J1<qd}`Jl$3Urz7{Kfe(vnG3I+xT(WfpABBG*4f4|=^FDR(0s`~NS?EGV%>T^T(
z?W_9w>QnSLCI*J9;am6czPGpj`{nZEce~&BUAlB>hGDYXljqNmOQz2W+y{>3*Voo=
zwoqhX2oSXtR5;wm+pWL<kC9yElZl{BgFUj=X0uGQ#RLVl!`Jn63acO6|Nr;?ba;$_
zHsl}cm*0PM>v{YCHd)u#&HWU@z;NK&sZNHUW|ftdf&1(J=JYc%FoZa6<(V)$Z<nUg
zOrMzYyQQG0GQV4LxqP46<da7xC^`qt;A3F85jIoBb5aif$Mc^)eNviy^2n{N*~!;q
z%hz6#U1v1YC+Efn#nzW)b0RmV9Tjw!5fpr^^eFwN9D9PbguGz7`;pm#g%#7%8E?q#
z`?>QQC_Emv|K7PxchytD3BA(hb+3yV7!=GaKl6YJElWX#&(F?wpPa0oUs(I;$w|Zd
ze}BHPF)=V~^W18~`g;D~KhN#^r)q~ETe*DRuA5))|Nr;>;sVF!iZ>gN2hD>NN`)*b
zzrMV@xHfvb?z;H}hd4i;(q6yBLXd%BgKm+M!!+G!vC`Mq?mnuTYgPJa_4<8Yg-Q$z
z3DHkn8s6-DKJVkJ)$8*L|4t2$>zt+=y$r7H*SELQ{dT`HdZbKO9n!5d&$%I>?B3VI
zDXezHzy8-{SSpEWv8(v-V1`+46pxIBK^wok-0%1M>s?%Gemrdd_;h-_+w*gCAMbj-
z?)0ZA3=9X#Pj)IR{QUXz<Dbvxk2CYz2*_HMbf|hyJ2FYt8+4$<#|O>)$EIioE7{xI
z-%e&?V7RZS-q+yb^5p5$qm|F+ia(!Q9=FXMT;QH#@o;g8jEp=p%T!xTKTby0x~xad
zcUDTZ3Ijue_LC!;5rTq?-FmwgEn4*A#>V77KaSh?mEWsWS5lg$6Dj07%cPTCzQ*7*
zsI0iJs?PLeVY^&cBQv{Ozntx(gY5D>DxRmV&oaprirroIRqq7@!vy9cC5LxA9`{**
zQn7#iui!aVuU1aI)^G8s<Hzgx|Fc?8GB7l(ohZx*ss}87KAF6I$GsJS%I`rV$(9Q0
zOiLV_**2z}oTR(%{7hr@vir5)Mbtsj?CQtjaekid<9)y1bw52lJv{37>-hgt$;Wy+
zFZ)^Ra!+PtV2D<R)EyfW54VAOOMiY{-{0q>CS3pLvHasVo6q+t_uClFGRu{^9$#O(
z?Kleq!#-y}7LU)*&OSbCe!oY~w(3X=r?8Ueq>3jK-IG2&IeBq={{4!-U$1ZeG*97h
zJAeP4J$o#kOmNm(3z{y!xY)gaMfCPOle{|?zrMcyzIORUMur3Yj_39WCSG3V3od7W
zzu#}a@6V^xH+B>zi-?K2#l@9LWj#F9TKM^_x%*tJQnTG<cM6ZY9&Y1(JS{q}Gjw&>
z(YM?0%e~+GJ?_jLOXI9-XJ+PGGce?YU;S5qsQ&lu`$_$_-#X&|eVYEUJN}Q7k`fm;
z_hy^WBMTgxAI1NB8lUv{*Vn1<4w%;b_z<zXEceVjTkEJT8G?d>?y{vJpi1*tpRBZa
zTt%Xp8yiEzn$_QyCtO_@Yn^p%jpXjP+oHF*YkvQ9TL1VG&&iM0?S6Ob&95b%lNasS
zvBSnrNy*RRVGC$^DX7BA?B!%&xazl+e?mvc{6A0B4GSL~;d<XNPgmMJuSa{`4kf)^
zFBVz6SkSDsw*KQ$@r@N9A6a}lp{%{O^u-0mdsVO3njB+cXvkW5Ykrfc;Kk+s^LM=2
zbb68ZbiKlhuHr}URlk?rnss&6mirIe<@X&<m$a=asrhy@{p0lge^NKUR#jCM6buXr
z3CUc$Vui*uy;!OE`oE>1O2oRvkAY!DUy+i7Rr$M^e;>8i?+MDZ^_+Af#R!xpWUY>0
zTI&7SeE(11nEJn8FRln&eD>YuvbVQ7I!>HFzkW+tKtRC0eg;N{2kjc_Oiw_`+edBk
zTf;}YUa#vu)+>FyfsuLJj`PcujZ;%or(W~&_SSyG%)nr8VkxKq-k!^0SpM#ggmD_U
zIU=SPBO!QSrczT^w|D*ie^z2T5dvRdUDdY#nss?)#QzmbmZ(UXW`(pamM?cX(o%ox
z+V}VT3=Ee(zPK;{|HbDVo=w3kuQ3KiMM?SF{Y*JC+gxADJWuB6(WA5XZd2mr7T4=h
z@qE;!y{_Z5{{B6es$O4P`}mah`kwp$zHJYTh>*zN^U-Z-ZQ8jxl5cNsUw>%6nTAr`
zx4-Rd3=gVr+|h41?tbKE<c!qkfw{~nA0Hhpe6#WRu|1WaPra`T-Cg$f$NK-j)?0i$
zA{;z_dF<}8kI(J@@4WQw^}5}9Ve8{$LB++jwbAZJ%*)?`<^Yl(9%_BM{n1>j(k#&0
zPs5B03qqc=F*LkVnH<tyeLL^i)9LYYi{1PCK;_2ub+O6s?(8%yd2s=>W(CyZzA3jp
zX1ZQ1sLbsuzgM}u=JxaX^>Xd<bro0E$J?*l^XXK?)~wJT2}7lCcZ$!?uq=Ki=6`UO
zX?B=Q;SoVWLp>Qr#xlOyb-_Q<T;BY!7G-)<asN+D_2;wZ!8@5>pIdQDj<NFJ&*zKd
z_tzOF9qIU#dv=y-_xyifmVbQME`RLb@AvbMzSR2locl@iwj4?Qy<dW2YQJ7JtoZQY
zM(Op~#XELbfEJ{`3uj>Xvmo>~!_POH&p*1Ay?*V6wZY5%CaQSqL~U7di{(VO{=OYI
z-{#)l)|)=R*6e8}1H*!<)!W{;#D#^0{o5xwJEv-2-QQn1JuD0iHU3w>ad^0ZTDQs9
z)<ix%AHF6+P*705{!gJv#)So!{+&C_%+T;^Z4~>735w21CnhLP-4<VVGgWln@~?g`
z7#I$G56)!<6~w2$aWF6(C=1JFesZVy{8<=JAJoezvqNg;<7oYl3S;(&20BcZblt0X
z+$&*_;IJk8y56fRD}}4yZVjJPdM)zf$K&$hx4t*?+jYp<R=M2WRl2zF@v)2R<M&5w
zO7Rq12Fh_u)3&jn5Z!*SDtphjTiF*^hpz|KSC9Vxd;k9ts6~00-`*ze%nU(xxrziA
z7oC_L27T7=c4XYxka(x)wC={NtE+bW{dW8D-tYIiXBwxwot?GsDFefwf}i&bM0ur5
zG~{Z(T;yWBxV!wl#g7Ng;3}(KzRp5P3Dls;zP_&a=H_(wZZTaYrAI3k_jTpn-F5WF
z#^lF`xb@GR`oq8wAZx+8x~tFf*$gjt{cm^6?}KWHM}NQH*S~L;d1;A;o}ONRe@BO~
zpM~PBEt$go_WvrfJ~J^ml&U!FTkhH|<~mu;S4rtnxBkA4qut`iC%Vf;X71;cwK@`=
zzjx}l3I>LNwHy=PC*IjnxUt~jp%<5z`@6VInKH%2#U(H>aA|FKS69-@OG`g~y&k{Z
zN|}KnM4c%`8dQ@TCLCx0HGaOlzOJvNbZuR%w4mV6pFgL5)7Q{gv4Nj~;g104gxn1o
z7Z+JPoe~V{?0!5V?C+vBxwE4qYHOA&xPi6w`jlzY!fvoLFw}M2Va?WF8?)1>>dOmo
zLp<~HvZL>IzmMCu?d6r#zRQ#TE}k@LQpS}PfuKq&^hfZ!jt<WMTh_k6FVDcR<nhJ*
z_Wv$EzbTQjT*+aZQ)FbMh`9LiJ3EV$UtL+b@&CWy;Su@w_Ed_9i5-*9-xK(9t8x0d
zo^Nk&hkx{!5)rij{g0WM;e&0?JMjaLl^?y)IkV|=0auu4?wuWmRo~yq8mFD<=oD6W
zYv+?S+kM}^?$hLoS1Xq%fr{|k%lzho_Y{A5ch`DtAtS?rs3MjnUF-J!dNsqQvS?1(
ztxQnEOv1jdruFOmzi(zMi|zk)b$!yKBb^s_7C+zd>6CWz)m5Q}Nk=*?zFcr#T>t-H
z<O~@GhE@EGL9Y4x|CXf~%>)_bGtXw{rC-Y!K$~s$e7WRZ`1NY|@dpQ+K|P1wM~@y!
z7$&)huK&-#&@gv8!^%bC@iiMy{oa;)+iYI#x0|vSybKIa)UJa%k}Cxj7#JL~SU_Ds
zDMls+h9z#J!b3bvPVjBYySr=0w_DkZUAx5scbC1jcs3(B>C_a>n{wO?44b?f-Y7hu
zSDkmK^m=UJIm_oqRs=3yly-I&XaJ((?bhp?Y^4|&Qhd+m@NY1lWm%l&Gs8d;)E(LJ
zYSn5brAKp$&vll)y>-;|dW`VpWxl6BwJ<PDknL-D!yv5g*E7pB`<SbEY{))cdwYAm
z9S@p7<2RsEvimY4gTptD39<>_-rNK&f?5&0+^_YmtW}9dJUc^!yb|LkW>853Drerh
zy1GtO@vQlHR6KG97X!m4|AsdVpu+LbpFdu=xw*JbT?e%=Pq@CYc32y=b<vtNYc74e
zbm`KkuV;V$PyF<%Pl{I|b#~o6TVcWX>BRyKZ=cMbpIx_b&s&xgd;uXLTW(%n<K^Y0
zq_n8=^RwBtcmMqS{Quv@7yIoQ%EX*E*)kj`Gp+yk2UMJGJAT5GDTO`b{=V8j=l}ol
zUlX@?*P+%I>-YbwN->(5aev?6wD{|LtG`Q_=f%9)`~6<DjTaMx!?!iDyUm`RpD%xR
zclr5m8kX9VRXiuXRV*_D6*I|wmTGQ25`y9JwWTgKpU=H`duwa=p+ko%zJ@N3U}X4k
z_zA}ez6%ST+h1H=9nK?XV<Dy+CGz{-?tIX|1gHVbZ~G-++i_-whBbvODeRHk^I~}<
zjZ}{HN{fRAA)WawRoZx^#nk6jByDpCse+{DJ^YX?9>lvQdb{4bz29zSTwLUOWnHW_
zs4|&hl<KwZI1@v|Tfc@7W`c<$Cwv{_$xXi7-|T(dXZ>i^>UCWm9h)|70(BTcdqI}@
z&Yt#^laV3ecOi?)X*It&5~kVLdb;&?t*D8vtE-DCILK;P`|AtnI1#bs%nS{0y&F<)
zzPY)1vF~g%(R+rrk7j=ty19jqfx()aaZ;+Psw%jrQXLo=sNyLUU-QvbY#9?ngRFBy
z%FSC_vz6`b_h0(f)YSB;l!4(!B*z4u)uF4yrc9k0dMhp}Drz6h99LJ@z@VU@%-_p$
z&(1dY2ld`>B(iu++nRsh&hFQX#Swd}N?YF|qPBLL8pv(_4JkKgrq7cE4deZOw|jlf
z?Omm>liu9eSa`<pxJ$Q~?j{Ra28Nt?)6KRA_+#7oWEX|6j{~)RBerA&zS;eLpJCaX
z8xb249BsZ_aK0(W&%m%v`+Z9sI2zh`B!wOy>+McGJ?*GsyNnQMEK1nl#_;xHMur1r
zs^9_V9c+lPW|CW0Wk%KS_m<D8|M&BzT=MQ8kLCYMR903RW?x(L_M2t?j)!e0PJccx
z@38F$C(i_D(0KKZACJ0|=huGg1Xap^e|=pXyxh+)>&glZUESV}4j;A2S0#Uce=iRj
z<;k0$UtMoI(?{*~edPxEO|x#wF*K~I{PlAA;_~<R0s{gB{{H&f4Js%=;dN_EX5m@W
z>qq8T7C+*z|KYst_!s#ahJ8~R7*8;Mety1xU+r(V)nRKN>DT}CHp#uUrRMD=Z~fkd
z&h5u8``gbw%E`DOYfcmE1m?WGU#~@MPV=?-aDZ9#QS#(#Yom`pogTmM=5@X3Z8~-T
zKF>c63dqve*Lr__eeDh!?U-ABZ{?Qvcgyd~f^yp3vfH{+rdcAO-aKgI#?#lU!`Fkm
zRjb3+E?Tfa0W|ifKDQ+3%skub)%)h1xBIQ5xBJZ|iw6zNi^|^Ky12x1@{7B>%XK0)
zBy9e@K60~~-o77?K+~3>p4K_r?{^~h)l@G13#w=>{{48o*l(^?;QF||8hUztmc`F%
zp4;f}`QRi|ey8x_hQ!05!4H{&1B``tORwi%z0Trr)q;s>0`t78S1U8_?kWWhzefMP
z<!}Gj<lpc8|E;UOz7ky<wYAH&TkPoG@AstVT9<<iJ@Rh%dpSWt&_Is%`aMRVHVQL4
zU(cmWmnxpmEl)buBMBNG=;#1P?xiK3g+HH8cfY+Y_wnlW`?^34E6|WCsE_-}=l}2h
z|D{2B;LF?F=26>nBtel={cflFu9BBR#m~-kg7R7IWR*@vW;Peln9DKg{2qS$KL+o1
zKA-mk)Ui7%9<Ou%{X}=U&VPS@yMxBKw%yL_-v9S)zG2mu7Z&e!Jbtux`@JsP?{|tf
zZ$2~ASl!R|>y?cA`)WZ$=$}4+26b&e-pXE|`}Mn2gO&%wifdu(VrHfo&3w{hd~U_1
zf1m_ibg%OHRQvetd9h1t#dIPjh=_=&9B$*)zW)u>>pppqUH;G7`MVvP*-k#49{+Fc
z?=SD~+pmn?{%-rb;Hapm%-cPZ#*=*1Cih62udBIzV`K7UAGOIPFD@uX?ysx;`R#W8
ze%q6$PkXER&zqy-IcZJYUaQO-8xo67s!k92F{fKx-w(8QDW>M*(Wkfbc06oT(br%9
z=VxsB-KkHWK2`OeuJ`xaOvW2_bDCHK&Vrh-N=dWd>uf!(w|h$cp2Ek+B6gKzg38@*
z_v`<2ZQq`IVS!`Kzn{-P9+S?``B)6vm<H-zsH&>oHaV^K^XJc}^6TUG+kwVt)<$pd
zW8;;|`8I9$|8M#K#Z0rVXw=ueTsqyYSIYF!%=CGk9Uaf-*V~1yi4d&)^`&$DzF({U
zOgx$L=*8mxbp=aOisOS_j?Dl6=eftEC)KsF3^nGAOaW&>6QfE>VQZtd`mXn%r1Eah
z=X0PjswdB%yH8g0U6grw*~fRg-yiD|)jsuoH>gqJH`nUoLg#jnA|45Y1(z~Cw%;v_
z-t+xl^~U3J)kiM6%gdVIt4KaG+dO}Dx|XhP@9XvZ?LgxWT*hl7HZD5kBY6K#X!iZu
z?`t>YZogaBy=c**8TR#cE-q*0TANQ&>C}te<&v0~_;WGH>O<W6M;;yR-fnR^GJUS7
ztaTZv9?<}0(%RqOdO>G-_AtCrU}9M?YjyPYJd^x;HutLE@6E0H`{Ci?<O>TNLCtDV
za~pK{hGFWdDHb0NFeg7g*8B9gY{3CW@c2awr|_d4kNdhkC#$(G_nZ6Zm~_6*{pI27
z<37GzKL6PJy6?L|Rb`Kap%S0fiv<<$c0S*hwTzLO?Z{d4`!b+#R-ad)6j$-E6;z9w
zWL;Tt$R~7b;p1Z`Qj84i{`>%mwjSr!-y`5}_w$KZd~`s7fd2kJMLsi)RDXSaE&hJr
z?>tcFwD6LrdZ$2x>;cyo43-Oa?63e$ZyBeZx$%no;{VU~|BZK*y_NcYw>-Y}?dj?I
z{f7=6;<}x6b(QGes;^yfd#jHA`uh5DkMX&VhlktYU4f2{w6n90s!op)njTZ+sS~+L
zh0prU1_`^Gijw#DYFDSdy1&2vPTB3;r=X=WX4UDdRXiU(?ziug|NFxI>FsN4B862|
zRSQpPE_ZP`V)y%vu;(OD%#^&nwe?i-pT(evnywd{bfiNNG#Yz+ef{6p6(5g^Z~yt3
zaYJQa1H+RB&~#DO^>wo1aTO2K{MA8A*psfT2%KG;+bd<N^;hkGr~15(R&MdI8{0}=
zUgA2ReQk{-Xaq>b^U>?|`}=yO&8NlpZ}J2s#LCal0>i?#g~t1Xw93AeFwF|dxv?Q}
z^Y8oR_iH!S{r&an`S&};{-7z7s&8*31qJW!F7L1U`s!%?pX2o*H}WT|dQZzKoR)fe
zTIj8^7Yp0nCaFaKEoJ<0SB8=C1S2SO+5dg%4=O4_^P{chPW4}}h9^Hd(pmWL=kxq;
zTaO++3L0~>`2Xkg;~UBSz2*07&5!lV%m03}*}wI#pViAHH)_A%1sy_kaZTjr8OG^;
zfBt>n-~Z^*qZ_%~?<O7X61})7^|Zz3GscfEIP>>fmA*OxN)@1C#y{V-?_c|2=e4!b
z;)mP$*PD1RcI$lvssSH8dITCtUlg~us_;Q0`!UeO=&LI$LAB7?I^NgU)^>xs`k)dY
zGz<9iZE1IRxALRem#?_>%gKT&;KTg(Hov~S6mD&8{dhBd{?W_+_Of%WN^d1CxLb1B
z_akViT66gvA<zhkPSh3+khbb~JJU;EU3qE!Kab&t*Uepj#TcUV-`&}H@~C+HoGp2G
ztu!?>JV5I>Wvbt7JbAbL{@f{3r>c5RQUM(_b<Y0(pHJ680{ed))t@A$8>Ipo7BBkq
z@wmEi+8K{sB`+s|(ofBP!{lQsbFIt$K+B1uwq~jRe!D&X)9LtsMv+^yLMN%*zjN;U
zt?c!_pai?5?(Z+pySqv!ALg^x+4=omwf31C`|JO!=<DZi?g!0%drne`+*easbdXhC
z1#~7Q$aP=d+%*3AVsXFLS-Y|~H&pcX^(&uF4WHz#w^Jqa&W^&M^>KTb#P6>=xheIu
zR&9M;)yt(%o=o-!pS}Vro^R&w|2ygPd3*brrrBXX?ac2KI0r3u>;3dxf8UR!qGOWj
zD!S3ze7Lx{CQZ|gR!g5>TLzkqdH*?_^?+E)q+9wMbr~2K;y`x<91$&JU~sUC0WCA7
dX7~DMz0=(<i~Sr5mw}c>c)I$ztaD0e0syc$Jl_BS

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-3.png
new file mode 100644
index 0000000000000000000000000000000000000000..76124ecb8856974ea76f40aebdf0ccfb4445db61
GIT binary patch
literal 24763
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_dVj&JJ!{~y2KDn2&D@UVsP<2Ap-
z9_u(COH{F(sv<J^g~N{0g8LmFPQD8#AFB1<Zfw{&p(CiTxkQ}P(&Sv4jC5Mh>+kLF
z@7dqJci1Pw_|?}Mn{UdSuWh~dYmIHS|L?umOV^$@Iwrx$z`)SJE3-3}0mRtP$HW0*
z+!k;EQ8(Hcm>3us4w$hBfVkTf8$i?sUPcy>;#>{|5I4t}0c1#mG>KY2?YVIy!cu1Y
z@%gKb)6cEQzrU}mt83Ey`SWXPYPRIw-gZZi+j2|Q*DOmJzP+DLY442fYX9-0!cvCs
z?fw1tlkeWn-@kVM-?#avrt8m_;cLHF_dC~f(&2{zlhu6R=$U#~{`|>W@cORYe|Po|
z?Upip+uPT#Uw`QE;j23elYQq}nQlLQTI}?ul*nnfH|_bw`0S{7{FUAB_pP>mzbCkv
zjrY=N{rzi_j&{WsOQ#>$^+`}hX3eXst6xtIkGr_D`1zhZaY;$d_QMOCSh-)_*qD6%
z&i8q?)thYoeR+8~_W0jVr}fuIzFrx;+@$11K<N6o*n<ZTa`EtltPEOO^8If4>sIl&
z3)j|0uisglcWX!C;&~O1I73$kxw3MLg(M^_P*PUDy3m>Z>|E>c>3XrJ-U@9#di%HI
zq_nfMme&7yEYHQo74-k#U(=i$23J>ypU<`4{pR*|f4+9-ySvNJZ}JU$&iLT`dGqbu
z3<a+vr!7r9+;&o8aZeA=+gn?`xy5uYyt=x2>Xa!@eoYfG&-?i3=&G2Vo9zC6xtx>#
z_>aQ1wbACTZf>U}7B{o=YZ)2_9&Y2koIbyH+1Bjqr><YW{<`e>xw)4?A@luyz5VIh
z_|r=~CqF5$Na?wFq*M6nnn>gIZ~0`cmi+qqI{W^<TCMnfd*o`r1d8g#M66u7(#y;1
z(vOdir|QSsxw^Zj|Gx9K;Nv6LuP-mV%h&x_SW{bjbw!}^)~u^ujEsz4ety@&<7=1x
z{QP`%?eA~1jMM${rdP)<cJIG-ppiLrQ;O&Ir`_WE(^4a&_Ec=_64QOPE$?`rEGQ|=
zO^pk_yQ_3-?e8*Cy%>w_-i#BtITQ}WADN)&e5WpMciCDgvz!&*@7KqlxBtKA)HL1M
z-c$b?9-DDT@8IfYcK%g?i{0uoZvXgEaku!q?YjBy{c>xwuCB`b{Os&3%i?8n)o%>f
z-ws_7;5b>`KWu;9-;kX}Pi16_pP!ri>(}e`qT=Gqr%VyijoA@!yiYcGqLQo4Ej~#j
zm*3ythxg0bniM{A>Hq59Cv$P3b9+%qjrEsTSG^~z`(KMKzq@p2@$*$qtz2@sY3Jvy
zW#txo;#6uGz9l2Dzd<p!?ycqZ__aYxy|(XJrycwLucU-TMzt@)C%#<?jP-%#_iMMW
z3R$U?+%sv?q&?drx8=-?+Lp6Y$+b(vz#u?WE9620BXh~CE1Lb=?EiddwkmzKWW@>%
zRyH;*B_$`*>}w(a|NWghbLPve^0oh7-+UYP^~dA>)t-~p)@fUxd*^ItX9x0{s;8u+
zWYzDt+e0^}`L?#UYS#bz)78}#w7cx>mZYOyIrjeT{PJP%@9h;86<ylUz~JiQvZD6)
zw_AHEH%IS2)+@dH*vd6gTTg{v?)|b`KV-#(TU)c$Ulx5|xTZ(S)Jt4H?n(nAb5TuC
zr?C2|O**#!emw5#?+>r4+GY3ah4T8`>+52*J*&RmOy9dsKWfX0>#OB6Gc%=3v!<*H
zU%!rtl}p3IBI4`o>(|#rZr<}wU0K;#*{vs_l}l7aLSjYH(^HuzCMbIO`=9?<{OfM{
z{mf5KPIB?{U*D8^dQTg_=c^kV7ytWx|9@P0{cQ7mP^5~;%C7zJp@5Z@b!E^}ud0Ww
z;w7J+c&>jw>F)K1=J#tBUt1f!y5!|0P@ewy=xFKpyXDn;<k!{l^UB-B@U=U~*M6Pa
zW0?1zefgSs+r6jjy=>;U3utEJ6_Ju!RrB-H%A})RuWoK$UiSXp+pO{z7ZgFITh@gI
zja}mU>lzvurs_ln#qKJ(`0efOyWcEpeiTgA4)>du`f_o<UD4~PA0Lm)d++*IU3-09
z?5kT_S9?v>dTQmjJ@4+8?CW~{+s=Lee?7i_ZRO`@EA#H|IyK*ZKd8)G8LS?z!8~Dm
z0V_+xpFe+Wrh!~~xSc<|qGCtX)~ux+9UQs0xA}5%az<@R>Abcsb~O_#m&Yy{yI0rN
zYPTO=XqJ0RLrcqRx&QoY>tc7CBpzbvm9e~Z_3z`fFTd*^G_uFY=Ora4i%Ltsjslg8
zp0BR0oee6mvaYUL8NEG^i;L^h!DjZYX=kN$qqq6^&NkcouJGHtyQ^o+kdU>jiSV6e
z68QYw+|maJ7(vBex48bbKR-WT-IVI>Io&z%@v&Y|Y3J(Zre$Y$Z|ywk#Ga48tc$X)
zubcaB=W{vTs4X6=!`GktCOV_1ho|<>$Kza_oEMq-Z5G_G{~rs=<ZAx&)`-W~TwGjR
zQL$sm>2Tk7dp@7bk$rq+WpLJ=9UJ%k|5tr=MWD04&BqqK*j-CfPfuG}{QTUnm&@nd
z*tL|sxZubwt{2kEC3<DKzx>kW%d<~S(fswWU4B#P8SUC158F5Cc>CLaouZ_qwC?7&
zsPh{yFY%l_WyXvZZoN{PdU}4-^<sm9f+pRodabJ)yDQ}N_4VQZ{``!6yZN_O%&wA^
zpx~b{L11g<Wj9stX(3)-UEA{Suj3R}%Xo2N;kw$mzj7cq>YTnbMKgFy{r|e~^3$*P
zo;NZwD*6BS`|H#C`$J|LrCwR;EiS4P5m5d8U1(C$B2WqU>FH_jN&Ei&%HI3$*K3dw
za#b%BMKuB(_W$|RZTItuFsP8aU;BOTs?gQXRz1J6GFZwyZ_c8{i(?g|E|u<no_l9U
z;MrNGmv<IFzp~6%`flNI*;^Zv+n4#yUgmHAH$*#ZO~Bb%rnd9Czu&9&pI`fJ=B+K6
zi*MYBSR21TZgcwiYuj>fZz+9!E$43@<BbyxKY};woVJkR>wmgBe7%{Sot>J2!37z+
znj5)yPfgYCO^saU*v$6q%gf7oub27F&C)q-bl&#+oa~#Q&)etA@U{PZv-!MDU-73W
zp4;a?e*C!i@I!;&-`;-C*qwD%D>-tSq+QL9+n;XSi0Cgqv1+a1u{l<yrz~Xnf|vWr
z_Lm-$m^^9Hqtc&OXPM{c$?&yHnr2P8{b_6Vb*cFH_~0D{iN){kSZ*(!mOArTuXK9$
zf4_5|qxV*Az5Qvid;csURWFJ5!->z%&wsx$HYH_Ap@oc^vGL`cJ3B6dEZAL^yZ-mR
zz17=~e=|-$XEH5yX8OF!V_V-WY?m|QYd^duX6L2Fe|Nv%m#uT!h?QH+gqe-UAinPB
zQp>_eM@-MJjozMj>|w!-mKK)nPsR0O40NNm7}(j_J^THBf4S~_yV_kFbxt2Sa%2X#
zxZaLw%a<*i_37zp>Gs1D7eBwg^K6%>_NKkPhLQXCeS3dDUoUpolZ*fC|NrdYsB?PH
zzhAG{rCL_X+WmOY46;GK?#IE!cdwo=412Gb|6W)<fBor3W_GF5n|yYcz4fW8+I4%^
zmoFv7e|{8RKYzSW);RtAystOjZ_B;y)5yf?b9$QY-D&Ud?!F!|Emf}mPvQEnDPRAD
ztqeM9A;V`}{LE+j)8c1m45y{eTot-{m#(~7&Ww#Zr(0TDX2{q7xtJUK{M=kngcUzO
z_ce;S;f}Mo&IA2Jm9CGMPLB&Z-X|+6F0Srb_4%y1?XRBwf4|+{q~k5D?iW%}u;KQu
zb+Nm(tgNCgFZcg$;g*oF;P|Eq6DG{A5WATiIjzU=)A#S+ckK&U=yd(Adr{G*Y5MW&
zj8ack#PF^NUq8>P^wp9nQ$)_rxBtKFijHUSGM|ed9v%i2B(^`FOy2dl&${Hths4r1
zHv;)>J{&OJzBY9AG^?^VE0!!#IXlBpIr{i)lgvrkA9e@V)a=PN_;t1F`@6M{&1^3p
z9qsn=@Cb;BnZqTnx2EXnsh20!=YQF8x4_G*YnlK2bx~WhUjBSOzdZW+`}gY&laIZ)
zwA4HAtKUo`*J-IQw_cAc{{6SLtu5=s1Vu}^-;ZS`2dxTODU&;W>ZPUL)q6Jy$jh&9
zV&%@dxhWMKfmYvNzO@w*6DwPsTD_y><s>zq84GHDe#$)5!YLQd@#oK<nD9L+D+?YT
z$_p=>vnq7;GBw{>FIKPLSM)mTr+dx!yXC)rKA#`DzpmEy(+TCg*H$Gj7O?S3y?8#q
z{@N_lY@2Owudko~ZpUN3?Wwla-=-M4Nt@;DSh$PfPEE-{rhiK7-aSi-oc8bU`}*Cr
zKT4vu=gs}|=g+1+$^lhXyZU6UmtDCMBB~YQA!}WB<;TazSGVOx+kUy=oONx@%%r5G
zkaaOTql@&e3(Lr?xwbYs`{E+kuD-so-{0O|-H_;fb!~LGqod=^TgRvAMyq)8N}H9u
z_I`h5iKnpdY%|~JZ8;Yg_uEw+HkD3}`TKbNmmiP&vp+pKdGprs6@iPlBphVom9vT9
zxBU_@O}<7o^ZUEIQCqX7t_oSXXjkd$UDLK_Ty#3xB^sQRv?wSj$j0u^zF)6aOBp0I
zOw)~CR{HuHs5KY0ziuz6V$cj;mT{<s^VP-0?MqJI%``GLPK}(_#xMUa(7CE=m&(pw
z#T%PayJh&=lai8bZpGicdhX@#_xr<>k`~?Gbm2n4*VotePZ#eO1hrt;<!ct)+?@V;
z`TV*|D}$Hc$-6&$&YU;D%KhTnLG^hPD|g6pKUq+c>y<VS^YQ69K6hQ-G+FDi7gtsW
zuL@s(uQXry?Uss<NwpsivV)q-A0Hnt{rJfBy4C4TC4YVtu4jI*`LyM_RfUg_#a%bg
zyySAf?)TblIX4%v@k;HG{e3Dg(r>Bv^l2(fmo5AEa2CTIDHeeT`iFkLO^J${1*+5E
z-QE3q<??w!H#eo)+TECIQRp;t=FICdJb97R&dsx3?bOP(vh3}xsLg4;ZhbN<{q26b
zTwdlo+0bpOcKEf^`upE}%v~n??99x?hRMe=j`c{cv-{ZC*jV*qVf&N`6AJErWH{IO
z?P$07_g(jP-no6?vHhV<I%}i0dhtq|g`}k|1J!E({{DUqDxwxGT4Yl3;lb;7i*s&n
zdUbhuzmSlSN!_1{^^Yy)%n7$x$G5=F&hFKvrQM)Pv-ZnH_o{b0pWAHHjo7dNl!EzW
ztvq)9nI&agwZ*MRV&T5p->Y(OZ_^4|(&0D9Lh)shz{xCuy`Rkv`7QUG8x#>S<NAf?
zZ<{||TN`Z~w><Uqv{KdykB)Y~z8+s6T2%DOcjxO%hxzT-9691LRX;xN?X9iB8<UQT
z2nZ;6N?Dh!(Tmyf;F{g;^@rKzDjd4SbT7@$-?tK!W*!~sG&;5-?d&Wm)2xtb+ui;x
zp0ob;8@4$gA0J;`|NkEsH+OJM%$!qGG#A(W{B&}Yj&8&Thuhn7KU;jCV^#WUiq7d>
z&#KQ!JpO7cE+zG9<C)6aucY@HF+X^=m|N_FxUh)G5>QUweBLfNEp6GZ($~vAKR>^F
zD<>ys;6kU?DKlrzeERs&(e8Em5=&2i{~EueU|~>j@YlE7?`OTZu+XaN%ZgnkFBeVK
z4&Qal^1Vpu)9uUs%wHegqr%F<0%}%(D)Mjd@2`J(dHL$Z!)>$7a%a76{=C&<cb}|X
z&5hSp>DTAYzIpV_&Alg%A9t_+|NH*df`?91b)&-$xA9*7e!qVH+FBktn~223L{Jl4
zn<3^c$Ss~4|G%!Uuk>m9@oaYfDT&3NlhsmR&v0~fl(MVYA!U-WfLmPe#qIq4Q@{M5
zFa3P(g-um4mOm3cJUW7cg7(y9eEGKf#kIAwkN;aYr{v;K-%7uCHPfapS)!t<rnai`
z^D|IE_Vs=J|7d0RzAG0NI>(m3+!f^)*Z%!(`TTu<K6x))wk+#tmnbNue0kh&zpC{0
zwObpLkMmxySAEX@O?&-~6jfv6U{IU)<D;WrFZ<hPK07m0$~dhjuI^_ludLOVwslo8
znkp(T$7W>jd#-c()YQDW40(D?93R9(*G8FseRDH-|KD%3kM+sE-nK4oZ<Uv?@7EoB
z)5?DQ{JAo2Z<Ul;&WvOI^7_d=x0lqMt9#GRC-dP(+2doqH}^SD`z-zGP0jAeO(~wG
zudbXdmA+=0eJy5twA<HLS5-Z;udVrL<^1i`RPEHrX<1iROk7*_zhl7yg<eTxx0y3%
z-rRRI&%>jmjYo1(@N&P(x8GDeJ3Bi;QLGidZjGF6RYmO-?QlQq@^@Fv@7GLzTQ&D_
z>m0{besisgEMzQix%Wz$mb|>Ay8iE<{l8wV&Ut?vR9}_!W}eL2R-vBH_{i(r?E~BL
z?%onzGWXj0`1M=1Y{|}>fA@M~K){5g<m9OnCM<AlX4AB_jrE?Uv-8=$;#FQ#wYYeB
zuWrk|z3I<^_n>lVu1#go*Vos-?<lHxcgM0nI>_6yy57q2e(~zCwV!s~`{{aYZOwVc
z4eX38Ke(%3E}j15{rmNxHqTDmU*F&BC-+o+d-Jk1X(y<;{`&g*^1pk^-bVGW*0}Wl
z|FK`EBxk(7vhwlQ+h67Deki&dZ?a}TQ8nBD$&ZhZf8GE8@A<|*XJ#5(RexJkQ(L><
z(#~nupF~4FJ-_Pj@4j+myuQBv`k9%=qGDoYcMm=^fAz3kK5T2&)h|z{$M1S(v2$MB
z-l~-`JBxmOILyDb{C!;i*K<4VK_yD3uzFQ3kCe%YWP>Uvr>44JFV)u{kJ+5oyYJU4
z?VrDXy?VF%{WKL(%^(+0xxUPI_Lo<y*H`ftReyU^xccMA<MPuD-J03?%U)laJZaLR
ziOTNJeu$m>`uckK`FXabkB)HOt$x2Z?)fAGa4~va_VnXDOFvzepU^L7`>Hf=%A7rX
z`+q*0ogMde=grMCtY!GVzPjqY|Np<;^Xh(O_J5c<apJ<q$NRk}DJdyU(T}%NRaM<t
zI(>J=$3?%sy?vckzSOCe>*OY#_3zKGIdbF(sP_vh(LpW#?WLceoxMEEG&^KxQR?=O
z@(g+YJ&cV14tY({Sh#$CUDV^_{nuw0CV#n=z20+|&5hzSGYq9H3KnREtywWmH(E<e
z%Pal-ysP_ae}hKlOml7o%&-5qQ|0B?>+#o5P1Od~>aMP?D;*k{etkSHzcuBgP-}bp
z>yzs9OJq0a-rlw<V&kH;b8}WQv-7RUySwYw{`&oPf4>B8&A#rpIsN>(u(wmS!^2Ka
zQZ>!Krt|aHuT?oWH*M1Kj@?}r>gCl1>gH!%UG?&u_4|;QmzI|P`jQFi_qq4U1n#f<
zyXW4;=UL}CZ?W-6EYRQg!)a^Q)l2{W{x;3OXY=#NkBn1OG;iKI-&^%`YWSA}%={S_
z7C6SO=ZQIc{=ENUw_b4RU;F#p&f1LsU$4h+O*+aYsuvTHdwbj2B6(2L#{S<&{@PC`
z)vKP*EeCbsUtV6GeV~DHRnXF|S65dr2h}Bab{2#D9DCny|JQ5LdC8{tYQM*VhTQb`
z|Jei@TUh1T%%&B!Wd)y{&5F0Tw`X5o<_j85dVRQdx!+uq>Tfx<-)^S=`hEZZx^20)
zwUm{eKR-JgJlCr9j@t3l>p+85`}Xbo^`MzQWNTLF(PPJ6t=s)B$ibmu(&Wioi=KL^
zs;kFu&j!_9qQb(9e|~<ht)}M2D`j$FqO$vzl#@cB(M46SDFxZ{=ggV&_Il#|eYI2P
z%vm#Ih6HH1@BaOGPfyRNokdF*En1X!(qh&0__|1Gvz!Z{p+B#wS}Q|WhjH=oUHkX<
z_tu)9MXD+)E3&Vz+oa=N`}^C~8HULrYokoJ=H3o_`SRtjSF6`gnKf(Gv0mxwmQ8<t
zeqNn-ch|3Hv-7{aSlquVXsOqyj~@eXZ_EAqegA*k)3cWO&0Y2E?CjOa$NREwZ(9p$
zzkymqm;LQSJv=(DOPez6;JsOSKAz#*W}VYNe*8$;`R~L;WwrW$f7C22ZpheHUCF(>
z{eE4xRoR;iuW34&OiWBZE-o!A<M!^VeAp`P6BIOQ_1#ZTPy2p<clYf5f8Wf7rKGaB
zL^Kjsg{(~a_p!fz#^2xHt7SfKzh7tEZ}X{xlb_%G=clK}rLV3Sc6N5AU0oFl>OF<W
zRUTbio0GHVdhv}dnUgcGt(nQm%WG<9XSZ&riQhb%Ot&71#93y!Szc4MQkj^UeLICz
zeI6g{J^SY7=Hf4ZWNj)ge0g>Cw2PbDtcC`L;3Xb{pC2^y&+?sZR+;<0z`|#;nr~4F
z&-0(Lw)`iiW?fyCD#O<vxg}#_c4SJ*l8+xh8qS<KGj4llXQv@w`{5rye(ZS0C}~r%
zq0mC+S*v*5j=WfZyPr!6Eo9Q}>?k}Yk-RPMZkAi0OeV-hr>1JBe|ma4y{W0mr<F_e
zOme?%+P=TvqSyaEdE$h@`@P@ifs9?aa3QEaK1DbBno0JxGkgAiyDj&5Q%Xw83_)eL
z8K0h>o_*kegRrP*Y8#Ja(xuCn|6j1t_LDZtF|e)rVlY)Z-0a}NgJ1(RgOAz#c+i}7
zZ%<`j?&d1pWy_Y$y0^D__KFo6*LUv!a>-jwSNAL^9EzTv+Ij2QlTwTFcQKcD7N-ZV
z3{n-Ak;!p#a`M@lb@dEru=d$wgJ+*?6zuHm;+`{}e6@Gp)z?PG#+UbezgN91@9r*8
z5)jb{I1sWb<fP5tFPHO*kEf)i&DxlJd=_Y0KrMb>&9aJ*kCsJm&rAFN?{DO_&DG!Y
zE-&+y2KD)`|1N%YW##pnx?aPy=jY}w%f7yDnM<e8vHSP$PtgcGRPy%L)i-x`US9lm
zL*n5*=N2ZPdAid>hOhnQy}i4yKWA}xx3TBsL*J{63@23i+MPFU+?Z!>#=vkVPJ$U@
zx+G6}TI$mueh~}}ds+=4^CgEx(PvW}=1rS2Wyy{m7N9zXuie=+>&l6@lX8r6ZWvg~
z^yQpy(DVHL?d{~l4+FlxyPKbwYM%D>)zu;k8Bmc{w0nw8`l~A|i!5Y(cCbJ2?`2?8
zIB!+_tOqm(>^s|RW$<!8Q0oL#d)$64VOO(5hOb?Qul>>E$D4D$f4v^R`_@$L@ON$f
zv#&N}w;x`p<~!?2g|(-bxA)~68<RnU@*qbsGBRofE^4{8C3A7*=Vx~d&fY9t%{JNk
z@Y$*Tplt5aDFkY|fC}KX(cABBd3^Nv@zW0rGXDSjYo0rwXA}E}^yjm0vobh@ndRJA
zkbJx^^U8|AU(fCT&%FKg#QF37po$4Jq0_|5UA1PuMd6}9fBuwwd~`Hs#k)<DRK2r)
ze|yWt$@wwjJFIE9yL`Qpvhvpp&itA-HZi}yzrX(IX!q8Pi%Lh29?d*A$1-mF{>WF?
z)~<egd;98whljSmk(fAf;<^np=FM9Nvi<Y3v!EddQ1j;8T<h0|`Rzmg{rQ>y!s5<U
zZib>hP!M|g`AtiW)Qa0vkvCoG^rkDTLbX-Z)Utkkd0F*rX8N6L^KB}FK0iMn{`%Tl
z)B1mZVpaux`ua6=sn=ASY4VmuE`^1KRz*)b*!bn%>{|60G=5zA?oOolbiL5yeX?6i
zUS5h0OHN2wa9t{Y*@+V#ys}nTl7DW?y?teCcKF#DhR!Qju8i7K@sU@yUD}h$;oL=5
zZijh~WsVETgPNGDXP>@W`<P$eZq2>D)!JHGped8Cj*fue-`;Mm{G8Tb8+UVi-OEc$
zLBoDd&dyICKc4({SJak_g`lAP^yH-6YrB6xl4ExiINDZ!`?Blp*I(b_*GFHS`g?<p
z_v)~<MX%GI$oNmZDly?;GyCfg4-db(vU0LpkHkYUI~7e6lMqndw6o~xmYSbMXXjX6
z&aF*JS#oNs_VVKA=T_GL|ECqatmo6y)5}2<W|#f#r>dl;rDZ)iF>zJM%1KR4O(6@N
zSoeOvS1tFvaIK-j%9SgnY$`T@hA#g6{H$$a5_0k4MNq5b(xpr5e*Q^0KDYed%BQEN
zulAUz6t$~lrI=pKi*0s>hJpRI-)4YXz)Y-MD;ye`R)wyfcCYfeZ2yLbe`=+YMI<F(
zZvB1t+1c4w*T>tty1Q%J*u*$GI)dB~SMiW_u1)2qSzGnu_Cy#O8fpbBXgGA}(3OSG
z>~C*vJ-zs@{{BCU>i@ouUlqH1o05_eXcFPX2@l(^SAxC#{J!mazcP5amYSNIpr9aV
zHV!oYy2zFL>`de1i*t*LHqER3776M~Ha0eD#q8K{Yg_JW-`Qrdo9h@(aD_WCJh5E3
za3Lr|Zp*v73N)0OdwW}GNy!$Ko&R>1zmGe5<j9K;4-aQuTGDA%{%#F3J731TJ3B$s
zT+hzWUq4MZde__Qn{+_K<e;>4dYbOnGsfqita!h#zrTN1`TKQ(%5E8-pPkKPex&X@
zYe~`5Q!67kr$y$~FODq*HKGy^w`JbgkeC<SqoQeMW_J4Rx%u{>e&Fd%I=qrbDyPeS
zetLTO^LhLA_x4t2KRVJ0iu&lcl9G~L-QB@iS*vbs&0hZHOUc<emcjhCUnWe`ja~*C
z0G2k-yHfl8?(&8P29VQge}4;gacQwCc~Nlp^X=W`>ywg`L8JRu*F*;It@?UtsrU3P
z#n1hErOo}$+kEahHAQps+UKvLx<oV=EuUBAwSM2PRiLpnv)o%duJOuP1lZZxtqNa1
z&uf|vs5HxbdTQ#c>+9#6<=$GdGI;r}TYS=HKA_1>Q2tpTZ{OP1<~8Z{{!34<yMhM8
zO|w8HYwWHPPft(Js@H3`Zz*{hv^IYKy~WZq4Bh6}eCnL06S;_8z9yho+WgwJwb5Ts
zs?X23x+?V7yWQ_YHYT}-|Ni;;IVdnd`6($W3Dkd)um2MWnz>u#+Px+7vfB359iUm`
z7Z(?Yu8XlOeRCsFQBl#V<i!NDygMr@KR<i<uwA}v>)kz-n`fElubZsy|LR`#`_SLt
z-j@FPQ3&ecIySR;`S^r%i|OY5C}(<bl}l_DY%PHPF$M>@uNU3rCEE`tF7uoFYU8@f
z&(A;&lfcDpJ9XoCm#zKy^{Z(sx47B!b90MtPfv|JcKrD9nvX}tEmtMq*pLWP3hKqD
z-QQOWk^$G2$G7O5?vXM*6|<+}V#Ku6MT-_~s?|FtksLWK^UjWq*B`Ho+xu%*?%Z$h
z?t%ud`|bbj$i8WQzb0Adw9!(psk`3o{P*d!{;^Fu!V(f0puy)TIZ4S(8NT+++uPQ9
z`ul&sQ63R7V`cF2KFiu)Te9!Yv#svgzkmPAz{PF14a3$(rRtnEI^51*9$okSZn<>(
z;lyJ-l8*zgcM7YYY2_AQ7rnpuex$9vpLW<9gK4QVPn_`B{<Qkrn~%5lLC4H_rOkHe
z_V@Rj^R*v-b9?*w*JZ!Izb~(roBQwc{QnZCH=TLCe*e2|cYa!xTF5;6eBQo1`un%r
z`O>F1`D{)*duN)wO~r+`<&Qu`*yG2KldHbIdb-WV#^%lxz1UlG?Cb9(&lXnq+wrgV
z<0IGLeKnQBA|fgKem;}lUe?YhYozKu%|z8}%7>~Ph8<$N5*T;9RZ&;Z{`u)CsN{>Q
z`RKa6^y{mu!OQ*TPMI|6QK^pG?y|Qc;^N=i`(u~+NSfx~i!n|=S5nG3%OrDBO>He`
zy7m9VzxTY_`D7=lOx248g?sL$%a=i2#s064kM&NTKY#w~=WM)Eph-A&|9MwluiwA!
z!GnbByH>2w02LUZ*eyNom2+=T<m+o|gTKDIYMO9>q5o@QV&bRo-}mSJy$PB#_q?<*
z`S_h_?yjztx%ao{$4e$}$+@{nMs|70%S&<VYmOd2zB=JxQ{=n#nU|OCdcW`YooQd+
z-Hm>FdOE0k2g<(JKRr6yz5B1<oLQ#X%l7|$n;+Nz@cHxSTi0#aU~qlExPIIk+v;yC
z{O8+&W;3IACmrp|JkY>sRr6y**qVrkUu75+v{?igw$Ig#-sUk$$}HzaDUbVPHQ$t;
z!mYc5-rm}p|Ko>k^|vc8FE0mm0_R#5yA?k>6Sz8TZOE34i_-VX<HV$-R-HKE(f?G{
zYsv(b^~GDJ=tKsAhF%{YZePFied+6Ko|9&o=hr=MO=~t5i2bW*qpIrq|JU{XCD&ui
zH7zV|n66tKwl->$j`nFo(a4<@9~a%L{T>VI%07Jf@YC0?Qx89!(BI$hH{WjV(|@4J
z#r{;j_QRqq>*{j-XPfyJ78Z7ObWE5(fBx!spedEd5}^M7y}i|?$7Rbw-O8wKIWzs{
z+r2H^vo-s=*RDIJc|Sfpl<Vh}Haj7)`0efO&tF(FG8}7Q*ztCbRjJpcO?#}T74O{c
zxbJ9}=<bJ)x98oBa_tto`sC!~sq^NoyI=p`_VmH$m5rb0tp9V(M*E!EzkmO@`1#AD
zr(a!LSzD|BfBlnFtL4MjpFVM7$FoBJc{ZA-H^qdj<!x<d=l9xWBX{H_Xk0mT^|Wtq
zZ!fnheYFBK70b;%dHwqJe)DWr7Ct`q@=z<crPVpy<DWUxexKGlV^u%>-1i2RukY{2
zKR(_c-YKLSWA4Sl#WhLAcc#(N<T;mj6h02wS5xUb)5taXSkJ{57Z*Q${d)B@-RM_m
z&F_c&{Pa}yWGU;LsLzKZrY+r^em?E_N(KgTCXR;NeV>~P!tSrK-YpaRxAAA%*_#jE
z<e64|$&j@uZ~zxG4l(VA6_b0eTRN@#V^FDmWnFAEBO{|##fJrT|9+-}3ft4$PEXgL
zu5!2b``vBl@&%=&w32=L)*Ji@)DB-arKHkNXu0QPwVnIk?yuVLZ&&GSle{}SWMq{!
zH9^B@S@-trwEO?3c)NAKWU@)xnHf6UZHu0CTz`7*`kv2QYv0^3-23^Q^{&t7tiRqZ
zzpoj;uO{zp`k5IIH}ap}bY**f{MWa)!;kmNU!P@~ZIXRW=j=>lcl*CzCfEJ>=>GHP
zPta)MwA9Rphgx_2|M$DN<Q+qSZplHWg4>`Ds!HbBS*E*6UQRmxYpQnmsZBcTW1I4(
z$=O!z*!9Hb;}PNOe>cRf2vGFAx85n|&JIKO<7E~yr_P)?Q}+A70S8c1@|eWlU$0h2
zZnLicw+A#%9yx8P`urLrchkEos=mJR4C*@`@kh|TU+(IWPT|zZX}d~ZK8o5`{XH*o
z+ERA;nhVLZLsy4Y-krXgd%^bm?VqRZTpPXp+m5#%e|>$uzB2mZ)z#tEI=f3=PP(=x
zQu*co{p{b~++6HET~AX_@0@bYpKrJGZ*5NZpLTr0l0&WBt7CVU%`(lNHp?V)(cRtU
zuj~K+p1<Vue&OVvegA&F&VI+tP}If1^k7@?rW8+5`~3aAy`Zu6+q=HLzMlQ;%uFtB
z?#s;lHU+1%G{V=-0ktVuxy3-`$o1U#)nU4pGJI!e7#@DxobKh-_3!8T`e!e)oGU6S
zw(SazeR(xJKJ?-uSJUKUJfKGOW9DK|D`k8B`n$W!we|G;`fWaW^nI&eoONZzLeRpb
z*Vop9CJv7OnlfdIOnLn$&}3_POw1g=ITj0lzuzCfHfn3p+U}m7DTc?Cb8>EOa$W4+
z|LvD`QCaZkGVAo`6*E_VFaPo)(DwJ6&DYlyKRq>7ZnDb0&*!Xf?XBKE%OvyBuE>VZ
z65;J1H>aOpm41GnT=<<!moI}-Po<2$vhv}pPftmvfSQD#o}PZa_xruelT^L;T-%v<
z*J`eP{l8hynHa(sbBi_D=&s(a4w?o6m876v74~7RxaZ+JW|qcepX*;OsvYJ7Dvh>e
zUIr~+0eJ<qT;uut`gLx-QkAj>^QSKJot^dV&CRUK%X+h}tWdPKw+F3p%DS;3aoTMW
z{kWLZ)Ahq=o8_7mJ@Eid!s$kB35bZ80h%Z{+AaS2$;ru}>~j6&i#G<jw@gg)?nE@R
z^Iub+U$f}OjR?tPP=l`a=hNx8HYU4od(K!`wsewS{SLdjKRYH(nlxp~6qVDPzT8Oe
z2Tfh(-7a~1D>Q%4$F^TzUoW4k9lk2*XxFc&)8n^fTvXbce?M+>+SyMQewUZ|emy3g
zzrwv=F6;ijy-m%{qEb?;?(MB!UH0}?S7+zNKR-W%2E0HsnkObIgO;wW3R(F`YR`M$
z*Vop5J;2QWqLEz=v<zrV>S;01;)_;p@v_->HfCI0RP|({J80a^)!lt{<>zNsrLU%d
z=8qRFP;hm3e+`;|-|Fw}4O$8a>aT#>t*NJ{UH$p_IcNy%?TwAjxwp5KmR|h)_3Ks8
zQk6xn+;{8$|6LWof8V0Ti>K<x+kr|jP^)<T{(q~S+xavN3=E?8i!)3(Vxy3Lex9jw
zJD(|Nx<4^7@z|y{I`1#<ul-$C{C@BESxl^4Gd656_<SR|e`fOWzRFzd%1<f5TeCtz
zEiJ9EH5vCRpU;i1lsYi~(${C_EGj-MczJd8^v<3h6GleHWgZiio*iVDH<@jgd+Ou9
zbx%)KI;=Zx$?vhV=&8-MrOTJkW@KiYacQadY|u#5#w1tcv@;ULA0N3shKxh)k^BCt
z(xFezHfvYO%cL$*?X;TO+TOzt3(l_GSpGf^r0V;-yL+#F|NVadY|v0k8?W@N4<8DI
z1q2eh#P#!{w&&$OJ3D*&(@Ix2w<=rp<etvnUeHKc-1Vc!k4wwT%WtnV0yY0+_}VL<
zP7SxYwS38v8KAz_GOwvxY8o0RM6^OqgshLd%Oh!YWXaN{sgd`u{@(X#qJF$x@FEw^
z%PRtvKcBDvce&>O-|vxmpg_C4EjK!NOGaSu0td$6)nU4y=l}oneAfBbH#R1pl`X%M
z$i&PH^1y6nHB-~8U*6rl?c(Y>bHM_I;Dt`CpD%gq&)l-bWc~S<Q`cWU+ATi&*Vosx
zK{4Re$~BWu)@nw4-Or<se`IE6K3h6H&PY@{%*4^rahcCdqh<c{?bK9Nk3KG+JaJ;;
zy^6=Ymp7$)2XD)X6c!OlQBqPmbGQ6{uA1MR3?m~Wn{V}RZWtODJa7nJ8)Z7#zP=7L
z*rgS^D#fbgMMBz{8Hq;5#_NAqGd5^P9=mfOys4h)_qVsfAt6&vP19WsTEKR7Rp>0E
z)UI7+Z(m*0v$Tx7c=4iE$chP|{9~Mc?nSTpy?~pWQnw}^X1hK&PUYoce)}uN=WQ1A
z$y%)dO`biQo&V+Iarx{sGYsX5#Xzfe>s9N2GEAB{ap9FKA+9bi8k(A(TeGiUbC<7u
zBIr={_0`gT`+pJk|Nm@$Z8lLmYz=6^gPPx*6>_#!9=mKhHkZ7-1WN3n5&Y}lKz(r#
zOV*-5;dFE)Xbh~rtp2Cti@LhHu8xi!dAmUiIYU>6<$Yg~e{0K1t<Y6ZuEqaay?$Si
zmsc0K@m>4=-rmx0ZzB60TR{ts<4?xhHKZIr*vww~<wfAtRiUSoV?o2=Z2eaMV>hSy
zZZ9*<zBc9X!xI-Bf*BYX9-MDun8bU|^X#6pyJGfK6fRw|WJlUh+maU(YHDgib`&IT
zFRQDo<KpKpKf8~cfq~(VsG!59gO%t1H8e2vm!6B}x4OM#>C%(;@85r2$HdIM-twae
z0|Uc{^y4-PHw8pQR6OI<4;J|yc#;E}nEmplWc_c;`hR;?&ou{C{+m)yi%3dVo-Jcw
zU^pS0nVETOclr8vd%wr^%jutxWAZSw*d1rNJ1O?%g@w*s+}xnX{Oa7av}Jwr_V2ze
zDmiCVy|!~XsM2$nul=GH&d<QmFgy3wmdsb6l_S#&qm>#`oI8b7LzZ|5=HA+JGWl*B
zue6A)?Au?KR#s8RByw+U@zjmlQlNW(N8w^nPwd*atcepRPSV@IV0GBqs?UB53`Hlu
zy}kYaefLzsNsEeh%P{QV+&9(a;MbkJmhKEEmwkJC`}N~~`>>*-O}A|nKog0d&)dJx
zy1v9yxV5zvTwXJ#9BSbNEhc=o|NlRo{)cbMLbqmxUR@FRSZppQ!;`jYlYZ=GdvHF9
z>F(2f21b`l)$jK%pRDe$Woa2XX-mOFCs1KH3DjU>WoOU6u)uMadH%el<m6c6h3YCQ
zFF=zSpj9^Ujg5^`hDj};0TkOm9}e&Oey{rL*X!}w$9g2I-fq1vA|*9TdO2u)`V&qT
z0Z&d&PS7Nh%1OxNI=7h4gpx|O&kr6XOw|hYS{=UrTJd??<&Dhjr|#beRqH`cPEFZ=
z+AkZQw^6RIuiyLg+3a6$HlGjKRgwuBh^YPbW#ivFpmptgS{RgGUXQOo8@78@=<2MK
zlT>eJ{XQb>|DscU-j0czKuYXopD~iP=$(Oqf!y`-qgojl7-+g9VGxCIQNs0gv7kl@
zD0x0TKR-Tnb=cJoLFFmaraij`TI-&5aZxL%MI<M;Ze8r|S3f>J-Wg)bz`!t}{KvC0
z#_iqr>wf!g&AuMC(5V%)ZWWZ1-`?6<_4Da;&=4_bHOizZbLOmR<CR_&u+T}$wrb0{
zIhKpf?^QVe|9$`emc+wsKYx9i!py+%V12j$;hUh^<Mo%9m!o!<f#&IyJV6VljEs%H
z-v9qE9JJ2H!=nSVYG}(Alia(zLRGz|O;NeJE;hQbu<+N5#r;<nyZ7I*;bmZ8Pzb-s
zsy+MM97|=-u8xj^=(sfzhL$pXKY#!Bo&*}<3|kwu^H95rY3{9%sam0z=2#ZL(Ut&}
ztj!z>H$|kSwUc{5!<_H;|Bu`M_uFjHVtIbM9}a(ieGLu>m;jnzUF_b!Dr{|(-0kZt
zgWaRI<(zCi#mK<Wu%}rs;%3SFz2CErbO?fq6HvkAIVm*~H2xe{`Bc>N(n9BU6;IF-
zrW^YzK0fmD^bB-!Yy0!(&l_zSkPDnS6f6ZKC0DxjO1)gzE(cm#B&Hv?W}>qDs)&tA
zudc41{yHy$k&#jEHX9q8*Q86AE`c}5{5Y-DkaBrV<mN9=Ci`byUl+ShTL!euC@pOn
zs57%Fc)1@Js4pG6qu^lj@6XTAdrw*o3aJm_E(|A^aSE$}RuaqIT@9LhSsA=M>-03;
zb-R<1YLwI0uJ-@?`&(N@<w$Pia=*D(Rt7JZwqRypV0d!o%>U|`m)q}XJn?U3nB)tZ
zFOP_rar{$H507MW$;U^oQ#AseT)RXrF7usjb1V182FHsRFW$7ec4K35=wi2C>2;C}
z3=HOrF8{Y(XA*m9@y>wL^V!P}o&q)2GEYy_y|p!a`t47W#%Z91Lgn`=m#eI-{rxR!
zOUA@WlPAaKhOLQMIM=!ywC-Zt)-+J$uYbtpVYc_jqi)bxK4?u)`uy6khYufu3gRs}
zH;q8cY>sw`PFCTSGVuV-Gvwr~fwplp6cruI@0Lz~^!Rb{cNI_}9CJ)`LQd9=4GZ`E
zerJ7kRj9YHnoq$0e}BKeUcdj<*6VSXf4|@VJ}Z1xi00b3y-}cj5C<BWK~p|qYolIv
z>+gH;E}VgZ;m7I6TpoN^R)u<Zi|OvlgBAH^A)q}@cj9(1ftoY4*#R|(${SFVaHN#2
zgTSx*cE%o%FMN4Pb#3%^zmq3VYK5(t@owMmyq~}BO<N91aDSHGDGPTfdvjyqsj1ql
zGcPX#O?ZIDSGYvAGG1R>yG^G4^Ru&{uKc0Hho{=t*M+VQ^L@YX_d54pP`|yPU;}91
z$JXp{S^K&>(|&=n%bqvexD`ONFQAE<D_25fZ7KrV`DBBBetP=#$z=a~pOWi89u)_*
z>igvF*DZ8zfAx0z{V-5Z`gZ>Qowrof)j^8|Z*5NRck7p1D;{4H*e$Lf_W9Y_(vOdh
zM#m|GDxc|3Z`OJH+yC7XSN+zswY7Dp?){y`%Y}r5L?k3MJVDc8ay1_udF5<=OuJV6
z?2KgT>ubJiqqkqXv$J?}j(O1&kEKhOX1>0*Rx5JT5*5&D)UNLC%kJ{EOXO^;?p(40
zm*YC;;}|U~J}l4*S+U^b<Kx=K#+SF+n3;uvwt9dD=|SsmKr1z)^Y<>japOjG)cG$j
zFN3-fy)u?TlfL|ZzyGwv<BNI!{`}0kx@xL+jYrVsWxk;+gH+GXG=4tq8n}H~T4~mx
z6SE`0IQ`s}Bb~ya^(wL6)AgpR?EU}mH^_0I5pb`mS}zZ>%ZKzznVMu?S`r;~zDra)
zWJ7`@sJR=uDkQLxi50~C`s%8;xL(YJ5=#?V+p3VQSyw;Z*ylIb>ei;z)4FQ~K~>A^
zPdN+|msG#s8-9CR?&V;A+ohms>3_f9U!SP#ZjyV;Wa-kSFF!my?B(r!`OePb&?O!d
zqoYoP<|%u6ctDG9K+7PXou9v6eO`r=e9ec(UFGlfJV6ssDl02KK9ajFt{)epsi}GD
z#EBhCOF;>&GIAcD!lWmUA1|)|^H?6Vx)L-+aJTe&Y}LP?&r9Fkv2=BDIdS~>@o83|
z#lc&)m>fNRJp0X!ji7xu$9koggC^=Wr=7j@?(XiX)269;a&d5cxN*-i?dVO=j@KXB
zr#3fVn0x8+<*C!AEmLys$^cC!UR^yMRGM>%YP|rB+x5%YrbJ%TU9YU6;W6pU3FZDB
zy6^Ao+-&#fgY(+h-C?1t!=|c)PhX=w*S`K<uKo2*wZFef>xwgcV)-|Zkzw7mbmkKa
zo!hVMtuEJ%-xqUC0=z9x&G(Y+_dAQPt`5)s_U0yN(f7Uj|FymH_Hp0u6ra~!yWFKy
z=-12T^Fy{|1a5ySC@45-$(1W1;n%g(!`G}nudbuxQ&(4a-S!%2`MIzb8w10E-kCq^
z`?dc*TdP>4aGq@f$lul9-(3a8^@;#RP@;N!d;9f$wZB2D@jz35xwp1}hQLej*M5Kb
z@Av!tOUq}jirl;mv`SS~U43=Z(XMq*+4<$Blvs95L8^YY-QSSdylC;_&6QgOCq><B
zS;eTZy;d*NBTt->p*~>w|LT~`T`K!@_9?3Mb8&JSf@1mg^Z5F|S0kpSn&sVjak1?F
zzS?IG+vWEy{hD)g(^1fFjoL4P+n>(0DmD7|@87cv3!RTiB+sjSCJ7pW_zcd~H9wzD
zKekE7xbV@DY&m63&66HRmrRr;<!mZG{1CQTHuH4-^+}%`bZsg=JSa4loBn^Ds;cVU
zKm2p*1uMUCd3=0ybZg#SE6~jNq$Q=VubteaBdQ&CW^wLJqg0dXZ*QWb{7Xu<fZA)C
z!OJw1m7RN~OfP{pc7hg{H?#2;T{X?Ppm27!x&OwE8$l%;s14fE!U9T$UH$$0mzsi;
zYV15-1<*=8<$jw*rrFmtOiV(cJM}_Vg{+KO4I1tUxw$FTH1(8-s+!uWoSU0Ko0)!n
zdHFai7+U><_7k!3$!OHq*Ml~ha&mIsl==_q!u^>Uc}!yRZP%2i*W>H2Zc05}^6yXO
z)s?~SUteE8|8`Q|%Coc0SErqwHEEgWt4X(?G92)I@J4&C%1SrA>r4#hhoA1x_Vn~z
z71+E#yWVBqUM3~az`($&UoV#z@8$tjH0GZ3=68VB`y80hPRzFHXWKXwj!D%1c-X!w
zczGX}xSo!@ynKKA`uutO78`&JeEPA{VGd|Wc>BF7?~4~NR(-kX9=al6;T=6r(8!5=
zK{U&RmBGtb!S~IAg75*`9kJLAmo8npvL<r#9X(Ln@Br^FT_%sq%Y3&MK0bydbmI5>
z{p(9#UjuDcx!ftN4jM3EU|^`fkSpi_T5w@o{Vn6f1Vzw#lYf7HhHgl3-0tq-;gL5T
zWc>rHyl%%AZ*Om(o*KC`7E};4NS8#jOz5}!rLo-`<op6*kV`<UKbB8UYAeXs|JkVW
za^rEi$*Ga+=C5C#eSO{bO*$ZXa}9sC2|s>RL{3}kE?4RD@83UAl6Yq}EmaV-IlaL~
z&!25VeEr|hNl)ItfB(%GRL9+pp2wq*dV1R4XXimi<oWYBu`@6*Bp~li|G$2(b^p3e
z`-JWP?PT<IDC3Ygz#1ardX!hzkz1olqBMtfVd#<E7&g(RSA)7k8w(F>-S83>Ulrgg
zX~n1K-fE@QWze-l#9ZV<horzwO-`os@A<v!e3_*L=FRS2f8Fx?oIB5d-}&Haq5k3A
z<`@Q#UeNCNAY}&zhK4H~0t^fardL0i?U}tf=jNu0FBjb(U-q}}O+7u$b&`tcHRG8+
zHXjZ!N6zA7U|7*LhhxI?dDVK23vaM9K+gp@XY=_?#O5^LE33oxrOa|7GUxlKO>RBO
zz|gREqA;UT#)SnpYQNu2zO=-%@WVm&^lBN9-=7{aRVaRbu2*~A4yPIh28X`WoeVeg
z_y0}0x+?Uh95VyMk9kE(4sE>BV&Cr+`=6O_Z-09+0|Uc-XTKO`qtaJbG<0-&w&mV-
z+n#qfso(Zn2WZE`4fV+<kDQpOyxByNfgwQDQcz+4@4N3$+1I^Vx!i1bKLaB}!z+Dt
zrWDW$csWJ}h8uiEkE8?`7!saO5O#Mkn`xdOXY>2b=8Xvln>spfWUt@*=*eXNKG4W;
zr4a+e0<9u72R2?Q5oPzjH6>PIadB}xG8P7IJrWa_f;_wGRA=ypcRL>U?f87o`tfo5
ze}z8t?QEy%$IG3buHXOi^77*|)8|Q+->Xc&Q~7-EO*vr(h97*Eg)Av&W*8RU%3OZ*
zald_B;_r*@^0NK5-y)_=n|5sP_j}Uev8AEY)L0l8Rw=3XHGl$QSNZ#WN58(iySsX_
z69dBuMoU2j-`Qrp+wa#^cfZcx|F=v;Ol+BjAOph&-6AE>u&L<x`}OsAicafpOglU4
z)7$K8YdWLz_nLyn%`9H8*}TaD5?qD6CoU{>PX6}h=Ev3Xf3?=_|Mx57-kwSq7tpGW
zjdg#2fwqm^DY@($IZudz;fJ23pu*Pd>wPPOmmiz#Zx{Kn)}iXl3qjlJZ#}{Owx&ii
zeWopEVPM$j?Z<LLZTbAVsyTJPUV@|chMQ#}F9!p|hT;{|+#RB}W{Fl-R(?FlE`LOC
z_Zy+LQCokV3tnS1)2HUsNp($M4hDvt?kq_K`(GFPl_sBbiHnPCea^t(khgjoqfyzL
z8~L?-3=B`yu7i$&Sb4IOVWw?$na!^ki$%BDe!o*(_~+yC<Df8AcJDiLDTRUIz_k;d
z3_G9A%1%1e!uj<4^Ru(X)8`brotbT}ucWkY->+9Y-tYUp$yAPkA;8sAPyrO4C9kfm
z{PXiLzrBoU)|HO!_o}qh&dd-@pI4do=OKUniAOCA3=W}BTpHFyY*dmm&x`r@XJ-1m
z&b+(3TqmpfDk&|B-kxVz{_ajrFFON6NT45!M_^#!p8x-T3kn7X1qtQv`<XVU<dWyp
z*Q>+V>+Mg~XJ81Z4LyDP!@td!{q1ev?fd;sLsz#~(m2hfuC8uQ;W5dl;8@<0ch{<0
zn2CWQ6qL(yZfyAR>9qdiiSBZpY`juOZfs0m9Jx77P;g_>(^E4n3X}f)-v7TE9wQ!e
ztxA*r{P-9h^ZU=|^NY*g-qQ4EWnjozJBMRJ{^aS?#X%L#Hwgv?2hotz3_D*go2@kY
z<dM?rvEr4Lm4%mm&1;`$8_o3Lku*|ieaXPkkUQ0LlFG?%0{?aN_4SQr`mBlFZB}--
z^t#sFhgy?Q9%<v14w{j7e5Pr3m`vdjK|w=3rMhWv3mLXGe-tb%bJ-&)*q&Y~*6{Y>
z?D^TC@Q|t7F+cnEq9{4Wn>z|0Z?|J-U?`ew4k|u_CJQqf<=@*g!>00+*mZUPc`~1$
zpZCvKU|>j?9dbH&!@ry7>;HX@*jbc1r|Q+p*|GoszOR?(l``o#E?2Gd6qHZbP84=`
zSmr-p?(VMA+mC*6s?QNvzvq)zmoOs(!)+yXrj(nTQUkZ=-PK)pePyuvzF)6ai>Na(
zFl=-6V>vOe`kmzZeZO9bU5~GPIyK|wrc}7LCHeRFeSERF|JaJa#aeeJl^<^7H7t5^
zVunGY)1NQP?ax9}$r0BV&FuVrnU|LxJ<!OU{NuyJjsO4sc6T|_E?*}RU-vV$<lP<1
zb-Ul~((&hHV5pfs$AW3n{Q2_d?f=(+N@36;4H27CJar;BsaTb~5a74_k>E4aNcGd_
z&zo)47#Kdt7CqwdZ~<kKIpy~%3-47vPpuXK7q~tRE-q81PCdFNa&ywhM@KJiOg^4*
zX^H1HcaZ0t{N^-?3L0izS)rk&)zv3!eXPI!&*O^cbIX;Kl1@%iy|~14a>a*(?3-;A
z85lmq7AZN%RlQg!VNsCq<;6v1xtb3LJti%wS?f7j?c&z#@b^u83=EbE>P%1itlxEj
zQt`hp%k7V@Ts|)<^KXZ8U&sD`U)M*@;9+36A!R8Dt_LRj+f{bI?v*nA<oAMsVFGiJ
zl7o~<hJg1potuw-&9N*_`hK_Ezfg&RAtCySOT(8pH;v!ze!nkbUrpuGtsv73)6UGW
zc)R8DCId+Zh7G3Bx<lG5r=#rct)uJf|GqwvV)XI2{XfHVcE8_Pd^(}LIP>zd!oOdy
zr&s$hFg&n+;?iJ}f6wM#&F8Z(E-rTWnPH$fNu|?Wu2MzKf1XV3?{B@=<Lhm;-*Xz(
z{P=L<^yzMAKFcMSZn4YP2-sGA>DX2J+U@bN-o^3z>+V-cNis0}5qNS&TF@-_mI<hw
z-SPk5@5iV0_xJQlo4X|@CO&zZx_qISUW|nK{hHz{D}&QFXCId>k1@%)VUV};>9mNg
zS)q68e!u;AuloJbGc%1Br=6Yia~m_mfwIuI|JDC&-~U(l+l}P@A5Zn`CHMb0s;{K9
zXu}4B)4{GhQYISzp2q)Ey|z9+{v}_`;dcK1t=ZR)y}7x0v1_-OpkU#ZKzCPArTON@
z#=?iK;%Uh#3=AiBWz}<qy}h+{aoX8g8*k_BPOY9&q`&`9k<Tm>&3C(AuRFWWf0l`6
zS9ka6$I42NT7>;N%yMrXdE9S5@7fFohJd#rzZp6^ew_5L6B1VUTl0bM#m!BHkB{wm
z)TRAsQMX=KGoRIpOTWb9YXrN+_4}0jZ8lwsYUh)Ew08SFuVfzvh85FR{nd;R6s-OA
zrSr7jZk=5vFNMToO9J2Q{eBO$)XM9(Y~7EC)-}^EE_OejKEGD1{^#j<v)yq)K|+Fp
zuCA_AuXS~GCB3|~^yAm-@yGRczuDycoQ0v`m4-UglH%v*p33k4bV_^bwaF@-K5D|!
zW;r(&7VE_BGO7DK`~H!y*W=}TrA%+VvCF=`uD7G(&!0bD*{rOrPk)0NMs*#aq+avk
z;E5EYn{vvajG1v~M<I`dK|=TM94n*Xu&}VqwOh7qIb_Gc@WFYqFyp2D_5XAF1wd^Z
z!{lS2=1B6xL#=`z&rY0v>C&Yizh19TKG?(>xIS+0r{MKwbGyFwdwF>+3S8_KYVoVk
z-Nom}^4!}0{}>n)Wc&a9{n&4J{+NRG)GS$rrAwE7d@|Yp*q+MIiwYkf3yg``b2D4}
z(uRVEhdd^!tlROZYsa5Yr?uB^&%0~2ZqKJvKi=loOSiVRemo|fA95@G*_oLa_tpN^
z`jgqL^eFv)eFg)=zV@?!nJQ{r=FDx4ER(xx<{+jYCv#k`I_J!6^Ywq;g@Y>h|G(D%
z?-KU6G5lJ2YiqW6{lCxiwR88s+x0r>>#M7v;v(bju2Pqp;_K_$<?AfO^kO3FwC{mh
z1n%;+BF${PUZr^q3@iMMJWF?Mf14Il_w%V?)t48ba--z!Ez@V`=1M!a^YvDJeRWiQ
ze$Aw}A5WFOyrc>$b3sMVsqMA@em*b!@vz<f@2{_qPie3330)m_v_nui>Adato|(q!
zc^^gAL~c$yD(EgFDERo0pg_X&4KK}G^WBd0?GIKw(D(i9`K{*nYmBE_Z+O?U>aE~}
z=kx3Betmr{uI$#MasS$y$jv`q`qxXz*ZoL*v;Y6U$T{m4)$eoImwI~I$4lP&N3Vv*
z%YsVl*z&ukUESTuM>+)G)v+=h;E&qMJK?<DZ=H2}zun@xZB_b8#B<V-MXueed>i)s
zc+@@n?!9ffw=2HgOb?#N#=x*@d)9Bi7pbYKPv6hpcyihE*VosdKjy)}aNv7LZhwP|
z3#d_-c6L_iznY_6qJn~;&3f+5Y`j`;-`m(QFs!(@s<Z)A(YEnO24((EogN$Zurlg>
z3m*eRjr~<Ka6z2Y4;r>jziQ@i&i4Bq81I`>38-<4+{|ZUVZhe<9~H*z5e;;htO6~d
z=wM`KbJ<<?c9Gv)tBu#=s*gsd&lQ!g|5LcM*8azXW>8IaWo@*%lzE=a-(O$5RlTRB
zBxW%%tcc4>t8R!Xe7$!2vF!DG#r9Tx?Q-U`RQdP*|37_Di_+rHhr`LodL#=UG_t$7
z968j={dmXYzV0?&>0`Rv?+C39TibOzf4}X$>i2tRSQe*US@SZQkKq9S^#8o!7Z*4-
zKf35Hzg9qCZ}s=SW_~*hP?c5j<6*n9QWB^^Q}*`O4BP55(84Jtr9P`yD_&e%8{H#o
zZKk*9!=W{2_!$_kHU@84^<qYH-^!9NN%w2N_crrcY22&-|MyewWHsNeM~@zT`q9y0
z@vudBk?(A?k3SywFE`U?U<h$%dQu&=B_q%z^OA~^(!L*$x+C^f6v|XSnK<>^>kA8=
z_k6t;o!QUMz;LyT;iufOUTJY|alIb9+Fvd%E}ovAE-oUXqM^68uUMfmO)pj|zW#6N
zDq|)Fhf*bnZ5Kf`IWrqiN1v><+y1)0N=iv@Z*3J6oH&1eeCGeArY5f63=9YOCo<e*
z>lV}P3ih*9l`_kb@VEKsl43Noqhm$r>M(EvE40ctGc&WbmVx0x`-#{M+b*4&s=e5~
zUk=<5H_MHBv+wu2r`fap_TDPdx@NDXsoCk)D|J+F_nV+r`=@;!Gd}p={`K!KBZGsL
z+~41i<!k5lI+kfMrD#u?I@PtXu<*=WYx8A(bESU2-(TPQ_1W3k?um(sdp;hMo*HLe
z{OnA|{e88f|Ccxle%$=t-hhGO{^4hJj5c;k=gu9{vF2Z%5PI=guk_;b_xB8wkM)51
z1tl*oByRrw_ldfF=kj?~TA(6)U+$|bD?eUzmv?=CZ|`L(aR!D}s_qV}Uc6epzVGB@
z_2Ze#=Zbkx)9L*9_;`54|C{IcStfydjB0*!B<5O|_i3-+16ofds_fR&;mmJq^6UHi
z`K>1z85aB!Pze3<?RLJq+T>1<K~GLj)?S;>HDQ`=^f7P!y&~c9wWU0AHWr|sgNB}7
zpP;f^$j4v&3=B6aIVWgUeLO0@dQblCZMlzcrq93Icp20QECO{TCrB|eF)%D~19t%h
z6&M&CvRF767)FJMa+thPcztbcclP?dW>H%*1VN3F<UUKaWj-?}z1_&bps<?d1Ygm+
zozIWOmfsb9KBw5PN6J(y>)IMg&;Z2sxN6<oiy0Xlu3b6vjlp{HOyl%pEu6xSK;4nm
z>vm}=DV?)?J}2Y)y4aZFv!;f*x3=i`b1*R6e8_Qv&!F(pkrk1f(_%_4x<0-A>GS8u
zP274Npz)hSt=yX}WEmJz`WbFArk$TBn|o_Zr&Z~zkQ?_FI=6o+WnlQBD5PNR;OXfJ
zE@$FGLO|^T@%WmFtt%NA6n?Xu;M-94_ST8>=htu9yI{eB8d(O0x{jEZeaxVpe5X#G
z(#qA>)zyu^Kj*)^+WL1ZE;0mdd-?pPvEau#Gj_%se*1pzd?tSCwqL^=23J?t*|uj_
zEm@+Xq%_Msf8WjPpi_n3%lH2K&76>KsB)W`At(Iv^Yi_Eves$UJ#$nX${N1Cy?y-u
zpY#8Zyt=wtJEr5`uh;8AIq}=u+xg#0@9r+|FMNFLD5%Ikx>$vQA?5t7t=Y-{{`|bS
zxB7cd|D?@Eo|9B=$|a>67e6~=@oYwN(vc3q!mn4u-H({R@42@wb~k8DE<C=pOO%1Z
z-lwnO4TG#zNk`n?s-q7MHYZ<P<ht?wzTd}gY)l3<fInVv=1;A*VPH5R<?c{6q4f2&
zqZ1UJlkV&&+?aE7lf{z>&Pg{mBo;pER8Olm0jUD#@MFKBS^VmOU8S!d-O66yE2bOe
z^7hu&$1{@qIyHlrrBv%MFx+^@;$d1qC~+Jpdnz?S=XS~Id)DuED6iY~YE?&vhPHNh
z+1p#Lo72uF-P)2FIZuFrVVk_W!={`^M>+#Hr=8vLVo~?0?N6USKh7#1BXD`Se}5~t
zcv_(q1H+AdEFRO&&a<_?wIwt7q3mVleU<tXeP1&$Y}hQI5E&K}Bn0ZIY!eq1b)BU0
z@u+xwN}?76!wo|gk7;XTcbk3s{8>9!UqeG9o}Hm#ZY#sdO;KC3Tq7eRm%d%Pbm>#L
zIUyk;s;a6}x8>iuwx{y*7I!9w23fa;l*r%T-acO3Z`XBob$Iv<q^M2LG-6=5@sGu0
z+T6-#GeN_6paHH^+t)^K*E`lHD}7w1*auWocVA{?IPfjh_%`#O3#BhEC{}%aB?@Z$
zx^{~l-S_*Qbn@}OURG|gBhLJ`Q{H}LU`W{g$?pX?8j?;-P&CZDvm;_#PNYoH2}Q%4
z8yhS>9ueMbE5*Q&6Ao!dWh0F>Lqsr!pm7Q(sBiv$ulo4U=kw>kHQd&1|L<e}#Oc$;
zH>aJwl{f!$n{-~s9-IGv7*o3EA7HS20vfyS*57CG?PmIXP^EljeY`!Wg}&IWx9ifS
zOC232Qj8+!Zmj?R4>Zd2_S?^G->*+TnX>7hEz=Lh)id8RGOU=je14r()%SO@tgNgT
z*T?S%6%=ctx9ctQoh^1frr7t)Ok?$bAKL9xs(t<+WPcFNDbOHeQ2+1Gi`(1tw`5(_
z`uA!2e$Y8Zr?2bn{c=gdsw4xny)AN%0K=+dnh^|^53WV$_nKy3JHpIw6QF2kmU(wq
zDX4EWyY}s-)YFfi+yAcw1tiFQE8_Rpfkrz(3#`3<->dz8_u{(P-8XW#-v#v<LB08-
z$^Eur`}S3ReFf@Pfvo4^;#w5BIj!)Lr~1)1H#cv8^%`_m-J?yX^}3n)EEKY?uaoti
zWzu<XZ}sseR&KN1|7V$IKYG-y->2p~%LUZax>J0<_vz{B;kVx3OrPKTxZmFH)s>aP
zUteAAe)Q<k4CC~3<>x*h;?_S>cwAPTSK6#+SLy3xjO;Q3*JI1?hSmBqg!C#aFjziV
zxqM#NwYAZp;n%%a*Z=);+5hqW|G)Py4qqR4aaHK*h%Fg`cdFm-y|}aZ`3&Q9KTyL+
zP!Kebv*Xh#ZEzc<;K2b6UESXDdzI>-Ay?4&Kt~5Ca@BliiA;~LtK5=%+YHoQoMDz5
z1sYNX_i@jE0a^1ARJ`5aSGzd%^fbfze}8s7pI5!ed%B)s`nfq88X6k+%{?bc7$i7=
z$6WS&Joe+mVgASSs^4{<xBIOVSM%}cr@wNQPbR*&zrP+d#+A4G?Y1Ac@Bb59?B3t^
zxX)VeUe)WhH;T{Onp>ZqV_E#@O0a(~sDQn&&{^5u-X7GoUBCC+t+4v_j4PU08nSYq
zo|@{ZHrex>#p52WxBI`}t5$zLw><9W=hD~LLT{xXY-06vbaXVzxv}9>E~wW%OQz<-
z!TY~<N}FU%0HuxlyZrzE`#X78>Fc`Jc1xEoox1Jp3`6CUDMlxE6h1z+y;s)S>|~0O
zCuqOk*Vosl=kNdf?e^q7d-kM!dU6spHv8)8>d9@q(rVLViacA-@2vRvXo+Jp+sUKi
z@iF_}wn^uCeERh1)cpIU*JC~7;^H=yyu6e@SF+*lVa*7Jt9MRK)mB#8_VZlO?l+sf
ze;$`M&+A$0J>Bi?t*y!b|9)RzP<<OT=KOqqy<GmDkH^I9!<*T7laBRB1_lLf^4**>
zY5x59e;<E+eVzRB($b5&N?&JOSa2{cf9LP~|KIWh7rXU-dOkg_3bg%Rd0yqSnH?P!
z|9(DCKH4REak>BeAFo!gKP5lYN3GB9*9$IpFSGBat}cImp0Dpy@!WU)I_rUQVFiY(
zF?*}NDk*_xk8XeYrQ-SMob~%2v)o&tA#+e?VU}60)cbwE^VURcTvW3k)TjWZXi)tG
z8pvv3WY(J7R&qOc`_bz6d&R5YY;>2Y{c^GJaj!XOyk%R}vP+jP?fCcWb@F-J?`sS$
zcZq6ioe}wXHg@Z`yXE(}ZkOH8-3}Tz{rUO1yUUR~JByV)CxIqQM8w3V*@LXs-}Avq
zCvHzg_vSgJ*CIhfub_Galu0jc&%a;ss8jt2#{oVi2ZmKUK?8}OpPhZY_xruu%dYdw
z+u4BToIuU$kB^TZ|9swFK6sf=Co{i|fmz<2h<*1#`3^LG0UEIEvwpW@hDl~n$*U`x
zd3!z{`&0`m#pl=k%KY=Le1Er?Zq$(uLFGpan)$k(&#TT`ohD_F;Bcqr^I1?hgIw{b
zRXnakGkBTHVz*wcGa;d%i1twvetf*YUo&`FNX4EHhqytbP<bD>va+&%{B&CX_!Q0H
zMe+OVKEB)i{uropsy?@55(ncA#+Vkq3Cy5DlQT06L4A$2`vm^l|Nm^iIQ#m#!uz$~
zLvQS>`T0phM`z83wP9<cF0Kw=|KjTE@HO%K?Lb*X!mg$Q))naJ$hfv9GN$OHYT-%M
z=|?81dOzB5n6LZc;db}$@9u8TTK4bn@8h}K?}qJLyJk(!=JIV`lT_^f{doN2Vt-x8
zzTC63OhNN3%jXn%xwyR9eBN%Nil>N}nA`Prv8!#4+k=+0gHEGz>yZ!yjmG}@b$x%I
zczjLaY<qcz+0QvR9QbxTo0Yw&?CmYkfN9>hl12V@KULg%rMBL@er-kI;!F9T=2txG
zjM!0-*qZA-U2pA&J!xlWUEG#?+hdXnXtUXk9fiq1ziP||Cq(mnxzyCu=&xU|fV58R
z3ta4Ww2fEVZ1?}#?{~#tUth0ZUw7X2`;j(Y=|$=1=LrgenqMoz*T?-iUjN6v^{-jv
zrj(On>5<!VBA4d2%T;Blcy78HFV1lPte`-H%!OU0uYX*g|4#%|RBp??9af?KB|N^?
z6x20)KEM87T6}a&j0|YZ?elqi`##%mH!8m0El>XQ<KxEjcE3Yzyk9ceuj_94eOs%t
zHxg%OnRZ(iKRfci{{L@KckFK2ZQZan5rVqW+j@-8+ZglNez~wBc)1@qRUDJfKayYn
z`!?77?7O>44QqaU@Y-yWbwxvO@0Uv;&7hI=S65eyv&&T^fF?$l`OTH`on><K&Gij=
zcXxri`sMHMfo1`x+>hJ7V~2&(K1<)+FE1{FDqzrX#bW>Yc7YKQ67y@nMS`l+iz|bd
z>$2VQHNPtY8mgXCbV?IELbAxUJL$`diyNQMt9D!NH+SFX_iPPor>wo5&$!|1vvYH2
z$JBg0>iPQG+R05#O-thTR-N2<TyFNA+V6KgBO@axsd!#m6}tM#pU>y@>wP05BR_S=
z|53`kxX5+W?Y!Np$K~s5jFOM_Eb*SM=Xrfy?CI~)#%Vs6b{0QhvSEY4%Fxweo9@^B
zR^9*Sss7~9)nTfhpU%Fm0aXJ}HXP>j1}!E5jn-Jc*>HGL_4~cs5B2>0{oVi5r%z_T
zZ{+X)J4wZJ($mw^)x~2994~FjybN-k=lOZIll$#{t+@0i`FNl2r%#_Ig~wH@?tC)I
zd(yF9X?4&#u3ukYPuGdww&v3J=S!!@dHLD>e6l3*aGU4bTU#gp{dQa5^8cUDlOs2$
zO?_W{nAcpzH0z2+{l7=u`f8ww&r6$9PcK=pKq2$yrqrTuH`CRNpP&0{S0Bod<EZ8t
zlgQ4%u;j2Q-Y&Jy!#!0D3=Ec_I|4}Wb<g_G-r1`5NKkkWXp;?tr>mdKI;Vst0G*5Q
Ae*gdg

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-4.png
new file mode 100644
index 0000000000000000000000000000000000000000..677c3c4c646948cae6f930a3e77b790164b055ce
GIT binary patch
literal 24825
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_e2#xMQf|Bv5yPWDLhR%z)_-T1o4
ztV~pE+KN?cLqokir|O9;jxt_4Wz{0z?!2foEBfYUtr7|KTD_I+YUavYrezz=RUZBN
z`>_0e{Py2`o`phRtL)^yC(kNgSA6dIo$j6YzwcaE9C=JanSp_UVMC+xa&8c#;JHEr
zh~B`<$il$D(2&ca0OIC2GcYnRFeFGbae%nD1sp)sjWz}*1_p)$W-J0A?lwizv?^Th
z?(Lm=xUl+9ap|)&l3!n5b`J~;{Pg+r<o^EtZ8<k5T~1Y;9kwn;v;FYG@c3HO<=!6!
z<mL6-4==3!{jG9M_4B#qU$*c6>s$Hx+0?@iFId0dqwHB^A(M4w#l*Wy)3nU(_cP?}
zz5V$AMaDmweC>zdK79Rp^@R%ora3nPf|vQ6eEDh9kxe?0)1GeA*<ROJ`SGau*L&6P
zU%uP@{@Q^?=C7x;*RP1!m~{QlG06?<YD6>w970!zU0uC?->Ty0=PK{&85srfwL7zN
zi(R?6*nR!Z_p!UnQmg)CUS77d@Aud1@$s9l1uyr@JTXCWRn*p1Tp}6^8X6d;Y6Loc
zzgN9JuHqqU?!7%fXWf3j<m>C}uTQGa4_WFpHDp7ABP$DwhLKUw+gn>N&#^2nd3kB+
z96dwtJ+*Qwna|G5{B_*^-@*e29KOE3?(f{r7dqFf^v<@;r|<2pep+C0Wo`6!pW7*A
zat!}|)fDeyVAwt{HB!o|WJQmmm%sn@K3VH8H`C{5K0P(n%gd|iuUD7!_JW5_p=%-n
z=hy$MoVLBNPVn`ut*e!kl~a2zHZrqMnK5I<Lg)5Z-TM13yt=yj>Fd|8OLrGPKlgHK
zc-%#H`I-qY_pMKTbfmM$LdNJ=#-SF@tV>Heua~j&%Z1$CRl2qOecV*t=&-rg<zWvG
zwU$0Q!l|mNnt5kO;i=i?>lZCvyt(FG*^Y{ji>kiATib8<%VXcZeOVV4G)8U7P^_=7
zS5;SkJv)Ej#XXguuWZYWK0D9Wdim+S>jD?My<9pyF382D<@TpmZt+u_baZ2O1h{sK
zl}2yRy>0gN?Ck63jMlF#dwc8FuF}<9;(Bu~FJ(Bv$RhB7&#>Y{!uI{)>*Ln``uh5H
zGrwKH|9^i&ca^-9S@q_;;jt$roN=-i1rEGYCO?92A3J{h^}gTlivQYXUC{_#8RRN$
zo_D23()i1d$NklJ*Tw8Cnq`tX>DRZntGh(C(_YWGy*>Z>_WO0KckHlOx@1Ylzdt{%
zs=ln~6488gvFyWxgSWQl&)-%4ejTT<TE!asnjahZ<ZNcFeSCXi`uTYvgWm0YE_ZgO
zvHR0gQ$J@IXJ6B){dP0mG9dPwsBY91<phuE_p8r+4PPCw@R08M*Iw6u*RZj$+=vry
zxYMi`aX|Lfz3TU&OTDJ1^aKV4O}cL8JxwR@^Ru&|OFRTwSy)!Y>@1QpNNDhzYxVTv
zx8?Keg4+3HMMOoHHZ(A_wzjUU`ughC_4V_OjErL5uDe=qyZY{`c@>X1O|!0?C`~<n
zv-ZUC<L>wCey>&0w6%?Wzvpw`s_^yeCQJ}`dV0ElU|?X@<z>Cobfc#|eg5*oLg!ak
zS5IHGXwj4R@7HhGV6Zj!c9^tzUP<=#4T;XzEvAZUhwaGPHL>n{E0<`{Y_nXI*mrhQ
zW=>RgfA#2Sx0FGG!?u3I#6v8R)0V2wt8n`G@uQcw_vPdA^>4PmeRXxUs^@vz?{lty
zb?p}WTJ=@g)HGDty)WeIs?e$S^>v~e0S=|FuU$Pe(|GSYbz9rm!|nXxJByx*2nZ}N
zN<EeF;lV*KZ|~FJihmvEx6in=#FLAc_v$27?>%k&o>}+z?fv)r{{Oi0dTH~#ko)^;
zMP+5zUbqmz%Eq?Jsg<khVXJt_rzf84pHI5_{bBk2+U3)9qgSPzoW#Y!5l~UF<K5ox
zasB5HU!A`&@o?M8hXpTY=kJ?nc<k-x2UBi-E_-=Nwf4uu_Eq8Q=QTAqPc_evo2nll
zXIu5<!nwKDv2Xe0Y*vKF*M@$5bv3x6V#lAqe?<ia7y8Y$%6xroZQgGgvz!^Hrf4dk
z-t^_;arxb)x__Qb_E(Ahy?I~qalX=*mt0l7rWD97&%VCy*2d&^_vq)(|KHBvfA!AJ
z;?Uh?xu7^&xNzaC3k#dIr!by~-ND4<P*+zcce;&NdRgM(Hcb<g5Z$OP0TB^1w&mPh
z)Y8JD8@0t_b@=+Qe}8_e#`4K;&AvYE@WX)BVQWDt=JIm??Bjj1QucLw+<GJ)zWP^a
z{Hxaf%LV6k`sN!qZtUvqEnVB)(=$b-^zE%s<MeYOQ?){`Y|Rd5Wn+7FppiLhYu40h
zI+2Tx^-9Nox2XR1CeX*HhfmgOiCeGK%H-pHxAxcXe|Bc(;#O|)tb2PZv+nKLx#aZ1
z6^V!2K*gAnva+bW{QI!;y#~iBYJ2D0+LF2W_q*Nx++sQxPEFO`T*InnYa2Vi=2K@=
zQ`46V&ipU??f-%DxM}7kmAyY6b<4eVc6L^c-IrDL{cd^sONr%vbAt}I@qT^WZ@(&P
zYgW~#lj@}}FRAKAZgP>eF1w<?|Iee3s#{`rm(8-T-*;-N_VRmstF?7?eJ88?U-P&B
zJ7sBd+{?xNc9T*gtA4#)E-EHgc6QtKs=m2uesfkFIpSiPalxUmuy9w&%Sn?aP5Scf
zc7FE9M@OS}m#zKu^z`$r`B%R`d~~$?>LOQeR#w)Pp{v8XIywTpyt=mK-CgzZ@$u{v
z6BO6g#{HGdy0KxQ&gn}}PEOvMf8Q>={PgSEbC)h({`#Pq|JCdD`@>cSExocbSY1>n
zA^;SmNlA-dU0=U`Q|f82N&EhOi{AV3m^8=;xymPkPtVVf-~ad9Y`ec-g3r#kkGKEx
zp?Ouv%15i7Us)L}WnH#r(c;CiicyzJcRybnzdz1*mdVAP#m}#-3e~<_dOh~mw%pmv
z{N}DYZ~s5$^fcYzudlA!&g=euzdk;`=3{Hr)~uyBZbYn&-5s_$?d+v#y3t!IKR?si
zyNw|yh2hWA$Z4rEeC@|SP1O#Ul9!hk77$3_leK!XE$`>2r^hzw1h0>?E&lZ-b9-s<
zG9SZfsWYF?ufMl-P5u9W#~v2U(BJpt&|?dA|9K_9t?lgYS;+8hE`J}_zfC)Ajls0k
znTdzncIx)`_I|Z!KXXee`OM1T<voWV8f?wF`Y9s4$52yKGj4kP+RV$#KxR!;cHgBN
zzqe}Z$FE;aTe-!}o}Zgr9GxCHE%U~P#A)B&Ke5?ARXco_u6@yy4$ZhdI|?mi((di4
zl)LTf<|fsCIMK++=*+LLuX_(aG%(G+_GQ=mxz^=XIrhoNc#<QhRermf9(x)T)Q<}+
z&U|`$+V<A|@As-f9^8=NXq<3>;q%w)@v|Qv?~ng{XII(VEE&FbPY;iR=(>l8STC=M
zG=BW}adO?CkM7q$WnNw;d3uwNk5A9ef`?7nKRboheQs__?LGYP#I?__@1)(_lp1;O
z*o-sx<9~m9Ydl>q_EX0H`TzeMkC>Kvui`Q9^-XW~@XOczNCY{=-~R8Di|<}Nx7d7s
z!uIo>led3=>aD*wMd!3p?yW6`nVFe+uP<G?bY^4n@tAsf+o~&bY^$#&?~mS=WBBv)
zbMv#a&C8?rrJt7rdGJxE`krf(Z+?zm8Kep_x<}IZ&b0IMY;Q+QOVtWr_hwtoiwg^n
zZPF1I5lN~0_cMKasjPLG319o+Gc%2kXY(=?@x^Xvux|O>b?mhM{x#p;-qzOB^PBYL
zT6BKp7s>kPbIVgAr>XhOSir=}wPWq;OG~>KEnaMzd&{IhnT3U=LWi4+YgcFbMAK=h
zCnXl!RDP<6jb9P4@bx=oOUp>_>3X3ngO=K?W4p34*j?7D1eBYeot<4CoHcF9$;s;3
zH#Q`K3X*wMuQWmF*{bBlgj?J5*SE`6y_j|T+KNEux3{;42L(-9=0AVl(#O7YEH0Y<
zxT|Srch6MfZ`R(bua^!qGM9dQ<f^KoqM@hf*UBv(Hq$8e%avgN$~$=$s;aJ+m-z<w
zN||2SUthnywDQxFi!UxN1{EpWtJMAH>73s5<=5-=yZ6=|Ja|ybrlMfm@qZS_mrT(J
zREoZxx-8}7q`37uM~)v~op7)zYEw#Qc4XPT_H(sWzj<0)TJB`rl+%mdwdCXD<J$T6
z_JB&@<DyLV_V(9B^*yy>c5JvkRd%^n=&BWgi`{-bo1K4WSJXdAQ1-6-`!)RP+UW3p
z+ix>&?<#wHYh~Qts$XBP$8XKLs@0$S``g>qyWj0Pog3LNXPeS<aaZZ<ycK#3=JKFe
zI&$@HjLzvx`~UyV->yI3FZ<e>iSy^jFDqvORm&F_yMr2aqFNyyZ*OnEzN7H*m0hLT
zwx3QYgW7>fNl78gd}c-$>0J+A;J~;w=VlPMm`*@R$(CE&a##QQ`g(QQ+gn^bJZCQ1
zndRP6@mv+Ze_wQb)pEC9smxbbR^Hl@IoYcGUCm)r>ExKdkJo=WBJ2;Uv?FgFKQU4H
zE2tfNVS!`SlZoy|e;;XkT9?1O(j}@LvNA~Z>blt5TlYk6PSXloGebyNc<Q7{k3K&A
zzV&+C<pxIPEh#63)<$l2lQz%0a%*cgsAlk;XA}AOcz^i!cXw4|-}z0RI8pKRCX<{S
z2K`c(E?rVNnagu<neXf;1r{R0!jCWhJGHLN&;H+!#X`cucc-zkv#-v-zi;Ne-@Txw
ztlggv&Sz(tdhh@9sT<VVD*Ju!$&-}p_36)RZ>$Vf2es)|g|40kN^@<z(pqY2#~%BI
zo1fm6d%NV-70s(FgP-r(-dPs4qhKM(Bvn<_mp3*h@2dE?D0^;dq*d9Q8P^#<L_U=X
zzq%pOdHri?)2t=$_y3QZZI&Cfx9aPizS`97I?E@idV5Xsn`7~Dc{Wo)wtxdDuU$WR
z<x0rfxV=$#ca>hg>~FvJ(o*m0nvK?Ve|8ud8LhLFxU)%Tu5EP~s8x1$mMJJ@^hy{y
z&9D2la+%*;t>hl9ur({f<0_9nzV2gvW}a>IV)y=QUtV60t$oDI#PsEaa=(V6;=^5!
z8Rsy+J$(4^-gV`A-_1V!IKM&1TRUt`z~5hAr%s%>aBcMVRq^}lex0xXw|K=04PGge
z7rTCI#O~Sx>H)O0u=GlspL=b=r~X{DZ#DCZ{{DWe(pO8i->-|7um7`gUj4ty{#<S`
zofV)Y9J{-0lHPt$Vp;m|aQkZi`F2@%cWvzw(OmTSc)#~985bjIm-l;mH(XvByj(;`
z=#lA{%HNCjRDMqD|DO5s($ZK)6&stF-R1AYii$q@?tFb|alhTFBS&07{gvEXTLL#G
z9ewity}qZEaaxaF%#H`w>{h=&+%8w;0cvVQ=kHw#DohTwa2g$3QT6qelx0!Mvh8mF
zHqUu~dkx#1!pFx}#_zA=;^YjBiJ9XyRcq;<%Fm}Zfm`&qHl=nS-<f`WW$^Np$ZMwd
z#m6Mp&)@mrK|+7(x!Ym)Urd#R<~*N-gauNjSxfZy{cw_$lzeq->*{m!?cZNh)6nn$
z#gdzw+p_*{as6F&iBt6MU#|!CHwquM?EC+(npe`u#l24^aJk>yEj2%j!mXdrU9|4c
z*DEj6YG+PYsjsgGDY(5Y_wv5l-zK@YOs=kvj}Kn%S6W-RPb~fVM(1|E%GmdBZWSBv
zo?*FL{O6A!FW%Sx-~H_T{PmZXdS}15u<+N%<MNxg^gA}QX{xBWD7*KSur{oY-BWSV
zl=JESe_!?cJq7Mpz1EdXHYt2`L`T-xz#!mo8*lL5s;?yv53$z%|NDK?zxO)}?{VsG
zK0bA_JR2*krmE`E*VEnd*SlU{7i;^i{OOYJbMdD(7eC*8MnzRs)6g)`cedHp_51&=
zs{jA{zLa57OB;{mqg~$DuWtHmSM#8e{ma+u@vo0`3P)|rnF&fMfB$?wpLKK7(rvl7
z%MO2yKl!uu?<sAwnI})2xUeDdu!x-8y7;=EuEuF+F1)z77}V9zI59!dyyWU*FGoj5
zqhm3jjngB;`bu826ch_OG+2Y1v5VdL|Ni^^9+W0-@3Ja=_2NjUu-x|RXSnR`?XRv3
zc6V;)ySk(BaY|3&>?!AOzOViN@2}kLb@BV{PM4o3`sXxnYP`9!lG2rh&g|E7Bf{54
zmEO&h3|$>IRb_3|)>E%}Zl0d5KRq>aRoL37X|MhoGchxpR(;7xO-V`lDYo0u(NW5#
zVgsm5*?N1jimIC0s}mEIS4C`Gw5$C6yRU)Ed?a)4?~A=(`#pBr>(V~)BDR%LTeD6+
zEJ(?gzq%^)@>1{Vd%k`C|7>>trakh@m(Qy@Wx7mt^UX(d_po+oTjn$0-jwPcKA{ZM
zHVq06Uca+8?0$P=V`EouZ>W<~6C0n*iY;4AbfdPsnDzVII<Ki(niduj(c5xPe&ODK
zd1LZ%P~Yh4+UV<#Pd(gO{M;tbQ#bYf=a*0ZoLL*O@zCq4=lqh}KN+(hkOTF?zkNEb
zukAn2#>>N_VD|0B@%!tHj;(O-my1)M_WN<a{g$$~QP=OU4qyLmN0-vy`})_y&mD+a
z9j3c}|GNKQF8kk{HSw;c!?oKrO2_+TFaQ7d-M;^6`nfq5Z*ES1`ucVC*^h#kp6YiO
z78c&xoZj#55WTx>ZQ7X`3nxsN@S2Zre_+4euNA98RxVn<|KBas<0rp<d2=&3_0*J$
z?((%uY^%RjtSLYD*RbYCf$t21gRhex9B7nlz9=jt^yRev{tDY?t3p?QIct9Z#P#dp
zpivx^l^zq7UR_x^*(~SAg6nbBXR{~V-kLo<y4T<4V@r>rlu5>f=;`yOOcCjoFjTs|
zy<lDR_H|WXUMzfky#MvT-|xR$O>Z%DyS&_g|GNme=ekqZ|7)swazb!@@#2){wLk8b
z-;e#g>ipSxNAEl=Sdo5y-mk~~_Fv8zpRZ_H|K&@GtaX{sBoQ&OWqT?=YiVkpT)X?u
z(Qfgp%l+lUcWZ;H<Y}pue{0gz)YRNWwZpD}T>f(T{9S8jTbHj3TN|~sOH_MT?|+7Z
z>LebH0(R}VJv-)AK9lT~HunP+?XTDG*L(RX;rzwL?yo_kEk8d!y}GBe*wxkb<(r$E
zZ|yE$AGR)LC1@1owEq4nDxe-l)V`XXpl-*C6&j#UhW-CPo5ggamRz_HVEgq-@Vew}
zd3U3po}PZaN78sp{r|eF>tdsSe|vlR`TY8IX1TXAuC0lTT(vjpXjfN9$AvR9ji0`L
zz53Ep@6(%fKwVr-O-;}!8Yt#=zuy<F>OJks%gf8RCLCmvwX2D!{r&B0mHYhFmg*VO
z1_=%Oe!bGZx+2gSWc;0-#ZMnUUVL)0dU~e4`Kznp@mHPsZI?7MvsdjkDloOTx9^p)
z3<9N!Z}0BD{<gIC`@6fKGK5Q9Z_Tx}(doPTzrDTvTK@l!c2JLL@9%fJx%l|5ZOOcB
zl5l__bXACF>8mS&6%{+q&9z=Wzy9CNudlz{&fovmEbQ^#@Aoc)M%+$muYa-s|KIhm
zuC89b$h8~P3kD5Lfs%}*aoUc3cgkN}a0K<2#N%rg?*ISyJ*XnPbosJr`Ma2_t3prb
z7VTN{>p?UBlh?0T^V|Okn5rEfmXosvG+y-c_it@W%gEEy^}~ybK9%l%c6Ci;u%V&h
zEc5(%pyt>5I9pKgbc^W*fd&`%R1|LicJk!O$U6CNFE6{FJbALKvokOyWyz-}Cl@bS
zqM{qWFD5WBaC?f(RqgeA7L~rf_Oe@lUqCCD=#@pT+@RqVP>5by>OFPBgavxByH0G<
z0S(zMcJB`Z_40R>W-nd3^d)G_u2We3%7#Se{(x!v@phn?zF+%&u2uQFHC&=vpuwcI
z(c7=x|Nrm1PxdUM)UH`(xvRdty}i2h^|e(YD<^Hsy}b<7!E|(VjLW~m@W3qPxoth;
zjq{sy9zT9O`Q@*}?fkQAetw$C#L6{8*}ZSa+TZ_vzxVz9?X9niOUuXa-^~*f6PIOO
zUG=P0JkG$=({o*!_jEneySqw_>wn+A?^95);pBY#{VPLOPWpM={$Jv^x3`}cp1EKD
z|E|rq8_8-WCRd)Eoqhevs?gIaYHG7YwZkOZ4=2XeehuCJZR5s`apw~cxA89XoUEp1
zVR7Tfj~_dpU9zbBv_#UbW=H0o9UC<R7qxJ5a2Ooz7B}aWHZ$3rcJ|b@&*cveFkarA
z?k_AUnfd4MU*CyJu4fMO+vk|&+<35c@8O3Ay;7#9t{KjGUjEfaA$(Qf;x<s9^I#L}
zy3~miCmuU~{CG-AO2u6@HML_FGJKC8KYl!mJ>|jzM^JB8Jg(y5u2N7Q1MxN{AD2q*
zxw)ruv!r2C3)n@$%X&`EHeb)l!(;OF)Kues`+qxr{`>tNJVthR&;NhFLB_JMv(Ij5
zU<lq-l6iTFr|{=<*6%CMoSrmqUS1o&eBP;Py4g%jOg<qYQzUIFHh6k_{|^4V#$s*s
z_H!lg@7)bq6LC>QBj5lF3(Jh4rCu}J<?C*onQMK0ZEo88qr&QbGvfAE&0MiU<ND71
ze?Fa7Gc~>H;^sEXDD~8iTWQa0Ez-})T;7=M9=y<r71UDz^&3}(tW09#mwRI--)=bl
zIpfEVA3s|0d!)_(dgk7ANlD3Pf4|>1-<o~hjFn5o0MtPh)e12<Z}Yk5_8mh>Ny)S`
zGYp^Q*Z-ak_BTJjdF<{o)8F6Tp58KVu66mWu(eS$54CddwwoWk%xCAb&)GeOx3}k;
z$L=aIJlZX8Uis+>m<I80Z_odpVO{bfV14lmiQ-B<q4vXxyGma_`)bKJp;#w*Q)O@|
z14B{A;fDb^IcskB@-i@N7e9tE3DR)8Ej9AyK4CEih4Mrm$OK9OEBf@xgw?95s+xLw
zey&|26AwQO*qU{<XqU=u9$BjpzINr)#tXbJA%^**BX0Ia?krj=!`B{H`}OJ^J=N<o
zjZ(X0_}GQtG5+vYZeTdE_1qlG#m~;p&OY463mX1w<C9&LKCklFH>);YX|?vlitUFN
z{`m33=XUMyx7*j1rJkCy^Woz(vj?{x7J&MYH}CmP3JMN3O*<n28pi@TYXAQIUE=zn
z>Lc^rot@?}#bI|>9ei@Gp!lhB{Jt8kxIH_hOfnWQGP7lTes<RUZN<lrAB!wxZf(!M
z?|WOl`3>Wrt3RKWFfvS-2`XA%TwE+=S+wNe&-3-qN-RHp{(Sk)&f>4<tlzIlIM^ij
zTHR-cg1x<c?4Alk_Eo!el$4yJx95ch1WY)-YkvK|NZsgdSLWGPi%3eYbeF4iS-5Z^
zXn<WzFJ=WRw-~5vzB&E;w_ShF2JJ4(&Aq!Tw3S<YU+VFWo}QA{qg%F^$l6wgfO>$S
zrhH2aOX-^%f%3IqCVqN)y4?Br!*wwX6KYum7<Psg6>ZWv9aK?K;Wu6B^d?X-sH&!x
zb!$sz)wi4JcdyO2sSNu3>}>GqX}YHQ_x8xF3i|Z*YiKK%sLeEayPAl?!a}Q>9~;<s
zrJn3s^%&Gf0$J28t{?XM+uN-bA0I`BB|A7YT$jpUcH)EwucXnD<e$@YqpvLW7WbWR
z7pv|!=fa^@?)(=PcRYj`HudX8Fcir?w`lwEqe3z{=5EZochdDQE+~F|b=4a*ZT9_p
zctpeuQ0KZ=+Pvz`=TrN>f~-2+#w#i#qa!arU+4POHIc@yE-s*cwA^dEpHGBicN93<
zR(<)f>+RQH-{RLtU!D3J(q$`no%Te=f8tGv369Nd;9>m>3!B^c<==_fsesyk#m~=$
z&NNEhQt~qB><q)hxwR=NOHNJETwMJ89H{T36}oE5r)OtZuL@oL>hpQ~=_;uyDH%sP
z1Xl$tY+_<&4qX>xx%dCS-*V3j*BUB-{JFrfIb^AqC}_0$;K74keSO!w_4h8ha^*_4
zoqc5C_q*lUFE1_C3R==3rXRQF=jZ3U*ZTYTTzTAYzphJETdV%xpHuVg_h(&Mv9SDp
z?RDiGi+KO!9wlYvy=D7v?<iahnx%R1BBQmfP0PR_KvXN_0=NF21(VhN<2GMw<rddc
zQ*-<I`FXg9N5`$L*~?|E%PO|~e!Kntm-Y33y-l;Pg+xTmU}9ndCAQ`B>!MDcJQ?@h
zHuaRq(IZDRbaZ?g8yi9Xon@N6?B?e5>Mg#0e%Ff6+b-XfdRj|C!2vW#^!nP`t%--*
zvaj(o%zVhj(Ga6<VG#l9FFZRt`|Ho=^FeiAS6|;WmFxfC-Q4VMXlMu;ngaFz`ed!M
z{{Q<s%Q(Fcl)5WFKU-P(`B~oYtvcSt&(2%~jUVr+EVljqX7kNgyWc;4yg2XfuFM}F
z9^TqfxcGL%k4|CrRX#I~vMw$0Tz30@M)=%Sp{uiATv!Mi1&bC}_U!8IJzKK-^YioB
zx3*+%((!I)=Rdb4_THY#tNZKgK`BdE%_pFpPxelhzrTNYOw1g=ITj1ea&Kwq>iU9u
zPs;r^i&VX*z4-h6{`Fs9Uw=Ko%zxtk{rKW%X9DNj)ryFTEh~F_EB5=JZ*OiczHuYs
z?fw1nS67FJpPy%2`tp)0sLPUkyzlDf^LDF)mU^YW+_`I-l55wCm&@m0%U-{CS?1+s
zpkeWKrTTlnOsc7=30dwZ>+0h2;>yZkP;(O$t-R7^8K<UbuG<C*&Gh-T%XFi+t;oN>
zkBg5F6q;Vs?~8YKc7o;=A3b_h^74`@Xi(+t_WRc!9qry)_BN_NFX5O(?XQ>1qqbyB
zl&kxZ2$~(9ZJvK^`TV+7qS|3E+U4s4etvoy`}X<S*~>YF)j*RGpmx(do60Yr&)a8T
zTH+bCA)ygem6wSYJ~+@QWtuewlodcDn;IG(?EG?9etmrnYR=jIda-!jHqZpq<z>F5
zpPqQ$t^fZw>-M&_eX`cejvR5hx;oq+<k)L#Zaz(Qmxiqc;N7pr@XmmZp=f2l{l6O)
zGJM9Vr$qWoeP^4Q^0goCk+Hm#`}5V+)xGQ2uh)#(vB9$Z-JIL|bWR)D+1Wi?y?)=R
zFj?nzK9JHszwiGytN#AZ6eKe<eO{sUved}5CnqL8dvvt>*d`reQPHVSiw%!SoZjSf
zxQ%zOT=~;eQ?KW~-hvqUjXAyV_dDz4$Z48^i;k3@|GNEto$<8PnGFpL#V;?ZUjKCB
zgva9o3!m55*7`<8%{so%*~!UgZPeB?FE1~TeO>nUR_doGCzDr&u6|b518Q2G-gIU|
z;^8~f?pMFx3u?YxT<l(brS#8_!s3UAT3=s#f2Ta{eE;Q5si%8VBh`$IF6I7Q7rT4U
zw)eNTt_HP`?(QnhJN@|aW6)51_4jvQcir7r`}@v3_vQcpJhwl#N$2x1>HHnK<@@|)
z`PzSeI<0^A+TPFStdDKd0kv_qKV|2WDX8|HGfgixtEQ&L=lnd|yVKg++Gb5s^`7<l
z`T6Rc;y*tMuh+-#skk^rH~Jb28{4e+`+lEWd-q^7yRVB&3utoSdNT8Ytru9i59F#N
z2B5z@>ek=2c6IRbKC6-!3#LpFS)XhOnylKfV~2h1o1mp$D>E-In`M~Xw%Yr`kxpSy
zUq^jj#Uuas-@~jbJ}gjKnR0T{_1xDvlc!Bv_V{>z^%{BWvNeDH{E4Z*zB=4LFfh=n
z^3xK~7{91Sz=5rLT3TL)hK9fH|NmEhccT!fUYli_9kMkmlvl#wKys~zN5`ipCyVd?
z+N`Cd<TR<|%ZtG6PXhx3<8FU{dD;D#gl^;}mFVM|k(-uW*N*@A@uOD6hJ<Cmv+wNK
zC|B`-aeM0Cs;@yeH>GZ^`C0V#{{H)0ZES4ryfrNZ4f6i`wtau4ZQK0$^RMr6a&n6K
zzqjC_)7x8Hz4ums4+9NJ-V)Ug^I>M=xv<c=eM`<wqxH`j7-lLqFzk4nb8Cy|q>%k}
zwd<2Dq)f9^l6zL)otkxRP37U^?=LQH_nU9GcBXOqt1~l=XW3S7i`tU0aFJ{Gy$}0}
zH$Qlg;Ogd9rK2CWXNOAV+{LO&N>1YXaaR^Px3Amz-ZcA~$D~<ixmAx_(;AHhV*jez
zsH(dD|8;$T$$8uFD;ye`))mT{W?h+(8acCX<%u&#yTQvoR@VLf#l_1zb^ZGFGJNed
zH8mx_zP$ALUVgv!d!<gXh0HpIg0I!pudb}@>h2DXh?oJ2jZ)Bngxv8LS5{62m2bP>
z?eb=3=esgV)w|@^m(2dhpaIuQPuCS5ZsYx2u_k)E-!X~YySq%I&vP;uu(2G-1<kol
zn)34Q#yO|=@_y0{TXTa~et+ueX<AWRR;c;TTC!z}$={F1<!AEQo#&nNyyofpXEO`8
zot&)R@8s-!_gZRMc3k}Z)BnSZo?h)=eSPWj<?)|)sQb^Gk{Y>ATX_4eMrL-ESULVj
z;F0AOfzH+6--WJ?+6tPDZEa~eas7I@y8pZ@H#R1hK0MT#Bm4ZKyL@O;(xOw-bXS|@
z-dYi{G3nFy@6%O!C5_cC|4kK3o4bDLXJZA=zrVg--ck5CWKTum^<E(+W@c5-$?E>!
zB%Yg;y@>#gpH5cyzxLwdV$-ZE8b5#iT2=Y^S=H;c+e5bHM0ys*GVZ?i$6#72XcQr`
zQj6h0D+AMmZIAyb&AGY$)j2))@cP7kk;P^fyQ6!hOuc@8e;?i{q`J;p;QGUY6B3V0
z`zC1b_qoSqntg4`{{8#;WGoiM*Z&O_)ebwe<?W@V-m0FUQJJ-$qgmM5PfJXGtIbn?
z?bFlKs<HDXAIW@lq;p;T@AYzP_NSed>Xo%Ni$3n*<rS2av<TGy)ZhQ-(%W;%$0T~?
zY^^Tm^2^)3Dc$+m_I*vhylqv;`+dLHz1#OY@9&4h{Gi1v(Z63_US9p?Fr))q`|Hca
zjmgKiWL?!dJI6A3bNcyf`uqPZ0yR_X>gu?-xF)4Wf+mpVYCasynQP4u!yUVU;ZE7A
zu(evApb2rk*j-OH*8TkSbd%2M?CA?;FRlLmZk?W`zunI#rTf>2YlV1B`o3D=_4W1V
zuWgj&Yd117+H}WGLBT=Rx@?M}+xorVqL#fqH{X6eXrz2v>dTeO=bZ}kHDBd7*J{#~
zw}xW%$0jPfn?M#-_|3K2Iqm(Oox#&mUp{P?|8^toXqRZ*_or`|UcCKUaL;Ia>gj26
z+il}^m%TO3*WOd~)T=*rx?b$1RiUd@{@zbdxV|nHG@JeC(IcBf$KUV&zYe_UiN_N(
z{{$-FW*Voj3S8`VYiIHDf8Y22_uTbomPGQGx7+W>70WYBh-DFA*gm(TgX8GYqnYRD
z*+NEAw`O0@I@Tk}#mRZmncueLbe2Z&vYu%=k&DjT{r1^g{e55FZz<EP6AueAetmhF
z7jF|B6!hhM{XgUAaA_xJ=gn8<zVceX_uH&4G2K-!FE7tNF+ou-eun=Xi-p^AZ)ZI}
zH@B<1`*L!>?X<Oj@2|+Zx@u+K-Cei#RBm?bm3q3-PE}R)_TBk=ettYIFDfp+95ga_
zkX=5cTTD0RwGwC@)JG2K*=D(yRs=5Iv(N2ZUe>+5=Wk^6i@*Nsld)X%d|vgtS*3dM
z`|c!9I#PbWHr%@WUC3g$-WYT40=dVp4C=nUiTwKF;^D_#(NR&e>V7<A?|-~>`SRVn
zVl10Mb!6zaoJdeR7}WN-ZgqW4<l@iI&&Pj`VR(>La*%1l>eRCDOF&~jUte7X&0T%D
z8XmvWtyc=v)p>SquC~0qyze}lo3H<HnQ!jPKKrw9YtqrKmBGvXW?7Z4TC{jEc!9u|
zmzRHiI<0?ofg|&J=4Zy2cN8XrW~kOiZ4KI*b@j>f=gUD$D89bFe!gV(hYtn1vAaUn
zMs2;+A*gIp`YOaU`<joUq9VvfQ1f%Ly8o)o%gf@_7jHg%Wo0mE8j4rS!~-->l$4yD
z+H>*S+uL8iUXRbdy)8F#9{Z7-Q@wWmdHU<d#$+!qub`lyNjj%5fg0@}A0OYHdwHq1
z_}-t-X1}_<ef>23_;sJ2o_@Xke%<9JR&MZ$uQ`^NA6xWFn_ruqzi;KcySrEC-rlAa
zu%Mx-x%ukqaDBXkT`|qy_h#PQv{bI@g`(}33(i{M>*ko{-db|BTYPoF!$WzKt;KYs
zLO@fZX=i6Geeoj0H1}4>a=*EkE-m#Im5^BR;zh>aACLRjeOtM5<*M-Y^FWI~UR_<i
zy5!|0tNMR?rs>75%Dug9W$Ei{>-4Jj?b`<$aszb$*yU>iN?%_KEh*Uo>i_)x{XP5d
zudlcER&NKb@@Z&j(AlfUpwL<AaBiM$b{mgm(k#>LG$$vgp47;h_m<bczP9$+zu)i8
zL1P+<ii*!Z9+x+F@0a^}s|?hDFM4`PO+n$n6#e*ndw##$z5SC(!~P|&&(1A;fOB|h
z!rR)|(^Ee;#Pk=-O)yG5Rk6m~+uN9#jmJRMdz#6=fB%-%{QQ*m<;6vC6Yycd47XmX
zO51l=KR3u&79A;hb>*apcG#I8zkW%zAAUG1IQjfMTTnYK@9wV3weS1w{~077>oNTL
z`nvhTg$s|}zkk1_y?ypH-RN06i=U@e#Z8<zG4A|HiR7f@<lg@N{_CY5KYj#_X64QU
zxBj35YyICeH8r2b|Nk`|G$;oer)uRAH40rFX4=foZ?<yf%9+>7zwTRK0~(hT(T}@h
zl5yd{pU?CEo7n&Rk-Y47{@q<yx8&WuC88U3<;nT^_phu7JpAXm{r{cMK3k=oktn_%
zTMlZUJ}$7h^Q^(L@KMXltE;DXc6AvwHa0Gc*;(}L>GXJzEphWNYu{haEv{!$`udtF
zC<Z{zczbKBF=)Ze@sGj5!DmnF@6S0kT|b|Rnb~(`&{CiG_xAdFd37Dno;+_}-o2X7
zzL)n@7J~-Sge4?04jnplX7BfV*=jyB5-wf7Z2PVL%ZtFzm%R07YK5+v0UN^P64jbf
z_V(7ymzS5%?&;}yy-$y!K=t$t=^vgS^b_9S+uPOE74-7b($Hl-l4~P2I!#vh51XzR
zd*_y_y1KTNRTOA0@czD9(E3?WUeb!)wdLB{=;ymGcdOKXx#$iWr?|Q<)*6(&L4&ZM
zPJgeQ?XBc<poO~+{ECjVPx$hsWUfV_Q(|HwD3hL@W%~8wartVN3G-~LUrqM6ySRS;
zzgN3_pKMA!Eg~)s?gCYRe>X{w|B+7QrX{bgtzCWI{{Nk=e?j>gG;aI*`}^}>!lp4W
zFdT@#D{Iej_xySP#Kgqwx#s!zY_?`xJoHxXYp=99Xs-FrFYo%#XU)AlJp)0F?``j|
zuAY8wp6zSH6#@(l3_B*@`N*iE4XWmq-TPL!^-9UT&bqqlsaeI9pZBk>4lmCR-&<8`
zDbtt3Yr@LF!0<1NLm~3PoGWK;uQ~nj;X^M^&%(2xsy{q%{Q2X@3Q(qh`{&Oe5h<xx
zvuedb#tRENY&uYRzOKH$zQ6QbG{4pDCCip+`OmY7`z|aXP;j<$IcNd&eyeAUCz}o&
zaPa(O#W}5*NiBW$fddXpmoBZmd;aI==do}1SeCt+0jjS~oH&uajhTVL;hcxB@6~y>
z)g}M`ey{#g;do8JVbg(|Ur*f>eeDHW9P8oH0ct+x8XFmvyt!ex-F#{Bw42$!Hd|9p
z3YEUQ^HVLHpMjxacJ8YyD_>n%8SFQ`Fj}c0#qr~#qo4(yxi>Z(OuoCT^tFhr?Au?~
zR#s8RByw+Ta6CK9v{*NOf8AbCd*a%+tcepRPSV@IP&<5G&1XN*@@(^?*VaZ~-C3M|
z{kvI;JfliCXspQJ?x)MilPB{&H{{&k7yI}3_wudTS5{1Pa&j`M`%|%<!Km&}1!z=;
z-|k1kvf~A1yH~~R+_Wlmby@d0&;X`+*Sk;ka*QsQe!t(pezLm1mZfFnB$N7oHE-|l
zkDqj9xxYMU-T>4pzO%DfR9gD=EKXZRMaS=Viu)fuejNLoi-Y6Bhlhv1-YGu+@}j%^
z)xY2Gug~BAH|+9q|Ld>U?_c-e!Gk##t_%ze3gJ5*r#nqwvSNkC+uPgEzut9sclqj&
zl|hsA;)|;P{d^8uvheieWOvY7Mkl8x(7M}=cR}k`_I|w<4Jv=Vrs=G_x3_wA`TKj<
z*Cana*1IZh@2*LcChcHiVqloS{jv7#u|igt>CSFpA?soyyTx=*1>IJkUlZhS_wz~b
z6j1v5^VEPJGI&ds)$gDTLgvExQLUhyNz1JX0}{fMc&*FcTuAP>T{cP8TPuEF4Jfa*
z@yoBfawTMY+3jt)!JE_0hAePkY;9{><vm@`s_ab!UnnmF1H%)!eU`BY-ah(%zdroz
zEYr{x0g7MW-HldMRE*kNwKcBtsc7z<9f9*}zs*$9w6u);`uckKLZ?=ftScIGEsNdq
z_x)T3YOZJA-BtSO>r+j328IK3yYml6emSW=|HYS=mqCVTg|1TZe06W{ZX+Y3FZcid
z3kNNp4G5Uv)+4d-%9W7ZdwU`U1qCN9nPr--rKjfyTC%gN{QbPi%R&1_o@ne!NWD1I
zI9<gvF)=akbhoIsTKnOJHkF?|COtbld%2iy)Q&^#DyDgNB0!_FZ*FdWt1ZF6z;L3K
zLm^T`T3S1~XIJU#W%BiZ0{8#_w;R-E1GS55e}4;2NLYYeL)^Z;D%5+nS?;OEQ;ZA@
z;N|g=pmI3-$A^bif4^Qgt^Zf!IVm*~G&v8N)$_b`u$f)e^WnpXa<|*t+qG3yU0=R@
z`RViL&Feusb`-=F8&aH8QkF=WWGn#9G=PG1N5MjnuR)FN^z-x9?N0pp`*(GYw19wu
zr<bp<Dro-aL7ywb$wi<6jFrphUFwsyjtRE_b&z^`c>aE#|33t@0AE5v!*f@`!=~fk
zo}ZsTT_s$afq~(Hp9{muMIRp@UmdkIOYSa+T&fwoEaUPr-*vl_Eq5oyzI<@7nTwP2
z<fW_qb$@?pYG|Cujcn(W1&w}4TQD;)Fr*ysku)|*KE|^>b-CZ%Qwy{HS#c;tmi+jT
z*xJ%kq2urGKi$wxTt6-ZsXkc@txx7IP41O6cDuSNboawqj0_APo>%^6tbi1jReYge
zt{;fquxW);D;H>aUfG))54Y9)`ttJA$B!59mfzR)1dU~i=|n7e@+2jEcIxSAnZLii
zt@?7&J$J1nC^B<*FimpR-}hq?Xb`{Z>#LVLpU(@<$XK!O$0KggnrqvtF992qj;eSf
z>WkI;YJY>qfV@0BF4%s*v-ro4A9HLuLG?j<A*)I^Xu*Me-4938tSc9Oe0+R$eZ2kK
zdwZkT@Bg>U?#Bb>@ZCbHUKvkMO$9ao<Emb&s;a20aP1cR^=kF{9lu2x7#QAF#4w(0
zlQPZ9IM~E`JvV%3QL1j#mJ@AVpaSMLcQ`e+ISoKra?E@=cf<0v(c7Pua55BJ7SW4|
zSn4(P)Jr1<hMg>oD&nv1>@4=1&cI;q>);Ug_t)z%Ck_S&Ax4$yQhF;Z{lpm=%nydm
zwZ9*EyiZoSfq_9q(4lChhUe9yU7-5!!LnolD^P=iI=jFIAb8p++O{_E4*q!dCDXqi
z@9BD(XJ?su`T2!yOgdWfe((2F*S~MG0VV4PeMPrp8E<aOoef&Jd8}6&v`7`SFAmg?
zJv-a{cF~_+Y4cT~tHZc>c|-Tr`~*$D?frhQTF%rg`<f3cmq<WH#)@4fFBc^r@4Fc!
z&%nSiVfNiJ#wF?J=T$vuWG{JigcGz?3e=jtxheJQm0<t7pOWjpUJYLry?q^MIz!R9
z?Zw>kdx58?>3;qFe*f-UD(dR1>;C?_wKaRXTd&ko@%WlRZgIU3&`ik3M@OUMK-&-}
z%zk>S&Koq5A6Ngkw6&#WhwlA-wY!CcghW7vD`=DnG(`hiI6CcG@v}3Mpj{@Qso*)5
z#YVa2Nk=%AE?buM`Ptd7j*bZ`paFuy!opua9`|3}Tm3ycN*(Ntr?<2f*!g4vb{0J~
z$-85bnv$|(+VNw@R@MLi_v_v6_gj*W^XW!xaLC{PcUw|&a(<@m<z>E?K|^RsM>sq$
z$=Cl;Ozv^t4Vs8^?G{`2LD3W1nK7yU_9i+C?2X$`Z!s9v|EoDW!_Zk+&F2DWWL`IJ
zPsF4z2ifH{l$4x&XPE@Ha*2NVaF`!d#Lu!Qe5AWJ{pO}rt%wZ^zP-P{-fOCsX8pfE
zAa2#SH!Hct^*naT%mR%$NttF<<ixKI)6KoL<>j<%pbYt>Y^Pa+$0bnPSvPtcX!b1Z
zc%LkI^ykCF!=S;Spy1%r7Z(&kp>uAIrB=|A6S`}kZogj_TvfFzYJ1*VcDV|N&(F?Y
zp6qY85>&C?-BmhSMb@SwV3LTO+`Emn6%{*zf`X>Zn^))k8r1AB+8iV6pmOr~argf}
zj@y5Ey?#GvY5~-$|MmU-`r_y3G<9@*?Ck8eT`BzbCUWVrWm<N2ammMe0%x1$g2st$
z|9-hV%d&V`*}FR{uUrZ7oV0)c{^Q@y8ET(11Ldx{8rS)p%Due3gR`<$ffn_G=H1fI
z&jXDVfl~1GxN6_KyUVAiMsDBJ2kM$#O76FPwrx-H@xEU#7WZ$d`kEEGE+%qPOzft0
zCI9|ZZvV@0U~bCmYiliInHcVf{HZQ`T$IaTS@B^3s8zAld-^Gf#YIm~Wj;F6x$FJD
z-&=~FdV$8sK=T&t@-+(zA0K<U@AtdiOTUWf$Hjowc6W*CzS?G^qvJCPloP_QYo~{=
zS$$qzMa8AAt}fEzR`jH_*sW_0|F35_@b<|9m3FK0cXKYcGB6Z%#z;HNtNWGt_U2}H
z&<+|<D=g^<2WXodXnY<t@w%_JdTZ8Iuf=Y?mzeo&7O>0Le3*7Gbyd~ZSHFI}UO#ot
zoHd`Gp58r8-lD+a(o=<?Jr#wbnn5noW;q{j)ZN`x+SS*0?$O0x-mgl8SFttBDGR!!
z>KUvWdhTHq!-KRRL6;uP(R=hQt!U+f1qz=Zw#)DOcW-a?_KiBH*TnC?xA^V7z13$I
z_uEx@zrML8bMi)=(<Sfj+{~?P=acoBXH$9RU^9EK;W3-vZ#JvN@2h$C{eFG<)}Oy#
zukTHbOgq%VdELe>C}`5elqD<OjBF}CJoqSH;bS`ef2{W@)~z2N9Be**wj$<Vxvr+>
z%V+fu_c%YfrLFMr;lrrSX}zE@@w_z4G&?17T9>Hyvy0n8RtC*7ef>($+dRCaWD6*s
zPEJ<WwzZArl`^?te!ph1zy043W_G@ktEL4H9L~<Q4&S(OBPfA@mc6vJu-q*^Z`;-1
zzkjJIXryCj>^fcrW%s@-pw@Nh>M+n62GB(8{e88ei(EQoR)h9&fyP-(D?g>Es;R9i
zd3g!69jfa4ySG`vi(EL@#_S9_Z~uP}s1<?eXF7=;uLsqH^|8}H`$q+5-rQTg9W)m3
z`T6<PVQZsSMQ_jZn_l7#YJFc_9e(}kzDqrfj32@ce1p<GJtwVtTA<5NU<?Tp&#S9G
zzP~kpV)pt5kD!o{Df23y&77kLYSA6=o%C8=36$?XTz4d9ANEdNrVc|l(2AC<tE-kC
zYUMtC{P^+54`0t-{a%BIfq}tcXN{b|az<vh7jL)U4=X9z0$Q8r)XMd=#1rJ3e=WC_
z8hmCNx#r&9cJ<B8&BeP!K*Ht^w!LVYI&0P{HQ!lJN<b|-hP(^8f(}yVd27DDzWy9Z
z2-Nrj?Xmzh#QNmz=UsjZGT_JLyl#e|jY+Pc8Nz0E{;-IM8K0h>Uf#sYz00<#si|m}
z4@lYd!e}0+{M*~s>YN6*SQr@YEV!-IQ1j>GaZvsR4UK?Y0_u`KSg#l!$M_SpA<`4H
zuubQ5(cfCz*j*(%r>27X9XlL%8Z{g_e*E+%9oug=l21)m2Ms%{-`$%U3Er}<F#YsY
z#+2{x?oL`_Q~7DfUr=A_!MADJ%pNcQU%xlkJv{P$r~Lmr4QdM3EIbdGw7M2OYU^9T
zD&p8<wXNxb)*~~$=B`UwE03-^up?14XK5FA=!!)=vh33rJIRW=O1Q>!Npn>k;puoY
zg{ATN_jc9&%NTh%&YwMc{q>w`zjvQ&^M0tz5w3V1`7W-y_H{7>gM#@^4p{~Uk6utD
z2Pr!+Ff?4@5NIg%>VT~UU|>)%WnzIV3D(U&yxa2hG~I4@`C1dZzh5p#Y|DvM@eE3|
zoqX~LGr!G*r7sy68dja?WT<?%^ZBDQ#^-xXv#+`At@^qs@o?MJZzofXB4_Y0Fx-%`
z6jW$t<L$aze&1Hjca{jdd`-c&<BSXp+XDS!n2pNc-P!S|OZx~r1H+RYb2uja{dQYF
zY;Dxkw}uQ14evG8nNn_SNGv>W`~AqDpPx6|axpM`uzhmGR3Uh|U+<wqhca$&%Po0*
zP50Z4<bKfNvesIonLa%-mPX#fObiU66NMQ+?Y{qa-Ji$H=T&8G{>>r4z_8+9k&=U1
z-klk51sNC`-YTfCV`OAtDC4s%WJ#G^`T5z=&FAf;xy5ukIy&}#yQS@C_wz}{)m5R>
z)R`F=Rw<=3f!0SF7CkxPwLJOh)2BxdG%_b2=@5*Z#lyg`V$~cA*4KU3?>emC?=i0X
z^H~1)mzS55e|~zpvF7Ke8FsZ*b1I+BEPOt<{Mg*`do$k}GBPy0pCIh+aI8mCc=_D2
zD4Tyj9*b_1ul;iI<BjBg*UZe!JJs*^7G4bvPt9~<U|674^oZlcpP!!>SATyO9rOO)
z-reS!EDQ}Y6NDKrZOOb`@%!!e?K}Q`yPfZzn3&il%*eoSTS=X1N%;D>!vBB2AJ^S}
zM=1N+8qNFr($3D>@%38t<A1;3_isLDrQHn;uImjvvQ{Q(=jX}p|8;f!qhGJr_dh#3
z+uh}eczliE>+9?L^<sA&@io6Y<*6pf?URHVgLap_oncj)W%KjNWYK%<OWgbAE^bag
zZ}Ig?u=3=SDV1If3=eicacRgY`t@@8@t4cz&jUwo?iAtcp#H3NdsZdOlF-#*6Q@rX
zm#_KY_-4~-y^E_tSHHJ8sx|rK5%u{slP<L|FdW#nVjAP8#qxhOjAr^gdHOW8f{%gW
z$+j#>h2-OXf3H1fU~tGQ;^kmqm@sP&$Ap`k(~mFiw~I==U3}hF{J4C5jZE#Ai=bH3
z@nvIR$myNKF(G^1PBk^383F%l?(L~8JSLfbWKZR1C8bBNR<G~-{cg8@^kYT_hR`X(
zjGsW^3F`6AxBv6uaNuIM-ip_2w<jIzkt}>RGyRzSzYpy?ejE%8A+CNbC%Qzn7ZpA}
z_VoPx%4aiQTw5D$l6gr*NoiN<Yq8?z=gwZMU|?_%ed^L6A}V_H_xt_wf`Y25svn=t
z&Ohd<J~w3FzN)XUK1F|HVqmx$zI6}pdwc7@UoJm>xBGqHrAwD)7$&<tdH(#kWcr-I
zec)JreQoV#3q=No08vXpg~M&U-TM3g7|B&WnV4~5fn$%Xwb?AwY%xJW?eKLyox<wJ
z_W%FAKOG(;S5^kAAM2Oje{}14`~Nms*VoPc6vDu8;M%E9hM#7Ym6d_}>;C5SGcquQ
zIBw;cFgtITrqN8FnDV=&pr|sxTXMO4pW5V;M<ysb2hHGPV7L)BQ^j*q4*$pVpFVw3
zntbxet*zO~*JI1qUXopBG}9;N#s<aKmt}JzH>VvHbe9nne5~{+{iYmyg0+OaV7mK}
z*@A@?)6yAl$nE>N^BX8U9=8A9xlMP~Q^5(n(&lxLQmpbb52&EB6jb>9>}>bR$?Exq
zwV$4xG_3#k=L;JX1H(4Ytv0N$=l}il+`fORcKETC%jfO7`4zMx{Ne(~=888Pj|a_z
z6iS6GDZjqFytp=cyY9OA1&264p3+{w#6pmPVS{dwlEXCJXtC1Q*X};5nrl`1X!ZJi
zUWG~w3<=RsTpHf&d_M2vtJUlC3ja<GkL#SK8@&v!?bo-r(*1V7GJ2#;R~^!=G|#yq
zpzPk)!zrwG#J~R6WmqbSX|b#L@L+~nZWND<g+Uv?yxi~i`|Dj?YJNOy|M+xzyxa40
zb06<|z3%j<DGUq;%1?GGEByTV^W&e-=Z`b<+X%>7m2{|jPdhS6)q9b1JKx6#&HTrv
zXa+0U+uPqxW@2Etuc+SF;NtS+>C>Z?&*zFipIaWc%^h6eo@4QFafytKJTuEwTTDMr
zM%KElN6mLuO0^0DLxT2`BbpI{f{WdHyA~~4^y0?G<Uc=-+xL~<t5jD~nx+#e<U7lx
zlU=^X;54YLxUZ_t^kiYXTvsDAyIa4U?W2S2@;xe^r>@U3$rOs+UG`P)1p~tb<{~AB
zcRL>US%6ZpfBmoEIaRM#PQBJ|@u=g+>-hh(T2C@CG_0K{%m}InEPg(jynV;L6@kj{
zTlg3lEEUw5mN+)EZA>{iNq61(na1j6_iMk4sDq-})sMyF{5;#o`+mRcetLR(c+~IL
z@&BcgkM(q3_OsUIp3KO=5UmWUJ2oaBZp*m7F80r_>-+nB)P(E*JeGg_X7l+z<$fEZ
zS!TIX*W>GJw;g9;VA$vE$Kvt%+1bZu&F}Zf*;XBC;S^T#oK*2-qI=S(Cnqm%&%a;s
z_v`h|pXMnXZs+gcvuBURlL^jRYimCoWWTuBy?;gY_B>F>@7LGY-`6gm$jESj-|^fY
z!NkkUe8J`H@Av!d_x<^F`o@mJWDzkjx45`6sjP>GS_?m)HFuwDRcf}o>`viv*TZeR
zkEccFb%w4EJNkC}eYy90zsH@KV`-dq?aa)4YX*j#@T>po4}rEEB=y^V>xlpNY5K?R
z_&-WYN?hFBn{7gmEO2ao6#wsOd=hAP<hui=H9tN?>@LeaGtbsKYD<QoprE^KX$Yv&
zJk}>GEgn~qXy(So(6DCpx8(_-8NIA)Yb1BS-4?ygUGw{=)B4Akcusz_Zuh%eZ+<QD
zoV;kqjvY33N=kkf4_iQEhoA~8vzL>B;i}(O{s|o&^Zz_iH!OT~gzJ67JY8w?ydLd!
zJCyWxy;x-NVnMUk+WL=2#Wz-bd}Q(IgtGQpP|xvR)$6q;$5<E|vR2-j-y|w{ak>Be
z9d9<BUgSMpukfO)_|bdS?`5}UU0t>1{=;_peTUN}ZL3OZzTHg!IDP-0)XlF|RaFHA
z14BYWGS{wHp)pM_Rw};!Zz-q}u`cmrU|7*tq~u^#{x0U<NA2}{f--GAC!I(!0;LIA
ztK*lJdOtSb|I;_7{_od|D*_jveYd&n?X8ZE6X(yb-x3xO5U{VGfsx@syM{W`6HxN@
zQJehM@X@Z<>$;EiN*`}vWZt&p{4!<Z)YR0e*Sx&Fwcju^FxZ<|3M%~l{r&tm4#V<y
zcO;C{z|9dcy%-6>`!bc9y1KpV_y4mJ(}@uH`s%8-{nxC^D<l4|Sh7S#$}}sab+LT8
z%aNA)Ti3q7=VxHJ^zp@g`Ts9I=kRO_UU`i%C@M<I-|lD1nc3$0Qs#LwM~@zzy?2`u
zFSoc}kBaA`F70(4r}g*mxm5M~+S<pbwAc6C|MzWsU_^vO{+^F+OKa24&5?Y2d;9uB
z^UXAr>c0JLXJdF!edCUP!*TZ`HzQ}HJ`c=gPWkxgXyKcU$B%(_mcFkG-Cg$f$NK-j
z)?0i$A{;z_dF<}8kDwXwOW$6v+pQP2K28=?TwGfl?S90({B6~bhwaG^54Aqs{%EdM
zX;#gbi|&RQ7Z!v(XJcr1r7}6Bz4~_Ev8U7H<rcg5_kqfd>+52Z-`&}1Sn}e+itzPu
zHJ?tZ-;`S)GhHthROWV-->Y0+bNl)HdbxJ_x{537<L%e&`E)8`YgTBFgrU;6JH_W`
zSQbAM^FKJtG&@YD@Q9$Gp`HvQV;SG<y5JvaE^mHVi!!~bxc?`n`tw=y;GN8`&#ky6
z$5{FA=X22JK*OXX9iMW~&NA(u|L@E4j}P1BkNx}oe*V#yTECuiKZ)L!BdNdlOHfSh
z*Q<sVA0FH&y&k)G#|{h7;Uw?E85sU72))hl^Udb-k8WkJU%O##@N&P2DxNw~TUOj+
zInk}ZZ^zBIxwp6Vrq8c6dz#6>u%K%7w)ZV@VPRqa_DRmpsoGcf_g7923j;%q|J83C
z9xkBPZSu7>kx$QuuZa*86qK+3Q)rTLVZo(;=MFP7G`w0H#eQOfqI1%T35rv<#h2Yo
z6`i;ItKSO-h6CS&bD2Q}@u_bd3=9X#!g86P+$lbP7RJ+eVrO6|vqNgy!&?8KigZ*M
zwMR6_!emL;y^6=Z5(WtlTe7d~y}GhexccqZ@HwT|B0qjSE+2mDdo#aXhn#Jd%iUe2
ziwhqgySP4nf5fH~PqAg79Je%W8~X{-?f0s(_k6pReQ|a8dQg4!=>Na>{~v)`l!y84
zZPL!n5M-CDNN{n{iP>S$XZ>zR#*Gb$cZyEyZp^y6YRBJiw?X?2yJs4wyPci2?<oVr
zpMszF3q*OPOf=+bzg*;Eytupky~U3Q&EP7lUB1pjNeR@T$-cg>_vYqw_iiy=C8b9z
z7WZ}K-Q9Kc#>V8whq(36ochDS5Fl&8y1J{+^4Sb8cl~d7%kP6~h(~|F-`BrymU(H3
zhMt~Ye}6}Zu%CtEtu2|t{r3MVvOY60IFzb5>|5^IE#^8|%~wh3QMdlSj-%b;$0xeW
zMP}~jleIb$oxgYLw+aS^fVCVG-Y4GKQMj?-;h`6om;1Z8Oqnvp#l<BsFmP#YcUM=^
z%S%f?e!U*Q+)9~&Aw-=iMH*C-8zvlR05yKTyuPllq;zdvthAuu&!0c1e$&^`Sh0bh
zf#Ht;=Y-r185b8>Je?8@>g;|zBJA&?Ho3E-BWi1wE4YER^!k)()531BGceS3++oeu
zUK_L1sOrlLa6>%v^0K4vcE69?x9#PX)xOJ<{w|(0X;Q|O6@j2iEA&V3yN(Xd|6A6+
zzc0_gu;lT@{r3MZKEElEvRuhwn^R<Dq=>lq@jE+<lV4p~x$*zM-{BGY_x4nZh>0DO
z&fgRGa;tIrxt?!tZ-;;Mml6@Q|NW1dnc;(N&O7k~kCh+2(K)l}a{*TvXwKHK>iauc
z<Fqp!ox<vF?R>IkyYKtgeVSbHYUT1IP!WE6ncrL~`PwgmU*6rdUR%h>upp|4Wl7h%
zeZOAKu&FGXQ+6v8)G(8<ud8YOI{)vR*~()3e_dUl^yo+@=wP26pH68fUtJYym~^DW
z;>!i+#r6OHMb406U|7Y^804D2|8H4}(M*s*KJ#pLUi!6+A@k;@)IDD=c^7`Y8h-r2
z!Ddj;q4&|FM-qlfE~4xIGcYvFozAdwk$8N~##6ty<=!@%SNrXztOYLv!xOdZppN89
zK?Mc|hb$IQ7f_0kiGg8>+o<pm50evooAU1N+VSmH_F~s=vB2GBZ!Mn9NKQI6Mf0W{
zHv_{auZA}Y&*xR=-6_2uTX@d$`H>ZYix;Jxodp_zsCc{e`X*Z`28I;hvpM`5jAvOE
zr}@k<Py}^HcD!1(T1n~AoZ@qxWp8gCHN74qe0iDg=}#>T3=?Gg8s0DntNZoLGR;2b
zDjplMPuJewUT?>PCeZi|sFdu!%*f#Ijbnmr!nZd!FD~<)y&`zIU+Y_0s}hZPc7_Id
zCB{w6ppphu&b)PXb)Bf<S@ZFzc;pN&28K=k4R07gh2x(;f4pvUb8(%z4r*bZaD8Fz
zur_MzqBU#QT>5tD(xp#d&;I<M_~})j6t6<+?7Dfj!h-M9iv=3qKAAl~yKdp0w=5_4
z0zyKz+`PQT%gakiX;J0pXR~YX{`vX&|G$eb_S-X*i8*hwWjIh~TL144s5skp{Ddb{
z3VX)=eYJni|NrB^CT{PpL#;2?@BdeoVl*@3{=UCy@z?iOf0r=Ni+Qv6`@LuzFD3?u
zZ);+An>{-}U;ggy^7G#`EVU=Acusn&SY`$)W|I3X)!cd{1jFNNOI>O{pL_B4*4FMr
zhYnSI4P73=$nfFt6OI#np#2#yuC5N}k+ZQ7(~T1O{cd+YXkY@=0Oq&-60q$!Geg6g
zLY5Tv$nANtJd#E#$9kp3K?9G@e3mM0ywYOo^D2_Ixr0<eQu7|rTB!+Aj6u9>qPOd<
z+xzWS#>GXhSJuT^gDR65MyX!gjx#Ydy!C4cVJ4V3a>Ca!p4{ZS{mtITeb$dwtzOsF
z(XnaMCQygbB>S4qGT+(Lo^moWB>XO9Q8}&VH%G!W`&v)8-mVoj(RFooF$D)%4QqdW
ziP%w)D7KuLq2aA}L(0uJH#aZ#ooyz1&(QYK?C(N1x9~AASaUN@N>x==1@}~{0|Nt9
zJcZ(GKDvr6V`6BKb#6$xd24I7vc3KOOW&HBnm&~>Fx-gbn4q&dbamL2sZ&F5#YII$
z?Sq-)>gpO86cm*Cds*(;+2;PB-usP27LRG5L)`3sy;vNvx2m-DEh1`br>TM5=HHNV
zb7uNHNzgFf?{~Y`*WBJ!`a0>&jg5t843E2Xi|KB%kY!-Vi8tMBdw@T-olkaA`1&|d
z+c#oMM&O&>@Any&y}1#wA;Hn+%LV6~a{LSo+qB=e#DSxsjYm@G@v+|S)YH?BDz?iA
zfySbQ{cQ|yFJ@#oP^JnVaNfa&7+)s25n5(c{eExxoce!1Z^|X_{_$A;zeHtarD689
zHE+LJ=I?mecH;Es^YRYcesJ<ka0ZQ6@A&bkJ9&QXw@y%{{P)+_#lg${470AR(9qTG
z?db4Pn|xLB_xJbmpi!Q@`T5oLwljUyUf)-4kl!@xrW`}Vs>)w4moF}Ve=jf~K;ZAM
zuic=60u)}iwqzEbHNAdhj%D#9{`w!z+m3&cuVL6Xm4WdD<LBq+`}fuUc3T~`_K|-5
zPj8dlTU%=0Uh>xOUFh6??6SZ8+@qX~3$o@ku})yl+xzue#O5?#n-2$=MIR+kzP2{{
z_|xg}`)*#>i{7SF_wV!k<Dh^neSNL>*VotXpwW)G<@Z)@d4IS3zAPxG-7UMVD`lD`
z0_x3!P8fLldUg1EaJOo8*xE%47ASzm{?zA|1f7{@TfKVUyz_Ryb@X<>*<|scfq7Bc
z+glfxcuszCcXzo?#D;{;zt=}@R@2+};}K{JFQ}(=&i4DAh<!DcOaFo@T8n=_9xwKr
zYZbUYZm))(UY}+0vzq5N`g=Y&$&}wIytpCpFlg{Yrr-c$;oZ{fxmT~VI9#=0Vw%7_
zuj<vxjJvx^LBp@ne{cEQ|26sdd;fpys;{p^*G6saa_ts7y7&7%>ABYBAVZJ5+x=cn
zP!KebqrHBQ5vYyA%+A+y>C&Z&=X1-Gj`c`_#s@k&z>#}tiD%)@r_<eUZ_9nWdi}mG
zP{Rr|qzdZee)9SMd;foFP#*a5_O^M{wj4=N<W#@gslKb^rBLy+Go7G(Ry$dxlaZOt
z1vKVzOgg`Z-~NxmyPePH{Q!0Bj*7?Y+<!mOU9R)r-{0<_F|KX5^Sbx{eVcDs_2q@d
zyB&`ot=)dF%l7-7;?0}S%rsW_v;BG{<Nm%{&=C5k&!0hE+mE-h*XMryF4dsr!LZ_5
z*t(dRDMmA&^cbI8ap@l@K^NVtd_L7aetTZ*(poW{hzTMhA}WX5c(w0;1NFL39%PsQ
zvv&S&$7Z&ZPp8NKTl@RV`}_7Qqqo1?{w_EwDk}4KkEHP=AGOIn(&p=GZr|9LJlRKW
za><Jeijn*4YJYyaoxk7q<muDiYX0-)sCZ6V6Svn2bQEFHN!95gKjw6c>-&LLtHsoO
zJo@x@-j0WDD*F2C|NM+CzdQBG)2FK5)Ajydo5^^?ZcY<xz*$feRw-%rd!4PP^>$CG
z-&6SbSj4W9Oi;P|?SB1#uI<}%FD!7Z`S<hr$79m@IUkEnGcG8Ax)-3GFeazfe*XOV
zRDON@eml?@&D!YgeQdl^Ip3!3{{JoizZhswSAE^frJxlYrjKT(&+F{ycs{@0E^JMN
zVC}Cjo$L4gTJ>k*$&^Pg7Wc0!Sdvm4AMA2u{{KJEJtjS=u8n1=F=u27I1Admp`;YH
zHfpQydjCl(@AiB?2O6V#^8C5`WHsMKnU|M+e7F1ku`W^VQ{Q)k8WnzXtu8KfZU-si
zkuX?rDbr*7-LmLC-|tm#JT6y#<f6O0togl)<TJC)^H-;9>FV~rUccWCH15D<yf$Lv
zqC-A{_wR&e->?0?c0=y=yJg*r7A=}#Utj0qa%Qfz`6QK2z1UqYiHV6n7lW)m#I1ki
z(b4Yh7N;ZA=ZeZ&mx1aL4NxYn{r#;MbSiBR!y5%AmIbp`M{mzF$-ifFuloJo+^WAH
z9v)7<u)q=2tOhl=ZT|oHY?yj#ip7Tm%%J7QPk+l69AE^GU$k%vKicuQuiJC7n(K1E
zxsQ%X=j+^G9=<;A<ICmqkG-$^z8h3k_DC2i@malCQ1Nc(^KDtn7@66QoHf5M0}5yL
zc@;`=6%SiMwWvwfl@*74Lbnz^K6WC-$gu9u50Gf<ac=!R0-&|aV)4-d0RsB_{}lPm
zG*bQb^|ko>eZTWSozucgp6Z<f4YCJZUocoM*s;R`G`(e<cIL(_?u-9F+y6J-RrXfu
z``z;R*0-mp>-QfzbcpMA*40&_d#k>7#qF&+`s?fK$34d9IvyTwhj#@!I?~S0I;uK7
zMre9Wk*7}NCKW#GHyb4EYAQ<J->Y4n_Uiur`a5N}bD!Qmb?TH^b^2-*&qt5@?fc~a
zzHonf``VgFVO3St!c&^dU0jaX{eC0tISCXqC2wzSJyrZ?F({&@>%}G==@0~s#vWf^
z|Mzvp$D`uge|~1%P}$eO@T37WU6gfwove6V#ltjz^<PgW`zKvl5jeXxw^zzk>#y4X
zPW5>mt=!^aH@20$yu@`r``Q{w&<K!<=cCu__xJTmn@@}H-{c8Oh?Sq81%`!f3yt>&
zX_b8`VVV_^b7Mo|=HK_r@7Hdu`}^zD^Y3?x{XtVERo~u73JTucUEW{y_0`e(Kga7s
zZsbo^^`4efI4$+`w9s2+FBZ1DO;U;eTgv$1t_&mN2}V%nvj6+iA5>I==0{u0o$9|{
z4Nrb_q_gnf&*%BywjMot6g1{$@&C`~$2XGud&}?Fnjh<zm;e1{vw!PfKdYBZZq$Ci
zyEyrH-^DeNn`aoO`~CU%eSiO>M~`mgZoiv!v`h5jrqt6GpU)USzTnK?YgPK{2q;y6
zh8h2S+rEG8hn?5fMvEVA=U;E)z1Xey5vT@y^ym?2Bz;lb-m1a}jqJxj6Qi%LtOV6U
zXX|)hUt8M^>gt0^e9$c5&$p%B-QCKMW?#PI)-NXus(=sk+uQv5@>009we{o8^!Z0G
z``gRTwJN=pwBT;ZW#5mWp=!<LbA&)6Bsx)BG(g&_-|b8<d3EKb_5VDE8(uee{S{+~
z&VP4j=gFhu@pHE1-L=xx(C~P5b@g<a>Ngut-YvgBcgobMs-BZT2d8<Rv;Y6+({+%*
z{vSv6CyD7ssep#Xi~f8(u5O%m#sjop5tM#v_8TT2Q<-aB?#IQ=JvnM?mg?`f+v7i-
zj{j#Axiu?vlFI!%=f2;{UhfM^uuJOx{_+GZf;!A+t+Vs{y=v_<H}=>6SJBtc-`o$H
z`}Ulq61lIYvgjbIxQg#=GhdMFzP!0<{PV@)eyy{1Wp8e%=<DlOKAjpq$y;xy3h31H
zp!IQkm&EU{I|(`$qP9M+>gCcWPbT~ONtxx$02R+S^Y{Oq^!dEK{Y=yBu%CA3cM6<?
z7Q6L+dal3kM^e!-$#fOn=xsk7lm9U=FqDJt2=L+J;+ix~H(D)yer*|OX6F6paMlB2
oDU*(fmN76mSj8|?xqJPy-ZjJXtI(N-)1YM<p00i_>zopr0EW00KmY&$

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-5.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-5.png
new file mode 100644
index 0000000000000000000000000000000000000000..e2f98b96c1009bfb5cd8274a96632f8d13fa871b
GIT binary patch
literal 24647
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_dVj_=n;|37}eWt^O5kaotPr*LNB
z`r<1)PERP5^vqLjNfL_Xc=<@iMP=c#3%(C!UhWW{Y~kUedEL><)k&{+cVYevL%aR<
zHQ)c;{3e%nXjb6*=Z`nao6i3lnO%GBUiS5>_g{am=}+x3WMW`oV34*b+RX@J{IlXv
z0MR+l3?P1jG!qAidt1N(MBQj(04YCU#v%aXZc}UkQ5$#}Sr`}?8gfb0dgAk=M~|Kq
z+>!gg)2jGc&#x~p7r%Is@$=`;lgE#{M{mzN`!-FnJ#1~1YWv}Z;qkSm+h;#gR8(~2
zYj^(r?d|7?Z|AJvzsRruJ^R!1^ZM<F7na|vbf5I3z~ah^K;_-DXD!|H=O5FKuX+9d
z7c>7jEW_7+`}Fne;faZfSvNK;T;?-#((SXS#ZGTZiJTT48Mn8g^5xR$U+z`Ef4Oe=
zyGsWenZKUWUcaK^<D=^_$0awct6^njU72-tRn^z4;id2HSgwEV>gsy(VZn-kg-%vg
zUtXAQ-&_6toz8dr+*>Bs>-PWobUJ(6*DEW7rHoQKR)wuywP1k)D+|ktl#`QoJ)c+o
z<x#hO*6C@w*JJF>b8l>L^tbugq7}YwjZ-U^rh<Y)U|?X@^>uTfote4Vd%E7!GU3ff
zZ+~~3ly+{;%IEW{{Tdq^UtM26zl~3Jl~w7h9c$C4@2&oR>S4i(=<Rut*G|5&VEFU%
z=d&_qhC5Z$QZrv%SZH)iLs{9`y8PXhKR-Wj&AO_ks;<7fPW5PS^p=c?TA{0!oVWX}
zbNjW0{*hf}Z&$5Yp&^-E^56iYs;VkT_pd*n&u>jTEA{i&ud3MhcXk$6J)Ii<<siF!
z%FeghGc5`i$?&!J7|t?CY?@_~`Dp9CgU#%r+w)@I-rXJk^wiYLi~H?XDY<sNIMONX
z<>z;8N8#fs_Vsl~j~q$)edBGx$49PT-`$Otul+KyrndI#0!QYp85f=Y{rl(T>3K0c
zzIJKl=VvQ(Z*QArTV0lC{(YBQuhddTW;P8Yqf2XRE-rH2q~qN!rW>>|>FAwlx%c<Q
z{`~xW`{tR~Lw1+t=HA}s>)Iu9^6fH)6Ra!(5A>5hJUEzFzdmxa+t=6Eud~b7ED(>Y
za7;Zl<>b<7e+`e#xRciu&dw(j(9FjB@4_xlPR?E5?^Vav_e+_2g{}&@xXgF9N%Aos
z+iy3L<F0GR@7ts1J8Q|l+TW{!mU>y<dfq2%{pIWRcx^koxRoncMr}xF?31%ywaB%*
z>WZvQ#fEQhZ!dp$cX#%o7EZa-{PK2dn%ViEW&AIDadY!>kU_iO?~5*eb|&!Wr>C~B
z&df6P{`~y>`POSsV>TuowP9*2`FW>UZ-3O$F46qT-RnyBzE5{>Xn32;G@<+gEBB9X
zP@)RiS(GZ7JY~+DH(SqLTIzjuPi3*FZd3>(BcoRQzCFLbzh57`+^_P=--qq;S2iZQ
zySlq;D=0WTeE4ux+}>TkzP?_5=8RAH-t4dO=kvC&Ixb%y(<^0KboXXqnf#}ZA1_{y
zuh;cFb>hSY>-T#Wzq-0w+r%V<l}jX`q-4vjEt!j-o}QlmyVk1Y#e}M_ua<&x@$cW-
zHa0Q2x3^tg<~#e&E7P1C7fk(9pPrh!&g`zo{@;gMxmWwnHk+hZE`RFOiHXXkpp@|b
zzWwpvGYk@&bWUG-+;6|GrG;hb^5w4|_uGGqDnC2RbkdUa`L)+xe@Z&qRk`=~#A(x(
zO;mPYm34KMR>Xz{O-)T9+w)@2&au4wy3EMP$fV{+!BqYDI8XpYZ(GC0FSq8)moGB=
zm*21bJ{J_^8#Wl|#_qb3{bRxsK3S_5_WysLFWtU9^Rn94x3|L$4Gp=txq}lD7HEa7
zSs@-@6R7S#?@N`=O<Vr`Kc7i&&AA!0)N5*xgF}Ool2XZe+wT=M^6UQb@k*Qd@U=U~
z*M6PaW0-fJefgSu+r6jjy*$isAF{XVtB8=$qCY=BuXbwXdUbJed)eDtPgj+Hc;LAA
z*Q?d5!q?AJQc`;I{{8wBCp=2u-HE)tEw}jgvki%dL$>8aMowGWZ~yPc+U$qw^J|n|
z-n##Fu66k;@9BD4k(-ue+sE!MyLxV}we2gb{r}_Z|89MDZtm(^TeDX?G%|twalB79
zb|H_$y+g7B44*!K{;VNwmNTP`S9;lo4F;eb_weDvTf0hE3keHvt@xO<HgdBYE4SE`
z63dz^>tdt%+MU-%Z4D|Z+2S|fZtYy_@~l5UK1vxTwXFVq{OpVGe;+jS@6yYA^yra@
zxcKuZF;P)f&sVp$t_GD?TA`~}WM5y$#lv%@k(qr<)z>WD*j*vL(&qc#)qQ(&bMcKE
z5wcb#9=%egLCgK-ZmIuYcXp<+d$*YGr9G9Ouk5KT_MGk<c({$%wB$vAtE;P~qT<1|
zw&sT<9)C41%DTL)_uby_ak?=(0#=8uJ@rj?Mo$k<?WdFKTzq`jn)&Tk+^_#1tH0+%
z6DYQ)$5owNTo(~BW69}q-*>xSugiJ+_{z#)P-U?1|G(<c)nUG%VpuPB*OH~)(^myA
z_xts7`FtBar`ubzm$Pz<t*H6=>DArc+b><dY+Cs#<?n~X{5NkspKAB(g>vMyrOW44
zc|Cmi@cNqSwcl@KK04Cr<>eLB%*HDsFTdV<x}K(`Wn}*TzuTtiL@p|QeQl*fBh$KH
zH*NW+>qIUR(~Z)wu!sPKa7xOOpy1%Gxwp-F<?Z8~+jt6dKfih(aJY>(HFBDo|GYJ|
zzrXF=6&?4!dfLQ^3)$r=9OCPKF7=wOxAxpz>(v1Zoo;PT@1HbjQpo<g+Ns*%ev?2Y
z((7LHdmtmeemKm(I^kf`ucy=Fzr0*NKkHx<>#uja--j&q5)H5Rn`^anWAbq=HML`+
zi&SH`SKn*nmA<mXQ+Td*x!>BTt(WGO-&^_i_V(;oS62Rdv-$j%nx93X>*MY|-dpki
z@At1ipU+<%x;m_@yZiF4($^;0*K~64?h1|GmUHr2I`;uLwgdBLrA8imSWq!#ebm-d
zKYsj}(a^w9{NjS*_Ehb#H3rjCXI6cEHS_Xv|J}N?jZ(Wd>YTRu|L60%P2zDC2Q6gy
zKL30^zxvJdCnqQ8)vK$hNVFeL{Pynd>%j7-r=}j;q+^_O!(jWT9Xl-glTWN#XLxLm
zRp}`U8NT4vVY>aP$0R1tn)PbypDf?mW~O}YhkIl!FRiUPJInOg_3PI~G=q-Ju`WNC
zJ2N$MS>oZgo458&{`@0sZPe4Sx+f<DgBQ7QJ}$60v#0X2&9&~XE+fA7!zpQLvv{S=
zKyJvow&rE&?cHT>KSk6Z>ybRRN$2w!<MTUC$<_Tx1ZnFM)wX%H|NFh_W1Dn>R|F_t
z-d|t;`RVldS&xtR$A7-DtL$x-3}3sak57sA{(^^1nb+3L{P^*s;r;smdso-o+LC!}
zla8>obhcj1jt5%yg^yY^!`ICzw2-l^s-OE>Cw`yJ?bi~Mzy92sf8Vb7<t5erU;qDo
z-`|@W`K;IcUcuC-Pi$&lENt&N{LsMu&xdCBy{qp(UbD~n-ad7|d*@CwGP6mX-sCge
zEZ3*1YS-;eU%r$Szqw&}{l0s@oN4;`d0%h5yS6sk_h1vN@8@S{@1FYp=4P_aX`_Do
ze><*!OZoaQY+cMv3mHD+<YPSBKi%A%E`55_8QJnX55w$AUIZjZPUGa`GqeBqWAW`x
zesirP+Ycu`J2Ug~R$hi8{@4u-`#GM=_D+wli<Gr038<;rqw;d?_IsaR82>wG{r<!z
z9p4!Sj*gCwd8c=kyj(P6hJ^2Iv$M(ajEszOsRs`pH2<iv>G&oc$>b^e@pkJ^bBpWM
z+|6CGWJ$)&O{rS3yS5y^+hA4tYDMz#J}+P2t9vRx=XuRm&HVJ_q!g&g<C9&bKEEcY
z{9fg9K3OYp!GDlle$TUArdd}4+WBOs%$c+1<>lq++4aKeekHth<z5~h1-x$iqt?gm
zH7R)D5WA-$u(PwXtG_>dqLM49V7C4FWU^epw4bl<)h(HqLl(R7?)`9xJMZ+Tr>B=+
zT<re((o*ldw{vYOH|d<d^m_gNci(=twzOn?cyQ2C?)PJv$w8Y^PRgvEJ~e2mSLNQ#
z6DCYp;MB^M`SQ}zb(`kQX+M`+^_#D?t?gdMX4{xuC7zFu_lN)c^V78MPes2qOI=;v
zI_tPeAxk_2w_98Lg{}$-T<q5S<!X5R&eE-al=uC9XZ`oj=ku$gx380{d?L6#_3f>#
z!F#K|e))XfKKtvdt8%Zuy}ca{3XAB-emUEeo{PV}zRq6}%aCWcD}k|IFuc5YqmK9g
zU)T5F(X*R-ZC$Lkz5RZj`5aT`&0DwFz5msbPGPN>9UH7lUMwhld~9Xu>uXg%9=2ay
z;wgOe*s)bPH#cp660uHQL&HNidfSylt=yu*!i%@%-d<Jr_t&b}-P@R$nKy6kJv-an
zd(x}x>)&6Ses5*qVz*gVrK`;H@2zo{ul>??JEy1cYyW<5Yru1|T57hmvU?w>8Ecwx
zLBaOVhr^L^KfErji`~7Y=&4uex|qnV+1JaanrC10Iod5A9uzbwC^*<wuP(m&t?AeI
z_v5{%>s`IIHG6C3Wwo`@+x;f1`CfW*axy41OW)s%z4Y{*$;_EEH|cmEZsYx&;apX<
zOJ!%T;*C9(n`QXglaiBdU&Y_NdhX@#_xnLcM@M>ibo~1EcJ|Ya_dB}9^<N$4x4*I`
za`TtV{`N1gtPIZUfA8z*S@^fw@7&>YbFH)g{rR~nboDf=k{1iwc%`+>%&tB53^zah
z?d|Q-S64Kzt_*&@tG}}>YD>mMyFVYCRn^sB-`JSEtK#FL?3t;NR%LHyTxa}n^Qlbu
z)eVWx>rYFYW-ZCz|2J&5d4Aa5s;_sx)uwLOSst|1%X5<79E*?bw^<%sQ)pnQ7d#iQ
ze)-a+Eoo<^N?%{|^|$>x<<u0-$AyXIe|{9ErlrLd8|+Apw5tBLhD%&;%`DUGtgo-G
zf+}~rzh8oV=URmxlL%cE;<<j$r>^7cXO_*dt={I=FSqvP<>kA79bso-dGWAaJ}fEe
zQR#7J3-(*?E-n?Z?{vPKefZJ8LC0G=d|k-jUtg!roC#{guZ-Vc_v`!q|7%~o$l#SS
zd9mxZM)0zps_*aC9y#LDD{X%6wFRI0bJ@Pt%q#l)`>o2~t=WFRE?U0+&&GN6|0?@S
zxka^>l)b&RGIn>_B)$2;i`{xJeRz2I>T-Yit$BB&T)V}tetdjfHI`2)l6O(Lo!bpi
zByjQaewF&QCsrf>=BA^MZFGZ|^=LP^xVXHy9$z2o<#o!p@>S69Z*QkgnX;tl>8X{z
zv(2>P_U!oc_phpF^0A(at=!^wUZsDxsrhh_eQUu(r@ddVMbEOS+@$6+Lm|0mRrvaK
z6P4Z5er7zeKUH}z&HO=+w7K8kUtfbWGFCi#{5W)1N#@h@^W&$bX8!y06V$*uzVZ2$
zmBGtXBCnb5FFq!*{{GGh69oE=o+q!)|8kC}VRpY>#DRF9goFiBrddnQ+y9T5Iddkc
zEp=|b{rfO=3yX+WZt<|Rw6tmKyT$c))g?~Rv%g+{u!+^G@KMXYzu%&HC5>F%`(y&2
zpPRci=_psY?eoct*8TZ<<z-sz8ShE^_wR4xkz53-#_#W|on@9g>(%x3>sJOZ-=#Na
z{n4AHZ!Ro!j+<`1``eu}dTHn0x!T#;{rY|X|2k0f$7iOIlvT-!egFUc&dE)_u)vXv
zm-p(4iOR8z53<Dd<4Sy;ex9%YcR5+;$o6|x-p3?-=U5m<|K{Q0xdLjyu8*^g-BI9p
zzwY<iCIA25vzXs9?dt1OC;6M3o2Sm2_3G=Qi?`D+Zp{wwe;aH0a?$7MpXS*7)X_e9
z@+7Dob$OZZ*U#teU&sIdHQlX8VxgjQ+m3mcO1I9L)BgQ_{r-J_K6%fzD0DhKUH|&$
z^Y-iI>;D9T3Y>3mZ|Cp$8(tK*A-?jsn)b|@GeI?gl9JMw%l`J6$9g2CY^%1!RX!Ev
zl{9+N_O2>M)50R+*o^GD=Q^iPP0gFjkf+DQ@j*Ovsh8;27Z;uP|NS=mSdZl6ZEO7I
zT7km*_+!(}htHq)FMW08;)R9Irg?WPB$Mx`JuUuLeSd%b{^Pr(&2mnB6W%mu|Ah4C
z*Uy3)^>1!m{3>zn>gw?L?a^*mSB0v2t`1-S&C2;(m#B71<TOz6u=d+O!N$f$klT!m
zjW_@8xclHi0<WA+#B#s6pKiVNoHS|Dq>?8m1VNed?(XvMzqF#attoqRV`2WjpK7<?
zmiCDkv8{~SnsxGF!IKQ>tE)mUFZG_j=iBH1uU4<$v{!by`uv(prpr`U-+VN84{L|E
zr9AWPO{w1D6Uw5t=gqxz>C(ELb!F!dA2{G}^ypDdL&HF3cD|6Rs$F9GaW!XipNBj>
zHC0qdXwll}?P-+<-<Q0(VK~>OGN|<RwXZvhE8g9)>~|0Hw)|aZWx2mtJAB=jU3Y#u
zA6xt99ODLdMwTDk)jyw3pQ;~kr>ds5>+IW$>*MVuldmjx=U*>;`tQHr??Fy@{oXYD
zTE!jLiU0oVUkg8XAZB%#?)v@f{(m^kZ#iq?T}y{+w`-J+_sL%V|L?nf|0m=0b1&Z9
z-2Cb5*S*hvaJ>9<G^wU$&$l->9}8Z%wl;dXq;Z;tiOH8;&4=?tet&xlip$!cPp7Z5
z^jo(){ro&o*nwK`Z*Oisp1ia8UH`+w?Vv7tTs$*7-xrCVc{66Lm|yqn<ZHX|^>J(0
z@B8JoZ{I#pXIsV7wOcF{l*<YqyY2mUD?6_F&bzz2@80_H<8l9KiN%i1Y&%O|diwfa
z?GRKh`or;jSLy3j?)`FBb$@oe+x^~deX*xRvPtc)FR%Na7TN{<e8v4l*}bn~uC%K9
z^M~g5Yl_eAwll95D{eo$aGq`TtMB*guV41Je=E4p$jAs3=$=6p6+1pXKfnITla%f6
zip2HfLgw4m#(Z5DvZEj|a@y0czh_RpaU%khNLGihzqWjS-K%Xm@9yl3+FP|%D|FQp
zvwzG7-gX))9EgwT6jJ^2<+6YFogIasL>E{8x72ewdv%|jZ4@&bPe3b|D5xLi>hAvf
z&CSiXc9*XYTN}0X*Vost_y7O9Ugc%4`MnEWqS~M?hpW3gxP$TWxICyA+1lFr@}&Cw
zlDC^nUte1lu&^oZ%#4M9e}7+H_V(7T?fLWVe!nr^nt9o6bK2QcVYjtIS1mbl!sF~5
z%iw+c_Gtw#>(MzKG+i%t%B)$dR)wx!<uz4n*Xwn=Lso@o&b6zJ;uhDt^6+r`)$RH5
z>;1p%oK@Vk?cd+uue<g41@uapZppuIcXqCIxSgHdESt)rZQF_$$JKrfwf*s+S<0ed
z!F6lq@Xwz=Up_HW`Rcyf>bG}yUw^yk@AdfltDl~p4qf6QxHa#t)#==l7Z)7Q+kT$|
zstNc0ez%*8lk?)1%*$8y*VluZ8l|tU1iHAioSSRCT)zI##jmfw+|J+s)-3Gt-tYG=
zpPOq98bJh&D)hg)x_Wui(XN*V8kuix%bjhOcV~s9aoP^Och+TZRzz-2d-?gi{q_6*
z|CNKPF-b|uS=Qz2vaYUrYGxT%R{P-~`=_s8ueQtAt+0N#!@01qaM$m5yPv*)zkbRT
zk+l&UoisHyufLrYzB$eJ=&@s2_x4nF_4bDDt@>K><3plu+@6T3+TmfHLaKLOEnl)E
z<+sh7%gg(Nf`UY(rB|<5q4D(ebpMklPeyG_YF)H=asEk*RpD`!uCK4Jzy5rF{kkqu
z?NzSbVq9EYm-f~E-jZ|ENL5V@H0H2L$Gi5|my0hhE(YZ&kh5RDeEI9u>h&d$j&Op8
zdX%S#Y6LiJ&Axuk{C>@1clp{7QSGoP{r&w>+w<1$|Nr-W<hIOHQ#7+~ZCMFw4_#Xu
zy}Ib>sayMMcY{&|D?592Z2)t_?Fn<w|6xtAKfS4^zu$ivXxuD^OGG1~sj2DAL}m9o
z(`tXe-M-AZolnik=+ckhzh{5=P!PN|EA;cDZv9zLo}`5DO+7trX5QUhGxz^}o3Ey#
zazsQY;zG!}n431=?-Zxq-&ZU5`_J3$_s=Nz+aw)2bjau5pP#;Kqqh141x<?FS+um!
zLgv}k@c7cz^5Wvpze<?p-N~3`l9}Y><kZvO-=D45J6YX-*2BZ?vyb&k&z_{}J*%OC
z0n}x@ydlxqIQ!ZfnZ5Pwd@=^M)!$440|SrUzkgpuH|mPbmkZ8mkB{}ny|$L&ySyTB
zvCP}Ul{Mk#nTwW6nP!3dm124^FSJ12O*=a~HDlw;udOz2+<5F^frPxg{B;|JW;R|>
zM|97RN8Q(RuTS>3%aq}3m$WWhV|Z+aZuGVpg34|)KrY&pdV1EMpPy$RIN%Vxucq?z
zjpY8B`TPG~0}qd#`Tc%>eo}I>uZKqmCkKZ?>ZvJ)zOzgW-|zX{cYKeIq@-lpj}H%*
z#q2CnQ&2eI;_g2CU^DydFJHdco1E{u{Ojv$-|z44`Y!dF>Jtz!0c5~Z@9AdzwqGX9
zv@Ty4eRs{dqr&QbGvfAE&3y49<N8L>khq$z?pYUC*O{AAPw#s5?1{}B<Mh6lS5{75
z8L@E@Cl{B|!Gi~vc}>+y1C7&uE|e&)loODbmtX(6A?0iA`B!_+oH=9ie*gb{D`R(W
z11V?a7Bdmm4m0t$|GVY(9mAP3XQrK*VfYL*BXDxQ{r=954uja;Wv0Ksy*<6jc6ZrZ
zqqR|6ja<7#3Ty3``^+pl`~A8^a@m_3iMvW(CV5TKNc{BlbUKIz@yp)aco<mz;=;nX
z=NAm0eTq@xYd>7_`r6so)l3TCBaS`!u<#WF!xN$Q!wYxpu-MKn&A^bS-@}M8W3rw1
z^roUeDmn}f_YO%wrc564p--qN_<Q^Lh1JyT=@Qe`YCpUXl=aId=NOl~2(Xmt%Q@em
z=UM&z-PFSm1GeYg%}YF;cV<=S>L&#jUtX<V|Ew(d(;Us<WhWjM7(A3~us3DmXs~&G
zW~Oo0y*)cY1x=r<b=Hdu3#)#;T%MbMd_&^lCj}Ny3M{5fm@pxA@B01!ZiTMTxw*-F
z&;2!QG1fACrdd}sj=%N{ii(<btVeP&8?V%gjEjpteg7WbDWrO3RjBsaxz^v?ZqJF`
zo@KDp_)g4Et$+m$UQ;v{f>hT3|95Ls>S^EG@lH-nGJNgd-rg?1yzQhyHA8*bzMXd&
z7*3q}_4Re>mluJ(GL}LAe;l_j+HLvi^XJQVb{2m<XZ;>DnId;u-Die^y}f<xo(e<p
zsPf2^lqK78Z!dfBAfZ1MG@uZ*EoY@|^*0SIEiZoiKN}7mIs_{0b)&X;aEt4O)YR-r
zJ3sGj>EGE)LAA`b+}T|snnkC-35tq7<?4R<@}*VPmlbBYx0Zk!shypjudb||3~B&~
zY6LuJ`*t{ZCxgOs4h4o!Yo<&QiJZ2yqod<aUYE}4pl&hUDO08_$-KPm<;?VXh0%4N
zo_L;}ZSD_hXYQ%|T(olPr1k69YlW?O5m@)*L*min$6tSVcv#9LW5VloeV0#8R=>J3
zSY0=AlZ&iX$%RR(-g%MI%uGyswtY<N>gu{QLDAXf)b_l)tMp=bW&HZ`64bgB(~T-|
z{{7H#62pYzl7mbWo?9F@R8dhmA@TUtv!c@bKb+h7R)(*S>+0*9wtxTrLx&Gv-Ig1j
zduz+d<k{ih*2Zs2>69|dSutUPz|S8)Qg+9lon;!FlCnh2ch-}QZzlWOfqFLJme=dJ
z_4)t5?h1|F$$NSes29CG&+Xhtk;q;~Nt28TpfM6q68iDsVctXMNls2qCgty9rs_tA
zot~z9xku9Y&NO#d*OfUpH(8axn**9fxU|$;yZ+ywRZ&}4fr@g^ptQ7QphkO_sJ51Y
zLBP|~)35)2zyE!q%ylW|qDMzKd8JG|Km!+zOst^M@fkBDcqI%RGBY!;*VJ!%44RDF
zlzKX3OGY3l^ti=z3ZmytnX=@#T(!?st<a!@O{}3C5*)9t2y}kG@Ao?Q8wGXqj!C$>
zx>mle!#k9}CoNiBH)_d^8xf*95djMqF3h^VZf@DTJ1+y@Pmiy=X#fAG|J5~-!4Drk
z<l^862nm@ouj-ZN(j`kO?tYu184RjDKYS=)Wn)`a^72yFwKX$AsV>l5Rn_&p-S0K0
zrfM&5XkZZ4402f;z5Uv;Ug`BW>ljXOl{+vzu~bx41a+jg<=k9!-tM>0+UV_JK0ZAv
zJOAxWKQDLm*s)g^7CL8LSuxS7^wpBTzrSann_~$Y6L@xZ_VQ<EXYbCvzDWl(M(#aL
zC-C#LvtQ2`pMSFA{l5PG{#~W7mx0=^mzVkGF+WoGo3mn5>giRUlhq>E)h~`M1x-UP
zbZ!Tg26?ePDw=wFdZ)jhn{U59^YXHjn{;^PY%ES!{rvp=I=B9w1#x?;G7q(IzPhn-
zarA9tBO}l_wy?V23g6jgUjF{qdnAp&d^pUX{qoY%s{en#Z%sVRcDMfj-%sDaU!P-H
zd}X=6d~19A>e$_7*KPNKGOM1R-|z45!@s_|dUbQUf9$RjPwTQb7jA4!204F4$;(SO
ztJbeunsISa)vJ}uzud}RpLuIbX4chJQ?qY2Ffu=R{CKfd=_?H*BhVzlr7ltJE8Fwq
zbMNd33|{6_cvaS_WW}@d^VhG9-o7gT{yr{F&WS45?U$Z@?iv&{Ny;Q+!H*vmAS+Lv
zJX!Vo?e?uHCxzBVZ$GzKdWNCf{JLK&#q{IWw98d_@JgFqnWh^J9vgppYASeae4!I-
z_}|LU&p?3znkq<2P6qW~{{DE}Kg%R@l9*o1ie72+U3Xn&ED9EYCMQ8b?%d7?nt?dj
z%nk||P&@SP?d|1P?{3MQJj*P1)ns-5SNndy3%<QAxAe^oLseDPm2rEkKpox9X=n3(
z7&Cql51hL<54IK{nL(ld*N?~jy@wwf1TXXX7;$Y&W-w@U`NTx!yQi+NiA=7kt@WL#
z<a%aj@$);|QX{8<#*pJ{KDzeZGAwx!08+aD-&g(3<?rJjKYpA%ukKgo_S&dvscwBT
znR;=1GIUNGUA%blrkz-F&qkfoCOJ1Qysish8&!IDmtXa_H-^(vXC9ZYzZ3fHtoeP=
zknzb$s_U!Q?Emwrd!x>278aHn-qZDVo?5(U5on}&ZS;1tmoHz+-R9%vHQkzZ)o8i@
z{4(9!d#ksfoUT8AW!TzTx9!5##boN7HagtKTdckR`Mhe7zQykS-!iU$e0=<DE4TQ%
z+jY;kZLX@HGfh7}Pv^8zU|?Y0)7|CozeVlOzP|3*!-5%KUtixn6=@=%bT4RTWN*J8
z@(8$g`Ml+P?T7z--~Ycf8njpd<od~KzIRUX%UC@4Hq$~kdfOS$RKz^n>RnUYTU%!a
zE%loD`T6<kHN}5^6kgvSzo+8j6z%YHENpDE^7s8bwiYzE?VFOaL^E(v%k^6316wb!
zav#W5S5<XAJxw?G<)x)xFL~?l)Lk9Cyw9ra&5A2mLe?i6-rAD6_{WbQ_Iuu6TI#(z
z^YXG;hRJQKy)PW;6n^^p_3GpD^?&&DzlT{>d|05eGGt}Y^|i0pOrAGy-Q(l^)jIOl
zWo!QY`4dxreRa71#fulMDnBi`SMivam6dhpG|&{TnOWF>&=8GvSkmQXzEQi&)`If+
zzrVk$b@+LCL-*DETzC85o35UoDJrtIRae&9SXtf5{%cqJ>x9JOrQXw@W!NwEn)<2g
zxwfLBV=I^FsiNv$Y4dA;zu$i!c5QXIK4=z6J8aE`e}8|+J{1%c%$wgCJXy{6%l7?$
z&%U<%^XJc=ZQ3R#SH8XnP1(J>yZh?y^8Bl-!_Tjc`}pYS)&2GLpxM3C)Ahes@i0sf
zW#VYKeeT)W*{YsjUtj-j)wVcrv76Dc9j{_nrk$N-zURN3ZPkk}FE7usEM9hQj^*N;
zo6}djc8h6+t+~OQZ>`VG$r%_DGR3{JQ%F_i<ZBt-i4!M+hDZ5itxC@3u8-XvHtEWi
z%*)dG8D<vD7q5yxT)A@PujlsvSAyo&9UUFl70Q}sU73&?8QHh;#Hpj*;$QDozh7DR
z_ZJs8_vH2K*URv=*VNRM{QB}zXM6ekz2B>*SjzB)3+(uHXP#B*sz;9>i^|FA+1uNP
z@2>yxkiEaQ<lUXf>Tho@f@a1Vnc1^mURr8Z`)kYbf7jMTD!(kcz9aE)Tjic>>*Mv4
zd$#4?p0@Zq3xfnR(}QirudZl%p8E7M;#^UFb4|Cne%;~U`8PK$?Gn{q<~dnS)7Cb2
z|Nnp0)0)qJW_oTI|8sR^*ql<(bi#%W2HR63ZD(D-{{7Q`uXTHV7k=H;)6<jv?)#II
zlQ-#{E=_+FW?k^0Vae&oj&ndWdQzrY8Sn4y1&u3#mUdjY5b*QYuUAh_PL{GRTca1V
zW5VLUTk`M6d3t(kg|C|fN~w>IcAvg~KYo%)+L;+T+oy-lD6N}z?tO#G*VotmA0O)t
z?i5mu;rHU;;hCc1JJ053@|?>zHYSIzi?Q^bXA`;Dz5m*Zz{O8qzh3?9?CjTTx8Doe
zS@cxpWGVZbsLzKZrY+r^em?E_S_TGjP)g|g>}0Vz{_5P=zIFQ&_C*$(S?rGPl`{1L
z)fAvY##-R|!-5kMk4yU|XzQ!xx6U%nK6U?oJUgGvh4c3R*LY3UN{uYPxhZwhlInLm
zk6-(#>*VB=(sS~oY@2=7(Js+RdgnbKnG`;9xxW5yIRCZy-DPW!^~ug&T&tq4uC1x*
z={wu(YW@G;@!Qq=C6i66zP!-6Zd>zX!}X%)mhWx0_siL?D!*SFUVgW9I%po{>G}Eh
z*Z%wR^0Mu=#K>u&rAl_Szh2zfm<$?G0nK#Z+?@V;`TV*|{r3Mf?CtGY+1XET($S6B
z;J|P5!J)5DmSJ71UIas)b?EA_sVZyZ_C`(Di~SU_FX<>(<g}+-y)T@-w70rEeEJ;q
zc@>X#iN9{;7N7RyuilY1Ug@GO`R#`no;h<S=Q=+JN5FEwxhXvtv)AvPmb&-z^YgFY
zZofY*HL~i{N%i6@%cMh>`^kEq`Y6$D|LDX-Wzeb|ozp?j&&`c}y1VS{q}0f&7Yo~M
zu7NtY*K;j*GgSSynbUtJ_vWUh$CLZ7uZ=E0dz=e2L%aCRrKR2=uPyoiU-rh{>g}L;
z@gF}b`agWUoxeZx`@6f5@0=%fiD)h|%e|HH?95D1i>2)Ct)>6}zOSF8SFd(VqW16C
z>(}qFF+34rWI2$lZe$en@#9C(1T}aNHRtZGQcywY<m~+QK{NloO=eScqr<$X>s|fx
z^Yhi+<?ml#TOYW%O@^<1ng9HEWe;c0nzgF_&trMZUAG0q#HOu%7ZP6ecI)+!H4%os
z^X+1t+ju_iNU$q>)N*TEE~w$5X=fMLZ}Z8cZ(IH1RiUew?J9i@T5%<1nl<J4rz=;k
z$duQAdIp-vsj1o1CvU$FG?}g&wWUC}yQ^!G;W6c$oO^pB7rXU-`Xy<(du3(yoXy31
z&Ro51UG$`5UhTJ=+1rYbc8SVOR@wLa-R@gkv!_d$W<9BjXegEsZ~wSC{XA%_Pp<sV
zrOTJU-Yvgh`9@z^`S8`JrzBHA;~zy&Prdy6{r>ewN4xiKD}H-xt5yBKKc@Yx4C~y)
zbr>q6!u<VzeK^b?x<1YpG-(xI^RYGS%8G@xzrSU^yR#Ft8t2K$$$QVOFEGAcxYp8s
zUD%$A!qRtlB7>Lvh5GpP$W=UG1Pzgaq5`y{YCZF_&6jo*CZC;U>J3_Dur=%IljqNu
zSHIsI{`K|s^F?zzIyiKrxA}l(`8x!aO-f&dm}Xz|S-5Z^Xp~M&H)_dbb^leFmzTw<
zFW!9k%F1BS1Qe**4r)9-dh{rz=VG6%^_Qp9<FkH$dwX*p`;nVdy>`_U)`A*0>gw8-
zmXXs^Uv4}uclpQ1$9J#2ytK6YUd?A;&?+14ur;6o#xJM!_h&pj)S7jB+uF2qb6#$o
zf2>#f^;z@#A>ZHK1@&uKSy?qzR9yB}eGNK0%T!cadUfUJXPRbaVP9Wez5MWSJ7~Bu
zbY09%(~A4Er|Cw&I>;`61+)O<)6>)0pP!wL+LY4SC8GJrY-jSuq@!O>DEDVvTNByU
z*%^3wnJ;Ma4dngC#>TGB&Wqpg*S}vif7-NVRbOANtoiu~v^wh46wSq-pP$dZxhWMi
zL>09?@9nEa&tJa=xngDH=CrB@jqIScM@Nqw(Ww9T=hpuE{bo5g7R1;84Q1z-3vqC8
z*k&irFyV-eLi+i6rp|3VhG%D)8ZTV9@Ytp`I`c2@&%JF{e82Yl%qCXuSr;w@fCp+8
zyZ2YEwa&bxQhZ#t9JE>@c%c*P=Xbl`-#c}f;op>X=H<s4nc02L&$IOn37PWo`*(BK
zZZT8P0L;xDg~@%}OLfD~F&EjMt8_RuP51Ri9b4PGU*6xpKSe9_6lkQ3OH^yd#l`Nk
zyT$dT+7Bm!l5gpL&=}N{6M~m_7N-aAsVIE>`gOJpUwgJ+uWj`=(74pD($~+n*6#oR
zZ?~jzTF=V({rfn%xsCt*`=_R)bZAS?%}ZzITAQDK+|||fsmkY=gs`}HdQDBu9zAal
z4+A?pyS&dSYhrd@0<GtGwR(Nk6@On})Bk^-+xtE}HPtsEVS#4MjtwiLwyu)2so3D@
z?R|PvZFv6gQ=s{7-%cS_pJq1RGxq;J@_+vO{eJq+f7^0z`@Fuk)^}slQ6JDUg<dJs
zGoX>h?0xH#kM$UWX0<`XQhe=)bNOZntNX#mqJ$+RGEPm`&yTD7nL2sev}a#!_kOa8
z-I6hJW%TxSnh_ho&d9vJZtl;g)8lQv&7U?c4Wtwl{2;Af)Ae$zzQ4-_O)T5Z?&;zA
z{A_mqtY>Fu&o)XuHRHem2Vpt6ymvdF%NZvgVwpT~;=_%97rXb*Vq|8Up%uDn1`{jS
zj0Fo6f;T3)US1b#ZCv}SWb(|Jm3PmxGOSCHEM~Un{Kxs`?(Xo57cYXwz)wxnT|HGh
zJnPewldmo<?T+3%Ws1nrBS%&gJUsO3_V)FlR+9Psn&8w^Q!f7c`a0IXYT}Z9yI&sX
zZ9ezh+M2z5neXgZv-9^|RG(k7=;C7c>NAlH3=9l^rv7=#?BV9t<~PS;;fD_es_N>i
z)6UKUbuw(3JkHOv{d!V;{)^}H>&tA_ihh22+ST8Gy@gZw%HHa7&*|)i)3idpN?%{Q
znm)hwS=4_}zD}QCyX^1p@994^ycrl69-M!tZ_jb}{CR)Sim0{b`S)zLW?Ve<R`P4F
zw0YRkF44Qcyz9SS4fpc(4Lv{4_U^U!S65FzH_!I9;R?_Y*$?fXr`adGu_$=Z&?jTL
zNXj&;LT7d8>S?zh1U}y%zCP~m+PJT;u0AcWC^ESq!oa}rW3ysIN^^0LasFmKcNZ58
zQ`4)ar{5oJW`Fwl@nR*{t{qoDfBqaC5iukCTP(<R>pK`G@t#Zn_WSqmYMo-cstb|o
zy1KqUKRx}tYi>hBL$;p{D=3U^8uELXv9PguO}g&6VUDnY<!cr;HZ5D*yRXYYld-Fw
zpWT>zd`rp8AXit{*v)bb3=Bo?QBku%i`ss_+kJlVaqdm+AdA+8pIa9Z4r<*yIXgdn
z{`~o>*)wOZOg`SXbMBOLk!kBqKVG@C)cfm;#r^l5Tw`Wnc#t;Rs&o}-H0Ac$9lC-J
zn-;os3TZ`cSz(rU=f%dHzrVhAb#@m1l@%6NPVNDX@THxdweysD&W#12e%RH$Q6V8y
zmYi1qB3pi^@G~C+L($1?xwrqlZ=d>b(xT$smJ9{LHQJebUhm?ybZ0oZY+LT_SCjqi
z0=>MtZrdn;I_2E@dmgO1z9LY$wXF@b&M%KK<<F0gpkY3_iU*B4-ygmyD?Kh-z9MRC
z*7g@33<~BZ(~s0&XZRD@vwZg-UWEn^(11Ycrzf6Emn`v^B&HLw;P3D6-jhHrrUeTW
zcx5aCil3hgjft6)t@h=}5tqBQ-|vE!*yMs1qaJSOzrOjr-Rf^|Z@=F6``zX1@%5mE
z2Cu(fj}Q0o@W_)<VqjpHpf2E`qN=8rb$?&&B$d;fOzQvDoSknUf9a{@ndYXZkWDF`
zYooS$owxtLhmA*KLCw!kD_y(AynK90djA(xJ)4;hS~mom#|JHJ4qX+Z*(+-uwzvBG
zw!b$(i`e(HFetse9$$YpY%gfOrCVJ8T-aUpc@<9nHXo1lns9?s+~q_$P)cQ>aQ!<2
z0|U8B=SQ_NFfh<`bHYG|unK$GyE`l0<tkl3Ym6J2SWAw}mS_C<@X*WKyLk2X+TUfM
z2AZRzBWP*wbiLS;H#auMWSN38NBNIuWz2cvpv4MV*Ve2AEwe6ve-E@)W0q<5ms8s7
zGcGUlon>FYPeoHz)%EM^>){U%wSq?d=UNuK<?s8s?BDnO|1<yo`ugeXQ(bljh6C~9
z;fHU20aXZJUS5vcoYt!qzD~#U)xEvDjf{=I&j0_%eYxM<pn`%8ph4a(TTF6qZgQPC
zapI&UvrMzK?Cjz|%XfB_zn?d|9W*=gL~B<<>gAcn=_;NNA3n@`dbC@7`r(HG`)Yow
zcz%9%Hn>|%H|C-9Bq{T}HC>|GS>N8={AMb_z`$^#nM2{Gh`6|Vat~;j^Zow+aUd_I
zot?Fm-~LZP?eA})2?-1MWGogayZ5bd>y?sweSKA^_iXe0bFI^u85kHU*<&|sdI>62
zK0G}9_1Ek5*$10g!No_$1qIOZ>q$$R+4;RDDJd!0T<h=X2*}D>Wn^UZ<oWaT_`{40
z3=K9d43n5aJ2NgUXaueA1Qm}L7rBB~N_C0ruLF%C&1-x5{{8!nc@7Q@Dw?{wy$nnY
z3=R8rm^{otv)cZ4KbL?8n0Fn%xXf2NH7)Ix{Qn>ApmCxD2OK;vwQ`HwT(htLw?}2?
zD^Mj}@5(YEN6Nl#&#KVX&n|+x@L{uzQoGFZ@4czAnzmW{+EhL{n-v!>T*$fm_r>+~
z^P8HR@16pg)+cLy?|>i!1A{_(+MoNcz4kwKbN&~?p>Pv4A>7*5Ry8F(CFO*~;%;&M
zRY+A!U_PX3IeBd#XyzyD>Z-d1vl$r}3Y4w>-GA+MS;cl1cka*64>TighHOl7&AqoL
z(z^UziS~TE+FhVwlk2hNo|8bGuU2kxEmhT{q3J(AJ-xLtx&7Am{QPW?Nez42tQBs4
zx#X>%d2*5}Xu12m+HaAdRRW;-Z_t*7#qRu~`f)LnKnpEF!={CWg|Jo*qN+G?w;2>Z
zMUv$Xn?R#C;Bnf;ZoHr+(|><`y}W+^zg5@c>tp3>J~Xb5J2^=ewBrS|5dgHBAt`B5
z)Rv5e`ulz~EstkpV0fV4Z>?Y%u-J`PH)h9&U0>hrc+968x93Ki7$~)F7k@|51}BEm
z0)7~m(k!6n0;zl6KuMxEKhOL@|BjNEldi3cT|H%r2q@8izf;^_Q=5O<8I<t;1?BCw
zR=B-AKYXdz)GIp*lR=$j&?bqWpPp__JuMdfZGYxvwXIoKy%G}>L2a{DAuAVszgK;J
zaW811FCbvTp+kqREcF(bwJtj|?HkC*%A2|34praYto;3cf4sWioC}T2>?I!_ID$ra
z{q24}(Y^m&Jicb(uF}`9Zfr~j?OVH7`CJyX&jnP_uJ-ft>H;kmyt}(R`^t*Is+UWr
zZ^^i*WSV;`L|i{^&(mB`Xnfjab36a#%jNU0y<We6-GvJQ+ds)#muVOp1~M`-PFe!m
z2DY$W?$QFs=Df^mP~T-;?Cw>mr>D&_PWPMk6@LX%=Y5-#fq~&kYUMY+6OGL5A^U17
zd!^0&X3m_s4z%<iwCMWRv)TDuil6)G#_R|HZMS&z=uuu~^)lbt%aq;wGLCczPFe!m
z5^_wUzY2S0vwcf10|SFY-1Kzj6HTn#p#5H;#pw0_f8Pg98+l#=?HW6A!oxK4l8dNz
z*cE4f+a+07S7kmr(z$($?dj?I;R~HwLAzK$>w{Ri#X=T3wO#?uc<m@~y!7+}Xx-k`
z6@iD7|3+=i%KZH7ERua4DtF88*MioFf@T^^UtRI!xB1Y(CvUfAW$<z>U0vUHK3UMT
zJZM+oBG>MFm$v=+bXxz^i4y^@udOZp|Mz?Ly*-sxk2=-AJZzU=6}>$Vdxe&lX$`8)
z_UQPt3wVNtl8VpUE}vijFA_AE{`=kTuZOtxU)<SQ%*D??y}!R-_pL?sw>6h8U79js
z!UDtOW1tB@(AY7^ji5?xciCHzqf}1bzkffu_W2CabXjm8OXEEIgfCx8=313{f!5`=
za0-99TYf+D@v&aeW;8XwIWJ0Oj;$4tkkIg~dNR@d&ME8CS1QRp*VaTnUiJ9Rq|&9I
zpP%2I%MNO6YoFTee-PAv0#*E}r>C8ic+4g9{a!VA9a`k(w3YS$|NVN<%x{u+$Kr1F
z`@P$@*s6L>x!`aAcS+LGuANic+uOZCOQIjXs(SjStMu!~mbSK2=g+_2_4^fCwfXPj
zGiC+`h2xNFvvPHZ%!$p6PgX9UcWIt&HE6?&s9sEjvRhBU?QOYR%iqU=miB^nFsu$+
zYm#+E12h8)8VSmK8N3X%GFX5ApCC<5P0-4>)qf5&GEdTDpD3j21zJ#XYe(VY<G)^C
zUmxz{<FoCXY1$cy(A8mYpP9%oFfh~y9RFV(n>lNVd+|cudb!GN+}A)IA<))OUMZ6c
zvE_G{g7y{s`1lyKLn)?|iJ93n=Y|1jzvHyjyO+L!M)Z$K{Cyq&zesz&Md6}9fBsxq
z;K=M51afx4L#L%nmh5<?6TdIUy6jEB?{9DOGo`^vLht-N#?Fq83%9mrf4vgy?+GfM
zv`=pe*;7&2ziX-Y^lNJ(H|J$mCnY6aSsQKcJI^LkQc^PO!h*(qzg}tA{(89_w6tz@
zEHgXbl{-6&Ma9LJ@2ma&>dZ`IFCU*PcgyduZE0zVzU2mLnXEs(nK9+biHV@N-%|B8
ztF@&C)Gh^8_FmI;W@hL9da<}aWSNg7$QID-MDVhnV|}u#@9nML{c4I%WYFrcwU<C^
zeHoeAG~)NwWL;d;DkLnt+4LW%t@p!tb5Csl#9z#Hf4_$7#_kGvetv%V+NiA|+w<<;
z$-ATrTK*rpJ}&m;$&)>dj31Ui`15|&6rIlh>ll9+@33KOdA-#h6c!Vgym*me`}fP`
zop*UaEe><fd9p2hpyYkN9n`dAAg~R(IGRNuxySC;3+1b;LcLwPL?-t4_a8rf-Q3?k
z5Y(n^`1Hd@!SC<y@7HhV?_WD(hJ@{}7mKxGb`<29gG#ys@&(Z>6EuUDt$^=;1r1Cb
z;N79SD`Dx<r7JxrtHE6MVjG77Xx<JqTd-Ra<k-9mxq=RMKOQizjolr#e*eE+ee(A6
zZl49!1RvP%iZLz;TIzLcZ}oQ2w#W}33P7v%TDe4vs#)3DpO+bfl*Js+HRRZvdwbg^
z9qsL)_8Y?kw!31CPagN%pL?qYvSSBlUbkKZi1knA(-YYV{&qiICVjb)+<$VD&h`7(
zK?{$gZ|Z>L%{BblCbYD$L{3`@>ec-G^fcJX=}_tQjXK@nkbF{DY1HuN*X#9@mel<G
zwDT`7D3rfVQ)l*=X_UI|r#Yymy)E2)0pu=X_Mjj5pZ)&c<2~~}v-a(;4?Z*HooTAp
zbSIY%XPKj7K}Lmdw6?ZCDLZsh^=(#i@gl3dn<w;E$3$((oBPdTr%k|Xg`ne;PCpa#
zl`~qtr24kcrSE?>-nJ<_H)YwC@8<h$=Jy}Bk^5^m|9yUyzZ`$n&$zlJ%iQeR%8RGz
z$IJEG{mQ8Mb~Alr&CgFBla^enQ=8oR`~7}<@5_t~3|A)#Gk*H>`TX(7^tqzh*Vpy3
z@k+ToKGwThX7b6DO$L$-3>$QdlpNalWTmR#?M(NXYh}u3`^8$nW-kMS{6)~Y02gxl
znHd;zme1M2p7QU{&%&dk;T`-83?~XL1r^w33LMtN?X|j{%)r2KKiH4u#EXlIAHUoE
zzHic`Njd#Y3=B2=mWBK$dL)e(ZP;LNYkR)@-QDH=d%xY%&bqoP^yLg6HR1AmmFd&e
zSQr>qDXTL*xxW8j>CyG`>wdjFE2r$hz_8%i=}rdF=<+sq1_p+*hB-UfSr`~@m_9io
zIl)&<Cqm%7?e`d+m>mX6O5bj#&$sw`C3vy#Y_rIDJPZsg`sQ#>Sm@k-Y;O6z$freX
z_UzfS<JGFwNpEg!jGP6MUpHq5%j<8q^ZN@QA3NG#|L5@x)9kP{5gV1l)<g(yPCMJR
z`J9#Zv0iEM$H#h4f1AO;a3Bn1Z>O;Ov6su|%lX@UbXoc}xzAEfuKLYJ4Q=i2>i2ui
z+jt}=E#+inXn1v^(^x@ORrTUx_kP`X-(Orj+%Cez;J|mHlOglop2|I+&sj&`seeAV
z927K1I~f=n-cA%|ytLeZ{*L$iem{CPJHKyh_Vute>tlDD<?Vbr4J`U*^Z9d+S{N7{
zN}n9DRaorS+qJX!`LV6n<D{?0*Vk^zxoM=NwC~TS(>FFGI+wh@rkl6t<1rn7P6mb?
zUq2R)ySqx0kM&4?yb|mm`b%cQJlkrw^>KR_mA}6?@np&-8&w8|4W^cY3bW@F9+NCQ
zCYhd6&BMTuVEy!ntpWqXfprVr<}qeoUgrDc>C>a_@^uos-)@WEl6g68_4J5TqnSUx
zT=oy1CBVRNL(bI5q3+9Kc~`Z`oqP7|@mkNw&~PVAnK|Xs63_cTr5G4a_`U-zTnw5l
z%xF~p?oP#*i|*QMZU6uITzH66{fOal8EC3tW?<On>c?`z^m>eNzx}_8qpw-H#g5EO
zpC`#Jrqj{Uv3mVJD>a`P6V`rYU}(rX)yYr^3Qq6odZO#)t6nTz5xP2T&);vi4XeMs
zv3R{^^P}zi|K^IRvp~{X%F|O*L2IkKuAjI2om2Aup6x8tY%xJWPzwF|`FVP_4Fki1
zSw%_?U0q#|n)&TIIyx?0y7c4n{C^_L=M;Gz{RbLtkh{svz;GqT^poM9|Mw-+=LnYH
zEe)SCb?VVKH#aNW+uNVB`Fy79Z~47S^;_F=XCH;83kFHss*;+oSHnMkILz<9*sV9|
z(h|>$i(I=qIwH1ah5F1iQvLTe{=ezzU?v8J=*hy2LF?o8&akQcB=&vZk4N30Qx{GJ
zGcqvT)>3DBvir%?r>=+FcsJX!F)#%1ni@HPBK<^)QQ_Uv>#lKead#>n_eR(Ht4;0{
zRCZfpAj`n8VQ*GSLywH5k<m;a9%(b3vir5)B`k}cgx!baxz!UHHx)iU_P&Off#Hdo
z{5(bmh9zq1OeqJOSPgS;ZP9(_Kif>#%ggJMGzSC24L#FOLTmoNPq+Uaxh86>R@L`+
zdvE@||L2+c#T9{zE8c889t6sbH^eLp*;1~piM+VC`n&GC`6ZV;KfYSMewl?J1H%T}
zA|(e<S@!ky_4|+N_Evp;^m_e%zd|JjhJ@-TE)8$?e!uteR`&Yb!v9yp<9k87Ea2LH
zeSa?xDgt}t?e|?$uH66k+wC2n&sjhIcwD}J{=YBFBj*T!i-H}TwLd;QG%S9023!c7
znPFJ?ppo6p<%qj{tw?<B*U*x;w@laVezyyjUFI;JJb%7lJg!3V-TwdoUR+rjtP{J-
zWSU;A)Lg65E_S&Jg=PNp<$nJBc~ef9f#F8i91CV4!HLtSi$9-VUpJ@z-_M(JtPBh{
z{49kP1O=ZyefsfQbpFvvs@{u=pP#$9CUSF5KMMmxPV<}{EZRy*e|~%n3<(jLYhB(a
z|NqDFkMDNBcXK&%X{q<($jxaV4>0qmR5~#*BxDyUImp#~I0*8>qV)6gKr$|qR79)K
z&NA&5_P4pXd;v40h}rq~+wI3a#^*Zj|Nr;>;_mYITEG8);QudB|L^ns&G2&n+4=eM
z%jZ?S68k>eB=gba3ycg3>`z=8KuybOda=8Xg4UrOomc&C<|7vdh6CSDbTYiWx;orv
zhJj+(nux&E_vh>X75mJwF!Zzk`$flxje#Mjdk)8hi;LZlZ@*tBEo)WM5&!Sg^ob`^
z9+mI^9XqG^oMqvaKzG;A&(1#n^?LnzXqoEL04liteOYerdVZcQIObG5A3bcB@5{Wr
z%=Q1jzmI#(@0~c6-qa&$toG^Cr$-wO^R3?W{b9Sj+xdC6i|hXW0_9@~gM<U+ac*o3
z4E8LRpB-Dy&NlD={cgAZyWQ{i{dl!{ebVD&y@3%C5|x!VGgr8Fiyiefzbo?f)z#Z?
z?tMHiFW)O|-ZwjcpJmwkIN9xY%cA%E|M%N4{oI@tvDWGTZZI+=w6FSDFZ}Ox{6C@U
zw_C&iJQCmEG5`Oc=YoQP5fL+<u2cfmq5psM|Cf+9%USV>Wu0O2u_L=mUnjl0v-9Gr
z(A6Cs7QbFBUR?eConhvsB|Ba$>fU5%#K4de+q<7-b>7`wfxFAz-bn7Z-DK<48Xi}v
zy3B8`RQa94<7wZQ`^}X)di1F1M?t~DOP=bkyUX4_>QtZSk?q64u%a-lroqMK&l7d~
zPR-zDA-`C@<bbNnn8Kr?g&&WKA6IOb2}=EcT7Q3!s`s=bf$p-Qsh~qSK7PBMzuZub
zf#HgW=|7=09UXOle;rMo9xHZtS7~>*{yvLucgydu2wv_t^>LrgrxSDSPTPLJBRs$U
zU*(^V{q=X=)MaL7y10mliiY0Q*3#-qJw5HH`TZK<-EX(u_M0orz>u|Q4#$LbvAe_m
z{JI(*zjo7n70(o-nLobW&M$u@b9$O?cm40}_1&-6@3)&}lDX+-^0l?m;(~%dfBp>p
z#>K^@)hDRH!0<=lsY`>+hXc%@%E{I(ru=RxIG$}PK8W?-EJ<6oXV0EfagmXcOOqKG
z9<+lBs0RlcZ^|ixQnj$UUyt?sJ;q|XQ6hr%wx5H-!o=>^eD(#k6{Jiu0t#PVUFN;<
zUtDHprb*_dl-23>Z9I}fywYZCwp`m^|Nq7P{r~xXWil|_*yaBJ+t=^=P8?I%Jw-}Z
zAvHA>RDB+8V&z_xd3jl2Ow68})!LUfWL#Y2F-c|Jjz?WP{(L&U`px#-+h*(bd^+{x
z>iRm-*4EaK&t~U`S*D$vV|j67^6|C*;vOIC^?q6>#=x-8`~Uvhzk5##7W#>$-7LLw
zgCTNLil<EZox+U?2b;Q<$6s9=ZT|1G{eNRWyPr?4Jb!s%q4S@I{Pim~)!i+<esq>;
zHmLNtxGnc~$B);+yXC50ER5Ka5qNZQMf#Z;g7Wo$3VCF$Os?)^WLTiKawDTr)|C|+
znwp)8&TU6J)#pikety0`aIxFb1&+;+F8ka2*3MhzI~&x#iA$}$v!ih0$rMogKs5V$
zTy-v}V%k;qRw_KMG8NSBJJu&F-7a5O(Ys>~4+F!drN`J#aO>|8U}od#*qD4gY|Yk;
zi%NCBF3&#(Dr4E@DiXw&uYU9YzQX-orLQY~KAryf)#~+q4-dB=f4BR++|i>)4a?p{
z`0r<8c)-5)7~6^G^XugfxACsta&4*ibdO0YV)}70$xKg{PLI3wrt0^%w~u!|pXXgE
z#lW!QX4V_^h0~``53k8PrZzh+|HcMIX=O%GleE{CSx7K2C`c%O@7J)SucvB<ySW@u
zpI;-?D`mQ>Xpg!(BZI@)u*J+NM>+%zla6#~y`COh7P<6#X04DF1H*^ES8gy=emKa!
z*_MfcVMFuP8w{53_k7+2<ITRn$j}hm4?4Cg2vl=6T;UL4U{Ek+VqswL=p7Xv)M2u6
znfd)1V>W&{8Bje{_4U<JyWekw)92Tg)qFas9@+;wZe?-$`FVl+>;7ik+LFm5VW2Qg
zFLqYzN=AkSX)EWxWh^?XyZw&P`u+c^zP!Aw&S(8*!;ky_|K8v6dfo0vCzShpZf;IL
zevn;WMo_R@Ot<TCzrCH5d7cbtt0gG&<n4aD4Rnx6^0_&dfxEZa7cnr@?f8?sV-~0)
z0kvqBHoUmKJzu8k#lphRXU&g0^V^CD3ML=x=`4MH?dYAI#fw8%hY1Q6e!1xG{{7wE
z<V#CD3op8gr>531Fs$H=X$ti{E?1p1b+h>I_xtN*icTngJjgB|vc`9=m1$RZxAr4t
zrAJF9`*oGQy>(RB-)7>iJq!#1!kiP{XMTKi^x~Sx%^e*-KAqN2J~>GhRA+};t_xo7
z2d*}3<ro;QXfQpgu6Q!hJ?Y{i*Nf}p_jhz?=<4=%bSzr5Nb9(msOZs6siz;!&fn)*
z>c+sZ!jt7h8EAc3@`ncpFYYXUE@6=1;Nr3-db^&I(x=a#SIfi)1O&X4U|{&6D5P*Z
z@#CYTg|{-7yFNbF`}m~#{2m`QVL`#tS64baIzD~+r1f4?TYGg052%Ky<ho`SwKXgB
z%bT0VVQZsAjnmKd*nYpWIVu10((u`OM}Ji>UApw*63@vua<|{z_N$sl(nv+hEGHs!
zZT<g$7x&lye{X5az;N~Zi~IZj-4nklkuqJ$VVh%RWu=I?`0+nKKZCkUpmt)|t^Avt
zQbokXj?K>B7x{E=@v}3XeX`bJufI#0=f%iWKAC8plE%QWEgYpR-@&qamRa5%iQ3=a
zdO?X{ie~Vl;N^a^ZQrTe|Max^`{nY+jEjr9wn`eO9XT#vFH`&bn{Rdu1H+1ma~M}H
z1NCl}`OX$wKEJLC)bv#IpBIz)fByfU^Ocnz-O66ys~Nn^<@&nV$EUQ{_gq~ae*DJ9
z<i{Tl^Y=G0v!^8%F)*yKWbrWF`}v&p#FHsWx3*-0+U{DvXEQA+eSPiYr_=h!uZG9V
z9&YFFzgvFawyV24`OS@uS9kqqW?(2wWm+;TuIlB|Ecx5}YJXR}+xfigkqHCCgxPnP
znHU(BxPj)VR)Q*Nhb$Hj28IbzjHALsJWQ-l{`&el`NoDsP-_*`#gwUjv(d2j*O#1r
zRtAPhRfn=kpU+wAzuWP+&*J-?;$%>lWp~-z7gtw@@A>!Z^-Vcm28K<`%C@oJ5IsB7
zSY59E&&M5qzuitgF+ovKu<+f^=WgwMvX5qEuj`y?oSp{i&Ya*&cPMKDrQ)}@wmyE;
zt-mhf^!fAs-1>VA($3Bj?H1EL^{9k_VS+7Fiuw%e^1LnC*Y#dqT^*jeH+Z?9=x+vw
z56&tMWlfhZUDD9fTD2)IBt*n>(vj)$bu(L6GB7CoW;x-vA@A<46X(yb-xL=R5U`P-
zfx+G-&*?trt1ByopFVvWdhPV7Q(E85(}QQ&{C=|;R6xGj!^jx4DdAw#{=ctoc6@km
znh^dW%H@arsr&5=H#xhyy3DF)hJqWvTXJp|ZGNw<soB}lA*k&3X3I^6O^5eiZ;18w
z^z<xwcgON}@)H%tO~RnP^Z$PD|8IS5O=R#(w=d@RDwK_8`jou6QMmd2>x+xsZ9bh)
z-uQms@4SyXoD2*%H|O2m1!|zl*;b`gPnk2-bCSx*Zvwk#Sr$J#vhlc_bn@}OUQp4X
z^zYZn7oe)^(4j*WZ?|6GWTVKykkW3fVC}fvZ|)-h`F4giKR!h4sVIE2|NlQwrz2uV
zL88r%2hBI-_!$^B9h00eH|6iIub^fRxFrAi>1pAO#P*}0F}x>}{m*^NU|^U4ZOfbo
zkJl(WWHo$!eI2x?b5ZE(u)ytkcP+l%NKXFs<>gH|ZU%-j3&tSkIpy~%3y;f|AKCeQ
zp7i76{r$JLX1lMC+xzJ2_4xB3GdDQzWLG(DX1nP-XzWeVxy{AJrLwZJ<i!QWs4W?S
z#_8wId}?7}*znkbc~WZdGM~;{TeFWJ6_1bEIBouXdGWZ4#51!@wZ(L!rW}3Az>siU
zNFma!{N0_5>+52d`up_%c%9yvbBmp!A-0v_<R%=6BjLG#LgY5|#Ic);aZ)O%o&nV|
zuTxV~L5Xa`Y5|4Fu#gaurAwEFUNc|2HRq<$+ldSe3Cjf)BCl;sJ`Os60kqP2>b3h7
zk9$v~7=c>&I=*ZS4A%1)PHqAXBAVsg5D-@LSrHMvzpmD2mWgJc?YA2lS679KEoWwE
zkX>E2js3^M*H=~sgBlWT{PJ?$;`)7mzu&i4^PMHaEw0zYE?;AC`!OTK0lue`FJyxw
zp+ivl(L{H-&ZnoRA5UzT6<h4y-#6Lc&hqwRkTO*V28M<!;L%cYTcTx#zu)c7k106F
zdQ&dB{m0$+b>fwkm7rmaw;SGD7Ckv};`HbF_6<27^Aj3mKHW^8e{_LkbJG65-@2_z
zU%4D^;{_chYFPK@2WV)tqr*pS@>NN8J{bwnAW!1`eE0u0Gkw%v*Sj&;r)=E}s)a!(
znYrBGSG#z@0tGf62?0>z1|_#MGmRgE%8km;&yMET|Gu5m|5E=4LybBk(*$NOFRw+Q
zs(hL6>>rQi|4W>mZNC1-?k|_Tldr4@{CLLrd`h7c!wR|S35-t~qVsmDURxI{{r!G@
z{n8&dmgL^vR`~Pj^!#soPfyqHpa1twIw<|S{{8iJapK{&i>t%eSA4%)zFMaGdThCC
zJD+S)zwNgUHQ!lBF1pLh_S=4o0FMDaTD5vzms##D7e_}&(EPNY<<luMtjph-{j~x0
zmt)FqrWRgsWOu#0s}wYtb8&nA{fHd}57YYNcbDbzNSSDWh8=mO&3ZtkD`;5d>5k{~
zs`dOV9=5CqUms_ZaX|r8H{aV+89n#;QSta5SVQvb>+Ai^d{!EuL95(fGZ|LMr8_Vb
z9k}doFPnRNTW@loW!mifzd`X*|Mz;m>wLS~MZUAmHdcImwB!4|>c!dD*BR#D+jFD%
zysffQ(xW4tg-@r3yWQVc`xxY*O`A4>JfHmS%}q%2PQoN3z-O+NsowrSpEB<6tF8I_
z^*U%Y?Z<;={zb{h`>xJ=S^w{O{i9y<dmaD&{&s(TZSCSEOH|(N`~B|4wYAY_W}EAS
zd-lGQR6uQR&~S@%-VQ~(UoRH#`2BA8<Im^q`=`fMt$ehjUB1qOjZa3xw)$I7bpBq`
zf1jrBKVtj+j_`5$`Wn!9?#A!;s`JaHRepZv`u^VD#mUF}470ARIC1`b|Ig3QkH22O
zf8W{qYYZXIOb)%<vaYUDnS4?ueO_hS*1r4Y_iHDAK5xJO(br#JU$2(gT=4MFk_8JC
zK*O;|Z`uF7Y_HlbSM{R2?!8;Dl<M^Ox}W88#sv=!EUEkZ>wcwAWMt&jtv5HPtIzaN
zt9&xiUF({f@2n{)Ml+WLFZVkMI$-Ns{_eNiRP^=rXPV_kO;YjPly-L3lETNwPO46i
z33^$r7r99#^U8`qql^m+y0%VKc2}#ctQ1}Ue#hfJkfz9OIXBDC@f_%TD5TRMm3MVj
zsG#8OzbPy4mfc?a=(@CdUQg=jX`poU_y9BinlBZ%-Fl^tipSRo=I{IYOl*HRXdwC9
zo11}AQM+O{=S-SEKmOxuUTL!<n^I3N%Due}G#q=@uIPLGzo+qw!q!HKuGioD<<g4K
z)nTB@Pf+mVA#VL6r>1Hzj^AJR5w!lbCe>)B#j_d7T5~mT-Z?KK__5vokK!bipK<o$
z4AJTi3|Tusvq>&TUR_<i{q<kZNk?`RK3){NyKLh8`SPFv$!BM0AFqDDS6n-M-5QI$
z8ygY>*T?Mz4Wxo9ayEXsn5RZdKoNYe{{P<_+3WW{nvvYs2}%@VIuRSr8c&@%_2}2@
z@$%L0_m(f68MZDaGILqSe!I}@|9`))-?HtvT(wJJVBnM~Q(Rn*{Q3D=*>e&op^1oz
zh1Hnm-?NFU`FJ#9Q_4xPbj#mwHZLxIehxGs20G{yRA793GTFaNuwkxC1H+X9P)?er
z8-48e`~CZ4-^&}P`GAH@KqDQK)&2WGL%^V+UUvDKf}A@$Ha^+`%5|WGTk+@P@y9<N
z_xG<1UhXzsFZNNJblwV!W&ZQ+K7z8{`ue}GL4|yethE`R<&y~&|9(E-p1JH`Gy8GS
z*yG<{U%S=k*BF5uI>WBE$|UpBl1n~Uw-!D=b|S^du=3Lrkm%C&;_)?x^QvC0)ZMpz
z!2*T2%BNF7;-K#6z3TUSEq=e*{CG;RpP(Xxb>r*{j71KGg@vFo*|hWX_MSCg^#6GM
zANM&Gk2(z#54Cu`)(%_Kap=$?uWV2?XIJ~nWxic)(&0AV!e=wnkIgVlPWtiT;l|(Z
zcDuW{bc^Xen&hq5>8-a@Wtv{Bl)Fr!3upwk>dT9bzQ(*V76y5Hzh3Lw`svfBvvxPN
zJSY8lGTHx;yZx`gqqlBt&0f4^i;180+bta(H}d!YRq~vqp`+6y>~FL2R`H*`d3SfY
zZqK_5nu{yE>}!5hzy9axikC~LZ~Oh5aYN;~28JgM+3R+yy}GtmT0FMoVw%4CuP>MV
zL2b_2wfSqKwyyd!{|_ka#B`%VGIMWkN}U>aeO;_IXok^q(h<;5q_lb7njP|~lhe-5
zay>mwck!M*HM8sHf%=M;mqC>hXe`pa`cDg|Fv$C&>)-GD{SG9yIDCDapde_{F5|)i
z$3MUK|F2&9*er5a$xE^H$bB`HQ@0-Gx3`(3a`V}I?uNC+Y%B`wTXJuk)&2i{-+h1G
z-$k{*zfHB{{JZsfT(@TMvLmeGF&l1v7ZVphz9Mk(qb6>>j>mo0dZ37#VN+T3X8ZlR
zseRT@rvxXRxBcF8Zmu;beJ0)8Q~7cB{Xc4;avxOZfQGGJUt9Zl&E|7mAlqMET`jJ^
z??=*}pU-B0Tpj;+)ur!I`|E0ZB#oDy((#>T(&??g*QBev`!Q$?osC!O2xt@nG@&VJ
zoaVAQ?X1~v<2CX7?fk4>E&&ZO)cknZF4})xS5L36V}IPTvh%jzk2EkcgU2xH{{C`J
zOiZl#_wzZZHg%b<7rRX&!~9-F@}5tpv_ZXe@URJ}y;A*dr~0>h)$d<iT6#L{|4oJs
zy_>%N&}G<m_s`GIlO3DcRC8}{^X1~=n#9H{rE*-hJf`S+Y`N;wr%yd6sd&yd%bmon
zw`0L0+ow;To;+Xw@AHz-)nO;)s^3hUQ*em$<eQtDC+FSWrK&!!BI#(Mu)3emuClkY
zM8w3@N?%>^<g<9t@I-w757$jqUtg(s{`+NdKk;yzDk#NX+K_k{RDPcnbeEZUr~3Wg
zscAA61qqX;Pv3rXJu{z$g6AZa$c;&^MGsrW)j;QKfKJf(^6IMg&mWKbSD&%VytD*V
zHdlVV8a^466F|oVfR>Y`9B5!X`RVED)qj5O`Sa=Y$(76J%>u0lS{c1Pujl|HyNY;B
zf#auZ(fOe=#zjv~EC~Y@xbamlmp(aTeBK9i?3jp%hzjUP$a9v@=YXcx??0CpWr&{O
oDO7%gk%8f50Y8;H*3bSk{4zPVr>{62)Kg{fboFyt=akR{0L&i86aWAK

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-6.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-6.png
new file mode 100644
index 0000000000000000000000000000000000000000..c90c24054ca37d3d097880ce776bbb9d0d7eada6
GIT binary patch
literal 24799
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_eA=KR<H|3ChIz4xqH&rJ#Ac3#Ub
zKUY|u{xRdQisjS^&N>$x12pIRyQnM-Thi<#|MIa<)T3q>4@<t6!75KK%*lOr;l`QI
z-`ns1{`>V?T|eh~-@EIkpVr%Y{q@hPy>jcn-+Nzm_x}3lpTBPDF?3^KU|>jKcFz+B
zF&?aMW?*7qU^rmLA^_rVQ)~cH8+aL67#J8Dayb-0+#F{HMvyLPCJqqywtxeOy3t0O
z)&?7WGqW(h<8MFCUwwJG|LXYtbzNOuljhH#UsF@FCHMBWJ9^yLGq0`+EwYfQdO9_{
zXtxOe$B!S2EM#u&uit-s*T=`lU+35Vp8e_hdHwdo3qL+S?mbC{uU*PKFQ<Iv%~Pk>
z>o-Kd|MtV)s=@xu!-5@ufBgETWnvQ2D`k4=%F5v4-Fsv<>Ud8}-Kl$ewYY))o)1m;
zYQM+cExjHqWs)%=uI^{*RE@w#t8QB`Uwdlr=;*jAZ0)SL%BP}pZL6=nE}J-UVv&W6
zR>+D8eX`bNS8Lzj+^l~4vHyI#yQO#5@B8&?)z)Q8mu9}Wun?rJsi{dsKwv@8Qm>cu
zs^4AweBOTj+UV_ZrN8fNDSYf^`|U>Zs+gUdxJ0#<G&C@{y1A{Y{rzp0b@@8IxIHs&
zt3K=4e!f}d>?~97^ERJ*n3$QrzS(>}>&Aw}Rngnm-7YJ;xjlcr3}1WImlqRrXTLee
zd|>|k{5)}n2iG?1cpq-#oowhfbLPxjTeGLz{eEM-HfpPvr>Ez-e9ywiV!BaFyrycs
z{CwX2{718M+#BEB-K}k86m(2N)}|t$v$IpmEN8~PACI`##_kT=w{KtEcI)bIYd|5h
z_y51&H{bovQuCdq(tcPmxkt@!&WdHev#WB;UtCbUx;otd_qVsfKR-Rax-~moR5vPQ
z<;s;_US5}O=kH(p=jUf_D=Vwx&-2>3#r0O?-{1G^!(slXuV1fj<CR{OdV1QY@883V
ziZ<>0_bdDCeEayfx3*rMV_96Z`%bo$ZPk{znvbroE-pKC<F{l?)H!`=k!yFzo{GZl
zrPgI{0{;E^`Bvxis#jN5E`ED^`|6B~i+09xHN-eDF#c0&<B@#y?f0#%*;f}hGJ`xI
zWsuNtYMSnB@2P(ckIlHFcW`wxJO8T0!)^5$w}1So`1@G?f5Bh7sxKL#YokJEo9ACU
zGt>C%3FZEZyX%}<xn|i^Zu<58{d%vdTCvv+%irBud3ANTww|7!rlw}phJ?mGS?gs<
zN4qMw$Qq?|e0zU?{XE<1tVc&W<zDy8ST1sI=Zn4m@$H4(<@vtzY$D6=*KU7yZtiL>
zQLTzCGi|H4+5LXAIcCMXU!wYPca#%6rr)bR_ceS~#KuRu>t7dL|5d}r!g3={xM5GT
zUc`a;E4JV7EIu_=`?SR3B}-J+=T6g$T_vU)wIX6;5*G(YKr5H1Nx=h$rAwDqZu$GL
zUH;0-V0BklS4{;4hs4ChRe_7!=GA_SOifMQc`J79|0=)Tp|-zXEY7;KW8>>{eVczz
z=<n|jTOX(EdFsrWD?dIy4qfcV+uG8y!l99=tE(&M_O{%uH9tSe?DuQumk*n7S1Tea
zs#;%P-`d)`GIn>_tv!{Sqj$UYO6@$ha!t(6OQDy0zwFizTGDZATdwxYpzjOc^hlX{
ziR;B&IMB$v{<nm%y5E%4$f_?F-9_c)*Z1`B)c*N+Jnr_o*xg~1zI?gtUmY92r=oCu
zx&5Wfmrb*-XoRi~^JV203ke9A@apR7<&m4yD)0KIr7d&okyywjs->Zz;PCX+)XNhT
zou^EkSa^5+%kulR%TG>L*ETT;@t&^tRmx6fW%BX9U+3%p6`%c^dv8zV-{0TEOG>sl
zIXjC=NUZ1*)qeH!`TXlAC#&zB=k0gD{eI2o-l(lvOD`?;)>cq(c=+()uIKZrZS45N
z>)P7*<@MSRFI>O>U(_*)?dO|=%humM+AaR|AiMmEy1&1;`1r#9{rOpXT(*2g`1-h8
zd#ksvzPr%5{mUus^<a5^{^|So?^jY%y0X+;Joo;-ySeiZxATYZEP9#}InD0hkL2y^
zTIbh%>RhtA{#yClTTAoq?phhLGHBi7lK1ywcbC2Wl=1q{pY?Hjqdq@78$8#lG-QDT
zV{2R6s^H~*>jKym@*nbXF#P=avr<Reu4YFYzx=uj7Xr5C+zd)gOuV%%ceap_(3Xmi
zNub=$$}KjfM6>3~%3ycCcIUOx+rvUarufaZS{l2%Eb~wcr<7&UlGVSDpMCND?*V51
z9eR05$;qP9(yyb$B_%aIU)|fgJMHYOrK>_$ud4q3j*Exq%E4y#t!ZbabYpjg_|7uf
z`K<8UySuAr%#e_^tBL59HV=D#Zf@y=1B_?qT8DRw>0bKt^Yhh3uH2r}odOrT^_t||
zFmQEq)3UR>w|1U%V$a84=0#bzx2^s6vA;g!;i1;3ty!Uc?+>J;rM;T$Zx{IRQ0vzN
z%=|CD-><*kz{qS;`6*@ZheO<QZ=Ic;RbzK$7hR7nfBHfqGcz;m%8H5m{{O2ET^|?Q
zZ~JYAUfiA)OTDMBDt><M*URPeZS<UOZ_i)P$}P6Ssg>*1?d|K0jEqcDPl^2faG2lH
z>e*AfKOdYUr!7^VSK*YHm>8a0z4iKy%u7o=y?lH^4!7}&ii<Dr7T4F()bz~X`*qqh
zoybLBUteGC(8#pzn`N!MUgRbh-RNy04-d6o-Bp_H>f)lIs_J@sd;awnPGOUh7XjDp
z*8kx#&AQ?-Ej9Dh6iraIw|e)}t#;`%XU^R9|KIPgSHt61`ph(Xb!llgsP@=f{awq@
zFpyWuB;e<#r>dT-!`EMXy?*~Xw_d523)|&_4mPoVJ*~h0#btl{t4*xjU+$LQUzv4v
z)w-%nmoAy)-LY_Wci-)_Wl46~`P(}R7tb=wU9~y={HoH|*LHnAXT3G~IG^uqGvE33
z|8`E(k6$NcnpLq!?ET*F^FUR^*1Wq>8#iu@+F!Rf?fks8xwp4vzP`5B^4D#q4HFqZ
zEKiG^R%jt3cRGA+RBBC4jgNyvgJsQ+4YzlRYKKXj-sJQ5*VnTvgO}gA<~!HwYQ(hE
zdDZVMuWw>xW|L??oCq?%|M47~%1dv*|M*eyxWMAfzS`e5x7Nk%yc97lwT)l?-8LID
zvulrKHf3k`7-nW>9(!0Y<JQ*f>NUp4W=xqPvi|h?D{CT+K^j*CF1|BueeCXQKYsn1
zwaB%5*5>r{yVh>jIc<`4MZ^7fdC|Q4t3p@bnI>;rb!Cc9<RuFkKI8g-HT`dul$CoA
zKQxGpj7)octQTZK)Yh!ZyWij4-EF&VzGd;UjXI}ozFrAlm&$MZWkR8aOxn>dQMtGG
zYrn@PM^4iWSusJ<qF}+#SF6{b=@eF9SCw~ncey!V`(YIol^weF_5b!{-rKYD<HwJN
z_v`=f&Hnl2<>lVgNHsOJV{`25?`^d)HN84TKmMMDOyBFO+PSxN;`iAczb!HO@9*sY
z|NcIEbhKOU?f<{;>!nX`I`ew{{&!Jjw(k$K%hz16km37$nBTr)%kEF6=iV7Vd0YJG
z$=lkWkGl1xPH*zLy)D<*&8_YBuAUyA;y*tMufIRuCu^L3ZqCOW@3-aN_Bq(Z>f0@*
zduQ7FySuMPOiPuk{SvtTYs&XuVe4XUf`X>_na}p8#m~+dPD`Ds6}oDNuDn^!jEy>{
zMf75B{Q2>?Kkv0w`MVq$zV?~c<?F6XF+7pmmB3gpc+Of%fA5z`R%LHi?AT%9d1-e3
zzLyu%YySNBxJk!bSltg)oZsG+cXyYjl~vT`<^JC-+#DPlj&C~D%6<RH<`a^qH>LCh
z?yLE^XPth~k`t!iC(fC(CiV0*P+pKLXMS~U?P|ZdR+_4+uAiTu->+%veQAnjuu092
z0$yn|pMLv)JKpX2><21&WUb4tF!S3KT+PkCwq|9YtTiaB8mFB(aq**?@2n?Mf8L46
z%fFZEsatAS`zzzZ0>@ni51WL9gha%}moIYdUKO*msOrzh<F<0<b0$q%^z!oZ)oEvE
zf!Y<fch&s-lzC=`;jW60i=y`iFY}q08d>#r>-9VT>JA<}C}os#qO|{SVV|dF=&CEF
zxzp!fTIyZBce8-J{CcNWuFRL0maa>^{@JeN-R0Zq8Y(JJ+)jTh`1r`xcZPxE&(F_6
z<%7*TfgeAA?tE9_8FX=x>)m&6EI`eaUTO1d*W>HoUc36K|Hr%C@4tLLZ@)TjZ&lTg
zhwXQ-ZOy+Q_x1Jl>*wwNuQAQOR*`die|`Pk%I9<QPFH<>rJCGhmUE-Pxs-9o&lgRs
ze_Ug3o;|urr}oQ5_dN0Wey^{sojiYj{5F4<QzuSb*qD5L%B)$dlw7-3Bp>gq`u%qM
z)n&fYwqGtdXWiPeGASu3WL?b8=pw!ALLwqd!q!G*K0MUg)z=rcyX@_i1&+*DR|dN`
zHa1$`IzCM|TE&xB%B0}6_xme53X?%aO!T&#!0YQ`^LL~r_pGk}^AwcqeCOF%y8o6i
z&6)yg#`4P9MDW{w3D_pSZ_<|P?|Exub_Pw=4iB4aRT^`8wt4<KAyqF8L&HE#O-(uR
z{p<JrTE)gE11j3H?(QlDwMnk6k6(XsvU>KZDVnnk5}T^Nz0rIbR6c9X8lA{#OCKI?
zuf8&2;zUKyykw4TIX9Ks4=<cCL!$rN^zyC6zyAGxKXt~87u$3!EF%8?{(k=3o%|!M
z+~Qvjvdd?Ddvg<1aZH&u?b){<_ntgSxxPRC{O=9k)AfG6*?c}^cUf-fn;U_>Ql>#Z
zK0U`LugjYzYh9+HtLt0(`r6)S$&2QK+T{FpKO8(gJ+12g?9hwZ@gOQaa$29f{ku|z
z8b8b9p{7|^PQ3ngtXKN=?fm^$r|CwA?60fco*aKq_w>q=mzO3jxpL)-eT;BJbTb3f
zA6JY0bA9~%uY;Psi{1HcKOPa*ir%*7c<bFxVf86fr<Ptl_+VP<%QG{LwSty(WL;gg
z)HM5A#*-5he|@>^Z<>3{L^3&KWsvILKc7y^-A}ufcy5lRlyO>5+L;*-UkS?#2rOuq
ztMcIF<h(A!|3D@~UQX^^>E7a<+Z&J9x1>f!?JQa<Ws<RA%^IED`}<<g+x=ei@9+D1
zZ7nUYW_JF4&+JZ3(_Ou<_P3UzqGSI4zuT@C%J`kLmI-GIke8P)eR;_hRB3{mJ+|NP
z6wBQf(+cr;dwYBM?{9BaW2^jo<!qyr-FgD{*ZsY+%vV}eJIqJjZ_b1g&5jiFj(a~P
z5|?k;V$#~uQo&n$PjAZhyt}VH+UZ7bTch33(%%01dVGCoQPC&g%2z?{e6mw!%vka1
z>FL$Ex3_5pE^7Jn_phpF^6|c_KR-Xed+Yg^+8+m)`9Tehs?TT5O;b;a_|CBiJSK5<
zMWFLyx876VE}p2L^0{{Q<%ZASZs)(gnLa<%!=vNTqemgjd?cTqpC3Oh_2uUCc9*y1
z-nKdSw`%Fqr6)J7SzY(6$1u*m_~5~Va;N9?uibai+L$5F4pclEHa0ebn%|&$FEurF
zW%c)WR^{*JM9)6d%DviSqSC2Tr%ru)eyEjuUB1Lp@AF^dHzYI$1qXk9yZwIFiwg^_
zs=ln)Rq}F?sCL+nTbA=hN`G!&?q~iwDQ?oAzkf|jUIe_ovC;YW_xIPoyu1wR3;E7A
zJ6rm&#`N5}<aU1fZ@cc@-1<DN%&@pj|I^2h7w`Z7SFRhe!6EhZw5uBu4}bal{r>X|
z`DS+hFb|Iow_d5ITnyo$QZZZTRQ=!A@p6+D_WgV|+vr%vr6r!0R%r<d3qTFcUteFp
z{`2$muWz^WRsY`4eq19IRc1fkzb;}&LE_RSODgteeEGKh#l5||kN?w~UvlxM@6WF`
zKXt4<J;6<>&1q*r1=;Jx{dSj5OjHK>;d=0{btSg%5C49*+dsbc>(rp&;H@=3i$E#m
z*T>`XS678<zrC^Xaog+tb3Qly{bX%+^W>>hmp(i^EGj3rZhqY_Pvi7+S7sO{fBAG;
zKl{anh2|yK9~ZT9i%&CrwralR=}kpTqtzQ`cZ0GJs9fD!_4QKz{=dsMCLiCmc6Idj
zbwR<wwsPxd3fI-ufx6*sywc0I->-{4Cb8Y~=bXRy_+=~}Y<zpHSGxF5i_UZNCze0U
zjFps}=312&*|wFQon?Cc&9uO^QKp`kW|?O1IX7W%(owF+X-i*SUHyE;J$oesgMj2?
zJ%M3iVSVx&qjwY}@=6-HWM*c@?Y8v{N=jPPCuh6LYpT}D^z-xL>Q7D8UOv~l{MGFI
zeJ2a|p8M!@P9b!6S+1o_-|JiMUte7<{rJdr{og<P|NVL`^ZxkDkH_W9doxewZL3hv
zXM9w2?)ZUiSyxYqE}07|62E-;vN~`6<?o3J2@8^vlc!FYu)wjIO;cIfxm#R+->ZG=
z!=Ij-Dk>whCinKX)arxpOaA;QoNH4V^!3%%&pV1MzP*X;cMtNu{{3f3QQfn!bulkX
z_kQl~iT*j0If0*v<AeCOOWyjL@%w7LJUj|!-+p{Eeg0HKx4l(gKUr<O^M3#Tbzfg!
z-(45KyKL?8Sdo|i_ifx)!}bi+ko#Nqw_Uz&$2!TIbD2~2o>edU^P}+Z`}+T%BkF#A
z$((Ch?6z;;zHnK2#n@dDJ>A`x@9nL&WxDn2>ub~EXFjbhEiuIfKYCwXSlGNOZ0)M`
z`+l7=J$`cQmv?ugL7l^P`MMQ*tG`#RDL?nuFzE<~?;MMZug@=VY_?%rtgfQ+V)^{K
zPgQ43v#-5)y?+0+_3PKa+xcA1GiYPdQE)%)))r4t1#?|td-{2~?Nai!UjikQO)5Sl
zY}d2Z)YO!+EP7IEe`sgi-l|tuS5NnwW3jOM{od=ZV}y=LoSk9#cvf=doc@q~pO}8W
zxVSj(x!cZp-yfRauPMH|+s?dNthoK~!h3tGUxWHGll|>p3hpy9HZJ}1qtG)bB4Wm;
z=jYciS)#K2U6Ht645%cGd8-$`#6vK0+S9L}XU?55Ln3rlh-db-H5Zr9uY0vE@7|uu
zsLg4;TA{0+nEhiu@V3)X;Xr)E$w{hTpG@|D^>+LHYoIJ~D|@}?E|VL@XJ!~yeLN}-
z?ytIbi*<E%U7Bf}z9s*@9cUDZSIXo<{r}(bo|iyf3{mZ{6^_kppb-I3FXM5)eb&cE
zN4a=;uRiX#e`l38+bp-_xNLdGvokZT3LZ3oMri*2{{H&&dHe9&+j32-zrB&U8n-e?
z)z!r%<Jy|YPhY==-rSU$8aZuO>FZ@vrig(0`Jt=BuEv(%1$Dh&Us)L(wWDBRpN!?A
ze}8{h*Dg9gb&l{BUKxvk_`07<v#zaK`S<tt?0b7EL1ow!&ETRf^QFI@(q8|fkzMY>
z0>|b(_at|Kh8o>^rIzx^T4mhdSDPpPcK^R$t3iDmP}|OTw%N^hi$RT>XEW2kyj(v2
z)!g!XfdvH{mif<L*T~Gis_5w{P}V<m_;BgBH<5pTJnmnYzx;mHYu)V|rQYxRy{_!-
zt)<iB>mvXEJYNs0qeb=OV%YiRu6%oYdu!%pwX<_9FP9eHUm2`^cAjl?e9gz!fB(Mk
zU+p{F3^dTPr}8tXwXpr<$D&t%zu%v}e*Jp89}k#AR|dIm+_-Vq?{~YOzJI^|$&-||
z5gVOOo;-Q|&8+a%VY)|;9Lf0i=Vw=EXW-voUrV2y5Y&y^69H-&ot&h4_m;Z4`tu*P
zH`d47tE#JOtEst7oH+5+bp830CQaIsbd<~0)%EVA!Vvxae>R!r+*qK$?}wA9c38;i
zX}Y2!B1=F4dUI2%mxo8d_Po0(k<)&CeZAZ;`PhoAtE;juFY7fjGWzoMdc3x&X=tyM
z=_ig<RxXi%xmKlL&YIs}k$rvLs)&t?YHDggmG$4h@9WQRTedQI`KrjxX|HZ<TzqRw
zCTIvN`*@%1uRov9hwdmyT+g4yP$0eO^UVDWZ_*>Def;?GWZB<|%I-dmOsqZu0TV2%
zzO1;tD}VprYb9@PTy$}9k*Ke)7ZwvsTNS!GZC?Gq%E?ovJjvRgbJOVZVt4+}+xP!H
z%fik+yNQ*1)~Tu5v(x8Q9(!|t|NX}^_W%7hyYk1wcHfMQ6({H0?_U|adz+_^kBN5p
zIupM3!+SoR($0IEoSeLO-r;4wvwbcv^Ytw#*zob=$HKEq3qL*aG)_9gae0ZSaPX=S
zO<@6n1g~j2nNp@%DQV~D)yA&Bf3TU|_x-)Sz9}h7K7RjhezZ%}nBVTlf}2}1Ctv@@
z*M8U}@6L~1eGhH+Yd>e)8FO})DX5>xEv{Fh+uhS+VrOTkrmcPYwV9!z;jxDW67ur$
z*KHJ<+4;@*+7H|O|MU6!n%5tX%Y(X-J<{gqB$CfuTN{1$#6)G^$!fknJByzB{QL9M
zHz8rc%7BGUl}{$RpV@xD?scjC%$YNv?frhw*wD~W&BEda3k%DPO{u46E%Ti{>*M3&
z)n`smnmIGmtw$p9)O7uPCMG7IkdP^oMkyU9Pn`JS{CSN<?u`uxzr4A5Ib>DHNfuVt
znGFpL!OMIkKR;;ZpH=z!+0LzJ-|d|-YgX2;FE5i9Em{=w{NE*S{h43Bln6^oW}cd=
z{XDDM_Wj|V#m{G*n`=G0OH_N-f&~h}I|>qmw`PSJr<@Sj{?nporwM;Ye}Dh=N{3Cq
z*Q9^ncjnY7qxXBi&s!P1ypNNM%ZQa*%tTZ>%*5aB=aSoZ3_+dqH#asu1I-G6B9fDz
z-yGD<{{8*^`EB#=?k=BwZEf`IMXueu?B)kA_uKpGb#{-Tb@@A!ySqw_RlTQ~{QUG3
zOoRB=<?p^^Sm)d@SYP}?qBv7esQqwa)t46!znU^msMbkd_j%zf28Jg>?S~iMxDm0P
zU7CR*Prru|V_sxC@99nJetSkRH0)_LQ~=GB<Q$eopIdR5H*Lz4B|COlfLgJ9?ao(M
zho65tDaSbHhJmF_pUn9NJ<s3Y-cCOJFrZ(~HZL*NJPmnTWQtAtt1ByuEM$Ckus`tc
zWnfY`Z&mwiOVpN(g}$@RRt7Kk0}bTQtNG-4`?Z8!%?=s9b{W3*M~@$G&fQ-1H7k5~
z(bH3RKNN13E_hpDab-v0<Jb56CV|FR%icto=G+K4+9f)9|Ni}6({xr|TN@23RLx_G
z{qC+h_~cwc@lXFoCf1NmDV`ve%<OzuuC0yEzxDCa<Ht`6EVk7D|2KP^Kif^_ADcg)
zeapn4U@dKy1L{12hFkuAp8x;M+oC7WpD(Zc{4Dd&kB^}Fl;giTh1E};KkqND7jvTZ
zm0o8@$AxciZ-YvN{!;sYKNf>VUqK^XMn*xPp%y1+=dJbs>vW^GcyNpBg~Y_nd3I*z
z<I>-=m-@}My0x!%cbAxM)#*M#Ny(R7-I9`$R%LHynC0JFV}8FTn3I$9)t#N2LBn{W
z8UYX5`VI&0WO(pP(1GDe<jIpKH|cmkeE4u@Y?sdIpwrWIr_PwM;^pP#uU9UgR}@|U
z>4_(3dSY$VR?ui=@k+0g*RO|*YKMJ^sC#lk@aWN_FHcNVma?hX@OoX}<&%@uukI{P
z*NxodB5PfCWs<6QUSuyLBV%0lo|#I@;1+HF)7#r}gSY41HAz0kvvk?Atc#0W%}ZqD
zR5%%~_v=M4e3E%?(e~p<g=BKf-I#T6r0aitNc{TpvU^})AZW%UA_6qxwfyXC^XfOB
zKkfVKJxvERbSfevqa!arU*`JNJ(b0v%JtKelX9=^em)VNYhND+YI*H?yY<(%_|?%@
zpZ?yU<E<UOuH<#v6B+-BcO@nqY-WG`;o;#|S5{7T>ydaUW~ZWQVG#iuT;5sqbW6@n
zBTyZdTbq)y1k?uIoPPclsP8k=D0PZ`eI2OA28|V}XliSFE4%lF9PJVXji_^pYQ5O|
z{oZGb{?)yVp1!_U9~^8B-I^6DsuAFD@ZiC&zP@YS`ukRZTB7^xEDNv4mS^7Fl&TfB
zW(H{dl$Bd-$69|MpDW7!Hj6+_;Dm!sS`ix-fNK2mdzHtPb1eSPJ0{`k=2rE#ZhPhD
zw6E{)$6vg7k&Bl%G$CPuR@j;q&*#_2sr%2{leM;6Oc&G-=MvLdF=2uLXmkWTi2fZk
zMjHSB*K|;Sc*6z*Ru&cwBcmXHn~yD%CQsh`uKLxLm7p3nB4P#;Gjr%NA4${vdojh&
z&V0<6J!j6E<@4*Jo}Qi_?%>eSC8oQ|EcaH%<z>F%Yvma>fpUJOUqQhJP=8@<^!8Vv
z_RnmyToGAWUC(v(@9ypnH#9V~s`;@&$~<q)xw+P_4>U5*vMyf-8W#BZ`T1(sZn3=I
zTXnpPpP#!rN!9zxB3EwPuUCSvUoF3X{J6Vq)t3t$g34PeKc{VH{5V<7H)v<k(<@st
zFXwFEe{r4F)m5RFHzXc5$+=;$UC(Wjh_v+Vw`I@I&At5P<>l1KX>B}`lX7?e`T05f
zKm+5e%gg&glX`x0t#)3WH*@C79Xl+RE?c%L_x3i>@DFGz?1D2tXrQX<{oe1OY0SIj
z_iI0W|9<_>&f=@<<LyE7KefNVUANf}%ByB(VeEV|0liYDS9X`@$L^^Jv@U-KDr&x5
z3HApK+gVnvUAHV^V^Y<lPW3OZR<8%u8(DXEZOy*ht-nu0US9s{+URgWK|wEX@5^1H
z+E@11*XQ2a;u*Z$uXL-dS<Vd5piu7ZZN8w{n}UK3Dm(va##Y6vsHuS_^t!scFCXm|
zpE_mAlI{1ZyuGLCT>SO*we7A($z)K&4%AYu`f!l_>WV<++`GF%=hyvO8MZEF<@<fV
z{mSnYwy*yC=jUhB!bdKkp?E_>Lr{yU?$1Ye(99jTxZagzzO(PVQ{s~{@mTEM9|j8Y
zjmhq!dNC30e6p90^-7!O-?J%wapB<Avd_=XW?fq|({G;5%If!f!$DJ<A0HnFl`Fr#
zzScH03_LsAeDV}d57=6O{SWtZHtd&RW~jV!T)rMWj%ro9>iDj-v$G`I4<~}U-`i^5
z-r9QX`t|D~x=~l=*j8W5jh~h(DK9Vo`RVldxNzCSZM?>O?T2f=Ty#&nzpwV#@#DvB
zem<F;cYKS^=^iQ5Q!zUV4n|B%U9@OXQH|a)iR8#>nO9a!y#9Dy)YezCa_4?~cQ;$-
zv{Ap^uNB!h&F|MF>zp=P>NR!Ovz`Awoz_3LNe9&6(Tm&jB1%qDGE;`HJ@fLi-jgRz
ze7I5W;n4wVNm-V@nv#8Yo^7?yzM7vtUte9l+qbdksaJC3G)cRf9k)MKzuS2nG?bin
zMxuY0-yDm?bMx)%&;FYG``o*)g;D!zc5c);?c(OPOZWcf^#1GLK=nCa`{A4$8xH1H
z*3|3)jkMq2R~xte_Wt_)w_m^b^1lB6?TBfqarJ*ow?94iedXbY2B4AgyVrW<?e9fQ
zOPytw`)b>t2M3$;>V=o5o}LB@tINB~^S3`;xNzaJl9!jB-Pu_zcYBUS;i0eZ#r0wg
zo}Qj=-q_gqY<B*>!fep|wy>aJqSrK?mtSu%6quGAWGcAr>F0NCQ|f8Zcn@f%DepC6
z2>R&jh@Ne^x3%>2-to)t_L*q}N&so+=Dd6*WRiJF<>#+ouP(aF|2_PB?^HfnD-}<z
z*j-;tZ(H3?NlAHeq*GY#_3>V5b$fgJ>+iq5z8(&mg_~!y@_KxItfQmjy3)YFz^=~D
zi~s+9-=Ez#^~Rpc&DYjOFVDKVD)YgCM!DC{PEJ$w<M(A>n;$GFC^%_J^6|c%y8T^U
zpKk4o-(P2REaT;+rPoX6fCryHgC<;^TDekp?^pAk^<v-ecg4}ymix<3)sK(U4qJ1f
zk(oW_^x?yY@BUNs^PO#W_5Qza=If7t`26{ERJeyn$Lsszx=~APtG|I}^jF32-xs}G
zNYyLj!GT6laW+jq{@qs@1_f&t0fy~!b)&a=Op-Fmcu>mY{`gpLYER+T-7#yUw&wl#
z0UBso8NA#i`<l*NyV|JYXJ-OWPty(EQ}I#yUU{6DjLe!7Cp`L}s(MeGqO!hti;IiP
zi$ks4Ry999gnr+fch|}@Xmi@xyge6W3fLBD>mLdZ3i`6X{;xM^g1xD!Ddw?N*0nX7
zr#Eeq4W2lcTU_tO-SYdP&1}3PQc_y+@$r^2d_RBucyVQA@XdGc<^TU^KW@~1_#qcl
z_`dDSeP=J*vBRRZwe{rr^XEgq^V|P<P}rjvyDQ`Uy}h9MG1H6-3ZUuD<$iNNS=_s|
zHCr|Im6UnSkAnXBywYYTBtR<?;;&~jG4wDp7Tosq_MW^XXMW$)n0L7o@;il8^M3qT
z8?`m)<D;Xdm7h{lQ&K?Fm*>kqRK`89d477o>G{6RzWZu^ibzSl+NQVL{qwJ1alhhE
zJ}tLj7c+h4%*v~e=h;*SO-tSR&gV`RJHOnNl1!V9;Haospo+2f_qUa0Z*PI7Wu2Uy
zp1gj&da}BI)}0-NR`vh>l*%r5Zs!BdSc2ATY|D+FsuAe)@87>kOExASPuso!&7n1)
z^I!hq@wl}4yxnThAeXB5v=UnlMFWF?NhYbMMEVQ;9v|xkt@Z#7jrK|!yDfI_2Mv>e
z8la$7*3;9|r>k6--LU#Be{$rsb8{>wPoB=i5W}IskY|04`{A2?q2*<kyFNAjOgnq?
z!J9nOsxKL`76lIAV#Xl`yuReRrIX(N8GA&tuC4+tE&#1hvH$;PvsUP;DY>^(Pfzol
z1R9fxe!iW9k8hgcvt92E{sd}=t(j1g=_j<@bF$jbeQ);{ZTPpV^tDOeogJ^O+=7B8
z2?+~dT@z{i_xt|;rPZHi7`i1N>p59=TiLy@BKBR)dF%VPkN3%5wtl~7@$PrKyzke3
zpZn?g`S;iAj`c{&ftpHxe|-(!U-uU@1hzJEv)kshvzO*r7Js?yZ~yYReEpR9^XGGk
z>*<`{v?bvn)7|?2f3KImgOwL6!`9AH$vivD6f`|_{FkV9*ojR#>tmbprp>dh-nHwA
z&9@uL*Y`w#)=8+mFIP0nyHgQ+yv#xdH1b>cyP<)h^xd7vV-kCRy;^;9n|1lSIrpkw
z>qbsndR)H#&#tUpfu*mnO<nR@F8QOojBQm2WK9KVk~sV4ySuwnBd5vLd~oc~1&`0g
zpVMo&_fPJe`!mom;Ny+QUteFp|5b8p_}Zwa8{a%S+8wnyt#`@)-#l+_Zgv;fj{`NZ
z-GBUeyZ!!_^z-v_`V~E0yTw95V>sE@bWHQ^MC>kqf9?Oj@AjV4|EV35SR1$Z*Q(zP
z4X<4p7z=K9c60>9#LNNB{ewqRqe0Wf=jN=OFhRif!vW^)YubvQo&q&0K(i%Rw&&l^
z-nKq+^D-H}cF>GN*~6KWCM~M}_j&&H((Q^SCMNE8SL%I#wR-)kijR+G878;2@yWg_
zJUD08tW{-iZ)JXecNbLgALh5OiT%Al@apRD@V!-Ex0JpP>y@*;m0auPb*i+y{?oJH
z@Arqt#LNK=%>919KVCO_Tglq)o}MX&$CPt&Zf<g2?B4(Fmw8cH@aJz9>CY=>YJV^P
z@*>do@0ZKrYl}gXypvV-eLiP>Yj5>-Df7HHRS^xJCBoZ28mFHFt@4m7zXKW=xm$j}
zQbym{`0~}KrzBHAqaB}~o_@Xe`@PGLj&|?8wlnXp)m-cHcdMQ=F@!JT7HhE4-Mw7B
z_QOGTP*Dn+yVBqPC&)DW+LeEQe}mc+KY#qlI5kBx?s@o*nWZtg=lZol**11p$;B<1
zmqlb{*MhvV+;8qB&=8$z&W#JN8-Bhq$-LyUIsJUt>uYO6_g0nu{Q2`GsE`A#cYAC0
z@ZrO#Z8<Zew&$&#sO+9~YfEO<y*)dfoSe2mdspiI^FlVKo!#T-mJX`rR|YP219flg
z{(cEQdhFOKiN&Bn=+*1@UFwsyF0$e8*sMLZ<mIDZKR!P8^70A_3Yw&I`jT?L%_2@=
zwH>*a*G8M~{di3J)&2eZ!`4JBw0^h4dH<hJ-C}w%D?pKVZB3-y@ytt0I`36H=KcES
zX7JlvTZ01vCNwoSUtR7G8sGOeG&G!LU%wAD*SNo~R@Sn}rCVG-?CGhgvCZH2W?o%2
zRj%RzBPdy|3Ru{*E$8MURqtslGA=I4n`|wn9~Z-K|7QbesltmF8K&9Sd@?gLLEdL#
zW)_u|UHg9j|9e;MY;9vfm2NASXvktW-l@9Lpk*qTH>IB5l6;(RYv$!+S6$CvzaIYi
z`T6kA&(4<q|N9*@*9w~E1TFJ<aDXxQ&W=FPm?EF7)slvW2ARLH3=Tq{8|GLRALEg=
zx?+-l?@migi^S<on`-_3e|vlT?B4J9vbn@`GMt>8&M5cWB=yN!Kim5D$;rvSQ?)`t
zt0s0n?z28){eDlewm<Wa;9b}5NV4<Gne46pZZ>h^#AEmG-xtviJ7e?XL37&WWxm(<
zu3x>gMs7lO;W_4@bupIxrIM18X%7xGf|@xX#divi%ch-~VfgG&D>rCK!?9lJYTI{H
zKR3wOR$VE1dFkjBjle@ce*KbaKm2f3aPs?mdqJw?Y^y5PzW;u|-aPqupDC}DiNV5!
z3qi)Uw71U=TN^dA^7FIQ>bQv$C&ryWDUqC%oZJf<#3}vw@gu1DnLDp%s&=?k`{6{;
za?1X1nwpx=K)tP%F*`SL^6;3rc8M5XT@`BV+{R=0^5x5$*UF#n)Bg_|&(VzBv?TM!
zhJ`<$+yBqp_y6DTobC7b)$Rs0IW^<<?9hzZuwZ56=4C&>@Bd$W^?E62DCnH^dlN=R
z#$yi)cARCLj2MsdfsKg0TsqySs%qEu>t8;7f4RuD+h=dpSMa)riAt_MzrVdbtH1xx
zqryL5zLb2v<gGu``rVGhENpDEj8ad{*jM{|)|4qC{ri2>(w0>|?lt%67Sr{)xhWMi
z+{VexZT$UCasNz<!bK;~ocVI&|HkCwXS((GWvmKYo5dxfk<irC<a4x3)E8t)kEF3r
zSlBhw|9T7smZxV(|M2?YpKyO)EoeOb=BCupbupG}V|E4wFY^i9o_F`oEzt0-l~t5$
zmq_6Me}7AVeaQr6CeYNbS<a0IRhPO|YJWUzuX?p|`IUXO)u8kZTDJ!3_V-E}A4@(5
zTI2g*{S$q82P0$Ssk3IS+OWYuRaJFm*xIOHKOXnnGI_kexA*Hw_4zNJ&#y1DRV(`W
z=_#l%J<=(Bb#uDE=XAEhX?n3yUte9l{Cs}>yIcPzy31XBKEHk)Gdo|(Zw+q-28IXc
z-|5?P+&zEZKQS@!dX9PhznZN%H!r=F{OUW)B=BgL=-pr5^?$!!_ww`%e1C86-EHqL
zFYiA$$MUh^3efP_5AC0)*(c1gsQ9n|G}|@HG`nie>e$`eZa)ZozW@4)z{6`}d!<aD
z6j-dwUZBaq!0;j6nc*bk^CfBb(qj4e`NO@uy0WL;cW&o9dHlG$YqwZw_Vee@mtVLL
zaQ)40&;sXpK}Hq!Ip^Pe|Ni}Z#Pgaj3pV>!Rqgup^z`#mdqzga@VOPB_1r%;C(BKc
z;o#w!qOyK+f~9&w(Kb#Vo)9;;w(EcASeKu>dT#dP<Net$FD>or>DiNI&A`C$r0>g@
zlDBtvhkw6Uz23cF{0R@pqS*CwVmIo6dJnBFEho;OKY!IsTig41zkGRhuvPlZy|<18
zdr#L31+980`pUq-u;b=3-`UIbVs||$liaS#<iR&ZCo<@0m+0kXzO!wv<=)ufc=6)J
zb@vx9UYy!<ahdPzD|;%7uYc;5Hh=Z#Xm?)jdJ#!U&6k&?cX>_KGJg+RyIl~RbAMlK
z?C!GC*zFI02|5(5h}~WG>&ayQDRbt$G2=gRZmzXy!U2Zx-N$;RwN+GHgw=csxD|xe
zd;%JoSWEu@{hnUUlfHemR_Lk~RbO9if8oQxz)-OGh2H<;f(|Nszu&92s{FKM(&Wji
zp4?(Opw5DdC#ZoG5HNv_S87S+=VzK`X4g!GtDKyg-tGIHcl7x2-QPq71QrM?yS;e1
ze12FvpKQtdz2CFGzPbvk%HyivnzFL9KR>1kN~)EI;_K8(JV7&1|Nj2oyYBbb>+zs*
z7tiT=J3&*vpf<{<r>B=s(~Z_rRCGMrCHncsyT$!>muBbhTNz*fH*~4@^sxK;YOik3
zzrXt0#>&rWpt*ZbPtQAyj0_AXns>zQF1*8dap{DK!lA1|E<QTiU3}%+#^Z9AllyJU
zlv6>2y7g9Pm_bgV$I5unC^4Cf>W9D9$Fpy<9=QDN?d{^-EDSp`K|^dtsi&TlNisCp
zG%-wKFMWH<bh|f0!)!GLh5dE^Dy<b+7!*1gCb{=cxT3VZo1tNL!tQf(U$1(6ykFRX
zfngGdLS@L5C9ihIf^*4bLk?N0?{uJ3q+CzDzAhHD(kpaVNhWAG6_l1c1eK@EoA>To
z-tj(JP=gM%7ePvDRo>lQFMoV|yfeg<fq`K{`HyF1jN7~K*Zub0nsqg3qLS;C?fLPo
zEiD;uZ*8sm`E>f$%Fk)F-)^Q)TJq#cifP6L2iGo<i!UxNhSfa3?*IR{9MsLdK7G0j
z0|P^SYz*)73+nT076mW&%Y1ulD`<m*%F6Wf^G=;Qb*cW}XZfW|m#!>$cnGwR_|oOe
zTT5Suxw^P`OacwL?$}`gTJ`<v=H~Rgd7wQs6IQ=yn(DmVfBrO;*4EaYy83~OT4eaz
zKRrFI?g?rFMs3S^$t6GO$`ViE&@~Z(#m~-cT%W+ez@Wgd)bJ!ACudEM;j4>_+d(UR
z|9-ojKMS<L{>KAm(9m#WW1|&P6_XRcyDT^N<|b8fEp`S5hEIIE5}sbz`~BW(P%*Xj
zdfeqER&Eu~X{nhX9vlSiNm21^=aZeJ(%Rl$og*(Nw{FT5k<_%bQ|Hg0-*<?SfuX^s
zg`r4RNm=>ohD2x3;y5l&&Wnp&yG@Foc!1jLd#k^f+47#gfB$~+?S=*h&!DO*D@IT{
ztdC@wAT!G}dzxJRpTf7dww^9+Ukn<0J$34m{r{i-rLV4dHa0d+TJrh%`RbhdcXup3
zi?)JFsefG@3YI2`hgd?_$K73A9s2s(TGP^3A-Oj<9sOFOlODe2w5(N$hoYjQ<(}Uk
zmo2#&uJiiK|9a3~p7xo>=~>Ut%*;D|>C&a5m9y;mnLPMFjcP?jMY+?)#>S~V7hAc-
zK{Gv|Nvhdqxt}t&Cmv>Vb$5UMA%j_^bmzt<Mh1ogXRFdzOZ?{E+0SrqPvvIN0&8#4
zzm^|F*2sY7e?iUg*xhA2b>|x<x7F0tlw6N3_ndTVYxeS1ZgDM3%bQozetvp-YiIFt
ztCAN9*=HFT7#!jb%TAD~de|zyCFP{h)%Ef5{`P-C%k#e;6^{oEV1ZUucumnz^aS-|
zo}Hb&{Kkz4P}DB>pC5*(ZJxjL1ZBgWJ=O}ApcRO<-|v>Mirl<R&1c4f^!c@6pk_L#
z(gE!ZSy#5yYwD#{p{qj{I<fBk@u(X#=Y4vb?$@W&<3D}TW?*3W^R$rtiPe=gk-^;J
zdVA7#YlW`L`1t6kSqLcd?!@gFtt!CDn7SLrK=C(ZtHopH+qoGS{`}0nzt0w2JvIHG
zch`c6gW-XgmCDJ5>tc65D^mnlVN47=TK&9sX=Kh?qO~)Io8b=6|EVS_+q-wH6?9-=
zFk7LtvMNuUk-?lXc0-;>^94}0C$RM{@AUEn(45QbYiomxiZ*#o(O6jhZm0XcecPX|
z1O;ln=Jva?6J)K+Rs=2e%DS|q6ST4ESg-VIr&g|8yGmE<9>2e*ax-XT;KGFfaK*AZ
z?CS3K`(6hoe|~lrv^M0zg@Dr6*L;un%Wq$52P%2>cfSSqAxiJpe%CZL4FxTHS?Jsz
zvahDn_TP`k+yC4Et<wQ**#WhmUtCxyWnZ@^YHQZg`*pw1URATSj0CMOnrB;WQuQSR
zG^QT4C1c_&)9hv3;(B*JNrB4NJv!&VMOS?~ss8m=_Igbfl_R-7&&{<4Em;E>r56{u
zetpo)pY`Fv!R=e-fi@Uce}9*Cb=A~o=jP7N-91s+UCY)sHhOzrsEbRB3aIA;>fjug
zuU|9Iw));BE2tIs7%eM4EYJ#Bu>dsm85tS5?&-#j8$oNl_x*e({r1*YZ_pG_bpGC@
zH*VaBjynJ4<>k^ZF9LgIEQ2O}`Tc(XX^F=d^Zxz$nRRp1QtcX#pvh{!Asdri&(1V{
zKJ6N4`{a|-O0x!?hz$;)6^TbWg};8^|3B7yn$AQOP*K#?(GhTYnQ!REBv;!X51LoS
z?cJs3JFCR|b>zO9ouEA*%<OzCik_YV&4GfrptWLuetw>$*Sc)6d;hAmv$N!GUtbp+
z9lb4Q=TcKp1GX}D9<RbAa9jKKwp`GB+m)Tg>7W5htD+|zpkBw9FD0PG@h@M#oMm0U
zu1i$A%scz%)9LY3X3kt`mU{~{HE{XQ&(B|PB=^5;=C=c_Nx)tY!b8!YUBDBx5X<<y
z&Eom>{~`qi1wl)gKpl>`w$)*YiHV;+e%!dU&p7>@hOKSv$B!SStjpHi+LpVz@bR&i
zo$B*0tclzVTIaoV`Eqa2GFIDd<$aNb+dygmU)QG^hLa~w1Vly6>Jrsn)+wz1YWMqn
zppFu#`1YM;a`LrBPc(SA`pbvI{JVAE-`Tmj$1rMl+1k~;o4v0+JvZ0-`8Ih_mvz0y
zdA148?R+oy{eBnx@6S(BA)!THQ?)X`zPbvUmtGaR+NADJ1!&k66cJ(T<7!X81`SH6
ztgQI>DDU*)Lx)s6SFT*SZe94fbrI98OI}O>jkiC4KD~MIUd@$XMeU9M7rbR)VECb&
zcIxx2H)mtkzBsRNo^1kX15x$&cUM0>J-s#cw3w^A`)W|{?C<ycs-CjeWmo!St*`7V
z%?3@ezPhmRu<qLBZoN{I^v-@R+}X^|@3l+B1++LL>1bEx<z>EdxAP(0Lra@m44&NU
ze!TqR?#<4?a6tZ&=e+AF%tc!l**DurJA|!|Tbn+w(v4Tz><VaEoni7Z(2Ucsm&@nJ
z<T5cco7Vg&0Il1emU{P6l~u_Lh2$Q)UoVumKb@@R3tBoSWtOAinRR{LTrs_v7h)lx
zb#rsA%kO=f0ICC@lvb809s2O0U~TkvKhVs%O6J{NrJHoTRlTNs$cSF%BYAe7?eA&V
zgk@#d%Gp+d#xhTxITLcYjrZ%<>+!EaJCqhUHpi6mN||_kes(rECua?)P`bR_Ut3Yp
z5j36i=<(zH%wBK<VR}0Ai4}p1L9v^Cc9tm@AK$fSXJ=pCUtd2}D^%-x7HETM=(e0l
z-<d|Pot>SaVUlCL(#!YN{@!(KidLxC>aew!iqG3F7mu$A{Q2o=FlepEgb5Q4e*`6p
z1M{b+zNzZDBLCs_`u$liFD(VF#m>6EZf(`qS5M14w_ka7cJ}}O5tB0~?RrvX$xtBd
zGyO_v(4-}=AZ7RTf4iqmnX=^7)t~Qg$xlpw-{27x5;A38&8L%h^q4^d5x$es*%yLX
zKRy$++4_zc;}MC){PuqWwq{=syST{p>Ep+bKR$jvd-;3~9#C*p*2oDgZ)9eFwRZcx
zppud;yUN~z_GvsR12=&FHQZKe@R@5B3YvTd@2eF7RRQJ?w!LVYI&a>(WxlhYl}Unx
z@-E~GI?OW3T+}OVjx2Pq{(mhfR@d+SHp_30#l+iBL8^Z==XEm#tqf9qdvmk9a~n@!
zM8pg(5sd{-tz0|*is;2yY(EW37X`fAk1BjAdwc8TrZvz2;N7LmbmF*t{hZsXAcJ;r
z=5^~ufLQ-zK0T40;BWWSWzv@u%Kaxc>0Ez*{nFa#?a`59pgx-P6m@2gnwmX2r!O7m
zw_j89^OL5X-M?A4Bc{1BfJ%l>J8UE!>i&KW_YB%s^Ycy}s6}5;eR?wElAN2H!vBK$
zc?aHhI=%qemE+9tv;OVf%95#H=l=M3o;QPOlk))vy#<RjwDMkXL^%i^S&^*Gu~sSX
zvC#^RwbP>3aP>%s9SmEwBcN65)P=$VORXz`fh~bYmhM>C;C`mzgrBECMO}Twr);SU
z4Il2r)a*UC^Z66I`_J3_4_P*r&wI+mz_3zKfq}sxi-m)MVS*GR69dB%H_&GLl`E%h
ze|UFJ>gj1m7hf*E(ga%z&~GO-zwTG2PV_dNNh&Kh%sZL#sF7Xn#HA7j28YlmE)6!{
z?-Un4o0)!WmTC5)xV=>uHzXeR`ki7lQ^$vmfgz`N4#xz?X11g6cE6XKtmfO*%x`CL
z`!NFp!)*=qb&NBu%kyFikBUBGW?(3a@nbnr_xr8*>aew^zDY1J9QZy(n9(Tb#)ciw
z=T#^D`}6ar94iCE54oa8QWI7NFLz5!Ox%)t+iX|qYq9D#8{Mz02wZ%~Zl;f#Tc6C#
zrJRfm4XaLcGW@*zzApUV$6$Zktv72yeh#U(6jYEl&pY#tgMr~d*#zP1Am3ZJ&#_?I
zbaGGS=SMfw=l8O5i@CTQiK~7qsy@G_XiL^rt<#ek85lw*8Z#PYTv#AsS(LK$^2Se}
zJ|#Uk&}f)+q(jG-je#K~)Nf7`XxZ|Sx#jmH?f-r3PyY4g<;I$ypCb0vRQk-fvpr|?
z`OJ>b=d2%}vwnZ(+YAPV1LY?=l@*eY^>kkLv(}ZX|MQXScE8=P7Zq<d9$&O&i^;pa
z-|y{swQBVy6GaAw08z_AmXv>geqP*L{atrm`TKi!XNxc~IPjh5WXQa=C3DZ;Z?~gk
z>VLo8zIek1gQK0GlM^NiGhSL9zJAC5f4?73i_Ysb&Av7zKYnwX@13gGYYYGX{eC<$
zeeTqw(BR5;XycQW+MIsAFaGbV@WQ`eue*PKc2-&GQMdlSj<2t;yHD4PeY9+L-l<Ph
zKyE+T$pG4H?K9WP6jZWsy=T6(*uDS7&CTg^s$Q*}crs;^jVc4fhu9(|2Q$mRUoJoX
za@qepIBLyKb!Iy-Ff`0{-fF`H>hhd8eY%_9?uSCz&D7}`S65vvpO-ZCWXhw-{&t?3
zP7DkQ(IKZ9eqQXa6Pf9w_UY3nEgN<QhN9@LJQFr1AFq2|%)p>vzLSlGfx*MqkLARh
zo0}hBbeCVd;qA`n^SU4R+uQZo{dxh4wP|Y13=G@c{8&zyUXKwLR`b!Qx68k`$Kr91
zanij#m4bqWU$2HAul;^^`r3~S3=LYRIvFZK;TgQ#@9BB@x*rc$1TJ>l^YvP^Ve+va
zi_d3_AM@A$a28W%VPIILq|TIbv`h5jj>5;Eo}ah*>{Igkn(i!<Od&zRySqxecNRZS
z%eG-)SkP6Z<j~dC_2}>S`~4jqlO|27_<Yv<@si1YTJiCq=`r1EMuvu0tE29<eV;$K
z?$^u0?{~}HGc!Tk`jkI?{`|Pd_?$*OIF?IaUyGb0z`(GgYYxYR#KUbzr^nYx_S<~&
zFv+-}aI8;O`s^&z?v9SB+Tq8JbP7Md|Nrm(&F~m`b!DaS<KzAJAKiLBzg})@_I1BX
zEe3{!?58dbHM95Z*|Q>kf8Dm@3=9mb7DTa~@HM{+3i@@s-|YfL)$F`oFRkMzpG-+Q
zF+ow&hn;~TXSL5H70+$$Khi5JD<_^zNqT#0>&DmXc89&>3!mwuW|nhf!l4rDb88|u
zKk88K>*y#H{J1%%pLv69Pk+Z|<ws{bENo71X2{{c|0kvz6doTA|BbmVcJ&j-iDSLe
z`@dQ;Fie=er;?3<VZy9A91|)(KRf#5<mBx;>?%J!nPFdFSH;Z8z;Js>)V!vz=j;A`
zo`3w*RPD!Cg8lEl`Srg3|8LMHO3>`Kraz=mvS2c*{q^O=wY9g!uKQa&Y^iuUH9Tkz
z2Lr<mF-t*()6;ajca^@*E8Och*XrZd@c5+`f(#5Bbc>W6zTGK4U-9*7`1T$DPHC@q
zIXz7`7_P1M_qSem`C1dVUa8QB)AmT4<#bF`c0bm_Dg0=;{ohPjD$#S2x2Y)bnQf-a
z#wR0jxShZM@Av!mN=kNrJ{<n>>9qdh;^*fI@0MOqt@L7Gc(D7)5y1(6{`{%<_w)JV
zMs~RlK3S_HlT^KvPEJz2xX`)1;=@7q<Wo~LC(fTg|E(b-L&N(C!tM@AN}oP`dbH>B
zx$e*Bto3g%1{b*LOe#u?)~wM<J3C9XTU@`dPuALPvYPKETOkI94WdPlMAme41TJ=S
z4Gat{d2_?C?$2ZS<JRx@2nz~&Pt)mC^PP31ncr^4Q&3s)ev&Zbrwh*fM-MbIFLv*j
z`}m-l-))l0(`?^aCY|eIcUOs*Ffg28v=me*zf<Twr|#FwkIU`<YWmrJz2f!SU8d0G
z&)4<!XAh+?FdVpcqLTqs56r3gbTT?7|H_Jq<xcDj4Kfpi880nxY>wEJa#HO2^D{Gr
zcfa3P-6af)W+io|CF$qq72dD?e)QAR)7oqQeqCSRYnXiONapgn(^^k5Ff^>42&p@6
zY)Ew8l6_sT?(ge(ceTl#pi;T;+s*Xj6W!$`eP^5XzFxoI?shU01H*kqbtce+!N+H_
z^WFO8Y?BVPa86Y5wE1*G*|74{lNYzQ=kNLV>vd$M|AdE!+uh^h;$(_WC{Dd*_v1nH
zi;IihudIzWmom?j`TOhZ?`xM&Ffcr5S4h9tu_5#FGH^Nj_xpYM_`08|Id^s#a&dDj
z>+4(dZY_9tXvfcIvlsi#wVEAk{cgwOMTv*o3Qy~9Ke8%x^`mdM^ZUQwtJY6DH%HPm
z``MZ8vJ4E{R%iXUf4Kke+x(5k<*JY9*Z(~I<EVa}prBxDYir~@t)vSJ96##+|D?aM
z?(Z+J@&{6OH5F@Ocblc1pC_vuwWXt@V{xCA7O2upKHk^Mt-r@WTA7)_;aceL;0;;V
z*U6e@U+cMBc3b!M;wjZXpH5G{w8XRUdTe=aS?#4Io`EqjF>>;Pg6eY$oVH|MRs&U7
zTaK|XG-NHm#qQy9#J}#-<QW!)Nv-7$=cn~bn;#Pmj}a7)EeVt<x!^eU+WsGpx+C^f
z6v|XSnK<>DRmls1{Jmepq>`B!9JYqM^*`9v@#6Aw|Cq9ysTY@ePv7xkQFqe&z2Eyl
z=PcZM|KTwI{fC=-<ZP|%e!toL<8=JLO*g+znl!1SLqkhz)t0c35E1X`dcEuS|FZ&B
zBC=NM3=ARemVyd%t;_ZP|Ckycw{puo70(o-nKw2h9_E{y{PNP$kF)RpQCqkF->-}-
zD=wyekKA3B>*Dg{`Sb87Z4C{L`|b@43?H1Q2s3^HC2zIKC%;L6GN$X}W4*}-8W^MR
zq+gymbJM0xUfD~RE*1U8$j~4UDxCiP{heOjGQ+w&uSe1t)EtrI7T4?P$nV=TW!ki3
z*W>GDxy5uks=mIOI=^b`%aAqoAwfYxy;7#D4qfcGR!TZ#pZogvcXkGbmla>$_t$@^
zG-JEDGUPRbrmk+U`urNBXJ==N_ez`hJ$m%$Y+UrjwpMO&w@E66M@7SrfYx4S?k#<N
zt?=p8@MHP)zi(^k==7N1t5|%=&N%&C&$qX?!yo!fiwN5P{^!ih@WD3co%n&r%8%aY
zoZ0kw#Wu!G6(1j2e7ljHd~Z+X)AIeRVt1GQxnBP_d``uq&XwmcuZ!LN<MaIgF`2(h
zug8k74qx8~DlT4MTdVwN_U<y<KOYWnEO>b6Q}jo_xmKojzg{esFv$p5Rm{xbP&&zT
z)#1Il=8r#}*6+W#*!?)D+{nJZ&anL59SN(Fj4P|d_3eH>nVi!fzRr8P9;nPcYW;ps
z@V>X7&)fGO=C`+bb$z{jcwA-bny9T>Zaor$)$ewupP6G>+`T;E>?~95K8r^k9TMVw
z4Gh-pzWX(6jFrm%%;jP%+mm0nZtu@$vsd0}EKLu|?Qa0>UAeeEe!qlalFQF+X=i60
z^{@YR`NxOD{K^0Sen0=HMD*`x)=#?8+j^$QRcWr<_v@8}O+~?*U9Z;##>B`dyY&=&
z*Jfa-yRa&^q2}Ao^uo7WuZP{Zwla9R$0QXo-KdaUrYA?m<L|urwk`MevCZf0W`8na
zU<lY7db`|7Ut3$d{(g_InQi?3x>_?gCI*Im%d@IkRFpuiTf^*YYd$^K4qMaF(a~@J
z&qB&1BOtT>`9nqqhp%C4nNv<oP&7<AF~RG${_Z!MxXxd$QZHd(c<_7WHgG|lTFt`1
zkYK%f8)MPCozK%?JaJGL&srX-nUACOKPrsbBO2&133AQf^U;k*!a(8H)@<?8S64ds
ze!Hc8&g%7=A3q-VYrp+{kX_!TU(R+>-rZfGR_BZB>*IAIH>q$3Gc!1R4KlvX{G=;7
zf3Im=_1mp4uC5LT)mI<u|9`J9{C>Cm_``O2Ipef59nAbT21-g|dNC5mWy@ngtMv1B
zKAje^H7oQ^-S4*_?^VA)dS<5a;xym;MGOpeJO1SF=wjoQ66v@5mC@Sp;_mKpnVJs=
z!By5_etQ`~K~RHcYxebHZ*Fd0?Ak3RC|GzU(A{-=-rb}(H#QbNY!y#Stz%$V!8fNV
z)b+SbvCq=Q;=kYR&Ii>HAOHP+KRti8NoJ6UxcKzr?k-0-)#nK0-rCZ6T)y6BYb7JY
z0xKbf`<EBFb}#artR^V<@u+zGkw-_nAD>X}U$Z5?olo}B+U@tes%;n;R)n#f_->GQ
zX9sAn_m`KK)s>XIyu6f@7OhyZ;?h1>SJ#atFE9Q0^?H5qTtNngRl<y$dO<b0gh7G>
zsPXgb>uYgA!R+hndOJG){Q2YcTU<mW<OVwfLtO{U3A2bT8G&<(PHBQVyA_W*)s-fn
zba8Q68?{vl)WBMEDcj52Tl)<&1B1QGyQZyE!`8(}+E#r5H^jGOUQYUcw_HE|cFC)&
z%Yrxl3-t8#1Z_(KRa#nqG|OF%wAA0a_WeCS1H+|{FYe3#fAKkoXH&4CLiEBlYjnE0
zyOZDD*=bn%>dKA!|9`dDnCIWK;o|0g+-rVs#g|(%jnmzJe|x+7hdOUp$Nbv=jf@OG
z<jlTvKlmtESSFTsv(kcfb(dM*9f`fw-}@wu(~cbJ6khDy&Nut+dv*Jto}iOtz(sg&
z@N&Q2e!E{9Ro~yuy|#maAwbuXDabWEzP8k7o{goS_1i5Gn^HV`<n8wz`gOkU+gZVG
zP><2D@X?VMcXk%XR6d=$G3)9oP$4T*^<v@0{q_HKeE1j`uC_C*T(tduowd<SACN(6
z{_|ooYl9oM<lHoht9rR~$FEnblRrE-2<kbw6&4ouNEj~ax?az~aNwMGL&(K${e2Nn
zYj1DMl|FCx`wib5HU@^G$>5IU6%GLg1_e_lP#3TlGz=4@4C-Hw3J>8hNnwxNo);Ta
z{dOy8@*1>oNT&FVp<(K&DLMVD3=EN~4rLRH&)b^6+x2>##q&AENmo_`25wF}3mSmf
z^X*plO*vi$hE2=Twz1!kJUhqISj}gK0H`|>Q+hR2P_Xcv<#U(aWp5wN%3jx*d3jlC
zr4s|g2|jm+vW8A!b+@y#Odl`m*3-H_ZT@_D@t6Wf(D;p*Ud)W6FBupVs##9(8B~9J
z1KMJBWo7X4L*Mvht){GJW;nn<k>MtzmzNi~ocXqB(ISsYD*Jvs>elgLWnj3e?oigS
zHT$|-U0vPMx2&wJPhW#tm`{|x$Sw$58wEOfA+tI&GxO)KXMg@1RF=B;vQ60JYkz)T
zXUF%=mK+DlKAk;px<BAv8B+?ohL+Z?H<@9os;Yv57xz?tKD!Sz-&6lT<I8<{2J3Fc
zn{o^ZyJy+g*MW+&+sRK<7&kG4HqrlkUjI)$Y<*npL#Hp-<LhmWX8LT&zhAd`{p)*s
zt9zu)^}gM!ey=O1%E+KleQjN=^yla2``_K&onAd<&Q#AyDkr}QSkInmoPNykxQwu}
zTTjR8_4}-p_En~XMps=E6BGCRS{1y8f#FAD5lagDiwg^#zr4Dt&BiY$(=DdkRr~#}
zIcQ)4)BtXmtJ1jrn32KZng!FQ<~7mV_1btOg&rU4?FJ1(Dz?iA9d6_87WTI>yuBEt
z3X;R`u|u->O15ijqs6bsRp)NWxTpl`xqvDYpP5Fgx04we4wR`otZF2fIJRkDZ%Dbh
zEc)BM!sD`qS3|>HU0fm~BS9U;S*F=ymzVjT{?x+2u;H%-)1*{kb-$ijrrF0_#bZPE
z>Dt@d>+N{ZG{dg8N+)KALHA`wh6CSJ9X92Bdvg=CGLGy047rbIt2=X|*clq;wlbXD
zG-=W#a8G6LiWM4@R66zd{ZQf#W@I?fr|7UL=k2Yn6X(y5&#ZQIbo^<>!0<+g#bX-i
zIFVDQPHE-p>+0&p!^~N<Xpx4d=E^O#m$!kI9e{f8Zw#1JPT$&|FE3yFC2&pL-d%^j
zA)?mKdosvv>JFRUoH0J%^Y!(0&;VEXzTCUJN)5~2+^~2yBYBZ)w^-yHJ_d$u>u24R
zd(ghlxt;Ig>hSfTwy#dq7L9Lr%kN8Am*wb0Y*3J^da*F4pPhl>_SABx_26i5ZsX}J
ze0=Qarqt7qCOGqTg2tjc)#uH4dy#=5VYd)?z&QrAH~~7=OmfT0dgk8m_pHy^|NoQI
zzcKdD$Nu`BJ$v@dFwMSJ_Ir-`odV}4Pk%n=SBU<@!gfLtG+rH3^YQ4$^LD>MmGYvx
zzrQZ73|=l_niVo-+B7#87q!VJU-kU`{k<PF%Cr6a_PzV(`KV3)`d;t=f8^O5eg=oD
zHh;fdzPP*my@rNHN8R6FuDi?LCV|2$_tusj&t_#OottC%vEBZU;_c*L{B{iYy&4#v
zH2nPh-2MK(+Qp%(!#+;m|3`I}S#H$6vX@JzAG@&7`SHu;^UpnMVF)nwJIHi`ar?ch
z>@|^_)#NH3G;)31==u8ET2SBU{+sOSy3u0x|9_r;3<}6yrLW!o{`$H&{rtR-=d9m{
z-1`1*_xrxGx3`Yw?S3oPD`naR>dnhlzuEZd>($la;BHmu>af6o00Ge0-(){4&9w9L
z_J+ovPoG~aHa)g1Ql{VlW8m(xw;7j~cz$_z*IG;`V#Ce9*VjY}i^ta#g7$`idRout
zRp;r%@7r^!?!4Xa9GUt*9|M>B%>`{N5D^zYKF6|nU-3NgxC+HS>vuacZfr;d4Sw)h
zJZRYQZrAH=ud<mIWXUixo?!I1{Ti|*@2(YS_;qdF+vW4?r2hZC|6g`*)z_}DwNXbG
zxpqIgSN*>C++1srp`eCQe@6#sAZKcLoFu4?(#Xv2mYJEk=kqyh(2y%=e89y86uE|(
zmzM1K^XW8beG<64xFz#4ct{o0$E{ojvZfc52Y!8fD-G(+{rvp=xb62l!m+zbIxUNz
zxq$N7KF>)<8W@?uV=j+-&5yOq*GYW8Q|u4w*nND|tv~Jk_Y=zfF8}}i1&whP-p<{A
z^!~qZ+a+wPN@U9K6n?xGoqu#*^}C%nBcGj_DZG4MRTij#1r4G9{P`2qwXJx&_4>A7
z)w~X(Dhwgn+TrVbjAr^29g|EC$@~vW(3bD_d_FaQef0Kqm+ZL3bUe7YxF#hYZkw9_
z`+EJ~>rWmu^Z&bc{_X<D<|m&{>;J!2`|JDr`B&CPe~<pIsjItoOYX5ANl&%Op2vEn
z!}sOBxv>$%u_}2nVNLx0eKo(|Zofb8$<wE*lhytGCaHLat&f`vYToaBGRa%3=G@V4
zadpr%r{2CFk3Qvs^3bH|)5HJ$S-1P0*QZaPCN1@zUibP8Lyo-PL8cYYKuuV|jc3cJ
z-AbJvd&>Uaj>2S}*j*-|a`*T9{q?Q4Z<}RYP_X;|=X1s5Uh{1~c1oFK2!Og5lO|2d
zos~NI&!0b^`me8#mj{i}Tw5FM-ps~pR(<+z{qODd-BPAmQ|$MDx#Ydrtyk*f8RPRV
zE=N9}x0eTXhV5#99SM)G4gGf_#i;PhMfY%vpiMj1Ybreg9i6J;`DyPyJ%)X=85mbQ
zdv$fSxS-(bu(h|AU03%MD!*5m4jQBS^!f8*&&g__4JsAi@0KSY?Gk<ZJGT1mR#1ut
z)lVQrY&;SHFHM%*&fBefuloJo8_E5)k6tY9?~~5oWBBas?Cn>Lr%s!8?CbS-dC<5+
z>&&n<5rK)zI`ZGG+WLOq@30%&Zs+X=jhmjCZ*Q-p^z7VRY0pV6)AeE(ZP>8k57_F5
zt>Q@^A03UJ^K{MTb6tJ1)}VSs1e8hl)&4#v>~Ev!#!x1}$P{q)>e^`YS?2k2@ArPc
zXSTQQ$A^c885b6Sn$<n>_IC5?|NWd{l<Fl@@t|>I;p1bU{(|xyc>Ll}3uob-!sADm
zcuoebe=L05Yd-D$<<;Tqe|)*@|G0er?^sY(2^u_Mmn{hZP25GBUT$Dye)Md1ejg~D
zh5c;=_4j;m0@b2Yrdc70%U0dmQJ9=!G*iO9uEuAk(b7YYTgBr#K$BwK>vc6WI;O|h
zSuXRLDfIW(*Y5KBwdSDCsm04BlU+Ct@I6o}X^;tsiID+KZ%G=b<$P^@@&D)i|B|u0
z%X)vm+r9qKx2LD4yC)_lw&rfly4n@Dx5{;W+}@<WzrGe8lT1JI;o)I;SHQ((bK2QQ
zlf3mhz4dmgOw)-JYL_jG;E}hp*;W32U#Rid_xJ7dcE8>BDK|AWb@txPp_5cTempLJ
zyua?t;!mJc7CR?Rnq={GO0ber()`+QohqJ-Hf%81RrWUOspY>wP(*o8*8@%DfktB=
zU*G?)bkC1R-M9bzWVm7D?!ZuV05n~+HT!xWxBi}j&C7*rKb=%J%(}AT?7nSoy;4)_
zCjUPo?0@7?E4Ow|^sbW3*5{yM)NQ%9-6pAg{CYk9__1E;)9c-DE&(OPJ(Zs|w6$-q
zS`S)HF}1IxN6J*oEa%3Cn}6T$e!nkbe_id*&(-gCs+;B95U{QO*3;4P?(S~)y;WZy
z+5dZNuk~j8$w{i-+bm9RN<FQWYyIVdv$E%;wf}Z8{K)GA)k4?SMjxO5@5^#fQ3*QE
z{E+p+{l8wV26fFW{{Q)G{`=OWM~^^bZgcAY{VaU5@%XXb@ApYRKHlG7`|alPLv`wN
zOM>3)`~B|X#^mD}*VaUynQ5$E_y6~O_rk)$H`{LKZA?1am2q=Z>YU1FGYelVY<HV$
zRr&~&D$MUyDA)bIeLw6+%<F4wyB{8I51+L(aIstA%cavneL2ubdf@uFy%rx1FoPyW
zL4DYaOG{3s?Qbi6eeEcys}CyiL5I}*`L^rm(W8PN&t_&VcJJ@2`}^zY!*+SO+FxHf
z4;?!6<IU#tk6tdH-{&{iD%bEr-maI+Dt<nl{&-5TA9#dBOgBmdq|NsG9b>D~S6}AV
zn=|Ar&AD60-LTfY{N0@=kGl2!qPFMF6%i3p`TFXrcc1OI8&BTte(!hc)Tv1-o|D4X
zMyWoZUtjk#8zd0_=aIN)x0voE(6G4WzaNh$OB$!C#O^Bb1f`#S_h%R;PdYc(TD`Tk
z)pKps)=7WA-PZs4RKI>EXsFV2Qhwg^>bG03tAP@1(Ehr=OY-jSI+@rmJMB*O`@N!R
zZ|?7}pEP~?_M6A+e!rcr;yFntexJ?G2Tk0Qmif+B1G%p1+nbr7ee_e)<gLqcCQY9{
z9dtC%N!95wlR&5Et_)uvcWHh6{*;@WQm5{-*WddksOZy4b#>68qo8FnZ?@mBJNfhZ
z{P|~QnXayxFP*nT5wwTy=V$Tw8biy+J;sx!=|-!uva))fo~Ao_^Lab#nbzg+zW-d!
zl)!D|`RL92IT{QM46&d)0=TRh7!+jJF)}hRP_uje$G&;#m&GkpPwWRRiSTswb6Mw<
G&;$T;t}rbC

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-7.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-7.png
new file mode 100644
index 0000000000000000000000000000000000000000..a88d551eb0697f47f509cb302462f183f22aa12e
GIT binary patch
literal 24816
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_dVj&JJ!{~y2KGEPo2=#gwQ<TE~}
zWqQsiMaFGXuxC++XNkg{rFY6*R2D9~;Q4Uh(%UmlIwy1l^);7>pNxE*b8KVcu^n~w
zKi>Y``qs8*L)w$CH8$TK=Uv-%Eo%N&{&#=xz20>#RWiAUfq{YH09)T2Juu^KGXoPy
zz>Gxz#NVda0HQYVGO{o*Ff`<HD1f**&J2tU3=9d<OdKHYZ2<=mb)$_mtqn2yW@cf0
z$Jc&5e|2T>@+-^z<y~D}Po6*TZ)azBYfojd-}Kh(ElEeYEM@rie!G=z8QazV<41+1
z4By+kyRRqT-Ti*wYU}rVf-65in|k=+h28J>X?qq~$YfnvG4bxwG);5+{S0~gq96ai
z$oMCful?}bhp%6+zHlMHH0MUZWOe^@FF$QMx=AN;+S6@1+v^%DUoM^g<=^l3uix!{
zf31O$`OB-->sLi=ObWkqOmc%>Eek8_%B-uas@`tBUh?dW<oesLZf>U@7OZe+WU?xH
zazga`-s0!ybo%W}Uxi#R-2e00Z0&1RkB)Hi%GpGOt_}+g2$;ac#1yi~h4XIp`@K~k
zkBV>2yu3_1Z~o+KYonK|&#wuZsudd4$iyllAh6)X36HJW*Znr9pTE}1Enc+iNY2M^
zl@pdo8mGOG|No<%iJAH9pU>yBPfSo;6}-Ifc3IiY&FTFzeC@kRUr$S&z2+SAf&26G
z{lpm_Jlm|}?cByQ(a=p&Qu5Zm+TC{l{}iu{*y!Zx>A5c6v+%E&PQ-#PQSDdV`uk3N
zGdriB6uY}DG$mz8kKwKT_4|c{g-ugV2-N<3Iz4J@*3_EX+P!(@&(28h{q<_~uMda$
zH{ba_)n|r*BVW7oF^OJz`#9fOCLeFTJJ86yDti06Z*Oic-jsTJRq^w4S}{8|1O*3A
zoib&~#^mE#`S<p8_4S?mw)6JGKR-Xey1RS3-M=5nKY#sN<=D)Yb#YPapTB>n&Y80&
zfB)aG;^*f=Z*R*r&Azr~j^6iGZhbN<r^nYt3JMD5ofg-LP&mD5OTs}WQQfF3xp%Lv
zjh<?rA7_1f&!Ssfv$Ic6)76UEQQ$Y7Nr7F!q2czC1&+;k{>5$0n)>Sc`t|(we**sg
z`WpQ5($eA;oAw`*n0#5aVr%{XI@62`5A<`T<>lA^ez*Jl*Y77LDu*uh63xA_!SV8P
z|Lc$Y?cbH|E_!+@^U;ycSGTvX*9u!x;d}hfw%pnKe!sImdi1EKs;cYfXJ;=@RCW(p
z;vv|-t(lGY(!IUaSNB$z_sZMfOa8mixxM7UfyQjBeX>>G-mL5tR)00G`rXAhH#di_
zi?QrCGfqEu<@x;jdCXU1cQ117u43VN`KbE*&VNOsS|K}Lmd3uynt#5bf#G&G(}d~^
ztlT?%L5XTr$jV7QhF)G?pKhgnd~`JH-kzOZBASaD8W^T(hx`5g{r!5Uu)58ye}6uo
ze|2GD^P)wIKxu8m27}P`ak1y^|L-v}HjaI}?n=Gw?z^kzRXpM}&AM`;H1+t++7ri*
zyWg+<K37FkS=sshzTfLsg|A;XVS>QZ)6@L}0|T=zFYBGA7dz|i^Op|}Hov;MditV8
zi=MoHzkb68gRQx@!=%k}3bL<nNOZn#G4<)`>ASOb&8z#~$|V{!+bmZl_Kn??se;OG
zFF+~b{{H`_^2vXGeB7kt?Qiq3<<aBEQ|HZF=WqA(NcQc})nT5K=2gG5T>rXTO!w8-
zSME_!v)p<l7Oo0ityTZ;4;L3#(A{07rpd>6*8e_v;>3jwiHAeh#aObku&nTzX(VNm
zG2znX%j<ty{{47d-n8(MOKV$O*2hOj;|{m0Y|XzP_y6zv`t`f^^Gcho$iKg@tFJFC
zBVz><Gjr%dC)T|`9(7yQ{n>H7_~g6aAAY~zAAWk8Zs?{IPgWKd4I7)7@As<LAAkPv
z)A<V*7CJvIu=w(J`~6cAkH1wGoO)HcyWnAy-LDtQS67GoA3S*Q)NJ$hr>5(#m$R+P
zINm3_u8f^e=0f)Rz00b;zS6X@iTU^MUsp#*z;eI2TT)MpZLj5%wF*f+HDzLI<gX`_
z{qO7&tNZnG`J{D!BJc03-My>i<su<fuN{4tw`Pau-rsk3@!HRy|KBaYpLuSM<*L}-
z+de%#z5K$3fYKKi4vL;)c%m1>$f#g%Z{MHl+|GCP!a`?JDXCRrx=|WBIzF?_^TV8+
zn#A;CR)nq&)2#pZXOdo9|E;arrymx8M7p}VE}fjLzP0vuS+BIY-{E%t^3wl11pn@n
zuX>?)efsPhHzJN6JGSeZtDBqGq+MliS4kSDt?-(v_3GBv)lAIHpuDv<W@k{hxPI8<
zW4-IE=G@&~uC1o##?CJnve>Qn%En~(x3{<ZgNnT-R&JB>cQK~<_hK#`4Y;x)(V17$
z$YtWhiCz8u<*T1pNhI&t=jNAtYs<yj?{}B~{QNxoXqV{CeN2-lPF(13|2Kq{TkMK6
zzwHwH|9^u2{`z|PNT=}EOWyjGTljf-r<QzNb@Fcc{kdzC=U5av@k*Or@wflGB<t#`
zmnYTdUuoqQ-%{~0sr1c_!2SPztv){eLfP9}nfLZoYK5<xQ}zAb+Am*9d}o<>+W-Gk
zysfWtWxxHuh-s-WUoM{?77=kn^mg1!%d%MpiA_Sn!dDkKG9Nv9^yQ&eZZ9vdOV;oA
zEOzY{%RD>F^wf0y`KxQo?zeY~=>~O+>4t1baNL@8)k{!N(96^F;xyf8le{|?ymB@-
zww^z2@60Q0HYGK3mPzKMZ}0BDewA0b^?an8Tbo?X2glmaXU(-jS52`heYJ#%l`G@>
zySrXKJ|Ta9eGT1~6X|)W{C@3n^ZPZyAa5%7+bsI?^YiQP_v^2x&#zrp`T5z)<MQ<(
zQ?){4zJkIc`B+b2Ny!#%7w=tJ-}jWhzP8eHvYJ)#v!1A}Sxc?o?Qo9Xo_BSMX7HDz
z;_(?TFD+daw|Cd^;*ST}<zJlE-ygC%Y^{j2^lH=WYZ=eZ%)GUya<f_Ptto4-i#7D}
zH0(D$y{YH$!w(Vrl8$mce*8F@iHYgV!DjZm*L0(|or##1`s(WHbia8vFSq4=dUEpE
zCY{fRxb=5T`}+F&c?%i7&rhevSIIp8@$qq9{qf_+rP~iDetUEC@x`*ApPnAuq+?w2
zB4GQ|jT<-0J)aO7o!nzt_^74OLS|Xm+9<i#J%(zksz+acI&GSJ>xzX8pK;O=j_prZ
zhpjc*w{PFFf`^BmotbHz_gd$)5wEn_nQQ;%&UwB)=_uFsr|tamW=Ffl&H367pP6fY
zJ$d(u6CRHXEPT?^mPKyQn+via?d+_$?|YMv^Yy=7?ms_I=d{szyWeZFZz}iOB+2l#
zM{diR>Hhos{rdY6(^9!aG!lM&f1kha=QHWzH#atF&x^jkF1GjZLjz7u&b-s-=US)F
zGR;n_si`^RZ~ym6lwIkokmSf|ot>SA&(F;**7f)GHBCJ|&6KbG@vM3A&&|B2>z(~(
zb}Z%ZzgxS@*Y7NN*yR5E|DWgfps;&3JAc=-*wep1JZzUY<7+?s=g;T!a&PtO`!@gL
zsr)_1qOv-E-=9yXk8RSqyv$d6^1ONPw&~g0-j%Vfy7Kk=L}m9gFE1~*{kFUEbJ}G4
z`nt<|DvP&2-Ch3PY+C9}^?4PCvTY-6_fORdHR5YO>@(l)Ztl-Dk(+x`BbOCDJ(YL5
zokucB=d=+kx0uQPKcBj9@9LAamTEton09{N+pTO2mhE~G2XYTpx;~y79vArg+gnj_
zadpqC-*30u{_5HP``zwMI^K_u_lE}rOt`&EFLsxPl~q*ma=)(@ZVnC&$2T>xa^E|!
z`Gnl*O({Kr^K2^jtkVx!aUt~k#5r@;sCrLZ5wbE!E}Z$*m6eP6WUVw*Rb7jppWCZw
z>V0X6=VX(T7XhG>#NYPoly^HG^U2y&1iZby{kk*1ZOPHx>?<o4etUacTT|2X@-pAk
z*FLKG%y=O6=bebW{ClaMx}9-*t1=HXFk03B+an|-BqA=p{7@_RYM+@#Rj*bqx5+b~
zGilPImBGtbx%EoDy1st??OisNpE9nj2;5chuqk@)WHsMOsgYHWd(H2}?SJqffmh1p
z#jNB1ERHXkq7nFL*0$4LCnu@yjf?E)?+<TeVg(gK*EeNX%3FPZ`PNuONT_IUYW0qS
zhfT+NrI+ui{G4@XN1<Fe$DcocV#4>RtSoqVC@;Kh&Z>}=i`;spUf#~%U-~-hXZW8V
zkNbbU-F`o0dtR*Vw;RcMuWxP5US9R})ywVo>n@*~s%^XN?d|RBL1D2y)wb%(1Vgv%
z>+ANe+r@CFqU0b`p78YY;*C1q|Nnj8e|KMv)!MkdQFV27k@o~OY;9xR`(y&MvQ}}4
zYAyNp_ICE08ymCk?%FC>`9#n(^OB39p`ljrvNOJx(^qqHaRr^8rfXXNug2BgeRb~b
zZL8w<@5{QrZtZ~s2XfvfKR(twY00mzuXlf4S`KQxFY}qXs8`y2Rq^w4*JC#u9=mG)
zF9_5gQ1hEJV{L7ZgrU>?`hPpw_+(bN%T=nJ*55a2OY(6(-S~YmpjPzTTU%pK&o<3o
zmUOgB)6g(bQ&UqezAnE0Z|T?f_v5?8^{>6Ux_WEkVYaoAo85%f{jPu#M&2EZ()agb
zFCBenGIQq4O*-Dr?R;NXDB9Y_PP%hUAm`4GK)!ZoLqkKkxB73ho`1RQZ?9=+criD!
zpkTwVZ*ONm-5KBi`T6<Ri~H>^otbI;_4WGwua0yI=WT!Q>*rVY_xsj8{MMzfmYlc$
zAG0;<YS8a*Z?A4hbUu3INX4C(uiS3#DqZb2$6}#X>8qHpW*7aq#dI#X%hxVhvP4DJ
zwkqWL`T6B*H|u!2_se~?VzApi=kY2jvz!;DwTs<)zZ~Yb&v<;ScUAcMdAB#}zn%6p
zWK)W#XHZtwtN3-C2hKV&Fy;xLi&wvV>C%?0t6HV6ulf4h|J~v>UGMG3qwj8POg?qy
z%$`RH1*bQa{Q8n9sukj4ntkocsj1qgH9rb!zuioqWt7_0W4J0}<D$6Quc7_%#%~R>
zuj%wknR;Db=3D%=lb?g*0;pnXX=z#A$6mm<g`c1Q`>uOC@7zA{c>keII-pqj`uci!
zTH3O0IX4$QpI;yM|L6I75mC{ljm+$ErSeO?r-!}2w|DA<2@5tRAFq-<{_x43Lxq(L
zUq5~fT<$mb%Q@@!FDCojUF6o^^I&6cBNOYDb+Oi4v#<MII{N*}iHXXlIX4WxzP#+d
zHhO#5L?zdfH#ZDD#hX3CnqSP_E?8z&_^8Fn$!SlUU4Hx&^W0lcKHBNV?%JZ=(9+(X
zeSKZ5m!IE0#q!vyFBjdX&X}<R)M4?RZKf5rX2zete^osfyZ2w)S^WIYt@Q7;KQ1`)
zXa4*16I4=}W?oVO^>~g+fLhPWZapVHT{}@f^>gj)yA8%=Zz62}|M|?t$r%_EGskPH
z*3vzdpHFSlsr~o!IjB}VzB7Kcu)5!gO>4C4p7j{U*%u!?cu?;2ob7A(-P1N^$g|m%
zz_@+pfddYvSyw#b>wYdZGB&=tH9LH+ZS}Raz6YCFLstYSrlzH({j{k6x97FE+sj9_
zf1jV7z5L3RkiQ=e^Gn%OY~Yi(TjMv^D)Z*1)OBU&tX*S&y<T~__m`2r=f8jdKnk|y
z-Ceb}`g_)^D=SyU@87q~XXc|{k7`uUtxIO-m;18o-p#Gg-O3D$%k)2e{CF|8{O;1q
z&(Bttyu2i3l+poef#$qTesG|Xi<9$WhoEu{<AWklD)n{xxxW7I>13fJ+wa#!ACvH%
zVW1d&oQH?!%7ul_q3h#p=USKh+5h>_yySm%-kfr$)2|9&K51v=77Ow6>bkDqdoQkg
zUF`0vH}5ZbiqG9YCI0l>^P473nX=@_5f{_kTOs@Zew+R8@B8}fA0Hlq{P0>YcKYsV
z-ybsb+bqc6_tS0V%9T;ON>;{IJY@a*>9l^<%}q<U<=w5i`!)X5&(^<}w9O(<o;d?@
zim062y7>CPp`Z@kionI7zJAt+2M4d0UVR+I$}Kj<@LAV<%hQ{RmPD&JNOv<Z-B|`I
zSmkW1Ui91lyYS-T;=9+bt_*fxxpJl4_UmW(?CtGAT<12Pi#IkVr}h-io^t-?``Y{a
zYUOUPi{7qxyZl7aKc{(f<IR<ol&&mvX1|^r5xy>_@@k%B=<2YkDr;kQUV6=Q^Yk>`
z$*Ga6!q!G@d-YeFiJ93n>xu>_o_~w&2DNAxI5w9&I>NdB?mQJxxz^4vA9l1$6x6L;
z-*1$9D&zLH++Y8Gzuz3YzIe|BV~?w=LcKw4g>QjtqfBFW6dcU9|DV7Aui5S2g`f&6
zCOK-;EZuu2qZ@Wi`E0g9H+owMYvyv(>}wjjx^KH~r+=@NkdRn$<3@z4ib}?T21YM`
z|LccZx!3P_pB=g~NR^eHJ^S;svypWV%dM)utmu=sU$?9DbybX|P4Tmy<GL%CX8*3S
zva~NgJzf9%u6sY7kDdK<hH(QsBg>B7y`N5LpPH=RFC-*%=h?T4e?On6_5}9J+3xYv
z`Tl%<eb(7ort9{HuZ?<IDC+uafBYK#xs5x+)<(tE$NvBMeE#}Ox3cF9k@=rHWo)ZL
z{{O!J-)7o;t5UD!{`04;U;ke8xVwk=ew|}Sk7j;<cUO)v_v|dwS$4I%oSdB2Sy}w4
zvi<d9@v5MuU7%Ljbs6>W%bU~vr)mbf$=CncSoZ$j+l}`uzaQU_c-W-wPsRFvMrO7O
z9yfmvj|=Pf|9kayhIaV6E8FkaX~)OMgZkW)mMFP)tq5N37q!1`Z(RM~()Esc&(F=x
zGqwA8MA+z9#)AWmd9hVNK|v-pKR#sdYc0OJtMuw(cYayxGN14F>-S&ZsnTOO%PjX+
z=<!b$`73LFia$Br&R;!O`f1d?_WSk!|B9~vb>~Io8Ckw|&_DsGJ9FOVbC3IvQzuSb
zxVYF|)iW_M5!9iaG-=YEU8m>T*T>cV`ck-ccgRAg)|AL;*UzViB_$<=Y)o<mb-m`-
zew%rFmu2y@jHjojf{OIpKlmB8s~u}#*uL@6(eBqX)8~N_FeusW{di1zk{;hT8PlvO
zadkgar|QSYot<qS9uhLeZ@%4H+v;x_N4rEpCC9#Bue3cc&CcJqGWGPdm34oAb#-+G
z{rmIt>uLS{84nM&a`EzB4feNvYL)i-+S<^4HI=^e?P7m_dmH@r*4C}%@8fDe9u)@-
zA*7v~Gjr`N?XWc~IyyMc&M<V|w{M?T?5-_3r-P>J#ZH+tY0;|C)vLUwYVG>{Za1j!
zJ=dl(==1aQ*B3gsU)i1?zrOs-&N;<R+y4Fi{rdI#{b9XQrd!J2$DN&N>~3dgH_Ie5
zXxq2qy>ZoVO>MtiaF#MiXt=J;JpJ?M&zCy{mA|}L+@E!Ro^4+It@5|GmM-<4zN+Bi
zp{%>RN~itKxW8}jzmNU(FE*dIyIlQ#@A3x^5`5=ch5r5hJ$$Lx)R5(VvaRjyug}ah
z{`GWve9V5o{h!ZS=OvrotN&k{dw*Z-`hCAv{ri3Y|EjpXRa#M7R(yMZf4y$>wv4~O
zzJe0w>(jOEe6l9R&wM}wZM$Bt+kItMX?AK#N(QJ4AG&(l?I#sCzdmf2KXv_jxP0xG
ziCW?7*4(%eaku!q?WgbG!;6YGP1B8D_T<Tv)n#W_M{Zu0l#~SOJRd!BWJTQGDyxzg
z6F^;huc=xqD?UETdpmjZ<jsHW-dtYZKWXx0QDNc5Cr)@gJvrIk)6+9*Th7cyix%ab
zvRD-!UmKczecjdR@pUV?M7379c8hUwae;=hwx*mEQdLn|;XPe%la6=ouP+x@1TGF)
z>Lt20?{3t~moI;PyPZFE)~r=+ywX)In`(Z3T3Pn?7N}ghy0bVvbVY!pot+)1o%n9o
z>vcNWvur9i%`(ef_3iEL)upemfd;WaHIx3nA5N^?VqdBjvoUN}uzvrO`#{~aR7rXH
z`8wC-tx8TjIX(S63oGl)!|nXL*ZzLkF7NaE+go23mzIy;zndo}CN9gmy6V|c@pu!^
zNN1V%G#$gcyGo7A?^Q16<l{5@`T4mysQ2>!$8q~J_x4uX_We9AUq9oxT=kijwzgS&
zDnHMP+L|@<$Pt&#H9w0U7g(IhUcdL*H9Ir2Yp*TW#P7dnl6mO}3p=~CyuAGN7^&m^
z^5%!zc#V6d&COK3rWi0XGA^t5_-I+;;kLAAXJ%gi^5^aS{rA7Txp~>e%}uJlzCL(~
zhv4TAhxuoJeSN(;_kDqd&tkXUbuT5(ecoLoH^KYrionC5ero-{n(LcDea^>^lZ}jx
z_vQ%;3n$C)wSWBhvG6RjQNaTTkkh*L_f=foHLvQGCWtq~FuBL@SkA32Cwb)U?wI7=
zxiLjE_}G)Pv#+zTvCS%adTQoz`T9G5J{;zc`#yQ%#6-Iv512v5HZ?c<Iyf|F#_rmZ
zd1*;!<@dYgw$D;eo;YCu@)@Yx$;im4rloa?N6O^HlI6?)FRculb8TI0_O9~xd0Js>
zGMbv2d_V?-u9{N$<6-;RIhMtDZl!&V^YQgH-COn5C@?T^U2*->so_3RQL{RGdQ4JJ
zO)1>EciQ)dZ*Fe(J>Dnl+sY;C6A&;#Gh)Mnl|f6pBuz3V+^&&17Bh$a$noRHU)v}|
z)?V9O6`z)tHjCfx$AK&BVsC?zz@ML=XLE^a%}AeDc`Wzcj5B9^jH|w66hEI^4vxqV
z9|}NYW1Gw0-_v=0b7OLQ=G9eGHDh*cc>US3^3xM-yZy%`Hs{_pyS&s}Ja|t<;be7x
zIS>uvgT(u{Ik)kAv}*4&6o0M+>hec#&x@Nc%wT!k=$TahDn14WzCsI`uHN3#-5VJh
z9$Y&lfiZ7VaC(Ez>sjwxSQ$>lN-#5lXIEkv(I-%zWO;gec6E0LPgHV!QeY9XHfrk}
zy_063@%zIMPkiHfF=<Qsc{xiNzS7s%-l~O_)rPH!P;5WE@OoUe?sD&wrE323blMLe
zY^i4Wca1}Vp=fRJa=(?8pPzxMCaaPc3lyE(Ud&9Nw{dUZLg)5V4+~B_EYPsCvpZb|
z8roeQJJTq2-R~WdygSOkGbk5L^VK~wGc%=ZtF}m)WGql}?K*M)e*DpH@$l7QYfaM6
z&3V1fa(CXfgrf8vJHJfSkGB)mkBi}zG70$q?=NU>L%M7ae6Hqu+uO;G-x&VAt0~^a
zz;NQ!t*zOmPfiH-N*FqU1}utq$^88J6EtF3_5E&n=mH1E{;!XZ_fMZcfBw1o_Vbyq
z#)=3EF4T?Qwj$wRlicgNpHIcN=G+Y0UH(2SC1nYyzX=-3eSdFn)P{t{XXody-?78u
z>@3sMufLglfhw8Q(_*4}F+Y~cDjOMH5*53A`7+3M(13pa{=eIVgoHptkF|e39zQi*
z|9+`#`|cvf16!3F7*1@RG<kAr<g`PF4;SweiJZ0+G*D`27#O_V@9O6BcCWYn`|<Jd
zEbH=hQQLA>?ks-(EMV%S_3PJbg{*k6@y~^Y&RyNzmlry>n-n~7xE?CI{PFSr)yc>E
zqPApAytO@ly=%AF-7QkgOiX*ORVcf<xq%v>a;MGn@2$~`-IZ}`OQx5v@6{$&?scy%
z?sy0>tdou1!0^QCTp`cLj~|VW?bx+5=AQY#2RH`YKiqh}wDz^QZq$-CUTG~0iwHYA
zyPNA)M{Z8*>gc#|q*K`TTJ5iw%dN`a&8hnG;$i9S)nDK4kJ`S<`+H*Kv}yYB@2;Ia
zVL4A}wV?ttJKvRq&FohfI<td@$8>8vf(i;YJUcUUF{sITa*`^j4!iy9#0d{jD=Pim
zoQt2&+piB=>ZO@~Z_lczt*iF^c*N})l$N%vjbDBpm#CJ8fkD92Q&TUq%hx<8lna+)
zo-}LLszzpZP}L3^7j0^87L}D<J3YQGGBYzXyryo`W6+e`Bvo(FY>IBw7LU)*&K5_{
zpD|;_arycfQSGphe}8^XwXd(cx+2i|{oe2M+;0@@n|DmY)y=KyZQb_7!)#yQ-VVQb
z@gf&5Z)ifo0<Dl03&i7V0+090?@wCGEv6IT<J0r$`T6w|CJ2D~mAAL&f6w^-`~Cjc
z@&A8K&$_l|<%SIgpn-lPqaaY<dD7&`d*4-mdUCR>vokOvVg_iAU{#2wY4$ar&1q*p
zWz3#4XU+3@)qbg`r-eE=G;oRQt+}=~I{WXhui<Ot88#gf6=2xuS5UB_jYo2k?`*S|
z-TM0iUSC@)Dl4n&x$ghnz17>3l9Eb3Ja7bc|75MpuI#J*ZBqR$M>k@F186$z^Ru&e
zzhy^GOFKVrt!uX!D34ctyP3Xz<@<g8{r$U2UxO;1%)@QGdCZU0eP%2$N<Fp0bFx}w
zUj5$K(p6z=S1CHTWt^Cxm>1ilqG@JkcKYqPdA6%p1}{IgNrzX;MB{W><>zOi`|JK*
zSsktq>g38=l@zSDRaSN`EG+c$^$neEmOEwMymc=xFMmDJUGCzequpN*vdd@O-Bnuk
zpphLk^K)}^`fC6Ac3j-t!Mn@euB)m8<<*>=HQ(OeUjFLp>ecDz=Ya;rw&mVlW|(~J
z#m)5jp(}%yZu%M%>p4-$^~;yb{;$7YkH3CpW$@Kiq1xAXff9qAogHYpQ%Ok))Ctm!
z-sV&L``guDUtgP6eo6_y4JzI~pSQpM?Ck8T+w<dD+1b4(y{=!{{k|L2dCa)rP*_+9
zvUAd;NuVKxjEjq0qc*4Yx|<s$_t^b@W2_sqBY@xj&ju;8oE4y00X6nMJw5&Paliel
znxCK6eJg%`?&^<^kD=o>8vgTaK+Qdq!bdJ==iA4>zP`SEcb7%N0ft@~%b?U#Q$Pco
zp&Jq$Wi1LEUSC^#d5&c<sFAtrR^E*bj=r<au6}%cy!8Ly@1W5zPzOp#SQyknR#j75
z6}dU>`a!lVVc1%Lzq1&2oRwfWvDEJ86Jby#|K#Lk+iRxyMzeo!(mDO($B!B7_y7Af
z>y?C2N=KoE%(MId|7{1&6@UEr(Gb*+xNWF=+DO^0$Kd(-`R3D7XRcVWB4>WL;jxHm
zsh|O-uRFBE*6hfNUVe9Xx%BBxXN3K29!7op`~AN3=}kVJLaOVk*6siQZ}&!>(=043
zGq}a|c1&}3a|4a^Ms3f_y>$7q?KfE=p`@&<t5W^u*}RO}Ui{n-T)nQ1GTol66Tk0H
z#I)2lKG|2>{@km6Z_3wxxJSzL)Z%r?$NOd$KR*|{weI=8%~f@Crs>6I>6|v2IB{a$
z>GF4XUT&?0j+<v+UsoC}Coi8b!`BY-*Y&rc`H^onR)3${|2LeLI@A1q&E?#kpKD(g
zSeyxuuYJ1h-QDv0rqfbqs`<{^p?iOS{r=n8kG7<o6ngyladOqSH!ru@n3!Cdq7!*(
zj&1d|<k`u``*!~O{paWBWjQxDsTmktsQLf*d)`|<8H)rZB_*GakB;t@lV(`gq8GuC
zXL<7E$*4^!ouKia>2Xyjb7SXPm4Z6^OP4IEknO&>%vbv8(W8H#CQsK2^#Ub;FE200
z#x|+>%utArkGK7JM7X|kzxm}xW_A@%RqttgvZB*xfB8}(Yh89G`R@$F<R{OcKmWBm
zZf_N69`57g<6oc6&ezh=II&evOUuj9(D2v&|NqLbZWNL>%enCC>gv#~S)pIw-@l(+
z>*3My>B-6BtG_mDD=9fmDtU53aQoB1z`(fM-(OyKKPI6Yx97*KzTizMp6kQ+J$n2&
zbb&*o&iCs(3X^R=9AM5nUG??V(oLzSvu<umy|q1mes*O=#g5zAkFG576uw*ed~RI-
z!{^VRZv{;VU$57X*x+DY{x0PGy}h8+yuIvbmuT?+e}79qJaE*F-F4-)C4)m4hXO;M
zrL=k86qT#%<L|$g=yU6pIw|out9<1w)9kqKAFIE-SU6eTKkHbJq*dvwDQRbCfok3r
z85b8_-~0ZKj)g_U#EBE-PIrsz>v_gK&*<#vxbXAy^U@Cw4r;%v{`%_bq$SIIXUEkq
zy!n8~WqLiQzo+NL{r|q|gE~xHTwF!HuU7;vZqqq^s>sJR?A(0&_22K;$Ag9_Gcs1x
z)Yd*Nuz2$L@#4wq{%Jcwvk~W$XC8i7z}k5F{_WspKA;i3Lx&E5B4gF>=kx2oS-62_
zYOBBJ-7P#W3+h#h>Bp^^tnObWlYezp=p?<eUTLe66~~j`-r8z(EaUVv-RocGFfb%L
zFx)Bfn`5Eq8F^3k^v*lC749b;?TY>WF?w6h%0;f-S&xo%f(BgX*Z-UO^ugyl2P)4^
z|CcpSG<~*B<tGgjlPkHgVcVa5{kr!@z3TM1zdLGT-Q13e_E-P;Q5ZSx=`N$f&2R7T
zkH2*Eqk^Bh-<*J6DN|765i}wMTH)d0(NR-dTl(imVXvgI+w*gCcQ1Qv^XtW8(9Ge@
zO{rIx`AUmwhxz>b_ixgYi;LaUckW+vXwB!XC3S2nFMmFtfBnYB<j_48h1Yw9n3$PW
zJtwRAev)`@l6FR7s%~`HWHsMQD*_jr6g}|(E$OKI{0uZ;3Z9KDie=n=>5sv*)R$jg
zUcOnW#c-gNf$71t$A6UOTwVX_oSysi`ow*K#by?}qd}$U?{9B|LB))f!1ad(CnO%1
z_D%5K?{kmGH2d0={rmTW`qB66e*21Qhn?B<c9N>MiYI6ue(mRI7Iya262)i3CH}2S
zJw45HmxX%g<rYrinEl`4?IP;GzPc)9oOZ@kR#{Wiv$L}^>(-W)`+mLB-frD5nQW4E
zWrfam+maU(u0K8Zeb48;wNFk6?)`qR8Z_zvstiD@SMuI2_nrN0Bme15pfyXN!Dsh=
zxvQW-^W<YZXJ?su@BjB}HK>{T^XJc%2?v`t>3D+{gf#QpRro&VV+eN=*J0Q`XI1EG
zuSsF+VpejC>s73Y-<C5|=k%vrsxRDL-rKu-wfDKn{&tmD^<TGgiB5X*SL?{G(%0)=
z-r#F@o;h>o%{+MlfdzfC)~6&EUyrZ1JzbW5e%@8<_j{C2Z~Ag2*grPd_xftTxmJ@(
z&L->p>pI-dpAA`6G1scJNcaB6<aV9Ymk#sWzu9>9)6>&?-<`h6dg1o#hkH`<PEXUd
z&8yy%c6OHby|9X-U7~WQ^<s7`n5rG_^=tq61Lx*imp(kidi3bg%9eine?Oe9%io>(
zBrz#uM?vD&%*$@ZX=ef!yY+&mWB$Ic|3A6pqp9Js7rWo@+x^In;X#xjDA_A1DT#=S
zgDREmFE1|Uy}q_4a`DT{%e7ThT=;FjT<~4J&}XJm)Silspw&uW-`)Ma>TULw6`-z8
z=H+EOYd`vUdS0~u|MPtIu3G|9QnS{+3z=T^_v`i0Eg6Bnv(0>)+4;ZyI5cP0tX11`
zZ)Y9vlLa-yllyJUe1GqcySgeg`0lRKt(lkAdSxsxCD(d+oiZ)2|MYD6{JNl+m^pp2
z*2~!CYXWqmwiK-G?&+CgcuYA5H2b6M-uLB~l;!S~mAmI|F5YwI>2K?r9~<UXzuT#O
zZD-C+qkd1J`_=Dl-`?2h+$&{TbXVs<WzXruKVDv54jS+4*UkftjC?#UZ`(J0;>3rq
zik|WqfhH_&Zb}8WogN-)je8xlw`%LTdA8L@iy0eEUu5NWSU2tJ-N~?}BcK&L*W>Hg
zN||P5yuY`1mT`JtO-+qS<|UQ&pSACtuv%yG{P@!@QSD`*VgFN8G`srxt~K-9t(dIt
z|7!L6eL>A^ynFa&ocDTstk<;ona|d&t6o=Eg-)J7fBw7O@9nOxkGDUad+6|C(C`jO
z?r=N*^(mUcSJp%tx3;u^Yy|bLK*PMtd}mk9?K#H>Dh&^}@tPJqZ~#pdb@ld6HFUeZ
zE%&nd{hGyVqqnD3%L$~1YrT9l{q<t^el1N+Pft(JO*-EF_WyPq>y>`K&3C$9?3ZiN
z`7879?*k1zfmX%bum2zW`T6;9(3-F0V?6zjP4ezU<nR4DZCCmGb=z`pYiVeB96Wds
zw8|*!+M1O!W=Nc!YaMQAXb74B<CC>o(#kEqDrl+Kx`V&(ZOOSA#Bcj$f?U-LMbH{3
zY4f}*i(I=wX?6Qa*={l2RmbJ3eT>u3g_M+R0S!V4tNUe~oTSRd!vhkj`}I;i{P&hE
zCZL5oPftw^{`%@_=&q8?xwh3|-qUn0URxV|bysP2xVUY6d_2e%XJ?sS28H;p($`v6
zR#BCopIzNo`+G~?U8}dZwtBPk$pkn!IBbg(XP9urMq#=Ce6wbDezUW)OpO&46_0IN
zqx1gq{?yZA#sB|)pA8z+m@q-$^N+{<vz6WZDsrt0AGrkYEJ_s?5J)&RT|fU`_4~cE
zE2R$HzjXE4xf}cI_rJWkc{ylU<=?-5%RDA3Jp)brzrMbH|FhcIlS@B0#Pk-+O)yG5
zRk6m~-{1W2@9*ZS-qTD#ifev;O1rWm@Y$cApN~B(nBmqdRcZU~>E{L+yP6v%udbXF
z(GENF<JT{#_QMZn1t))hcNe58@9wV3weQc{|2J9e-f#Bx^>y=w3l|={fB$|<d;9EZ
zy3w;Ni=U-b#!Z|!G4A|HiR7f@<lg@N{_CY5KYl!R{P^+Qc|A{0PnT{#oCq3^?f<5!
zsrd}l*;*O0auO#Gk4Y<+s8Q(ZFw<r>UZc#+%*boyKlka^f=01K^yBWBWL!A#=kxsk
zCiZ{71W&u2e{<8(EqQluiReaMd2)XK{VOX15C3^?|9|JB&sLz3pyRUTGa4Eg9v4{L
zdDh^G7>)w9=cZ_fpWE~4l(w3#?%CJHRWE;+9Bg7;mUnlTTK&I2%K{cUEsNb<_U!xp
z`tKHXQBkuhLE~3HKRxwLNLZj5x@yYHySul0dU}4W$Tc!DIuo70H+7bIexBEKy<8?{
zX5Wa289Tq<t3LbV<6~bpx3=T|`eiJW;_7~;1~2szova^kCoCe8q7||t;nvpd^ku%Y
z(~OLb*Z<nZaA2uU^18?B2lqGHR)5pb(((dLk<K(q-BR<j2(<Jlc2`MZ_VhV(*1UL;
z0h+M|^@COhF9&C(l9!jFc9*Sv?WaHK%g5vLuR&d_-DPjDY{?9+{r~s-uP>MVLBsp~
zmfWD_ythy0$~zbt8BLirYt@Dg2CAy6E7Q)-0<AN%Ve&XX&-Uxf<?~-{zh75;SFPyf
zrKO;f6x0RUTV3uc&R#f8Co-t?^|h<w@ih-`{rh-a{<?U4&BEH>-%=~Jy%`u79=w0I
zO}^#b^XJPqY}l}R+icKC$(D?VW&OX7^-8aHYURrNyLA8GZ_!JaELo9$eqP?~@2{?U
zFZZASO(F!etoV*!-fxCUvcJE-zy9!Wd+1^}-u}|9SyzjsZC?F(|LW@M-CI}3?cF8A
zcifcMgq4AT;a?ty!p#SBuAI5O=Jdmd54}7+3(tP4esF;C=Z_yN3LYNHd;90l9}y|3
zSF>ux85kIL$O<}aI#_wWuD-s$zw}%*zt!y}OP6Z;&$Eg9E-WBWaI|wdD2Vo3KVv-E
zcHn@6=O-)9X~j%x>9Y?Ua9Fy0dG+1%H#eupzTIP4^<@R9(Rbp+3GHpn3=9tEJiNUx
zzq`8|)V-_zQsMYbz+uzDn_o}e6nz~8Dg`_|IzY=da*d6ROTWAb+-|<Kc-l>EUz@F<
zb!YGH{A3H~XJBZM&OJ3n^VOA=!G6;Vy_FhLoIgG~8oI<oaBckld&zfiZOs;ym3{lm
z+R7^Gn8e!n{c&e!nHKBDZ_k^n7qjERwQofeCr+HCw{M|#__~_MexT*q=0~RKMqk-k
zoPPbgS&TK4hZ$&b=KQ)}D<@5!eD@jS&271}e|>%ZJnQ<3KxI&oe`iNw9%IU#9fhD#
z8M&Gd2X*=%z9|dcS(F;OI_$05TuufChIQh1pZ>RE>R7^W_ru|MzdUF*LIt#14%Aan
zSqT~g;NrT}z{qTpeoh9oIxx)%G?`}m{m$YaKPs;8V`5@5$+=-*`~6NaXbK(_Vy}0<
z-*<US=H)NPr1Lc_EG*Rh1Q{3@PKf6Ho_Rr4Q%lRM`un@DyYjBDiv_KFThcxK4rsm?
zG`&^%=}BO>nC_Gb6F|e26*=GE*Z+?O4e^z|y|r|bs`sk$_xE1i-Thtk^^FaQ&7eiB
zOO~jt1Fdg=;#3pAyDo<D;?W5cWv6O~Upv&wz4_|5lj`%YfLdX;si48ydh0XL!CTrd
zjR(coZSq#tQ>yjHvl7M+TT)L?o1@3bkT(Og#3^KDkYy|zgTi!$h9^#Qt;^576k>SL
z#>sJF_5HfrP8^I39!d>Qf)1;go`0#t@PO^cqRr{nuU}kT%p$<hpu*&#C#t$K%1;~=
zhIa~hoY*PfIY6l&2PR}`Z|n7h-{0O=z1esiv<L{aJR6jjHzXdOGHu$kYk9A)t<Ac&
zW@b}UlZcemD!tfUFJ4?+Y#Cz8z`!t}8Wio@yFg8P)9h=Y>EkQA%kx3Sz|~cuRbQ`$
zgBDEH{`>iS(vl}nQm(F#k8kA?y>w!ta_OrpntQ)qiv|rpEZ>@a{nYj8%ViiC7`E&0
z<4wQ3e16?3P*?uys!-6>p32JV@9$2XIdi4{|L^#@7KNZWzAGOd9-caF+A`nSW}2Y!
ziIB}{zDJK9eL30RF7W%iyTzYOK*g|(tN5B6&}e{)rjE{;+{%qfN1qf}Oi}lj^SpFt
zXYtiVuH4~2CM<zgEVE3rr`57DGcYjh6kt@Dos^uM+7q}v?=EQF)=SV54$vB{i|+EE
zmM0ev&y|0Ff0zFFkO-Q1Oa2|TH7oP+v0lpnOK`wkVAY=eZvX!}UTHI*{5>Dro}Hbo
z4r<1N2FA13?^W}(DtOSKqG@AuC;9h>4+Tq?EYVO_cCM?d`zFfAz`*cCiDg2zfTZL~
zHeRV06W!$kJv=%<+b$j+ZeJa-G3nLK&C6fsMg05sPwqAw3ya63OP4NjfcDtz$Q5+h
zlzFU260}xhOYQHn>!N*TxwkZoje|jRCZO?nRyH=TN$2KTKi~NG=H_(OlULbb)mrAA
z9fhmH*3NSO4q8o;`RU2YTRRFDzkU~SZe7H5kb9k+oHkW{eVprQtRH>t;eUHjmTZ4{
zd3pA)FE8^>`^~YK=zR50t$@R(mlqZ~b8&KhjF>lZqGECnXt?Cj(eBkA6O};oO76S2
zW?$E`va*`({#t$I<*%YV3=9pgFD-OtFMaXgAM=McUg?m%RbORRy?EcaJ0Uf=l}mI>
z;bS+@LiOCATQV<$23mH%-xodU%C_8S&@k%BlPA}K7Pem9mU|mCTzV_Y7!(P&3s_ZV
z$5p*l1r7gyeRcJ6@p)U&vi4fg)|5RJ8>_y&SeSIQ%X1PNkHiAY;%6FWW?|4)5vVq(
zez(*8<HwJd)j|vm3=Vvcxjf83DcJtskHuM6RxB)hd<;CSu`YHusM2|HnBTr+t9Ia`
zmasJu3yYqfdiivEJZNQn)Rv5e>-YbgwL6}Xf#Jcn<DwI?0~WjSo}F+1f7M&9@O5ii
zxy5e<fNHCP?1x;SCJe&>mEp86X+R|~b#{S)Od1U);`Z5r3hDZzpe+hjU$a!z)j=i5
zuJ8A%pT4g4o(I}_SP;GQ>AHrTySqX`^J0&W^@8R?K=VkT8MkG=vvVx}wed<{Srw|?
z+SaBOzpn<g6biIZrC$oPVs^m-h1RyVRo>I}KvNRBUqMy&&YQa84xrUX>~a+jD_5=r
z?F{3Su~@Jv_4KQi%jfNSdHmn6*Xu*K=f#57sy4IpUjyySo2DE6s^9)!!B$T{zp%f*
zzHTjk?$;}08Kl4W%Op_ox6F6;t3N+Ko9}gFU|>)%KfU$uw0V`!BtgrLxHvfrqxa?B
zHd9qm(NIuu01qzN{`qiN%A(+b@7m{ARtAH%lz=8(Z*ERcznS;r!$U7`@5{@4XNw35
zDtfMp+`R13qeov(s?T3h{r#Q!R#58~WJS2cxA*tggSKwHxv}xonKLE2{k^@QiLNhy
zzu(XP{q5~6`}%$NDxb?9J$CHgm8xZab5|X1=Lan|oU{bA^y-*Ie_8SKbD`a0x-k!(
zCrO#-t>F^Y%DA>B(tIn}8{1EBWlXuZrxG+JdaPf5{qA?Wyt~D8C#lr_c-Riw)H7Ml
zH)Np`E66jT;#tjSMnUlF$Xz8XxkNM;)c*dqGH9vSsrmN%LEL$^)vxaCES{v-w(M{_
z|7y2hDY@I%SA}{@o9FFWX$o3JurqcYufn8~|9`)OR^nCtdb#}S#$<Qf9}k*Ai+(_h
zsJCn}k+rD^$jr=~Wm~<iOGL9MIQ!?{@As!poVf7X+UVDf>~a_G>@5EJWU~LO#r<|c
z+w<<Kc(U`!Oi*cUZ?Ddgmy=sJWr|2@O3IxpR*Vb`4R>_H*#$g7D?;u6edPc9?RGwB
zIvLcOulxJ!<(ZkrT-@A~`}_NKOXt|tMrCGZcJ=pPe{pd!Xhaz_)C`(FO*=DVp{#Y8
zhOVyfq$ls+zu&mG_)OPkUIqq+0_#&-n=j10bonx<J)q>;mGS4tM^FX%>)YGapmO-@
z_4x4b@9w5XUh`eAY+w*D>C27e{++t-Z){u)+CjKBYOB{&?eJ+T;nUZ6gBHu?+A|bb
z-`tey?Kho)!JOs)yx9FQ(hi`+n|F6t=E+H_M#omf>?{Ip*8z=zt&P~|1R4$c|L^bD
zhwbuNZ*FYd^?u*)ye!+J-Qw5R@Bg=Ik!$xZU4Cxv$tp{iE!(v#&T@BBY@MB=qT;8|
zpHCmVcyF4?=S``y|Nb*G<f*c&SYFv#{Ctic3&RBOC$|_reYxzP{r%lt&<a)1l6g=A
zAoupRTbtASKRr9U8ngf^baj}NWziD3iU*9KSTz5t7kqVf_;t{D+LI?KQ}yHTZLRtL
z@9!i%wuwlU@bPci*Vl!Xl$4nDU-J)IE*)UX@MO#5NqQc$lvWn;U1wr2KNLQR?P-bN
zcC*ReqB;>5YQ9`_U$?*f?X6Uu(?+kat^J&_JN>-e=NF6n?_H@f%e#}IbJ}RGb$MCz
zy@k%~pb5L;2L~9FdkjHaTTV{bpa1i5zkN(DXaQw%<TOe9x<8`*6Q@i`QIX8-n#jX1
zXH)TqS1$O>(faF?iX3%qDn2|YRF)I}AM5Sqwd-TNMZWOPZ(JS~6+6P#$E{sHzb<Oh
zma4B=k<*qY9qp>zq8qwuO4_+Sdrn{K1+4-A#nYuFo~KTn2xw;G{qlDE{a2ug*#<`D
zm{MK|1Bc>gX99C_)_@X7@Nz#*MMcN&cZ&NTJ${^@)eEZY^QLDrp8&1zyOG?V`SjFO
zE<V0%paO7ve*9F8K&9hZzkWRK2My|h##K5yJ3$K$kM&3{zPGn}_pK=!flk_CYc6o>
z?^ytvfkyN%C!GB#4_d}^e|l<<p=GQ~7^sJNv|If3o12?gg|43V>e|}bmsRhENSoyZ
ze0_DbbmMxHWCw;nvOZI<L<UV-l4Tjg&2WbU5+*@gv;OS<7XIXxw!$RPs`&JIm1@gR
zgKEWs<|n^8IY4DFs3`^#A+W<buahCE=i+hs`ZZBovp`!yK7IW7vEs+CXRoZeK#k!5
zz4`1%R@VRjSM_{uxrnUn+H-TQR|hO~vWx{aj2iYon8u+nS=~PjH24bMa0?n%IZ(Po
zbyvdDrAtAZ!9d+WP!q4jn`OeWUg_++yGoIT`0f7$tPWp)O*((i!sO$9PfIL8uKu?u
zTB#vqO+=t|`MWC%9GgYN#Fl~91v)e`<@GnQaz87X2~xK1(KLycd)soOBd1NhoC*@z
z;kVs|;pdad{zbb$yU!WS59nTG1r1ysxbM7f57VcY%jbJdlB@p%n)CYgJ8M_T%Oc~`
zppvm*Zc!>jXMg|n)JRZo2-HnDdi;2Nsr2bh;KsFs-gIr|6YFAkt9Vv^dQ$jX8Wfpp
zb;H>vTw3ZK|1tm1{%`MWcAfg=_vgoRHWS91iU|zj0f8c-<|Qn;3pkRlY!qz?6Wm@X
z88RizTQ`jL81L!??a-JNPNJzVEOy9<zFMJiNaIn^oqz+%X$~pNRXA+++w1%^<;`%Y
z$kW>w_xw(A(fs$tht(g>IbeOhh>=0Td?$x21A|8|XjgrZvI7G{!xatz1_lLFCKd(;
zkGD>zT48GeAWDLD^AGQ~JUvaf+g-la#P08x%MsghB2_$t5^X1+Ji^RxGhyjV28M=J
zCpsA_-|c+<=#26C9@Fe=E_<uKE=oMyHuc-d6r;!)JPZssq$~v$n%Q`}?v~%TRr8%C
z!Y*G^u<bY_1H-mJzZhnt@^^Q3JnGUu!p^|(WXBwi34g!c)(=}7HTA6_14F}mO?9S}
z8ygY}&)a@K^5^I0&9+<&3?FQt95Gc0Uhda>=+Gh1lJt_-*L1(#NbX+|xY(_=)@Y_r
zkBp^}w=fd}L+C_d#!tKN|6TXz@$z|9S(|@@{Ji2{k&=U1-klk51sNC`-YTfCV`OAt
zDC4s%WJ#G^`T5z=&FAf;xy5ukIy&}#yQS@C_wz}{)m5R>)R`F=Rw<=3rCeCxXjt^*
zgxB)qr%#_AJ<!OUe56A#auyE*!-`dNELdOnS-<PBe!s`K?$2ZS<6mB0PX77n>BgF$
zpJv$AR?Vq=HnZ^g-11{{%kRy6YskpZ@P2}@yTh>_N#W&l%c5-l{dg?8O}_Ta#g8|V
z`&~0LGw)Qt-&=S!G(0uaiGg8(R?#Dl6MuewUR?eCU3AR*dwX}AYqBsj$V?DsytF0r
za>ehr+qdud_w9DRdtzc@moOs(!)+yXrX}I);|l-({eE0``yHX|Yil&`?@K#7Ysc4X
z(U1TAe&4_OoRxMrG`Oxe@W@)3q@AB9yZ_hK^^bnNUf=)h>}+?JBjWKjg0HWy@7Ign
zb;Q^F?v$sRAh%BvW(?Y0_I8F<X_n2;CzD0*u`hA&m%F$*{k+B3E5XW>Po`9QF)%#X
z{lujqr|8$q<;PzxpFa;AwYgJ-uY(50tlP6HS(b#Z4x2cAy10DJ2gf&?PU~G<6}tMp
z%~7q%Cy%JlubFhIg@NI~wiVMDKP{I3t6?<L=gHHjp%r`#3{SRYNh%~C@B4f0IRk@3
zUJ)+`1H*(_b2uj4+?;-Valc(u;_c$|w&KU->uY3czgz^xnvO3U14B;l9F7Uu>vpQC
z`OFCTS95PqW#KW&^doyJKPxFcdbN6e-|u(3^`jp%GBAWr5oY`Z3eV+!b5G5;|MTH+
z;9|Gliq~tmCmrjNEPOUI{h0i}5A8aB91IL0u6`^hx<s`X6+S-p^!)tFXER@1TN@3U
zKT}fLRr*@2`1!fB*D4qo97LbGG>C|b9{v4(zr3KJs;cV8XS4H<d8*G1*|)Fi>#I-E
z-<TK}u7+>j!~5Re`tO&^pyg?Omo8nJVVLap<oWaClIe2-_km;i^|iH|Efg6T0z@qZ
z6%M!YcI)r|V<cDkWMamJ1&%$k)@HLzv&94jwZqr-bPB5<+yDRf{&aYZTv-{ceym@9
z|Iw}I?f=_kU0*l%QwRgYforEa8Gf2oR#pb?ult+R&&a?K;<%M(!tA_Vnnp8yV#@E9
zf}+a&Zpr2HeQJ|W9+{x%95jQEf#F8jOcl>bIs6~bfBN)EY4XV<x3*>{Uym(cdr5Yk
z(M+G58ygf`UzW{@+?;k)&|OAQ@UhaP^qX?*3Dy$wg6Zx@W(yWpOiO3HA-C`6&TpXb
zc-a1X=QiC{PX#CRN}JccE(W#YD?jsq3N1@Ph0o8<cAuQAo?lq|>B&jM`hS1EurV<(
zZ1db|!}@yu-#^do`=@G$9|LtCZhpQ0|KInE3mls(-fTP`G!IfJ6|$uK`ttJP+UV`N
z>*g06;{13@d;Jm%K?a5mx<yJ3({!W7N?%{Q`>1NJRq3PE>-TvTDlsr5L_cw9c(e2Q
zypOL|ug@#|J2gD66SOiOuI<;ix6=J~zcPBHOjjM!tu)WMA)xHu*TX5ScErE_*JW5L
ziD|K``0!wcS#A`MjD<lPzr5V<_xtNzTxxziZ2$OldOT>s#N%DB*PZ?}g@NHf`N>XY
zg`Yove*E+K{BdS}8v$9Xk`7hxX-6ihdM|Qr=ll4eng7@n&0r;ad;8nTObiV771jG1
zTwI<!eR{O=`CRembIaqlxq}Pbb1WV%E|HOuXJ(mdi|NP7$Xb{6sQJ!Hsa9cNNYH+A
zL^DEAaIsr&*P=y>UfkH2{O8AU`@ZsfmFh}L({v(*d}o<-vdh;PoCcK@_f^%Io-Aya
z>uO|Xck7q4eRPmrzDLFL)b&{=nL@F<%f9NpU|^WQT%_diZpY(33s5Tdum2T1r|Q+p
zsn_}~9(DY99shq;>q!QNhP4xg8A0`c#m^^`x9_;OB2f8#3m*f6rGh%s631q?jVUK5
z>8?9J(^ws}kXS?=6wR)FETGw=$NPT2>wbEAdU(|D*YW?Ql8^OtUiP!r<(|yQz!0qr
zsXI0%9&XFHzApC9uj~8!eAI;N|2&p|{ATm{KIMKJqgiITQrF|_YquR|VPM$j?8gFH
z`uX^*`TZU_+o~fioWe?;lPaD}bWi&9<mAQe`S&aSe!af=(>#U4?fm_F_Uy5EGQnAE
zZS9AH>=zfi_pgZFo(I}h|Lg1P?`xM&WMnwN?|5#HVB+OvzTk59_xt_!pgqwyb`&Oy
zh>5wy#g$2AJv`J}`1!24`&_G1v)yHP3Xi)UZsUDCEjq6=bamL#x7+W_z2Eyi?#vuZ
z<E(3EX69QnFyw?^{a1ge{`c+sN&U9pI^zF*n*Omn{*RK95*Ii3W}8sZDI|~L|2>UQ
z`upqa)OQC=Ykqu)*j<);W}dBe)RqiEK|y!f(hyLkd8|)XT0E{I(aepFp<&JHZ_5*|
zu8XzKy0%7g_uFmJ+uSw3e>$yye2M4eN9%UKyY=SR63@wtcI?<;W2dC#XYsHl<MJ|J
zP=%G*%gMlS)o&~RgpQ8+f1aot7Ct({^}b=AuC#exkM_D9N_x9qEV6j9pjm5e{l}x?
z8!J9OviNjDS$l2iiwlbPs$Q=(ImW`!khSvG{3cPsi_87z?|8H6^dj%+dW9EV#gE>r
zelNQ<>*}g4_aC;)?>n3>X<JoN^X+E($Lah3q;7t#s;Vj|7#I=~lDT%p3XN%cu~MLY
zxS&eJy2OuxVMSk&l7m(GyO@6;wb$<n%Cz;IbRxwFlqO`Yj$c~p{n&i}Pv4mOzh6On
zOwPXBT=w=>N5_ft=htru3kV3<*U!Mn@St5oo#_cEdHbkMerxz>*XwoN$9koYH!w19
z+i`xGvT<r^>eOpq-rm}8m>C%CO)Lc!{{H@c{u_s3`MWz3#%bW@h?riCgy4OdN=;qe
z-u3(cS&8XH2z-5YRonh+*5#EE|5q$oq9SFQ71Fv`zTD+VOZ}~D-{12yFkJfh;=cU<
z7oT%@HU+P|#uyY8CFO7TGv&-|bA2iEJei|MkIvq^O^KIVT(3vP^HG=fx{lNO`}bU`
zdVOu}<5Sw}d+z`HwmmQ+LLz_9N4KT5Y3JrhzP-JD{h|408cKEF{<gC*JgB~LN5A2?
z`;nWGGg6-i<}#;zd~~$%&Bo)$KpRTm*M;sbd;4Sk|6l7ZJ{}Pcp1(YHciBhK#P_9d
zuh;F?3tJy23o0(It&Mg+VqX5X>c_+O<cEh^pKgCN*QzuN)C)AsxUeAPIU7U6E0xJ1
z?bWyQjy;_oFSppezYkPyTwfQP{O-<9!;%*lR)nvQtNC<N{ifXdnCW`4pfa}$w40{p
z_VfAma_#bU6<5~B+ppX6=~Tqltk50_L#1zbiqFrmEPf{De{hy*c9=}z5kWyiJsC#E
zGQQb$!9UVm-u$o@WqMO_|4&Ty=d<R)JDFdfTX9Q{vGU)~=ZoX_*BK@q>G%ZNyw^Sd
z-<RbdAGXUM`}h0({G%_mem&=Y61^=)Qh)E4pqSdPR}CvZJh)MMJ$CVq9Tsjq5)a>n
zGcf#F5PF;8=bO#vAKl7czjgy?FT_L@Po1bOD{irz=+@u2<L2Ak+uM56=hvD&&17I$
zP_=s7`<A${u&{soBxmPT?W_CyE2oErfuY9#>NgG#7f|aq`P!Pur{}}hL<kBB%GduX
zG|9NI;L^WyhnX1~UagH{KQTekIqAd%#i`rk%WkHM&RhP~?*#+Hf$zb&%%Fn!)He<W
zh680`xy(=Q6rVo}<LQHD!^-Ty&3s7H9;5X?Dva498XRG=r0ZVA<6a4a1cxoz*Y#dq
zSt(roc5C>Y(rb|)KOUD4zxBPD->yT>w#w!1uF}PYkB?nkAHP3hQ;Mh9GEk0NnzoJo
zgy{BrRoQ#K-O9eWI($8-zIyck-~0cM-tB(hcbMPaChg1&L3X){1Q!>bm>mXv*6(&?
z+}MzKr|7iq#;mKWcKrQz`|;lI_qt~qr@Nh<weKkd!=Hkm_X|WptN7(=zg*;Eytupk
zy~U3Q&EP7lUB1pjNeR@T$-cg>_vYqw_iiy=C8b9z7WZ}K-Q9Kc#>V8whq(36ochDS
z5Fl&8y1J{+^4Sb8cl~d7%kP6~h(~|F-`BrymU(H3hMt~Ye}6}Zu%CtEtu2|t{r3MV
zvOY60IFzb5>|5^IE#^8|%~wh3QMdlSj-%b;$0xeWMP}~jleIb$oxgYLw+aS^fVCVG
z-Y4GKQMj?-;h`6om;1Z8Oqnvp#l<BsFmP#YcUM=^%S%f?e!U*Q+)9~&Aw-=iMH*C-
z8zvlR05yKTyuPllq;zdvthAuu&!0c1e$&^`Sh0bhf#Ht;=Y-r185b8>Je?8@>g;|z
zBJA&?Ho3E-BWi1wE4YER^!k)()531BGceS3++oeuUK_L1sOrlLa6>%v^0K4vcE69?
zx9#PX)xOJ<{w|(0X%grZ4^X8Q`Xl&VM+fKsEo<N3muFyD^7!I@`+pao-;_vMuH>-I
zDKaurL|pv%ot?$Wudb}z`2XMU@QD0-dn!f5#Ewbl?+JXl)j0iJ&$qX?!$0~<i3r;N
z{>RMB@WD3co%n&r%8%aYoZ0lbfGbQi_s$N(s_*Y)jnmF_bPB7xwe!iE?Y{3{_i1v)
ztCh=>Kt=fNWqxy|<ZHhKetCD-dTk*i!-A+HmL*;5_WgP_!=|!mPT8$YP{T~ZzOJVA
z>-@iOW-E*B|8;eJ(xW4t7k3sv-|^{`cJkF#p@vCEIxN0ia9&*h|6k+`83u+`{ER`a
z`TPHtr5Mcw8RRq1X6L0}%NRiC2<-WC$-D6D)$rpF4mN{&4!w^aJ(4g?auHqspMjxa
z?sSHgi^St=HlF&uE%&zByxMO!Wi5Ca7@nwI2X!P@3Mw!#IApPax`0xQObiT5+(w0m
zc$l2v+mv^A*N$(uvO(us1@10;Yw>JGa?+_Onm6UR85lNsHM~)HKCe3OPU-d7!gH3-
zkE{q>yeRGLEYJW%#oMjdH`z)tFr@gN&Eel*Jj=2;&1Z&zBB(pE<JGFwN=lFB6rbxX
zdwc7s>Gc?4(0M$cS{N86$o4h7VGvgL>zQSmeauxnHe{c!y}iBOjt5Pk@f%Pn*?pOj
z!QmUn1lfddZ*E>(<~tj-Kfm>@tW}9dJUc^!yb|LkW>853Drerhy1GtO@vQlHR6KG9
z7X!m4|AsdVpu+LbpFdu=xw*JbT?e%=Pq@CYc32y=b<vtNYc74ebm`KkuV;V$PyF<%
zPl{I|b#~o6TVcWX>BRyKZ=cMbpIx_b&s&xgd;uXLTW(%n<K^Y0q_n8=^RwBtcmMqS
z{Quv@7yIoQ%EX*E*)kj`Gp+yk2UMJGJAT5GDTO`b{=V8j=l}olUlX@?*P+%I>-Ybw
zN->(5aev?6wD{|LtG`Q_=f%9)`~6<DjTaMx!?!iDyUm`RpD%xRclr5m8kX9VRXiuX
zRV*_D6*I|wmTGQ25`y9JwWTgKpU=H`duwa=p+ko%zJ@N3U}X4k_zA}ez6%ST+h1H=
z9nK?XV<Dy+CGz{-?tIX|1gHVbZ~G-++i_-whBbvODeRHk^I~}<jZ}{HN{fRA9-a9t
zRoZx^#nk6jByDpCse+{DJ^YX?9>lvQdb{4bz29zSTwLUOWnHW_s4|&hl<KwZI1@v|
zTfc@7W`c<$Cwv{_$xXi7-|T(dXZ>i^>UCWm9h)|70(BTovajhZ^PN5IDJLUC!tX*B
zmD6f|b0kc&ul026?OIV2T~}8ZQ*e;gu=dxNh#duqV#}Es8s2(0q}+USbMs=~*=C~m
z3~e9H{w{QL3m*f6H8<m=R8>_~a8IQ=FfdTXQz*XXqpR35CWZ!C=Z2J<x3*?0+uQHI
z^sT9>=~F2K!;MIe2|BAoSBFiRIyLlGTvSxlKA1VKuC9SWK|z_nm*t+FZSD{1z28V=
z@tC$X|Gu5wuNR9W_Ewd)zC}cB?KCxz+x#0+Zq7`fCkYzH`~7bB`kLFjN?#|vxv{bE
zjNx&YZZX|W7P1TsIq{~OZ4dCrw)4p@3SS=wYWqfP$q0P2`~5z{vNty(HY7OOe7WF!
zQ;wg3VVm~*mN;-UwDCv^JwDdkoqBrOQN?x{A<$Tqu)mGr?Zu1?2g+2z1I|0xKx55h
zwyesGs^9M|pHu(u=S{if-9H}7|Cgw&tTfENw&v|O%lsV=+fJPRd|uvR+Ye5j3C^JL
z>K#8GbtliS{niPpl>h$vx;S{bpJCRO6&kv_y&WAsYLl-@{{H@69yH36H$T6+-gc&s
z+Uxtu4f302-IQZ!SXKG!<?_Yl@9zZ$1PJ{7^|c#RP=Lbg)|Sk|v!>UN%&{zf#9#lz
zdE4<X@-+<mrZO;|VEp|2eE+`M-)^hJ);`j&|LJX#duvP0+e_a1y$hY&k6re+pL>*(
zaY5FcCe{hed3(QJi`bmzYxCg%v*@E_&@rvYpH7e8ck{Yl^fsNkf1l?c2L)v5>ubHg
zzP@%pKhO5@-12)Xx4geweqR=p)9#kt)|E2N5&`w*ZNA+|e)@WK_<C@+YIWG!MGF=v
zfX4pR=avMWnP*$Qdf&YBcE5G>cE8zV@t}cuQQ6yD7ngWWesOnqxlY7}gw4O#M{ZWr
z+xO#9#-$~mpq|z_+wXTG_SIA_{R^sSE&ly@yx4E9Rp9!#y&8IYeU`<~YM$HZ@A=>)
zQ+}uL;)cY-purEBf&+|&cT2D5UcJuZaMgl|X#(@Ss#hyP`!+$tuhD;R`P=_B`S*MO
zf9tBRuSC~IZS8XH7CXB4`#tHo*5x2WkG$LcUQSRDG?1gcevc8Tjl#^%*K_I8rHbcs
z%ae}vNP@-(Iy%6SdufSh;m@bj-EVKpeY|@8zAjM13N)k&>f?U$`Tu+We`!!2`11C)
zdDONXNl@fezuT$4tK_9n@v}3XpnO(4S*4Sanau?>=5kCrzlY!ckHNd0&*%LBb?lCc
z$LrjGKha&T^WWd!?w~QQZMXBf_y2vHZ&>x^g~huaj~}hwey_{+`<>#=o6pQNR`;|0
zdL`rjzFN=_`lrvIL0#LAx3bsge*G@hpyk1^;#%0cn3*X?GoSPrpIdS1A1FZ=-K%^)
z)jocEUhL9ZF`bABA|fIxhue6y?|%dJx=$Wtm;bYN{%*%+wv$h%$NyXV`^)?L_A8^e
zzuW#UI4UYC^LCG<@gyI$$vx8M>uPS_*qA)oM{RP+iwla8`|E0de!HE&-}dC`)81<S
z^X8~{PFfSU*DCYIhQy+is?$S$%;^@__meWom=II*@#xdrc{?7qsp#vk|MN4p{O;5z
zPoJuKPuKf<Z6@OlyE#p)0cSx?Sf!-d?{&7G*4sU$eox`!V-dSbGC}3;xBK<~xwdc5
zy|BQs=HJifACF1r=X@+S&A6Zd>Rza-s@^s^t@iWh&!_V1<M-Qv#%R_?Z|`H{mCE@x
zZTJ6g`Txa0E5_^VUM`*P)+=TDXlDAn&W?`f^Xu)x)<g)_{`%4hI^pEc#FHtHUM%ik
zSFj|dI6m0r$o&6*o_kDsQe7L%P-D)>6ma(H>TrD}rLeV8TYcC2Pf~fe=kqzx7}b;K
z&)p}h`7X-5yzJw<-S3ZeiE5wvz8lo2@SAIOaiMcNND+^O!GcSf9^3DhMeq53uX^Kg
zx#}Yq-Q{J??^Pt9nQflGI$cXwxA*n>{dS;n2QK5a5gQjB@)5j$Cp7zh?f11Ca<|_t
z>t3{I(G2_gIv1BSbFIxMsdVba?s7>?O#HbRWc49#{UeW#c5k;h9hp8?RMxr-RF7zY
zGHLDaZ@udCDx7*4-Y77!ESR-AdV8Kp{yiJe7L44gzaJhRPQI|f5!9>(HMed4|M_f~
zdTNTrhXc%@gYBOFmMu8I2p+#^;S_$f<8fcN=VUe4<$iM?9h1)2xxYMoecZ>F%jX|^
zU-x}CsH*IdFjV5Rda<D5-OlIRvX(J2vmH5WeqRO@&g%0jl;SELwt{L=&_=aGKA~F+
zA0IoBVq{qN=Lbl%^*Fcw9sz&5pHIZ%qXPm2^!NWM@|kI*`s?d!anMo*Q0KJplBas7
zK!fZ7*B1<y3wG?V08MWhr=7X+iu>aK&-VX~ca^=B`hK@OzV+?t>H7VL4jtmUopp7U
z=-#TYU2%J>j{f@k`f-o(xsHd2+u>b-j*hgmvyQ4xj}e+4Q{<@=xk-i3`ppIjyPArU
z_xEa7r@gwrzy40y?cArgPn|ktR-L|D#q-hQe)~T8zc1XM-oCabQdm`0weXbYau=5)
zcE8^UdrktyOv&3@TTd1LSqzG(>3XqAM>+&Sqp`==*Z+N8@$snm_Me{_H&pgDFg$4h
zO&4WdUneUbSMe~-UmdiCA?eDBz}dCAy;7!Hf7SkXs?Y0a<rWXSv909gC9d<?*Vaga
zMu1d2AH80`zpq!?d|G_}CeT(!P+Ki9ENok7ygx{*>`MvLtdN`=8xlAFzF&U7c4OV&
zU!R_Tzf<fFnlh>S_C``r@b2#N{;IF9j@JJ<ULSHJf3m9gw4B0ep#A^1%3dsNcblXV
z{kN3y!(ACh#uJR7%w_-gr9Y^s1kI1OmOIsdy&9hU=tyVbzn{<ZzimBw^eAY|&Eo%`
z&yQ~;_xG0HuQfl`FE9W5&1V1BzkXIPm)xlRes^*5@xF^|A~(-4PWSus@B9A#M~@!e
z$lZQ7>1dbe#Z9TFEk2(yetf~1zt^ht)e%st01Y$#`L=!k+7COgt&J8x+|Iw=#Cx$@
z?;}tR_~_9i&`A2CxV=?{4;tBzfhI;@U0DgLh0fOTzP`4$8`RYYmH41pz@KkRySuxU
zAI-je#jRgX7E}Qr=C`-`_2s2-YisMro9Xk9UiP<_ooiKkD`~;qlFPmyK||G=%jXDz
zMo4s`wrGH~RlnPrUh?Y7OY8r63^%-P?)odn5S{<-&d!rZ#pCCIwoPejXn25jddXD3
z*?1CkWbc%zQ&l}Dsel&xoU{M`=hJnN!2Tac^(TqxMyY^?#f$!YJg#n>cE)2@$;(Ng
z^i#9nF!`9uT<dZ_(AuP^ty!wS-)@ipbUOZ@QRLRF&`B!y@0|O7D|@{!D8VkN`}@oD
z?yl0whxx2^Kznzz&)nEw|6fI4KYw#SXztr{l1k*hn#!Vstl}!5&4wV?eR*@!_~(no
z{aR=3%HG^i(bv}pZ4;X0t+!JJv<^3Decaw9@%!seZc06^Ra+ld^>XQxCzJjCq|9<=
zfQsjv`TPG)`h4Erex_-5*iSq2I|a@`i`{xZJ=fp&BdO?^WV#CItOG7Cu1V8$qt$Mk
zamz6<Fyw*m2uPn_TLzk$dH*?_^?+E)q$8qb3=9rdF`!)v)a+jWtY`b+cFFeAd`Zxv
N3{O`-mvv4FO#nDnA1MF;

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-8.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-8.png
new file mode 100644
index 0000000000000000000000000000000000000000..f4bb3bcf3e35b8cb803f5480b233504ae341a251
GIT binary patch
literal 24735
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_eA=KR<H|3ChIz4xry^0UWgSmvDj
zRdZ!dY6{=vCm~K6(_T1uu+R5*QCS%FV#x*fUlx<6adc`twOHamQQ-2NvpYA=eEy#Q
z{`cR{-~N@0uE>2=wm0V9^jojL*6fYzzy3Sm{qNsjYxd2XW_XN)fq{V`=fR1$Od!Ue
zS^)<TeWQ&5#6MuhA^_rUQ)~cH8+aL67#J8Dayb-0+#F{HMg|6k1ZgI)A-74?I^p@z
zW5-TC++q5!xb)YT%&)Jn`v(RFe){}*a({pSw!FKuZl@}?hpmlLZ9lwldVHPbcJGe@
z^78uahZjD1lG0zAzxV63e;@nnHR}KUDYB5MdcAhLiYH&Yv+pdEjk~YtJbn6H{J`1r
z>_76d2j)L3u(%_)Z{I#HUf$5h$9hdmUtPJQrys3zdQxg+-sw-T#AiI8Umy2=&*#3p
z{eR1NrA$2Z_kNk=HASQFYVI7y*Pq-MI<<!Ett#F7=hJDc>TheVzg1FJep+A=vZEkT
z*0Siys^9naR+mpZKHsi(*XteewO_A>X4_VNTGGZRyXw`|)vE&*I&pDu1gs2NTJn5u
z`Kz7J=Utwr8@+B<ZQiX7iOq7gUjjo{2D!F!i-$QlG$<)6UtQ?Tes->PxVV1YnYTil
zkKTUnI4SMytfkB6*F`lpHcA;JG_>(bFRS|cYG-cx^u5*JPdzMH;odJ7x$WdD8-_n$
ze?BW?WXQ8Sy~!l!hJj@Al!+4;&b2Oob=lwk>Z;JyQ>ILL@@uNd_56#ATvx^H++_Fr
z&E}l^$A6Tr?X50%b#pr<vH0)r@7jijfrs08FF&7Ozs@xK+KKDeufHx!KR@rPxBlKG
z-|toHpRSERyTo(ylLCvBo{L91g|DuOG+zIfPsU=wudlDO-{0G-6~AwfT-6IjQQfGJ
z<NfmCK|zy_^~<mS^YgQ|m6g@)=Xvei;(9Cc@9+Edpqc;4>({H@dZku|t`7V3{d>5V
zSJ%FOzp~HHw~v2&d;9e{mc>Q8?_^8aR&9x^c*yGN;<7_GeoMwgozs^Vxps%_sVLlD
zdV70*_`g3t-|Bo`_3GN%)w#E~t<1Q%XlE=}LyQ9h<3F`F9?3`FzRxnvzOo_FdGGgo
z)m7hariX6Jxf!$S&3VIPPs%vs-rnCI-z#PMEBN-Y<HujG+x@QSuWi+rjL_9#zO&78
zFP)ib{Pn|O{_4ByoLaeN*;H=&_5J<&Q&Y8{znEcN_U3~5{hGx)c33Q3wk+#l6RTCx
zla4M??PnLuPE1hr^79KjKhM^*@R3XZ*LFVHOO4FzMI|-XU*6q~o~-VFO}6~b!kxv>
zS2?wE$>pY<pSRZE{;!Gns?$3k9qq1W;dyzf`uxs+UQ@L~cfBl)eHS(Vd_x1n?QEtA
z<ri4Ff6U(X`J8p=QZG@-WKh&@J$q@X_tj0Q-lE!JK8%cvs{$4_vGK{Qn5^z!wdL=}
z<MLN`7N@(qx@syYI3y+}u8Q2ejEzTP!I?8Y;k#FVjX$5aeU-ahrHk(@lfu}Wg=O-e
zK7PDte!oW9^VEqG7ozj`E}dnXt)-&k!pbEQ5E3%w*4FIhPft%z|6OTS@nONQFE1Cb
zSfTOr_it?-9UoBCE%Tjy=ay;Sog1cpsZUQ$T{mmp^82+Dm0Yi^i?#NgzKcIK^~#FC
zT?G$8Zk+Kr*=LSL;I!126W!$kYijmfx_tTTMR)ni+}&wsr93YM``bP(t^N4u=-#-$
z9^T%UR|GBwWlK?=h=5iu(V)M-zM5uV(^>!f<cSj(Is}zN7CN!Avaqa(*;yoIl+tnO
z^5x<`bL#&8{XWa4a+8y@^VX7=LF*qnPqHd~wdDW5@B6RcxxdVJ_Lcqh^{(#j+9oC;
zjg5_~LRL<iSN+a%u0`RY*E>_b*Zz3B{r;-b*VnXScWq%}ViJ*)TW9@#&*jIT3!bKD
z{P^&&$U^4Vuh;8SdkTNsSfqa46T7D(@csV(`=m@V7Cd;6@bvurcv0=Jko9qUw`5<}
z3*XJm&iCT!^!Tu5HeL}qIlcP&dRG^h71`I<-P)Er`?g&>zx=wQr>9PC(y9G&(LFDg
z+y38=WY6&bYu?}48GLtFY4FORr7_1}-rKvo?A@K07q9*N`TyDMe3SfpHdoh1hlAoM
zBV&bC`MWn<sSKaQ)-^Cpm_L91@l6j8w`c$O@DNlWt`1u(A||$MZS;06MMcMMas6wv
zOtV8aBsh9bKjeOQSLxFNiz~}~rCnWJUtU=md~0X%ay6eB3nnVN@7h&=r=#xv_q*lu
zU!V5P$yt+>oE-aFNm*Id^X~5Q>uVx6hpde<Eq#A4wz0AC*8ckaVe8}8F7=+iD)aKP
z>o(`+*;b1P3omYF=U?SHS?$%OrQP4&-d?`5_<7dFMXs~#>-R-%%h7xpq>*)J$3{?T
zcjAP{(c{N=UoE!nF^r2>US9V0*2{If-(5P?%Dpw~>Z+XhMo_dLm#<&5V1dHj^82;F
z9{1aSd9(R^)~6>YtN#6bZhNb}t<7s!$<-&{Zs(uBX6QH1X63P7>DTS@bpgFnre9tx
z?tk^@Xm`}El9jtkUM`wn|L^8w?~Han*)0hNnL<|tIM)9D7Ft!cYnji?Me_B345N?l
zxx+4Bqi}lDmmiP&wRLpftjb;gO~%@HmWgL)XJ^)x6%!vldQ|f9k*lhz>dUj{_peM+
z_1=<q*Gg0);J{V8-R}>pdQV#sx;l)Diz{fhS+0nn;KD0cLUM0!^A%R}xo}~jbL{Uu
zpNy~UC`^u=wp25CnTDn1&8v4mMa|#b)5CMO`u*NtuU4-QS>_{I`u0|6E4TQydA8M4
zX3SX8#w)$5=I5tLOY-;qbX&jo+bk*byfy4{6%MT2VprDh|F_ED?xzd4n9hao_v_bZ
zU0t>Fm1X6pCC7TDm%n(C5#BMa<m|gjX|tSw&1q*#zP*Xunt9o6``xnH+w$+P%e=ho
z<>vEtmp?r{9lANqxBvO0yXE(<g6asf+*=xEW?`?dt-bu_=H{)XufuY0Zc>e2ugf4U
z$xxp;EmgAp@WYKYS677|JAV8)3k%DPW_JEvYoj+NwQkfoZIW@}z#Oa6Q@MAqtPJi=
zjeIsUeO{q%^|zbpy@wwf%&-5q^LU}(9E*qF%4=%&6k5ony}!3tE;oE#Os39hqr>g|
z<<WA|(yt5oBDb0zn=x74U#k6Z;;SnwA8$M-ksK5pyjO33(C24oL1ry>>n)1jmv&a_
z@$1*wU1GXf=jPeI-ga)2&gC72k8|GMKUrC~I&5uGblr~+iNTvvJRcWWocZ(fv+cI-
zo*omv_QNS@X|s5x%_Q0nCuUt=_qO!@?y|R^Zqz+HGxOLcozG7u`|p}&`{4ldv4;gS
zM76^zw$wkLTi%lzxvb#fp|l4F8lSCRzt8A+pX}~eJ4@f+yK5oCH+jN@2iyMq`T2R7
zYquCEZ2o*W%)jpG<>mh7(^6;7m?2U8?@#6RPmhoH&;IoEv~>I7iHo0K-+A`a)6<*x
z_8La+-#=;c<g-V+#cgl>e{TQZa9Zlj>v7d*x9X_BKm7as{`(d(e4iip+gEMb{mJs&
zE8{0`iyu9CTl@16x4y*bO+LHJ-uhHk?Yh0|%a@YkFE0YG-*@kmF-$)<=i`m{*Vab+
z9&BRuJv~kL?zHzeHy@9fmMT~IL~#Arl&^onRt6olkl`~fe&)0NY4Ni&AbVGZuHL09
zZ<aG-qt0m-R@RyG>wcZgjh(I++jID#LGkl*U!#~C?l_C<Jjg#(>H7Gncznomzqumf
z;_9ANk9*B+e)a7CdM$dBj<>M7U&unI);rfqUtjaRc=6&ayV_mH4VjpjY^JfYvfe$g
z`Gnl*O({Kr`)YpfS*IVg<b>(>iIXNRN<BSorO!+wxp3xJS644TH`iL*)HL+-^Yi-^
zO}#Ho(F``J`BA_tZRXQ&`)x+v?zd*LHWdMLtx7M|e!p9OH8=a}s-=E&tu!??J&n`O
zoVfN;&3D!lsXy;T<mKN>_0%o3tNoR6VSyv4rV<ho5)l_)zR0zERm{$!sy7>t+vJ(g
znKf(G%gf7GhpmkQH7xF4dwP1hfAX=Oi$}Y~@4lLAl-i|p`qJw4`(Azf#mdf}ePV*5
zrQGkwGLwT=g{+jxoj&!_Qt#@$n*`+L*B@%-&VG4m>AF<QN_ngAFW(xA2niMKO|9Nh
z@o^ET=>7BabM~PYPPuT7KY#wjgzr%SwR7^q%jT>KUA;`rch-y7>-U$v&ia{N^Z)Pn
zUr(pUhwQJbwf*s+Iq$Vq$%_SSyizZw$Jbqab#=Avwzv29?+1m&_SC&qUnd#5y}rJF
z|GHfacPdH_GW}Cq_vTqr<TSfKADp-A&-cr|zHaLL`SH`rS-kxHuTNBVFZuJMP*gL>
z1r&%sK0dy>EjJpJ^s}z5nVFQ76tXU6=j<ZA>p?356u0Kxjp7#93n?kta%+43dQbtC
zcXt;T56_uvc4qnabUd?eY*-i_U$tD#cUH!&Et$9WRBo25da>~Jx|<S@U&+_+1hq&e
ztNWk3X6M!`wbbAKZ%8vc|21ZQn+Z?F<2`R}&7K~%E@q`x=&BWYcXzFOsvET>pi@W{
zR2W{l64I}~fBl|MU7$wLQt#<mZ*OhAwIy@%wYAa9Pfk|PJ~c&imO)}u)wegAFN4Zw
zojKzZIc@2~!|l~qCd`|s=b4wx0disc;e|71Nc4Z3UcR;X*TZ)CDKlog*rsD)5%Kr;
z_w%3btUun$E&k=-@Aui?-rW54^ZESJPft9z-~PUA$&wxaY}MZ%UKhI?)cy{gYgKw>
zWw5$w-kk_TLqoapUAqE7<?3X0|5b5&tFG_y-Ew)6Yd6RwZB0#2_kOvnt=!@<uXRpe
zy13YVFJHrXz2`et9qW~@j=jIcQy7$VL186jlJTJI&FS5#mQ(d&qb8O7`SH;{R=8ny
zGXv8fUyJ&=KHlD!K`r0K?)<j@emvHS-nQnr`0nK6eVWF`pI0>>)IEJ^rg3`65)Z+v
z>tdr<hp)eOVxscblj`$9kzsUfMbXn!RWFxLx2Ze3<?tNKVw1Ep5@%-^9=@t>r=Z}#
zZ}Xu+NJwa%rQ89_3wAa(cV1ULFUn``|Ic%J)0U#AUZy!W0%p#f32M)P8k+zAJh$)a
z>bmscVDtK&{hLxxugbr_&&$K(!jF%S_x3$5D2jWy!>Hlcj~}2$P}S$N=Aahf%bDr(
zKHk_?@bJ*93k#dAN?s_uyi}d_<;6uQ!=#p9UtcfZmV0|u#Kt76vNto9csr`BcKmYg
zHiz|Go5~<XMa4Mh`P=nRMQ_XbSTTQ^ZuB)#heL-Cf4!Z*UsF}}Y1^IBmC48ZynK8@
zetvp-bzQ9WRE<EVfB*hXTCy?u_^UrZKj*#O{M&BN`+dK+6g+g=`|+6cEThyeHNQC;
z$vs)u)~pO%?3P-Y{lxzC&wXd}4oKS9?E!gn!UTb%M~|-bnQ3%tzWsik)0dXduUoY?
zdVAHJYCn*(rlrPyHBRsO_-iINAK$l#XM1wLevO;SSn&8Fs7cSs!xJ)D&G*aC=kv9V
zje|k$sh!2o@7!WxWnJkpQR&o~GiN>(K0L&FUBBnj(%--IBQ`i3@0Y(`e!q74Lg)5Z
zA08flb!+SDur(16v!3q>zVdYcJgd7a^gmB}^8Wq$h0g6+zrVfp^7Fg)<>lq88xoy;
zXPce<dh}=3oY>=hayBnY_ioNU-}@%%*_*g0j~_3t|Mz)*)P{t{Q`2-;CmwEl*)Csq
z;+h>BzucM$69jstOizh2tSbSzMP&-86>Y2LSo65oJf-L263@w-O3xfP;J_<y7sD%M
za^dIa=U?xZ-}n6W|9tOfzl=y*z4?C(G&DR`u3Q<n-=wNqcUSrQcN_PgR*x<D7c_6O
z_54&-O-*oH>fWB6bw8hq*Zz3eE@fE+>R7+p<$Zl>(I>k-&*xQtxf&k-^2f)=QTu9k
z&Z~ST`S;6Z|E#;awr<P6Uw8Lw{JEd4e?MuPMV>r!=E{eMhehS&*3GZ~7ipY+?#c|q
z<S&=J^)p{wSa`kk>f<6uM@OS$F<*_-Bg58}yk;p#7IbLXzcTCUs+HmE<9_}9e&4k0
zO~m%nudl9N{`mN~ZQlBsvUPQJtHRgM12s`UK0bb0;<1_L{LS}&@2mZ7v+eGNMCWbq
zCp`VrYGb`W&&|bUMe*}<>uzsY7q|D<th+|5!q@A0M(wTIdR=l;_?igC)0;vTyY=Q=
z{hiLj#+G$vh9M}Pzv-4WH#M20oDi66Q+X+SySk^BkI$8dhucGU7NvfDbMx}+#W6dJ
zZf#6%-}m?1?VRhcW%Qr$1eLzJGV$=k6Bq5WuB=$tEv{en_WA#>*W=Tx?fpRYU$&2T
z*yf|wmD~c;i|?^*D}8-!ox)pC+jQyDrLm>I-|XXOW@Z+ZmR{Y`!U7r(dHM2X)Silu
zq2K2Qhpq|<EGXCj8libAUblR)d;hB=ox-c)_wPGC_3-BO^Hp~yMV-3&{PM}4GoyDF
zExrEroV-!qvvj@&TMmT-_iuFT?^{vx^OL5c;=$a!enw`t6B3K#_EuHSjd<5@|L?-C
z($_Kd>mxTGd#u&<<$wLgeKl;)tV&;1{4M=^T)zIy#hy3k7&qN}CTv;tWyQbm`~O$!
z*w_Bra&C^La(w*#)qVXF^lBq}y1OsWv#qvay0xqHwMp?apVpR^nBsyTUtitWxENGP
zuHX0Tl<D!4TS49Lr>CY~W|yy7U|apIVomwEzlKRiIDF?=Tzs8;VS%Gu^F?7Hp)a4$
z+gIB@dv$g7*RR*(PhY<tUVg7~xys6jjY*(fW|ntnMR;80(d-Gg_f~I@?(Mhv)X`%o
zWmB;sdiuO8S3-JaERBwDFIX49e_z$tS4)$R_q}|#`~5eo=`DtC#%X7EJd2Qft~+)8
zpQf509}?FWFMjd_+{ujly6SxIyrXv>7OW_Le-GT5IU?*|(Xzg$hey`7Dr6F<*9IC)
z(bPP-cK4lDZt*MY<L$$Dp9WRQ(^4z{)}*Pbsku$n4!;I+`APNpJJ!xN&z}eCg`JwJ
zy}S26LqT>D561`duuUnRwjYlOOWD`$Io2b&I6S^K^wQFU^FXZ^Zv8zAx<s{CrJkM!
zDzs-Br*A2LAGbDYs~4}d*%k5l8b!~lw_C4oNjk~}D(3?O1GOSHEU5eSQe8K0PsGB7
z3qj4JnBzIOx2@F*TeD)OaeCJMeYLBix38NtdGgnr>GM~{?k<~UTV1v-YkkblO-f2i
zCfV0?e*XHkD(B{=O*-D7E^b!Vs#W3Z*JWK@_43>8{P35TmX^M{qNy9RBcPp6Ht7Gq
zzkBapeC~CQ^A@Ov*WdpqXlvHhprWEp&(6+PmzS6KooS>R{d;Ge{{BCk-tB&G$17!W
z;`P)<?Vmq?W?oql2uc*+-raruZRy|b_v<c$dNx}!0=MSgHalHg^6HAGzy04Wc0Zp8
z@BRDjHWwcssLV7ic;EmUvHSY!YH&rxj&t*DSA*KRUtfQjoxks;S=i&b<@YY0n``~`
zlDGcL{r~^22X+1*9qrEk|L-rT8U&@7na1h6_T4FecPDal`uS_19u%mY&APp9t&x!t
zxc|N~_;_y7o;OwR_kIVBj(xvhA0N6pEHo!)&AT0s`F{TXt*xr+svWi_z{~5D>F#G&
z*TqH~8XAIn&Php0R~9%j%UYFqbc^eUP1Onw*_7hB{hOwy=FK|!Z?CWWYieqCb#?}(
zq%8UL^z`y2OH|fIY;+0?3^Y%b0T1wfeSQ7)=kxaAOTDIESrw`+sukjK^5n^=Z8<ZA
zgoLiFjW&;*wzTf=ugo(u3|ED%opozl?&>dJN^1Xpy>3<aXNQz|-W$PFTp}6^c9p(<
zbvu9mRcC(NC0<jtP98t*o_l-SRr~)x&+BB*vMOCQ%RGOb-(0Jexwp5i3R>C)Y73pW
z`|acC=opuOh2eo%%5&R##vA81={$b?c=FR<&h30NnOM1IIJI)kJlxK|d+qOcyWjgP
z_nYhE;?nZ*`*-ui#6-}z=(C;A=NWr?daf%wJx$lxw(5(){~yQgeF_RTXhv*Uurg?A
zSLLsl%YBQAHXS#t|NpoA^MhvoSr;w@Ot!DD3tsLgJ9);8jIebvnKFFsl|P?OzkBQW
zv13)X?Y+|Gv(nDan)%>C!sEw}AJ6iBe56x2?MR2<vdqiNmW8YgQd3YkFhwWwl1bj3
z8)xR(TDzaW|L^Z_-}m?S`lh5T0Xgt!m#Fdg`}O;8?kHS*{TpBVVUx^DD(=S%=G~wA
zxglm<*xD#i*RhpbeAhHrH#aGHdHKmRXTB_*J!6K%;{uDG{{H@Kxd{iG*`?bLC(f&W
zw=?_N*Bi<GlI@2RkM&BY_ZX&~o~E1j<itd<i(+;bsn!4cqh?@mA!J3sL7P7x4nN!d
ze&6R^^Lu)DKEK=je%6c`62dYvIZRAUJ~ua|`fg4;dnP)6?^8p4Z#TC#NyDTT&G>zL
zI5{{B0s{lnPE1f#v$g%}e|GbuEp>mZE^kiv58hdn8oVMvQCL7A;nWn(<ahi3*BR&E
zv)R5aa<6#5ynWuUFE5i9Em{=w{NJN){aIVKm<UTsW`YJyvu02J{_xJuV&Ca{u|7+^
zrur;&YV`>Sn6NTz?JP;7l#bgqGRI<Ou^%~p{P=4dg~-}#o2%l}($Z#?-><!XWo`6z
z5v`CDB03QlLRN*GwE1{MIIs9PsBgY8`S`5*Kab_X{<g8XQ}X`aT@`ip^vLt;Vt4z@
zHp}(7xX3kj{`r-`%j3TOG(9#$*1Bv)-rZd@C#ibRs`>c|OoRBc)@2o2WX*DBT(>Og
z*=Zu)dHA7$ZPk|#zveKUu$^XTxo4#n1H;ZE4+}KR%&xsX#>UVP&7F)fdvZYc@TN5~
z_c^&4CTurggG`_7U_zf<IdOT?q)DJYWzx~ElMf44xb;fyjGdI*#w)GXet6<r$qTBP
z@9*s`vXFUoaq)5AHE({ciQ4ML*Y2#p|4&ig^hwWs=30gFwKsEqXZW*J(1GDe<Z}P{
zVW+3*ZY_N5R{HKv<l#2n%fkLPiPf@)+xe#-emLRq!+@HanrUzM{d^`JzPsq@so3v@
zo23fg7Fb+a;yGC+U)?h^GgHdCY>kv@))J7T?%$7B^_~_o+bq{4|K6V0>nwNYT}voR
z-?8&g-~tE6sXCECy;7!^4m2`vO+7tLx@^yn9~G7|e5&f|_czoUosc^aKQ}*5oPi-S
za(~_4J{ikJfs5T<#{d5no;O|D-roM~Y;%9mgbtUu-kXhekB)SH`uzEFE4O&j!d>1<
zN=jRDZ=12QvR1D7{c`#IE4xaw-`?EpK5^p2st1kiB2rSTo;*p>joRV?>S4yj%z1WZ
z=Ht@e(o6I1?gACIU1GXbm-_@IC0}xNzkK-;G%jzJduxgLy$WYePEOFcquq}O%%U0r
z4|eq(j@`+i@SH<|;nSKaQ$!-CE&cG}!yP@>X{n%j2~e}^%gf7OL1R2??F%2ZJUc&s
z{k65x+5i6h+!?YIR7QJE)vDC7FL^NmH1PN0f+DY+&5hE~<1deN3WF?~rW3iyZ?0A5
z$w{i_YmYTFFswJd=P_~OL@BG16~{lVjo!X0dVAh1!{oL;dHZ#)-D0uV3wKOZVR#}F
zyMf_}<+(zhj~_o89ow;MXUt9We-92ezq-7<f6<~vpho?M4F+5D@5jwH%l&lY`P16h
z({&;j9qX0Wwy=n>v$MOoZnbN-SXW2Kg(oK`+g_{v^YOS<{l7g`Utc{fy`BB_?f$Us
zt4@DUjGPv>F6QO6vnMR)DXlhC0ClksHnW4~3wk9C59!u;1Qir)cy@O7@}j4wGH-55
zon=|P?Dnq{Cp@NVhx>u%h8h@|LF186&(Dv)x;p%N`utio&r@g4TsbjOIdo-^Dk~cs
zXo{oi``vQebC0u<9YFp(*v!5<YHOBOz=DRR=4Me@*|p+v6^@yinc=l{n;w6=oqv5(
z>gkX*5r(>vn?R$M1<~_o%vjMbUl%b|J3Q=Q6Km*(1jnnZLcR0%|J~+(qhQ~>V-l`z
zZdGsVwr5^e`}+QV{KbnGK?B_h2@AABS1oxyui8)DZ_bXawcTR6K|Ve`Tw*#aCQJ}0
zeR09jy8PXjjPI}4?|*gw|G({7*VnDxu)%<pg+;^2D5&55-;SW5pgr%ZUtL)Vsyrhi
zW-u``hc5Gx+?sLGsrcEMj~TNkO<J^kUX|C=)6>Hp92&aBbXRT5y`A;=Sa0}Rd4^4g
zL<JZs{R#>;fI17h(c4~ZK5rL%dt0uktgNo*y83rFH@h1e8iM9gW|?Fz(u>`daerU!
zEbH=hV!BaFetv$wI`#Clyx&`Oyo;ZoyE;kL`^u(NZ`+?wCR@JR{r>Ue#d5Y)8Amz<
zL4zB&8-93BR$CdfvncD@n#gIl<MYGkzPh?P`^JVuDYKjz(c;RUUA?_$i*^@3KbQII
z%gaqV-p*}2CpX3Z`}6bbo6YA}`OmkTWl^{YG;<JE?dH}7O3;6P6mHGF?)UQLOHjni
zRXkwSjolUUe&6qPW;r(&RKMHl{_o#EkaIyD@(mjdN?%-fIP3ZL^z(8@j~xRy`yw|l
ztNQ+KZMV37*6}`BDf7HJ^J+eMPSp%ni#~t#s)%-&4=9x5DxZq_&bN!ry|txqZS})e
zaZoR`>gy{_B_$_y|9MxsM72SaG`V+n1O_knE8Pkzr0xEG3C_K{EA;R0@8Jan8&r1w
z(~PZ(S5Z@26}Z@~tGoO1(QfgnQ>H92zh4vVJx%B0uF}^wyBZ~vzkmigK0Z3S>;J#s
zS9cU9=ic1pI=|*qCulh7{r>-PqS|34Tj$%??^E-evjUW%)YRO5etLS@-~R6s(CE>_
zL#?-V6fV9Udc?7rE%VEZi(299=71)Y7A#PZwJ30qHp{uNr}Fcajmhrew|!@ut*rd~
z%&PEF%e#HQ^FSHay<aXgDQOX?fq3MI%hrsGk9NhskY;aztpyNfs5fR~__U(m?$-&>
zcx&makp9xMv(3%<+7I_gnV!o1Im<M=XZ`y1no(O;SXO^qb9<l8X(Ky3yJx5M_n!%r
zJ>14?%-4Rn=EuW!(3m-Bd>LF>9^ayK8l*pFN5R2}X{n1AE!tG8cT6HVa$4q{9UHGd
zUKh3X)vVmP-`?Cz);Vni>e6K2+<w0<Tj#XVQm?7Ip6&ei>-G9$n{+_+zFyp(7g2JO
zlAzX7=Iw23J^lT^-zfL+=vW!Nyw9@q)s*bJ@9ysQ-B<I|r&r4KPT$6&r(VgC(<JR`
zcHI61nmhw}EbWX$|E@k+>$G$8?d#9}n*00QtDl9S4*f=*(=KjqyL9jGt=@k9+uhye
zAg`~9-+wQ+5-}GLx82*%udG^b?!V9T|4W?SbS8WK-e=qH{In~zka^avzpo(r`?ctN
z$<v#BHm9AvGwuET{rBIR7J}NdA3uIH+*|#<ELu)VD$8rSUhcWM*3UPd-I#nl=6~J8
zL#)C3YAS^#Br^8>{T98wjGa%$Ku}O{S<1;tas9ju;m+bZ4BO{SnIfVaz0D`})Rc>#
z&)dJ>wk~dO)vG%@H-ly#`i^E?UpM#BqeuU~Y&<<hbMdpYv$LO_nYm8Sak854r1k69
z%T+#^XutRV?3V``nI|o|wA4F(^V-e6RaKzCc($?b&W^%QpFbD>y}Q7X88ioXq*EBw
z;R;z1pm=@PiWM41j~sbX|Nr-W)8k$_x3+j@Utbsc_0?5S52gRBqN3ud>H7CgU!Pys
z(ZS()X`-_GooVi_u9dm>*T>sSCT}Tuc}YfgdCAL5aqDZ29zVXi;NhXjck44RFWdEe
zUiF=6UteB!e|mcQ^)6BEE&2EDu7CRQp<w&<BP$~}r~Nu^|L@^fiMqPFxYt~qoP~dX
zFLLePQvE&e>)YGmyiz6w+2M;^IC*6(0@(TGu6%lWdha}DhLlzYrU%nDSAI_O3_9G#
zySMLQ#-$~lJ%;Pbrmv3O{jF4ffB5=1tI}6fK#LtNFZa(rH^(yT>Z++-;`()Wf1f)I
zsvjgJUvAu!a&pq7C#8MUIyyLFcN93X^ULjdweR}6SZ&X&dwYI<6`#d>&Y|S#^bc3A
zg#7(||37$s-Kmvp=dsc&t3th}rKVagQ_>dKi@9L^e$V1IUTG~8laPJ;_7z#kfM&Z_
z1~1=q=YDMY-KQJRJS^DJbYSZHx0#ohY3k|uB_<|<V&m#x(3FbIV$d}0=JbBh2s&t#
z#Cy8l)s?}^ZThx@rmLs#I>sw+cjxiOy1!MD$y;)7Z<DcAXE-1sz_5MJWOaY9plRjD
zi}b#mo!IWuDRjN|&$YGDt1CV}0!>bX=Dm;0*QZ$iu+cA=_xb7mS?Nb_s>ScC;o{{j
zjh=pWZDnn({@?XaKCPAyUw8V%i5;&B{pVOHp57D_u9mm$@9*#4yG-PcynJ$U@~Y6)
z)4sjCyV|Ps)r#ux@3=TQC$3+=-fxb@!otVLUjF&{+0x4Ic%SUl88cRVdU|?w?CvtH
zz(p;8{{B_<Og`Rswx~X`HS&4(%Rf9Gml_zEP3rzsOx20JRJyq3zySwO(5#BhG0R?Q
zb3afr0nM?bossC3vyIxfZ(r8UO-t`pJm#IMA0Ia<Cj7uUGy9&@NUP#!K4tT`7zz{{
z7<N3h*w2yvb@i^zr!P*8pOJrM4)3{lVT;}SukEY-9kME9Wj5cDQVSWQV-<6ipM27v
zZ0`K_*4C%*->?7s`}^zZ@pXYuPfgvNvpeUek>{nk<@YjQ{}DTQ@SxGLCqK9j&)=GK
zl*@DaGnK+wCYh67U;n4g{(61v?y$$ldQV?8oHS_?Xl~%y+1al_g~RU8GYs95kM*1^
zy6xP~R~h@R=DhX&+wOfb7jNh9Uwb=$f9(DG|9d|@KmYz(-LW1?x!)Ufy#N0C8oa;m
zZ^@SzfotRTMr}?zdufhkF=(jh_44_3ljhH#-_+EU5;;vwCt^YM`@QDw&-q}*#jC5U
zy(fW&VY<cjtJcJCOls9R{pptK3%8dyH!ol9eQt5TUDa9r*REY66QBImI?~1~T~w0O
zet6-TGiP$P^K)<nOxKG|>A9%Ae$S*-Pz4T}Tb_~{2^wiB3c36hG#aV$w4&$e{K6j}
z5`Do7DpqD+U$^e*?y|R&QX@fCo$a<r(AZq9<!*+mYTG&6&*a|Swe@&z|Mj)e<yUWW
zt&iGzD*5KoZt<;EU$Z>_|2N)H{XGw~lA*A$Q10R5@AvDkzq`A8vrU@{XmQWmTU#%$
ziQIf;iKp<}TU)*V|GxiUCAP}9$MDy)+4<{s@iUyzWa4Ou_H%J*dGzSfmh|&-y|UKV
za_=HW=U(jl{cd-r=@jj7KTsY54VCY!{T;Wtc5T$wCj}NJ$;WuM>(5)ca^<h<`~OW{
zyqb66!i6_q`IYVrkE?V&+AV&)N7C4&<V8Tg{u$6pqu<}&Zq2@~cl7Admj~J9&s_Ys
zKD<}T6f_M6s@@m7_kW9+KWo;k$M5{_fhJo)&4Z1}$4lPt{k|%6b=bPni4!Lp9jj>R
zJv-Yx`^$@qaq-IO=BD}Ei_7|^?<}fs=a;`0>~C9o)hc{V#6v^RN1#L!ySr?q=VY~Y
zvso?r3sWWRi=Xv?TGxd~b!~0Ispt4dBO{}j*mZLpm*w8x23i|+ul9SaZrq+5*>kh6
zue-Xl`1!gjJ%$3+T?vdQE^pdZed+i6{p;Cyr7|8IX#Dl*w0`L7FkMx3_3V3lDnW(R
z6wTm0=hhb}zus|cj(j*M)9xyJ3tC#CX=N4l{a*EYzqwXR_4oa7>XkD6WR+m2?K|7-
z>YJOJuP*bIzPcjNxvs8m*Xwn=uWU#>th1eypC8o92Cehxm9Y%Eyv#SaTTE9(NN5qX
zYo+ctC*bq5vwQvA(%UmHFI!po_?VPU#Rky07-$ur#9~?NvKOn@@4NKv?d{FB{2iOM
zr<S}t{q^EvcTl5i$r6>wX-h#(c40N2g4@fYx93&;{d)cC{`z{*xRa=M*p>DB|E+4}
z7GG8S``awj>}kgfXPM=$x*lI2Yg_#-<oCC?p(_FuS=rfF`_H#q6}x*|Qc{vh{lA){
zM~<v;Y-Y16c`-puKW>dy=&BuT@2fBGD$NEh0NM3^-*3<wpxk?VBE6^S1YTU^dRMJn
zCvMLUxtb4-XXn{QU%YrR>)xK7pp_u0r>AKe7zA9rco8(c7xVV=rAweOG|;*a)9h;@
zH#eo0zPn?o8@<g3w9xGKw%pj*FEzEbruF}7K+S(ph`+kNe*KFV8KB<J?{9A}xA97U
zxt+fsRIhV!aGbdInu%f34E85yW*VoxxUdj3+pnggawKBf)Tgz-w&&hX12qYQHzYU;
z3kfC3)%{2;esV%^eXhFyyqr~GYqLNjG)KEc&)&}8Uu*2o{KI?KwL6l(zrQ!%Tm9W^
z;>3x^?%%&Jq8)bTPW}JCX^)TfTHd>UHO7wr#8!*vjGE!=<{Sr2@f#OBa0uR2lKJ@k
z`+TjiH5tcxB$M@Gb|lE~wP#*h(s})HoF)H>hlksJudj>s?G#c4H7pA)WY$@lf*OJ{
zeC;nUE^fd6>)(&Z{KjQ(A}()8bQYG9%KG#7uWv=gj?BBew$3!qkDK;fR8sQg*Ev0g
zYG!8Fe*E}R5i2e)pI=i`bLZK~h@C}C3oT@xJ)Iu^Eo1(ySy})7zOSFH6}oE1fddY~
zOFRUF_g0k}r<@R&JZ;*v)Y|ZOzdyPE`}5QH<Rn$!#csW4_W%2;|M@V#eag<i+j4LF
z+}@V!`|;6H@Ir;PQCrW{|NA_DwcYyU<9(*v@0QI5ja>1yAI{~Q0a`y{SNm(miWM55
z=A2f@iiEhDkFJxaO?&p$a_^toT^SdZg7??ef?@#VjLQq1*+0KtzrRYxURU?*o*$38
zmn9wT0*$0i(F{KJ<?Ze3OO`FG+G8duDf#T{^>}mL=xrvcr>B`VHa4p1=$yGz`Fw8L
zqa&Sa%F2h6|GW3e80zo&&;%OW(hOM8pc%4a!pe}9lU`m}*gVrPx$WecGkc!BW@4DW
zxo2nJe3t)ApelRC3XQ3{(P2+dO}%_-s<vtBDUs6G*Uqku_44Xkw0Lpo5)VO8=XSaO
z{A;h*?_akm^>o(XUtiZ*@AbF@n$J+5UlSy2RRYSjU*B%O|LSqS{k0i}$u`e)Kx=pZ
z`ThIGsG_Xw3@R=oB4$jQG$~|vSuSXenH=L1(0s#>$NgVV>+j!@C%m)fXVKB4M>8KC
z>3nr_^YSI$%@*F%_16CS`ug?e^LE9#|34h&2eB^itNp!c&s0?g28Ive-?z)RynFt9
z`GyS}vbW6!t>)UA^|Y-2*D~MPtAdt#<^5f{|KG3drOTGBDt~`3@AmhXm)$|DP9#D&
z7#JA-%>DD0*`w^u{r&On{PJOIqqf>yy9yc(|FGio{p@RNUS3<5c6L^gg^Z<C258Oo
zpQ{26n+{s8oVh)6`r*Ter_P%7YSz>52O60_ef$W{^|yZh{HbYTa>eww9>{g&E(|Bx
zp4<NZ`}eQyHOqY47dexsO<Pv;^Hb$re+P#Hq3ZKM19bmh&0trNW@2VmJ^5NC;vDCU
zIk`;C%v0yhdsk}z{M_8)t)HL0xVRX!Tuez>dHpRu1_p+m%DTF~)!*J+yjy<%?ZwBe
zH=P+yvZY_wP7hym8q^z9R8#~tAGe-8bLPs$#qM|SO*t2tw%+XHl}k&#zg}?Wzx&`7
zBLhRhV&B<jzOlQ@&b~Fu^JJNjqY=4jNtdYhvR-NPsx{I3>-H{Myg0Vr-QE4P#Nu9Q
z^Hr|hV(XrQdYYiMCb!}=jf{dWEj2H>x+*mP4krTx!-KXP+j3`v*5Y3OZuUfmQDru0
z6-K}PzX(lD&AiVIZ*FXKK5zGX&Fa|6YQ7>uLW?+s)poE>;1pI{;n2vm>-)Xx%{FbD
zZ--u86&kwOt#@{b8Uq8vj<}NP|37mmOaj$ob1e#;G&MCREn(#r0}WbCT2lA-*UEr}
zPEsZr6F?(IH*Q2+_j$p|$+_!spEYPr%`MOXiCd4vLeO}LtaaIyyXE)Sf)=b9r=7X5
zdi}mt4<0<YW8uocz@Xs&<M#O$J<q_vKrcVPZ@b=Yzh4(T(<oIXcGr_{XN=Ehe0_EG
z)O7v%QCqW?wzRN_YKNUk-pz0SCm?^%$F{oPZ_Pn#B0y{R?(eHzA9Z}0@9dDxX}+qe
zs)ej93=9hVkAC0!`k1RjueImRim0ut#Ps9ltlidc_iKe*?U#$MHMtoW7=D~il%w5B
zcnTKLQ>yj;9X$qy57(#7nX_iGd;haCNrnRFoZH)Uw|nn+D(Jw#U=Erh(F$L;s`&Z8
z6K{hU7%Ev9Sr`f~%h*<Z`G4rRiDzi>ZW)FhjQb{-sBG`v0UCT}Fk7Lu(k)M%k-?lH
zcEdXH<_n-*0`%BXKxtr*w~t{E**b~Yy8PXhW`4UBmzH|3c4%Z;6}5F0D35K~VzRvq
z)Nbh((*=zjw6?Xair$`QRrMu9FO-*of#HelzMZiL);{`vzdro!t*xP;%H{3ta79JM
zsLg4;aaAu>b8l_&oL~2ArHZDisw=OwS;#~sSCgtQ8FTGwqt@^Lw+l2GpZWLK*H2%c
zYO*sh9JnujzisnNP_45vc=?vJvr?c5(@9r0r~9X-rM&`8ih^2Q3l=DV8l0J#nYT8j
zb}K0<sd#S9z8)46Gso`N3+1nGZW^2WGczzSoCqyBcxu_@<^JB24jnplXWDd)KqtO-
z=bxXRPF4YJ5?C9xwWyWfGwaqC&?2xUmc`F*gc~q0Fic<<bl9Y6W)^l#;_Hix&h~#k
zG}rzATMlabffi+h7VsZ9-~d|p536Xltq)$_XO@3&4);`$#g*)_8#aOF>#ubPDt~#k
zdOc`u|0I>un@lP`B!KpVOj^Rs&gU`d(BZ?j+xYqU!?Uth85tQpdHy^-{viVcgM*wC
z!^y@ICp=8Eu6Te}N;x?>ZOOQ(1oE}2*OY+w_x8q?AO7_H`}Z4W3JMOBrc9gW2HIA0
z;Jz56%52a$$Z@%9AM5gWC9w}d14%~4#$VUh|Mi}0T^^Q@us{XWg_pZM-@4pyQcNxb
z14F}pWhM_Z-x&surdd}$yokHH%vaiXu2tx4^Zc^AvZrr~zAj?tlL_$f@YuGljz_}4
z!O_t%@3d9<yEW(LTE`!k1eLexY5(p&F53UxO|f2+WkL?9b?xNjWHT*2CFO*~V$i0I
zl#`RR!q&_%%e(X9V&30hU%UGH&RyGhtWS2elxbE>`B_l)AUF5_`@)?sC&`^^jrwP`
zgFDPDbXADwZ1enU=jK}9opyePp|hQx-LAjiZmW8NHVPbS<(@ie(xa@+H9w2q-q`3Y
zYhAWwYZ}Ns>mPD?nA!gS^Eql$N+)Qf6jWs_T)6PppU>w(Yxuvuy6Ua!HD!VdXbk4_
zv$MfDIcq>MdwIFPwxXhA`JKY{M~@#De^&v8Ps}mV2|1wUhWq~is|HOQ2&?&AXkcUp
zH`T9($6u{}zxR1o_^J?1&>{y>t&j_#B@itwEL*d#dd1iMR4w1n1WMj=;SNO$!q!Gb
z?I?I?dOLJ&RA{%j{<eimpz8J-XrP~gfq^FbrUp@Y18ODFbdT7mUl|w};353+>|3UP
zJ)p^xx3{)>d3pwR3aNrNl%2Z%eVUCZDB<Nlowl24Q|<4v&~-79zO&6j|Nr}Yb&01i
zs23Z(EobA?AG6JJgJzrMibzSVVq)c55w$g|>iOJqo2;CRi(0uvwU%7C5CB?r?cOi9
zb*UXF^Xcz?%H;9>-rmylw%=d;`1ttN{`&o(O<td#o_@XYxZLiS$Nzx_C-&FXf)*t?
zxAR>E?Gd`RHv0AV`}O5pJv}`^+sL+7f6oJr3!b<CzXvp#1sZuf)XHtX*9~mP>CJzq
z&8v9C3EI&B8cmMgmwcR0RYgSuR3wIM$q2k#|NpO)O~nV_wa>r2y!`6k-rZ5#^VaSx
zex7zS@5zaYUf$lI9d#mtf{LD?;ekhw9(}p!F26GU{5<omeo!mI9lpK4zn)7}E91|P
zkEhO@Dbelk?Y+AByxr>j{eQziHRqvL?yt{g=WCgneOq?Txb|0xtX)lnvU}eY70|vZ
zqhl3YU_BWw`AJu{WP;Yhc@{rAvvZ{>C@WOP&f`@8?W;I5)7Z4|k;~uD^Z#F&r0T8W
z`F`*Bc}hx3SJp%tg9<^=`VY{$JkQB$cdt}U(~n;VTJsHB7ZtR$3p5>hsFizl`TKjI
zIoc)O3txVCco;N}d;DAJt1B0uot>SZ)eEXx;-;rFcc|R0{eJh>uF}<V^?wRWUtV$r
zjYROtS}g&MSnKNgvh&M@L`BVdc5d$Kq@!JTuSC`T{TiN{lCmQA_O@Nm=T(D-QEY#`
zSX}l0@As>V-T6I1d(%`rA3l62ce}m49khmCQc@BgikBH(Ce_r`eED+OA3Ox>;?nYN
z$74R*-)}a9c19jLbm+<B$I0HZ>F4GIMn%nf^!Tx9*_#N^wBh4py_X;N+pmk<oR)cg
zU96Y4_hglyzkgTfyqDShC<j#6{*it9lVQ@ldFw!{p(8dX&9W$51S+L-@9YQ!6~s$C
zC-3Pyyh9SyCG+IB`?28mC%xERCnOe|W?$QJ%VKv*?7KTVi}QYi+MECSKD~+E07|HG
zwpAH7H>DaK+re}^w*2nW(A8m?-`?DmvM5+^ull`hue^O+`Q6g%zH67KoSXz&x*ZDI
zPWUu2F>%t8$H)73?~1eBofKPX2kE=*ezp;`x_7|>h3%=JI{5jyx&L#1f?6mWXa4`b
z<IekgQcCQfau_QAd_2B2{k)uR{Jt31E|H5TCMsXuS6lt|?(XoPpPz>>_nQkIY?HH%
z`hKUl|J~m2_hwg3UpdP(`_=08`+~f@y0pU9yolOY|G&<2dXvY=Nvff1A`Ely?6{cx
z`|IoL+E!Lp(Z@mSGqSF%C`{%8HMr(q`T1XN`fR<I3u9J1U9Wt;>>z0P6%<jc0~fo2
z>RHpYGZM1aWj^-*|7>3En~<=ejbDCU?(J<SH?5f+<$t_SHnrzsyL{b?Z8evccz*i)
zIe4*KuL`cZc@I3z?`0B_lUuhn`}(Vo$K|K1tc~3rHZ66fOQ(=r?&&F-i*IgDzkj7_
z(c;CR)a5(V$W>BO60|pJ-@jkkwVzI^gL;Uo*MVkF@9nAV>g@%US)dKUswyfk`mEmt
z)YSa(T`LF*;n$yX7$i-zrhrE8Kx6I)4;}=~b%Uz<pru|<qkQFSJ~V<>DTDS(85#zr
zo}PAfN8#fu+w<eYX9q3y%DlQNwCdT+^e>0F^)=%6)qtj!goK1Pnf?Q%z8~6~dt$dw
z{3Q(PGJ+<ypP!o>JlCo;WPjb?J9;mdfvf^8_g=C@<yZs55ATA1<-T5%j?`ag_#+x4
z#eC@dR(t*Paf}m}tXQD|T1~k#7PR@hL0aWJpA$Q1)Zsc&`=xiPGIbcbfqe4n%F4xy
zT)R&lKYsl2!`HKyzt`Xa<@(ARIf3Pk%<Qkun%@U)r~q~AMKyy|wtIuhpbzSIgcws^
zU0IoRf8X9`XJ$^my%aRwvx9HDi};!?TTDP3B)6Xi2^GxE>twjJB{Mkp#s)<sp-=a!
z-)FwPwYBQ&)$r0cH#XkU1G)ad{1R`L38$uNXMcZpSIQ`*<Itf)AqyNBMfGBCycHA?
znQ}W7Wc`k|=p=!v-{0P*Muz202W7+uR(FLMpDgaTJM~rwWbGY>?JnZrF{pap%1>M;
zj?35Ucvk&**q$0W?e+WYm)F+bKC1)ja~~)@HJMSx&Mt0RDrgixWM9os5qbIgv$;B_
zmB8E4D`V#IDD40HZMKSL{JxsJdQc?p*!uJ&L(sOIo2&nUx-}239Z@I&*^09z_Ot%&
z-P#$~i}(Hbc)h%9=A~NSnWuaem5wO(C2?!cw0Ntvwf)JvmdUrvwr-3JIUZ}a>GY)8
zV!9VI`zO!l-pZ#`s<ZRv9oNa;&!&{zH=F$B=ikKH_s{udde!dxeD-l+Y;kPu{rBg~
z_o!W;I?v8Lo`FHZl!=9b!Na$=hUfh<o#<^kpfQFYUoQJ6-`tcsQN?rVUmrE$@AvEL
zr!8Y<U|6NBZl$lb8nzaI>B-LL^SUql+uL4S6DiCqWzuo1S32BMZSu*KL?Z@<gzP6S
z4Lq_|CS~_)zt1pA^^&RiaPX!aI|IWFH_Jl)6MHH@Kf2_tFDlQ#FyV2LlEb&#`THZb
zW`%A$&cML1Z}}XK34x2<j>eYX6;)MLy(!1a!0<z^=#kunmzS5jCnhF>W`K8<zn80i
zv(f#^s?gP!3}^bNz1#7)Psf*ofg!}*kL5&u-RId|@%CS@1kbi{YhYk-I6GaKaZ}>q
zww!*@DFf`5h5Q^03>%71bQ&v2pPg@SKd<)N&4>*NjxH{5wqB1b{B%;?eYRQdCL2ix
zh5%VhVFl-QzFzBhI~JdM8c|tUS@`qm^y4!OlQ)@w<YO%hIj`kzzblq}ysuaO|BvH_
z#m~+}?5nBNiQi|Fc5aU3^7(aDJ+jtj$NFSvzcplJXwU`O`}lZ&f3Ux;sa*Y^k6y3c
zWlKYBzTHR;3=0$cey7+!rtqj}<SYROh82BtESQ6Wf`n|VzT9|I*Dq&V<DtmF@T6f5
z2WUL&`0f1tdvAgk3|n(?a|h4iU|_f*W+|vp`}<q(?{~ZP^LD*l7O^?a_vo)#rrD34
z&Cc%wiJr4~+@s?M39UQKMnz9f%rH*(i>dv3weaoM>u#r~=_)Hd>ek=a@%8m}_w9Li
zAGJy6o%l3`f#JZkCoT=3Ww*=x=gaxq{Y+VUp7G_)&FNoWUDdAo{!VtLkJ{;ACI*J+
zNy3bqE@m#DE4F-YSrj;8w*~s$VP;}rcq5bbL~?>z?k$(NxVV}R2iZ5C*4yne+bnlm
zMQ5nm<W7IPpDIf^85tUK1C^PdxZD2<Ofi~y;`Hg&U!)iqPUM;zIjH%}_%L@pBSXWT
zCvpOyq--guQ2gvnr@MUZmP@ya&)bS0mo1NxDZLU{cwDwTB@>n;V@j`v8fIQv(sljw
z^Yi_7wZD%1`T1E{>Cq|e^*x}O(dfsF3=CJN2s3{Ac01pFx?ZeSoc)&z&Vj4L)>gb;
zyFKaJn#jUmFP9&GU-x}CEc94Tbct#&%DlWxbp8CwXER^i+glA<H?E`vN}->hojrZ6
zf`P%o^r=gOh^Xk%-|zR!3koh>y7c37`~Q}HRxg)y{k^(6JltlJI0M6qomo$kEB=E+
zt^8hP`jn|tkFJT_tYmL*|Le=k;En%5uDZP~ce8~eI8_QNEOzVd(%=8bNUrY3!;C8{
z0)1u}C`N6`5EK;D4qw-Ea<cmI{r`XOPp|Z1U`X&TQgV28b+x##y5F5Q_nyzMmjgAg
zE44t`^{Gok&GbEc_GH}HkO+>eRSVtNPVk!F5t!+twr=OMStm}P?v~Emk=XtIWQvht
z(vc1kP^qvjw3lbX>vg;JjAr`qNSo=D-7USo<K3>;+kVI~GBGfi#`p3};FUJ3d7jO{
zpkV&<0}nK=K%u`fczIq~{i`c01A~Gl-E#nSE>=#Qp73|^{J(F~Hx@lT_2TaC?`q%c
zf8W0Ew%D!r(Z=I)-j$GuJR&(^rg6I4_jh;Ach?`{R6hcme}3e`z;IyOiB5*dZ8?!w
z*2mXx{{8jU)$aBCerX-;WMF8>ohZz>>G{0sW2@Ki+jaAAcwD7w)b_l&aBY$X2@W>D
zUMx1uyR*Zq|H<EHv-2PIS-<P>oUC@#zy8-{SbX1Uv8(y<VTNI{TTI>0r-oHuUfihv
z|5sV*(P4i39#CBDDtjw+J*L=q+Hw{KhHWb9=Ng_oe}4S)d3$+KX<G8?ism$(NFncO
zI-P!Vt&TGD+X!4<=G*<}&!3!rP6mb?N546YogJX?E<R_ee$MjwoSc3p28Nu)b2uk-
zbbR{ssp9il^W=|@j$YhZ{5<2@n#gVLObiU$ocv;%L<K>P*U-}HIycw)cz^w$#}&`#
zmMbYGot&h4aZTjriU*DCn`{&r7&fR{3M%m1{YU_L;o|1>^B@@|&q-Z-)6UL1`ti8@
z```<V3<~T|TpI3_-Oeq%mAU+={J#(FFYfLxpZd4{*Yf(V{ePb7N6z43V7MV=DX8%I
z+1c*N{&tm{fBVid`RMtAfnfr3k&=UyX_kohG@YAo{@vMGoc#T6xqqP&14Bae6PJcB
zudZr?+M1wZa_U}?X@+%wepr0H61>?!l7V4^X_1nHTd$Pp{hH6dB`+>0*8Myk@1{1n
z^Zx&T-wU73Og|>*E+cq$wt0W{`n_hilR+iU1YyQYn^I5z_&oo=jBWL|9?!{Yu9H+g
zemKm3{L0GU<O2<iAAh}GpZ?U?(XC%j7F3F#P;3vm`TIdL|DyEs^8)wR{mr<wC6h<S
z;)AumGBZPieAAqt3WuJZoqfFa`(5$xcgy2zem<SPG4XJlhK^3po;`0&t{iIRetb+i
zA2h?BTlD@$a)0l!Ug_h$=66L_hpp|3&fjZ#uloJo8Mf7BSJurn-v5??VMFZIANx7~
ze_dbSYy0hna^1)7_#@}*|9$T0(9qF2^C?6SRMXV|dtTr7_4W1eN~Y^CE-p@fduuCb
zD|E)yRiQ2}GL=szUff&#eTG4z)13N$KW|D%GB9jfcPzdsbbH?26|uX^-fX*_cT;ZZ
zq0{>NWrCOabb@ATC;tYq9zA;0^`oQ1;$e&MqS)PKAAdaVUv8?#z;MOF)XqUksqWL{
z`A43doUC2TRJASV#s)>by<aZvc+kZCXhAdIs!jioipL*$bhP_%hjQPFP1jcjF9#Ki
zmn4K47_yc~)pLfqxcvY3_wl1{{l2`ryN<Go#|Tuv-&=lVW$^M-h3)cnKltW9eYg94
z-+8;=I{&^bx6duwzh#Swl2TV!*Qz(7qM}DHE%ko<dj0;s*s`0c?dLcd7)%5GSUf<>
zsp|fo(q12O(|?kR(M+G3&u7i8OZt|2Pd~Q4?(6Cu-)?0u_MEIX+a~Spt*wHB6X(y5
zPhG!Y!GcE;j7$s%_yhe|PJr^+Odqw|$wy4D#|Zn*HtSV%Zp-;Lqc=V6)alc!-%Oo4
zHPniYfuSy=NXdbXS8B>z!K8b8DnW^I$KyWhq=$!E1wX!>IepWnO+S9UUY~rhiS^<F
z$L22Y^=5HhU%z{KdxKmMZS%YEsA#y$;Wl3FwY(Ar3T!+Q8|KzYF)(a<b8&y|-@WHI
z8=ml6>c;L785wEw^T}kx`hR~wiB3dZJpa?ZE)$)Y9R`zBI=%Jxn&|C(GD+)q?(J>8
zr}cL0)ct)O4{H1D`FKn^v~Q+uby>-q8-?Bf*KABazO2Zen}Oke>Vf<F{@pv$VPVX@
z`Hf9hPJ>R|9*aK9XESEl*Vi4ry#Cd-wbK8;#{U;ppI4Fe>N6-;{rhp;J}h$ovsu|m
zUte7Xl^z+lx8=Ij{JyfTU9L()OfM$lqsG0LmzN)Rm#-CZZs+qY&0}C#;hB}w&?94M
z<mKh{s7rfY$K!r`yJu%-iz~bL^&D(wKdwH%X3{SkP#_2U+ipGe>&C`p<;f>q-rw7+
zeQn*oU$17^R2G%Iy=AJm`^_d$yRS#mSdGv2%LS=IOGyTX6z^W%3D4)(+p+P<NF*QY
zSs9UiagpnvFU#$F`R)H0e7j%&U&k-}ru{vI`@2eCSG-(09bADwJluYK-R^f%M~@yg
zOgkgtzn_WW0sGoxY$wv^*NPo(<6XVw+EVZ79+OnWbfZF&nVuXKkH7N-)IoTBGkv~q
zr4$3hikn$))E7>lK0Ul9@0go({QCI)cGAj>3=H>!du^G81OtPDg!1?OOgs8oR6ESY
z<;ZdQdYN7+(^W-#)ZG~w9L|O<W==WMAqc7-wO)(I*Ay<jo>?no#lZ04@0A-2l^+hW
zZ?<J(VAwGC>J0|V-)}Y}cs~`Z|Ns5I*_P=**~9b34F4uFtZY1I^Z5+8wQAkMuyUfC
zo6Gtfe#Q;5Ho}6T@@h;6_@^_hoOsKn#hr`Unt6HxV?bo@Uj-)yhJ@$J4h#$pS2(~8
zBXAqP7c`6?G%7qu!erIUUh{h$iq35=?R>I};`UZ;ydGD5R5E>zpnUzG!l}vjKOQu{
zxVbqUw25+-S*{c_J715g_q3G6ECz-Zky+{04KanE&zc|4UcXli)XI0}vsC%_{{KJy
zcY8jcv-tDja5AW!`k;~B&E*KFe!^cXz1=Ru&>*i@FTHNrLg)5li~H@OG!=e*eJ#!|
zUsG_W<g)L_3(owmE=LGfLy<G(85pvdrYD46zUVF=`}EDxeZSvHv&)tQ?D_xiw`ex5
z>c>o<f#He^)066`Eg6B3rt`iZkGdoFR20e-9uW-fdwpeP@Sd;NqBHy185m5v7=Fru
z7Ai;VC`kPB{=U7El9#u)veKdzD^{G^=<4davE=0?PzfD8SCD}rONen(uicLa%@Rf_
z9wqPYSb~ZaLBZ_n>v}sn{`~o)bzEFTBm`XUcd(o=i`bG8IH%~8=EWU_k1HN^sw+)C
z>EZ%9R6<E<(VjhfPF0^ebxKQ?nSsIHWnR<PsbTA4BtZ?0soLSkdL)gLzTYihf8%z=
z%d5w{H~x#u%*+IBs4KgfIz8)8a9($Z=l>065Ax#~7?wOn)CH~$Ijx^QebUg=>#O|y
z?C6)5my`eh{l0$7{Y|N-L9Gn)dlidMRi~eyCo5}Rw&t0AW`@h3*WcwO7#iLu2LETS
zNOGAovo*3zPVeBVWxUd6F8k~Lg1RY&m7kuxxU%xHTL15p{&hnBwqHYZVs>mu%Ki1_
z<;RQe@~->q{$7$2XJE)uNq1QF64U`&8NB@1%H{K<KrPcwVfC<E|F75o{nm5zYIwZt
zWOe_(b+NmTrB06(12t?6laC!)*e)m4%*K1_&=UrRfMSjbSyjK^Zdaas@(8H0_3FyX
z&~N5!9<Q&heY|vfT$lFxJw|Q(@^ZW1?aCGr7YFs7S5^LJXJB}<hsDEm?~g~_SM9dd
z{{Hsy&F1s(4uH-dG~dY%8lM;~yM|xET{fZg^|hlL5)Us5T^$y<J@2l?uNRAxZ*9rE
zDaXygu*s|8jY9hT+Oj)!zuy*Ki%dVdqww*fvbVP`t`1*c@pkL=O}0`D3@N^EbNDwH
zgZ69t%reo;+x>Rijz?YEN=lE`Y(Ce;Cu?;iG(1)mbbijK76yh1vgaD!Fo06=t*zO|
zS;b=lHcp#AU;g>r^0+f|ERDtVVrCqD$-tmc&2oazApP8&jO*)SudEJVf2nG@-(0P4
zj0_LjJsRFHEM2-ZFeD@-b?=H58k1By_4oZy;tpnHaQMbKK{ny-t*zjO=iUVi79`0t
zFw}M2Y1zjNI${OXz+5wZ>eSFT`KSK#PYy4?lEI*P`^WQ}#)2Q~%-9)k`0e{!eD;69
zy)vd0b`349TTfEMmM&c?D0p#G>S^D7>z6EflD~h~@BDZM>u$lDatsN(wKO$5&&{<?
zukM+n;!xJmCu@D||DW^!kG#6NTKjGXXhV#<+T_kYS?jz{wYF7XI^5+dRleP;et&kJ
zDkFnJ^|f`e(yFSe7Z<zt=k!n7Y~(pf<)&Oxx^eZlH{hr^GsCd(>C|wyBirZq+*|0}
z4l0Pk<4Ze585rz+Kp{ETs<dlg?eAkB9v)7<xX5+m`+dKUwQve29c*I#_@J3Tt=fix
z;e=GW10<$91eG66beHQ)Jw5HHV!MnGXw*X3-^TFvVnzmsYmkPD9W=MEWW2UETKsSu
zZ+F<*DA&8YN*}*i+~1dZd0A?;4g<rDcPt*f1>bI_AAh_3zFhj;(y$(BbG@wV>ty#<
zeeJp)SFH;&^FY~Cxd}SAf1J2?J8!q{x*d<YIyyA;_51l`tz5drbd!$tNJh>RU|`rL
zpYE_J=hKsufxFAzf_gbx*FJsz{CLmjbKNtI(~li$<=$)|%fOHm&!lqt*_oN3CFQHX
zbiNe4UpMW<v04U(8<89nbhLGKdlxNQr1jd>)peqZXU)f>;*m4B7#PZU7$>EIDjHBV
z^O}{FRrEIl!-mZQ3Xx&U{pM=u>#yGw7Zw(_k)MIVnwxP_s;jGOU{q98YVG5w)6;Y>
z%W*O=lu0m7N|m)P>*=@qr4hD1E;jS;*X!~9K5D|U)@5fdr7$pT_{%v#$NKM=%gKL#
zeJy;y_j}lywb9%4)O=<LxXag;Y{|N+)qR<f;lQ_0>)XtKE`Saz`1S3r^x<~?e%Ed>
za0M-_=F`E-Eq0`t-)_d+j|>b6yFYopFg>uV^mWpa4#AHnl>3itN<IB(f-_$yXi&CO
zecp_>7eUH|6c`vBvcMyHOF%=c3@Zh}A}kyX3=^b4<39w2t!M82e$V=x?e{x5{TpNd
z{QJJYf6tyhpaG8Ux4-Xsx9hc%{`vZU44aP5Kfqx5<g&kgFQ|86_xp`->8mT9ZM@QM
z)AeGL?(8T84VnrH&h$}RZOkWSqVekb`u%tJ-T(Hl(rBj7wfcUBx)WLH)eH=)p1)i^
zzpw7^FIPuLM;;jq1FMo30<W*F?Upo71D6-Y&(HPV|NE}|rrhQD4~#$jm{=6pr%ai0
zq=Aunk?(A?kIU`<YR)pxkK0&&(N+BDiHXXOUoM}2?okUvfUVv^rW1_j_iKvRL~d4l
zxBve?ua6r8Z*R+eJjq+{=9B8_y3u0xzi*xg2js7>uiX!~@h%QuANTQ`_4^RZZ|AJv
z_kaqmyxnibd}o<-D)-wMfyTGNql3qvPLG$%y|tyYsi`UB;v&~MC6_!w!vSl5Rf0}T
z-SOj5_u~d;zK&g`uiZAMom~{aziwl~!6sk1{b^@sN!U~rfLc{jW;qg|QdK8@-=0&2
z=k0#y$dunH3|t?#7j&2ys7}7Kvv|A3d2anZ0>|a5b4>E?SiHKvUY=d1z#*pitZDRD
zW5xj6a}5kn8kWzi(z>-RSK3{+^h((N@1S`3|L^_(zJ0a7-DaERCS6?QT6o^}yUX=;
zvB~f5?A-YK-EMc6BR@Vqe!S_lUU%K!Uq?Y6N=;1#dH%?n$jyuD|Nj#dG_3gWV1`ku
zS4`1K)r<RTfB$&3dOawwe*E|Qz5DS#+10j}LDn35y?(zOGaFCGwYAaio}Qj}O0UOW
zTpPW8hIM(Kh=@pt%xo1;9!Vn=Df2v;>+$uqpbdwG*JI0%g8G5_`+g)HE#$ZVQ@|r-
zqEYqjjpX(_Mc#ivqcOYR@3Zc+{dNO1q>*&q_WPYDI-ulmZ*Mio^5iEcCQh6`U;gv6
zv)$L@s&iM@uV-A*#?l~_`}EXQPqoROpb^@&kH6ome*a`n@wt^1d-Lw@(mJjau|Yvo
zL&L+ZS1NSlH~s&g^iLjSm;W>O{_eoVZYNcz$9$T59OROf@%#Uk%LRvpg{9_RTN4Q~
z5Y))++R7=crZUq<4Rqk;rn<ksy1s(Olun*L?Y+!z?kpA0No(TvT4mnZQCRe_RXpt1
zyl!!QKPl6!DLisEJCfe+dcDs3)2B~barf(fzx9lZi`!K4^3wY`k_~SUt41)G-Z?c@
zTUlw_&yzvB-)!<ey52nJhJg2Uz204=uaEuv{XYKX$8Eh*rd{Xl|J&TFc-(uoZoONt
z6lg?x(UvVGv(s*B*xT=abp7@9_5Dk|r@P(Wmb*A`vD@sLC-3(Ey}jRcZPZq+xcHKb
zuHfPGXEW24lpg(jKEEH-cLt3TfmYW3IF({lcqPz1)GBz>%K4f~kNWHXB&&FS+FPf`
zu+67|;YtB$ZmFXqbahzn<=>N4IyWXCciUa|7BnP2%QRaIGyqtBzt%i#O+;Yf9Z-uR
zZg17amBGtF6*!Ni(UMcC9-s)`^Zj1+#^Z9;M*`htML~(;%zXR$)#+N=+TEb>!*6$r
z&wClKjo7&8l8@khyU^_Wwcpon*>*c`w`*Wv;FKv-TwIRqsr;<uIqAi<wb3GCVqrC=
z`S)z%Djv2*?5X&emTvjD$9Pfk^K*p<S;fIs3}~?Nh_HW$V1uj+$Qxf@U+<r$8-1+$
z{od`q@8xZ)N<h<NprK-6b-y0aV8=4w*<$Q+6$v>vHY|L!gPG4l!S2t8!!t}WgJi1T
zY&1+gHRZ*nrQR|1f4_<z|MK>>x!vC{mw%kiuM=JywY3Y>9(QDy6#*sNu(Kv9CnoIp
zcuab6{r`U-j|lr80p)4XAhVk9tdLnNcbVnf0FCRb`OT5Iyv%p?m#>Go^^Z*Ux7&I1
zyO@Z`5zwe1NOdDK`?1~c_erPEDRcuBIZ7-E>;=MB4t$`_%E!mYkFSZ`yzQ6U7f{Qi
z2Q&l(8qf85eR{fn|Di*Nys|-MG^j|pzpoZlJzZSxKVJgmad|r%&_qE;2dFHIsd(60
z_^?&{*d$f&M;i|FbzfZU?%pqFyDe*(V>8=P-R*aRHipH;?K`O+t?DTR>LCAl;cmYw
zB6@S0@04lNj%hBRBP1yJ`^{#56;Gko*4Dy5ACHGu_wB#FHhMcKvOq&id3!z{`|(u2
zUQ&PGk4I+p_6%lcB?TH}3a*BRgIgGXKA*q;<f+U2nopiR(&l-S->(f_9X9p<<o}?s
zJJiapy;e7N*Op7KZ*9$X|NZT)vgagF2Q&F_8?Wg1#W`2jL~aHx>zFcqdj8e(!K=g8
zYNcBp>y;M2U-S8_TL1p<_o_kO7hV5;*XwmZp3Tl*6uv%AP!QDk0+qafj@SQjU;5ZA
zYE#O|v~<wq#ni3N{I({ORBpbS&)uL~%*LX?4mx(?--mX4(D3Tw+TY)%+HwB98Xn&Z
zn&H{`eBSPp-^IkmkAv!?JH_XFllv^y?$v(3JHw(d>CNWzc2oPTUoM#p>YnzWn``Y3
zY688xv-9Ka`~S?ky1SFN-!1C~WlB(A?aO8Vevs{;i6Z?yADlqLjUQjf|KD}#d(`&4
z*d96CU8i(F6;!w0E{(44?#B<?<@?xprH(YR%SjlgpX&il(QZyVYxdK4P4sp>KZ}Pg
zFRrhT2hH+{_Fvc4)9dTV*AL$P``zy32L~Dpe>`k=|Nrmr;td-NKs8y#ub0agdr#M!
z&AUZ9Z--)B-Or~MPp1SYt>62t3)Eh@TYg`*`rXd-l9!iKyZ`4g-0-?t^+${$I{)6D
z%99TcHc#G`ds~f_mDRJEjdv0#6n1_-XFd7Tr%x)Lla~0-HaofV`Ml_l^FDq0^yIny
z|H@0NLRY73zgy<rXZ>zR3aHrKo_BZB<9_>nk9K@~d|W+tcbP92H}_<#(pM_K-)@ip
z)E)mvDROI8=p>c<cIV1(Y)Cwr*e*K_bhP=(`2BT7Hxk=bK~uL&CE0nUraXE2H1|{X
z{=eV6C#iT&(~qAwr~F=}=jUf<C$sTNsqC%#>Sg!q#bT|^{xb{|K?QnT<<qH84sq-I
z%reWJWs-40LDHfiVN=e{O<Mcy_4j@WD*AL%T^+Q+_0_etv)^pLUkCEd>^(o9%@#c#
zQ+~J96I|f#|M95XbG}{eq-$%V)j>h=`r6vb#^-H}XPW2V`~EYW^*~z6q$9Fr3=9rd
s<hR|}jy-?Qz`!62x+4HbtM6yMVa$t#3i*2zK&u`+UHx3vIVCg!0B~8%0{{R3

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-9.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-9.png
new file mode 100644
index 0000000000000000000000000000000000000000..db43b7a9f4bb3d948e7bd9387edb497cfdfe3637
GIT binary patch
literal 24799
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_eA=KR<H|3ChIz4xqH&rJ#Ac3#Ub
zKUY|u{xRdQisjS^&N>$x12pIRyQnM-Thi<#|MIa<)T3q>4@<t6!75KK%*lOr;l`QI
z-`ns1{`>V?T|eh~-@EIkpVr%Y{q@hPy>jcn-+Nzm_x}3lpTBPDF?3^KU|>jKcFz+B
zF&?aMW?*7qU^rmLA^_rVQ)~cH8+aL67#J8Dayb-0+#F{HMvyLPCJqqywtxeOy3t0O
z)&?7WGqW(h<8MFCUwwJG|LXYtbzNOuljhH#UsF@FCHMBWJ9^yLGq0`+EwYfQdO9_{
zXtxOe$B!S2EM#u&uit-s*T=`lU+35Vp8e_hdHwdo3qL+S?mbC{uU*PKFQ<Iv%~Pk>
z>o-Kd|MtV)s=@xu!-5@ufBgETWnvQ2D`k4=%F5v4-Fsv<>Ud8}-Kl$ewYY))o)1m;
zYQM+cExjHqWs)%=uI^{*RE@w#t8QB`Uwdlr=;*jAZ0)SL%BP}pZL6=nE}J-UVv&W6
zR>+D8eX`bNS8Lzj+^l~4vHyI#yQO#5@B8&?)z)Q8mu9}Wun?rJsi{dsKwv@8Qm>cu
zs^4AweBOTj+UV_ZrN8fNDSYf^`|U>Zs+gUdxJ0#<G&C@{y1A{Y{rzp0b@@8IxIHs&
zt3K=4e!f}d>?~97^ERJ*n3$QrzS(>}>&Aw}Rngnm-7YJ;xjlcr3}1WImlqRrXTLee
zd|>|k{5)}n2iG?1cpq-#oowhfbLPxjTeGLz{eEM-HfpPvr>Ez-e9ywiV!BaFyrycs
z{CwX2{718M+#BEB-K}k86m(2N)}|t$v$IpmEN8~PACI`##_kT=w{KtEcI)bIYd|5h
z_y51&H{bovQuCdq(tcPmxkt@!&WdHev#WB;UtCbUx;otd_qVsfKR-Rax-~moR5vPQ
z<;s;_US5}O=kH(p=jUf_D=Vwx&-2>3#r0O?-{1G^!(slXuV1fj<CR{OdV1QY@883V
ziZ<>0_bdDCeEayfx3*rMV_96Z`%bo$ZPk{znvbroE-pKC<F{l?)H!`=k!yFzo{GZl
zrPgI{0{;E^`Bvxis#jN5E`ED^`|6B~i+09xHN-eDF#c0&<B@#y?f0#%*;f}hGJ`xI
zWsuNtYMSnB@2P(ckIlHFcW`wxJO8T0!)^5$w}1So`1@G?f5Bh7sxKL#YokJEo9ACU
zGt>C%3FZEZyX%}<xn|i^Zu<58{d%vdTCvv+%irBud3ANTww|7!rlw}phJ?mGS?gs<
zN4qMw$Qq?|e0zU?{XE<1tVc&W<zDy8ST1sI=Zn4m@$H4(<@vtzY$D6=*KU7yZtiL>
zQLTzCGi|H4+5LXAIcCMXU!wYPca#%6rr)bR_ceS~#KuRu>t7dL|5d}r!g3={xM5GT
zUc`a;E4JV7EIu_=`?SR3B}-J+=T6g$T_vU)wIX6;5*G(YKr5H1Nx=h$rAwDqZu$GL
zUH;0-V0BklS4{;4hs4ChRe_7!=GA_SOifMQc`J79|0=)Tp|-zXEY7;KW8>>{eVczz
z=<n|jTOX(EdFsrWD?dIy4qfcV+uG8y!l99=tE(&M_O{%uH9tSe?DuQumk*n7S1Tea
zs#;%P-`d)`GIn>_tv!{Sqj$UYO6@$ha!t(6OQDy0zwFizTGDZATdwxYpzjOc^hlX{
ziR;B&IMB$v{<nm%y5E%4$f_?F-9_c)*Z1`B)c*N+Jnr_o*xg~1zI?gtUmY92r=oCu
zx&5Wfmrb*-XoRi~^JV203ke9A@apR7<&m4yD)0KIr7d&okyywjs->Zz;PCX+)XNhT
zou^EkSa^5+%kulR%TG>L*ETT;@t&^tRmx6fW%BX9U+3%p6`%c^dv8zV-{0TEOG>sl
zIXjC=NUZ1*)qeH!`TXlAC#&zB=k0gD{eI2o-l(lvOD`?;)>cq(c=+()uIKZrZS45N
z>)P7*<@MSRFI>O>U(_*)?dO|=%humM+AaR|AiMmEy1&1;`1r#9{rOpXT(*2g`1-h8
zd#ksvzPr%5{mUus^<a5^{^|So?^jY%y0X+;Joo;-ySeiZxATYZEP9#}InD0hkL2y^
zTIbh%>RhtA{#yClTTAoq?phhLGHBi7lK1ywcbC2Wl=1q{pY?Hjqdq@78$8#lG-QDT
zV{2R6s^H~*>jKym@*nbXF#P=avr<Reu4YFYzx=uj7Xr5C+zd)gOuV%%ceap_(3Xmi
zNub=$$}KjfM6>3~%3ycCcIUOx+rvUarufaZS{l2%Eb~wcr<7&UlGVSDpMCND?*V51
z9eR05$;qP9(yyb$B_%aIU)|fgJMHYOrK>_$ud4q3j*Exq%E4y#t!ZbabYpjg_|7uf
z`K<8UySuAr%#e_^tBL59HV=D#Zf@y=1B_?qT8DRw>0bKt^Yhh3uH2r}odOrT^_t||
zFmQEq)3UR>w|1U%V$a84=0#bzx2^s6vA;g!;i1;3ty!Uc?+>J;rM;T$Zx{IRQ0vzN
z%=|CD-><*kz{qS;`6*@ZheO<QZ=Ic;RbzK$7hR7nfBHfqGcz;m%8H5m{{O2ET^|?Q
zZ~JYAUfiA)OTDMBDt><M*URPeZS<UOZ_i)P$}P6Ssg>*1?d|K0jEqcDPl^2faG2lH
z>e*AfKOdYUr!7^VSK*YHm>8a0z4iKy%u7o=y?lH^4!7}&ii<Dr7T4F()bz~X`*qqh
zoybLBUteGC(8#pzn`N!MUgRbh-RNy04-d6o-Bp_H>f)lIs_J@sd;awnPGOUh7XjDp
z*8kx#&AQ?-Ej9Dh6iraIw|e)}t#;`%XU^R9|KIPgSHt61`ph(Xb!llgsP@=f{awq@
zFpyWuB;e<#r>dT-!`EMXy?*~Xw_d523)|&_4mPoVJ*~h0#btl{t4*xjU+$LQUzv4v
z)w-%nmoAy)-LY_Wci-)_Wl46~`P(}R7tb=wU9~y={HoH|*LHnAXT3G~IG^uqGvE33
z|8`E(k6$NcnpLq!?ET*F^FUR^*1Wq>8#iu@+F!Rf?fks8xwp4vzP`5B^4D#q4HFqZ
zEKiG^R%jt3cRGA+RBBC4jgNyvgJsQ+4YzlRYKKXj-sJQ5*VnTvgO}gA<~!HwYQ(hE
zdDZVMuWw>xW|L??oCq?%|M47~%1dv*|M*eyxWMAfzS`e5x7Nk%yc97lwT)l?-8LID
zvulrKHf3k`7-nW>9(!0Y<JQ*f>NUp4W=xqPvi|h?D{CT+K^j*CF1|BueeCXQKYsn1
zwaB%5*5>r{yVh>jIc<`4MZ^7fdC|Q4t3p@bnI>;rb!Cc9<RuFkKI8g-HT`dul$CoA
zKQxGpj7)octQTZK)Yh!ZyWij4-EF&VzGd;UjXI}ozFrAlm&$MZWkR8aOxn>dQMtGG
zYrn@PM^4iWSusJ<qF}+#SF6{b=@eF9SCw~ncey!V`(YIol^weF_5b!{-rKYD<HwJN
z_v`=f&Hnl2<>lVgNHsOJV{`25?`^d)HN84TKmMMDOyBFO+PSxN;`iAczb!HO@9*sY
z|NcIEbhKOU?f<{;>!nX`I`ew{{&!Jjw(k$K%hz16km37$nBTr)%kEF6=iV7Vd0YJG
z$=lkWkGl1xPH*zLy)D<*&8_YBuAUyA;y*tMufIRuCu^L3ZqCOW@3-aN_Bq(Z>f0@*
zduQ7FySuMPOiPuk{SvtTYs&XuVe4XUf`X>_na}p8#m~+dPD`Ds6}oDNuDn^!jEy>{
zMf75B{Q2>?Kkv0w`MVq$zV?~c<?F6XF+7pmmB3gpc+Of%fA5z`R%LHi?AT%9d1-e3
zzLyu%YySNBxJk!bSltg)oZsG+cXyYjl~vT`<^JC-+#DPlj&C~D%6<RH<`a^qH>LCh
z?yLE^XPth~k`t!iC(fC(CiV0*P+pKLXMS~U?P|ZdR+_4+uAiTu->+%veQAnjuu092
z0$yn|pMLv)JKpX2><21&WUb4tF!S3KT+PkCwq|9YtTiaB8mFB(aq**?@2n?Mf8L46
z%fFZEsatAS`zzzZ0>@ni51WL9gha%}moIYdUKO*msOrzh<F<0<b0$q%^z!oZ)oEvE
zf!Y<fch&s-lzC=`;jW60i=y`iFY}q08d>#r>-9VT>JA<}C}os#qO|{SVV|dF=&CEF
zxzp!fTIyZBce8-J{CcNWuFRL0maa>^{@JeN-R0Zq8Y(JJ+)jTh`1r`xcZPxE&(F_6
z<%7*TfgeAA?tE9_8FX=x>)m&6EI`eaUTO1d*W>HoUc36K|Hr%C@4tLLZ@)TjZ&lTg
zhwXQ-ZOy+Q_x1Jl>*wwNuQAQOR*`die|`Pk%I9<QPFH<>rJCGhmUE-Pxs-9o&lgRs
ze_Ug3o;|urr}oQ5_dN0Wey^{sojiYj{5F4<QzuSb*qD5L%B)$dlw7-3Bp>gq`u%qM
z)n&fYwqGtdXWiPeGASu3WL?b8=pw!ALLwqd!q!G*K0MUg)z=rcyX@_i1&+*DR|dN`
zHa1$`IzCM|TE&xB%B0}6_xme53X?%aO!T&#!0YQ`^LL~r_pGk}^AwcqeCOF%y8o6i
z&6)yg#`4P9MDW{w3D_pSZ_<|P?|Exub_Pw=4iB4aRT^`8wt4<KAyqF8L&HE#O-(uR
z{p<JrTE)gE11j3H?(QlDwMnk6k6(XsvU>KZDVnnk5}T^Nz0rIbR6c9X8lA{#OCKI?
zuf8&2;zUKyykw4TIX9Ks4=<cCL!$rN^zyC6zyAGxKXt~87u$3!EF%8?{(k=3o%|!M
z+~Qvjvdd?Ddvg<1aZH&u?b){<_ntgSxxPRC{O=9k)AfG6*?c}^cUf-fn;U_>Ql>#Z
zK0U`LugjYzYh9+HtLt0(`r6)S$&2QK+T{FpKO8(gJ+12g?9hwZ@gOQaa$29f{ku|z
z8b8b9p{7|^PQ3ngtXKN=?fm^$r|CwA?60fco*aKq_w>q=mzO3jxpL)-eT;BJbTb3f
zA6JY0bA9~%uY;Psi{1HcKOPa*ir%*7c<bFxVf86fr<Ptl_+VP<%QG{LwSty(WL;gg
z)HM5A#*-5he|@>^Z<>3{L^3&KWsvILKc7y^-A}ufcy5lRlyO>5+L;*-UkS?#2rOuq
ztMcIF<h(A!|3D@~UQX^^>E7a<+Z&J9x1>f!?JQa<Ws<RA%^IED`}<<g+x=ei@9+D1
zZ7nUYW_JF4&+JZ3(_Ou<_P3UzqGSI4zuT@C%J`kLmI-GIke8P)eR;_hRB3{mJ+|NP
z6wBQf(+cr;dwYBM?{9BaW2^jo<!qyr-FgD{*ZsY+%vV}eJIqJjZ_b1g&5jiFj(a~P
z5|?k;V$#~uQo&n$PjAZhyt}VH+UZ7bTch33(%%01dVGCoQPC&g%2z?{e6mw!%vka1
z>FL$Ex3_5pE^7Jn_phpF^6|c_KR-Xed+Yg^+8+m)`9Tehs?TT5O;b;a_|CBiJSK5<
zMWFLyx876VE}p2L^0{{Q<%ZASZs)(gnLa<%!=vNTqemgjd?cTqpC3Oh_2uUCc9*y1
z-nKdSw`%Fqr6)J7SzY(6$1u*m_~5~Va;N9?uibai+L$5F4pclEHa0ebn%|&$FEurF
zW%c)WR^{*JM9)6d%DviSqSC2Tr%ru)eyEjuUB1Lp@AF^dHzYI$1qXk9yZwIFiwg^_
zs=ln)Rq}F?sCL+nTbA=hN`G!&?q~iwDQ?oAzkf|jUIe_ovC;YW_xIPoyu1wR3;E7A
zJ6rm&#`N5}<aU1fZ@cc@-1<DN%&@pj|I^2h7w`Z7SFRhe!6EhZw5uBu4}bal{r>X|
z`DS+hFb|Iow_d5ITnyo$QZZZTRQ=!A@p6+D_WgV|+vr%vr6r!0R%r<d3qTFcUteFp
z{`2$muWz^WRsY`4eq19IRc1fkzb;}&LE_RSODgteeEGKh#l5||kN?w~UvlxM@6WF`
zKXt4<J;6<>&1q*r1=;Jx{dSj5OjHK>;d=0{btSg%5C49*+dsbc>(rp&;H@=3i$E#m
z*T>`XS678<zrC^Xaog+tb3Qly{bX%+^W>>hmp(i^EGj3rZhqY_Pvi7+S7sO{fBAG;
zKl{anh2|yK9~ZT9i%&CrwralR=}kpTqtzQ`cZ0GJs9fD!_4QKz{=dsMCLiCmc6Idj
zbwR<wwsPxd3fI-ufx6*sywc0I->-{4Cb8Y~=bXRy_+=~}Y<zpHSGxF5i_UZNCze0U
zjFps}=312&*|wFQon?Cc&9uO^QKp`kW|?O1IX7W%(owF+X-i*SUHyE;J$oesgMj2?
zJ%M3iVSVx&qjwY}@=6-HWM*c@?Y8v{N=jPPCuh6LYpT}D^z-xL>Q7D8UOv~l{MGFI
zeJ2a|p8M!@P9b!6S+1o_-|JiMUte7<{rJdr{og<P|NVL`^ZxkDkH_W9doxewZL3hv
zXM9w2?)ZUiSyxYqE}07|62E-;vN~`6<?o3J2@8^vlc!FYu)wjIO;cIfxm#R+->ZG=
z!=Ij-Dk>whCinKX)arxpOaA;QoNH4V^!3%%&pV1MzP*X;cMtNu{{3f3QQfn!bulkX
z_kQl~iT*j0If0*v<AeCOOWyjL@%w7LJUj|!-+p{Eeg0HKx4l(gKUr<O^M3#Tbzfg!
z-(45KyKL?8Sdo|i_ifx)!}bi+ko#Nqw_Uz&$2!TIbD2~2o>edU^P}+Z`}+T%BkF#A
z$((Ch?6z;;zHnK2#n@dDJ>A`x@9nL&WxDn2>ub~EXFjbhEiuIfKYCwXSlGNOZ0)M`
z`+l7=J$`cQmv?ugL7l^P`MMQ*tG`#RDL?nuFzE<~?;MMZug@=VY_?%rtgfQ+V)^{K
zPgQ43v#-5)y?+0+_3PKa+xcA1GiYPdQE)%)))r4t1#?|td-{2~?Nai!UjikQO)5Sl
zY}d2Z)YO!+EP7IEe`sgi-l|tuS5NnwW3jOM{od=ZV}y=LoSk9#cvf=doc@q~pO}8W
zxVSj(x!cZp-yfRauPMH|+s?dNthoK~!h3tGUxWHGll|>p3hpy9HZJ}1qtG)bB4Wm;
z=jYciS)#K2U6Ht645%cGd8-$`#6vK0+S9L}XU?55Ln3rlh-db-H5Zr9uY0vE@7|uu
zsLg4;TA{0+nEhiu@V3)X;Xr)E$w{hTpG@|D^>+LHYoIJ~D|@}?E|VL@XJ!~yeLN}-
z?ytIbi*<E%U7Bf}z9s*@9cUDZSIXo<{r}(bo|iyf3{mZ{6^_kppb-I3FXM5)eb&cE
zN4a=;uRiX#e`l38+bp-_xNLdGvokZT3LZ3oMri*2{{H&&dHe9&+j32-zrB&U8n-e?
z)z!r%<Jy|YPhY==-rSU$8aZuO>FZ@vrig(0`Jt=BuEv(%1$Dh&Us)L(wWDBRpN!?A
ze}8{h*Dg9gb&l{BUKxvk_`07<v#zaK`S<tt?0b7EL1ow!&ETRf^QFI@(q8|fkzMY>
z0>|b(_at|Kh8o>^rIzx^T4mhdSDPpPcK^R$t3iDmP}|OTw%N^hi$RT>XEW2kyj(v2
z)!g!XfdvH{mif<L*T~Gis_5w{P}V<m_;BgBH<5pTJnmnYzx;mHYu)V|rQYxRy{_!-
zt)<iB>mvXEJYNs0qeb=OV%YiRu6%oYdu!%pwX<_9FP9eHUm2`^cAjl?e9gz!fB(Mk
zU+p{F3^dTPr}8tXwXpr<$D&t%zu%v}e*Jp89}k#AR|dIm+_-Vq?{~YOzJI^|$&-||
z5gVOOo;-Q|&8+a%VY)|;9Lf0i=Vw=EXW-voUrV2y5Y&y^69H-&ot&h4_m;Z4`tu*P
zH`d47tE#JOtEst7oH+5+bp830CQaIsbd<~0)%EVA!Vvxae>R!r+*qK$?}wA9c38;i
zX}Y2!B1=F4dUI2%mxo8d_Po0(k<)&CeZAZ;`PhoAtE;juFY7fjGWzoMdc3x&X=tyM
z=_ig<RxXi%xmKlL&YIs}k$rvLs)&t?YHDggmG$4h@9WQRTedQI`KrjxX|HZ<TzqRw
zCTIvN`*@%1uRov9hwdmyT+g4yP$0eO^UVDWZ_*>Def;?GWZB<|%I-dmOsqZu0TV2%
zzO1;tD}VprYb9@PTy$}9k*Ke)7ZwvsTNS!GZC?Gq%E?ovJjvRgbJOVZVt4+}+xP!H
z%fik+yNQ*1)~Tu5v(x8Q9(!|t|NX}^_W%7hyYk1wcHfMQ6({H0?_U|adz+_^kBN5p
zIupM3!+SoR($0IEoSeLO-r;4wvwbcv^Ytw#*zob=$HKEq3qL*aG)_9gae0ZSaPX=S
zO<@6n1g~j2nNp@%DQV~D)yA&Bf3TU|_x-)Sz9}h7K7RjhezZ%}nBVTlf}2}1Ctv@@
z*M8U}@6L~1eGhH+Yd>e)8FO})DX5>xEv{Fh+uhS+VrOTkrmcPYwV9!z;jxDW67ur$
z*KHJ<+4;@*+7H|O|MU6!n%5tX%Y(X-J<{gqB$CfuTN{1$#6)G^$!fknJByzB{QL9M
zHz8rc%7BGUl}{$RpV@xD?scjC%$YNv?frhw*wD~W&BEda3k%DPO{u46E%Ti{>*M3&
z)n`smnmIGmtw$p9)O7uPCMG7IkdP^oMkyU9Pn`JS{CSN<?u`uxzr4A5Ib>DHNfuVt
znGFpL!OMIkKR;;ZpH=z!+0LzJ-|d|-YgX2;FE5i9Em{=w{NE*S{h43Bln6^oW}cd=
z{XDDM_Wj|V#m{G*n`=G0OH_N-f&~h}I|>qmw`PSJr<@Sj{?nporwM;Ye}Dh=N{3Cq
z*Q9^ncjnY7qxXBi&s!P1ypNNM%ZQa*%tTZ>%*5aB=aSoZ3_+dqH#asu1I-G6B9fDz
z-yGD<{{8*^`EB#=?k=BwZEf`IMXueu?B)kA_uKpGb#{-Tb@@A!ySqw_RlTQ~{QUG3
zOoRB=<?p^^Sm)d@SYP}?qBv7esQqwa)t46!znU^msMbkd_j%zf28Jg>?S~iMxDm0P
zU7CR*Prru|V_sxC@99nJetSkRH0)_LQ~=GB<Q$eopIdR5H*Lz4B|COlfLgJ9?ao(M
zho65tDaSbHhJmF_pUn9NJ<s3Y-cCOJFrZ(~HZL*NJPmnTWQtAtt1ByuEM$Ckus`tc
zWnfY`Z&mwiOVpN(g}$@RRt7Kk0}bTQtNG-4`?Z8!%?=s9b{W3*M~@$G&fQ-1H7k5~
z(bH3RKNN13E_hpDab-v0<Jb56CV|FR%icto=G+K4+9f)9|Ni}6({xr|TN@23RLx_G
z{qC+h_~cwc@lXFoCf1NmDV`ve%<OzuuC0yEzxDCa<Ht`6EVk7D|2KP^Kif^_ADcg)
zeapn4U@dKy1L{12hFkuAp8x;M+oC7WpD(Zc{4Dd&kB^}Fl;giTh1E};KkqND7jvTZ
zm0o8@$AxciZ-YvN{!;sYKNf>VUqK^XMn*xPp%y1+=dJbs>vW^GcyNpBg~Y_nd3I*z
z<I>-=m-@}My0x!%cbAxM)#*M#Ny(R7-I9`$R%LHynC0JFV}8FTn3I$9)t#N2LBn{W
z8UYX5`VI&0WO(pP(1GDe<jIpKH|cmkeE4u@Y?sdIpwrWIr_PwM;^pP#uU9UgR}@|U
z>4_(3dSY$VR?ui=@k+0g*RO|*YKMJ^sC#lk@aWN_FHcNVma?hX@OoX}<&%@uukI{P
z*NxodB5PfCWs<6QUSuyLBV%0lo|#I@;1+HF)7#r}gSY41HAz0kvvk?Atc#0W%}ZqD
zR5%%~_v=M4e3E%?(e~p<g=BKf-I#T6r0aitNc{TpvU^})AZW%UA_6qxwfyXC^XfOB
zKkfVKJxvERbSfevqa!arU*`JNJ(b0v%JtKelX9=^em)VNYhND+YI*H?yY<(%_|?%@
zpZ?yU<E<UOuH<#v6B+-BcO@nqY-WG`;o;#|S5{7T>ydaUW~ZWQVG#iuT;5sqbW6@n
zBTyZdTbq)y1k?uIoPPclsP8k=D0PZ`eI2OA28|V}XliSFE4%lF9PJVXji_^pYQ5O|
z{oZGb{?)yVp1!_U9~^8B-I^6DsuAFD@ZiC&zP@YS`ukRZTB7^xEDNv4mS^7Fl&TfB
zW(H{dl$Bd-$69|MpDW7!Hj6+_;Dm!sS`ix-fNK2mdzHtPb1eSPJ0{`k=2rE#ZhPhD
zw6E{)$6vg7k&Bl%G$CPuR@j;q&*#_2sr%2{leM;6Oc&G-=MvLdF=2uLXmkWTi2fZk
zMjHSB*K|;Sc*6z*Ru&cwBcmXHn~yD%CQsh`uKLxLm7p3nB4P#;Gjr%NA4${vdojh&
z&V0<6J!j6E<@4*Jo}Qi_?%>eSC8oQ|EcaH%<z>F%Yvma>fpUJOUqQhJP=8@<^!8Vv
z_RnmyToGAWUC(v(@9ypnH#9V~s`;@&$~<q)xw+P_4>U5*vMyf-8W#BZ`T1(sZn3=I
zTXnpPpP#!rN!9zxB3EwPuUCSvUoF3X{J6Vq)t3t$g34PeKc{VH{5V<7H)v<k(<@st
zFXwFEe{r4F)m5RFHzXc5$+=;$UC(Wjh_v+Vw`I@I&At5P<>l1KX>B}`lX7?e`T05f
zKm+5e%gg&glX`x0t#)3WH*@C79Xl+RE?c%L_x3i>@DFGz?1D2tXrQX<{oe1OY0SIj
z_iI0W|9<_>&f=@<<LyE7KefNVUANf}%ByB(VeEV|0liYDS9X`@$L^^Jv@U-KDr&x5
z3HApK+gVnvUAHV^V^Y<lPW3OZR<8%u8(DXEZOy*ht-nu0US9s{+URgWK|wEX@5^1H
z+E@11*XQ2a;u*Z$uXL-dS<Vd5piu7ZZN8w{n}UK3Dm(va##Y6vsHuS_^t!scFCXm|
zpE_mAlI{1ZyuGLCT>SO*we7A($z)K&4%AYu`f!l_>WV<++`GF%=hyvO8MZEF<@<fV
z{mSnYwy*yC=jUhB!bdKkp?E_>Lr{yU?$1Ye(99jTxZagzzO(PVQ{s~{@mTEM9|j8Y
zjmhq!dNC30e6p90^-7!O-?J%wapB<Avd_=XW?fq|({G;5%If!f!$DJ<A0HnFl`Fr#
zzScH03_LsAeDV}d57=6O{SWtZHtd&RW~jV!T)rMWj%ro9>iDj-v$G`I4<~}U-`i^5
z-r9QX`t|D~x=~l=*j8W5jh~h(DK9Vo`RVldxNzCSZM?>O?T2f=Ty#&nzpwV#@#DvB
zem<F;cYKS^=^iQ5Q!zUV4n|B%U9@OXQH|a)iR8#>nO9a!y#9Dy)YezCa_4?~cQ;$-
zv{Ap^uNB!h&F|MF>zp=P>NR!Ovz`Awoz_3LNe9&6(Tm&jB1%qDGE;`HJ@fLi-jgRz
ze7I5W;n4wVNm-V@nv#8Yo^7?yzM7vtUte9l+qbdksaJC3G)cRf9k)MKzuS2nG?bin
zMxuY0-yDm?bMx)%&;FYG``o*)g;D!zc5c);?c(OPOZWcf^#1GLK=nCa`{A4$8xH1H
z*3|3)jkMq2R~xte_Wt_)w_m^b^1lB6?TBfqarJ*ow?94iedXbY2B4AgyVrW<?e9fQ
zOPytw`)b>t2M3$;>V=o5o}LB@tINB~^S3`;xNzaJl9!jB-Pu_zcYBUS;i0eZ#r0wg
zo}Qj=-q_gqY<B*>!fep|wy>aJqSrK?mtSu%6quGAWGcAr>F0NCQ|f8Zcn@f%DepC6
z2>R&jh@Ne^x3%>2-to)t_L*q}N&so+=Dd6*WRiJF<>#+ouP(aF|2_PB?^HfnD-}<z
z*j-;tZ(H3?NlAHeq*GY#_3>V5b$fgJ>+iq5z8(&mg_~!y@_KxItfQmjy3)YFz^=~D
zi~s+9-=Ez#^~Rpc&DYjOFVDKVD)YgCM!DC{PEJ$w<M(A>n;$GFC^%_J^6|c%y8T^U
zpKk4o-(P2REaT;+rPoX6fCryHgC<;^TDekp?^pAk^<v-ecg4}ymix<3)sK(U4qJ1f
zk(oW_^x?yY@BUNs^PO#W_5Qza=If7t`26{ERJeyn$Lsszx=~APtG|I}^jF32-xs}G
zNYyLj!GT6laW+jq{@qs@1_f&t0fy~!b)&a=Op-Fmcu>mY{`gpLYER+T-7#yUw&wl#
z0UBso8NA#i`<l*NyV|JYXJ-OWPty(EQ}I#yUU{6DjLe!7Cp`L}s(MeGqO!hti;IiP
zi$ks4Ry999gnr+fch|}@Xmi@xyge6W3fLBD>mLdZ3i`6X{;xM^g1xD!Ddw?N*0nX7
zr#Eeq4W2lcTU_tO-SYdP&1}3PQc_y+@$r^2d_RBucyVQA@XdGc<^TU^KW@~1_#qcl
z_`dDSeP=J*vBRRZwe{rr^XEgq^V|P<P}rjvyDQ`Uy}h9MG1H6-3ZUuD<$iNNS=_s|
zHCr|Im6UnSkAnXBywYYTBtR<?;;&~jG4wDp7Tosq_MW^XXMW$)n0L7o@;il8^M3qT
z8?`m)<D;Xdm7h{lQ&K?Fm*>kqRK`89d477o>G{6RzWZu^ibzSl+NQVL{qwJ1alhhE
zJ}tLj7c+h4%*v~e=h;*SO-tSR&gV`RJHOnNl1!V9;Haospo+2f_qUa0Z*PI7Wu2Uy
zp1gj&da}BI)}0-NR`vh>l*%r5Zs!BdSc2ATY|D+FsuAe)@87>kOExASPuso!&7n1)
z^I!hq@wl}4yxnThAeXB5v=UnlMFWF?NhYbMMEVQ;9v|xkt@Z#7jrK|!yDfI_2Mv>e
z8la$7*3;9|r>k6--LU#Be{$rsb8{>wPoB=i5W}IskY|04`{A2?q2*<kyFNAjOgnq?
z!J9nOsxKL`76lIAV#Xl`yuReRrIX(N8GA&tuC4+tE&#1hvH$;PvsUP;DY>^(Pfzol
z1R9fxe!iW9k8hgcvt92E{sd}=t(j1g=_j<@bF$jbeQ);{ZTPpV^tDOeogJ^O+=7B8
z2?+~dT@z{i_xt|;rPZHi7`i1N>p59=TiLy@BKBR)dF%VPkN3%5wtl~7@$PrKyzke3
zpZn?g`S;iAj`c{&ftpHxe|-(!U-uU@1hzJEv)kshvzO*r7Js?yZ~yYReEpR9^XGGk
z>*<`{v?bvn)7|?2f3KImgOwL6!`9AH$vivD6f`|_{FkV9*ojR#>tmbprp>dh-nHwA
z&9@uL*Y`w#)=8+mFIP0nyHgQ+yv#xdH1b>cyP<)h^xd7vV-kCRy;^;9n|1lSIrpkw
z>qbsndR)H#&#tUpfu*mnO<nR@F8QOojBQm2WK9KVk~sV4ySuwnBd5vLd~oc~1&`0g
zpVMo&_fPJe`!mom;Ny+QUteFp|5b8p_}Zwa8{a%S+8wnyt#`@)-#l+_Zgv;fj{`NZ
z-GBUeyZ!!_^z-v_`V~E0yTw95V>sE@bWHQ^MC>kqf9?Oj@AjV4|EV35SR1$Z*Q(zP
z4X<4p7z=K9c60>9#LNNB{ewqRqe0Wf=jN=OFhRif!vW^)YubvQo&q&0K(i%Rw&&l^
z-nKq+^D-H}cF>GN*~6KWCM~M}_j&&H((Q^SCMNE8SL%I#wR-)kijR+G878;2@yWg_
zJUD08tW{-iZ)JXecNbLgALh5OiT%Al@apRD@V!-Ex0JpP>y@*;m0auPb*i+y{?oJH
z@Arqt#LNK=%>919KVCO_Tglq)o}MX&$CPt&Zf<g2?B4(Fmw8cH@aJz9>CY=>YJV^P
z@*>do@0ZKrYl}gXypvV-eLiP>Yj5>-Df7HHRS^xJCBoZ28mFHFt@4m7zXKW=xm$j}
zQbym{`0~}KrzBHAqaB}~o_@Xe`@PGLj&|?8wlnXp)m-cHcdMQ=F@!JT7HhE4-Mw7B
z_QOGTP*Dn+yVBqPC&)DW+LeEQe}mc+KY#qlI5kBx?s@o*nWZtg=lZol**11p$;B<1
zmqlb{*MhvV+;8qB&=8$z&W#JN8-Bhq$-LyUIsJUt>uYO6_g0nu{Q2`GsE`A#cYAC0
z@ZrO#Z8<Zew&$&#sO+9~YfEO<y*)dfoSe2mdspiI^FlVKo!#T-mJX`rR|YP219flg
z{(cEQdhFOKiN&Bn=+*1@UFwsyF0$e8*sMLZ<mIDZKR!P8^70A_3Yw&I`jT?L%_2@=
zwH>*a*G8M~{di3J)&2eZ!`4JBw0^h4dH<hJ-C}w%D?pKVZB3-y@ytt0I`36H=KcES
zX7JlvTZ01vCNwoSUtR7G8sGOeG&G!LU%wAD*SNo~R@Sn}rCVG-?CGhgvCZH2W?o%2
zRj%RzBPdy|3Ru{*E$8MURqtslGA=I4n`|wn9~Z-K|7QbesltmF8K&9Sd@?gLLEdL#
zW)_u|UHg9j|9e;MY;9vfm2NASXvktW-l@9Lpk*qTH>IB5l6;(RYv$!+S6$CvzaIYi
z`T6kA&(4<q|N9*@*9w~E1TFJ<aDXxQ&W=FPm?EF7)slvW2ARLH3=Tq{8|GLRALEg=
zx?+-l?@migi^S<on`-_3e|vlT?B4J9vbn@`GMt>8&M5cWB=yN!Kim5D$;rvSQ?)`t
zt0s0n?z28){eDlewm<Wa;9b}5NV4<Gne46pZZ>h^#AEmG-xtviJ7e?XL37&WWxm(<
zu3x>gMs7lO;W_4@bupIxrIM18X%7xGf|@xX#divi%ch-~VfgG&D>rCK!?9lJYTI{H
zKR3wOR$VE1dFkjBjle@ce*KbaKm2f3aPs?mdqJw?Y^y5PzW;u|-aPqupDC}DiNV5!
z3qi)Uw71U=TN^dA^7FIQ>bQv$C&ryWDUqC%oZJf<#3}vw@gu1DnLDp%s&=?k`{6{;
za?1X1nwpx=K)tP%F*`SL^6;3rc8M5XT@`BV+{R=0^5x5$*UF#n)Bg_|&(VzBv?TM!
zhJ`<$+yBqp_y6DTobC7b)$Rs0IW^<<?9hzZuwZ56=4C&>@Bd$W^?E62DCnH^dlN=R
z#$yi)cARCLj2MsdfsKg0TsqySs%qEu>t8;7f4RuD+h=dpSMa)riAt_MzrVdbtH1xx
zqryL5zLb2v<gGu``rVGhENpDEj8ad{*jM{|)|4qC{ri2>(w0>|?lt%67Sr{)xhWMi
z+{VexZT$UCasNz<!bK;~ocVI&|HkCwXS((GWvmKYo5dxfk<irC<a4x3)E8t)kEF3r
zSlBhw|9T7smZxV(|M2?YpKyO)EoeOb=BCupbupG}V|E4wFY^i9o_F`oEzt0-l~t5$
zmq_6Me}7AVeaQr6CeYNbS<a0IRhPO|YJWUzuX?p|`IUXO)u8kZTDJ!3_V-E}A4@(5
zTI2g*{S$q82P0$Ssk3IS+OWYuRaJFm*xIOHKOXnnGI_kexA*Hw_4zNJ&#y1DRV(`W
z=_#l%J<=(Bb#uDE=XAEhX?n3yUte9l{Cs}>yIcPzy31XBKEHk)Gdo|(Zw+q-28IXc
z-|5?P+&zEZKQS@!dX9PhznZN%H!r=F{OUW)B=BgL=-pr5^?$!!_ww`%e1C86-EHqL
zFYiA$$MUh^3efP_5AC0)*(c1gsQ9n|G}|@HG`nie>e$`eZa)ZozW@4)z{6`}d!<aD
z6j-dwUZBaq!0;j6nc*bk^CfBb(qj4e`NO@uy0WL;cW&o9dHlG$YqwZw_Vee@mtVLL
zaQ)40&;sXpK}Hq!Ip^Pe|Ni}Z#Pgaj3pV>!Rqgup^z`#mdqzga@VOPB_1r%;C(BKc
z;o#w!qOyK+f~9&w(Kb#Vo)9;;w(EcASeKu>dT#dP<Net$FD>or>DiNI&A`C$r0>g@
zlDBtvhkw6Uz23cF{0R@pqS*CwVmIo6dJnBFEho;OKY!IsTig41zkGRhuvPlZy|<18
zdr#L31+980`pUq-u;b=3-`UIbVs||$liaS#<iR&ZCo<@0m+0kXzO!wv<=)ufc=6)J
zb@vx9UYy!<ahdPzD|;%7uYc;5Hh=Z#Xm?)jdJ#!U&6k&?cX>_KGJg+RyIl~RbAMlK
z?C!GC*zFI02|5(5h}~WG>&ayQDRbt$G2=gRZmzXy!U2Zx-N$;RwN+GHgw=csxD|xe
zd;%JoSWEu@{hnUUlfHemR_Lk~RbO9if8oQxz)-OGh2H<;f(|Nszu&92s{FKM(&Wji
zp4?(Opw5DdC#ZoG5HNv_S87S+=VzK`X4g!GtDKyg-tGIHcl7x2-QPq71QrM?yS;e1
ze12FvpKQtdz2CFGzPbvk%HyivnzFL9KR>1kN~)EI;_K8(JV7&1|Nj2oyYBbb>+zs*
z7tiT=J3&*vpf<{<r>B=s(~Z_rRCGMrCHncsyT$!>muBbhTNz*fH*~4@^sxK;YOik3
zzrXt0#>&rWpt*ZbPtQAyj0_AXns>zQF1*8dap{DK!lA1|E<QTiU3}%+#^Z9AllyJU
zlv6>2y7g9Pm_bgV;>!45&@yfR+uQTczZGJ5uuL;*%ZgJ|G$-FqWnlQk!Q>%#Wo!2J
zJ9>-^d9xZC{`~s+{B4T>LxT#Fhn%TXQ1=}@CWgGGw^rrrR`<!<`!O&wcqlbI2@IUH
z>Uo(UD1rMPS117uH`8(nKgfJCSO1S{1%&`rBj<YJ^>wkJm0qE{N-{yisi3snA*eiM
z-n@6$@{ae(f*N$7y$DiLtMcyddimqy<DDU<3=9kt%6~j7W8B_-zwWp1)~u^R6O~-A
zY|oExZE4APduwae&!^M3R(?*a{dO~b(vl}nQcN>0IJkC+TzqkHF|6kKb^rgr<)Civ
z_36`P7#JApV`F%qUr?W4vnY7EU*_9eTR|HfR92>+pLgoisY~_$KFcp%x^!j1!$Y8j
z#Fs8#-dg%P%+<xkV-je{b;k}1(5mlOH#eu}%>(VBnXvjr(^Ti>{`04)w6?bH)YT7M
z)FQ*z{^{vybx%+eFlt-QOD_3ISC)7RhpveTEPi%o<N5>!1_lLwrG_T~IXP>33}0Pb
z+zwjl`}f=J{8^v{_CFplgNBA18yl^Vs+gSk-DSDCH#ez@Yq2vhFnr?MmGJb!-tYHT
zgNmuG*W)fXv2v?;PD{=F@Zcb5Pl}3XJD=<%mDcw5>Ku7Fxph;fh@_^aojQO1{Juks
z3=9o6Eeu7nO3KPtHzYcP7RPaMa$a2I+HF$w!~@h`-&_5?%$E1`{rmTmZ#OhBcm`Ef
zSuui2>-tER2{N-xv!}_`|0#TXYwPLK_Qjx~*Hfo1+5i9PU;65bXJcdIq$Qu9pRdlT
ze|N{yvuG=*l=|1jp<ro}c!(u*ecau})uFGitu-xu6_R^%)6uUbI_cqSPRm-Acql3=
zTJHJ%aoLia;X1Fs{I3V?<!PU3oSyaU%*?#gmo8l@S~<&}pUHy{)TmZeRFpeyY;2s`
zbFr0M95mAdnxvX-misAVd*Wd>S9ka4A2OI#N_TE-Vq{<_aJDLawZw1ko&5~=_Ec^L
zEwJ_${cHI_WQ`1H{uk5?kKJ9iQ+K{$a$8MJP097xa?eS(wq`GH<rdenw7hvW?dPYb
zw{{jUw<>v&kbRbcfx#i}u<Qhxs)w!OTT)I6U0oj^?{EJXv^@XoQSo@t02XLfh1V1f
zMNd#a=GocV%WvF>07dO`|M_8v+UEH?Pf&*2*<-C>30i?z`~7bDs>sdD)O=<vNS|LD
z25P2*Djm?ykacBCy{2AT6}mcPp%d%gACJ00bKa+?>3)4WJ^s@dZ3YI0KTiwUpIBX4
z6B*1cuD2&`w^rz?jE|3wnuUNO?@rtfyj6un3m?Odr`z)H&%3S4aKQIq{rNl@Mizzw
zZrMps0<N!%E#57_;2`J7z{qgNNnJH|iivN~)R=Xw40&z;y`(1HcD-{Av<*u-WMYWz
z_HKrT*$sLT=3S02K;EOy&Mc5gqs2N^%VtoJ4p8Jgo_(A3kD$1I+?8FWucyqJvqnhO
z>&3k4cN5pY&#lw~H5KAd<(9Lj9Pg7|6|!>DER#&olA6_pkB@;n&UtsUPJcAdzqjVv
z+Gx<O8PKYZtE)o4zT5r2>dK8hmBp;AtePe!A$NC`UjF#_c<xGm1_p)`r}K6*T-sfp
z51JM7^7XxXu$jH|#RWysU~<3xzaP5x-=@dct*rX`3RDY8S(U6f)-S(4Y;Dxb?f2`7
zw|e^dg*CJBZb?5c2U_L{+MEZP0ZThO>*b+V?(KWrK!v;h>CJzqfo8S$e!G>;#mQM1
zy|4JWpQ?%qXw%Q6kS!U3wm%*;OW9O>&|Uld%gf84;m@e8Sxa{oKTo@z_vFMxFMt2*
z*Vaah3JNNEt_oc}?a`x0Up^j}U!8t_-u5kiP%FwE_~dL>fF>>9ZoeNE7B(%rGACyZ
z8;`_-{Cz*&c9*@qbf}g4>$T{7O*6A^)2<oU{wk5RtqM_g@0+6X_uudLM#n0)%(k!J
zhgnDMTxtqxP*%py<5d8)na|8L22C=7*2Y|)r0T8W`F{WZeW1-iTQY+|)f#Bg$g1%5
z>pUl`-Mv%=TBhXG%JuR<BQvOO1<hePwQ{X2e}B)a{@<P@-V0y8xVRWpz#ad#HT(Lt
zX}ZyQnZ4lRbb2~-hsxdR_j^Hme&$s?;sgyQe!pM8AGDY%^YSuHTiaOBUaqRDU7$T_
zNk_ZxUW%&w`BXeLEp3(WY_nbO_x(1h|5pRrxA^NpGyj#v?);vY7CN`9cs_jiQ0{hn
zd%L!(s_V>|GvT3lnbBoZO-;?0GsfpZ9m+5lmljYbfLFr6A^rTk(1?f`H8nLkD<7Yk
zY3$|iA6`?l=UAWY>TS8VL4(wwDM8SDz}tI!qhG#!IZ36yzP|tM+~lx1xu89%`xn{B
zI~W-mO_??gwBauE(UHzy?{>f6l6hGzbVY#UWHsMUR(y}cz<oH|KOYX~owhE2r<2@s
zZC&i^tjBLAmF_Hles1SmP<8)9`_yK}Cl?kvgS-fu!v^hh3tH+GwYO^PqQ#51W?j|l
zmA8*uzwg&7P()l^9e)2)mDe;KO;4@3Jv(lH+OWaEGbk%-)#}$%H)~&e3L5p9FhStw
z&!0~pWaN8g)gC>6#y$qrNBq|@^V1%+YU6P2U&bdkGd}55pLgNj-s-J2KZ|m2ZgRbN
z@nY8Xb#v?f|1I|nI^HJ>+Ij=pVDtTM`FyLA7X{w0R|YO_TjKq>Cg$CPgUyrlSSL<W
z^<EXRG3nNp%*n^UNt@*al$4b4^_w|dYSON=`g`#bBLl;S_L51@O>Z{DtbK7_;XK=f
ztE<Cb&rF{ec({$X6g10zW`?0v;iHziUoX|eXCFA=z$<STb9;OK^wh}hTjue}TAh$s
z+;8{mMDEWeo|8dqHrjZly<k=MF4n0}PfyQ&es1n|8x>GPq%wBi+zta9o0!+v)?OC&
zw^8(r+MYL8=X6k~kgCnCX_~=qo72zlTl&?--F>xtzuYXN)Gi}qV^A}x_V3s0;MM0D
z7Zk!{o7s3T?Wz1MA}zi8-{0S_zr4Kc<>7JRZu$MSKYsj(j#37-UavpB$zYUqMFSMO
zpq^k;b2F&D3Tgu^^_qHW>nzav4$$ZwX!s;4X%T4IdEw(@EA#K~TW1EX>A&15KL7Hl
zcznpdnx9uTrFyHXs5~k714<Mho~KIgmQ()9{^!^0^-;S@R-T({z5LeJY|v2O&e%)3
zTPr_5`)_|OW!4hCow0ljcUUf~mQJ0bva(9=IunEW;idoAfd*EpO8@Qt=KkcSwZbG3
zQPHL9^J|Q@p9WP51(ToLgw);tYCzRG0|S9-V!JDY;jtHo`RzmA-r5?vB_r_Xj~^9(
ze*Aj&Qk{#Lfq@}FZa(`F(DYx`>$TfKBf;xpcdzo8sI)Uy2$WsyA8g}L2wv_Ny1VSH
zN&2}tcl206RRHe}-CYSwmoHzPd3o8+SWu(8LAoTGWrCXTtc=IUdXa^`->;7c#cKBY
zy~~8v{hpLrg8cDs!EL36kX0d`)!*J+oS^6|A||$siIr<bz(S`y`&Mr8b8n46=_2NE
zt|7<X*xhBDbhM!X(45!J@af}m`R8SvAcOLnZZF~%13R_drjq^1WPiJfDz=|aC~wj^
z{q^_OlGoSXhD`&x`2pM0lMF)g^7^MYefe;hUpszZO;>;a{%2;>QUyU9(i?2_{Mjae
zdjFHA=*Qb_zYnti&b?1544To~-h|eJBDbJANx%wZ>+L`LzrC~Bb?TSjpC8ZJOc-w}
zCNPKx1d527m$2wA;7Gc%QM4sYaC@O-$doW|-7wZ;ysHzmLt|DriKf1=*dZhOYK6uj
zjYmOu0uCsrIixIC;jr0nuk+KCH^ZSKPj6q`^E<^w^WPUAR)09>fc5zzRt^S+2~vzq
z3=B)$KpX5=3Mw!#IApPaglA<{O5Zyhxh*Hs=9d!Z)(Y5KfESBDzFa>4*rwFeN}iLr
zUeEMVldE{psN>7dz!2i<$8w_hysdcpyvnpSk(<?CU0p5CD{Z!Bi@)0BlZR3m7!F)J
z(a9ibk`eG`-|u&ZnU|JW{CLp3*_MxiVMA}xBdG~Hi=Q784UbW@V_;A?{?w)6&G!3s
z8?&yi%IRlhV5sr86jV6e#@k)}Zm0UQ^YiDw4P;<wc(16wj&Y_{X_knXnA`1bxr?K>
z=WRSLSMAa(WvcaN^2wB>CnqLG&Jti?SkX0yW5WHv@5-Ob+kd?hJo~PD0|SG@*XhEH
zn+hKv%jsueV8~&&Eac^2VAxQ6qElI6_L<q{`txeP-Hh0f;OOG=X6yC1!cQmF-B*XL
z-DD%lzz`s6DXh@U#@jVf**(lkR$E_RpN&sOLfNh7#HADl28Yn6M>HeK?-aV<seC^7
z<74^%7R&tS%blLC-~aUV^y6P%UVePW_<WD``#r|*_Iy5<)6dDkP}4rgg2^cD%nXaS
zTP{EPcwBz{hQBWs_xBx_tJd-I_I`Y?`hD-}b-T2@g_#%_LMIBlJ3Ko-U;ggy^81gf
zzQ4P>*He*!;Yq_BjtR?rXCJ$rzkl!1uiNj}S#xo72hZVPV7MV>DX6fw>TB2U_xtVh
zc0QdJu{q86=Qq>rYe&{@zbEzmetrF%(rb~Cb0ERBgDvI7g@uOI-`@PVy1q{IdVGDY
zN&Y<>C8d2o9(70Tud6M2c}X>I*UM!({vfwcpTjZX*4FIfS5^i;KB+!`%?CRL+o~@e
z^K7e+tz14&YNn6c>0l-XhWo1OOevEu``g?4+5i0lj@q2Xb9S(?FfiP(3^}c=ur_LI
z*PcClemrRAPnsTE))}@os`j~N*i0WayPr=cPf=rGVA$rmm1lzd-xux^Po^m8>#sjl
z%)p?qJ@hn#q;=Vw?RM-83`LW(9T*rIt~_yRI5W@ITCVoXMXuZPs^9Ij`1j-SV^Ek*
zRCZ6xG-6;#$bRC|5L0~C)G+Z-%ctj`pPlVCK4+o)?CflDLBa6&+R{7a_iJxT@iQ>2
zSTu)Y0w_GKN?(Qi`}43}zE8?D>qvC|UQy$;Gabg~ZH)hYXtz%(bYfswpjD*g5Vj^l
zuvgk#um0Z|<MS@t^X@M4oUA4&cyVp?_8HdYdE1ULGcc^uP-j}QVui-N`u~4BIy5vj
zJI(Lc82eehT=MDb)z#tC?{5-kU|6wl)zjRH|2JPQpD$N_zqWkJv}wnBB#o8q?d{K5
zJns1fj%85Qc9fHmp<xv$mzm{6)ckxp{o@JcewSu8-lR7-HeOs4xw)ewVrNmR&m0TG
ze}C`)w}r>Z62G}thIM~_=&q~%_w#w+?y|R2mNPLhYzy;aIkElZ>C@f6zP?Vc=3!u1
zz_lv1;ZDhA--#zv9_@O)u6xg(Jv&}5o4xO|=}aFr(CV#2B@7G)ww+S(oRm`CQ9o_^
zbn%%!YS-4qO7DKRD|_m@f~hA{k`A}=YWi${d}fxZcAv$gjt&WNLHpC+EEsMd{Lx`y
zt#q%a<M3u1?gQUGoISr46dru`cg}Ck4b<&#$houQWAuDx28Nv{XQwkTFswY;$uQGA
zKh9^KO=b7%$?E=nKR-WTZZ5#Uu)%lLQ_YC~Z=T!#uUr$e)5y>E>y@+XK#NrR*?6Un
zB=_4+`vfhNloc*7_wUcUyDPWwZ;P;BM|fPN>d{WnQ6m$D88_wJ+_WNk`#Z7gudl2W
zj<5Y1+9k}$z;IhhohjwK?e`u~8tHz$e$OYbEjc%h;My*2&%a;s<)VA?l@)=ac_()#
z9&VGcEK2d2VW3#|>+<|GXexQ6^yOeP`|&NAmy;eGXf&+(@!>}O|G&ygj}G(O_vr8c
zV`NqSPUd=SdF-_1EDQ|$y!~VtPo6*D|9pPE9jN4eabcmePUI$)X*!WYvQ{M>?D91R
z%Y0@E{rvg!rkpSX!w){oLKYPzC4GJUbJp+oSiIl!d6O*{xWH9&Py%h@O1icta%08E
zM=x${Oa`q5x~<H}z!0sd?su@OL&7vGL_}27^?0A`<Ky=K3io_IXDukWG3Df>j7v*A
zK@)tD^8^?ee&|^WDu6aZ^2k^iRDF3N$Zz)}LB%s@-?b&4lV9B0y1LwvouNTyf-qyz
zaoO@Cpj2G{>+<|ZSAzZ5ZmByW=zb*r|F7#hK5PsOIlXf@!1cgM_4#{_es$}Ws#Gsw
zU^u~ODX73JWzwPQJuRoO_S_uHjlbXRUTz`Cz_3BLNXen<+Z)O6cgy2-;`i;jbPHsf
zgmIeBoU&V)ku!K07;Z>G>keLNGnd_EZy#OX|F1N~Xy%W{^8Y2$=hv3WR6dyqnzP>V
z@7L?iwrUIvA7qP^9A=s4%jNI;nfB$yMP)Ug83LY@jwtur2!RsWzS`f%Ua#LjZ|Zjz
zNxPbgCr_UqRcx0D%6!|*Z`UDbTjg?hSLx!y$Hy+NkKdnf+snhiP{&d9te0c9SuVJo
zy;J}H@5iUp<BuKdm0rAIgTbdyn=S`%i|h5w&fjPG>dMN^H@80Sv(}R`%aPcAr^tIv
z)K;y${eQnzyx;ph>Dif?ft%CL)!b%eNZ7sV+kfGIx9|TGtA4Z5{m-ZA`+MU5JQ5ca
z42+1F@pPpU8?The|4;h=g<fA@zrKWh-NVD}$8T-TPX6}hCTIw-qr>9Wip7hfx91s_
zy}7aD!y)d?hDHnwDY0AaSyz|6y%o4Q?d*-*?RPiXdhMJZUuUW2J4>YeZt3;3>*~I<
zM2;Rk`t+lqVBsN7b(h&@xu6QmKih|aVMW=h+6EVwKTp){J3EEd!z$Rn<lNj*m>g4h
zRJ8D-tN2kzcG-~3zuo%#I*xXWAD`$h7n!-%xt;Ihwdnk%hH4B9A>LR2iLB}9u&e!b
zBz1bMSnRHn&ThS38sF|!zh4o$I&A4*KKnl(WbIDBxVZT7=JR&l`~N)EpB<~OsoB}l
zv1rjEuWVOW*Nr7FFa7xSdVTWr*s_}oi<uZ4N~Z`jUfNmw{8N8?<<qHNuRSNZs7>zV
zl{R~G!E%~jtknLWXY(KZdcD5itye0yZ2s2l>uxSCb#--1w>C93eX0dDjO<-NN!{*8
zLW<GMoPI%2#sr;Nz{Vr7;b^Uy>`YB<?bTbtqN1V_<rx@$EIirC@bdot`fctVptj8n
z!(>o%WMjd@LmfY!o$$`g%&htQ_4>wygH51C8b4Qt&-Od|%UxAf_2P=a#ac3dcPJ~V
z{kgntUwu6T!-PKf|Nnlt&reUDFxP7<--Jt-E>(Owsh)gqPvylOg^xA#^zOacDw+w}
z%c$Zh6dqIP8dLZ4>C|h{+w)|@<0@1CeA~Xi_t2q36_0z(wcZ*RKRW~3ZY26|i=*Jj
z&F}3^7#Qv!epbh5W2bcP+#wz7{w!&QZgKs-<bGSTXJ==J*L`0Ns@&`UUavpesXlMU
zFPpcwwszb9|9O7uw)pb9r5mfhz5*2&Tk`H&Dec>tef==My$rXwp3Z*J_n;QR;(og>
z$7Z&rR^|*0A?h=iSlzi@W~{gW&nF4nsuEDSv8(K@RPpn3y$hY&L3{BYP4>4t`K{vV
zu9BBRpfVR!^gO+7_y5mli$5O@FRuIhtMKX6@MEh&S0^3m5Zw5DUiGmvGmW=ba9vvy
zx%p9ta$iSB;X@9N4aGOU%synUoOJyDN`Zvqzn?w7H9LRb%u})v<!)EMah&*k-d_Ii
zudm&L%5GEgv#+g*{PShGeJ{WLAA@iA>;LQcg<rIfSGd0^^>oF{rPCk1TD`sxR9dgw
z{Z8uW(W9Vkdgc3>7#^^%y~TDSeSWRj^|<QX*4(*PrClnXNf#HnUR865tND2JY+nBD
zZMinT-)z?OXJ%ly8ojkv{mZ6Jn?8L%dn4uY=dZ7?rzfj0Fg&PUwawi@NeR@b+njb*
ztA1b7(XNh;A3q-VFLrEZoBFL>PL6>gB>$?FLmQ8zkaHW)$}N94oz`3Z!Del_6FURL
zzWG_w;DUIYI|Bp5w#`}63eV?N=fQZ@f>sO+8$Kg7^QEx2{zru|dqe{sCZS)BN#`GF
zU}RntySprKx!>Fy+3WW{TC@3F7w9mFOZ((&J~)DEs#n+6O7}{e_tpLVb##)d_a*~V
z28IxQ)6KRH>vnv-7X5hZ^|<c1y;Y$4O6dRh`v2mf7NtzxkB5fI$9gP29AH*fN_u#x
zweU{iao59bypN|v=XHjz4m<jG`+d3hd%wq>nPX|3b?u8TJHvza)BoF6gHELQ_+oK?
z7)Qswz17DLvdhbWsw|s79}Wu&f*LdtyUTJxjqs=~8G?d>?y{vJC9kjP9_y2p7LTh)
z4131T(D3SjW<+So8N=ftR#h9{@B4kskzH2g{r>-TKeu^KR&y;ZEUc_?ahX$ah!eET
zpyJQR<H57V85mY6Gk&twjoP9y%Oq1sP%yscqpMEb9*aJkPba*7gGPGqRlQ!j<v24#
zLzZhp4gcd~z1^+c;%@WpYL%20Em@+Xq}0{brS&#CBt*n}x?b=4{r{}4N-{Dmuo6_b
z{Q^{zGcvQe9Pg7|9KXL#P;g_}+glwSC(fT=zop*M(Xq9bf#E^BM?+4tYq!`@&E<21
zc%{vH)aO+w8O`)@ak;W8R2$sD(%QRh%a$#N>=+n6I6u*gh|YX^YU;(s?)~6~_-r%X
zvir5)KW+709+zt+`dWVKlqoKY-FiVipOuH^7rDFm{8*k_`~M#UgMw`TzrP>*?am)l
zuoh+9Bzo%9sYN?>SUfv7S2}pPU+>@V_xB&F`uyxHs5x=3;&HFn`ni_HX<PE|@9V0+
zw4me1&F}IO3=QuSi}y3g$qS~ZCr+E&9=u@{Xkg{y?(+9D43phJ{Q|3!7aMN=t@|{2
z{*hpRTTxIEe&4M0)s-JF7WXeIe}6Btmz#m%>Lg`_(2}oL!;e2XIr;IH%YNOe-qVi!
z`1n|R&Hp#)_hmMMdyK;Bem&>rS|6Vp9w)gvY;BjIvfGh`?Q&9}^C}KKVPFWT<(Qxa
zI<-T2^2sAlPEJn#^yK8!Yv!yTr>E&YUOGLlYxVklR&4xoGN7J=h`9Li4ngHr6@S?o
z7~bq*@el>giG|+Vo_l-S$2XhLzdHarywH3ns3Ymo%fQIM5Tp$50&)m2FesQZu`n=<
z3J>KlDVtFG`r6U0*W;vhqqcN_8Y70sWrTy5`JDU~!N4#flqrSX^820Q$Ln^#>nc8H
zsqWS*C2E>|tp_v!k-dKJw6_--7!<Oz(yANgUOY3?IQdWuXCbIN5*i*WDk%7TPO;yX
z?CW~#c0QXm!z?#ynmP+Z!<zz@6!sYwg-M`;oAh?QSoA6P=g*&o2U*3Be0g~}`Qf3~
z$T@rr44d2=-Y{%VKi_ATd&_06RjF3a`wI)5e_Amx{1M=sAiH465*1K6ldG?#)urP3
zs9S&Ei9;a_3=?XZQrJO-<CEvl!*9g}1O)8kV_>j%(Q~@bn00lPXliQe)NRwJO`Enp
z|J;B6$>HT!G8i;(fBF1oW=Dnn>}G}>_4|KfK65|KRd*<BShQ%-*?DQ9K|w--f@f!&
z-+%M^+4=eZzxTWS|I4^xv&5vgj11dW|NQ*i{dk}3W?MHuAq8uP-{0OouK)MEKI!YL
ztD<@?pmlJ{lTW(*{`S`V_pWz$cOTzT_&DkP-tYGw1qv}RY)XH7YpY@XzdtYT?XBMC
zell{Visz&p{*9YwS{A3t6rV9POghrB<JYUz%8zE3yX9YB7b_wrc5L-}tD{^D4f1O4
z4rL8|vQ{qZ<Mt+fcyMrI#>GW9%J0`Ezqzpy)Bvt{v9NuUtsDbGO0Tkl^@&}juaizp
zP&CZDvm;_#PNYoH2}Q%48yhS>9ueMbD+N*o&f$-1Az6GvR>Iv~rG;;|UU%yj(_K{d
z_EzB;!{bM$Xa;Yx6=Pt?DQ8+DWkD!$B<wEY^_Z5sEA_o>`5nRV*wRoJmnl=Hy6!G}
zyC`yVnqls(Ejs=j3=FsXl@%h*3LhO=5xF@nrsSgQ)7zgue}3G=t=IAL^77+{TDdn{
z$TBeG#51X!PCGwOHuu(+l^^<E3f|u{{lv0T28J7v920c3H8ndyJ(b(tU0q6^lYTtv
z*570x%E0hOf=T5xXtd<#&!1DbiHnF#S<lRH;G9!KO61z8t&7&IS##;zrAwDS!OhXq
z>Y6lZlGknXT+p7_Tgr?K2l$j7Hm#}s{q5sLclo2QuCCV3L5kYVCXx&cIrU5`r_b4Z
zJ_8!Y0}XIJy?t$Mw0QFIzTV_MOSPyi8557bWMD}6y=vxL#<~|)B`*X(<A$KN?;_Xk
zr2Dnsdp9N@Ki0&`{b*sk+^KIB3=A7$E7iY%qrouc!~_ZRycnJ6Z906GPbNs1<wVS>
zc+`1Qj+cR9n>M(~dCU|s)=YBCYQyB4)$jK{{`2|#`EL@pkIMi5as0&T)7_Dq({i_;
zuRP3a?h-ez{vX4pqy7mEGM_->)knqSWq!Ze><_AxUtM1>4{D(YE_QRx%*=FgNimwa
z=G=|__5VSmJY~OYZvTFLGQ}wJzZ~PA30Kd2V_*n5d)eP!c5n6fzNV(87uVOvg9-{z
zcwJuR+nv2`r`oeKGllDa9G2f?yX^l1<_~LGI2`z9*w@#6d3)PDYHOBg{m;|!i!v`S
zdzw8xt}2s9*2-jF-LIEAejE&;k41DEWC~ud-F|GAY4)Q=cDWS-^0PsmC{W+%?7p&_
zn^Hf1p8wwl6p$;Tx9441A8!vD?RdZEv)|I%_xpao%ecNS_RY52d7wTcs5k#;<8e9d
z`1rk5rJ!yV$a+>*R?yg=#mgm=lfJ#V8U6KZ&9|HBg*Q{DA7x~h5!jl2y-&?|mdpEl
zdy@|~vCh6*e|DB>;m4!m?vvGg7lC?O?{+>v_UY+q?YH0GY(9VN<8gWU(pOhHtG>Ph
zwam`UG=6UVyz*hI_@f<<`?}kBrQPoCDt+9*%-8XH-R`{A`_vd#9TOC2koj;W*x&W_
zwY8w(*L$z7*Zq3A{Nw%qfA3#h9lk!}>Z(wks4W`r_I|(j;?B<EGc%3VK@Fph4$weO
zOy$$5pf-wxMM1)pY158bzuzMa8gjL({pI3v1QfZG)qJ~7>+iR@wJlc~)LrzMZKewv
zQU&#Kr>6e`SyS=%>-EL?_xD}glzJKzId_WB+g@DiJ$;68x}S)M$dvc9RXlkl3=}|P
zF6Q?tl52iEY%e@-`~3*0W2e9GN7B!_ew$AoU*6xh2aR!Uzgrgl=WTv{_r=BT#|w|k
zis$eB8un)A^Lex9rk<N)S@>$@a<|{#-X_1euyEr1`SPHyEvR?6djEBX5Jx75t=o#8
zo>G~7QYC#(q1)7N_p9IUo&5Qn_4+?Qca^@@db>H{VAGNX3lt>Haw2|i1NFLn`Rsl?
z$p3qXSIWc#ls5A3F0cRp&-3oC(*33LFI~Fibvy0MjEN~mGgI#DD13VRSfA|d6r-6-
zKx>bGeSLj;`~AA#Z$0DU;*2UkJpql)etmV-6Lc`Ix8BYrhn~mmsVKa(z_Izsqi%h@
z`(=lD%~dKZE1#Z!zw7ln6@7jE$Xz8bx1ZxV@a>_9PD57S(^FFg1#j1+uZ%6bx%AKD
zUTO1VmzH`jE_-`x<NtrZ!*}e>ZD!+r^!dDfKPV)-=dX5bW&?FEG&D7DE{ilfdH%fq
z|BAoAzJkVRGVbmwHOaV;uzCBPzuW77Z(k9(*zM<MZ~eU{SyxsFp11kz<KhB3Vq#;`
z(XJPlm;2Xzy&C?s-$zZ@UB0%YRatfR?^#Mp|NcC;cb}wk|MhF82fH~18nV{K?X40N
z1kE1hR@F{YDSSS++-<g5E@;Rc)LHPIZPr_Uzt%i#O+?_n`=CYzC`E(nr`cw?Ne3Dj
zr}{bXdb{oRqrKnnb=!Wsq1<Qp>&1?b$D~2yEz!2YnVFd}^?$#D#vQ_DWP&!8r*-{!
zwl3=TyWRP%xx3$Pixv?TJ^JV8XJw_NcXxJ9RPh8&mT+-%pOyz%Egn~)D5f8`=V;_P
ztJiBlL$9EE1e8f%+}@sV^YMsq5=#QRpaR3y7|=js<>zM~?^VCgz5KeJUtSJ0=LBk2
z|M>X$@z3Y;`!$1?9cg5jlaMyg)4Bg1l<z>}7oY*l<Fe&3KC?_Ttx8{sfFk0j9jFxd
zxBqKW_kH($*KRRg(BMho1xNOy#pi9ehZ^%r7%1fJ`}qtM&LCHOJjAUJsznzCE_M@5
zTeYfJ+T2ZTa_7g#$B$3Z4A!!Vt9aN78im^a<5p8sQ^n7x)00n4(F6^8R(!u({utCb
zo$P1j*~0LKLC=Z(1S4qBB<;+M8HUNn!s0vr&Hw*%{>81?*LS?%_ggC`eqT+ch?rQ|
zjj+{WYhPSl9scFjRqbo*<K;nFgh$@a2G$jDaRIHw(A)WB(vBySypv8&QZ2lZ*nafG
z!^4ZKzrTw%4gUY{@8fN^^Rz)rWwzb4j#l*)lCS?$_~(VYz1ID0X=i6?Xlix_`&p_g
zDSf+{KHp=K3Kuu`;_U0|LgzgOo%yB;8g){3>*)ZE#@79P9e=!Af8UO?^Z6Uj7PGJ@
zu*VdiH3iL)fCfy>tF11o&#w_$?ACkhO?LK`6@f3!fBM^ebkT{~vEk4*(3<axxXo#2
zGj4CoRq+&xum4+`b7#lKKUGtFK?(8fZ1et2n>MZeRh0$O>T!HU;9}79$n3lS_x*m?
z{q^<r>Gu1d&#MNBUEG|0zM})w{JOF_T>sx=`+tiM)y>w4+?3M2StokinoHZ9`E5-m
zsoZ?Ep1a}wGY$?1K2YZR^U}Y*3sh9z-j=JqNBGz3_4}kiU9->U?dvzM*VWVOTj<<=
z?C10O^2g<>bN2jxw;MDQbR&I!t=60JOP=aS-|c=cCu?2SlXiC2(K(jIk3c(HK;5yt
z-EYOT!`5_6(~UkhGku<9yIfTU=v-%Ts(9RM{%HIDzqzgFx8~j5C1F=nu{2W3G)rW9
zTvaAWGiW6J>#M8X%=|V6po!7o<$k?tzO!<^Wk+n!iv@S}cbC5h%>tgvUmqP4BO`c!
z&N8#AFE2n9Fle~q;&T7_8ag^X=k0#$fU46MS5{sYV}84Ac3u}~sM^o+=@ifi31}G3
zu<FZ;8^z~s7Y8r*yZ^JC`9RpIYj3wR+^8yke$H2K-;YO2N?%{|baZqKS|7Lf$&KWG
z-*@|dzgx0qjgIFe74YHj|9(E7zJJ-8H99|!>eo%&l5tV#X72X8lOFfm+s!mgcDuCH
zd-{^>>+7EW?v*rFdwFMPG3a0{P;296{{Fv{;{Sb`esWdl>Pad;pOx(cRRcvg65Cb3
zzP|4N>e|}bGG#XsPwxGGFFNtqzrVlLD=RB!*S^_)zs_@#%E?bpPfzC7+o6zoYfC1`
zbxYFE&pYWZUmKG7ZDaCrwaUuMliKU|Oo}Nwsp|RoSnp)e5t@I0ef6HE8y)uYH)ywz
zs`~tzqDvbR4=*Wud+TJ~@3+(E)c^Z=a!ussQ{Q(!Y?GcOWtug`zW(D;@yVcxPtZ9R
zK>-01K$BUPzu#=0ytDXu-TeJp4BHeYtE{WJ@kx(?fgu)jN5BSV28K%yrKsG!KKq~f
Yaov~2=ZfxwcAzkLy85}Sb4q9e09{z~WdHyG

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score.png
new file mode 100644
index 0000000000000000000000000000000000000000..8948c676dddf0cc8f598c4e5b877e20872c2e85c
GIT binary patch
literal 24817
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_eA=KR<H|3ChIz4xqH&rJ#A_Om<f
z<W18hXC79uoGQ?zY9*lc^mAv2$`!7;BELN3(=Q1r3NDpt|Dq{WlyT0iI3wrT&)<jN
z|NU20z5jU2b+zrUpKkJg`?YFc-1_6M_kQ0U_x=0ppEb6+$vuJ$3=9l64otkw3S#Ui
z6>tF2H`*AO7#J81n6U_exZ4yPK-30aMivGJhK5`Y1rRsKnSqgkfgwSfi37yFO`_Hb
z&yOBEcIx2{%YVhCpPqPreS14RFfj1b=g*V-`}?=$+?;ef^`X|<n4Lj<?au4>eDcbh
z{z%czE{?C=x%&INuMywB-Ohh4|Nlq(r|0MO+Yc|?e!nhy(vt#<D?194cYB`=i>s?;
zyi;L*{QpJ9KdF4}hu<E*em#8Q!i8B^R!m&xGjr1Ir%yXlBRA=s&W()Q+feziRs74l
z-S1!ZS--n*ppp6Or_=hYT{?xP-#sR|LGK?Y7gx~MtgBy6X|I3r<>lqL?cF^+Qw~22
zSm@MR^5n$C)9<RUuZz7YSAT0u=DNpqf4^RzzSdM%*Vnm?Cva=lRS^-9B@GP>Q?)|9
z%I}s=pI85{GWXt|pPOz!U-tF&_17DZ%LPx>3JqBipvcO?qG4nd^!E1l>vJrNOaA@&
zc}LICeNU~NO6IdOGpnA>Oc#-mSdl)zHq5!5FZAxN(!1L>pPpx14f6Ni>hC$XQ_AHS
z{{5>d-p#;ZJ})&=%Bo~VkKw5^XRh?gT7S8jK0ov6si|IGUPZOuUD?|U9y*1ti;0|H
z|F5!ddtqEh>FaC06DLkII+pSO-(N2upDPy@I)6PX9-r~`)zwd5zkc0y_vPi~ppbd}
z_xt_xW%s8W7d~>al;M+1Hc33hVw!vFO7?DMcD@yHd#i43PVYZ8U4MPMd|iZVw^(Ra
z)~ZR9CYj{jv3PoZe*DFY7cK3|t>;*m`_=yXa<N^$P9r`(-ZbY%fNu1*Df{>DpEP;$
z*R$sLGw$uF%(}jAZrb^Ib8kP5ySO57@s~&4`dUg#hjM=&YUNIioF=9hv*OXw?%iu|
zZ_Azi>G}Em^qJE`m;1@)-rW`I+AVhWZ4ko~CMJ%8ZV8);4Y%K~4qqSE%*OlW-|zRU
z>;M1Lir$u^7y9kGL~_w?mi6D>-(TOxEB$Y2?&HUgOTXVO-(4qfnl)ur*xFUS(&kym
zdL*l!OmyFq7rxMm)pwSO=igsngP)$7y8hLS+uQT6Z@*u+ddCinrAwA%{QL9Ms_02a
zm#Fr$i)9}k9K5x=e0|lI7YjLs)hgE5m%Nz3Cu30%dVIU{`nbI&nU_@VRz9CQ%Q(GH
zD`drki)q)^ME-iS`FzpBU8}?QR223%D8^R2x4a&|Drl*f`JQ#%u`fSM3J4@r`!amu
z+m*n$eZ}r~ySzhJg-kSb^YrwLyR8$s$wfD6OTfmYqap$V3%EqJG7dB_dU<<)&iH-V
z-+pEAa=)&wt{?}8hC_!Ag)DaCwf+5O^Qlv(ini{K`TuoJ+3Kn<7u~P!C``USS2q2-
zqP)C(?eDkSCoMU1#%J%}Z?{(kE^c#jatc}C!077gx-$3nwy146k$v&Yo7wqSmA}8&
z)zvj=|Ni}l4jsC(F4j8t&W?*~V;8&i#yk!QTNCkc)yt?~cf~b>Tyk%3n_9B)cR-n2
zpUleQ=jSpHG%$wO_HYWTo!F#f`|HKxuKxaTH@7yse?OAf=Z3G3)Ag+S^>X>%b^398
zc3j^r|MKNaDa)cIt3p>VYhvZr($Mhu`s(WCGc%3%zEd|g4nEw@AKuC(3JQRtr>8PM
zJUDpj#EBiRu77Elue-3sbFzq()GAf)X%)Qkldfz`cK`c*|Np&@{+Z?7SyA`*m!_3f
z)WU@exp;U&mU>P7^5^sU*FQc!jytcq{Qcqg`+obajoKRY^3qaK0f7Y{J`~(7y&fw!
zzunv3`EVQW<iigynBT8aPVTw={GjIU>u>-3{QT=dGk?hbx>{CtcJ2Cqe^y0oTvYY#
z&C0pf<-2alS`;{}-}9;K)%Er3KYS?o`TMuFl9E&Gu9Az_)<)m`W|?!tV5)Yw-?Y@1
zkNfS*UPt{nsXpIh*Pry-<9)KPZf#xdHC5}WmEZQfyIYcv^Yw2#cm6*p9qufCzRGW|
zl~%xl1}A6dt1E-m!!?*EY%gGEY54Q!kIgh*X)~Y0ZM?x587rc;<*eMW!65hMCRa{Q
z&ZsRJ6T{ZWt!-lE_Sz+2_v*?@<@Uo1udR*N*3$A)_nUK}PuAL`?oUOpgyEs9e;-$U
z`MvM|zu&Rq<{LL|?CR|;T?;B0RX_!aar(KCtE)n<u8lTlWn;_w|L<?q)~u=1bRrk2
z`Ob>@XtBHeeVC6=51*XPietUftBaqXyR|)k{<AYP7q@bYXMr;Q#YL@4xEHPnT<iua
z#*~zmMdjt+hn?SQaIE65wB^>^+hOJRYqyK(L@b!99scYGpHEuaGP|EoghlmYBEH|R
z-~aE=XaBG7@5fJ8^S#8azvsb4I}?+TORc-r%I_4q_w`MjHf@<(uhh%q^7SEKUtRrr
zBf0<OpP!$jHl=i0mA_jPU-$FqW2G&%zrW40uivK?vSNW<?Jo^wW#`H2{@48N|4vz)
z9QWohzx|Zd$f`%3>LOxdWjD7?ukM|z<~L`>ks~gk(yXws(5n95o=KA?eYqB$pZW38
z(Wu>JYq>-;9%RkG{Qcphqup0GrFw(hyEb}zn2SqGP*Bj8($`_V^7e7gZ9Ii<KVLc@
zu-L6PC32dY|GYJOtH1Bs6&?4oc-qXFD}TS+?H^zNck8Jsnv3;fcdZCm=yYpu^>!g)
z;j0TAnWyT<$4&b3cKiKTU$4i9FLvww@}QZ2Rl>ohUvIbH|MGJA{H%X}e*SvcE+4Wr
zD>U3TGc!}lx@^s&#fxJVqb`Z=e!ez-f1K}Zv#T#JFTc90H2ZGd@3*(M<<4H_H+R)}
z`~NYgr|AawN}1Zkb$`EC?H^zBu{COY-r5^CBG$(44%?h|_R=)n=q;6>pUM2qWxR2M
z;YajlozoUFeEm<g!`GSE+1aTnC>)Tnsko4P_tVqUy{VDQ>i+(EcBE4{@AWdDnMpdQ
zjn3PCpOYQ=|KH!<!w(HW<{vNYled5Ot-7XWPoafO+WC35a=GDaA`*2@8y#-rEsmCx
zmVRBxcXO-hu^C&om^?19@OgV{tL-((WFIfDuIo>yXI)z}6QuFUiHUiq!`H{<*3{Pe
zUR>mQ_T}Z}cdtcGOO-OsnzHz>wdMKzr>Caoo#vOf%ki3~lPSa3KGQsZ-tn@D6DJ;f
zSTJMF8lBB`f2%+itc}{b=Uw&lb93cxpPylPIAU7rysB54*Eg}t*IclW;oDsEv#9^u
z`+dLHZPYm}q7`z2N5bGh&EK!rpWWD)Jl%GC-rZf2?S~VEgoN%)n{Qiv%_RTcogY7b
z%#g4Db8&0Utu2|yHt7fp3n!nOXZt#8-mF<!r>5)Y%kUi!-MjBx?lj%#X^(SzPX7D5
zwfuct@xMQn{onroJYV0F8u{$&_4sn#-Lt+wWahU?kl}0p`EvPun_IEJq|(1je)?uv
z`03lenvX}tLBXDTdz+fF^5NWAH@7y+sxK>Ee^++zn-RR+ukua#>1n#l5)L*kbL|$(
zJ6-<%Uarn*qkg+zE3Q{<s;*rfvN8!2G=|A-w?Ez7oGyKO)0y1ucb{#md2wOku}wO`
zI|>p%e?D)&d+qBxJ2!&@{@fhPxNL?A)i0V@?<mbFH;JoysapExMqpuK;iM(z_iHXM
zKL6u({(jxln?Q{TR#w)XYhT~mx_Z&##iqHpO!|{qSXe4_v}1OBD7ERHvr)(Un8ef5
z)6c*DrR3TbQz(D(<jJUAB`Z%&(R^HJz98@Ju2)x9P7VqRGReQU=XKC#72kO_k%!xO
zFN0b%KOXnL{&qY6`oU)Qs~eNu@7DkSJN@pqw6n8b-PpJo)Jm!S^+iTD|Iv}obqC-3
zef;=w-N6^rU)|lkosCasMe*}<nu>~!g@uJ$QCn7=nyS70xP1Mc$AyPAH8p3M<<82w
zwr1tOzrS~{Jw082zFWWC+Rx9=@4jkX`6(rG+S2QB)o0(n7nhM)bFi5`{_73-=QE}R
zE%l1MT6R-2cGs5c*4!UIe$)zCF=3ic<fEuE)A!EL?e^A!YTI>NbNHX1pMU+w$H!Cc
z>+5>u?e9J2Yn(rS{_DQ!Dx$hkSKglM3kDUpI|`F)Kc6+vi`D(#C13Z$asR(xt6yDR
zy}Vtn>O^kr?{9BI_t(|_{q=f1s5Cyl?eDLzm)~x`|8Cow^z-wKj%D24ReC){yy11f
zUc>?2N0;*Srlr1I+;3O3`$tLC=Cs~FfBtN$RSIx(YwMG-Ty*71h^S_ei>!6ol^unT
zuPpPGw*B#-IqTMzl}SlSA?spxN*C#c3yFv<30oVLd9aDKtFJF?ciG!33mloRt_*f>
zY;3f=b$prcY!y#lDU*WN-tR$eci*{Ip|j0$FCFH$uQ_WfogDM`vHrIgi~F-KE%CIx
zb^OFc<*%T2?1cr6RUZzrZ{GW1>XNzE<yl9&L{|kZ?Rs@(<>RP(dn${kY6LoUc6NGs
zdVbvTqxS37aMOeX47!n<T(YmNxp=HsdTZI+C{P;?RGR<z`1tB#cYaUtU6)f*Q%`Qv
z;gvQ!v$(CNhsU!>+Id6fWi?9~zN1HuRBYM5WA)t2{r3Mr1^o8Zg9i`3y1qVs+w(fz
zb91ei^V|J!0F{0E`~NK3vc+Wk@$YKt>bw8_&AQhPs?XEs*DkxYHG6gP@jg%=Bq=G$
zW?o6@-kjUpd^0mMS4D4sCn_)ec1yuSr`it(*}c5HE?r#gUi$8i<#nsmn@YaC2wczn
zp!k&Kx>bRT-QupB=iQ08U;lrvS?;YRzrMcSE&KaXUZmer@9EQ2mM&ZN@98XtI}$7c
z55yk+DKoOQjRm!PzrVZt^@y<likzF9<iyL4_sIr_g<VT!Z;qa}G<dn+N{@+3t3p>#
z3tJntR8ZON#btl{t5;SAr}hLsJv9~7=&!Dso!NeKb9(ld7Z+#Q)$UsDU*q7=AXoFj
zQB_4HrqHILctLGN#g6M=&po}zCih=-T59IeF43$D3mP|V+61cAK+Viw=j;D1Ua>-h
zSIXo?*KdvJZEJpgdAYcyg{4>8{M>5`KK19aecsF~`uqELmAqWE{a%%~eEpw|^Qzxj
z_UCeoYAyNp_V()9-`^(b?OE>DE4B3D;r7+}_xEL8Ue?<ss=X}vc%SDk0hdkEF7Io4
zHUvjS&2n;b+S6v2FMevadH%PG`O|cxuZcPwI(+!+@Avz)EiHfUvMF8Z+|K9a;}i1p
z)6=Wla-%^B=ik47la?4JAA9lU=H|S&#lP(K{QviRYr;XMy+5DLo@G<HNzG@5LUK>m
zl@$voD!Zrs&Umu_)X#lqGY?3b=gpZ{`z^AyrA0$e&oA}Vl)!&~ex^oFv-|zVIQQnJ
zqmS>b4~vSLrE_}MoAh%MkG~p=%gDUhc;@GgSJ``wnIHUG%q>>X&B?<P^7vRUsOzPn
zt?hkxSLx-M#_4x%iRi^dxORyIhJ}S~vwwbWZgK5ljo6BH|Ns2_JayKrRqyxz2ele5
zK0Mrhb*Z<wZv4JGSI_-ivZ8yxZRxH!@z0Z<ynnx5(YY<-_O@J5k7Swe>}71cQW>wV
ztX#+a{B&WNtaZhQ1=qixTW5QHbN9^6)f4;s`~UqsUk_?4Xhm;Z)5a&eO1}P&q5E$M
zlZ**YPEIC8PdvgIc3jz6{5)oIz`x)3|9_jo^6{+s{V9fS!s>o!E*dg3Gn?kzFu1xt
zK0f{YysO{u*XzIhA1D2M@`X*mcUF8le5jRMTUGVwYuClw_q%S-yKD2U{Ns}DbNQ#%
zKRcOz)6>f<C@E>tEYs{|@%4X0<!ir8bnB5=sOa3bW8S6Gm8&b|?^VCw`|H>1^&tPJ
zo}Tt{=ks}&&)ffB11fQDZ_B+N^Z)1^@i*f4H=gth3!B!)E4}Q)hl0PKPV3JyOl|`e
z&(q`UBAwfKb}rj3C$1f{V?&SO^uK2!r%lzqYsDB756VHITeCvHzPTA(|L0@-u^!3C
z+t%gX-R0%$`?X?En%|F~KUe16-34l(9_y7>Pwu(Bq~=`R``_Q*e!fxm_t#g;I;Ux$
zr9aK7*)1t3xX^E|)lRv?yRxpX(k?r_B5ds}mCUQFLgUg;#O<rusdGB$>#M89A@Ab_
zB_vi{T<or`t*w2$|AubNjty-5a%;A1F<F0io{FZSVPHGIeAv@dQ$dB+di$rRre6N`
z_V(Ai<@cZNh<je4m_A`u?Cx!#mcrY`RbO9O)&JXbz3$)rn$Ny{-yeVZ@wk8Yu`Ma)
z(R(IuXDBp$o}3W9HR~zYCBN+J>q4ulex+_d|MItifkD8=jT^l@JV1jXQzuSb=-Mq7
zTXsJj)ZgIZ<GVIZH+s|F2jx~(Usm+V+pnwo`l|AdrA_UxEytBtE?xb*#>&#ZSUYUZ
zhh6u6x*qHObB1vPJ0r`E*1caYd7qlDKOfZSdG@X1+s*XUp1||-Z1?)<e1AT_KI`qR
zt?TZGuaA3MDDL`efBqW%d5t^E-rkDaAN&91^7-qs+{&IaMCO0)l(DS}`TzU=f17FZ
zZ7PG7`^}xSe*OE@<L(~fdSZ_sJ=#+JJ+HrETiM&Fvoj2x6%`f3Wn}8sT9v$5uqt%*
ztJmxImz^yvQr%niHE3ti(=QL(<+HxOyDRs4ZgD-2yj_g2n$L${#sv=?`VYR~<mCMI
zbb9<Ax#Fv<LVrD*o&V(Z>(!wC_N0(C5r(BNFS$ya<y=_3e%~w86K`*AJ-zmryL@fP
zF$rENlM`#b{k^=p+<GJmul5(L3tvAE)agq;-uH4|^}CN&(_0MPE-&}r|0qK4x$;!~
zy$*IYKQ>(78My9Q?T@?V_hY}UJO6dw(K`<dR)nvQ`}O&}{nsax{i|BmpE=_rYg-jE
zNkmL+*`J@EwKX+QuHAiSXYunZ+w<eYcXxwo<Y}pue{0gz)zsXkYKLE26}lSK;@`D)
zwsrYBQ1O0hs`l>Q{|p7iNjw|{+}e?wmdva9<k>52?zh;z|62C?y=pHHC7i#w*!}fU
z@%WIVU7}YPxpKR@y1u-!G8i<l6Sgj9B^$5Qi_`l1r>N}x_v>}kzM7p<CK(G>tk4kE
zi3qU&|7Ww9Zq$+s7Xobm{dl}Cd0XaXH&N}dD?O6NTk`MQfhzy%@9(ZYpI^UjTkh?w
zYilAcSM4o&daA3V<HDJl#!p|rUcD*x^r=lcrEhPAYHDh(3R^o1Gzw$=Zin+y@9Eb%
zh1Itt9AuKUD)IRH>+9!VF7v%D)ib0G5*qgXdZm4JO=K|0_&Ym`pFV!P_~c~u=Nb0b
zUrh~<yZHC}{q>E^>{WY>3pDNR?R#Y`gJi8rF3hv7zN2@m{{P={-RNyTpz*5NX1Sa0
zx*zY8{d&guJh(2je!pk&g9iz|v(0>&*?0m#19sc<Vq4qWUw?Ud`Pa|q^JDM(?f-f$
zIxpGuUhVhTw>LIA>+k=w2~;Sqs{8v(D{jvY(D>5Y=<QjD+jv36&+A9~f|vWvGR>a0
z@5dwVzn|y-51DP2J7wm~m7wl>+1p!rlOI35^85XM{rLEJP@7=a+ikZ+q@`C|zuy!5
z@83T!Kfi0Ao}QjMXHL!0b(LGQt_Jz|^gKH|d-;qR5}*RNolo}CBG>MarCy>_bs{gV
ztt~1l>bu`w`}<pHQPHNPq$CkZ$(1!fKWS=edY+!HA085Ng;&xYRMltS-BtSQQMZ1`
z${^LPIX8nG9UVax#x%XyRV^(nph%gPx-$R%J}KL(EueTY%e@8a8Q-t@+#3`ee04>j
za(_VB0tZG=MBlIdK3A^pM`Gxz5KlWhJ5W^(s#DUUFHg}7zOp9L7}N>Ky|pE9s#fTh
z+}mcg|9(E#irKN@I=d;u4$hlD&%`r)+pKf?$B!Q=yZ>ES=)BCKkx5NM<AjV|&5hi<
z-|yGwTa~@ZP*PIr*}s23CpWk8)m5R!=k5RR@$~X4+8Vv9WaZ0ydw2glZvQW_skzzr
zU=yqFRISi6#^-I4zrDNry6}wszaNKfzFcrtGcmdH<ox{mSJuVeR#8)%C8`}J(SA5F
zuJWnq_HP?EZj3vhc({#sS?1+sY8DnZe*E~c<Jl#Px<5N4?P_*pURu(r8M<l;CkKat
zs`oULUMW+f&1q+Mt-7B7|KHzb;p^knjEpY*`2Bl!($TJ&>~a+ca&Bxmm|fj|I8n+x
zuO{?(!MyuRKR3jzNjp0W)XQY$7TYn+)y+*xUS59k)TvKPXU~`+@wmXEr@y~HTW*45
zGaIPuIIsTSPwi`8e?0D&Za<uOtWP$($1v^lv$JVOIs}(_PF7nMv$II8{@))p1A_}8
zD*_JMd^(~0?DzZq-*?SFbH?ZMz3TTfXUvcgmXXO}Vq)^Sxhd86@-pAExAXVEHPrV`
zOIrr=nP&XHJs@8N1_q{mcyLfnS^2U4+0Bo(<lVKpyx5&TcxO?nu!u+s$bgwfsb@f4
z&S&T5zP@I*`+HJW)~c6xcW>|P>MEN1+gpEc%B9PfeN$4FXojzwv-<7TJ^atl%uKc_
zf0v^bx+<lqsmbTzp;q6kt3uB{IM{sm*<*uehinw=?Cj#6GoF06dEVXMM%vn^_k6!s
zz07Z}6(|Xa=tNuySru~9=I4{idBw+5Qd4IdCLfzo|L3th*xNQXcS>GgJNxGDZu8q!
zW$*4}Ms3f_?Gn>{^{d8jrqR<)>(?6|%elYrZpqtQSEuMiUV3tR`gsry;)BE&zrC=~
zdGEP}$!A)3ddTp#gA&s9>nslMHumg1)xL_EVS={|Uwcw=@?E(c28JCw4cIWINA8&D
zoZj_HJ&}>&lh`rnBuY8P6ia1PP|&1Dj~;>Q6iXSt(DiY)+r2lPy|B>vX@NzN4f8IQ
zw>LMt^R+wQ-Ce%Facb=BsoLSE9u~Zq8XkA@ZP2GVn!(FXJS;GHDA%yxl!>Fk=Jk`4
zld~=^YBkHbvA}PxRpyHe3#&ezRL@<Xd}Bjmk%df=g-lm}|M_iqx8JXOofW<=W@olt
zUK#T`S-y5qa=d!mGpMR+*RdYS#cjOOt0Fcgefs`A{NyB6&`{9Xxz^ujWuIFqZ93zQ
zWS-tX&42|BUek0|w(&}59cW;@wWsoPsdZdU%^n%P_HXa*R^R=0QlXlmzI@-#SO$ia
z^t-!CK||x9LErknuj6;d_Wk+u$E5sS3}|Q>)b&073p50L{=EP5b8}C(zS8UH=(uog
zZFK04g2et(P|XsxHEZeJ-R0UwMnU{`KNdJSJA;NmbYpe|aEs{##Kg==J3sGj>F?J|
z{pMQT+Eu!`OH8-waG#*0<V&t@Nl8hN?Vw>^^ZPZyoSdAm?(E!b_veGNs7AnpS$&6t
zcQQP9CFsELB=Y3RlbdwBA3l7zGqy|TbkON(x>IM&Sdn>o*~^v7=M_cQ|M^jPcDA|y
z+NiCU_Edf@TIqH2`t|UsTA`mJ>Rwz>JbLu#%L@ygrA#s=yk6IL`Qzi`S9cbt>&ESg
zkhLzm^5|%Henc-LBV%0lo_R{j%BCqN1p1#wZ_5e1zAo0Z_E*W$Wy`W29%{W_A|t25
z$q?SJ7s2pJ=D9`Nj~^A1$uW0h^xjI>e|X^d_1)cQ(45)#@8J;<Gj46oUfwHhUiIel
zqkUhy#r4A$yY-65$mqz+&zHG=bx&ontBXs<r6rznuR)`vb8V}`Y^%S0+4XknuW#`y
zqpu$Qy+OxYJ8VtC>$E2_{uA#?fQp%y4-PhihEm%2<==_fsc2eQL=-<i7rL|P>6Vh0
zL1$+e9?q>zNm&9K2f4i5|MkuE`Jpq7Qm5G0*M+VQ^POM+Z>Nf;wzjvjTTj4Juc@HP
zD=ty37kj_o`)tvFx|h+@*Z1lI$7awVq^L%K!@+|GyZZXBb?fh2@#V{x)BEf!3y;f|
zXS}?$R4Z)F3^Dz<H9tQ;-@Vq~$LET2zs;gkQ?*wo9Bk5x*suUJ>{5QO^0;!2#s7K7
zBwXFxs@~RZFMRCw_4RfCix)3)@$!ZyBrMPhUA5%-{Q9`#{qp;B)^dyMh4}dNaEa-x
zm@q+LYySN>>#{c=GQQu=-~aOd|9{)FuC7|TVS@p5QqJGzW6Pw;llQ)>J~c(NtFtpO
zB4P#;Gjr%NA4${vdoi2S&wtC9J!j6E<@4*Jo}Qi_?%>eSC8oQ|EcaH%;WpmsYvma>
z9hMbfsPro+*Z}HDot<s|`ty1F@Y!a$BC@i&p6lx0-P;>&XlQ6v@nM0KdET0HbFH)Q
z@2dq(41s33DnCD42^x$0y;aA%_}Q6@pwZ(+uH3d?uLOr*Ex&*KxclAR<<~zvJiN8=
zvD<dWkHYGHAv=qnUfGg)IcNL+YwN78t_lT>f0>rN2-vRYHc3QUdiLA0^mB7AZpply
z5;={HUv5tB?ms_2gC@p6!(D1VGeD)s&a3lg&Rhwa*;=-2RqpL=r%s%>&?9LK8c@zU
zIZ3tZ{oe0e>i$;Ut$x4v)A#S!=U5hlTB5D3tt)GPe+#$S56Y`%W?{d-y#);!Us)Zl
zKi9rK4m4wSV`K8yE5ZINeP$Y2R;|@r9<ebAG?f13)#~+Gx3*+v-QBe{`);@XJ`H(!
z`KxQA!vzHey}Z3Ie|mcQ>iT&5+#4GlgO~XfZk4qvSpn@|yMm_V3JNx;?EI%0TM@6K
zrnV~aa9dY*_vN3TpHH1KWy$t?Ro>m=`qyr4&9>duD47gu7-wBv<XZKhk^RbwK;_(f
zdm`u8{aP8eCSoCI_)JtgtYqta^Za?Bz;Nr8(o|D(`}yf9xR2>MSq(I*b!$Un^X=Fp
zjm+#>S5^dSg|C}qRrY4Zp;qqK2O629_Sfxwc5d!!K3S_BxAN}n2s}H>6jU0Np11wJ
zB6fEfr~@S=EDRcyQ&m%2Rr&eZ^*^jO`(0pb0n8Z-x(yj7xYz#qcpTI)&<tKyu_pT(
zp0Vt2sgct@e*9<{U;FiH=vBj#7Xgn8EY7&g*QR`Xb2GW7rsm9Kf4i4uKBqUGIWbZB
z?9SrnJ*kmuT3TAipC|PgPD`EX)+<$M`|i|K?e#aVWqyBm_t++#&o37D@0wQo{cicO
zO*+A=LRM<ed!4`kZ<@|&BSuEXXMcWvUiTC_K5mwKYer8GPk(KDOADw(nk}sEx8oY9
zYXquYL)ORLeJi0Iw#Hyu>deH$Z98@Mzh1Yy=kP;=#qRyzR=mEkG5Oh>o14Se+~4{B
zO`QDl)YH=>PjB)`Nm+9HQ|#`t%G~>Fqs>A7*;V@b&a~slkAoUM-`?DOT)G=HIkLCU
z4|xzg`d!U@D;d7ePp8N4T3h}5?RL<Rcjo0~d8fa>zyJQ5c_C=X7!+1}tG*UR%SlOP
zc}>^LJvYbl@y4?olaI&zuX}gLGI(E2rLcrV#=hV0thbl3^T`+p3JNYuIXNk=pO;~}
zv$zg}`P?T@QgmZ?g`}REauGDq1Rfy(m6}08L3{d+X58Mk_R*t9|2}OzJw<bI+Syr|
z$9g2!={X9k`%PKDe!X1nmy7%N+?RfNppkjfl1ody<2SC|><b!Vm9>7hvF^={jh{Y$
zF8&+0zpfV42mA5yan;|i*F{A{o<xa@iY}coL*noI`v1EhMRbBDsn5<b1@)HLcqATd
zv{O-W`T6PT?xeq#qJn~oo}jAl_NNsqG}gcU{q3!Ga?doK$fD5WkfG;z$k21Zw%^&8
zmUO<``#o-Z>fY+_VLv}T-CFar=<V(8=eOF}*xY%W|LDq=%;3L|<^O-E;<2~4UtikV
z(z4@U?ZZQ@x3*?a2aV@}1|+v?2QF%1<B?d<%+8;6b5m;Ec}9j!&J2tNmv3&#oUF3a
zv6(IIc!5dYorq%+;k&!9t_poUtN;GybpN>)g-*ul=dPTbtZrKUEeF*9INB|~|5@$x
zR8alU)AJ=FZc~b<=O-(7Zx@#q(8y~uJAYi+{p@RNCaRcbUwd<l`z&L+!mck$Hma(w
z|Nnj8U;2D*xt4~;3Db3;;NPU9ecMp<re*oNIrnP6$C_qba9Fr-;is=(ryhPdp})W1
zZ;r*pxBuSl`<>ShS~w!gqF0;mKi4X>u&|Jen|t#7`SVx5n_u_q<YS50T_qRa-Q8XK
z`|bAZ2L~EKQ-^+YEFKo_xw<;sd)Eciyc-)5<?LTyTRYj%EqZ(2-c{FG7$lgP9xR(Y
zZJL_rO*`4sJMY|9xG$vY74!LH^wzAUkB)X{Us~b`Dq`o?|C{;t!RI{(D$j}6XU~&O
zpAG7&nV4M3jV<ec_Vw%D5Bn!|zpsngrDtsXdDC&*x<5N~P8Z#sx#Qxu_xJT*9;y&n
zzGaIExG((eP2k&GTR}6itt~Alu3ry7-Y<Xs#>V8*Z*Oj{w(@J|lbteS#)?l*Pp{6s
zy-h1{QOlpde^ot`kM*1^tH0SA`TYK+pOO=nfL5J6KGqw2a*}E+zZVA&&lJ$C%FX0C
zmv3xL4&7H%37TU84Ir!tTnri|5z~!&an}4kXk1nGWGVZbqR)pTz$491pDbly5NG0O
znBDi;$zpf@)w!{KdV3T0#TA=b?2hi0GW7!06)S_5uCoxh{;=SL#N*Pw3Elc?`7Kdf
zvrgW>AOHLN`|IoX|66rxs&@MAvX_^ZPFk}2-LBKue(E+gH>dXOd}Ym3fA!PT)2gvE
zCLhTJ&Ew?%)|XwgKkckkudMaAReckuOj&Z|h>L0VHJ|vppG$8~KHg&}Wm{FU?Y5j%
z$%)rR&#UkKyk}SRq~l)YbJ@Fv$7Mk?rJzR5_HUP$`+vXDo*Mb;_V)F^zP(+&*u6jN
z>Z;ILmc`4`&d*yLU-#1$)JXmF=TFFvg2c#aOMiZT{(9f<ce_^=vp1Yx$Su||+iz>u
zRTa<GVQVk_{QTVZntuGgm}#k%Z-q+setB{6@Kx348;{HFesr{IqLQmh<$mssb$@@Y
zw%T_1VL(_|Sl?}S78cMXl+m#lSHt7aZo50vI2|;(d~%ZxXsjhX^zznK(c9Ol#D10N
z-v8*s!^5)-5}R~R2Tj+DjX7QZ?vCc^O<xW$^H=0-PCCl9{&!Is<CkyW3+#-xhprBj
z>$i>DUG_FrUVBf`Q?LG1(1g>f(A6q`@24kRUl$7+NPP6@k<Fpw^7Vff#_ldlt>*Cr
z&4S(9mb-eUar&yl$H#8%EMETa`~Lr)yFQp39(!>+fB)V$b_@@)1RWUelqe}FiHM6Y
zzq`9U`^*f(yw}&(#jch#PSa3Paru6~{y*>Pg)uveK$*zy_Z#D{FE2mudYgT1jb{7d
zg)c8J-yK`AY{`-r@&A8a551eq!OMF#uzXeb-e0d)gN9a?`Ojac=-gHjW3YVLvQ@FW
z%Rml!^ytx-3(owpSO2XK{rc)Es9Oc9-xs^}eu|hsX;RVEyYu(_{CHemR9t*HXk2dJ
z?{~qcr|HJNR#H|@?fJ+d4Vs5q5x98Izuq}_uk5ischfTN*`>d-b~O?H_J6;mzK+>f
zv-7x0=leaM`^w(kS$V8idbga|1Dj(@6aQRU8T{(z=H<s_xA*k${QYp4U+(znGiORl
zcNVeDG|RoUqUPr(aLXy<qSE@(b&;Fh($CG=`DQ1>fu%2+SQY$FzkBH^U-O|6v@C>?
zneD~u_4|U(&N2n{bk5GT4!5(j15HC*|0%jIU3U8H&yRyty`}_A*NZhNeHG&B?hZ<E
zmpg^kzdW5Dzbf%?TO9kD^yQwD)j)$ypqcttS681tf8HOoegf1*d29CY;X_bm2$B<2
zb^}cbWZm1d)5*zcOZodaP~Yl!zkK-Sw6lBs+|t`u1}_IqLV<MJ{rwUQTE-`_`0efO
zuV1g<e{Eat?IIigj?LOrOCCP@_2S}UFE6j4prA=Qr!Rrp>>nQ=-<^ATYj*hFkH@56
zU0*+cntuGcE>Z1Q+wa$1ZeryItr<Ey$MW)H3*T8L7p3#}ER?gYS`oXujEjpasGwj&
z)%SO6qqb&&+F_rcoelQ!=>Y|ib30$=#YL{58Nloh`^?uyZM_5<>ihkEf4rzx$c1IT
zv$s@yOajf5<`x})bhP{R!gje!Ya%y`$jYuwJ3C8LSJ&5jx*n*9uxRn(uaEofcimdP
zeEI6SzrR)mENlYJ^K42z{p!q2V^AP%%e}qKEce!qT`zwA`UPI8a&OPhce~%)U0odx
z>T8^uZ@>TB+uO@QYx}<6ufN{N%q}7zFk$h2ZU&Dexe39`{bnjUx6OEVcJ}NE69keY
z!?vA&d4E^w>YdN$Rr`R(r#w75DxXYrKQmF;eb2VJCYh6VzTI})$HAdtWyHosmCxsv
z=RL_}sP_(^Wu1(Bbm`%$@1>UF=b4LC&s92{nyUSLqn@(zVbB_cDSENDKtoYoqS~`A
zE_R<?{QMkfG)c-l@6Fd8)6X#%{rHf0d8xN}@FEw^$FE;!%kZ^l`}N-4T@Gq&?J9r&
zZtFh#|9>v`NE#nA$+&Q!rL9e>zP?^qPA)HMYgX#Bb8~0Et#oyBtFl#3?&<99H3bdf
zTt9mJxU{^y{Ps$tur(2hGJNfoPp5|4+*-b5$&C8{zwa;enyLjFrV`N%Iuf!v>@1I*
z&5b3?m#0VHU;2CB5B2(ge?U#HWr>H|p2h$FH64^|H{Y#$eQoVB-`Qr%Dn32}FI7l8
zJL{SK|DWem<FA7Tf^O&UzsthHBGG>Mp&7dmVl>LAv9WQPQ!CfArPJe#UcP)87k|0?
z{&H?{J(I7mt{Ss)i<!7~i5R}Uz1@8O-*2;zf4qG8@>$UEl~&lA3?^n~-<d|KKJ)Er
zK`Tp+-&Zp>zP#t-F=@~`iDfxAH-UW7(%L!`R3rJ!FgTc!mR9xV|A~pp&yI@6n}n_o
zGiBuxF>rKrTo$y{Ygz5@Z)v~2yj0WHe%)0s&ah)f>KW4-)gR^?($C9*R@dd++yv@T
zfVv|mC#$c{zP>K+?WD<*MP+5zD!F#8h~HmlRrzVjy^6=YQ+1=mUSC^VZ2Qu65@<jJ
z)Gy4szi%&S@(i?QZGO$CPPcx!w}$DUMY{#sJD)Opq@^tj3Jw+(6I-@qiOSVgq2S3@
zcZQc&S5F5G5rCEntUK<a7ro7=u&@wRkyL$oq4@HU!nsRJy;sNWt@`!n^ZD4@_Mc8D
zgIHVh@9)czPvvA_VEA+Q?x*GpfB*aeEsHu@2Fj_Yr|I6E7kGb(r*P=1kdtfoe=)yb
zvv|rBk*}|=p3eP!Z*TSMD=UNLnz<Mm7#gBa>dHG5CH?>R*Q(~nhOBFAUT$0m8V_%F
zpZh;<u^aF9GSjRp6AnMzv8r(yXqobTUPcx6Ig@8q&MvjIv5C>t)La)?$1h`{ATKWu
z%JggJ&YwTu$=Nw}^Lx;;=Iu&M9()$_Z@z#3{{6;tKVLYe&;IhI1iYN2j){p$&-$YX
z0|Uc{^5ZrNmI4wI8lG|L2aEg;JjoH3kXX^v!?XUkW%09~)pO0=`{k}qQuP**l&rj2
z#=yXELiXj$m!MTx?{+?y>zC6%Aqlc*cbw(!q}VqH8kxB`IVXaekGWxC)B5CWUwvCv
za?YrFXXkRzvbc8nx*t~I{0s~YuXA5rS^4VHQt!O!g~3V<PaIB8QVm@bVVHYk!@=ac
zyGmb+$jZL`Wou;>bxZ=(3qCvByj(Yaf8E}5^X=bX`xZ2D;>1aMdlu&Je!J~;Imp91
z^tR>QUDYmMccb)f+iG`)lMBn<-g-IN-!8DIXwz*Qh1=Wn!~g&L8~YYC>@Z=10BCuM
zZbOf}eH<&7$c5VPcc;HKoO5?w-tM<%q3h%Rvdsm>@jB7FPybsnbu0lb0RvSJMMaxb
zGXMSgd24(Ad==3202de6r2~!3rseNqjvhO<E6vH@!{fr-@_Q?P{HVCTkBN!Nq~=F~
z?cXn#UtL((3<@&PI#bZng1G9prmXDj&yQ(>Twi%e*Isy+imR(@=KFhl<F5bx_xrt8
z@UosI+}rPfRtBt%+UoW5(^F8@J$1r_1xZJ{Ds#SHbeDg5*8KjJ_xt~^1Ep5~`F5`^
zFF&99`o@mJ#h?Ox$r6=!paIz@jxp<Ft=~1ga5{0K^LE~D-)=G8Q-QaS%T@dI+kU&T
zbqXseJ-;>J=U`x9U?6poI|b|G2VU!sXJw2Zwv@iUc1MqqVcqOSuHCDAW*Y5`Wn)n2
zS7><R$Z!9rAa6PY!*yQ=hq}MNUWYkxFgOS?s`N|gt#r*3XJoj3Fl?^n=M8;wwq6X3
z3?51iPXYrct$JPt+H`QB^teI^C`f6txnSS}kHp;&6g&7t=#7oZ?Q&Hw6sPLNMuGBe
z?)JOO9v*Jjwza*x_U^Xa+gJ8f7PGRlYMPjY#O^M;dU3IP@yaX)1_p)qAI`pI$`b=E
zZ~zT?f+`mO`F32KoEKkRT@9WOe0;1Iv?N`{^W@2spcOq`BASZ=7rVWDa&mIj<6iSG
z`~Uy-2X%AT>+4%GFfioB#_&GBpgzB5k+8a7#@AO@K@BsNmG1p=r%s)^RR8~X{L-aM
zR~9@xBxRV?a_RErt(BkCTwPo|CV{NqvBLs1+V$$<V)wjxpbaz=R=;SP>a6ZRZ;DE5
zYwJ#3{lG;nGJNfyo}O0soMoOrFKS!POD_3IS0Gi3=jQbD+tw$5{Kc=-@FXB7XHAdc
zt9yHQ*ZukE{`cc?c~BeJ?#BaW(8zFOW8<y;_51nc?bggP&92Ic-(8lQduxlPxE4DD
z19*A;(+jrW?<{_Jxc&9k>v5O={QRuyIW0Bw!UD&tr&GgKJlXkVCaAQww^!%L%gL>q
zGDRdcE$!6#^XK;+0@Y(SEeu7XO3KPtHzYcPmd1gC^iV6eY0?o6&@v;?u#+wC>HGKZ
zC*N*pVDJp8s<Hy_u-UG|<iU4#j%9Ga{l6V$Z*Dx?b@<}8-00NQ)R&;vk5%cbB?k^T
zcwV}>Io)=feets%m7TXhSqWURfff&6T^;`YMI30l#&@QX>uj^!B3s$hH$`73vGd6U
zczAg5y|3G&nR!k1wAJ7L@}LbsiN|^*L37f#H*MLnC1%yL_stBGoZI<igFHMsj(<9H
z#z!)_<lP<1sXCECN4rEXxA98b+*%vG-4C>r!zQZUGj`otP>{z=_M2<9GFbh)euH`5
zofT51Sx<so>-lY1wc9~M@4mCmGLQGk=AB;dKVMH?ULMr7p0uRw?Jdwas+XT%+1AKy
zIWxEA-(SZkYjq>an1O*|!u0}nmG-!bhpeE<ldrF@U%%{czxKj~fZC5o#X)^V(4q<<
zRWFZ8pw*c>i=S(mnT3H?HJ+TT4yp}6bLAgDe%x6t#K6Gdp!b;1gAX*|WB=zvGic7>
z<KyF?NsFtXYT|laweS1=|M#tqT^Y1=OVLxW&=moW`ulz?5)u-+vMJRYw2IK?FBby?
z!*-i@4Kb~=OtZ5NHnE21l;6(X4(fiGg@ES&?!@e1231=$-8@BcaWV30GkO=u)DGc&
zJ7W*T7ykQGxi)gM+sTtBK?8N~cD>g7`Rm@4<)8$2Cn#^1wZiRfxu8u+SC@DSgG#tw
zY4fmFF3~NOpVOlI_7^^O+nRSbYT?3#S^*0hKub5u@7G>meC*lT+1eT!9t#&P1nnv5
zle5k8t_9_nxU$Qv6XNz(y}Vcb9<+z++xz?LK|8!aqZfZZ9?$==aX)Cm&FXM}P*Zq<
zqVtz;xARwrt`7V4xZge|chcm^pv?$xZ*BEn?A8m~gt4HNTYOdI<}|DFcXxQ#gW3Tn
zPJhbTzf^sGP0;$i-)1>EIo+9-e}7*rCnqNt2gd}^+U5{`n-2|ayiz63uPrM-E!kE2
zdRf@osLXS7EN^a;##@0L=UpodYL=h=^hS2V-{0R?JGF92ndi;fv}se!>Ez_(tNZKg
zL9-gSHYT@&_K|>Qhc<59Xuf40XrA}O!^5EZN#*5v`~Oo6k1f8tr}8tX90>n0VTqdW
ztQA2^y=K`~f8$*X_QvZ^ISe!H>-VLdnE~48^<w`2Kg-4R<8(Z${{Q_hDk!*cneS}S
z4ldA4Q^?+`Qr|fiAKR{N&betMsukh^8u0`zDcX?W2;%Oo`U)!CRbx4PL2Lca&N8*#
zwmx?EHnZGYCC=HPQs&bx8)*j>&{DFC({!W1fY$XEKR>tY{l4ENFD@v87E!-^`4Tjf
zc<J(G)AVyPqS|3^+OB=Noxfkx*f==%)|QKVzu#M3`T5z)jmPCKv&+{kcz1WV_ar_U
z3k6Rue*W(_>>wSfQ)kZXSy&26UX_va_!K5RdHi^B`n*cF{r`TgR#H+bc|Ny%RsH{e
zR<*yj96EI9$>Yb#-m=U6=7QD_JbL`tH0_K8XroT@@xH6V{x%C|8mDJHKR4IQ-+#Kw
z&)>hRbKc8rew4$^z`$^)>r)NG$rC36qM~Mjmhy56tGxhi)oSCF4q52L>O05c;%kc@
zX+;BrfJvZ1y`8%6@9f;%V;Hr!YU}FW&ED6Jg63_ufhw~HVN=rQH<dm(z*zeJUaa?Y
zy{U%BL@hw$`D<f#27y*+H!w1P`S<&M_MIJtyMDjhou6T=>OJiWXx%nwE1@nwH}_<f
zrOTG>+6C^pRoN*jDt`L>`Sihy_okS<o|HQG-+z7v28K5V$;WuWQ{a(NQBiuKpTAE`
zXFdV)CTN87=B8Awpd}rk^{Su>?)*Gk(6|t2YVg|H=<F*i0(X7CS6zC)_WRun%YCk{
z2y_N*=9x5ka_Gh+*Xy7D{{HU0OTY!Rup;SbSLWe1Ub)-rQR-Xgs|*YbKURa<0)BJv
z>}R+K>DNs37X54c<fdN4{kq?4=T$zF1nomAzf;%_TI>oM<eVN~SGbjvhv&+M#KWLf
z*^$#qonODau&}wu@YjpQ{dcDM&#?%stE<bpv0<Ug%GljyQ5zB(CrzFl3)*wC?CtIC
ztDW2V%(u9K8d&R3Z!UK@bolVrw6jvSACCx6T4I`g?ZhUXsTzTY7U#}1N;S#8wlsFy
zy7ez!WPsvgvbuj*TG}!xvz!(A`+mBCCR*9}WL~TSO`goME?<|FoP2eCy!~98${<co
z&Rw6+S&Pcc*CQo((6W(sxhjv<VQWEyfuMC9b$@@Y3|SepGwgD^eBFvosi(6(Jvr&+
z;}ddoQ>tm%n~1M3FCV|UEM#R+)Xt)%pzh+{ACJ00Yfz)M<*aOJX_4vs4{AF7+ozL!
zJ$cE$ru+5(W4)*8T%2i~9<sYE_v-3!{q5en7XDlB|1iXmjpe}o!)~6YQ>IK=^6Kj9
z=VgWr1!w16&;C>X7918Tnp#?3{&qi8@}`4ESsqxO+}wNt#QO7>sOl%Liy^58v>$c_
zXs1BN#YLY!e*F03<JYs7{Y5}c;RQB!{2iA;$@f}xK4_OBzx|&LT_T#3ZmWW9`N5sn
z#bA_rN@Q#Hb-&H&=g++j0{JbbdG;diu&SzEpbaXwQ$a#I+{|4WK&#fSt&g9NBvkqT
z?{`pa?)`Qv+p6qMMBa2z=6s;POOwgt>8Yt(v#;y%%GpFDCMJR^5H3-zC*Oj16g<46
z2P$U|h~5!tzHobMw)*K!MZ0-G_FR9lj6*@b{!byOpUA-Qz-ou)t^}}Ct4~ZWcL0qt
zd4k4;l}>Mp*&pwDeO+vRN+d|*y1;on3Ligy+@#~pZ~JA!r>Ccv|M>AkJ1;p>4BSLM
z@%U2;!_U9p@2h(L{PeW=w=6?J@vU8@*&utav;Mc;T~=w-Fhw`|+ot`@40&SgDwbb9
z9Oi#srpVA>qvX#fz;NLH(L&GXs=iZ8qV=vbF<d`9ebT@9>T<c*)LQkrKgG<m8r}#P
zG;pub=;~VWf+H$G@W_f}ZH~1{d5?`&Xsn$UwT8P#I_zMW){cNyty32Y3oNy+1O~PQ
z9$C6$VT1dbh7*3C0u^=j5udW9E;M|&6H~MI+|K7u?Cw8r^FL(SSU&G5-^p(Rmc9)P
z6PmUOUR1p8%#g$GcktJ~J8j|&3?99po%KP=4h)f5zVNjG3=LN}1Q-|;Of8EAe{D)V
z{pg~*e6PR#Uz2IN(PEyHLL$zm7=1jz%%75J#lWyYt4PUVUiG`37N5@;C!d{V8n`}g
zZ^n%ciA!sZX8MS!F*7i1bMs?4vB0r8>HFRCe$UBjM-Q^g&v{!2+TcG$_<F;cxz^_E
zc0A(x$jHE8si)4Avj6Y5?$Fg?snt9T3=gVLbuvg=m1Nwhe!thS{@<URekKNn8h*<{
z-V;|=1~1;Q!Qj@mT<N>JO1o{p-B1Rtj7XgCqb98E)^p-g3j>2g=o6QQKkv%-YybbT
za{0VlZ|s;@7#LRVpTjYsSK2(SnuUQO!TLmJwgUr0!(3-S8OEC__x4nNe6#udu_jh-
zC8ebGd%tx}_P4VHZDV?Rl7XRN)rpx5k|r4eJrahCF1?JXtgJLFcyK_%uBKud$g``o
z)cp>EN|eXzcE9VA|NrB-VePLk5&LQ?b>jEgEc2f)mp-pD?M~_S*uv|v<*C&^3=9vf
zpBxdKV3>UDNapgnV*U32Dq7#V%a(@Ne7lhx7!@V;{cd@DOzG9o$XNmm3@f_kSTGsY
z|NHae-rnD0*LRn{f9K1^$e_Uf#HGO`_m;`My5Dbg*X{rN?KWuL&?6THh6CG9bb^Lj
z!|&Ap|6BNa?e=4{OtVjIUmv+yEpPYRZ9D$|`~7&$=5wbWL4xause<|an&LC_Y_03Q
zu8u$Y^?JPg+1cj(9Uc1nekfgAA1@!fyR3J1-Y(74!AuMc_f^%IKs_tN(pOh1KAlw8
z-ox+FFK4?b{rtSbS1XshsZBolX$k|wf%21`3^$*Ax$NJ6+27vwb~0#;OGAAfBO?Pt
z8Q;}U9H63BNnc;z?#F}X8>!P{7lp14yI<KAsy4aP-|nZ%QcgyOhTK41<|pp<zXDT?
zW}Y~Gdi4hx28I*4SB)Hw^~wHTd!CV@;m#8&NXivd*qna8&t1ND%b{)0=T+<VS-;z1
z@oL55q$3@Ik+XOh7;Z>e3MyQWDfac5VX*Me&pnl&AN3fY>!|$v%+=+{)$n-P#qRy*
zu2nEFIEX%VY1s4k+wF@xi=Tgb4jPLBE#SFV^?L0L!(_KPmCt5=Y`6cT*e%S&zz{l7
zm~m6m(XNa;I|_e(PM=q)wyX5DnC~o;&W?_}ySt9w*;%~VRE~imz|~Sv!PV9E<G<hU
z-CbNfJw5mQd^WrAlBfFA_3PvI?)o!rF9U<a*HGR3!@tk_+5i2r<N3U5&}Of+GcyE#
z{`^^ZOfr4SdQdE1+*SHo$B%=7A;i^><-~=B&W}&)@9%M!t5lIP$q-0B-q)LUc9yHl
zkyBH(lOG-F{P_O=zxR>zgculp=vfLXl)k#s`SJ1b{KB`N&)fHd7WUbQGB9k|TBPK#
z&o?eE?#lXjdvIKZ2Iw+BSvEVb%STQ4dTe>@lc!IQ`kLSUGI#yS6eGiw6B9(1fpU7N
zn&%{y+s=PB@7c5GM2gYIvbVQxlwOZrUDCeVM@?ATEXN~pmu&jAHIaos9=5w5+0pSM
za@%pn8+^yykK7denC4P);*$=;?Zf8w*YDMQKKtUr!Sh>l19kfwa_;Q-7(Jhvfnn##
z+35@n3@cA|GR!p3kMo&lQ`!A`vbulY&(F`7n+q^7Z17$6R5RlLo9FibE7!#AH1f0k
zdgbgo(Bh1KHeRVC$^Ev|KBX`)9JqF(Q(58ia{vCkySs7=|F#JGb%e)NsvhkG6-%I4
z%(=N~MfCP}V%J|^St%S}`!%#nn2~|uwvswi%6Z%GJ>l`SrQNSV=Y?#^xoHH~c4>S5
z{faLa-IJf3m?)Zea(Ck4HVMNd7oQmhigmv(&rd6K0vDN&l)fBnW<S0q^K#OI1C53`
zH#Xd;|NmE6>Cs_+`yT!Me~fmOyc7b3^R(qG3=I3c{bU$Vo<HCJe15&1T*ZUN7dJL0
z>qKr+nWhsdBx_yP!!BQAu*_$s(9fSgZ^{WXF#O=NEM!qp0_CT3*6;UNyx;SAlPwnm
z!-n1>H3uc7Q>RWPU0V~mvEt*S7gtsWgHDFHt<1>45Ur^0cd)BN!m=nuL{!vux!>GJ
z$L;?W?)iMqT2OFf%E?KfRh>3J9yCYJ6M!Zle%mhrJTevrRbO5R^4tALQ1J}fcWsI1
zWQ%`49`EJ0VqkdEFo$D;_4_@>pj7<h^89}y%jZ>PE&Y0!-`?imuj~8M5{(!b60)DT
zfa?K2yPr>V*O_NsIbpq!nZbeYL?;7i3`{3-Q%d*i;%8?%@0Q=UMFjTd^z#z7RV6y{
z`}SPA1)8y!Fi!KCQ+6veat17mJGb-o@=BYz>@Iuz==%PDr71=;e>|4|FOfdKwoIn*
zh#+WD;*Nj6UT?NlV_^6oTcqSL%RFB$f8WovFE1`CtNF|j@SJo+x!*<zl*sng{yz44
z{r-7Vzq3f1<wSrofnvK%Q0Ciae!C7i+bWm4yGj=qK0bDFef<7>+g=_9hB}U-XT2P=
z&2pu_-><I+mB1gLPLDr!tXCRTb$$A@>2d(KxL!|m-cHq5S5|Jmxiz`p)=bJQM`HWE
zs_ZpUTeaTpc-&X<e((3BXJ=*xZcaN_bDNPNVfU(U|AqhEzW-0G`pri7KcA-W?}`8O
zNL)}5ROUZjsl>)BCG!81{(qs@*VnHvVPBVcxb5hzt=Y-n-rT&n$hEtp!{XBk<;Bt4
z^9;-0+}QEq5cg(7BL;?)*sb=gtIOWr3f!D__D1gZyPIsic21A4vsCk)B~pIB_IuiO
zb>CScM~@zT`cY7@@DQiE%WSjUM<0*N`)B(wFsvwBRomd=^5==VeP^ezdRPVfmz<kB
z3X@|BkBSyvbQM49$Sxa_`L|ntU&qmI@#BK-GJ%<ElaKd(ycV6m)KHCqA;kOYKan*Z
z9d@<9j-*bH6$8~X-Fmw;zTK;Szan&X*wVjNB`-D{PM0*z3aR;aGyUWA{eMz7zgAUM
z6%-5%2?@zuyJCgLG`(1<`1-%4Z#JFQvo7&tU|7*tq~x%x<YmymkJ{_^1ZCQKP6Cxo
ziHF-{t&U$>>iyV!|4-kT`oCX6r@owhx4G=?t&WZp=g+U-5*82;u&<wik>NqRhC0)e
zgY5D>K5CQS8a~?fdR_OiUg_fvjLh41oL{DFoSK?C^_rKrxAq%m1_pZ*OF@OdzrUaV
z#$j0g?hYtP_DC2iiRr~i2;P^e)YR4OUBCaIm6%S1z}Ht-we7!VU0xaSf5nm|DpICd
zA+3w$%iWH&)Ze=H{XIVe!=;Ze?#usw@i~WQQ}D`bj6qRRQlMu4nc3$0Qs#LwM~@zz
zy?2`uFDMPEcs}aVUe|G2fB&9KRj;qDeSAuLeb4=W-?j%vL`dZC`RKN^HtpOT$+x$+
zuRk>3Ohc*e+uwFJh6mL*?&vohcRzA7az^U&z+C2(kB^QPo-sUrWKZSiQ}63ScbC2W
zvHt(B^%ftG2nWw!9=p5j<8%A}J1>2Ey>7Q&*!nnGW%s_GYipz3kC>Ogt@`n>J^A6G
z)~DMa&9y4cs`+x!-7w?Af{^EI3=OYTCWo|F-_ASsbb7qpVz=I|MrQV7ACJq+7e7DO
zJ3D`$<*Tc!#pl<2^4xY@`})@G>pxztUjJxr`9011-+n%y@7~TQyQuE(ufnHO!;h^B
zU7hsf!^4fw=T#p&Gt+o`1=qDTk((cVILzPQQTUL9V?*(cFS8GsD<>VlzfvIK`0r=W
zZ_Uo%H}jNiM7i75ZyYB+pSPF)`|E4>!^7><^Rut5iTv|rxqUCc{U3vG_v`=b_=R7z
zk5{<ADfM*4%cavFy;{A#4^&#O+x<@J=+UEwH9rc<_cJj(U|)NS?L_+gTCwYK)w!*?
zbFIt!R6LU|E^@u9<`7r&@#xvS{M*}dZGOMmtm)6pz;HEsYpwd1O`A4-`hNCC%H_{r
zUtdp8Rsl6}S8a25P*Qq!e!l$Xw6j|E`;v}!b#(mr@wk7nV>8>-Z{>1w3=ARpSFIe{
zcqE0K+jv%P`Mc?~-s%rFYs;P385s7>&yrRE6~x=z85kJ0ZO)Qbcs{Q>55}t&v|?b`
z@L5oSfx#h*g@b`%f)pbY1H%$G(5&RjQQ^TICZS)BN#`GFU}RntySprKx!>Fy+3WW{
zTC@3F7iiAr(mwf`500Rk>eaQi(!J8=eRY3-9i61=y~)6ofgwcSbhE9)x*cz~-F~$7
zdR%wh-m0UD?J`3Dzt{g4|9+>~A2fsqYEiPwRV28$=)~+W=(GKH1JrxFQ}uf7#;mKW
zc0BI0ezf=dz3!RD>27Cd?R(0=@TcJC{Q^;5DH9FQiefIti@VF;Tl{#?{P<dQes8;c
zorRK88?Urj_VsnWH#eudcZ=yNDLp!&+}{Ig0N>b{{P+;J{+UyM7#IR%Em&7~_1XP;
z;pMLX?QZ#fix&%;AN~D)U;n;Y=A|VXdU|^O{T&^`ein+iwqy!}I!0NanHU^ORUGy$
zckLE)ovh}or1S`-LfPLZYke#_fA7?96$}gkYdI#oPrS3EaAU#4LoY5b_jhrbGG&U3
zi%Vc&;L_UeuCAn)mzI9~dOd!*l`;cEh&oe>G-&&yVZwn1P`l{M>+AYTO4ruKN(+M8
z+*7~lYiO+4z|X+&M}Tue?uLwui!7c_30{<Vxb5Q+VSg93$(<b?QCqWIU0fm~BbQ#E
zGHqJe4R!{Gx{f=n+1hJkb{c^iN!sD-dNMCBJNj<-`?!7EUS3)4yFBSH=roXwD=Pv)
zl~(AF;CDS8od371eScq`fnmwxi~H^WU3`91B4xRf!#1bL$Vd@!@#A-P7AL>DvU219
zf4{>c^6%}b6cH0UCY`@0@a0zH^m9Gm-rf%X=r1KAX#e{kGc&^n+njge2OcXwdZTk@
z)8_)NFwxvQI}EG7zmqjiJJZoAtnPNaPu6_*egC>olPg}WT%H6f!f!A0n=2(>`z7$p
zySvtF3mF*}L=~|t=~}n%*Q*&el|`Ut7N|`qVP99%`gQ)_H?x(+_W!!NKIzes&WlUE
zr|<Z5N;~=Ls!+q4A0I5fTyS1o|Nmd)3>gN7Rs4)WuKD}_mZccY1R3Nr&t~VPU&|OW
zZ*EH6^W~Cv;n%C-#~&PQPQD&n-uvj$BT&~`bp3x&2Youj%0=SwH5*U;-j;jYY+miR
zo3a+X3=B`yu8)>w!?Pei!M7>z?yeo*Ze=fa?G_8%UG~=E*Ner;r>1D$l;dV#*yPpl
z23*<Qsr`Pp@SNrIBPS**FHSo<>*D70^A&HmUf*OZ#lVo_dp3uEgYhiO;xtf4?A@Nv
z=XShWwOUE((VXIQon>!t9W}ikBYb(8@99r13=9)w`x@Rb2&?<`%rebB<|-Z=vQO9E
z-d=CVgQgjFwN;=}vimY4gTptD39<>G7WFdU*(-vV`?bE6wJy_%XJ=@TS7O}63@T|r
z<;+`GSJ#Ouo}iPEB4=<hFl_Q~c*6iH9RK|J<8_;xi|f>NPz&>f>kDg#wNYCaty#0?
z(zi>OE`9oX_UHe^Pp|r<cokA-*UhsP7JQ#xEYR@w$?W;rbqn{rWjVnY5E8QG=H)eB
zUS3K{iz+`qn_YYN&(F{Q|6N?M-=3jN%z2Y7!+|nW&|uM(mBHJNpYUW#Vb8d~ulCRR
z|9||~#O>X6sP)DA{r{>`jAmxs-}g5y{`%hP?-J&DF>m&MzZY%e#l+z7ZB6WMGf>my
z?(XvQ-!v?>C#!f)daGDw1}bJ2_uE;u@ypABI>RnCpU=H`duwa=p+ko%zJ@N3U}X4k
z_zA}ez6%?ZkH5IOI-Ez&#zIUtN(3|!(j#ka25JC<TP??#85-6UvZSy_ZqJM5ku*{{
z)+;T3dYW#xGoPhO8=tI{`n-yyZSEjdkVL)*v_@)z6k`zYn&|C%>-K)Tm2q*A>y>q}
z)}YE{hEb~5w&P3;4R8G#LYP4<A-strCwv{_$xXi7-|YQ-&ie7H)$6)CIyP<ElyQAs
ztV#AYon^kWr#<ClWJvg3$f9yu&2Nr`Y4)|AZoOSAYNG4v>S78GvVsTrb`&IvEoWwE
zc<bGea`Vm2&5M0!n~B~tw0$)DyU@)od<+cM+>Db_RaI5NJ(cRfz(5sGq4=7Qu42oW
z7#d`q8&YoG+M2CwZ@>T2x2C41Po)eDHzGME=zu0Ur%at1dMhp}Drz6h99LJ@z@VU@
z%-_p$L7PLXRTvm<B(iu++nRsh&hFQX#Swd}N?YF|qP7+^Hrepjzai!3%=CGZudlD~
zzqr_adVciwyjW0NfWi$Fh7d2TPTR)*W8v!?8<W4hx~k2_FDKJ2rrTBf{jT}3K3QpQ
zF`bTfxhjp@j~N*bls%n$VRd8a>uX0RC^{#Bs@j~Jn=GD8a87!0VPWB;PW7~E69$GG
z>mcn;N{Z<NerfObe((Ey-roLpa*jA?^R=?RzJA)-SzGVgJ?AyQBT!lS?<eyKG5bcw
zq7%#K*GY-T*A%|leBLf_b=X?a3Rcj<61P4X$)!t|3JOj<nX<_$`TxJai}UX8y8ZTZ
z?)&xXlTW7nt!DY)9A<o*nIXW`-~Mk2sP5z9;#w5HzwY9?*xeD^^J0Bwo9V9G`E1q<
z<8;425Bcj)e4FvFng76cAq57@gnxg2UfiC4KjZ4E&_7T0>pMZoXMJqd%cX^%&zc{<
z>~BB!C@15BtT|1r6PQ7xuMwNmd~H4)U>1FpJo(z%=;KeP$M3s&T`zi@PTjxH^N)jC
zYo)KR_5S+$+Wq`I+sB|qja%N^e!n9O%4v7YZtF^!W{J4VRi=Oji=Vz;9lpM=k(u3X
zb=cZP3l=EMGR+oKpIZ`iW}a>J>V5Oh+x^zj+x=#f#e)XsMP+YqU0mWh`NiGc<vI}?
z5;p$^4G8P)`|$`g$a7_Vy!|=b?{`4s)=U3_Dq4$oJ036cn`;Fc-q+C6>$5C=R`c9O
zf6oUend&ziFK$RYydrvgo=m|3#=^U$*K@C4XK}b{!NfFyd0y44m7wFkWJ<3DM*qF#
zZ~xci-|zkZt*gGi5?vd$wac|z>}c)xyW+9CN;)lzpB;I(`@Ni?VDhn^PVM!3j6iJ^
zW_G@wOP4NHJfB;hbgW16;&T7_9UVJ<JnBxqw8XRU=hNx#x3}d!UcG)_7pP(N`~7}-
zP#^b`&;Q^1|4W1Nz?ZkT&7-#ENPd2PzQ6kYUh`dLZ>5T#o#_PSv)aijos7(EE{EHA
zA0Ly>?*VlJ-|hW=@5h_X=N}yvkJq{Xexkcv=fA(d-TUQiAAP%>-@pIw+kC^UD=RF%
z-AI1CcKf|9+wXUZH*Y>O(^wre+L&>FU+tZm&u1sjpAYWZf_jIm_g`lSab$AXx~=Hx
zDV515Rnq4ax=sCdzxw^&$)C?zumAINSLti5x0@3VHZ57OKmj!2@pD`K-|O|he0Dz`
z<o~_HD`n!LxBt(l{JYER|Nry6yQ_46>HJHVE_vNfJ2PWqiqXuJJ39)W-aghRJ3GZ_
z=91*&eJ6i?eSLcS{leq2o^f$;MwOqQsCZ6F`TFXrC+PH0Z@ryM4n2?AQ&D(nfn)QN
zN8S2*_sb6RnyXY+Rz5xde&6qRD*F2Rk-JJ>Za>F!;M+qHorbKur>CY03f`_sUm06=
zbLpSQz0&5#E-m$5T=w=BxE;D<Z*DUi?<3GiviZG=<nH;a9h=z<laKXiXlmYE7HM|!
z{CWNV6@Pzy-B|MS5-3TSWL!wty#3DK?e)L6gO1<)`Po~4uSwRG6@uq&KKr=1*!=(V
zd1KPiE>P3G=Ihn)r~N)^!l0RvR%O-Mzh@~a{rmIW-hGnF{nxLV9_;26XvkU@x3@}A
z5Y%zWt*V`*Qg}VK9JDG;$==?6mPw|N?`*T)^82;sVQV4+_ub!mJx&@l0Ny8S?Kayi
zH|anF<5WNAU4OsbehljIfaa6>tX{3y@$r~+^1VHk(YC>vnVF!GBG9-)*o@4hU816C
zT|b_!ivm??t+~73Zi^NX6+Qar=VxW5q<43APE_$Md3(#0i<|qjJjiPCxC%uv{kT0x
zBhOjAUIXf4#FSigy|^ZF^NZWt^KCvJ5l&)BU>8(ixEcc*NUZ$)?Bl)a_qmr}xARJi
zHM8+{>Ba6k^5f&<$3LIX@7D}ocBGMAPD0u|Pv`#o24=nvP|^hrSRR+F&heRLqG?tB
zP6iYaKkfEbeeD8eyt?nZ@4I%3=_dX7@UZZLBm2?f^S0YVjd>*u6!LaHodybLkSjhO
z;?_ShMKc(*^ini!73ff6H?_&2iGt%(G=sHl;wm1tg64X*|G3rE)Ku~F>2y$o3^eFj
z@%?T&Xfmm5vY(Y_3&R@*Jty`PjG#f2v@<hi7$zSJi|_b1|NqbVg?~OCKmOw4V(pyx
zeKnxYOW2LD)nRKv?F3Mr1Da+6Wf2}}GaXR<v-{nyY!??$eXO_h$)p`mCV3~FoTOTK
zBeDJHhQz~*s=vRBHVyv&@9*PpxAXPygU&6xX&tTVDFm7k{`11!Uh6*S+(ivd&CXyy
zOI0PMZ#UEDdrVT{;^uz*<8lA`Pcr{kWM5x*aclN<P;cW-(P`a}ujBt)fktt1|J5+$
z%u`liuzWBpdtK+Pt=Y$0#p8C|yxeK`^T}ih%c3V~@zIOjdcF3atbf$04(d9IZqtq3
zwdK&~S*F=;x3}dgdrtcC>-GBN$H#h~USFJZX^H1#(1FuarcTYhdOaAV)!hnIFG-u_
z+<5bEv3q~t*Vosl+wcE=uR8f~8!xCS+tKmj-rj1^p7wu_?f)%4R5u$uB)(ZEdfS>y
z+no7rO(v<_e6^mt;r%lX4hKF^=KAx}zrM?^_Ls};ZMoWegnzAGzfTI(sQrB2zJBw1
zT|K=%(3smf`~QC|p3O*pbhrF|@5jf-kK6rz6P&nzvY(Y^+5Ot@pfm~!^=D^h3h)2_
z_x<7>J1oj>=WdVKnB)qY_c&+s`3$&o=Qr01oNA==_XvW@N9~$*phm%l#KT%=FRch%
zyyMFyZ;)oW$|n;+2TjRTJZJ>9n`T&*W|?GOO4%HLcvtD`N1$n#dwZ*ov&+{6)K%Yo
z^ypE?k7p)Z0~fow?yvj1$hn;lRQhY^==7Yo`>ivt?$^r~cXoajV}1*ongR_~`&mAn
z0vaI!4a0%T=o`i7Z5J0mKX?CUIrD+AQ`g>ZXSh*S{QR6RsHR&|`uduuqoZTc`nbJM
zW+eA{zT5eH-jX$IbUY`44@@ii_w)Jm{ma&@(fN5)zi#4|jEhP)bGP4}^tjJjZ>C|g
z+oi49*Pr}&+^>H>|I7?S&*^%xlMWp^1UiNCWZmz#(?R3%K4EL4rmCDY-~Ji2(qZyp
zK5Lzo@%!t7w&&e_vf(hF_q*Ni_i-72dw<{l<muD5-z4w<`^|fjisv-__<5kFrRU{k
zzLTrIzEZWV{^kQ}*m-U4m$f!KdHS?>T;<cLPbPWmd4d+2fl|iH>+9n;<=oulb$|Z!
zxGGJ{pHC)FZsV0!1Fg~cb~}InlRux&`=_0q6}s;{ulbz`S5^cr{`0e2f8UHbg~ud4
zPfydG+|<;xB=z*P=+^e#3=9nUpgRIi-b|lA_sm@D@4x?qGHzg<sZ!V~%fK*!kCK)g
d))B~m@(zV;#;p!aH$kg1JYD@<);T3K0RXHHL9PG*

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-1.csv
new file mode 100644
index 00000000..8ac6cb3b
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-1.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.942857142857
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.9189814814814814
+5;Mean of F1-Score of top 20 classes by F1-Score;0.9189814814814814
+6;Mean of F1-Score of top 30 classes by F1-Score;0.9189814814814814
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-10.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-10.csv
new file mode 100644
index 00000000..a3cebc60
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-10.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.742857142857
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.7086031452358927
+5;Mean of F1-Score of top 20 classes by F1-Score;0.7086031452358927
+6;Mean of F1-Score of top 30 classes by F1-Score;0.7086031452358927
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-11.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-11.csv
new file mode 100644
index 00000000..cd139990
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-11.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.857142857143
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.8492678725236864
+5;Mean of F1-Score of top 20 classes by F1-Score;0.8492678725236864
+6;Mean of F1-Score of top 30 classes by F1-Score;0.8492678725236864
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-12.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-12.csv
new file mode 100644
index 00000000..cadf36d5
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-12.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.8
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.703030303030303
+5;Mean of F1-Score of top 20 classes by F1-Score;0.703030303030303
+6;Mean of F1-Score of top 30 classes by F1-Score;0.703030303030303
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-13.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-13.csv
new file mode 100644
index 00000000..32d51bf0
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-13.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.8
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.5
+4;Mean of F1-Score of top 10 classes by F1-Score;0.4444444444444445
+5;Mean of F1-Score of top 20 classes by F1-Score;0.4444444444444445
+6;Mean of F1-Score of top 30 classes by F1-Score;0.4444444444444445
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-2.csv
new file mode 100644
index 00000000..b0824652
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-2.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.914285714286
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.8382126348228043
+5;Mean of F1-Score of top 20 classes by F1-Score;0.8382126348228043
+6;Mean of F1-Score of top 30 classes by F1-Score;0.8382126348228043
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-3.csv
new file mode 100644
index 00000000..6084f669
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-3.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.714285714286
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.7083333333333333
+5;Mean of F1-Score of top 20 classes by F1-Score;0.7083333333333333
+6;Mean of F1-Score of top 30 classes by F1-Score;0.7083333333333333
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-4.csv
new file mode 100644
index 00000000..e0b61f24
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-4.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.714285714286
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.5949074074074073
+5;Mean of F1-Score of top 20 classes by F1-Score;0.5949074074074073
+6;Mean of F1-Score of top 30 classes by F1-Score;0.5949074074074073
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-5.csv
new file mode 100644
index 00000000..ed7e4d76
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-5.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.714285714286
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.5
+4;Mean of F1-Score of top 10 classes by F1-Score;0.41666666666666663
+5;Mean of F1-Score of top 20 classes by F1-Score;0.41666666666666663
+6;Mean of F1-Score of top 30 classes by F1-Score;0.41666666666666663
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-6.csv
new file mode 100644
index 00000000..4d47e5bf
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-6.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.8
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.7619047619047619
+5;Mean of F1-Score of top 20 classes by F1-Score;0.7619047619047619
+6;Mean of F1-Score of top 30 classes by F1-Score;0.7619047619047619
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-7.csv
new file mode 100644
index 00000000..e0555824
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-7.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.828571428571
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.7756410256410255
+5;Mean of F1-Score of top 20 classes by F1-Score;0.7756410256410255
+6;Mean of F1-Score of top 30 classes by F1-Score;0.7756410256410255
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-8.csv
new file mode 100644
index 00000000..b5d750fc
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-8.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.8
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.6693657219973009
+5;Mean of F1-Score of top 20 classes by F1-Score;0.6693657219973009
+6;Mean of F1-Score of top 30 classes by F1-Score;0.6693657219973009
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-9.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-9.csv
new file mode 100644
index 00000000..b80ac1fd
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-9.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.914285714286
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.8834628190899001
+5;Mean of F1-Score of top 20 classes by F1-Score;0.8834628190899001
+6;Mean of F1-Score of top 30 classes by F1-Score;0.8834628190899001
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats.csv
new file mode 100644
index 00000000..aaf58c08
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.8
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.7471620227038183
+5;Mean of F1-Score of top 20 classes by F1-Score;0.7471620227038183
+6;Mean of F1-Score of top 30 classes by F1-Score;0.7471620227038183
diff --git a/Code/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-ConfMatrix.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-ConfMatrix.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-ConfMatrix.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-ConfMatrix.csv
diff --git a/Code/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-ConfMatrixImg.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-ConfMatrixImg.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-ConfMatrixImg.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-ConfMatrixImg.png
diff --git a/Code/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-LOG.log b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-LOG.log
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-LOG.log
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-LOG.log
diff --git a/Code/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-Report.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-Report.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-Report.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-Report.csv
diff --git a/Code/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-Score.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-Score.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-Score.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-Score.png
diff --git a/Code/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-Stats.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-Stats.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-Stats.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-Stats.csv
diff --git a/Code/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG.csv
diff --git a/Code/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-ConfMatrix.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-ConfMatrix.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-ConfMatrix.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-ConfMatrix.csv
diff --git a/Code/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-ConfMatrixImg.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-ConfMatrixImg.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-ConfMatrixImg.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-ConfMatrixImg.png
diff --git a/Code/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-LOG.log b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-LOG.log
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-LOG.log
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-LOG.log
diff --git a/Code/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-Report.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-Report.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-Report.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-Report.csv
diff --git a/Code/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-Score.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-Score.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-Score.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-Score.png
diff --git a/Code/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-Stats.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-Stats.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-Stats.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-Stats.csv
diff --git a/Code/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV.csv
diff --git a/Code/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-ConfMatrix.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-ConfMatrix.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-ConfMatrix.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-ConfMatrix.csv
diff --git a/Code/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-ConfMatrixImg.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-ConfMatrixImg.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-ConfMatrixImg.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-ConfMatrixImg.png
diff --git a/Code/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-LOG.log b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-LOG.log
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-LOG.log
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-LOG.log
diff --git a/Code/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Report.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Report.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Report.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Report.csv
diff --git a/Code/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Score.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Score.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Score.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Score.png
diff --git a/Code/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Stats.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Stats.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Stats.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Stats.csv
diff --git a/Code/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB.csv
diff --git a/Code/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-ConfMatrix.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-ConfMatrix.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-ConfMatrix.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-ConfMatrix.csv
diff --git a/Code/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-ConfMatrixImg.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-ConfMatrixImg.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-ConfMatrixImg.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-ConfMatrixImg.png
diff --git a/Code/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-LOG.log b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-LOG.log
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-LOG.log
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-LOG.log
diff --git a/Code/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Report.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Report.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Report.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Report.csv
diff --git a/Code/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Score.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Score.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Score.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Score.png
diff --git a/Code/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Stats.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Stats.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Stats.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Stats.csv
diff --git a/Code/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB.csv
diff --git a/Code/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-ConfMatrix.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-ConfMatrix.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-ConfMatrix.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-ConfMatrix.csv
diff --git a/Code/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-ConfMatrixImg.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-ConfMatrixImg.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-ConfMatrixImg.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-ConfMatrixImg.png
diff --git a/Code/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-LOG.log b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-LOG.log
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-LOG.log
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-LOG.log
diff --git a/Code/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-Report.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-Report.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-Report.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-Report.csv
diff --git a/Code/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-Score.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-Score.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-Score.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-Score.png
diff --git a/Code/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-Stats.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-Stats.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-Stats.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-Stats.csv
diff --git a/Code/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT.csv
diff --git a/Code/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-ConfMatrix.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-ConfMatrix.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-ConfMatrix.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-ConfMatrix.csv
diff --git a/Code/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-ConfMatrixImg.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-ConfMatrixImg.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-ConfMatrixImg.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-ConfMatrixImg.png
diff --git a/Code/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-LOG.log b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-LOG.log
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-LOG.log
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-LOG.log
diff --git a/Code/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-Report.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-Report.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-Report.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-Report.csv
diff --git a/Code/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-Score.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-Score.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-Score.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-Score.png
diff --git a/Code/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-Stats.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-Stats.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-Stats.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-Stats.csv
diff --git a/Code/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF.csv
diff --git a/Code/Monoview/__init__.py b/Code/MonoMutliViewClassifiers/Monoview/__init__.py
similarity index 100%
rename from Code/Monoview/__init__.py
rename to Code/MonoMutliViewClassifiers/Monoview/__init__.py
diff --git a/Code/Monoview/run.py b/Code/MonoMutliViewClassifiers/Monoview/run.py
similarity index 100%
rename from Code/Monoview/run.py
rename to Code/MonoMutliViewClassifiers/Monoview/run.py
diff --git a/Code/MonoMutliViewClassifiers/MonoviewClassifiers/Adaboost.py b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/Adaboost.py
new file mode 100644
index 00000000..d1c45281
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/Adaboost.py
@@ -0,0 +1,28 @@
+from sklearn.ensemble import AdaBoostClassifier
+from sklearn.pipeline import Pipeline
+from sklearn.grid_search import GridSearchCV
+from sklearn.tree import DecisionTreeClassifier
+
+
+def fit(DATASET, CLASS_LABELS, NB_CORES=1,**kwargs):
+    num_estimators = int(kwargs['0'])
+    base_estimators = int(kwargs['1'])
+    classifier = AdaBoostClassifier(n_estimators=num_estimators, base_estimator=base_estimators)
+    classifier.fit(DATASET, CLASS_LABELS)
+    return classifier
+
+
+def fit_gridsearch(X_train, y_train, nbFolds=4, nbCores=1, **kwargs):
+
+    pipeline = Pipeline([('classifier', AdaBoostClassifier())])
+    param= {"classifier__n_estimators": map(int, kwargs['0']),
+                "classifier__base_estimator": [DecisionTreeClassifier() for arg in kwargs["1"]]}
+    grid = GridSearchCV(pipeline,param_grid=param,refit=True,n_jobs=nbCores,scoring='accuracy',cv=nbFolds)
+    detector = grid.fit(X_train, y_train)
+    desc_estimators = [detector.best_params_["classifier__n_estimators"]]
+    description = "Classif_" + "RF" + "-" + "CV_" +  str(nbFolds) + "-" + "Trees_" + str(map(str,desc_estimators))
+    return description, detector
+
+
+def getConfig(config):
+    return "\n\t\t- Adaboost with num_esimators : "+config[0]+", base_estimators : "+config[1]
\ No newline at end of file
diff --git a/Code/MonoMutliViewClassifiers/MonoviewClassifiers/DecisionTree.py b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/DecisionTree.py
new file mode 100644
index 00000000..8fe4de8d
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/DecisionTree.py
@@ -0,0 +1,26 @@
+from sklearn.tree import DecisionTreeClassifier
+from sklearn.pipeline import Pipeline                   # Pipelining in classification
+from sklearn.grid_search import GridSearchCV
+
+
+def fit(DATASET, CLASS_LABELS, NB_CORES=1, **kwargs):
+    maxDepth = int(kwargs['0'])
+    classifier = DecisionTreeClassifier(max_depth=maxDepth)
+    classifier.fit(DATASET, CLASS_LABELS)
+    return classifier
+
+
+def fit_gridsearch(X_train, y_train, nbFolds=4, nbCores=1, **kwargs):
+    pipeline_DT = Pipeline([('classifier', DecisionTreeClassifier())])
+    param_DT = {"classifier__max_depth":map(int, kwargs['0'])}
+
+    grid_DT = GridSearchCV(pipeline_DT, param_grid=param_DT, refit=True, n_jobs=nbCores, scoring='accuracy',
+                           cv=nbFolds)
+    DT_detector = grid_DT.fit(X_train, y_train)
+    desc_params = [DT_detector.best_params_["classifier__max_depth"]]
+    description = "Classif_" + "DT" + "-" + "CV_" + str(nbFolds) + "-" + "-".join(map(str,desc_params))
+    return description, DT_detector
+
+
+def getConfig(config):
+    return "\n\t\t- Decision Tree with max_depth : "+config[0]
\ No newline at end of file
diff --git a/Code/MonoMutliViewClassifiers/MonoviewClassifiers/KNN.py b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/KNN.py
new file mode 100644
index 00000000..ae03c355
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/KNN.py
@@ -0,0 +1,26 @@
+from sklearn.neighbors import KNeighborsClassifier
+from sklearn.pipeline import Pipeline                   # Pipelining in classification
+from sklearn.grid_search import GridSearchCV
+
+
+def fit(DATASET, CLASS_LABELS, NB_CORES=1,**kwargs):
+    nNeighbors = int(kwargs['0'])
+    classifier = KNeighborsClassifier(n_neighbors=nNeighbors)
+    classifier.fit(DATASET, CLASS_LABELS)
+    return classifier
+
+
+def fit_gridsearch(X_train, y_train, nbFolds=4, nbCores=1, **kwargs):
+    pipeline_KNN = Pipeline([('classifier', KNeighborsClassifier())])
+    param_KNN = {"classifier__n_neighbors": map(int, kwargs['0'])}
+    grid_KNN = GridSearchCV(pipeline_KNN, param_grid=param_KNN, refit=True, n_jobs=nbCores, scoring='accuracy',
+                            cv=nbFolds)
+    KNN_detector = grid_KNN.fit(X_train, y_train)
+    desc_params = [KNN_detector.best_params_["classifier__n_neighbors"]]
+    description = "Classif_" + "Lasso" + "-" + "CV_" + str(nbFolds) + "-" + "-".join(map(str,desc_params))
+    return description, KNN_detector
+
+
+
+def getConfig(config):
+    return "\n\t\t- K nearest Neighbors with  n_neighbors: "+config[0]
\ No newline at end of file
diff --git a/Code/MonoMutliViewClassifiers/MonoviewClassifiers/RandomForest.py b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/RandomForest.py
new file mode 100644
index 00000000..968d83d2
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/RandomForest.py
@@ -0,0 +1,46 @@
+from sklearn.ensemble import RandomForestClassifier
+from sklearn.pipeline import Pipeline
+from sklearn.grid_search import GridSearchCV
+
+
+def fit(DATASET, CLASS_LABELS, NB_CORES=1,**kwargs):
+    num_estimators = int(kwargs['0'])
+    maxDepth = int(kwargs['1'])
+    classifier = RandomForestClassifier(n_estimators=num_estimators, max_depth=maxDepth, n_jobs=NB_CORES)
+    classifier.fit(DATASET, CLASS_LABELS)
+    return classifier
+
+
+def fit_gridsearch(X_train, y_train, nbFolds=4, nbCores=1, **kwargs):
+
+    # PipeLine with RandomForest classifier
+    pipeline_rf = Pipeline([('classifier', RandomForestClassifier())])
+
+    # Parameters for GridSearch: Number of Trees
+    # can be extended with: oob_score, min_samples_leaf, max_features
+    param_rf = {"classifier__n_estimators": map(int, kwargs['0'])}
+
+    # pipeline: Gridsearch avec le pipeline comme estimator
+    # param: pour obtenir le meilleur model il va essayer tous les possiblites
+    # refit: pour utiliser le meilleur model apres girdsearch
+    # n_jobs: Nombre de CPU (Mon ordi a des problemes avec -1 (Bug Python 2.7 sur Windows))
+    # scoring: scoring...
+    # cv: Nombre de K-Folds pour CV
+    grid_rf = GridSearchCV(
+        pipeline_rf,
+        param_grid=param_rf,
+        refit=True,
+        n_jobs=nbCores,
+        scoring='accuracy',
+        cv=nbFolds,
+    )
+
+    rf_detector = grid_rf.fit(X_train, y_train)
+
+    desc_estimators = [rf_detector.best_params_["classifier__n_estimators"]]
+    description = "Classif_" + "RF" + "-" + "CV_" +  str(nbFolds) + "-" + "Trees_" + str(map(str,desc_estimators))
+    return description, rf_detector
+
+
+def getConfig(config):
+    return "\n\t\t- Random Forest with num_esimators : "+config[0]+", max_depth : "+config[1]
\ No newline at end of file
diff --git a/Code/MonoMutliViewClassifiers/MonoviewClassifiers/SGD.py b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/SGD.py
new file mode 100644
index 00000000..3a2bc27f
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/SGD.py
@@ -0,0 +1,32 @@
+from sklearn.linear_model import SGDClassifier
+from sklearn.pipeline import Pipeline                   # Pipelining in classification
+from sklearn.grid_search import GridSearchCV
+
+
+def fit(DATASET, CLASS_LABELS, NB_CORES=1,**kwargs):
+    loss = kwargs['0']
+    penalty = kwargs['1']
+    try:
+        alpha = int(kwargs['2'])
+    except:
+        alpha = 0.15
+    classifier = SGDClassifier(loss=loss, penalty=penalty, alpha=alpha)
+    classifier.fit(DATASET, CLASS_LABELS)
+    return classifier
+
+
+def fit_gridsearch(X_train, y_train, nbFolds=4, nbCores=1, **kwargs):
+    pipeline_SGD = Pipeline([('classifier', SGDClassifier())])
+    param_SGD = {"classifier__loss": kwargs['1'], "classifier__penalty": kwargs['2'],
+                 "classifier__alpha": map(float, kwargs['0'])}
+    grid_SGD = GridSearchCV(pipeline_SGD, param_grid=param_SGD, refit=True, n_jobs=nbCores, scoring='accuracy',
+                            cv=nbFolds)
+    SGD_detector = grid_SGD.fit(X_train, y_train)
+    desc_params = [SGD_detector.best_params_["classifier__loss"], SGD_detector.best_params_["classifier__penalty"],
+                   SGD_detector.best_params_["classifier__alpha"]]
+    description = "Classif_" + "Lasso" + "-" + "CV_" + str(nbFolds) + "-" + "-".join(map(str,desc_params))
+    return description, SGD_detector
+
+
+def getConfig(config):
+    return "\n\t\t- SGDClassifier with loss : "+config[0]+", penalty : "+config[1]
\ No newline at end of file
diff --git a/Code/MonoMutliViewClassifiers/MonoviewClassifiers/SVMLinear.py b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/SVMLinear.py
new file mode 100644
index 00000000..568badb4
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/SVMLinear.py
@@ -0,0 +1,25 @@
+from sklearn.svm import SVC
+from sklearn.pipeline import Pipeline                   # Pipelining in classification
+from sklearn.grid_search import GridSearchCV
+
+
+def fit(DATASET, CLASS_LABELS, NB_CORES=1,**kwargs):
+    C = int(kwargs['0'])
+    classifier = SVC(C=C, kernel='linear', probability=True)
+    classifier.fit(DATASET, CLASS_LABELS)
+    return classifier
+
+
+def fit_gridsearch(X_train, y_train, nbFolds=4, nbCores=1, **kwargs):
+    pipeline_SVMLinear = Pipeline([('classifier', SVC(kernel="linear"))])
+    param_SVMLinear = {"classifier__C": map(int, kwargs['0'])}
+    grid_SVMLinear = GridSearchCV(pipeline_SVMLinear, param_grid=param_SVMLinear, refit=True, n_jobs=nbCores, scoring='accuracy',
+                                  cv=nbFolds)
+    SVMLinear_detector = grid_SVMLinear.fit(X_train, y_train)
+    desc_params = [SVMLinear_detector.best_params_["classifier__C"]]
+    description = "Classif_" + "SVC" + "-" + "CV_" + str(nbFolds) + "-" + "-".join(map(str,desc_params))
+    return description, SVMLinear_detector
+
+
+def getConfig(config):
+    return "\n\t\t- SVM with C : "+config[0]+", kernel : "+config[1]
\ No newline at end of file
diff --git a/Code/MonoMutliViewClassifiers/MonoviewClassifiers/SVMPoly.py b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/SVMPoly.py
new file mode 100644
index 00000000..9f43f0b9
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/SVMPoly.py
@@ -0,0 +1,26 @@
+from sklearn.svm import SVC
+from sklearn.pipeline import Pipeline                   # Pipelining in classification
+from sklearn.grid_search import GridSearchCV
+
+
+def fit(DATASET, CLASS_LABELS, NB_CORES=1,**kwargs):
+    C = int(kwargs['0'])
+    degree = int(kwargs['1'])
+    classifier = SVC(C=C, kernel='poly', degree=degree, probability=True)
+    classifier.fit(DATASET, CLASS_LABELS)
+    return classifier
+
+
+def fit_gridsearch(X_train, y_train, nbFolds=4, nbCores=1, **kwargs):
+    pipeline_SVMLinear = Pipeline([('classifier', SVC(kernel="linear"))])
+    param_SVMLinear = {"classifier__C": map(int, kwargs['0']), "classifier__degree": map(int, kwargs["1"])}
+    grid_SVMLinear = GridSearchCV(pipeline_SVMLinear, param_grid=param_SVMLinear, refit=True, n_jobs=nbCores, scoring='accuracy',
+                                  cv=nbFolds)
+    SVMLinear_detector = grid_SVMLinear.fit(X_train, y_train)
+    desc_params = [SVMLinear_detector.best_params_["classifier__C"], SVMLinear_detector.best_params_["classifier__degree"]]
+    description = "Classif_" + "SVC" + "-" + "CV_" + str(nbFolds) + "-" + "-".join(map(str,desc_params))
+    return description, SVMLinear_detector
+
+
+def getConfig(config):
+    return "\n\t\t- SVM with C : "+config[0]+", kernel : "+config[1]
\ No newline at end of file
diff --git a/Code/MonoMutliViewClassifiers/MonoviewClassifiers/SVMRBF.py b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/SVMRBF.py
new file mode 100644
index 00000000..202cc076
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/SVMRBF.py
@@ -0,0 +1,25 @@
+from sklearn.svm import SVC
+from sklearn.pipeline import Pipeline                   # Pipelining in classification
+from sklearn.grid_search import GridSearchCV
+
+
+def fit(DATASET, CLASS_LABELS, NB_CORES=1,**kwargs):
+    C = int(kwargs['0'])
+    classifier = SVC(C=C, kernel='rbf', probability=True)
+    classifier.fit(DATASET, CLASS_LABELS)
+    return classifier
+
+
+def fit_gridsearch(X_train, y_train, nbFolds=4, nbCores=1, **kwargs):
+    pipeline_SVMRBF = Pipeline([('classifier', SVC(kernel="rbf"))])
+    param_SVMRBF = {"classifier__C": map(int, kwargs['0'])}
+    grid_SVMRBF = GridSearchCV(pipeline_SVMRBF, param_grid=param_SVMRBF, refit=True, n_jobs=nbCores, scoring='accuracy',
+                               cv=nbFolds)
+    SVMRBF_detector = grid_SVMRBF.fit(X_train, y_train)
+    desc_params = [SVMRBF_detector.best_params_["classifier__C"]]
+    description = "Classif_" + "SVC" + "-" + "CV_" + str(nbFolds) + "-" + "-".join(map(str,desc_params))
+    return description, SVMRBF_detector
+
+
+def getConfig(config):
+    return "\n\t\t- SVM with C : "+config[0]+", kernel : "+config[1]
\ No newline at end of file
diff --git a/Code/Multiview/Fusion/Methods/MonoviewClassifiers/__init__.py b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/__init__.py
similarity index 100%
rename from Code/Multiview/Fusion/Methods/MonoviewClassifiers/__init__.py
rename to Code/MonoMutliViewClassifiers/MonoviewClassifiers/__init__.py
diff --git a/Code/Multiview/ExecMultiview.py b/Code/MonoMutliViewClassifiers/Multiview/ExecMultiview.py
similarity index 93%
rename from Code/Multiview/ExecMultiview.py
rename to Code/MonoMutliViewClassifiers/Multiview/ExecMultiview.py
index ebc61a5b..cffd6f01 100644
--- a/Code/Multiview/ExecMultiview.py
+++ b/Code/MonoMutliViewClassifiers/Multiview/ExecMultiview.py
@@ -15,6 +15,7 @@ import logging
 import time
 
 
+
 def ExecMultiview(DATASET, name, learningRate, nbFolds, nbCores, databaseType, path, LABELS_DICTIONARY, gridSearch=False, **kwargs):
 
     datasetLength = DATASET.get("Metadata").attrs["datasetLength"]
@@ -26,8 +27,7 @@ def ExecMultiview(DATASET, name, learningRate, nbFolds, nbCores, databaseType, p
     views = kwargs["views"]
     NB_VIEW = kwargs["NB_VIEW"]
     LABELS_NAMES = kwargs["LABELS_NAMES"]
-    MumboKWARGS = kwargs["MumboKWARGS"]
-    FusionKWARGS = kwargs["FusionKWARGS"]
+    classificationKWARGS = kwargs[CL_type+"KWARGS"]
 
     t_start = time.time()
     logging.info("### Main Programm for Multiview Classification")
@@ -78,8 +78,8 @@ def ExecMultiview(DATASET, name, learningRate, nbFolds, nbCores, databaseType, p
 
     if gridSearch:
         logging.info("Start:\t Gridsearching best settings for monoview classifiers")
-        bestSettings = classifierGridSearch(DATASET, initKWARGS["classifiersNames"])
-        initKWARGS["classifiersConfigs"] = bestSettings
+        bestSettings = classifierGridSearch(DATASET, classificationKWARGS["classifiersNames"])
+        classificationKWARGS["classifiersConfigs"] = bestSettings
         logging.info("Done:\t Gridsearching best settings for monoview classifiers")
 
     # Begin Classification
@@ -89,7 +89,7 @@ def ExecMultiview(DATASET, name, learningRate, nbFolds, nbCores, databaseType, p
             logging.info("\tStart:\t Fold number " + str(foldIdx + 1))
             trainIndices = [index for index in range(datasetLength) if index not in fold]
             DATASET_LENGTH = len(trainIndices)
-            classifier = classifierClass(NB_VIEW, DATASET_LENGTH, DATASET.get("labels").value, NB_CORES=nbCores, **initKWARGS)
+            classifier = classifierClass(NB_VIEW, DATASET_LENGTH, DATASET.get("labels").value, NB_CORES=nbCores, **classificationKWARGS)
 
             classifier.fit_hdf5(DATASET, trainIndices=trainIndices)
             kFoldClassifier.append(classifier)
@@ -149,6 +149,9 @@ if __name__=='__main__':
     parser = argparse.ArgumentParser(
         description='This file is used to classifiy multiview data thanks to three methods : Fusion (early & late), Multiview Machines, Mumbo.',
         formatter_class=argparse.ArgumentDefaultsHelpFormatter)
+    # create the top-level parser
+
+
 
     groupStandard = parser.add_argument_group('Standard arguments')
     groupStandard.add_argument('-log', action='store_true', help='Use option to activate Logging to Console')
@@ -183,12 +186,14 @@ if __name__=='__main__':
                             help='Determine which monoview classifier to use with Mumbo',
                             default='DecisionTree:DecisionTree:DecisionTree:DecisionTree')
     groupMumbo.add_argument('--MU_config', metavar='STRING', action='store', nargs='+',
-                            help='Configuration for the monoview classifier in Mumbo', default=['1:0.02', '1:0.018', '1:0.1',
+                            help='Configuration for the monoview classifier in Mumbo', default=['1:0.02', '1:0.018',
+                                                                                                '1:0.1',
                                                                                                 '2:0.09'])
-    groupMumbo.add_argument('--MU_iter', metavar='INT', action='store',
-                            help='Number of iterations in Mumbos learning process', type=int, default=5)
+    groupMumbo.add_argument('--MU_iter', metavar='INT', action='store', nargs=3,
+                            help='Max number of iteration, min number of iteration, convergeance threshold', type=float,
+                            default=[1000,300,0.0005])
 
-    groupFusion = parser.add_argument_group('Fusion arguments')
+    groupFusion = parser.add_argument_group('Fusion', "poulet")
     groupFusion.add_argument('--FU_type', metavar='STRING', action='store',
                              help='Determine which type of fusion to use', default='LateFusion')
     groupFusion.add_argument('--FU_method', metavar='STRING', action='store',
@@ -201,8 +206,9 @@ if __name__=='__main__':
     groupFusion.add_argument('--FU_cl_config', metavar='STRING', action='store', nargs='+',
                              help='Configuration for the monoview classifiers used', default=['3:4', 'log:l2', '10:linear',
                                                                                               '4'])
-
+    print parser
     args = parser.parse_args()
+    print args
     views = args.views.split(":")
     dataBaseType = args.type
     NB_VIEW = len(views)
@@ -213,7 +219,6 @@ if __name__=='__main__':
     NB_CLASS = args.CL_nb_class
     LABELS_NAMES = args.CL_classes.split(":")
     mumboclassifierNames = args.MU_type.split(':')
-    mumboNB_ITER = args.MU_iter
     NB_CORES = args.CL_cores
     fusionClassifierNames = args.FU_cl_names.split(":")
     fusionClassifierConfig = [argument.split(':') for argument in args.FU_cl_config]
@@ -221,7 +226,9 @@ if __name__=='__main__':
     FusionKWARGS = {"fusionType":args.FU_type, "fusionMethod":args.FU_method,
                     "classifiersNames":fusionClassifierNames, "classifiersConfigs":fusionClassifierConfig,
                     'fusionMethodConfig':fusionMethodConfig}
-    MumboKWARGS = {"classifiersConfigs":mumboClassifierConfig, "NB_ITER":mumboNB_ITER, "classifiersNames":mumboclassifierNames}
+    MumboKWARGS = {"classifiersConfigs":mumboClassifierConfig,
+                   "classifiersNames":mumboclassifierNames, "maxIter":int(args.MU_iter[0]),
+                   "minIter":int(args.MU_iter[1]), "threshold":args.MU_iter[2]}
     dir = os.path.dirname(os.path.abspath(__file__)) + "/Results/"
     logFileName = time.strftime("%Y%m%d-%H%M%S") + "-CMultiV-" + args.CL_type + "-" + "_".join(views) + "-" + args.name + \
                   "-LOG"
@@ -252,10 +259,10 @@ if __name__=='__main__':
     DATASET, LABELS_DICTIONARY = getDatabase(views, args.pathF, args.name, NB_CLASS, LABELS_NAMES)
 
     logging.info("Info:\t Labels used: " + ", ".join(LABELS_DICTIONARY.values()))
-    logging.info("Info:\t Length of dataset:" + str(DATASET.get("Metadata").attrs["datasetlength"]))
+    logging.info("Info:\t Length of dataset:" + str(DATASET.get("Metadata").attrs["datasetLength"]))
 
     ExecMultiview(DATASET, args.name, args.CL_split, args.CL_nbFolds, args.CL_cores, args.type, args.pathF,
-                  LABELS_DICTIONARY, gridSearch=True, **arguments)
+                  LABELS_DICTIONARY, gridSearch=False, **arguments)
 
 
 
diff --git a/Code/Multiview/Fusion/Fusion.py b/Code/MonoMutliViewClassifiers/Multiview/Fusion/Fusion.py
similarity index 100%
rename from Code/Multiview/Fusion/Fusion.py
rename to Code/MonoMutliViewClassifiers/Multiview/Fusion/Fusion.py
diff --git a/Code/Multiview/Fusion/Methods/EarlyFusion.py b/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/EarlyFusion.py
similarity index 97%
rename from Code/Multiview/Fusion/Methods/EarlyFusion.py
rename to Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/EarlyFusion.py
index 761d1b4c..dd86041d 100644
--- a/Code/Multiview/Fusion/Methods/EarlyFusion.py
+++ b/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/EarlyFusion.py
@@ -1,10 +1,10 @@
 #!/usr/bin/env python
 # -*- encoding: utf-8
 
-import MonoviewClassifiers
-
 import numpy as np
 
+import MonoviewClassifiers
+
 
 class EarlyFusionClassifier(object):
     def __init__(self, monoviewClassifiersNames, monoviewClassifiersConfigs, NB_CORES=1):
@@ -56,7 +56,7 @@ class WeightedLinear(EarlyFusionClassifier):
     def getConfig(self, fusionMethodConfig ,monoviewClassifiersNames, monoviewClassifiersConfigs):
         configString = "with weighted concatenation, using weights : "+", ".join(map(str, self.weights))+\
                        " with monoview classifier : "
-        monoviewClassifierModule = getattr(MonoviewClassifiers, monoviewClassifiersNames[0])
+        monoviewClassifierModule = getattr(poulet, monoviewClassifiersNames[0])
         configString += monoviewClassifierModule.getConfig(monoviewClassifiersConfigs[0])
         return configString
 
diff --git a/Code/Multiview/Fusion/Methods/LateFusion.py b/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/LateFusion.py
similarity index 99%
rename from Code/Multiview/Fusion/Methods/LateFusion.py
rename to Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/LateFusion.py
index 962f51b0..9222d733 100644
--- a/Code/Multiview/Fusion/Methods/LateFusion.py
+++ b/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/LateFusion.py
@@ -2,11 +2,11 @@
 # -*- encoding: utf-8
 
 import numpy as np
-import sys
-from sklearn.svm import SVC
+from joblib import Parallel, delayed
 from sklearn.multiclass import OneVsOneClassifier
+from sklearn.svm import SVC
+
 import MonoviewClassifiers
-from joblib import Parallel, delayed
 
 
 # Our method in multiclass classification will be One-vs-One or One-vs-All
diff --git a/Code/Multiview/Fusion/Methods/__init__.py b/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/__init__.py
similarity index 100%
rename from Code/Multiview/Fusion/Methods/__init__.py
rename to Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/__init__.py
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/poulet/__init__.py b/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/poulet/__init__.py
new file mode 100644
index 00000000..9bbd76fb
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/poulet/__init__.py
@@ -0,0 +1,7 @@
+import os
+for module in os.listdir(os.path.dirname(os.path.realpath(__file__))):
+    if module == '__init__.py' or module[-3:] != '.py':
+        continue
+    __import__(module[:-3], locals(), globals())
+del module
+del os
\ No newline at end of file
diff --git a/Code/Multiview/Fusion/__init__.py b/Code/MonoMutliViewClassifiers/Multiview/Fusion/__init__.py
similarity index 100%
rename from Code/Multiview/Fusion/__init__.py
rename to Code/MonoMutliViewClassifiers/Multiview/Fusion/__init__.py
diff --git a/Code/Multiview/Fusion/analyzeResults.py b/Code/MonoMutliViewClassifiers/Multiview/Fusion/analyzeResults.py
similarity index 100%
rename from Code/Multiview/Fusion/analyzeResults.py
rename to Code/MonoMutliViewClassifiers/Multiview/Fusion/analyzeResults.py
diff --git a/Code/Multiview/GetMultiviewDb.py b/Code/MonoMutliViewClassifiers/Multiview/GetMultiviewDb.py
similarity index 99%
rename from Code/Multiview/GetMultiviewDb.py
rename to Code/MonoMutliViewClassifiers/Multiview/GetMultiviewDb.py
index 8a9dfa82..b839496f 100644
--- a/Code/Multiview/GetMultiviewDb.py
+++ b/Code/MonoMutliViewClassifiers/Multiview/GetMultiviewDb.py
@@ -145,7 +145,6 @@ def getKFoldIndices(nbFolds, CLASS_LABELS, NB_CLASS, learningIndices):
     for foldIndex, fold in enumerate(nbTrainingExamples):
         trainingExamplesIndices.append([])
         while fold != [0 for i in range(NB_CLASS)]:
-            print fold
             index = random.randint(0, len(learningIndices)-1)
             if learningIndices[index] not in usedIndices:
                 isUseFull, fold = isUseful(fold, learningIndices[index], CLASS_LABELS, labelDict)
@@ -327,7 +326,7 @@ def getMultiOmicDBcsv(features, path, name, NB_CLASS, LABELS_NAMES):
     rnaseqData = np.genfromtxt(path+"matching_rnaseq.csv", delimiter=',')
     rnaseqDset = datasetFile.create_dataset("View2", rnaseqData.shape)
     rnaseqDset[...] = rnaseqData
-    rnaseqDset.attrs["name"]="RANSeq"
+    rnaseqDset.attrs["name"]="RNASeq"
     logging.debug("Done:\t Getting RNASeq Data")
 
     logging.debug("Start:\t Getting Clinical Data")
@@ -376,7 +375,7 @@ def getModifiedMultiOmicDBcsv(features, path, name, NB_CLASS, LABELS_NAMES):
     rnaseqData = np.genfromtxt(path+"matching_rnaseq.csv", delimiter=',')
     rnaseqDset = datasetFile.create_dataset("View2", rnaseqData.shape)
     rnaseqDset[...] = rnaseqData
-    rnaseqDset.attrs["name"]="RANSeq_"
+    rnaseqDset.attrs["name"]="RNASeq_"
     logging.debug("Done:\t Getting RNASeq Data")
 
     logging.debug("Start:\t Getting Clinical Data")
diff --git a/Code/Multiview/Mumbo/Classifiers/DecisionTree.py b/Code/MonoMutliViewClassifiers/Multiview/Mumbo/Classifiers/DecisionTree.py
similarity index 95%
rename from Code/Multiview/Mumbo/Classifiers/DecisionTree.py
rename to Code/MonoMutliViewClassifiers/Multiview/Mumbo/Classifiers/DecisionTree.py
index 8a087b76..2981081d 100644
--- a/Code/Multiview/Mumbo/Classifiers/DecisionTree.py
+++ b/Code/MonoMutliViewClassifiers/Multiview/Mumbo/Classifiers/DecisionTree.py
@@ -3,6 +3,7 @@ from sklearn.metrics import precision_recall_fscore_support, accuracy_score
 import numpy as np
 from ModifiedMulticlass import OneVsRestClassifier
 from SubSampling import subSample
+import logging
 # Add weights 
 
 def DecisionTree(data, labels, arg, weights):
@@ -105,8 +106,11 @@ def getBestSetting(bestSettings, bestResults):
     diffTo52 = 100.0
     bestSettingsIndex = 0
     for resultIndex, result in enumerate(bestResults):
-        if abs(52.5-result)<diffTo52:
+        if abs(0.55-result) < diffTo52:
+            diffTo52 = abs(0.55-result)
+            bestResult = result
             bestSettingsIndex = resultIndex
+    logging.debug("\t\tInfo:\t Best Reslut : "+str(result))
 
     return map(lambda p: round(p, 4), bestSettings[bestSettingsIndex])
-#    return map(round(,4), bestSettings[bestSettingsIndex])
\ No newline at end of file
+    #    return map(round(,4), bestSettings[bestSettingsIndex])
\ No newline at end of file
diff --git a/Code/Multiview/Mumbo/Classifiers/Kover.py b/Code/MonoMutliViewClassifiers/Multiview/Mumbo/Classifiers/Kover.py
similarity index 100%
rename from Code/Multiview/Mumbo/Classifiers/Kover.py
rename to Code/MonoMutliViewClassifiers/Multiview/Mumbo/Classifiers/Kover.py
diff --git a/Code/Multiview/Mumbo/Classifiers/ModifiedMulticlass.py b/Code/MonoMutliViewClassifiers/Multiview/Mumbo/Classifiers/ModifiedMulticlass.py
similarity index 100%
rename from Code/Multiview/Mumbo/Classifiers/ModifiedMulticlass.py
rename to Code/MonoMutliViewClassifiers/Multiview/Mumbo/Classifiers/ModifiedMulticlass.py
diff --git a/Code/Multiview/Mumbo/Classifiers/SubSampling.py b/Code/MonoMutliViewClassifiers/Multiview/Mumbo/Classifiers/SubSampling.py
similarity index 100%
rename from Code/Multiview/Mumbo/Classifiers/SubSampling.py
rename to Code/MonoMutliViewClassifiers/Multiview/Mumbo/Classifiers/SubSampling.py
diff --git a/Code/Multiview/Mumbo/Classifiers/__init__.py b/Code/MonoMutliViewClassifiers/Multiview/Mumbo/Classifiers/__init__.py
similarity index 100%
rename from Code/Multiview/Mumbo/Classifiers/__init__.py
rename to Code/MonoMutliViewClassifiers/Multiview/Mumbo/Classifiers/__init__.py
diff --git a/Code/Multiview/Mumbo/Mumbo.py b/Code/MonoMutliViewClassifiers/Multiview/Mumbo/Mumbo.py
similarity index 84%
rename from Code/Multiview/Mumbo/Mumbo.py
rename to Code/MonoMutliViewClassifiers/Multiview/Mumbo/Mumbo.py
index 912d6eba..20e1e961 100644
--- a/Code/Multiview/Mumbo/Mumbo.py
+++ b/Code/MonoMutliViewClassifiers/Multiview/Mumbo/Mumbo.py
@@ -2,7 +2,10 @@ import numpy as np
 import math
 from joblib import Parallel, delayed
 from Classifiers import *
+import time
 import logging
+import matplotlib.pyplot as plt
+from sklearn.metrics import accuracy_score
 
 
 # Data shape : ((Views, Examples, Corrdinates))
@@ -23,8 +26,7 @@ def trainWeakClassifier(classifierName, monoviewDataset, CLASS_LABELS,
     weights = computeWeights(DATASET_LENGTH, iterIndex, viewIndice, CLASS_LABELS, costMatrices)
     classifierModule = globals()[classifierName]  # Permet d'appeler une fonction avec une string
     classifierMethod = getattr(classifierModule, classifierName)
-    classifier, classes, isBad, pTr = classifierMethod(monoviewDataset, CLASS_LABELS, classifier_config, weights)
-    averageAccuracy = np.mean(pTr)
+    classifier, classes, isBad, averageAccuracy = classifierMethod(monoviewDataset, CLASS_LABELS, classifier_config, weights)
     logging.debug("\t\t\tView " + str(viewIndice) + " : " + str(averageAccuracy))
     return classifier, classes, isBad, averageAccuracy
 
@@ -33,18 +35,19 @@ def trainWeakClassifier_hdf5(classifierName, monoviewDataset, CLASS_LABELS, DATA
     weights = computeWeights(DATASET_LENGTH, iterIndex, viewIndice, CLASS_LABELS, costMatrices)
     classifierModule = globals()[classifierName]  # Permet d'appeler une fonction avec une string
     classifierMethod = getattr(classifierModule, classifierName)
-    classifier, classes, isBad, pTr = classifierMethod(monoviewDataset, CLASS_LABELS, classifier_config, weights)
-    averageAccuracy = np.mean(pTr)
+    classifier, classes, isBad, averageAccuracy = classifierMethod(monoviewDataset, CLASS_LABELS, classifier_config, weights)
     logging.debug("\t\t\tView " + str(viewIndice) + " : " + str(averageAccuracy))
     return classifier, classes, isBad, averageAccuracy
 
 def gridSearch_hdf5(DATASET, classifiersNames):
     bestSettings = []
     for classifierIndex, classifierName in enumerate(classifiersNames):
+        logging.debug("\tStart:\t Gridsearch for "+classifierName+" on "+DATASET.get("View"+str(classifierIndex)).attrs["name"])
         classifierModule = globals()[classifierName]  # Permet d'appeler une fonction avec une string
         classifierMethod = getattr(classifierModule, "gridSearch")
         bestSettings.append(classifierMethod(DATASET.get("View"+str(classifierIndex))[...],
                                              DATASET.get("labels")[...]))
+        logging.debug("\tDone:\t Gridsearch for "+classifierName)
     return bestSettings
 
 
@@ -54,43 +57,45 @@ def gridSearch_hdf5(DATASET, classifiersNames):
 class Mumbo:
 
     def __init__(self, NB_VIEW, DATASET_LENGTH, CLASS_LABELS, NB_CORES=1,**kwargs):
-        self.nbIter = kwargs["NB_ITER"]
+        self.maxIter = kwargs["maxIter"]
+        self.minIter = kwargs["minIter"]
+        self.threshold = kwargs["threshold"]
         self.classifiersNames = kwargs["classifiersNames"]
         self.classifiersConfigs = kwargs["classifiersConfigs"]
         nbClass = len(set(CLASS_LABELS))
-        self.nbIter = kwargs["NB_ITER"]
         self.costMatrices = np.array([
-                                        np.array([
-                                                     np.array([
-                                                                  np.array([1 if CLASS_LABELS[exampleIndice] != classe
-                                                                            else -(nbClass - 1)
-                                                                            for classe in range(nbClass)
-                                                                            ]) for exampleIndice in range(DATASET_LENGTH)
-                                                                  ]) for viewIndice in range(NB_VIEW)])
-                                        if iteration == 0
-                                        else np.zeros((NB_VIEW, DATASET_LENGTH, nbClass))
-                                        for iteration in range(self.nbIter + 1)
-                                        ])
+                                         np.array([
+                                                      np.array([
+                                                                   np.array([1 if CLASS_LABELS[exampleIndice] != classe
+                                                                             else -(nbClass - 1)
+                                                                             for classe in range(nbClass)
+                                                                             ]) for exampleIndice in range(DATASET_LENGTH)
+                                                                   ]) for viewIndice in range(NB_VIEW)])
+                                         if iteration == 0
+                                         else np.zeros((NB_VIEW, DATASET_LENGTH, nbClass))
+                                         for iteration in range(self.maxIter + 1)
+                                         ])
         self.generalCostMatrix = np.array([
                                               np.array([
                                                            np.array([1 if CLASS_LABELS[exampleIndice] != classe
                                                                      else -(nbClass - 1)
                                                                      for classe in range(nbClass)
                                                                      ]) for exampleIndice in range(DATASET_LENGTH)
-                                                           ]) for iteration in range(self.nbIter)
+                                                           ]) for iteration in range(self.maxIter)
                                               ])
-        self.fs = np.zeros((self.nbIter, NB_VIEW, DATASET_LENGTH, nbClass))
-        self.ds = np.zeros((self.nbIter, NB_VIEW, DATASET_LENGTH))
-        self.edges = np.zeros((self.nbIter, NB_VIEW))
-        self.alphas = np.zeros((self.nbIter, NB_VIEW))
-        self.predictions = np.zeros((self.nbIter, NB_VIEW, DATASET_LENGTH))
-        self.generalAlphas = np.zeros(self.nbIter)
-        self.generalFs = np.zeros((self.nbIter, DATASET_LENGTH, nbClass))
+        self.fs = np.zeros((self.maxIter, NB_VIEW, DATASET_LENGTH, nbClass))
+        self.ds = np.zeros((self.maxIter, NB_VIEW, DATASET_LENGTH))
+        self.edges = np.zeros((self.maxIter, NB_VIEW))
+        self.alphas = np.zeros((self.maxIter, NB_VIEW))
+        self.predictions = np.zeros((self.maxIter, NB_VIEW, DATASET_LENGTH))
+        self.generalAlphas = np.zeros(self.maxIter)
+        self.generalFs = np.zeros((self.maxIter, DATASET_LENGTH, nbClass))
         self.nbCores = NB_CORES
         self.iterIndex = 0
         self.bestClassifiers = []
-        self.bestViews = np.zeros(self.nbIter, dtype=int)
-        self.averageAccuracies = np.zeros((self.nbIter, NB_VIEW))
+        self.bestViews = np.zeros(self.maxIter, dtype=int)
+        self.averageAccuracies = np.zeros((self.maxIter, NB_VIEW))
+        self.iterAccuracies = np.zeros(self.maxIter)
         # costMatrices = np.array([
         #                             np.array([
         #                                          np.array([
@@ -134,17 +139,23 @@ class Mumbo:
         # predictions, generalAlphas, generalFs = initialize(NB_CLASS, NB_VIEW,
         #                                                    NB_ITER, DATASET_LENGTH,
         #                                                    LABELS[trainIndices])
-        bestViews = np.zeros(self.nbIter)
+        bestViews = np.zeros(self.maxIter)
         bestClassifiers = []
 
         # Learning
+        isStabilized=False
         self.iterIndex = 0
-        for i in range(self.nbIter):
+        while not isStabilized or self.iterIndex >= self.maxIter:
+            if self.iterIndex > self.minIter:
+                coeffs = np.polyfit(np.log(np.arange(self.iterIndex)+0.00001), self.iterAccuracies[:self.iterIndex], 1)
+                if coeffs[0]/self.iterIndex < self.threshold:
+                    isStabilized = True
+
             logging.debug('\t\tStart:\t Iteration ' + str(self.iterIndex + 1))
             classifiers, predictedLabels, areBad = self.trainWeakClassifiers_hdf5(DATASET, trainIndices, NB_CLASS,
                                                                                   DATASET_LENGTH, NB_VIEW)
             if areBad.all():
-                logging.warning("All bad for iteration " + str(self.iterIndex))
+                logging.warning("WARNING:\tAll bad for iteration " + str(self.iterIndex))
 
             self.predictions[self.iterIndex] = predictedLabels
 
@@ -169,6 +180,10 @@ class Mumbo:
             self.bestClassifiers.append(classifiers[bestView])
             self.updateGeneralFs(DATASET_LENGTH, NB_CLASS, bestView)
             self.updateGeneralCostMatrix(DATASET_LENGTH, NB_CLASS,LABELS)
+            predictedLabels = self.predict_hdf5(DATASET, usedIndices=trainIndices)
+            accuracy = accuracy_score(DATASET.get("labels")[trainIndices], predictedLabels)
+            self.iterAccuracies[self.iterIndex] = accuracy
+
             self.iterIndex += 1
 
             # finalFs = computeFinalFs(DATASET_LENGTH, NB_CLASS, generalAlphas, predictions, bestViews, LABELS, NB_ITER)
@@ -184,7 +199,7 @@ class Mumbo:
             for labelIndex, exampleIndex in enumerate(usedIndices):
                 votes = np.zeros(NB_CLASS)
                 for classifier, alpha, view in zip(self.bestClassifiers, self.alphas, self.bestViews):
-                    data = DATASET["/View"+str(int(view))+"/matrix"][exampleIndex, :]
+                    data = DATASET["/View"+str(int(view))][exampleIndex, :]
                     votes[int(classifier.predict(np.array([data])))] += alpha[view]
                 predictedLabels[labelIndex] = np.argmax(votes)
         else:
@@ -204,10 +219,10 @@ class Mumbo:
         classifiersNames = self.classifiersNames
         iterIndex = self.iterIndex
         trainedClassifiersAndLabels = Parallel(n_jobs=NB_JOBS)(
-                delayed(trainWeakClassifier)(classifiersNames[viewIndice], DATASET[viewIndice], CLASS_LABELS,
-                                             DATASET_LENGTH, viewIndice, classifiersConfigs[viewIndice], iterIndex,
-                                             costMatrices)
-                for viewIndice in range(NB_VIEW))
+            delayed(trainWeakClassifier)(classifiersNames[viewIndice], DATASET[viewIndice], CLASS_LABELS,
+                                         DATASET_LENGTH, viewIndice, classifiersConfigs[viewIndice], iterIndex,
+                                         costMatrices)
+            for viewIndice in range(NB_VIEW))
 
         for viewIndex, (classifier, labelsArray, isBad, averageAccuracy) in enumerate(trainedClassifiersAndLabels):
             self.averageAccuracies[self.iterIndex, viewIndex] = averageAccuracy
@@ -217,7 +232,7 @@ class Mumbo:
         return np.array(trainedClassifiers), np.array(labelsMatrix), np.array(areBad)
 
     def trainWeakClassifiers_hdf5(self, DATASET, trainIndices, NB_CLASS,
-                                 DATASET_LENGTH, NB_VIEW):
+                                  DATASET_LENGTH, NB_VIEW):
         trainedClassifiers = []
         labelsMatrix = []
         areBad = []
@@ -230,13 +245,13 @@ class Mumbo:
         classifiersNames = self.classifiersNames
         iterIndex = self.iterIndex
         trainedClassifiersAndLabels = Parallel(n_jobs=NB_JOBS)(
-                delayed(trainWeakClassifier_hdf5)(classifiersNames[viewIndex],
-                                             DATASET.get("View"+str(viewIndex))[trainIndices, :],
-                                             DATASET.get("labels")[trainIndices],
-                                             DATASET_LENGTH,
-                                             viewIndex, classifiersConfigs[viewIndex],
-                                             DATASET.get("View"+str(viewIndex)).attrs["name"], iterIndex, costMatrices)
-                for viewIndex in range(NB_VIEW))
+            delayed(trainWeakClassifier_hdf5)(classifiersNames[viewIndex],
+                                              DATASET.get("View"+str(viewIndex))[trainIndices, :],
+                                              DATASET.get("labels")[trainIndices],
+                                              DATASET_LENGTH,
+                                              viewIndex, classifiersConfigs[viewIndex],
+                                              DATASET.get("View"+str(viewIndex)).attrs["name"], iterIndex, costMatrices)
+            for viewIndex in range(NB_VIEW))
 
         for viewIndex, (classifier, labelsArray, isBad, averageAccuracy) in enumerate(trainedClassifiersAndLabels):
             self.averageAccuracies[self.iterIndex, viewIndex] = averageAccuracy
@@ -250,11 +265,11 @@ class Mumbo:
         costMatrix = self.costMatrices[self.iterIndex, viewIndex]
         # return np.sum(np.array([np.sum(predictionMatrix*costMatrix[:,classIndice]) for classIndice in range(NB_CLASS)]))
         cCost = float(np.sum(np.array(
-                [costMatrix[exampleIndice, int(predictionMatrix[exampleIndice])] for exampleIndice in
-                 range(DATASET_LENGTH)])))
+            [costMatrix[exampleIndice, int(predictionMatrix[exampleIndice])] for exampleIndice in
+             range(DATASET_LENGTH)])))
         tCost = float(np.sum(
-                np.array([-costMatrix[exampleIndice, CLASS_LABELS[exampleIndice]] for exampleIndice in
-                          range(DATASET_LENGTH)])))
+            np.array([-costMatrix[exampleIndice, CLASS_LABELS[exampleIndice]] for exampleIndice in
+                      range(DATASET_LENGTH)])))
         if tCost == 0.:
             self.edges[self.iterIndex, viewIndex] = -cCost
         else:
@@ -283,13 +298,13 @@ class Mumbo:
                             == \
                             CLASS_LABELS[exampleIndice] \
                             or self.allViewsClassifyWell(self.predictions, pastIterIndice,
-                                                    NB_VIEW, CLASS_LABELS[exampleIndice],
-                                                    exampleIndice):
+                                                         NB_VIEW, CLASS_LABELS[exampleIndice],
+                                                         exampleIndice):
 
                         self.ds[pastIterIndice, viewIndice, exampleIndice] = 1
                     else:
                         self.ds[pastIterIndice, viewIndice, exampleIndice] = 0
-        #return ds
+                        #return ds
 
     def updateFs(self, NB_VIEW, DATASET_LENGTH, NB_CLASS):
         for viewIndice in range(NB_VIEW):
@@ -299,14 +314,14 @@ class Mumbo:
                         = np.sum(np.array([self.alphas[pastIterIndice, viewIndice]
                                            * self.ds[pastIterIndice, viewIndice, exampleIndice]
                                            if self.predictions[pastIterIndice, viewIndice,
-                                                          exampleIndice]
+                                                               exampleIndice]
                                               ==
                                               classe
                                            else 0
                                            for pastIterIndice in range(self.iterIndex)]))
         if np.amax(np.absolute(self.fs)) != 0:
             self.fs /= np.amax(np.absolute(self.fs))
-        #return fs
+            #return fs
 
     def updateCostmatrices(self, NB_VIEW, DATASET_LENGTH, NB_CLASS, CLASS_LABELS):
         for viewIndice in range(NB_VIEW):
@@ -336,8 +351,8 @@ class Mumbo:
                 self.generalFs[self.iterIndex, exampleIndice, classe] \
                     = np.sum(np.array([self.generalAlphas[pastIterIndice]
                                        if self.predictions[pastIterIndice,
-                                                      bestView,
-                                                      exampleIndice]
+                                                           bestView,
+                                                           exampleIndice]
                                           ==
                                           classe
                                        else 0
@@ -346,7 +361,7 @@ class Mumbo:
                              )
         if np.amax(np.absolute(self.generalFs)) != 0:
             self.generalFs /= np.amax(np.absolute(self.generalFs))
-        #return generalFs
+            #return generalFs
 
     def updateGeneralCostMatrix(self, DATASET_LENGTH, NB_CLASS, CLASS_LABELS):
         for exampleIndice in range(DATASET_LENGTH):
@@ -359,8 +374,8 @@ class Mumbo:
                     self.generalCostMatrix[self.iterIndex, exampleIndice, classe] \
                         = -1 * np.sum(np.exp(self.generalFs[self.iterIndex, exampleIndice] -
                                              self.generalFs[self.iterIndex, exampleIndice, classe]))
-        # if np.amax(np.absolute(generalCostMatrix)) != 0:
-        #     generalCostMatrix = generalCostMatrix/np.amax(np.absolute(generalCostMatrix))
+                    # if np.amax(np.absolute(generalCostMatrix)) != 0:
+                    #     generalCostMatrix = generalCostMatrix/np.amax(np.absolute(generalCostMatrix))
 
     def fit(self, DATASET, CLASS_LABELS, **kwargs):
         # Initialization
@@ -372,11 +387,11 @@ class Mumbo:
         # predictions, generalAlphas, generalFs = initialize(NB_CLASS, NB_VIEW,
         #                                                    NB_ITER, DATASET_LENGTH,
         #                                                    CLASS_LABELS)
-        bestViews = np.zeros(self.nbIter)
+        bestViews = np.zeros(self.maxIter)
         bestClassifiers = []
 
         # Learning
-        for i in range(self.nbIter):
+        for i in range(self.maxIter):
             logging.debug('\t\tStart:\t Iteration ' + str(self.iterIndex + 1))
             classifiers, predictedLabels, areBad = self.trainWeakClassifiers(DATASET, CLASS_LABELS, NB_CLASS,
                                                                              DATASET_LENGTH, NB_VIEW)
@@ -391,7 +406,7 @@ class Mumbo:
                     self.alphas[self.iterIndex, viewIndice] = 0.
                 else:
                     self.alphas[self.iterIndex, viewIndice] = self.computeAlpha(self.edges[self.iterIndex,
-                                                                        viewIndice])
+                                                                                           viewIndice])
             self.updateDs(CLASS_LABELS, NB_VIEW, DATASET_LENGTH)
             self.updateFs(NB_VIEW, DATASET_LENGTH, NB_CLASS)
 
@@ -406,7 +421,7 @@ class Mumbo:
             self.updateGeneralFs(DATASET_LENGTH, NB_CLASS, bestView)
             self.updateGeneralCostMatrix(DATASET_LENGTH, NB_CLASS, CLASS_LABELS)
 
-        # finalFs = computeFinalFs(DATASET_LENGTH, NB_CLASS, generalAlphas, predictions, bestViews, LABELS, NB_ITER)
+            # finalFs = computeFinalFs(DATASET_LENGTH, NB_CLASS, generalAlphas, predictions, bestViews, LABELS, NB_ITER)
 
     def predict(self, DATASET, NB_CLASS=2):
         DATASET_LENGTH = len(DATASET[0])
@@ -442,7 +457,7 @@ class Mumbo:
             usedIndices = range(DATASET.get("Metadata").attrs["datasetLength"])
         if usedIndices:
             DATASET_LENGTH = len(usedIndices)
-            predictedLabels = np.zeros((DATASET_LENGTH, self.nbIter))
+            predictedLabels = np.zeros((DATASET_LENGTH, self.maxIter))
             votes = np.zeros((DATASET_LENGTH, NB_CLASS))
 
             for iterIndex, (classifier, alpha, view) in enumerate(zip(self.bestClassifiers, self.alphas, self.bestViews)):
@@ -455,7 +470,7 @@ class Mumbo:
                     predictedLabels[usedExampleIndex, iterIndex] = np.argmax(votes[usedExampleIndex])
         else:
             predictedLabels = []
-            for i in range(self.nbIter):
+            for i in range(self.maxIter):
                 predictedLabels.append([])
 
         return np.transpose(predictedLabels)
diff --git a/Code/Multiview/Mumbo/__init__.py b/Code/MonoMutliViewClassifiers/Multiview/Mumbo/__init__.py
similarity index 100%
rename from Code/Multiview/Mumbo/__init__.py
rename to Code/MonoMutliViewClassifiers/Multiview/Mumbo/__init__.py
diff --git a/Code/Multiview/Mumbo/analyzeResults.py b/Code/MonoMutliViewClassifiers/Multiview/Mumbo/analyzeResults.py
similarity index 99%
rename from Code/Multiview/Mumbo/analyzeResults.py
rename to Code/MonoMutliViewClassifiers/Multiview/Mumbo/analyzeResults.py
index 8d32066b..ebca5333 100644
--- a/Code/Multiview/Mumbo/analyzeResults.py
+++ b/Code/MonoMutliViewClassifiers/Multiview/Mumbo/analyzeResults.py
@@ -21,7 +21,7 @@ def plotAccuracyByIter(trainAccuracy, testAccuracy, validationAccuracy, NB_ITER,
     figure = plt.figure()
     ax1 = figure.add_subplot(111)
     axes = figure.gca()
-    axes.set_ylim([0,100])
+    axes.set_ylim([40,100])
     titleString = ""
     for view, classifierConfig in zip(features, classifierAnalysis):
         titleString += "\n" + view + " : " + classifierConfig
diff --git a/Code/Multiview/Results/20160805-051412Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-Fake.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160805-051412Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-Fake.txt
similarity index 100%
rename from Code/Multiview/Results/20160805-051412Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-Fake.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160805-051412Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-Fake.txt
diff --git a/Code/Multiview/Results/20160805-051504Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-Fake-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160805-051504Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-Fake-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160805-051504Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-Fake-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160805-051504Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-Fake-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160805-051504Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-Fake.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160805-051504Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-Fake.txt
similarity index 100%
rename from Code/Multiview/Results/20160805-051504Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-Fake.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160805-051504Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-Fake.txt
diff --git a/Code/Multiview/Results/20160805-053948Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160805-053948Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160805-053948Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160805-053948Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160805-053948Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160805-053948Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160805-053948Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160805-053948Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160805-060450Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160805-060450Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160805-060450Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160805-060450Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160805-060450Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160805-060450Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160805-060450Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160805-060450Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160805-062754Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160805-062754Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160805-062754Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160805-062754Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160805-062754Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160805-062754Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160805-062754Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160805-062754Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160805-065239Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160805-065239Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160805-065239Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160805-065239Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160805-065239Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160805-065239Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160805-065239Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160805-065239Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160810-151543Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-151543Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160810-151543Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-151543Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160810-151543Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-151543Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160810-151543Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-151543Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160810-151701Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-151701Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160810-151701Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-151701Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160810-151701Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-151701Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160810-151701Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-151701Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160810-151848Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-151848Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160810-151848Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-151848Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160810-151848Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-151848Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160810-151848Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-151848Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160810-151935Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-151935Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160810-151935Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-151935Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160810-151935Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-151935Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160810-151935Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-151935Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160810-152152Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-152152Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160810-152152Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-152152Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160810-152152Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-152152Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160810-152152Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-152152Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160810-154441Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-154441Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160810-154441Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-154441Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160810-154441Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter100-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-154441Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter100-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160810-154441Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter100-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-154441Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter100-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160810-164849Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.9-nbIter1-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-164849Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.9-nbIter1-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160810-164849Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.9-nbIter1-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-164849Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.9-nbIter1-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160810-164849Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.9-nbIter1-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-164849Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.9-nbIter1-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160810-164849Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.9-nbIter1-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-164849Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.9-nbIter1-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160810-170941Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.0-nbIter1-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-170941Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.0-nbIter1-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160810-170941Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.0-nbIter1-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-170941Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.0-nbIter1-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160810-170941Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.0-nbIter1-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-170941Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.0-nbIter1-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160810-170941Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.0-nbIter1-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-170941Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.0-nbIter1-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160810-171142Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter1-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-171142Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter1-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160810-171142Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter1-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-171142Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter1-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160810-171142Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter1-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-171142Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter1-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160810-171142Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter1-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-171142Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter1-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160810-171605Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-171605Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160810-171605Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-171605Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160810-171605Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-171605Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160810-171605Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-171605Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160810-172819Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-172819Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160810-172819Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-172819Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160810-172819Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-172819Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160810-172819Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-172819Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160810-174108Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-174108Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160810-174108Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-174108Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160810-174108Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-174108Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160810-174108Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-174108Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160810-174407Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-174407Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160810-174407Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-174407Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160810-174407Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-174407Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160810-174407Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-174407Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160810-174756Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-174756Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160810-174756Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-174756Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160810-174756Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-174756Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160810-174756Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-174756Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160810-174819Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-174819Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160810-174819Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-174819Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160810-174819Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-174819Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160810-174819Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-174819Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160810-180049Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter100-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-180049Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter100-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160810-180049Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter100-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-180049Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter100-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160810-180049Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter100-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-180049Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter100-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160810-180049Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter100-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-180049Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter100-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160810-180916Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter4-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-180916Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter4-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160810-180916Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter4-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-180916Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter4-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160810-180916Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter4-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-180916Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter4-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160810-180916Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter4-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-180916Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter4-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160810-191528Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter400-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-191528Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter400-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160810-191528Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter400-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-191528Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter400-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160810-191528Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter400-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-191528Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter400-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160810-191528Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter400-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-191528Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter400-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160811-102529Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160811-102529Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160811-102529Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160811-102529Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160811-102529Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160811-102529Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160811-102529Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160811-102529Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160811-104307Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160811-104307Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160811-104307Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160811-104307Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160811-104307Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160811-104307Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160811-104307Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160811-104307Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160811-110404Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160811-110404Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160811-110404Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160811-110404Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160811-110404Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160811-110404Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160811-110404Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160811-110404Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160811-115935Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160811-115935Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160811-115935Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160811-115935Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160811-115935Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160811-115935Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160811-115935Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160811-115935Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160811-135735Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160811-135735Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160811-135735Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160811-135735Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160811-135735Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160811-135735Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160811-135735Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160811-135735Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160812-113004Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-113004Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160812-113004Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-113004Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160812-113004Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-113004Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160812-113004Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-113004Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160812-113045Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-113045Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160812-113045Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-113045Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160812-113045Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-113045Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160812-113045Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-113045Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160812-113624Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-113624Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160812-113624Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-113624Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160812-113624Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-113624Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160812-113624Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-113624Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160812-113951Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-113951Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160812-113951Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-113951Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160812-113951Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-113951Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160812-113951Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-113951Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160812-114041Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-114041Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160812-114041Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-114041Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160812-114041Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-114041Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160812-114041Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-114041Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160812-114131Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-114131Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160812-114131Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-114131Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160812-114131Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-114131Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160812-114131Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-114131Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160812-114158Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-114158Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160812-114158Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-114158Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160812-114158Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-114158Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160812-114158Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-114158Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160812-114227Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-114227Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160812-114227Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-114227Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160812-114227Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-114227Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160812-114227Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-114227Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160812-115346Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-115346Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160812-115346Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-115346Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160812-115346Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-115346Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160812-115346Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-115346Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160812-125212Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-125212Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160812-125212Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-125212Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160812-125212Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-125212Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160812-125212Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-125212Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160812-130530Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-130530Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160812-130530Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-130530Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160812-130530Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-130530Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160812-130530Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-130530Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160812-130656Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-130656Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160812-130656Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-130656Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160812-130656Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-130656Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160812-130656Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-130656Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160812-130943Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-130943Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160812-130943Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-130943Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160812-130943Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-130943Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160812-130943Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-130943Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160812-131149Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-131149Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160812-131149Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-131149Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160812-131149Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-131149Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160812-131149Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-131149Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160812-131326Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-131326Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160812-131326Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-131326Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160812-131326Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-131326Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160812-131326Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-131326Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160812-131416Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-131416Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160812-131416Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-131416Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160812-131416Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-131416Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160812-131416Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-131416Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160812-141531Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-141531Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160812-141531Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-141531Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160812-141531Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-141531Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160812-141531Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-141531Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160812-151147Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-151147Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160812-151147Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-151147Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160812-151147Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-151147Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160812-151147Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-151147Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160812-160744Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-160744Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160812-160744Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-160744Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160812-160744Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-160744Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160812-160744Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-160744Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160812-170236Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-170236Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160812-170236Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-170236Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160812-170236Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-170236Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160812-170236Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-170236Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160815-171926Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-171926Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160815-171926Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-171926Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160815-171926Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-171926Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160815-171926Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-171926Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160815-172630Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-172630Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160815-172630Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-172630Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160815-172630Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-172630Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160815-172630Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-172630Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160815-172657Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-172657Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160815-172657Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-172657Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160815-172657Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-172657Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160815-172657Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-172657Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160815-172723Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-172723Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160815-172723Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-172723Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160815-172723Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-172723Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160815-172723Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-172723Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160815-182427Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-182427Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160815-182427Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-182427Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160815-182427Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-182427Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160815-182427Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-182427Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160815-191554Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-191554Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160815-191554Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-191554Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160815-191554Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-191554Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160815-191554Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-191554Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160815-200833Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-200833Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160815-200833Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-200833Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160815-200833Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-200833Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160815-200833Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-200833Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160815-205957Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-205957Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160815-205957Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-205957Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160815-205957Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-205957Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160815-205957Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-205957Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160815-215245Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-215245Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160815-215245Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-215245Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160815-215245Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-215245Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160815-215245Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-215245Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160815-224527Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-224527Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160815-224527Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-224527Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160815-224527Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-224527Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160815-224527Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-224527Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160815-233644Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-233644Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160815-233644Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-233644Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160815-233644Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-233644Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160815-233644Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-233644Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160816-002920Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160816-002920Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160816-002920Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160816-002920Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160816-002920Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160816-002920Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160816-002920Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160816-002920Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160816-012052Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160816-012052Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160816-012052Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160816-012052Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160816-012052Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160816-012052Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160816-012052Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160816-012052Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160816-021305Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160816-021305Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160816-021305Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160816-021305Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160816-021305Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160816-021305Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160816-021305Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160816-021305Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160816-030405Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160816-030405Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160816-030405Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160816-030405Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160816-030405Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160816-030405Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160816-030405Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160816-030405Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160816-035600Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160816-035600Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160816-035600Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160816-035600Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160816-035600Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160816-035600Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160816-035600Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160816-035600Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160816-044836Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160816-044836Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160816-044836Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160816-044836Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160816-044836Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160816-044836Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160816-044836Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160816-044836Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160816-054024Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160816-054024Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160816-054024Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160816-054024Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160816-054024Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160816-054024Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160816-054024Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160816-054024Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160817-100628Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter3-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160817-100628Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter3-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160817-100628Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter3-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160817-100628Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter3-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160817-100628Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter3-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160817-100628Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter3-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160817-100628Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter3-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160817-100628Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter3-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160817-110027Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160817-110027Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160817-110027Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160817-110027Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160817-110027Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160817-110027Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160817-110027Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160817-110027Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160817-173232Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160817-173232Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160817-173232Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160817-173232Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160817-173308Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160817-173308Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160817-173308Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160817-173308Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160817-173402Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160817-173402Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160817-173402Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160817-173402Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160817-173429Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160817-173429Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160817-173429Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160817-173429Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160817-173452Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160817-173452Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160817-173452Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160817-173452Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160817-173829Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160817-173829Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160817-173829Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160817-173829Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160817-181320Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160817-181320Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160817-181320Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160817-181320Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160818-094003Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160818-094003Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160818-094003Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160818-094003Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160818-100400Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160818-100400Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160818-100400Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160818-100400Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160818-102335Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160818-102335Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160818-102335Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160818-102335Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160818-111628Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160818-111628Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160818-111628Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160818-111628Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160818-115729Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160818-115729Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160818-115729Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160818-115729Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160818-144139Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160818-144139Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160818-144139Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160818-144139Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160819-090138Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-090138Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160819-090138Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-090138Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160819-090138Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-090138Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt
similarity index 100%
rename from Code/Multiview/Results/20160819-090138Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-090138Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt
diff --git a/Code/Multiview/Results/20160819-090956Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-090956Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160819-090956Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-090956Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160819-090956Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-090956Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt
similarity index 100%
rename from Code/Multiview/Results/20160819-090956Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-090956Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt
diff --git a/Code/Multiview/Results/20160819-094229Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-094229Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160819-094229Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-094229Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160819-094229Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-094229Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified.txt
similarity index 100%
rename from Code/Multiview/Results/20160819-094229Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-094229Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified.txt
diff --git a/Code/Multiview/Results/20160819-094257Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-094257Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160819-094257Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-094257Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160819-094257Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-094257Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified.txt
similarity index 100%
rename from Code/Multiview/Results/20160819-094257Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-094257Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified.txt
diff --git a/Code/Multiview/Results/20160819-094609Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-094609Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160819-094609Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-094609Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160819-094609Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-094609Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt
similarity index 100%
rename from Code/Multiview/Results/20160819-094609Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-094609Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt
diff --git a/Code/Multiview/Results/20160819-095436Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-095436Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160819-095436Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-095436Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160819-095436Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-095436Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt
similarity index 100%
rename from Code/Multiview/Results/20160819-095436Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-095436Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt
diff --git a/Code/Multiview/Results/20160819-100249Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-100249Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160819-100249Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-100249Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160819-100249Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-100249Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt
similarity index 100%
rename from Code/Multiview/Results/20160819-100249Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-100249Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt
diff --git a/Code/Multiview/Results/20160819-100936Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-100936Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160819-100936Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-100936Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160819-100936Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-100936Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified.txt
similarity index 100%
rename from Code/Multiview/Results/20160819-100936Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-100936Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified.txt
diff --git a/Code/Multiview/Results/20160819-103243-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-103243-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160819-103243-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-103243-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log
diff --git a/Code/Multiview/Results/20160819-103707Results-Mumbo-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-MultiOmicModified-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-103707Results-Mumbo-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-MultiOmicModified-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160819-103707Results-Mumbo-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-MultiOmicModified-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-103707Results-Mumbo-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-MultiOmicModified-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160819-103707Results-Mumbo-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-MultiOmicModified.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-103707Results-Mumbo-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-MultiOmicModified.txt
similarity index 100%
rename from Code/Multiview/Results/20160819-103707Results-Mumbo-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-MultiOmicModified.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-103707Results-Mumbo-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-MultiOmicModified.txt
diff --git a/Code/Multiview/Results/20160819-104311-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-104311-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160819-104311-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-104311-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log
diff --git a/Code/Multiview/Results/20160819-104325-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-104325-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160819-104325-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-104325-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log
diff --git a/Code/Multiview/Results/20160819-104346-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-104346-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160819-104346-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-104346-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log
diff --git a/Code/Multiview/Results/20160819-143036Results-Mumbo-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.7-MultiOmicModified-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-143036Results-Mumbo-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.7-MultiOmicModified-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160819-143036Results-Mumbo-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.7-MultiOmicModified-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-143036Results-Mumbo-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.7-MultiOmicModified-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160819-143036Results-Mumbo-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.7-MultiOmicModified.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-143036Results-Mumbo-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.7-MultiOmicModified.txt
similarity index 100%
rename from Code/Multiview/Results/20160819-143036Results-Mumbo-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.7-MultiOmicModified.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-143036Results-Mumbo-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.7-MultiOmicModified.txt
diff --git a/Code/Multiview/Results/20160819-202419-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-202408-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160819-202419-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-202408-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log
diff --git a/Code/Multiview/Results/20160819-202450-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-202419-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160819-202450-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-202419-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log
diff --git a/Code/Results/20160822-132214-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-202450-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log
similarity index 100%
rename from Code/Results/20160822-132214-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-202450-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log
diff --git a/Code/Multiview/Results/20160819-202523-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-202523-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160819-202523-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-202523-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log
diff --git a/Code/Multiview/Results/20160819-202618-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-202618-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160819-202618-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-202618-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160819-202652-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-202652-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160819-202652-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-202652-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160819-202755-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-202755-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160819-202755-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-202755-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160819-202955-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-202955-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160819-202955-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-202955-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160819-203000Results-Fusion-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.7-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-203000Results-Fusion-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.7-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160819-203000Results-Fusion-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.7-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-203000Results-Fusion-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.7-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160819-203122-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-203122-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160819-203122-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-203122-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160819-203514-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-203514-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160819-203514-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-203514-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-102447-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-102447-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-102447-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-102447-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-102524-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-102524-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-102524-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-102524-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-102616-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-102616-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-102616-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-102616-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-102718-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-102718-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-102718-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-102718-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-102807-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-102807-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-102807-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-102807-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-102829-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-102829-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-102829-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-102829-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-102840-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-102840-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-102840-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-102840-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-102856-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-102856-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-102856-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-102856-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-102917-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-102917-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-102917-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-102917-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-103049-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103049-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-103049-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103049-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-103149-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103149-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-103149-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103149-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-103350-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103350-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-103350-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103350-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-103432-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103432-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-103432-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103432-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-103642-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103642-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-103642-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103642-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-103749-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103749-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-103749-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103749-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-103811-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103811-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-103811-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103811-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-103829-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103829-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-103829-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103829-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-103840-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103840-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-103840-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103840-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-103855-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103855-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-103855-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103855-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-103937-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103937-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-103937-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103937-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-103959-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103959-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-103959-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103959-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-104041-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-104041-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-104041-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-104041-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-104137-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-104137-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-104137-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-104137-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-104551-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-104551-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-104551-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-104551-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-104728-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-104728-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-104728-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-104728-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-104849-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-104849-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-104849-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-104849-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-105015-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-105015-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-105015-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-105015-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-105319-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-105319-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-105319-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-105319-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-105520-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-105520-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-105520-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-105520-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-105657-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-105657-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-105657-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-105657-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-110013-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-110013-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-110013-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-110013-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-110101-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-110101-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-110101-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-110101-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-110150-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-110150-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-110150-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-110150-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-110504-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-110504-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-110504-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-110504-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-110700-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-110700-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-110700-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-110700-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-110714-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-110714-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-110714-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-110714-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-110807-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-110807-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-110807-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-110807-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-111002-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-111002-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-111002-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-111002-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-111628-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-111628-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-111628-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-111628-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-111942-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-111942-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-111942-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-111942-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-112058-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-112058-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-112058-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-112058-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-112326-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-112326-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-112326-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-112326-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-112357-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-112357-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-112357-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-112357-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-123139-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123139-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-123139-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123139-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-123209-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123209-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-123209-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123209-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-123226-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123226-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-123226-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123226-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-123315-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123315-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-123315-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123315-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-123357-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123357-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-123357-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123357-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-123433-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123433-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-123433-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123433-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-123458-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123458-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-123458-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123458-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-123507-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123507-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-123507-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123507-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-123555-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123555-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-123555-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123555-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-123825-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123825-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-123825-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123825-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-123844-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123844-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-123844-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123844-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-123900-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123900-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-123900-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123900-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-124352-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-124352-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-124352-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-124352-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-124744-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-124744-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-124744-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-124744-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-125346-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-125346-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-125346-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-125346-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-130127-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-130127-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-130127-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-130127-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-152017-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-152017-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-152017-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-152017-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-152034-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-152034-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-152034-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-152034-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-152113-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-152113-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-152113-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-152113-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160823-095233-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160823-095233-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160823-095233-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160823-095233-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160823-095734-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160823-095734-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160823-095734-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160823-095734-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160823-100003-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160823-100003-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160823-100003-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160823-100003-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160823-100209-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160823-100209-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160823-100209-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160823-100209-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160823-100355-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160823-100355-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160823-100355-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160823-100355-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160823-100549-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160823-100549-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160823-100549-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160823-100549-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160823-100728-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160823-100728-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160823-100728-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160823-100728-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160823-101021-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160823-101021-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160823-101021-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160823-101021-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160823-101135-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160823-101135-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160823-101135-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160823-101135-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160823-101459-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160823-101459-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160823-101459-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160823-101459-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160823-101527-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160823-101527-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160823-101527-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160823-101527-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-083255-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-083255-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..442b8234
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-083255-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,2 @@
+2016-08-24 08:32:55,450 INFO: Start:	 Read CSV Database Files for ModifiedMultiOmic
+2016-08-24 08:32:55,471 DEBUG: Start:	 Getting Methylation Data
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-083315-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-083315-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..0db771fc
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-083315-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,2 @@
+2016-08-24 08:33:15,026 INFO: Start:	 Read HDF5 Database Files for ModifiedMultiOmic
+2016-08-24 08:33:15,027 INFO: Info:	 Labels used: No, Yes
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-083427-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-083427-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log
new file mode 100644
index 00000000..ade5b1d0
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-083427-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log
@@ -0,0 +1,10 @@
+2016-08-24 08:34:27,721 INFO: Start:	 Read CSV Database Files for MultiOmic
+2016-08-24 08:34:27,744 DEBUG: Start:	 Getting Methylation Data
+2016-08-24 08:34:40,551 DEBUG: Done:	 Getting Methylation Data
+2016-08-24 08:34:40,551 DEBUG: Start:	 Getting MiRNA Data
+2016-08-24 08:34:41,071 DEBUG: Done:	 Getting MiRNA Data
+2016-08-24 08:34:41,071 DEBUG: Start:	 Getting RNASeq Data
+2016-08-24 08:36:25,941 DEBUG: Done:	 Getting RNASeq Data
+2016-08-24 08:36:26,035 DEBUG: Start:	 Getting Clinical Data
+2016-08-24 08:36:26,594 DEBUG: Done:	 Getting Clinical Data
+2016-08-24 08:36:28,223 INFO: Info:	 Labels used: No, Yes
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-084100-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-084100-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..a816c4d7
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-084100-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,12 @@
+2016-08-24 08:41:00,873 INFO: Start:	 Read CSV Database Files for ModifiedMultiOmic
+2016-08-24 08:41:00,968 DEBUG: Start:	 Getting Methylation Data
+2016-08-24 08:41:13,912 DEBUG: Done:	 Getting Methylation Data
+2016-08-24 08:41:13,912 DEBUG: Start:	 Getting MiRNA Data
+2016-08-24 08:41:14,437 DEBUG: Done:	 Getting MiRNA Data
+2016-08-24 08:41:14,438 DEBUG: Start:	 Getting RNASeq Data
+2016-08-24 08:41:58,294 DEBUG: Done:	 Getting RNASeq Data
+2016-08-24 08:41:58,382 DEBUG: Start:	 Getting Clinical Data
+2016-08-24 08:41:58,478 DEBUG: Done:	 Getting Clinical Data
+2016-08-24 08:41:58,521 DEBUG: Start:	 Getting Modified RNASeq Data
+2016-08-24 08:42:49,046 DEBUG: Done:	 Getting Modified RNASeq Data
+2016-08-24 08:42:50,194 INFO: Info:	 Labels used: No, Yes
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-084717-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-084717-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..02a820c2
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-084717-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,21 @@
+2016-08-24 08:47:17,766 INFO: Start:	 Read HDF5 Database Files for ModifiedMultiOmic
+2016-08-24 08:47:17,767 INFO: Info:	 Labels used: No, Yes
+2016-08-24 08:47:17,767 INFO: Info:	 Length of dataset:347
+2016-08-24 08:47:17,769 INFO: ### Main Programm for Multiview Classification
+2016-08-24 08:47:17,769 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 08:47:17,769 INFO: Info:	 Shape of Methyl_ :(347, 25978)
+2016-08-24 08:47:17,769 INFO: Info:	 Shape of MiRNA__ :(347, 1046)
+2016-08-24 08:47:17,770 INFO: Info:	 Shape of RANSeq_ :(347, 73599)
+2016-08-24 08:47:17,770 INFO: Info:	 Shape of Clinic_ :(347, 127)
+2016-08-24 08:47:17,771 INFO: Done:	 Read Database Files
+2016-08-24 08:47:17,771 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-24 08:47:17,774 INFO: Done:	 Determine validation split
+2016-08-24 08:47:17,774 INFO: Start:	 Determine 2 folds
+2016-08-24 08:47:17,783 INFO: Info:	 Length of Learning Sets: 122
+2016-08-24 08:47:17,783 INFO: Info:	 Length of Testing Sets: 122
+2016-08-24 08:47:17,783 INFO: Info:	 Length of Validation Set: 103
+2016-08-24 08:47:17,783 INFO: Done:	 Determine folds
+2016-08-24 08:47:17,783 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-24 08:47:17,784 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-24 08:48:32,759 INFO: Done:	 Gridsearching best settings for monoview classifiers
+2016-08-24 08:48:32,759 INFO: 	Start:	 Fold number 1
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-084943-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-084943-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..a96b7a7e
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-084943-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,97 @@
+2016-08-24 08:49:43,519 INFO: Start:	 Read HDF5 Database Files for ModifiedMultiOmic
+2016-08-24 08:49:43,519 INFO: Info:	 Labels used: No, Yes
+2016-08-24 08:49:43,520 INFO: Info:	 Length of dataset:347
+2016-08-24 08:49:43,521 INFO: ### Main Programm for Multiview Classification
+2016-08-24 08:49:43,521 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 08:49:43,522 INFO: Info:	 Shape of Methyl_ :(347, 25978)
+2016-08-24 08:49:43,522 INFO: Info:	 Shape of MiRNA__ :(347, 1046)
+2016-08-24 08:49:43,523 INFO: Info:	 Shape of RANSeq_ :(347, 73599)
+2016-08-24 08:49:43,523 INFO: Info:	 Shape of Clinic_ :(347, 127)
+2016-08-24 08:49:43,523 INFO: Done:	 Read Database Files
+2016-08-24 08:49:43,523 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-24 08:49:43,527 INFO: Done:	 Determine validation split
+2016-08-24 08:49:43,527 INFO: Start:	 Determine 2 folds
+2016-08-24 08:49:43,537 INFO: Info:	 Length of Learning Sets: 122
+2016-08-24 08:49:43,537 INFO: Info:	 Length of Testing Sets: 122
+2016-08-24 08:49:43,537 INFO: Info:	 Length of Validation Set: 103
+2016-08-24 08:49:43,537 INFO: Done:	 Determine folds
+2016-08-24 08:49:43,537 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-24 08:49:43,537 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-24 08:49:43,537 DEBUG: 	Start:	 Gridsearch for DecisionTree
+2016-08-24 08:49:51,018 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 08:49:51,018 DEBUG: 	Start:	 Gridsearch for DecisionTree
+2016-08-24 08:49:52,921 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 08:49:52,921 DEBUG: 	Start:	 Gridsearch for DecisionTree
+2016-08-24 08:50:09,522 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 08:50:09,522 DEBUG: 	Start:	 Gridsearch for DecisionTree
+2016-08-24 08:50:11,247 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 08:50:11,247 DEBUG: 	Start:	 Gridsearch for DecisionTree
+2016-08-24 08:50:51,870 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 08:50:51,871 INFO: Done:	 Gridsearching best settings for monoview classifiers
+2016-08-24 08:50:51,871 INFO: 	Start:	 Fold number 1
+2016-08-24 08:50:53,455 DEBUG: 		Start:	 Iteration 1
+2016-08-24 08:50:53,476 DEBUG: 			View 0 : 0.605263157895
+2016-08-24 08:50:53,484 DEBUG: 			View 1 : 0.605263157895
+2016-08-24 08:50:53,520 DEBUG: 			View 2 : 0.611842105263
+2016-08-24 08:50:53,528 DEBUG: 			View 3 : 0.493421052632
+2016-08-24 08:50:53,568 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 08:50:53,652 DEBUG: 		Start:	 Iteration 2
+2016-08-24 08:50:53,669 DEBUG: 			View 0 : 0.605263157895
+2016-08-24 08:50:53,677 DEBUG: 			View 1 : 0.605263157895
+2016-08-24 08:50:53,713 DEBUG: 			View 2 : 0.394736842105
+2016-08-24 08:50:53,720 DEBUG: 			View 3 : 0.532894736842
+2016-08-24 08:50:53,763 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 08:50:53,908 DEBUG: 		Start:	 Iteration 3
+2016-08-24 08:50:53,924 DEBUG: 			View 0 : 0.565789473684
+2016-08-24 08:50:53,931 DEBUG: 			View 1 : 0.710526315789
+2016-08-24 08:50:53,966 DEBUG: 			View 2 : 0.407894736842
+2016-08-24 08:50:53,974 DEBUG: 			View 3 : 0.460526315789
+2016-08-24 08:50:54,024 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 08:50:54,225 DEBUG: 		Start:	 Iteration 4
+2016-08-24 08:50:54,241 DEBUG: 			View 0 : 0.407894736842
+2016-08-24 08:50:54,249 DEBUG: 			View 1 : 0.427631578947
+2016-08-24 08:50:54,285 DEBUG: 			View 2 : 0.598684210526
+2016-08-24 08:50:54,292 DEBUG: 			View 3 : 0.519736842105
+2016-08-24 08:50:54,345 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 08:50:54,614 DEBUG: 		Start:	 Iteration 5
+2016-08-24 08:50:54,630 DEBUG: 			View 0 : 0.565789473684
+2016-08-24 08:50:54,638 DEBUG: 			View 1 : 0.552631578947
+2016-08-24 08:50:54,673 DEBUG: 			View 2 : 0.480263157895
+2016-08-24 08:50:54,681 DEBUG: 			View 3 : 0.526315789474
+2016-08-24 08:50:54,736 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 08:50:55,067 DEBUG: 		Start:	 Iteration 6
+2016-08-24 08:50:55,083 DEBUG: 			View 0 : 0.585526315789
+2016-08-24 08:50:55,090 DEBUG: 			View 1 : 0.381578947368
+2016-08-24 08:50:55,127 DEBUG: 			View 2 : 0.453947368421
+2016-08-24 08:50:55,134 DEBUG: 			View 3 : 0.467105263158
+2016-08-24 08:50:55,193 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 08:50:55,584 DEBUG: 		Start:	 Iteration 7
+2016-08-24 08:50:55,601 DEBUG: 			View 0 : 0.822368421053
+2016-08-24 08:50:55,609 DEBUG: 			View 1 : 0.651315789474
+2016-08-24 08:50:55,645 DEBUG: 			View 2 : 0.480263157895
+2016-08-24 08:50:55,653 DEBUG: 			View 3 : 0.375
+2016-08-24 08:50:55,712 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 08:50:56,161 DEBUG: 		Start:	 Iteration 8
+2016-08-24 08:50:56,178 DEBUG: 			View 0 : 0.638157894737
+2016-08-24 08:50:56,185 DEBUG: 			View 1 : 0.578947368421
+2016-08-24 08:50:56,221 DEBUG: 			View 2 : 0.631578947368
+2016-08-24 08:50:56,228 DEBUG: 			View 3 : 0.407894736842
+2016-08-24 08:50:56,290 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 08:50:56,793 DEBUG: 		Start:	 Iteration 9
+2016-08-24 08:50:56,809 DEBUG: 			View 0 : 0.532894736842
+2016-08-24 08:50:56,816 DEBUG: 			View 1 : 0.539473684211
+2016-08-24 08:50:56,852 DEBUG: 			View 2 : 0.532894736842
+2016-08-24 08:50:56,860 DEBUG: 			View 3 : 0.585526315789
+2016-08-24 08:50:56,923 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 08:50:57,481 DEBUG: 		Start:	 Iteration 10
+2016-08-24 08:50:57,497 DEBUG: 			View 0 : 0.618421052632
+2016-08-24 08:50:57,505 DEBUG: 			View 1 : 0.361842105263
+2016-08-24 08:50:57,541 DEBUG: 			View 2 : 0.394736842105
+2016-08-24 08:50:57,548 DEBUG: 			View 3 : 0.664473684211
+2016-08-24 08:50:57,614 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 08:50:58,229 DEBUG: 		Start:	 Iteration 11
+2016-08-24 08:50:58,244 DEBUG: 			View 0 : 0.565789473684
+2016-08-24 08:50:58,252 DEBUG: 			View 1 : 0.421052631579
+2016-08-24 08:50:58,287 DEBUG: 			View 2 : 0.539473684211
+2016-08-24 08:50:58,295 DEBUG: 			View 3 : 0.493421052632
+2016-08-24 08:50:58,363 DEBUG: 			 Best view : 		Methyl_
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-085300-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-085300-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..4b32381d
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-085300-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,24 @@
+2016-08-24 08:53:00,304 INFO: Start:	 Read HDF5 Database Files for ModifiedMultiOmic
+2016-08-24 08:53:00,305 INFO: Info:	 Labels used: No, Yes
+2016-08-24 08:53:00,306 INFO: Info:	 Length of dataset:347
+2016-08-24 08:53:00,309 INFO: ### Main Programm for Multiview Classification
+2016-08-24 08:53:00,309 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 08:53:00,311 INFO: Info:	 Shape of Methyl_ :(347, 25978)
+2016-08-24 08:53:00,312 INFO: Info:	 Shape of MiRNA__ :(347, 1046)
+2016-08-24 08:53:00,313 INFO: Info:	 Shape of RANSeq_ :(347, 73599)
+2016-08-24 08:53:00,314 INFO: Info:	 Shape of Clinic_ :(347, 127)
+2016-08-24 08:53:00,314 INFO: Done:	 Read Database Files
+2016-08-24 08:53:00,314 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-24 08:53:00,320 INFO: Done:	 Determine validation split
+2016-08-24 08:53:00,320 INFO: Start:	 Determine 2 folds
+2016-08-24 08:53:00,330 INFO: Info:	 Length of Learning Sets: 122
+2016-08-24 08:53:00,330 INFO: Info:	 Length of Testing Sets: 122
+2016-08-24 08:53:00,330 INFO: Info:	 Length of Validation Set: 103
+2016-08-24 08:53:00,331 INFO: Done:	 Determine folds
+2016-08-24 08:53:00,331 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-24 08:53:00,331 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-24 08:53:00,331 DEBUG: 	Start:	 Gridsearch for DecisionTree on Methyl_
+2016-08-24 08:53:07,603 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 08:53:07,604 DEBUG: 	Start:	 Gridsearch for DecisionTree on MiRNA__
+2016-08-24 08:53:09,500 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 08:53:09,500 DEBUG: 	Start:	 Gridsearch for DecisionTree on RANSeq_
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-085340-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-085340-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..38b211e3
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-085340-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,97 @@
+2016-08-24 08:53:40,067 INFO: Start:	 Read HDF5 Database Files for ModifiedMultiOmic
+2016-08-24 08:53:40,068 INFO: Info:	 Labels used: No, Yes
+2016-08-24 08:53:40,068 INFO: Info:	 Length of dataset:347
+2016-08-24 08:53:40,069 INFO: ### Main Programm for Multiview Classification
+2016-08-24 08:53:40,069 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 08:53:40,070 INFO: Info:	 Shape of Methyl_ :(347, 25978)
+2016-08-24 08:53:40,070 INFO: Info:	 Shape of MiRNA__ :(347, 1046)
+2016-08-24 08:53:40,071 INFO: Info:	 Shape of RANSeq_ :(347, 73599)
+2016-08-24 08:53:40,071 INFO: Info:	 Shape of Clinic_ :(347, 127)
+2016-08-24 08:53:40,071 INFO: Done:	 Read Database Files
+2016-08-24 08:53:40,071 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-24 08:53:40,075 INFO: Done:	 Determine validation split
+2016-08-24 08:53:40,075 INFO: Start:	 Determine 2 folds
+2016-08-24 08:53:40,085 INFO: Info:	 Length of Learning Sets: 122
+2016-08-24 08:53:40,085 INFO: Info:	 Length of Testing Sets: 122
+2016-08-24 08:53:40,085 INFO: Info:	 Length of Validation Set: 103
+2016-08-24 08:53:40,085 INFO: Done:	 Determine folds
+2016-08-24 08:53:40,085 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-24 08:53:40,085 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-24 08:53:40,086 DEBUG: 	Start:	 Gridsearch for DecisionTree on Methyl_
+2016-08-24 08:53:47,504 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 08:53:47,504 DEBUG: 	Start:	 Gridsearch for DecisionTree on MiRNA__
+2016-08-24 08:53:49,404 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 08:53:49,405 DEBUG: 	Start:	 Gridsearch for DecisionTree on RANSeq_
+2016-08-24 08:54:06,005 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 08:54:06,006 DEBUG: 	Start:	 Gridsearch for DecisionTree on Clinic_
+2016-08-24 08:54:07,742 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 08:54:07,742 DEBUG: 	Start:	 Gridsearch for DecisionTree on MRNASeq
+2016-08-24 08:54:44,843 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 08:54:44,843 INFO: Done:	 Gridsearching best settings for monoview classifiers
+2016-08-24 08:54:44,844 INFO: 	Start:	 Fold number 1
+2016-08-24 08:54:46,449 DEBUG: 		Start:	 Iteration 1
+2016-08-24 08:54:46,465 DEBUG: 			View 0 : 0.631901840491
+2016-08-24 08:54:46,473 DEBUG: 			View 1 : 0.638036809816
+2016-08-24 08:54:46,510 DEBUG: 			View 2 : 0.441717791411
+2016-08-24 08:54:46,518 DEBUG: 			View 3 : 0.631901840491
+2016-08-24 08:54:46,561 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 08:54:46,662 DEBUG: 		Start:	 Iteration 2
+2016-08-24 08:54:46,680 DEBUG: 			View 0 : 0.503067484663
+2016-08-24 08:54:46,688 DEBUG: 			View 1 : 0.466257668712
+2016-08-24 08:54:46,726 DEBUG: 			View 2 : 0.478527607362
+2016-08-24 08:54:46,734 DEBUG: 			View 3 : 0.441717791411
+2016-08-24 08:54:46,781 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 08:54:46,945 DEBUG: 		Start:	 Iteration 3
+2016-08-24 08:54:46,962 DEBUG: 			View 0 : 0.361963190184
+2016-08-24 08:54:46,970 DEBUG: 			View 1 : 0.613496932515
+2016-08-24 08:54:47,008 DEBUG: 			View 2 : 0.411042944785
+2016-08-24 08:54:47,016 DEBUG: 			View 3 : 0.656441717791
+2016-08-24 08:54:47,071 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 08:54:47,297 DEBUG: 		Start:	 Iteration 4
+2016-08-24 08:54:47,314 DEBUG: 			View 0 : 0.435582822086
+2016-08-24 08:54:47,322 DEBUG: 			View 1 : 0.509202453988
+2016-08-24 08:54:47,360 DEBUG: 			View 2 : 0.38036809816
+2016-08-24 08:54:47,368 DEBUG: 			View 3 : 0.631901840491
+2016-08-24 08:54:47,426 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 08:54:47,709 DEBUG: 		Start:	 Iteration 5
+2016-08-24 08:54:47,726 DEBUG: 			View 0 : 0.638036809816
+2016-08-24 08:54:47,734 DEBUG: 			View 1 : 0.564417177914
+2016-08-24 08:54:47,772 DEBUG: 			View 2 : 0.39263803681
+2016-08-24 08:54:47,780 DEBUG: 			View 3 : 0.546012269939
+2016-08-24 08:54:47,841 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 08:54:48,187 DEBUG: 		Start:	 Iteration 6
+2016-08-24 08:54:48,204 DEBUG: 			View 0 : 0.509202453988
+2016-08-24 08:54:48,211 DEBUG: 			View 1 : 0.638036809816
+2016-08-24 08:54:48,250 DEBUG: 			View 2 : 0.564417177914
+2016-08-24 08:54:48,258 DEBUG: 			View 3 : 0.558282208589
+2016-08-24 08:54:48,320 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 08:54:48,727 DEBUG: 		Start:	 Iteration 7
+2016-08-24 08:54:48,744 DEBUG: 			View 0 : 0.564417177914
+2016-08-24 08:54:48,752 DEBUG: 			View 1 : 0.533742331288
+2016-08-24 08:54:48,791 DEBUG: 			View 2 : 0.509202453988
+2016-08-24 08:54:48,799 DEBUG: 			View 3 : 0.466257668712
+2016-08-24 08:54:48,863 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 08:54:49,333 DEBUG: 		Start:	 Iteration 8
+2016-08-24 08:54:49,350 DEBUG: 			View 0 : 0.423312883436
+2016-08-24 08:54:49,358 DEBUG: 			View 1 : 0.39263803681
+2016-08-24 08:54:49,396 DEBUG: 			View 2 : 0.40490797546
+2016-08-24 08:54:49,404 DEBUG: 			View 3 : 0.546012269939
+2016-08-24 08:54:49,471 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 08:54:50,001 DEBUG: 		Start:	 Iteration 9
+2016-08-24 08:54:50,018 DEBUG: 			View 0 : 0.478527607362
+2016-08-24 08:54:50,025 DEBUG: 			View 1 : 0.368098159509
+2016-08-24 08:54:50,063 DEBUG: 			View 2 : 0.631901840491
+2016-08-24 08:54:50,071 DEBUG: 			View 3 : 0.539877300613
+2016-08-24 08:54:50,141 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 08:54:50,745 DEBUG: 		Start:	 Iteration 10
+2016-08-24 08:54:50,762 DEBUG: 			View 0 : 0.576687116564
+2016-08-24 08:54:50,770 DEBUG: 			View 1 : 0.496932515337
+2016-08-24 08:54:50,808 DEBUG: 			View 2 : 0.613496932515
+2016-08-24 08:54:50,816 DEBUG: 			View 3 : 0.374233128834
+2016-08-24 08:54:50,888 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 08:54:51,566 DEBUG: 		Start:	 Iteration 11
+2016-08-24 08:54:51,583 DEBUG: 			View 0 : 0.472392638037
+2016-08-24 08:54:51,591 DEBUG: 			View 1 : 0.435582822086
+2016-08-24 08:54:51,629 DEBUG: 			View 2 : 0.478527607362
+2016-08-24 08:54:51,637 DEBUG: 			View 3 : 0.576687116564
+2016-08-24 08:54:51,711 DEBUG: 			 Best view : 		Clinic_
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-085528-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-085528-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..85f1830f
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-085528-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,98 @@
+2016-08-24 08:55:28,014 INFO: Start:	 Read HDF5 Database Files for ModifiedMultiOmic
+2016-08-24 08:55:28,015 INFO: Info:	 Labels used: No, Yes
+2016-08-24 08:55:28,015 INFO: Info:	 Length of dataset:347
+2016-08-24 08:55:28,016 INFO: ### Main Programm for Multiview Classification
+2016-08-24 08:55:28,017 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 08:55:28,017 INFO: Info:	 Shape of Methyl_ :(347, 25978)
+2016-08-24 08:55:28,017 INFO: Info:	 Shape of MiRNA__ :(347, 1046)
+2016-08-24 08:55:28,018 INFO: Info:	 Shape of RANSeq_ :(347, 73599)
+2016-08-24 08:55:28,019 INFO: Info:	 Shape of Clinic_ :(347, 127)
+2016-08-24 08:55:28,019 INFO: Done:	 Read Database Files
+2016-08-24 08:55:28,019 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-24 08:55:28,025 INFO: Done:	 Determine validation split
+2016-08-24 08:55:28,025 INFO: Start:	 Determine 2 folds
+2016-08-24 08:55:28,039 INFO: Info:	 Length of Learning Sets: 122
+2016-08-24 08:55:28,040 INFO: Info:	 Length of Testing Sets: 122
+2016-08-24 08:55:28,040 INFO: Info:	 Length of Validation Set: 103
+2016-08-24 08:55:28,040 INFO: Done:	 Determine folds
+2016-08-24 08:55:28,040 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-24 08:55:28,040 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-24 08:55:28,040 DEBUG: 	Start:	 Gridsearch for DecisionTree on Methyl_
+2016-08-24 08:55:35,427 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 08:55:35,427 DEBUG: 	Start:	 Gridsearch for DecisionTree on MiRNA__
+2016-08-24 08:55:37,400 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 08:55:37,401 DEBUG: 	Start:	 Gridsearch for DecisionTree on RANSeq_
+2016-08-24 08:55:55,603 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 08:55:55,604 DEBUG: 	Start:	 Gridsearch for DecisionTree on Clinic_
+2016-08-24 08:55:57,380 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 08:55:57,381 DEBUG: 	Start:	 Gridsearch for DecisionTree on MRNASeq
+2016-08-24 08:56:35,467 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 08:56:35,467 INFO: Done:	 Gridsearching best settings for monoview classifiers
+2016-08-24 08:56:35,467 INFO: 	Start:	 Fold number 1
+2016-08-24 08:56:37,036 DEBUG: 		Start:	 Iteration 1
+2016-08-24 08:56:37,052 DEBUG: 			View 0 : 0.37037037037
+2016-08-24 08:56:37,060 DEBUG: 			View 1 : 0.62962962963
+2016-08-24 08:56:37,089 DEBUG: 			View 2 : 0.37037037037
+2016-08-24 08:56:37,096 DEBUG: 			View 3 : 0.530864197531
+2016-08-24 08:56:37,139 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 08:56:37,218 DEBUG: 		Start:	 Iteration 2
+2016-08-24 08:56:37,235 DEBUG: 			View 0 : 0.481481481481
+2016-08-24 08:56:37,242 DEBUG: 			View 1 : 0.41975308642
+2016-08-24 08:56:37,279 DEBUG: 			View 2 : 0.481481481481
+2016-08-24 08:56:37,287 DEBUG: 			View 3 : 0.530864197531
+2016-08-24 08:56:37,339 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 08:56:37,477 DEBUG: 		Start:	 Iteration 3
+2016-08-24 08:56:37,494 DEBUG: 			View 0 : 0.438271604938
+2016-08-24 08:56:37,502 DEBUG: 			View 1 : 0.407407407407
+2016-08-24 08:56:37,539 DEBUG: 			View 2 : 0.382716049383
+2016-08-24 08:56:37,547 DEBUG: 			View 3 : 0.376543209877
+2016-08-24 08:56:37,547 WARNING: All bad for iteration 2
+2016-08-24 08:56:37,602 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 08:56:37,803 DEBUG: 		Start:	 Iteration 4
+2016-08-24 08:56:37,819 DEBUG: 			View 0 : 0.604938271605
+2016-08-24 08:56:37,827 DEBUG: 			View 1 : 0.271604938272
+2016-08-24 08:56:37,864 DEBUG: 			View 2 : 0.469135802469
+2016-08-24 08:56:37,872 DEBUG: 			View 3 : 0.487654320988
+2016-08-24 08:56:37,929 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 08:56:38,194 DEBUG: 		Start:	 Iteration 5
+2016-08-24 08:56:38,211 DEBUG: 			View 0 : 0.395061728395
+2016-08-24 08:56:38,219 DEBUG: 			View 1 : 0.413580246914
+2016-08-24 08:56:38,256 DEBUG: 			View 2 : 0.481481481481
+2016-08-24 08:56:38,264 DEBUG: 			View 3 : 0.506172839506
+2016-08-24 08:56:38,323 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 08:56:38,648 DEBUG: 		Start:	 Iteration 6
+2016-08-24 08:56:38,665 DEBUG: 			View 0 : 0.543209876543
+2016-08-24 08:56:38,672 DEBUG: 			View 1 : 0.425925925926
+2016-08-24 08:56:38,709 DEBUG: 			View 2 : 0.376543209877
+2016-08-24 08:56:38,717 DEBUG: 			View 3 : 0.586419753086
+2016-08-24 08:56:38,780 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 08:56:39,164 DEBUG: 		Start:	 Iteration 7
+2016-08-24 08:56:39,180 DEBUG: 			View 0 : 0.561728395062
+2016-08-24 08:56:39,188 DEBUG: 			View 1 : 0.5
+2016-08-24 08:56:39,225 DEBUG: 			View 2 : 0.537037037037
+2016-08-24 08:56:39,233 DEBUG: 			View 3 : 0.567901234568
+2016-08-24 08:56:39,298 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 08:56:39,744 DEBUG: 		Start:	 Iteration 8
+2016-08-24 08:56:39,761 DEBUG: 			View 0 : 0.592592592593
+2016-08-24 08:56:39,769 DEBUG: 			View 1 : 0.438271604938
+2016-08-24 08:56:39,806 DEBUG: 			View 2 : 0.456790123457
+2016-08-24 08:56:39,813 DEBUG: 			View 3 : 0.530864197531
+2016-08-24 08:56:39,880 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 08:56:40,391 DEBUG: 		Start:	 Iteration 9
+2016-08-24 08:56:40,408 DEBUG: 			View 0 : 0.561728395062
+2016-08-24 08:56:40,416 DEBUG: 			View 1 : 0.413580246914
+2016-08-24 08:56:40,453 DEBUG: 			View 2 : 0.617283950617
+2016-08-24 08:56:40,461 DEBUG: 			View 3 : 0.512345679012
+2016-08-24 08:56:40,530 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 08:56:41,117 DEBUG: 		Start:	 Iteration 10
+2016-08-24 08:56:41,133 DEBUG: 			View 0 : 0.648148148148
+2016-08-24 08:56:41,141 DEBUG: 			View 1 : 0.456790123457
+2016-08-24 08:56:41,178 DEBUG: 			View 2 : 0.407407407407
+2016-08-24 08:56:41,186 DEBUG: 			View 3 : 0.66049382716
+2016-08-24 08:56:41,257 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 08:56:41,906 DEBUG: 		Start:	 Iteration 11
+2016-08-24 08:56:41,923 DEBUG: 			View 0 : 0.401234567901
+2016-08-24 08:56:41,931 DEBUG: 			View 1 : 0.586419753086
+2016-08-24 08:56:41,968 DEBUG: 			View 2 : 0.382716049383
+2016-08-24 08:56:41,975 DEBUG: 			View 3 : 0.493827160494
+2016-08-24 08:56:42,049 DEBUG: 			 Best view : 		MiRNA__
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-090120-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-090120-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..d966042b
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-090120-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,97 @@
+2016-08-24 09:01:20,823 INFO: Start:	 Read HDF5 Database Files for ModifiedMultiOmic
+2016-08-24 09:01:20,823 INFO: Info:	 Labels used: No, Yes
+2016-08-24 09:01:20,823 INFO: Info:	 Length of dataset:347
+2016-08-24 09:01:20,825 INFO: ### Main Programm for Multiview Classification
+2016-08-24 09:01:20,825 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 09:01:20,825 INFO: Info:	 Shape of Methyl_ :(347, 25978)
+2016-08-24 09:01:20,826 INFO: Info:	 Shape of MiRNA__ :(347, 1046)
+2016-08-24 09:01:20,826 INFO: Info:	 Shape of RANSeq_ :(347, 73599)
+2016-08-24 09:01:20,827 INFO: Info:	 Shape of Clinic_ :(347, 127)
+2016-08-24 09:01:20,827 INFO: Done:	 Read Database Files
+2016-08-24 09:01:20,827 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-24 09:01:20,830 INFO: Done:	 Determine validation split
+2016-08-24 09:01:20,830 INFO: Start:	 Determine 2 folds
+2016-08-24 09:01:20,838 INFO: Info:	 Length of Learning Sets: 122
+2016-08-24 09:01:20,838 INFO: Info:	 Length of Testing Sets: 122
+2016-08-24 09:01:20,838 INFO: Info:	 Length of Validation Set: 103
+2016-08-24 09:01:20,838 INFO: Done:	 Determine folds
+2016-08-24 09:01:20,839 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-24 09:01:20,839 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-24 09:01:20,839 DEBUG: 	Start:	 Gridsearch for DecisionTree on Methyl_
+2016-08-24 09:01:28,173 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:01:28,173 DEBUG: 	Start:	 Gridsearch for DecisionTree on MiRNA__
+2016-08-24 09:01:30,085 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:01:30,086 DEBUG: 	Start:	 Gridsearch for DecisionTree on RANSeq_
+2016-08-24 09:01:46,691 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:01:46,691 DEBUG: 	Start:	 Gridsearch for DecisionTree on Clinic_
+2016-08-24 09:01:48,441 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:01:48,441 DEBUG: 	Start:	 Gridsearch for DecisionTree on MRNASeq
+2016-08-24 09:02:44,634 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:02:44,634 INFO: Done:	 Gridsearching best settings for monoview classifiers
+2016-08-24 09:02:44,634 INFO: 	Start:	 Fold number 1
+2016-08-24 09:02:46,206 DEBUG: 		Start:	 Iteration 1
+2016-08-24 09:02:46,269 DEBUG: 			View 0 : 0.37037037037
+2016-08-24 09:02:46,303 DEBUG: 			View 1 : 0.623456790123
+2016-08-24 09:02:46,497 DEBUG: 			View 2 : 0.648148148148
+2016-08-24 09:02:46,505 DEBUG: 			View 3 : 0.62962962963
+2016-08-24 09:02:46,552 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:02:46,634 DEBUG: 		Start:	 Iteration 2
+2016-08-24 09:02:46,652 DEBUG: 			View 0 : 0.438271604938
+2016-08-24 09:02:46,660 DEBUG: 			View 1 : 0.493827160494
+2016-08-24 09:02:46,699 DEBUG: 			View 2 : 0.549382716049
+2016-08-24 09:02:46,707 DEBUG: 			View 3 : 0.518518518519
+2016-08-24 09:02:46,760 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:02:46,915 DEBUG: 		Start:	 Iteration 3
+2016-08-24 09:02:46,932 DEBUG: 			View 0 : 0.543209876543
+2016-08-24 09:02:46,940 DEBUG: 			View 1 : 0.425925925926
+2016-08-24 09:02:46,978 DEBUG: 			View 2 : 0.518518518519
+2016-08-24 09:02:46,985 DEBUG: 			View 3 : 0.648148148148
+2016-08-24 09:02:47,040 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:02:47,253 DEBUG: 		Start:	 Iteration 4
+2016-08-24 09:02:47,270 DEBUG: 			View 0 : 0.432098765432
+2016-08-24 09:02:47,278 DEBUG: 			View 1 : 0.623456790123
+2016-08-24 09:02:47,316 DEBUG: 			View 2 : 0.456790123457
+2016-08-24 09:02:47,324 DEBUG: 			View 3 : 0.537037037037
+2016-08-24 09:02:47,381 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:02:47,652 DEBUG: 		Start:	 Iteration 5
+2016-08-24 09:02:47,669 DEBUG: 			View 0 : 0.395061728395
+2016-08-24 09:02:47,677 DEBUG: 			View 1 : 0.561728395062
+2016-08-24 09:02:47,715 DEBUG: 			View 2 : 0.524691358025
+2016-08-24 09:02:47,723 DEBUG: 			View 3 : 0.413580246914
+2016-08-24 09:02:47,781 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:02:48,113 DEBUG: 		Start:	 Iteration 6
+2016-08-24 09:02:48,130 DEBUG: 			View 0 : 0.716049382716
+2016-08-24 09:02:48,138 DEBUG: 			View 1 : 0.351851851852
+2016-08-24 09:02:48,176 DEBUG: 			View 2 : 0.549382716049
+2016-08-24 09:02:48,183 DEBUG: 			View 3 : 0.530864197531
+2016-08-24 09:02:48,245 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:02:48,639 DEBUG: 		Start:	 Iteration 7
+2016-08-24 09:02:48,656 DEBUG: 			View 0 : 0.598765432099
+2016-08-24 09:02:48,664 DEBUG: 			View 1 : 0.524691358025
+2016-08-24 09:02:48,701 DEBUG: 			View 2 : 0.524691358025
+2016-08-24 09:02:48,709 DEBUG: 			View 3 : 0.382716049383
+2016-08-24 09:02:48,773 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:02:49,242 DEBUG: 		Start:	 Iteration 8
+2016-08-24 09:02:49,262 DEBUG: 			View 0 : 0.33950617284
+2016-08-24 09:02:49,272 DEBUG: 			View 1 : 0.617283950617
+2016-08-24 09:02:49,315 DEBUG: 			View 2 : 0.5
+2016-08-24 09:02:49,325 DEBUG: 			View 3 : 0.574074074074
+2016-08-24 09:02:49,401 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:02:49,959 DEBUG: 		Start:	 Iteration 9
+2016-08-24 09:02:49,975 DEBUG: 			View 0 : 0.512345679012
+2016-08-24 09:02:49,984 DEBUG: 			View 1 : 0.537037037037
+2016-08-24 09:02:50,021 DEBUG: 			View 2 : 0.438271604938
+2016-08-24 09:02:50,029 DEBUG: 			View 3 : 0.604938271605
+2016-08-24 09:02:50,097 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:02:50,670 DEBUG: 		Start:	 Iteration 10
+2016-08-24 09:02:50,687 DEBUG: 			View 0 : 0.401234567901
+2016-08-24 09:02:50,695 DEBUG: 			View 1 : 0.635802469136
+2016-08-24 09:02:50,733 DEBUG: 			View 2 : 0.518518518519
+2016-08-24 09:02:50,740 DEBUG: 			View 3 : 0.543209876543
+2016-08-24 09:02:50,811 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:02:51,445 DEBUG: 		Start:	 Iteration 11
+2016-08-24 09:02:51,462 DEBUG: 			View 0 : 0.592592592593
+2016-08-24 09:02:51,470 DEBUG: 			View 1 : 0.537037037037
+2016-08-24 09:02:51,508 DEBUG: 			View 2 : 0.388888888889
+2016-08-24 09:02:51,516 DEBUG: 			View 3 : 0.450617283951
+2016-08-24 09:02:51,589 DEBUG: 			 Best view : 		Methyl_
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-090956-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-090956-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..ca273594
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-090956-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,14246 @@
+2016-08-24 09:09:56,962 INFO: Start:	 Read HDF5 Database Files for ModifiedMultiOmic
+2016-08-24 09:09:56,963 INFO: Info:	 Labels used: No, Yes
+2016-08-24 09:09:56,963 INFO: Info:	 Length of dataset:347
+2016-08-24 09:09:56,973 INFO: ### Main Programm for Multiview Classification
+2016-08-24 09:09:56,973 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 09:09:56,973 INFO: Info:	 Shape of Methyl_ :(347, 25978)
+2016-08-24 09:09:56,974 INFO: Info:	 Shape of MiRNA__ :(347, 1046)
+2016-08-24 09:09:56,974 INFO: Info:	 Shape of RANSeq_ :(347, 73599)
+2016-08-24 09:09:56,975 INFO: Info:	 Shape of Clinic_ :(347, 127)
+2016-08-24 09:09:56,975 INFO: Done:	 Read Database Files
+2016-08-24 09:09:56,975 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-24 09:09:56,978 INFO: Done:	 Determine validation split
+2016-08-24 09:09:56,978 INFO: Start:	 Determine 2 folds
+2016-08-24 09:09:56,987 INFO: Info:	 Length of Learning Sets: 122
+2016-08-24 09:09:56,987 INFO: Info:	 Length of Testing Sets: 122
+2016-08-24 09:09:56,988 INFO: Info:	 Length of Validation Set: 103
+2016-08-24 09:09:56,988 INFO: Done:	 Determine folds
+2016-08-24 09:09:56,988 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-24 09:09:56,988 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-24 09:09:56,988 DEBUG: 	Start:	 Gridsearch for DecisionTree on Methyl_
+2016-08-24 09:10:04,379 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:10:04,380 DEBUG: 	Start:	 Gridsearch for DecisionTree on MiRNA__
+2016-08-24 09:10:06,314 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:10:06,315 DEBUG: 	Start:	 Gridsearch for DecisionTree on RANSeq_
+2016-08-24 09:10:23,238 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:10:23,238 DEBUG: 	Start:	 Gridsearch for DecisionTree on Clinic_
+2016-08-24 09:10:25,001 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:10:25,002 DEBUG: 	Start:	 Gridsearch for DecisionTree on MRNASeq
+2016-08-24 09:11:02,594 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:11:02,594 INFO: Done:	 Gridsearching best settings for monoview classifiers
+2016-08-24 09:11:02,594 INFO: 	Start:	 Fold number 1
+2016-08-24 09:11:04,137 DEBUG: 		Start:	 Iteration 1
+2016-08-24 09:11:04,153 DEBUG: 			View 0 : 0.622641509434
+2016-08-24 09:11:04,161 DEBUG: 			View 1 : 0.339622641509
+2016-08-24 09:11:04,189 DEBUG: 			View 2 : 0.622641509434
+2016-08-24 09:11:04,197 DEBUG: 			View 3 : 0.377358490566
+2016-08-24 09:11:04,239 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:11:04,311 DEBUG: 		Start:	 Iteration 2
+2016-08-24 09:11:04,328 DEBUG: 			View 0 : 0.534591194969
+2016-08-24 09:11:04,336 DEBUG: 			View 1 : 0.522012578616
+2016-08-24 09:11:04,373 DEBUG: 			View 2 : 0.540880503145
+2016-08-24 09:11:04,381 DEBUG: 			View 3 : 0.477987421384
+2016-08-24 09:11:04,426 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:11:04,573 DEBUG: 		Start:	 Iteration 3
+2016-08-24 09:11:04,590 DEBUG: 			View 0 : 0.603773584906
+2016-08-24 09:11:04,598 DEBUG: 			View 1 : 0.566037735849
+2016-08-24 09:11:04,636 DEBUG: 			View 2 : 0.553459119497
+2016-08-24 09:11:04,643 DEBUG: 			View 3 : 0.62893081761
+2016-08-24 09:11:04,696 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:11:04,902 DEBUG: 		Start:	 Iteration 4
+2016-08-24 09:11:04,918 DEBUG: 			View 0 : 0.496855345912
+2016-08-24 09:11:04,926 DEBUG: 			View 1 : 0.51572327044
+2016-08-24 09:11:04,963 DEBUG: 			View 2 : 0.62893081761
+2016-08-24 09:11:04,970 DEBUG: 			View 3 : 0.421383647799
+2016-08-24 09:11:05,025 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:11:05,308 DEBUG: 		Start:	 Iteration 5
+2016-08-24 09:11:05,324 DEBUG: 			View 0 : 0.477987421384
+2016-08-24 09:11:05,332 DEBUG: 			View 1 : 0.685534591195
+2016-08-24 09:11:05,369 DEBUG: 			View 2 : 0.452830188679
+2016-08-24 09:11:05,377 DEBUG: 			View 3 : 0.584905660377
+2016-08-24 09:11:05,434 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:11:05,769 DEBUG: 		Start:	 Iteration 6
+2016-08-24 09:11:05,786 DEBUG: 			View 0 : 0.433962264151
+2016-08-24 09:11:05,793 DEBUG: 			View 1 : 0.333333333333
+2016-08-24 09:11:05,830 DEBUG: 			View 2 : 0.396226415094
+2016-08-24 09:11:05,838 DEBUG: 			View 3 : 0.616352201258
+2016-08-24 09:11:05,899 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:11:06,295 DEBUG: 		Start:	 Iteration 7
+2016-08-24 09:11:06,311 DEBUG: 			View 0 : 0.509433962264
+2016-08-24 09:11:06,319 DEBUG: 			View 1 : 0.295597484277
+2016-08-24 09:11:06,356 DEBUG: 			View 2 : 0.471698113208
+2016-08-24 09:11:06,364 DEBUG: 			View 3 : 0.427672955975
+2016-08-24 09:11:06,426 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:11:06,881 DEBUG: 		Start:	 Iteration 8
+2016-08-24 09:11:06,897 DEBUG: 			View 0 : 0.452830188679
+2016-08-24 09:11:06,905 DEBUG: 			View 1 : 0.295597484277
+2016-08-24 09:11:06,942 DEBUG: 			View 2 : 0.440251572327
+2016-08-24 09:11:06,950 DEBUG: 			View 3 : 0.62893081761
+2016-08-24 09:11:07,016 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:11:07,528 DEBUG: 		Start:	 Iteration 9
+2016-08-24 09:11:07,544 DEBUG: 			View 0 : 0.522012578616
+2016-08-24 09:11:07,552 DEBUG: 			View 1 : 0.754716981132
+2016-08-24 09:11:07,589 DEBUG: 			View 2 : 0.534591194969
+2016-08-24 09:11:07,597 DEBUG: 			View 3 : 0.396226415094
+2016-08-24 09:11:07,664 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:11:08,239 DEBUG: 		Start:	 Iteration 10
+2016-08-24 09:11:08,256 DEBUG: 			View 0 : 0.48427672956
+2016-08-24 09:11:08,263 DEBUG: 			View 1 : 0.654088050314
+2016-08-24 09:11:08,301 DEBUG: 			View 2 : 0.610062893082
+2016-08-24 09:11:08,310 DEBUG: 			View 3 : 0.572327044025
+2016-08-24 09:11:08,380 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:11:09,007 DEBUG: 		Start:	 Iteration 11
+2016-08-24 09:11:09,024 DEBUG: 			View 0 : 0.51572327044
+2016-08-24 09:11:09,032 DEBUG: 			View 1 : 0.559748427673
+2016-08-24 09:11:09,069 DEBUG: 			View 2 : 0.534591194969
+2016-08-24 09:11:09,077 DEBUG: 			View 3 : 0.389937106918
+2016-08-24 09:11:09,148 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:11:09,842 DEBUG: 		Start:	 Iteration 12
+2016-08-24 09:11:09,873 DEBUG: 			View 0 : 0.503144654088
+2016-08-24 09:11:09,881 DEBUG: 			View 1 : 0.748427672956
+2016-08-24 09:11:09,918 DEBUG: 			View 2 : 0.540880503145
+2016-08-24 09:11:09,926 DEBUG: 			View 3 : 0.503144654088
+2016-08-24 09:11:09,999 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:11:10,742 INFO: 	Start: 	 Classification
+2016-08-24 09:11:12,499 INFO: 	Done: 	 Fold number 1
+2016-08-24 09:11:12,499 INFO: 	Start:	 Fold number 2
+2016-08-24 09:11:14,013 DEBUG: 		Start:	 Iteration 1
+2016-08-24 09:11:14,027 DEBUG: 			View 0 : 0.617834394904
+2016-08-24 09:11:14,035 DEBUG: 			View 1 : 0.382165605096
+2016-08-24 09:11:14,062 DEBUG: 			View 2 : 0.617834394904
+2016-08-24 09:11:14,070 DEBUG: 			View 3 : 0.528662420382
+2016-08-24 09:11:14,108 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:11:14,183 DEBUG: 		Start:	 Iteration 2
+2016-08-24 09:11:14,199 DEBUG: 			View 0 : 0.496815286624
+2016-08-24 09:11:14,207 DEBUG: 			View 1 : 0.420382165605
+2016-08-24 09:11:14,243 DEBUG: 			View 2 : 0.426751592357
+2016-08-24 09:11:14,250 DEBUG: 			View 3 : 0.426751592357
+2016-08-24 09:11:14,250 WARNING: All bad for iteration 1
+2016-08-24 09:11:14,299 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:11:14,436 DEBUG: 		Start:	 Iteration 3
+2016-08-24 09:11:14,452 DEBUG: 			View 0 : 0.662420382166
+2016-08-24 09:11:14,460 DEBUG: 			View 1 : 0.464968152866
+2016-08-24 09:11:14,495 DEBUG: 			View 2 : 0.503184713376
+2016-08-24 09:11:14,503 DEBUG: 			View 3 : 0.528662420382
+2016-08-24 09:11:14,554 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:11:14,751 DEBUG: 		Start:	 Iteration 4
+2016-08-24 09:11:14,767 DEBUG: 			View 0 : 0.433121019108
+2016-08-24 09:11:14,775 DEBUG: 			View 1 : 0.496815286624
+2016-08-24 09:11:14,811 DEBUG: 			View 2 : 0.43949044586
+2016-08-24 09:11:14,818 DEBUG: 			View 3 : 0.547770700637
+2016-08-24 09:11:14,872 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:11:15,126 DEBUG: 		Start:	 Iteration 5
+2016-08-24 09:11:15,143 DEBUG: 			View 0 : 0.503184713376
+2016-08-24 09:11:15,150 DEBUG: 			View 1 : 0.687898089172
+2016-08-24 09:11:15,187 DEBUG: 			View 2 : 0.420382165605
+2016-08-24 09:11:15,194 DEBUG: 			View 3 : 0.592356687898
+2016-08-24 09:11:15,250 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:11:15,562 DEBUG: 		Start:	 Iteration 6
+2016-08-24 09:11:15,578 DEBUG: 			View 0 : 0.554140127389
+2016-08-24 09:11:15,585 DEBUG: 			View 1 : 0.515923566879
+2016-08-24 09:11:15,621 DEBUG: 			View 2 : 0.452229299363
+2016-08-24 09:11:15,629 DEBUG: 			View 3 : 0.624203821656
+2016-08-24 09:11:15,687 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:11:16,055 DEBUG: 		Start:	 Iteration 7
+2016-08-24 09:11:16,071 DEBUG: 			View 0 : 0.471337579618
+2016-08-24 09:11:16,079 DEBUG: 			View 1 : 0.388535031847
+2016-08-24 09:11:16,114 DEBUG: 			View 2 : 0.420382165605
+2016-08-24 09:11:16,122 DEBUG: 			View 3 : 0.535031847134
+2016-08-24 09:11:16,182 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:11:16,608 DEBUG: 		Start:	 Iteration 8
+2016-08-24 09:11:16,624 DEBUG: 			View 0 : 0.43949044586
+2016-08-24 09:11:16,632 DEBUG: 			View 1 : 0.726114649682
+2016-08-24 09:11:16,668 DEBUG: 			View 2 : 0.605095541401
+2016-08-24 09:11:16,676 DEBUG: 			View 3 : 0.605095541401
+2016-08-24 09:11:16,739 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:11:17,220 DEBUG: 		Start:	 Iteration 9
+2016-08-24 09:11:17,236 DEBUG: 			View 0 : 0.579617834395
+2016-08-24 09:11:17,244 DEBUG: 			View 1 : 0.547770700637
+2016-08-24 09:11:17,280 DEBUG: 			View 2 : 0.388535031847
+2016-08-24 09:11:17,288 DEBUG: 			View 3 : 0.458598726115
+2016-08-24 09:11:17,352 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:11:17,896 DEBUG: 		Start:	 Iteration 10
+2016-08-24 09:11:17,913 DEBUG: 			View 0 : 0.464968152866
+2016-08-24 09:11:17,921 DEBUG: 			View 1 : 0.605095541401
+2016-08-24 09:11:17,958 DEBUG: 			View 2 : 0.528662420382
+2016-08-24 09:11:17,965 DEBUG: 			View 3 : 0.40127388535
+2016-08-24 09:11:18,034 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:11:18,635 DEBUG: 		Start:	 Iteration 11
+2016-08-24 09:11:18,651 DEBUG: 			View 0 : 0.363057324841
+2016-08-24 09:11:18,659 DEBUG: 			View 1 : 0.573248407643
+2016-08-24 09:11:18,695 DEBUG: 			View 2 : 0.363057324841
+2016-08-24 09:11:18,703 DEBUG: 			View 3 : 0.445859872611
+2016-08-24 09:11:18,773 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:11:19,431 DEBUG: 		Start:	 Iteration 12
+2016-08-24 09:11:19,447 DEBUG: 			View 0 : 0.43949044586
+2016-08-24 09:11:19,455 DEBUG: 			View 1 : 0.375796178344
+2016-08-24 09:11:19,491 DEBUG: 			View 2 : 0.515923566879
+2016-08-24 09:11:19,499 DEBUG: 			View 3 : 0.592356687898
+2016-08-24 09:11:19,571 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:11:20,286 INFO: 	Start: 	 Classification
+2016-08-24 09:11:21,987 INFO: 	Done: 	 Fold number 2
+2016-08-24 09:11:21,987 INFO: Done:	 Classification
+2016-08-24 09:11:21,988 INFO: Info:	 Time for Classification: 85[s]
+2016-08-24 09:11:21,988 INFO: Start:	 Result Analysis for Mumbo
+2016-08-24 09:11:28,399 INFO: 		Result for Multiview classification with Mumbo
+
+Average accuracy :
+	-On Train : 70.8648800224
+	-On Test : 77.0491803279
+	-On Validation : 81.067961165
+
+Dataset info :
+	-Database name : ModifiedMultiOmic
+	-Labels : No, Yes
+	-Views : Methyl, MiRNA, RNASEQ, Clinical
+	-2 folds
+	- Validation set length : 103 for learning rate : 0.7
+
+Classification configuration : 
+	-Algorithm used : Mumbo 
+	-Iterations : 1000
+	-Weak Classifiers : DecisionTree with depth 1.0,  sub-sampled at 0.006 on Methyl
+		-DecisionTree with depth 1.0,  sub-sampled at 0.006 on MiRNA
+		-DecisionTree with depth 1.0,  sub-sampled at 0.006 on RNASEQ
+		-DecisionTree with depth 1.0,  sub-sampled at 0.006 on Clinical
+
+ Mean average accuracies and stats for each fold : 
+	- Fold 0
+		- On Methyl_ : 
+			- Mean average Accuracy : 0.0061572327044
+			- Percentage of time chosen : 0.989
+		- On MiRNA__ : 
+			- Mean average Accuracy : 0.00627044025157
+			- Percentage of time chosen : 0.006
+		- On RANSeq_ : 
+			- Mean average Accuracy : 0.00632704402516
+			- Percentage of time chosen : 0.002
+		- On Clinic_ : 
+			- Mean average Accuracy : 0.0060251572327
+			- Percentage of time chosen : 0.003
+	- Fold 1
+		- On Methyl_ : 
+			- Mean average Accuracy : 0.00602547770701
+			- Percentage of time chosen : 0.992
+		- On MiRNA__ : 
+			- Mean average Accuracy : 0.0061847133758
+			- Percentage of time chosen : 0.004
+		- On RANSeq_ : 
+			- Mean average Accuracy : 0.00568152866242
+			- Percentage of time chosen : 0.0
+		- On Clinic_ : 
+			- Mean average Accuracy : 0.00628662420382
+			- Percentage of time chosen : 0.004
+
+ For each iteration : 
+	- Iteration 1
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 2
+		 Fold 1
+			Accuracy on train : 54.0880503145
+			Accuracy on test : 65.5737704918
+			Accuracy on validation : 65.0485436893
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 57.9357449025
+			 Accuracy on test : 69.262295082
+	- Iteration 3
+		 Fold 1
+			Accuracy on train : 62.893081761
+			Accuracy on test : 59.8360655738
+			Accuracy on validation : 68.932038835
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 66.2420382166
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 78.640776699
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 64.5675599888
+			 Accuracy on test : 67.6229508197
+	- Iteration 4
+		 Fold 1
+			Accuracy on train : 59.1194968553
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 69.9029126214
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 66.2420382166
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 78.640776699
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 62.680767536
+			 Accuracy on test : 74.5901639344
+	- Iteration 5
+		 Fold 1
+			Accuracy on train : 66.6666666667
+			Accuracy on test : 68.8524590164
+			Accuracy on validation : 76.6990291262
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 68.152866242
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 67.4097664544
+			 Accuracy on test : 74.1803278689
+	- Iteration 6
+		 Fold 1
+			Accuracy on train : 63.5220125786
+			Accuracy on test : 72.131147541
+			Accuracy on validation : 72.8155339806
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 66.8789808917
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 80.5825242718
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 65.2004967352
+			 Accuracy on test : 75.8196721311
+	- Iteration 7
+		 Fold 1
+			Accuracy on train : 67.9245283019
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 77.6699029126
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 68.152866242
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 78.640776699
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 68.038697272
+			 Accuracy on test : 75.4098360656
+	- Iteration 8
+		 Fold 1
+			Accuracy on train : 64.1509433962
+			Accuracy on test : 66.393442623
+			Accuracy on validation : 71.8446601942
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 71.974522293
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 68.0627328446
+			 Accuracy on test : 73.7704918033
+	- Iteration 9
+		 Fold 1
+			Accuracy on train : 71.6981132075
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 70.0636942675
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 70.8809037375
+			 Accuracy on test : 76.2295081967
+	- Iteration 10
+		 Fold 1
+			Accuracy on train : 69.1823899371
+			Accuracy on test : 71.3114754098
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 69.4267515924
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 69.3045707647
+			 Accuracy on test : 75.0
+	- Iteration 11
+		 Fold 1
+			Accuracy on train : 71.0691823899
+			Accuracy on test : 72.131147541
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 69.4267515924
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 70.2479669911
+			 Accuracy on test : 75.4098360656
+	- Iteration 12
+		 Fold 1
+			Accuracy on train : 74.213836478
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 67.5159235669
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 70.8648800224
+			 Accuracy on test : 77.0491803279
+	- Iteration 13
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 14
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 15
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 16
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 17
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 18
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 19
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 20
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 21
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 22
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 23
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 24
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 25
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 26
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 27
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 28
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 29
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 30
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 31
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 32
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 33
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 34
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 35
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 36
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 37
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 38
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 39
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 40
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 41
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 42
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 43
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 44
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 45
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 46
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 47
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 48
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 49
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 50
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 51
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 52
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 53
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 54
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 55
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 56
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 57
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 58
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 59
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 60
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 61
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 62
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 63
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 64
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 65
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 66
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 67
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 68
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 69
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 70
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 71
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 72
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 73
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 74
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 75
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 76
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 77
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 78
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 79
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 80
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 81
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 82
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 83
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 84
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 85
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 86
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 87
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 88
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 89
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 90
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 91
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 92
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 93
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 94
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 95
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 96
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 97
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 98
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 99
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 100
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 101
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 102
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 103
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 104
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 105
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 106
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 107
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 108
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 109
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 110
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 111
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 112
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 113
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 114
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 115
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 116
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 117
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 118
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 119
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 120
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 121
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 122
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 123
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 124
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 125
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 126
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 127
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 128
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 129
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 130
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 131
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 132
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 133
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 134
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 135
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 136
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 137
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 138
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 139
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 140
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 141
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 142
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 143
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 144
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 145
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 146
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 147
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 148
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 149
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 150
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 151
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 152
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 153
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 154
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 155
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 156
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 157
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 158
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 159
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 160
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 161
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 162
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 163
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 164
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 165
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 166
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 167
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 168
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 169
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 170
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 171
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 172
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 173
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 174
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 175
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 176
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 177
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 178
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 179
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 180
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 181
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 182
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 183
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 184
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 185
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 186
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 187
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 188
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 189
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 190
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 191
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 192
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 193
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 194
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 195
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 196
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 197
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 198
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 199
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 200
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 201
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 202
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 203
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 204
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 205
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 206
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 207
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 208
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 209
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 210
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 211
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 212
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 213
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 214
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 215
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 216
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 217
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 218
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 219
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 220
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 221
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 222
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 223
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 224
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 225
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 226
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 227
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 228
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 229
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 230
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 231
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 232
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 233
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 234
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 235
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 236
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 237
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 238
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 239
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 240
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 241
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 242
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 243
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 244
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 245
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 246
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 247
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 248
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 249
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 250
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 251
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 252
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 253
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 254
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 255
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 256
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 257
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 258
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 259
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 260
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 261
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 262
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 263
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 264
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 265
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 266
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 267
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 268
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 269
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 270
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 271
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 272
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 273
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 274
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 275
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 276
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 277
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 278
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 279
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 280
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 281
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 282
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 283
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 284
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 285
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 286
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 287
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 288
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 289
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 290
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 291
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 292
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 293
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 294
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 295
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 296
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 297
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 298
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 299
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 300
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 301
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 302
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 303
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 304
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 305
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 306
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 307
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 308
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 309
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 310
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 311
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 312
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 313
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 314
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 315
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 316
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 317
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 318
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 319
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 320
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 321
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 322
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 323
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 324
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 325
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 326
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 327
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 328
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 329
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 330
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 331
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 332
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 333
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 334
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 335
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 336
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 337
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 338
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 339
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 340
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 341
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 342
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 343
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 344
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 345
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 346
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 347
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 348
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 349
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 350
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 351
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 352
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 353
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 354
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 355
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 356
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 357
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 358
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 359
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 360
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 361
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 362
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 363
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 364
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 365
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 366
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 367
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 368
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 369
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 370
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 371
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 372
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 373
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 374
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 375
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 376
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 377
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 378
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 379
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 380
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 381
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 382
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 383
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 384
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 385
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 386
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 387
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 388
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 389
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 390
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 391
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 392
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 393
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 394
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 395
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 396
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 397
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 398
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 399
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 400
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 401
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 402
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 403
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 404
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 405
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 406
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 407
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 408
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 409
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 410
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 411
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 412
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 413
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 414
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 415
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 416
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 417
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 418
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 419
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 420
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 421
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 422
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 423
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 424
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 425
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 426
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 427
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 428
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 429
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 430
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 431
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 432
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 433
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 434
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 435
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 436
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 437
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 438
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 439
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 440
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 441
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 442
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 443
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 444
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 445
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 446
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 447
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 448
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 449
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 450
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 451
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 452
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 453
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 454
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 455
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 456
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 457
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 458
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 459
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 460
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 461
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 462
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 463
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 464
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 465
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 466
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 467
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 468
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 469
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 470
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 471
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 472
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 473
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 474
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 475
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 476
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 477
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 478
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 479
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 480
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 481
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 482
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 483
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 484
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 485
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 486
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 487
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 488
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 489
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 490
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 491
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 492
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 493
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 494
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 495
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 496
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 497
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 498
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 499
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 500
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 501
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 502
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 503
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 504
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 505
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 506
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 507
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 508
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 509
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 510
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 511
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 512
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 513
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 514
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 515
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 516
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 517
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 518
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 519
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 520
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 521
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 522
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 523
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 524
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 525
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 526
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 527
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 528
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 529
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 530
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 531
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 532
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 533
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 534
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 535
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 536
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 537
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 538
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 539
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 540
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 541
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 542
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 543
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 544
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 545
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 546
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 547
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 548
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 549
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 550
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 551
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 552
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 553
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 554
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 555
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 556
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 557
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 558
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 559
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 560
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 561
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 562
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 563
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 564
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 565
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 566
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 567
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 568
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 569
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 570
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 571
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 572
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 573
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 574
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 575
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 576
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 577
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 578
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 579
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 580
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 581
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 582
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 583
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 584
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 585
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 586
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 587
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 588
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 589
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 590
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 591
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 592
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 593
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 594
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 595
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 596
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 597
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 598
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 599
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 600
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 601
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 602
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 603
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 604
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 605
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 606
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 607
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 608
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 609
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 610
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 611
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 612
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 613
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 614
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 615
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 616
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 617
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 618
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 619
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 620
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 621
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 622
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 623
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 624
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 625
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 626
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 627
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 628
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 629
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 630
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 631
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 632
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 633
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 634
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 635
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 636
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 637
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 638
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 639
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 640
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 641
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 642
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 643
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 644
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 645
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 646
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 647
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 648
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 649
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 650
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 651
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 652
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 653
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 654
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 655
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 656
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 657
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 658
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 659
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 660
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 661
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 662
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 663
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 664
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 665
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 666
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 667
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 668
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 669
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 670
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 671
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 672
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 673
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 674
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 675
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 676
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 677
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 678
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 679
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 680
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 681
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 682
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 683
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 684
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 685
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 686
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 687
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 688
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 689
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 690
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 691
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 692
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 693
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 694
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 695
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 696
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 697
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 698
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 699
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 700
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 701
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 702
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 703
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 704
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 705
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 706
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 707
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 708
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 709
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 710
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 711
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 712
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 713
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 714
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 715
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 716
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 717
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 718
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 719
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 720
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 721
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 722
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 723
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 724
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 725
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 726
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 727
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 728
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 729
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 730
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 731
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 732
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 733
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 734
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 735
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 736
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 737
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 738
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 739
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 740
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 741
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 742
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 743
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 744
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 745
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 746
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 747
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 748
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 749
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 750
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 751
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 752
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 753
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 754
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 755
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 756
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 757
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 758
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 759
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 760
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 761
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 762
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 763
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 764
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 765
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 766
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 767
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 768
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 769
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 770
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 771
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 772
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 773
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 774
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 775
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 776
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 777
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 778
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 779
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 780
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 781
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 782
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 783
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 784
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 785
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 786
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 787
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 788
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 789
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 790
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 791
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 792
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 793
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 794
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 795
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 796
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 797
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 798
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 799
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 800
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 801
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 802
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 803
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 804
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 805
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 806
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 807
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 808
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 809
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 810
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 811
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 812
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 813
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 814
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 815
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 816
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 817
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 818
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 819
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 820
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 821
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 822
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 823
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 824
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 825
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 826
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 827
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 828
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 829
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 830
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 831
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 832
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 833
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 834
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 835
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 836
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 837
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 838
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 839
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 840
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 841
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 842
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 843
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 844
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 845
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 846
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 847
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 848
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 849
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 850
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 851
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 852
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 853
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 854
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 855
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 856
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 857
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 858
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 859
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 860
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 861
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 862
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 863
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 864
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 865
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 866
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 867
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 868
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 869
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 870
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 871
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 872
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 873
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 874
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 875
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 876
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 877
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 878
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 879
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 880
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 881
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 882
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 883
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 884
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 885
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 886
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 887
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 888
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 889
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 890
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 891
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 892
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 893
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 894
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 895
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 896
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 897
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 898
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 899
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 900
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 901
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 902
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 903
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 904
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 905
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 906
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 907
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 908
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 909
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 910
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 911
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 912
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 913
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 914
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 915
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 916
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 917
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 918
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 919
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 920
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 921
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 922
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 923
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 924
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 925
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 926
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 927
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 928
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 929
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 930
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 931
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 932
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 933
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 934
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 935
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 936
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 937
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 938
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 939
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 940
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 941
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 942
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 943
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 944
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 945
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 946
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 947
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 948
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 949
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 950
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 951
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 952
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 953
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 954
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 955
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 956
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 957
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 958
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 959
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 960
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 961
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 962
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 963
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 964
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 965
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 966
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 967
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 968
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 969
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 970
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 971
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 972
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 973
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 974
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 975
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 976
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 977
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 978
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 979
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 980
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 981
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 982
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 983
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 984
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 985
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 986
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 987
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 988
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 989
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 990
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 991
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 992
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 993
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 994
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 995
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 996
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 997
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 998
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 999
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 1000
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+
+Computation time on 1 cores : 
+	Database extraction time : 0:00:00
+	                         Learn     Prediction
+	         Fold 1        0:01:13        0:00:01
+	         Fold 2        0:01:23        0:00:01
+	          Total        0:02:37        0:00:03
+	So a total classification time of 0:01:25.
+
+
+2016-08-24 09:11:29,450 INFO: Done:	 Result Analysis
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-091129Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-091129Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic-accuracyByIteration.png
new file mode 100644
index 0000000000000000000000000000000000000000..3715ab22b1a4f8a96fb587e9491c44044540442c
GIT binary patch
literal 50608
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_eY;q1--_8*?_O_e&G!aqN7QrO*h
z*Q%noYVHoWsieteoN{88j&W~oi{UnxYe@n^w`Oc~)z+MJD$mEI_f*jH@5ld^)!p5d
zYjn0uuD<mB?>*;#@7aF)_nz~g9tk*cNVFwFP!z-W^?D444S2xlzw8>OLr}I)ccQ2O
zTp7>m2B<jC<)jGK7O3_aVu!U9AbNQYZ;=RNgo;ZnJGz0318gSGVFTT^PzQ*05^b4=
zqgG%BR87*WSFc{&+iR_*rS+n`v$OL-(assR)n(1E<98G=rk|g;bpHGM`}_N3t<84I
zRDXNZ*xl_t`FixW9LbQ7kc5m34p~{*8M9_3JwDdEV$GVIqPWm`cC}p6(zB~BFIloA
z;miy}`MteUrigU7D0Li7`ts^3x2#o3LxfISgwC;DrLXO*?)xX6o~Fye$;rsDWa-j}
zA08eqiF9>k-4Ubb<?TItPJT#;h>Wc4?9gq`rl{-d^KaX>E#v+^TOS{vSH97ak)4^B
zmpKLp3*WkR>&C9q?9Hd{MtpyF*ZKOo*yxn#vkxCWY}Ae3W>RTeUtiC{&TgJLchMrH
zHIbW_-7``5o6|6Fp4^tLTOU4q7WV$@hMb#58Ch9Q-rn4fj*dpBx8>jG)790@$jm%=
z{=EOQ@+bfP{+6(*FeoW4J^1+JhTPlR)ZV%W-`QQxAEPI}ZrwVg`}$E^IAZj~m;2Ap
zGw9#2!QjcWXP3?|T)1%Sr|h17+v_}^^ABk$@O<tpw2)b`a^=G#ox)#s$L=mWc;m*7
zz}NHb>*dnV%~?71`SEE_lY8Xt<uo-lcN9P8Q&LhA5ENvrum9hFikqS8%Zo;CalI?E
zk6pMRz|JrC=S8lBl$4ULF7L{fD<k&RSiX7lX2PslU01Gz)O<c`Zj{NXD8F}ZzhUkz
zlQVNHg&Vdk5|NbD-25l`d~osg+`LMwk{1mR9wfZEy?y<`E!E%NIM&tK6%`j3eti|n
z!p^R&uKs-SsXHNOZQcHx>BsFk@apR7*D-NHK}_=U@^h?8xhyR$U)<SgyzlR~=$)Cu
zLP7;^ZW!L#Rmwec=1hyqPbx{t$&3s;ckYbXn8dm+Zg1D_^7oGpHnVf^^0F%IWpC$~
z@6!xk_Tbyw+b7PPInp7hZ1?wE*yWYM>M3bykDi{M&ah<aqr>g|&Bq^`X8n!bU3PU>
z+Rd#;4dmNH9VDLl8)RNm`PIK|#}0|`^>MA6H*fZtRr>nc!82!g+}zwGED99l>}ooC
zdU$f~?h<9^lWB<1S@!=6r((pe63w2To&{^y`f6*uzP9%8m6gGn^VY}jce}nW_T#Io
ztNpj>zk2oR#@1}{x?eBVr%ai`z;JG^HM_R9wuH3w;WKA=o}Zt;{N>?8hZKZ56-2la
zlaiX)`Q=V*c{FAE^yDuuE<X5JA<*gaWk<}80!F2Y9nUtGzmMZ!Vd7|Y;*m6B@t<$U
zs!%(jw4~(7jg83%pMM7FZ)$2{`>t$YAdr`rS5Q>M)PMZ&`~Cm>=FE}dk+Be1wrrUI
zSF2He!ur_VY}VG+GiJ;<aN-1qd%xV;sp+1coV!Y1I^BQObu_7>s)~u>)923%7cX|+
zE-N6=u-t!s($Ox_j{g4k2%Tf$@wKcDRdwchcQ}HBgTK7I%>MA<!=mpG|Nj2|;p^Ad
zZQIOLggn=J#a2{U>|K_Vn>%spR91&y%dTC#DCpeA)3|S+-J3UWKD@ZNIBoj!;N^Z3
zJXA6+FY|3aZm*=oWM^krVjCVFE@M@);^5a++S=O9vu8_J*vPdwDYEg)@i27s_fKE>
zAU!3;!P~pLPOT;3+nbvL94rq$|1`RuU3z}Lz5D-ve_xiGr=Aj-HGk?<(Vm{31CKv$
z$hxYv%P%28;aHDk^TB3z=jdo@Jw3e>XU?=to-ABaQu5&8L&wWi6%_|=-<E#%?Ae8@
zSC2k9Ir-zizrUlNR{Z~G%f!T#ke0@_F`{Q<^6^DGc1SRMcydzs%lrHCHgf#u&Yi3H
z^u%-S@$54*3=K?8TOAY*Y)CvD5D~$_@Zt04!>_NeR}|}3oam9YR$Nxr_q?sbT8Haj
zixiBEgoM?68YWE=nlfbyC>hTBc4DG(L1Cfe^K)|<8TRelS8{V_@$(D&YO8r<t)@H+
z4fnp9zyB|rxVShdA+RvLxwW-hFE}*x=%uCJiFtW_cD26}o}QXoD#y>)-n=pS_@&oB
z-`w16U~1~x&L^8OYt^agGiOS+I4LgkpWnwXZ<la;Tds${|MBbb^}HJ+e6%Bv9z7~y
zoW}E`#_r6SGanutWM(+fz{p(i<b>d?_b)FmPfSe>O}{De%)Z@#=d<V6cXwx}q@)PQ
z^}ElrtM%HJch^fyFUDh<UaZ%jzkfLuTVyN>8h-rvG2zrHFDDMg>hJGVo7s4kS_Ed6
zv<L(R1UOj8@L86<kx*=zV4QwVKvq`Pi9>OH++L--yGoVU$M08b5%_eN-(Da;Ki`Q%
zad-K9H9bAOqSHG{Uxx{ah^UlDo_!mhd4Hen&bq%=Cr_VN7V2!7GG&T@6UWK3XH{*h
zz9_uEw^zBdv(v@dx%tnx+xaa5PNz<t@`#L-)YQ;WkhLyTX%Q%TbHnh_n>Rk6b+xpV
zS_F#z{i#$E>f}&txwEHoa>@I9b8TvWO%ZT9QGUPHosCDr;rnXmc0N!E-Xh@i?EHNH
zn%dgbQ(F1=#r5NSLPA456B88`TPA#ee_z<y*}3TZyI3a<#r%7F6o38trJ}3byQk*o
zq>iIWpZ@$TcH&SxKi^(`)v8q``&Vt=ut6bwU5sLDYpaWj(8c1-xwp-XYJZjNdb_ju
zxsVgb&7H;Sg{7rSU)TTm&{$w0vnlhkniGfO%$YM?A|oTu%~VuTQE9QTw4B)0#r5gk
zUF)RWTwfVkSx&{4m>mU;Jd#E&d+Pts6L9iKN>UQ!U@4iMduz+W-%>I%K5Tq4H{N^-
z>Fn-SK6dQb*JT$kUsgVO^5mD#$9kntJ~=u0b?owGhuirlA8cm7d_MHL-`TgzmoFFA
z)zx+C`10#Xfkn#udwW|1ob=-Mc<d^D?dIj}o&9uw+F2>1<YPTiKc`QbGNJtaJwYc9
zO<i48rpAUPOO^;YEqNXm9X(q_TwK^`$@S)?OI0<swUyuB->+^X*FVR)yidUC#E*}U
zI~^1hmM&eoWYMA~9vO=XYa%zd>HYqAT%J?0MJImWoSOfCzi*LobaYI)wkEPgz$qps
z=ESF`r#Tf{Y^uI=l)Sq$v*!EV@}mCmt6Tjz6z|vl*1fy^&YhS`TeHJ|vd<LQlyy~W
z=Hq~v7$3XeZ;W?lvhzqd^vPH{+0VBqY`Ss#wy+b&$IqXYv#+mPdOGjU4#!_#UOICq
zru_Z&HRVW$;E}Uudplf|jIyq11O)^rluIkS_o;YK(@|^@`1Izc@u#QL<1anFzd7CC
zsQO!uQ^yy((6F#&-*ZbtfB$)Kkhv<pN6NHIMMXux+uK`6R@Rq8@yO}Z-7+>66V^R{
z`O?!Y=Y|7^qR~r^iTA8Q$&_E-PNhY_DE*vF)t#iIq>imyO?|C1E+_~I3OaI31T_fa
zm;MM3Z;*I)zwJ-_cR7B3{+8BOMJ+9^-{0R)f4Qva&yPYCb#-SQG3E(ntSi=Q?k|0P
zO~S6mg26#)qJq9YKLe<Q>5($!+Fkbc(3;52A1?dbpZxNCz4zC!$;;kdpJ|+4@cy1{
zM0E7!_adUAA0HfKo?}-lB_}5r5E#hFQ1kES^R1r*Iap4dJ9n%{(l{YEx3`g*{hC+t
zzdw~c5(W%+cbBs()H3f*I?A=nw$p{l)YSCX_h)BkOK;_GX6Ij)pS*eV=81FX@|v5Q
z&&rRCl-#sw(}xcaou52?dhq1QPQAxPJ9iX6=exUI>)W?)9lgCro7wpd5)LpdS-xD^
z+FH7>u+UfPvQgQa2!@7z`|KEA-u^M`c2|G@@gtqW2cH%ld|G6fc}YdaqJW{H#Kxnl
z%F4&bCu3&(o{C0(c{>IM9bMgpD_3$d%rHvznj4!nD`?&{HKEQAXU*?FSiOGVs?WD3
zx_f$ZK0e;h&JYn1;o$1ZDk&*xU~D|uGrUxHYu;U{YuB!Us#=CUm7m$_>grCMIKeRe
z^wGuc{S)TR^Lrn!uC8A5@u)b%lC=r4RwWCr@AFVOba!|8%Lv)>^71WtccmB}Jbl_K
zYh9LbZjPnVQ;WJk7N<^~0=3i}ZYc$ozI*ie@yEyg_Dl@>{(SPj#ieq7o^5r(g9D6v
zs=xC+efsoE-7o7OA09Fb2?-Uvy=9t_nfdUzeEpFZ7Z(>kJvB8d^YNoc8wwx0F*t0`
zyK7MMqu|KVqZc3B=iRYjxFj|uZf}*Mz5V`k*F-`?LszU=p`fP5Hgo384O_QPjg%7=
zZJjbj<kqRsxVXNux3{kDl%F<j+KZc;)frxX-CX?KkD+1nX5+N;^Lo#m@!67lTTD_?
zQo^z*C74g}@SoKixi}90@wBnAQ4s51xO%nsZle&zmV|>%tRKF8%L|F~^78tU&&tX=
zlkr`A?N`w@K3T5V*w_^-Ry3S{UO!8A#j|sBtu^%Z+t;nrTNk^V&E5UD+t=UImzTf4
zcjDA3CnqPSq~v5l0fB~|o*uQQfqRn{FIeCpzezgiuVa%y)4JH*N~We;!*&U)`#C5G
zT)7##+=`u@T_<jjM8BNvp&5qB7nXX9&#^A&+yCbi_qP1|_f`}YTFA_-eN?ow_tx@P
zQ^TA%_UzfSq2%Qyw(H8gJ&iwae7fT9>&yH7{r&cZ3l$j_ELhMGrX;=Ef4<#`bLZS@
zYHZHUwQg@{V7RlRkh!a?%jmmHWo6~wp8`$?9u^45$n=2Po`)YMyuGz`!{*J-QBhKl
z9z7C}l<Yikz+uVKrHTLk{Csh7G5evzhYvn1Fvz)KFf;ec9=X{?wWq2-I&d7ErW<`>
zef<8Y(>r2r&bwT?cgK!`hfLe@?slyXU%x1Lxt~SZ8;O1Y|NXW)9XNN^EUCJ`U&DV{
z+S|*=*ZoYLoB96!et-LL`}MrK#wI39VxQXB*cfDA)2YgPb^G|N`LlmjKY01Fvr}08
z(d+g5*KO?)XnK6S-#IpR?>!r-&2QK5`^7ceEZ6Dxx3>@9zU5_QZFPHk(%?U94i6}L
zL4Am++To|(PPVD}Q2=TlySlnEEXilSeEBjX!>LoJD*pc3>ho(Bf6rC>*Dqc;I6E^3
zFY{Sg`(yU%s(-AkptNvoOXlSZ>td}fEG-rF^!Uv4?=8t(7r&p6LBc47<J;TY?dj*|
zF;3W~5n{U{^y$wZACnm_UF+DIeVvIx&aOsdb8U2V^c>6Lwr875Ux(eeeY^e=<NVs+
z-&|i`TbrsCv~%Z94L!ZKrAt+dii%RS6f!e2i_)1Ud#HeV2|qtSPfSc?tgf!kxv_yU
zD=W*W_Vj9#XMe68J$R6@`ujUqS69}1`)a%I?k>Nadbo|(xuU|tc3+FYk|j$nJe{r=
zduVU<cLoOQ@^>wB=f-Y69c)|c{CdZ(T}j9LWLK<NbEI2bzu?D*#2veLGdJ8Z4EkhK
z^@XG1i&gagI$OJ%9}UO*<(-|KnJX(Rztr8@UB3QIRsQ{bOLbkt*Tpy{CMy1@u>&=w
z)b&8=rLNBI*4AwH@bK`QJ39oo=ihhB%+&1a>RPaB6&GK7^O`j}M~)vifB7RsTvD=g
z(<Y;kkdTD$@9q|*8%o>NSX^5l@Be=8rAt9p^N!!UH?L2>`p*wTzqwYb<<_pQt}iYu
zWVR}M(^3BZ-pP=*sZ*y0Mny$EKU2oc&Ua*M_VpJ%{`P;r2)p&m>6))yy;}Rw;lnTY
z%87}&UG9@I<vQLc>ztUVsHLsFG55CFuAB=C95pmF7JRQLDKV+AnRlo9&cTC>)@5%P
z6mmPQ>;C+3Kl?ANw6{;fkg53jxuwaIR)O3Xwl2oA-#0K&aBu#TyV_r88YD6;TD*8;
z{{4OZS*2++>W#w~6KD9Z`DK5hQ&|1bl`C7qW^GJ9e(3UL;ceTt33R#$bh>!>_^>eS
z*s()FSJyX9pvpO)p|++bATaRa3$=f_x3^vWz3k6{MrH#Ola_Vs^zPif`|#Pbwy&?R
zGf&vpYFF@pVVU1tu8AHjwY9ZYN7qc9D%#Z4^x(-8mW2Twb$@?7{C>ZFy5{Gzv&|C|
z6CIbInQM^fv^Fy1%h#_P)6PoGI=|F=`U~b0%NMO!(Gk4dPf<yU$!Vd0jU0dQG9Smt
zNJ*>GS1rNI{StqEdRihct{<oKy%FSBp-vVlDXEOBt3-d)*qu6k`r(5I3gx@|`ucu6
z?zdME>da`}xbSoI(d*a6v$C=-T)ynQzwU2FHWR~*8#fdzEF_%U`C2_xnEH=TmSo9J
zOl-WlIlcM#<A-;47XNs;eEzK1d6Omytyr}x>CTSA9hINeu3WkD!eq_VsZ#|yT}mEo
zUcOxY%GIk2mo8;BHa6CY*)f6d()sh}^RGC3>*?W{F?;sq?Blm@OYhpXD<CxV=$o6H
z6EiY6ii<x-#U9;N^0H~l6cG*<CZD-hqV0ULi|#I1<?Z3ouyCQGi;`eYPR@qJ!)#kJ
zFSB`1(>b^;_qKuv*T$5SLN{*THjlWrt8ebcjfOHZG7HwP=NA<fJu|~_aoDa_Zt+W=
zGAvAtXU?9TICCZ^!;Kw<%5^`VihroE@tJ3{^V}vLDHD!YuU=iacCD?qxA)9eP!rBd
zuw{?qi&Ljg-Pl)aEgSLw_xt_H4-d7L?A*NBIPcC5Mu#ZHqQXMP{^QL3#}7|XbiS~^
zzMi3B*)laIX6D4SG&WgT*)MNy3Qtz|XH&@S{qym-{KGeIcqV$ZyuH2svR9JtZ1a4#
zs3<8GCPo=q*_XAN?|)qTK50?b&FAy$`*s#TUlhGPZ|gNqPR_=rCZ-lAP=5XO{k?zu
z1W>q~o~AolvL$Z*w%prEFD@+HuyNzWm;a8XolBBvaGv#RRd?cy{c}MD>)qYu#}~PF
z|9iE_px$}m!i5&q-*VQzEc>sw%y%}MzyEo*<jy~rD=R7-lqM$J+LBpc8aP7?)Zm)v
z(IRVIcA{4BsKNhKa7o;3Tl-6-tgP(Cot>L~J~*}gRR6i2B{eyJ-+${qdHcS|&1s1@
zHYBe3bkLw^gBa3?s5CR`Q0Y(M6{}Y-uKxbcD7aZoO|9wl)1+^2ZZb4XR`-82JAWS|
z!=3&0@?BkB0^LUixLO4|T`X#UnZ%Z#pJ)4^Xy=Xn_4a@DtgLojllk`Z=g)wEfCJ_C
zYrkJieSdwuyoreks3ov=Ew8$|`piu=J+FR8P0zi(E%ENIQu)2Txwp4nWc)kVy4>yj
zJlmHEPiF}pj-EAry0~8KE*1t*{WfXx<d>Uf1@4)B=>C2Ag9i_u)ru}YRs89Rr-Y>B
z!_VjK-5nep_GZ@qers-FY3UdpEzQ)}AlGjnosppt6AK=~TexbKSNg6ju8AHkr>E<i
zXU^TSWeeM5R^8}rJhNuax^U^zB4O?m!BJ6M<>loWnVF9M{`|-L<(Hq<($)qIdVxmt
zqNAmwx93fbG&eL9Ja+7ufq_9oV`Jl)(jO~Z+uE8=KfNTO6{@47bKq%FU{n;BgVaGA
zdwcnYk~4j)R%sncGW_!83#hIwe}C^{Y4x`^oXpJ3GbJB9ncH9Z_}Iea<9!vszrCHm
zwVLO1KWIeyv-*Pqi-6$Z!=1wFFUoh9y`5CKLE0##;|%lmO`D8@f`cc{o7b1W|F2l`
zv7U)Pk6&9IuCEih$t7*x&snvn%HQ5%t*)+aX>B!K{YFty(Zko*)z6PlOfRP6<Ye{J
zHW4PFXKSaXzq+!LH!Mgh%3fEOH#0L+!m31riHYfj$Z9h)Go#Ga;XKiY*2V5lNK9m8
zu&DZ?F=^7IlxhE`CNs|pmWz#zeRFT`?66g@g#`o{q@|^wJb9Av``cRy>$04=mk-os
z<-BQKGiAz@Ds>eP503*IlaCj?zNVX!miFk$$;qYXer?IRs->Z={rKJ8-5q^>$F8gl
zei^cLclmoa^l?M>h7zw-eSLiyn+gH*{Ch55UR+zYZngh=E=*ahJ9XK*eZ|lD>}q}}
z6xSX(a%4gI`+HwLH?eYqhAw-0c<$^hc2C<Q)PC48Gc$AV{_X4I_aB>SoPOZ(#}A*+
z+t=TcO`1_}0IFc@PcHGC{G#UX(W6JVCdt0JxtSd_)^L66_U*^z>;E)P*N?ySzQsxL
zNK)b4!2R0V+8e9C=YeYD_?nNbbFY0*4q5->#*G^ZFE1@M%D;7eZ8W>Fv9W}tWa5JZ
zjU}^AeSd#nSwVq;jg3u!tJNf^^lR<evu9hEE>(3=5@cawoTd}W<nZg*)%*A7zdL<r
zXK`Xe0)yTB{`LF+%?jJ2<~xfeK0e;U!otDboqe%eZ&t_z8*OdvAHRP)D^0vmG}o?H
zYTC4E24-e$E=m(Q_le2L`F+25?V8y3yt}KWru+Etu<=T<FjRbfB`P8+`jXi%B0{33
zw)W*V|M_;kpp5<H<>iR2S)xah48Og(>D)hi{(Sklzcy>B`S|+JvvK_Y@9)9KA0NDV
z)1&S`??P(m@q1^^@FZ=NNIu@@T3Bev@N#xcet!Op*|VL)!^J17`yc!L{r&7%IbB`d
z4;6ddSR<@!ei+!wEnBwi#jUN{dU1PhJgB;QcV}_C-$NY%4$x3JgF`~X0v~Q44-bxI
zJ~N%{#YIIEPfSp}aQ%Aw+_|#7>Oq&Eo}Lb>f;L9**v<D}9QFS8cK&6{mX$>M`0&IY
zKXr<$`1!fkty@j6T)n!n=4TOTG&w9R?81c$3k3HtW@;bbQ~5a|C50t7H#g_T2FE<h
zdA8MT=H})zX3lg}5IEs8v-aa7SB_RE4i=`0>gwx}GwVJ*;e7MvO$N8~)xBT8ybN9w
zv61QH$BzQtM~jl#UESQ04z+Lw1O+usnk1y=JFBIco&VHbKNlC4KY#u(Fi1&BZP>EK
zB_u@T>~gJZZp;1VK6v%2%ekG8k)iI-M|Yn&78Bhn{=eCLe!-eGI_1*W*TpvP+-ce3
zq^Kgqxh`%m7sHP7_j0?+-gX^0;2<F-<>c<Z{NBsL>hJG(Q&Ur=ew18a7yIGUr%9f{
z;oeu$=hw1vb92u;(ADszJp1ORR3lyGt8ee`muF_<Ij|;j^NX)X3_z1!XXZB@et4li
z?EF02!v~w$A3l3_?S;m%c7FL~o1;VhrDbG#LRW`9?6?27V(Yn^o6|uBrM$uG-|5dE
zKMqc3Fs}6R^?hmol$o9H!MVBCJBpriO`1H}u<T95F9snQnV#L{??JN$FJHbiVtlyj
zTj}R#XF+ZEOP4N9m^e}K^S3=(XSe0vo-k>W)90P#@8#-#JY=7xr>x9;@#4iDwZF~g
z*;ZeBVcxxS=gu7^FNMy{v+cffCk8ZfV^RH0XI=dMz7HP?cI@80c+nyzP;aeI#<Hnf
zTwlr3Qqs}UQNlbgX6>JxoSX?$rnGc*ajB@N95{1^r?9Y)q2b1j8&L-@wed(cH8Qg&
z{rmIN!`JudkxpSohRDds8CIoQmo8s6EPWNC6SpTK?`Qg%8I0Q6+9_#iN+u>DY6|yG
zP1U}*GFUxkZ<XlEl`Ah?yS8kqHG_wrAE>tn8lQM`)3~Lj#bmcl@7F&+i$Tra;N^Z_
zcE|0ldU&vz-S<@b<z>DShDj`Y%hJxxxw+!2Ui`iu`MMvB+w<-=Enb{F*YROfbMwZ6
zhfYhDEqipVS9;6qYX=&cCr+8tGG&U$pFf|^gQB_eL;aT*f}qCGl4Z-1?(Qn>=<h$i
ze*eF&_`090+~RsucE*FoF`hh0iP={p`TE-0#f~<srS0o%{`~z5nt55WWXXd|OT9a~
zx(?mmo^M$7B_rq77EVcUM}5hiE<=WrcXuS0`^`P{_4Rd7bz)uq?!k+Ti$R@HP?^Ne
z&JMEo@-pA8*J?jJV66K3%GG}L>ebgP*U8z{M5N#P_37lPQ%;_qoH8;p3S!-c+1GS-
z#!dnCnkFi{Kid6%pL11}RoJ?iPC;e21#8yy$oU5c2ZLtw{{H&9Wsxd>`{9N9ZCYAd
z1z%nS_Q=`p3T!lw-&@tnEv|RsNYtYO3xV#V8@6m&vT;Hd7cVbpJl?S6ML<ew>cw}l
zJfGu_gC@b$SNv*!_V8ijh7ATSt*uw9E{6pd78)K&GOYUgiq+oUe&=J0EnBvLI@LQb
zUUhbMerX1p0l2)}|GMPX^5cE75;heDlfSbwELyba#qHpU9xbNX*Djc!x_I&849j9Q
z5z(c_HR0<WLN{*PcC1g<dPBv>q$9_UEvo(fZR@2Y$B!Srd|9}wtLs70&JQ0yPORMg
z^3fwERaMmj3z-=+W?b+%%KP!dhXqp)%$Okon%@fx3lr#cDJU*(UbILFG^w;=g~pQQ
z%MTwp!lE>h<KMr36(1kDuAMf`EcaH!@y8E8Jw4sg-F<kGYj?rlU!?+06K2c+^+-%t
z#aLNc32?PCESY%q^QTWwmUZ{{w{PEW&hX&0{{AVJ?Z^A&-76|AWZ8?KoDdWd5xMa6
z-Me=gcXyfYh|$}#XHSOfO3SC2nb)peyRoZOn~9lOP+VO7`>lz`FI}3nFLOR<7;J5G
zSy@@cwj4>&d|b@VqSj~i@9)`KSX&=HaDYMCt;ZoSaN?QSA69jFE%%#yVRg7ZXhN!?
zq{m^o-`o_rd#jl~mcHcNrd$tO3vh|`a6A8c(a^n1mavHH#T@wZ^0J~(XF^U+&+qT=
zAA_dtPMvbPy)8E}HI>!DD$X%9H1yp*P&fA69Lp_FO>AxVo}0Gj*^e9Va^>x64lMPa
zUhwBfVa)zI+4J-5m+MAdO-)Z<T>AQ2$)4H0y}VZC?|NpN=QB-UGg-5XU#fU*pNyrD
zy8pZ*7Z<xHW@dJR#<FJDJv}v5fP)2;(tmw<$?Wazy=%>@^1`ECq7nP+Y~%J;scz1T
zijs=kSHl?{9la&%Dp&Hco`q{4fs);$27@#6PaHnXoU~D5*REYJE-&}ro4NW}1H+~I
zjCb$efyOF9W6Cp293346I9LM0!<XL|6%$jkvXZ*KKHj~cz<@&$G-UVf{r&%*P4i-R
zm-V`7tG9qg$G$l3Sn1Xy!N|?cedO4&q|eXJ-q?`HylC;_*Rji=IiGtzzuxbESU^BV
zh`0`e5x;bcfQ7a7=`Wn?_nkR?diA}GkD)R$G6Le_?cL(~kJ{zy8rH4T0}Z0c*;buc
z+i>#ojlV0`v-S!!fu^!|T?)S6{P?)s{aq_otXQyVlaPM=z9nlFSXo&Ef`hYz?DF#R
zHf-DG784`m<m9v=^Rk+YtE*#R;6y$pwuVoiK3RQMXt_`;Z<xgL>GS7<4+{$Z{i!@N
z&lWVP*3sYZ?%=?{!^^ud@i5ztojVgBAM4$cba7v8^~~HWHgUd|b*AT?Q&UxU#OO_$
zJUM&rdr(vS`ua_2XQlR3edPiL((16a2F1_LRP}q8f`(>9*Zev+b=4}ZclY=Eum9TA
z#KghEG_z*aq7C8aK?8F_oh|n!FLv)=x7j<Yc2?EeZFzU4`uh527$&<dj`Dkcetv)E
z<z=998C06+N?py&$T)EIs_4Ok2aTR9o0y2KkKf<c*2cz=dEJe#y;)Q{Y(t^vnR>Zw
z#>5%+f&Fr}8;YKK?bH=B4b4yG;Nfw(zApADTgK~)i`i>xYEq7+g!FFQQUBlW)2B}p
z=Fjgx+|FM=$?o|6f4{V+=|;Ex{QR7mp^aa@Z*BDUMJrZtG<@+*yE^;oLg#iR6_u86
z?Rq*oYo^BM<>`flgc#KQsaO-Ych@zB42NF<@^W&0-{0SVe7K$e#?E5(IdkUB+N*!n
z(%Sm*nVH5$fA_B5b(lxmjOXFQhZTQ*7&5%v>FMb?ad!XSy|#xAAHKLY+FV0Z^WeRE
z^U4Y*x<^LtJU4A++l|||FPpFEm$#qx(#^c)N5Pu-{qyWnrcIl6>P>V?ipr@|rvd^4
z8$m-}?-I{y`j_&SCQDitsetCM84g@s9Ud4F;c;Ir|IUt$_hwF8_2k(zP)At8zRm_T
zinCtU*Vk7?UA<YL$vpoas3I|X9lNWfbK9i1cXkSwm6b6pVg9gMO)DTQ%+1e_uj>0d
z-u(RhGxP1|_nB7w{bjoL!~1)Cqw~a199y;OgP53@l9tx0Yo(X=)mBGDMV-2H-+!LX
z!OP42FK*9|pE7OQrH#g*We%ol3%vpZ1wliRVQZrvzP!BLqUZ@n?6nJ)<)x*r6&0Yt
z^nkdyz6~1;dgN@Q@@@q#cDs0U?Yq0XL74>9KR1~#Yh4D;0C9T`JUra~@ZCE;1_|pj
z9U&p15C8sF3pfb~3p;D;U48lT<-$FCWS*a&&#v&-R!d8ZY5sZkfZw~aeactuEPkGJ
zu!+@Ztt4+?aImw72gfwMSgrCs#~&T-2K5y{^N$QmVvqC5*>p^qBJ$+vQ$>A!etvm7
zm+g6X3!a^s>6Sk|@!wj|vZQ}3SMTTf&av1SII$pmpJ4RvGTpHCak}5vKHXFKIUp#=
z={hGj_i9tOgBLFf`p>tUdi(97g@y|M{{0i^K6>He#e-d<+5%EiT@MepGf%LysHmzs
zbnV)-vhOQjT{6nQX9Mcm>WDe(h#kIsd2`r3_dc1%#zw{?NrrCya=oCzGB0D$%z1l+
zj@$ctdo%0*AKPO&W%{yb<)DQz+w<ks{O9pN2g?rJKX#1m;K75SZljBmV1>=RGt4oi
zYHDhrzDDhYl9G}m&FuUsayqN?s}Hqs-q@Z$|IC8-$8MpF??`_8_O0aRp;m51@Cpc~
zMhAxC;^LIFv`bHq9XnP~Pym|K*;V?wP0~2cWVg-pb90+lt<o~fy#*SnarX7?wTl52
zpmD|w8>+r$&9SeSyLIc<45L&oJ{b##`ycM_DqS787Bu_a)Y!=Aq9kZzW0TQ(?CMp~
zxz^=v^XAF5@yq+&-x0oX!-fNIZf-vK_+!DlJC?iRe5K8D82XPlN9Y{;^z`(`vbRwT
zmmJ@M#@!}P6wJH7uUCKnpGoV2Kkv$VQM}x5E~tZ1TwHu+rg8hUtyR04+4+^Mt)*-1
z<ZJBY*R5Mu@$-`^Xlhzeuu;-D%|Sr`lsUGfZdw+(Iql)~_<Gj)=Z`P(oD3SI+I8mQ
zMZx+%AK6`$Cf;#;@$K8U0_1V57r*-DY@0eeIeo3`|J8_yih|ZGHM8*^y0$j@;zDP3
zh6eP}Jpn5#D~2V_-{;PmqaeVcAix3YyF5KT{km57q)9?`|9+-d)v~j&fL-)-@xsTt
z{nMt2rJbFnT0VEzKei>Y_NFE#FY?2_KGo9FnqihJ1?oOIMD4tK?b@`Nf!q`R)osd)
z;5n?c(3t1&pVyGls+vjfD(cz1y}dzArP9~e>PrLvg{)e&3e=?k_3iENaPiheiD&vp
zkAW8C{W<;j?(f;=rB?UqSMC2@nIO@YsksJub>6WC10T@1l(WA-ztTjGs;VkbcQv-`
z|G!$R)SRj2`S-5OI>|PH?Z_%gWhRDc`tg3hcYJ?)Tm190vx`sfh|yzVVx0RgOh@c;
z<Ab9|kAC?2)pfpI?SkdY*^`r#XKK9h1<ekE#sb^g+CW2$Teq5idwctPU}dPMr{}>L
zhRLsdi$6U%nda(bU-?PJR?oKTOG8%|m#lM8xWLwFn<_pg$=KCMFie;+L&JD!L8!sj
zenBB2rQ*G{J<q17Yie>nd-g2j_BP!+ckaCMjYc0{$`9Kqt!-x~ckI|P-A!wst>6l~
z8KS4BXHoFLVe++;=g%MSleK>3ySesv87SX+dvn*-)s?!fUB70{ku8~*7pz>#nVXwy
zrLgzZrqt6Qp04iNC}G}|l#~O<j<Nmv_3OdM3X955DU-h~)_nB%@x^Vq(H%#VtlYFL
zEobV*@2N1{5wq^h5{Xam*59}hQLr<{#l_`B&Ho1nnR#Tbrm(#?F)=x!zyA-DgOzmH
z@jltqy4|b$9d}lIRLaT8S+IC<vt8}4gf}-f8acX2K8x=(;JKXf>eZ_!$9kn(1f1mT
z>wIo)&-Y&!zu%8Tamj)O4O?<=PpkR)bh?VQ^=tvB6Y}+c9CyU5^N}koEOb#35)>5`
z1+59$Z(sC;!_eGZJ^%hb)fR!Ez(B|Ct{jRndecS3#ZT)_Z*67$`Rnz1Pghq~#g++Q
zzLb30|Nn3Qkt0V;D&=i$Z9P3aIR4I=H_xx6q~rv@{htd@_WaZGp020*@87>tz5gE`
zI&)8RyY}d4_sKby#V?*i76e@HKb3vBjrYj$<InZA&mV5*_be(hy16NpyRfu$t@+zY
zs@@&jx0@@rOsM|;4&=^Hudc4{*RN1Mdi1DZa`I#QTI;i^nVFu87B8N?=iY~hhfn_d
z`+N2lznmN$LnEVA#g%z^dM|HoR@c<g0Zro<JaE`l`@3vsX8GG&u5;$j<y36hQ}MBB
z#i~`4tjpgCIB|6L_p38CHcXj5ee$PIMM^@QCw3M;=TL0fQ~9~=%e%X?Ra8|4oj6vm
zS)-yKw<qILor&w&*9nK)cw5dtzkI%1TwhH}O6th5V{U4`XMbmZd2#W`#fuXytgKGe
zynpk?$1MMzkG;5<*d+IUIYB4T!jkm4-`%sav|e6X%DuDTA=BS?yWj6qj*5y}vS!Vi
zm)55Y{tJMz<E)N9@#~NN|NFlF!qux&XR>V$T^$y&A%Su3rm%SzE(G|@G+KHsN26cP
z)@ixl+>AT?degZ<<C|}VEN#^uKYsl2!9nIV(cAmBZR22J(uvy>@otTguc`otfRK=q
z@zf9dYJY=PS1Btie|deK-#qWmg41DZqgd_c^DhkGC@wCZGJX2vL#^Bboh}SZF87C>
zty31^dO7D;XfS7Z<mNQq3L7~VCPo_@n}DDoCWl{crC(lL1l3AkzJ7i9;6Z>k!wefa
zIk^uXKQ?aNYO3oU6eRTK&6|XzBqn8L<(V&|larDXGBY`olaoDEg#P?`y?*PbGw05=
z?E@_)`1$hIR_$KdNi$|}q^GCvdaE0~O+i(a)w=xMk$Zcq6~($g{{4Rcaw#)2GiZ!T
zR#tYVSm&#*?rzW=)4tl@hi={46(;iL>gw>zpN%R$Bv|zpBqS)@xpOBWJ)Paw)^^8^
z9S^>~zJ6BEKh!(&Y=r427Z;ZU=g;#unB+B0ohrI$(ITms^}C**pTD^N|GzJ{W*Vh(
zF}$=573C3_z;=4gy+c3V-L<Z$sAxF;_~4NvEo>WCzdSeBdc%ed4IU~@4hjnzKPDw7
zC+6kxDJv^~_*paa<{=v!n+MOIv$M0agVybVW~qXLgnoT}&F<^#J2T8jTU#5nyi-k0
z?ZUNd(;~xSJv}*VYHC1{voN6J<>lp<PrSZ)^X3E(6$1l<11BabzpM?syu1AUgEwz@
zgoTAa{H*brVbFMP#q;OS+uyv&={TA+^TfSSK6yJHadB}g<C*K%=g(c+At)%gW$J?9
z<$eXFrAHS!w=;MwubXF($TVfjlm$zcw0KTdyIAw>-CgeN>};#WV(o_)8YX4!s{XDg
zBO{Z+U2v7BPE=I%LD9~LokglXzP=Zi`^&eqx1T<{SgpGHchtqZu`w|LK|w+3F^d*0
zQUcBM|Nj2oJt}I}nf(8ckN2mhxxc=%bMu+!yVk_*l?q<&2O2#5oA>Zg>yJm>`u{#n
zi*EaA3|hZXv*h;n{KrpEPd943Zz021Q(HT6=FCp*@O4+BmakaBk$!&O(H(`4A3S}k
z`dPua>PyCxr%xC9&$pXlQK)q2(4j2fgW0L6uCqU`UY6kN>)X0;p<=IHoU77A1!ZOD
zyqnEUO&e-|e{*}kdgV&Zy8nO6Ma0A&eR_J@qT+)>-QTa_D(dQwZ|CnndShcUqldQO
z@jltZPft$=4bse*A)%qEc`=#ULt9@;O6tUk6Ao2XR@c@>s~7)aczO8$ySuv!pPmv;
zNl97YJKM}?>aOhT>lAHlWVYwsbprKV{GMw2M@312hT5df^A@aF!Et$+ud|B_%evUz
zZ8K&_oS9|H4O&K-m!}8n{?D<k76bLjDk?1Q+`aqKIYHFc)>cGZ{PE4r=^ozR&D*w_
z_2$S*OGj%TYhJieanIhphKYw*K;uRSn^+kd#P#D2T)85msi_I-SpWI^_vy6ymzS1;
z`T${JVt(^%Ja<<xTw>qV)WifDYdd-Jq=adf$TI)=e$(T3m2gg+IPt`}b8TH+Tw=OW
zSKfRwIeNIA|KjR!{a-u7*T-#@V~`e-ljD<>m92WaCT{O6z18_v*QCw!5?)<ddE(5O
zmi_zd=iX&B&%M<msO+YotII1XDOvI=U07H+W>*R4$&)8Ne0+{fQuWT*!|q_!`(dVW
z`h>Z2dw1-xSQEXSkCT(r!{6UMB0{35s3_x>b@@95O-;_1FJE@__D;3l`*}^|=7jwG
z{?*~@m27Qgmo8me()FV7@v+2TUtWS{U7MPko`m%<KG=NT?(jnAcF^h^(E5<I(c705
zwt|*#?5q8)WNI3kXRr^n?01fKY3Wz1^P#nwucN0;o!T0<HY)MMgM$K{E+0O9I@B$$
z|0FN@%nU<NXUoXQsNll`$BL?|Qzd~}*VoBTnl!24(Gkv_m$^<CKRGcm>bhfS>atgM
zD>Cozs|77J2Ms6}K0c<Xqtl}|+dN-R&1VKfc6Roexz^jS9pT!zaidY}hE?a%v$C{6
z3wLupRVLZ17TF&D6T2aDgT%7VJ9qCMd{{7H^5kaux*rR}{xGq!vaX5P$n^QyS!W-g
z9-q}m|NZ@Km~eoh=HpRu(5zTj7uUIYw%qFK>LstQ@y?t%)5FW_&{FT|8&Xe;fkq&&
zuZvwgwYytf|53O8zKoK{*R!r|d381~IrM(}iWM55P+GQZ*_Yqp>*F52y}iAoudi+W
zdi~zKJNs&XM^(<8IWzHa8}AJ3a=kTc)?{cqmVW&Bv7o$s`R`ZHpQ{@mJ8<*n%wtj$
zJXDN6>b-jW?3r8t$)nxk6Q@sSS65fxCC|mh1sb8bbop{2XiZyW<i*skuC9t79~Szs
zR5|=oGc_|4^Pg|mx_r61S^mAANt1+*96f5fE9uI*SZf|Rn;Gx?<KpJsDf#&E<Cgx~
z-{0PXMpb_)l>PZpn39rm;o96&r@Ur*y?k)6`QlP<afVA4+NO_>)%aA-dK7$yL3N_X
zhRV-rTOg~(dinfTE?w%{e6Cm0m@Rm@-_gzK=P&H7E}vO)?b@}7Eg6Dwd#hNbrKO`z
z*8lrs37TuzUH;xFFi_Cd)pbYdYq4FWuh|@=ST?<i_*`LQVQt-f`st$B-DMZ9UUkjO
z)7!FjE2GC_ra}uD(0u&kW4+EXF*0twQmVmypkc=)OD-6uJ$?E#<N7+;uCA^LQ>V6m
ze0-dl;YZEBJMG~PRsX`*$Mw#bArTT1vS7y!iPY58UaL6WhlktwL1WNYSBEcLw5X|}
zfdMp$e=YhyD5|cljW$^}p|6kc%$YL<A0N5istW$fv}Bd(r=Opn2LuML+<G>8d!D0?
z*yZYHx3*?)y<}l!<>czx%GR?+&%|VkTlV)aUyf`@Je<+}d`ID9gNhFcDk>@$5_%jR
z9k&R*e(|E?#EBDXvWx3~Z@F@&UK%tuqt?~a;}RAo1}e%bKR>(rijCPrzUbbb%H|a-
zG-k4|zi=TyMMVX)>}YTGcQ;4JMjvw>zIJ9~V`I>k2GD%Nr_Y~L<<>ndJt)+D)Wg$r
z<=3)*pPrsJFgO1%vb!hy`Z`BfSJv2FC5(zJ!s>o5Sy@`3X^m;q+T8o)E>7!fn=x~y
zqOGm$vSrIa)1y7Tz0y5#F`pl9)#8v;SZh-A<HN$h+v`?IFkVX56yQktrfhFNKg?>*
z+_|aKY%4x22z$yrA<O}^6ii;8-`(9E)bw%hmpl6R_xH@y1&Z>!?XUK8E3$Np>o0qH
z_QZ)5##Pm4OYK7|UoBp>O6zj!(gh0`va+&#PaQsVh$%BO)4<HkEhR<e?Y_k;R%jIe
zJ<WYDQnvjtWBcKQJ(9*Rq+j0No`3l4Szge%R7pvRfRK<Av!>rnBi3!(wt<SPOP4NP
z*j=6v8=?Djj#-iAc)$Ge=SJ4n(zDHSC(Yis?(>fF_i><-6SV%RSK1sjM90?eEoy4I
z)ouRjUzg0boH=){FHGcEzr4ON!ydb@f8`2x-m&W6zHgshP;l_aA0Lx>q)b+v^ZIdW
zs`kc`mq9ZhPn|TWY0Vm)ipokyXJ=+TJ-v#5e=N_<wRXR}CI7yho}OOB_B>focYkm7
zce5S(NgE}m>&LJA`gf{!xZTb7=7;~tf~snhz^jKh?cHm;%y)L1Yq!|dC^nD(ow{**
zX4Lt4dV&^I&9kX&+Ox;z$@AyR=H}w*=jI&j7T2FJX_C_CWtP^~((-mS86OnSo;%04
zYSpR_-@h;CPkj0EB?l*`V?jZ|=I`H+^-6<8V;8jX$#&KL{`T<U;r5dGtK~}C`DD95
z1AE{N0l&V!j@tZOL_}mk?(J=$YRoL}P6ueKO27TT37(H1JZLy^!sFN9ZMnCl{%+g7
zQAbyI;^fKApP!$<{QlCVO97FQoayQ5b1aM5A|oS9Zhn1z{pmB1rsC)49-f@69uOYh
zzIU(fG`(0ZX=&-5FQ-nO`tjG-?3wSg!VbJzHNn!t;zFMM`uP3JYTq)xjQ*h;z3swB
zgZKCMPk-42+H|mcM@w7VB}1XJn*Lv(@-CG$%@WDo3!0Iu_2yx)|NqBWmOEtrpFcHQ
zvaj>4Tel9h3I{aKap_V}Mpl-RvNH4gdwUPJ^UG)Lbv=Lf?9rv((-}M#uUx%y<-+Lg
zc{lb{8iTUNtXW>sTA<OIkB^ThKRq?|OXH3eD>}mLgoTBr?><sHe{XMfU|?Y5rAt9F
zHWdNyaw-nD^B+GoRr}@M;E<4(>hJGB>mV*%zrK9)rMr77gY&}AuPOyCIx@?>wP44N
zh_sxRJ;iZ%R|GBw?GF+W6I--tlhEyLxrbj|T>NxdX=&-vK3VI4$jDA{{kR7o9v&_z
zFJFH8(BZ>@VPS2bJ{7gJwqC5cbNBAVDN|hDe|+&GgM+0h>Sy_j3yd~${bk{2Po8uP
z3KCkgX3Z;|dS?+45zxZfC(oasmVKX?lENY^EId=}%v|eo&}8C?)2A2jzn^`5-O+P%
ztr;1X`^{Y>D(1ui%0$ck<#*M^em{O^XYt0`-(@r3O}StH-xf40q3GOJ^Tp2S%zfF{
zO-BuU13sU<{pe`-!lg@Fw`?&fd3D7zZRg^}$|fcz8S|gV?k>Cfs`$>n+UhUw@5_VM
zBi`RvYnXhDXHVT<srmK)EJZ{`3qL$?v@)1{_~C(5r?|MdxD;9%4nI^-QeujVit6a>
zJUGX)IK#X@{ro&dO-)W4IsbQcEUc^#PwVer(p-@pwK<Kq?ESr7^Za`YqPORP>YLi=
zjLgi=tE<BgA3e${Dk@s>{hcfuuM~^3vomNP8K_p=xf5jZ#dWdPM~)sn`K0#WpUO4y
z`{lT}xK^xKap2b0?CetQ;<B=1YooV=`V62&o<D1D)&EVtYEwSfs`Svx;N=GC=VX5T
z{{8sw?(%@}aQBc9ku6)dZp^=L=QGbn^6As3AX|HSdQy(P33+*OF}qdyJD=S@Zrr-{
z=;UN|qsR8E@~fYmm?&Xcq;e$5FeWw@Je|G$mZPKNhi~89?(eI;xHUT*v{apaHm9)K
zg>}xM`Hi(TH7}g!E?ug6=gu9_ww)KRUR}~tJFDqmR%QlTw<T|I^~x0i2?-8)d3n%6
zO=Y*91$SefouAL|@9z&<`4bo@7`;7j>D?DaMMY1_uCLZqRAf|CR163Ra7ay6HOslt
zV3vF9z@bA-e0+Q_Zg1EB_kI6=N2Q4hy1KpVjz9klN(VoF{aRG|`dX=9boGl1iZWIu
z9BZStGPNH*=x_g*#ldRhq44<H)&&a`I*umY`lR&!hRK&mcXxK7PL}m?dk>wMsBD;Y
zq$BF3larG{{yiIxRwo9~wxMflBEh3D@9*sewGv-lUA=JeVrAosomT$-{&TEKyW+IX
z%*?jDp6H>{v}~E$j~crzTef8NGGDxM#U&v@;mnyc2ObtA<mdZqcTAl+)xgBWB_~H`
zSIJ8ze}8|_jsb6P?if9BZgIVqzCJ#Nm)=t1;-GbT1r{<r(&l`Be}89JkmWZje-|@j
z=1j-HK*3e3R+W}T+Ejc{Smrm^tKJ-xz~pSJ7A#t{=;HM(-`v~Vj)I0$OI`+n>Va#Y
z9y~~R@%nZ1;fD+M?2!=^6x^y+otKw4!@k}wZeLC3ks~fFEG!E`SBELIIQaYXOPl8{
z$$b3yv7%V_%XH9k&7X%iCLiBW@X!e~y#C|w_xp({DJ?HvWQgsU^fNrUkwfxX{Ik2e
z%RhYkcI@->^M#L&bh@1lIPzyVD;wLRx3{+&HE;Xx*TyT|2AU7cy0)O+NLyQ5Ct?Ew
zGdtg()!m2w_}<-9DGaKEHl=W?`ONqbF5aH_&jd6a@-Nly_nXab{;nqt>e+qg_I;n<
zwfAD0R8m4h!<{>K_V1G5`Mf+?7inLy8OPj2$OdA_hU3qip!v<4n^G@azRW!Te0zir
zsEymz-JQCq!M^s_mUA~JW=Yvp7`(f;_xHurO<T7f?G#p@wP)V0T~=Sdd{GeLTDW#C
zuekVhtMpr$YjSUIJINw5MO{N<MdZZ#=B6gljzXc%4@br09h{w;{Wjj3^Z17*kAwlk
z&!0aT8a8Y&n5idby12r;wY%GUF7qns)s|0h?kra4;o-TkDs(lQI_HU#CmUUq8rQAU
zQxW2PcW3A2HAUuO2?+{JOiWQJ(ekUc7L{jaW=_8T_QuA=J^}lVdHDFOG2UgXAe&*A
zd&>lrWul{JpNmsF58AG#uCAVuo$ah3aN*`Lh6P);h`f9E?!u)@P4ni-^~u}oZO%(c
zQTb70$HT*O;Q8l|KR!MNZHS#~UCswu$8+sk+sc)ipj=viJ0vvp<(l%ixHzNVfzv@F
zF)Aug7N5R6r+R+kzn3>81loSG?Af#D!>g;>DypiEk&%)OC0Q4z>&G+w_+Puf8nWZn
zMC*L;a=*Wpt+@>ChaFQ=RCsuJ7#NQC$sRt?$XxjDj-`aObbZLY;N^a~2EM_~%BQ0D
zYw=rKTmSg|`?_Uss;eujh=|Cnt$UYsbapPRe}8K$_uXBk&C8al{e8DyM*6~>PcvrB
zc<_9FJ!sxQ+UND-$Ia{a|C35S*5l~n!lLFoOU3-(!TPJm<Cx_)$2mDMojQH`sUIT`
zL-n^e3op0qulXtDv{0a|tgK|(-dCVKhsnv!o72xLX=-xj<>j3?f1Z8%>7%PcSA$kl
zfL7k<>+=hBvOxDTPntX#v;qp$=5=*tt^f0}-RHp>|F>^$Zk}ONY1Aic?N)yrv?urT
zv$Ij4(Z{PRY?k}ZzV@bQW1-`jdQni5I&Bwdjn2QH>EOkEb__4SEHh=kes_PpysUNE
zlKDGh^!EM#S3P6atVRCw?Tjv#SAT!kD{Y>~z%b9Ik|{hq{KL;0j#eiYR#wIde*T$h
zX>88U&K)ju=PQ-L)&eZ@56fI>XL9D~QPzF?_C@S2(`CqHdCbZ!23on3v{7QQd;c;+
zR?rCA<HyX*%*-7wN)^@B%oD=+($3H0W!O>mRja3`M?tLn;PcNfugspT=DX-}*uKio
zY?Iafm*u;ywtsNz)~%#>cXn>rwyka2G_gN_{ydqs|Jet#(9lp&-Ucll^Sb!qL&1!h
zGY_6P!Le=IHX}#X@bz)N(|P4=BHrD;Ilt}~=jG-8><Ycp4?Qi)jG4G#fx?=Yos;sc
zwY9l#Z_5QOYT5ViS9ZtIq+epYcI=QyKGwrH|9tz*nUZsN?OgWeO^%0(kc5Op!jlsd
zH8eFBp7!$cdhqx$sNccS>f|%uZtk(xjhi+dIy2KaF)4{DH#b-6^3t78AAbIM;o7yl
z4~nmDZcYca$a@(<gNVD!-(Q=VAFCI?kH^{Bx$14m(S#2lK1|4L{P_L*^v=fMfB*(-
zYwH&;UmiSqbm=(>2~e9|cSen!{Br;KYzlLy-MVr`q^+$Dv}380bMdNGU8>&GKsD9g
zs;`I6&9xSklH%%gVdCZGwK|#`s(pNts<(nr=YrL%yE{5KX8C`8ZK|%$&dko&vT~(n
zi_^k0U$z|YlWm?iPtHY2P)si-;`zo?Cr&iL_t|EIe4R2y<jtL(ll>Tf|NVaddXzb2
zQ!m4k%b~k>?K*X2&dPTm9v=Si^(!j_C>dp6U$>*;qte;sul`-RaG_!8Qq{Qy33qpu
z&M;2r<8`^QF4lTxL(^5zBFDD2HUX~I4coUbUz-kEkJst);q&L_01cM;=iRHScHOaA
z6&Dav-??bzN=|X{=~0<$*Q|N5^ZSPn2exEhPRP&amz9;>v3vLB-&zI+0-*f|uUXmI
zLF-wZ77B=oiGlX`g3_?HwKZsW_JIQo|Ni|eI(^*Wzhz6}jI_?49u=pB8_qp_ety2X
z(!>q{Cl5zQ#+NrXD#spsSOA)7aNtmU^6l;IC*At{6huWuTLhf0T)pb)=EkPjA`l%N
z4cc$GD-N<f6ug?0i;K(S`@6d*cbC8CP;B|~`g*^MtLsVK%Lf{nJ-xiT?xbGb9{u#j
z#$=cH`1t}(9t8ykKfm41f4NCiJ8Z(s%gaIg6Tf^}QXj7W{L)hI&i(uC6<a1G9&VfH
z+|GB=WPRM;MX%dhS_GUpI5{{J9v|;lZxQ(P?5wnsP^U*qipt&fg34~7eYrtlVQy95
z-}$bK+p85ESNZ$i=5+r@uU~uH$79<!+9Kd|=<wmr`Say{rNzYD+IXeIUPnBA@&vkf
z_w}{4%3@+-DHj*Hwg@<>2yuG)`7OJ>uk^K;Vheby<KO=`cEA6ivFa=TgZnqXuq_er
zP>_gHaPaVOwDMRnT}i4-;Zpa4I0q2{0am@E+)QQ;FI{(uu)g$~I_uC>Jr7<5)h{Yb
z_U^a;blY&Y?oAPM?;myZ)crSEr>EW1+&#1W+|1%_If2s+>;KghmX}Y@zP_%r;{>~W
zjl%nVzt`Q{<>Hccb(QMrX}ZFK6NT0NI`;0}3)(}fq;zSyzkKA*qNP#W!q>+cWna@N
zovRzYZAwoMPig(S*xhFLKW3D^zZbjj=QHWWm-}Tbl}xj)T&UDHF$wwh{(gSZ&YN2^
zFS}h^8@+trwRzSzuiKZr2$*S-IjN(gN7g#5rndI!xw+O#N=69>7$j{fHXM8!zCJG2
zHcd&XU(Qx&;{Nl=f)kn9`CjCB-`td%dZa^8NvY`F9m~R^qDd=*mv?oXSm@k-<oI!S
z7ne(yF1ZAX%(N(6)X@>MqrlO|#^%YdudiQiS?)jID=TYNOKa;%`T9SKN;99=e|>dT
z)yym`@9r*DIXSskTW)Sn?{-@}@yCyfy}6Zter)^|3!1Pzc<|t>^tv}UHhy~8E-!WW
zd}Cvy)o)M-VamSR->;_re!YJGk*iljpYOdMUmt7hK6mci(r<Tvzu&(;um0>T)6_dV
z3NP&_Oy=a}o$7D*^GJfu_Po17{{H@!#m{;=IzX$@o0^(jTvD#Di%rVU*Wb8tqmt66
zuh-+fXPf2n=p8?J(9v(6O=ijL-deZa<?r>rzP>&^{ro)7s;XUARtCG<vTuHO{O9NA
z-g~RQJ~=sAT}i3v|G!#6K~F!wY0LfRcX>Rsys)b@`{%=U`74!HrLR&<)D|u3@!inD
z6}dg{E<*}mKw5fwd-V3agV(Qz&;9r1Ww4Azfy45%+m<g^XLxYl{y*s4gu=hSN<n>#
ze}8}PD0w;Q;4+~|NvXfrMNSr#mpwk#Tk++E;I*~U><Yz4-hO&|diCkERpk-V>0#^l
zeBx5`o73_6`T50}mzS-G-@h+z=H1=p$;Wym85q*j)4#m9$ZTEyF66d%`O8bJU5gG}
zyeO!ss0b?R;_7}rmD#?y{QbRG_d$E>Vq#>nuCH60cYkm7_X*Rcwe?DyKRVJW{A#nc
zq@*O<?Dmj#F_NIAyIZrbZ^*u`=QGzzRKD(qqFbL#r~SVl&gl;fgQZL|8aAb#W@31C
zZSCrNH_yNN_xHC&@iU%X<?s0vHh)`~cXyZ7ZDCp2wfA27`T4c2UcK6CZ~FOp0V1rR
zlM6ndHQ$(hU9aTL4a4&vMcS76&QALC<0DAFlCpB?w)<1I<=#GY`ZPBKXwz+Jz}Yvm
zOtag*->c?dzyF_A)Rv6KS*F=c41IF8T`Pl^D=8{6ZripEr2EpPOIM1WtUr}II550<
z^XAIuEoE<Sfd(#xgoPhIc)-ArwKm~smuTSnINLY(_s2iCY%oqg_u$M-W6(C1syH=O
z)rVhRUIq=*9XfpY>a!xyvgZB&|K>N}{`BQ#Flbj0=;#%<#RtE>zAh*(p8n19r@yzi
zH)zAehT`XbOO`AFjl=wSxBLAUHh0^S7XnVs&VgIALK$W<=k5D^&Kk7*xZ%uu-?t6D
zrLV6YHNRgI{9xn0f4^S8s_+sN6x>nqaZ%h%-RNxz7Zx~z7GW@yPB{DJOG(X#gX}-v
zZojXf1R6(v^ytwQMvcz65Fdw*PoBRgeE$3Ud+Dt3na<UMYnRF%ycJ++cp>?lbpD=&
zeO`PiaUayx)t?t}7nOZ^5m*{hDtItFzILhcrE<T*G}Dw50wpglFzzmUd+5c*#eyOt
zE$jFHyY<B8=IkFSchk+x%-FuqRE*R=;mT6`>&wCA^XpcH`?(mDy@~kp>Z<nfR5v%b
zq|?)MK@B8OdU*0A1=KU=l{PckU0WWvUH$bZR~BjWyerw?($DQ-740{ytE&SY=+Uv_
z`H8LB*8|qY?2OTU{`dR+<Js%?wt*7!kq$u)ZtlaNd5-Mt)n?s{6CS5K?0#GN>dL{*
z>E|Cjdep?s&X;g)O(bX=5NOh><o!KaklPkGHeXm7tPa|;aq!?l(Au~?d-hD2G-;8V
z!cF_bx2{Y1rfEOlvc<%d@#Mds7mh9ZtE;3Dxk)7{De23jdm9p)&t(VC-x|2s?cnj_
z?B3J$S{G?le7zce_FtYx_&S+&F*}<!Y%pM$>3f4mRy#jGKP4qaK~a%WPEM{Wb?fPi
z_d0ge{4{E6ZoZl+YhBhdcdjhxw2@oc>p@2XRdIUwov{r+eCSZYiwlY&>*H+0PoF<)
z#WT|^S4z&Nq9OTs-@$X|_?+8#e!A~l+&Ry@hOI?ozE;?pjuk63zP!C1zC8EmudlBQ
ze|}2c`zcais%TdPJA=5mxJlL(kLBVkcbC6sVvw_`SP)mB7r#&D`}_OnABRb7&%CTw
z^ZV`g9}k-O85m@(N)DWvX*_Yt6qX0?cW(yoz4w`K7kgJPcTVJ7`+7P3y<dcWeS6z|
zak2a34-XGlrGoMsE4LWKi9M5d=iD^fl5=yD!}ix#!{b56eq2qrc44`A@!~79bMtJa
z`Q>aFCPbbtesqMh`E+Mb&yn=`wQW|VuNY3OdHD0oWq)3^42FO;5r&J;E6jNG?p@!j
ztE-cLetODa<nD9smUU!1pR7UYtB{nG6owOP3{O@qFT1%Z6*LK!l%y24E@q`&!<_3C
zn~Y2Ke*gHfz^zv*OFw;e_<FacUQ@4dUxlvuK3ypL{QP|PpP!yyTpw@WBW3DkTdozl
zszuqokKu&P^G$YN_*3r9-B<ozuHnqQ_ASSseRz1dqqjG7exybDJDF9XtJ})&Rf3wF
zM;;z-pEzSi$Coc9TirZ<&k2gtjoQND@N9E(JHNc!;Wl2zKYRa!yQ}KzUoDtt@_XA?
zec|}}>MCeb>Q?s6KR-WTeLVN>-{0RKK7Y>c8d&h_OXiz<d!y%0yKMOW%1Ys9XJ@yA
z_6Y4R=g+>rE;PGxQ+HR_p*fbt3@Pu<?=FA8$g!D?p`lOKdX;TP?4Alic0L)0-{0Oc
zrd<2;?#4!DrKT-gOy1nt8SLw~X;t)gy`<#itIzGG>BskViE6Jp-#6p+<9_>NEu6vy
ze|{8x-ODYm_u}iBso`&LZ$CcAviQpLO>#CB41xzi&U^fr+1lFr&YsHPwU%mC7Y!K|
zwHUa?^<2)*GX41Jw7#;22FKOa;m6O-wZ6K$DKd5M=Q)4%wrtGwp00OvWAgEU#csSU
zZEdU0@}!-e)w*JZMoVie=uoJNmrJMj=vl8e%e^JB=kThz>%FJztq5H$#>B+5A>*PF
zXutNuhYuNy^u?5wls<s$v9ORReSIxd|6KZ+8I4b#q_D8EDw>#xBp>U!82#^heEr(I
z<HzOe*O+ZRCH4Ned_7NebTkVqE2w&TabY3zqD6~}?xgRmTwnP3*bJLWqg&ha`=hpI
zEp+RZdUe#XU(OaZxn+`fC*tj?>k;o$Cr+HWqwMXhD#!bKDvLpLzY`};WV>!#@W7!*
z-ahX6!u(?0=xsdrYd-h>N~l}x)_Wy0zUCuqPEO91_QL2b8I9T3*R8y~I%H+juF}^^
zDk>~zXPbx5Zg`?Tua#T;(E0PA(V`<e3Lgioi?N(zQz_(-7QA=OUY6SLcguf#I;|hL
z)Jyct9Lr!|14acsJ-(&h)6W&wZcaNJbbc<Uuv)^cEtw1r+wa#&fBg7yMc`sKP=2iX
z`s(GG>kAy2OWxg)Y;0@<_0j%)p8sDW=3j@P@|E@rpeZwdyPquY-o5+r<+8t^oLpZ=
z2glqf6NTrW4S&C$GDYOds!;CSTU!pkxw-l3vuU@Awr$&XV^5`V*!sBM2@?datO#Ug
zX5(=P3KH^~s@3}Q^Yg{AyURdP2AZ0GbhKOg&a}eE#~$9!-|y<-!EvltdU>&(o2%=?
z7Z(@1$veHjx?23t-@k!7i&C$w3}#>K-tRV5E0iJST3gwR3y!+K@BjZN4mz33!GVE|
zN1{PgJ8Xri{bIM?Lw|pN4_q0f3YsS@ets@=wp!`?d$MtHaVz5XT4h~b#adrqzvuV6
z-BlZ>XoYf}o~G-(J@2l7kWf=Aw|LUoS*C2;Z%zqY8<lu(PbFy44HFYnz~(ex9yyx`
z+xI=S-)BX4-&`H851P&?eSOV!ZPeBa>td}z=N`Pcun@FqH0#=$&U<^S7rS<g?d+So
zLgSIg3l|sHn8R(nA1}JgKaBtXD?G7%k-Dv|?AKRUgR>2~R(<(Wa^vPr&|=?$q9Uy~
z1sxq+qS+1|9bFdLa@hxt9b0xnT|VlWjk2rD7o`MV4nYuz<N>Kz)3Ja5eya;HTeGf$
zQsdXg|9c`frEs2`Z$JO_&qa$DU)-8~-Ddsv1z%rX<(BGoTW;K-?mzFq)vH(6tV>-V
zvvZO00{I2jH<s_*#INS%;<EENOH0RzE{(1x)9h;sW@ci`{pTNRX6N5f@$r$3e*VWt
zM?rgf*FERv<_@l2yNRu9k%Enl47a#m$o=TORa<Y~T@|;h#PjXMl?q9UN{jX+Gda1W
zq;Anoo;-Q-#2GVI6d(T!+S)qTs#HKuuCM;@>-a4HaQnYsgqxb11*N3AW|?L`T0Xz-
zP!lURsEpx}Hse{iaN&(@xwFqzg{_HbEPH$F<(}}3Nv?nX{eFLAclmlN0cD0aH#Rc!
zN}IX3xUjssvU2e^u5Zs~=O<lV70S?Xb94IPg9jbgZtU#o3E90vmt+0jZ&IL1@GDnB
z7-q)a`u6g&`|_TR7VNxIEuWvCS2i&TSuVaDw5thJ=pOA71udmyn7P#+)Q>p5Hh#a|
zw*32X3AdeGzBp|@QSsWvB}J^hzJ6uY)>SPnEgqdhs!Jj_r%jqSPftlnJ8aE_e}8{_
zyScS>bm&BH^SQMpQ&~yr;K74MKRzUuTJp==i3m<q^PP2KneS|#b=sPmo?g>*H0%F<
zo!-#_TC*i2C#R>RRQ>JE#Hg)VogF9U*Z<QjeSK}}@qYR4juWli;-F4cP*70H!$Yl?
zw&%wS3Rb?|dVNXV-(Q<bUx#`6_=xE1>w9{8UygqN{eHc^qM~BZ>M-5C^KWiWm+sjb
zzCP~LQStZ_2O61E&(1O}`t~MrW&HkqHw)8rr<ca_OB%VjxV*c!SNmwU_;hLWyp9f!
zW;WiG=jY}sDG3P+D>E`ODk&BH{FGW)UT!X-EGRg$U3sCfVB}0ty3x?!0By-KNMHc9
z=`$}c1MQcvsQa_y*BNIwx3*g{8b(G!&TTx7At54BTQU+00=B=Ak(Ct`6>UvDJuUIa
zhlde+Dh#W>zgrugcY9kdsE;9KnziKGIZ(&u)z#G**Vag?`OIkO>EW4US1SeDq<L<x
z^}>r80lUj`Z``=?LU(=i_PiI@)<)0!<~!f6_QS{H^2!z#5&B`lg;I-q4`044EUFc9
zV5#@?2ag{&*Z=>0|HrG<>o2T{G(I!WHagu$SV`%WyxBn|rA<b+y3>2zK(p^#Ury<G
zu(;pODJMrKDLJ|D(GkugM~^a|$eFb@<D$}z9Xl4JpPx6wu69@C>sNPon~Uj2wSdl;
z`~2)In=rGW<L75*1%-tdulxP#>gp8{8<qb2`SakxgNFC}|I0mm_^_j==g9i~|GHv#
zm%Zevn|`%RR6771R~Ie>l!oLcXI)<h8k9`<`s!-M<6iSKeU~NN-QB<DOG`^HS-O;w
zA+G*!DJV;Tc31h^|4lJ4R90HFCy|#!aH8n%r_<xF1g@|ydC?$goTi|q#r5vpI}dN~
z!zU-J3knG}6+b_xXkZ}F*x0yX<HkUDQ~j_t5^{Dm86`irW?ygXc+kvm=kWR2*{c&*
zZO*#6Nfi|C_v`=5IyyQsfEt&e10o#K-k#o3`1r%i<?|O+e0;QF^X9|5N?(H}8=GIB
z@#p1W0IibUQT<&nCMM=gpYig)6Xy2z^0M*CbbNbz`|;Q7@$MUwj$X+;bnkU%$EQ|K
zkgEelK+6;wCr=g*3J!kw{{8xI_pYpsHdj$mc`!9Ru5pouhqt%$e7jmusSRpY{`vWN
z!{*J+-QC?$lR>>Y9(g+%<MeY!o}8R~aaE}H-qLUH?t;#=x>D^CyE^G;7wFtYkOP)1
zQ2}+U!q!Gb?5nY4SP;26ZH9IEx~Rt&*F+kFMpsR<ujyR)yXfmF?e$Nr&doB-UR3q<
z6$clW)6p)`jfIch_TF2wY5%+1+x0=a@XGJkUQe-9QaUBe=i=ewl5${I>FW<~x8Gm2
z)zif##2|v%$;D-g@9S%8KOUE_PdMDh+bYW?7&!5;lz<WlY?Aoa<mv(fVux8;IzT|D
z4HO)bptXa&Zp^)I&9%S3iI!Qoo|>fUz2IU-LUM9)!G!~AzOx(_UtExRd0DH#-R|5!
zKR&+NsCaqD`i?WlSz6*eet&x#tgmJ&#mgse7jr}LVsTUKhA6r3mV$v74}s*n#r4@H
zR3<Lg;F_iv8?}Q`aH8j}^IDPfR@TN}$zEQxYVPU2=b95MXEa>kR=2d2wEy#gS;Vz*
z^=fSwmh5Y59J8{r65HKe*g%Drhrj>vcXxMlTTc-`r#`=?>C2arB}<n|&N;{ZZvWFQ
z>pNcL`#8L4-JE!s&8F^;1jC1?)8m;K-re8dKfmtRN`u2nN>zFr&Fhs;>8dGwIdsu%
zI~O0H+xdC6pvKMI@0}eT9WUk|W@(Aj*q(P6w3B~<2G_3g_k0YXV_IEUKojSCtG}O#
zyOzKIZ`;4WzZYj+U8NDX$3jL%=E3vl?PYIoC4PHz6SOqyV&(dnolSv@-9QTo<Kp5r
zY~SvFa+2!B6@kj2nc?Yrv6r;h*CyC4cR6|gzPwZ~TkWqe7iTZaJ-_B+M#0xtp`bmV
z*VaU?h~BQ}HBE=J*R7dTSZ&4A;Nakmm7ml0e7{${B6hc#jg1XxpjKaBAJl$%e7xVh
zdj8TSOA_wwsRS*dKQ&F4+uhxL$F5zA+<K*6+~03s_U6XIX?x4x%YhCRxtL*4@!^5Y
z^u3jz(@J+=TN|AoW^+?jT|N2Jlam~roS+EUvuDqR1&+*T=G)tcmsc1Y8Er^8DYPZ~
zI$!FkDUFL4D}&@WBszmuz@9vL((U=#d-ML?*;y=Mkiei7vVuWfT^%%w>pfl1qUcFS
z<i<Z=ug8OqOH@))dhqfkr@OoR6zy=n*j*)tH|LzZ@N--7b3c&bc6N3JB_%GcT%raQ
z9}+;T%q5ODv-2BdUD04+V>@*7rsPtusZO7tojq$8wrrlU#)}AHAt8gLBOD=XqeRc0
zJEsx5%LFvc(kpGwbmFfu<1$clmYJQ;#le9gCME{doddNT-|zo#w=QO9QpvuiduhQv
zU*B9=9j>2YBK79(ZgGYU>F4F<_Su?9@t&HlpI<N&bP(1Q&0tVyR8&_VK6sFE-@bhr
z_xIV>{dmYe`D4cPwSVXRdOAHG)Qtyu>f5((D*_fa`TYbPW^-wYXU5f4qM$<g#S0E|
zb92xvZTR{)H+%0}aqp|XzvETdJk9<0-C1ANv->NaeQPRxdP)@3Ix)?<;;=F4C}`xM
zp@Ct~-*2};yA#%J`+s9&@{3zrSMSPAJw45}U(UAR+ndPArxmqIoW3y4G|Qc((WSI)
z+qR;|$9M$=cb2@Ilwl%uF~j83)$sVIJ9?HZQF(c5>uQZIrLILQKBxT+6mdP)FQ0G1
zR$W~^`SZR{r?jm;$Ly<#)ZL$QQfTtWpTB>DhC=V{t$ytry{BU1t~rm7_j`MIbi~O-
zK7My|^YV)pTQ^o!R-Ody<31)LEv^0Z^mOx`XQg`G*2U~xbnf!b;`BffSJ3F|&CTg*
z)Bpc^y?*t^B}<mf(8)frHhQ~?fx(4@nyy72tHai&9Pg8T^<{7Mcd3|jQ?<iYEG%w3
zDGOT{6M1gFeSX0|HQ!ksZi^>|$5py+%e$+kr>Dm@Jux|1d2`xXqn*B|r|XM{hlek|
zy+oty%j@g@mo8ua`s{4ozFsNQQ!k44?A`nH&CShjk1c9{ZTa!*m(<+-{`2juo~K?b
zK5(J#r+V_=`~Ux`FZG&gWcB|*BXe=j)tJfZ{$kS7(u-dgm6S|b>OEa*&US_Emg=Cg
zWY?QDRbO8%{r>apzu<*Vtb3ony|vZb#@5z%-t^pCTP7~|pD)$pZhim9$H%E(UR<m?
ztr@>>PgL3YdA62y{@Ptii{1OLMT1VJ`*JFE{{3Ue+@9|~aAV)8tdo;eAH8^yQSv)C
zH#hav6iv71=Xd=Db?I*0yeS#e*WKOy=KlWsFN!+2q=f~l7P7FjgQ6zw?5vl2?k{j;
z4is@!Qd06cH-F+pMNs$dKWE6wAlH3A9&uY%d{}Vg*s)XR?f>f}AMcym(7@2ld7_0=
z_)4X%jm?wC{r1!D?k@L^iJ9}}=4SV_Gcy!<rA#I)^PT<b%y)kkg@XqVCM72;@2&nm
zZEf^+ubiAUIk&cWZp*#BY})&Kdv}Md3h{L7kx<OOzHX|rd!I*1$(A+o`{UU7<<|UD
z)(u@X<<8FH;|Vs){pX9Bo12&Jm9;LLvNij<S4qhh8QZFmY5MVcwpCvyBpvN~8FL|Z
z?}PZQSyL~*-CO*;@5b%hARjJtZl86>ylu(SrJfNHGj^@Jwl@0oGT+%MYHDs~d3Q8)
zqqYe2x+!nXzHT<N;m+=I|382JxCDxT<^&X-+d#8T3KuV4+*JNPPSQB7XO;lSy>hly
zOSbd8Z7p+fXxOoPclYkyyKBDPOb4}|Eo**k@R@1k>NQ1U;jxXGm(`kYZ>jp4^)+cp
z(bH3)36Gl_liNX|*~TlqB=`2VS6?0;Zhw7t{@0q-@%#5_bSe4HHk%r{8q`Sc`Sa<t
zzLhwre`G9ie6f4~k@M&Mb+50DHov(oclMDZM^3B?UA?62?X9Zc*CLpbGz|4mM9AAz
zDD2y}FKcJq-l~(|-riPKQ**nvCQ|w9>+9mZZpx*vuAD4q`gGR({)*EYp{u5VdgXmG
zmP-5oew*zx!@%+Ho*OrAoVd0&`v1mUv-XYMucXcMPOJ=GuA-#mB;q>p*4FIPD}$Gp
z)cyPMn1601pNz$Vy0F@snv_pZPHsv)E!NrFJ5@J&n@7K#?UfnUWp6SJ<Z^XPv#*J`
z2CAs2xJ=WDR65=-KmG6T@2~H;+}fHweaFt7p4ZpKKHdF(-{jig-#kHS=*C9pv~zPb
zpPrr`etmnz$E3MmRn*i@tqfkCa%qX@E35Lix0Y`2?d<Hde5bwk>}>PZueHP0%m6u_
zPtHcey-#N1Oyl&f?c29o{lBxb*f+2K?yl0K$Bwx<IXkDGoTMrwE33=SCo|#U;r8ye
zYu9F&NP*^duUrXv%szdEfFa{TakrS5ITyQs>@0r1>hifcmdPcO@iiY?&$Vt@x%=%c
zDY3OTZbWR{xKXgzO}VkLvFh^XU3GtVoqOHn=dk5;)Rv5iCsY6ad_G@o`FxwopgVW&
zxGcVSVn^X)o@t!CyrJ*ktc~1!?8PP_At4n@%gEZf6DKar^FBRIxA&ZR@-d#$YQH%a
ziAHhGpc(Jde~!&;k~){y$J@{So2J3|^4i+j8eK}D^06vWN?KZb-MV#)E@q^>xv{b8
z@>cO%U5h$)@7_Jfy4-L5nU%rImsEUwv}k@thBs_2z{Lzu^0{>BQpvLWd#l5}rf4Wi
z^}7A~{yu+0o3l&GnHh$!3Qxu<PySkSIm6`Bx7+#BF>e3={k>XLSXfwf+5X1^=F(s3
z^J|xx+v@82Ms3SkxjFyy<c25e*A_arue!{8wIwYj#iN~1wy4Kcz5Lys!0c_Ors-;b
z{P?jdb<;fcw!T8g+|8CnyH=Q$=4|rv^$oQ@4=U`IEKzBG`t0oN<;4f*&n=s^NaNBX
zSMJI84}O1lcXB(w{H&gpuH9m<o|`EvJFoZ2%i81fcJ-AjA)3L<dS=!9d0+qkvUc&)
zQ=(h9UATHR^xfUv%fr=Pf7_mY{aixRMAOV$I|>({oYBd}Ei6!#$Rlm$vvyY9pC22~
zZE0y?DJ&=eWqbMBFB1>`G&VB2vU}&#Q&Wv^xg3zl-K;AuJv$~|<G-+}!r9s8=R<jp
zWqi**JInOzvedOl4N8{Vs^5}Qj*gDryTr%4THQoPN9X!!alw^wdv|GcDcRZCx#@S!
zv#DHETy9j&1nP-?UHACB{r{YzT4nb>5!b*aIX5>|UEU&IEY<6lc5Y5)i6m&R*VQ8X
zKOdUUnY^{r4qrFt<nH;InVCV`aw3~g23-5R)@P=XoBpSBbFI_AEV5Nq1yzYIi!XY3
zcywH}SQo#4-DMR+drptI<l1j<X71R%8&vR3kFUF#u?Ey@x3IK)s?B(^>dm!vvDsT<
zu63U%eSPhvk9J3{S-7LB0%)GrHSoyIn>Qb{mWJu?|FbE>MC#?ey}R$3<T7PsXKRPA
zk29@z?y)F*)UvDA(9p2zGPf3E<mR+qtK3^#GTo+w_GPVpy3Bw6I`i1wf6tve=axNJ
z-o9?lKl{_Czw1p@{h(M<rMP7Ia?mo>01?)=x3)H~UcLHUNqKqspV#sKn>rr+e!t&*
zN6(HO7NC<R7%uFuueY$ap1rs3=l}LQqOOjU)qDdsr=8uC?*qyQ(d(X9et5w6@6Ts{
zP$wI7sLIOV<pGOaI2jJSyu5tkym{+_>pnj_`|7@P8_&tFzkYpr$=vI<*zU&MSRWrA
z&;}rluBLspzn@k81U1%QUS7UXgUhP?9gn-ad-Kznn3xMYi_;gMzPTxt`_kph58u4$
z30oUAGbVkpTQ38HdET9X^UL3exPnGmd-T9_i#ND;m%Y6-^V?;Ad&fW#(AeI#ZQI;H
z&5Pz;rLUb_K=U7qpIVi@;jp&0ZobUK#B}BSrTO*$RvPPCSxJ3=f1jP<%bS~*Uwk?}
zMYCB<H%emeJn72buRlIMuK4hPkzvK$V2MX>-}X+^jee%>_V%Mz;3Af|>bItgpZ@y#
zdbxSOV&&a5@82Jf%QG_cN}IQ}x3{0%)GK9bR2iq$)%5G@>%-^I>xUaIS+eB8t*zM>
z#m{<v{hc~-;zB?B!bdLarcIZ=mApcu>sP{V#kp3cP9Gl~Eq!*<FHpoJ|DH@-TpZi-
z-Me-zDtdZ~f$RScVM$OIhvWA4{NwTUe_0tSUa#HGGwotr1t{9~|NFK2-j^FUBEG(F
z<CT7v^>?~nY><9Ik@b7~qjywZJUKb}#pUJvHMO;%8y>u-YJmo;LEY7W00FzdUxFEC
z?zPX<x7fPn_nMfUMLYLJFc|6kMQ_XD6by7<e?IHsp;iV4cJ_7~)sX%F|Ly)&?&8vN
zaucZ9wtD;H<70+~BS&0711w*sO#ZqYRI%1<&%0~1W6!6jr)Tf+`26Wp)BgSY@0o!n
zu=Mo!7!1na#Y`^D*z`prO^1(RMby?+7c(8wKJhuoM!T<G@GUp*iRra9w*0NFtutfX
zDk>`E7XPk}?OLQ@Vsa%V-}BzRd#?=5t{Ml$ZNGV`Pu`x-HE=`j?QJsWPrtmpoY|l@
zZr1O=Q)kTR&<tLtprXP8T5A7t>GXiTRi$5lYnzya=vIG!clS^363$!65&LQ?E2^rb
zbkoz*+oQH-Il6o*y<=-*qoCAUcc-%_k;zG)B{zKPym|B7-Y0C!yzI7jcK(Xhx7Yli
zQ&Uq@wDsSgGr#>W#?6?qDd8YfOIusg$45thyk5WmN?`xy{~4;PsxQyfe}5ON(KTs(
z?zMZI`zk&vfvW9&^CwMObS-P|w_Dk-Vh`W(@bC!u|Lxm1v&d~BD}&sY-`!Um{rC0_
zJEJY<g@lE9_4JoVZ28#Han4LdMP<cegW1yUi!`c^>#m-Y^~+?|nR?}$+55S&?mu&j
zOFlcxV!BS`r6)#3v*roEtuuTsF<mb<>b*qz^y|6XOx~uem_J{-Qg8LypZ|6hJ>|-}
zvZB#2`PhT+_v_u=+}zgf+s_r`<isT6YWRCc_H)B$m6q>Zj!CSaudbyeXIs@GU;jt2
zYte&ucXzwZ)=t@4_qPgk42qwhpIFC+f+ttP|L!b)Zjf<7Vaf94i$hihfzE`At9&Z@
z<M;2wXV3c1t-rX)HS4qbPj)w#yzA>^LF4|nx92BcT;!T@VF4pU!sBDTJL><}_4!Jj
znfld9W&4)@PxkKF1M1Fg{@%Q?Q0SAC_qFccy1&0>-hFfS-aR}2*T&&>-*N-LE_y5c
zcIVAqrP+VJ@Be@H`=_E`|Co%jx9Z35ThrHlWvRC~3me;_l#`QQ{bv*moc`6nratxi
zBH41K<QWYC6Sr4=%~DZUe|`6@k(&!>#WZLtIe*{JWxwjKecJ{)hR?yF;ih5AeDm#F
z$~QB-*b-^><mKh%JLC2#c8lw~MMX*F<mQ6bbZ_-7EL-;OQe|c3!#6iKSKdm~jgF26
zEsnUn%=hrEt=S*1hQ}Ygc~i1mOqXfG%{{9lH>Xubm0jDt;+9&~u^F@0<pzN^jfAX?
zGQBS@X?b*!?qZEDzu>iN>bp5sg|42q-r|$;?|o}SR!+LO=~>Qud(G@M<?rqoO1_?J
zUH)mS9zQ?-on57;*W~UieLd}-VO?BhRn?<sXJ>nOdTu;XS^4gcC1{GeYZ2&n843Hk
zJqL@H?c2{aX`APioyTLX`2z!wszro6(T(25<B)cF`Bd%jXFr0s<wP?4I=f-hHqmod
zzt&owny$az?ER^?dl()(d$#P~+`pFHYu?@8KY#VbJHD2suS6IWEG%whd}93b_fNCp
zt=h7$uR>#Xm+7A0m@zvMbZTez^>wZ_H8y4M?r^#WURWKz-bUYCL&M|m?;9JF)lScv
z6}LJ}m*K$X^z%ON_={tAm7IK1xUc%V9%wlr!-~MgZNK)-oh!R4d_AAw!Gq20pJm<a
zM6T@H+Vbk^>ecn`?(Va7X5W7tz1WSngCi*^$>*NWj^gKiR#H{hl5=v;_-@;J-c-iE
zE+$v)hySIzdPakrjV^x2H!sN2*>e2DrKR3#`xjrnbV)#3n%gyS&95E8PsN1=v@Yqz
z?^|<^wY#g!>G`?2#eX`xx|%v3OpmX-xU*PZMux}U-oAt5+4=eTTmJ4-ycO5!!czVH
z-PzK7ZB?%+0m2f&{|&;|#Y85Y<=7(5xhyLr@7|u3-|~_@c9*@qvOoRYoSDxfw8Gb|
zvD>ph<DwF14N>m-x${|$96!$9*w`o_xF&YD*!g+3#u0jkhJxAG))?-ZQ}*`ON^z~t
zX=hIr+e9fPeXvwn>)I{0^0;O7TYu1eEdyw$?zy?vpJlz{T3cIJnsVQo&Cqt_`0?c9
zeX`TIPA~ZIq2R0JqNk^)OY4^Z{+63_f1hpq>q~O$+4<!X{{H&vcKYmm`};2px2fHl
z_qeCFY|EDCPY<{AU%hp@KIodt@hjyw=2#Z{=&5I)udvKrta&S0LrHCW{o7kxK_h49
zY+PIgL7_HHCvwq0;rBN-E{^=1aXK|6<wZ=7MpqNR{T~5`H2+B3sxJ;%S*s4Fc67vT
zUd(UzgF&j7O{vNJUIp{Vk00HV4NQD*n?7CUJG<cJCDpwzpP!q1ct_!5t~Y&iw_SVO
zZ~yPW!^7=gm#M3&g0|zR$&2*%^tePsNVu@X*M6OPvinC%3(Mrwudc6`cVYSc{rz#!
z6)p@JmzHqGRlQU#Hb1$*v6+qWM9w#ZnjZztscn3+t3EHNEMsJ3d~s!^unWuTu(hWQ
zId|6lGzwcAmAdK7kxt>le}5|Xem_6Qviam>b><U33*u_OhR%Hny5MCsXsB~<_4i{h
zFE969_x$<%db69i{o-!kz71-b2nZfIdUU0&bn4W3^ZNe%{Vn}hCbFx!nYrrA3r4|%
z8<US;`K+xic(8$y`BSMNS4!E!H*enX2p;_K@NnVdW4wEf)cxihn4%fXzyKO6YUh*v
zwDny5q;1Web9Pm~y}5aL74!3Ee!Bzz{{HrzW?%6kVP01E)=k%LNxgF9KjCAy<vhF8
z<gLuT-QxPsEa&mbS{=B4U0kWjbF!M`pEI$$%Y6UJKYsHjM&bN6!N|4sSq*|p*#Rqq
zR0Bm^y{7BsezTF3lzjC1wYF5RTT@fhmt|WsE;`9}Zu6R|1)d!`*vt-Ebq5;Dd3>yQ
zazg`yq<!6<dz=1$p8tQv=UuyZpT4m%IraOyyF%jP>Y%Br$jxb<i`{ycWL{oY^*QhU
zzF66oQ|Hh7i|Irt7#bRG%D-<XX`VM{ibkLl6BE;s+qZA8Y2+xD3VD5FW3tuaBL8_d
zk>B3lR(J20n|gC|y7$vlQ(YHd^f=tc>#O(q%uM4~885pQd4z;aSrfZEY|-MyPhVVI
zyea7@*UOumm+#oMYgUh@rlzOt!|2`nM76_a++izTvUKUn#ap$zl-5RXpXNK;%+trG
z2Q)AutGTo6?JYHTCw~u*30_mRR(>?iyAuI&Wjnw8v>P`fZf?z<Ui0tg^Gj<YjW=%G
zIMHve)l1#Qo|DxUUCdBXP;j_&_wLcVcVn0N&D8?wINZ*EdWvT75|>V)EE#FD9D^Oc
zudlBcmzI_e6mgw1XHLq61&*H{_uG5<`1HtF7P){1B_%D3mV~Sba1?Q!s2jcQ#hLg3
z=6JiB9|3><{JBzl8+8BzG&Eo$)q8HAshPk+x5Xz56%PG5GHb#F1v@*ttTmvanYXvM
zd;9qGtcl$0_Uh_tb*WxA&}8U3{q@Wb&(5=rj`e?eX=&=UHIYSMUIhMpyZwI3pC2C|
zJ$tr{FKSor?QQirv(HYv>;Res4PVYLZRP_C+(WJ0MGp_L?oF=z@gcFWs7R>SO?lh4
zZI|{|mq%{To9p84etKi_@h8XS>!<kJ{d55>jSLj|`D}Lnmut&or!Rbe{mqusfg-NE
zN?t0>HqW2-;zh>IEt!)`-rNWjalQESpV5{x$NS}18@9K%pFTI&`stsapI@1!$?h>(
zUb{8*wAk0*3nMlr85KTq0Xg@{iHXWa$;Ws!Lsw0)`oH~tU3P)wv%LK)&+|+)O<;0z
zz1GOgentPaV>8>+tb676Dv!T-vBT5T^U}`Z^otoLuk0tkv0wJj5j1A>=IvYGbJ-e<
zf`XD(B`Yp|ou(fjcW$1o_P>As7HN3x6Bd|wCU9%-TK~ltPjm<>pNUHI@#)#~<&wAC
z_Q>juQ-gh)+4-+|c1@Z*x%duS@tqxo&P>eAy?N=N1Nxtzo2v%WKXH?^dET7II~QKe
zSQ5X#uIh98-i#kVpU*#f_3G6Jf3|JgrsnP?E_icK<>rdY%9(ebOZB?FdGjXa{5)H$
z&(FRwUBB^DO{wVB6;0EH=3D-Ox=<B-Gp&WH>XK~>AGJ);3O$vw1~la!e}7-??I*u{
zW*Vh--MDp2Dt7wh$&+>B_uYB0hjr&!%abn`{W>{WJ!oT+>*D*KH)So0RF1!AdYhhd
zb5m;7=jUpSo!#BS{{H@pe_N=ixa8g4HTAKPd!J0^7vs5KcPlKfRaM$l@-oPDq2ag6
zKW{dl?>RSrHp`J4>1`*Z_I&W&Fwd^G3$!$3ZS?lG<;&Ggq<SxIyPkf2p6lwcwGW;>
zWApd-|MKGE;TH#7xy5uGwq{*@@Z?ELLjyz2->=vIKS`UwczT*{aP_{fuC7y8_XGw8
zW^Jwc_8D{n*y`~0$MpCAY1)3Tid$4Gq+#=BV;LD4(4rU6f{XjL-{)R@W&>K}@$&L=
z(CL{htgH(mla9^Xx0}y0$pn{uw(RNW=5&f`hb;(P?4}X7$70UhxuB(zJ#w~E7cX91
z5ww(xVaA(}r>|^zWB2bza?Z_7th!NK8rs|0p>sujverq@&&~buX7l+oQE6+Vwt|k)
zs`>eJdPh%>%gUgopyN)=&CRc@i4+E1EwC<jH^_;TKW4B`3=v_C-Cfq&+}s>_d!n$s
zy!?@4#~#`L|H<Ff)b!xZ8=ms=@+)hj#fzVvIe6awKaaKbZkg?uZ{L=#{`ThJv$L~5
zKAWAtDCuZdL1AIz-o3Va_U;YbUsns7(5(Lc?&zM%&pdk0|Ms6ucztbc;h!IcUtV5j
z|M%}-K|z7T%AlneHYU5vSQIcgxAU3q^aZWVS?WFAp!QdZi<{e`l9!h@Y~S9#d9$%r
z$chHgY}m0LNzigsDf7HF=Jk2!go9I8hpuh|O^JY(N^)>CEMBbaHBF}zw1oEQsi`yU
z>-R;z)?QJ3E953<t;Uy^mnH0Kc3g~*x2;+-?fmH*#!-vidO=g<zrMfk_nN8&Y6-7f
zw{At)TB$ZZ*{;p$=U;s}G=28l6aF{voO}Q1QIm5!U*d@giXa6sF)=)S8yAM|F3SZS
zUk^GC;nud?Zllyw2M!)&^z-urt(A=0mec7uSq;?oR&!r!4mx}C(W6HnzTM70eE+`u
zw{PD*eED+ZwEq5{^Y;H`-1}q<vw3E%3|^iDnsK|aLD9z6HZeP!+cmJHO8v^I%=rCZ
zuSHu_e_OL_KWO9Sn>RgPQ?(KgG%$iL<>?Sq{<QV(vtv#nGeiWrOKNhDf);9idV2ct
z(&=$dtz4p@K8sG&77p90FBde$<>mV)Oc2<ydw24Q35uZe3qf1Ar^i)sy7$Yqu6=vo
zR;vE@+wBr283Ldy6vT9+68``D8?mcI)9&{h<E^#of=}=L`S}@i=!8aBld^l?lj@MH
z?9ZpP*C)Kcw-?l~sr&hK`XRn{9?(3Ym`((Py}kX`=~_xkr{;>+$q2;9$AhjHym#+j
zM_-?ti%ZMFqRDE$PC-FJj~+b=Smq<i;NarIGRr)_?`XI9>bos!>gvgFZfpddmJqf+
zj+f!Z?d|%PE?+h*eB{C-VW1FSezqeng<D*YWx~y+se#^hCw_ru9xpHR4G>{1eRV|>
zv_@%Ow0@1SPVVLDb3l^`YxS;yjxTU<Xz)942ilY`BqRiyADsL1e&usno61it(c5w~
zcRc8fQ~3Su?cs-q+ZSqd-6|FhbTqm;IoQpO?OxsQ+^sir>vq+vDOFwE`@vM<*^a`;
zY<c(h<$mbPetT={#?seeUrTdxbQ;dseb~&!&E4#_*b%h9v-I`1^K3pLE-`znL_sUd
zPfk|<`0w|7W(Ke6da+A(FHf2M_K<PmBNrLlDv|s>AKBvSex_DbS1W63a{m8)|37F0
z>X9Qy93aCnYooX8y(#GIm>2EiaAtw*dByDd2T^u*b{-xc4p~`RZ{EBq`25WG#*G^X
zPM`K(K4<P+SsPnh-futsT-r>tu5g5}j|+|0?rK`U|KF|ya(3I@^nWB*w!V9FbMucU
zll{NkyKZ;k_5w%dH8DFk2`DKmX<5x^m;u_(%)k@(CBxm**UPJE?p)9TC<*!b`307J
zeSNPsb!enZ^|Ey>I&k(ZucM<QXo@y!YgXuu#J`Jg6#G7uw5>8(6|%A^c6S-*j9t(w
zZqTZUmoGa%d??uS@tE`r&~19{o-SYRBr_$ksjI6q7+5f^D|?cbE2*xozGTS~i5S14
zqD@ifChRVMpY;3N+YjHrn@9G&aNU@9*J|(gq@*M+MWNF_{(L@vb$|D#vZ&2sx={;U
zyT#m=f8HSw7!)J~It+T6ZuG0I6^fq?7!8}Zy_~vDGc3$J|6WUbJ3DBt{HB*LU+$>>
zzV4jo%vrO#s=vQGc>VhI7ggKx@6UT*cOEjczrE&X(d5TpClvZPoO$s2b@wDy??*pA
zKCZe9T8ckmg22~O4-XC(&>;@jGqpe$-KC_YyqI$K-2MCV4$nAcB_tvWq#eStZ)`}M
zVOgA(*zPEH=<(mAhac-UeyG@Qac+)f^SisdS6|PaQtjh#MnqJ!b*cAsB|E#gw_WAm
z-`%yS|F`E{$93P?X07e*?9a~3Ts*nq%uHi;Jw3gQ%gcH%mS)V3Wo2ViGBNoge@keS
z+R<+D=Ns!9KUD0GsMr&)V{=bm&TRU5Yc&N1(8d~@iVqAQKYnCr01c;HUl+^F@aOma
z|828pOM}j(EPZ`#q32|^R~|1eFZXvZDA?dv{{eKqt3{#Gz1r`wCGYM?>PBxnvaj~{
zhNPohpnc@3UQ;xBd{w~9M7Vq$7<}g2#lC$N94G?1><4tVBg3Ar*P;uGi=A(7O5Irg
zK5ozdf4_gcSlpkGpWhF<xZ~HCm#;p{M>VtYHtpSOYxn<8@t-f3{Xv&Gu8G|I;a>Io
z$eP=r6(=2QIE4imrt8HTt&T}ZSa5DZ^Rh2*Z;RLd{&v<s0<<>8#kFtQ24;n-iKU?H
zpPUuAA3*{*qGC@cXuZh_fsgXnx?7L`J_-qaH6wXp*!mVV1+WPzhCU8pyG|s{Xb=D`
zW}JA`fKd_TIi>DICMU2W)HN_5MUgzC291W1lF}v#yy@s<E4R4bgI@D{4fE&A$Hc@4
zNJw;a3acw=YI-ieb8~b0#Z{r&J9h3oc=@uhZPk|pcXyX_Yi5DN^>t$O4MrP%&?)^L
z9UMD$?|!`Z`@QD&c6L5ls}@je*U-@L#)d>@1_e7iIbLbAmfgFpm-)@@I^Hjzd}~W4
z=wjbKIa{vi=yydR^QsCzX5H`sEoxuv-Vd6d0Ih#vxUfFn9yCpJb5m-?j}MAn;`)7_
zlhr^~Kw)8_M({Eo2GEHYXJ?y(j@rGrK7N19T606e01*XM)`Bv&H*dIVE`#%qPMhzB
zGhcpuOlD}<zJ2?--%Guxx4A6_H5nN|gFG3xx2>I3!{CsTq5@hUpLTXu%=+thWmkl7
zY6LP>yx&`s!vM-t6Gao4l9quMkhxq~?k_*bqLAtO`uO9ouC6vLe;30eX~g2^=LfBZ
zdp~?A*!wg4`nuj5H*UnNH&<odQK<a+y|DVH-J;+u+uH5B;mnmysop+wECfNzGW+fS
zaWDjkuqGetIoQG}%)nrte~*RX$B!Q`&c1*AxVfbTbgtSVz5cf=l$1V6*nk~0HGydo
z_rHJtGVbg!1kL8~^Yeq6=b+Zi%S%fQD?TJ_HP>NhXWv^XD=W*$;OXgE>F40`NzNLq
z+Z5!T(A8m}R@{z)hfPt3L8r)q!u!dIiJ&Vx=FFMHz;J$^?d93_mX?wXSBxqrPMY*Q
z5>x|qtYH!sFg`oen0?{Gg;i%)gVy`2dQVd@GYfkw>wQ~9d-ZJd{6mKiA6|2-Kk;xI
zsM~S#-rKG#SJqYb%?HIvQTo$UQzLd3Ej?GwFK?%_B%_N@O(E^q>-GB|JbbwDdtFwR
zmJ3T}W+v#&){~P|LCyEQMehA_t{xs8k*{Z27OOcqJ2R$~9sK=$*C#Qshn~h=Ul)6E
z>*{yB4`$4eXlZQ~4RUd1u0CiK?BKuvT8R4a5bNCU;cFrorKP1oy%7chQPI}3v(1(5
z?BaAcSAWj~9U(l|y8PT#D`O+0dVVREJ)gKB<!IHvjciAJ<m-MYZp*#h#>Ol4;BNVS
z&^ckC<FRw@@00!e`@8$gOG_CU7Q6Q!+g1Ad!V*tmP?G4Ew?Fpf<z+z`nVz`4RZp|#
z{{Qb|EoH)>7n=krywBTTYnZVz@o*bxUm0kvw`K9Ogc}<YL7fdX|9L$(H>a<DdTN?(
z_ulI7i-MMVfhsCcF9me%qIKDu6Q%FNZ?U*oGg-+ysVgZdEqX4S?N9_-syEv_|J=ry
zgan0cd3R^M|Ej8%_V1dSg8%$y)e|8pu**~-OsAUZkQ%tI`m!gPDQT%o!+`^5_RpOI
zscQl+9$-1*Wn1;-`~7q08ur@4!orYoV~}~?pTFj_6F?~`Fz_JD5wBEVhb_JvZg7i%
zglyl>Xoy%?{k<XW?7zCVZ+KMH?2c?sf7vQ70+J16Okk?2dXWNK3y{?M@B9A!|Kqmt
z6qK@x>CNe09iA^57XWr9YXfJ8=%o}(t-HIKm6#M*Po7)@uKpH1mlhV#ULspiaCg_4
z`=B|?30%F$_FYH<6(>qs95S4Dxm4BCt~KrXX9ZeNcjWkSW)1cRP7aU*Z101dx7?r6
z+}yFK$Y`1G>~H_y^RXv{&qxGG3qF;eoe;V3h>L>iQ@J^F=WgCJn+sBof<viQNVsvy
zlG``$`8INBuK}gz7e9}&9O1I9<=U|$C8gS2RB4-l=9CE_nGP-%VFB$aGdNOGY|ebk
z(_&E2J^Se+xFQ!7QBw%h_$)br<?Gh@^W|S%UCqnj;i<W11z6vwe$Ecju3p>jFJIVS
zy;k*}wxA@FpTQw3E729a@O4VPkHeaPBqau$u=wd3flPjWGx--7LxV<ASYY)N{s&5X
z_U>h5INB|q4oPdSOutLFdiA}yzFy?tpUrHb%SA-A!+6e}o0;5D^JC$GtD%}tet>L`
z^C^EXR>pGPUQHqFrJ`1dhx`3~lRuoZet+QZUD>Cn)tPQ|7eAMB3WOvR(YEFO+}2Ic
z<%I=SPvNn)wgxTXym;{<14Dc~Lq^lx-SP`6K0a!dk`)vbyx6U!#>T;|{YGP6zK_G2
zOU5^D-+sO4@tZe13_Hr+f=-wYlW+vZ!QKx-LPAA)E^3C18@<jaq^B?c?AIxz%D~|0
z=-4U<4#2?11g4~^lfDW~sQUUU@%p-0k27x;PY1c5>)_FDal@P&8xHY3-g%7Wh?Z^h
z-o1;@Sxfb@O`JHfRfHd81EYhFk56LzhdYlg6v90BbBcik0|O7R9MO7d-{J>KeIX(S
zj2pe632sp*XGf@4Dr8TIsHcy^8WGU8l8%lQ8cF&QVP3ut=jOA&dE0m;<iKs|2O2Lx
z27HkL<*F-c5uvO8{C&3nA8XFdAPYv2MS`LXW(PL~vCU4nyD#@Aq>aZVAS|Gr`a$u_
z27}Y=;HF(j!;FRq&1O>tKE7%E;C0R`7(ls?E!*MJB^`NiVh&_XVoF;2=FOWg!hKh+
z9O7&Pg}{mikjveTg(s-{m)uW-INJ944c_&kw`SdBdHwP6nd!Vz4E=J3jG)HkqUUni
z4r`{&og15WiIHJ`En7vE5lli@KznI0bI=-zgzVGlV28fgd7R~l*Ug(Z|ITgLv6Hb)
z&I?rZC{>*^VB8oa)yo#KQR#E*?C3OJ4rqyS&X93qn9_kqM;mrq2kfzch-wMVXoy&S
z<j9%(_iLDM+(<Dy_{bRC=>0M$nJKBYjZcDsg*A0wLGkH7XCceJwU|KJcKe;Xjo#CZ
z;vvo8MM^E49i~MEKYqVYI%-r8%>hacoE@g8W;JAFJN)1Qhmt6xkHeaYYNrzug>^th
zgqG8chKR*$Ol5PL!1>9QLs%gD%bT0`>#eQQ{yhWjLvnEmVKHFb=%%Sz|9`E<%>B8!
zKOtt>euwB)h=OTm5EjUuvX#xH8&bYNEHh)2G<fj-JF){VZccZYs&!!d{eOSu=0gG)
z?9^ZXe($f|e<=y-HjqEHtE=x`hcy0Ia3nA#t=;s!<tQZlA^dqZ7i-t9Wfat$Qvr(c
z4la-*QZ*PE8@`mBJ`PDf4xk`@!`U%6_F2B!VUWKUJ(my`$euc5#qX$S=0lLR^YfB@
z9OjANVrfZk1ZAv?#XX!ITR(lfR*M|&%IWC}R#D$=?LbTOU0hrnaueAd*jU(^Q%}Fz
zw|p&QXD@5sy)899pk&W7$1?bapbaRPl%tv3kKVQYTt3@uT5l`Jp`a9ea_Nj25;ebG
zF1M)opfG9j<iLeatUNLn0-)m>qMp6Exf!&Zj8D#nqq@3!OXg)Z<Fqpk)2C0b)V^r8
z{gjrCjq&4i_pHGgHuBs|V~6kWT4j$G_i}pZfwnlky}jK%BSYg@uQcf5)R;XLg4fr_
zho3%j{P^O;!)*oS<;SnA3<k|D`^+}uRrj9<z8xleMVYd-GiS#lhS1ew53Yg2K`>HI
zSisn}?vI3R^*5K@Wp6i>y^UJ@6m%Nrk|iofjvig;Gt-Enp`(KXv^E7a`MtmHZ&BP#
zOHVFP4!>C3u{UAn%ir(!AAfs$J9vMTLsF8Gi_7{uzrMZ(9msC_lL2%rAPWmi!r57-
z&(@v^faKFa!2>Kud_XtiZA>~^@b;D|s5QK9-8zl1H4<$6ay{wi=P@$m-PzH2dwagJ
zjZIAczgt_gmCekq?U@SA&PrXJ9Wz0zB0*P7T@8;1-HN-h?r#;Se_H(f9OxK)1_ty0
z`>SK*<>mMOtgWe;FkwPNNU@s{tf~-^H#4|AS=}FWy_RD$TjH}bGZ`BAWUU_D+?@X7
z-R}1WiHBHJR8<)nWMpK%JS#6LVPQ~FRXwP;oTd3ZxT6{<cvMQj*wWIHk>Os&W8S&n
zcbC3q6Fj)kx&4aKEw#u<Rdw~(I>%KY^=gRAN3ZKX`}XYvZ727ds<rg<KJcwZ|Nj2Y
zy1aTeo151D%Fk*xHa11;{xTTkT-OuHzaRH}@4DFCi?Xk;tK@~WDKoLPDY>}053h^e
zEg&!7e`>1s>i73|6f!%cDLq0OHTf)WTP32XsF=1kJ1s@UNnB57#sN?(SHqv@E<;~u
zr(;A!graMR$p+48Gp)+s@dzGlV&yKmH{U#8?#-Jw7j_gTGdP5Vh=8`s{rFL_^$h43
z=6`=GOWxhNxo7Iq<>C={TwK1?zr9;Ir}yjs{~w>1p4lgmJac2pn=3b_i=Di2NL|f!
zTMF+}ZM!L_;-;<W==W+_!N2g0cS^6ukq;B?uBD{pq)Hy?G5q}R@5ARcR&ysR7SFXb
z?*IMvS()+s@4sW7m(KnE)Z+Zkd)Id|FwEpkceu1NXsOq$J3BXnmcTuEl5%xjZ1n5v
z>#zU$`Pnq#07GkgyZ0nE9*G5&pPy-3Sw-!w{(kLfx43EA8Hvy}5rMMSWj^;O3py|`
zFidb2bjUmW<mBYgEg6Bn^X+20#dL!%E^;-k`%|&^$D{6ZhOOM<*V=fcuWZkc|N8!Z
zd|h2#)}<w#$9g0uuX}B;0x=|2&>_#cPsY-u;zI(joXrpY<5RW6{j|f@?D(v%)WE>N
zpwRuPE8F2-)ob19*;<=ym^c_17&d9F=TKl~=L@;G$Tf6(UM$FVas9Y2C7zPnrdKbE
zGB7YONFLH=@`#C<<JK#+baVRoRo>I}xcK?QUte3hwdQBh(v+i{S^xj9Q(|CXa0q)W
z%D5z8q0_7D>*trfy|wi2?()^)>*H>1O6{Iymb<E>g9GHBTf0hEFF(Df`qJ;*NCpOm
zhUp)>7(TfN1_nx*W=-jnv0TI}ZMGt8ZPYA_!bNg*KN6?v#YQQ+^;~#)dAV)uv-^(^
zmotOBll^HIgOX=wXXh;A^ghs7t#0hD5X+(`0gsRMii(OZeR#NiwM(Z^)Q*CM%TKc~
zFfe>jj}vz2F^t-pHPx!*#R4W)t`)hrw^`Nw*#XiGijdRObT5Mv-IEi7p=+Z;_4j_6
zwA`BwqIKi7<^J>SW?7f7^P6k6w4;N=_Wz&HS@-wteYgLA-S&-wf`V1=c0RwdueO>$
zgo}ZJ;lcU}R|e2j*u0ugo?G+p$AL~?NsX+x{5R2E?&6o1mvdL~fx@h+(v`uo^wpH6
z=H|<`c1A`)6DLlT3>N?ejP)bY>kTTZs+r&4-8Fyv|6#j)$-6t2(%MW63=9S8dz2c!
zyu9pwcUS4|%=+)|?tcArTK{&0AXwu=QO1<JyGpw{J9lQ*gRYlLJ1d2x@6WH->rc%#
zfA9PI@S#I{{y%F5ImGONC?jZI*Sh@Op3MJ!ver}d<L!_%nPgw{xxCEx@+4L7JHN#A
z<JP>qy!`b^_4!{MQbEZiuRXkm_x<bj``4LfUwd&<eSXN%E>TfYQB}`do74M2+qhT6
z>@2E!+-q(VqY83l^v5n^g`GuDFHO^pHp#f4psKE(eQ!_YEc5(%lO|6#t@x0Tdv{mp
z_dCV?kmxJmjw@tynbg$W{Pmc0e!((OBKVLLSI7p6TZd~8Ow%2NgoRD(|J58lc1%lA
z(Q)O<m3n`trDopRk|_rb>k3zf&hGBuxmKkmPfiHlEk1AS<>3)9&!)2E-=E5*OO|Nl
z-`m5*$@#HlCfG{{wWlR~eSO`ZlamvahWTVH6q0+MotwMbd%E7swcGCnB_u4^_v@9m
z|8!1JjEn72YFHD!-Osk_OF*xb>63yO{hJcX_4V~2GrqpMdfEQ}Pk;V!u-dRaN)4br
zGZQCHoU~+)W$~#^I;tuv7Qf}IUMS|?+H%tQDkB2}gNOcl4u$Xcs@M0)TB~_}`uH($
zp;POY)YD?=|Lgz%j%Q_IsaRzLa_Y+`qT&m$uZ<4x7T3RaVWG3Cr>u3^l@)=DK`CbG
zvSqLC|NpoB*7p4O54Aw%-suWwnQ%R>+V_6_|GkqYO?vYF{dz`bwiiD>J_dz<(UTJk
zx8>e`b+`QfS9nk`o!I;R-s<Z2d$0d2c5rA|<~MiM%HZWy8?-?7Z`ZyY&kS1i+}hgu
za&Gy(k0qKQ;eX3~<Q+igv_F2l_`!n&|LLHl`yl_+7e<#!v&{3?RepYUQsVK;AduQW
zym5uR9<Q&hy}H<)|LV$M_t@QKp(!a#n3$RG9t&L=bd(tpBo{AUJh#98^I7w}zsDpZ
zr!Ac_MMQcv$n1jMdz2b{=G)!93`%1RJGl2KHI%%#a1hRYq*Ma3EV4O#4&%!^J3s3l
zkC?VJ^YXHr0lc6@Y5f$Eb2jOmUaG6A>Z<NHC&0_A>(kTI$7`KH8ucHDGJ+=mGq<U$
zt7m_Da#G5^Zco_yxZM0ekaXVc@Ob7&uV1g8XIuSh<8is*^Yd(NV?i0cA^O8Bh9c*q
zU7}kHAG`Ta2SvjJu}v-vk$bDQHZ?Wb#DWT%hUgDn*$!>I($ms@|NQ(Mr1a>qW3RSe
zkK4Qx640l$nNGZ3zkgm@^}9PeLl?Pl`pz=(jNM(fb-M=00o%`NGkIiXty=C4;uVOe
zbY_F<7={Y=^&AST!`EMHU}Vm_Wnb{XVQuvGbH}<ss_t;E=THEZu=@M|6kY!J<3~lW
zgyA71InWw)xrzskv%i6k*4kbEe%nS+dCyP|sv3fVCasIx`)m5&>H6`=;vpeZ#Pnij
zq|G;U;}+AoQ2YIEdT}Voy1eP(EEB}zYXWDR=U=<*Z@*T)?uX;`b+MPXW?$b@{XNh2
z@0ZKJK!*xF>ejE?<pa{P{ekFr#?0&M=7L6oc;)S4xW#lP94@pqU%G7BsZBb(QYId<
zRwW+_rh*jb9o1&)P~nxe3VC~L>*YhO+@(K0BzgvQ3aMUM6KOnEBk<5+NJ`>g&#7?f
z>jBUSAl18gKw8UBXs=`J?CrgJq*FNm7HFyT+gn>tBZUMrJKvRArrCM7_UGNT;*~Nv
zfh1>L_9kF$)YiOP@vFmhbMNoFizFwmA2+4{{8|0*LJJu$504E<;kPnq>6Wakt7d;&
zAG0&)Xt(%wB)RE&v0G|>7JYqtJN)_i`Q_W@+t<f|c7C3ks(p2-w>W<os1jGO-Sa5B
zqWbHrrLnuqGXMPeILjchiAzjJ!xL1u1qBCxeY5%eD*yR*a_fW`7#I$$t#D=7sN;Qk
zxqtZYZ*M^b=JQ^T`4x{iP4n-?T)cSEs{GxYqUYz{KJ)^m(LbW=ITXx6=Y^HNx>ERW
z&Xg%jRK2IIh}@hOwX<lckg%|Age)lMM1NexpyYW>Vr}g1u+3>_FM-1S;UU(ir>Fbp
z-rn}LBoh?Ac?YwZPV~uIn`B?pIXlzXUEP1)l+?(qySuhleS5Q#UA`t@T59Dk7m(8J
z6IL>xczC!SwBh;eEK_fGez}l^POV?g7@uDOIvD5bs;Qt7q+PD+#N|{_*7sQMBkdpu
zDn4&-^R4{+EVNrp*QE4Si0!8n%9EDNulscp674&LXPPzS+}#y=v`h5z?)UpvgD#-f
zf8PSiqz9~1Zb=L7`~UBES4YQ%$^LdLKYS<volW=p`ugdH$1X3m?3J+$;%j#n)e0$i
zeS3TUe9%Dv7cK;}wzjUU{r&CN+wJ#l0zgI2gvyj#m$^VSLBE{sm(S<zv#+g*{Pkw@
zd6U#rBCYN1tNrF$ZPGctSbW~`<HxhFtO(@d<n-LUK5T8&skzqM-TLL$c8lx3np=MF
z;yl~xExEVN&OHM)dTyWkGQXu;RC}3YGh60`1&-(P4}qE_J%+C?E^ZH76R~i{42i4j
z<Kr0_8Mj^iddXY=<-&HkOIx$AmpnToIep(mW%pO7rfP$BVR4CSsd%o6+q+B3Bx8Z3
zaoUTW&*yDk>j$#L_~aJv4VQwpW`*wk{cbmCmn!Hoanqa|0ie@Me0+L7Jv*BnEeks9
zs)?1`r0&lTli%Vx5ew9OXIUI>SGl@6+<&R}^lQ)O*XM<UDpH4Kk3$)su(cmv`0MNI
z>|;HWR;90|q@AC)w(9Gvo1gBiT)Fbq)z#B?mAzf{`~Cj=YybcF_}HrU*OpbGtDjv9
zU+l*F_Rh}BeMXE73=KY-m-P?s0&PaznswD{ZPeCHPk-9|`QR*TTNU#9+FI|;|BrME
zPg>H^!LfZG=wuk%>ade1Pk#FP_3Q;Jkp43#w9hwGoVvL=-L&LI0I#HxOXa60p2cTC
zTSq<r{ri_!YrZaUry-~$K9R?vupM;0I2SiJs1(n)QZq0Jm^5X|lqc7w&zSMT2%>0D
z9p|)IK3S_Jn!(Fn#Q*;_{n6vcs-DLrRMph9EG;7o3ky%pG+ti(@@ntWi29O8M>wCJ
zocw&+>Gi+9yj%?0@vsGSwqfqAEjzudnHd-wqG#GxZ%aEr@9m{&6DB-Zn6-)TbjmX8
z->FH`W;p?Oca^GYo}H~2HEk(qbM4*o`=O0YtRc(&WY5ktKA!4xb5m;Q5)Z+(aeJ-K
zJ_nunbahqe*5u=Sp(}%)zIzX9CjAq$TmQFq4x{Jt6)QA!V|H9vTl?TZ<F1mIlhk}>
zEO>OZ+Z$Xh``iBw`S|hUx%H1?cbBaNZ5@~%S9S8*E^rXGFii4GOib+R>@3WdH_w}+
zb2{kqGT*tm%xpXt_Edfrk(FHwa^0h&-BQMBJz8OFR`khQ--<8=^>lU?2>yyqh@5u%
zJhV#_vMI$A)TK#2))P2c%@>r;_SK0qFfiPdN_Y6T?Cb06%WuZ5i?LiAvGLHeEKoUf
zrq@^jR6gW5Gk}Vx1Zi+bhT*mVxSG4s#sDe{4w$ikTF?yJ6hS>7h7G)oAm2CSa*S#n
zF2S_q^0&9QuWnBFcXf5uR8etp?G_7N9k#aQ!vn|d8$l;bEOzS^k&;@qVS@pv_XXPQ
z%DxJeXN|<={ly>Xf;z&rzu#`J`t@>o=t3vfxi*zS@ArP6w<=`iqP5Z6U+w$-ZnDbJ
z<HuLyE|P!#_%Ml?fkEN-qss+Wd%s-ro@HCT&ATDv=BA~fT?-c%yT88dZ$DK9RA+>*
zi@CTic6Z2%07cKBudl9NUEs)kc7~zzdE4)E++VRXFfbS~PfJ*OxtZVYMcFsdzL8!3
z|NY)t{yr}Kb`vZ2l_j3S=|3hcsrveAWy#A+zy5qapSv2APfql3DAZqG8N7Uod48Pd
zrH_w~m;U;a8M->`Y;H`il<Ah@=YG3SGlPs5Wjb-+p!k^&$WNuOuT5GatnTMANl8iR
z&M`L^mltntZuau?+qTsWTmvXJ+*w%r``gO&^Yd0kZeDh4d%nKsuA--1DktyXzn@#<
z;Lvbd0;JGdso_pz@N&PGACJq2zq_;ZE9eZLO*)>So{@^Crsm1FhMk?AddZ-i`=%rR
z;4WWry_kT-ZoMTB53%On+T!`};lp$Lq`lYY=^XvFSXkXp!+)O5r>|f4J}m}yZg&<v
zEy~QkysY=umdwxQtJxVC9I8Oehc~C6FU$1y@c0m58p+Q1#7sq1b*1NIHLH>r6Rxd`
zU2T+lYR4CGorr*+pPqt}$z8eKxwp+iSA}TCo;S|BV*x4<*InUZU}&(Od`-V0IXO9W
zYgQ<K=oHfpEZTE}f`hMaO7#ZyK0iM@8{8{pdP(N`o=VVZX+EG*aog7H>#q(pGH2b~
zv^4f9sJNLa1R4&?zrQbPSIJ7yA&a;3_h(*P6RG$2yv^qxmCOSTjG%7SqQ#4^?k>-d
z-BS?=D({YViC*29?9LwoYI&r{u}moWb-w<e^65=mN?r!(#_qbZ_P-m0X3UNaW;r(&
z?5q8~s{a4KPoF;rPge6aNjo#6B=$e308B|`nNSk7zpi%I@oA6&pA!c_1tr7#Bc>y$
zw5zd+WtcFrPu6-_eEr|hV-ldQW`ldgw52saKdmfycxav;>jW1DN3pLzpU=;Ja$@4G
zz17>7dowa91cQ#<VB?cnF-<qRYL`e#F^fQo<^1}8JEOMetv%K&o&Dj#L9M7QD~g_+
zc=&P?1H*@oDN{s_9zB}*>&r_}!&ODl=|Lb!kFtAT$m3(ZTT5OBS<1vbV_|Uk`s(V}
zE5ZJtlqqG9&;Y6mC#iaW;<l<_nSXA=QW@(q(C~BEa=*D8@(c`r8V^4VSnfCX%VmH2
zmzVwRueR|@Pnk67(aTK}ct3LTMxI)~|DTp8$SLjGj0_5&J9~Pjl-TyXxv|mNy-((2
zhV6-Y9116b@@j62E}z24P*DE(|M7+f2GE|1!ootibsRSZLA9WQ^rz3CFYhdVZWGJ4
zNfA_eI+&$Iid}Cwpv<AbV07gD{{MRIhe7Q~|LIH$-9KI~pZ}!50(98X^lxQvZ=HNt
z02(EDc`xkYq1Mn{B`<f!F6y3rl{=-JML?mu&_ZVW*XNi0?aywA(m6dTHBxe0ZOWQ6
zB|4rhx6ZtAW0+x*c}e%U-M1UbMHVtqdn!K0R@a^0l=pi!|NCRr!CqcnGJNfF)o(WL
zuaUdQ&KQ1&o#jMQT>anD?b`|;AA5PImHXA*-P_;od@eVApVw5aR1evM2M^xbUB2GQ
z$;l|?_lb&`Pa~Y3UEi7=Ui<B4`Yfx`RrBiq{hSRt2IKOrt=XX~0u)ViZ+%&3`+tUE
zGH9T*wY~lR*4%r%6DLjt8FPETsKRdL28PHp6BM2A+yV{ka*OM|nE(IJ@^^c`$KB34
z`Qj<>iHMmmBPRX(u3LVhChPjTwU?H9XFoqT_tw_z>%NCyTv-{M+OzZZ_bjb|1r1yx
z8U@$4O^@4drB?jp#KGSR6WFFDFiubjT^;6YS^O*{DQOWKuhf#DrCulR-;dv0^>vcU
zT-)lf#qRxKB_&%xE%f^OdQfM<wOg#Kx3~26y|dF!@A>oTbdiNjS8wmtHIbV^JNH;w
zSvBML)qn;gKga2P$OF}Npe3bKb)&-?8yineR_~WG&6-@koDsGbU<t3Z*^XXcAD=5T
z43k547NtHtH#b^QQBf;y&kj(p3bZw4lHHF7%umnE44#&nd2>^$p7(yxQo!Bi{F$JW
zWO@u|8Krv7`nz)F%2|fVZ8CiApnVnK9w%rb;_8~nU_n8_Pv5_XKRncWbzQ9W+xz?N
z@1Fk~e!T&7Y{U2a_4}Eam_l|GBz}E&H(Fdj&ZpR#lasUR_uK8DfoM^^n23M>{(%A!
zG=7?Ud)wL6H(N3<KY9LK{q&|SX=kOTCxcG3nDXWN^@ceXg--f=J~SyQD~k#UfCqM6
zyTw4AoZB}tFE0Zn+0EzeKq){}R(9=$3jv^kzpl>Ci;c|em;OdE&SXq?VDQ+r&(G4-
zG}L#N2}u0PhD7Jq)>g~>S38QI`|bUBOuDPD57e=pq8+aH_s{3^QJYdar|Cv71C4f0
zbeHqI{yAdW((U)EyiZTpzb@==vv61G>#Wbu&d#zdURL+#qkHcCeREAO$Gthw$h<0g
z`#Qfl77MLPU#;+*thTG*VH0TcTGiKAna|G51Qja9HK(WPZq2!A6uL6Vb*@$Er2YH%
zKYIKaG#s=xdb?l0&8H5ziU*9m5(W;SO`~4Z_1137y=^7`|HEPa>Ll}z>atcP7Y;Ns
zn^u3z>6Nt(V`OC1`x{^PbLpeUkFRb>bbkK()UU6vL30tHfws_9A%O)28~EgGR_O2h
z;RG55-+sSt_3wAP-%mSVyZN=wzxV(D`ODY+SjZ)+wdDEy`nY}j_JNMQ0G;RZ<VgxE
z8{4j)`<v7I+jt}w-P)S1t)}J%8n=D)=+TyxlR~vWpH7e3nAG~}+FEVTRZ&}4fs`d4
zZd+OL@ewG^7F+k*{dy69t@_7@L{Pd}?ms{5@2{_4&lsP7@#5m*Uyr)=L4zQ=QCmEC
zrOiriA8+Lr&-(c2Xw{#O$FDAS=YM;1vpdMm-`?K-djJ2w=}Y52$g#~l)+cM-qp~^q
zIG_LYM_Vg+FN;Y^X3FrjcXoI0emNuS>MF_8o6a!v+a&14?09gk{@oqR;(vcCw|_g_
z&Oduk<>y&ardd0-#P2FO88Iz&mRatrOaDHd)|WoL$>-jl%Cifd+hcyst9ZouxWM8}
zm#B7L`uBvzUu3*PSBIJI+qW+blwaPapPy%%dU~4a&Z4JAoSdA;B$7cVedwGvDt&du
zvp72a{JheCf76bO81;v(jgo9XoM`v+iSYJ)GiFGDOl@N2o|C)Wf4&)L<NNI!vAfG=
zK6sEIEG+!^Qr(LSipi1FKxZ;}SMM%++jID#0k~n(D{U@ydXvx1O{sH_&o(@!qNWD&
zhQ#SjJ}ZNk#%!BBVZwu=Gj|KVya*JQlgrZzS@Gaf-P>EH$&u4QV+m3E$9-R~jo!Yl
z&_d?f-12*cnfJG3PChwNx&7pP`~5qMo_1}neRXB!u}wOUpFdAG%e(X9(~P>mzd$ZO
z)+;?djkmt+@&A*8%5F0@CLf=*v-tV4*M&di?Xv&W&S7L!dHE?d^S<5h`P*|MH8oEB
zd%l<R^d^(4FBz?EZM(kSePf<|v`aMD$EPRl%#4MfpPyg;+Pq*|>dUF&ae<vesxi0b
zSHH8=jojpNds}YsVz=IRIqEiVK0Q5s>v?1H%AA{<xK6PgzXVFOH*Q3Lg16uP-wyBi
zcXxJz<`Havzu64RuD7;kKY#Q2^Jnkk>Yc^U&t0gp)zseiw&e9SUr>F&%x~_iBDV)m
zPEH0T)=$sRzu%-|9KWw7GjDm)(XLgoySH6i7pt9oMs}{?-ye_rQzNH=jw_mDS!{Lt
z@87>)pUuu+<=D)Y*Z=eJ4tuSjB^~psUTK2HX4U=Y{fQReef;Rr%)h_Bf=bw5-`>8y
z6uvplcWchgpyKD}t}b%zjyWgdb$$A*tE)m!FI^kGJrC4(zAa>^V65E0aOtZ*W9aHz
z|Myszd4#UI@qbVK!m6*Y%-=@uuiJaC`n_%K|G(cs116IuPo7&lEmhOb&hD-^!>VN;
ztHd>fTqf=Lb#Bk^Z*RSe?;G9fleG>}6_)V^?ORfL`Q_zh(1gsLU;VPyYRNs{-rd#q
z1kLTuwJHUjUj(YA{B6HZ$-25~sg!BfiTn5OU%T~on&|y9&@uQzs$LnNpPjw6zkdIz
zDVoYJt0X|D4O^AIS|Vdvw8JLt<RsNuHkF%_l9NlHoso>)U3T_ndgQco^K4gd*s$UD
zy42_A=1#g4$M^Nc;{JPIlz!yz`{^dE=5yiN+GtP@CU$St)ur=({P?k7)Zt%5c$Ddt
zwb9|l&(2&tH`n?ulSf$XeV1>}42(-&?-#nW@v!mv*_|w`teO@U7H9X(G)`aT+|I|v
z%NyFv#v8IG!jP4n{q!cC+OJo`LDM*sCQZ8ZHzt!+RDS;Je9wC|>Gw9Jp3Z7#?_0WQ
z=937k;%7ZeUcdgk|Ieq>CZNdy@9BD$^>MpOR^F@m?0a^ub$By7|1?84M@L6cNqw*K
z`COf9F_qQ(-r9V>Q~c`w{{5htk@9<$?w9`SEvkFB^LY%YC<2ve!4VNNUR__mevxap
zmVrUQwA9Rhe}3NDoPIuc@A^N1PEJiKOMkwN*tc(Ard&Aa_@P@{G8ZpcpkSJD!Qp7P
zcz8j<1{uC~Q2)kvw%Of6+xm6dN=iy+|4F|EjSXjR*U>(`FJI}mA}GOp<(T<k`|)|-
z!cWV9S{QRIi?gn;i#^Bfk#AA(pkZ6i%}E!ZR<<r!u)wEK?ND&h(^IOaH+}hdTz<84
zJKxJHpMZb~ZaoqU1(n@ifcBlY@k*QI-ZH8E^YOS<;iHym`tkD)hE}_U)!u%2W#wd0
zaSj?WTI|+)sf||}G}yVi?(Z*9N-w^%HT$|r&J6=mtq>2;bq)9SRK{-GT=@9d{!sUI
zF*{W}m;22PdU&Wc_SdAzlS|*-vD_{Iy2YE7jZMqUEKJpVTFFc6sxK=(N8fzs7OU<*
z&j&ohr}wyFO~?9&tOeehnwnNsUsh;^u6iP7w=Q<~vi$vjuQ^Xu++6wLAbV=h&d2=y
zu3aL5yUX6rF<%|MHEZf;^K<6Y-hG&T@66j{rE;K_l9*o1ij~33Pi@lKzJ8Hy>8mMv
zaeG#{%T*rHt%=!FadBtJOTW86Tpgm~|L#dV%(isdvRzx{?P?+d0|WCODw~>`p8Zgm
z%z5>#%;c%s;nPZLS5EhQY^U`4+S<vfkvD&dOP=_}p}>%*>E0)!6|!Ois3q`RNc!b3
z-yNXCTx2bajuanN3|<+#dmCurVWx3<*10*BnSD2R7B4TBJauxi`sF<t_KJ#*pjzP1
zpFeXBDk~^BfR6vI`jT<%EyKGm>F+F()@5tNbfcE+sr<Yua&wwqa^9WqkAJ`4fBos{
z>2u$nJbCif&CSp6?_0Joc)6d^v5X%d9-e#bJ850a&P9#P?8|=6SmfHB_5a^r(5S5U
z?*|8)FYmeDmKu3#uJ!j^*~y@BmAO`>pk7Jlp%zZPTF|V`^ZE7b_Edg;)u}$u<GUGS
z{$U{<hL@L?`^$r7Iz_cYE(H7As<t0q$SZB8p{M8f|HpCrElEeY{HJ&LJnGip7x4Gj
z*Q?udqkCno!>+Cl56{Q|jS()JYh4a<$FGO&^59n1m&^X3Gbli(6|7jH0ZKy8&(FVp
zX{q<r2@@7HGP7G<-{Bp!x9TgXbpYBZ{`B<p>HYovpe)8NS8<@Zy2rly&Bo&*l9DTP
zZ*M!fNvHJ9jf<&rOJAq+$JKmv1=$WdaLmW2XVRoeTk`H&#qKC@+?sv;U-an>pfXQ9
zt^#xj(WSrN@2?lrjXH7sxI1WR#=k#5r`p%oZ9fhgq0ry=W06+qswL0P&OUwoxcmK@
z&%K~_)H2`MSvNPO=Jl@(UqA2J`T6V9&dyp{^z;;H3b&+WOV+hDm6va+`OjMuwKZ!c
zXy9ODQtPU)wX1gQusA#0+<)J`eV|tLZCkHPR?$oq+UFV=Zn{+MJN9Y)G0+_elhu5K
z?(L~Gt^HL3nng)HJ?-kY+}k1RVs_5XdtbKS?z5j9bM@V<x-L=eXL|}$y}Y{q{e55m
zx|!eZ0!ZDil1xxmKBuY&(s^N_^Hk$>KhV6*<72&`>HUyxIgub&9B$(+zWMFR$;nq2
zxpLQjK5H&znA8Hw?Pq73r{CE3=$!5MJH_Yf&)4t!@u%(LV)xf?x8DzQaA>gm^+H)U
zZchZi?UxCl+ss7uVl2)kzfF5Dn7Os~!$Ee?lxfk^Q%g@yR?mKSXD4VaOW4{d)%f`M
z?Z>~oxafR&nQw4K#STzQ;Jn>$pQGL4*RQRO4qfQfYV!Tz-|zRqYfn;7i#<2|c|0{f
z^J?^_6wkLeHag$kU4DIE?QfH^HxX;2wtD%_HoN-l?Ch&M3Llrey}ve2SYh)fo{3hM
zp(EqQXRl{gDaSc8Fyy^E_J6XnTTehj!U8UFy*1#G0G;)R(tG#!lQ-BLd8$|1aOsjI
z6+46&7>wpi|F<uC>{KDd$P($bujZ$UC%8k-!q9N$`H6|jlR)$TRoetovRMRDG+VjF
z!&<pSO=^FYEM2y&YL^THgHi95D<PnzITI&N1a;<A&b1sc1`T)=Z0D7+2v{4vJ#4a?
z@0FFo>aK2XTJC)^^YpkG82UXtJugmFb_bcXHfCp#ZS}X3ZNGp2uHIpl;tm?H(2d@9
zWo!2JEBou~x8~fubonU*!vswiH@8*k=jT;@02QC0!`eY3mj2UQb2=EBbU@jttEcD6
zrKR4go{o-=MHUf-91JJwbWR7In`1fm^twrtCYAj9lG)nYs%d0&Y4cIVXr+df39G}`
zXMK2Z5Y!VoH`jVOm#9|8kq*IC@%#5J_daa~>d1hWskO`3U0CWpJ*6jctu})~G-y&n
zFLsv-c-2Ei#ST!DW5Wgm{_wUp9SoBkK`VGzxy4ra&$rWx+_VIgR_gyemjCtZ_4==%
zPSCDBIg0LmGN5J~C|`j_7A-9!LE}QK3=PLEWcXU!+O%wJV(jc{cv{j6o}@P9-rkn^
z?#@mr>#{Y!zPwcSton8{9kh-pJg(Apwps3{g4Ua$LrlG<YCU~vbjhUpTh7+Z%f~LK
z9#A_|{_Rjry8apS33WPM=NUdfJ3G0*zkgTR+gCZCzkd&(t{3~|ZuxypJG*<$R~3yx
zGd#<^8+vEFf7AN&T-=O&g})pMk_p$>#cIXw+T!Ho6mu*4%8G|?Kx4w2l$ku(Kqs()
zhG}mpD=DS)T>SX>xNQJvW!8gAmI*usPftxX$$uj(An*XHL(l0vLt|s3mzP&jw!e>0
z$+zWC-3)H-F3&$E+U}#OsOY$H<HmV<%w~!EHj6*Au1?&yxnFwz<sYq|<|;R&G<0-y
zm`snHYf<PlDP%*!K@<7%Cnp3wgLap_HCkhqVi&qP>}v_<2EosB_Zr;4$^CimUeNIo
zrrFoNlt{*PGE8Cwm4)l~|BITg7hAMbp!W1M-Ay{)Q?)|9J{R&zn_W3G(^ynevhwm~
z70{}xIojdtUYwYyoONTv!sXr{qozGPms5UsTkh>I51RS2K&KPl-oAdx>vFgLuCAbc
zH9xmheoo^L=U`x9s9;NXFmmXXGX3)9vj6J(|NlUh*Jr;Mg@uK)>}q!{2M>AMv>7W%
zK6!O@wUkZ8hO~2YRu(@$x6-MV3sj7~y1xGX%S)h%q<+{O(RW7Bcxr+)lZRTt*H@u?
zf4y1_s<J`nkbs<Xc9!WpJ?@uVYJZn~eRDH7Fc36l8+dV%>(y1E+Ojqk7job1tNndt
zMW8Y$Y3b<ryuH2sdj9^u)1H+r_np1$_q*Nxjg5_<IKEf^|8LJd(K`z#D!ZS0Sg^vW
zl`F6IOyxBJY3bE7W=Mc?kA+3V)6>(-XUjjc%C;zZF#$9fspQ(F0TMqo_40>@hwr}o
zd7!3x{{8y@vCi#$p`b-?Vq$9ThZp+W|1~+gQPOZfCnx8tYinnJdVYTWgb4yy*G7k1
zm%rPS{rh<+kIlN$*Vm4nKYxDDuUD(nPEFBVmUed5vFq2b=iJ+K^YT(fS<o@~Tw*#I
zRo~y`F7ut8=GG^ZdFb$AUk{ItpC6CQ&wbn{Yn=v~2KJh&m3puKf30!W6^+U2{&K-P
zi&7`gne%4TS<lI8lBYNMoSvq8_R7j&-*!IPp47-^Z@1syR{gzz`*@$M@xg-!)l5vT
zOwo_Ox3=H%dmZQ`osZwYn}g~N(77%%tx8wDyuW{c<=3m>bCYMhUh{Bze4XL<JH`E)
zVQXeozFxci%oNRFpXcZ1_NGQIi`<-cuJFwEa;u^z9UFB{ySTZ{+Ew~m3f8YKlr-GG
za^=cr58LI<7A{<v_T$6Dv`0re)wHxuJvlS;vW!)UhVyr8W2J_Q8`suG_ohZZyIX$0
zbepQ0+N?>c-m_+zW>;-6T5`Soe(m#bZJ=2uVF7`Jd9~jn({FR@?@4HCZa%v)`S_gN
z>}zWbr=`x+3|?k&8+2MUD3Fqpl47>qTo-FCEG3n7Zod6|$Lc0)(6+ze{dKj%va)Z*
z9A*^1FMoK571S?}+LG~c`r{d|*CakUG4a^Lf*E_Ozwg>o{^G(x3mLxWe+=&5d->|>
z>StG01|O41-j;tqPv^9kaYM?HKj-FJUyqoUDy9?hAm{hj>+!zt?(95keBP$``nQYG
z0uDB7;`i5qA{o@IU0Qo(Mc}cA1v_N^e9!|8TU=cgTKq3&fdk{^RiWD33sX-`G31pp
zDfsv2>GXI|Acn1rd1>@+_xpXu(^6+fZca;$xwu1D+APNaG~RK3o^2+Zz_UBQYkxd!
z2RZrg@9)ydJwN|`zweuswd%ITGpp>1w_C4+Mk><J%_+>R|9UmNx4*xCXU)$|hHXF3
zasAT*`Cwbl%}XvWE<18JSATz}rlN8rW^dKk_iy^HKa>*Szr8hky4Q5Qw?)TGUjEwa
zlK17X^<1k`ugcHQrmD!=*TsOwjkac8y>sm9ionCEyf1q9hp&ygni_L;Rp`?Ki%svV
zF8ZjMnuhMJ`Wke7U2N(9zu$L%HGUp>_}12JPy^`ir_=gc(c9KIIXO)+PWSuz;-a&s
zr{|;@uh*zpSw$U_D1CP)^8e5C^`L9qK;1x4BkcXXy`mBlCu-6QB~AB(`ZrUxLNDEU
z_Vo1h(gz0`cW>p6Yh-wo2wFtu;?fdb?c&nXV+dN5!@la!eN&{lxOL|@FPVMr>&?yS
zQ|HWiBQsmsoiDv&C+J?i#Kc4y;h9I;<?B`~cJI&n@!?_SH;|(bHnUHiGiQzZyb7mY
zY4dBKDZ-`R;-K+{xz^>=j>M#^@=BXs`S9@Y)~c^rq3dEIL8}OFZOdI9x3?<u%nZXx
zGv2S!Tm0<%db{_Yr^=2ql{<akpdG#r)W=_ItDtb;Cja|Q`S<NWC7o&ZwUFQ6-m3o1
zm&-T3zHi??&_v*$KYuRWDRXdOIPRhbI!qk2+{(F)Cvcuk<t3TJbJBT1N7hf(4*zn9
zTR-E@j>1Vx($3BT9ft%ue6@{N`dCc5;lzm(LG^RgmW+iqm7g+xetIfpS+oRn7u{la
z{%6+Rr&s*^yZU_fu^Bn#Isy(hItB(8Dy9DS3keI){rf>~x!>GNkNfS{-Pu|Ex?6wW
zgw)7M|IGVe&U}5~fJ5xwD$}!X)z#FBd{US|>zgAYW>kH9Q+e6&Oy#wL$6NOontg8D
zmU}zv)030G-tB%LvM$Eb^Gs=&LHaqF(%08Og;mkNv|W*#)4V)AFRos{Z<Sf@tq=Kd
zCrwLD-JRU18X+epDEQFk?ss?dTcFai+;fLB()=c<)diW~{6Fz-&brS}PAbR8$3MR@
zWs1o5_tO4;e%EFir(3Amyt%N@d6rRX7wCZSA3rLN9zFW<#6)E;AD@t-qD_w;Jp!%a
zd}h<V<Kr!HjerA7ZR`L2nRFy3-4HY)yDDVmqirE-YHDuN_2aLdn`=Guy^h}EXVcGD
zuj5dV3tJhaDr-^T0IH2M?{7-&);S%t)N86uh-997P|&1VCYg(z+xaqoetN1EysXE&
z{$La9RQ-6n-240PzTJ3xTW;~p=U!8_PD(sB`}X_&{_w0Ut>Z22M~@#rEwMOmZ`I0(
zjY(QzYi4wb>#tiIy&cqd19ke__~p;dNf$KN)9dZ;FVEb+G0wXF-=8z3VxTjGmM&Sc
zW2?Hl`e}*9+1J+@-j9rNJDb1MYpRH}^y_VBb)&awXlQsW^`5@3yZRxk&DXEdJKi0u
zbvV{1`#Q(l%gYFK+&aJgpAGEV&Q(j7ESUisEPej``M1!T`Y+-4wf|jom$w8LyN3=P
zy7VXR<AezU#qaLy+`V7eWBdKO-)D8=_S|^u9}+U9v!}<zdzy}6^|v>M#|)lF9y~YK
z8dQtK?k>}Nn|o^u=<>d2M>>U%Nj$S!opEc+N=^<A19pD7lFa;TYi54@_%U(c<_Xq&
z`A^I}_x{e#;@-m#4L(0VU%u_`4t|f@+j8GOTUW`-<e_$9Q>r&;v=nqA<>!m;@-y4z
z>u&t``E#c4Y_rN;CQF>(-`fkSYdY2E85pOZEBRe~SbzVYq)$&zr+ZD)$pnq=eSS7O
zf0j+<rx{*TwRYD2|9+%X7-XBj{ogI13NrKlzP*JOGHG94Tr7JpcS&>Y?*@bCk<Qcg
zVnK!N+NiBY!s>n|Ak`pMpe195XG*VaD17Yp`1R{-E)k6fd!kDpAL|8~d3Setd0+Cr
zz1M%g-=FW+Bas+a@sKq+a$4rSJv${0lUhJ{XTifJL$%~*=BlbkZN6M^R!cuOC+)_D
z#B<gQpP!m~TE?Q_z_!2VbvP7eIs^qxs(d;%+~;5ut8YTWg31St>}OtGU2PjHc1hF9
z>XwB}-|T-s7ytkFegCq+#crVD{>jP7$G7C)zc<IO*6QqAzqwXdr)Y<tV_{*L5wz56
zCa194jg8hjoG)IyxD3>0dV6N)_uXZ0XGxmn%mB3rKy8Pm-qZbx^FVC{(CNaUVPMUO
z4GTarprQE1?)_$(nwol#XXL*Z0kuQ_uYdgL(VWLdNp<Jv+vo2pdz%FcdM76*pS!zC
zeRFbh+TNt6rAsFFET7&8Y8{@C+ra@|?ntGjM0Y?VW={$%wt&|J7lrTn_v>|$#SeV}
z2Ajt6c!mu()#ukJwI5!1<3>dK?JiO6FUO?wD>kfp4O;Y8`{|^5=C{acsl}$(UESSR
zJGF9^m(HG+TA5SN0G`HdVE^;;@cZfUb)cQkl`CfbpJ`E;G>Z{*dOWBIm#h5}cspB3
zgTdjN69Z#|&jE?aino1zeD-AD{`C3t?(Ex43@Py}0t_EE_|3J-d~~F9l1lqw#rDGs
zWh{#<e)k%Jy77w^EfSHCSn=UQ0cbmfRsFv`r^`UoaKgfiLsy5btor(ji-+fmyL_#R
zC#YTi>gwv{OsrfQ3JMOO89+7PSx-Lw0G;B0T)zIw_4xX?YZm9--8Ct%j`xIke9gkF
ztE)6MG(147I5wZRTmATW|L&fbH#RPIa&|8L^P|u-`<l<fg$qy3x8MKk>+AC42TwmN
zSP{NHE^1H3M$iJBh6V;#SJ#)T*Y7Km-ko__?fL7#RUw+svnNfPX`F8LU0p}VC->Ht
zi=bxP-{0Tf1_uO8uqu1=;+u?}o!zVZ`~S<n<!4Ayx0|QOz_4jIXxi&|zx?%CrrDs?
ztK0dX-rZGt8FWeLxw+P>%irJo_4E1sulK6oXI@_yduvbSX5%#x)0TqP(B$6U_Uhi=
z-MdO(FEdI#<uOUkch-^>D>Q6B9ufZZ@#DoyOTDiycITH&233_Flm2~OUk_S#!^O*c
zb%A4ZN>5-T6YHGPKb4wSdL)gn>?}^V{cwO;%C>5Y-(0JuA0HooeLH{u)pK*LL2a1l
zk3ox9HY7UR{&>&~>d9VP6S=tjer>p__q34j@9w^TQTqGY?EEbW2bn<an}rJ(g4POy
zD&WQL{aWSk?o3)@Tm5ZC;^8(>ptkW!FMIMNW$(XVuR+|~-`x6SRw_ETttfqc?bWTV
ztLy%L4fma402(qYd*^?1Q>tmrkAl6QPHAUdT+}+tBy-W}>H4dakN53*zwfuvQ6npc
z6JK~34ulz}oiX5RKm6v##=|$SZBF-pTwrnMSl#Ed=EpYa7^k0;nf@(wbr@)N?#<23
zb8{z71h;{&t`6Uwt8Qp`aqZf`#cs<|PEOLx4Gaui<~P?WFM0pJU)hffEY7s?O7|EZ
zQ&Cr+&BV$zqf1nK){-SE&v!gMJze_rrZcbC?|+x``o_k^g%&btPfkqKyS*l8Y1hiQ
zy}ND~|BWmu*`gW0Z;$uv)JQc2g#&;7d_I3}+uhyeAf4>;H4k#KudSKM$;D-Kyic}x
z+uPgQ&;R)GW5=F*g@uL3jvqhXBWHW-X(ecQ7gVge^-4X>@%HsK-I{gPNKjDl*_oNf
z&;I{=|G#Jc{P~@|y?dYTV_@h><P>8_N&5Wk>}A{UcNT+hKb&cN&VH(Pc$kMr$F=qG
z?~V3FY)k?Tl-w@+^Y`!E`uznDo6gO#T<k7i8`91%f9+_uc>eBnZ*OmZ{pICl&=TO&
zTNOcrt)LM+-S~ZX-Wt~1T@G9wrYmb#^JClm-=ISkG>nWcxx8KA%)r3P<>}%W^0WBo
zr>Ee=V-_47yfy2pmhI0clR-V-;+UC6si2AQ>A7d;+s7Z10Ikf|TVMR|&(F|RA)3>#
z-`u1FTEhl9^84|zUenA=DxewZsoLTD9@jE9ylGL5V3^P;Yf};M{QP|X;*%3nBSF(t
z-q9PAj$XQR?%CPdpjEiJH#fOX*N-o|>E`6r<mBv}zk1z{9Tt((mR?%wz56R@4a02n
z{IX1L4vv6`h#B6|@9yj@eRpT)?W%j=X}0Lw^4ovDUcVo-t{F5EbbE(U>Zy#QU83ja
z^UGQ-xpL)-$?>RZPs<qVK0Z1MvJW&w{q*$o>kAy4-&NQ%DC|~jU~o{IHfz=@CRVN&
zo6p;Me{OnP^YhcrKQa;$FU&x<r>=_Mzwgvk?d64!kFE5WsPyUc=gXg-o;I!fQ?Yc}
zvb2c5=6^me`qgtUEo%McwM&*QJN2+2<LRlXnfDeLsHhxS`*!vEeUnlnLGAv}Ih+g+
zu5l<ZOyIopCQe+{Ys!UNTeCp}R=af;?~?VNu6On7>Tu8!qUlRLvahf6Etjni+maC|
znY^X`f1Rtl`|dAq@9&Ry?H1d+IO_efnxCIE4GaQ6&63xk#ptKct9nhDVCXh+;>65(
ztUot<PFBl&duuDGRSlZF0xe|c7T4R8y_MM^?3gLY6)f!R-n;5*kI93kBCoHD_5OT&
zYEV$nlnE0GPUqgY2>x)~SeBEMbCzMU+pN+*KVR2g4q6*!`t<z#cu@DJsA$vX+M`{f
zptUozOfrj3=cbsnA70qTE1h+5k*i+((%t3n<JLxPJ(c<fG9gfSdH2Qnw$;~uexG0e
z@8(b4i1mBF%{ta2x%g<ec=oe1GbJ}GGfX&Iz{bL0^WgmHmQ`VEwUT>4WA&yvHv&L=
z`&Ngo{qkaQ|ElWm??6Q$Xp`Y_xoXg!R;z*s4WK(EIEB?-tXw|t*XifGKF(0{owcI+
z`@3Bg9~XgU<v<bq<mBYMQlD8So}l$wCnu?bhVrkj3_iX#4YW!3>$T`tcXn<DRgIv9
z+3NoDuC#CphwP~+{QG(S|2^L8uiXE9OgbMFy;V;px?frB&JP;91Pw}ugiI-WfA6hK
z_@0WwUI{}d(0b_e_W$4Pi9h-9a69N$K2Z4A{{A*q1=N*vbaXsdy&W|9{Q3F$@b~xj
zhVHMcZEbI_PKjqc5G~-qaDe&Wo+~d`E}s{)K5nl``Z<~BdmW;-W~qAq`f!*(bZwNW
z?>w7GW_G?Q{r&w)%F0*w)mC3!6L~pxcBbw^&?pmV*1@rvZDsuaIxc?x@P0X45izl4
zda=89^vD{ebo9yDt^&<citERL_Q}j;d~*Kwy9*1Oo0^+VtG;CH{dOyxi;pkt^Ru%c
z?sHp*ylwlpXYIebWA@wE^KYM?uD>2s!RO!KCuLQ#0yJu#c)0E5kB^V_7+ofTPAZ<N
z8SM7>Sa0#XLeOM5Xq&{084{kCs^9Nj-YadMb+Cz5PyDL?Y%^cb6wLK?v0F=CUMhJj
w%#ad3ZRh0GUqK^t5BLgrL4$p?U)=pqe&(ZNCq$~GEI{^py85}Sb4q9e0NQiqdjJ3c

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-091129Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-091129Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt
new file mode 100644
index 00000000..6cb12d88
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-091129Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt
@@ -0,0 +1,14060 @@
+		Result for Multiview classification with Mumbo
+
+Average accuracy :
+	-On Train : 70.8648800224
+	-On Test : 77.0491803279
+	-On Validation : 81.067961165
+
+Dataset info :
+	-Database name : ModifiedMultiOmic
+	-Labels : No, Yes
+	-Views : Methyl, MiRNA, RNASEQ, Clinical
+	-2 folds
+	- Validation set length : 103 for learning rate : 0.7
+
+Classification configuration : 
+	-Algorithm used : Mumbo 
+	-Iterations : 1000
+	-Weak Classifiers : DecisionTree with depth 1.0,  sub-sampled at 0.006 on Methyl
+		-DecisionTree with depth 1.0,  sub-sampled at 0.006 on MiRNA
+		-DecisionTree with depth 1.0,  sub-sampled at 0.006 on RNASEQ
+		-DecisionTree with depth 1.0,  sub-sampled at 0.006 on Clinical
+
+ Mean average accuracies and stats for each fold : 
+	- Fold 0
+		- On Methyl_ : 
+			- Mean average Accuracy : 0.0061572327044
+			- Percentage of time chosen : 0.989
+		- On MiRNA__ : 
+			- Mean average Accuracy : 0.00627044025157
+			- Percentage of time chosen : 0.006
+		- On RANSeq_ : 
+			- Mean average Accuracy : 0.00632704402516
+			- Percentage of time chosen : 0.002
+		- On Clinic_ : 
+			- Mean average Accuracy : 0.0060251572327
+			- Percentage of time chosen : 0.003
+	- Fold 1
+		- On Methyl_ : 
+			- Mean average Accuracy : 0.00602547770701
+			- Percentage of time chosen : 0.992
+		- On MiRNA__ : 
+			- Mean average Accuracy : 0.0061847133758
+			- Percentage of time chosen : 0.004
+		- On RANSeq_ : 
+			- Mean average Accuracy : 0.00568152866242
+			- Percentage of time chosen : 0.0
+		- On Clinic_ : 
+			- Mean average Accuracy : 0.00628662420382
+			- Percentage of time chosen : 0.004
+
+ For each iteration : 
+	- Iteration 1
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 2
+		 Fold 1
+			Accuracy on train : 54.0880503145
+			Accuracy on test : 65.5737704918
+			Accuracy on validation : 65.0485436893
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 57.9357449025
+			 Accuracy on test : 69.262295082
+	- Iteration 3
+		 Fold 1
+			Accuracy on train : 62.893081761
+			Accuracy on test : 59.8360655738
+			Accuracy on validation : 68.932038835
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 66.2420382166
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 78.640776699
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 64.5675599888
+			 Accuracy on test : 67.6229508197
+	- Iteration 4
+		 Fold 1
+			Accuracy on train : 59.1194968553
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 69.9029126214
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 66.2420382166
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 78.640776699
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 62.680767536
+			 Accuracy on test : 74.5901639344
+	- Iteration 5
+		 Fold 1
+			Accuracy on train : 66.6666666667
+			Accuracy on test : 68.8524590164
+			Accuracy on validation : 76.6990291262
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 68.152866242
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 67.4097664544
+			 Accuracy on test : 74.1803278689
+	- Iteration 6
+		 Fold 1
+			Accuracy on train : 63.5220125786
+			Accuracy on test : 72.131147541
+			Accuracy on validation : 72.8155339806
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 66.8789808917
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 80.5825242718
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 65.2004967352
+			 Accuracy on test : 75.8196721311
+	- Iteration 7
+		 Fold 1
+			Accuracy on train : 67.9245283019
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 77.6699029126
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 68.152866242
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 78.640776699
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 68.038697272
+			 Accuracy on test : 75.4098360656
+	- Iteration 8
+		 Fold 1
+			Accuracy on train : 64.1509433962
+			Accuracy on test : 66.393442623
+			Accuracy on validation : 71.8446601942
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 71.974522293
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 68.0627328446
+			 Accuracy on test : 73.7704918033
+	- Iteration 9
+		 Fold 1
+			Accuracy on train : 71.6981132075
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 70.0636942675
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 70.8809037375
+			 Accuracy on test : 76.2295081967
+	- Iteration 10
+		 Fold 1
+			Accuracy on train : 69.1823899371
+			Accuracy on test : 71.3114754098
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 69.4267515924
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 69.3045707647
+			 Accuracy on test : 75.0
+	- Iteration 11
+		 Fold 1
+			Accuracy on train : 71.0691823899
+			Accuracy on test : 72.131147541
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 69.4267515924
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 70.2479669911
+			 Accuracy on test : 75.4098360656
+	- Iteration 12
+		 Fold 1
+			Accuracy on train : 74.213836478
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 67.5159235669
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 70.8648800224
+			 Accuracy on test : 77.0491803279
+	- Iteration 13
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 14
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 15
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 16
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 17
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 18
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 19
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 20
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 21
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 22
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 23
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 24
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 25
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 26
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 27
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 28
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 29
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 30
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 31
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 32
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 33
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 34
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 35
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 36
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 37
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 38
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 39
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 40
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 41
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 42
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 43
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 44
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 45
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 46
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 47
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 48
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 49
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 50
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 51
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 52
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 53
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 54
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 55
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 56
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 57
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 58
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 59
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 60
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 61
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 62
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 63
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 64
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 65
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 66
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 67
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 68
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 69
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 70
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 71
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 72
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 73
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 74
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 75
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 76
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 77
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 78
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 79
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 80
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 81
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 82
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 83
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 84
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 85
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 86
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 87
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 88
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 89
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 90
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 91
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 92
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 93
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 94
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 95
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 96
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 97
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 98
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 99
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 100
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 101
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 102
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 103
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 104
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 105
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 106
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 107
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 108
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 109
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 110
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 111
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 112
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 113
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 114
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 115
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 116
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 117
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 118
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 119
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 120
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 121
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 122
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 123
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 124
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 125
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 126
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 127
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 128
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 129
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 130
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 131
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 132
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 133
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 134
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 135
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 136
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 137
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 138
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 139
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 140
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 141
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 142
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 143
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 144
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 145
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 146
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 147
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 148
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 149
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 150
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 151
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 152
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 153
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 154
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 155
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 156
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 157
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 158
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 159
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 160
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 161
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 162
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 163
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 164
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 165
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 166
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 167
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 168
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 169
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 170
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 171
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 172
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 173
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 174
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 175
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 176
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 177
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 178
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 179
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 180
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 181
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 182
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 183
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 184
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 185
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 186
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 187
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 188
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 189
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 190
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 191
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 192
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 193
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 194
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 195
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 196
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 197
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 198
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 199
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 200
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 201
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 202
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 203
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 204
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 205
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 206
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 207
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 208
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 209
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 210
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 211
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 212
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 213
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 214
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 215
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 216
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 217
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 218
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 219
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 220
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 221
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 222
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 223
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 224
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 225
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 226
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 227
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 228
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 229
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 230
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 231
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 232
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 233
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 234
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 235
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 236
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 237
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 238
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 239
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 240
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 241
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 242
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 243
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 244
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 245
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 246
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 247
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 248
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 249
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 250
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 251
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 252
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 253
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 254
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 255
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 256
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 257
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 258
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 259
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 260
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 261
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 262
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 263
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 264
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 265
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 266
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 267
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 268
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 269
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 270
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 271
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 272
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 273
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 274
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 275
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 276
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 277
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 278
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 279
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 280
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 281
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 282
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 283
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 284
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 285
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 286
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 287
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 288
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 289
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 290
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 291
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 292
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 293
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 294
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 295
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 296
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 297
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 298
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 299
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 300
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 301
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 302
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 303
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 304
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 305
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 306
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 307
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 308
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 309
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 310
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 311
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 312
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 313
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 314
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 315
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 316
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 317
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 318
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 319
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 320
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 321
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 322
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 323
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 324
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 325
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 326
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 327
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 328
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 329
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 330
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 331
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 332
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 333
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 334
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 335
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 336
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 337
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 338
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 339
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 340
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 341
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 342
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 343
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 344
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 345
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 346
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 347
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 348
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 349
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 350
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 351
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 352
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 353
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 354
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 355
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 356
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 357
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 358
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 359
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 360
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 361
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 362
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 363
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 364
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 365
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 366
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 367
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 368
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 369
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 370
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 371
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 372
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 373
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 374
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 375
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 376
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 377
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 378
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 379
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 380
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 381
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 382
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 383
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 384
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 385
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 386
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 387
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 388
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 389
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 390
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 391
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 392
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 393
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 394
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 395
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 396
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 397
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 398
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 399
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 400
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 401
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 402
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 403
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 404
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 405
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 406
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 407
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 408
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 409
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 410
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 411
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 412
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 413
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 414
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 415
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 416
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 417
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 418
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 419
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 420
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 421
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 422
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 423
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 424
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 425
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 426
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 427
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 428
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 429
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 430
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 431
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 432
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 433
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 434
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 435
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 436
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 437
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 438
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 439
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 440
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 441
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 442
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 443
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 444
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 445
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 446
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 447
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 448
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 449
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 450
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 451
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 452
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 453
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 454
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 455
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 456
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 457
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 458
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 459
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 460
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 461
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 462
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 463
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 464
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 465
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 466
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 467
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 468
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 469
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 470
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 471
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 472
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 473
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 474
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 475
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 476
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 477
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 478
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 479
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 480
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 481
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 482
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 483
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 484
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 485
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 486
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 487
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 488
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 489
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 490
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 491
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 492
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 493
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 494
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 495
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 496
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 497
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 498
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 499
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 500
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 501
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 502
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 503
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 504
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 505
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 506
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 507
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 508
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 509
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 510
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 511
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 512
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 513
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 514
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 515
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 516
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 517
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 518
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 519
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 520
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 521
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 522
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 523
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 524
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 525
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 526
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 527
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 528
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 529
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 530
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 531
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 532
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 533
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 534
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 535
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 536
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 537
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 538
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 539
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 540
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 541
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 542
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 543
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 544
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 545
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 546
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 547
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 548
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 549
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 550
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 551
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 552
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 553
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 554
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 555
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 556
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 557
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 558
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 559
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 560
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 561
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 562
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 563
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 564
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 565
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 566
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 567
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 568
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 569
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 570
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 571
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 572
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 573
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 574
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 575
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 576
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 577
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 578
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 579
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 580
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 581
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 582
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 583
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 584
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 585
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 586
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 587
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 588
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 589
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 590
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 591
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 592
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 593
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 594
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 595
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 596
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 597
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 598
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 599
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 600
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 601
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 602
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 603
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 604
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 605
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 606
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 607
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 608
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 609
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 610
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 611
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 612
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 613
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 614
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 615
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 616
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 617
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 618
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 619
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 620
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 621
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 622
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 623
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 624
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 625
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 626
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 627
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 628
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 629
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 630
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 631
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 632
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 633
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 634
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 635
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 636
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 637
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 638
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 639
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 640
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 641
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 642
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 643
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 644
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 645
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 646
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 647
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 648
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 649
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 650
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 651
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 652
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 653
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 654
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 655
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 656
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 657
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 658
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 659
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 660
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 661
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 662
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 663
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 664
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 665
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 666
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 667
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 668
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 669
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 670
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 671
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 672
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 673
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 674
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 675
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 676
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 677
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 678
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 679
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 680
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 681
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 682
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 683
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 684
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 685
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 686
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 687
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 688
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 689
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 690
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 691
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 692
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 693
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 694
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 695
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 696
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 697
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 698
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 699
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 700
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 701
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 702
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 703
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 704
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 705
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 706
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 707
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 708
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 709
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 710
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 711
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 712
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 713
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 714
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 715
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 716
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 717
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 718
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 719
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 720
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 721
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 722
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 723
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 724
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 725
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 726
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 727
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 728
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 729
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 730
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 731
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 732
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 733
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 734
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 735
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 736
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 737
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 738
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 739
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 740
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 741
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 742
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 743
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 744
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 745
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 746
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 747
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 748
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 749
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 750
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 751
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 752
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 753
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 754
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 755
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 756
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 757
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 758
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 759
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 760
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 761
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 762
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 763
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 764
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 765
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 766
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 767
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 768
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 769
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 770
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 771
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 772
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 773
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 774
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 775
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 776
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 777
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 778
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 779
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 780
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 781
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 782
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 783
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 784
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 785
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 786
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 787
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 788
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 789
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 790
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 791
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 792
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 793
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 794
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 795
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 796
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 797
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 798
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 799
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 800
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 801
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 802
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 803
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 804
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 805
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 806
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 807
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 808
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 809
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 810
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 811
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 812
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 813
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 814
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 815
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 816
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 817
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 818
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 819
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 820
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 821
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 822
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 823
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 824
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 825
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 826
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 827
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 828
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 829
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 830
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 831
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 832
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 833
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 834
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 835
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 836
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 837
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 838
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 839
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 840
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 841
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 842
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 843
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 844
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 845
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 846
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 847
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 848
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 849
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 850
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 851
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 852
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 853
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 854
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 855
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 856
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 857
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 858
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 859
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 860
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 861
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 862
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 863
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 864
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 865
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 866
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 867
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 868
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 869
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 870
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 871
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 872
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 873
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 874
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 875
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 876
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 877
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 878
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 879
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 880
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 881
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 882
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 883
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 884
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 885
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 886
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 887
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 888
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 889
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 890
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 891
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 892
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 893
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 894
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 895
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 896
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 897
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 898
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 899
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 900
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 901
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 902
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 903
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 904
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 905
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 906
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 907
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 908
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 909
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 910
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 911
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 912
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 913
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 914
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 915
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 916
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 917
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 918
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 919
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 920
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 921
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 922
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 923
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 924
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 925
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 926
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 927
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 928
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 929
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 930
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 931
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 932
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 933
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 934
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 935
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 936
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 937
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 938
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 939
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 940
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 941
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 942
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 943
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 944
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 945
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 946
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 947
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 948
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 949
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 950
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 951
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 952
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 953
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 954
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 955
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 956
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 957
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 958
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 959
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 960
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 961
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 962
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 963
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 964
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 965
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 966
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 967
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 968
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 969
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 970
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 971
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 972
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 973
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 974
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 975
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 976
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 977
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 978
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 979
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 980
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 981
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 982
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 983
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 984
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 985
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 986
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 987
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 988
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 989
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 990
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 991
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 992
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 993
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 994
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 995
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 996
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 997
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 998
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 999
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 1000
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+
+Computation time on 1 cores : 
+	Database extraction time : 0:00:00
+	                         Learn     Prediction
+	         Fold 1        0:01:13        0:00:01
+	         Fold 2        0:01:23        0:00:01
+	          Total        0:02:37        0:00:03
+	So a total classification time of 0:01:25.
+
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-091625-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-091625-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..d062fb38
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-091625-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,14246 @@
+2016-08-24 09:16:25,238 INFO: Start:	 Read HDF5 Database Files for ModifiedMultiOmic
+2016-08-24 09:16:25,238 INFO: Info:	 Labels used: No, Yes
+2016-08-24 09:16:25,239 INFO: Info:	 Length of dataset:347
+2016-08-24 09:16:25,240 INFO: ### Main Programm for Multiview Classification
+2016-08-24 09:16:25,240 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 09:16:25,241 INFO: Info:	 Shape of Methyl_ :(347, 25978)
+2016-08-24 09:16:25,241 INFO: Info:	 Shape of MiRNA__ :(347, 1046)
+2016-08-24 09:16:25,241 INFO: Info:	 Shape of RANSeq_ :(347, 73599)
+2016-08-24 09:16:25,242 INFO: Info:	 Shape of Clinic_ :(347, 127)
+2016-08-24 09:16:25,242 INFO: Done:	 Read Database Files
+2016-08-24 09:16:25,242 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-24 09:16:25,245 INFO: Done:	 Determine validation split
+2016-08-24 09:16:25,245 INFO: Start:	 Determine 2 folds
+2016-08-24 09:16:25,255 INFO: Info:	 Length of Learning Sets: 122
+2016-08-24 09:16:25,255 INFO: Info:	 Length of Testing Sets: 122
+2016-08-24 09:16:25,255 INFO: Info:	 Length of Validation Set: 103
+2016-08-24 09:16:25,255 INFO: Done:	 Determine folds
+2016-08-24 09:16:25,255 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-24 09:16:25,256 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-24 09:16:25,256 DEBUG: 	Start:	 Gridsearch for DecisionTree on Methyl_
+2016-08-24 09:16:32,562 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:16:32,563 DEBUG: 	Start:	 Gridsearch for DecisionTree on MiRNA__
+2016-08-24 09:16:34,472 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:16:34,473 DEBUG: 	Start:	 Gridsearch for DecisionTree on RANSeq_
+2016-08-24 09:16:51,458 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:16:51,458 DEBUG: 	Start:	 Gridsearch for DecisionTree on Clinic_
+2016-08-24 09:16:53,197 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:16:53,197 DEBUG: 	Start:	 Gridsearch for DecisionTree on MRNASeq
+2016-08-24 09:17:30,357 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:17:30,357 INFO: Done:	 Gridsearching best settings for monoview classifiers
+2016-08-24 09:17:30,357 INFO: 	Start:	 Fold number 1
+2016-08-24 09:17:32,053 DEBUG: 		Start:	 Iteration 1
+2016-08-24 09:17:32,069 DEBUG: 			View 0 : 0.377358490566
+2016-08-24 09:17:32,077 DEBUG: 			View 1 : 0.377358490566
+2016-08-24 09:17:32,106 DEBUG: 			View 2 : 0.622641509434
+2016-08-24 09:17:32,113 DEBUG: 			View 3 : 0.622641509434
+2016-08-24 09:17:32,155 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:17:32,230 DEBUG: 		Start:	 Iteration 2
+2016-08-24 09:17:32,247 DEBUG: 			View 0 : 0.547169811321
+2016-08-24 09:17:32,255 DEBUG: 			View 1 : 0.59748427673
+2016-08-24 09:17:32,292 DEBUG: 			View 2 : 0.547169811321
+2016-08-24 09:17:32,299 DEBUG: 			View 3 : 0.559748427673
+2016-08-24 09:17:32,344 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:17:32,475 DEBUG: 		Start:	 Iteration 3
+2016-08-24 09:17:32,492 DEBUG: 			View 0 : 0.641509433962
+2016-08-24 09:17:32,500 DEBUG: 			View 1 : 0.534591194969
+2016-08-24 09:17:32,536 DEBUG: 			View 2 : 0.389937106918
+2016-08-24 09:17:32,544 DEBUG: 			View 3 : 0.59748427673
+2016-08-24 09:17:32,597 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:17:32,792 DEBUG: 		Start:	 Iteration 4
+2016-08-24 09:17:32,808 DEBUG: 			View 0 : 0.389937106918
+2016-08-24 09:17:32,816 DEBUG: 			View 1 : 0.62893081761
+2016-08-24 09:17:32,852 DEBUG: 			View 2 : 0.389937106918
+2016-08-24 09:17:32,860 DEBUG: 			View 3 : 0.446540880503
+2016-08-24 09:17:32,915 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:17:33,165 DEBUG: 		Start:	 Iteration 5
+2016-08-24 09:17:33,182 DEBUG: 			View 0 : 0.509433962264
+2016-08-24 09:17:33,189 DEBUG: 			View 1 : 0.603773584906
+2016-08-24 09:17:33,226 DEBUG: 			View 2 : 0.62893081761
+2016-08-24 09:17:33,233 DEBUG: 			View 3 : 0.503144654088
+2016-08-24 09:17:33,291 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:17:33,599 DEBUG: 		Start:	 Iteration 6
+2016-08-24 09:17:33,615 DEBUG: 			View 0 : 0.421383647799
+2016-08-24 09:17:33,623 DEBUG: 			View 1 : 0.572327044025
+2016-08-24 09:17:33,660 DEBUG: 			View 2 : 0.553459119497
+2016-08-24 09:17:33,668 DEBUG: 			View 3 : 0.490566037736
+2016-08-24 09:17:33,727 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:17:34,092 DEBUG: 		Start:	 Iteration 7
+2016-08-24 09:17:34,109 DEBUG: 			View 0 : 0.553459119497
+2016-08-24 09:17:34,116 DEBUG: 			View 1 : 0.603773584906
+2016-08-24 09:17:34,153 DEBUG: 			View 2 : 0.610062893082
+2016-08-24 09:17:34,161 DEBUG: 			View 3 : 0.433962264151
+2016-08-24 09:17:34,223 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:17:34,661 DEBUG: 		Start:	 Iteration 8
+2016-08-24 09:17:34,677 DEBUG: 			View 0 : 0.522012578616
+2016-08-24 09:17:34,685 DEBUG: 			View 1 : 0.654088050314
+2016-08-24 09:17:34,721 DEBUG: 			View 2 : 0.48427672956
+2016-08-24 09:17:34,729 DEBUG: 			View 3 : 0.477987421384
+2016-08-24 09:17:34,793 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:17:35,289 DEBUG: 		Start:	 Iteration 9
+2016-08-24 09:17:35,305 DEBUG: 			View 0 : 0.358490566038
+2016-08-24 09:17:35,313 DEBUG: 			View 1 : 0.534591194969
+2016-08-24 09:17:35,350 DEBUG: 			View 2 : 0.522012578616
+2016-08-24 09:17:35,357 DEBUG: 			View 3 : 0.704402515723
+2016-08-24 09:17:35,424 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:17:35,976 DEBUG: 		Start:	 Iteration 10
+2016-08-24 09:17:35,992 DEBUG: 			View 0 : 0.666666666667
+2016-08-24 09:17:36,000 DEBUG: 			View 1 : 0.616352201258
+2016-08-24 09:17:36,037 DEBUG: 			View 2 : 0.415094339623
+2016-08-24 09:17:36,044 DEBUG: 			View 3 : 0.465408805031
+2016-08-24 09:17:36,112 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:17:36,725 DEBUG: 		Start:	 Iteration 11
+2016-08-24 09:17:36,742 DEBUG: 			View 0 : 0.427672955975
+2016-08-24 09:17:36,749 DEBUG: 			View 1 : 0.534591194969
+2016-08-24 09:17:36,786 DEBUG: 			View 2 : 0.446540880503
+2016-08-24 09:17:36,793 DEBUG: 			View 3 : 0.522012578616
+2016-08-24 09:17:36,864 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:17:37,731 DEBUG: 		Start:	 Iteration 12
+2016-08-24 09:17:37,748 DEBUG: 			View 0 : 0.440251572327
+2016-08-24 09:17:37,756 DEBUG: 			View 1 : 0.37106918239
+2016-08-24 09:17:37,793 DEBUG: 			View 2 : 0.553459119497
+2016-08-24 09:17:37,800 DEBUG: 			View 3 : 0.509433962264
+2016-08-24 09:17:37,874 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:17:38,629 INFO: 	Start: 	 Classification
+2016-08-24 09:17:40,368 INFO: 	Done: 	 Fold number 1
+2016-08-24 09:17:40,368 INFO: 	Start:	 Fold number 2
+2016-08-24 09:17:41,934 DEBUG: 		Start:	 Iteration 1
+2016-08-24 09:17:41,952 DEBUG: 			View 0 : 0.5
+2016-08-24 09:17:41,960 DEBUG: 			View 1 : 0.379746835443
+2016-08-24 09:17:41,988 DEBUG: 			View 2 : 0.620253164557
+2016-08-24 09:17:41,996 DEBUG: 			View 3 : 0.620253164557
+2016-08-24 09:17:42,041 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:17:42,117 DEBUG: 		Start:	 Iteration 2
+2016-08-24 09:17:42,133 DEBUG: 			View 0 : 0.436708860759
+2016-08-24 09:17:42,141 DEBUG: 			View 1 : 0.354430379747
+2016-08-24 09:17:42,178 DEBUG: 			View 2 : 0.430379746835
+2016-08-24 09:17:42,185 DEBUG: 			View 3 : 0.556962025316
+2016-08-24 09:17:42,230 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:17:42,361 DEBUG: 		Start:	 Iteration 3
+2016-08-24 09:17:42,377 DEBUG: 			View 0 : 0.481012658228
+2016-08-24 09:17:42,385 DEBUG: 			View 1 : 0.373417721519
+2016-08-24 09:17:42,421 DEBUG: 			View 2 : 0.386075949367
+2016-08-24 09:17:42,429 DEBUG: 			View 3 : 0.386075949367
+2016-08-24 09:17:42,429 WARNING: All bad for iteration 2
+2016-08-24 09:17:42,482 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:17:42,675 DEBUG: 		Start:	 Iteration 4
+2016-08-24 09:17:42,692 DEBUG: 			View 0 : 0.506329113924
+2016-08-24 09:17:42,699 DEBUG: 			View 1 : 0.544303797468
+2016-08-24 09:17:42,735 DEBUG: 			View 2 : 0.550632911392
+2016-08-24 09:17:42,743 DEBUG: 			View 3 : 0.626582278481
+2016-08-24 09:17:42,798 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:17:43,047 DEBUG: 		Start:	 Iteration 5
+2016-08-24 09:17:43,063 DEBUG: 			View 0 : 0.588607594937
+2016-08-24 09:17:43,071 DEBUG: 			View 1 : 0.601265822785
+2016-08-24 09:17:43,107 DEBUG: 			View 2 : 0.443037974684
+2016-08-24 09:17:43,114 DEBUG: 			View 3 : 0.544303797468
+2016-08-24 09:17:43,171 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:17:43,477 DEBUG: 		Start:	 Iteration 6
+2016-08-24 09:17:43,494 DEBUG: 			View 0 : 0.481012658228
+2016-08-24 09:17:43,501 DEBUG: 			View 1 : 0.601265822785
+2016-08-24 09:17:43,538 DEBUG: 			View 2 : 0.493670886076
+2016-08-24 09:17:43,545 DEBUG: 			View 3 : 0.493670886076
+2016-08-24 09:17:43,605 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:17:43,969 DEBUG: 		Start:	 Iteration 7
+2016-08-24 09:17:43,985 DEBUG: 			View 0 : 0.322784810127
+2016-08-24 09:17:43,993 DEBUG: 			View 1 : 0.474683544304
+2016-08-24 09:17:44,029 DEBUG: 			View 2 : 0.417721518987
+2016-08-24 09:17:44,036 DEBUG: 			View 3 : 0.601265822785
+2016-08-24 09:17:44,097 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:17:44,516 DEBUG: 		Start:	 Iteration 8
+2016-08-24 09:17:44,533 DEBUG: 			View 0 : 0.525316455696
+2016-08-24 09:17:44,540 DEBUG: 			View 1 : 0.632911392405
+2016-08-24 09:17:44,577 DEBUG: 			View 2 : 0.607594936709
+2016-08-24 09:17:44,584 DEBUG: 			View 3 : 0.411392405063
+2016-08-24 09:17:44,648 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:17:45,123 DEBUG: 		Start:	 Iteration 9
+2016-08-24 09:17:45,139 DEBUG: 			View 0 : 0.677215189873
+2016-08-24 09:17:45,147 DEBUG: 			View 1 : 0.398734177215
+2016-08-24 09:17:45,183 DEBUG: 			View 2 : 0.575949367089
+2016-08-24 09:17:45,191 DEBUG: 			View 3 : 0.462025316456
+2016-08-24 09:17:45,257 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:17:45,800 DEBUG: 		Start:	 Iteration 10
+2016-08-24 09:17:45,817 DEBUG: 			View 0 : 0.664556962025
+2016-08-24 09:17:45,825 DEBUG: 			View 1 : 0.632911392405
+2016-08-24 09:17:45,862 DEBUG: 			View 2 : 0.613924050633
+2016-08-24 09:17:45,869 DEBUG: 			View 3 : 0.601265822785
+2016-08-24 09:17:45,941 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:17:46,549 DEBUG: 		Start:	 Iteration 11
+2016-08-24 09:17:46,566 DEBUG: 			View 0 : 0.506329113924
+2016-08-24 09:17:46,573 DEBUG: 			View 1 : 0.373417721519
+2016-08-24 09:17:46,610 DEBUG: 			View 2 : 0.620253164557
+2016-08-24 09:17:46,617 DEBUG: 			View 3 : 0.563291139241
+2016-08-24 09:17:46,688 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:17:47,371 DEBUG: 		Start:	 Iteration 12
+2016-08-24 09:17:47,390 DEBUG: 			View 0 : 0.405063291139
+2016-08-24 09:17:47,399 DEBUG: 			View 1 : 0.658227848101
+2016-08-24 09:17:47,435 DEBUG: 			View 2 : 0.620253164557
+2016-08-24 09:17:47,443 DEBUG: 			View 3 : 0.626582278481
+2016-08-24 09:17:47,517 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:17:48,252 INFO: 	Start: 	 Classification
+2016-08-24 09:17:49,990 INFO: 	Done: 	 Fold number 2
+2016-08-24 09:17:49,990 INFO: Done:	 Classification
+2016-08-24 09:17:49,990 INFO: Info:	 Time for Classification: 84[s]
+2016-08-24 09:17:49,990 INFO: Start:	 Result Analysis for Mumbo
+2016-08-24 09:17:55,375 INFO: 		Result for Multiview classification with Mumbo
+
+Average accuracy :
+	-On Train : 68.4519544622
+	-On Test : 76.6393442623
+	-On Validation : 76.213592233
+
+Dataset info :
+	-Database name : ModifiedMultiOmic
+	-Labels : No, Yes
+	-Views : Methyl, MiRNA, RNASEQ, Clinical
+	-2 folds
+	- Validation set length : 103 for learning rate : 0.7
+
+Classification configuration : 
+	-Algorithm used : Mumbo 
+	-Iterations : 1000
+	-Weak Classifiers : DecisionTree with depth 1.0,  sub-sampled at 0.0075 on Methyl
+		-DecisionTree with depth 1.0,  sub-sampled at 0.006 on MiRNA
+		-DecisionTree with depth 1.0,  sub-sampled at 0.006 on RNASEQ
+		-DecisionTree with depth 1.0,  sub-sampled at 0.0065 on Clinical
+
+ Mean average accuracies and stats for each fold : 
+	- Fold 0
+		- On Methyl_ : 
+			- Mean average Accuracy : 0.00585534591195
+			- Percentage of time chosen : 0.991
+		- On MiRNA__ : 
+			- Mean average Accuracy : 0.00662893081761
+			- Percentage of time chosen : 0.005
+		- On RANSeq_ : 
+			- Mean average Accuracy : 0.00616352201258
+			- Percentage of time chosen : 0.002
+		- On Clinic_ : 
+			- Mean average Accuracy : 0.00633333333333
+			- Percentage of time chosen : 0.002
+	- Fold 1
+		- On Methyl_ : 
+			- Mean average Accuracy : 0.00609493670886
+			- Percentage of time chosen : 0.992
+		- On MiRNA__ : 
+			- Mean average Accuracy : 0.0060253164557
+			- Percentage of time chosen : 0.004
+		- On RANSeq_ : 
+			- Mean average Accuracy : 0.00637974683544
+			- Percentage of time chosen : 0.001
+		- On Clinic_ : 
+			- Mean average Accuracy : 0.00649367088608
+			- Percentage of time chosen : 0.003
+
+ For each iteration : 
+	- Iteration 1
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 2
+		 Fold 1
+			Accuracy on train : 59.748427673
+			Accuracy on test : 53.2786885246
+			Accuracy on validation : 67.9611650485
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 55.6962025316
+			Accuracy on test : 64.7540983607
+			Accuracy on validation : 63.1067961165
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 57.7223151023
+			 Accuracy on test : 59.0163934426
+	- Iteration 3
+		 Fold 1
+			Accuracy on train : 64.1509433962
+			Accuracy on test : 69.6721311475
+			Accuracy on validation : 75.7281553398
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 55.6962025316
+			Accuracy on test : 64.7540983607
+			Accuracy on validation : 63.1067961165
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 59.9235729639
+			 Accuracy on test : 67.2131147541
+	- Iteration 4
+		 Fold 1
+			Accuracy on train : 62.893081761
+			Accuracy on test : 71.3114754098
+			Accuracy on validation : 73.786407767
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 62.6582278481
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 69.9029126214
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 62.7756548046
+			 Accuracy on test : 72.5409836066
+	- Iteration 5
+		 Fold 1
+			Accuracy on train : 63.5220125786
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 63.2911392405
+			Accuracy on test : 72.131147541
+			Accuracy on validation : 70.8737864078
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 63.4065759096
+			 Accuracy on test : 72.5409836066
+	- Iteration 6
+		 Fold 1
+			Accuracy on train : 62.893081761
+			Accuracy on test : 71.3114754098
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 69.9029126214
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 62.4591991084
+			 Accuracy on test : 72.5409836066
+	- Iteration 7
+		 Fold 1
+			Accuracy on train : 64.1509433962
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 74.7572815534
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 69.6721311475
+			Accuracy on validation : 70.8737864078
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 63.088129926
+			 Accuracy on test : 71.7213114754
+	- Iteration 8
+		 Fold 1
+			Accuracy on train : 62.893081761
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 65.1898734177
+			Accuracy on test : 72.131147541
+			Accuracy on validation : 73.786407767
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 64.0414775894
+			 Accuracy on test : 73.3606557377
+	- Iteration 9
+		 Fold 1
+			Accuracy on train : 64.7798742138
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 67.7215189873
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 75.7281553398
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 66.2506966006
+			 Accuracy on test : 72.9508196721
+	- Iteration 10
+		 Fold 1
+			Accuracy on train : 66.0377358491
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 76.6990291262
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 70.8860759494
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 74.7572815534
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 68.4619058992
+			 Accuracy on test : 77.868852459
+	- Iteration 11
+		 Fold 1
+			Accuracy on train : 70.4402515723
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 72.7848101266
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 78.640776699
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 71.6125308495
+			 Accuracy on test : 75.8196721311
+	- Iteration 12
+		 Fold 1
+			Accuracy on train : 69.1823899371
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 78.640776699
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 67.7215189873
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 73.786407767
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 68.4519544622
+			 Accuracy on test : 76.6393442623
+	- Iteration 13
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 14
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 15
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 16
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 17
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 18
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 19
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 20
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 21
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 22
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 23
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 24
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 25
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 26
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 27
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 28
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 29
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 30
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 31
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 32
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 33
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 34
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 35
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 36
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 37
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 38
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 39
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 40
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 41
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 42
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 43
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 44
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 45
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 46
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 47
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 48
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 49
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 50
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 51
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 52
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 53
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 54
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 55
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 56
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 57
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 58
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 59
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 60
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 61
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 62
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 63
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 64
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 65
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 66
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 67
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 68
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 69
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 70
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 71
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 72
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 73
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 74
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 75
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 76
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 77
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 78
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 79
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 80
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 81
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 82
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 83
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 84
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 85
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 86
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 87
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 88
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 89
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 90
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 91
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 92
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 93
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 94
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 95
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 96
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 97
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 98
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 99
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 100
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 101
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 102
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 103
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 104
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 105
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 106
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 107
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 108
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 109
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 110
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 111
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 112
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 113
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 114
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 115
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 116
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 117
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 118
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 119
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 120
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 121
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 122
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 123
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 124
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 125
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 126
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 127
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 128
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 129
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 130
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 131
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 132
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 133
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 134
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 135
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 136
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 137
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 138
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 139
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 140
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 141
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 142
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 143
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 144
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 145
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 146
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 147
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 148
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 149
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 150
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 151
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 152
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 153
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 154
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 155
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 156
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 157
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 158
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 159
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 160
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 161
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 162
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 163
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 164
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 165
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 166
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 167
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 168
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 169
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 170
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 171
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 172
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 173
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 174
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 175
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 176
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 177
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 178
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 179
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 180
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 181
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 182
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 183
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 184
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 185
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 186
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 187
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 188
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 189
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 190
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 191
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 192
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 193
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 194
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 195
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 196
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 197
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 198
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 199
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 200
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 201
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 202
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 203
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 204
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 205
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 206
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 207
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 208
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 209
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 210
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 211
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 212
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 213
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 214
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 215
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 216
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 217
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 218
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 219
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 220
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 221
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 222
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 223
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 224
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 225
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 226
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 227
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 228
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 229
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 230
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 231
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 232
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 233
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 234
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 235
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 236
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 237
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 238
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 239
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 240
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 241
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 242
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 243
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 244
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 245
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 246
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 247
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 248
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 249
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 250
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 251
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 252
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 253
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 254
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 255
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 256
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 257
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 258
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 259
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 260
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 261
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 262
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 263
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 264
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 265
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 266
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 267
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 268
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 269
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 270
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 271
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 272
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 273
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 274
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 275
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 276
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 277
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 278
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 279
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 280
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 281
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 282
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 283
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 284
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 285
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 286
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 287
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 288
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 289
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 290
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 291
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 292
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 293
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 294
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 295
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 296
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 297
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 298
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 299
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 300
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 301
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 302
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 303
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 304
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 305
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 306
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 307
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 308
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 309
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 310
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 311
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 312
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 313
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 314
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 315
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 316
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 317
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 318
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 319
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 320
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 321
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 322
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 323
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 324
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 325
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 326
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 327
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 328
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 329
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 330
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 331
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 332
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 333
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 334
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 335
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 336
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 337
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 338
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 339
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 340
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 341
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 342
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 343
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 344
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 345
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 346
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 347
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 348
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 349
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 350
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 351
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 352
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 353
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 354
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 355
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 356
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 357
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 358
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 359
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 360
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 361
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 362
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 363
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 364
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 365
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 366
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 367
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 368
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 369
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 370
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 371
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 372
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 373
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 374
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 375
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 376
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 377
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 378
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 379
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 380
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 381
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 382
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 383
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 384
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 385
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 386
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 387
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 388
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 389
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 390
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 391
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 392
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 393
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 394
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 395
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 396
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 397
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 398
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 399
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 400
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 401
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 402
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 403
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 404
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 405
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 406
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 407
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 408
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 409
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 410
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 411
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 412
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 413
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 414
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 415
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 416
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 417
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 418
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 419
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 420
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 421
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 422
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 423
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 424
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 425
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 426
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 427
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 428
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 429
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 430
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 431
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 432
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 433
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 434
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 435
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 436
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 437
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 438
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 439
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 440
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 441
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 442
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 443
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 444
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 445
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 446
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 447
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 448
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 449
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 450
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 451
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 452
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 453
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 454
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 455
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 456
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 457
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 458
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 459
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 460
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 461
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 462
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 463
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 464
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 465
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 466
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 467
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 468
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 469
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 470
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 471
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 472
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 473
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 474
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 475
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 476
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 477
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 478
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 479
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 480
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 481
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 482
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 483
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 484
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 485
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 486
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 487
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 488
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 489
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 490
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 491
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 492
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 493
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 494
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 495
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 496
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 497
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 498
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 499
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 500
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 501
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 502
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 503
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 504
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 505
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 506
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 507
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 508
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 509
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 510
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 511
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 512
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 513
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 514
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 515
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 516
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 517
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 518
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 519
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 520
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 521
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 522
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 523
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 524
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 525
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 526
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 527
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 528
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 529
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 530
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 531
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 532
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 533
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 534
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 535
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 536
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 537
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 538
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 539
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 540
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 541
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 542
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 543
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 544
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 545
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 546
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 547
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 548
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 549
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 550
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 551
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 552
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 553
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 554
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 555
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 556
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 557
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 558
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 559
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 560
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 561
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 562
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 563
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 564
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 565
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 566
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 567
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 568
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 569
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 570
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 571
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 572
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 573
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 574
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 575
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 576
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 577
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 578
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 579
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 580
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 581
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 582
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 583
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 584
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 585
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 586
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 587
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 588
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 589
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 590
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 591
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 592
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 593
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 594
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 595
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 596
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 597
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 598
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 599
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 600
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 601
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 602
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 603
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 604
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 605
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 606
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 607
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 608
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 609
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 610
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 611
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 612
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 613
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 614
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 615
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 616
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 617
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 618
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 619
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 620
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 621
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 622
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 623
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 624
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 625
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 626
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 627
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 628
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 629
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 630
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 631
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 632
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 633
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 634
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 635
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 636
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 637
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 638
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 639
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 640
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 641
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 642
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 643
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 644
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 645
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 646
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 647
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 648
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 649
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 650
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 651
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 652
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 653
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 654
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 655
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 656
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 657
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 658
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 659
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 660
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 661
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 662
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 663
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 664
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 665
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 666
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 667
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 668
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 669
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 670
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 671
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 672
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 673
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 674
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 675
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 676
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 677
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 678
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 679
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 680
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 681
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 682
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 683
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 684
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 685
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 686
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 687
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 688
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 689
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 690
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 691
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 692
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 693
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 694
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 695
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 696
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 697
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 698
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 699
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 700
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 701
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 702
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 703
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 704
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 705
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 706
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 707
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 708
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 709
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 710
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 711
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 712
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 713
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 714
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 715
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 716
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 717
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 718
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 719
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 720
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 721
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 722
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 723
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 724
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 725
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 726
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 727
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 728
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 729
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 730
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 731
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 732
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 733
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 734
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 735
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 736
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 737
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 738
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 739
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 740
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 741
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 742
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 743
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 744
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 745
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 746
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 747
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 748
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 749
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 750
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 751
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 752
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 753
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 754
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 755
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 756
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 757
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 758
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 759
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 760
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 761
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 762
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 763
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 764
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 765
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 766
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 767
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 768
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 769
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 770
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 771
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 772
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 773
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 774
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 775
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 776
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 777
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 778
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 779
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 780
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 781
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 782
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 783
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 784
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 785
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 786
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 787
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 788
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 789
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 790
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 791
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 792
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 793
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 794
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 795
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 796
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 797
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 798
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 799
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 800
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 801
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 802
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 803
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 804
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 805
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 806
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 807
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 808
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 809
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 810
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 811
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 812
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 813
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 814
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 815
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 816
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 817
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 818
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 819
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 820
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 821
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 822
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 823
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 824
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 825
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 826
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 827
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 828
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 829
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 830
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 831
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 832
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 833
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 834
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 835
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 836
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 837
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 838
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 839
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 840
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 841
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 842
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 843
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 844
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 845
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 846
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 847
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 848
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 849
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 850
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 851
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 852
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 853
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 854
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 855
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 856
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 857
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 858
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 859
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 860
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 861
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 862
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 863
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 864
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 865
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 866
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 867
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 868
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 869
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 870
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 871
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 872
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 873
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 874
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 875
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 876
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 877
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 878
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 879
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 880
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 881
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 882
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 883
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 884
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 885
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 886
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 887
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 888
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 889
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 890
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 891
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 892
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 893
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 894
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 895
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 896
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 897
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 898
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 899
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 900
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 901
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 902
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 903
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 904
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 905
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 906
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 907
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 908
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 909
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 910
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 911
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 912
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 913
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 914
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 915
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 916
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 917
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 918
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 919
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 920
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 921
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 922
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 923
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 924
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 925
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 926
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 927
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 928
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 929
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 930
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 931
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 932
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 933
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 934
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 935
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 936
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 937
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 938
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 939
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 940
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 941
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 942
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 943
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 944
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 945
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 946
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 947
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 948
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 949
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 950
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 951
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 952
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 953
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 954
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 955
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 956
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 957
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 958
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 959
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 960
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 961
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 962
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 963
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 964
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 965
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 966
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 967
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 968
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 969
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 970
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 971
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 972
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 973
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 974
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 975
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 976
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 977
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 978
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 979
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 980
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 981
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 982
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 983
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 984
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 985
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 986
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 987
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 988
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 989
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 990
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 991
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 992
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 993
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 994
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 995
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 996
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 997
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 998
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 999
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 1000
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+
+Computation time on 1 cores : 
+	Database extraction time : 0:00:00
+	                         Learn     Prediction
+	         Fold 1        0:01:13        0:00:01
+	         Fold 2        0:01:22        0:00:01
+	          Total        0:02:36        0:00:03
+	So a total classification time of 0:01:24.
+
+
+2016-08-24 09:17:56,318 INFO: Done:	 Result Analysis
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-091756Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-091756Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic-accuracyByIteration.png
new file mode 100644
index 0000000000000000000000000000000000000000..f331f2fb198ab0807813fcc2584f9e9b11772d4b
GIT binary patch
literal 50627
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_eiLFD*<^AF!;S8NOqNOo{pC3Ag+
z`&6|KQPB;F46cs8B8wvgqdROD)%EfkMmQ$FZ`j+w#4Z-#av+bVtBGlm!Fl=b$#Q&s
zY7@6q{ylo{+_`hptjo$ywL5btCP=g;f>9>Ro&CEQcn%wY(Vy}STpUogL2p~A16WO>
zL|dlG8m2=KH3mM56Ga7}+7qRCS2sY#c`j!}u(m*qO`PF&SW5wHrUB1k6R9vpsJO(k
zi=$Rx2GnH-DJiKJmzHvSd3(Q1e|~N*^Yqh4w`5+<y8G`?E4M}MFO%51A0HHNZO@N?
zU-akK>-7c2#jC%Uaf|D<tXiej)6=tH^=fWoW8*ckyTwvdQ@@^DedqJ@^NHEn(aE!x
zEK%u^FnqN6`@|_zSSEU~Y>eo6cX#*V*xh9U-A4twk49|Gx|;s{clwPDiOh!%9b#Yz
zS}F4T+uOyjy}Z2-J}nB2h=_P!!!K{gqprT3ZR%RZrzcOHYMMJ&_SUvs?%?3dQkSPq
zotpUQNaux1mzw(e_{{R|+*nX_{c1Bi|AIw}E@}ME;?URE&$+Q-;l10eY-~y<CR^fe
zKY98z@o1N*=`zcrCmdhCeqFeDF*84ZztsEoR&H@8Z*T5fw{CH8a!!oiUimpKBRktU
zI$D~Mk?~9UlP4!9fBCH?)cN7-_4vbg?#LYYzn{I;NzqqWUOs+(@|ylne?#}RZ_l~O
zq&Gc!`Rk$&4;)q0)Gj^UvBP4<j2TyU>l{3Ikb{eB)%P-<&;G}?6nHK>$ndehdiBbp
z=n2Q)oZH)SOaG;p{QFZm$EtLd*Sz`B)6N@KeaTQ!RegAGZ*@mkms3cH2op22y|zBX
zi(6Z@^<s7eBugnPE5Et9`T6GWi76>8D?_@TJW0`s+QRYe+cytCKewVHqq-jt*>`Sf
znQ;Ez`R6k%3YC`m%w%#13+(Fan-=|l=k=8fZ<}qgd3$TCb4G?n*}FTD*|*~B|BBwc
zdGo}XGcGkXHcrmY6DLmm7@4|mecQan^|Qm*$0h#!^z`aFeGQF<`Sa!bWUbqJdU#6S
z+z|AhrV}{h+nbx4Eh;`Jyt}ir`S$kw$1g4}?&$1fWJpO%OZxceXh(nl@xQ;ne|&LK
zxuw0Gnc>&Bx8D2L2dxxgYGhdK-oNZ;k%dgm?y}xxn(OD(WNy#DzpUQf#pTM+^4|v<
znLRu_Cj9QXTh0?)4k{GtndIf=fAyQ$+sl9a__3g{aH99-tgBixX3su+<A%h#b?Ykr
z{4fj(4&GS!*zL`|z0ye=XZ*XY-jZ;ziPgZ&tgWw)Z|#CLQCqo$)qECI?yLPRrlqA-
z@%h==`DHp%Qc^dz<x1E6d@3#?BErCMZjL2$c6RoR88Z&txg+!Z{QTuFm6enfggO;O
zxDvCny4?HaPHuf9A}*f%<HN%TA1eepUB2vz*-^l#G_m8^=H%mi94t&6txh}=1`Oxt
z+p{ZFPbe)aI&@;9^1<hyLHg&+nG@BoY+)fGCnr}>R>szU{IGoepT?dZo*lb(9XfM{
z$7!L!Y_r@&FW1NK=c}%+o-u3Ip&K_O*!g5uOiFijWV9-M<#PX3*U_Yk>S|_&O`A6_
zT)o=+yR3*v%k%T|lR@F$-Q66abFBP+ExSWm?e%rBpgjBK%}wEn6DM-@KYV<=|HJq1
z?R|ZGDng!9y<$^RRQ4`^^XAQjY17ykIQaS7Cr=h;<B?!sW@f%|`}X6Llht|k{M-3t
z6()LISmfFrb-q3%MC8w(KQGGOy?b|KcX|HW+o2&LAuRm-{2wZ8I9i>)yuUB+aCQ6H
zl`B_XxOQ#X=@tQ>*=D><jSMw*@$c%^zIb|i`islU`S-p*)-Uh>dGoeyZ5uZlR@lf*
z(~Wl9&dJAjtV2-w!v6aD7cX8MID3|Nd;a~l&6|x&N=qL;ed>C-s<JZi&W^$j8#Xk|
zn<sayPqw>X-abt8`0;*uK@ky_;^N|tqe(q7mO?*&{$yxKKR<7w|9ra#A1ew93lDBi
zKflU0UfHduVdhLp7A8hEUa6KlcVZYE92^+#?W^V97{Sx&5|q08@$vr4+59K8E?nI!
z)6v&=Y=&X-g*B1JCfV0`?Ck7J-v0ah`{A=^ZGE!VObmbi{uO=p`NzlPm|Z2Di`{w`
z%@=ff^<~k6ySvLjeEitBaG@d(FYm|4{q~niuU)&w!Nt|o+snIU>(-ZlV`b&#<#X=t
z5@nb$Zyukjs_HLUHj()0+w<=~dU0{FMd2fsX}ZyD8zXw+>;Fz&#?Qgg5TL;_|Gc}G
z7Z=0LpX+ZhO`SH4jhDCAt={mELA`cM;taNz7Z<a8`ueKc$o1RQ|C^I@XUD`dGmYDI
zA~rOzu(1g_aopTnZT|7|XXVt?)D{7!vNtyze|>%J&Y@WJl0#8NUA?`)LIzZtIdLd1
z_nWJ<YuBz80jGO=DxIy$-}&6zSL@B8_~iNgdbP*LdX-xQHr4(vd-UwtvJE}b=6NcL
zii%v<L+{n^+?IQLlC*i=gf(k)lqPz3I65*awoEv4#^=)3?C_wVAg6P4t=&ybO;5hx
z|KE>8amk7m9U`Kl6X(p4xwNmg+KEGvonKBxPfyR}{+>NHP8^EQ&(Bv^n%E)WbYgAv
zc8}?Lu_r!1KhLSy^5@6n{w4YM_kG!MYiqW<oL!9vhhoaLHIYZ|-;ZCnrmL^^-kwSq
zU*Fy*&z=c6as2%8QQ6SQNa_3g`|2$MpZ@)=PD)5{SQ4aJ`S+KpVE54{Pft&85pasz
zSL1o*%9R&|p(&Y}p6g<FyA>4|cY3HSx}J7<nQzLaC7vbsjnmF3v<Pe}eI54b-8;YS
z|G&Hxepq0Ua(7p0i-1$!{e8Z-wq!1Ta7sW(Ow4W0+_|2anVOoKnu=y-W=Bq*>=bZ1
z(aJ4;qJfe5#PNQ4PQ{iv*5!R1EKIx3i|IyPNap3`Rb97k9j~7M&Kox(l9G~wlBH^E
zYbVW^;W7RCx>)aHeX`My&8EJ+y}kd-`}_0trr)=o`hEVSNlsg~Zsk<m^n3E*hZAJ2
z%LJS_cGmnfdU<E3v8ImBno0k=M72*mIXQXtllXuD2QM!#4#gG`F)^V=2Zu?MCUGck
z%3i&AvGb?TpFw6EJawuI6ea!g_Cj*~?&s!MI&&zde0g!vML}S~p+inVQBhtov9Tw+
zM73Y+`v3QReT#sTm~NCy-LIGGQGF982pE;V3UT64%*)G5xwy!+MZjsEO{J4n*&C0#
zKOfy&pRfKCr`|F_)qC27<kM%)sAy?vb@>}9rrg|=TJ&7e-hRGG?yZo-Tl;E%Px|}&
z`{k#~?tKF6?Cee)ij0hmDNj#LExCJkwz=o|dA6&cY|OZ*WK{E`VAr3Qm(>qFE$W;&
zQBaVpHRV{3B-eUz#g;!G4)Y(meS5Zm(r&*RyZJH}1q}jD9aE=@?%mGK&E2_c*RDIZ
z5ta4&@%vO}&6@S(@$vqYUteCP+}@VEHEz0Q@G=3XC+p=EH&t)Syu8dsYpReFN96uG
z+rPd3-rmZyX3a8ryTo(yiA|}eITSzb7v=dJzvxeRc!R{V`F(%xN9*Y8>$|wPJoxbN
z@Qtn6(__r1I=AyF8X5{FZIozOQ(xnI_UqZ%=Eol#Y-VH->ST$GjAUromU}zt#)d>t
zg|y6XZdZKWPuF$!^`%<dW?lKd!*8xtD?7j3fn&$o>Xxlp)8pPR_wY!k@P|*InpUmS
zVtBB6{k~O``W+M;s;aEi{O9pVOH1$AwJXfC_}`z(FK=&)$L=a&RH$a&UGXt#mwl%T
zQ)y}GukXLUzJ6W8^Y{1n<@w2%FJGQGZyp~%KmV-!z(B!Emo9zy@i93iHTB@ln={uv
zF50=H{Jos*wjw@0zK+h$gNxn!FKo|`U$SJ0f~~FW#*G`lN?kT8dg8&*(AdbxaP#($
zQ@^{qyAN-_U&pOC9faiN<w2EmLynDymlv0huW#ne_`OxF{`2h^8P=>>vta2`Rt5?C
zx|*%AS+9cU9a9tP{BW4x{=x3|`&NIu7q}#HbJ~{b{-sM*LqbC*&YBgqG}`~?-Ya`5
zi*MYxap2}nNrn&q{#LWFuqc?CipJ=P`_Hp+^z!2R`_IbSdU5INYYZuC6W-q1y7>D(
z50yiIe}8`&A?xq&Z<2pchT*~M*WJ3&+Y)|#d0F(-qU41@S67#Ss3@z$H?_TgZXG>(
z^kMz~-|`F#qPOR55%rh|YBudIfA8k$$=TK2{qp<E_i9Q?OwrqN7M}L<@~ZgqLU32<
z>$XFOoPPZLnfUF^&4|ruzEg9PlapUc^oFgCI(Ygtx1ph7$)DRF9v)^qQRmFc#3*M|
z!Jw?H-1;=*<|b7c85sdt*<R;%zQl)zS}m%->BPogE)8@E4;Ob@DA4fcp4R@nU%!4`
zxOVN>#^mD{c9-Y7xVt}ocXxNGT|Cd{{3BWlJfGD+e)`lDq0=^Rp4{700eu2ZH#esz
z-`P=EdTMp#=Cm*Qs;a6x8Q<Nn{VvPKC&OWDYrA6As;2YL|68&L9Nb&|Js>8A$JW+1
zW`CWmpPygptMBVQ`sHjVOq<rWIsLqnni`v<qoaqf@7i!VQEf9XFRw3(yUo@{ZCz9^
z?6hFfqNXQLo@l-7ld)uKbO^`|pW7uPD{Gj4&&H<m6N|E2kHd1mxdqS8NXG1`5S(qE
zzb<&Eg-qWa!@`|+tYm|adTA@N?Ay05Vnc%C+S?POc2(8nRc0+(x2~_9U;a}2{yB4G
zqB_^Co@ZOFWNRy1SXgLL{EVlmsj1-eGhYpD?bEgDUEST;XW9jr_}ZH<TnKn`dpo}j
zAG>z=x|Y3rZI=XTCM72e%F6aWc#z<+H0aDMQ|{Q^Wv(eHDi$()Y`jt`+xt&_Pp*CE
z@2W4yp$O`(RDFLJn<_h9`+o4QUE<>6dNBu%^-2rM%lGriT0MAhu=&T!<?~nRy1Tx5
z^=e1SOQG0v=gzrp&%3+I_xFc~&bwkh?z*;RT})1n4u@hvLBWLIdur-+qqcyW9J0=#
zvrj!=yl=ngy?gg0Y$^=c_+%oMW+(bycbz!v+uy(6?<?!*@bt^sI_<Cfdtsq-yVcW^
z2LHoycsLIK@!VDRwri>P^rV-UmWE#Am9vqMHqUd3i<4t`aCy1^mimI(X1O1}y^Y@a
zWvaY{w%+SkubhH|g&!a9U%$1#I5zZ*y}CO4<72&tk8}!OTotNqVQsB!W+t{h@9v_^
zygNG>86*r67|Pz==@i$GW0<g2V~YKXsn36Yc^S;G=~~BB?Qo_EUm4e*ICqY3x!>GH
zKXdNv5ai?ItADlNT-@HOg_WP56^X7qbH?Y%^XG?8o#K*|lq?bzSQ)aaK+T}jr3utk
z`1AAghAmrKnwy!gt%+nVEiK)WeSMwRuU#?sUs+gLB^~dR)zH;F+RiV(q4sy#uDlBi
z96Ne?mOP&>(6nTU%C3K>rfOGwc)-Yz@cP=?4coWp7gTC3Tc0akUS6Jaa}#T7YHG#T
zSEAqE-e&jr_h$&OaPyj|?mv%V!rk=M;p>kr_n-ga%gf-5tSlvM?e4nyWp8dMZok{k
zFQ4IkaclPV3A1N&+s*H{EPi&u@!Yp>-%gx6=e9a*?Spsk`nG0YfAsF|ZVeqBP)J|7
za^=9o0#KINv13Qo-1%LL7B3DA32C`>DJbXuzSxI4Y0d2X$6j4s{jz-dh7A+?o);Dr
zEO>l+o?UHM^6@^+JN|KTa<{f-w|{$kd-0MbF6)f$Ec2BX5fclu-aL2pYVCFL`}@wE
z@nJZizyFU@w2)SDdAWN^ipt-0?k+ADwj6HbJ$$g4ed6rd-J3QU<=on`(#!7lw%q3a
ze*dYPrps4nW@;{4y!h#{_RuFUUU(eO-BbOY&$|5G65a5xfp!0*A|evr-Py^NzG&6U
zT^hgSt{%C1Rg_=e?#QL3-iDQ*o>Wbrp7<{pG|(co;*s;G?f2`rjg2>JWxDmraOUUd
z-?(|xQANm6Md;z3oy80c=H})eOM`YgzL+Y%M_d2*&z}poY!Pv8=UW>rX`Xv4<nioJ
zcXyW`K5>Ghs;cV4moF{t?d)Oe<9HpuiB)}ncXx(CB9n`fAP*1E3z5yBCNd{y<L1rA
zEl!G6-{1Ax|NG&*?#%YQyG=`%s?LooJ~PAc!N-cC-{uAe2f9SHGwj0G#Y}v?=wo_7
zSQw}<1eMwg132XR+dn=&zIeq74q2;`0~?c%Z^*c)RMqqO+1cP92bQf_!_(=)<m>Be
zl6i@x#!mj|(W3<=B_TWF)z#HO0i`stBTOQD_r9lp{{CIKZXI83ZS9wLcca&7cdlKl
z>*VZgSn$B1!$s*sh0UA$`{%FQzGcgiEt!`OJpKqO)c$-rt<S6H@94;Q<;oR<tScIK
zc9n9!diAPA>e{AFMjb9nRv&KOzAY^!C3WH2wYHr*EuWp4>CFBkEj|5urb2aAmX?l=
z&WpXqd3P*cynN~C>&tt2nQ!yNiGn&hI;%=VUtd`%JZaJ-1py9&#6v7^?(Uvm*1YP)
zo12>rjEtH*RGQYV)xEYRvRO<wD&gOspEtH-3b!~ZK07}@{%LNluhx8PVPRnlE2~2X
z4lt}*wd%{m%}KjJ3EfkMg^3Yl?;D@&>+6ml?G``y_@hDDn;TiDFRhQa&&bGdaCc|l
zwryL{_pYukuDKje7Ztvk<=#s8{OoK=!e3DT6=cj;Jw3f0m7moZB3n<KJ<Dq&$8RIY
z&&<Z-FyF40fgvg?ii3|2<l~ak(vN4&?<c&uvC(Ayo;@})mPJdvSXFd&d6z9)R$|oM
z)YO!<{8HS81V#=;0~3=L7p2Dbc6K&isU;uoT>rwf_|Y!S;AIZ(?#oX-H;tWcn0zeZ
z`MJ48%@?vCzkc1FcXwClZPlK{f8G{L_O0J1(f0Fn?f1LoFD@<Res*r|?{M+fpVD0X
z{KsEjUcTCA`|onY!bdI@)z#Ofyr0ZJcltE9P$!G9y5FDG-G~10f_mh)Z%fO`$<>zz
zN<7m)eyqXZj6J9Wl9-?0-zRH*id8>lM*XDooCm)9A9>_t(2&#hexkCwlZMElyLbPt
z*W)|<M|Xo5(m<v(GwKNEPbL!+lM73|#dofBIzQK%U2l4K=H+FK41IF8UGjB57#Ti%
zc<8L5t?jHM=By#&q#^`r@s->LwLoI@#CMmyT{K_TzD}mBtgPtw*>mUGCQX_YQ}W=~
ztGm0+O-xM{#kxU*Ug_!SJ2%zzbsdkI>pR;l)cV5~J+s_fF6=+b-`o(qU-Ow)c2A6D
zQ$_OUuV0T&)edK1VCR=}NlH?R4YyoXUdsX*PjgJo_NeTWv*k)oPOkZSHJmG5aMg?N
z_v_n1o%50s1p$s1KYv_0bolUp!MkywJ`|7lS4E-Dg0HWxR^=*B^~&y*-%{|<DI+t}
zF*<s-pUDD`#6(3KTib<e*YeiZ*2-9wbga|X)&|u`3zsfsm6esvxw9iM?{@L?a|e$c
zX>l`MUm^eR=Apxf4?Zo*%;_tdHf`F2qMaH#IxGyJ#_i3UHyKirE3RC*q9E42aQ%Az
z{QUeWQ>I+V-T(8Mw1kw@sk0o*UsUx-nR30oz5RGQzx=){4-L=Q^Q~?$I3s@GVZnlR
z>-v=4`!1Z{mU~<6dxCkw0fwFI@62*<DOg%cYHDgmY)avD>yc3W-oLi``@0$T_51GJ
z`84(SjQrc%ctP#qj*g6gn}-h_nlNWhPfrienVH7y$;bPqR&Q9b{?zeRCt5g#v(_%T
zvTbjOR%?jX(F2Xlf+8X=%VV}~-8$7fdSlWJiEX*J*}T2I84ffuvrm{XL1Fv9^)lKQ
zCVYDF@@3-hZ*R8*#ZF$ZK;g!%TT05x%(Kn&kDZvPyn3$KxAVu2C7tm0@>*5c)U-MM
z{G$g4n|BmH=gYgluXnL~zml4oTjH(M)6*9E&Nkao|KF}p-oB4hSna|~(1=^#n>RTr
zX=zG!c5(|BE<ADK1cSotq?^~Ti&uYpb8v0+_6bv_xTG)o6?7zN<DHOe-{0Lmyxf2O
zlXv}-)%_Q__sf-3etUBhH29d6rS<OaZgumz&chEEY}l~j*!|m}VT>y)gCBgX`0;l8
z{eO3ulV;Q#gfS-0&_8ngc>B5g^XJcxSN(Qy{r-Pmi@%3Gd+?y4{QbR$UteGUV!SYb
zV`D^2uE+;a&31pEZ1(kauCK4HeQC0P{^F#g$FE%z;}+AIP<?qH$_SvzI@lPHv$Hct
ztCQ5uU5_@VrKKG@b&5-AA_r3=!{_Jc*%hiEOG!w0^rs%{ku)$dVVQsa`1kwu{@QVN
zc6Oj)vBis(OG--(b8c*~Vm-Tg+cvj^1O*i#PTlLB!s-dBsjR}n!X7F@I}>syPMr8f
z;_aI^1<%jT)vBClQz`WK*H>nSJ(Zu?PMtdSg;8BeiRs_Je<k<T{pK9FxY)h$(GgCa
z=xsiEzs~i`+bbz3FgPs~sIi-WtYhVyo14>LTwcy!VIvn46Z7HCP2*kb{@j^8d$zNV
zSn`t-6HlB6xqGs8-W`jGhzJLNfBxj-eMgV?%S*?|<>uyosIbw{)Vx~t@B7=^?&sTQ
z&Xf!Z2`Tvb>1ovV)i3VttuFCOZ**vA<rZgRXlibL8kKP9&>@4mKNY*?OrPG)$jo-&
zzyXGD-@cjb^GFR}AJ;l@qTrDv!yh$vz2+N>pZm?2IrCzvy8pZ-w<DsXlaKXCZrHf7
zv8|0wOgE|}`FP*KTeqZU&6*XlyG+-2^|EDcGmX;^-MArPWo5;sT+4i*TU`Ia!-tH;
z#l;*fOglBV=*RElSs1|4=+IF3_*iK4%(`!HB;UM!o5}6`v;6hX&(9<FR2V*b^hiOh
zTlAPv7sk-rjm_!(hyJ>_x+*FtFfc4wxsp>`TU*AiX2!F}&!4k1ytuHC`Oe+D8_VCv
zF&y~+@4J1?@3-4cHdS0+=6i9OuXOA09d&=LbaZqSM7R_udI-qN^D}^&ks%==0x~i@
z%F4<wUcCy74rEGk47|N1)0uf;-tBF?`}XZC%3PJ*nRRQ6rjD-eQzl)eP50Nfa*LnZ
z+7q%R`??;e^a)<>xAeR4VFS=ubv#S^;f4R##O<kQw5|Sj;PBza=K^~{ag)A#)eJKe
z6Oq%?bPw+?f4?fH_}7=r6)RU>WIr?O-_4&te}+n5@DVgNHvZ*b`TgBpP-lBx?C!QB
zM_hVjEGOADw6wK7`uF$u1h1tYo}LrA1;XpryuQBvcmpG|!c?z`vu0_1|F*~G>@wfk
zpltiO^1}nhx_>{@XX%-miXQKmKYn+2`Nu~`yRG&|o;h>o$W-m{f?r=UQ_|8N9ha{^
z^78WX!pFyWUEJIbUA`>5bm`I^6(5zpy}#dodb+-{p`oCnqN0RpR>;&pIk~wLCroI#
zbSY?#ZME35XU{r%ds!Kd961ugX$2}YckJ4gbZt$fho9duP_xlNj6LyC3#W&t=fM_E
zVT1g8Hmy(R+f*8@S-ZCI_qW`Z_V&}PC!%+iXj+xLX!!A?LPcHO+1<T8>>Y!Gp`l=5
zVWEe&_u+1FeE~7CYY#qMxq5oK{=y|oRK)-8tp5J4;>(M`y`Lht=gGG5NIJcryUXqL
zzN)WUAYb3vS<LR|=QqP3vFT9B!i5WG7^m}1nmoDi^E2ODrKhi673JjQ^ziaJl)wKk
zTYP-{PWJ!m{_`F@I@%3#_^Qy=0^;KB-qZCSK04Yx!#KU~&iAiZSBHD}_#C;qI(%c+
zRV}G2n-^VN?5=EJAn@_yN03RN0R8bHvF67I#>4IW$9I*!o-k`x*FxuZtu+$N4#)ds
z3*X!@ytAW_SyNLJ6t#RZ77goScPIV(^Ru9&#HFan=-S%o@YLJx{c;PdzrQPqbaq~R
zEBot@kB_r1Uz_3|6(z;R#r5FD3yzHuJu8EkYrR?Y<>6s=9$709`+q-_gMxxKl)Mb$
zku+j)b#?txGi&BdMNLi4)#2-xiR!vq$nez~hD1emF|+d}{P^&&l<UaPXJ@5jb`&`3
zeG_Uw+!&$LHg&3KZ*NFsMTG@uP`#0vT}fBBx9ok=jQ>{PVtc_K`B~Gaiz_K92?z=X
zKJ|@G{rU5!K=;uX_x4&dF)@ksJqC?OEO2ZVaf{~X=U@I?!Z3-&Z;nM^?vi`D(c2c(
z|Nr;ZPL9E%=7&LTwU$ulhNPohzubQQ`1p8+Q7YGzsj0>_;cFbGZr-@@;56N6P)a#+
z<j8{D+uK4f9XWdR;O*Per%s)EP_*;I=g*U?H@|%LtS#;Atj5C+4_vu2#qH0!-s#iD
z*Rp`hVSYKAhOJvoU6cfEY-|>+S<`d8U;gojhlf2pJr^Fl$i&S2@zvGUTDrQrQCk@L
zj~~9eI$Tg%x_f8w^GC;er4?Ep+}T<D;_mM9xu=${Ud_EQfWtv7(^gyCJ8{>J9Tq*(
z=6nnn)<&D}%&vHGLD9v{?NXt^@9*#3{rvc1-@km>`RwfM=F?9PUB5m(Y>HISyklv}
z$<4je=1LY85*s&e<a#gbx@OIq7qh>8e0)6owpB)cet#>sc+$y9syoWwN}c_Gu$jG}
zun;tB(8eR#v}cdaPV<LPMW^z~S}myl{tnbBXSgZR$R}%c!gkMe_GhoJtQ2PBmy1z7
zRpsc&s28)N!E>^jql(bMBS%<3-MPEF%O_5o);3Ky`p~UgQVltKnr6+KbtqX=SNG_b
zmzOh7H>4>S!qx(0dU<(m)s5u+xbyC9yV_qZ+TrUSTv+J5qwp~sXjD9Ui<Xzazx(HB
zXJ1yBM@L74W&yY7-DP6fl6AGKj{jBBdOlez5%+$%qm9h$38|^AVQZtV&Zv8NX{i7Q
z%ZpoEwX43p0hQLf*8M3j{P^f-#NH~?dwVLCx33M+I{Nzh`o#3~b~WEw2}e2vw}j3~
z{P#LSMxgCy)1EzhK<&BZ%iHJKR$rU3t%ip~;dlG9moGc3zrS0Ud3jmUOD88M1p$r)
z3l}=tpFVr`=*P#$K_yvBTU(PrlmC3X#Ov!~>%9cFyuQBv@{6Y}0%zvg&bH&Yetm+X
zb3$fj=ZqN=YvT9IWnWu!@Z;m-*>{$Gay}OxU+elmEGTGIu(%FG5x;bcz>Xa|PJHED
zzvJBX>)VgL`1n*tRu+_KPEXf={Cs{rXppV!-JQ;LvAea_G-w80f4p)fYp*~Pue8~f
zotJ_yH$Q$p@BXV5t5z*qvxaAV{QhNY6)Y_+1H!}Chug`?$!*xU(J?1S=g^@;8}ja2
z$=KCMoH})?M8J?iL|i<4HoIbr-0umB&J*U&<>hN{{`~xW@~thI1;xeAF)=btO-%_Y
zDJ`bi*A5&$%$$9F-BQu+ZMnBky<Pn2=c@BRSJ%j%I(6#6)1rwpW<)%#@?Lr=YP<gS
zq@!G*W{P><9f!$kz6PnMrbwOl1`S^oiLRNoZtARAQlQzC_h0ACkpb1(HK&y8!_T<K
z#>xtHw$!P&^UKHOPTw-?%J;b3dwVSB%$Z|Q`RR$();Z^9nQ{xO`yE;A-k*?~>KbjL
zb?M5LmfgFpot&MYu5+)bumH`m`TF`YY+BbV!^hq&uAlaJ(v1H$*O(3&#0Oko7rU|K
zWl*cG*woORR8UW`tE=l!LvHNuvex<Y=iiyp^T|+*U*66oEKF?E=FJ=P@9(o;dj8{5
z@97%~9y)=>@fZv$J|uv~qADvZ8B+3%PTya{Cu1Ryn3%Z5z9cU%Z|WZ-W8;OZR&`xm
z?4JDd)6-Bk2j)%fzfPR+sQL3laK2sbp=)cSAHI2W=Rxwy6GxA-F87-|>Gk{Ad$MVe
z@uwq~m-{oGSmzrQH0e+cXpB};vh&<r>&20q(+Ua-7R1JgWL{q8yHz)MD`=!AKVZIH
zt=9G4ybli!f)ab}2^}4sDc0LwyvPs{6$K5E+}@tQ{O)0?pm|+cua6m(ya)gd9Wa1u
z!6(n2UD|#!`}(@Ih0B%}&73*&#hsnTZvAq-OTDLGs&@DG=I-q5RA_nd_xE>;f(H$E
z%EH&hEL@usy*;mW?_OJmn+$(Gb#mR>lG)tT!}I0EMP|@Q-<rtHFCv<^=ik4?_5a)3
z+oENSYgT{a%FoNw<CC|Gd1{w=dz<c>HEW*iyMKP3?cvYQ&tF^}t}h}cc4?#Wa=*E&
zjMNs!#Kp;hh8@*>XFd4&`T33g_4cvhw@u3-15;gHT>&vMJslk!Jo0uiiMJ9Dw_Uus
zR?eoP;q-L<<Oc^DP3D8D0Z<Nz+k0qV?e7OKUve@?SQe?An`aA}#BCC2nyl`Bsmt5-
z*RNk1dV0rxetyn)qOSkbr%wl-e`XBX`~KCXxmm}0Bxl%GZ;Q!x%e`{-s-T!y8!NY%
zhRl1=@N&-meX{%i|FdR@yuQ)4`kR8LCTC=1<cU+K4n02Je{pAVI%vJcx!<WX>a`(N
z+N0ZR^Y{N1OG``pdW(%AY+X#})6>(nYqBkipZSQ0h+N23Qc_yg6If7Gbm;T*^P*+D
zSLE_|BqS&tNir-cE!|l0F{!1!J^90fgA6JBeE06%+pu}_;=8q{c5gW|$5Qy#ty_?_
zFCV^rTQ}+ZzrVi|GcrK6_rt^O$(NV;hF<ECx1aY+QLOvoVt4*q_xJ1N^NB89`DbQd
zA0MbR*_eFXNk!=3fddVEAGUAZ>Y9<E0UD~G=)oe_ul}7OeB#QLnxMH^d6l_y=6rZ@
zQF$l(>8{^$#%Vld@9t=tzu3L*+Pc{8ZgKsl<Bt>H+}H?8qpzQxnaR8`fFn3Kn1h8W
zA|m3!x3{-T_I7r1%E-zlCL}bRn`@o?>B&i6z4J4T(-$mT)>iuZTH@ztX9L2+m-B~T
zUmw5xI}d|S{65ga2+$gWWBu~|cXyXxHvd!p?#{~K?2GsIR)f4b(St=_Uq5PLVR^ax
z@jlsw>(}=mY-Yb~{_d%cuC8J3Et3xwHghbC+w#J1&N9tD@c5&GSog+^i%M%^b_zA*
z1pGeG$efsy)3dw${i5jYc_p(?eGkn&Eo)WMuyLcIj*gB&?XQxkYh5qDy}8-^<x9zj
zpEVzT*6i55`|;P;*E6oIkzBNBkwN9B6b=?9(3IacpD?r1S0SJo`WicVJ3Bj2Z!7ls
zlP4|Z@9#OP2x-c+ynFBfG>-Y9!sbJT4UdFDL*D-<CxvIsnssT*=Crd;adC26wrshu
zKHeTwzP!D)m6@TUy4u;<nfcbOTL$Ll$LClUgH}g5m{r`rc~g?9k%6g^ft8gtVoOHg
z)J-PY*Le2-{U*J4e{)k)!Gi;gw>|~l{u$;H9W5Qa+%I&8Z)rXArgigY&6@SaeD$NM
z(9lqyITnKYaeEjPR^NH`;>C%xD_Bp|*+-h|v?WfwAla7q?<=TYoapgy%DamArm0g!
zlai7y?5X^`f0su5lv%T+{N~&B#_g^8d(|~jqV1>mMneUj!v_D0>c9Vc_H}OG_xZ2h
z*U3t>B}#E;BQKdVRNx8b2aQW!zuxYl(zI`%9cW3$b=#UB6Z|Bj-~IjlJv40-V+!L&
zt>YaG4X)i{7wz8dt@?WC%uM5#R(jL98yy^$?-%VpTB1-<S7-O<@864?)BRt(etr1J
z5f?qK>e?Saemt0+zpruPM8T4hl7!^s=DF78bzyN&Crz4UkaVO&>avV&)fUHz7y9LF
zz0P}IUl+S@)he&!6GFsY)^0pA+noRRx3|m;bF9n#^1L2?O30e8tfS-euI{%Cucp6~
z6O)dP&V@~>-W3%US7vP6ut8wnym_Dz)_wcz_++iFEGW7j8WSVq<KrWh8qXUjw`SA6
zJ9qAEsQ&)0DtGeSxxKp4+pf$=`~2)INYA!yW=u>>t9qm2!@}A+h1H$By}7NdtV$fJ
zb|RLJg{nz;`1-c4U8~E(!vh-p{qo{sm8^U1k)uZ!rk<WA(0#O|Cj>N#W}ko0reJ5x
zPESLT+WkpMNe7-535trUe*d}Hz2BhVfrHeZ%O_57i0j9(D9q+vUHki6(f+%l#}~xx
ztC8HcZQF&bS6$D~vo$Pw;;~a<G0*4qE)s1kjd^)_i#|W|b>dL;pKqs{dwZLzdEOm`
z7J*5VCp$-N%kkV*`r7T%<;$FkEqkiJ_knD;NlH%c^iWY+wQ7}$x_W!vzWV=lNr{P$
zb~Qg7I24y`*)ru_w}8`*7`>C{&xc3od3$?*`uqL<<V%-=oH!IUH8r2SUcX;W-GAPi
z?}k;?)sr`DFxWL`(j=#n($bUX?f=KT-}6t4TTDlxv9a;$y8mBZ1}jf<ySJzE^NBAn
zFTX5GOH&IB4E(uf&$Ts?&VT;=`M2qlP2HavDr#zzc%{t*%FDk?T|PJ8etwU%d7psO
ziDq{Gj#aC)DnCCv`&@iaAIRmMohQZb`#VQQMoxTuy#IRj?t{(jlVf+6UCo|7V}?Xh
zPEO3*UuVwvd^&4>f5M$RF-{zc>(;GH`TXoG*X6w1+j@8G*dgG=QTg?iXkc)#^7nUl
zm0JXa#KqlNm>4zn^wf?XJ?f$&G|@Qy97xswf41P2G#(xbEdoJdVQz7It3ua5UeSN*
z`@vbJ*&OrFFF*bH*;&vEfFswgh3WY|eSiJK!^54ECkq!A6;1km=jhSaHSzoB={<k;
zY?8YFJOL+;o4ZQ0x8Co6@+9Tb%3$@Phlf~y-R!sj=doq$R?on|z`y)c68|YiaC02K
zBK&iITz7o^U(+vNzC2lWFz3<|&b0IMe3!2YRk5*=0nOkUNuQdm?tfvSGrQDxP-o-9
zg@C;ME{^>tckHmRsrtgPI&AHtwYs1IuV-h2Emr%~a<VYBw6>n~Rozqk+z+~DZg2JX
zV`pcZzuc92dRpW8=gt};hYlTLI(qczj)I4v`51<qUlu>ze4nG$$!dAs&yYh;!`4JF
z%Js81Ixy(#>w{LxP1qYKYgc0ds*{+RnJuiW!Z;b0bxfZw{^!r1gydxB(~~AlV1O@R
zi^%(RZL+#QXf#euO>KgQ%8rtkK~rrmU%s4}kig(jRvQu$lJRB&Xtej}(bjj>hue5T
zz3OXgqc<iW=j%9{^ykZE|B~Ae9wbOeN;-yzhp%&8wCK;Dnu>~w1>x)CHf-FuQi!$s
z=clJ%c7Ybg_$kZC$nfy<^WV6A+c`d7J})n?;`g`Q=F`FVg2F7rdX)kL135T27!<l^
zC*<b#9&YEqzAM&MKYpLfe7o8gdyVV<R4{CMA5v-H;2@^6If*;j)01=0o;?R1e@w{A
z@@l>jTK4{)ZA4U*lZud|g206X6^4d}pfzb5HyZw^*>@)=F)l8SgM*`C@nYqwZ*Mw3
zK0dCjsK~gt`g_~7Y13k~mu=l@3R<2S931@O#fuYbSFc#GfT6Cg&cNKfJwW5g63@vQ
zPriQnQsSW^Bq1f0^y0$8FV%sOo}QdBF);~QSzLDW`wf$iU6B0B#KZ(zJ+?7INBrjQ
zJD^t8vuAGUYM;M<U%yS%P)n<8n^4J%3yhGZdio4EubfXl*5kN2?JQ_P+m9bVF4UC0
zxxpwcEp4?}to`sp!z8WU_5bZ;WMwnC3x4v{EnT|wLD9~LT_u`l&YZchIo;pI%}wjf
zVk36;cCCwd@7}o+5D*ZM8?$K79#C!0w!7?YQ;62o-*4-GeOY<uO@^#>*_7yY=RQ3>
zZJ2n7<;IO07tTLBGqd^H+UWmJb+_|;R^7<OakysL?(+AKzP`R*)Og=QhVReczo3z!
znB8S-PnlI#R$A2lGI8sbVg--V%zSvbU0GY3+qU}Kk?r^Ex;r{Lw1PiGMMqyw`}0XN
zV)Eq4i76>Ai~FZf_E7Qg^$m^qHerH5&b>W5&mGT7OKY?L_k(%o&Ye4|zG{J54&KxC
z6b%hQi&+nzn5fKnLQ9aHUk)_FGjY-+P+N2nXr;s*hE1osmn~BZ3JwMdhprAgIoICd
z+lT$Nzsq8Fm+`J#xiaJ8qSlzD?|yxK-O<x?WUh7jf<=oK6==n~E(y{ERmHQ-^Of}V
z`GwW}TtY%bKoh%@)%}xRU0GT2^OLHPvGK-~lR|UsYNbFuvXm4R8(Z6#&Iy*awY5*4
zKYx6*TYQ4o(hC<aE}XbFIVow?kqQGNqeD9i9~-2dkx)@rPyY7iCPPE``nZE<&hU78
zdV=~IOw7!p)9Md4v1VLe#(U|~rGhUn0&g8<o?v_7>60f4c6M@|ot+Y9ITC8Vvs|vn
z?<``yc=4i#zkmCxRa(!^&At8L)0N|(7W3Zf@?CfKR)5#xZ`j(|)6=qUo!;K^Y5MVg
z*RPt$zCJtK92Bc}_SH&*3jH$n7|1{z)5?&pD_26SzHVN*QgdC*&ZZ+rT;^Dp^L>7P
ze)&f^hMOjbmix_hs;aU|N=^n1rGdr~H8nLmIyxNO+}M1p-`}%UQBhG)Rb@3aG~`-d
zKF_LD3)I_^m+zl4MFi9%(Ol%-E7j^bS?%Gqwb2}$oPiOBYz@nNXD7YCw-+?Tn|E&y
zXdveD4kyr}i1l%MC(N0%#z5l!V)y<h>!!A~xoy3^YS|Xkwcg&|&Xd)AL5od0T$FzN
z`t|7Q>Ts^_hDk>_dgN@SR<2xmV{<zHp1pgY?$X$rb(M>glhdN;NynkgR?(aL>+7ff
zUa-d~_@C{Hoag7}zPP{NJ|rXrG~w&w;&P$XIQ`s_8HUNAR*s}`TFA@@MKv|Ib=+Y;
zzxw$3wYey*+@#;>^2t@{y78I&tg~6W6JMRYd|6nAk6lty^2g8T^H(3y4+si6^yp}}
zVevDcIX0C+>#inUUl;r0_ICZK?RmV;&dw`Vt$Ot3<>i91GPmdF=7KVfii*mEQ&Y7;
zt5&Y9jc$K^ef{NAN1vXaesNdnYpdy7cV+sXzW?T0=+R`0njZ#v_x5mt2AhA*HqZa?
z@G!fKeVxp|fB#H&72e*KyZT9LUS6MR_O%4ikpH%A%hs}p9zA;W;N{Dc<+2?d8tzCi
zi;Ig(WjiQMJaKgQiq7_Sc3bu7`tfdIVPbRU&V5;^p{e=s-rj1^z;81<e?o4q?{!UW
z?Z+P<A1@Mo!FY4_l^HW6Z0i5X+`D%#Vt<`27Z;a+v~=|IuE5n{Ye5lGWfK`0$#wbY
z(W4jbzUAKDcJ#x;!!Mg}EOc(4Fl&}qbor@Mr=Dmn{rmg7`*Odz3@09~3F(vmZ25F$
zzkM>BMyE^D*Voq<SAKp5suzk2ymE7MrAqRSbO?f08-PaU^<sCOSPB|zytA|T<Fm8U
zH*Vd!<n{0Lbp3~qA2<L0{@yt<QnIqL5;T)$RsN30L5yY7pP0`THam9gXgK|JQRwQh
z3zsiDr=_Wtl$0=>c*Im_A+sgpBGY2GUZ<QKoi<)+weY^f?flA`nw@=y+Io7RB_tE3
zPjBC{#RQbJ7!ExDENZuhY18ZdH9w2y*i;HFUApwd`Sb39fq`?+g(v^`@>2NGqeq}A
ziqOzd7FO28Pft#U-utz`@-ticyE_XFTT4ny6Z7)=PEXgrd~Nn8afPRAC+f%VYgx4_
zYijMioyF`)8)wv|uZ!Owr`kJtvT#UfXy$<vU55@I&fHR#pP$boWzw;&qEE_{>+kRH
z$8T;<&onqTVS+$ZXK7K9Q%On5-g6iC*G6SM+uysj!NAAX)!kiLSC@CW|NLWTW*V<9
zX=Y5}w|swp|M7>1+n>tqIdu4N;kP%D8ChANS-}%0PfmQ@cJyIELS9}UXbwAkU5sN{
z*|s}}w=U9)NZKgj>FF7I?_B)eDp4^pvHD|*kAHoA9S|Doy4-KB1IIy7vHs*qipSC*
zkEKC2m7iL+m0US?=Z=h~rlx_h@!>{h_JpLQpzJS?PVujQ>Ue@7a_Pg%%l%7ll~*3+
zm@wD7(LteH=H|_tTP{6(^hjy@yNiq6L$%}^)-VZ4OLy<sVPRouxv>2GJ&S?|44_di
zZRV{%?>t^v5yzo8!#rP3H$N*YYwN|^+WEiJr!H5^%E~H=4J#@tTCi?i+<F@wU0ubg
zUWrLbO)p+#+^ThtjEsEuFI;5LW+lFMX1@03latjin_nt_f3LN@on0?>7fWnxY)fnF
zMTf4($NSso&Xvu(yNh*YNSB;#)d}bbU2uskhazaj;ofO4U%rgko;UZ<m#eYIWv$CV
z8F@$1Q!Y?prWw5KN>$vcm8(}@{~2|4%C>E#-@bj@vdEz7OU6#d2c|1ues4JaG^~0b
zFAooB{&~6o{6+Em>#l|!nywey#mX&qV($7SOH`IDU3&2Pb@5rVW)&0{A3i-@zwp@^
z$yv*CZ*K$fSB0(y4L`oQv2pRWWWnyEJF32BO+CLpcK5gCf9s6T+!tI8N(oc#b*wEc
z5*{7toMBy_H?_3k&HNjCDnGv{3JMY`DlY!`=B9B<YO12Owe-xHGc8JAiNx)#YF)BK
zWvBVsmoH!b`0_G%Eq~^>Z{GrfgPju+6lyuVJv|*GA|#xgouzB`nCIVfNk~w5%Vb*c
zz~RlEox=U{_REgP{99mM@W27o^9C>K-=2RzY^JTcx;ndV^tK}#5)W@EdmD9Uf4%(s
zdwVB)KYsC|<Hd`NUq6@m&VKc0+wOI1)~uN@abn}==jSh<UlODVnnif@s3~~4pQ5gA
z@4DTEkJ}E_$jHiq0>h^I8;_KfR6#+(fhJb&gzW6q2DPw-bmz6g53E`}!P3g=Ql5PN
z{e4So-!k5e{=qA4cHyIeynWr2*G=VreiYt1s%m31r*C40N2S)f^}1&_Bp%LqeYTmM
z|3!2X186GzMZ|(xDe38pLsy3tl$RgBwKco&`@2{XF)>glbLGmF8k(91m;29Owa4{5
zWSWlQ#G;j}SFc`N{QMlKq+AlDIcf6bOmElc=jMWT4e7-0nqnvL{OQw+r=IUDe*Wst
zqh%-hWUT|DqPh+pa(Z)fv-`uG3eZZlOG~|9maFUQ^YhEuIQ;(hHZdW=A${rY($~`t
zt(*7scFC(NoS=n?b#?ph+~9D%zGqS5;kJhl4mO`Sd)75FQqnB<R?EY~?b<%C-@WU@
z7|HXz?&{{YXvGSSqeqW+baX8ESy5G`q^Q_fcf4QTp0Cj%K=psw+gpvtA76a8N>WnN
z!^5Lt>(<h(PuKTOnj{1or+V`yr}eRIPj7ExR+iTFrk$m)!$4!Yk&%&KzE?jzHTA}>
zQf-C@H#R13IpoCA7@`I06Tkd+wbnlE%#6mfv&~PJF8}j#`TPqTlihhF3?6LmpP2aX
zU4*z!+sgJ+`S+fkoz0$`o9nSOsN}^3$Gp9hCkvaHnr6;_4w_$jS$t<(ZuFOzm)Wh$
z-Z-p}+Y1^x+Ee>mEWY-u=#;5bH>RJLvoe@`_~C(Dx1_whycAj*4nI`T(&D;x>y}03
zCzWOX^Zj;L?y305#L3C|;9~_>zp{!7%iUe2i<>L7qc<k8Zp**l_x=5SPz=tnF4wD#
z&PYvdeR_KO;j?FXmo8nZp{eP(zwR$+AphcG_s2g!KL_<BHf=JB+M3mR<3_~JJ?H1!
z_g`Hd?(FHwxpe8$h@C~LQ}a?mi>->E^PM?+cHxpGEOzt#f3L4!ck22&=XO4evNsaT
z{O9)_IN&g4$`l7@XXbW(dC)E>=(ysd9XljcRaFhl%%(|i4qlgiecg*28<pQaN={F2
zPd`8JWbgkKJKisJZU=Qd1iFtFl$W=+x4X~1pVi*dl5l57;ft%Q#X~|uK)pQqoMSzb
z&b#@h?q~h>`SW7_(y*|w4<9}p*qnZT!SdzqyJwgzv3dFOC1}L0_CQE@xO+i?!Jj{W
zK0G-o%p+;kQdT_EG+S)X-o2nTKdGsype-w9i%*|85pW}R{U*>_V;vnHFE1|*ZSBLe
zOtUX6a^;SQiaK=hq9ADG>3V!UZ>I~>$`G&Zk3avsv8U1)H0rdc@^jYmwRd-y>wkN9
zw_DA3R>R?k52nZ0F)GZCc)0uhK4%XPjw4Bixs`z>d0Eldu3l|*Q93x=Jl~+?MF5Ya
z(Gss+8#Wk#MsS@L3NV2BNoyiDGJ$#=eX`b|mEuoNPj?Ov56}Bh<a+PkJy2Nh4bREV
z&AhHW(St=-SNFrunvCr1a7p$>OP97jc#tq-_Uz`v4-XtX*cc{o`qU{<JkOXR0m^Up
z?%nh7@oCw%&1^@E9%yJbHa3=F({z)(yu1e=D;^YBNSJ1c{QB~e*}+T>w5P$q+`N6$
zCZj7?uB>{yX-E2bIiDE@jsNmM<KCb}%$b>)bKhS*6}2s=)3sYH@n93{i|gy-r+!_y
zaG`;L0Ym#?$HGFxMT-`#3i)PZV`GqgO=nNtU#aKk<~j!i2+T6cWOCy8^7ZS+vbRyQ
z%=Gm5k~YrJla`RUa8jO6&Zfh%_}PQ+_v??#*Z*NmPEMAwubacVF6H0V2nDCMpVKup
zH4pA6eEi|lQ*Y2}K0jj-!~b~)4<7vS;bHTg1#kCHc5G%#Jlw`xI?MFM{4=+1No`I)
z-?n=7>-boaXZf$Lt&Ij%L4SUJHcUG+WB)D-p3g@?%jSMg&%CuIbMEp*DKqvr|MENj
z+yCgj4CAeaCMGUvY0u(gdD?zH0u7o#HwX8&@j9hLcN0Ul0M{(LbSX$DW{1G9U%wuF
z22EFg`2O9!u5Mq<llRZh&kwg&4oU^Jfd2meZok{7tgOtU=!wVP?UyfHXxO*UuEj~Q
zq@?7*vu9y%-&mDy&AhC(Q=z%5rKQD0<5s?h2ZxK2po@}V)b>1HUteFVwOP*R9?xHx
ze}CVJbLZF?TwGjEl&)SOvvarIojZ3{$-2ab^J<>Iwl+F3Bcnsjch(gvLr{N5MTqmu
zmoEwvJqq66+sig}_qwL$W<e2=D;mFl#XJq%!_Ce8dT;LUZ*QM6eY|>fXYun@y&3!`
z*rxl>u@H=kiUM^Dji+gT`u%?Y;hQ%lt*opBI9N*B3>h?ZbXt}#SKqRAD`@E5xt;H1
zuC%NyuibopXJ_XRKWl7ie~C1_k;}Qi&zARExLw3w?_GtD*<xa1K$|dvgM)9}xN#wJ
zBWRVzqa&OQn@+lYdwV-PyRMy2c9q$#+E~zx{E;J1Hg8X#Q7>f1){<y9dHs6*dwVLI
zTUuDQWL{=#$g#S3eSJLhkN<!7?k;=V#VxLPMe}^}@xI!bhpsgpeyCt&CDqo}#?a8r
z&VT6YRnhcwbAG<5?+{k=Sz+p1%dDhzYo85&b#*lh8(WxlX=-Ms=9DQ@q_*t;1uAg=
zR^Q&13z`z!vSrJQ^!le24Q*47U%4Uz8e<pJjS9(*vbVRd`TzGjXbHliMT;Ihe!SS=
z*}?j&&+jqM-+cGx=Jddrm^B5r;u(H?y&nJa%7gXs``ZFEK>GvcMy_83S!M_7T7jym
z_ICD7n>QbPTC_3erV+?%-{0SN4+|4h5#oIF=FNp|xzQ?WYDpItxq|j-goK8Ee0SG+
zXTr?+!fW0a-`!Iwyl&mP8yl0^dE0*d`B{AA=+RKm-6<z0Sv|F^_>drF{j7Lnq0^aq
z)@;Va8RtJdILQ3x+wJ@t`)aM%)-Y_+^wnlxUHt>RCEI`c&KSMAUoX{X%$&I}{rtQl
z!Sd=aFB)f?=QA<Pv#n+;FE9V_vxcM9simcbVS=w`W?mkjva)iA%Od-=mx2l{X3U-~
z{pauBjYUtr7&fgq3d(*vcUm4vGHm0Q_j}Co<hiDw`U%)tfaizLpXYCDYZK^nkucAb
zVTgR1aBE8@cxqBYTH0Ahtoi)&%P-ApYieGEOa=7=Zfs0`Is0N4|BkY<vKfZSY&khO
z3)ZgfZD?R<eY)OeiLb9OFUZE3GbQJ`nHU)fJ$v>Hv@dt=+_^CdC!e04ez_F911Vkm
z*VF0o2AP*s7&f&_=uP)d?rdpkNqBi_Y03S}%uLX7=AfXU4}ZVkch(WRy#2z@pFcrS
z{G-P1%-ORqOU_PRx_r5_(!>K7E(kcc^SL@YGRB4n1Tfg!+s~Li+gU>->CzHU6R{qY
z!M6(*dc3;)^Ut^U_4%#k_tKBsb6{=s_KZ91{QUfP_Sf&fRkOPI>#I-+Ny&@V%Wd8@
zO`kqJhTA70VL{BD*>mQ|AjTK39@`6Q$mbq>^7-eNwcoo$wG-0P*p!u(XUv{``e<Wd
zaPZ+jKR+jCW_G^2yF2;ywY8wlwk}GI%a*Cly|!)7)Z~AEehPHDfcljoAtGm&Kl(ds
z;zY*q@bDQkXF6(#obvUo{_w!@#p~D3Dng0p=2%{xxBAMJkcjB$!#8e7*vR#}1^Ih<
z9lEwQ`sJ4O_J6+wPt9GtXwie`&)FT!T(|Dty*p;k%r4NLi2C|^2G9oB5b!F&)LH&N
zzXt~g3x|b;l}u_3T^*MA>&r`%9|^0&);?+CxK`@%>g((4iHV7f3j;VhU7CLUs9@N1
zKUGvzl!cugw5WgAu3cBR{nCluB_gcmvtTN}!?#T<Y);j<ioW0a;6Xx<jHM8$lfFJ~
z?}g?5@>Thvd7eD{{Oti6Edd%WD_3fQwnI#sB(!74jssV&h}780Cm-usS=`{!_A^|O
z=kS&2k`fa^uGXvT?Cby82zI)(2sjlL6?y#r_V%R}U%NACsh1OnV)^@fs%xXSt1Vr+
zv_-(l#KgoSD@#kUMZntHdQ;9#qg}Cid3uU16Rxk1zkD8~eY#$(ho>i}V#|bkd#fiO
zZs*t5nY?<nwx^d@(2jMF>Q2krR7{YNkPvX<;N<01^`54)@U@tJoDXQYj6?Cr?c1~e
z#crGfo$Y85aAM<?a{2b|uJ`3Vm7m-4q{YPCI22VhG&*|ZY-b5Lo%sFzJ!s<P;>C+!
zc7PVDojP^OBQQ`9G{w-_-#=Y@{i5Xm&t~U$?B8!6yRYCOlcYfc18BdhVhd<ET(Hr>
zfkRQn$Y>G^3(JKqf`Wo67Zx~%o(pwzW4n0us%neCrmU-4Ntv0R&(6*D=1_D|nmFOe
z5tm)>t;^pDIB{&;v`OiBzx?vboV&ZGZpptt4>a#0-~^hMIr-$|<kfGw1)N-z1aEFk
zW>;*PaOFzKr7fAko3gL#IdLfN+qW;}{5)HewcEFwM{Z8zy}Nw#W@All?ZwZF@9(Sq
z-@o@aU;m=0{|x`;dgeQDH8M0_U|OiEve5Irf~$#$;}YSP*Lxc@6co5(x|$kz0~}VB
zWHyy7)zWR%-s{0Tw?)ZQ;pyMM6Yuv$Zc7RFnfBy&rJP(@`MEQD($mU}-=CRTyh*m-
z@BBR5r?d0-8Cw25F;O{aZItQW^Pokn2O62vrvF}4_V(7vU8S$LeBYJ){ODJHX)_-+
z|9Lt}N{^5AP8L%2I<dF<yNip8jZI7&k7QEG&(PIjSHI2dIPv&+zw49tk0V^3JUG}~
zRjL`fYD$lcWsr-@xw+Qretv#NxwlLN1%Lkie*ft4<L)jllO|7g4HTJak~yiPBW6!U
zppA{qlViQox3(<zpYIhEG^wSf<wPsDxQoi$AM2yGu5xj8J^A+b_M?XnJI^*tKPM9y
z8k&@p#PjOYlas=4w=3A$#W686Z+-t~N8#fq&HQ!-JLfVpF@4!~czS%D=HK7n%{9uO
zpOY;tExr2tO|SXA3w?p<>FIlOzu&8VpZRrt;NrF(dHXmi^E}Wg6Q4dFm(PAGrW2vy
z+ATKqzyXKM3kw?8#P7eCF{iV$GiX(a=Fg|o<6TtVZohW?xcj5WkDop|+Pz4l3pAOc
zq_ipZwAfqoH?IHw{R1&4-&X!xuJU)IS>7Fsl>rNzY^uI^xVY>pd8uTacILt>&@Kf*
z!JAvNr-!VG2z+;MueMU=Z)HQnKo^%sj~;FL3R=tge15&2lG5(-_tT=bX3gyB)UZz!
z)>&k8VX-?uLuT`&n>TMh{Py;?M&P0rv%fDdFSn@pu;AWRYtSyO1M}<ubrwE8_V8G*
z^oFflU1MTo^y2sBY+312b<FLLsr#ka-a9)AmF4W~dP-kkWAu<t-JNrD)2*V*@v_&B
z&WyXf%-1mUlFA(WdbzW+Or8J!`pSFi&CSj1#_8u+7%Z%<7l*Hp1MR{sbKMxdJug6n
zwXd&_gNy6XQt#;j%l+o^yuP?SKmP64WxlgPJ1=i-&CdQ>{ow)Qq{)*v7Cv^HV^Qc-
zU8Zho8oIu+!|!O9C}^A`W`CXR?(+A?wq#!ZaFAU-;mV4@9R&}Y?j<BYGs(EXu+(cR
z6T_9&;r_cf&5w(TkvTWVa&hd`wSkM-UR_<iJbZpf2gh5l@}wlCnAq5@FF`Xyi!=(#
z%8o_n?`^%iyByS6jO<g_2dy0tR`WS9(>VRYp336Azh+<FS6f|CS;@$7=<wmKjVAF|
z7P)f&`F;QYG3oq0jbUq}7P|FHF<e@=$$z#P@5YTAH*DQ{bf$4SXb4<Zc-O^!fB*hX
zOiy1fyL@Z*^<!^uZx@u8=VxbUXSnc=Ynpz%-1<GAxcFo&7L+gjb7rP7Xm91NvbU>b
zr-R16Yk!&O#qaC6a3Nsr&X|e{i+`Wz|Cd;M`tovr!-@|Hb1Vv(R;>apqU`AF+xBC|
zpXI9R>W`0f3g6h8Ek4h_zVF-H+mCm@-{)LWVG&pVxAe=Ko5Fm2e4zQAsO@>ZmzH`f
ztEjl-OQxTj(>Qsu@GP@jE{2RdI}B}XZ9g8DuRn14vhccf>oV@|vu)V&_{Vws|7Si{
zZOOeIw)=DJ_Pp4|cc1<H^ZERXtE<Jk#B{kB3W|!DCVbod>1O);#M|3)LF3SmkM~cU
zFk!-DL!n4(H3gT*1=S}k_4NGKS58$eQNL)lD{yu1RAFUbp?fu-eREZc6yCP{pTDEE
z{>zKNT$NJ6gW>VDOU-wcyA>`oFL@CF>b`+ue}-Xlz}~9Tn!jJKr#-LS*y;Z(H!V3i
zxn#EF<bN$OE}$hNHJ?tZvpscTd3>zbdA?n(Q4DCA!N$_pVW8<FUMUlYq$H(l>*M>|
zc%`H6v{|qI>bbv0@ZhmtY2I0XBaQO?jwW}lU$38(l%$|^%dqJ0uhJ=cu~xySE8p+^
z{^8f_^~vYw*@Bi)IXO8QRDa94aqCvr*|Q8OKV&al-J5rJSH-tCk})wc1s@(bo|$JW
z4I0B;zyDv?Jlkr}7@>qsg~6_pmrbCp=>`S@g@uJ5K79f$cG}AF<mmei@Aj@*wl&Ak
z&+nSh1o8dyyCO>dcXM=!>2{qs;nBRqJm<!O@AvMM=YDx{@x#ZD2QMx4UZ}wpSN+zs
zyI$IBx?b<<@by{hf5O+r817oXXYbyLvu1VOxDioNQ6Vwqs;+yv;-gbjwK;frt}H8k
zcSo|UtZc*P&4*vF-wz%+x3P(d7Gnrm8N|9adi%9m_fy-J9xwFp;Hdlk)_n2e1<$Wo
z^+ayVk>r!LYH@DoJ9zV^<mR-qr^?#pUG$ahn4PAuK0Q6%Jt9Kl*Z249uWzgQ`|InD
zqNiPsKfkE+O3q!w+|b?4EoGXu<a+m&zrVjTGVsgWUGcM+t{>mGW5*7iYlpV@&Nh2^
zJAePt-|zSHE4+PpDsppLX85a;@N~un$;bO<7$&!c>Br7_IoG~kF7?zD$N&HS8m66*
zSbMgtN;hiDfkUm_j7wrq#%{}zjM|<zck$P%w_C4+R%pMy$tURO;?fd!9MqwHc(|S6
z(z{P{ED8_3D4J!S-{)`tSETgyHP#7b?awFs+ZoPU!052hsny4>IiYX&ZtGQHYrCGF
zp3dwct!nxAq}Ou4xdyqnOqMKL#^kX(x#;C3)!bj3Qcq8qGzrvBTNAT0sG7lY^~XIY
z?rePX_;GXA)m52$=d6v}D<!HGa=|YIG>i6r-*3IcrJ!;%_4Kr(4UEj7LFKnMRt79&
z0`1>ccss-U{{{OAW$Et@HnTHay7lPwx3doqw+o7jF16iU@a~Q!D2D$3y1w5a<AQ>W
zU5x~2IlQOm#djPp=LMfy<=QRA=uz$V@WaEy88<d4HtgRXKUFLA!ILLT-lj8v_85Q)
z^zgV!)`=4*-U|K3$}N`h`?o778GilRx=6#K_Scqs%vUAfe%6cK1=`W*;p=;}nVo+_
z+1seMdgr?j9Xe!C{w{_g^Y-U|e}89OSis1zp!oT@DE_GFda;KNHnU&cnC#AwSzcHE
z?hdD*V^NV&+1p!7Rn=csf8AC4+w9xByQ}Z^`sgbtFm!fy-YO1f=aX@WiJ4RO{MFIq
zOIHl7vaV>HnQt#|UH<Nh-R{!YVxS|ICg0XDwkmtmvDAC|qjPhu87@_^d;9oYnG~6x
zo(^hUH6IIVJj&9d(Y^2gzv?S10+~x+U2**S>T2NDtk5^NwtBz!n&<aR`@DW!tC?x;
z%S%f^14yevSGPTQkWlmatT{u&&CThcjo*rjil9SaPEFBFF1q=0YxebXFGR!c*4*7y
z>U?&V>BIN$`$2;|x3}eT@ba=w_;!3(*xINS!OQuWn3)6D$JxGpQuFN0Ob;I)m#?p`
z3d+dzY)n2brSt#w`u*2leZ1%{pXs~y((&IH-Q^EnyC!yZb-4T9s;?JT2CKKUwx;el
zYxFtt@v&aR)Kem$h2Eyw*Ic${UEPwFy0_}9)A@O}7k3mUuhotZ-aFki|DMeC_3_vJ
zUPN!p>CC>qZeiu;XKvSRGcG9j%rJ0#zcAlhH+mb-{hH6c-xBH;yY+6#jIa5~nv;_w
zAR^KtWtz1hbamK{y1%>3_69BWS`ofpuBoZ%!lqR3Js*!r-|Tz-`~Cj*_3QP`^6qqe
ze0+Ry$;(Ti5rBp*%c`8)crKo*`+m3l$EVZ!fh&Vl&&)FQ_BLPy4J{n)7C&E5yE*;*
zwZ6HX!s<!CzPw~;D8E<9ZfIz@B5bYHukY{s!{aJl^Y^jwN-fB~zK(-~1Jv#F`Icf*
z^u*(>;+Lzd!yiBHw{P3M+uH8u6XBM&wnbrUqpHd;HuUr#7r$>`|4#-KD!a?x8l<0-
zS-W%Tx;bmt>Tb)q*>rVvxUz-@$JJG#pqfrdNGM=UgrQEv1_oKH5{I+1Obh@1DizU-
zxseeIT099_f9mMyC}Cf>=iWyNF|oGA?)|fBIQII_xBKw<v-8m|(ZKC_u|1N;Y*V#D
znI@E(o7BGdn_v4)^4q(+-1YVKE$!{eN4rFC&7BY0j-sc>C#n_V0CH9SJsT0tAQlGD
zs*Q@u%7s~1SFMQLtOgo;eYg8PlZW@GlHWUhXPZgbR&AMfWy$jg4;tj_{|JJXhXe!&
zxb?|&etmsCyIfW0=URq_0|y*(?(PybPCMh!$|WiwA<?lec6V0!ma~7;q8E8iR+BJJ
z;{lCUFIb>pl6y;J<Hn7k0be=Wsur!#RSTTk`NYaE`c1iCpi-i=sAfgt;kF+i4)cF}
zwR-)tQVljxm;RLY`iydePphX)5xH^m=EIklm)|mGaB(?et>EJFbCPMldO~vY<oA>L
zWxeN3R8rE)s9<mD0D&Uj_YDGqk%IR2_PG~!f-FlvKkw$NWyL2asan+kt6BEEyQ9P5
z`@6fF_uQLvZMnbvidCzw8y<+S|H~R49^Soc=H9BWtL{ChYxs9y{<NyXgg_;wQ#NV}
zE-qm%fg)=nH?su>27+2Ba&|QxN4v$-D=WLj^^e`$oNjCz@8QvLt$C_xfC%ftg$sZD
z`~80F`LOkIy{kf3N16P8dV2cSdozoa#FUgyS%D37yKZD=Xejvc<HxG-JNEzo6kk~z
zExvH!!iuj~!?(t*2aWB3w%S^N27Rv_@VEcl(#kFV=*P#$5_UBfP0h_4Yk!yR{R$e3
zmbEIm@Ow?o&rd%d_uFsCzi+oUFQEM0oz6C1X;30v5xsrgHRl_khGgjKFh&N@z%n~K
z``bR>&(F?oeV12!2vo=FMsEWxkamdrzU}X?ua~uxway)EW`F$W=VuN+zH6^9z65Ox
z(_X))>C@BGpe4Z!m)`wjVPScpyS?u3uNxba-TSV#cC2tXJ@w<Y&W;mGb#-+?JBv~|
zxws}NxpsMUi|MMUs=B(kgsq8CWM=1^a^*^hpkU;-oS9p)ulu>UFflVf{qXScts*(w
zDitLq-&rOTeP^3V#)dmNHHqj(g}l47Q&~xA|G!_WTiV*XI!@f%TfH>x>?|dvPtWJq
zd+n|I`sCzfbtR>ukB?kGe*8G``T6;$zu&Ld|NHy9xZuR=@%6E<uCLd>y)Ae0j~^8u
zKYg0?<Vi~N*MA=l^9zZHsF-G7Gx=ejeokib#&0h#yYKt)h+EPmW5Sxq&2H!B*=m1%
zeSN#dxi3#I<-cC&+}_o3;_vV8OA8(z0xh@{6a@9KK*hL=i;}YP(fjw~U0l}1>{NR9
z?wwn*ijvZ4P#Ra#-kf$;Dr9|}?8=oZIr#aHuLxWWTCxn9!aUwDe|=u1hp+F|S<Ilq
z6Esj25g`$^HESvFhqS)Mi<LneL2_;y^+*^pb&Kn}-QQQsdn)(-KH2Gdu}+`@bhq)g
zZQDTmg`&1(G<FKBE18;#f|_+xG=n!}U)Ni)s_WL)?8C>79ZRURt@`57FK4@HOYX0)
zuiN|WesMH5HnMG;)qPncR%YJ3c^cvCK;0}Jd3pIi&+Y$%+PJNtvjfh}v8;MLTR<@I
z+XhZC!HH8Z&b3*+s%ygrgS9WGbUZlBZx33?1X|?u=m@8ayF0T-_N=WL7nOGG*s-Ae
z{XJ0Q$o2KB+uQZUbfa39`_E50Jx$k5m|4*A^fX;TNy(LKf8W}gtr5S^rlz*`A*kS~
z`@y(y;lhl2do1hzehq(fZ*O$I!k#Z-Ya$wFnPyA<;pXGJ=61tuY1!LbJ1Re`fpVGo
z{hG^<EPOBWCa^Cl<)1TW4i7`c<6iR*$K~rm6@dNUFOx4G>FMa$)K>1$(Xr-+{{BCU
zdOhy03|0rt>?9^87L=E}7Zn-#&9muTus{K{K#7r&5wv8lx3|~qP~}3WR?wRI$*0%H
z?lyB_dB6X^UDURmmAz4O<6d7|3pzC5&&T8PE8_NAfoCOGgsv8A*s@#y@$vrS>ho)w
z4z+S0K6j4q^|iH!kM&CTt~0hScWBrWxcUA4{ruwM;@ywWWLWPxaqJjdGaIkd@jls)
z$E5QY1T1vAWs>;*tBcFcLo6*FC%QDcn)2@MI(YIVr>CdqhtHocSLMIDxR^aDIr-w2
z%wUbKrYBEQzP!H952`?n(|FF!x97LEw%)O0M@G5Op~Htk3z^Q$GUX0l=HocqESKln
z&F%T|JyNEp9w?U11!e1_U7`{u83IB=LLdJ8EWWZPQuy?AeRc-WN|w*h&R%|30b+5B
z>$&twnHH7oeqoY(%j9z5wH1NPp{v7OL2a6SHI+Gcc3fOwzFPeL_xJbZK|7Oozu%X=
zO-4{Km5*IXMM=ph>F%!5AKz~0Z{6+b;xfe;Ty(!+1+D36<rd$Nc(`p3Uu%cP{fDvw
zN+58`^bIR$VP8i_5w9>z$j70hLkCpUtysks8oIIm|Gzza>hY1AQaD3GTYGzZFFG>M
zHpyfP4ZXM~a<fgxx`f#ViA~$`PuS#XE1foET*#F9|KHzRCzq^RWl{5^Ag<j-pR?@X
ztlvA%c6NLcS5pX4(2d(8;c%<7cacWKu9D1qY%VToFZZpU^7~Bg?>}|rT8noV>pv>=
zN|97k2zj8QrUu$H+p<WbptQ8LBjM~UQx7k%Q?D;{oag|Z%%G{Md1G_Be_VUegPK1d
zk9&A}Iu;dey7<!O;lF6N+g%<1j<K|G&Eb_cdvJ2HIzxm0{y#ztpbe+<>wanKA68PT
z(%fiXuXIWWWY>#X(X4E2i^|{MTM@Ey(!J*{E-o%#&L=WCv7UN+d;7-f?|B+sP4jH4
znHZ|Rz2Ou*`0efOj}HzqcTfL%JAZ%Tg9D8#Vs;vFiR<yOv$OyB^=pxHJKqfBbUr!T
zs+6L8tHakPeR*+_gO|5;`gHL(Z{G%P$p|#by22r>=5yfb>FK<uUdzomuMzm^^XKMO
zt6p4RKmVXfY;{^_XyMyirl8eZo72y`?XCJ6uq7jK#j37OVfC!1lP68uka}7SG$P^l
z_SV*i4<9mCSAzyD7UtdE1=^2$^!A&dpP$dLueZCkJ-<I_sn@}a7X{a?TL)^FvGK`t
z%(X7hN|m>%U|?rwU$Lr7(YY;U#~a<~Z5dxdJt^0Zdo&CU1wlzVAV44{HumAur>$(f
zQlO(gXYM*Qd)BNjRqtsFoZI;{A~&hX$jXA`+jynHo05HeOf27bzkPXru66r|4+T@S
z!}<LD{4@d=v49TjQg-i)5IH^9y4;}bO~jQ|q1^N4%>!-CeR*l=#kJAqo6pYdk<H&-
z_SUJLPxis%$IR~T?jRGK+jty(e0<spZEAi9EOzgAb8ujoGk0#_nh3)!IX5pos!e@o
z**vGu)XYpw*}c!@>8Ys?-@NI0bhI0^1mwn!Lgj`t_QDD0PEJ-g%($TN<M;2wM~||$
za)~-^&AR&GUiJHjudc3Edw%+*)$HU|>C5eEe>sGPf)2G}*iimHZf~D$NT}=0O{u+l
zpFci6KEtY1OUfjJAwNIg!op&KOQ#TMVjpzu-sX=lrmg)w7c{>D8pxZX7c2Gc+c%By
zb#vl=1~2ymtuF&D76lc^FJ5q%o16dm{d=+hd^@%M-n-)7|N8cpTj8x<|GVv`fA@c}
zeH3|%``Xpj;f6Io3PM(g@wRe_Hg$J%|M~m(<2md151yQyJag55(9vXjtIOBsE%ln}
zv_5Wc!M8V&n@=mADs~EK@R@HHE8;2`9UZ;1^7FEej+lKlks+a?p`lM#uitm7K$4S_
z^U~hx@<0(+5!Z{)eE<6gip(@fY&t3N=Iz_F=WcJw4BlJ0E@tPVsqvdqI&c2?^XHFC
zXz0t^+t(l5a<p4K`?O`<pB*f$tdd72+P%BCw|aI@u=wif)2GW=m7K`&2@DJj+LjZ!
zxil;^bY0xuRc9}6%?=L~aRm+Q-rSs?HXSsSma);M{@<OP$mG2H`*ax@8QmTSi@4s}
zlBo>p3od(qd;9qpMeE}BYBe@CroE2bnB;0%|8LL5pR-Lel~%3ty1dLc_4c;hM~@yQ
zl}MVInHg1o%h_BSwXbI9j$ONEt(m+?!zkeZgQusb;f(J`AA`nE)TTdv`&Kvo{5(@h
z(9twYT{?x-p1;4oe*V3}ng1jVw#EKC8S(%7{{NmElaBhFv(LD&fG2tDl_{FRM~)pk
z_GFigtZeGbOH19JpFL@n{$#Sh-Nk8h<L2Ad^6cBM|4%!7-JFA;%HH48oi}e@TK{R#
zu=(ZX{=LT*&(1&8!fBLtMxy!Y6y4}B?cL??@A1?x7j>Ozn0!oPO*&{!`f1#p`^S#C
zz2AP|$~Le3lao{*y?Bwa>EE_(+l)$Ig-rgueEom(`!&jCWo2&DA3u7e#Lg#Uuv2Ey
z9#A1S<-h@lz|hdBEg1{HS2nZpx&(@>3|&3#=Fi~Z;H9ajr`?io^qQ)5Qarv!v7JwL
z(ux%tKYu=-pL%CU;iLEO^Gz6MS`;oaTi@Q^Ui0Om`=<2sa-DsB)Am+>KXqoN@lwZT
zwo7Xwjraci*U6${U=Wa#lLI;sbW`qav(B!rNxrkqPJVlPd+R6L>TgrHM72(wn5dlk
z_SV*-Cnp3uJ31zOeSQ7(1V!g9_Dha-iB7Km{!X&@`IncMA3b}vZ0+{q=jS$+y^R8?
zTkPI{>eJKHOT*X41+55B+$+56i~66{VQY;d?^l0+*SUA^-W98~4!7|d@6PS<^z)lG
zVS+$zZ0_xCQ+;Qfd8VW+$+@#5FluX->Z(;<Z*OfqtERv&XCn|FA0H^<I%m$DlouBk
zetO(*@8#ms^5*t-|6_f!t5sP<wL&I<4*1Y<E?@Na{d@g)@7_In_fBtq-LI80b~O=v
z@^(7G%l)P*xprj~=G@wHGGlJo`na`odq5-eY3JwZT9?0@vSNkC%?*joTk`M6&9+NA
z!qNQmvV8v6*Vn~e!AB`>%DSr6+0!!xbjIX+mM>Go;|!%htG<t3zaFlAeX%?L&3(1I
zUEJJGtqNVer0nf2w%gZ2n38l1&!3Etx2w@m^_p_w)Yq4n-9g8vO`JG!Q`%XnmGS%c
ztyra1`uf`0GA7VYoQ%^NVQXf9`sIBxmP-5oew*zx$0G3ez8g1goY<Co``<>Z=tEaL
zzn-0K{`AVq;GorEx`86DS=ZO;F87;z>38|VL#%r%`Q&U?)P~pA)TEr6q6s>66%@B?
zqqlplkK4OthIRS7922=%9n-8U0<M878X6wcbRt0$UelS``Ci1j+}c~ceaFt7p5Ncy
zeY*SozR7=ofA=ma+4APj&fv7Ovs6=0PrG_;d&S43y<d+UKYn^;@bZ*TPfp&lDt~`3
zH{ke>A3u1uPdztHH+sugQLPXUHNQC;pk%7--gjb6<mMx{Z%5Crzqh9{?REV6INOaI
zH%@%;AR%&7N+)RT$H8Xy)FT~&N!i)jt5$W*pFdwkRdwdQoi3FfoE)MO7cX8^^MCaG
z?Cj;f*2T|yPNvp;JStwLe(Bk|ZLi;Lc;Vve+S%LNyJD3VBO@c*<;$Q|iuZoc@pC9S
z9knH6;?2~*KcCM}TRz{WGU(2oJ1(K2lJ<3bE*c#?c<|QLy{6gMX2gW$<g8IqQ_FfE
z92~rL*Ot7yx1Q7(r=Pp>s`$|n&dndCK7YL)pZ%F%&gMqOOh#t57rExioF4shwl0Ap
zn$fF{zT5^|3$Sg?N#V;YR%jHKmWqakg0d#t<x=%qU5h$)@7_Jfy8PUNGb@9aFDZC<
zXwj-wKYso4Dk|D^@5}G+@4Y7~xq@6~QLx~mwTzNd^6|c_-%fXzr(BZHU$yF#_4_@^
zC6dhSd{<7ny1PsJ)c^nced|k53P1Se$&-}KySujD+jiEEY0}(?c3$aazUF1>CZ?vL
zR;90|B(9O%S^j=rS^Dabl|e$n!pQ+@e+!dx<e!Jk)tz|JbL-C9$#FqJlfKpFU0*j>
zMMXtI*S!8;&0gVu;xCtJb}6lm+G_M$`p<)d%#~kWOuRWGYHQZg+Wg?)VBS+H&-$kC
z%$+)Aii)cDv@4VP|Nnho&z1_RB<|{#l$K6q=a-Y1;u-&+Pu5Dp*Wi-6ue5odiL`NG
z9H>Ed?8C#uTca=g&$GEWTTEJ7n~#rg(W+H7KOVNbJ@@zZy}It%G`-kcDZ-4wC1<zg
z<m4FDF8bqthcWZ!rqpFg2Cmy<v#+d3G|>GU%aa^_%Xrc5<dp2}><Lp|zF61N*3yzv
z^;1bHbaj}hYv7UN$B#epycl2qcWHU)r=u)SPEFOm6?%Mr{lA-Ue!2BZsdg>$SQ)gG
zXW2`?XCa|eBR8kbj5(G*zjoQw-ye_5e_i%+Tja}2OV7sr_3`tY7PQn$(zorBe7>sp
zG?U6n<?rrTPF8<=e!jgpKR<t9XlPSYlh3ij$H#d0s&(G<bl4>IdUN{uBX{q{hJ;SF
zDt$Gh=j*w-){mY%nX;Be<?p`e-DPV}7QOUWy1q7gxw)?TtDKc{yd0+KMyqu#>e#$_
z^F`s;UtV2Vsk~~H*ZFz2yvtq+Ie;1gWp8Ia6*UB%Z5H)cNm-e9+4B%4P>GUz>&wf_
zzIu<_<?Ak-Iy=MgaKf&2|IVE|r}o~;zVegH@9Jq&@5e5>bD;ggN(ays&#9@}3pKc`
zN?tI8hllTd`R?62(CCVy(vOGj@;!RWR#u=rHVh0rG8O{o&YcrmAOG*aV!3PJg(aTC
zS5^cnzn*$h(YET#i7z&w(=$Lbl9!kJKfbau7_^ePOGJ~20W=mA6cqI3RQ}CPuGO|B
zFE043Umw4}E+90tdc$wmi4!M+#$*;~aQ*uJe*Vj+_xII;W?b49X@HKvkdc+`omN~}
z=y-iytgl}B>uYO0JUu~&9p2iKnOruvSIU%$;m)4QVC#8tOEkEuzP?H=lC1sx?dq|(
z8+)s_-`g_3?iXj*q6M+L%QkG?YPu72!0(mS;rvQX_v`=PP1$*FuJz$_=gz$_sjshp
zyZg)Y`Sq`SL8D(WF)|FGZn@g@_)RIETe7a6dh+GWiL5oCLxB#r^D{cUo^wbdKR<s<
z-d(F`!&l$JCn~vuCYEOFfDZI&uIxFPHMjWov$L}q8G5D7+uGaPZ*J<9GBv7>(dugY
z_4W1P>(|YL4ME+3>+9o>&ooZoa)14mD<QeRI)&AZw(dD|;jOc4;1>4Vy)Q2<<>nIC
zTVsB{Tf`MK7Vz-t)6|k(t5<7lg{|RGc>mpcqNb0-3J1`7sdsmFGBZ^Ce!IPQ+QqpQ
zpmTFTgFy$stXQG(wiHy`ZUybu$X2(QIrsbgq)efbPft8SU13$PDGlxI>{=l!8nUjg
zT3Ge<6{wGH_w$J`L*`!lmwpzdCAZg<yu38iE|TGrpI`L$JYK<zZtMNu|9-!pox#Gw
zB1LoIugCrNTdr@-x@r`?t?cbBwdJz*butW~%^1?s(#`XVF8$BGzi+SE{kONb_v)?B
zxw$FL|I(g4dmcQ0o*vMC<w^)>M1<kl+1cr4e5SGeiOU`_G@P2MJ$nw@64mz%TQ-)K
z6lL8`a|=uMz5hAD!=vM7YD-&Nn&Gbf*OzK=H8nS%{Wk5%+qY}qCKuZ(r*1vB^X-q1
zj{`(lZ*R{(|6#`*!(=vw&&QW8-5>w)<3~_?zp1I|!J|h_MyaP3WL;f#>wS1Z!G^GJ
z|Nj2Ixq6A@uG)xgIgu4rRkL)`)6?5$nPxk=Y}$I?*2YFbsdC@_P9IRg)wFK4m%qRN
z<Zy%ATeFwPo;AOAHTRdjpPilE%&7XZXMdN!@bftnxuZZ4GzwYqG3n0EVt47UKaSR0
zadL82eZIfHUcPHl%Ib5wv=2h3UACT|Z(qOe?$xTlU$1Xn-8NHDT6*=~Z{NO|MQ@AP
zn54G+?%wL~>f9`8$=hikKYnzZK0Q!pSA~nqdcKVtH{Q}XGws+yjjn@r-ujEJYgf(s
zmj2}E?s&_sxyH(?H!ky^(=Dc(RVFFvd%h!Ycf_XtZgKs*4gK*`u39}eyIZbee0=Fn
zz16xu|L&^#ss)-?*_eF%QNR5^hpeouWp(?Df^u?nL|ivk?0@~t@M-GJ_b$t3?6dcu
z;%`&;M`E^le%m6A9rgeBoqWdia&7#6x#DMM8YfQ<)^nL*ZuDyPzdJjNK{KX7K|!EF
zebC}2-`QrZ^XJRoxpQaBPjTI-C8qV0>Jwa^@X1;&h}f94qx!oZXbg;vSBilFG>5Tc
z#}1y^CJ|bHJ3Z1~{yR}!S(*6$-d?eM_Ta}VDW=oDs7o`m@od;}bN1f7wbQPpuY8kp
z`_HNcxx#lh-rSZOUGwc``pvjFxBc-Bw_@LFhp)?ctW^5?8ZRRwqej%072nDoT(+eC
z72Y4Oua)t8?g<e!g(>er(|w(toowN|eFO#ne7znI+C*@#>b36M&tKl==HK1LT3=t^
zom^3P@64sxvrG%Fr`?>f+<$&r)z4!(aeE|Ao;(R!LGbVI@2zG>^^MA>g3icHKR@qm
z(A?6T+}w++!}WdU+kwvLI~pEe%bK2^t`oI|!y)SPIx*d-l+2qi*DrcC>&48Zyj|-&
zk4{$i57=4sG-rNFib(gmo<$l}zFRNt7ZVIw8KfFrm~y=P_BN+hF16E9LHFx}enq^$
zyF1<NTJ`sLsoAk|a&kLre{XXw-B<g2+d;d!$jYj!N7vRySN!`^xlU&K^K)|#FLZ8S
zpuu&lPqv#=SWQAV{oQwM^_R0;B6r;{{Veb_Jg3R^=e<p-rx})*)<*3tN^Se^HC2oC
zzy`^%U)v77bl<<#<>sc;t<Pd-&J||>Mdx*WyYz{1F)=aA+=|VgUs)N<&~V^@!{n3f
zAHIL)KlWnV&8^wj3;zE4s&jl%cH7r4FM~n%;usnl-q@NgF5>Dq->!Dko;$CuuFhWH
zFKeB)ZOzV?rrFn67;LJ)oq6+Z!<DC}r=NZI{P*|wk55h2W&jmdne%Voya}485fGHI
zD$%%InBwl2d;3nn)~wLCr7kWlH#gn9yZ`E{(B=*WBcn@ij<!^Pf0wy<;qv>(uN}LT
z68$~q@W;o;x284ySGoIMoME%9N6Hra;#YmGdGc}lYHq&CFDWWATC`}<0*$WF_vMS;
zBr!Styfsxje9P*D#KgoGx3*@t{XcZ*kb=^Wr_<xVth>X`#&+oXb#bL8R&KEwIs5Z_
z)`cqx9^6;^+vx6XuZc>oTUd_Wkv}t4JN#LMG1Fbork&PW+w<;Ts@iV2%(<QK*6Ya4
zX{naex<s|J_}}YCZQ<~qrgQODak@I=$B!Q!9UK^3ShBCL11&`DnbzIke|(l{wvXO&
zkj_rf%AL(J{e2x0wS1oG7Z<tSs;m3>&i{CyEF(ku`FTgz#qQoD>mAnG(vndwRwB;W
z)7ja1@Z4PMVr`wpPR`C-(>tc=$LDRjb9Z<7#^mFDIcvSQ?*~obe0_a=w$Ap1gG`fu
z-<b8Hs?YfA-HR7xr}xX*UV0bzZ}KH|%V%|mpPieVU1s^R`q=3eea~KeTi7vU?f+X_
zvq9I`?5*thq^zbeWxa0XCYRsJ_jVSicR#y0)!Wzis<mXG2&;U}2gZgi^EOp|eFfU{
zwD`1uU~`%~Xy`a3w6){GS@ZiYK0ZAsC3<`>m-_C^ysQ?pujXdLubsuu4eI{<klCHI
zeD~|Zhlf~Y>}qZ#R5>{@RegDp_|5U+v$L~7J4%$A*6;gu>WybjPR^Q}sk{;f3`$MR
z?0gSauiwYSV3K)>CH2&lja$6jc;##)9HKV23o5%w=o;tTFxbm}HvY-`_x*aYyBu6L
zWL;gwGkJn`__~Cvt3uOG`^+-oe13ku`47-~AJ9>34O>`VZM`0MdA422i+~-wb~(9R
z*q$Fh$FBC)n<~(H%guY=rcB+t*A_G;B<NUDvgO+5z$#5mO$m#F1t;GJ<`otcfHu)6
zC|Q)fnNe1=R9%UKpa1+dPmKxJS~qRpZ0y3K?ACMO>}+%1Q=lb7!OQ(v8K!83a?Q0W
zJ$23MzvnJKHKSMWwwAxYcZ+q-_xttopaF&Ge-{=yNA8MVGx^`TwHxKWG;Dd|{Jmy@
z=1c1fJ4#*#O?&+E%1U9cDH@D|2cMjr+*|j2UHtxae|rnd%FazpzumFsn!V`(j)|r#
z0v0xDbSWL}7T;bm@5+@B&A>%1D^_V;T^(*d<JziF?Oc^xXyXw#x8=?TEx7yh_iyT<
z7EZR)|K8XCUw!uVyLWn^Rfe|J-#kG5$-BG5LH+JtDbq=5XJ<*C*`0ixFIPY-K0ZEj
zN5Mi+H~Qb-->H9od<<IRA^7q8ck%rE{BAa-GZ_JElaKek>^)_hdP?Nx{`&ngwpAg|
z&dgL6)eaL04PBaexGimZ<+C%Axm!wH166c%e6FpF)fN;KEc)^yFmhv3E9hYAnAq5}
z$EHk}u%P$D+UWaTqS|M!9TYlw^5m_Iw_S@oZg0y?y}Zm<NK#UBwps2aH?MWEySLq(
zcp*7Cd8tz?S5!@}wE47FZt+tO54WpoX?cOhiRRb;+qos<q7!IH#e2FQ+v$u;OFCDq
z()#!BA7~un-Me?7HIkM!KQ@4dBbNEi)pG3;x%lYDhQ#KJR%_$;$K~YYxCDxTPQy6Z
z%zpaW+1aW_MnRxK0Q-MG7WYV*dYzi8t=_fh#I?22U!R>{*{CmXTcxsZ-@aSh-d<eX
z4mv+wNm)7d>Z(xipg?G7{_R;(9RZ<NdDxZC_^sKvapR-Mj~5@kwK`n?=Emf9Q25R=
z&3-a9JWen)bZOq*UAKO1vJ$vA$Fg|KR}uZV7*O1}_sdPaU-#Qr&1Z%}US8g<1xs&l
z&;Nh?RZeFQn^Me%ghsR4A0HkH2?{ET>&H#$7T1@0bNX;QfA{3clUJ<L+O}=mrOoO7
zk=yg;f_nEGlaGTA7Xhum^#1zls%xOg&u6pqd9E#wp1$$^b@7+e7Hf2syuRkUE$60^
zprGKU%*$#o@9f;H(Y5IN@6?=`pgv*}A209J*xh9(e|~<x)oPji9+SnnTT5Suz5Tv0
zV4;&y<|UP%Z@1rna$=&gQSmb$&9F5y%>Hk`Uzc4XIqlm0JLPRBqzo7r*1Udju=!U1
z*9QlijZNS0|MyjY^5Vy8Dk>h=*TuSqhQ94T+5P{_-^LkMrK@h-zCC;H^#~><C8L}h
z29sawMsHg)$F@2QG<X^~B}ZLBDRXhw?5O#xRv8sN@#vl=DJiL$dTNScWcuBcVQz-J
zl1482nqEFWXEyLn+fn&>84C-`j5X<?)OCGbY?`pZ#4QsyNt@@*dAM=ms#QD^1_u)U
zeNpGN|Nm$6j$ON?=H9<{?b;iUmr6>}+j0c;_4PO3jtLFjxOwyBz181eot=GCI41b`
z?2Z#FgO_h<xp(8&@9*#DKQv5v>G9%b@7E)p!a-{y3^#AA`~Ua*t>3%L-_MGjZyCJY
zPc%9@dh+X{qM}JpPfwSgYp(u!&cq(SRsVmz*4K>Rx98;jCE~J{MJk8yGu<r*T`<G;
zIbDshv#(DK)ZD#op`qcCcYoj9heqzbQmLP;=l<KSusBy$X;aC|Al-$AUu*w-x$N(I
zZvIS`BUeD-E%HMx!hgQq(c|*<J==0`gHB3awQ5#Qb?vt|k)WL+d3kvszI<_6AGg<s
zFJ?=@LnqMMC_g{H58uBZzaC%z*FUVeCt_R9%xj-RBO)S}J>%u(zMOY@e}#>Ol~vN$
zS64w5?}u-<^B2eLEGj4~Yin+12Cbs&leK=d`~5!Sn{(2?ytoMJfwu8Vx4pW$dU3(S
zLmM`4Zr;A#e3nUO)5*!|vu)VY&(3NU)ec(_xY$i2W`_Z2CSqq%Drf<TprGK2kd;CV
zGv0nYeP@e!?U#%0pk0+wTeDdC`S~p@EDl`1E<V?~{MfqK-5*{qpC7g5%q-LFM|XA>
zgI3sF+*4UBq8-LlR#pZ&e6Ux_6tv<Cbf3#o@9AdJ{doeOu7MZ!R+n2?SVV;M_x$+r
z1GGmHG=dVix2n{_+WPR_yRu(jT|Eria{u|f{o!-x^bS{5RaYm!zqj|src`cFqjZXX
zyqun%-iGbl+qZ8we|3F*zo4>P!u@@<pcA(*rk?n3E}3(Cn=a@S>$<<c4xT^H&&S87
z5w=Fcs{CC~Gdn-%_MEiWSJuT^gN{!EtylT{>}=qkiozSWZ-aJ7Jv{}wg-6z)_?Zt#
zL9evA*$jK*<DEM<g{}%YxH5RTLD3Tr&>YOgi-NA*Vy>Ih&Tc4r>ZKF0;lQG=Pp=r}
zuFL6_G6kKS+aqCkC}mB*y#2LP>8Wod=U!awuB@fS#mvs<(#j?J;LRJJ@bGX@0yx~p
zd-&$&^siM9Py5(z3O3vPdH0ST;H`8Q7CHwm^%C8&V~2!nvh#A#>~_IJre|kow}bA4
zNI5yFprD{(@?>F9BDl6T8ng<-qWasKn}IKN1tlapUcAWI^ZA_hhtHpz_wKc|v9%3c
z?k8LG@8@&SAr-F47eLppeSUu4{cs!a!<R2PqoboWx)xoxUg+m```6p;_d%;zw!VG(
z>J?XddV0u;0LF(8A9i$gfv&3C9GdT)ta!@1%R{fECim#NxV>GQQco}PnQ5dEzE0-b
zySv@4-C_&F*T+>oO-f1<5D{T1FE0ljMe9G$=HQo?mjjpiNXpn&iEP_e|2^Z++wJ$0
zK0G)GI)NXwMu?f6FX82-r9Zx0_TTz#uFI54ZZRE)iV6!6*Mk$4-8b24ZQYuAYm4T$
zx3@tDf`T?~o_t+!qN9<SJ?Y`0)(>C5UaeZGq_pUa=7+}(Q#1mZw&&k(+rHggNl7VS
zb(rqrr)vK5dRkgoT-@Ckr<|O`&=9pX3v?b=#GZ<c*L*XQl9Z11O1JaLS|xmab(Nvv
z-{0TLs;aD$)qI^QDk`?En<Xfka=-q+ZNnBl-OtgV9Ixpc8Vb%f%WYbuu_AhVUR=Ag
z%a==9AAC2I_{JM;s{32@wrr!{=VxahzJI^|`sVYXrL{M1MDR!&x#a(=|NA=r$Lsa`
zH<Z4<HivuO3Wl5e>+SjE?RZ=Rx6E7JQ8a1iyg5O^!Js*_jI(*0FaI?b40H^C@V+79
z(X+F&cT|60cTsyCXqoo5+}m5e2L=W*T>5puUtdLqWz{MrEiEqFsxLp%nbl6IgN}(#
zKR@r`larGx-tYa+zyMnRcKvSfrn6=DW}0LQfo>Bpzh5I<`szyK_U-0ELP8(*|NqMm
zN*pOEDv+_5i`#N<@8O%?@nY#wmLp8NKFVDB&c5#P<HyZ6ZbYc4svbOdjt_JVM{h6h
zo;`cMoVt1Q=E2LCFK5hu?~)R;*sZtV?Jd){dlzZ^`1N{y@tcRm*&zqyPoFLZHP?^J
z*XMlL`L6LEXqxuvsi~C$l7fN%4ze6!;^gFHNcghE-P|k7$%zSc2_fXjsKuuXOG>Ux
zb9Ipn4i)WMbl~h+-m9y_kKfpsd~uoY>^*$1<&VzG{&Wts_IhQIDyR$!Ul((5Z}s;H
zQ>L)^`}>1V$_BNzx98pcWaXo@Xu6!R0JnvuC1b-y!Gcm{^Vg>=EG-}Y{QTT)`s5ii
zR!lX1_V4d+(5Ta&KYz|lQ`XYBwl+HbLu5)yik!<NYrFq{ir<#jty^xIeRY*+)Yh!j
zBCGG*f~t_iRx<AH+UnRXzKKUzfcwR)xR<k%mX^Q1rdv@_ap2rJKkeC*CN=&3{{FS>
z6i-i2&}rjdQ#2BbY^}@QoG9B5oz0KlSF`ix$Ep)1Y6@Z+fs0r`3#=a>@0a$muKJ?U
z)YP=)yQ8C{fS`<hUCjEGCpIP@pD=6Is_<{Fb#-+Nm-t>ZG&Iav%@Da3bgtyJHIbFF
zY)^&Wy>Dv$y*uIIKRt_cb1a+Z*;Z#g&z(}~<DerVCf2spdphW1fY)8+=jYj4)c@Oa
zujBgJS*FeH?d;Fa&0Rgc;mllXaXme~jO**>o-BPaE0&doMZv=2hx{te$jOIVxr^h)
z74F<;<^EoN@X+7b4;yyYTr*^3{BYL%{)2~y+rgKB=G@yOd3}96I|FE4QRD2{(#Luv
zn@e9`Tj)7i?Uu(2P|2K-upqAfLtkIt43kWud$r$VOWxiRT^qgq*uTHOHzpnB@|kJG
z>e?l8vRg|?P*6}Xl2uKCA??hJg{5CtYH*q5+-TsHHe+D8SNA)2$IhJ#Lskae*q$$c
zull_$XvlrT_U-P!zr8g~KF0I*C;!}o&FqKo-IJSN|IZS%(C){tUrFEI-2Cx<|NptK
zOO-*(PBy9eI52=ZWQ&Rz85ygZ`DR_-Utj;_{e64uM3D7@Ppz}!*d0P9l)k@byWV+0
z%#pvb8w%>hb?)4EnU>7tG^PCq`)W{tN9@?oE%q)SwCqF?WbmSx!z{4HiYV(@IyyQu
zt{X6pDjE#}YNmpdE#2b!kItIkZ&|-yKPDzdKtKR=EV!bgqT~8IH#et)u0q(cbLYX!
zmxV!RDE$5X{j)|ED4{C7PMm$6agR>kogIx)TeA+{y(|0w-}n6wA3kinU;kfLzW$G)
zlCtu~#KUY14n96SQf4_E<>lp|RtB`%FZ}ex6H@Kpc>-Fe6jJap=Z2H_biJdGkN1E4
z{eJ)AqNk@A8W@?`K&N|wu0dGr-XE}|Akk-@4QR<nM_-@Y$w{h=3|q6VI-Q=T3p!wz
zN5Visf3+jXxGBqTu$*@CpJ&4eI(+qYZQP!U!WFBys;jFR4*dH1`r^LYYTcg<4bRTb
zK79YaeD<|9C-*jVf))v{5fB#OHqE@mqSRFP_ZMiE33RGCXcb}Q=Vys8E-VBc@OyT)
zIp`pkmbNyjGx592a$Q_qpE`oQ;c~6ncZ1HAU8UKev6A3rJ_o^bAzh0S-rU#-x@ei<
z!L_x~3=Hz}^36YMYib0frMs6bQMqyR=F_+bAcwnzwQzc<{rLHFVd3LrpndB$HZ~hd
zUx$IbeY9KrIA|5Zy$zrP3!jyil&~<UsHi{^#3H6{&W_fwwNb4fJ`{j<9_~JTab>Xj
zk|j$(yUkwQ+iN{%&Kw4Y^Yd(tXV@DW3Nmal0^7$bC@jEzcCNMf!Gj0c&aMXSR#5ex
zrl6(e^;*{Zx`_7P=<Rt24<A0fXt(^~c7FGVhg!edy}q~CdRO`TdA(8sf`Wp9X`qvM
zwZqq4`TgeNV)sfBUr>eZRQ~QxV|#o1!RMZyo&tg@>gtPKI)yZ%wrKRp+vf$mdvS3w
z2N&0-j9Ac_xdjCU+mh9kl#~{&F)m}YFftNSR8*`K3H)~;Zi5bJIBLZT4UnJSe-_ma
zJ8<k6n`zb+28Nc_*2L4(bUQjbFM@^v*`J@E?|yw<Y_Vw?IEiK-W;x;n8fOa%3c9es
zk@?T}{r``GIux%~uTT2?>@4UQwk~mfJ_gW=^f`0qUR>fS4BDFonkWICU47ty!<Uzr
z)xBTGZR5$fro*o73<|I*?lT%9z{}F#Zoe-eCDpaF_<7Qg4-a?L{4`qTGqcIE_*uqN
zuc=zCwZFeDbZX@StzHM!EL-yL%UPGdJ5%&NT-~2ZP|z||805-Ddk&{N7%7^Vh(vG8
zIk_Rm!GU30?(J#GuWNsaRD5Fb@MR5I)&sKli_qhjZ@eG840cd?TMyPbT~c_$^aj0;
z6@M)9A1i=_PU)#Bgz0H&a_;|M$HV}sK&pOzloZew7Zq)lHh;v(AoINql+5GGd>q!y
znLJsz#C#Qak!43mTv<+2>eES+Co}F~NMLdT*{N?2GSARZ5VWMSqeEkV0#nk{OX>>Z
zdUwv<P5_zHv8j`@W2*Q3hBLFbE9D<n^!N{33(%|xc99y$1iOEh4DJjKi$qQ$>#F{u
z5n28ARg@9GGDNK%NNp_>lgO#f7GT4Rn1lti%b)kjG90+~Pi>y<=JSs;z!IC<IXkBA
zE>wQY_+^pn`iD1-kK6Qt{iRVoqakAFZ1cMdG`0t<xFD>eY6z||7EPB18|5c><K|z^
z^yeums+P}7EkK@hxp|1?NY~P3OyTRMv`xP3xnsu?1=XXf>zzUFS2`u8rV#e#MWBM+
zJyF*#nTFZ36-=*+Dpksgf-3sJYle&)lP+FtShVE8-M=ziqD%~;{_~%ehJX!@OrL$7
zaYCkfK9iqc|AQwf-~V%R7^HAKcrs;sAxO7q$oKcpOIg67{N|bOfs2NGe0+Q>B0g$1
z)LIlT6J$_b?+j{hXic~wrTTkDL&V0<&*v+cedAxTs%w%e;{wjQzh60HVq-sBnSinm
zlctdn2j|Jx8gY3(4r^}AH121-b7WubZ-bm01`G$Tt_}~}l5uelZ%;=@$BKro-rlpX
z1>&lF9M(kC)Fd*P2X4!W+_8H%GsCLT)zh{+g4`#V$}B9PUGnWs<eU5d)gL{!UhFZk
z8gwqzgO@Km@9r*FwzIQae;Dk-4SKP=S{@#5e_kq~Z>pvcmT_kX=Z>06y@r&Qwqseo
z>t>nf&)ePzGE}r+;>3xSvWL9;A2&oS+_6J};Vi?Nrs?9vE}-x}Wj~`KV&RV;0Xufa
zGJP<Uv#FSH{UNB35qv74rVyr~c~YK{v7ABS?ZeN}+Z*;)e>T$qX<H<7;G1oj#}U!E
zxTg8_|0GLaU15B6ja4s(!Q~S;aFiD1Br+vUjd}3wn@sNQZNAmjACvC2K{B-S4VKed
zHx~yi3_08%+*{)Yin}jDiA+gLxkQaVDIRA4rOrjuWrPK^Lw9VL_}up2FYWKlAVH;5
zjy?`+LMAG8J#2?$kr%4RS&n$^+-(d=b$>wV^wWn8hJPk-a)5ll_sNWgh@~MSnn_FA
zQ$SliTwK0PN@hx$I`81kn;+kA-^Iu=vjODai{5>l9id)L&CSgZk0Y6_rTTwvgH8Rv
z?<j&xcQa42dkM?6mTC%Nns;R<sQdr>Hv`$;5>AhpJNM<6=l8inJekClH1(3I!p4o6
z|8L)hx*5~~T0Mow+Ishv>AS2Ij&{Lvkesl<>M1;~ftTW52?^xqLtTF<nJK9?#PsWX
z^TI-hhld&_3s0Cbr5uueo-(K@gn0x8{i_oeXWy~=vm|(l_9^ih4H1eE?Nj0n88<qu
zIt6L<eo|Lc2s`mWQUEIHZ@{?GsSC8ey`!V!lltvFd<{G+vp(I=FX8kkGJ=+GFF*2i
zh;G{2`}?<Vjt*#tkDy@SzJn}BxGJmGc~(!H#br}-0%|-j$T`_fU!QnJ3BgR|1c`<I
zuit*;Z+);1vc+a*W|{gWoE`1#5Szg6Hogam*_t-a4$&lG9Z>2!wI1XlUB;bdyagpJ
zT_TB)((@;%^jf0fb*sDhd4tzfhR{@)xVzJKr&pWP8x}F7o?<9{wWKy9f4-SiRaRD%
z6S&;{BJ^nH8qpv*JD=*puUY{+i*99C|K9R{@}y5{u;k8iglpybd4K;dbL-vmzm$_>
zHn`()(YuGULo`TO_<!By1&+7=LlTaLd;(Ka>y#%?_TLxLp7zZi>K*nU0=q<mf`c3R
z?HGQ2|Nq-Lmg&-F^#@O;m_ssZNx$6FQWkw%Pyl)Qvi|vddDnxhD<g$p+>`C-Kfn7x
zM@L5omzDJFJ$(<B9%oURtfZ{`@ud2E&`mI)t%N&^o`OdG_WXXgJ8I_U^z)$MHqfCb
zZ{EJWxGvTjw6!8GE>3K%Gb4k!`CtCMdm2Qwi`FTD66Tc3i4z?>JmTCx1|>61;<PS*
z=W@JH7PK+(<KyFpuU-`eEgk5UHs4}oXlMx9D|+YdUC>1VHkF@PE-&{#esZ#U;g=VI
zH*TfvIho4<?NWh5VWGPJJka_U(Dh%}*2QLTy7T1ZWY8s5FJ5F!(TNmd0F4W6$+;=i
zEv|p8fst7!S`ivr?KilmwSx9^-q~9%K3UzLjp4}g<IXNTr$AHxZ*OnEK8c?Jv?&F2
za8BA;sqSk_nH&~6Sqhqgvi-!+M5d&Lw$<Mj1T1s{9XqQPz790zC!!U?;oQb^aPxn8
ziw}@-96cvzXWnO^og|AEEz*ga&h>#0Tyi}1_HocDd3cCbMOF3T*6VT3x3}ePtovK_
z<^6s6&(F>}@2~sIzyQ8w=f{s95@+7SM`KcV=q=`7C=7DOQ|21BBTn^yzlsY92^my;
zNC55lU;ypp1f6CGy5L#OZ%#)`3kyR-b93{-KYe|D3=J(UEH`f6oEa+)&0BRxtrf(I
ze*HiAAGG;>@A>L4FBk<6zTf|U-PDVwC%yCy4FmHnpJ^~8sC0tM$f}zk`8ry?rf4)?
zUhcm*Vq;R({OamzW(Lqf5X-`MEsJ=0cULL5oSdBGy}t|%8Lp1Uug6{fy{7v6JJ5}E
zVTaX0b(>Gr&LY*YbulZy-&F2vnU@P1oDdRf0#!n4YHXs~VOQ+-SAJG&*y6GTsg-H)
z|KehIK@pLZi@TiOzS&Uu`Pm%KIiO^_>BtS%2PaN=v=k^D%1IQ~;Vyl9OH`?;m0SE(
ztzG@Unj1H7g4*8<4I4HXfUXHPG&KBw{odT;HzWT4m#>dI{)XGIO>)Y{;N<uym1OSu
zGemAqGM%#iM}Ss!<RT?IEx|>0Et~Wwnl2JJ?EWia^2Ci(Qw5BVo%#LU-TwLImpwc)
zU!R#-c_-g|`|Qg7_n%v>f4xWlc;&gT`_4U;*<AKEO4g#lK{tBanG3~{JB#k_JjBSr
z(4f;|tRM+m`%wDsPUPj~{^4F;U0K)Htp#no{P*XlltDs+l9G~&Co>z*g*}y@MTCVH
z-`iXL`q9yDDdV&rt*|vK`ed!sUhI@%5ny0oNC{?{5DhxIP*gW6<nnU=>x*2wL$+iD
z_R8DG>F@c_RO|zqv`;+D_Vw-U@V~#mPoF=3{w$NsMTW`8QeOPx_so))n-{s8fq{Xc
zLWJ>&*ppLJy_?zjuRS=}{J$t>XVKFwNk_YG*Ub~U!z#<bz;JU)cntHWXS4Hn#RN}$
z`%!cc0|Uc}WqXtwcw{UBT)V|W@9ru!t^HLJyQkvfWz|$YCJqJ$hE1C5ITSvA{3vCb
zHRaqq+tqrpyEK%PoIo4=KRrD?b=Is`FF(E8^S}Oj2?GOz!tRe<3_&{z62HE_?!UY2
z?WK2jcVAr{uAh5zldJD+v(S{3C2<uGS#$61x_UYFp5@ci)w`HL+JY-w8GbH)@gk#F
z%GArfPv&A9uXM=jFkRm{7J>Y>UnY1>*IO&7?Dpcz%ggihKEKbreeJR+$k#Iuy=LlA
zQB_sV1nqu%y>|PSl9xeGPfhjil{OD6DcRD-FTYMm)hpxSq1JhNpT9*;Tdob#X4HC}
zMIgB+Y;Dw1K3S_32?v|9Zf{%LCvU%Q`@Jgf<9)K1H>IB5l5mho*0RV2bOKGc{=OG4
zCowWGF#PEZzr()7f4<!;>+*GebFG%1IN@RY{Z4V#{e64i?S5~!edEN56RW=6OuxFX
zwwgbLi-CdR!TJhUhM7jGUGpj)ac<4OANTe3_35RPRlWG_|7=+1KR++H6zr%|+DxFS
zG!Yq@IS)Su1_pL@b)DMN1d_TVwtfejilt@b?(+Bh690d{U%$Ti`MH}Bf(#4{4YwbP
zGJ+iR>e|}dyr6lub<^XjP9Ez5Yvfzcq44_J+Tfg=H@v@Ro8_)D&AxU6q3_A`_`1M<
ze}3lQkQWns_SamVg@J*gh+#d40%&jl&f@31zsuj;Soq;XfwVR#q6)0{C^eX5U-P-V
z%=hvnRqs2$#Ps9Vyu7^pb*K8g4-TmyJM&t@Yk1#huiv}OH2d0%PW5>KN4rEtWo30e
zZ*5NR2c18%B4%e1XqB05j4H?jvp;qjD^z}Za&ek&v`NMVg{4cDWZc_R32Lea1qGQ@
zd`QT>yDPN(Zt3*pr$O#35RNNkbD7lC-24?ZaJ`I~fq~&eQd}V$NYdfk1JiVeNs}g-
z)c>nFdi1EKp<!TVW~ScXX{n%d3FTJtF)%PVxK+3^boTd$&$TKod2&MVZt3+{FCU+f
zeKkKz{{5+3x@?(N{l7n4oSYv^W`ezRNPAiWC`p4(9N3iF%_n1_klX_rcJ-dF_wuay
z{g8x&1^fPd^7fz335syFJxUF0qPP3mR(%QRl`?%&@F#AQq1(TI|6W~RKmXO$)ywPu
zeV#A3PKbel;lSAnSB9N6KQ}E}v`EEsXYuoCsgYhjJ|*Ame>`ZuwIy?M`znzCCIrR_
zI=tKYTu#=y%xBV*$B!2uYUR#8Jx%xAKhSs&7YE0OkV=qKjZSFmIjxW0z77;I3!U4&
zCRvreSrNF{?d6@F#a`atm-qkwo4+;x{=LJYpa|U|xt>E|{k~tT_Wgcmt*Wkm`u_cR
zP|@}A@p04qdp4k~lzV&IRqOYA9=|jKrT;rE;VcuX-|ck&ey6zq^YexV2H&|>p~1`j
zz9xi%?9U6Gwx8|Er>Cd6xVbOi&fov`We`aCk8h-10}Ctb$>Yb}4<0-?PmdMk_xn?x
zGIyw$=HH9?{Os&x!(*41g4F(y-t$Om!nL*0tKIwMRs}Eb1D$5GVuc1P8{4kl)j><U
z*bzaJl$125{{OGn>+k;RHQc1*y>jJBvoMg^55g*48D`qm?pp2*GP8ia!j<9Wg@w&<
z?ornlAc;-v>n)fs?JRyiyKke8_vK~2n-@xf#J8W;W;(H}^mR()H1FuFtW|z<EEZn5
z64Kh<UOXREav$KXaAmM8dg8I`t)`~tESt(r$NJ^hUtJx3J6Z&ksH2}<z25NS*RNIS
z=jT;@x#)g%bGpC(bWl`2P}^hG5EH&J$u;-Rj*FMUd1gmvj-Uf*JII0s3jWhU;ru`i
z6bOlj+m_z0`}e0Z_s)*M!otF;uUEr!*MSO^18YBZF?_m}y?*KKdFJ_XQ#AseCad`d
zU0)abRu?R<`?-r@(zI#MUV>5?!yU$(kEB5EX1I4yo9V=>tE){D4m3!A<Cn1rcztc{
z=8Z~VPaoE1I?*Ah{N?j``}-U06%`$o-Fh}4$$?6q-|zSTZ~J?7b@=sncX#Km0o4%)
z-hSv}m^5e3n$_X!|D}TV(Ibfq$;yJRUR`!Oz2{;RD|gBJz29%efJ*O%=%=ELPg=#}
zE<8Is`|Fip|Chht@4vn^`+5mzUh3Z7Xn)(UQ}+G+7QOewA?|s4!k`r6TXD43;nvpd
z<?{7^0zo%`G_i6&DflyQ_N7agQX;3Z@k%Y>leMbY;RW)J`D0N=mq~4Wva8D8-pYJ<
zsMV_G#|D*^E}cSI*VfGRnxgUW;VY23l$Pr(0x!QG_;|@%zj7B3NND>>?RAWu-QAau
zbPDI+urGY%^7hu&(@2FXGdtgvS*F=}H}>b<wc?dBIe{c+UG^qmZPeDh8}X~dbaU_T
zyNe_TTBp)~zE?lI&_c$`$7c&7a6!xew`5&iCH-xE%+4UtawjCY>3XqSYJL`hngP$x
z&oAFL-@ZPs_Sct-r>1IOUFt2)9|npB1?4@DvMZ{;zFHc)yDan1kB_qq5}UY0wNyN<
z>i+Dwbm`KUGsfpv_|LaPDtbVPez|}6?{9BS>;Kg}@8yuM|5FIck%oqbR^{*Je0p~F
z^+PXEiu@zGo<rgK)s?~SrLV3O{+lyr&KgzkX)7W(r$y~7S~_XcB%26OBcoyV$5jkU
zp2sBC#_kT=oObrop;qqFhlf~O+uK*?-rhD(j~5b;z6_vMKxt=ZEwwCu_TtIO$(wY%
z*G6v-J3r6%>j7r|6PtAWr-MB8Ky6bA18CI}NNMEew3iPKHfzP~*f6i|SLW3ffzE5A
zwg!EEcJ}LoX8x*OKA^ahoRZ3XqM6@rMeglwn)UzwWL;d;y3B9xs&@Ihh)G`__uE(P
zumY*uu6&wp!rJKVt3Ykx=X1-y+(_>K`*iLFkY_8}b*hyQeZN=j530@|b*hU93NCzi
zcX#&RUtf)mRqQfZK2h2I)Wd=mPOV&dwZFf;4PNZlD<UPeYQqKtP!$ha_|CoxR3UBZ
z)2WVH=-w~)>f+*d&^*@JS*G5gEi=n}W-jXJ-~a{awA9Kkhd#Houz;FBii(Oazg=Aw
z>RtKy+0_>p7ngo~<hu9ox7(oFb6f81V>e|O7#N;JME;vxurcW<sKNv#zn{Jl#m~=8
zHFUGB`f{O5R9i$^diAfbueB8v4s6>MSM$-;_Q!+fU1e`)ottC%_>y_i6OY)PMXtNc
z-UdB9)T-)vb#-`nGaIi-@-ZIU-)}Z=y9%nuQdA?$IK!$|g{@sxey`FUv@8hJWNPD;
z&U$xeXIF1;=)XTdb5|!nKGqwxA))bDzx@2X|4ppiSC)7Rr~jC+r0VOdl_f7P{d%+c
z{2MJ$_B~OwN2?*`d4Wa9{<_+;GYp+Ud&b_}+#I?-&Nh0UwXUx3-m0&lGOYA|?f0Eu
z<?ZWYmix~S+nROt&abR1D;CbRF25D1#=yWZK{fTKYJ|D4fWU&VwNWcWSBGu0xz8?N
zvtY4%f7abyr7yqDw<vU)BqAyK@|w7$<jT$I=e1N-UH9$VH#15dq+hi1sic6vW%ai;
zpyEN%xlJQ}U(L(DokdT(R8HQ%e}C=!U#42ukAsqlB`@O>F;ELRF){Jg&CSnwkF&6`
zc}<!$dGg&~lO|1yIR;kLdtLwFrqc_Z+f7nWiTr&X|3ApdsY&Ie#Ns7ORF*DTqG4wj
zx3l<pncm)A`$S&%gKCqSpP%lQ{0yCMS35=BUvBy~v)o%Nd}o`LXXG<5FccVr4#IhJ
zb93x1Az@+L5Z`Z!GuM=)@7KvW+{U{qdiy$+rPanRr#D^MU7o-9^Eqp+hz$!~U0J!<
zviRAK9?j@&Yu@eqowqh_uhre>9o^l*S678@O+L;Sx-#hLx%Z${`A^Jl{omR-j3*bo
zc#)wSv*W_r+6M<3ca^-Hq~<eY!K0(y-jimT=dbg(`{}~T$$4)5quAYLYe8qsiO1Jm
zytWI}6I#>4Fv&47F|n(+w=`ScJa3N9>7dKYeCOtZ+7CFpKDQ!FLE*o(K=7ArLgcj5
z=Ru1QL9P8wDV|^7-;Yl|))P2c&38-IRjqw>;tUK7mQv{s|CW7yeSP`uxOFj>Ya=!u
zdX@#MVb}B;D}aJN$C&|?V-uvo-4%x00uCV28*L1r_RRq^a6gM-n_>e<bOSFV$oCDo
z9HUx?OE9He`1bZTsCnh;?yjw(;sWZ(t`1vU^5KEw_KmnoW;RgIR!rVs{DCfL^rZIl
zS@Wt_E0>2XbYh)rQyKJr-|uy+LRKzX8@>J2z3TT<Ra8|}R)npMIyKvTy<5NB+HP_E
zS8uo9zc$addQ0wYv!6dcOk!qWP<a06ask`kACJ0c*;a4!ZpgT~Y3Zry`s*()c7HwD
z-)^ExuZ(3-__~;j>tc6@>?la|4Ep-&>eU5~%%Gz1yxs3L?yuNE?qZsjka~fc-{wKt
zw?!!@C+&K_@AsDS_i^dBv6rnmt3mnXL>Grb{pFRx%ct1a*Lhz0`1p9~uP>RQtHaLb
z#`H>=ZYh55xBE1x{kchm>BN1|VmgqYN?%`_v_x3l&tsC3vhv+yZf<U`-rU^m<>|R`
zs~f0euC3T`XIbs<Z!6Q!&s!C_dD*S)`TCx_V5MYkje|qOX$g=*b)|+oZNba^UT!=t
z7kqC|<=3Cj=bzrB;~A8Yus}uA((>k8Lr+gny<||%ozszjaF?sNUQEDZw_eatTJEha
zo`Qmc=k~q!UcXNN=&!}X>VBXC`P0|0dtVlRd3o8r^3#*T%<Rj{dT(vX{A|9O9n^<A
zJI^+HbNczROm82bF9D`E*%_aRsi>>3_MEI{Rq|rOwRN$pjZ#nT_#&<q;_>j|!(01m
zci&Flo_l+l*Ho?47nR3)rI%}kuDUaE79#^gLG`8ItOYSKb5@0|eYLP_6Z^D;)PSg{
zSy9_^R<4cSo^@|e<*LBNZo3|XO2yRE(=-(o58m8{7$e%UItCO9-j8@Zz+*Mu)Ad4g
za@K%O#yLC7^z_pIFPG1srot;>;PCm`*<c@^o~rNfK&dF}%nZX-5gQj-mA!e<cnVys
zHZx3e{QvWOeM;oCX?n4%mU>U$^);Sf0a{L8*`6N{Dktme>as2^={(jWIeFo0dr+vp
z>0y}U`1<<#^B-;$Jw26qv`chm1gNd`VD1iZ&v;}MdcFP2xfzTuZ%jV^<+T3(6B3U>
z{m%~^r#Fen$*ogz?W))%;vmGxa`OskZ|y{7_pI;l?t*%w4LS>*TDhbw3Km3d%X#@S
zXu@GZhY4?MzTHgEy1Q$ulzHBogU#%#GcGPVHC221^3zNV2b6<?gGJ@#*T1~Hd^IQ=
zxo|YPgY@*sSO)b<n_s)M)ca{c!AxNW22fvVvcKI*HQ!ko2O1bb@$EHD=cN9N2ZA+L
z&fALK+%SB5Z*TNmt5T&J28IvpeC^J2tx7NT+y7eus(_`<assllRxLm6#CJs9Bt?7w
zpHJN?D>E)Gl3T~Z(6B~bOUvuh`^1#veX>?XPdeORJDzi4aNJh(_x3uAr92D`yI=pe
zXJcUjZ5Hb4@Bd!ldZH6t`&mwyKY#wYxz^8L8ckpp1l0yb3a2;iU}KSUWMG`2S@-*`
zxup!>(PPJ|c8M_DJkoFfPow=X=s=jATefFk_v34KKHe{X{=>E|5zR%HmU`cRDHMBW
zMV!KN<pzeEJ%=CeSZY7N=9A~Lt4Wd5bWWez@>aPxb!oDv(v`H->&yq1cuvl<`gYM>
ze(K?e7akq$et+Y0^t95`_iHND@68Sh4t`o-@#V$h{(nzDf3V}&@yJfW!R+&`?Dadh
z_DY-kfl7||_x6@vk1gN%C3IDYX7DQxKE7-B_Ew7u2~E<x?f&ev)^VXt`_{$oes$U3
z{_2&L!C&tbpTAoWQ&Y1CR4g27<zAh6d0F|JpT~P77awe9*H%(`)R+6&ucNE$(!IUa
zcmJ(ru#{zFIg!@JBl+l>8E8y&M}g!2KhNz;&)a^#5$2typYQPOl-Kb|U-swkbiNk6
zyDWFAUThTTppkX4yYnR6mix`sN<JgIKRozg6Km*(goD=G_V(<$X*g3mT<;!xW61^<
z?go{WQCqW4&9&YR8m`K?pfFV{)C)97banM~m6vaBZkDpG+LDx%1ga{2{{F44q~xR<
zwIv`XX3p(zd0S$hEu9`W>F`4kAJjF<y1GhJLjzRMfrcVK$LW2@19d{;zHnHBN+t$R
z7srsQm#R~Bqr(~-8&6HwpAR}pl~>wqN3XA!*QFVT$ss$7QlFlk9j>UTs1>(o2dJb2
z9fvXLUj6^tr|0HIPfN|bxhYl8d;h)4=d!!Y`Cq=cwRLrm;Vh$6uU&sLGc#uyCb!A(
zwSx|y26s3?2L@kV6B#^l;>1tizk_xtgVuPzy}#f7@cF;t*Bd}*O@6;yKA(w+DP)O<
z;MaF|qs8^(e9EmmJ3FghuiYN9Jug;NGsxxNzki_SEok&K_x854sc*JqUVifYx%%l%
zThh)-O;7&RYkqISm+RLXKu12GxBtIq(V|5n0s;$~Sh+!Gncmu(J^l8L%*)G8J}h_v
zN)ETSW{V07FTQXg05tB`)!Tcuk(u4-PZVP$W4Z%_$FJJCMNv_+K*Q|J?0hQ{54Uk~
za~I#cQuzGbT+pZ`NN?KNS(^UyY<|65K7UKfNg>_nZ9du8)?7TyZ$D?@^Nl**`TKq@
zo2DPX?znt?OzG=uSD&4oZCd=y=kJHZ{I~YiT4yiYd!vz=9pu5e7KKiwudaaFyr7y8
zv`g*ltE-pK%rw5bt2F!hk7>HmSvNPOt_oV(WmWo0rM|viRYfHO)Z^NoH&?FiN8;W3
z|9?TV4)-b^^MaCK?(J=*cK;T(%Y8bM_sHL><i&zUX7;RaZ*EFim#tx9Vv6~-|HmV4
zP~D$+xb58csi27qP$d++ybsjkdGH`X)}|r=w3%p{ZuGMJeLvkmr<nWB|Lt}?^3VPM
zf9Ko%c)%>G7ZY*b_WPWg+S;ud7nMLW`I?%VTs%A_lKa!o%YpWtY|Xw7I?v+WuGe};
zj~~xIIZ5@`qi+2zNk_S^u8j_#6tXod6r}8M8*lK(M@K=U<<HCHDxXZ;zvlaghlfFJ
z4ZrzzYkz%x{rctd`PVKkb_ca6vVVSh8nq>3qLf+Ai*5a&3rZdx?f!Zrxqqd5zZ|H8
z407|^+uL97|NmFtd+!5Vo=rWn)@2f&X~+9y=jk2I{wTFfUrXzhg$$ptynOv(!>g-8
zji;r~{QZ9a{g@pE2iN|;v$OcwpP!%e-nR40oBjO!+}t$lN<rrSl9!V<>YO&oy>(^j
z-=)*zjHac|{PXkkZ0B~qonLJK{dj!rVZjVh?XWwi-W_z4w4AmoY;9IeZSC1jsi$LZ
zou6l$eQKI+_NON&lZAwZdkv3)&JK>4mip?-%E|AxottO-`p@s)KFt(a&?y&u?T0}J
zkmc2G+_({BDl4~`#cjX&cDbMedHcrQWp6=8hNzjDU0eG1!b0a`n{+O3%?_Xbt?cbB
z$@asELPA1wazQ6tOiP`)DfP5fzj<<xr<a$JY1S2kX{j@VmU`{XQ8zTa_;kkZcP}n3
zR#Q?s6tW`V;L^Xhwq}FOTHx6HC9Y5UTJ-k3*vADHXFx-^m-b~|R-3FHt{1$(fwB1M
zDbe)bS5^l1rbZq+fBrn^D7mMGe}8>7=4(IPBW<pCSL)xJU;ig7yY(0(AMZ0Qetz!k
zg~uQ4Yp(tHZNbdsap~#lOZ#fS+2`Nf6cjMw@A+!xX{niCUR>nj<t=@^`(pmJE>Z1e
zH*Q3L+QiS#&p&@5|AEfwOQ-esuMtx9+Ofs{_nXa8n^HQr<=$TA)+=@Qo?pcc(7B!G
znU4qE+>|Ohg|%-fDA5)c7J`CTuKJDP^nH6OKWBY-aIosx%ydw81)a-#^ZE1V)8Bpj
z^z7{Hm0zoZ%4%-Eyta0>-S0QXzH_avKJ7Vha<cl?q@!G-8UY7VBhxA>Dt6so8L@E@
zXs&N-_VrT|#nI_5_P<^zM^0M`szA!$-8olQUthoX<1y*13kw==C;zi}*AME2+x~nq
zd6r4$B)@q!Key|Z_4oH*|Mm5C=$?wguWxT(U%Ec+?5wPto0fuR6I{E+cFxh9QWu{U
zwmM9A`nJ5gyE4zrFwFBl(y*q7fyrZkJ=cn;tN)(g-RQh3=;*)af4Q%&4&R@6|JT>o
zU*GM1|7!R9eV1QeUOsiwq(^Ty>v(f=a!STA1(?pg{`=kT_tR9??=ybCulDz)yW7uf
z1C0ipWIBFn`~5m?PpjHrTR^4t_J7I8`%X$M-dp|MYm$<ZQpj>Y*|l+dqpq$By$ou=
zL~YGl>DDXt>HGKXTg!H*9^XE9SLy3jE}cTR_Ec{E_Wu5QqtsI#zifG8c9;3iwJHr-
z7qc@)Zga{>A>Vm6k%fhYR>jYH*2V6A269~b`FWuc5jS+NZz_K7=lN2<z3RzC_q+<h
zKiA{y*K!K0WxT$&7UZsVaeH3{`8zosy3eIhzeann)T?W2S6dc8%XofnZXTn`?tS@6
z&lMXOF1_C`bZ6sX<MXpySy)*$Ei5eV?we_xzRJ0skBgT#w3&@JWKD!2D?9t?O**wd
zpH9EEDYbjj<jKZ=VqUU}%Fn-lf6|_x=k|ck7UJWV@lM@*Vq?j(Gm@VB*MI;2s9XP%
zY;xo@z1Uq({#3raw6yARuenM2yBJ<Mn}}l)tgNgnOJ85B`u%qM=C_d(-u&A3`OW6@
ztLp#%n`KqH3bfSS^Z)LSUpLd|mr7cfy@>$LBPAv#u8QBkuS-mK)qw*Jk<*s`{QNxo
z{5;$3U-o@+@9gZHH09m)<e$HOEvt^H{rB^E*5zfrO-)T#7C17C>c_<#Jb19kLMCc=
z*;=#QTP3%@{@J<i#EBCnzt?Y{Z(o0J>D^6ha(?gYoYM|UG3(t=FzvVfwq<|RGtep!
zP(8l8>}^q;L)G0zX7(+qr>C9KJFm^c%9`3~EI4nHy1!iHw59!azdU5EN={rzZfa^W
zNjk#OD`Dsa8vZlOxv?Pg^0JqU`|U1u3af9a`T5Cb-7VuyuW$P;_nT{yazdc?(@AyE
zR53{9{JLMBUteDj|M=+W+{f!;cP~pk+_tjd;h|eQi<f_Te*XQYxxLcn|JGW4dU8_P
z6Ld&Wmx$)0OVcM!T2%b}+|JespnPRu5KvfHs1><siTC}Bi{0nmKUJpw%Bu2H%C5ia
zesc;W*;CwWc=a1*d-?ia1>GCEGDvm%hr+kFOhH|Gxm7%oXPNnJ6q3*6)>nX5z+7Dy
zYyJG}tFX0EPyh6O{<_rq&ocAu-F0)1uiyV~RV%l6)~hQkH|d;yyE?;vuGLadH~(R~
zd>OaAxPDxTUg)ma>-B;Y?uFau-`L=onVAW$B|!7c(LX%Ay}iwAV&a`jwU4JfJvCMJ
z@4hRimlVrSEPZ|L<fb(;f4g~7>RALB%%^IH>xt^cMA-lN&|KWv`{lRqj=0*dp|X}m
zM~aUsdasP#y$w_k&ooZYIycAiW#7%6#mkE&Pl4_!-J4-=Xc!1OlIzc(KXVQ$D=0WL
zHa1#SeaU$Cmf>B;>+dX*)@5tNbfcF1`T2Qu<mNQJ<aPJIgYIv*{PgtnxuA(E&;aKB
zeajXGFZVM#mht1m!*h>)CxK4oYh-3$_It)6*Y2$U|NesF!u$7wgUy%sUT;f{JT=?=
zy{_zJ(7?)Et5VPide)&9PQBXM=K0q^-Kal5KfnHXT>ktAGsgVGLOKkRmzMj>e|>%3
zUsNmP!eoCt&Gy3!d8N%jW1#<k9JdFx0sN<T=sfy--ah>Audi3P<wp0)T8DwgpffT+
z>m!zd&XfHA@9(dFzu!+)_m}(o<8eP|Iiyzjx-~CeWPpP2`T6<RFD><+I%CF)MrL-a
z>pQ%I_Evob&5>-)xajos^z`Zd{r#`5uU`+U+MBC;?5n?AbQcvBU7CA)+sREjrEhLr
zOqE-D|GeCu4~MuxO(W1i&5auos_N?5cXyTUDtOqGb$#96?b8xLL-C+irJC=oCBNV8
z_ScQtGNHe}9~8_?tXwM`8kzF?UtV6`4_ep|x+=u;>}+$8-TVIi$_BNhd}o_o-IRLz
zj$H8iINP)H?c>kRG7WxuYU<O+j~CCFA#rt0<ma}npz?8R*43c<`)WazPUzaG(2pNK
zf@Z*LYHLlCkMV4;p0cET8_S2VIgE@&9X&O@Pvd(*XD5Oj_2=j3>|bAA&N5E#J2g#r
zb?)tLD`R#Rncum$wyyTsTN}1-yKepw(GELP`S{e8D<OY>-~WH@_xt_pLFz!G^Dh?n
z&+(1{>0IdCu2uf-4ya%O4UT|jcXDoS0=c4%SNhqew<jm7uXgPg`}OPfdefvM9H8dg
zZ1encTWXKKt^Rg1eeVBx|7$+}EM4s0e=RzH@6v__hT0zw+oSeWY?Q0{;8^?pZn;*_
z5|3TSZ}r|&zLZ`4|L=Fxx<3_9Pfm89tnPp9&d%biOFV_wMs4-lw{Krw|I3Su+n4#y
zUe?jU0cs0?rcAoT_1A$WY@AxTUcNhA{eJKAYipyyv*5{}`cLn>w0e8W$w{|1Cb#b@
zf4{Ew_qWV9H#SCX&6+yPEO*t}+2*SYA0LyvwSV?rHHWZNNu|<hg5u)KSB0)lo4Nk-
z7q>la3=DT}eEqNP-XpQ_zySwP*F!gY+n18axYqMh_44VUE;0kD<I0<+zBW(t^7Z{%
zpvu6IVtf66{gY#@A5@q)HckETp};e!re;sOHY0<=Ys;c19V(jT@9xagWwDfEWVs1C
zuLCq5={w&pHZwDGo*p|xgO0MUuJ7gL{^21ZQ$9UCt=?&@_<={>U!37iCNn!<$m?rs
zK|xsh>WXJzU?9p!Md_0hf*_N$!`FqJpJzMw?Z1Ej<ks<73No_X^gBIGxAg5TQ_#2)
z*vFO(3@My}fq}1XZeA`|@qke>x#aCFQ&GK`8<$fR*_9d;qCx9r7A;x?T5jVR6c8{$
zhA&KpiJ?gD^rk7+<$2FHt$y+(Wv*Rq6li{+tLsxv;faYH3NxR)y1H7*reZ_dxj8F~
zpPyR^8gVg9YI${i{ri`fih6#(-yg53sR_#Ur7th3N+w6V=3+Q8Q7?Aa67T7Ho|9^7
zYCzL)yGmbc>FAs}JXKL$sUc+&pR85J!6w#MmzVc@P19K^X`J>#{{N5meZO95+kUy=
zJWo&G{lrx5>7a(&s?gQ1j&urpd3sJXJa##ik>P<MU%T_dg$uhnIwth<%QHWel&PGV
zaC=)WXm!uAKH1fFwZA+j&8vJS>FVzO`swueYs-9R+r%WE6A}_y6tvW<a#v3YXc#j0
z)|QVYk{dWb&)sZr-;(<?Z;DL!Bjba6DnEmkYOIUhZFT$4-@l-l+S=c5w|jYbd`Kug
z;gxoN-rJW#3Cho`(-Zd<i#?M*VZr2~2D<VHwBBjL1cB+_q)f9ceuIVu=X5Yk;si|_
zojBpK{o9EX9+Jr=e|{A5hkzD4RLC)^2*>O!QoSqvn}vl1rlb3Uv13BQ0?<s=t;v%n
z&H4Lsr<~8XcXwx39#!=A^zjLaiJ7zfbc64V_j6i*o{OCEe$L}x&rRwU*8JvBn5kf7
zWOO$*Ox<tJ1Qk)O5RJRXL5ra#U0D~q+h;Xzr2o}bp|-J1IY(-q>zpY+cc|vMj(eX>
z;MrNGwy|yDN)0JZUQ@MRu3o?I(o*l~F?ufdH>Gy#oDN#*HT6<$%;7d(P<PnX)%ETN
z9negp&GS=JwLzm-ppM<kpgq%4cNpK6-JW~f%=W_pX3)yHU*Fzpzx-~!*xlV-+r}nl
zwt4=yf>zM5XL<pf3g{p>XV7YaU*F%a4_@wP`MyOCGBQ`a%LX*voNU27$rE%W;K640
z>}O|Yf@Ze0LRKsgRCZfY_xBfMQu>1gbOxzF9=uXwn_@!>WBB^GtJ>@LEIQQ6t*xQq
z!Ef`S;o6$W$1gWcaJ;=eKm7bWTTxlrwG$=?fL8FWjoNzYU^DyOWAAQn_wSW54a&$^
zap=&YEBk7z|NeTt{$*bItu2|mzTc}Bm5^9*X{q<?z2EPheiM5zSIV+zi40%6R>+D6
z*N)Fg=PxWQ1Wm6-M9gSvZVug7Q@Q<T;=0Z4&h31lrsl5S?{<sI$gBYk^ZxkoFz<U!
z!oI!d^Y{N<w$QnKRpH}fT-@A~4?n!1KEGztyBlX_+&^-}rS$bRUsf&=(Aj062J~F(
z@_QTqe%4}>yS}S5`|<PV>2Z}$MU7KWi3D#>^L_mKb+%dly*Do}O<>fG+G5bkC2F*{
z`n%cXWxmGB?tLbLf`V!)Do6f&ILv>p@OYoBF{q=w)N88I`@P@iNt$L&IXPW_{>qr0
zn>;-|3vWJK;yJk|HF8<%>1k=NuB=?<+|GAwlg{UB(fK#`R`2LcKHfL;!Gi>0DXFYe
z)Aiq9J3gm+zyAI|mwx>IJ)2#==0cCW{XL(#R#(5gzkh$vr&HSJ49}E)`|$a^{p{WE
zcAW-QY<qq_o1J!QisrK7=jT9u*fo*H&n=$awg$DSBBrG-TC~XL?yl0_!w(JQ>;G)L
zz2nS``&+h{e7@k!Kl8$c0OOh;1;&MsT!dw1bBmsz%jJ``nzHiuTv0&>o1E9z)`FaR
z&icK@?Mag+`J9}j>I+KZ5t2r)Zs+eWt#-Dm_^^PJgTvsw&F7xYZ+||YZ+`IL!Dlx%
zCZF48nte^;^rkaYG=t~lhOdh;1O?K@jT`lD=UiVmmy?&*6x6+4Vtepy#?@6*LFce`
zc6JtWE1cQ+eRsjbrp}HI1Kp@CKTa2(Dg6dI;Q-VdzqhwK_Lg<Yiv$_I_Tsu3`R_}<
zz6vdVbwx9|$ME*{eDi6kOQju*lIxzIo13k3+K5|Br(oOPPp9?O^6%|=_Hz0BeaXLH
z=yE8?U0WY-4~k^HxIHf}*=1ePcwAr+!&g@^eO2h{Sy@+CS=Q@CY*>(ab=B0{JB(6K
z&0yn|vZ(*}s9V41@IwRb@O34U-`{S(FLip;nKhA{jn-$}nZzq?CJ`SWzd8N<yb@-P
z;&*>R!$cq_|NHy9*YMb%Z@2T+bal_>$`sGF-Sg|!YS7Szar(I(TlRlCrG4!9@#COv
zyb_0N(%I`pK|YAymXisZlG=82Z*{q_kWkXPxV^v1%Z|S;;O%ICduyxrQt#<yJCk>P
z`MuX=-S@-RbFE6fetv#FT}2jY(ZI2*D*_Lv^1k@GKYVS})zp})t3sa^SQNdhx~QY3
zi?-On`1#Glx3*?awJy*5`{(m{t>|rQoSd9Mwb|Df7oAU@JUMB`>o+QDYHr6QKudo?
zGc+Y{ZWx}OYaI?+c=i6?UQr2&6E*3@Gfnqfm%j^{sug<a?z5+-r<XoB&}hAtJFb!8
zQKGuvoPd;+CDGL>DNA|`L924uR~@<!Dhojaa-dm+y7}pz=5s*jb!w@q9<?+JUl()k
zL($yz>(?JTbjU(&QwP7@4+r;txvL)@9=`lG{oLmEW_ErpRaMu1`+qw?(-f@SVk^9-
z>w!ibtjgc%bnZOoCuNqi;^E=;?60q`u8P^Y3ABuGYwqo^y;Wa9!@eqp_ix6goqZo)
zdvEfT$9=5tTHYmwuZx+ufB*jIY6pjg&GPqB@9(PxwFR=Sty%f)?QQR0_igUwtgEf9
zEq!`Q^ykl?OLxC*Xkh5;)Oi3JwYDl*(Z(aWsOIOVrPghh=jA~4w|4lt7eAlRzrLgJ
zv5F_C1zc3L$?newXI^Quo}K5?7A;y7vb!u7)O7#(>FMQ9Pfwc`J@IgLaarNsFL$Qg
zY<lG9-{JGW_ZV8fi%@8&h)76S@Y&>_ysE0I<?n~Kpk=tn<*I!^3uZvK8J^yx@;6`3
z*yws=W8<!>uUWfp`+IpknsI`OjZbF9h7AT^-`xD%mOSJ0n}@%$>;L9FD+Miad~$N~
z*SFj6uZr1O1d8c|b8{?TU0XYwPuA+mpR*;K)6PzrHER{<{-NAkTOQsogE>j(^r^z*
zOx_!8bc~EHRqlG<zizvzR>+BWlL}_*#q3z%)+_b$P%AfRg_M$#(wy4s|CM)NjCp=~
zy8pg?`_64#xpHORee-#fCM_~fKUd&WaRa)5<m;=epwXMI{{HI|mEEUInX+Wc6p^FH
zkH5aNv-nJ<S>fNU`Vkuzcvm+vv8r_LJeLN_Y@sWIj^?iP$;nxx7r$@KT<db9`!{3K
z&g#$q9wX>rvnFV%msP=o2GAhJrG2TV#UiII^_r?xxx(m9*OMnHrkR&q+WBNJeR_I2
zbeWIj^nXsRT$(mEF}Jtpmsh{pmU}zq+0LM)UPi}u^!|Of`~8$@(~cQFOyuO`G&;5-
ze0`i&*qRxjal1!HyR%<kTYGDN{eDne{o&zu<L5VzeC_rY77~iNwSN6|y?_M_#dCY-
zSe1H#{0{1p8XW^oO+g|#dS#I6(W6Iq<`$oxrpv{}74-7b()SPIDj5B1|BBU>|Fu&{
zKHgWlO;ufecF<C<neB2_Cz_`!E)EI~_RYyz^YQcN;@?{P?0>C(FZ%z(Vg9+`VmC1{
z@nzlm3J;GC%kp=3=HBN_xv_r#zbrBRxHsR_t*majxVp|%^`17vw)&d{C{ZLlKQ|Xt
zi>!;ap8m}&_m+gcy?ybcBb>=R#dBjpBfy|Tl$zQ3cWp7xzINuvj~@p2Z=QI2kNrv6
z^YV9hc7h7FpP!#w-(Gj0eM#=^ZRJJR_b@T4aDx^DeEj^`SbzVYO+P;z=0EGqZ<_)-
zy8_grjFmD1?S=u>H9sEr&z@<VzU%MKchBe7n>~E^a9PU9Nzd+<-#5+Q^RW$Fvxcmk
zbo+a~{~U{p7BYOFuLS$gTp7H4*0;B}rP~iDy7kNDet)Ofd}%j7NAWz{l9!i`TFCHS
zUKOehs^vhcLF2@1yi!kO4#%YPgT{*Y?c293;b7Cb-J#}rcW!`G@2xHeRiV{;zu&7)
zJJKQe3{<mCOP%@b?CjZs%5F12m|I*=BH1XtE;u;&Y%{-I2B`9E<CT84N4RR9P34(J
zX7-%h|JO7zOk!10SD!sSzV4=oR>%n!Hnv%yKKYusy|*r>DmEu2C4puOAI`V`^}hap
zwv=gBij$L*&%T<UKEJ=cJ^S+V^2>MMU0E6IyR+!2kAp*lX6ULZpnC;mcQ@Y_5f)Ac
zx0%k(sotM`ecjB&!)-H@j&@1b*VhN{DtTG*ylv+>xqZLiS%1Ef+&|N)l?yDhEho~r
z>PyDtS+ial_5J+j7Z@05{^!4yo!vc4J>zHJ|NQ*CEc^O8H5;2dEiElGc9p)KwPVK)
zpPT2`oHIHm;jhmOT17FzxIhrRijYd{jdrZ$l{P!^umCi*Gf(enU&Y(4*Pj%8h*w~!
zV0yogAz^dB{l5slcIU#v!gJe1wZmR~y&nHPA$0%m2hIFnJ|34}emgyK+S#jr^wiYc
zM72V8EWW)(=XCOKX7D^FgUy5U@^zqjA6{v*GtO84oIlbje3@5aYxebPQ?<jtoKWt+
z5hv`($goMAiGv}9@z@NXn|VP&mt=2Gn?L`)>}@dyh385Q3=Qp|o~5w5-xL)~89qxH
zzNe?Ap1zsibMeQ=$Dmg5fddY%E-o*2KA(5_=jZ3K+k{0$m)^J$0qW6%#&!}C7J!O;
z&r4rkUIwlB6V-_bU}R(jEpIW&yreSyxVUzh4`^5n)OAajEq#4$YRThl2hdS2p{v7u
z9UUFH`1!9JpSM~3_;~;Bo|iW^f=-Ss{qv*HH2a#*!i5X90v0s<`ue*3_QBH+3qZvZ
zXy^enuG7%K0P4S;*56+uy*u-=+Vj_et3ouNXHS|p(>UGgySk2!PwuTP7dIv!pY!+k
zx3|Fo0TVzAGQP>!+1b6izyE*kTYiQoDt7bq7#NCnJ)c+Y2f7eymT9(0_BEaD{7>)h
zD!r^ezh=?7xz?-8-{1T7a{2r(?{>e>y1p(JG%#+wCSuxB&>EWD+uL5<+q-*L>FZ^n
zf$~Y9!J8K^GC=c3pFV!PcxkEk)y3}olF48Gd_M0z>EGA&^`K=pT)ezj7dSSj^aLJk
zVx3$1r&9AukEHRHoyF<ksXyDQEq-&YmVSJE{PpboeHYKowFWg|o<F{H>C%-AiO%5u
zlXcmeYilAGgBEeBdQS`a{_bx6>(bx9Ua#MpaF7Yqyji$#A!w~I=+1}5?)_T%_x4O$
zVq5(UH2Db%)HYt}WmBez?EQ8t8^pc+&8<&nrJ{4&iqhBDUftTdy6)#wao-sRj$5;@
zm%a19xhd7O=10NaKc7y6mfnIUQcq9UU!8os57hP9e8k9#;lw8%h67>7X=e=h+7G|E
zvGMTDYn#*k9~W5MIac@g>-A%sbd1x_$xQzix;jkq^rka!Zf>5N8yFY}DqF9v4&R-t
zuBmx)?b^V_ZlJPJFZbfbi_84xTID70|Mf~6)aY#EmF_V-wq(hY8BMI*v${mJXFYk6
z@_fhB)6=C-Z#t8`e($rK*EcpUF0_zIdvao;-t9F(OS@La?cH^|_-~|-PY>uEI`7%3
zk!lJG2mXAy?0;_C-QDFNoxk7jf1i_mZOu$hE-s_veX_;d-rnAR{>P6WJNDfB`0*pC
z9or*kd+TW>XoDiCf$i2S^)$!Z+uIm)GWEoX6Q7-#Y5eT}zxV%p=Fgws+1<VS<vs?6
zo<vSDhLl9m^-Zzmcb8Uuef9FpOyhI*Q?<jxKo{1nkAH8pFJfa7Xv*Mr*`L3E=hp8p
zc-REGo!DKj(xshW{@T%Q@%)|ZKr^3TUS0;RG(Npm5j55svMnc4H-6upw}$n0mjn0R
z`Sgi_fmIf?7GQOluB=_nk7@IN?_%SX($La6^|Scrr>Ee=V|Mw{CC~~?+mA<tL2Ipx
zV`dtqf>P7;T+j&SF$vqRSAzA{7dJAohO7$FoPPc0CLPci-E_U!pvT90O*1cnmpV<=
z4&V2-ma$<@i)sYJgjUdK==1aQ{mV~INR0$d?RZCTOgeh$?m5uxc*%=^+?$(Rr|ZX;
z-E>PzTIA&HoWFA2j~^A0)0SRZ>b?6bXyL+a^Zc?*ZVrxsh=>{9(f9ULmcF~QGrH=Y
zJ*Y=~_tw81XXERBx`wZd2|PJT_3p8$n!#?`VQUKh)x5Z%xOC~#rPkLr>1^lz&@HaN
z4%AbQ-(RN{zi$s4uT;tH-;4~Fpv9q^Hf-5q0xFs2*Zs=eC7#pX-oE>fjD*AsvuB`b
z>G=KoPEFNbUikRfOVE_s{Q2`i)BGPFAJ^8^)xG>`|GR$itLfj&E?3XZ1NAWY+MTt-
z*ZF*BYgJTK%*&0h`?*x-G-z$!+;ndS26J}?#s-}SZr^ul1TJa;EldG5Xi_Dwu8r7L
zvJy000b2Z};~KTQEVu3TkIjo*yH80h{`>p8wwl_prTPE={nd)v@*?+Ym3nJ?yS9Nr
z06V{2$?MzO^XH#Fuj(~rf}vYrVBpJntUot<PFBl&duuCbm;tm-p!EH{SZ;B>J;_^{
z9m<ZGDlkl7WnpLc{`L1)k3DEEa$W51Y45gcFI~1w%h2%SvfKOWmObcCw-OQ-HcdX(
zQ}X)9=j*?hEsxro1u6|drP!1yBI&=oM72T76iqWPJy~}9L=Im&sC9p3k!yF%KCklk
z_x6HDVo%>tpI;Ni*Z#Pze6fA?w>6*N+yDJC`E&G!xZ1Cwy^_Xm-QxP!&dfA6PIqTe
znEjB4gQ4QU{OO#a0r6uJpnV`&H#RIRdU|SU*xIO<6W!$kzrVX{TJ<FZ)FbS-`?aE`
zwzl-a0miel&HaVdd_a>AKc}BB{cGqu%LJqpw3Z&UUx}4l?8?c>>UUqwFv*+*D$FLS
zdarV5WCHCriau*+XIJ(4tohZQ#p$-6PAG$B-~8s;tmG6{TT$`x(XZ$B|0~<$R_=fP
z^?LmEQ&Y9SemKkz+N$K`>3I<}CjH_?#@l;)Z(FXb`1nZ5FsX%&M`FSJx?d+N_fI<9
z&Yyj8kt?Vc01aq)zPht>b5m2(obP#{+2?2H=dZuFw|aHm-(OuF9Uo5YV`|v0(7@2Z
z{-<&!c>XnRZ&l{GIhN<D8@FU#^_ukMAiMmEsI6I`-A8PEG8*#o@~*C~D{Fs$11+C8
zZFV`@DRfs!CMe4`v+)M)uloxcK9#er($LZIiQQFFC~2K?LO|BGDkOjZ-)(wvdsf`q
znr+Q|V*d8K3!T|n+1azdytoM3as(P|dUkd;h<mQO;Z8<<{<XTzh32=e+i#z)A0M|m
zY%OT!!nEW?0BF$sa2xOCkB^VXGIglz{d7uOD|lJYv0mxtHjhib-z{GqxY(_$w|A<_
z-rw(b-`Y{QSWGA4K~dn}Et!`?_SICDzP%OdJzekY1v^FuztowxcSiAp)@|o8U#HLd
b?PvcPkIBmD{^4Do0kYTA)z4*}Q$iB}oNljJ

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-091756Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-091756Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt
new file mode 100644
index 00000000..616b19ab
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-091756Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt
@@ -0,0 +1,14060 @@
+		Result for Multiview classification with Mumbo
+
+Average accuracy :
+	-On Train : 68.4519544622
+	-On Test : 76.6393442623
+	-On Validation : 76.213592233
+
+Dataset info :
+	-Database name : ModifiedMultiOmic
+	-Labels : No, Yes
+	-Views : Methyl, MiRNA, RNASEQ, Clinical
+	-2 folds
+	- Validation set length : 103 for learning rate : 0.7
+
+Classification configuration : 
+	-Algorithm used : Mumbo 
+	-Iterations : 1000
+	-Weak Classifiers : DecisionTree with depth 1.0,  sub-sampled at 0.0075 on Methyl
+		-DecisionTree with depth 1.0,  sub-sampled at 0.006 on MiRNA
+		-DecisionTree with depth 1.0,  sub-sampled at 0.006 on RNASEQ
+		-DecisionTree with depth 1.0,  sub-sampled at 0.0065 on Clinical
+
+ Mean average accuracies and stats for each fold : 
+	- Fold 0
+		- On Methyl_ : 
+			- Mean average Accuracy : 0.00585534591195
+			- Percentage of time chosen : 0.991
+		- On MiRNA__ : 
+			- Mean average Accuracy : 0.00662893081761
+			- Percentage of time chosen : 0.005
+		- On RANSeq_ : 
+			- Mean average Accuracy : 0.00616352201258
+			- Percentage of time chosen : 0.002
+		- On Clinic_ : 
+			- Mean average Accuracy : 0.00633333333333
+			- Percentage of time chosen : 0.002
+	- Fold 1
+		- On Methyl_ : 
+			- Mean average Accuracy : 0.00609493670886
+			- Percentage of time chosen : 0.992
+		- On MiRNA__ : 
+			- Mean average Accuracy : 0.0060253164557
+			- Percentage of time chosen : 0.004
+		- On RANSeq_ : 
+			- Mean average Accuracy : 0.00637974683544
+			- Percentage of time chosen : 0.001
+		- On Clinic_ : 
+			- Mean average Accuracy : 0.00649367088608
+			- Percentage of time chosen : 0.003
+
+ For each iteration : 
+	- Iteration 1
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 2
+		 Fold 1
+			Accuracy on train : 59.748427673
+			Accuracy on test : 53.2786885246
+			Accuracy on validation : 67.9611650485
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 55.6962025316
+			Accuracy on test : 64.7540983607
+			Accuracy on validation : 63.1067961165
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 57.7223151023
+			 Accuracy on test : 59.0163934426
+	- Iteration 3
+		 Fold 1
+			Accuracy on train : 64.1509433962
+			Accuracy on test : 69.6721311475
+			Accuracy on validation : 75.7281553398
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 55.6962025316
+			Accuracy on test : 64.7540983607
+			Accuracy on validation : 63.1067961165
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 59.9235729639
+			 Accuracy on test : 67.2131147541
+	- Iteration 4
+		 Fold 1
+			Accuracy on train : 62.893081761
+			Accuracy on test : 71.3114754098
+			Accuracy on validation : 73.786407767
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 62.6582278481
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 69.9029126214
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 62.7756548046
+			 Accuracy on test : 72.5409836066
+	- Iteration 5
+		 Fold 1
+			Accuracy on train : 63.5220125786
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 63.2911392405
+			Accuracy on test : 72.131147541
+			Accuracy on validation : 70.8737864078
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 63.4065759096
+			 Accuracy on test : 72.5409836066
+	- Iteration 6
+		 Fold 1
+			Accuracy on train : 62.893081761
+			Accuracy on test : 71.3114754098
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 69.9029126214
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 62.4591991084
+			 Accuracy on test : 72.5409836066
+	- Iteration 7
+		 Fold 1
+			Accuracy on train : 64.1509433962
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 74.7572815534
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 69.6721311475
+			Accuracy on validation : 70.8737864078
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 63.088129926
+			 Accuracy on test : 71.7213114754
+	- Iteration 8
+		 Fold 1
+			Accuracy on train : 62.893081761
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 65.1898734177
+			Accuracy on test : 72.131147541
+			Accuracy on validation : 73.786407767
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 64.0414775894
+			 Accuracy on test : 73.3606557377
+	- Iteration 9
+		 Fold 1
+			Accuracy on train : 64.7798742138
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 67.7215189873
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 75.7281553398
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 66.2506966006
+			 Accuracy on test : 72.9508196721
+	- Iteration 10
+		 Fold 1
+			Accuracy on train : 66.0377358491
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 76.6990291262
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 70.8860759494
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 74.7572815534
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 68.4619058992
+			 Accuracy on test : 77.868852459
+	- Iteration 11
+		 Fold 1
+			Accuracy on train : 70.4402515723
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 72.7848101266
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 78.640776699
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 71.6125308495
+			 Accuracy on test : 75.8196721311
+	- Iteration 12
+		 Fold 1
+			Accuracy on train : 69.1823899371
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 78.640776699
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 67.7215189873
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 73.786407767
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 68.4519544622
+			 Accuracy on test : 76.6393442623
+	- Iteration 13
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 14
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 15
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 16
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 17
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 18
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 19
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 20
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 21
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 22
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 23
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 24
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 25
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 26
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 27
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 28
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 29
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 30
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 31
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 32
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 33
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 34
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 35
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 36
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 37
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 38
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 39
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 40
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 41
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 42
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 43
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 44
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 45
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 46
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 47
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 48
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 49
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 50
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 51
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 52
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 53
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 54
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 55
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 56
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 57
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 58
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 59
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 60
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 61
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 62
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 63
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 64
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 65
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 66
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 67
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 68
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 69
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 70
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 71
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 72
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 73
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 74
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 75
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 76
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 77
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 78
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 79
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 80
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 81
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 82
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 83
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 84
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 85
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 86
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 87
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 88
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 89
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 90
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 91
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 92
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 93
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 94
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 95
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 96
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 97
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 98
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 99
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 100
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 101
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 102
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 103
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 104
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 105
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 106
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 107
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 108
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 109
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 110
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 111
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 112
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 113
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 114
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 115
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 116
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 117
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 118
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 119
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 120
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 121
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 122
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 123
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 124
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 125
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 126
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 127
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 128
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 129
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 130
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 131
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 132
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 133
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 134
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 135
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 136
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 137
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 138
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 139
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 140
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 141
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 142
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 143
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 144
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 145
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 146
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 147
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 148
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 149
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 150
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 151
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 152
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 153
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 154
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 155
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 156
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 157
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 158
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 159
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 160
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 161
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 162
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 163
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 164
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 165
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 166
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 167
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 168
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 169
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 170
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 171
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 172
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 173
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 174
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 175
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 176
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 177
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 178
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 179
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 180
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 181
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 182
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 183
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 184
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 185
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 186
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 187
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 188
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 189
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 190
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 191
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 192
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 193
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 194
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 195
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 196
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 197
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 198
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 199
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 200
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 201
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 202
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 203
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 204
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 205
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 206
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 207
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 208
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 209
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 210
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 211
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 212
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 213
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 214
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 215
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 216
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 217
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 218
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 219
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 220
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 221
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 222
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 223
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 224
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 225
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 226
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 227
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 228
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 229
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 230
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 231
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 232
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 233
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 234
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 235
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 236
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 237
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 238
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 239
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 240
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 241
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 242
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 243
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 244
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 245
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 246
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 247
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 248
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 249
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 250
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 251
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 252
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 253
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 254
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 255
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 256
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 257
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 258
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 259
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 260
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 261
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 262
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 263
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 264
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 265
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 266
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 267
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 268
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 269
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 270
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 271
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 272
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 273
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 274
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 275
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 276
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 277
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 278
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 279
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 280
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 281
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 282
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 283
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 284
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 285
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 286
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 287
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 288
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 289
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 290
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 291
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 292
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 293
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 294
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 295
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 296
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 297
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 298
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 299
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 300
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 301
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 302
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 303
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 304
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 305
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 306
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 307
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 308
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 309
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 310
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 311
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 312
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 313
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 314
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 315
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 316
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 317
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 318
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 319
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 320
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 321
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 322
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 323
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 324
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 325
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 326
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 327
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 328
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 329
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 330
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 331
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 332
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 333
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 334
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 335
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 336
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 337
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 338
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 339
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 340
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 341
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 342
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 343
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 344
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 345
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 346
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 347
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 348
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 349
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 350
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 351
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 352
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 353
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 354
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 355
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 356
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 357
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 358
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 359
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 360
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 361
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 362
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 363
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 364
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 365
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 366
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 367
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 368
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 369
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 370
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 371
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 372
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 373
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 374
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 375
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 376
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 377
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 378
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 379
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 380
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 381
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 382
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 383
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 384
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 385
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 386
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 387
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 388
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 389
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 390
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 391
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 392
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 393
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 394
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 395
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 396
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 397
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 398
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 399
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 400
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 401
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 402
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 403
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 404
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 405
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 406
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 407
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 408
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 409
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 410
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 411
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 412
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 413
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 414
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 415
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 416
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 417
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 418
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 419
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 420
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 421
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 422
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 423
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 424
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 425
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 426
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 427
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 428
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 429
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 430
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 431
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 432
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 433
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 434
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 435
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 436
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 437
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 438
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 439
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 440
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 441
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 442
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 443
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 444
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 445
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 446
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 447
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 448
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 449
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 450
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 451
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 452
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 453
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 454
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 455
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 456
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 457
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 458
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 459
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 460
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 461
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 462
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 463
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 464
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 465
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 466
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 467
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 468
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 469
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 470
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 471
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 472
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 473
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 474
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 475
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 476
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 477
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 478
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 479
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 480
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 481
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 482
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 483
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 484
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 485
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 486
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 487
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 488
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 489
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 490
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 491
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 492
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 493
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 494
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 495
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 496
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 497
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 498
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 499
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 500
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 501
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 502
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 503
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 504
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 505
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 506
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 507
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 508
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 509
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 510
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 511
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 512
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 513
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 514
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 515
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 516
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 517
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 518
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 519
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 520
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 521
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 522
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 523
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 524
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 525
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 526
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 527
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 528
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 529
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 530
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 531
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 532
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 533
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 534
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 535
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 536
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 537
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 538
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 539
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 540
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 541
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 542
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 543
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 544
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 545
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 546
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 547
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 548
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 549
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 550
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 551
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 552
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 553
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 554
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 555
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 556
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 557
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 558
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 559
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 560
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 561
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 562
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 563
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 564
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 565
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 566
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 567
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 568
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 569
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 570
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 571
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 572
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 573
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 574
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 575
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 576
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 577
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 578
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 579
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 580
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 581
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 582
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 583
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 584
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 585
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 586
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 587
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 588
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 589
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 590
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 591
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 592
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 593
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 594
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 595
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 596
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 597
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 598
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 599
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 600
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 601
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 602
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 603
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 604
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 605
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 606
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 607
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 608
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 609
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 610
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 611
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 612
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 613
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 614
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 615
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 616
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 617
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 618
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 619
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 620
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 621
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 622
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 623
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 624
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 625
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 626
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 627
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 628
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 629
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 630
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 631
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 632
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 633
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 634
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 635
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 636
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 637
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 638
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 639
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 640
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 641
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 642
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 643
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 644
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 645
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 646
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 647
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 648
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 649
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 650
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 651
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 652
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 653
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 654
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 655
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 656
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 657
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 658
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 659
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 660
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 661
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 662
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 663
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 664
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 665
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 666
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 667
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 668
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 669
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 670
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 671
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 672
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 673
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 674
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 675
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 676
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 677
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 678
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 679
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 680
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 681
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 682
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 683
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 684
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 685
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 686
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 687
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 688
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 689
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 690
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 691
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 692
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 693
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 694
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 695
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 696
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 697
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 698
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 699
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 700
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 701
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 702
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 703
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 704
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 705
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 706
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 707
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 708
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 709
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 710
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 711
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 712
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 713
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 714
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 715
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 716
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 717
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 718
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 719
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 720
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 721
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 722
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 723
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 724
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 725
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 726
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 727
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 728
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 729
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 730
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 731
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 732
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 733
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 734
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 735
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 736
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 737
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 738
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 739
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 740
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 741
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 742
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 743
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 744
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 745
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 746
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 747
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 748
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 749
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 750
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 751
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 752
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 753
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 754
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 755
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 756
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 757
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 758
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 759
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 760
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 761
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 762
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 763
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 764
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 765
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 766
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 767
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 768
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 769
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 770
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 771
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 772
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 773
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 774
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 775
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 776
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 777
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 778
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 779
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 780
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 781
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 782
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 783
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 784
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 785
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 786
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 787
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 788
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 789
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 790
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 791
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 792
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 793
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 794
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 795
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 796
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 797
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 798
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 799
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 800
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 801
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 802
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 803
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 804
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 805
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 806
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 807
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 808
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 809
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 810
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 811
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 812
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 813
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 814
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 815
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 816
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 817
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 818
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 819
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 820
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 821
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 822
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 823
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 824
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 825
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 826
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 827
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 828
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 829
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 830
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 831
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 832
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 833
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 834
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 835
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 836
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 837
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 838
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 839
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 840
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 841
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 842
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 843
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 844
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 845
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 846
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 847
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 848
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 849
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 850
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 851
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 852
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 853
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 854
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 855
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 856
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 857
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 858
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 859
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 860
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 861
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 862
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 863
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 864
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 865
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 866
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 867
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 868
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 869
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 870
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 871
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 872
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 873
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 874
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 875
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 876
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 877
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 878
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 879
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 880
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 881
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 882
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 883
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 884
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 885
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 886
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 887
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 888
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 889
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 890
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 891
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 892
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 893
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 894
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 895
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 896
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 897
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 898
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 899
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 900
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 901
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 902
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 903
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 904
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 905
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 906
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 907
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 908
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 909
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 910
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 911
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 912
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 913
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 914
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 915
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 916
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 917
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 918
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 919
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 920
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 921
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 922
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 923
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 924
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 925
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 926
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 927
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 928
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 929
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 930
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 931
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 932
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 933
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 934
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 935
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 936
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 937
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 938
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 939
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 940
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 941
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 942
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 943
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 944
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 945
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 946
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 947
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 948
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 949
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 950
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 951
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 952
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 953
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 954
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 955
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 956
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 957
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 958
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 959
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 960
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 961
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 962
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 963
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 964
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 965
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 966
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 967
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 968
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 969
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 970
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 971
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 972
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 973
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 974
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 975
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 976
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 977
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 978
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 979
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 980
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 981
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 982
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 983
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 984
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 985
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 986
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 987
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 988
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 989
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 990
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 991
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 992
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 993
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 994
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 995
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 996
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 997
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 998
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 999
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 1000
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+
+Computation time on 1 cores : 
+	Database extraction time : 0:00:00
+	                         Learn     Prediction
+	         Fold 1        0:01:13        0:00:01
+	         Fold 2        0:01:22        0:00:01
+	          Total        0:02:36        0:00:03
+	So a total classification time of 0:01:24.
+
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-092030-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-092030-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..3426f1a2
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-092030-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,14248 @@
+2016-08-24 09:20:30,659 INFO: Start:	 Read HDF5 Database Files for ModifiedMultiOmic
+2016-08-24 09:20:30,660 INFO: Info:	 Labels used: No, Yes
+2016-08-24 09:20:30,660 INFO: Info:	 Length of dataset:347
+2016-08-24 09:20:30,661 INFO: ### Main Programm for Multiview Classification
+2016-08-24 09:20:30,661 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 09:20:30,662 INFO: Info:	 Shape of Methyl_ :(347, 25978)
+2016-08-24 09:20:30,662 INFO: Info:	 Shape of MiRNA__ :(347, 1046)
+2016-08-24 09:20:30,663 INFO: Info:	 Shape of RANSeq_ :(347, 73599)
+2016-08-24 09:20:30,663 INFO: Info:	 Shape of Clinic_ :(347, 127)
+2016-08-24 09:20:30,663 INFO: Done:	 Read Database Files
+2016-08-24 09:20:30,663 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-24 09:20:30,667 INFO: Done:	 Determine validation split
+2016-08-24 09:20:30,667 INFO: Start:	 Determine 2 folds
+2016-08-24 09:20:30,678 INFO: Info:	 Length of Learning Sets: 122
+2016-08-24 09:20:30,678 INFO: Info:	 Length of Testing Sets: 122
+2016-08-24 09:20:30,678 INFO: Info:	 Length of Validation Set: 103
+2016-08-24 09:20:30,678 INFO: Done:	 Determine folds
+2016-08-24 09:20:30,678 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-24 09:20:30,678 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-24 09:20:30,679 DEBUG: 	Start:	 Gridsearch for DecisionTree on Methyl_
+2016-08-24 09:20:37,995 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:20:37,995 DEBUG: 	Start:	 Gridsearch for DecisionTree on MiRNA__
+2016-08-24 09:20:39,915 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:20:39,916 DEBUG: 	Start:	 Gridsearch for DecisionTree on RANSeq_
+2016-08-24 09:20:56,530 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:20:56,530 DEBUG: 	Start:	 Gridsearch for DecisionTree on Clinic_
+2016-08-24 09:20:58,283 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:20:58,284 DEBUG: 	Start:	 Gridsearch for DecisionTree on MRNASeq
+2016-08-24 09:21:35,801 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:21:35,802 INFO: Done:	 Gridsearching best settings for monoview classifiers
+2016-08-24 09:21:35,802 INFO: 	Start:	 Fold number 1
+2016-08-24 09:21:37,555 DEBUG: 		Start:	 Iteration 1
+2016-08-24 09:21:37,575 DEBUG: 			View 0 : 0.375
+2016-08-24 09:21:37,583 DEBUG: 			View 1 : 0.625
+2016-08-24 09:21:37,620 DEBUG: 			View 2 : 0.375
+2016-08-24 09:21:37,628 DEBUG: 			View 3 : 0.625
+2016-08-24 09:21:37,670 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:21:37,743 DEBUG: 		Start:	 Iteration 2
+2016-08-24 09:21:37,760 DEBUG: 			View 0 : 0.4625
+2016-08-24 09:21:37,768 DEBUG: 			View 1 : 0.6875
+2016-08-24 09:21:37,805 DEBUG: 			View 2 : 0.5375
+2016-08-24 09:21:37,812 DEBUG: 			View 3 : 0.39375
+2016-08-24 09:21:37,858 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:21:37,989 DEBUG: 		Start:	 Iteration 3
+2016-08-24 09:21:38,006 DEBUG: 			View 0 : 0.43125
+2016-08-24 09:21:38,014 DEBUG: 			View 1 : 0.7
+2016-08-24 09:21:38,050 DEBUG: 			View 2 : 0.41875
+2016-08-24 09:21:38,058 DEBUG: 			View 3 : 0.38125
+2016-08-24 09:21:38,112 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:21:38,303 DEBUG: 		Start:	 Iteration 4
+2016-08-24 09:21:38,320 DEBUG: 			View 0 : 0.425
+2016-08-24 09:21:38,328 DEBUG: 			View 1 : 0.63125
+2016-08-24 09:21:38,365 DEBUG: 			View 2 : 0.525
+2016-08-24 09:21:38,372 DEBUG: 			View 3 : 0.44375
+2016-08-24 09:21:38,429 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:21:38,678 DEBUG: 		Start:	 Iteration 5
+2016-08-24 09:21:38,695 DEBUG: 			View 0 : 0.56875
+2016-08-24 09:21:38,703 DEBUG: 			View 1 : 0.45625
+2016-08-24 09:21:38,739 DEBUG: 			View 2 : 0.575
+2016-08-24 09:21:38,747 DEBUG: 			View 3 : 0.5125
+2016-08-24 09:21:38,806 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:21:39,130 DEBUG: 		Start:	 Iteration 6
+2016-08-24 09:21:39,147 DEBUG: 			View 0 : 0.4625
+2016-08-24 09:21:39,155 DEBUG: 			View 1 : 0.4375
+2016-08-24 09:21:39,192 DEBUG: 			View 2 : 0.54375
+2016-08-24 09:21:39,199 DEBUG: 			View 3 : 0.3875
+2016-08-24 09:21:39,260 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:21:39,657 DEBUG: 		Start:	 Iteration 7
+2016-08-24 09:21:39,673 DEBUG: 			View 0 : 0.60625
+2016-08-24 09:21:39,681 DEBUG: 			View 1 : 0.4
+2016-08-24 09:21:39,717 DEBUG: 			View 2 : 0.54375
+2016-08-24 09:21:39,725 DEBUG: 			View 3 : 0.6125
+2016-08-24 09:21:39,788 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:21:40,246 DEBUG: 		Start:	 Iteration 8
+2016-08-24 09:21:40,263 DEBUG: 			View 0 : 0.43125
+2016-08-24 09:21:40,271 DEBUG: 			View 1 : 0.7
+2016-08-24 09:21:40,307 DEBUG: 			View 2 : 0.44375
+2016-08-24 09:21:40,315 DEBUG: 			View 3 : 0.50625
+2016-08-24 09:21:40,381 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:21:40,897 DEBUG: 		Start:	 Iteration 9
+2016-08-24 09:21:40,914 DEBUG: 			View 0 : 0.41875
+2016-08-24 09:21:40,922 DEBUG: 			View 1 : 0.30625
+2016-08-24 09:21:40,961 DEBUG: 			View 2 : 0.35625
+2016-08-24 09:21:40,968 DEBUG: 			View 3 : 0.425
+2016-08-24 09:21:40,968 WARNING: All bad for iteration 8
+2016-08-24 09:21:41,036 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:21:41,611 DEBUG: 		Start:	 Iteration 10
+2016-08-24 09:21:41,628 DEBUG: 			View 0 : 0.70625
+2016-08-24 09:21:41,635 DEBUG: 			View 1 : 0.6375
+2016-08-24 09:21:41,672 DEBUG: 			View 2 : 0.55625
+2016-08-24 09:21:41,679 DEBUG: 			View 3 : 0.39375
+2016-08-24 09:21:41,750 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:21:42,388 DEBUG: 		Start:	 Iteration 11
+2016-08-24 09:21:42,404 DEBUG: 			View 0 : 0.40625
+2016-08-24 09:21:42,412 DEBUG: 			View 1 : 0.79375
+2016-08-24 09:21:42,449 DEBUG: 			View 2 : 0.425
+2016-08-24 09:21:42,456 DEBUG: 			View 3 : 0.525
+2016-08-24 09:21:42,530 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:21:43,407 DEBUG: 		Start:	 Iteration 12
+2016-08-24 09:21:43,424 DEBUG: 			View 0 : 0.4875
+2016-08-24 09:21:43,432 DEBUG: 			View 1 : 0.4625
+2016-08-24 09:21:43,468 DEBUG: 			View 2 : 0.43125
+2016-08-24 09:21:43,475 DEBUG: 			View 3 : 0.44375
+2016-08-24 09:21:43,476 WARNING: All bad for iteration 11
+2016-08-24 09:21:43,550 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:21:44,302 INFO: 	Start: 	 Classification
+2016-08-24 09:21:46,079 INFO: 	Done: 	 Fold number 1
+2016-08-24 09:21:46,079 INFO: 	Start:	 Fold number 2
+2016-08-24 09:21:47,689 DEBUG: 		Start:	 Iteration 1
+2016-08-24 09:21:47,704 DEBUG: 			View 0 : 0.37037037037
+2016-08-24 09:21:47,712 DEBUG: 			View 1 : 0.364197530864
+2016-08-24 09:21:47,741 DEBUG: 			View 2 : 0.62962962963
+2016-08-24 09:21:47,748 DEBUG: 			View 3 : 0.37037037037
+2016-08-24 09:21:47,790 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:21:47,866 DEBUG: 		Start:	 Iteration 2
+2016-08-24 09:21:47,883 DEBUG: 			View 0 : 0.475308641975
+2016-08-24 09:21:47,891 DEBUG: 			View 1 : 0.345679012346
+2016-08-24 09:21:47,928 DEBUG: 			View 2 : 0.518518518519
+2016-08-24 09:21:47,935 DEBUG: 			View 3 : 0.574074074074
+2016-08-24 09:21:47,981 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:21:48,116 DEBUG: 		Start:	 Iteration 3
+2016-08-24 09:21:48,133 DEBUG: 			View 0 : 0.530864197531
+2016-08-24 09:21:48,141 DEBUG: 			View 1 : 0.561728395062
+2016-08-24 09:21:48,177 DEBUG: 			View 2 : 0.506172839506
+2016-08-24 09:21:48,185 DEBUG: 			View 3 : 0.518518518519
+2016-08-24 09:21:48,239 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:21:48,435 DEBUG: 		Start:	 Iteration 4
+2016-08-24 09:21:48,452 DEBUG: 			View 0 : 0.450617283951
+2016-08-24 09:21:48,460 DEBUG: 			View 1 : 0.432098765432
+2016-08-24 09:21:48,497 DEBUG: 			View 2 : 0.481481481481
+2016-08-24 09:21:48,504 DEBUG: 			View 3 : 0.41975308642
+2016-08-24 09:21:48,504 WARNING: All bad for iteration 3
+2016-08-24 09:21:48,560 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:21:48,815 DEBUG: 		Start:	 Iteration 5
+2016-08-24 09:21:48,831 DEBUG: 			View 0 : 0.666666666667
+2016-08-24 09:21:48,839 DEBUG: 			View 1 : 0.487654320988
+2016-08-24 09:21:48,876 DEBUG: 			View 2 : 0.512345679012
+2016-08-24 09:21:48,884 DEBUG: 			View 3 : 0.41975308642
+2016-08-24 09:21:48,942 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:21:49,259 DEBUG: 		Start:	 Iteration 6
+2016-08-24 09:21:49,275 DEBUG: 			View 0 : 0.567901234568
+2016-08-24 09:21:49,283 DEBUG: 			View 1 : 0.703703703704
+2016-08-24 09:21:49,320 DEBUG: 			View 2 : 0.432098765432
+2016-08-24 09:21:49,328 DEBUG: 			View 3 : 0.604938271605
+2016-08-24 09:21:49,389 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:21:49,764 DEBUG: 		Start:	 Iteration 7
+2016-08-24 09:21:49,781 DEBUG: 			View 0 : 0.41975308642
+2016-08-24 09:21:49,789 DEBUG: 			View 1 : 0.617283950617
+2016-08-24 09:21:49,825 DEBUG: 			View 2 : 0.438271604938
+2016-08-24 09:21:49,833 DEBUG: 			View 3 : 0.382716049383
+2016-08-24 09:21:49,896 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:21:50,330 DEBUG: 		Start:	 Iteration 8
+2016-08-24 09:21:50,347 DEBUG: 			View 0 : 0.524691358025
+2016-08-24 09:21:50,355 DEBUG: 			View 1 : 0.574074074074
+2016-08-24 09:21:50,391 DEBUG: 			View 2 : 0.469135802469
+2016-08-24 09:21:50,398 DEBUG: 			View 3 : 0.432098765432
+2016-08-24 09:21:50,464 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:21:50,959 DEBUG: 		Start:	 Iteration 9
+2016-08-24 09:21:50,975 DEBUG: 			View 0 : 0.475308641975
+2016-08-24 09:21:50,983 DEBUG: 			View 1 : 0.432098765432
+2016-08-24 09:21:51,020 DEBUG: 			View 2 : 0.456790123457
+2016-08-24 09:21:51,028 DEBUG: 			View 3 : 0.524691358025
+2016-08-24 09:21:51,095 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:21:51,646 DEBUG: 		Start:	 Iteration 10
+2016-08-24 09:21:51,663 DEBUG: 			View 0 : 0.524691358025
+2016-08-24 09:21:51,670 DEBUG: 			View 1 : 0.395061728395
+2016-08-24 09:21:51,707 DEBUG: 			View 2 : 0.475308641975
+2016-08-24 09:21:51,714 DEBUG: 			View 3 : 0.537037037037
+2016-08-24 09:21:51,784 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:21:52,399 DEBUG: 		Start:	 Iteration 11
+2016-08-24 09:21:52,416 DEBUG: 			View 0 : 0.666666666667
+2016-08-24 09:21:52,424 DEBUG: 			View 1 : 0.574074074074
+2016-08-24 09:21:52,460 DEBUG: 			View 2 : 0.555555555556
+2016-08-24 09:21:52,467 DEBUG: 			View 3 : 0.5
+2016-08-24 09:21:52,539 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:21:53,381 DEBUG: 		Start:	 Iteration 12
+2016-08-24 09:21:53,398 DEBUG: 			View 0 : 0.512345679012
+2016-08-24 09:21:53,406 DEBUG: 			View 1 : 0.475308641975
+2016-08-24 09:21:53,442 DEBUG: 			View 2 : 0.586419753086
+2016-08-24 09:21:53,450 DEBUG: 			View 3 : 0.456790123457
+2016-08-24 09:21:53,524 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:21:54,276 INFO: 	Start: 	 Classification
+2016-08-24 09:21:56,037 INFO: 	Done: 	 Fold number 2
+2016-08-24 09:21:56,037 INFO: Done:	 Classification
+2016-08-24 09:21:56,037 INFO: Info:	 Time for Classification: 85[s]
+2016-08-24 09:21:56,037 INFO: Start:	 Result Analysis for Mumbo
+2016-08-24 09:22:01,520 INFO: 		Result for Multiview classification with Mumbo
+
+Average accuracy :
+	-On Train : 76.1072530864
+	-On Test : 79.0983606557
+	-On Validation : 83.0097087379
+
+Dataset info :
+	-Database name : ModifiedMultiOmic
+	-Labels : No, Yes
+	-Views : Methyl, MiRNA, RNASEQ, Clinical
+	-2 folds
+	- Validation set length : 103 for learning rate : 0.7
+
+Classification configuration : 
+	-Algorithm used : Mumbo 
+	-Iterations : 1000
+	-Weak Classifiers : DecisionTree with depth 1.0,  sub-sampled at 0.006 on Methyl
+		-DecisionTree with depth 1.0,  sub-sampled at 0.006 on MiRNA
+		-DecisionTree with depth 1.0,  sub-sampled at 0.006 on RNASEQ
+		-DecisionTree with depth 1.0,  sub-sampled at 0.008 on Clinical
+
+ Mean average accuracies and stats for each fold : 
+	- Fold 0
+		- On Methyl_ : 
+			- Mean average Accuracy : 0.00578125
+			- Percentage of time chosen : 0.99
+		- On MiRNA__ : 
+			- Mean average Accuracy : 0.0068375
+			- Percentage of time chosen : 0.007
+		- On RANSeq_ : 
+			- Mean average Accuracy : 0.00573125
+			- Percentage of time chosen : 0.002
+		- On Clinic_ : 
+			- Mean average Accuracy : 0.00565
+			- Percentage of time chosen : 0.001
+	- Fold 1
+		- On Methyl_ : 
+			- Mean average Accuracy : 0.00618518518519
+			- Percentage of time chosen : 0.992
+		- On MiRNA__ : 
+			- Mean average Accuracy : 0.00596296296296
+			- Percentage of time chosen : 0.004
+		- On RANSeq_ : 
+			- Mean average Accuracy : 0.00606172839506
+			- Percentage of time chosen : 0.001
+		- On Clinic_ : 
+			- Mean average Accuracy : 0.00574074074074
+			- Percentage of time chosen : 0.003
+
+ For each iteration : 
+	- Iteration 1
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 2
+		 Fold 1
+			Accuracy on train : 68.75
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 57.4074074074
+			Accuracy on test : 68.0327868852
+			Accuracy on validation : 70.8737864078
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 63.0787037037
+			 Accuracy on test : 72.5409836066
+	- Iteration 3
+		 Fold 1
+			Accuracy on train : 70.0
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 57.4074074074
+			Accuracy on test : 68.0327868852
+			Accuracy on validation : 70.8737864078
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 63.7037037037
+			 Accuracy on test : 72.9508196721
+	- Iteration 4
+		 Fold 1
+			Accuracy on train : 69.375
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 57.4074074074
+			Accuracy on test : 68.0327868852
+			Accuracy on validation : 70.8737864078
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 63.3912037037
+			 Accuracy on test : 74.5901639344
+	- Iteration 5
+		 Fold 1
+			Accuracy on train : 69.375
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 77.6699029126
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 60.4938271605
+			Accuracy on test : 70.4918032787
+			Accuracy on validation : 71.8446601942
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 64.9344135802
+			 Accuracy on test : 75.8196721311
+	- Iteration 6
+		 Fold 1
+			Accuracy on train : 68.75
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 76.6990291262
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 67.2839506173
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 75.7281553398
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 68.0169753086
+			 Accuracy on test : 75.4098360656
+	- Iteration 7
+		 Fold 1
+			Accuracy on train : 70.0
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 78.640776699
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 66.049382716
+			Accuracy on test : 72.131147541
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 68.024691358
+			 Accuracy on test : 74.5901639344
+	- Iteration 8
+		 Fold 1
+			Accuracy on train : 75.625
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 67.2839506173
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 71.8446601942
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 71.4544753086
+			 Accuracy on test : 77.4590163934
+	- Iteration 9
+		 Fold 1
+			Accuracy on train : 75.625
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 66.049382716
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 73.786407767
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 70.837191358
+			 Accuracy on test : 77.4590163934
+	- Iteration 10
+		 Fold 1
+			Accuracy on train : 73.75
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 70.987654321
+			Accuracy on test : 71.3114754098
+			Accuracy on validation : 74.7572815534
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 72.3688271605
+			 Accuracy on test : 76.6393442623
+	- Iteration 11
+		 Fold 1
+			Accuracy on train : 79.375
+			Accuracy on test : 85.2459016393
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 74.0740740741
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 77.6699029126
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 76.724537037
+			 Accuracy on test : 80.3278688525
+	- Iteration 12
+		 Fold 1
+			Accuracy on train : 79.375
+			Accuracy on test : 85.2459016393
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 72.8395061728
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 78.640776699
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 76.1072530864
+			 Accuracy on test : 79.0983606557
+	- Iteration 13
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 14
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 15
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 16
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 17
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 18
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 19
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 20
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 21
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 22
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 23
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 24
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 25
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 26
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 27
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 28
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 29
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 30
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 31
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 32
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 33
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 34
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 35
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 36
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 37
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 38
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 39
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 40
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 41
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 42
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 43
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 44
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 45
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 46
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 47
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 48
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 49
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 50
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 51
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 52
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 53
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 54
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 55
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 56
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 57
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 58
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 59
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 60
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 61
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 62
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 63
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 64
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 65
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 66
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 67
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 68
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 69
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 70
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 71
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 72
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 73
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 74
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 75
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 76
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 77
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 78
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 79
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 80
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 81
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 82
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 83
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 84
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 85
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 86
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 87
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 88
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 89
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 90
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 91
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 92
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 93
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 94
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 95
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 96
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 97
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 98
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 99
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 100
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 101
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 102
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 103
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 104
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 105
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 106
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 107
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 108
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 109
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 110
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 111
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 112
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 113
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 114
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 115
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 116
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 117
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 118
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 119
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 120
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 121
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 122
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 123
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 124
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 125
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 126
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 127
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 128
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 129
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 130
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 131
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 132
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 133
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 134
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 135
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 136
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 137
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 138
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 139
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 140
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 141
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 142
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 143
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 144
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 145
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 146
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 147
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 148
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 149
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 150
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 151
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 152
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 153
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 154
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 155
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 156
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 157
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 158
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 159
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 160
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 161
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 162
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 163
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 164
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 165
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 166
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 167
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 168
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 169
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 170
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 171
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 172
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 173
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 174
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 175
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 176
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 177
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 178
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 179
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 180
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 181
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 182
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 183
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 184
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 185
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 186
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 187
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 188
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 189
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 190
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 191
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 192
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 193
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 194
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 195
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 196
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 197
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 198
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 199
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 200
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 201
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 202
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 203
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 204
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 205
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 206
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 207
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 208
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 209
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 210
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 211
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 212
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 213
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 214
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 215
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 216
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 217
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 218
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 219
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 220
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 221
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 222
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 223
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 224
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 225
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 226
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 227
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 228
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 229
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 230
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 231
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 232
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 233
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 234
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 235
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 236
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 237
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 238
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 239
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 240
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 241
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 242
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 243
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 244
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 245
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 246
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 247
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 248
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 249
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 250
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 251
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 252
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 253
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 254
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 255
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 256
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 257
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 258
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 259
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 260
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 261
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 262
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 263
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 264
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 265
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 266
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 267
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 268
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 269
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 270
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 271
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 272
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 273
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 274
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 275
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 276
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 277
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 278
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 279
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 280
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 281
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 282
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 283
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 284
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 285
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 286
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 287
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 288
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 289
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 290
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 291
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 292
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 293
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 294
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 295
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 296
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 297
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 298
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 299
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 300
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 301
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 302
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 303
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 304
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 305
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 306
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 307
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 308
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 309
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 310
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 311
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 312
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 313
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 314
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 315
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 316
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 317
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 318
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 319
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 320
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 321
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 322
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 323
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 324
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 325
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 326
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 327
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 328
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 329
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 330
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 331
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 332
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 333
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 334
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 335
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 336
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 337
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 338
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 339
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 340
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 341
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 342
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 343
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 344
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 345
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 346
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 347
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 348
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 349
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 350
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 351
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 352
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 353
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 354
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 355
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 356
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 357
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 358
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 359
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 360
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 361
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 362
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 363
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 364
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 365
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 366
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 367
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 368
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 369
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 370
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 371
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 372
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 373
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 374
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 375
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 376
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 377
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 378
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 379
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 380
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 381
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 382
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 383
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 384
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 385
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 386
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 387
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 388
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 389
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 390
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 391
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 392
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 393
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 394
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 395
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 396
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 397
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 398
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 399
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 400
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 401
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 402
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 403
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 404
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 405
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 406
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 407
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 408
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 409
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 410
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 411
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 412
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 413
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 414
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 415
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 416
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 417
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 418
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 419
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 420
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 421
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 422
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 423
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 424
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 425
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 426
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 427
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 428
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 429
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 430
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 431
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 432
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 433
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 434
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 435
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 436
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 437
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 438
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 439
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 440
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 441
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 442
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 443
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 444
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 445
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 446
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 447
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 448
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 449
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 450
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 451
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 452
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 453
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 454
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 455
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 456
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 457
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 458
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 459
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 460
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 461
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 462
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 463
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 464
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 465
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 466
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 467
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 468
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 469
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 470
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 471
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 472
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 473
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 474
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 475
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 476
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 477
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 478
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 479
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 480
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 481
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 482
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 483
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 484
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 485
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 486
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 487
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 488
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 489
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 490
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 491
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 492
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 493
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 494
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 495
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 496
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 497
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 498
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 499
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 500
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 501
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 502
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 503
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 504
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 505
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 506
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 507
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 508
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 509
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 510
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 511
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 512
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 513
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 514
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 515
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 516
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 517
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 518
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 519
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 520
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 521
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 522
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 523
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 524
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 525
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 526
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 527
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 528
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 529
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 530
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 531
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 532
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 533
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 534
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 535
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 536
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 537
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 538
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 539
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 540
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 541
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 542
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 543
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 544
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 545
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 546
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 547
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 548
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 549
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 550
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 551
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 552
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 553
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 554
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 555
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 556
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 557
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 558
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 559
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 560
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 561
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 562
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 563
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 564
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 565
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 566
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 567
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 568
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 569
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 570
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 571
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 572
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 573
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 574
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 575
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 576
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 577
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 578
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 579
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 580
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 581
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 582
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 583
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 584
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 585
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 586
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 587
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 588
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 589
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 590
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 591
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 592
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 593
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 594
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 595
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 596
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 597
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 598
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 599
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 600
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 601
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 602
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 603
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 604
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 605
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 606
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 607
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 608
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 609
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 610
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 611
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 612
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 613
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 614
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 615
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 616
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 617
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 618
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 619
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 620
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 621
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 622
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 623
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 624
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 625
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 626
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 627
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 628
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 629
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 630
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 631
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 632
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 633
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 634
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 635
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 636
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 637
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 638
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 639
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 640
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 641
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 642
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 643
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 644
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 645
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 646
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 647
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 648
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 649
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 650
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 651
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 652
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 653
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 654
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 655
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 656
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 657
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 658
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 659
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 660
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 661
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 662
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 663
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 664
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 665
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 666
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 667
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 668
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 669
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 670
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 671
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 672
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 673
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 674
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 675
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 676
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 677
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 678
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 679
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 680
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 681
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 682
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 683
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 684
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 685
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 686
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 687
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 688
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 689
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 690
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 691
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 692
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 693
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 694
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 695
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 696
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 697
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 698
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 699
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 700
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 701
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 702
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 703
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 704
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 705
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 706
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 707
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 708
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 709
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 710
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 711
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 712
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 713
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 714
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 715
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 716
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 717
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 718
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 719
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 720
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 721
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 722
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 723
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 724
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 725
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 726
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 727
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 728
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 729
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 730
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 731
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 732
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 733
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 734
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 735
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 736
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 737
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 738
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 739
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 740
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 741
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 742
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 743
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 744
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 745
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 746
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 747
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 748
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 749
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 750
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 751
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 752
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 753
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 754
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 755
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 756
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 757
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 758
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 759
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 760
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 761
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 762
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 763
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 764
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 765
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 766
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 767
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 768
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 769
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 770
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 771
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 772
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 773
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 774
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 775
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 776
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 777
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 778
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 779
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 780
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 781
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 782
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 783
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 784
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 785
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 786
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 787
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 788
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 789
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 790
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 791
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 792
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 793
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 794
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 795
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 796
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 797
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 798
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 799
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 800
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 801
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 802
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 803
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 804
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 805
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 806
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 807
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 808
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 809
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 810
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 811
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 812
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 813
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 814
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 815
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 816
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 817
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 818
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 819
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 820
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 821
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 822
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 823
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 824
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 825
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 826
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 827
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 828
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 829
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 830
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 831
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 832
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 833
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 834
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 835
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 836
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 837
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 838
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 839
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 840
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 841
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 842
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 843
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 844
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 845
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 846
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 847
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 848
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 849
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 850
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 851
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 852
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 853
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 854
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 855
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 856
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 857
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 858
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 859
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 860
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 861
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 862
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 863
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 864
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 865
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 866
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 867
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 868
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 869
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 870
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 871
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 872
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 873
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 874
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 875
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 876
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 877
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 878
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 879
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 880
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 881
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 882
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 883
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 884
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 885
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 886
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 887
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 888
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 889
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 890
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 891
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 892
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 893
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 894
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 895
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 896
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 897
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 898
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 899
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 900
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 901
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 902
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 903
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 904
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 905
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 906
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 907
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 908
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 909
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 910
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 911
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 912
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 913
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 914
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 915
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 916
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 917
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 918
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 919
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 920
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 921
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 922
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 923
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 924
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 925
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 926
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 927
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 928
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 929
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 930
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 931
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 932
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 933
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 934
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 935
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 936
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 937
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 938
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 939
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 940
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 941
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 942
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 943
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 944
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 945
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 946
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 947
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 948
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 949
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 950
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 951
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 952
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 953
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 954
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 955
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 956
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 957
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 958
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 959
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 960
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 961
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 962
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 963
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 964
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 965
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 966
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 967
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 968
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 969
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 970
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 971
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 972
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 973
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 974
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 975
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 976
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 977
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 978
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 979
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 980
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 981
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 982
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 983
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 984
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 985
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 986
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 987
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 988
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 989
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 990
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 991
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 992
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 993
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 994
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 995
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 996
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 997
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 998
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 999
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 1000
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+
+Computation time on 1 cores : 
+	Database extraction time : 0:00:00
+	                         Learn     Prediction
+	         Fold 1        0:01:13        0:00:01
+	         Fold 2        0:01:23        0:00:01
+	          Total        0:02:37        0:00:03
+	So a total classification time of 0:01:25.
+
+
+2016-08-24 09:22:02,444 INFO: Done:	 Result Analysis
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-092202Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-092202Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic-accuracyByIteration.png
new file mode 100644
index 0000000000000000000000000000000000000000..1e1c6469e67fa516d2b8346608b162c9c1559562
GIT binary patch
literal 50531
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_eY;q1--_8*?_O_hrN_F<vQ+Ff_o
z)?Q!s#woRXiN=`;irJfdlhu1{Cz|p&Ii=oTG*!ei)m&|no9e4S|90Fzw?2BiugUGo
zKUep@|7`dE^S!+HpY2X}J98)|NVFw_Q6|fs{ks@=4jX{cpYjb{98k7FZ(FDXSWTit
zTc*hxrb7@l20n`uMFpVR6Qy`pH$cUCE@worwm^(coZ)s@O95=A0ncF*sW3*UxWuxH
zqgG%B)aR)ySFKtUyxdPiS9j_C*c}CoF?!;cm;0|T{p&ql@8O%9o4<U1e7yhSGT+%%
z)04lyyIW9Jw(fgXx0r6zq)9?wzJ6V}bSZ0ca`Kw^{c@?Psb9~nzH@rIeqwHJZ1Sv@
z7M30f!$;lQCr+5aFwui$V?<Bh-CYYyUtbgGJ}S_CG-7YnSMle+O>=H-;XHWoAVb5F
zB`Pv@H8b?Ib#+;%pLR`5Ox*jqx1*z>x!Jk-)U^qpQc_b79y`XiHfn3r#EF5unWs;k
zGRVB7vSRgW=ip%B=xsTf0Xtv6y13Z=#f62=i*r^h-nn~sW9H>$RqLNWf8M@e!Gfx_
zlc!H_pQ;^xZN{@Box&F`UTj>pOf4ohHhYhpm~IqHX=!OjMuvicK|t2cZMnA>EL_OQ
z%gg)Y*DtTXeKvJ}B>w*X-o9;{S%r<<w!FJh>;JCkckh>LJpJ_0(W9=feph~e)_D5q
zqc1NnZ+#{xCDnE2jL$Di6_q7kb)_GdKA)BN&li+T_ZjiEGmDCf&ao(Ls@q=t+)qME
z>RRUCZgKrbXJ#6Qe)@B1Q%&c^#qP?Aij4enHVzdP7KaWWe)#<Pch^crhv(<!7QVc+
zRO<4J*RLNRXk?Dx!&_ThtD>r^XlN+dEw10TcCD_Eu<*ngGdkwi{qoe(ReaLD{j;i?
z@2r-U!ONK@giPU+wNlyo$NPM+^Yz?}%Bbymy$cp7yt%u3`?W2*%ip_|m6;hC8y9|l
z=F7s$s;I2|xcgL0Jg=?Wf3y61dk%JqYOjio3kYDy&(EJ@RmvqPDVcG7o$NHdSS{nX
zKR-V&d~?I_&hB#ll`B_TRDM!fw0JQi!_1j8BQ~XQ=H1)V+0HNj=;UN|4o*%+g`Mo|
z{Bk{<!fFrx{r&CX>w9#9qVv9g=fW;*%Z*;LY}uo?x3@E>Onr2?oxl0`<Exo}=USJC
z?M%D5^{7ESsC;-PEn%J~^Vfa${Q3Q}&GQePJn5-*_SMzZiAhOJ%*@PR-rg4XpKs^t
z<;Arv=VsI2-`|~e#4gwWY7x+h*&)Ej#&+S#l_jE6uC5MGesrYM<ox&d_ZK_2^HqF*
zcQ^dDcxY(on>#y&XPf7{IXW^jJh-#7c*B-0EejVa`uO-1e0=0O%g)3^L}?<2(?S6^
zH@AvUPdY=i{R#^W+xX@A<oeksdbsqTUg|wvL8vpsuKL@XMhAt40F5IJjLaWCJ@sao
z#2(4c&fX(qDO6)8@8;%q;^fJdrS?orOb=eY;&OL)|4?D`=i_nt6DLkM+}~H5n3Kb^
zFhJug+qY|Lqc?2b+B$KfAP)~u!Iu{owJOC#L>AQk{`O_<x(J=N_I7p#1#4^RsHmut
z+yDOktN8gzb(&6O(~TPu9Y>S?d^pU{pz^%@@2{^0W@c{va<&3uVrs?mcD27)<mKfv
zva$|cxw6G;sh*BbPh7B>nVE;TH?u-z@aqQ;8W@?`9KyrJw{6>2@$F4y^Xbdma-(O=
znzbl$bJ|w9{~taSR8&`A{u&b#Q}E%z!Kmx2SFBjUv2NYE2Old0xLRM_-*3;LU}hG!
zs%ieDNld)FyuW4&G`+mM+*v`O;rw&&*!7}&>;6jZt^U63`rQ^z;f%Uz)21017%=o7
zKm6(G>6ccFjEoY7Ni4s<zvuV$^|i3JRyH*i?d$8iaOqOh?%meDuiw4n)7RIZF>|J4
zbhPy2<Ne2%`_ErB<?-d^{vW=7Z}05nJd$MS)+f{X=T8m8fo^gA3%kqnKUCOQSXw?j
z+AV%nZoQzg+kqQ5B$yf*n%Q`r^78Z;4qU%3{{H^{_6VJ}l`Au+epOOdez}ufMfAn1
zI6fJx5{~3!J&jFGOd=v826=ZZW_>#`QMsV3%x!nsTLuO@JG+vbJBy!RSQV<xBV#e)
zS!k^H)%W}V^QEV!bFeURurR&3vvaaua9G%}L#^D2X=!b8wp9r?H>F;c<L7H{o~Z18
z>GjVyH#dW#>Gid>nX^8fn%>#T+2W+A=0C6J{CxZ5*Vop1`1u{{xBthnF~UbX^5@T=
zpb+{|W9Q@J^Wn)!VFri!cC`ghP6*C=|MK$k#LUdd+?x{5?Ar}^K8KdRzc+Wuk|hFi
z{qAx5YCN~)+;n<&ZmzeOUW~_|KYutBTi)E?Kfj{7dh(`CMot`x)!*JI{{8h;xkX@Q
zNsGXw$&;NeWcV!0-bg66OfXJAC!njV>%^h>{@z|?S?e;D_xJa!w+L)1dmHuW=~Gt@
z#gyyoVvpRs8JQ-zJ?Ewq6EkzF-s(Mni`GVMRob3^UoA2+^2n7dQ$$2W1e`cdo;jm3
z*ScIyRaN!Lp;m4eU*Fz8|9-!35pe42>hcH-6g+wIq+;%^Es8AyMQ?5xK6>)R<@4Fo
zr<Gd-iatJaRTAptP;9xgw|aWXt1F#*YJN@<a5{0`{=d(!FE5?HuP%Lk?a9Z-$6ExP
z($3HGt*NP5a!M=v{`2$m{ijTw>Y10Pr`R&Vf4-eyZEfwR4-cK4I27gWY7}<u+NGkY
z*}13o_q2|qNuPdw&358YTpzz*?bNALCHu9E%+1x!^X@3@+_}?5Md)Jj=F-<;MwOpZ
zcD<cxoG#?VadTrbdtqVW!q@fx{>&_}klB=Yn9YepaplUDE`fo8$7U+3SXj)ku(FzT
z=~7ToP>|D_HETMWo0%0`CU{TRo5;w_26mDY$IgO>OoALNC9}`YGF|*zN<_rv*SEK~
zAAFk9-Px(w*4Ada?Bd0XiXT6I{POwN*ViY1e0-c8vwYLxcK*r#{{Fsv{^@nUr*GBO
z)rEO^d7V0*{CZMgk#c^XZHs`@y12bwR%LHIxVX7jKiOaO)XOOK)D*3s;vymwCQTA@
z;!tdDZFNx)n9$O~;?(ivPF7adq(6UZoI0LVZP>6u!PV9E$>rt#Eyo{EEPj4Y(1}CR
zw#r11gJsEv4HKqJn>J}*?e9rbwZku^?*I2oTd`%r(Qfg{@pV62rzsm4Oz@d))+^xD
zv3av`<emyc#g+-_=jTl<dwXl*{Q7^9&pvAHzs9MU^77KslKV!+#-8nbvMKT@PA5J+
zJ-xKgxvtLc=eynSQ<lBGyqw>%=n2Q)nny=ClhV`OITVjvzdn6U)YdM&-Nn!OUS3?x
zuGlicH2c~FMdvnw@bGXYq0SQ<5)XU$`SqR2<&m|Tq7$*9LBQ$6>hSd*)AeFse0+av
ztM*L0S}R4DqWM}{T9<xrTlA^6?$Z;_z4~pu(r)MG+xzS2=y;^0s3^7w`1|`8JvhL)
zYhHUhd*t>!S;ZEQrOGZv@3&-LZnLTVHATSbM31ELi^A@%E~T)rFq7Q<b$>l7Dl8OT
ze#ID{sh|2MK9(_QM!oc>`n%P4?%oA88#+2T-rU~qziRfWkB^TF%FFX_jNoy&B)VYP
zvOmjwXD5AlaFBr^I5;>ZHI<PeYHL<&;^DT$=jZ0mFw2!P%fF{{b^d-U(P-aSyW`W(
z%{jQ(y+0u})ph^m>C=x-R`)OX^(Ax1?%mFwo}3IH{(iq7e$rh*K*82lHh7s&<J765
zzrMYVRy}*PTm0g3fBBMES2!D<@V=R(>iy!IkFW2-MT?yN-`i1`Jonqe`v3pF<mOaW
zSzWq(`QfWqUY~Wfw49=%q~_VxcCA^XV_{`=DK$n<oL|mn!SAqh=g#q6ym+zV(-Y2L
zUtTspd6KeZ`Eq47wPkV1QEq)QoD3JPUS(CNl#Z{A-nen2gmszDju^ciF?z>(rQ84h
z{?0t1huzc9uWjN)LEX=@&GSF}{G86v(Avs+<?2;N24OXy72CXhYfoLi;i4p1_v@uP
zsG_?XXT3>7LnGnKi;D~l#l^)MnwpBLs;p{iYC$hgtzWv#clM!Er?~q1`WPDc<?TR)
zy{4w-gQA@k-`+@0nmqaC-`6i*bWGEYW}2|2X=~oyS#iIWCUWr0+bu~hy>sWzg)N!E
z3=PYdt8dG{-zRCD<}vm0kB^Tvw6vTmDl8a0yFGsH?C$M7x_<vZE`}GEmU8E^PD=g$
z?(U8K_4Zy~UI8&NKJS<BZ$3ZY{_&rmpLdkL7Bew1`S5!E{-hrt9_}c7>^60ap`l^K
z{yJNR1<A+zBy1`Sl9G~Me3UoM5@GP<_S&9zcf#DcvANk@n>HCunKDH{RJ8TVm5>`Z
zZg}YScXT*7IWgrv)zZ^*>lV{pb(f!;o4e%gEzyQ2zd*$i!-110IWI5wchAbwnq{8f
zH)V<lkF3=eyY`O6e^<c`RKfD{@{XfP8QIyF*YP~%P@G|$&bMdJo>x<*H#IT+jrQ~N
z%WC+|Z~v#Ek(u2oI$GMx%j?1CpYiGJS`{B2Fm`o!FI>B}H+p;C!Gi}E`u+Wv`tsgh
z>r0m|75w{C>EiBw`2Kx)O-;?Orxqt2b@TJ<vrD<Y>`^m|B8#k5i9=FS($o@lzc~#K
z3M;m)_H+IA?b{6ddb@eH)op^xZlIQqMfp1!z4(1Sxwp4nT^S?8=bklxM@-(_Z!43Q
zP8DGC_xIO{*|Fi;R}bCfgne6VOalW04?aHLzi|C}eufh#PcEE#V%MvSi`g$-zAPv$
z-Cg|r+`;?z<;&mQY234C&lTIin3$MkyB2{03mFzx)`uS+9)3_@5wSH(G$%KA;*=>Z
zGiFGD>V8H>Mh`EqLvL<wzPPhEy`{Ca@$kch3kw{BZm+1Zz4rXql&_B(1)6+kn=K4q
z9~U~UaOWl4<*Ta;3twJR&AGXW)ja>6%k6Esptka#Pp9>-PFt)bDk>VYv#7Q1+_`gZ
z)AeFk`TqX#G5OcdN0n=HXYSi)_g3rqyLWw=mzP~E4!&#`_AloCeP(`s{vKItG5dc%
zlBcG&2*}vi$*fwn%Jf;_^xXd+4)fpGkjNahHH%eWU;o6(lUFtU+kWaNBs)kvlYV(;
zr|~r1XtmA$pB@}+-k5q??8(!oj1%_o`uO>=F=%LMJ^K6md(ca5dxNk)YnCo$H8nN$
znPJfQ?P30kuAk4JJUMXsH1}jRU#D&{-3KpTbj+9`0jhJC?X3N6#*lEJf$_%fa{aiy
zRjdw|76trU5H|1m=jZ1cJ))Gu)<&^1RQ&p~^2)c|oScGZXC!BxpQam~ke>cMl)dKL
zo14PEv(2Wi@<>ffQ?j?07ZVdZapJ^;RShbtswd}gp1E>GWaY}0J1RaZojH3pF+IJ#
z^z}7IS6A0n`IS3&&AI>T#_ik5=jYjK=;|Il-Y>r~`?}t)oC^yaIk>qOAD=GJ)Y8JT
z>(8yN*%e=22r?ub?~~oIb!%=xrPi|bxw7Ko;yL&C$)={JR(yWO%O`KgV{UHFFu~Hz
zYg+pGd5jZc(zCCvIr#ki{EvTr7Oz;jQc+vG`<{RGw>J}`-akIxzh&u*W4+QR&YoqR
zfByKLoy9MYux{J7?Zmlrp#1mX(W9oXudhG;_xHDkj*d%QoZOVDQx85Ym@sWx+l?DH
zs$}PP@yS}XELx;AW!ki)>+52T(ha3;Dh#fziFAHH_s}6Ht9i%Io$Kq<um1PP(r>Pn
zYO!@?Wo5?QU8c9TWHwKlB((C>hDD2%K=t?Bo9puL?*kPlb3bN&es)&Eu4c!XEqZ!-
zpfLDem64(0Yn^k$K*qX^XXnnH8rs^2udR)KxvB2&FGY3r_Ir;fPMrAQV};TC!s_a3
zP<S*fQGNI0<KuXf-_bu!tx`@1oS9=exzBS|#)k(7Bevy8+L~2XR({zxv2^{Flru97
zJ9>JK+}m5df5p|AiT}=mOOj1p{~eC^$#N$rKi0|wmGu1l{5Njga8MC)R1tc3sFj<6
zAw4}^MOD?4*J=G*-UZvYn|pbCzrJ&1f9dOMQun94zrSDp*RNj}u3c-JJzF{^Hg;p$
zSt*7|+b{h7{{HxpPGLo%&IPMidoQ1{b;}l)gaic{Sy@F9u8XU~^+ElopwxZU-}TO%
zJ^OOX&g5e~D~-5&*R9hFTNmT`d1u*Msal4gQBR&eEqrxFv!%V=Swp1h_~XPwEu5fY
z9F#p@UD4Eu+cV=GsEkgv+i>#q>BCp9h-77DWn5aq`J=|JtGhcfKVQFiHy<D0kI(1r
z6@@x8S~qU{9DVNiads^&tqT_~I<Ak~n~}}L5D^`%tf9fd%+A;1p~BREe6kcvc3xiJ
z%gf7~k3W8RXJ_$^J(b1Hr-K6m7*bPHd!$Uc%HQ8>?dsy1+qQMh8Xl#I9eg$4K743c
zwMxsx#3UgpscC2N^GlAuZr;3EDs^Jsq)AN1#>Q1|D=I5N9iUUEPR+2Zwfge)Yhqej
z*wWPzzrVc&4Z$=zG;|89KYDPmd5d(2>+|#T+xP9Wb5Rmpvv%#qyt`H=+1Gfu#dHo_
zTN|w?!nHBsAk&STH?Kxrd(}60;X=hXZ{IFly_#E9Rn=#v(NeEnAP0ELurM*6Idf*h
ztXW(Ppz2C5ejkrqfBVPB$HSwi)&2eD7#b=%Yu2m{+qO;H6=qfP!a==hf+<IAV4&db
zZMln?U;qE{nE%XN>*;#sMMa0^T9-3;Xt|s_ckaQ*iU%JnBn%Q5s=mMDWe5llcXx1L
z@bU3kuykqby4c-Ge|~&qP+2<>)T*2_XO4nU=Z4(dW>KDNavmS+_3-j)a!_b!Zf4%A
zpDKHQR$R~&{ont7zc(y?=2P<K#>P`t2M->cFnMxwfCkI_^X~8O?S08TsZ&@z>Ea^S
zpymtNm-bW^^T=2TT)TEH=<fX+XCir+3p{G$OAUEGZ~uIl-+n>xa=#ho`S;>uMV{qr
zsHm`{pP#qZ=<d7wN0)d`e(>;NV7AW0daLsC@)@&cC0$zLSzj7B!z~~xiff`r%iG)A
zPuB<@HTa*J!^3g-PxIcIpF-QVZOgd6Zf?j2r?#K!Ki9LQCg<<_Z`~(v4=V2yFD!6e
z^XZ_0(FQT3kxyx6)FIKIY$2hc7gq+WuUzS<AG3o&Z+iF3%gdP={N~wo&aeB$$?)OF
z$K(^IPdn>~IctbGsR%v%^73-Y-MhQXn@>MYy1%dX%kC2=PG}Y1NKa39_VeSj|NrN+
z`1HNu>*E4~gPS9C+LkR-laZBOdg_y^*1PP|ZFzUQuC5NR|7f-?@2(g7m+jft`C@mM
zEp48v?aq^*GjHC!9c6E&7#`f%nB39dzx=e8`^R<s_V)HHtgNOha(Fe*pPa0on2^x$
ze*b^DfB*iOF8llU`~8P6UU2yO`f{)^RoU#@I$?sqjvYHpPHmHNij16jt|U}mX(Gq<
z_3`VkTX}kVZau~wwIxIF%GIk27cO*E7n`tj!v=x8yu1q+E;RJ@@%72u`%RxZb!y_J
zC7uD{;qA+oscp--skHT7E4O$;Mh1tit?i4KFFj-1<D)%1ICjM7^)3uLcjt~wjGlOF
zYb%3_;F-;vH#2%1d!wPP4GJ=McXl~BISozCg|Exr-V&{<stPhbaMDVCv0JaxY_r@C
zA0Hpj-&)P{xgRw0{F%4FLT1H^6%USd3V+!>*Sg%x_6Dznfy1lD=)ge1&dyFyzx~ou
zZ^NV`94qT{?(Ql*+{DVg<k`&icb3;YKR0*7=FQF-85zx|<YZ)ejvR4GNl8g~cW0-B
zechfb&91ef_rfF9{N_Ytt1jL4b@HT16Q)dQX=G+UbpQT*zl~YBxw=!gB^}*h2pYY5
z_Usu$!(#V-B|SaAte^3gW(yRbUc7eg*t*!=8B2Gm{rmTC!?ta1Zf<Pba&NayRCW)u
z=6!Sh*s(YdZx4?Zg-%VMpPzqxV`K7;^7nE<!NG-}o}A1|uZ`MQV<{pk`tid<XBRiO
zq(?_OOIF>A-Cd?=Z7n@>=FA<HpVgY0nkGz~$mn3Sbkp+X>U=U54ZF+VD=8{6&YCqV
zzCK-Bp!;Z0aJYTN2Zs6f_0x9QEn2kb!rtogUzO+PSbF&QxOjPS$=OsWn8tM;ez;)6
zh7HH=-~Rso{^K(<jURlh`0;l8{eAEF4A0n0tZpzkV{Vjp$HFSUzOJrrY6Sc4^7n0<
zH*Y>u`u5G656|b<gT@fQST79V*ccI$d*%J6O-65SZRLJ_eZBkXX}T}B?2BKNboBVG
zTT<NOdQ++{@2mQnHDkt%0|yQ;)c*dq^m0huuP>bc{{6df`EqlB#*&GvwBKc?rK#!Y
z=qLzvDhP0FNI1yEFv)yfU0q#CeA>A=oVK>MAAZ*S`SG}a%OlggI~G5F{5Wv$o?KK^
zl!RGM#N4JQkx@~H&Y$OBwrts!nC1TS+ge*$d3bpfv$C{AYjkyVdfqMW?d5%UcXznz
z`4uZPzP!H9&+y^hUF#F4PhV!AbKye3j~_oS<j%LNl~VVgcjV>e<r`~$7Ihp=dUJ2@
zY&rAz_;{<Y>6Jb+PQ~r1XuP+#y7~CygC|dN>c{O_aQamLUer;rN#;A_;^GX9jhnY^
zGdtEV-|s))&UA;3l$6wij}@g{8_IrsNUXBy>FvF^(3w4EZ`IaoU$v?}JYbxAC{jTn
z;o>4!hK7a)hLvJ79y~|@wGQjfoj!fIfsuK^>ebxQ(a}==OE$f}zTP=LUOs7~M2+2i
zx2^Yfm+SZR_P*S-Vui-8zNJf5K|!Xit-WH^s-%yPj#`wy64BAsUASzSn{oy7q_Doo
z&1nY@9AKC=YgWYeyt!wJ_Edf4TDNYUfuUiegTjPaM!#QOT`j=XD!{?=;nSy8+l>A`
zI?8?H)~!ooZJ(-NKRrDiH0GR?oUAC;oqCMVs^o>hu^vfgR#sL}ukg-}LW_b24QJlA
zw6`C=eqEel!Lns++}zwQE-n{pP9^7V$-OP6r>AF8@j-#%!S(q1qc=7tXSRHQzwb9+
zS67$O_QKcKbU~wy8X||TToEzPzsJI0Q}u-d)Pr$wVE6)_6$yR(Wyjs!<?V|WDe>0q
zDt_))QB~!&bmcnLSG(WuYu>qYXGnsp!>8R_GcGEvoHnuR+uPgicD26}Zf(i@Qk5hD
z9^#(;pupnG{Hv?O*B3lEz_?@Au4|TEA0HlWfB7a%^fDVOYvRvOPeCn@)oY5sy@}M&
z*1pVsX4b!(mDSbZ(g%FRl9Q8v`B(n`_ZQSH%e%9q@yCyf9vRC?b`7A;&BMd(9$sEf
zMMaxJ9Cm!Fy}P4OnT<yRGzYU}$r6vfw)*~{!7LROl?yd;wpA@#v#(z&(bUugwetS{
z{{HdR)zwz}BhQ>Ub7X7w^@4A2B2&`R9zCC5f9&Sw^upiYa$8zk51u{CyL9Q&9W_6V
z`eZDdR)?=wva^$GY;2S;%?g?NXU*ERg5u)smo5d(v9Fg?Q&a2c>||tcad!{roMx7A
zfB`gwzd8N9TT+tJu|8RD1`luV!$&%WC(fDE(<!W;^zYA4qto`Or$i#6qLfTcMHLkl
zgBU+f(~WN1mV5irv$L~3e0*A#EmK>2htZ*?#wIB_dE&HbZQ<+V6fG=v9DKTR_4W1f
zpvo@y_O_+>OJ85(^`B?6GTctuEa$)kMdue=jZ0r$v07XH_gCqf*xh2^-`#C)Zg$@4
z_^_#|$)NmQjEb7tqjPhux4aI!zpobLkCqmeKi_WWfB5ocO4Wz@Z*L?)z0@N|T-L<x
zmD;#*<Bp=ITp*F1#m~L&uFt=>$FZiyW?lULzN@RlFDuLw?Ul2Ys;jF56`(>wLIrPc
znYy^RJa~M(U&5}&!Yt=T1EilGl6F*r;nvpd_Tc4y55K*=4XRC=+4&2;ya+6LcSn+2
zOs8S*URxny;f;xh+q7QWReoZ*yQ_5Z{Ls+Q)wbdO^X=A}<@)|yvUKUf1q&FyefuWR
zeRPId?yNI<Uh?*JM=mUM{`mR4y|SgH<mqX;hbJgH2ZV&U^e^AI(NIW8XhYgrsi=#S
zS`R<GAnv?$=~9cTFB)z9@^Q-#%zl4w@8PB1)0ZUa7Fx)398HRdh`12pF}1a&CE?GH
zj}jII3YRWj%J{C=_H%u*s6g9Kwp0HX?%cgw*~CO-;lhQX_qK#in?Ii)GC_Fo`t|T<
z7JR(CygX7S9%&_CCrl97)hnp%_TbCQ%U9jr-rZMg{p<Vt`1gMq8#+2Tetip35lVb|
zYU-EXqLdVsWqxzHDl1R&+!xgjc)DiInhmwT%g)TVm%n)NV#d`~p;JvZZru3c!-s}F
zdu(>Z=<V6Ncj>(xD{E_KM@L2(K6W=ZH<O^k+&g#gW~v%!X>s+-*)}a*s_LR77!w<-
zsIT9@+<(53k`mL&lP3*~jG8=Dn&!`!zqh9{c<Iumk(<*Ve5}|}_tz>ZDaj!Jp3R+o
zwbCsDF*^zv_f~yf6})rHmMsb*T#Oz{tJ70cPx^>UOLOb%>oYh^*Na_p?jdNfPfX11
z_(2)VA{I+a%aWb5XG_mA%jMFW&h78-9~GG8Q7JWh>QqtCd{#pP!;vFLPV6a5*|=fD
zg8W<RJ~IMxUoTj@R#!|ns%5G7^hd{frA_|3_sfB*fU2r038NH_PoF+5xz{p1Jml84
z-0r-)yAlsHFfynlv)tO2tNryuoLtBH+TY(KY$^)aGI?$@K-U6HUGa*Qm32qSOCdG?
zc{~$6Se%`mK~tgM-`{tSijtaTp3mp)?aeUhBiE@@r;NTY-Lgf*IPJ^=-Q_1wp1is(
z#q`MZvi#qFej2Zf-QD*1c>m*XZ*N!p{bibaag~Oxt*q~Cv!##ku35YG;<{MtJA13e
z8&nn~{;Um{o?ZIl!a~p#VxOEX7dJQemW+#wj(s^jO}E)W0W=AEaj`o;D3PT;-QVp!
zP3Pb&(`-;xxw3Tfq)8vXy^X$c<HiEd$!efUkzCRA8UL-s*jp0!DZ)p#7Q6S$nJ&|n
zXJ+#Fw{YjqoevK-v;TOv`~8wjtZZyf3IYzHp;POo&z{|V;)Dk%9vvMW6<QvAet!PO
z_Wb+doK<D7ujxvyog>g>S^Vq*`@>&SMkyR;&Yl&NmF?}7Hcz^{tF)u1XHDVUQ~Z|q
z>;Kz=M$Ojw#cp8mu+0&0dhq0l%2o9}kBt2N&r2;nI(_r@?e0E4JnQ22c5ThR4jNLc
z{{GJO`MJ5NVFyxHzW#URN|PJM!DYU)U&Xv!`SRdL@BaMKDO08dgoU+j&%b{uY{Hy5
zpeE-PZTax<@QBDrMKv|Hg9i_ShJcimloa&!{n-VX9SREzw^j-`z1YVuX~c5#=FJBM
z7NF6TW&ZO)^HN8S9XoXYKB%`Hu{}=~)YY#0TNSl2<LauZSIo5J*Z-2)f9m<dHEVcc
z^u#}Y{1|$!JSZq=?d$2$JBw8B?X7OVy*+=i=VY}RR;5|J$CrWzv{rJ3`9AlGjFjw`
zw_kR>%FmCFg{d*b?rGo+?PrS@En*4|4zBX&legP*OE1%O<@>F-wqyodSXd;Snxa{n
zWjWWj+6**nt?obXz@bA;+cH9yEL+AVE-uc(%IZ0{f5HTTJ@x<Pva+%mRAQwqW%#D)
zL>@Y(YWTl$4Qor{zJ=%JS|{J!lxh^MqqX|RDFFe220mG<6Fe8L?JQ2OsIK<zJ*gp|
z{PD-f<doD@P}{YgU;dv~ZQuHsolUOYVu|10++=7t*vy`MdYbNu)2EpgDkn$&ODlbF
zppk=*Z`t34#l^*|pG==QlT%eywMWiYN;_=L3L^%o2{u>STU#GqUhe<n&rjpBH#ZpF
z-H)@q_jdL3^Rp;^))P|y{?j`H&=g}tgv31idOnAuJRu>WlxNB5>Fpaf7?ixZA;`tW
zwPEw-#j!CdfgvGlwxzBzD=RDe!u#s;^Ycr0UF4Osk;uNbW+DH~*4Eab-(@c@D2j-R
zF5I$3WOv!yMRyNN1<mWqdVS2O<V8Tvy*-i)1)rb!K6&=+()N?DudiQUxNK?B%$YM^
z+}Nn>)-TtadV1Q$Z1>n$*^eJTDzrQ}+|F-N^<~ACs_W}w7q3mRE_>6kcC9YMNrpe4
zI=MtdMJG<2*!b@5?!%`~b8k*Rzbu*e-u`-j?LWKA-cGv7x@p}h?L9kp?(FF3SWz^0
zOV(8`F)^{A@87${^+9vqU*6mlZf$KXd2?o_ar&wrPmSr*r?;P*YYj>>plRwp8B3?>
zSIf@D#>5DSiM1_Sq$DCP4yqmwxARY*S$1PXVoBL*_kOvDudc2JRVQcDe}8)m8p4`w
zo?r0eL*kB|I~f^3Q@o&F%jM<%3M~p+T3ul=T9+<fbSx}1)Qj80;qa+?%Jk{%cJuic
zyebW!{w~Bg{oIi`mc>h=jI$OmTGaI5L4r=qj(}$s{XaiHPrkk`_Q&7v_ZdBQ^~qWk
zFmQ5mo;Y>NDJ)D3G{w;;YYkehQF>4B@So_7TpWjMm__gB^~zdr^P5<py<aeTYnEu(
znh3?uYoD%(+#C=P;BcLjmv^m^+rfhe8TI4$O}Y7Y(KbVcy1F`n?xPnjT{<*L)muPF
zsOexcJM#n^i;9Yh1ILcFm3`NIf5|BOnodSWhJ%invyRx|!-p4p-E;4gX`DAt?nn}7
zy+PmF=<Q*i#)*emX0=D?xP5<jH?#i#u057hrY`$bK5N!2&~WUretG_h9xSo3u~rA}
z-?}B`=;#OvL>DE&3Y&RXm}6W)ix|GYldYXlQc!SUvbz5gIUVi1>N7J8Z|p8#e`Ue@
zT~Yh%Y!Rb7htHks)0=HwuGiwE*wfRaAi$B3mezLVO31D|7cK~V`}Xa^)vK<@`(zDM
zPfcN){`}6);()NQV{N?BpmCZND^^@+Umd+Y?_xF^L)e;##%^(ar{G{=VKtuv|Nj1d
zDgCed`@5?vx4w9Auo=|%@=yUy@~^$HW5<pKvAfGIT)cSj!NKO2(%*}oJ$nWk=&G=h
zJ2%(b{rYN9ZyL1Zp!;aVo(e<Ic(a4iirNPU8Vw8#4*dQ7{o+z@@m+pTU$5GBKKJ&v
z*2YHA;FUr0F`lSvT`xf$)h}O4KK!it@Uv#ejvWu)-rf$1xQYskWj-^R8XZ7==}Xg2
zo?7NRyG=WMUBmh3$#-@XzPP*FJoedx2MzZB{|GBh^mwLFVr^}0VQt-f{Bh&)$Dlg4
z<Zt@<c?VCN=vW3S)INRsv|!!3zPi7^5>HRl1r6jf95{TKdDW^_py7+oPR?iN=5p)m
z>M~3^_`9#KPk@6(fP+OtL*u}squr~gxH>vA?*IEudhfo!fBzPKc@cQ)Q{e57(_EdM
znJ+K%oxIbpw4Qm=y7^gISzpXoKPmzZ*Ud8FTpzcWNns^u_SWm{3RaIg`$%)0w#11S
zB-;}IeZ6z{Zemu}uh3nOYq`b5#5(%=+%7Nk{r_rFP4KBxr!1<!=~R7t^D|t$HBsW3
z{?TKgRd;_*|GoQr_VseBd-bdK|E^4sXv@?AmAjBtdo$b)A8Ro1v0brhm6N+WyV67s
zD=VvreKnS`-+p{dwo1*}$uDmgGV>(c1ePPKWR#g0#Ps8Qe((7H=BDuGw6lv&?}*W3
zVPc&7FHA@5a^r)aKYxDs_|dUn&UV4##mvsm&MP(Ed^OCwV^Q+<mMCa&_{x=*sZ&M2
zy}SF{wQ{PrhsS{qLFFu;;!jUbvbj3hSAJ5l)thTw-Zp8HkgRi1tiaY|M)m({WbA4r
z7z!R9VqK}(db)XKZRdjr2`gW}^)^{zQ&?DNU~KIC`PtcruU<tZ-#T>2X~)i;j?T`^
zR#sLPb$=?FPsN6B+_=%e#3W}*uBl7qhEu<a%F2%Y`}_O#R==_`vu*kJ<C16P-rfe%
zBPAvE;p^A6W?8k7k&<e@v%qW2va&8QzI=*UaTYQ&LqS!Q_1d*-pqbGA<A+a9R)4)!
z{wrvX>e<=ZpruQOK_5SUEcyB8=jVe@i<YV#olsiu>h9ir`l*tQP0Xv`>i+W*9vo;i
zsaU>mpB*TpIv7cZ%{I$jQny>X&v9qfSFJT`*DhSTv=y|{<jIMNL5^;c&*D1`c!JYc
zty=Zu++6Dx0jGKP^?p%Xvt0A;@AKtQR8d!NH_5*@r{v|O)+NiA3p;WA{CwV?bNcD2
zr<B#y+B#g67A;xgQdCs*;=6mFjAB|^+LOn}`&$H@yu7_%ZsSmFIsFv0R$%5+&>{)@
ze?OEpb#+x+1SZXy<MZ$P{{ItKtXNU?esOy{J0~CCviXxIPwt#HO)PSES?=D?zgFwS
z?3nQ5=g-jHe?C7y-y0#7`T6;Ibx^}{zA<Dmz&?%jrLV6E=I6iPzsAOYzMbmFj~`Pm
zFY`Te^yt!KTe!t^6yoCIS_GWrY^z+ROqp_GclrB$dmfaE2n##&@bd2eStfPr(4i(5
zH@9omdk;3VPp<v_?P~Vi7cVlB5)uO5emZl;=hD{f@JX|0dvho*$-loZ<@UB*qs#B^
z?3`?2X({N$QTh29Z(vxM8o!*4LW_Wqw6r%16Qib{p4!o)M_p8epz9%iet5_Xn*QwU
z?pAIQ2nq{x19cWa3kOeKKe(&(HOKt(%jbjEpj^3frDN;Xts%2ceZT(U;o;8aX6C|z
zf(gIwojlo@b7#lIx^rjGs-B-`tK1^6DfxI`*8Bb=M_exLtF112c}exxUC=TY6B84U
zz`(%2<x>*>DMoN}9KIs_bAMd-|KIojgE|JLylIowd=1ji$ylYX)lpPboMDjYH1%cx
zXl`{|?(IuE<YV;2L1UY@RgJ2AjvYG&TB#SYx5_j(SCE5chJF3MGm)vUycGl#EG#0j
zv>xuQ{(k7l5f(N!wij1di@&?G(|NjX{63i)J9(#t0%>V!8hU!iAWPsFJeJAp&j0JC
zA#%y`>*?h}dfSVhdVQ#{;b39fv3vL81q&D&p7g%@@bIu<!2^dEuU;LxcW<8;gF)n-
zyLTVHeaow@tsOOO#}11dw{9Ieae{-5jV<W%b~jhogNF_=wY9Ywn3^7)svW-S$;^54
z_+n#Y876(cywI6l${MtUsGz85(d~O%GKE3i*W}}TZ*Fd8PueK4|Ia7xSaSsh22lBN
z>C&XEi7Pbh?d8|4TleDTX7x2|)~s?l7`HKr)mH!S@9)bmbFj0p9JqQ_blbLVpe3W5
zHyhvEUw{9>rzzW~g!Y9hdskFg)YR58dOT7CjYTLaEdmXe{rzQH_5Gdi`njCKY77(Z
z1V25<!05T*OqXtts;X*1c{zLk@#cvW1$mRgZ#J{@C*<YvP4r-CbZ}sP?CS1*_{<p|
zHa4~gpMM5zZr!<iH)xRR+qZ8oE-q$Q^O@1GV~53;S68`Ty?Pb2cE+@6(`HzeYW4K=
zELgcxbL*N#O-)P{)zycO9AR-<C@@*wf7!(AmoHyV%*x`jwY3GUc)2G&b?THUpmhLl
zZf*}g|CBIJ<Cz<H{`z(CmoHy}hG!@4JuPcjBXREBxso&^dHMNS(SnB$AI{WvyuB^=
z;iE@Q&FuV46MX*Kq@9t_(9m#jbYy&dtamYJ$r^iDSXhahE?>KI@{y2lA09g2xPAMw
z*n>}!f4scC4?Zp0m~+!eLRuQs{o>%}o;=e%wXCcxbkS~WYwN`e7A&~6!=<va5;VsT
z8V_5tL}lguf6vd)_deTqZC$MO%JWwvHzu*F`OV?b*4F-Y_s-7Zi<?qU@89!uTH-#{
zFvi3g`X&GW)$XbN9j5g`y8Uote?LEH==$-oUai+po<0RFXO=L{60xzhT`HH-#xLKu
zW{u957Z;h6kN3G|WMoX$tkBif%`~q2DYB-sv-86B>&q`5KRt8SEG1P{*R-3=%*-2e
zZ*Q}Dzk1_F!+$>>^FMj^?9s2UuPq85FszH&+4SQ_g-+})5oPy27KN2AplR0Y>*L*v
zii{R5TC`xn0*8KHg_V0&tXv6Nh;s7e$%wsGTd#a%R^k7@yX@_uUTO0QlO{E#ot@<w
z`YP}4uGS433_vSsWvxmkSWaE9<LT)Ms*2y;+1b2jkB!eP6V8VZAA;t37cE+3kbBEy
zPu*XsnKNfb>?+YbH_x{F_V#>b9UY#$yu2@p8|L)&@qPOI`Qxjr+A6B5j={l`-M01h
z^{o?n>=+*}9~Tz~N&rH_!iMSRWEc+2HqTGU$?0inVObNonXRs_&gk_1f`?8TT3SlF
zy1eTC^OnTgFq~wL_4DJ)ySJzF$BzmgX)_*BIy=2Sc6Xa|JD;Mht*n=q*9`OgxaQNr
z^8WMfT({@leepc+?yk^EhBdws5fWRrY<aPDbJ9_+U2B%TjCg-%XLF~pI%pWLuCDHC
z8T*|LiOg+0l1)pNs4Q8s<ig7Ny*)jkF|i}Zk3T-t${n#GfwA{HgU2#KyW(d&pv4@*
z!p&D#hl8eSJ^cLKGBPxbjEpjFvGdC*=;`sDJbALCuWy>=-p^YyFDIm@x6d}uSF*H}
z1a(NdUIZ?7OZ@cY<c{j^dZ6WrVLglwcE8_u_+T?TXqflT&SG}ZC`Dl_XxwF<ZMBl2
zVPKlUK6U?j9&@!rL$79?5B1H=j+!=YTAP~htOfP|{|R)ueE9O^$ZYfcl)U649fA_J
zRVG0}L7*|*ii!%4(!i{Xi&!5$dQ|Y}2<ObpT&IhkoS3L}-LW!t*&n+VIq&c71udAh
zDtXZmxY$k6#AJ%zY}0Hp(CD?cw)UAhmYYu<;ktP7Vo>acQ|Hr@l9YUWeOKq4zH;Tu
zY?pQEGxl?vaf=<kGI{oFX$u)XBO{{?Wp8h3edK=f<jIDVlR{@^nQ{jP1_rGa`~B^$
z^L)G73!75CU%Y(j=;_Isetur-;>F5VWp6sJTnRaH^ytG|TeEL$$rJ_+KZ4rpr;c7-
z9S+KIR@1lc%Je;b|IM|~qqQ9!9S7!GmnY=p`0TI${!Z4e?oY>w6CR++iWkS$Mr~a+
zX?kZT=e4!b?K6$j4_&%6X`4`ph_p1fxw-kS_51ei3rgmhGiOf58phz@;FT5PriG=Y
zOOHQ!b#?WLQ>U61FIK+GZ)s_1Q}Kb}<jIqu)f+mxx-X3?D=Teke}!l<*(y{{mXek2
zovt5$=<s1?Y4bc6M@Pn_q@-6dhM;i%_5Hp7cXe%T@3dVvZbaNVzAtojn1o%8MXi8!
z-5-mfprDM`evy$gLzZr-|Nk%J{ytj<&pA_16(;XnV)ON*X<CDksp-*Uz0w!AWClk>
zMqahFSlZUc#%pDsbcDlaj)ma*xV=ux{pK#Y6d4(rcyCW-#rJozYu2vKRQ><;^>xq+
zbve5lj>^hPQ0a4TZ#Agr&EP3;;#2b3#~&X&dBUPMy<1E-${{)$G<$a8$`uxcPVOTQ
z3ofjQGzKjLFf=rjFw2<{VyUF0G-1L7hvPFu#l;u9c8i@jecCxHO3JNYj+f!V=buLM
zaf~N_#&1kwU9@OXKvY!MpFcGsqM}z{R+zS(pKq^hW+rByf3IcIB%wcl|AKmDTKRwP
z@2zgH{{HUb45z55C<8;ogI8CFXTJ9R$vxrIwG*JhaZk^cr_A2p-Oau+!sq?W=<Ru-
zo{t|qU{F<6l``10Xu<>mskL_xA7*Z5<6WdX4>TG2|KH!je}5{adJGK=CWIx)%E%PF
zxUjHFc5(ghEmzLeOJ_4C&Zq)S#ei0WeR~smW|rw{FLMcpPZK^rJk0Lm;^JXj(c04T
z;Lp#`0l~q}-{0MxIC--2Ro?Ey4-XtU!eamTi!f*y@y(l@mF?M)u^Wygfrh15?U}p3
z?yuFEGiUZ4(|devZFE3TkkjvPZyh-f-q@H7+6l2_iHeG<>cg9x)3+>LY^J8B=Hchp
zwsE5&Xl&8h`Eb-?@$k9|U4ADv4=vvL_Vw#7Z#%8+*6<{Pi-l?B-xKG~Et|@xuCBf^
z6*NN-^pinFbi#}o5}*OIg9kxFyN50=b_We5MM<tWJN=#i(Z^042mk#1oLLzh6tt@M
zUR>qf^`Y}-X=rPEmqwmEd9tyq%WLl^19NltpdcY0Uf#kN7Zh*Ry2r)Ez4|p>bkAlb
zzIJB5_GZoCWf#mZeSd$yef4VXbul}cbai!E*x4^TbP22ZG=L@w@9phgvP7li{k_;M
z>8btUwSDu~e0JbC`0?@ampgs@{g1ctN~bJa|IX&!&CTrB*To(NP1HO;C+joUYU{Pf
zL4K~TOV2%DwQS2)-OXFKE){LPxY*sBmtno9?|$|ez3sOiuU);m`^XU&oBDq;e}8>l
zy-jFe&P^lG0LiNgRTUKlU0vRJ^X7pT2yEVL9Jjx&xA^(FizaKMwl;0vY#g>eu9sKZ
zEaCh-+pX`qBXo{^eSLj(P5t9zz3adIK5J0#zJ}?L!Pk&~8*<Xq+dU_%fwE5MG{#Bw
zNuQseUp`-0NNB?B+1=v$aSGbn+&6FDJaOjCk(tKnAD*3+R#8#$*qiC+?|=OH`T5zk
z9-FsrZQZoV=+B=&FPtNaij10?n*~Kgt~~g=xA-~VpFe*x#8)&jvnRd3x3}Wg7tOoR
zKe68h@j(N7=g+e<?5Y31@6;PhOH0d)dwVR~c%|DwtF;~;ZU;@QExmN(_U*?P7CL|V
zy*7ILwV%1=v5^rG3d+jN;`(t*?yIV*E?l#Q2Qs+FbLrBh7n^Qx&p&<U_`Q2_&(F<0
z+%2xZVAU!vYin!Jrju*et{Gj{hAywWAG)p~G+c4>_U+5>+TGh<@BjN2^Q7$`W}D?M
zdYoui`%C32tG<!Zq_RRzPR@nNDxhJ#)7jp}IX4V$RegSOQTf+235L4gZ_Ta5R;b;)
zc{AhUBG#Cgm<@G*tM2Ttmv3!t1udHK^5XLH^7`=e^K-5Ii^j&rg>P?}GEB;NrKP0>
zDu~ST?sR~%hML-?X<dD?)=6JpTm-G_s#Q35`t;(d=efo8uIxPOJI%KG+k!1yL|R*0
z!IP#pKd|x3^?=3>tJU@O`TON;L8~A@>#)+7?ymm6?##M*PhW4zzb|)omZ@`H-M%X~
zI3l0#S(JFV?ct4$$tTX9b&ZUa1g#-?c)0zv&+A8zn%>^tzIe?V9?%A(hlkrAK6~ai
zy|uM<;ffU;M~@!m;N@NVbH~n|ih6o|;5BLj94w)q^6&04t+0`MyKdIRiH$pUSVTlc
zg+>3nb>ig7#J|73o;Y`In&rL22M#c}xw!@D&af_fbKuR*%@e0ib*<kYzBZ~=*1C*=
z!EdgWtF}&yfQqW>Lic{TlE1Is_0Kd;PrAJ=H|VZr{m-Z3Te7e7F|+afcvPD*W54w^
z*6zet3qQ@?{`2#5XJ=<-PfyQ`+uPP&DPm`5U$JuKMZ5FX<?q&9dcGrcbr@(^=-Zo{
z&GT%llTJ<1toZ-WcHjSh)hAA$2JPA^Nl<G)+_-e9>XRo=95@);4?9*=SeTfYfEMyf
z8mC>zlLOT&F)=a~HuKK><>29Q0j*3|xOXaST})@}?y`r6+xbB;`0VU#_xoZ|5fKST
zyF@|TPckz#y}Z0GtdF;U@%nZ0mlqd7W2<M*oKeu%?-$dJQczQK(|X@6uAg*vmg$7a
zlbtg&HN)0Mg)WVrIeD`1ySuyDg@uJroIKfh{`uv9uj5yJ+L?WOo37tnt5!+lv;*hQ
z^Q)?=284#Xy11~In3`@Ze;?N)Z!dTB=ur(#&Bn&Y#w#=C7R|LT2knB%5SN#hmflnG
z(JAYX`_Wu}St}9ecD~jKown|7?wHuv*MGvS4GaY0;^IJEE~}Ck44@``f^pgziCd*B
z{^)MlzTLcb#pVqg8dk5?j@whgn46n>>*x~2r=I@);6+=^%euO_KzpX%zU@svKQHmb
z1jQ}0Prtdj`QgKdjHRWeCr+ORjoxpOj&*ZuJM*q;>RkJJImps4=g3G&P<tfp?5u-#
z?#O^TRyQ}Rg9arIUb!OT>FHTwYd60?_x84f$B%;=e{0Kb-D+m%2d$g~t^Ko*;WNv>
z$KznM@epVg^nn8o9Y>RHeNuXT<I1;4Z*T5p%a(zf0d0J;U5d_aA)ewgGCh%-(;PKK
zm>5JvL^c#X_4@MSB6Ib(H;v1etB0+LVAR#sU3u`dXk|skgDWe8zeH`^wryE#zl#!R
ziPOR7pBFA%7?>*4v1^wV6BAQHQW6tiJF~U5b(Euyws!NreRhi$FTS|1wz{ICLcz{X
z4zz}&Xy**;a=k5EwlH|aU4jlq9)6f`Wknz;VKSVom;h>v9XZ1C>C>lxu&{O8PCsg7
zW;ZB&<nn7bXz6UpyE~Fgmo6>c7p9$kZ;z#zeq2v0xA>y?{dJ+!*jZT}!^6d8_}D?Y
zlb?Tm(9Pn~(xY!~ZvOb~Z8T`Q^WVRJpm5?)1dY}H`uaNa7Gww7ugLK5>3;tT-rO)e
zGuK*t|Nnp1pl+0egoJ{T(InP&DgUlUC^)tKoUW;<**JZ=IH*<;R`<J-*{1aDzOI4-
zgS>s+6sawL%Z)NFDCFGQveIue+uzBNQBg_f=2*VCz5P9SP2Q__cXt<*l^tth<u*t=
zGh_cQ3!cwsLF?y!PXGCC_xo2iqN<1g$X)>rUTS@Fo4vAk-aI)YW8?p?k_^t6ACGc?
z3}S+|9_I*Hq3lV1rmdl?dvuX&H)tf%4m4lQBQG!i<oR=NSH}9EpHjDORt~+kzrNn4
z=EsNb(<#Zx%^=rT+lGdQzIgG%K|=&I%zf_MxvS^41cyg&&zs6+q2Zm7kkG93pN);p
z3A`$HVe08=0l~qGgV&fnv8dy%{q@DMtjvr-!NeqFRk!O?jeB1ozIhY#w&B&TERRai
z43n*`tx4vkCD%NejEsyDva+~xb8~0Rn)T>lGdr(Vc`Pdn%Ypm%_XlqKy7ZKCmAIJL
zwd%WOxwkx6pRVra7S{`rzAHC@$7H@qrqGqER~N2a>6xxS`RVuj_3eunE1Q^_DhhDC
z$Vp}hh=|}YH#Y~(L%6%MAMcl6ei{@xplyK)0uJHf;*XE_yL)<i?)|oS-?_Qg?B3qq
zp#6k5Zb*Q3_3h6E?UuS`?eFiu^6!ds%Y0`G$jJOT`ZV*z-tz|kOF(NOYgp&an+M7@
zj~+c*uwn&=gVEL(x3}jr{`tS}{#@&F&`8p&DbH61FW={zn0@eJLBWd)iZ5QiWMt@*
zwQk#2`}@(Ioy7(wCVv*$sDoC=&HBaWK4oiNrQEh{+dh2$yt+*4^rcHdCr+L;&8Yq=
zC@Sju|K84Gb*r*B9HphDzwSa7#~B(K9m?PTx9w=R`1M)WZr_#$4O+VONHl)<P|zc7
z?w9tb`Tr{Yy=?nZ_I`eTe({bS5zj;pFl?y)o@eFz<M#G^MG>yV>}>D!o2yUUzb}97
z+BHyz{n4XG4_>|Mdh;fyU}ua@{63kkuC9t79~3uj+60O$X=!QDT$%SYoyK+R^!(=8
za5`~ReSg=xVS_<MW#!fC`d5$M+}tc-UuV-NYwcEl9JDw0`@6eZndR^9L@u{c_nmd+
zLD9xS$20Y!pw=~8)t487pmxEVTU)!s>=;gdSvHmVx^3MbiQHRT7S7)pqgVIysW@~1
zCg@`M?(+A2*5&UQ7~=L+Fp7(dfB0F$(dxv)#>O<k$3HVEiK&)zr<EFPEkJE;hs&b%
zVVNr}OwQcADQRbC2ihCK;K}mXviKROg`Tug;&40vazoZnpFe|!?rd#sJ6x208EnkB
zsN^%>P8K{JDIp=@pd;3N{`uvV=Er-b-IuTZ^Wh=$v3_}e$O5{R>@m{P(r4ya3WtS-
zf#yWkuU~)WQ@Gr{Woy>-fGoOkV}_rml$aQsu&}U%gv5bk$K145Jn0hEezED_-`|ga
zetsUhZFA-4G@p4kk_{?xT+>f4Ep%mKW(JKt?RvXqi%HJiU7{yXp8WCgxV)lR_si%P
zfBw|;NEkBJ*vYG@sg=BXcIp!Hc$o+*D{D!lqa)*<y?a61ix&oToSdwFd4~bY$eU;K
zE|V=bHFol|X3g4a=d!ozD`*k-QbUE9*w~LB9v;s6y!PDJ*Vh-WU+=$u?k5SJckkW>
z=^E74)dd+A6crUEWM^~B%F0?;TZc<CgLV^bVV!*b`QtAyFEglI4w9CZ2Cbz7ZC^4>
zoHBLl#)N}RGiJ|T9KAj7#>QlJCnqORVlp)~wK|$xseQbOm0LlmbHUoRy&pal%<@0_
z+EiJYx%T(B){PqtTbveN`LgABpKNnqAD@eo;Ingcqu*}y^7I6?M|gO64m|#t5%RUA
zh2_nSjm>_HzfbG$4~aClv5~oV?;eB7<<Q+bc6c0}v+~7<hlf9W{K&`vN=(k}d^@VX
zYMovF=U+&0aC2)b>)e8d!w(lMSisOC0Ggj(v4SIZciGgPy_c8!gFNE2P@t@=Y|B?2
zGcz%zi5&a(?GxZ?een6Gho9fHneIQiySnrPuUx$fD(Y0%E?uf>`~BU!cQZ^fh2Fe*
zvta2`R&#Uns(4lwmV{?#W|r(-us{JcgrOmF=*}IP`F6F3y2bTD;pyz`{Nm-ygXhot
zr~Q-wZ+^Y3(9S2T<g{?Zt*7GpaVkm^I|Q6O{QUSbFE8VbJ@&BR#I3E_oQf@X_Setf
zl5=y?lxfq1oHznQLsd03HCqIna&mG&8xUVs?cBMuMZoFazFP17r%#?#oNHC8q^hdg
zBH&c@^_8oVl2XdFmHGGgsVFKsKHJoFTetkp4Z}sNS9^0Ps%U6*=)~@tq8Gg>g>$A&
zrIBKb06#zfukxcsdXOm(&@M`o3<1lE4+_4Y-`%y|l~+(;px7c%Ute!j^(6zkFI8z`
zhm2K8$Ghtj6rDXHBPBJpw3P1dE>}0tzc)o|{hC_PCdQ8+KQ5fFAG^zijYq=4uJ)G;
zhazZ9+(kh^z=?yCn_GF`zI`US85tUqCK&-!lc!Fc=(uIe77oRhHF0}q&6xe){@Xii
zo32&4%s*^r-)m42@K6wlQgHBaubTKT$i-RErAjdFFGHY9fXIYL+)QQ;FI{(uu)g$~
zdSTLnFG{9YCNMAxc~tJRf7BPbEycNDv*)|}rBA)eo}W2moNE60jAgN(t)y+$mX3}q
zD}&wpWGol0`+cNSSV<{pe_id(Et!*d_3SKu-nD!8?wGw*p)M}>s^8mI{(igt>orv+
zAt50p?`b-Mf)kUE_jT^wyBD<MPf6+0a)0^AeKk9ywuP^cGfF<jQ#w~SdfSwq9-h+r
zb#Z&Gu7AuZeSa@@-`{W1i!bxb*=U$%UAa)HZ(<Vi?cLq%qMhfnE-&j{6S>)~cCBss
zyx9L27CNUMYT;B;`gGA<zO%o-|IW^0cNb7-Dm1h6o9+1X>gwv%$9-I$9BgJ+`gFch
zM`=_3eY?52n!(F@dL#^;TwKo0u~hc+^8@V&78JBBc+gN$UEST`5fwE{qf6=W@qTf^
ziJzaJ?{05zkJ(-3JNMg*i^`t9zEd}BFt99tH>V?I-v6ts!>7-fA+fXa^RkMHiWQgB
z&dt%3>UDec=+T#Ls+yXffAuQ<{Mg9C%DQs?&wjgK9{1}1*Dn5Tsi5GHZeR2DYWSt?
z`SE*;w&&dy3J(vT`#rAut?5^p(z3E^H_PAe`@L@0-;W<ZUfPi8{PEK#A#-!{#m{e?
zoo#;f^5tOARwE^)ZZX|S2M#z03f|n9+<xQsZEqi+o{o;1&u7gqE%TLbJ`I|qdVIWJ
z`fghC{EP4I?)KhW_4Ucg$?B8l&C}bOeLd{_!8N}N-`&|6v^_7j^2djT9UUraYF!;3
zUS3@`RbM<@jLtV+TN{14-~Qi<bC*{Jt1mVb6ir#fsCX**?ygei36>5s=gyVQySHbh
z@!yM!-EVBqmv7^jU$^i1%a@!CKVGlje_>Z?HVYfuBIkBK4<Db9`KAV`mzVikH7BLI
zZ@M!#c7L7iG`-kWcKI8Vj&jB9tBH)wyJp>V%VKlZr6ru8RnH$EA5Z@O?=Ktsg4;Wb
zmshc0yLnU6w(84;%+2?fdW&mxF}b_Dv#_&+#+=h~LEVn4`^|H1G~Bomab;B~x1yq=
zgjtTnyL)@Pw`?(46Te^X_O{&M?S;R-ynJ=yePrmm7)k$mHlT5}jmgLPK-H0T`8$`O
zAfa<}t<%5Rt&88kuj>1DzqwXy+tm#X1(*BHb^8A9E@R3yJ5ZiTuU7M)x8|6PsOZwq
zIqv7@*)G)JnlpFq$79m@FL(uJUat6b=(PU+o{h=JA8kHwces(6{fyKeffF_JR#kj_
z!~i<7A>sMCxooFRv#;^I-}9Moncv(l`+q;2WfeYOSm>N_WrZLUGxNu9xAPxgSsCo%
z?H&C5a^Ih~@89!VTU&39tzR3p6|{J0Zo2iBtxclZVJ>%fm4bSFb0z%dTD1l*_gh%}
z{2T`-r{mtLuM_6X>6xtV|LFVudiRQo9k*ig4m2=c$l&=eUH|2U;IA()7td3_zAn}{
z%6fu0Xoc>C2?BR^m2zKSAAelF{!ikD-yfLS`4mh{L_$}Gu}-jj@a$-}IA{?u!_51$
zZ!t>0zOu4;|G!_aTaW*`mA(Gpy?b&}y=;Plf^7Euv(0i3EpTjp@aPc}!z+c^FJHc_
zc)$0%fQ(Gfg$n^kjvb4-TBvYJyN0brWBL|;OLaB1S0?L?+P^79d0RJaU09T~;P{*C
z@%6E?Q)N!<dEoEqdGeuH%KHloonNhZrPQ>3|G%j8CGX!nI+Jx`g5rw{3z^H_+-L-i
z${QF6+^_lEd$Mv~?xV@2^Kag`A#o?YZO5)%tLnQsKzp41?f-_XpVRSRalf6@`nbKD
zV$&`!^WB(vSuJK~5$o62*WJCmxUQ{>?PlYZnsImE@5=4!uRpo6yuQBvdiJ;Ub9?l)
z<dSP@LF<ay1q07dTphlCQO?axmQm++zu(s#9$zbJUH<M!hoCZOtrVzhe(hRVt{Ahz
z?eh&~x3jOW>jkZvJ9?D$_qVr)dnAnuK0WaStxbM$Z?84TagNPw3xk*Yfwm(zH8o9`
zF{9(r(eB4DFE8J)_3R(<UvJVQen-ugS+aEL!Gi}G8NS%b--_6>-<3txYl=fj$(Fb~
zudl7WT$%f7vsuv-kBaK*<d2Vz28gh(-}9;K=6&AO)6<SVJw07eOpHxoGw1Au$xoj?
zZSCpdQBhGjaQLwE`ZZ;ix1<H9>%}?+1PC;oVc#)bCz46wbFrkPWas_5-@3<}-_NXG
z*Vfwl@IWK;inzU1ebeSoE|oA!JtYE~4{PU_Z<{+;wv9*f)A|~B;iu-H(qd_ssJ4=k
zkq~GSKQnq?+1sd?T_v9DYp!*-z0teIc;M(!R$ghdD=%HO?Cj(i3f|wd{n}Lg^3qZd
zAD^0YYYp-axAB4&e}1@E{hpBlH1qQE@^a83Xof4hH#1z=S6l5f*DCa`UhbU8xwh3}
zPftyCzQ3>5Fzbqji>vF)shQW-NIp9|n_c0v-@8ew-WN8do)+H~yME6nE;0SMHFmcZ
zl|aktcJ+dmo9(Us&cFaV9jENgjDt^2a&L*uum5M6b$uPL!sfQ;m;LQcXDncJn5g91
zW7nL}wR^Yqs_^xFOTDKvoscoK%zmFDYgKaK$;rtRCr)Hk*nCXo_1s&k-qS!E`1|GU
zk9~T2`YQW``R4P|XIf3)yLWHkVmIEc(>G7m4qp_s)azC2D|Y#shWGpb+ubgm1M<h|
z>F)dM{u&fL@%VaYWyne)J~<l>h0k+N|GHp5p|bqfySuv?jH=}>$<1D|LgUDhBP-79
z%&{zHySgg$aQ*+^@t{p|fq{V)e|{KVx_tSnl;YcBuk+aln^+l)=F4_>bvZS&@iP3`
z{C`#GYBqIs^{*DpGx@zi+kQ%4Uvn)f*%GzcwESJn*9v=WLqoxR`}PHhu&VpdyR!1@
z$#*l#UtQrWes;#u&5aFIx?Wu!zIv<8`L3RxBWofzGo-vb|Kmr+mG$xR3>P*gyKiM*
z%Pp>#aDQKI#nY+b3@LT_c{ew)Iy`%x{rcM4SH68~UR_z)JY$B$*PZ=Ky{9iqI@<N&
z(<dXT{fhGSe+)rq3@E$zt$07zzCLbw`no%yIiR$&vzFRTFMWT{wu3`RSQylmv9`9p
zv!jqX``VgH#n;NG-p^<d*vs(w`FZ!VvrIo;^43>0Fc7%9I{f&zx3{nEZi-CZ`}xnC
z*o@@MV)}7ChuirVyY)(O@bVtre!q^JVTNHco077!pqN-&^6|cfF*}Rgrq2zXZI;V(
zFY)TR>r1`GTUuHU+`lgm+K&0`>})|fIX;EYNrp;FO!|Aj2sJe|1uXZI{rafp)|N~U
zPfy2$1O+E&XTz#58GE1Be?Dves;uVE$K#-N{c(Fhe$2_u6_k+Zuqu7Ez`32Tqo?Og
z+5D$Z_PX^-B|bXR3G%R$lT*NAH{P$07P$Azfr<$!)2t<BPqWv2-?Yqk_M=x<SHEJd
z{rv1~;nP#1Cb_q+JlMs~C)2Sp`S>fFFS+Yfy{A36oxeX+{!IRj4GXQ_p4Q*r(%akn
z%OI~?Ot)lKZ|KS(*3ws39198zW|`;rU5~5Qz5WrjD1YC+eG&WXY>)LwHg8Hj{piQX
z#|%cZU!}fPeewJK{^Q~CwXIsAs}g>Fd70J3$*^(bMvc%_A=_ThHcW1-de<Xu&KJDQ
zhmm2=*K5%o-QCW;Ql=NS=f_`J8y%j$@7LGYi$V1h2giY4Y4Z;^)8|XZ{Ob@@zS4dn
zd|gbZzuixkckkZ)_;T4_P)@F|ql05^l!?Oc&mV7I2hCP{cyNGrSA)jLjvselK4<M(
zUC?0pRPAsj3kwO;tSbi^7@0wp-XvA;q<43Ag3iEla&jv8`YLqs*$W`=yx;em@8H3M
z62@sg=YC2^N_IN8^GVinfc8{=`25-V>8YuKyUTJxQ+%PTLKr7RO5a-O%)a%_|9{`@
zL3`Bx{re|jkialaH+tE%KcIu6Iy*a8gsc<-x$5TT^wl5hzFrN#u{oW;si_H6*%_st
zdhq|>`~P2(G$S{ufX;l%ySq!#!b0Nn^Yh17g|6nw+pM`ZYU`mnmc<4oF9Lr2{=GQu
z>?{eJiVaowB!9m%-7dB{e0>}!C4lnEgb4y$vaj=HW@buQm1ul>cei_%Y4)P>_xCa`
zE^_TlR@dsV5V8^sWW2t>k-6r_!}cHN>;Fx@zVHQTX!h=|(yLNEO<K0LvSnpup!wQ4
zbLM=ql2KY@b5u$|X%W-8S;wU|Y}}~%;bi+X%kv(Bf}(6|7!{R3pgWP5LvW(#$IqXG
z*=MZ|TPwAz{QWw+5C3gIn;JH!pMO@dZ?Sv-qU`JI&hNb^zBYV)+=UDitGSFeH9rK_
zty`B?T3++>Q|esCzYKQ|+MWISCSj3_%amdthmMXl9g8$TV--nBNubIQRFQCt>(#t_
zsvEOIV7dSNb02FG6BD!6hhB3C6lrO1PyYAk=c{V%@O37;qpx<0>#wpk+S?J)(edJ^
zA)}(wCZk)^Hfm~WR{Z&~@to{;{e3@}wq{><tEjN}_j&&R6}GW||9n2r!Nuj2k)e@w
zZB6I=`hSw2pPfBCQQ6%f=Y~N`TidF;^RjfKxADBawe@o4`lO>>pxLI4)!*}4T3S}T
z&%eEmmsiTf!Nr9o>-xI2-?+XVlg<YX@iQ15FDoc02*}QvWtO|Dtnjzeo?ow4-`G*8
z926YPm{OK`d%3^-T%%);WK1#yK+8ZbTnLyOH>d8;NB1jhqs2wF!;Z9Y3Nxf!`^Un<
z@<L~O+}^4iyGmbk-xgC^<a9PEd7ZFe;I==1{w&G5x=Kh!M(1dk=w#4}l&Y#-9UVH+
z+kAd~f3GhoDXFBiDdnV4=H+F*9UY+c_#q)vcFp<y{e5?b$KzwYsfXKm*{)BWGe<|&
zYs!S^?RlLYC-V3IReSjGp_0<3?CW}*oScG!pxxWvudb|A_Vn~rQY!lQr}E>sZ_}3h
z&p-9&=jWyQ_xC9&eR{Qez1QBVuPL9Oo&EIVW3p!4o*he;E`7Q7d%Jwyga;22I5{~l
z{+?-ByzF2^_19Ob@pV6!^2k^OgsqKIUG6`BTGiKAGiB4S6-9pkIziFd#YM%=F0M;V
zSL^!vcyYmrzrMac{q5~-R~Hp4tEfMJ|GK(7xwO>#(Ytqf25w49M*Qwh>Pnl8R)?*1
zN=Q&JGBPqqIKWWz;UN1Aqg1YI>*M=DwZ?gyl$4YeXB%gk<#s7Lw<#DI3F$^{32>id
zcJ$&!!HE+mf_5Q-78-#@&&%K6t9lArMZztvw;=IwTh`m2wQF@jD~Hm~&Pu$qqwvIu
z69-OCRyQns<dSoLpR80b+t#eBO})Ln_de|^echIKcbDz;eJ?LB=ePU!BbkMj_2tnl
zEx+U~g%wp*i=0}yc2s;++Ov1>$NK-@>wo-uz5e2wNaHheEQ8a1gq4&|$(kKh0;SyU
z^j^2-6DK^jzMRtW;4r_vi;oWvC|kU_VR+=&F{Tqav$iH2WCAU=PCq|yhE?gR$k(s#
z?lu?GiD+=|mrHzntd~ugS<vzGGtg$2wd;PLnyS4bVxv+`ZSBJc4;tj_elR|K_%P$v
z7ESOl<c*Ea=^u8lfj0X0&cARWpfn^mIqT}G*4Nk9CqF$kwc_vB>u38eOSrqcf6bSc
zmR_=SDI)`@pZe$L^Z6aUy+_a6|IaZnR90H_{IHaOl9Kkf*X#GMS{zXR;sWF4WxmcS
zDJpmF-UaRLdwjfK*}_61{oEW!2L}ewR7rC3;=Zi7B_4uz_SfHk@hSW2DptXR)$jMV
zKRY{nam2=?s??}$Ih}=%k3BqZ|KBAcL4o1HhlhtdIyx98ME*8PJ0nr^>*aEds4W_A
z-n;?rep?g2|K0<u;$UW`l)go>^78!R;^LbhpUJbgIeqLH8#6nf%kOV*Ki<k-ztCf%
z(kqk1_g`IHb{=AB={V7)(bc3Ey9>1DZsp3AA3lE$uFijTZLPGBkkExCp28YkO<T5@
ze0h199aL$UW{I4eXUlDEZM|d1juoby%xpXdK+7X*f0cmNoUD!7dMP^n{k^>(53<X@
zuwAk)bYqgMPV_b&kOPW}j6fR{CQJ~}iQOf_09r_LW}a>I+K(BKR%-h!)9ig0{w}(@
z#B;LD@yN|-z9H-5WE&eBL6LZEef;|Cv#)Mm|NGn9?u(1vAHUsx-z>7Pqob&eSx`t&
zP!bdfHQ(=+XXOeB3htEv7u;2Dudl5we0RrkP4srX_0Eb)S_KizPA(uIb~tWB2MC-<
zn$aL2C@3g6@u&f#qLR_!cXxL$yqK}zV#bE_^YixbEq93Ak|Ag!#ha6p!^0<aV@F|f
zhKbakKc7xl3dBA%D|-|1^~QwEJK-+Rl9`-ZFU_;9zS8a4>(;zt#fm+Aou4?%4rW!}
zdG6xE$}KFQHAPG>hC|`=A-6ygowz*~`OHd6lef$d-DDH|d*6cVeyQQs-*x6KcX^h`
z<kaft<;4Xm9yPj{!o$NmIKtLOwO+Y$We;C(2M=hk`Gk4%`sP}fKP%N}J*Pgurs>O<
zk|j%*O3pdQ{jNS``}&R-@;(kLE`Uz{nlxz=14Df6S5XE9LqkFP|9^_(+FV_x=x;Qy
zS30GsrV#QXV|FwvE9=7a^Yc~&E$uq@8x%rc-h*6m>g;TD&=7$}SJS(@yO|kwmA~f`
zJUC4^y5Re}*v-?w{(irIasB^)E26e)b&2V6v9q)P`1Na1?C!D|mc?rC?(fepxp#WH
ze)5wO6FK<#-9J7$nwX#8FQn=PDrF?B%XIYO_N)kx`+cCMtaH-*`SK=Gyr4e0x$o_H
zk&7=rI5kxpv@{~^%#21*6Vatp=t72xgn8baC_7VAQEBtMBi8TtG)HaCI(Yan^S5u`
zG~)JHWL;m^yD|Crti9(!sm-$Z*@E2L+cbig@yN)^K7946OUg70v=r{fw%plK-#`;`
z1qBUmi$NPVHphND)+>GWZPezp-pG$O+N!Fo!s>o51qB8%v9W=BDhjWxkC!ige(vl=
z*?T=bJUUTZINsjc>iqK3(uXfzfI6y+9h=!e+dhJVf_l#V&Z+)ooPI9hKm+57fQ3wR
z=FEBU_;Isd?5+n74mPJ9EqZ-T7qmZ1P*Cv0moF`g7b~BdrrWI-yK6?yxs(?*xA)ar
z-`bkZo}Zs@VPyp>LqTV4J$m$LQ}5$@d#fcZi&Q`}%x~WGOj7k;RQdT?n!I-KdC5I5
zB7}v643ds;gshDcJ$LS$M(8S$s4W?dUteEmKJn9-ahZ&Loeb!-m;L+gV`5?gmUswW
zSrN$me&26Bz4(1OCHutpo?RyK`sPYV6XwR=YIBB!>+52zWUDhwq^9V{-+N#rZ&T6W
zIazIC-QQmyK7DFxZf35jsR8vxK?e+|J-(<H{oD5I>-GB=fe!DD-lp^B?c2bGPONi3
zsr$`2(84KvVO6O1k6*tIUA!ommzVe9`*-*CaeI5}rfu1K@9Vp}(hh05{oi(*zV^Q+
z_wmeI*4Lk&o(7F&WnEd(sN~uO>M{TO_pjph+U*5@eteY4{r~WA`^Bx<;ib1vP0?(Y
zv#kPc##Ni{Jmq=I3W1qMsa+afO53(=EBgDZR8Vkd#m7Y%CQ=tOOg??R9-qFu=gE_l
zm$$aA*632|TD0PG+TTDC*JFLM*(Pk&)zy<fn`K^dNuTFEU2o-6aowmCBRhM0`->SS
zmv)!u@6F^E*9)0m{N#inCm-LnZsqJdw$<NEq?Vgqdvvt>^uNEqeUFI<3oAc8J>7ig
zS*cz(z4(1=&RyPFoE|9RYGY#q8jDn${{L3?`js1PYJXixiFD4pw?~tak&*3ju!w8a
z)+|-fklph4_x9d?P^1^XPsh>GQEmI?qNk^dKnI<EHqW~gVItLQl6lDmbhw_Lo*vuu
z#N=dU<FqpdJAJ*U>xqVkhcCXpM5F7=>+AlPE?@rotoB=tv}Mtfi%%;mD^I?>yu9~V
z;io5_A3uIHw5p$PS6g!K^qS`l3;%w~Klbame7(oXNvgf)><b<o$VoQ6exy_Q=&@tR
zUhI;Ql}-Kl=qTIs+KIR4%ms}m#g>Kbt@?WD_aD38!3&*O_db1lW23W;t*!68>AAPI
zOmy#;lk9P~zJFt5a_W^8fmNq9<M-`}D!aZe_GX>Gc9+s(x86(9=hwyV{&LFJdVg<k
z@452EjkQy+E^_TYa`EED7vFB*x^-%a=j5Jq^Gkp4|NAX^<L1rAJ7mPg#c%E|Uw`qb
zz*AE-g^(32tgM}GizlX?o%M20{QkPyKoQV%htIkB6DKO3ooycepEG1-kn6rbpS*AG
zuip>aqpZLGkCJ@tmx(`q|CaV~IMyq@{M_q@4?%tJjc@Mk3{FZ;P6eHMm3zx%W&Hkq
zpd#Pu^IvIBkAQ#)pabpR-`kt|`Po?^VPR!yvz!UK(c4x$-Ch1(Z>m=4Btd1j6R)nW
ze)`~GbJ3R<fswn**7C^NMErG++LYqCv-o-6!3w{5Hkx^Pd9SLh%id_L4qrcQv3vii
zh0g7ugC#F5cIVd&TGDZjHTD|!KT+*4iM#i#%ineE-Mcr#L`u@CWW~waWYA!JOKa=O
z*I9RWZOyr{!Ew>z#i@UPeZ92EmHT3bNzm#r-N~FM?(Qx>di{F1h^wHwy1JxMN(U&D
zg4}d-Z}s*bIol{-4z18tD*SRb7oyv~Io-a0KmN|$yGQTdjkWv#r?|7LYto7p8Z%8Y
zCy8i>`Sd1(8qnJ_pPrif>Zr%lQ&Urq^+;~Yy=~Un**UTF^)=7i+j6hIJlxKIeYXAU
zpJD6cYy(AH<LZ8<Ms7@Mb#Zq;y?+0{RmF@^+w)?Z3vDVsIMmeEUM;%2t8}t%^fr%@
zk}Yc@HacZpUA1(3ey^%Ro6u)*$=7?UzaKe%++Fwj>Tvy=yGmDsj9C@BdP&^gsznzw
zmXy7{wbRc5G;>lasp>s#%FD~kPakY%2Q3tsUikRf%K75b($Y8gRDRyS?d&syvcTHE
zze+6&AGNr+xO6Pi00k0=ckcYo;^!sLZf?(?|10wAw{O!rh1EgZ=~UFz+{|)ssn}M1
z2}pi-W8>n36<ao5SrZv7;yUrcgM`Q}853nJi(J0FySutrIP-X)?4xJT)M9s+O?|)r
zf84h>H<dST+z1MvnRd0irs&7V#oj;E%3XTx^N)|oAZvYQ7&yj0?~}FuvhCx?$H#BJ
z(_Y&vZNBQYcF>Xz(7gV)_xJVL`Q<>K>YhG*y4C+TH#hs{)z7smJ#y@ro0GG1>cvH_
z;K<ybKc7e5E+!{8*LCs5j`{QFFIl!s%6^ASWd|pRDCm?2H~mNH=jW~Uvo3u#<zi~h
z&!^L^#4jy-w=Fw6VoOp|639Fgsa{a$%lG`NTU)cO*2kAHEsDL?#LDfX_j>*Qe@2#n
ze|&rl@}E?%+p!+W<PAO<87r#N^RKQ7b(=nQ!UP3PP0d%YL33KsQQLAdOZH`6Ubgaf
z@tYfllRrv*I%|G^#b<sglM@Lu>;C?F`NrIt(_?$yU6()+P;qdP`|^w#5{0FuqP=d)
zpgei6<ZbJ=MH-LZz0*rSH|L^u@uMT0no(O;WSB^O{Q7n3mMtc8Uw-`fF=$PMA*ev+
z-uU||Y%Re4`ub*586~B~?)_o?r#G7#MV>eBbyLpY`*qsE)GzPv$LoqqORqNnyZ8IO
z;N|uIem<|deEHI)C8?*US^YLM=k&-+lC>&XVRbjaH^a@Xt>nc8#oG~^i=Us9-I})A
zXQq*mxcKsLwbzwNFC_M_$Tf2>6TiBw&o^x4%9XF4@ARE*HfheBoDFy8SQeM){g}UW
z?lO(8Eg2UNJt_ZicX#>Ie}8|gC1+h+)cR}Z*%K!&XiuIjr62rT%hWW~Yr5WAHTn8K
zAKT+*o}RA1dTZ;tb?b`0zl+^#6uEtW?Cvr);hr^~mw$bI?R(5;O8AV1fQ5!RHw?CB
zS!rr|rbjtBHCb3#bhs^^$Z!AW!h=7Ol9I3P-r1CTS}Ip5p=aC8X}!I^efm@W_exE8
zc6Ro24YuShzqh8HomF*t)3qdtU6<#{=JrlpyLN3{(6Xg_g{8#AragYz-4U`rE>^@<
zFh4(kvA8S0yxo<Z)<1KYKpVThu6wM%|4&j;t$fXgMvX3|)KgO~&R({6#^nqXquO63
zi%<W!|Nr0eX}>=nmoHtG`91RHrc~d1e|@~YCmW@nlJIHUG%tUt_jI$WiRI7ENG=wC
z>p$O4l%JpfVup#3j7*M6U-tENFHJnp_%eOkv(c{dlgpjEcU>1>JmIasH^t-{sN+6)
za_~B#32Tn$eSLM+?R4tij+o79z2~-wZ#?^~Dv<NUBvo&hK#{_-GP8=rxmUgQ_o_(s
zx`765%zbAw+`4t^)Ku;8Gxr6Q`(&+`<;9njY`OPEd}_m*sI6Xe%~DT^EI$3?VY~d5
zqTuCzS7)!gTbG`mzIf|7PfyQR|2IGXc~5l{i(QLft5a2#)inKhKG(nt>td~U?ArCp
zr@XxUc>TZ6@*Ny?KOV9-p9Xakw`N~wVEFs{d;8|in{U3JzF)p5T!gh(+T88zEYtb*
z$#E0%?(TY8F|YdjyNB!d|2uSYvU=g8Bb;+A3Ym^}i83?Hv8fb#`SPXJQ}et#EB@K0
zoR}c9e!c&Ey9*g6ubS_k@9OJ2HoyKKr)%Ja?fLg*^#4CQI~#O7g@~);^K)|_zIc(b
zVNQ29w^jMOoD$2~X1O3o&zU>-;;K;X$**&6Y*1u)@ayaAS3ke#xCUNW?9RXV^ozT@
zw_ANX)F*3QvJ5m{6d=NyduvPM+O=yhrh-nd@SAHTASh!|a3Eu6pRDzvbLY-IFsZMv
z|GN3h_4xXiKGs!VG=zkO85uzBp<RD2E%gR%3vgTh{K)5HRZmU`f`+&luAI~4`S|IR
z)9Got#iEP9RfuYb@vPtXYt_Y~zrVg-o_&16^Sf!@zh5q&&%n?tW!lu<-hOfuue6y-
zWt>)5Q`Og32d`f@cQ>@D{Us8<KJMts;N@4|uLl)9zcwZxFWRza&ILJV*T5_6w|QS)
zSt;Blrn}1c{ALkX(AWT|A>VvCHa0eJXHhCcW&NGb9#BW;(6zPEpj|Z#2WIE*%iPfO
z?a<>}TeE+>-G2Yevg1dNtf)87xS-(vdVj^oMOBTHFIWE8eWvDkykFjZzFqBu$B#jW
zo`$Rn;WW*<;*gM_0GhvixqLp;i8p^es}HVRdN)1w^t7`dk1|cDEWEWT)w`p^s;V~Z
z^YioU3>Fp^HsMZRpU<yfRqyWNGD9bNb(rqr%Y8DIObnnIjGUaDFIA^b{<^#^H@bA+
zZ1a4nn7E&xp8Ccu5!H{AsjI82x;<gy#Ks#pA{am`iG7bPJb5X3#zqT<1zA^Dxh-d$
zdD5DpG)H!=_}2X5N0rHEZ+#Akh?sFQwWYn?KE34s8t*`nmbSK8Z*)(dKJ9ILY+03C
z)xF$pTa?}V90EmhZf;V&{kiDXm6Z%W^QS+ns|PLE0v)jm>J-Jq1gwj(1eFng|8ep1
zhMqol{P^=cW#0>Opu_PGU%q@f!_wN?x}~MX!KJA5j;)Q2f>LE2G`yR(t@iTw_g`FY
zaC=MU;(KS!uUyT&R_}N3-aX5x`n+d<w`b`4_{=oVmveG<-dOO^>CUcFZ`rRuZpyEH
z@+4*M&&Q7+FVyf_w=J?-{l}qJ?i-+r``_i|{#T>chR4^2?#-Sd%*o05>V8~YoZ9JW
zI+2%NY`MKXe|5d|ZTGfsHy<DG=hf5S9kJzON5?rc6%~~giw$N=w=dGDI<C9=P1Y}y
zS!e2%&tI$CyP|fs@OkO%Ye#mvbPB0WpLqAnn~d+>mdAI5tPH9;{v-1I?z7XD{q1@3
zWRJ<!)UB5H<EQJ#yY)($8dQDB0F4rzIC0{{#qZa<r%af@;2L<w?%l1*o|F2==bn&w
z{PnX7>yc)5{tuV^?HvO}jvPNOox5(r)mvM$4U3=oSXf#{DjeD~F*g1y=&<Ysj?JL{
zK4?(?NQWS33G1Ife;z!0w(Q*ggo8|5e@_0xt*it(?NHTw+L5=nw}Vz;fqJV9pmp~u
zYHDe>mmG|V)ORWJ`t853;^U(mTeGL%{C)6-1?PEb?`z$?b$@@&y!+<ty?g(5UQ1th
z=gsY=RU6(4zukFrS84X2_x1lzfBm%S_dh11?5+B-yO#8IUs>uc&ced7z@<~@)qh68
z!0BJ}YwB%RZ;&llN}kaW(73(msn?PvOJ3Z4Yvktg;lo4cHL<(J^7njf`&D=C+cxvO
zI}Q8y@4sniW1a7p`96*DLgwb26N}yZi}utwi|NI5Y}sOR<JPUD^Yd)8W<N@wxyw6z
zPetJzyV_qnw?&@5c1_H->dS#Cn!y{YzGl_@{d&CsvZj_H#q537wKX@3b**2=hU5y{
zCj0naH(LohOYG{Z(Bj&O6JvF58FejsVRH4<uk9TRqPAx3>{2$LcX#_#tx%(=YjfWI
zHBasRdTy?@TJqlF=YH$1J$?AFakhE>tgUCw^Y2};KK66!^5yEF^U9X{&yRYt$ENrh
z&$svY`CS7+@!cb9eJ#N<_<p?pq-~y4b{>zl<_~l{sumIQKsRy|i$mJw<xfvfPyZdf
z%tw;p*Vzr5wuzpz`nA^b)O7vzX75kE+`|Bh&wqd46pKZws;NE8FewlAn`6Pqz`@03
zG^>W;zs>)Ij<Wf&JBwJu*T>bqi`a5@gPd(u%hlE4%6fWyx3}lFFVc8%b@laPeRBhY
zfWN;#JUpy+de$sCAt5FP&^;h0|0b^M7T2F;bME8EkDz0d7#6toO1=7BR#vtmZm*RK
z%kS^+&zH*V{J7}bT2*ka{{7<OVztxHzWuniB9K|B>BWnT$>zfE?(AIL*Ea8~M6`7A
z<lMK#yzYH6fwMXP&E9f9p24R~VdCA7HG!sLw~{M9K60IW|6*olW=Cgd<06f)+B=;^
z-JBev8PoM*gWfl}y16YXetz!eKNmMQCl}Bm<FD@Q<mcjQTEAZ3g{AoUIn!Hp_XTp-
zyC^l?-Ch2C$M&g7N4r*X_N=U*aeBIbed1Y;E#jQZvO@Ci>{$3MFWF;v+1o4om;2BE
zcV}bBx|qn?iu!|1tPxu>Cf=H7ZO+-TeY-gm6O)2c#NH~?c{Y_v8}2+l-oG*Hs@CGu
znb+6Nty*Z5e5~hrpS!mUk6rr`&`9%F3;XEbm-p3HGaLXNX;}OFTg>rKdk!5sbY&Ln
zTVDp}M~@zXP7U#HO%151*zt?!;-#hDz0-Er{x;i|cX!t6(#-zrd#k^1D0>^V`02BA
zbF;rlL<{GhFFa;v9d+yTr+<HcXT5#8Uo(4B@+<3{YilCarcd6QzUR%hiz06gMFc0`
z-e2`K>(2iA_;k5NO`ukMMz@%5(ErZzH#aV>soe6^$jGQf&rQVj;P3bQ`4u)VUn6H*
zrC@4$^?{L#%lexatKaWs?{#AqJotM3{=OYMEEXF|%v$z#R?*=$-W?Sm7v1|}oPI9h
z%nU>QH+^%rU3+|IXK_bY*QMF>=FI8IySr;<O~97S%gZ>pxtlv4yk5WGtWt3Pgb4{n
zk$-=EZSF{Te{U~n7@v^=)QZ_z^z_VKm1Z_xDHeszHxGY!c$jw@sEc~8`PunT-@m&r
z_nWJr6tOYMb(`mjrQXvwBpv0NoO-NZzJGK2`B!`EUtQ4z4IMkAF?~Iyz5a!dyip1V
z=twiA7k77?`^~e-EVAAI=TrB|du8*c@7-%#_5B^Mpkq$Xnp>L#!(P68`QrZm{TI(q
zTxwxq0h%Ee5R|d2iLl+jNl1`K!ayNhe4#^{_^ET}&It(e$lJ+WUmt&68`LEMZBu3l
zSmq-MYTt*y{$rkLJ>$f>-Ph;YR<ANI04?czb9eXkl%Icpf42|M-57Q)D%#oh1>?+<
z?caVnByTEPQ26jr>+`<l&h303K7MTMNI2BO$!1?1zCJGW|8Waz>-`hbZ+EP@w%_ys
z$3)W=AuA_obSW+Mnrc)%ucwFS<HwJJy>7~ljg3{8qqbx$>~o1;>LvQ~(`o(G|Ns7i
z1{7wS=T9?CKGv~+|Nb6X>#+Qr^J~A&v|7J=_wJf67u`1%KlkhG?VTFCyX<6-r16r(
z!)>2Foz{PSc6aIPuu=i7`1tsl=K1qLJ>_|})u0owLH(qU-@l9N>+5f3Q#z9uu=a2}
z|LdMpwuO&eZf;KRm$54G04?B~svR!Y>!!>rWn!@NOz?8Qm5Y~ZcPUMrIB`?e*DTAb
zFDpO_K}WRPR(}%-4-cPgsH(2MTDd0s`u3cgMw4$R^ljN<Qo5zgHE>Dk>uaDpMLPTX
zrtwOftx#6IzAE(e6OR|1oSZ=`gH%oTx%En&+*A2kMN7*oDJd!Cc%SU2qvG)%o72vM
zI-^#lua<1@Io2!P?Y3C3zP`S&yj;AzynLoj<t7(bSI>};DL%7IJiA1-mmLEg5#4-y
zOWE6~jT<)#x&|IOdD4@OS4zeH@0ZD-FaQk)9G9=3!f*G(K`Ug1Lf4`b%Y0{-JgX06
zj=#6RJ{~j(QG0uBwE4|VsofwAU8345N=i;9QoZN)nVJbKbX$C~OySU-BeNz<P`G#R
zUe+4hsxK4PMsN25jaWo&^?G$}t+rIJ8)!y!-TO-RL$fW5m+hJtwA2d}J5MewbpG`F
z{r=N8HYOiEd)8NWOUdbJy8myP%~sys$npH#+|_>aW;rutY^y@f&9~Qoet!OS>uG_3
zfsdX%0rgpOa&wnfe}A_r?W`0y{OxKYKsQPJd@|Wz#lRpy#C2l+{=Z@QwYN$of7R7a
zE3@oc<S|_@Hs$fL-l8ur0&i|eY%Y0oBT&Tk;?I9ZTh1(5qGI~&!-s;K`)YU3v8@if
zdu&bf^tA2k&2n!osk0Z+401WvFR#D<|G(WbHWdNOd}phvdQS^^{{P+X_dI%s@4Pkt
zI#Y2In~%ea1Ghj;u2kEM3kzh<{=WbJ-}M(ScAPwU^3u-Y^otoLuk0tM*Zcf!o?((X
z>BjBbv*%n7U{X>79safWwQl^rJ#*}8qyGH);}SR}MqNQ^=He{r==pAoCkiUN&DeV8
z#fuEh@O5)8=3a}-Nfp2R;9zs<q(xJvOv%}P5R`+bH#9ITz71-cfP8V1#YLrf$s4y`
zsnqJc3=^rB*VoU#_a{<c3bdb~u(Z_FV*lE;YfnzR<mzIUcSqxBx48Mv^QKb0H*VfM
zxh{5h$+NRBS=Vj+?CbL6NT+a?Q+~$Z+TY*Kev>gOSNU@1Sk;>whMJL^mYj@uet!P?
zefw&EZ#(&Qrcvf4m5p1sn(oq5S67eRRkHG6W&9JfboJfcuiE+Ly^eN?_SUJ}zJ749
z`DUGXhP|@)G@XmH?bSIwa&p#GR8>jcJ$~@u!J^O4&gM-2d5~RR;;&EoU%eA~@tqwy
zaeE?sGkR*}K+`mfKR;JtH2ek%@z#Bu*A~0?e>kZ=e?jT%YoI9ux5b9HzWw_0@^Z%2
zRibz9+<EZwWv85Nm4xh$jC*@3SA?yVnloq4gZJ<I^Y{IHcK;5KQNqbds#)j5Cr+Gb
zIm_J0C}{1p`foJ_B_&5rP1XMRdj0-KXU*@sv~r0)c=Lvbot=G(ZnW6j+uM(Szh9rf
z#q#`#iOQhSVjfv5k;cYG4an5vgQrhhkM&9?A8O%rJAd%y<>jEG?J{m`Py|f|rKhKZ
zW+4{4^&Yyo*gbHmmneh5&BxPMW}g4`<8eP|$>Elai%fEIas>qi4eQtIgSPj-y}kYM
z=kxaF*)tUt6)lRN@$CEcN*lBoP1So^%iOuLckbK?*qr7ITH$3~_QnA;tZ;0xtV>X!
z2<XryK0dy*T=%j)d-n<o3pby)`_0qX*jP|j*0y`MHE8)r<mR-8)8p$J=gy7YcKhYi
zr>(KO%RuwS6_0z(12!hP?%1*8z`c8NadB}g!q>}zX2<XDE>Au;$C7QjV!gR!&fQ(6
zpz~twYJY*Y9P;t;X+&;P0Xe(&_qW6s7Z$2*U+FvB3^dyfTGG1AclM%?l|dV}Z*Skc
z*;p%NMMK%!TZy-}WP%icmNA*v`<)XGPF)?kx=mQ!FX2ds;D_(uLED?Wrf4)ykFS$F
zJzXDkZNu59``uQ{eW$LC+^ps|&!+R?;dbfXuLqmivwl98tai(Oa$;gfXQ$);e}4m4
z2B}(DTOYo9RTQ)s?!rRn!e3u9=f?dg+9bPEbN1z*u`w~A(;j#vjaaU(3T^K0?mlQ}
zwk7N8s@CG?=Rk)GX58MU>or}Emz|y6!qReK&dp63H#ez*j&`}c+<&&r)O#|Hj*g&F
zjp+QntoHWyH*ViPeEG64X!X~=ACI_YY$`6SG0Xtn1_qjXb8Kb<CDpZSbwyk+zMLDN
zy}S1Bv)TENzP!Br>R(Z5X)7pTLRYmgGP5bDsj(@$^_;j`Hd~rIFfPbN=fcOWqPuH;
z8l9T1-(U3f)Iz6Lt{Ypk#l>_Y8su!NUQFrk?shIHFt~H~u3^dv&|cZZQ&TiG!q>_0
z$y%{Q->$DR`S))3dxMM%3ZVOfbfdN$xVN`@W5vg$ntwl^XZ`k5I<<3W@$;ku4U7RI
ztnB=9XTGkua&4LCWHr#Nmy~&4PkjAf)AffHnSXtM-(UIp8R+=ew@bS^I*OKE=x2WP
z_;K@W^ZY}nPjkEX%elI^v>YrFR`YQvDl$q+P7d5vlF0yCCNs-Czps^BeAV5SWlNSk
z04=)RUG{cE(Nix5&<%PM=gsQ_t@J+7z_@c)wp+-Iv-9oc9nz*xW7Yks@Ot{BNlm=c
zW)6WOSJuT^uRpA)bZR?St*}n+<>_zM#O@ATt9LEy))vh_fB%+Nef#-#`~3+MCV<X{
ze0}Es{r~^O`Q`17Ec2Zm7xTfT^~5~eY5`GER@cBQ^Hz7nsRY|vrlzDkSiAjR(CoX<
zmi<mwT6AdLh3gG79{>9KdPnW=Z3nH_ZOyuR=-JuXSFaly8ZsFDK5$-3M~6qMm(9@7
z@Wr*YxA#jM1Tun_-Pu%rVmaO~e|-1*ecTM7g>a4U=1t1o_W9h8kB>n|2<-Xy>vhG;
zrPD!$#giu~e?A_U2VLB=Xz}8O8eE|8xwba?dFc)pm!D$70>&A~i%;B=-!X0bc5@*i
zA<zX5&;^cWW@Z|3dv^GN#uPw>=$p@TJ9x5hY*1VmvvbkDFcH@KHJ{INSO2&pCHm?3
zr%!iYUS9t3r2709d)L=4*k1SdSH!-WN;wxdmyiMjMnmVKA|nQgJufcyO`0`l4v)39
zwTim>;d}S)Jt&fqmA#rO82HUZidV$7arSI!CT3>CsxKK^vaV{aKm03v<MUa2jI*w2
zgsco=1#RD6>OH;S`8nAo%a$Fwd|CM6!-t@CBNvx?Pv65gxkKZAGE)+py1F`pfd$jL
zvL|V|lIrT}HnqR5JSYkZ3c6C%cI5bR(4~1FK7Tfj>|3!RVsl#Wz3Ph>FIEb4rq+Bs
zD*oy|Yo+zt$Zj#+3yWO27hkT7>CmvWlmsnPK0QtMYt)_zl`|S<INtu^bz4MxwX}KO
zfy0NH%gV~KZhrYva^(2&*K?+TZl|gKu2)l2)3Yx9^|iG--+iA0TKn*?)_c01sbw6$
z<Z+fGJa%?=8i9*gKpS4n-(Fbg%)!SO7SGPk?(9<V<b>edWlHV*perHU{BEZI{P~md
zgv~-`CZ@PMY!j|ZndL|<^PfNOdg6rE4;A8iHuqY&`^z7K?k@qI0kJo4@tkC)q-7^g
zc<99Kkti%I%nIKFS|)yTb9$-Up1Pk;r$2o7urYFT+DjFM&1q+wy1Th=ZOKe7k-e1`
z&dA8f!OQ!1`nHxeo);InR<7X|lzV@u_4w|BhadH7Zp8fiX~@X<;qCVOkM8ZQ?&$7j
zX87~vvj2{%uUZV?b%zh0J!=D<qjPqaX~vx$8?A(XU0E3{C?c}tvizRKi<LqBknQ*D
zq(OVbPfyd`n0{Ukv|a@?@4qqW=%*y%PEbItVG<T#2wv_Ny8Bm%2<z)>YY*=#ea*m-
zzwf6Ss6txiBl+guUTM%Iy4{}-po66r=ic51TA}poPy4k6j?D@A`Td}^c=rGQ7}wO+
z8YUm(+4K3Fwb*?#(BeX+>_aRp2aa}&pVbl<5LjURVu5Du?{BX6_th2)i-DG=1U4={
z`I@1FYxBC;-OoxnQXHWHeCV-nik+H*OJ&FZ4P4^zU{N!Y7Zv~;yh%b$0koFGCB@Lk
z0pyVmwB;@!Ro#h9ur)C(Enr1DZJZn+dj%tTMhyZ5k<thWBbE6UwNg9E_17;}0D1eA
zteV14hb%1t0fsNHre2>2UMKaGPk2I2!u@?`?)S?-&y@iuuboF(ROBzHDKs`#O0$Df
zPGFuP<4JZoyEA|0&YQQr5Ta2`ctVYWs_N(RtgL&-96=hVMEf`tJ^1tUGpNXX`1&=s
zxHxE7G2zdTj~;%0*EGw2eaQrELe9&}`|#z9OTV10fV}+wJFl<m+3D(<Ulaye_0;zE
z9zKQrpo?9Ul$0L4d)HTfuM%`E3h3}NyPr>lUEJN1@9rvP0G&-|l5v3nv|rPv(rD78
zNd~E>L_q6d+WBOg*5;low}hm2EsYrsGcrFuItsd-0Cf23s?gO;48Oj<ZvXP7L??0+
z3+ROLi;G+h6A!VdsH-cRnTaj+p3cVL;^MNP^7FHZ9R-TNzP_IRxHNlq0%%dLlG36-
zeZCvcOqnu;h2g`ePnRn9hpY^`kYTc6`*wB)(8y@+?QNlx`58cK6aW1EyD{tPs^?MW
z+29<zVnG5^(z0W{(#|dymix<t&u&{6d-&8;ZNutsIiPl&pPwJ-X!pGP`+7foDA@Zm
z`|7IJ88c=)k1~gO=LXAZAKmC}M}B;K3|henDj*pcpo5mu=6nnVkB{*(G;H6#{obE@
z_wIRkcsOKbX}x*#rf5qZXlbUB(xRp&P7l5xKYuO^T<iuq-owVmW<%y>HJ=#<j7z<y
z9(r)F`Rct5GBPq>o|TrAurR2ot3S73w5+$|bI630KvUiuG8$g)64eH+Rh?sBAGh`)
zXxGxE%a=h*1s7yrUsq66#Kd4z`N<{!-<18U4Y#BgDcSuKWKb|QWzI2m2c?#ulEMPU
zXJ?smFI>2=>g?)U+w=QfyTugM)ZE_6dLt^o!)tE!CmwEFm~nB@tL%v>47DFVB(gJD
z`X_+OHjU@g^yB-Uo}T`CPx=3Ue{H&!JphF-=uW`Hhn?U5y>ca_gX7YrOQ5w{LaJU5
zPE1s;dJ4J*?ZJbD&DTt8f0cmNNUwkU_PvtnRbhVld(4nPKK<g>R_$G7Z&!VeD=9HK
zbm-70jYUn3Z!6C{dH=qD#taFNm!JPlJv|L{O}J_HH5LZYB{h$a^>%c32cLd(XQy!b
z`FWs&)#qp5RhoIe-==QO{Vm;K7uzTDcFY9ro&?>{_x1Jl<G1to^ZNVy|M~Oz{Ec0u
z+Mw2H&{8i(2De_RR@3Zj3kn|}lQ2r*044C!S0OB{tf0&OEaUR`Ryjn?;%0d8@$nV$
zot~f&brCx*C17ltae)DJ;>DrEhYho@>44766W5PBa->rjG!wBkW~Nap=qLfu^p<?x
z55;AEbGx?X-Ub~;WBKkc7en3u*x%t&mo7ayn!^Likb!cEydHd@rRtB5_1>Ju&B1Zt
z+1c5}d+pvbw9J%KvW-3Y)d*axeiF)dSTp0@W3_XT$_d<7I(ly2*<V_7Ar;WmY9EI+
zH@0RsY&L%I@FM$xoF&UY7l7^fcT77<yX>#kgU8AzPDHRPNJ>hAmwYNM`oq6|u?TD}
zKrjEo=#4L4%(kfir_)f)aB0HCgEbRDq58=@?qbx&)!~;JWB&gRl`=BQ`D7#mD)Sb_
zBr_!)6%vy9=+89i6lhtmlG3T~6|UJ!jf@(8e~)Fn^W*nila38+;HvVIxtc<lmX%b+
zuPcm4yW`!w)zyD|mIPP6S_~jfW_c`c-pVhG*}3}0rG2(tn<3h`7}ONPUY)lO4qS7?
zRYdz4(~jMT`ygHxWq8weoolXDDOdJ&yQaCZGI#FWX?T)y<1k-?tP4Zy;YLtd8fbS^
zN<h2h<t0@HI}hKzb7nRyS#m%wlfg*dPaWimQ|o6mL@d0$J)ijlV?pd%#*M$N89lvE
zU%mkHdPh+!XNTyn8cV?j;fB{6wr>5qn^O#uickIj!P6nStIG80`~B<E``YGBVq#yy
z#1ItxSx*mS?xH(Myde3jvR#uHADDEBXdZ%ukd{FNb5g62kko>lo2w)CRLC|pH#hDo
zeRu%Uq5%6>!*;LKs!(r-!)?6A_dWc=geR!`Ut%n<0f*M9`7;_KR&Gk&yrs|EGf;Sf
zpfbzRuBU+kpj6r#Q&SV?KH<M1<HjISEsKAjl`JLeEI1R)&&^%UE*;hY3X!Ls?){&v
zn*Q{2c1->Bz5MTU*CHb?ML~z;oV!)hs$Nr0Y~BI#JJ;qH845Z&>ldH653*0n)W+z)
zz|U%xFFx1T$G3MpiHreT80qBX6xTlCJ;=toI=`9qHkC{a8lS%ZK6vn8r7*}o!He7n
zSdMV*+&Q;tZEnW1?k6b>4zdi^QYHr;f4_fz_W`hFJ3*VjZfr=bly%#8jO7TI@0=Mw
z&Ua5a6L`^-VOCWY)7x85eZf9#dGX@K9zMnUk3C+5t;oB(>;E2)Kh~0(VLT^JoS5AJ
zGOHs_KuzJ=yJNj)?l1Lbe)+Oenj4%C^b8p{mYL_L{Y!&1;#e7k1+vRtiCoxg{oo0U
zh$d)>cSlFZCtEdzYdN>JoVkDUWJ516G`7FbXo%RX75eYz?PG2H3qiGM;J)K5M`kTu
zmiCX2D~T7}2o&Y;aaeP6v3tXEbpcV<3=^chdRESsY0n-8clT@HI0$S!z;a}kZ57Lo
z9V!3LB4Ym9o0}{xQ1k6T=5K`N0tq#RYdz3pZ{XvwCh{6f%iaXAzZgMAp{Rozz<8MD
z$Sh<DEj_*+m6M^SX!tm+xtcyd_20TE)6cN_k6}hb#Omtr4Qjp(X1PZ3o5giNX;}*_
zyhLSz$He+Lq<nep)kEh4SHI4`{)QD?{({o(wNn91(3F1a`HY4LZAhgS!eGd_F^pfH
zDKGE;9^?p^I%P>T^C8Fz^A!vUOi8^iKLo5m9uxKOaaeP4vii)EZ1cf;ixx4padwz`
z`JMao_l>cFq~y%4%Ah3Z@>4`uAp6UUz-RB%vmF@B4uhP$sHT^*!}QX%1_>{R8$4jw
zeKJ&2xTc}0`MLb!qW^oA|NI>Q4I7Aro!#g1l|lda9EWC8ke?U-s5o#@P$THc{O^#Z
z?}4Demb$x_yP}%8>(lvaNDM>V?KkH_ZXGLVWxSHoBBn;p4pXZdi4B`C*Y-n0oWaLo
zO=#4tciG>XTtN;8C%};PavO4HzN>~7$xH{#)-x+G->Z|>2>1JLo6A)6N~GZbzNg6`
zPbob()Viln0n|_K{qy(h{mXn_Hx{*~CWAL#RW;6Ncp@$+=#ZoH;YVSdyOWEHOGw3B
zOXe@{=3WnclI`R0iQAR2sp*pymy(jwqC;m7Dy~;P@f{l2p#IAQnXbM*x8L91K79F-
z6V$w9V|z3^f8RyTVr*^8`R;<CY#<oPZ+7rhWA5#33u}LW1MQBSVVDd$EQecM@4>CD
z*;zAp?6APomeeh`1V?t<9x1cnpdg{DZ*Mw5V}IbaO1?7;7(wU0_V&8IytI^&K~PW-
zbikjOUQ9>b-(QhhDd139eON6b?bpM0`GViya(!kPFoLg2?C6Nwxi$OxqTJitvOX~~
z_|7(K-M`;HY;9EP#tLwqx<*h~!1(Q*ox-kNBB1U4fm^deckJ4=$YY`sXaV^=P(g;J
zwJ71;?hA^&l+YOsGhW`=S?uBKdsKV<o~CPSqm$p>0-boIpLTv;uU+jg28O&lI~W;0
zeEW87_Wj$pr8zk{J$!w)X50bkce&PbzG248hlkre{QQnBaBMcH{Z+!?(9S3O;mJwi
zn*V>lOPJ@$Oqx8Ik%5oxS9=+>v3U60xpPI0kdPO=)-dDb$&;K6AAY@F|9a2;wbAAs
z9DFhs3#MH(J9$b=Rn;}!5^PngV79}VCyyUDPgeI|lyY*C)%)toN=61DVd1OG!f!2$
zh`hU_kXcSnF70X^s7d46Eq1kXefITrFK%sp{khE_WQOIInx92F@%v()@BRJ#{qsN*
zR(4?l<JQ*J#N&Okpq-mfPffl0eSQ3XJ_TdJj~_oeb_%J221EA#<d?N-L2eT6n{faX
z{x5b)>|&IWmF?ZIVS`QAii8AV9pln>cO;dXDnCDaxyL^JoXm}zH$kmvhK3U-JaX>r
z5Cjc}%$#do4mwTg#hsm-U6a+6e*ORU&gR^)UH>2d_-&OI-?8ybgi%@68}IIvoQHj$
z6Llk<e|F9ex_Meiv~aac$1cv)c%^I?#kS~OYfqlIamuJeGWpr>--i$Hw4OUrv3Rbf
z@%rbFAAU5r|NeW-^WwShpIW@%x$pW;28I(k7R;0UrfP)-JwG=W)V2jp=9Rs@6}7)^
z@3Zss*E2G+Y1r7rOfpG0z;Jf9x&OtB7hm1oy&be?!!Y^Siln1muWoEyoL<hvz`*dq
zfayf;44cYLpv6`%FE7u&xX4v2YRiga{qpO@<7+NjE-QF==+=hB=3n35uKxG;_v!QJ
z{e5SdT%2K;{NtN80|P@!HOqwC6O`Tgc;##&n%VjPoi2QOYAUG9kh6*lWPw~<A@7Ok
z{Jl?$d|4S77#Q9^5oJtyaG()n%d2Z^SHHZx{Pm-w-ShM~85kH2$bRTz04>!FT<rGp
z&CSiPE-mdobolVqU8UK&@%v&lH8tny@iQ<mI9OG>GH8aZnDFcC>*cY#%QC;eyZh?u
z>gn5ZZZ2BpJ6lUh$w`0Tk44+^?!J0y#K^$FaHlDpWrBTISJ$N#fs0F?oDj^tvB7a`
z*40Z#I)%S}ILyDg<mDwP!=x6!`F3w1I+h%K&D5cys-~88ZjNQu@3-5xmb?sldSaq;
zue5nsNXQh>xgkQTUKtM$wa(KM2DyEHg)f8QG0>%8uP!WX<`U6Zur2rYs~;a9gLId^
zxnZaqz0HSPOy|NxW%rP+S)qHsT=Jf$CkfGdwAKN%g=S~*^H*0^26uIIT=;z6e*L$%
zw_pGJ{k~jUT2OG|^Lf>NZ*On^?ywXTj{myCSte)(FMDxPeSXOAZ*N2Q*VRT&`#Sxx
zeB~2C-}!cTm%RchTQWVIWkT?BKTQh@i@T4Nm6b&$C1)10g2H5na$F&=M^MnDviJ9D
zFaMLT`vF>dxOt-zNMHFOZ6=TTcC}a5MsJ_}t^EDHSpEHfHuZ{vH44WGI$T>Dy?n-u
z8MD8c=iUm*zP4r~Lf;9{dhtD#pYLt4*U{;j%@0awaR;=SJX~B_%HG|ny!=nrx=bT}
zUyWH93j+hg1HTGahRkbgW-jxcy-d}6+K#WfaeE>zFZaJb+28JE<0+7H?(nVuA$9M1
ze0^;8wKW$f``fMT64lny((;<LCH=hI-{<!K19uiZ{c=n?zhZ|MNW=C=qUjDrPfsn?
zjoy}VVS%HUpWn4Tm7h)W@7buTt7m_BaPZcy($(*FK9}>K4oZ0s#P&Sm=}=*1XMf#m
ze(!+~JIG;2_dMd^U|?WqSaUG@T!V_5TGqcmKf8K+L!F$Of`Wr%f9amSv?cShO^7T=
z(HCgiwJLq};>1MdUC-xLPnj@bflcM77k_?!_VV-$ytk)PR7mI%B!S&&3fDRK>iYWm
zLPA1YQcsJ?S`;`OlQ=uqI()ib?4{`Zy-N=qaH#!yH5{6}bSqpLBDd$wt@`p}p_FOX
ziHAGlHW|A8`}YrI#;dEVm)HOMJYQ~|5GXyZt#D=7S@Uy~lCrX@r)BZ8DXEcO9v%hX
z?7v)azO^NDa{DS~1_p)+adCnU@AiI=leI4Mne^oG<Hb&`T$!h*>7M)d|KIohTpS!9
zLMlOldFiCKp40m1?d!z!<JK&6ZugpGRrY2DD39LRS?uNOdv*W+zxiA9@83Hd3X1C;
zqU$*n*6;l`Yv2EW)vBthC-2{nXJ+HM@bU3+)BJljpiGo|d)w9B@Atii2L;Q7>i2uY
zzu&7~|M_`C1B35etI*)(eqR$pLH6f`FWb-d<kQpBT-@B3t>5o?{4xk6{Kt2u9q8)G
zlgE#{A3S()o*t-xIdFf<OXdz0)BJlepP!wbY<TQ4IJ^9i-t$Om!nL*0tKIwMRs}Eb
z+g0{<)rk`xtZZz%dRGT6?P5m+$)d%J=hpv!Haq{$uU^AVI^LR^nr2}jvmcaIx-!hP
ztKGHS8)Schc!ev&%L@ye;oPIHFF+ET*w$MxU)ovxJi2eAj`!tdzMB_HfyB#CX)~SJ
zRr)$5a+-IvmsgkH9E*ihrieT}J-z>T3rGPdmz<cW?0zZ7-_P&blarH8>;6=%joW+c
z-Xf6n9kccO*p6Jk9&TIx?MiaL?Xr2c)m6J>KvLTuTxERH)+MT)_4rutJUvkK9?(tc
zWY|>oHH(#%wQ?5^M3w0E1|DfMowMIQKR=)S_*idOZ|~LY^?TEbAps34Ew0Dc+n)V)
zXJ_$hmrkKsCYh6VmA%c%4+QDYn;p(F;mVZ||LGv!1HBVM*Bd~r4}5Wg4q@x#)-p1)
z-PuzA;6P*4_Pn`BrG;CM#KQQxpHG*8&W8dOv`BKGCD*ne4ltX)T_3l1SK0e}xyh~|
zL*KQ8vrJgBL?w1_)mQ!B`tkd6ki=K4(9n(9VQ|(ixkpSVV!`isyU#yc1=4j#Z#{<s
zsPH$-zqe-j{JJRnKOdUc#qM5~eSICMnyC8qa{1T0<@aA66_5W?G83dF@1XWO=1c2h
zt^a<x>@Q_kvqMZLLZSU}Ri2lx@6^;tDU*x|RwXYUJk$aees{XUSp+<#tV&kg+M2z*
zm0KKi(a5AFLaJUXA~&aL1ukl7UkwWV337454ohA)K7Kkq{#yyClxKK1Av}gzNLqSz
zr?C3HE%lF%bl%#UJsl||*!W~tm}XzQv!(v-u2PV-NOEOwZY+%2nss-}{;;)CxAxWU
zMv~Ku+oK^re|G%3M+FvBCQL{`3a6l@UYS={g_^&O-&wS@OI$w>Nlq_zSH{mzPhZ{M
zzW&^N`}aBa_5b#ODk0GAC*ITb<kkp)s@kfGqt`!tdv(=&ciG!ZKR!M-O+3URsuK|~
zspQX(!llcWy}Fq`KXkrbtxb$7s1%I;*u{_(Ic=H${B_^n-p>B_=jS<TLA#GfgtPAL
z*|})(;?j3_ET5j6d;9QIP*L$iJ5JCcZ$<F(zE@XPKK^5=sp;uGO($@3+Sx5dPrX#t
z)T%aEfud;pqfkbdNj-*9yUW&s4pRYz`=M6uQ`7b5-`bY@`sF2%qB~93StiI@mt|aA
z6FJK`z0Yr+jppf1S9X<Ve|>W^nBVTl0-e*JN;*MG^Av;GCme3)&ju+q&7Q_5XS2eo
zmFwlq^m&23Ql?i{g=&LJ5PsV)6PBL_RZ<iDW|}qFfQrv;xwAh#JG)v;H!9=Rm6cUb
zCc3M5g4QfSqP;-fD3<}W;R&?Hsr-Izc)$I>AMy7%!8Jtri7n<zpysrwpx{FF`87cg
zA3l6_Z}0AF>*Mv4dzO0_OIa2zk>P9C3R&^s+V=eWcBWZZJQglo$i>Ya{QKM6uebB}
zS1tfmZwjAJY*{V}stG_->d)ubUt1Ho`OD4p`I)DtXmauMhtIVtO^KZ5u5Z)d-+z5Y
z;9?OWp-E}+YooSKu`bW+m9vc!*N?km{eI74+v;x_x3}faIm^hv;IM7#OM6an?J%Ea
zHr`7M9GmCdZvh>tBbj_<u{;0Th>cE$hK8%+_wQq3V#-<ldg=7IOV0eZOF)}G&dfB{
zt5tUIyE0Wfd`tFqJyER?k4YhWt4d8XE;tycow-na-ZnjYE+{>vP0E~}uykqG)m2sB
z@0Nc(t-l}CWXig+Vd1lLb63xpA@TI=?CaaC%<}H6VC5Fe`19jq<~RL_4GzAuObXlh
zJy(UVp9k7?bKd^{opqqLU4zf@)l4UN`P!YozP^6FN7A_D)fLUN^K7HPzPh^k>CWKb
z;H#^{^-JI03jKb+et-1;kB^U+{`!&`x;pIa+VyU|Qnz*%FPBXPCB~US%i^0#wHX;1
zv#ze18nrbm_4Mc39}nBDs=lnawl;ct+W$^rbrnxRLBYIQK|w*Q>Thc%O`iPp_3POS
zOTqdlhR<XCIAwGC`K%Wg7D^eVbbNYpa`Lko+TrUwCjI&Q_wKK}n8iiOpptmPT>*!@
z!v`9fMa9HGrTD!PpM-=3Dw>*_C)es58eU9=D604?q_Z2ecrSRF&&B=!zUm)6e%yOf
zkD-^3Pe@VGrbmw+O)*aQdwyxPwD-n;FOGBypPH<GUUz!@*O!;wcNRS@%FMpJtoPQI
z%;M?a*cccXwi{J{%Q-vG_V!X;Ma6^8S5suCo%AXHcKV1}&W#1TN?&^g%`$i1qT{`{
z`unxr@As`{V&z)lH`fZ3mrl>vlzMuV$3&&5y;Y^N&I?LQuU-|pI_r3!?5d!pr|#Yd
zwW0p#*2Mk(4eFc(1_nm$C|DT%`#>Xe>B~#1zB3FQk9Lbs2UpAU>wc|#^!V}I_@lea
z-bR6%J^FjUOj=tCDm7<vGOElybm)+Xu<+w+c6oO!BBw1~<~!T!HXDz`g38a&G_9<n
zK(0I5EpD22Mj~`gM4+s7*_Mr23=9kk#SfLf>^`tbXZn0@alJL5<%=mNC%wAAfB&%_
z$;E2Evq0&r=C2+D1H&fMa}9rdUteGEzj<%W&Z4M|Nv&tEg35)N(&-K$`bHZAC`J#M
zv4F}zhHZ-AYHkBBBd9EB$mLJ~DavtX0M!Ty(oCR6BExNgQLV!zm^_!iy}f;P`uTZX
zU0p#Q9vz_WaoF0Zmk$m$=OurCdwaQCuau^VNeJkWpZojv*8P5K&L6@H>JRJL&C@#&
z4LU>W*SFjGU%y=TU+vV&WmWlU321q8=*l41=<Rt|Yro%B_w4HL564|3fBN`Pm7RgX
z;oH&W4@;_EE}d>t{ViuY!^KUh-c$AC;}*O3Ut2!EPRkQiXMony#O^Lz8L-f4(vnwK
zSFd(#W}9W0+%~WJon`+OP>(r<P3NH3a(4Ne3vb`Jo}8pw`v33u?DzNfp4-OCEw;jQ
zvf8;1ik@FzT@8MDY3bLW&*$F`(`R5{m>?<W@NXHY`<Q=k&!i=fkN3a+^78Vku(h*p
z?~pRh%6NWmZrOBpkhis1ChSjqc4j8XPp_}7RrOT&n=?Vh)x~8;Z*ND(g`1nxr_Py^
zlidrh0h}0iI{*ImHu(HJ+tAHvzFYI}$4x4EdP>xD(*FJXZ~tg$V3=+QQds7~u#<VY
z-`q=&`|a1=*;)L$TYuk#)W}Io4jgds3<?UGbURr{SUC0=C^Oy^yx&whTQ6n@XnVxV
zL#?2-D3cEzK0LS9d|KSyh_0{h>V9(q=Gjy}dHuTj^z#>&mxETPJ-u{onXmNL%*)U6
z!}u8(8otc3t=^V)e%{+l(<V%KurO;AAJd6k4==Bv$!fl!HRo$%cZa2(no{^uKVrjz
zPft&SlF4q{vfJBoSB0z$+BGlz&W=J*ff&0I)Z!~wTN}@C{MfNoSyxxdt<uO&;0&``
zx@_61)YH>Iz0YT7XD<gWD70Kx`T1GYww#%uQZYCC`ns!)%<NY-rF!o^1?qJesh(?C
z5`2GOEocPd=#e8Yw%@P2ye4vU%&+;C&m=uBH83)Ry0xzE?yJk+-`iF3aS^Dz>k`#o
zm3+KUZUv}&aKeT|;pLb4|Npp8OU-<FX=&81l9kc_dl`au6eNO1LTZ113;qA^@6+ec
zmxId5Gcycd?)nERk58Q9P<Xke?(eUXe%<hObHdg{Ol$-fl=nKbM^I_^qhc3>f-<O^
zy#L>?)jfvbu4exR9q*r?o(4ZW)M^{crO?UHr1R?YdHd@pCMs{O{+{PQor%F=S-?Uk
zR$dv40Nv<qUrIDjJmXL}Q3Tqezcue}RIjx8wFd{AL$_oEK0Pt<@a0rSh6jS0nwnkR
z-IqaE)9)(H_Ec&)uo$Grtxsm<v0mxymzS0nS?oB&$<XlX>gv}km(K&GOwdRls47(T
zp7un%<O7G@Tt#oovNtoz-rrm6H`hwgj)CC^bNk_iesir}E}vg_Y5DxRRlL$>8mg*C
zFQ+O>KN6POG$p?NZ|J0uEg6CQ;Y<t;&x9o<HD6XqfR5?yld*hsv1)>?pu>cvcYbWs
z_S0l$c<}Dn|9(bB#$9D^XFYoK$R<W`lQO6lbTE7J{Q2_Y=jSSS@uWC|D$j<T6Pt9_
zF*dpjI54Di+^_#1%h&E~Xb1{I2eFTr{q0XaELah}Jx}lL+gn>FAASfLCAhqI?V(m~
z(3o8LZWnR$)#4}KaVR*5Jua}wdwqWS{JL3*TO+2ap5A1X^ZP`^%$E_9IJVBb*~?&%
zd1*;>U+tTX$Db5fY^nJ8X!o~2(^Bt#Gnc>D`+eDzDI%6Ke74_iB-j76*~8DYZU;Zd
zgrlHUj(NF{kM&+|<rcrPyFCAH@p)Ul+NoNhrzTi6H8*c9e;?P{(vouG+r*DXr#H5o
z0gXlfdb9bwN$IN)+y8$)o6Cxei!a}reSKBHLZ_@-TVBRi|1(TJmhs`iK`ws&{n@wo
zNGmBTgN)f;ukBFg&cL{7hN5%Zj;+4)?PA6CVlLSK|LK3X`u*N*S0`OOEj?kQ(dCUQ
zf8R&HoAC3>y4dKY-qWw0n`^x_`}(@sZ5LMtFFz$weEt2^kOdBmq8b4Y*5&H&%`5eJ
zc4A`lcSi+Yor6pYo}l8n=-HW-M~=AgN||^p^_mJQR;#|gQuPEiS>5{O*1mX=0cxTD
z`}YsjS?Cti6_J*Hy>0Jo-RYG-pH6>TU?Czcy*hGp+RCV{SzKIPLHlZcUfEY${d{lC
zgS()*ZttH@r?sNDtzlwjo~rII2kNFso8=Tp&z>=31!#=9=;^6bbFH^KIXQ*wsVD^X
zq-LAtPEx7;aFG4fOylJ`r!Q?vJsmTxZtw4RyUX6oUAnL}J6tl^B=yu3li$I?!A5W1
zTfo)=m?j_Nv6SH}eR;_h+~eH)@tE|g$j!@?l$4&lf4?4-PGWbL-P&JYzia;Q_3IdC
z8YDKo+yB3gm4#(R!NWt)k?$GL%7lc3zI?l#zdG;kF0Ggy8~*(L8@j-O(e~$)$+x!U
z&OUu3^YXHj=g<33OU*nx%T(|9liB(EG+(Y?&uCfrs3orAA*-vKo0fut11pzEK)0AK
zsFSmOBj}3c!w)Z{&#zs!HT$}jl~vTjg$qFge<H%di<#N^mi*qzWW;=~fnh>P?cAcQ
ztW~p2G8Zwk^Q}lc+{VStU3~9K;q!BIs~-27i^$4?I<}hO>tcTWd_I3`%1I&6a4~4K
zQ@P(}(z@pxb-Y1mAxzVcU#C8=!m0H2wX4t0&NeN6=JWT*<NjOwYOS-E?Y+^+%pS5m
zFLtg)p;PIrD}kU|>)|0*-N;QYUte9ld}gLGXej;pk7>HmSvNPOt_oV(WmWo0rM|xY
z=<(yA;h?DPd2{6|p9tE1IKV7rkkD|i=Ckiqz1XPS+uKU*{yl7$|8^wrk-t^Riv^9$
z>{;L5+?28|Tf@Y}6!UBUpHJRLj~`#1c)0D{_o-iBU(Y@>!w@vkwkl-hq6ZHWWNj(}
z;%h#(f{vgB?S1)vxBR~D{NHKUBmdn0|98IKpAXKUBzfNc|DKxK+N~KEm2z)y^F4X;
zBo_})iRAwD^K!hBMlPT;z<qprK;yPYj~>lDIZ5@`r_=gdla6v-T^k)f2{fz@Qg*nF
zH~8bDqgO#`woI<}%f<a`zJGXl7?f`O=G(3P_4W1Znd$Q`UR><{^{99}Xb>c7OU6Vg
zvz!;(`a!o;Jv!R`^~d9W&{*NE&FTFhH^05T{q_F;fAzihKCtC6>Xo%FlkiMC-X}Xx
z?`ZZ%sb#uGMwcvP_=Ls9%P$*VT@`9PEp;ZlT*ZNy9R&y1{=c)c_}QPIpYz_f^UIr6
zetu?ZnsuchbAQRpNgH)egU&x)`uFMdc(ZA#Gxt<}p5@%mxATkb$0NeW9u~|H)egIJ
z?%hGRmzL93g{{r1sjWQ=$~(8t&$G=wHBC3W=;^6cAt9k2!(($S3J*n0OMP`^<>Y7E
z&dsxZ{pa`DKFt)lwNYD*_}UNGd^)L~S8Hf!2r`wGTg>9N-+a5=y8nO6w{P5C_SWd&
z!GmgQYR8uTy|B>v*e0FJTeHKbe=B=?OS1iNBDi59ZJuW`Ep_Im)YDe|=E*&tK0YR<
zSyv3ErOpgm>a{aRT~YDi(;2%Tf_9(U*xU(O5pZzn-&<R=L1ry*Y~B*rHyd;WMC{`N
zi!-1x+)Mj1FRM*fcITUHUtd@J^pt4&?<*^Vds8Eioj-p*=gy9cPYwV6`fAMAez-^4
zT<@&Zzc<JJPgZv8F-Sh%XIlLHobUC=AM9(c{rGLc%;a(D>FG=RYQNd%-`o@wFyZg{
zYT;?AnO|O9<l^NmeZBi;{x#5W%#0ZlXJ;5XKR-X;|9budozs`J*Y8;*r0TU}i~aXI
z#ZjA5I=AKCUgp*-b@!%U#f_(@r*A#ad_3sprc}`>oPA3{iFV`0jiBI_tN&9teczp(
z#h`hFs&6;bLD_X{_Vsf&pFe*-{n@vo=jY}w{8|+hR&)F1wY9TB^}X+0tE*3YK&LT+
z66@3R^Y5odrtPcwdFhVd(Js-@-DSC;rsc62)>g{DJ|34py-5c&p=Me9tYq8o-@jj<
zHNPLy%*K01?(^}&`j90ag0^3;1cSzA{pQ*H+^$#F-`#!r*VosfdnyXQzP){Y>H4&@
zv$Ae(S_&FcaqSk{IY)EKI(^gCp{u8PM{m!&Ym#<GV!LXRLz)`{<C53&nO22u{a;!B
zX2PnFjsGkEJAHk1HUHN3y1!L>zu&9=_3!t4(13}my1Mmmozp=zH8s1YGlcj){;C(W
zq(i0h>)gukZ*Nb3wl8&ytaaH6FExv4`+mQ(_Pq4+^7608r1N)tmA5YQIVSP;?(XnO
zB64!;tV&;He0_BlR87sRdZl@FRj9XV)|CnS_wQf3^|r3|zPF$gcU8TnTzGbN_SX9U
zbyGEi-7bAK0A1Hw`s#|OWzmy@$}^Kxy-g}Vr5rtW?A4i>#-L`%=JT6$=Gs<=B_<|r
zk3D^EuC?mYy)v&Zy36l<>G}b5xVoCpj0J0>x4-)G^75{#udBRmKYsjJuifxx<GL+b
zE26irdv<2#;<?u4yI3cz`L(a}O*;dV$Mt&E9m(zK^UQ@gxwwJ~3JPY`8mFHNY3Gv_
zk&;@)#w)cVVq+2)AK$dp$X~Bkuiuh-T1-_{b?NV&m$<a-?5^LRwCCr!J*lUsUFGAK
z@lG{9xv}Kg8A;FU*MHald^$Z7G&wL`FSh94o|2bAdw)KgJ<Ga$9UH%#PI6CEQxj<1
za_{GJ){)<IJi=;kSH9c%{L23NdeF?s`#qogmi&)(`Fp4M{LUU(>#{YVdC(0T46d$^
zk9X}B3r$E^pmX}tpP!$%rk|g8yDI+Y;+7T`Pp{9nH`dhFUba~W+VitD^Rk<xqhr>E
z1&v+e`s*G%NU)UQ10}-QX1Ti_SN)3#cX4r<_1FB?`T6$mFXcssO{=}{^355PU|tIv
z9n9~yeY<{|C6APehh_1zE9+u+&k>(+541}u_vR+m#iu`WIXXJdeB{%z{K=`Q-qTWF
zKJK><Yv+@_^mWF91q!_qhEB?EJs0%%|5?N<ZI*FsOD1S{S?QxAoVxM*Y?@bp>sj+_
z8|VfHP;m|#F>>pbTFNVJ_Tu^c`mn#hzJgNv^Btfu{Tmw+wL(@*D0_Ej<(|sVyK>SW
zAM34O-50a7$a9k4T&tyrTDf<BQB_xeeP?HJo?;59UB<%`l9RK>Ynsl>OXXi)1U}!s
z>2B{Xzj-z@!6SSz#~338;}3H`m=+WiRPyCTVCbrlle#sa8#V6N{a)Ly<(&5UK{Nj;
ziQ?n(a@``Di^|^Kvdj<Lo^@60dH$Syox2as_s+cC``QN7Qqqmt5fHrGZ)$2}Uc77d
zt1FtZdny9^Z9a8G{{U_1E?#+Q?yisB4O{m8syy7r>*ecPnr&b6W5c3Fi|!n9&&tZ0
z_3-gAp;fmn)wILc>Ad_Eq(Avst;@Bw(dwr+ZThNjG~uhD1H+x5J{il96#<H%mcThx
zvrAuR7wr9ZE8D8*Nyqap=Vd{=%W^>j560=|uFSD4z9h4`__^P6qbZZs{g+i<taEZ|
z0@VUPfBv*=c6V@SU}9!2{qo{s&uzv#qUP^7jmq9c=tgbvsQmmabaUF-m}7T#yg&Z^
ze*OB>)Ag-yPo6ya>gM$G`)hrjm;234>ACpf;o-T*XRE~SEOKRL=kxh&2wK7M@9*!@
zS64Kre>>RBzPxfh@99lbtjpiswo>aB(_ICcF9r2VS~!Jcet~9f&fEWwsr>xxs<6M!
z#CN$&_u5n=7%naKpKk}6>C_5Yv0(YUDlfivXKAyXfS8y$|33EDXB_Pkou?-_^N4tS
z&B9+_U$4%+y-muxY|X0h_3JKN2mtlmtjphB`S<tt*Tekw8lYCz%jNS!R)^_^u8WBb
z3=9M%p>y-?*Dv*+uBE8x$jr`HvaWFYlB%z-GJk%03Of7g)O3A)d3kwI7UQ@1(7^s(
zqW;^B<bF*fqoCW{awn%of>u?Ww(+`tUT)8iN8KRXL5D=lm?5F6s+xIsSLv>ThfP`6
z*Zti-EfG}a>F@c_q~<$o$?y03<8`C9Oz7_i-Ke<a&(F`=_5c3l^}oElyg#nyqig7@
z5YMx-&8PSG_wW1pOd8aV@||sVbyMo;J95G6<805)w~s$N%QX1usi{vNKVJOeMaI=N
zk)M}s^_^!Exi#x*5NO~a=_ps|+NjXN!opeR`SWUOYeB8*?bTD3lx}1B5H^RAaZ~4)
zn%<}Jy)SQXUk`HBp32WzzrMT#jr^XPrV9$ql`%Vu%<tZNTUYyRt_|C_U045zXosDt
ze0*xk6p_Eb@BhEXE?=`C_x84xB`+_5vhrN-7?93|&h1+1=jMRsZ9qr$sd`Uak#lns
z$Q5n8($6-%Jvmu@wQIN7uV=IKO_GjqfO7k6^ZaugYLCvXez)`aod5Iw*L?iR3mWaZ
zoxgu=LjyzYmy7OEdnz`{RlQKG{r~s7R?LoqS;udky{CLB>-U3Zev`UC6;Dr1^`5Nm
zf9=lB;;TzMh1W)H_1d>@Uta&qi;LSqs|-GTC;+ttK-=>{W#8K9?W;gj-|r6pe!qYH
zwYAaNph@uLPyMI&U0St0<>aJW8<X2X$57S&{+9XX#>S|vSyMp=W}lsHzPj-7v6r{@
zNAFd0NK2JeDqRL08Bd$F{_+>MJ#7pOckcB5S9kA`Sa{%ogQ#9i1b8GMGOqQ!RJ}ZT
zgUy?!NSh~ld3t^<P-S39u`~Zy|KwQf2NfocO;c)qe)60I?vQgbFw8tZQQ2JuH2?o4
zNAbip4uumzT;h6bxJ0!wetmiA<?H*k#FBv_MQY{Bm9y+>cPS|=gF17bb2uB*K?5ES
z@}w;a7DR2&TdU?fYen#KzpkF1kUkkpn^-Xh2DyooCM{BS?*o|>wX<kx)wee<bH0E7
z{=J~|L?39tB5GUC%IxdwR@VRj2Wp5cKh4OX5Zuwz6LNl@?N@N|xfmoJu+V9q9`{WF
zMwUoWHWHPTT)EVHy4R$prluza8y*QTO!ylyZRs4#Vyo$~s;a6lzr4H*nhi@yS(4uE
zyv>E-q(b=mxT_BiHiLRXbFIt$M72ULbO<Vk?60f!pFS<u=EDJI(Ap1v`#%f3r|X@R
zI2;wu;IIv}2s?IHi6?l~!-o$Apx#4bVxrtSo|}S<D$OM?E;w?F=>*KTs}0$d;t5JC
z|9>2}|MK;E{A*ArsHF0y6R6Au6|8HcLO~;oMMaxH<3ijF4E==`GN6N%Dk^r=)cla(
zIRD_pX@=X|axdT6S!`PNCgSVM%kGoDyxDvnw0;G2$%$F+ttSt;Hcy{0K>#%Fa5;5J
z=C?ODL6=7@Ki%Lv<Nce~pXcIc<SYD*5Sh>T?CflHd3pKLx3{j|eD?nRdcD|PFLuA*
z7hF@bhkdnk8fb>ce>#J-;r*N3pXcs1xbN^w(81`yy4c+zyGk-!TUvH(xxOOs@J;ZT
zush2Ho`Oe5I6=d-Tisn;PDm_%e7wJUffi^D$!87)NzhTgnfGp}D<~X*>WFEX#|Y~6
zPnq)M+PoPvUcB)?-J7tf{QbQiZN8aaPEJip$;q~{Y&nN&()G`je>+r@E^ltP{3G{M
zYj=i|phc6JdYi2ZAGN5gOgPw-Y4`5LMCD0K%HG~ejmSMwvnp)utCvCv%FnE;6ZdTv
ze`Z~6S@fhM>)M)^FOBvHF{&_!tP1grum8JMFLu|HBE?_RbfZ%ur)h<*n)2+ilv&P-
zna1f_Mn<2OrF()_?^uSfi@7*a+5O6fL}&l$kGAR@o_q7%uH4((ULItZzcRxx`O5bE
zc+czad*nn#m)89Jl==DDS-Ewf`JN9v=NeKPq)fA3yj(s%?Ek;Npvvp{+zXE%Ju<2N
zRpJjG@~+@XcQ86}b#=ID#fOBmb1Z|OpPL)p$|VXa#;&f9zkhitXmUu-89GPwju|?k
zG{NV=tE;Q4zFrLvT@j$j%E}6M&Mebxn^>_+nZLiieRXs5@<odli3kZTTIAZjDs*+2
zRmFz|w{O(`{<bo3u^T99MMTWFwLO15=z5#8Z~bPQ`F_7!KA(x1IdoS^=HCDReoOAv
z-r=n5-Z$m&!+=&U(L29pd|snyW)@~>Xb8$Z1qB;UP1k>KW`CyiTEUA8ilD(r*DjGj
zkoZ*X<qr?H@4oxF@#i-?(1{Xle6p*K^-62&==kupJI}BCl{qWfIH^upNa)JiX!ED%
z=f^85Dz1v&z7Djs>-x9zt0gL8USC_=JAeNC%CA?$&rZ<{_BlJtw0Hgb^*8raZeH%~
zYy~=6QA8)=!k2e<Z~M$PJKG~;d8wtnefES20-qoE+glx%wJtmJ<m~M0Q?x=)?fL)j
zciNQ|folHqY?c*0J*8%8c{6qPWHn!-X{j@(=|<058N7TJpRAR{=}l*D=kL$`{_dez
zpR9FSQ**O#M#c)zIhE1!#qa)tjwE>e{(U~E-Y~BFQ(;{CD&+G1`ufkWR<E}@Zg4&F
zu>Sr(NuZI1;58A3pRYyd&(sWFHsjn}Yw6RQd^V?@o%47`{(I2c!Q{wkojpA!rLV7<
z!ur*ZjgsnugM-f==C{vra&|uZ;o;%4M>>UlLqevUoN2t=vgAcT+q?2K7lw};)<$oa
zI=$)4?)Up%=Xm@0n5cSBGcnD+_9Y?JWBvPmzt6qp1<f+4DJUGU`Tb_|xozTc6$e?^
z*=Hvo@3XvpZB1md&S|6IWj=-5Vs{oD1qITPBS&`RY>wSsre<PtWsZHlUGq1V@<pMm
z!<N<k{iSAQbxXIw;Q77xhg!MSY;5jq$+-AP|G44x$ipWlD)%0KXi)wAU1{d~3k#bI
zEo9F9Ox(Bk^3~PhXIBO<?=d`<bAR96h-p*P7*2NloNHaaZllg=ornzwZi0@?pLJ(v
z@$B?@mCx3_UA$ePp(0{`-QS+|>(_%0Yxe%VB5-lf;fDp5KOV+{hAmcwu737sr$Zyt
zve4CGd5=#`(M*;y$$0SR=V|@@CVcIO*Tn3+lzON9er>wWX`{_)XHV@|R2XfRb0YyX
z-Z9U%`Vx=AnVsK%e>lt!a`Nx*@6C@%eE$7@|LiMQLbey4DZTdLR`z<(NX5B1mX9y}
zd$oGKl)Sur@y}1G$vmIuiv9@&`5^b^rlp-79R;`3zQ4Qc>*3L{v+C=s`!{9RA2wBx
z+m?M@Z>nDGt*3o2FMX}<yz`>H+^Y1|luysjYI|DM{n-H;H_E!YYG?22z{PE+r7lR<
zuaDZg>hz9Pp{q|lEJ(Tkb<s?ptgKa4UtcX<7rXlvXw~NH^mCirK;wex=jQx+Iz2vQ
zTTWzaON&POxjC;cE^ePRX_AWJ^+?Z>k}W-kukP&J{O|Mp|1WNAOa^rWL5;9`d#kk#
z3?}?M_sA%#uKeAdm0F>zmh3!xdb<AW1C7k(+2VVc7>^tVEh6ja;Mo4Hqk}^-8MG*e
zKcsbk_A|s>T<rXGPxHC2H>aQ1vb4NuY3AN1bM8Y?^ZNDc4;?yWp=Q*{Z~rI2y<hI?
zhlhtRzX3VAnVnzD(lXND=3|SLdEOe(6ruNYJ<xcARrx!e&YkDHK*jCD!|mCij(p6{
zP4D)8kK3Ai8+@Yl48vp<!~2o3ZfD=e*WQ~v<!vA9yOwu};p<{1?%%&Zy4t~^VYB?b
z)cgBtK_y+*wKXfhy}j-I>%PsstaY`uwWUu_iT?cgbLq~v4Gj!^ojwoV+}sRWZq>#k
zxyYvS(-O-z%kxrtvAdRNhp&6lDjs)XN8w`?Pf!auC}@)1uNTU^(q=t7&m}1-D}#nr
zwq{&(s{Hii;-{ylO^cp*w6?c{M)l5=i%k#w{5yR9_a4KW?;=3SHz8rcXOn;Os%mOh
zzaQFydXC5C>tl8nKffj(U!!<>lgi(Gxy#1a8yg#URejBxb=%*^=gEu{ETA=88#Wkx
zeRK2kvg8?`*E~FyUH>@e882vs<CBw<zuqms4{AD3n(=x~!nrw?udc0~%_nR1<j>iX
z&1q++Oq#R^bns#Btt}7lm%*H*bNW=-aVGB#Habd5hbniy@6X#JsuOYH-K2tcr1?!y
zs|zx}`A>QG&6wvWC%f<4x9{9WO-;?b`{wiJ%voccey+f$;>JSfc9YaoB41x!_5S$r
zBWQAIqO$vx88cQqd6IJU=uyzVfisn2g^#!D2P|mtuKxGur)uZUb4j2P+0d0iM{`&D
z`1tgI&Ox7RU2b$gGREz!{`~JTf(|xof|hz&6+CDF)y9|hrJfdxoVL_!s#fI+qdR?|
z6N@r0xwP}iUi$R(bm%f4$?5-^Sh=<0_tk(FuiZ}Go_qV5(Rt9R+lI$--+=m)SFVKg
zaq@Tf_fI!;+gtTDXk*gRkTns8qWW<$pegfze}98I{k-yab1cs*<;BEE$;-dLRF}NB
z?BAcCGhgdGxw10Y%hR(k+uzS`nxWhEb+O6&Ht*<}b>C~MmZq86wcOd!+j0T}0w#D(
z*Q*u(eu%r`)$8pAcYA*~fQ|sXIc>_66tAgTsd9Bc68Xd0zIb_h8iEE(&!0d4cJ+^c
zFV^o1|FgK?t_WQ0wzRe`{kiv%qN3unJ3EWZ>(wXZ?f?62cI2Lljko8oSfL>-DVaG<
zCo<{Vo14i!iRU&q&9yF<I=#tfciG#RTer7lCja^K=S-)tdXM3m(y)tLGJ}N$1QPh<
zY+hWtw<gl~@#DvbYtj|VtK=tG&%M91__<X3;lyX>=fBU{T_`_cTkh?9XJbEeu}tt;
zka~I=XtZ?Cr&HR`7Wdm3@!S8|@bU9!<Jo4ppGq=4+VAbHmOj1djIh5=V%oVmFTXu+
zi?926^vUVz=cnjIUfT2hUiGuH=J!o1KRq#=suf!F```OcVRevg^Xh(Of-A^<wbh^j
z+ZPuXzrAO>Bsl6jW8%5ZZF;f0B-#%rf|f|B`OV1ysRpS6Eg4Im@p?_-<72(Yu3x_{
zq7iVQa{H@ez0%U{hZA>|zkerlyrz2n_xtttdn61G?fGzs8#Fq+r?S{M=?Di17e742
zn(TAzOum;_SLKU^?LOz`Sf1UGcz8~^)A^~|(=7`gH01uCA1UBq)VO4c%I8zs>t{5v
za?d(&z~S=&X8svhSBF>c(peH*QnIDcLdN{>XZQbq-`D#tcI)-=@aQ->S-n5={=U7I
zwZBSc-JWYzx=J&A-5gF14g=5`Z^CLm8<NWl+7~Te><el$-I`hazWnViQ{$W)2A~!J
zsO{i2U2pEQJD|1#=y)a2FmUjO1V@kzXei#TUoJN&C@AKb;r)A>pmym0_~S>9S{_e5
z@@JlX{k@X6x2}SMzNMvQ#;(%Wvu@nD!E^KcnR7<RB>eT6nL*1fYzqXz%N?n-lxPQN
z#O%bwf(-DQ;HT?A`}Lm|e27<Is9<`(k0D{Rzuiw4zINx08#kWYCaN9wqSyT1hlJ4U
zpha)Lo=o<?^k%cp>1SE%y8HUVTDe5uy)x51{prR(2Jkc{1OJcD?f3Qf{|P$W#``(I
z^uKZ8qa!BF9&c}L1r_18zg{ffcHJd_p<zuc0~5o{217OHZL??0sJOoE>GS91*SE1U
zoY=>q!0;e(u2t!!Bb~yko_y`jeC^Jl@!fCI$)Ik$tE;P~fkD8-hYzd%{d`{f?@#6Q
zw=QmOT54);tHag?eSLLRR6=4!zuhm7NuYN5)z#tttXv`i4h{{V89?7zCMTbMJlZ9C
z8FU@&`u+cIMY`YJRjPXTkJJSHeLtM8t_lqf2$%p`#gRV0Htcx6e7WT1jmhq<ZEc`k
z8(G)Z%ye>go@!rT_x1Jl_kGRN4?hf8AGdc)#m6Mj0vtw0M$mqe@c7!NW@VR``JTJJ
zIAmqex$7#r#_8uu-uZ*t=vy)ugPLu>zrVe`e8B>R(l<9QzO}5WskySh{=fAtd4>~y
zH8!yf3@PQHX|Fzc`*o(-*FdXR^W;zME`7ZWbWOut>+-Po_x67MeBS=`-tYG=uZ!Ki
zrSfxHdc;N@Z_pYV(AoWatIJDYU-L~pHD#iT?<^C~z`($&N1f`R75z)Sr>}DFmoqvB
zswyX_{Cyq&Kj{2CTTv;gRgTSUCnXj$v2t0w{_#0zg`{!XisI+zsvb15n^b+tm}^z)
z_4s)I_3iiTR?oFA2Myw!I}TdBl6bhS>cc^HP)~Mk<YqU}t-oH=bXLB*yZipd*Wb>X
z-_JPM#0qNPI5|6m)(V3vVE2Bx(06xss(My`dlPuLjTaQCywYYqCr_TN`up`dh`ar5
zuZ(4oa~n_K>uYPTZp{w=`|I`kSq6!qA+xu4=5I<po%Q3x!>XrK!>=rI<u=W{<T719
zKJ0j(Z0Y^l@2Op>B@7c@N-{L8O*=CqQHHM_v~Xeb+Vu1Djy){c(F;1gswXuv?c5wo
zy|=5w)`GeYH#etS-&Rrvw}DrOuP?jpmz1<9IvP|~oSdW@du!36MLu(_O79%2`}_4e
zXwHmR+Dsz3$J5WxjFn5oKvX--#M9IBT;b{I`sUM8XI_u5zkBoA#$<O;L3m=Ka_qLq
zrCy@Jd#g&fKmWD)#fyyKeKnQS%}#Ifad2q(`Sbbwxw*T`--D+7`0aiixOr_&q_MDw
zNJ^iq^|PGY+w<pt{P?l3a_{3uk9zw1`#~35pZ*NG0|Hd6_DGqYx;bsutgNi7t5TJe
zl+MgFPCxVi@BROh_V)I|($dwZYZ)0N4h!ipoH+9A?Cj;$?{>O_rhjJ|r_ZU^3SYNo
z!UTb}@%!(k)_|(m{dKk5-~Rah+xmaq!$YidEsNdy?S8G`leb&bEv|pBEcW*H{Od0-
zFTc9joqu|^Gib0CG=dkkuV&}%<bO5G7Kg2kva0#<A=myp=#II7l$0f(pMQFKT08yR
zoO8L$mMzP=x+=8l(@AwuZ}<5QqtsKN$#1>ev+V2l^%#Oy<HyE5|MT<n>X4N|dh0i*
zMuOI@ftq)q)h?Hocq*K}Z_L2Jve(naF$6Rttrfnm=J;<WhMSz;8yFOXtt&n(I5*#Z
z{<BGnr#F@S`jR<)Thh_4r90=Ioo$}|;=;mPn^L>=;`hDT)Z5a+(%RN`FD$mOuyB)(
z_fqfaWv{iPx2-YDzxU>nn1H~74I2!mZv(9|yR)-+``10-X}0a#?DIZfkFUQvRXZFs
z612S#bYy;)sP-Itd8-nSl`B_f_HETU{g&y^qods*`#?j~pkZIfX12Q@>lhr$oEaD!
zd~{4rLs_{*Knn$?J!8H7^V8GfpOyv&7jn-$Jlqc2xiwWg-0$(R-r$K!uAl`pPft(J
z{`2Fbm#^>H4Zre#Ja+vmx%cdrxaHBH+q@4yyl`r&_T@c}i5?yu(YM3nYgJEg0=4^}
z-xOjvuvXB4K|y%O&AobFQ#2NC&A$HXVY_@;q+6-=G`-kWtHal4y}Yzk&wJvvb+NPG
zS^Zm+adDB+v5f!!{&w~CmA$;ZzkYw0m~NH()_cA`KRpdjNLT=BmVg(dPoM8SMME*U
zM@d=vvJLmA^vP<zmu_v%2DPd|lUJ|q?cFV=7gKRPi@jk@Pd3OE9DID!O8)-pu?LL+
zu8ZA0?b&wirAwA*C@Majc6(ppvIqU?RzgBTCdtQoOkV%^eEs*brBPe6PR+O959<Cr
zd6JU;yGvAiOZoda)67dxrrkb~!Po8#x_EbyYj?~(uk!cz_JW3DPv3w{2s~a^zSzF{
z+nUes?f?JT{5g69=+?JhNn^Keas6v&W*Qr(xictqKjh(Hs5mfxIwxpE{FubvACJ1T
zZfsas^yI`s&<f9s?((7E-`zE>`jYYX)>iL++ix>!YHLd$9AE_Pr4&~4xe)Ac`*r&H
z(#M9rvrGcNzq?!d@sTTNRt^-wCnu}leFZu_6SQ7ylB%~>{l7n;MG(<v?d<HTUa#GL
zWoL0ZsA|l*ysX!6p3O>5VYL+%A0PdCZvVe>dfdwW&wI`9fui^83FZD3?)`G0u}jdP
z^okW4Z}08BZMm-E<0H`i8PIy@`St&9R_>n!+Qx8kkt-<te|>wa?Fs5iHZ?WP`JM-w
zd<N|Zy|=e|b=}`zT>SjsPwZoA*sjpP(7^tua^>Y<f7_*Td#f_f&9OXJ-MA&|s@J41
z58LHeMQzQRWmCC{jZa2HUS8hS&23ff?{A>h6Q|8CM>&B;nLx7+&1}3u`|JLS$jPmf
zv#rw5(ea7hRZ=KvopM4z*0w4HG)oEEbb4!Rwl(vK`P=U<bY^E|XV3of;$qd?t=C0l
zWY#=8I~&A3SKV+Yr#}B`-ReT~+t=;4PuGu+16A<%_tlz~ya)h|njdcCz5Ma<@mQt~
zmA$`St=0-&20CT-xy@tHWH@O3k)fgCq$S_)Rr^bu=Ur)H<&M!?HQy|E7AP;Si`@-M
z^e=CzGn`nbQ>-5T8Z<I@K=y$YXt0m=i@X2W8<opRBp=vc2U@7=>FVdQ&MBb@0O{Et
AzW@LL

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-092202Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-092202Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt
new file mode 100644
index 00000000..42ada44b
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-092202Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt
@@ -0,0 +1,14060 @@
+		Result for Multiview classification with Mumbo
+
+Average accuracy :
+	-On Train : 76.1072530864
+	-On Test : 79.0983606557
+	-On Validation : 83.0097087379
+
+Dataset info :
+	-Database name : ModifiedMultiOmic
+	-Labels : No, Yes
+	-Views : Methyl, MiRNA, RNASEQ, Clinical
+	-2 folds
+	- Validation set length : 103 for learning rate : 0.7
+
+Classification configuration : 
+	-Algorithm used : Mumbo 
+	-Iterations : 1000
+	-Weak Classifiers : DecisionTree with depth 1.0,  sub-sampled at 0.006 on Methyl
+		-DecisionTree with depth 1.0,  sub-sampled at 0.006 on MiRNA
+		-DecisionTree with depth 1.0,  sub-sampled at 0.006 on RNASEQ
+		-DecisionTree with depth 1.0,  sub-sampled at 0.008 on Clinical
+
+ Mean average accuracies and stats for each fold : 
+	- Fold 0
+		- On Methyl_ : 
+			- Mean average Accuracy : 0.00578125
+			- Percentage of time chosen : 0.99
+		- On MiRNA__ : 
+			- Mean average Accuracy : 0.0068375
+			- Percentage of time chosen : 0.007
+		- On RANSeq_ : 
+			- Mean average Accuracy : 0.00573125
+			- Percentage of time chosen : 0.002
+		- On Clinic_ : 
+			- Mean average Accuracy : 0.00565
+			- Percentage of time chosen : 0.001
+	- Fold 1
+		- On Methyl_ : 
+			- Mean average Accuracy : 0.00618518518519
+			- Percentage of time chosen : 0.992
+		- On MiRNA__ : 
+			- Mean average Accuracy : 0.00596296296296
+			- Percentage of time chosen : 0.004
+		- On RANSeq_ : 
+			- Mean average Accuracy : 0.00606172839506
+			- Percentage of time chosen : 0.001
+		- On Clinic_ : 
+			- Mean average Accuracy : 0.00574074074074
+			- Percentage of time chosen : 0.003
+
+ For each iteration : 
+	- Iteration 1
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 2
+		 Fold 1
+			Accuracy on train : 68.75
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 57.4074074074
+			Accuracy on test : 68.0327868852
+			Accuracy on validation : 70.8737864078
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 63.0787037037
+			 Accuracy on test : 72.5409836066
+	- Iteration 3
+		 Fold 1
+			Accuracy on train : 70.0
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 57.4074074074
+			Accuracy on test : 68.0327868852
+			Accuracy on validation : 70.8737864078
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 63.7037037037
+			 Accuracy on test : 72.9508196721
+	- Iteration 4
+		 Fold 1
+			Accuracy on train : 69.375
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 57.4074074074
+			Accuracy on test : 68.0327868852
+			Accuracy on validation : 70.8737864078
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 63.3912037037
+			 Accuracy on test : 74.5901639344
+	- Iteration 5
+		 Fold 1
+			Accuracy on train : 69.375
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 77.6699029126
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 60.4938271605
+			Accuracy on test : 70.4918032787
+			Accuracy on validation : 71.8446601942
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 64.9344135802
+			 Accuracy on test : 75.8196721311
+	- Iteration 6
+		 Fold 1
+			Accuracy on train : 68.75
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 76.6990291262
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 67.2839506173
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 75.7281553398
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 68.0169753086
+			 Accuracy on test : 75.4098360656
+	- Iteration 7
+		 Fold 1
+			Accuracy on train : 70.0
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 78.640776699
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 66.049382716
+			Accuracy on test : 72.131147541
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 68.024691358
+			 Accuracy on test : 74.5901639344
+	- Iteration 8
+		 Fold 1
+			Accuracy on train : 75.625
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 67.2839506173
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 71.8446601942
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 71.4544753086
+			 Accuracy on test : 77.4590163934
+	- Iteration 9
+		 Fold 1
+			Accuracy on train : 75.625
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 66.049382716
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 73.786407767
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 70.837191358
+			 Accuracy on test : 77.4590163934
+	- Iteration 10
+		 Fold 1
+			Accuracy on train : 73.75
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 70.987654321
+			Accuracy on test : 71.3114754098
+			Accuracy on validation : 74.7572815534
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 72.3688271605
+			 Accuracy on test : 76.6393442623
+	- Iteration 11
+		 Fold 1
+			Accuracy on train : 79.375
+			Accuracy on test : 85.2459016393
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 74.0740740741
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 77.6699029126
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 76.724537037
+			 Accuracy on test : 80.3278688525
+	- Iteration 12
+		 Fold 1
+			Accuracy on train : 79.375
+			Accuracy on test : 85.2459016393
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 72.8395061728
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 78.640776699
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 76.1072530864
+			 Accuracy on test : 79.0983606557
+	- Iteration 13
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 14
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 15
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 16
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 17
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 18
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 19
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 20
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 21
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 22
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 23
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 24
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 25
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 26
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 27
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 28
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 29
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 30
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 31
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 32
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 33
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 34
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 35
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 36
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 37
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 38
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 39
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 40
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 41
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 42
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 43
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 44
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 45
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 46
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 47
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 48
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 49
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 50
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 51
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 52
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 53
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 54
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 55
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 56
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 57
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 58
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 59
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 60
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 61
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 62
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 63
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 64
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 65
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 66
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 67
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 68
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 69
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 70
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 71
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 72
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 73
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 74
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 75
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 76
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 77
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 78
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 79
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 80
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 81
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 82
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 83
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 84
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 85
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 86
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 87
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 88
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 89
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 90
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 91
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 92
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 93
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 94
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 95
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 96
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 97
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 98
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 99
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 100
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 101
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 102
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 103
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 104
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 105
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 106
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 107
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 108
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 109
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 110
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 111
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 112
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 113
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 114
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 115
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 116
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 117
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 118
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 119
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 120
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 121
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 122
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 123
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 124
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 125
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 126
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 127
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 128
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 129
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 130
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 131
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 132
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 133
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 134
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 135
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 136
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 137
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 138
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 139
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 140
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 141
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 142
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 143
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 144
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 145
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 146
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 147
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 148
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 149
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 150
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 151
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 152
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 153
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 154
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 155
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 156
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 157
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 158
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 159
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 160
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 161
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 162
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 163
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 164
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 165
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 166
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 167
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 168
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 169
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 170
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 171
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 172
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 173
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 174
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 175
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 176
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 177
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 178
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 179
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 180
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 181
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 182
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 183
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 184
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 185
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 186
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 187
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 188
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 189
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 190
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 191
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 192
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 193
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 194
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 195
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 196
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 197
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 198
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 199
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 200
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 201
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 202
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 203
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 204
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 205
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 206
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 207
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 208
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 209
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 210
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 211
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 212
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 213
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 214
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 215
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 216
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 217
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 218
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 219
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 220
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 221
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 222
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 223
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 224
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 225
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 226
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 227
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 228
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 229
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 230
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 231
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 232
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 233
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 234
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 235
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 236
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 237
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 238
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 239
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 240
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 241
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 242
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 243
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 244
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 245
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 246
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 247
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 248
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 249
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 250
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 251
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 252
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 253
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 254
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 255
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 256
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 257
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 258
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 259
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 260
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 261
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 262
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 263
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 264
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 265
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 266
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 267
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 268
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 269
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 270
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 271
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 272
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 273
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 274
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 275
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 276
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 277
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 278
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 279
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 280
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 281
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 282
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 283
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 284
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 285
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 286
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 287
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 288
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 289
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 290
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 291
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 292
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 293
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 294
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 295
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 296
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 297
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 298
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 299
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 300
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 301
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 302
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 303
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 304
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 305
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 306
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 307
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 308
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 309
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 310
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 311
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 312
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 313
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 314
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 315
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 316
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 317
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 318
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 319
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 320
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 321
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 322
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 323
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 324
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 325
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 326
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 327
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 328
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 329
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 330
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 331
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 332
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 333
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 334
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 335
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 336
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 337
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 338
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 339
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 340
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 341
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 342
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 343
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 344
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 345
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 346
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 347
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 348
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 349
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 350
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 351
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 352
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 353
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 354
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 355
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 356
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 357
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 358
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 359
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 360
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 361
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 362
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 363
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 364
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 365
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 366
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 367
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 368
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 369
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 370
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 371
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 372
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 373
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 374
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 375
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 376
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 377
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 378
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 379
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 380
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 381
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 382
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 383
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 384
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 385
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 386
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 387
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 388
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 389
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 390
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 391
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 392
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 393
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 394
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 395
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 396
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 397
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 398
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 399
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 400
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 401
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 402
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 403
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 404
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 405
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 406
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 407
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 408
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 409
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 410
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 411
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 412
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 413
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 414
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 415
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 416
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 417
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 418
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 419
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 420
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 421
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 422
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 423
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 424
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 425
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 426
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 427
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 428
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 429
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 430
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 431
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 432
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 433
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 434
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 435
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 436
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 437
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 438
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 439
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 440
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 441
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 442
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 443
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 444
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 445
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 446
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 447
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 448
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 449
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 450
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 451
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 452
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 453
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 454
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 455
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 456
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 457
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 458
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 459
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 460
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 461
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 462
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 463
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 464
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 465
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 466
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 467
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 468
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 469
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 470
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 471
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 472
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 473
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 474
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 475
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 476
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 477
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 478
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 479
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 480
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 481
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 482
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 483
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 484
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 485
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 486
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 487
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 488
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 489
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 490
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 491
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 492
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 493
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 494
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 495
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 496
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 497
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 498
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 499
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 500
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 501
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 502
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 503
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 504
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 505
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 506
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 507
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 508
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 509
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 510
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 511
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 512
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 513
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 514
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 515
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 516
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 517
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 518
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 519
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 520
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 521
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 522
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 523
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 524
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 525
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 526
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 527
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 528
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 529
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 530
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 531
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 532
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 533
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 534
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 535
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 536
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 537
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 538
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 539
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 540
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 541
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 542
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 543
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 544
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 545
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 546
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 547
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 548
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 549
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 550
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 551
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 552
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 553
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 554
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 555
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 556
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 557
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 558
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 559
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 560
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 561
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 562
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 563
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 564
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 565
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 566
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 567
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 568
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 569
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 570
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 571
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 572
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 573
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 574
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 575
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 576
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 577
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 578
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 579
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 580
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 581
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 582
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 583
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 584
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 585
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 586
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 587
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 588
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 589
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 590
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 591
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 592
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 593
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 594
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 595
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 596
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 597
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 598
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 599
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 600
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 601
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 602
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 603
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 604
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 605
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 606
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 607
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 608
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 609
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 610
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 611
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 612
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 613
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 614
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 615
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 616
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 617
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 618
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 619
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 620
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 621
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 622
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 623
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 624
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 625
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 626
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 627
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 628
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 629
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 630
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 631
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 632
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 633
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 634
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 635
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 636
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 637
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 638
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 639
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 640
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 641
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 642
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 643
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 644
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 645
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 646
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 647
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 648
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 649
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 650
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 651
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 652
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 653
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 654
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 655
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 656
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 657
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 658
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 659
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 660
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 661
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 662
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 663
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 664
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 665
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 666
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 667
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 668
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 669
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 670
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 671
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 672
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 673
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 674
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 675
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 676
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 677
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 678
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 679
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 680
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 681
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 682
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 683
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 684
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 685
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 686
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 687
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 688
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 689
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 690
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 691
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 692
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 693
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 694
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 695
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 696
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 697
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 698
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 699
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 700
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 701
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 702
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 703
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 704
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 705
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 706
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 707
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 708
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 709
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 710
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 711
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 712
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 713
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 714
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 715
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 716
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 717
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 718
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 719
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 720
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 721
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 722
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 723
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 724
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 725
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 726
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 727
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 728
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 729
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 730
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 731
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 732
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 733
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 734
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 735
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 736
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 737
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 738
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 739
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 740
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 741
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 742
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 743
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 744
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 745
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 746
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 747
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 748
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 749
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 750
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 751
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 752
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 753
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 754
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 755
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 756
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 757
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 758
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 759
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 760
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 761
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 762
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 763
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 764
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 765
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 766
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 767
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 768
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 769
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 770
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 771
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 772
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 773
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 774
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 775
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 776
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 777
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 778
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 779
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 780
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 781
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 782
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 783
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 784
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 785
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 786
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 787
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 788
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 789
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 790
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 791
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 792
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 793
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 794
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 795
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 796
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 797
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 798
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 799
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 800
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 801
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 802
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 803
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 804
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 805
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 806
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 807
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 808
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 809
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 810
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 811
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 812
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 813
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 814
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 815
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 816
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 817
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 818
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 819
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 820
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 821
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 822
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 823
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 824
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 825
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 826
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 827
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 828
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 829
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 830
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 831
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 832
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 833
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 834
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 835
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 836
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 837
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 838
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 839
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 840
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 841
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 842
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 843
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 844
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 845
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 846
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 847
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 848
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 849
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 850
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 851
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 852
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 853
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 854
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 855
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 856
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 857
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 858
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 859
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 860
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 861
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 862
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 863
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 864
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 865
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 866
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 867
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 868
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 869
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 870
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 871
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 872
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 873
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 874
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 875
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 876
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 877
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 878
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 879
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 880
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 881
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 882
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 883
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 884
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 885
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 886
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 887
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 888
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 889
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 890
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 891
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 892
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 893
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 894
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 895
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 896
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 897
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 898
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 899
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 900
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 901
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 902
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 903
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 904
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 905
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 906
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 907
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 908
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 909
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 910
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 911
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 912
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 913
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 914
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 915
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 916
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 917
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 918
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 919
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 920
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 921
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 922
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 923
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 924
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 925
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 926
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 927
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 928
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 929
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 930
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 931
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 932
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 933
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 934
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 935
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 936
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 937
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 938
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 939
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 940
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 941
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 942
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 943
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 944
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 945
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 946
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 947
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 948
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 949
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 950
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 951
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 952
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 953
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 954
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 955
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 956
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 957
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 958
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 959
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 960
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 961
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 962
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 963
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 964
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 965
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 966
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 967
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 968
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 969
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 970
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 971
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 972
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 973
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 974
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 975
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 976
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 977
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 978
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 979
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 980
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 981
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 982
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 983
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 984
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 985
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 986
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 987
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 988
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 989
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 990
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 991
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 992
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 993
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 994
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 995
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 996
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 997
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 998
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 999
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 1000
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+
+Computation time on 1 cores : 
+	Database extraction time : 0:00:00
+	                         Learn     Prediction
+	         Fold 1        0:01:13        0:00:01
+	         Fold 2        0:01:23        0:00:01
+	          Total        0:02:37        0:00:03
+	So a total classification time of 0:01:25.
+
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-092301-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-092301-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..8ef0a665
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-092301-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,557 @@
+2016-08-24 09:23:01,452 INFO: Start:	 Read HDF5 Database Files for ModifiedMultiOmic
+2016-08-24 09:23:01,453 INFO: Info:	 Labels used: No, Yes
+2016-08-24 09:23:01,453 INFO: Info:	 Length of dataset:347
+2016-08-24 09:23:01,454 INFO: ### Main Programm for Multiview Classification
+2016-08-24 09:23:01,455 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 09:23:01,455 INFO: Info:	 Shape of Methyl_ :(347, 25978)
+2016-08-24 09:23:01,455 INFO: Info:	 Shape of MiRNA__ :(347, 1046)
+2016-08-24 09:23:01,456 INFO: Info:	 Shape of RANSeq_ :(347, 73599)
+2016-08-24 09:23:01,456 INFO: Info:	 Shape of Clinic_ :(347, 127)
+2016-08-24 09:23:01,456 INFO: Done:	 Read Database Files
+2016-08-24 09:23:01,456 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-24 09:23:01,460 INFO: Done:	 Determine validation split
+2016-08-24 09:23:01,460 INFO: Start:	 Determine 2 folds
+2016-08-24 09:23:01,469 INFO: Info:	 Length of Learning Sets: 122
+2016-08-24 09:23:01,469 INFO: Info:	 Length of Testing Sets: 122
+2016-08-24 09:23:01,469 INFO: Info:	 Length of Validation Set: 103
+2016-08-24 09:23:01,469 INFO: Done:	 Determine folds
+2016-08-24 09:23:01,469 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-24 09:23:01,469 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-24 09:23:01,469 DEBUG: 	Start:	 Gridsearch for DecisionTree on Methyl_
+2016-08-24 09:23:08,825 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:23:08,826 DEBUG: 	Start:	 Gridsearch for DecisionTree on MiRNA__
+2016-08-24 09:23:10,814 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:23:10,814 DEBUG: 	Start:	 Gridsearch for DecisionTree on RANSeq_
+2016-08-24 09:23:27,482 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:23:27,482 DEBUG: 	Start:	 Gridsearch for DecisionTree on Clinic_
+2016-08-24 09:23:29,240 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:23:29,241 DEBUG: 	Start:	 Gridsearch for DecisionTree on MRNASeq
+2016-08-24 09:24:07,505 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:24:07,505 INFO: Done:	 Gridsearching best settings for monoview classifiers
+2016-08-24 09:24:07,505 INFO: 	Start:	 Fold number 1
+2016-08-24 09:24:09,143 DEBUG: 		Start:	 Iteration 1
+2016-08-24 09:24:09,163 DEBUG: 			View 0 : 0.596153846154
+2016-08-24 09:24:09,171 DEBUG: 			View 1 : 0.384615384615
+2016-08-24 09:24:09,198 DEBUG: 			View 2 : 0.615384615385
+2016-08-24 09:24:09,206 DEBUG: 			View 3 : 0.615384615385
+2016-08-24 09:24:09,247 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:24:09,317 DEBUG: 		Start:	 Iteration 2
+2016-08-24 09:24:09,335 DEBUG: 			View 0 : 0.5
+2016-08-24 09:24:09,342 DEBUG: 			View 1 : 0.288461538462
+2016-08-24 09:24:09,379 DEBUG: 			View 2 : 0.5
+2016-08-24 09:24:09,386 DEBUG: 			View 3 : 0.410256410256
+2016-08-24 09:24:09,432 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:24:09,567 DEBUG: 		Start:	 Iteration 3
+2016-08-24 09:24:09,584 DEBUG: 			View 0 : 0.461538461538
+2016-08-24 09:24:09,592 DEBUG: 			View 1 : 0.621794871795
+2016-08-24 09:24:09,628 DEBUG: 			View 2 : 0.532051282051
+2016-08-24 09:24:09,636 DEBUG: 			View 3 : 0.621794871795
+2016-08-24 09:24:09,689 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:24:09,884 DEBUG: 		Start:	 Iteration 4
+2016-08-24 09:24:09,900 DEBUG: 			View 0 : 0.544871794872
+2016-08-24 09:24:09,908 DEBUG: 			View 1 : 0.474358974359
+2016-08-24 09:24:09,944 DEBUG: 			View 2 : 0.442307692308
+2016-08-24 09:24:09,952 DEBUG: 			View 3 : 0.423076923077
+2016-08-24 09:24:10,007 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:24:10,258 DEBUG: 		Start:	 Iteration 5
+2016-08-24 09:24:10,275 DEBUG: 			View 0 : 0.49358974359
+2016-08-24 09:24:10,282 DEBUG: 			View 1 : 0.557692307692
+2016-08-24 09:24:10,319 DEBUG: 			View 2 : 0.596153846154
+2016-08-24 09:24:10,327 DEBUG: 			View 3 : 0.429487179487
+2016-08-24 09:24:10,384 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:24:10,714 DEBUG: 		Start:	 Iteration 6
+2016-08-24 09:24:10,731 DEBUG: 			View 0 : 0.544871794872
+2016-08-24 09:24:10,739 DEBUG: 			View 1 : 0.429487179487
+2016-08-24 09:24:10,775 DEBUG: 			View 2 : 0.608974358974
+2016-08-24 09:24:10,783 DEBUG: 			View 3 : 0.608974358974
+2016-08-24 09:24:10,843 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:24:11,237 DEBUG: 		Start:	 Iteration 7
+2016-08-24 09:24:11,253 DEBUG: 			View 0 : 0.467948717949
+2016-08-24 09:24:11,261 DEBUG: 			View 1 : 0.570512820513
+2016-08-24 09:24:11,297 DEBUG: 			View 2 : 0.403846153846
+2016-08-24 09:24:11,305 DEBUG: 			View 3 : 0.487179487179
+2016-08-24 09:24:11,367 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:24:11,817 DEBUG: 		Start:	 Iteration 8
+2016-08-24 09:24:11,834 DEBUG: 			View 0 : 0.410256410256
+2016-08-24 09:24:11,841 DEBUG: 			View 1 : 0.435897435897
+2016-08-24 09:24:11,877 DEBUG: 			View 2 : 0.615384615385
+2016-08-24 09:24:11,885 DEBUG: 			View 3 : 0.570512820513
+2016-08-24 09:24:11,949 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:24:12,494 DEBUG: 		Start:	 Iteration 9
+2016-08-24 09:24:12,510 DEBUG: 			View 0 : 0.583333333333
+2016-08-24 09:24:12,518 DEBUG: 			View 1 : 0.602564102564
+2016-08-24 09:24:12,556 DEBUG: 			View 2 : 0.391025641026
+2016-08-24 09:24:12,563 DEBUG: 			View 3 : 0.461538461538
+2016-08-24 09:24:12,633 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:24:13,242 DEBUG: 		Start:	 Iteration 10
+2016-08-24 09:24:13,269 DEBUG: 			View 0 : 0.551282051282
+2016-08-24 09:24:13,278 DEBUG: 			View 1 : 0.647435897436
+2016-08-24 09:24:13,322 DEBUG: 			View 2 : 0.551282051282
+2016-08-24 09:24:13,331 DEBUG: 			View 3 : 0.602564102564
+2016-08-24 09:24:13,410 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:24:14,046 DEBUG: 		Start:	 Iteration 11
+2016-08-24 09:24:14,063 DEBUG: 			View 0 : 0.435897435897
+2016-08-24 09:24:14,070 DEBUG: 			View 1 : 0.455128205128
+2016-08-24 09:24:14,106 DEBUG: 			View 2 : 0.416666666667
+2016-08-24 09:24:14,114 DEBUG: 			View 3 : 0.532051282051
+2016-08-24 09:24:14,187 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:24:14,942 DEBUG: 		Start:	 Iteration 12
+2016-08-24 09:24:14,963 DEBUG: 			View 0 : 0.724358974359
+2016-08-24 09:24:14,972 DEBUG: 			View 1 : 0.775641025641
+2016-08-24 09:24:15,010 DEBUG: 			View 2 : 0.467948717949
+2016-08-24 09:24:15,019 DEBUG: 			View 3 : 0.487179487179
+2016-08-24 09:24:15,094 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:24:15,834 DEBUG: 		Start:	 Iteration 13
+2016-08-24 09:24:15,853 DEBUG: 			View 0 : 0.782051282051
+2016-08-24 09:24:15,861 DEBUG: 			View 1 : 0.480769230769
+2016-08-24 09:24:15,899 DEBUG: 			View 2 : 0.538461538462
+2016-08-24 09:24:15,907 DEBUG: 			View 3 : 0.423076923077
+2016-08-24 09:24:15,982 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:24:16,787 DEBUG: 		Start:	 Iteration 14
+2016-08-24 09:24:16,804 DEBUG: 			View 0 : 0.788461538462
+2016-08-24 09:24:16,812 DEBUG: 			View 1 : 0.641025641026
+2016-08-24 09:24:16,848 DEBUG: 			View 2 : 0.564102564103
+2016-08-24 09:24:16,856 DEBUG: 			View 3 : 0.615384615385
+2016-08-24 09:24:16,934 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:24:17,794 DEBUG: 		Start:	 Iteration 15
+2016-08-24 09:24:17,810 DEBUG: 			View 0 : 0.589743589744
+2016-08-24 09:24:17,818 DEBUG: 			View 1 : 0.519230769231
+2016-08-24 09:24:17,854 DEBUG: 			View 2 : 0.403846153846
+2016-08-24 09:24:17,861 DEBUG: 			View 3 : 0.570512820513
+2016-08-24 09:24:17,941 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:24:18,865 DEBUG: 		Start:	 Iteration 16
+2016-08-24 09:24:18,882 DEBUG: 			View 0 : 0.673076923077
+2016-08-24 09:24:18,890 DEBUG: 			View 1 : 0.634615384615
+2016-08-24 09:24:18,930 DEBUG: 			View 2 : 0.461538461538
+2016-08-24 09:24:18,938 DEBUG: 			View 3 : 0.416666666667
+2016-08-24 09:24:19,022 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:24:20,318 DEBUG: 		Start:	 Iteration 17
+2016-08-24 09:24:20,347 DEBUG: 			View 0 : 0.685897435897
+2016-08-24 09:24:20,361 DEBUG: 			View 1 : 0.403846153846
+2016-08-24 09:24:20,409 DEBUG: 			View 2 : 0.50641025641
+2016-08-24 09:24:20,418 DEBUG: 			View 3 : 0.666666666667
+2016-08-24 09:24:20,513 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:24:21,727 DEBUG: 		Start:	 Iteration 18
+2016-08-24 09:24:21,746 DEBUG: 			View 0 : 0.544871794872
+2016-08-24 09:24:21,755 DEBUG: 			View 1 : 0.467948717949
+2016-08-24 09:24:21,799 DEBUG: 			View 2 : 0.576923076923
+2016-08-24 09:24:21,809 DEBUG: 			View 3 : 0.455128205128
+2016-08-24 09:24:21,907 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:24:23,082 DEBUG: 		Start:	 Iteration 19
+2016-08-24 09:24:23,100 DEBUG: 			View 0 : 0.519230769231
+2016-08-24 09:24:23,109 DEBUG: 			View 1 : 0.339743589744
+2016-08-24 09:24:23,158 DEBUG: 			View 2 : 0.525641025641
+2016-08-24 09:24:23,167 DEBUG: 			View 3 : 0.525641025641
+2016-08-24 09:24:23,274 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:24:24,497 DEBUG: 		Start:	 Iteration 20
+2016-08-24 09:24:24,515 DEBUG: 			View 0 : 0.615384615385
+2016-08-24 09:24:24,523 DEBUG: 			View 1 : 0.50641025641
+2016-08-24 09:24:24,571 DEBUG: 			View 2 : 0.384615384615
+2016-08-24 09:24:24,579 DEBUG: 			View 3 : 0.512820512821
+2016-08-24 09:24:24,674 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:24:25,966 DEBUG: 		Start:	 Iteration 21
+2016-08-24 09:24:25,984 DEBUG: 			View 0 : 0.391025641026
+2016-08-24 09:24:25,992 DEBUG: 			View 1 : 0.615384615385
+2016-08-24 09:24:26,030 DEBUG: 			View 2 : 0.480769230769
+2016-08-24 09:24:26,038 DEBUG: 			View 3 : 0.538461538462
+2016-08-24 09:24:26,133 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:24:27,438 DEBUG: 		Start:	 Iteration 22
+2016-08-24 09:24:27,455 DEBUG: 			View 0 : 0.358974358974
+2016-08-24 09:24:27,463 DEBUG: 			View 1 : 0.730769230769
+2016-08-24 09:24:27,499 DEBUG: 			View 2 : 0.557692307692
+2016-08-24 09:24:27,507 DEBUG: 			View 3 : 0.378205128205
+2016-08-24 09:24:27,603 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:24:29,071 DEBUG: 		Start:	 Iteration 23
+2016-08-24 09:24:29,087 DEBUG: 			View 0 : 0.512820512821
+2016-08-24 09:24:29,095 DEBUG: 			View 1 : 0.371794871795
+2016-08-24 09:24:29,135 DEBUG: 			View 2 : 0.487179487179
+2016-08-24 09:24:29,143 DEBUG: 			View 3 : 0.455128205128
+2016-08-24 09:24:29,243 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:24:30,754 DEBUG: 		Start:	 Iteration 24
+2016-08-24 09:24:30,771 DEBUG: 			View 0 : 0.615384615385
+2016-08-24 09:24:30,779 DEBUG: 			View 1 : 0.698717948718
+2016-08-24 09:24:30,832 DEBUG: 			View 2 : 0.49358974359
+2016-08-24 09:24:30,848 DEBUG: 			View 3 : 0.583333333333
+2016-08-24 09:24:30,972 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:24:32,536 DEBUG: 		Start:	 Iteration 25
+2016-08-24 09:24:32,553 DEBUG: 			View 0 : 0.512820512821
+2016-08-24 09:24:32,561 DEBUG: 			View 1 : 0.461538461538
+2016-08-24 09:24:32,598 DEBUG: 			View 2 : 0.532051282051
+2016-08-24 09:24:32,609 DEBUG: 			View 3 : 0.512820512821
+2016-08-24 09:24:32,735 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:24:34,372 DEBUG: 		Start:	 Iteration 26
+2016-08-24 09:24:34,395 DEBUG: 			View 0 : 0.705128205128
+2016-08-24 09:24:34,404 DEBUG: 			View 1 : 0.442307692308
+2016-08-24 09:24:34,443 DEBUG: 			View 2 : 0.5
+2016-08-24 09:24:34,451 DEBUG: 			View 3 : 0.666666666667
+2016-08-24 09:24:34,558 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:24:36,187 DEBUG: 		Start:	 Iteration 27
+2016-08-24 09:24:36,206 DEBUG: 			View 0 : 0.525641025641
+2016-08-24 09:24:36,214 DEBUG: 			View 1 : 0.429487179487
+2016-08-24 09:24:36,252 DEBUG: 			View 2 : 0.467948717949
+2016-08-24 09:24:36,260 DEBUG: 			View 3 : 0.467948717949
+2016-08-24 09:24:36,370 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:24:38,001 DEBUG: 		Start:	 Iteration 28
+2016-08-24 09:24:38,017 DEBUG: 			View 0 : 0.608974358974
+2016-08-24 09:24:38,025 DEBUG: 			View 1 : 0.448717948718
+2016-08-24 09:24:38,061 DEBUG: 			View 2 : 0.589743589744
+2016-08-24 09:24:38,069 DEBUG: 			View 3 : 0.416666666667
+2016-08-24 09:24:38,177 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:24:39,928 DEBUG: 		Start:	 Iteration 29
+2016-08-24 09:24:39,944 DEBUG: 			View 0 : 0.403846153846
+2016-08-24 09:24:39,952 DEBUG: 			View 1 : 0.410256410256
+2016-08-24 09:24:39,989 DEBUG: 			View 2 : 0.538461538462
+2016-08-24 09:24:39,997 DEBUG: 			View 3 : 0.544871794872
+2016-08-24 09:24:40,108 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:24:41,868 DEBUG: 		Start:	 Iteration 30
+2016-08-24 09:24:41,885 DEBUG: 			View 0 : 0.692307692308
+2016-08-24 09:24:41,893 DEBUG: 			View 1 : 0.49358974359
+2016-08-24 09:24:41,929 DEBUG: 			View 2 : 0.423076923077
+2016-08-24 09:24:41,937 DEBUG: 			View 3 : 0.487179487179
+2016-08-24 09:24:42,050 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:24:44,013 DEBUG: 		Start:	 Iteration 31
+2016-08-24 09:24:44,030 DEBUG: 			View 0 : 0.442307692308
+2016-08-24 09:24:44,038 DEBUG: 			View 1 : 0.576923076923
+2016-08-24 09:24:44,074 DEBUG: 			View 2 : 0.442307692308
+2016-08-24 09:24:44,082 DEBUG: 			View 3 : 0.538461538462
+2016-08-24 09:24:44,197 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:24:46,115 DEBUG: 		Start:	 Iteration 32
+2016-08-24 09:24:46,140 DEBUG: 			View 0 : 0.448717948718
+2016-08-24 09:24:46,155 DEBUG: 			View 1 : 0.326923076923
+2016-08-24 09:24:46,202 DEBUG: 			View 2 : 0.512820512821
+2016-08-24 09:24:46,212 DEBUG: 			View 3 : 0.442307692308
+2016-08-24 09:24:46,350 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:24:48,336 DEBUG: 		Start:	 Iteration 33
+2016-08-24 09:24:48,352 DEBUG: 			View 0 : 0.621794871795
+2016-08-24 09:24:48,360 DEBUG: 			View 1 : 0.50641025641
+2016-08-24 09:24:48,397 DEBUG: 			View 2 : 0.589743589744
+2016-08-24 09:24:48,405 DEBUG: 			View 3 : 0.429487179487
+2016-08-24 09:24:48,525 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:24:50,614 DEBUG: 		Start:	 Iteration 34
+2016-08-24 09:24:50,633 DEBUG: 			View 0 : 0.416666666667
+2016-08-24 09:24:50,642 DEBUG: 			View 1 : 0.391025641026
+2016-08-24 09:24:50,684 DEBUG: 			View 2 : 0.5
+2016-08-24 09:24:50,693 DEBUG: 			View 3 : 0.423076923077
+2016-08-24 09:24:50,835 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:24:53,102 DEBUG: 		Start:	 Iteration 35
+2016-08-24 09:24:53,119 DEBUG: 			View 0 : 0.564102564103
+2016-08-24 09:24:53,126 DEBUG: 			View 1 : 0.589743589744
+2016-08-24 09:24:53,163 DEBUG: 			View 2 : 0.391025641026
+2016-08-24 09:24:53,171 DEBUG: 			View 3 : 0.519230769231
+2016-08-24 09:24:53,313 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:24:55,605 DEBUG: 		Start:	 Iteration 36
+2016-08-24 09:24:55,622 DEBUG: 			View 0 : 0.448717948718
+2016-08-24 09:24:55,630 DEBUG: 			View 1 : 0.653846153846
+2016-08-24 09:24:55,667 DEBUG: 			View 2 : 0.589743589744
+2016-08-24 09:24:55,675 DEBUG: 			View 3 : 0.397435897436
+2016-08-24 09:24:55,810 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:24:58,037 DEBUG: 		Start:	 Iteration 37
+2016-08-24 09:24:58,053 DEBUG: 			View 0 : 0.461538461538
+2016-08-24 09:24:58,061 DEBUG: 			View 1 : 0.660256410256
+2016-08-24 09:24:58,098 DEBUG: 			View 2 : 0.5
+2016-08-24 09:24:58,105 DEBUG: 			View 3 : 0.525641025641
+2016-08-24 09:24:58,235 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:25:00,477 DEBUG: 		Start:	 Iteration 38
+2016-08-24 09:25:00,494 DEBUG: 			View 0 : 0.525641025641
+2016-08-24 09:25:00,502 DEBUG: 			View 1 : 0.49358974359
+2016-08-24 09:25:00,540 DEBUG: 			View 2 : 0.551282051282
+2016-08-24 09:25:00,548 DEBUG: 			View 3 : 0.519230769231
+2016-08-24 09:25:00,684 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:25:02,984 DEBUG: 		Start:	 Iteration 39
+2016-08-24 09:25:03,001 DEBUG: 			View 0 : 0.532051282051
+2016-08-24 09:25:03,008 DEBUG: 			View 1 : 0.641025641026
+2016-08-24 09:25:03,045 DEBUG: 			View 2 : 0.576923076923
+2016-08-24 09:25:03,053 DEBUG: 			View 3 : 0.647435897436
+2016-08-24 09:25:03,187 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:25:05,555 DEBUG: 		Start:	 Iteration 40
+2016-08-24 09:25:05,571 DEBUG: 			View 0 : 0.442307692308
+2016-08-24 09:25:05,579 DEBUG: 			View 1 : 0.634615384615
+2016-08-24 09:25:05,616 DEBUG: 			View 2 : 0.512820512821
+2016-08-24 09:25:05,624 DEBUG: 			View 3 : 0.532051282051
+2016-08-24 09:25:05,761 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:25:08,173 DEBUG: 		Start:	 Iteration 41
+2016-08-24 09:25:08,189 DEBUG: 			View 0 : 0.576923076923
+2016-08-24 09:25:08,197 DEBUG: 			View 1 : 0.692307692308
+2016-08-24 09:25:08,233 DEBUG: 			View 2 : 0.615384615385
+2016-08-24 09:25:08,241 DEBUG: 			View 3 : 0.589743589744
+2016-08-24 09:25:08,380 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:25:10,856 DEBUG: 		Start:	 Iteration 42
+2016-08-24 09:25:10,873 DEBUG: 			View 0 : 0.410256410256
+2016-08-24 09:25:10,881 DEBUG: 			View 1 : 0.384615384615
+2016-08-24 09:25:10,918 DEBUG: 			View 2 : 0.621794871795
+2016-08-24 09:25:10,926 DEBUG: 			View 3 : 0.564102564103
+2016-08-24 09:25:11,067 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:25:13,607 DEBUG: 		Start:	 Iteration 43
+2016-08-24 09:25:13,623 DEBUG: 			View 0 : 0.608974358974
+2016-08-24 09:25:13,631 DEBUG: 			View 1 : 0.711538461538
+2016-08-24 09:25:13,668 DEBUG: 			View 2 : 0.557692307692
+2016-08-24 09:25:13,675 DEBUG: 			View 3 : 0.589743589744
+2016-08-24 09:25:13,817 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:25:16,417 DEBUG: 		Start:	 Iteration 44
+2016-08-24 09:25:16,434 DEBUG: 			View 0 : 0.423076923077
+2016-08-24 09:25:16,442 DEBUG: 			View 1 : 0.641025641026
+2016-08-24 09:25:16,478 DEBUG: 			View 2 : 0.538461538462
+2016-08-24 09:25:16,486 DEBUG: 			View 3 : 0.608974358974
+2016-08-24 09:25:16,632 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:25:19,287 DEBUG: 		Start:	 Iteration 45
+2016-08-24 09:25:19,303 DEBUG: 			View 0 : 0.49358974359
+2016-08-24 09:25:19,311 DEBUG: 			View 1 : 0.628205128205
+2016-08-24 09:25:19,348 DEBUG: 			View 2 : 0.519230769231
+2016-08-24 09:25:19,356 DEBUG: 			View 3 : 0.544871794872
+2016-08-24 09:25:19,504 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:25:22,218 DEBUG: 		Start:	 Iteration 46
+2016-08-24 09:25:22,235 DEBUG: 			View 0 : 0.525641025641
+2016-08-24 09:25:22,243 DEBUG: 			View 1 : 0.423076923077
+2016-08-24 09:25:22,280 DEBUG: 			View 2 : 0.544871794872
+2016-08-24 09:25:22,287 DEBUG: 			View 3 : 0.416666666667
+2016-08-24 09:25:22,437 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:25:25,212 DEBUG: 		Start:	 Iteration 47
+2016-08-24 09:25:25,228 DEBUG: 			View 0 : 0.378205128205
+2016-08-24 09:25:25,236 DEBUG: 			View 1 : 0.480769230769
+2016-08-24 09:25:25,273 DEBUG: 			View 2 : 0.583333333333
+2016-08-24 09:25:25,281 DEBUG: 			View 3 : 0.570512820513
+2016-08-24 09:25:25,434 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:25:28,262 DEBUG: 		Start:	 Iteration 48
+2016-08-24 09:25:28,279 DEBUG: 			View 0 : 0.525641025641
+2016-08-24 09:25:28,287 DEBUG: 			View 1 : 0.333333333333
+2016-08-24 09:25:28,323 DEBUG: 			View 2 : 0.544871794872
+2016-08-24 09:25:28,331 DEBUG: 			View 3 : 0.435897435897
+2016-08-24 09:25:28,487 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:25:31,392 DEBUG: 		Start:	 Iteration 49
+2016-08-24 09:25:31,409 DEBUG: 			View 0 : 0.570512820513
+2016-08-24 09:25:31,416 DEBUG: 			View 1 : 0.50641025641
+2016-08-24 09:25:31,453 DEBUG: 			View 2 : 0.474358974359
+2016-08-24 09:25:31,461 DEBUG: 			View 3 : 0.461538461538
+2016-08-24 09:25:31,616 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:25:34,579 DEBUG: 		Start:	 Iteration 50
+2016-08-24 09:25:34,596 DEBUG: 			View 0 : 0.628205128205
+2016-08-24 09:25:34,604 DEBUG: 			View 1 : 0.474358974359
+2016-08-24 09:25:34,640 DEBUG: 			View 2 : 0.576923076923
+2016-08-24 09:25:34,648 DEBUG: 			View 3 : 0.519230769231
+2016-08-24 09:25:34,807 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:25:37,851 DEBUG: 		Start:	 Iteration 51
+2016-08-24 09:25:37,868 DEBUG: 			View 0 : 0.525641025641
+2016-08-24 09:25:37,876 DEBUG: 			View 1 : 0.49358974359
+2016-08-24 09:25:37,912 DEBUG: 			View 2 : 0.50641025641
+2016-08-24 09:25:37,920 DEBUG: 			View 3 : 0.397435897436
+2016-08-24 09:25:38,082 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:25:41,390 DEBUG: 		Start:	 Iteration 52
+2016-08-24 09:25:41,409 DEBUG: 			View 0 : 0.397435897436
+2016-08-24 09:25:41,417 DEBUG: 			View 1 : 0.634615384615
+2016-08-24 09:25:41,454 DEBUG: 			View 2 : 0.532051282051
+2016-08-24 09:25:41,462 DEBUG: 			View 3 : 0.416666666667
+2016-08-24 09:25:41,625 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:25:44,792 INFO: 	Start: 	 Classification
+2016-08-24 09:25:52,398 INFO: 	Done: 	 Fold number 1
+2016-08-24 09:25:52,398 INFO: 	Start:	 Fold number 2
+2016-08-24 09:25:54,031 DEBUG: 		Start:	 Iteration 1
+2016-08-24 09:25:54,047 DEBUG: 			View 0 : 0.62962962963
+2016-08-24 09:25:54,055 DEBUG: 			View 1 : 0.666666666667
+2016-08-24 09:25:54,093 DEBUG: 			View 2 : 0.623456790123
+2016-08-24 09:25:54,101 DEBUG: 			View 3 : 0.37037037037
+2016-08-24 09:25:54,143 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:25:54,215 DEBUG: 		Start:	 Iteration 2
+2016-08-24 09:25:54,233 DEBUG: 			View 0 : 0.530864197531
+2016-08-24 09:25:54,241 DEBUG: 			View 1 : 0.277777777778
+2016-08-24 09:25:54,279 DEBUG: 			View 2 : 0.41975308642
+2016-08-24 09:25:54,287 DEBUG: 			View 3 : 0.561728395062
+2016-08-24 09:25:54,340 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:25:54,473 DEBUG: 		Start:	 Iteration 3
+2016-08-24 09:25:54,491 DEBUG: 			View 0 : 0.506172839506
+2016-08-24 09:25:54,502 DEBUG: 			View 1 : 0.592592592593
+2016-08-24 09:25:54,543 DEBUG: 			View 2 : 0.549382716049
+2016-08-24 09:25:54,551 DEBUG: 			View 3 : 0.450617283951
+2016-08-24 09:25:54,607 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:25:54,799 DEBUG: 		Start:	 Iteration 4
+2016-08-24 09:25:54,817 DEBUG: 			View 0 : 0.469135802469
+2016-08-24 09:25:54,825 DEBUG: 			View 1 : 0.549382716049
+2016-08-24 09:25:54,865 DEBUG: 			View 2 : 0.487654320988
+2016-08-24 09:25:54,873 DEBUG: 			View 3 : 0.382716049383
+2016-08-24 09:25:54,931 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:25:55,184 DEBUG: 		Start:	 Iteration 5
+2016-08-24 09:25:55,202 DEBUG: 			View 0 : 0.506172839506
+2016-08-24 09:25:55,211 DEBUG: 			View 1 : 0.716049382716
+2016-08-24 09:25:55,249 DEBUG: 			View 2 : 0.469135802469
+2016-08-24 09:25:55,257 DEBUG: 			View 3 : 0.623456790123
+2016-08-24 09:25:55,325 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:25:55,645 DEBUG: 		Start:	 Iteration 6
+2016-08-24 09:25:55,663 DEBUG: 			View 0 : 0.388888888889
+2016-08-24 09:25:55,671 DEBUG: 			View 1 : 0.771604938272
+2016-08-24 09:25:55,709 DEBUG: 			View 2 : 0.598765432099
+2016-08-24 09:25:55,717 DEBUG: 			View 3 : 0.524691358025
+2016-08-24 09:25:55,779 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:25:56,151 DEBUG: 		Start:	 Iteration 7
+2016-08-24 09:25:56,168 DEBUG: 			View 0 : 0.524691358025
+2016-08-24 09:25:56,176 DEBUG: 			View 1 : 0.641975308642
+2016-08-24 09:25:56,214 DEBUG: 			View 2 : 0.506172839506
+2016-08-24 09:25:56,222 DEBUG: 			View 3 : 0.537037037037
+2016-08-24 09:25:56,288 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:25:56,721 DEBUG: 		Start:	 Iteration 8
+2016-08-24 09:25:56,738 DEBUG: 			View 0 : 0.413580246914
+2016-08-24 09:25:56,747 DEBUG: 			View 1 : 0.524691358025
+2016-08-24 09:25:56,785 DEBUG: 			View 2 : 0.586419753086
+2016-08-24 09:25:56,793 DEBUG: 			View 3 : 0.407407407407
+2016-08-24 09:25:56,862 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:25:57,369 DEBUG: 		Start:	 Iteration 9
+2016-08-24 09:25:57,386 DEBUG: 			View 0 : 0.444444444444
+2016-08-24 09:25:57,394 DEBUG: 			View 1 : 0.604938271605
+2016-08-24 09:25:57,431 DEBUG: 			View 2 : 0.444444444444
+2016-08-24 09:25:57,439 DEBUG: 			View 3 : 0.481481481481
+2016-08-24 09:25:57,507 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:25:58,072 DEBUG: 		Start:	 Iteration 10
+2016-08-24 09:25:58,089 DEBUG: 			View 0 : 0.382716049383
+2016-08-24 09:25:58,097 DEBUG: 			View 1 : 0.623456790123
+2016-08-24 09:25:58,134 DEBUG: 			View 2 : 0.617283950617
+2016-08-24 09:25:58,142 DEBUG: 			View 3 : 0.41975308642
+2016-08-24 09:25:58,213 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:25:58,839 DEBUG: 		Start:	 Iteration 11
+2016-08-24 09:25:58,856 DEBUG: 			View 0 : 0.506172839506
+2016-08-24 09:25:58,864 DEBUG: 			View 1 : 0.487654320988
+2016-08-24 09:25:58,901 DEBUG: 			View 2 : 0.530864197531
+2016-08-24 09:25:58,909 DEBUG: 			View 3 : 0.407407407407
+2016-08-24 09:25:58,983 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:25:59,688 DEBUG: 		Start:	 Iteration 12
+2016-08-24 09:25:59,705 DEBUG: 			View 0 : 0.518518518519
+2016-08-24 09:25:59,714 DEBUG: 			View 1 : 0.543209876543
+2016-08-24 09:25:59,751 DEBUG: 			View 2 : 0.530864197531
+2016-08-24 09:25:59,759 DEBUG: 			View 3 : 0.469135802469
+2016-08-24 09:25:59,835 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:26:00,606 DEBUG: 		Start:	 Iteration 13
+2016-08-24 09:26:00,623 DEBUG: 			View 0 : 0.487654320988
+2016-08-24 09:26:00,631 DEBUG: 			View 1 : 0.549382716049
+2016-08-24 09:26:00,669 DEBUG: 			View 2 : 0.413580246914
+2016-08-24 09:26:00,676 DEBUG: 			View 3 : 0.530864197531
+2016-08-24 09:26:00,756 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:26:01,578 DEBUG: 		Start:	 Iteration 14
+2016-08-24 09:26:01,595 DEBUG: 			View 0 : 0.561728395062
+2016-08-24 09:26:01,603 DEBUG: 			View 1 : 0.555555555556
+2016-08-24 09:26:01,640 DEBUG: 			View 2 : 0.537037037037
+2016-08-24 09:26:01,648 DEBUG: 			View 3 : 0.376543209877
+2016-08-24 09:26:01,729 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:26:02,647 DEBUG: 		Start:	 Iteration 15
+2016-08-24 09:26:02,664 DEBUG: 			View 0 : 0.444444444444
+2016-08-24 09:26:02,672 DEBUG: 			View 1 : 0.364197530864
+2016-08-24 09:26:02,709 DEBUG: 			View 2 : 0.450617283951
+2016-08-24 09:26:02,717 DEBUG: 			View 3 : 0.561728395062
+2016-08-24 09:26:02,800 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:26:03,734 DEBUG: 		Start:	 Iteration 16
+2016-08-24 09:26:03,751 DEBUG: 			View 0 : 0.604938271605
+2016-08-24 09:26:03,759 DEBUG: 			View 1 : 0.666666666667
+2016-08-24 09:26:03,796 DEBUG: 			View 2 : 0.530864197531
+2016-08-24 09:26:03,804 DEBUG: 			View 3 : 0.611111111111
+2016-08-24 09:26:03,888 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:26:04,879 DEBUG: 		Start:	 Iteration 17
+2016-08-24 09:26:04,896 DEBUG: 			View 0 : 0.561728395062
+2016-08-24 09:26:04,904 DEBUG: 			View 1 : 0.641975308642
+2016-08-24 09:26:04,941 DEBUG: 			View 2 : 0.450617283951
+2016-08-24 09:26:04,948 DEBUG: 			View 3 : 0.62962962963
+2016-08-24 09:26:05,035 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:26:06,079 DEBUG: 		Start:	 Iteration 18
+2016-08-24 09:26:06,096 DEBUG: 			View 0 : 0.438271604938
+2016-08-24 09:26:06,104 DEBUG: 			View 1 : 0.549382716049
+2016-08-24 09:26:06,141 DEBUG: 			View 2 : 0.493827160494
+2016-08-24 09:26:06,149 DEBUG: 			View 3 : 0.524691358025
+2016-08-24 09:26:06,238 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:26:07,352 DEBUG: 		Start:	 Iteration 19
+2016-08-24 09:26:07,369 DEBUG: 			View 0 : 0.512345679012
+2016-08-24 09:26:07,377 DEBUG: 			View 1 : 0.611111111111
+2016-08-24 09:26:07,415 DEBUG: 			View 2 : 0.617283950617
+2016-08-24 09:26:07,423 DEBUG: 			View 3 : 0.574074074074
+2016-08-24 09:26:07,517 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:26:08,688 DEBUG: 		Start:	 Iteration 20
+2016-08-24 09:26:08,705 DEBUG: 			View 0 : 0.407407407407
+2016-08-24 09:26:08,713 DEBUG: 			View 1 : 0.62962962963
+2016-08-24 09:26:08,751 DEBUG: 			View 2 : 0.549382716049
+2016-08-24 09:26:08,759 DEBUG: 			View 3 : 0.493827160494
+2016-08-24 09:26:08,855 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:26:10,080 DEBUG: 		Start:	 Iteration 21
+2016-08-24 09:26:10,097 DEBUG: 			View 0 : 0.561728395062
+2016-08-24 09:26:10,105 DEBUG: 			View 1 : 0.672839506173
+2016-08-24 09:26:10,142 DEBUG: 			View 2 : 0.648148148148
+2016-08-24 09:26:10,150 DEBUG: 			View 3 : 0.438271604938
+2016-08-24 09:26:10,246 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:26:11,549 DEBUG: 		Start:	 Iteration 22
+2016-08-24 09:26:11,566 DEBUG: 			View 0 : 0.549382716049
+2016-08-24 09:26:11,574 DEBUG: 			View 1 : 0.586419753086
+2016-08-24 09:26:11,612 DEBUG: 			View 2 : 0.450617283951
+2016-08-24 09:26:11,620 DEBUG: 			View 3 : 0.561728395062
+2016-08-24 09:26:11,718 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:26:13,055 DEBUG: 		Start:	 Iteration 23
+2016-08-24 09:26:13,072 DEBUG: 			View 0 : 0.592592592593
+2016-08-24 09:26:13,080 DEBUG: 			View 1 : 0.666666666667
+2016-08-24 09:26:13,117 DEBUG: 			View 2 : 0.62962962963
+2016-08-24 09:26:13,125 DEBUG: 			View 3 : 0.586419753086
+2016-08-24 09:26:13,226 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:26:14,621 DEBUG: 		Start:	 Iteration 24
+2016-08-24 09:26:14,638 DEBUG: 			View 0 : 0.425925925926
+2016-08-24 09:26:14,646 DEBUG: 			View 1 : 0.376543209877
+2016-08-24 09:26:14,684 DEBUG: 			View 2 : 0.475308641975
+2016-08-24 09:26:14,691 DEBUG: 			View 3 : 0.413580246914
+2016-08-24 09:26:14,692 WARNING: All bad for iteration 23
+2016-08-24 09:26:14,795 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:26:16,277 DEBUG: 		Start:	 Iteration 25
+2016-08-24 09:26:16,294 DEBUG: 			View 0 : 0.462962962963
+2016-08-24 09:26:16,302 DEBUG: 			View 1 : 0.716049382716
+2016-08-24 09:26:16,339 DEBUG: 			View 2 : 0.530864197531
+2016-08-24 09:26:16,347 DEBUG: 			View 3 : 0.401234567901
+2016-08-24 09:26:16,452 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:26:18,023 DEBUG: 		Start:	 Iteration 26
+2016-08-24 09:26:18,040 DEBUG: 			View 0 : 0.62962962963
+2016-08-24 09:26:18,048 DEBUG: 			View 1 : 0.567901234568
+2016-08-24 09:26:18,089 DEBUG: 			View 2 : 0.506172839506
+2016-08-24 09:26:18,098 DEBUG: 			View 3 : 0.567901234568
+2016-08-24 09:26:18,209 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:26:19,837 DEBUG: 		Start:	 Iteration 27
+2016-08-24 09:26:19,854 DEBUG: 			View 0 : 0.413580246914
+2016-08-24 09:26:19,862 DEBUG: 			View 1 : 0.672839506173
+2016-08-24 09:26:19,900 DEBUG: 			View 2 : 0.364197530864
+2016-08-24 09:26:19,908 DEBUG: 			View 3 : 0.469135802469
+2016-08-24 09:26:20,019 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:26:21,774 DEBUG: 		Start:	 Iteration 28
+2016-08-24 09:26:21,791 DEBUG: 			View 0 : 0.555555555556
+2016-08-24 09:26:21,799 DEBUG: 			View 1 : 0.388888888889
+2016-08-24 09:26:21,837 DEBUG: 			View 2 : 0.530864197531
+2016-08-24 09:26:21,845 DEBUG: 			View 3 : 0.561728395062
+2016-08-24 09:26:21,962 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:26:23,703 DEBUG: 		Start:	 Iteration 29
+2016-08-24 09:26:23,720 DEBUG: 			View 0 : 0.493827160494
+2016-08-24 09:26:23,728 DEBUG: 			View 1 : 0.611111111111
+2016-08-24 09:26:23,765 DEBUG: 			View 2 : 0.617283950617
+2016-08-24 09:26:23,773 DEBUG: 			View 3 : 0.438271604938
+2016-08-24 09:26:23,890 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:26:25,713 DEBUG: 		Start:	 Iteration 30
+2016-08-24 09:26:25,730 DEBUG: 			View 0 : 0.432098765432
+2016-08-24 09:26:25,739 DEBUG: 			View 1 : 0.586419753086
+2016-08-24 09:26:25,776 DEBUG: 			View 2 : 0.604938271605
+2016-08-24 09:26:25,784 DEBUG: 			View 3 : 0.617283950617
+2016-08-24 09:26:25,904 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:26:27,986 DEBUG: 		Start:	 Iteration 31
+2016-08-24 09:26:28,004 DEBUG: 			View 0 : 0.623456790123
+2016-08-24 09:26:28,013 DEBUG: 			View 1 : 0.456790123457
+2016-08-24 09:26:28,051 DEBUG: 			View 2 : 0.506172839506
+2016-08-24 09:26:28,059 DEBUG: 			View 3 : 0.376543209877
+2016-08-24 09:26:28,180 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:26:30,112 DEBUG: 		Start:	 Iteration 32
+2016-08-24 09:26:30,129 DEBUG: 			View 0 : 0.456790123457
+2016-08-24 09:26:30,137 DEBUG: 			View 1 : 0.567901234568
+2016-08-24 09:26:30,175 DEBUG: 			View 2 : 0.382716049383
+2016-08-24 09:26:30,182 DEBUG: 			View 3 : 0.567901234568
+2016-08-24 09:26:30,305 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:26:32,285 DEBUG: 		Start:	 Iteration 33
+2016-08-24 09:26:32,302 DEBUG: 			View 0 : 0.512345679012
+2016-08-24 09:26:32,310 DEBUG: 			View 1 : 0.327160493827
+2016-08-24 09:26:32,347 DEBUG: 			View 2 : 0.592592592593
+2016-08-24 09:26:32,355 DEBUG: 			View 3 : 0.487654320988
+2016-08-24 09:26:32,483 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:26:34,814 DEBUG: 		Start:	 Iteration 34
+2016-08-24 09:26:34,837 DEBUG: 			View 0 : 0.5
+2016-08-24 09:26:34,853 DEBUG: 			View 1 : 0.537037037037
+2016-08-24 09:26:34,913 DEBUG: 			View 2 : 0.487654320988
+2016-08-24 09:26:34,927 DEBUG: 			View 3 : 0.395061728395
+2016-08-24 09:26:35,074 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:26:37,180 DEBUG: 		Start:	 Iteration 35
+2016-08-24 09:26:37,197 DEBUG: 			View 0 : 0.493827160494
+2016-08-24 09:26:37,205 DEBUG: 			View 1 : 0.493827160494
+2016-08-24 09:26:37,242 DEBUG: 			View 2 : 0.512345679012
+2016-08-24 09:26:37,250 DEBUG: 			View 3 : 0.641975308642
+2016-08-24 09:26:37,379 DEBUG: 			 Best view : 		Clinic_
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-092640-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-092640-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..1c9b53f0
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-092640-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,50 @@
+2016-08-24 09:26:40,875 INFO: Start:	 Read HDF5 Database Files for ModifiedMultiOmic
+2016-08-24 09:26:40,875 INFO: Info:	 Labels used: No, Yes
+2016-08-24 09:26:40,875 INFO: Info:	 Length of dataset:347
+2016-08-24 09:26:40,877 INFO: ### Main Programm for Multiview Classification
+2016-08-24 09:26:40,877 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 09:26:40,877 INFO: Info:	 Shape of Methyl_ :(347, 25978)
+2016-08-24 09:26:40,878 INFO: Info:	 Shape of MiRNA__ :(347, 1046)
+2016-08-24 09:26:40,878 INFO: Info:	 Shape of RANSeq_ :(347, 73599)
+2016-08-24 09:26:40,878 INFO: Info:	 Shape of Clinic_ :(347, 127)
+2016-08-24 09:26:40,879 INFO: Done:	 Read Database Files
+2016-08-24 09:26:40,879 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-24 09:26:40,882 INFO: Done:	 Determine validation split
+2016-08-24 09:26:40,882 INFO: Start:	 Determine 2 folds
+2016-08-24 09:26:40,891 INFO: Info:	 Length of Learning Sets: 122
+2016-08-24 09:26:40,892 INFO: Info:	 Length of Testing Sets: 122
+2016-08-24 09:26:40,892 INFO: Info:	 Length of Validation Set: 103
+2016-08-24 09:26:40,892 INFO: Done:	 Determine folds
+2016-08-24 09:26:40,892 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-24 09:26:40,892 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-24 09:26:40,892 DEBUG: 	Start:	 Gridsearch for DecisionTree on Methyl_
+2016-08-24 09:26:48,203 DEBUG: 0.593198847262Poulet
+2016-08-24 09:26:48,203 DEBUG: 0.572910662824Poulet
+2016-08-24 09:26:48,203 DEBUG: 0.586167146974Poulet
+2016-08-24 09:26:48,203 DEBUG: 0.5134870317Poulet
+2016-08-24 09:26:48,203 DEBUG: 0.508933717579Poulet
+2016-08-24 09:26:48,203 DEBUG: 0.549682997118Poulet
+2016-08-24 09:26:48,204 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:26:48,204 DEBUG: 	Start:	 Gridsearch for DecisionTree on MiRNA__
+2016-08-24 09:26:50,116 DEBUG: 0.584495677233Poulet
+2016-08-24 09:26:50,117 DEBUG: 0.583342939481Poulet
+2016-08-24 09:26:50,117 DEBUG: 0.52288184438Poulet
+2016-08-24 09:26:50,117 DEBUG: 0.560691642651Poulet
+2016-08-24 09:26:50,117 DEBUG: 0.536657060519Poulet
+2016-08-24 09:26:50,117 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:26:50,117 DEBUG: 	Start:	 Gridsearch for DecisionTree on RANSeq_
+2016-08-24 09:27:07,105 DEBUG: 0.571469740634Poulet
+2016-08-24 09:27:07,105 DEBUG: 0.587665706052Poulet
+2016-08-24 09:27:07,105 DEBUG: 0.551527377522Poulet
+2016-08-24 09:27:07,105 DEBUG: 0.55469740634Poulet
+2016-08-24 09:27:07,105 DEBUG: 0.508760806916Poulet
+2016-08-24 09:27:07,105 DEBUG: 0.507262247839Poulet
+2016-08-24 09:27:07,106 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:27:07,107 DEBUG: 	Start:	 Gridsearch for DecisionTree on Clinic_
+2016-08-24 09:27:08,919 DEBUG: 0.583227665706Poulet
+2016-08-24 09:27:08,919 DEBUG: 0.570489913545Poulet
+2016-08-24 09:27:08,919 DEBUG: 0.55976945245Poulet
+2016-08-24 09:27:08,919 DEBUG: 0.586570605187Poulet
+2016-08-24 09:27:08,919 DEBUG: 0.516195965418Poulet
+2016-08-24 09:27:08,919 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:27:08,920 DEBUG: 	Start:	 Gridsearch for DecisionTree on MRNASeq
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-092735-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-092735-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..a19abd19
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-092735-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,650 @@
+2016-08-24 09:27:35,426 INFO: Start:	 Read HDF5 Database Files for ModifiedMultiOmic
+2016-08-24 09:27:35,427 INFO: Info:	 Labels used: No, Yes
+2016-08-24 09:27:35,427 INFO: Info:	 Length of dataset:347
+2016-08-24 09:27:35,428 INFO: ### Main Programm for Multiview Classification
+2016-08-24 09:27:35,428 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 09:27:35,429 INFO: Info:	 Shape of Methyl_ :(347, 25978)
+2016-08-24 09:27:35,429 INFO: Info:	 Shape of MiRNA__ :(347, 1046)
+2016-08-24 09:27:35,430 INFO: Info:	 Shape of RANSeq_ :(347, 73599)
+2016-08-24 09:27:35,430 INFO: Info:	 Shape of Clinic_ :(347, 127)
+2016-08-24 09:27:35,430 INFO: Done:	 Read Database Files
+2016-08-24 09:27:35,430 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-24 09:27:35,433 INFO: Done:	 Determine validation split
+2016-08-24 09:27:35,434 INFO: Start:	 Determine 2 folds
+2016-08-24 09:27:35,442 INFO: Info:	 Length of Learning Sets: 122
+2016-08-24 09:27:35,442 INFO: Info:	 Length of Testing Sets: 122
+2016-08-24 09:27:35,442 INFO: Info:	 Length of Validation Set: 103
+2016-08-24 09:27:35,442 INFO: Done:	 Determine folds
+2016-08-24 09:27:35,442 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-24 09:27:35,442 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-24 09:27:35,442 DEBUG: 	Start:	 Gridsearch for DecisionTree on Methyl_
+2016-08-24 09:27:42,729 DEBUG: 0.591873198847Poulet
+2016-08-24 09:27:42,729 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:27:42,730 DEBUG: 	Start:	 Gridsearch for DecisionTree on MiRNA__
+2016-08-24 09:27:44,640 DEBUG: 0.569740634006Poulet
+2016-08-24 09:27:44,640 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:27:44,641 DEBUG: 	Start:	 Gridsearch for DecisionTree on RANSeq_
+2016-08-24 09:28:01,306 DEBUG: 0.576945244957Poulet
+2016-08-24 09:28:01,306 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:28:01,307 DEBUG: 	Start:	 Gridsearch for DecisionTree on Clinic_
+2016-08-24 09:28:03,058 DEBUG: 0.582305475504Poulet
+2016-08-24 09:28:03,058 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:28:03,058 DEBUG: 	Start:	 Gridsearch for DecisionTree on MRNASeq
+2016-08-24 09:28:40,826 DEBUG: 0.558962536023Poulet
+2016-08-24 09:28:40,827 DEBUG: 0.560518731988Poulet
+2016-08-24 09:28:40,827 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:28:40,827 INFO: Done:	 Gridsearching best settings for monoview classifiers
+2016-08-24 09:28:40,827 INFO: 	Start:	 Fold number 1
+2016-08-24 09:28:42,410 DEBUG: 		Start:	 Iteration 1
+2016-08-24 09:28:42,426 DEBUG: 			View 0 : 0.602649006623
+2016-08-24 09:28:42,433 DEBUG: 			View 1 : 0.649006622517
+2016-08-24 09:28:42,460 DEBUG: 			View 2 : 0.602649006623
+2016-08-24 09:28:42,467 DEBUG: 			View 3 : 0.602649006623
+2016-08-24 09:28:42,507 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:28:42,579 DEBUG: 		Start:	 Iteration 2
+2016-08-24 09:28:42,596 DEBUG: 			View 0 : 0.549668874172
+2016-08-24 09:28:42,603 DEBUG: 			View 1 : 0.576158940397
+2016-08-24 09:28:42,639 DEBUG: 			View 2 : 0.529801324503
+2016-08-24 09:28:42,646 DEBUG: 			View 3 : 0.576158940397
+2016-08-24 09:28:42,689 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:28:42,816 DEBUG: 		Start:	 Iteration 3
+2016-08-24 09:28:42,832 DEBUG: 			View 0 : 0.470198675497
+2016-08-24 09:28:42,840 DEBUG: 			View 1 : 0.443708609272
+2016-08-24 09:28:42,875 DEBUG: 			View 2 : 0.543046357616
+2016-08-24 09:28:42,882 DEBUG: 			View 3 : 0.443708609272
+2016-08-24 09:28:42,933 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:28:43,132 DEBUG: 		Start:	 Iteration 4
+2016-08-24 09:28:43,148 DEBUG: 			View 0 : 0.390728476821
+2016-08-24 09:28:43,155 DEBUG: 			View 1 : 0.715231788079
+2016-08-24 09:28:43,190 DEBUG: 			View 2 : 0.503311258278
+2016-08-24 09:28:43,198 DEBUG: 			View 3 : 0.483443708609
+2016-08-24 09:28:43,250 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:28:43,503 DEBUG: 		Start:	 Iteration 5
+2016-08-24 09:28:43,520 DEBUG: 			View 0 : 0.483443708609
+2016-08-24 09:28:43,527 DEBUG: 			View 1 : 0.397350993377
+2016-08-24 09:28:43,563 DEBUG: 			View 2 : 0.602649006623
+2016-08-24 09:28:43,570 DEBUG: 			View 3 : 0.629139072848
+2016-08-24 09:28:43,624 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:28:43,933 DEBUG: 		Start:	 Iteration 6
+2016-08-24 09:28:43,949 DEBUG: 			View 0 : 0.675496688742
+2016-08-24 09:28:43,956 DEBUG: 			View 1 : 0.456953642384
+2016-08-24 09:28:43,992 DEBUG: 			View 2 : 0.476821192053
+2016-08-24 09:28:43,999 DEBUG: 			View 3 : 0.503311258278
+2016-08-24 09:28:44,056 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:28:44,423 DEBUG: 		Start:	 Iteration 7
+2016-08-24 09:28:44,439 DEBUG: 			View 0 : 0.602649006623
+2016-08-24 09:28:44,447 DEBUG: 			View 1 : 0.298013245033
+2016-08-24 09:28:44,482 DEBUG: 			View 2 : 0.602649006623
+2016-08-24 09:28:44,489 DEBUG: 			View 3 : 0.569536423841
+2016-08-24 09:28:44,547 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:28:44,982 DEBUG: 		Start:	 Iteration 8
+2016-08-24 09:28:44,998 DEBUG: 			View 0 : 0.529801324503
+2016-08-24 09:28:45,005 DEBUG: 			View 1 : 0.390728476821
+2016-08-24 09:28:45,041 DEBUG: 			View 2 : 0.509933774834
+2016-08-24 09:28:45,048 DEBUG: 			View 3 : 0.509933774834
+2016-08-24 09:28:45,108 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:28:45,601 DEBUG: 		Start:	 Iteration 9
+2016-08-24 09:28:45,618 DEBUG: 			View 0 : 0.417218543046
+2016-08-24 09:28:45,625 DEBUG: 			View 1 : 0.609271523179
+2016-08-24 09:28:45,660 DEBUG: 			View 2 : 0.582781456954
+2016-08-24 09:28:45,668 DEBUG: 			View 3 : 0.476821192053
+2016-08-24 09:28:45,730 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:28:46,279 DEBUG: 		Start:	 Iteration 10
+2016-08-24 09:28:46,295 DEBUG: 			View 0 : 0.503311258278
+2016-08-24 09:28:46,303 DEBUG: 			View 1 : 0.635761589404
+2016-08-24 09:28:46,338 DEBUG: 			View 2 : 0.470198675497
+2016-08-24 09:28:46,345 DEBUG: 			View 3 : 0.58940397351
+2016-08-24 09:28:46,410 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:28:47,014 DEBUG: 		Start:	 Iteration 11
+2016-08-24 09:28:47,030 DEBUG: 			View 0 : 0.562913907285
+2016-08-24 09:28:47,038 DEBUG: 			View 1 : 0.582781456954
+2016-08-24 09:28:47,073 DEBUG: 			View 2 : 0.423841059603
+2016-08-24 09:28:47,080 DEBUG: 			View 3 : 0.549668874172
+2016-08-24 09:28:47,147 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:28:47,805 DEBUG: 		Start:	 Iteration 12
+2016-08-24 09:28:47,821 DEBUG: 			View 0 : 0.529801324503
+2016-08-24 09:28:47,829 DEBUG: 			View 1 : 0.635761589404
+2016-08-24 09:28:47,864 DEBUG: 			View 2 : 0.437086092715
+2016-08-24 09:28:47,871 DEBUG: 			View 3 : 0.576158940397
+2016-08-24 09:28:47,940 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:28:48,655 DEBUG: 		Start:	 Iteration 13
+2016-08-24 09:28:48,671 DEBUG: 			View 0 : 0.483443708609
+2016-08-24 09:28:48,679 DEBUG: 			View 1 : 0.668874172185
+2016-08-24 09:28:48,714 DEBUG: 			View 2 : 0.53642384106
+2016-08-24 09:28:48,721 DEBUG: 			View 3 : 0.430463576159
+2016-08-24 09:28:48,792 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:28:49,562 DEBUG: 		Start:	 Iteration 14
+2016-08-24 09:28:49,579 DEBUG: 			View 0 : 0.450331125828
+2016-08-24 09:28:49,586 DEBUG: 			View 1 : 0.443708609272
+2016-08-24 09:28:49,621 DEBUG: 			View 2 : 0.483443708609
+2016-08-24 09:28:49,628 DEBUG: 			View 3 : 0.423841059603
+2016-08-24 09:28:49,628 WARNING: All bad for iteration 13
+2016-08-24 09:28:49,703 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:28:50,539 DEBUG: 		Start:	 Iteration 15
+2016-08-24 09:28:50,555 DEBUG: 			View 0 : 0.470198675497
+2016-08-24 09:28:50,563 DEBUG: 			View 1 : 0.615894039735
+2016-08-24 09:28:50,598 DEBUG: 			View 2 : 0.490066225166
+2016-08-24 09:28:50,605 DEBUG: 			View 3 : 0.569536423841
+2016-08-24 09:28:50,682 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:28:51,575 DEBUG: 		Start:	 Iteration 16
+2016-08-24 09:28:51,591 DEBUG: 			View 0 : 0.456953642384
+2016-08-24 09:28:51,598 DEBUG: 			View 1 : 0.430463576159
+2016-08-24 09:28:51,633 DEBUG: 			View 2 : 0.562913907285
+2016-08-24 09:28:51,640 DEBUG: 			View 3 : 0.549668874172
+2016-08-24 09:28:51,718 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:28:52,694 DEBUG: 		Start:	 Iteration 17
+2016-08-24 09:28:52,710 DEBUG: 			View 0 : 0.403973509934
+2016-08-24 09:28:52,717 DEBUG: 			View 1 : 0.370860927152
+2016-08-24 09:28:52,752 DEBUG: 			View 2 : 0.476821192053
+2016-08-24 09:28:52,760 DEBUG: 			View 3 : 0.417218543046
+2016-08-24 09:28:52,760 WARNING: All bad for iteration 16
+2016-08-24 09:28:52,839 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:28:53,853 DEBUG: 		Start:	 Iteration 18
+2016-08-24 09:28:53,869 DEBUG: 			View 0 : 0.437086092715
+2016-08-24 09:28:53,876 DEBUG: 			View 1 : 0.483443708609
+2016-08-24 09:28:53,911 DEBUG: 			View 2 : 0.622516556291
+2016-08-24 09:28:53,918 DEBUG: 			View 3 : 0.629139072848
+2016-08-24 09:28:54,002 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:28:55,105 DEBUG: 		Start:	 Iteration 19
+2016-08-24 09:28:55,121 DEBUG: 			View 0 : 0.615894039735
+2016-08-24 09:28:55,129 DEBUG: 			View 1 : 0.430463576159
+2016-08-24 09:28:55,164 DEBUG: 			View 2 : 0.46357615894
+2016-08-24 09:28:55,171 DEBUG: 			View 3 : 0.496688741722
+2016-08-24 09:28:55,255 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:28:56,383 DEBUG: 		Start:	 Iteration 20
+2016-08-24 09:28:56,399 DEBUG: 			View 0 : 0.503311258278
+2016-08-24 09:28:56,407 DEBUG: 			View 1 : 0.602649006623
+2016-08-24 09:28:56,442 DEBUG: 			View 2 : 0.576158940397
+2016-08-24 09:28:56,449 DEBUG: 			View 3 : 0.576158940397
+2016-08-24 09:28:56,535 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:28:57,716 DEBUG: 		Start:	 Iteration 21
+2016-08-24 09:28:57,732 DEBUG: 			View 0 : 0.496688741722
+2016-08-24 09:28:57,739 DEBUG: 			View 1 : 0.46357615894
+2016-08-24 09:28:57,774 DEBUG: 			View 2 : 0.417218543046
+2016-08-24 09:28:57,781 DEBUG: 			View 3 : 0.569536423841
+2016-08-24 09:28:57,870 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:28:59,107 DEBUG: 		Start:	 Iteration 22
+2016-08-24 09:28:59,123 DEBUG: 			View 0 : 0.728476821192
+2016-08-24 09:28:59,130 DEBUG: 			View 1 : 0.350993377483
+2016-08-24 09:28:59,165 DEBUG: 			View 2 : 0.529801324503
+2016-08-24 09:28:59,172 DEBUG: 			View 3 : 0.437086092715
+2016-08-24 09:28:59,262 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:29:00,559 DEBUG: 		Start:	 Iteration 23
+2016-08-24 09:29:00,575 DEBUG: 			View 0 : 0.476821192053
+2016-08-24 09:29:00,583 DEBUG: 			View 1 : 0.609271523179
+2016-08-24 09:29:00,618 DEBUG: 			View 2 : 0.503311258278
+2016-08-24 09:29:00,625 DEBUG: 			View 3 : 0.496688741722
+2016-08-24 09:29:00,718 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:29:02,130 DEBUG: 		Start:	 Iteration 24
+2016-08-24 09:29:02,147 DEBUG: 			View 0 : 0.615894039735
+2016-08-24 09:29:02,155 DEBUG: 			View 1 : 0.397350993377
+2016-08-24 09:29:02,193 DEBUG: 			View 2 : 0.476821192053
+2016-08-24 09:29:02,201 DEBUG: 			View 3 : 0.576158940397
+2016-08-24 09:29:02,307 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:29:03,725 DEBUG: 		Start:	 Iteration 25
+2016-08-24 09:29:03,741 DEBUG: 			View 0 : 0.443708609272
+2016-08-24 09:29:03,748 DEBUG: 			View 1 : 0.615894039735
+2016-08-24 09:29:03,783 DEBUG: 			View 2 : 0.443708609272
+2016-08-24 09:29:03,790 DEBUG: 			View 3 : 0.370860927152
+2016-08-24 09:29:03,888 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:29:05,358 DEBUG: 		Start:	 Iteration 26
+2016-08-24 09:29:05,374 DEBUG: 			View 0 : 0.615894039735
+2016-08-24 09:29:05,381 DEBUG: 			View 1 : 0.556291390728
+2016-08-24 09:29:05,417 DEBUG: 			View 2 : 0.556291390728
+2016-08-24 09:29:05,425 DEBUG: 			View 3 : 0.41059602649
+2016-08-24 09:29:05,526 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:29:07,057 DEBUG: 		Start:	 Iteration 27
+2016-08-24 09:29:07,073 DEBUG: 			View 0 : 0.423841059603
+2016-08-24 09:29:07,081 DEBUG: 			View 1 : 0.688741721854
+2016-08-24 09:29:07,116 DEBUG: 			View 2 : 0.509933774834
+2016-08-24 09:29:07,123 DEBUG: 			View 3 : 0.503311258278
+2016-08-24 09:29:07,225 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:29:08,808 DEBUG: 		Start:	 Iteration 28
+2016-08-24 09:29:08,824 DEBUG: 			View 0 : 0.543046357616
+2016-08-24 09:29:08,832 DEBUG: 			View 1 : 0.675496688742
+2016-08-24 09:29:08,867 DEBUG: 			View 2 : 0.549668874172
+2016-08-24 09:29:08,874 DEBUG: 			View 3 : 0.483443708609
+2016-08-24 09:29:08,979 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:29:10,621 DEBUG: 		Start:	 Iteration 29
+2016-08-24 09:29:10,637 DEBUG: 			View 0 : 0.53642384106
+2016-08-24 09:29:10,645 DEBUG: 			View 1 : 0.701986754967
+2016-08-24 09:29:10,680 DEBUG: 			View 2 : 0.496688741722
+2016-08-24 09:29:10,687 DEBUG: 			View 3 : 0.516556291391
+2016-08-24 09:29:10,794 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:29:12,491 DEBUG: 		Start:	 Iteration 30
+2016-08-24 09:29:12,507 DEBUG: 			View 0 : 0.483443708609
+2016-08-24 09:29:12,514 DEBUG: 			View 1 : 0.615894039735
+2016-08-24 09:29:12,550 DEBUG: 			View 2 : 0.390728476821
+2016-08-24 09:29:12,557 DEBUG: 			View 3 : 0.509933774834
+2016-08-24 09:29:12,666 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:29:14,431 DEBUG: 		Start:	 Iteration 31
+2016-08-24 09:29:14,447 DEBUG: 			View 0 : 0.53642384106
+2016-08-24 09:29:14,454 DEBUG: 			View 1 : 0.58940397351
+2016-08-24 09:29:14,490 DEBUG: 			View 2 : 0.529801324503
+2016-08-24 09:29:14,497 DEBUG: 			View 3 : 0.549668874172
+2016-08-24 09:29:14,607 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:29:16,428 DEBUG: 		Start:	 Iteration 32
+2016-08-24 09:29:16,445 DEBUG: 			View 0 : 0.523178807947
+2016-08-24 09:29:16,452 DEBUG: 			View 1 : 0.483443708609
+2016-08-24 09:29:16,488 DEBUG: 			View 2 : 0.470198675497
+2016-08-24 09:29:16,495 DEBUG: 			View 3 : 0.456953642384
+2016-08-24 09:29:16,608 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:29:18,508 DEBUG: 		Start:	 Iteration 33
+2016-08-24 09:29:18,524 DEBUG: 			View 0 : 0.582781456954
+2016-08-24 09:29:18,531 DEBUG: 			View 1 : 0.662251655629
+2016-08-24 09:29:18,568 DEBUG: 			View 2 : 0.476821192053
+2016-08-24 09:29:18,575 DEBUG: 			View 3 : 0.523178807947
+2016-08-24 09:29:18,688 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:29:20,620 DEBUG: 		Start:	 Iteration 34
+2016-08-24 09:29:20,637 DEBUG: 			View 0 : 0.529801324503
+2016-08-24 09:29:20,644 DEBUG: 			View 1 : 0.450331125828
+2016-08-24 09:29:20,679 DEBUG: 			View 2 : 0.476821192053
+2016-08-24 09:29:20,686 DEBUG: 			View 3 : 0.596026490066
+2016-08-24 09:29:20,802 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:29:22,810 DEBUG: 		Start:	 Iteration 35
+2016-08-24 09:29:22,827 DEBUG: 			View 0 : 0.523178807947
+2016-08-24 09:29:22,834 DEBUG: 			View 1 : 0.582781456954
+2016-08-24 09:29:22,872 DEBUG: 			View 2 : 0.668874172185
+2016-08-24 09:29:22,880 DEBUG: 			View 3 : 0.58940397351
+2016-08-24 09:29:23,000 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:29:25,109 DEBUG: 		Start:	 Iteration 36
+2016-08-24 09:29:25,125 DEBUG: 			View 0 : 0.46357615894
+2016-08-24 09:29:25,133 DEBUG: 			View 1 : 0.390728476821
+2016-08-24 09:29:25,170 DEBUG: 			View 2 : 0.384105960265
+2016-08-24 09:29:25,178 DEBUG: 			View 3 : 0.53642384106
+2016-08-24 09:29:25,307 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:29:27,522 DEBUG: 		Start:	 Iteration 37
+2016-08-24 09:29:27,538 DEBUG: 			View 0 : 0.635761589404
+2016-08-24 09:29:27,545 DEBUG: 			View 1 : 0.476821192053
+2016-08-24 09:29:27,580 DEBUG: 			View 2 : 0.509933774834
+2016-08-24 09:29:27,588 DEBUG: 			View 3 : 0.523178807947
+2016-08-24 09:29:27,714 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:29:29,889 DEBUG: 		Start:	 Iteration 38
+2016-08-24 09:29:29,905 DEBUG: 			View 0 : 0.569536423841
+2016-08-24 09:29:29,912 DEBUG: 			View 1 : 0.64238410596
+2016-08-24 09:29:29,948 DEBUG: 			View 2 : 0.556291390728
+2016-08-24 09:29:29,955 DEBUG: 			View 3 : 0.423841059603
+2016-08-24 09:29:30,079 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:29:32,282 DEBUG: 		Start:	 Iteration 39
+2016-08-24 09:29:32,298 DEBUG: 			View 0 : 0.549668874172
+2016-08-24 09:29:32,305 DEBUG: 			View 1 : 0.562913907285
+2016-08-24 09:29:32,341 DEBUG: 			View 2 : 0.403973509934
+2016-08-24 09:29:32,348 DEBUG: 			View 3 : 0.503311258278
+2016-08-24 09:29:32,473 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:29:34,735 DEBUG: 		Start:	 Iteration 40
+2016-08-24 09:29:34,751 DEBUG: 			View 0 : 0.569536423841
+2016-08-24 09:29:34,760 DEBUG: 			View 1 : 0.437086092715
+2016-08-24 09:29:34,797 DEBUG: 			View 2 : 0.46357615894
+2016-08-24 09:29:34,804 DEBUG: 			View 3 : 0.503311258278
+2016-08-24 09:29:34,933 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:29:37,258 DEBUG: 		Start:	 Iteration 41
+2016-08-24 09:29:37,274 DEBUG: 			View 0 : 0.549668874172
+2016-08-24 09:29:37,281 DEBUG: 			View 1 : 0.708609271523
+2016-08-24 09:29:37,316 DEBUG: 			View 2 : 0.41059602649
+2016-08-24 09:29:37,323 DEBUG: 			View 3 : 0.437086092715
+2016-08-24 09:29:37,453 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:29:39,827 DEBUG: 		Start:	 Iteration 42
+2016-08-24 09:29:39,843 DEBUG: 			View 0 : 0.615894039735
+2016-08-24 09:29:39,850 DEBUG: 			View 1 : 0.549668874172
+2016-08-24 09:29:39,886 DEBUG: 			View 2 : 0.562913907285
+2016-08-24 09:29:39,893 DEBUG: 			View 3 : 0.543046357616
+2016-08-24 09:29:40,025 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:29:42,592 DEBUG: 		Start:	 Iteration 43
+2016-08-24 09:29:42,611 DEBUG: 			View 0 : 0.602649006623
+2016-08-24 09:29:42,620 DEBUG: 			View 1 : 0.549668874172
+2016-08-24 09:29:42,664 DEBUG: 			View 2 : 0.450331125828
+2016-08-24 09:29:42,673 DEBUG: 			View 3 : 0.549668874172
+2016-08-24 09:29:42,907 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:29:45,611 DEBUG: 		Start:	 Iteration 44
+2016-08-24 09:29:45,627 DEBUG: 			View 0 : 0.344370860927
+2016-08-24 09:29:45,635 DEBUG: 			View 1 : 0.582781456954
+2016-08-24 09:29:45,672 DEBUG: 			View 2 : 0.556291390728
+2016-08-24 09:29:45,679 DEBUG: 			View 3 : 0.450331125828
+2016-08-24 09:29:45,821 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:29:48,520 DEBUG: 		Start:	 Iteration 45
+2016-08-24 09:29:48,539 DEBUG: 			View 0 : 0.662251655629
+2016-08-24 09:29:48,548 DEBUG: 			View 1 : 0.596026490066
+2016-08-24 09:29:48,589 DEBUG: 			View 2 : 0.549668874172
+2016-08-24 09:29:48,597 DEBUG: 			View 3 : 0.483443708609
+2016-08-24 09:29:48,760 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:29:51,441 DEBUG: 		Start:	 Iteration 46
+2016-08-24 09:29:51,457 DEBUG: 			View 0 : 0.523178807947
+2016-08-24 09:29:51,466 DEBUG: 			View 1 : 0.64238410596
+2016-08-24 09:29:51,502 DEBUG: 			View 2 : 0.562913907285
+2016-08-24 09:29:51,510 DEBUG: 			View 3 : 0.430463576159
+2016-08-24 09:29:51,667 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:29:54,334 DEBUG: 		Start:	 Iteration 47
+2016-08-24 09:29:54,350 DEBUG: 			View 0 : 0.437086092715
+2016-08-24 09:29:54,358 DEBUG: 			View 1 : 0.53642384106
+2016-08-24 09:29:54,393 DEBUG: 			View 2 : 0.437086092715
+2016-08-24 09:29:54,401 DEBUG: 			View 3 : 0.483443708609
+2016-08-24 09:29:54,544 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:29:57,261 DEBUG: 		Start:	 Iteration 48
+2016-08-24 09:29:57,277 DEBUG: 			View 0 : 0.53642384106
+2016-08-24 09:29:57,285 DEBUG: 			View 1 : 0.569536423841
+2016-08-24 09:29:57,320 DEBUG: 			View 2 : 0.562913907285
+2016-08-24 09:29:57,327 DEBUG: 			View 3 : 0.456953642384
+2016-08-24 09:29:57,473 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:30:00,260 DEBUG: 		Start:	 Iteration 49
+2016-08-24 09:30:00,276 DEBUG: 			View 0 : 0.509933774834
+2016-08-24 09:30:00,283 DEBUG: 			View 1 : 0.41059602649
+2016-08-24 09:30:00,319 DEBUG: 			View 2 : 0.562913907285
+2016-08-24 09:30:00,326 DEBUG: 			View 3 : 0.496688741722
+2016-08-24 09:30:00,474 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:30:03,315 DEBUG: 		Start:	 Iteration 50
+2016-08-24 09:30:03,331 DEBUG: 			View 0 : 0.569536423841
+2016-08-24 09:30:03,338 DEBUG: 			View 1 : 0.437086092715
+2016-08-24 09:30:03,373 DEBUG: 			View 2 : 0.430463576159
+2016-08-24 09:30:03,381 DEBUG: 			View 3 : 0.503311258278
+2016-08-24 09:30:03,531 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:30:06,430 DEBUG: 		Start:	 Iteration 51
+2016-08-24 09:30:06,446 DEBUG: 			View 0 : 0.476821192053
+2016-08-24 09:30:06,453 DEBUG: 			View 1 : 0.602649006623
+2016-08-24 09:30:06,489 DEBUG: 			View 2 : 0.556291390728
+2016-08-24 09:30:06,496 DEBUG: 			View 3 : 0.609271523179
+2016-08-24 09:30:06,648 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:30:09,800 DEBUG: 		Start:	 Iteration 52
+2016-08-24 09:30:09,818 DEBUG: 			View 0 : 0.64238410596
+2016-08-24 09:30:09,826 DEBUG: 			View 1 : 0.490066225166
+2016-08-24 09:30:09,861 DEBUG: 			View 2 : 0.423841059603
+2016-08-24 09:30:09,868 DEBUG: 			View 3 : 0.470198675497
+2016-08-24 09:30:10,026 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:30:13,052 INFO: 	Start: 	 Classification
+2016-08-24 09:30:20,660 INFO: 	Done: 	 Fold number 1
+2016-08-24 09:30:20,660 INFO: 	Start:	 Fold number 2
+2016-08-24 09:30:22,264 DEBUG: 		Start:	 Iteration 1
+2016-08-24 09:30:22,279 DEBUG: 			View 0 : 0.62962962963
+2016-08-24 09:30:22,287 DEBUG: 			View 1 : 0.62962962963
+2016-08-24 09:30:22,315 DEBUG: 			View 2 : 0.62962962963
+2016-08-24 09:30:22,323 DEBUG: 			View 3 : 0.62962962963
+2016-08-24 09:30:22,364 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:30:22,443 DEBUG: 		Start:	 Iteration 2
+2016-08-24 09:30:22,461 DEBUG: 			View 0 : 0.432098765432
+2016-08-24 09:30:22,468 DEBUG: 			View 1 : 0.345679012346
+2016-08-24 09:30:22,506 DEBUG: 			View 2 : 0.37037037037
+2016-08-24 09:30:22,514 DEBUG: 			View 3 : 0.598765432099
+2016-08-24 09:30:22,560 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:30:22,701 DEBUG: 		Start:	 Iteration 3
+2016-08-24 09:30:22,718 DEBUG: 			View 0 : 0.481481481481
+2016-08-24 09:30:22,726 DEBUG: 			View 1 : 0.425925925926
+2016-08-24 09:30:22,764 DEBUG: 			View 2 : 0.555555555556
+2016-08-24 09:30:22,772 DEBUG: 			View 3 : 0.444444444444
+2016-08-24 09:30:22,827 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:30:23,047 DEBUG: 		Start:	 Iteration 4
+2016-08-24 09:30:23,064 DEBUG: 			View 0 : 0.635802469136
+2016-08-24 09:30:23,072 DEBUG: 			View 1 : 0.549382716049
+2016-08-24 09:30:23,109 DEBUG: 			View 2 : 0.450617283951
+2016-08-24 09:30:23,117 DEBUG: 			View 3 : 0.598765432099
+2016-08-24 09:30:23,174 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:30:23,451 DEBUG: 		Start:	 Iteration 5
+2016-08-24 09:30:23,468 DEBUG: 			View 0 : 0.462962962963
+2016-08-24 09:30:23,476 DEBUG: 			View 1 : 0.364197530864
+2016-08-24 09:30:23,513 DEBUG: 			View 2 : 0.469135802469
+2016-08-24 09:30:23,521 DEBUG: 			View 3 : 0.524691358025
+2016-08-24 09:30:23,579 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:30:23,913 DEBUG: 		Start:	 Iteration 6
+2016-08-24 09:30:23,929 DEBUG: 			View 0 : 0.592592592593
+2016-08-24 09:30:23,937 DEBUG: 			View 1 : 0.666666666667
+2016-08-24 09:30:23,974 DEBUG: 			View 2 : 0.493827160494
+2016-08-24 09:30:23,981 DEBUG: 			View 3 : 0.549382716049
+2016-08-24 09:30:24,042 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:30:24,446 DEBUG: 		Start:	 Iteration 7
+2016-08-24 09:30:24,463 DEBUG: 			View 0 : 0.413580246914
+2016-08-24 09:30:24,471 DEBUG: 			View 1 : 0.450617283951
+2016-08-24 09:30:24,509 DEBUG: 			View 2 : 0.432098765432
+2016-08-24 09:30:24,517 DEBUG: 			View 3 : 0.401234567901
+2016-08-24 09:30:24,517 WARNING: All bad for iteration 6
+2016-08-24 09:30:24,581 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:30:25,033 DEBUG: 		Start:	 Iteration 8
+2016-08-24 09:30:25,050 DEBUG: 			View 0 : 0.413580246914
+2016-08-24 09:30:25,058 DEBUG: 			View 1 : 0.648148148148
+2016-08-24 09:30:25,095 DEBUG: 			View 2 : 0.598765432099
+2016-08-24 09:30:25,102 DEBUG: 			View 3 : 0.549382716049
+2016-08-24 09:30:25,168 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:30:25,678 DEBUG: 		Start:	 Iteration 9
+2016-08-24 09:30:25,695 DEBUG: 			View 0 : 0.549382716049
+2016-08-24 09:30:25,703 DEBUG: 			View 1 : 0.549382716049
+2016-08-24 09:30:25,740 DEBUG: 			View 2 : 0.567901234568
+2016-08-24 09:30:25,748 DEBUG: 			View 3 : 0.530864197531
+2016-08-24 09:30:25,815 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:30:26,384 DEBUG: 		Start:	 Iteration 10
+2016-08-24 09:30:26,401 DEBUG: 			View 0 : 0.716049382716
+2016-08-24 09:30:26,409 DEBUG: 			View 1 : 0.524691358025
+2016-08-24 09:30:26,445 DEBUG: 			View 2 : 0.444444444444
+2016-08-24 09:30:26,453 DEBUG: 			View 3 : 0.395061728395
+2016-08-24 09:30:26,522 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:30:27,154 DEBUG: 		Start:	 Iteration 11
+2016-08-24 09:30:27,171 DEBUG: 			View 0 : 0.407407407407
+2016-08-24 09:30:27,179 DEBUG: 			View 1 : 0.506172839506
+2016-08-24 09:30:27,216 DEBUG: 			View 2 : 0.469135802469
+2016-08-24 09:30:27,223 DEBUG: 			View 3 : 0.506172839506
+2016-08-24 09:30:27,295 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:30:27,985 DEBUG: 		Start:	 Iteration 12
+2016-08-24 09:30:28,001 DEBUG: 			View 0 : 0.524691358025
+2016-08-24 09:30:28,009 DEBUG: 			View 1 : 0.586419753086
+2016-08-24 09:30:28,046 DEBUG: 			View 2 : 0.543209876543
+2016-08-24 09:30:28,054 DEBUG: 			View 3 : 0.617283950617
+2016-08-24 09:30:28,128 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:30:28,887 DEBUG: 		Start:	 Iteration 13
+2016-08-24 09:30:28,904 DEBUG: 			View 0 : 0.567901234568
+2016-08-24 09:30:28,911 DEBUG: 			View 1 : 0.648148148148
+2016-08-24 09:30:28,948 DEBUG: 			View 2 : 0.432098765432
+2016-08-24 09:30:28,956 DEBUG: 			View 3 : 0.395061728395
+2016-08-24 09:30:29,034 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:30:29,843 DEBUG: 		Start:	 Iteration 14
+2016-08-24 09:30:29,860 DEBUG: 			View 0 : 0.5
+2016-08-24 09:30:29,868 DEBUG: 			View 1 : 0.716049382716
+2016-08-24 09:30:29,905 DEBUG: 			View 2 : 0.487654320988
+2016-08-24 09:30:29,912 DEBUG: 			View 3 : 0.537037037037
+2016-08-24 09:30:29,991 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:30:30,859 DEBUG: 		Start:	 Iteration 15
+2016-08-24 09:30:30,876 DEBUG: 			View 0 : 0.487654320988
+2016-08-24 09:30:30,884 DEBUG: 			View 1 : 0.70987654321
+2016-08-24 09:30:30,921 DEBUG: 			View 2 : 0.425925925926
+2016-08-24 09:30:30,929 DEBUG: 			View 3 : 0.462962962963
+2016-08-24 09:30:31,012 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:30:31,939 DEBUG: 		Start:	 Iteration 16
+2016-08-24 09:30:31,956 DEBUG: 			View 0 : 0.574074074074
+2016-08-24 09:30:31,963 DEBUG: 			View 1 : 0.364197530864
+2016-08-24 09:30:32,000 DEBUG: 			View 2 : 0.592592592593
+2016-08-24 09:30:32,008 DEBUG: 			View 3 : 0.444444444444
+2016-08-24 09:30:32,090 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:30:33,081 DEBUG: 		Start:	 Iteration 17
+2016-08-24 09:30:33,098 DEBUG: 			View 0 : 0.58024691358
+2016-08-24 09:30:33,106 DEBUG: 			View 1 : 0.413580246914
+2016-08-24 09:30:33,143 DEBUG: 			View 2 : 0.5
+2016-08-24 09:30:33,150 DEBUG: 			View 3 : 0.543209876543
+2016-08-24 09:30:33,236 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:30:34,291 DEBUG: 		Start:	 Iteration 18
+2016-08-24 09:30:34,307 DEBUG: 			View 0 : 0.530864197531
+2016-08-24 09:30:34,315 DEBUG: 			View 1 : 0.623456790123
+2016-08-24 09:30:34,352 DEBUG: 			View 2 : 0.444444444444
+2016-08-24 09:30:34,360 DEBUG: 			View 3 : 0.493827160494
+2016-08-24 09:30:34,448 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:30:35,560 DEBUG: 		Start:	 Iteration 19
+2016-08-24 09:30:35,576 DEBUG: 			View 0 : 0.41975308642
+2016-08-24 09:30:35,584 DEBUG: 			View 1 : 0.481481481481
+2016-08-24 09:30:35,621 DEBUG: 			View 2 : 0.432098765432
+2016-08-24 09:30:35,628 DEBUG: 			View 3 : 0.518518518519
+2016-08-24 09:30:35,719 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:30:36,890 DEBUG: 		Start:	 Iteration 20
+2016-08-24 09:30:36,907 DEBUG: 			View 0 : 0.518518518519
+2016-08-24 09:30:36,915 DEBUG: 			View 1 : 0.283950617284
+2016-08-24 09:30:36,952 DEBUG: 			View 2 : 0.58024691358
+2016-08-24 09:30:36,960 DEBUG: 			View 3 : 0.487654320988
+2016-08-24 09:30:37,053 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:30:38,326 DEBUG: 		Start:	 Iteration 21
+2016-08-24 09:30:38,343 DEBUG: 			View 0 : 0.450617283951
+2016-08-24 09:30:38,351 DEBUG: 			View 1 : 0.623456790123
+2016-08-24 09:30:38,389 DEBUG: 			View 2 : 0.456790123457
+2016-08-24 09:30:38,397 DEBUG: 			View 3 : 0.462962962963
+2016-08-24 09:30:38,493 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:30:39,813 DEBUG: 		Start:	 Iteration 22
+2016-08-24 09:30:39,831 DEBUG: 			View 0 : 0.598765432099
+2016-08-24 09:30:39,839 DEBUG: 			View 1 : 0.345679012346
+2016-08-24 09:30:39,876 DEBUG: 			View 2 : 0.462962962963
+2016-08-24 09:30:39,884 DEBUG: 			View 3 : 0.604938271605
+2016-08-24 09:30:39,984 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:30:41,351 DEBUG: 		Start:	 Iteration 23
+2016-08-24 09:30:41,368 DEBUG: 			View 0 : 0.524691358025
+2016-08-24 09:30:41,375 DEBUG: 			View 1 : 0.549382716049
+2016-08-24 09:30:41,413 DEBUG: 			View 2 : 0.635802469136
+2016-08-24 09:30:41,420 DEBUG: 			View 3 : 0.487654320988
+2016-08-24 09:30:41,519 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:30:42,958 DEBUG: 		Start:	 Iteration 24
+2016-08-24 09:30:42,975 DEBUG: 			View 0 : 0.679012345679
+2016-08-24 09:30:42,983 DEBUG: 			View 1 : 0.401234567901
+2016-08-24 09:30:43,020 DEBUG: 			View 2 : 0.592592592593
+2016-08-24 09:30:43,027 DEBUG: 			View 3 : 0.456790123457
+2016-08-24 09:30:43,129 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:30:44,627 DEBUG: 		Start:	 Iteration 25
+2016-08-24 09:30:44,644 DEBUG: 			View 0 : 0.487654320988
+2016-08-24 09:30:44,652 DEBUG: 			View 1 : 0.654320987654
+2016-08-24 09:30:44,689 DEBUG: 			View 2 : 0.450617283951
+2016-08-24 09:30:44,696 DEBUG: 			View 3 : 0.58024691358
+2016-08-24 09:30:44,800 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:30:46,374 DEBUG: 		Start:	 Iteration 26
+2016-08-24 09:30:46,392 DEBUG: 			View 0 : 0.425925925926
+2016-08-24 09:30:46,400 DEBUG: 			View 1 : 0.376543209877
+2016-08-24 09:30:46,439 DEBUG: 			View 2 : 0.512345679012
+2016-08-24 09:30:46,446 DEBUG: 			View 3 : 0.475308641975
+2016-08-24 09:30:46,558 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:30:48,255 DEBUG: 		Start:	 Iteration 27
+2016-08-24 09:30:48,272 DEBUG: 			View 0 : 0.586419753086
+2016-08-24 09:30:48,280 DEBUG: 			View 1 : 0.549382716049
+2016-08-24 09:30:48,318 DEBUG: 			View 2 : 0.5
+2016-08-24 09:30:48,326 DEBUG: 			View 3 : 0.432098765432
+2016-08-24 09:30:48,434 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:30:50,179 DEBUG: 		Start:	 Iteration 28
+2016-08-24 09:30:50,196 DEBUG: 			View 0 : 0.524691358025
+2016-08-24 09:30:50,204 DEBUG: 			View 1 : 0.41975308642
+2016-08-24 09:30:50,242 DEBUG: 			View 2 : 0.481481481481
+2016-08-24 09:30:50,250 DEBUG: 			View 3 : 0.549382716049
+2016-08-24 09:30:50,361 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:30:52,134 DEBUG: 		Start:	 Iteration 29
+2016-08-24 09:30:52,151 DEBUG: 			View 0 : 0.438271604938
+2016-08-24 09:30:52,159 DEBUG: 			View 1 : 0.672839506173
+2016-08-24 09:30:52,197 DEBUG: 			View 2 : 0.617283950617
+2016-08-24 09:30:52,205 DEBUG: 			View 3 : 0.407407407407
+2016-08-24 09:30:52,321 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:30:54,169 DEBUG: 		Start:	 Iteration 30
+2016-08-24 09:30:54,186 DEBUG: 			View 0 : 0.475308641975
+2016-08-24 09:30:54,194 DEBUG: 			View 1 : 0.487654320988
+2016-08-24 09:30:54,232 DEBUG: 			View 2 : 0.58024691358
+2016-08-24 09:30:54,239 DEBUG: 			View 3 : 0.376543209877
+2016-08-24 09:30:54,355 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:30:56,248 DEBUG: 		Start:	 Iteration 31
+2016-08-24 09:30:56,266 DEBUG: 			View 0 : 0.586419753086
+2016-08-24 09:30:56,274 DEBUG: 			View 1 : 0.407407407407
+2016-08-24 09:30:56,312 DEBUG: 			View 2 : 0.66049382716
+2016-08-24 09:30:56,320 DEBUG: 			View 3 : 0.549382716049
+2016-08-24 09:30:56,442 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:30:58,403 DEBUG: 		Start:	 Iteration 32
+2016-08-24 09:30:58,420 DEBUG: 			View 0 : 0.469135802469
+2016-08-24 09:30:58,428 DEBUG: 			View 1 : 0.734567901235
+2016-08-24 09:30:58,465 DEBUG: 			View 2 : 0.567901234568
+2016-08-24 09:30:58,472 DEBUG: 			View 3 : 0.506172839506
+2016-08-24 09:30:58,592 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:31:00,607 DEBUG: 		Start:	 Iteration 33
+2016-08-24 09:31:00,623 DEBUG: 			View 0 : 0.493827160494
+2016-08-24 09:31:00,631 DEBUG: 			View 1 : 0.685185185185
+2016-08-24 09:31:00,668 DEBUG: 			View 2 : 0.41975308642
+2016-08-24 09:31:00,676 DEBUG: 			View 3 : 0.487654320988
+2016-08-24 09:31:00,798 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:31:02,869 DEBUG: 		Start:	 Iteration 34
+2016-08-24 09:31:02,885 DEBUG: 			View 0 : 0.425925925926
+2016-08-24 09:31:02,893 DEBUG: 			View 1 : 0.567901234568
+2016-08-24 09:31:02,931 DEBUG: 			View 2 : 0.425925925926
+2016-08-24 09:31:02,939 DEBUG: 			View 3 : 0.462962962963
+2016-08-24 09:31:03,064 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:31:05,264 DEBUG: 		Start:	 Iteration 35
+2016-08-24 09:31:05,281 DEBUG: 			View 0 : 0.611111111111
+2016-08-24 09:31:05,289 DEBUG: 			View 1 : 0.444444444444
+2016-08-24 09:31:05,327 DEBUG: 			View 2 : 0.456790123457
+2016-08-24 09:31:05,334 DEBUG: 			View 3 : 0.567901234568
+2016-08-24 09:31:05,465 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:31:07,724 DEBUG: 		Start:	 Iteration 36
+2016-08-24 09:31:07,741 DEBUG: 			View 0 : 0.296296296296
+2016-08-24 09:31:07,749 DEBUG: 			View 1 : 0.635802469136
+2016-08-24 09:31:07,787 DEBUG: 			View 2 : 0.487654320988
+2016-08-24 09:31:07,795 DEBUG: 			View 3 : 0.506172839506
+2016-08-24 09:31:07,928 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:31:10,248 DEBUG: 		Start:	 Iteration 37
+2016-08-24 09:31:10,264 DEBUG: 			View 0 : 0.364197530864
+2016-08-24 09:31:10,272 DEBUG: 			View 1 : 0.623456790123
+2016-08-24 09:31:10,309 DEBUG: 			View 2 : 0.518518518519
+2016-08-24 09:31:10,317 DEBUG: 			View 3 : 0.586419753086
+2016-08-24 09:31:10,448 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:31:12,764 DEBUG: 		Start:	 Iteration 38
+2016-08-24 09:31:12,781 DEBUG: 			View 0 : 0.567901234568
+2016-08-24 09:31:12,789 DEBUG: 			View 1 : 0.66049382716
+2016-08-24 09:31:12,825 DEBUG: 			View 2 : 0.561728395062
+2016-08-24 09:31:12,833 DEBUG: 			View 3 : 0.41975308642
+2016-08-24 09:31:12,966 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:31:15,340 DEBUG: 		Start:	 Iteration 39
+2016-08-24 09:31:15,356 DEBUG: 			View 0 : 0.432098765432
+2016-08-24 09:31:15,364 DEBUG: 			View 1 : 0.654320987654
+2016-08-24 09:31:15,402 DEBUG: 			View 2 : 0.574074074074
+2016-08-24 09:31:15,410 DEBUG: 			View 3 : 0.450617283951
+2016-08-24 09:31:15,550 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:31:17,981 DEBUG: 		Start:	 Iteration 40
+2016-08-24 09:31:17,998 DEBUG: 			View 0 : 0.598765432099
+2016-08-24 09:31:18,006 DEBUG: 			View 1 : 0.623456790123
+2016-08-24 09:31:18,043 DEBUG: 			View 2 : 0.555555555556
+2016-08-24 09:31:18,051 DEBUG: 			View 3 : 0.530864197531
+2016-08-24 09:31:18,189 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:31:20,681 DEBUG: 		Start:	 Iteration 41
+2016-08-24 09:31:20,699 DEBUG: 			View 0 : 0.5
+2016-08-24 09:31:20,706 DEBUG: 			View 1 : 0.716049382716
+2016-08-24 09:31:20,744 DEBUG: 			View 2 : 0.388888888889
+2016-08-24 09:31:20,751 DEBUG: 			View 3 : 0.617283950617
+2016-08-24 09:31:20,895 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:31:23,510 DEBUG: 		Start:	 Iteration 42
+2016-08-24 09:31:23,528 DEBUG: 			View 0 : 0.388888888889
+2016-08-24 09:31:23,536 DEBUG: 			View 1 : 0.654320987654
+2016-08-24 09:31:23,574 DEBUG: 			View 2 : 0.58024691358
+2016-08-24 09:31:23,582 DEBUG: 			View 3 : 0.407407407407
+2016-08-24 09:31:23,729 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:31:26,574 DEBUG: 		Start:	 Iteration 43
+2016-08-24 09:31:26,592 DEBUG: 			View 0 : 0.481481481481
+2016-08-24 09:31:26,600 DEBUG: 			View 1 : 0.604938271605
+2016-08-24 09:31:26,638 DEBUG: 			View 2 : 0.481481481481
+2016-08-24 09:31:26,646 DEBUG: 			View 3 : 0.407407407407
+2016-08-24 09:31:26,793 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:31:29,678 DEBUG: 		Start:	 Iteration 44
+2016-08-24 09:31:29,697 DEBUG: 			View 0 : 0.462962962963
+2016-08-24 09:31:29,706 DEBUG: 			View 1 : 0.561728395062
+2016-08-24 09:31:29,749 DEBUG: 			View 2 : 0.537037037037
+2016-08-24 09:31:29,758 DEBUG: 			View 3 : 0.543209876543
+2016-08-24 09:31:29,929 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:31:32,694 DEBUG: 		Start:	 Iteration 45
+2016-08-24 09:31:32,711 DEBUG: 			View 0 : 0.530864197531
+2016-08-24 09:31:32,719 DEBUG: 			View 1 : 0.679012345679
+2016-08-24 09:31:32,756 DEBUG: 			View 2 : 0.358024691358
+2016-08-24 09:31:32,764 DEBUG: 			View 3 : 0.518518518519
+2016-08-24 09:31:32,917 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:31:35,983 DEBUG: 		Start:	 Iteration 46
+2016-08-24 09:31:36,000 DEBUG: 			View 0 : 0.475308641975
+2016-08-24 09:31:36,008 DEBUG: 			View 1 : 0.382716049383
+2016-08-24 09:31:36,045 DEBUG: 			View 2 : 0.493827160494
+2016-08-24 09:31:36,053 DEBUG: 			View 3 : 0.475308641975
+2016-08-24 09:31:36,053 WARNING: All bad for iteration 45
+2016-08-24 09:31:36,209 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:31:39,103 DEBUG: 		Start:	 Iteration 47
+2016-08-24 09:31:39,122 DEBUG: 			View 0 : 0.611111111111
+2016-08-24 09:31:39,130 DEBUG: 			View 1 : 0.512345679012
+2016-08-24 09:31:39,174 DEBUG: 			View 2 : 0.462962962963
+2016-08-24 09:31:39,182 DEBUG: 			View 3 : 0.506172839506
+2016-08-24 09:31:39,352 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:31:42,556 DEBUG: 		Start:	 Iteration 48
+2016-08-24 09:31:42,572 DEBUG: 			View 0 : 0.530864197531
+2016-08-24 09:31:42,580 DEBUG: 			View 1 : 0.604938271605
+2016-08-24 09:31:42,619 DEBUG: 			View 2 : 0.518518518519
+2016-08-24 09:31:42,628 DEBUG: 			View 3 : 0.407407407407
+2016-08-24 09:31:42,789 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:31:46,061 DEBUG: 		Start:	 Iteration 49
+2016-08-24 09:31:46,078 DEBUG: 			View 0 : 0.413580246914
+2016-08-24 09:31:46,086 DEBUG: 			View 1 : 0.549382716049
+2016-08-24 09:31:46,124 DEBUG: 			View 2 : 0.62962962963
+2016-08-24 09:31:46,131 DEBUG: 			View 3 : 0.407407407407
+2016-08-24 09:31:46,294 DEBUG: 			 Best view : 		RANSeq_
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-093148-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-093148-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..81280faf
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-093148-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,30 @@
+2016-08-24 09:31:48,286 INFO: Start:	 Read HDF5 Database Files for ModifiedMultiOmic
+2016-08-24 09:31:48,286 INFO: Info:	 Labels used: No, Yes
+2016-08-24 09:31:48,287 INFO: Info:	 Length of dataset:347
+2016-08-24 09:31:48,288 INFO: ### Main Programm for Multiview Classification
+2016-08-24 09:31:48,288 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 09:31:48,289 INFO: Info:	 Shape of Methyl_ :(347, 25978)
+2016-08-24 09:31:48,289 INFO: Info:	 Shape of MiRNA__ :(347, 1046)
+2016-08-24 09:31:48,289 INFO: Info:	 Shape of RANSeq_ :(347, 73599)
+2016-08-24 09:31:48,290 INFO: Info:	 Shape of Clinic_ :(347, 127)
+2016-08-24 09:31:48,290 INFO: Done:	 Read Database Files
+2016-08-24 09:31:48,290 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-24 09:31:48,293 INFO: Done:	 Determine validation split
+2016-08-24 09:31:48,293 INFO: Start:	 Determine 2 folds
+2016-08-24 09:31:48,304 INFO: Info:	 Length of Learning Sets: 122
+2016-08-24 09:31:48,304 INFO: Info:	 Length of Testing Sets: 122
+2016-08-24 09:31:48,304 INFO: Info:	 Length of Validation Set: 103
+2016-08-24 09:31:48,304 INFO: Done:	 Determine folds
+2016-08-24 09:31:48,304 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-24 09:31:48,304 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-24 09:31:48,305 DEBUG: 	Start:	 Gridsearch for DecisionTree on Methyl_
+2016-08-24 09:31:55,692 DEBUG: 0.579596541787Poulet
+2016-08-24 09:31:55,692 DEBUG: 0.592103746398Poulet
+2016-08-24 09:31:55,693 DEBUG: 0.599135446686Poulet
+2016-08-24 09:31:55,694 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:31:55,694 DEBUG: 	Start:	 Gridsearch for DecisionTree on MiRNA__
+2016-08-24 09:31:57,621 DEBUG: 0.502997118156Poulet
+2016-08-24 09:31:57,621 DEBUG: 0.571354466859Poulet
+2016-08-24 09:31:57,621 DEBUG: 0.575331412104Poulet
+2016-08-24 09:31:57,621 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:31:57,622 DEBUG: 	Start:	 Gridsearch for DecisionTree on RANSeq_
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-093234-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-093234-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..d2aff05e
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-093234-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,27 @@
+2016-08-24 09:32:34,093 INFO: Start:	 Read HDF5 Database Files for ModifiedMultiOmic
+2016-08-24 09:32:34,093 INFO: Info:	 Labels used: No, Yes
+2016-08-24 09:32:34,094 INFO: Info:	 Length of dataset:347
+2016-08-24 09:32:34,095 INFO: ### Main Programm for Multiview Classification
+2016-08-24 09:32:34,095 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 09:32:34,096 INFO: Info:	 Shape of Methyl_ :(347, 25978)
+2016-08-24 09:32:34,096 INFO: Info:	 Shape of MiRNA__ :(347, 1046)
+2016-08-24 09:32:34,096 INFO: Info:	 Shape of RANSeq_ :(347, 73599)
+2016-08-24 09:32:34,097 INFO: Info:	 Shape of Clinic_ :(347, 127)
+2016-08-24 09:32:34,097 INFO: Done:	 Read Database Files
+2016-08-24 09:32:34,097 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-24 09:32:34,100 INFO: Done:	 Determine validation split
+2016-08-24 09:32:34,100 INFO: Start:	 Determine 2 folds
+2016-08-24 09:32:34,111 INFO: Info:	 Length of Learning Sets: 122
+2016-08-24 09:32:34,111 INFO: Info:	 Length of Testing Sets: 122
+2016-08-24 09:32:34,111 INFO: Info:	 Length of Validation Set: 103
+2016-08-24 09:32:34,111 INFO: Done:	 Determine folds
+2016-08-24 09:32:34,111 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-24 09:32:34,112 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-24 09:32:34,112 DEBUG: 	Start:	 Gridsearch for DecisionTree on Methyl_
+2016-08-24 09:32:41,471 DEBUG: 0.585014409222Poulet
+2016-08-24 09:32:41,471 DEBUG: 0.596714697406Poulet
+2016-08-24 09:32:41,472 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:32:41,472 DEBUG: 	Start:	 Gridsearch for DecisionTree on MiRNA__
+2016-08-24 09:32:43,398 DEBUG: 0.58386167147Poulet
+2016-08-24 09:32:43,399 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:32:43,399 DEBUG: 	Start:	 Gridsearch for DecisionTree on RANSeq_
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-093312-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-093312-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..3862f8c6
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-093312-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,53 @@
+2016-08-24 09:33:12,122 INFO: Start:	 Read HDF5 Database Files for ModifiedMultiOmic
+2016-08-24 09:33:12,123 INFO: Info:	 Labels used: No, Yes
+2016-08-24 09:33:12,123 INFO: Info:	 Length of dataset:347
+2016-08-24 09:33:12,124 INFO: ### Main Programm for Multiview Classification
+2016-08-24 09:33:12,124 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 09:33:12,125 INFO: Info:	 Shape of Methyl_ :(347, 25978)
+2016-08-24 09:33:12,125 INFO: Info:	 Shape of MiRNA__ :(347, 1046)
+2016-08-24 09:33:12,125 INFO: Info:	 Shape of RANSeq_ :(347, 73599)
+2016-08-24 09:33:12,126 INFO: Info:	 Shape of Clinic_ :(347, 127)
+2016-08-24 09:33:12,126 INFO: Done:	 Read Database Files
+2016-08-24 09:33:12,126 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-24 09:33:12,129 INFO: Done:	 Determine validation split
+2016-08-24 09:33:12,129 INFO: Start:	 Determine 2 folds
+2016-08-24 09:33:12,143 INFO: Info:	 Length of Learning Sets: 122
+2016-08-24 09:33:12,143 INFO: Info:	 Length of Testing Sets: 122
+2016-08-24 09:33:12,143 INFO: Info:	 Length of Validation Set: 103
+2016-08-24 09:33:12,143 INFO: Done:	 Determine folds
+2016-08-24 09:33:12,143 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-24 09:33:12,143 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-24 09:33:12,143 DEBUG: 	Start:	 Gridsearch for DecisionTree on Methyl_
+2016-08-24 09:33:19,481 DEBUG: 0.596714697406Poulet
+2016-08-24 09:33:19,481 DEBUG: 0.583227665706Poulet
+2016-08-24 09:33:19,481 DEBUG: 0.591527377522Poulet
+2016-08-24 09:33:19,481 DEBUG: 0.58288184438Poulet
+2016-08-24 09:33:19,481 DEBUG: 0.535273775216Poulet
+2016-08-24 09:33:19,481 DEBUG: 0.515619596542Poulet
+2016-08-24 09:33:19,481 DEBUG: 0.523804034582Poulet
+2016-08-24 09:33:19,481 DEBUG: 0.521556195965Poulet
+2016-08-24 09:33:19,482 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:33:19,482 DEBUG: 	Start:	 Gridsearch for DecisionTree on MiRNA__
+2016-08-24 09:33:21,403 DEBUG: 0.58553314121Poulet
+2016-08-24 09:33:21,403 DEBUG: 0.554178674352Poulet
+2016-08-24 09:33:21,403 DEBUG: 0.53734870317Poulet
+2016-08-24 09:33:21,403 DEBUG: 0.575792507205Poulet
+2016-08-24 09:33:21,403 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:33:21,404 DEBUG: 	Start:	 Gridsearch for DecisionTree on RANSeq_
+2016-08-24 09:33:38,038 DEBUG: 0.576253602305Poulet
+2016-08-24 09:33:38,038 DEBUG: 0.566109510086Poulet
+2016-08-24 09:33:38,038 DEBUG: 0.577925072046Poulet
+2016-08-24 09:33:38,039 DEBUG: 0.58144092219Poulet
+2016-08-24 09:33:38,039 DEBUG: 0.502305475504Poulet
+2016-08-24 09:33:38,039 DEBUG: 0.501613832853Poulet
+2016-08-24 09:33:38,039 DEBUG: 0.50818443804Poulet
+2016-08-24 09:33:38,039 DEBUG: 0.52795389049Poulet
+2016-08-24 09:33:38,039 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:33:38,040 DEBUG: 	Start:	 Gridsearch for DecisionTree on Clinic_
+2016-08-24 09:33:39,777 DEBUG: 0.551296829971Poulet
+2016-08-24 09:33:39,777 DEBUG: 0.591008645533Poulet
+2016-08-24 09:33:39,777 DEBUG: 0.582478386167Poulet
+2016-08-24 09:33:39,777 DEBUG: 0.567838616715Poulet
+2016-08-24 09:33:39,777 DEBUG: 0.517002881844Poulet
+2016-08-24 09:33:39,777 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:33:39,778 DEBUG: 	Start:	 Gridsearch for DecisionTree on MRNASeq
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-093355-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-093355-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..2c779d8c
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-093355-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,14742 @@
+2016-08-24 09:33:55,099 INFO: Start:	 Read HDF5 Database Files for ModifiedMultiOmic
+2016-08-24 09:33:55,100 INFO: Info:	 Labels used: No, Yes
+2016-08-24 09:33:55,100 INFO: Info:	 Length of dataset:347
+2016-08-24 09:33:55,101 INFO: ### Main Programm for Multiview Classification
+2016-08-24 09:33:55,101 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 09:33:55,102 INFO: Info:	 Shape of Methyl_ :(347, 25978)
+2016-08-24 09:33:55,102 INFO: Info:	 Shape of MiRNA__ :(347, 1046)
+2016-08-24 09:33:55,103 INFO: Info:	 Shape of RANSeq_ :(347, 73599)
+2016-08-24 09:33:55,103 INFO: Info:	 Shape of Clinic_ :(347, 127)
+2016-08-24 09:33:55,103 INFO: Done:	 Read Database Files
+2016-08-24 09:33:55,103 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-24 09:33:55,107 INFO: Done:	 Determine validation split
+2016-08-24 09:33:55,107 INFO: Start:	 Determine 2 folds
+2016-08-24 09:33:55,116 INFO: Info:	 Length of Learning Sets: 122
+2016-08-24 09:33:55,116 INFO: Info:	 Length of Testing Sets: 122
+2016-08-24 09:33:55,116 INFO: Info:	 Length of Validation Set: 103
+2016-08-24 09:33:55,116 INFO: Done:	 Determine folds
+2016-08-24 09:33:55,117 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-24 09:33:55,117 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-24 09:33:55,117 DEBUG: 	Start:	 Gridsearch for DecisionTree on Methyl_
+2016-08-24 09:34:02,435 DEBUG: 0.591988472622Poulet
+2016-08-24 09:34:02,435 DEBUG: 0.58386167147Poulet
+2016-08-24 09:34:02,435 DEBUG: 0.517752161383Poulet
+2016-08-24 09:34:02,435 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:34:02,436 DEBUG: 	Start:	 Gridsearch for DecisionTree on MiRNA__
+2016-08-24 09:34:04,356 DEBUG: 0.533083573487Poulet
+2016-08-24 09:34:04,356 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:34:04,357 DEBUG: 	Start:	 Gridsearch for DecisionTree on RANSeq_
+2016-08-24 09:34:20,901 DEBUG: 0.582997118156Poulet
+2016-08-24 09:34:20,902 DEBUG: 0.549682997118Poulet
+2016-08-24 09:34:20,902 DEBUG: 0.503746397695Poulet
+2016-08-24 09:34:20,902 DEBUG: 0.50674351585Poulet
+2016-08-24 09:34:20,902 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:34:20,903 DEBUG: 	Start:	 Gridsearch for DecisionTree on Clinic_
+2016-08-24 09:34:22,667 DEBUG: 0.567319884726Poulet
+2016-08-24 09:34:22,667 DEBUG: 0.554409221902Poulet
+2016-08-24 09:34:22,667 DEBUG: 0.504553314121Poulet
+2016-08-24 09:34:22,667 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:34:22,668 DEBUG: 	Start:	 Gridsearch for DecisionTree on MRNASeq
+2016-08-24 09:34:59,961 DEBUG: 0.553544668588Poulet
+2016-08-24 09:34:59,961 DEBUG: 0.549452449568Poulet
+2016-08-24 09:34:59,961 DEBUG: 0.53325648415Poulet
+2016-08-24 09:34:59,962 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:34:59,962 INFO: Done:	 Gridsearching best settings for monoview classifiers
+2016-08-24 09:34:59,962 INFO: 	Start:	 Fold number 1
+2016-08-24 09:35:01,610 DEBUG: 		Start:	 Iteration 1
+2016-08-24 09:35:01,630 DEBUG: 			View 0 : 0.615384615385
+2016-08-24 09:35:01,638 DEBUG: 			View 1 : 0.615384615385
+2016-08-24 09:35:01,679 DEBUG: 			View 2 : 0.615384615385
+2016-08-24 09:35:01,687 DEBUG: 			View 3 : 0.615384615385
+2016-08-24 09:35:01,730 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:35:01,811 DEBUG: 		Start:	 Iteration 2
+2016-08-24 09:35:01,829 DEBUG: 			View 0 : 0.666666666667
+2016-08-24 09:35:01,838 DEBUG: 			View 1 : 0.564102564103
+2016-08-24 09:35:01,876 DEBUG: 			View 2 : 0.564102564103
+2016-08-24 09:35:01,884 DEBUG: 			View 3 : 0.5
+2016-08-24 09:35:01,931 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:35:02,070 DEBUG: 		Start:	 Iteration 3
+2016-08-24 09:35:02,086 DEBUG: 			View 0 : 0.461538461538
+2016-08-24 09:35:02,094 DEBUG: 			View 1 : 0.538461538462
+2016-08-24 09:35:02,130 DEBUG: 			View 2 : 0.512820512821
+2016-08-24 09:35:02,138 DEBUG: 			View 3 : 0.5
+2016-08-24 09:35:02,191 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:35:02,387 DEBUG: 		Start:	 Iteration 4
+2016-08-24 09:35:02,404 DEBUG: 			View 0 : 0.538461538462
+2016-08-24 09:35:02,412 DEBUG: 			View 1 : 0.525641025641
+2016-08-24 09:35:02,448 DEBUG: 			View 2 : 0.455128205128
+2016-08-24 09:35:02,456 DEBUG: 			View 3 : 0.512820512821
+2016-08-24 09:35:02,512 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:35:02,768 DEBUG: 		Start:	 Iteration 5
+2016-08-24 09:35:02,784 DEBUG: 			View 0 : 0.448717948718
+2016-08-24 09:35:02,792 DEBUG: 			View 1 : 0.647435897436
+2016-08-24 09:35:02,828 DEBUG: 			View 2 : 0.455128205128
+2016-08-24 09:35:02,836 DEBUG: 			View 3 : 0.461538461538
+2016-08-24 09:35:02,895 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:35:03,209 DEBUG: 		Start:	 Iteration 6
+2016-08-24 09:35:03,225 DEBUG: 			View 0 : 0.628205128205
+2016-08-24 09:35:03,233 DEBUG: 			View 1 : 0.679487179487
+2016-08-24 09:35:03,269 DEBUG: 			View 2 : 0.391025641026
+2016-08-24 09:35:03,277 DEBUG: 			View 3 : 0.544871794872
+2016-08-24 09:35:03,339 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:35:03,710 DEBUG: 		Start:	 Iteration 7
+2016-08-24 09:35:03,727 DEBUG: 			View 0 : 0.538461538462
+2016-08-24 09:35:03,734 DEBUG: 			View 1 : 0.512820512821
+2016-08-24 09:35:03,771 DEBUG: 			View 2 : 0.391025641026
+2016-08-24 09:35:03,778 DEBUG: 			View 3 : 0.5
+2016-08-24 09:35:03,842 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:35:04,273 DEBUG: 		Start:	 Iteration 8
+2016-08-24 09:35:04,290 DEBUG: 			View 0 : 0.442307692308
+2016-08-24 09:35:04,297 DEBUG: 			View 1 : 0.608974358974
+2016-08-24 09:35:04,334 DEBUG: 			View 2 : 0.474358974359
+2016-08-24 09:35:04,341 DEBUG: 			View 3 : 0.50641025641
+2016-08-24 09:35:04,407 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:35:04,895 DEBUG: 		Start:	 Iteration 9
+2016-08-24 09:35:04,911 DEBUG: 			View 0 : 0.435897435897
+2016-08-24 09:35:04,919 DEBUG: 			View 1 : 0.525641025641
+2016-08-24 09:35:04,957 DEBUG: 			View 2 : 0.602564102564
+2016-08-24 09:35:04,964 DEBUG: 			View 3 : 0.608974358974
+2016-08-24 09:35:05,033 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:35:05,579 DEBUG: 		Start:	 Iteration 10
+2016-08-24 09:35:05,595 DEBUG: 			View 0 : 0.596153846154
+2016-08-24 09:35:05,603 DEBUG: 			View 1 : 0.371794871795
+2016-08-24 09:35:05,639 DEBUG: 			View 2 : 0.532051282051
+2016-08-24 09:35:05,646 DEBUG: 			View 3 : 0.442307692308
+2016-08-24 09:35:05,717 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:35:06,322 DEBUG: 		Start:	 Iteration 11
+2016-08-24 09:35:06,338 DEBUG: 			View 0 : 0.474358974359
+2016-08-24 09:35:06,346 DEBUG: 			View 1 : 0.608974358974
+2016-08-24 09:35:06,382 DEBUG: 			View 2 : 0.608974358974
+2016-08-24 09:35:06,389 DEBUG: 			View 3 : 0.557692307692
+2016-08-24 09:35:06,462 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:35:07,123 DEBUG: 		Start:	 Iteration 12
+2016-08-24 09:35:07,140 DEBUG: 			View 0 : 0.5
+2016-08-24 09:35:07,147 DEBUG: 			View 1 : 0.391025641026
+2016-08-24 09:35:07,184 DEBUG: 			View 2 : 0.551282051282
+2016-08-24 09:35:07,192 DEBUG: 			View 3 : 0.50641025641
+2016-08-24 09:35:07,266 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:35:08,000 DEBUG: 		Start:	 Iteration 13
+2016-08-24 09:35:08,016 DEBUG: 			View 0 : 0.519230769231
+2016-08-24 09:35:08,024 DEBUG: 			View 1 : 0.647435897436
+2016-08-24 09:35:08,060 DEBUG: 			View 2 : 0.557692307692
+2016-08-24 09:35:08,068 DEBUG: 			View 3 : 0.634615384615
+2016-08-24 09:35:08,144 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:35:08,935 DEBUG: 		Start:	 Iteration 14
+2016-08-24 09:35:08,951 DEBUG: 			View 0 : 0.461538461538
+2016-08-24 09:35:08,959 DEBUG: 			View 1 : 0.519230769231
+2016-08-24 09:35:08,995 DEBUG: 			View 2 : 0.474358974359
+2016-08-24 09:35:09,003 DEBUG: 			View 3 : 0.435897435897
+2016-08-24 09:35:09,080 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:35:09,927 DEBUG: 		Start:	 Iteration 15
+2016-08-24 09:35:09,943 DEBUG: 			View 0 : 0.442307692308
+2016-08-24 09:35:09,951 DEBUG: 			View 1 : 0.474358974359
+2016-08-24 09:35:09,987 DEBUG: 			View 2 : 0.589743589744
+2016-08-24 09:35:09,995 DEBUG: 			View 3 : 0.410256410256
+2016-08-24 09:35:10,074 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:35:10,994 DEBUG: 		Start:	 Iteration 16
+2016-08-24 09:35:11,011 DEBUG: 			View 0 : 0.455128205128
+2016-08-24 09:35:11,019 DEBUG: 			View 1 : 0.628205128205
+2016-08-24 09:35:11,056 DEBUG: 			View 2 : 0.532051282051
+2016-08-24 09:35:11,064 DEBUG: 			View 3 : 0.50641025641
+2016-08-24 09:35:11,146 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:35:12,120 DEBUG: 		Start:	 Iteration 17
+2016-08-24 09:35:12,136 DEBUG: 			View 0 : 0.621794871795
+2016-08-24 09:35:12,144 DEBUG: 			View 1 : 0.551282051282
+2016-08-24 09:35:12,181 DEBUG: 			View 2 : 0.49358974359
+2016-08-24 09:35:12,188 DEBUG: 			View 3 : 0.455128205128
+2016-08-24 09:35:12,273 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:35:13,308 DEBUG: 		Start:	 Iteration 18
+2016-08-24 09:35:13,325 DEBUG: 			View 0 : 0.557692307692
+2016-08-24 09:35:13,332 DEBUG: 			View 1 : 0.608974358974
+2016-08-24 09:35:13,369 DEBUG: 			View 2 : 0.49358974359
+2016-08-24 09:35:13,376 DEBUG: 			View 3 : 0.512820512821
+2016-08-24 09:35:13,464 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:35:14,557 DEBUG: 		Start:	 Iteration 19
+2016-08-24 09:35:14,573 DEBUG: 			View 0 : 0.416666666667
+2016-08-24 09:35:14,581 DEBUG: 			View 1 : 0.403846153846
+2016-08-24 09:35:14,618 DEBUG: 			View 2 : 0.589743589744
+2016-08-24 09:35:14,626 DEBUG: 			View 3 : 0.403846153846
+2016-08-24 09:35:14,714 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:35:15,878 DEBUG: 		Start:	 Iteration 20
+2016-08-24 09:35:15,895 DEBUG: 			View 0 : 0.467948717949
+2016-08-24 09:35:15,902 DEBUG: 			View 1 : 0.685897435897
+2016-08-24 09:35:15,939 DEBUG: 			View 2 : 0.628205128205
+2016-08-24 09:35:15,946 DEBUG: 			View 3 : 0.49358974359
+2016-08-24 09:35:16,038 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:35:17,259 DEBUG: 		Start:	 Iteration 21
+2016-08-24 09:35:17,275 DEBUG: 			View 0 : 0.564102564103
+2016-08-24 09:35:17,283 DEBUG: 			View 1 : 0.711538461538
+2016-08-24 09:35:17,319 DEBUG: 			View 2 : 0.429487179487
+2016-08-24 09:35:17,327 DEBUG: 			View 3 : 0.532051282051
+2016-08-24 09:35:17,419 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:35:18,697 DEBUG: 		Start:	 Iteration 22
+2016-08-24 09:35:18,713 DEBUG: 			View 0 : 0.538461538462
+2016-08-24 09:35:18,721 DEBUG: 			View 1 : 0.634615384615
+2016-08-24 09:35:18,757 DEBUG: 			View 2 : 0.525641025641
+2016-08-24 09:35:18,765 DEBUG: 			View 3 : 0.570512820513
+2016-08-24 09:35:18,860 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:35:20,195 DEBUG: 		Start:	 Iteration 23
+2016-08-24 09:35:20,212 DEBUG: 			View 0 : 0.525641025641
+2016-08-24 09:35:20,219 DEBUG: 			View 1 : 0.641025641026
+2016-08-24 09:35:20,256 DEBUG: 			View 2 : 0.551282051282
+2016-08-24 09:35:20,264 DEBUG: 			View 3 : 0.602564102564
+2016-08-24 09:35:20,360 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:35:21,760 DEBUG: 		Start:	 Iteration 24
+2016-08-24 09:35:21,776 DEBUG: 			View 0 : 0.762820512821
+2016-08-24 09:35:21,784 DEBUG: 			View 1 : 0.628205128205
+2016-08-24 09:35:21,820 DEBUG: 			View 2 : 0.371794871795
+2016-08-24 09:35:21,828 DEBUG: 			View 3 : 0.461538461538
+2016-08-24 09:35:21,926 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:35:23,376 DEBUG: 		Start:	 Iteration 25
+2016-08-24 09:35:23,392 DEBUG: 			View 0 : 0.487179487179
+2016-08-24 09:35:23,400 DEBUG: 			View 1 : 0.391025641026
+2016-08-24 09:35:23,436 DEBUG: 			View 2 : 0.487179487179
+2016-08-24 09:35:23,444 DEBUG: 			View 3 : 0.403846153846
+2016-08-24 09:35:23,444 WARNING: All bad for iteration 24
+2016-08-24 09:35:23,545 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:35:25,059 DEBUG: 		Start:	 Iteration 26
+2016-08-24 09:35:25,076 DEBUG: 			View 0 : 0.602564102564
+2016-08-24 09:35:25,084 DEBUG: 			View 1 : 0.608974358974
+2016-08-24 09:35:25,121 DEBUG: 			View 2 : 0.5
+2016-08-24 09:35:25,129 DEBUG: 			View 3 : 0.467948717949
+2016-08-24 09:35:25,232 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:35:26,805 DEBUG: 		Start:	 Iteration 27
+2016-08-24 09:35:26,821 DEBUG: 			View 0 : 0.544871794872
+2016-08-24 09:35:26,829 DEBUG: 			View 1 : 0.416666666667
+2016-08-24 09:35:26,866 DEBUG: 			View 2 : 0.557692307692
+2016-08-24 09:35:26,873 DEBUG: 			View 3 : 0.570512820513
+2016-08-24 09:35:26,978 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:35:28,607 DEBUG: 		Start:	 Iteration 28
+2016-08-24 09:35:28,624 DEBUG: 			View 0 : 0.608974358974
+2016-08-24 09:35:28,632 DEBUG: 			View 1 : 0.519230769231
+2016-08-24 09:35:28,668 DEBUG: 			View 2 : 0.467948717949
+2016-08-24 09:35:28,676 DEBUG: 			View 3 : 0.50641025641
+2016-08-24 09:35:28,783 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:35:30,474 DEBUG: 		Start:	 Iteration 29
+2016-08-24 09:35:30,490 DEBUG: 			View 0 : 0.602564102564
+2016-08-24 09:35:30,498 DEBUG: 			View 1 : 0.480769230769
+2016-08-24 09:35:30,534 DEBUG: 			View 2 : 0.474358974359
+2016-08-24 09:35:30,541 DEBUG: 			View 3 : 0.589743589744
+2016-08-24 09:35:30,651 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:35:32,412 DEBUG: 		Start:	 Iteration 30
+2016-08-24 09:35:32,428 DEBUG: 			View 0 : 0.455128205128
+2016-08-24 09:35:32,436 DEBUG: 			View 1 : 0.429487179487
+2016-08-24 09:35:32,472 DEBUG: 			View 2 : 0.423076923077
+2016-08-24 09:35:32,479 DEBUG: 			View 3 : 0.647435897436
+2016-08-24 09:35:32,591 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:35:34,461 DEBUG: 		Start:	 Iteration 31
+2016-08-24 09:35:34,480 DEBUG: 			View 0 : 0.576923076923
+2016-08-24 09:35:34,488 DEBUG: 			View 1 : 0.615384615385
+2016-08-24 09:35:34,526 DEBUG: 			View 2 : 0.448717948718
+2016-08-24 09:35:34,533 DEBUG: 			View 3 : 0.442307692308
+2016-08-24 09:35:34,653 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:35:36,567 DEBUG: 		Start:	 Iteration 32
+2016-08-24 09:35:36,583 DEBUG: 			View 0 : 0.602564102564
+2016-08-24 09:35:36,591 DEBUG: 			View 1 : 0.647435897436
+2016-08-24 09:35:36,628 DEBUG: 			View 2 : 0.519230769231
+2016-08-24 09:35:36,635 DEBUG: 			View 3 : 0.602564102564
+2016-08-24 09:35:36,760 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:35:38,858 DEBUG: 		Start:	 Iteration 33
+2016-08-24 09:35:38,875 DEBUG: 			View 0 : 0.50641025641
+2016-08-24 09:35:38,883 DEBUG: 			View 1 : 0.371794871795
+2016-08-24 09:35:38,920 DEBUG: 			View 2 : 0.403846153846
+2016-08-24 09:35:38,928 DEBUG: 			View 3 : 0.641025641026
+2016-08-24 09:35:39,047 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:35:41,049 DEBUG: 		Start:	 Iteration 34
+2016-08-24 09:35:41,066 DEBUG: 			View 0 : 0.596153846154
+2016-08-24 09:35:41,074 DEBUG: 			View 1 : 0.641025641026
+2016-08-24 09:35:41,110 DEBUG: 			View 2 : 0.448717948718
+2016-08-24 09:35:41,118 DEBUG: 			View 3 : 0.397435897436
+2016-08-24 09:35:41,241 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:35:43,293 DEBUG: 		Start:	 Iteration 35
+2016-08-24 09:35:43,310 DEBUG: 			View 0 : 0.5
+2016-08-24 09:35:43,317 DEBUG: 			View 1 : 0.666666666667
+2016-08-24 09:35:43,354 DEBUG: 			View 2 : 0.557692307692
+2016-08-24 09:35:43,361 DEBUG: 			View 3 : 0.576923076923
+2016-08-24 09:35:43,483 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:35:45,576 DEBUG: 		Start:	 Iteration 36
+2016-08-24 09:35:45,593 DEBUG: 			View 0 : 0.435897435897
+2016-08-24 09:35:45,600 DEBUG: 			View 1 : 0.358974358974
+2016-08-24 09:35:45,636 DEBUG: 			View 2 : 0.487179487179
+2016-08-24 09:35:45,644 DEBUG: 			View 3 : 0.570512820513
+2016-08-24 09:35:45,768 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:35:47,921 DEBUG: 		Start:	 Iteration 37
+2016-08-24 09:35:47,937 DEBUG: 			View 0 : 0.583333333333
+2016-08-24 09:35:47,945 DEBUG: 			View 1 : 0.647435897436
+2016-08-24 09:35:47,981 DEBUG: 			View 2 : 0.583333333333
+2016-08-24 09:35:47,989 DEBUG: 			View 3 : 0.557692307692
+2016-08-24 09:35:48,116 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:35:50,347 DEBUG: 		Start:	 Iteration 38
+2016-08-24 09:35:50,364 DEBUG: 			View 0 : 0.423076923077
+2016-08-24 09:35:50,372 DEBUG: 			View 1 : 0.685897435897
+2016-08-24 09:35:50,409 DEBUG: 			View 2 : 0.50641025641
+2016-08-24 09:35:50,416 DEBUG: 			View 3 : 0.410256410256
+2016-08-24 09:35:50,547 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:35:52,847 DEBUG: 		Start:	 Iteration 39
+2016-08-24 09:35:52,863 DEBUG: 			View 0 : 0.423076923077
+2016-08-24 09:35:52,871 DEBUG: 			View 1 : 0.532051282051
+2016-08-24 09:35:52,909 DEBUG: 			View 2 : 0.596153846154
+2016-08-24 09:35:52,917 DEBUG: 			View 3 : 0.621794871795
+2016-08-24 09:35:53,050 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:35:55,388 DEBUG: 		Start:	 Iteration 40
+2016-08-24 09:35:55,405 DEBUG: 			View 0 : 0.628205128205
+2016-08-24 09:35:55,413 DEBUG: 			View 1 : 0.474358974359
+2016-08-24 09:35:55,450 DEBUG: 			View 2 : 0.474358974359
+2016-08-24 09:35:55,459 DEBUG: 			View 3 : 0.448717948718
+2016-08-24 09:35:55,654 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:35:58,192 DEBUG: 		Start:	 Iteration 41
+2016-08-24 09:35:58,210 DEBUG: 			View 0 : 0.615384615385
+2016-08-24 09:35:58,219 DEBUG: 			View 1 : 0.628205128205
+2016-08-24 09:35:58,261 DEBUG: 			View 2 : 0.570512820513
+2016-08-24 09:35:58,270 DEBUG: 			View 3 : 0.435897435897
+2016-08-24 09:35:58,469 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:36:01,082 DEBUG: 		Start:	 Iteration 42
+2016-08-24 09:36:01,099 DEBUG: 			View 0 : 0.705128205128
+2016-08-24 09:36:01,107 DEBUG: 			View 1 : 0.647435897436
+2016-08-24 09:36:01,144 DEBUG: 			View 2 : 0.435897435897
+2016-08-24 09:36:01,152 DEBUG: 			View 3 : 0.602564102564
+2016-08-24 09:36:01,298 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:36:04,147 DEBUG: 		Start:	 Iteration 43
+2016-08-24 09:36:04,173 DEBUG: 			View 0 : 0.448717948718
+2016-08-24 09:36:04,182 DEBUG: 			View 1 : 0.416666666667
+2016-08-24 09:36:04,224 DEBUG: 			View 2 : 0.480769230769
+2016-08-24 09:36:04,236 DEBUG: 			View 3 : 0.551282051282
+2016-08-24 09:36:04,378 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:36:07,254 DEBUG: 		Start:	 Iteration 44
+2016-08-24 09:36:07,271 DEBUG: 			View 0 : 0.564102564103
+2016-08-24 09:36:07,278 DEBUG: 			View 1 : 0.660256410256
+2016-08-24 09:36:07,315 DEBUG: 			View 2 : 0.557692307692
+2016-08-24 09:36:07,322 DEBUG: 			View 3 : 0.557692307692
+2016-08-24 09:36:07,468 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:36:10,373 DEBUG: 		Start:	 Iteration 45
+2016-08-24 09:36:10,391 DEBUG: 			View 0 : 0.371794871795
+2016-08-24 09:36:10,400 DEBUG: 			View 1 : 0.673076923077
+2016-08-24 09:36:10,447 DEBUG: 			View 2 : 0.538461538462
+2016-08-24 09:36:10,456 DEBUG: 			View 3 : 0.487179487179
+2016-08-24 09:36:10,702 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:36:13,728 DEBUG: 		Start:	 Iteration 46
+2016-08-24 09:36:13,744 DEBUG: 			View 0 : 0.532051282051
+2016-08-24 09:36:13,752 DEBUG: 			View 1 : 0.576923076923
+2016-08-24 09:36:13,789 DEBUG: 			View 2 : 0.487179487179
+2016-08-24 09:36:13,797 DEBUG: 			View 3 : 0.628205128205
+2016-08-24 09:36:13,944 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:36:16,698 DEBUG: 		Start:	 Iteration 47
+2016-08-24 09:36:16,714 DEBUG: 			View 0 : 0.410256410256
+2016-08-24 09:36:16,722 DEBUG: 			View 1 : 0.532051282051
+2016-08-24 09:36:16,759 DEBUG: 			View 2 : 0.487179487179
+2016-08-24 09:36:16,767 DEBUG: 			View 3 : 0.448717948718
+2016-08-24 09:36:16,916 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:36:19,727 DEBUG: 		Start:	 Iteration 48
+2016-08-24 09:36:19,743 DEBUG: 			View 0 : 0.423076923077
+2016-08-24 09:36:19,751 DEBUG: 			View 1 : 0.615384615385
+2016-08-24 09:36:19,787 DEBUG: 			View 2 : 0.532051282051
+2016-08-24 09:36:19,794 DEBUG: 			View 3 : 0.583333333333
+2016-08-24 09:36:19,945 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:36:22,795 DEBUG: 		Start:	 Iteration 49
+2016-08-24 09:36:22,811 DEBUG: 			View 0 : 0.487179487179
+2016-08-24 09:36:22,819 DEBUG: 			View 1 : 0.608974358974
+2016-08-24 09:36:22,855 DEBUG: 			View 2 : 0.378205128205
+2016-08-24 09:36:22,863 DEBUG: 			View 3 : 0.596153846154
+2016-08-24 09:36:23,015 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:36:25,918 DEBUG: 		Start:	 Iteration 50
+2016-08-24 09:36:25,934 DEBUG: 			View 0 : 0.423076923077
+2016-08-24 09:36:25,942 DEBUG: 			View 1 : 0.365384615385
+2016-08-24 09:36:25,979 DEBUG: 			View 2 : 0.570512820513
+2016-08-24 09:36:25,987 DEBUG: 			View 3 : 0.544871794872
+2016-08-24 09:36:26,144 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:36:29,125 DEBUG: 		Start:	 Iteration 51
+2016-08-24 09:36:29,141 DEBUG: 			View 0 : 0.602564102564
+2016-08-24 09:36:29,149 DEBUG: 			View 1 : 0.653846153846
+2016-08-24 09:36:29,185 DEBUG: 			View 2 : 0.397435897436
+2016-08-24 09:36:29,193 DEBUG: 			View 3 : 0.615384615385
+2016-08-24 09:36:29,350 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:36:32,554 DEBUG: 		Start:	 Iteration 52
+2016-08-24 09:36:32,572 DEBUG: 			View 0 : 0.621794871795
+2016-08-24 09:36:32,580 DEBUG: 			View 1 : 0.692307692308
+2016-08-24 09:36:32,617 DEBUG: 			View 2 : 0.435897435897
+2016-08-24 09:36:32,625 DEBUG: 			View 3 : 0.608974358974
+2016-08-24 09:36:32,784 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:36:35,871 INFO: 	Start: 	 Classification
+2016-08-24 09:36:43,411 INFO: 	Done: 	 Fold number 1
+2016-08-24 09:36:43,411 INFO: 	Start:	 Fold number 2
+2016-08-24 09:36:44,984 DEBUG: 		Start:	 Iteration 1
+2016-08-24 09:36:44,998 DEBUG: 			View 0 : 0.382165605096
+2016-08-24 09:36:45,006 DEBUG: 			View 1 : 0.617834394904
+2016-08-24 09:36:45,042 DEBUG: 			View 2 : 0.369426751592
+2016-08-24 09:36:45,049 DEBUG: 			View 3 : 0.617834394904
+2016-08-24 09:36:45,089 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:36:45,164 DEBUG: 		Start:	 Iteration 2
+2016-08-24 09:36:45,180 DEBUG: 			View 0 : 0.43949044586
+2016-08-24 09:36:45,188 DEBUG: 			View 1 : 0.649681528662
+2016-08-24 09:36:45,224 DEBUG: 			View 2 : 0.541401273885
+2016-08-24 09:36:45,231 DEBUG: 			View 3 : 0.509554140127
+2016-08-24 09:36:45,276 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:36:45,408 DEBUG: 		Start:	 Iteration 3
+2016-08-24 09:36:45,424 DEBUG: 			View 0 : 0.420382165605
+2016-08-24 09:36:45,432 DEBUG: 			View 1 : 0.630573248408
+2016-08-24 09:36:45,467 DEBUG: 			View 2 : 0.535031847134
+2016-08-24 09:36:45,475 DEBUG: 			View 3 : 0.388535031847
+2016-08-24 09:36:45,527 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:36:45,717 DEBUG: 		Start:	 Iteration 4
+2016-08-24 09:36:45,733 DEBUG: 			View 0 : 0.375796178344
+2016-08-24 09:36:45,741 DEBUG: 			View 1 : 0.573248407643
+2016-08-24 09:36:45,777 DEBUG: 			View 2 : 0.490445859873
+2016-08-24 09:36:45,784 DEBUG: 			View 3 : 0.503184713376
+2016-08-24 09:36:45,839 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:36:46,086 DEBUG: 		Start:	 Iteration 5
+2016-08-24 09:36:46,103 DEBUG: 			View 0 : 0.566878980892
+2016-08-24 09:36:46,110 DEBUG: 			View 1 : 0.585987261146
+2016-08-24 09:36:46,146 DEBUG: 			View 2 : 0.566878980892
+2016-08-24 09:36:46,154 DEBUG: 			View 3 : 0.579617834395
+2016-08-24 09:36:46,210 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:36:46,514 DEBUG: 		Start:	 Iteration 6
+2016-08-24 09:36:46,530 DEBUG: 			View 0 : 0.484076433121
+2016-08-24 09:36:46,538 DEBUG: 			View 1 : 0.496815286624
+2016-08-24 09:36:46,574 DEBUG: 			View 2 : 0.56050955414
+2016-08-24 09:36:46,581 DEBUG: 			View 3 : 0.445859872611
+2016-08-24 09:36:46,640 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:36:47,001 DEBUG: 		Start:	 Iteration 7
+2016-08-24 09:36:47,018 DEBUG: 			View 0 : 0.541401273885
+2016-08-24 09:36:47,025 DEBUG: 			View 1 : 0.624203821656
+2016-08-24 09:36:47,061 DEBUG: 			View 2 : 0.43949044586
+2016-08-24 09:36:47,069 DEBUG: 			View 3 : 0.375796178344
+2016-08-24 09:36:47,129 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:36:47,548 DEBUG: 		Start:	 Iteration 8
+2016-08-24 09:36:47,565 DEBUG: 			View 0 : 0.643312101911
+2016-08-24 09:36:47,572 DEBUG: 			View 1 : 0.312101910828
+2016-08-24 09:36:47,608 DEBUG: 			View 2 : 0.420382165605
+2016-08-24 09:36:47,615 DEBUG: 			View 3 : 0.541401273885
+2016-08-24 09:36:47,678 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:36:48,158 DEBUG: 		Start:	 Iteration 9
+2016-08-24 09:36:48,174 DEBUG: 			View 0 : 0.458598726115
+2016-08-24 09:36:48,182 DEBUG: 			View 1 : 0.407643312102
+2016-08-24 09:36:48,217 DEBUG: 			View 2 : 0.445859872611
+2016-08-24 09:36:48,224 DEBUG: 			View 3 : 0.458598726115
+2016-08-24 09:36:48,225 WARNING: All bad for iteration 8
+2016-08-24 09:36:48,290 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:36:48,826 DEBUG: 		Start:	 Iteration 10
+2016-08-24 09:36:48,843 DEBUG: 			View 0 : 0.547770700637
+2016-08-24 09:36:48,851 DEBUG: 			View 1 : 0.566878980892
+2016-08-24 09:36:48,887 DEBUG: 			View 2 : 0.407643312102
+2016-08-24 09:36:48,894 DEBUG: 			View 3 : 0.43949044586
+2016-08-24 09:36:48,962 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:36:49,554 DEBUG: 		Start:	 Iteration 11
+2016-08-24 09:36:49,571 DEBUG: 			View 0 : 0.535031847134
+2016-08-24 09:36:49,579 DEBUG: 			View 1 : 0.433121019108
+2016-08-24 09:36:49,614 DEBUG: 			View 2 : 0.484076433121
+2016-08-24 09:36:49,622 DEBUG: 			View 3 : 0.420382165605
+2016-08-24 09:36:49,691 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:36:50,358 DEBUG: 		Start:	 Iteration 12
+2016-08-24 09:36:50,374 DEBUG: 			View 0 : 0.770700636943
+2016-08-24 09:36:50,382 DEBUG: 			View 1 : 0.56050955414
+2016-08-24 09:36:50,418 DEBUG: 			View 2 : 0.426751592357
+2016-08-24 09:36:50,425 DEBUG: 			View 3 : 0.433121019108
+2016-08-24 09:36:50,498 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:36:51,225 DEBUG: 		Start:	 Iteration 13
+2016-08-24 09:36:51,242 DEBUG: 			View 0 : 0.420382165605
+2016-08-24 09:36:51,249 DEBUG: 			View 1 : 0.343949044586
+2016-08-24 09:36:51,285 DEBUG: 			View 2 : 0.573248407643
+2016-08-24 09:36:51,293 DEBUG: 			View 3 : 0.394904458599
+2016-08-24 09:36:51,367 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:36:52,162 DEBUG: 		Start:	 Iteration 14
+2016-08-24 09:36:52,179 DEBUG: 			View 0 : 0.445859872611
+2016-08-24 09:36:52,187 DEBUG: 			View 1 : 0.566878980892
+2016-08-24 09:36:52,223 DEBUG: 			View 2 : 0.579617834395
+2016-08-24 09:36:52,230 DEBUG: 			View 3 : 0.541401273885
+2016-08-24 09:36:52,308 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:36:53,175 DEBUG: 		Start:	 Iteration 15
+2016-08-24 09:36:53,191 DEBUG: 			View 0 : 0.624203821656
+2016-08-24 09:36:53,199 DEBUG: 			View 1 : 0.656050955414
+2016-08-24 09:36:53,235 DEBUG: 			View 2 : 0.592356687898
+2016-08-24 09:36:53,242 DEBUG: 			View 3 : 0.503184713376
+2016-08-24 09:36:53,321 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:36:54,247 DEBUG: 		Start:	 Iteration 16
+2016-08-24 09:36:54,263 DEBUG: 			View 0 : 0.636942675159
+2016-08-24 09:36:54,271 DEBUG: 			View 1 : 0.592356687898
+2016-08-24 09:36:54,307 DEBUG: 			View 2 : 0.554140127389
+2016-08-24 09:36:54,314 DEBUG: 			View 3 : 0.484076433121
+2016-08-24 09:36:54,396 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:36:55,378 DEBUG: 		Start:	 Iteration 17
+2016-08-24 09:36:55,395 DEBUG: 			View 0 : 0.458598726115
+2016-08-24 09:36:55,402 DEBUG: 			View 1 : 0.624203821656
+2016-08-24 09:36:55,439 DEBUG: 			View 2 : 0.426751592357
+2016-08-24 09:36:55,446 DEBUG: 			View 3 : 0.414012738854
+2016-08-24 09:36:55,529 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:36:56,570 DEBUG: 		Start:	 Iteration 18
+2016-08-24 09:36:56,586 DEBUG: 			View 0 : 0.535031847134
+2016-08-24 09:36:56,594 DEBUG: 			View 1 : 0.343949044586
+2016-08-24 09:36:56,630 DEBUG: 			View 2 : 0.605095541401
+2016-08-24 09:36:56,638 DEBUG: 			View 3 : 0.496815286624
+2016-08-24 09:36:56,724 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:36:57,833 DEBUG: 		Start:	 Iteration 19
+2016-08-24 09:36:57,850 DEBUG: 			View 0 : 0.426751592357
+2016-08-24 09:36:57,857 DEBUG: 			View 1 : 0.414012738854
+2016-08-24 09:36:57,893 DEBUG: 			View 2 : 0.433121019108
+2016-08-24 09:36:57,901 DEBUG: 			View 3 : 0.56050955414
+2016-08-24 09:36:57,989 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:36:59,153 DEBUG: 		Start:	 Iteration 20
+2016-08-24 09:36:59,170 DEBUG: 			View 0 : 0.40127388535
+2016-08-24 09:36:59,178 DEBUG: 			View 1 : 0.630573248408
+2016-08-24 09:36:59,214 DEBUG: 			View 2 : 0.477707006369
+2016-08-24 09:36:59,221 DEBUG: 			View 3 : 0.624203821656
+2016-08-24 09:36:59,312 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:37:00,535 DEBUG: 		Start:	 Iteration 21
+2016-08-24 09:37:00,552 DEBUG: 			View 0 : 0.566878980892
+2016-08-24 09:37:00,559 DEBUG: 			View 1 : 0.541401273885
+2016-08-24 09:37:00,595 DEBUG: 			View 2 : 0.509554140127
+2016-08-24 09:37:00,602 DEBUG: 			View 3 : 0.515923566879
+2016-08-24 09:37:00,695 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:37:01,976 DEBUG: 		Start:	 Iteration 22
+2016-08-24 09:37:01,992 DEBUG: 			View 0 : 0.452229299363
+2016-08-24 09:37:02,000 DEBUG: 			View 1 : 0.566878980892
+2016-08-24 09:37:02,036 DEBUG: 			View 2 : 0.433121019108
+2016-08-24 09:37:02,043 DEBUG: 			View 3 : 0.484076433121
+2016-08-24 09:37:02,137 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:37:03,474 DEBUG: 		Start:	 Iteration 23
+2016-08-24 09:37:03,490 DEBUG: 			View 0 : 0.573248407643
+2016-08-24 09:37:03,498 DEBUG: 			View 1 : 0.624203821656
+2016-08-24 09:37:03,534 DEBUG: 			View 2 : 0.503184713376
+2016-08-24 09:37:03,541 DEBUG: 			View 3 : 0.394904458599
+2016-08-24 09:37:03,638 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:37:05,032 DEBUG: 		Start:	 Iteration 24
+2016-08-24 09:37:05,048 DEBUG: 			View 0 : 0.605095541401
+2016-08-24 09:37:05,056 DEBUG: 			View 1 : 0.643312101911
+2016-08-24 09:37:05,092 DEBUG: 			View 2 : 0.630573248408
+2016-08-24 09:37:05,099 DEBUG: 			View 3 : 0.541401273885
+2016-08-24 09:37:05,197 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:37:06,651 DEBUG: 		Start:	 Iteration 25
+2016-08-24 09:37:06,668 DEBUG: 			View 0 : 0.43949044586
+2016-08-24 09:37:06,675 DEBUG: 			View 1 : 0.350318471338
+2016-08-24 09:37:06,711 DEBUG: 			View 2 : 0.414012738854
+2016-08-24 09:37:06,719 DEBUG: 			View 3 : 0.611464968153
+2016-08-24 09:37:06,819 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:37:08,325 DEBUG: 		Start:	 Iteration 26
+2016-08-24 09:37:08,342 DEBUG: 			View 0 : 0.43949044586
+2016-08-24 09:37:08,349 DEBUG: 			View 1 : 0.675159235669
+2016-08-24 09:37:08,385 DEBUG: 			View 2 : 0.585987261146
+2016-08-24 09:37:08,393 DEBUG: 			View 3 : 0.573248407643
+2016-08-24 09:37:08,496 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:37:10,064 DEBUG: 		Start:	 Iteration 27
+2016-08-24 09:37:10,080 DEBUG: 			View 0 : 0.433121019108
+2016-08-24 09:37:10,088 DEBUG: 			View 1 : 0.496815286624
+2016-08-24 09:37:10,124 DEBUG: 			View 2 : 0.496815286624
+2016-08-24 09:37:10,131 DEBUG: 			View 3 : 0.515923566879
+2016-08-24 09:37:10,237 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:37:11,867 DEBUG: 		Start:	 Iteration 28
+2016-08-24 09:37:11,883 DEBUG: 			View 0 : 0.522292993631
+2016-08-24 09:37:11,891 DEBUG: 			View 1 : 0.464968152866
+2016-08-24 09:37:11,927 DEBUG: 			View 2 : 0.452229299363
+2016-08-24 09:37:11,935 DEBUG: 			View 3 : 0.420382165605
+2016-08-24 09:37:12,042 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:37:13,729 DEBUG: 		Start:	 Iteration 29
+2016-08-24 09:37:13,746 DEBUG: 			View 0 : 0.764331210191
+2016-08-24 09:37:13,753 DEBUG: 			View 1 : 0.40127388535
+2016-08-24 09:37:13,789 DEBUG: 			View 2 : 0.40127388535
+2016-08-24 09:37:13,797 DEBUG: 			View 3 : 0.566878980892
+2016-08-24 09:37:13,907 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:37:15,653 DEBUG: 		Start:	 Iteration 30
+2016-08-24 09:37:15,669 DEBUG: 			View 0 : 0.522292993631
+2016-08-24 09:37:15,677 DEBUG: 			View 1 : 0.649681528662
+2016-08-24 09:37:15,713 DEBUG: 			View 2 : 0.426751592357
+2016-08-24 09:37:15,721 DEBUG: 			View 3 : 0.59872611465
+2016-08-24 09:37:15,834 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:37:17,639 DEBUG: 		Start:	 Iteration 31
+2016-08-24 09:37:17,655 DEBUG: 			View 0 : 0.605095541401
+2016-08-24 09:37:17,663 DEBUG: 			View 1 : 0.477707006369
+2016-08-24 09:37:17,699 DEBUG: 			View 2 : 0.388535031847
+2016-08-24 09:37:17,706 DEBUG: 			View 3 : 0.605095541401
+2016-08-24 09:37:17,820 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:37:19,683 DEBUG: 		Start:	 Iteration 32
+2016-08-24 09:37:19,699 DEBUG: 			View 0 : 0.579617834395
+2016-08-24 09:37:19,707 DEBUG: 			View 1 : 0.445859872611
+2016-08-24 09:37:19,743 DEBUG: 			View 2 : 0.464968152866
+2016-08-24 09:37:19,751 DEBUG: 			View 3 : 0.458598726115
+2016-08-24 09:37:19,868 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:37:21,795 DEBUG: 		Start:	 Iteration 33
+2016-08-24 09:37:21,811 DEBUG: 			View 0 : 0.630573248408
+2016-08-24 09:37:21,819 DEBUG: 			View 1 : 0.656050955414
+2016-08-24 09:37:21,855 DEBUG: 			View 2 : 0.617834394904
+2016-08-24 09:37:21,866 DEBUG: 			View 3 : 0.40127388535
+2016-08-24 09:37:21,984 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:37:23,972 DEBUG: 		Start:	 Iteration 34
+2016-08-24 09:37:23,989 DEBUG: 			View 0 : 0.585987261146
+2016-08-24 09:37:23,996 DEBUG: 			View 1 : 0.624203821656
+2016-08-24 09:37:24,033 DEBUG: 			View 2 : 0.56050955414
+2016-08-24 09:37:24,044 DEBUG: 			View 3 : 0.554140127389
+2016-08-24 09:37:24,164 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:37:26,207 DEBUG: 		Start:	 Iteration 35
+2016-08-24 09:37:26,223 DEBUG: 			View 0 : 0.515923566879
+2016-08-24 09:37:26,231 DEBUG: 			View 1 : 0.68152866242
+2016-08-24 09:37:26,267 DEBUG: 			View 2 : 0.369426751592
+2016-08-24 09:37:26,275 DEBUG: 			View 3 : 0.452229299363
+2016-08-24 09:37:26,397 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:37:28,497 DEBUG: 		Start:	 Iteration 36
+2016-08-24 09:37:28,513 DEBUG: 			View 0 : 0.503184713376
+2016-08-24 09:37:28,521 DEBUG: 			View 1 : 0.458598726115
+2016-08-24 09:37:28,557 DEBUG: 			View 2 : 0.528662420382
+2016-08-24 09:37:28,564 DEBUG: 			View 3 : 0.624203821656
+2016-08-24 09:37:28,689 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:37:30,849 DEBUG: 		Start:	 Iteration 37
+2016-08-24 09:37:30,866 DEBUG: 			View 0 : 0.630573248408
+2016-08-24 09:37:30,873 DEBUG: 			View 1 : 0.662420382166
+2016-08-24 09:37:30,910 DEBUG: 			View 2 : 0.414012738854
+2016-08-24 09:37:30,917 DEBUG: 			View 3 : 0.43949044586
+2016-08-24 09:37:31,044 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:37:33,257 DEBUG: 		Start:	 Iteration 38
+2016-08-24 09:37:33,273 DEBUG: 			View 0 : 0.414012738854
+2016-08-24 09:37:33,281 DEBUG: 			View 1 : 0.414012738854
+2016-08-24 09:37:33,316 DEBUG: 			View 2 : 0.471337579618
+2016-08-24 09:37:33,324 DEBUG: 			View 3 : 0.503184713376
+2016-08-24 09:37:33,453 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:37:35,720 DEBUG: 		Start:	 Iteration 39
+2016-08-24 09:37:35,736 DEBUG: 			View 0 : 0.375796178344
+2016-08-24 09:37:35,744 DEBUG: 			View 1 : 0.471337579618
+2016-08-24 09:37:35,780 DEBUG: 			View 2 : 0.585987261146
+2016-08-24 09:37:35,787 DEBUG: 			View 3 : 0.547770700637
+2016-08-24 09:37:35,923 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:37:38,261 DEBUG: 		Start:	 Iteration 40
+2016-08-24 09:37:38,278 DEBUG: 			View 0 : 0.554140127389
+2016-08-24 09:37:38,286 DEBUG: 			View 1 : 0.528662420382
+2016-08-24 09:37:38,322 DEBUG: 			View 2 : 0.43949044586
+2016-08-24 09:37:38,329 DEBUG: 			View 3 : 0.515923566879
+2016-08-24 09:37:38,463 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:37:40,864 DEBUG: 		Start:	 Iteration 41
+2016-08-24 09:37:40,880 DEBUG: 			View 0 : 0.611464968153
+2016-08-24 09:37:40,888 DEBUG: 			View 1 : 0.675159235669
+2016-08-24 09:37:40,924 DEBUG: 			View 2 : 0.535031847134
+2016-08-24 09:37:40,931 DEBUG: 			View 3 : 0.471337579618
+2016-08-24 09:37:41,067 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:37:43,527 DEBUG: 		Start:	 Iteration 42
+2016-08-24 09:37:43,544 DEBUG: 			View 0 : 0.656050955414
+2016-08-24 09:37:43,552 DEBUG: 			View 1 : 0.522292993631
+2016-08-24 09:37:43,587 DEBUG: 			View 2 : 0.554140127389
+2016-08-24 09:37:43,595 DEBUG: 			View 3 : 0.617834394904
+2016-08-24 09:37:43,733 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:37:46,249 DEBUG: 		Start:	 Iteration 43
+2016-08-24 09:37:46,266 DEBUG: 			View 0 : 0.573248407643
+2016-08-24 09:37:46,274 DEBUG: 			View 1 : 0.31847133758
+2016-08-24 09:37:46,310 DEBUG: 			View 2 : 0.445859872611
+2016-08-24 09:37:46,317 DEBUG: 			View 3 : 0.573248407643
+2016-08-24 09:37:46,457 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:37:49,037 DEBUG: 		Start:	 Iteration 44
+2016-08-24 09:37:49,053 DEBUG: 			View 0 : 0.662420382166
+2016-08-24 09:37:49,061 DEBUG: 			View 1 : 0.656050955414
+2016-08-24 09:37:49,097 DEBUG: 			View 2 : 0.509554140127
+2016-08-24 09:37:49,104 DEBUG: 			View 3 : 0.433121019108
+2016-08-24 09:37:49,246 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:37:51,883 DEBUG: 		Start:	 Iteration 45
+2016-08-24 09:37:51,900 DEBUG: 			View 0 : 0.630573248408
+2016-08-24 09:37:51,908 DEBUG: 			View 1 : 0.649681528662
+2016-08-24 09:37:51,943 DEBUG: 			View 2 : 0.452229299363
+2016-08-24 09:37:51,951 DEBUG: 			View 3 : 0.566878980892
+2016-08-24 09:37:52,096 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:37:54,788 DEBUG: 		Start:	 Iteration 46
+2016-08-24 09:37:54,804 DEBUG: 			View 0 : 0.426751592357
+2016-08-24 09:37:54,812 DEBUG: 			View 1 : 0.471337579618
+2016-08-24 09:37:54,848 DEBUG: 			View 2 : 0.509554140127
+2016-08-24 09:37:54,855 DEBUG: 			View 3 : 0.585987261146
+2016-08-24 09:37:55,001 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:37:57,748 DEBUG: 		Start:	 Iteration 47
+2016-08-24 09:37:57,764 DEBUG: 			View 0 : 0.503184713376
+2016-08-24 09:37:57,772 DEBUG: 			View 1 : 0.40127388535
+2016-08-24 09:37:57,808 DEBUG: 			View 2 : 0.464968152866
+2016-08-24 09:37:57,815 DEBUG: 			View 3 : 0.43949044586
+2016-08-24 09:37:57,963 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:38:00,821 DEBUG: 		Start:	 Iteration 48
+2016-08-24 09:38:00,837 DEBUG: 			View 0 : 0.687898089172
+2016-08-24 09:38:00,845 DEBUG: 			View 1 : 0.726114649682
+2016-08-24 09:38:00,883 DEBUG: 			View 2 : 0.503184713376
+2016-08-24 09:38:00,891 DEBUG: 			View 3 : 0.630573248408
+2016-08-24 09:38:01,052 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:38:04,075 DEBUG: 		Start:	 Iteration 49
+2016-08-24 09:38:04,092 DEBUG: 			View 0 : 0.496815286624
+2016-08-24 09:38:04,099 DEBUG: 			View 1 : 0.426751592357
+2016-08-24 09:38:04,135 DEBUG: 			View 2 : 0.420382165605
+2016-08-24 09:38:04,142 DEBUG: 			View 3 : 0.426751592357
+2016-08-24 09:38:04,142 WARNING: All bad for iteration 48
+2016-08-24 09:38:04,297 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:38:07,226 DEBUG: 		Start:	 Iteration 50
+2016-08-24 09:38:07,243 DEBUG: 			View 0 : 0.630573248408
+2016-08-24 09:38:07,250 DEBUG: 			View 1 : 0.777070063694
+2016-08-24 09:38:07,286 DEBUG: 			View 2 : 0.464968152866
+2016-08-24 09:38:07,294 DEBUG: 			View 3 : 0.605095541401
+2016-08-24 09:38:07,449 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:38:10,439 DEBUG: 		Start:	 Iteration 51
+2016-08-24 09:38:10,456 DEBUG: 			View 0 : 0.757961783439
+2016-08-24 09:38:10,464 DEBUG: 			View 1 : 0.490445859873
+2016-08-24 09:38:10,499 DEBUG: 			View 2 : 0.464968152866
+2016-08-24 09:38:10,507 DEBUG: 			View 3 : 0.509554140127
+2016-08-24 09:38:10,664 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:38:13,867 DEBUG: 		Start:	 Iteration 52
+2016-08-24 09:38:13,885 DEBUG: 			View 0 : 0.496815286624
+2016-08-24 09:38:13,892 DEBUG: 			View 1 : 0.59872611465
+2016-08-24 09:38:13,928 DEBUG: 			View 2 : 0.407643312102
+2016-08-24 09:38:13,936 DEBUG: 			View 3 : 0.585987261146
+2016-08-24 09:38:14,100 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:38:17,221 INFO: 	Start: 	 Classification
+2016-08-24 09:38:24,786 INFO: 	Done: 	 Fold number 2
+2016-08-24 09:38:24,786 INFO: Done:	 Classification
+2016-08-24 09:38:24,786 INFO: Info:	 Time for Classification: 269[s]
+2016-08-24 09:38:24,786 INFO: Start:	 Result Analysis for Mumbo
+2016-08-24 09:38:42,191 INFO: 		Result for Multiview classification with Mumbo
+
+Average accuracy :
+	-On Train : 74.1078719582
+	-On Test : 79.0983606557
+	-On Validation : 81.5533980583
+
+Dataset info :
+	-Database name : ModifiedMultiOmic
+	-Labels : No, Yes
+	-Views : Methyl, MiRNA, RNASEQ, Clinical
+	-2 folds
+	- Validation set length : 103 for learning rate : 0.7
+
+Classification configuration : 
+	-Algorithm used : Mumbo 
+	-Iterations : 1000
+	-Weak Classifiers : DecisionTree with depth 1.0,  sub-sampled at 0.0075 on Methyl
+		-DecisionTree with depth 1.0,  sub-sampled at 0.007 on MiRNA
+		-DecisionTree with depth 1.0,  sub-sampled at 0.006 on RNASEQ
+		-DecisionTree with depth 1.0,  sub-sampled at 0.0075 on Clinical
+
+ Mean average accuracies and stats for each fold : 
+	- Fold 0
+		- On Methyl_ : 
+			- Mean average Accuracy : 0.0274615384615
+			- Percentage of time chosen : 0.96
+		- On MiRNA__ : 
+			- Mean average Accuracy : 0.0292820512821
+			- Percentage of time chosen : 0.028
+		- On RANSeq_ : 
+			- Mean average Accuracy : 0.0261987179487
+			- Percentage of time chosen : 0.004
+		- On Clinic_ : 
+			- Mean average Accuracy : 0.027391025641
+			- Percentage of time chosen : 0.008
+	- Fold 1
+		- On Methyl_ : 
+			- Mean average Accuracy : 0.0279617834395
+			- Percentage of time chosen : 0.961
+		- On MiRNA__ : 
+			- Mean average Accuracy : 0.028178343949
+			- Percentage of time chosen : 0.026
+		- On RANSeq_ : 
+			- Mean average Accuracy : 0.0253566878981
+			- Percentage of time chosen : 0.005
+		- On Clinic_ : 
+			- Mean average Accuracy : 0.0265031847134
+			- Percentage of time chosen : 0.008
+
+ For each iteration : 
+	- Iteration 1
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 2
+		 Fold 1
+			Accuracy on train : 66.6666666667
+			Accuracy on test : 69.6721311475
+			Accuracy on validation : 72.8155339806
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 64.9681528662
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 65.8174097665
+			 Accuracy on test : 71.7213114754
+	- Iteration 3
+		 Fold 1
+			Accuracy on train : 66.6666666667
+			Accuracy on test : 69.6721311475
+			Accuracy on validation : 72.8155339806
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 64.9681528662
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 65.8174097665
+			 Accuracy on test : 71.7213114754
+	- Iteration 4
+		 Fold 1
+			Accuracy on train : 56.4102564103
+			Accuracy on test : 65.5737704918
+			Accuracy on validation : 66.0194174757
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 63.0573248408
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 76.6990291262
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 59.7337906255
+			 Accuracy on test : 69.262295082
+	- Iteration 5
+		 Fold 1
+			Accuracy on train : 66.0256410256
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 67.9611650485
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 72.8155339806
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 63.904540258
+			 Accuracy on test : 72.9508196721
+	- Iteration 6
+		 Fold 1
+			Accuracy on train : 65.3846153846
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 72.8155339806
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 63.5840274375
+			 Accuracy on test : 72.9508196721
+	- Iteration 7
+		 Fold 1
+			Accuracy on train : 68.5897435897
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 63.6942675159
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 72.8155339806
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 66.1420055528
+			 Accuracy on test : 75.8196721311
+	- Iteration 8
+		 Fold 1
+			Accuracy on train : 66.0256410256
+			Accuracy on test : 68.8524590164
+			Accuracy on validation : 71.8446601942
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 62.4203821656
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 72.8155339806
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 64.2230115956
+			 Accuracy on test : 71.3114754098
+	- Iteration 9
+		 Fold 1
+			Accuracy on train : 73.0769230769
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 75.7281553398
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 62.4203821656
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 72.8155339806
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 67.7486526213
+			 Accuracy on test : 75.4098360656
+	- Iteration 10
+		 Fold 1
+			Accuracy on train : 73.7179487179
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 78.640776699
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 65.6050955414
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 71.8446601942
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 69.6615221297
+			 Accuracy on test : 77.0491803279
+	- Iteration 11
+		 Fold 1
+			Accuracy on train : 71.7948717949
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 65.6050955414
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 71.8446601942
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 68.6999836681
+			 Accuracy on test : 77.4590163934
+	- Iteration 12
+		 Fold 1
+			Accuracy on train : 69.8717948718
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 76.6990291262
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 71.3375796178
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 70.6046872448
+			 Accuracy on test : 77.868852459
+	- Iteration 13
+		 Fold 1
+			Accuracy on train : 69.8717948718
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 76.6990291262
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 69.4267515924
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 77.6699029126
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 69.6492732321
+			 Accuracy on test : 76.6393442623
+	- Iteration 14
+		 Fold 1
+			Accuracy on train : 69.8717948718
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 75.7281553398
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 70.7006369427
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 77.6699029126
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 70.2862159072
+			 Accuracy on test : 76.6393442623
+	- Iteration 15
+		 Fold 1
+			Accuracy on train : 70.5128205128
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 76.6990291262
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 68.7898089172
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 69.651314715
+			 Accuracy on test : 78.6885245902
+	- Iteration 16
+		 Fold 1
+			Accuracy on train : 68.5897435897
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 73.2484076433
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 70.9190756165
+			 Accuracy on test : 77.868852459
+	- Iteration 17
+		 Fold 1
+			Accuracy on train : 67.3076923077
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 76.6990291262
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 66.8789808917
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 67.0933365997
+			 Accuracy on test : 77.4590163934
+	- Iteration 18
+		 Fold 1
+			Accuracy on train : 62.8205128205
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 67.5159235669
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 76.6990291262
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 65.1682181937
+			 Accuracy on test : 76.2295081967
+	- Iteration 19
+		 Fold 1
+			Accuracy on train : 66.0256410256
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 74.7572815534
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 68.7898089172
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 76.6990291262
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 67.4077249714
+			 Accuracy on test : 77.0491803279
+	- Iteration 20
+		 Fold 1
+			Accuracy on train : 68.5897435897
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 75.7281553398
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 66.2420382166
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 76.6990291262
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 67.4158909032
+			 Accuracy on test : 78.2786885246
+	- Iteration 21
+		 Fold 1
+			Accuracy on train : 71.7948717949
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 76.6990291262
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 66.2420382166
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 75.7281553398
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 69.0184550057
+			 Accuracy on test : 78.2786885246
+	- Iteration 22
+		 Fold 1
+			Accuracy on train : 73.7179487179
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 68.152866242
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 70.93540748
+			 Accuracy on test : 79.9180327869
+	- Iteration 23
+		 Fold 1
+			Accuracy on train : 71.7948717949
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 75.7281553398
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 66.2420382166
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 75.7281553398
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 69.0184550057
+			 Accuracy on test : 78.6885245902
+	- Iteration 24
+		 Fold 1
+			Accuracy on train : 74.358974359
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 65.6050955414
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 69.9820349502
+			 Accuracy on test : 79.9180327869
+	- Iteration 25
+		 Fold 1
+			Accuracy on train : 74.358974359
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 64.9681528662
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 72.8155339806
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 69.6635636126
+			 Accuracy on test : 80.3278688525
+	- Iteration 26
+		 Fold 1
+			Accuracy on train : 78.2051282051
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 67.5159235669
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 72.860525886
+			 Accuracy on test : 80.3278688525
+	- Iteration 27
+		 Fold 1
+			Accuracy on train : 74.358974359
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 81.5533980583
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 67.5159235669
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 70.9374489629
+			 Accuracy on test : 79.9180327869
+	- Iteration 28
+		 Fold 1
+			Accuracy on train : 75.641025641
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 82.5242718447
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 67.5159235669
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 71.578474604
+			 Accuracy on test : 80.3278688525
+	- Iteration 29
+		 Fold 1
+			Accuracy on train : 73.7179487179
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 68.7898089172
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 75.7281553398
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 71.2538788176
+			 Accuracy on test : 79.5081967213
+	- Iteration 30
+		 Fold 1
+			Accuracy on train : 71.1538461538
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 78.640776699
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 71.3375796178
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 75.7281553398
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 71.2457128858
+			 Accuracy on test : 80.3278688525
+	- Iteration 31
+		 Fold 1
+			Accuracy on train : 75.0
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 73.2484076433
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 78.640776699
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 74.1242038217
+			 Accuracy on test : 81.5573770492
+	- Iteration 32
+		 Fold 1
+			Accuracy on train : 75.641025641
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 75.1592356688
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 75.4001306549
+			 Accuracy on test : 81.1475409836
+	- Iteration 33
+		 Fold 1
+			Accuracy on train : 74.358974359
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 81.5533980583
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 71.974522293
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 73.166748326
+			 Accuracy on test : 79.9180327869
+	- Iteration 34
+		 Fold 1
+			Accuracy on train : 71.1538461538
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 71.3375796178
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 75.7281553398
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 71.2457128858
+			 Accuracy on test : 79.5081967213
+	- Iteration 35
+		 Fold 1
+			Accuracy on train : 73.7179487179
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 71.974522293
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 75.7281553398
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 72.8462355055
+			 Accuracy on test : 79.5081967213
+	- Iteration 36
+		 Fold 1
+			Accuracy on train : 72.4358974359
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 70.7006369427
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 74.7572815534
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 71.5682671893
+			 Accuracy on test : 78.6885245902
+	- Iteration 37
+		 Fold 1
+			Accuracy on train : 73.0769230769
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 71.974522293
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 72.525722685
+			 Accuracy on test : 78.2786885246
+	- Iteration 38
+		 Fold 1
+			Accuracy on train : 73.0769230769
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 73.2484076433
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 78.640776699
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 73.1626653601
+			 Accuracy on test : 79.9180327869
+	- Iteration 39
+		 Fold 1
+			Accuracy on train : 72.4358974359
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 74.5222929936
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 79.6116504854
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 73.4790952148
+			 Accuracy on test : 79.9180327869
+	- Iteration 40
+		 Fold 1
+			Accuracy on train : 73.0769230769
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 73.8853503185
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 78.640776699
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 73.4811366977
+			 Accuracy on test : 80.737704918
+	- Iteration 41
+		 Fold 1
+			Accuracy on train : 71.7948717949
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 74.5222929936
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 73.1585823943
+			 Accuracy on test : 78.2786885246
+	- Iteration 42
+		 Fold 1
+			Accuracy on train : 73.0769230769
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 74.5222929936
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 73.7996080353
+			 Accuracy on test : 80.3278688525
+	- Iteration 43
+		 Fold 1
+			Accuracy on train : 72.4358974359
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 73.8853503185
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 73.1606238772
+			 Accuracy on test : 79.5081967213
+	- Iteration 44
+		 Fold 1
+			Accuracy on train : 73.0769230769
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 73.2484076433
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 73.1626653601
+			 Accuracy on test : 79.0983606557
+	- Iteration 45
+		 Fold 1
+			Accuracy on train : 73.0769230769
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 73.8853503185
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 73.4811366977
+			 Accuracy on test : 80.737704918
+	- Iteration 46
+		 Fold 1
+			Accuracy on train : 72.4358974359
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 73.2484076433
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 80.5825242718
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 72.8421525396
+			 Accuracy on test : 77.868852459
+	- Iteration 47
+		 Fold 1
+			Accuracy on train : 71.7948717949
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 73.8853503185
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 80.5825242718
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 72.8401110567
+			 Accuracy on test : 78.2786885246
+	- Iteration 48
+		 Fold 1
+			Accuracy on train : 70.5128205128
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 73.8853503185
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 72.1990854156
+			 Accuracy on test : 79.0983606557
+	- Iteration 49
+		 Fold 1
+			Accuracy on train : 72.4358974359
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 73.8853503185
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 73.1606238772
+			 Accuracy on test : 79.5081967213
+	- Iteration 50
+		 Fold 1
+			Accuracy on train : 71.1538461538
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 80.5825242718
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 73.8853503185
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 72.5195982362
+			 Accuracy on test : 78.6885245902
+	- Iteration 51
+		 Fold 1
+			Accuracy on train : 71.1538461538
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 77.0700636943
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 83.4951456311
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 74.1119549241
+			 Accuracy on test : 80.3278688525
+	- Iteration 52
+		 Fold 1
+			Accuracy on train : 69.8717948718
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 78.3439490446
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 74.1078719582
+			 Accuracy on test : 79.0983606557
+	- Iteration 53
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 54
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 55
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 56
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 57
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 58
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 59
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 60
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 61
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 62
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 63
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 64
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 65
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 66
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 67
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 68
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 69
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 70
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 71
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 72
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 73
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 74
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 75
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 76
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 77
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 78
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 79
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 80
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 81
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 82
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 83
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 84
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 85
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 86
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 87
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 88
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 89
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 90
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 91
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 92
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 93
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 94
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 95
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 96
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 97
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 98
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 99
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 100
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 101
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 102
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 103
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 104
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 105
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 106
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 107
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 108
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 109
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 110
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 111
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 112
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 113
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 114
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 115
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 116
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 117
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 118
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 119
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 120
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 121
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 122
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 123
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 124
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 125
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 126
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 127
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 128
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 129
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 130
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 131
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 132
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 133
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 134
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 135
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 136
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 137
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 138
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 139
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 140
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 141
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 142
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 143
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 144
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 145
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 146
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 147
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 148
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 149
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 150
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 151
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 152
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 153
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 154
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 155
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 156
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 157
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 158
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 159
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 160
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 161
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 162
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 163
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 164
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 165
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 166
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 167
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 168
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 169
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 170
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 171
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 172
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 173
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 174
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 175
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 176
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 177
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 178
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 179
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 180
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 181
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 182
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 183
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 184
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 185
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 186
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 187
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 188
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 189
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 190
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 191
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 192
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 193
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 194
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 195
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 196
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 197
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 198
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 199
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 200
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 201
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 202
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 203
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 204
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 205
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 206
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 207
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 208
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 209
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 210
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 211
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 212
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 213
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 214
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 215
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 216
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 217
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 218
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 219
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 220
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 221
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 222
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 223
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 224
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 225
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 226
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 227
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 228
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 229
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 230
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 231
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 232
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 233
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 234
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 235
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 236
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 237
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 238
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 239
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 240
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 241
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 242
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 243
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 244
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 245
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 246
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 247
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 248
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 249
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 250
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 251
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 252
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 253
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 254
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 255
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 256
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 257
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 258
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 259
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 260
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 261
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 262
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 263
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 264
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 265
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 266
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 267
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 268
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 269
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 270
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 271
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 272
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 273
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 274
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 275
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 276
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 277
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 278
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 279
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 280
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 281
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 282
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 283
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 284
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 285
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 286
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 287
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 288
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 289
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 290
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 291
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 292
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 293
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 294
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 295
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 296
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 297
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 298
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 299
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 300
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 301
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 302
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 303
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 304
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 305
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 306
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 307
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 308
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 309
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 310
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 311
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 312
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 313
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 314
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 315
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 316
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 317
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 318
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 319
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 320
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 321
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 322
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 323
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 324
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 325
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 326
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 327
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 328
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 329
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 330
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 331
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 332
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 333
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 334
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 335
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 336
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 337
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 338
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 339
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 340
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 341
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 342
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 343
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 344
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 345
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 346
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 347
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 348
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 349
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 350
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 351
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 352
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 353
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 354
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 355
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 356
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 357
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 358
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 359
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 360
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 361
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 362
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 363
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 364
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 365
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 366
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 367
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 368
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 369
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 370
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 371
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 372
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 373
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 374
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 375
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 376
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 377
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 378
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 379
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 380
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 381
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 382
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 383
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 384
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 385
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 386
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 387
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 388
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 389
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 390
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 391
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 392
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 393
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 394
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 395
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 396
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 397
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 398
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 399
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 400
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 401
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 402
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 403
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 404
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 405
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 406
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 407
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 408
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 409
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 410
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 411
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 412
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 413
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 414
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 415
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 416
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 417
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 418
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 419
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 420
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 421
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 422
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 423
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 424
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 425
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 426
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 427
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 428
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 429
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 430
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 431
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 432
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 433
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 434
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 435
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 436
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 437
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 438
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 439
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 440
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 441
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 442
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 443
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 444
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 445
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 446
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 447
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 448
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 449
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 450
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 451
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 452
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 453
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 454
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 455
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 456
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 457
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 458
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 459
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 460
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 461
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 462
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 463
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 464
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 465
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 466
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 467
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 468
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 469
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 470
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 471
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 472
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 473
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 474
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 475
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 476
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 477
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 478
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 479
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 480
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 481
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 482
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 483
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 484
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 485
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 486
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 487
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 488
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 489
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 490
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 491
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 492
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 493
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 494
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 495
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 496
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 497
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 498
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 499
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 500
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 501
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 502
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 503
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 504
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 505
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 506
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 507
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 508
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 509
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 510
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 511
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 512
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 513
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 514
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 515
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 516
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 517
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 518
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 519
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 520
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 521
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 522
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 523
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 524
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 525
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 526
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 527
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 528
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 529
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 530
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 531
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 532
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 533
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 534
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 535
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 536
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 537
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 538
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 539
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 540
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 541
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 542
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 543
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 544
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 545
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 546
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 547
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 548
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 549
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 550
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 551
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 552
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 553
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 554
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 555
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 556
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 557
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 558
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 559
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 560
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 561
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 562
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 563
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 564
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 565
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 566
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 567
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 568
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 569
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 570
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 571
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 572
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 573
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 574
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 575
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 576
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 577
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 578
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 579
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 580
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 581
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 582
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 583
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 584
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 585
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 586
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 587
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 588
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 589
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 590
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 591
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 592
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 593
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 594
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 595
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 596
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 597
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 598
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 599
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 600
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 601
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 602
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 603
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 604
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 605
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 606
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 607
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 608
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 609
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 610
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 611
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 612
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 613
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 614
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 615
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 616
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 617
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 618
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 619
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 620
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 621
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 622
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 623
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 624
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 625
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 626
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 627
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 628
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 629
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 630
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 631
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 632
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 633
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 634
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 635
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 636
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 637
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 638
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 639
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 640
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 641
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 642
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 643
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 644
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 645
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 646
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 647
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 648
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 649
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 650
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 651
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 652
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 653
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 654
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 655
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 656
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 657
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 658
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 659
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 660
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 661
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 662
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 663
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 664
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 665
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 666
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 667
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 668
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 669
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 670
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 671
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 672
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 673
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 674
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 675
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 676
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 677
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 678
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 679
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 680
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 681
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 682
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 683
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 684
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 685
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 686
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 687
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 688
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 689
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 690
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 691
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 692
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 693
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 694
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 695
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 696
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 697
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 698
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 699
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 700
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 701
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 702
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 703
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 704
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 705
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 706
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 707
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 708
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 709
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 710
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 711
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 712
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 713
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 714
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 715
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 716
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 717
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 718
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 719
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 720
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 721
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 722
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 723
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 724
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 725
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 726
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 727
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 728
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 729
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 730
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 731
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 732
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 733
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 734
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 735
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 736
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 737
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 738
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 739
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 740
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 741
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 742
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 743
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 744
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 745
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 746
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 747
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 748
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 749
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 750
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 751
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 752
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 753
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 754
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 755
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 756
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 757
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 758
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 759
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 760
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 761
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 762
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 763
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 764
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 765
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 766
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 767
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 768
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 769
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 770
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 771
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 772
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 773
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 774
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 775
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 776
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 777
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 778
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 779
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 780
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 781
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 782
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 783
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 784
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 785
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 786
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 787
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 788
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 789
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 790
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 791
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 792
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 793
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 794
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 795
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 796
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 797
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 798
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 799
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 800
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 801
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 802
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 803
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 804
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 805
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 806
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 807
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 808
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 809
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 810
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 811
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 812
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 813
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 814
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 815
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 816
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 817
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 818
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 819
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 820
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 821
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 822
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 823
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 824
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 825
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 826
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 827
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 828
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 829
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 830
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 831
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 832
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 833
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 834
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 835
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 836
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 837
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 838
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 839
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 840
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 841
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 842
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 843
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 844
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 845
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 846
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 847
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 848
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 849
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 850
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 851
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 852
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 853
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 854
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 855
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 856
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 857
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 858
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 859
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 860
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 861
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 862
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 863
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 864
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 865
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 866
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 867
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 868
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 869
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 870
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 871
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 872
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 873
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 874
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 875
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 876
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 877
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 878
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 879
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 880
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 881
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 882
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 883
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 884
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 885
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 886
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 887
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 888
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 889
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 890
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 891
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 892
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 893
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 894
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 895
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 896
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 897
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 898
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 899
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 900
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 901
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 902
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 903
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 904
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 905
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 906
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 907
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 908
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 909
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 910
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 911
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 912
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 913
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 914
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 915
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 916
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 917
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 918
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 919
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 920
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 921
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 922
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 923
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 924
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 925
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 926
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 927
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 928
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 929
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 930
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 931
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 932
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 933
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 934
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 935
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 936
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 937
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 938
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 939
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 940
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 941
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 942
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 943
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 944
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 945
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 946
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 947
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 948
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 949
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 950
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 951
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 952
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 953
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 954
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 955
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 956
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 957
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 958
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 959
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 960
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 961
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 962
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 963
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 964
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 965
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 966
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 967
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 968
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 969
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 970
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 971
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 972
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 973
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 974
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 975
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 976
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 977
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 978
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 979
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 980
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 981
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 982
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 983
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 984
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 985
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 986
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 987
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 988
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 989
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 990
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 991
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 992
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 993
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 994
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 995
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 996
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 997
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 998
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 999
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 1000
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+
+Computation time on 1 cores : 
+	Database extraction time : 0:00:00
+	                         Learn     Prediction
+	         Fold 1        0:02:40        0:00:07
+	         Fold 2        0:04:22        0:00:07
+	          Total        0:07:02        0:00:15
+	So a total classification time of 0:04:29.
+
+
+2016-08-24 09:38:43,134 INFO: Done:	 Result Analysis
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-093842Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-093842Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic-accuracyByIteration.png
new file mode 100644
index 0000000000000000000000000000000000000000..50c8876ea3458bb044bb4ed265a50cce6ac905b0
GIT binary patch
literal 52176
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_eiLFD*<^AF!;B^Dc&860cq2(erj
z*stX)pskf~xS^|QmWJEL#)wYaMRmQrfom3QEI%M5tx=G`=*sfu*a8g=1+LG33hkdg
z+_Bix>DHcqN%`sN>8E9_t)CuNY!NWvISfH2jPK%O8QKyh!04ZK1ZxYFJwxrVmI7Rv
zWEdk<Tw>YD4O|>h?FPPWp$-te5^b4AYnTo}j5Y9?oG2;)HdCT4aTd?&2B<jC<&;q?
zFas)6MORn1=IhmP4SoIP^XFQZ^Tp_i2QT+qTl||_T<^h`mzPU^9&BdMxV|p7`Sixx
z-(?jQ6($wCe|~=M92+aErlxk``t|nKR@Q54BAdIqy4aqFzP!0PeZ%(c>rH*VytvwU
zrN5p0?cwR!=%LaSq2qRaUF^kexzQa*lRAzjt%=$BY4Yd4%4_2H%Lxh!GBB(R>8kzx
z?PBTEr%xXg?bOiI%PZK|&M)8A-R-^j)U_F(o;-PS;NU^V+*?~3ckZlQo2jj(WsrD?
z<;9B^4*vf9(q=gsAv<5c{`dEHKyYyOq*~Lq{(k;z>*Mb~c-z#}Bp@euZ$T~>7uSZG
zpP!;G%UBk%w6(QexO};J`t<O%-w*%!`FY{u#mup>u`R8wC)eKIk||tLTDoxc>h1#v
z9DZ3BeR|^gt5&qr<;Snr>k~6GIUoGL-|Vz-!ZJ@EpPUPZW-d?vt-61Bws}6=^wVpv
zms(bQP?$7%^2;J8C#ExJ&Pc^fyKo_Zg`M5J!n*C}@?=qgwoDbic4l8+Um44ymbz`F
zudh}8H@2$(XX7{5YUzaM%cngJ?vb$+($v)4QT<&nDJe-nSh#t?f(8DkxEZX<-}P{d
z>s^_3?8p(8>Thp;KB=8CV}^s)R3%eWQEoAvhQ*7OgMx!6&YIOFU-!dNPgn8D<nNy~
z)qG|&oSdxAJRx*SQgZUsYxS>6v)*j$)%Cx<Emu%Zu5Ye&`L&s4zrVdbarUfhS(%xT
zurNq?&6+j-TE)($-(>#Y-c$2a==3z*)rGZzfr5Yj{w;iS!!RW^b)j=RU&NM-iI=vd
zpPzU1U^9E+?{B$xc9n9w_shA)#K<rxSX)bTi|e^0B`LkTySu%eUtY<`NQmLW?(+O!
zwNt&83UIJUSQe?AoqqV?gI8BqoA{<aeR96+^)=mJ<sl&<d+WFJ%UColS)#J@{Egb<
z249bBDe!z||M2<q;{O@k+}smq%-}FLH{WTZ9low*=~7i6U*CuC-u1cn%PHF0%1WE%
z9C&wkx1w10OZ!?Uj%R0Qvj+zUzj*obBG;)?Q?(82{#49*KHEHh!Lns-*Vo7YPdvV8
z>C)D<(c2$ApI`457%0f_;LJ?p4O_Ri&YUT!qpMr^?@#3{J1s3PrHLF)3k9A%dsgw|
z!@?MCzsyX{Ha=M{xqkME9xmrkw{nXs2z6%IS(m+Oa8PIn&~Vvb_xHn_o5l>A*dxWo
z#d+lIWNPf>pFMka;`Hg&pDmo6ogY4Z${HRX{-MI=&%fXAPn<f{w0pO;j*gCk2-n8K
z$8NL!-P)R6P*T#ebEl<`uW#Xl1B|UU-CbQ5HYU6O3Jcc}JAD1RIKzb5v$<<)Yj?eW
z@F2ma`Wp`@+?|}5jwBiG`~A+EVbkl~X=kM(A|e)4e}C7}*B4gBBX3vZ;NZaU<;xd^
zi5?<ar57(={4%eopuoY+jg3LU$Vf;}Pw&O`_3}MEJr7>I=s4alZ@$as?d|RDE=rE4
zr|G`7`EO`w_~HBa<+m%Vs*>K{+gq9!9_s1Ixo6Lw1CKu{h;Uupo*&Q9l|TFP<;x3K
zulAnKsW`)`REvd)@kh<RJAb3Dc8lv@SRJlkb-!2Iyzg0hb~bl#aPWr;8=cr)Q}TqR
zq`DFhw=K-SzYmmK+uPam?(PBw(~H-y4<A3?zU=GAj|XpTOioNqWo2e&?vXTRleeo0
z&^X@CFE1b?!{hDk-ElMt6xyw=tqcvz{pT+VUmy42V?{x6@!`wM{j+W254Z6)x3;pf
zFfp?6NHqNUQ^Vkpkf3mHPbKrl2%b)tMH}vZe0==nR`wLp7qjB{jvPCdbY(?g#=Sk3
zv&{4P?CtGmmHq$s_rr$|4()uh3=E8nj9#BBzq}CCi`&y7sO)y(Jcr`fs=yE5-bVlU
z`Sak78xqHk9gEmgVHlg9o!$N5LBfrjHyy*nr{BA8`tkGU!_#!585m~HoEZ=pxbS|W
z!_U&n&(C=K<ZQcy)%_A)URo;9ee}k@T5Df<2?>sc0UUPo`?qW{Vc7IJek-e%vNCg2
zRFv<(q?W{gVH}4IdM~YwHlH+ao?nHHT;;bnk~cRbGS9TFHk)alFUQHnrPLy@srq}~
zqxbLqwY0Q26kFch*x3B#<>ht(rze*Lojl^=<Q^7SJb7@ixkbRqZ?2W=m#<$r6<hYy
z{hd|v>PqLH%Fk^APAB~B|GFIOllA6MOu4-+_sHSH&Y6<tIX4^*9Xd2+-Rgb+y>f4D
zQM|rBUft5t(nV?Fghh*#oH!J3-n_Y_`1!ddYu5D4u`ch+$j+X8zwURhfRl%(C#R;S
zrebAf<&xOlWi0|ud~!A(ckbND*vHDs+9Kd|Zoa+0i;|#X%Y@nH`IFY~`_*Mr{jEp9
z>BOU>-Jb97?R{CeHTU*3n~Dz&0!}B+%ry3NaA=5$oGM%G;lXk7!Uct&KYz9eIN8<w
zaPaZ*IkC6;JBMP+p6c&?5|WaFD?_~E_ExzbNiwYb_=r`pWrDbVoB%H`Z&gfaWOVf8
z)#2+W{rOX)B-Ht0>&+d7$}=qrmF|B3^71mLVoT1=O|2DGRhQn{*ZuLZkl~BmU8bwp
zG9h|<-o$HbqqTP$wYa#r2!w}+2gSwtojP@@WA0qp!ootu7J;INhgdJIkGKEy@G!d*
zhvM^dbCsDI8{TbBJw5G9#Noq-J9qD{UVJ)O)6Q<*jF~g9&N_DC!UPp{^~+C9v#(7s
zOg?sHmv8CsZ*P@re}7wgdg^z-uYZ>>T`CwG8|&2Z=HHV7i<IMivMmBmda=7)tV&<G
zbai)&ev02$V>#0#bCT0PS65e1BnUWp6c!o^a<HhVs<sL!?cP>ZRkdWph6w^nyXA9o
zazL^2^TR{thaW4RoSA9dBH-lKC*#S&#HgvKr}p&e(<689&ee(EH)q}N`~UyBb10@9
zY+`+KT)uwEQx0x!<=|yLiY)?<9zJvw(}{54P<-<7@$n_j?R+U8A072NAO3W&ABSSM
znC_zE)8@|gy>jKsl=&%6CoV1ZetOP1F;Vg7o6YB^EPH!*xB1Qe_4cuLMNc>ii;9$5
z1cW3cJi^vQI9|WIqp-Q;{k>SlepYU=2@9RuFFoy-w-?fz?(O5_(-EMda(TIbc-3AG
z#V76Zbqf3T?Q0RZS^DVn&nE{OnOg*$a&mHB?2V0y@i8$qefsX;tKZchAF*D%c1=y*
zu14YVGGFEB?RjfI@A8>vGgCmR{x8SGyOZbFev_Q&wX{XR>Dt<8_xi`iMn)amwwd`_
z7d~>?RPr*&spC&R>)}7sSNyvws?hdxx$^(-VyBNEXAcYvw5a)EQ1<qg>UH0z7Zy5u
z`1!R(=&&igmXD7vuI(1nH7I!Cz|i2L<ml(e$FRV6wwZ)c3dgp*yIq>W%N{(RUq9{j
z`S{7J)~fN^t_xo7_we7}-y1e>UOa#0s#T939&WcNe8f^yQ?p>*IzEOUe?FfV{Upf2
za^lRHBTGCdC#0vdmzS5fnmj*0-~Ii)y&tcJ$1_gY+Zel}K=JN;7p2B!%hdi>-`!RE
z)v9e@?e9z5H_n_n^Te4mEz_rqpWVJ>35%qpWW|>kf<;9|4_>|Ux?Z?5=FZ;g>2lGk
z>gwu8jvjsZ@NoN!ySvRVUAi=3=FH9?KYp<FW=h)CSTGzoae|}aO>WKCT2&R52e<S0
zvra$FI{kF({Q2@_@9*(Cn8~T=>heB&_H4@;{rG)Hj`zzmGMJf}UATCWk)cQ0eBCiU
zQ(jH~VBt=e9}nB*Kin<9f3@Ph#^pVg#kckzzjaIM)vH$?{{G=Ft_4@>Z_T*KR9042
zP+H2$u&4SvUt?pVhrd7j^wUQlAMc+yZJOKu{p;4P`|;_tKI4g~gSWQjdcUuo=+RRB
z{oTclR`>4R%ec6Rl_BBFi;Fk*R2nbyovjw$=iJV>aLE!DLqkJ`l>AHD>tmgqnErj=
z|DTazSIJAK=*B5G_tjdLy}#GHX_L{EY11yfzkJ^}Bt*n4|DMnE(2$T1A09fFyu8GE
z^ytwK-@hMU6S;Xq)z_@n+{cd}zm(_=TN`!o_;L2a!ore2w=XPoW;{{n%*w?0?*4v$
zVPWB=Pk%h>)_?HiNz08J5i(XK9G{<`KYnv_`paLp)^!{G`t?hItCb<;d)U)bV-u5>
zb?fx{WUbrg*;Xr=nTeIZyR-89&!idk%3+L&GweJ1`}vO~8S?P(WQ4bQwFsP<Wy+m=
zyl-uI+}YXY%j;LKSaE{4;Qzbb?=S4Hua}UJaEOhSt+D&xZ`q*r?%v++OP7KqBqSby
znjnRRE5rBKr|v3!-PY5?Gsm`Ctgx_<gOAUxs;a8_(~78#fq{Vw`EQnHUR@>nceVhN
zsj2CbWy`ddSQkCvU}19XjV)bOR95EZ;lUwiU)KYw+>?*@Srk9xsr&miJm=Pym2poW
z6<8D<Kk~Hbb*WFN_SzPK9ywd7&(F@TF18MG5AXNa_0KgiHU0SDAoH&e)2B~&*Pi(G
z>fY+|l(aM@MMcK+b8{RE3Jmh@>|hKH4c+<PB{MT~?N0%x0}l%X<mCEle}8K{{4n8Y
zmnf()6{6)@Q)82qoGd6M#kDe|Yo>AfqT=W0I{Nz9+7BOWU}S#sE%0w$&WXP(-yCID
zWO;pkz5DrjwxZVxcYd;6nq5^``0x;G&W#O>ot>Q-_xIWI$=P(s*Z<jgtSDsZ%9Wkn
z;`*1K-nkP~^77KsV_W#;Y!;jjU7wx%TI=ZX<IMt0>gwt{&uf3bzA4q4g^lf!VMyu9
zIy<Rf(GOq0?rvmeUsV79A6G1Q_HMmXSGK)>zyCj|qg3(ZgW|6*FPp!;y?tHVzwPJt
zq+|z)XZ)9T7N_e(ZesDCrV|)pUhu#H<S15FR)&UtdHYNM4z7*fer&dR{*z1L^$BZs
zty#aGKQ}iQl)28?o%<SU`hU+Jn;uzfF<~_yht*+gAG~_i_2WmyojsM4m+h?kYsIi2
zet+GKoyF?&?Cbd)t}P1qxgc!j^U3P|3@4(L!`4JFI$UGlqs7k7KF6xG>)GbS!)z9o
zmVXyETUCE~(I}=Hbs}`hrp=oJBO*AYrKM9+Q%{CEED2h9Y32bHA<n$JyIMa#KY#ev
zEh#@gzlgn6rY5GQ7q{g`w|@D$bDwEpS=q5ZS?hqfxW4c2?<e2hmRoYSfst82R@V2t
zz9NgJre?|Cr>CbE{{L6YaA2Bl^n({KZoK#u;v0Y6Y~H+ipj@n_rS;*{Q|~voxAWh-
zcaLE~NzW9cetCN~h27`F)<(7V%iBLXIa&R}wQFvEetduJ-rm^goVWY?`}>!tEm|GE
zUdi5GzQ#^|bNcyZ&2waBWhc&_-3`jLmoE!vUt4o<u621pOiWKx6H`V;M#JHU3d+jN
zoSdAzR`#Jsj~!dIWC_dDr%!Ke%bk5G@(dfFOh@SIu#4~g3JVQo&p&?h#O3&O+saQY
z$NOZ1cg=5VV%m~>TkP$vt<I5=Gh<SBl)k>Ep{KX5FwMHWygX)i8Sl-THyIk{*Z-Tj
zO(o>{%a@%mUS#}=?eFSZl-bTB+0@L=4|1%isOXIyg^Qi+qPOR@&YwTu>85u7-aUI{
zHg4Ql^!P9+>n(e1c5h#8_gw4pOVd`jt=Ln)cFh`t^m8&xjRUWi#ZIa1&wBjsT^~EY
zT*AposxwS7gPKpDHu!G_8fNJY`KtKycK-g>*49?1Sq~4lgE}32e0&0(E&`n{7Ul0`
z7!Djh%p9~bBu}8~EBpIbr~m!?r=hQZ{K3KI*P+LHrOmJXT2}M@-CYAi!^Xx&#yxxY
zK79JLHFR|t<AlAf_x4tsAM2OrpXkA&tgLKxbj{kex`z%OdhqHM*TR5~dA8M$zTdB(
zuKoG!Z1cq2T;Ju_WlXa~Ds1N6`PbXiv!Ui^(X8`NPfvfkE8~w~NN6aidwS%^5eE&C
zrsIzj@9Zel(A0GN{p~GCTqj~fgIuzQN5>_0v(V5`4;7(|?Ciyno6{bA{;8p>+q!x4
z=1YHf?bz|)?d|OXoi1ArMO^>7RzyI6!PnPULP}~;`uTZ9v7T?<z6JG>|NZ^#tRmES
z{Bh#{e}7B%Zry6S%x^B2Tz|W9`Z-XYomW!X)z!6N;lf5iWw!^<&d$DY<;s%F8^S_D
z98`oZHlE+NZ{LMWmzvhC)6>z_HLU)YV|BpX+<bc+^UcebFDIs^y1t*gG5PqR0|ywS
zq@+N7Cm$c5gw)if7ed!0AMXQ=uQ(_i`0?@a#`5=Zw|G~r+MIs=(2*l7N)tK0eftK=
zP*K}*I(HU7PkMZ;SAeT^hIRS6L$`n33b8LwOG_&#D{GrLQSi#ut1l0yUo8Qp^T`$*
zEKCuRkr!{y1dZ&(*Z&o@k>gK3*0XY>PVKKRjnk%yefjbwAwOTgeEo`*D=&5`OyPCP
zzq`xSEcccR`?df7e!rh#TWuEm{@JrOY4bdW385V}HZ}(ye?0K`<AwF{_FrCI<z`s0
zcyaTE3jq;PQBLvk^7m^#^B(JwbpEWVp>bfMvb%_uf~2IRfw}qe$&n(WqE{`Ze%n*|
z*@2^R<3>XjAyD7aAmISR(&ziOiA#iD_nl`WSyffVHUD~9tXr>C>s;&dQ@l>=Prtah
z_~KIU=~BB}4A0bawwrvpDt_3Ye&_przxm>8zluIPGxKw}c<WE;uAZJFFE1|_U3UBL
z?imJ&Of|K&uX|KK`9FXBn7PxXiBnkZ&sEpNe{6T|-hKG`HMhS0`u)2!cs@^01{J;X
zPi}5bFDNN-Y3GxD(j;zl#{T4TmIuGplL{3j9L$b>|M2jzq6pW+moI;Yi?=8K6N}(R
z8piBJ8{hoHxn;|i4_CwEPx^{hy}M&surtPIu9YZ5!Iu|-e?A=MXJ}yOmvaaW6;0YG
z;j~adX(ETZ-<$=v^X~7HjnNa|UG{d-d|CTC89qL~qTgrFo^9>w>WV3O(Dv%)X7w#w
zw<?NtFI>KyJv=;o=cbyjRmY<ygEFMWhb?wyd3QY6f0VztzzB*7**!6~O%=h?wpAv2
z@%wlfETH3AyIuwEl~&Tw;CT4(VXszn@~Pr4F9K)Gn)T@OdHZmy?tsw!f4@n`#KwXw
zX>@Qne|)~Kk<lmli*H?>otw{XxB_x-__~<P3uZwpx19Uo`1$$y_P##8lG4(bF3hJy
z#KjNazAe3L*DeDSlOqeA+h6SJ>f-X5VZdl*Wp&~5<-={f(l2(ka*JPjzuZH`>Gid>
zhQ-g$u*teRySTYEoql@hhRoD8Yu6rpS`-))!@~e-ixw3ZGoCp1AtNKhK}YQHg$n}v
z_U+Tq)?R$O?(<o512eN}vjzQbew8pxV!5?7yZ!t7`~M@`j~o2A02OuhOsGS2VLRD(
z*Zuu<(zalG-d(AcD_44Wdmmop+HH_?!(eB9PVDZoqjz=|KYccB{k`Kgudl5wC@OLa
z2?<$zN={I)@yeBul+@J3Z*Oi&7^n5zX?ArEwGT@@)-NBQuDW#H+oeI8OM*0ieShEo
z;6Z}b(^Y%-?v1&%O7!ru4W+NcBBG<28Tg<>U|;K>Ml>Fqa{RynhTGe67f*e4i-n#2
z@V$F-k&%%%wqy#o@yo|O-m;<I#7xXN&dbYdt*{8Fg~rY=cjWEu?S-$e>B`tvi4+zV
zdR^9w-6aBQ7VNG5UhwBfVUN81JU{>4xwp-pJbR{OZ7to|*~!7r?;aK=#&BVVHps(1
zJ}#Tn&Src#Vc#90Gi~;%U+?bj{_*4E;yZr}KRxj*d3~){@BA!NZje%c|KoRemp?tG
zUuYpCA})UYSM~2_XQk&@m2%n0@$dih>9l;c1J7svV_FJ4pVdEp{=E3}cX2T>ts{1z
z(T(1F(Q_wH76w&P;p^iro^NqdJd#w{8+brlOKU^!ZL>9zo7v*)eyYxW_B}Xc?T;I`
zZztc|Q(2UMD|}rHr?<EFj9Ie|-Mu^a*w-H)9x^vIHz(%g@GK1QP!12bz4qo!&W#&4
z98`oH6$BFA-Py^Ik{{FD)bwJb&wM-CW5<p?`26$7zu)gOkDfk%o}ZDC5mY|z+h^Ct
zBN?=QLFKk>+c>zmnp~6?KD8=*#FCSflaQ9i*6E@o-lJ<}HA`-Bb2D?^{e5dEJU=;E
z{o-<ed4>b8udiRYYL%CK!J<Wr1Ox;ezSllF!U>85b-y_WK)u{$@Be&w$jrpdtSG{D
z@cHM=o*A#^+0}N%?X7A&{`lb8v%LQE?UugQI=^@6Qq?0#hHd=veTNP?F>Es5nS8vj
zb?Q`69v&Wpv@;SlKRztH`1In{tE~OUo4dNa=02~#zpwU7O+-Y5gRd{|biLSB#k*I%
zySLYSd5IVY%MAN^JBFKwbFPZb=;+|+kv8ws6BiKyHS`ROjG7iNR_@ggx;s@nJRvEG
zX=4PB-F*MYzHjdA6c!T`E4h1evieK2ZQHiZu&cFt^XAQhrAu2`xy2sb*qFRw>(<t7
z+sv-5iFCf4m64HftVhzo)U<Wpym^;A?lXM&^Ru|3vhv`iOF~SI4tZQ}y{GFrYKS-~
z2qe6@vC%Ya*?hZNE_ZkL88c@dym4bj-S&C5)orcZ;-GeY(#D8PorO1UMD$3Ra-E%R
z?*94N*@w@cx7${K)41#J<HN(m%*@De>(;Fe8#f+&c(^^&?%%(E3=QAj-adT!vT*hH
zccCYe|Nr~@;@;lfhrZmIx-ND%o3^$#N2`;Eijaz$8WRJk(`9OE+S1krsy=`H`ehn6
zg&{KF%C)u8mmO9_Z_hjW;^N|`m#$n9`g${c{=r+fqVz5(Dg3@W%f5bJ%xRC%-DPi`
z-rw76n0iX2%HEI%G?Ddr`GW$BFY~W{etv#q`gysE%F3(Ot3K|l{rw^*JoIu~dwcTB
zOG_($e_MOVY`OpZwzf95+5>Ce&Y!z~e|<0G*(n=0Y*_GrO8NVHy}QfbKYDd_wTGYI
zu@4Uqzhw5PsIYi<cQ^aWkghFTOm;F9PCdRW@2=IC*Vp-jR*JlQ`LZbgy!PdsJ39n5
zH8oA<|Nj2|@$&g~i(X#3e7W$?kHR}Ui`mc5w_pE#_R%+Qa$@$?NG|uE?^af3CZ-?P
zb9uS{<6mE2cl7nOZQpKw>h$T4uh;KS`v33mj*^!`lO|6V6ccL`RCd#NlAfR6zhsHZ
zl<CtSzqz@2!<H>BH8nO23VM2eiZ5dJ*ZqC)?p@zZ<8;u(#QnP8x(tyrEgv5rSJu_#
zeSEy%9n|{z<Uh-VbKACUJ4#=RDJd&IWqP6;xrycN?d|SKNlHP%!3&o!ch@dwm@sEf
zPfH6+N=nLupP!$1baZ5tRK9wBv|BtNFmPh`zdKvA!)<DQY;gR!CU&=2GaK)s?|!w5
zQ{#6QvD*LrBAj=BAFsH$c#ph&T;{G19}3RQvz1=Ca^;S~$82wRJ$?7CZ^;ssB}<k(
zm>yqu5ER35f8_1!dO*#dl`B_9>?~3h5)vx-_{jCouh;8m*j8`5^Zo17)6+pwF;zQ!
zL(x+&sVkdTO;mOV)r_5;ogSW^2SGiOA0HC;)c==rZs$9CYistzdGq=XHnVH5m0$)9
z6c@a?VHmT&PBt?$6EwvGD&Eh{wN8F_XJ<iKnOjzt*0pu9t2ewo+|GY-Yj*gqHA|O<
zKHggO<wam`=Ihz#udR)K`lvPJ>%YI%JaRS?-QxOgQBhLUbRwG^o7q5v6%B7{q9P&`
zR8?75hpk;Cs+(#d!&hq<5*OFU%+8na;=;nOTt|NX`kEcHqrg$`n^61V#t5CZ-d^6`
z-jLXo6qRE=lFk4A{#I62ZZ3PDG~>S&cnHDqslAE3yu6F6tD=^c*F)dv($>~if$pO(
zZf(_OVrHJ&_xQrqt4A9cnWwl#_xJQH`7L3VBjGp4A~1Q$y|c5;7w6yK$7?6Y02%?S
zt=1Ci1hv?Ix&8d{@$n3sN~4g_RO6cPwGN@1Hg7)s?CfkoA)%%nJ1n+jUUpOTb#ekV
z$`-C##ici$yS~1Dr}=C-IXTcEyoC(knX_jzkG$XY<HwH+UJp)ARxkYjulB~RTTUuM
z2Tz~oUbSi!XxNHR-mYiM785BMT@4Km{rG($8JU?kH>p<G$gPXn+4SQ_#hIDL?AO=F
zvn#SZKR4I;{5;#&p?bBowH&QZ44XV&TUuIrT~<|50TojW4SKP=PQ)H|Zs$|9vYOS`
z3>ujH^y$-!s{H)?Eg2V?V)VopyZ0{>U3zTF@|8Dl-b_5)#>>IW>snK@=Tf!1q_nj3
zix)2#7>@NyhbO;Yuz0cZv-9)&UAx5|f@Z(||Nj2|@Y%Dx$BrG7Fv$?$;^KO8uO&Pz
z<kt55{&lgt7sc<dV@OG6xwSoC|NDj5p9}78Om^pyu?SE+RTUU0s28)Np;K5L<o7dY
zc=+XP4$QSKpD=M^qyD}hOxw0?V@P={YGPtCMb5jj(sG&aY`18?%a<-?<($mwIac;G
z(<u$M79juh$&(8&U(uR8b7rTQZq$X3dEdT$dvReQbKbo@oD3PDu^qW9&*NlmDhxo=
z6U^*<2aX+MTN|}?mFeF}s@@6$92a&Lr<c6HCu?SARucR4{i8#z+#9p5YVE1}8<iKm
zGNdbfecZu=2N}=KGCjN@@o>g!i^G4eZ?pil2R?oL2uhEQjf}g>-^XR&I%TNP@J4>t
z_U-1Np{VnAzkT##BO)YNm>9Qg+43U&=g*%Ob$=|@#qaO?@S#A!>BGmz?r&~wea+9=
zRQC3k=`GtPfu_jKX&2cawn>>}2&`GVR#05Lz4Z09#ILWeTGaiiSbIC9{>0BepU=O%
zucf8+^;HwA!@I<00VdG2qTR#L>%DTeyRN<XICak4xq|ZY{od2{9xk6>*VNd^SoZEt
z=efDo+G`s$gYQ3Hxt6t8py})D>(_T*3clU^c=^2hvsSELy?D_gruA`q7p+yOtgO6n
z<w{O~U0ht;hRvIuYiewil$17<y^WHwtC3i>YE_AVA;Xku)2_{6S8S2{y}+><G@r-U
z-u(Ib`Q%quR)S`koSc|IO`4>nrmL&N51&5GoqcW1LeXxs+*>E!F8=j1>%`C1b+TGo
zS_hsMO`J1lO~Kx!L78)Jhez$Jv5eba*ZcbVdQd-ihD~MB+UHBPe0_a)a)sqy_i}b-
z28~aBuZoM4V_|BHv70(^|J0|#qN1&i&1?@(>+fF^esfj!i@moNxpME=u_NKq63?$$
zmUAtO)j%`L?fmkGjvZ^;mJzaa?OI-cfB%;D_S3QbCr)_msr<}#>((uXlvrs?89p(+
zm=niT4gXiJVQoqL=Q7v2{MaN_?<w0NLc+IBRWvaX$;!&|V%}Ez?vCWYfB%Y-jkJzO
z*i?LAu(Y&1arW%deYL;;O|UyIt{->g&(F^<c}$tv`Hr;lN(Tf4Ffjc1@lm;U^R4~$
z^)4<h7ye!N`ST~&&(!pE&{_p$_r4>WQcsJpIWTW(|MlWUM$L~8jPmw%M?fP+uU_4H
zk-YNM*|WUM{pL=3{XX`lY}$ba#*V(eW8fjKb-rF+U6*R+%$Xw~E8FWg*J@$q=Vt{)
zMT=r%rexmTRobf?Tv}LEv?xDdzD=dl_1?S(2O1-`W{K9G(9zSIX1(pkjfg2zrYzXA
zM+Venzk66Jc;2d4uZ|g2d`S57=ks}nh9gH@o;-hkdHc!iYim}PE?eq#^XAPLS5^wU
z^~rRqdQZDh?e6Z*e)8l=g_Z|*cb8ifJZQL6HeEk{+1ixoZ8?pL7b`Q|WcYKc@xt2Z
z?QUUVVxW=PjmgK8o}HOlvgY7y^Zbm~`rF%by>>fX3r}q|x3`yX=a&!L;eTsOCbP7(
z^v?I+FE981_~xeZmlqeAj~+c*^5)FS;N>F6R6?{gG#s9vn|pChq%mkR`S<tt%U{3R
z^=#g}c^!RyZl0c;Uf$k<qN1$}o!hm1ty4}2Sna<0_xJb0mzPw(yuUyH+2+d6X(1sY
z51yW$eq(#S{GPpgUv8WF_*z!=%*2e0j!Tz<=GfQEHN5%0V!;B28aw%hN44Se--TRW
z?hhI!e-dT<YSGG-ogEz<XJ(uGzpUt=FhL;a_BLKnFOwni`bOL8Z=f0ulr~PDJh<4s
z|H8^(^*L6htM2_yol&n1sk5$bj|R0pbaZs2w(v5niP*?=dYW$VuWLoedL%Wpv=-fV
zadp+~2`nfqJh(ai{FJiYE3$b!0s;h%BpH7B`gLQ$LnjwEx1<LL8W|c8!(Cf;`=?Hy
zCTX1J5FRd`v{52yqr|>_`?xCK-`_8P?AS4Z?xPY`B^qXVcUDYDyR)Ovgnwg1Pu|^K
z7yteHT3Nh8$M@^`FJHcFD1Pn-ny*%x$l>PZR?@J4?_S$OhYw%eUtizhqV%D{W+(fO
zRcFqg{rKx^_AiB(j~+F(^UI&IjR?E@eMR76knWw1_rGpUJ1Yfhm^}DcAz_@xGiT16
z7rSn5PIuN2Idtca3{xXRSXdaSbrqYRmd2Kzo-QFNxiEOSA81%_@#*4cXCyN+G7{e2
z+6wACnwXltJbZO)_VpLG%nYZe=^p<1`T4@-%i9YdA4~lH?(P@f|8H+^e|<G-OZoda
z32A9(6`_O2kGF?q*x1@$T<FX$AteP0s4u<Ms@d7upm7TuIsWu>a~9qX-Cp%I>qCW2
z$I&F6hz$(dVQUx^q_5oDUtbRzJvcYl`o*QC+;^A#stvtf^!wY}#H=hXZEbCz*=D`d
zwr1@D#j~-oaE%>kAa>roc@<w@iOw?5@0&40!e^EVCsQK>JD<#o!Ux}`Xa*O2eB}D!
zXU&hFKNp6tk1Ltm-OYV(UoH1Uk0m7nyCzQ-Mj43O_4o1d{=~dIzsu+5SPHYUvR=4&
z(Q&?A?S{m|Y@nf7h6k@-bL;BrzIgTO(4|X4o72y??b~N}_uH43mqGJHZ-bWke13NJ
z<7xf<7k*n?SV*w*$t=*7FP)p8T2fjH>IN*medUX}!s}lv*RJ)g-@IyFczF2n7EWPM
zFNk5&skQUw&AZbR)$r!~<kG`Q5@MWl6D6L-pFe(_U8wU3|I5Db=^Hj~bc~6SiQ1C!
zF<ktq|I&pE8!s>SU+ms5S6><^(U$lxD2IpRu)&%Ackb`qU+KL3@!#dYcE_`~CC*rO
zD9Qn`LJp+Lq+!}LF&<uCMWN1wjEs(@-qSCYf=c}0V_{X_-_1SbW7eRf5cX9<kYPi@
zL8e>B_qzAX%`i-6i#`6dNKt^}#h2|#8)xvb=<DdXI5;ruDu2)C?Cd;a=FF3>iTND%
z_VzWPAr(Wz#(DGP-n@CUq4@bZ|5K}jAj`nQvS%%J?>EyD`gL)!`^(CgcXk?s1{@_O
z&1za<I(5PX0np$)L&3W{mOC|DwVPMgc6D@c?EL*U*kqZFr>EzJO`8sh$Ja3G>#vWx
zEQUTzBo+GZmzRe}!_1kHli#d1)M^ejo6_FSUiSXp-37Tt#l;&dKR=7QoO5dn=dNA5
zE?m9pnvjst8~9oqdHq;FpT~NW`hPW`)nwt};faeHzkDgVar^e+6DK%q<oMnD<#I0+
znz%SQG41>Dh`Zxxl9ij5rRB_Z{G6PO(@#&GE#iFhySAPlX#Jd_p<&T{`<fpDe}8{p
ze$d+2$LGWA_4}D7oNc?hF4lVI{dcR91N35du~b)Azj*z6arO6i5_UB^VkQK({R~&)
zIecaIv}s~H3m>y7woFj>pEtoQ_tu2h*VhX>ahyDTS~<SvBkRjcOSw;;Iiu1d@afyz
z=tED7o_^}+?^jov*s)^u>dAZd*!=qW@9*!<sZ&KO|Npa9Y?<)sQ_(JcCys|jJC|(O
z5RkcZ&Dymmzu&L-KXv*vr((;JrAsHS-~Vsc9Gl8b2amsa{n}eeN$EvVRFu@k>(|xo
z|9%N>{`_n8nc3$3EUc_ocl>*Nyx%uMs!~x=G3C~l%o0m$>)9(-uB;7;TOGb$?ccwD
z^^uiwwpA{ZCQm;3>+9>z<;&C8W<EbR*Bi1(<jKFkzg=Qu=kBTd`|C1yod3s<ACH_l
z^Tz+afAY;6Hzqtj-fv#9yOEiFQta+B(~Q|Wc3323Wko&y_2x~^r?ckwC;a(S<HVu(
z?%lhT%gcPdF6Z6dHFd|%oq|prl|MhJg4TDGzrUy2A~0#f1P9Ra1YKR#rAwE(s0d9o
zPCqB$#8LVEo$SkNYo$HCyp&o5f&v2_<M!3uT<|!f<JI?rudc4<oPU1#X+=dvm+0u(
zH*ViPy>#Wjzfx8u8la^bdU|?A^LOvuIkEKhwTn;x{Hgi$<72WDhhp@$oRuGcPn<Q&
z%c|^+hhEGM2m9zf6^0kDUR709Rpqr0X#3fopsT=h+2P6mD&4xjU#}Y&7)+SWwmEWh
z+6>cdvALVVW}Z0V(Iai{muNQSc)$GO+TY(y-my<V-MVq(#yfSLljJ6Ia&m$u{=(M9
zct%IFFflqgIc-Qd*mO+x&HtyOf`W?XQ$L)WYYkeN7#tk@<;_iD^SnC?UQg4D<+7X4
zzc7G9TU&d|v}vFwxIm{1L(1j;UAuNUDF`@dh+MM#s=Zuj-Iki4MIS0`I9Ql|{P?k8
z#R`swH@&YeEOZ9dMiP>e2XEetRAiW8WM^mh;rsXYxpQT8y@P^;WMpL%^YZwDgM)Xz
zjP{>r!znE-J!9rfN2Q4m9v$uGs!U5uI|QEm{{@;SxB*(+(mZ>%^xf~jzP_F~X;PDJ
z^tOcKeX;`GM}K@gF8^}d!i5V#6GQv<?ThJl32kj{{qX6NQ@@;TLVEgg0oLl9n^M2*
z`ttVnbU$SoDJd>}eSHfnt3wwq2*}CFReXNtyZChQ&7d&buwElWLqiT89u|e}*$LU%
z-G|%xukVZv)sNfbus&|@i@nBqcPtn-y$?w>aBvXQ*__3l92qHDQ&V%`@yCR`Jiq1}
zq2=G-#YRL&JF9?)3IF~1$&ix2ckP-r30YZOcJuYkqi6K@^D{9sKYa71=iS}i$#-@X
zdU$y`ou6mBaPea0>s^`I+1)26s~^5|N2aQ(s_6A9EiJ94{rl~8bafR)xC{#)xky#o
z8XF4>b+Ul^c{UXWf8#>J!@}6i&CO@bp51)@dGeJNfhBHx4;*kvNlSCm5j*YrZQYjq
z`*sx-6&GfnWMX2<%5m-K>|D4OG+NTWe7X9!cXzoR%)WkJ5xDrmp2}jA{ChHWb#*55
zWv$B&oIBTdZpG1u1sOdvUV%o9($mv#F~wLm$5&Qb?ugNwrW47;&CLz!tX;f#(d+Yy
zb0<%FDr)U+Z)fl7>dNZz4haZoFit<0aD83u1h1t<`~UjSvza(scCB+eU(spP$Za{2
zplLg6YwKS(-`w2%@#*yVe@}I{^L$QE5*29s=~Djg&cW5;>z^>~FSL+hVPSc2ZEf_9
zs;{dKnX$66TGakBaqE$2ytvr?wCxEVSt}7sOUoDc_FC`z`z;#OIP*D}ot^DH`=j>q
z1Ycj@*3M4OUb{F?rHKl*wy~Kv4<9<TA@lOGD*4r|t*mwb|CT>_{`~Q&soFO-r}KlB
z;5~Vgq7${H!_DyCzFKS0^t^WXIt5)_UUmO@E}x&BeYuk{WvX~?Ztjxh%awI?d9}mW
zO|h<Tc=Hg{V%|~pRqN8_%NIALdhhhQyEXedsQrI?d%m-;ukXu{eWyH@2F<anl`_w}
z<KXDX2<ivTm>~h0s8#o$cVvoY@P|i7xl_{9lP@lE1^E)xL4ENeqoTU{a{B?Vwzf76
z9i1bepPyHp>IE9-QjR`;^r+^M3Ijt!(27RGtScHzmMu%VwkDFHVY+_&p+kq5G&MCr
z9gC)>rYY0v@9n9~xVy{L$jAsZJ9O(P^90)qPoF+jG&B@EdGaJ^-H@8!9FObq`)VXN
zZrli3$+K&h)w44*FTeO?as<>`1`RBMhR#~q5A1SrcXy7DpMTH#^fcYYud`<NeLdDI
zEn#101Dc*+uwa4IZsv86v9+cUE!V0ltGT~!-nk<)T|eHfsL1HtT<i9o#m_HQ@Hga0
zJq%v%r)X>}{PE*Q(BRp*dA8kKwwQoMjkLA9m+h_ot~Y7YqzTiewe8qpvGlUF|4buR
zKR-VYA0L;fD5<XQ?w2ALmEC#{9O)D;{QS(frL|RatpxLd^!c@Id#k@cy0tYMG;kNS
zCByMCSMH4sjJ8!@9I~=jT}r6om$#d;J1i<H$~12EtxMOo=_xBSpPgmue1Bi9qEM$n
z)t8JtH9v!1+O_dYw}FQ1Y;9$$zrAT(zkYp;_|mYoQHq+HobG)xfmUlb82$eKK70qi
zmbUTK`^~RFz5IQ(zny%2d6nII96~}wV$G9}@qosm%gV}T*wyYjbcCz0u&^k0gVy@=
ztSl`Rq0U45RD@2>7uq>5@t@ueod}-G4)^Zedr)9;;?$`_{`P;D2<&%ob!Fui*E`Z9
zX<YE>iRaF+?%3UB3(Mc%1FcR<%*o*?EiDBluXXFzfjWbrh*+{j1vFOs`uh6gx3*>%
zzP)7{wR1<w%b;c@w(BNqGoQ}B`)gGdPdmRnXr?_OG11Y!{_ii-d;9DAA0O{mR#0eg
zlgYoltk)@S+O%n)iQ#4b^ZBBqqi=ZyggQAffx2fK+1S`l^%@ow7cbt(rXtiCv#0x3
zMP=p1;-Z(AR6$GduU?%h*WT5|1saLjvc=@i{(AXs+qRX=UA0O}&bCTLyisn#UeDg{
z?!%kY&p&wmy1VrCwS_BIaD4pu@#{K?tyx#OYJY!QdVKQa$%{=u3#r~F-(Th{%_D0y
z#jZovs)Xa^%a>b9moHl6v@Yn@_WbygH#Y<ubk2Ew-C;OCXkOb7<+O%L9x4&r^JJs8
zWH4G=@2+BBe&y=brH;=*k^1rR@y9<uKmYM+_4+55K;v%b=2%wz{bl;*?b}S%|3|yU
zKYadtcyIOh1*=wdH8nBa*;gw)*Q%6Bftx9^a$Tj3+?_jj4m>ToxGGdzLP7$xYQ3te
ziXo-2(L#m~G=(mx?51F6C+FP8Gg15a!^7<pCrxrXK4a>%X^TQvhiPbNfL2Vq^~rED
zJox<6OFoYA=GXXbIg)<!Y&t)EDiRSBTeM`!lDOxqHEaI-5ai_K^ziX%*|p26skzxO
z^O8#I_J8Z+_aA$EdwZsjVr^}0L{!wHOG~}Cd|md5)gv|gNw>KEf_3ZGZ8#4qe{{qy
zzdy4z`?|=b9Xob7#Kz8L>sg~^WF)jYd_9{&ccD?j0ft+TER&9Ke0h6YJpKH<r3WPr
zA3BtwdhO^@){PrC@>;q7|CYIO=6|zmOot43MWm&>K`XiJYNd?R&IG(*V?H5QbZ>8U
z`{8!})3z0^Zf=j>+}sRWAhSL1?u6;n)vxn*AAWe?(j_7LKOdO&;`jC3xf8RqJv%ja
z!;vJzpr9a;d*?u7?_ptK^+yyR-`biT5FYM+yieAV<KXuDb=_C4gm^3s@>m*VQ}<`a
zwvsDHFI^JK%*@=dVZ(t&X7+@%w6OFqk6!VwpXzvmA#&-%$H)7>-YQQ$$}wTCccX(s
zxy;U;JGWeV`0Sb5_ID2tw{uP9cL-zb?C*DXa$<^!iMg;j-CxF{fC1FEncBFk=GDg#
zTm2S+mX?+apO!6OeqCbk-e245Ln^ZtFI=d2Jylg-pMTb@S-htX-?}9gv{EE3Ev=)s
zcj?{okkHVl@9I+zTCaXoVDX^9VunekP_1(9^K-Hlm6Z=49qqnw{kpr03k&ZOi@ZA)
z78Vwul^qkjmcF>QcJ>{+RrA-k&9P6t-YC%I+|G9~d*;lUom;c7Yx%}sF1@ocnH>~r
zr>E;bKGrJ@8j73yeCecR%hL9)56#Vd9rgUh3lD8BW%s@*(hPC4Z`JYdh{@}He*44;
zj+HA{R(yKG`RmKe;AGVr(DEGf{CRhNdU<*}y1B8r^~>?*=H^yZR6ID^Ee={z=X-gX
zuXII4MZ(ilQzLel>6X2@5%_##$I+yiokgw>Kd%m7|1WX>eV)(dN3=i<)T#WZ{rvnu
zOCX+|nYnla--N%y+?<>XPitywo;ZL0_~qsP6DLn@zH=ugB|ZJ|m6gF2KR>Ak1qD61
zXOf<l_UQ5P{!+UomR43y&d$t^j*edxb#!%k1qB5;`1$j{e7v`#5G1;VJLLbrzZ;96
z``J`|>5waa+MEaCCmv=K5ffu#xVNWru|c(8T$~)Jr^O>_!~$AowYT~^Xa)UFlXK_J
zfud)A{+%5g@8$1)efrojw#djxi~4^ye|@y3E?TsRDK9V2qV$!Bk&)4hU9YdN*FJmv
z=1s};b8`+}Uhcne=~7m8b@el|&H2B5`{s3dd){5C{Cj&Q{$5kXx@H;I%*~sP-+ue}
z?5y;y>v9wJw#M(Tvz6ul{O~aQPQ8lb{qoCWW0aJYUrKZyo3i}XuU(gTB#m0O-Mh2D
ze*QjHwubn+pRIkYt9<kF^rE(AvHJV_gC?rW-`#O6EHo@BDVZ>DUf-roMm2wa1U}TQ
zDl0S7i{HoNAm$qz94tK7s`SvV($@-8y+9p_Xf3PKS1l8j-IGpEQvK4nW5I%kFuU_}
zt;64onWvV$xzPwJP{hTP&(E{<N<S=ZQJ^qQC(>!ZH7hIYj{5(0x3*@pD=RBoY2Q6N
z+k9%-*EM&RB_Hq0xVcG{i<|rDF*l9f&q8@6jab<E<y`9O?6kDBHWWT~<B_!r$&B*%
z_s_YvM^aQ&6coAN-ri=<&(GhbXJsX&s;a7?tLqvPB69Zl?c36xo}OQ<>;C*G<X~ZH
z{d0R;F1K92`|j0gsi}&Znk%opcv%`47<h1&Y4(KKvsahwX<xZg^UT?^PooUB=iF?X
zX`HU4uHOEyZhgc?rs!=sj0`f?Wj$dL9EzYEbZ@Wq-F?g6AOG_5^2W@|YCGRevH$l&
z*{bA4L*3tBwVw=)&fJ%M-E`D|H{kEtXb%sLlG0Mesa_ZN)mHEPs;8%S;o7xjwez;;
z-CcFz`3~RNW-qR;76%2IoNX0o*t+8LGhVy@e~MSET9tHuo^45jTKnO~wQF@lLP8uk
z7~2m!`uOmal$I8Ldg2Khfhzl4@$Zl2q)C$wJpMRE&OIVR0<`Rx{bShnnx93W;mG&*
z_Bt>3n+sY&_iNjQW5?J|Pt$E~Z)ZPs`gCAeSesq#uLDPpuz*IOH>aOZNKIu84GrCr
zb(QPm$B#vo^X=>9R)?)^>gwV;b^7$iq@!G|d8v7Mc{^%<o9XE4E?l&T$!@;?@AdVo
zUR_^T`}><k*&B&vzO&mFEKry-b*iJcH#caH+`M^mpf-wO^05V5wuq#rrW%-<PL<vq
zyt4TDInbQV+eeQdJOFKeIo11r#jf`Uo7s~;JUA%Oee}bZFD=ujhwr_g)!y2g_~ypO
z7Z(?^U%7H6AwAt)KF6(B%5^ti=swnO-@h;CFEukW`|#=0q07tt6B7~~cF!<bW;1i<
zOi<|79=LMlic3a@#-G1`KmPcb%p+yeQC2+DvRJLAwidLpE;KYW=f;M{vc;!QoeH`Y
zyMEW^^z%weN=#Z>S}RtpIPmJ~YEUCPB0Bo;&6|?8RbLKVkFV$LbYWT<;<f$p=bxa#
zNhT(y3yWO4rIxR~ySrTf+q=8nX=i6O9)1W~VaKL0JL2K)_xqe9A|#F^8Rk|7mgT*Q
zx_13~yNlAn*Voq@R(wd{kuvd6jCFBgNjo!xabW-l18DYentpsAsQ-4nPgcUV%4C{u
zG+S+L?aqUzLx2AI_2|aN<S%g>w{Kq_+wY<zSW;4Q;Q8l;t5>f!;B#?zXJ5E*;f5_+
zSlSOaPM$2hRv|1T1QgGOg@rF}Y*enPt(`b$4o_@sY{AYL(1i1^U%wbq^fRI3j}HqB
zK(+I$tK1DaHYdKkybS8PhlYk`WMo{qky?0uo-L^D{rB#TZMo7`<?nhvefm^&fA!Vc
zk4MELHY6}UJ3G7GuJ)J48h(EM_K6b(EoAsWBk{t*ivw<c{`Be4nVH5PUtQInV_nX7
z@ZiCWYilGq6hVusW|?MZ+-hlI={TCSD<>tzMZF%hv@7lWyx#kDzj^on|7Q)_S@!2g
zq1cW|Kf{w7IV7LOFI%&QC;52a(Qa}5f+r^?R-Fwv@@IEzTic_*zrPnXZ~N~D+BF55
z^UA)qpx!7tIvTXH{N1~E^`(I`_OG06o`2}@VdmoJ=Z>xjT>S6VBZD*Z+qO0soY{XS
zeSU4&`;{7!&)zRsc=_YM;Em?Dd}4cgdneAF`!`&?Iq_c!Xp#srh&e;;Fxx_79?1UR
z%izttc7c_Zme0=5=XZ8?{_wM=<7g5K3(JBH8v^t`eczmZK5LHP%3b?ve?Pjnw|ahz
z8aq3?jAhZ1gSRs?GY?+4AmFr6psK3s!-o$m3d`pHy0xQlam)nA)I*03Nr}ES*U{lo
zn#iFvkpr~IXv@~EFSo4fwd}8Nxwp4k+1y;5K|oYg_4?XHRZrfvflUx7tu<X{1DcE3
zxY2NyX?EE2BMgy|krO;r3=9k!T$B#p-CZsn`tBDOFRyDsLBZrVuY*I~KI-Y|<$c)p
z_SV+P+(*LYpP!q%+HjGrf^>{sB5YS{|G9`|XY%*|WeX1vfAR9Aqk_N%$zu!)cI=S2
zckkYXt5;hWE>z@`wQ{-6%Eks>6nE(P{CdCd!jh7mWp8g?ES=hX^}o;c_3`bqXG@oq
zlqBTk@mX72TWL>QyH?k4js>HG+07ICYJa~v^Zvp@XH&QB>-$?;SZ2(eS^Mc5&u9Nb
z#~KXIs7u*anZ)g{>s_)$WlP>&sfHY@i{b0z7=Qf#yVn}J6IJ_s^6|dEmaS`<+YdYD
z<mmMD_A)ZC^UJmD-fewuj^*c*{{@bNR=Uk<V{-}FR+}o<*Vo6v#kH#N)u~UPidL*x
zVUktP3o34ZeZRIg`r^u9^%pN*TsZ&l)JKM1&HkM`E$e<h71xQ_u;AR5fB*jd`1kw0
zVa^SMBS(%LIDg(h^Gx&qRsMU~?NWDdPCvhB%a)LrTlO<-sQq1LW%^@v_<98qu7@vP
zc%)xjtz}^$@$K6;P)~f)q)88+K5e~oC#GO$j1FQQ+=R)KnLAyW*xA{)WL|DNr^UwL
zKi{r(-MV!#4Hx}6uYF$$+Eh?pUJlwR$L3u7?Tw_6kdVkFy{IiK;wt%MEG8W5`x%lm
zN8oe(!6*lbXTqS~(f&W5xVPorcGH$`$nm=T>fkFmn~DZd^rY%d@0PFsBPb>&23nI8
zbL4K`-CYll^-43O{9j;eYkTndXGIY%K`}8l2Q$zprmByRkAhI=zYSjAS05(G$;okW
za2)6o)n+)cNbLM9Q|@Wgra>p3dX)nrA~@>n>midgpmLodWoq-v;N?sVLc+qJ>6MM(
z6<y13fBF1*ad7Cq>hFBX$9h1kYeAbbnb$Qp>xpT~!PWvWgZhcq*48gxy;3qT2*~`o
znm_aMg$oDPL~aIkGM5YX_Vu+vx86Q@pdjv1baPW`N$mZ7wI83H6mI<sn&q5fQK-al
z)0t=b>7^T84jnqQA?2jduJ=7XJfJm7nVFfOXa()kjec?HkQ0xz8BdL!{IqG)N_IVa
zWn^ruIME{^C#UCNGyCEdD>~L`V~nP8AG>x<Y_ht4+s>VqU%q_FkePmLTKoCu&i?-E
z&#^Cket!PrXJ==dylb95UHskM-QmgmOm`MN<?`|Id9gQGvi#uj<L>KN)ig9b^xpZ#
z#mRxjH8V0e`1$*#9>>X8m2_-N`1G^p*R|@OpPp{mu%V%|lT$}m_vxbppvkj$cXn>r
zwhgqqePilrF&8&CC#8uF(b2R0vZHUFGAw@=)8V2dAt9llrq=c>_-ozSQ>PFcd!H^_
zVq5V+0WvLPQ2p(V)cMe=Dyy8_Tu>y*^}8#tT)t#U!s%(cCAY52*Z&Djygg%v#E;*<
znJ4%LzJ2*pQ#^gys@mV*6crR07!nc_8BI-1V|JBvJ`4W&_sX?vZEM%Az2wQZXwjkz
z%l+l8&Q^T=95_4s`nrRsPH{Oc6cFlU>Fn%eNZEfnD=UkGmlrg)_T}r>?3}NWn^HKB
z^~?Kf%Qw794NRT#bJePQ*$Wpgl(4I@`1S2=x14R&g7EcmU+%5CH%UTLl5=4IXg6wc
zaj{M1CzjOI)PmyT=AAn&f7IBy^-6`lXPC(IdA*ZFTjquvHzJfoxUysF|NW^{66)ko
zY<cqZ=|oU=D3#%B|MTUte~W<AyE{9b_x<_g4caToq3Gi6-MwV_a$zTq!h!+?@9BC=
zZ$EwhT-b@D^6M+nzdHK*{h%WZmaJLRBjDt5exB{ghlkszPCI$`?%X9ymT1I=m+qem
z+C$pY)5D?I($d~O*|l5jVkx({o{F%#pGu3sqt~y!|F4TWSNZwb#03i!oH!Jj*?1JH
zzrS0W8MnXAcYAL~heC^hkc^BEXwxHy;*-0(%Rw^=H*Q2!#Wb_=Dv64UE?Kgq1+@NE
zMNRG0)bN`d>p!10S5Z)C(2L(u(D>!`_5PY49~uRmPV6jx-r=ACGEP?3mx-A<^VW(L
z8ldiaYw^^nQ(YlDY}dr>oD>lqJ=wDOnSc|=L=P1eOUs$>et&y=8?syR#K*_SGv%VU
z<tV<rwN<%a&Q_^Kz$o{Yi4kZRp;pkT!$U>My6lZYivVczuifuA#+$OQ>p5{KE_Ux%
ztN!+8VP<V@?a5bHSHHB2jg9qmb!D}k|NGn9?2<~YUKz_tf8N*sUtL%m6eRTUV@1*Y
z&Z9|1A0Hi!`n-0X|9ra?&=!ZCpYE;P_g^!3*@UCr;=)cGoSdAB@%4XAfByY`pHr~~
zw3gIohQY)C8_VxM3>3|kKJb3?OI{B}0Tl@a7Um@vs^15>I19QgQQkA3X;DLi!l$5+
zRjdJ36XQgebTu?=5s9->T6kUMi^>w)`|_{l$~LP?Ptp;5cfYi7<L>mdb8|M${yb-<
zaq^}=pPrsxecZ?8$-!oJrB7dM!~}0{&!2yAn}~i~OdFr9mXcEX`FWz^;^H$+GADI(
z{Q3EO{-fv5)s>VoGcy-ybb;nuTwKo0x7Ux0i!1v2Dzx<G<Kz9Rrlz4<;p=qj|9+j`
zk#YY2r>CdAOG>uf*;5(3XV0E1smAH&M0(wnudj<WzBR3#Uw+ko*3QmOAu+LKb<f><
zrBvtFeCoXUS4KuAXM_B{pU<RUUR^ysa98y9yw2UbcOOj8-}`l1Ro|{%yQJRi?zj8p
zaks8^srU40xwp5ieE<C1T<unF@o5`27_1Cl-nS-t`?(a`$&)89t@!u|6oG;l|6Tj_
z^QUK0(xN%`^>HGu6XWZCy1KZS<=$HIuPs$fL_}q_S+3DepCccv7uB!pl`{2WVrG8&
z@9%FVrArH)*=O2RZra5wYgHm3I8oNR%wwie>XUD8Z!0abl{<Ozq>@t6_jj?Swza>%
zP1Ouu*3og|++6FWSyxx3y>|JclqjyV==lQg>3R%XCQq`2jCE*)t(mdw&&S8dZ-9dR
zu62HXKEr`lZgGRGD;hC-t3<zj`vzLtn3SCCTQ>DVde*UcZ<qIZPuh5;KRh_d4C)#;
zludg(N!5GR(^vOpuU!oW?Zh|CyJG=rw)RSyI=#KMwfEAWZ@2SjSe0rq9JqQ_^zN?G
z!+o;WSFF3{T9q~}(g3ZMtf;W~_wRRp$oe?j({Eo~T-^Sv>hZDOj?PZUtyx#EyzTDq
zcaMsaGRwKqkbJyv<@t9hDJci;-TR@w$!Dff#iu8npyhvat;>@xE%E&EWU@bKIsc!p
z*W=kH_eKUS_mdUTkCR~t*qrA3_1wOFpjEhEUS56`d-KADfGcYvFDFzhDJx&KzI*cI
z$%69o@ag-%->VJ~VO_UwUB&ac<)AehTk`M!oB8^)jY-xO4p1}t<>loUcN8W!zums1
z^!2q5A3riOe0h62e6EM_W;Neg51RSy4n*hgZB08n3$z@n;hWy?C7zQfOqjq>U0n?t
z4bIHWd}X<C_FHQW4Gum&zE_n|Yoko>?5Py)?CdNkDq>>T8oHt6<)sy&tHu8Pc+B5y
z{dBqi{9_<nHzvD(-Q(lsb!cVqasg@SZmrN&EABo8mFE2Re=a=PW>fb^;_vV8$2TS)
zUvM#_;Onc<BS(%z)cV~z^?v{VzAINknxEU;tNH9(^7fXfpPwISj0Lm`LrB$YLDADw
zY?c1=?Lf<HO>%AsFa+$ctF5T6e*EL(;}74ywe8+*9ko4=*P&W2en)}g_1E_|rFw6D
zy4$T+O0E6u->=u>FRqO?7txE6V0iH85tGC3-Jh<8$0weirt9JFf4rHUf5Mb0Q(l*<
zoO&<OAYjXU*ZExe`+KG@;!=6<x^C&qyOtIF@`%gymhJcJqUUzXT!{Pd+*SDB!^7=Y
zXI^n-xnK8t?ZG$qBCiJDKhVg0ab2u6XcaqX9N)u(W8d$0*4>px<sUEJPcJJgQ~N$s
z^OyJ&r6$l`v(M-4&Arr>BuukJc9p-MmpZdo+WgqFv$G3-eoDQvG8nWV3p5b@>e|}u
zQu%l3cjf+ma%GV=%Q1NME#3FtomKso|Ni~kQTA5K#l_Ygl*)uuy;4@s>9_mEk-zV!
zTHWur<~*`iB2%@)kAXUX`T6V1%$X-VEqB=d)->zNfywIr51u`1tNr~g@z<A^pwI@*
zZh->dw)&gP|9^i$OK#rW-!Gq-m<Y;eH8nL8CQVwzrZ98=;a%UQdbgz)M@7w&YDoE4
z_u|!}-|;R1I|>qATwNuvR{#C=mF>N5?e#W(dC&nCI&pg>x)wd?HNUsv*Y<@jokBZG
zUQVhySpV^n>*V97u3s0Il$7-F@CexL|8n`&sf%|D7Jhu>+S1x8ImNL4U(Mq8GwZ_F
z6g@o!S{0Y|efOIU-)z>!>@?z&u}CNq`*J6$UDJD-&cT0we{Zb+U$<k|uB2OAGA-pk
zG{3mtalS#ow)xUhZ)GJVroB~Pjb23W%e!k8v!~*s#@>If&SB!O89-rB_4SoxkCLdk
zI6K3R^7r$q4(=>@8FXiF^>@kbhxYVJn?GuouRCyDzMjY7cfr#wnU}9vm+soVnc>2=
z+-RS9Hj#JrVr{>IPB&V=@0V89*H^8A%5E!aw|zCuyu|YP*;(cVdnfNsIVoh4f6pd-
z`|Dowdj}pJ?Y^3B?ZPr~;>1^GptV8Y-`!<iko(lK?9GgmMN;N@J^K6q2$^PGVOWs+
z5VUaAmo0-KV1WbU=JN^>k6ym){PgrRXk|acmdz@!<JWA-zRovU&DRNZqDpS}$@}&H
z*XqS@O5wb8`SQdWGdiB0p1zu2!9KgzXmg3)@1H*xI<<1W(n!}1U+0pLu%K$8Rn85A
zKR+J#N3MH(XJ@fS<R+D>@9%ma9&TU#+%F+Pflt<o#i9D#OZzYU8PU%kJ$}rX@%z#1
zzOx6L*#%`~*V=6^`1U4pigq~P|DWgULHqAyY$^mm>(u@I!=qbD&THDPX5|)RxL~)q
z;KKvQD{G_04_y8mzAnac$BrE<j!QC}n{VIG&M&thY;9CWS69&cO`w5D+j}$b?yVO8
z_wQeT2<vjcxkeQWtX3!ATj<OVT1PD@DcRBAfBe<e)mOvjol#O!y25^nU(Tju#|{fn
z&SAK)ueQ20W%d65|D=C^d+U6ATkh38-{0Lm{Ojv$-Y7LjiJn)bpP%`@xwkhuxA%&;
zj7-myCn;ZduD1X8gSq_uz0l}&M)M~>J9jbha9iTJIhHr})$aavvsc>u!)1T_nLhJl
zb8l}u`siqP;p=O<47V;GoHTjz)r4zTuZr@^**sXX@yn$o2B$AQpf%SQE(C<EkCRnY
zRMd#yXH)j(Mq+`wzx)4l#m{zMcs5NpZjXd}pNwNGmuSGsAk~`xf4?&{yu7>|lv+W#
zc4PAK53g3QpQRfezdCHK&%MN}PhVeIDXbN?renbZ1<*pb=xsTUQ?)`FGX6(|uZ<GD
zx;h**ewcM_&C0kr{&THFPo6x<!O7{k)N86i(G!owpZ5QLXI*LyYO!ryJ+-dZ{`VW>
z8@F#OtEjM;W?ysJUG`Q$P;lZ?yVK{=zrMbHyoFO3l*B{UL<ov%g#_%LTKf7LZ|v?e
z*T28MUR~&Pwm0tDj>2TnNdMji`M0)cg615K^-9l<Dc@iB*P!f8M05MTwOdn83W0p~
zs`=;FS673lpPgaITvk@b!O!oWk)bimG`meZeBFxEr>E(5&oa$cvaylzoo#kBI)Crf
z$G^_Zx0nC-@869LiOg>Oa=k*TUJs6R3Nvhp{mRB8v0&NXkH_Udo;AO}Am`?$8D_b&
zq!O4Me0+Gi#B^sp{k6=0{<?YA@iiY=_x<~o&2ZrN`~Cgd*Vlp4K4?TS>*}i13G4ml
zT7d@BnwpynA0Ol0tSreZYZX$<QTz1NRM28a8(Z6tKcCNE>@`(uMby?+j@nWazW$u?
zv)0Rt3ls@qYoijMotc?c?j37YU0t1XYYQhRPgPV{Xoak3*jM{oNmG;4wM*pSot?!O
zm-$MA0y2DEjN`#3R^L3(=FyLb`Rx^KY-B)d*DU0fm6Qs8d`R5P51ONuWn^U32wujM
zb!7!;SMP$Ho0}N6tX=qPv32d&tKm2HR+~39HC@=AAFmU=%_sLK=o}2tjOl>`4xpjm
z&FSae7CN<F*>ifjzWdo(roB;bL5;<)7TYr}G97N`4{w&L_4D%s&DemJMtt~C0IDfo
zUt1d-t-9vtT84%V8w^0B^pn;7-4YTM4jnoKIt6O0>+MVV+f1cQG8zPx-4;Y{P6Nf_
z;Wplh6DBmgySw}GzrVjV!q>^%+LD?4Rp70QzSOxEKbJ2|tD?8-+5P<zyyxGq*XMU@
zxm~(^IdFBD?pD^vu2bjD<6~!Mx2gLRQOnlQ(Q$*x$>odFsq>#XZ`{1O_rt;VKGX9a
zf`WT<KoTx4E-q$=#RQZV)u<>aILs|s7qheI#jUN`eQhsewqyvNn`=G&ZOz1q6JOlf
z`Pq2A`S#NH_hhAdk0m5DxcAE)ynFZVs>C$?*j*_GJLMBBJ}%#C<ger9;&SsiLraH-
ze4q$uFN;%2iHYA_tJdo8?-Cy#YCRuw?@%ju;j=R{bDpn`*}2K8DYR~Z2G^>Pl}$fC
zKVLn6ZOl%gr>CcH*Q(FSSz~1toOh+Qqhp>dGsul@*Nx3AEhRfUJK4(bEccn&BxRbl
zz-y{j#ow>juLiCM4LY^7wk`}>>czp!dsKh_pQg&s&mO+GxLCrb!ayr@Rm<Aw?NV#f
zZ*EG>xV)_QVER(;>Bl}kJ`URF)tnfxJ^y~+uF}_wvaYUL5xBU`%ISvn`#sH~+F=X~
zY3Jr}s;jGSJ-V#$@v&D0+jl-ZYkvR8GT+$~X3gSqu-=n<ex5Dwr5UT!|Nr}2`0kEn
z$f}T&2`<aGW?x?vwl+#5c9#igwT;8=U&1mnIRSZZZ*AR}dwW~VZ84=q(`V(X#i%PO
zWwWrboXB3kSMA}$he0a>6f-X^>0GjWd3VQ&O{u4s_|LbSG;yM$l9Kl{orz&<qdGf0
zA|htU*i;1QK8JJ{7C18B+)=prWT~pEs^`N)txvD5jaE|n^!xpO@2Og$E-oqG-`x$`
znB*!bxU=A4)0H)m!E$yr8cIsf&(9aPx3~B7^qlzf^K<X@aeG}{o}4wmKjqfe?9<b9
zqg4zI18Zt(RCIOEX6&{9`(<)Vd%O41F45k9XXjX6PKn)J{$9^G?aTzwM%z`Pt3ihi
z1??`&UHy9He82j5ei@4Z7netm9xX{Y*i`iQSE-;NsHgPi#ztosmqm*fsc2|;xVY%W
z?a`PwZ=Tv~4;Pnf4}D&^xcoe`Ds;7gkWf=k4-aTY{BRrZ;p_4By}Z(94_;hc{K}YL
zQc^Oje8I6^>Es6o8ap~V95$z&?Ma(&cJ$^=NkKuuh)pS+Z9I}qt=!^Lz5?tFpuK?i
z>;LyweSNiZtud&hQ}fekmPuxl{=Oefl9H03)*5IzkgRo?!{UnzqPAvj*u2?TYrXe$
zy%(33o;H3v8`QwueBRDEB4S2htnSszGO@OM_U;W_6{30M*s(+B&-2UI{ZIt0fHKLv
z#A2L&&Sb{@mX401w%83F9iJrc9^LG=*wMwM<yNVe%ZHcC=POxRNnN~n(W2~)L{d@`
zL&okj-G~hgd3kvi@ArN;sQi?&`r6gS?);!SsbAjy*fQVQK5T4CP0M^|D`{zY#eRQ!
zdV1illFT2!e;+=1k`uIP4wQwC^-4efe!u?sxw+Q7YKJaw&$($7vL@o<i}<BpQ?E#F
zJG(M$trTcc(^T#7M{l>^-?nSsvlnU`n715eUcPiGBg4I_*Sa$HbuxyAhCiN8kN06q
zb8-0sE-9w;zrD59d+x+tvAfGaojWBZr3Wuxc5c~XGRLBj>EXkN7S-Q$nwpyhWn_4)
zt*uMjJ~Od$J^1(cciQRoVQZyaSmf*f7|t@w%`(W|>IYhaeN;UD!H<uRIXF2P89;|S
zhOQ1{U65NVX<KDt_y13^h)#q6A0J=D<}_ZjoEr&6b1gF&8MkasJAU-&!Lw)2zN$*w
zDsQxT^JeG$b$>xs>YlIHqBQ~*H0<)RsInCd>@#3cR66A@;_A5EZ|;LfkD9Jr31MMj
zS+Ur>^yMX1PEO8@8ygfwTpgpLq^iEX>HP4aphv=x>G`?2&CSisckbM|GOcA_?eC-$
z6BK8d<w}7PhL~=Y#M;g7{c;j!IWsOgzp?@q9-C56gPLb5s;Y{rs;r{gVMi`4^=4%7
zon><H&CShM#roBJXC>U*Q^~>0d-m$zMVB`u9?rRLY+@qv^z?Lh4-XEn>3X0fEzz4c
z^=Iw+xV@k@#h?5C|IR;J;^H#Jc238Hj*b&8rrFmXw9D58L{IMM&?w))+S1XXF?pJ9
z^rQ9r{~h}E_4WMn(2kBciyTHpB@meXP$L3Vu)Cxf^Eh;Xz=<@81_8my#PjoPFJzcp
z$S}FFyZrs<b?3NKFD`PukYNH!>Xw-a&1}32E@oU<5xDqy!0zd{Z){Ayn(RESFkUdS
zpOItllyC3uu8#A`GLe$8srXPC-uX|}f@SsF!ui62dm|(oE_i1?Jk-jtMck}wQNqVZ
zN6&9}a!Hx^ZnxLA^vwJFU#ty|+<Gqc*ykxHtauz=ES)@OPS4it>rR0pJ9h7OcG-}1
zRcpzzWp?jZ2~Ok$O=?}beEH+;{Qb7?SM4bQZEgJWrDVy{r88sBalc!>=~lSQ7ZGNG
zs+XXXNcrXMSQtPn*%=x@ef{b2b(Qn3Dk=R6f0XghWlAi_vc<3SM8(9~zTd0nPdz=&
z^v4`fn0(@67N}YY>V{jFziU~f0ooGDups;TIsw6)ySqd`e*73Vz4XBW#xE}~v#;O#
zO^QoQheKUm{m1X$i+yLC&9E$1dv||-zS;Yw-qQ_geiVeP3}Usjvjd$f@$gV<;QBaQ
z(BV8AH*R!$S;~JVT~vdWg#}cwq@SPXcDm&6Oj9XdP~&dO6cNxac2HaK;i1-r7c)K_
z6^~!>GB`LGG>u;K;UN2pu(eWq_Uw7^;suAiy!@3Ffy~Lr`?gliU%F&T!nrw?p!I}Z
z;`)5)>FGOm?_TWG%Jt&%a{g`k_t!1!?eA}&JXzR8ikFQ?VnXW8*=D&x+q2KkG7Y<`
zzWK?M6wo;h4<9}(C@*jC@8^GYWo7fu;^%3v`SRV|*u-?BTFi29J(wCE*SLAJaZOE4
z!1laYpV?--Cr_SC`<(X9zy8~sNKnbV)N5)}cQ<#JsCJv*T&sr{7CMJr1=T&E^FddI
zt>wzk&$qC)UhL8-^y13O$w%M$EIYSd*18OIP}+yjpPM&tHujpT)yl}s20E!K^4jBj
zd#gc1)=kaL4`03NQgZEDka>Aon7p?4dC4bbvBE+^1|=^7_I$gQT~J!;dU28K#Wj(}
zIX5;iI((bYx#7u?PT?2V*UL9GHGz7eOsrfBoLaelyja{{@bZ%C=AT8?vvm#4HwAxx
zcX#2%j1B4M<rqL`jq<X6yO3d`5xHr}Nh5ii3ea}UMSgRwK79S!I(f1%$ZOkjZzsLI
zwN>o(V(sYf)?2f$>y^B?z^LjqrD5@6Wv{7PsT2M^IXM|L0}NW_R$pIlVQqc*@L|yE
z8PH78&G(b?uI!extzx*a?bD08=&%1@_IISe)rgp`7klWz!REk)POKst0ifcagNy4B
zsAVmz?w6ANyI;n#>D*lF)wjd;R1}uHzQ&t=ZqCLCzKg}`F8ZK708t{Yg4Na4JL~@L
z>gYIf>{yrEV!>WF<@<HNbEl=MsH%ECKR4GkP$W>q_3Y~Z{(&Nr)@5sMT3J|GMV-05
zA<?<nMqEEG<g$L$mJ>;TnV6Vd7GLz}m$U7erW>;(K==8Ji;IQi<nluJ|5ky9$<ki0
zT)n!#zyHns{r8jRE?T^JY0Ak-V%sAZUp%qYd-@d{S?e+p*T5sEPkYa^sZ84VXZyV>
z@3r1uUR_7GECUV4HZ?c<Uh@wW$-KCzHRt}m*w}sP=jA3pjoDS=dFap~oxF6=_~xCR
z#cH3;GcGuoNcEcJ+z8l~b5kiVFHi0ChRvHNzr4IW`p&YY-qX8w@7{egH%P>_>iaw0
zmoHzsRT|IFKitl59^JQo{rWkU#m91N{pMP!9_<n}p1nW){5-bjOaECWWbJ>F8vFnI
z{{Nm6m0Zs}dw+d>{It@o*IGD*kDNPq?#-?_bLXahd~{Up^Rs7W=}$ptq@2EXeQ$O7
z;`jN_>X&*=HPXs|es1ogw{LSl?#a2jYN}1$pBpK)B|ne#$!aUR^%!U^PdPa$>(<@f
z<>^1I*J^b2NEjZ<u-#q$-pp&d<^H*I=N`;&+*!Lc|KcLoM{nNbl>L7D_HF8;Bb{lV
zU+4e-e!pIykB?97bYXGvWcz<V4(C|9oR<cbQZ22moo<UKs`<{6sEJ$dCmSf@x+-jK
zmSMe{TboJlt&qRU0o!sSXBsBAy}7?Xe$nE^Pp`+<PYqn`<{1z$;UvS8ZvA}$pQ|b>
zPo~eWRonmf+w3Dpj+}URcX#TmD=R@GrkPh(Omy70hXZs3=#g{h{HngZ0PT^O_~Jzd
zs7;x3cUP$I{jJ&IoIE^J7CN_|dUbU*=qN-XNlDGu*VayEWM*4Y@6j!ysZ{>%j$!2d
z;N^au?d|Qm?tOcE`}C`;t5uDRg81a^biAkQP0hQz%d?S*l}GQz7yTdMYa$ZMs^8z)
zsodAsx9DO<%7q1vV&8i;Gcz-Tb{3_U#_C3Io6;+7?iCU;CFjNl$62P?YEr#!t3p?&
z88USC_lwup*9VHY#>B*=JUGy}sqAf3XHU-*+v;y8PE1t3+Mr-y5Flq$kr2}M&dFLs
z!^6hb_UPry!Jv66%Zd*RK&@vrzd0JMT%tj*LFe^OzP+XBsn^$}B|bBajB0<C+}u~Y
z+r{1e^sle4mzKW1_Ue<ObDPA|>-P7vuCLSWTI8|VtvBUpm#C1asOs*rw?;b{)`qU0
zcCyN*;)BDVzkjcm#O^AYxHft_$n|R?HadZvy(RxFtHLs-&v(|m-dp{BNyNsatX=Q!
z?moRO_qK|bmRH!?DAldm*Ts6>lufg)oG4`Y^!NMy)u|$yK`x+^4cqx-Co!}0oe+<&
zSy&hU=FOXw)6;Y-x1GIaP##$O_gAT9<)<YfYokI%TqkB-U3K#0WOd$ups`xE%5QIP
zFRu&#`{z%}p%%_fm7mi(`}(Gxoo(*DJ@4)ntL^#s@1@k1lydU&in<1>*x1B~=|-uz
z_sdNMCBp}5m(I<#K6?1DvsL*!9s7Sj7QeZ>J3J{VDdqRKx1d=p&B#qlcI^YTwAZK`
z8V35!v(bEfyg&T<&f@2Oi*tQ^e9jcbzs$L{#WOa(k%<+Q8Yley{r&Vp=XTJ3q(`q`
zuYNY)wtCyqx9cM}FS~K`rsq<xsVNs1xq{Ny?{9A>D>}Dz?A^OJ!$gXcgJZ&#D<PlR
zr@ydFVsO&$oiRgVv-ro&>F2|y&$X+)l_P1KcE(`Ggl#3;W3L}tBrGedTUJ)K=wgP7
zg~g4Go%>dYub0|${w;$`__ZchZk=hR4-c_+pZ1?)p(rOO2TFinUR+eW9I`6JbMNNu
zSy#0-r>d%`coY?F`emoA?0k3Hv$L~jpEWOi6;fK=Cu^Oyao@6<?{~|y{{8#=d$!Nz
z-R1esf77%WUS3+-t<j~V>OIY*I#EhiR`=bzcOb*BtO#^FT`GR7Yf;DY<;&;TR$tRN
zdvdb+(u9Lei!Npyxqm<Y(xpp0(~ciK>bcOV6;u|_x2yHpR?yMWBV!q4t2Z+`<;!{V
zUN`0U`~UAdY4q#M%f-vOJ39@d{(U?yzxwq4KcBo8Kh4a{ytJp%OM3eh*jj+%=Gxhl
z8C29uWlb_B?79=;o#E!zwk7+z-sxRwPtVP@&N?0T@zK$zx3*@xWqvs?9DLkj`?i}>
zk+C7sR%X9~f`hNVFJ2wCRz*|uWXdkf;%5>uAJUgaFVpBU$-Z{xQGP*9&7M2^>+dJc
zon@N6tS;Z!$f)O1%JQS9FYWX4^_?0XSLw=Y2ReLHa_P>Jmy>Qqy?FOd@8idhZkb=U
z@AsW;rpC<kcR}XiHeRvUK4112Ff5#Y?7_k2tIJ-t^UF)=czbvVsH>}A%rN=%a{2sO
zXXa0wxbWUt-M~dHH}#mFz1Wp|^XARe-%ghLQ4X`ra%Ziznz8uy`h^P@x}E+KZRm41
z^L*F3qbKg&yQiUX`Qly9wJ|%3ww)Fi)QsP^N25!ruC6Xkze~=xDy5*@sF<PX<0IFv
z>mIM)|1Ybs_HY}ouxsFwijR-nPM3%mOZB=f^PQcxt!MqdUtYf3%icycr|zl^Tjavo
zU2cE*(j|~WwPwY?pWjXmk29>ESpMxz<Yw`=nwpxAo<3ET>UBGG`0&|lk6&F~%@!+E
zEYx6=9XsEqQfc12d5bP)EUEhXD(!XE>ub7&g@q>r85Y&Q30ohRYc}_v>yufg**w#p
z9y5#9-p({Z)q7gUB8^9{US)kc6czvV)m7KU7d@`8i|w8ElF0$o45<0J>8o_ov5m>c
zue|N<>N1L&7tMHLRp{y~sqyuHx85|W`}I=Y^zM_BlY6JV-gf`$)vGzHKOb)Azq&vD
z{HNXCDcm(2bK|&PzI++6uf|fu)p532?t^#l@;2PLd|7z?{(n|3ET92^lSWBNNd;eD
zg)%tIx2t{d>Q&a)Ur*<^-w}0nY-ZyXkdpfKMtZXMu9BCN-r9hMh+DbE3tnB(oMTfd
z1lq#0(5aPyVY%O2r>d%5j=y|oo2^{W&L=bD?bokwZVF5Fy47y5-n?Rk2B;g_wFtCi
z;ilgIXJ==FI_M&<j>r3CAHI2$V>Ea6Y-y{qHyPXJoSkj1Y-=mKZr!?!i;G&1mR?&O
z&d*Tr_gCrHno~Z3A|<b{oy`F)Pz-n;cVlPq@`Ib=>wdC!Em{z|I&8!C?dH*KbLYxt
zU0cH`cyNCGzf7~(-{0OoeDENlC^8^m!mrp}1rM7JZaQ(o<Idh{afT1~s^8Dl{XaE4
z&T(_v*)w|Q`_k9GzPQ-E@clhoh5+{E21l=77e71O{CuEn>G9P83!N%HpEW<b?DgH<
z+XLl-=atURefxZVJsZQ7_3`p?adBdoudNP0|EO}M23OYgb-eZU|8uT_I+Ee*Vh+B%
zy!`6@^*ud2r9U?&AKw%jSN5WB;UbM!&2N{1nx3rOVkRdh&s?ODachfaO-+rDUU_-B
z`%I%$2Altn{Zc@k8%@ws*X?<CnHcu`ez#lg@(Vqib#Z&U?$`gnn^9R(vgOyVyt}(@
zMuEoJsv0NX-BWq=mck2A1N!D>^)69uHhq147B;p;POV&^5pNF<4p6_G;nv0ZCE|0e
zz=^*zCtio)R`=y+XJ<RRT)FxB>)HAC@(d52Jo)0oc=hAs<5#bTt`6HeV_VeLthDK}
zwpAhw6K2fdu(q~dJhAA@|E+m<qt2Fpe&##*=~SJ_OOIS<fp+LIG4*UyR90pN9p2k;
zb8~w1ns&GRBL>A^85*v~RiAxh<RHC=IpF!ViznCC&XzqN75;Z(yH@zRoQ*wNp{s0?
z-_Bd-9Vh}Ce|wbSxo_XTSBBe6j4o}?+q@QJf7haf*VooY&YM12-JdPt=bkO!zH1vA
z3JR<Hxl~kG+_`fHG&``U=I5tZ@54bOCR+*%3oUPZaF-n4kaBX;hi~7^W}iEFkWo}S
ztfk}0iyhUKm5wg+eiy16wKH<;6)ABJt*Wk`y|?-1s!;8(dHYr_%=`M^;^)twso8%m
zPtFc65m%cATE{+BEA$X(4D|Ii-O_81&-^c$G-(pgr{hPDItEUW$=&?U?*nM0s`mG{
zmGhS`S+ZhnRQ|r7%c`y$SPKaWUAew*-#)R+Vwyom-fX(PJ%9E3vu~Ayf9n_;UQDTs
zyy_Y*FKBq9t)+#fR4gs~^+JuVi-nh`hkDO<Tm08}($25i+rQ<O*<{ClWqy9Bl{;ET
zdG*uCi*LoV`wA~Ea_#LaOgq2p?6zgU`%<3o*<zBi)pURSbiG)oRxVM4q9-1pEGa1|
zdGpubQ@)&>oB<+7Up-!TI{DoGr#pmaChx1A_ktC4!Y^p;Sbzv?VPRp~ZtWM*+w){W
z!>8in;?h?>{5+Ah<`-zyU;Y1o9{&FB6O~*+{W;JKG$SM9hYueDKI=zpaCrMqrP4sT
zXtr5yz!DEZ(5@eDF&&4wR;3IKpz9&-?k?Z_=2C+0U+#%-F8!VO{o}`j@9yqidyoIw
zGtY`^yI#cSe0g{G_N%=7zP`TmTkNu*rrh7RB5qslB5U*LZ8@EwNyXz&Q@{RZ&4}Kr
zAGc@4x$Y|~gVkBs*%uc)JoM^5qhR3aQ{DI1pNZQB%}NhJqtYi&o^&hUeMV5wrs@mF
z>uYNdTfg74xNhD3``?cBN^@{=ZQ8{*^K;ttcX?tA&331k+0^~9xczkYrh<n~OO`G@
zc<-JZ=s>gIBI#)__2%~X^Mlq|`rKZVoS)whT1EJJ{r+RGuCD(0cKiK9SFeh4i|H^d
zczf^a63@x$TG9XYR;}xvXE|-!>s=u>H9rK_@BJ3lr*E`rRkvR6A`Q0KtzY81IZjR0
zp1!#1iOaKEX$gr8v$dwTXHWm~y6X8k+3wQ4#n1ivu04JFv~{+5e$>{p=K1$btd9K;
zyLay%Xm4InP*6@$+&tTAvESd{w=dEFb>5Hl$z~hPU3!20oh7e@Qr{L{f2vp&xRG0I
z?}uqRkxUM^zh?gY^fdCHcHABdhR1mkziL~*rtjbCc5;&H)pxNs&vG-!$;rKXedc`R
zi`~`V^R}fGZ-4US<Ye$f$mWCWAHMu#4=(xr=F`*DJBps3GQRG5o%i*}$Hzf?+}6eJ
zZUc?O28xutzxQ|MX<kmwz<7Dfq9aLB-lw(0)^IRXe0tJ(^l#$Y8#f}lk6Y^L@rmol
zu`q<J2ypy+=ioucr>Cd4cO?A(_t$cryWf**`?j`%79OovR#w(scJ}4RwE+v6Tv!4F
z1I6;y?(8gfpUWHjU*fs>HMZNko=f$~*{&)RKI6UXzCME(`-Bs(DxQUPx4r}20TK15
z*U#JAxunEI#P#I$<8w8ZOEg^Ie*5TX_bbpKFGtCn8-}Or1qB5K1mE1+diue++K32=
zKY#x!DuE7gz4`C=vKMZuLV|B@ZdSj&c&&(5hzD<i&fkME`)VrJl`3C|Rf)(7+*$az
z&1zS#X6~&mf${#c&EC#@9kk3x^6SIDtlVM=7Z<r^)xVp=qEJ^?$HB+f){*e_)m2bn
zoGj_=?2Oo&HT7oEtu2|0<5u|0xBENu^<rfuwfWAMA~z&7R?RWq{ttXaM!~Z)l5cKo
zR6br>88%frJS<wQ#GKJ*XW3h+ZTa`}R%gu&S?VSFRdUf%@9DFA%YT2%&AGiz*ZuV+
z+4Z0)oV&Y9(=MN#YkmEV;W_^j<>NDdzkBiG-09!n->+Ufz0%YE#KteuX4%(tx}U!2
z@0otpENYQ;n^IEY@9_0;y}!S|mwuvHC1}X7Q2f>+*X}F!kKW$izFn(dFV@Yi?cmXl
zMH-+5Jq#J{r(RuKD;*RZ>^n_S$?a~R-M=5n875L49QW#e=f><VJDVfxqkEaxcW2>a
zw<E`nN$J{Gf75a6mz$ei{-$KDT>am#;(T&88Cz^LH92E<m2CX6Amj0|-oTwjsT~~q
z{(g(@7XQe}$tiaF)!p6ZE-dwbKC**E8629~ctJHl)NW6;ukY{6H*C9oc!Hv{&oW7q
zj0p#upUq@tWd+@xBOtgYVx!V&g(r`Wc1LVXYCUT5_*n1ZoyE_4?CfiQnW*{9U~rIj
z*!%IAG}~!*J{gYk^70OjsxL1ZgO~e7#+(PYFt^N2fBND@hn#JdgNuN$@Z!FlCHl6u
zvbDdy82+~1B&x2i4jS%JYEpLZTk(9louK3WeYM3Uf?OHx0cEA7tsMy`CMfQx`@1V}
zR`T(_#79Ru85$lP?Oq(ayUa2wJ?;{(!NjWt>)-GFKCg=T`Qv{3WAgQX5)J?U`}=$T
z%B>OZ`>$TR!co;=_Tz%Bd`90t2C4f0f4>`FUmm-=Oe1WKgbNGkScji;cNabF`elCX
z>Q&S5dAZ7`wtvcM5?u5L)UOtCow&%gJ8G`Fva)lRs5You?&RduGtD&nn$O(MZ8<kL
z86_X%xw*f7Kd1*iO*cB_%ZrObA|fiu$NNmRe((SPcm1sEmoEpq^-8HCk4XIb@-k?B
zoGoZXBJdt)k=^8gpTB>f-c$J*)Ia|A?ymM?_x@>4tz4b~0TX`w`W0m=m>4!WOV+aJ
zNJ7{<PGPkZ_x4sl{qXRxQSmb$&ERD{875LIqqna+YUDrPZtb~g>omGtTwG2djY^!J
zraSrjy=wnEckk+6)6~@Tocl0(`@YoE(<1M%WiMH}bmiu)+FeS>BN2CY1kTmm8MQS_
zEZxc9!(+mM0}fm3zP`Rbz4G(3lLwpGRjsU|%HG}43|{5~8nfw`J9lo$iwg%=^sw<t
zb+|1CEm{5e<%@{FzdvZ5BWM_cPtHa|Slw@mQ!CfXuMzv}_MXg*+MYM}#?70Zi!>fR
zdZhIC_xI`Z>;FYATD0iNg@w+bp$<v2oEcNJLcK&>C!U>cF8$>E+D`rV_xJ1n`}gnF
zzPFc_c7uj(7A;x?8lni=niYC6!-VbkwL2~?QoU-YJ2{GjuD7(XeEj@5`1P%|(dIX|
z<<53-bv?N%boG+3wNap6iCeGKt6%d<mG;auPG9v}GinQ{P>BT%<goL}OxT!wysN#v
z-753twYAZob7rrdc-5t)`1!fe>HKmw5lYI+PyhV<T=efx<>KVZ4-Xs*3kyL5li$95
zyR<bsJaThduZx@8sfo(&Pe4~>7$zU{@bKu+=u*00|9|hrUnQ@NzW$yybDfN9;F93w
zew#8ctAR##Ktn;lzrA%06luP%ADn7e^CMtw@l>r)(1j^Q@9tQZN`F<?KbsYwdv8zV
z-&)Xg5NOFLpNxe9XyjyN@N%z-O0HM_*#G&^e9~ym-8%34l8gQ{FmmkO02&|p7xDf5
zef#Lj|DWgopD|a~TvOB2s_c!1RIl6L<Vip0FSQpCR`(NecX#iu^kr30Qfg-7HQIe|
zlB)Nqna1fV3JMM)t|to_lorhmy?y7GiBvC-tksoOMvE6MdU7>9-gNibUEOQfyfR5R
zz|g!v!_w07bnb>@UteEWwXnGHrfgfz%^=WX7DEQXi|3}q?yvi+bDp=?O?hwice7LL
z>o0;1qyde2p8WIe+c&XvFLA+}TQVpA`0*p+&U2|=HyIh3l<)8EvQ=)bZp?mHBP<9S
z36i=nJF0$t+}=$#?Q7<8+Ac4(EqgOVL^J3}Qtb2d^Vjd&U;BI8(XWw4g^ye|Zr^Uc
zTTfhEJaSjb%9DF`?mQcL^3@{H(LX`EN-{U^_nawfRibhFKGWUul#`QG-F|KsZa8w}
zNXPc=+i%v&$jRxM=ifWC=}h9`wwZtZUjG+M*}C4vMNB_#4V%fcef{xuKbPM8bCc8I
zOl^9{r{?MVxUW4v-fx(8Mq*3OO(D?6m<*G&-*NLTi`jIewluW2v+vov_u|@U^UcDb
z&J_RCQ&XF}ySba1nm*huzyI`U+5}F}r3vo)x;i>egx%}t;Mf{z_xb08H*b2TYKJFX
zUl&{P{cbsEW_HJ}U58Gd<W%*V;&6Lg?#IXd_OsreGp_kj06NyVnT^-U!-E4fvBS>J
z{^QrLMUKsE683d_ZWb5Z+L9TuEl2Xz)z$4ytlXdm8E6g&w6f#G36Ckd(P9ibeLqq&
zBhx_l%9!Qf>q$F1>)`3r+<tz3AHIKg|NZUl#^mFCH9wzD51SgfG07ElqBH26ZqPzB
zCD$&{wRoWIAiTV;`|JL0D1PoYMI-P~Qf<j(53MfHfdAo>Cr_?=d!lRpeECI-7k|9}
z|DU*`qGCa5Y3uUk>RH#;bVhDYdw4y*zO}j8dD`uluU~iH-Cdr1d6{p;^SR{#yGk;5
z?A&?q;zhxI`}VDf-E9V%3Ae5O2AVKZJ3XO(7tgkwn?mmWa<1p+*$N5>FsQ4mi)aRc
z&Lug%ulBb=#s!7$+gDbFYJ;xM`t;;v#+@C8U1GYRV}5t++O;TTWl+ZDWxUJ$=62n<
z5piXG{C$o3vU9@TnWv{}w@+60PkM1-AqN*%)8@^_T;h5?ZoN{8KR-PMwShukpI%#h
zE9lmR3jv@QaBkx<jK0p!FSp|5{M2`na~~dVSGKZ}s{QrFF(E-ACN>syEnLylQ;8QA
zI9e1x>p7@VbMt23oF!-T>dei}LCeD>ED97(P1R;MH#eVLobw`Nbr>(G@(1mYyS6s^
z@zn4*&{n^gn3#Y?E}SO$_hcR)?>|1%I9=zQSAOq?4WKPa5B`3?@9yBhAR{aL@a@~)
zS65djpPHg+QSxF!Xz>NmX=TOF&N$xPRr>JlTi)vGYK^WW1FMC8VZVRfEx&(srg8d}
zzfa%2;|mWD2X&V7@9zU0LU>`JbMcnD*RHj`s0?z+G5AnwSN8If>J*(wAyD4~G~oq`
zu7gdipsnYQyRxsZQ?#*>nKy49$Uky+H682s|C0hK<&(GLss6oOS?d3X!~8Gq@3#kS
zsZBdO>tVnBKhT=Tk58w^ulj4<sqy>Sxw+k-6E6ZqWUNXwj&BZnZq6%hc4VGy^@RnF
z%%H<HE5qA;K$C-@8};hz>r1C-DJh+rH@!}7LekN$htJN={_ypyYf6d=XllXe?vIa;
zCr+8tGGm6so=>N=85&lFu3nURd0E7cf`wK-8AU}#ZoN{iX1TW#o}QY@&=9w`O3~I<
z_VKY^(AgcuCD(giq?*<Lt6{jMs2jiKLG!2mPoAWJ_6>C{THw|zb$+*%i_8Bg{aSII
z*z42Rtcl+4m#cRz^Ue;#rluwyw{M_r37{oVjLd8jPyU~;|JUr^FPHfF+1Z`pm5Zi>
zs`$bW4;(eR7WKurPMNLK`((<*iH+ay*T=stn?3pA{LYTJGW}Za4pY!lhuhopXYY9o
zT63LqbCYYWysRv*gEiZ}eW#{sJ1@SdU}Ys0yQ}2nZ7$)x3ZNNTb^m#wC2^oRLk0%d
zZn4^h?aNc<zkQy5XGft$%?|@m3ly{hao@gu9$sFD{{Q=K4_ZGN7#J8J!s<KQ%=Pp%
z-TCFEogM$SN;E_`n$K_kSMk8AuCC6*!^0sfOG`#Zrr_~0-WxY>9z1^hxWe4#X68M6
z_xkqz^mAEub#*xZbp80S``TSi@Av)IyDn#UzCZ5M@lW%1gU<3fGsDnr{%g4xYlD~b
zP1BG6CzIvo^5sziLsILKB`ORCl@}M!RyEbs<mBVy^YHR&TD*Ai$)Y)P=U&~^p^+`s
z%ht6BbkT>Rq9Ukw7qunh<DS)1ms=E_{cN0cgacHjS(m>%a<p5#@cB8}CCio_x_w(Z
zbXCZ~+xh!JCurKf&k_>+``VCUBWSvpVa6QBaP#8LdcED<+(AJ>KGP=8nX_h@v8tXP
z-|cO=&JGR@M@wAvyG^sNNz{soihh;JN|Fv<<`Wpd|HSQ?^G&m_@tmDyYP@^S@z#z>
zlO}=A05r+JcW1?M?#On=4$+d>^(C<zzuetX$Q&0JS5Qz8aCzDC<;r?`=N>Ha@%05=
z0MsR_omOUhdt2`5k2{`&mOD)OK20w+t8ky3Q9omcC}`65P%HQ27Z(@1od%sG{NY2v
z*V>8-3l|pmemT<@T18Jz2&SZ@NGv(4qoBah@U4Z9kMG=G-UT(;A08Z>VU~OA^E$Sh
z9R1%<w;uof^w8tKpFq11ca^<e6}LU`n<2x-AQu-F(9zr3*VnCd{`l|P?R<;!cXJN*
zT<?`KZJIt^JnihPRDp&wvrM`3^71mSu9|wY^u?}NR(AHqK})?Vx2R5;FQOAM;rK7r
zLy!L!J^Wa=^Fzh{nj5kIZW=N$e)#+SK4>Bwv=p5Iv|IYvRPAsE2Kl-liZ(Vjpnb@o
zy%@YwCIRVA^KB}P4jnqgbF8_%tnAp1!p9%#|9`Ist-+jSp5M2(`g_vNO{t*sA-F`f
zzSx*e1g(A0h)-Z(O8E5T<g0-BU5gU_{sOf*Z5bZiEx+FiIzdWYzt6V%+k?gZc88YF
zuLBkPTk`HoO;-00oB#j9%lrH7Wn^UyQ%{Nf`E*(zbVJscmzO^tWS75Da~ouO$0uPn
z1%{;L<h5SnGBP;^FBhopt@`S;K5lPOkS=I}$|CW;XO-a%FH*1VEPnnxmUWY&-23U=
z;Gmv;qKe0%W1jNAgH@maiK*BVuV-`5<yta>6DW>d%nmcOfbGa>W8@G7ftx(c0w6<`
zHc7H6fYqQadl3{AoOl+r90;UpcH*c(pg<Z8Bcyc1$nfa#*8kvS^+||XfQf;Ho!QRr
z{BAK&NPSt9%rJ@f`T6<BZ|Cplt*@`&v2&-Qg@pvDstXF5<haW?{oDfAZm|y^J~V9K
zZoaGZHRzPA+1I{4I@&EDxcc(_os0kee|Ohrl>jKU3Q9CYynS_b^@^yiTA)&i-|h#4
zaoQP&wNYC^7ebW0yyWUz{`QvXm9^30;(9R$mUvG7a8iAK!slmaL1zM7x^yWg==yB)
z{6#4zC(STQ_1gAX&SC<)C@5(w{c8XFdEJ5iM;{&S1`osjd_KS8?bhoI4124;yH!<L
zP1A{N`u+X=;)H`upoJ=vCQSm}Q5+su$;uG0H7nF4_m&8^xSq@VdwW0cStqU+!@zK6
zh9NWPZnUFYG&K*b4EDdTuJ$bTEGVE}q#hR&(6+7lApkmYHTy&5#YL_QFJ^#NDKUVy
z*hFp5TgxWTaA8MbG7Bqf;?-55W-DJW^`6d<5uLl~RhwxVPr$}Um%p!ESs7^za(vZI
zP?6fq#;c(8;^t;`(4}~*!`CN0Jv9|{FA*D`42QV5IOz2K?fLiJrfP-ud<tJ3#(VMN
zMYENw%@_h1b|}T=XRP*}ZI<}s!$XFKW_JEX(cAMnIt|a9hD0<dVzo^{4Zvf)hx=r$
z12!hPPSFTtirrOmuwA~c<K$#@W`?{wI~W;0eEw{F>izTQ?JX@VOP*a6t;@;+os-ql
z)6-MWG$E2fZuMG4h6~Glr9rKG0YT9A9?))?o0})CoMW?64jju2cFdD>85tQ@#P7Ge
zwLPC-Utb@z_#1SG!o@|dh6x84N=<as)zug8Id|?H1L&q?3k!=URd=(lu4-NE-v6q0
z5wDKl++B^Qrt)6SGTF7`vuMm7jx#fv&&>G9<~Jvz`%1_>AyDF+QeLq&bE&9y*n<4~
z`z-4J?YVUbv|Vb+^5w}lHYC2dv(q>xCWe8*f1Zuusrhr}@GxY}x&zucdF05E6fQfi
zmFtz1<saTHZv-tiI(1X{fK3O3s1}2|-ya?Y(acO6RZvuGy#J7O*=uv!S*N95Q+sxW
zZ_T|e)-9&%R8q3V%4*s=?P>d@&GQbNK7D%Cwf=+6?4abuHox@U9m%=Y<z`;5-@oT)
z0NvcX`~AM|o14>_E36hjczF0bBSY=4J^Tkm9k>|G8Rjzn={(x~H(+no0sED~6KBoZ
z%_t-&D0p%I)lW}PZ>;%Q)O`Nk{r&&vWPJv;c9uqO&pUYf^ywF$uUrY~;J9?@Qox!B
zLlM0gi{R{*YYz{%3(CpmUEKvbbH!__R_f}yrCw7Ht%=-R@cUctnrQLWb^o5vFW-=H
zQR&b7`eX)^vr}IG57?GtUi0~^+udsqE-qGQ=-E916pedxeC{&zb#*yCJ@farX7mq%
zT~k39lgrBXetv#lx@KR_O`{t(Z-O@cF$f3>Hu}ysdw6SWcGfJ=$sEtm&2>KBC;NF#
zovPOq1_sc6=Zu@1gc%N8HDzuPKh`JPy<|zi-YbV0_b?{#En2+TFyq34dOLsD7@5UY
zpbT-!n#W<ymy_!A6>M!~OJ7|%SpWZbJg7ARnuo3X_cQ&=tE=3u-D0c^poOcT$<GT5
z7(sjEeCAjP%37DXfKI(Be?M<^>80O7cCoOv0P`O!tEw_|F{!9cJJ!H>n1MmnD<fdB
zoA;4p#~hb*#GTV*sAHSZWLf;|MeV$<A3xZ4M!742KrN5Mnvm^zv7lqRK#jsRk(&)F
zJ|uwphlg4?XIK_5o3*au<0H@!j!ewVA73t?p9JbR-rZ%oE&u*J?Zxp&j~-pw*q&G9
z!cg(S;WpE!&*vN7J$`hQvASBH!I7aMaPdC|0WJkz@9BE13@&bNucppxTe4(}%yn>k
z<%A5I!p(rCUZPv8LyL-x{N~&BCLV5k$(y}eR7R#pH+tKHhlkri+m{x(b_eVzcqp^p
z-qcjIm0KLt9%9It@6C9P=|<a!4+#thzP`T2;1bx7bhKfM3I7YG3Db0K8D-cR_Iy5P
zo#pW4)vHy}%t1j$MKS&$Un><$H2mpSQBh%F5YvrfVVGf_FW0c0!NmFRueFReybgEn
zGWz>Jc<9XA@QC5vBA=N`Y)?~DGMank>wY|(pB@%8aZ=LkTty`%rA5<)nJ3hDdQEMp
zSBp7*b#=I+(kq@f3?E)hWMa6nfiYqe%ZCpPTw*Nm?lRxnQYr7}_wmEGZ*CD05@}~=
zu`+<JLuCN<IgWOTHk&aR&XJr8&Y0$f68GvmUt}m)Mcr-!9nQLAhlOba!#un151+Bg
zShG#h<rdLe!s{?+uJ=MeS%<}pNl8gPr}ToC@h~_9Ua}On0wwaNn%f%waR2#w-F5MK
zBmb_?9~1+&Xc(mReA~N@^~uNNgs)j|KP$}Cjol@(yX<Yy{cMv=58tzAX9<J!N+vOU
z(l@C8$JYG4uC9*l?s|q?hDQ$>x8$y_UC-@MVq?>Dy7u|p@(UXhoxkpNn|uyh6pJuV
zsPS{zQ1sOA>)y@9{wk_(4^Gt%fAHjs$)OoWuF@$}bh%kr8Ckg`rX~9(9E56;vi|eD
z7<71L&YR0887EJEu4pOAz;*Ecew#1qY1eIqjOy(kJYi{RW3vCluww^<ZdA%%y<Roh
z%sFh}2ID6I<_R_Letmt-u;+i}cku?J|9kY>E-lrTW>GND%lN-O_V>&5+TT(8^?KbV
z%vxnro!SWs;!OwiB7V*(+vF&((RJXwfBm&jNg5$9LYud2&wrj1TUPec!yDQ%t!!uX
zuq%IkO;^J!QACTS=HJiTRo;I#)YngsiJd+-mhIAI$p%mhAn;xy!=!#yRn>>j&dx3<
ztK(Jm($I+h_Hxs$t?iFrU0uY%RrM<}Wl5pr&BSzd$ntFs|BsRrYR+7}D$4NSS(!xY
z=|c((ojp42?(PYf)!wcMm$k}B_dd^A{hMdWQbRRWP;%RIm_cQJ)u$(&zpPBRikzCp
z+9krM=69v8?2}5sUMm3!jz8b`JIuG6$+e@LzoVB`D{M>E+_JJJb$`%0aX~?_BmHe_
zetei8F6ZI-(e37@hD8jA+ohMwT3&KtTpPv6&c~n>w*K<HxC!%MvC6mJ?DNXyj2+wV
zPp$i|y;{a%!QXgu%MQ^uZ&@WJ5mkxt{8KUwFYI&X>3)A7J@?8%#|aY?zxQZ^v)d^t
z<_R^g4l>_;^W3qZxVnLfb>7AWEi9`i-@2{s;hzp^x`RV{>3yb0kA>&&J@e~)ZHh8O
zVF7~+iqm-={ycp9SEG97<Hx@Hw>??h|3ILaMY4tioN+!0xF0;#9=499si}mq!<<X3
zX3k!wcXz9QSrv18)YyFZdi}tT!dq(mb9JL1DC8^H-evy#%Qko`C`H6o6c(P}&Gx^J
z$Klh$_50bD`CVmIu+s=R@r(T=Bg3oD$_6|RW$&+v{d>LMVQ-bg$43qsE6Q%pwdOcr
zCsS(CxnjjB%awMZs*U?~q1k)x$%bqSKPPY$d`e+t2xh1_eEIYGH=+y5?jO3$kaAsb
zLE+=&^S5U${rmr-@`0<O9sTZ_Z`$)4pIH>OEVKo6YcvA`9a8VDJ}bzk@bk*Iw^JEg
z7#a5LT|3`L;J{^uBd1?yG8pAb1#DRGal@W=er8!K1_l{Mm8DA_e0zKQd|V+Yp@>H~
znX&y)ye!f1BzU@h`ik|nHB;6Y+tl&!$a2+uy?U8JMS&q=JKu`9*xP@zj&Lj}%gq%&
z{qpjG21bY7Wm(hLGBG@ovvZlK<XTi)4azVb3~UNNBMQGxUB6ybIe2Xx@0mHAEiDXE
zybClM_V3>|_ru)sEty%@ui5=(Wcd1;dAdHcu=*<3FH8a!1qzqG?#=?0DidG5-~S)9
z2yA}2>A$NI4Nsz5uZHj27k1|C!xt<5+FMF`__N=+%b5Ru`RTWB8din!e)gG>AkeUb
zv0`sc<pST?GFN7IbacEpDk>`ab<gS#>yLZNe=-ce&ds2=C?l|4=khAX6O+|%=|#xN
z-AZ>T*|Ud1Ts&C&;=lQG*6;>hx?CKS4^E545)Dt1_w8$En9|bT-g!WA^OGmb|J&Da
zh-f58G`wKyJ>xfz<=b24Idh=tZeFtZni@~*&pQ`C7G`Kzz4O6Ah12$%m&#i(i0G}!
zWxRMkeO*rj!(00XNWb-|C7Z&}NoF%PZ1!ehu&}m{p7?Y=L(1>6xBq*k7&9~dr+<Gp
zw^R~Z0Q4I&oSeSppi4%E=NvoU9W$!R4r`oNKKz}PJL^B=foZx9pPxlehZU3(%oA!f
z<rpq3bml%YM>78g>+5T}39rK*?ESvwefc|<px~{a8(!3Wmkn6X7qGDDTjYdiXSW{y
zl-3G$m!VzDJpH?j3?do}4tRf8`1$tsE%r0kB@DaD>!mbIa=G^W`*m4tg6HIh|9{vy
zxG%Gb$XZ8<*Dyd`dLHD`cM|m>OE@lU(=B*6=iA=AE8272`?pNy;gkOMW_2nw6Zgb!
z__XvsBZI1U+OLY^eaqJi3p1K;U;bX+_L8673}L8o{To?T;;lFx91|Yc=L-w>PEPrk
zbC~UL!;?rzhklXGF@`7i9~@wOd|pVnaf-;{^L_H?Z&pF0L@t?O(*4*S3u-UeY(C<m
zV0Z7sX1Cs=ZF-P#f+@!(8lIFF7W&7#yEC`*XUD6nN$GKOUgX<98*cqa#V<84?v~#_
zDxJS)VeRAzA4(h(6bint`&OE?C~?Ds=jne7c0WTnMMYl9B;&&W&E?Mv&943be|-LR
z!`(9llV>_gW?zY5*PUcrlccdp^>@&|N6wiWr>Sb)c2{j(!LO(keM%~@<6-crSv@_S
zIn8H!3_t(-`_O!OpRrNOIit@z?&syD-FyFi=ep~q_l{ef-+Ax)&XBcHTUX!z^Hs<F
z-ku<@Q&-pP$4(LwUSIe3g7c*o&i^&XSp*mu7*dRxI+p)_T`D(CHT90D?PDncd;84G
z%j)aCIV&|VFfb_GF68Z4Ze8l774_x3^;~wAn7`JVo>qlUT>SfOAHviKI@sJ@865t;
zX<lJ}f6r!x>3V-99rDDPI2afhHc2ubxjffORaEE24Kaxd(}q9aZeJ}Z+AZL~z`!u!
zEQi9pcV{G5IxrqLI|s7xfH%mnquoIT8<L{~CYaRk+mg(l4pRFd6r}djQv3D)PY8&p
z$l6qVeXSRpcYoifCllAj?5w@b%)r2~&XM6`N&TOX&)wgrov=_2THY733$zCXYy!l#
ze)~D+8&YDX%(MUh_U`n4enu7s28Nqm43AzKMK?{2Wo$84U|?W4k;Wq6zb)tH)$R-H
zW1B?9%D(1<y|agh@rZEj9*w2Ty>+8v{?3CaR^(8aw<7cMYDJa9TNzaz^PJe4?)Fa;
ztO4YI;n-a&bM5~>|9+jVx95HD&b_}?L4H-3E$Cnqn)GOXe0(*VivPUT_4nUxaA06$
zU~n)~Zm3vQ{QTdaU$+>7Hb1+%f40fay}wl;x_<81%@A|^{r>+yzi##3@NUoNZ~FTu
zae!T2Hiz+JNIkE@^?8gZ^$;=qYqzn&%~l2`28M<lH-?WPoSgM_vO<q$)e3<^cEZ^m
zY)69k{{41!|K`V0{jU`v))ca_)I$;h$elM|uisr(4>wZ%^}V}We=9>&3Od+CCM?MQ
z?hbeRrUr)V@A}~urkIKQLj$^pp~+qlVk?Kj4`E2?_ecxgTXN$@#NJP*v~O)n?VdDw
za_FiM&9Cq7M%VuSwzVI02++U3@9RPPO+S79e0g!d-KtJu^;HQ6oATD!aDRF-@!Z_W
zQQOPPRT&r<=DmCqSswo2D~E!4;@4MKyE;1qw`N^6srgaB%Fh1!`TY888<UT}Nq+SB
zap>-{+^6T~$3H&Sd%2Zc{L8c1`B~@Z+1}b$ySt{w=7(nfjeuJ_0(VthygQYFfuUmA
z5*3iSHb3reNC$0^wJLwN=GocV*$)r3UY9jbJ0qd0s+#%z-CeD)H8WIJy7fwBU0E?P
z?fks8a<)}FRy~<5E~{JnZ|CmS3=9k(Vm59Jzi<3-S|P88*x9+(;p+bLuFNn@R`Hy!
z7dy%DSmqtjaTRMKjjMl5Si;6DwIXI`(XS_y{bR!P85kHIbaE&}ZppiA)!Nqf>Uw;A
z=+942MP+2xT(}VM_2p%EO-;>7OCBHZfBod-<W+HdcU^v*eQnLk*xhA2cjYiJFdSGc
z;IQe%gM-apzP_Q|V!BthWCrWT?TNU%yZk!nppCWB=AJ=LPE9JBN=k=beiRfGv?_kq
z6BHaA8)Xi%+;az;O1ECzo)t@$sMvl!V?4_wbCSx+)YH?vJUuV|e!qYHL}hoam;d9Z
zJbC~A{g)pN|Lem)FIl4U^VhFk>k2^jHy5y}bTctCt9rh@wY50o{e^|iJ%+!&-OhiT
zY&0$9Z)j1`ro&|n3=9o-I*b(}L$+iD{{3><Un^)yhjaDAL#?Ww>F4Kd)!%z6qU&oo
zCnu*?zygP9=jwPSO!1$Tl=LR|?d|R1zrVfB-&x1Nz;I_y<>zOa_x4os<#u*<=B-kD
zuF#MYSW>d(+Pc`)KYmn9)s4P(4|L+KXLz&6#YL{6D*_bX-q?8f<;UCG^TVfVg>Kri
z-qYV^VU})`hreBAbr(AW!vWvZZ^RF5+_<spS#rgH!D$JpfwRqWQ+h6*nQ1J0Yq|e?
zz4-X}t1E-uCxK>2*G6n~`uOqVH^bN0)?RL8X1}t`clMgMZ<bEykO!4B6D^o0xrVL^
z3EZA{*ChLz&eCPeR{71fy0sy(8MJ?&SI#El;lqcMmK<zm&%U_Gbyf8Cb-%v9U(YSB
zm+|Mv$5k;qH|;8U`RHCV1IV*I3`N5Cs^8mA)d+OjoObq7`uy5uLaJUFpPrno`gSw@
zZE}~m{<>ai^Q;F48moRjo&NOs^W|x0XJ!8R@v-KYC<6mSkuB2+-xHJ7``dV>mn9x<
z`}=kWm#9|8)m5Q-tGGbvRxYlP_r&Y<``;D#vVyF9|3s8A<-`O<t-wVsudc6OAGta0
z<)K#YcY2(lnAZK!#ULauzI<cy@mFVN8o#=?clV*ghp(=SwO$*uGbl4N^PL_)0|SGD
zSfwk2X4sk;Y`juS?(Qys{rmm?@cngvx0JpPGtIvjBPb{ca{kub+h*m{K?Xly+oRO*
zCp08v%CSD#)ynRDpv7COVs~#_<~Mg0yL?T+(^FF~zqq)#^wSehhz<qeIB^FRO-swj
z&(F_a2UXTjPfyqOpJ$VGYs<<-ix!z=UD24T7aQe0O{cJYCdg;&9-1;9kyw0nb@=My
z=jTAF&#L6b0#LT<HNSUZWAgDWNk_Rr`37{oKuO7#dDZVM%ct{za)?x1q5K3!X10uj
zO{`Xhk6M(Jl)ikq?7upAx!<nu_p0X}b8~T7;odLz>dMN=(psQ!{7}9}sljKyU2MPY
zw;5KYua>m&N}t-aX20zJ3(owR*VaVpt>Oa(R9K}egJt2PmQT;l&VKrF;>3wvJw0dk
zHG$lFM`-;HHWgJ>*ZcMV|Cau)|M8H0u5I<TR#8R<28JD?ae@w@13cpPR>f}LU;h4H
z)xV$5V<QAX*(~~@C}YasUthaAJ9p;Qe|~m$YuVc<@i0)m_#mvpl>s!@8oD9j;OlSg
zt*wQh9YHb6UE#{m+0k)fUF`04xAzx6_Y>6$Ie}zX)V7?JGmX=;Zf;8TtM#6)cXdtV
z<}Wvr`*$uh0y)<Fu(n;>_o?A=7jJFN{(2+1e`V3rQ(awMlT_Z`-0c4U_x=AN3!PZ^
z{(7}KZ=DdxzTS$Xk`rove#(4(ZLO45$%>%h;H?=Km2{)Fc&uExQpzl6#<tws%dFq+
zID9vi3FKkM^%l%Zo|T`UU0uC?->I3P&^ypwc~lbA>S3^KzCMT1)6ehP^7(bEZrq4a
zRa4WlwY|IW{wAHXb1X0WUIm5O39j`V3WbG*tHRgM>yxouWc_Z3b7yC#R=|RWb91ei
zZ`ooZsuK}#@ZiCBdcq(l@>U!bTI1NvrfFyx7`;93Y9ljyO3%e6R_>CIk6icu`}LZO
zhv&-l__~+xj6lZUX$WVT@b&fe)&BGCRz+@Jma}cOs&w*`_wUy`HnXjCY-aoQegFTr
z&$Pg5JHlBecu&{UG%^aBBqAlHb$Zj388b58*FR`v-%|NG%{-JH)L2`+N2%dX>GfEv
zvNtnSP98t*ezZ&U^0l?mZ~uaJWiT-@-3gTgMYztVuI>x3udiRf)O&i?kq*I0OY~xQ
zWxTnu(W?5}noE~2f4%?zU-(?B(xPHey~mJuM4Rb^xBlKG@Av)o)6~@b^!@ww2M3!=
z|NJNfg@5IzCxPvJvL=O(Tp)Q3oI648*!6nd?l<?@Sy(cT^+?V#Om3524T_tB%{Kp}
zz~0f(@d2$|-|Y?Z<OlxB8U{`-u1Wp<{hywlef=&7lv4gU%gH;atPEWp7PTc~VvpfF
zJy3o*VE;h$dc&6N>wdMrz69>A`g&z^y1%QNo0fsWh0K_(Sy%4_$bx*j=2I6#(DuC8
z-`7FgTY~o+x=l;f)YU!P8Va&;M`WC!L)zI{Pv3#k7{eX5I6()i@^^3G+(JPskSTKx
zYM*N;d426|Te8mSOJ`;p#|H3%#G{`=GR`KQ(+hQVbwNwsy}Z4H7do}>@CUVhAF%FG
zYLKxkQn~!?%9W74-|tn=vZ>s3ZB69kTZ=$`yJNC`AKQ`Z*TZXnf4i#OZ?kA$?eAT?
zWk6Eq53Vw*I6pl#b!+Bjwesm8*FIn?a$x|ii)(6Xx)aL=a)9)Qu51UlKAD-Bzjqct
z-;#M*?dY*%ua-`aD=G{HnUXgxoMl3IT&3#eZ-0J%US0C?5@-)p)wee<;SS(Xc=__>
zJ3WvE2XZGUuVVzU9?0%dYFHDw*{zwKe_!7J35w2J>i$+C6$z5IRa-!}UcLTy{P^+g
zFE1|YtpR!Xz}gR844)43+rQZN``zxm`d%s1FMq$^-@QQz<eKe=w3$4-yt?$__x;)a
zce-9|QKBnIJg+sJWx|RT8oH62R4&^k_kfm#RlnPL{3s%l=GA_S%)PnE)!*i0OWlu$
z?6EtGT*KGJT>O5&e!cp<3a9&Zzt@7)z!TsjI|W(mvMcB9|E~#L?3VfQ(a}ve*F9VI
z<x5HAw51E3+gBAoKL;;bTp1=V0i7R~e7rAeQ%WbFyq%7xR_v}VphE1@Qt#b6L8*Wt
z@}ViC%PuL4dG-G)p)n#>dDK*4<Hn7%tV&;%{$B1kch%k9<w(9g0SdXYx3^w@TOYqa
z&bghh6v@YPt;<)Hy}fn)?fTf=+sfYDczCD_6dHFx#g4dM%!K~)U-iQ`-pujx@hL&l
zwkh>=*4I~8ufP5Os9Qf|Rfr~1w7k5xcX!yjn3avp?62<ZEdKVb`1!fa0}YJ79(C(q
z*;`$19tMgf1?@eLk}H0HeZBnd?(*zUPfpG<O6}?r)7A2{s{6A8l>e^;`-8M01<*zv
z@6BmvgO>Zv{ql18{9E}hHx{{aZ_T>uRr>nc)tj5sr`p%onTLa#2oK&@xH6m!SRZG5
zb#?gpf3;p-UDI@<mrc`+eg)cPTvW74dNru4R-haw>Y#E`VsYu~Ynkuv>;#4Ux%u|%
zK`UIH+xgz<fwI^E-U?ran>&k_KRY*f_0P}GUvIx(H#s#j>-xI6zrMX){rmm?_-Uy-
zce{WB&iuhe#wQ;h9-d`gz7C|knVo-C#KxqmPbbwwH>de-&AlDAHfrl7W`3IokP<j$
z;&HYK>~a+jpr+ozCf2LFO0&<-Fm&d({W3x2<@5RVWyPf+gY#OCvrPc4G)_4=X_iId
zBDvZx7x(WK1}BR54>p=B)%<?DT~ttT;c>ZYpN9`0zPh`6yIIZ+h2);y-kYV3(|U5u
zW^0A6dU9oZ{(U>s%u6ncii%v^+`-HJ=9av=qG=uiYSL8j_1mrmo#+c{!SDa`sT<^l
ze*1qBmzVp8S5)kHb#=A+=}mX49#+=W>;biU9z1y9^E>PMy0w3Pe$KwLqY$(Y4Rn+v
zr~<tW8hr*;c}2SY_3AO3QanM2Y&o~{ZLJpq?Q2cx37l_NyCv(Y*3lzJRwN#7<Ko~b
zh>SgN`+bgF#REoA?pp3Yzw8Cb@slP^+EV>JPgFb1XHv*wH(t}MD;}HE&xiHP*~Wya
zgPJ>@Hf5Y)X^R#wHZ6SQ^7q&4^-+7Pwn~}jtzqRB(@;}$W91eriIkmfmV4>Z(Qebq
zPfvV)i|fa&Njp31=HYe~(~JuapyrzT{F+Crz%^t4<4{JG=Cf(Rhue5ftH0&UwJ3D@
z{OoLSGaGNrruSdIlze@C-QTwQ+m*fF@4dcK|K~^HT${?EtE<DyU#*VZysYf)t*2cO
zgPwf!-jJuFpx}^udt2!3ZMm_V_LtwU4R`OCyZY<vYvZ?|wb?4JE-n^dU0qyWoSA71
z+K{?_eg3v<;3!dAZ^QgZFa6w{iyeZ>pbn&{Mu5U)Lr+i7Nh<aA^~?A5WQQ0X10|82
zyo^uOcqENn5)%_&-QNDb^f(I}o7beEprARwCQY6!3sKa2UH@RwROfcS%wJz#{yJa(
zZ}E>G6`qp}-A<l73F?f+#LRJWc7E%<-e_9V-%ux~CN2?;g2PY4nb~*(_SO89xpixM
z{`zlkZ{J_Gn2~|uK<}B^=Ki0boh{Dr_VFnRHnnU|wRw52PA=#1vEEhj`}e7&RvEjT
z-gISueZB7-i$K>d5l~GDx)QV9@agI4*XNesTWOkoEoE2#jT;fJ?(W&o&&^#Gw)WOr
zdr&FyM|n^D@8_W2Nnl_gD02q?o}lOqYRmY}G;&?)HFc5-DF4gXewp~_@#DAhM|bDl
zwUV_cZ~&zu@7JLE$%d0rrTfsKLn6Y$kFVHeUQ&siw)ENA*|%@A@yo4o?G{^^cX!vT
z`}_Cn#q3z{@$vE1MNdz?y0o;Ldo@@yxA?;QY|~OLYvT7*6z1O95tw>v%0<wn)gYyj
zo71B9R+-B0=VoANi0L&}_<x~|SK26deZaz|u(eT7A7z1}<@_;7dr!|9G%~^Pzz95k
z!7$1NSMnn-G$!cW+L+u9sySAy&|qa}U+vN<ly!UCT0S|O7ba!*_tj=yTGHv{<Rl^{
zw#;v?)ypd@gY#BMf%?5VcJK5KM1xM#`}J&g{+A=d{wso(di{F4{r;D0(fKQ*wr1Vh
zmOK01&gXKTK{YjdaF@%|`}zGXK|O8#d%Wovi_hCGul)SXlBL5e_tuJ}qg_(wd2{T3
zy-@bNG{Z1?%9JUf?(ph}jY*T1NSS7>2wdzo%eH!3)t46!r~LxOq5lD)H9EWg|NA}n
zT-+4RV7Kr0s@H#ecQ-pfdQZj1S*F=({PL5oEO2C=svYhJI>!3+D^Tm%Mv(D|Jg8&J
zC8nbRuJrxp*{pnZb+vWxYRkH3mtkuGpoQtHPoTWi@5Jzv{n?qBpfYP~_I1BWQzlGM
z@a*d7D3FpC6kKSWeon*G^y*SmPz!%v3qw&iXvf69+TW|f)<%Ikx+<WZGm}7LLMC<!
z3I`HFJ>?0~f)05HJB8K1yja|?RsZi#)Q*CMI;SV8u)<1Dxyf_pyfFZk2Pb-eh^(1i
z^6yV2s0w|4e*X1mXJ?Db$>qI29Z@xPqsZ&^LPA0z3mh1K{`z&VKpwr!{D1frBLl;P
z(9h4#UfxsrS>~3Iu<+dw-*b)(J2^EqHM6d*naL+>wWRd*wU_U9zb|{CAGKu#m#Eef
zS?e+j+p^!^-mVH->NV|~aponJ(A8mYw_V|3U}%V*d{e(6IXPKWR`%_(t|B(jP*7FX
zF3<+M+}qnSLE|-%o70v(j@p_9T7#ouXLs-3HfS-KduvN!=uS{8-u)4ehZwJnMZoFl
z`r$r4J$`eomhLQmZuQ0f=ab2VMt<5(fzrWwM~0J&{{MYnze&gY^mP5}pPrtc`^%Wg
z<Kv^FTMHk%fehE*|7X*mKYy;Qi8St&x3}}YUJr^@OG!qRZnK;l6P|7q)e5<=Ds=Ux
zji3a7z`BqZR0}Xn2ag6b6i9+cvxhTRzFeFkWqI=PzL($c*H1S*c6TWQ!vnEtsVf5(
zI%&o2*|FQ3QAN;Uf^+Sslj>5&X+8V?|En&a&cx8*z9MAhq&6POMP|9TcI*~;Qp6(g
z!~&GtZf(t8zRY)a){PB`pz*O!Pfk95w~2wF0Cace(W6H}<2qT_*UeQCbb1g5(vy6w
zC-Cwz->o%2i*Dw`JY!*S0Ck{#Jnml|xj9YBrecFu__{Slsi!`0TkT+de{RBJ8S641
z(0-_0WpBNHFfcsO&oP?~T7eAO2nMQ{&GPQ7*s{f>e0pn4M|sAHK+tK^o<W^Ls&`^I
z85riN8yN*%x@xeg__-fwd)(Tu3gt=-3hpO=Y|-}9WM+7v^Z5Vqh6V;ubFi?mFmD~l
zPC?Lky@EJs4F2Zk^t-WaMT($w;h>iiDR#Z#fG&pu!=|J1^?wv+pItU%hD7;vCWZDN
zKcCM}-F)-P>Tvz`Z+)`Xr_wgR{PFQ|<UP=#BBASIcHWL%)cpD?_meUf0fqLBH*?It
zK408#cWPUd&gn_1kvF&1rs(@u>3X(A`A-vMSmrys?C{2Zn@=4%X0xa1#a7+^mLGY|
zxBk<^w?A%9nKn&r_St3ba+Oc=zaKvDctG$wBV*Bw@VLsOD|0U`@wBS{x98XQ_v=C9
zL<`q@P1U*?<bH2Y<<|1|ajfj@>8HO<{A=@cE6e%oo74Sk|9m_S8nc*J_v_{BzV7bs
z%ezWnhpdS(G|j*FXWQHQKR-T#hMf)_KAeBsEWiE436HmTcVB;bpKHQxL5BvJv>zWH
z`sHp;JA3Kp=jUJF*Z+?$zgs%}bk@mtPkB$o&HEBH>EE9z))n)tN?(Bn_it^@o?iC;
zUhQ22tK?%mlF50$_s;4P(OjhD+I45!+tjPQag!@QJ$d+CVFKs01jY#}q3h#f7cN}r
z<>z<p!b0cJZ8?!YfB#+`zrSwM665r98FzLRf<}r#`!4J2>s#B~SC_uN*45ivdh6cT
zX{T-e|M|S>W=>ac@6|gyi$nKTm9nz3f|5C?oc<f9_aSe&-`q=|&)cv6^z^j0fk6N(
zmq@^5HQz0TkKLAUJbCh@lzrWvRbgva{rUM>+rlDZsn^t?)nRKvBT=50KzrUVTnLDq
z1}gC^bpC>ROso0%XTG?(d3lfFEW6sOWq)73d<m+@K&iF-y&kv*imUw^dUaK(x1gZl
zr|;jxKR!Bobz`#o+xz?NPyhb6JKJHI&&);D@Arl?GBScPBPbTR#r0Bl%{_9&W$(vh
z(x3)!m$<%OeSN*CW{?YL9Ccg%{dWds&(6&J^!fAT)X1paWor*-f7*IIZt|D!*Bew+
zR9?(XpBI>tvV@6=DP)O<An3S>-R1Agq^ygd`P|Gg1Em1aCd*gX)~=o~LEvuTaoMiU
z&WnxA?3@0?FwSc*R$x$xja@!x-n?~bXJ@@U(8!#1XUE1vhYr0lFTJxhdpg)lYoo(;
zqql|ZtNHomwEq5#o10RjHYT-#W*^$+sx-WRZ`AQ#zyIGZP_JD~H)=)Q-(R2!Fi<@U
zx*Ep1>`lViE#lS%4;nzD>n$xTS67GopPglT`RC{7TXSw2fqGBH&&~wyE_?gt@$D^{
zi$%4=Rzz*hdUb2->OX(~iptBc_nmE)`S;h?suv5}OYYZx&;0P<VAb2L*F)CDSeCxH
zaPZ#`cKMnMvhAJOCGYM;I=As$+*A44B=HanD+`Oom->G{pLg~5hd(~n`_?|(EawKe
zp&qxlYE{_US)ZPrUER#ipY`xiE67uz<BsnZpSLx?^Zo0(%|G`4|82kb_q*Mo>9Bcq
zzcPRR`t@q_dArNs-rk-%Yu2g*2OQczR)2eQ@x#Nzq09Ybj~+SlqR;wWKupXW(0IXl
z`~NYk!`24<{q<GV^Ww#eQg$^v-1=lz1}*hk8NA%@+gqDI9}d??zkhhRJ#=-LE~p2{
zD{XdVvcKKR#qRxJC+#d+3OaV%H1E!hmlD%;B0>ArUtM&U51nsUyCwa+9B5|7y6nvb
zfBU~jg7ho+nfpOESSp`<b7$w}yGtu{=N&%d>gFaj`)t~yM~~K7FRS|c>ewco;`_DV
zXMTQu-uml&+v;m`tjo`>{QKeI;bjR2o0g@WoyGT7TtCiaTI$SaXJ=b)vH$<)^RZ1j
z!5b1Bi(gz&Y~KeuBy{%Kw6L{NrN-^-;-^k!Yg$>|`tj@6EK%(+i!Jjli;qpwkH7ci
z^z`#8YHCu+J)RyO2Gde!R(*Yyx@)a*`nenX_ub3pnzuOj_O@ebn`eTqd045hrgrQ`
zj@jmlk4e?HPfk`pD_{TTp-I{IcX!qD@9j}jQ#-cs?}dfV$2RF)-kk0aE`-6pdi?lp
zF6erZX{j?mJw1IpKL41+<T-P4vaYSk)H!XGdU{&v4ZozMMTfKX4qsgC?psl@V`a$7
zNzT8gYKQlvMlK6n>^9R@_WIiGb$@?>++u#e=JLYY&(F@P`OmXiR`BqUnx^K-dv?jk
zc#<Qhef<2{c(z$?QN@`Bj?F!1(~Kvp`JUR+mYw>?-m>aThH>H{mdyzVn{;gX>L2Yr
zW`A5#z+sYJ?4)mRi~rW0o<6;)DQ5ru*Bf-aA0O)t_VDNkzW=pubJ(U7&!b0<WPE#b
z)2jSk%(Ob@^vG#(6%Sdb>c!q#xYxa3E^1rOOwdu6YQD4X+;ZG;bE)_AE$4aHF9nrr
zCz#{B@7H|pO-fF_x-~o8_ScKWe6>G6Kfk^q@$eVW2-wX{sjqHqT)g-E`Sbdh-#$G*
z-#+?v>GC;0l9z|Cj|0udnj|0NX*Xut|M%PMu(eT354Cbz>zvjJSrM@8_R5%@n_gX6
zxw!Q8wUZLX-svv(KOQhgPFtFIxJ}c<<jTEw@87S#9#`$#D`i?#bteA!->abB_;LCA
zn9Iw2FX!+7`>kKEtiQYaavQHSXpoOr#^S=l^<itHvMw*{71N1WaNh3snTI|LOG;Np
zzP+_o_Ey!`S4%%WK5nfm$ZR9Y$TDHwKJJdbvcGlZ@20E@E&f~g->p~5blvUkiHF(t
ze!Uj`>)r16C7+&nE?u_l)^DBDK{Yis)21`Hq<^ZpU-^9Qq$gL)pWWS_AHVGQw7X^R
z?ySs``w#`1p;h%%_n&uV_4<9UuGGJ|VJMlrrTl%IXAoq3YPo6lwG~xgUse72csz7>
zS?<*}k-`7|{nJ}}_iE9j{<*)tzFuAO@)D?c`}Y3+`rYsMMPIsVQ1JAWXzANqp_QMW
z6jq$slzRHhz3TUxW@cf_{pVkssvZ8Oc3SGoGc%33xVd+~j4FG3OI7pp(*S<^KOai<
zoBscLz1}qSlt}LFZN4CfJv}{L_El$p|9^MJC+ka7!<_&A`f6JLujcKot*12`o?Mwf
z`$R2=LPN>d@Fwf>UFrMfR5Ua^DnCCvyCwhJ9LraCc5ZfZa=Nl2P<g6OWKiYjXH!!n
ze|<WwzqRyr*wQ6SQYzzTvWm*jUu{2W&(CvvKtm{g=6j}{sy>nZ^2^K1lh&>K{{PSC
z^Tx8tk<;|z_GJ98`}yf9sHokNaFB^t+RW#e1gM^k-Cb7o`K)>Io5%@sekCt=@0SBj
z#hNA`<JtT3+3ZRG_H^uW@0a6CR`;2)05qMXqvOLXZ5Glgq$(mIp>cW>XaE+pOu_tX
z@zeD}!osSWm;H}_`ug?km(r~T51qE=-;Z;2bOfzE@S3W%bWi2yQ)!zs@9rwSwWsp4
z?)Bo_SV2L-ncvd4%(pH-xA5+!H8Q`8g?I9UlFT~y4-NO_cHh3QTP$H!vck#Pd299e
zyx*)#B>7}47Oailo>pENr>LQELiwD_4)1+6KT{&7+5LFHT>9>grFTCk7uTg17Z;mW
zeaZOy>-Boj{flYm=B(tm`{BUJ$r-h?DAg?dt(@i8<9^rI#hTXqD5(8%(Ot^AYz?TD
z3cB_P<ja*oOW!<R7qfHGL}m9?5gU_0?IJEQofjMC`p!1{yV&Z})6?pnpss6|xc<8f
z(`U_EwK@H~RqF&$zA`Wf*tl_{R`9YO=ld5IyT6@(s?7QosEcj{8t5yKV1MFL!=v9I
z?d9!#`Ql>t(4}6Y%Rdx8JtbQE`K)=~DxP`I{{4PG-SFA8`!@F~pU(y5{l96YtHalC
z`+v+b`6b`}mtS)vuUF2oD)sW7rgO1J(l{k@+GY2P^DGLT#Pwn>IP=>+5wX*Y*^v;x
zs${iMo#2F<?)Le2b_BkB`O@!gJHLEbNXV4nA0Gbx=S^x-bQbQKc|GOos!-L~*jK4W
zJNr-k`uaLGGHl&HSGFQMCXNQ_Q<K&EyF|5@$=Cn6xbKMDt}5Ym)8nc<-TPz;;|o7%
zl)kzGUf7a;PUh@<d;80VyUX5g(s%y(cKdy!y&3j~hJp2eKDPh)^XJV$Wd#L?#>Pgg
zsxKMeWEt|hd#am!W*9imul+WYOH60QG~H;co|8M?A1}XOyWD%a-p$*=!NFIz=ijfd
z@pZnwE;hC2;)=k<Z`PZ8dU<(WnxN=xRO{0zq`Ia4f8AV*!b1ydZ)`}Mc`y6$CY`6}
z=l@?8H(AwdO2FQ#uU|f&x6eK`MU$^KdRxv#_4zf6npnA4xps?1-cx&!8_~q7;0>CS
z2F-T{E%gEw8>yRbf*P4ej~;y)|Nqx?&`91pp@)iMdNC{7c%@f4xAV<1NNmcwvSQ(c
z2?Da#Wj?#h-d_6m_xIPs{Pr60`)Ypud_Esk^n|XB3JnYl1T{TCbG4wkenZ1R=Qf^=
z>kFqZVdIs`czSAT*4<rOwZhhD$ji%{=G+MQez$zSbic&)swWfOMI<FxzP-Ku^d_Cs
zmzRzv$}L@;&JUVj@||JeD5@P6;^Wg36chxS6q{>bA6NS7%1`&x8$g3T>GLYxKqdIz
z@Ap<;TN{1)_;Gh|D2wZ@0aXvSX$Kk@L2DU6i4Qb<YG-Hn>(}e`r5_$Rf>t_chpj27
z@@Zz{1!eM8si&u{irTuWrltn8v*PNi(AT@Rf@TpxD;?PQWLAW(4%4)<iYhED1kH`s
z)YgJV%a>PANh#aL@*!*vBV$qLnwp-c_j@HR3KlH$oxQAyl{@R&n#fu9_4`gu*I)nk
z_V(3Itz6gd-aA`Y^K7jR+q%-lKS5`8{yjD|Gc)to`}+T@%kNdXgXTwe7Crp}+QB(}
z#}xheIAyn<fQ*b4*VaZa_nfSjd2>^$R{Xv_V!BaFCMvsI<^10J{a*0vYiqxLy&eym
z9RxMrw&mQMlzY4@`ubvb{@?qbXY1RYH^{qV0cyK*ad2D!EgV|vJ^fW9yW9m(GJJHj
zJN;MG?tAAu&fL0J`CQg_o=xP>Pfssbzu&u@m0N5DWB_<;O>OO5xy#G_<<HKs41W0V
zA*fqn_wPsYRIO02+uL%3K}Yi1wr#&(7yb6u*2|!|@bxG6>-|2p=AKdNsf_36=7J_`
zKqFP0!fF{`UtP_*w`b?JoSTb4XF0z7k@sZ|!@N^QE?ND8($cG6yvXSPY2llHq?m)@
zz*lI)g_VtMRmI0gplW&d=}%gFuK##$!3-J$JCF)qlE)C!23iKkK$v?X&?xW7lxfqR
zJ@aB<_+TUX-@fRv(+*)q7E7;%POU1Q;4U}|1H<{^Cnp3wgEBH!RC7D7b7OGq3))jr
z7`iIN6Es6tRkdsPX-0+v$xD_m&%U-Mva6>jq>+hLrBIFK-NVQ4m>O>9o|vGRb$uQ9
zG|qLgyS0prf<TpTc_ahF4%eutS)jEJpk+Lu*}D7tYTv&7_wQfcI=-EPj4YOZv(0i#
zo}Loj`{&bXh?f}|4k)|0xvk2-zYjDHnc8!4s&+W2n+zUwU}%zA>D<oO)zfq3)6>(c
zo{o-=n{GxFaxk2z)j19FLha2^FRw1p@Z*LJ2Ci;yyS7_A@nV^fQ}pvwDyYgVes<>K
z&CThdD}z*f<!qyPrOispGj|@V{eE}(l`A2CKOE-YRq=6AkKvk9R)!~D;`(t{j&_Ty
zdfM69aq;tq|NZq<R7~vIvs0jf#!aB3uD4cvOyZR=Z~)CEyt%pg>-ze?-to0xr^?lQ
za4erbUHi$&$?m1Eu7FmE2?+^JnKer*xo7ujCWZsKIcBp#Bg1lXdh+u3*bdoNJWXwW
zdwYBK!6sHvnZ(8;q2O8dYUOefQPHL1aTSiU&GXBOTX%XF6l^#(P51RXBO}xNdp2A1
z@87$ddcbwY`#Y^a&&AHjS9l#EGM^W8ny$RO{MR=(FW-Ci{{8xQcXz+OoxeY{re=@y
z>Spzs=K1q>dpB?!-rvdndG2n5`wrIx9X5fEv<qDqW68?SZoTFDn#jxdK#QrKxUo#g
znJ{6(f{qT3<=;9wI3$xx{`@F34*`w*?vQ6xkycSvO|43v-_XENZ4X+6D_tm9WyZn7
z6XNC76<l3Zv}v!svE;#&_xJYR441L-N=jOkl$?AwmMx|Q<YKVHZH?|N|H%C`+MVGf
z8>l&<x7o|XV}gpPZj{O8<Fb}TE|acoOg^5ons=VMmDR1gss~zO9)5r4>4}NTt3p>#
z+kN^2D5e9JdWqJ4y&4XR$HT3l(*UQYMuG-gm-T1g*|8DS6Fza`#Orygj0_A7zg1LK
zU!It#4C-j__Wl?(?cuqc?RUSuy<PhM@Aqubkc>saf+efV-TJ$_f)+ZpZb>~YW*!b2
z$lSr6?y$-6>@3r-M}+-fJe?kYty5V2O}P`OjlCvv^PO1G%9saca~MymP1ldVwjuGb
zN%}dNxwh3|Q?)`t?V76_5}nJZgGQov@PbCc7#dC&$P0kRQ1zS{J~Dtbb?ff~jp1u*
zXn1_TU%&s_y4ct6HcfD~E_)Mje_ySrsOZuM4-!CY^Kx%*yLzyheeSV$x3~NI&N2z~
z@aQ;n=n&|P!MRqYT9@CRn`0UL{Z4T|6Eia?hWGyccKc?n#tzryV?7hkrh!VeIlpFn
zo}*}H7G`K@2%1d3x2H06W0LFgpNZ>=+nn3^K<hnseLiPB)jU5gbVY#UVz=I+UC)_6
zzpVvbA=oQn=;S-wEHolwMvmERyI(IB`y5X@{zpwsZB_XCIIWl+8=9J%L-*I!zP+{e
z^)}i0;f4jf%ii9Sw70ka{HR-h*2~MwXGd+#l8ld!-<*0{tbBT#PR89`TR}%ay}ZAF
z|4hr`Ws=5eJ)Hdf<_8ZRe0E&EeoMb~*_#=f5gQh0MsHhF`TOnmvo|&-`!+JM`dnQV
z>YJ6d>af{z-`Qz8r;T!NZ7~F$(mdC?+-zFvO!Ipchp)D`OIv_0YMX7oo|BW)P*gjt
z<W=&yz4xcb*Jb|s`}Zs}zfFRg|Gb>EGcyw7>VBqve$=gh>$t&n%fq0v)ZXoQ%on^V
z#q;y8*Xw74+@5!Lm*nY9KBuSYzI{9+|9#1m6N1T+(>i;4OuoLpZf-XFY|W2{?S79p
zCD&cPeEDoMzg>otlhc_Mfs4;vSsCmb5;BF8m)EqNPxjQc$KPC71k7)5%bmSZ=d{lp
zi;MTB&6$&PYKmrZ*40%{kDZzj3R;_TnSV($JO8YP28Pd9g8gsao>%!ya<X}TT=AP5
zhSj%kZO!gYjZFLX<>j|+OO~hvZ%A+y78ZWI;cTC*^{fdK1d89?*_mS{bf;@u?(JD^
zywbCFmA<xO6?k^%_gwq>doAtlv#+g<{{PnEnN_-kaazyDn>lIk@9pJ#3kpE9*=OzS
z&ulN>Rr7NbXyu^cu^F<~WfG@18SyIIG~CZErUM#YINB|K`!;BFc(Q$c-RCEh{qJo{
z{vyUAU@mQvG2!FaucqR9F$Ed&)@5rp-pt|CudA5;;zdUA-m22y-(9;z40CU9E0rq$
zez$zKTd&m3{h(e@@7Xlt_?nNchj--f|9dTBTI#cNb7$AOK3<k{XU9d*c!zEEw-hOd
z8O86vzuWyDG#v5m{r&tN!)N{W{|rD4=EpN$&w03XdYqBj?6Y(1YHuz4dsIB$#Lmv{
z*`=l4$0VLvtN+-|FiH0F?Pb2w!h(Vix17DVw|e%22MNVLKRvB4vWRQXcDR!RT8<sQ
zZq8xZ%S%^(7drW(y&Tkez%uU@xp~=PsS7>p7cX8cd(73{{dC&qr}w@tl2fy_js5%U
zYw-Dbwx#d)ez*E+{M_>JuF}^cQc|np>;Hy6Jv}|VpkRZOv-8#E{_;zgEb&NMS3GG~
z>FZMxi}UX8dRhPf_xwIt>t(FmVi~u#WP+x<nV6YpzL(M4{jB`@x>(Tk*s|MuN?uOl
zld&k+&38~+z~PRLqN1aqprGGdK|w*IV=sPue4Mv}>;IKGmc=6S^6Sgq-tydKb$-%1
z>+9*~<^*PCt*XtLXH)s+p=$H`_3IBEI#l6X(E(fMup)4=(cAQM#cj>({92}_p}J99
z0xmD}1=WM4@9)K4UgjITJ@2lH;dM*T$H#h2v#w~Yjoj=Ox;pG?Z28@#e6m(6;`i5q
z#(PzsSua1m?&sg#->WAT-OX;aUbs6lC}`53zklc6VrF7`^Y??^?{9B|@9(PxjmMR~
zy5f0h{^yFtJHLJX8VXYP=a13dG6x5S^_={m^Cdwg5a?F4MkZDx*~4?5^N8!mg#-mn
z0_6<fStg#7u53#6Ub<w-i@)FRUq3NXdFE>wH6x=SP~H6c+S<?s4ve5B#Go0Iii#b-
zzPvnK^St1u>Hhlfb>}4}zmDT(5isZG;n_0(*#Ff}o}^UU?>UY+&G_ZHO<L+YW@hHn
zpP!!kY@a`8&YA2(%qYt^44zv$A1j_;XlCr(&L;~Rn|KMTms`0+K|yx#&(F_SSBLA%
zT9usmH~Zx@-DoXcU0?luKNj8Eo_~J-TTmo_e}C_N<g}@;<G6JW7H#h6;Q0M=-~Lk>
z+EH6ptoA;n3!0LcWs<q*^YinsK`pL|iXD6PAKPzweYO;I6#nbi+48feO?&pG^6|=*
zE3ImOnXKnDw=Q`xVVVE@b#;G#Y1-Mv6&4m+6+P*gG<h;;Ty@6|i@CPd(=5*`8qNEy
z<l1GiMO-f?V$zJ)GSBXo-w)lIb#>0PQ%8;*d2wl}_pPnj;-BXpPQCu;Q{8z%#v^A}
zg{)k}%+B}X(a~<cx6#}4AXRbKY^}p*Jv==FH>aH~d2vAz6!PWwYqvYsBd?g>czb((
z`HbgUp{q_vJU02Z`~AM)sw%7XoaWvA{nHKIK$+;|B-PMODW1^A`Q?9qe}lGp^h%j_
zft;(S*W2G;o^d{6ee8~c#AjCQpz`X{rAu>e1qTO18kRG_`DVM<RIM)1WX7{=YokR)
zM3xjiJ$3ik;tx#ke*MsmnOZ16fm2xR#%<84LpL|2f{O1Kpn^CvGZQox`s3$M%UY59
z@qh0=@7n+W-*0f4D=a29?d9_>c6RpJo72zV``7F+ZLU@6DV^9|S6=#ugiHZd4X3B+
z8draNV|dKqx#huivAaQIpvlMk_};#~z1_U7u1-x+@u0-vnCBvAXPcWdGBQ4UaIl&0
zt#0%-P^opMoUds0cgCGpf5vV|Xxw-+=h<a{`>oqk@31d%Zs*(n`NAG1#v{yIGA|$d
z@$=_Q@wkeEd;b6X{p=vSyb0(O`p?hKzSHB4ys*E%J~?t4=zf%$#_4^R=kx6U_iMFg
z$chP|lPoJ=uibtod;Q)tE)k7{RUs=MeffDmc)6dc+3d46ACCy99qW-?7QEaKG*(;q
z_}I>0A11iYyvyEVd0ui?`TM*av)P%qx2>INRl2J3QKx#(*)%oQohA$n+*+P4jv=7*
zzqKFKxbU5A2CDaimv{*NzPoC+S#DO2+3c5hcW<wi`TTY-==3Y&sxKLz&lsPVIK9bd
zb=cZ7FD@=V3&KA?KkqfXX}mu(GxJ#^yPUzog$vW3oS68{dg1fa)6dIT6dXuB{$7(q
zK~6zc_2`}thq#wzTwJ7PU~u71`Tg3ov$IU!>2XJby28nuZ?60Od_Cx}`pZi^g@t8g
zazI|TDt(pWH_v9~%d+${GZM8zRwOVnG5LU!z!c5km_mykuBET9nNHOTEy_wixA*>3
z?eH@vCMx@$oTS>jfB$~X@O3fEiVw#;=eb||eQxEKi|)RlBd<X+@%#2jn&-{&^!6^6
zI9^k|9MmBFS1&6ro-RLK_H*^SJC>k<_23l&iXf-Fy1qU?DLHxbQw!U<sXd18;@Ci~
zMuqYRN+r<dB52B<;>Ab@ctMMz%x3$7hSke8w;$DBzej0y?|&x71F}C}ax>_Cd)O|2
zDs8i-nc1~_+p?}|ftS;-d9?~uHOSZfNL*GsEp_LPS*t<wTV7MO?q17{n)Y<tW5$L%
zeGE(tc?EB0-v`aYD7*KS1e?~+vMSA5#<;|9t`%qy=rF(in@_VixELmE7I0uVz$}rx
zDRuYBlP9<5M%UHVZO@HnXt>i2GUeLV>~P<?R-uzpHs4Iyd~=Grzg+cxLpRV-Q6V8y
zn3$PG<>b~apI;aC{M_8)8-6J%OOle3wp4x1y1F9Jxv{aa>i^&Gs^Fe&GaD~xmX4K$
z<;A_~_gA-MUY3!I-<0C{_s8S@U$0iLe^Yv8eSG|-uj?5jcN8pK6~2Dmf&~hqS|J|(
zwqK|8$=km(Smr%lkBgJ@;>X9wuWm~9Zf$8<QSk5(Xh)_lyZ-F6%j*9A%6xfg>8gm0
zi<p?0Kpi>#{eLcHzIk?b_S^IBH#eoeJ@1+J?99w$`*|BS7=Q*^kN3%L{{H^<c7I1l
zN6^x>%XT$2HD5lR*1v!0BZEWUqsQ-<7!<Zw|9ZI`v|4^`?C!AQ=jTeRg72*k*9Q%M
zzPh${HfSmnH2j&r_v^H>_xIN7MsK@uxGOdC*7p4Qpe-l&_ExVBUmv&Y_q*Myo}l_V
zBxFj|mJCICd3oLVeKEDazDzW9J8$#3N9Cpc|DXM!)lCy72!IxR9+ME&3_22be5?0D
z&^9zsb7bG|cb9h*J}!B5gcCHP0-FCQdwXl?g$n_{A78qB`Rb0s<h%9%|AKn7pgBs=
zCOe;*Mz8Mf{;q4A4_ZSHTAXcH`%6Pb#RYU)+v{s<OTWAb1nr`m1e#Mb&ASuP$}N8F
z#6)FKWdyq1qm^5{?AE;*hRL86l%SPEprxDd_y1p~8N6(T-(0J2k2T}>?Q!ds0(YC&
zMsE)TRWmOysg}OH<O=Epx$7)uX6R36V9*1NZzXTOdFI?)>$kbJzrTS>w#+xz<Lh&E
zP8)rGe!e^-es9&*jXI~#%r-xNPfSuWGskQ;XvzHLvPqLC&%HIvBs1yM6wSvM#6(3?
zUtL}O+~nKp_4`0AOi-&-BH1S^Yn5iuk`B=9ji;yQ#{TG?MN2p8oCY0m_-&hB>@JDf
zXF;Xt;|*uCuCAIXWtwI2_H`7fPyuyFGB)d+W?^BO5nuQ7=)G@$zu%WWz3Ghg`#s6|
z**7;W<>cZr0wtI2Z*Olu|KrCG3!D3eg@wnCA3xqBZGJA%9&~LEsHL5Jyl?CFrOTJk
zzO^-bc1H(C@vkqLpFt<K9Xo&i{E=hF?tO@0U^upcg`2_V#v<45lH;=FD;%5ItZIL4
z`RjjmRj8<p%o<*4Gm9Sm$W2S6%yM3Ak*%+<|9u^_V(R7P<zGJ>=70U+;o)5c4-ffX
z-<o`!4>WaJ`|C^L4znkqF;~#Q;8g8!E8AzcjAgfGUk9C+lV5dTQpz-I$%zvlzrTaV
zKQl5`)XskS@+D}cuUz#TP=D-<-Me?Y--kUu)+@X1>&xZyPf09RpI33{VWnQo4)6%b
z2b<_=OK)yYfBooach;>fD?tO22b<YfXI)*jy+(&&!fc424mPuwzPq#2XF5;hw55~P
z{jIi4)rmB^{1$XJqq1Aig==f0OJ816ZO>IvQ`1sWd9v(PS9ka1)JU!Hb#sE_e|~zp
zHTASu`?iJ#hSt_r%PpXknSOrW-j#p<fu`7AUio%C_us$Y@4dXdf@T_}&N+6s_WRwa
ztyxq5{&sHX)3mj<y}WT+s%30L{HhSmUI{~|W;WiSqg|q=B`+>S+wn1+$mLLAcyRF2
z<;$T<JOn{Y1ZKu<h+Pq&*#4fGnR)Ip8M~SY&_qTnm#9hRC6&9C&*y&n{Q2^!soJKM
zpHh}CU!ETQSMpy~U~O5x@#g0*K^OC;Zoc{DsCaxzRr8?-4-%Gd)8GFmXj&?0jm)>r
zstgU%$_)$+>^tu5)$^LJw-&TO?I62+NrYRe@ihJTb*HE6XaD^4l+SzOwYAaHpIWU8
zUF5<knG716zq&U1`ojGG|Nd$PE;^!nwaOY)7=oq&Dn2X#wbOsg?9-3kwWY@pw2ADC
z&WWv{7y+%uKQqG+G;MWdcX_^U<fbRvuJSQhN?r%K;>2w8^-ES?PyZ7N83>%}V;`%j
ztLxj@*=c^K?AXkv{qtUW`1o9Tb91xt+Q+y0zn}H_`s!-vj)Fwr*=D{gSFZf_Ep&BQ
z=KFhlv#zbV$-8~x-5j&oprzvA>CD9?-{0L`eRXxXbq^?DQ#apSS8e_aJn8-K>Gb$F
z^P9e2^416KR*c$JvhvxPnUihVnHVg2(j6EM@UDwh6OonGP3{4W(}Rj3(7vSG+j2n(
zes%f#d!Ut-pyJhCuF_@SzI|2&4;nz@)tbS}UVJ<*|NnMvs?D;<&1s<VV9<JGN#nE?
z9ut*7(?@e&%`nTIb*x8nu~F)&7yq}GAJ<#y$|!TZp8wqy+2$S2j&~HNzk3!Y($qZJ
znfFo9f)xeqQ@IyrsCXR~Wk1-Ik&z$BGQHr7{|A19jE--|+P-h&{uTG-g{_~>z3;|x
zeC^fmzCE3H_~wlp0ZJ2pyqv3hI%xatP`&Aw4<2mXbaPEyT%3sn&y!v2R$YA+|0}3|
z+1<R?4<9=I{{8z?ZG3)y{;qxduDyG=?%C%`lXIo9v2k&$E@r&=_|b6J`jm|k88&jO
zL$owGm^_2@reD5wE2^a2dt=0v0*jEPL4igyr#!ZZ-xS91BV0g%;R9>fb}Ly~*_APR
zumAnC+r_Oi`J~6Byu3V-{^O<9)vMDsYo6Y;W$)g#lP3$mefw7T?9bJ@A=cK`Qhe=J
z_V(9r-kd3OeB%4xQStHNcJt$<stXGjE?=(xwaRwyzJ0Ggd@$geaCN7@zkllOZHEj(
z_Qp-my=`S@7bekmQC8vo+V6{>%lB62uU&oK_Wb1%t55-!tgTVE?%WAke);0(&!2-D
zJc8DS1?z|f@4w&w&muQBS97YD=3GDTN$b|FGnswXM5=ch-_`qf@1Fc@Bg)0<t2X(5
zlrY1e_4{i7pUJcZwYh$<fKL}-FlYlW1W({$1P{?mFo8BXHW;#iMhF>_Il#kt#{@uI
p=^1(yLA%r$B%DEe+=<iphv9ft@U5VAmv4dW^mO%eS?83{1OW8bJ;49~

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-093842Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-093842Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt
new file mode 100644
index 00000000..6a91f6d6
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-093842Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt
@@ -0,0 +1,14060 @@
+		Result for Multiview classification with Mumbo
+
+Average accuracy :
+	-On Train : 74.1078719582
+	-On Test : 79.0983606557
+	-On Validation : 81.5533980583
+
+Dataset info :
+	-Database name : ModifiedMultiOmic
+	-Labels : No, Yes
+	-Views : Methyl, MiRNA, RNASEQ, Clinical
+	-2 folds
+	- Validation set length : 103 for learning rate : 0.7
+
+Classification configuration : 
+	-Algorithm used : Mumbo 
+	-Iterations : 1000
+	-Weak Classifiers : DecisionTree with depth 1.0,  sub-sampled at 0.0075 on Methyl
+		-DecisionTree with depth 1.0,  sub-sampled at 0.007 on MiRNA
+		-DecisionTree with depth 1.0,  sub-sampled at 0.006 on RNASEQ
+		-DecisionTree with depth 1.0,  sub-sampled at 0.0075 on Clinical
+
+ Mean average accuracies and stats for each fold : 
+	- Fold 0
+		- On Methyl_ : 
+			- Mean average Accuracy : 0.0274615384615
+			- Percentage of time chosen : 0.96
+		- On MiRNA__ : 
+			- Mean average Accuracy : 0.0292820512821
+			- Percentage of time chosen : 0.028
+		- On RANSeq_ : 
+			- Mean average Accuracy : 0.0261987179487
+			- Percentage of time chosen : 0.004
+		- On Clinic_ : 
+			- Mean average Accuracy : 0.027391025641
+			- Percentage of time chosen : 0.008
+	- Fold 1
+		- On Methyl_ : 
+			- Mean average Accuracy : 0.0279617834395
+			- Percentage of time chosen : 0.961
+		- On MiRNA__ : 
+			- Mean average Accuracy : 0.028178343949
+			- Percentage of time chosen : 0.026
+		- On RANSeq_ : 
+			- Mean average Accuracy : 0.0253566878981
+			- Percentage of time chosen : 0.005
+		- On Clinic_ : 
+			- Mean average Accuracy : 0.0265031847134
+			- Percentage of time chosen : 0.008
+
+ For each iteration : 
+	- Iteration 1
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 2
+		 Fold 1
+			Accuracy on train : 66.6666666667
+			Accuracy on test : 69.6721311475
+			Accuracy on validation : 72.8155339806
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 64.9681528662
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 65.8174097665
+			 Accuracy on test : 71.7213114754
+	- Iteration 3
+		 Fold 1
+			Accuracy on train : 66.6666666667
+			Accuracy on test : 69.6721311475
+			Accuracy on validation : 72.8155339806
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 64.9681528662
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 65.8174097665
+			 Accuracy on test : 71.7213114754
+	- Iteration 4
+		 Fold 1
+			Accuracy on train : 56.4102564103
+			Accuracy on test : 65.5737704918
+			Accuracy on validation : 66.0194174757
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 63.0573248408
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 76.6990291262
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 59.7337906255
+			 Accuracy on test : 69.262295082
+	- Iteration 5
+		 Fold 1
+			Accuracy on train : 66.0256410256
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 67.9611650485
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 72.8155339806
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 63.904540258
+			 Accuracy on test : 72.9508196721
+	- Iteration 6
+		 Fold 1
+			Accuracy on train : 65.3846153846
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 72.8155339806
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 63.5840274375
+			 Accuracy on test : 72.9508196721
+	- Iteration 7
+		 Fold 1
+			Accuracy on train : 68.5897435897
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 63.6942675159
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 72.8155339806
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 66.1420055528
+			 Accuracy on test : 75.8196721311
+	- Iteration 8
+		 Fold 1
+			Accuracy on train : 66.0256410256
+			Accuracy on test : 68.8524590164
+			Accuracy on validation : 71.8446601942
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 62.4203821656
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 72.8155339806
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 64.2230115956
+			 Accuracy on test : 71.3114754098
+	- Iteration 9
+		 Fold 1
+			Accuracy on train : 73.0769230769
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 75.7281553398
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 62.4203821656
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 72.8155339806
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 67.7486526213
+			 Accuracy on test : 75.4098360656
+	- Iteration 10
+		 Fold 1
+			Accuracy on train : 73.7179487179
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 78.640776699
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 65.6050955414
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 71.8446601942
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 69.6615221297
+			 Accuracy on test : 77.0491803279
+	- Iteration 11
+		 Fold 1
+			Accuracy on train : 71.7948717949
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 65.6050955414
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 71.8446601942
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 68.6999836681
+			 Accuracy on test : 77.4590163934
+	- Iteration 12
+		 Fold 1
+			Accuracy on train : 69.8717948718
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 76.6990291262
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 71.3375796178
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 70.6046872448
+			 Accuracy on test : 77.868852459
+	- Iteration 13
+		 Fold 1
+			Accuracy on train : 69.8717948718
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 76.6990291262
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 69.4267515924
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 77.6699029126
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 69.6492732321
+			 Accuracy on test : 76.6393442623
+	- Iteration 14
+		 Fold 1
+			Accuracy on train : 69.8717948718
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 75.7281553398
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 70.7006369427
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 77.6699029126
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 70.2862159072
+			 Accuracy on test : 76.6393442623
+	- Iteration 15
+		 Fold 1
+			Accuracy on train : 70.5128205128
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 76.6990291262
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 68.7898089172
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 69.651314715
+			 Accuracy on test : 78.6885245902
+	- Iteration 16
+		 Fold 1
+			Accuracy on train : 68.5897435897
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 73.2484076433
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 70.9190756165
+			 Accuracy on test : 77.868852459
+	- Iteration 17
+		 Fold 1
+			Accuracy on train : 67.3076923077
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 76.6990291262
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 66.8789808917
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 67.0933365997
+			 Accuracy on test : 77.4590163934
+	- Iteration 18
+		 Fold 1
+			Accuracy on train : 62.8205128205
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 67.5159235669
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 76.6990291262
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 65.1682181937
+			 Accuracy on test : 76.2295081967
+	- Iteration 19
+		 Fold 1
+			Accuracy on train : 66.0256410256
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 74.7572815534
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 68.7898089172
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 76.6990291262
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 67.4077249714
+			 Accuracy on test : 77.0491803279
+	- Iteration 20
+		 Fold 1
+			Accuracy on train : 68.5897435897
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 75.7281553398
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 66.2420382166
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 76.6990291262
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 67.4158909032
+			 Accuracy on test : 78.2786885246
+	- Iteration 21
+		 Fold 1
+			Accuracy on train : 71.7948717949
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 76.6990291262
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 66.2420382166
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 75.7281553398
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 69.0184550057
+			 Accuracy on test : 78.2786885246
+	- Iteration 22
+		 Fold 1
+			Accuracy on train : 73.7179487179
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 68.152866242
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 70.93540748
+			 Accuracy on test : 79.9180327869
+	- Iteration 23
+		 Fold 1
+			Accuracy on train : 71.7948717949
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 75.7281553398
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 66.2420382166
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 75.7281553398
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 69.0184550057
+			 Accuracy on test : 78.6885245902
+	- Iteration 24
+		 Fold 1
+			Accuracy on train : 74.358974359
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 65.6050955414
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 69.9820349502
+			 Accuracy on test : 79.9180327869
+	- Iteration 25
+		 Fold 1
+			Accuracy on train : 74.358974359
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 64.9681528662
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 72.8155339806
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 69.6635636126
+			 Accuracy on test : 80.3278688525
+	- Iteration 26
+		 Fold 1
+			Accuracy on train : 78.2051282051
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 67.5159235669
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 72.860525886
+			 Accuracy on test : 80.3278688525
+	- Iteration 27
+		 Fold 1
+			Accuracy on train : 74.358974359
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 81.5533980583
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 67.5159235669
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 70.9374489629
+			 Accuracy on test : 79.9180327869
+	- Iteration 28
+		 Fold 1
+			Accuracy on train : 75.641025641
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 82.5242718447
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 67.5159235669
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 71.578474604
+			 Accuracy on test : 80.3278688525
+	- Iteration 29
+		 Fold 1
+			Accuracy on train : 73.7179487179
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 68.7898089172
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 75.7281553398
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 71.2538788176
+			 Accuracy on test : 79.5081967213
+	- Iteration 30
+		 Fold 1
+			Accuracy on train : 71.1538461538
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 78.640776699
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 71.3375796178
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 75.7281553398
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 71.2457128858
+			 Accuracy on test : 80.3278688525
+	- Iteration 31
+		 Fold 1
+			Accuracy on train : 75.0
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 73.2484076433
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 78.640776699
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 74.1242038217
+			 Accuracy on test : 81.5573770492
+	- Iteration 32
+		 Fold 1
+			Accuracy on train : 75.641025641
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 75.1592356688
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 75.4001306549
+			 Accuracy on test : 81.1475409836
+	- Iteration 33
+		 Fold 1
+			Accuracy on train : 74.358974359
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 81.5533980583
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 71.974522293
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 73.166748326
+			 Accuracy on test : 79.9180327869
+	- Iteration 34
+		 Fold 1
+			Accuracy on train : 71.1538461538
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 71.3375796178
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 75.7281553398
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 71.2457128858
+			 Accuracy on test : 79.5081967213
+	- Iteration 35
+		 Fold 1
+			Accuracy on train : 73.7179487179
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 71.974522293
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 75.7281553398
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 72.8462355055
+			 Accuracy on test : 79.5081967213
+	- Iteration 36
+		 Fold 1
+			Accuracy on train : 72.4358974359
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 70.7006369427
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 74.7572815534
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 71.5682671893
+			 Accuracy on test : 78.6885245902
+	- Iteration 37
+		 Fold 1
+			Accuracy on train : 73.0769230769
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 71.974522293
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 72.525722685
+			 Accuracy on test : 78.2786885246
+	- Iteration 38
+		 Fold 1
+			Accuracy on train : 73.0769230769
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 73.2484076433
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 78.640776699
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 73.1626653601
+			 Accuracy on test : 79.9180327869
+	- Iteration 39
+		 Fold 1
+			Accuracy on train : 72.4358974359
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 74.5222929936
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 79.6116504854
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 73.4790952148
+			 Accuracy on test : 79.9180327869
+	- Iteration 40
+		 Fold 1
+			Accuracy on train : 73.0769230769
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 73.8853503185
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 78.640776699
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 73.4811366977
+			 Accuracy on test : 80.737704918
+	- Iteration 41
+		 Fold 1
+			Accuracy on train : 71.7948717949
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 74.5222929936
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 73.1585823943
+			 Accuracy on test : 78.2786885246
+	- Iteration 42
+		 Fold 1
+			Accuracy on train : 73.0769230769
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 74.5222929936
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 73.7996080353
+			 Accuracy on test : 80.3278688525
+	- Iteration 43
+		 Fold 1
+			Accuracy on train : 72.4358974359
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 73.8853503185
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 73.1606238772
+			 Accuracy on test : 79.5081967213
+	- Iteration 44
+		 Fold 1
+			Accuracy on train : 73.0769230769
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 73.2484076433
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 73.1626653601
+			 Accuracy on test : 79.0983606557
+	- Iteration 45
+		 Fold 1
+			Accuracy on train : 73.0769230769
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 73.8853503185
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 73.4811366977
+			 Accuracy on test : 80.737704918
+	- Iteration 46
+		 Fold 1
+			Accuracy on train : 72.4358974359
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 73.2484076433
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 80.5825242718
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 72.8421525396
+			 Accuracy on test : 77.868852459
+	- Iteration 47
+		 Fold 1
+			Accuracy on train : 71.7948717949
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 73.8853503185
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 80.5825242718
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 72.8401110567
+			 Accuracy on test : 78.2786885246
+	- Iteration 48
+		 Fold 1
+			Accuracy on train : 70.5128205128
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 73.8853503185
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 72.1990854156
+			 Accuracy on test : 79.0983606557
+	- Iteration 49
+		 Fold 1
+			Accuracy on train : 72.4358974359
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 73.8853503185
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 73.1606238772
+			 Accuracy on test : 79.5081967213
+	- Iteration 50
+		 Fold 1
+			Accuracy on train : 71.1538461538
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 80.5825242718
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 73.8853503185
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 72.5195982362
+			 Accuracy on test : 78.6885245902
+	- Iteration 51
+		 Fold 1
+			Accuracy on train : 71.1538461538
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 77.0700636943
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 83.4951456311
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 74.1119549241
+			 Accuracy on test : 80.3278688525
+	- Iteration 52
+		 Fold 1
+			Accuracy on train : 69.8717948718
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 78.3439490446
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 74.1078719582
+			 Accuracy on test : 79.0983606557
+	- Iteration 53
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 54
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 55
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 56
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 57
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 58
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 59
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 60
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 61
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 62
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 63
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 64
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 65
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 66
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 67
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 68
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 69
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 70
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 71
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 72
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 73
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 74
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 75
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 76
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 77
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 78
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 79
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 80
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 81
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 82
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 83
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 84
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 85
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 86
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 87
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 88
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 89
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 90
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 91
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 92
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 93
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 94
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 95
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 96
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 97
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 98
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 99
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 100
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 101
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 102
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 103
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 104
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 105
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 106
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 107
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 108
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 109
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 110
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 111
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 112
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 113
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 114
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 115
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 116
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 117
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 118
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 119
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 120
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 121
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 122
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 123
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 124
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 125
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 126
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 127
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 128
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 129
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 130
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 131
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 132
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 133
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 134
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 135
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 136
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 137
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 138
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 139
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 140
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 141
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 142
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 143
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 144
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 145
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 146
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 147
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 148
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 149
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 150
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 151
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 152
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 153
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 154
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 155
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 156
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 157
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 158
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 159
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 160
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 161
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 162
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 163
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 164
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 165
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 166
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 167
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 168
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 169
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 170
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 171
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 172
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 173
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 174
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 175
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 176
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 177
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 178
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 179
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 180
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 181
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 182
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 183
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 184
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 185
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 186
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 187
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 188
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 189
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 190
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 191
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 192
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 193
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 194
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 195
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 196
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 197
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 198
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 199
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 200
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 201
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 202
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 203
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 204
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 205
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 206
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 207
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 208
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 209
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 210
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 211
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 212
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 213
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 214
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 215
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 216
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 217
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 218
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 219
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 220
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 221
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 222
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 223
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 224
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 225
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 226
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 227
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 228
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 229
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 230
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 231
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 232
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 233
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 234
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 235
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 236
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 237
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 238
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 239
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 240
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 241
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 242
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 243
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 244
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 245
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 246
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 247
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 248
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 249
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 250
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 251
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 252
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 253
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 254
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 255
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 256
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 257
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 258
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 259
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 260
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 261
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 262
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 263
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 264
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 265
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 266
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 267
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 268
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 269
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 270
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 271
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 272
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 273
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 274
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 275
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 276
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 277
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 278
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 279
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 280
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 281
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 282
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 283
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 284
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 285
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 286
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 287
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 288
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 289
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 290
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 291
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 292
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 293
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 294
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 295
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 296
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 297
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 298
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 299
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 300
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 301
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 302
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 303
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 304
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 305
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 306
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 307
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 308
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 309
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 310
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 311
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 312
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 313
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 314
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 315
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 316
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 317
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 318
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 319
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 320
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 321
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 322
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 323
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 324
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 325
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 326
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 327
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 328
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 329
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 330
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 331
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 332
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 333
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 334
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 335
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 336
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 337
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 338
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 339
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 340
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 341
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 342
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 343
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 344
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 345
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 346
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 347
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 348
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 349
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 350
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 351
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 352
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 353
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 354
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 355
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 356
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 357
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 358
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 359
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 360
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 361
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 362
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 363
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 364
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 365
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 366
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 367
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 368
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 369
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 370
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 371
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 372
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 373
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 374
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 375
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 376
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 377
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 378
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 379
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 380
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 381
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 382
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 383
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 384
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 385
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 386
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 387
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 388
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 389
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 390
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 391
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 392
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 393
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 394
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 395
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 396
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 397
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 398
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 399
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 400
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 401
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 402
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 403
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 404
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 405
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 406
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 407
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 408
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 409
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 410
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 411
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 412
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 413
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 414
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 415
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 416
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 417
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 418
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 419
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 420
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 421
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 422
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 423
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 424
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 425
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 426
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 427
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 428
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 429
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 430
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 431
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 432
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 433
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 434
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 435
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 436
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 437
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 438
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 439
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 440
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 441
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 442
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 443
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 444
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 445
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 446
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 447
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 448
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 449
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 450
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 451
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 452
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 453
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 454
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 455
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 456
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 457
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 458
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 459
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 460
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 461
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 462
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 463
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 464
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 465
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 466
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 467
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 468
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 469
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 470
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 471
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 472
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 473
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 474
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 475
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 476
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 477
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 478
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 479
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 480
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 481
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 482
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 483
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 484
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 485
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 486
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 487
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 488
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 489
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 490
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 491
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 492
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 493
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 494
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 495
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 496
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 497
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 498
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 499
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 500
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 501
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 502
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 503
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 504
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 505
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 506
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 507
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 508
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 509
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 510
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 511
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 512
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 513
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 514
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 515
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 516
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 517
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 518
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 519
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 520
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 521
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 522
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 523
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 524
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 525
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 526
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 527
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 528
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 529
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 530
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 531
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 532
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 533
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 534
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 535
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 536
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 537
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 538
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 539
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 540
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 541
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 542
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 543
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 544
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 545
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 546
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 547
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 548
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 549
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 550
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 551
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 552
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 553
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 554
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 555
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 556
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 557
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 558
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 559
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 560
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 561
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 562
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 563
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 564
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 565
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 566
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 567
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 568
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 569
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 570
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 571
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 572
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 573
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 574
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 575
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 576
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 577
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 578
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 579
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 580
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 581
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 582
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 583
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 584
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 585
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 586
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 587
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 588
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 589
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 590
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 591
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 592
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 593
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 594
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 595
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 596
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 597
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 598
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 599
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 600
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 601
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 602
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 603
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 604
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 605
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 606
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 607
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 608
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 609
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 610
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 611
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 612
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 613
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 614
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 615
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 616
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 617
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 618
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 619
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 620
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 621
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 622
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 623
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 624
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 625
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 626
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 627
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 628
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 629
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 630
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 631
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 632
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 633
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 634
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 635
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 636
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 637
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 638
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 639
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 640
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 641
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 642
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 643
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 644
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 645
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 646
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 647
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 648
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 649
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 650
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 651
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 652
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 653
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 654
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 655
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 656
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 657
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 658
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 659
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 660
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 661
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 662
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 663
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 664
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 665
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 666
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 667
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 668
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 669
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 670
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 671
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 672
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 673
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 674
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 675
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 676
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 677
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 678
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 679
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 680
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 681
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 682
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 683
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 684
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 685
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 686
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 687
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 688
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 689
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 690
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 691
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 692
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 693
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 694
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 695
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 696
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 697
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 698
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 699
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 700
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 701
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 702
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 703
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 704
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 705
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 706
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 707
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 708
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 709
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 710
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 711
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 712
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 713
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 714
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 715
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 716
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 717
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 718
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 719
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 720
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 721
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 722
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 723
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 724
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 725
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 726
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 727
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 728
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 729
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 730
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 731
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 732
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 733
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 734
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 735
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 736
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 737
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 738
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 739
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 740
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 741
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 742
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 743
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 744
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 745
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 746
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 747
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 748
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 749
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 750
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 751
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 752
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 753
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 754
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 755
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 756
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 757
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 758
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 759
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 760
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 761
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 762
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 763
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 764
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 765
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 766
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 767
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 768
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 769
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 770
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 771
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 772
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 773
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 774
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 775
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 776
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 777
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 778
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 779
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 780
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 781
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 782
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 783
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 784
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 785
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 786
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 787
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 788
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 789
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 790
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 791
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 792
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 793
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 794
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 795
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 796
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 797
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 798
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 799
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 800
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 801
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 802
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 803
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 804
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 805
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 806
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 807
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 808
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 809
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 810
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 811
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 812
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 813
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 814
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 815
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 816
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 817
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 818
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 819
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 820
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 821
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 822
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 823
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 824
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 825
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 826
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 827
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 828
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 829
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 830
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 831
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 832
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 833
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 834
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 835
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 836
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 837
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 838
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 839
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 840
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 841
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 842
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 843
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 844
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 845
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 846
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 847
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 848
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 849
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 850
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 851
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 852
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 853
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 854
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 855
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 856
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 857
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 858
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 859
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 860
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 861
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 862
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 863
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 864
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 865
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 866
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 867
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 868
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 869
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 870
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 871
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 872
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 873
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 874
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 875
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 876
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 877
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 878
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 879
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 880
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 881
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 882
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 883
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 884
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 885
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 886
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 887
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 888
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 889
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 890
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 891
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 892
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 893
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 894
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 895
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 896
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 897
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 898
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 899
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 900
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 901
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 902
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 903
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 904
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 905
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 906
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 907
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 908
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 909
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 910
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 911
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 912
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 913
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 914
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 915
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 916
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 917
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 918
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 919
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 920
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 921
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 922
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 923
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 924
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 925
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 926
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 927
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 928
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 929
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 930
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 931
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 932
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 933
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 934
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 935
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 936
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 937
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 938
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 939
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 940
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 941
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 942
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 943
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 944
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 945
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 946
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 947
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 948
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 949
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 950
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 951
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 952
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 953
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 954
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 955
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 956
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 957
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 958
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 959
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 960
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 961
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 962
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 963
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 964
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 965
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 966
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 967
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 968
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 969
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 970
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 971
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 972
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 973
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 974
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 975
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 976
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 977
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 978
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 979
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 980
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 981
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 982
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 983
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 984
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 985
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 986
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 987
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 988
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 989
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 990
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 991
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 992
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 993
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 994
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 995
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 996
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 997
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 998
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 999
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 1000
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+
+Computation time on 1 cores : 
+	Database extraction time : 0:00:00
+	                         Learn     Prediction
+	         Fold 1        0:02:40        0:00:07
+	         Fold 2        0:04:22        0:00:07
+	          Total        0:07:02        0:00:15
+	So a total classification time of 0:04:29.
+
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-094408-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-094408-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..f87aee13
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-094408-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,531 @@
+2016-08-24 09:44:08,361 INFO: Start:	 Read HDF5 Database Files for ModifiedMultiOmic
+2016-08-24 09:44:08,361 INFO: Info:	 Labels used: No, Yes
+2016-08-24 09:44:08,361 INFO: Info:	 Length of dataset:347
+2016-08-24 09:44:08,363 INFO: ### Main Programm for Multiview Classification
+2016-08-24 09:44:08,363 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 09:44:08,363 INFO: Info:	 Shape of Methyl_ :(347, 25978)
+2016-08-24 09:44:08,364 INFO: Info:	 Shape of MiRNA__ :(347, 1046)
+2016-08-24 09:44:08,364 INFO: Info:	 Shape of RANSeq_ :(347, 73599)
+2016-08-24 09:44:08,365 INFO: Info:	 Shape of Clinic_ :(347, 127)
+2016-08-24 09:44:08,365 INFO: Done:	 Read Database Files
+2016-08-24 09:44:08,365 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-24 09:44:08,368 INFO: Done:	 Determine validation split
+2016-08-24 09:44:08,368 INFO: Start:	 Determine 2 folds
+2016-08-24 09:44:08,378 INFO: Info:	 Length of Learning Sets: 122
+2016-08-24 09:44:08,378 INFO: Info:	 Length of Testing Sets: 122
+2016-08-24 09:44:08,378 INFO: Info:	 Length of Validation Set: 103
+2016-08-24 09:44:08,379 INFO: Done:	 Determine folds
+2016-08-24 09:44:08,379 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-24 09:44:08,379 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-24 09:44:08,379 DEBUG: 	Start:	 Gridsearch for DecisionTree on Methyl_
+2016-08-24 09:44:15,803 DEBUG: 0.585648414986Poulet
+2016-08-24 09:44:15,803 DEBUG: 0.560864553314Poulet
+2016-08-24 09:44:15,803 DEBUG: 0.511642651297Poulet
+2016-08-24 09:44:15,803 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:44:15,804 DEBUG: 	Start:	 Gridsearch for DecisionTree on MiRNA__
+2016-08-24 09:44:17,725 DEBUG: 0.543054755043Poulet
+2016-08-24 09:44:17,725 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:44:17,725 DEBUG: 	Start:	 Gridsearch for DecisionTree on RANSeq_
+2016-08-24 09:44:34,897 DEBUG: 0.577463976945Poulet
+2016-08-24 09:44:34,898 DEBUG: 0.563400576369Poulet
+2016-08-24 09:44:34,898 DEBUG: 0.511930835735Poulet
+2016-08-24 09:44:34,899 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:44:34,899 DEBUG: 	Start:	 Gridsearch for DecisionTree on Clinic_
+2016-08-24 09:44:36,702 DEBUG: 0.56265129683Poulet
+2016-08-24 09:44:36,702 DEBUG: 0.561383285303Poulet
+2016-08-24 09:44:36,702 DEBUG: 0.501844380403Poulet
+2016-08-24 09:44:36,702 DEBUG: 0.514351585014Poulet
+2016-08-24 09:44:36,702 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:44:36,703 DEBUG: 	Start:	 Gridsearch for DecisionTree on MRNASeq
+2016-08-24 09:45:24,687 DEBUG: 0.541556195965Poulet
+2016-08-24 09:45:24,687 DEBUG: 0.528357348703Poulet
+2016-08-24 09:45:24,689 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:45:24,689 INFO: Done:	 Gridsearching best settings for monoview classifiers
+2016-08-24 09:45:24,689 INFO: 	Start:	 Fold number 1
+2016-08-24 09:45:26,374 DEBUG: 		Start:	 Iteration 1
+2016-08-24 09:45:26,392 DEBUG: 			View 0 : 0.379746835443
+2016-08-24 09:45:26,400 DEBUG: 			View 1 : 0.620253164557
+2016-08-24 09:45:26,431 DEBUG: 			View 2 : 0.620253164557
+2016-08-24 09:45:26,442 DEBUG: 			View 3 : 0.620253164557
+2016-08-24 09:45:26,485 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:45:26,561 DEBUG: 		Start:	 Iteration 2
+2016-08-24 09:45:26,579 DEBUG: 			View 0 : 0.443037974684
+2016-08-24 09:45:26,587 DEBUG: 			View 1 : 0.563291139241
+2016-08-24 09:45:26,628 DEBUG: 			View 2 : 0.563291139241
+2016-08-24 09:45:26,636 DEBUG: 			View 3 : 0.651898734177
+2016-08-24 09:45:26,693 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:45:26,830 DEBUG: 		Start:	 Iteration 3
+2016-08-24 09:45:26,847 DEBUG: 			View 0 : 0.550632911392
+2016-08-24 09:45:26,855 DEBUG: 			View 1 : 0.563291139241
+2016-08-24 09:45:26,892 DEBUG: 			View 2 : 0.53164556962
+2016-08-24 09:45:26,902 DEBUG: 			View 3 : 0.462025316456
+2016-08-24 09:45:26,957 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:45:27,145 DEBUG: 		Start:	 Iteration 4
+2016-08-24 09:45:27,161 DEBUG: 			View 0 : 0.569620253165
+2016-08-24 09:45:27,169 DEBUG: 			View 1 : 0.329113924051
+2016-08-24 09:45:27,206 DEBUG: 			View 2 : 0.525316455696
+2016-08-24 09:45:27,214 DEBUG: 			View 3 : 0.588607594937
+2016-08-24 09:45:27,272 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:45:27,520 DEBUG: 		Start:	 Iteration 5
+2016-08-24 09:45:27,537 DEBUG: 			View 0 : 0.443037974684
+2016-08-24 09:45:27,545 DEBUG: 			View 1 : 0.569620253165
+2016-08-24 09:45:27,582 DEBUG: 			View 2 : 0.537974683544
+2016-08-24 09:45:27,590 DEBUG: 			View 3 : 0.518987341772
+2016-08-24 09:45:27,648 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:45:27,951 DEBUG: 		Start:	 Iteration 6
+2016-08-24 09:45:27,968 DEBUG: 			View 0 : 0.386075949367
+2016-08-24 09:45:27,976 DEBUG: 			View 1 : 0.651898734177
+2016-08-24 09:45:28,012 DEBUG: 			View 2 : 0.430379746835
+2016-08-24 09:45:28,020 DEBUG: 			View 3 : 0.443037974684
+2016-08-24 09:45:28,080 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:45:28,444 DEBUG: 		Start:	 Iteration 7
+2016-08-24 09:45:28,460 DEBUG: 			View 0 : 0.664556962025
+2016-08-24 09:45:28,468 DEBUG: 			View 1 : 0.443037974684
+2016-08-24 09:45:28,505 DEBUG: 			View 2 : 0.525316455696
+2016-08-24 09:45:28,512 DEBUG: 			View 3 : 0.487341772152
+2016-08-24 09:45:28,575 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:45:28,997 DEBUG: 		Start:	 Iteration 8
+2016-08-24 09:45:29,014 DEBUG: 			View 0 : 0.424050632911
+2016-08-24 09:45:29,021 DEBUG: 			View 1 : 0.417721518987
+2016-08-24 09:45:29,058 DEBUG: 			View 2 : 0.556962025316
+2016-08-24 09:45:29,066 DEBUG: 			View 3 : 0.594936708861
+2016-08-24 09:45:29,131 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:45:29,628 DEBUG: 		Start:	 Iteration 9
+2016-08-24 09:45:29,645 DEBUG: 			View 0 : 0.512658227848
+2016-08-24 09:45:29,653 DEBUG: 			View 1 : 0.417721518987
+2016-08-24 09:45:29,691 DEBUG: 			View 2 : 0.639240506329
+2016-08-24 09:45:29,699 DEBUG: 			View 3 : 0.411392405063
+2016-08-24 09:45:29,769 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:45:30,333 DEBUG: 		Start:	 Iteration 10
+2016-08-24 09:45:30,349 DEBUG: 			View 0 : 0.506329113924
+2016-08-24 09:45:30,357 DEBUG: 			View 1 : 0.639240506329
+2016-08-24 09:45:30,394 DEBUG: 			View 2 : 0.424050632911
+2016-08-24 09:45:30,402 DEBUG: 			View 3 : 0.436708860759
+2016-08-24 09:45:30,471 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:45:31,083 DEBUG: 		Start:	 Iteration 11
+2016-08-24 09:45:31,100 DEBUG: 			View 0 : 0.626582278481
+2016-08-24 09:45:31,107 DEBUG: 			View 1 : 0.354430379747
+2016-08-24 09:45:31,144 DEBUG: 			View 2 : 0.398734177215
+2016-08-24 09:45:31,152 DEBUG: 			View 3 : 0.607594936709
+2016-08-24 09:45:31,223 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:45:31,904 DEBUG: 		Start:	 Iteration 12
+2016-08-24 09:45:31,921 DEBUG: 			View 0 : 0.689873417722
+2016-08-24 09:45:31,929 DEBUG: 			View 1 : 0.481012658228
+2016-08-24 09:45:31,965 DEBUG: 			View 2 : 0.46835443038
+2016-08-24 09:45:31,973 DEBUG: 			View 3 : 0.493670886076
+2016-08-24 09:45:32,047 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:45:32,812 DEBUG: 		Start:	 Iteration 13
+2016-08-24 09:45:32,829 DEBUG: 			View 0 : 0.417721518987
+2016-08-24 09:45:32,837 DEBUG: 			View 1 : 0.639240506329
+2016-08-24 09:45:32,874 DEBUG: 			View 2 : 0.405063291139
+2016-08-24 09:45:32,882 DEBUG: 			View 3 : 0.620253164557
+2016-08-24 09:45:32,957 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:45:33,749 DEBUG: 		Start:	 Iteration 14
+2016-08-24 09:45:33,765 DEBUG: 			View 0 : 0.481012658228
+2016-08-24 09:45:33,773 DEBUG: 			View 1 : 0.278481012658
+2016-08-24 09:45:33,809 DEBUG: 			View 2 : 0.379746835443
+2016-08-24 09:45:33,817 DEBUG: 			View 3 : 0.392405063291
+2016-08-24 09:45:33,818 WARNING: WARNING:	All bad for iteration 13
+2016-08-24 09:45:33,896 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:45:34,783 DEBUG: 		Start:	 Iteration 15
+2016-08-24 09:45:34,801 DEBUG: 			View 0 : 0.436708860759
+2016-08-24 09:45:34,809 DEBUG: 			View 1 : 0.563291139241
+2016-08-24 09:45:34,849 DEBUG: 			View 2 : 0.544303797468
+2016-08-24 09:45:34,858 DEBUG: 			View 3 : 0.474683544304
+2016-08-24 09:45:34,952 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:45:35,984 DEBUG: 		Start:	 Iteration 16
+2016-08-24 09:45:36,002 DEBUG: 			View 0 : 0.550632911392
+2016-08-24 09:45:36,010 DEBUG: 			View 1 : 0.443037974684
+2016-08-24 09:45:36,049 DEBUG: 			View 2 : 0.544303797468
+2016-08-24 09:45:36,057 DEBUG: 			View 3 : 0.506329113924
+2016-08-24 09:45:36,141 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:45:37,137 DEBUG: 		Start:	 Iteration 17
+2016-08-24 09:45:37,154 DEBUG: 			View 0 : 0.392405063291
+2016-08-24 09:45:37,162 DEBUG: 			View 1 : 0.670886075949
+2016-08-24 09:45:37,199 DEBUG: 			View 2 : 0.443037974684
+2016-08-24 09:45:37,207 DEBUG: 			View 3 : 0.398734177215
+2016-08-24 09:45:37,294 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:45:38,383 DEBUG: 		Start:	 Iteration 18
+2016-08-24 09:45:38,400 DEBUG: 			View 0 : 0.462025316456
+2016-08-24 09:45:38,407 DEBUG: 			View 1 : 0.620253164557
+2016-08-24 09:45:38,444 DEBUG: 			View 2 : 0.493670886076
+2016-08-24 09:45:38,452 DEBUG: 			View 3 : 0.556962025316
+2016-08-24 09:45:38,541 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:45:39,640 DEBUG: 		Start:	 Iteration 19
+2016-08-24 09:45:39,656 DEBUG: 			View 0 : 0.689873417722
+2016-08-24 09:45:39,664 DEBUG: 			View 1 : 0.544303797468
+2016-08-24 09:45:39,701 DEBUG: 			View 2 : 0.594936708861
+2016-08-24 09:45:39,708 DEBUG: 			View 3 : 0.594936708861
+2016-08-24 09:45:39,799 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:45:40,989 DEBUG: 		Start:	 Iteration 20
+2016-08-24 09:45:41,005 DEBUG: 			View 0 : 0.550632911392
+2016-08-24 09:45:41,013 DEBUG: 			View 1 : 0.613924050633
+2016-08-24 09:45:41,050 DEBUG: 			View 2 : 0.613924050633
+2016-08-24 09:45:41,058 DEBUG: 			View 3 : 0.607594936709
+2016-08-24 09:45:41,151 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:45:42,389 DEBUG: 		Start:	 Iteration 21
+2016-08-24 09:45:42,405 DEBUG: 			View 0 : 0.651898734177
+2016-08-24 09:45:42,413 DEBUG: 			View 1 : 0.664556962025
+2016-08-24 09:45:42,450 DEBUG: 			View 2 : 0.563291139241
+2016-08-24 09:45:42,458 DEBUG: 			View 3 : 0.417721518987
+2016-08-24 09:45:42,554 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:45:43,837 DEBUG: 		Start:	 Iteration 22
+2016-08-24 09:45:43,853 DEBUG: 			View 0 : 0.537974683544
+2016-08-24 09:45:43,861 DEBUG: 			View 1 : 0.607594936709
+2016-08-24 09:45:43,899 DEBUG: 			View 2 : 0.582278481013
+2016-08-24 09:45:43,906 DEBUG: 			View 3 : 0.493670886076
+2016-08-24 09:45:44,006 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:45:45,380 DEBUG: 		Start:	 Iteration 23
+2016-08-24 09:45:45,397 DEBUG: 			View 0 : 0.626582278481
+2016-08-24 09:45:45,405 DEBUG: 			View 1 : 0.462025316456
+2016-08-24 09:45:45,443 DEBUG: 			View 2 : 0.613924050633
+2016-08-24 09:45:45,451 DEBUG: 			View 3 : 0.487341772152
+2016-08-24 09:45:45,552 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:45:46,972 DEBUG: 		Start:	 Iteration 24
+2016-08-24 09:45:46,991 DEBUG: 			View 0 : 0.474683544304
+2016-08-24 09:45:46,999 DEBUG: 			View 1 : 0.607594936709
+2016-08-24 09:45:47,037 DEBUG: 			View 2 : 0.556962025316
+2016-08-24 09:45:47,045 DEBUG: 			View 3 : 0.405063291139
+2016-08-24 09:45:47,149 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:45:48,783 DEBUG: 		Start:	 Iteration 25
+2016-08-24 09:45:48,799 DEBUG: 			View 0 : 0.5
+2016-08-24 09:45:48,807 DEBUG: 			View 1 : 0.512658227848
+2016-08-24 09:45:48,844 DEBUG: 			View 2 : 0.487341772152
+2016-08-24 09:45:48,852 DEBUG: 			View 3 : 0.474683544304
+2016-08-24 09:45:48,956 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:45:50,533 DEBUG: 		Start:	 Iteration 26
+2016-08-24 09:45:50,550 DEBUG: 			View 0 : 0.645569620253
+2016-08-24 09:45:50,558 DEBUG: 			View 1 : 0.651898734177
+2016-08-24 09:45:50,595 DEBUG: 			View 2 : 0.411392405063
+2016-08-24 09:45:50,603 DEBUG: 			View 3 : 0.582278481013
+2016-08-24 09:45:50,707 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:45:52,409 DEBUG: 		Start:	 Iteration 27
+2016-08-24 09:45:52,430 DEBUG: 			View 0 : 0.588607594937
+2016-08-24 09:45:52,439 DEBUG: 			View 1 : 0.601265822785
+2016-08-24 09:45:52,483 DEBUG: 			View 2 : 0.588607594937
+2016-08-24 09:45:52,492 DEBUG: 			View 3 : 0.449367088608
+2016-08-24 09:45:52,615 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:45:54,284 DEBUG: 		Start:	 Iteration 28
+2016-08-24 09:45:54,301 DEBUG: 			View 0 : 0.46835443038
+2016-08-24 09:45:54,309 DEBUG: 			View 1 : 0.405063291139
+2016-08-24 09:45:54,345 DEBUG: 			View 2 : 0.455696202532
+2016-08-24 09:45:54,353 DEBUG: 			View 3 : 0.436708860759
+2016-08-24 09:45:54,354 WARNING: WARNING:	All bad for iteration 27
+2016-08-24 09:45:54,463 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:45:56,154 DEBUG: 		Start:	 Iteration 29
+2016-08-24 09:45:56,170 DEBUG: 			View 0 : 0.405063291139
+2016-08-24 09:45:56,178 DEBUG: 			View 1 : 0.632911392405
+2016-08-24 09:45:56,214 DEBUG: 			View 2 : 0.417721518987
+2016-08-24 09:45:56,222 DEBUG: 			View 3 : 0.474683544304
+2016-08-24 09:45:56,334 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:45:58,088 DEBUG: 		Start:	 Iteration 30
+2016-08-24 09:45:58,104 DEBUG: 			View 0 : 0.5
+2016-08-24 09:45:58,112 DEBUG: 			View 1 : 0.398734177215
+2016-08-24 09:45:58,149 DEBUG: 			View 2 : 0.455696202532
+2016-08-24 09:45:58,157 DEBUG: 			View 3 : 0.417721518987
+2016-08-24 09:45:58,270 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:46:00,083 DEBUG: 		Start:	 Iteration 31
+2016-08-24 09:46:00,100 DEBUG: 			View 0 : 0.462025316456
+2016-08-24 09:46:00,108 DEBUG: 			View 1 : 0.424050632911
+2016-08-24 09:46:00,144 DEBUG: 			View 2 : 0.417721518987
+2016-08-24 09:46:00,152 DEBUG: 			View 3 : 0.436708860759
+2016-08-24 09:46:00,152 WARNING: WARNING:	All bad for iteration 30
+2016-08-24 09:46:00,269 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:46:02,316 DEBUG: 		Start:	 Iteration 32
+2016-08-24 09:46:02,332 DEBUG: 			View 0 : 0.632911392405
+2016-08-24 09:46:02,340 DEBUG: 			View 1 : 0.727848101266
+2016-08-24 09:46:02,377 DEBUG: 			View 2 : 0.626582278481
+2016-08-24 09:46:02,385 DEBUG: 			View 3 : 0.449367088608
+2016-08-24 09:46:02,504 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:46:04,444 DEBUG: 		Start:	 Iteration 33
+2016-08-24 09:46:04,461 DEBUG: 			View 0 : 0.556962025316
+2016-08-24 09:46:04,469 DEBUG: 			View 1 : 0.626582278481
+2016-08-24 09:46:04,505 DEBUG: 			View 2 : 0.506329113924
+2016-08-24 09:46:04,513 DEBUG: 			View 3 : 0.525316455696
+2016-08-24 09:46:04,633 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:46:06,628 DEBUG: 		Start:	 Iteration 34
+2016-08-24 09:46:06,645 DEBUG: 			View 0 : 0.53164556962
+2016-08-24 09:46:06,652 DEBUG: 			View 1 : 0.506329113924
+2016-08-24 09:46:06,689 DEBUG: 			View 2 : 0.430379746835
+2016-08-24 09:46:06,697 DEBUG: 			View 3 : 0.481012658228
+2016-08-24 09:46:06,820 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:46:08,877 DEBUG: 		Start:	 Iteration 35
+2016-08-24 09:46:08,894 DEBUG: 			View 0 : 0.430379746835
+2016-08-24 09:46:08,901 DEBUG: 			View 1 : 0.544303797468
+2016-08-24 09:46:08,938 DEBUG: 			View 2 : 0.474683544304
+2016-08-24 09:46:08,945 DEBUG: 			View 3 : 0.405063291139
+2016-08-24 09:46:09,070 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:46:11,182 DEBUG: 		Start:	 Iteration 36
+2016-08-24 09:46:11,198 DEBUG: 			View 0 : 0.569620253165
+2016-08-24 09:46:11,206 DEBUG: 			View 1 : 0.664556962025
+2016-08-24 09:46:11,243 DEBUG: 			View 2 : 0.651898734177
+2016-08-24 09:46:11,251 DEBUG: 			View 3 : 0.594936708861
+2016-08-24 09:46:11,378 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:46:13,547 DEBUG: 		Start:	 Iteration 37
+2016-08-24 09:46:13,563 DEBUG: 			View 0 : 0.474683544304
+2016-08-24 09:46:13,571 DEBUG: 			View 1 : 0.651898734177
+2016-08-24 09:46:13,607 DEBUG: 			View 2 : 0.392405063291
+2016-08-24 09:46:13,615 DEBUG: 			View 3 : 0.392405063291
+2016-08-24 09:46:13,744 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:46:15,973 DEBUG: 		Start:	 Iteration 38
+2016-08-24 09:46:15,989 DEBUG: 			View 0 : 0.651898734177
+2016-08-24 09:46:15,997 DEBUG: 			View 1 : 0.639240506329
+2016-08-24 09:46:16,034 DEBUG: 			View 2 : 0.487341772152
+2016-08-24 09:46:16,042 DEBUG: 			View 3 : 0.582278481013
+2016-08-24 09:46:16,175 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:46:18,469 DEBUG: 		Start:	 Iteration 39
+2016-08-24 09:46:18,485 DEBUG: 			View 0 : 0.537974683544
+2016-08-24 09:46:18,493 DEBUG: 			View 1 : 0.392405063291
+2016-08-24 09:46:18,529 DEBUG: 			View 2 : 0.525316455696
+2016-08-24 09:46:18,537 DEBUG: 			View 3 : 0.46835443038
+2016-08-24 09:46:18,671 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:46:21,024 DEBUG: 		Start:	 Iteration 40
+2016-08-24 09:46:21,041 DEBUG: 			View 0 : 0.639240506329
+2016-08-24 09:46:21,049 DEBUG: 			View 1 : 0.582278481013
+2016-08-24 09:46:21,085 DEBUG: 			View 2 : 0.474683544304
+2016-08-24 09:46:21,093 DEBUG: 			View 3 : 0.481012658228
+2016-08-24 09:46:21,229 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:46:23,647 DEBUG: 		Start:	 Iteration 41
+2016-08-24 09:46:23,663 DEBUG: 			View 0 : 0.481012658228
+2016-08-24 09:46:23,671 DEBUG: 			View 1 : 0.664556962025
+2016-08-24 09:46:23,708 DEBUG: 			View 2 : 0.5
+2016-08-24 09:46:23,715 DEBUG: 			View 3 : 0.392405063291
+2016-08-24 09:46:23,854 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:46:26,328 DEBUG: 		Start:	 Iteration 42
+2016-08-24 09:46:26,345 DEBUG: 			View 0 : 0.506329113924
+2016-08-24 09:46:26,352 DEBUG: 			View 1 : 0.582278481013
+2016-08-24 09:46:26,389 DEBUG: 			View 2 : 0.430379746835
+2016-08-24 09:46:26,397 DEBUG: 			View 3 : 0.632911392405
+2016-08-24 09:46:26,539 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:46:29,075 DEBUG: 		Start:	 Iteration 43
+2016-08-24 09:46:29,091 DEBUG: 			View 0 : 0.398734177215
+2016-08-24 09:46:29,099 DEBUG: 			View 1 : 0.5
+2016-08-24 09:46:29,136 DEBUG: 			View 2 : 0.651898734177
+2016-08-24 09:46:29,143 DEBUG: 			View 3 : 0.424050632911
+2016-08-24 09:46:29,287 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:46:31,887 DEBUG: 		Start:	 Iteration 44
+2016-08-24 09:46:31,904 DEBUG: 			View 0 : 0.506329113924
+2016-08-24 09:46:31,912 DEBUG: 			View 1 : 0.594936708861
+2016-08-24 09:46:31,949 DEBUG: 			View 2 : 0.348101265823
+2016-08-24 09:46:31,956 DEBUG: 			View 3 : 0.462025316456
+2016-08-24 09:46:32,102 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:46:34,802 DEBUG: 		Start:	 Iteration 45
+2016-08-24 09:46:34,819 DEBUG: 			View 0 : 0.436708860759
+2016-08-24 09:46:34,826 DEBUG: 			View 1 : 0.601265822785
+2016-08-24 09:46:34,863 DEBUG: 			View 2 : 0.575949367089
+2016-08-24 09:46:34,870 DEBUG: 			View 3 : 0.537974683544
+2016-08-24 09:46:35,017 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:46:37,732 DEBUG: 		Start:	 Iteration 46
+2016-08-24 09:46:37,748 DEBUG: 			View 0 : 0.430379746835
+2016-08-24 09:46:37,756 DEBUG: 			View 1 : 0.651898734177
+2016-08-24 09:46:37,792 DEBUG: 			View 2 : 0.398734177215
+2016-08-24 09:46:37,800 DEBUG: 			View 3 : 0.594936708861
+2016-08-24 09:46:37,949 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:46:40,720 DEBUG: 		Start:	 Iteration 47
+2016-08-24 09:46:40,737 DEBUG: 			View 0 : 0.537974683544
+2016-08-24 09:46:40,744 DEBUG: 			View 1 : 0.373417721519
+2016-08-24 09:46:40,781 DEBUG: 			View 2 : 0.424050632911
+2016-08-24 09:46:40,789 DEBUG: 			View 3 : 0.506329113924
+2016-08-24 09:46:40,941 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:46:43,774 DEBUG: 		Start:	 Iteration 48
+2016-08-24 09:46:43,791 DEBUG: 			View 0 : 0.455696202532
+2016-08-24 09:46:43,799 DEBUG: 			View 1 : 0.677215189873
+2016-08-24 09:46:43,835 DEBUG: 			View 2 : 0.601265822785
+2016-08-24 09:46:43,843 DEBUG: 			View 3 : 0.443037974684
+2016-08-24 09:46:43,997 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:46:46,889 DEBUG: 		Start:	 Iteration 49
+2016-08-24 09:46:46,906 DEBUG: 			View 0 : 0.443037974684
+2016-08-24 09:46:46,913 DEBUG: 			View 1 : 0.29746835443
+2016-08-24 09:46:46,950 DEBUG: 			View 2 : 0.582278481013
+2016-08-24 09:46:46,958 DEBUG: 			View 3 : 0.613924050633
+2016-08-24 09:46:47,114 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:46:50,150 DEBUG: 		Start:	 Iteration 50
+2016-08-24 09:46:50,167 DEBUG: 			View 0 : 0.436708860759
+2016-08-24 09:46:50,175 DEBUG: 			View 1 : 0.537974683544
+2016-08-24 09:46:50,211 DEBUG: 			View 2 : 0.569620253165
+2016-08-24 09:46:50,219 DEBUG: 			View 3 : 0.405063291139
+2016-08-24 09:46:50,378 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:46:53,398 DEBUG: 		Start:	 Iteration 51
+2016-08-24 09:46:53,415 DEBUG: 			View 0 : 0.569620253165
+2016-08-24 09:46:53,423 DEBUG: 			View 1 : 0.417721518987
+2016-08-24 09:46:53,459 DEBUG: 			View 2 : 0.386075949367
+2016-08-24 09:46:53,467 DEBUG: 			View 3 : 0.563291139241
+2016-08-24 09:46:53,629 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:46:56,894 DEBUG: 		Start:	 Iteration 52
+2016-08-24 09:46:56,913 DEBUG: 			View 0 : 0.53164556962
+2016-08-24 09:46:56,921 DEBUG: 			View 1 : 0.405063291139
+2016-08-24 09:46:56,958 DEBUG: 			View 2 : 0.443037974684
+2016-08-24 09:46:56,966 DEBUG: 			View 3 : 0.405063291139
+2016-08-24 09:46:57,131 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:47:00,275 INFO: 	Start: 	 Classification
+2016-08-24 09:47:07,807 INFO: 	Done: 	 Fold number 1
+2016-08-24 09:47:07,807 INFO: 	Start:	 Fold number 2
+2016-08-24 09:47:09,379 DEBUG: 		Start:	 Iteration 1
+2016-08-24 09:47:09,398 DEBUG: 			View 0 : 0.446540880503
+2016-08-24 09:47:09,405 DEBUG: 			View 1 : 0.377358490566
+2016-08-24 09:47:09,433 DEBUG: 			View 2 : 0.622641509434
+2016-08-24 09:47:09,441 DEBUG: 			View 3 : 0.622641509434
+2016-08-24 09:47:09,482 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:47:09,568 DEBUG: 		Start:	 Iteration 2
+2016-08-24 09:47:09,585 DEBUG: 			View 0 : 0.459119496855
+2016-08-24 09:47:09,593 DEBUG: 			View 1 : 0.477987421384
+2016-08-24 09:47:09,630 DEBUG: 			View 2 : 0.572327044025
+2016-08-24 09:47:09,637 DEBUG: 			View 3 : 0.389937106918
+2016-08-24 09:47:09,682 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:47:09,840 DEBUG: 		Start:	 Iteration 3
+2016-08-24 09:47:09,856 DEBUG: 			View 0 : 0.534591194969
+2016-08-24 09:47:09,864 DEBUG: 			View 1 : 0.610062893082
+2016-08-24 09:47:09,900 DEBUG: 			View 2 : 0.383647798742
+2016-08-24 09:47:09,908 DEBUG: 			View 3 : 0.452830188679
+2016-08-24 09:47:09,960 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:47:10,177 DEBUG: 		Start:	 Iteration 4
+2016-08-24 09:47:10,194 DEBUG: 			View 0 : 0.566037735849
+2016-08-24 09:47:10,201 DEBUG: 			View 1 : 0.427672955975
+2016-08-24 09:47:10,239 DEBUG: 			View 2 : 0.408805031447
+2016-08-24 09:47:10,246 DEBUG: 			View 3 : 0.660377358491
+2016-08-24 09:47:10,301 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:47:10,577 DEBUG: 		Start:	 Iteration 5
+2016-08-24 09:47:10,594 DEBUG: 			View 0 : 0.509433962264
+2016-08-24 09:47:10,601 DEBUG: 			View 1 : 0.660377358491
+2016-08-24 09:47:10,638 DEBUG: 			View 2 : 0.490566037736
+2016-08-24 09:47:10,646 DEBUG: 			View 3 : 0.553459119497
+2016-08-24 09:47:10,703 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:47:11,037 DEBUG: 		Start:	 Iteration 6
+2016-08-24 09:47:11,053 DEBUG: 			View 0 : 0.660377358491
+2016-08-24 09:47:11,061 DEBUG: 			View 1 : 0.396226415094
+2016-08-24 09:47:11,098 DEBUG: 			View 2 : 0.553459119497
+2016-08-24 09:47:11,106 DEBUG: 			View 3 : 0.540880503145
+2016-08-24 09:47:11,167 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:47:11,562 DEBUG: 		Start:	 Iteration 7
+2016-08-24 09:47:11,578 DEBUG: 			View 0 : 0.339622641509
+2016-08-24 09:47:11,586 DEBUG: 			View 1 : 0.62893081761
+2016-08-24 09:47:11,623 DEBUG: 			View 2 : 0.566037735849
+2016-08-24 09:47:11,630 DEBUG: 			View 3 : 0.465408805031
+2016-08-24 09:47:11,692 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:47:12,144 DEBUG: 		Start:	 Iteration 8
+2016-08-24 09:47:12,160 DEBUG: 			View 0 : 0.471698113208
+2016-08-24 09:47:12,168 DEBUG: 			View 1 : 0.654088050314
+2016-08-24 09:47:12,205 DEBUG: 			View 2 : 0.383647798742
+2016-08-24 09:47:12,212 DEBUG: 			View 3 : 0.59748427673
+2016-08-24 09:47:12,276 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:47:12,787 DEBUG: 		Start:	 Iteration 9
+2016-08-24 09:47:12,803 DEBUG: 			View 0 : 0.622641509434
+2016-08-24 09:47:12,811 DEBUG: 			View 1 : 0.383647798742
+2016-08-24 09:47:12,848 DEBUG: 			View 2 : 0.389937106918
+2016-08-24 09:47:12,856 DEBUG: 			View 3 : 0.584905660377
+2016-08-24 09:47:12,923 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:47:13,494 DEBUG: 		Start:	 Iteration 10
+2016-08-24 09:47:13,511 DEBUG: 			View 0 : 0.433962264151
+2016-08-24 09:47:13,519 DEBUG: 			View 1 : 0.685534591195
+2016-08-24 09:47:13,556 DEBUG: 			View 2 : 0.452830188679
+2016-08-24 09:47:13,563 DEBUG: 			View 3 : 0.40251572327
+2016-08-24 09:47:13,632 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:47:14,261 DEBUG: 		Start:	 Iteration 11
+2016-08-24 09:47:14,278 DEBUG: 			View 0 : 0.584905660377
+2016-08-24 09:47:14,286 DEBUG: 			View 1 : 0.566037735849
+2016-08-24 09:47:14,322 DEBUG: 			View 2 : 0.477987421384
+2016-08-24 09:47:14,330 DEBUG: 			View 3 : 0.440251572327
+2016-08-24 09:47:14,401 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:47:15,092 DEBUG: 		Start:	 Iteration 12
+2016-08-24 09:47:15,109 DEBUG: 			View 0 : 0.301886792453
+2016-08-24 09:47:15,116 DEBUG: 			View 1 : 0.37106918239
+2016-08-24 09:47:15,153 DEBUG: 			View 2 : 0.59748427673
+2016-08-24 09:47:15,160 DEBUG: 			View 3 : 0.528301886792
+2016-08-24 09:47:15,233 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:47:16,016 DEBUG: 		Start:	 Iteration 13
+2016-08-24 09:47:16,033 DEBUG: 			View 0 : 0.427672955975
+2016-08-24 09:47:16,040 DEBUG: 			View 1 : 0.660377358491
+2016-08-24 09:47:16,077 DEBUG: 			View 2 : 0.377358490566
+2016-08-24 09:47:16,084 DEBUG: 			View 3 : 0.452830188679
+2016-08-24 09:47:16,162 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:47:17,170 DEBUG: 		Start:	 Iteration 14
+2016-08-24 09:47:17,190 DEBUG: 			View 0 : 0.622641509434
+2016-08-24 09:47:17,199 DEBUG: 			View 1 : 0.641509433962
+2016-08-24 09:47:17,242 DEBUG: 			View 2 : 0.584905660377
+2016-08-24 09:47:17,251 DEBUG: 			View 3 : 0.528301886792
+2016-08-24 09:47:17,335 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:47:18,276 DEBUG: 		Start:	 Iteration 15
+2016-08-24 09:47:18,294 DEBUG: 			View 0 : 0.440251572327
+2016-08-24 09:47:18,302 DEBUG: 			View 1 : 0.283018867925
+2016-08-24 09:47:18,343 DEBUG: 			View 2 : 0.377358490566
+2016-08-24 09:47:18,351 DEBUG: 			View 3 : 0.522012578616
+2016-08-24 09:47:18,437 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:47:19,473 DEBUG: 		Start:	 Iteration 16
+2016-08-24 09:47:19,491 DEBUG: 			View 0 : 0.509433962264
+2016-08-24 09:47:19,499 DEBUG: 			View 1 : 0.522012578616
+2016-08-24 09:47:19,535 DEBUG: 			View 2 : 0.452830188679
+2016-08-24 09:47:19,543 DEBUG: 			View 3 : 0.40251572327
+2016-08-24 09:47:19,626 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:47:20,644 DEBUG: 		Start:	 Iteration 17
+2016-08-24 09:47:20,661 DEBUG: 			View 0 : 0.415094339623
+2016-08-24 09:47:20,669 DEBUG: 			View 1 : 0.452830188679
+2016-08-24 09:47:20,707 DEBUG: 			View 2 : 0.471698113208
+2016-08-24 09:47:20,714 DEBUG: 			View 3 : 0.48427672956
+2016-08-24 09:47:20,715 WARNING: WARNING:	All bad for iteration 16
+2016-08-24 09:47:20,803 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:47:21,871 DEBUG: 		Start:	 Iteration 18
+2016-08-24 09:47:21,889 DEBUG: 			View 0 : 0.396226415094
+2016-08-24 09:47:21,897 DEBUG: 			View 1 : 0.62893081761
+2016-08-24 09:47:21,935 DEBUG: 			View 2 : 0.553459119497
+2016-08-24 09:47:21,942 DEBUG: 			View 3 : 0.534591194969
+2016-08-24 09:47:22,033 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:47:23,205 DEBUG: 		Start:	 Iteration 19
+2016-08-24 09:47:23,222 DEBUG: 			View 0 : 0.415094339623
+2016-08-24 09:47:23,230 DEBUG: 			View 1 : 0.710691823899
+2016-08-24 09:47:23,268 DEBUG: 			View 2 : 0.660377358491
+2016-08-24 09:47:23,276 DEBUG: 			View 3 : 0.534591194969
+2016-08-24 09:47:23,370 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:47:24,573 DEBUG: 		Start:	 Iteration 20
+2016-08-24 09:47:24,590 DEBUG: 			View 0 : 0.459119496855
+2016-08-24 09:47:24,598 DEBUG: 			View 1 : 0.616352201258
+2016-08-24 09:47:24,636 DEBUG: 			View 2 : 0.465408805031
+2016-08-24 09:47:24,643 DEBUG: 			View 3 : 0.415094339623
+2016-08-24 09:47:24,737 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:47:25,998 DEBUG: 		Start:	 Iteration 21
+2016-08-24 09:47:26,016 DEBUG: 			View 0 : 0.48427672956
+2016-08-24 09:47:26,024 DEBUG: 			View 1 : 0.616352201258
+2016-08-24 09:47:26,063 DEBUG: 			View 2 : 0.415094339623
+2016-08-24 09:47:26,071 DEBUG: 			View 3 : 0.553459119497
+2016-08-24 09:47:26,172 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:47:27,510 DEBUG: 		Start:	 Iteration 22
+2016-08-24 09:47:27,527 DEBUG: 			View 0 : 0.547169811321
+2016-08-24 09:47:27,534 DEBUG: 			View 1 : 0.584905660377
+2016-08-24 09:47:27,571 DEBUG: 			View 2 : 0.540880503145
+2016-08-24 09:47:27,579 DEBUG: 			View 3 : 0.440251572327
+2016-08-24 09:47:27,682 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:47:29,064 DEBUG: 		Start:	 Iteration 23
+2016-08-24 09:47:29,081 DEBUG: 			View 0 : 0.534591194969
+2016-08-24 09:47:29,088 DEBUG: 			View 1 : 0.704402515723
+2016-08-24 09:47:29,125 DEBUG: 			View 2 : 0.48427672956
+2016-08-24 09:47:29,132 DEBUG: 			View 3 : 0.471698113208
+2016-08-24 09:47:29,232 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:47:30,679 DEBUG: 		Start:	 Iteration 24
+2016-08-24 09:47:30,696 DEBUG: 			View 0 : 0.679245283019
+2016-08-24 09:47:30,704 DEBUG: 			View 1 : 0.691823899371
+2016-08-24 09:47:30,742 DEBUG: 			View 2 : 0.559748427673
+2016-08-24 09:47:30,750 DEBUG: 			View 3 : 0.471698113208
+2016-08-24 09:47:30,856 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:47:32,537 DEBUG: 		Start:	 Iteration 25
+2016-08-24 09:47:32,554 DEBUG: 			View 0 : 0.465408805031
+2016-08-24 09:47:32,562 DEBUG: 			View 1 : 0.452830188679
+2016-08-24 09:47:32,599 DEBUG: 			View 2 : 0.40251572327
+2016-08-24 09:47:32,606 DEBUG: 			View 3 : 0.540880503145
+2016-08-24 09:47:32,710 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:47:34,272 DEBUG: 		Start:	 Iteration 26
+2016-08-24 09:47:34,292 DEBUG: 			View 0 : 0.446540880503
+2016-08-24 09:47:34,303 DEBUG: 			View 1 : 0.389937106918
+2016-08-24 09:47:34,343 DEBUG: 			View 2 : 0.509433962264
+2016-08-24 09:47:34,351 DEBUG: 			View 3 : 0.553459119497
+2016-08-24 09:47:34,466 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:47:36,204 DEBUG: 		Start:	 Iteration 27
+2016-08-24 09:47:36,223 DEBUG: 			View 0 : 0.522012578616
+2016-08-24 09:47:36,234 DEBUG: 			View 1 : 0.685534591195
+2016-08-24 09:47:36,278 DEBUG: 			View 2 : 0.578616352201
+2016-08-24 09:47:36,287 DEBUG: 			View 3 : 0.496855345912
+2016-08-24 09:47:36,415 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:47:38,235 DEBUG: 		Start:	 Iteration 28
+2016-08-24 09:47:38,252 DEBUG: 			View 0 : 0.660377358491
+2016-08-24 09:47:38,260 DEBUG: 			View 1 : 0.679245283019
+2016-08-24 09:47:38,297 DEBUG: 			View 2 : 0.559748427673
+2016-08-24 09:47:38,305 DEBUG: 			View 3 : 0.641509433962
+2016-08-24 09:47:38,415 DEBUG: 			 Best view : 		MiRNA__
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-094740-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-094740-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..34b92ceb
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-094740-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,15348 @@
+2016-08-24 09:47:40,713 INFO: Start:	 Read HDF5 Database Files for ModifiedMultiOmic
+2016-08-24 09:47:40,714 INFO: Info:	 Labels used: No, Yes
+2016-08-24 09:47:40,714 INFO: Info:	 Length of dataset:347
+2016-08-24 09:47:40,716 INFO: ### Main Programm for Multiview Classification
+2016-08-24 09:47:40,716 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 09:47:40,716 INFO: Info:	 Shape of Methyl_ :(347, 25978)
+2016-08-24 09:47:40,717 INFO: Info:	 Shape of MiRNA__ :(347, 1046)
+2016-08-24 09:47:40,717 INFO: Info:	 Shape of RANSeq_ :(347, 73599)
+2016-08-24 09:47:40,718 INFO: Info:	 Shape of Clinic_ :(347, 127)
+2016-08-24 09:47:40,718 INFO: Done:	 Read Database Files
+2016-08-24 09:47:40,718 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-24 09:47:40,721 INFO: Done:	 Determine validation split
+2016-08-24 09:47:40,721 INFO: Start:	 Determine 2 folds
+2016-08-24 09:47:40,733 INFO: Info:	 Length of Learning Sets: 122
+2016-08-24 09:47:40,733 INFO: Info:	 Length of Testing Sets: 122
+2016-08-24 09:47:40,733 INFO: Info:	 Length of Validation Set: 103
+2016-08-24 09:47:40,733 INFO: Done:	 Determine folds
+2016-08-24 09:47:40,733 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-24 09:47:40,733 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-24 09:47:40,733 DEBUG: 	Start:	 Gridsearch for DecisionTree on Methyl_
+2016-08-24 09:47:48,128 DEBUG: 0.589798270893Poulet
+2016-08-24 09:47:48,128 DEBUG: 0.521498559078Poulet
+2016-08-24 09:47:48,128 DEBUG: 0.521556195965Poulet
+2016-08-24 09:47:48,128 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:47:48,129 DEBUG: 	Start:	 Gridsearch for DecisionTree on MiRNA__
+2016-08-24 09:47:50,083 DEBUG: 0.585360230548Poulet
+2016-08-24 09:47:50,083 DEBUG: 0.573025936599Poulet
+2016-08-24 09:47:50,083 DEBUG: 0.55613832853Poulet
+2016-08-24 09:47:50,083 DEBUG: 0.54507204611Poulet
+2016-08-24 09:47:50,083 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:47:50,084 DEBUG: 	Start:	 Gridsearch for DecisionTree on RANSeq_
+2016-08-24 09:48:06,845 DEBUG: 0.559365994236Poulet
+2016-08-24 09:48:06,845 DEBUG: 0.530201729107Poulet
+2016-08-24 09:48:06,846 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:48:06,847 DEBUG: 	Start:	 Gridsearch for DecisionTree on Clinic_
+2016-08-24 09:48:08,580 DEBUG: 0.584034582133Poulet
+2016-08-24 09:48:08,580 DEBUG: 0.556945244957Poulet
+2016-08-24 09:48:08,581 DEBUG: 0.508876080692Poulet
+2016-08-24 09:48:08,581 DEBUG: 0.523170028818Poulet
+2016-08-24 09:48:08,581 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:48:08,581 DEBUG: 	Start:	 Gridsearch for DecisionTree on MRNASeq
+2016-08-24 09:49:01,049 DEBUG: 0.563976945245Poulet
+2016-08-24 09:49:01,050 DEBUG: 0.553371757925Poulet
+2016-08-24 09:49:01,050 DEBUG: 0.501268011527Poulet
+2016-08-24 09:49:01,055 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:49:01,055 INFO: Done:	 Gridsearching best settings for monoview classifiers
+2016-08-24 09:49:01,055 INFO: 	Start:	 Fold number 1
+2016-08-24 09:49:03,043 DEBUG: 		Start:	 Iteration 1
+2016-08-24 09:49:03,080 DEBUG: 			View 0 : 0.601226993865
+2016-08-24 09:49:03,088 DEBUG: 			View 1 : 0.631901840491
+2016-08-24 09:49:03,116 DEBUG: 			View 2 : 0.368098159509
+2016-08-24 09:49:03,124 DEBUG: 			View 3 : 0.368098159509
+2016-08-24 09:49:03,167 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:49:03,245 DEBUG: 		Start:	 Iteration 2
+2016-08-24 09:49:03,262 DEBUG: 			View 0 : 0.558282208589
+2016-08-24 09:49:03,270 DEBUG: 			View 1 : 0.625766871166
+2016-08-24 09:49:03,307 DEBUG: 			View 2 : 0.570552147239
+2016-08-24 09:49:03,315 DEBUG: 			View 3 : 0.466257668712
+2016-08-24 09:49:03,362 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:49:03,499 DEBUG: 		Start:	 Iteration 3
+2016-08-24 09:49:03,516 DEBUG: 			View 0 : 0.460122699387
+2016-08-24 09:49:03,524 DEBUG: 			View 1 : 0.680981595092
+2016-08-24 09:49:03,561 DEBUG: 			View 2 : 0.435582822086
+2016-08-24 09:49:03,569 DEBUG: 			View 3 : 0.625766871166
+2016-08-24 09:49:03,624 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:49:03,821 DEBUG: 		Start:	 Iteration 4
+2016-08-24 09:49:03,838 DEBUG: 			View 0 : 0.503067484663
+2016-08-24 09:49:03,846 DEBUG: 			View 1 : 0.546012269939
+2016-08-24 09:49:03,883 DEBUG: 			View 2 : 0.429447852761
+2016-08-24 09:49:03,890 DEBUG: 			View 3 : 0.533742331288
+2016-08-24 09:49:03,947 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:49:04,204 DEBUG: 		Start:	 Iteration 5
+2016-08-24 09:49:04,221 DEBUG: 			View 0 : 0.662576687117
+2016-08-24 09:49:04,228 DEBUG: 			View 1 : 0.674846625767
+2016-08-24 09:49:04,266 DEBUG: 			View 2 : 0.466257668712
+2016-08-24 09:49:04,273 DEBUG: 			View 3 : 0.429447852761
+2016-08-24 09:49:04,332 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:49:04,648 DEBUG: 		Start:	 Iteration 6
+2016-08-24 09:49:04,665 DEBUG: 			View 0 : 0.398773006135
+2016-08-24 09:49:04,673 DEBUG: 			View 1 : 0.527607361963
+2016-08-24 09:49:04,710 DEBUG: 			View 2 : 0.552147239264
+2016-08-24 09:49:04,717 DEBUG: 			View 3 : 0.625766871166
+2016-08-24 09:49:04,779 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:49:05,154 DEBUG: 		Start:	 Iteration 7
+2016-08-24 09:49:05,170 DEBUG: 			View 0 : 0.680981595092
+2016-08-24 09:49:05,178 DEBUG: 			View 1 : 0.478527607362
+2016-08-24 09:49:05,215 DEBUG: 			View 2 : 0.478527607362
+2016-08-24 09:49:05,223 DEBUG: 			View 3 : 0.429447852761
+2016-08-24 09:49:05,287 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:49:05,725 DEBUG: 		Start:	 Iteration 8
+2016-08-24 09:49:05,741 DEBUG: 			View 0 : 0.527607361963
+2016-08-24 09:49:05,749 DEBUG: 			View 1 : 0.429447852761
+2016-08-24 09:49:05,787 DEBUG: 			View 2 : 0.539877300613
+2016-08-24 09:49:05,795 DEBUG: 			View 3 : 0.472392638037
+2016-08-24 09:49:05,861 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:49:06,363 DEBUG: 		Start:	 Iteration 9
+2016-08-24 09:49:06,380 DEBUG: 			View 0 : 0.460122699387
+2016-08-24 09:49:06,388 DEBUG: 			View 1 : 0.546012269939
+2016-08-24 09:49:06,425 DEBUG: 			View 2 : 0.490797546012
+2016-08-24 09:49:06,433 DEBUG: 			View 3 : 0.398773006135
+2016-08-24 09:49:06,501 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:49:07,061 DEBUG: 		Start:	 Iteration 10
+2016-08-24 09:49:07,077 DEBUG: 			View 0 : 0.558282208589
+2016-08-24 09:49:07,085 DEBUG: 			View 1 : 0.60736196319
+2016-08-24 09:49:07,123 DEBUG: 			View 2 : 0.41717791411
+2016-08-24 09:49:07,130 DEBUG: 			View 3 : 0.411042944785
+2016-08-24 09:49:07,201 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:49:07,822 DEBUG: 		Start:	 Iteration 11
+2016-08-24 09:49:07,838 DEBUG: 			View 0 : 0.638036809816
+2016-08-24 09:49:07,846 DEBUG: 			View 1 : 0.40490797546
+2016-08-24 09:49:07,884 DEBUG: 			View 2 : 0.60736196319
+2016-08-24 09:49:07,891 DEBUG: 			View 3 : 0.429447852761
+2016-08-24 09:49:07,965 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:49:08,649 DEBUG: 		Start:	 Iteration 12
+2016-08-24 09:49:08,665 DEBUG: 			View 0 : 0.564417177914
+2016-08-24 09:49:08,673 DEBUG: 			View 1 : 0.429447852761
+2016-08-24 09:49:08,710 DEBUG: 			View 2 : 0.570552147239
+2016-08-24 09:49:08,718 DEBUG: 			View 3 : 0.601226993865
+2016-08-24 09:49:08,794 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:49:09,540 DEBUG: 		Start:	 Iteration 13
+2016-08-24 09:49:09,557 DEBUG: 			View 0 : 0.576687116564
+2016-08-24 09:49:09,565 DEBUG: 			View 1 : 0.625766871166
+2016-08-24 09:49:09,604 DEBUG: 			View 2 : 0.484662576687
+2016-08-24 09:49:09,612 DEBUG: 			View 3 : 0.552147239264
+2016-08-24 09:49:09,691 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:49:10,498 DEBUG: 		Start:	 Iteration 14
+2016-08-24 09:49:10,515 DEBUG: 			View 0 : 0.39263803681
+2016-08-24 09:49:10,522 DEBUG: 			View 1 : 0.60736196319
+2016-08-24 09:49:10,562 DEBUG: 			View 2 : 0.40490797546
+2016-08-24 09:49:10,570 DEBUG: 			View 3 : 0.552147239264
+2016-08-24 09:49:10,650 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:49:11,517 DEBUG: 		Start:	 Iteration 15
+2016-08-24 09:49:11,534 DEBUG: 			View 0 : 0.59509202454
+2016-08-24 09:49:11,541 DEBUG: 			View 1 : 0.288343558282
+2016-08-24 09:49:11,581 DEBUG: 			View 2 : 0.576687116564
+2016-08-24 09:49:11,589 DEBUG: 			View 3 : 0.41717791411
+2016-08-24 09:49:11,672 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:49:12,603 DEBUG: 		Start:	 Iteration 16
+2016-08-24 09:49:12,619 DEBUG: 			View 0 : 0.38036809816
+2016-08-24 09:49:12,627 DEBUG: 			View 1 : 0.58282208589
+2016-08-24 09:49:12,667 DEBUG: 			View 2 : 0.515337423313
+2016-08-24 09:49:12,675 DEBUG: 			View 3 : 0.466257668712
+2016-08-24 09:49:12,760 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:49:13,748 DEBUG: 		Start:	 Iteration 17
+2016-08-24 09:49:13,764 DEBUG: 			View 0 : 0.441717791411
+2016-08-24 09:49:13,772 DEBUG: 			View 1 : 0.374233128834
+2016-08-24 09:49:13,812 DEBUG: 			View 2 : 0.478527607362
+2016-08-24 09:49:13,820 DEBUG: 			View 3 : 0.546012269939
+2016-08-24 09:49:13,907 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:49:14,953 DEBUG: 		Start:	 Iteration 18
+2016-08-24 09:49:14,970 DEBUG: 			View 0 : 0.650306748466
+2016-08-24 09:49:14,978 DEBUG: 			View 1 : 0.269938650307
+2016-08-24 09:49:15,018 DEBUG: 			View 2 : 0.644171779141
+2016-08-24 09:49:15,026 DEBUG: 			View 3 : 0.398773006135
+2016-08-24 09:49:15,115 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:49:16,227 DEBUG: 		Start:	 Iteration 19
+2016-08-24 09:49:16,244 DEBUG: 			View 0 : 0.662576687117
+2016-08-24 09:49:16,252 DEBUG: 			View 1 : 0.398773006135
+2016-08-24 09:49:16,291 DEBUG: 			View 2 : 0.411042944785
+2016-08-24 09:49:16,299 DEBUG: 			View 3 : 0.613496932515
+2016-08-24 09:49:16,391 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:49:17,580 DEBUG: 		Start:	 Iteration 20
+2016-08-24 09:49:17,597 DEBUG: 			View 0 : 0.588957055215
+2016-08-24 09:49:17,605 DEBUG: 			View 1 : 0.429447852761
+2016-08-24 09:49:17,645 DEBUG: 			View 2 : 0.601226993865
+2016-08-24 09:49:17,653 DEBUG: 			View 3 : 0.39263803681
+2016-08-24 09:49:17,747 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:49:18,983 DEBUG: 		Start:	 Iteration 21
+2016-08-24 09:49:19,000 DEBUG: 			View 0 : 0.41717791411
+2016-08-24 09:49:19,008 DEBUG: 			View 1 : 0.515337423313
+2016-08-24 09:49:19,048 DEBUG: 			View 2 : 0.515337423313
+2016-08-24 09:49:19,056 DEBUG: 			View 3 : 0.40490797546
+2016-08-24 09:49:19,152 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:49:20,448 DEBUG: 		Start:	 Iteration 22
+2016-08-24 09:49:20,464 DEBUG: 			View 0 : 0.39263803681
+2016-08-24 09:49:20,472 DEBUG: 			View 1 : 0.730061349693
+2016-08-24 09:49:20,511 DEBUG: 			View 2 : 0.558282208589
+2016-08-24 09:49:20,520 DEBUG: 			View 3 : 0.650306748466
+2016-08-24 09:49:20,619 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:49:21,975 DEBUG: 		Start:	 Iteration 23
+2016-08-24 09:49:21,992 DEBUG: 			View 0 : 0.527607361963
+2016-08-24 09:49:22,000 DEBUG: 			View 1 : 0.576687116564
+2016-08-24 09:49:22,039 DEBUG: 			View 2 : 0.631901840491
+2016-08-24 09:49:22,047 DEBUG: 			View 3 : 0.503067484663
+2016-08-24 09:49:22,149 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:49:23,580 DEBUG: 		Start:	 Iteration 24
+2016-08-24 09:49:23,596 DEBUG: 			View 0 : 0.58282208589
+2016-08-24 09:49:23,604 DEBUG: 			View 1 : 0.533742331288
+2016-08-24 09:49:23,644 DEBUG: 			View 2 : 0.576687116564
+2016-08-24 09:49:23,653 DEBUG: 			View 3 : 0.447852760736
+2016-08-24 09:49:23,756 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:49:25,260 DEBUG: 		Start:	 Iteration 25
+2016-08-24 09:49:25,277 DEBUG: 			View 0 : 0.58282208589
+2016-08-24 09:49:25,285 DEBUG: 			View 1 : 0.60736196319
+2016-08-24 09:49:25,324 DEBUG: 			View 2 : 0.423312883436
+2016-08-24 09:49:25,333 DEBUG: 			View 3 : 0.60736196319
+2016-08-24 09:49:25,439 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:49:26,999 DEBUG: 		Start:	 Iteration 26
+2016-08-24 09:49:27,016 DEBUG: 			View 0 : 0.588957055215
+2016-08-24 09:49:27,024 DEBUG: 			View 1 : 0.539877300613
+2016-08-24 09:49:27,063 DEBUG: 			View 2 : 0.546012269939
+2016-08-24 09:49:27,071 DEBUG: 			View 3 : 0.625766871166
+2016-08-24 09:49:27,179 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:49:28,797 DEBUG: 		Start:	 Iteration 27
+2016-08-24 09:49:28,814 DEBUG: 			View 0 : 0.552147239264
+2016-08-24 09:49:28,822 DEBUG: 			View 1 : 0.674846625767
+2016-08-24 09:49:28,862 DEBUG: 			View 2 : 0.662576687117
+2016-08-24 09:49:28,870 DEBUG: 			View 3 : 0.496932515337
+2016-08-24 09:49:28,980 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:49:30,657 DEBUG: 		Start:	 Iteration 28
+2016-08-24 09:49:30,674 DEBUG: 			View 0 : 0.472392638037
+2016-08-24 09:49:30,681 DEBUG: 			View 1 : 0.674846625767
+2016-08-24 09:49:30,721 DEBUG: 			View 2 : 0.588957055215
+2016-08-24 09:49:30,729 DEBUG: 			View 3 : 0.564417177914
+2016-08-24 09:49:30,841 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:49:32,609 DEBUG: 		Start:	 Iteration 29
+2016-08-24 09:49:32,625 DEBUG: 			View 0 : 0.717791411043
+2016-08-24 09:49:32,633 DEBUG: 			View 1 : 0.650306748466
+2016-08-24 09:49:32,673 DEBUG: 			View 2 : 0.546012269939
+2016-08-24 09:49:32,681 DEBUG: 			View 3 : 0.411042944785
+2016-08-24 09:49:32,796 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:49:34,618 DEBUG: 		Start:	 Iteration 30
+2016-08-24 09:49:34,635 DEBUG: 			View 0 : 0.41717791411
+2016-08-24 09:49:34,643 DEBUG: 			View 1 : 0.355828220859
+2016-08-24 09:49:34,684 DEBUG: 			View 2 : 0.521472392638
+2016-08-24 09:49:34,692 DEBUG: 			View 3 : 0.509202453988
+2016-08-24 09:49:34,811 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:49:36,776 DEBUG: 		Start:	 Iteration 31
+2016-08-24 09:49:36,793 DEBUG: 			View 0 : 0.539877300613
+2016-08-24 09:49:36,801 DEBUG: 			View 1 : 0.386503067485
+2016-08-24 09:49:36,841 DEBUG: 			View 2 : 0.374233128834
+2016-08-24 09:49:36,850 DEBUG: 			View 3 : 0.533742331288
+2016-08-24 09:49:36,978 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:49:38,949 DEBUG: 		Start:	 Iteration 32
+2016-08-24 09:49:38,966 DEBUG: 			View 0 : 0.423312883436
+2016-08-24 09:49:38,974 DEBUG: 			View 1 : 0.478527607362
+2016-08-24 09:49:39,014 DEBUG: 			View 2 : 0.466257668712
+2016-08-24 09:49:39,022 DEBUG: 			View 3 : 0.631901840491
+2016-08-24 09:49:39,143 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:49:41,144 DEBUG: 		Start:	 Iteration 33
+2016-08-24 09:49:41,161 DEBUG: 			View 0 : 0.515337423313
+2016-08-24 09:49:41,169 DEBUG: 			View 1 : 0.509202453988
+2016-08-24 09:49:41,208 DEBUG: 			View 2 : 0.447852760736
+2016-08-24 09:49:41,217 DEBUG: 			View 3 : 0.460122699387
+2016-08-24 09:49:41,341 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:49:43,399 DEBUG: 		Start:	 Iteration 34
+2016-08-24 09:49:43,415 DEBUG: 			View 0 : 0.601226993865
+2016-08-24 09:49:43,423 DEBUG: 			View 1 : 0.613496932515
+2016-08-24 09:49:43,463 DEBUG: 			View 2 : 0.435582822086
+2016-08-24 09:49:43,471 DEBUG: 			View 3 : 0.39263803681
+2016-08-24 09:49:43,596 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:49:45,710 DEBUG: 		Start:	 Iteration 35
+2016-08-24 09:49:45,726 DEBUG: 			View 0 : 0.521472392638
+2016-08-24 09:49:45,734 DEBUG: 			View 1 : 0.503067484663
+2016-08-24 09:49:45,774 DEBUG: 			View 2 : 0.386503067485
+2016-08-24 09:49:45,782 DEBUG: 			View 3 : 0.411042944785
+2016-08-24 09:49:45,910 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:49:48,090 DEBUG: 		Start:	 Iteration 36
+2016-08-24 09:49:48,107 DEBUG: 			View 0 : 0.539877300613
+2016-08-24 09:49:48,115 DEBUG: 			View 1 : 0.478527607362
+2016-08-24 09:49:48,155 DEBUG: 			View 2 : 0.576687116564
+2016-08-24 09:49:48,163 DEBUG: 			View 3 : 0.539877300613
+2016-08-24 09:49:48,293 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:49:50,546 DEBUG: 		Start:	 Iteration 37
+2016-08-24 09:49:50,562 DEBUG: 			View 0 : 0.447852760736
+2016-08-24 09:49:50,570 DEBUG: 			View 1 : 0.705521472393
+2016-08-24 09:49:50,610 DEBUG: 			View 2 : 0.509202453988
+2016-08-24 09:49:50,618 DEBUG: 			View 3 : 0.570552147239
+2016-08-24 09:49:50,750 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:49:53,060 DEBUG: 		Start:	 Iteration 38
+2016-08-24 09:49:53,077 DEBUG: 			View 0 : 0.509202453988
+2016-08-24 09:49:53,085 DEBUG: 			View 1 : 0.558282208589
+2016-08-24 09:49:53,124 DEBUG: 			View 2 : 0.423312883436
+2016-08-24 09:49:53,133 DEBUG: 			View 3 : 0.61963190184
+2016-08-24 09:49:53,267 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:49:55,637 DEBUG: 		Start:	 Iteration 39
+2016-08-24 09:49:55,653 DEBUG: 			View 0 : 0.337423312883
+2016-08-24 09:49:55,661 DEBUG: 			View 1 : 0.38036809816
+2016-08-24 09:49:55,701 DEBUG: 			View 2 : 0.423312883436
+2016-08-24 09:49:55,709 DEBUG: 			View 3 : 0.601226993865
+2016-08-24 09:49:55,846 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:49:58,274 DEBUG: 		Start:	 Iteration 40
+2016-08-24 09:49:58,290 DEBUG: 			View 0 : 0.60736196319
+2016-08-24 09:49:58,298 DEBUG: 			View 1 : 0.509202453988
+2016-08-24 09:49:58,338 DEBUG: 			View 2 : 0.631901840491
+2016-08-24 09:49:58,346 DEBUG: 			View 3 : 0.361963190184
+2016-08-24 09:49:58,485 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:50:00,977 DEBUG: 		Start:	 Iteration 41
+2016-08-24 09:50:00,993 DEBUG: 			View 0 : 0.496932515337
+2016-08-24 09:50:01,001 DEBUG: 			View 1 : 0.58282208589
+2016-08-24 09:50:01,042 DEBUG: 			View 2 : 0.411042944785
+2016-08-24 09:50:01,050 DEBUG: 			View 3 : 0.429447852761
+2016-08-24 09:50:01,192 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:50:03,745 DEBUG: 		Start:	 Iteration 42
+2016-08-24 09:50:03,761 DEBUG: 			View 0 : 0.521472392638
+2016-08-24 09:50:03,769 DEBUG: 			View 1 : 0.650306748466
+2016-08-24 09:50:03,810 DEBUG: 			View 2 : 0.625766871166
+2016-08-24 09:50:03,818 DEBUG: 			View 3 : 0.539877300613
+2016-08-24 09:50:03,961 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:50:06,572 DEBUG: 		Start:	 Iteration 43
+2016-08-24 09:50:06,589 DEBUG: 			View 0 : 0.521472392638
+2016-08-24 09:50:06,597 DEBUG: 			View 1 : 0.423312883436
+2016-08-24 09:50:06,637 DEBUG: 			View 2 : 0.441717791411
+2016-08-24 09:50:06,646 DEBUG: 			View 3 : 0.558282208589
+2016-08-24 09:50:06,792 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:50:09,466 DEBUG: 		Start:	 Iteration 44
+2016-08-24 09:50:09,483 DEBUG: 			View 0 : 0.466257668712
+2016-08-24 09:50:09,491 DEBUG: 			View 1 : 0.472392638037
+2016-08-24 09:50:09,532 DEBUG: 			View 2 : 0.441717791411
+2016-08-24 09:50:09,541 DEBUG: 			View 3 : 0.398773006135
+2016-08-24 09:50:09,541 WARNING: WARNING:	All bad for iteration 43
+2016-08-24 09:50:09,689 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:50:12,423 DEBUG: 		Start:	 Iteration 45
+2016-08-24 09:50:12,440 DEBUG: 			View 0 : 0.38036809816
+2016-08-24 09:50:12,447 DEBUG: 			View 1 : 0.558282208589
+2016-08-24 09:50:12,489 DEBUG: 			View 2 : 0.411042944785
+2016-08-24 09:50:12,498 DEBUG: 			View 3 : 0.625766871166
+2016-08-24 09:50:12,649 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:50:15,438 DEBUG: 		Start:	 Iteration 46
+2016-08-24 09:50:15,455 DEBUG: 			View 0 : 0.730061349693
+2016-08-24 09:50:15,463 DEBUG: 			View 1 : 0.374233128834
+2016-08-24 09:50:15,505 DEBUG: 			View 2 : 0.576687116564
+2016-08-24 09:50:15,514 DEBUG: 			View 3 : 0.613496932515
+2016-08-24 09:50:15,667 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:50:18,525 DEBUG: 		Start:	 Iteration 47
+2016-08-24 09:50:18,542 DEBUG: 			View 0 : 0.423312883436
+2016-08-24 09:50:18,549 DEBUG: 			View 1 : 0.656441717791
+2016-08-24 09:50:18,591 DEBUG: 			View 2 : 0.429447852761
+2016-08-24 09:50:18,600 DEBUG: 			View 3 : 0.460122699387
+2016-08-24 09:50:18,756 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:50:21,672 DEBUG: 		Start:	 Iteration 48
+2016-08-24 09:50:21,688 DEBUG: 			View 0 : 0.355828220859
+2016-08-24 09:50:21,696 DEBUG: 			View 1 : 0.39263803681
+2016-08-24 09:50:21,740 DEBUG: 			View 2 : 0.411042944785
+2016-08-24 09:50:21,749 DEBUG: 			View 3 : 0.435582822086
+2016-08-24 09:50:21,749 WARNING: WARNING:	All bad for iteration 47
+2016-08-24 09:50:21,907 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:50:24,889 DEBUG: 		Start:	 Iteration 49
+2016-08-24 09:50:24,906 DEBUG: 			View 0 : 0.521472392638
+2016-08-24 09:50:24,913 DEBUG: 			View 1 : 0.680981595092
+2016-08-24 09:50:24,957 DEBUG: 			View 2 : 0.38036809816
+2016-08-24 09:50:24,966 DEBUG: 			View 3 : 0.558282208589
+2016-08-24 09:50:25,137 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:50:28,192 DEBUG: 		Start:	 Iteration 50
+2016-08-24 09:50:28,209 DEBUG: 			View 0 : 0.40490797546
+2016-08-24 09:50:28,217 DEBUG: 			View 1 : 0.650306748466
+2016-08-24 09:50:28,261 DEBUG: 			View 2 : 0.625766871166
+2016-08-24 09:50:28,270 DEBUG: 			View 3 : 0.429447852761
+2016-08-24 09:50:28,433 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:50:31,590 DEBUG: 		Start:	 Iteration 51
+2016-08-24 09:50:31,607 DEBUG: 			View 0 : 0.40490797546
+2016-08-24 09:50:31,615 DEBUG: 			View 1 : 0.447852760736
+2016-08-24 09:50:31,660 DEBUG: 			View 2 : 0.490797546012
+2016-08-24 09:50:31,669 DEBUG: 			View 3 : 0.644171779141
+2016-08-24 09:50:31,836 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:50:35,243 DEBUG: 		Start:	 Iteration 52
+2016-08-24 09:50:35,259 DEBUG: 			View 0 : 0.588957055215
+2016-08-24 09:50:35,267 DEBUG: 			View 1 : 0.38036809816
+2016-08-24 09:50:35,313 DEBUG: 			View 2 : 0.509202453988
+2016-08-24 09:50:35,322 DEBUG: 			View 3 : 0.564417177914
+2016-08-24 09:50:35,492 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:50:38,719 DEBUG: 		Start:	 Iteration 53
+2016-08-24 09:50:38,736 DEBUG: 			View 0 : 0.521472392638
+2016-08-24 09:50:38,744 DEBUG: 			View 1 : 0.263803680982
+2016-08-24 09:50:38,789 DEBUG: 			View 2 : 0.453987730061
+2016-08-24 09:50:38,798 DEBUG: 			View 3 : 0.41717791411
+2016-08-24 09:50:38,970 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:50:42,262 DEBUG: 		Start:	 Iteration 54
+2016-08-24 09:50:42,278 DEBUG: 			View 0 : 0.546012269939
+2016-08-24 09:50:42,286 DEBUG: 			View 1 : 0.460122699387
+2016-08-24 09:50:42,334 DEBUG: 			View 2 : 0.539877300613
+2016-08-24 09:50:42,343 DEBUG: 			View 3 : 0.564417177914
+2016-08-24 09:50:42,517 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:50:45,859 DEBUG: 		Start:	 Iteration 55
+2016-08-24 09:50:45,876 DEBUG: 			View 0 : 0.38036809816
+2016-08-24 09:50:45,884 DEBUG: 			View 1 : 0.374233128834
+2016-08-24 09:50:45,932 DEBUG: 			View 2 : 0.484662576687
+2016-08-24 09:50:45,942 DEBUG: 			View 3 : 0.60736196319
+2016-08-24 09:50:46,117 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:50:49,519 DEBUG: 		Start:	 Iteration 56
+2016-08-24 09:50:49,536 DEBUG: 			View 0 : 0.564417177914
+2016-08-24 09:50:49,543 DEBUG: 			View 1 : 0.736196319018
+2016-08-24 09:50:49,592 DEBUG: 			View 2 : 0.515337423313
+2016-08-24 09:50:49,601 DEBUG: 			View 3 : 0.527607361963
+2016-08-24 09:50:49,778 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:50:53,243 DEBUG: 		Start:	 Iteration 57
+2016-08-24 09:50:53,259 DEBUG: 			View 0 : 0.668711656442
+2016-08-24 09:50:53,267 DEBUG: 			View 1 : 0.687116564417
+2016-08-24 09:50:53,315 DEBUG: 			View 2 : 0.631901840491
+2016-08-24 09:50:53,325 DEBUG: 			View 3 : 0.576687116564
+2016-08-24 09:50:53,505 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:50:57,031 DEBUG: 		Start:	 Iteration 58
+2016-08-24 09:50:57,047 DEBUG: 			View 0 : 0.466257668712
+2016-08-24 09:50:57,055 DEBUG: 			View 1 : 0.650306748466
+2016-08-24 09:50:57,104 DEBUG: 			View 2 : 0.503067484663
+2016-08-24 09:50:57,113 DEBUG: 			View 3 : 0.61963190184
+2016-08-24 09:50:57,296 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:51:00,872 DEBUG: 		Start:	 Iteration 59
+2016-08-24 09:51:00,889 DEBUG: 			View 0 : 0.423312883436
+2016-08-24 09:51:00,897 DEBUG: 			View 1 : 0.472392638037
+2016-08-24 09:51:00,945 DEBUG: 			View 2 : 0.453987730061
+2016-08-24 09:51:00,954 DEBUG: 			View 3 : 0.39263803681
+2016-08-24 09:51:00,954 WARNING: WARNING:	All bad for iteration 58
+2016-08-24 09:51:01,138 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:51:04,914 DEBUG: 		Start:	 Iteration 60
+2016-08-24 09:51:04,931 DEBUG: 			View 0 : 0.570552147239
+2016-08-24 09:51:04,939 DEBUG: 			View 1 : 0.355828220859
+2016-08-24 09:51:04,987 DEBUG: 			View 2 : 0.552147239264
+2016-08-24 09:51:04,997 DEBUG: 			View 3 : 0.570552147239
+2016-08-24 09:51:05,188 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:51:08,910 DEBUG: 		Start:	 Iteration 61
+2016-08-24 09:51:08,927 DEBUG: 			View 0 : 0.58282208589
+2016-08-24 09:51:08,934 DEBUG: 			View 1 : 0.319018404908
+2016-08-24 09:51:08,981 DEBUG: 			View 2 : 0.374233128834
+2016-08-24 09:51:08,990 DEBUG: 			View 3 : 0.558282208589
+2016-08-24 09:51:09,179 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:51:12,965 DEBUG: 		Start:	 Iteration 62
+2016-08-24 09:51:12,981 DEBUG: 			View 0 : 0.570552147239
+2016-08-24 09:51:12,989 DEBUG: 			View 1 : 0.558282208589
+2016-08-24 09:51:13,036 DEBUG: 			View 2 : 0.503067484663
+2016-08-24 09:51:13,046 DEBUG: 			View 3 : 0.539877300613
+2016-08-24 09:51:13,236 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:51:17,077 DEBUG: 		Start:	 Iteration 63
+2016-08-24 09:51:17,094 DEBUG: 			View 0 : 0.441717791411
+2016-08-24 09:51:17,102 DEBUG: 			View 1 : 0.61963190184
+2016-08-24 09:51:17,150 DEBUG: 			View 2 : 0.472392638037
+2016-08-24 09:51:17,159 DEBUG: 			View 3 : 0.447852760736
+2016-08-24 09:51:17,355 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:51:21,260 DEBUG: 		Start:	 Iteration 64
+2016-08-24 09:51:21,276 DEBUG: 			View 0 : 0.631901840491
+2016-08-24 09:51:21,284 DEBUG: 			View 1 : 0.631901840491
+2016-08-24 09:51:21,333 DEBUG: 			View 2 : 0.521472392638
+2016-08-24 09:51:21,342 DEBUG: 			View 3 : 0.472392638037
+2016-08-24 09:51:21,536 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:51:25,514 DEBUG: 		Start:	 Iteration 65
+2016-08-24 09:51:25,531 DEBUG: 			View 0 : 0.558282208589
+2016-08-24 09:51:25,538 DEBUG: 			View 1 : 0.472392638037
+2016-08-24 09:51:25,586 DEBUG: 			View 2 : 0.386503067485
+2016-08-24 09:51:25,595 DEBUG: 			View 3 : 0.613496932515
+2016-08-24 09:51:25,791 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:51:29,825 DEBUG: 		Start:	 Iteration 66
+2016-08-24 09:51:29,842 DEBUG: 			View 0 : 0.546012269939
+2016-08-24 09:51:29,850 DEBUG: 			View 1 : 0.466257668712
+2016-08-24 09:51:29,898 DEBUG: 			View 2 : 0.503067484663
+2016-08-24 09:51:29,907 DEBUG: 			View 3 : 0.374233128834
+2016-08-24 09:51:30,105 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:51:34,197 DEBUG: 		Start:	 Iteration 67
+2016-08-24 09:51:34,214 DEBUG: 			View 0 : 0.509202453988
+2016-08-24 09:51:34,222 DEBUG: 			View 1 : 0.625766871166
+2016-08-24 09:51:34,270 DEBUG: 			View 2 : 0.558282208589
+2016-08-24 09:51:34,279 DEBUG: 			View 3 : 0.60736196319
+2016-08-24 09:51:34,480 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:51:38,632 DEBUG: 		Start:	 Iteration 68
+2016-08-24 09:51:38,649 DEBUG: 			View 0 : 0.662576687117
+2016-08-24 09:51:38,657 DEBUG: 			View 1 : 0.662576687117
+2016-08-24 09:51:38,704 DEBUG: 			View 2 : 0.478527607362
+2016-08-24 09:51:38,713 DEBUG: 			View 3 : 0.447852760736
+2016-08-24 09:51:38,916 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:51:43,129 DEBUG: 		Start:	 Iteration 69
+2016-08-24 09:51:43,145 DEBUG: 			View 0 : 0.644171779141
+2016-08-24 09:51:43,153 DEBUG: 			View 1 : 0.355828220859
+2016-08-24 09:51:43,201 DEBUG: 			View 2 : 0.386503067485
+2016-08-24 09:51:43,210 DEBUG: 			View 3 : 0.59509202454
+2016-08-24 09:51:43,415 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:51:47,699 DEBUG: 		Start:	 Iteration 70
+2016-08-24 09:51:47,715 DEBUG: 			View 0 : 0.466257668712
+2016-08-24 09:51:47,723 DEBUG: 			View 1 : 0.717791411043
+2016-08-24 09:51:47,771 DEBUG: 			View 2 : 0.411042944785
+2016-08-24 09:51:47,780 DEBUG: 			View 3 : 0.472392638037
+2016-08-24 09:51:47,988 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:51:52,330 DEBUG: 		Start:	 Iteration 71
+2016-08-24 09:51:52,347 DEBUG: 			View 0 : 0.411042944785
+2016-08-24 09:51:52,354 DEBUG: 			View 1 : 0.58282208589
+2016-08-24 09:51:52,402 DEBUG: 			View 2 : 0.490797546012
+2016-08-24 09:51:52,411 DEBUG: 			View 3 : 0.552147239264
+2016-08-24 09:51:52,621 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:51:57,005 DEBUG: 		Start:	 Iteration 72
+2016-08-24 09:51:57,022 DEBUG: 			View 0 : 0.411042944785
+2016-08-24 09:51:57,030 DEBUG: 			View 1 : 0.705521472393
+2016-08-24 09:51:57,078 DEBUG: 			View 2 : 0.564417177914
+2016-08-24 09:51:57,087 DEBUG: 			View 3 : 0.613496932515
+2016-08-24 09:51:57,298 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:52:01,758 DEBUG: 		Start:	 Iteration 73
+2016-08-24 09:52:01,774 DEBUG: 			View 0 : 0.564417177914
+2016-08-24 09:52:01,782 DEBUG: 			View 1 : 0.644171779141
+2016-08-24 09:52:01,828 DEBUG: 			View 2 : 0.533742331288
+2016-08-24 09:52:01,837 DEBUG: 			View 3 : 0.546012269939
+2016-08-24 09:52:02,052 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:52:06,564 DEBUG: 		Start:	 Iteration 74
+2016-08-24 09:52:06,580 DEBUG: 			View 0 : 0.39263803681
+2016-08-24 09:52:06,588 DEBUG: 			View 1 : 0.251533742331
+2016-08-24 09:52:06,637 DEBUG: 			View 2 : 0.466257668712
+2016-08-24 09:52:06,646 DEBUG: 			View 3 : 0.601226993865
+2016-08-24 09:52:06,862 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:52:11,562 DEBUG: 		Start:	 Iteration 75
+2016-08-24 09:52:11,579 DEBUG: 			View 0 : 0.58282208589
+2016-08-24 09:52:11,588 DEBUG: 			View 1 : 0.650306748466
+2016-08-24 09:52:11,636 DEBUG: 			View 2 : 0.466257668712
+2016-08-24 09:52:11,646 DEBUG: 			View 3 : 0.564417177914
+2016-08-24 09:52:11,883 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:52:17,020 DEBUG: 		Start:	 Iteration 76
+2016-08-24 09:52:17,038 DEBUG: 			View 0 : 0.447852760736
+2016-08-24 09:52:17,046 DEBUG: 			View 1 : 0.374233128834
+2016-08-24 09:52:17,097 DEBUG: 			View 2 : 0.564417177914
+2016-08-24 09:52:17,105 DEBUG: 			View 3 : 0.60736196319
+2016-08-24 09:52:17,339 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:52:22,234 DEBUG: 		Start:	 Iteration 77
+2016-08-24 09:52:22,251 DEBUG: 			View 0 : 0.588957055215
+2016-08-24 09:52:22,259 DEBUG: 			View 1 : 0.558282208589
+2016-08-24 09:52:22,297 DEBUG: 			View 2 : 0.656441717791
+2016-08-24 09:52:22,305 DEBUG: 			View 3 : 0.59509202454
+2016-08-24 09:52:22,535 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:52:27,433 DEBUG: 		Start:	 Iteration 78
+2016-08-24 09:52:27,450 DEBUG: 			View 0 : 0.411042944785
+2016-08-24 09:52:27,458 DEBUG: 			View 1 : 0.484662576687
+2016-08-24 09:52:27,496 DEBUG: 			View 2 : 0.466257668712
+2016-08-24 09:52:27,503 DEBUG: 			View 3 : 0.58282208589
+2016-08-24 09:52:27,729 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:52:32,667 DEBUG: 		Start:	 Iteration 79
+2016-08-24 09:52:32,684 DEBUG: 			View 0 : 0.411042944785
+2016-08-24 09:52:32,692 DEBUG: 			View 1 : 0.59509202454
+2016-08-24 09:52:32,730 DEBUG: 			View 2 : 0.61963190184
+2016-08-24 09:52:32,737 DEBUG: 			View 3 : 0.613496932515
+2016-08-24 09:52:32,967 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:52:38,035 DEBUG: 		Start:	 Iteration 80
+2016-08-24 09:52:38,053 DEBUG: 			View 0 : 0.503067484663
+2016-08-24 09:52:38,061 DEBUG: 			View 1 : 0.61963190184
+2016-08-24 09:52:38,101 DEBUG: 			View 2 : 0.558282208589
+2016-08-24 09:52:38,109 DEBUG: 			View 3 : 0.576687116564
+2016-08-24 09:52:38,351 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:52:43,584 DEBUG: 		Start:	 Iteration 81
+2016-08-24 09:52:43,601 DEBUG: 			View 0 : 0.472392638037
+2016-08-24 09:52:43,609 DEBUG: 			View 1 : 0.509202453988
+2016-08-24 09:52:43,648 DEBUG: 			View 2 : 0.386503067485
+2016-08-24 09:52:43,656 DEBUG: 			View 3 : 0.564417177914
+2016-08-24 09:52:43,897 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:52:49,124 DEBUG: 		Start:	 Iteration 82
+2016-08-24 09:52:49,141 DEBUG: 			View 0 : 0.398773006135
+2016-08-24 09:52:49,150 DEBUG: 			View 1 : 0.625766871166
+2016-08-24 09:52:49,191 DEBUG: 			View 2 : 0.59509202454
+2016-08-24 09:52:49,199 DEBUG: 			View 3 : 0.58282208589
+2016-08-24 09:52:49,451 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:52:54,668 DEBUG: 		Start:	 Iteration 83
+2016-08-24 09:52:54,685 DEBUG: 			View 0 : 0.251533742331
+2016-08-24 09:52:54,693 DEBUG: 			View 1 : 0.539877300613
+2016-08-24 09:52:54,731 DEBUG: 			View 2 : 0.429447852761
+2016-08-24 09:52:54,739 DEBUG: 			View 3 : 0.423312883436
+2016-08-24 09:52:54,986 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:53:00,332 DEBUG: 		Start:	 Iteration 84
+2016-08-24 09:53:00,349 DEBUG: 			View 0 : 0.411042944785
+2016-08-24 09:53:00,357 DEBUG: 			View 1 : 0.368098159509
+2016-08-24 09:53:00,394 DEBUG: 			View 2 : 0.521472392638
+2016-08-24 09:53:00,402 DEBUG: 			View 3 : 0.576687116564
+2016-08-24 09:53:00,642 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:53:05,890 DEBUG: 		Start:	 Iteration 85
+2016-08-24 09:53:05,908 DEBUG: 			View 0 : 0.343558282209
+2016-08-24 09:53:05,916 DEBUG: 			View 1 : 0.625766871166
+2016-08-24 09:53:05,955 DEBUG: 			View 2 : 0.472392638037
+2016-08-24 09:53:05,963 DEBUG: 			View 3 : 0.564417177914
+2016-08-24 09:53:06,217 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:53:11,740 DEBUG: 		Start:	 Iteration 86
+2016-08-24 09:53:11,758 DEBUG: 			View 0 : 0.398773006135
+2016-08-24 09:53:11,766 DEBUG: 			View 1 : 0.539877300613
+2016-08-24 09:53:11,804 DEBUG: 			View 2 : 0.478527607362
+2016-08-24 09:53:11,812 DEBUG: 			View 3 : 0.429447852761
+2016-08-24 09:53:12,066 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:53:17,553 DEBUG: 		Start:	 Iteration 87
+2016-08-24 09:53:17,570 DEBUG: 			View 0 : 0.386503067485
+2016-08-24 09:53:17,579 DEBUG: 			View 1 : 0.503067484663
+2016-08-24 09:53:17,617 DEBUG: 			View 2 : 0.539877300613
+2016-08-24 09:53:17,625 DEBUG: 			View 3 : 0.490797546012
+2016-08-24 09:53:17,893 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:53:23,454 DEBUG: 		Start:	 Iteration 88
+2016-08-24 09:53:23,472 DEBUG: 			View 0 : 0.423312883436
+2016-08-24 09:53:23,480 DEBUG: 			View 1 : 0.705521472393
+2016-08-24 09:53:23,520 DEBUG: 			View 2 : 0.472392638037
+2016-08-24 09:53:23,528 DEBUG: 			View 3 : 0.41717791411
+2016-08-24 09:53:23,792 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:53:29,579 DEBUG: 		Start:	 Iteration 89
+2016-08-24 09:53:29,598 DEBUG: 			View 0 : 0.38036809816
+2016-08-24 09:53:29,607 DEBUG: 			View 1 : 0.343558282209
+2016-08-24 09:53:29,663 DEBUG: 			View 2 : 0.429447852761
+2016-08-24 09:53:29,671 DEBUG: 			View 3 : 0.435582822086
+2016-08-24 09:53:29,671 WARNING: WARNING:	All bad for iteration 88
+2016-08-24 09:53:29,966 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:53:35,846 DEBUG: 		Start:	 Iteration 90
+2016-08-24 09:53:35,863 DEBUG: 			View 0 : 0.601226993865
+2016-08-24 09:53:35,871 DEBUG: 			View 1 : 0.644171779141
+2016-08-24 09:53:35,919 DEBUG: 			View 2 : 0.478527607362
+2016-08-24 09:53:35,927 DEBUG: 			View 3 : 0.61963190184
+2016-08-24 09:53:36,194 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:53:41,790 DEBUG: 		Start:	 Iteration 91
+2016-08-24 09:53:41,807 DEBUG: 			View 0 : 0.613496932515
+2016-08-24 09:53:41,815 DEBUG: 			View 1 : 0.558282208589
+2016-08-24 09:53:41,852 DEBUG: 			View 2 : 0.588957055215
+2016-08-24 09:53:41,860 DEBUG: 			View 3 : 0.441717791411
+2016-08-24 09:53:42,117 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:53:47,786 DEBUG: 		Start:	 Iteration 92
+2016-08-24 09:53:47,803 DEBUG: 			View 0 : 0.668711656442
+2016-08-24 09:53:47,811 DEBUG: 			View 1 : 0.515337423313
+2016-08-24 09:53:47,848 DEBUG: 			View 2 : 0.638036809816
+2016-08-24 09:53:47,856 DEBUG: 			View 3 : 0.38036809816
+2016-08-24 09:53:48,114 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:53:53,801 DEBUG: 		Start:	 Iteration 93
+2016-08-24 09:53:53,818 DEBUG: 			View 0 : 0.552147239264
+2016-08-24 09:53:53,825 DEBUG: 			View 1 : 0.631901840491
+2016-08-24 09:53:53,863 DEBUG: 			View 2 : 0.558282208589
+2016-08-24 09:53:53,871 DEBUG: 			View 3 : 0.447852760736
+2016-08-24 09:53:54,140 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:53:59,928 DEBUG: 		Start:	 Iteration 94
+2016-08-24 09:53:59,945 DEBUG: 			View 0 : 0.460122699387
+2016-08-24 09:53:59,953 DEBUG: 			View 1 : 0.638036809816
+2016-08-24 09:53:59,990 DEBUG: 			View 2 : 0.576687116564
+2016-08-24 09:53:59,998 DEBUG: 			View 3 : 0.398773006135
+2016-08-24 09:54:00,264 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:54:06,103 DEBUG: 		Start:	 Iteration 95
+2016-08-24 09:54:06,120 DEBUG: 			View 0 : 0.59509202454
+2016-08-24 09:54:06,128 DEBUG: 			View 1 : 0.638036809816
+2016-08-24 09:54:06,165 DEBUG: 			View 2 : 0.429447852761
+2016-08-24 09:54:06,173 DEBUG: 			View 3 : 0.496932515337
+2016-08-24 09:54:06,440 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:54:12,344 DEBUG: 		Start:	 Iteration 96
+2016-08-24 09:54:12,361 DEBUG: 			View 0 : 0.601226993865
+2016-08-24 09:54:12,368 DEBUG: 			View 1 : 0.521472392638
+2016-08-24 09:54:12,406 DEBUG: 			View 2 : 0.58282208589
+2016-08-24 09:54:12,414 DEBUG: 			View 3 : 0.533742331288
+2016-08-24 09:54:12,683 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:54:18,660 DEBUG: 		Start:	 Iteration 97
+2016-08-24 09:54:18,677 DEBUG: 			View 0 : 0.374233128834
+2016-08-24 09:54:18,684 DEBUG: 			View 1 : 0.742331288344
+2016-08-24 09:54:18,722 DEBUG: 			View 2 : 0.423312883436
+2016-08-24 09:54:18,730 DEBUG: 			View 3 : 0.638036809816
+2016-08-24 09:54:19,002 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:54:25,028 DEBUG: 		Start:	 Iteration 98
+2016-08-24 09:54:25,045 DEBUG: 			View 0 : 0.355828220859
+2016-08-24 09:54:25,053 DEBUG: 			View 1 : 0.558282208589
+2016-08-24 09:54:25,096 DEBUG: 			View 2 : 0.472392638037
+2016-08-24 09:54:25,104 DEBUG: 			View 3 : 0.558282208589
+2016-08-24 09:54:25,377 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:54:31,445 DEBUG: 		Start:	 Iteration 99
+2016-08-24 09:54:31,462 DEBUG: 			View 0 : 0.58282208589
+2016-08-24 09:54:31,469 DEBUG: 			View 1 : 0.58282208589
+2016-08-24 09:54:31,507 DEBUG: 			View 2 : 0.58282208589
+2016-08-24 09:54:31,515 DEBUG: 			View 3 : 0.564417177914
+2016-08-24 09:54:31,788 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:54:37,994 DEBUG: 		Start:	 Iteration 100
+2016-08-24 09:54:38,010 DEBUG: 			View 0 : 0.496932515337
+2016-08-24 09:54:38,018 DEBUG: 			View 1 : 0.546012269939
+2016-08-24 09:54:38,056 DEBUG: 			View 2 : 0.521472392638
+2016-08-24 09:54:38,064 DEBUG: 			View 3 : 0.40490797546
+2016-08-24 09:54:38,339 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:54:44,470 DEBUG: 		Start:	 Iteration 101
+2016-08-24 09:54:44,487 DEBUG: 			View 0 : 0.490797546012
+2016-08-24 09:54:44,495 DEBUG: 			View 1 : 0.533742331288
+2016-08-24 09:54:44,532 DEBUG: 			View 2 : 0.490797546012
+2016-08-24 09:54:44,539 DEBUG: 			View 3 : 0.546012269939
+2016-08-24 09:54:44,817 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:54:51,232 DEBUG: 		Start:	 Iteration 102
+2016-08-24 09:54:51,252 DEBUG: 			View 0 : 0.300613496933
+2016-08-24 09:54:51,261 DEBUG: 			View 1 : 0.368098159509
+2016-08-24 09:54:51,315 DEBUG: 			View 2 : 0.509202453988
+2016-08-24 09:54:51,324 DEBUG: 			View 3 : 0.60736196319
+2016-08-24 09:54:51,621 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:54:57,874 INFO: 	Start: 	 Classification
+2016-08-24 09:55:12,569 INFO: 	Done: 	 Fold number 1
+2016-08-24 09:55:12,569 INFO: 	Start:	 Fold number 2
+2016-08-24 09:55:14,073 DEBUG: 		Start:	 Iteration 1
+2016-08-24 09:55:14,088 DEBUG: 			View 0 : 0.602649006623
+2016-08-24 09:55:14,095 DEBUG: 			View 1 : 0.602649006623
+2016-08-24 09:55:14,126 DEBUG: 			View 2 : 0.602649006623
+2016-08-24 09:55:14,133 DEBUG: 			View 3 : 0.602649006623
+2016-08-24 09:55:14,172 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:55:14,242 DEBUG: 		Start:	 Iteration 2
+2016-08-24 09:55:14,258 DEBUG: 			View 0 : 0.331125827815
+2016-08-24 09:55:14,265 DEBUG: 			View 1 : 0.251655629139
+2016-08-24 09:55:14,301 DEBUG: 			View 2 : 0.390728476821
+2016-08-24 09:55:14,308 DEBUG: 			View 3 : 0.384105960265
+2016-08-24 09:55:14,308 WARNING: WARNING:	All bad for iteration 1
+2016-08-24 09:55:14,351 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:55:14,492 DEBUG: 		Start:	 Iteration 3
+2016-08-24 09:55:14,508 DEBUG: 			View 0 : 0.53642384106
+2016-08-24 09:55:14,515 DEBUG: 			View 1 : 0.735099337748
+2016-08-24 09:55:14,550 DEBUG: 			View 2 : 0.516556291391
+2016-08-24 09:55:14,558 DEBUG: 			View 3 : 0.456953642384
+2016-08-24 09:55:14,603 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:55:14,797 DEBUG: 		Start:	 Iteration 4
+2016-08-24 09:55:14,813 DEBUG: 			View 0 : 0.814569536424
+2016-08-24 09:55:14,820 DEBUG: 			View 1 : 0.377483443709
+2016-08-24 09:55:14,856 DEBUG: 			View 2 : 0.523178807947
+2016-08-24 09:55:14,863 DEBUG: 			View 3 : 0.443708609272
+2016-08-24 09:55:14,916 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:55:15,168 DEBUG: 		Start:	 Iteration 5
+2016-08-24 09:55:15,184 DEBUG: 			View 0 : 0.609271523179
+2016-08-24 09:55:15,192 DEBUG: 			View 1 : 0.708609271523
+2016-08-24 09:55:15,227 DEBUG: 			View 2 : 0.516556291391
+2016-08-24 09:55:15,234 DEBUG: 			View 3 : 0.456953642384
+2016-08-24 09:55:15,288 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:55:15,596 DEBUG: 		Start:	 Iteration 6
+2016-08-24 09:55:15,612 DEBUG: 			View 0 : 0.615894039735
+2016-08-24 09:55:15,619 DEBUG: 			View 1 : 0.635761589404
+2016-08-24 09:55:15,654 DEBUG: 			View 2 : 0.503311258278
+2016-08-24 09:55:15,661 DEBUG: 			View 3 : 0.476821192053
+2016-08-24 09:55:15,717 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:55:16,081 DEBUG: 		Start:	 Iteration 7
+2016-08-24 09:55:16,097 DEBUG: 			View 0 : 0.384105960265
+2016-08-24 09:55:16,104 DEBUG: 			View 1 : 0.53642384106
+2016-08-24 09:55:16,140 DEBUG: 			View 2 : 0.476821192053
+2016-08-24 09:55:16,147 DEBUG: 			View 3 : 0.549668874172
+2016-08-24 09:55:16,206 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:55:16,624 DEBUG: 		Start:	 Iteration 8
+2016-08-24 09:55:16,639 DEBUG: 			View 0 : 0.456953642384
+2016-08-24 09:55:16,647 DEBUG: 			View 1 : 0.470198675497
+2016-08-24 09:55:16,682 DEBUG: 			View 2 : 0.450331125828
+2016-08-24 09:55:16,689 DEBUG: 			View 3 : 0.450331125828
+2016-08-24 09:55:16,689 WARNING: WARNING:	All bad for iteration 7
+2016-08-24 09:55:16,751 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:55:17,223 DEBUG: 		Start:	 Iteration 9
+2016-08-24 09:55:17,239 DEBUG: 			View 0 : 0.456953642384
+2016-08-24 09:55:17,247 DEBUG: 			View 1 : 0.602649006623
+2016-08-24 09:55:17,282 DEBUG: 			View 2 : 0.569536423841
+2016-08-24 09:55:17,289 DEBUG: 			View 3 : 0.430463576159
+2016-08-24 09:55:17,353 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:55:17,881 DEBUG: 		Start:	 Iteration 10
+2016-08-24 09:55:17,896 DEBUG: 			View 0 : 0.622516556291
+2016-08-24 09:55:17,904 DEBUG: 			View 1 : 0.58940397351
+2016-08-24 09:55:17,939 DEBUG: 			View 2 : 0.543046357616
+2016-08-24 09:55:17,947 DEBUG: 			View 3 : 0.562913907285
+2016-08-24 09:55:18,013 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:55:18,596 DEBUG: 		Start:	 Iteration 11
+2016-08-24 09:55:18,613 DEBUG: 			View 0 : 0.450331125828
+2016-08-24 09:55:18,620 DEBUG: 			View 1 : 0.622516556291
+2016-08-24 09:55:18,655 DEBUG: 			View 2 : 0.41059602649
+2016-08-24 09:55:18,662 DEBUG: 			View 3 : 0.417218543046
+2016-08-24 09:55:18,730 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:55:19,382 DEBUG: 		Start:	 Iteration 12
+2016-08-24 09:55:19,398 DEBUG: 			View 0 : 0.562913907285
+2016-08-24 09:55:19,405 DEBUG: 			View 1 : 0.576158940397
+2016-08-24 09:55:19,441 DEBUG: 			View 2 : 0.456953642384
+2016-08-24 09:55:19,449 DEBUG: 			View 3 : 0.41059602649
+2016-08-24 09:55:19,519 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:55:20,210 DEBUG: 		Start:	 Iteration 13
+2016-08-24 09:55:20,226 DEBUG: 			View 0 : 0.483443708609
+2016-08-24 09:55:20,233 DEBUG: 			View 1 : 0.635761589404
+2016-08-24 09:55:20,269 DEBUG: 			View 2 : 0.476821192053
+2016-08-24 09:55:20,276 DEBUG: 			View 3 : 0.483443708609
+2016-08-24 09:55:20,349 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:55:21,098 DEBUG: 		Start:	 Iteration 14
+2016-08-24 09:55:21,114 DEBUG: 			View 0 : 0.523178807947
+2016-08-24 09:55:21,121 DEBUG: 			View 1 : 0.582781456954
+2016-08-24 09:55:21,157 DEBUG: 			View 2 : 0.470198675497
+2016-08-24 09:55:21,164 DEBUG: 			View 3 : 0.53642384106
+2016-08-24 09:55:21,239 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:55:22,041 DEBUG: 		Start:	 Iteration 15
+2016-08-24 09:55:22,056 DEBUG: 			View 0 : 0.350993377483
+2016-08-24 09:55:22,064 DEBUG: 			View 1 : 0.668874172185
+2016-08-24 09:55:22,099 DEBUG: 			View 2 : 0.476821192053
+2016-08-24 09:55:22,106 DEBUG: 			View 3 : 0.569536423841
+2016-08-24 09:55:22,183 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:55:23,038 DEBUG: 		Start:	 Iteration 16
+2016-08-24 09:55:23,054 DEBUG: 			View 0 : 0.596026490066
+2016-08-24 09:55:23,061 DEBUG: 			View 1 : 0.543046357616
+2016-08-24 09:55:23,097 DEBUG: 			View 2 : 0.629139072848
+2016-08-24 09:55:23,104 DEBUG: 			View 3 : 0.649006622517
+2016-08-24 09:55:23,183 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:55:24,094 DEBUG: 		Start:	 Iteration 17
+2016-08-24 09:55:24,111 DEBUG: 			View 0 : 0.456953642384
+2016-08-24 09:55:24,118 DEBUG: 			View 1 : 0.615894039735
+2016-08-24 09:55:24,154 DEBUG: 			View 2 : 0.490066225166
+2016-08-24 09:55:24,161 DEBUG: 			View 3 : 0.516556291391
+2016-08-24 09:55:24,242 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:55:25,204 DEBUG: 		Start:	 Iteration 18
+2016-08-24 09:55:25,220 DEBUG: 			View 0 : 0.562913907285
+2016-08-24 09:55:25,227 DEBUG: 			View 1 : 0.450331125828
+2016-08-24 09:55:25,263 DEBUG: 			View 2 : 0.450331125828
+2016-08-24 09:55:25,270 DEBUG: 			View 3 : 0.483443708609
+2016-08-24 09:55:25,354 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:55:26,372 DEBUG: 		Start:	 Iteration 19
+2016-08-24 09:55:26,388 DEBUG: 			View 0 : 0.364238410596
+2016-08-24 09:55:26,396 DEBUG: 			View 1 : 0.668874172185
+2016-08-24 09:55:26,431 DEBUG: 			View 2 : 0.53642384106
+2016-08-24 09:55:26,438 DEBUG: 			View 3 : 0.529801324503
+2016-08-24 09:55:26,523 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:55:27,596 DEBUG: 		Start:	 Iteration 20
+2016-08-24 09:55:27,612 DEBUG: 			View 0 : 0.317880794702
+2016-08-24 09:55:27,620 DEBUG: 			View 1 : 0.403973509934
+2016-08-24 09:55:27,655 DEBUG: 			View 2 : 0.529801324503
+2016-08-24 09:55:27,663 DEBUG: 			View 3 : 0.629139072848
+2016-08-24 09:55:27,751 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:55:28,884 DEBUG: 		Start:	 Iteration 21
+2016-08-24 09:55:28,900 DEBUG: 			View 0 : 0.549668874172
+2016-08-24 09:55:28,907 DEBUG: 			View 1 : 0.649006622517
+2016-08-24 09:55:28,945 DEBUG: 			View 2 : 0.529801324503
+2016-08-24 09:55:28,952 DEBUG: 			View 3 : 0.503311258278
+2016-08-24 09:55:29,041 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:55:30,227 DEBUG: 		Start:	 Iteration 22
+2016-08-24 09:55:30,243 DEBUG: 			View 0 : 0.483443708609
+2016-08-24 09:55:30,250 DEBUG: 			View 1 : 0.556291390728
+2016-08-24 09:55:30,285 DEBUG: 			View 2 : 0.622516556291
+2016-08-24 09:55:30,293 DEBUG: 			View 3 : 0.46357615894
+2016-08-24 09:55:30,385 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:55:31,630 DEBUG: 		Start:	 Iteration 23
+2016-08-24 09:55:31,646 DEBUG: 			View 0 : 0.609271523179
+2016-08-24 09:55:31,653 DEBUG: 			View 1 : 0.629139072848
+2016-08-24 09:55:31,688 DEBUG: 			View 2 : 0.556291390728
+2016-08-24 09:55:31,696 DEBUG: 			View 3 : 0.629139072848
+2016-08-24 09:55:31,789 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:55:33,091 DEBUG: 		Start:	 Iteration 24
+2016-08-24 09:55:33,107 DEBUG: 			View 0 : 0.503311258278
+2016-08-24 09:55:33,114 DEBUG: 			View 1 : 0.668874172185
+2016-08-24 09:55:33,149 DEBUG: 			View 2 : 0.470198675497
+2016-08-24 09:55:33,157 DEBUG: 			View 3 : 0.476821192053
+2016-08-24 09:55:33,252 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:55:34,607 DEBUG: 		Start:	 Iteration 25
+2016-08-24 09:55:34,623 DEBUG: 			View 0 : 0.562913907285
+2016-08-24 09:55:34,630 DEBUG: 			View 1 : 0.284768211921
+2016-08-24 09:55:34,666 DEBUG: 			View 2 : 0.556291390728
+2016-08-24 09:55:34,673 DEBUG: 			View 3 : 0.456953642384
+2016-08-24 09:55:34,771 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:55:36,182 DEBUG: 		Start:	 Iteration 26
+2016-08-24 09:55:36,198 DEBUG: 			View 0 : 0.390728476821
+2016-08-24 09:55:36,205 DEBUG: 			View 1 : 0.576158940397
+2016-08-24 09:55:36,241 DEBUG: 			View 2 : 0.390728476821
+2016-08-24 09:55:36,248 DEBUG: 			View 3 : 0.569536423841
+2016-08-24 09:55:36,348 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:55:37,816 DEBUG: 		Start:	 Iteration 27
+2016-08-24 09:55:37,832 DEBUG: 			View 0 : 0.377483443709
+2016-08-24 09:55:37,839 DEBUG: 			View 1 : 0.509933774834
+2016-08-24 09:55:37,875 DEBUG: 			View 2 : 0.543046357616
+2016-08-24 09:55:37,882 DEBUG: 			View 3 : 0.417218543046
+2016-08-24 09:55:37,984 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:55:39,506 DEBUG: 		Start:	 Iteration 28
+2016-08-24 09:55:39,522 DEBUG: 			View 0 : 0.556291390728
+2016-08-24 09:55:39,530 DEBUG: 			View 1 : 0.397350993377
+2016-08-24 09:55:39,565 DEBUG: 			View 2 : 0.576158940397
+2016-08-24 09:55:39,572 DEBUG: 			View 3 : 0.549668874172
+2016-08-24 09:55:39,676 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:55:41,263 DEBUG: 		Start:	 Iteration 29
+2016-08-24 09:55:41,279 DEBUG: 			View 0 : 0.655629139073
+2016-08-24 09:55:41,286 DEBUG: 			View 1 : 0.728476821192
+2016-08-24 09:55:41,321 DEBUG: 			View 2 : 0.615894039735
+2016-08-24 09:55:41,329 DEBUG: 			View 3 : 0.470198675497
+2016-08-24 09:55:41,436 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:55:43,079 DEBUG: 		Start:	 Iteration 30
+2016-08-24 09:55:43,095 DEBUG: 			View 0 : 0.569536423841
+2016-08-24 09:55:43,102 DEBUG: 			View 1 : 0.344370860927
+2016-08-24 09:55:43,137 DEBUG: 			View 2 : 0.470198675497
+2016-08-24 09:55:43,144 DEBUG: 			View 3 : 0.470198675497
+2016-08-24 09:55:43,253 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:55:44,951 DEBUG: 		Start:	 Iteration 31
+2016-08-24 09:55:44,967 DEBUG: 			View 0 : 0.562913907285
+2016-08-24 09:55:44,975 DEBUG: 			View 1 : 0.218543046358
+2016-08-24 09:55:45,009 DEBUG: 			View 2 : 0.53642384106
+2016-08-24 09:55:45,017 DEBUG: 			View 3 : 0.516556291391
+2016-08-24 09:55:45,128 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:55:46,886 DEBUG: 		Start:	 Iteration 32
+2016-08-24 09:55:46,902 DEBUG: 			View 0 : 0.470198675497
+2016-08-24 09:55:46,909 DEBUG: 			View 1 : 0.35761589404
+2016-08-24 09:55:46,944 DEBUG: 			View 2 : 0.509933774834
+2016-08-24 09:55:46,952 DEBUG: 			View 3 : 0.549668874172
+2016-08-24 09:55:47,064 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:55:48,874 DEBUG: 		Start:	 Iteration 33
+2016-08-24 09:55:48,889 DEBUG: 			View 0 : 0.569536423841
+2016-08-24 09:55:48,897 DEBUG: 			View 1 : 0.596026490066
+2016-08-24 09:55:48,932 DEBUG: 			View 2 : 0.377483443709
+2016-08-24 09:55:48,939 DEBUG: 			View 3 : 0.556291390728
+2016-08-24 09:55:49,054 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:55:50,918 DEBUG: 		Start:	 Iteration 34
+2016-08-24 09:55:50,934 DEBUG: 			View 0 : 0.450331125828
+2016-08-24 09:55:50,942 DEBUG: 			View 1 : 0.549668874172
+2016-08-24 09:55:50,976 DEBUG: 			View 2 : 0.503311258278
+2016-08-24 09:55:50,984 DEBUG: 			View 3 : 0.41059602649
+2016-08-24 09:55:51,099 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:55:53,017 DEBUG: 		Start:	 Iteration 35
+2016-08-24 09:55:53,032 DEBUG: 			View 0 : 0.430463576159
+2016-08-24 09:55:53,040 DEBUG: 			View 1 : 0.668874172185
+2016-08-24 09:55:53,075 DEBUG: 			View 2 : 0.596026490066
+2016-08-24 09:55:53,082 DEBUG: 			View 3 : 0.423841059603
+2016-08-24 09:55:53,199 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:55:55,212 DEBUG: 		Start:	 Iteration 36
+2016-08-24 09:55:55,229 DEBUG: 			View 0 : 0.675496688742
+2016-08-24 09:55:55,236 DEBUG: 			View 1 : 0.450331125828
+2016-08-24 09:55:55,271 DEBUG: 			View 2 : 0.576158940397
+2016-08-24 09:55:55,279 DEBUG: 			View 3 : 0.58940397351
+2016-08-24 09:55:55,400 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:55:57,436 DEBUG: 		Start:	 Iteration 37
+2016-08-24 09:55:57,451 DEBUG: 			View 0 : 0.569536423841
+2016-08-24 09:55:57,459 DEBUG: 			View 1 : 0.649006622517
+2016-08-24 09:55:57,494 DEBUG: 			View 2 : 0.543046357616
+2016-08-24 09:55:57,501 DEBUG: 			View 3 : 0.490066225166
+2016-08-24 09:55:57,623 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:55:59,706 DEBUG: 		Start:	 Iteration 38
+2016-08-24 09:55:59,722 DEBUG: 			View 0 : 0.549668874172
+2016-08-24 09:55:59,730 DEBUG: 			View 1 : 0.64238410596
+2016-08-24 09:55:59,765 DEBUG: 			View 2 : 0.490066225166
+2016-08-24 09:55:59,773 DEBUG: 			View 3 : 0.403973509934
+2016-08-24 09:55:59,897 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:56:02,038 DEBUG: 		Start:	 Iteration 39
+2016-08-24 09:56:02,053 DEBUG: 			View 0 : 0.476821192053
+2016-08-24 09:56:02,061 DEBUG: 			View 1 : 0.622516556291
+2016-08-24 09:56:02,096 DEBUG: 			View 2 : 0.602649006623
+2016-08-24 09:56:02,103 DEBUG: 			View 3 : 0.496688741722
+2016-08-24 09:56:02,230 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:56:04,427 DEBUG: 		Start:	 Iteration 40
+2016-08-24 09:56:04,443 DEBUG: 			View 0 : 0.476821192053
+2016-08-24 09:56:04,451 DEBUG: 			View 1 : 0.569536423841
+2016-08-24 09:56:04,486 DEBUG: 			View 2 : 0.576158940397
+2016-08-24 09:56:04,493 DEBUG: 			View 3 : 0.549668874172
+2016-08-24 09:56:04,621 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:56:06,880 DEBUG: 		Start:	 Iteration 41
+2016-08-24 09:56:06,896 DEBUG: 			View 0 : 0.556291390728
+2016-08-24 09:56:06,903 DEBUG: 			View 1 : 0.668874172185
+2016-08-24 09:56:06,939 DEBUG: 			View 2 : 0.596026490066
+2016-08-24 09:56:06,946 DEBUG: 			View 3 : 0.569536423841
+2016-08-24 09:56:07,075 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:56:09,389 DEBUG: 		Start:	 Iteration 42
+2016-08-24 09:56:09,405 DEBUG: 			View 0 : 0.543046357616
+2016-08-24 09:56:09,413 DEBUG: 			View 1 : 0.344370860927
+2016-08-24 09:56:09,448 DEBUG: 			View 2 : 0.437086092715
+2016-08-24 09:56:09,455 DEBUG: 			View 3 : 0.490066225166
+2016-08-24 09:56:09,587 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:56:11,958 DEBUG: 		Start:	 Iteration 43
+2016-08-24 09:56:11,973 DEBUG: 			View 0 : 0.596026490066
+2016-08-24 09:56:11,981 DEBUG: 			View 1 : 0.668874172185
+2016-08-24 09:56:12,016 DEBUG: 			View 2 : 0.456953642384
+2016-08-24 09:56:12,024 DEBUG: 			View 3 : 0.556291390728
+2016-08-24 09:56:12,158 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:56:14,594 DEBUG: 		Start:	 Iteration 44
+2016-08-24 09:56:14,610 DEBUG: 			View 0 : 0.430463576159
+2016-08-24 09:56:14,617 DEBUG: 			View 1 : 0.483443708609
+2016-08-24 09:56:14,653 DEBUG: 			View 2 : 0.430463576159
+2016-08-24 09:56:14,660 DEBUG: 			View 3 : 0.476821192053
+2016-08-24 09:56:14,660 WARNING: WARNING:	All bad for iteration 43
+2016-08-24 09:56:14,797 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:56:17,274 DEBUG: 		Start:	 Iteration 45
+2016-08-24 09:56:17,291 DEBUG: 			View 0 : 0.470198675497
+2016-08-24 09:56:17,298 DEBUG: 			View 1 : 0.443708609272
+2016-08-24 09:56:17,333 DEBUG: 			View 2 : 0.58940397351
+2016-08-24 09:56:17,341 DEBUG: 			View 3 : 0.496688741722
+2016-08-24 09:56:17,480 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:56:20,029 DEBUG: 		Start:	 Iteration 46
+2016-08-24 09:56:20,045 DEBUG: 			View 0 : 0.496688741722
+2016-08-24 09:56:20,052 DEBUG: 			View 1 : 0.576158940397
+2016-08-24 09:56:20,088 DEBUG: 			View 2 : 0.423841059603
+2016-08-24 09:56:20,095 DEBUG: 			View 3 : 0.423841059603
+2016-08-24 09:56:20,235 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:56:22,835 DEBUG: 		Start:	 Iteration 47
+2016-08-24 09:56:22,851 DEBUG: 			View 0 : 0.337748344371
+2016-08-24 09:56:22,858 DEBUG: 			View 1 : 0.145695364238
+2016-08-24 09:56:22,894 DEBUG: 			View 2 : 0.523178807947
+2016-08-24 09:56:22,901 DEBUG: 			View 3 : 0.556291390728
+2016-08-24 09:56:23,043 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:56:25,695 DEBUG: 		Start:	 Iteration 48
+2016-08-24 09:56:25,710 DEBUG: 			View 0 : 0.476821192053
+2016-08-24 09:56:25,718 DEBUG: 			View 1 : 0.35761589404
+2016-08-24 09:56:25,753 DEBUG: 			View 2 : 0.483443708609
+2016-08-24 09:56:25,760 DEBUG: 			View 3 : 0.549668874172
+2016-08-24 09:56:25,906 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:56:28,607 DEBUG: 		Start:	 Iteration 49
+2016-08-24 09:56:28,623 DEBUG: 			View 0 : 0.390728476821
+2016-08-24 09:56:28,631 DEBUG: 			View 1 : 0.668874172185
+2016-08-24 09:56:28,665 DEBUG: 			View 2 : 0.490066225166
+2016-08-24 09:56:28,673 DEBUG: 			View 3 : 0.490066225166
+2016-08-24 09:56:28,820 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:56:31,591 DEBUG: 		Start:	 Iteration 50
+2016-08-24 09:56:31,607 DEBUG: 			View 0 : 0.46357615894
+2016-08-24 09:56:31,614 DEBUG: 			View 1 : 0.496688741722
+2016-08-24 09:56:31,651 DEBUG: 			View 2 : 0.516556291391
+2016-08-24 09:56:31,658 DEBUG: 			View 3 : 0.496688741722
+2016-08-24 09:56:31,807 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:56:34,616 DEBUG: 		Start:	 Iteration 51
+2016-08-24 09:56:34,632 DEBUG: 			View 0 : 0.529801324503
+2016-08-24 09:56:34,639 DEBUG: 			View 1 : 0.609271523179
+2016-08-24 09:56:34,674 DEBUG: 			View 2 : 0.569536423841
+2016-08-24 09:56:34,682 DEBUG: 			View 3 : 0.46357615894
+2016-08-24 09:56:34,832 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:56:37,700 DEBUG: 		Start:	 Iteration 52
+2016-08-24 09:56:37,715 DEBUG: 			View 0 : 0.516556291391
+2016-08-24 09:56:37,723 DEBUG: 			View 1 : 0.337748344371
+2016-08-24 09:56:37,758 DEBUG: 			View 2 : 0.596026490066
+2016-08-24 09:56:37,765 DEBUG: 			View 3 : 0.58940397351
+2016-08-24 09:56:37,918 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:56:40,853 DEBUG: 		Start:	 Iteration 53
+2016-08-24 09:56:40,869 DEBUG: 			View 0 : 0.503311258278
+2016-08-24 09:56:40,877 DEBUG: 			View 1 : 0.53642384106
+2016-08-24 09:56:40,913 DEBUG: 			View 2 : 0.490066225166
+2016-08-24 09:56:40,920 DEBUG: 			View 3 : 0.403973509934
+2016-08-24 09:56:41,076 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:56:44,061 DEBUG: 		Start:	 Iteration 54
+2016-08-24 09:56:44,077 DEBUG: 			View 0 : 0.576158940397
+2016-08-24 09:56:44,085 DEBUG: 			View 1 : 0.509933774834
+2016-08-24 09:56:44,120 DEBUG: 			View 2 : 0.430463576159
+2016-08-24 09:56:44,128 DEBUG: 			View 3 : 0.456953642384
+2016-08-24 09:56:44,286 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:56:47,328 DEBUG: 		Start:	 Iteration 55
+2016-08-24 09:56:47,344 DEBUG: 			View 0 : 0.483443708609
+2016-08-24 09:56:47,351 DEBUG: 			View 1 : 0.317880794702
+2016-08-24 09:56:47,387 DEBUG: 			View 2 : 0.622516556291
+2016-08-24 09:56:47,394 DEBUG: 			View 3 : 0.483443708609
+2016-08-24 09:56:47,552 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:56:50,670 DEBUG: 		Start:	 Iteration 56
+2016-08-24 09:56:50,686 DEBUG: 			View 0 : 0.53642384106
+2016-08-24 09:56:50,693 DEBUG: 			View 1 : 0.53642384106
+2016-08-24 09:56:50,728 DEBUG: 			View 2 : 0.622516556291
+2016-08-24 09:56:50,736 DEBUG: 			View 3 : 0.549668874172
+2016-08-24 09:56:50,897 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:56:54,078 DEBUG: 		Start:	 Iteration 57
+2016-08-24 09:56:54,094 DEBUG: 			View 0 : 0.53642384106
+2016-08-24 09:56:54,102 DEBUG: 			View 1 : 0.708609271523
+2016-08-24 09:56:54,137 DEBUG: 			View 2 : 0.450331125828
+2016-08-24 09:56:54,144 DEBUG: 			View 3 : 0.523178807947
+2016-08-24 09:56:54,307 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:56:57,540 DEBUG: 		Start:	 Iteration 58
+2016-08-24 09:56:57,556 DEBUG: 			View 0 : 0.582781456954
+2016-08-24 09:56:57,563 DEBUG: 			View 1 : 0.602649006623
+2016-08-24 09:56:57,598 DEBUG: 			View 2 : 0.576158940397
+2016-08-24 09:56:57,605 DEBUG: 			View 3 : 0.496688741722
+2016-08-24 09:56:57,771 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:57:01,055 DEBUG: 		Start:	 Iteration 59
+2016-08-24 09:57:01,071 DEBUG: 			View 0 : 0.615894039735
+2016-08-24 09:57:01,078 DEBUG: 			View 1 : 0.284768211921
+2016-08-24 09:57:01,114 DEBUG: 			View 2 : 0.569536423841
+2016-08-24 09:57:01,121 DEBUG: 			View 3 : 0.503311258278
+2016-08-24 09:57:01,288 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:57:04,633 DEBUG: 		Start:	 Iteration 60
+2016-08-24 09:57:04,648 DEBUG: 			View 0 : 0.543046357616
+2016-08-24 09:57:04,656 DEBUG: 			View 1 : 0.615894039735
+2016-08-24 09:57:04,691 DEBUG: 			View 2 : 0.582781456954
+2016-08-24 09:57:04,699 DEBUG: 			View 3 : 0.582781456954
+2016-08-24 09:57:04,868 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:57:08,269 DEBUG: 		Start:	 Iteration 61
+2016-08-24 09:57:08,284 DEBUG: 			View 0 : 0.529801324503
+2016-08-24 09:57:08,291 DEBUG: 			View 1 : 0.715231788079
+2016-08-24 09:57:08,327 DEBUG: 			View 2 : 0.562913907285
+2016-08-24 09:57:08,334 DEBUG: 			View 3 : 0.423841059603
+2016-08-24 09:57:08,506 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:57:11,957 DEBUG: 		Start:	 Iteration 62
+2016-08-24 09:57:11,973 DEBUG: 			View 0 : 0.523178807947
+2016-08-24 09:57:11,980 DEBUG: 			View 1 : 0.350993377483
+2016-08-24 09:57:12,023 DEBUG: 			View 2 : 0.456953642384
+2016-08-24 09:57:12,030 DEBUG: 			View 3 : 0.483443708609
+2016-08-24 09:57:12,204 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:57:15,727 DEBUG: 		Start:	 Iteration 63
+2016-08-24 09:57:15,743 DEBUG: 			View 0 : 0.331125827815
+2016-08-24 09:57:15,750 DEBUG: 			View 1 : 0.688741721854
+2016-08-24 09:57:15,785 DEBUG: 			View 2 : 0.64238410596
+2016-08-24 09:57:15,793 DEBUG: 			View 3 : 0.503311258278
+2016-08-24 09:57:15,968 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:57:19,529 DEBUG: 		Start:	 Iteration 64
+2016-08-24 09:57:19,545 DEBUG: 			View 0 : 0.58940397351
+2016-08-24 09:57:19,552 DEBUG: 			View 1 : 0.596026490066
+2016-08-24 09:57:19,591 DEBUG: 			View 2 : 0.503311258278
+2016-08-24 09:57:19,598 DEBUG: 			View 3 : 0.596026490066
+2016-08-24 09:57:19,775 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:57:23,387 DEBUG: 		Start:	 Iteration 65
+2016-08-24 09:57:23,403 DEBUG: 			View 0 : 0.470198675497
+2016-08-24 09:57:23,411 DEBUG: 			View 1 : 0.41059602649
+2016-08-24 09:57:23,446 DEBUG: 			View 2 : 0.523178807947
+2016-08-24 09:57:23,454 DEBUG: 			View 3 : 0.417218543046
+2016-08-24 09:57:23,632 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:57:27,319 DEBUG: 		Start:	 Iteration 66
+2016-08-24 09:57:27,335 DEBUG: 			View 0 : 0.728476821192
+2016-08-24 09:57:27,343 DEBUG: 			View 1 : 0.523178807947
+2016-08-24 09:57:27,379 DEBUG: 			View 2 : 0.562913907285
+2016-08-24 09:57:27,386 DEBUG: 			View 3 : 0.41059602649
+2016-08-24 09:57:27,568 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:57:31,325 DEBUG: 		Start:	 Iteration 67
+2016-08-24 09:57:31,341 DEBUG: 			View 0 : 0.450331125828
+2016-08-24 09:57:31,348 DEBUG: 			View 1 : 0.649006622517
+2016-08-24 09:57:31,383 DEBUG: 			View 2 : 0.569536423841
+2016-08-24 09:57:31,391 DEBUG: 			View 3 : 0.483443708609
+2016-08-24 09:57:31,574 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:57:35,371 DEBUG: 		Start:	 Iteration 68
+2016-08-24 09:57:35,386 DEBUG: 			View 0 : 0.443708609272
+2016-08-24 09:57:35,394 DEBUG: 			View 1 : 0.509933774834
+2016-08-24 09:57:35,429 DEBUG: 			View 2 : 0.635761589404
+2016-08-24 09:57:35,436 DEBUG: 			View 3 : 0.46357615894
+2016-08-24 09:57:35,622 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:57:39,510 DEBUG: 		Start:	 Iteration 69
+2016-08-24 09:57:39,526 DEBUG: 			View 0 : 0.344370860927
+2016-08-24 09:57:39,533 DEBUG: 			View 1 : 0.708609271523
+2016-08-24 09:57:39,568 DEBUG: 			View 2 : 0.423841059603
+2016-08-24 09:57:39,576 DEBUG: 			View 3 : 0.417218543046
+2016-08-24 09:57:39,765 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:57:43,687 DEBUG: 		Start:	 Iteration 70
+2016-08-24 09:57:43,703 DEBUG: 			View 0 : 0.701986754967
+2016-08-24 09:57:43,711 DEBUG: 			View 1 : 0.483443708609
+2016-08-24 09:57:43,746 DEBUG: 			View 2 : 0.562913907285
+2016-08-24 09:57:43,753 DEBUG: 			View 3 : 0.470198675497
+2016-08-24 09:57:43,943 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:57:47,935 DEBUG: 		Start:	 Iteration 71
+2016-08-24 09:57:47,951 DEBUG: 			View 0 : 0.569536423841
+2016-08-24 09:57:47,958 DEBUG: 			View 1 : 0.609271523179
+2016-08-24 09:57:47,993 DEBUG: 			View 2 : 0.417218543046
+2016-08-24 09:57:48,001 DEBUG: 			View 3 : 0.41059602649
+2016-08-24 09:57:48,193 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:57:52,229 DEBUG: 		Start:	 Iteration 72
+2016-08-24 09:57:52,245 DEBUG: 			View 0 : 0.377483443709
+2016-08-24 09:57:52,252 DEBUG: 			View 1 : 0.662251655629
+2016-08-24 09:57:52,290 DEBUG: 			View 2 : 0.569536423841
+2016-08-24 09:57:52,297 DEBUG: 			View 3 : 0.503311258278
+2016-08-24 09:57:52,491 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:57:56,588 DEBUG: 		Start:	 Iteration 73
+2016-08-24 09:57:56,604 DEBUG: 			View 0 : 0.46357615894
+2016-08-24 09:57:56,612 DEBUG: 			View 1 : 0.615894039735
+2016-08-24 09:57:56,647 DEBUG: 			View 2 : 0.609271523179
+2016-08-24 09:57:56,654 DEBUG: 			View 3 : 0.403973509934
+2016-08-24 09:57:56,850 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:58:00,989 DEBUG: 		Start:	 Iteration 74
+2016-08-24 09:58:01,005 DEBUG: 			View 0 : 0.602649006623
+2016-08-24 09:58:01,012 DEBUG: 			View 1 : 0.741721854305
+2016-08-24 09:58:01,054 DEBUG: 			View 2 : 0.58940397351
+2016-08-24 09:58:01,061 DEBUG: 			View 3 : 0.53642384106
+2016-08-24 09:58:01,259 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:58:05,450 DEBUG: 		Start:	 Iteration 75
+2016-08-24 09:58:05,466 DEBUG: 			View 0 : 0.549668874172
+2016-08-24 09:58:05,473 DEBUG: 			View 1 : 0.662251655629
+2016-08-24 09:58:05,513 DEBUG: 			View 2 : 0.562913907285
+2016-08-24 09:58:05,520 DEBUG: 			View 3 : 0.450331125828
+2016-08-24 09:58:05,721 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:58:09,965 DEBUG: 		Start:	 Iteration 76
+2016-08-24 09:58:09,981 DEBUG: 			View 0 : 0.529801324503
+2016-08-24 09:58:09,988 DEBUG: 			View 1 : 0.576158940397
+2016-08-24 09:58:10,029 DEBUG: 			View 2 : 0.569536423841
+2016-08-24 09:58:10,037 DEBUG: 			View 3 : 0.582781456954
+2016-08-24 09:58:10,238 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:58:14,540 DEBUG: 		Start:	 Iteration 77
+2016-08-24 09:58:14,556 DEBUG: 			View 0 : 0.503311258278
+2016-08-24 09:58:14,564 DEBUG: 			View 1 : 0.701986754967
+2016-08-24 09:58:14,604 DEBUG: 			View 2 : 0.509933774834
+2016-08-24 09:58:14,612 DEBUG: 			View 3 : 0.53642384106
+2016-08-24 09:58:14,817 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:58:19,168 DEBUG: 		Start:	 Iteration 78
+2016-08-24 09:58:19,183 DEBUG: 			View 0 : 0.735099337748
+2016-08-24 09:58:19,191 DEBUG: 			View 1 : 0.576158940397
+2016-08-24 09:58:19,233 DEBUG: 			View 2 : 0.609271523179
+2016-08-24 09:58:19,242 DEBUG: 			View 3 : 0.556291390728
+2016-08-24 09:58:19,448 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:58:23,864 DEBUG: 		Start:	 Iteration 79
+2016-08-24 09:58:23,880 DEBUG: 			View 0 : 0.629139072848
+2016-08-24 09:58:23,887 DEBUG: 			View 1 : 0.655629139073
+2016-08-24 09:58:23,929 DEBUG: 			View 2 : 0.423841059603
+2016-08-24 09:58:23,938 DEBUG: 			View 3 : 0.549668874172
+2016-08-24 09:58:24,146 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:58:28,610 DEBUG: 		Start:	 Iteration 80
+2016-08-24 09:58:28,626 DEBUG: 			View 0 : 0.562913907285
+2016-08-24 09:58:28,633 DEBUG: 			View 1 : 0.622516556291
+2016-08-24 09:58:28,676 DEBUG: 			View 2 : 0.490066225166
+2016-08-24 09:58:28,684 DEBUG: 			View 3 : 0.549668874172
+2016-08-24 09:58:28,895 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:58:33,419 DEBUG: 		Start:	 Iteration 81
+2016-08-24 09:58:33,435 DEBUG: 			View 0 : 0.496688741722
+2016-08-24 09:58:33,442 DEBUG: 			View 1 : 0.41059602649
+2016-08-24 09:58:33,487 DEBUG: 			View 2 : 0.516556291391
+2016-08-24 09:58:33,495 DEBUG: 			View 3 : 0.576158940397
+2016-08-24 09:58:33,706 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:58:38,279 DEBUG: 		Start:	 Iteration 82
+2016-08-24 09:58:38,294 DEBUG: 			View 0 : 0.377483443709
+2016-08-24 09:58:38,302 DEBUG: 			View 1 : 0.516556291391
+2016-08-24 09:58:38,347 DEBUG: 			View 2 : 0.562913907285
+2016-08-24 09:58:38,355 DEBUG: 			View 3 : 0.46357615894
+2016-08-24 09:58:38,570 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:58:43,207 DEBUG: 		Start:	 Iteration 83
+2016-08-24 09:58:43,222 DEBUG: 			View 0 : 0.456953642384
+2016-08-24 09:58:43,230 DEBUG: 			View 1 : 0.46357615894
+2016-08-24 09:58:43,275 DEBUG: 			View 2 : 0.523178807947
+2016-08-24 09:58:43,283 DEBUG: 			View 3 : 0.350993377483
+2016-08-24 09:58:43,501 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:58:48,208 DEBUG: 		Start:	 Iteration 84
+2016-08-24 09:58:48,224 DEBUG: 			View 0 : 0.470198675497
+2016-08-24 09:58:48,231 DEBUG: 			View 1 : 0.602649006623
+2016-08-24 09:58:48,276 DEBUG: 			View 2 : 0.41059602649
+2016-08-24 09:58:48,285 DEBUG: 			View 3 : 0.602649006623
+2016-08-24 09:58:48,504 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:58:53,266 DEBUG: 		Start:	 Iteration 85
+2016-08-24 09:58:53,282 DEBUG: 			View 0 : 0.503311258278
+2016-08-24 09:58:53,290 DEBUG: 			View 1 : 0.337748344371
+2016-08-24 09:58:53,335 DEBUG: 			View 2 : 0.483443708609
+2016-08-24 09:58:53,344 DEBUG: 			View 3 : 0.483443708609
+2016-08-24 09:58:53,567 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:58:58,390 DEBUG: 		Start:	 Iteration 86
+2016-08-24 09:58:58,406 DEBUG: 			View 0 : 0.46357615894
+2016-08-24 09:58:58,414 DEBUG: 			View 1 : 0.615894039735
+2016-08-24 09:58:58,460 DEBUG: 			View 2 : 0.562913907285
+2016-08-24 09:58:58,469 DEBUG: 			View 3 : 0.476821192053
+2016-08-24 09:58:58,700 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:59:03,579 DEBUG: 		Start:	 Iteration 87
+2016-08-24 09:59:03,595 DEBUG: 			View 0 : 0.622516556291
+2016-08-24 09:59:03,602 DEBUG: 			View 1 : 0.860927152318
+2016-08-24 09:59:03,647 DEBUG: 			View 2 : 0.456953642384
+2016-08-24 09:59:03,656 DEBUG: 			View 3 : 0.556291390728
+2016-08-24 09:59:03,881 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:59:08,810 DEBUG: 		Start:	 Iteration 88
+2016-08-24 09:59:08,826 DEBUG: 			View 0 : 0.635761589404
+2016-08-24 09:59:08,833 DEBUG: 			View 1 : 0.403973509934
+2016-08-24 09:59:08,879 DEBUG: 			View 2 : 0.470198675497
+2016-08-24 09:59:08,888 DEBUG: 			View 3 : 0.516556291391
+2016-08-24 09:59:09,115 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:59:14,094 DEBUG: 		Start:	 Iteration 89
+2016-08-24 09:59:14,111 DEBUG: 			View 0 : 0.562913907285
+2016-08-24 09:59:14,118 DEBUG: 			View 1 : 0.735099337748
+2016-08-24 09:59:14,164 DEBUG: 			View 2 : 0.456953642384
+2016-08-24 09:59:14,172 DEBUG: 			View 3 : 0.576158940397
+2016-08-24 09:59:14,401 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:59:19,446 DEBUG: 		Start:	 Iteration 90
+2016-08-24 09:59:19,461 DEBUG: 			View 0 : 0.549668874172
+2016-08-24 09:59:19,469 DEBUG: 			View 1 : 0.490066225166
+2016-08-24 09:59:19,515 DEBUG: 			View 2 : 0.509933774834
+2016-08-24 09:59:19,524 DEBUG: 			View 3 : 0.622516556291
+2016-08-24 09:59:19,755 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:59:24,857 DEBUG: 		Start:	 Iteration 91
+2016-08-24 09:59:24,873 DEBUG: 			View 0 : 0.523178807947
+2016-08-24 09:59:24,881 DEBUG: 			View 1 : 0.635761589404
+2016-08-24 09:59:24,926 DEBUG: 			View 2 : 0.609271523179
+2016-08-24 09:59:24,935 DEBUG: 			View 3 : 0.450331125828
+2016-08-24 09:59:25,168 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:59:30,327 DEBUG: 		Start:	 Iteration 92
+2016-08-24 09:59:30,343 DEBUG: 			View 0 : 0.430463576159
+2016-08-24 09:59:30,350 DEBUG: 			View 1 : 0.655629139073
+2016-08-24 09:59:30,396 DEBUG: 			View 2 : 0.450331125828
+2016-08-24 09:59:30,405 DEBUG: 			View 3 : 0.476821192053
+2016-08-24 09:59:30,639 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:59:35,851 DEBUG: 		Start:	 Iteration 93
+2016-08-24 09:59:35,867 DEBUG: 			View 0 : 0.596026490066
+2016-08-24 09:59:35,874 DEBUG: 			View 1 : 0.635761589404
+2016-08-24 09:59:35,929 DEBUG: 			View 2 : 0.423841059603
+2016-08-24 09:59:35,937 DEBUG: 			View 3 : 0.58940397351
+2016-08-24 09:59:36,174 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:59:41,498 DEBUG: 		Start:	 Iteration 94
+2016-08-24 09:59:41,514 DEBUG: 			View 0 : 0.582781456954
+2016-08-24 09:59:41,522 DEBUG: 			View 1 : 0.562913907285
+2016-08-24 09:59:41,557 DEBUG: 			View 2 : 0.622516556291
+2016-08-24 09:59:41,565 DEBUG: 			View 3 : 0.476821192053
+2016-08-24 09:59:41,807 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:59:47,218 DEBUG: 		Start:	 Iteration 95
+2016-08-24 09:59:47,234 DEBUG: 			View 0 : 0.390728476821
+2016-08-24 09:59:47,242 DEBUG: 			View 1 : 0.430463576159
+2016-08-24 09:59:47,277 DEBUG: 			View 2 : 0.46357615894
+2016-08-24 09:59:47,284 DEBUG: 			View 3 : 0.602649006623
+2016-08-24 09:59:47,529 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:59:53,061 DEBUG: 		Start:	 Iteration 96
+2016-08-24 09:59:53,077 DEBUG: 			View 0 : 0.688741721854
+2016-08-24 09:59:53,085 DEBUG: 			View 1 : 0.556291390728
+2016-08-24 09:59:53,120 DEBUG: 			View 2 : 0.629139072848
+2016-08-24 09:59:53,128 DEBUG: 			View 3 : 0.53642384106
+2016-08-24 09:59:53,372 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:59:58,805 DEBUG: 		Start:	 Iteration 97
+2016-08-24 09:59:58,821 DEBUG: 			View 0 : 0.668874172185
+2016-08-24 09:59:58,828 DEBUG: 			View 1 : 0.443708609272
+2016-08-24 09:59:58,864 DEBUG: 			View 2 : 0.516556291391
+2016-08-24 09:59:58,871 DEBUG: 			View 3 : 0.53642384106
+2016-08-24 09:59:59,116 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 10:00:04,596 DEBUG: 		Start:	 Iteration 98
+2016-08-24 10:00:04,612 DEBUG: 			View 0 : 0.509933774834
+2016-08-24 10:00:04,620 DEBUG: 			View 1 : 0.675496688742
+2016-08-24 10:00:04,655 DEBUG: 			View 2 : 0.46357615894
+2016-08-24 10:00:04,662 DEBUG: 			View 3 : 0.417218543046
+2016-08-24 10:00:04,910 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 10:00:10,446 DEBUG: 		Start:	 Iteration 99
+2016-08-24 10:00:10,462 DEBUG: 			View 0 : 0.569536423841
+2016-08-24 10:00:10,469 DEBUG: 			View 1 : 0.509933774834
+2016-08-24 10:00:10,505 DEBUG: 			View 2 : 0.476821192053
+2016-08-24 10:00:10,512 DEBUG: 			View 3 : 0.503311258278
+2016-08-24 10:00:10,761 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 10:00:16,350 DEBUG: 		Start:	 Iteration 100
+2016-08-24 10:00:16,366 DEBUG: 			View 0 : 0.437086092715
+2016-08-24 10:00:16,374 DEBUG: 			View 1 : 0.503311258278
+2016-08-24 10:00:16,409 DEBUG: 			View 2 : 0.417218543046
+2016-08-24 10:00:16,416 DEBUG: 			View 3 : 0.602649006623
+2016-08-24 10:00:16,668 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 10:00:22,325 DEBUG: 		Start:	 Iteration 101
+2016-08-24 10:00:22,341 DEBUG: 			View 0 : 0.516556291391
+2016-08-24 10:00:22,348 DEBUG: 			View 1 : 0.701986754967
+2016-08-24 10:00:22,384 DEBUG: 			View 2 : 0.483443708609
+2016-08-24 10:00:22,391 DEBUG: 			View 3 : 0.483443708609
+2016-08-24 10:00:22,646 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 10:00:28,562 DEBUG: 		Start:	 Iteration 102
+2016-08-24 10:00:28,580 DEBUG: 			View 0 : 0.516556291391
+2016-08-24 10:00:28,589 DEBUG: 			View 1 : 0.403973509934
+2016-08-24 10:00:28,626 DEBUG: 			View 2 : 0.443708609272
+2016-08-24 10:00:28,633 DEBUG: 			View 3 : 0.443708609272
+2016-08-24 10:00:28,896 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 10:00:34,676 INFO: 	Start: 	 Classification
+2016-08-24 10:00:48,946 INFO: 	Done: 	 Fold number 2
+2016-08-24 10:00:48,947 INFO: Done:	 Classification
+2016-08-24 10:00:48,947 INFO: Info:	 Time for Classification: 788[s]
+2016-08-24 10:00:48,947 INFO: Start:	 Result Analysis for Mumbo
+2016-08-24 10:01:20,963 INFO: 		Result for Multiview classification with Mumbo
+
+Average accuracy :
+	-On Train : 73.3311664568
+	-On Test : 76.2295081967
+	-On Validation : 80.0970873786
+
+Dataset info :
+	-Database name : ModifiedMultiOmic
+	-Labels : No, Yes
+	-Views : Methyl, MiRNA, RNASEQ, Clinical
+	-2 folds
+	- Validation set length : 103 for learning rate : 0.7
+
+Classification configuration : 
+	-Algorithm used : Mumbo 
+	-Iterations : 1000
+	-Weak Classifiers : DecisionTree with depth 1.0,  sub-sampled at 0.006 on Methyl
+		-DecisionTree with depth 1.0,  sub-sampled at 0.006 on MiRNA
+		-DecisionTree with depth 1.0,  sub-sampled at 0.007 on RNASEQ
+		-DecisionTree with depth 1.0,  sub-sampled at 0.006 on Clinical
+
+ Mean average accuracies and stats for each fold : 
+	- Fold 0
+		- On Methyl_ : 
+			- Mean average Accuracy : 0.0516503067485
+			- Percentage of time chosen : 0.926
+		- On MiRNA__ : 
+			- Mean average Accuracy : 0.0545460122699
+			- Percentage of time chosen : 0.048
+		- On RANSeq_ : 
+			- Mean average Accuracy : 0.0513374233129
+			- Percentage of time chosen : 0.007
+		- On Clinic_ : 
+			- Mean average Accuracy : 0.0527116564417
+			- Percentage of time chosen : 0.019
+	- Fold 1
+		- On Methyl_ : 
+			- Mean average Accuracy : 0.0529801324503
+			- Percentage of time chosen : 0.922
+		- On MiRNA__ : 
+			- Mean average Accuracy : 0.0560728476821
+			- Percentage of time chosen : 0.057
+		- On RANSeq_ : 
+			- Mean average Accuracy : 0.0528675496689
+			- Percentage of time chosen : 0.012
+		- On Clinic_ : 
+			- Mean average Accuracy : 0.0512847682119
+			- Percentage of time chosen : 0.009
+
+ For each iteration : 
+	- Iteration 1
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 2
+		 Fold 1
+			Accuracy on train : 62.5766871166
+			Accuracy on test : 59.8360655738
+			Accuracy on validation : 52.427184466
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 61.4207938894
+			 Accuracy on test : 66.393442623
+	- Iteration 3
+		 Fold 1
+			Accuracy on train : 68.0981595092
+			Accuracy on test : 68.0327868852
+			Accuracy on validation : 64.0776699029
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 73.5099337748
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 70.804046642
+			 Accuracy on test : 70.9016393443
+	- Iteration 4
+		 Fold 1
+			Accuracy on train : 66.2576687117
+			Accuracy on test : 64.7540983607
+			Accuracy on validation : 62.1359223301
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 81.4569536424
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 74.7572815534
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 73.857311177
+			 Accuracy on test : 72.5409836066
+	- Iteration 5
+		 Fold 1
+			Accuracy on train : 69.3251533742
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 67.9611650485
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 84.1059602649
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 76.7155568196
+			 Accuracy on test : 78.2786885246
+	- Iteration 6
+		 Fold 1
+			Accuracy on train : 68.0981595092
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 68.932038835
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 84.1059602649
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 80.5825242718
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 76.1020598871
+			 Accuracy on test : 80.3278688525
+	- Iteration 7
+		 Fold 1
+			Accuracy on train : 73.6196319018
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 70.8737864078
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 83.4437086093
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.5316702556
+			 Accuracy on test : 79.0983606557
+	- Iteration 8
+		 Fold 1
+			Accuracy on train : 73.6196319018
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 72.8155339806
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 83.4437086093
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.5316702556
+			 Accuracy on test : 79.0983606557
+	- Iteration 9
+		 Fold 1
+			Accuracy on train : 76.0736196319
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 73.786407767
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 84.1059602649
+			Accuracy on test : 85.2459016393
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.0897899484
+			 Accuracy on test : 81.1475409836
+	- Iteration 10
+		 Fold 1
+			Accuracy on train : 73.6196319018
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 70.8737864078
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 81.4569536424
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 80.5825242718
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 77.5382927721
+			 Accuracy on test : 78.2786885246
+	- Iteration 11
+		 Fold 1
+			Accuracy on train : 73.0061349693
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 72.8155339806
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 81.4569536424
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 77.2315443059
+			 Accuracy on test : 80.3278688525
+	- Iteration 12
+		 Fold 1
+			Accuracy on train : 70.5521472393
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 75.7281553398
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 76.821192053
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 73.6866696461
+			 Accuracy on test : 77.4590163934
+	- Iteration 13
+		 Fold 1
+			Accuracy on train : 73.0061349693
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 75.7281553398
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 84.1059602649
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.5560476171
+			 Accuracy on test : 79.5081967213
+	- Iteration 14
+		 Fold 1
+			Accuracy on train : 72.3926380368
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 82.119205298
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 86.4077669903
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 77.2559216674
+			 Accuracy on test : 77.868852459
+	- Iteration 15
+		 Fold 1
+			Accuracy on train : 71.7791411043
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 72.8155339806
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 84.1059602649
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 77.9425506846
+			 Accuracy on test : 78.6885245902
+	- Iteration 16
+		 Fold 1
+			Accuracy on train : 71.1656441718
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 69.9029126214
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 84.7682119205
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 89.3203883495
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 77.9669280462
+			 Accuracy on test : 76.2295081967
+	- Iteration 17
+		 Fold 1
+			Accuracy on train : 72.3926380368
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 70.8737864078
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 84.7682119205
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.5804249787
+			 Accuracy on test : 77.868852459
+	- Iteration 18
+		 Fold 1
+			Accuracy on train : 72.3926380368
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 71.8446601942
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 85.4304635762
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 86.4077669903
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 78.9115508065
+			 Accuracy on test : 79.0983606557
+	- Iteration 19
+		 Fold 1
+			Accuracy on train : 74.8466257669
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 76.6990291262
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 85.4304635762
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 86.4077669903
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.1385446715
+			 Accuracy on test : 77.868852459
+	- Iteration 20
+		 Fold 1
+			Accuracy on train : 74.8466257669
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 75.7281553398
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 86.0927152318
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 87.3786407767
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.4696704993
+			 Accuracy on test : 76.6393442623
+	- Iteration 21
+		 Fold 1
+			Accuracy on train : 73.6196319018
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 75.7281553398
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 85.4304635762
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.525047739
+			 Accuracy on test : 79.0983606557
+	- Iteration 22
+		 Fold 1
+			Accuracy on train : 76.6871165644
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 83.4437086093
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 88.3495145631
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 80.0654125868
+			 Accuracy on test : 77.0491803279
+	- Iteration 23
+		 Fold 1
+			Accuracy on train : 75.4601226994
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 77.6699029126
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 84.7682119205
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.11416731
+			 Accuracy on test : 78.2786885246
+	- Iteration 24
+		 Fold 1
+			Accuracy on train : 76.6871165644
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 78.640776699
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 84.1059602649
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.3965384147
+			 Accuracy on test : 77.0491803279
+	- Iteration 25
+		 Fold 1
+			Accuracy on train : 77.9141104294
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 84.7682119205
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 86.4077669903
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 81.341161175
+			 Accuracy on test : 77.4590163934
+	- Iteration 26
+		 Fold 1
+			Accuracy on train : 74.8466257669
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 77.6699029126
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 84.7682119205
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 86.4077669903
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.8074188437
+			 Accuracy on test : 77.0491803279
+	- Iteration 27
+		 Fold 1
+			Accuracy on train : 73.6196319018
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 82.7814569536
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.2005444277
+			 Accuracy on test : 76.6393442623
+	- Iteration 28
+		 Fold 1
+			Accuracy on train : 74.8466257669
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 83.4437086093
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 79.1451671881
+			 Accuracy on test : 77.4590163934
+	- Iteration 29
+		 Fold 1
+			Accuracy on train : 73.0061349693
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 78.640776699
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 84.1059602649
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.5560476171
+			 Accuracy on test : 77.868852459
+	- Iteration 30
+		 Fold 1
+			Accuracy on train : 74.8466257669
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 80.5825242718
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 84.7682119205
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 85.4368932039
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 79.8074188437
+			 Accuracy on test : 77.0491803279
+	- Iteration 31
+		 Fold 1
+			Accuracy on train : 74.8466257669
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 82.119205298
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 84.4660194175
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 78.4829155324
+			 Accuracy on test : 77.4590163934
+	- Iteration 32
+		 Fold 1
+			Accuracy on train : 74.8466257669
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 84.7682119205
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.8074188437
+			 Accuracy on test : 75.8196721311
+	- Iteration 33
+		 Fold 1
+			Accuracy on train : 74.2331288344
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 82.119205298
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.1761670662
+			 Accuracy on test : 77.868852459
+	- Iteration 34
+		 Fold 1
+			Accuracy on train : 74.8466257669
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 84.7682119205
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.8074188437
+			 Accuracy on test : 77.868852459
+	- Iteration 35
+		 Fold 1
+			Accuracy on train : 75.4601226994
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 84.7682119205
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.11416731
+			 Accuracy on test : 79.5081967213
+	- Iteration 36
+		 Fold 1
+			Accuracy on train : 74.8466257669
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 78.640776699
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 87.417218543
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 88.3495145631
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 81.131922155
+			 Accuracy on test : 78.6885245902
+	- Iteration 37
+		 Fold 1
+			Accuracy on train : 73.0061349693
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 83.4437086093
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.2249217893
+			 Accuracy on test : 79.9180327869
+	- Iteration 38
+		 Fold 1
+			Accuracy on train : 73.0061349693
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 78.640776699
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 86.7549668874
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 88.3495145631
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.8805509284
+			 Accuracy on test : 79.5081967213
+	- Iteration 39
+		 Fold 1
+			Accuracy on train : 74.2331288344
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 80.5825242718
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 82.7814569536
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.507292894
+			 Accuracy on test : 79.0983606557
+	- Iteration 40
+		 Fold 1
+			Accuracy on train : 74.2331288344
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 82.7814569536
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 78.507292894
+			 Accuracy on test : 77.868852459
+	- Iteration 41
+		 Fold 1
+			Accuracy on train : 74.8466257669
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 82.7814569536
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.8140413603
+			 Accuracy on test : 79.5081967213
+	- Iteration 42
+		 Fold 1
+			Accuracy on train : 72.3926380368
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 76.6990291262
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 81.4569536424
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 86.4077669903
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 76.9247958396
+			 Accuracy on test : 78.2786885246
+	- Iteration 43
+		 Fold 1
+			Accuracy on train : 73.6196319018
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 78.640776699
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 84.7682119205
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.1939219112
+			 Accuracy on test : 79.9180327869
+	- Iteration 44
+		 Fold 1
+			Accuracy on train : 73.6196319018
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 84.7682119205
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.1939219112
+			 Accuracy on test : 79.9180327869
+	- Iteration 45
+		 Fold 1
+			Accuracy on train : 72.3926380368
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 76.6990291262
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 83.4437086093
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 87.3786407767
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 77.918173323
+			 Accuracy on test : 77.868852459
+	- Iteration 46
+		 Fold 1
+			Accuracy on train : 70.5521472393
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 76.6990291262
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 81.4569536424
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 76.0045504408
+			 Accuracy on test : 77.0491803279
+	- Iteration 47
+		 Fold 1
+			Accuracy on train : 71.1656441718
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 79.4701986755
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 86.4077669903
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 75.3179214236
+			 Accuracy on test : 76.6393442623
+	- Iteration 48
+		 Fold 1
+			Accuracy on train : 71.1656441718
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 78.640776699
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.4701986755
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 87.3786407767
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 75.3179214236
+			 Accuracy on test : 77.868852459
+	- Iteration 49
+		 Fold 1
+			Accuracy on train : 70.5521472393
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 78.8079470199
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 74.6800471296
+			 Accuracy on test : 77.0491803279
+	- Iteration 50
+		 Fold 1
+			Accuracy on train : 71.7791411043
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 78.8079470199
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 75.2935440621
+			 Accuracy on test : 77.4590163934
+	- Iteration 51
+		 Fold 1
+			Accuracy on train : 69.9386503067
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 76.6990291262
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.4701986755
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 74.7044244911
+			 Accuracy on test : 77.4590163934
+	- Iteration 52
+		 Fold 1
+			Accuracy on train : 70.5521472393
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 77.6699029126
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 78.1456953642
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 84.4660194175
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 74.3489213018
+			 Accuracy on test : 77.4590163934
+	- Iteration 53
+		 Fold 1
+			Accuracy on train : 71.7791411043
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 78.1456953642
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 74.9624182343
+			 Accuracy on test : 76.2295081967
+	- Iteration 54
+		 Fold 1
+			Accuracy on train : 69.9386503067
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 78.640776699
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 76.821192053
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 84.4660194175
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 73.3799211799
+			 Accuracy on test : 77.4590163934
+	- Iteration 55
+		 Fold 1
+			Accuracy on train : 72.3926380368
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 76.1589403974
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 74.2757892171
+			 Accuracy on test : 76.2295081967
+	- Iteration 56
+		 Fold 1
+			Accuracy on train : 72.3926380368
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 73.5099337748
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 82.5242718447
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 72.9512859058
+			 Accuracy on test : 76.6393442623
+	- Iteration 57
+		 Fold 1
+			Accuracy on train : 72.3926380368
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 75.4966887417
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 73.9446633893
+			 Accuracy on test : 77.0491803279
+	- Iteration 58
+		 Fold 1
+			Accuracy on train : 72.3926380368
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 73.5099337748
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 72.9512859058
+			 Accuracy on test : 77.0491803279
+	- Iteration 59
+		 Fold 1
+			Accuracy on train : 72.3926380368
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 79.6116504854
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 74.1721854305
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 73.2824117336
+			 Accuracy on test : 77.0491803279
+	- Iteration 60
+		 Fold 1
+			Accuracy on train : 73.0061349693
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 78.640776699
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 74.1721854305
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 73.5891601999
+			 Accuracy on test : 77.0491803279
+	- Iteration 61
+		 Fold 1
+			Accuracy on train : 72.3926380368
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 74.1721854305
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 73.2824117336
+			 Accuracy on test : 77.0491803279
+	- Iteration 62
+		 Fold 1
+			Accuracy on train : 73.0061349693
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 74.1721854305
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 82.5242718447
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 73.5891601999
+			 Accuracy on test : 76.6393442623
+	- Iteration 63
+		 Fold 1
+			Accuracy on train : 72.3926380368
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 74.1721854305
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 73.2824117336
+			 Accuracy on test : 78.2786885246
+	- Iteration 64
+		 Fold 1
+			Accuracy on train : 73.6196319018
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 80.5825242718
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 73.5099337748
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 73.5647828383
+			 Accuracy on test : 79.5081967213
+	- Iteration 65
+		 Fold 1
+			Accuracy on train : 72.3926380368
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 75.4966887417
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 82.5242718447
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 73.9446633893
+			 Accuracy on test : 79.5081967213
+	- Iteration 66
+		 Fold 1
+			Accuracy on train : 71.7791411043
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 78.640776699
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 76.821192053
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 83.4951456311
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 74.3001665786
+			 Accuracy on test : 78.6885245902
+	- Iteration 67
+		 Fold 1
+			Accuracy on train : 72.3926380368
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 76.1589403974
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 74.2757892171
+			 Accuracy on test : 78.6885245902
+	- Iteration 68
+		 Fold 1
+			Accuracy on train : 71.1656441718
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 78.640776699
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 76.1589403974
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 82.5242718447
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 73.6622922846
+			 Accuracy on test : 78.6885245902
+	- Iteration 69
+		 Fold 1
+			Accuracy on train : 71.7791411043
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 76.821192053
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 74.3001665786
+			 Accuracy on test : 77.868852459
+	- Iteration 70
+		 Fold 1
+			Accuracy on train : 71.7791411043
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 74.8344370861
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 73.3067890952
+			 Accuracy on test : 77.868852459
+	- Iteration 71
+		 Fold 1
+			Accuracy on train : 72.3926380368
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 73.5099337748
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 72.9512859058
+			 Accuracy on test : 77.4590163934
+	- Iteration 72
+		 Fold 1
+			Accuracy on train : 71.1656441718
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 71.5231788079
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 71.3444114899
+			 Accuracy on test : 77.868852459
+	- Iteration 73
+		 Fold 1
+			Accuracy on train : 70.5521472393
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 69.5364238411
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 70.0442855402
+			 Accuracy on test : 76.2295081967
+	- Iteration 74
+		 Fold 1
+			Accuracy on train : 70.5521472393
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 77.6699029126
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 72.8476821192
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 71.6999146792
+			 Accuracy on test : 77.0491803279
+	- Iteration 75
+		 Fold 1
+			Accuracy on train : 69.9386503067
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 72.1854304636
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 71.0620403852
+			 Accuracy on test : 76.6393442623
+	- Iteration 76
+		 Fold 1
+			Accuracy on train : 69.9386503067
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 77.6699029126
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 72.8476821192
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 71.393166213
+			 Accuracy on test : 76.2295081967
+	- Iteration 77
+		 Fold 1
+			Accuracy on train : 69.3251533742
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 77.6699029126
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 72.1854304636
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 70.7552919189
+			 Accuracy on test : 76.2295081967
+	- Iteration 78
+		 Fold 1
+			Accuracy on train : 68.7116564417
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 76.6990291262
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 73.5099337748
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 80.5825242718
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 71.1107951083
+			 Accuracy on test : 76.6393442623
+	- Iteration 79
+		 Fold 1
+			Accuracy on train : 69.3251533742
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 77.6699029126
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 75.4966887417
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 72.410921058
+			 Accuracy on test : 77.0491803279
+	- Iteration 80
+		 Fold 1
+			Accuracy on train : 69.3251533742
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 74.1721854305
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 71.7486694023
+			 Accuracy on test : 76.2295081967
+	- Iteration 81
+		 Fold 1
+			Accuracy on train : 69.3251533742
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 77.6699029126
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 75.4966887417
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 81.5533980583
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 72.410921058
+			 Accuracy on test : 77.4590163934
+	- Iteration 82
+		 Fold 1
+			Accuracy on train : 68.7116564417
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 74.8344370861
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 81.5533980583
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 71.7730467639
+			 Accuracy on test : 76.6393442623
+	- Iteration 83
+		 Fold 1
+			Accuracy on train : 68.7116564417
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 74.8344370861
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 81.5533980583
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 71.7730467639
+			 Accuracy on test : 77.0491803279
+	- Iteration 84
+		 Fold 1
+			Accuracy on train : 68.7116564417
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 77.6699029126
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 75.4966887417
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 72.1041725917
+			 Accuracy on test : 76.6393442623
+	- Iteration 85
+		 Fold 1
+			Accuracy on train : 67.4846625767
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 76.6990291262
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 76.1589403974
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 71.821801487
+			 Accuracy on test : 76.2295081967
+	- Iteration 86
+		 Fold 1
+			Accuracy on train : 68.7116564417
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 74.1721854305
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 71.4419209361
+			 Accuracy on test : 76.2295081967
+	- Iteration 87
+		 Fold 1
+			Accuracy on train : 68.7116564417
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 76.821192053
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 72.7664242473
+			 Accuracy on test : 77.0491803279
+	- Iteration 88
+		 Fold 1
+			Accuracy on train : 68.7116564417
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 76.1589403974
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 72.4352984195
+			 Accuracy on test : 77.0491803279
+	- Iteration 89
+		 Fold 1
+			Accuracy on train : 68.7116564417
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 77.6699029126
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 75.4966887417
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 72.1041725917
+			 Accuracy on test : 76.6393442623
+	- Iteration 90
+		 Fold 1
+			Accuracy on train : 68.0981595092
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 76.6990291262
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 74.8344370861
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 81.5533980583
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 71.4662982976
+			 Accuracy on test : 77.0491803279
+	- Iteration 91
+		 Fold 1
+			Accuracy on train : 68.0981595092
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 76.6990291262
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 76.1589403974
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 72.1285499533
+			 Accuracy on test : 76.6393442623
+	- Iteration 92
+		 Fold 1
+			Accuracy on train : 68.7116564417
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 76.6990291262
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 74.8344370861
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 71.7730467639
+			 Accuracy on test : 77.0491803279
+	- Iteration 93
+		 Fold 1
+			Accuracy on train : 68.0981595092
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 76.6990291262
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 75.4966887417
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 71.7974241255
+			 Accuracy on test : 76.2295081967
+	- Iteration 94
+		 Fold 1
+			Accuracy on train : 68.0981595092
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 76.6990291262
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 75.4966887417
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 82.5242718447
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 71.7974241255
+			 Accuracy on test : 76.2295081967
+	- Iteration 95
+		 Fold 1
+			Accuracy on train : 68.7116564417
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 75.4966887417
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 82.5242718447
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 72.1041725917
+			 Accuracy on test : 76.6393442623
+	- Iteration 96
+		 Fold 1
+			Accuracy on train : 68.7116564417
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 77.6699029126
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 74.8344370861
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 71.7730467639
+			 Accuracy on test : 77.0491803279
+	- Iteration 97
+		 Fold 1
+			Accuracy on train : 69.9386503067
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 75.4966887417
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 82.5242718447
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 72.7176695242
+			 Accuracy on test : 76.6393442623
+	- Iteration 98
+		 Fold 1
+			Accuracy on train : 69.3251533742
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 75.4966887417
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 72.410921058
+			 Accuracy on test : 76.2295081967
+	- Iteration 99
+		 Fold 1
+			Accuracy on train : 69.9386503067
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 78.640776699
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 76.1589403974
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 73.048795352
+			 Accuracy on test : 76.2295081967
+	- Iteration 100
+		 Fold 1
+			Accuracy on train : 70.5521472393
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 76.1589403974
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 82.5242718447
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 73.3555438183
+			 Accuracy on test : 75.8196721311
+	- Iteration 101
+		 Fold 1
+			Accuracy on train : 69.9386503067
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 76.1589403974
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 73.048795352
+			 Accuracy on test : 76.2295081967
+	- Iteration 102
+		 Fold 1
+			Accuracy on train : 71.1656441718
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 78.640776699
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 75.4966887417
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 73.3311664568
+			 Accuracy on test : 76.2295081967
+	- Iteration 103
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 104
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 105
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 106
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 107
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 108
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 109
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 110
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 111
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 112
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 113
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 114
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 115
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 116
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 117
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 118
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 119
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 120
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 121
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 122
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 123
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 124
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 125
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 126
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 127
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 128
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 129
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 130
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 131
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 132
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 133
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 134
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 135
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 136
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 137
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 138
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 139
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 140
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 141
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 142
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 143
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 144
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 145
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 146
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 147
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 148
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 149
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 150
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 151
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 152
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 153
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 154
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 155
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 156
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 157
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 158
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 159
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 160
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 161
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 162
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 163
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 164
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 165
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 166
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 167
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 168
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 169
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 170
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 171
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 172
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 173
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 174
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 175
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 176
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 177
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 178
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 179
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 180
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 181
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 182
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 183
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 184
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 185
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 186
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 187
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 188
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 189
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 190
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 191
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 192
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 193
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 194
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 195
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 196
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 197
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 198
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 199
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 200
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 201
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 202
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 203
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 204
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 205
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 206
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 207
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 208
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 209
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 210
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 211
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 212
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 213
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 214
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 215
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 216
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 217
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 218
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 219
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 220
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 221
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 222
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 223
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 224
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 225
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 226
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 227
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 228
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 229
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 230
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 231
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 232
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 233
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 234
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 235
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 236
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 237
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 238
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 239
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 240
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 241
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 242
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 243
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 244
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 245
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 246
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 247
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 248
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 249
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 250
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 251
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 252
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 253
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 254
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 255
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 256
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 257
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 258
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 259
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 260
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 261
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 262
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 263
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 264
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 265
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 266
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 267
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 268
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 269
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 270
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 271
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 272
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 273
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 274
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 275
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 276
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 277
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 278
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 279
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 280
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 281
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 282
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 283
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 284
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 285
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 286
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 287
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 288
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 289
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 290
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 291
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 292
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 293
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 294
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 295
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 296
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 297
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 298
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 299
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 300
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 301
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 302
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 303
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 304
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 305
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 306
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 307
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 308
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 309
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 310
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 311
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 312
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 313
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 314
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 315
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 316
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 317
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 318
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 319
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 320
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 321
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 322
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 323
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 324
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 325
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 326
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 327
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 328
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 329
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 330
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 331
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 332
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 333
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 334
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 335
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 336
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 337
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 338
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 339
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 340
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 341
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 342
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 343
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 344
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 345
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 346
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 347
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 348
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 349
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 350
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 351
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 352
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 353
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 354
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 355
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 356
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 357
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 358
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 359
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 360
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 361
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 362
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 363
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 364
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 365
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 366
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 367
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 368
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 369
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 370
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 371
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 372
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 373
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 374
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 375
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 376
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 377
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 378
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 379
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 380
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 381
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 382
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 383
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 384
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 385
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 386
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 387
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 388
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 389
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 390
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 391
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 392
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 393
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 394
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 395
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 396
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 397
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 398
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 399
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 400
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 401
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 402
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 403
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 404
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 405
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 406
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 407
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 408
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 409
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 410
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 411
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 412
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 413
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 414
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 415
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 416
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 417
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 418
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 419
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 420
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 421
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 422
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 423
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 424
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 425
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 426
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 427
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 428
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 429
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 430
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 431
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 432
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 433
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 434
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 435
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 436
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 437
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 438
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 439
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 440
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 441
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 442
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 443
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 444
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 445
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 446
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 447
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 448
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 449
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 450
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 451
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 452
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 453
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 454
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 455
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 456
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 457
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 458
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 459
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 460
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 461
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 462
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 463
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 464
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 465
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 466
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 467
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 468
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 469
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 470
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 471
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 472
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 473
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 474
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 475
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 476
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 477
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 478
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 479
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 480
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 481
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 482
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 483
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 484
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 485
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 486
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 487
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 488
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 489
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 490
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 491
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 492
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 493
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 494
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 495
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 496
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 497
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 498
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 499
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 500
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 501
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 502
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 503
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 504
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 505
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 506
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 507
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 508
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 509
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 510
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 511
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 512
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 513
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 514
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 515
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 516
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 517
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 518
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 519
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 520
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 521
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 522
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 523
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 524
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 525
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 526
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 527
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 528
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 529
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 530
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 531
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 532
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 533
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 534
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 535
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 536
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 537
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 538
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 539
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 540
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 541
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 542
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 543
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 544
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 545
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 546
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 547
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 548
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 549
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 550
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 551
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 552
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 553
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 554
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 555
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 556
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 557
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 558
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 559
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 560
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 561
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 562
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 563
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 564
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 565
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 566
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 567
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 568
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 569
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 570
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 571
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 572
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 573
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 574
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 575
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 576
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 577
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 578
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 579
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 580
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 581
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 582
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 583
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 584
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 585
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 586
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 587
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 588
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 589
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 590
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 591
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 592
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 593
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 594
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 595
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 596
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 597
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 598
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 599
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 600
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 601
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 602
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 603
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 604
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 605
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 606
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 607
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 608
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 609
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 610
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 611
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 612
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 613
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 614
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 615
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 616
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 617
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 618
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 619
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 620
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 621
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 622
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 623
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 624
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 625
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 626
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 627
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 628
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 629
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 630
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 631
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 632
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 633
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 634
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 635
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 636
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 637
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 638
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 639
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 640
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 641
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 642
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 643
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 644
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 645
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 646
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 647
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 648
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 649
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 650
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 651
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 652
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 653
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 654
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 655
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 656
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 657
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 658
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 659
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 660
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 661
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 662
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 663
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 664
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 665
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 666
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 667
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 668
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 669
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 670
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 671
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 672
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 673
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 674
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 675
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 676
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 677
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 678
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 679
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 680
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 681
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 682
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 683
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 684
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 685
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 686
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 687
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 688
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 689
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 690
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 691
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 692
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 693
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 694
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 695
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 696
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 697
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 698
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 699
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 700
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 701
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 702
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 703
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 704
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 705
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 706
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 707
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 708
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 709
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 710
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 711
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 712
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 713
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 714
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 715
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 716
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 717
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 718
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 719
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 720
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 721
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 722
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 723
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 724
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 725
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 726
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 727
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 728
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 729
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 730
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 731
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 732
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 733
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 734
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 735
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 736
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 737
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 738
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 739
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 740
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 741
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 742
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 743
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 744
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 745
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 746
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 747
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 748
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 749
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 750
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 751
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 752
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 753
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 754
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 755
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 756
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 757
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 758
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 759
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 760
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 761
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 762
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 763
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 764
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 765
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 766
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 767
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 768
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 769
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 770
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 771
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 772
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 773
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 774
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 775
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 776
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 777
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 778
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 779
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 780
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 781
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 782
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 783
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 784
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 785
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 786
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 787
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 788
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 789
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 790
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 791
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 792
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 793
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 794
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 795
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 796
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 797
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 798
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 799
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 800
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 801
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 802
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 803
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 804
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 805
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 806
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 807
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 808
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 809
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 810
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 811
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 812
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 813
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 814
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 815
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 816
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 817
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 818
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 819
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 820
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 821
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 822
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 823
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 824
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 825
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 826
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 827
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 828
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 829
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 830
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 831
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 832
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 833
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 834
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 835
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 836
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 837
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 838
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 839
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 840
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 841
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 842
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 843
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 844
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 845
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 846
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 847
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 848
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 849
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 850
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 851
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 852
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 853
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 854
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 855
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 856
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 857
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 858
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 859
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 860
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 861
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 862
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 863
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 864
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 865
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 866
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 867
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 868
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 869
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 870
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 871
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 872
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 873
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 874
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 875
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 876
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 877
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 878
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 879
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 880
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 881
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 882
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 883
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 884
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 885
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 886
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 887
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 888
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 889
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 890
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 891
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 892
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 893
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 894
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 895
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 896
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 897
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 898
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 899
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 900
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 901
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 902
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 903
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 904
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 905
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 906
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 907
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 908
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 909
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 910
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 911
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 912
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 913
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 914
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 915
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 916
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 917
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 918
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 919
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 920
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 921
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 922
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 923
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 924
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 925
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 926
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 927
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 928
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 929
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 930
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 931
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 932
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 933
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 934
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 935
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 936
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 937
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 938
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 939
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 940
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 941
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 942
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 943
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 944
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 945
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 946
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 947
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 948
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 949
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 950
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 951
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 952
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 953
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 954
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 955
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 956
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 957
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 958
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 959
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 960
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 961
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 962
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 963
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 964
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 965
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 966
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 967
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 968
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 969
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 970
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 971
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 972
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 973
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 974
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 975
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 976
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 977
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 978
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 979
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 980
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 981
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 982
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 983
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 984
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 985
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 986
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 987
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 988
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 989
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 990
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 991
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 992
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 993
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 994
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 995
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 996
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 997
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 998
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 999
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 1000
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+
+Computation time on 1 cores : 
+	Database extraction time : 0:00:00
+	                         Learn     Prediction
+	         Fold 1        0:07:17        0:00:14
+	         Fold 2        0:12:53        0:00:14
+	          Total        0:20:11        0:00:28
+	So a total classification time of 0:13:08.
+
+
+2016-08-24 10:01:21,935 INFO: Done:	 Result Analysis
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-100121Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-100121Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic-accuracyByIteration.png
new file mode 100644
index 0000000000000000000000000000000000000000..450d6bb8864e93756a693840a8d4617a48cb2648
GIT binary patch
literal 53749
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_eY;q1--_8*?_P3=i_I`Jc5QrO*h
z*Q%noYVHoWsieteobpEHv`?~nkL|>*5-lyK%r<SCq_pzQF&9lO@45Hozu*2@`g+?*
zliQVluI_#R+3x-4dwK6a+nw%q=1@$KXiEg6Or|^gcQNoBHUOhP<r}y-plk!*wonJK
znna1VOrteShahSUd?qJ~3P80d&f;0!02SxCoD#v>0x>pmhT35*1+bY0Jcmsr!x*9B
z63b4GT7el*pIcY1Uj6uX{(jfUNXftN{`~y>plIg|yV|O`ujBVr2&SK#vv9t=T}?;X
z+gqkPWOkRoZ|m;%ZoVG9r@}BKBqSjtgF{wUcE+q(Nq>KR)zH_^FNhPJXJ5}JEj>Hx
zvWl8o(vc3q`Fneh9C7JzQR+CFRPy>7Z|?1Ftr0qH5jw|SU0rQ&eP2KE@-klzK0Y=E
z6?OH;7Zy5~L`FtR?ugOr>h6}Flb@2JA|op+9lGt<6m@HB>22G#Wn5my>*M2-<r^Ir
z*XKD|%`rGw_|~mkH#VhuFFq9;&o5`=aJ)};c1m>b!-o$WeP^4QR@m0p*R!y)nr6)X
z^QUG_%+5{MOpf=<x6hj=w`J?rhtHmcz5cqP;$u=qR+f{uH+N%WqtWSYxwqMLb#*f`
zGY_6W@Bgg)$-~3#FYfQRFDWfO`1s?7(%0A6-nu*6RD58F(Gy>{Zk^Hn^YiWHWAwzA
z`^{Zt+<)OhKuT)r#q)}aidR3a?musPo#%7@AuR=-&#i?PGAmZDeE8$z<1f4CT9+TX
zabri^>-Zf7jLZG!ubcM#`Lw6SJ#w~Eot>RK%HPW!I(%4APL8j>{{Q(?+zeLb?|Qn$
z^{>r3cHx2mJD<#tH@Om0Qc9MVlAfNP5t~vt-@JJ<Vak-2B}-KPd^pT+l*y?$fA8G$
zhMAXCeCAq-Hf&iWA}FZ1`A_lr;N<JMIhD7z<#sPvpz!AI?(OHc>@I)r=I6(^Y15{H
zx3^4LSXmW~jX!Tbbtj<L*6qL9`nbJ^x<s|JV&XzVSmfp9=h##V&73(i<NiL|x<4P?
zcV?cSYu&!sz5mg<xz--u-iJGd)dhrwnHf%;I(6vMQt!gIw@mNsub1zavvu<D;9z)Z
zYf<qb!Dog6WBL1gu2E4^Z9I~no|bPDN=;2&vUKUgudlB&ESdVqxt*`^_~WbDf9G14
zhwV<gx%H^Q{Ps`>iD&)>d3P*+^>5p-LE!qj*yhcfH~Y-Gx;p&unKL|YZf-AbZ`YTz
zuj{#TB_!wOCf48I-?vBTEc^e3Q!!#ohG0)m&w{mUeYG`Khp#_&q*FL^UjDs3j>r3C
z0|Np+9R21R8!KyF{_e=Lv$F$3LRc6qs=w*1S+gb~Cx^$_*f?fKLE|!hUfxy@m8JlV
zmd;L2Iom3g%U!`yQC$xYw>KYu?5HAi@o~||N3I<%O0&+-v#nMT;7}0ZGE6wYU{n83
zrs0d@wTl-8mEHST=AUox?BpyeE`EKdzoCI)$IhJxPoCtok>jub^O4=i*!bf1{P-EO
zW;tnyoZ8d4x9~CBn>TL~l9HH|m6c^Ii<U&qb9HrnabY2I?P_hY?uRd5ax$Dad9tyu
zkMHicHIbV?{P|g|6T3^Ku&_{|`{<8%yWcZ-oPYo8>+8g<tS&j*Dg_-KpLcdOe|`w=
z+qdt+wQFrIN-M)wa&vPpzCLB`THQ;RFEe`FzhY%&m2{wi@xt}%?Q`eK&a<h!^x~6-
zwzjj<#09CRr<Kb6|L~#U$B!QuzQ)AH7Jhhe(CYf?HA|MT<mKf(_*fyp)e6cq3<`RB
ze#@HX&zi-htE>BKra;rn%gdb=1RBmiKOM7v>fV~4LVK&fFS~xXg;O}AE-Wm}z{rTH
z|M=lgPfx$JVq|2LFic|k_5D46Zf@?59Xk|sb$R{#{4QL)*x26A?)&=TL&p64{28-n
zJBNphKR(`n{CL0o>Zy+(AMc-Gnk{zb%ozo-Zo{G{9wK65ObqjEtK07Ft!_U4_~6Z(
zlIQ2yuKrljD`CjAY}qma4i*WM41rIdJ~1%V)zwvee#Uzw$xubebL-bdix$1u$-YGN
z#jH3!7Z;a=Gcyb`?(MOhWuD(x`1shxE$#gBZQb46x3=f=Gko~^b?NDI^K84#a&IL(
zIM8Uaepb|~y8nO6ckI~VpdjF&Adv9<+}x6xt5#`==|-^>7Z-ndagq7-G~Lx7D+(-R
zdSomo#hp(-H>YvsO3ho_a=kBygzN)(LWIk(@>5F9uP>a@+w)w#ytwxL|5x2{G%4z&
zmX6Mm4ngGu&p#)orM0>D%P}(i`tq{*a6A9y8vnUgtlHYErA{9+_;1;gI75F`_4juw
zrlwOrRM>p_^RswU>S-~f{ChT=GA=4TdjH;^Lowz5zrRP0A8(&BeY&s{$IZ>@{4cMs
zmse~#u|&CL!ks%YhaMK3xVYGzQ?X@^UG1zFFJ1^ZacF92D9p7gRm#7&N3lg<Q`y_7
zM{nQyaww);Ul)7i=uy`^$?Z8eotT)JpX#mN^_MI6))qzc{Cg@lZ{BoKnmA$6A|)pd
z#mLCWCB@IrJvrRY|K!il&o0i+&42#=e%~VC<mKh%;pxeF^6XjFx3{(`w+Iw{c@g;N
z%^RQ3XV0HkZxJYZc!*U=sFOpn<<7p^*)_l4Zh!Lg^Yaz~r@CJ+)h{jgm){kidwZKI
zzr3AFi-1x3IhjYVUuy@4RsP<WaFA)ys#RW}K7Ha)Y^nM4W1@tV)TH0v-wQi&RDORa
zd-3{p^^+%0KKc6kx{Hq3<mvkHLQWi&KR>AkhK4Tv9XhkMm33#;SFMw$Pb(`;?3g!u
zZS?j@Cnu|4&OJZJa<YKai9T8Dj@7HRWB*@X?%#6w;RIf3GXW<KPj7E!FE6j6b3BR%
z4<0;n@?__fsZ%HN%i9TLXJ<cp@xp^c@yVm3-6;ne7@s^o-rpkNbZ)-AKMND%-L%uw
zbYJdcV`ZJVulBduE*sIL<mAqc8w=NFe);mn!^w&1@1DB9RYrAxeneeg`Rc+#=Oy+3
z|9vSwx;41;x2C41i??^TfYM$&OBp^;v?{htI6Yl|vfo^*iH{yV%KEuJX6GcInMO;a
z{<*rkf}){Cz^SXdyVF5Ip|i8IMd0PmtJkinwYIjl2)z87keTV}<>htac)vVn|8eE?
z^Yc_&1dOV_WGD%6coY^IYHDjM*Z%&dsvW*=$?3YEPsN=$6uqbEDBA!3W320*kf1Qr
zELTdgML=9!d{fFvAtw$+|9LiwZ*Ol`xBvTP@}0+_g=>YKPW0RV^Z2f-t=(Pn=0@N@
zN3|B6_<b?YEJVb_CavH1%Pa4eUG1+4pmcuzc)z^*w{PEC1f2f-`Ez1b=;{}nqPOQw
zl(Vf8aN>yEoW?6@l)_P1TnvgR9%-|lC(oXpx_j)xLg$l*TDdtDTlQ3ZY$|zqsa5X(
zy4c;5US3`<?6l<j%1M)i_U3D^zVY0>U+&`Xq#GL&pWNA5eB{!lNiMFgf=(PCKYdbS
z=aX6Ry0WTjQt9h!f=(SiR!&R4`|U1!d*bo&eon=fGcydE<+i_gk&%>}>wEdz>+Ah3
z?d`%&Dd$ZO{|VRpcU4rO?dNvI|JU~(KYW;Z;lhO-Jv~SE)&5S|wNl2qjE9qxQ=t1O
z!;)CWtn5?y7Z<Uz@yqcrOz==Saqb)&!<Nj;Y=_%;51*TBZJ2w@B<J3q$Yu8RzFOO7
znUw7Jn{U_4&M$Z1)~#7}%U7)EaPOCUcx7eqhYueby1KX+9=u+^f8Dfx2L%T=H@0Oy
zGnulpv%kE(y*+9cx47N{|M_-5zTM7e^tgXOFLu|IJb$H$4!*v<|MnI>K34VC`TxJa
zFK^%I>ETI9NjY%#Z11z^prEENUrKE1{z%-sd9$FXXwm5%F?#Rr?sosawrTHP+oYtV
z4=*k%e|dSCT~kx@#EBCQIXOAa$F}sySPC&LSihd%;g{LISKA&vdSp=cCZb?xOu^2W
z9%*yF-{0S}E6DOsnly<?SXemfS@`<6hnJW8Gcb62duL>2F)^t5%m_%HKC5lY@|B$~
zN}xs$sG`f-Q}!hD-X2T0emP!-4I4Iqd>j-UoS2rTHhJBnsH}^NSl6sw`|!yV7KV!N
z?_~e{`7>eGEH1t2-Rl1H6jW7P@9p>V^ZW5^c0Pkg^g&P|yuNm#N6YW;?=Nq(diU;K
z#>GXf3<pl1=Dxi>|9Fq2amuN}H#ZEYOqrr!V<XeB#dXP}J4cTmeK<Y7j*$VBsJ1bk
z++6)V@6G-F^73{y4w;#nd*}b-v#b5pQvCef!(+YD7cN~oq`&`9)5F8<k6&F~ef83@
zW5+;kYK8{CxmJlE9vtlG?Ol4j{>q9#h9$ZhcXyRK`}z6xuGL(%YE?jBpkqmi$)!t|
z60)<kH`^E)33YaMZkf7z%NCKf(c9M*+Uw}*Ufh};&T#2<`td$l28Q(Xbf5WlvYDBg
z8CO?{1_cKjmb|#oCZp8$Gdx*TpzY`6ii!#c9Wm$d@abi#D;ziu-q~6F@a@~!^?PQS
z=llH+3kaAX`QYE(^81Mo4m4i4dbPEyi|a?tzv(v{z24p3-G1p((2G~E9v$nIE+{Ek
z6TZK`a##8LzAs-&=2(~W85$abD&?TyVCgCDPrG`XnwV-&tn+@#&gsNqRraQ1$&w{m
zFZ<-}`5GMplEdeol97?wkZ_R6rt%YuvRjWsJD+U9w>Ob7yGl53Z_8aBzSBac?~GmH
z&O23agP(e7E3(AJ#YJq%2%P(RqSdhjHF=d;i<d2HYv-3gbm4*k!-Uzhy|pKPy}H<)
zKP4qaK~Ik_{rtS6Ya%xnyuPNZp`~@|j_}f@OSe9A=3s0;>=+Orz$a_P!q?s$x;pIO
zxpRCcPoC`P?R9l=VPRronlNWhk7e<*1;x+Lad2}pw;w*Zz_B@HTj1BKoD*L)-ydaG
zWSMQ2>$E;@?<(ELMXA+(*S|b^^yp~!jZLZC>tc7arKYCJ*j9<y|Nm3m`*ekmuP^WZ
zzu%<)&Y3*9Sub|il^Ne29&Z0q{Pc6wbt7kI=UbuY4j*Q|yv%p;^JUv=*ZkVKa6kLJ
zdGjQ!%XIer|MxrVG>4)^*&B%~SFdKDU2J#z-@D!KHzXcr1C<Z=?%fLr2v`w5kLPpz
zfnyB@XXb-y*@$g9Gw;})Y-Z;_HcdBr!u<K53}~RL%F3`{$&wcH{Cg*stp9Z&;^*eR
zK0Xr@6NAJ<EVtVCZ`67|fA(zd{QP{MStguoqqnzBo-CY{oLu<(Tkfo9&(6+fXkcV!
zOL%{8Z^g$)tPGjmPDh)gT<7`Ew_{bv?Ty%)CCc#N<KyE-x3_QIdi3Sx<(YQT+j1KB
z?)@t+`{Cy1bpI_G7oC<VO`STm_0S=wh^QzfW8>guOq1r!(J5Cm=yYk?vc)83M**Xl
znAnEx+mG)meZ64WGPTRw_c+y_%l8E(mGtv+Q>IRR`1kks8(Xu*W6d%yD73V;UVQA$
z;h2=96e}k$-_Oo3$G}kb<_4p+^=`N6%Zq;Px>i_Pdi2}d+ktU$eW3E?!b0bQ@^W^D
zoykj{RDOEG$?&ptTiRJEP|M4IzFliu8{4MMn_vFjl73!p=GS}s>;0p<*2V4Z+Ox;z
z!_S&Cv(5YcViMBR+vm)Y*^+lxYTdeZ5&P?G-`(5W{peBBljqN!LqkPn_}E{*eA&_6
zoqgfsN*yI7CRJ5c4Q=hi>tc65IhSNs@gZSN<mR?})<=&XEwSm}yVq7W{@a(A!E<aX
zgWi>W`uzFgw%q6~+1L5x?P?~h<k8mDT)1P$j$<?5{`&T|TiQJDg5-R&{ChnQ54WH8
zef{cH*M<!SRqNZ^+AeJY)fN{QyHA`xz5UatqMW<Crs}=EzFxklxcH^5oTw<PT)+Bv
zx$=U71K-}>X7q@D)F*5GEpqez(3r)}Z9E6h%rt&EW63Etez~61)6*^{Po6*D|GjkO
zcdy)IJ(A5UR%pDryZig*sJW8Q?)QK?Y22&-@Rz)~vC+WPbnUdXCnqL;`0}M??OI(I
zB|#S@!E^KN`56id3muD!Hl0!Uvg;nhuOB}atXZ?>p6{RN?Rjgz`u_a)_jh7O21jgc
z?2g^L51&2Dn|*B!qe3nB-unM_K65Mtl_qlh`t_@%D^goqn}v<-(8-gWP74M0R((Ar
zU;jrj_}T64`G*f3YVw<DopxqM*5(T@UcXL$dTOf4{2xCmeldJns-dOz=*h{+9Q^$4
z0U9j*#}Bt~3I_xQF{P%ag8H}K({vX8-jQ&SX(xY9S69~r50wiSE;wvXJA2^y=fJ2a
zE_QbIowrL%N{-y#p06m>nbEp&-RJ0o*RP9bWo2EseA#(@+}@0ACWad~ZYXGIa4@s;
zwRos7^&g)s$&#Iz*!c4D^5)}@AHKP{`Np2g;>D+fLqb?WLqmI{Ou4q_-*1~WOKNW0
z);)V<lqPoY)qMN%rDfMHt1Vl$B&4OaRepYU(ean1rR7(t6Z2-x;wmmKu6kQhT@C61
zty;BehFz@{4=-<GUS8bV)e-G{vJ+;^;AnJc=oD6e^x$Cg7U_`G=jY}&FI=eTq9mA;
zld~c3uGN;Dn?l^;dPlCUjaC%l+F0<=>BjBb*CVgZ>YKZ9qoIt9%!2jn`9(!V!7apH
zAP0ELurM*6IeT{Ev}tS%pfs)*yNgAxzy0Im<JTjm)&2eD7#k~l>(;Fe8#hke8D>@X
z#zVbnf;mU5rzfcJUd;UZ|BuJ~p!}j&URHK&ZS-~q4{aAcJ-r7XD;|8TkT6JKsQUhn
zm*K*dD=rQW3}?=qS+IC<^SapGNq>HPWLUCx;{HFMxaZ8Bt0>gDA@{afl;@hP$H#g-
z{QTM+6dD#UR^F@sRQCR@xS$Z7-@jh3H!ObUQ}XJ{%3D?k4;~B%2xth<V3~j3{r$bY
zFS#dm3acl5e00>P`9k*PRiWBEG8O`6W@bir@838R$-`XW;T&IT$n$yo=ey<iAKuR2
zfAr7K&;MU7GN^Y}R8+Jme&)0FW!Zl{HQ!k*{{H8!k~{xguB@nVP@0%<X^CfjY2XaC
zfUq#Oi5@L)Z*M<cD|po4e`*d7$KgNCw)OvH%F4<z?(f^{^TDa@r~1$JEUC%)`~F+^
z$y&E%US5`XVS(eCPX`T(Hi#jOd`dH;4vGF0UI7`zn>thK3w#LAis8YLPT?O9+vOP;
z_~q?d7A;abl4RK81d4LMxmK>%@9wQO-w~tt?d@&%{oP$%tIXPK{rvbuL_|JZ_P4Js
zyIKA96)P_<Z^zN3jO^^gCr^4V)0w~c)4ppdudl6**jx2AJwN&NwY4P<^}oNpy|^_y
z+$v&c){zg(o;`iq`r}6h!vRn+Ghu?m^w8c%cLo0a`^Uk>l@)SRDtMl-y5E5lCphBk
z|C*+qofVpW>wf)zSx|@m+O;+Zg$2hSpBEDnVhRtxu68pldBv(#mu9Y$a#9g`cxtLP
zZ<M;F<<4^zj@{z=ZOfLaZP~Kr#Sx}YBI4qQ@7|S-ii)~$`SRh7$;V%8`t+&DXO;=)
ztXZ=zT)PIU<5I5K*8j8V>FrHSNMK-QW}f-_gEu!PC*$<fOASM`A|fIhPCs3=V~0e8
zNmHetA0NZZ8M2|Fp&dt)Uc7vH@bYD0dAphgugl)v5@lm!GcrDK(prA8Td&jZvbP`p
z{rzp9{axajJY-<%z{7$C%a*l0KHh)%ec8J^nx7NQ6Am!UWY1GoRaH?{Ra8}Fwg2}+
z*{w%H@pJ#$=<RtCI|>$_vH2YOd&>JeJB7b}`^Le`n;UYoxw(1blqoG|&iI^}ZO;Gr
zc>nau4H+v|{nk2vq*M6ynk84Z))f^QO`1H}u;78inOUaYejBrrla(iLD>}MC^Ua-|
z!eU}#3=PWeeGh(peQk95|EZ0Py_)^&*6EeKz2&NXb?Z#iY_Xi2oCz~$cIMvRmiXkv
zL{mTJ-%B@c6yGEyESx=e!h<_Ii!G|YXuP|#vw6!FlQ|ZJi;hLkpQazrr>d$78p{g|
z44h$6s5Ey~+4Xg?Cr+Mp3=0!m7rVP{!2*Spv^1s(ek<QRecH;*&iCNk+uI&KJ}uj}
zeVcy&rq_|Ajc2Z0{r>Lm;pP7GQ`Ysrc#%=^{@&cWdDi86lO|1?Fl$y<_4jutd%_<T
zSZL_!t^4}@+u7OX7PY@jDs1HH{(il#zuTGTGygHraH_hbd7jMN_4_w$*bud*`R?xW
z!$*(0zT5Tf+qa6}-*n^l*ZJ-j=4ut_K5FXrS5II6_`2BL8|wa6)qFl{UJ`ZxeBjPU
z$;rvhuH9lM_hiQJtuj4x=1f9LO3S|5-<LAA?Cbt?L~c$yc;Eno)4~aEtJdvV9~l|B
zVat{l50xedg#(9Lxfwm~@A&om_vPA|mc?p3JUj=UfByLQ`~AyZ*LM^?e(?G=H#<A~
zix)2vZfr>W$~7rHHI=o#zTQJcC~95sa=(L@E(skwc5H%&iqXOAhYlTjVR!4+Ezkh!
z)lWTreQx{f{xUGIva$w*ge>8=Sh#Q@XlUuSUFj<kzd06-!OQ&;e|~x@(0%mA-fDB(
zyt=x&l2_-uW*CIpR)6E!Tm7A_|9JD}&BpU=tKFuD%2XR08+RN{0(H1rTU!~H<QMJT
zyEic}k1sYhwnyGxPTsyQr=)VrmMsS!e|#mH@b<z&=PwmAX3biZe7tW*&CjB_uS3h;
z-?O!9-Rz)n;L*`;Mg~SkMk8H=g9i`JFi2$jJ7@m<enw_ChxmB;va&Lhc^;wR>tY%g
zE>t{{WcZ`Tt~YCM`TMvTvu0gNy?F6riLAD^_L(`B!q=`{3kVNCK1tQP;L{V&h{#As
zXXj?O4{S@;%4|+Q-!^fg;FhghH|E{7+W8dJq`Y(IPC{B5Tcd-5aq73Hr>855a48CK
zJb3#yHaYdz&CTf>Hg8_6%Om>z+UMuzH<r8%I&$==qmJ0=URe=A!A8U6V+$%jKLZWi
z9qW~DXJ+R+ao4Y+!s5@LKMV{~Qc@eXY;j3RQ8~L@=~~;SO-7LMOh<+TppMzb<l~n(
z-pAK|6`e9=%9Fgu$9km=%+1>aG+JDg4sOl9&cFbjcMud1U~qPJe(~bP6)W4k@9*v|
zT(ZQ4dH%aQJB8!o;*2u0vO0ggTD?9YF;P)CLU6*rJl(iG5zA7SY^weJZK3~syBTJ=
zQhVn~w1MWjeg+p<$oxA0>S(vPMZp7xJ9qB9l0Ew4!b0bgvel<Do12<8)ch>kQ~P_{
zEi2G?;i^?ywFlO`oj<p~-@ljf%o9UX)208Xe1Ctxzxw;Thp(=#_VDmHaAKnJOJ<LN
z0D*V+_xC?}lCosUk`pW~t8ZNIl{N>B^LqICxn*UoI&=GTmkDT`F)2yu?DK=o>=C=m
zbbY7Kn$@*pg~pw|)#Cbbdscj(eRRzlog>GOKRz?l7&OlBZ~wQ&IQ`s%XJ=<~aC0~B
z-feyA)Tx4(msDl!Y9yxX$GbT>F)=YS8)jWuk@fTDjT@kn3DoS}S^ON-s=09^g2BPZ
z$7gFoCNmq4!~K1=hUw>IR8&<H-`v>9(D3C;38>Adsi_Gnb;NWc6t@2fUgpy{b*kv4
zOP2(Mgp`B@@^5ZR4G0T6wl(|ugeg;4a&vQ|b}~1#w6GjGdQ{QYR#rc5k3&I0!Q#`w
z@%r)mTAG@erc9msvi$C@(!-10`=zFwZ{w9VNI4-;_10&u)z-Mzu{(=cv#+l^I@h}V
z!HX9W$pJeSEKmTI$DW>^J4#=Rz1?+ndwzV({yN#t&dwiSug5=p`c(Dvga1!X3WGYS
zpjnx{Ri=*~J^FAvfB(ZvOTA~9=g&Ly_t&ed+A1n44^B<hj@Vme%KIqt=8KDqAHILz
zpM8CuqM@PS$B!RD13|yPzc;M;QIK<E1LMk-D<!N-R@~__WZ05_UrybB-jTDj%_mNp
z)C7v%6BCtR+}UX?rWeD(&dv@Bvcqk>SFhE6c_Fx~^tGG)>eZ{SSFDq>uZu~(b?cL-
zzrTB6prDM53}|RP_m;`d*eUn+*Y_`UZhy3Vew~w-7uPi1=r%>?Hc)R+&ObOf7&M!A
zc9!XuMXLPmhZpL%fg<+F2|*rtyFGD@=G<Id1s@-|&W!Mu;bTwQC^2o?G!wC)P(?*W
z3Hv%5Ha?k-FJDS-?d?wd_Zl=;`;SHR{{<Tx8v!Y)t_v3~WaZylrKO|O5~1U^J@4*=
z=g-y4W!k4r6Jz6*QZe6E<>A3`_gIIZa>1)BE2S2H%e%i%_V4fS`5*o<IHaVg)K+T=
zb#5qn>h;UbQcH^~c)4HeqD3Wb?@x)Y;JSA0+Kqj+)?zvl4Krp)Y{|U5ENa${9TpW;
zRZf9{f-!pHc6N3~`DU>(F&Fk!78h8^%$PCbg2&O)j~_lPn0nyFiww~GURYR|K&MMV
zadGpaMM|Jar4uJSmMmFv;K&gcrHLH>{{5@?`YLqmv}x0HqnnOD2DMT;dV4`l#KO<d
zd<C2e{{5-^^6Kj9xTlvcUTh4|U{UB@GjHx(UGvzO7@0kL_cAiX?kbsR*?zoF);S_V
zLYBSw$A`ox&z@a+3LR+L5u>+f&z=m|m4;6<vp_!Dl*-M-#3Udst^NJh#N(GPP1=_^
z-yqSccWrZ7Sy{xM3d6cTAKhd2R!x2O|G`0K3v27c2M#bexA8dE)$Kbo`$Jb(*QQNI
zyGmcTF*36;Oz0B~2n(B5S+Snu$n}NJ>}|((y2921@W|Qhhzj|-XpvIPo(jRq>i%sW
zDoq<V8p_$#bnGsFuVia0yEbZT)6}V=3@<BKLqkJ%{tgNYYm+oiyD;tYlqplBqBluB
zF5bPp_SYBAj~_pRMkw;`?dhDZAAd<~?I|N8qYH~%xvlP<J$8)k?d|Qy-`?KN=)o)%
zc8C4z&aieq*)CyqzXvBKDuc@9*Voo&`|i)VX~e<8RPyeQq;1ughNVkYW5Yh~-cj;0
zXiem1Hda<vqt|Nc>W{y^zP@4WR@cpGXAP2$aNN>5XYjvNhmYg%pH3Sa8wIiMg{xP0
z%h^_4nYAs6heP3S`?GiN`apST_4<92JjEp>I2s)oN=r+B#m2?SEn2jw;PW$I7FO0q
zfhPa?c8T}*)yAv5xY;Xhp0TCKiR0P1x!&?E(pe`aC~nxW!NJFe$1LwoN9pTpidtH$
zu9dE`ds6fF>-8`BtgNk7r3aZ5K5ua3Xar4G&i`=g^qxI?vU<hh4<0<oxN+mg9W_6V
zuC0sZj*X3db9cA+T<h{_(TtOq@B1Ab%`F8UO<GmHbon;+<L7PnnFa<1I#yO%g4#FH
zjzz`A3zsdswx9-7J?7^2-nbFL!p@$2xQ(}?rw7#Vmv!M`Sh{qn=`%-;g}?1mP6#}C
z@}%ML!v}|2xj|jUn3xy=aq)IgOXtD`f!Ej8HqV|deQkZbzqVNJtt}I8x?O#Ib;9HD
zuQpSrPj5c`R7p{B;jN#3etzqU|8i-EuXAy9WCX=)+Syr&udb}zDmVSql`B_Lv?8|7
z)ea2}wW;|rA@23gojV0MSd4y#xFoKh(?4sLl!_4NUiEf<`MBiiTW*<riORjWh*d^b
z)-d(dl&Y<B&doGtpRDG4Xt8@gXr>|BMC<Z}3k|DRYd1ADrJQs3@Zh+&r;?eMmzUwv
zx?UMRcJJwWsgEbk_-}KK>5xJFqH}YtlW%THEsEAzwd&3(0Re%AK3VHiyce$REKdLN
z<Hw1flPe^WKYn=VoRXfdtgg=9&L{gzskX2F_gizFxIGfZ&(1J1@W|OnL~qM+tgEwQ
zcsct_m-%XDc0QMa0)w~wbEi)a*WJHnjn0Y{D-yoExEQf9$#pB^g@!K+?R0c_<n8N@
zEcc(kA^A9;g{7rwRlHVlS=q6dmzSshstzw{mo&)`ICSXHhc7RK87>u1o-sqiT)w)x
zx}~*sVeoQ4Q0wH)+qaqG;+0dTOv%cbxvG2bUfbH{UteAZ&&(?U4cN^x&3@sWR#>?4
z%sy8amjz3fu%xD@-q@Ng{#NeVj87q9;pWp8I=3f%es-3j0aTsn>-X>TjoV*WyVh7Y
z^u(!CPRsq~8dQDB(23sG6K6eZ)+`SX4+ce+_xJW5o~Z1ea;>|+fBD)J>#{cubLYx3
zykz*()yXww$`nvX;oaTchi~7OE`D}qVKVQ%J(bSde|DF>ophUZ(>^V&J(ZP}9X&m3
z%I0p#yv#Oj+BBo@-#4e92TenNd2>@3G?w+|%*)HmSND3Zm@t2S|GBx=iz7FuRs8#7
z$tQ2;GyQ7mx!BlPK{2tmNt1-8Oq-@;Vj^<5oqzi5vKt!`OUhQW^UFQ>^z^iZMS;TE
z^xxm!YUt}9Umd=_;Kc>S9lLikGr0B1bb`jyA0O{mXi>1TniUqKb@}pT=gdq^y_g*g
z4!^3W%%9J1H=lpOuhQ`O??Q~z&mFn5vp6-%_|>9i%i111NYIJe;_<GcpOsrI;rhDR
zAAi5!XY|<JCu>o_(An8};@mm6vNAJJ4d6G|>fx7{m%rZAJNzelBNxZvKb%_o?@C#h
z<?K~@7*?yiE$gb*nuv`~@1jrN+?>96#fpw~!ctOExjjvb7c0-Ruh-jt+ch@X;m_Z{
zielXh7cXvJ>OEaaMTMoAou5siwg5Ux_V!)y#igm=-rT%!=~7b!Xvs|5^5yAU_wdWx
z@h~$pcN|UPk++ipjg(DGJJiBy!oM-1=iS}im;e3yT3M{2?|bz<sO?<-J`U8phmMpr
z?C<U6ZE9*VD0tw|;iB}R!e%D>j#EB9J^=v%4)Q9pva%mvTvVRPe)`mHIpZ{*Z}0AE
z8^74S@7ntKe(&jejmIA+{`v87!}jgVPd__5n|)ybhp@0P2Mg1T*|U{(b$j*9&CJ@G
zo0-3S{d#d_usUd{=;Bk$>TfzBp`jZS53}Xm-o~4imG$M}t7E;=UuH2jh-!y{3L#Jz
zy@gYFL;e4{Uv2--&9(lTrE693L4k*dM?t9b!NZ4++9vDPt;@K-&-TlgF9sDK5`G=q
z+tk|1y3Bt*pIm?Y=JfNIzOIVeo+n#jBX=apaGFkJQ|Rh2#tD2`@)iXOJv}`I-`~Z8
zW@6R_f8Dj}_2x~RjCy){67ur;K$X>|Fu(E#2N+XQQX0-bZ$AJ0@YSoL>*M#keSUUU
zP)@E-GkBSUf&i!{+LF3yRp#Yo54Yd1W1fHh_>RKI7j~ED?>ckwqG100eXSlUldL)J
z-n%D<GKdxX|KwzK14F}wna|J6Z2t47CL=3rQT+Zo&`iLsZMobGpy);!+H-VwXKyI^
zuy68YVHPGv7AD57uC5I!Cnsg4g66d9{(cRwsy#o;l-s>eW}&Wpscb%|+hzc2#=XAs
z#a!X-uayfII@WL2(hm;|Jh;Sj@`p!9xfw2<TDxuAwlh6Z4PU-bE<KziA;vj3QQ}$r
z`NM~qg*u;fmmL3X3>tD*Q)APO+VW#{_owASp`k}-8mC{_oPK`)E)AZ;2KAa|Y%L&7
z@7~|Lzh~j)kN<-I-aXHJ*uW<^Q5R|19Y~dwLu{;URaKQhrweFM2DFr8Q#-%>CCy~*
zJ=NdW-SRPOFi{A*Dj~?QA?2jdt>b&s&(E7-TWuD5>}ipr0LP0j+mklV;A7F((P>$~
zUcc(g3r1U8TM23D(=Lhm9fgmNEzG{Y&cMW^W!pBhHEY*yEPsFR{HfJWNl8j>JraT0
zvxL?COtgf4bqcG$D13Qmr*TL~$P0-{vzk_zPG#j5dvIZ)Geg7Y=jTuRXvPToye(#7
zXFna2KYy{|)17sHt<Ic1dvR5$_Kux9ug==GV~51Mcke)XaNaz*K3VH)D~hg%$Hd6=
z^!Cn9iS7*)T(fCmOiav%`v3pf)=r*0x%utw?bm0e-QJc9(lc$E*q=XtvU;N8<B(UY
zl{i$j9_<!)4h|NMii$E4=51+dx$rwwMQEXOJD(|E$$z0oj~-oE6{_8FG|9?MOHr{=
zFMdM;<BphhXO>8OdbfVY42goBF)i)wr)&PdxTwq{V=;m4y@`p*k)__#U+mkKeckWb
z_T8T(rktLxfB4ujHY+Qu7Z(?^yY<Ov3a3m-{5O^3u))`5>(=?@-QDHNq4?zG<>gC!
zXPZ5Fc6N4)fKyR%vFGZrwI0*;Vm;j4*c4kPY|p<hq&HoAvU^UBj$o&Yi>qrZsEPWX
zU*68=%-ORie}8|^sn{}Q>eP$5f=(RMPph`JwicaEO-ytIEm8>z3v=U8R8duJ{qw&5
zzw*V47kTfw`}_L~$;kNFFJH1mKvq_EQ`y^FY|p=jM{daw{P_L*`of>f{pZixV6sU}
zC&D4^%nV2S^wiXeeX`bdVR5gotyQ+Ov#XD+l(Vn%5fTzQvCMaN$LiJDYcs|5Vm$Wj
z-OH)iVpH*<Va19S6PlWu&g)m$9zAwUC^`ADeXVtGYG$VAqD70O_S}1Lu=(V^+TT)J
z{Cs?P42_Id6;_6YiM_nFRU5RVqebA-_Wbxwxwp-BW|qIZ<2h&UT+l*+s;^xuR;`*;
z{r#Pw6Gvxvw=z>>!<1>$CSAG|q$JdN;^yY`r_UBIU+(TV$Kv9GzZo5?t{>c0`kG_@
z`Q`J)bs`*0OiVg@dwYFmt@?ib!^6X!ix(>wmXu8SdGF@UnK^fMOsqS1`m{1=EkujJ
zrsU&&Qt$hhEK#|%(3u^yqU_gQfBU~KTefWR@bvUNTs|f7pJD_z$6*tJpZnvw|Np-K
zf5Gb2+Qz(Tptf)MyBMp~wKj^1iZcunownW#m}gT7n%I!~-hBG$p#ujT(ssM}^`G3a
z!@{QO3&-m4^~=`kGBq-Ai|I_TUhU(|$-)H66h5kZK;t$uXC6Fpf&(<MvNn4Ai%m~Y
zPj5c|+*w29(49LnOP4O)QSnj9MM;q1<(I{xo9}b9I$15RI~sCGG;CcAr(8dKqXPp!
zKfj2mDC2~EfwFcr7HoVn9JRHz78VvE+ze{{?d|L}H8lyjxxS~1{{AYxar5TEBS%==
z+}w;VZ+CNdKMWrx`|)=B{Z&tAPMpYCTU*O;>GS1{$?j6tPyYP;Tu@fF?DoAanZiQC
z!W)y1^S!yb8PpL4EjNiZS5RPRYiql3@#4hHi7VD@*dUOXm-pi4X7x2|*RFOw7`HKr
z)mH!S@9)bmbFj0p95{QHx2&w}!sW}&-QC>x_EcVe@hN1>l+fN#Wq;^sk;h}Th{#Aq
zBcn~{zG_wf{G?j-{hjanxtzjk3={4JiymZP%-nG1lx~l_T}?xKJ9~wVoR5!BhQRJs
z@9yqq=jP__a8cr5VUm*2S5sqq_UsvGwcGsj(`V|QIeeJ8uCA`2punMD&K5N33L071
zTlKYR*|KFm+RLU+6<y{xmrGb!I3qjzw9e`^D^_sW+1VKw8#f1N9C>nba^{n-Jv}@g
zDnb$x5(zIZEc~)>#jC^Z`~_uYZJnK*KWglb^+-CWU-|s`v$LBU+mWP=J}K|H+WBOg
zy1TjO&OCGd`u1aCM?QQgxaGBA%^IHY@NgNM3W0`_SI<$$&eY986KEnLA`9~G?<?9~
z`2Qa$DldpV=#u<%>eQ(NPm4C@+%y6W9=i9-ad2}_p6wp`?c2Aji+1ncv17rC6)TSI
zaQXT3Cum{ix3{<3pFByKdH>&X|M{oR^j+ImTRro<Y2?NvRyDsl9NF2~zwYj-{QTjp
z`Tajnb+_|;PEP`@QSd2$fA8q)>+4gQ_7_^n{P^`tNmrLQe0|*7ZGLricIW0;HU}<t
zJ9zrE_cO<|A0Hlq+HU=FwxG2oEp2UKvzxA;I@M+NINayptSM7ioSmJeYWFm`C^=?j
zt-7;`osBK&_O{%w_rimNga3RyE`Q?m>BCdC!wVi9VEps#c0Onrt>6A%$3$g!rU_w6
zeR8&4+TrUIR8?6oUc3luzuTHMZ27ck;ljo%S3;I7S(5Pe)m5Y8{1fc{yuY=TJA8ed
zYgU$4)V3VW;FY@zAF~}gbg1C@Ia$yOr*|RyKB=gygND;UgG--2e+I4GZE0@@jW>4m
z^&Q)idHKVqr`{>4sSl6K*B_Z_oL=zxnQu#L>%qHs=i0G^fhHXj6BXn3R5U($l9G{~
zefh*SLqo%>Nj4HvQipEemQFs_;}{eq^z7VRZib4luS9)(eJ9SC(P5f>?ZEx}@p(VR
zb)#5RRaKWPU;g+=r|_0;b_P&J+PQP*j<UB>LPA0YIX4V^=Gn~D>+kP(cX44cGBR4Q
zXi?M8&(F<w+3<e+@iDpN^|ju*ch}ZNZ)HEQtEIKo(cQg0&RRQc&4SZev-`eYTN@1;
zy}NYj(u4Q!<CDt|@JgE{oS2{p8F$p0`|IYBBP<_3egp;b&(F_6^N>>S87KHD*ZlgD
z30k#bW+nz&w!5?V`GiT6nn3HU)6y<&0Zk@+eSIA?95!Qy#Lmms{<F<^zkT}#a&}Nq
zP(VzK&+-mA(<~7+|9L&Px92Mx7zE@Um0;NS>y<VrjhpA)Ij}Z*J7_>cDm>%#G+j{f
zFlo}HCv1<azr2`uW@k`%`1+4ASEp^;_Y*X?l6<^x>g`xj2DcuG#*2&Hl}$}W+4*D|
zmM>rKBfj+7+UUo>zP`4o`?KRtX6sYSnjZyQUoTi>6kI4DvbFqu+?V(F<z=nQj;sh=
zEFdN2HT~>7TTsL_Zry5{c5Y5&Zc^)v84@$~B1E4XYie=|buPKJO-1PBe4(B5694Jl
z(23x=?C|d0y9WgpC(fKXa%*e$>ZAGr0RaatE%i36{+8q7?tXep)SKJe`D=fDIcR>r
zhMAd}dButq56;XqE+{Gj_5LPIo7VRF`g&zMJGt3rxrf?#r3)S(<Bi%08iLsO^V#gG
z>06g&`fA^Mb1nR7EodBaZS?kptSqnn`WhMset&;2C@RVtA0IDucZct6v#XzsjExWP
zDt&EG{LCjJGV)?r)2T;~9zA&X&hPux^XL83dKx!xHtsc5nCOx6DE7*+vuAtdCZC?J
zuWW5C?dRuLVlN^hQt<ws?UE%+9vp0D->_-ZqSGRxqM)=iljBRn7vC%&A0E)I0)K!1
zoI5)NU0q!}dVANFA6-%U`Wk3;@!k1v-sJ3j`RLK34Ef)nMYlgbJpAJL=ElZk4`1J<
zYptI?eQGrI(!amI7dyA}F)S$zTXn4W=bTR_N2bqU^irCb@c3A724q3lYuPzL-rn78
zbEOTFSk(OHbcpN6J-D5}f2wDCZf@_-&(9YxSioRrX0~P0|4&c7LF?1LzrWwUXpz#V
z&z}oHdHB^8&IS{Xl%pG;eXJ-bD`T5}+V%CdwV(l~HEVP-va^{d9AkY{V3Bcild4;<
zRO^i!5j@gnKFee#PMqlB<Fh3BjF-3f#a*S@Po6(lwzZXA?B37D@Zo38PX6@`U;eC*
z*vNG8;ziKn>%>GwFE6iGrF&*wy1hNW@Wq9NQp~ktA|emY&9ydJHleSN@64Gq1wTKf
z-l_`z$h2gU>8Gcsrw0TEuAFv#u64PBSocfY;>X8&vod95Wfv}5<izY2CMG20w0LWE
zRaMf31&&*e7GGHr2nyVDbFJN*4cXY(E_tn4yjWRDN$FK($dZ3=F9#X_&t1dXk|?F2
zq{Q^{<x7j=XFO@==f$p-=256U0a`t)q^z7Ox5vrJso>om%Z!YS1=Zi*oj7}T>dUsH
z4+}u!{ql7`7(agec;e*AiIqF1U1#;y5mPoa+<5EuPwnt^2kzYY<Nd}c@6HZJQBl#7
z7Z(^?1bSqx#XLPdL1jfzk<mPxN~dV6S4nAUZBwR*%$POn(TR!524-gKjH?Q-wqNg3
zNNLz|>BGy*%d2vCFG^zZ=wIrfFyUtZoH;U4FAK`brbT{xadC0hRDOpj#?Ibe*O(X?
z8CltjtHbqWEQ?t9<?WVCZQND!?q7(VUW<TE#D<1x=BB1wkG1bw^}255rz>uup`pu8
zd*$WnUAb~aYD#-+E9<1mlM{1tdOA8dqy+o}0|TG^nl8R)vk_lAGhchNX7I8L=9kLf
z-)o&cTe|M|Tk{t$UMN^t%wP+eW01&{lbZ`#M5UsxzPS4PJEPkxs`f|~{dqE%-HD@5
z*4piSs+${|S<Vdw^IG5Mh3DtlcJ%kV*VNeL-QCr?GI;s5${4K`D_36q4Jx4Qezvr?
zJF5sedV8;qOJ&abZ~LHVr>R_iZEdZJs_Mg+mzTe|zCONp>W9?R(-JQ(ay2@xZD=U?
z^5x49pFTCUwXwy-#DMCUIkwf)mStXE#v2n8v!Uv17HAHl`rDh8#qmdy4A;f%40`)}
zb@=+ajra50ep-X-<je(K?Wxt()u3tj&(F`V-^MfHpK$bs1jfH}X3Xf=v&Y7!`Ww&9
zn>V2o#h~S>;p^iR4GjaI`4+pmvDwxB3VH54YwldxkkHVF@8A2&9|{Tz5|EMUS+HP%
z+xz!xqqjeJ|K5MM1FwvQK=t=`M;{;We`yzP^MX&tLI5;Smzb!?@Zjuh^Q&p+Po6#N
zx;ktvsJ2=YzhCbA`}@alZ_iJ?WMN^Uprq7Px4-oDwW|GZ*XetEd#9wOJv!9N{bl!)
zCn-~=Pd|L~rsQ(}`EFHJR<UKDpZV_mX<=dU;LXj=72n=SUb%WTF+acGwOj1qv14v|
zRjR70dn!M>J=?uXbi*vI6h1z_Ew_))HqXz9uXgw)R(E-sZ;8#B<NflfyB@f@x<0(R
zI-FsN=)*2Up<Ye@r%y|lN}A<J<nFEf@PM(_n}=clzhBz2+#$2Et{ltA%2F~l6_vNE
zIk4P+{;IEY&!0NwR8wQakZDqCYHC{Y>I$c{d7cYsNx-B@8Q!i)gM8;Yrp%x3uRZ_y
z`T6V1yJy=}e|zH?87bM--Cg+L0OQWh4|(NmBu-D$UHl!?c#^ZJXefJo%P~HF{yDGm
z-`{d~#@cFMdwF3YbJVt+&O?WsW^NSxbgnWLV=39zW0I?4Vq-Vf{w|v`efs08tHUiy
zUI^T|d-vt04I2!mOqsG^%NCJ^3m0Df#L3CoxP5zhZ))c4ZMqdUa&OnonmM!c_4W0K
zPn}wItn}5Q1q&L!zP_%kuI~P>f?ru#dB%(xC$=QKyRnhE_}Ll9vNE&3f8(}hiGr5#
zF<4Z7Qdzq}zzMV>Q_i;P!q@Cw_G#zlfEG2JELr~N=kxg&_tjSONEkfW{C#5LzjqPh
zI&GN^tMc!O=|nK->guYft2;+VMyBmtyja=9#3W<>bI@L+*Tr|1`AUCzcUKw|TIc84
z8m68S*;DzM4YX`UL{t<MavIv&mvf^dBOM(b8CwJjEM!0#&)b{(;>C+I43pX3KKuCS
zC^x7DZzJdbu8xI`ZISnMy%K@^Q0?$_N7lve{_yUuH7MRbKR>@bpIcW~cVp5~t{ppe
zfZE=mb;A4W{w8E(bX;8Q{`lwT=b-uKMT?Z8w&#Hc_-F3XkJ-^+ntjc|(UCDVH8o;u
zR_NBe)N|*~?I?Z@D*YEMSioR6-~ade`gN<G`$a}df@TbRB#j@uf8Wn9Z|4vjD?4%G
zM9|3Fy}i|jb$=?ROq=%Ta67+&k<lc{&A|(cpPvJbx4nIooSogBetzD`p8qTMyaf#`
zzqqhap!;Y+X=&^1+0lFNXR))fftr@K)!$r>_sJ&a=K9L#fchD``9k-we*5^b(LsSh
z!8SiHFAtQ3N=i#J#U~$|qOPpW4BGU=KO-wEi-Uusp}(Jho=s(wqI27YJiX#)XBw9;
zS2r;=UASUJhi>$?3wb3oXU;6z{W`St-5pC7c6Mh+N5-d5pGIuYla1Pz!^zFfZDC=t
zApQKjANT+NWAAindh#S?m)!jG$G7F)e(?Hrx0r6!6^q=r2b<XoKRj?W$-c%T!^b|`
zJfBTrZp6dg@Ao+;Bq$t7GR&=<Sf2Ch*P6wPnLAyYnwpq+WUWM;+jv$^)3dOU*qna8
zEkJ{X!6g5l3~1(~U(R+z`gysE%F4u}U80~4rsSTOnah`}`^~fQTrVmuEq&{&hl&tr
zi(-wPd{k7_)nkpIjI5x*kd~JApuhq&lq!1U)2AZPHa;~qHd(8ZhULrEg@l9_EM3Z~
zH@&;^^E2>p;1|{2?r!c18#xOZK2X!)-rnlVZ$a&0Tid-+;#*en$yk7v_g%W*8@sy<
z6nPrj+N-~BjS5{IwiYzNrW3V=<L|GptGC%`Xn@vCJ}9uz(A9OVsHoU_YToSG($CJ!
zY`(re{_&rmpFs<>XPIWRIdOdX@&&Y5W|o<r9$(VN8FkmLUtd1iUdFac<nyz$hu`o2
z-)H~t2eX@-TSr${Qls|FdQ-8E35oww?P`87<mcz_sre~%ykCC(bspC<`=cEk81C(_
z*Ei1i{XXTw0>>L$GK2S~@%~cZylK;+J3EWB=e+Gq%)7sjS6p0NCuWC0^0A(utGf>y
z)JuV;bp9K~*M1G%yL?f~jQ!1Re#d|NAHA1hTxw`w;1CveEk2f~?dRo<D2wD;&O!GF
zL-q~-WIA=~)P{<WpygbR=bt<4h#kIuUA(om)hO`5eEa&i$8S7BzrMdO|NZ^_|8I<L
z-n#YZ$H&LKasJRjOs-bY2D$ET?_T4#SFT@M8=cC;cS=}7;>L;-`x_e@1v*^>I$b~;
z1{N$_=(s#0_e|j*A<!PIIdfzf95OOi_=tC}3fv=o=;+a<#~81Ey*lI5n;RRM+1S`J
zuC0ljJDDXVEzL=3qC<GNxKJm{_jh-*Lw3H_R#0HroOU*AQf}?Ku8w<0j~?ZX+a9~S
z%*gTQD^NU{x@~7)!hBZUcNUAUuP>;xck}d<pMSsK2kmRf&CTUtVY0d{!GN(iF6CNp
zM+d|F^X-j|j6Z7Z=GoQWTJSex#pd+$hfba1x^?T8fvKr0Xkldj>{Y9@=6*eQ`m}eN
zeb%PT%W5p_?Db`pQpN9$&)Ca?)*;3>OrI{!#l=<d_gATgrY7SAKiyxyzGgH0-~Yb+
z`MJ4;A0Hj9dRqDE$w~X=8%iG(SafuBG&D9cGCX*3aq)}W+x5@Qv*k`setiB^@uMT1
zrOPri3S25*hd)V7PiL>M|1Y(CqmH(Ab5oPk;%(OjE?&I&<^5di@<qYR{VrU&vgH2X
zsmaVz!E(aF!he3fULUb3#dB_EZB5OGzu)gCAL$U};O7So(LXt6|6~2HJJ}D4uUVJB
zlkxKQe(J}_!?3&j{j$p~`|JKnIV}_@D=RCRw)a%p*;%a8($aG*i`lNPk8htnTe_&I
z=)lvWjWs`uG&D6I{`>p;#JO{AE=rAS*XrKdlG)tS!lDzoi3PNnwyTTl-o9FGVT;e+
z*2T|wj`hp;FLv+0bbsTTH9B|p)$WeEHP^cQn)Z3m$!ey%Vsc^xKF1%8a*$Xy5mevC
z*Z&pWUG{d-RDK7my_r`Jl=92lx$G```yyR$diVVLf0E0VEqifsal6l#yYKGqetd0h
zG($uB`FRJgUKOpelXqGu(Ae0>u;g;^teG<pUbrBjH1S1uXp|N|Z*gH^<NEdbVQZsU
z8Gd|uDGciO8-v$@@yOfFIVPf^qtnvg&kvbrdGY68x48bXFE1}MGJy8fPGsMtb&COd
zF2F=V$U3gM+4XmJ6qejNRsQ}SXfEi>*^H;`G11Y{(A8X^G4J{F=im7hE_-j;s#RS(
zi=Q95a%GC2rj(c%o3XL6grwxbYuCcmRy^qv)qb(*-{0S-Ypr)zeoph5XCv8Q62~?D
z^wL6CCT3>P2-2>%U%r&&+}$Orsj2zn-|zQ|V%;yJUmQB*)FWZYRAVQfmX=oX>e(tI
zBO`^09tjBv4GW#y7p+*)p{K2-)zsh5f9A{?(8k-!PbpI3$4;FBFAnMK<lM4#Yo^ci
zW7FEtKX;Cf-hHlp1*o6*?d@$7wwBqmrQhA(AD_I>bZ601E*@Uqms^7cn-3m7?7WQi
z*!}zQYHWUad3tZ&yjie(IlH*{bgAS78SAp1Z3&-#*37Xg<!UI2$_fq+1`W5IIpd?I
z*0XAr7HCxtH#c|5>ubE$Wp5ljJUCQ@I897UUWjZLT`R*at_NC9xNe=^p~HtW?WV53
ze&&qNm$$dYL0eL}T8%zx^vT(B+1lE6xG0^OZNC0k^3++gxU{vkB_t&qk3YV+;#Fs7
z=Z%fY>~opEJ)d8{Zd+bOg+)zG4THz>)n%onQ#&n#Z!UCh2dzb90OjoCeX@l=Kc&v{
zKl*p&!i9|9-riOZ54^g%+A#STkJQFJrLV6UF|uk~m%b9=;pJ5n;Y!TU_m4jR=+Pt4
zRNV9Dph-Ww`TbL-i0rHk*|T89A0gM^U|~Hyy{ng^A|o#rzkm3!(Q~re!F%`QtgNgG
z%FCC34|Q;0NIN&j^Ex*dS5spnV~dlbj*iZUkB{9!U4pW*G6OTSw#G)rKY#x|oz|cD
zubAVoL9dXYpks?uV()4Fm>mu-N`i{u&8L^v#ai#`Is9<K*6iy-P8>U{zw7;cHap)V
zGE!2pMWD2_bkeL@UL1-?u3ej^6TffHy6MxWyK^XlHgJB~edkWhr?=bhPXg_<bmDk<
zb+veBPtTO-W&3J>PdakMW#?(F{OyM>E_UzSx6e+oWx|353ZEYL+h0ocp01}lS>0c)
zMc~oPm!ALE#hi2P789(muXo~5Y-ZzCV&|7zlF7xz^<vk-g9lp#oYKzDa&_yM^W{){
za(8#Ri;B?1jt-7p@y=~Licg<DU9x0J3uv`#%<eMZWqUq-+narT-I43pr`PSP_^2dl
zkihWs$46zwmI<GqpBHX)aNtl>(b4Jo@$=`!EejVe1XY|@`$E&w)Gl7U2-;~|^))Lg
zG12ka`T71FilDu;EiEj&-ddNx6L8|#xMhn<U|^t0zpQoHgtE7{CLZsX7k1*9X_(A5
z(<s$zYp$SEhlh$%^|v>QEdro$+xP30_NM&%c1|3MadB}^4m2|V@8A2IuYXa+V}^fs
zz4INoR2>wyI5dQKEcveGY9iw3VztPgm6dTNQ;-Nt&Vny$v0V)%ONG5=U2=4Oukxj3
z%lGfc3s1+cd*a0Dv2XtKlao)see>qbyL+kk=iZbw&3%4uZtAHiny<{H&GU35B_&_|
zi`iH6GkCiD^5o-vprD@>yRZI#-O7lKiw;&VT)1#k_I17PpJ~_DL>fnKOltkL{oS3D
zd;adL{e5bNVX})$%8LsNgLV`o?yUQ}tE1z~o14LQKOQho{u#a^z|l5MNvZtZ9l?pm
zpKt6q@$T+!-d90eG6E$H5*j)>=2#Ru&6zVN<<F0gN=hLAfBg1MOmO0sEhd2?por8}
zQd;gmUyPrhe`mqNrd@CT{rx>@)-0{5TA`DIm-}^geEYLLU}4jdBS%h5)eb*$_^@-V
zS?Q~giy0=M8Joqs?(D4&|EpK=;Xxw{E9=VnKNmW;pGu!!n^tE3`}c3@H|_8D{r1~c
z`Z{gOyH{6NKYH~l>%+b1{Jl%(Ek1Yd9NX`Am;LQSU&~8KXn>YN+}fJ$osqGkN5b$>
zO60njol5iO%`19y!%$Fgrg{E678aI{juY3`MjyR*FD@x5$;IVKyL{b*w6n8jo;iN-
zpd+8WUCy?1&+Hb<T9-|Eb#?XW!|nX4wzjdWLRK!C*Zk{u;j=R{gVsiw?ks;lucJdn
zO|7fLqo`=po&ELkE?b^ETwdn;^m=@K==IFY%X)7b3GO|0gSGnw>+1^(nHk=)q?VPH
z?I?Q6#U-w{MsI)pf4j2x_i`_!-@bfVnBl|w{r{6*Tv)iH;2~(F12p3N<448hSk*5x
zXZ^h{baA)!?y9d@cXk%DYlp32STMJ6w@ar`*1lim?WIqzgm2G_1s#Z??my3EZ`Id;
zy;Y@)O>S??J-ozoG6Tc8bLU=MSt-0N=jNhs)AO#clNE7oT)bGhsk!;%dHeqlwqB1r
zy-6;1S4m*}`pC^}8#iv`;O7s2UH<u*?~<iU6TiN?+R@z|Jpb;=6DJIA+Ai^#X;ks!
zgW|dQ_Mnydpp7O!-fTW^Q1HNEj#cTYghz(nSyxsxE^_T=VptWncGbO`*Qd{z(UE+-
zZ(;KBK87u8`9oKSnXd2;37Jy0+}hGoa^1RhuReXhSIytG=)ldJlJEC?=G&HcH>-@v
zBKy>5r7Nq$`IX)Kj%-Xm9<aZzw)t1|r9G9!6_u5Y3{~IWtn^zoGqRbD_rpbZ`G;$_
z-*Z~*)+-<(!NFir@PGl-yl81*xpC{(BhWafw|DS)&bw#s*VWZ+*t|LT{N)cH3SxE^
zvGU8=G&DCeGptzKwA5>=)7Gr38?vwKH9uznZ7=~jJNNdsSCuoTOleu{-mhe5CpT3)
zJZ$&ruWxP&%h&(ecybqLng8DE?`|<MGA2^IdNDg1Zrq4ieg5QgU0q$?!oot(B8H%#
zpbL8{i+$$X-OVVvQv3UxqKS#f(^FHK7tAgAe3;+<2xxtD#(wisVY9HcQKI($empkT
ze+^3G=a!3ziM7@L`*~dB?60q{FYYeS-?3u{Lxa`Hw5lqrU*F&N@2&ps<WlhWSLu;s
z$5sgk2t5tsap;&g>7C;9BS&1C--TYg5bN^#McM|lseV2^GyZ<NoxghXB<5S(|DHT~
zl5<TVo1IT4AU#xEu;%~Y?`+1k>7jnLwZFbNf;vT|ufsq~ycii7L7QZB)=l2o-T%*S
z^Tv&aJJ0)E+^--mSn~FkXnf7b)<7%4gBKP$U))*zT<7ze`2BXE<uJw1&n<N8mGbcO
zJ9cWScHrhT-_^g%?K5k?d=?j66Sw!)ire!|U)!zzG~@B($Iad1`c5uaia`^V8ewZ9
zwtf2f<+A_BXS4G`6HTC<PFkU>S~P=~9k_Na?5!BH!s+u3>)wT~3ORVVo&VvZM@@Hk
zmnWZ^q6ylK@$b)P|B^R11Y>uXfg0%-m-$MArf3`;9YH%RrcW0S3JSWypz=9A;`?^D
z#c!X^nKo@1o5D<c`CXe{)OB-wdVU_X-(qpm`lzj^9^`w^-|E=RcJTIX>Cey4w=dGD
zc-(8g=3kyh*cyp*^K84lrfM->C`&XhUBe}!(a_VwqoSg6;PBzY8f*3B@Ah^Wr=L^M
z(C~=8wyQK7G--S89AEyvpK40V%Dqez)<jgV3tJV!`TN^j=T<J!O;hX3wk4iw;S>h#
zwgt_(l$DjexV-#)@y|ZBU+W(lE4cWt3|Se}(b3_sJ?}2huW9RJb_%7Rn`7v;zW(Bb
zt4FOEKtm&8Yopi}d)(bo$jksT=WA2(!$YkeK0Y;vqGoJQJ1h0)&*$@?achPJp{v7Y
z*i;%#nly>QW}h`TgKqS;BS$)guU5T0wetOwlan>#_E>;c!5(a8S2i-bq~Y7l#%qv$
zO^4x@^-gXv9f!xqdgo{Ey;t#=_so3z_}XpGE&`&WORp8ay0Q{9ImeKz?H>~}=VZ;R
z>+Ad1@B76Sx+;WmLGHt!kGl1J*fJO<sQb%pKCck*=-s<ME>W$7hlg4jwiv6u?)SU4
zDpb2i-d;{pQj%eduG+8iEODI((CT*3YU6Hk{V;ilx=Wu@(q6`V`}WQ4XqV{Kz;n~|
zV!JLa^<FK$ikY47$d{LwH{UsSa<Y2hA{Wk*_xEI**?5D_&%LzNJNf^=zYJTR&-v&4
zzv0`vFK1_)GiJEUU6P%B;)KVMBS%)8*O_Bc$n^B|^yBUFbscegs}zllgg{#ts;YL~
zQd&~&_tNw1Ok?(jZ#OrdIN@<+O{DOF$A823)l^zoTCO}UdBIMn_W3#4kkw(l7cX9X
zwIbCx{ai?Yd0J;@=ZB9U8y9JSQs}na+spJ$znZZ<^D>)p+8NOK0-)ugPft%@z1C)?
ztBXs*tu2`hTYi5&)+@ata4{Rhg3{O5UU5YI|MQu@?ESsoX}Zx&7q<P$ySGPD3AE)m
z=jJ9?UcWD)YokOB4Gmuv%X5qCxvUIYdL`X`jcLve1JH)ac0Spl`_{F;wp=_B<G(8P
z^t2gfxwC%7Tw5ExT|o(yF}80vfAi)IXi8-3(-|7ulNp@8@SK@vE8W=GSn+o2b<h$~
zP%NFEru!<^vG!N_JmdSVX4`ZA{rPE8@j*c=Y)!|73jteaADp5YEFdV@=rvVKQBRNW
zXt%ie?CtwNHSC_ltD@J(?k?lt<ZPTjUmi4`!YggIpy=r-hAraViHV6|YeYm^R)wx!
zCH{P}ny*t)kr8Mix0F<uqH~+X)BlJ0?N@x2Fw2>7>#EoOJ%`(Po7b+@Wny9q*qRl(
zCF?4eprBynyUlO*gzqlP1x<zMMsIWR@Ziu2TeBig1~iZ;YhC8@_SV*`3v15y#)a*#
ztDR$CAGdcw{*4Wa=jK|s|N8oR_MNizaeEDlo_I93?_0Yy;ULqWACLQAHUHe2bv0;u
z?eDkSH*DM(D1R*X$_mi_-1U0;(c5%Zg{|#+@F2k?=SIL=rcWkMXWCYq)zs90W(7bi
z5RZ0=9)5VZoiStgtC#&kCbhpxYQEns*NEPxqvk(v4ciO`0cq)Or&g}ioqIKdm#uhy
zZbjf?(Aoxu1Ha$z@9!4ZUzBvT>&3OT(yKyOr)`Mql`_4sEjRkd@86F<Jw5&7(`kL*
zXZ8sP7``fgS?WC<bfj28dHHei_?pI3Q?-?Kbj~ag<vsDM=FFdRFE1`9C#MT*B8`3K
zT7|yNTj`yio!wpf`dZ@4OG`QU_&|B-;^uUJ6;;)R2?v{ISQe{AZOLeyFhO9BeZ5@e
z=Vzvo(?KUNJfC0hR#0Hj#xI{&VCUxI^58%tbDF%<`#U?0Yier)m-$GBtPEmpX6JXi
zxha(~BicE7Yu3_be}BDR4;uUa@$=`x^z-u~wq#7a^~pHnf`W>g+M<$|mol!ckpvw`
zvo$;Dc%SUUr%zkCM70!DR9N=y+Xou6Ob?mX#LAs?u!;4>g@w#b&CQ0@-*R-Kx1C9u
ztDAXg31`}w8IAjDe;+!3p1-lN@yCN^{wtr)-6>zcb?uC~*5z)er|AZ6%?fR4X<6Xf
zE#~3v?R<Y<?Z)iudeCv_j4LYwx1IL;qV>q<g^SDj9kWccAALS=fBg0O{r?tqC#l%l
z%3fU+8XRp97y9z$%MF`1AO8FM`@<(szAWl?cKPD8k+r4ch3I#q^QH;O$)8WL%UfNu
zQFe8iBE5mNr2_<tc%mITI^vY}?c4XtrTFRT>F&q-WUsRSn}1|a<>!J=Pfq5n7Z(+6
z{r2{@{l~KTThGn4c3yl@f`<(>^}A!&t|-$jZ*Fc*=T-Z{%%lE$OW3oME}b13za<(3
z1oyg#xE|b;dRjnOxEXZ77-$KBb@@Bt=jP?_Vr1;=Y;L~}T@~UfyY*G-0u3&$@O3>m
zH>a<DuN%AT%B#fC$B!Rh6`VQGHL|1Q#Ysa3MWw2fFRG4#_6ZzpW@jtEv;XHaX;5@d
z)eb)fIufO?WNX>mDA4I=CMF_{jg6p<PibdowK})+J)G=s=a`Y9VU~9%W5Zn6Zn1@~
z-C}I-r)q_A)&Ku%UiRk3Lcb#%471Ji-OkQ31ubOO3SG5gans(<=d3}8voR#Ry0WsM
zpdcVR=hgM~>-h?Q>+JdYY&K{JJ197qF{6FU+gn>#J4zKleRFrWx!*jS&I=a;ngi#6
zR(yhr+@)Sq56v)4X2^)H|MT}R@29nKd#%iJZ+$uQ%E@KQ>Zd1aUc0!Yh{ngqYlg3z
z!@|z)y|3oy631q?N%Q9EDJgY}=}wZft@3blYwPIHiP+#U%QRa}Ny*XCQAkp9<+I}7
z-*N>7R|YTdTNAnY*pqFOCQVYQ|M#cp>#I;f!JnVc+b=D8dP+%YQ|<3EPEJli!HM<%
z|Awy$TdP(6{+_7d#LLV5ySH!O4%$xk=H}+5(cANsls-M1o$vMa)m6|`(WeIonLmE|
zG-=Bglf`fUeLAf#BqO7vsHo^>AH3YpH1gWHxz?w*->=i&TlIBP>gj1GKR!ObwCd}t
zu<60}bN}socX@e#N5`EVh0dRzoz<SM7b_$<QOY#y#5CP#7Z(*PtEfMJ{<ye2IWyDv
z(Ytqfn|fSaQe@Ay__=(U6uB)&5_DY0#EFgbY^#$V9B7<jkjNCaKCaifop0rNo0OE4
z6?Yp!b+}#aF9jtfrd}yiBg>W1X?=Zt9UUD9npn9ntdF-pGuK)?c2|j^*Y?84Zht<X
zw_g#udfF{3(A)^9A?Vo5CSjT-Vq|1g@a07ysBDhjmec6A*s-F*A}1%O=M$)tWL5Iw
zgUjz_+1J-enB_<`H8u5|%33++*^5&TU%u>|r0NZ7f8V=z@5hhF{h%$RiyfQUW>}T3
zIygto#pO%M4c6|C7pjYQS6s_5>FDSP*zMQJVfX(}@sT4(6x7t%3JVK6dV5(Hyq#s5
zeokh`jvWv7e!qA4NT=}HTVd1nVhz&I$$;AOudl5&mXzq=kTT2Zc<~~m^!D>}bDdWP
zEq(C#F*7?m`=3vz^;g8~Gy;W({r^A0(cAM(XZ-QIzsR*)Ku9R*i?Ec`s&lJyLAxgP
zVt2JH^`8Fd?e_cIcFlQaVP&;yeQr+91khms6|dKB|M2~Oy|S5^SoZaGrjj!R1usrc
z<mM2(=>4YO{$D`)!n~`iMAdv}wRCiF?AX0qSyz|0onIbQ>iW&GV63mN|MC0x;bX_#
z=3ce&pJ%h9_V>1%e-0l$tf&NP+ew+_tT-34c75UFW1vv~_wRQ;3kwSa1D~8t$A%3C
z47aX<i}7y#eGd2bR3@gUw~K0rfmUIuZU1SatHAK#Zux!CsXGOQg&TLxiG16BCMPH7
z!s>8+&>0B%d%uc(dUA5Ho^W5Bzsr{pSPA5~yX@_QCr?_gTnYK{>({Eq=A|z#FmiHo
zu87{QC*tZD6(zN+>@BF81a&IZ{pYpJohus?6LV!+%RJj^(0XrBWAs>`Y`2>4EQ#FB
z-qZCYED9D}bbe(8%GQfqyFm_s?hjW~RE*eBpvbVmv6=11%jNU0i1oAaN+n!d6Uo8D
zQ?u;1>+-z2yKd^GCnP9ng{)|3XkeJ470R_be7%{}S*_3a@9ru+JVDX<!~Xw&&nH<a
zDV>t@bMbI-NdcYT_~G+;`_*ebU0lB8fJ<(T$;*6aKf1CqIAUwo)owj5!He4Mx(Y5J
zFeTZ7OH2?1o=UL6gh0U&nRvWU_Ckiqg$$D$JBy!p>z&h1y|<_GLWaqPjT;RuGZW@o
zl`goL5wJdPuXw<&JGoCzOnkLb@$`=M9czv=v=l9!YhAude6mz8+r)_z^>=xEkw2&y
zQ7re}Qt;yHRz{AeUd7MPu`bxVAy9<%^Yiod8(Ec<x=ZGVo~oSo?eFS)R#QV?$E4Z#
zcdj|i&{8z_$&(b&;D3M!>$-L81O#=WxACl8xl(^uhD*w!`St%gK?BIQx4m^0SG_K2
zn8b4F^5u!srll2G>hF+0ofR*5F`36f<9g)QEYWxO_Hr})03DJD+UyaryX<YZj+o%Z
zdLj4E>WkhaF*xn)TemwjAVA<=^?TbXy3yAj)G8?{DOJ@;Gz6?GdU{F}G)~>MXaQ&-
z0JPi4$z?;~W4AkdDlfm<^X=VT(2lbOF*}P+%r@7Tk&$`u_;ItCZWO3O04MI!^Yd)G
z9h=z}7Ck)$T8FWBuPvyj7PU1i@yUsa9sT|0UhAt9>{dIRynbC=s+TQxcbRF_ve)O=
zT+9Hit^utwJT*mgMbuWUPtVWu_qu_WKdyWk92^YVJ6-eTqB{pae|vj7`<u6KK`jrh
z&{YXfPD~7Yzj?|Okux(4na|EPcfYvE_2G*b9O2>NA!{N8ZL7W<cy@O7)h*`v_gb2p
znN6g4?S4FH*7+Q_J#TK*dQt7Lh|qawK*tZ1y#Z}E18tg!i;Dv_=+n;4nYq?_kEEpJ
z4D)<BP!mhZwd=sei-I8e$jxe?HF!^+q-=hj_Rhcl(GgD2?jTj~X)Ti{3v-F<^_0E6
zmH7YP->|7qUtL`-VU)sg=+L1DFJE%HySs~Mhw;3<wRQ82xhJpu+?IM;Y)i&PrhE79
z6_k{?oSdZk@gTeWgGWcZBd39;NI-`<{`vd&;hQ%-O|0CD5)Ze9$!mL`m$Z4kNlis1
z;XnhUM)*3JIdkU*t_V;x$+`ks1I;$!Z#t8XWz7$Rs;{qD?d|PB=S}+0vsn?bQOWM_
zm*6?J)z{uso!@nC+6?KND~q3>1Lc8@$?OaXzrVd@W3J9Hk(#0rcqnCF`MWy@cN9Jj
zSnS3tq7lHr$H%7;v%>(if+D{D@71KrlFHZnmjC<ln14&=WwxVTqRo5v+ImgX$(-=-
z#6)EY<20UGCYem~^70l|R)@}><*lo$dvRyy=9}jy<z3mW7rTq$!nRK@_C<fK|KfgR
zbD7AR&FSYKfm$a=yF@3d`^)XvvE#t`^Zf7k|F`3lx0|!}m%L4dz}wr~!(WGO$p{2>
z6^{4IZ=b<`kz3tm=ZO|hVV6LWja#=)^`5TR+2K)BvnRtu>SBh;r@!Ctr_Xc`3YxSf
z|9+f^tDtM(mC~>EBCZoBD!b3pZQi?g@6l4w*31p(W*Vno`SSVM+07Al@$vB&GfXZm
z^%h^8TKxQ6=x5847ZX_6*`=pC@4xeY@Ar8(i(Z|2_4KJ~^|v=0BbLpWA)y(#sO6|t
zwuzKw^|v*<{BCc{bqy5x_~FBZc7FM&Gym6azZZ0R(xgdAhHEv$*TsN_-X}i|7IB?r
zlBqP?JU?vu`x_e%r`V;RpEq^E0)_6cI>F0&=GatTdh)CE)fK^BH|5gT*QWAHn{{+|
zcb~M$$;nAMHAPeG^_GH%PKBkVrqSxIflI2tzne5~Uf!0xXP<K~EO1QwtQoMNLB_uB
zPL5@toUK+Xx47Bvy6fv=dCz(OEk1Ciu5w=L-`DH+FG)Dqly?37)z#tCQny~au`&7R
zv17;HY?G0dP5t-hr`q+}X{F~*iO1J0e71Id@$++T^Y5RrSM{D|aw`AzwY864zRdi%
zC+FIlnRoWr-%qJ5dEF~x8N|jfmovq`Q%Lp7mfPF&&wr|p3KWsFsn~F_Y+L^QyeWF0
zf0>z?vE65V_HF9E%FoX_7cX9X^VjWLw@&RSe0*lz`uP9y^?w52ym{mE?D3;VO1sP6
z8qMav*nNzlr3e%{pqN?U$lUxr`^pN%u0<XZ5i^c{H8wI@l6bi7m3`x;)YGRx&9Lfk
zZzj%|Apx3APJMA<;iKoz(~TG;O|z!#TG!s*&LeH+vn}_w+Qy9=LG8hrCYh72tO#^|
zb#-<6hI^km9GaS%jvPDYwyWf&lC)XQgc&m=A~&b?=G@s4=zD)-vb$#Nt}Q$g1`gBo
z<Mn=je?NW23XRB}MN4Zw9AtlGf2oO;`_$Lh*L|lwe{pf~qi4^S<!vv0eQi_C&!Wz*
zu1TO%8xFN{FAZMqH%Z-Ju9@5FFZVxH?`bpEzW@6AI%weAM5_18+uPS4?K4!>)%Dd1
zU9}`{b>`(|o6^oob@ug5ySh5ud$C)u%i@b36%{*<GJy8HJbL_Cxoc6!<jIr2yu9oV
zYHow9lC>^7F+tJ!O2dMZmzRp3pOal|QzCw=uCDIUyLWo;-o5*DH9X!kC1r_=n;R(X
zRpR&6WLaKY6Pdip&wILFsJ`2&DVoZ`%X}uDoo(*z<I}SyYOB{Q^Za#s@2{_)fAQC^
z=h0tZU3Co<SsA{5o=)T@mqm*gKkc{wXRw1|ZP?mbCyVavEOxJ{sku@jYgIC#SK8dG
zq+|<7-J!#Wd%vyS$#5hj;h)aws@K<aHDh*cn6<9>`8m)WJ;;-(r>A*>3}1ZFW2#o@
zJS&EuACJplwc!%e(U`36Kke`D@2BtWtxmnNBJkDoqsNZ9ndRL0aOYJHZ?X8*>3Xq~
zl->J42}7ex>EXkNMNdu$HqQ@U?kBkhbco^C&9C0R)dj78{`&el*jw@Y<E%<wEt$5n
z^z}8h(~Gse6A~6^bSWJ?co1~3EGYB8xwZB51GP(_nTfM!eQ#~g*T1~nfBIbOa<816
zHK0=~)%@q_sCrEa*beH_HNUl~_~6hdW2uyUtS4~$&eGRmi>>S`J}8{7UAj5%u2pGu
z<)<eT0~foUoM&4NI<3~I@>2>ZyYBkuZ~r%C<G;|=VW6cqoV>hKD?dN;3<;U?=HA}u
zUteFVZ`-zQ(Z!4-*RO{M1qYv%k69$%!N~DcYU9R@Y5I@qf4x*My}2>@_?c%P-)_Gz
z72^@T>-M_r#EYGsor2QR(ibyK9=(5`za{2=E4Mh$zq)IT9eV36i=RcDd40eB|JEIU
zK0G}9=-D$hsa`kG(1DR}M#hS&^!%HfQqw+rd3a2C@+9T!`<@=2t$MxE=4QL^E%BUu
z<=2s;M<aFCYuf+$(7dbe{k^@u%U<5wyZd0Bv1midiwlk-t`mh+y=Lq+=<Vzj3=a>#
zm|<d6@*-gI(_P%Tu7OAH-i`H}W05%J*@=nDlg#tuKu&!8SUEE@lkIf=ogIolKRp%h
zbyK#j`eJbNkfM@N$_at5J5ur{UbMe&BGtR+|G(dApF!&iX6c!kUCXHa|L^bBr}4F4
zr(XQDWs6DXogEtw?yH@}@Ferpt@V>{x53r|Y|oD`-MMnwg`OUs%&V(Hr=^|+W!S6J
z)-H1GK6SKPy!X<J`RdF1K5kyM*>uyc728U3zARm~Y}NedX=i771_ezzSz?@a#$d;T
z^FG^s0!1>fteAN8{e#)&`KR9A-mW`sW#D4BSI^Cql@Dw9mPPH+dAs_`l@QIKB^^>V
zf4*Licgs9C&vx}Tv0b}%ojN<)y!X<J>-$~1#nhO2{w~P;`s%9KX`e5P3>X&1Jf7@t
z7dU&_`+Iw{H|QuTI?Bk%xGcVS;`#jgyrRE7Jv?9Y@-`+NJyRxV;C?;#^s!@Vx5ZDL
zU(5<B2ybdNTkiTRB_WZq#b>|h;VW~$t$7jElarg<+hinrckTtRsamPl^@0<*M725=
zX*_!SHuu}27x(s7vz4nGvn!;Zn-lon>fgWL@5Q#87d&tX6mjhm)6LrAQ*OBYVn)iR
zCnwWB|M>NK{ne8F|9-7LXmr<3J8aF2qr2y4W@dtBB_|)8@b72X5)Z-6;+5)ta}264
z&YLtzNls2~(ZviE3yT{$mU=Ne5-zBI%w(FNuKW6MJO9zUcVj{E`R!JA+UcsVuR;rp
zimFyIxctAN8^7;Pj@94p6QbH-5<1mlrQ5D;=5hd?ozk_aWAo<CC%Ln0*YEu{E5k(U
z<&BMtFB-)%WMpS+KR-8j^FF1tBS(*}{My~uXBPEu4bz0w)6-U-R`Z#WVAdaB_tVwa
zyzr6B;-|ZQSzBAr&Mn<n{e9i9|8G3^m3I~~$vZ8N0UfsjI;Lxp255DCOl&OgwB5UR
zKmK|>zP;nY^!Pf%neI6`I-s4|44}P<bLP%ndvBjj)rr_Zkt-{M*&7=h{o`h)FL7??
zyBYWV+S=$J-|yEKet8iHTAl6QC*!!U<|hM#d%v7(Rn;!XU!||Ftz7^6%gf1c-<H0;
zB`VeHR=dG^^NSZ5fBt^IA0WbdcUS4@vVY<0Vh&zh?7mQg3$*jr-Q9ii%b1uL&~W4C
zpP+@pFJHbaC@XWDtmdnew>fNW6hnjebiI|&gVVYeEeKxjm-hL^rKR0g-w$0|8_hdy
zZR~Ebu0;zXH>Yjby47@cdv7oAs<5?Of(Q52{ywuT`|d7NP%W(Y`Sa&sd+-1Mey=~c
zX~hZ+6*V;`22dYj^G|WjAQsSY!)_bvd0W=B^T{3p9fIc|JLk|8CRVNmg^!Q<hq~SU
zcxt-7{JombzMEg}Du181rBBm8>iL{+xAXTiGGtv}$IH*p-<_F#bye!eJs~2jS67F(
z_xJm6J2hd_q^8f$&p*DgG5OW^a5uNMT{e1pdeJ{q+uuoObuF^Hk>@qrEO&x=eq3{@
zQLqRrue4dq^y$-2K3%tNoks97o(A#yJDq0|8Ju<=TIM^u;OnbUh6B6b@5?soeRt^b
zp;qo6pU>O(PCI_&$cpvZ*VfEj`}X+p<EzCjZpMDE+-SyORrA9D)E_?7%6<6oVdkaY
z(?Nr;f&v1d&T7raqv8x(7TdqnvnVb3y(VH~(#?Gl3|qvP_ez_$b*$KY{q=0yYBPod
z2M<2%WLmZV|G(&3SuwFR!`zCB9XC_k`DB?GKvN}VW@c{6Phb2u$-fs9`~K8aZMDzZ
zpoV0(iN3!6k6*u}t|}@kGjH6uk)dIJ-LI2LmL^roZ8Npm8K!85pL=8EAiak<;Q6(S
zm0`clK;i#OnLl(@$jKzo9BAF4OSbo>Ez;oN<=tu#71YSYdL=n0Gi8bT+G0QJk{1FZ
zt_P3xN^iE&SNEI4ao|&B=G*Vro7wq6cM`C$vmZWsl=W!0xO*#?=#}^DFI)&PecLN-
zK5yM5u@`-bokFS)UcSsUn>%-|tdo<If|7sf9a|e41ttAIJA`L~`n0Tf1E$WKH!tmd
zf?4)8pS`p5vsOg^t@pck@7~Q@|1Pijz2}9Vj}GYcHYaCi!}51AF?*{*=YF;L-0v3@
zH0j_k^SnC^i!}U0)9=oGQ2*~I`|k4hVfXz#Jp-e+f>P1fb%|vvDk>}1bBkys80H>q
zVm+(3yX@_(U$^eq8Eri;XH$`2w13U1McVxx5?2%z6&>fc-n><$(Unwk=S%9<OUo~2
z{O?W4`&$JIwZ`Iqe}3vdn|Srpnit=?O^@#gSm@+-++s5*s4myKZ7Pn7lG=1@*8BCF
z)6atj`avB!(1=Y+N=nM>->)ORJUki}X@tp_-?e)7C%n&kqUE#O&pYD;%irBOn7{uo
zn`<CwZ_?(wqF>g=>=XhW?=yLFFyE99M^9v}`6aCGx1jv}Jr93>_k&HWpc@vhtc@1m
zw{KrTadGhV`NrvexBhz0JKS?ZH)@N+!6sJFEfi;F8nc^bU14BY6Sr5Yv$Hd@EOW!O
zf2|&6FaMpauB=S_{q1eod-mebDmIysU-ZpDd9HN3d3E(~^;`3{&P%($Z&lH4yNh#Y
z`_48ydOg1W@0FjaU;naZL~lJm$8zzx?knqJt$+Oftz7@_&#V88f`Ol_<nG7Me7fzi
zUkV?yK-E*-*j*wgPo8uu-+e|<@XqdXe$ZlY>-T#W?^}QW{<lw0Pk;FQdGjuwnb*(i
z-My>Bz*alWcW3?ox^17$Q{Ua$>EZ1SniMK~cW31{&2wii#aij>>&w{J{pozQ1~eE6
zIxhN93unZ>8q0nE|5aO9TPL5JW67}P?rtfQj1MlAukX8FExl-b{8CZu^se3I?-#}F
zEb_0NI59M`BvZuI@Wra7|D#+2_SO7cu66wKi9Pw=)Ae%A)|!5;o%iK*)!$#G-Kl%)
z{{9NiJ$?8vbNITLjjPUuuZuCXI`%(w-n@CB?PEbfK}ApY*c3iu`S#`}vuhyeFs&XL
z%S$O%-uL6rPg>_aW$W?S?R*zkcg1daF?D;wK_-S<>-@XL_0N4;o^f#zL(lHSm)}LN
z&HsB%3e+InU7lJV%K(ba`1HDSPVq@eN!!wjw?8>CQJJA(!2*TN2iZUT_{knz^7{?w
zw8Hv-e}t#IUgv%N@9%F=80f|A0WBVP2ox!Kcjss4XI>7DfOvVEiVI0m-lv_NoWMt8
zZrNeKMpRxt|D(nI9fi#4=jJdngsh1Oti6Bk9G|FGNJB@$`FXbfv3<)wuKAYhw<2I+
z(=RJ6ty4+2mfP+V)edXvP_VMP_2_KN>+9=RZ(jIX{_*tQtp~Tg+t~&hVZO^UU;XZP
zafWVYkCalI`Jvsd?<9^LKOX(3&(GW2*~f=R#I<r|zxBn-NeoWww-~3NTTy;cNlEF#
zw%pq~^-4-g3Q9j7_uKQlyTi`PdhqyhcBQ77#_6-(?$7Va3sDk0*e7ef$@Z4lzM7v`
z7>-@CKXbHO+<tQ&%dTz~Z(XhF`tf1z+YOhxc8k4weR8t8ePQIODVmGz_SmPNlQ}cn
z-2d(Qzb1?w+qawl`TJK<2^3&*b~PDBcbnPyH{{$j+WZrAAoJdUnMSFngr~c^yZG3(
zFELI(C-c=JJ@0Sk%}uHd4}N@nd}CAU>EP*4JwcN&xsey{vKTylbhI0Ermdgo=_RM8
zYOg*opc}K}Le8%2>+3+b{rGRyz58)j>1(mDbupP{chAf;J}dWldS~7fi{kmRvUe*h
ze}Bu}`t?)gCH^9v+IHXBW@nS^ekngr4R!Y}IUeAmbFKd8r>CG{vx8PH>y_9PzIe?x
z&!6|pe^2S_Yhh~_drzM@F|ojKkp`FD?>EK_w<d0~Dt!eSx1C(s(Gj?P@xQ;nofltp
zaQX1<cK+i>N4wKbCuGgc%Q$74eNDm6?q0^vPGNO}njat1%Z~e9e^vPEil&R3o0P7<
zmzPsJpRA6ZM%4bg+K^QtoJvja_y525$hF4Fsp;sRUFGlj1P_9?b^QH)pPAv+m6gqp
zj&?^!t4^-^{*Kq-_S=Q=`|H#$gZicq96z7=^XJcnWxmoK9Mg0nC#4D$Jv$?*6S?U~
z(k#$+k0&Q5yS<mUF5^i)-p9ItcL8V>Li5wwUtbzmuhw>9iQQEKYR2g1J^y~ce!Io3
zbCWl1-|jwLFIGXRqqjHI-R#ozdGq?@Y^!Gcm3b<{&dv@R@lk4OX6Ik^e7c>W<N0~E
z^Is{6T;N;y=FJ-(LC5`de?h18EjB4EER-<MlVMnpadA<`)m2x6b3a#J;x(9fwO~DH
z;HHXsdHw%?H@0R^Kl-Km+ndTo*OFxahD8S}zhJ!e!1;U40?S{_8KBt_|Co7UYoitx
zJUk>I*du9t>`6N4ZmC!QCDPNMr+><kzUckB($~Q0i;+g`t}Pl}N}%;2RdaiKctAbb
z3==6%4i1B;YbyekOVw_n4N2VGkl4&4Zx{3D&!3bhCnma8*8hAu{nf5_@7@`eya>3t
zEqC^jW5-T?dwUzSwlHXQm@cS$eR0=pv)mx{g`YltoEW(|&9kIr%bPnpgWLG!^*~)D
zdwY9O|1nfpFwJ!3wS&#<ylGG6tjpGb)bPnzC<HI}n`)GLs>5yZ#95}<QD;7b8dW(j
zyB2x4xPY&uShQ#nXt^Zl5|zsLd%qvKdi843%t@0bU6I^ZdOLbc#>Asm5z4x{zH`^c
z28v|f+Ol#@<Yu=;ix;P!on`vU=j6kO55>}*{5?D-fYx|CT^+l7+nHIW-b%{Ks%mO(
z+w$&e-LLuFYm#xnAtxtiiSKMPx5_IkgWXM}dVl=<*|~f7?j5^#pZ@Xjv8s_#5NOxs
zogIaf^yBTe%B&7sYZSSBs&;r+Z*Q+gmy(~K-=*E<`9I%ozpr9t74_}?eSJ_Lgh$3A
zz-yY0X4j$<zrMcay;dJ49Di?LZ8T`~q4xGdXZD*r3KxU+6;D$2R?*S%F_G#$xX;vF
zaG~4clSN90mTP7^IW<*OSFcWedu8S1oLgHwL4LcrDHXJu@M4BZ&{8ka(rSMz!FyL$
z248(Eq7~w?%x5O(=8Oq@tG}N*F;V&G*|WZLx0F0S)_Z>Kxoan~ln%`_PG5D}{^t{6
z&``|f<^HE%US8hYmzt8Y#KO|D(`~U}baXVR%K|!Q2^9Pf4mN+foxlHNhoG{Gf`WsH
z>qPnbKNmBqcjeCfRd?2BdjBE~(Bk39?Rj%uTwPDjGR<C6`uf@;jjn^=r?0eme{b*V
zX*-Lap4yapTFkQY(~>CnzbCyn-wJ<yeSP?T`A<(yDlc~Lp9XU6zrVjzFD>y5+K}K_
z`geZ)zndv?*RI{al-~9t^#DUlTqLNywSP_Z_jhyGmfHXM;JkVBV>MM(Ptc&|;)^T(
z`xyO?_{DCRcgJGm_U+qutXs+8;<6<F{=T&B(TiL-E$ja5`0?vk*CGvn*@ljc^s8pu
zZF}96nb~+YXq|uYB11E7&yJf`ul2TV(z?tpUy~ppqN=W*9?6~^v#Z4O&)>giuWin}
zybR=tZpMy|vSn{>ZOu-v%ma1r?(N-u@z*bL-u?go?cT9#*Q}WP*REZA<nvNV>Gid>
z!utC9-M?cNU+kDWcW%!8eRmV?zKMG<%lf{HOP`G8BDOEfw%uPFy<O+LVs^Sy{jE*M
zjvn<q*u<(kt@PWQo3HL)Ul+T1hpqRqUTM$}OWO9QPoAi7i|d)}e7AW`aoDC^EB2MY
zpEpG-^wgX3ptRrL-=F`q+u^%p<c5UCi@$DiIwU10AH96}@*6uoKE7$%;p<XnK0naN
ze70`c*Ztg^ZiOo;eSUsEoLQ=P{_*wuew}&)(sHIYts{<Y=RWRhe}8{BOgh40l6y;J
z-n@AiGECBb$I08*$@tDPX`DS<+Q!!Q;>uw4&BEemXPI(8Jw3gB@?_yZe?T{d*xQ`X
zn!w2|rW4@4udAcu#I;?5f`VC_Yo2{Rc=4j3_jJ9Z^7Vfj%kS5UgJvf-Z#I^ZkqKB6
zVF;Qgyu94s{Px`R3kw`UOP)aI?l&|rJUKgCysWHDBVYlz_%}>GHp7-(-G5#WXstll
z+9=TE4`{w&U5q7YmM}0dP$PPq4nu^@$J3WKooVBhZu|QB`r^RFZlFtAnwyzxYHBX*
zD$NF6VFntN39W2vX#t<={ciVr(27wJoe0p@m4f18(C)RWudiCyMsHsfu`x;P^y1kr
zL4hJ$^6$&>@$rRSRo1?D?_Nh|=fUamb)5|j3>MbbpcAu0SBD)1ohkAA{r<z}&gq@5
z64MA^09|UbtMv7UbJp({gscoIC@gH;yVn-90Pxk-)r&zVS8YsYPdhUs(TKnDO6rEp
z%gaFfJa?77<%*Aw2W`SjIM|eNcb6$>E!V!<-%)FVH>aHykeBc86jonU_xG1Z$O-|_
zJk*;vJ(E<u7rAze%`nLndi3~l;O?^A#a}lU&x`Pi-d9rz>gY4G@ifezFE1l2JJG(r
z4zyqvv_<92Oyjk;?rpYOuDg_%hv&$}#qJl^$J=jC-CO*;Z`ME0XY($C4%tgeO1iMv
zoqvj6tkk)4=L$+oU4MRh3c6AaG_0Q>vhU56$C;PX%4@~N#i6GqIR5<f^x>mNNkx6U
zb3c420PW|n|NBLFmU(_3Xa?)xK}J76KhWApDf7G@!{lS2){j{F((P^m0Rl<M$shmy
zet-D-b@6ZCzJ2)e<w*AWy>0pXezN`k{(gHF->i?1k0&4Nkz5hES<S}QHZeP!+cl8K
zP5sKrtoZ%E-|e=j`?F)${+QTU(0tXUrQVCv&(8xzSOX*TyjAzEO>2GO8st)x@Zk0I
z8#gzngBJdY=*P*ZdQUs@?d@&QIk_dTuAEf3d$e0zP)3HQyu2KA*AD2Elon3mfISt3
zG8P34+qU()oBRXqh}~VD51M%Dl`=iFE_Sy;{lA);uUEsf{`)DN+BefUeNp=Pc>yAz
zd-LjFMXroDD}8<KXrHWgz;ZuX(19rWyDU<iK<BAsU(@;V<Hw4{A%cQ|-=6%cbO6oY
zX@{>{;Lym_(beS?5i#RrNiyWjk)-70z$G4n3=R<y5}@S=JBy#MI^3eBuAcnj!a~px
z(KNkSE`}G^)=FQxeA%$-OU9QsH$Sg@H%sto+UE50Yzt&BeG28ad+~JooH;$9eXoHc
zAuEHPx{9}Vys+24UViXWY3<2Vr>1IOeU>!$*VosF&!0b^kTM^%ih+}p^T&f`ex7Up
zKOE*Se1Fe&P5l0UH$~@Zh~L~<tgfW2yilXdsz~(W=9Em8<vl$-dq7vJY`?u+^54u3
zjqRtu>MC5@QSwq~UF`0(Pkq@H6&7YWHx~Sp6&7Z8ux8u0&ugld<Kl~;MHsSHB^CQv
z)v8?QSeNth%iA4!c)0!J%jNT#7`Q~WzIgHbpR~KJf9}P_#h~58d;WgA4O$Zzu)u*4
zv@w7E{(pyhB#i}RWqDl#FKkG3Hp#v9#Z`QI#|!&z#tzYv&z3Lx+1EXO`?j~Gg=NXI
zWrxn4<D0G@-`3m9yJycHo=Z1x-aL5u^5rKp-n*nkt&Q3Wniu|>?;7~wFu%Rc=JxaP
zZae>M+#~+($H&JKhDj|KfA3<i%D%Fq@o2aB{)S0{f_tqb8X^=mH8~l4;=a5{^Yr!d
zYMMJ&cG9Ft3HkZ?M)L0N?xy-mr)Ie=Zd{}RDsmhg7}|Iwo78+~?Rk-88!of+*-=TG
z3WHPAbi3C^Z+~=Vrtyxtzg9uP!Jzdmr>1H@e!Km?+wQWraV3VG9sfQ{G(>=IJ7n-V
z*RXo_&dBM<PM+k{)YMe_?CIwhc6nye<72!zx3+NZ+qX~bvfxuO?XWclRr*#|zgVZJ
zq=SxcfAu<i=REz*ZoN_q0~focP5-<@ATTIM2z2((v0iEEuN8`~4Hz~yt$RIno%XbS
zpo7p3A7(BqE6cj|<x9z(9fgM<Eb;O6J$iPwdEkzM#Lc&FZppkH++XbnTKaJQ{-IWG
z-E-HSpBXZ2bb5HG6;%4jSe2Z}xY@|eE+8Yb=AW#L43FT!h0g6fyShNDnI$D9*)okk
zfBnk3z;@x^zklb)vc6dQ^`!dzgilXS>hF@6;#{$(SX}P?oz~;l-$6&=T9v(75w|_?
zn<2x-AQu;wXXodG)<Ujw{+M@r8?U<mJd+t8cg5|k`taeyfi0Prd6*_-US4+a=uy_Q
zvrLV5^Tux1uCK3eX=}4vKI_71mHc~qY_9F(=r4bF=<(d$A1a>Pz0v#sM52M=$H(LH
zg|Dyaf==*d03SmA=jUgJhJO2h5_x%f5;heEVQV59tx8|5Fka|C$3oE2(UI-(L2E0k
zq%SWnf|ez=Z_B;CsPOTz8#{~D#dM=uHYOieir-hGzo-ioP%iqcYzho&esfmveO;-+
z6}C326?E_-!@b(?u{(C|1m$bc)-=%6dCk9{&o^w}?*94NS;N9dE?<B0&%L*|`tZGb
za`$UK^IlsQ%PlW2?=#bgRlfF1VBhs#(4xW@sfQR?9BOLzguVo=cvF+zvLt$Y-ivE%
zZ(kPa1}m7lxbh;a!l|>jw&(v})a_u|aooE6;m32a6?-~Ci%njzKC)i}3UXvYkj9Q8
z9%cd10uH59hCB{n5sl*p42mG3MKXsOV2c_@6^-0*O8&iw+rj_&n@9y)S&hg`HM355
z95~7O;R{Qb*x8+%KntS;Q;#t`u|Ib`{CD(`FQ3@?8&-vGU2iItyTJ*RIle5~z<o_y
zN$=gq*Pov^dQac7-hW=rpE@_Tf;SQcPdGMYiB6cqqoN|Q44mq!=G|cW)WyNamUo}+
z(-X!n(aZbPlVoD1=>Pxm_0G-%-`*Zr=zQRQ{qqpd&W?@_4fAB~6WS@4)gBz_JYGNF
zD)mQsTK#|CHL=_=`*Qx+fgE@7^8tn@_ImmEj<3JIhVj(Y>Ob4(&;Q0)0y^C|?;eYg
zu)MwWrYunb363{+f7hJy203}BH1mZ27J><PED~M>JeVHeGyVTRYlAYK3DcInU37J6
z_qW<!x8Hx*7u1?Pxu*Nzp>u9G2Sd!>S;kM*m6Vhg-Dzb!Q9pyD;Jw^~cYJ&P?fO}g
zzmN0Ajg0yH7q`yXlCkh_?8ZgkzMq|aKz)8jv};MdFvyv<**p%LK*#A;{C>Or;p4~5
z;^N{ze*aGX^5UY0mzR-8`JW$!CYhH&H_Cqa^2KGj-`s-7$9mJFraehXIL?>*x^?#L
z#|}&v`ie^5%N0E5D|p(KxLs#%-QO+69Xb&U{{BA3`{2RB<EIxd-nv!|<VBbBLhc7Q
zU25eP7Z4L;D=#kxEsp|~vioX(gANRLad%I?x+;{R0kkqb?d&YjYV#i-9~XXq7wa>_
zfU%ul{#YY3dqVc_oU)%kJ{~wR@z(XcyoTFf>lriBm32b73JNOr_{5)`bzq9-t%;ku
zM48{b-TMCio|U<(7iXIBYJ_k|*!`I)G96Upa4;|ntUf#6ULG{qy|4Cnz`MZ7PT$|%
zoj7k^ALx|QZ*Omdx(uMpwU#VVIdbgSB9Dnm3=JDL7?|YT5Ga0r&h`7dyPLP(t^NHC
zRFxh)c#!S=>;9Oh&)9OWFuu)c+4aDAYo>6(QmzT+`uD25f4^zpy}N8;d;7QYm^o!f
z)||J$ZWqkN;NG7V?dUg$p{Az6IKAP|&#lI*)Kw+z82mw@mBL$gaMPu`yUQ6FSh++D
zD)t8~bOJ5(tG_a3L(x+&(A*2J9m9gUzrQ|w{(N{->gi2;?`B<HrKqBE<i+3U?Q;9e
zioIAFT9Wq{vVDKY=sSy{_ScI1mreW*x0!-g2pHtdFgu@hwc*#-t*7VAY3LN*dUyAy
zXRJ+4Ta>eTrC3^8XU?yk3ks<dGHeQAtAdyFxv+pXKE=eyfcBz+)}MmzE0}Lr3tF1#
zJzekNt*zNBVs>u2`0L@rhaH`rm8*=FEX#6V#bm^)!1<hk;dUT<XXnf?tJ<jFzXKUk
zPaSMN@b9mKPtUi+Z(Fk)ca=8Q|7YcsshD%_dbsp?pZV+NCO=uff8Hvqtcf}z;2J5;
zkjG)ol^uo2pe>1@Q-?e}IJ!i&+xTRy9z5>1KX#;3n2}++{MYVJ-@che-M@WXnv;{$
z!`HX=kx@&lZQkA;wZA|9uGGs;mo6y^nxG%QY^vYfOaJsjPUP%!?PhxT@Yc;Mrc$}5
z-CMa1oSS>A(y`=Th4b&<|7zd9zh77VXw`!gf^S#E#O}(dPoKv#5fn0UzB~?_KzEL9
z&Axu@%uM5rMNhpz8`qML^&GsiGMLdpmiP3*7m7RwE?&H-;2U;pOD41VUiA~Au8uKt
zzTM<z*iot~IscLLAL)N)Tz_{){9e{kxPQfD^{xBgzFD*O*<ve+{o$*{9=uxhxAHOX
zYi5Di)xCXhx=tKofSwD`Q8q=FVTN`1?`U%=aZq;Nd+Ue5uBo6CnCID6Kl<|Wau&Dy
z>aevF=FRJCWM*Gf`}<o#Q4te^&6%2`yb6|<k_=Z&B0<}Ek3QX=zeGVkZ{d-~r3V-p
zOtTnvmuDZpceUQi#z@GMfluDDX~Png11CA3pPPI5-{0RC_f!^detI$gNaj76i0ynD
zu~Hly7q-pV^O5bsM&*K+LIFEA{4DaD&-dlkQr&5K^JbZFzPNwi;O>D&hpVe@1?~a`
z-HWS78IE{eUgqnZk+CB1`>JWW(Mk9ARCaWB2D%^Lm9xnH;?vX9A3l7@XssQkWcTxl
zaQA7~hG<W|6W#8AH{7d}uJ~WOz)$w=5qV{|jM?g!E;W39zEQ&A``T#1_<c5A$B!?r
z|Njp(s9yK;sd&kY3kRQ=+5L-<u2`~^@#*Po_amzU7$f$@+;-)@z;}Chp6rFq&mXr<
z|NUM5y!@jF41azs{`U3N)msg$4Ez3k`dDU`d#P`YsMIQ5D?vfQi>H%5J~|q)r()y5
z>g`{DAG|D_$dI&jb@=*2&gN-r=UurH(!p`*(xreM1&L42&zEoKlQr@xe{g_t@xqd`
zGi@r3v_e-+c^RAjb*dXP1K){ucmGA@@BZvK`RJ7BgWLI6x9n!<DKBYJQBS@&)A)pa
zvD&trn@kKl%HGbpX>{WzW9n(Uf4?s+)tzCI$q5>=P;#wdWVpJTdH?@)ybf*r?8o}9
z`t@XZE%&=6Un{D`&?}Xx9?H@%MP&0)P&Id|@a^sG?!Uji<-G@5SWr0E?dHLBhc!>0
zKX0EgLt@UgUahYu7P)pOBqui?IN-qG;Nrq^ZEbXWx48bQ%x$^1+a{~~FUq~W%|Eb7
z$?g4<+P!QSwy!Tcp>@~!+4FOfOIETzxUyLL4=Y2}mluuE{cRV#cGTT{wYL8M-|sVQ
ztG68tI5br&Q(jG+QB3a&n|$Rb2JJA0U&?&zBa>%@?<~3{Hudf8t@W>^T0yIv1qJv1
zl4yu{x%s@Eb5)fUXydQ`{y##Om-!xky?%e+{kq@0po>@+x-%YlaIhKFYqu(W^`Kq8
z?f~dq@NK!#EUc^xi=Uqh%Rj$k^)<G|CWU<E6Z6l>+^PK$@VlXP@!~?`!^(LKeW_LN
zm;IC29cl4hW5ZAH{5N+urEXpPC(GoPCl{kayq$s)Q^w_I9~W!rMrF8vxb*Ut=!fs@
zd-iOpzkMU49?6|6)6UMivAbL!wEqQkMmcCTXibgHu|C<=eNC(kuH9lsK|T0gC7Gax
zIOq&c(6GkY+2+w-|FAPGS+YdI)Kt`Wb?D*81&5dq?5|p>WRP@~;m*EVX?6d3EFwp1
z{;M;j`s|rr@O4$_Q^tnP>F1dk_++h?+?C_moiVfM2}i-79osUb%`)Tz4Y$wRYYT2T
zFS^rkz9Gf=>8Yt3^X~4_x%~6@@8rX5kHxsN@9r#SXZX<A%lnCW20udqgMsXUiXFH0
z-I7junbvl_J9YPn=pN$+c7}Tl0&Bn5$uXD<3$4*R4?3cAL!vWiKrHq2G}n|Al~Yrz
zeSIH4Wxcaw;auHV_k5#@iYg}E=&aqbKYvN(H#2ew3JM0kJ0Lb;`h>g^*8bSt3vw?9
zEZ|kmV_MOBWXd|Wm+9x{^|JHJ+0-qLG-hz%+H&xCc<QMHk7c=27$zh<6?wAjT7Tl<
zHbpBdsc+xDf%XD&i87hxvweGe`P`y?)!U!`w6Xi;Vg2gr;^V12kp9Cd*&9rsgm#s`
zmt#=SZ%~r8V(2dMFTBsb;j+fxGc%1r`*}4J6Av70zO}KCF(z1q!Qtqwt%-|g3(7VK
zH)JuGMObP+YULJZ$WTxE^6?{ROzLX7qm)_AoOKz2r+?nKmF2$Is1?a$0a;mE47tl!
z*QB0$U=$;#yEDCP?&s&{nd|>F23LPy<lZlLi&IE`Ym3O6tK2)v`A;owc*58)DK2iu
z%voJ$XPZBMy?+0;h<U5~=ZR`YY*1iOFfb4RZQH!QF4i#p+#L1wE94-n|93JoPnbU8
z-Aq1q28}ow{woYm_B|Dijs5uT|G)N`#_5labPC_7`k)XK8yje-z)(==7!o3~?D`5u
zh7Y=7Jmrigd3Pj0H)v#KX<aHY=12qWEZVVqH>d;1@ZsO@_sk5SJ(KHVch8DZ-wjFF
zPx*Kp;+%Fl9FSu;HT7_<uN;Ge<{kIP?wO~i>*sGccWSEk#r^g5M~)t4WB~1h08KC6
z*-=<fP{6>@($ccP{b(1%f^*S}lJoQV-QC?ax|%?Tee3M5`nu}YFGdE?;O7j(WS?oa
zii(U~ixOU6TYGbrF*MyaGM?~0v4C|+iszmD4{Qtxdhb@}Dn5Mp(Cu~Y=d<P>{{H3_
z=QF;QNlP<0tbCAQks1}hcy5yH{kq?}ixw~5SoSt*P3&&5`ad7r9T}JyK(|?aes(r7
zJG=Yw@qT88OP4Qi%(|+@aA1O>bHVR#xi&RF1f<P!4y+7bUhwLQrm2Hf^*0@%FK!Q$
z7(g9~Db@xIm7J0+3YDK9)fLt=I3)TS1xaP!cJN_Uu(GqWdzJ0)?|-;8FOPv?wo~hZ
z`)r?nKA#UdL;ThK&{ZLhr>E&&+?48l<mgdJ9cG5;Xz<OknVFd%zJGU5N>W<pKfmwY
z-QCO#pd-XUcewof^Rwdb*Xs|TKWDeMw`XBze|%+SFld_#=um=Z$H84=jq(JBPeNYR
zSBw()8T$Hmtlz=J5Mv`V;m?XzWfc_`Gcz*@s}c<(BclnkW_4{!Jq;Q%uvk2Mnv7bM
z0~<fvu|C#WCXQd-^Z$N2t?w4Q%7sPUZ_a^(&FqW}?tL<bTFdKJpXd_RHpstc)BLph
z+na;;_Ez^^n{8F9_2}_qQ0S_tsb#%B1#wFF1A{&K3#S;TComs)cJcoAj~WacYdhNc
z<(U{j!;$><e*}1?Od1wxY}mT>DCi!kFE0YOYKtZ)F%%Xv+x?djIH(XEJ?GnZchHqt
zf}2WandNfX+uJi70Bw<ec6PS()L?rC(B=`n_<d{s#ct1w{qytr{2A8edU5rCOEXNQ
zKqpB&KGr+KD3yy#RI3G)43Bn+f)=$w5>reQ;|Xt#P?m2DeTU?e?=fasWbXF0OuqxV
zAdLYuR0_Iko%dSy{e61_<J@95l!&nY{QUg*tPT!^`Z@-OjY&rfK0otiZ~$$nT=GBt
z{k_M<>;BvK+1p<~$FnifIJHGX(V6e$&L4@IMP4c;AA|#~EJFE~PN=&Y-m+|;N_z<3
zOYJYJT}OXR^Wv*rduCRP;_Wvd{{7wfe%+hhiD|!Mu5W!^xc}~*ocG^<|B6|E{@(P{
zU++Bs`?Ka=&F8Z<<`ab-bWR5)B`x~%_wU@($IWtYElE2&EAx1tY}VCPQ|DDalk^Na
z-Y2^?@h}^&oJ|C1qEfEvh2q)S=Kl8oestyS-8ym8`-^-G3=NaI7#_8qn{U0G!Bd~z
zZvFTB)Bo);bz1smxr|!y=jZ3IxA97gNJvzi%>D7}mzJ`!^7)<8J6qbkj`vyakKLLz
zbz9!uRl@3iFW&8bzb|L*RPFF<pj9(^vAZ(f-PyV8=d;<N8<Sjr{`~1V2{c<?`{|^*
zltsaU&xVuLe1kTpo&9nnxnEOL)3aB~^w)W#^}@d%_it8eU|?XFk~7Wl*p6KsDc#-O
z!66}2+V0lv4$HZ@XkGKBFMd6$_V;ySCl|&X*Sa$GUvbN$qN*=17EaX;e>Lgy?dAO?
zPdc`gW(&SOICZvZ_B6MCIo-_8SJ!fv%GY%iMCvjyFifBPxia_qy4b8MD<-Z!{n2Ai
z%e%I7%a>^#*tF$;gX-x?Rpk~73ukHly{=lOpZf99Q7;dV9bXnK^Idu)V*0$Ak3Syw
zzdq2&{ORM#OFuuSB!U95kKs|<rQqPF>6TwE`(G+P?^!?p-)y&6U$wau8XFr|1uZ?b
zl-)F6Z|QPxM#f8DuY0GTk4t?Ter}V_)isg9b#;+*TKE_k9<XvK<Z0OI`W9We{C<DB
z{E~o||L@d&;9~M<G|8T}m&bcj-M`4FO)gQ})@00I-0<hmk}oB%KQS{hFg&=(p^*2Y
zCTdpDnvAJ>x?6L#SB9*7)3=CEVVbJ#|3C5f?Y~U8vU~fJrprx#{_--iFfbh87I3%|
zP*t_--0az+qN=QHtA6w~cm%z@b<^>Q({g|Dzn^2;_U~W%r6jJ8fq_9)cK(k$7k++z
zK6Rm1*NL49A%(Jx6E_`p51Y0n^>lnLzm3AuWzS@HXHUPfwA-X=i%F{2#A$*837W=}
zrz<lsICvgcw=<tIao)NT;cwv#g*Oa*x8GIsoj>pI*W>cu#n02`FQ{869zVtIZ^$fD
z?^y;5J*H=|vPGRb@nPp52L=X)3X?pS7j2g=8Bduey6kl9kyRd%Vc#qjl8>d-|Nrs$
z(!u6S()lU%^Ji$(e(DsF)ReWGb9dSlmDX0#lb6}qered+M)2FmsLW<&V9*dd-oJYn
z(|LD>Lg$r||4x}K{meE&FShG@=jkaY|NcES^=7%3eZ8G^&X3>T`TI0W-_E+bzrKDV
z>x9?qy014f{}vT5FP@mg&%m(2;?K|JtF=GWun3r!=xuINdCI3y|L5cNlP``w-S6*a
zUuE(=wNk#$!kVS_>(ncoQp*^2{{6PP`kZ{-gn5;2rjH+&E;v<F`}yp@)wkss7#s|{
zx+gDM6cgK;uH3L=;gy~Q&mfNzti7UIH$Fd+Hurja`~TOy{rw?ZSC!l?z4^S><EFX6
zo~L4&U$Zh#OjupL@8RL4`uhShJx^YbS)6>lFZS*?1_p+%i=D#iF|kd@K}MGR^qkbx
z6!YQ9+gqNdSt<8tT-dba{l3YsuAQ~cdlB%m{(rbtWsp|<zel&dy-(W(6&2fgulAdB
zV&AW6^XEHVx?K9@ie~7#n4K@au`)0)<h6r}jQ{ElEG#=#G|aVL8oYc-@$*mo@{_J?
zNc{G+x?g5z3B%6^%r6hJFRlH(Bx>uwEc*h5-*PIGw&c!kGs#{yEBTnl>d@7TZu2uR
zG$@t5xS-f8WqRsrYJ~|?hqTq&Ym@#J3p<5t#Q(dr(COFfC!g=v{eJ!8n7@6h{>o2Z
z&)P-){q=gObNi;|Q~&?Qmqqv4R{#6;>)GtksG#X=yi4-#c9n#K{2vq(GiSB;hYA(}
z^DoP*yowSTG&|-j4f6D?-@5nDrY(ui->#pxn_Zhfaen=|e|BnWzYSw|c}&&vJa04k
z?!KIvPo~!%ahH_*c7+dAVkkE3Fr2P?P^)8s!pfYRZ<G}*^=ty`etvpmAM{Oh^S0c{
zYJO+_U0&c=W}q4Bwd?!6H_9qOAMd=B1qD~D^}^kT^5y#tE1sUZ)Fpb!_It{G(Z7cb
ziWa){7S;b>U!VH_?jqN3_btn-)WKz6g$$$P!`4>M__~>YzY6=O%zuAzQR|k1#BZ0@
zTnSm3?5?S*YQ089HTAyplBA<=X3I^}`g(m^O)aMa0|P@`14GlH-5>N`Y)(u4|MyDp
z&G6l;LbZRdIB{iV(EWWk-`=mEU&}x7&yODkd>jl64dMz73qGt0J9~Rtab~RMZ#$*r
z<Nv<?ZJqw`Z@!(K3?m~0!w050%uR=Of4lW&|NA|`T<7*x@2>i$b7va|*tSMx1&uv(
z7=#2BbMNc@{nQ<@F6QC3qm~dkkW1d}db9uXr6sfTPW=mxn8VD(!0<pcqN(-J>LAtM
z?@!+~-K!AM#0nC$U}`$FIw~}3i^s0l>sH?v1D8_T0uBYG?{=@x*!KAKX(1g31_u2D
zLOMIx`#|AT!OFyOhZ&~sfgIFD3{2k-z#Q;sS=5$-QdYCa93anzD>Up_SY)?*OX1?x
zt2ao(bl#aTztpX<aoxH@X)FQ^3=HcX7z&-IJ$=O$(@+d5fA%mj9?`8#WO@iUL~*?h
zlM@3daJX0m%%4nUJaT<H1ITNj68wZVb4Ne_bFd2;nL4C5S+KK!%1{x;BfPF`)5}UZ
zzbS(yS(!SdwI08J|4Qi1@ze@N1_qEtypi`Tv>^e{b?-;u^|z7tD#WZ1PJOBX(z_r<
zsbPn5eoQkos1I`6zpP@=w_!LW2=c*u2Zlm-a9}qGf$Ddt3q%=@$W}fU6gUTtS1uNT
z@+ZBFEy~cydejDv2}p}zhoB+@1A~_qQ-}1Yucqtt4%UH<dmsv`Xf|%Ej*V^lYrzEa
zGFW7mQ6xwWJow!0?AEP2P^WW{iGkq*hDCkgn9^8S6C2yGytBLe^5^sR>vL~!(=;^=
zHO;zm;V{4bnumwmt&hLCz1_dx{@)JJwzm5E`qGz|T-WdWwaUranfsf{JqZUUrX`P$
zFEvVyiRENqIB@hM_vO`Y3_F=X%Y#Zvwn&*~E$I|i*RrsPXy=o?G*Q`oPO^}Y(3Mr8
z+Eex8<1R1ry*$%69dtCx+q=8NH*Vbc>8tL6{y*pKy9@R2g#7<EX}<jb6^slG)xW=n
zzq}eA8{6ux+#qrRq^ID4L+R^lzNe?_?|-plW$<z>RaMvOZ*Kx!Tv}9CdQMh*bz|dV
zF};`-iq35@|4z;_*I%{C)_tkhrR4sdySNw_8oax^l^bGI&oOE)INB}#`o_lOSyrX1
zR9@cMS!|^Co)@%=cjda+-ByR&Rkr5ekK3Ak{o1C~(_G(D5))m6j2Rdh9^`Q-ux=@Q
z>^4<5It;X0?A4W(iyu5l0C5ku@digl%~E;!;^JbfvNtoN%=6|v{|LGi;@#cdZ}p@Z
z7#Iq)Stc-96+CFTbop}W_1JRIrrD^SMN8TE<<?jhKYMYIU4Dv+s+yYDq(g@ff3~r+
zv58Uln*(YutSx0`U|@LHQtZI>;?2#?UY?#87x&w(0<GVhw5$C6x-DBw_Wu2LdzMM&
zq@bW66;DP+#!5MP2?-5PFHg^j^XJd6Z3P*S*P^VzDk37H;`!?Ga{qPT>i+&ZDY1C{
z{(rYD)zUq$wFU(T7w57wFfe>@lVQ|cpcT66MZ0`mz|&Jxi?@ca3h|s&^681^^GmDe
zER7KN^6?32<r3v8`I3BPMW9yrx|ns__SODg1-kuBSDt}^Aw1*cB-N-*DW2=LJ$aHM
z9vWOE;J~G!rR61UmJ{IQ)Rc8~)zcjNsxK>+yiowHiVIy65olfh?#$;OH*Q3j=G@re
zaNacgnvQAKl@%FW><kPJ3!i-Fez0SQg{!OU&J~L$HL6CiURfQkFPXe0;b2qD+t1I=
zPM$x1e$@6nUC&n+7q?$q6S=shh2{B-UTO2J|Ns8Jy1IJ$T2oLkylYcdV7;;-(b@LL
zgXXTz&cLdwT~XWf*6Q#3;Ur)8V<BjuXv6<IyOZDC*ci1jsrA;D%*7Lx-Cv!VX*|m?
zxlPI>V*$Hd#euEXj0_A6J0uvNaGjZJ9S%A&#>c0}?%$8((A8nSpshr5yC3k~3tb&{
z_1W3krd3}uY=6Jm{OSAm@ayYhO_PuDtg8c6?Caebb~4%7+08OYY*O=?QE;-b^!2r?
zyGmc@tl|Pig^XMw--*-u`{%r#1L8BxJE_ccVn^ZQkhM{!TeGkG85$Z|6+i1)?ajo%
zz!1P8C+P6#@#C+Ty!Brm=@gc-sn~Gn(4i~K{pHuj?hczdbLKideg*~x2gXVlhR%+T
z3o{Ipx1^t!108oHWth~mE&u+yyt}(JZERxtZNJSZdvoLAD<hCMW7^zVCU9R}9qzBc
z_sb+cdAl`dXPd7MT^%;dwt8FCmW+kBwq|FanxY9x`m0ZairxwQ{oD$Zrp%hPir?;s
z!}>j+y294S>B`H?m%h6b`SsP+%TG>DF8%xU`s>C0c15K#85kHC{&gQ`5lHU2wmyD+
zBQyJ|qNk@`U0*-HPtJB#cwD8cd!Nk3S*F=rik^DO+SNn^1_o9=>Qs-3HDX|3X!!p~
z@H-=DSMD^u*i}oGsI<1Xzn<tWcd>zyx#Y61`BO=0Ik|O;&TSb78W{Cfh%hiP99UZ6
z!T>re^4-4QdAt$^4xqiIsgcuV>Tl<6*HlwGw(J$iO(Ij=Stcx5qB2!4cGrQ&%F4>3
zl9G`%te`N_5b3vISJBn=y<hkHt?Tdozu#HUwW+*xtP89U6kvgi-Cizim)n&AI?!s3
z`urMXN#EIKnpRf77X7`utMqakuXN5D4p7V_R=6<y{QLdBsFYOI#eWkf2;|v;#48y3
zITRi~e0Xbb^>^3b<!^5-?Gn|#6(I=n{GksW443v+m+MAsa9AC-_SEI?C)MX`sHwS?
z->==ytp!T+1*$fWjP{(j|Gx*cVrTdJebKy9CINe^zN&aue}8v%|G%&LSJy^|>+ku{
z)V&%MeFc_sg)B>Ab{5^*SG)UIzx?_yUrN?SY;@8NTLUVQ)O=<vkhLy*F)MprAtdtj
z4l9E?GcPYK{d$O7zhDW-)(;7Cg`nd|7#vPMFm!ha3J(7Iuw7nDPtWh<$&;r}ojP?j
zKXRIwPQ-&nkg#rXXPNNhN5$6M+hOhe^4CnS$1HyGBqel3fa7w%xj|`Z%bc8@MP+2(
zz|*A8K`G<3o=KA@Z>{}Z_V)h%_+t{fvAaUj&(FJhT7UnV1q&4ZK9>Jq0CyqNiDkaC
zO>%A+nC9LJ;d3uLc}#+pg(c(648yGZ`}WG!|0xs?=LD7XMK($ebF9n#CQh6<Y00M4
z)2BA+sH&@5|DJ80ziw^x_FXHiK#|P)RFLt>uGi}>PgHhS@!Yo$w082sx3{<F{<Z(}
zp_z%9IW|-d6hTa%IwoJZy)}Eezuixl^S0mTsJv`sm%HGtzjw)Gb$=~wZSVU3zwetS
z9AH4Q-sbZe<6qBa=TDh7ZCOJDL$9oLn0vq6)h<!(CyyU5uKWAz<<;=`QY5dHUXNY=
zdfo1GKWh^b7CbvYfBnzT&v$Ro0y#AN)Z6onmgVo}I5|0i>fZ3_pwi-j*3Mc6&Cpd-
zYHDjkca>x!iB4Q1XIqtVv`f_J*p6MG?7|R!Q289=%gf9A+jymyZOgr#_2R<9uAZKd
zfPjE`g}qXyMUJH)o48IXGkMH5%bgPsT8&=$tJiRoj`z%&GtI(4h1~-$P`T6DSy&1R
zWrnT>ca{l_%<Q{%fs!19>j7myCs6$pU{rBLa00u0&4*3NI;TPV;B!{6fip*?3&YJV
znUi%+pSn72=FF8xj<}?zrL9Uj+I2@AWW)ysIY9@|IS={ORaLv5otwM*dR(>d{Q7@8
z_qu|z?2aV4TE33?^XIqm%dfM3x5N2xJAZkpCCK4=hZi$@^s(_uf$qForw2;D2U4eW
zFn~r7SBI<&f(ca|u~e9>=6h=U-zzJFZ*5BLe)Q<kmovuaZ^Vd#qFNi2Bz``he}4Pk
znxCI`{rmMAbP5r#tkso!i$K=I81{20L`Fug(*wE3K~O^w+-PO^z#}K<VE6w|aj&fP
zw?%&+AM3rm%y%|YnK08RwX5#$*X!Ni)Kye6PEFA?3j_Ihfq{)u1L%~wU0<(7>)*P+
z#8Vhlm?KFpS-SM)pP!$nzp*cWH>Xz=WUU5IKZgRS40e~VosvJ_&`mph-IZSRdl|){
zAUCc9m3hbIs(o&6%e}n!`@PkmgLx$-B~P6=abf%Yy4BV1_lC#U|J^EA{l+kSIw&R|
z7}-3sQ~3M)`}Kv+?Ix9<Qr5=o4B~Sy%R6=I)TGo%Df_xTY<w~=9%+GWkLhz~5%8>f
zxAXax{q^;=UoN`;`uTjms^|6i`n{mm%<J|0?;X7gQmMhw&#4ep_Mqa^N%h!RPzq>p
z`qWYE@aWMalj?78y1$*DXB!PVJ7c2~$la|E1sPNB>?pjoA@Q*5Z}Z$+OFlk6ej8Cn
zf{snznsxQnqQ7gSwq80n*E$zb<XRR#>#3>LuiMpi_+da%(I%vT+M0Fs(yy<t^>6*Z
znLdA|Tdx#S;PS}XL}XuIclE`^#ig&VXr}*O8NA#i>xxG0x0~sp%9mRk6iERBa)pxj
z1eM(~&d;;0db{=dmtU{fulAa%HEGFW_kK|R|9-!Izgw@=Q=||&y-7q^crhb0+l#~e
z_9gc^KCIjQE~sD5_R2C}>A5zQK~GOlFE3mQ^0(emWhRflZMnBs<=)<Q?)~LUm$qbG
z)hc~|FLr+Ix0yk~!LbpbK5@h8k1H6IJda7_-q{h@Ev|pfUA}h7<>mgXla6+QD%#cF
zphRCFDJSeu_V(6NP#d|K-|j;G{=aIcH-VZEyz+K2XJ?sCPK{ir2da1ur0ytX`1$ks
z{H+xqlXT<uM1anib#ZBVxBI;vsDRyD{XGoi;60VakYuu;;f`4YXraW$jT^amc|*_7
zvo)>%S97=QcJ3t5_U4^Cz{P6o!)=Ty$NOYg#qHe{SNk=z^yQ_elghy*!vo1X-`raA
z_x)UU=<wmv?{~|!b##3A?f-1p_u~<_WO7XGtjkwc20tyZ2-#ov*QWOOx3|H|{pN-&
z^O0<AX#rLKR&{@NaIXSI%ANMxa$%q|CP4)nsQiuEQ?c=0{r_6ffNf%8V%F_#YjsW+
zz3hC>$;nyua_Mvt8JRix@vFnuhU}}U^qp<yn|^N2#V;=}gD$c=dhFQz5(Y=uT7V)G
zP%##F`mH@@`1-im$H)7x|M>WLZup_7T_r1f45iF+W?Wkvz5K<CjM5hu92*-Ow_W{u
zMA&~t<>zOoPMo+PU;k&~>ikz%R)Sjk^K7d{1O*j6vo0;^1g(^8<rdF6F+p+LRZzy;
zA-p}dY3lqHD>U~0dbRr3*X!|H>;6{Vt$aQgWYeO>i$$fRvZ7_9x8+<sHC6lTt?czr
zZ|^U9>Q(yo)>TP6m6f%>zpaYhy=|IqbXqv54c2h`;|hjJhaVQKaBk;|+EK7@(xgdS
zQcenO&A)$d+VgX#PF?B{R5mGj5pcKUvTx<DemUD!$;bOv7Ct^!`D>P0?y9@H%Wns&
zfojlccj`E=J!N5ITUGx4-mAO2x9gt&el0rx<@ETvi_3gxe|qch<1+=+PJ8~6o1g!B
zr?C2zdGqw_?e{0G6$W*d+~q1+j)eNnu~_(gUbUaFx*w>!@kw^_q)AGiTpS!HE>AD+
z^ExL1YRTOea99VLY8DX^TJ-R6dwhvcK)?hQO<i4G|M;w|taXN<f_eMLAF2^$mK7fs
zJUcsk`TyVh{|7rcHL0AGSbXJ5$kOG@we9TUQcq7S)!Tb2va59Aks~glD*_&FI=$Yl
zR|<6C-_xwux3{nV_3dr6OEohCL&NFFO(~tzbRs9M*0r>}>3VgF%(TMg*1vad1T~Cf
zcb83?^8T!V?&(V>CMth@wR%0MH492npp&Cwl0hBE?Dc!Y=GXtL+;?73TzvV86&i1E
zZT0SzGS&Ju7v!nXho5g<eazv(2x@eL7J|<ER`~eX%QrVSSN;8ZJ#?`fuP3N9_;RoM
zy{4k#!Ai}0(2fqMRh+XH+~HJbnZU%w$r)HuQZnyb<mR-Kn{-NFUpsr#tn5t$s4<s&
zYs<wG6O~J!osm2{!_b*m%H#qwzfD5&RZxIcKUDdmln@!V?)~bpwW~nBN;^BN>f6n9
zP~WBW?XA$)*VjM)v>Vh%$&z8*=@nn|(RJTjSm$LOsI)G~2M?++BuF!X+OQ0_1wcbP
z3^&?9<2DQj%)mnz4BHezqbm#>z+>bL4Y}Zf3WgkK&{)r?*5MFLOBz7iv>zUBUmdr%
zii?jgY-`rlE4$0{Wi1L6&flp0{cUCNazCx$Wj&zgX~F>pS^K&>tf8RV=-tulS6M5%
zrpMPs#@BwG`fl&{xU1{q<M;plHXAgzWtw%x!@BIvg<kV}8lGMr9sxK@=Tq0G%Y)i^
zd&K9ralhzPpLb!Bs&^49=-}s<&t~Ue+md-1l$AUuE%TeZYRVLmw>LMt3knKOTB7DV
zYen+$K2TZM#v}P?(l1cMr2K%;8m6pkYa-_@7B|hlcE#8H?h?=@yPMmvm#xuzK{?7=
zsUc=5sB_xZ<~0e_t%Vhx$3V5^?(+BBcH4lm{#pTtb%z$Yc2AiwVS!!kFONw=!osSa
z4<A0PJl59U{`yF#u$RC8_N{IpwQ~g=xH9kWtCg~=*%7rZXC)&un+IYL=omX2+cPOp
zKvpO-d4Mh+U+FzvPb+@k9?*$Xr#Gp1IyyQ|TC!!!7Mp%gU*EH)pj`XGEr#_q*Ic{W
zsJT|9mtJ08zP0pqSZiym<?o_taZh!Q?g~gsTBH@SLc!jC|7pA9D*_jXtc%$hlUw`y
zTj>3Lwd*%kF)%QQT$!Zmy(Q)3q?p{3Cr|3FTJ}VtA*ON5786j(!Okyt<yfzD>0w^;
zC$H8AE$spw+&tI1{8?pAPR<%Bvz&+p&u5xuPm?mu3Q+-#*(@md^qaLHCT7l}MT=rW
z0#Aa1|J12dLF?o8Zb?4Q2P(@zo1@EP`sHl5q@9&gRZ+3HZI*Xu#oyoGSBI~UE1Sv<
z8mm$5YY@5c;^N}1RbR7Q-Q8dR`1m+#PetLnf4|@D_Mc>ew^V%4bP5#n-yIn=7u5fK
z9luG(dv*BwYp<@Z{`}=R%Y;>-tFt~oJ1b>dwPjxIx5%Hrf3MEIzHXLbvRmW1|DZ;i
zml2Z(W9`SI;;eGf+w)@AMsHsyu^MEejWDDKFfz)&kENxI4uw`lPde)U|1Af#*ti%N
z^b#Ydfs(+g(AB$ki8u%`vZ!9!lzQ5v^i>F`GqX;Qm4RV9Xq#WJw7K8js;@<*njeZ-
z1g2P=o~9c-->&w`&f;|683vA5SA|aQ@9$rInu+0ns*$m=sJ#6888allzP#){i9@kK
zlZnG?&dT8BtBRkWi`rYYRff;6n2BM5=VY~A&*xQN*_s^=>STikM$XPM{mCjD)8wD7
z5eVA#nZN&USTh^1QVjz`0b~2&g^tZ^FE1=~u6n=s`<BYjX{l*xyLRbRDB3Mt=mHwM
zQT4pKDzvyzm4RW${1YcUJZ~nZTwfP!Rr6zm_v^-TrG^DACwJZwZJ)x(a6<d}|KkS^
zIHabeXxQ1^J1TlmS`bu6?wPQE|9-!DHZNZpJ!l12h;b)2>6~M1^cHYn5b3u6|0kHQ
z-TC6hi|h1Q9XJbLTu`)>;j{g6!FlJc-{0Tsw;x`(*u7t@B06++Sm@hZTf281iO~zw
zfAE$=!GZH}fyKHP=RuvgoUIYlR8Mc}%Kfbo_wGy7B#y1`bkrHn%rt(!Df#`5$9$GD
ze4y0>uHXJlOO5?FmB0JZUQJ_Tkj>?H3XiMKZ~yM7VE&GoX^O#l`~Nlbwnc7Ed->(%
zWhu*|CF^!Rn-x>bD{ZDT&B|-K-dfO6d<PF6Ji4h?#J;>z_uyY%S*wuu`~U9)4OF<x
zRX$nt_|fCXTMHk%xw^Qlh~A#(`t6T#+L;S2oWdevVqqz_b+{%@ocQbGarw`Gq8azd
zGO}nSs`<^Cv0PV8&272={A-W<?bm@uKek16RaY{1O}E}VZOQ(1MeN@%?<&o{x-K?)
zclrBk^K7g2q}-mLpRb?nGx7fFl|@fat%})MG%<Jm0=@6EzI^=nuvXv%yY~hLk4aMI
zd22SMp4Kuo4SjsPKYVS}RuKV#1%k?M9+N<g(#*@tR{G91>+0wTaBye<jj?V{_dj~{
z=+m3`j!rvm^Yh8%A`6+W?(WNvj&@(&QJ6ecE7VI=JM2mWBlDc^MUCm!b$@outNG-4
zb!D)-qod=hfQ3z<qvOubHh(TTd)BN~lE!H-rbXuk{`~Y*R7Pfvlxfxq(DJoirK?q5
z=GXt8eQKJn_UTPq($3C`@!k*WB<(Ke|0!WrvZBXumU({MzQ2)?k)S$DhOeECUrxu<
zs_M&%xQd6YTXSv(J$(3(i-RNJ>Z;JI`|Iofe!1+=TKCR-F7u~fuh+j`HajmUAz=aN
zQWxl;_s=|aOUp>m2=1+|*~?djuGUgeZ~(13xm$jJ?Ts5ZVv@ymA{6TD>m#Qv<&`#j
zQsukv$D{5^dbNBWNlA<3YQF@!y18i?7zBW>R5?G-c5C|ic{X4@?S~hBzh56OZJrl0
z+bkE<ON%W&YueS<ckSQb-`syTGu>fycVO^16}NoO)Tv9?#qI_T<nQ`?&RSGR=+T~)
zkKf(h4H|4*;XB*x)xEvDPfgWc4(`Zp&6)}t{^yl8d$H|yp7w>$5!04}nh>C#dTjaK
zrDbn#W!~PF8?_~4BIs<Gw|90<HoYvD^Z(!9tn2IM3JD8e-If~-s;EE-YgOp#EBk7z
zb)&X;)c*QX*!TYG>ggcU-Fl@mFD!5bg`|^H)3%(Oi+pFBz1(&?@ABI1_f~C8KK|;c
zcznp)TU)QLkGFsRIC@LQ!>+qW>Lo1-798u9UasmrE#ujlnOr<PXRiK#xqQBsqM~E@
zy~^dEYoB)O@4L_=X?$f{ZZxQYv($U~wMJ(4Ej2%j)<$l21GR(l_Ix~c+V1<&bDMwM
z|Nl3B@7HV5T^$`4l>2Rz?CtGq|9m{&)!Q3dRkf?Bsi~;<{_gVipp9wQ)<$bvSw&rs
zDeeX3wXCaJwZC32kJ_F$_tw^Ib<eJ@u1iNcg-tUrsa#zV=*-N<Q;_!@bh=i`Ui<%l
zHiKFhpazR`JKwJN`+k2pt-n9x=clJpyUW&sCOtrX&dP5e7x&v;QlDS52(%jM#)iaO
zyUW*u0&A{y`KxyMx`dVDHtmhKLFZ;nOeuSN>*=c?8!`LCe_Y+%q}mTBK6?CE-)dRm
z<73A*=@h?SyM5N><^IoK+E;#BVp;ksWZpN>83QeCZL^m7&VH6<U;S;(MxE0oudnHb
z|DNn`m#K5wXyL+z&mJ6X-udg@uGe~x3oOp;Dt)~!<$J>7rajXZEn3twfByW)&1t^t
zz6q=Q&9EwcHKXY1shLlnq$Kwkc6N3i+oW@OTkh?e?WK>7a6Z2-UhR9Z_RG7ww=HD&
zKEK=j{@F{=I&Hr8!)s!8Ub<QK=7!<t=kx2IN$yTRFBiP4BvV*ccJAuG4-PgT+oWS$
z^5R0w+rPiRoAb3FRspp}w&mPR(m8EZ`szyIzI#1}YNn=FO>%EtiI|oOT0NF+ee&eV
zopHsMpcV4MVq$5puCJfJ+E!WlaKyA!(4@-!{>O{HZp*%Y&O(OIxc1kVn77f}^GxmR
z?3M*B^-@z+J$low{$EXU<g}09zne#I%Q^XVhGFtCiT1;ZX=i6m&FB5E`~3e&&ERD-
zK!@fm^`0*FqVNazeA9Ju?hXu|R^@)Twx9p^d~LA1R_LjJ&-Zei-ei({%Ver%u$uq<
zqjj6Z_Ewd;y1QpTJk)Ac`YNQcjyXMY+Ptb)nz8kNzwW%%&Lg=fbaj}fnOWFet5U5y
zemg*?VQ)Flx_&8WKjjqZJ=6C6dZm5z=uuFPd39;2_qu(bo}SJ=)WW&z|G(c`v#x4=
zeSiP{&FAmm&wu~z)O7v$HD7lHdDh&ne6g^7OU_NBv-9okuM0Nbulw!$`r6vyrCw8u
zbWekhOWSul^TL8g(Cl5WwD~EC;1$Y?-tYO`r*ryJ3#V|%ww%cHY6pjgxSEfyrEhK+
zo=?`3DPIWccz?fB-2d#%%*CLon^k^g{r&ydL1)uSnPz2td2w;)FHmBS+gp|S^3u{@
zKOXlN%W6*9G<_Dxq2afk`E8d-8mB#pRASp<%*3IPTF=$dwdsFl`P)fSrknm(>M!)1
ztS0{U_oHt8FUO?wU(C+mcX4C#@hS7>y?e7+$D5OrlQoV>VCwnvzi(x)pQ_To&-nem
z+TWk<Zhy2b`?{WKQS<dn*W>GTJweePSMjjb=C6C7%tS*s`+q+ct7z)z_~hQ+cJ=xE
z`gO;8rC-mheiyhpZ0(gTnZc|qEH|Qd-}QQQ+i!Q-+mgRuuV>%hmiz1F^7$o)dCfge
z@i9wEN=lhzOsJ`;DY8wwx+-**b@@8b@bz)|dJSde!#C3-r-ACW2@@u0uS@;@?(U>d
z@qDGf-)@ipqVhw3|DT}s`~U3%-R+Qkybm;_yz`Z(hsTap3`L2tKd)X`7i(Sn;UN31
zz18LO7=nWCn?J1OP-vL)SNmY>?wHSe@|J|G4AP3-RkE+PTTJ)Tfkx)gWj>OnZ*Bx$
zT^%0&^3u}O$Z7vR_Sa|p{`S_(+gtlX@l)}Tn%d3xC)xZwx2N>gm5X}fd#1hGaWea5
zzx}@nQ}*8bf7##uY<W*=q*e8|HJ^W9T^;`VsCfL9OG~{?6A!USCWovF(F8U9E-&}j
z-{|h>_3HMy35w2N-fTXf_3zKmS$4I%mhAUiBxjW3v2LSr`nfAJ43j}4NPMzZE26e$
zadB}?N{#&W;V}Q!^7r?&tKxSC6cue!d0JhnV{gB|CO-W1bp7!A`)Wg1g=m6&VVZR%
z;N_*IPYWzSD+F@y?%I0c>!0%2hYuhA{Pujye5+Ee@ZG7As^4mb@3k{9dE9(0c;~_P
z<Lk;+rt*Q>7dJPhZcRTg_ndQy<+u0u*T22JUA(+fZehsEpu9qrL!qapYO9~#^yQrO
z`-}$%8d<A+Rt7CKNj)XvJJZM&v=YHA|K1u_Zm}10%kKpyB`vzPE;jm1=x#U9+S`&Q
z852N-|Mz><{-C*AkV;S``Rc;L=Bz6#9?DFgI1!X!HI<Z{KnJ#DWMr&+n{#v1(^aoD
z!q?4F0j(4bT^)Az>hyW@)=gITf5xdOtmYFC5HR7<qemf|)6T}!?*H?t`}3+C*TC!f
z`~ObMuTM%!T36`cc_g)hF(xc6Z5gOc16@z#|Kr4o6BokcYo9JU^&k&)=|-~8LVKII
z>bF~8-QU0eb6V-^>+8$^9kWb-$+!PyX};z2N*VjQ82Q>S6Q7-*uYY>er<g7?O-)bG
zxNGkAyVKNb=2#XV+ZnQQLs6aJg!@b9o9EwKvu4d2o426)3N+!bUXzlV`c&GkXj(w*
z$?Q+lqVpzB*?Z;mlVbUazO&6vZqix*&y~%~j)|k;^rw#>K`Ti>?Sbb)(we{3V$R!q
z?%|WSd$a4&gD_AD1FG;ZE^__#pqc-ZEa(8>=SEZR*ZtPLKl$6_$&<f6pI?9K{{8!s
zHcZUSq9P(o;_H4c{ZYo?s`PxG0w{SMm#<%Q;X**^`+K(6XUzFs2im!BRsL?yW?Ng^
z*u(Ao`(G7HvGGc&B=@NK&wEp|*E7h=tLs>=^z`@1t3p>Vn_u_K)6>&)=Ph-g857>`
zHPbmA^z+lx^)E~#K??yuGp2m9mtL>mKW}wDsA;n;XQq?0GiaHKXvOS?<%yhP4NRc<
z@nb!bi+_E64JtP#9)5V?+1c5kPSXFM^Z#GmRr)$6R_V@>Pft%@UFgjI_4Rds(4|(B
z)qFuMGg-?b7f=)0-~R6s(0tI-Q&TT5bZ!SN?73TXT6b0W`gux9N+qwZXs(Uh8+G#J
zNze+I;@;ihwKUn+*MSE6OFy4AKYjgrxU5ylg|*x7y*gxjtbX_7K5G$4$(1*5L_|(o
z$}U%-aNWl1raQk}^&7*pb1Z|+@7HWzw0QB<Y15X0+E<`$ba!`s4b?pisy0E5%d<0$
z-OcZoOs@L&Ml(J>9@O|*6|!;?XlK`R!^LjBmy-K!m$mUquX68~`}Fne)#>qdE1B8(
zRzz>li`ty#JMTE?M0feR9}7WqPtkchUH9$VmvwnrZ`8J&%8R!^bBJMUqcXp|xCm+}
zEn2ilL|z_r=KqQF=l!|G_0AOcPx{k0jbUDwvO>djjT5Ol`le}LUR<1IoZbhTtriwu
z3|jwC`szwxPR^QF*Va~Fd>i}nsWJCwi5strJ_qluDt+FoZES4(_51$+vGu=i-xraV
zUVUq8_UpOj_X_n2LD$gCtA1w*T4N+_o_A$U<Yv(14yfCp9k%Ae63@v+xz+FP?0j`|
z^YVRvK6!%*1Yvc*E8B8!cjd+hRyeou6#lFJ_kQyEVxQS&zMxh-6EpMIZ@2SbgH8qh
z{Os)4v*!0#WL;hLbKf<+Z*mjkZ{Pp-&3x~-TiIIS>*j#GztnsBs_g6QqW0JA{qyI~
zC!4ez8xo^7Bs3m6bZAS#L#Ms}|NUMSxVQ~eG5q@a`uT2t(Dcl&FE1Cry}jK!ezLgU
z?^EmV%`(l-y1p*9>c_+Ot@-!uKrstiF}6ML?v~u!W~J}$>~#2DzH>h3gLOL2OUk4R
z3k$otx{79>&a6_ZYhz%Di8=Rwa_};rz<_`Wpsq>W-m0Cubovja_pUxJ2wHtd>L_xP
zkm_?cpP4gf>aAm8VE8`y^M7S?y%udjhk!+(BM&Eu$jiTf<i)^HVBgL!KTTz-ZuGUS
ztp`?v<<~}qetmsC+{dS9)22-^v3v{+dCJ<_-iC&Tpb7C-E>V?26_#}mU%z5%SY(!W
z#{yId#qKV<y1=nnL{d^yUS2+YIx9nicS>5?s}BzkcXf7NOrKx747B?0HZv1bOpNRv
zK}Hr;zx8o@r%ar<FnxY)7<kabl7V4I>xmN{uz5H`H%Up!u8xj^(#Q`^ECN$J{{H$J
zoRYF6Y<--rCn){P@P)}RG3@D2jns<Xwx;-IXjIg!K3VH!6DA0_y1DJzW>KNa<Y8!8
z|8EayJ%?+z*vls;C$Ea%zi*k(%td^%Ry%f?tS@}McDt6XZS4Kp?{m-1v(--K$&O`Y
zh<o|w=4Md6t8()C_3*^RL{P`c$;l}uMsklJ<B}PmbJReS%Amo)&1t^6F*^eOf42X>
zxc=Yg`B@hiwXQz>naj@3F6-{Dt&0{dnlfX?iZ5SEK%+ro3=E)#JE+8IZEZbyeR_Xm
z0dHL8Q3W%zFz@MlSI^8eHqE-C;d$xr_xtOszP@_7a``;aaq6)#3(GnA_`=pkZH<X_
z+c!-oa?!rp-@A74+-UjvP4CS1^2B|OP04{Zh7lW+T5D=+O-o(`q(?hAG=Ns$t>6DI
zij$L5Zw=qOl#`QG*Xc2uCGFeG{rPR|jQj-;I24Y8&b<W9lQlIr7jHGsy>;a#XcZM`
zOx4iC$0wwsqGH~+4<8C7lS{t52ow(iEp^x-$GAjd$&w{cs*~p*IN*?O51JI~wcy+<
z!NST4o|~%9%38JA-rn-yljHLBI{O|y2%9u{vZ%QD^H)X*!q0B+Hn@MU_2)M^%lVgo
zv=%)Sbm(%dsHoU?dJT9q7<54I_d;;m{QCa>{u^1%zdO6Sib^>*2!fsc{!mTz^uz7^
zt5Z);Tc>we8KnJi8}HZi_5Xs?&(Awss`LwVGGOF1&|KvE$M5!h_5<~BCr+FwZtDeF
z9CF>$)AQoP!|kQd=a%o<CDNZN`R+{ElceP2t7{^SL9<1mQ{bl5rhlpW`f6p;(XLzD
za%XpgXS-vXl@*RI$h^F4*Y|tXU*Bv#ucfJZvQquaj~^9Bj~v;t3p~c1YQYrbb8f!<
zdQM@rjEjq0ttvk)d3AmLdeFUi&h32b^msv&fRfO8qXKzY9^cXU`T6<RFPF~`b8%_$
znyR%Fv<2sI8}B+jZq_Zu&;3Ao<Lj%d!36~yK(*$*z15&?BbCSA-QMm$*QzvVrco-W
zkq4Sq|MBth&%E-3O{}{<9+L*u*q~DPtoePNcd?F&zH_ZY`P!YozP^6`^6@#-c|ZkH
zUtgGqM+ay$Yj*xV%kzH>uB#qC*vx))xxajD_1mplvAedsy0&)p$;s-^cRpwS{I>Gn
zpU?ib-|rN^y0de$latev0t?U_!&B>R7SGHrEhG7Dzf1t#%JASp0%#@Q?(+9~oBn>*
zVAH$4++Y6j`}g_t>V9P!=ijrryeZZD@$={D+j4I|dvz&*!M6IFN$9E&LuL0q6K*jb
z1JK1`iHV7778W-^*Snr81Z^E#xNzaJu(eUo&YIsh0X6(q1}tpa`E**ePgPaby4-U!
zjgLo6ORf6)D)rg<`T1;oG8sCjjX>4I-QDe{EsCCWfbOQy3|`i=^XIeKpT8JBpZ8w=
z|BrUid6Z{oo125yH_o)L-&gtVX8PI7{`PNW4#!OA0X0Q;KAV;8^Yzu$v#0g<=R7+*
zJ6*2kgJW{!G|*}O#WJ7Y&IDb)taI9E;>3x|Vt1Dvdsr}|{C=(Z`5ljD++VXs=kg*~
z?%-uUlE#&vQjDv=<pi&fvkl&s6IuM>!NH`v`Q<JQg&Sq9%Op;3I<tEHzE?TkzP_fW
z+1E^TqqmhLrfRHMzyF`rdFe}y%<Mi12@7`q|Mz=tZol2H6(H|e7Cq_MoO`&97t}+~
zzh{#k?d8?Q$;)ec@#4ju+ivc!uLs#&{OZceq+7xwZlFsD+WBOCW}D@HVi9<D=kr{<
z+FLEHtuyD@R>u{|6vrC*%(c1-8Xb7tZ~rVy-lAYZp@q!3pNaeCCvWs&U=Z~8ba4!^
zz5Mg@bKjt#NruN}%(X6;I=$%=ufkEo{od2{OsA#JoT?pebsIDm9=xxnviN@OchQ@6
zRa{IR-Mx~=$A0|$Iny}(+>@;OmrJMj9DaD>>!bGc&aN(_UTO2Py7-+%sh4+`zqfgu
zx8ot(<&DYi&%e*F`?a#rLgv}#^LD3A-@RVH-)vgy%%k1n;_(-ED9tv{H><0wOM8EB
z?@u<6hd={Ipa=k+3NDd+W`6y@%uSm%ed<YG=iQb*ukskkZ^z~9pJdhldbzxJ{rdHm
z<?rSgw*A!O)Dv~+O0KK^`YIK)SUKnO!*+SIg9i^j`}6a2_-1Rl_F{*aob&T+SH<ow
zTW7t@`{s9{lP}xTy}Z1FGBQ@6tddTTxxCD`crD}EpH^C0TGw~1SfODl!}mT`|5e(i
zO`A-Tj&Oj6ip}qq1kbB`wkPGrj>5&Krs=MZum2kgYE=~!Yyfc+54UOR>iP;5$4=Uk
zdD-ol1ZZ*Zuj~8&Emd~!%XoQdDX2l_)+e)a!2*S6yIZu^{k*%kdb^Zq)|B^V=jU24
z|NHy9_*K0M7N(AFRW&s&8yg${>WYdTJ%*rxQ|?uVu7U;&K?~WJ`^$UY{H*hGQE}~~
zBb-Z@FSkDa>&Fj^!`^)M_V%qUEgxnT2<PwpIt|q6@ttR5c^~9xivql>zK_IAR{@Rv
zsrk=abKd@c%=SA)-RpM0vjR22mEC$kgMliB_f=yH&%R%3_uli<uIo(YPURb?Oc7ya
zVR@3t&%;yl?eJ#M!u`YT{Nbmk>4KILde)zP{Pfwa^XL6FH8nqd|9-ywc4K4X9<@6M
zI)&B0+$lbv`RGXJs(^(~`;upTp7ap^x^ki7*h4OEZmUXPUjwx?wL(@b*qVJk>(!N&
zT-@B3HzXdO@m^@%j%VM4=6~-ojQbv?(6A#SAYj60gMXk^<#Ydjkn!~Ne06DQ_o?an
z>z|&UetMIRXZ_h^$7fa=8XnKj&p%)Od*#ZNAjj<}d<-g}!Rt79isOu){CQK{m-g(%
z_4V^XjZsilUHbak)FUy|S>$UzG|E-IP?WW)xbSoK%XfEoYa1H}``iEB^6T5%)BE4T
zT%>av6k^^RVsvb5?o{r0?_`-9x+-MjZWR&G?B>;#!RnyNPS9GZLx&E{skQt+F*awN
zHh6;5{`rkFXU^DMm-hGfzb;?@=V11sqkM8UpoKb_M>+&SQ_eLtdqC@<5vxel{pY2e
z^X`~4zZS7_e#UE|XQ0cQ7Q6L+(wW-X*LQ7a@$)U!-}4}8@#*KdJQe}*>>C>vf_nd(
z)6YN4y1%b>x6bLH!)?5=A(HD{qM~N)Dto)CnVmoD?X9i59=1sreGOk3<O-TpI5*e&
zvyGXVnb~z4^PC$2$7a|hgD&$-O-=nct6*bG3yWkjC?AEckBbEjw)9Gwf@V!Y1OK3g
zyPE&JGjpa3SgKD~Q&D-6bv|-^?8+e3XS-NDy}W|b($eOA`vPj4O_@0HV9oS`qo(_L
zrOiTOVq)gy=H1^HyVPrH5NL*}K;Ncewch^L9Lw*FGcAjkZPwM*J$q$U=;<vP7Z0^g
zUAVx=*x0wEWXs3z-_I9o?&FSqwd+y-{=eHc>#C|AZE0zFQXTv8!Gnb2Pft!Ry3Z+c
z<KyGwXVvG|OnUCWx9Y1;O3ISRtyxoV?k-<%*k-BES@!;3uFh$rzrVkqzj|+bemtnQ
z6cQHhH9S-5d2wyDxv+#p2A_<@gw=bizrQ<n{rdEudX8Mx@)Hi7dw*%Eckkhc2B03_
zX5Hs@3V(ln)jk#bnS({Z9CYy@$RyCn=I3v>^Jk0cMoHAy*KaO;9Tq;ljY-0?Xvs#M
z(|1a*$EICe<XZXf$&ats<9&~IiTa+MWqMXRe@`N4s4;k<6DufB*j)cV&$fCSs5rh?
z{oeHR^YiA+Y&-^h?T3A4o1J}k*O~EYxxB!$Jt-146&ngIWR{h`znAvy&CO>Z)qL%T
zd*to!S+?!eliZebGwIKtKR!=SO`Ti5`rVzKn?YtiY?m+VOWtRDeRlr7%w;|^lR&*;
zP(^!jaXV<WC<t5D{@P-=tm2uuvGHY-{Cjt%=tf`jnPmcMj)8{0|Nj1dd)xnaO$?9N
zE?v5GCfMILbydj9q^72(Gi$fs%L1)O4WHi11nLeKTF8k1EnX;J_v0Ywd`%X1_Ssyb
zS~D1#*=8gk?|ZuY?$6K9XYVR~J?p>$hv3y=x}Sf&UVnR|wZ;;&+*>n1{ld)jbGGqr
zZf&4DvR20J-34k%Y|XxYt~_tX>q!r1=kGHFT`LM|)-W<MF7umfm3C`Orkb&_@pX%5
zw~bxh+~U6cfBoY}#dA<YA$Ymp%!SVFv${mJXFYh3aCu#<wXnE&xX$mF?{t!T3cnf|
zfacuqHBP<&nqsHYf};bex%c)&^0hlhZ_6nx)pULI^ZESghY!{_GCbhg^P8#REa<F1
zOBueSM~_<G2CeTCkE=M?8k$=DdhPZvpb3QA>5<dUUQNlqysY=t_4V;fZg0^!o%)-Z
z;a(pD6NBD|`|@@6f4>C#&N4aadi780w>LL`vQ4<QHd<R%)ph&*y4`P01w|MZq$oBp
zG)Nm96FFTL930%86aDYsKi6%#3=Q9v8W<Y7d8JG|Hm9GTreZ0>XDP$?^T!X1-@S%a
zZ?|3#Ss!Q1%E}5FLGHKt)ZsVRYHGIi#EBC@^KHMrzP`G|Q<#;N_2t{`_ot~GJ#u6P
zXl-E3&P`0r%%zuo%`?x<vD_&azqhKi_W$4Szn<Iwf4OEcXq}s09p4GikP*@(C#Y|>
z*uDRm)aL`t{D11Jzl#ZlUO&e8XMcI{OtT=5#etJnt~|<<$lk>lmC~E<F*7nvTvgc0
zbf#Ov%+9h+YF617Sy+YU>TMDcEDf@fiY-y%+Iq;5bLEj!J$~2Le1Ejq_x8r~=KE*;
zx%barAkDt|?bhp2;dX1berpO_?OI%HoRplr@M_k=%P%KPoOto^5$|cKOO`HOxMT?n
zTQj4aoZN-iUstSIQ=(b@_g87E4QP2^k7u~wJe!qYjvqhH-r3n%@$1XVqW$aE@y(kz
z&%?{BsIuK{@xf!g($!bwl@{4|J}WnG=y>739dziIx%uK%tGJf?%`N)5+(uQERo!n+
z!^sq<swyiPK6WlHu7daXY_D9oqH(fI#dF2#)rT)F^-eUKJ#o^crVAGW7#hx|HOH+#
z{^#fCg%>jdqN2FEk1{E;gsqKYWw5CDpb!)syzpw)#JO{M6<KO(Yp0f##Bqg2L~u+#
z+2T1_?O@i{M?XJ5w<vhPkauTC<L>hJhi>1Ft~~d$<WPo5(x)dUL1*BsTD59J{(U<Z
zcJ{+LX5TaJtc%^<_WAkw!$}(*R$o=Jx0nC;@nc3-)}aRnn;9AS<!l-*X0-S%KYVR%
z^u>!88_&)*cV2#Z=auQxr?=0UBcl_!iRI+UlNp(rj&*f*O3KPp|FyKXCf?qb8?nF6
z_R-_Vg2KYh<?ru-j!sQJ*7H*I^ox#;DqBYvm%Px32#u6TvF-Wy!;)66T<J6|b^503
z>tcl`sdR2mKfmfx+3r}6Nh;^&SS~)o#KhF1bNbPvquqL6Ykqt<s46BatJ~Dv9BQ~X
zPCxD3oR>kMyFr|$r4~LtC92pWAS)|-==$~W9$D+Knm<1RHN(Tg)Kol$K-VEAd3t&}
zO-r3PefsiM#dmfTCOtaRsrUX>&aocJLkR{ek|wEe^7HdQEU=hz<L~e9tty_6K0G|^
zrDJ9mR#8>ewcLNc*2Z1CtQKC(2zh+>#tjV<soo7yYgc`@sreD`<?Ze8H+OahcUsQ%
zGpzkpVp#Gb;Nq=YTA;C)UteFVzq_;Za&CM_hX;q=K_#VEM?tsFJ2tZ=URx8Hk((R(
z@6h4Hh6N8CK!=rw);&2fv7@W2XeH=Qfm83z^Y1O#x>ZzAP%tAS!=bwRH~;q6*VaZ?
ze0;>JBi5ajf8x&0V$hY^n>HCuPq#W>;xpe)mY0{;{?EJhY3JwlHZ(9iy_H~a;P&n4
zm6u<Z9Ln3Ce6WcXw9q+7&%{K;ZE;{|cwnGlivZ|e_N+OjR<fWhAeHVpDIg-EV|)Jn
zN9*_hYdV|e92O>a=<wm{JK{=<>^Y|=2nv2p>X)}a_WJtz-7!Wgo<ebZDi(J2%2;kX
zU6qxUHDUJb?%C$~kM8a+UuAXc)~y9sv+7sG_V)HpP~lWmRMh)^=+L2n;NZnwl@%2S
zjvsdymA0uch}&EB)%pG3Y5Vu@_kMHRDmp6a!@s}PEbQ#Nr*QM~x>i>1Ec*N8q_D-@
zb9$$}COz52Xm4O3uyg0m6DLkI987R1D=X{&?dbAlc_NdO%av}+xqd%>{Q{k|7MpiN
z&M2khRTXHvSE`hhlz^yc>&3<H$^ZZT1s(RXzwU29SXdh~JKuqqCI2>ktN;3T*{}H6
z^zg@5WS3v&jGPu27<ln1V=FT|UrA?ZSeVl!6%%uF?ait#E>~>T6kJ^P9{7H47Y7%Y
zQ)#IwXs|5G?W?kvxA(`Fm({0Co3?72QfPSi|How|W=TglI1~fo<NGCz(^kB@di{Fx
zkq$xItk>sFQcei)NEk5m%iEXj3=a=qzKf5Gt4V-~k&!X>TvJKf=9>YrvAuit*u1&1
zkvVO%q_|$pkIY<krC;Wc<ph)##T__(n)^WgxAdCqkB^T2`17-PdVKh=PfxjT-MY1F
z?eEt<2e%u`=H}*V=;*xJBs<ss{q3oo!fFo7FCR?Xym0Yi=g#TVr!U^NP0Y~H@b0yb
zt50s?S$whM(W9iR%S*DevlF-94o!Xh=#j$dPv!oL>wkV)`swz=0*&~Cr_P)?GS9X;
zASkG5vbz7jS$zV6e@_>%wRF5Nf3e3W<Ij(e0!|5MXPFvE^}e{goL@*tNI+1Kaq~@{
z)mOW!zrRa7H^=hD?d|$<wpA^~&(A5^+shXg7XJSl8$Z9Zv$OGLj$3uLb)T#?TYP-H
zP4%}kOJ&Vw^Hx??a`5rB`7J+uW~OoMtu+@jHe_Gdo8bdG!&1S}Q1JXbTj#nuJ0@o4
zjb(3d%{K}9KU+6?+k!=lm@Y5#Z9bah=<d$WCu_yBH?IHp_xIXQK?-Ysm!+hp9(-7!
z@qDU@iOGT;J0#LJOTNCgmYHFOk6J}ll~y|F2KNOkR&cz0`Ld&{t7-oH`}r@m1uy>R
z2F3q=$LCA^3JVK8yuA<K+?+mjvxAV35CiDQo`Wr%!UbPm1m@h@!YS3u#>mJRu`Ndu
zw5oK~=GCepii(OFT3SwJWoAZ3Mh~7pXYW4BBrh)yy1OCNOkJJb*Vp&P-fHt(w{Htd
zO0HB<nEN_zUybFSJ$n+iMopYKlT%+`UngdVK-lU~OXerlf8Xlei{1JD>(=5s2?hu9
zwkO}+ReIv=*`psG9^P2`I?Tk}e6^4O!;KAz%udeE8|(kqr5-zZ|Gxaiix)xn5i=}U
zuz(?aecaKXpPz@$e$_8;&)0mg;mMPfDbuF?TWlvN_;;ns#mRT8T)@EgfGy<e>nCPD
zkYj>R<j!ai0G)I=@wNdY=tw&yrR|`c2vVMRn56}DvS7!ZHck$Z8o`~s!jNNzi=;sz
f=;Go+qCwB{J6#p!x0ed~g4%YTu6{1-oD!M<a|v3+

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-100121Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-100121Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt
new file mode 100644
index 00000000..d4524b7c
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-100121Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt
@@ -0,0 +1,14060 @@
+		Result for Multiview classification with Mumbo
+
+Average accuracy :
+	-On Train : 73.3311664568
+	-On Test : 76.2295081967
+	-On Validation : 80.0970873786
+
+Dataset info :
+	-Database name : ModifiedMultiOmic
+	-Labels : No, Yes
+	-Views : Methyl, MiRNA, RNASEQ, Clinical
+	-2 folds
+	- Validation set length : 103 for learning rate : 0.7
+
+Classification configuration : 
+	-Algorithm used : Mumbo 
+	-Iterations : 1000
+	-Weak Classifiers : DecisionTree with depth 1.0,  sub-sampled at 0.006 on Methyl
+		-DecisionTree with depth 1.0,  sub-sampled at 0.006 on MiRNA
+		-DecisionTree with depth 1.0,  sub-sampled at 0.007 on RNASEQ
+		-DecisionTree with depth 1.0,  sub-sampled at 0.006 on Clinical
+
+ Mean average accuracies and stats for each fold : 
+	- Fold 0
+		- On Methyl_ : 
+			- Mean average Accuracy : 0.0516503067485
+			- Percentage of time chosen : 0.926
+		- On MiRNA__ : 
+			- Mean average Accuracy : 0.0545460122699
+			- Percentage of time chosen : 0.048
+		- On RANSeq_ : 
+			- Mean average Accuracy : 0.0513374233129
+			- Percentage of time chosen : 0.007
+		- On Clinic_ : 
+			- Mean average Accuracy : 0.0527116564417
+			- Percentage of time chosen : 0.019
+	- Fold 1
+		- On Methyl_ : 
+			- Mean average Accuracy : 0.0529801324503
+			- Percentage of time chosen : 0.922
+		- On MiRNA__ : 
+			- Mean average Accuracy : 0.0560728476821
+			- Percentage of time chosen : 0.057
+		- On RANSeq_ : 
+			- Mean average Accuracy : 0.0528675496689
+			- Percentage of time chosen : 0.012
+		- On Clinic_ : 
+			- Mean average Accuracy : 0.0512847682119
+			- Percentage of time chosen : 0.009
+
+ For each iteration : 
+	- Iteration 1
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 2
+		 Fold 1
+			Accuracy on train : 62.5766871166
+			Accuracy on test : 59.8360655738
+			Accuracy on validation : 52.427184466
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 61.4207938894
+			 Accuracy on test : 66.393442623
+	- Iteration 3
+		 Fold 1
+			Accuracy on train : 68.0981595092
+			Accuracy on test : 68.0327868852
+			Accuracy on validation : 64.0776699029
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 73.5099337748
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 70.804046642
+			 Accuracy on test : 70.9016393443
+	- Iteration 4
+		 Fold 1
+			Accuracy on train : 66.2576687117
+			Accuracy on test : 64.7540983607
+			Accuracy on validation : 62.1359223301
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 81.4569536424
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 74.7572815534
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 73.857311177
+			 Accuracy on test : 72.5409836066
+	- Iteration 5
+		 Fold 1
+			Accuracy on train : 69.3251533742
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 67.9611650485
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 84.1059602649
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 76.7155568196
+			 Accuracy on test : 78.2786885246
+	- Iteration 6
+		 Fold 1
+			Accuracy on train : 68.0981595092
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 68.932038835
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 84.1059602649
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 80.5825242718
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 76.1020598871
+			 Accuracy on test : 80.3278688525
+	- Iteration 7
+		 Fold 1
+			Accuracy on train : 73.6196319018
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 70.8737864078
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 83.4437086093
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.5316702556
+			 Accuracy on test : 79.0983606557
+	- Iteration 8
+		 Fold 1
+			Accuracy on train : 73.6196319018
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 72.8155339806
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 83.4437086093
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.5316702556
+			 Accuracy on test : 79.0983606557
+	- Iteration 9
+		 Fold 1
+			Accuracy on train : 76.0736196319
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 73.786407767
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 84.1059602649
+			Accuracy on test : 85.2459016393
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.0897899484
+			 Accuracy on test : 81.1475409836
+	- Iteration 10
+		 Fold 1
+			Accuracy on train : 73.6196319018
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 70.8737864078
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 81.4569536424
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 80.5825242718
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 77.5382927721
+			 Accuracy on test : 78.2786885246
+	- Iteration 11
+		 Fold 1
+			Accuracy on train : 73.0061349693
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 72.8155339806
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 81.4569536424
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 77.2315443059
+			 Accuracy on test : 80.3278688525
+	- Iteration 12
+		 Fold 1
+			Accuracy on train : 70.5521472393
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 75.7281553398
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 76.821192053
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 73.6866696461
+			 Accuracy on test : 77.4590163934
+	- Iteration 13
+		 Fold 1
+			Accuracy on train : 73.0061349693
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 75.7281553398
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 84.1059602649
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.5560476171
+			 Accuracy on test : 79.5081967213
+	- Iteration 14
+		 Fold 1
+			Accuracy on train : 72.3926380368
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 82.119205298
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 86.4077669903
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 77.2559216674
+			 Accuracy on test : 77.868852459
+	- Iteration 15
+		 Fold 1
+			Accuracy on train : 71.7791411043
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 72.8155339806
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 84.1059602649
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 77.9425506846
+			 Accuracy on test : 78.6885245902
+	- Iteration 16
+		 Fold 1
+			Accuracy on train : 71.1656441718
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 69.9029126214
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 84.7682119205
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 89.3203883495
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 77.9669280462
+			 Accuracy on test : 76.2295081967
+	- Iteration 17
+		 Fold 1
+			Accuracy on train : 72.3926380368
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 70.8737864078
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 84.7682119205
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.5804249787
+			 Accuracy on test : 77.868852459
+	- Iteration 18
+		 Fold 1
+			Accuracy on train : 72.3926380368
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 71.8446601942
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 85.4304635762
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 86.4077669903
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 78.9115508065
+			 Accuracy on test : 79.0983606557
+	- Iteration 19
+		 Fold 1
+			Accuracy on train : 74.8466257669
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 76.6990291262
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 85.4304635762
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 86.4077669903
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.1385446715
+			 Accuracy on test : 77.868852459
+	- Iteration 20
+		 Fold 1
+			Accuracy on train : 74.8466257669
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 75.7281553398
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 86.0927152318
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 87.3786407767
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.4696704993
+			 Accuracy on test : 76.6393442623
+	- Iteration 21
+		 Fold 1
+			Accuracy on train : 73.6196319018
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 75.7281553398
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 85.4304635762
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.525047739
+			 Accuracy on test : 79.0983606557
+	- Iteration 22
+		 Fold 1
+			Accuracy on train : 76.6871165644
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 83.4437086093
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 88.3495145631
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 80.0654125868
+			 Accuracy on test : 77.0491803279
+	- Iteration 23
+		 Fold 1
+			Accuracy on train : 75.4601226994
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 77.6699029126
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 84.7682119205
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.11416731
+			 Accuracy on test : 78.2786885246
+	- Iteration 24
+		 Fold 1
+			Accuracy on train : 76.6871165644
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 78.640776699
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 84.1059602649
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.3965384147
+			 Accuracy on test : 77.0491803279
+	- Iteration 25
+		 Fold 1
+			Accuracy on train : 77.9141104294
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 84.7682119205
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 86.4077669903
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 81.341161175
+			 Accuracy on test : 77.4590163934
+	- Iteration 26
+		 Fold 1
+			Accuracy on train : 74.8466257669
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 77.6699029126
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 84.7682119205
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 86.4077669903
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.8074188437
+			 Accuracy on test : 77.0491803279
+	- Iteration 27
+		 Fold 1
+			Accuracy on train : 73.6196319018
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 82.7814569536
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.2005444277
+			 Accuracy on test : 76.6393442623
+	- Iteration 28
+		 Fold 1
+			Accuracy on train : 74.8466257669
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 83.4437086093
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 79.1451671881
+			 Accuracy on test : 77.4590163934
+	- Iteration 29
+		 Fold 1
+			Accuracy on train : 73.0061349693
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 78.640776699
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 84.1059602649
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.5560476171
+			 Accuracy on test : 77.868852459
+	- Iteration 30
+		 Fold 1
+			Accuracy on train : 74.8466257669
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 80.5825242718
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 84.7682119205
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 85.4368932039
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 79.8074188437
+			 Accuracy on test : 77.0491803279
+	- Iteration 31
+		 Fold 1
+			Accuracy on train : 74.8466257669
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 82.119205298
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 84.4660194175
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 78.4829155324
+			 Accuracy on test : 77.4590163934
+	- Iteration 32
+		 Fold 1
+			Accuracy on train : 74.8466257669
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 84.7682119205
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.8074188437
+			 Accuracy on test : 75.8196721311
+	- Iteration 33
+		 Fold 1
+			Accuracy on train : 74.2331288344
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 82.119205298
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.1761670662
+			 Accuracy on test : 77.868852459
+	- Iteration 34
+		 Fold 1
+			Accuracy on train : 74.8466257669
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 84.7682119205
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.8074188437
+			 Accuracy on test : 77.868852459
+	- Iteration 35
+		 Fold 1
+			Accuracy on train : 75.4601226994
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 84.7682119205
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.11416731
+			 Accuracy on test : 79.5081967213
+	- Iteration 36
+		 Fold 1
+			Accuracy on train : 74.8466257669
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 78.640776699
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 87.417218543
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 88.3495145631
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 81.131922155
+			 Accuracy on test : 78.6885245902
+	- Iteration 37
+		 Fold 1
+			Accuracy on train : 73.0061349693
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 83.4437086093
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.2249217893
+			 Accuracy on test : 79.9180327869
+	- Iteration 38
+		 Fold 1
+			Accuracy on train : 73.0061349693
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 78.640776699
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 86.7549668874
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 88.3495145631
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.8805509284
+			 Accuracy on test : 79.5081967213
+	- Iteration 39
+		 Fold 1
+			Accuracy on train : 74.2331288344
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 80.5825242718
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 82.7814569536
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.507292894
+			 Accuracy on test : 79.0983606557
+	- Iteration 40
+		 Fold 1
+			Accuracy on train : 74.2331288344
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 82.7814569536
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 78.507292894
+			 Accuracy on test : 77.868852459
+	- Iteration 41
+		 Fold 1
+			Accuracy on train : 74.8466257669
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 82.7814569536
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.8140413603
+			 Accuracy on test : 79.5081967213
+	- Iteration 42
+		 Fold 1
+			Accuracy on train : 72.3926380368
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 76.6990291262
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 81.4569536424
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 86.4077669903
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 76.9247958396
+			 Accuracy on test : 78.2786885246
+	- Iteration 43
+		 Fold 1
+			Accuracy on train : 73.6196319018
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 78.640776699
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 84.7682119205
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.1939219112
+			 Accuracy on test : 79.9180327869
+	- Iteration 44
+		 Fold 1
+			Accuracy on train : 73.6196319018
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 84.7682119205
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.1939219112
+			 Accuracy on test : 79.9180327869
+	- Iteration 45
+		 Fold 1
+			Accuracy on train : 72.3926380368
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 76.6990291262
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 83.4437086093
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 87.3786407767
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 77.918173323
+			 Accuracy on test : 77.868852459
+	- Iteration 46
+		 Fold 1
+			Accuracy on train : 70.5521472393
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 76.6990291262
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 81.4569536424
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 76.0045504408
+			 Accuracy on test : 77.0491803279
+	- Iteration 47
+		 Fold 1
+			Accuracy on train : 71.1656441718
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 79.4701986755
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 86.4077669903
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 75.3179214236
+			 Accuracy on test : 76.6393442623
+	- Iteration 48
+		 Fold 1
+			Accuracy on train : 71.1656441718
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 78.640776699
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.4701986755
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 87.3786407767
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 75.3179214236
+			 Accuracy on test : 77.868852459
+	- Iteration 49
+		 Fold 1
+			Accuracy on train : 70.5521472393
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 78.8079470199
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 74.6800471296
+			 Accuracy on test : 77.0491803279
+	- Iteration 50
+		 Fold 1
+			Accuracy on train : 71.7791411043
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 78.8079470199
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 75.2935440621
+			 Accuracy on test : 77.4590163934
+	- Iteration 51
+		 Fold 1
+			Accuracy on train : 69.9386503067
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 76.6990291262
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.4701986755
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 74.7044244911
+			 Accuracy on test : 77.4590163934
+	- Iteration 52
+		 Fold 1
+			Accuracy on train : 70.5521472393
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 77.6699029126
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 78.1456953642
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 84.4660194175
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 74.3489213018
+			 Accuracy on test : 77.4590163934
+	- Iteration 53
+		 Fold 1
+			Accuracy on train : 71.7791411043
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 78.1456953642
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 74.9624182343
+			 Accuracy on test : 76.2295081967
+	- Iteration 54
+		 Fold 1
+			Accuracy on train : 69.9386503067
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 78.640776699
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 76.821192053
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 84.4660194175
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 73.3799211799
+			 Accuracy on test : 77.4590163934
+	- Iteration 55
+		 Fold 1
+			Accuracy on train : 72.3926380368
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 76.1589403974
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 74.2757892171
+			 Accuracy on test : 76.2295081967
+	- Iteration 56
+		 Fold 1
+			Accuracy on train : 72.3926380368
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 73.5099337748
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 82.5242718447
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 72.9512859058
+			 Accuracy on test : 76.6393442623
+	- Iteration 57
+		 Fold 1
+			Accuracy on train : 72.3926380368
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 75.4966887417
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 73.9446633893
+			 Accuracy on test : 77.0491803279
+	- Iteration 58
+		 Fold 1
+			Accuracy on train : 72.3926380368
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 73.5099337748
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 72.9512859058
+			 Accuracy on test : 77.0491803279
+	- Iteration 59
+		 Fold 1
+			Accuracy on train : 72.3926380368
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 79.6116504854
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 74.1721854305
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 73.2824117336
+			 Accuracy on test : 77.0491803279
+	- Iteration 60
+		 Fold 1
+			Accuracy on train : 73.0061349693
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 78.640776699
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 74.1721854305
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 73.5891601999
+			 Accuracy on test : 77.0491803279
+	- Iteration 61
+		 Fold 1
+			Accuracy on train : 72.3926380368
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 74.1721854305
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 73.2824117336
+			 Accuracy on test : 77.0491803279
+	- Iteration 62
+		 Fold 1
+			Accuracy on train : 73.0061349693
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 74.1721854305
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 82.5242718447
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 73.5891601999
+			 Accuracy on test : 76.6393442623
+	- Iteration 63
+		 Fold 1
+			Accuracy on train : 72.3926380368
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 74.1721854305
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 73.2824117336
+			 Accuracy on test : 78.2786885246
+	- Iteration 64
+		 Fold 1
+			Accuracy on train : 73.6196319018
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 80.5825242718
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 73.5099337748
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 73.5647828383
+			 Accuracy on test : 79.5081967213
+	- Iteration 65
+		 Fold 1
+			Accuracy on train : 72.3926380368
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 75.4966887417
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 82.5242718447
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 73.9446633893
+			 Accuracy on test : 79.5081967213
+	- Iteration 66
+		 Fold 1
+			Accuracy on train : 71.7791411043
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 78.640776699
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 76.821192053
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 83.4951456311
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 74.3001665786
+			 Accuracy on test : 78.6885245902
+	- Iteration 67
+		 Fold 1
+			Accuracy on train : 72.3926380368
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 76.1589403974
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 74.2757892171
+			 Accuracy on test : 78.6885245902
+	- Iteration 68
+		 Fold 1
+			Accuracy on train : 71.1656441718
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 78.640776699
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 76.1589403974
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 82.5242718447
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 73.6622922846
+			 Accuracy on test : 78.6885245902
+	- Iteration 69
+		 Fold 1
+			Accuracy on train : 71.7791411043
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 76.821192053
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 74.3001665786
+			 Accuracy on test : 77.868852459
+	- Iteration 70
+		 Fold 1
+			Accuracy on train : 71.7791411043
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 74.8344370861
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 73.3067890952
+			 Accuracy on test : 77.868852459
+	- Iteration 71
+		 Fold 1
+			Accuracy on train : 72.3926380368
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 73.5099337748
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 72.9512859058
+			 Accuracy on test : 77.4590163934
+	- Iteration 72
+		 Fold 1
+			Accuracy on train : 71.1656441718
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 71.5231788079
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 71.3444114899
+			 Accuracy on test : 77.868852459
+	- Iteration 73
+		 Fold 1
+			Accuracy on train : 70.5521472393
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 69.5364238411
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 70.0442855402
+			 Accuracy on test : 76.2295081967
+	- Iteration 74
+		 Fold 1
+			Accuracy on train : 70.5521472393
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 77.6699029126
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 72.8476821192
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 71.6999146792
+			 Accuracy on test : 77.0491803279
+	- Iteration 75
+		 Fold 1
+			Accuracy on train : 69.9386503067
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 72.1854304636
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 71.0620403852
+			 Accuracy on test : 76.6393442623
+	- Iteration 76
+		 Fold 1
+			Accuracy on train : 69.9386503067
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 77.6699029126
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 72.8476821192
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 71.393166213
+			 Accuracy on test : 76.2295081967
+	- Iteration 77
+		 Fold 1
+			Accuracy on train : 69.3251533742
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 77.6699029126
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 72.1854304636
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 70.7552919189
+			 Accuracy on test : 76.2295081967
+	- Iteration 78
+		 Fold 1
+			Accuracy on train : 68.7116564417
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 76.6990291262
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 73.5099337748
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 80.5825242718
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 71.1107951083
+			 Accuracy on test : 76.6393442623
+	- Iteration 79
+		 Fold 1
+			Accuracy on train : 69.3251533742
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 77.6699029126
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 75.4966887417
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 72.410921058
+			 Accuracy on test : 77.0491803279
+	- Iteration 80
+		 Fold 1
+			Accuracy on train : 69.3251533742
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 74.1721854305
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 71.7486694023
+			 Accuracy on test : 76.2295081967
+	- Iteration 81
+		 Fold 1
+			Accuracy on train : 69.3251533742
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 77.6699029126
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 75.4966887417
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 81.5533980583
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 72.410921058
+			 Accuracy on test : 77.4590163934
+	- Iteration 82
+		 Fold 1
+			Accuracy on train : 68.7116564417
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 74.8344370861
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 81.5533980583
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 71.7730467639
+			 Accuracy on test : 76.6393442623
+	- Iteration 83
+		 Fold 1
+			Accuracy on train : 68.7116564417
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 74.8344370861
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 81.5533980583
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 71.7730467639
+			 Accuracy on test : 77.0491803279
+	- Iteration 84
+		 Fold 1
+			Accuracy on train : 68.7116564417
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 77.6699029126
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 75.4966887417
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 72.1041725917
+			 Accuracy on test : 76.6393442623
+	- Iteration 85
+		 Fold 1
+			Accuracy on train : 67.4846625767
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 76.6990291262
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 76.1589403974
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 71.821801487
+			 Accuracy on test : 76.2295081967
+	- Iteration 86
+		 Fold 1
+			Accuracy on train : 68.7116564417
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 74.1721854305
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 71.4419209361
+			 Accuracy on test : 76.2295081967
+	- Iteration 87
+		 Fold 1
+			Accuracy on train : 68.7116564417
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 76.821192053
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 72.7664242473
+			 Accuracy on test : 77.0491803279
+	- Iteration 88
+		 Fold 1
+			Accuracy on train : 68.7116564417
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 76.1589403974
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 72.4352984195
+			 Accuracy on test : 77.0491803279
+	- Iteration 89
+		 Fold 1
+			Accuracy on train : 68.7116564417
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 77.6699029126
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 75.4966887417
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 72.1041725917
+			 Accuracy on test : 76.6393442623
+	- Iteration 90
+		 Fold 1
+			Accuracy on train : 68.0981595092
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 76.6990291262
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 74.8344370861
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 81.5533980583
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 71.4662982976
+			 Accuracy on test : 77.0491803279
+	- Iteration 91
+		 Fold 1
+			Accuracy on train : 68.0981595092
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 76.6990291262
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 76.1589403974
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 72.1285499533
+			 Accuracy on test : 76.6393442623
+	- Iteration 92
+		 Fold 1
+			Accuracy on train : 68.7116564417
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 76.6990291262
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 74.8344370861
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 71.7730467639
+			 Accuracy on test : 77.0491803279
+	- Iteration 93
+		 Fold 1
+			Accuracy on train : 68.0981595092
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 76.6990291262
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 75.4966887417
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 71.7974241255
+			 Accuracy on test : 76.2295081967
+	- Iteration 94
+		 Fold 1
+			Accuracy on train : 68.0981595092
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 76.6990291262
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 75.4966887417
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 82.5242718447
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 71.7974241255
+			 Accuracy on test : 76.2295081967
+	- Iteration 95
+		 Fold 1
+			Accuracy on train : 68.7116564417
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 75.4966887417
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 82.5242718447
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 72.1041725917
+			 Accuracy on test : 76.6393442623
+	- Iteration 96
+		 Fold 1
+			Accuracy on train : 68.7116564417
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 77.6699029126
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 74.8344370861
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 71.7730467639
+			 Accuracy on test : 77.0491803279
+	- Iteration 97
+		 Fold 1
+			Accuracy on train : 69.9386503067
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 75.4966887417
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 82.5242718447
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 72.7176695242
+			 Accuracy on test : 76.6393442623
+	- Iteration 98
+		 Fold 1
+			Accuracy on train : 69.3251533742
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 75.4966887417
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 72.410921058
+			 Accuracy on test : 76.2295081967
+	- Iteration 99
+		 Fold 1
+			Accuracy on train : 69.9386503067
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 78.640776699
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 76.1589403974
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 73.048795352
+			 Accuracy on test : 76.2295081967
+	- Iteration 100
+		 Fold 1
+			Accuracy on train : 70.5521472393
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 76.1589403974
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 82.5242718447
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 73.3555438183
+			 Accuracy on test : 75.8196721311
+	- Iteration 101
+		 Fold 1
+			Accuracy on train : 69.9386503067
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 76.1589403974
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 73.048795352
+			 Accuracy on test : 76.2295081967
+	- Iteration 102
+		 Fold 1
+			Accuracy on train : 71.1656441718
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 78.640776699
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 75.4966887417
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 73.3311664568
+			 Accuracy on test : 76.2295081967
+	- Iteration 103
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 104
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 105
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 106
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 107
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 108
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 109
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 110
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 111
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 112
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 113
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 114
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 115
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 116
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 117
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 118
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 119
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 120
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 121
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 122
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 123
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 124
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 125
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 126
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 127
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 128
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 129
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 130
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 131
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 132
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 133
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 134
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 135
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 136
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 137
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 138
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 139
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 140
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 141
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 142
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 143
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 144
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 145
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 146
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 147
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 148
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 149
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 150
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 151
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 152
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 153
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 154
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 155
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 156
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 157
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 158
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 159
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 160
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 161
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 162
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 163
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 164
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 165
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 166
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 167
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 168
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 169
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 170
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 171
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 172
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 173
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 174
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 175
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 176
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 177
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 178
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 179
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 180
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 181
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 182
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 183
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 184
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 185
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 186
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 187
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 188
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 189
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 190
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 191
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 192
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 193
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 194
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 195
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 196
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 197
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 198
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 199
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 200
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 201
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 202
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 203
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 204
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 205
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 206
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 207
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 208
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 209
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 210
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 211
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 212
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 213
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 214
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 215
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 216
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 217
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 218
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 219
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 220
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 221
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 222
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 223
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 224
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 225
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 226
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 227
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 228
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 229
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 230
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 231
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 232
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 233
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 234
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 235
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 236
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 237
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 238
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 239
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 240
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 241
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 242
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 243
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 244
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 245
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 246
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 247
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 248
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 249
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 250
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 251
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 252
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 253
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 254
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 255
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 256
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 257
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 258
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 259
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 260
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 261
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 262
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 263
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 264
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 265
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 266
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 267
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 268
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 269
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 270
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 271
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 272
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 273
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 274
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 275
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 276
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 277
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 278
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 279
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 280
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 281
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 282
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 283
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 284
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 285
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 286
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 287
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 288
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 289
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 290
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 291
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 292
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 293
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 294
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 295
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 296
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 297
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 298
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 299
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 300
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 301
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 302
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 303
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 304
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 305
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 306
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 307
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 308
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 309
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 310
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 311
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 312
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 313
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 314
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 315
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 316
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 317
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 318
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 319
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 320
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 321
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 322
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 323
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 324
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 325
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 326
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 327
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 328
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 329
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 330
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 331
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 332
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 333
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 334
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 335
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 336
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 337
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 338
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 339
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 340
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 341
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 342
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 343
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 344
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 345
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 346
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 347
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 348
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 349
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 350
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 351
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 352
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 353
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 354
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 355
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 356
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 357
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 358
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 359
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 360
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 361
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 362
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 363
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 364
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 365
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 366
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 367
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 368
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 369
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 370
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 371
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 372
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 373
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 374
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 375
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 376
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 377
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 378
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 379
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 380
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 381
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 382
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 383
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 384
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 385
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 386
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 387
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 388
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 389
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 390
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 391
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 392
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 393
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 394
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 395
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 396
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 397
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 398
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 399
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 400
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 401
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 402
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 403
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 404
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 405
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 406
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 407
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 408
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 409
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 410
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 411
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 412
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 413
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 414
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 415
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 416
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 417
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 418
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 419
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 420
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 421
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 422
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 423
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 424
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 425
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 426
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 427
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 428
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 429
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 430
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 431
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 432
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 433
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 434
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 435
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 436
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 437
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 438
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 439
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 440
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 441
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 442
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 443
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 444
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 445
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 446
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 447
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 448
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 449
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 450
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 451
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 452
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 453
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 454
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 455
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 456
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 457
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 458
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 459
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 460
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 461
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 462
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 463
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 464
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 465
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 466
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 467
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 468
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 469
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 470
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 471
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 472
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 473
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 474
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 475
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 476
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 477
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 478
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 479
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 480
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 481
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 482
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 483
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 484
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 485
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 486
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 487
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 488
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 489
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 490
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 491
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 492
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 493
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 494
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 495
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 496
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 497
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 498
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 499
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 500
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 501
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 502
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 503
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 504
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 505
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 506
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 507
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 508
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 509
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 510
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 511
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 512
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 513
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 514
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 515
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 516
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 517
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 518
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 519
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 520
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 521
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 522
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 523
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 524
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 525
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 526
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 527
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 528
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 529
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 530
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 531
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 532
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 533
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 534
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 535
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 536
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 537
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 538
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 539
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 540
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 541
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 542
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 543
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 544
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 545
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 546
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 547
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 548
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 549
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 550
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 551
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 552
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 553
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 554
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 555
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 556
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 557
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 558
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 559
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 560
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 561
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 562
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 563
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 564
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 565
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 566
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 567
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 568
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 569
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 570
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 571
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 572
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 573
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 574
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 575
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 576
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 577
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 578
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 579
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 580
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 581
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 582
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 583
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 584
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 585
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 586
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 587
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 588
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 589
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 590
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 591
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 592
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 593
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 594
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 595
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 596
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 597
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 598
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 599
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 600
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 601
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 602
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 603
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 604
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 605
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 606
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 607
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 608
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 609
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 610
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 611
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 612
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 613
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 614
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 615
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 616
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 617
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 618
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 619
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 620
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 621
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 622
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 623
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 624
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 625
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 626
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 627
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 628
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 629
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 630
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 631
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 632
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 633
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 634
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 635
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 636
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 637
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 638
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 639
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 640
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 641
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 642
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 643
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 644
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 645
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 646
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 647
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 648
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 649
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 650
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 651
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 652
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 653
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 654
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 655
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 656
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 657
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 658
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 659
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 660
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 661
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 662
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 663
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 664
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 665
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 666
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 667
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 668
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 669
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 670
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 671
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 672
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 673
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 674
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 675
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 676
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 677
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 678
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 679
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 680
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 681
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 682
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 683
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 684
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 685
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 686
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 687
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 688
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 689
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 690
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 691
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 692
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 693
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 694
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 695
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 696
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 697
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 698
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 699
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 700
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 701
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 702
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 703
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 704
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 705
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 706
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 707
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 708
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 709
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 710
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 711
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 712
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 713
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 714
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 715
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 716
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 717
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 718
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 719
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 720
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 721
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 722
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 723
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 724
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 725
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 726
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 727
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 728
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 729
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 730
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 731
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 732
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 733
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 734
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 735
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 736
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 737
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 738
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 739
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 740
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 741
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 742
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 743
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 744
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 745
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 746
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 747
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 748
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 749
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 750
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 751
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 752
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 753
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 754
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 755
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 756
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 757
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 758
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 759
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 760
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 761
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 762
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 763
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 764
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 765
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 766
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 767
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 768
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 769
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 770
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 771
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 772
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 773
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 774
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 775
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 776
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 777
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 778
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 779
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 780
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 781
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 782
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 783
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 784
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 785
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 786
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 787
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 788
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 789
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 790
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 791
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 792
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 793
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 794
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 795
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 796
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 797
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 798
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 799
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 800
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 801
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 802
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 803
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 804
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 805
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 806
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 807
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 808
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 809
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 810
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 811
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 812
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 813
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 814
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 815
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 816
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 817
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 818
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 819
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 820
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 821
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 822
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 823
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 824
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 825
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 826
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 827
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 828
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 829
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 830
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 831
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 832
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 833
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 834
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 835
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 836
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 837
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 838
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 839
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 840
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 841
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 842
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 843
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 844
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 845
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 846
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 847
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 848
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 849
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 850
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 851
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 852
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 853
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 854
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 855
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 856
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 857
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 858
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 859
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 860
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 861
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 862
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 863
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 864
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 865
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 866
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 867
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 868
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 869
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 870
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 871
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 872
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 873
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 874
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 875
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 876
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 877
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 878
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 879
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 880
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 881
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 882
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 883
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 884
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 885
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 886
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 887
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 888
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 889
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 890
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 891
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 892
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 893
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 894
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 895
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 896
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 897
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 898
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 899
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 900
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 901
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 902
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 903
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 904
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 905
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 906
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 907
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 908
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 909
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 910
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 911
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 912
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 913
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 914
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 915
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 916
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 917
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 918
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 919
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 920
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 921
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 922
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 923
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 924
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 925
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 926
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 927
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 928
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 929
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 930
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 931
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 932
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 933
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 934
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 935
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 936
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 937
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 938
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 939
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 940
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 941
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 942
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 943
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 944
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 945
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 946
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 947
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 948
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 949
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 950
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 951
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 952
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 953
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 954
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 955
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 956
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 957
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 958
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 959
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 960
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 961
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 962
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 963
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 964
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 965
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 966
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 967
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 968
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 969
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 970
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 971
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 972
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 973
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 974
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 975
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 976
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 977
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 978
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 979
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 980
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 981
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 982
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 983
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 984
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 985
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 986
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 987
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 988
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 989
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 990
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 991
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 992
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 993
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 994
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 995
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 996
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 997
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 998
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 999
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 1000
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+
+Computation time on 1 cores : 
+	Database extraction time : 0:00:00
+	                         Learn     Prediction
+	         Fold 1        0:07:17        0:00:14
+	         Fold 2        0:12:53        0:00:14
+	          Total        0:20:11        0:00:28
+	So a total classification time of 0:13:08.
+
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-110726-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-110726-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..31fcc125
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-110726-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,390 @@
+2016-08-24 11:07:26,238 INFO: Start:	 Read HDF5 Database Files for ModifiedMultiOmic
+2016-08-24 11:07:26,238 INFO: Info:	 Labels used: No, Yes
+2016-08-24 11:07:26,239 INFO: Info:	 Length of dataset:347
+2016-08-24 11:07:26,240 INFO: ### Main Programm for Multiview Classification
+2016-08-24 11:07:26,240 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 11:07:26,241 INFO: Info:	 Shape of Methyl_ :(347, 25978)
+2016-08-24 11:07:26,241 INFO: Info:	 Shape of MiRNA__ :(347, 1046)
+2016-08-24 11:07:26,242 INFO: Info:	 Shape of RANSeq_ :(347, 73599)
+2016-08-24 11:07:26,242 INFO: Info:	 Shape of Clinic_ :(347, 127)
+2016-08-24 11:07:26,242 INFO: Done:	 Read Database Files
+2016-08-24 11:07:26,242 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-24 11:07:26,246 INFO: Done:	 Determine validation split
+2016-08-24 11:07:26,246 INFO: Start:	 Determine 2 folds
+2016-08-24 11:07:26,254 INFO: Info:	 Length of Learning Sets: 122
+2016-08-24 11:07:26,254 INFO: Info:	 Length of Testing Sets: 122
+2016-08-24 11:07:26,254 INFO: Info:	 Length of Validation Set: 103
+2016-08-24 11:07:26,254 INFO: Done:	 Determine folds
+2016-08-24 11:07:26,254 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-24 11:07:26,254 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-24 11:07:26,254 DEBUG: 	Start:	 Gridsearch for DecisionTree on Methyl_
+2016-08-24 11:07:33,791 DEBUG: 0.558270893372Poulet
+2016-08-24 11:07:33,791 DEBUG: 0.521268011527Poulet
+2016-08-24 11:07:33,791 DEBUG: 0.521556195965Poulet
+2016-08-24 11:07:33,792 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 11:07:33,792 DEBUG: 	Start:	 Gridsearch for DecisionTree on MiRNA__
+2016-08-24 11:07:35,798 DEBUG: 0.530893371758Poulet
+2016-08-24 11:07:35,798 DEBUG: 0.530720461095Poulet
+2016-08-24 11:07:35,798 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 11:07:35,799 DEBUG: 	Start:	 Gridsearch for DecisionTree on RANSeq_
+2016-08-24 11:07:52,803 DEBUG: 0.583227665706Poulet
+2016-08-24 11:07:52,803 DEBUG: 0.569798270893Poulet
+2016-08-24 11:07:52,803 DEBUG: 0.543746397695Poulet
+2016-08-24 11:07:52,803 DEBUG: 0.520749279539Poulet
+2016-08-24 11:07:52,803 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 11:07:52,804 DEBUG: 	Start:	 Gridsearch for DecisionTree on Clinic_
+2016-08-24 11:07:54,548 DEBUG: 0.559827089337Poulet
+2016-08-24 11:07:54,549 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 11:07:54,549 DEBUG: 	Start:	 Gridsearch for DecisionTree on MRNASeq
+2016-08-24 11:08:34,507 DEBUG: 0.561383285303Poulet
+2016-08-24 11:08:34,507 DEBUG: 0.549337175793Poulet
+2016-08-24 11:08:34,508 DEBUG: 0.511930835735Poulet
+2016-08-24 11:08:34,508 DEBUG: 0.514524495677Poulet
+2016-08-24 11:08:34,508 DEBUG: 0.514755043228Poulet
+2016-08-24 11:08:34,512 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 11:08:34,512 INFO: Done:	 Gridsearching best settings for monoview classifiers
+2016-08-24 11:08:34,512 INFO: 	Start:	 Fold number 1
+2016-08-24 11:08:36,691 DEBUG: 		Start:	 Iteration 1
+2016-08-24 11:08:36,707 DEBUG: 			View 0 : 0.620253164557
+2016-08-24 11:08:36,715 DEBUG: 			View 1 : 0.26582278481
+2016-08-24 11:08:36,744 DEBUG: 			View 2 : 0.620253164557
+2016-08-24 11:08:36,751 DEBUG: 			View 3 : 0.569620253165
+2016-08-24 11:08:36,793 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:08:36,864 DEBUG: 		Start:	 Iteration 2
+2016-08-24 11:08:36,881 DEBUG: 			View 0 : 0.436708860759
+2016-08-24 11:08:36,888 DEBUG: 			View 1 : 0.481012658228
+2016-08-24 11:08:36,925 DEBUG: 			View 2 : 0.405063291139
+2016-08-24 11:08:36,932 DEBUG: 			View 3 : 0.626582278481
+2016-08-24 11:08:36,977 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:08:37,106 DEBUG: 		Start:	 Iteration 3
+2016-08-24 11:08:37,122 DEBUG: 			View 0 : 0.53164556962
+2016-08-24 11:08:37,130 DEBUG: 			View 1 : 0.626582278481
+2016-08-24 11:08:37,168 DEBUG: 			View 2 : 0.518987341772
+2016-08-24 11:08:37,176 DEBUG: 			View 3 : 0.575949367089
+2016-08-24 11:08:37,230 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:08:37,420 DEBUG: 		Start:	 Iteration 4
+2016-08-24 11:08:37,437 DEBUG: 			View 0 : 0.677215189873
+2016-08-24 11:08:37,445 DEBUG: 			View 1 : 0.588607594937
+2016-08-24 11:08:37,482 DEBUG: 			View 2 : 0.436708860759
+2016-08-24 11:08:37,489 DEBUG: 			View 3 : 0.411392405063
+2016-08-24 11:08:37,546 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:08:37,798 DEBUG: 		Start:	 Iteration 5
+2016-08-24 11:08:37,815 DEBUG: 			View 0 : 0.506329113924
+2016-08-24 11:08:37,823 DEBUG: 			View 1 : 0.474683544304
+2016-08-24 11:08:37,861 DEBUG: 			View 2 : 0.392405063291
+2016-08-24 11:08:37,868 DEBUG: 			View 3 : 0.436708860759
+2016-08-24 11:08:37,927 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:08:38,240 DEBUG: 		Start:	 Iteration 6
+2016-08-24 11:08:38,256 DEBUG: 			View 0 : 0.449367088608
+2016-08-24 11:08:38,264 DEBUG: 			View 1 : 0.626582278481
+2016-08-24 11:08:38,302 DEBUG: 			View 2 : 0.417721518987
+2016-08-24 11:08:38,309 DEBUG: 			View 3 : 0.53164556962
+2016-08-24 11:08:38,371 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:08:38,740 DEBUG: 		Start:	 Iteration 7
+2016-08-24 11:08:38,756 DEBUG: 			View 0 : 0.443037974684
+2016-08-24 11:08:38,764 DEBUG: 			View 1 : 0.487341772152
+2016-08-24 11:08:38,800 DEBUG: 			View 2 : 0.582278481013
+2016-08-24 11:08:38,808 DEBUG: 			View 3 : 0.512658227848
+2016-08-24 11:08:38,871 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:08:39,315 DEBUG: 		Start:	 Iteration 8
+2016-08-24 11:08:39,332 DEBUG: 			View 0 : 0.417721518987
+2016-08-24 11:08:39,339 DEBUG: 			View 1 : 0.462025316456
+2016-08-24 11:08:39,377 DEBUG: 			View 2 : 0.474683544304
+2016-08-24 11:08:39,384 DEBUG: 			View 3 : 0.556962025316
+2016-08-24 11:08:39,450 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:08:39,972 DEBUG: 		Start:	 Iteration 9
+2016-08-24 11:08:39,990 DEBUG: 			View 0 : 0.5
+2016-08-24 11:08:39,998 DEBUG: 			View 1 : 0.651898734177
+2016-08-24 11:08:40,037 DEBUG: 			View 2 : 0.537974683544
+2016-08-24 11:08:40,045 DEBUG: 			View 3 : 0.392405063291
+2016-08-24 11:08:40,115 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:08:40,698 DEBUG: 		Start:	 Iteration 10
+2016-08-24 11:08:40,715 DEBUG: 			View 0 : 0.594936708861
+2016-08-24 11:08:40,723 DEBUG: 			View 1 : 0.354430379747
+2016-08-24 11:08:40,760 DEBUG: 			View 2 : 0.613924050633
+2016-08-24 11:08:40,768 DEBUG: 			View 3 : 0.544303797468
+2016-08-24 11:08:40,837 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:08:41,469 DEBUG: 		Start:	 Iteration 11
+2016-08-24 11:08:41,485 DEBUG: 			View 0 : 0.367088607595
+2016-08-24 11:08:41,493 DEBUG: 			View 1 : 0.658227848101
+2016-08-24 11:08:41,530 DEBUG: 			View 2 : 0.537974683544
+2016-08-24 11:08:41,537 DEBUG: 			View 3 : 0.582278481013
+2016-08-24 11:08:41,610 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:08:42,303 DEBUG: 		Start:	 Iteration 12
+2016-08-24 11:08:42,319 DEBUG: 			View 0 : 0.424050632911
+2016-08-24 11:08:42,327 DEBUG: 			View 1 : 0.373417721519
+2016-08-24 11:08:42,364 DEBUG: 			View 2 : 0.462025316456
+2016-08-24 11:08:42,371 DEBUG: 			View 3 : 0.588607594937
+2016-08-24 11:08:42,445 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:08:43,193 DEBUG: 		Start:	 Iteration 13
+2016-08-24 11:08:43,209 DEBUG: 			View 0 : 0.474683544304
+2016-08-24 11:08:43,217 DEBUG: 			View 1 : 0.575949367089
+2016-08-24 11:08:43,253 DEBUG: 			View 2 : 0.411392405063
+2016-08-24 11:08:43,261 DEBUG: 			View 3 : 0.386075949367
+2016-08-24 11:08:43,339 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:08:44,142 DEBUG: 		Start:	 Iteration 14
+2016-08-24 11:08:44,159 DEBUG: 			View 0 : 0.620253164557
+2016-08-24 11:08:44,166 DEBUG: 			View 1 : 0.493670886076
+2016-08-24 11:08:44,203 DEBUG: 			View 2 : 0.575949367089
+2016-08-24 11:08:44,211 DEBUG: 			View 3 : 0.658227848101
+2016-08-24 11:08:44,291 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:08:45,149 DEBUG: 		Start:	 Iteration 15
+2016-08-24 11:08:45,165 DEBUG: 			View 0 : 0.518987341772
+2016-08-24 11:08:45,173 DEBUG: 			View 1 : 0.46835443038
+2016-08-24 11:08:45,210 DEBUG: 			View 2 : 0.392405063291
+2016-08-24 11:08:45,218 DEBUG: 			View 3 : 0.443037974684
+2016-08-24 11:08:45,299 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:08:46,226 DEBUG: 		Start:	 Iteration 16
+2016-08-24 11:08:46,243 DEBUG: 			View 0 : 0.556962025316
+2016-08-24 11:08:46,251 DEBUG: 			View 1 : 0.398734177215
+2016-08-24 11:08:46,287 DEBUG: 			View 2 : 0.550632911392
+2016-08-24 11:08:46,294 DEBUG: 			View 3 : 0.664556962025
+2016-08-24 11:08:46,380 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:08:47,364 DEBUG: 		Start:	 Iteration 17
+2016-08-24 11:08:47,380 DEBUG: 			View 0 : 0.626582278481
+2016-08-24 11:08:47,389 DEBUG: 			View 1 : 0.506329113924
+2016-08-24 11:08:47,428 DEBUG: 			View 2 : 0.474683544304
+2016-08-24 11:08:47,436 DEBUG: 			View 3 : 0.455696202532
+2016-08-24 11:08:47,522 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:08:48,613 DEBUG: 		Start:	 Iteration 18
+2016-08-24 11:08:48,629 DEBUG: 			View 0 : 0.525316455696
+2016-08-24 11:08:48,636 DEBUG: 			View 1 : 0.715189873418
+2016-08-24 11:08:48,673 DEBUG: 			View 2 : 0.386075949367
+2016-08-24 11:08:48,681 DEBUG: 			View 3 : 0.455696202532
+2016-08-24 11:08:48,770 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:08:49,927 DEBUG: 		Start:	 Iteration 19
+2016-08-24 11:08:49,947 DEBUG: 			View 0 : 0.550632911392
+2016-08-24 11:08:49,955 DEBUG: 			View 1 : 0.569620253165
+2016-08-24 11:08:49,992 DEBUG: 			View 2 : 0.405063291139
+2016-08-24 11:08:50,000 DEBUG: 			View 3 : 0.575949367089
+2016-08-24 11:08:50,090 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:08:51,285 DEBUG: 		Start:	 Iteration 20
+2016-08-24 11:08:51,304 DEBUG: 			View 0 : 0.424050632911
+2016-08-24 11:08:51,313 DEBUG: 			View 1 : 0.354430379747
+2016-08-24 11:08:51,355 DEBUG: 			View 2 : 0.474683544304
+2016-08-24 11:08:51,363 DEBUG: 			View 3 : 0.436708860759
+2016-08-24 11:08:51,363 WARNING: WARNING:	All bad for iteration 19
+2016-08-24 11:08:51,460 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:08:52,684 DEBUG: 		Start:	 Iteration 21
+2016-08-24 11:08:52,701 DEBUG: 			View 0 : 0.563291139241
+2016-08-24 11:08:52,708 DEBUG: 			View 1 : 0.29746835443
+2016-08-24 11:08:52,745 DEBUG: 			View 2 : 0.487341772152
+2016-08-24 11:08:52,753 DEBUG: 			View 3 : 0.462025316456
+2016-08-24 11:08:52,849 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:08:54,166 DEBUG: 		Start:	 Iteration 22
+2016-08-24 11:08:54,182 DEBUG: 			View 0 : 0.563291139241
+2016-08-24 11:08:54,190 DEBUG: 			View 1 : 0.392405063291
+2016-08-24 11:08:54,232 DEBUG: 			View 2 : 0.518987341772
+2016-08-24 11:08:54,239 DEBUG: 			View 3 : 0.658227848101
+2016-08-24 11:08:54,339 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:08:55,764 DEBUG: 		Start:	 Iteration 23
+2016-08-24 11:08:55,784 DEBUG: 			View 0 : 0.405063291139
+2016-08-24 11:08:55,796 DEBUG: 			View 1 : 0.696202531646
+2016-08-24 11:08:55,833 DEBUG: 			View 2 : 0.512658227848
+2016-08-24 11:08:55,840 DEBUG: 			View 3 : 0.481012658228
+2016-08-24 11:08:55,941 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:08:57,391 DEBUG: 		Start:	 Iteration 24
+2016-08-24 11:08:57,408 DEBUG: 			View 0 : 0.563291139241
+2016-08-24 11:08:57,416 DEBUG: 			View 1 : 0.512658227848
+2016-08-24 11:08:57,455 DEBUG: 			View 2 : 0.626582278481
+2016-08-24 11:08:57,465 DEBUG: 			View 3 : 0.556962025316
+2016-08-24 11:08:57,578 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:08:59,113 DEBUG: 		Start:	 Iteration 25
+2016-08-24 11:08:59,129 DEBUG: 			View 0 : 0.462025316456
+2016-08-24 11:08:59,137 DEBUG: 			View 1 : 0.626582278481
+2016-08-24 11:08:59,174 DEBUG: 			View 2 : 0.462025316456
+2016-08-24 11:08:59,181 DEBUG: 			View 3 : 0.474683544304
+2016-08-24 11:08:59,294 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:09:00,911 DEBUG: 		Start:	 Iteration 26
+2016-08-24 11:09:00,929 DEBUG: 			View 0 : 0.316455696203
+2016-08-24 11:09:00,937 DEBUG: 			View 1 : 0.29746835443
+2016-08-24 11:09:00,974 DEBUG: 			View 2 : 0.632911392405
+2016-08-24 11:09:00,981 DEBUG: 			View 3 : 0.544303797468
+2016-08-24 11:09:01,092 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:09:02,722 DEBUG: 		Start:	 Iteration 27
+2016-08-24 11:09:02,739 DEBUG: 			View 0 : 0.53164556962
+2016-08-24 11:09:02,747 DEBUG: 			View 1 : 0.620253164557
+2016-08-24 11:09:02,783 DEBUG: 			View 2 : 0.594936708861
+2016-08-24 11:09:02,791 DEBUG: 			View 3 : 0.53164556962
+2016-08-24 11:09:02,898 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:09:04,562 DEBUG: 		Start:	 Iteration 28
+2016-08-24 11:09:04,579 DEBUG: 			View 0 : 0.398734177215
+2016-08-24 11:09:04,587 DEBUG: 			View 1 : 0.487341772152
+2016-08-24 11:09:04,623 DEBUG: 			View 2 : 0.449367088608
+2016-08-24 11:09:04,631 DEBUG: 			View 3 : 0.537974683544
+2016-08-24 11:09:04,742 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:09:06,650 DEBUG: 		Start:	 Iteration 29
+2016-08-24 11:09:06,666 DEBUG: 			View 0 : 0.544303797468
+2016-08-24 11:09:06,674 DEBUG: 			View 1 : 0.708860759494
+2016-08-24 11:09:06,711 DEBUG: 			View 2 : 0.462025316456
+2016-08-24 11:09:06,719 DEBUG: 			View 3 : 0.575949367089
+2016-08-24 11:09:06,836 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:09:08,697 DEBUG: 		Start:	 Iteration 30
+2016-08-24 11:09:08,714 DEBUG: 			View 0 : 0.46835443038
+2016-08-24 11:09:08,721 DEBUG: 			View 1 : 0.512658227848
+2016-08-24 11:09:08,759 DEBUG: 			View 2 : 0.424050632911
+2016-08-24 11:09:08,766 DEBUG: 			View 3 : 0.462025316456
+2016-08-24 11:09:08,882 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:09:10,855 DEBUG: 		Start:	 Iteration 31
+2016-08-24 11:09:10,874 DEBUG: 			View 0 : 0.563291139241
+2016-08-24 11:09:10,882 DEBUG: 			View 1 : 0.335443037975
+2016-08-24 11:09:10,922 DEBUG: 			View 2 : 0.512658227848
+2016-08-24 11:09:10,930 DEBUG: 			View 3 : 0.487341772152
+2016-08-24 11:09:11,065 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:09:13,022 DEBUG: 		Start:	 Iteration 32
+2016-08-24 11:09:13,039 DEBUG: 			View 0 : 0.424050632911
+2016-08-24 11:09:13,047 DEBUG: 			View 1 : 0.632911392405
+2016-08-24 11:09:13,089 DEBUG: 			View 2 : 0.474683544304
+2016-08-24 11:09:13,097 DEBUG: 			View 3 : 0.582278481013
+2016-08-24 11:09:13,225 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:09:15,276 DEBUG: 		Start:	 Iteration 33
+2016-08-24 11:09:15,292 DEBUG: 			View 0 : 0.493670886076
+2016-08-24 11:09:15,300 DEBUG: 			View 1 : 0.651898734177
+2016-08-24 11:09:15,340 DEBUG: 			View 2 : 0.462025316456
+2016-08-24 11:09:15,349 DEBUG: 			View 3 : 0.367088607595
+2016-08-24 11:09:15,480 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:09:17,640 DEBUG: 		Start:	 Iteration 34
+2016-08-24 11:09:17,656 DEBUG: 			View 0 : 0.455696202532
+2016-08-24 11:09:17,664 DEBUG: 			View 1 : 0.79746835443
+2016-08-24 11:09:17,701 DEBUG: 			View 2 : 0.594936708861
+2016-08-24 11:09:17,708 DEBUG: 			View 3 : 0.594936708861
+2016-08-24 11:09:17,832 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:09:19,911 DEBUG: 		Start:	 Iteration 35
+2016-08-24 11:09:19,928 DEBUG: 			View 0 : 0.575949367089
+2016-08-24 11:09:19,935 DEBUG: 			View 1 : 0.601265822785
+2016-08-24 11:09:19,971 DEBUG: 			View 2 : 0.613924050633
+2016-08-24 11:09:19,979 DEBUG: 			View 3 : 0.443037974684
+2016-08-24 11:09:20,105 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:09:22,296 DEBUG: 		Start:	 Iteration 36
+2016-08-24 11:09:22,312 DEBUG: 			View 0 : 0.639240506329
+2016-08-24 11:09:22,320 DEBUG: 			View 1 : 0.550632911392
+2016-08-24 11:09:22,357 DEBUG: 			View 2 : 0.424050632911
+2016-08-24 11:09:22,365 DEBUG: 			View 3 : 0.474683544304
+2016-08-24 11:09:22,498 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:09:24,768 DEBUG: 		Start:	 Iteration 37
+2016-08-24 11:09:24,785 DEBUG: 			View 0 : 0.455696202532
+2016-08-24 11:09:24,792 DEBUG: 			View 1 : 0.677215189873
+2016-08-24 11:09:24,831 DEBUG: 			View 2 : 0.46835443038
+2016-08-24 11:09:24,838 DEBUG: 			View 3 : 0.518987341772
+2016-08-24 11:09:24,970 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:09:27,288 DEBUG: 		Start:	 Iteration 38
+2016-08-24 11:09:27,305 DEBUG: 			View 0 : 0.411392405063
+2016-08-24 11:09:27,313 DEBUG: 			View 1 : 0.46835443038
+2016-08-24 11:09:27,350 DEBUG: 			View 2 : 0.436708860759
+2016-08-24 11:09:27,357 DEBUG: 			View 3 : 0.474683544304
+2016-08-24 11:09:27,358 WARNING: WARNING:	All bad for iteration 37
+2016-08-24 11:09:27,495 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:09:29,938 DEBUG: 		Start:	 Iteration 39
+2016-08-24 11:09:29,954 DEBUG: 			View 0 : 0.563291139241
+2016-08-24 11:09:29,962 DEBUG: 			View 1 : 0.379746835443
+2016-08-24 11:09:29,998 DEBUG: 			View 2 : 0.430379746835
+2016-08-24 11:09:30,006 DEBUG: 			View 3 : 0.443037974684
+2016-08-24 11:09:30,143 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:09:32,730 DEBUG: 		Start:	 Iteration 40
+2016-08-24 11:09:32,748 DEBUG: 			View 0 : 0.462025316456
+2016-08-24 11:09:32,755 DEBUG: 			View 1 : 0.626582278481
+2016-08-24 11:09:32,797 DEBUG: 			View 2 : 0.411392405063
+2016-08-24 11:09:32,804 DEBUG: 			View 3 : 0.53164556962
+2016-08-24 11:09:32,941 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:09:35,450 DEBUG: 		Start:	 Iteration 41
+2016-08-24 11:09:35,467 DEBUG: 			View 0 : 0.556962025316
+2016-08-24 11:09:35,474 DEBUG: 			View 1 : 0.620253164557
+2016-08-24 11:09:35,511 DEBUG: 			View 2 : 0.443037974684
+2016-08-24 11:09:35,518 DEBUG: 			View 3 : 0.594936708861
+2016-08-24 11:09:35,658 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:09:38,266 DEBUG: 		Start:	 Iteration 42
+2016-08-24 11:09:38,283 DEBUG: 			View 0 : 0.632911392405
+2016-08-24 11:09:38,290 DEBUG: 			View 1 : 0.582278481013
+2016-08-24 11:09:38,328 DEBUG: 			View 2 : 0.550632911392
+2016-08-24 11:09:38,335 DEBUG: 			View 3 : 0.398734177215
+2016-08-24 11:09:38,481 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:09:41,096 DEBUG: 		Start:	 Iteration 43
+2016-08-24 11:09:41,113 DEBUG: 			View 0 : 0.430379746835
+2016-08-24 11:09:41,121 DEBUG: 			View 1 : 0.613924050633
+2016-08-24 11:09:41,158 DEBUG: 			View 2 : 0.474683544304
+2016-08-24 11:09:41,165 DEBUG: 			View 3 : 0.512658227848
+2016-08-24 11:09:41,315 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:09:43,945 DEBUG: 		Start:	 Iteration 44
+2016-08-24 11:09:43,961 DEBUG: 			View 0 : 0.462025316456
+2016-08-24 11:09:43,969 DEBUG: 			View 1 : 0.537974683544
+2016-08-24 11:09:44,024 DEBUG: 			View 2 : 0.594936708861
+2016-08-24 11:09:44,038 DEBUG: 			View 3 : 0.411392405063
+2016-08-24 11:09:44,211 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:09:46,944 DEBUG: 		Start:	 Iteration 45
+2016-08-24 11:09:46,961 DEBUG: 			View 0 : 0.53164556962
+2016-08-24 11:09:46,968 DEBUG: 			View 1 : 0.626582278481
+2016-08-24 11:09:47,006 DEBUG: 			View 2 : 0.506329113924
+2016-08-24 11:09:47,014 DEBUG: 			View 3 : 0.462025316456
+2016-08-24 11:09:47,164 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:09:49,893 DEBUG: 		Start:	 Iteration 46
+2016-08-24 11:09:49,910 DEBUG: 			View 0 : 0.348101265823
+2016-08-24 11:09:49,917 DEBUG: 			View 1 : 0.607594936709
+2016-08-24 11:09:49,954 DEBUG: 			View 2 : 0.632911392405
+2016-08-24 11:09:49,962 DEBUG: 			View 3 : 0.556962025316
+2016-08-24 11:09:50,111 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:09:52,926 DEBUG: 		Start:	 Iteration 47
+2016-08-24 11:09:52,943 DEBUG: 			View 0 : 0.518987341772
+2016-08-24 11:09:52,951 DEBUG: 			View 1 : 0.664556962025
+2016-08-24 11:09:52,987 DEBUG: 			View 2 : 0.417721518987
+2016-08-24 11:09:52,995 DEBUG: 			View 3 : 0.582278481013
+2016-08-24 11:09:53,147 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:09:56,001 DEBUG: 		Start:	 Iteration 48
+2016-08-24 11:09:56,017 DEBUG: 			View 0 : 0.487341772152
+2016-08-24 11:09:56,025 DEBUG: 			View 1 : 0.689873417722
+2016-08-24 11:09:56,063 DEBUG: 			View 2 : 0.411392405063
+2016-08-24 11:09:56,071 DEBUG: 			View 3 : 0.449367088608
+2016-08-24 11:09:56,226 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:09:59,142 DEBUG: 		Start:	 Iteration 49
+2016-08-24 11:09:59,158 DEBUG: 			View 0 : 0.360759493671
+2016-08-24 11:09:59,166 DEBUG: 			View 1 : 0.392405063291
+2016-08-24 11:09:59,202 DEBUG: 			View 2 : 0.398734177215
+2016-08-24 11:09:59,210 DEBUG: 			View 3 : 0.607594936709
+2016-08-24 11:09:59,368 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:10:02,340 DEBUG: 		Start:	 Iteration 50
+2016-08-24 11:10:02,356 DEBUG: 			View 0 : 0.518987341772
+2016-08-24 11:10:02,364 DEBUG: 			View 1 : 0.5
+2016-08-24 11:10:02,400 DEBUG: 			View 2 : 0.430379746835
+2016-08-24 11:10:02,408 DEBUG: 			View 3 : 0.556962025316
+2016-08-24 11:10:02,569 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:10:05,711 DEBUG: 		Start:	 Iteration 51
+2016-08-24 11:10:05,734 DEBUG: 			View 0 : 0.518987341772
+2016-08-24 11:10:05,747 DEBUG: 			View 1 : 0.373417721519
+2016-08-24 11:10:05,793 DEBUG: 			View 2 : 0.518987341772
+2016-08-24 11:10:05,801 DEBUG: 			View 3 : 0.556962025316
+2016-08-24 11:10:05,984 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:10:09,117 DEBUG: 		Start:	 Iteration 52
+2016-08-24 11:10:09,133 DEBUG: 			View 0 : 0.430379746835
+2016-08-24 11:10:09,141 DEBUG: 			View 1 : 0.645569620253
+2016-08-24 11:10:09,178 DEBUG: 			View 2 : 0.556962025316
+2016-08-24 11:10:09,185 DEBUG: 			View 3 : 0.658227848101
+2016-08-24 11:10:09,351 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:10:12,580 DEBUG: 		Start:	 Iteration 53
+2016-08-24 11:10:12,600 DEBUG: 			View 0 : 0.550632911392
+2016-08-24 11:10:12,609 DEBUG: 			View 1 : 0.639240506329
+2016-08-24 11:10:12,649 DEBUG: 			View 2 : 0.525316455696
+2016-08-24 11:10:12,657 DEBUG: 			View 3 : 0.487341772152
+2016-08-24 11:10:12,836 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:10:16,117 DEBUG: 		Start:	 Iteration 54
+2016-08-24 11:10:16,135 DEBUG: 			View 0 : 0.481012658228
+2016-08-24 11:10:16,143 DEBUG: 			View 1 : 0.430379746835
+2016-08-24 11:10:16,180 DEBUG: 			View 2 : 0.607594936709
+2016-08-24 11:10:16,187 DEBUG: 			View 3 : 0.582278481013
+2016-08-24 11:10:16,358 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:10:19,696 DEBUG: 		Start:	 Iteration 55
+2016-08-24 11:10:19,712 DEBUG: 			View 0 : 0.594936708861
+2016-08-24 11:10:19,720 DEBUG: 			View 1 : 0.607594936709
+2016-08-24 11:10:19,756 DEBUG: 			View 2 : 0.512658227848
+2016-08-24 11:10:19,764 DEBUG: 			View 3 : 0.5
+2016-08-24 11:10:19,935 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:10:23,272 DEBUG: 		Start:	 Iteration 56
+2016-08-24 11:10:23,289 DEBUG: 			View 0 : 0.563291139241
+2016-08-24 11:10:23,297 DEBUG: 			View 1 : 0.405063291139
+2016-08-24 11:10:23,334 DEBUG: 			View 2 : 0.575949367089
+2016-08-24 11:10:23,341 DEBUG: 			View 3 : 0.594936708861
+2016-08-24 11:10:23,515 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:10:26,942 DEBUG: 		Start:	 Iteration 57
+2016-08-24 11:10:26,959 DEBUG: 			View 0 : 0.481012658228
+2016-08-24 11:10:26,966 DEBUG: 			View 1 : 0.5
+2016-08-24 11:10:27,003 DEBUG: 			View 2 : 0.512658227848
+2016-08-24 11:10:27,011 DEBUG: 			View 3 : 0.563291139241
+2016-08-24 11:10:27,189 DEBUG: 			 Best view : 		Clinic_
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-111030-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-111030-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..eef88fa9
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-111030-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,32 @@
+2016-08-24 11:10:30,661 INFO: Start:	 Read HDF5 Database Files for ModifiedMultiOmic
+2016-08-24 11:10:30,661 INFO: Info:	 Labels used: No, Yes
+2016-08-24 11:10:30,662 INFO: Info:	 Length of dataset:347
+2016-08-24 11:10:30,663 INFO: ### Main Programm for Multiview Classification
+2016-08-24 11:10:30,663 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 11:10:30,664 INFO: Info:	 Shape of Methyl_ :(347, 25978)
+2016-08-24 11:10:30,664 INFO: Info:	 Shape of MiRNA__ :(347, 1046)
+2016-08-24 11:10:30,664 INFO: Info:	 Shape of RANSeq_ :(347, 73599)
+2016-08-24 11:10:30,665 INFO: Info:	 Shape of Clinic_ :(347, 127)
+2016-08-24 11:10:30,665 INFO: Done:	 Read Database Files
+2016-08-24 11:10:30,665 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-24 11:10:30,668 INFO: Done:	 Determine validation split
+2016-08-24 11:10:30,669 INFO: Start:	 Determine 2 folds
+2016-08-24 11:10:30,679 INFO: Info:	 Length of Learning Sets: 122
+2016-08-24 11:10:30,679 INFO: Info:	 Length of Testing Sets: 122
+2016-08-24 11:10:30,679 INFO: Info:	 Length of Validation Set: 103
+2016-08-24 11:10:30,679 INFO: Done:	 Determine folds
+2016-08-24 11:10:30,679 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-24 11:10:30,679 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-24 11:10:30,679 DEBUG: 	Start:	 Gridsearch for DecisionTree on Methyl_
+2016-08-24 11:10:38,124 DEBUG: 	Info:	 Best Reslut : 0.515158501441
+2016-08-24 11:10:38,124 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 11:10:38,125 DEBUG: 	Start:	 Gridsearch for DecisionTree on MiRNA__
+2016-08-24 11:10:40,053 DEBUG: 	Info:	 Best Reslut : 0.546397694524
+2016-08-24 11:10:40,053 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 11:10:40,053 DEBUG: 	Start:	 Gridsearch for DecisionTree on RANSeq_
+2016-08-24 11:10:57,326 DEBUG: 	Info:	 Best Reslut : 0.501268011527
+2016-08-24 11:10:57,327 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 11:10:57,327 DEBUG: 	Start:	 Gridsearch for DecisionTree on Clinic_
+2016-08-24 11:10:59,071 DEBUG: 	Info:	 Best Reslut : 0.510086455331
+2016-08-24 11:10:59,072 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 11:10:59,072 DEBUG: 	Start:	 Gridsearch for DecisionTree on MRNASeq
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-111136-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-111136-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..30b21857
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-111136-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,391 @@
+2016-08-24 11:11:36,038 INFO: Start:	 Read HDF5 Database Files for ModifiedMultiOmic
+2016-08-24 11:11:36,039 INFO: Info:	 Labels used: No, Yes
+2016-08-24 11:11:36,039 INFO: Info:	 Length of dataset:347
+2016-08-24 11:11:36,040 INFO: ### Main Programm for Multiview Classification
+2016-08-24 11:11:36,041 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 11:11:36,041 INFO: Info:	 Shape of Methyl_ :(347, 25978)
+2016-08-24 11:11:36,041 INFO: Info:	 Shape of MiRNA__ :(347, 1046)
+2016-08-24 11:11:36,042 INFO: Info:	 Shape of RANSeq_ :(347, 73599)
+2016-08-24 11:11:36,042 INFO: Info:	 Shape of Clinic_ :(347, 127)
+2016-08-24 11:11:36,042 INFO: Done:	 Read Database Files
+2016-08-24 11:11:36,043 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-24 11:11:36,046 INFO: Done:	 Determine validation split
+2016-08-24 11:11:36,046 INFO: Start:	 Determine 2 folds
+2016-08-24 11:11:36,054 INFO: Info:	 Length of Learning Sets: 122
+2016-08-24 11:11:36,054 INFO: Info:	 Length of Testing Sets: 122
+2016-08-24 11:11:36,054 INFO: Info:	 Length of Validation Set: 103
+2016-08-24 11:11:36,054 INFO: Done:	 Determine folds
+2016-08-24 11:11:36,054 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-24 11:11:36,054 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-24 11:11:36,055 DEBUG: 	Start:	 Gridsearch for DecisionTree on Methyl_
+2016-08-24 11:11:43,470 DEBUG: 		Info:	 Best Reslut : 0.506570605187
+2016-08-24 11:11:43,470 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 11:11:43,470 DEBUG: 	Start:	 Gridsearch for DecisionTree on MiRNA__
+2016-08-24 11:11:45,393 DEBUG: 		Info:	 Best Reslut : 0.596080691643
+2016-08-24 11:11:45,393 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 11:11:45,394 DEBUG: 	Start:	 Gridsearch for DecisionTree on RANSeq_
+2016-08-24 11:12:02,118 DEBUG: 		Info:	 Best Reslut : 0.520922190202
+2016-08-24 11:12:02,119 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 11:12:02,119 DEBUG: 	Start:	 Gridsearch for DecisionTree on Clinic_
+2016-08-24 11:12:03,876 DEBUG: 		Info:	 Best Reslut : 0.504553314121
+2016-08-24 11:12:03,877 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 11:12:03,877 DEBUG: 	Start:	 Gridsearch for DecisionTree on MRNASeq
+2016-08-24 11:12:41,748 DEBUG: 		Info:	 Best Reslut : 0.515216138329
+2016-08-24 11:12:41,749 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 11:12:41,749 INFO: Done:	 Gridsearching best settings for monoview classifiers
+2016-08-24 11:12:41,749 INFO: 	Start:	 Fold number 1
+2016-08-24 11:12:43,406 DEBUG: 		Start:	 Iteration 1
+2016-08-24 11:12:43,425 DEBUG: 			View 0 : 0.639240506329
+2016-08-24 11:12:43,433 DEBUG: 			View 1 : 0.620253164557
+2016-08-24 11:12:43,471 DEBUG: 			View 2 : 0.474683544304
+2016-08-24 11:12:43,479 DEBUG: 			View 3 : 0.379746835443
+2016-08-24 11:12:43,520 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:12:43,596 DEBUG: 		Start:	 Iteration 2
+2016-08-24 11:12:43,614 DEBUG: 			View 0 : 0.620253164557
+2016-08-24 11:12:43,621 DEBUG: 			View 1 : 0.398734177215
+2016-08-24 11:12:43,658 DEBUG: 			View 2 : 0.398734177215
+2016-08-24 11:12:43,666 DEBUG: 			View 3 : 0.518987341772
+2016-08-24 11:12:43,711 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:12:43,849 DEBUG: 		Start:	 Iteration 3
+2016-08-24 11:12:43,866 DEBUG: 			View 0 : 0.569620253165
+2016-08-24 11:12:43,874 DEBUG: 			View 1 : 0.436708860759
+2016-08-24 11:12:43,911 DEBUG: 			View 2 : 0.411392405063
+2016-08-24 11:12:43,918 DEBUG: 			View 3 : 0.430379746835
+2016-08-24 11:12:43,972 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:12:44,173 DEBUG: 		Start:	 Iteration 4
+2016-08-24 11:12:44,189 DEBUG: 			View 0 : 0.575949367089
+2016-08-24 11:12:44,197 DEBUG: 			View 1 : 0.512658227848
+2016-08-24 11:12:44,234 DEBUG: 			View 2 : 0.474683544304
+2016-08-24 11:12:44,242 DEBUG: 			View 3 : 0.411392405063
+2016-08-24 11:12:44,298 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:12:44,560 DEBUG: 		Start:	 Iteration 5
+2016-08-24 11:12:44,576 DEBUG: 			View 0 : 0.759493670886
+2016-08-24 11:12:44,584 DEBUG: 			View 1 : 0.569620253165
+2016-08-24 11:12:44,621 DEBUG: 			View 2 : 0.398734177215
+2016-08-24 11:12:44,628 DEBUG: 			View 3 : 0.518987341772
+2016-08-24 11:12:44,687 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:12:45,011 DEBUG: 		Start:	 Iteration 6
+2016-08-24 11:12:45,027 DEBUG: 			View 0 : 0.474683544304
+2016-08-24 11:12:45,035 DEBUG: 			View 1 : 0.46835443038
+2016-08-24 11:12:45,072 DEBUG: 			View 2 : 0.601265822785
+2016-08-24 11:12:45,080 DEBUG: 			View 3 : 0.53164556962
+2016-08-24 11:12:45,140 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:12:45,549 DEBUG: 		Start:	 Iteration 7
+2016-08-24 11:12:45,565 DEBUG: 			View 0 : 0.620253164557
+2016-08-24 11:12:45,574 DEBUG: 			View 1 : 0.392405063291
+2016-08-24 11:12:45,610 DEBUG: 			View 2 : 0.53164556962
+2016-08-24 11:12:45,618 DEBUG: 			View 3 : 0.5
+2016-08-24 11:12:45,681 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:12:46,144 DEBUG: 		Start:	 Iteration 8
+2016-08-24 11:12:46,161 DEBUG: 			View 0 : 0.449367088608
+2016-08-24 11:12:46,169 DEBUG: 			View 1 : 0.436708860759
+2016-08-24 11:12:46,205 DEBUG: 			View 2 : 0.525316455696
+2016-08-24 11:12:46,213 DEBUG: 			View 3 : 0.506329113924
+2016-08-24 11:12:46,277 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:12:46,809 DEBUG: 		Start:	 Iteration 9
+2016-08-24 11:12:46,825 DEBUG: 			View 0 : 0.487341772152
+2016-08-24 11:12:46,833 DEBUG: 			View 1 : 0.658227848101
+2016-08-24 11:12:46,870 DEBUG: 			View 2 : 0.462025316456
+2016-08-24 11:12:46,877 DEBUG: 			View 3 : 0.481012658228
+2016-08-24 11:12:46,944 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:12:47,535 DEBUG: 		Start:	 Iteration 10
+2016-08-24 11:12:47,552 DEBUG: 			View 0 : 0.474683544304
+2016-08-24 11:12:47,560 DEBUG: 			View 1 : 0.588607594937
+2016-08-24 11:12:47,596 DEBUG: 			View 2 : 0.411392405063
+2016-08-24 11:12:47,604 DEBUG: 			View 3 : 0.525316455696
+2016-08-24 11:12:47,673 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:12:48,319 DEBUG: 		Start:	 Iteration 11
+2016-08-24 11:12:48,336 DEBUG: 			View 0 : 0.46835443038
+2016-08-24 11:12:48,344 DEBUG: 			View 1 : 0.639240506329
+2016-08-24 11:12:48,380 DEBUG: 			View 2 : 0.537974683544
+2016-08-24 11:12:48,388 DEBUG: 			View 3 : 0.53164556962
+2016-08-24 11:12:48,460 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:12:49,176 DEBUG: 		Start:	 Iteration 12
+2016-08-24 11:12:49,193 DEBUG: 			View 0 : 0.411392405063
+2016-08-24 11:12:49,201 DEBUG: 			View 1 : 0.626582278481
+2016-08-24 11:12:49,239 DEBUG: 			View 2 : 0.379746835443
+2016-08-24 11:12:49,247 DEBUG: 			View 3 : 0.607594936709
+2016-08-24 11:12:49,323 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:12:50,095 DEBUG: 		Start:	 Iteration 13
+2016-08-24 11:12:50,112 DEBUG: 			View 0 : 0.46835443038
+2016-08-24 11:12:50,120 DEBUG: 			View 1 : 0.405063291139
+2016-08-24 11:12:50,157 DEBUG: 			View 2 : 0.474683544304
+2016-08-24 11:12:50,165 DEBUG: 			View 3 : 0.582278481013
+2016-08-24 11:12:50,241 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:12:51,101 DEBUG: 		Start:	 Iteration 14
+2016-08-24 11:12:51,117 DEBUG: 			View 0 : 0.569620253165
+2016-08-24 11:12:51,125 DEBUG: 			View 1 : 0.594936708861
+2016-08-24 11:12:51,162 DEBUG: 			View 2 : 0.424050632911
+2016-08-24 11:12:51,170 DEBUG: 			View 3 : 0.392405063291
+2016-08-24 11:12:51,248 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:12:52,146 DEBUG: 		Start:	 Iteration 15
+2016-08-24 11:12:52,163 DEBUG: 			View 0 : 0.594936708861
+2016-08-24 11:12:52,171 DEBUG: 			View 1 : 0.651898734177
+2016-08-24 11:12:52,208 DEBUG: 			View 2 : 0.411392405063
+2016-08-24 11:12:52,215 DEBUG: 			View 3 : 0.5
+2016-08-24 11:12:52,297 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:12:53,236 DEBUG: 		Start:	 Iteration 16
+2016-08-24 11:12:53,252 DEBUG: 			View 0 : 0.386075949367
+2016-08-24 11:12:53,260 DEBUG: 			View 1 : 0.518987341772
+2016-08-24 11:12:53,297 DEBUG: 			View 2 : 0.588607594937
+2016-08-24 11:12:53,305 DEBUG: 			View 3 : 0.53164556962
+2016-08-24 11:12:53,388 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:12:54,407 DEBUG: 		Start:	 Iteration 17
+2016-08-24 11:12:54,424 DEBUG: 			View 0 : 0.626582278481
+2016-08-24 11:12:54,432 DEBUG: 			View 1 : 0.550632911392
+2016-08-24 11:12:54,469 DEBUG: 			View 2 : 0.5
+2016-08-24 11:12:54,476 DEBUG: 			View 3 : 0.373417721519
+2016-08-24 11:12:54,562 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:12:55,640 DEBUG: 		Start:	 Iteration 18
+2016-08-24 11:12:55,657 DEBUG: 			View 0 : 0.424050632911
+2016-08-24 11:12:55,665 DEBUG: 			View 1 : 0.398734177215
+2016-08-24 11:12:55,701 DEBUG: 			View 2 : 0.658227848101
+2016-08-24 11:12:55,709 DEBUG: 			View 3 : 0.525316455696
+2016-08-24 11:12:55,796 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:12:56,943 DEBUG: 		Start:	 Iteration 19
+2016-08-24 11:12:56,960 DEBUG: 			View 0 : 0.556962025316
+2016-08-24 11:12:56,968 DEBUG: 			View 1 : 0.392405063291
+2016-08-24 11:12:57,005 DEBUG: 			View 2 : 0.613924050633
+2016-08-24 11:12:57,013 DEBUG: 			View 3 : 0.677215189873
+2016-08-24 11:12:57,105 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:12:58,305 DEBUG: 		Start:	 Iteration 20
+2016-08-24 11:12:58,322 DEBUG: 			View 0 : 0.417721518987
+2016-08-24 11:12:58,330 DEBUG: 			View 1 : 0.436708860759
+2016-08-24 11:12:58,367 DEBUG: 			View 2 : 0.411392405063
+2016-08-24 11:12:58,374 DEBUG: 			View 3 : 0.443037974684
+2016-08-24 11:12:58,374 WARNING: WARNING:	All bad for iteration 19
+2016-08-24 11:12:58,467 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:12:59,738 DEBUG: 		Start:	 Iteration 21
+2016-08-24 11:12:59,755 DEBUG: 			View 0 : 0.430379746835
+2016-08-24 11:12:59,763 DEBUG: 			View 1 : 0.506329113924
+2016-08-24 11:12:59,800 DEBUG: 			View 2 : 0.493670886076
+2016-08-24 11:12:59,807 DEBUG: 			View 3 : 0.632911392405
+2016-08-24 11:12:59,904 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:13:01,234 DEBUG: 		Start:	 Iteration 22
+2016-08-24 11:13:01,251 DEBUG: 			View 0 : 0.462025316456
+2016-08-24 11:13:01,259 DEBUG: 			View 1 : 0.506329113924
+2016-08-24 11:13:01,296 DEBUG: 			View 2 : 0.620253164557
+2016-08-24 11:13:01,304 DEBUG: 			View 3 : 0.575949367089
+2016-08-24 11:13:01,401 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:13:02,803 DEBUG: 		Start:	 Iteration 23
+2016-08-24 11:13:02,820 DEBUG: 			View 0 : 0.607594936709
+2016-08-24 11:13:02,828 DEBUG: 			View 1 : 0.518987341772
+2016-08-24 11:13:02,866 DEBUG: 			View 2 : 0.436708860759
+2016-08-24 11:13:02,874 DEBUG: 			View 3 : 0.436708860759
+2016-08-24 11:13:02,973 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:13:04,490 DEBUG: 		Start:	 Iteration 24
+2016-08-24 11:13:04,508 DEBUG: 			View 0 : 0.316455696203
+2016-08-24 11:13:04,515 DEBUG: 			View 1 : 0.373417721519
+2016-08-24 11:13:04,552 DEBUG: 			View 2 : 0.588607594937
+2016-08-24 11:13:04,560 DEBUG: 			View 3 : 0.487341772152
+2016-08-24 11:13:04,661 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:13:06,180 DEBUG: 		Start:	 Iteration 25
+2016-08-24 11:13:06,198 DEBUG: 			View 0 : 0.569620253165
+2016-08-24 11:13:06,206 DEBUG: 			View 1 : 0.436708860759
+2016-08-24 11:13:06,243 DEBUG: 			View 2 : 0.556962025316
+2016-08-24 11:13:06,250 DEBUG: 			View 3 : 0.392405063291
+2016-08-24 11:13:06,355 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:13:07,932 DEBUG: 		Start:	 Iteration 26
+2016-08-24 11:13:07,948 DEBUG: 			View 0 : 0.512658227848
+2016-08-24 11:13:07,956 DEBUG: 			View 1 : 0.689873417722
+2016-08-24 11:13:07,993 DEBUG: 			View 2 : 0.537974683544
+2016-08-24 11:13:08,001 DEBUG: 			View 3 : 0.417721518987
+2016-08-24 11:13:08,107 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:13:09,754 DEBUG: 		Start:	 Iteration 27
+2016-08-24 11:13:09,770 DEBUG: 			View 0 : 0.462025316456
+2016-08-24 11:13:09,778 DEBUG: 			View 1 : 0.588607594937
+2016-08-24 11:13:09,815 DEBUG: 			View 2 : 0.607594936709
+2016-08-24 11:13:09,823 DEBUG: 			View 3 : 0.46835443038
+2016-08-24 11:13:09,931 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:13:11,652 DEBUG: 		Start:	 Iteration 28
+2016-08-24 11:13:11,668 DEBUG: 			View 0 : 0.588607594937
+2016-08-24 11:13:11,676 DEBUG: 			View 1 : 0.569620253165
+2016-08-24 11:13:11,714 DEBUG: 			View 2 : 0.582278481013
+2016-08-24 11:13:11,722 DEBUG: 			View 3 : 0.537974683544
+2016-08-24 11:13:11,832 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:13:13,601 DEBUG: 		Start:	 Iteration 29
+2016-08-24 11:13:13,617 DEBUG: 			View 0 : 0.645569620253
+2016-08-24 11:13:13,625 DEBUG: 			View 1 : 0.5
+2016-08-24 11:13:13,663 DEBUG: 			View 2 : 0.556962025316
+2016-08-24 11:13:13,670 DEBUG: 			View 3 : 0.645569620253
+2016-08-24 11:13:13,786 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:13:15,623 DEBUG: 		Start:	 Iteration 30
+2016-08-24 11:13:15,640 DEBUG: 			View 0 : 0.518987341772
+2016-08-24 11:13:15,648 DEBUG: 			View 1 : 0.46835443038
+2016-08-24 11:13:15,685 DEBUG: 			View 2 : 0.506329113924
+2016-08-24 11:13:15,693 DEBUG: 			View 3 : 0.481012658228
+2016-08-24 11:13:15,810 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:13:17,695 DEBUG: 		Start:	 Iteration 31
+2016-08-24 11:13:17,711 DEBUG: 			View 0 : 0.645569620253
+2016-08-24 11:13:17,719 DEBUG: 			View 1 : 0.544303797468
+2016-08-24 11:13:17,755 DEBUG: 			View 2 : 0.493670886076
+2016-08-24 11:13:17,763 DEBUG: 			View 3 : 0.386075949367
+2016-08-24 11:13:17,880 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:13:19,816 DEBUG: 		Start:	 Iteration 32
+2016-08-24 11:13:19,832 DEBUG: 			View 0 : 0.436708860759
+2016-08-24 11:13:19,840 DEBUG: 			View 1 : 0.430379746835
+2016-08-24 11:13:19,877 DEBUG: 			View 2 : 0.569620253165
+2016-08-24 11:13:19,885 DEBUG: 			View 3 : 0.563291139241
+2016-08-24 11:13:20,004 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:13:21,998 DEBUG: 		Start:	 Iteration 33
+2016-08-24 11:13:22,015 DEBUG: 			View 0 : 0.487341772152
+2016-08-24 11:13:22,023 DEBUG: 			View 1 : 0.417721518987
+2016-08-24 11:13:22,060 DEBUG: 			View 2 : 0.506329113924
+2016-08-24 11:13:22,067 DEBUG: 			View 3 : 0.556962025316
+2016-08-24 11:13:22,189 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:13:24,238 DEBUG: 		Start:	 Iteration 34
+2016-08-24 11:13:24,255 DEBUG: 			View 0 : 0.582278481013
+2016-08-24 11:13:24,263 DEBUG: 			View 1 : 0.348101265823
+2016-08-24 11:13:24,299 DEBUG: 			View 2 : 0.462025316456
+2016-08-24 11:13:24,307 DEBUG: 			View 3 : 0.525316455696
+2016-08-24 11:13:24,431 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:13:26,552 DEBUG: 		Start:	 Iteration 35
+2016-08-24 11:13:26,568 DEBUG: 			View 0 : 0.367088607595
+2016-08-24 11:13:26,576 DEBUG: 			View 1 : 0.588607594937
+2016-08-24 11:13:26,613 DEBUG: 			View 2 : 0.398734177215
+2016-08-24 11:13:26,621 DEBUG: 			View 3 : 0.563291139241
+2016-08-24 11:13:26,747 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:13:28,935 DEBUG: 		Start:	 Iteration 36
+2016-08-24 11:13:28,952 DEBUG: 			View 0 : 0.575949367089
+2016-08-24 11:13:28,960 DEBUG: 			View 1 : 0.518987341772
+2016-08-24 11:13:28,997 DEBUG: 			View 2 : 0.537974683544
+2016-08-24 11:13:29,004 DEBUG: 			View 3 : 0.46835443038
+2016-08-24 11:13:29,132 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:13:31,405 DEBUG: 		Start:	 Iteration 37
+2016-08-24 11:13:31,423 DEBUG: 			View 0 : 0.569620253165
+2016-08-24 11:13:31,431 DEBUG: 			View 1 : 0.556962025316
+2016-08-24 11:13:31,468 DEBUG: 			View 2 : 0.424050632911
+2016-08-24 11:13:31,476 DEBUG: 			View 3 : 0.563291139241
+2016-08-24 11:13:31,606 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:13:33,902 DEBUG: 		Start:	 Iteration 38
+2016-08-24 11:13:33,919 DEBUG: 			View 0 : 0.601265822785
+2016-08-24 11:13:33,927 DEBUG: 			View 1 : 0.367088607595
+2016-08-24 11:13:33,963 DEBUG: 			View 2 : 0.392405063291
+2016-08-24 11:13:33,971 DEBUG: 			View 3 : 0.639240506329
+2016-08-24 11:13:34,104 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:13:36,607 DEBUG: 		Start:	 Iteration 39
+2016-08-24 11:13:36,624 DEBUG: 			View 0 : 0.360759493671
+2016-08-24 11:13:36,631 DEBUG: 			View 1 : 0.405063291139
+2016-08-24 11:13:36,668 DEBUG: 			View 2 : 0.411392405063
+2016-08-24 11:13:36,676 DEBUG: 			View 3 : 0.575949367089
+2016-08-24 11:13:36,811 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:13:39,566 DEBUG: 		Start:	 Iteration 40
+2016-08-24 11:13:39,594 DEBUG: 			View 0 : 0.550632911392
+2016-08-24 11:13:39,608 DEBUG: 			View 1 : 0.449367088608
+2016-08-24 11:13:39,662 DEBUG: 			View 2 : 0.474683544304
+2016-08-24 11:13:39,675 DEBUG: 			View 3 : 0.493670886076
+2016-08-24 11:13:39,892 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:13:42,508 DEBUG: 		Start:	 Iteration 41
+2016-08-24 11:13:42,525 DEBUG: 			View 0 : 0.46835443038
+2016-08-24 11:13:42,533 DEBUG: 			View 1 : 0.506329113924
+2016-08-24 11:13:42,570 DEBUG: 			View 2 : 0.506329113924
+2016-08-24 11:13:42,578 DEBUG: 			View 3 : 0.53164556962
+2016-08-24 11:13:42,720 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:13:45,271 DEBUG: 		Start:	 Iteration 42
+2016-08-24 11:13:45,289 DEBUG: 			View 0 : 0.53164556962
+2016-08-24 11:13:45,297 DEBUG: 			View 1 : 0.670886075949
+2016-08-24 11:13:45,334 DEBUG: 			View 2 : 0.537974683544
+2016-08-24 11:13:45,342 DEBUG: 			View 3 : 0.436708860759
+2016-08-24 11:13:45,484 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:13:48,085 DEBUG: 		Start:	 Iteration 43
+2016-08-24 11:13:48,102 DEBUG: 			View 0 : 0.443037974684
+2016-08-24 11:13:48,110 DEBUG: 			View 1 : 0.607594936709
+2016-08-24 11:13:48,147 DEBUG: 			View 2 : 0.487341772152
+2016-08-24 11:13:48,155 DEBUG: 			View 3 : 0.424050632911
+2016-08-24 11:13:48,299 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:13:50,954 DEBUG: 		Start:	 Iteration 44
+2016-08-24 11:13:50,970 DEBUG: 			View 0 : 0.443037974684
+2016-08-24 11:13:50,978 DEBUG: 			View 1 : 0.537974683544
+2016-08-24 11:13:51,016 DEBUG: 			View 2 : 0.481012658228
+2016-08-24 11:13:51,024 DEBUG: 			View 3 : 0.537974683544
+2016-08-24 11:13:51,170 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:13:53,901 DEBUG: 		Start:	 Iteration 45
+2016-08-24 11:13:53,918 DEBUG: 			View 0 : 0.474683544304
+2016-08-24 11:13:53,926 DEBUG: 			View 1 : 0.664556962025
+2016-08-24 11:13:53,963 DEBUG: 			View 2 : 0.443037974684
+2016-08-24 11:13:53,971 DEBUG: 			View 3 : 0.632911392405
+2016-08-24 11:13:54,120 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:13:57,012 DEBUG: 		Start:	 Iteration 46
+2016-08-24 11:13:57,030 DEBUG: 			View 0 : 0.411392405063
+2016-08-24 11:13:57,038 DEBUG: 			View 1 : 0.727848101266
+2016-08-24 11:13:57,077 DEBUG: 			View 2 : 0.436708860759
+2016-08-24 11:13:57,085 DEBUG: 			View 3 : 0.474683544304
+2016-08-24 11:13:57,239 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:14:00,114 DEBUG: 		Start:	 Iteration 47
+2016-08-24 11:14:00,131 DEBUG: 			View 0 : 0.487341772152
+2016-08-24 11:14:00,138 DEBUG: 			View 1 : 0.607594936709
+2016-08-24 11:14:00,175 DEBUG: 			View 2 : 0.449367088608
+2016-08-24 11:14:00,183 DEBUG: 			View 3 : 0.525316455696
+2016-08-24 11:14:00,338 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:14:03,280 DEBUG: 		Start:	 Iteration 48
+2016-08-24 11:14:03,297 DEBUG: 			View 0 : 0.544303797468
+2016-08-24 11:14:03,304 DEBUG: 			View 1 : 0.613924050633
+2016-08-24 11:14:03,341 DEBUG: 			View 2 : 0.518987341772
+2016-08-24 11:14:03,349 DEBUG: 			View 3 : 0.436708860759
+2016-08-24 11:14:03,509 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:14:06,498 DEBUG: 		Start:	 Iteration 49
+2016-08-24 11:14:06,514 DEBUG: 			View 0 : 0.392405063291
+2016-08-24 11:14:06,522 DEBUG: 			View 1 : 0.721518987342
+2016-08-24 11:14:06,559 DEBUG: 			View 2 : 0.405063291139
+2016-08-24 11:14:06,567 DEBUG: 			View 3 : 0.518987341772
+2016-08-24 11:14:06,728 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:14:09,769 DEBUG: 		Start:	 Iteration 50
+2016-08-24 11:14:09,789 DEBUG: 			View 0 : 0.462025316456
+2016-08-24 11:14:09,797 DEBUG: 			View 1 : 0.53164556962
+2016-08-24 11:14:09,839 DEBUG: 			View 2 : 0.53164556962
+2016-08-24 11:14:09,848 DEBUG: 			View 3 : 0.525316455696
+2016-08-24 11:14:10,022 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:14:13,136 DEBUG: 		Start:	 Iteration 51
+2016-08-24 11:14:13,152 DEBUG: 			View 0 : 0.582278481013
+2016-08-24 11:14:13,160 DEBUG: 			View 1 : 0.46835443038
+2016-08-24 11:14:13,197 DEBUG: 			View 2 : 0.563291139241
+2016-08-24 11:14:13,205 DEBUG: 			View 3 : 0.518987341772
+2016-08-24 11:14:13,366 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:14:16,488 DEBUG: 		Start:	 Iteration 52
+2016-08-24 11:14:16,505 DEBUG: 			View 0 : 0.373417721519
+2016-08-24 11:14:16,513 DEBUG: 			View 1 : 0.518987341772
+2016-08-24 11:14:16,550 DEBUG: 			View 2 : 0.386075949367
+2016-08-24 11:14:16,558 DEBUG: 			View 3 : 0.487341772152
+2016-08-24 11:14:16,722 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:14:19,893 DEBUG: 		Start:	 Iteration 53
+2016-08-24 11:14:19,910 DEBUG: 			View 0 : 0.563291139241
+2016-08-24 11:14:19,917 DEBUG: 			View 1 : 0.53164556962
+2016-08-24 11:14:19,954 DEBUG: 			View 2 : 0.537974683544
+2016-08-24 11:14:19,961 DEBUG: 			View 3 : 0.550632911392
+2016-08-24 11:14:20,128 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:14:23,363 DEBUG: 		Start:	 Iteration 54
+2016-08-24 11:14:23,380 DEBUG: 			View 0 : 0.613924050633
+2016-08-24 11:14:23,388 DEBUG: 			View 1 : 0.455696202532
+2016-08-24 11:14:23,425 DEBUG: 			View 2 : 0.601265822785
+2016-08-24 11:14:23,433 DEBUG: 			View 3 : 0.436708860759
+2016-08-24 11:14:23,601 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:14:26,896 DEBUG: 		Start:	 Iteration 55
+2016-08-24 11:14:26,913 DEBUG: 			View 0 : 0.493670886076
+2016-08-24 11:14:26,921 DEBUG: 			View 1 : 0.626582278481
+2016-08-24 11:14:26,958 DEBUG: 			View 2 : 0.455696202532
+2016-08-24 11:14:26,965 DEBUG: 			View 3 : 0.398734177215
+2016-08-24 11:14:27,137 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:14:30,496 DEBUG: 		Start:	 Iteration 56
+2016-08-24 11:14:30,513 DEBUG: 			View 0 : 0.550632911392
+2016-08-24 11:14:30,521 DEBUG: 			View 1 : 0.664556962025
+2016-08-24 11:14:30,558 DEBUG: 			View 2 : 0.588607594937
+2016-08-24 11:14:30,565 DEBUG: 			View 3 : 0.645569620253
+2016-08-24 11:14:30,739 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:14:34,390 DEBUG: 		Start:	 Iteration 57
+2016-08-24 11:14:34,414 DEBUG: 			View 0 : 0.506329113924
+2016-08-24 11:14:34,422 DEBUG: 			View 1 : 0.512658227848
+2016-08-24 11:14:34,460 DEBUG: 			View 2 : 0.46835443038
+2016-08-24 11:14:34,468 DEBUG: 			View 3 : 0.569620253165
+2016-08-24 11:14:34,648 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:14:38,374 DEBUG: 		Start:	 Iteration 58
+2016-08-24 11:14:38,391 DEBUG: 			View 0 : 0.639240506329
+2016-08-24 11:14:38,399 DEBUG: 			View 1 : 0.651898734177
+2016-08-24 11:14:38,436 DEBUG: 			View 2 : 0.398734177215
+2016-08-24 11:14:38,444 DEBUG: 			View 3 : 0.556962025316
+2016-08-24 11:14:38,627 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:14:42,400 DEBUG: 		Start:	 Iteration 59
+2016-08-24 11:14:42,419 DEBUG: 			View 0 : 0.620253164557
+2016-08-24 11:14:42,428 DEBUG: 			View 1 : 0.677215189873
+2016-08-24 11:14:42,471 DEBUG: 			View 2 : 0.411392405063
+2016-08-24 11:14:42,480 DEBUG: 			View 3 : 0.512658227848
+2016-08-24 11:14:42,689 DEBUG: 			 Best view : 		MiRNA__
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-111445-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-111445-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..52ce30c5
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-111445-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,15314 @@
+2016-08-24 11:14:45,495 INFO: Start:	 Read HDF5 Database Files for ModifiedMultiOmic
+2016-08-24 11:14:45,495 INFO: Info:	 Labels used: No, Yes
+2016-08-24 11:14:45,496 INFO: Info:	 Length of dataset:347
+2016-08-24 11:14:45,497 INFO: ### Main Programm for Multiview Classification
+2016-08-24 11:14:45,498 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 11:14:45,498 INFO: Info:	 Shape of Methyl_ :(347, 25978)
+2016-08-24 11:14:45,499 INFO: Info:	 Shape of MiRNA__ :(347, 1046)
+2016-08-24 11:14:45,499 INFO: Info:	 Shape of RANSeq_ :(347, 73599)
+2016-08-24 11:14:45,500 INFO: Info:	 Shape of Clinic_ :(347, 127)
+2016-08-24 11:14:45,500 INFO: Done:	 Read Database Files
+2016-08-24 11:14:45,500 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-24 11:14:45,506 INFO: Done:	 Determine validation split
+2016-08-24 11:14:45,506 INFO: Start:	 Determine 2 folds
+2016-08-24 11:14:45,517 INFO: Info:	 Length of Learning Sets: 122
+2016-08-24 11:14:45,517 INFO: Info:	 Length of Testing Sets: 122
+2016-08-24 11:14:45,517 INFO: Info:	 Length of Validation Set: 103
+2016-08-24 11:14:45,517 INFO: Done:	 Determine folds
+2016-08-24 11:14:45,518 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-24 11:14:45,518 INFO: 	Start:	 Fold number 1
+2016-08-24 11:14:47,122 DEBUG: 		Start:	 Iteration 1
+2016-08-24 11:14:47,138 DEBUG: 			View 0 : 0.372670807453
+2016-08-24 11:14:47,146 DEBUG: 			View 1 : 0.627329192547
+2016-08-24 11:14:47,177 DEBUG: 			View 2 : 0.372670807453
+2016-08-24 11:14:47,185 DEBUG: 			View 3 : 0.627329192547
+2016-08-24 11:14:47,227 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:14:47,301 DEBUG: 		Start:	 Iteration 2
+2016-08-24 11:14:47,320 DEBUG: 			View 0 : 0.608695652174
+2016-08-24 11:14:47,328 DEBUG: 			View 1 : 0.726708074534
+2016-08-24 11:14:47,423 DEBUG: 			View 2 : 0.627329192547
+2016-08-24 11:14:47,432 DEBUG: 			View 3 : 0.683229813665
+2016-08-24 11:14:47,478 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:14:47,611 DEBUG: 		Start:	 Iteration 3
+2016-08-24 11:14:47,629 DEBUG: 			View 0 : 0.552795031056
+2016-08-24 11:14:47,637 DEBUG: 			View 1 : 0.645962732919
+2016-08-24 11:14:47,759 DEBUG: 			View 2 : 0.534161490683
+2016-08-24 11:14:47,771 DEBUG: 			View 3 : 0.633540372671
+2016-08-24 11:14:47,849 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:14:48,046 DEBUG: 		Start:	 Iteration 4
+2016-08-24 11:14:48,064 DEBUG: 			View 0 : 0.577639751553
+2016-08-24 11:14:48,072 DEBUG: 			View 1 : 0.391304347826
+2016-08-24 11:14:48,164 DEBUG: 			View 2 : 0.527950310559
+2016-08-24 11:14:48,172 DEBUG: 			View 3 : 0.55900621118
+2016-08-24 11:14:48,228 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:14:48,495 DEBUG: 		Start:	 Iteration 5
+2016-08-24 11:14:48,513 DEBUG: 			View 0 : 0.453416149068
+2016-08-24 11:14:48,521 DEBUG: 			View 1 : 0.689440993789
+2016-08-24 11:14:48,604 DEBUG: 			View 2 : 0.484472049689
+2016-08-24 11:14:48,612 DEBUG: 			View 3 : 0.577639751553
+2016-08-24 11:14:48,670 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:14:48,996 DEBUG: 		Start:	 Iteration 6
+2016-08-24 11:14:49,014 DEBUG: 			View 0 : 0.596273291925
+2016-08-24 11:14:49,021 DEBUG: 			View 1 : 0.645962732919
+2016-08-24 11:14:49,113 DEBUG: 			View 2 : 0.577639751553
+2016-08-24 11:14:49,121 DEBUG: 			View 3 : 0.608695652174
+2016-08-24 11:14:49,182 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:14:49,566 DEBUG: 		Start:	 Iteration 7
+2016-08-24 11:14:49,584 DEBUG: 			View 0 : 0.509316770186
+2016-08-24 11:14:49,592 DEBUG: 			View 1 : 0.72049689441
+2016-08-24 11:14:49,679 DEBUG: 			View 2 : 0.577639751553
+2016-08-24 11:14:49,687 DEBUG: 			View 3 : 0.546583850932
+2016-08-24 11:14:49,750 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:14:50,217 DEBUG: 		Start:	 Iteration 8
+2016-08-24 11:14:50,235 DEBUG: 			View 0 : 0.540372670807
+2016-08-24 11:14:50,243 DEBUG: 			View 1 : 0.639751552795
+2016-08-24 11:14:50,331 DEBUG: 			View 2 : 0.577639751553
+2016-08-24 11:14:50,339 DEBUG: 			View 3 : 0.621118012422
+2016-08-24 11:14:50,404 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:14:50,908 DEBUG: 		Start:	 Iteration 9
+2016-08-24 11:14:50,926 DEBUG: 			View 0 : 0.614906832298
+2016-08-24 11:14:50,934 DEBUG: 			View 1 : 0.571428571429
+2016-08-24 11:14:51,028 DEBUG: 			View 2 : 0.55900621118
+2016-08-24 11:14:51,036 DEBUG: 			View 3 : 0.565217391304
+2016-08-24 11:14:51,104 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:14:51,669 DEBUG: 		Start:	 Iteration 10
+2016-08-24 11:14:51,687 DEBUG: 			View 0 : 0.608695652174
+2016-08-24 11:14:51,695 DEBUG: 			View 1 : 0.689440993789
+2016-08-24 11:14:51,787 DEBUG: 			View 2 : 0.540372670807
+2016-08-24 11:14:51,795 DEBUG: 			View 3 : 0.639751552795
+2016-08-24 11:14:51,865 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:14:52,493 DEBUG: 		Start:	 Iteration 11
+2016-08-24 11:14:52,511 DEBUG: 			View 0 : 0.596273291925
+2016-08-24 11:14:52,519 DEBUG: 			View 1 : 0.465838509317
+2016-08-24 11:14:52,606 DEBUG: 			View 2 : 0.565217391304
+2016-08-24 11:14:52,614 DEBUG: 			View 3 : 0.490683229814
+2016-08-24 11:14:52,687 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:14:53,382 DEBUG: 		Start:	 Iteration 12
+2016-08-24 11:14:53,401 DEBUG: 			View 0 : 0.378881987578
+2016-08-24 11:14:53,409 DEBUG: 			View 1 : 0.614906832298
+2016-08-24 11:14:53,498 DEBUG: 			View 2 : 0.55900621118
+2016-08-24 11:14:53,506 DEBUG: 			View 3 : 0.633540372671
+2016-08-24 11:14:53,580 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:14:54,336 DEBUG: 		Start:	 Iteration 13
+2016-08-24 11:14:54,354 DEBUG: 			View 0 : 0.689440993789
+2016-08-24 11:14:54,362 DEBUG: 			View 1 : 0.577639751553
+2016-08-24 11:14:54,450 DEBUG: 			View 2 : 0.596273291925
+2016-08-24 11:14:54,458 DEBUG: 			View 3 : 0.683229813665
+2016-08-24 11:14:54,535 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:14:55,380 DEBUG: 		Start:	 Iteration 14
+2016-08-24 11:14:55,399 DEBUG: 			View 0 : 0.459627329193
+2016-08-24 11:14:55,408 DEBUG: 			View 1 : 0.546583850932
+2016-08-24 11:14:55,511 DEBUG: 			View 2 : 0.608695652174
+2016-08-24 11:14:55,520 DEBUG: 			View 3 : 0.621118012422
+2016-08-24 11:14:55,597 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:14:56,463 DEBUG: 		Start:	 Iteration 15
+2016-08-24 11:14:56,480 DEBUG: 			View 0 : 0.515527950311
+2016-08-24 11:14:56,488 DEBUG: 			View 1 : 0.633540372671
+2016-08-24 11:14:56,580 DEBUG: 			View 2 : 0.527950310559
+2016-08-24 11:14:56,588 DEBUG: 			View 3 : 0.484472049689
+2016-08-24 11:14:56,668 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:14:57,608 DEBUG: 		Start:	 Iteration 16
+2016-08-24 11:14:57,628 DEBUG: 			View 0 : 0.484472049689
+2016-08-24 11:14:57,637 DEBUG: 			View 1 : 0.596273291925
+2016-08-24 11:14:57,734 DEBUG: 			View 2 : 0.608695652174
+2016-08-24 11:14:57,742 DEBUG: 			View 3 : 0.627329192547
+2016-08-24 11:14:57,824 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:14:58,815 DEBUG: 		Start:	 Iteration 17
+2016-08-24 11:14:58,833 DEBUG: 			View 0 : 0.459627329193
+2016-08-24 11:14:58,841 DEBUG: 			View 1 : 0.67701863354
+2016-08-24 11:14:58,934 DEBUG: 			View 2 : 0.621118012422
+2016-08-24 11:14:58,942 DEBUG: 			View 3 : 0.590062111801
+2016-08-24 11:14:59,028 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:15:00,093 DEBUG: 		Start:	 Iteration 18
+2016-08-24 11:15:00,112 DEBUG: 			View 0 : 0.67701863354
+2016-08-24 11:15:00,120 DEBUG: 			View 1 : 0.608695652174
+2016-08-24 11:15:00,210 DEBUG: 			View 2 : 0.515527950311
+2016-08-24 11:15:00,217 DEBUG: 			View 3 : 0.708074534161
+2016-08-24 11:15:00,304 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:15:01,416 DEBUG: 		Start:	 Iteration 19
+2016-08-24 11:15:01,434 DEBUG: 			View 0 : 0.546583850932
+2016-08-24 11:15:01,442 DEBUG: 			View 1 : 0.701863354037
+2016-08-24 11:15:01,534 DEBUG: 			View 2 : 0.590062111801
+2016-08-24 11:15:01,542 DEBUG: 			View 3 : 0.639751552795
+2016-08-24 11:15:01,631 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:15:02,804 DEBUG: 		Start:	 Iteration 20
+2016-08-24 11:15:02,826 DEBUG: 			View 0 : 0.484472049689
+2016-08-24 11:15:02,834 DEBUG: 			View 1 : 0.490683229814
+2016-08-24 11:15:02,941 DEBUG: 			View 2 : 0.577639751553
+2016-08-24 11:15:02,949 DEBUG: 			View 3 : 0.608695652174
+2016-08-24 11:15:03,045 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:15:04,267 DEBUG: 		Start:	 Iteration 21
+2016-08-24 11:15:04,286 DEBUG: 			View 0 : 0.621118012422
+2016-08-24 11:15:04,294 DEBUG: 			View 1 : 0.521739130435
+2016-08-24 11:15:04,382 DEBUG: 			View 2 : 0.60248447205
+2016-08-24 11:15:04,389 DEBUG: 			View 3 : 0.633540372671
+2016-08-24 11:15:04,483 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:15:05,775 DEBUG: 		Start:	 Iteration 22
+2016-08-24 11:15:05,793 DEBUG: 			View 0 : 0.540372670807
+2016-08-24 11:15:05,801 DEBUG: 			View 1 : 0.658385093168
+2016-08-24 11:15:05,889 DEBUG: 			View 2 : 0.608695652174
+2016-08-24 11:15:05,898 DEBUG: 			View 3 : 0.527950310559
+2016-08-24 11:15:05,993 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:15:07,339 DEBUG: 		Start:	 Iteration 23
+2016-08-24 11:15:07,357 DEBUG: 			View 0 : 0.571428571429
+2016-08-24 11:15:07,364 DEBUG: 			View 1 : 0.534161490683
+2016-08-24 11:15:07,454 DEBUG: 			View 2 : 0.627329192547
+2016-08-24 11:15:07,462 DEBUG: 			View 3 : 0.72049689441
+2016-08-24 11:15:07,560 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:15:08,965 DEBUG: 		Start:	 Iteration 24
+2016-08-24 11:15:08,983 DEBUG: 			View 0 : 0.478260869565
+2016-08-24 11:15:08,990 DEBUG: 			View 1 : 0.39751552795
+2016-08-24 11:15:09,083 DEBUG: 			View 2 : 0.577639751553
+2016-08-24 11:15:09,091 DEBUG: 			View 3 : 0.614906832298
+2016-08-24 11:15:09,192 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:15:10,667 DEBUG: 		Start:	 Iteration 25
+2016-08-24 11:15:10,685 DEBUG: 			View 0 : 0.621118012422
+2016-08-24 11:15:10,692 DEBUG: 			View 1 : 0.385093167702
+2016-08-24 11:15:10,784 DEBUG: 			View 2 : 0.565217391304
+2016-08-24 11:15:10,791 DEBUG: 			View 3 : 0.552795031056
+2016-08-24 11:15:10,893 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:15:12,414 DEBUG: 		Start:	 Iteration 26
+2016-08-24 11:15:12,433 DEBUG: 			View 0 : 0.633540372671
+2016-08-24 11:15:12,440 DEBUG: 			View 1 : 0.577639751553
+2016-08-24 11:15:12,533 DEBUG: 			View 2 : 0.527950310559
+2016-08-24 11:15:12,541 DEBUG: 			View 3 : 0.67701863354
+2016-08-24 11:15:12,652 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:15:14,242 DEBUG: 		Start:	 Iteration 27
+2016-08-24 11:15:14,260 DEBUG: 			View 0 : 0.55900621118
+2016-08-24 11:15:14,268 DEBUG: 			View 1 : 0.614906832298
+2016-08-24 11:15:14,363 DEBUG: 			View 2 : 0.546583850932
+2016-08-24 11:15:14,371 DEBUG: 			View 3 : 0.546583850932
+2016-08-24 11:15:14,477 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:15:16,122 DEBUG: 		Start:	 Iteration 28
+2016-08-24 11:15:16,140 DEBUG: 			View 0 : 0.583850931677
+2016-08-24 11:15:16,148 DEBUG: 			View 1 : 0.645962732919
+2016-08-24 11:15:16,243 DEBUG: 			View 2 : 0.565217391304
+2016-08-24 11:15:16,251 DEBUG: 			View 3 : 0.571428571429
+2016-08-24 11:15:16,360 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:15:18,074 DEBUG: 		Start:	 Iteration 29
+2016-08-24 11:15:18,092 DEBUG: 			View 0 : 0.608695652174
+2016-08-24 11:15:18,100 DEBUG: 			View 1 : 0.627329192547
+2016-08-24 11:15:18,193 DEBUG: 			View 2 : 0.521739130435
+2016-08-24 11:15:18,201 DEBUG: 			View 3 : 0.664596273292
+2016-08-24 11:15:18,311 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:15:20,068 DEBUG: 		Start:	 Iteration 30
+2016-08-24 11:15:20,087 DEBUG: 			View 0 : 0.540372670807
+2016-08-24 11:15:20,095 DEBUG: 			View 1 : 0.639751552795
+2016-08-24 11:15:20,193 DEBUG: 			View 2 : 0.552795031056
+2016-08-24 11:15:20,201 DEBUG: 			View 3 : 0.627329192547
+2016-08-24 11:15:20,319 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:15:22,144 DEBUG: 		Start:	 Iteration 31
+2016-08-24 11:15:22,161 DEBUG: 			View 0 : 0.490683229814
+2016-08-24 11:15:22,169 DEBUG: 			View 1 : 0.360248447205
+2016-08-24 11:15:22,259 DEBUG: 			View 2 : 0.55900621118
+2016-08-24 11:15:22,267 DEBUG: 			View 3 : 0.534161490683
+2016-08-24 11:15:22,383 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:15:24,278 DEBUG: 		Start:	 Iteration 32
+2016-08-24 11:15:24,297 DEBUG: 			View 0 : 0.534161490683
+2016-08-24 11:15:24,305 DEBUG: 			View 1 : 0.627329192547
+2016-08-24 11:15:24,397 DEBUG: 			View 2 : 0.639751552795
+2016-08-24 11:15:24,405 DEBUG: 			View 3 : 0.60248447205
+2016-08-24 11:15:24,524 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:15:26,504 DEBUG: 		Start:	 Iteration 33
+2016-08-24 11:15:26,522 DEBUG: 			View 0 : 0.472049689441
+2016-08-24 11:15:26,529 DEBUG: 			View 1 : 0.639751552795
+2016-08-24 11:15:26,621 DEBUG: 			View 2 : 0.503105590062
+2016-08-24 11:15:26,629 DEBUG: 			View 3 : 0.664596273292
+2016-08-24 11:15:26,748 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:15:28,792 DEBUG: 		Start:	 Iteration 34
+2016-08-24 11:15:28,809 DEBUG: 			View 0 : 0.583850931677
+2016-08-24 11:15:28,817 DEBUG: 			View 1 : 0.55900621118
+2016-08-24 11:15:28,909 DEBUG: 			View 2 : 0.577639751553
+2016-08-24 11:15:28,917 DEBUG: 			View 3 : 0.621118012422
+2016-08-24 11:15:29,040 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:15:31,128 DEBUG: 		Start:	 Iteration 35
+2016-08-24 11:15:31,146 DEBUG: 			View 0 : 0.490683229814
+2016-08-24 11:15:31,153 DEBUG: 			View 1 : 0.571428571429
+2016-08-24 11:15:31,241 DEBUG: 			View 2 : 0.652173913043
+2016-08-24 11:15:31,248 DEBUG: 			View 3 : 0.596273291925
+2016-08-24 11:15:31,372 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:15:33,543 DEBUG: 		Start:	 Iteration 36
+2016-08-24 11:15:33,561 DEBUG: 			View 0 : 0.614906832298
+2016-08-24 11:15:33,568 DEBUG: 			View 1 : 0.614906832298
+2016-08-24 11:15:33,651 DEBUG: 			View 2 : 0.515527950311
+2016-08-24 11:15:33,659 DEBUG: 			View 3 : 0.565217391304
+2016-08-24 11:15:33,785 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:15:36,019 DEBUG: 		Start:	 Iteration 37
+2016-08-24 11:15:36,037 DEBUG: 			View 0 : 0.757763975155
+2016-08-24 11:15:36,045 DEBUG: 			View 1 : 0.60248447205
+2016-08-24 11:15:36,132 DEBUG: 			View 2 : 0.577639751553
+2016-08-24 11:15:36,140 DEBUG: 			View 3 : 0.490683229814
+2016-08-24 11:15:36,269 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:15:38,554 DEBUG: 		Start:	 Iteration 38
+2016-08-24 11:15:38,572 DEBUG: 			View 0 : 0.552795031056
+2016-08-24 11:15:38,579 DEBUG: 			View 1 : 0.683229813665
+2016-08-24 11:15:38,669 DEBUG: 			View 2 : 0.534161490683
+2016-08-24 11:15:38,677 DEBUG: 			View 3 : 0.571428571429
+2016-08-24 11:15:38,808 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:15:41,153 DEBUG: 		Start:	 Iteration 39
+2016-08-24 11:15:41,170 DEBUG: 			View 0 : 0.652173913043
+2016-08-24 11:15:41,178 DEBUG: 			View 1 : 0.658385093168
+2016-08-24 11:15:41,265 DEBUG: 			View 2 : 0.658385093168
+2016-08-24 11:15:41,273 DEBUG: 			View 3 : 0.596273291925
+2016-08-24 11:15:41,405 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:15:43,837 DEBUG: 		Start:	 Iteration 40
+2016-08-24 11:15:43,854 DEBUG: 			View 0 : 0.633540372671
+2016-08-24 11:15:43,862 DEBUG: 			View 1 : 0.39751552795
+2016-08-24 11:15:43,951 DEBUG: 			View 2 : 0.55900621118
+2016-08-24 11:15:43,959 DEBUG: 			View 3 : 0.590062111801
+2016-08-24 11:15:44,094 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:15:46,579 DEBUG: 		Start:	 Iteration 41
+2016-08-24 11:15:46,597 DEBUG: 			View 0 : 0.552795031056
+2016-08-24 11:15:46,605 DEBUG: 			View 1 : 0.639751552795
+2016-08-24 11:15:46,694 DEBUG: 			View 2 : 0.60248447205
+2016-08-24 11:15:46,702 DEBUG: 			View 3 : 0.478260869565
+2016-08-24 11:15:46,839 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:15:49,378 DEBUG: 		Start:	 Iteration 42
+2016-08-24 11:15:49,396 DEBUG: 			View 0 : 0.565217391304
+2016-08-24 11:15:49,404 DEBUG: 			View 1 : 0.596273291925
+2016-08-24 11:15:49,491 DEBUG: 			View 2 : 0.608695652174
+2016-08-24 11:15:49,499 DEBUG: 			View 3 : 0.608695652174
+2016-08-24 11:15:49,638 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:15:52,257 DEBUG: 		Start:	 Iteration 43
+2016-08-24 11:15:52,275 DEBUG: 			View 0 : 0.701863354037
+2016-08-24 11:15:52,283 DEBUG: 			View 1 : 0.645962732919
+2016-08-24 11:15:52,377 DEBUG: 			View 2 : 0.627329192547
+2016-08-24 11:15:52,385 DEBUG: 			View 3 : 0.608695652174
+2016-08-24 11:15:52,526 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:15:55,194 DEBUG: 		Start:	 Iteration 44
+2016-08-24 11:15:55,213 DEBUG: 			View 0 : 0.472049689441
+2016-08-24 11:15:55,221 DEBUG: 			View 1 : 0.496894409938
+2016-08-24 11:15:55,316 DEBUG: 			View 2 : 0.509316770186
+2016-08-24 11:15:55,324 DEBUG: 			View 3 : 0.552795031056
+2016-08-24 11:15:55,466 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:15:58,192 DEBUG: 		Start:	 Iteration 45
+2016-08-24 11:15:58,210 DEBUG: 			View 0 : 0.484472049689
+2016-08-24 11:15:58,217 DEBUG: 			View 1 : 0.621118012422
+2016-08-24 11:15:58,311 DEBUG: 			View 2 : 0.583850931677
+2016-08-24 11:15:58,318 DEBUG: 			View 3 : 0.583850931677
+2016-08-24 11:15:58,464 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:16:01,240 DEBUG: 		Start:	 Iteration 46
+2016-08-24 11:16:01,258 DEBUG: 			View 0 : 0.60248447205
+2016-08-24 11:16:01,265 DEBUG: 			View 1 : 0.639751552795
+2016-08-24 11:16:01,360 DEBUG: 			View 2 : 0.565217391304
+2016-08-24 11:16:01,368 DEBUG: 			View 3 : 0.521739130435
+2016-08-24 11:16:01,516 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:16:04,354 DEBUG: 		Start:	 Iteration 47
+2016-08-24 11:16:04,372 DEBUG: 			View 0 : 0.639751552795
+2016-08-24 11:16:04,380 DEBUG: 			View 1 : 0.633540372671
+2016-08-24 11:16:04,472 DEBUG: 			View 2 : 0.521739130435
+2016-08-24 11:16:04,480 DEBUG: 			View 3 : 0.490683229814
+2016-08-24 11:16:04,629 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:16:07,543 DEBUG: 		Start:	 Iteration 48
+2016-08-24 11:16:07,561 DEBUG: 			View 0 : 0.577639751553
+2016-08-24 11:16:07,569 DEBUG: 			View 1 : 0.633540372671
+2016-08-24 11:16:07,661 DEBUG: 			View 2 : 0.60248447205
+2016-08-24 11:16:07,669 DEBUG: 			View 3 : 0.596273291925
+2016-08-24 11:16:07,822 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:16:10,789 DEBUG: 		Start:	 Iteration 49
+2016-08-24 11:16:10,807 DEBUG: 			View 0 : 0.453416149068
+2016-08-24 11:16:10,814 DEBUG: 			View 1 : 0.571428571429
+2016-08-24 11:16:10,907 DEBUG: 			View 2 : 0.639751552795
+2016-08-24 11:16:10,915 DEBUG: 			View 3 : 0.633540372671
+2016-08-24 11:16:11,069 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:16:14,095 DEBUG: 		Start:	 Iteration 50
+2016-08-24 11:16:14,112 DEBUG: 			View 0 : 0.670807453416
+2016-08-24 11:16:14,120 DEBUG: 			View 1 : 0.664596273292
+2016-08-24 11:16:14,200 DEBUG: 			View 2 : 0.596273291925
+2016-08-24 11:16:14,208 DEBUG: 			View 3 : 0.60248447205
+2016-08-24 11:16:14,365 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:16:17,472 DEBUG: 		Start:	 Iteration 51
+2016-08-24 11:16:17,490 DEBUG: 			View 0 : 0.652173913043
+2016-08-24 11:16:17,498 DEBUG: 			View 1 : 0.416149068323
+2016-08-24 11:16:17,602 DEBUG: 			View 2 : 0.484472049689
+2016-08-24 11:16:17,610 DEBUG: 			View 3 : 0.621118012422
+2016-08-24 11:16:17,772 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:16:20,914 DEBUG: 		Start:	 Iteration 52
+2016-08-24 11:16:20,932 DEBUG: 			View 0 : 0.689440993789
+2016-08-24 11:16:20,940 DEBUG: 			View 1 : 0.627329192547
+2016-08-24 11:16:21,034 DEBUG: 			View 2 : 0.552795031056
+2016-08-24 11:16:21,041 DEBUG: 			View 3 : 0.490683229814
+2016-08-24 11:16:21,205 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:16:24,426 DEBUG: 		Start:	 Iteration 53
+2016-08-24 11:16:24,443 DEBUG: 			View 0 : 0.565217391304
+2016-08-24 11:16:24,451 DEBUG: 			View 1 : 0.658385093168
+2016-08-24 11:16:24,538 DEBUG: 			View 2 : 0.590062111801
+2016-08-24 11:16:24,546 DEBUG: 			View 3 : 0.534161490683
+2016-08-24 11:16:24,710 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:16:27,999 DEBUG: 		Start:	 Iteration 54
+2016-08-24 11:16:28,017 DEBUG: 			View 0 : 0.577639751553
+2016-08-24 11:16:28,025 DEBUG: 			View 1 : 0.434782608696
+2016-08-24 11:16:28,116 DEBUG: 			View 2 : 0.552795031056
+2016-08-24 11:16:28,124 DEBUG: 			View 3 : 0.534161490683
+2016-08-24 11:16:28,291 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:16:31,633 DEBUG: 		Start:	 Iteration 55
+2016-08-24 11:16:31,650 DEBUG: 			View 0 : 0.434782608696
+2016-08-24 11:16:31,658 DEBUG: 			View 1 : 0.645962732919
+2016-08-24 11:16:31,746 DEBUG: 			View 2 : 0.577639751553
+2016-08-24 11:16:31,754 DEBUG: 			View 3 : 0.689440993789
+2016-08-24 11:16:31,923 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:16:35,333 DEBUG: 		Start:	 Iteration 56
+2016-08-24 11:16:35,351 DEBUG: 			View 0 : 0.614906832298
+2016-08-24 11:16:35,359 DEBUG: 			View 1 : 0.857142857143
+2016-08-24 11:16:35,449 DEBUG: 			View 2 : 0.546583850932
+2016-08-24 11:16:35,456 DEBUG: 			View 3 : 0.627329192547
+2016-08-24 11:16:35,627 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:16:39,082 DEBUG: 		Start:	 Iteration 57
+2016-08-24 11:16:39,100 DEBUG: 			View 0 : 0.527950310559
+2016-08-24 11:16:39,108 DEBUG: 			View 1 : 0.434782608696
+2016-08-24 11:16:39,201 DEBUG: 			View 2 : 0.621118012422
+2016-08-24 11:16:39,209 DEBUG: 			View 3 : 0.590062111801
+2016-08-24 11:16:39,381 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:16:42,922 DEBUG: 		Start:	 Iteration 58
+2016-08-24 11:16:42,940 DEBUG: 			View 0 : 0.540372670807
+2016-08-24 11:16:42,948 DEBUG: 			View 1 : 0.534161490683
+2016-08-24 11:16:43,034 DEBUG: 			View 2 : 0.565217391304
+2016-08-24 11:16:43,041 DEBUG: 			View 3 : 0.490683229814
+2016-08-24 11:16:43,217 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:16:46,827 DEBUG: 		Start:	 Iteration 59
+2016-08-24 11:16:46,845 DEBUG: 			View 0 : 0.55900621118
+2016-08-24 11:16:46,853 DEBUG: 			View 1 : 0.639751552795
+2016-08-24 11:16:46,947 DEBUG: 			View 2 : 0.627329192547
+2016-08-24 11:16:46,955 DEBUG: 			View 3 : 0.590062111801
+2016-08-24 11:16:47,141 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:16:50,821 DEBUG: 		Start:	 Iteration 60
+2016-08-24 11:16:50,841 DEBUG: 			View 0 : 0.608695652174
+2016-08-24 11:16:50,848 DEBUG: 			View 1 : 0.478260869565
+2016-08-24 11:16:50,938 DEBUG: 			View 2 : 0.596273291925
+2016-08-24 11:16:50,947 DEBUG: 			View 3 : 0.55900621118
+2016-08-24 11:16:51,127 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:16:54,882 DEBUG: 		Start:	 Iteration 61
+2016-08-24 11:16:54,900 DEBUG: 			View 0 : 0.403726708075
+2016-08-24 11:16:54,908 DEBUG: 			View 1 : 0.652173913043
+2016-08-24 11:16:54,998 DEBUG: 			View 2 : 0.60248447205
+2016-08-24 11:16:55,006 DEBUG: 			View 3 : 0.658385093168
+2016-08-24 11:16:55,186 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:16:58,982 DEBUG: 		Start:	 Iteration 62
+2016-08-24 11:16:59,000 DEBUG: 			View 0 : 0.509316770186
+2016-08-24 11:16:59,008 DEBUG: 			View 1 : 0.72049689441
+2016-08-24 11:16:59,102 DEBUG: 			View 2 : 0.633540372671
+2016-08-24 11:16:59,110 DEBUG: 			View 3 : 0.67701863354
+2016-08-24 11:16:59,295 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:17:03,161 DEBUG: 		Start:	 Iteration 63
+2016-08-24 11:17:03,179 DEBUG: 			View 0 : 0.527950310559
+2016-08-24 11:17:03,187 DEBUG: 			View 1 : 0.484472049689
+2016-08-24 11:17:03,278 DEBUG: 			View 2 : 0.596273291925
+2016-08-24 11:17:03,286 DEBUG: 			View 3 : 0.639751552795
+2016-08-24 11:17:03,471 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:17:07,398 DEBUG: 		Start:	 Iteration 64
+2016-08-24 11:17:07,416 DEBUG: 			View 0 : 0.546583850932
+2016-08-24 11:17:07,425 DEBUG: 			View 1 : 0.633540372671
+2016-08-24 11:17:07,518 DEBUG: 			View 2 : 0.633540372671
+2016-08-24 11:17:07,526 DEBUG: 			View 3 : 0.509316770186
+2016-08-24 11:17:07,715 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:17:11,730 DEBUG: 		Start:	 Iteration 65
+2016-08-24 11:17:11,749 DEBUG: 			View 0 : 0.447204968944
+2016-08-24 11:17:11,757 DEBUG: 			View 1 : 0.496894409938
+2016-08-24 11:17:11,849 DEBUG: 			View 2 : 0.614906832298
+2016-08-24 11:17:11,857 DEBUG: 			View 3 : 0.503105590062
+2016-08-24 11:17:12,055 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:17:16,117 DEBUG: 		Start:	 Iteration 66
+2016-08-24 11:17:16,135 DEBUG: 			View 0 : 0.534161490683
+2016-08-24 11:17:16,143 DEBUG: 			View 1 : 0.614906832298
+2016-08-24 11:17:16,223 DEBUG: 			View 2 : 0.621118012422
+2016-08-24 11:17:16,231 DEBUG: 			View 3 : 0.683229813665
+2016-08-24 11:17:16,425 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:17:20,587 DEBUG: 		Start:	 Iteration 67
+2016-08-24 11:17:20,604 DEBUG: 			View 0 : 0.428571428571
+2016-08-24 11:17:20,612 DEBUG: 			View 1 : 0.496894409938
+2016-08-24 11:17:20,705 DEBUG: 			View 2 : 0.645962732919
+2016-08-24 11:17:20,713 DEBUG: 			View 3 : 0.60248447205
+2016-08-24 11:17:20,908 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:17:25,155 DEBUG: 		Start:	 Iteration 68
+2016-08-24 11:17:25,173 DEBUG: 			View 0 : 0.534161490683
+2016-08-24 11:17:25,181 DEBUG: 			View 1 : 0.664596273292
+2016-08-24 11:17:25,267 DEBUG: 			View 2 : 0.627329192547
+2016-08-24 11:17:25,275 DEBUG: 			View 3 : 0.670807453416
+2016-08-24 11:17:25,469 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:17:29,738 DEBUG: 		Start:	 Iteration 69
+2016-08-24 11:17:29,756 DEBUG: 			View 0 : 0.465838509317
+2016-08-24 11:17:29,764 DEBUG: 			View 1 : 0.633540372671
+2016-08-24 11:17:29,858 DEBUG: 			View 2 : 0.652173913043
+2016-08-24 11:17:29,866 DEBUG: 			View 3 : 0.608695652174
+2016-08-24 11:17:30,064 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:17:34,406 DEBUG: 		Start:	 Iteration 70
+2016-08-24 11:17:34,424 DEBUG: 			View 0 : 0.552795031056
+2016-08-24 11:17:34,432 DEBUG: 			View 1 : 0.596273291925
+2016-08-24 11:17:34,520 DEBUG: 			View 2 : 0.627329192547
+2016-08-24 11:17:34,528 DEBUG: 			View 3 : 0.608695652174
+2016-08-24 11:17:34,727 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:17:39,117 DEBUG: 		Start:	 Iteration 71
+2016-08-24 11:17:39,135 DEBUG: 			View 0 : 0.565217391304
+2016-08-24 11:17:39,143 DEBUG: 			View 1 : 0.515527950311
+2016-08-24 11:17:39,228 DEBUG: 			View 2 : 0.546583850932
+2016-08-24 11:17:39,236 DEBUG: 			View 3 : 0.621118012422
+2016-08-24 11:17:39,489 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:17:43,962 DEBUG: 		Start:	 Iteration 72
+2016-08-24 11:17:43,980 DEBUG: 			View 0 : 0.621118012422
+2016-08-24 11:17:43,987 DEBUG: 			View 1 : 0.565217391304
+2016-08-24 11:17:44,079 DEBUG: 			View 2 : 0.55900621118
+2016-08-24 11:17:44,088 DEBUG: 			View 3 : 0.577639751553
+2016-08-24 11:17:44,293 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:17:48,830 DEBUG: 		Start:	 Iteration 73
+2016-08-24 11:17:48,850 DEBUG: 			View 0 : 0.67701863354
+2016-08-24 11:17:48,860 DEBUG: 			View 1 : 0.540372670807
+2016-08-24 11:17:48,961 DEBUG: 			View 2 : 0.590062111801
+2016-08-24 11:17:48,968 DEBUG: 			View 3 : 0.633540372671
+2016-08-24 11:17:49,176 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:17:53,775 DEBUG: 		Start:	 Iteration 74
+2016-08-24 11:17:53,793 DEBUG: 			View 0 : 0.453416149068
+2016-08-24 11:17:53,800 DEBUG: 			View 1 : 0.652173913043
+2016-08-24 11:17:53,889 DEBUG: 			View 2 : 0.60248447205
+2016-08-24 11:17:53,897 DEBUG: 			View 3 : 0.503105590062
+2016-08-24 11:17:54,119 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:17:58,762 DEBUG: 		Start:	 Iteration 75
+2016-08-24 11:17:58,780 DEBUG: 			View 0 : 0.503105590062
+2016-08-24 11:17:58,788 DEBUG: 			View 1 : 0.627329192547
+2016-08-24 11:17:58,880 DEBUG: 			View 2 : 0.652173913043
+2016-08-24 11:17:58,888 DEBUG: 			View 3 : 0.670807453416
+2016-08-24 11:17:59,101 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:18:03,812 DEBUG: 		Start:	 Iteration 76
+2016-08-24 11:18:03,829 DEBUG: 			View 0 : 0.478260869565
+2016-08-24 11:18:03,837 DEBUG: 			View 1 : 0.627329192547
+2016-08-24 11:18:03,929 DEBUG: 			View 2 : 0.596273291925
+2016-08-24 11:18:03,937 DEBUG: 			View 3 : 0.521739130435
+2016-08-24 11:18:04,151 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:18:08,927 DEBUG: 		Start:	 Iteration 77
+2016-08-24 11:18:08,945 DEBUG: 			View 0 : 0.509316770186
+2016-08-24 11:18:08,953 DEBUG: 			View 1 : 0.465838509317
+2016-08-24 11:18:09,049 DEBUG: 			View 2 : 0.515527950311
+2016-08-24 11:18:09,057 DEBUG: 			View 3 : 0.552795031056
+2016-08-24 11:18:09,272 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:18:14,096 DEBUG: 		Start:	 Iteration 78
+2016-08-24 11:18:14,114 DEBUG: 			View 0 : 0.496894409938
+2016-08-24 11:18:14,122 DEBUG: 			View 1 : 0.614906832298
+2016-08-24 11:18:14,216 DEBUG: 			View 2 : 0.540372670807
+2016-08-24 11:18:14,223 DEBUG: 			View 3 : 0.583850931677
+2016-08-24 11:18:14,442 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:18:19,347 DEBUG: 		Start:	 Iteration 79
+2016-08-24 11:18:19,365 DEBUG: 			View 0 : 0.608695652174
+2016-08-24 11:18:19,373 DEBUG: 			View 1 : 0.726708074534
+2016-08-24 11:18:19,461 DEBUG: 			View 2 : 0.621118012422
+2016-08-24 11:18:19,469 DEBUG: 			View 3 : 0.664596273292
+2016-08-24 11:18:19,693 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:18:24,651 DEBUG: 		Start:	 Iteration 80
+2016-08-24 11:18:24,669 DEBUG: 			View 0 : 0.546583850932
+2016-08-24 11:18:24,676 DEBUG: 			View 1 : 0.633540372671
+2016-08-24 11:18:24,765 DEBUG: 			View 2 : 0.503105590062
+2016-08-24 11:18:24,773 DEBUG: 			View 3 : 0.670807453416
+2016-08-24 11:18:24,993 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:18:30,011 DEBUG: 		Start:	 Iteration 81
+2016-08-24 11:18:30,030 DEBUG: 			View 0 : 0.490683229814
+2016-08-24 11:18:30,038 DEBUG: 			View 1 : 0.577639751553
+2016-08-24 11:18:30,128 DEBUG: 			View 2 : 0.55900621118
+2016-08-24 11:18:30,137 DEBUG: 			View 3 : 0.596273291925
+2016-08-24 11:18:30,364 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:18:35,443 DEBUG: 		Start:	 Iteration 82
+2016-08-24 11:18:35,462 DEBUG: 			View 0 : 0.527950310559
+2016-08-24 11:18:35,470 DEBUG: 			View 1 : 0.608695652174
+2016-08-24 11:18:35,558 DEBUG: 			View 2 : 0.552795031056
+2016-08-24 11:18:35,567 DEBUG: 			View 3 : 0.652173913043
+2016-08-24 11:18:35,795 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:18:40,943 DEBUG: 		Start:	 Iteration 83
+2016-08-24 11:18:40,961 DEBUG: 			View 0 : 0.689440993789
+2016-08-24 11:18:40,969 DEBUG: 			View 1 : 0.658385093168
+2016-08-24 11:18:41,058 DEBUG: 			View 2 : 0.521739130435
+2016-08-24 11:18:41,066 DEBUG: 			View 3 : 0.645962732919
+2016-08-24 11:18:41,297 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:18:46,494 DEBUG: 		Start:	 Iteration 84
+2016-08-24 11:18:46,512 DEBUG: 			View 0 : 0.55900621118
+2016-08-24 11:18:46,520 DEBUG: 			View 1 : 0.652173913043
+2016-08-24 11:18:46,614 DEBUG: 			View 2 : 0.608695652174
+2016-08-24 11:18:46,622 DEBUG: 			View 3 : 0.546583850932
+2016-08-24 11:18:46,855 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:18:52,119 DEBUG: 		Start:	 Iteration 85
+2016-08-24 11:18:52,137 DEBUG: 			View 0 : 0.515527950311
+2016-08-24 11:18:52,144 DEBUG: 			View 1 : 0.453416149068
+2016-08-24 11:18:52,235 DEBUG: 			View 2 : 0.633540372671
+2016-08-24 11:18:52,243 DEBUG: 			View 3 : 0.577639751553
+2016-08-24 11:18:52,479 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:18:57,816 DEBUG: 		Start:	 Iteration 86
+2016-08-24 11:18:57,834 DEBUG: 			View 0 : 0.614906832298
+2016-08-24 11:18:57,842 DEBUG: 			View 1 : 0.608695652174
+2016-08-24 11:18:57,936 DEBUG: 			View 2 : 0.670807453416
+2016-08-24 11:18:57,944 DEBUG: 			View 3 : 0.608695652174
+2016-08-24 11:18:58,180 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:19:03,593 DEBUG: 		Start:	 Iteration 87
+2016-08-24 11:19:03,611 DEBUG: 			View 0 : 0.60248447205
+2016-08-24 11:19:03,619 DEBUG: 			View 1 : 0.608695652174
+2016-08-24 11:19:03,713 DEBUG: 			View 2 : 0.627329192547
+2016-08-24 11:19:03,721 DEBUG: 			View 3 : 0.521739130435
+2016-08-24 11:19:03,959 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:19:09,435 DEBUG: 		Start:	 Iteration 88
+2016-08-24 11:19:09,453 DEBUG: 			View 0 : 0.664596273292
+2016-08-24 11:19:09,461 DEBUG: 			View 1 : 0.534161490683
+2016-08-24 11:19:09,553 DEBUG: 			View 2 : 0.55900621118
+2016-08-24 11:19:09,560 DEBUG: 			View 3 : 0.596273291925
+2016-08-24 11:19:09,799 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:19:15,336 DEBUG: 		Start:	 Iteration 89
+2016-08-24 11:19:15,355 DEBUG: 			View 0 : 0.527950310559
+2016-08-24 11:19:15,363 DEBUG: 			View 1 : 0.515527950311
+2016-08-24 11:19:15,465 DEBUG: 			View 2 : 0.633540372671
+2016-08-24 11:19:15,473 DEBUG: 			View 3 : 0.652173913043
+2016-08-24 11:19:15,721 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:19:21,322 DEBUG: 		Start:	 Iteration 90
+2016-08-24 11:19:21,340 DEBUG: 			View 0 : 0.478260869565
+2016-08-24 11:19:21,348 DEBUG: 			View 1 : 0.670807453416
+2016-08-24 11:19:21,443 DEBUG: 			View 2 : 0.60248447205
+2016-08-24 11:19:21,450 DEBUG: 			View 3 : 0.577639751553
+2016-08-24 11:19:21,697 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:19:27,356 DEBUG: 		Start:	 Iteration 91
+2016-08-24 11:19:27,374 DEBUG: 			View 0 : 0.521739130435
+2016-08-24 11:19:27,382 DEBUG: 			View 1 : 0.496894409938
+2016-08-24 11:19:27,473 DEBUG: 			View 2 : 0.627329192547
+2016-08-24 11:19:27,481 DEBUG: 			View 3 : 0.527950310559
+2016-08-24 11:19:27,732 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:19:33,475 DEBUG: 		Start:	 Iteration 92
+2016-08-24 11:19:33,493 DEBUG: 			View 0 : 0.546583850932
+2016-08-24 11:19:33,501 DEBUG: 			View 1 : 0.55900621118
+2016-08-24 11:19:33,591 DEBUG: 			View 2 : 0.627329192547
+2016-08-24 11:19:33,600 DEBUG: 			View 3 : 0.583850931677
+2016-08-24 11:19:33,851 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:19:39,661 DEBUG: 		Start:	 Iteration 93
+2016-08-24 11:19:39,679 DEBUG: 			View 0 : 0.590062111801
+2016-08-24 11:19:39,687 DEBUG: 			View 1 : 0.708074534161
+2016-08-24 11:19:39,775 DEBUG: 			View 2 : 0.521739130435
+2016-08-24 11:19:39,783 DEBUG: 			View 3 : 0.546583850932
+2016-08-24 11:19:40,039 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:19:45,933 DEBUG: 		Start:	 Iteration 94
+2016-08-24 11:19:45,951 DEBUG: 			View 0 : 0.645962732919
+2016-08-24 11:19:45,959 DEBUG: 			View 1 : 0.409937888199
+2016-08-24 11:19:46,043 DEBUG: 			View 2 : 0.55900621118
+2016-08-24 11:19:46,051 DEBUG: 			View 3 : 0.639751552795
+2016-08-24 11:19:46,302 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:19:52,252 DEBUG: 		Start:	 Iteration 95
+2016-08-24 11:19:52,270 DEBUG: 			View 0 : 0.583850931677
+2016-08-24 11:19:52,278 DEBUG: 			View 1 : 0.552795031056
+2016-08-24 11:19:52,367 DEBUG: 			View 2 : 0.552795031056
+2016-08-24 11:19:52,375 DEBUG: 			View 3 : 0.596273291925
+2016-08-24 11:19:52,642 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:19:58,625 DEBUG: 		Start:	 Iteration 96
+2016-08-24 11:19:58,643 DEBUG: 			View 0 : 0.540372670807
+2016-08-24 11:19:58,651 DEBUG: 			View 1 : 0.496894409938
+2016-08-24 11:19:58,742 DEBUG: 			View 2 : 0.60248447205
+2016-08-24 11:19:58,749 DEBUG: 			View 3 : 0.465838509317
+2016-08-24 11:19:59,007 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:20:05,084 DEBUG: 		Start:	 Iteration 97
+2016-08-24 11:20:05,103 DEBUG: 			View 0 : 0.577639751553
+2016-08-24 11:20:05,111 DEBUG: 			View 1 : 0.683229813665
+2016-08-24 11:20:05,209 DEBUG: 			View 2 : 0.509316770186
+2016-08-24 11:20:05,217 DEBUG: 			View 3 : 0.590062111801
+2016-08-24 11:20:05,489 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:20:11,716 DEBUG: 		Start:	 Iteration 98
+2016-08-24 11:20:11,734 DEBUG: 			View 0 : 0.571428571429
+2016-08-24 11:20:11,743 DEBUG: 			View 1 : 0.621118012422
+2016-08-24 11:20:11,834 DEBUG: 			View 2 : 0.621118012422
+2016-08-24 11:20:11,842 DEBUG: 			View 3 : 0.478260869565
+2016-08-24 11:20:12,104 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:20:18,337 DEBUG: 		Start:	 Iteration 99
+2016-08-24 11:20:18,355 DEBUG: 			View 0 : 0.596273291925
+2016-08-24 11:20:18,363 DEBUG: 			View 1 : 0.621118012422
+2016-08-24 11:20:18,460 DEBUG: 			View 2 : 0.571428571429
+2016-08-24 11:20:18,468 DEBUG: 			View 3 : 0.55900621118
+2016-08-24 11:20:18,734 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:20:25,017 DEBUG: 		Start:	 Iteration 100
+2016-08-24 11:20:25,036 DEBUG: 			View 0 : 0.403726708075
+2016-08-24 11:20:25,044 DEBUG: 			View 1 : 0.590062111801
+2016-08-24 11:20:25,138 DEBUG: 			View 2 : 0.60248447205
+2016-08-24 11:20:25,146 DEBUG: 			View 3 : 0.540372670807
+2016-08-24 11:20:25,413 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:20:31,776 DEBUG: 		Start:	 Iteration 101
+2016-08-24 11:20:31,794 DEBUG: 			View 0 : 0.496894409938
+2016-08-24 11:20:31,802 DEBUG: 			View 1 : 0.714285714286
+2016-08-24 11:20:31,895 DEBUG: 			View 2 : 0.503105590062
+2016-08-24 11:20:31,902 DEBUG: 			View 3 : 0.496894409938
+2016-08-24 11:20:32,172 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:20:38,807 DEBUG: 		Start:	 Iteration 102
+2016-08-24 11:20:38,831 DEBUG: 			View 0 : 0.695652173913
+2016-08-24 11:20:38,843 DEBUG: 			View 1 : 0.403726708075
+2016-08-24 11:20:38,958 DEBUG: 			View 2 : 0.496894409938
+2016-08-24 11:20:38,968 DEBUG: 			View 3 : 0.683229813665
+2016-08-24 11:20:39,249 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:20:45,713 INFO: 	Start: 	 Classification
+2016-08-24 11:21:01,314 INFO: 	Done: 	 Fold number 1
+2016-08-24 11:21:01,314 INFO: 	Start:	 Fold number 2
+2016-08-24 11:21:02,941 DEBUG: 		Start:	 Iteration 1
+2016-08-24 11:21:02,957 DEBUG: 			View 0 : 0.615384615385
+2016-08-24 11:21:02,965 DEBUG: 			View 1 : 0.615384615385
+2016-08-24 11:21:03,052 DEBUG: 			View 2 : 0.615384615385
+2016-08-24 11:21:03,060 DEBUG: 			View 3 : 0.615384615385
+2016-08-24 11:21:03,101 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:21:03,178 DEBUG: 		Start:	 Iteration 2
+2016-08-24 11:21:03,195 DEBUG: 			View 0 : 0.557692307692
+2016-08-24 11:21:03,203 DEBUG: 			View 1 : 0.455128205128
+2016-08-24 11:21:03,294 DEBUG: 			View 2 : 0.576923076923
+2016-08-24 11:21:03,301 DEBUG: 			View 3 : 0.608974358974
+2016-08-24 11:21:03,347 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:21:03,483 DEBUG: 		Start:	 Iteration 3
+2016-08-24 11:21:03,501 DEBUG: 			View 0 : 0.487179487179
+2016-08-24 11:21:03,509 DEBUG: 			View 1 : 0.570512820513
+2016-08-24 11:21:03,594 DEBUG: 			View 2 : 0.442307692308
+2016-08-24 11:21:03,602 DEBUG: 			View 3 : 0.474358974359
+2016-08-24 11:21:03,656 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:21:03,847 DEBUG: 		Start:	 Iteration 4
+2016-08-24 11:21:03,863 DEBUG: 			View 0 : 0.487179487179
+2016-08-24 11:21:03,871 DEBUG: 			View 1 : 0.628205128205
+2016-08-24 11:21:03,953 DEBUG: 			View 2 : 0.564102564103
+2016-08-24 11:21:03,961 DEBUG: 			View 3 : 0.673076923077
+2016-08-24 11:21:04,015 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:21:04,261 DEBUG: 		Start:	 Iteration 5
+2016-08-24 11:21:04,278 DEBUG: 			View 0 : 0.467948717949
+2016-08-24 11:21:04,285 DEBUG: 			View 1 : 0.384615384615
+2016-08-24 11:21:04,372 DEBUG: 			View 2 : 0.589743589744
+2016-08-24 11:21:04,380 DEBUG: 			View 3 : 0.583333333333
+2016-08-24 11:21:04,437 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:21:04,758 DEBUG: 		Start:	 Iteration 6
+2016-08-24 11:21:04,775 DEBUG: 			View 0 : 0.74358974359
+2016-08-24 11:21:04,783 DEBUG: 			View 1 : 0.538461538462
+2016-08-24 11:21:04,865 DEBUG: 			View 2 : 0.608974358974
+2016-08-24 11:21:04,873 DEBUG: 			View 3 : 0.544871794872
+2016-08-24 11:21:04,933 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:21:05,314 DEBUG: 		Start:	 Iteration 7
+2016-08-24 11:21:05,331 DEBUG: 			View 0 : 0.50641025641
+2016-08-24 11:21:05,338 DEBUG: 			View 1 : 0.628205128205
+2016-08-24 11:21:05,422 DEBUG: 			View 2 : 0.5
+2016-08-24 11:21:05,430 DEBUG: 			View 3 : 0.641025641026
+2016-08-24 11:21:05,491 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:21:05,935 DEBUG: 		Start:	 Iteration 8
+2016-08-24 11:21:05,952 DEBUG: 			View 0 : 0.487179487179
+2016-08-24 11:21:05,959 DEBUG: 			View 1 : 0.596153846154
+2016-08-24 11:21:06,054 DEBUG: 			View 2 : 0.564102564103
+2016-08-24 11:21:06,063 DEBUG: 			View 3 : 0.557692307692
+2016-08-24 11:21:06,129 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:21:06,623 DEBUG: 		Start:	 Iteration 9
+2016-08-24 11:21:06,639 DEBUG: 			View 0 : 0.487179487179
+2016-08-24 11:21:06,647 DEBUG: 			View 1 : 0.596153846154
+2016-08-24 11:21:06,724 DEBUG: 			View 2 : 0.564102564103
+2016-08-24 11:21:06,731 DEBUG: 			View 3 : 0.596153846154
+2016-08-24 11:21:06,797 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:21:07,345 DEBUG: 		Start:	 Iteration 10
+2016-08-24 11:21:07,367 DEBUG: 			View 0 : 0.653846153846
+2016-08-24 11:21:07,375 DEBUG: 			View 1 : 0.608974358974
+2016-08-24 11:21:07,458 DEBUG: 			View 2 : 0.634615384615
+2016-08-24 11:21:07,466 DEBUG: 			View 3 : 0.673076923077
+2016-08-24 11:21:07,533 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:21:08,137 DEBUG: 		Start:	 Iteration 11
+2016-08-24 11:21:08,153 DEBUG: 			View 0 : 0.49358974359
+2016-08-24 11:21:08,162 DEBUG: 			View 1 : 0.24358974359
+2016-08-24 11:21:08,271 DEBUG: 			View 2 : 0.519230769231
+2016-08-24 11:21:08,280 DEBUG: 			View 3 : 0.634615384615
+2016-08-24 11:21:08,355 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:21:09,028 DEBUG: 		Start:	 Iteration 12
+2016-08-24 11:21:09,044 DEBUG: 			View 0 : 0.602564102564
+2016-08-24 11:21:09,051 DEBUG: 			View 1 : 0.564102564103
+2016-08-24 11:21:09,139 DEBUG: 			View 2 : 0.557692307692
+2016-08-24 11:21:09,146 DEBUG: 			View 3 : 0.583333333333
+2016-08-24 11:21:09,228 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:21:09,951 DEBUG: 		Start:	 Iteration 13
+2016-08-24 11:21:09,968 DEBUG: 			View 0 : 0.679487179487
+2016-08-24 11:21:09,976 DEBUG: 			View 1 : 0.615384615385
+2016-08-24 11:21:10,058 DEBUG: 			View 2 : 0.596153846154
+2016-08-24 11:21:10,066 DEBUG: 			View 3 : 0.570512820513
+2016-08-24 11:21:10,140 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:21:10,927 DEBUG: 		Start:	 Iteration 14
+2016-08-24 11:21:10,943 DEBUG: 			View 0 : 0.564102564103
+2016-08-24 11:21:10,952 DEBUG: 			View 1 : 0.621794871795
+2016-08-24 11:21:11,038 DEBUG: 			View 2 : 0.557692307692
+2016-08-24 11:21:11,045 DEBUG: 			View 3 : 0.602564102564
+2016-08-24 11:21:11,122 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:21:11,968 DEBUG: 		Start:	 Iteration 15
+2016-08-24 11:21:11,985 DEBUG: 			View 0 : 0.551282051282
+2016-08-24 11:21:11,992 DEBUG: 			View 1 : 0.634615384615
+2016-08-24 11:21:12,074 DEBUG: 			View 2 : 0.467948717949
+2016-08-24 11:21:12,082 DEBUG: 			View 3 : 0.596153846154
+2016-08-24 11:21:12,161 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:21:13,061 DEBUG: 		Start:	 Iteration 16
+2016-08-24 11:21:13,078 DEBUG: 			View 0 : 0.679487179487
+2016-08-24 11:21:13,086 DEBUG: 			View 1 : 0.403846153846
+2016-08-24 11:21:13,172 DEBUG: 			View 2 : 0.628205128205
+2016-08-24 11:21:13,180 DEBUG: 			View 3 : 0.544871794872
+2016-08-24 11:21:13,262 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:21:14,233 DEBUG: 		Start:	 Iteration 17
+2016-08-24 11:21:14,250 DEBUG: 			View 0 : 0.621794871795
+2016-08-24 11:21:14,258 DEBUG: 			View 1 : 0.673076923077
+2016-08-24 11:21:14,340 DEBUG: 			View 2 : 0.602564102564
+2016-08-24 11:21:14,348 DEBUG: 			View 3 : 0.608974358974
+2016-08-24 11:21:14,431 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:21:15,447 DEBUG: 		Start:	 Iteration 18
+2016-08-24 11:21:15,464 DEBUG: 			View 0 : 0.557692307692
+2016-08-24 11:21:15,471 DEBUG: 			View 1 : 0.641025641026
+2016-08-24 11:21:15,573 DEBUG: 			View 2 : 0.551282051282
+2016-08-24 11:21:15,582 DEBUG: 			View 3 : 0.608974358974
+2016-08-24 11:21:15,675 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:21:16,754 DEBUG: 		Start:	 Iteration 19
+2016-08-24 11:21:16,770 DEBUG: 			View 0 : 0.461538461538
+2016-08-24 11:21:16,777 DEBUG: 			View 1 : 0.647435897436
+2016-08-24 11:21:16,859 DEBUG: 			View 2 : 0.538461538462
+2016-08-24 11:21:16,866 DEBUG: 			View 3 : 0.551282051282
+2016-08-24 11:21:16,954 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:21:18,089 DEBUG: 		Start:	 Iteration 20
+2016-08-24 11:21:18,105 DEBUG: 			View 0 : 0.551282051282
+2016-08-24 11:21:18,113 DEBUG: 			View 1 : 0.371794871795
+2016-08-24 11:21:18,193 DEBUG: 			View 2 : 0.666666666667
+2016-08-24 11:21:18,201 DEBUG: 			View 3 : 0.596153846154
+2016-08-24 11:21:18,291 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:21:19,495 DEBUG: 		Start:	 Iteration 21
+2016-08-24 11:21:19,512 DEBUG: 			View 0 : 0.365384615385
+2016-08-24 11:21:19,520 DEBUG: 			View 1 : 0.576923076923
+2016-08-24 11:21:19,609 DEBUG: 			View 2 : 0.557692307692
+2016-08-24 11:21:19,616 DEBUG: 			View 3 : 0.608974358974
+2016-08-24 11:21:19,709 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:21:20,977 DEBUG: 		Start:	 Iteration 22
+2016-08-24 11:21:20,994 DEBUG: 			View 0 : 0.660256410256
+2016-08-24 11:21:21,002 DEBUG: 			View 1 : 0.782051282051
+2016-08-24 11:21:21,090 DEBUG: 			View 2 : 0.602564102564
+2016-08-24 11:21:21,097 DEBUG: 			View 3 : 0.538461538462
+2016-08-24 11:21:21,191 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:21:22,497 DEBUG: 		Start:	 Iteration 23
+2016-08-24 11:21:22,514 DEBUG: 			View 0 : 0.474358974359
+2016-08-24 11:21:22,522 DEBUG: 			View 1 : 0.314102564103
+2016-08-24 11:21:22,598 DEBUG: 			View 2 : 0.50641025641
+2016-08-24 11:21:22,605 DEBUG: 			View 3 : 0.602564102564
+2016-08-24 11:21:22,701 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:21:24,095 DEBUG: 		Start:	 Iteration 24
+2016-08-24 11:21:24,112 DEBUG: 			View 0 : 0.551282051282
+2016-08-24 11:21:24,120 DEBUG: 			View 1 : 0.429487179487
+2016-08-24 11:21:24,205 DEBUG: 			View 2 : 0.621794871795
+2016-08-24 11:21:24,214 DEBUG: 			View 3 : 0.653846153846
+2016-08-24 11:21:24,312 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:21:25,747 DEBUG: 		Start:	 Iteration 25
+2016-08-24 11:21:25,764 DEBUG: 			View 0 : 0.570512820513
+2016-08-24 11:21:25,772 DEBUG: 			View 1 : 0.519230769231
+2016-08-24 11:21:25,855 DEBUG: 			View 2 : 0.621794871795
+2016-08-24 11:21:25,863 DEBUG: 			View 3 : 0.596153846154
+2016-08-24 11:21:25,963 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:21:27,457 DEBUG: 		Start:	 Iteration 26
+2016-08-24 11:21:27,473 DEBUG: 			View 0 : 0.557692307692
+2016-08-24 11:21:27,481 DEBUG: 			View 1 : 0.378205128205
+2016-08-24 11:21:27,564 DEBUG: 			View 2 : 0.576923076923
+2016-08-24 11:21:27,572 DEBUG: 			View 3 : 0.692307692308
+2016-08-24 11:21:27,675 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:21:29,220 DEBUG: 		Start:	 Iteration 27
+2016-08-24 11:21:29,236 DEBUG: 			View 0 : 0.474358974359
+2016-08-24 11:21:29,244 DEBUG: 			View 1 : 0.564102564103
+2016-08-24 11:21:29,327 DEBUG: 			View 2 : 0.570512820513
+2016-08-24 11:21:29,335 DEBUG: 			View 3 : 0.564102564103
+2016-08-24 11:21:29,440 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:21:31,047 DEBUG: 		Start:	 Iteration 28
+2016-08-24 11:21:31,063 DEBUG: 			View 0 : 0.429487179487
+2016-08-24 11:21:31,071 DEBUG: 			View 1 : 0.75
+2016-08-24 11:21:31,155 DEBUG: 			View 2 : 0.564102564103
+2016-08-24 11:21:31,162 DEBUG: 			View 3 : 0.602564102564
+2016-08-24 11:21:31,270 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:21:32,931 DEBUG: 		Start:	 Iteration 29
+2016-08-24 11:21:32,947 DEBUG: 			View 0 : 0.544871794872
+2016-08-24 11:21:32,955 DEBUG: 			View 1 : 0.576923076923
+2016-08-24 11:21:33,041 DEBUG: 			View 2 : 0.49358974359
+2016-08-24 11:21:33,049 DEBUG: 			View 3 : 0.5
+2016-08-24 11:21:33,161 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:21:34,897 DEBUG: 		Start:	 Iteration 30
+2016-08-24 11:21:34,914 DEBUG: 			View 0 : 0.615384615385
+2016-08-24 11:21:34,921 DEBUG: 			View 1 : 0.621794871795
+2016-08-24 11:21:35,009 DEBUG: 			View 2 : 0.448717948718
+2016-08-24 11:21:35,016 DEBUG: 			View 3 : 0.538461538462
+2016-08-24 11:21:35,130 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:21:36,907 DEBUG: 		Start:	 Iteration 31
+2016-08-24 11:21:36,923 DEBUG: 			View 0 : 0.480769230769
+2016-08-24 11:21:36,931 DEBUG: 			View 1 : 0.570512820513
+2016-08-24 11:21:37,013 DEBUG: 			View 2 : 0.589743589744
+2016-08-24 11:21:37,020 DEBUG: 			View 3 : 0.608974358974
+2016-08-24 11:21:37,135 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:21:38,986 DEBUG: 		Start:	 Iteration 32
+2016-08-24 11:21:39,003 DEBUG: 			View 0 : 0.410256410256
+2016-08-24 11:21:39,011 DEBUG: 			View 1 : 0.666666666667
+2016-08-24 11:21:39,094 DEBUG: 			View 2 : 0.570512820513
+2016-08-24 11:21:39,103 DEBUG: 			View 3 : 0.519230769231
+2016-08-24 11:21:39,220 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:21:41,118 DEBUG: 		Start:	 Iteration 33
+2016-08-24 11:21:41,134 DEBUG: 			View 0 : 0.339743589744
+2016-08-24 11:21:41,142 DEBUG: 			View 1 : 0.525641025641
+2016-08-24 11:21:41,217 DEBUG: 			View 2 : 0.551282051282
+2016-08-24 11:21:41,225 DEBUG: 			View 3 : 0.442307692308
+2016-08-24 11:21:41,344 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:21:43,320 DEBUG: 		Start:	 Iteration 34
+2016-08-24 11:21:43,336 DEBUG: 			View 0 : 0.519230769231
+2016-08-24 11:21:43,344 DEBUG: 			View 1 : 0.448717948718
+2016-08-24 11:21:43,426 DEBUG: 			View 2 : 0.628205128205
+2016-08-24 11:21:43,434 DEBUG: 			View 3 : 0.487179487179
+2016-08-24 11:21:43,554 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:21:45,593 DEBUG: 		Start:	 Iteration 35
+2016-08-24 11:21:45,609 DEBUG: 			View 0 : 0.487179487179
+2016-08-24 11:21:45,617 DEBUG: 			View 1 : 0.673076923077
+2016-08-24 11:21:45,699 DEBUG: 			View 2 : 0.583333333333
+2016-08-24 11:21:45,707 DEBUG: 			View 3 : 0.576923076923
+2016-08-24 11:21:45,831 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:21:47,920 DEBUG: 		Start:	 Iteration 36
+2016-08-24 11:21:47,936 DEBUG: 			View 0 : 0.416666666667
+2016-08-24 11:21:47,944 DEBUG: 			View 1 : 0.435897435897
+2016-08-24 11:21:48,029 DEBUG: 			View 2 : 0.570512820513
+2016-08-24 11:21:48,037 DEBUG: 			View 3 : 0.679487179487
+2016-08-24 11:21:48,164 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:21:50,319 DEBUG: 		Start:	 Iteration 37
+2016-08-24 11:21:50,335 DEBUG: 			View 0 : 0.525641025641
+2016-08-24 11:21:50,343 DEBUG: 			View 1 : 0.602564102564
+2016-08-24 11:21:50,429 DEBUG: 			View 2 : 0.615384615385
+2016-08-24 11:21:50,437 DEBUG: 			View 3 : 0.608974358974
+2016-08-24 11:21:50,563 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:21:52,782 DEBUG: 		Start:	 Iteration 38
+2016-08-24 11:21:52,799 DEBUG: 			View 0 : 0.480769230769
+2016-08-24 11:21:52,807 DEBUG: 			View 1 : 0.576923076923
+2016-08-24 11:21:52,889 DEBUG: 			View 2 : 0.570512820513
+2016-08-24 11:21:52,896 DEBUG: 			View 3 : 0.532051282051
+2016-08-24 11:21:53,028 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:21:55,289 DEBUG: 		Start:	 Iteration 39
+2016-08-24 11:21:55,306 DEBUG: 			View 0 : 0.410256410256
+2016-08-24 11:21:55,314 DEBUG: 			View 1 : 0.557692307692
+2016-08-24 11:21:55,401 DEBUG: 			View 2 : 0.570512820513
+2016-08-24 11:21:55,409 DEBUG: 			View 3 : 0.532051282051
+2016-08-24 11:21:55,541 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:21:57,876 DEBUG: 		Start:	 Iteration 40
+2016-08-24 11:21:57,892 DEBUG: 			View 0 : 0.423076923077
+2016-08-24 11:21:57,900 DEBUG: 			View 1 : 0.50641025641
+2016-08-24 11:21:57,985 DEBUG: 			View 2 : 0.602564102564
+2016-08-24 11:21:57,993 DEBUG: 			View 3 : 0.5
+2016-08-24 11:21:58,126 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:22:00,528 DEBUG: 		Start:	 Iteration 41
+2016-08-24 11:22:00,545 DEBUG: 			View 0 : 0.711538461538
+2016-08-24 11:22:00,552 DEBUG: 			View 1 : 0.641025641026
+2016-08-24 11:22:00,634 DEBUG: 			View 2 : 0.634615384615
+2016-08-24 11:22:00,642 DEBUG: 			View 3 : 0.621794871795
+2016-08-24 11:22:00,779 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:22:03,239 DEBUG: 		Start:	 Iteration 42
+2016-08-24 11:22:03,255 DEBUG: 			View 0 : 0.480769230769
+2016-08-24 11:22:03,263 DEBUG: 			View 1 : 0.551282051282
+2016-08-24 11:22:03,353 DEBUG: 			View 2 : 0.544871794872
+2016-08-24 11:22:03,360 DEBUG: 			View 3 : 0.666666666667
+2016-08-24 11:22:03,500 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:22:06,015 DEBUG: 		Start:	 Iteration 43
+2016-08-24 11:22:06,031 DEBUG: 			View 0 : 0.551282051282
+2016-08-24 11:22:06,039 DEBUG: 			View 1 : 0.564102564103
+2016-08-24 11:22:06,124 DEBUG: 			View 2 : 0.551282051282
+2016-08-24 11:22:06,132 DEBUG: 			View 3 : 0.641025641026
+2016-08-24 11:22:06,271 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:22:08,861 DEBUG: 		Start:	 Iteration 44
+2016-08-24 11:22:08,878 DEBUG: 			View 0 : 0.416666666667
+2016-08-24 11:22:08,885 DEBUG: 			View 1 : 0.647435897436
+2016-08-24 11:22:08,969 DEBUG: 			View 2 : 0.628205128205
+2016-08-24 11:22:08,976 DEBUG: 			View 3 : 0.660256410256
+2016-08-24 11:22:09,120 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:22:11,751 DEBUG: 		Start:	 Iteration 45
+2016-08-24 11:22:11,767 DEBUG: 			View 0 : 0.557692307692
+2016-08-24 11:22:11,775 DEBUG: 			View 1 : 0.365384615385
+2016-08-24 11:22:11,864 DEBUG: 			View 2 : 0.583333333333
+2016-08-24 11:22:11,871 DEBUG: 			View 3 : 0.525641025641
+2016-08-24 11:22:12,016 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:22:14,742 DEBUG: 		Start:	 Iteration 46
+2016-08-24 11:22:14,758 DEBUG: 			View 0 : 0.570512820513
+2016-08-24 11:22:14,766 DEBUG: 			View 1 : 0.602564102564
+2016-08-24 11:22:14,854 DEBUG: 			View 2 : 0.564102564103
+2016-08-24 11:22:14,861 DEBUG: 			View 3 : 0.628205128205
+2016-08-24 11:22:15,009 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:22:17,777 DEBUG: 		Start:	 Iteration 47
+2016-08-24 11:22:17,794 DEBUG: 			View 0 : 0.480769230769
+2016-08-24 11:22:17,802 DEBUG: 			View 1 : 0.320512820513
+2016-08-24 11:22:17,884 DEBUG: 			View 2 : 0.49358974359
+2016-08-24 11:22:17,891 DEBUG: 			View 3 : 0.461538461538
+2016-08-24 11:22:17,891 WARNING: WARNING:	All bad for iteration 46
+2016-08-24 11:22:18,042 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:22:20,878 DEBUG: 		Start:	 Iteration 48
+2016-08-24 11:22:20,895 DEBUG: 			View 0 : 0.544871794872
+2016-08-24 11:22:20,902 DEBUG: 			View 1 : 0.397435897436
+2016-08-24 11:22:20,985 DEBUG: 			View 2 : 0.589743589744
+2016-08-24 11:22:20,993 DEBUG: 			View 3 : 0.621794871795
+2016-08-24 11:22:21,144 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:22:24,050 DEBUG: 		Start:	 Iteration 49
+2016-08-24 11:22:24,066 DEBUG: 			View 0 : 0.589743589744
+2016-08-24 11:22:24,074 DEBUG: 			View 1 : 0.333333333333
+2016-08-24 11:22:24,159 DEBUG: 			View 2 : 0.544871794872
+2016-08-24 11:22:24,166 DEBUG: 			View 3 : 0.512820512821
+2016-08-24 11:22:24,321 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:22:27,282 DEBUG: 		Start:	 Iteration 50
+2016-08-24 11:22:27,298 DEBUG: 			View 0 : 0.50641025641
+2016-08-24 11:22:27,306 DEBUG: 			View 1 : 0.576923076923
+2016-08-24 11:22:27,388 DEBUG: 			View 2 : 0.583333333333
+2016-08-24 11:22:27,396 DEBUG: 			View 3 : 0.589743589744
+2016-08-24 11:22:27,554 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:22:30,568 DEBUG: 		Start:	 Iteration 51
+2016-08-24 11:22:30,585 DEBUG: 			View 0 : 0.429487179487
+2016-08-24 11:22:30,592 DEBUG: 			View 1 : 0.423076923077
+2016-08-24 11:22:30,681 DEBUG: 			View 2 : 0.596153846154
+2016-08-24 11:22:30,688 DEBUG: 			View 3 : 0.583333333333
+2016-08-24 11:22:30,847 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:22:33,933 DEBUG: 		Start:	 Iteration 52
+2016-08-24 11:22:33,950 DEBUG: 			View 0 : 0.570512820513
+2016-08-24 11:22:33,957 DEBUG: 			View 1 : 0.653846153846
+2016-08-24 11:22:34,040 DEBUG: 			View 2 : 0.615384615385
+2016-08-24 11:22:34,048 DEBUG: 			View 3 : 0.49358974359
+2016-08-24 11:22:34,211 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:22:37,353 DEBUG: 		Start:	 Iteration 53
+2016-08-24 11:22:37,370 DEBUG: 			View 0 : 0.538461538462
+2016-08-24 11:22:37,378 DEBUG: 			View 1 : 0.628205128205
+2016-08-24 11:22:37,465 DEBUG: 			View 2 : 0.653846153846
+2016-08-24 11:22:37,473 DEBUG: 			View 3 : 0.525641025641
+2016-08-24 11:22:37,635 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:22:40,837 DEBUG: 		Start:	 Iteration 54
+2016-08-24 11:22:40,854 DEBUG: 			View 0 : 0.589743589744
+2016-08-24 11:22:40,862 DEBUG: 			View 1 : 0.448717948718
+2016-08-24 11:22:40,943 DEBUG: 			View 2 : 0.50641025641
+2016-08-24 11:22:40,951 DEBUG: 			View 3 : 0.583333333333
+2016-08-24 11:22:41,117 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:22:44,382 DEBUG: 		Start:	 Iteration 55
+2016-08-24 11:22:44,398 DEBUG: 			View 0 : 0.634615384615
+2016-08-24 11:22:44,406 DEBUG: 			View 1 : 0.551282051282
+2016-08-24 11:22:44,485 DEBUG: 			View 2 : 0.564102564103
+2016-08-24 11:22:44,493 DEBUG: 			View 3 : 0.448717948718
+2016-08-24 11:22:44,658 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:22:47,984 DEBUG: 		Start:	 Iteration 56
+2016-08-24 11:22:48,000 DEBUG: 			View 0 : 0.544871794872
+2016-08-24 11:22:48,008 DEBUG: 			View 1 : 0.666666666667
+2016-08-24 11:22:48,091 DEBUG: 			View 2 : 0.525641025641
+2016-08-24 11:22:48,099 DEBUG: 			View 3 : 0.589743589744
+2016-08-24 11:22:48,265 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:22:51,652 DEBUG: 		Start:	 Iteration 57
+2016-08-24 11:22:51,668 DEBUG: 			View 0 : 0.583333333333
+2016-08-24 11:22:51,676 DEBUG: 			View 1 : 0.397435897436
+2016-08-24 11:22:51,769 DEBUG: 			View 2 : 0.519230769231
+2016-08-24 11:22:51,776 DEBUG: 			View 3 : 0.538461538462
+2016-08-24 11:22:51,945 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:22:55,390 DEBUG: 		Start:	 Iteration 58
+2016-08-24 11:22:55,406 DEBUG: 			View 0 : 0.403846153846
+2016-08-24 11:22:55,414 DEBUG: 			View 1 : 0.410256410256
+2016-08-24 11:22:55,502 DEBUG: 			View 2 : 0.551282051282
+2016-08-24 11:22:55,510 DEBUG: 			View 3 : 0.602564102564
+2016-08-24 11:22:55,681 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:22:59,217 DEBUG: 		Start:	 Iteration 59
+2016-08-24 11:22:59,234 DEBUG: 			View 0 : 0.474358974359
+2016-08-24 11:22:59,242 DEBUG: 			View 1 : 0.512820512821
+2016-08-24 11:22:59,326 DEBUG: 			View 2 : 0.608974358974
+2016-08-24 11:22:59,333 DEBUG: 			View 3 : 0.512820512821
+2016-08-24 11:22:59,507 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:23:03,084 DEBUG: 		Start:	 Iteration 60
+2016-08-24 11:23:03,101 DEBUG: 			View 0 : 0.397435897436
+2016-08-24 11:23:03,110 DEBUG: 			View 1 : 0.455128205128
+2016-08-24 11:23:03,196 DEBUG: 			View 2 : 0.653846153846
+2016-08-24 11:23:03,204 DEBUG: 			View 3 : 0.570512820513
+2016-08-24 11:23:03,381 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:23:07,042 DEBUG: 		Start:	 Iteration 61
+2016-08-24 11:23:07,059 DEBUG: 			View 0 : 0.705128205128
+2016-08-24 11:23:07,066 DEBUG: 			View 1 : 0.442307692308
+2016-08-24 11:23:07,154 DEBUG: 			View 2 : 0.557692307692
+2016-08-24 11:23:07,162 DEBUG: 			View 3 : 0.621794871795
+2016-08-24 11:23:07,340 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:23:11,059 DEBUG: 		Start:	 Iteration 62
+2016-08-24 11:23:11,075 DEBUG: 			View 0 : 0.391025641026
+2016-08-24 11:23:11,083 DEBUG: 			View 1 : 0.666666666667
+2016-08-24 11:23:11,180 DEBUG: 			View 2 : 0.532051282051
+2016-08-24 11:23:11,188 DEBUG: 			View 3 : 0.570512820513
+2016-08-24 11:23:11,379 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:23:15,148 DEBUG: 		Start:	 Iteration 63
+2016-08-24 11:23:15,164 DEBUG: 			View 0 : 0.384615384615
+2016-08-24 11:23:15,172 DEBUG: 			View 1 : 0.532051282051
+2016-08-24 11:23:15,256 DEBUG: 			View 2 : 0.49358974359
+2016-08-24 11:23:15,263 DEBUG: 			View 3 : 0.653846153846
+2016-08-24 11:23:15,447 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:23:19,280 DEBUG: 		Start:	 Iteration 64
+2016-08-24 11:23:19,296 DEBUG: 			View 0 : 0.551282051282
+2016-08-24 11:23:19,304 DEBUG: 			View 1 : 0.679487179487
+2016-08-24 11:23:19,391 DEBUG: 			View 2 : 0.551282051282
+2016-08-24 11:23:19,398 DEBUG: 			View 3 : 0.583333333333
+2016-08-24 11:23:19,582 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:23:23,489 DEBUG: 		Start:	 Iteration 65
+2016-08-24 11:23:23,505 DEBUG: 			View 0 : 0.583333333333
+2016-08-24 11:23:23,513 DEBUG: 			View 1 : 0.525641025641
+2016-08-24 11:23:23,597 DEBUG: 			View 2 : 0.602564102564
+2016-08-24 11:23:23,604 DEBUG: 			View 3 : 0.602564102564
+2016-08-24 11:23:23,795 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:23:27,722 DEBUG: 		Start:	 Iteration 66
+2016-08-24 11:23:27,739 DEBUG: 			View 0 : 0.538461538462
+2016-08-24 11:23:27,746 DEBUG: 			View 1 : 0.538461538462
+2016-08-24 11:23:27,833 DEBUG: 			View 2 : 0.525641025641
+2016-08-24 11:23:27,840 DEBUG: 			View 3 : 0.5
+2016-08-24 11:23:28,046 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:23:32,077 DEBUG: 		Start:	 Iteration 67
+2016-08-24 11:23:32,094 DEBUG: 			View 0 : 0.403846153846
+2016-08-24 11:23:32,102 DEBUG: 			View 1 : 0.49358974359
+2016-08-24 11:23:32,186 DEBUG: 			View 2 : 0.448717948718
+2016-08-24 11:23:32,194 DEBUG: 			View 3 : 0.615384615385
+2016-08-24 11:23:32,386 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:23:36,441 DEBUG: 		Start:	 Iteration 68
+2016-08-24 11:23:36,458 DEBUG: 			View 0 : 0.660256410256
+2016-08-24 11:23:36,466 DEBUG: 			View 1 : 0.339743589744
+2016-08-24 11:23:36,553 DEBUG: 			View 2 : 0.621794871795
+2016-08-24 11:23:36,560 DEBUG: 			View 3 : 0.685897435897
+2016-08-24 11:23:36,754 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:23:40,869 DEBUG: 		Start:	 Iteration 69
+2016-08-24 11:23:40,885 DEBUG: 			View 0 : 0.602564102564
+2016-08-24 11:23:40,893 DEBUG: 			View 1 : 0.442307692308
+2016-08-24 11:23:40,971 DEBUG: 			View 2 : 0.570512820513
+2016-08-24 11:23:40,979 DEBUG: 			View 3 : 0.596153846154
+2016-08-24 11:23:41,173 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:23:45,325 DEBUG: 		Start:	 Iteration 70
+2016-08-24 11:23:45,341 DEBUG: 			View 0 : 0.435897435897
+2016-08-24 11:23:45,349 DEBUG: 			View 1 : 0.525641025641
+2016-08-24 11:23:45,436 DEBUG: 			View 2 : 0.525641025641
+2016-08-24 11:23:45,443 DEBUG: 			View 3 : 0.621794871795
+2016-08-24 11:23:45,641 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:23:49,870 DEBUG: 		Start:	 Iteration 71
+2016-08-24 11:23:49,887 DEBUG: 			View 0 : 0.551282051282
+2016-08-24 11:23:49,895 DEBUG: 			View 1 : 0.621794871795
+2016-08-24 11:23:49,978 DEBUG: 			View 2 : 0.538461538462
+2016-08-24 11:23:49,986 DEBUG: 			View 3 : 0.634615384615
+2016-08-24 11:23:50,196 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:23:54,507 DEBUG: 		Start:	 Iteration 72
+2016-08-24 11:23:54,523 DEBUG: 			View 0 : 0.512820512821
+2016-08-24 11:23:54,531 DEBUG: 			View 1 : 0.455128205128
+2016-08-24 11:23:54,611 DEBUG: 			View 2 : 0.532051282051
+2016-08-24 11:23:54,619 DEBUG: 			View 3 : 0.551282051282
+2016-08-24 11:23:54,820 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:23:59,164 DEBUG: 		Start:	 Iteration 73
+2016-08-24 11:23:59,180 DEBUG: 			View 0 : 0.416666666667
+2016-08-24 11:23:59,188 DEBUG: 			View 1 : 0.474358974359
+2016-08-24 11:23:59,273 DEBUG: 			View 2 : 0.5
+2016-08-24 11:23:59,280 DEBUG: 			View 3 : 0.525641025641
+2016-08-24 11:23:59,485 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:24:03,917 DEBUG: 		Start:	 Iteration 74
+2016-08-24 11:24:03,934 DEBUG: 			View 0 : 0.564102564103
+2016-08-24 11:24:03,942 DEBUG: 			View 1 : 0.698717948718
+2016-08-24 11:24:04,029 DEBUG: 			View 2 : 0.564102564103
+2016-08-24 11:24:04,037 DEBUG: 			View 3 : 0.5
+2016-08-24 11:24:04,257 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:24:08,879 DEBUG: 		Start:	 Iteration 75
+2016-08-24 11:24:08,896 DEBUG: 			View 0 : 0.647435897436
+2016-08-24 11:24:08,904 DEBUG: 			View 1 : 0.397435897436
+2016-08-24 11:24:08,992 DEBUG: 			View 2 : 0.589743589744
+2016-08-24 11:24:09,000 DEBUG: 			View 3 : 0.583333333333
+2016-08-24 11:24:09,218 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:24:13,834 DEBUG: 		Start:	 Iteration 76
+2016-08-24 11:24:13,851 DEBUG: 			View 0 : 0.564102564103
+2016-08-24 11:24:13,859 DEBUG: 			View 1 : 0.75
+2016-08-24 11:24:13,949 DEBUG: 			View 2 : 0.551282051282
+2016-08-24 11:24:13,957 DEBUG: 			View 3 : 0.602564102564
+2016-08-24 11:24:14,181 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:24:18,999 DEBUG: 		Start:	 Iteration 77
+2016-08-24 11:24:19,016 DEBUG: 			View 0 : 0.641025641026
+2016-08-24 11:24:19,023 DEBUG: 			View 1 : 0.673076923077
+2016-08-24 11:24:19,111 DEBUG: 			View 2 : 0.519230769231
+2016-08-24 11:24:19,119 DEBUG: 			View 3 : 0.544871794872
+2016-08-24 11:24:19,332 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:24:24,134 DEBUG: 		Start:	 Iteration 78
+2016-08-24 11:24:24,151 DEBUG: 			View 0 : 0.397435897436
+2016-08-24 11:24:24,159 DEBUG: 			View 1 : 0.282051282051
+2016-08-24 11:24:24,256 DEBUG: 			View 2 : 0.589743589744
+2016-08-24 11:24:24,264 DEBUG: 			View 3 : 0.653846153846
+2016-08-24 11:24:24,481 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:24:29,491 DEBUG: 		Start:	 Iteration 79
+2016-08-24 11:24:29,508 DEBUG: 			View 0 : 0.487179487179
+2016-08-24 11:24:29,516 DEBUG: 			View 1 : 0.564102564103
+2016-08-24 11:24:29,610 DEBUG: 			View 2 : 0.512820512821
+2016-08-24 11:24:29,618 DEBUG: 			View 3 : 0.621794871795
+2016-08-24 11:24:29,840 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:24:34,815 DEBUG: 		Start:	 Iteration 80
+2016-08-24 11:24:34,835 DEBUG: 			View 0 : 0.435897435897
+2016-08-24 11:24:34,844 DEBUG: 			View 1 : 0.711538461538
+2016-08-24 11:24:34,954 DEBUG: 			View 2 : 0.544871794872
+2016-08-24 11:24:34,964 DEBUG: 			View 3 : 0.551282051282
+2016-08-24 11:24:35,235 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:24:40,456 DEBUG: 		Start:	 Iteration 81
+2016-08-24 11:24:40,474 DEBUG: 			View 0 : 0.576923076923
+2016-08-24 11:24:40,483 DEBUG: 			View 1 : 0.346153846154
+2016-08-24 11:24:40,571 DEBUG: 			View 2 : 0.557692307692
+2016-08-24 11:24:40,579 DEBUG: 			View 3 : 0.608974358974
+2016-08-24 11:24:40,814 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:24:45,879 DEBUG: 		Start:	 Iteration 82
+2016-08-24 11:24:45,896 DEBUG: 			View 0 : 0.474358974359
+2016-08-24 11:24:45,905 DEBUG: 			View 1 : 0.50641025641
+2016-08-24 11:24:45,988 DEBUG: 			View 2 : 0.653846153846
+2016-08-24 11:24:45,996 DEBUG: 			View 3 : 0.641025641026
+2016-08-24 11:24:46,222 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:24:51,238 DEBUG: 		Start:	 Iteration 83
+2016-08-24 11:24:51,255 DEBUG: 			View 0 : 0.544871794872
+2016-08-24 11:24:51,264 DEBUG: 			View 1 : 0.692307692308
+2016-08-24 11:24:51,355 DEBUG: 			View 2 : 0.576923076923
+2016-08-24 11:24:51,363 DEBUG: 			View 3 : 0.602564102564
+2016-08-24 11:24:51,591 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:24:56,849 DEBUG: 		Start:	 Iteration 84
+2016-08-24 11:24:56,866 DEBUG: 			View 0 : 0.602564102564
+2016-08-24 11:24:56,873 DEBUG: 			View 1 : 0.320512820513
+2016-08-24 11:24:56,962 DEBUG: 			View 2 : 0.647435897436
+2016-08-24 11:24:56,970 DEBUG: 			View 3 : 0.576923076923
+2016-08-24 11:24:57,226 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:25:02,537 DEBUG: 		Start:	 Iteration 85
+2016-08-24 11:25:02,553 DEBUG: 			View 0 : 0.525641025641
+2016-08-24 11:25:02,561 DEBUG: 			View 1 : 0.615384615385
+2016-08-24 11:25:02,650 DEBUG: 			View 2 : 0.519230769231
+2016-08-24 11:25:02,657 DEBUG: 			View 3 : 0.660256410256
+2016-08-24 11:25:02,885 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:25:08,095 DEBUG: 		Start:	 Iteration 86
+2016-08-24 11:25:08,112 DEBUG: 			View 0 : 0.647435897436
+2016-08-24 11:25:08,120 DEBUG: 			View 1 : 0.525641025641
+2016-08-24 11:25:08,210 DEBUG: 			View 2 : 0.557692307692
+2016-08-24 11:25:08,218 DEBUG: 			View 3 : 0.641025641026
+2016-08-24 11:25:08,454 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:25:13,805 DEBUG: 		Start:	 Iteration 87
+2016-08-24 11:25:13,829 DEBUG: 			View 0 : 0.480769230769
+2016-08-24 11:25:13,844 DEBUG: 			View 1 : 0.628205128205
+2016-08-24 11:25:13,984 DEBUG: 			View 2 : 0.564102564103
+2016-08-24 11:25:13,998 DEBUG: 			View 3 : 0.49358974359
+2016-08-24 11:25:14,388 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:25:19,842 DEBUG: 		Start:	 Iteration 88
+2016-08-24 11:25:19,859 DEBUG: 			View 0 : 0.583333333333
+2016-08-24 11:25:19,867 DEBUG: 			View 1 : 0.480769230769
+2016-08-24 11:25:19,951 DEBUG: 			View 2 : 0.551282051282
+2016-08-24 11:25:19,959 DEBUG: 			View 3 : 0.628205128205
+2016-08-24 11:25:20,266 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:25:25,733 DEBUG: 		Start:	 Iteration 89
+2016-08-24 11:25:25,749 DEBUG: 			View 0 : 0.544871794872
+2016-08-24 11:25:25,757 DEBUG: 			View 1 : 0.634615384615
+2016-08-24 11:25:25,843 DEBUG: 			View 2 : 0.50641025641
+2016-08-24 11:25:25,851 DEBUG: 			View 3 : 0.49358974359
+2016-08-24 11:25:26,091 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:25:31,511 DEBUG: 		Start:	 Iteration 90
+2016-08-24 11:25:31,527 DEBUG: 			View 0 : 0.615384615385
+2016-08-24 11:25:31,535 DEBUG: 			View 1 : 0.685897435897
+2016-08-24 11:25:31,618 DEBUG: 			View 2 : 0.519230769231
+2016-08-24 11:25:31,626 DEBUG: 			View 3 : 0.564102564103
+2016-08-24 11:25:31,867 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:25:37,241 DEBUG: 		Start:	 Iteration 91
+2016-08-24 11:25:37,257 DEBUG: 			View 0 : 0.50641025641
+2016-08-24 11:25:37,265 DEBUG: 			View 1 : 0.692307692308
+2016-08-24 11:25:37,352 DEBUG: 			View 2 : 0.557692307692
+2016-08-24 11:25:37,360 DEBUG: 			View 3 : 0.538461538462
+2016-08-24 11:25:37,600 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:25:43,043 DEBUG: 		Start:	 Iteration 92
+2016-08-24 11:25:43,059 DEBUG: 			View 0 : 0.544871794872
+2016-08-24 11:25:43,067 DEBUG: 			View 1 : 0.474358974359
+2016-08-24 11:25:43,154 DEBUG: 			View 2 : 0.615384615385
+2016-08-24 11:25:43,162 DEBUG: 			View 3 : 0.634615384615
+2016-08-24 11:25:43,406 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:25:48,939 DEBUG: 		Start:	 Iteration 93
+2016-08-24 11:25:48,956 DEBUG: 			View 0 : 0.538461538462
+2016-08-24 11:25:48,964 DEBUG: 			View 1 : 0.589743589744
+2016-08-24 11:25:49,051 DEBUG: 			View 2 : 0.621794871795
+2016-08-24 11:25:49,058 DEBUG: 			View 3 : 0.570512820513
+2016-08-24 11:25:49,305 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:25:54,890 DEBUG: 		Start:	 Iteration 94
+2016-08-24 11:25:54,907 DEBUG: 			View 0 : 0.435897435897
+2016-08-24 11:25:54,914 DEBUG: 			View 1 : 0.589743589744
+2016-08-24 11:25:54,997 DEBUG: 			View 2 : 0.5
+2016-08-24 11:25:55,004 DEBUG: 			View 3 : 0.608974358974
+2016-08-24 11:25:55,251 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:26:01,345 DEBUG: 		Start:	 Iteration 95
+2016-08-24 11:26:01,363 DEBUG: 			View 0 : 0.570512820513
+2016-08-24 11:26:01,371 DEBUG: 			View 1 : 0.448717948718
+2016-08-24 11:26:01,460 DEBUG: 			View 2 : 0.564102564103
+2016-08-24 11:26:01,468 DEBUG: 			View 3 : 0.544871794872
+2016-08-24 11:26:01,722 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:26:07,817 DEBUG: 		Start:	 Iteration 96
+2016-08-24 11:26:07,833 DEBUG: 			View 0 : 0.602564102564
+2016-08-24 11:26:07,841 DEBUG: 			View 1 : 0.410256410256
+2016-08-24 11:26:07,923 DEBUG: 			View 2 : 0.641025641026
+2016-08-24 11:26:07,931 DEBUG: 			View 3 : 0.653846153846
+2016-08-24 11:26:08,195 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:26:14,008 DEBUG: 		Start:	 Iteration 97
+2016-08-24 11:26:14,024 DEBUG: 			View 0 : 0.596153846154
+2016-08-24 11:26:14,032 DEBUG: 			View 1 : 0.384615384615
+2016-08-24 11:26:14,119 DEBUG: 			View 2 : 0.519230769231
+2016-08-24 11:26:14,126 DEBUG: 			View 3 : 0.621794871795
+2016-08-24 11:26:14,382 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:26:20,301 DEBUG: 		Start:	 Iteration 98
+2016-08-24 11:26:20,318 DEBUG: 			View 0 : 0.621794871795
+2016-08-24 11:26:20,326 DEBUG: 			View 1 : 0.391025641026
+2016-08-24 11:26:20,418 DEBUG: 			View 2 : 0.596153846154
+2016-08-24 11:26:20,426 DEBUG: 			View 3 : 0.653846153846
+2016-08-24 11:26:20,686 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:26:26,648 DEBUG: 		Start:	 Iteration 99
+2016-08-24 11:26:26,664 DEBUG: 			View 0 : 0.615384615385
+2016-08-24 11:26:26,672 DEBUG: 			View 1 : 0.391025641026
+2016-08-24 11:26:26,757 DEBUG: 			View 2 : 0.544871794872
+2016-08-24 11:26:26,765 DEBUG: 			View 3 : 0.628205128205
+2016-08-24 11:26:27,027 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:26:33,016 DEBUG: 		Start:	 Iteration 100
+2016-08-24 11:26:33,032 DEBUG: 			View 0 : 0.628205128205
+2016-08-24 11:26:33,040 DEBUG: 			View 1 : 0.602564102564
+2016-08-24 11:26:33,124 DEBUG: 			View 2 : 0.480769230769
+2016-08-24 11:26:33,132 DEBUG: 			View 3 : 0.647435897436
+2016-08-24 11:26:33,395 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:26:39,429 DEBUG: 		Start:	 Iteration 101
+2016-08-24 11:26:39,446 DEBUG: 			View 0 : 0.717948717949
+2016-08-24 11:26:39,453 DEBUG: 			View 1 : 0.634615384615
+2016-08-24 11:26:39,539 DEBUG: 			View 2 : 0.589743589744
+2016-08-24 11:26:39,546 DEBUG: 			View 3 : 0.628205128205
+2016-08-24 11:26:39,811 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:26:46,118 DEBUG: 		Start:	 Iteration 102
+2016-08-24 11:26:46,139 DEBUG: 			View 0 : 0.615384615385
+2016-08-24 11:26:46,148 DEBUG: 			View 1 : 0.628205128205
+2016-08-24 11:26:46,237 DEBUG: 			View 2 : 0.551282051282
+2016-08-24 11:26:46,244 DEBUG: 			View 3 : 0.634615384615
+2016-08-24 11:26:46,518 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:26:52,740 INFO: 	Start: 	 Classification
+2016-08-24 11:27:08,084 INFO: 	Done: 	 Fold number 2
+2016-08-24 11:27:08,084 INFO: Done:	 Classification
+2016-08-24 11:27:08,084 INFO: Info:	 Time for Classification: 742[s]
+2016-08-24 11:27:08,084 INFO: Start:	 Result Analysis for Mumbo
+2016-08-24 11:27:43,126 INFO: 		Result for Multiview classification with Mumbo
+
+Average accuracy :
+	-On Train : 79.5150501672
+	-On Test : 79.9180327869
+	-On Validation : 83.9805825243
+
+Dataset info :
+	-Database name : ModifiedMultiOmic
+	-Labels : No, Yes
+	-Views : Methyl, MiRNA, RNASEQ, Clinical
+	-2 folds
+	- Validation set length : 103 for learning rate : 0.7
+
+Classification configuration : 
+	-Algorithm used : Mumbo 
+	-Iterations : 1000
+	-Weak Classifiers : DecisionTree with depth 1,  sub-sampled at 0.02 on Methyl
+		-DecisionTree with depth 1,  sub-sampled at 0.02 on MiRNA
+		-DecisionTree with depth 1,  sub-sampled at 0.1 on RNASEQ
+		-DecisionTree with depth 2,  sub-sampled at 0.1 on Clinical
+
+ Mean average accuracies and stats for each fold : 
+	- Fold 0
+		- On Methyl_ : 
+			- Mean average Accuracy : 0.0566086956522
+			- Percentage of time chosen : 0.91
+		- On MiRNA__ : 
+			- Mean average Accuracy : 0.0601552795031
+			- Percentage of time chosen : 0.031
+		- On RANSeq_ : 
+			- Mean average Accuracy : 0.0589378881988
+			- Percentage of time chosen : 0.021
+		- On Clinic_ : 
+			- Mean average Accuracy : 0.0603664596273
+			- Percentage of time chosen : 0.038
+	- Fold 1
+		- On Methyl_ : 
+			- Mean average Accuracy : 0.0546346153846
+			- Percentage of time chosen : 0.909
+		- On MiRNA__ : 
+			- Mean average Accuracy : 0.05475
+			- Percentage of time chosen : 0.028
+		- On RANSeq_ : 
+			- Mean average Accuracy : 0.0575833333333
+			- Percentage of time chosen : 0.015
+		- On Clinic_ : 
+			- Mean average Accuracy : 0.0597243589744
+			- Percentage of time chosen : 0.048
+
+ For each iteration : 
+	- Iteration 1
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 2
+		 Fold 1
+			Accuracy on train : 72.6708074534
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 60.8974358974
+			Accuracy on test : 53.2786885246
+			Accuracy on validation : 63.1067961165
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 66.7841216754
+			 Accuracy on test : 65.5737704918
+	- Iteration 3
+		 Fold 1
+			Accuracy on train : 72.6708074534
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 60.8974358974
+			Accuracy on test : 53.2786885246
+			Accuracy on validation : 63.1067961165
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 66.7841216754
+			 Accuracy on test : 65.5737704918
+	- Iteration 4
+		 Fold 1
+			Accuracy on train : 72.6708074534
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 77.6699029126
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 66.0256410256
+			Accuracy on test : 59.0163934426
+			Accuracy on validation : 65.0485436893
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 69.3482242395
+			 Accuracy on test : 70.9016393443
+	- Iteration 5
+		 Fold 1
+			Accuracy on train : 71.4285714286
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 75.7281553398
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 69.2307692308
+			Accuracy on test : 63.9344262295
+			Accuracy on validation : 66.0194174757
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 70.3296703297
+			 Accuracy on test : 72.5409836066
+	- Iteration 6
+		 Fold 1
+			Accuracy on train : 71.4285714286
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 76.6990291262
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 78.8461538462
+			Accuracy on test : 69.6721311475
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 75.1373626374
+			 Accuracy on test : 75.4098360656
+	- Iteration 7
+		 Fold 1
+			Accuracy on train : 75.7763975155
+			Accuracy on test : 85.2459016393
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 78.2051282051
+			Accuracy on test : 72.131147541
+			Accuracy on validation : 80.5825242718
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 76.9907628603
+			 Accuracy on test : 78.6885245902
+	- Iteration 8
+		 Fold 1
+			Accuracy on train : 75.1552795031
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 77.6699029126
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 78.2051282051
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 76.6802038541
+			 Accuracy on test : 76.6393442623
+	- Iteration 9
+		 Fold 1
+			Accuracy on train : 73.9130434783
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 76.6990291262
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.4871794872
+			Accuracy on test : 72.131147541
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 76.7001114827
+			 Accuracy on test : 76.2295081967
+	- Iteration 10
+		 Fold 1
+			Accuracy on train : 75.7763975155
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 75.641025641
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 80.5825242718
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 75.7087115783
+			 Accuracy on test : 77.868852459
+	- Iteration 11
+		 Fold 1
+			Accuracy on train : 75.7763975155
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 74.7572815534
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 76.9230769231
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 76.3497372193
+			 Accuracy on test : 78.6885245902
+	- Iteration 12
+		 Fold 1
+			Accuracy on train : 76.397515528
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 76.6990291262
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 75.641025641
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 78.640776699
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 76.0192705845
+			 Accuracy on test : 79.0983606557
+	- Iteration 13
+		 Fold 1
+			Accuracy on train : 78.2608695652
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 78.640776699
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 77.5641025641
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 80.5825242718
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 77.9124860647
+			 Accuracy on test : 77.868852459
+	- Iteration 14
+		 Fold 1
+			Accuracy on train : 77.0186335404
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 77.5641025641
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 80.5825242718
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 77.2913680522
+			 Accuracy on test : 77.4590163934
+	- Iteration 15
+		 Fold 1
+			Accuracy on train : 76.397515528
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 75.641025641
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 76.0192705845
+			 Accuracy on test : 79.0983606557
+	- Iteration 16
+		 Fold 1
+			Accuracy on train : 75.7763975155
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 77.6699029126
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 80.1282051282
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 77.9523013219
+			 Accuracy on test : 79.5081967213
+	- Iteration 17
+		 Fold 1
+			Accuracy on train : 76.397515528
+			Accuracy on test : 85.2459016393
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 78.2051282051
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 77.3013218665
+			 Accuracy on test : 82.7868852459
+	- Iteration 18
+		 Fold 1
+			Accuracy on train : 77.0186335404
+			Accuracy on test : 84.4262295082
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.4871794872
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.2529065138
+			 Accuracy on test : 82.3770491803
+	- Iteration 19
+		 Fold 1
+			Accuracy on train : 78.2608695652
+			Accuracy on test : 84.4262295082
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 81.4102564103
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.8355629877
+			 Accuracy on test : 82.7868852459
+	- Iteration 20
+		 Fold 1
+			Accuracy on train : 78.2608695652
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 80.1282051282
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 81.5533980583
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 79.1945373467
+			 Accuracy on test : 81.1475409836
+	- Iteration 21
+		 Fold 1
+			Accuracy on train : 78.2608695652
+			Accuracy on test : 85.2459016393
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.4871794872
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 80.5825242718
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.8740245262
+			 Accuracy on test : 83.1967213115
+	- Iteration 22
+		 Fold 1
+			Accuracy on train : 77.6397515528
+			Accuracy on test : 84.4262295082
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 77.5641025641
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 77.6019270584
+			 Accuracy on test : 83.606557377
+	- Iteration 23
+		 Fold 1
+			Accuracy on train : 79.5031055901
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 82.5242718447
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 75.641025641
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 78.640776699
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 77.5720656155
+			 Accuracy on test : 81.9672131148
+	- Iteration 24
+		 Fold 1
+			Accuracy on train : 79.5031055901
+			Accuracy on test : 84.4262295082
+			Accuracy on validation : 82.5242718447
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 77.5641025641
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 81.5533980583
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.5336040771
+			 Accuracy on test : 82.7868852459
+	- Iteration 25
+		 Fold 1
+			Accuracy on train : 78.2608695652
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 80.5825242718
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 79.4871794872
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.8740245262
+			 Accuracy on test : 81.9672131148
+	- Iteration 26
+		 Fold 1
+			Accuracy on train : 78.8819875776
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 82.5242718447
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 80.1282051282
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 81.5533980583
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.5050963529
+			 Accuracy on test : 82.7868852459
+	- Iteration 27
+		 Fold 1
+			Accuracy on train : 79.5031055901
+			Accuracy on test : 84.4262295082
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 82.0512820513
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.7771938207
+			 Accuracy on test : 82.7868852459
+	- Iteration 28
+		 Fold 1
+			Accuracy on train : 78.8819875776
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 85.8974358974
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 86.4077669903
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 82.3897117375
+			 Accuracy on test : 81.1475409836
+	- Iteration 29
+		 Fold 1
+			Accuracy on train : 77.6397515528
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 83.3333333333
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.4865424431
+			 Accuracy on test : 81.9672131148
+	- Iteration 30
+		 Fold 1
+			Accuracy on train : 78.2608695652
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 80.5825242718
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 82.0512820513
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.1560758082
+			 Accuracy on test : 81.9672131148
+	- Iteration 31
+		 Fold 1
+			Accuracy on train : 76.397515528
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 78.640776699
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 82.0512820513
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.2243987896
+			 Accuracy on test : 81.1475409836
+	- Iteration 32
+		 Fold 1
+			Accuracy on train : 77.0186335404
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 78.640776699
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 82.6923076923
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.8554706163
+			 Accuracy on test : 81.9672131148
+	- Iteration 33
+		 Fold 1
+			Accuracy on train : 78.2608695652
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 82.0512820513
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 80.1560758082
+			 Accuracy on test : 80.3278688525
+	- Iteration 34
+		 Fold 1
+			Accuracy on train : 77.0186335404
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 78.640776699
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 83.9743589744
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 80.4964962574
+			 Accuracy on test : 80.737704918
+	- Iteration 35
+		 Fold 1
+			Accuracy on train : 76.397515528
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 77.6699029126
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 82.0512820513
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.2243987896
+			 Accuracy on test : 79.9180327869
+	- Iteration 36
+		 Fold 1
+			Accuracy on train : 78.2608695652
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 82.0512820513
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.1560758082
+			 Accuracy on test : 80.737704918
+	- Iteration 37
+		 Fold 1
+			Accuracy on train : 79.5031055901
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 83.9743589744
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 81.7387322822
+			 Accuracy on test : 81.1475409836
+	- Iteration 38
+		 Fold 1
+			Accuracy on train : 78.2608695652
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 82.6923076923
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 86.4077669903
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.4765886288
+			 Accuracy on test : 80.737704918
+	- Iteration 39
+		 Fold 1
+			Accuracy on train : 77.0186335404
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 81.5533980583
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 82.6923076923
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 86.4077669903
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 79.8554706163
+			 Accuracy on test : 81.5573770492
+	- Iteration 40
+		 Fold 1
+			Accuracy on train : 78.8819875776
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 83.3333333333
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 86.4077669903
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 81.1076604555
+			 Accuracy on test : 81.1475409836
+	- Iteration 41
+		 Fold 1
+			Accuracy on train : 77.6397515528
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 83.3333333333
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 86.4077669903
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 80.4865424431
+			 Accuracy on test : 80.737704918
+	- Iteration 42
+		 Fold 1
+			Accuracy on train : 77.6397515528
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 81.5533980583
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 83.3333333333
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.4865424431
+			 Accuracy on test : 80.3278688525
+	- Iteration 43
+		 Fold 1
+			Accuracy on train : 80.7453416149
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 82.5242718447
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 85.2564102564
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 87.3786407767
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 83.0008759357
+			 Accuracy on test : 80.737704918
+	- Iteration 44
+		 Fold 1
+			Accuracy on train : 78.8819875776
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 82.5242718447
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 85.2564102564
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 86.4077669903
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 82.069198917
+			 Accuracy on test : 80.737704918
+	- Iteration 45
+		 Fold 1
+			Accuracy on train : 78.8819875776
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 84.6153846154
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 86.4077669903
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 81.7486860965
+			 Accuracy on test : 81.1475409836
+	- Iteration 46
+		 Fold 1
+			Accuracy on train : 77.6397515528
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 85.8974358974
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 87.3786407767
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 81.7685937251
+			 Accuracy on test : 81.9672131148
+	- Iteration 47
+		 Fold 1
+			Accuracy on train : 78.2608695652
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 80.5825242718
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 85.8974358974
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 87.3786407767
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 82.0791527313
+			 Accuracy on test : 81.1475409836
+	- Iteration 48
+		 Fold 1
+			Accuracy on train : 77.6397515528
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 80.5825242718
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 86.5384615385
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 88.3495145631
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 82.0891065456
+			 Accuracy on test : 80.737704918
+	- Iteration 49
+		 Fold 1
+			Accuracy on train : 77.6397515528
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 80.5825242718
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 85.8974358974
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 87.3786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 81.7685937251
+			 Accuracy on test : 80.3278688525
+	- Iteration 50
+		 Fold 1
+			Accuracy on train : 77.0186335404
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 85.2564102564
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 86.4077669903
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 81.1375218984
+			 Accuracy on test : 79.5081967213
+	- Iteration 51
+		 Fold 1
+			Accuracy on train : 78.2608695652
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 83.9743589744
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 86.4077669903
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 81.1176142698
+			 Accuracy on test : 80.3278688525
+	- Iteration 52
+		 Fold 1
+			Accuracy on train : 77.0186335404
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 78.640776699
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 83.9743589744
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.4964962574
+			 Accuracy on test : 79.9180327869
+	- Iteration 53
+		 Fold 1
+			Accuracy on train : 77.6397515528
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 83.9743589744
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 80.8070552636
+			 Accuracy on test : 80.737704918
+	- Iteration 54
+		 Fold 1
+			Accuracy on train : 75.7763975155
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 78.640776699
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 83.3333333333
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.5548654244
+			 Accuracy on test : 80.3278688525
+	- Iteration 55
+		 Fold 1
+			Accuracy on train : 77.6397515528
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 81.5533980583
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 85.2564102564
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 87.3786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 81.4480809046
+			 Accuracy on test : 79.0983606557
+	- Iteration 56
+		 Fold 1
+			Accuracy on train : 81.3664596273
+			Accuracy on test : 86.0655737705
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 83.9743589744
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 86.4077669903
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 82.6704093008
+			 Accuracy on test : 82.3770491803
+	- Iteration 57
+		 Fold 1
+			Accuracy on train : 81.3664596273
+			Accuracy on test : 84.4262295082
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 83.9743589744
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 86.4077669903
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 82.6704093008
+			 Accuracy on test : 81.9672131148
+	- Iteration 58
+		 Fold 1
+			Accuracy on train : 80.1242236025
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 81.5533980583
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 83.3333333333
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 81.7287784679
+			 Accuracy on test : 81.1475409836
+	- Iteration 59
+		 Fold 1
+			Accuracy on train : 80.1242236025
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 81.5533980583
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 83.9743589744
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 82.0492912884
+			 Accuracy on test : 81.1475409836
+	- Iteration 60
+		 Fold 1
+			Accuracy on train : 79.5031055901
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 81.5533980583
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 83.3333333333
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 81.4182194617
+			 Accuracy on test : 82.3770491803
+	- Iteration 61
+		 Fold 1
+			Accuracy on train : 80.7453416149
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 83.9743589744
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 84.4660194175
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 82.3598502946
+			 Accuracy on test : 82.7868852459
+	- Iteration 62
+		 Fold 1
+			Accuracy on train : 81.3664596273
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 83.3333333333
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 82.3498964803
+			 Accuracy on test : 82.3770491803
+	- Iteration 63
+		 Fold 1
+			Accuracy on train : 79.5031055901
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 82.6923076923
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 81.0977066412
+			 Accuracy on test : 81.5573770492
+	- Iteration 64
+		 Fold 1
+			Accuracy on train : 80.7453416149
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 82.0512820513
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 81.3983118331
+			 Accuracy on test : 81.9672131148
+	- Iteration 65
+		 Fold 1
+			Accuracy on train : 80.1242236025
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 81.4102564103
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.7672400064
+			 Accuracy on test : 81.1475409836
+	- Iteration 66
+		 Fold 1
+			Accuracy on train : 80.7453416149
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 82.0512820513
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 81.3983118331
+			 Accuracy on test : 81.9672131148
+	- Iteration 67
+		 Fold 1
+			Accuracy on train : 80.7453416149
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 80.7692307692
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.7572861921
+			 Accuracy on test : 80.3278688525
+	- Iteration 68
+		 Fold 1
+			Accuracy on train : 82.6086956522
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 86.4077669903
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 82.6923076923
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 82.6505016722
+			 Accuracy on test : 81.9672131148
+	- Iteration 69
+		 Fold 1
+			Accuracy on train : 82.6086956522
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 83.9743589744
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 83.2915273133
+			 Accuracy on test : 81.5573770492
+	- Iteration 70
+		 Fold 1
+			Accuracy on train : 83.2298136646
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 86.4077669903
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 83.9743589744
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 83.6020863195
+			 Accuracy on test : 81.9672131148
+	- Iteration 71
+		 Fold 1
+			Accuracy on train : 83.2298136646
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 86.4077669903
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 84.6153846154
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 83.92259914
+			 Accuracy on test : 81.5573770492
+	- Iteration 72
+		 Fold 1
+			Accuracy on train : 83.2298136646
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 85.4368932039
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 83.9743589744
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 83.6020863195
+			 Accuracy on test : 81.5573770492
+	- Iteration 73
+		 Fold 1
+			Accuracy on train : 82.6086956522
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 82.6923076923
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 82.6505016722
+			 Accuracy on test : 81.9672131148
+	- Iteration 74
+		 Fold 1
+			Accuracy on train : 80.7453416149
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 83.3333333333
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 82.0393374741
+			 Accuracy on test : 81.5573770492
+	- Iteration 75
+		 Fold 1
+			Accuracy on train : 83.2298136646
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 86.4077669903
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 82.0512820513
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 83.4951456311
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 82.6405478579
+			 Accuracy on test : 81.9672131148
+	- Iteration 76
+		 Fold 1
+			Accuracy on train : 81.3664596273
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 83.9743589744
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 82.6704093008
+			 Accuracy on test : 80.737704918
+	- Iteration 77
+		 Fold 1
+			Accuracy on train : 81.9875776398
+			Accuracy on test : 84.4262295082
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 82.6923076923
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 82.339942666
+			 Accuracy on test : 80.737704918
+	- Iteration 78
+		 Fold 1
+			Accuracy on train : 81.9875776398
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 82.6923076923
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 82.339942666
+			 Accuracy on test : 80.737704918
+	- Iteration 79
+		 Fold 1
+			Accuracy on train : 80.1242236025
+			Accuracy on test : 84.4262295082
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 83.3333333333
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 81.7287784679
+			 Accuracy on test : 81.1475409836
+	- Iteration 80
+		 Fold 1
+			Accuracy on train : 80.7453416149
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 83.9743589744
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 86.4077669903
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 82.3598502946
+			 Accuracy on test : 81.1475409836
+	- Iteration 81
+		 Fold 1
+			Accuracy on train : 80.1242236025
+			Accuracy on test : 84.4262295082
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 83.3333333333
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 81.7287784679
+			 Accuracy on test : 81.5573770492
+	- Iteration 82
+		 Fold 1
+			Accuracy on train : 80.7453416149
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 81.4102564103
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 81.0777990126
+			 Accuracy on test : 80.737704918
+	- Iteration 83
+		 Fold 1
+			Accuracy on train : 80.1242236025
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 84.4660194175
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 83.3333333333
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 81.7287784679
+			 Accuracy on test : 81.1475409836
+	- Iteration 84
+		 Fold 1
+			Accuracy on train : 81.3664596273
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 81.4102564103
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 81.3883580188
+			 Accuracy on test : 80.3278688525
+	- Iteration 85
+		 Fold 1
+			Accuracy on train : 79.5031055901
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 82.0512820513
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.7771938207
+			 Accuracy on test : 79.9180327869
+	- Iteration 86
+		 Fold 1
+			Accuracy on train : 79.5031055901
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 84.4660194175
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 82.0512820513
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.7771938207
+			 Accuracy on test : 80.3278688525
+	- Iteration 87
+		 Fold 1
+			Accuracy on train : 78.8819875776
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 80.7692307692
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.8256091734
+			 Accuracy on test : 79.9180327869
+	- Iteration 88
+		 Fold 1
+			Accuracy on train : 79.5031055901
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 80.7692307692
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.1361681796
+			 Accuracy on test : 79.9180327869
+	- Iteration 89
+		 Fold 1
+			Accuracy on train : 78.8819875776
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 80.1282051282
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.5050963529
+			 Accuracy on test : 79.9180327869
+	- Iteration 90
+		 Fold 1
+			Accuracy on train : 78.2608695652
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 80.1282051282
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.1945373467
+			 Accuracy on test : 79.9180327869
+	- Iteration 91
+		 Fold 1
+			Accuracy on train : 78.2608695652
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 79.4871794872
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.8740245262
+			 Accuracy on test : 79.5081967213
+	- Iteration 92
+		 Fold 1
+			Accuracy on train : 78.8819875776
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 79.4871794872
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.1845835324
+			 Accuracy on test : 80.737704918
+	- Iteration 93
+		 Fold 1
+			Accuracy on train : 78.2608695652
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 79.4871794872
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 84.4660194175
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 78.8740245262
+			 Accuracy on test : 79.5081967213
+	- Iteration 94
+		 Fold 1
+			Accuracy on train : 77.6397515528
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 82.5242718447
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.4871794872
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.56346552
+			 Accuracy on test : 79.5081967213
+	- Iteration 95
+		 Fold 1
+			Accuracy on train : 77.0186335404
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 81.5533980583
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 80.1282051282
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.5734193343
+			 Accuracy on test : 79.5081967213
+	- Iteration 96
+		 Fold 1
+			Accuracy on train : 76.397515528
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 81.5533980583
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 79.4871794872
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 77.9423475076
+			 Accuracy on test : 79.0983606557
+	- Iteration 97
+		 Fold 1
+			Accuracy on train : 75.7763975155
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 80.1282051282
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 77.9523013219
+			 Accuracy on test : 78.2786885246
+	- Iteration 98
+		 Fold 1
+			Accuracy on train : 76.397515528
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 78.2051282051
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 82.5242718447
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 77.3013218665
+			 Accuracy on test : 78.6885245902
+	- Iteration 99
+		 Fold 1
+			Accuracy on train : 75.7763975155
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 78.8461538462
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 77.3112756808
+			 Accuracy on test : 78.2786885246
+	- Iteration 100
+		 Fold 1
+			Accuracy on train : 77.6397515528
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 79.4871794872
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.56346552
+			 Accuracy on test : 79.0983606557
+	- Iteration 101
+		 Fold 1
+			Accuracy on train : 77.6397515528
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 81.4102564103
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 84.4660194175
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 79.5250039815
+			 Accuracy on test : 79.9180327869
+	- Iteration 102
+		 Fold 1
+			Accuracy on train : 78.2608695652
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 80.7692307692
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.5150501672
+			 Accuracy on test : 79.9180327869
+	- Iteration 103
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 104
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 105
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 106
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 107
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 108
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 109
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 110
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 111
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 112
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 113
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 114
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 115
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 116
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 117
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 118
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 119
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 120
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 121
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 122
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 123
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 124
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 125
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 126
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 127
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 128
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 129
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 130
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 131
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 132
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 133
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 134
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 135
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 136
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 137
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 138
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 139
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 140
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 141
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 142
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 143
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 144
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 145
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 146
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 147
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 148
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 149
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 150
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 151
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 152
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 153
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 154
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 155
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 156
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 157
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 158
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 159
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 160
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 161
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 162
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 163
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 164
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 165
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 166
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 167
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 168
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 169
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 170
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 171
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 172
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 173
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 174
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 175
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 176
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 177
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 178
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 179
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 180
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 181
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 182
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 183
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 184
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 185
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 186
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 187
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 188
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 189
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 190
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 191
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 192
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 193
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 194
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 195
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 196
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 197
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 198
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 199
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 200
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 201
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 202
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 203
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 204
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 205
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 206
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 207
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 208
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 209
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 210
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 211
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 212
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 213
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 214
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 215
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 216
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 217
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 218
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 219
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 220
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 221
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 222
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 223
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 224
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 225
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 226
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 227
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 228
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 229
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 230
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 231
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 232
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 233
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 234
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 235
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 236
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 237
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 238
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 239
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 240
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 241
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 242
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 243
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 244
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 245
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 246
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 247
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 248
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 249
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 250
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 251
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 252
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 253
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 254
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 255
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 256
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 257
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 258
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 259
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 260
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 261
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 262
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 263
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 264
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 265
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 266
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 267
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 268
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 269
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 270
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 271
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 272
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 273
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 274
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 275
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 276
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 277
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 278
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 279
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 280
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 281
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 282
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 283
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 284
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 285
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 286
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 287
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 288
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 289
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 290
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 291
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 292
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 293
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 294
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 295
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 296
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 297
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 298
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 299
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 300
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 301
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 302
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 303
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 304
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 305
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 306
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 307
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 308
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 309
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 310
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 311
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 312
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 313
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 314
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 315
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 316
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 317
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 318
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 319
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 320
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 321
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 322
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 323
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 324
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 325
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 326
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 327
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 328
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 329
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 330
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 331
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 332
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 333
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 334
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 335
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 336
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 337
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 338
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 339
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 340
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 341
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 342
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 343
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 344
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 345
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 346
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 347
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 348
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 349
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 350
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 351
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 352
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 353
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 354
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 355
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 356
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 357
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 358
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 359
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 360
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 361
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 362
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 363
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 364
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 365
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 366
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 367
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 368
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 369
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 370
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 371
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 372
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 373
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 374
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 375
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 376
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 377
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 378
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 379
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 380
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 381
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 382
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 383
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 384
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 385
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 386
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 387
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 388
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 389
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 390
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 391
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 392
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 393
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 394
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 395
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 396
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 397
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 398
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 399
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 400
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 401
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 402
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 403
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 404
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 405
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 406
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 407
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 408
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 409
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 410
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 411
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 412
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 413
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 414
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 415
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 416
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 417
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 418
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 419
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 420
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 421
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 422
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 423
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 424
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 425
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 426
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 427
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 428
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 429
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 430
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 431
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 432
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 433
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 434
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 435
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 436
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 437
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 438
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 439
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 440
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 441
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 442
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 443
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 444
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 445
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 446
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 447
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 448
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 449
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 450
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 451
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 452
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 453
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 454
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 455
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 456
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 457
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 458
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 459
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 460
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 461
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 462
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 463
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 464
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 465
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 466
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 467
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 468
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 469
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 470
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 471
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 472
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 473
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 474
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 475
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 476
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 477
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 478
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 479
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 480
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 481
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 482
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 483
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 484
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 485
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 486
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 487
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 488
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 489
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 490
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 491
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 492
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 493
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 494
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 495
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 496
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 497
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 498
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 499
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 500
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 501
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 502
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 503
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 504
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 505
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 506
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 507
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 508
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 509
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 510
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 511
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 512
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 513
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 514
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 515
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 516
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 517
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 518
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 519
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 520
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 521
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 522
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 523
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 524
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 525
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 526
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 527
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 528
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 529
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 530
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 531
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 532
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 533
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 534
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 535
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 536
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 537
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 538
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 539
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 540
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 541
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 542
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 543
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 544
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 545
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 546
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 547
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 548
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 549
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 550
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 551
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 552
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 553
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 554
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 555
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 556
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 557
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 558
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 559
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 560
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 561
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 562
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 563
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 564
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 565
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 566
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 567
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 568
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 569
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 570
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 571
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 572
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 573
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 574
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 575
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 576
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 577
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 578
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 579
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 580
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 581
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 582
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 583
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 584
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 585
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 586
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 587
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 588
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 589
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 590
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 591
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 592
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 593
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 594
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 595
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 596
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 597
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 598
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 599
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 600
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 601
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 602
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 603
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 604
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 605
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 606
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 607
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 608
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 609
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 610
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 611
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 612
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 613
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 614
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 615
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 616
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 617
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 618
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 619
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 620
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 621
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 622
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 623
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 624
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 625
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 626
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 627
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 628
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 629
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 630
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 631
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 632
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 633
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 634
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 635
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 636
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 637
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 638
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 639
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 640
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 641
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 642
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 643
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 644
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 645
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 646
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 647
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 648
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 649
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 650
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 651
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 652
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 653
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 654
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 655
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 656
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 657
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 658
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 659
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 660
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 661
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 662
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 663
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 664
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 665
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 666
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 667
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 668
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 669
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 670
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 671
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 672
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 673
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 674
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 675
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 676
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 677
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 678
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 679
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 680
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 681
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 682
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 683
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 684
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 685
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 686
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 687
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 688
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 689
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 690
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 691
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 692
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 693
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 694
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 695
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 696
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 697
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 698
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 699
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 700
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 701
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 702
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 703
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 704
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 705
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 706
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 707
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 708
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 709
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 710
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 711
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 712
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 713
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 714
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 715
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 716
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 717
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 718
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 719
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 720
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 721
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 722
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 723
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 724
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 725
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 726
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 727
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 728
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 729
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 730
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 731
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 732
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 733
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 734
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 735
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 736
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 737
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 738
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 739
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 740
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 741
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 742
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 743
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 744
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 745
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 746
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 747
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 748
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 749
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 750
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 751
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 752
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 753
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 754
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 755
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 756
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 757
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 758
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 759
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 760
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 761
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 762
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 763
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 764
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 765
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 766
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 767
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 768
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 769
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 770
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 771
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 772
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 773
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 774
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 775
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 776
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 777
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 778
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 779
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 780
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 781
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 782
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 783
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 784
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 785
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 786
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 787
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 788
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 789
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 790
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 791
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 792
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 793
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 794
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 795
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 796
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 797
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 798
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 799
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 800
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 801
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 802
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 803
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 804
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 805
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 806
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 807
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 808
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 809
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 810
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 811
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 812
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 813
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 814
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 815
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 816
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 817
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 818
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 819
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 820
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 821
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 822
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 823
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 824
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 825
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 826
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 827
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 828
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 829
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 830
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 831
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 832
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 833
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 834
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 835
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 836
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 837
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 838
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 839
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 840
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 841
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 842
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 843
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 844
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 845
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 846
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 847
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 848
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 849
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 850
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 851
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 852
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 853
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 854
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 855
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 856
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 857
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 858
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 859
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 860
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 861
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 862
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 863
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 864
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 865
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 866
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 867
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 868
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 869
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 870
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 871
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 872
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 873
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 874
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 875
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 876
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 877
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 878
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 879
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 880
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 881
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 882
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 883
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 884
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 885
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 886
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 887
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 888
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 889
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 890
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 891
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 892
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 893
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 894
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 895
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 896
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 897
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 898
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 899
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 900
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 901
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 902
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 903
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 904
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 905
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 906
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 907
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 908
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 909
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 910
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 911
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 912
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 913
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 914
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 915
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 916
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 917
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 918
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 919
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 920
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 921
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 922
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 923
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 924
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 925
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 926
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 927
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 928
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 929
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 930
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 931
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 932
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 933
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 934
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 935
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 936
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 937
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 938
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 939
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 940
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 941
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 942
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 943
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 944
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 945
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 946
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 947
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 948
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 949
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 950
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 951
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 952
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 953
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 954
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 955
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 956
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 957
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 958
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 959
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 960
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 961
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 962
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 963
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 964
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 965
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 966
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 967
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 968
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 969
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 970
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 971
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 972
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 973
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 974
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 975
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 976
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 977
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 978
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 979
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 980
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 981
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 982
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 983
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 984
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 985
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 986
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 987
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 988
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 989
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 990
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 991
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 992
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 993
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 994
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 995
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 996
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 997
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 998
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 999
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 1000
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+
+Computation time on 1 cores : 
+	Database extraction time : 0:00:00
+	                         Learn     Prediction
+	         Fold 1        0:06:00        0:00:15
+	         Fold 2        0:12:07        0:00:15
+	          Total        0:18:07        0:00:30
+	So a total classification time of 0:12:22.
+
+
+2016-08-24 11:27:43,912 INFO: Done:	 Result Analysis
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-112743Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-112743Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic-accuracyByIteration.png
new file mode 100644
index 0000000000000000000000000000000000000000..99905780bc6d41f53313eea5bf9caed8e7a46e4f
GIT binary patch
literal 53645
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_eiLB##P{fF<2(=;|VPtphs=$fMa
zMN76xba4mk(vGHC5<*AW4o*70;Fwf$_X4Gh9d52ixmE;*1Xu*Ha5p9JiV1`WH2(Zs
zxPSKZzTJz}e$-5^{L8w1^XAQ)t2b;8wv%z<U_5NV14cg50lzM=CP=g;g3z=3&87|@
z28f$!yoT`*Oxf&2UICCGNZBo(>;|Yf&*iiT<`$5kL|ftvv%^vf5My}`Z;`yl02P;5
zc6I|B2iQ8E!v?u+qgG%9)C~Rw_5c69xV)S{D?9sTdiwc!t&=7R?fdy`w%d36`hPZl
zbFEzK^|iE|zQ4OWJGL)&ciF+yr&r(ntsA+C<<+ZK28M=>>(=S%=;&-nJj{0G>Qz%~
z{f+AW^Ab)>P~=^9^2CV)KR!N=uIcIN;rZ~hhJ%Hv=G)Em7uVKGvoJBTFfoR$kGuP*
z=0DeLv)n_!zP@H;a9Swv`}_Olx3jXd7cN=SvOWL4nf3ja7M2~mc5PdgvsTmJ(UDO`
zR`%l7?C=@0XK!C6bN1@`c>5>Mo^5++I9uDwN-FtyU+%X$-M#Cwudh4$`T2R#y#2+`
z`PQsivtaphc5Q9#JNs&*6K^TI_c_GJ%UfAlefaim+4sYT+xZ_pd&X8<TU)R*rlPv~
z@zc}O&+26dcfLRV>-%;6{ePHLRaJ9tZCQEIhELY2CHwlii}xo_o}8GLcJ0k37Z(==
z9i25de;c0J&zs#~aEATB!-54XS9U79_gy%jl$12<5C8i+JBuwUKP~Z@r>pDj?K8`S
zQ&LiLN9}L3Z*On6*Z%&dXkxO(wUV)+t&Q#6eEa(eQo_Q*Z|?5ie)Kpfgab5O($dtX
z>BVxXtE;D^r70O33*WE%y*4Du$)mgfvXF7wnFDWbZf5L|^7{DkW6<sBs<~0S^RrK1
zUK?$$6TeTUu&{8g)?xd|=(_UjYa*K`O%iIo-Q3jl;c9sN!)t4!fBbsA{^9%g`sT5&
zuB=T>O$Bdm7~a`g%x+u#?a250_52J0fq@4vE%lx_eR}(wH#uM4-WLD->}+;fWVDjH
zdi%dU$;bQD{`=Zid{DS_>CzIr?6=?B5+#m;vZtLueSN))yE`+(sne$mpPmw}sHpH*
z8o9U1R7Y1gF)NG9-{0S+;se9Yn>TN4O6C6c<|cEagTw!q!cH41J|@kWHOtA}z1=Jz
zY<*ns%gf6z+r;m!Vl_22oicUm-_+-q_Se@RIdUZ7^Ru%nR;*xPm}6HfRaRDJU~JsH
zbgAmOxz_HN-{08CTw^D1Bgg;j*)t72y=kwGu3WXMslT6}hnM%@^Us-k=h)ZF)!5B{
zwz>LyUct_o4;3~%@^&)*^K2LuUfnD#Ej`-8DV&g#!&6*bd}n|C{)?YGIyxG*Z#Tbl
z_ikcFMo0Sjc@NLcwf^wsOG|4jYlV&6w!FJumzOVJe)!}`&S%e_8JL<LJ=n~i`f1II
z6%Om;_GY}F;Gobjf4)4!f(;u4cJ12r<wjy+V#TK?oYQop+nzj00cDY&Pp31uTrWS|
z#=Bv|hK6n1%#xCmpUyk{`}=!A85tf~S=orl$de|ol9H2O+CF{p!lRmF(c;AqU%l#j
zc)0!WfddSFets1{J|wO_eR;7ve?(;D!r<k8z1QlUr|CpC9c*U5EVuf2zx?U9oiFe0
zwU)E5^QphTHCz0z-<s&{etGvwOG{^17OU~_@EmylIWaG<@7ArTknr%shYvG@{9|Tz
z?8(W=fuW(S4qw{loPVxtVKL)gv!$iw45L)8p5ETX<m6`i|9>_g+%<LizppzhKdUty
zTfcfq=<2Y8hYm5Rsi|$)vSmsBH)Unzz@VTe!{lQQ3IZ4Q9Gz!Z+a+zDci{MOc7_LU
z-}de<f4^wQj)-Rxot>RuZZR)n+w$Y7!+g8igv?CO%TW;#3s$V~$cv2MU&mWtUoRmk
zdGN#uj{iT;*S|2cwzh6*Z9RDJo?J5<@1pPXl>YtucVl0zHG_h_KL4pxr@s7V?RaIN
zqr)?8+B5+UmKg?#OmTawS{J+bKl<_Uam2<XRu(44vbVQfFSoa}G#r0?@Wu^^$jC^B
zh6xh{)<kXXdNzCZ?CyVme{cWk&E59XzSn@~@-sFb35QLaH+L>vs95>w3FpmCsoaq}
z3KS#vR2Xvd@~XB7Y)U^bCnO@`^6J$q4#k!?_x8@_k+qs4;I!nDpwo%JzrS;~A69JV
zlT~UFDEjoobJ6P6-W-Zc)~xCI^6u{JJyl=31e{LX+M0dx%F19)#g;dBc22IStURgv
zc$#jsM@q_)JGo!`^{;Ks4lnxpDl{k{z+ugrH6E_6tcooY{`{#~v~Z#0s@1Dc-rStt
zIc=KQ&(G)WITc$%!ont<I^|XL|6lE;z18JT9ANw9<m625U%C|J#G&~7++5`vyZHi6
zCwisLJ?7iho|vre&!O1z=ehlV#rgIBEN$24-Q6{D(IO=$4#m&U&#NCicrYk+YWcf|
z4<9ax-(UCS=jZ1w0#5h#*ZceU_?)=AyPQ+8Wl!bjHVFv{frSAcar<gKS(q3#H8mAm
z1cHKsoPK?M?S9^SQg1Ks&YGV_mH+-&KK%Ui%dMQdyQZF*V>wx_`rVzKEdoy4^6&c{
z>y!2VzJBFOMH#;KKVL5Uw+J{D6%~0**Nc4;Bk6Q)eZ2pjyLUZvb9Gm)Tc`Hz+qWZE
zuTB+kI`Q-K^OGMQ9zOZ|`+H8smN~Z7(+YORRGsmgYjv?Wc3+L<$1h)UN-K{{nl!0n
z=FG_EOp(fOZzNyd+^k;t{hh3$OUe0=@bJmAW=Sntvc%=yo=WG-W$*9JwW<2jA>ib3
ze_yR<LW08C#rgO5so2`as{LObzFtUKS^3xQAG@7S)W5fN;+SccD+Mb1Z0CP_dwcTh
z>+6M`I3hPBFa`z(EC2lYvqivZng4u0F})ZMj?AjNW+k=P)<!S?u<M%ozIsl@Cy$PH
zAGvU0!oPdl^W!JYo~>QJf6Eq=m0MZ_lms|Vv~r85Tv`{gvFXe#)9!z9adCdPw&&|l
zUbk)Av>P{XPMlx=FY=w?{=eU%A3cBW&Y`$u(V`{^Y3a$$?EFGb92>W8U0VA2+uP_x
zD_451i`}g@x&4QohNh-sR8-WHzrVkyoSS2*qNdj7Gs~n?uKMMrrBB-B>lXZWb#t3^
zb91_|Q%8uE)4%H4RwqTpmI=Mm=9l*G-??+Ai??_8vbmPUYLOe0SQTA<Ri82FNz#(v
z#dyTvzuS}l`!zp*{d%-d)_TH(2@Ub}e?zlooO*b;z3}ZVQw|m;hDF=A@bYs0c(J(O
zAnS?-L&MamqFh{D3=FZm%Z|=4OcoFpZeG9tpVVyg{Ap6>*LS3>_bfjD`pL=3JIde7
zy?OigWxAG@mWH0*v5$|BKYaa~yR@{F!QptHZ0e_nMLSQNK7Dvi<mQC@e13m_|CuJw
z&&@sje13hOUF|OhfxV5f+j1mr=S`g|YGP{o^1QTpUd|;;9%(Zk+v;yD3RT^+rcY<j
z&(EKgpPH&#R9yV=!9ivb5s?FT@6OE&4hlN-_V)IdJ3B3{tskG6X$*1!$mBI^be=qY
zs;H^CGO{>I&1VJ!gMono1H+UlQ%=ZeTUts6FY{@fG)ZX6lqnD1zwfuL{>C71R{F%L
zQ%yT}TIzo87S|654rXT9uyyOv1C7j#440SrF5a8HR`Y!P!s_quUfkbrUsGHA@X@2D
zh0g7dCi~k>oaL<Q_G)h{9}f=;!<ScAxfi?jPO{!s|KLF5iZyFo5)u?-WMm9VUIZ{K
zdVlBCRPDk?M>wxsyS8Z09+|0Ar<T~q#>PrWN-{F|`1%%peB^pdIUz4k&(vp=X6fw<
zUp+lN11n-*d;9ylhlGg4?W^Gw6%~E*^y$K7%h<HEw2EH8crPL%(qdQpE8$p=WYKnY
zRn?1@Qma<2`tbGZ(V52SFYcHW=AUtwuVvAj-d+9u-N7SAT=L@PT9>zN-faBn@#DfD
z9};yUH?e4HYL@(dc(^?<GP1Mw_cum?uLT|JJ8gFD+V$XL1%peybKSq6=?o3~_Sv!V
zO0^^(?>l(#Amhi6A9s|#4l7>On)vT4xCNpRA0N-b!t~<h%Zu#dhE5z}IuQ*kgO{6W
zuIH1rx-ft0)TvA5&h7j2$-76wkg2MwDj+<(edETD@x@F+dH47Au3Dw_;^j+4TU*(6
z>(=SYeYa0I!0_bRGbL43*7S3893vtmHf`QKdun^iVYkT0nRY4WZlR%5|M_q<&YC4<
zWNe&zN!GH6B}OkiD`TdTo}L~DKmYN=?fiyye=0!nvfO|EG5PvGjk&kCnXZhH;d6gA
zXUdc*vr7CX^@cfdFflQ0sQCEE?R)kc#jQ)9W^$&crY>2&{PCrw-WJv0bU=;n`u}wi
z5fKaxSN8sUcXzkj>DpgkGSAF5=a=DQx3jb3;O2JD%hNkI*SdYm6p=IY?d7NI#U9#O
z{CvW!SzTAIgp|Cx!U<|8KRrD?Gw$pAjmz#8cfHzXdENcu>5lUE_Y&XS*y!Qw%R2qE
zYi6cq)z??8uU=){Vh98k?-gHO2y!SsD6mjyd2q0qeT$;LXK=8vxL(YH{o-O`k1qS$
zPxUfRKE|`B;v>`k|Np8NKVSS}&#d3J-#&jnydrS1LDCV9nTho+0y(#~aPsl-`D%GP
zAOH7i_4*BUf2%~q#gkuLSoq@NV)x0PQY743&N3#>;P-HLW)2Jt?C9#6bki*Bibl@O
zO{`0oE@fz#HA~8hZKwBiy^61|riT3b#cw)k|La$;oV>lcFE8`WE|Dn>_Iy_V|6i@o
zTq{xIv@;E>R%zY2dw1fLDJ|0Gc^6E=*T=CkfLeWpg@qNrzGyN8_BU0;?6o-W-Y>@}
z@YU_lkH`HC4eb1K9<ui@UKCXKpSR>E$ntaN&egv>a`9j@`{Tv^c9XI^o<4uRc+Vc0
zZQHi(D1P1-!tA0Uaw?Yd%&AjcmX?+l<?m#2a&jKLdDBz+`kG^Ku<+eorIS7HPkFt%
zqr02C?ESsoTeqV2RDb8QE`PV=wp*V}=ZzZ?QTtm2Qc_Ybyj{6+C8%g)NcjEjZ9!2{
zR%xZm<?HvCuUp6W>({S}Z*L--e}{#HELgIHW!tuGpf>8#rK+1YZ36W~)~@wc=Rbb@
z_-PY|BhUZ;`B|)@qH^HoP075xyb{Bv4I2z>s=x8%-`mr;dbM`lkB97EUSH?0tgQU<
zaBuK(KMj5TaEtRxHASwjUDCGB-}!pzrQ6%{1EZt6_tpMpVld0Op|Evt_Vsl}*MoeV
zotfL(+Di0}@2mZ7Q1HNEC$E6NzyFfu%a!fz<ry|qeong;&B$P!e(uQOcK*T#2N*T9
zwYArXi;Ig}<v;%V`g%uqck}MuyAOTo>Ugi4ot>={wZ-F|SIA<w-b1rYvtQhwy*>Z_
zCCh+M?>@FwR8=inv4SHoFmQ%xcG%|Arw#s>fd&oa8=g3SnxYx}Vs?zDu$m93r7a^X
zd+_<^gU>$~etQ$i&@g?vc#G4*D=J@p@!$Je&(Fo>l$)!&@5iHVwW)=#udU_X*Liny
zI=_#P&w}O4+Y28bJ9zuHboRA1j0_ps*~#bU+0L-5wfa$G$HT+(LTGbYSy@L<Ps{Gz
z))h8#GBPqRm{;sLW1e@Xp|_Ve)~Ni`lamG}CR42TH8wJat&MX1?CI-!RDb`UOG}Eg
zwM0clWvt71et&z*+<&}z;X=h_zO&m-o$~tf;v)0$KH0;UmU_RmY-?{no!hWt#fk%`
zPH{y=MP*!HC)?B83u=Fhi;M3(URqju^!4@ipsq~w#*MGF#bji7e0_aiyncQ7;6cZ%
z9j7KJI&Y}?Sp+KFYV73O+S)7%9x&X^OHOXi-}jRZ#IOBjVwQjJ&Z|!$At4Lm_t(v^
zC{)V3vxCvs*Vo0(jY+__N>5vR@@<aEAyH9W`uh3>J7XlIrJX%JIrr_`$KZ1MR9j2S
zfh$);w&&e-y1p)U>8UG=-T7zCnsw;bEve#XXBt<oT<P=A)z!72uyEnzUREZ?J9q9p
zc>cUSe0^NvhX)5G>}o0&pLQ{K3B2o-_2QRFNvvw=`+IZs+!E8$)UGaO@3?p8_s^dv
z=eF=M+}@UZxQ$nO!RpoBTeGiUYBgd|u(6RbG&E#z;eP{?+>m&9!Q#cu>F4JqK0MUQ
z&|v@X2Xpkc97jh-#xrNm9C-fu;oG;m+xK*f>$54cxVgD)*tDr>`*w4;J{ishFTY3p
z&E1@SzOApX@62;<alIwn@dZ0$BBG-&hi+E$pVzZvhs8?I7rmSu90!)quUqvY%7ACF
zMEjPf2?1@1b~E(%{}HPF_2u9q*KWI#z#0D?FJ8Q8QTl4inWEkG%kS6y<~@4!=>H!(
zIOP}R&D=kK`EvC?fBuM=t&?aA>;aW-^*hx4=N&kClGC>O+Z3+269)3Lo=lK!`?+7q
z)>c+n&4;1?cy^$GXIo+fKVm$q<18cUKv#{z-{0Te=iAjTnI>Rc{Y_`elqnz1n%`$&
z=##VU%HRK2tRZ93nyxM`7AD3D8@V4fc75{pe&6qI%@zl#e7%1ErSn3<!Vh1(&?vog
z=#Z0!wzjvcOr9P)J9|cErlW#@gS$KXyLaz`QZqSE7Kf(1zP2`EZ&hh`|HjhSVO9(G
zr=Oqq;`Vm^xi9Voq`cfFARy3i<w^*{frZZP8DFv(iju=kLNhWnrs>DuTeWHHG8^}P
zxz?2{HLc3t+*np@`|j>;c2m=>X4Y}uKY#tYWFc|(;-uG6QBhi=2czeqjMq%-GK#-H
zN!1%v#PCR&bm-|YbR<>Jm_7UQi)Y+oIvHV>vq5btFE6hd*5&K2JQr5?Yne1jDE6h-
zCu=c5!Nz-gtDO}D5<qFsw#p=KPle<6ty{OY?%HJqYSi0*{`6^5=iW^j7nN45Sn=TF
z<Ky+$UmBjV7Xpv$96}x0St9qQjbC2x>w&vVy~RNTGuqnR_v`=L9_yFa-@4^x`uy6q
z_xpbPW$pd-OZ)hdBS%2Ru65a)jL@6c*T?stIpYHwX5kjs12xI`<n8V}vUxp!waw+_
z{`p%bUb^wmX`z7ALIGvB9*2ksiP*la|G3;gHQo6;Hz_G8Avu|u!J^`WLTpsnoAohq
zJ9b6|%h}r6f;xw0t8QOvU$gnYtA5;`1E;2Hi{`CgvBDuBK%h_7y3M-$-GcP<^SGJ=
zmn~WH;KD-Z9hINeii(N~zPt#WV_D4Bpz-2yBQtx!<72!jDJc*B{QS(-toARoq_ni~
z$A`pUduzYG5?vR!x69w|XUnpQfBF~~iE<bl8y9|l=BuHpnRs(kYKe6F;e*HJ>w84C
z!!&HtVq;~Kl9M04cyVLZ{^dNM^N&a=@O)<c`TO_fRK3&iQK1WOcbC0gB-r@6xUB5h
z>+9=3etPQtOS1oXvx7o_#Mj;H)`6<UBW=9WA3h$Jznoed?X>Bkamon+owz*_uX^9S
zy1F_sGm|qoIJly!>XL=r`}_OdBO)YvdU_5#{+KbP_+;_f^XJ>wuGRffW49wlZ{P2C
z)(nfx*DYMQ@Jr0Ib91?sm6au=r5~?ezi$z*etmsC3p@MaqeoeH?b;<_oaQsR>B-HT
zHx*4xM8d+tw!|Fomj@Yj=FFLd)Kpc`8eKE9Y4a8@UcC5Ds;~bX3rFSb=~JgVy1KR=
zE4Z;SnZ2pG`Q^rbdHX)Z7(?roNee(u^zh(_)e4glUbgRezx?5|XL;M&+CF^vFrms=
zdtJ4+w>Jk1lg|tT#-~r8GPvYFTJATOD?2+I)E+f35O{xoe|~8t8?O|Lv-4rLWJi-_
zn>GpEyLZpP#Dt~)_~8wShZ#<MJCc%~o_t|}<Ck(Lj(tC$N$;vzzi7ckRaMo3;$r6M
zr&;@tAKsFAIin6VZf0uQx^UsbD~B^&Tv(3v%ll7X`1R8#CqF;FJ9qCcT)o<RIwzaR
z_1s$C*!gYivTGk7?{9ByW!({@2WqN3KR=(D!O6+#!>g;>94t(r0jf9CXUyQ>=H`|X
zDLvLBX`<#)`|;z)88($hRwXYQ_++gP+`m76+0%~|CS@MKzr8*9w5ag^zuKKY@9eD>
z*VEH`P_$EkgT<okjReC*ZU$9VRTo#+i$<m*?XIDrqTjxKEBS9*{Vn0nj>3STU+<Iq
zeprXew;yh7Zf5T4>RMtKzafEfTkh?)Nt1+j9=ECdq+<8`jj@ZX>qa(?!zRM8oScxH
z+`MR!l1=R|k?Qa7TDNcCe#PFW(5mv=`}_Xk+b8+#uK8KCCSoJg`uP3RZa%-VGWf;y
z_42hGLhKBa-T$a<S*fF=^CF<#w))$HZ*On!sQGEME_Qbtr?8rWiV6z@sMZDf#c82H
zWMt%xz17>#?998fL-24re|vz2OIg{rE4PaaXRVFiuB5Eo{H*x>J=-<0yQeKXeeRrF
zQj${M-CeEA{pXumN)^}D*#!j$7rwfp`Q-WY$M*k!^83xTYF!<^UdhZ%?D4T)=iFS~
ze?K1c%UBdJi0j84*_wS_KvJ@^Q&|1f6Z4c40!x-IUAS$Vn5L%YhAmrMf`Wt?9-NtJ
zTu@p%)yux-M?pnZRnosdKTn)Fb7YEUFayKRojXBooK2fH8PxtNX=!git@|I;TTV}J
zpEF0s#ob-m(sE{AcUPBFznpEs(^H};X=&hL+II{OZf(u>@bh!a%hLl5=zV>Cefut(
z`qm>yTtdRal+@MPBO@b&8Wp9xL_a<{%FV&Tl#-r)*`adk)Tu^4j~_ec6do>q^XAPH
zr%o-}%W~`1Ee}u6gIlw&7kqsc`sVI#@tHGcmh3-s#s|bMe|P8L=JfLdLPAX~Ei8BT
zR0>B%Ms9Ium=M4H>&e}Aj~4p!#$NwrmUpLP%NCQA^z_4b?#Osg(_vKLx^{DIw0TNe
znwM*dxVE0&vGn=1ZuRf)@85r@t#8kkqeqV#y_B=B>v3-9yXaN{O6A9wcut-$cW&?A
z>hFinpZ9+?W7Vov9^T%ECn~#3@hm#^uwY5ti#InmGXMMc&zEaPWN0YJzcWK`+WmYY
z%)-W|)zdB_E8BbEfWwR#GaN!gLlc>&CrU(u8><~Z<QK1BuV41&Mx(5CnSz4Cf`hfE
zPM=m3;P`MeeZHcKipx8jKF4OZ#3v^v7A;=w?(Tj$xkuh!?s&g^xWwP@)8p$F=Fgg4
zY{vi^LwN!oJpS;rW=+&qE`E7C7KN%Ab8M^4LPA_tH+Y*ZIP&K0+mEO9_k-F@>F4H5
z<kC~0HfIixy}kX46)PM(Jvkj69fSC5;^N|7Tv*6#A;Wj(?Ac6_SI2(*`gO_eL8q{K
z!TWo*H*Vg%n2@EVrB(6a0i%$R(1fW|S&NH{Km4p|X={6Qv|HTBR(GydY16`mih8lT
zT9zzP(TUo^0qS8XvVi86nwy;`pIW+lHMd+pyMsvN-USOB@^(FWk^<_QF?@Kre7;vK
zXfj6G%xv1ZX3K&H4OeErEPQ<I;o^R~rb&~8n3$L{oL8DY{i*%oXHCrhI@$QTpQ_*9
z-|sJbd&@L)KcB2s!lfmi3@(ifSFc{3ICrk@<a4J^ak=-)xkf}tfNH;UbFG;f?(L~;
zZfIbTkd{7t>J%ubro4JtSYCeoxO_big8&ChK}m_r@jlswixx52&F|k`{{GSy-<8po
z*OzbDAmDKL`qq7*S+FZtM2;Ohc4KSy^gG3Q+^MOl5_UBfN=ixxo)$gL+h6%v?a!Y-
z3?1(@y}i9-_Ebz<Hq#)Hi6QVoAOlymGQ-6^y?_4H%&{uvTD5A`g-e&RHq`7cd)wro
z0P4)%+gICtak2a9C7j&che3^}Bjp<>O%ei)R~}>d`2BnShgQDB2A9C28wT<5@i{j(
zFv{0{5tRM4preA%BQQ|#+1c5kuFJw*yQ0)$Q&LnwMWMR?ybI^&+1K|SIpU%dy^SX-
zD$2mr)YaFw_sWv5*F60FmtQ=^sTi>#fpKoWV%_FDA&cGn-LkT@zI^$zq44oBHPe<?
z`#Im=*r@zBGBR?fr}G8|57$1mmIH?mGtZnk^Gi%uclX8p_4NWy0s;aGTi=4l1QJzG
z9zDwH>FK$n;-k`>Idc{)U*5iBhebw4#);g9lb5f2&RoIXE70US+w9_}XHTA(SmZBX
zXepw*_WraB*RHw6#mU{dbLYcx`T7GFE(nN<iUtG*PMozmI5hNXf?bQiEpLsu8U<BV
zRx>j*0j^d9V`Jx<8k;j`&oVN6ety2at&MGOeQr+9lD@$Ge6xbpKfT(v@b%>@^DcgV
zem?p1G+m3@Unc9~_xFivhnYm_C(W8QD~R{fp+inJzg{lqy6nXlxvT!aoopFvN8GfE
ziVD!YgmL=0oJ$`Y+x8##^787vmp)m|w`u+Q{Kfjk4gb$EYHDdYRaRQQ)tq!?Yj*gV
zxz^&`;(AlGqH}U|va+%gQc_rSb#>Q7Zf4`;<SaQMbJ&14nOC6g=K&KF69G|C)$PX@
z*`17Q>*(NEv2x|fSVwnfXJ$}-EH*k)tkc!i6%Y{6aOjZJoBR9!>sMx%KRm<=8Y27r
z{5(5DkCZ7FsFRbKsmZWl*|Ih>2e%%H#;>ohUv8URQL}5wpFcG#R<BOJw8S%FXVKC#
zEEx`80_3HoyT8A`zj)a)w%gnD+jsA-UVYv*W<JMU*jj)|?d|M-^K3lZr!gM5x;mVZ
zLD{{}B_~Hm&bErhp(NMH$mq$l$8X;B+_(|(<=tIrS*wzU&6|xu&8i(ccAW6Nztmg2
z)i$`du&iv^;Q%??Dizb7yelgLBQ~e;)+*Hg{<ikY&ZEbVFW$6CXzSLkH+B}Q%gSAw
z^~qzEz09(IbJSgr>`g!1&VPKCX?8$xaI<^AoTIllH!Caa7rV(a=hzwE-`l%*@_haH
zeLc_5&p&+Qh6Jd)*3EBWX}NI227y(pR!LZw>6qo*Xo%jP_weoQ?HaneuKVl$9(Y(V
zVfO6X4>l}6rm-s86Wowlz2wrRppw_uc<=5mcP}k9-IjaXZF}j<ORV|#_qoQ#&b?D>
zYim1k-aNni-@4n^o-{6d6LI9&u|=CU35AA+f?9XJ(Sd=C=H})-GL}JUsal?Qca?%V
z^K-*Xo}ZIlvUKUebLadX+V#$~D%E;+W@fWt@-dUj`Es^Zpn;r-{dKnUY^&8a*FHNl
z)5F`lIY48{{G&&XC@3m2va+&jXlOVD1`68P*eq#dH{w|=0dBY`{WQxxHAQp7h7B3l
z>=-^g?zc~RdTMIX{ep9|&G|(|MN8((T9=(T6If7MdUUe7|C4WiCT8p^CMF_GjSRbX
z?TXlzBe`htVnfiV`l3YPy1Kf8l9DBdJ&y?AdwzCyyJIsOsH3MKaN(i&Bt97n24!Vs
z4i=^#KYk><zP8pVbD8gKx6c9`ED{C@3~A@*>29C*Wa9K?|I)3jtU9{8of8ripo1eU
z{}r9v5`KPqDq)z!0utlp1r7P^JZ@xe?j9K_nOm@9*DlZ;-zr9>$~Pw`t1Ij2`DI-y
z56-=@q4Ap#3me;^n>T0XMeit3tgw+gbN1}Pr$vdmxxI7d$n3g%<_wRXo}Ph$fy4WI
zdkwR%tqGg{{L9PBp!Qkaub1jMx3}@mnl;O!@{<a~Md@#TbFEBgxtEohty#M^bN$gP
zD}xs<U*2B#_t(SO`TH6>J2}^^UAu7II=!v&>*MxLm^hJ9Z+iF3%gY~czh8IQUA|Uj
za=n)qmyeInf#;tMQ%(r1iQdjP*Q)eT`Tg4Vwb9#~jz505`~AMjt4<%gvVXeD>#*3^
zx!2aF?1GM#U0CQ0Di>e8cmY}yVPI&u@b;A}R~|fm%<Sy!ymRt}-6b!Za&K?D*!lJR
zJln&ETDf1A@$>V8>b8azj!&LGWp#FTmXMN4`tji*sLjr>CU&<Ns6n~E-hOXdSJ?eq
zyUX>Hl9LZUEqeI)ar0d3awlhJ=R8@nr`2oMt?S#c!QfW0(oTQp-?L}TNci&N;uqHm
zDYroN<jF~@C4Hx#o}L~U7pJ%R$j=r|VF6*`%NdfAZHW^vNVX+PbhI%=MMfqb>ygYY
zJ0oeFcHsQ^e!j|I%YO-!o;Kk5yx*s6gVA9Fp3mz)D<-9FQDM0M-&IGB^RPjW$u(xA
z<vYa=63_Cl?60qX@%nZ1`RC5@@$p&{A_D^jW9`D;oSkiMwE8Z?fd)qACw@_}yGk@c
zUAE_+4J$q*oSALj51LY0ba3yH#~Y4LE<JtvG-v`mH#ZkFzIEn|kCsw(@sHoX7w6yK
z2U;f4*T?tf?b~QuL1SfQ=EukT^9{~kT<jh#D*E@u#l>6VOiWA`tXt>ze6j}DzH4EJ
z4j<lF|G$pmz|GC+OQ(tND}OI{<;s<)Der%MeZBPE_GuZum6tAEO32OaJvZ0-@>B2I
zO%^Ne-rk;n`^^kpK|#UB4I4J3y}v%`wHL?1NvhsbF`=(MJw5%PXy=8?mz!tLmj3tW
zv;WSQTwGiaUcBg77rT4g$pTP2r{vuoNv6hzb5nPgy_LEvCnv|Js;av3sP>bq7iSu$
zFIcjqrS|tX&)T?{m>xl8w+jlh)zs8}Jnpw==$K~o{@&i*SMFb3zyIH?chw&sx$;OF
zvFzHl>%z5b$67drrFf)H8vGB-;Sf9gr`JM;@6qGOi76>9$NS}zKRh^CP*&Eqa-}9i
zU{8mzy5ECqYojk*zP$LihnJt9+xK^O3;+Hq6%iG^_#l4&|9{q??nO@z&zAiAa;2rE
zK@)da%JAvM?eTal;_>OrmzK^>&Ug3ra;vJUf*RJBFAKlDy*>ZZDwnUVt*sANuiwX{
zFw4Lu?~a8{{lA!3^2Nn7X3Q|T#Q|y_weic}TlDAk`~4{=h4xf^<;uRcX5#E^+qP{B
zow#TA>)-G9FSlR5WXXb6tGre*-kPOoyH=L(%B)YID*4CD<?|=Zo98F4nxXywOJcxT
z+x@q0MS<$T;^*h4?k+J=WD!>PbBT$OS+jQS#-yWMEp2U=LXWDHzP`qLdb<Ac&(F_q
z%(=NqY`$}`goK2Gt*vasib6pN36IBf3oK-KBn%inKRY{_i!Wk-Us6)igGY~=UcAWY
zkv8wEv#b48!Xs_gqbL98(NXS|t#&c7v4ZmQ`oU@o132{c_5b|){eHvt?d%F%dtN<w
z(D3^DdT(9LGY0?5*08rE{!4ol*f+oC6X%yNUzS`umw$bote8%O!}Rr2)vc_gE-&*v
z+`=jR!e~xIM&>0s+o}b%zrQiK*vh%Nxdk1cYJSMb(o*v1(W4Q2t4!bKJ}lY^nmxL-
z)H}L-(|`N*UteGM*435~7iahO_MS0o)}{JmN!np+8a8e;tgw+=vvzG@XlU!_=jWTx
zKW7%uz5M#!J3hVX+;aWx2M#ze{ErQb$ho>I6f{^c{dDX4_4-;`S_~ah;&yg+paPqR
zhX)i0n>KB7JAe54b#X^W#|_)JFHiOK_HLd$S@_J^vx!+*UCr$Lm%ga`&1qP>Ru?iF
z(#kEacjC#+>C@erR|z^TShmb<vCe$k>S<>GYHDjYW?oiHNl5|Kd^h%1o3k)6f~FgG
z<-54BfX3Tbuhzb*thjQ|9+`Xh?n&5G7`%D=cB#|~h7Cney{cl{c%|K@i}XQO-+&sE
z>(}$^>+A2S`nu}sQ^D_3I^W-%wqo__!)In1Cnh8?*v;oJE-t=u?b@j?NA^^G_0mdE
zRAdPZ41DnU=Y`9cCs)4K4U3HA%+Jr4kdkUT{`jJVNx!^(8^~*C&LpIyv|P9lu*<)s
z#N^K1yAK~fW@ct)zH$5Z<7;c9KYaRh=)u9}hc91xDsRwU6<sM3JO9|a)k{Fb>0)AH
zpzcFa(IQ4mXD6ov4+|1<b9Jv;YfYOrjV&}Z6f~Ipg`Hn+O4n|sYml`$rkSprcbC6E
zbo6NJw{u<Lw}ih3xw^W7*2>(vb*rPdH`m18VT)4uUyV0$adDuIT2j)YJGEZk-i5!u
zWd8Z}dc6QwYf$}kdD|)#(f><81AC7bdPMCkQUxs~kd|-ANZs6T|L;fh_f<w`{!3kB
zNSt9-^!l3ao|>OQTAxhY4?7kV7=T9qett@w2{!iC6-}Qx7J`h7j6vQDe*O5dV8H^0
zTeoh3miLssxuLjOX8qi`va(tVaodcIjfK_J)Qs|N*REM3;^rg9ZkD6P&CP97{f+1R
zeEZ`|y{B&|e;*gKqk!@Hy4b_t@7Mb;mVSS0D|b7e?4hOJ(<e-w+A6H>x4^lbZ%ZCS
z;A2;B?{2o{=)F~2L;f-@YX3jiy8O|nr>9SxJLk6CZ|)MQ(w8q^cJ%fhJv-Zc;j(3F
z<&p7~El!G{!s_+)^^3P`5dkfO+gJO0!n}EXphE8T`u%R6o}8aPfByLQ`~AmPRtE2=
z`l^+boNSnP$6{u?X>D!ol<CtSzr4I$fUEVw#fu9!s-Bx;sVpph<j4`0;N^ZtpPZaL
zapufUR&Fr{fxQ#AZrI@9=EinyO{DTy1D(u|kB+{$w3NH3xVZ4ki$JR$7J;K@cGUm3
zTNkslDf{}m#4|GtgBTwN1qTbt%lGfuV*_e~UtHw6R_}bgqOmb(ru4ws+2)EOTob2E
zaj9M|6}@e1?eA{_T&*5HK1X^ajbAYDU4k-jQeu&Kex7aNn;V8Pd#gkvBO`az{@xbC
z{N>ix?1<fEx_S5ZbndJDo%H0y#E!l`&=3rVV$flsr&qxvb|+4Fv|iu3&$U}jQCF9D
z=FFKKJUmPGPKw@^!>AyYHg)FA&Ubfrd%q2jiSen9X1pl0ch#y@K?i-Klm7hpIKw1U
zXw&A+8_VCv{rLIQlQ%FZG}JXJN~%xBvPpmcpG}^Xaux*+X(yKLFjU^>{<^!n8#MR`
z>WXv<t0x`rlP$Tur}DEw<)@Szw{IuEyR$QB;!Vbj<)K9!(<(CGojK#P^R#qyWTdIK
zfcD`((i;>bcs`p;o9D?`$nd?pv$J_?_VrUP`@+J)j%`XkZIFM@W{yRn)2i!_uE*CO
z1+A^<xBn;M=H?a<9)5gf@bU-m-u2zvTdl0F&Yqc>>EY{pbeZq$7azn5A3I$X&~bfo
z)Pq66+^N7><-DSzBIEV-@t{G>zkAlK;dy^=uX9q8Qd4tt=9iD_Vt1c<lA4*>S^D}~
z;=4OLH*DTK+1f?N(o*vAvEIecrG$i(Opk;5zIS((GAmR`Oz5e-D3G6@AEhp?ALrue
z$av@O-ItXb+S-r5y}f<n)Tu*ztG_3tr@L=oxnjkGgU#$O?(g3pGVk2Ea~8$Vc;?wu
zGTGbP=iJ#LC@L!I;pLT8bl4*_bn3pD+c#};a&&CGQ*!d;$uEwZv#+oF@bTk9{_1vq
zdAG7Mv$uCwu3kMkYYLyV8PDFTuS^PEJA>@oe7sM64wtYfP|(uW7L<_SU}tCNk+s@#
z^0(hyE71mxO}lz~dG%s;C<tftpMU=NcK-gO)8p$ntE;Oks;Za-_AZ=noX)2gyNkt%
zW1ekw+nO~xJ#w~E3<=4}&X2=EOEO(uS#7JnFer2}7JYvgTh+7dO0M&DbyZc@hox)Z
zAL$hS@$>ookH5ZVU%7hq;ylNV&(=6!zGa$y>eQ)%&(D0Ne!GW<i%*+24KyaO@5du<
zh6VcSM{HYFRaK2X#xgv3c6PP^2g{c|M-OjQ*|}?%Q*5lPb@{s~H^pRSdrMzmV`TXA
z=Z`_r6OUWcmW7X8c%;pEG&MCrW`R1rCr)@srF&cySktEQ>-H&w|6!0i_~XZqC(fQd
zx-xh<DEaI>ta_|pzTZ6mo`RyH<Eyo~B_$?7K|u?aE^TFGW_$4O@9&_)8!Tk_baZt;
zzTJLb$<$P|wY4>f|N1962^J<sBO{}fd*|YJm2~oL&sh8AOUa7Ws~3l_k5gz#I5kD{
z#F;ZK0U9j<8b=Pd^Jn_IC+q0yPMkWGm7AMe#->6bEiJ9rj^k?mXI;y0QIU~54|Z;!
zbc9#gA!K@tUid2;E^hA3#fJ|ccFu|}EZpexm|4KoVbY{Y6Xwj}2@emqu&{XW;9#?c
zmewNv*}a)Be|lWwR%Chj@Zpv{H*enLQr>y}{`d7-{@$S8?9QD#KYaY?n3t#5)6)|W
z62c-XD!TG<SG$epq&@lIbsL~gckN_ZadGzC+}tNmpB_AWwwLYS>J=*vtO{Kn5Ej-3
z8eq1zmQFt2H}zHFnt1lJD}^gdZ_jzX_{A*|F|kLl*Y7{Jul6@+p6JNYqn=ZDE_^?6
z*)p|v_xJnP*MEH_dT(E?w{&Fv)V6)Ay}Z1*UY|X1fMMp$nV@weZG5t;HZ;nJinbo@
z7WbZ8?&ii;R9q}5Ai$ujt6Nc7xp2u6mgWBQmu2oMdkdOzUK6)h%Kq;c;j;Jl?!MT`
z!NL@?tHkr!=hM^m|EJbROFo<5WD4qIsQpua|K?4Pq;Z-D@Ae5b3>{rvP8Agve{GeO
znL+i@<Kz8-kYN<iIQo;5lPf+xVl^@{T5`|i`BU)nrCGCP@lHE_@+9ZqUtgUwGBk2q
zQc_bB|Ni<Kv9G3b_4)6=zP{$*<z4E$0F>Bv?69z@_|PzK^AE?YBOQXE^~<MDpJwck
zD|+?n)sj!U>;KzXmA~sTOg@%yxQ%y5^>@9v{dKxij~zYA`tjq(FQ3;&Z$EVR?%u1<
zl}=u}CRYCL&cs<)v_!Z9!^7G6`T6JAR0{3fxwGW<)z#ropFMu`sOj=@|HmI69|x`W
znlpFq#)^+gJd#E(dB5~xcbzyRxZ?kV6)zkw9X;C0r(5~;m1y1Xx8}QYudE2Xu_aS@
zF8}9$f2&t2R&;iDf;`O-=p145a*yfLiFe}c&o;C3FL`F5`RUC~<2{w1+19OF_v2x^
z{DtlL@lT#UeK^_Q?%?n5?=$_I_xxmjv<tKdWnIiprs(MCA3uLOYKVZ=qEA-yJ#@I8
zpRq$s6Vz7C%F6oi;-d1DY15pXotfX>+Io1hy1$6q-h3|CQtg!sUthjZI`zw|tJ)=R
zZV2wJ{?4Y@!Y9h)(!1!~Tx;z)^+|boeW1)~YAVVAS~F5nS!udMqIpqedJ=SOMb@hd
zWo#udEbLetuXI2}ghu(k_LVC&&zwEGv`Tz?{{6n6pPw&Yu%O{z?%$8c<u}&;E@L>b
zG5L5#bE^Q;!T^rk+}xF)r=-8Tv-8Hb+}T$q?2xbf!Dw6kE$3>JB+qC6BW($WXYQ}~
zcYE)L4+T6@CLB%+1#GLnOt|&#)hjMtU0ti0MrvwqX)(pu*Tp`3_N?vh?s8CHYldmI
zSnUbWn)!Qst6y&5=WA!Swzk&L*1o)b@9%GK4=-?RE_if=^UO?Rb}K6@hKA+-^ObaU
zK~sN4=ar3&gyz@%(p=^{Tdn-}s?gONil6&|Vr6gj_hXA(yI)9qMn^}liP<RxY7VYl
z>snfB+Qui#B`hoq+Em~_&!%zfR@0D>kOiw&buC$<vU1P)xz_Eb+1DH*BPF+P-TLF>
zarxA?sg)HKpptgOmMtxtHW~Hw_D0J-S@&=2>x+xoL8IiB#m^K>Ohm3;y$VWgLPA2I
zRTVpSSg^3MEn2mT>+0332BxM{XKhwqws2wNJlpC+*RF{%fI7Oz`{ljQ{-0p;O+3D)
zQGeeLCZ<M)<l}v<+qai5E|xu_q^xXM`YMD+&PF0DD+|=2;P;=b?(Y^EDcQy&>2%+O
zot3rm^iw8*So8e+e4DyI5>-`IB@*7*r<C7Cf>thuhJqGlg1X-e7AV-%{0PXpv_r|&
z)s=&f&&}7D_tmRc3EA1)=H}+0sp!AIz7~|1x6hg-C3{IZa@ng_Ss#AZgoK49U0&u}
zq%M}8o}PShk?Vs3ixn$Z9)u1Gf!37XyLZpP%<P!@{2C^6^X+b@S9L7fHTBAcubD4)
zc|H1AAz@o(^5yH-h0B(;2`amJ<o^G5JOAN>2My=uT3^2U?Z}iVQv}4t+aEkg0IlWv
z`|IoESF9Wy91YvIo7>pf1Ox^)9&Bb`yla=#`nbJK%a*DA`TO@N-`zXA%k@Dm_WhTw
z%ip!MwXtPoXV0#Yzj}RVak@_IE|G3={b|-J`9D8BH83z>Xg}--ngxA(Tiy8ix!bp;
zKR-Wz{Pc8v&;qBH*4BlwyUP?>K>J&y&2koGPM$njQGnycdp0(<lEgOWc0SPBm>-|d
z+kbp>(|E?LSxSb6ALaLRNgp;5=XN<^@W1Hl)vGhCO0~Sayb7M2m>9M;;K(0i7Z;ZY
zcXyXZ>?}&1Eo-c$1zL-gD<%KL`G-L1=^6>plBem@#X;l0KJ#pTI*Yd_{#(95PN41Q
z^z8flY9~+Moiby;x3hPk@tOawZf<TT&Y%B(;b_8)|DK>48nW+ehS_1Yg~mLG!5h3F
zySwZrKs))re*H2qGi!5Da40A+ICc8;Ql&=w%1<s2xjet}N}Ks;-E%0mw6c11Vxscd
zd+Y1}|GRMgI(z@|=Dt3@J$v>%VGGOYTN}OIi&b`tx{=YQP{B53Wo5{ku#X>)%R75}
zck7+JHLL26cFn(^&oy*(SQMi6dKPK8mz0<s>yy2`sAlh;JsZ-`&kLKn*7WI2`+B>*
z;b+dCO%;><v0Fu5{qUJHYkd2zg7%(R)cvX0{5|_*sjiOB5zs=fgju<_w<TU!;3#2|
zA>icXloGa5*t+VAhL5lB#f{1CEv>Dlt7UXce|^ckar365yF0s>m{>t^@#6Y&&~o_j
zrQ94G3szT}rd(d;8?nExw)^zuS?^U3|GB-vQi11lBMS@5f;DS+GBYzlT@i){-|yFh
z(gEY2a#jgmUfwzO_4_<4<*duzyw}W8hKvclG+NcpC)>1qxw_wcyStCt_r1Kl+<exu
zos2?H-|C+O?OIv5a3R<9(`(kQ%`M=(wEtG8u=<PhhK7bO?(Q~c<CF2Q|2<*#t1ZiH
z`1trDc9m%MdcAw`qGQseNoJ9M8rHg~yuG)#`o^|g>87S8k-YeAIg*<;ZMv{I-JeI+
zO620ji$#~a!$05JoPPek6uaA-D=ULJczBL1bZ&off5x9bHFtItI;-XS`1nlzG{-R6
zZT0D+?+n{Ar9i`p@(1=-fB*3N{r=?V=jLwt$k;K>Vy*n1bt_hQq*a~)729HBVi&Gm
zn-+Db_&@{Wj=H~A44}0;poxH<-rj?cKMF`nayo3`S+;bkDr6}4|0cKYCnZMu`uZ&F
z?2nJj*RwEOxpF1pU=u5-SaeWm=<nz6wGW7k>szouK|)fp@%;148CSih=^Qk_U&G9>
zqv$D@kFT$y07pVjj?eWk-@kufemZ$y<!83W#zq4pqo$1;4X5eFdYyj!;zh^K;^&9%
z-J7@X<kawgzk(nA`ue(^m0Rq<p+iiKjg1U0A622-q1@fwS00$89lmbK?KWQNHurwH
zlQQX_pPdEm$YBUPBciIRDiy6_WF!<A82IJJ&Ye4N>?+mXv}x0atKspE3Id>c{Vn&7
z^~>`oCnrZlMO}J2`}OJ5r<<ov747Ni`EXP`-oy3KI>=fe9bMgnk3Sj|Kl722K6dUL
zA86^@&YhMeB_%IZK3<!4{P5vsGc(Xq!|?F-=jZ32_Fe7a>B)KL&Yc5Kiw-{i_~O%r
zulF6)Ra88V-dM42UEBKg`aHb6iFtW?-xEa{^6u~Bm6n$N@Uy01XUr`R+u~<DYu2s>
zZTLz~PF|Tht+uvSP)LYLTwENqs`A#BOwi;<b2Bp=pG-&P=VuqUe0?2OG#k3$G^n)H
z)W*gpAuo?FIXT&9p3Tf-J2*Hw9pmEUSeP2mY&y!Yq5gjzsNI-;ejY=^g9iz%wtdZP
zyiE%iCQg=m30kew*~wX9BR6O6+``}Aav2uIY1z&1pD;n-Lxqimw6wCews)S~qv`CE
z^ex!<WI%&@Gq+6I>$Pv+z8QweY;)$$UATI6cj4n>7p;0bIu6{~S^To@^mP69i4z4Y
zY~*rsaz6a~TMeqL{QUeto6jar6m)WSmbQ&=OMIfhb9l?nA3rJ%J^m<?XJ7tK=HX}1
zJ`YeUc~|*+zwLz<GMmcYMmcdPZqK``Bwzo>aOK*ysx1Pby={}`&h_O`JaX~k#5EBc
zo8Eo@^Rw8ALs36|-;()v_t($=^73+fNO-ug6Gve|fdVHdXVK{=FJF3srsnb{+pN2>
z(7C;%v5`@+Wx~_b(<i^*|9@Uy^tK$ynU=+BiY)^6_V&Lvr&x;X$N4xpJ98?w^vGCF
z`t$8}zKL&Sq~zW5zrVh=2sj-&bm+tq&&eE+ojV_X)(FYV`=8JL^5Wu>b?f>-dx#jB
z*(PX*uk)B1esAaZx3{OWu(Myje}2Bbe;dENA87LrhvJhrH#fJOek$a|(b?Ops;H=F
z^0rUb`oxKe%Binjottaz5*|KX!0E)RtE)SEdwC<bWC$v@2xx0-7rnh@TJ>hOdA<;M
zi;8MzXQxU3+uPeGzq`A8GCRMVfD^||<8;26rrFcZY~)aEIsbg}-QDHFP8=uCol|>z
zd%ODnf4{U9TP8F#Fl;J+A2;jT`Sbm2qPO?SUA}vFE~s<*>(2iA`qihEGfz*`J#yvB
zmWw4{*G6si()xetQczUi#^mFd&hyLL`NYJ=aw@i{sHzI`wL9y@>~P>vOgTT#_RGID
z`OnVGd~#gAe#*)HYu5B!xq4O5$>saXWy{nme|^zZY?<IWSxwN|+WOPKztx}K-L*DK
zIKW_3_9h}II@()HORHnnEUBHfzs(evyez#9ZeCnd*Rxk_@tJMbyC!b$tZSV!XU@D+
z%b}>EqT;ejZe9F-zb#w0iY`-cnegF5fl>LpnAY3#?P|TMzP<7M^yw35W7(~(-4c?L
z7e8&uzdw(o)yauNQQACD#krkt>TLgZK3NYxzrI6{HGcgA?c}*}<Hm&Y_xC2=x)qg_
znd!+VW1$fI?d|RD!r9r`pMHJKb~;i2dc&$!U7$T%0!|*jzPvyGd_I5j{r>-c-zV<*
z4_dj(doXFn|7P%hmJ3&}y6!G}`{B#W;F?b-)k}WQHqS5k_{jBFnG{29cVs|7!-o$A
zHZ?y4w6wH9)3J$(io9McI`(KB=2aBh%Ly9LsI0W?mHYeeZ#9pELBlg`Nz<4ZKhM6t
zKG2NiyE{9X)z#H++_-UKiKn06v00|s3=DIvN)J6bIl1uJ8OdL6pvvPxfyIj(8<i_;
z<Up%Qxw*UD&L6&ifBwHY6DBmQS)&75BKo=d<0ICrtgM0`9}+>Uk9Jy@mX-ztPW&ru
zopC_{)MVqAvvCLt5?ZuqkwN*p7|>>l^7r?qaur+?h>ni_^7ghkLqck*>tYLUEnQvL
zxHvgA-&rgUS000w0+!lIN=im-Ok!nNuxb@(X-CQLDVo6t9u{0!8LSQ(RrU1r1g$6R
zKCS%n%uHiYH*3PANtc#<o|=-H+S)5^{s^?rW$)hF$&2stOPO@AHOSc4*(~#)-?!X<
z{v!YRc0n)SynVYd<D!xj$Az0WB^y>eKYIVZeEIu(OYhH}ZJxiV{QW%!my4&5UcYnU
zf`FWyTtHAz)2daVH5?P>&-dS-?z=MD_4@KHTSRv5+{v|m^^#q?tU!GUb-y_dxw*Qh
zPM;2pjJ&zz*DvdRTXXqgYXM^R)krcmGE`MnF}N^_r=OeCIcbs*!=n9}Hgfz8FRcFm
z`Fy^<Qqrwo&bRvEnKNfV%Y<f{bar-v%IN3k<}!9H+QGbN;f&&EXAUm)p6<W_TDS!o
z`@Oi>{r}UaDKqMgK*Q4f4mKxuZrKu&RS_E8A;0M8k-$k$mns*9-Te0P<HCt2880&L
zukbh)uW4&L*DXxF<-zj#b(6Zj-HotRJv+}<da+xtQ&5nQm|hHrva)i{ogEtw*1qaL
zI&F<{YU)$9{^02~3hFHi3JMIMhP0<Uhhs&B#h*Waq|RQxc~i2pvr|J)uWjvG-Bqhr
z6?}N$c;n_x(@LI7@AK|P^-dgo@^(7LZ`N!6-nPs}Q&W?Ji|f$G$Hx~gU3zs%viGKq
z8yf>OK&$E=J$@`GD9E@lfJ0PN)M^f!!{YCz?S~oL4<B3;xp~5@SzLVW&9>Fw4&1&i
z{q5T~4=*p!j`xq3{p~>mk)Wxd7Z(>7et6)>z%c#vR4cc?RvCVCPppQ-*Orrkhs)pJ
z>%DR%WXZB+i-MQ?MeHuioh;sQ;mQ@4z(B#jfB*gcec{TLoJ;$3uU@e-HZ(l=^z`(^
zgoF><Wu51Rt`1wcW(`mH`Z!P)HK_jfX8+Uo>WBYa-Uw<%GG=6FKknAw=a7(~FqfN=
zft_FO$lu@JQ!jbjEinJKfsbLXb$Q#~y?d`{1wAVKmYSOSrBO{!k8kPHrMfoUM}>rh
zHk7^&19fH_UYz}KYist)+1F2<^4jHewnI=Ev^wF^=Sk-B56;cC{_$q>c>xKDj#h5*
zN2jK08)e4C#0bdB@;Y2$-ctSjo!WlM{8bZ`-IYLVzuqdeC@3p8&wISgcXmKn7@NbD
z)05}U)isw-PfrIe$(%NA8iR|i4JbBmJ1{rs#qRRBtL}SsZ*@6ndQVS}uR+6T^OM8R
zR|GB=5EXR|H`CJ9omwTmr}}%|m21}?y}iBt#_n?cx&9X~ePTGUv-r7yfIvg?@jlRo
zgrM7X|NoX-U0<fy+S(cr8hZ4`#^jBOhuQAzD&@|<zYnwnZ{pm!y{}$nUAc1Q#F_9D
z=g%)+t@!ub?R-#VyuY`1W8q^rj#j6Xw6sg}y6)|*1}(h-jYUO8Nv)OtSpNLY&CMrH
zp3DrCW$1bxHfho8%Qs4=hD1em#qF&E?bO!L*PqU1b?Zi{jBy$d=(K_7=jSh8w~jA*
zdtPgQzyIRr*Dl-#ZJgm~b+US|tf$9!>(;G+@bG+-cuzq=K~S4~UF>c*`_t#oAAfkb
zefHFTC1tms1JBORetBosrcFiyP61I-T)e!zTe7e7`OmXixOW%NVH1Av(h?zIVP;Uv
zF(Tr?i4z=bY;2&>>8dX;6eov$dYk5)Z>L({*V}va>gw>sj0}!O2Zwee&|--AnvbkL
zK0csDlIQJy`y}3*)W#><1sd4DZ6U*VtXG=dZa%-PtSo4iBxtq}G!dO}Z%-wtu>@H{
zyk^as7l(g>mivT;vO-pzfHwcA{RizP1#P)s;JjAlw6vgL<NxFLYTI24-_|nxKX++%
zh^AHt?@_1V&SP!7rqi;M)V<!g-M_QK@Vbld&R3z6rG<Tcu1NRpP3qj6y=G&OkB&#k
zn<V8jtLJ}{Z#1TIcRyJ4;jaz<`FH2$SQe+HmCw9CFD);xuj=cog@uogy|}e?^`(v1
zX2f^*MqXRw%I!1PN;Gy?324IX)wQ*&?=-l$xh=}Szc1tBqE@3R>-Swe9ko5L_x1Jl
z+U9d}Z*M!gHT(LMWp+Qm+veOb@R?%~xcKt+jnnjEyXM#Z@_aet{+`O>)VrY56^xCI
zmmbcqsIXWUzkl7D^^u#^q|Ebr7A#QMl6yNWGc9P!CmtCK0npr6Pfy6X;F=m62FnX2
zB_%or{k6ZpX*O$Y$+*a5oPMrl?ONSgCYeoUxwjUSy}gxjb(Lt=wKXd@#yU7KfVN6r
zSsl)QzxMmwdx_cMYonI(bX`~<Zx7113?IH;k54``!;piM^Wdkarv;^?R^<d=sMh(P
zUHjZD-^%&=@e8GASJ(gl2O7N1y1ovyA|jjTrL2rh&#SAel@$~m($&Aby1M%D=kxaN
zi`{wyHmCW9tP1hu6xh6Zv!IO3nm-8}vajn^R97coTN4SI9sn&>k+m+%c>40;!^WlF
z)0LEzm>eA)L8}iJEm~AE?e2tcZ*M2x+fylFnkDk*&mU0s6jXN8IQ#NTt-e(B;T!ww
z>q}l<V(pbScPl6`0FASrIpYIb3D?di>*V0Tz{Vrd@ZrM;r|EM$EQGBD1z%oR6KUKd
zZO)g!_v^Hi-+uPj|6$&oe%|e9m#FWy^OFLEo=@v|5qii@!Nq0CQk7@MH+B>*KKVUT
z$ReCYaBArqMnxqMn4BmtptLBwWBq#lKY#xU%E<KG+L{eoec~!*R{HVLQ4bFfjW1;v
zFJ63cdHH$n_uF@TeScqGYpU1c<o}nK`zPk-=U=&SG<<zrsM>~*)7FK{H-7Tx@p5r#
zJ<ib5@j_I|6V&Jske2Q)etz!Z!^7=To9~KWTjbh3#qVBg;QqSWy_@5vvv^Lru)vX7
zCt`y`<hH7>S&Q2feSLh6+}T;&y;jG?<;x?91_8mnNmq1}gM))V{`pzl8-EA1@7pBn
z3J0&0$${wny-Rz#wp4yjV_{=cQc+=HWMsUtr_#9Y=TmXedQ{M=PY;idYb#u|!`3)F
zKR4HOTIlL9-uiz()%j#B7Wk~<II&p9H2WG4ue6!VVz=HYg8S~(evbvMIc6}Z{+1IF
z8L4S%wl;eEv4@A-yWj5F^Y`2B8=F$Ojf{*K7`VmtjvQ!YHof#h`}v25hbK;$06JBn
z<n66c&;5CKt@iwUHhV?bTB&6|GnpLL{r&j;`}GssJtwQ(*jb#uQI=aUaAw-2%IlpS
zCqR3816POX3W|uR%$YOCWwu$aOIX-60jCa8?XV6-=eCYFZ*mk{1iYu~iOO1+i8yfx
zN=Rt*$yzUa^7+L@WyKbO#Kgp;$H#iDzE7PrN$J#def@WLb}F|BJlcN0PMBB9M8Jsy
zv^YpmMn<Pa05l1`sPOTzM<*w%J8>xL#qH79vuBS>Rn@MD4GE1BCK(e1oI1AOuZuRx
zyyTK|e_t$U;meMlJ3G&u@mc#<FMeMP3oC2qg9iy~_ut%{{#qyd|G&RSzu&LdZ{w9#
zTeN7AOHIw5j7v*8FFrjpTkri&Im@CY0!|&jzrW{pcXuy*eN9)fMZkBqndt8F_hL>Q
zg2KYefByVw5pasxS>$SAZT(tDSx`{2eQ|=I;NGM~ixvf}kFy2s`gn0+;g2Vi{Xd*F
zzYm&#0BuIQ^jy)}Iy#f@%C6Gv9vMraySqxAD=I9Qn3=in^l#m2x~uec+fwi8NoQsl
zMr_FtWaE)oFg5RZpX`p3mqN45^VeNDH)Hnf$G5g-XIx&!tL8ha<;|O%Io9QT!OQ)Q
zzPr17VbDqeDJd>vW8<}dl$4YN1O-1jJx_aZpz+6_&*udtBvyomIX}JP9?KUV9v-qb
zO0=`H^TVf4huY=qIwCixE%cpjHp8~s%&kY_qtjDWC8gY)CRdj)U4i#)R)=VnyuRj}
zX{Fk7U`OF&P!_pyBVvwStyE!QA;Xhpk=){XEpz9}-m89Z>oec(?uuGo2?KCy+nj!W
zL+WX<xs8niOu4tWx%&9@Y<i!4eci&Styv$weQTRKRdkwud><RH)PmC2*M7X+et$#y
zdAZ(B(a%vElUSRYo45XRa&nsD`Tq+iFYnQ{(c3pvea%`Mxs!KluzYrQ_S2m+XG$6w
z8#6Mz-}9LdwC3x`(W8l<pPjX0Hda!qG6WSIRjqGtZ}*>had-ChbwA$iet%(Yw7G?~
zwX(6XFlYyPK!AW=%npY7`uZQge;+<`#%JcjJuy3rD!#m!c<+z1v$JB$0nlEmZMnA(
zojmEO?Yq0|twH7`l|Mh9&tDO~UXJ0xlarG(ZfsCw*!k^gxBk8Z`~UyVx3IE0bm$OM
z_Vsl~+jyl*-fh+}RbcpVnBN{WySZWWX5(FRSm(C?IdkTWLCy^WP(ccE{;8?j%hw3Y
z?48%K!UJ52IH`C#t&iIa+9uP}!}H_UFRjJqt}ZSLmX?yb(c4;7JVAR#4m2_giios)
ze0*G4QISzhOl-sE&B0khpcVjV>g!mKBxo@C*7p4MThD{$S10@1U3|4<UD(<vQ&2<h
za2v0)mlxNi%a=jLY3k`|j10H7WH#?Cey(LImwRi=LH+%Ini?7!l5F*}bfdTFlvpw|
zF$FC5lLb|0S679CHiT|*+kEPO)rAF)pu=43emr1qe%aBnqQF8>QBZIqA1D<5|NCyg
z)U30kql-P;p`)YY)5{ABng9KItq)p3qZ%usv?!?ERKW!VQjBC+yE{O@r;U+A5CmrO
zFbgOtDTDUcXieqPn##q_FQ@bJ(G;z2as4*0rA;$u&OGPIeE86z1wkt>tO{K%q!D}5
ztniV`(_0e~ZNgoSB{MjsUOL#!K6SR|RIgUhglfse7p4alBYgXx&*@lEk_eJt<l4<}
z!rW|<O5({$s;bcnN=6=kBULXOm%Q_?ejDPrwfN`9TCWrtHieL9OO`DIO@&QR;r#aP
zn}CyomKK+!q@-%BiPEKq+wa#ohlPoKdv`bblB;Gh=wO4C)Ko=d<KX92_X?hCy@(ME
z)B_m;@;T_-A%+L-@^uUhfBt^Ie`8N&v8Pyf$BV5;F8=9Uu|c9CVCLeyJW&aWj_>!X
z`AxI0U5W4mg^@l#vw&9cq)C%NnZ;vL3wSH|uWxU;6<I)gS=jmIB<5a!zyE)qqI27V
zu(eSIB_%CWr;6^`yZ7SG;`B4~Y^D3<Y%lG8dv$gA$Cu0JFLG>VD=02*Ub<BE)O7v+
zXJ=<8KRVLs;p20~YyCTe_<#jZUccs^>ebrF%$~J2czb%-%8(spZ>26>zHC_h%*Q0}
zj>OZ`)7!n49$Ml#dCC__Nl8$J^Y7>RdL<JR5j{P<4O_Of%$_YRWt!E}DXcD4dk&;C
z|DH|Bt1FySwL+V=ZZ&=L_HE$yyjakZ%H3segD%-sd|(I*3kz5oB4L>1(pZ^)bCav(
zx~<vQr9$WZ2?`DdO=GdJvL3v5PcAPnFXPr0&1dK5$FGR5*t~f&XlfR;&Qnx7tYzy~
z(>r(WfEpiXW*9QBT)DDp``P>R{vB%Nmar<(SQWOGOIlhwWJLhu-m0&lUS+S=>ABYB
z28oAQOmc1rtXsEk!?ta0{r&t^Utgteu$;W^`|WpkcY^}4qO$Vfty@x|tHX|V2r3tR
zes-4W^v4emok5EwKYafV+Mj4+V{>6!ZuH{yQy12;9gV&A<Vi}8thLzItgB6H*Xr8X
z+6v0a_3=uZF=*7xXK+3@$Fe!`aNEK2=lRRZ$~3~)$-KI@w!7c%7ijm+)!ng$@|zWZ
zxs|=Tzu!JYOBA#+oZ-g)`u)ca$Z1XG3SAX)apv>K$NLR)Z<(0n-V%BD?%jq>o19v?
zL@zA$7GD#+{aixjmCDuomxInble4V?ZK#+wZQ6>ct*hLAZB9R*bZUxb#{GS^d-m>4
z%+2LxXJ`NM^XJ0)|NpA&y<Y{sXXBAza9H;=uzvfqzo)I0=51V@5WBZZ6x3L`yQ?&C
zU5w?8n>RsDf4~2~-MKlI!7CoySAJ6Y_2uPandqfnQ$hRTe*CCt{wXlk!ZD<+=JQ!|
zr%5WH(dxXryHr~Qlnf06SA=LS3|e_)P2^^-Gs>!}u3uhWcK4X1qT(5}?d)%L&q*^Z
z3K!ioiinDmy0b0y^fam4p!(Nyf5pe7=BJ;(eihZ4>ct~r;E;V6)MBggn`@=o)YP=)
z)Wq#~-tYZB?_SZW)32UAQ|ptlOxobHapT5CUQ@N$`XiSHb*>IyuXX#&o14KNlT>12
zVqBu4W*z)<zw){4Qk|DCU$R|(HEGHel|O&~mQM4Zq;hdzZS}_N>w2kw8=2Wlo)v$6
z6)Gqpk@3MI`^pMMAt9lXJb5uOwGgeT88<gAy|J%$_lC`zFVAeBIdkR=%i?7RlcTof
z%-pbj`}Jy{Nh+NOo7ub9tkGGU`+5I;yT4z8_x{|mdw2Jb9~FC_T9m(=vm#(&)4jLs
zd@?IO?mP2a?m}r?Tw3J+ACLJTK76>a{CDEvHqnT%WZ$_~p)+RAe0g{J)~#D3Hl=i)
z%kBO=gZtC_`v1`<t=Iqi`#Za~?(_f9wNatk`)#YgafFA5H@`pKCu`l6etzCdo&Kub
zox<u}A0Hpjej2>gOH}pkzrVk^|IC}F;@Kl_AD3<a`}_OrUeoKVjg5_a-!s)d*IIwH
zTbw&PJA3c({JcE9WxlhQmH*yz{QqTtdrod{?zum2+`QT8+|Kv%Z2O8Oh71dhR1FLQ
zR)lC>T;?m?`xMlYnxxX%#w#s#$IjY18q~}BsSfJ0eEj?Uez&rFU&oCb5gT)Fn|-{Q
zKA+Rx-hM74XbgNxZfs1<k>~U4^}fBktNrNFqa*+R{ytiMzgB&gS*}*p)~ux)@1Evx
zU}9!&ojG%+gh4_BDD*pedqt(q^F*x6-UM9w{`Piw$ojb09$D+KHIbX$WbEr=T-@Ee
zzrMcS4eH(e_pr6GIkLC<d&#utcXk#ZI(X3WX8!kgcaP38&2}j%*<w-ns3l@s&diRU
z9+9V~re5B$@O1Uz{aIJF_8zZ(f6q2CGgC7}YpR54)|7+Ai@np*maT~2zi-oeK3S`d
zUTO2L88ak6;~0W+a(W?JQ#p8fO(hy^Dn2+=R9AC*PHO4x?Uk@BS`x86Z*E6lpBOuz
zjDWD3PXJTXtE;QKkN3-GKV7)*;<wMAh0mQkcj)HL$eO=juRpr6F&TuDZf(f~HBU5;
zAM2GamAm}v>guVpCrX)Sb<8wQ?~2`B20F{+<LmYNyZq)_X}&(*Be{5M?Y-~Olhu4%
zR6G}jt`1AOx++vjP0j7i?d|@L*}j}LzkemN?|8pFcYc1pYOIS(%Z-i6?H!$+f~&*U
z3N2i?FzR_&Ji{Vw1O0QG>}q}lgscc~^t`^mzJ6ozb3Z|0VP#Oe8f3cHQlVZcQ>`L~
zPnZ4eH7hGBDmo;M(>fj>@9(}}|3B7emWk)jJu_y`?0kEB`~EG-W^Maszlz?T*SR_U
zd{-N<G?(WjmyC=R7S-R@9J?Q1|99!evkwoqPd&eC`t<2DtV&ni*j2h36vxrq^F$|3
zoai-kclrBun{8fgVqsz7@SNll5HKNPPsK)y(pOU~N?uGj*6&gM?TsKGA0KEm_tEqD
z^<wP&aw3I=g-O@f#U>r=kpvYBr~ZlQMlIPm|M~g(-5_^p1~1e2eP?re|20Fq`hR;4
z6ffPDdRi>C{^_Zy!jsi}h1~mO1dsR2iyNn%5qS6R-KlTI&(E1w{OOf87fVY^Q&LfJ
z(TUp=0ZM6y+xfc<laFx}7Z)!KTG_IG{rVFpPF$!j?DP^~7SJ+&^ytx-dq>XCwGNLg
z|M#bIZ)MH@zu%?IFSXU>hF{;X;^?tspvFB&=l=csul?GScW1}KkGpm-3zWuji|d)p
zxc>C?bl!FL#m{;Q3JL_Yrh3(UJSuK=xuvB=WB(ghSJ#(kwJj|pmn>VRwSM#F%~O*z
zudkbX?=5K6z|#u9`F6P*_Ur;3wsY#+;dcJ(Gt)jiI4JepH=IF8P*73DQwUVaR3}SG
zOKZP*`?l3<snGn|Z!@n|eeK<*;t5KSF*^zzwa?z%oZh;4@#27$A%||?j!sES%UZL)
z{{Oy$q9P$s2`y>llFr*M;N&yIz;UPE&+L>>`|gKmO|AI<_j~Cx(C!}9*qE3(*M9Ze
z|BHzH|Mhx&_S*Aj&WOCdwe_;ac2`b^uApmyi`_I|mtJj2OHc1!7rR?5;#$+4-R1r(
zZ>|biIcZ1b=Vf8D_PiI4y}n~d-%SbDyCKrM%qmk;QZ(j2?~}FenleRX?#pLqXD=^2
zJb!-GToq3x8=E^1%0D!-^B-C4-p?~l)5a#|=bg0l^z5aYKE2Zy7EhfxQBf;w%?cLz
z`ad7r!)Af%i><BSzI}Uiu$et7^OIct^K)}c*(55Pm+?xQN$3~{dV*S%$6j1qJayGe
zb^m!8YrOsZ#KOYDoR$W47Ct`q5?t{8G`)WOxO=`ZW9^l*+s>Rh!&STZk5QJxt!=r{
zD~w(&wp-80$Qbqd)3u}*zn1P*cqOG=TwJ_%fsgNB?~K2{zH-mqFW_`#WiY6U+_PuT
zmwO_%wZB3hUqAVW@x)Z^@G0@K+jDQH71YnK`P4Z<#WQ48h-dcPUuk|zgE}RR(_Wl?
zy#N2-^^@}M?kbgfedYO?<HwIbSU-Q}%$bXVmU>w=FWmEfdzYy8tGy?87d&jbH~ZU{
zFC`BjJyHUdTU=b1qWh%H^D<04b-WlpElTzE_6C(nAkUfKt8mVbe1B)Ba!yW8mq^2t
zy=B?g)?A#e_ulu(t*zOn*F=vSO0V9*G-0XtbS}?HEo;}VJtzHo&%KJrybFU?y4>Ga
zyY<>iW{2Y9V$eBskNI8tFE97kJ}xdSym;%r9ZVBetk6ikYkt3Gv3dW~)6=zIF7uzi
zZfjiapKaT=Rb|heZ&SJGkA3yT_pwUB3F;+U!kad20&QOKnACD^uJz%2_u`WGZr*Hs
zuj;ifhvJ5spG9*kj~qSv@K~=jLxZAo+ktD>uD$r%J;(3eBo##+9UewTM*TX2qbf>D
zi!R)@srex=T|fTV&f@0<-`+&dv8@*K^Yde9D1LrUQCr(v`R_E{=qb;Y-TQRD`~yv5
zPxV?_^5&erni?Bu=tjl!&;rM1uDSI=K|<%|TC;mjy0AIjKO#E%wNH9_diy-v>Q`se
zUte1bI&yC9THRaQ^YaVlpPg;a&TwZ}sduIQQ*}=vC1vHW&kPd|Fr>a~wXOb^vF7%k
zN@EpIr{jIHiFtYJ%=wLtjX`a3Ck`3gs*wC$@9yqCeCUwVb1Qp$`=^^rett^rExma0
z;*a0&_cJnpn?!%K!`5_s_)xI-HTPrJ(^apoXo7snFy)|TNnv@p`|h&0T_J8?zZMl0
z9lD*rf35l52M3$CZoBx@wg2W7v)o%O3>g;}vBt#2@GQ%{w`b?U?@LuYGcGOR+_QHt
zcWB#}FD0N&bkEPv58t<c)8@@nzb^NmuNP9+x^Q3HBo$5B+odlrE@qdJl{MXV(tnc5
zmfYK7d3kwO*Kgmxz1Xc+ioxsOF5#Dl8Cp)Y%(X6mbZ)LSLqpx)UoU+Y@B6r;@G%=`
zedXG(8#it|^*QbAEYYn0ot>Shc>NN$*GBg6Hh~(`jm+$eoLadG3JV>-zPbwPU4Xi*
zUte844C<mYe0t&kO4`r#tL5j9A2q+6Wm335XIu7lJ|~XUZ@>14=|nIvY}mA^YGK2x
z^Y;Hk=9%Z*xR7w`!i9jnul?p)u`*Qr`(t_L%$Y52r%wL9zA{)nb@!4bDsz8^t_(W*
zz<1W{+0r$&wOjiXt*xa&BP0zwi=RvBv}>L3Nc?q*kzs4r)l0kiCN!5boVsI`b+j}O
z6#TQwpDg_K^|kbw#g5Hv`VqVC)Ot>8nJ_`1d9muw-Mh7~-?(tXL%-_Gva(lKG(9G@
zfQHq6?3-g(YsGN*y?65d{h+PonU|L-YG`njm6ffC*=h9Z%F4wx^{p)}8kz6!?~mWo
zY~oPMyE<egQ+Rmz-j_N$Is!5>Jc=$8*X{1^=57&Ct-IU#1ypb~Rju#>DcPS;_U1<5
zPt*A80oyD8TUJ(9ie~+Hz4<LQ@cs;mPoR?wR8&~H#dHtNwJx6$+5h?f%B4$|WaNNO
zdh?hRvLrd|zfjG~OR6$<H4%~X=FMAoC2Q~BZ?{jaZ)=@6XU-a%^73-?8P^UUc7DHW
zclmp*^IzvG$3B1a^Ye47&)O?=UVY+FH0e{cw2YkDdh<q+$D}2tcRy*ZSmwWU(*NEk
z>;G!4D~^`XkGi&}vH0hwr@YSsFZ^m+alYH|`i;w%gI`NM|GwyWPS&gQ9*Os+x3#S?
zd-nVFtE;P5L~qwq^O@0L|NoEh&6_t{fBn<)J9+Zt1eKF7Ua!07Hvjt5UBWLH@2{J;
zVoJrIABLbb?m4O8|G(P3XGK3n?XR;<J3kM!u10vuh7=K#u)nR`;s!N83Q|&24<0_u
zoP4~`_4G7d&~caS?Chz(Te-!x&dxvLJwtG3@$+*ZK72TEcX#>5f`?9^4jRLT#KUZ$
zPCu(zra{;}>4}Ge{!cD1E<XJ4@9$na{$I~LD=uz&viGKhO~r<bXYc9g>c(f(AJaOu
zQ+MsDTb6<Q&8<sbH2nYfeZT9u^$XtXJFL69ujpx)k$%wnxV@k=EI&Oxt^J?9MZhag
z|M73_{hP`lk-PNXtE;Og&YHFAYxZ<ICk~t1Um~xsuRp%~{l3*Y=WpNp_U-NM51&69
z@8bEnU03Jp`bY+oTRN{ly}7yB>G}H8i(I=W%$&(tTwE+;QxT9EJZJvG_?LI?+!2tM
z|L=5s4QTG>#0d{j=MJ>bJnif(*68SHotPa04R`je_ML5}Kc)O$eBf2zFJBC|#NAy2
z8qZx3x;kuPz7dyJw^gr-r<Cv3Pj=!?py?A=E%(4D_S>(n4!=J8+Kk7wGe1rHdT(zv
z+v%$J_x38iJq<b7z)iL|C}`3()4JH5yLLVL_V%`izrXp(-=7Y(a$6KV;ZX5B)WRuj
zQ25AY?n|E9dQtV#$r{P)cUMU-y42;nVa1i`T_u_fJ6~QtHC3DY&+3qsLJV)yA}Vil
zJ)iscnndWTkic2xqGizx1qB5G^Pay?pLiYAWL<Id4zFePHys8A1A~D44~$Q~)n9O}
zJqJ2_=JoaU`wJqkoZSH0xM7-o?ZLCNvq3xUR6L#j|N9$nalh*8E6wx%^K3E=)-L>d
z@Zdp)hAmr6nx7wz=<MudTmSj*@9%|APl+-(+}%|=^{JSc*oxrgd@b|z4NPHc0R$|H
zo_I_=9Vl|NG|zXT-(0IxpI^MlXwK}es(pQJEw>^|Qc@DnzZsx40I6nQ_FVrFnw+y?
z?Yrv*udZk=o%!JOl7Ii05(*ePo7SZlUX56>J~1h2(ZTmG&YbZ%a_pGXq$T0Mb_t7$
zG7D&3T^F-+(I2jBYopD-yt%pg!2Z0uyBs+hYkz;s{8J<^A;FQKpU<IaQ2(!H@7wRC
zf&E@8Ee9Hz*|}_Qbxoc;S?GYoulAiqPfsOfyDiw~X%Mow==ZnW)Dr1ftMYeiY~~v#
zALE|B)U8*_>p3VBC4GE!)T{d4A{K?XxH!=0i2zgfwKa}WQM1mKoS$#+9uhL;UJXd+
zofT*1SblCjy;!Z~!cBh9+=qu+PnDjF|9yF>w>X1CO^r?2`+KoZHtkvQ>+5T6Q|?#t
zj3qlOKdY6!y_LEu>E)FLj?7E>FK$Xb{bkwi>hF4G@9sn{sa?7L`r&r|jdg#k_P%^}
ze*XIJQv1EGC?9|M`^}1#_ow&E*#>3l$1mIC*thWg2Fv1S5@*!kpQvD!U99*jTcgFG
z;!pOqH3t{F_nT}})asRJ2w1tT;$za&`4!*a-R-^QHdoKuI{I;%%OsUQujBtSDfCYf
zm6Yu4>EW4M$)UJqmTc{xkH-U6h6p$<D1Uzs)ONjR^df4x+^nL<$9h2na8dOS53zz;
z@khUP&)s$H@%sJ$4sA?6zUA8TB}){Plny1hU%a+9dU4&~Ujj}E*VaU`<v*G{c{1-a
z(~1uX9Et@mE-0RvWy;MUASTv!YO1z$wTBh2yq!$Loj0KUaaNamq)fdQFRrYstE+o)
zaWQ*~K*ZLp&_+j43vxr&RjuYs(7}5xEi7xFK0iPI_?4Bxj3*ec*#G;;-}_bBy{~2O
zUfUJ{&`AX6=31v0*x%lkYix1rT=%9eTaGj^GApz=#Kg=o+7uWU85t>Il+tnU{KS<J
zk&%i<MnX;;b8ISuD(j!Bwj8*y(7C%rnCpbI#_e0ToH!Z{laD>Pwl+E{({H|AZ|3D?
zj0{?#t6D%U{ml9LldBp!o7$>t-|ziCMZUo9-;ZP&tCAB5zm(nk_5|c^jJg*U9jp9;
zvFO9Xck(Oz?=hO_#qRoY=;_N_TeY=9Rxl{CEc2PU=(BP8-(RIq>wDI&&E5DVSGg*6
z?;1|GjyTq<tHZ@7sc`!H`!C*p^4vKwQLPYAH|omjaR2Psii#aZ!ntQ>nSv*e`eZDX
zl9H2;etUcSsCayh;-5c%jvVO}-umg^`TBp0b6&rBqXRnh3bboaP+VO7+xz?aY3Jr>
z&N9!}0}WPeeS2=M^;FLld-m=Hok*#al$3PjU^6?|s5x`yw9KDBzo5L_JWJ_NliF3Q
z%1=v<t+^At+)otLT~+s+Bd|IByqIa$6_D#pvag*<m<MWTrFl<R@dVA(fJQe!{Y_zY
zKk$^?_j}d;H*VjS)(Q6V>M}aKy{cY2Y>hz$&#@C{&V;08gLJ*P;Fxn~N8phoM?ixW
zTE?pFZEaF>IBhL0BSB*(n(^IYx}YW1N`11{Y9No#v#ma|{eGSHtu2|#XU?2)>6f$J
z@`;0+TUcwV*N>k+In&eAAHI2`v+vg{?ZP)V3_%z)I{EO)lO<CgUyrZ9TIuup`g-xS
zv^3CAU~;lD=p;Y0+*>N3p!oRs_|aXZuaBtDuTfeRwpL5UQz&|S-qjoXcBt*E`SN1o
zhi~7)&gHtG4omP#n~7*m^?H2g)$ERdr9q+=f{B5rX3d$SvuDqqDVyBf+`8skmxG33
z1Vu$v@6~+v1@$>VbEtp!zHq77oPIv++vArnH9^tjH^)K|v<$_t@R7^I2M-qbMD0pG
z-Z#DM%rT7&r9(eIKi7Wk-Y=)SXz}8sN4v#Ac<Z{S8<UT>^!E0Gy1sYr#C&;sJA6&-
z?l4e1Ojh^r@||tgslWeE5GXNuOi}@zld<;i%I`~G|2DNRwVR~U8Mn8pQ#X2B$BP#k
z8w(%1UEEt;uIM@G*!St{Y(PDmDLWmT*^<7$yQ`$A=xBLt&*bT1CF{23-Cb2<KSev-
z&u5-ZBxo-@=oI}&yWj5<mXnh^_3i)f`~ORxCBFG6{p*atUM^7iRQlsX;?vVrKR!Hc
zz4h(?zxV&Yoa>uCX_8Xaw>O~St54@u{?A`nFK~I8uP|ua^!BTw4IGL`Rs=5o@@~7=
zR4pYtySN{}esOtD>XK>TP&~hCZGOGhRIeUc>uW1)l9Q5Lo}QZeRc`aIwABlYdL;~<
zlr_A3eRV%b^nhkkAHILT{=0>B$qR+D_xExQ7zCZ>Y3_FI7GvFK4jMVLsn~GsTV=k~
zw%prlZ{EHw&CAcr%PUw`qS$g{Q)+iXaj|j5xlpaC8#ZhZ01Zms*tWrZ$FF<&P8^_}
z7pe=cZ~gDs%qIFn&Ztc7%c5ytzr4JB=<wmg36bJD5exS0tNy<3;9p6j+*>A~{!)3o
znVDJA%}uFR+jY++>v=euU-h4FCwg^N=;hyYr`-Se_&E0;y?}bRX?n4%w$>&xP1v!+
z;^C`TtG>&yv$A$BS+a!b^PeY^{lC;L`&=h3QnIc^AnD{JRWFCd??3<edOiO2-F*g(
z9sADnTwJ~2jQPQ;Z*L?)b3r99E-<cJw=Q61NY(AQ<HwILuKoS3prD{(^=fTU|IRPw
z%W3`np!Uy(jT;;1&zG<J^YQrfN{J<)(`ctoT)(UIb=ZpB-KDRWg`9p~ZyymIo&5FH
z)f?OM<$ryB-M%Vx^`UFmKm!e+y@%8FVn2L7Z~r>?+~=3e=Rdl$vlz6P<JHyG?C$RF
z5fKpw?%tJ6OiY|%l-hOg`-2`y;|)nixlHo!$@KO0ZP>cib#2sEgStNzF7ED&)6ULf
zNGLd>@BI4H??0c<gN_?*X>UJ#^eAgsSlEYe-#|xLY^?sC2O5%ednzd-)59&U2b$M%
zcztc{!-o$Uxw*M5EG$6l{|>kD9-e1g{owKA<PA2jJXKUZo#xxsCZwjOUMUnga{4s)
z#*G_)oUi}aT=n(U!E4vV&Ye4#ac74i=;)r@+uIHvI<)A(<C607<NyBt-k5q?Y|rm^
zyFp79-n@B}keSI@US4jJd5I<YSkJ*mW_HkS)47!$bJUt;tx67nwx1R}aQN}-*P&CV
zxa8#IUfkPj%_ncy6S&w-(q>tothJJ%q2T4^{_Y@0zkJE*?d^Tz)~!WZS698bvlD!_
zl8TzzBG+!QsN3StYLhf_-`?5^N_ai8)?#&absM&AbNl(}>BUu{+MqR^pP!#M&#FKA
zb)MN2GX(_(&>8nL43oc1`}*<maj#$EGppU+UiP<l&B@Ve<B<f7@gBZ*P3+sZZ!2PV
zo4NH$wf^`~(Hr=Kt60X>Gy2Bcw{PBn4hZd$u@u^xeZ6h&+_~p0&8|2(JAb?$U!VBy
z&dwKCRtjr{t>Mtt*1mD$255Q*wC`_<X0U*~e11V#RWfL~iJl%GXo9Auwia|)XLxw{
zo{z_*e|)>0U-;)o;o@fte!g109u#OM+1Gg1ty^bcZr-lqDYaO5m1xPj-(O$1|M*ey
zwC3jR+aRZ2T^)Y>!a`?3Y3c5b$;ZWB?&#I!4)mPVVsP-l_4ON8hpz{Xq=LGktHRcH
z{r&wt`Qf3~j-H+?9_62(`LeLG9=v%|QrW%l$Ygc!5{U&xPfuACK4Lj@w%Fa|-~Ipp
z+8-WnU+ms52Rd_Op>z9&l#@cB<mL6-Pf2Uf&(F_6CzMZ6;XK|ium5SymG!fx=|(>~
z(8$ce&3$-Z?QgGL7E2CKP;~xqT7Un6+qa`7mv(h@a4kP`o;hft6RV1<>cP8rWiMX5
zm~msn!gD3T%X}QYytp1cdK9oR$(6z3a2xN%ZMo5)C2*2zCZ?vM^J~9JT9v=+xw<->
znE`a%{hBp8KJ#oOo!j|zFRf2=Nxj*`%FS@XIcnOr2hDM{D_5?(v7=B~#nWlATd&tH
z3m2F5YmM%+c;Ef9RN?jY_2H|!uSRXp<F&W9@10l+8p%*mS5H3DAt-hG|NZ}e<w0jR
zu8rO<7XPsG)P!bse$WX21Qk!oon0#|B&AMjT3buM-~WH#r8nC&4%-V0PAyH{$96<w
zd*0nccXyYU{(B@PCDrxz_IB;{$;ru#Cz2mL58Yo^yCOvE$gyKeN=lEOip^Lt1w4U!
z=~BV7Gm<r5F1j-?`1_v^vb9mYoilyT$;s-Ek8}!yb{v65=63Aft*olbTL0%GJLq7$
z88ak2CbewKy}ih}oliA3MrqM?F=hef70-)LSj+90HGR7Hq{)*fPMiqJ^mq2vN~fiz
z6%-d=_DD}mWDE}vpPRf-cw*k!+2+SV3-qo}Qh9h>zFueBx##N_8Qs%ef8^-#<Bw14
z@4phY?%jpkTQY;!#O&O};^pQNQf0tk=;Y<a#qeU!%fR!KW=)#J#LdmUWXX~Pmo5dR
z+g-bM%`46&#9*oytLLN#4<0mBeSMX9sD(2FbTf$f>!puQn5w4#`SEc@<Yu*RZ*Deg
zhp&5ZZ*TR96DL50uarqf!@a%Li^JE)smA&!ExInpETDYj#tnvsbCLyDjm=kIzH#G*
zf~{?Ay4}i^E4{2@-`(HeKi9ha(Dm!r6RZ|(N_u;1Yt-qaq$IBeD$72;-F{!|y!YqA
zeWwl`J}f9Fx31iFJ-6V}B}*QhnyQ^~ecjx!ZgC?%W&!0Dv*T9IPI_AU`&;gg9Xk#j
zI^^Uzd+OBI-{0S7@6j|iGWzh~ATwxc<$WEfukxhud}l{T$BU=Y+j3?e{8{B;&!*tE
zB48mCXx2V>xnJg5>%vDYO-)Txt~)w93OGHuvNBl8*VS*HP3N08IlWtc{`~ceX~O*r
z|Ni|uTF&t0l$33iN!pniftQXd2tWL)7hSRUv{>BxO^^Tl{QTnf_Vq>g-CB<`9Pzlj
ztMu?BRquk&&wNug?(MDq4r+iTAA23PHtOKfqpZcx&Rpbhcy?wcv$eH#$(tL2@9nOf
zT?bm9CnWS~QeR7)YF}U9o@=Qb>&tH*dL6s%L)CQK9KHXKBpMigyj(v2!-t2?pz}i+
zHe_B_1C1Cme0bO{f9T*r#>dC|kKfvwEhr|o><s8SixL(#wyYlZ{M_7LPzr74w{ti@
z&-UWFSZmPMe(kU|2d=CPe)!}`h)}x+XqChluLK6BgkN7?o(h;hN#!Bvyo&Yv|8X&Z
zPAQX-kqKBCq$*=kz#w1yMG&+`*4x_~v>@T~a{usO^(#Q#q-oQpfeOcsm7mi<YbT$b
znfc?n{r}8Q$;zO`h*eV!7#Jtan2`};RbOA<>&eb5X_6tp#w!&vB?+`@MR2Oss!4hb
zfsxmi`_G@G$23y_9st6U{fr!eoR93+Y-+u}I|mZ>ojsssh*%cBC@Co!NwUFK$MAsG
z&vbO0NC7Po5)>4ic+!9YwmOo*3FL1VwZjZ8Aagp<R?v(Zq%=8k@Pv_O%ZnEophLd;
z`uafYJ#KByZoj<T|Fw^_ynO$+x3>=;JP2wlcJ%Zd`TP63Z%h&>)h!C|uJjatP%0=a
z+?;lH*1_Y)*@e~pT*AV{($3H8-LS!6jzuApY1Wm1OZWCv3ZI>2+PrzQF{lq_Q~8PI
ze$8iI(9pQBy5E62bC%BqC6ZHW_c*0rem-yCzILr{pR6^Ty1F{Uf!*)-aogM5gATjR
zzP2XtlHW`tR!vP!&=G@2yF?ioK&wx0Z_5R3h2fF2+2PXH2r_HMl8v0xCW6{jX1TXC
z4ze?Vu8DB%76YvZnrC0XPA7hUovl^rt0gS*3>S8lX8-v4Q&CIn)RL!aAg_TklwnX*
zlvGYm&X#GnZ{1R|wUtdjH-`~43Bq0e{+??y8}F7&ZEbBzW@g`(PM-?0@<r%Th9e%P
z+1HM2Og^sA5-=?_CFQ}7kB=Fi)X6gxfOZ=;OrJhIOfD`i4s<fIn_C;Fmk%hHe0i0~
zkhDZl*$s5qBQrbSk)NNRgLX1~d3~MV)6<ioVagPdUUzM6?X@;*)~+?ZBmm0OQ%!js
zdQ5U|7=QvsJA9qXT&q&hmWm@sTtKZr2GEs83|_`-w`?(4YZDY44A&;Zx>^7<mI68~
zC;j}q*2RmJUtL+*%qgtK06I~H;fdMaAoHWAUVnRgyP&YJv9-1J;9t<OFMWM|Qm21?
zdD(1N`%C0_BFGUF1;f_GbWYU{&(f*>@*<FP>as5rT<-bthGZ;UxNt}DbG~(Pdspdv
z{_w%!^fcX#Sy#1sw`|S23c6>Z?ESs9#_MOykhrowUjE|6iyWMsl`Fwvzv$58zfl)A
za)t?l&iYvHH}}wsi;GRCmA}5m8@(+j&}td;fqQ$aLF<L**;dcmH3JlYF6(*B4jNrr
z=-duk4+-iIT)isl-Y<7_k!$ydYti`+5A)k!@vyG@Qvo_MF)=Yw!m>zZo=s)b%gf7^
z4GaYS{{F5%lUV^A^Q;C8hCxTWL=*G!`amZ?o}8?{B4{bsGQYW97Z<xbFTJ$JV^zpX
zAwC(4hJL$W9FLFnf)=Y;mA-0ud3m|`jsMM{q_DyynIUP(s?gO*zrVe8TmJp~cm0qm
zknxK)HPjCIQgiQw{r}k}P4e0$0t);uyAm0kTGdzrwrV|i%6eyS^rfYsN?_4-PG$kE
zEz#Q>+WDV8-?&jVS_~8bReKE>7CQZY+<)i!a{uWumY~pj@ijT_66=ENr#GiNtdDD$
zD=Q$Nz^=eA&m>>R5fRCF?V3Y|#)b9qp3|p*RL8mUIIIZJi({E*!^p<ZrlZr)%-$Hf
zx?!oe>19Jm{S$kGrJL*NP2-=1UosR71UmZJ*TrA=n?5!5RuL%cTzuWg=pkA1S#83M
z74?7DMjv=}^}yxjw_aa4{pRgcwTQ^b16`uGUYg~z$=PVk`y?bNC>Z$iAj1+KDQmHg
zo-6z7?pQ1+&wra1+EB*u=oMGY&P8+Iz1`mU>}>ba9iRXS=`vu@Y<_ola{KwS=dSII
zv)!_8ofJ>0u#UC$Pkl|!ihnWlq@TRqZhCp1b$CrGsJvNp3FM$J9~R1ZyvS;sI*o0P
z{ruT_`<MGO78f756jYa+$9Ln#o;{l&PC3M|gy+T<&IwEI^gVoa;L(@NgjXR8A~)aJ
z!pZ57w(QTJi^@L@Rak!ftN!`(^75k3+Mbv0^{-$5ZPTZxjl9xbPYpnUxI!d>A&BkI
zm&t!t<OMC|)A5_nrsl)ICx4FD>fgWUx-Va+GEaSe{;68zVz-m0=i5%69rx0xRBJ=+
z?zG+$e}5l1(s{JX0_4{(QppTKY&UM7?k|6LqQ5fR;fj#ZljB!HeqKE6%olQQ&c!p{
zvCNCQx0+tqSNn0wOpw)H>TC+B4ZDsd9pOm$SEFDn`{B!!Y`ZII=h^yXCjM?<C}Q~Z
zVPV>YqMw`Yh<I~4l#~ixR5TQnu$P-*>^{#v<+<P4uTCdk%h}g$d<<&*EV|ClJi*98
z)<DLNheuM$KL1`!@s!o`>zHPlU0uhxv%=8)taSbf->sJ}Dfo*#dcza5d)e0grr8Z*
zx(#f+4Ic^)+?JkU=F8WRc8*2O_mWTjpNe-@poFS*SE6AG<F2;bq316q=JH-yH+Of8
zY(quWDN&j7cMOh>4PL6>pEERgPiI&Yt-k-pW_RuPeX@;ze>YB6e|oF$#fv+oa&kL;
z4_>*lRYy*))y@QDX4P2(hRU;`1?kRLu1Zb#o$-X<qU3DGy%mB9iHuj)a)+#$0kUMr
zZszj$rzZ3K`o&aNw=**+NWopa;T(gC{nrV583ZIW&dV-RW7&{9`_G-DOAo98h3N~^
z;|xzsw`W{bIy2uszVht@hMG^EX;P&OkDjv5n0fNNcIc$`>$Q)051iFC&&|?GNM#LK
zp|Ibsz+oM4<_!aL-wE}rWM)=WosxCtQZxvV^Ype|`0(A`PX-4Y{&fn18u}}~BrtrE
zs-BR)>QfKT&%nD@UT<$2FUXCqT(bIzOJ!RTKYzmOum`W#KYbROm6=(zc}@Kv=8UUe
zanBwy{`s-^PWa<@u@62puog|Zw0e44X`3Ju^HcXy<2ByXi>^cRtkz$NhCRoUl9Ns2
zRzLqP;ADLF^75kI_Pu-WDBigrANTInD%<7mS*v6kX3RYKk(FVJw)+3pwo}5~x8~Zb
zx(i)hb&}EJpR82C^1eSS`l8?6Ihk9vbe_gUP}q3svnj0K_~c0n_~t-{zl$GboxQuU
z(s)Bs>nEdpfloi57cnp~gswW#|7u~SsJK4U)zzncH(a{ZBV}*CykkX(XWg5-(l2g{
zTh!Za-zg4WGv484&!(_`;qiX?#}5y;gVq2rDCp|)et&=e_{+<k3=E!^eEz?Q+{duQ
zTl~S@@~P8<mosh6db%!*om)4WX@32@&U<?&n;P#a@m%*efIm9b#dwXddP6Js)2Qhi
z3?BR{P54=)pyl;$HWQ>dt;K!Ddly4UMPFZE)ag^x_4yZwHtdah&2u)6?}X#QD=QCJ
zzki~0;tYe>`i9Eu>voi6vaAY=ZG7`4$72$UO+DY8U8?K~^X3)(GERTOr#9Cr)7{>Z
ziRp<w!whr&6@kj-vdjWXN=l11HJd6d?J7%PI$^5t^LG`)g%`Ugnmc&z{>|~?zI?<c
z7VV;0S+P5dT;nSL?)vlM^=xU&lJ|PoSG~E)S68w!D)jSKt3J?{C?%yum--n!Rz6~3
zIC1XGTCWqQCTZ)ITx)pp(qxjkL*=}6hf*1Cn&)es?vuCGvJd?Jy`X5)@js=dXYUsL
zt*ZPxS)I*$Wl*MHorHvjeljm;(S6{{;|xneCNfW0?zxk(p(;g3U0wEM{{66d&v*mm
zmaGooJ+QS~d}?Z;{eK<%K!2@8_YPbOtJ8^>n_<jeP%>q9y6A&9kvo~xY-Kw-Cb-{C
z0ynxtei<@U@`kPo;VixK_-59G*$K9%HiSlnzvOYaB3!Sc%IMzD^zoyVslv?(?FV<2
zyp>`&z;~cGdi#^9KbZwgzveVC6uh5z@pw|=#Ap>rcW9|R^MvaGpcTPI%k;Nz*uZds
z^MEjeFayKP4G#Tsoe|sKthjXFY4QCkKa--GYdSGipM4j23P(ggoqO7u&!KFN4JQK!
z%ZBH_O5fbwEgsD;dnk+HcKv@@PfyQ?@O?IA%sbvZV%m~Ff3~aQGd9L23@wmWgqM9^
z(^n}kZ|~ERU%3j3iVi(Kp0A**%Wb;)Ujz5_?TiuarLWf|+}-t*LF)OE(~}*~d4%?w
z<uEXGJV^<usSvxp{km&A-_DcYp4+f7{IE3@&AqkdWbDs#)&-@dp=rtAGw#WFE?l_t
z_2fxK)+?nOA=@HSnX?_@oL|0t>BRs#pNrq_2TxsHUxeLB=1&HDxEU&(*6p5P`A=Er
zJD<I(>pO>aX{oGlZZ8jPWMrsk*uW4F>~DGHAUngI{q^yiovYs8J1|YxO<wqS1E@VY
zm6yjM&e(}#$<n2aAJ{L5Mn*<feDPTKP-FQLFQx~KJKs5_)xRsRF)dV@XIIIzWXXe<
zFD~w!`Rga+$B$9Jz1SZxDID%7y1F8e`NuQq6#scW|CuUEJ}6w+x%uMpqf(Gm-pF_&
zTg}*5*oouJY;&dq>p=%H9&Rs^?=SLF@3NlY+}?JojPt~S9iEdn6yCLR;J9<<^6Qw8
z)oSPS_!1(vSATGB*>q0S!QR;T#xrgAiV6$RHcL6%Dh7r%Yt}HBo6BTgWSY<LBW|vN
z?cEiRp^425RO+ADD({fCEb?4(SsrhP8v~Pq|BV9W=Yh8KkN2jZpHkXiThlN{vHW>m
zf!NaxL6Ogc_Sx8|`yIJh^AvQ14yYfqVueP{x0~r6etv8We?A_UXJ9ZcJ!G8TW2IN-
zq^_i-q$MrUuqW*bW5=x4*4;tONpmMn+HB&Py*tmc|9DZF_Wp_Kn-0A8^E>eL^nrb~
z2QDx7U{6R>YZo}zE5#TWw_=9A{nsjng3?mgq9P-`xIG>Gc0U*xK1dc>ZT$ardf@S+
zp#6|8E~(7S6P$Kbd{nCXt`#871zQX7jyFF)|HjRm2k+mP2c6>8RrFZDyT9N4_qVqX
zA3R_P4-a>7b2~M6OSj`chLnGQ&U*27e0jpTjM?JR(sf=Z+*-NLKYd#??MUpdmJo*e
znEiaa=cGlX$HYA0NcfcU;HL2s#uv9%3g4^!4&IfKae+aP!R}J9nz*<)=z!VN)Ag@M
z$ni<YHf-P&12xue9$+})VV-vfG<XWS&-Bmd`Ts$;m-n0BuMv)~`>Cp=RP@^iG}3c+
zmg(WAr>B1e-F_bb|Cji-yt`c=J`|*+rHSp7`N=$?=xNr2hll4RmdV>6lVHeCyL<5B
z;*$(ok9WWSrnn*|RkfC_!Ghtqu+W8#$?l+SY{!L!8~yEBA3bVNcAvnuVA+0q&|Ti3
zn?@KJCp>!eA>KB%=&a=5tlQgiGp??hYUG(@SzP?!f#c$5ERfNF5VHa~0cG9DO)UNL
z_Qx(Rb_eZkWH|8PVDrSOQ(KpMPk(fAv3o&D$&o3V!4oD;YTB{GB4mw*c}&)g4T`t6
z<#xMvi-9(-yK1$|G(>2wpFHWw&2zG{jCan>{PyQ%Fbn%_#vP6K_L{mc+QfE&`@mNF
ze+Ra|-^*@nY%F76CsXmi_D$6f0sAwvT1`BgruOze>suXq`t9|J{Z<T?g^yT{^-8zz
zwLH7$&YL$4cXv0g&{z<z4?5B}fB#>zK6!h-_C1Fgnjr<#DXwb`5-&ad=7Z)zdY{gl
zH!omi$c8OjSQysC@0XivRT|X9&yaC<m+7BBe*{EDL!T6#VC-oB^y`$Ug08MQ!_VLO
zl@C8Z-(YmTN7tS~fLVd%fGNW|Kff2(*UN+U?%cQ$u_Sz5k08S~rX9L1MK)a3)epX8
z&Q0aw<UIJ~<YdFTKNWla|NGt1)#c>j!SQbO@6IPChi6%r>z$i#zrG~od^fBpV-`?u
zZEbbrXl!I=fAr<$Wl&uXx?+B3@$;l7Cnj##xbfiH=<NmH-^H3_TyV(#ec?jDkz>ci
zcFGhnJX*QOuE?dXq?mbvv5@G5_m&Oij4aG6CV&35`n;X<&reT39+L(Y#=OgojZCa&
zMMp+DdOI|HGhzUZ<-OT_-XQgq$d4aCK(h@$J{;!%s9-6%vh)>0`MZoI=Pw0bJ?QrW
z)WA+<W)@K1nth#bvbz7VcXxLS%E<7@%gejCxI8$_Z-3;=%gc-m+w<?UF;rAmX6C+s
z`n2`Qla!Pc3FEc%>ngJyZf#-w_I~>G>MAEbt6N(pip$un*ciKXj{ARy%CaxN)<!Wh
zG&MCPWM+0=_)zfVu2VWg5XV%llhs=+tHlD<{j=8mj*bnU4B05xaf*#iq4mM**WF^e
zQ3?P4`~+QD0Xn5gGk96Tw>LK#7WA|&ef{k2ty@vby&Lu7Sk}c(o_~J_W6ZuBwgbYG
zR4%L%T`=$5;ls>D3_>zIS5`2-x!EjXZ?7uvFD}k-z+PDyv|gWuon1Ti>&K55Z>`_Q
z06Hyb$1=SMjEt38-pgd{`QF^)op@Q&)-wJr&jDz8#A>}zI`itPP|zMKy|_Iqt`wBK
zy#=Z`KpS2!Ecchc@ucL=Ir|_{h9%3EF*Qs&7GauoqTh+(-aUp7Y7K7-O3%7^blf@a
zG^yd!Q^oI$g@uewO$~?J1?Nmy@FZDIhUd*)?qX@_miG4SH;aRodhM8DEVyviK87V_
zZ*RFx-CgtZ)2YuP4B>|l7w%5?XE@Nz&Tn!lEhR<4I@+ns?0z382A9gd|IuTTeom&P
zr6t33{i{n$xyAJ3K-Z<DmgtlQui2A#e;=>7xOhZFgvgHd7Z<x9zIZV(`OB@T+P@iI
zO#Xa|`CZ>ijy=Dv8@3gcvg(}K^pxSq&B(m|t!carJ6~SqWmpl;e`B}!31h~Evz9Mk
zer?ktvx7_xSyxv*ytLHYgW&=9iN%SIyV+Efl$gZz>pEXwpF81pL{CRY$BLA-F*}8{
z!`EGj`1a!BVj(Txmj@Y+c$B}p)9CGIyljt=k&!}+Lt2`eR>+EmPft&SPR)*b={Lus
zalrzG#otVmkMXp$v?wSt-q_?CcWsI1J&}1Ic2o(?oA|JxT)gP*@yExD)VajP9b{EP
z*Y_EV>nn*eu<<Y$88OHnW>}qWI^VKbtxn#QD^Oz|!;>p3gDW<r^Xq+k(df*u?@Z*p
z{cI{$R#FaT^K89!KiPqLAYI<`?P@_0+M8-<Xt*MNe;w!46(tGs0-*cS70t}TR<FF&
zC90i}mbUCm<%?@;rMKnWY?^JJua)`j-QDh%7M3q(GMiG?>{)y-tM9>WS<%hwnHid1
zr7dz|ebQI;^wFft%CZgp{4x_Sr{29T{^O&2<zBhO#KeH}=K^IIJ0?#S-m|;h{q)=0
z7wyk~YH48sZ7`^;{e4ZB;pT}`3Hl{UpmuK`W5>jQU)R?wYHM@*&Ne$*|L?Q>nVH7y
z`Fp>LndRPUacpMOJUat)CR=oLbW3Y1Xu9dhmdwi+HmCcuu(2(w|NpP`)^qv#6MwB4
zb{bd3{nxW+XZUb=#r_Y6`5E5bogBVn*E2SSr>CCgO~`+=e-CK!I73mq!0$OxQfn(6
zx)!DRRy?oVS^vKd6fe5Eyx>!>y_qNUuBqn#^3(yG7+IJFltFv;L6<v#W|}OEpMmZI
z@$m6Ea%E-k)W8i4Kh^#nXk=ayx7P|(-oL!Od~xt{zZ+Y#rw9JE|72Awm2t(RZe5=~
z!+|?Cl2`XUxwvK3^7+ndqZst!r-g^DoMfyb#$dhsPVbe8J$!<Kf)(H1NXEp*CQcXb
z0oAIj*0BBj<@D+6(a#SLPn<Oiv=Zgv&(F_0y1P$bj#rb8oC(?{t)!&&_6GYB0g(H2
zU-?P0{rLSm`S-WCuJ`W0yzH<&@4&^y4oQ!K8NM+vMBmPFh;<f}*SC+`qru<$^aaP0
zGY1>j#WudaUYxFNasYH1X+pmK`^Ph@YVJQ$@O0Q+wqd3*d&CBYxBq@|hlPb%l)Z_V
zXEr5r4m)U`Vg*kE?+I-!+t_*k7yHQ`xD%sb_HEaubLY;*yer{j`2Fo<Kcs(n{_fqz
zDIyE1%PVUYpUJ(vu~C^p!65z6p`^?E_WqeMjqP;pZ_qgvpmTbkm3}QuRqh7w9}Zl3
zTxvr2mAkt?EncpkkUF*Z%$YltraC$yMGTJ~G0E8R*wpj=`6?c;HY$(JQds`b8J~Z~
zK@JWLMu`a<PtB~9W!R9+UQ<&8I%xThhev~L!*a+J%qf;@4SN>7yE9RK?V5jWJ1eai
z%v0y?+^NE@kiSned}_=-o+C#X)_<B%@bna;_cR9EDu&%<3zJ&8K&v&xbYi=_7*tX=
zL)uP~AO63&TRq43>%Ze4zuzj}-&H6*rLb4XNYB$K@8OYvC)4f}Y1&Wp^YaYR3!K;&
z9MoaOsXEnzQ`Rdp>6oVIBA=NvPvr8X9gEqw-~QQ|b$5HDX5GAg{qx5e?4M)r@BNm3
zwp{x6-u?HtiZLGX6=j>C8SLg+6yx;teg5Qgb2N8sSr<~UdBU5VmC5eQuT@-px5Igs
zfumKSlc`yLSX|t^eU=pgS5-YLPo3WXq4N_11H%VC76J3Avu3G#TGjoD_Ixh0ja8&C
zDv{ylmX!~TcK1qIuHEN-ZPU__#cf$NpL_Sd+%tobk%8fZC`i|&N$M|meEPh3%JlMQ
z^=nzprN8LU(a_*gxL>0jy82uD^joFUb#<3!=l^?O702qgLZQKcnTdhn!Cwo`yS_`8
zKJ~U*bmvaY(`RXa)_)cE6cx$%eLuvpS1QP%VahbMtLxt{^3r#_yDLjSGb3gWld+LW
z(*L^H`4iXwF|znB%fP_!u9e}@G9#l;DybUk>h3phF8_D^SN9U_r}b8QAKYFQ%Dt|o
z^vQ|!<@VoMM71<*l$^Xjf8z36;_p9w>cr(WX$}kw4144lkND2DpRcd!@7^yr)v(o^
zRcD9nuD8pbS?`Cf{FKe0x##!J<tyUjfBi_-RCQey6S<A~OalW0!w;r&jD^9LmX(t}
zO_@D=b^Q9KQlCjrmNyAs5tWG%a8Nlvi*e$TemkunpMSq!x<ca|ILHJ+K{h$qfH`P^
zL4(L0(?5E;f3_y?EMl#%y2az+(h{=w0n?sV#un8G1_p+E{i+dprwkjW{J%f{|J0Ps
z1Nqi|bE7`E?JG`CpB8TQ>WXGWQ|QJ;I!{kaFmW(2G;CLH*r9oxA;^Eymcaj^JMWk0
zTwV3xwD8rH%DK1ITwPBtvw=8*5$uTMFWC&57C-k)o|HOY`NyAP@sQ9{$NHvfg-&AQ
zon%_s{^?VsAO{1(gSQ+Cd9St`D=;!{e|`BM|EXW!|C^P)4l8gk^uN9)^5Arp*>+PC
z*;p7D4!r(2ar5j`XALJ6sd_#=^>jt$k$v&zZSCU!75LLM<A2TpNBma~g*>hA_0u0t
zUDDCO@bb*ec=NWF9m`f2g%t2{FoKM^E$DD3<lWDB<_^o!Q-%#sp6yz;!stlo1_lO(
z8fL~LzEA%>lbPT=b0%xKwf>%$4}N}Lr@f}<#+3CneopKR3?HiYJT4C2Y58;iy^k@I
zw&hRP+rQ_*`#4Dl9&fM-4B-chf-5cE{+$Y5dLbaT_+5-+vYXq%`EimCpQd;-fYNo<
znT8!J@5G$+uk@;XB3K)6BjfLT-l~Wht50ben?2QzXAxjvV8}nt(=q$hY2#19^K!m&
zy=z)GLEz=y?@RpcCO&!`8yzFLVNH#svm6@(!-q0ZaL-r&sqMciXz7B)9|bGx{x<3B
zr##jIMY3IE|D3xaar0E|pL(C2?XB$Y6})W6t|dlKk9)pgU|_IoloT+ZIz3<W#;M6n
z%uB`NOG+(M&!s)x$imIQaDe?o-+AAs&!azWmkgi&(8TQN=?_ILurT;}>^f7&Lm7}`
z<sS$#KIv4S7vSa9wfc0ys+#2B27Ok6bxo`c3=f2D9?9N+a&mI$<}}~Z7Z)78r|X5f
zJ>>nlCt}~mpI3M~=6_1v!4FDb*FSeKOqw%iP2}dZmq$8<cYQu*9lA9u^y~Zk@t`Fz
zadGojpVk)sdF=f5G>0QRARYQ2I?8K63;vIE3U96co>%+x>2xXcyg6lWZY-3ut<tcv
ziu!)1xZm#opW^W8k*j*n>mD?k)56EV@POIoooxJKw_cO%YdW%4B_7e+^FnWL%iWrA
zkSVtQ@7GoF`}d`tnXz!Od;hLoXZGvF?=xk7bR2A_|A!OhHIb2#Q9Fy4&a3(4x%c<G
z-Jd>x4&I)3_sWVuW#9RBv8AuBT#U}&`}CF3f1%_*A`hOw(wcKTt&k7m<QWV}Jr|Gl
zN}Hyf5C~lv<jTy>7m}5=3S^e7T}{O6YilphGR-b|aY6Cuv16~^*Z<$W+WVh(PY&0Y
z)8(a-evi|io^FooV_;y|;UZV4{)JOmE#vB{P^+RR9g7w(F1;RGp84Uy!Ck*zt?vHP
z+t+ukLr~eI;zNRXNYpHlQ>=}d>Wp*_GBGfGV3ZSd0Bu{1&fDqQ%+4RS+;475Wc{CG
zf7+z;E?ipbJvSuwropG+1^T)NgZA|>ZOxv(TAPu9VaJBO)v>XS&p&rC6g@d1*xK4U
zbw|CAPft=((y4U{%RdA!*#G`aL(2`LDfvoQ_v{4gaftlX!7yp=+_lZ@{HqEdA3K`&
z|JCaCA&cF3r|QSwJ2`bKZ*q@H{d_KkvrO^V<o>g)y}j-3)ujv!3^5nB-}l;n|J^Gs
zo7wIx6F{E5zpwVz#$@-6x83{Y*0%9VXPum+>bGu9&XZ@)PF-j6Sa9}4+P+I$ukYF=
z#K6$NZM?5|dW+Fx!Sug*H#fO{{P<D)&b`I%{GbuEPSL4r*R09$3`%Hl=kZ_pVYAND
zkNQ%ef~N9_^_}>-pRS_XVS65YTd_i8{f?gr3)ifX@eG>4f41Sr&74!Gzt26*$IQU+
zL#sccNmN#L?UE%+xbyCB&7Q6my6VZ1u2W%YX$N^cCh*6yoj$**L{Hs){oZf0R(pd2
zaDjZ?kAqiLD{T5X6!unqy;OYOc6r|2U80d)U(Z>;&v<!h>8{`JcE^UqzC3;I-+i7A
ze%1-I7#Xc5PhNc6ay2MluC8=psQhx#eQV}rwYx>9b+axl>69|fQt`aCIlcei@B9B(
zB_3|8db9C(Oib#_lc!EiRbgfQaZYFr<Mh~NakalroSFCbRS*LMgPw+_rl<Lxg67qy
zKV--WI)KiTk+m*+aZ-K$m070QTdKZhc?Qk3Dm6(xCE`2B;^U%s!jIl<+H}r)Qd6@{
zQiWH0s^*dN{#?AJrK$`J4B{d}LXTbv*~~k>=P)lf_vPe%+h?K1vf`6wzMRe2^7<Ad
z14D&<{|>Hc>n)3)%~8=*Qn_$+s>Q^!Zs1apQSP%~by(Om&?;+HH8m|;+t{D`cc-jQ
zjf^W+K4hG3r0V%F@u1$iBb_?lkBs&(FfhcOS7!1kD%x~wd;WUR;Q^aY>jhU;?a~Ta
zu^@Q4pQgUPzo>RtNJYht)u(k#)6a{YX=rKvb%BQiQcyR!>l~bAQMl;R<;z=>kMq5~
zzd!z%#M-E>Ug_uNTom@VSvX;WK<$Tv?CbP4UzuY&S=Ez^<4Z?PgjEEzP*ZBixw*+T
z`B+cj>1n#Dn?<MO^aKV3Oi=Tiv!YMd`qjPa_oanXmp;!q7U?-D9+bddCUA-|Ff{mo
z=qTUu{M_7NAD<o-O(UbAX{nmFws-gKEq#6M*OSTqF(I)pt$**IeBp1+3%3?XPUV#o
zbXd3J5f`X@nDpfR`}MD`uFgK*C;RQ~{hH6cP0f3sx4iul%vvu5YH>WswRxn{%qMI0
zVs81pi^}~rN}f_yB`ea-&RRNI-CxVzJ|46Q47A-tJUp_>?q|&wm6P@tls_fDd;l)Y
z=YtCKgY5EG#N%rgzIl_w%F6n3VY^&VR@SPp^>MoP_V&Co76JbDf48hYty5}e&V0yH
z0TLT_N&6plX<yl0p3ln4>NyE?7E{H?q`5YgLC5=KFK<dcEg~ry`K**j+RVpn_Szfz
z_V)HmmoB~e``z8$;jz2RLS0;17A;x?Dy?L#%ib)Scm6pOhcU$Lx9JY&=2|a5t-n8p
z-|oi(HNQD8E=9fD^;)m=-JP2Y&q^%5xY&Jl+1p!PeSOnZmM&ScBKP(-t@wR=($3FY
z+tb5i`}Iojt<CBELPA1M-p6l}udWIUSSjCpI|&jc1-}`Dq@=X!>+4%vTX*gf*_w6L
zYi-olqKw=7YIlR|y`8`R?me^OXFjQEX<6Uj-CY&8cbCda*KV;_cXn=`rW?IXP}%Lz
z%i`E&%)1`m+Pt)y;av~7iDh?Cd0N8PcXy*#hp(Sjc-a5Mbp3d}*=LtAGPB*deQizT
z;&*p<-#*-~Qu^jb;MdpJufJZuKW@?AZ5K;^wzEvB+MCx6HRWx(gUZVK|No?n(|SP3
zeWJ3vmYSNIqN1YfFVpO6XI7RzefI2Culc=z*=D&VM@7RuCItltmwtH>Xqta-kH`OM
zy3tvO+jv!Pl}|8QDx`Py6Bi_5amsz<GuP8Q_wReZ{l6V2%949@P6x%s%@bZd>0bT+
zT3P$LJBdF-A9lWIect>htfXX%-yDmDbLPmfvi$k@#;xO=XZ@w)t2cn#3hEUu43WD^
zR<8EexR$+s@3I329PXCg&i%IS%o!igP4OFFZ|BONHe=?@pUW9lJZ1)kglLAneul_Q
zJd#F7uBwWFR!6Um-5mx>4nIFVefzf6`|zgCo4ak)w6#w!JTK1~wk%|4k!I*?MugTK
zi?`pa@}4<!Cg17xOX8=;{rxsiq4m<GOCbxLTJ7ilouKxj_IBLS@9%Q+B@Gf94tKtb
zYX=4EfwOBOHacmCttrUx_V+IjG`)9Nnd!ubhll@f=}(P}+LY2Myh;<a=exDNeYJbP
z9N*ikt3rd9dQII@{QR6!zo&;sz~yDW-W$GGN=5vW^NruVZOW>z4B&9hTegG0L0DK=
zR9gD=qOLv7?kp2@qqm*dq|?4_&mNnlOP7KQr>R<@MXzd|Kxf>Yoo)X5+wJ`A^RIu5
z-dp|sn)doVi>6Ew`MtElJpbOBzrVk~eqaB;x^teg$|2>pWnTn9*}SI7ea~szk{1CR
z-&$H)Ry}ML|8mCo{ENf<_9aoa+TrU$;^N{aJ`Hb`t9qfhHg0cJVPT<^eI01H2sFrL
znt90uv=sSbam$p?3$+tGA+2X+n@4Uf;z9xf3pOSnf3<9O-lZEGljnZh1FE}Lg{)lE
zCu=RXd#_us)U92mt3hXKdQMi$JU7Sk)xEvD&GPO<G<~+`Y6<)CS@`N+uIJ!h3`_qE
z#-GN%vrI06_E0aky}x{Z-LK`fQf4_3k7o0UshgZxy!qkLWJo^z&{e)uzV63DCuir_
zShtm2JepPVg6oe7=`b)b%zq$gtZ;dmulBaTS5^k!+Lk+8NLcvmgJyoKovSuYQU0Ig
zm-jsj9Qq$P<pdq%YQJ1ex_x@O{(7s@R~ZivwMtnQEh+BS3XXjuf9d>HR||1iHNY~V
zX8!LKn^?wuX3R;OJu55Mtz%+fU`RcqeU9;?+dst^R&G#d>9{h}iFWzA7433WFPd(v
z`_EgW8@<h9<DyN^->0fy{jWJKfsujX2TMPPf^piJ3;y<hOAfx()YP11nA|3;tyK*w
zCn0@|CU=$z>-YTv6)?LVd=t}+dU0BRe@T*Ss=k8GnX9T6;@~3B?w~T0M_JjnbMx*0
zx8FWL*ZTR9u2b{;^$tD)7t-sW3o<SVT<li$dhPbEyJ<ZaK~2W1q2ZQ0S8aManXyF@
z)GP-ndNQy2-NkQjZ<pTA-Trd*`h7updFzUbi@!dd9{+0F?YztB^J|w?zuS5IYU;FA
z4Ic`^r$2~+Bn4rcM|KL$Y`maj&`fK8m8^~2>}D42n0M;@`RS>VRX-lKgBq~n;gP#)
zir63>N>GK|p<?^#gtC-L#stu~SMC45-zP1xDt)yge0|)i;N^YYtF>$Yft%nA`cDiQ
zU9>o4zTdCkzxs3mS3Nic4{%o=u~g{n?2OuwaFBJoe#8cc-R1Agl3Y{IKR?Hq2u&v)
z3`UioQgUx?dD(P(d(O>8?ecXuIz^}2{y*RV@&O_ll)b&RbX)H2xPod>>%RE8pL$rx
zw?BVvvr6y8ABUwYMiph{$Ncvv+|Dsux_r4cC{Bx^ePnPn?5+B`rSS1F?!5Z{f4_(B
zF3SZO!o<WB6Wde_=_r8;zn!1YS#PcTTXnbmeyvsMt0{Xy>2#JsViTw&y<7QwuHKpr
zUw+;}v_JNomId`y-rrlBKCja4^YioJTeGgJc&=Qz^3?hB*JaD^EaVhc+p*)+rKiQv
z2%Y~x@O_c)=}VWEdV}iky+5DL{w6K>?aj^Lz182tVq)g_&9hng>FMd+J1$)cuGn5a
z{~)+(276-Rx3{-f*Z%(Y?fvG>o41y|jr#iPs`vZ-|MzX$v?(S+_MZ@VxT2=XomIfo
z=vc<*XJ@1K)$9aC;#|AhsHs|^mku;C$Hq$i<AU_^Ipu^MK%x8e^z`hfr>6e;`FwtA
z<g{Pk->(N19lKtyo17ZCPEW9&6`IeY*(bc;|33~i3;5~j>92Ro@2{--`fAtTZ?~^*
zO7;Hw`no^J53jGSjg3uPDSdVS{?*<EcHkuOgJnCf!rJKVVNOm>pi@=sYJX*Xd~|fz
z!!~IZPj-H}lETu|>@N!(*XbSn39S|Gm^FYdhFKN5dfL3YUzvAnKA+uJ8W|ODb<GKy
zHu9?1UQeH28+P&H#a&OQMTcz73hkA%jgqhZGO<U$#_Qel=dZZt^n>aN2D^i~%qKuQ
zaZakwfAQd8^RDmrs=t0bF26eYcps=Cu*`3+*6B@qz8@)$p94#w1-BW3R)npMs`~M;
z{p(rt`!Bln_XYg__xJ1k|9{+%N%Tq@yDfI>y|k<J^`6&q3i~7+U=Fuy_!E|svj*hq
zzh5r<-`Y{Qcvs2GMWL(1H0|u-M76_8N-LKh4`+roj21I_D9%2+%x|t$CTM3`(UXp_
zH4zK@WUY7YT65`fHzFA`pU7urXI~w^zpm=}-13-Mua_Gu|7?h{fkr$3zRRuAkg{dI
z14CnV0(i(pUBKaioCP~**aXakx{^bofFBx;ECM^&p|QloafcZa*-VTq?;0Ut*T}&1
z{QxARfsKV^V1<SQw$Nq+$Oa^1A!A=GAhVzqNPW0CgNGJ}f~4f7x7&9^dUe)?hpviN
z*f4S2agLc&^0+rBYZbVkxnn~QPk8u)k01x?MtjXR+qsL2fuX^E+6;}O$9C=F>OTg~
z5DatL7(iwGflLli^AZcUXrhp?u&BKJ`V}iQT3cIR&dOeQar1e**B8>?-`o4@*4EWZ
zN=hQ4qDv1pv%kKvF<Ebw1Oo#@fqYEcccq*=I|4s`{FrrZ&CF$fb60)%P#|kl5zx*r
zzwNuHr)S{pZMmWQYAVmpvyGONl&pHSa`~3@^Kz;xDktvGm$w8BLW#d`^VU#Sc6M&#
z3GA1%{c=n?KW4-IGc%2+&YZdO?(Xu{RbO9CS|X+!wW9d>Ine2FZaoqY*Gyt$U|`sO
zSZIw9DBt$U*{+&tobEO0++1t*WS@z3pf%awTPySaGcYJHc)B=-yu17Mq4OlGvNxce
z@2|gJk1vnf%fP_UV6D_J<-)VGvqdE(SAq_{=9MxDsHoVXq^xY3c19vKJ>46*X?fyt
z^tPOpOO~jlPv-><Nr*CeaMpgmTYl=~$-wjTY_G13HV0K4<@YL=i|NIzczC$od(x##
zmsC72UcBfkCoe0zR#@FnLtXv&%2H;~cxy|sgV&2QGmTH3IdkQ1`Tez(pPzY7s`~nB
z>6<q>dw)FYo@JIh%gESR)zi_@(N#`fMn=c;)R{9O4h{{Ux!4&P818TwE2xSH2`PEL
zy1#$F^X~(V%&9#W)92Twy${}@@_PHGO`BxCfo%Grl;+^IB5G^auV=IKLza4pwtqV{
zRoi=#-#nYl_^QwyBCoeYn~*|h>p(|OJv}wGI78YXp@EG@qG07yW(I}_N^8*?kj)H1
zP8&CFytO5Ba!^oE$oe?j>guelRZE%_g4RZvhOP?nv@U<A^XW%R3yW#)tt~F+P4n;B
zm}XyFQv!1Q0aeX+%nyznaXEVI*sc{y?+*yA5qfod`}!V3P-E2j_afJB5di_vR!`4K
zRo~yOEq#4WQ&sioJ<xSSxAxcX|Ml(d>npQB$)Nl&j|Zn|?yV5esa%(qdQY7^d2!j>
zTQ3*)+g+NSzi(x`T$M-Y>aeLQwqGtdNA0cJ`smRkle#|@sVONL=jK>~h7;QOWMAEC
zW&jPr^e_|&##KCIy}Bkc*n7I(RnW;kvrMyJ%}k$n(f0eD<oCgg-FS2F?h5^Ww|u^u
z@2n*U4mgy)zZYBl?99Vg;h^#VN|p)T51v0?t{J>6<J1(*`Wx#L54YXgkk~wV6(}3p
zu!FNYLxB`%oSA`Pxgx0PILaMtp)uvcwYAZyn{Rg2{QUV-Q&I8Y!uR*~R$twk9q#Jl
zqM@bb)y&R+ZDaEBm=I7o_Q38>Y;42wo!{?OU)@t#+`esB>FZnn=S`ZlXj|^>RW(09
z&9bfDW@Kda<w~%B=J|QHULGD3_S@SRf#yE+?(xPik<Q!Uxcy$$Yu4@O=U4{MoH_H>
z-s<hE!q@A0W?fv=YE}MjP3q}snMXPV&uNK*N?&W8gS%ML&&>&pi;LTcqj&vojSwh<
zY<FSU>2bJ?H#j9_NmFz4)rHRNZ*Ofqy-(NFG!(Q;f0K*%q$p^?HjN8Zu*ptKm>Q6f
zumE&G>HfcO^H)V|T(s}!GwHK4jor=fRV)S_#tG_FWoBkhTJqw>3#I=4zP@Xn!s=5d
zPhQ;6z>q$jA7l(GlLzP4yt`3rqqlFXzrVM-95gu4D{X#liRa`m_p0A(8XE^s5)lyz
zdGhh#!Gn{QoH^qIP6ah$-W&ckff~~3=jZ);vA92_C(y&ALq*ftdbh{@HEVP{H+=_r
ztVYmSq5k62>GA76KR^Ha&CSi<mWH=_Z>-bS)%6wC3emXu=6DOIaLBqC%l2)I%xoD4
z8W@)bn=mji{JYX6s=X!YC|CQoFJDT;Lm%66DAZp(*vu{}BeUkihXPP1IB2QYt)0c`
z6YDrRIkRqU$?W`Q2`#_2c(XDv9B|dZD8IDc`91sp_kI1>ce~%O@}92uZQH%Q)!BD<
zm3n!4Zrq-GZ%^d!@9)F!@2i~~q|Ly<@L=5xM$LtFe}8GJsJL8@uivW`zHZI>{r{r6
z#dL!zDt4ruot66j`vqtI%&)Jmc6E1O{_*kg)QJ-pS{6TB;W=3iG|u&!4^(IsFtbb$
z0yXTm)ch<uJKNlUx&QpIrCw97Ecci9oof}kHT(Lu@2dkBw}FmB`2B9T|711apoD}4
zyUO3Mvn+mA@D=2mA2v)LoV~KvVadn)bOY~$#+nbe@utQIf?Qe&ZWb{#Tn6{X87z1~
zlS>1@?cKkco8i=@hlkt0p4Q)gLgF!KWVe9x^rn!NL8@0*1RlP+lwlHw!iS*s`~U4q
zJ2z(~=#oRw*!lx8Df7HFCnu|~&cDBJogS-Q9|P0+&%a);2i+U->e|}bpmR@VnP#6l
zfByW{R7QpeLY0-3UVeVpE-m%Gy1%~OQ>o>^QVxX=R>tY)Lbm7K{qk=2`%`I;P1G3}
zqPAo#jLzR1dUtpEb!UFtC2GF2R^;8?RpY=u{lQ(yJ*Pm9eL6ip>&Aw}7JdeXy2ELk
zGjD82w5s^9Ag=PMD5x%}tgKw8$8Fb9p7B9z|DR9YDl5~@&eB`Q!ocudSXfwjr9#h}
zTU))``DBYSZ9n+32vkfxv^v&sDG!4~VC#Q-Hg<MxbMx?%Cr|3F<Ji{$YV18|W@2V8
z{q)2$d^)4N3wX%caaw92A4g0R1JeSZIkwedX0v@ie*CyjkF{aCMa72&IcBrndZnIT
zu*<lha5Kkj>9S?hD&j#K<^KNq>b={AU3``Jhf)@S1E+7~Z0r72^>k|ZsWoD!H>E^|
z&3r4LdU|f0x6s0Cb4A%2TDislW!|5ix69LPw(t8rpZ!+a?oW*ruYG#>(vQ1SrcYO&
zeRkRGyj?H(=eOT)Zcu*5%v3ScUA}gU2j~{|l3!mkd*$uprpK1eJiKk0@9b%wphFmb
zeY>46Dkm4G_S^kt@$~CLckZ8<sQmR-_Il7Y_q$%N+pTv)-_kO2wt0To*H>4sE_Uw^
zs{UtL{0vn8u8P{4wesy|lOsotyttjeU-wf!E5su{bFH>|+`hEb8+5(p-Rk#ycRlLT
zo)hLBsh{s~vuOGCNnc)vzI#x2Yiss$&~Ztcnx4DM-|tJ1h}~1MvBz*}-TGx(p{rJS
zP1RbuZU3ZSo3AgKKVN=7dt=fD7VZX>m6e~Lb@lXwgoRC$tNW37b#=JEqoX5ex=sZ&
z-3O`-9zA*#vbU;~m6dg6*40(7E-&vF5*F@$^WN!n>bw2_>u%<lsj8`E{rvPa>)xK7
zPR`DuD}z*d<!o-$>5ErvOFrKB^55_G;mvHkB0@roxJ0#9WM5x*YgcLZ#C?&Gk+Y1`
z`_}FK7By8rKJMYehpS?DZv!=={Ox|aO!{)C_&j7NKJ)IbQa<nfpzc??yj+)I(Gw5J
z<SiK&7bR_f{``6N%}uGBZsveyCRIWGbkG#bm1VxtuI}#I8X6v^SywJBaBSX^e}A8l
z{df7f%trP9YGP}@UghHB3+t6Kg*LH7cF+IvrNs8<lgY0xENsrYvSQ(a1qz^<!0mU6
zx`l*<WPa&IZgOdCY}};dJ=-j|sKVFo-;c+W{{4`duw{$M-P-SWyE;1q3ko)XM&v-9
z;qUM6x`OqX&GrS2)S2bqTeD+_g{zCp3(%ZMP0gNf@9)PynlJi*Zw4cy!pelXMRj%i
zKt<i(-``hzPuJ_}>e_VwilL^aXTR;Y8IK-4y0SW4f2wx4pZ%W?&DYk&t}cCjE%Wj+
zUr?9Z>x<2_)R&#=^Dg}Q`ughTbbrvC?(OaQ*H^FKw+d8LTbI8}IlG1Z_Wt_)RwXYM
zY}sP6HUEAbs3>@Oc{ym{0W{dXe&4TEzrMfEe}8{_e*D_#?S5xxnO@$IcvwV4WXY5%
zBDuG>`9^QcxyWmN2Xq=eX#U~S<9_>fzrMcCesG}i+wu7NzhBo``20CHLDAWy@>2?^
zC0_jeTxdbThQr@LXBTN|YQDO(wEOS(Q||J$OF;EQ?eA}(KG~r|hrZk`zyGq={N9CK
zrLVudTt5HRs@3a$U4FjrLZ#UM@AdzeKc8P82bxumEx)_8p@9K(2BDXSM}VJSpOcf5
z%&+%1H@gQf_Y2)!_Etn*e*I~^-99Hzo{ZXEwia}oMedCaj<QxI6I6~KJC^n8%1Tg=
zCF}aSwFjHoZ+|a-+-v?Xaqs>5|9fw3$y~hHy?<5kazD@@$k)gH_MicLP^f<Wb~_&w
zEv|hZ*KWUe$@=}C#k2GGMJ6BXxj4_ZdQ0A2tG9P{27|WddhdN;$#dt}y4c-4Dx0&f
z>xEB$wDE_en7*3Yu^TyNljqE-IcRrwwz>JV)R|#xqh?-S?k|3`?$Z;`;#XHzD!m0c
zV`ap~MVU7@Ep`4q(>T2+HF6nvq#HCQw^8SG$eM_YG8P2~5~I)0v+X^bW-M)%vt!2L
zX5pz%wu(qgXEQM|o!M3TTIQDj9E(ILlZ=E@Q?=7CUB29Fcx=hirIM#N`TYL&w)^h&
zPGR*o_4_YmbG=&}zrXHS+UA+l<Lh>w*!JT`Me^pGXJ(mZzsYs)morU2KTr2k`S*8s
z)pT^u965g6dW*b8!GVZrscwBTFTv$-^5&a9US3^$b8m0UJ+?{b@&ZTZ->=U~ByZZZ
z$>;Pm-QLv5WpR6}_<no(`<GXo75(+`xV-PxRiVC*kM+vlDlRStDJXt^?&x0&y@>pF
zKG~kLX~zDxU#B?#R-a#!^ykkXpQop$`lh8V+gtnb(a~d@bc7`&GPdR3e)eHTr?9%z
z?6Yal&dv_c;oTqp<NuQ$N#iqjb{3yq6}sB%i^ZR=?^5-$#tIE8bFJ0i-hKV&dF}-V
zF5c3ApW_-*BSFQRl9Eza&h889*;})&2G!K;0ZkkQFZY}JLfGQ;rZ4^Vf1FEST`A0v
zH%w{)WxAFYmeRMkzFy)xbQClPwO6k~*EHjT!@|4|QNO-i_MbXq#)`zlZ7-kA&M&(W
zwy&nrcczhR`JKXckY2}Twwv2o+1SK(@Bj4l^z_WV>z?%PFLUdaT6#UcKDJw2zifse
z=vt?(iHF%j*TvjSj7(eVHMQ$5s2y}=U92^zWp-?a_bkEMmrJLoL{0;>1x}pssICqO
zm>^gGr?B+hot-C=>u$f_uDAbB(cP-oYom4)EUf$Y^ZEXgP1Qw3o9uqQP`<h@HX76?
zJiN^;_tuL1`}?A{W=*|U_dB<JrqjxVm65l%<;vayxyiElnMkA(+YVzU4h7LY+#S88
z|31IFrD~e}?9cPR%(_uqc0AbDZ}-dN|F7%&zZ?~hfAQkt;!`J2Zp`1T<E^QwsT#*5
z5PjzS?@y=or>peuGY0iax^1^@+LnD?&$PJt`la;wwQ8PLRbN)fRlnJ&bemt^PA9o%
z-`{W1o<Ubvg<joPTV4C(VLPZ&$=mxiY-{fAFx}{FAprpsg0sub^8akTywI8b>dIhu
zP%*c!_IJtCso`E)9Lzg+?vyginepe(9~rsLWpAVQemKPK<>PbZ<KyE~XV1>QpB6a{
zG+(x2#ft8As+yXfK_5>q%-i$v823Du{~wRbXaD>2^Vgrx=RwnSbM5QzEu1%H%9Q;g
z4t3Gtg{CDhE;xc_ae{(^CNex)yWjj_HHSh&$cKp!*2S)?j58OKl3KN4!-k~odw;!J
zEoGF_p`@gAWoL2v)m5S1iHV7ubiCzjJ~V<B!n}F&M#w(A(DCT~{SU$?so$Tu-LaYN
z*3+izLCofry0Z3lF+m5b{(rw$z5a&Xv{cY7m*3vsul*it`|rnNP=qb>nW>cA<K*lN
zYV?67Qsb<-AFbVA=GG&z5H$Vs@zGJxD3;3KDxt3(g32<#&ds$B7gqNR2??13+POc=
zG+RqW#bsLROVAPV^K7g2UVT56zjXO>@1Tw0$GJE-G`^L7JtmzG>Wgsk@`gS?Hy1R<
z-rCxFGHr9_=Vxa@v*LO?=iR?9Dk~fN=G&of!OQ(Dw?t2Sx)l~G8{`i1+S!(EwU2uC
z;lp8mZ6l+g-R1AM&3A~(`2X)OXthY>^yh+3&dzs})DDH7nyRgSdefIn-ujs*CMc>_
z`DA3QNINrQA?TFr<@4(<U0WNyHRYtx-Y=KDy}Z3I|N8p+^p33SAFjn)A8zBld}U?u
z*HhZ-Gp?<P1Wkg~{dmY;`s#`&xI=OJ?AfbZGB1PLFsiDmE0d0P@%_HJE%$c(s>Lxo
zizY2mcJEu^)+@z#yQrwB<kORrN{T6`rf70;at0<PEqZlr?duJ1kIUC@iJ!XG<P~T@
zz5DLGY15uv;Q!zj(<Xjk{;AWaFZbL3Td~Y{wiu`U&Ye3!#XxL`<ejsn*JIU_&#3ON
z-1FztY151g3ct_3GRwP@@&Cxqf|q>rzwFw6=(7!IrV%t#3c7+ZHPThjwfe~k!PJzL
z7j4pc8bWqPMn-SEr|N}1WM@1Y`>XQxwY8_tpVz<i@9+2fs{<FixgK(_tE=1iaB%_W
z)uVgV*6;lm<;m*3*T?X?;LS~`-8!c~z2rA~@Rvh@;op?`^XIP$U%zhs{(raj9dXmz
z!Fj!z-)@C-JKxTA7CWYvy}h+Ea&ubM*Q?=Mi=LiJ`mLg>dUN{1KYu=-KRR#A{CV@%
zZB9S0WngeY&ZeokSyV`9k$nB1jc@oEmM;1*PoenvIq(Qnm#Frt@bz(gwOsFie*~2Y
zcXk$k`!;8eOs}l<H~smSLH8s{CY#j$D*64|cao8@v1#R}CrR?bo6~&X-rnx--X~L-
zG2bZFYvcD@8+5#%o}Rvc#r2f4vrIvy0cgPX^YioNH@4OOF5CO>*K1I3zv|nY$VatI
z^V(D+7`##rwQzz~kAS*Rpq`G|Y+uk4vZA6*|GsVCpLw{Acb%SK-XqYA{Bpm!CIt^1
z&d#+C*Nxf|;NsH4CvUfA$r2TiGvaH%P6e&H0j-P5y}fPMw_Dj)R|G1Du8)gd?l<=m
z=#<?rUrK!E+1%WBEEYUk`}Otp)&BGCc0HSw4O$7}H`i)q=;|;%o1{PYe9iAJnK45G
zG?u(chga6>N}|ltrkl;x?{>O_Le2Dg%;FzEDpJ$avrkXcwW|HK<<{2h@6)Fxf(pFy
z`?cFaBebj6?~AJa^=0Dz{rf>Bb?Ca7$f?@ldY@)+3ah=CSN$&V@-pA6yUX)`{{H>?
zaliew^82;R<!q}m?(QmemAkw#*&Q?~_3G;C>7cgu&)>hb_4NF5Z*AF`kgLDvL({Eo
zxvN3FZE3TdfSjB)lO|8zTJ<%Hm4zka=B8BFcY#57ayTEXoWaOg<Kn58{L{Vm-R}2x
zx-mNfM76`NTw3bAwdkoAs15`TK-}2yko9}{#_8wxOgVmF=f9kqtgEY1_ZOzd#m)Qo
z_kI2AozLe5J2^GIy1st>^th^%`;IJiY-X!^GSOW`QgY?l+2+~z_EdrzZBix~3$CsX
z&%U)Klka!k!&Y(77(wlykH<k%x1bUHx3{-Xzq#?zrCtfcL;v3Y{H{J<98{Zw7VNRI
zv%fwn9)AVYM7y>&`ZZ{lr&r3ft9EVdi*lF3-1D~I=gg~oCJAawgZv-1Hfrg+ySuX=
zAL|7be4l0*CLhZ<IZ1U@)YetgbfcGDkE{0GntlD+^ZE7bj`d25SM!{=`@IG<sU~Y(
zb|ZfB{@8D!F`$(~SJ%bvHmUlO@%HZSa8TSH>y^H`*quN3{=V3|yGpe$e*Am$JWE0N
zG{vCZz0eWmvrkQI1?`;~81&YB_<vH;I88%E#Rb%zy}z$EHg=l(!@bAi!Al%TAAmiu
zTI61broR69qf;3e9@KIDuYYo^wLq1LV~^KTuc<1YCqeyiP}jZq#RWyrpp=v)+1!o(
z$_)orUs)083>y9d4N}ja|Nd1G14DuI&!0b|c9pD5N=gb@=)~%IrsaU?pV(N2fLm(*
z^Va<P`+Ifu_jjO*Hz_IU$@AyWUu|MwDCpd?#|E^J6Er~m`~7~<B;>8z%}q@)F|sv+
zj4W}>^Y8CFb@uGlC7zS7Y|oDmpU%wC5Z%$)dGW@^<kGvP*H20;zH=ugbbZ|2tEmUs
z1sxttW#f}sF=K`VXnp6TB^NFP+{{^H!NTxE?(`-RNy*IkvZ-_Du3hZjucf8sWoT%)
zPM6QFli`#2nK_oh!OMIC7rXU-c{)AbD(Cj@^7Zfbevbo1O=Dx@uAk3lfBkaVe|6H)
zF1=OPzHiC8>SbwZ`Rmo{^(D{FNJ=J0yyjx~;0aoUHq$s=#q;04f1tzx>Pf9wp&=g5
z7VpBa(*?A!z%+Z>p~Hu}?_S%M8x88zf=(lKb8DMd^-A;Y&CTwdoSdJ&KR^DCr>?Fp
z>-xI6Ny*7mr%hWnXO4_ya!jlk1A|`j=9?mdf(uuLuKrZVqIX#Pz0lvk@9V=~Ut2qM
z_UzS<kM~>W%(g6EW@Ky(T3h@3)+w|pr>;r0VHFiSUR_=N{FPDH)}*6cyb=ZnuBIOF
zl*qq-sN%QSF=-7;v7_-#xwp4vo}Fb{^=xK(*WG<-XQfKt-@E(p$htmR>s57se^vec
zdVOxFn$3YOQSF#mra2uSzv=dD&rjUbI7zu7X33vFHNDd2e#-8BSFVP~$EJX0R6x^P
z&(6*kzj<v_s<*1Ds^wxI1_p)$x*J(uE7|`4^BL6c-<o=QTGICAOP6|1TC{j^cTRU-
zA7VVV!Dy{8Xw2CCOhZhIu)5!iiSBY2udEDyJAKpdy`U9KTHlV@9XxoDuNE|#7=M`O
zgzF5O%1w(FEqYTfpzG)1(Xpf{JLi8~SlBe@`S-PX)b7{)ejBeVDyL*?8{660xlWJS
z4;%!yw;SBsxA;S?l)Of~6_W?2tVMxCx0voF`~N@vmo8c2F{#J!)TvWJetvzECQlXx
zB`lQ5CvH7ZCwhWP=7j~0sl@^X-WxY=T&KtAcLWr?V6&fISm>N}d0Fr3(;qyhJv_#t
zx~cSa7^qJ^scY}_mefelq94$3255lc?d|Q?PfgX9{RP@33F?B`{rPY>Y5wCI8<T%M
zXyz9Y7A`&*DFhm)_Df4!#wTmFL@#z%LGw#*7Y5CRkB|3f|Ni#Y^_IH-yfwz@=Q95N
z`3V|DS-0<37HB?u{hm)<-`?I%-!Jn1+1c4wcNV9E+QXn_H=9p`r{<U#pXg`Z-?z6<
z-hLfu5b|Exj}M8a+1Ef_E~J6n7hT%x0-T(f!VfSpFf^Qhq!qFBz$Tsc_t{rgEL<DC
zeO2DwU9(IwCp|ke6SR5`RFs0o5E*`$fM>E9EO^1|XFzkhkJv!_NZI8o9Imbo56{S0
zv2OP}E6~c{tEmfH%HG{sxiR_ps=&o=T>SjupqhVuygg{{()AbC1&M2J`~{86gvXXn
zb#ihF*<V*{`}@u2)LM-lF2?ESrkqU+etfLAJ16<fUgxBwMUNgo78Mm;x?zJsZ1GuB
z*JJG)zwxp2$$-`Xl>U4=U0X-ThgaI{%9odyyYGB%{P@i#{rtSE%KbKr^6u`^)Y9?-
z4dv|l<h8N(bW+Xb%a={Fu4sVj;)f3(f(DHyO`7EO_J>VZ<LR&O@84%(W1Gb;S8+fm
zYRic&nU{~Tu&~T{dwcutT_#f;=G)c!Y|XlQ=Euj!XD6w8pE)zr7~CPQsMzuI*X#9f
z|MJP(<!FVi$#`{jb^5&8Z;{5?*K~pxI<XeN-Fki2oH;V>wR$l-E<{XA{q^l_wwQig
zP8*M8lFn%(f4iScHuLk>Kl<?SFsQrk;^HzRd)>}uC(MrB`3zb(tEQoGVoToLTQ;B1
z7^i)FbTsYK63=Ii>~b5vC$8Ch*x&wdir(%wM!~DYbUz;v_MhR}EjIJv;dbfMn|#*C
z?S1oCBL6&S4SaIsw9d{>Ls_d51GCv@LCss&UsI3%c=r7H?APn}-vinD^78W8tlVNV
z+<K*Eo;cxA{NO;Nk!@bN3q#??^Y;JmL`+KsrT^;au&`+>qqnciyu7TJTie;Q_S?;L
z*E&T|jH_8#+_+PCT=v_x-S79^ZfR|udAObb_HDD=TPZrHjk?8jH*HT%OPkdtsy*w+
zkBatMJ}HwEAe%v*_lpxB1bumZ{d~!*D<_W}Ju1qn(6jTob?vV$E2FlqdU<*IdHHY2
zYxW*KGt(F}fO5a?_gd%Q6BM0$&Zced=YRZm=DGRy`JgN2dJNN^pPPGZ)0!k^kI0_)
zt3p@zq(-Klon`uMTYTNmqf_+b@7<~U{dQ?t&%7pvM@ho!ekP2JjB3ithZojfTN8OK
zZL{T`9}gpwl9PQuKRf&Oe)!6uqhDTMU+=MBd;OkECGYOs{P(x|{oeE(v)PsZ|9+R1
zl8<U<U=Vl?S_|+C6c)!e>1?j~`Dv53lz8gvYirdM6b`((xq0~whC?%|_dTCqfA2<)
z+2;KFcF8@4>F4K}{`~pV^_Stbdk+t?%bS?ZJ}YBicW2?>Ms_)afB*hHyR)<Sn8dN$
z(tiROG`l~(y}f;XXJ4P*rt=pUyU+gcp`iHRpP&1SEacjY9b$4o>uKZn?>lt(u<Whq
zZ8@3u`OcR-IU)F4HYgZr4eS1Cy3tl^7<K<t=j5z$-hbmp#LXPD`?313(ms9uY?^n+
zqF2T;C_KKlbmH5do#i+7RBi?xk9^tRex+kG8z_gTq%1ksBf0p^n;g%ct>&HG-IER7
zK=b4E|9{7W7FMqgTYKqHE4OLgpNiI&7K3|n>((4I*VObpJIhqNZ2t3eb1(n<``i1q
zfDIGlk)xL`T@sO%ja_1EWfgTyV(GGFyB28u2?dR61_cFO0nLuEKGu2JlwAAh2<Ou$
zPj3AF_4DV=!`=%U8W>z%T|dq$5I%4Je^1??kM6$n?e^XPIT>`*ENHTDo^AE2=<Rt?
zo6~yV?fL8nYW*H==bwHgqI$Ak?5>PoUta$DaG1aJ?bhqBy0q6_0Nu`<cgF%W4=MEc
z?b}mXHUD4you@LtTKC89T@3NlXU<%?V8H^Vw+9a%{Py;PPWAV9S8r@gzPij;npe&y
z;?nxZKhl$B1q2qHIpYH!FM9vrK|-8x-h(5Z!l1^oN$IPQ&=mm-Z`k$hEVn3r)?;LB
zT>AZPIjHqKX-VAPDotzaX#IUZ7A^CgeJrAS=8PE<TeGkG)&BYt*vcikrS5Ol**TWM
zp{v8L&M-`t$kz`Kd;Ht|{r4V2yYEp74Lc${JUVKn{)5(Kyt)0*vQNfx5ooCM>FMd$
zrStbFp5CPL*Q!rd^7VuX0(0%__ucrLo|^h`Rsr*5b^oxCkSWLdWUCK?T&D5oruexu
zF)53J1#uM*SwZPJ>&AwKD#va~uZh_i1X^p=$jts`zR&kpSG_AME2|zfvYR9vVEC6?
zy>pY)efz5Y>5<dU?-h$^dYW|c;>B+-_ubdZSsk`^)@JWRs-UjYuClkQKu0b9{eD0E
z>Z;JUx4Hf+@4gTbz9PVpk&*G+zRJo<*LCLeCQn}c_;~;4Sp^%J+4(XqE^-CUZv+Je
zO_?)ijdMGnrna`XrKKfk7VYF@b;)A=z#p5}2QBS#u6}xIs%q!PZ$_YGG0QYNEM=un
zP0b$AxZjc`D#vc0o_h7ir@Hfkj7N^nGRs{BS`vI_rZL}J>#{c!QX{i&ZCTl^b@=Fs
zbLYaozq?!d-~i*=`2BI=ag|FCf6KbMY9(yu_PCmgibYTH<z>F9J(`!kgSsnqb$07H
z#l1Z}CmOmvKGqw&Hfn3g>M&i<*xmg4e>=auy}kU_*6i$GUtad?oUUQB(?nJE=)%1P
zd&{1lnkt#C5849s^yyR4%=0HtPBe7expQaF_UYQIKjz-rvJyObQ+&Kn7Bs8_nl$^U
zVbic$Z+|OO>vzVP*5&K=>RMahzOp*}d`$h{uX<~ERHsg#p8n|ZW8Z{?go)lC|6Y@i
z4gYggJbnwf_+7DLMbdh0IXSsJzj-#1zt|gvtjpfasC+)RysO4E>&l5EM~=+cntgqi
zZS^;aWQpSZ2~(zkitlDN-l7b7gM<c79v+j-%*<mF$8JS`d2#VD3p@Ml_xpaITevrT
zecZA8_ve57rZl}ueuB5`{m|86lC#gIf%c+QM?b7}VB?dCnAQGFkV7GFLH_-HY6b=u
z{ydidZvaa8JOBN9?VFIW;OCRc{xPvqUI~AGd;|?mZ%+6B{A%@jv7cIBF8kZh^qQ(Q
zb64r>S@nNk$3OdcT;5z%E5yKewwZ3x-}kKCViL2@rseH^Yqq)KW0G;jhXl~L_?w%X
z=hjweEPV8i`Ou8&cI)?hF5k#8ySzT$esjV>rsCVV+d+;5O{P`LAG>9pb9>uaP}Q#$
zy6VRJu)Axc%|V8|xVZT3Uy1zlU*Bv#KTFa$Z3d`{i<p*L_5EFL+L;-NAnZ5aF1JT>
z_Q$iQPaCg|-flK=;>5IDTQa{{FPyF&e(ufv{r5AEzt`hX$WySkz76*H)m5R!ii(QM
zLRW`911&i(jnr7UV~0iZ=9_vyzD9#~rM$egbu}kHKiHei?EGe+Wff)nyT$d*c%{uu
z4jw$XEN*XA+P^<P&soUCEZVWd0(7W{(%YV$&rhE{YkGN^ukqHbt45BFj?3!){yN&n
zoBURG-;YP!#h=fb&(6BKYUY9k3ZT({<LYlYlc!IAexd*4Hy=YoL-9ZVtt>5X-dnG8
z?E96K!D&xUOk5VU)Jx6A=1$3r3kOxy)TW&*++}@QA~|L+4-aU;TmA!;5>O-G&lxl+
z%<#Yjy#JDcZ0>>ipmD(*v)Q0&gI7UbM;G_oY0d8a&%}5@^v7Fn2ET8gPV1je+pKA5
zc=6u0#KUa1-)<!9tyy*8^LhLApho$P+-a$nJ7+N!78YjR*-^Oi-Q`U>(`ES?epoSa
zFzh(+{{EkR-|tm}=9Riv{k+=5%H74Q@b=c$;Iy=5d3!#(Ex+y(z`*d{iGh*9JfTN(
z^53-7)Ty`jF)=fH=f*QI+;?SQWDu7&%b6jj6QSU_>1NKRn>n98f8LyLe(c4}^m(A3
zD`@_7Rp{zh>vq4pv@&?P%r{|SVbIV~?wuWhpfM~DkB+#SkFK7eg~(SoCcA_B76%W4
zHyv&*c<9uA{Q9a;@A&$^TmOBY|NqA87Z(;bFX5ig{OOo<{))=a&p^e&Qm?5c$7Rbk
zOiiyYJbz)Kv#6lp!YfxoK#P(E1qD~d?A)a0H>cv{!P9A*Gw<vu1g%*uIcs`d!@?q>
zSIYDfyL?T+lJ}rFoBx%d0_2~u=DF4D_hs47Td_ieSHi#nwB9oR{_gViPR`Dt!E~kb
zpqnH-C#%I?`pD3r|FOK3k>SB>&<>)d%a&zbUgjIMucmUM`BP9$0os1?@Nj$fpC2E8
zJ#3f%vcCSW_wMrd*S@{I{WkIFCLPeA3o|?470`*NSywb-E1yoCw4{|=9MqS1b#wFb
zKY#y%*1Ke#nPF&j?8Up?@29E!{XGBwl^YwALEdbauZuV)0lN4t?)dxZPP)<Cd=9ts
zhp!G>Yf}9!N7k~)<-E=39?*g!RaI3@Bcn_IcKrEMQ~L6f>-E_3xzEnc1>KDG^5ydR
zVRv_xnpS;z;r(kTXuJy4VgR*pIyyMc&bN=R{q^M{Xtem#)6?FQzP-7*STA<hilV2d
zKnbU)sOZa!#r>;_o}P03W?uZv2ec;U@9*!|L5m1Z>+c8k?LdPDe=9(vV=pf+e=Yz2
zM>}Zk)4RL7U*FkT3|eWkZr3ZV?GbM540-1n80KW%+>{EM*^Av>cJubJKH2OXv*?NY
zKqI#sbxyB|*?DPU?c-y;phjlWQLgG}AD^C$H*-K`ht8(?Yu2n$%8lJ!W?K6CT4_f1
zl@${+@9(RfxbOeZ^Yx$^y6EkBrpF{EPoA8-Dr9BSER)QnO`A8r{d;YFe7??Uqkg+z
zEB5BTxUdjp{Y>L@t2dh?H>WLg?G|&L_xk&zM~}{!UXOWvAuVzmCm){~Xi9tU+td2{
zO{S&Jd_J%G+`Vh7!}W!wq_RLgp?uJA&ByQG%YRg=tE)@b*VlsznD*zOzLKwlL&Hqd
z>}h*-?d|Vx$-RBe#oc}O<Kz9a|Nq|q-?*`{QO(fsqklguLjq_o_<`QFaeIILzrB0^
zgk`%e`X0~M{hhp7<A~;!0>5Imw@#l{*{{yn%EcKqr6f4vO2P$s7Ed23*JFzgY*@g`
z8s}1S@sz|OUKNfOy<Hu7XL>wiJ0!x=L{f6kA9X%FKf3>A@apF;|27>w_jB(3@8##-
zzdLRDynIW>MI}%URaRDB8K0WE^wXzLCIA1`I{%(DNvP6h-WH4E=jVL?)_;FD*UioC
zN!f1E{^O=*W@c~eY^%O_96o%Qi-oCeuj1`(xxucktyWf6m)^~^xxBILZPd}nA2aQL
zgHqkeyzR?R=}q_M7T5DR>Z2mmbu{VL#^m;CI+2sIo|jlX{aVGlQE6hwq?4e7cTy|P
zhpi4hJx$kmPx|DOOSWw@+gtxX4m3<|ArqFIyjV+HJKaW%;m2gqO7ObmzkmN${r;AF
zOx0O!vghH$hud~dnl!1Wu&Sy`goo|xhlkF!KRz53NG>S};TF@G5w<^WPle*-lS@8*
z`m`lmR8;iU%a?{%Kr6j|{`}dt>u9(5>$9`XFIT;DF`KQsHZSQ+`1-h)kB|3jX={6D
zKQFPmdh_N?E&KX^F`X_-$<dQfPT9tI|6zfK1kb8{`{MMbd;9wO8q2XW{K@oiV0d6Y
z%|j(5B4UNKd0xt$4Y2_M2^!CzJzKW5^Z4UW6*i#t)=^PWDVuMCc2<>^l)O09%I&2h
zWWV-*yziZm|C^K3s{DgJRfLRYpMCY})u{@H#JIS)sJnZszo!_@G_kOlF-w<`!Kasn
zg`tl5zSZkRTegJUy?Yll_m(JmwZvs{VC}Cjo)<H&Y!F$wd-w0%zYQY`3pY+Wx#ZWc
zU!Vr|;jR1j*@=papI@=wKFHCrv8cHC>izrk%ig}cyu7U_GjrvnlS|%|RUeC-aPrW@
z4ZC*lzIx{lXaMKL`|q#M&9$~)^Pb^D{V_QKh9A5UI%1yn@6XT3`2OzhuRlMFkFD3P
z{rSmt@#4k7$NpIb8x$@Bg@0~tuH<jSpP%>53<(WAnYC3*hA+FO#wPUs&6_Ll-HQti
z5BHaRoNhe(?5C=|S^4?qHD24dZx7!XapuCc=bumJnALwa`E`AL{PKVNJUmPGHC?@M
zVF75h;=8-Mch&v<bzYK#;m>){F&_I5JV|u|O@bQDyt2@_{mIuV)9h<HSFc<-@wV*r
z`|sK!TrWR9K7MOY<z~<}Pteum*Vaa7<>pR3|NQsy^xD14ckPO*+aI5toV=^*>nbj8
zZc`JJDcAZ7EY>`GmNs?j)RS3TLAxR|YtNlLdGY4v^w8*N?d`YM+E#zd$jI<myLN4n
zg^X3zmlyn1!T-;loUDHJ>eZ#D+1E4#I5KK#Vy5fGf=)8}^5o>?5bO5C3okGCU%hc-
zATu-b%FkYpKJK`6`}WiCzeB^r)je0OU3>M<&(Fc>+d<bLPV{hb?~|E${BdAl;6;5&
zZH7PL6B-x}=o?h7oP7TI<%fscOFut5dnHoA)YNp+lGD@mSFc*-6}~R!B4}QD@?_=R
zch~K${+{*q)z!8cGp7YiojzS#sB^{2m7ZU}e$~>_3Q`aVsH@xe?fw1yjOs^6IQQ24
z40?WU?&TXdW?WkvJ>APe?fAXz`SW$ex}6qIkdl&0*%+~<__<%J)50r~3iqYnhkOm*
z`ukdh`t{v0dPkECuU@^XDZ!KV^3qb!rY1Iac3#d76<O;tAHU_ny1Ke6CDmu2U8Wno
zE#vpMx09B1i|fBS*v!7G_V>2L;J;h5uRkf;S@PfjqwC^}@1=wp{;c#lIrGgm&;tAh
z$pp};4-5@!6hTLqFibF20q@1w)W*WXz`)>eZ31`^_z5W?0Z{8K(wPagR9qq3!vVxi
h;pOB2HQtES{8`*LqoTgUES?pl+0)g}Wt~$(69C3I$ZG%q

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-112743Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-112743Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt
new file mode 100644
index 00000000..31e85005
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-112743Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt
@@ -0,0 +1,14060 @@
+		Result for Multiview classification with Mumbo
+
+Average accuracy :
+	-On Train : 79.5150501672
+	-On Test : 79.9180327869
+	-On Validation : 83.9805825243
+
+Dataset info :
+	-Database name : ModifiedMultiOmic
+	-Labels : No, Yes
+	-Views : Methyl, MiRNA, RNASEQ, Clinical
+	-2 folds
+	- Validation set length : 103 for learning rate : 0.7
+
+Classification configuration : 
+	-Algorithm used : Mumbo 
+	-Iterations : 1000
+	-Weak Classifiers : DecisionTree with depth 1,  sub-sampled at 0.02 on Methyl
+		-DecisionTree with depth 1,  sub-sampled at 0.02 on MiRNA
+		-DecisionTree with depth 1,  sub-sampled at 0.1 on RNASEQ
+		-DecisionTree with depth 2,  sub-sampled at 0.1 on Clinical
+
+ Mean average accuracies and stats for each fold : 
+	- Fold 0
+		- On Methyl_ : 
+			- Mean average Accuracy : 0.0566086956522
+			- Percentage of time chosen : 0.91
+		- On MiRNA__ : 
+			- Mean average Accuracy : 0.0601552795031
+			- Percentage of time chosen : 0.031
+		- On RANSeq_ : 
+			- Mean average Accuracy : 0.0589378881988
+			- Percentage of time chosen : 0.021
+		- On Clinic_ : 
+			- Mean average Accuracy : 0.0603664596273
+			- Percentage of time chosen : 0.038
+	- Fold 1
+		- On Methyl_ : 
+			- Mean average Accuracy : 0.0546346153846
+			- Percentage of time chosen : 0.909
+		- On MiRNA__ : 
+			- Mean average Accuracy : 0.05475
+			- Percentage of time chosen : 0.028
+		- On RANSeq_ : 
+			- Mean average Accuracy : 0.0575833333333
+			- Percentage of time chosen : 0.015
+		- On Clinic_ : 
+			- Mean average Accuracy : 0.0597243589744
+			- Percentage of time chosen : 0.048
+
+ For each iteration : 
+	- Iteration 1
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 2
+		 Fold 1
+			Accuracy on train : 72.6708074534
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 60.8974358974
+			Accuracy on test : 53.2786885246
+			Accuracy on validation : 63.1067961165
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 66.7841216754
+			 Accuracy on test : 65.5737704918
+	- Iteration 3
+		 Fold 1
+			Accuracy on train : 72.6708074534
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 60.8974358974
+			Accuracy on test : 53.2786885246
+			Accuracy on validation : 63.1067961165
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 66.7841216754
+			 Accuracy on test : 65.5737704918
+	- Iteration 4
+		 Fold 1
+			Accuracy on train : 72.6708074534
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 77.6699029126
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 66.0256410256
+			Accuracy on test : 59.0163934426
+			Accuracy on validation : 65.0485436893
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 69.3482242395
+			 Accuracy on test : 70.9016393443
+	- Iteration 5
+		 Fold 1
+			Accuracy on train : 71.4285714286
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 75.7281553398
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 69.2307692308
+			Accuracy on test : 63.9344262295
+			Accuracy on validation : 66.0194174757
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 70.3296703297
+			 Accuracy on test : 72.5409836066
+	- Iteration 6
+		 Fold 1
+			Accuracy on train : 71.4285714286
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 76.6990291262
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 78.8461538462
+			Accuracy on test : 69.6721311475
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 75.1373626374
+			 Accuracy on test : 75.4098360656
+	- Iteration 7
+		 Fold 1
+			Accuracy on train : 75.7763975155
+			Accuracy on test : 85.2459016393
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 78.2051282051
+			Accuracy on test : 72.131147541
+			Accuracy on validation : 80.5825242718
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 76.9907628603
+			 Accuracy on test : 78.6885245902
+	- Iteration 8
+		 Fold 1
+			Accuracy on train : 75.1552795031
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 77.6699029126
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 78.2051282051
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 76.6802038541
+			 Accuracy on test : 76.6393442623
+	- Iteration 9
+		 Fold 1
+			Accuracy on train : 73.9130434783
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 76.6990291262
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.4871794872
+			Accuracy on test : 72.131147541
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 76.7001114827
+			 Accuracy on test : 76.2295081967
+	- Iteration 10
+		 Fold 1
+			Accuracy on train : 75.7763975155
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 75.641025641
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 80.5825242718
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 75.7087115783
+			 Accuracy on test : 77.868852459
+	- Iteration 11
+		 Fold 1
+			Accuracy on train : 75.7763975155
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 74.7572815534
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 76.9230769231
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 76.3497372193
+			 Accuracy on test : 78.6885245902
+	- Iteration 12
+		 Fold 1
+			Accuracy on train : 76.397515528
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 76.6990291262
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 75.641025641
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 78.640776699
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 76.0192705845
+			 Accuracy on test : 79.0983606557
+	- Iteration 13
+		 Fold 1
+			Accuracy on train : 78.2608695652
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 78.640776699
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 77.5641025641
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 80.5825242718
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 77.9124860647
+			 Accuracy on test : 77.868852459
+	- Iteration 14
+		 Fold 1
+			Accuracy on train : 77.0186335404
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 77.5641025641
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 80.5825242718
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 77.2913680522
+			 Accuracy on test : 77.4590163934
+	- Iteration 15
+		 Fold 1
+			Accuracy on train : 76.397515528
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 75.641025641
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 76.0192705845
+			 Accuracy on test : 79.0983606557
+	- Iteration 16
+		 Fold 1
+			Accuracy on train : 75.7763975155
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 77.6699029126
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 80.1282051282
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 77.9523013219
+			 Accuracy on test : 79.5081967213
+	- Iteration 17
+		 Fold 1
+			Accuracy on train : 76.397515528
+			Accuracy on test : 85.2459016393
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 78.2051282051
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 77.3013218665
+			 Accuracy on test : 82.7868852459
+	- Iteration 18
+		 Fold 1
+			Accuracy on train : 77.0186335404
+			Accuracy on test : 84.4262295082
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.4871794872
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.2529065138
+			 Accuracy on test : 82.3770491803
+	- Iteration 19
+		 Fold 1
+			Accuracy on train : 78.2608695652
+			Accuracy on test : 84.4262295082
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 81.4102564103
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.8355629877
+			 Accuracy on test : 82.7868852459
+	- Iteration 20
+		 Fold 1
+			Accuracy on train : 78.2608695652
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 80.1282051282
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 81.5533980583
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 79.1945373467
+			 Accuracy on test : 81.1475409836
+	- Iteration 21
+		 Fold 1
+			Accuracy on train : 78.2608695652
+			Accuracy on test : 85.2459016393
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.4871794872
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 80.5825242718
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.8740245262
+			 Accuracy on test : 83.1967213115
+	- Iteration 22
+		 Fold 1
+			Accuracy on train : 77.6397515528
+			Accuracy on test : 84.4262295082
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 77.5641025641
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 77.6019270584
+			 Accuracy on test : 83.606557377
+	- Iteration 23
+		 Fold 1
+			Accuracy on train : 79.5031055901
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 82.5242718447
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 75.641025641
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 78.640776699
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 77.5720656155
+			 Accuracy on test : 81.9672131148
+	- Iteration 24
+		 Fold 1
+			Accuracy on train : 79.5031055901
+			Accuracy on test : 84.4262295082
+			Accuracy on validation : 82.5242718447
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 77.5641025641
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 81.5533980583
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.5336040771
+			 Accuracy on test : 82.7868852459
+	- Iteration 25
+		 Fold 1
+			Accuracy on train : 78.2608695652
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 80.5825242718
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 79.4871794872
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.8740245262
+			 Accuracy on test : 81.9672131148
+	- Iteration 26
+		 Fold 1
+			Accuracy on train : 78.8819875776
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 82.5242718447
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 80.1282051282
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 81.5533980583
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.5050963529
+			 Accuracy on test : 82.7868852459
+	- Iteration 27
+		 Fold 1
+			Accuracy on train : 79.5031055901
+			Accuracy on test : 84.4262295082
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 82.0512820513
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.7771938207
+			 Accuracy on test : 82.7868852459
+	- Iteration 28
+		 Fold 1
+			Accuracy on train : 78.8819875776
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 85.8974358974
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 86.4077669903
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 82.3897117375
+			 Accuracy on test : 81.1475409836
+	- Iteration 29
+		 Fold 1
+			Accuracy on train : 77.6397515528
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 83.3333333333
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.4865424431
+			 Accuracy on test : 81.9672131148
+	- Iteration 30
+		 Fold 1
+			Accuracy on train : 78.2608695652
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 80.5825242718
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 82.0512820513
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.1560758082
+			 Accuracy on test : 81.9672131148
+	- Iteration 31
+		 Fold 1
+			Accuracy on train : 76.397515528
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 78.640776699
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 82.0512820513
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.2243987896
+			 Accuracy on test : 81.1475409836
+	- Iteration 32
+		 Fold 1
+			Accuracy on train : 77.0186335404
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 78.640776699
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 82.6923076923
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.8554706163
+			 Accuracy on test : 81.9672131148
+	- Iteration 33
+		 Fold 1
+			Accuracy on train : 78.2608695652
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 82.0512820513
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 80.1560758082
+			 Accuracy on test : 80.3278688525
+	- Iteration 34
+		 Fold 1
+			Accuracy on train : 77.0186335404
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 78.640776699
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 83.9743589744
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 80.4964962574
+			 Accuracy on test : 80.737704918
+	- Iteration 35
+		 Fold 1
+			Accuracy on train : 76.397515528
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 77.6699029126
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 82.0512820513
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.2243987896
+			 Accuracy on test : 79.9180327869
+	- Iteration 36
+		 Fold 1
+			Accuracy on train : 78.2608695652
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 82.0512820513
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.1560758082
+			 Accuracy on test : 80.737704918
+	- Iteration 37
+		 Fold 1
+			Accuracy on train : 79.5031055901
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 83.9743589744
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 81.7387322822
+			 Accuracy on test : 81.1475409836
+	- Iteration 38
+		 Fold 1
+			Accuracy on train : 78.2608695652
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 82.6923076923
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 86.4077669903
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.4765886288
+			 Accuracy on test : 80.737704918
+	- Iteration 39
+		 Fold 1
+			Accuracy on train : 77.0186335404
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 81.5533980583
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 82.6923076923
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 86.4077669903
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 79.8554706163
+			 Accuracy on test : 81.5573770492
+	- Iteration 40
+		 Fold 1
+			Accuracy on train : 78.8819875776
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 83.3333333333
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 86.4077669903
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 81.1076604555
+			 Accuracy on test : 81.1475409836
+	- Iteration 41
+		 Fold 1
+			Accuracy on train : 77.6397515528
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 83.3333333333
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 86.4077669903
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 80.4865424431
+			 Accuracy on test : 80.737704918
+	- Iteration 42
+		 Fold 1
+			Accuracy on train : 77.6397515528
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 81.5533980583
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 83.3333333333
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.4865424431
+			 Accuracy on test : 80.3278688525
+	- Iteration 43
+		 Fold 1
+			Accuracy on train : 80.7453416149
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 82.5242718447
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 85.2564102564
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 87.3786407767
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 83.0008759357
+			 Accuracy on test : 80.737704918
+	- Iteration 44
+		 Fold 1
+			Accuracy on train : 78.8819875776
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 82.5242718447
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 85.2564102564
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 86.4077669903
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 82.069198917
+			 Accuracy on test : 80.737704918
+	- Iteration 45
+		 Fold 1
+			Accuracy on train : 78.8819875776
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 84.6153846154
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 86.4077669903
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 81.7486860965
+			 Accuracy on test : 81.1475409836
+	- Iteration 46
+		 Fold 1
+			Accuracy on train : 77.6397515528
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 85.8974358974
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 87.3786407767
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 81.7685937251
+			 Accuracy on test : 81.9672131148
+	- Iteration 47
+		 Fold 1
+			Accuracy on train : 78.2608695652
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 80.5825242718
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 85.8974358974
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 87.3786407767
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 82.0791527313
+			 Accuracy on test : 81.1475409836
+	- Iteration 48
+		 Fold 1
+			Accuracy on train : 77.6397515528
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 80.5825242718
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 86.5384615385
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 88.3495145631
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 82.0891065456
+			 Accuracy on test : 80.737704918
+	- Iteration 49
+		 Fold 1
+			Accuracy on train : 77.6397515528
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 80.5825242718
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 85.8974358974
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 87.3786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 81.7685937251
+			 Accuracy on test : 80.3278688525
+	- Iteration 50
+		 Fold 1
+			Accuracy on train : 77.0186335404
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 85.2564102564
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 86.4077669903
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 81.1375218984
+			 Accuracy on test : 79.5081967213
+	- Iteration 51
+		 Fold 1
+			Accuracy on train : 78.2608695652
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 83.9743589744
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 86.4077669903
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 81.1176142698
+			 Accuracy on test : 80.3278688525
+	- Iteration 52
+		 Fold 1
+			Accuracy on train : 77.0186335404
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 78.640776699
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 83.9743589744
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.4964962574
+			 Accuracy on test : 79.9180327869
+	- Iteration 53
+		 Fold 1
+			Accuracy on train : 77.6397515528
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 83.9743589744
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 80.8070552636
+			 Accuracy on test : 80.737704918
+	- Iteration 54
+		 Fold 1
+			Accuracy on train : 75.7763975155
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 78.640776699
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 83.3333333333
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.5548654244
+			 Accuracy on test : 80.3278688525
+	- Iteration 55
+		 Fold 1
+			Accuracy on train : 77.6397515528
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 81.5533980583
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 85.2564102564
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 87.3786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 81.4480809046
+			 Accuracy on test : 79.0983606557
+	- Iteration 56
+		 Fold 1
+			Accuracy on train : 81.3664596273
+			Accuracy on test : 86.0655737705
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 83.9743589744
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 86.4077669903
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 82.6704093008
+			 Accuracy on test : 82.3770491803
+	- Iteration 57
+		 Fold 1
+			Accuracy on train : 81.3664596273
+			Accuracy on test : 84.4262295082
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 83.9743589744
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 86.4077669903
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 82.6704093008
+			 Accuracy on test : 81.9672131148
+	- Iteration 58
+		 Fold 1
+			Accuracy on train : 80.1242236025
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 81.5533980583
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 83.3333333333
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 81.7287784679
+			 Accuracy on test : 81.1475409836
+	- Iteration 59
+		 Fold 1
+			Accuracy on train : 80.1242236025
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 81.5533980583
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 83.9743589744
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 82.0492912884
+			 Accuracy on test : 81.1475409836
+	- Iteration 60
+		 Fold 1
+			Accuracy on train : 79.5031055901
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 81.5533980583
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 83.3333333333
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 81.4182194617
+			 Accuracy on test : 82.3770491803
+	- Iteration 61
+		 Fold 1
+			Accuracy on train : 80.7453416149
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 83.9743589744
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 84.4660194175
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 82.3598502946
+			 Accuracy on test : 82.7868852459
+	- Iteration 62
+		 Fold 1
+			Accuracy on train : 81.3664596273
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 83.3333333333
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 82.3498964803
+			 Accuracy on test : 82.3770491803
+	- Iteration 63
+		 Fold 1
+			Accuracy on train : 79.5031055901
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 82.6923076923
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 81.0977066412
+			 Accuracy on test : 81.5573770492
+	- Iteration 64
+		 Fold 1
+			Accuracy on train : 80.7453416149
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 82.0512820513
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 81.3983118331
+			 Accuracy on test : 81.9672131148
+	- Iteration 65
+		 Fold 1
+			Accuracy on train : 80.1242236025
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 81.4102564103
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.7672400064
+			 Accuracy on test : 81.1475409836
+	- Iteration 66
+		 Fold 1
+			Accuracy on train : 80.7453416149
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 82.0512820513
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 81.3983118331
+			 Accuracy on test : 81.9672131148
+	- Iteration 67
+		 Fold 1
+			Accuracy on train : 80.7453416149
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 80.7692307692
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.7572861921
+			 Accuracy on test : 80.3278688525
+	- Iteration 68
+		 Fold 1
+			Accuracy on train : 82.6086956522
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 86.4077669903
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 82.6923076923
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 82.6505016722
+			 Accuracy on test : 81.9672131148
+	- Iteration 69
+		 Fold 1
+			Accuracy on train : 82.6086956522
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 83.9743589744
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 83.2915273133
+			 Accuracy on test : 81.5573770492
+	- Iteration 70
+		 Fold 1
+			Accuracy on train : 83.2298136646
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 86.4077669903
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 83.9743589744
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 83.6020863195
+			 Accuracy on test : 81.9672131148
+	- Iteration 71
+		 Fold 1
+			Accuracy on train : 83.2298136646
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 86.4077669903
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 84.6153846154
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 83.92259914
+			 Accuracy on test : 81.5573770492
+	- Iteration 72
+		 Fold 1
+			Accuracy on train : 83.2298136646
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 85.4368932039
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 83.9743589744
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 83.6020863195
+			 Accuracy on test : 81.5573770492
+	- Iteration 73
+		 Fold 1
+			Accuracy on train : 82.6086956522
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 82.6923076923
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 82.6505016722
+			 Accuracy on test : 81.9672131148
+	- Iteration 74
+		 Fold 1
+			Accuracy on train : 80.7453416149
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 83.3333333333
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 82.0393374741
+			 Accuracy on test : 81.5573770492
+	- Iteration 75
+		 Fold 1
+			Accuracy on train : 83.2298136646
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 86.4077669903
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 82.0512820513
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 83.4951456311
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 82.6405478579
+			 Accuracy on test : 81.9672131148
+	- Iteration 76
+		 Fold 1
+			Accuracy on train : 81.3664596273
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 83.9743589744
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 82.6704093008
+			 Accuracy on test : 80.737704918
+	- Iteration 77
+		 Fold 1
+			Accuracy on train : 81.9875776398
+			Accuracy on test : 84.4262295082
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 82.6923076923
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 82.339942666
+			 Accuracy on test : 80.737704918
+	- Iteration 78
+		 Fold 1
+			Accuracy on train : 81.9875776398
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 82.6923076923
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 82.339942666
+			 Accuracy on test : 80.737704918
+	- Iteration 79
+		 Fold 1
+			Accuracy on train : 80.1242236025
+			Accuracy on test : 84.4262295082
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 83.3333333333
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 81.7287784679
+			 Accuracy on test : 81.1475409836
+	- Iteration 80
+		 Fold 1
+			Accuracy on train : 80.7453416149
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 83.9743589744
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 86.4077669903
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 82.3598502946
+			 Accuracy on test : 81.1475409836
+	- Iteration 81
+		 Fold 1
+			Accuracy on train : 80.1242236025
+			Accuracy on test : 84.4262295082
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 83.3333333333
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 81.7287784679
+			 Accuracy on test : 81.5573770492
+	- Iteration 82
+		 Fold 1
+			Accuracy on train : 80.7453416149
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 81.4102564103
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 81.0777990126
+			 Accuracy on test : 80.737704918
+	- Iteration 83
+		 Fold 1
+			Accuracy on train : 80.1242236025
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 84.4660194175
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 83.3333333333
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 81.7287784679
+			 Accuracy on test : 81.1475409836
+	- Iteration 84
+		 Fold 1
+			Accuracy on train : 81.3664596273
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 81.4102564103
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 81.3883580188
+			 Accuracy on test : 80.3278688525
+	- Iteration 85
+		 Fold 1
+			Accuracy on train : 79.5031055901
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 82.0512820513
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.7771938207
+			 Accuracy on test : 79.9180327869
+	- Iteration 86
+		 Fold 1
+			Accuracy on train : 79.5031055901
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 84.4660194175
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 82.0512820513
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.7771938207
+			 Accuracy on test : 80.3278688525
+	- Iteration 87
+		 Fold 1
+			Accuracy on train : 78.8819875776
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 80.7692307692
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.8256091734
+			 Accuracy on test : 79.9180327869
+	- Iteration 88
+		 Fold 1
+			Accuracy on train : 79.5031055901
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 80.7692307692
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.1361681796
+			 Accuracy on test : 79.9180327869
+	- Iteration 89
+		 Fold 1
+			Accuracy on train : 78.8819875776
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 80.1282051282
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.5050963529
+			 Accuracy on test : 79.9180327869
+	- Iteration 90
+		 Fold 1
+			Accuracy on train : 78.2608695652
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 80.1282051282
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.1945373467
+			 Accuracy on test : 79.9180327869
+	- Iteration 91
+		 Fold 1
+			Accuracy on train : 78.2608695652
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 79.4871794872
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.8740245262
+			 Accuracy on test : 79.5081967213
+	- Iteration 92
+		 Fold 1
+			Accuracy on train : 78.8819875776
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 79.4871794872
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.1845835324
+			 Accuracy on test : 80.737704918
+	- Iteration 93
+		 Fold 1
+			Accuracy on train : 78.2608695652
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 79.4871794872
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 84.4660194175
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 78.8740245262
+			 Accuracy on test : 79.5081967213
+	- Iteration 94
+		 Fold 1
+			Accuracy on train : 77.6397515528
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 82.5242718447
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.4871794872
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.56346552
+			 Accuracy on test : 79.5081967213
+	- Iteration 95
+		 Fold 1
+			Accuracy on train : 77.0186335404
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 81.5533980583
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 80.1282051282
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.5734193343
+			 Accuracy on test : 79.5081967213
+	- Iteration 96
+		 Fold 1
+			Accuracy on train : 76.397515528
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 81.5533980583
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 79.4871794872
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 77.9423475076
+			 Accuracy on test : 79.0983606557
+	- Iteration 97
+		 Fold 1
+			Accuracy on train : 75.7763975155
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 80.1282051282
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 77.9523013219
+			 Accuracy on test : 78.2786885246
+	- Iteration 98
+		 Fold 1
+			Accuracy on train : 76.397515528
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 78.2051282051
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 82.5242718447
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 77.3013218665
+			 Accuracy on test : 78.6885245902
+	- Iteration 99
+		 Fold 1
+			Accuracy on train : 75.7763975155
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 78.8461538462
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 77.3112756808
+			 Accuracy on test : 78.2786885246
+	- Iteration 100
+		 Fold 1
+			Accuracy on train : 77.6397515528
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 79.4871794872
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.56346552
+			 Accuracy on test : 79.0983606557
+	- Iteration 101
+		 Fold 1
+			Accuracy on train : 77.6397515528
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 81.4102564103
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 84.4660194175
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 79.5250039815
+			 Accuracy on test : 79.9180327869
+	- Iteration 102
+		 Fold 1
+			Accuracy on train : 78.2608695652
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 80.7692307692
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.5150501672
+			 Accuracy on test : 79.9180327869
+	- Iteration 103
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 104
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 105
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 106
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 107
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 108
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 109
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 110
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 111
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 112
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 113
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 114
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 115
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 116
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 117
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 118
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 119
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 120
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 121
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 122
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 123
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 124
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 125
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 126
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 127
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 128
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 129
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 130
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 131
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 132
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 133
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 134
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 135
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 136
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 137
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 138
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 139
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 140
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 141
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 142
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 143
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 144
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 145
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 146
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 147
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 148
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 149
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 150
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 151
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 152
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 153
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 154
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 155
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 156
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 157
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 158
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 159
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 160
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 161
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 162
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 163
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 164
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 165
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 166
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 167
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 168
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 169
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 170
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 171
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 172
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 173
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 174
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 175
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 176
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 177
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 178
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 179
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 180
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 181
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 182
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 183
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 184
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 185
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 186
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 187
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 188
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 189
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 190
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 191
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 192
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 193
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 194
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 195
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 196
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 197
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 198
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 199
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 200
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 201
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 202
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 203
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 204
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 205
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 206
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 207
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 208
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 209
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 210
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 211
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 212
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 213
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 214
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 215
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 216
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 217
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 218
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 219
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 220
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 221
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 222
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 223
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 224
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 225
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 226
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 227
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 228
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 229
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 230
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 231
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 232
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 233
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 234
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 235
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 236
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 237
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 238
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 239
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 240
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 241
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 242
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 243
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 244
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 245
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 246
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 247
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 248
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 249
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 250
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 251
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 252
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 253
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 254
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 255
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 256
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 257
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 258
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 259
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 260
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 261
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 262
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 263
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 264
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 265
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 266
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 267
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 268
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 269
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 270
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 271
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 272
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 273
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 274
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 275
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 276
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 277
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 278
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 279
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 280
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 281
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 282
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 283
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 284
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 285
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 286
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 287
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 288
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 289
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 290
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 291
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 292
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 293
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 294
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 295
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 296
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 297
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 298
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 299
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 300
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 301
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 302
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 303
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 304
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 305
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 306
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 307
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 308
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 309
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 310
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 311
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 312
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 313
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 314
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 315
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 316
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 317
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 318
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 319
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 320
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 321
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 322
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 323
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 324
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 325
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 326
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 327
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 328
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 329
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 330
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 331
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 332
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 333
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 334
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 335
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 336
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 337
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 338
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 339
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 340
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 341
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 342
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 343
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 344
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 345
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 346
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 347
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 348
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 349
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 350
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 351
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 352
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 353
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 354
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 355
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 356
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 357
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 358
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 359
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 360
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 361
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 362
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 363
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 364
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 365
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 366
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 367
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 368
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 369
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 370
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 371
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 372
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 373
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 374
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 375
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 376
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 377
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 378
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 379
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 380
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 381
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 382
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 383
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 384
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 385
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 386
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 387
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 388
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 389
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 390
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 391
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 392
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 393
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 394
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 395
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 396
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 397
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 398
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 399
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 400
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 401
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 402
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 403
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 404
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 405
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 406
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 407
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 408
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 409
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 410
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 411
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 412
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 413
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 414
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 415
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 416
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 417
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 418
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 419
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 420
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 421
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 422
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 423
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 424
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 425
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 426
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 427
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 428
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 429
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 430
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 431
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 432
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 433
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 434
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 435
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 436
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 437
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 438
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 439
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 440
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 441
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 442
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 443
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 444
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 445
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 446
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 447
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 448
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 449
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 450
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 451
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 452
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 453
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 454
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 455
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 456
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 457
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 458
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 459
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 460
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 461
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 462
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 463
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 464
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 465
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 466
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 467
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 468
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 469
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 470
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 471
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 472
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 473
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 474
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 475
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 476
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 477
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 478
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 479
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 480
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 481
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 482
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 483
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 484
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 485
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 486
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 487
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 488
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 489
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 490
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 491
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 492
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 493
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 494
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 495
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 496
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 497
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 498
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 499
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 500
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 501
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 502
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 503
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 504
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 505
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 506
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 507
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 508
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 509
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 510
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 511
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 512
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 513
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 514
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 515
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 516
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 517
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 518
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 519
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 520
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 521
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 522
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 523
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 524
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 525
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 526
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 527
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 528
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 529
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 530
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 531
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 532
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 533
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 534
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 535
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 536
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 537
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 538
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 539
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 540
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 541
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 542
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 543
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 544
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 545
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 546
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 547
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 548
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 549
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 550
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 551
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 552
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 553
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 554
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 555
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 556
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 557
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 558
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 559
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 560
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 561
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 562
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 563
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 564
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 565
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 566
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 567
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 568
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 569
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 570
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 571
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 572
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 573
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 574
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 575
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 576
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 577
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 578
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 579
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 580
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 581
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 582
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 583
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 584
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 585
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 586
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 587
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 588
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 589
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 590
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 591
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 592
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 593
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 594
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 595
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 596
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 597
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 598
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 599
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 600
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 601
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 602
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 603
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 604
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 605
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 606
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 607
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 608
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 609
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 610
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 611
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 612
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 613
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 614
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 615
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 616
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 617
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 618
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 619
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 620
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 621
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 622
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 623
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 624
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 625
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 626
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 627
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 628
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 629
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 630
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 631
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 632
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 633
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 634
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 635
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 636
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 637
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 638
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 639
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 640
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 641
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 642
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 643
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 644
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 645
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 646
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 647
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 648
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 649
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 650
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 651
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 652
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 653
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 654
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 655
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 656
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 657
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 658
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 659
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 660
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 661
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 662
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 663
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 664
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 665
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 666
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 667
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 668
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 669
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 670
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 671
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 672
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 673
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 674
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 675
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 676
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 677
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 678
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 679
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 680
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 681
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 682
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 683
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 684
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 685
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 686
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 687
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 688
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 689
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 690
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 691
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 692
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 693
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 694
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 695
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 696
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 697
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 698
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 699
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 700
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 701
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 702
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 703
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 704
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 705
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 706
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 707
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 708
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 709
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 710
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 711
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 712
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 713
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 714
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 715
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 716
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 717
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 718
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 719
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 720
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 721
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 722
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 723
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 724
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 725
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 726
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 727
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 728
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 729
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 730
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 731
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 732
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 733
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 734
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 735
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 736
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 737
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 738
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 739
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 740
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 741
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 742
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 743
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 744
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 745
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 746
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 747
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 748
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 749
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 750
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 751
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 752
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 753
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 754
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 755
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 756
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 757
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 758
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 759
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 760
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 761
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 762
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 763
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 764
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 765
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 766
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 767
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 768
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 769
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 770
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 771
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 772
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 773
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 774
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 775
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 776
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 777
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 778
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 779
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 780
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 781
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 782
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 783
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 784
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 785
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 786
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 787
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 788
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 789
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 790
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 791
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 792
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 793
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 794
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 795
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 796
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 797
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 798
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 799
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 800
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 801
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 802
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 803
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 804
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 805
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 806
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 807
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 808
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 809
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 810
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 811
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 812
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 813
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 814
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 815
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 816
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 817
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 818
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 819
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 820
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 821
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 822
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 823
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 824
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 825
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 826
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 827
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 828
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 829
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 830
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 831
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 832
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 833
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 834
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 835
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 836
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 837
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 838
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 839
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 840
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 841
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 842
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 843
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 844
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 845
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 846
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 847
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 848
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 849
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 850
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 851
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 852
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 853
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 854
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 855
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 856
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 857
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 858
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 859
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 860
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 861
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 862
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 863
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 864
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 865
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 866
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 867
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 868
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 869
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 870
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 871
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 872
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 873
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 874
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 875
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 876
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 877
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 878
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 879
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 880
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 881
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 882
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 883
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 884
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 885
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 886
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 887
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 888
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 889
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 890
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 891
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 892
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 893
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 894
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 895
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 896
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 897
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 898
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 899
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 900
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 901
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 902
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 903
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 904
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 905
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 906
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 907
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 908
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 909
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 910
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 911
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 912
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 913
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 914
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 915
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 916
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 917
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 918
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 919
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 920
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 921
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 922
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 923
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 924
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 925
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 926
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 927
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 928
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 929
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 930
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 931
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 932
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 933
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 934
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 935
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 936
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 937
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 938
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 939
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 940
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 941
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 942
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 943
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 944
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 945
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 946
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 947
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 948
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 949
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 950
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 951
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 952
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 953
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 954
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 955
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 956
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 957
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 958
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 959
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 960
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 961
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 962
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 963
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 964
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 965
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 966
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 967
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 968
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 969
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 970
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 971
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 972
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 973
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 974
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 975
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 976
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 977
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 978
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 979
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 980
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 981
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 982
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 983
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 984
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 985
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 986
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 987
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 988
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 989
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 990
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 991
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 992
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 993
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 994
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 995
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 996
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 997
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 998
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 999
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 1000
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+
+Computation time on 1 cores : 
+	Database extraction time : 0:00:00
+	                         Learn     Prediction
+	         Fold 1        0:06:00        0:00:15
+	         Fold 2        0:12:07        0:00:15
+	          Total        0:18:07        0:00:30
+	So a total classification time of 0:12:22.
+
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-112821-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-112821-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..30234685
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-112821-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,15313 @@
+2016-08-24 11:28:21,898 INFO: Start:	 Read HDF5 Database Files for ModifiedMultiOmic
+2016-08-24 11:28:21,899 INFO: Info:	 Labels used: No, Yes
+2016-08-24 11:28:21,899 INFO: Info:	 Length of dataset:347
+2016-08-24 11:28:21,900 INFO: ### Main Programm for Multiview Classification
+2016-08-24 11:28:21,900 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 11:28:21,901 INFO: Info:	 Shape of Methyl_ :(347, 25978)
+2016-08-24 11:28:21,901 INFO: Info:	 Shape of MiRNA__ :(347, 1046)
+2016-08-24 11:28:21,902 INFO: Info:	 Shape of RANSeq_ :(347, 73599)
+2016-08-24 11:28:21,902 INFO: Info:	 Shape of Clinic_ :(347, 127)
+2016-08-24 11:28:21,902 INFO: Done:	 Read Database Files
+2016-08-24 11:28:21,902 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-24 11:28:21,906 INFO: Done:	 Determine validation split
+2016-08-24 11:28:21,906 INFO: Start:	 Determine 2 folds
+2016-08-24 11:28:21,916 INFO: Info:	 Length of Learning Sets: 122
+2016-08-24 11:28:21,916 INFO: Info:	 Length of Testing Sets: 122
+2016-08-24 11:28:21,916 INFO: Info:	 Length of Validation Set: 103
+2016-08-24 11:28:21,916 INFO: Done:	 Determine folds
+2016-08-24 11:28:21,917 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-24 11:28:21,917 INFO: 	Start:	 Fold number 1
+2016-08-24 11:28:23,496 DEBUG: 		Start:	 Iteration 1
+2016-08-24 11:28:23,512 DEBUG: 			View 0 : 0.612903225806
+2016-08-24 11:28:23,520 DEBUG: 			View 1 : 0.387096774194
+2016-08-24 11:28:23,602 DEBUG: 			View 2 : 0.535483870968
+2016-08-24 11:28:23,609 DEBUG: 			View 3 : 0.612903225806
+2016-08-24 11:28:23,651 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:28:23,726 DEBUG: 		Start:	 Iteration 2
+2016-08-24 11:28:23,743 DEBUG: 			View 0 : 0.529032258065
+2016-08-24 11:28:23,750 DEBUG: 			View 1 : 0.651612903226
+2016-08-24 11:28:23,835 DEBUG: 			View 2 : 0.638709677419
+2016-08-24 11:28:23,842 DEBUG: 			View 3 : 0.606451612903
+2016-08-24 11:28:23,893 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:28:24,028 DEBUG: 		Start:	 Iteration 3
+2016-08-24 11:28:24,045 DEBUG: 			View 0 : 0.522580645161
+2016-08-24 11:28:24,052 DEBUG: 			View 1 : 0.374193548387
+2016-08-24 11:28:24,136 DEBUG: 			View 2 : 0.593548387097
+2016-08-24 11:28:24,143 DEBUG: 			View 3 : 0.61935483871
+2016-08-24 11:28:24,196 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:28:24,408 DEBUG: 		Start:	 Iteration 4
+2016-08-24 11:28:24,425 DEBUG: 			View 0 : 0.716129032258
+2016-08-24 11:28:24,432 DEBUG: 			View 1 : 0.451612903226
+2016-08-24 11:28:24,522 DEBUG: 			View 2 : 0.535483870968
+2016-08-24 11:28:24,529 DEBUG: 			View 3 : 0.664516129032
+2016-08-24 11:28:24,584 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:28:24,852 DEBUG: 		Start:	 Iteration 5
+2016-08-24 11:28:24,869 DEBUG: 			View 0 : 0.477419354839
+2016-08-24 11:28:24,876 DEBUG: 			View 1 : 0.516129032258
+2016-08-24 11:28:24,963 DEBUG: 			View 2 : 0.548387096774
+2016-08-24 11:28:24,970 DEBUG: 			View 3 : 0.561290322581
+2016-08-24 11:28:25,026 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:28:25,368 DEBUG: 		Start:	 Iteration 6
+2016-08-24 11:28:25,384 DEBUG: 			View 0 : 0.535483870968
+2016-08-24 11:28:25,391 DEBUG: 			View 1 : 0.606451612903
+2016-08-24 11:28:25,478 DEBUG: 			View 2 : 0.612903225806
+2016-08-24 11:28:25,486 DEBUG: 			View 3 : 0.522580645161
+2016-08-24 11:28:25,545 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:28:25,960 DEBUG: 		Start:	 Iteration 7
+2016-08-24 11:28:25,978 DEBUG: 			View 0 : 0.574193548387
+2016-08-24 11:28:25,986 DEBUG: 			View 1 : 0.406451612903
+2016-08-24 11:28:26,082 DEBUG: 			View 2 : 0.612903225806
+2016-08-24 11:28:26,090 DEBUG: 			View 3 : 0.503225806452
+2016-08-24 11:28:26,151 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:28:26,626 DEBUG: 		Start:	 Iteration 8
+2016-08-24 11:28:26,642 DEBUG: 			View 0 : 0.522580645161
+2016-08-24 11:28:26,649 DEBUG: 			View 1 : 0.451612903226
+2016-08-24 11:28:26,737 DEBUG: 			View 2 : 0.529032258065
+2016-08-24 11:28:26,744 DEBUG: 			View 3 : 0.632258064516
+2016-08-24 11:28:26,806 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:28:27,336 DEBUG: 		Start:	 Iteration 9
+2016-08-24 11:28:27,352 DEBUG: 			View 0 : 0.509677419355
+2016-08-24 11:28:27,360 DEBUG: 			View 1 : 0.522580645161
+2016-08-24 11:28:27,449 DEBUG: 			View 2 : 0.632258064516
+2016-08-24 11:28:27,457 DEBUG: 			View 3 : 0.58064516129
+2016-08-24 11:28:27,521 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:28:28,127 DEBUG: 		Start:	 Iteration 10
+2016-08-24 11:28:28,145 DEBUG: 			View 0 : 0.483870967742
+2016-08-24 11:28:28,154 DEBUG: 			View 1 : 0.658064516129
+2016-08-24 11:28:28,254 DEBUG: 			View 2 : 0.612903225806
+2016-08-24 11:28:28,261 DEBUG: 			View 3 : 0.664516129032
+2016-08-24 11:28:28,331 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:28:28,997 DEBUG: 		Start:	 Iteration 11
+2016-08-24 11:28:29,013 DEBUG: 			View 0 : 0.574193548387
+2016-08-24 11:28:29,020 DEBUG: 			View 1 : 0.425806451613
+2016-08-24 11:28:29,110 DEBUG: 			View 2 : 0.535483870968
+2016-08-24 11:28:29,117 DEBUG: 			View 3 : 0.703225806452
+2016-08-24 11:28:29,188 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:28:29,912 DEBUG: 		Start:	 Iteration 12
+2016-08-24 11:28:29,928 DEBUG: 			View 0 : 0.529032258065
+2016-08-24 11:28:29,935 DEBUG: 			View 1 : 0.6
+2016-08-24 11:28:30,025 DEBUG: 			View 2 : 0.574193548387
+2016-08-24 11:28:30,032 DEBUG: 			View 3 : 0.574193548387
+2016-08-24 11:28:30,104 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:28:30,883 DEBUG: 		Start:	 Iteration 13
+2016-08-24 11:28:30,899 DEBUG: 			View 0 : 0.593548387097
+2016-08-24 11:28:30,906 DEBUG: 			View 1 : 0.690322580645
+2016-08-24 11:28:30,992 DEBUG: 			View 2 : 0.625806451613
+2016-08-24 11:28:31,000 DEBUG: 			View 3 : 0.612903225806
+2016-08-24 11:28:31,073 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:28:31,913 DEBUG: 		Start:	 Iteration 14
+2016-08-24 11:28:31,929 DEBUG: 			View 0 : 0.367741935484
+2016-08-24 11:28:31,937 DEBUG: 			View 1 : 0.748387096774
+2016-08-24 11:28:32,026 DEBUG: 			View 2 : 0.548387096774
+2016-08-24 11:28:32,034 DEBUG: 			View 3 : 0.58064516129
+2016-08-24 11:28:32,109 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:28:33,005 DEBUG: 		Start:	 Iteration 15
+2016-08-24 11:28:33,022 DEBUG: 			View 0 : 0.587096774194
+2016-08-24 11:28:33,030 DEBUG: 			View 1 : 0.61935483871
+2016-08-24 11:28:33,117 DEBUG: 			View 2 : 0.645161290323
+2016-08-24 11:28:33,124 DEBUG: 			View 3 : 0.529032258065
+2016-08-24 11:28:33,204 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:28:34,201 DEBUG: 		Start:	 Iteration 16
+2016-08-24 11:28:34,217 DEBUG: 			View 0 : 0.561290322581
+2016-08-24 11:28:34,225 DEBUG: 			View 1 : 0.593548387097
+2016-08-24 11:28:34,309 DEBUG: 			View 2 : 0.483870967742
+2016-08-24 11:28:34,317 DEBUG: 			View 3 : 0.541935483871
+2016-08-24 11:28:34,396 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:28:35,410 DEBUG: 		Start:	 Iteration 17
+2016-08-24 11:28:35,426 DEBUG: 			View 0 : 0.393548387097
+2016-08-24 11:28:35,434 DEBUG: 			View 1 : 0.606451612903
+2016-08-24 11:28:35,523 DEBUG: 			View 2 : 0.535483870968
+2016-08-24 11:28:35,531 DEBUG: 			View 3 : 0.645161290323
+2016-08-24 11:28:35,625 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:28:36,717 DEBUG: 		Start:	 Iteration 18
+2016-08-24 11:28:36,733 DEBUG: 			View 0 : 0.593548387097
+2016-08-24 11:28:36,741 DEBUG: 			View 1 : 0.722580645161
+2016-08-24 11:28:36,818 DEBUG: 			View 2 : 0.490322580645
+2016-08-24 11:28:36,826 DEBUG: 			View 3 : 0.554838709677
+2016-08-24 11:28:36,912 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:28:38,050 DEBUG: 		Start:	 Iteration 19
+2016-08-24 11:28:38,066 DEBUG: 			View 0 : 0.522580645161
+2016-08-24 11:28:38,073 DEBUG: 			View 1 : 0.670967741935
+2016-08-24 11:28:38,158 DEBUG: 			View 2 : 0.645161290323
+2016-08-24 11:28:38,165 DEBUG: 			View 3 : 0.561290322581
+2016-08-24 11:28:38,252 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:28:39,447 DEBUG: 		Start:	 Iteration 20
+2016-08-24 11:28:39,463 DEBUG: 			View 0 : 0.451612903226
+2016-08-24 11:28:39,471 DEBUG: 			View 1 : 0.554838709677
+2016-08-24 11:28:39,555 DEBUG: 			View 2 : 0.458064516129
+2016-08-24 11:28:39,563 DEBUG: 			View 3 : 0.61935483871
+2016-08-24 11:28:39,654 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:28:40,935 DEBUG: 		Start:	 Iteration 21
+2016-08-24 11:28:40,951 DEBUG: 			View 0 : 0.470967741935
+2016-08-24 11:28:40,959 DEBUG: 			View 1 : 0.374193548387
+2016-08-24 11:28:41,040 DEBUG: 			View 2 : 0.574193548387
+2016-08-24 11:28:41,047 DEBUG: 			View 3 : 0.548387096774
+2016-08-24 11:28:41,139 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:28:42,447 DEBUG: 		Start:	 Iteration 22
+2016-08-24 11:28:42,463 DEBUG: 			View 0 : 0.509677419355
+2016-08-24 11:28:42,471 DEBUG: 			View 1 : 0.367741935484
+2016-08-24 11:28:42,555 DEBUG: 			View 2 : 0.593548387097
+2016-08-24 11:28:42,562 DEBUG: 			View 3 : 0.516129032258
+2016-08-24 11:28:42,655 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:28:44,058 DEBUG: 		Start:	 Iteration 23
+2016-08-24 11:28:44,075 DEBUG: 			View 0 : 0.483870967742
+2016-08-24 11:28:44,083 DEBUG: 			View 1 : 0.651612903226
+2016-08-24 11:28:44,169 DEBUG: 			View 2 : 0.451612903226
+2016-08-24 11:28:44,177 DEBUG: 			View 3 : 0.529032258065
+2016-08-24 11:28:44,273 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:28:45,721 DEBUG: 		Start:	 Iteration 24
+2016-08-24 11:28:45,737 DEBUG: 			View 0 : 0.548387096774
+2016-08-24 11:28:45,744 DEBUG: 			View 1 : 0.645161290323
+2016-08-24 11:28:45,834 DEBUG: 			View 2 : 0.61935483871
+2016-08-24 11:28:45,842 DEBUG: 			View 3 : 0.574193548387
+2016-08-24 11:28:45,941 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:28:47,449 DEBUG: 		Start:	 Iteration 25
+2016-08-24 11:28:47,465 DEBUG: 			View 0 : 0.445161290323
+2016-08-24 11:28:47,473 DEBUG: 			View 1 : 0.78064516129
+2016-08-24 11:28:47,558 DEBUG: 			View 2 : 0.464516129032
+2016-08-24 11:28:47,565 DEBUG: 			View 3 : 0.593548387097
+2016-08-24 11:28:47,664 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:28:49,222 DEBUG: 		Start:	 Iteration 26
+2016-08-24 11:28:49,238 DEBUG: 			View 0 : 0.458064516129
+2016-08-24 11:28:49,246 DEBUG: 			View 1 : 0.367741935484
+2016-08-24 11:28:49,329 DEBUG: 			View 2 : 0.625806451613
+2016-08-24 11:28:49,336 DEBUG: 			View 3 : 0.606451612903
+2016-08-24 11:28:49,437 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:28:51,077 DEBUG: 		Start:	 Iteration 27
+2016-08-24 11:28:51,093 DEBUG: 			View 0 : 0.561290322581
+2016-08-24 11:28:51,101 DEBUG: 			View 1 : 0.632258064516
+2016-08-24 11:28:51,190 DEBUG: 			View 2 : 0.6
+2016-08-24 11:28:51,198 DEBUG: 			View 3 : 0.548387096774
+2016-08-24 11:28:51,304 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:28:53,003 DEBUG: 		Start:	 Iteration 28
+2016-08-24 11:28:53,020 DEBUG: 			View 0 : 0.432258064516
+2016-08-24 11:28:53,027 DEBUG: 			View 1 : 0.516129032258
+2016-08-24 11:28:53,119 DEBUG: 			View 2 : 0.670967741935
+2016-08-24 11:28:53,127 DEBUG: 			View 3 : 0.574193548387
+2016-08-24 11:28:53,232 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:28:55,010 DEBUG: 		Start:	 Iteration 29
+2016-08-24 11:28:55,026 DEBUG: 			View 0 : 0.541935483871
+2016-08-24 11:28:55,034 DEBUG: 			View 1 : 0.61935483871
+2016-08-24 11:28:55,121 DEBUG: 			View 2 : 0.6
+2016-08-24 11:28:55,129 DEBUG: 			View 3 : 0.529032258065
+2016-08-24 11:28:55,237 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:28:57,054 DEBUG: 		Start:	 Iteration 30
+2016-08-24 11:28:57,070 DEBUG: 			View 0 : 0.483870967742
+2016-08-24 11:28:57,077 DEBUG: 			View 1 : 0.612903225806
+2016-08-24 11:28:57,163 DEBUG: 			View 2 : 0.61935483871
+2016-08-24 11:28:57,171 DEBUG: 			View 3 : 0.548387096774
+2016-08-24 11:28:57,280 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:28:59,182 DEBUG: 		Start:	 Iteration 31
+2016-08-24 11:28:59,199 DEBUG: 			View 0 : 0.477419354839
+2016-08-24 11:28:59,206 DEBUG: 			View 1 : 0.309677419355
+2016-08-24 11:28:59,297 DEBUG: 			View 2 : 0.696774193548
+2016-08-24 11:28:59,305 DEBUG: 			View 3 : 0.541935483871
+2016-08-24 11:28:59,417 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:29:01,454 DEBUG: 		Start:	 Iteration 32
+2016-08-24 11:29:01,470 DEBUG: 			View 0 : 0.464516129032
+2016-08-24 11:29:01,478 DEBUG: 			View 1 : 0.612903225806
+2016-08-24 11:29:01,566 DEBUG: 			View 2 : 0.6
+2016-08-24 11:29:01,574 DEBUG: 			View 3 : 0.664516129032
+2016-08-24 11:29:01,689 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:29:03,714 DEBUG: 		Start:	 Iteration 33
+2016-08-24 11:29:03,731 DEBUG: 			View 0 : 0.529032258065
+2016-08-24 11:29:03,738 DEBUG: 			View 1 : 0.425806451613
+2016-08-24 11:29:03,820 DEBUG: 			View 2 : 0.567741935484
+2016-08-24 11:29:03,828 DEBUG: 			View 3 : 0.548387096774
+2016-08-24 11:29:03,944 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:29:06,096 DEBUG: 		Start:	 Iteration 34
+2016-08-24 11:29:06,113 DEBUG: 			View 0 : 0.464516129032
+2016-08-24 11:29:06,120 DEBUG: 			View 1 : 0.425806451613
+2016-08-24 11:29:06,208 DEBUG: 			View 2 : 0.658064516129
+2016-08-24 11:29:06,216 DEBUG: 			View 3 : 0.593548387097
+2016-08-24 11:29:06,335 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:29:08,524 DEBUG: 		Start:	 Iteration 35
+2016-08-24 11:29:08,541 DEBUG: 			View 0 : 0.490322580645
+2016-08-24 11:29:08,549 DEBUG: 			View 1 : 0.690322580645
+2016-08-24 11:29:08,633 DEBUG: 			View 2 : 0.606451612903
+2016-08-24 11:29:08,640 DEBUG: 			View 3 : 0.574193548387
+2016-08-24 11:29:08,763 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:29:11,058 DEBUG: 		Start:	 Iteration 36
+2016-08-24 11:29:11,074 DEBUG: 			View 0 : 0.6
+2016-08-24 11:29:11,082 DEBUG: 			View 1 : 0.696774193548
+2016-08-24 11:29:11,172 DEBUG: 			View 2 : 0.612903225806
+2016-08-24 11:29:11,180 DEBUG: 			View 3 : 0.561290322581
+2016-08-24 11:29:11,304 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:29:13,640 DEBUG: 		Start:	 Iteration 37
+2016-08-24 11:29:13,658 DEBUG: 			View 0 : 0.406451612903
+2016-08-24 11:29:13,666 DEBUG: 			View 1 : 0.703225806452
+2016-08-24 11:29:13,752 DEBUG: 			View 2 : 0.477419354839
+2016-08-24 11:29:13,760 DEBUG: 			View 3 : 0.61935483871
+2016-08-24 11:29:13,893 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:29:16,252 DEBUG: 		Start:	 Iteration 38
+2016-08-24 11:29:16,268 DEBUG: 			View 0 : 0.522580645161
+2016-08-24 11:29:16,276 DEBUG: 			View 1 : 0.664516129032
+2016-08-24 11:29:16,361 DEBUG: 			View 2 : 0.625806451613
+2016-08-24 11:29:16,368 DEBUG: 			View 3 : 0.470967741935
+2016-08-24 11:29:16,496 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:29:18,908 DEBUG: 		Start:	 Iteration 39
+2016-08-24 11:29:18,925 DEBUG: 			View 0 : 0.432258064516
+2016-08-24 11:29:18,933 DEBUG: 			View 1 : 0.387096774194
+2016-08-24 11:29:19,021 DEBUG: 			View 2 : 0.561290322581
+2016-08-24 11:29:19,028 DEBUG: 			View 3 : 0.529032258065
+2016-08-24 11:29:19,157 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:29:21,647 DEBUG: 		Start:	 Iteration 40
+2016-08-24 11:29:21,664 DEBUG: 			View 0 : 0.432258064516
+2016-08-24 11:29:21,672 DEBUG: 			View 1 : 0.638709677419
+2016-08-24 11:29:21,753 DEBUG: 			View 2 : 0.574193548387
+2016-08-24 11:29:21,760 DEBUG: 			View 3 : 0.61935483871
+2016-08-24 11:29:21,893 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:29:24,420 DEBUG: 		Start:	 Iteration 41
+2016-08-24 11:29:24,437 DEBUG: 			View 0 : 0.529032258065
+2016-08-24 11:29:24,444 DEBUG: 			View 1 : 0.529032258065
+2016-08-24 11:29:24,533 DEBUG: 			View 2 : 0.567741935484
+2016-08-24 11:29:24,541 DEBUG: 			View 3 : 0.548387096774
+2016-08-24 11:29:24,674 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:29:27,267 DEBUG: 		Start:	 Iteration 42
+2016-08-24 11:29:27,286 DEBUG: 			View 0 : 0.6
+2016-08-24 11:29:27,295 DEBUG: 			View 1 : 0.574193548387
+2016-08-24 11:29:27,398 DEBUG: 			View 2 : 0.651612903226
+2016-08-24 11:29:27,406 DEBUG: 			View 3 : 0.587096774194
+2016-08-24 11:29:27,542 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:29:30,222 DEBUG: 		Start:	 Iteration 43
+2016-08-24 11:29:30,239 DEBUG: 			View 0 : 0.58064516129
+2016-08-24 11:29:30,247 DEBUG: 			View 1 : 0.632258064516
+2016-08-24 11:29:30,332 DEBUG: 			View 2 : 0.458064516129
+2016-08-24 11:29:30,340 DEBUG: 			View 3 : 0.529032258065
+2016-08-24 11:29:30,478 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:29:33,211 DEBUG: 		Start:	 Iteration 44
+2016-08-24 11:29:33,227 DEBUG: 			View 0 : 0.451612903226
+2016-08-24 11:29:33,235 DEBUG: 			View 1 : 0.445161290323
+2016-08-24 11:29:33,317 DEBUG: 			View 2 : 0.606451612903
+2016-08-24 11:29:33,325 DEBUG: 			View 3 : 0.593548387097
+2016-08-24 11:29:33,463 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:29:36,284 DEBUG: 		Start:	 Iteration 45
+2016-08-24 11:29:36,300 DEBUG: 			View 0 : 0.587096774194
+2016-08-24 11:29:36,308 DEBUG: 			View 1 : 0.309677419355
+2016-08-24 11:29:36,388 DEBUG: 			View 2 : 0.548387096774
+2016-08-24 11:29:36,396 DEBUG: 			View 3 : 0.658064516129
+2016-08-24 11:29:36,539 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:29:39,404 DEBUG: 		Start:	 Iteration 46
+2016-08-24 11:29:39,421 DEBUG: 			View 0 : 0.529032258065
+2016-08-24 11:29:39,429 DEBUG: 			View 1 : 0.658064516129
+2016-08-24 11:29:39,515 DEBUG: 			View 2 : 0.574193548387
+2016-08-24 11:29:39,523 DEBUG: 			View 3 : 0.651612903226
+2016-08-24 11:29:39,668 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:29:42,602 DEBUG: 		Start:	 Iteration 47
+2016-08-24 11:29:42,619 DEBUG: 			View 0 : 0.677419354839
+2016-08-24 11:29:42,627 DEBUG: 			View 1 : 0.412903225806
+2016-08-24 11:29:42,714 DEBUG: 			View 2 : 0.587096774194
+2016-08-24 11:29:42,722 DEBUG: 			View 3 : 0.522580645161
+2016-08-24 11:29:42,870 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:29:45,843 DEBUG: 		Start:	 Iteration 48
+2016-08-24 11:29:45,860 DEBUG: 			View 0 : 0.696774193548
+2016-08-24 11:29:45,868 DEBUG: 			View 1 : 0.470967741935
+2016-08-24 11:29:45,957 DEBUG: 			View 2 : 0.535483870968
+2016-08-24 11:29:45,964 DEBUG: 			View 3 : 0.541935483871
+2016-08-24 11:29:46,113 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:29:49,139 DEBUG: 		Start:	 Iteration 49
+2016-08-24 11:29:49,155 DEBUG: 			View 0 : 0.458064516129
+2016-08-24 11:29:49,162 DEBUG: 			View 1 : 0.709677419355
+2016-08-24 11:29:49,245 DEBUG: 			View 2 : 0.522580645161
+2016-08-24 11:29:49,253 DEBUG: 			View 3 : 0.483870967742
+2016-08-24 11:29:49,402 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:29:52,569 DEBUG: 		Start:	 Iteration 50
+2016-08-24 11:29:52,586 DEBUG: 			View 0 : 0.529032258065
+2016-08-24 11:29:52,593 DEBUG: 			View 1 : 0.483870967742
+2016-08-24 11:29:52,683 DEBUG: 			View 2 : 0.632258064516
+2016-08-24 11:29:52,690 DEBUG: 			View 3 : 0.561290322581
+2016-08-24 11:29:52,844 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:29:56,008 DEBUG: 		Start:	 Iteration 51
+2016-08-24 11:29:56,024 DEBUG: 			View 0 : 0.451612903226
+2016-08-24 11:29:56,032 DEBUG: 			View 1 : 0.464516129032
+2016-08-24 11:29:56,114 DEBUG: 			View 2 : 0.6
+2016-08-24 11:29:56,121 DEBUG: 			View 3 : 0.606451612903
+2016-08-24 11:29:56,275 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:29:59,511 DEBUG: 		Start:	 Iteration 52
+2016-08-24 11:29:59,528 DEBUG: 			View 0 : 0.438709677419
+2016-08-24 11:29:59,536 DEBUG: 			View 1 : 0.341935483871
+2016-08-24 11:29:59,622 DEBUG: 			View 2 : 0.541935483871
+2016-08-24 11:29:59,630 DEBUG: 			View 3 : 0.6
+2016-08-24 11:29:59,790 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:30:03,108 DEBUG: 		Start:	 Iteration 53
+2016-08-24 11:30:03,124 DEBUG: 			View 0 : 0.535483870968
+2016-08-24 11:30:03,132 DEBUG: 			View 1 : 0.509677419355
+2016-08-24 11:30:03,214 DEBUG: 			View 2 : 0.529032258065
+2016-08-24 11:30:03,222 DEBUG: 			View 3 : 0.61935483871
+2016-08-24 11:30:03,380 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:30:06,727 DEBUG: 		Start:	 Iteration 54
+2016-08-24 11:30:06,744 DEBUG: 			View 0 : 0.709677419355
+2016-08-24 11:30:06,751 DEBUG: 			View 1 : 0.296774193548
+2016-08-24 11:30:06,839 DEBUG: 			View 2 : 0.606451612903
+2016-08-24 11:30:06,847 DEBUG: 			View 3 : 0.606451612903
+2016-08-24 11:30:07,009 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:30:10,403 DEBUG: 		Start:	 Iteration 55
+2016-08-24 11:30:10,420 DEBUG: 			View 0 : 0.58064516129
+2016-08-24 11:30:10,427 DEBUG: 			View 1 : 0.470967741935
+2016-08-24 11:30:10,505 DEBUG: 			View 2 : 0.638709677419
+2016-08-24 11:30:10,513 DEBUG: 			View 3 : 0.574193548387
+2016-08-24 11:30:10,676 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:30:14,163 DEBUG: 		Start:	 Iteration 56
+2016-08-24 11:30:14,180 DEBUG: 			View 0 : 0.509677419355
+2016-08-24 11:30:14,188 DEBUG: 			View 1 : 0.58064516129
+2016-08-24 11:30:14,275 DEBUG: 			View 2 : 0.58064516129
+2016-08-24 11:30:14,282 DEBUG: 			View 3 : 0.535483870968
+2016-08-24 11:30:14,450 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:30:17,979 DEBUG: 		Start:	 Iteration 57
+2016-08-24 11:30:17,995 DEBUG: 			View 0 : 0.529032258065
+2016-08-24 11:30:18,003 DEBUG: 			View 1 : 0.632258064516
+2016-08-24 11:30:18,090 DEBUG: 			View 2 : 0.61935483871
+2016-08-24 11:30:18,097 DEBUG: 			View 3 : 0.567741935484
+2016-08-24 11:30:18,264 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:30:21,936 DEBUG: 		Start:	 Iteration 58
+2016-08-24 11:30:21,952 DEBUG: 			View 0 : 0.477419354839
+2016-08-24 11:30:21,960 DEBUG: 			View 1 : 0.535483870968
+2016-08-24 11:30:22,050 DEBUG: 			View 2 : 0.574193548387
+2016-08-24 11:30:22,057 DEBUG: 			View 3 : 0.567741935484
+2016-08-24 11:30:22,232 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:30:25,881 DEBUG: 		Start:	 Iteration 59
+2016-08-24 11:30:25,897 DEBUG: 			View 0 : 0.561290322581
+2016-08-24 11:30:25,905 DEBUG: 			View 1 : 0.638709677419
+2016-08-24 11:30:25,992 DEBUG: 			View 2 : 0.509677419355
+2016-08-24 11:30:25,999 DEBUG: 			View 3 : 0.58064516129
+2016-08-24 11:30:26,171 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:30:29,897 DEBUG: 		Start:	 Iteration 60
+2016-08-24 11:30:29,913 DEBUG: 			View 0 : 0.561290322581
+2016-08-24 11:30:29,921 DEBUG: 			View 1 : 0.683870967742
+2016-08-24 11:30:30,001 DEBUG: 			View 2 : 0.587096774194
+2016-08-24 11:30:30,009 DEBUG: 			View 3 : 0.574193548387
+2016-08-24 11:30:30,182 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:30:33,969 DEBUG: 		Start:	 Iteration 61
+2016-08-24 11:30:33,985 DEBUG: 			View 0 : 0.509677419355
+2016-08-24 11:30:33,992 DEBUG: 			View 1 : 0.509677419355
+2016-08-24 11:30:34,074 DEBUG: 			View 2 : 0.606451612903
+2016-08-24 11:30:34,082 DEBUG: 			View 3 : 0.625806451613
+2016-08-24 11:30:34,259 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:30:38,085 DEBUG: 		Start:	 Iteration 62
+2016-08-24 11:30:38,101 DEBUG: 			View 0 : 0.470967741935
+2016-08-24 11:30:38,109 DEBUG: 			View 1 : 0.664516129032
+2016-08-24 11:30:38,192 DEBUG: 			View 2 : 0.58064516129
+2016-08-24 11:30:38,200 DEBUG: 			View 3 : 0.612903225806
+2016-08-24 11:30:38,380 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:30:42,275 DEBUG: 		Start:	 Iteration 63
+2016-08-24 11:30:42,291 DEBUG: 			View 0 : 0.412903225806
+2016-08-24 11:30:42,299 DEBUG: 			View 1 : 0.483870967742
+2016-08-24 11:30:42,383 DEBUG: 			View 2 : 0.625806451613
+2016-08-24 11:30:42,391 DEBUG: 			View 3 : 0.58064516129
+2016-08-24 11:30:42,575 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:30:46,590 DEBUG: 		Start:	 Iteration 64
+2016-08-24 11:30:46,606 DEBUG: 			View 0 : 0.470967741935
+2016-08-24 11:30:46,614 DEBUG: 			View 1 : 0.509677419355
+2016-08-24 11:30:46,697 DEBUG: 			View 2 : 0.567741935484
+2016-08-24 11:30:46,705 DEBUG: 			View 3 : 0.470967741935
+2016-08-24 11:30:46,888 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:30:50,945 DEBUG: 		Start:	 Iteration 65
+2016-08-24 11:30:50,962 DEBUG: 			View 0 : 0.451612903226
+2016-08-24 11:30:50,970 DEBUG: 			View 1 : 0.470967741935
+2016-08-24 11:30:51,059 DEBUG: 			View 2 : 0.670967741935
+2016-08-24 11:30:51,066 DEBUG: 			View 3 : 0.522580645161
+2016-08-24 11:30:51,256 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:30:55,362 DEBUG: 		Start:	 Iteration 66
+2016-08-24 11:30:55,379 DEBUG: 			View 0 : 0.464516129032
+2016-08-24 11:30:55,386 DEBUG: 			View 1 : 0.645161290323
+2016-08-24 11:30:55,475 DEBUG: 			View 2 : 0.612903225806
+2016-08-24 11:30:55,482 DEBUG: 			View 3 : 0.664516129032
+2016-08-24 11:30:55,671 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:30:59,825 DEBUG: 		Start:	 Iteration 67
+2016-08-24 11:30:59,842 DEBUG: 			View 0 : 0.438709677419
+2016-08-24 11:30:59,850 DEBUG: 			View 1 : 0.541935483871
+2016-08-24 11:30:59,940 DEBUG: 			View 2 : 0.567741935484
+2016-08-24 11:30:59,948 DEBUG: 			View 3 : 0.664516129032
+2016-08-24 11:31:00,148 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:31:04,865 DEBUG: 		Start:	 Iteration 68
+2016-08-24 11:31:04,891 DEBUG: 			View 0 : 0.425806451613
+2016-08-24 11:31:04,906 DEBUG: 			View 1 : 0.677419354839
+2016-08-24 11:31:05,061 DEBUG: 			View 2 : 0.567741935484
+2016-08-24 11:31:05,070 DEBUG: 			View 3 : 0.664516129032
+2016-08-24 11:31:05,287 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:31:09,748 DEBUG: 		Start:	 Iteration 69
+2016-08-24 11:31:09,764 DEBUG: 			View 0 : 0.477419354839
+2016-08-24 11:31:09,772 DEBUG: 			View 1 : 0.722580645161
+2016-08-24 11:31:09,851 DEBUG: 			View 2 : 0.670967741935
+2016-08-24 11:31:09,859 DEBUG: 			View 3 : 0.541935483871
+2016-08-24 11:31:10,056 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:31:14,381 DEBUG: 		Start:	 Iteration 70
+2016-08-24 11:31:14,397 DEBUG: 			View 0 : 0.522580645161
+2016-08-24 11:31:14,405 DEBUG: 			View 1 : 0.638709677419
+2016-08-24 11:31:14,494 DEBUG: 			View 2 : 0.587096774194
+2016-08-24 11:31:14,502 DEBUG: 			View 3 : 0.503225806452
+2016-08-24 11:31:14,698 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:31:19,091 DEBUG: 		Start:	 Iteration 71
+2016-08-24 11:31:19,107 DEBUG: 			View 0 : 0.425806451613
+2016-08-24 11:31:19,114 DEBUG: 			View 1 : 0.612903225806
+2016-08-24 11:31:19,197 DEBUG: 			View 2 : 0.567741935484
+2016-08-24 11:31:19,204 DEBUG: 			View 3 : 0.574193548387
+2016-08-24 11:31:19,401 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:31:23,780 DEBUG: 		Start:	 Iteration 72
+2016-08-24 11:31:23,796 DEBUG: 			View 0 : 0.645161290323
+2016-08-24 11:31:23,804 DEBUG: 			View 1 : 0.477419354839
+2016-08-24 11:31:23,885 DEBUG: 			View 2 : 0.574193548387
+2016-08-24 11:31:23,893 DEBUG: 			View 3 : 0.561290322581
+2016-08-24 11:31:24,092 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:31:28,523 DEBUG: 		Start:	 Iteration 73
+2016-08-24 11:31:28,539 DEBUG: 			View 0 : 0.483870967742
+2016-08-24 11:31:28,546 DEBUG: 			View 1 : 0.593548387097
+2016-08-24 11:31:28,627 DEBUG: 			View 2 : 0.516129032258
+2016-08-24 11:31:28,635 DEBUG: 			View 3 : 0.541935483871
+2016-08-24 11:31:28,834 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:31:33,348 DEBUG: 		Start:	 Iteration 74
+2016-08-24 11:31:33,364 DEBUG: 			View 0 : 0.548387096774
+2016-08-24 11:31:33,372 DEBUG: 			View 1 : 0.277419354839
+2016-08-24 11:31:33,458 DEBUG: 			View 2 : 0.645161290323
+2016-08-24 11:31:33,465 DEBUG: 			View 3 : 0.477419354839
+2016-08-24 11:31:33,668 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:31:38,258 DEBUG: 		Start:	 Iteration 75
+2016-08-24 11:31:38,274 DEBUG: 			View 0 : 0.529032258065
+2016-08-24 11:31:38,282 DEBUG: 			View 1 : 0.625806451613
+2016-08-24 11:31:38,355 DEBUG: 			View 2 : 0.61935483871
+2016-08-24 11:31:38,363 DEBUG: 			View 3 : 0.541935483871
+2016-08-24 11:31:38,568 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:31:43,214 DEBUG: 		Start:	 Iteration 76
+2016-08-24 11:31:43,230 DEBUG: 			View 0 : 0.58064516129
+2016-08-24 11:31:43,237 DEBUG: 			View 1 : 0.606451612903
+2016-08-24 11:31:43,323 DEBUG: 			View 2 : 0.612903225806
+2016-08-24 11:31:43,331 DEBUG: 			View 3 : 0.61935483871
+2016-08-24 11:31:43,535 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:31:48,374 DEBUG: 		Start:	 Iteration 77
+2016-08-24 11:31:48,393 DEBUG: 			View 0 : 0.451612903226
+2016-08-24 11:31:48,401 DEBUG: 			View 1 : 0.690322580645
+2016-08-24 11:31:48,503 DEBUG: 			View 2 : 0.6
+2016-08-24 11:31:48,512 DEBUG: 			View 3 : 0.548387096774
+2016-08-24 11:31:48,755 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:31:53,654 DEBUG: 		Start:	 Iteration 78
+2016-08-24 11:31:53,671 DEBUG: 			View 0 : 0.593548387097
+2016-08-24 11:31:53,678 DEBUG: 			View 1 : 0.632258064516
+2016-08-24 11:31:53,760 DEBUG: 			View 2 : 0.612903225806
+2016-08-24 11:31:53,767 DEBUG: 			View 3 : 0.541935483871
+2016-08-24 11:31:53,976 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:31:58,943 DEBUG: 		Start:	 Iteration 79
+2016-08-24 11:31:58,960 DEBUG: 			View 0 : 0.503225806452
+2016-08-24 11:31:58,967 DEBUG: 			View 1 : 0.458064516129
+2016-08-24 11:31:59,055 DEBUG: 			View 2 : 0.632258064516
+2016-08-24 11:31:59,063 DEBUG: 			View 3 : 0.61935483871
+2016-08-24 11:31:59,276 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:32:04,163 DEBUG: 		Start:	 Iteration 80
+2016-08-24 11:32:04,180 DEBUG: 			View 0 : 0.529032258065
+2016-08-24 11:32:04,187 DEBUG: 			View 1 : 0.361290322581
+2016-08-24 11:32:04,275 DEBUG: 			View 2 : 0.645161290323
+2016-08-24 11:32:04,283 DEBUG: 			View 3 : 0.522580645161
+2016-08-24 11:32:04,495 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:32:09,481 DEBUG: 		Start:	 Iteration 81
+2016-08-24 11:32:09,498 DEBUG: 			View 0 : 0.541935483871
+2016-08-24 11:32:09,506 DEBUG: 			View 1 : 0.374193548387
+2016-08-24 11:32:09,589 DEBUG: 			View 2 : 0.593548387097
+2016-08-24 11:32:09,596 DEBUG: 			View 3 : 0.587096774194
+2016-08-24 11:32:09,813 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:32:14,844 DEBUG: 		Start:	 Iteration 82
+2016-08-24 11:32:14,860 DEBUG: 			View 0 : 0.445161290323
+2016-08-24 11:32:14,868 DEBUG: 			View 1 : 0.503225806452
+2016-08-24 11:32:14,955 DEBUG: 			View 2 : 0.490322580645
+2016-08-24 11:32:14,962 DEBUG: 			View 3 : 0.6
+2016-08-24 11:32:15,180 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:32:20,296 DEBUG: 		Start:	 Iteration 83
+2016-08-24 11:32:20,314 DEBUG: 			View 0 : 0.574193548387
+2016-08-24 11:32:20,322 DEBUG: 			View 1 : 0.367741935484
+2016-08-24 11:32:20,411 DEBUG: 			View 2 : 0.625806451613
+2016-08-24 11:32:20,419 DEBUG: 			View 3 : 0.535483870968
+2016-08-24 11:32:20,648 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:32:25,914 DEBUG: 		Start:	 Iteration 84
+2016-08-24 11:32:25,931 DEBUG: 			View 0 : 0.509677419355
+2016-08-24 11:32:25,939 DEBUG: 			View 1 : 0.554838709677
+2016-08-24 11:32:26,026 DEBUG: 			View 2 : 0.645161290323
+2016-08-24 11:32:26,034 DEBUG: 			View 3 : 0.612903225806
+2016-08-24 11:32:26,264 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:32:31,908 DEBUG: 		Start:	 Iteration 85
+2016-08-24 11:32:31,927 DEBUG: 			View 0 : 0.541935483871
+2016-08-24 11:32:31,936 DEBUG: 			View 1 : 0.509677419355
+2016-08-24 11:32:32,032 DEBUG: 			View 2 : 0.490322580645
+2016-08-24 11:32:32,039 DEBUG: 			View 3 : 0.529032258065
+2016-08-24 11:32:32,270 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:32:37,729 DEBUG: 		Start:	 Iteration 86
+2016-08-24 11:32:37,746 DEBUG: 			View 0 : 0.561290322581
+2016-08-24 11:32:37,753 DEBUG: 			View 1 : 0.612903225806
+2016-08-24 11:32:37,838 DEBUG: 			View 2 : 0.58064516129
+2016-08-24 11:32:37,845 DEBUG: 			View 3 : 0.61935483871
+2016-08-24 11:32:38,074 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:32:43,440 DEBUG: 		Start:	 Iteration 87
+2016-08-24 11:32:43,456 DEBUG: 			View 0 : 0.587096774194
+2016-08-24 11:32:43,464 DEBUG: 			View 1 : 0.490322580645
+2016-08-24 11:32:43,550 DEBUG: 			View 2 : 0.529032258065
+2016-08-24 11:32:43,558 DEBUG: 			View 3 : 0.606451612903
+2016-08-24 11:32:43,788 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:32:49,211 DEBUG: 		Start:	 Iteration 88
+2016-08-24 11:32:49,227 DEBUG: 			View 0 : 0.651612903226
+2016-08-24 11:32:49,235 DEBUG: 			View 1 : 0.483870967742
+2016-08-24 11:32:49,320 DEBUG: 			View 2 : 0.593548387097
+2016-08-24 11:32:49,327 DEBUG: 			View 3 : 0.625806451613
+2016-08-24 11:32:49,559 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:32:55,079 DEBUG: 		Start:	 Iteration 89
+2016-08-24 11:32:55,096 DEBUG: 			View 0 : 0.374193548387
+2016-08-24 11:32:55,104 DEBUG: 			View 1 : 0.625806451613
+2016-08-24 11:32:55,192 DEBUG: 			View 2 : 0.425806451613
+2016-08-24 11:32:55,199 DEBUG: 			View 3 : 0.61935483871
+2016-08-24 11:32:55,438 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:33:01,001 DEBUG: 		Start:	 Iteration 90
+2016-08-24 11:33:01,018 DEBUG: 			View 0 : 0.470967741935
+2016-08-24 11:33:01,025 DEBUG: 			View 1 : 0.683870967742
+2016-08-24 11:33:01,113 DEBUG: 			View 2 : 0.567741935484
+2016-08-24 11:33:01,120 DEBUG: 			View 3 : 0.529032258065
+2016-08-24 11:33:01,356 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:33:06,992 DEBUG: 		Start:	 Iteration 91
+2016-08-24 11:33:07,008 DEBUG: 			View 0 : 0.606451612903
+2016-08-24 11:33:07,016 DEBUG: 			View 1 : 0.625806451613
+2016-08-24 11:33:07,101 DEBUG: 			View 2 : 0.587096774194
+2016-08-24 11:33:07,109 DEBUG: 			View 3 : 0.606451612903
+2016-08-24 11:33:07,353 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:33:13,195 DEBUG: 		Start:	 Iteration 92
+2016-08-24 11:33:13,212 DEBUG: 			View 0 : 0.425806451613
+2016-08-24 11:33:13,219 DEBUG: 			View 1 : 0.348387096774
+2016-08-24 11:33:13,311 DEBUG: 			View 2 : 0.529032258065
+2016-08-24 11:33:13,318 DEBUG: 			View 3 : 0.587096774194
+2016-08-24 11:33:13,560 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:33:19,527 DEBUG: 		Start:	 Iteration 93
+2016-08-24 11:33:19,543 DEBUG: 			View 0 : 0.496774193548
+2016-08-24 11:33:19,551 DEBUG: 			View 1 : 0.612903225806
+2016-08-24 11:33:19,634 DEBUG: 			View 2 : 0.58064516129
+2016-08-24 11:33:19,641 DEBUG: 			View 3 : 0.554838709677
+2016-08-24 11:33:19,896 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:33:25,762 DEBUG: 		Start:	 Iteration 94
+2016-08-24 11:33:25,778 DEBUG: 			View 0 : 0.445161290323
+2016-08-24 11:33:25,786 DEBUG: 			View 1 : 0.632258064516
+2016-08-24 11:33:25,869 DEBUG: 			View 2 : 0.574193548387
+2016-08-24 11:33:25,876 DEBUG: 			View 3 : 0.522580645161
+2016-08-24 11:33:26,123 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:33:32,162 DEBUG: 		Start:	 Iteration 95
+2016-08-24 11:33:32,179 DEBUG: 			View 0 : 0.458064516129
+2016-08-24 11:33:32,187 DEBUG: 			View 1 : 0.638709677419
+2016-08-24 11:33:32,281 DEBUG: 			View 2 : 0.561290322581
+2016-08-24 11:33:32,288 DEBUG: 			View 3 : 0.6
+2016-08-24 11:33:32,548 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:33:38,564 DEBUG: 		Start:	 Iteration 96
+2016-08-24 11:33:38,581 DEBUG: 			View 0 : 0.574193548387
+2016-08-24 11:33:38,588 DEBUG: 			View 1 : 0.367741935484
+2016-08-24 11:33:38,674 DEBUG: 			View 2 : 0.645161290323
+2016-08-24 11:33:38,681 DEBUG: 			View 3 : 0.670967741935
+2016-08-24 11:33:38,933 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:33:45,058 DEBUG: 		Start:	 Iteration 97
+2016-08-24 11:33:45,076 DEBUG: 			View 0 : 0.61935483871
+2016-08-24 11:33:45,084 DEBUG: 			View 1 : 0.658064516129
+2016-08-24 11:33:45,175 DEBUG: 			View 2 : 0.593548387097
+2016-08-24 11:33:45,182 DEBUG: 			View 3 : 0.541935483871
+2016-08-24 11:33:45,439 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:33:51,666 DEBUG: 		Start:	 Iteration 98
+2016-08-24 11:33:51,683 DEBUG: 			View 0 : 0.477419354839
+2016-08-24 11:33:51,691 DEBUG: 			View 1 : 0.587096774194
+2016-08-24 11:33:51,786 DEBUG: 			View 2 : 0.548387096774
+2016-08-24 11:33:51,794 DEBUG: 			View 3 : 0.638709677419
+2016-08-24 11:33:52,065 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:33:58,218 DEBUG: 		Start:	 Iteration 99
+2016-08-24 11:33:58,235 DEBUG: 			View 0 : 0.464516129032
+2016-08-24 11:33:58,243 DEBUG: 			View 1 : 0.470967741935
+2016-08-24 11:33:58,334 DEBUG: 			View 2 : 0.554838709677
+2016-08-24 11:33:58,342 DEBUG: 			View 3 : 0.567741935484
+2016-08-24 11:33:58,600 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:34:04,934 DEBUG: 		Start:	 Iteration 100
+2016-08-24 11:34:04,950 DEBUG: 			View 0 : 0.432258064516
+2016-08-24 11:34:04,957 DEBUG: 			View 1 : 0.412903225806
+2016-08-24 11:34:05,039 DEBUG: 			View 2 : 0.561290322581
+2016-08-24 11:34:05,047 DEBUG: 			View 3 : 0.670967741935
+2016-08-24 11:34:05,308 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:34:11,557 DEBUG: 		Start:	 Iteration 101
+2016-08-24 11:34:11,573 DEBUG: 			View 0 : 0.548387096774
+2016-08-24 11:34:11,580 DEBUG: 			View 1 : 0.387096774194
+2016-08-24 11:34:11,669 DEBUG: 			View 2 : 0.541935483871
+2016-08-24 11:34:11,677 DEBUG: 			View 3 : 0.522580645161
+2016-08-24 11:34:11,937 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:34:18,573 DEBUG: 		Start:	 Iteration 102
+2016-08-24 11:34:18,595 DEBUG: 			View 0 : 0.625806451613
+2016-08-24 11:34:18,604 DEBUG: 			View 1 : 0.464516129032
+2016-08-24 11:34:18,708 DEBUG: 			View 2 : 0.606451612903
+2016-08-24 11:34:18,717 DEBUG: 			View 3 : 0.548387096774
+2016-08-24 11:34:19,004 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:34:25,229 INFO: 	Start: 	 Classification
+2016-08-24 11:34:40,414 INFO: 	Done: 	 Fold number 1
+2016-08-24 11:34:40,414 INFO: 	Start:	 Fold number 2
+2016-08-24 11:34:42,007 DEBUG: 		Start:	 Iteration 1
+2016-08-24 11:34:42,022 DEBUG: 			View 0 : 0.377358490566
+2016-08-24 11:34:42,029 DEBUG: 			View 1 : 0.622641509434
+2016-08-24 11:34:42,059 DEBUG: 			View 2 : 0.377358490566
+2016-08-24 11:34:42,067 DEBUG: 			View 3 : 0.377358490566
+2016-08-24 11:34:42,108 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:34:42,178 DEBUG: 		Start:	 Iteration 2
+2016-08-24 11:34:42,195 DEBUG: 			View 0 : 0.465408805031
+2016-08-24 11:34:42,202 DEBUG: 			View 1 : 0.471698113208
+2016-08-24 11:34:42,289 DEBUG: 			View 2 : 0.647798742138
+2016-08-24 11:34:42,297 DEBUG: 			View 3 : 0.477987421384
+2016-08-24 11:34:42,342 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:34:42,487 DEBUG: 		Start:	 Iteration 3
+2016-08-24 11:34:42,504 DEBUG: 			View 0 : 0.389937106918
+2016-08-24 11:34:42,511 DEBUG: 			View 1 : 0.553459119497
+2016-08-24 11:34:42,594 DEBUG: 			View 2 : 0.503144654088
+2016-08-24 11:34:42,602 DEBUG: 			View 3 : 0.534591194969
+2016-08-24 11:34:42,655 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:34:42,859 DEBUG: 		Start:	 Iteration 4
+2016-08-24 11:34:42,875 DEBUG: 			View 0 : 0.591194968553
+2016-08-24 11:34:42,883 DEBUG: 			View 1 : 0.603773584906
+2016-08-24 11:34:42,965 DEBUG: 			View 2 : 0.62893081761
+2016-08-24 11:34:42,973 DEBUG: 			View 3 : 0.666666666667
+2016-08-24 11:34:43,029 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:34:43,290 DEBUG: 		Start:	 Iteration 5
+2016-08-24 11:34:43,306 DEBUG: 			View 0 : 0.559748427673
+2016-08-24 11:34:43,314 DEBUG: 			View 1 : 0.446540880503
+2016-08-24 11:34:43,397 DEBUG: 			View 2 : 0.547169811321
+2016-08-24 11:34:43,404 DEBUG: 			View 3 : 0.59748427673
+2016-08-24 11:34:43,461 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:34:43,781 DEBUG: 		Start:	 Iteration 6
+2016-08-24 11:34:43,797 DEBUG: 			View 0 : 0.358490566038
+2016-08-24 11:34:43,805 DEBUG: 			View 1 : 0.698113207547
+2016-08-24 11:34:43,891 DEBUG: 			View 2 : 0.509433962264
+2016-08-24 11:34:43,899 DEBUG: 			View 3 : 0.528301886792
+2016-08-24 11:34:43,958 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:34:44,334 DEBUG: 		Start:	 Iteration 7
+2016-08-24 11:34:44,351 DEBUG: 			View 0 : 0.503144654088
+2016-08-24 11:34:44,358 DEBUG: 			View 1 : 0.635220125786
+2016-08-24 11:34:44,445 DEBUG: 			View 2 : 0.553459119497
+2016-08-24 11:34:44,453 DEBUG: 			View 3 : 0.660377358491
+2016-08-24 11:34:44,514 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:34:44,948 DEBUG: 		Start:	 Iteration 8
+2016-08-24 11:34:44,964 DEBUG: 			View 0 : 0.547169811321
+2016-08-24 11:34:44,972 DEBUG: 			View 1 : 0.465408805031
+2016-08-24 11:34:45,055 DEBUG: 			View 2 : 0.553459119497
+2016-08-24 11:34:45,063 DEBUG: 			View 3 : 0.647798742138
+2016-08-24 11:34:45,129 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:34:45,620 DEBUG: 		Start:	 Iteration 9
+2016-08-24 11:34:45,637 DEBUG: 			View 0 : 0.553459119497
+2016-08-24 11:34:45,644 DEBUG: 			View 1 : 0.446540880503
+2016-08-24 11:34:45,730 DEBUG: 			View 2 : 0.591194968553
+2016-08-24 11:34:45,738 DEBUG: 			View 3 : 0.553459119497
+2016-08-24 11:34:45,804 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:34:46,365 DEBUG: 		Start:	 Iteration 10
+2016-08-24 11:34:46,382 DEBUG: 			View 0 : 0.465408805031
+2016-08-24 11:34:46,389 DEBUG: 			View 1 : 0.465408805031
+2016-08-24 11:34:46,476 DEBUG: 			View 2 : 0.666666666667
+2016-08-24 11:34:46,484 DEBUG: 			View 3 : 0.553459119497
+2016-08-24 11:34:46,553 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:34:47,192 DEBUG: 		Start:	 Iteration 11
+2016-08-24 11:34:47,209 DEBUG: 			View 0 : 0.496855345912
+2016-08-24 11:34:47,216 DEBUG: 			View 1 : 0.672955974843
+2016-08-24 11:34:47,304 DEBUG: 			View 2 : 0.566037735849
+2016-08-24 11:34:47,312 DEBUG: 			View 3 : 0.578616352201
+2016-08-24 11:34:47,384 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:34:48,078 DEBUG: 		Start:	 Iteration 12
+2016-08-24 11:34:48,094 DEBUG: 			View 0 : 0.547169811321
+2016-08-24 11:34:48,102 DEBUG: 			View 1 : 0.320754716981
+2016-08-24 11:34:48,193 DEBUG: 			View 2 : 0.616352201258
+2016-08-24 11:34:48,201 DEBUG: 			View 3 : 0.522012578616
+2016-08-24 11:34:48,273 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:34:49,039 DEBUG: 		Start:	 Iteration 13
+2016-08-24 11:34:49,055 DEBUG: 			View 0 : 0.364779874214
+2016-08-24 11:34:49,063 DEBUG: 			View 1 : 0.641509433962
+2016-08-24 11:34:49,152 DEBUG: 			View 2 : 0.534591194969
+2016-08-24 11:34:49,159 DEBUG: 			View 3 : 0.584905660377
+2016-08-24 11:34:49,235 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:34:50,060 DEBUG: 		Start:	 Iteration 14
+2016-08-24 11:34:50,077 DEBUG: 			View 0 : 0.635220125786
+2016-08-24 11:34:50,084 DEBUG: 			View 1 : 0.691823899371
+2016-08-24 11:34:50,167 DEBUG: 			View 2 : 0.578616352201
+2016-08-24 11:34:50,174 DEBUG: 			View 3 : 0.528301886792
+2016-08-24 11:34:50,253 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:34:51,136 DEBUG: 		Start:	 Iteration 15
+2016-08-24 11:34:51,153 DEBUG: 			View 0 : 0.427672955975
+2016-08-24 11:34:51,161 DEBUG: 			View 1 : 0.62893081761
+2016-08-24 11:34:51,245 DEBUG: 			View 2 : 0.559748427673
+2016-08-24 11:34:51,252 DEBUG: 			View 3 : 0.616352201258
+2016-08-24 11:34:51,334 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:34:52,275 DEBUG: 		Start:	 Iteration 16
+2016-08-24 11:34:52,292 DEBUG: 			View 0 : 0.528301886792
+2016-08-24 11:34:52,300 DEBUG: 			View 1 : 0.672955974843
+2016-08-24 11:34:52,387 DEBUG: 			View 2 : 0.610062893082
+2016-08-24 11:34:52,395 DEBUG: 			View 3 : 0.540880503145
+2016-08-24 11:34:52,478 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:34:53,479 DEBUG: 		Start:	 Iteration 17
+2016-08-24 11:34:53,495 DEBUG: 			View 0 : 0.522012578616
+2016-08-24 11:34:53,503 DEBUG: 			View 1 : 0.471698113208
+2016-08-24 11:34:53,590 DEBUG: 			View 2 : 0.654088050314
+2016-08-24 11:34:53,597 DEBUG: 			View 3 : 0.566037735849
+2016-08-24 11:34:53,682 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:34:54,747 DEBUG: 		Start:	 Iteration 18
+2016-08-24 11:34:54,764 DEBUG: 			View 0 : 0.522012578616
+2016-08-24 11:34:54,771 DEBUG: 			View 1 : 0.522012578616
+2016-08-24 11:34:54,855 DEBUG: 			View 2 : 0.666666666667
+2016-08-24 11:34:54,863 DEBUG: 			View 3 : 0.528301886792
+2016-08-24 11:34:54,949 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:34:56,085 DEBUG: 		Start:	 Iteration 19
+2016-08-24 11:34:56,101 DEBUG: 			View 0 : 0.572327044025
+2016-08-24 11:34:56,109 DEBUG: 			View 1 : 0.616352201258
+2016-08-24 11:34:56,191 DEBUG: 			View 2 : 0.591194968553
+2016-08-24 11:34:56,198 DEBUG: 			View 3 : 0.591194968553
+2016-08-24 11:34:56,287 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:34:57,480 DEBUG: 		Start:	 Iteration 20
+2016-08-24 11:34:57,497 DEBUG: 			View 0 : 0.522012578616
+2016-08-24 11:34:57,504 DEBUG: 			View 1 : 0.51572327044
+2016-08-24 11:34:57,582 DEBUG: 			View 2 : 0.59748427673
+2016-08-24 11:34:57,590 DEBUG: 			View 3 : 0.647798742138
+2016-08-24 11:34:57,681 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:34:58,933 DEBUG: 		Start:	 Iteration 21
+2016-08-24 11:34:58,950 DEBUG: 			View 0 : 0.446540880503
+2016-08-24 11:34:58,958 DEBUG: 			View 1 : 0.691823899371
+2016-08-24 11:34:59,041 DEBUG: 			View 2 : 0.48427672956
+2016-08-24 11:34:59,048 DEBUG: 			View 3 : 0.666666666667
+2016-08-24 11:34:59,141 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:35:00,451 DEBUG: 		Start:	 Iteration 22
+2016-08-24 11:35:00,467 DEBUG: 			View 0 : 0.559748427673
+2016-08-24 11:35:00,474 DEBUG: 			View 1 : 0.654088050314
+2016-08-24 11:35:00,561 DEBUG: 			View 2 : 0.566037735849
+2016-08-24 11:35:00,569 DEBUG: 			View 3 : 0.578616352201
+2016-08-24 11:35:00,663 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:35:02,029 DEBUG: 		Start:	 Iteration 23
+2016-08-24 11:35:02,046 DEBUG: 			View 0 : 0.433962264151
+2016-08-24 11:35:02,053 DEBUG: 			View 1 : 0.616352201258
+2016-08-24 11:35:02,140 DEBUG: 			View 2 : 0.471698113208
+2016-08-24 11:35:02,147 DEBUG: 			View 3 : 0.584905660377
+2016-08-24 11:35:02,244 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:35:03,666 DEBUG: 		Start:	 Iteration 24
+2016-08-24 11:35:03,683 DEBUG: 			View 0 : 0.641509433962
+2016-08-24 11:35:03,690 DEBUG: 			View 1 : 0.654088050314
+2016-08-24 11:35:03,773 DEBUG: 			View 2 : 0.578616352201
+2016-08-24 11:35:03,781 DEBUG: 			View 3 : 0.59748427673
+2016-08-24 11:35:03,880 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:35:05,362 DEBUG: 		Start:	 Iteration 25
+2016-08-24 11:35:05,379 DEBUG: 			View 0 : 0.616352201258
+2016-08-24 11:35:05,386 DEBUG: 			View 1 : 0.622641509434
+2016-08-24 11:35:05,465 DEBUG: 			View 2 : 0.51572327044
+2016-08-24 11:35:05,472 DEBUG: 			View 3 : 0.666666666667
+2016-08-24 11:35:05,574 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:35:07,114 DEBUG: 		Start:	 Iteration 26
+2016-08-24 11:35:07,130 DEBUG: 			View 0 : 0.377358490566
+2016-08-24 11:35:07,138 DEBUG: 			View 1 : 0.660377358491
+2016-08-24 11:35:07,224 DEBUG: 			View 2 : 0.540880503145
+2016-08-24 11:35:07,232 DEBUG: 			View 3 : 0.654088050314
+2016-08-24 11:35:07,335 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:35:08,934 DEBUG: 		Start:	 Iteration 27
+2016-08-24 11:35:08,950 DEBUG: 			View 0 : 0.446540880503
+2016-08-24 11:35:08,958 DEBUG: 			View 1 : 0.691823899371
+2016-08-24 11:35:09,044 DEBUG: 			View 2 : 0.591194968553
+2016-08-24 11:35:09,052 DEBUG: 			View 3 : 0.566037735849
+2016-08-24 11:35:09,158 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:35:10,846 DEBUG: 		Start:	 Iteration 28
+2016-08-24 11:35:10,863 DEBUG: 			View 0 : 0.603773584906
+2016-08-24 11:35:10,870 DEBUG: 			View 1 : 0.51572327044
+2016-08-24 11:35:10,957 DEBUG: 			View 2 : 0.59748427673
+2016-08-24 11:35:10,964 DEBUG: 			View 3 : 0.62893081761
+2016-08-24 11:35:11,072 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:35:12,786 DEBUG: 		Start:	 Iteration 29
+2016-08-24 11:35:12,803 DEBUG: 			View 0 : 0.622641509434
+2016-08-24 11:35:12,810 DEBUG: 			View 1 : 0.729559748428
+2016-08-24 11:35:12,898 DEBUG: 			View 2 : 0.572327044025
+2016-08-24 11:35:12,905 DEBUG: 			View 3 : 0.559748427673
+2016-08-24 11:35:13,015 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:35:14,788 DEBUG: 		Start:	 Iteration 30
+2016-08-24 11:35:14,804 DEBUG: 			View 0 : 0.496855345912
+2016-08-24 11:35:14,812 DEBUG: 			View 1 : 0.320754716981
+2016-08-24 11:35:14,896 DEBUG: 			View 2 : 0.572327044025
+2016-08-24 11:35:14,903 DEBUG: 			View 3 : 0.635220125786
+2016-08-24 11:35:15,016 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:35:16,849 DEBUG: 		Start:	 Iteration 31
+2016-08-24 11:35:16,866 DEBUG: 			View 0 : 0.522012578616
+2016-08-24 11:35:16,874 DEBUG: 			View 1 : 0.465408805031
+2016-08-24 11:35:16,956 DEBUG: 			View 2 : 0.654088050314
+2016-08-24 11:35:16,964 DEBUG: 			View 3 : 0.622641509434
+2016-08-24 11:35:17,078 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:35:18,980 DEBUG: 		Start:	 Iteration 32
+2016-08-24 11:35:18,996 DEBUG: 			View 0 : 0.59748427673
+2016-08-24 11:35:19,004 DEBUG: 			View 1 : 0.477987421384
+2016-08-24 11:35:19,090 DEBUG: 			View 2 : 0.578616352201
+2016-08-24 11:35:19,098 DEBUG: 			View 3 : 0.528301886792
+2016-08-24 11:35:19,214 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:35:21,188 DEBUG: 		Start:	 Iteration 33
+2016-08-24 11:35:21,204 DEBUG: 			View 0 : 0.660377358491
+2016-08-24 11:35:21,211 DEBUG: 			View 1 : 0.566037735849
+2016-08-24 11:35:21,298 DEBUG: 			View 2 : 0.522012578616
+2016-08-24 11:35:21,306 DEBUG: 			View 3 : 0.62893081761
+2016-08-24 11:35:21,426 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:35:23,462 DEBUG: 		Start:	 Iteration 34
+2016-08-24 11:35:23,478 DEBUG: 			View 0 : 0.490566037736
+2016-08-24 11:35:23,485 DEBUG: 			View 1 : 0.345911949686
+2016-08-24 11:35:23,572 DEBUG: 			View 2 : 0.584905660377
+2016-08-24 11:35:23,580 DEBUG: 			View 3 : 0.610062893082
+2016-08-24 11:35:23,699 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:35:25,792 DEBUG: 		Start:	 Iteration 35
+2016-08-24 11:35:25,809 DEBUG: 			View 0 : 0.660377358491
+2016-08-24 11:35:25,816 DEBUG: 			View 1 : 0.528301886792
+2016-08-24 11:35:25,904 DEBUG: 			View 2 : 0.610062893082
+2016-08-24 11:35:25,912 DEBUG: 			View 3 : 0.654088050314
+2016-08-24 11:35:26,035 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:35:28,184 DEBUG: 		Start:	 Iteration 36
+2016-08-24 11:35:28,201 DEBUG: 			View 0 : 0.566037735849
+2016-08-24 11:35:28,208 DEBUG: 			View 1 : 0.62893081761
+2016-08-24 11:35:28,294 DEBUG: 			View 2 : 0.559748427673
+2016-08-24 11:35:28,302 DEBUG: 			View 3 : 0.59748427673
+2016-08-24 11:35:28,427 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:35:30,683 DEBUG: 		Start:	 Iteration 37
+2016-08-24 11:35:30,700 DEBUG: 			View 0 : 0.477987421384
+2016-08-24 11:35:30,707 DEBUG: 			View 1 : 0.471698113208
+2016-08-24 11:35:30,801 DEBUG: 			View 2 : 0.59748427673
+2016-08-24 11:35:30,809 DEBUG: 			View 3 : 0.616352201258
+2016-08-24 11:35:30,938 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:35:33,258 DEBUG: 		Start:	 Iteration 38
+2016-08-24 11:35:33,274 DEBUG: 			View 0 : 0.534591194969
+2016-08-24 11:35:33,282 DEBUG: 			View 1 : 0.748427672956
+2016-08-24 11:35:33,366 DEBUG: 			View 2 : 0.471698113208
+2016-08-24 11:35:33,374 DEBUG: 			View 3 : 0.584905660377
+2016-08-24 11:35:33,507 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:35:35,848 DEBUG: 		Start:	 Iteration 39
+2016-08-24 11:35:35,866 DEBUG: 			View 0 : 0.591194968553
+2016-08-24 11:35:35,875 DEBUG: 			View 1 : 0.509433962264
+2016-08-24 11:35:35,997 DEBUG: 			View 2 : 0.572327044025
+2016-08-24 11:35:36,007 DEBUG: 			View 3 : 0.610062893082
+2016-08-24 11:35:36,153 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:35:38,662 DEBUG: 		Start:	 Iteration 40
+2016-08-24 11:35:38,681 DEBUG: 			View 0 : 0.540880503145
+2016-08-24 11:35:38,689 DEBUG: 			View 1 : 0.622641509434
+2016-08-24 11:35:38,778 DEBUG: 			View 2 : 0.591194968553
+2016-08-24 11:35:38,786 DEBUG: 			View 3 : 0.578616352201
+2016-08-24 11:35:38,925 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:35:41,412 DEBUG: 		Start:	 Iteration 41
+2016-08-24 11:35:41,428 DEBUG: 			View 0 : 0.534591194969
+2016-08-24 11:35:41,436 DEBUG: 			View 1 : 0.345911949686
+2016-08-24 11:35:41,516 DEBUG: 			View 2 : 0.534591194969
+2016-08-24 11:35:41,524 DEBUG: 			View 3 : 0.534591194969
+2016-08-24 11:35:41,661 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:35:44,288 DEBUG: 		Start:	 Iteration 42
+2016-08-24 11:35:44,304 DEBUG: 			View 0 : 0.452830188679
+2016-08-24 11:35:44,312 DEBUG: 			View 1 : 0.723270440252
+2016-08-24 11:35:44,399 DEBUG: 			View 2 : 0.62893081761
+2016-08-24 11:35:44,407 DEBUG: 			View 3 : 0.729559748428
+2016-08-24 11:35:44,556 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:35:47,232 DEBUG: 		Start:	 Iteration 43
+2016-08-24 11:35:47,248 DEBUG: 			View 0 : 0.610062893082
+2016-08-24 11:35:47,256 DEBUG: 			View 1 : 0.528301886792
+2016-08-24 11:35:47,339 DEBUG: 			View 2 : 0.578616352201
+2016-08-24 11:35:47,346 DEBUG: 			View 3 : 0.591194968553
+2016-08-24 11:35:47,500 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:35:50,194 DEBUG: 		Start:	 Iteration 44
+2016-08-24 11:35:50,211 DEBUG: 			View 0 : 0.540880503145
+2016-08-24 11:35:50,218 DEBUG: 			View 1 : 0.48427672956
+2016-08-24 11:35:50,308 DEBUG: 			View 2 : 0.59748427673
+2016-08-24 11:35:50,317 DEBUG: 			View 3 : 0.572327044025
+2016-08-24 11:35:50,478 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:35:53,306 DEBUG: 		Start:	 Iteration 45
+2016-08-24 11:35:53,322 DEBUG: 			View 0 : 0.452830188679
+2016-08-24 11:35:53,330 DEBUG: 			View 1 : 0.641509433962
+2016-08-24 11:35:53,416 DEBUG: 			View 2 : 0.540880503145
+2016-08-24 11:35:53,424 DEBUG: 			View 3 : 0.572327044025
+2016-08-24 11:35:53,570 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:35:56,450 DEBUG: 		Start:	 Iteration 46
+2016-08-24 11:35:56,468 DEBUG: 			View 0 : 0.723270440252
+2016-08-24 11:35:56,476 DEBUG: 			View 1 : 0.534591194969
+2016-08-24 11:35:56,578 DEBUG: 			View 2 : 0.559748427673
+2016-08-24 11:35:56,587 DEBUG: 			View 3 : 0.547169811321
+2016-08-24 11:35:56,742 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:35:59,658 DEBUG: 		Start:	 Iteration 47
+2016-08-24 11:35:59,674 DEBUG: 			View 0 : 0.528301886792
+2016-08-24 11:35:59,682 DEBUG: 			View 1 : 0.446540880503
+2016-08-24 11:35:59,765 DEBUG: 			View 2 : 0.572327044025
+2016-08-24 11:35:59,772 DEBUG: 			View 3 : 0.534591194969
+2016-08-24 11:35:59,924 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:36:02,916 DEBUG: 		Start:	 Iteration 48
+2016-08-24 11:36:02,932 DEBUG: 			View 0 : 0.40251572327
+2016-08-24 11:36:02,940 DEBUG: 			View 1 : 0.641509433962
+2016-08-24 11:36:03,023 DEBUG: 			View 2 : 0.496855345912
+2016-08-24 11:36:03,031 DEBUG: 			View 3 : 0.459119496855
+2016-08-24 11:36:03,196 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:36:06,216 DEBUG: 		Start:	 Iteration 49
+2016-08-24 11:36:06,232 DEBUG: 			View 0 : 0.635220125786
+2016-08-24 11:36:06,240 DEBUG: 			View 1 : 0.314465408805
+2016-08-24 11:36:06,322 DEBUG: 			View 2 : 0.559748427673
+2016-08-24 11:36:06,330 DEBUG: 			View 3 : 0.59748427673
+2016-08-24 11:36:06,483 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:36:09,605 DEBUG: 		Start:	 Iteration 50
+2016-08-24 11:36:09,622 DEBUG: 			View 0 : 0.547169811321
+2016-08-24 11:36:09,629 DEBUG: 			View 1 : 0.51572327044
+2016-08-24 11:36:09,717 DEBUG: 			View 2 : 0.503144654088
+2016-08-24 11:36:09,725 DEBUG: 			View 3 : 0.465408805031
+2016-08-24 11:36:09,886 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:36:13,100 DEBUG: 		Start:	 Iteration 51
+2016-08-24 11:36:13,116 DEBUG: 			View 0 : 0.591194968553
+2016-08-24 11:36:13,124 DEBUG: 			View 1 : 0.320754716981
+2016-08-24 11:36:13,203 DEBUG: 			View 2 : 0.572327044025
+2016-08-24 11:36:13,211 DEBUG: 			View 3 : 0.59748427673
+2016-08-24 11:36:13,377 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:36:16,654 DEBUG: 		Start:	 Iteration 52
+2016-08-24 11:36:16,673 DEBUG: 			View 0 : 0.547169811321
+2016-08-24 11:36:16,682 DEBUG: 			View 1 : 0.37106918239
+2016-08-24 11:36:16,782 DEBUG: 			View 2 : 0.62893081761
+2016-08-24 11:36:16,789 DEBUG: 			View 3 : 0.566037735849
+2016-08-24 11:36:16,950 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:36:20,173 DEBUG: 		Start:	 Iteration 53
+2016-08-24 11:36:20,190 DEBUG: 			View 0 : 0.566037735849
+2016-08-24 11:36:20,197 DEBUG: 			View 1 : 0.647798742138
+2016-08-24 11:36:20,293 DEBUG: 			View 2 : 0.591194968553
+2016-08-24 11:36:20,300 DEBUG: 			View 3 : 0.572327044025
+2016-08-24 11:36:20,464 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:36:23,754 DEBUG: 		Start:	 Iteration 54
+2016-08-24 11:36:23,770 DEBUG: 			View 0 : 0.421383647799
+2016-08-24 11:36:23,778 DEBUG: 			View 1 : 0.566037735849
+2016-08-24 11:36:23,867 DEBUG: 			View 2 : 0.654088050314
+2016-08-24 11:36:23,875 DEBUG: 			View 3 : 0.691823899371
+2016-08-24 11:36:24,040 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:36:27,636 DEBUG: 		Start:	 Iteration 55
+2016-08-24 11:36:27,653 DEBUG: 			View 0 : 0.51572327044
+2016-08-24 11:36:27,661 DEBUG: 			View 1 : 0.320754716981
+2016-08-24 11:36:27,749 DEBUG: 			View 2 : 0.59748427673
+2016-08-24 11:36:27,756 DEBUG: 			View 3 : 0.641509433962
+2016-08-24 11:36:27,935 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:36:31,305 DEBUG: 		Start:	 Iteration 56
+2016-08-24 11:36:31,322 DEBUG: 			View 0 : 0.408805031447
+2016-08-24 11:36:31,329 DEBUG: 			View 1 : 0.452830188679
+2016-08-24 11:36:31,441 DEBUG: 			View 2 : 0.591194968553
+2016-08-24 11:36:31,448 DEBUG: 			View 3 : 0.654088050314
+2016-08-24 11:36:31,615 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:36:35,028 DEBUG: 		Start:	 Iteration 57
+2016-08-24 11:36:35,044 DEBUG: 			View 0 : 0.389937106918
+2016-08-24 11:36:35,052 DEBUG: 			View 1 : 0.364779874214
+2016-08-24 11:36:35,141 DEBUG: 			View 2 : 0.572327044025
+2016-08-24 11:36:35,148 DEBUG: 			View 3 : 0.59748427673
+2016-08-24 11:36:35,319 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:36:38,792 DEBUG: 		Start:	 Iteration 58
+2016-08-24 11:36:38,808 DEBUG: 			View 0 : 0.477987421384
+2016-08-24 11:36:38,816 DEBUG: 			View 1 : 0.522012578616
+2016-08-24 11:36:38,899 DEBUG: 			View 2 : 0.635220125786
+2016-08-24 11:36:38,906 DEBUG: 			View 3 : 0.540880503145
+2016-08-24 11:36:39,079 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:36:42,622 DEBUG: 		Start:	 Iteration 59
+2016-08-24 11:36:42,638 DEBUG: 			View 0 : 0.616352201258
+2016-08-24 11:36:42,645 DEBUG: 			View 1 : 0.616352201258
+2016-08-24 11:36:42,729 DEBUG: 			View 2 : 0.566037735849
+2016-08-24 11:36:42,736 DEBUG: 			View 3 : 0.509433962264
+2016-08-24 11:36:42,910 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:36:46,544 DEBUG: 		Start:	 Iteration 60
+2016-08-24 11:36:46,561 DEBUG: 			View 0 : 0.503144654088
+2016-08-24 11:36:46,569 DEBUG: 			View 1 : 0.528301886792
+2016-08-24 11:36:46,659 DEBUG: 			View 2 : 0.566037735849
+2016-08-24 11:36:46,667 DEBUG: 			View 3 : 0.584905660377
+2016-08-24 11:36:46,846 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:36:50,629 DEBUG: 		Start:	 Iteration 61
+2016-08-24 11:36:50,646 DEBUG: 			View 0 : 0.59748427673
+2016-08-24 11:36:50,654 DEBUG: 			View 1 : 0.647798742138
+2016-08-24 11:36:50,744 DEBUG: 			View 2 : 0.566037735849
+2016-08-24 11:36:50,752 DEBUG: 			View 3 : 0.584905660377
+2016-08-24 11:36:50,935 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:36:54,877 DEBUG: 		Start:	 Iteration 62
+2016-08-24 11:36:54,895 DEBUG: 			View 0 : 0.566037735849
+2016-08-24 11:36:54,903 DEBUG: 			View 1 : 0.786163522013
+2016-08-24 11:36:54,992 DEBUG: 			View 2 : 0.572327044025
+2016-08-24 11:36:55,000 DEBUG: 			View 3 : 0.603773584906
+2016-08-24 11:36:55,199 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:36:59,096 DEBUG: 		Start:	 Iteration 63
+2016-08-24 11:36:59,113 DEBUG: 			View 0 : 0.490566037736
+2016-08-24 11:36:59,121 DEBUG: 			View 1 : 0.710691823899
+2016-08-24 11:36:59,208 DEBUG: 			View 2 : 0.534591194969
+2016-08-24 11:36:59,216 DEBUG: 			View 3 : 0.566037735849
+2016-08-24 11:36:59,403 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:37:03,332 DEBUG: 		Start:	 Iteration 64
+2016-08-24 11:37:03,350 DEBUG: 			View 0 : 0.496855345912
+2016-08-24 11:37:03,358 DEBUG: 			View 1 : 0.603773584906
+2016-08-24 11:37:03,443 DEBUG: 			View 2 : 0.660377358491
+2016-08-24 11:37:03,450 DEBUG: 			View 3 : 0.547169811321
+2016-08-24 11:37:03,637 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:37:07,877 DEBUG: 		Start:	 Iteration 65
+2016-08-24 11:37:07,893 DEBUG: 			View 0 : 0.62893081761
+2016-08-24 11:37:07,901 DEBUG: 			View 1 : 0.37106918239
+2016-08-24 11:37:07,990 DEBUG: 			View 2 : 0.503144654088
+2016-08-24 11:37:07,998 DEBUG: 			View 3 : 0.572327044025
+2016-08-24 11:37:08,188 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:37:12,223 DEBUG: 		Start:	 Iteration 66
+2016-08-24 11:37:12,239 DEBUG: 			View 0 : 0.566037735849
+2016-08-24 11:37:12,247 DEBUG: 			View 1 : 0.440251572327
+2016-08-24 11:37:12,335 DEBUG: 			View 2 : 0.622641509434
+2016-08-24 11:37:12,343 DEBUG: 			View 3 : 0.647798742138
+2016-08-24 11:37:12,533 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:37:16,630 DEBUG: 		Start:	 Iteration 67
+2016-08-24 11:37:16,646 DEBUG: 			View 0 : 0.572327044025
+2016-08-24 11:37:16,654 DEBUG: 			View 1 : 0.559748427673
+2016-08-24 11:37:16,741 DEBUG: 			View 2 : 0.59748427673
+2016-08-24 11:37:16,749 DEBUG: 			View 3 : 0.616352201258
+2016-08-24 11:37:16,941 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:37:21,342 DEBUG: 		Start:	 Iteration 68
+2016-08-24 11:37:21,359 DEBUG: 			View 0 : 0.547169811321
+2016-08-24 11:37:21,367 DEBUG: 			View 1 : 0.48427672956
+2016-08-24 11:37:21,464 DEBUG: 			View 2 : 0.591194968553
+2016-08-24 11:37:21,472 DEBUG: 			View 3 : 0.710691823899
+2016-08-24 11:37:21,671 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:37:26,351 DEBUG: 		Start:	 Iteration 69
+2016-08-24 11:37:26,368 DEBUG: 			View 0 : 0.415094339623
+2016-08-24 11:37:26,376 DEBUG: 			View 1 : 0.603773584906
+2016-08-24 11:37:26,471 DEBUG: 			View 2 : 0.610062893082
+2016-08-24 11:37:26,479 DEBUG: 			View 3 : 0.547169811321
+2016-08-24 11:37:26,674 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:37:30,968 DEBUG: 		Start:	 Iteration 70
+2016-08-24 11:37:30,985 DEBUG: 			View 0 : 0.459119496855
+2016-08-24 11:37:30,993 DEBUG: 			View 1 : 0.471698113208
+2016-08-24 11:37:31,080 DEBUG: 			View 2 : 0.553459119497
+2016-08-24 11:37:31,088 DEBUG: 			View 3 : 0.547169811321
+2016-08-24 11:37:31,289 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:37:35,887 DEBUG: 		Start:	 Iteration 71
+2016-08-24 11:37:35,904 DEBUG: 			View 0 : 0.672955974843
+2016-08-24 11:37:35,912 DEBUG: 			View 1 : 0.446540880503
+2016-08-24 11:37:35,999 DEBUG: 			View 2 : 0.440251572327
+2016-08-24 11:37:36,009 DEBUG: 			View 3 : 0.59748427673
+2016-08-24 11:37:36,239 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:37:40,827 DEBUG: 		Start:	 Iteration 72
+2016-08-24 11:37:40,844 DEBUG: 			View 0 : 0.446540880503
+2016-08-24 11:37:40,852 DEBUG: 			View 1 : 0.389937106918
+2016-08-24 11:37:40,935 DEBUG: 			View 2 : 0.59748427673
+2016-08-24 11:37:40,943 DEBUG: 			View 3 : 0.559748427673
+2016-08-24 11:37:41,157 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:37:45,977 DEBUG: 		Start:	 Iteration 73
+2016-08-24 11:37:45,997 DEBUG: 			View 0 : 0.591194968553
+2016-08-24 11:37:46,007 DEBUG: 			View 1 : 0.610062893082
+2016-08-24 11:37:46,116 DEBUG: 			View 2 : 0.528301886792
+2016-08-24 11:37:46,124 DEBUG: 			View 3 : 0.62893081761
+2016-08-24 11:37:46,338 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:37:50,835 DEBUG: 		Start:	 Iteration 74
+2016-08-24 11:37:50,851 DEBUG: 			View 0 : 0.496855345912
+2016-08-24 11:37:50,859 DEBUG: 			View 1 : 0.40251572327
+2016-08-24 11:37:50,946 DEBUG: 			View 2 : 0.635220125786
+2016-08-24 11:37:50,955 DEBUG: 			View 3 : 0.559748427673
+2016-08-24 11:37:51,163 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:37:55,833 DEBUG: 		Start:	 Iteration 75
+2016-08-24 11:37:55,851 DEBUG: 			View 0 : 0.603773584906
+2016-08-24 11:37:55,859 DEBUG: 			View 1 : 0.396226415094
+2016-08-24 11:37:55,965 DEBUG: 			View 2 : 0.553459119497
+2016-08-24 11:37:55,973 DEBUG: 			View 3 : 0.465408805031
+2016-08-24 11:37:56,187 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:38:01,052 DEBUG: 		Start:	 Iteration 76
+2016-08-24 11:38:01,068 DEBUG: 			View 0 : 0.547169811321
+2016-08-24 11:38:01,076 DEBUG: 			View 1 : 0.685534591195
+2016-08-24 11:38:01,174 DEBUG: 			View 2 : 0.490566037736
+2016-08-24 11:38:01,183 DEBUG: 			View 3 : 0.540880503145
+2016-08-24 11:38:01,400 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:38:06,415 DEBUG: 		Start:	 Iteration 77
+2016-08-24 11:38:06,435 DEBUG: 			View 0 : 0.566037735849
+2016-08-24 11:38:06,449 DEBUG: 			View 1 : 0.522012578616
+2016-08-24 11:38:06,570 DEBUG: 			View 2 : 0.566037735849
+2016-08-24 11:38:06,579 DEBUG: 			View 3 : 0.584905660377
+2016-08-24 11:38:06,827 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:38:11,928 DEBUG: 		Start:	 Iteration 78
+2016-08-24 11:38:11,945 DEBUG: 			View 0 : 0.471698113208
+2016-08-24 11:38:11,953 DEBUG: 			View 1 : 0.584905660377
+2016-08-24 11:38:12,052 DEBUG: 			View 2 : 0.572327044025
+2016-08-24 11:38:12,062 DEBUG: 			View 3 : 0.622641509434
+2016-08-24 11:38:12,282 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:38:17,220 DEBUG: 		Start:	 Iteration 79
+2016-08-24 11:38:17,236 DEBUG: 			View 0 : 0.62893081761
+2016-08-24 11:38:17,244 DEBUG: 			View 1 : 0.622641509434
+2016-08-24 11:38:17,344 DEBUG: 			View 2 : 0.622641509434
+2016-08-24 11:38:17,354 DEBUG: 			View 3 : 0.540880503145
+2016-08-24 11:38:17,573 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:38:22,546 DEBUG: 		Start:	 Iteration 80
+2016-08-24 11:38:22,564 DEBUG: 			View 0 : 0.446540880503
+2016-08-24 11:38:22,573 DEBUG: 			View 1 : 0.622641509434
+2016-08-24 11:38:22,677 DEBUG: 			View 2 : 0.622641509434
+2016-08-24 11:38:22,686 DEBUG: 			View 3 : 0.496855345912
+2016-08-24 11:38:22,924 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:38:28,195 DEBUG: 		Start:	 Iteration 81
+2016-08-24 11:38:28,212 DEBUG: 			View 0 : 0.578616352201
+2016-08-24 11:38:28,220 DEBUG: 			View 1 : 0.641509433962
+2016-08-24 11:38:28,320 DEBUG: 			View 2 : 0.610062893082
+2016-08-24 11:38:28,329 DEBUG: 			View 3 : 0.547169811321
+2016-08-24 11:38:28,557 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:38:33,641 DEBUG: 		Start:	 Iteration 82
+2016-08-24 11:38:33,657 DEBUG: 			View 0 : 0.572327044025
+2016-08-24 11:38:33,665 DEBUG: 			View 1 : 0.477987421384
+2016-08-24 11:38:33,762 DEBUG: 			View 2 : 0.635220125786
+2016-08-24 11:38:33,771 DEBUG: 			View 3 : 0.59748427673
+2016-08-24 11:38:33,993 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:38:39,134 DEBUG: 		Start:	 Iteration 83
+2016-08-24 11:38:39,151 DEBUG: 			View 0 : 0.496855345912
+2016-08-24 11:38:39,159 DEBUG: 			View 1 : 0.62893081761
+2016-08-24 11:38:39,253 DEBUG: 			View 2 : 0.559748427673
+2016-08-24 11:38:39,263 DEBUG: 			View 3 : 0.559748427673
+2016-08-24 11:38:39,500 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:38:44,911 DEBUG: 		Start:	 Iteration 84
+2016-08-24 11:38:44,928 DEBUG: 			View 0 : 0.641509433962
+2016-08-24 11:38:44,936 DEBUG: 			View 1 : 0.540880503145
+2016-08-24 11:38:45,031 DEBUG: 			View 2 : 0.459119496855
+2016-08-24 11:38:45,040 DEBUG: 			View 3 : 0.635220125786
+2016-08-24 11:38:45,267 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:38:50,470 DEBUG: 		Start:	 Iteration 85
+2016-08-24 11:38:50,486 DEBUG: 			View 0 : 0.534591194969
+2016-08-24 11:38:50,494 DEBUG: 			View 1 : 0.566037735849
+2016-08-24 11:38:50,590 DEBUG: 			View 2 : 0.578616352201
+2016-08-24 11:38:50,599 DEBUG: 			View 3 : 0.522012578616
+2016-08-24 11:38:50,827 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:38:56,099 DEBUG: 		Start:	 Iteration 86
+2016-08-24 11:38:56,116 DEBUG: 			View 0 : 0.51572327044
+2016-08-24 11:38:56,123 DEBUG: 			View 1 : 0.767295597484
+2016-08-24 11:38:56,220 DEBUG: 			View 2 : 0.591194968553
+2016-08-24 11:38:56,229 DEBUG: 			View 3 : 0.679245283019
+2016-08-24 11:38:56,464 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:39:01,924 DEBUG: 		Start:	 Iteration 87
+2016-08-24 11:39:01,940 DEBUG: 			View 0 : 0.433962264151
+2016-08-24 11:39:01,948 DEBUG: 			View 1 : 0.389937106918
+2016-08-24 11:39:02,048 DEBUG: 			View 2 : 0.509433962264
+2016-08-24 11:39:02,057 DEBUG: 			View 3 : 0.635220125786
+2016-08-24 11:39:02,293 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:39:07,876 DEBUG: 		Start:	 Iteration 88
+2016-08-24 11:39:07,892 DEBUG: 			View 0 : 0.59748427673
+2016-08-24 11:39:07,900 DEBUG: 			View 1 : 0.622641509434
+2016-08-24 11:39:07,997 DEBUG: 			View 2 : 0.62893081761
+2016-08-24 11:39:08,006 DEBUG: 			View 3 : 0.547169811321
+2016-08-24 11:39:08,247 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:39:13,795 DEBUG: 		Start:	 Iteration 89
+2016-08-24 11:39:13,812 DEBUG: 			View 0 : 0.389937106918
+2016-08-24 11:39:13,820 DEBUG: 			View 1 : 0.433962264151
+2016-08-24 11:39:13,916 DEBUG: 			View 2 : 0.477987421384
+2016-08-24 11:39:13,925 DEBUG: 			View 3 : 0.509433962264
+2016-08-24 11:39:14,169 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:39:19,785 DEBUG: 		Start:	 Iteration 90
+2016-08-24 11:39:19,801 DEBUG: 			View 0 : 0.654088050314
+2016-08-24 11:39:19,809 DEBUG: 			View 1 : 0.654088050314
+2016-08-24 11:39:19,908 DEBUG: 			View 2 : 0.540880503145
+2016-08-24 11:39:19,918 DEBUG: 			View 3 : 0.654088050314
+2016-08-24 11:39:20,158 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:39:25,716 DEBUG: 		Start:	 Iteration 91
+2016-08-24 11:39:25,732 DEBUG: 			View 0 : 0.635220125786
+2016-08-24 11:39:25,740 DEBUG: 			View 1 : 0.547169811321
+2016-08-24 11:39:25,840 DEBUG: 			View 2 : 0.578616352201
+2016-08-24 11:39:25,849 DEBUG: 			View 3 : 0.635220125786
+2016-08-24 11:39:26,091 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:39:31,685 DEBUG: 		Start:	 Iteration 92
+2016-08-24 11:39:31,702 DEBUG: 			View 0 : 0.654088050314
+2016-08-24 11:39:31,709 DEBUG: 			View 1 : 0.685534591195
+2016-08-24 11:39:31,807 DEBUG: 			View 2 : 0.572327044025
+2016-08-24 11:39:31,816 DEBUG: 			View 3 : 0.578616352201
+2016-08-24 11:39:32,060 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:39:37,729 DEBUG: 		Start:	 Iteration 93
+2016-08-24 11:39:37,745 DEBUG: 			View 0 : 0.396226415094
+2016-08-24 11:39:37,753 DEBUG: 			View 1 : 0.62893081761
+2016-08-24 11:39:37,851 DEBUG: 			View 2 : 0.51572327044
+2016-08-24 11:39:37,861 DEBUG: 			View 3 : 0.635220125786
+2016-08-24 11:39:38,110 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:39:44,011 DEBUG: 		Start:	 Iteration 94
+2016-08-24 11:39:44,028 DEBUG: 			View 0 : 0.383647798742
+2016-08-24 11:39:44,036 DEBUG: 			View 1 : 0.591194968553
+2016-08-24 11:39:44,137 DEBUG: 			View 2 : 0.591194968553
+2016-08-24 11:39:44,146 DEBUG: 			View 3 : 0.660377358491
+2016-08-24 11:39:44,399 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:39:50,390 DEBUG: 		Start:	 Iteration 95
+2016-08-24 11:39:50,407 DEBUG: 			View 0 : 0.679245283019
+2016-08-24 11:39:50,415 DEBUG: 			View 1 : 0.345911949686
+2016-08-24 11:39:50,516 DEBUG: 			View 2 : 0.572327044025
+2016-08-24 11:39:50,525 DEBUG: 			View 3 : 0.660377358491
+2016-08-24 11:39:50,781 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:39:56,658 DEBUG: 		Start:	 Iteration 96
+2016-08-24 11:39:56,675 DEBUG: 			View 0 : 0.616352201258
+2016-08-24 11:39:56,682 DEBUG: 			View 1 : 0.660377358491
+2016-08-24 11:39:56,778 DEBUG: 			View 2 : 0.490566037736
+2016-08-24 11:39:56,787 DEBUG: 			View 3 : 0.59748427673
+2016-08-24 11:39:57,047 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:40:03,092 DEBUG: 		Start:	 Iteration 97
+2016-08-24 11:40:03,109 DEBUG: 			View 0 : 0.471698113208
+2016-08-24 11:40:03,117 DEBUG: 			View 1 : 0.433962264151
+2016-08-24 11:40:03,211 DEBUG: 			View 2 : 0.622641509434
+2016-08-24 11:40:03,220 DEBUG: 			View 3 : 0.578616352201
+2016-08-24 11:40:03,477 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:40:09,639 DEBUG: 		Start:	 Iteration 98
+2016-08-24 11:40:09,655 DEBUG: 			View 0 : 0.352201257862
+2016-08-24 11:40:09,663 DEBUG: 			View 1 : 0.584905660377
+2016-08-24 11:40:09,757 DEBUG: 			View 2 : 0.559748427673
+2016-08-24 11:40:09,766 DEBUG: 			View 3 : 0.62893081761
+2016-08-24 11:40:10,022 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:40:16,036 DEBUG: 		Start:	 Iteration 99
+2016-08-24 11:40:16,052 DEBUG: 			View 0 : 0.553459119497
+2016-08-24 11:40:16,060 DEBUG: 			View 1 : 0.591194968553
+2016-08-24 11:40:16,156 DEBUG: 			View 2 : 0.553459119497
+2016-08-24 11:40:16,165 DEBUG: 			View 3 : 0.547169811321
+2016-08-24 11:40:16,423 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:40:22,675 DEBUG: 		Start:	 Iteration 100
+2016-08-24 11:40:22,691 DEBUG: 			View 0 : 0.389937106918
+2016-08-24 11:40:22,698 DEBUG: 			View 1 : 0.433962264151
+2016-08-24 11:40:22,792 DEBUG: 			View 2 : 0.540880503145
+2016-08-24 11:40:22,801 DEBUG: 			View 3 : 0.572327044025
+2016-08-24 11:40:23,061 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:40:29,412 DEBUG: 		Start:	 Iteration 101
+2016-08-24 11:40:29,429 DEBUG: 			View 0 : 0.572327044025
+2016-08-24 11:40:29,437 DEBUG: 			View 1 : 0.578616352201
+2016-08-24 11:40:29,545 DEBUG: 			View 2 : 0.584905660377
+2016-08-24 11:40:29,554 DEBUG: 			View 3 : 0.584905660377
+2016-08-24 11:40:29,834 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:40:36,757 DEBUG: 		Start:	 Iteration 102
+2016-08-24 11:40:36,777 DEBUG: 			View 0 : 0.452830188679
+2016-08-24 11:40:36,787 DEBUG: 			View 1 : 0.345911949686
+2016-08-24 11:40:36,892 DEBUG: 			View 2 : 0.547169811321
+2016-08-24 11:40:36,903 DEBUG: 			View 3 : 0.553459119497
+2016-08-24 11:40:37,339 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:40:43,690 INFO: 	Start: 	 Classification
+2016-08-24 11:40:58,693 INFO: 	Done: 	 Fold number 2
+2016-08-24 11:40:58,693 INFO: Done:	 Classification
+2016-08-24 11:40:58,693 INFO: Info:	 Time for Classification: 756[s]
+2016-08-24 11:40:58,694 INFO: Start:	 Result Analysis for Mumbo
+2016-08-24 11:41:33,358 INFO: 		Result for Multiview classification with Mumbo
+
+Average accuracy :
+	-On Train : 78.9774802191
+	-On Test : 77.868852459
+	-On Validation : 85.9223300971
+
+Dataset info :
+	-Database name : ModifiedMultiOmic
+	-Labels : No, Yes
+	-Views : Methyl, MiRNA, RNASEQ, Clinical
+	-2 folds
+	- Validation set length : 103 for learning rate : 0.7
+
+Classification configuration : 
+	-Algorithm used : Mumbo 
+	-Iterations : 1000
+	-Weak Classifiers : DecisionTree with depth 1,  sub-sampled at 0.02 on Methyl
+		-DecisionTree with depth 1,  sub-sampled at 0.02 on MiRNA
+		-DecisionTree with depth 1,  sub-sampled at 0.1 on RNASEQ
+		-DecisionTree with depth 2,  sub-sampled at 0.1 on Clinical
+
+ Mean average accuracies and stats for each fold : 
+	- Fold 0
+		- On Methyl_ : 
+			- Mean average Accuracy : 0.0527741935484
+			- Percentage of time chosen : 0.906
+		- On MiRNA__ : 
+			- Mean average Accuracy : 0.0553741935484
+			- Percentage of time chosen : 0.032
+		- On RANSeq_ : 
+			- Mean average Accuracy : 0.0591741935484
+			- Percentage of time chosen : 0.03
+		- On Clinic_ : 
+			- Mean average Accuracy : 0.0589870967742
+			- Percentage of time chosen : 0.032
+	- Fold 1
+		- On Methyl_ : 
+			- Mean average Accuracy : 0.0536855345912
+			- Percentage of time chosen : 0.904
+		- On MiRNA__ : 
+			- Mean average Accuracy : 0.0556855345912
+			- Percentage of time chosen : 0.033
+		- On RANSeq_ : 
+			- Mean average Accuracy : 0.0580943396226
+			- Percentage of time chosen : 0.022
+		- On Clinic_ : 
+			- Mean average Accuracy : 0.0596918238994
+			- Percentage of time chosen : 0.041
+
+ For each iteration : 
+	- Iteration 1
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 2
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 64.7798742138
+			Accuracy on test : 65.5737704918
+			Accuracy on validation : 75.7281553398
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 63.0350983972
+			 Accuracy on test : 69.262295082
+	- Iteration 3
+		 Fold 1
+			Accuracy on train : 63.2258064516
+			Accuracy on test : 71.3114754098
+			Accuracy on validation : 74.7572815534
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 64.7798742138
+			Accuracy on test : 65.5737704918
+			Accuracy on validation : 75.7281553398
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 64.0028403327
+			 Accuracy on test : 68.4426229508
+	- Iteration 4
+		 Fold 1
+			Accuracy on train : 63.2258064516
+			Accuracy on test : 72.131147541
+			Accuracy on validation : 74.7572815534
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 71.6981132075
+			Accuracy on test : 72.131147541
+			Accuracy on validation : 75.7281553398
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 67.4619598296
+			 Accuracy on test : 72.131147541
+	- Iteration 5
+		 Fold 1
+			Accuracy on train : 63.2258064516
+			Accuracy on test : 70.4918032787
+			Accuracy on validation : 72.8155339806
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 72.3270440252
+			Accuracy on test : 66.393442623
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 67.7764252384
+			 Accuracy on test : 68.4426229508
+	- Iteration 6
+		 Fold 1
+			Accuracy on train : 62.5806451613
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 74.7572815534
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 78.6163522013
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 70.5984986813
+			 Accuracy on test : 72.9508196721
+	- Iteration 7
+		 Fold 1
+			Accuracy on train : 64.5161290323
+			Accuracy on test : 72.131147541
+			Accuracy on validation : 75.7281553398
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 75.4716981132
+			Accuracy on test : 68.8524590164
+			Accuracy on validation : 86.4077669903
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 69.9939135727
+			 Accuracy on test : 70.4918032787
+	- Iteration 8
+		 Fold 1
+			Accuracy on train : 66.4516129032
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 77.6699029126
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 80.5031446541
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 81.5533980583
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 73.4773787787
+			 Accuracy on test : 74.5901639344
+	- Iteration 9
+		 Fold 1
+			Accuracy on train : 70.3225806452
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 82.5242718447
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 77.358490566
+			Accuracy on test : 71.3114754098
+			Accuracy on validation : 81.5533980583
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 73.8405356056
+			 Accuracy on test : 73.3606557377
+	- Iteration 10
+		 Fold 1
+			Accuracy on train : 70.9677419355
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 81.5533980583
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.2452830189
+			Accuracy on test : 70.4918032787
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 75.1065124772
+			 Accuracy on test : 73.3606557377
+	- Iteration 11
+		 Fold 1
+			Accuracy on train : 76.1290322581
+			Accuracy on test : 71.3114754098
+			Accuracy on validation : 80.5825242718
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 78.6163522013
+			Accuracy on test : 72.131147541
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 77.3726922297
+			 Accuracy on test : 71.7213114754
+	- Iteration 12
+		 Fold 1
+			Accuracy on train : 74.1935483871
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 77.358490566
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 75.7760194766
+			 Accuracy on test : 73.7704918033
+	- Iteration 13
+		 Fold 1
+			Accuracy on train : 74.8387096774
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 75.4716981132
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 75.1552038953
+			 Accuracy on test : 77.868852459
+	- Iteration 14
+		 Fold 1
+			Accuracy on train : 81.2903225806
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 79.2452830189
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.2678027998
+			 Accuracy on test : 77.0491803279
+	- Iteration 15
+		 Fold 1
+			Accuracy on train : 79.3548387097
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 82.5242718447
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 82.3899371069
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 86.4077669903
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.8723879083
+			 Accuracy on test : 79.0983606557
+	- Iteration 16
+		 Fold 1
+			Accuracy on train : 79.3548387097
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 85.534591195
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 86.4077669903
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 82.4447149523
+			 Accuracy on test : 77.4590163934
+	- Iteration 17
+		 Fold 1
+			Accuracy on train : 81.935483871
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 86.4077669903
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 80.9048488537
+			 Accuracy on test : 79.0983606557
+	- Iteration 18
+		 Fold 1
+			Accuracy on train : 82.5806451613
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 81.1320754717
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 81.8563603165
+			 Accuracy on test : 80.3278688525
+	- Iteration 19
+		 Fold 1
+			Accuracy on train : 81.935483871
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 86.4077669903
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 77.358490566
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.6469872185
+			 Accuracy on test : 78.6885245902
+	- Iteration 20
+		 Fold 1
+			Accuracy on train : 81.2903225806
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 76.7295597484
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.0099411645
+			 Accuracy on test : 79.0983606557
+	- Iteration 21
+		 Fold 1
+			Accuracy on train : 80.0
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 78.6163522013
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 86.4077669903
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.3081761006
+			 Accuracy on test : 79.0983606557
+	- Iteration 22
+		 Fold 1
+			Accuracy on train : 81.2903225806
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 84.4660194175
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 77.9874213836
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.6388719821
+			 Accuracy on test : 78.2786885246
+	- Iteration 23
+		 Fold 1
+			Accuracy on train : 80.0
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 77.9874213836
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.9937106918
+			 Accuracy on test : 79.0983606557
+	- Iteration 24
+		 Fold 1
+			Accuracy on train : 79.3548387097
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 74.8427672956
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 77.0988030026
+			 Accuracy on test : 79.5081967213
+	- Iteration 25
+		 Fold 1
+			Accuracy on train : 83.8709677419
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 76.1006289308
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 82.5242718447
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.9857983364
+			 Accuracy on test : 81.5573770492
+	- Iteration 26
+		 Fold 1
+			Accuracy on train : 82.5806451613
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 84.4660194175
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 76.7295597484
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.6551024549
+			 Accuracy on test : 80.3278688525
+	- Iteration 27
+		 Fold 1
+			Accuracy on train : 82.5806451613
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 77.358490566
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.9695678637
+			 Accuracy on test : 80.737704918
+	- Iteration 28
+		 Fold 1
+			Accuracy on train : 82.5806451613
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 76.7295597484
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.6551024549
+			 Accuracy on test : 79.9180327869
+	- Iteration 29
+		 Fold 1
+			Accuracy on train : 83.2258064516
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 76.1006289308
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.6632176912
+			 Accuracy on test : 80.737704918
+	- Iteration 30
+		 Fold 1
+			Accuracy on train : 83.8709677419
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 74.213836478
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 82.5242718447
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.04240211
+			 Accuracy on test : 80.3278688525
+	- Iteration 31
+		 Fold 1
+			Accuracy on train : 83.8709677419
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 86.4077669903
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 76.7295597484
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 80.3002637452
+			 Accuracy on test : 80.737704918
+	- Iteration 32
+		 Fold 1
+			Accuracy on train : 83.8709677419
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 86.4077669903
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 76.1006289308
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 79.9857983364
+			 Accuracy on test : 80.737704918
+	- Iteration 33
+		 Fold 1
+			Accuracy on train : 84.5161290323
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 87.3786407767
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 75.4716981132
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 79.9939135727
+			 Accuracy on test : 81.9672131148
+	- Iteration 34
+		 Fold 1
+			Accuracy on train : 84.5161290323
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 86.4077669903
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 76.1006289308
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 80.5825242718
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.3083789815
+			 Accuracy on test : 80.737704918
+	- Iteration 35
+		 Fold 1
+			Accuracy on train : 83.8709677419
+			Accuracy on test : 84.4262295082
+			Accuracy on validation : 86.4077669903
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 77.358490566
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 82.5242718447
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.614729154
+			 Accuracy on test : 82.3770491803
+	- Iteration 36
+		 Fold 1
+			Accuracy on train : 84.5161290323
+			Accuracy on test : 84.4262295082
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 77.9874213836
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 81.251775208
+			 Accuracy on test : 81.9672131148
+	- Iteration 37
+		 Fold 1
+			Accuracy on train : 83.2258064516
+			Accuracy on test : 85.2459016393
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 77.9874213836
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.6066139176
+			 Accuracy on test : 81.9672131148
+	- Iteration 38
+		 Fold 1
+			Accuracy on train : 83.8709677419
+			Accuracy on test : 85.2459016393
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 77.9874213836
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.9291945628
+			 Accuracy on test : 83.1967213115
+	- Iteration 39
+		 Fold 1
+			Accuracy on train : 82.5806451613
+			Accuracy on test : 84.4262295082
+			Accuracy on validation : 86.4077669903
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 77.9874213836
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.2840332725
+			 Accuracy on test : 81.5573770492
+	- Iteration 40
+		 Fold 1
+			Accuracy on train : 83.2258064516
+			Accuracy on test : 84.4262295082
+			Accuracy on validation : 86.4077669903
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 77.9874213836
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.6066139176
+			 Accuracy on test : 81.5573770492
+	- Iteration 41
+		 Fold 1
+			Accuracy on train : 81.935483871
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 77.9874213836
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.9614526273
+			 Accuracy on test : 80.737704918
+	- Iteration 42
+		 Fold 1
+			Accuracy on train : 79.3548387097
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 79.2452830189
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 86.4077669903
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.3000608643
+			 Accuracy on test : 80.3278688525
+	- Iteration 43
+		 Fold 1
+			Accuracy on train : 81.935483871
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 78.6163522013
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.2759180361
+			 Accuracy on test : 79.9180327869
+	- Iteration 44
+		 Fold 1
+			Accuracy on train : 79.3548387097
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 86.4077669903
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 79.6145262731
+			 Accuracy on test : 79.5081967213
+	- Iteration 45
+		 Fold 1
+			Accuracy on train : 81.935483871
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 86.4077669903
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.9048488537
+			 Accuracy on test : 79.5081967213
+	- Iteration 46
+		 Fold 1
+			Accuracy on train : 80.6451612903
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 81.7610062893
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 87.3786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 81.2030837898
+			 Accuracy on test : 80.737704918
+	- Iteration 47
+		 Fold 1
+			Accuracy on train : 81.935483871
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 84.4660194175
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 81.7610062893
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 87.3786407767
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 81.8482450801
+			 Accuracy on test : 79.9180327869
+	- Iteration 48
+		 Fold 1
+			Accuracy on train : 81.935483871
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 84.4660194175
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 80.5031446541
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 81.2193142625
+			 Accuracy on test : 80.737704918
+	- Iteration 49
+		 Fold 1
+			Accuracy on train : 81.2903225806
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 79.2452830189
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 85.4368932039
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 80.2678027998
+			 Accuracy on test : 78.6885245902
+	- Iteration 50
+		 Fold 1
+			Accuracy on train : 81.935483871
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 84.4660194175
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 79.2452830189
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.5903834449
+			 Accuracy on test : 79.5081967213
+	- Iteration 51
+		 Fold 1
+			Accuracy on train : 81.2903225806
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 86.4077669903
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.5822682086
+			 Accuracy on test : 79.0983606557
+	- Iteration 52
+		 Fold 1
+			Accuracy on train : 80.0
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 80.5031446541
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 87.3786407767
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 80.251572327
+			 Accuracy on test : 79.9180327869
+	- Iteration 53
+		 Fold 1
+			Accuracy on train : 80.6451612903
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 81.1320754717
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 88.3495145631
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.888618381
+			 Accuracy on test : 79.9180327869
+	- Iteration 54
+		 Fold 1
+			Accuracy on train : 80.6451612903
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 85.4368932039
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 87.3786407767
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.2596875634
+			 Accuracy on test : 80.3278688525
+	- Iteration 55
+		 Fold 1
+			Accuracy on train : 81.2903225806
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 86.4077669903
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 81.7610062893
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 88.3495145631
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 81.525664435
+			 Accuracy on test : 80.3278688525
+	- Iteration 56
+		 Fold 1
+			Accuracy on train : 81.935483871
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 87.3786407767
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.9048488537
+			 Accuracy on test : 79.9180327869
+	- Iteration 57
+		 Fold 1
+			Accuracy on train : 81.935483871
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 86.4077669903
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 87.3786407767
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.9048488537
+			 Accuracy on test : 79.0983606557
+	- Iteration 58
+		 Fold 1
+			Accuracy on train : 81.2903225806
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 86.4077669903
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 80.5822682086
+			 Accuracy on test : 80.3278688525
+	- Iteration 59
+		 Fold 1
+			Accuracy on train : 80.6451612903
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 79.2452830189
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 86.4077669903
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.9452221546
+			 Accuracy on test : 79.5081967213
+	- Iteration 60
+		 Fold 1
+			Accuracy on train : 79.3548387097
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 87.3786407767
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.6145262731
+			 Accuracy on test : 79.9180327869
+	- Iteration 61
+		 Fold 1
+			Accuracy on train : 79.3548387097
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 77.9874213836
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 86.4077669903
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.6711300467
+			 Accuracy on test : 78.6885245902
+	- Iteration 62
+		 Fold 1
+			Accuracy on train : 78.7096774194
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 79.2452830189
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.9774802191
+			 Accuracy on test : 79.5081967213
+	- Iteration 63
+		 Fold 1
+			Accuracy on train : 77.4193548387
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 79.2452830189
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 88.3495145631
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.3323189288
+			 Accuracy on test : 79.5081967213
+	- Iteration 64
+		 Fold 1
+			Accuracy on train : 78.7096774194
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 78.6163522013
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 87.3786407767
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 78.6630148103
+			 Accuracy on test : 79.5081967213
+	- Iteration 65
+		 Fold 1
+			Accuracy on train : 77.4193548387
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 87.3786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 78.6467843376
+			 Accuracy on test : 79.9180327869
+	- Iteration 66
+		 Fold 1
+			Accuracy on train : 80.0
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 88.3495145631
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.9371069182
+			 Accuracy on test : 79.5081967213
+	- Iteration 67
+		 Fold 1
+			Accuracy on train : 78.7096774194
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.2452830189
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 87.3786407767
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.9774802191
+			 Accuracy on test : 78.6885245902
+	- Iteration 68
+		 Fold 1
+			Accuracy on train : 79.3548387097
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 80.5031446541
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 88.3495145631
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.9289916819
+			 Accuracy on test : 79.5081967213
+	- Iteration 69
+		 Fold 1
+			Accuracy on train : 80.6451612903
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 81.1320754717
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 89.3203883495
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.888618381
+			 Accuracy on test : 79.9180327869
+	- Iteration 70
+		 Fold 1
+			Accuracy on train : 79.3548387097
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 81.1320754717
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 89.3203883495
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 80.2434570907
+			 Accuracy on test : 79.5081967213
+	- Iteration 71
+		 Fold 1
+			Accuracy on train : 80.0
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 80.5031446541
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 88.3495145631
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 80.251572327
+			 Accuracy on test : 79.5081967213
+	- Iteration 72
+		 Fold 1
+			Accuracy on train : 80.0
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 85.4368932039
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 88.3495145631
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 79.9371069182
+			 Accuracy on test : 79.0983606557
+	- Iteration 73
+		 Fold 1
+			Accuracy on train : 78.7096774194
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 80.5031446541
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 88.3495145631
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.6064110367
+			 Accuracy on test : 79.5081967213
+	- Iteration 74
+		 Fold 1
+			Accuracy on train : 77.4193548387
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 78.6163522013
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 88.3495145631
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 78.01785352
+			 Accuracy on test : 79.0983606557
+	- Iteration 75
+		 Fold 1
+			Accuracy on train : 80.0
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 86.4077669903
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 78.6163522013
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 87.3786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 79.3081761006
+			 Accuracy on test : 79.0983606557
+	- Iteration 76
+		 Fold 1
+			Accuracy on train : 76.7741935484
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.3242036924
+			 Accuracy on test : 79.0983606557
+	- Iteration 77
+		 Fold 1
+			Accuracy on train : 76.7741935484
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 79.2452830189
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 87.3786407767
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.0097382836
+			 Accuracy on test : 79.5081967213
+	- Iteration 78
+		 Fold 1
+			Accuracy on train : 76.7741935484
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 80.5031446541
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 89.3203883495
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.6386691012
+			 Accuracy on test : 79.5081967213
+	- Iteration 79
+		 Fold 1
+			Accuracy on train : 76.1290322581
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 84.4660194175
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 79.2452830189
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 88.3495145631
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 77.6871576385
+			 Accuracy on test : 79.0983606557
+	- Iteration 80
+		 Fold 1
+			Accuracy on train : 76.7741935484
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 84.4660194175
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 80.5031446541
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 88.3495145631
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 78.6386691012
+			 Accuracy on test : 78.6885245902
+	- Iteration 81
+		 Fold 1
+			Accuracy on train : 76.1290322581
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 78.6163522013
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 77.3726922297
+			 Accuracy on test : 78.6885245902
+	- Iteration 82
+		 Fold 1
+			Accuracy on train : 76.7741935484
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 78.6163522013
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 87.3786407767
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 77.6952728748
+			 Accuracy on test : 78.6885245902
+	- Iteration 83
+		 Fold 1
+			Accuracy on train : 77.4193548387
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 76.1006289308
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 76.7599918848
+			 Accuracy on test : 79.0983606557
+	- Iteration 84
+		 Fold 1
+			Accuracy on train : 76.7741935484
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 76.7295597484
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 76.7518766484
+			 Accuracy on test : 78.6885245902
+	- Iteration 85
+		 Fold 1
+			Accuracy on train : 74.8387096774
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 77.358490566
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 84.4660194175
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 76.0986001217
+			 Accuracy on test : 78.6885245902
+	- Iteration 86
+		 Fold 1
+			Accuracy on train : 74.8387096774
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.2452830189
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 88.3495145631
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 77.0419963481
+			 Accuracy on test : 78.2786885246
+	- Iteration 87
+		 Fold 1
+			Accuracy on train : 74.1935483871
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 77.9874213836
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 76.0904848854
+			 Accuracy on test : 78.2786885246
+	- Iteration 88
+		 Fold 1
+			Accuracy on train : 75.4838709677
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 83.4951456311
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 77.9874213836
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 76.7356461757
+			 Accuracy on test : 78.6885245902
+	- Iteration 89
+		 Fold 1
+			Accuracy on train : 75.4838709677
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 78.6163522013
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 86.4077669903
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 77.0501115845
+			 Accuracy on test : 78.2786885246
+	- Iteration 90
+		 Fold 1
+			Accuracy on train : 75.4838709677
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 87.3786407767
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 77.6790424021
+			 Accuracy on test : 78.2786885246
+	- Iteration 91
+		 Fold 1
+			Accuracy on train : 75.4838709677
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 87.3786407767
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 77.6790424021
+			 Accuracy on test : 78.2786885246
+	- Iteration 92
+		 Fold 1
+			Accuracy on train : 76.1290322581
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 80.5031446541
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 88.3495145631
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.3160884561
+			 Accuracy on test : 78.6885245902
+	- Iteration 93
+		 Fold 1
+			Accuracy on train : 76.1290322581
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 81.1320754717
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 89.3203883495
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.6305538649
+			 Accuracy on test : 78.6885245902
+	- Iteration 94
+		 Fold 1
+			Accuracy on train : 75.4838709677
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 81.1320754717
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 89.3203883495
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.3079732197
+			 Accuracy on test : 78.6885245902
+	- Iteration 95
+		 Fold 1
+			Accuracy on train : 76.1290322581
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 81.7610062893
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 90.2912621359
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.9450192737
+			 Accuracy on test : 78.6885245902
+	- Iteration 96
+		 Fold 1
+			Accuracy on train : 76.1290322581
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 88.3495145631
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.0016230473
+			 Accuracy on test : 78.6885245902
+	- Iteration 97
+		 Fold 1
+			Accuracy on train : 76.1290322581
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 80.5031446541
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 88.3495145631
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 78.3160884561
+			 Accuracy on test : 78.2786885246
+	- Iteration 98
+		 Fold 1
+			Accuracy on train : 74.8387096774
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 81.7610062893
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 88.3495145631
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.2998579834
+			 Accuracy on test : 78.2786885246
+	- Iteration 99
+		 Fold 1
+			Accuracy on train : 75.4838709677
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 80.5031446541
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 88.3495145631
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 77.9935078109
+			 Accuracy on test : 78.2786885246
+	- Iteration 100
+		 Fold 1
+			Accuracy on train : 76.1290322581
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 87.3786407767
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.0016230473
+			 Accuracy on test : 77.868852459
+	- Iteration 101
+		 Fold 1
+			Accuracy on train : 77.4193548387
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 86.4077669903
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.6467843376
+			 Accuracy on test : 77.868852459
+	- Iteration 102
+		 Fold 1
+			Accuracy on train : 78.7096774194
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 84.4660194175
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 79.2452830189
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 87.3786407767
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.9774802191
+			 Accuracy on test : 77.868852459
+	- Iteration 103
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 104
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 105
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 106
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 107
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 108
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 109
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 110
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 111
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 112
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 113
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 114
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 115
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 116
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 117
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 118
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 119
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 120
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 121
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 122
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 123
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 124
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 125
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 126
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 127
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 128
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 129
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 130
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 131
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 132
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 133
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 134
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 135
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 136
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 137
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 138
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 139
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 140
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 141
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 142
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 143
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 144
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 145
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 146
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 147
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 148
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 149
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 150
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 151
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 152
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 153
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 154
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 155
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 156
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 157
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 158
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 159
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 160
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 161
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 162
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 163
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 164
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 165
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 166
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 167
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 168
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 169
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 170
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 171
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 172
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 173
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 174
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 175
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 176
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 177
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 178
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 179
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 180
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 181
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 182
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 183
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 184
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 185
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 186
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 187
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 188
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 189
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 190
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 191
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 192
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 193
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 194
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 195
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 196
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 197
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 198
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 199
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 200
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 201
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 202
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 203
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 204
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 205
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 206
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 207
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 208
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 209
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 210
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 211
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 212
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 213
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 214
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 215
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 216
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 217
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 218
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 219
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 220
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 221
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 222
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 223
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 224
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 225
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 226
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 227
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 228
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 229
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 230
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 231
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 232
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 233
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 234
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 235
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 236
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 237
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 238
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 239
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 240
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 241
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 242
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 243
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 244
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 245
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 246
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 247
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 248
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 249
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 250
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 251
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 252
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 253
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 254
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 255
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 256
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 257
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 258
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 259
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 260
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 261
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 262
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 263
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 264
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 265
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 266
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 267
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 268
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 269
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 270
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 271
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 272
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 273
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 274
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 275
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 276
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 277
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 278
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 279
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 280
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 281
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 282
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 283
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 284
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 285
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 286
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 287
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 288
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 289
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 290
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 291
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 292
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 293
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 294
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 295
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 296
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 297
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 298
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 299
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 300
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 301
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 302
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 303
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 304
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 305
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 306
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 307
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 308
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 309
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 310
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 311
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 312
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 313
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 314
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 315
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 316
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 317
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 318
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 319
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 320
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 321
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 322
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 323
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 324
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 325
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 326
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 327
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 328
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 329
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 330
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 331
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 332
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 333
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 334
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 335
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 336
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 337
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 338
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 339
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 340
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 341
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 342
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 343
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 344
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 345
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 346
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 347
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 348
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 349
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 350
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 351
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 352
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 353
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 354
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 355
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 356
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 357
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 358
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 359
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 360
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 361
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 362
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 363
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 364
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 365
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 366
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 367
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 368
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 369
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 370
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 371
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 372
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 373
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 374
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 375
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 376
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 377
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 378
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 379
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 380
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 381
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 382
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 383
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 384
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 385
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 386
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 387
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 388
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 389
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 390
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 391
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 392
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 393
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 394
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 395
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 396
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 397
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 398
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 399
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 400
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 401
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 402
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 403
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 404
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 405
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 406
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 407
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 408
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 409
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 410
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 411
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 412
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 413
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 414
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 415
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 416
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 417
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 418
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 419
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 420
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 421
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 422
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 423
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 424
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 425
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 426
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 427
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 428
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 429
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 430
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 431
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 432
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 433
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 434
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 435
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 436
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 437
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 438
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 439
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 440
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 441
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 442
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 443
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 444
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 445
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 446
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 447
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 448
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 449
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 450
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 451
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 452
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 453
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 454
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 455
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 456
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 457
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 458
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 459
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 460
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 461
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 462
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 463
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 464
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 465
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 466
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 467
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 468
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 469
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 470
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 471
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 472
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 473
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 474
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 475
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 476
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 477
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 478
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 479
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 480
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 481
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 482
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 483
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 484
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 485
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 486
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 487
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 488
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 489
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 490
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 491
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 492
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 493
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 494
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 495
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 496
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 497
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 498
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 499
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 500
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 501
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 502
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 503
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 504
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 505
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 506
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 507
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 508
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 509
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 510
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 511
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 512
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 513
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 514
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 515
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 516
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 517
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 518
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 519
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 520
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 521
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 522
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 523
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 524
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 525
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 526
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 527
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 528
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 529
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 530
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 531
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 532
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 533
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 534
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 535
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 536
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 537
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 538
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 539
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 540
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 541
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 542
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 543
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 544
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 545
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 546
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 547
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 548
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 549
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 550
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 551
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 552
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 553
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 554
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 555
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 556
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 557
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 558
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 559
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 560
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 561
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 562
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 563
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 564
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 565
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 566
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 567
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 568
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 569
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 570
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 571
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 572
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 573
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 574
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 575
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 576
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 577
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 578
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 579
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 580
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 581
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 582
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 583
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 584
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 585
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 586
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 587
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 588
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 589
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 590
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 591
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 592
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 593
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 594
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 595
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 596
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 597
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 598
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 599
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 600
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 601
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 602
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 603
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 604
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 605
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 606
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 607
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 608
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 609
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 610
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 611
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 612
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 613
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 614
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 615
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 616
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 617
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 618
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 619
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 620
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 621
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 622
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 623
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 624
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 625
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 626
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 627
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 628
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 629
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 630
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 631
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 632
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 633
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 634
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 635
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 636
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 637
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 638
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 639
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 640
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 641
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 642
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 643
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 644
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 645
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 646
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 647
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 648
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 649
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 650
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 651
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 652
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 653
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 654
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 655
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 656
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 657
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 658
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 659
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 660
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 661
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 662
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 663
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 664
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 665
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 666
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 667
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 668
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 669
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 670
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 671
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 672
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 673
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 674
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 675
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 676
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 677
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 678
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 679
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 680
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 681
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 682
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 683
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 684
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 685
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 686
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 687
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 688
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 689
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 690
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 691
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 692
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 693
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 694
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 695
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 696
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 697
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 698
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 699
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 700
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 701
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 702
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 703
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 704
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 705
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 706
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 707
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 708
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 709
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 710
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 711
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 712
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 713
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 714
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 715
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 716
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 717
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 718
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 719
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 720
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 721
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 722
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 723
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 724
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 725
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 726
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 727
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 728
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 729
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 730
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 731
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 732
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 733
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 734
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 735
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 736
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 737
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 738
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 739
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 740
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 741
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 742
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 743
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 744
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 745
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 746
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 747
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 748
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 749
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 750
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 751
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 752
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 753
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 754
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 755
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 756
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 757
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 758
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 759
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 760
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 761
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 762
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 763
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 764
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 765
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 766
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 767
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 768
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 769
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 770
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 771
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 772
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 773
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 774
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 775
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 776
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 777
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 778
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 779
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 780
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 781
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 782
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 783
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 784
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 785
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 786
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 787
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 788
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 789
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 790
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 791
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 792
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 793
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 794
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 795
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 796
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 797
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 798
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 799
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 800
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 801
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 802
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 803
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 804
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 805
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 806
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 807
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 808
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 809
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 810
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 811
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 812
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 813
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 814
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 815
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 816
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 817
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 818
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 819
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 820
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 821
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 822
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 823
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 824
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 825
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 826
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 827
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 828
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 829
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 830
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 831
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 832
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 833
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 834
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 835
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 836
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 837
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 838
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 839
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 840
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 841
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 842
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 843
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 844
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 845
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 846
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 847
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 848
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 849
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 850
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 851
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 852
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 853
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 854
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 855
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 856
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 857
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 858
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 859
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 860
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 861
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 862
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 863
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 864
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 865
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 866
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 867
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 868
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 869
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 870
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 871
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 872
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 873
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 874
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 875
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 876
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 877
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 878
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 879
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 880
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 881
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 882
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 883
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 884
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 885
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 886
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 887
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 888
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 889
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 890
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 891
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 892
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 893
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 894
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 895
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 896
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 897
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 898
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 899
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 900
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 901
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 902
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 903
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 904
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 905
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 906
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 907
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 908
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 909
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 910
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 911
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 912
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 913
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 914
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 915
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 916
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 917
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 918
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 919
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 920
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 921
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 922
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 923
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 924
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 925
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 926
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 927
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 928
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 929
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 930
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 931
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 932
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 933
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 934
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 935
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 936
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 937
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 938
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 939
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 940
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 941
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 942
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 943
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 944
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 945
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 946
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 947
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 948
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 949
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 950
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 951
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 952
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 953
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 954
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 955
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 956
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 957
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 958
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 959
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 960
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 961
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 962
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 963
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 964
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 965
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 966
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 967
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 968
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 969
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 970
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 971
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 972
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 973
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 974
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 975
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 976
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 977
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 978
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 979
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 980
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 981
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 982
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 983
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 984
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 985
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 986
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 987
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 988
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 989
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 990
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 991
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 992
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 993
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 994
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 995
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 996
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 997
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 998
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 999
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 1000
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+
+Computation time on 1 cores : 
+	Database extraction time : 0:00:00
+	                         Learn     Prediction
+	         Fold 1        0:06:03        0:00:15
+	         Fold 2        0:12:21        0:00:15
+	          Total        0:18:25        0:00:30
+	So a total classification time of 0:12:36.
+
+
+2016-08-24 11:41:34,356 INFO: Done:	 Result Analysis
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-114134Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-114134Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic-accuracyByIteration.png
new file mode 100644
index 0000000000000000000000000000000000000000..47196e88b46142dd89b1928f2b2d070ab765ff92
GIT binary patch
literal 54042
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_eiLB##P{fF<2(=;|VPtphs=$fMa
zMN76xba4mk(vGHC5<*AW4o*70;Fwf$_X4Gh9d52ixmE;*1Xu*Ha5p9JiV1`WH2(Zs
zxPSKZzTJz}e$-5^{L8w1^XAQ)t2b;8wv%z<U_5NV14cg50lzM=CP=g;g3z=3&87|@
z28f$!yoT`*Oxf&2UICCGNZBo(>;|Yf&*iiT<`$5kL|ftvv%^vf5My}`Z;`yl02P;5
zc6I|B2iQ8E!v?u+qgG%9)C~Rw_5c69xV)S{D?9sTdiwc!t&=7R?fdy`w%d36`hPZl
zbFEzK^|iE|zQ4OWJGL)&ciF+yr&r(ntsA+C<<+ZK28M=>>(=S%=;&-nJj{0G>Qz%~
z{f+AW^Ab)>P~=^9^2CV)KR!N=uIcIN;rZ~hhJ%Hv=G)Em7uVKGvoJBTFfoR$kGuP*
z=0DeLv)n_!zP@H;a9Swv`}_Olx3jXd7cN=SvOWL4nf3ja7M2~mc5PdgvsTmJ(UDO`
zR`%l7?C=@0XK!C6bN1@`c>5>Mo^5++I9uDwN-FtyU+%X$-M#Cwudh4$`T2R#y#2+`
z`PQsivtaphc5Q9#JNs&*6K^TI_c_GJ%UfAlefaim+4sYT+xZ_pd&X8<TU)R*rlPv~
z@zc}O&+26dcfLRV>-%;6{ePHLRaJ9tZCQEIhELY2CHwlii}xo_o}8GLcJ0k37Z(==
z9i25de;c0J&zs#~aEATB!-54XS9U79_gy%jl$12<5C8i+JBuwUKP~Z@r>pDj?K8`S
zQ&LiLN9}L3Z*On6*Z%&dXkxO(wUV)+t&Q#6eEa(eQo_Q*Z|?5ie)Kpfgab5O($dtX
z>BVxXtE;D^r70O33*WE%y*4Du$)mgfvXF7wnFDWbZf5L|^7{DkW6<sBs<~0S^RrK1
zUK?$$6TeTUu&{8g)?xd|=(_UjYa*K`O%iIo-Q3jl;c9sN!)t4!fBbsA{^9%g`sT5&
zuB=T>O$Bdm7~a`g%x+u#?a250_52J0fq@4vE%lx_eR}(wH#uM4-WLD->}+;fWVDjH
zdi%dU$;bQD{`=Zid{DS_>CzIr?6=?B5+#m;vZtLueSN))yE`+(sne$mpPmw}sHpH*
z8o9U1R7Y1gF)NG9-{0S+;se9Yn>TN4O6C6c<|cEagTw!q!cH41J|@kWHOtA}z1=Jz
zY<*ns%gf6z+r;m!Vl_22oicUm-_+-q_Se@RIdUZ7^Ru%nR;*xPm}6HfRaRDJU~JsH
zbgAmOxz_HN-{08CTw^D1Bgg;j*)t72y=kwGu3WXMslT6}hnM%@^Us-k=h)ZF)!5B{
zwz>LyUct_o4;3~%@^&)*^K2LuUfnD#Ej`-8DV&g#!&6*bd}n|C{)?YGIyxG*Z#Tbl
z_ikcFMo0Sjc@NLcwf^wsOG|4jYlV&6w!FJumzOVJe)!}`&S%e_8JL<LJ=n~i`f1II
z6%Om;_GY}F;Gobjf4)4!f(;u4cJ12r<wjy+V#TK?oYQop+nzj00cDY&Pp31uTrWS|
z#=Bv|hK6n1%#xCmpUyk{`}=!A85tf~S=orl$de|ol9H2O+CF{p!lRmF(c;AqU%l#j
zc)0!WfddSFets1{J|wO_eR;7ve?(;D!r<k8z1QlUr|CpC9c*U5EVuf2zx?U9oiFe0
zwU)E5^QphTHCz0z-<s&{etGvwOG{^17OU~_@EmylIWaG<@7ArTknr%shYvG@{9|Tz
z?8(W=fuW(S4qw{loPVxtVKL)gv!$iw45L)8p5ETX<m6`i|9>_g+%<LizppzhKdUty
zTfcfq=<2Y8hYm5Rsi|$)vSmsBH)Unzz@VTe!{lQQ3IZ4Q9Gz!Z+a+zDci{MOc7_LU
z-}de<f4^wQj)-Rxot>RuZZR)n+w$Y7!+g8igv?CO%TW;#3s$V~$cv2MU&mWtUoRmk
zdGN#uj{iT;*S|2cwzh6*Z9RDJo?J5<@1pPXl>YtucVl0zHG_h_KL4pxr@s7V?RaIN
zqr)?8+B5+UmKg?#OmTawS{J+bKl<_Uam2<XRu(44vbVQfFSoa}G#r0?@Wu^^$jC^B
zh6xh{)<kXXdNzCZ?CyVme{cWk&E59XzSn@~@-sFb35QLaH+L>vs95>w3FpmCsoaq}
z3KS#vR2Xvd@~XB7Y)U^bCnO@`^6J$q4#k!?_x8@_k+qs4;I!nDpwo%JzrS;~A69JV
zlT~UFDEjoobJ6P6-W-Zc)~xCI^6u{JJyl=31e{LX+M0dx%F19)#g;dBc22IStURgv
zc$#jsM@q_)JGo!`^{;Ks4lnxpDl{k{z+ugrH6E_6tcooY{`{#~v~Z#0s@1Dc-rStt
zIc=KQ&(G)WITc$%!ont<I^|XL|6lE;z18JT9ANw9<m625U%C|J#G&~7++5`vyZHi6
zCwisLJ?7iho|vre&!O1z=ehlV#rgIBEN$24-Q6{D(IO=$4#m&U&#NCicrYk+YWcf|
z4<9ax-(UCS=jZ1w0#5h#*ZceU_?)=AyPQ+8Wl!bjHVFv{frSAcar<gKS(q3#H8mAm
z1cHKsoPK?M?S9^SQg1Ks&YGV_mH+-&KK%Ui%dMQdyQZF*V>wx_`rVzKEdoy4^6&c{
z>y!2VzJBFOMH#;KKVL5Uw+J{D6%~0**Nc4;Bk6Q)eZ2pjyLUZvb9Gm)Tc`Hz+qWZE
zuTB+kI`Q-K^OGMQ9zOZ|`+H8smN~Z7(+YORRGsmgYjv?Wc3+L<$1h)UN-K{{nl!0n
z=FG_EOp(fOZzNyd+^k;t{hh3$OUe0=@bJmAW=Sntvc%=yo=WG-W$*9JwW<2jA>ib3
ze_yR<LW08C#rgO5so2`as{LObzFtUKS^3xQAG@7S)W5fN;+SccD+Mb1Z0CP_dwcTh
z>+6M`I3hPBFa`z(EC2lYvqivZng4u0F})ZMj?AjNW+k=P)<!S?u<M%ozIsl@Cy$PH
zAGvU0!oPdl^W!JYo~>QJf6Eq=m0MZ_lms|Vv~r85Tv`{gvFXe#)9!z9adCdPw&&|l
zUbk)Av>P{XPMlx=FY=w?{=eU%A3cBW&Y`$u(V`{^Y3a$$?EFGb92>W8U0VA2+uP_x
zD_451i`}g@x&4QohNh-sR8-WHzrVkyoSS2*qNdj7Gs~n?uKMMrrBB-B>lXZWb#t3^
zb91_|Q%8uE)4%H4RwqTpmI=Mm=9l*G-??+Ai??_8vbmPUYLOe0SQTA<Ri82FNz#(v
z#dyTvzuS}l`!zp*{d%-d)_TH(2@Ub}e?zlooO*b;z3}ZVQw|m;hDF=A@bYs0c(J(O
zAnS?-L&MamqFh{D3=FZm%Z|=4OcoFpZeG9tpVVyg{Ap6>*LS3>_bfjD`pL=3JIde7
zy?OigWxAG@mWH0*v5$|BKYaa~yR@{F!QptHZ0e_nMLSQNK7Dvi<mQC@e13m_|CuJw
z&&@sje13hOUF|OhfxV5f+j1mr=S`g|YGP{o^1QTpUd|;;9%(Zk+v;yD3RT^+rcY<j
z&(EKgpPH&#R9yV=!9ivb5s?FT@6OE&4hlN-_V)IdJ3B3{tskG6X$*1!$mBI^be=qY
zs;H^CGO{>I&1VJ!gMono1H+UlQ%=ZeTUts6FY{@fG)ZX6lqnD1zwfuL{>C71R{F%L
zQ%yT}TIzo87S|654rXT9uyyOv1C7j#440SrF5a8HR`Y!P!s_quUfkbrUsGHA@X@2D
zh0g7dCi~k>oaL<Q_G)h{9}f=;!<ScAxfi?jPO{!s|KLF5iZyFo5)u?-WMm9VUIZ{K
zdVlBCRPDk?M>wxsyS8Z09+|0Ar<T~q#>PrWN-{F|`1%%peB^pdIUz4k&(vp=X6fw<
zUp+lN11n-*d;9ylhlGg4?W^Gw6%~E*^y$K7%h<HEw2EH8crPL%(qdQpE8$p=WYKnY
zRn?1@Qma<2`tbGZ(V52SFYcHW=AUtwuVvAj-d+9u-N7SAT=L@PT9>zN-faBn@#DfD
z9};yUH?e4HYL@(dc(^?<GP1Mw_cum?uLT|JJ8gFD+V$XL1%peybKSq6=?o3~_Sv!V
zO0^^(?>l(#Amhi6A9s|#4l7>On)vT4xCNpRA0N-b!t~<h%Zu#dhE5z}IuQ*kgO{6W
zuIH1rx-ft0)TvA5&h7j2$-76wkg2MwDj+<(edETD@x@F+dH47Au3Dw_;^j+4TU*(6
z>(=SYeYa0I!0_bRGbL43*7S3893vtmHf`QKdun^iVYkT0nRY4WZlR%5|M_q<&YC4<
zWNe&zN!GH6B}OkiD`TdTo}L~DKmYN=?fiyye=0!nvfO|EG5PvGjk&kCnXZhH;d6gA
zXUdc*vr7CX^@cfdFflQ0sQCEE?R)kc#jQ)9W^$&crY>2&{PCrw-WJv0bU=;n`u}wi
z5fKaxSN8sUcXzkj>DpgkGSAF5=a=DQx3jb3;O2JD%hNkI*SdYm6p=IY?d7NI#U9#O
z{CvW!SzTAIgp|Cx!U<|8KRrD?Gw$pAjmz#8cfHzXdENcu>5lUE_Y&XS*y!Qw%R2qE
zYi6cq)z??8uU=){Vh98k?-gHO2y!SsD6mjyd2q0qeT$;LXK=8vxL(YH{o-O`k1qS$
zPxUfRKE|`B;v>`k|Np8NKVSS}&#d3J-#&jnydrS1LDCV9nTho+0y(#~aPsl-`D%GP
zAOH7i_4*BUf2%~q#gkuLSoq@NV)x0PQY743&N3#>;P-HLW)2Jt?C9#6bki*Bibl@O
zO{`0oE@fz#HA~8hZKwBiy^61|riT3b#cw)k|La$;oV>lcFE8`WE|Dn>_Iy_V|6i@o
zTq{xIv@;E>R%zY2dw1fLDJ|0Gc^6E=*T=CkfLeWpg@qNrzGyN8_BU0;?6o-W-Y>@}
z@YU_lkH`HC4eb1K9<ui@UKCXKpSR>E$ntaN&egv>a`9j@`{Tv^c9XI^o<4uRc+Vc0
zZQHi(D1P1-!tA0Uaw?Yd%&AjcmX?+l<?m#2a&jKLdDBz+`kG^Ku<+eorIS7HPkFt%
zqr02C?ESsoTeqV2RDb8QE`PV=wp*V}=ZzZ?QTtm2Qc_Ybyj{6+C8%g)NcjEjZ9!2{
zR%xZm<?HvCuUp6W>({S}Z*L--e}{#HELgIHW!tuGpf>8#rK+1YZ36W~)~@wc=Rbb@
z_-PY|BhUZ;`B|)@qH^HoP075xyb{Bv4I2z>s=x8%-`mr;dbM`lkB97EUSH?0tgQU<
zaBuK(KMj5TaEtRxHASwjUDCGB-}!pzrQ6%{1EZt6_tpMpVld0Op|Evt_Vsl}*MoeV
zotfL(+Di0}@2mZ7Q1HNEC$E6NzyFfu%a!fz<ry|qeong;&B$P!e(uQOcK*T#2N*T9
zwYArXi;Ig}<v;%V`g%uqck}MuyAOTo>Ugi4ot>={wZ-F|SIA<w-b1rYvtQhwy*>Z_
zCCh+M?>@FwR8=inv4SHoFmQ%xcG%|Arw#s>fd&oa8=g3SnxYx}Vs?zDu$m93r7a^X
zd+_<^gU>$~etQ$i&@g?vc#G4*D=J@p@!$Je&(Fo>l$)!&@5iHVwW)=#udU_X*Liny
zI=_#P&w}O4+Y28bJ9zuHboRA1j0_ps*~#bU+0L-5wfa$G$HT+(LTGbYSy@L<Ps{Gz
z))h8#GBPqRm{;sLW1e@Xp|_Ve)~Ni`lamG}CR42TH8wJat&MX1?CI-!RDb`UOG}Eg
zwM0clWvt71et&z*+<&}z;X=h_zO&m-o$~tf;v)0$KH0;UmU_RmY-?{no!hWt#fk%`
zPH{y=MP*!HC)?B83u=Fhi;M3(URqju^!4@ipsq~w#*MGF#bji7e0_aiyncQ7;6cZ%
z9j7KJI&Y}?Sp+KFYV73O+S)7%9x&X^OHOXi-}jRZ#IOBjVwQjJ&Z|!$At4Lm_t(v^
zC{)V3vxCvs*Vo0(jY+__N>5vR@@<aEAyH9W`uh3>J7XlIrJX%JIrr_`$KZ1MR9j2S
zfh$);w&&e-y1p)U>8UG=-T7zCnsw;bEve#XXBt<oT<P=A)z!72uyEnzUREZ?J9q9p
zc>cUSe0^NvhX)5G>}o0&pLQ{K3B2o-_2QRFNvvw=`+IZs+!E8$)UGaO@3?p8_s^dv
z=eF=M+}@UZxQ$nO!RpoBTeGiUYBgd|u(6RbG&E#z;eP{?+>m&9!Q#cu>F4JqK0MUQ
z&|v@X2Xpkc97jh-#xrNm9C-fu;oG;m+xK*f>$54cxVgD)*tDr>`*w4;J{ishFTY3p
z&E1@SzOApX@62;<alIwn@dZ0$BBG-&hi+E$pVzZvhs8?I7rmSu90!)quUqvY%7ACF
zMEjPf2?1@1b~E(%{}HPF_2u9q*KWI#z#0D?FJ8Q8QTl4inWEkG%kS6y<~@4!=>H!(
zIOP}R&D=kK`EvC?fBuM=t&?aA>;aW-^*hx4=N&kClGC>O+Z3+269)3Lo=lK!`?+7q
z)>c+n&4;1?cy^$GXIo+fKVm$q<18cUKv#{z-{0Te=iAjTnI>Rc{Y_`elqnz1n%`$&
z=##VU%HRK2tRZ93nyxM`7AD3D8@V4fc75{pe&6qI%@zl#e7%1ErSn3<!Vh1(&?vog
z=#Z0!wzjvcOr9P)J9|cErlW#@gS$KXyLaz`QZqSE7Kf(1zP2`EZ&hh`|HjhSVO9(G
zr=Oqq;`Vm^xi9Voq`cfFARy3i<w^*{frZZP8DFv(iju=kLNhWnrs>DuTeWHHG8^}P
zxz?2{HLc3t+*np@`|j>;c2m=>X4Y}uKY#tYWFc|(;-uG6QBhi=2czeqjMq%-GK#-H
zN!1%v#PCR&bm-|YbR<>Jm_7UQi)Y+oIvHV>vq5btFE6hd*5&K2JQr5?Yne1jDE6h-
zCu=c5!Nz-gtDO}D5<qFsw#p=KPle<6ty{OY?%HJqYSi0*{`6^5=iW^j7nN45Sn=TF
z<Ky+$UmBjV7Xpv$96}x0St9qQjbC2x>w&vVy~RNTGuqnR_v`=L9_yFa-@4^x`uy6q
z_xpbPW$pd-OZ)hdBS%2Ru65a)jL@6c*T?stIpYHwX5kjs12xI`<n8V}vUxp!waw+_
z{`p%bUb^wmX`z7ALIGvB9*2ksiP*la|G3;gHQo6;Hz_G8Avu|u!J^`WLTpsnoAohq
zJ9b6|%h}r6f;xw0t8QOvU$gnYtA5;`1E;2Hi{`CgvBDuBK%h_7y3M-$-GcP<^SGJ=
zmn~WH;KD-Z9hINeii(N~zPt#WV_D4Bpz-2yBQtx!<72!jDJc*B{QS(-toARoq_ni~
z$A`pUduzYG5?vR!x69w|XUnpQfBF~~iE<bl8y9|l=BuHpnRs(kYKe6F;e*HJ>w84C
z!!&HtVq;~Kl9M04cyVLZ{^dNM^N&a=@O)<c`TO_fRK3&iQK1WOcbC0gB-r@6xUB5h
z>+9=3etPQtOS1oXvx7o_#Mj;H)`6<UBW=9WA3h$Jznoed?X>Bkamon+owz*_uX^9S
zy1F_sGm|qoIJly!>XL=r`}_OdBO)YvdU_5#{+KbP_+;_f^XJ>wuGRffW49wlZ{P2C
z)(nfx*DYMQ@Jr0Ib91?sm6au=r5~?ezi$z*etmsC3p@MaqeoeH?b;<_oaQsR>B-HT
zHx*4xM8d+tw!|Fomj@Yj=FFLd)Kpc`8eKE9Y4a8@UcC5Ds;~bX3rFSb=~JgVy1KR=
zE4Z;SnZ2pG`Q^rbdHX)Z7(?roNee(u^zh(_)e4glUbgRezx?5|XL;M&+CF^vFrms=
zdtJ4+w>Jk1lg|tT#-~r8GPvYFTJATOD?2+I)E+f35O{xoe|~8t8?O|Lv-4rLWJi-_
zn>GpEyLZpP#Dt~)_~8wShZ#<MJCc%~o_t|}<Ck(Lj(tC$N$;vzzi7ckRaMo3;$r6M
zr&;@tAKsFAIin6VZf0uQx^UsbD~B^&Tv(3v%ll7X`1R8#CqF;FJ9qCcT)o<RIwzaR
z_1s$C*!gYivTGk7?{9ByW!({@2WqN3KR=(D!O6+#!>g;>94t(r0jf9CXUyQ>=H`|X
zDLvLBX`<#)`|;z)88($hRwXYQ_++gP+`m76+0%~|CS@MKzr8*9w5ag^zuKKY@9eD>
z*VEH`P_$EkgT<okjReC*ZU$9VRTo#+i$<m*?XIDrqTjxKEBS9*{Vn0nj>3STU+<Iq
zeprXew;yh7Zf5T4>RMtKzafEfTkh?)Nt1+j9=ECdq+<8`jj@ZX>qa(?!zRM8oScxH
z+`MR!l1=R|k?Qa7TDNcCe#PFW(5mv=`}_Xk+b8+#uK8KCCSoJg`uP3RZa%-VGWf;y
z_42hGLhKBa-T$a<S*fF=^CF<#w))$HZ*On!sQGEME_Qbtr?8rWiV6z@sMZDf#c82H
zWMt%xz17>#?998fL-24re|vz2OIg{rE4PaaXRVFiuB5Eo{H*x>J=-<0yQeKXeeRrF
zQj${M-CeEA{pXumN)^}D*#!j$7rwfp`Q-WY$M*k!^83xTYF!<^UdhZ%?D4T)=iFS~
ze?K1c%UBdJi0j84*_wS_KvJ@^Q&|1f6Z4c40!x-IUAS$Vn5L%YhAmrMf`Wt?9-NtJ
zTu@p%)yux-M?pnZRnosdKTn)Fb7YEUFayKRojXBooK2fH8PxtNX=!git@|I;TTV}J
zpEF0s#ob-m(sE{AcUPBFznpEs(^H};X=&hL+II{OZf(u>@bh!a%hLl5=zV>Cefut(
z`qm>yTtdRal+@MPBO@b&8Wp9xL_a<{%FV&Tl#-r)*`adk)Tu^4j~_ec6do>q^XAPH
zr%o-}%W~`1Ee}u6gIlw&7kqsc`sVI#@tHGcmh3-s#s|bMe|P8L=JfLdLPAX~Ei8BT
zR0>B%Ms9Ium=M4H>&e}Aj~4p!#$NwrmUpLP%NCQA^z_4b?#Osg(_vKLx^{DIw0TNe
znwM*dxVE0&vGn=1ZuRf)@85r@t#8kkqeqV#y_B=B>v3-9yXaN{O6A9wcut-$cW&?A
z>hFinpZ9+?W7Vov9^T%ECn~#3@hm#^uwY5ti#InmGXMMc&zEaPWN0YJzcWK`+WmYY
z%)-W|)zdB_E8BbEfWwR#GaN!gLlc>&CrU(u8><~Z<QK1BuV41&Mx(5CnSz4Cf`hfE
zPM=m3;P`MeeZHcKipx8jKF4OZ#3v^v7A;=w?(Tj$xkuh!?s&g^xWwP@)8p$F=Fgg4
zY{vi^LwN!oJpS;rW=+&qE`E7C7KN%Ab8M^4LPA_tH+Y*ZIP&K0+mEO9_k-F@>F4H5
z<kC~0HfIixy}kX46)PM(Jvkj69fSC5;^N|7Tv*6#A;Wj(?Ac6_SI2(*`gO_eL8q{K
z!TWo*H*Vg%n2@EVrB(6a0i%$R(1fW|S&NH{Km4p|X={6Qv|HTBR(GydY16`mih8lT
zT9zzP(TUo^0qS8XvVi86nwy;`pIW+lHMd+pyMsvN-USOB@^(FWk^<_QF?@Kre7;vK
zXfj6G%xv1ZX3K&H4OeErEPQ<I;o^R~rb&~8n3$L{oL8DY{i*%oXHCrhI@$QTpQ_*9
z-|sJbd&@L)KcB2s!lfmi3@(ifSFc{3ICrk@<a4J^ak=-)xkf}tfNH;UbFG;f?(L~;
zZfIbTkd{7t>J%ubro4JtSYCeoxO_big8&ChK}m_r@jlswixx52&F|k`{{GSy-<8po
z*OzbDAmDKL`qq7*S+FZtM2;Ohc4KSy^gG3Q+^MOl5_UBfN=ixxo)$gL+h6%v?a!Y-
z3?1(@y}i9-_Ebz<Hq#)Hi6QVoAOlymGQ-6^y?_4H%&{uvTD5A`g-e&RHq`7cd)wro
z0P4)%+gICtak2a9C7j&che3^}Bjp<>O%ei)R~}>d`2BnShgQDB2A9C28wT<5@i{j(
zFv{0{5tRM4preA%BQQ|#+1c5kuFJw*yQ0)$Q&LnwMWMR?ybI^&+1K|SIpU%dy^SX-
zD$2mr)YaFw_sWv5*F60FmtQ=^sTi>#fpKoWV%_FDA&cGn-LkT@zI^$zq44oBHPe<?
z`#Im=*r@zBGBR?fr}G8|57$1mmIH?mGtZnk^Gi%uclX8p_4NWy0s;aGTi=4l1QJzG
z9zDwH>FK$n;-k`>Idc{)U*5iBhebw4#);g9lb5f2&RoIXE70US+w9_}XHTA(SmZBX
zXepw*_WraB*RHw6#mU{dbLYcx`T7GFE(nN<iUtG*PMozmI5hNXf?bQiEpLsu8U<BV
zRx>j*0j^d9V`Jx<8k;j`&oVN6ety2at&MGOeQr+9lD@$Ge6xbpKfT(v@b%>@^DcgV
zem?p1G+m3@Unc9~_xFivhnYm_C(W8QD~R{fp+inJzg{lqy6nXlxvT!aoopFvN8GfE
ziVD!YgmL=0oJ$`Y+x8##^787vmp)m|w`u+Q{Kfjk4gb$EYHDdYRaRQQ)tq!?Yj*gV
zxz^&`;(AlGqH}U|va+%gQc_rSb#>Q7Zf4`;<SaQMbJ&14nOC6g=K&KF69G|C)$PX@
z*`17Q>*(NEv2x|fSVwnfXJ$}-EH*k)tkc!i6%Y{6aOjZJoBR9!>sMx%KRm<=8Y27r
z{5(5DkCZ7FsFRbKsmZWl*|Ih>2e%%H#;>ohUv8URQL}5wpFcG#R<BOJw8S%FXVKC#
zEEx`80_3HoyT8A`zj)a)w%gnD+jsA-UVYv*W<JMU*jj)|?d|M-^K3lZr!gM5x;mVZ
zLD{{}B_~Hm&bErhp(NMH$mq$l$8X;B+_(|(<=tIrS*wzU&6|xu&8i(ccAW6Nztmg2
z)i$`du&iv^;Q%??Dizb7yelgLBQ~e;)+*Hg{<ikY&ZEbVFW$6CXzSLkH+B}Q%gSAw
z^~qzEz09(IbJSgr>`g!1&VPKCX?8$xaI<^AoTIllH!Caa7rV(a=hzwE-`l%*@_haH
zeLc_5&p&+Qh6Jd)*3EBWX}NI227y(pR!LZw>6qo*Xo%jP_weoQ?HaneuKVl$9(Y(V
zVfO6X4>l}6rm-s86Wowlz2wrRppw_uc<=5mcP}k9-IjaXZF}j<ORV|#_qoQ#&b?D>
zYim1k-aNni-@4n^o-{6d6LI9&u|=CU35AA+f?9XJ(Sd=C=H})-GL}JUsal?Qca?%V
z^K-*Xo}ZIlvUKUebLadX+V#$~D%E;+W@fWt@-dUj`Es^Zpn;r-{dKnUY^&8a*FHNl
z)5F`lIY48{{G&&XC@3m2va+&jXlOVD1`68P*eq#dH{w|=0dBY`{WQxxHAQp7h7B3l
z>=-^g?zc~RdTMIX{ep9|&G|(|MN8((T9=(T6If7MdUUe7|C4WiCT8p^CMF_GjSRbX
z?TXlzBe`htVnfiV`l3YPy1Kf8l9DBdJ&y?AdwzCyyJIsOsH3MKaN(i&Bt97n24!Vs
z4i=^#KYk><zP8pVbD8gKx6c9`ED{C@3~A@*>29C*Wa9K?|I)3jtU9{8of8ripo1eU
z{}r9v5`KPqDq)z!0utlp1r7P^JZ@xe?j9K_nOm@9*DlZ;-zr9>$~Pw`t1Ij2`DI-y
z56-=@q4Ap#3me;^n>T0XMeit3tgw+gbN1}Pr$vdmxxI7d$n3g%<_wRXo}Ph$fy4WI
zdkwR%tqGg{{L9PBp!Qkaub1jMx3}@mnl;O!@{<a~Md@#TbFEBgxtEohty#M^bN$gP
zD}xs<U*2B#_t(SO`TH6>J2}^^UAu7II=!v&>*MxLm^hJ9Z+iF3%gY~czh8IQUA|Uj
za=n)qmyeInf#;tMQ%(r1iQdjP*Q)eT`Tg4Vwb9#~jz505`~AMjt4<%gvVXeD>#*3^
zx!2aF?1GM#U0CQ0Di>e8cmY}yVPI&u@b;A}R~|fm%<Sy!ymRt}-6b!Za&K?D*!lJR
zJln&ETDf1A@$>V8>b8azj!&LGWp#FTmXMN4`tji*sLjr>CU&<Ns6n~E-hOXdSJ?eq
zyUX>Hl9LZUEqeI)ar0d3awlhJ=R8@nr`2oMt?S#c!QfW0(oTQp-?L}TNci&N;uqHm
zDYroN<jF~@C4Hx#o}L~U7pJ%R$j=r|VF6*`%NdfAZHW^vNVX+PbhI%=MMfqb>ygYY
zJ0oeFcHsQ^e!j|I%YO-!o;Kk5yx*s6gVA9Fp3mz)D<-9FQDM0M-&IGB^RPjW$u(xA
z<vYa=63_Cl?60qX@%nZ1`RC5@@$p&{A_D^jW9`D;oSkiMwE8Z?fd)qACw@_}yGk@c
zUAE_+4J$q*oSALj51LY0ba3yH#~Y4LE<JtvG-v`mH#ZkFzIEn|kCsw(@sHoX7w6yK
z2U;f4*T?tf?b~QuL1SfQ=EukT^9{~kT<jh#D*E@u#l>6VOiWA`tXt>ze6j}DzH4EJ
z4j<lF|G$pmz|GC+OQ(tND}OI{<;s<)Der%MeZBPE_GuZum6tAEO32OaJvZ0-@>B2I
zO%^Ne-rk;n`^^kpK|#UB4I4J3y}v%`wHL?1NvhsbF`=(MJw5%PXy=8?mz!tLmj3tW
zv;WSQTwGiaUcBg77rT4g$pTP2r{vuoNv6hzb5nPgy_LEvCnv|Js;av3sP>bq7iSu$
zFIcjqrS|tX&)T?{m>xl8w+jlh)zs8}Jnpw==$K~o{@&i*SMFb3zyIH?chw&sx$;OF
zvFzHl>%z5b$67drrFf)H8vGB-;Sf9gr`JM;@6qGOi76>9$NS}zKRh^CP*&Eqa-}9i
zU{8mzy5ECqYojk*zP$LihnJt9+xK^O3;+Hq6%iG^_#l4&|9{q??nO@z&zAiAa;2rE
zK@)da%JAvM?eTal;_>OrmzK^>&Ug3ra;vJUf*RJBFAKlDy*>ZZDwnUVt*sANuiwX{
zFw4Lu?~a8{{lA!3^2Nn7X3Q|T#Q|y_weic}TlDAk`~4{=h4xf^<;uRcX5#E^+qP{B
zow#TA>)-G9FSlR5WXXb6tGre*-kPOoyH=L(%B)YID*4CD<?|=Zo98F4nxXywOJcxT
z+x@q0MS<$T;^*h4?k+J=WD!>PbBT$OS+jQS#-yWMEp2U=LXWDHzP`qLdb<Ac&(F_q
z%(=NqY`$}`goK2Gt*vasib6pN36IBf3oK-KBn%inKRY{_i!Wk-Us6)igGY~=UcAWY
zkv8wEv#b48!Xs_gqbL98(NXS|t#&c7v4ZmQ`oU@o132{c_5b|){eHvt?d%F%dtN<w
z(D3^DdT(9LGY0?5*08rE{!4ol*f+oC6X%yNUzS`umw$bote8%O!}Rr2)vc_gE-&*v
z+`=jR!e~xIM&>0s+o}b%zrQiK*vh%Nxdk1cYJSMb(o*v1(W4Q2t4!bKJ}lY^nmxL-
z)H}L-(|`N*UteGM*435~7iahO_MS0o)}{JmN!np+8a8e;tgw+=vvzG@XlU!_=jWTx
zKW7%uz5M#!J3hVX+;aWx2M#ze{ErQb$ho>I6f{^c{dDX4_4-;`S_~ah;&yg+paPqR
zhX)i0n>KB7JAe54b#X^W#|_)JFHiOK_HLd$S@_J^vx!+*UCr$Lm%ga`&1qP>Ru?iF
z(#kEacjC#+>C@erR|z^TShmb<vCe$k>S<>GYHDjYW?oiHNl5|Kd^h%1o3k)6f~FgG
z<-54BfX3Tbuhzb*thjQ|9+`Xh?n&5G7`%D=cB#|~h7Cney{cl{c%|K@i}XQO-+&sE
z>(}$^>+A2S`nu}sQ^D_3I^W-%wqo__!)In1Cnh8?*v;oJE-t=u?b@j?NA^^G_0mdE
zRAdPZ41DnU=Y`9cCs)4K4U3HA%+Jr4kdkUT{`jJVNx!^(8^~*C&LpIyv|P9lu*<)s
z#N^K1yAK~fW@ct)zH$5Z<7;c9KYaRh=)u9}hc91xDsRwU6<sM3JO9|a)k{Fb>0)AH
zpzcFa(IQ4mXD6ov4+|1<b9Jv;YfYOrjV&}Z6f~Ipg`Hn+O4n|sYml`$rkSprcbC6E
zbo6NJw{u<Lw}ih3xw^W7*2>(vb*rPdH`m18VT)4uUyV0$adDuIT2j)YJGEZk-i5!u
zWd8Z}dc6QwYf$}kdD|)#(f><81AC7bdPMCkQUxs~kd|-ANZs6T|L;fh_f<w`{!3kB
zNSt9-^!l3ao|>OQTAxhY4?7kV7=T9qett@w2{!iC6-}Qx7J`h7j6vQDe*O5dV8H^0
zTeoh3miLssxuLjOX8qi`va(tVaodcIjfK_J)Qs|N*REM3;^rg9ZkD6P&CP97{f+1R
zeEZ`|y{B&|e;*gKqk!@Hy4b_t@7Mb;mVSS0D|b7e?4hOJ(<e-w+A6H>x4^lbZ%ZCS
z;A2;B?{2o{=)F~2L;f-@YX3jiy8O|nr>9SxJLk6CZ|)MQ(w8q^cJ%fhJv-Zc;j(3F
z<&p7~El!G{!s_+)^^3P`5dkfO+gJO0!n}EXphE8T`u%R6o}8aPfByLQ`~AmPRtE2=
z`l^+boNSnP$6{u?X>D!ol<CtSzr4I$fUEVw#fu9!s-Bx;sVpph<j4`0;N^ZtpPZaL
zapufUR&Fr{fxQ#AZrI@9=EinyO{DTy1D(u|kB+{$w3NH3xVZ4ki$JR$7J;K@cGUm3
zTNkslDf{}m#4|GtgBTwN1qTbt%lGfuV*_e~UtHw6R_}bgqOmb(ru4ws+2)EOTob2E
zaj9M|6}@e1?eA{_T&*5HK1X^ajbAYDU4k-jQeu&Kex7aNn;V8Pd#gkvBO`az{@xbC
z{N>ix?1<fEx_S5ZbndJDo%H0y#E!l`&=3rVV$flsr&qxvb|+4Fv|iu3&$U}jQCF9D
z=FFKKJUmPGPKw@^!>AyYHg)FA&Ubfrd%q2jiSen9X1pl0ch#y@K?i-Klm7hpIKw1U
zXw&A+8_VCv{rLIQlQ%FZG}JXJN~%xBvPpmcpG}^Xaux*+X(yKLFjU^>{<^!n8#MR`
z>WXv<t0x`rlP$Tur}DEw<)@Szw{IuEyR$QB;!Vbj<)K9!(<(CGojK#P^R#qyWTdIK
zfcD`((i;>bcs`p;o9D?`$nd?pv$J_?_VrUP`@+J)j%`XkZIFM@W{yRn)2i!_uE*CO
z1+A^<xBn;M=H?a<9)5gf@bU-m-u2zvTdl0F&Yqc>>EY{pbeZq$7azn5A3I$X&~bfo
z)Pq66+^N7><-DSzBIEV-@t{G>zkAlK;dy^=uX9q8Qd4tt=9iD_Vt1c<lA4*>S^D}~
z;=4OLH*DTK+1f?N(o*vAvEIecrG$i(Opk;5zIS((GAmR`Oz5e-D3G6@AEhp?ALrue
z$av@O-ItXb+S-r5y}f<n)Tu*ztG_3tr@L=oxnjkGgU#$O?(g3pGVk2Ea~8$Vc;?wu
zGTGbP=iJ#LC@L!I;pLT8bl4*_bn3pD+c#};a&&CGQ*!d;$uEwZv#+oF@bTk9{_1vq
zdAG7Mv$uCwu3kMkYYLyV8PDFTuS^PEJA>@oe7sM64wtYfP|(uW7L<_SU}tCNk+s@#
z^0(hyE71mxO}lz~dG%s;C<tftpMU=NcK-gO)8p$ntE;Oks;Za-_AZ=noX)2gyNkt%
zW1ekw+nO~xJ#w~E3<=4}&X2=EOEO(uS#7JnFer2}7JYvgTh+7dO0M&DbyZc@hox)Z
zAL$hS@$>ookH5ZVU%7hq;ylNV&(=6!zGa$y>eQ)%&(D0Ne!GW<i%*+24KyaO@5du<
zh6VcSM{HYFRaK2X#xgv3c6PP^2g{c|M-OjQ*|}?%Q*5lPb@{s~H^pRSdrMzmV`TXA
z=Z`_r6OUWcmW7X8c%;pEG&MCrW`R1rCr)@srF&cySktEQ>-H&w|6!0i_~XZqC(fQd
zx-xh<DEaI>ta_|pzTZ6mo`RyH<Eyo~B_$?7K|u?aE^TFGW_$4O@9&_)8!Tk_baZt;
zzTJLb$<$P|wY4>f|N1962^J<sBO{}fd*|YJm2~oL&sh8AOUa7Ws~3l_k5gz#I5kD{
z#F;ZK0U9j<8b=Pd^Jn_IC+q0yPMkWGm7AMe#->6bEiJ9rj^k?mXI;y0QIU~54|Z;!
zbc9#gA!K@tUid2;E^hA3#fJ|ccFu|}EZpexm|4KoVbY{Y6Xwj}2@emqu&{XW;9#?c
zmewNv*}a)Be|lWwR%Chj@Zpv{H*enLQr>y}{`d7-{@$S8?9QD#KYaY?n3t#5)6)|W
z62c-XD!TG<SG$epq&@lIbsL~gckN_ZadGzC+}tNmpB_AWwwLYS>J=*vtO{Kn5Ej-3
z8eq1zmQFt2H}zHFnt1lJD}^gdZ_jzX_{A*|F|kLl*Y7{Jul6@+p6JNYqn=ZDE_^?6
z*)p|v_xJnP*MEH_dT(E?w{&Fv)V6)Ay}Z1*UY|X1fMMp$nV@weZG5t;HZ;nJinbo@
z7WbZ8?&ii;R9q}5Ai$ujt6Nc7xp2u6mgWBQmu2oMdkdOzUK6)h%Kq;c;j;Jl?!MT`
z!NL@?tHkr!=hM^m|EJbROFo<5WD4qIsQpua|K?4Pq;Z-D@Ae5b3>{rvP8Agve{GeO
znL+i@<Kz8-kYN<iIQo;5lPf+xVl^@{T5`|i`BU)nrCGCP@lHE_@+9ZqUtgUwGBk2q
zQc_bB|Ni<Kv9G3b_4)6=zP{$*<z4E$0F>Bv?69z@_|PzK^AE?YBOQXE^~<MDpJwck
zD|+?n)sj!U>;KzXmA~sTOg@%yxQ%y5^>@9v{dKxij~zYA`tjq(FQ3;&Z$EVR?%u1<
zl}=u}CRYCL&cs<)v_!Z9!^7G6`T6JAR0{3fxwGW<)z#ropFMu`sOj=@|HmI69|x`W
znlpFq#)^+gJd#E(dB5~xcbzyRxZ?kV6)zkw9X;C0r(5~;m1y1Xx8}QYudE2Xu_aS@
zF8}9$f2&t2R&;iDf;`O-=p145a*yfLiFe}c&o;C3FL`F5`RUC~<2{w1+19OF_v2x^
z{DtlL@lT#UeK^_Q?%?n5?=$_I_xxmjv<tKdWnIiprs(MCA3uLOYKVZ=qEA-yJ#@I8
zpRq$s6Vz7C%F6oi;-d1DY15pXotfX>+Io1hy1$6q-h3|CQtg!sUthjZI`zw|tJ)=R
zZV2wJ{?4Y@!Y9h)(!1!~Tx;z)^+|boeW1)~YAVVAS~F5nS!udMqIpqedJ=SOMb@hd
zWo#udEbLetuXI2}ghu(k_LVC&&zwEGv`Tz?{{6n6pPw&Yu%O{z?%$8c<u}&;E@L>b
zG5L5#bE^Q;!T^rk+}xF)r=-8Tv-8Hb+}T$q?2xbf!Dw6kE$3>JB+qC6BW($WXYQ}~
zcYE)L4+T6@CLB%+1#GLnOt|&#)hjMtU0ti0MrvwqX)(pu*Tp`3_N?vh?s8CHYldmI
zSnUbWn)!Qst6y&5=WA!Swzk&L*1o)b@9%GK4=-?RE_if=^UO?Rb}K6@hKA+-^ObaU
zK~sN4=ar3&gyz@%(p=^{Tdn-}s?gONil6&|Vr6gj_hXA(yI)9qMn^}liP<RxY7VYl
z>snfB+Qui#B`hoq+Em~_&!%zfR@0D>kOiw&buC$<vU1P)xz_Eb+1DH*BPF+P-TLF>
zarxA?sg)HKpptgOmMtxtHW~Hw_D0J-S@&=2>x+xoL8IiB#m^K>Ohm3;y$VWgLPA2I
zRTVpSSg^3MEn2mT>+0332BxM{XKhwqws2wNJlpC+*RF{%fI7Oz`{ljQ{-0p;O+3D)
zQGeeLCZ<M)<l}v<+qai5E|xu_q^xXM`YMD+&PF0DD+|=2;P;=b?(Y^EDcQy&>2%+O
zot3rm^iw8*So8e+e4DyI5>-`IB@*7*r<C7Cf>thuhJqGlg1X-e7AV-%{0PXpv_r|&
z)s=&f&&}7D_tmRc3EA1)=H}+0sp!AIz7~|1x6hg-C3{IZa@ng_Ss#AZgoK49U0&u}
zq%M}8o}PShk?Vs3ixn$Z9)u1Gf!37XyLZpP%<P!@{2C^6^X+b@S9L7fHTBAcubD4)
zc|H1AAz@o(^5yH-h0B(;2`amJ<o^G5JOAN>2My=uT3^2U?Z}iVQv}4t+aEkg0IlWv
z`|IoESF9Wy91YvIo7>pf1Ox^)9&Bb`yla=#`nbJK%a*DA`TO@N-`zXA%k@Dm_WhTw
z%ip!MwXtPoXV0#Yzj}RVak@_IE|G3={b|-J`9D8BH83z>Xg}--ngxA(Tiy8ix!bp;
zKR-Wz{Pc8v&;qBH*4BlwyUP?>K>J&y&2koGPM$njQGnycdp0(<lEgOWc0SPBm>-|d
z+kbp>(|E?LSxSb6ALaLRNgp;5=XN<^@W1Hl)vGhCO0~Sayb7M2m>9M;;K(0i7Z;ZY
zcXyXZ>?}&1Eo-c$1zL-gD<%KL`G-L1=^6>plBem@#X;l0KJ#pTI*Yd_{#(95PN41Q
z^z8flY9~+Moiby;x3hPk@tOawZf<TT&Y%B(;b_8)|DK>48nW+ehS_1Yg~mLG!5h3F
zySwZrKs))re*H2qGi!5Da40A+ICc8;Ql&=w%1<s2xjet}N}Ks;-E%0mw6c11Vxscd
zd+Y1}|GRMgI(z@|=Dt3@J$v>%VGGOYTN}OIi&b`tx{=YQP{B53Wo5{ku#X>)%R75}
zck7+JHLL26cFn(^&oy*(SQMi6dKPK8mz0<s>yy2`sAlh;JsZ-`&kLKn*7WI2`+B>*
z;b+dCO%;><v0Fu5{qUJHYkd2zg7%(R)cvX0{5|_*sjiOB5zs=fgju<_w<TU!;3#2|
zA>icXloGa5*t+VAhL5lB#f{1CEv>Dlt7UXce|^ckar365yF0s>m{>t^@#6Y&&~o_j
zrQ94G3szT}rd(d;8?nExw)^zuS?^U3|GB-vQi11lBMS@5f;DS+GBYzlT@i){-|yFh
z(gEY2a#jgmUfwzO_4_<4<*duzyw}W8hKvclG+NcpC)>1qxw_wcyStCt_r1Kl+<exu
zos2?H-|C+O?OIv5a3R<9(`(kQ%`M=(wEtG8u=<PhhK7bO?(Q~c<CF2Q|2<*#t1ZiH
z`1trDc9m%MdcAw`qGQseNoJ9M8rHg~yuG)#`o^|g>87S8k-YeAIg*<;ZMv{I-JeI+
zO620ji$#~a!$05JoPPek6uaA-D=ULJczBL1bZ&off5x9bHFtItI;-XS`1nlzG{-R6
zZT0D+?+n{Ar9i`p@(1=-fB*3N{r=?V=jLwt$k;K>Vy*n1bt_hQq*a~)729HBVi&Gm
zn-+Db_&@{Wj=H~A44}0;poxH<-rj?cKMF`nayo3`S+;bkDr6}4|0cKYCnZMu`uZ&F
z?2nJj*RwEOxpF1pU=u5-SaeWm=<nz6wGW7k>szouK|)fp@%;148CSih=^Qk_U&G9>
zqv$D@kFT$y07pVjj?eWk-@kufemZ$y<!83W#zq4pqo$1;4X5eFdYyj!;zh^K;^&9%
z-J7@X<kawgzk(nA`ue(^m0Rq<p+iiKjg1U0A622-q1@fwS00$89lmbK?KWQNHurwH
zlQQX_pPdEm$YBUPBciIRDiy6_WF!<A82IJJ&Ye4N>?+mXv}x0atKspE3Id>c{Vn&7
z^~>`oCnrZlMO}J2`}OJ5r<<ov747Ni`EXP`-oy3KI>=fe9bMgnk3Sj|Kl722K6dUL
zA86^@&YhMeB_%IZK3<!4{P5vsGc(Xq!|?F-=jZ32_Fe7a>B)KL&Yc5Kiw-{i_~O%r
zulF6)Ra88V-dM42UEBKg`aHb6iFtW?-xEa{^6u~Bm6n$N@Uy01XUr`R+u~<DYu2s>
zZTLz~PF|Tht+uvSP)LYLTwENqs`A#BOwi;<b2Bp=pG-&P=VuqUe0?2OG#k3$G^n)H
z)W*gpAuo?FIXT&9p3Tf-J2*Hw9pmEUSeP2mY&y!Yq5gjzsNI-;ejY=^g9iz%wtdZP
zyiE%iCQg=m30kew*~wX9BR6O6+``}Aav2uIY1z&1pD;n-Lxqimw6wCews)S~qv`CE
z^ex!<WI%&@Gq+6I>$Pv+z8QweY;)$$UATI6cj4n>7p;0bIu6{~S^To@^mP69i4z4Y
zY~*rsaz6a~TMeqL{QUeto6jar6m)WSmbQ&=OMIfhb9l?nA3rJ%J^m<?XJ7tK=HX}1
zJ`YeUc~|*+zwLz<GMmcYMmcdPZqK``Bwzo>aOK*ysx1Pby={}`&h_O`JaX~k#5EBc
zo8Eo@^Rw8ALs36|-;()v_t($=^73+fNO-ug6Gve|fdVHdXVK{=FJF3srsnb{+pN2>
z(7C;%v5`@+Wx~_b(<i^*|9@Uy^tK$ynU=+BiY)^6_V&Lvr&x;X$N4xpJ98?w^vGCF
z`t$8}zKL&Sq~zW5zrVh=2sj-&bm+tq&&eE+ojV_X)(FYV`=8JL^5Wu>b?f>-dx#jB
z*(PX*uk)B1esAaZx3{OWu(Myje}2Bbe;dENA87LrhvJhrH#fJOek$a|(b?Ops;H=F
z^0rUb`oxKe%Binjottaz5*|KX!0E)RtE)SEdwC<bWC$v@2xx0-7rnh@TJ>hOdA<;M
zi;8MzXQxU3+uPeGzq`A8GCRMVfD^||<8;26rrFcZY~)aEIsbg}-QDHFP8=uCol|>z
zd%ODnf4{U9TP8F#Fl;J+A2;jT`Sbm2qPO?SUA}vFE~s<*>(2iA`qihEGfz*`J#yvB
zmWw4{*G6si()xetQczUi#^mFd&hyLL`NYJ=aw@i{sHzI`wL9y@>~P>vOgTT#_RGID
z`OnVGd~#gAe#*)HYu5B!xq4O5$>saXWy{nme|^zZY?<IWSxwN|+WOPKztx}K-L*DK
zIKW_3_9h}II@()HORHnnEUBHfzs(evyez#9ZeCnd*Rxk_@tJMbyC!b$tZSV!XU@D+
z%b}>EqT;ejZe9F-zb#w0iY`-cnegF5fl>LpnAY3#?P|TMzP<7M^yw35W7(~(-4c?L
z7e8&uzdw(o)yauNQQACD#krkt>TLgZK3NYxzrI6{HGcgA?c}*}<Hm&Y_xC2=x)qg_
znd!+VW1$fI?d|RD!r9r`pMHJKb~;i2dc&$!U7$T%0!|*jzPvyGd_I5j{r>-c-zV<*
z4_dj(doXFn|7P%hmJ3&}y6!G}`{B#W;F?b-)k}WQHqS5k_{jBFnG{29cVs|7!-o$A
zHZ?y4w6wH9)3J$(io9McI`(KB=2aBh%Ly9LsI0W?mHYeeZ#9pELBlg`Nz<4ZKhM6t
zKG2NiyE{9X)z#H++_-UKiKn06v00|s3=DIvN)J6bIl1uJ8OdL6pvvPxfyIj(8<i_;
z<Up%Qxw*UD&L6&ifBwHY6DBmQS)&75BKo=d<0ICrtgM0`9}+>Uk9Jy@mX-ztPW&ru
zopC_{)MVqAvvCLt5?ZuqkwN*p7|>>l^7r?qaur+?h>ni_^7ghkLqck*>tYLUEnQvL
zxHvgA-&rgUS000w0+!lIN=im-Ok!nNuxb@(X-CQLDVo6t9u{0!8LSQ(RrU1r1g$6R
zKCS%n%uHiYH*3PANtc#<o|=-H+S)5^{s^?rW$)hF$&2stOPO@AHOSc4*(~#)-?!X<
z{v!YRc0n)SynVYd<D!xj$Az0WB^y>eKYIVZeEIu(OYhH}ZJxiV{QW%!my4&5UcYnU
zf`FWyTtHAz)2daVH5?P>&-dS-?z=MD_4@KHTSRv5+{v|m^^#q?tU!GUb-y_dxw*Qh
zPM;2pjJ&zz*DvdRTXXqgYXM^R)krcmGE`MnF}N^_r=OeCIcbs*!=n9}Hgfz8FRcFm
z`Fy^<Qqrwo&bRvEnKNfV%Y<f{bar-v%IN3k<}!9H+QGbN;f&&EXAUm)p6<W_TDS!o
z`@Oi>{r}UaDKqMgK*Q4f4mKxuZrKu&RS_E8A;0M8k-$k$mns*9-Te0P<HCt2880&L
zukbh)uW4&L*DXxF<-zj#b(6Zj-HotRJv+}<da+xtQ&5nQm|hHrva)i{ogEtw*1qaL
zI&F<{YU)$9{^02~3hFHi3JMIMhP0<Uhhs&B#h*Waq|RQxc~i2pvr|J)uWjvG-Bqhr
z6?}N$c;n_x(@LI7@AK|P^-dgo@^(7LZ`N!6-nPs}Q&W?Ji|f$G$Hx~gU3zs%viGKq
z8yf>OK&$E=J$@`GD9E@lfJ0PN)M^f!!{YCz?S~oL4<B3;xp~5@SzLVW&9>Fw4&1&i
z{q5T~4=*p!j`xq3{p~>mk)Wxd7Z(>7et6)>z%c#vR4cc?RvCVCPppQ-*Orrkhs)pJ
z>%DR%WXZB+i-MQ?MeHuioh;sQ;mQ@4z(B#jfB*gcec{TLoJ;$3uU@e-HZ(l=^z`(^
zgoF><Wu51Rt`1wcW(`mH`Z!P)HK_jfX8+Uo>WBYa-Uw<%GG=6FKknAw=a7(~FqfN=
zft_FO$lu@JQ!jbjEinJKfsbLXb$Q#~y?d`{1wAVKmYSOSrBO{!k8kPHrMfoUM}>rh
zHk7^&19fH_UYz}KYist)+1F2<^4jHewnI=Ev^wF^=Sk-B56;cC{_$q>c>xKDj#h5*
zN2jK08)e4C#0bdB@;Y2$-ctSjo!WlM{8bZ`-IYLVzuqdeC@3p8&wISgcXmKn7@NbD
z)05}U)isw-PfrIe$(%NA8iR|i4JbBmJ1{rs#qRRBtL}SsZ*@6ndQVS}uR+6T^OM8R
zR|GB=5EXR|H`CJ9omwTmr}}%|m21}?y}iBt#_n?cx&9X~ePTGUv-r7yfIvg?@jlRo
zgrM7X|NoX-U0<fy+S(cr8hZ4`#^jBOhuQAzD&@|<zYnwnZ{pm!y{}$nUAc1Q#F_9D
z=g%)+t@!ub?R-#VyuY`1W8q^rj#j6Xw6sg}y6)|*1}(h-jYUO8Nv)OtSpNLY&CMrH
zp3DrCW$1bxHfho8%Qs4=hD1em#qF&E?bO!L*PqU1b?Zi{jBy$d=(K_7=jSh8w~jA*
zdtPgQzyIRr*Dl-#ZJgm~b+US|tf$9!>(;G+@bG+-cuzq=K~S4~UF>c*`_t#oAAfkb
zefHFTC1tms1JBORetBosrcFiyP61I-T)e!zTe7e7`OmXixOW%NVH1Av(h?zIVP;Uv
zF(Tr?i4z=bY;2&>>8dX;6eov$dYk5)Z>L({*V}va>gw>sj0}!O2Zwee&|--AnvbkL
zK0csDlIQJy`y}3*)W#><1sd4DZ6U*VtXG=dZa%-PtSo4iBxtq}G!dO}Z%-wtu>@H{
zyk^as7l(g>mivT;vO-pzfHwcA{RizP1#P)s;JjAlw6vgL<NxFLYL8zp`CrdaKX>w8
z7ZyPw-yQ+w!yH*hxw1l5U-i1$5o#6i_tK@-MRi+NNXd3(y^UI$c6Hs<g<%<;qDe=m
zo%r?VpT)V8dv_|E3z;jffBtylam$_0i|w8lpWC_9^8N3~ZQHi3h}~@_Wt!EZ7rQG%
zHe2`Swi}bK&oa;N;}lj~Q2hKH2QRPd+NiBt*eA@htzP8bFPCv|&rY)`>sMYp9kn$J
zGy|H!KR5T*mV-Y(Ki|5{&a&UO;DJMrq_Nxj%iEWV>BV%+G)~Ww{XE+=ds*&myIQN9
zoSZFu`vnCBcN9Eq+O{`pYgWdU6@pGqP8XK>O0S*iS$9fURJ3)=7LzY;ZU*o6`}pxA
z!xV?hckkL>x7n6^dl~Pd3wtVyeP)~So;!Cg<IWDlsO@>ZQl?o8Qcq7?5w>>Ly*fun
z#~=TGzYpA9mRs}p>vgsEwXvI0I?Xf=&CcJ~d2@3*GlQD%td@s|+ZX%Iwfgb(dc2^R
z*s`~iZ&&L)f4^+q+B~b`@5k@dUcI`zJpazVT4~d)D-O&3=6-4W!pF<&I#nxFKtv>E
zi*VIct<VoA)#oorJlwV-Y^_vHP0bbtLv3yDg$ozn5@(xjo)79Iq@9`3_<sL?IZ^Gf
zBgcBBc|U#m^y$!{R&GH_$<7HA1VFpFBevztytrxh<#n;ve?A=Mm#`|)U}9nt5D{rP
z*vy`N_N7m)UR2cK8@tQ%L8~cxrA(bNGBm78U$yk~@PN9RyUX4>1q2BE`tq{5qoc!S
z`rHl+VJksF$%|VugKNHAbgy{WD!!)djCg#F;O4ZmPOV&`Ys$_X3Xr%ytz(5oqP&2T
zl2L%fXUR2@n~%LZuER4&yQ!ng`dWj4prD}O#H$<lIRpa*A3c8#nn!PGYg^>jD+SuA
zxUbDOc0&TA-(0Jy&;Kr3y!hhY>hH(x@*H2^-EE!{dF}O$`uF#2ckJ2~Wm58SXYunb
zoI0Vqgv+C}o*!A@;xeV2$DyO6OTcr|hMb#5M~)o>okg&t^!2oRIo~Ty>;KiPom?Jw
zWo`8JCu^>^I!;o#vO1jK{_mH`-)>!6>a8o+W~!*jSp4ja=7voIf)^hrGdQ_~99f~8
z92^`B+Mc{O|IYqjue42aZU}sRb@ec}{+<QBU0;5`->+<8AyNA3ieo^40I1A6GuK)i
zG&j2;@o>O$KiTHMPBGo67QeYxFZYJ+EJ~HJEMl=Pdvif8lx0d_-z>A-u3ukYFHSt%
zc8eoEf6qs@X*!Wi44}bJ85x-^QnSO>MkRiKcbBy+Hm>TWDyW=z`SK-0L*?gZidtG;
z`n@ZQ_@qoYmix_hnrl^hVX3#c?%(|Vf7_nVua}#u9e(V`$H$BsTkRVg8>@br<=v5(
zZI-LGp;%E#>)INt_f~>}GoL<xuD&XKy`Gbklgr6Ts;;lEt#wUHTPEPt;o2?M`S0)V
z?lo(46k7zi#q~sFtx5!(I0R*6biTd4z5HqM?{B$^Edmc8K1@10%hauZ>ZD0Zr>1Bs
zuZ!8K)FSX`{r-PKUte7ncH#hy7z;{CX|)JEIy2LFQQ%^?NAK?LcH&U{_xrs)XfxTR
zOP7xL+y7Ph_3f>8i@>9$)8mACrOm~p&2j|z<!l6&dQTUVl$2yU{`c$kcvlaP4h~*k
z(;uK7%f(IK-rbG%nQs@%BV!Su6TQvn$noRd$9kosWBl%x?7CicVuGR*hvK^U{d#xq
z-aWe1dwPq2lS$?!mz<lMTsah7e0+L1I5-5HI6#Ab4<9~E+|uLXk|NpH<mwV~1hl?)
zYxZ@wurM(;9*KsD%I-;@o}2^?&GX4xE%{n`;?${2vzWJLUFC9a<8i#cE*3PR`ryHX
zn10Y;#k$ztNe>UTf)?yNJ3qhQuJ)J2lG{59mHp=1^`@PjmATb;+qP{M_5W-@1<l6f
z<4W4v+{gRnkGF6NZ%92Yc4AY{h7ATcZrqS~A}%S}dE&&0<GaiP0|S3Nnd~nhBa;&l
zR{Ye&RkwZla&@iHRV^(oET98-_I|&2xJT0X!miTnGqX&&o7ws6)_f8YoTzAaP)SKE
z=}LQg<TTK!KWkr35nz(9{UVr@oGd6U-F>*7A5;f6Tr$bNx2Lk8u+VXR++Ks!QzG4c
zSC{+CgPQN(-`_vJtMqjb8=Diymdwj+hK7c>HlCkv-+yYVHfU`NA0Hp6&<k82XS*fq
zDp&pAuj1SC?yfT5xM-bgx0s@d$(0Ao{pMQTT2jBPrM30prKR2xyGm9bTyy8ysm!j$
zix+PL?WXMM;bAy%T7Q3!vU{I`o*v)+|NnMhJkZn8A;+H$%Gw)pZ*R*qt}1_di8a3d
zuj#I`w_N=E{Gc6HFD@?T;N(1ba<aOhgha=I0}eNC+{iGVGF>B(33U9?%=(B3i57t$
z51RQw^}!UK$V&>ox3}dQmc5Ap<;bns*V!0AbBkYJUuR!%WgmF8)Su7iAHI9XXKif_
zYAme|UvE}*=FgP|h6CpJYnoqQUw`=M(W8%wo|VZKZQ8i;;DJWwi#v<c_x$;ES|e~#
z%QoMFFI7s5Y7#-kNQ=j$mg{lVyncRu9{&FA^XJbus|rp@QJFM(^2J52+#ZuarLK#s
ztD=eu3uvS6%HZV*>FMm^;^J%75)U*mf>O~kzqwtYx-)in8QbwUmzVRq^~q#j@Qe-J
zS(FOe9>C1b=i=qXb?MS20V%1j_`0904B&Jy)7X9W$BetXOrM>b+r41H0;austHgAp
zp6s0C=;*j2a<f|2^>w|crfMgDeRY*>apcoKd-Lz_0}apLt9&lI`DI6kM!tohqM+bJ
zLG7?L2g>i)F2AZKC>VG!ftN#2Fp%%<?d`|+|Nqw=x;jj>EU=?vp5+=wMI{he{ZJ#q
z1q4z|LFIBsN5_dQi3S0|$b{p4vJ+AzH|ZolKR35Ec24@KCRT2R(?&TtIX!+-5^{2U
zk<%`2N<HnQ5&O|B?Tp0RdlM@6gt<&hW^g)s>D*lFt?izX(>CVc-*-q)$X3;YW%bvO
zvxEh0qa_*wHk#D`t6@0R+^gaVnn35??%<L#?bmj%Yw7Q9*}vWzyz}b0r$@ePPD}-<
zojhw+*ZsQRypvQ8UcD;n!~x3iFJHcFjWtm+0u^6QX=!Tz{(L@vNY88IXV6v>V`E`S
zNlCZupBt^C^R9PwY%*k6n3R5XRVZj)lHtMZ{C$iJpj|Yet@?>#-5oDh9=Z6ZQ)4~I
zvc+cGx%l|p*2nD)SQ}-!_j+eXN5_kki40Chy@G;-w&mUB@|<*Gu{%G5L%*D@Ld$_;
zz0!q`kMVYY1}#nf_5FSStE;OI-@Pl#$H({K>sQz1esc}7uj$;`S9|-(KG4w{?ecXU
zRbO8%EO~ip!}jg&GmTO&tcf)4ku(Oam1lc-mGARTR<F9cx(TV0fq{W+x37FVvq|Ui
zpP!#SyuCrY*DkCGRGy+4%(h7<`OS@uQNO-?DFM|s@Av)IJ9Ow!z^V|<8@F#SE_rz=
z<HiQXV?C0|A5Fczy$|!-|7qxxwLWzGID21TUqNXps8M%ee|>$<y*-iM)sK(yT3A>(
zOiSgFv$43o=la^{<#VrhiE8U;`TMP0xe|14kdu?sgIBM*E-m$5>^WHtG`05m3vYf{
zn3$MOM1$X4tA$RjT%f%qFE1?xwLN_1T8XY)xl-->*_-qJJvliUw1iqKbQO!by80CT
zc)9g^ze#<2e?LDk610Tq;$rv3b$@?>4whQHSXnD<O~>`P>a#h;YRT`n>qc)|5WL*)
z!?$m3Ai2<0poWpMp`qdRB2XtqzV3%26EpL}H*a|K_4T)8UOx7yI(6NAN5|==mX?yB
z-K1Y%U48iGO;6F&Q;JGTOsm7!vrYJJ$M{Ufwn_w)7abfJVq#(f7P)X<Sry9te*b^F
zb91fJi}p9!r5F43zPYlyJpaU|9$D)$28M0<_t%+kXxBOY;rn;<S<mNMmm3s5axuxg
z#FBb?T5EGN^Qr0j{paRdgVs_TN6VS!e=W|sy)C!m>(%hUjY+PchzVNiRrRu8*1GNE
z<Kv5Ccb9$m`n7fOV&yw`?g$77G~C-;J^N2|ko(@(mzVQ1ES={5H|Of#i?V{}F9mJ@
zookVJxNTwB+9-{{MJ%B1q<}!f_Ip*_?)`FSFaMOcsSvokyZrjOv&WBv4l{G9so8V0
zrh{v)f|i?_|2!QPPoZtwwmrJE)Z2+eQAkLrMd!5Bv{b|7V?8mSJv==H@9r)apQOU+
zIcZC6X}yZ4Q1Y=J!$`L3>gvtEw`E*(%AdbE{e0F-ah-^SZ8ddubxzY#FE00&Z_fSv
z{QUJ#mL)GHaBy-OYP9F=tp55cb<>=zNbl)-y5HX1Oy1_RapT5A_wV0-V|jX$&bhhP
z%in^IYE$%_q!GGmO2v;43vd33ult$0RwpwvGwrg}<SA2Bn3$P+r}<A(xwtOYdSm71
zwA|l)verG%ir?L_6qJ$4`DU{^Y^|2xT&vWQ{~taSD4yPwadA=WjSY#-1%-u%v)X%m
zduN#C&bnFr>*@6Pmes3QpDdoF;`!zEb^nyKG^sbUKmYyquw8!EndLb*H!0cK-Al3T
zlegD9HC;cy=>Lip8hgJleOG<pMrq}w)W6T?*SAccKK<lhc0QRI*^#=YiHBGclarG_
zMfCOcJ$gRB-fUOC<GkWLyZ?WRb@OBQR)079@%!x0;FUqD&40G#-PN+OwLQB}-@4?5
z!n^zX^S9W%s!KlBBe>YD*XYFY`}gC$ch~;@7Gu9$)l&#0W^wM@+uOXCp5D2C?3mm8
z%?GY*y|gvqAk)JaFET#;$<56@dZbg>_ucyHf5z$OM9Rv_+&&i;77Fezduue4KQIwg
z@_H2%Y?zQ5xh3yz)cdb$zOy(yC%OFn_4Vw#`BSH=-rAD6_^&Xiqcp>=cGr!~>HQtO
zy`uGhKDPh(@wngB!J*+IL&}>Q8*lAf>NQnpe$A&&(A=qOOw61c`)YTCj?QzPtmf--
zdYbOnZ`DGK9t8y(Hf-D|So`aXAgC3%apOi%8#C$gvEHa(a<)|+TA`~t1eM)7o}QlG
z{rC6x?iVjIHWoegGOYNJ@K%21^y$-gl)asG@so^wUCfT1J2Q{hKAjqV<kQpBt|cW~
zED9bp{CGM&-sSu}Th~q@)h}`{O5}e`*NIH}RI@&Ix7wSxZ(DUvC%w3^Fl~LWp`@hb
zqP)AiZfyh|1qE8Rn3R-s<ki*Ht}ZSu6H+5vT3cuGI^^Bip;%K}+p6Mu=;TRH(25e!
zB!H5YRn(gs8=ZUPY@@h2R)wrodUt1M@`UzZ3uFZZ6l`p4TH4#&XP9J8y0JZfJ_ygS
zC|slwxoJsQpK10r3ESmMy{BjKD}!p*%gcO)XPf7Xfdb;{s?bHr$NO%5dw95A`px>^
zb=h}zY@DFtxh3ajkWS<#mm^1xbmZRN_R_Y&?*E_9Zl?>MpOby~`t|Ci-90@b(&l+0
zhK7boCnu>Y>FAt!aBCKqLl5gS*2rto+w(d<Jw2WMvg-RgU9;R<Dj<(;N<HoJ_*ieN
z&gn&ohuePgIi#JNv-0V~r%zRv`OVe(_Wr*9w|957kM+r}{=4_ajT;@j(q=Xri?_9`
zY=7lFU9U6wcwgtQudlg1C%HsK%&;hXGvnU*{r~^1-hTew-Q8RFhvw(!8zvrN*;x0t
zN>Ex_``Y?={i<(oR!;pnH9XERN^Yx;qobqKBo#p+Atf=L2n9Y_E0wahx0Zfay>xAD
zbnEQdvtQiXyBpLiKYDJiH8?fxsoXrns&v(d@87TYnb-fT+56b0;)8>Xb(v3(ynUSY
zvukUkdCz@3*v!5&PW$Sv($`xaPt^!?>XEe$dvkNM`<wgw<9+5@g-+3p4!d1{ZjNQz
z`Tc>5-3}c)=5}Reu)9vg1_u{+_wKv9%ex;QZs(4Uj#fOq>BHyG!Y^OGT$ZmFsF=jy
zbkr>-X3oj>AC|?>GH(0Lu}C!Pe|dTNYg>=mzqiG%O$<DG>=>7{w6x;sO&mNtCO6i-
zesr|EYQK01!=h)V`S)x#SI)I8KKAC@V)uS7b8~aW)0=*Lx$NJ&Y-RBBzHevmZAv}u
z^K9yzIXXeX!CUWd-n3~;apvu9Yft{&_wQHs+ZsN3yPR!%j@A5ryZzR`W;R}<S<B-0
z*Hv9V8^ItXDXFRADfI8(KQ(!u<mBYm)vH%eNR6!d^YJ*_?W^p$o|8by5p=w!<E-T4
zeVpax<si>}{VFOcDOq)Uef)ksuW34(DUo7-e}6ZRI;_|tu-Lu-+B@%aQj&MS&(=Bp
zXzliUMzh@i|NFbOq_D7%?Y8}o2h6#@mv~O**_NJ?(y=Y~_N&<2e^?ZLYQDa((0S|I
zV_8m{H*Ip6t`}RRo1M2VcK5QYIX{2==s0r3rP*ZHd*S5oI~JU~DYVlzWcF_JU6(Fj
z-n#!epR85Klqn*MUxF6B?`8it=SuD*mClY1j?MEAn&;gS05$fbmvwY-ynSz`t$kX-
zH!f?>nb_4|zLW$mbYj*0@#FdYdY(&jtjqmY>z0(3ikj!$G4NPi{co;SsgYE|3pQU+
zGe0_Q(V;^OEnU5dhubnkFPFc+clGwPIdgPmWMo=&PJ^ZwjCR$Bg-!dGn|HKJ)YnYV
zz%_SUYI5@A=j>0_1DP)^^PO!o^`OYtU2LqZk~x>x9yR#pTb*}BN;x_@x_N=m(mLU&
z?Rj@?p6j;=m}XxSnWO?*LO+?`_4~WKmw%TTr85+LdlUIK`ndhSABW$3bnBA=MVy_T
z9oy|I?Us?#KzpxzpM9+V|GhqH*ZsQRzWKAO&T56N$@q5rd`}P0!^e-4O(ZVW?hjoN
zaPW!qy_1vGeeJd^U%Iq2XsH)x<TOwZ`eaeeo{GTro=J5~6OQY?KHSdV+TPwiAvMw@
z<HCWI$n`NhL0e5fi8j2rxBKbo>9c*7{}$Mpbd+mvE^FbrX<927QXU>^b(*B|@Xec?
zF9)N-o7s3<bWVeY@z`!(VYqPZTG$->`g@;*4Ih4Zc=*=OqeqTN<mj(pNV&Nw_13nN
zlhtRRd3-&-{^}*)nMOwwc31s7ckY~8_T2aP_OAYGUp?o1tWtJ@dWn{pk+CsoiJr$K
z(D=#0t5-wwcel5*$5lLJ<xu?adi{Q>v!HIPxPBZ9!<YB><<FfvCng_n^XiG7r_iCp
zhXqAMzWh)Rc2H7Q{=Db>+UV^C&(287*w@K`4hGtod^})NiYLQ?kB^T}oH=vl^t!vd
zN^kv|py>RmX3vTh8YecbDSdNJQ%#M{y-%i5#q-7O?fLUQ`+IpE`uO;`qNmWV(${S6
z?(U0U#>B*2SQ~9V`RAJW{c<yB&MYV^bK70^_Ke)-$jxaC4c^oBGT$$sqvGjwex9xG
zGf>+m_g(AS=<Tm^fB*e{U(r*@s^kSjbaeFO${ROsEC^ieCgAko{r>-EGv7@Ok87Me
zckabpMn=Y4_b<&fPXDsa)!qH^v$L}q8shd=%{;T;sg<jvqr+gQt-jp$HK0+awb9!d
z9Hi$Qnz1SM^rGC`+kR>-uG;T4O{a5uT-C{xU3GtdNxn%w^LXCot!ra<i!p!(J*Q}e
zp31qEc6Qdx+IX)?EysGL4`07-?w<<k7_@SWgI3wS{j9C6?R~rM$A^bDPp6B&vYn#h
z`T9oQnbqs}ag~>s@2xGGq{5kdYm4K{OG|t6%1cXKudWJZ6!}-HZq&-iA<7LpnRu#p
zI0HlezMso3n!IX0ezaTs<MsG@$(;V)-mBMUo8``0{#ac_C4=9h^6q!fjV2scRbMm~
zEm{<?ucmT}Rw!5Ksu0JuQCkCcm*rkr7b^`qI+G#wi~85b;H7b!yF|60{Y+#Gkn_8}
zEtgxd#jJYoy7_g#I2j&1c<>>D@#;in_bp$4eSJOKS6WOgt?2eb=XM4LemR?l-rnAW
z9+tc8Wv$DueDn75GMY7i|Ni|q+qYa=>V5e9`STBCHf`D@ATG|%FvB>#?`F{nE9JJC
zTI>uV>*MY|F>~O&$Cy$4dIi_3ThER@o)%jEWZ|yT*R#$pj@w(+AGzyIvgf20tI}69
zWOY~O+}w1_*38`K5-8+ltx7m1sU$u=*1L0`{&Jt0Ob7n_zI5sQdUk%fghxj}Gk%TT
z-Q4r4-&tN+6B+#b&#K_%ebc`E`uh5(wWslw>KE_dgHBwW{PNA4Hv&>pT#7FH-c_#*
zTB^{Z@#VK)3Kz40me`erTDG>fzIDwv7do@Qy<L;+eD~GA;!oecoxA+;^XB)H7un62
zVO;($=E}-ocF?-FsoLRNBKwQ~tq2MV`togm-Crve&r{beSKnuuZ&xd|yZrsNIDc>N
z%UN4NqmXZ-5AX5t^SgHK^fcXUv$ddBY;O4axU1KEW0jMyzd6{<?)LfgTAi%Q7J;hg
z6XwiWbM{b9rlpFf(T@CGMXO&<PJMdc<J_(FO}n;Le%z6Im3PkRDVoV<{dcxKciXEs
z?at$(r>7+EJf0)>ea>3nztSg9|Gso*!qsUtb#txD`L<?VJp`KKdvZcBB{lWw%g?J7
zRMpj;C#iJ5-@U6})Bkj>y3x^+zcv?*ADx?P4cgM7;(6%n>+8N|;TN_RJ@o<&i~0Ha
zg=r){JdwNR*JO47qzeliK?}~OPZtL*NEXwLI&l6xe_meRt$&}NoxMEEzEj;mxoElH
z+y_sewyq9epLB0eWyYl?oD2zHUtQf%`8jQ!uawTx-wKn$U)le>wA4HK_qVrV@$A8$
zRc!JiOXSUdeSMu?xY@kA`uB0Gc}qVP=gtp3`gYce_h-Moz5V$AzxV$?&5h5SAKwtP
zy7t?f$lSOk*W;>r8yg!nf|vDtt9Rg7`1Gra-Tor2yzg^Qh_ESqITO9BL^CKjn0Mb>
zBUg^b>hJFopPrgp@wnG~%k|RRx8wHJNHQ`qicMF1zOQm=-E3Be^=CI3et&=eeDS|y
zXXe|>OG-*^*t!+eVA^VS)N<zUY3oW}Uh3%YuU}IfcJtP)Md|0~fzFqirXSx2+OB%@
zrsU^mXPFn6ywAG3>ud7UwZC;&-EuiEQhfWWnrQj^d#+z!UH$xb!o=vvD<+dvUYcIL
z6f5quz^zy6r<Qx&lReu)SA`hPyf*1`?WB^^Rc~*ZZcg1>_BLu?U+Ah3O%+wu$dYrO
zo}O&qe`G#=`Lgr$bbV!A-LqQnPlF=n{5;zUDx8bm`;W~qOzv4`{QYO>gez)+)9#g*
z$}dV6ot<#eIRD|HR)#6d{JX{V&wV|9{5X3<qOs21ZHIPkz8`hy{{8sudsDC1G9Ea4
z);Ie6&GSyz&(1dgY%+Vd<?%jQW(F2^_Srmk4R8MOA6s$#&7Ys2cN9E4lsw%vx2^R5
zzgp0d-<_SEH#Vhmt9UxSzqeQ3`u?r0+1anz`Q=PzU%T_|!i4~a1BcuB&&Kh4tE#BX
z*n9r^`uO8FH>Wc)Y|XlQDQ^4b&CX|MnJTs%m}gu4N&9Hc8Q5BY*uFm+E3&hBO|!3E
zxwd%m;<L-nzW=*6bhTKEKu2e%;qTN#TeGikxp|@VePLj7=7zQ3vMowpOt|Lr!86Ey
zKf?@J2c_-5BLhsuUfKG1co_VaoI7!1<Bb~;9+N_rytfXlGh|qpe(UDu^sV^^ca^>E
z%DcPk>95OMv%@(QH{{+n+nfKcxw-k_>(|_hEOmcAx=()ly*JQZRmcf6ELSO)yENtG
zq$q~uck<639qr~`BiZ<CLc%(?r=OmlzV*WFSjnp^p3(EIN?#>UUz&AwRn+spm7kv_
z9&BQbs($x}Md9APdmKDGEdorS?V^X<`FodDe|W$+O*cBtXujWEt4w~a%gcPL-+Wrp
zBH;F0apkkKvzOm}K4+`_T<dZ+h9k$1gASGWsdxJEs_5<O!Zt6c<4o{LN>Vb*zn8N%
zNiuYOob6ivi~9TjBpKbkx;lJg=H+EIvfg{+x98nGbZV-$@3P+?kIVbsd%Va+*7Dqy
z`+Z)u@%Q%CMz7vmGpVFmrg(nh=JfMsv-{tjsMtAovE?gU5vLip|DT?o4%%K+^;^KU
zTcY8Daqht;)?4-;!{aKCE~>p!5*Zm;#jiX`<zfB*-|`HpOV-S@tyZ$Ny_+HD#L=AQ
zE?@J3F(tB1fNA~ye^x@m!oJfE-Y_f8IAxlBO+iudV8ZW{lhr@ITs~jyhIv`mTJT6|
z?eA}rIsTrWjwvZiZuTu&8@1Kx?ygeBmIFPK#%Jt~sH>~bKD#=8f1Q9+!u55rpv80G
z6Z+2EexI{+dCHXqj?D}jXXV=X<?~F=URdb-)oRvr5dndQ@c3HL7-r-qmFo(i#bObg
zQaW#%JU-TYcxCW%o;dr$M=YQ<Mh=_{;%Yv+?tSar#sfO5vPIy<<>mZ+^7eV(EI|GB
zn-|OErtjTr`|Ha~W<{1qj~;EA*jtjCmbR$=|39_=eQS;$JP2Cc-y*=o&M$Z6Ui_{W
z0SSWyhkbHRjHw){>FMbliUu`53SxGZoK!gb@Nm0f;UgCY&??YfB`+tfPqy=X#UQ+s
z_xr8Y;reg6=kVM8U;qs=%&t2>&$d4_dd;P^TTRWH<QA~VXZ?2wE@8i5QTyvl^7Q52
z)Acms_t~@vNZ8lyxwwBPx42%$|KvGy=W;K}mkylxb%~mUq81mZkFDY<^z_u!%@y<4
ztkDVFS5v8Ydee&7-P;as>*(OfRlAjSbyerf%geiMtG{*JxDf$blK_gJu7(B%!?ZIJ
z&3pF$c*LC>&(F^fTGiZb|Nl?$k)uaD-`?Kdoq2g#XWH3WozrxqrQYn$ysVZhq!k|@
zZ&>~=Mo?H-x$NB?O}oEef&(|DcnS&#D4d$6n|;xxWvB0|(hm<D_eSni_nDypQUqEg
zmUecQ>Z-7{S}BoYzO&6tXFu;0R^M{-lB%ar?Cvtr)6@0EFJ8R(=s+WL(#1uti^A8(
z9lCn;YR=4{pr9?1`>sCLjoNbJjb((Ava<8+wXu^_F7B(X-k5e)3gnJ!Ya$n)ogyP9
zmR6?r<;jzjz@=WIYirKVHWx2`eoplFx3|KeQH0mm);?OjexK0V=<Q-=W@eABhR2(p
zP`0s&Ik8EHiHQl+7yR(ygFt-U&!wQD2@pmMPlT=xleAqvRXZHqll7cbP*fz;%*HE}
zeSMuMXmsKKzrT;R->(x^cJC9Jsue0UNu~4a>+7%I#s>(4bL5X-zp}2I85srT+}RNb
z8n00Gp4I^xD2SZ)b=}&PogAr==Sr0h{h4BFX&G5jU7el!_U7j0H@0L>?&$0kJUvZU
z_`Lo9J)rJN&W!-;dyoBE%(JiQytR0GYN{}3sDzzQMxgrpJ5kVx7^o&+vQ*kUuO{hv
zPUjspr9U5!%Wr*qxQ$mB6vX@g{}cZI_xt>Vd+%(|pAYiLCLK`6{^DYHe$W<pL0MT{
zJ~<nWYwKdQ?S8*82F?E~dQO^QS-kAv$1BN_ziZBVo^_w3^6^&o`p(kV*E&H%QE6wT
zKAzHE&*3@gi{1X7r<LE|#jZUAnhcHJmLs^_Z|<dYf#shr-C1|_*Voru&$kPydUX^&
zKGwOn`g<2>G;96-e^C{cm6^Zmzuzr)`@G@HpR<3@3W&1uIJ}s-wfcMB+rw2C7C2Vk
z`u=wNeKSkzJTI@V7uVL#o{$>(JAKmU<9F;kI)&A_z(cH3+zu@Qps_5q{@3r{>pyz@
zxOM*g`4dz$?=yA?oLX~hS)cmpO%jGlEv}WvjvVQDKCk-R6U){7(L1MRet2-O$}uo2
zD{I~Jgig?C&Vd6Clb_!NrL@%3Vw*wweQuteZGQgiUd7X!UR+;4|KPt}{Jfw-q@c9a
zbl3j1YuDbKd8t(ZwBu+|$;(S=>v!s$K6LJ!U(Wq~vHAD+*gcq4wVzY*$j0R3TN>`&
z`1t$V+u5(HPh6UL;dAu0!|nXs`uh5tQ~$nPK7Y&o^>KT%zEwQ)nPU-n<JPTNHq$0g
zo(vkq>v<PF;rX1|cjQ*Rzq?yqD|}tfCu7a!e}8{}{ws39zh0e~9TyV*?_p6WEG#^9
z`SRr_rhJ^7f}Wn9JD*t=J@J@ae|gt@)}681iY=h&qOA?buH1jT#B;LGyZO@@j$FCV
z6BroqW_H5e{q^$mYrjd}+Mdtv@9%$NQ_iNhr8PA+x3*@po12@1j?qm&KTl0vZ<ckr
zUe=WrjOyy@EG#S!Zs+f>owVH1O($kYfb`E*+1J-q-rAmheO=VnnseWq7cW+xrWf0l
zdwbi%v*!0*mU>Nn@a7E<J3D*Gnh3$U*5${(->=W#WO*Jmv-9|PKj<)L(3%?1of+xr
z?VD0hE7{n{JU-rU{!?y_RjC$el|kCsSqJall|6Uv+={rpR&KpgtuJ0=gscwZWjNFK
zBQ-DDZ+^`u&TH%A`#U-~K)ou+WYSUX^?RChqql)h{StdBDJ9i4S>6B9?EHO>tHahl
zc>0vp+S+=@&Yg-H8XU~*d`GUWjRws+Y<?Q3K5>c)=iS}q?aj^2uFoe*=jZ2xR$YLW
z!M(k;6*P6i&(Cj?b%kSd`uSt>^?w+xt#`+q-<)%E6X-69Yipz1&F@t(Pt^`@>+a@$
z^Y(4vwwy?lygL$y+xd_8$y$Fn%x^Do*4ZY@=*GU<Y8k5%&`HG~K7Vd*Zf4%IXU~UI
z+Upa(zq>18RkGq{@v939nT3ReK$F&>`RAvnrZ(^0YddG|+`yGVswJ<kaDpa`g@lAa
zJ>KTOpFi0dPT%I%D+M|m5!CE&Xkf6gvRdRb(<tNSCRH*0xE}fXKNlB07QIq^E9TaM
z1qz^XgTw9o=8@N|%im?Zluv&rc@-2hptGCa-<J<v71FqQvvEvpY~W%yUeE%Xj~_o)
zE&lNIsm-U!X6t|N-mwGJt3NhD(K%qT8}E)CJ0#{NJBx~mwblRsD_;EUjN|b>S<n!b
zg@wg|lP5VvwZmLM^V4;IDvlgKK6~!edqM{f9_;AuJ{+CDm(||h{>JUwhc90i=9Mxz
z5FTIK`uF$uXcP9c)8p$pLHjs-XPdPyU#^~$o2%$K>E4T$Rd?2X1+7#1@uT8x)y`eJ
z4&A&d8M-RuU;`twfV6bCpt9SO*L!qzxdRg?wQM+a;JWLLoyE^Vr|3VQSIsw7EA-H}
zx3>-R@7aJBPwB@dB`JYs?H)dCRCI28@b2zzP=^83UzM>aVA!_prm_^M-~w&diL3n@
z>f+)8YRG^xm|^B6m9@3%f=}=E+yCoeWM*@ir1Iwee*62IgTzgBqqZFAleHF*lk3a9
zy-l>N@I=SIzrR6S-9LQ&dev>ElG36*n%_P*fTsC8Jv}v|x9Kceyf|=wUG3tRpuNab
zridIldK5HW$j|^<Q{y|^Y=(XPJ~N+;tSl|Ne?O8zsla=>9xDTA{qfA1GbPOPWY~Bl
zCaljt+tIZdG+@wRwB+e#v6_I3(`U`<0`2#kq+*hDW5b4SXO}Nmw7&UnxUx)tXXMVJ
zrD3savaYTYWnyCb;`Z(5>-GC5%$d`3u$le!ThK<f$M^PDgEkr+6rHz1;^xj`^>1%)
zvwKe3GI4bW*QA{j=WN=v>BF_?{LHg?pN;<*3kDX3zsYvcDSUZJHD+(s)feXL5)%_a
zlTP2Nb8>VTQh91(OJ84W)j8eK+v}Q=@?^5E!A0Xoe|~<h`0+szbSUxn`}Oh+0qbIR
zrdL&XZM&&w18Vg(GP8g9^?Lnc$7VKAPz41AeK>Fb|3SNaor8}LkBX<$Y_r@8`)Yq5
z($f>X7~IX+!FuJVOv!QP@XG3HWlKxRmoHy#*u42LXa#I?a`UC7-mjN#-n_Ya`SRr#
z4exiJ*pYU2*26zPKi_&kN#)_~{QbHc&OLVxG<-iT{Kcckk3Zf_pD(#*UD=D=OG`M#
z^y6YURF##g$_yAbI(T_;F-X+D2u%0%_4I6<J6AR+C@3L6Ki@>&-Q8VRU+L6bozoLk
zIP>!IK&72qzg%zG+gqY#8|P{C#ROM?%CxMjs}f&dTWeAMO$T&V=$9`gpb|K4Z&k(L
zuh&8KuxOcKXUDuM9tWKVPoA(axTPNmP0tIvY+-4ssH=N6!*1oul~Gp7po8mtXPX^7
zfBt-q)uKm9N4rGX)*n4`M8wH+&EwVU_g%U+|LJF)Q%Xuo0)m2xMb_`R1(z;a^5D(Q
z%^A11t##}c-^9Z#z`eqE{gq`AyY%As^#m>T0-aOlJ$vTN&ezx1zuv2P`SNAZB>oir
z_<K(Z&2n!|d0%)QGV%ZW>Gb$B=dL?1Gi2E4@blBtz-2y?GFBxg5^gs#vkM3bE&3}b
zB*di10$OTxJ><!QgUz7jM&7e0&z~>P@RV0pLL#C--NE(RhQz}LrLV3W(qoI{d|&?Y
z(C^qiAL_*AL2J?b<!rY+H#=p`rXcp})>iGhe?QYz)YP(^KmPmqd_L$@?R!1fb)&br
ztPEOeQ2i}uFGI?=H#b3Rf7<zEedL^T%S0t4I;=`x*(@|(xai2;yK}$ql6d%6FRo&L
zxA?vHkJ`^Zm6vB00G~v^HhTMn88bK-K;tcXF*_I-D&Ft?{@~fOw!p=1iATFcIr#an
zr#a0xO66*5ZvJ|#xxA$0$d1CtAI@37Ul6@LFXQ$$-LiLgI$gWP5)ZX-YD8{INt~ku
zS}7Pf@c;wMfhn57TNc`>dLCL8x_U#_RV{`Cv-9_Hnwy)04pckdCtLCV@Ar=v-Q^G7
zyC)}WT?RUVb<02bRgTSUAd&dmucDxZc|U&rO1iZrv*P>R^0jq&poJ+euAIyQ44j;t
zVoSMsc&^MYxiDv6?e9hT_xJtO6a!g*(b!$@4U>Rq`rX~-`frpbh<>aS*WYvhDEE8w
ziBBaO1Voko9oB*cNbC36CyG#3x`3BD8ZbbY!+=%-fou&s%+S&S0&ChBIY71uM)EQX
zfL6>XZIWVB04Z@nTQW0h(BKTC2{xcpVs@9keemvGpOC88g52BNENXsixVYux$B!A;
z*U8?wbLYX!m!0!$s~`RP`Z`R{5ES2m7n7oIuvSDJIdWt{=H+E8A~q@=>yd0ebH)cW
zI{EP7L(uI4tHRc<TI%cL<8pbK@56@=8};}95h{Ow4|JSP;g=VIkeYVS8&GNqvH9qE
z!wJ;11089Qf8TD3PNWdShhx(DpuHNP^<<x(p5D6U@$r6lFE6e~j~)dqbYf+2`1|YY
z#bv(IpfSO}zrJcuDOLcbL9LverqqRZcb6|NeSIzJ10%!JQ&XKkKRdfI@2(YSDz&=y
z>8YtNZfsmER>R=1I&3Xyc}eQ&X^~s+fSdx(QQWpQKLq^z{Mgo8TU#sZ>hikx%ds-V
z>?+|5UmxeXx9Tg;rMA{qMKiN+oztg+GQx@#NeoE~LB;z0eYFBk8S9rWU!MH`-(Q9)
zb@B`aKR=~1G;H6#-BIq|y?da8k*lh9iF)~ftPA;Kz_9VcgM-bWbDdpWT^}Cl6t<}P
zqH(Y0v#*M(DkB4EIC~l&A0Jz#g_YH-rQn>Xl_${<k@4U_ql9Ue2&knu%QRcb!a{<R
zlM{4k7sG+8S4A1Nq($+|+nJnDHZ={^=LN@F;o-mypAzouC<Lt{1l{hpWB2aGX=i7F
z*2*z}LfWD1vi4TZY3oi;*Iyj6GHAo*&BoPp5)Zc>yn8qH{nmGPcQ3B~{*JX!3gq&X
z#-rWh$sZpbty+I~U+wM*UZ3AgXvtg7c53s64F)kgi&&qZn|nF#^QTWv-D0{MQceo(
z-Ewtxc>DVG`rC4DCYh|CF+<|Y+Gx-q!HVGJ=Y)05K~8)sJOBEpe%}qB5?@|gYEkk+
zpp930+4rjJ>taE%w>H^|;SZ$f7ui+%I_+(e5J;1#Bq+jTcb9=Ks_E$HXjr~n{olXe
z`Ji;6zvlzfz3TV2d$)j6QJ1JTsBs2s^Fd1Ui=cD2EEz#bXOU6^V@Io2$O_POmd{Kh
z*7EoFTKDg_SM!<Cka)PwaoShyNi{V!8<LOn?fL)j_m3Bg`xEl>`}<_AlTJ<1-1+T4
zI005oGi2Bpu+(enhQz~c-Iv+f*q&+Hf*cxHc)*T&rDIB|dmqF9-|>mln?OmBi<wzq
z)2`|9Y|DHYjf}W<tAHaZm&f76tDxYiPv=^<M)QIExXF%9VTrmn_m98j4}KJ0&YU#4
z@yCzjr|k^|cT@yM?yvp*@e{}wi<VE%O%!kFn%2zTcy4avr>9dB4$dfhJEg?wiEVxT
z|2JQwx67^X0on28OA;@~%fM`Pz1UNET2q64dN%E;vwi<_`SSGjo7q4W#fl$^3{F*(
zCT+UzYkF8K+%NLqXa9eFN2Nej#-c~<j2tg_7O`qX3QbVC%-A-2_NF%%7&T(03JMtP
ze)Fsd;f&aH<WsUCxDwK;lW3SQPdmKf)YL|!)J?OKpO*Z!y0AslAhAivWyw;;<l{`7
zoX?(r-%%eQ>E@>84O%s<qy*8mMCHI~@1Hx1juuo`?GkGE@`{y5dKrt>w4l$g?@E98
zmd48=C@2_Mc!c4JrjRgm&i#K+KG_$uMeGiH`S{_}rT67o0+>29gQt{kmG9WQw{BLq
zc;j5_-skJt6rP^aJiF)GT4uMNfIe?fh#X~Rp0M2G?k<OJF@L@P@ArpK%e}4T=yXnM
zLiv4Gx89&@wY9w8^#h$E>wYf%_~)v_;p^d&ufE^2P5AZY&0|oKzPP!ckt35&p3SP1
zX;-Q7Jr?hBj=Qg}PF<>!y8qj=*#{aJkIl|w^jiL{OLXe3e*OI{esdUZZ8`ZrBMM~w
zmoEtnpQh|CKmTb<`Fp8%t8ZWY^C3||!z1!~Zd2*+ZASVXQHL2N%=R)hJV;pj?8&92
zZ}^^nf2S!dmX^jOZKjb~^se~FhM;Z7XWp0qN?7yscpT;>b&G2|KYI3Nb>f+ypHEHL
zxpCvo^`@DNOxmr=cy?3@@2HVn5gUE;*<0Q_I~TJE96adI%5_s%fQ>Ef`Negy->Uxp
zy4l#hT6@COrBm_`u_Qcld2m8-spQOc3l_Y2kao1|_-;P9!$p37_D{_`+4F>*U+eJG
zc{VHm%$vCIiVeeomzTW+7#QsAPHl4IO|AT*QSdJ2+pp95%)h^<KetY1n=pf8jxBdf
zOG>#P`zH6DQJdL*{LW9EH$hPO%ju=j%0<6Q-aU5&+2U`0`;Z>P)7UUEh0|UFj4AqO
z1Dkob)*o9LeDn6Yn7}NZhBpk0+;|ThW4p1{+kXBm)6MEiEDYAx3u=D8xxaVMrt785
zUG@JMtG+PIne*lI>L}Cdy+KRwoCj?(>6n+dhOv@s=@O08XM9pue%sD4W#Te6o)h<$
zosw)=vH$i>&GjqSuV!pntQ@d5s;swl?%aQ6!Cq5O#f4`_PntY+pIX*`p;$Aso3D4t
z-U7F>Z-P?ek}{ic_obJ39m3YJ)crWPA#$44r75@KpL|GM`rrNQt5eyYo(-Fe%X~Q)
zYJMbs`}O3c!+bl3cD`q)!`9B4#K-XH@zkZaT2_0BKK`u}xkzX8rZdld!Qo)frr@t=
z$`Cj^?qy%gQZ}hwn|to>Tl?kWgr{$2_0|77DYw;YE#t+v`x!M3zgkuGm8tF*=ZDY6
z@n(^1X=j73mHwX1uq@l(sx)XCq{%q1md9b96FWcC>M+f@rx^b-xa3A{t*I<aFErK2
zyx_peRrgo4qc3chOJ${|a?0OdtA9QVefMtK^z#=3S9+ebTs3v&pQrBcognSU^LA_s
z{tMsToqBP_mB0;G)FLu7Pd%w)_;6C);c(k2=fC#<HEJ#5s(oKd+*{0E@K)-=o}ET}
z-Ze6N$@7+S#KkUl(`0mw`<?z|jizR#P(gvgys)#g!EIGg);baV<{)$G%4-crj=w%1
z#>c?P>9y7)LBSxU<5J__gUqRtf)iy+cI;p%ekLK8{O89TzxS0J%h&&V|12x~ij;t#
zi-(Jg%a=Eg4fgm8dK&$ku#Qb3>$7%jJHNL5s~YLPzF)VmPFyJ?!&N4tb$4ME<Kcg*
zyKb;_cXV{D_>sVSBKXKXyXx5T9k;8$PpOl!t=3YGUTI@9rSAzlpT=Ysso=f4HkoYQ
zyP%?a_Pt}^X7-972@Ib^CaNrO<xcpTwV>qXo9plIvwwRNc<rj-3Wn4hx7qopu-BAk
z+?n&{O~d|wOw)9=e|(x}$^7O9<C!^}HUD<LEP2E1<l^EIQnP{cTCj?)?@Nz=kGfB7
z*ufC6tS5+h(Ye<bHzt==ZN2ZhKF%w*L-XN7|7Cmr{X6BqIc?|isi}|%Im(#rFi&Xa
z%u~#}Zt=YSmYXUmHA}YP$(+m>UWcODd-rH0Fo5l_*}(Qhb75cJQZ@zca3*PUt%Jvp
zb|1L9+F^IuscjpRr<Rnz)7U@zHA7qoq+6jS7s32#N`Sg-2=j#LaZLMu`>njYqsVpU
z&zRh_uP4<HoS1m(!mb0C1DTaPA<3+Z`C5Yw>$^LKJPsjQ44*zMG`cz8(6arWZdc08
z&*0rzqU>uJH6NXu%Y5f<<5KUb_uszxvVFSt@+);qmT0^zSy}5;bj~YIWFsf2gB1Aj
zfYbyfJw?aJcej@6^j>XPQFN`L<PAs64u&5;Y<7MU6@hx6IoqLYM-NZx%$X~7&ax_4
zW;-;zd2smlZRxeq+x31hi3uR9n<A3B@>~B2$%Yqw1*xm}IT%z_RYA8tCUA#0fHn{a
z3X1ZB+<4`uoe!(RvsnqYzA#}Phprvb+owEjW<O<=&Y<-Aj$^X#hIwL8zq7L`xXy`U
zF8aJ|(-})Hu?ey*Q#2B7`q{I-1ho{(LF&^+Mi0T|*BWAWEYOMdKgyuLZ^iVqPbsOH
z$;mtZUtJw8C@lP$#XG{lf*)MpeLTRhq$4=nK`%DwSH+b7H4GcdbSKPOwY2ho?PdP=
zUte8yzP!wLZNQ~JiNZQcN=l0!L5*i{DA;f*gtNiOb{DJOict0blvR&^iW#E1lSzZI
zL#**do&jhF7~A^0yUW)%c!h01_UrHOo3A%Fm6*A>K8@l|TJ!R%?A=;9I~Kd2D%Blp
zosK|qKt%#W(2<wN*bW}Fk}iAC_U!z2jegLO5vVmfL75?Puhfr6+zAJp{)n5*M>5=^
zRIMbEE$iBujTdi5M#pZ=ntCrIJTo)%R#m5vYQUq55_^r)&YZaS|6OeA%ILF7EE{Tf
zUu|FV$Y2kscm!4AN_wiS88-wfe&-%I$!WFs0^^Py8LRd8|1o-XZSCs6^XAN1vlg^J
z=ik473=K!S#na!<pRhnjKkiIj?%OC(c0Jt2WZQpd1EdiI_JnN(L&+PCn$NxGxL39F
z`@SoGe2h1D?~$9E3;g_#|M~eDwA6LUimO`7{k2d3|9ARc;M*m2pHdj7+$);H4sJ?;
zOmSJdl=0(7uRRMdU-H`jc<0P>kE=`-?$<E$NHECD%QGBU>OFl5@9}=^)5htW%0t>;
zUgb<!(`c#y^Oeny_xt~YM%E5rzYe-%hl7U)G?uX`TSTt2zuz6y8GQDP&EMbu%bT0R
z*Vo6Nzr4|{pN)xm>N`n4KP%~y_WP#m-i6+VtpyNncyX;^2ctudPK}K%Bk1ZG79rtA
zW%nryw@#Y0sXT;Pd~4YeFGRHHlze>TdS!jQJUgGvf!*)-fzMd~`F#HI^!c@ICr)_i
zf<|XS+X{`-&pkM;zyHYpf8XsvOVb1e1y7tfvEfIBm8ir`Mvt(tvg3sg+zvgydMl!t
zl^7n}uMbqz^0F4sxw+_z`pdi0J1T=S&uvZNG{~8;>GCAiQ~id<=~{nXxCFps6^kAn
z+_r)H!xqq}E-2Lh{QZ6(H0QvuAbx)x=oXwqt=ynvVs`A_o&4v=M-NX=$CwxyP~U)I
zMf`rdTU#=lL8r>a@2?Y+)wi{+j^%a`5}w*8ba}aUs7k-v`l<!N!j~4ga^KlgDcsI4
ze=Tlv^_G&}-qzi_cN<w(g^ArODmd`&<>f%}15MiD4F{X2wwycH(98SbcK(6a>!ros
z%`Km@RN&X#N1q$P^%kh065zgD8}d0|TTbNO>!+t`vqw%#%+Kd%h}c=AYE|}T1*<&6
zg;k;2EG#SuH#en<$@`l#T>RBA$7-q0?d|MZp_j58-o55oyu0>yneGqJqISdQKc8O=
zQoldT3A9tq!|z!6%9R#n?_}!O8lKM!&T?W<eN_3sHsSTPH+G80UYOlIr4B3Om<707
z+uNNv8dt2)kg=<g5Z8}8a%rizVfr~4&}rm;ettVjUJ9*?+uK$3^_Aosc`>oJ8#f}l
z`_s3uJ-J^$brz?+y{eX>P{RwU&p)3_%$UKkvpoMnuQ>w)@4Gt(|NZ^FxtTY4(&VWd
z>+|nkl3!$=-pI9KKF4$Lt}HD%iH3+3xwp50#=f`Z+-$mVApkVpG;!iY(2yNy_JrZU
z)6>%#8SdS?$M(A#IuyKXVyon?yRKUpo?Ovf5TqL8;nlPyU!G50jmbc^;Y9r(#yQsP
zC9m0dWH=Zy7(gSW9!7@URV)nViU!&D?K~Ld=2;}p@R(cwq+6dW=S>V`8?Y!pkHaU>
zTC20O&5wiT1Ey++D`{zQJwD!ld`;wL1_x>0(+3Y8Oo(@Pci(HW)9@C{>sO%*YATnq
zF&}vL`8i_>yTab8ub004<Y%xdXOod_{7|5v!;^89i&sAP{+!2|@jCH+zf(^qaW_;m
z+><kAV<?DBFDq4DctWl-`?8vX-nm7ePx8Wo<p$?nC+}%Gpb3!=_v`;>n##oPDsfCp
zQv==0_3rNO!!H9vk2)(0vn*S-jHzLonz`HTgr&=w%gUm3yY4Q|5;A3|+@2Mx!|>qw
z+ul?CS;-gnRF<*5zP@<TV&y#yPv$(g+3L)mvvo7`u9Az@f4|uOKk)uy)v3AG1va%(
zkuP7Km|-u^m%pDk=N?Z>TU3ePGen`6wD9KUbkLS^wzI3P%HQ>{a*HXLnT1Kqdgpd6
zef{a_X^qfTB5&Tj;o0`oB<F^KjP<j1fB&7cb_fY6FFAjL;mw-~)26X8Y^W9KSi$IV
zwBMeMVau9O?j1FfAHK7<@tr+);~?Xt_4-mVI~weJrmR1`_yOqf#BMQNCWb9>yF{XY
zeLej7ygk2od3g=@1BC|Gz17YoFBY&UD7!za^4kd+(sVuh=x8@+o$lW2d9Tl%bn9<r
z>}UmTzY1FFCAnwbym@?zEJj8~;H8|J!EEh(vPK@|4-PQ4w6sK&tXUbnJn6&)s~dZx
zf7X6XT2S)RU3=TM9i^|u7!;Isc|AN2{&kl<70aN)@FDCugJqS;ag$dJTH$Voxy3hp
zySQH2z3<2p&&i<S7={B)tlR}|<!L1h$NA*1&6=Rgvf=;5*XB~@ZO@<2*FMa+`md9m
zFu3&6%Gy=_zVF@L-LLnG2@5yxDt#>$)H#p$4Rg}Mh6aWs$BsSP|Nr0R>e`EoTsLgo
z2-?}rups;Tx`^$0vO@Bu0_+X;|NjVsHeGMeyQ^b2FHd-l`}u!f=S!lab0;0N{{EhM
zZ}sDQJ(3d`EEqp9KM;^zyTtt3oz+FDCKrBg4P70^(9kPw&cqP4Er(NHUVd+^P;%0S
znx91s4S8qmzaQhB<LB*s?cCfQ#n1W5-rh>x@^hvtQu+U7|Np=IGiS~Otw97G{d;Df
ztu$zy=GwYg&~37dVs;iWGz2boJ9zV^<im##e|)>04_bo*I?wjt!GkaE?%sa%_~{c2
zRbQF5<ub>_%J2QLf**7{Jp)5|-hH-f>yLjee*QqubAsJ(o*TQ(t%Z{(vxKc``PCmL
zD=WLT()UW=m#3$uUY>oJg+Wa}ss(glJA=Ub&%aKr-{&OC5PyDtKfnDSfwQwrL1)P8
z+PTLf+B9NWx3*}0dv~|H>g%h-Z*Oi&nB_=-rfd@rvAlgK%K#l33RxM%3fh{y%x7j3
zXlUs3v$JAf{|78x&YYL$&@E=A|7;B-W5e(7g&LNU3n#Hm(c!dN)oHl0D0K(pj(z3&
zdhz>srpx#)&&kc*DmCHP*Vl*N2MQSH-Ld!+w!Cjz-sx$&w|@1dp59Qs_R@;%^Yd)Q
z<}cPe2WjBjY~c5h104$R`r6vlrm+bL3T8PcEYF49Te6&ao8^1IDyx6{Dup}yt>*q`
zd{EBtyTw6Yamu!+onMbuJY-F{q*7s)!Ej>J#l*&|3@XaX%#(U~CroUdFhL+BX0x03
z<u#GUxwdi#W*%{wq8ZEvy0Dhv$kC$<Ykq!WGd@215Og@F(Nw|p%3{X#Uu=B54}X?6
zOL%^6E<=M0!(7G~wgB-9FLjdIW=k6+wR}3l|Ke&x$=h3^3<2O}?AGu1G*59iRj`{m
z^FyV{XDfyqw{K_HM)@%puza}aE)Uvp4Lac2$=O*@PA+c`&&rhz?^xQM9QKt6DxKZr
zDFyB@zdXvYq@(J}UFY+E-4DN)3KnFz!YSZCm&tGbwigz=7*BMGYBMlQQgH-VT{aaa
z)(g&e2!7a6?4EyrsrPiJmNq5k1F;OCrEm-xhp)~xFzdEr*z;8^V6j`-)Z^dYPVkp;
zz4p@h*kxfsLBWg0&AuDDG?INcyqhhVc#8eRI>wbzS06pTapML<gJZlv=&8jg`E2!L
z8d7q^$`!Y0T)Tagb)TKx471!>+bYk_GX3!3g9E4`y3|Y5=l8GdC3ajTad$T|AJmOv
zm~H0hW}ISaCH>4F)M`5~a;-rm@Yt+`yVoUWZ_m5CtK#EP@vZmwGMt{3ASoy(*T>2&
zCUJM$f^hvUtXm!=JIpqlVN+RD)^z5~o6_>~FZ(J4%fi<we7X4M1!xy1=nRt!7XsGA
z?UkBe^G&jDXT5wdV~?bL+|B&&c_&UdiQVr5TWSNcbf@V-DU%F=U*FzxzYLV;m42|1
zdBXmGzfM2d_U`lZ#nk}<1~nE26$bl$e~bS6u(p(0fFYT&=j<7lq@)cMACp|%+_G+e
zdv~ulE5K@PJxhXPj!uif1i$%VOcQjJ53@l+u{GXOJkV`+!pkcSQ#1k(6)Zo_<52YU
z=~A8e+N%Y56Wx8c^kiOG(0K2Cx47;lHOCx=2Sr6jO4-+rOkA?Wozdf<=uFTsRhJsn
zxk1bm;_Ls4X6El%xaY?brU~!vGRn&@s4PC5YnkOx^7Hp^Wi2f((7NBMDyw%#jxYAF
zu`wuCi`w(o%!)ap{t?S5rU?oYROk781SO~yFA^AnTqLubO8uWF-amVmmtl&U-`*-s
z!PAqu98zvpd|+gdlT$07tioCR{M^~P#48#PrpGrNY<~Ff+wBPE1?&yA3^ftVPA*^m
zzqwmobMEW^;~$?tzg4--lE*msnZ(l?AECAny@4t!%U?WDUzM-bc}h|1(e3R^1it$6
zd8!5#{qWP&HM<{VDQ0-ONNUqrzW4X#Z%tjDYr5(6j~(~(^2+wwzkgl4*RDGLS=GD0
z|7z?Q9tcM?J#FjRc>l{CJzZVjTEBT)?8_pWrrzJUgz3cm$c;`_k9lAAmpkac>5BdR
z&C@h{-v6q9H7_6cm*(Eyb}KFN))Je)vm(EwwlOj=Jdov3$kV7_^!SkE1kkSIh5ic}
zRsP#4oGUphdP%n2<9e+6*Ec__f4{le_m@v@$~4`{SywFnSG)*#c}%+W^`)g!CC6p0
zR@p3_f3_s<E&~HY0Vh+3^eOxGzYj44ZA@})x63nTE?Vd=|M%}}cKMP!X2s8b?tlD9
zX4c|Gi%hbAm3UUpVP;}rc)$#Dg?+<~=?QZ!7aP?_ToMrz`}Ui;oKrzJ+UtJZ@86G&
z)9e0MotJyLZ1%bN7yhv`Iyz4JH089V0s{j>TtCC3Hm)-bUtTPnBdGl5cKEs&&Hvo~
z0)<b7*4TIT{rmfRe*M3{ulH8h+y8&e&&0&6`VMTVFv!yXG6L1de!MYGjo+}h`un>+
z{}b<DJP*IL^zYV9sY~<sS^h7rV>o$sYTb{8Cm51Ge-`%Mz`(#z!_0VuS9AvB$M4tY
z$H~8%=<c;+QMZV2@xS+1u6#DvtNE4r@{Z-ou(eLRqwDH6r9?EbLjAa61H&YH=1+&$
zM6%8|D0=cU`}?kLqtqn_4%|P_KGWdgpEqZ=UKhJ}e^cFVVJomrdt^a2MKpcA&Eqj)
zN!C>D-78jgCqxE?O!;ypc>ngTS*la@VpHm8f4ZaP%*ep7AVt98PC%fs0wZ5<-n*IU
zGV<FqJ}$qTdn#Cuk%fWbz-vK=I{}RhLIMklCo!oWzrA?(=6ic(<)7bg*ue2T-2vjz
zw;T$2D>kS`$eA;LI&Rf1=wQJP()(M`;m(Df_w_18C4NL7&VSxeafRoEyr_D^1{Q9p
z(HA~Ge*S-5#K-Myr!QGn-r(s_;g$RI`+Df=f0^O4dp<#o|H`3|_u@z4$+XEz%JtbN
zP6TYTDPT)E*z|ciyV*1S=E?G4m#Pam+_`XZ@$+>1H|A#c)z^&E9rT#g7cw(2{9t41
zkhZG(^C#Ej&AEAB&qz+_J^)S!`x+S@we`tP)(ZXg)-iA0l&N2T^K?vS6R=Nn0L2*-
z;}PE6I~50cJlxt;D*y9z9EIp=V0g4_mg(=e-J8=@J)a*seExjHpKmvA&zaBo@GS=e
z!-KarkA&|VpSM{&Wr|4n^oJ(8(O%#0e!ty(dAX|R&Fe9X58T?i^jL3fcm(IC;CVeW
z7#SHDK9tD`IvnejUcM@HwU(ZqAGes!g_rm3rc|%KwN=03!);&3bF3^H3;gDOzW)5H
z(;aZ|npYfIev_G<FXPpfl~#3scD&p3*)Mceh-dBZZ&zPkT|IU7?ANb8>Fti%s#ozL
zn&IR&9oAd<z3*!O=p6QZ!N9;^cR-oR!^fxRSdZl5x3{;ye!YJGwH1Mjx1^pHD}8@2
z_Tt5hyWa2n{pIQO_+7isoK~~?_2>S{lP9x`tF{!W&NV)^o4Mmtip^t?ha2`Ed~Eme
z>gsU+;N^Z-|NZ?vb;5)NX1TXAzP-7*>)o!`A-l_RedpOkW@cut)BBvS8UF6iePMOK
zE9tw-G|%3Te_m89`e3QK;*?M64l%K;3=9ljvyQV0c%C|Q=E@{h?=NpQpMTZNZ#QB7
z{Q0}e-ma?p`YQ9%63<nEi`(wievb{GUU^bU`TT!bIXOK~tI%CrHf`R#x0>xp5*sK9
zidURbw@dE1wk~$HV>6qkmX_Dw-`}r4Jly^jWa@>5&QV*lriQJFSort%_tlw~m;HKf
z|NrHyN&1lyH-7H_%zWbG27|fQ<>z*%J4{h8<l|sqXt@5lWA`oF4+of|c9pE`ld)X%
z;zh>Y;`6pr76l8|?R++isdn+=#ilto40vTMF0f9Gle?Bb|M1~DZ>8f-&U@?Fj@%bA
z1{Fb|&_8i!XL0H0v*y_k4m7^Hv2n4^>+|)&b$`EJ&pz11>bGj$lN;#{O-&{5&PcAG
z&v??9@z%DpSEn*CFo@(n_X`hy@Y6=ALB_HOw8B!W?Ej4$5l4?5n-=5fH%Wd=-&C!o
z#mD=rOBpyf`e~kb`BTSU!N9;!q1w-(5E&VHYkU5DDU*zV7vJ*t{d5am6%u%JQ|jE9
z$djl3y_HiqzIahd+4XhZT#56R1s-^POMFx8`@B0(UIj5QFm!$S`~A|}?Ynnzoqs0C
z_@t3t?!vm*-CI&mPjlLSzxMlG&<2NR=jXqFa?0!4&cDA^J?Af5_Ug<`<2YFdroSro
zxA{!--n{Yx8FVa{`JY|C#q09JZM<Fm{rW}K-{0Ncns?VqJ?x3h&GhqLlZ5vDaGE)D
zCP=G}_szJ9@M;DI28&M}44+Qx?_W{#^OI{{e^1YsAG7(zp2dVsI~DU`1_KiV1B3r_
zLGKNV7B8MUXHLwMZ@IU(t#oST@>{dw$<n1uGt;wHt=pnA_fPJ+^Rt;d_NTt|Dcg3h
z>a}k8bS4IdfF+>SkylkKZ2CDAY^%Rr@z&qFWL@lTv52m(|9-y*Ma!=5_o`z<Vo!qB
z-e0<W`Rb+f{=ah54$Nlu$Z=>mH^+MUZOhf5!fkb>3q$3nlj<NJ-L3h2HtWWQg|Duz
zR`<NMF}eNU_x=A@=H1;@^=jqvn3$(er_P(F=gGC<W{pzAm+p>$^SAS-&$PLDbtx#W
zH7zY8ugBN#U48mPhMb^-*L1zLy3yNS+)ST;wM$fcOU=(B&!Ao@Q<J(s6}^(i$Fl9`
zu-~e)_dOonA2=yxv*wZe@m##6rK$`J46a<9oQ0*Fa_5zqI!gW>{vPaa`?S<pwqEr>
zI8#TeXJzHOb)eu=J)^v?>FH^vzklAuSJyH;JamhJfg$dEa+-sYvGLb)*6%emH9cRx
ze0l2k;r!FOr$5b-7F-v*``W+KhV?80vwJ~N@PHYVG%X4o-rnAR{omi;q04+Emo8tv
zI%a2)RpqB8Ma9LT`)Vp%TU&STI&(Vh&5e!U*5`_|ObE!gvu{$30F_M#m8T{2N*cSp
zeEIU$rqu4T_xE&@d#35dt};$P_hM%Hyg(0+4$#`i@ad6CMY^Z|Z9V%;@Nj7+q`nZg
zc_jR{jaS+v=?KTxjEjf<Dc+G-ykLO>$Us@Ek_&&o-+%u|%iFClwetHJce`l`j0_Av
zSo%2>($CKe&B<A#qN$|hG%fY!`^k!)YooSaN}pf*Y|$&Pu)b8#VZc>iuZG9QdYw$-
z6k}j$@c+=kQ1o<a_^S&GohPZ(*Vi9CawOyQG~I7+@7I2x+tl0~8yeSnYOBuG_3`nC
z+xg2&HC4M|Ui5S7@9w_*`~Cj)>hmg`CYe-xNbsF&6{_wxCm=3v-oMZD|AUru=&jq7
z@?^&@hV(?Zg`Zw5?tis<{l1{EuxU+AO<!&#_rLt`@Nm?=nw@|C`~h93X#4-q=XH9U
zU7o}g2<-|_hU%Q58nL(PYfwPI1QksSiwMv@z)oTHk}od;bz^n}2nq_S#vPxa=$x|o
zCfDD`&z~>9awVkt{#@(wRo>I}xcK?QQ&N_&@yV=M?A{;uCHvWrQ)?K&O^%wT+vgkR
z*j9&y#}u~8)qV*CCB&s$?-ZZ6eRXB!Wart2ZsqrDx33CczwX7049_4huP)HR8k<s2
zXWiP8X;u4c%e?A$mTzxtbnfiz{PbP_-*(&U;c3veh43A_hL*OrQ}^%R*L}xyZ&RxG
z)|{J{7Uq6_cGjx;+nT)nf6J<GPtgpXGI8R<x3{-ztEst7y0WLTxb)Q(Pi}F&D;p9I
zcm17ZXUcp?NQZ%eVLhmDsQUV9>C@BGPw#lx{?WBt>}1;JmGS%QzHJlL4qFkuJ@4BG
zMNe6)l7P3jwr<V2xvBfs{_}HM&VjYhfAGy%VbYcD`SHCHhEAa5{o&zZQEBPb6DCYx
z`a8=c^U;-EMMXtlzTM7WUHbaku1}}5RXyAJ<-?+)X3a9q4qH&)EvCCA?d+`Xs@`k+
z-(G*c5!@6~uW(_=yuNPk-`D>3f43YcOYYG*9h8^1PI&bsyI(JqWv$E3B>oKj*ZJb-
z^X3>0E32sE{qo^uW!spTnEn<0|3Ag#Yg6*~tTPP^(1gq_rc+SL*;@5_?RF6fi51cL
zd#~P`HgTe&=Qr)LSdIT_osyE0N4XTPs<6t~)l_zsmO~oV!Zu0`JW?hnuBwWFwxMS|
zJvH^!rKR1V9Y6W!<E5reof`VUa^}pLe6|0)8dR1p`SUi)mI+dw9aLuOu&(-kw|wfv
zi4QmY@%mN!@@ngMmXp(G&01CT^pt4!H|I%l)3%)2wB$#{*Vot2KXfTye;Cx9I&fAe
zZcjwFxPDoNx4(aRpy|EC%1kFNEOh?AsXsMxmVNy`;Z>IT7Z<s5adQWMe|J~*mUj5M
zHC&=v8LzLcWt}&9#*7tiy;7pTP5)IM=9St|`1t<1tIFU8=8l<%>KNxtnX+V=@9bSG
zl-@rOWK22S#=GfXf%CpQcVd<<Tc%}h9xkdCQt+zQsZY*!6=*Ndx7+#K=U*>e7`M0T
zWv}_Y057kuzd?ImUtfRy-QC?^&)5Ikd}F<Ez==wgICwT@I`QxCZ|>al=gwWzUcYBi
z<mR-Oll|=qqinsW=>+EG<uyJH|0!4f#!xqYU(DNETQ9%3xVZG!mrURJcCozDW>+2@
zZ0`PR#n{>+z5XaPjR~47>3BIfG`RK2td!2*6R7OoS90t1zOUD!ySlo9+WBO;?#3<k
z5>-`ES&?>jmXvkbnq~g;*X7;amHGD8)}wa+ohOwT*4oNKGpGBRhCfr=c%@(2|Nq&4
zIqv=E^Y;Hw+m*h)w)e$szJC)xZe=*c18Ld3kepC6zvfe?le2Sd?6K76!Hg}ivMS9%
z&2LUb258^k*38Rls;a6lFS^T@7KN(npTDo%_WV-<w2bNS-{EifGiBl1)YH>KK^0T_
zIT>DgyE{8wEgSvMLYw~T6)p@XKVQ7x^E-qAR;+auJM5XdUq7~OI?PU{6YBG879E$X
zUUTB@<72&-+jyntL<F9cGOyaQ%=6XFWxcDt3*``{_hfbdYX_UzyYI}KG-=Vv$?Db{
z7fmYlUhY@rGHJi?`*-h(bPh5xFnr*Y6Li@3^O-a#YoB;~cDDKT>+$t(k92uOgkAf&
zKN8gQV$gpq$f%;N?fv}R+~1eqrk|fzn&hgg^FN|ix4{716Z~qU)No~Wxc~cozw;K}
z?lFwonAEy%->)q7@X)49m(Tw{3y#SO$$k!n?{~}Ro8{kI6P>>|^nT6f-lC$SDU&BJ
z25pAgey?gZXsq*Y`Tg2;dY?bt+!d-7?ziieR(SX$8<=Yg<tH#Qvt``hS3Aojb5huv
z2*ufNYw}K=K0P@#vg*&r<E9xG6vV?TC2M~!y|QxhljqN0dCh5u2VsYb?Z+d+QU(bP
zpvLmw4~O|DEs-+KT9JN!9;gM~y?XZ<zc~|Dg_V|yo`WSnLq-=Xc?-F!7mDH213zur
zymWy=c=*E@xP$mSf`TTcou3!`<lD{7>Dj-(z4cqOqGhhNIxE|*U0lx*6{At!9gDTm
z+t;0VD{Yo@;c>tHyCYp*GxX0PrGlH=a%bP#k{SHu8>qwZ`r2BMQ9qLy62Z-PP&%=!
z{k7%K-)_6uqiLHpZU5hsyr*D&+kAQgygAMgv^q?8ZS3xCC*I1}ewnx`d_BmTh&VZL
z$@IZXPS63=HCh|DH;Uix#{$23HktYMm7kW#RXkv<{c_QL*XMKAu@Q-!AGS&goC9~p
zIOPf@?*%S)%l!TA?JU#mX>k<~Swq*wL{2LC@gec))2A={tlwQ==C^t9NK4;1ehwof
z319!*!H^U=O-v_ZK_fH!tGVU(Hs0^p;NCCy>gww0x3*?47gqOMk#lpC-nuVFpSDU0
zAX4tnTif&3e|vlTwtRYOY9^@Ey}5ZgsNhdcOWU<!*Xc9Y;kBWSR)fbRLpM-?w8*vl
z%e&q0UtL)lyeeQ})35LE-@m$~r;p^G84R0pZ=2~xZSnA)rgQPU{ePX)o4|FKjAhXE
zxaze!r;AEEr%zuG&z3t%8Gb%&m*0|cQ3<50`rDg8AD<pj9lJH-qSN-fWwSw5XV}`P
zox9FVdYEmj08JBl(hgBuvz8t?;xbh~K5lRI_iKA9KbQRddfj`{x3{;SKYBIifH-Wh
z;OiZ;hMJ#Gr>_cIJ8NG3zskEMmwoH2)JxVsK{Bse`H*;gO(3Wf`t#ZB(3L@|cWb}j
zy|troanJf1kFSW(+s><??ACK3eSYn-+TY(^{`>v@`ttd8tN3KCG}P4Ggw=c|q(<H=
zfAq7pMi-XqcH}ag3||{%YWwfU<6rM~zyESIJbq>V{e8dQ*Z<c}?s4mpSh)M$F7MT0
zYd@{4Ztwtmu_3(ZH$&0FWxlgt{d_+E`oU)Qtz~bcO5fc99orUKQ?uvPbp7|QKI!Sl
z&xWQ3{|_q|CY?{)yfXQCU(}9*g`lqD(Qfh8&h32b^j?4ZbQGEZDs20C6vVms_^#z{
zzq{=F{rdY?m&U{~GOk;9U?;3OYu8YrTL1sE{E1plNSV&WctrN+txwvWkbK_6@Tkvg
zYEdccx#Qq+XTAeNq5Hiu*Y%H}rLsc9j>Sb!V`3XWL)#ky4tD}mmaNt;fVF;^I;=k(
zWq`Diz}ojoI6y`wI9UYBpR8tVDF%&+?2%(UB0E*{@hh%5{Sdnw86Nd1DWMtt@=|Tq
zmRQ(YfOYE*{DgXiL*ZSAqyVTZs>#%04eFV&o;wa|1~Axx4AMD$Rn$Tr=0}!yjSxEy
z-oMJqFzKBB!BZzEetTP73hvEVS6sL%T4BS)amRUOP*Bybkj=|hYcn!1IB+U89I)k)
zR=c`h|LL<`yM!1R8Wz31r+c@!fA#7Q87u-j+7~FiY?B5LH5{1#`RMPhv1xN!_!t-%
z4rFqG`sNIC+8Bx^PMS1HL|%UVi4z`EwL-nVzP^6FTYuk+3+d0#%>^}z4jn!$Dk-@V
zl+#~aT&%ZB0yLH>KZm(U5H#5E<41*Q<|P+lHJ^Zph#8=Bg`L~^ZvI}fWXTHO*=AbN
z+tw`eoxSYxa{t#mpU=D8Cu==r#te=6`h8Cs7#Kdp)=24r<gza;aC~)d@9ukbzuzkT
z_MK_uDk&*>YhUf|q@*Mj&$F}5!<YNb-BR$-iC5a}Or$C^0|P@|yK2NyQ1%7&bx%#v
zoU~+f`uS5LMbF=1ZQB|xzsk+Pz_3G^$-{7M{QfvWK|!mE4+~yhS-E(_1_M_Ymy9DF
zf~QWMnxrCYR}+z$nVEHMO=RQq?HL!HPM$n@PEQ)-X>FDXNw+qq_ix&~`RZbK{?fO%
zLbb!zT$o#aZzbrkuoo8=PFiy1N{DArNl8iLb9Z<5*FQc!K6UO~Sr%ygx54_M%!DMX
z;%7ZZMn)y?_kPcMc4p?JCG%{nwY0Up*YEqaO3iQ1ik==G&!B*SfX3(S?Cjo?jEsy#
z1Oy)JImF1oz+ire$HTC-rNv{?uWxT(U%0owzFso<%Te+88^53EpWGFYmbUD09RmXc
zL;MjQ4?|En4(ggMTC_;!mUh@04Nt4WM=iB4L;nS>;a<9I*{YbGMMr1-t$5JL9<r+>
zvwd6L-(R5K!SpCQ1_lPbOOK9rZ>{*4)V}S@mlE;N$F>{_N3U$j3|<?(-A_|fb5-c-
zX?y>EczAfyIrfRCrfRQtYUR4Mt2Dduxw@L#s=&o=N2}J(G)`aTIazJ`@&X11hL}mH
zjno4|Ym#1FUf$nh2x|H||Gu-cSX4k@!M5DnUXws&Z|LeUO;y#S_tO9V`g&_`_4Z$1
zUOv7u3lt3Hhj}~<O|!0eIJfg%ZDQq~GI#FUZMnCz9v|zidOo-O%Z=pzl|f6rCM`KG
zSM76px_<cXvbQExUoz&})ka-j?jL@*jn}l|L&9}A76t}}2T3dwx<NZpSAb5#*pSc&
zS}q^DHY#*;+SyCB-|wcs4~8^AUmRqYzj9+^vZ#c_3Qz;|*O!+uf4M+i_<n{W!9Rcg
zn1BW*<n90Y|Gv65Iz0Q@n!=z^1_p+P=MQ8+<p6`9GXu!=4@_7_xeS9ZG$tf@d3a1X
zo2LEY`1$kxot>S0wdL>btkjF$rD0<eGjZZX(70!xob9Vcr$Ev8{o(spOg3l#e!ssy
z?d&YeEmzk>UjA1~pu_(>8dUh+Kf3&3H>l0<dRlazW)bLe96WvcIiXshWLg%{RLXg7
zj^*MzckVcCUmLLzbmqwBc7D%S7Zx^WU0=60_4G8$)h?j2U02XS@6rTCXAwccg%2Ji
z96fq8^Y*sfZ@G}(c~qln)TAqmT)9=%)vY&&fHb__z_NM<6EpMG-R1dzAItv_`1$GS
z*SqESGk<+~x$9w@^p~H{=dVsY+~(!$J5|Ni-Cew*uB2p3pS=CLH*a!SSy(J~*MN-C
z6>#WU8M-<w>*}hhe+#$g-Mz9pT;DX~f<yB0KG0TcEM*(G7WxpWbMTjR)|C|t<!q}m
z9v|y9I;Nqb;xcK<)TyBh^3&3msoeYxD%JLNNKV-QvP*m2g`LIEzr0?*|JL-lr}{^C
z1!QHdIyF^0e9g^%cDV|NrQXxaGG1R_KmXU)*X5O6Yzzzs;-mIdY!uUvdvjshym{{y
zW$j^Se3B0u8*XZD78Mg)wqb)o=!yWx=<RvB7xWDc1AC=RwXWHvpPRE%&39JJyC6me
zh5|vZ->d~eL6c^g<-S_fwTIbzL)Xd;)-(UVum69UUA|_)xw+Q2ZzC66+v@&Sy}h?L
zy7t$XLa();l3;fd+mac1yWg6%wzRz1^?F_K(Js-iZ@1sidUt0h7dQ9iD=UNF{>9&c
zjx7g;M1!<KgUIEx=J(gQc8g^`J2TU&^wkutkQEE=?XAu})WW$cZtt$W@l&-zr%afz
zfL*>OAo+M-XhOn*U8S#=y}Z1<_^UQ({KSUI!?0JzGDz9IPbcjDuF}_8XJ?tJ#t4Fv
zTP1j6i=pANfCI=v3trI7(*SUL_pjz=@Vd0nx&6y&{rx8-9)kww3ph`23R&pH8oDy*
z=+&hRlQ<MU1f8CydwGgx@RzUG<9F{8VPLr9)Xc_fl6S}A>&wf>uP!}sT+rb`=``Kw
zW&3J>gAQ_#vaj2-Dr~Kmy}f<-bXJB2?<dcmy*kjy9JL{#5p<1#XN$lN5k{7{^ixwb
zU)|ce+U~~#=9@Wlp0O}Ee13Me^tA4F&;VN1n~le>Y)Evzx+ZdR{Dp(6KT6ov7rnTk
zSo`<ubt$71j)%+)4cs?!%y=b@Tz-Fhds#Yv&%%}#mZ#62?b@aDL&0w0!PS30oz|bU
zWL4<uT|0yr81DGz<g8ipIWgt-w%l9$>-T%VZp>F|II#Lj{M#<gR0amFQ~&=PT3AF_
zT3T8aJZR|FZqio*4~8u`aKK@%Md6{VsR!5vL2*_yAvJOiGt+d11_lkm{r`Tg&M}+)
z=<(y&SS|+rjrsTOZswTXExjJg_m-KBXTsUE%MTB?ckf-V6}oCg+1p#wce}8=UgiE_
z#l-O-HOK6>>)*=9z2;tP#7=KYi45y}E3bNb?mcgzh1cdjWpA)7e)cEzK4|#HY_{+F
z{r~@^R@a{1r1$Go`}D`@!FhS>a?EDu?fH1jzE-x5kEw45KgWaAc{QI-GUXblpS!X$
zcsZzYo~jvqEHQeqTd&uWzM!REFMq$^A081A(fLMR^?d9-?}GZn?floH^Y<>T{QT_Y
zyy|zFo9;I<vu~;UTXpovkrmb7-%Wq}b-DlibsrxeUmdj6YkKbd>CQPhYxe#B_nYZ|
z7(=`}1LK}EEu6w!TXZ8fIDn3D0Ttca>-SvB+&bmUC$=d%<yHEg`{SSTy<47pd)unm
z-P<Njp1ig8_cx`(FZNV^PU+eC=6e=sR4OFoO6u+S!oOFmFP%T%Kfl>QF`|jpVbYZ~
zk;bkrE*i$h!Tt9Cc4S>$wG=cGFJ<aAspQX(Lf_eDzHe`B4fgTrX=-W;SsA4I_1)cQ
zPft(QZ{b&pX12>!d6>=i_4M?N+LAGGmTC5~3l{=FWfC(x-<JEQS?9fdadC0gi-qkW
z%l%|qTUu7c>?{H`&V_`8xW1e{bLPsImzS^ZC`_KJ8y%LIm<TEWKxGl=BBDuOE_v%i
z2KqCvt_tPz-Vf@GrpwE58P@zLkW4lye|N`e`}3zyGanvm-E=btG)e#-%DoosZ@cu`
z+GuSnt0+fD$5lZ~yV!Un7J$w-`n~o48<`2>aTSi&V~Ts5nwvwHdWrVR*+wn*pRZS9
z|MKO_s&6;bMa9LJYlW`T(9rM*3=G`$^V#gFGiJQFQ2y`FPc9ywDXEcB+w<lguKx6L
z`TS{Lo<DC`vTWI_d)4njGZUbKSyXf>s66}q?JeuCbMx)v&1U=N@BKRM+WPqQWp8h3
z+StUTo|+O^Q?sY+{k_;X??oT*&0u6yc=^Zb>7G3{rLV8~?k;~H_WayjQAx?n{VS7;
ziZ;!wdZoEF`?{ZP^|z3hmzI8g+;0yW`UOpmURxWz{Pp_%`y$pSM^2kp`AiZtieg*!
zB_Jkd4roxz{C-XF{kq?4x8>bEH7k>UTlM$6qeqWwnwo~by}dnrd*0oWS64LG#_S9N
z&AZIb-?wsK?eAN^zrVcfzB+7e&}21VlavzztgNh>s;aKD&2lfb@k)c50IO3^PXiSq
zU%p)SUtRY0)~oyb_y7HQJ+^$VHlJ|4LB<7zUTJf`ZgKr<J(9*EGBR&A{5{NXAL8ZJ
zWmWzz=l{-4g^%4p<EtP?Ojh#^SrwxB_U2~y{QZBog{_TRdfxtjOn7|l*Z6&9fzKoV
z-2eY~eq7zp)T2j^yqH)0F3`cD0o2@8Ra4WlwvJX*ROI_x{^rI)PGL3B663D^{_vSb
zsU;5%FoHZLU-x4n=xC}PJ1jhdE-&*19eD0L$0G3R>hS9a8kyhz-ubXi`rnp&@^wEP
z*G6v#O$30JW#7)<9}Bvq=U(0KTu_+4-}`-@Rr$M^2NL&dzsK(V|L^y%m&<0GBpu-Z
z&5NuKTYKr++GtSgW8)R>d4~_==G@+P*2C!bw%p=UO}Xy(i4T*KlY7sm8ME`rXl(M|
zoOZS+HF8<%>1ofdtPEz|Hs7M~&>Wk}O%A{L?f)cz4sMUylJW3D-Lo^2$&u4u-rKv|
z`L{E_ZHmrmqo=2*n^%8-S9;^xVt4-J%{R}?GR@X|_Thoc(Mo;O+*?;zSXgF+t`4)@
zB5z-J=gP|9<5TovZ!KBATspbO)7RH@TI$SiZ*Pn5TL1WX|Ly&HuWVVr7v9d@E;;*b
zT3r3#uS~ZeJ$?*wr*_zy4cnJ4T{<(q{_j?Y`)_Y=pB=Q+Yvzw1746^lR)3c|z3I${
zhlgcvvGYhI<e1I&^z_`gJ@?j@lM&NWUtL+5T)$s3*(WV+S?0w>ts8YtUs)A;IuVq=
z_}=fV0R`*Ikd>1_%fp<j{rvhi>YOflb!Fv-eD{f8j~zV<a?8Bxcb4tn&fEPy^W*2w
znO&mVvwC`Xs(<gP{M?fosb*ksA?MbXlMgLHhx(h%K6_@4<>m`g|1|#pKM6YISJF6b
z2I%sh*OfnH=bQesOLJiGw5krfwe#}N_0h}wM5JE*xvtxk8ac}>ch;f9hq-gKUzulL
zT@@N!Q?o}*FJ{GLb$_wf<^|JIUp{P?59^gOmATc<E4^&0cDR<IVPNd8lAT+c3pRr8
z4_MB9&%5;1mB1C!d!~a<%vV)a%{(zd5tKA!wt)(@$H)7x%a-3+I8{45>p%nJx7^0Y
z#@2W1b8c=@jasi=`M7^BXebNR3fNQmStgC8?%&V!wUL|MM76_8BBn(ybZT|_etAQp
z^VZzkVXv>RpKkbUQkqMA^;^@(X-hvoKCZ2#bm*R(h{%%V^XsDKT9s;jn8W=$_64Z1
zsk{BoBFo}uFP_h@{}-*kTi&9;LE1bo<m;=eUmrB{TjgZm-L>`CmzRr|dQX3~_xru#
z8Jbhh>6>O>Ue@b;JGT7p(wCQ)i$^H2?J#EIP?-B)<ieJfpX1AKo2~Q|e!l<R{ET~h
zDkt7H%e%9p{{Qd$zh13gKV{mqWpCc({5CtiY09KYL2pzUe7S$t#TOnGo%G~l`Lnw_
zi_;e#54!}q^h_=9L)@=N-TEq?nVFfOId-lb`;r$EdJKR4`~6<kbE;No(C=?=zn)Z|
zzanyT+ODV5qOUCTl?IJ)IyyS~t-X75&&T6_F)?#MZSS+Q&9kqsi{15V)oPWw{LGe?
zmQqG39e@7(k(sx-=&9G<Pp7oKyu2=LOg=tk^5o?EX_3=F9e@)jPIRwRwX}>3dU$$a
z-j0WDO8!m%zg+hJdWc*9#cBQhAyHAY&ds%c9^migb?QEsg7~%22;RcN!l+Ftos%X{
z=4KJd|GSg(zB2>klF$2v?rb}2y8gABle2T^s*sgV+xPx_He1RhW5S`shp(;-Ru5er
z=DXBu>ZH`jUq2rAZ%sWdmYSL>`g<!Ex7NRZ&+AnxKh3RteP!k1T)hhYtA&%lgB+_e
zH~#(qhwbuWw~lYpnQK{m?B9=Oe!B~o{q5I+PUrvg<D=0r4HJ_P&|0G6^R~~oZdSPW
zD>?nfhD6Y86X<-)=ku!lF1=R|<d-%(v+#Y7q_Iib83|W6w^hl<`&LD5T?M+&JaQW7
zvYod#Ha=cdw=PD*);4w$*IuhI2M33R?^kcXUl;xN*Vo{Tj1^X;ua>;Jx_WiU%Aid*
zbE5Xw?X~;;X0!LY=l!Lie$_79{ePdFoXq!jT59Fn^S(diKuIRP{{h>6+p?|p(a%2o
zc-*h8q~vsad;a$M4zu#Vzq@;DQ>wS;^yh+3&dzs})DDGuP1n;sz3I!X?Dd%!7C0WQ
z^2^9rq2@nt&B@8?uOA$2_VVz!@aN~}ueY+-gX*r;;p_Dtu8KVzUH^th(g-w)cLCHy
zT^YPwOHt9${@;(qpd$R$)z!CuKYj8f<I$1MuFlTDqM}WpQQ!^peP^5fU26rh($lKw
zNyn;?m5(;)T3bh}`_0i1a5~m6zkb350aaDim1$>Z@!hWb^-}$J=uJKMSo{BfiWlAv
z4i1+6#dxpd^arLN-aB{h{PlAA{3|O07c)InR#$hQU;l4sw^sA+o!@R{r}pf8!ru>?
zbZ6s{NZ22F_tw_zxBCmv#qT<tUv)S7U!|OTzueW`@As{){QT_XrZr5{7ugm)>F}Fx
zw-!{VJN&Sy{k5fb<)x*k{<}IPPOtOx@Cb;Di);J_s;j=fx~eT;_vzCoE?)Vc-YfK;
z+1}hynC$s{deuy)cgmX*53@y1dwO~QiH7gW4GcfL>+0&dIy*0Jzh9RfpQJo@Kj-zu
z{dTMV{{FsuoyCr++j4J%hP<jipEci_a&nT>Zxwa*+tU~R`SbaF>%1-V=gnIeU;j6>
zv9a;n13?*?H4`QX{QYv-U$vZJht8+>oJPsVc=mq3SFIJlZ%@^?H!m-!|KBGcU;B0H
zxp}tP`Jj2%6BCvHf3xIuZsVC~=r&o+chmm+Dw@j5&X14vYJaf|T^)9HUF`0XCnp5k
zzkPgsT)b*M@99k;+j4GpSNVsnjRLh*uJ5b;{pAq1zD3UMJ(Zh5J)%!fPp@|Gmpgh-
z{Q+oQ$$|*bd=Y2~39ppN1>Nm;lxCk@*3!ZvYf<3v|HpCrEoo<^!l!eXe*{haCm-(v
zHCfWm%vkvB>}+ito0xV!*`T7LO=WLyEd{N)TIxOh+P>P~pmN7F?@q+mS6735e0u!m
z*{tNZ`{D5N<x45^yg9YKyH!eGTyR_+zCP^zy}hCP>uP`g{=GW+cwg4dO-s4^CF)Ba
z_nK>&nT2(Bc5c$~Zf55%lW>3e=gq;|?{}9=8mFzO`}+&jTnP)CW|ngUbS==z+}qpg
zvn9i3o8^MXTF=d~-1Tf$Ht5!#pTB><-uwL?sP`SZG3hAN`N{{4>?QYWzpo5j>;{^`
z`t$ei*O$xZXPuvC3mTOM1>6HmP`l3h{hr11Y^zrlK0fy8`*+Z|;+0*cua&Z^pH2-2
z`Ox;qgXXBsX}z<|a#w-YEB^fSl#7Go!l71f?mLT@Y`7_OAlQ(Z=|{(-m}8&L|FZe<
zpm~;Ydf%z(`s-P_#WGG#QU#q9E+i}*3c3dUd-=xc=l4u`eqiUnteRD!tJC%ursn0X
z1Fe>Mv2=P|P*Tz&(74a_xaza}jx6<?YgP5AQynzs^Y!)h>}O|YM(r$G3L4*jdU|^H
zqa&Sszw1D*++Chu`|IWMSvHlM)O=<vI6K>X`i+f`E`bKt|God&uRi}d=q&enwcjFH
z+1X!T4UfMHTDB9mHtHp48O~I#P_EkbqF;>{ZP+$FuF7+B+SwpbL;95V`iz&CmcF{S
zb~b2IprN6G>Aa+2Qp>aR^VfS#)dKY_s$Q?%9<sNpwD#xI=~)*RI4(T?;Ze8#s{H%=
zK<l3V+EzZ?wEobmwUL{bfoith@ApMpm%qExBWb*)>}?cio#t%w{IKimV!KOg>c84D
z-kF-(aV1Y#Q`6ITwpr=y)0tID``Q^8M06od7i|?47tnIQ`F6E2vD4fiZa#MZIB4#l
zfnm8KsK3lmAjQN18rdMoJ+S)8{SHlY^Xo^aGB7--`}Dv5$+6Y~RVI!-UaefBDxU0o
zG6jXI3=BKw|NZ^ldy<lpQcN^QjT9qG+)}TpT3HtsG=k<y_w2C=pU%wCaQnpR)0dlA
zxkaR<R~J1!<(Z_$vJNzo*l;@c&W^%Yx3{kcjnODNw`rJ}h1J#7t<&RXV3>a5>{-xi
zQ_zJ!pm|&=%c3QFZ8bDb9KCu_95k*0YJSX_BhxEu9R?b0Dz#)_*wK39Mno@k`m@LI
z)X9^e3C`80oA{L)4rqUUe?NZX#*M!oH1n%?E?l^9)6IxN4u%i5(^55+ln(8C1DcV@
z%*^cS=?TfnS(Dw}?61`Dhc|ec&&3}fAA^o@uKoM<I^XTGcXw9)e!o8+6g3G63-Wfo
zR0FNY0u^7~tG?RmMsEu#E87NIgD}^!*zK6awOvdMHK2PCN}ipO^qjPR|9-8|RZDj4
zuyA#A+qJ{!hZ55XRWDD^i&s_#i;9Vbz1U`!dkZv?3~FD33Ug3ZY+d#yASr3lpT9r1
zSvSw0KmXRY+||o`XKR_7hTgn+)9BcaT{;X5F~`z2gF1*)wL%|#=7?!4zo!aX@VYW=
zZIq_Ey8H1y+2R{!si#CzQ&KX1e|!6F>r}K!CQ;SjYc^~!xVkFz^wm_6tdEb5zPi4C
z{_4{WlMU|eYyJ35x5qr7MyG2(3#c#GC8}+beQk}?_Vtiq*<y>0pxIB*7{WB&=x1w;
z9x{RkA72SQaOv5epSY)%`!TPGJmV9kr%#_|URe<+WmmIf-OgvTm~QjS+pXEM#l$rG
z+L{B~#B`%HEG=(Jrh*nL=5?w@h`)R~J^q@%{of_L(q<yNY)wr=CyB_)#wJ9g498B%
zm<t+hv`%7sq9kKq7vpd9u|>^iM#BCncjZ%4Qapkdnt$Wu<12dsnn(K~mFA##Xh-2=
z5l}C=IU~`@$w_7I{$t<dQ`6F{zWiMLC*jlI@Av=T4SJ|}>GI{NQ>Hw5W%NJ==8w15
zpX`@^<bLYy&Y-z$Z}oT3Q0A}e`~NMSGDXC5lA+tonKMtFJ9n*-nO#IsFfqPr>VA>e
zPAgZg)Cyl0Gx7BLZ}0ExdrBE3IGmJWxdZA{#>O(u=>P>UIGj%Z`}_OquF~xA=?^FB
z9PSnDQdLxREG#UX6!K!Piq7dvFD@?r`sed`Z7nS?&<eFls@^icK==HBS_*bQpG<a&
zfBfR&Vo+mIR9ZUvi4G@d9!gzV+4=YP_u<da&E0wMi>gwC$mNa6$G22|e#Qh|d;_|s
z;}Ez0imI=#Ks5%aXS(;}G3i@dv!_EANP#9Jzko`-A0Hl`(~}3y405wf*uS#&_cyDu
zH#0yN`Ba0hsJODkQ+TRgY!v90otKxFo7Vm+iLHD()yv1{2^VPX=ZDA`*4IWGbWT4k
zgbvltGR@9<b7SKyyV_l#Vqk0bbs^AP+=I*D32KH1Cg6o{pt7q&+M@j39J$ITf=7=W
z0kvO2s~oPajeh=WQ-DwO_PnbnCMtvSX=`ii%B-uacD>zpdrSKHc}&>nG@@SAJwHEx
z{p$7mq7)SsLFqQG=Ht;xb|Nv0G=rC&NZY*9v6+o^o8hy2ikh09A3uHs6$~qbmWJ%F
z`^)tBa71<c-s<n5qI}n*E^W{l1ZW0qvYM|}!Fl#$w?F^+^?E(1a=NlLJKWXH?Nr+4
zm%ZlqG`8e>_T*Ppffml|g|3MROiWDd>h2CMD*BXaZP%alps4ouH`B((#%B}V<qV6T
zpEF$>z1@tFkumM_v$N~;c#mG#U7jDjvnbWL>Pv=k{l6OH)Kem$>(zwC#M1Wt{T5xl
z-?^P{=BKBpXGd+#nkgP%bJ1t6)zvB5;pa^9?%YU8Pq%(kd~S~Au}wOcm;1{b=ijq2
z&bXkE967D>+s*X3wG}_O+xcXTmU>M!die0+vbw*&Kp`;i{o{UnGe<|qWudFX(ypzE
zOuM(I611`x<Vt<H_+1PPLM5Iqjv*VrC$8Ch_+T@;?@XgqpRHL}&lsP#Nq%;2Zgv}=
zY?jVxBirh4TfQgnvAz87@9*B!NHsIFYeyh`cJTPYU$3N^&!0Y>DZL(>e(3Pwvr9ZD
zpLuh0v+v%juRbm=EjM?U=Xc6&w^nM{abtRXU8c@yBhZoBdv%SCFJD;`d3j6T-CM0w
z7w*{i<54%0{e*9CZYDQ1H=mU)zmu51`}@6W-<3g2&n$Fqf0O(A+FIjjsWW#LKfiU`
z$jHd&=clK>H8pz<+kr+TKsKM8tnU57qd+rn_gk~e8<X8HuZ!Ky#Mol^y=J-JT%)O4
zp+<YFzyG^j*R!>JhEZzQ#+y0Me!t&eo*{3NF=6A)oNpf!_t;+ES^WIWL}m9L!(%yj
zcU_H`7Mj7J+4(VcSINqaI;Yn}Y&>-D+iCs%Gd883o^?Ba|KClri<c`j?6@(*Fxkh!
zp#iis%K7(|mBGDd(~2uTAKq+|d+Ulx_O&zrEVQ&v-6^}B%la#}^lIp`;N^bbj)O+3
zK(1KaZ&&o<`%&?DiPM|TEOPDkT9*+srKN>MSU@15?9Gk942Hxrw)ao#@6X9Gn|*U@
z_H@HzGve$2UVZZPspyO25!LPP^0ilP<d_w|xnbD;&0VhY$dBK@XKzkFFO@8jpZ_79
zaf!;Y?f&!a)U2#_9k2tfkOL*Xb91e~m-8KeT)@}SoqK;@?AGk-VG$8CoU6OVbl=>5
zII~a2GHJi_tA~f%r%s!;EbZ(p(HGYjxpKFgF8CR5o_p)c!uZR}d{Z~ytSR5SV)n_?
zr!TJvTx?SFqae2UtSRd@<7f90|Ni>g)zNX`U^9CtXf(LB6*Ri5?A8+y7B)@g*sa-H
zvakCcli-!L3i<#0{{NB}7Zi14cZC!`J9F{H#l@mRLWe4<cTSSJ|Kv%EY38LR7i#C(
zR)_5_f4?uL{ed8dg5I=QvsS%$@q+2?#fuk>j=lKs@UY$ruKMesLCq;sM83Yg9e(L&
z;k1w^5%TtRF*k4C{I;*IuI}51N%{&34ihI%+@pTy$Z7rkYv$Me@&uIuCDzIBWWT++
zx%kbSoUbn~I>+uVyV@nHUGjWxdDgi(mQq$FD?pAed3PsrvYPKD&`QW-z0$8wX|E6Y
z|L?D9))fuV0H@I7w{N|&YW~0ZJWpkQwf>LYyBOl9Pn@_AbRq8Bg9i_Od;38L)L=X@
zQ5jTY@XA;OTzdcbM|iTVfWU&D9v)UUHnCmrA3R97C!F`-$H&K@^2j9d5X)5U@O2mL
zdUlpu;9r<=BBFZcjT;f5;iJ9P-@|qmJ>63EH4C&<WvW)_r4B)5iG2O=pvS+{=YQ`p
zwEG^X(6A%I!=s~C>OW{}$G5j1WZe5?F8Z3^U9u_l^sBeq?@vpOoKz=&{83M-heyY`
zxz^z?{uvt^SNiX0EPQ-S)5r)sEw_n3`JL>i{oj9Xp850F_xJ0=<0@U_Yd*HVy0%uk
zbK^HQ&}ui(7}MVB@3-oW?`}@_fBNj%tBLM%f&1(J{@DKZDKyAZBkjJ&C2&sbc6E2Z
zz5KV{l>1>ji&E34w|IkwtxI2C0^LV@$z8s7iPu!Eo7<oMcMrP~F<m>{kCBn_+rFJU
zce1WCpEq~z+T`PXALkWpgjV!Yrdd;hf`UK;#BcBKk4Mz?C6A799=qfHr2hS4_~MhE
zt<x)iKAnDbiRWY{@6<<+AD4c66RE1MZhS9p-I8O|&sX<xDCk{V5vUBBGfh7?r!eFG
zrqpho(?N^fdSgN)_1wb3rhzI&klkNjT?LI($!rT>7ZWL}6>{O)+GuVYb3?<6iF2e)
zvs99O8ux*^&7VGfs_@?t;pNrUV+eBWs?gQTvaYULS@reRuTQ7-w`O103tb-<J6X*)
z>C9f2e<zn}YHISm{rP&UcG#K|5!Dlw-TO4m&9^&Lmz8Y;x1kgF?2Ym4&0p-+J7vn0
zkc9cs+j0UkGFD_=Uso&He~5X<t54Au`v2_|jML6+*q)l2Iulg$yk58a9H=NRDlP^U
zteiYNIt7~hxc}ZPJsMy8HMBa~&8@Aor$^_@u1AT9iO-I73Qzy95Rl{EFK7CG|Npv1
z`>(IA8gJaVG41K8scFaiWRFQ4yCbclt}cCg)0qZFW|>>RzrIdqVrKTu%35XEw(*<T
z-QDHp2M-=hJ3r5s@2ze1H<N$={`G7Z-+ASCL(Homda=7eh1%zH*6(lJ{`8*t(*FAY
zrz<n$8W|q3{rd7UnTeVC>|uWU9MI9<#dk}u&pdFz0d#xv&Rr%VhhJP=+?yJ?%)MXk
z*;(`ZIv>>UgKD@|E>WMevrNzK|Nl4t^Owv1vx}adnh9F0zT@BbH#awfhQUEAfM=TL
z&y%z$Sg`SCPTH+4ndj_mM1m8)GbWzddw6d7z04f5**o8EyM5-(&CO@mZoik6V>Y|;
z&&T6$YbCPZZ^*o?1}e4}En4)ZeD%9qTUUb$_;<VCZv$1Kpap9gYX0+b-tGM!2O8(U
zx_bIdo61cfY+3qhis7=9W9H`O*SBO{J>}x!GNV&i{nq=IxLqZgo2$R)EtlQDTcKe`
z<C--(pFbStpM7eo_Us801TJq%_5OTPeg2MJIwHZl%ii{!P1F8#zIEU4ch;AedW(aK
z`cqT2)7kiBGA>=Z#C7-mp32WYcXyTg78Gn)8M=B}<-=C-IfWKGT;AT=YRoHTqH*Ee
zjOu-J=ExWqK5_|O8)YgiB9fAIeO>H}8wS_zJzTwhpON|9lF2J$c5dS2;xa0Ib;a=V
zGGF7JJ9qN^mB>FY0&2njzs}Alv*EjT=SSPhPfH~2YIdv)SlGnL&23y*Sg59{xzeTY
z^4-W|5|3Y{CV+akHO%0Bp`aEcalKuTCVXAve?d-8O*v+>&2n!&c@?DBtv<gd$V~b_
zD^r8^hs)v&bKZQt9zXqTT5wR%q`kRkXPJTqrDGzlR_gEnvkBC!aoQd^?dg-ObJ^F|
z&6P6AD2V)?89D8AA3H;hEF%j;%!7XUI{QB#oPFn5Ty(wqC-2*vo2_gUw&mW|QdV|0
zzf;hBIa^7Cp`l!{fuTX#;MkNCb;icV`nUHnF*EDm-p9bOubY91LC-AZguvN(w$YPP
zHs4IyeDlfk=jr$JdM>Vs+#Iq#&K5L#8no1F*YkPRC7+&nw*NhH?3k9FU0n9{b)lc1
zofQ=lS`;2%8#-xA!a*j`pj2RBAZXF5>Ghb!mc`F3Z1zWO&HDB2cK+A<|NmW&bB~Fc
zvt-eE#>(Gsw_jZoY24b@w#uoMYuDpGYtS0%cDrVF{;-OQ9enb3pqq!ZY;0mgwZpE=
zFih67thkwD)+=S|^?v{VeXp*sU;p4i!qwH`{_^#I3LE#$ul+Xj@9)6XVY<J+FEIe!
zyZ5(3Nm=>o`gnU;tCAD@YM-B*%f-uk^})er?mcb$_wPT}CtK}#oS9+Y5zr#ihV{Ea
z9{lkk5wu{hTTEB$!@@u7cE7s>8sA;$+@AI2#l>GAkIR33U;jV)_V)bi&(6+%n|O4S
z&f7aXgF#zI@0Q<R3z||1k1d_5l6h{9<*M-Y^QykQP^_=7ul;b4UCJ=2rN<DoOHkGG
z|F7%&O^Tj)w6?du{&-w|x}jTOVBj~ae>+679v*51)$mc<a#m(uUiR|DL}k!AbMO?8
zx;kjq<=-CAZ0)-{k)R$7XdJQh^|hBjpU)3JJIl26``z;ROW)sK_O}N$89-ezkQJ@s
zaRKk|?frV$-yU=^-=rn7)@3V-pPyS5v2hV-4dt6RIkrEaOkNeSF{$w{sEP)yPQAac
z*0knF!QW4(^{XDXieK558~ytusIv%abR6clUvqD7_3G&Dd7!;kZ2WR-R<GZ8OLy8u
z#)jL*3=GSob`&fG6<fEr<$l{XQQ2K;_Svun@0ZW71GVJ6r|A@C#P2R!yHV$~PTZaw
z_r#>7vvbU5|9mpppX-gfvGHby=;?Z~pdwQC)~l<l({F9hk6-Y<{{Qdz<jpsIoSd2r
zkIi`VCP!FQG*!whCu7s5O>h2&t&hvqIc?-`_jAeK+z$^99!uLiQ!{v(#hcBZlhu}0
zetyOp_qzYq*6j3G*Vn(lkQO<OlaJ2~G-AK^?d$dX&8DT!1l<^U@7m^ce_<)9EIwJQ
zl>FN}i<f`={=NK1oxDZC0Z?N$^YSvwJ?B7!*-T7KXFv;(aw{t<m-)^%Q?s(VC1YK7
z20UrZ$-`sf>FHTtsl&jK3|irwm-F+}Q?1}-Jys<z79=0<yZPTF?@mNwV&bhGg^Qj4
zgDTnN<9)2(KxN#2P@f#sGtS%bkPWmk!>abz7uV}sOJ9e97VjSE5afH__6M}?Y_3)5
zma4C>n9l!v?BhP$EceS{e*2g&+0S2JSvff=Ir(k>>+9>+cXV+4w)_0))0VQgQJ@W{
zU7ej9zwdsvYW0<!#p&&}dq1DEHahm=T6BKt54-R+5g-5G-aUK5id_snkI&2MZo25&
zA<xa8Yhqd;ws5tO_5_^?V!|r9Ts+bOUV<utnI1-JTs+*f794PO>GnzHuum{+ykK-|
zhE$iXi^!FO8YgCDeth&`u4Mda^Zb23|F3;Eulm`Y;&<;J&MEHald(vsI^UMKV)=6S
z`F6FJRt7JB^8NSKTens@xAWyz=`d`V4BD-=ZDVIAr>?H9YK&2eMBB4x&wNsUe}C_P
z<J^f89ed)|-`i8U`22kP*|#`aoxHrge=n``_4hw*z#}RqcI>XUp5C<+CpuQ<oS$dw
z<?nAk_3iEL{@vZ(`@h`TD#Pa<bMuzj^XJdMK0PfiDk5^^s<xKar2_{XzWh4e&d=3;
znDez%o8WfF`!7pQz5cpt=gvsI>E3VOzMU<{&hQ4bDD}p%Lk~A>+O+A*mzS4Yq_-Ix
z8Tnk-)YL32RZ~|Fjf`B`%+9}R^=favc4yFilB>hlmwbO0+j{t+?(6@nw$6UFeb-r+
z_nFEM3nI*B`!+W>bMkBW`1<y0OG`;jN|cy2b7tqcX$%ZzZVZeKxe0qW>wWtCS(JyZ
z^v8$9%SNl>1vyy0e0?3x%EWj%Xi0*>kIR2Mrp}(d+Cyd0#*K!cZGk2EIXON%ckZ11
z>h*ija>*%EM0|aGj@+&O|8MV0D|`F+i5@PMm6e?7j!8fN*0DA_mX?*hdUkg9rwW@_
zuV4Sptz~c6FInxtkRZL`_S;GSZqDC$?dIn6uWxT}Z;228_3!U)r-c{Va@U^|Su^(~
zN2}ATmoGhU^xruDTP-LoY}uJJK0p7~tzEOm<up4Rn~9axs#mXG@!r0XWj5P4G&J<p
z`}gLxUgaevA%_niUbZW5d$if?+`E@wh>M9W+P{3+vPJO+vobR;&b2Q8^69C!ZRMww
zY&Ir_ddV~gh6nr|v1%bvQL8*u7M-51zk1awFHcX;RV!Bpy1KU7$o1FQ&A+#=cD1m&
zU&i%yu~PE#*FQf$fA#KN-R-yku0J33*T1xMtBqX$wCU5ozPPBInwpwfR%W(NzHWc~
z+_`hLG&Deq!u#ay<*q+}@+9T%u2S!<Teq%Su>!P&(!|<&^}Ba@mUI0~&CLESGyi%&
zW`A95b91wnzJ7RZ?cT7ku#*4(YNt+_^5X99@{3h|%Y)7H?gV6KuU@un*`nuDef<1Z
z?cX0S*YED@>pN-5ty@uV@9s9QDm%T@d-|2zw^z5dv4w_(X<1wU?(Y$0_@~dI!0>_n
zh+b*Y?z_8+o_5W%troN8Ub1YN+oUfK4l+-jI`!ql!|hqw*}+9cn?8N|RPygnrL1Mq
zkt=D7R6|-@TVK6>8(Lkxd)DmPQ|HcI`|DTL(&fuvKRVjIY}fU5v6qkc%a{KCmaD6;
z|N6zn#TOZbZhvd#7EjrJ`|0POS1w&r+I@GOar(Iv&p*4KXNb(-BRw@gB!BP5W7BrW
z=<)LNuU@&*Gj4sjrKRPo7cVZHIn$%r;Bo2d>hREzkR|KZt$Wck`S8OFCnu|ewljKO
z+FSko%dfB5dn-O3+OqQB$H&KucE+q)y*gMy;Kxcs#shw-E@qpf`571(7|a@N!TT(9
zoWX0q6C@#%4yPfjDkIuJd&n6M7(rHqPlL=%Y~X>cwM+#sj%6TD>rck};tD)_WF}{W
Oto3yDb6Mw<&;$U>XwTpP

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-114134Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-114134Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt
new file mode 100644
index 00000000..b8110dc4
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-114134Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt
@@ -0,0 +1,14060 @@
+		Result for Multiview classification with Mumbo
+
+Average accuracy :
+	-On Train : 78.9774802191
+	-On Test : 77.868852459
+	-On Validation : 85.9223300971
+
+Dataset info :
+	-Database name : ModifiedMultiOmic
+	-Labels : No, Yes
+	-Views : Methyl, MiRNA, RNASEQ, Clinical
+	-2 folds
+	- Validation set length : 103 for learning rate : 0.7
+
+Classification configuration : 
+	-Algorithm used : Mumbo 
+	-Iterations : 1000
+	-Weak Classifiers : DecisionTree with depth 1,  sub-sampled at 0.02 on Methyl
+		-DecisionTree with depth 1,  sub-sampled at 0.02 on MiRNA
+		-DecisionTree with depth 1,  sub-sampled at 0.1 on RNASEQ
+		-DecisionTree with depth 2,  sub-sampled at 0.1 on Clinical
+
+ Mean average accuracies and stats for each fold : 
+	- Fold 0
+		- On Methyl_ : 
+			- Mean average Accuracy : 0.0527741935484
+			- Percentage of time chosen : 0.906
+		- On MiRNA__ : 
+			- Mean average Accuracy : 0.0553741935484
+			- Percentage of time chosen : 0.032
+		- On RANSeq_ : 
+			- Mean average Accuracy : 0.0591741935484
+			- Percentage of time chosen : 0.03
+		- On Clinic_ : 
+			- Mean average Accuracy : 0.0589870967742
+			- Percentage of time chosen : 0.032
+	- Fold 1
+		- On Methyl_ : 
+			- Mean average Accuracy : 0.0536855345912
+			- Percentage of time chosen : 0.904
+		- On MiRNA__ : 
+			- Mean average Accuracy : 0.0556855345912
+			- Percentage of time chosen : 0.033
+		- On RANSeq_ : 
+			- Mean average Accuracy : 0.0580943396226
+			- Percentage of time chosen : 0.022
+		- On Clinic_ : 
+			- Mean average Accuracy : 0.0596918238994
+			- Percentage of time chosen : 0.041
+
+ For each iteration : 
+	- Iteration 1
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 2
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 64.7798742138
+			Accuracy on test : 65.5737704918
+			Accuracy on validation : 75.7281553398
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 63.0350983972
+			 Accuracy on test : 69.262295082
+	- Iteration 3
+		 Fold 1
+			Accuracy on train : 63.2258064516
+			Accuracy on test : 71.3114754098
+			Accuracy on validation : 74.7572815534
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 64.7798742138
+			Accuracy on test : 65.5737704918
+			Accuracy on validation : 75.7281553398
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 64.0028403327
+			 Accuracy on test : 68.4426229508
+	- Iteration 4
+		 Fold 1
+			Accuracy on train : 63.2258064516
+			Accuracy on test : 72.131147541
+			Accuracy on validation : 74.7572815534
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 71.6981132075
+			Accuracy on test : 72.131147541
+			Accuracy on validation : 75.7281553398
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 67.4619598296
+			 Accuracy on test : 72.131147541
+	- Iteration 5
+		 Fold 1
+			Accuracy on train : 63.2258064516
+			Accuracy on test : 70.4918032787
+			Accuracy on validation : 72.8155339806
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 72.3270440252
+			Accuracy on test : 66.393442623
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 67.7764252384
+			 Accuracy on test : 68.4426229508
+	- Iteration 6
+		 Fold 1
+			Accuracy on train : 62.5806451613
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 74.7572815534
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 78.6163522013
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 70.5984986813
+			 Accuracy on test : 72.9508196721
+	- Iteration 7
+		 Fold 1
+			Accuracy on train : 64.5161290323
+			Accuracy on test : 72.131147541
+			Accuracy on validation : 75.7281553398
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 75.4716981132
+			Accuracy on test : 68.8524590164
+			Accuracy on validation : 86.4077669903
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 69.9939135727
+			 Accuracy on test : 70.4918032787
+	- Iteration 8
+		 Fold 1
+			Accuracy on train : 66.4516129032
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 77.6699029126
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 80.5031446541
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 81.5533980583
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 73.4773787787
+			 Accuracy on test : 74.5901639344
+	- Iteration 9
+		 Fold 1
+			Accuracy on train : 70.3225806452
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 82.5242718447
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 77.358490566
+			Accuracy on test : 71.3114754098
+			Accuracy on validation : 81.5533980583
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 73.8405356056
+			 Accuracy on test : 73.3606557377
+	- Iteration 10
+		 Fold 1
+			Accuracy on train : 70.9677419355
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 81.5533980583
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.2452830189
+			Accuracy on test : 70.4918032787
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 75.1065124772
+			 Accuracy on test : 73.3606557377
+	- Iteration 11
+		 Fold 1
+			Accuracy on train : 76.1290322581
+			Accuracy on test : 71.3114754098
+			Accuracy on validation : 80.5825242718
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 78.6163522013
+			Accuracy on test : 72.131147541
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 77.3726922297
+			 Accuracy on test : 71.7213114754
+	- Iteration 12
+		 Fold 1
+			Accuracy on train : 74.1935483871
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 77.358490566
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 75.7760194766
+			 Accuracy on test : 73.7704918033
+	- Iteration 13
+		 Fold 1
+			Accuracy on train : 74.8387096774
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 75.4716981132
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 75.1552038953
+			 Accuracy on test : 77.868852459
+	- Iteration 14
+		 Fold 1
+			Accuracy on train : 81.2903225806
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 79.2452830189
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.2678027998
+			 Accuracy on test : 77.0491803279
+	- Iteration 15
+		 Fold 1
+			Accuracy on train : 79.3548387097
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 82.5242718447
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 82.3899371069
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 86.4077669903
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.8723879083
+			 Accuracy on test : 79.0983606557
+	- Iteration 16
+		 Fold 1
+			Accuracy on train : 79.3548387097
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 85.534591195
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 86.4077669903
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 82.4447149523
+			 Accuracy on test : 77.4590163934
+	- Iteration 17
+		 Fold 1
+			Accuracy on train : 81.935483871
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 86.4077669903
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 80.9048488537
+			 Accuracy on test : 79.0983606557
+	- Iteration 18
+		 Fold 1
+			Accuracy on train : 82.5806451613
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 81.1320754717
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 81.8563603165
+			 Accuracy on test : 80.3278688525
+	- Iteration 19
+		 Fold 1
+			Accuracy on train : 81.935483871
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 86.4077669903
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 77.358490566
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.6469872185
+			 Accuracy on test : 78.6885245902
+	- Iteration 20
+		 Fold 1
+			Accuracy on train : 81.2903225806
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 76.7295597484
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.0099411645
+			 Accuracy on test : 79.0983606557
+	- Iteration 21
+		 Fold 1
+			Accuracy on train : 80.0
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 78.6163522013
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 86.4077669903
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.3081761006
+			 Accuracy on test : 79.0983606557
+	- Iteration 22
+		 Fold 1
+			Accuracy on train : 81.2903225806
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 84.4660194175
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 77.9874213836
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.6388719821
+			 Accuracy on test : 78.2786885246
+	- Iteration 23
+		 Fold 1
+			Accuracy on train : 80.0
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 77.9874213836
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.9937106918
+			 Accuracy on test : 79.0983606557
+	- Iteration 24
+		 Fold 1
+			Accuracy on train : 79.3548387097
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 74.8427672956
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 77.0988030026
+			 Accuracy on test : 79.5081967213
+	- Iteration 25
+		 Fold 1
+			Accuracy on train : 83.8709677419
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 76.1006289308
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 82.5242718447
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.9857983364
+			 Accuracy on test : 81.5573770492
+	- Iteration 26
+		 Fold 1
+			Accuracy on train : 82.5806451613
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 84.4660194175
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 76.7295597484
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.6551024549
+			 Accuracy on test : 80.3278688525
+	- Iteration 27
+		 Fold 1
+			Accuracy on train : 82.5806451613
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 77.358490566
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.9695678637
+			 Accuracy on test : 80.737704918
+	- Iteration 28
+		 Fold 1
+			Accuracy on train : 82.5806451613
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 76.7295597484
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.6551024549
+			 Accuracy on test : 79.9180327869
+	- Iteration 29
+		 Fold 1
+			Accuracy on train : 83.2258064516
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 76.1006289308
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.6632176912
+			 Accuracy on test : 80.737704918
+	- Iteration 30
+		 Fold 1
+			Accuracy on train : 83.8709677419
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 74.213836478
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 82.5242718447
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.04240211
+			 Accuracy on test : 80.3278688525
+	- Iteration 31
+		 Fold 1
+			Accuracy on train : 83.8709677419
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 86.4077669903
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 76.7295597484
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 80.3002637452
+			 Accuracy on test : 80.737704918
+	- Iteration 32
+		 Fold 1
+			Accuracy on train : 83.8709677419
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 86.4077669903
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 76.1006289308
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 79.9857983364
+			 Accuracy on test : 80.737704918
+	- Iteration 33
+		 Fold 1
+			Accuracy on train : 84.5161290323
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 87.3786407767
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 75.4716981132
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 79.9939135727
+			 Accuracy on test : 81.9672131148
+	- Iteration 34
+		 Fold 1
+			Accuracy on train : 84.5161290323
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 86.4077669903
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 76.1006289308
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 80.5825242718
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.3083789815
+			 Accuracy on test : 80.737704918
+	- Iteration 35
+		 Fold 1
+			Accuracy on train : 83.8709677419
+			Accuracy on test : 84.4262295082
+			Accuracy on validation : 86.4077669903
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 77.358490566
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 82.5242718447
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.614729154
+			 Accuracy on test : 82.3770491803
+	- Iteration 36
+		 Fold 1
+			Accuracy on train : 84.5161290323
+			Accuracy on test : 84.4262295082
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 77.9874213836
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 81.251775208
+			 Accuracy on test : 81.9672131148
+	- Iteration 37
+		 Fold 1
+			Accuracy on train : 83.2258064516
+			Accuracy on test : 85.2459016393
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 77.9874213836
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.6066139176
+			 Accuracy on test : 81.9672131148
+	- Iteration 38
+		 Fold 1
+			Accuracy on train : 83.8709677419
+			Accuracy on test : 85.2459016393
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 77.9874213836
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.9291945628
+			 Accuracy on test : 83.1967213115
+	- Iteration 39
+		 Fold 1
+			Accuracy on train : 82.5806451613
+			Accuracy on test : 84.4262295082
+			Accuracy on validation : 86.4077669903
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 77.9874213836
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.2840332725
+			 Accuracy on test : 81.5573770492
+	- Iteration 40
+		 Fold 1
+			Accuracy on train : 83.2258064516
+			Accuracy on test : 84.4262295082
+			Accuracy on validation : 86.4077669903
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 77.9874213836
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.6066139176
+			 Accuracy on test : 81.5573770492
+	- Iteration 41
+		 Fold 1
+			Accuracy on train : 81.935483871
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 77.9874213836
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.9614526273
+			 Accuracy on test : 80.737704918
+	- Iteration 42
+		 Fold 1
+			Accuracy on train : 79.3548387097
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 79.2452830189
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 86.4077669903
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.3000608643
+			 Accuracy on test : 80.3278688525
+	- Iteration 43
+		 Fold 1
+			Accuracy on train : 81.935483871
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 78.6163522013
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.2759180361
+			 Accuracy on test : 79.9180327869
+	- Iteration 44
+		 Fold 1
+			Accuracy on train : 79.3548387097
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 86.4077669903
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 79.6145262731
+			 Accuracy on test : 79.5081967213
+	- Iteration 45
+		 Fold 1
+			Accuracy on train : 81.935483871
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 86.4077669903
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.9048488537
+			 Accuracy on test : 79.5081967213
+	- Iteration 46
+		 Fold 1
+			Accuracy on train : 80.6451612903
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 81.7610062893
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 87.3786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 81.2030837898
+			 Accuracy on test : 80.737704918
+	- Iteration 47
+		 Fold 1
+			Accuracy on train : 81.935483871
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 84.4660194175
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 81.7610062893
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 87.3786407767
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 81.8482450801
+			 Accuracy on test : 79.9180327869
+	- Iteration 48
+		 Fold 1
+			Accuracy on train : 81.935483871
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 84.4660194175
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 80.5031446541
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 81.2193142625
+			 Accuracy on test : 80.737704918
+	- Iteration 49
+		 Fold 1
+			Accuracy on train : 81.2903225806
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 79.2452830189
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 85.4368932039
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 80.2678027998
+			 Accuracy on test : 78.6885245902
+	- Iteration 50
+		 Fold 1
+			Accuracy on train : 81.935483871
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 84.4660194175
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 79.2452830189
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.5903834449
+			 Accuracy on test : 79.5081967213
+	- Iteration 51
+		 Fold 1
+			Accuracy on train : 81.2903225806
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 86.4077669903
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.5822682086
+			 Accuracy on test : 79.0983606557
+	- Iteration 52
+		 Fold 1
+			Accuracy on train : 80.0
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 80.5031446541
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 87.3786407767
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 80.251572327
+			 Accuracy on test : 79.9180327869
+	- Iteration 53
+		 Fold 1
+			Accuracy on train : 80.6451612903
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 81.1320754717
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 88.3495145631
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.888618381
+			 Accuracy on test : 79.9180327869
+	- Iteration 54
+		 Fold 1
+			Accuracy on train : 80.6451612903
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 85.4368932039
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 87.3786407767
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.2596875634
+			 Accuracy on test : 80.3278688525
+	- Iteration 55
+		 Fold 1
+			Accuracy on train : 81.2903225806
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 86.4077669903
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 81.7610062893
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 88.3495145631
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 81.525664435
+			 Accuracy on test : 80.3278688525
+	- Iteration 56
+		 Fold 1
+			Accuracy on train : 81.935483871
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 87.3786407767
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.9048488537
+			 Accuracy on test : 79.9180327869
+	- Iteration 57
+		 Fold 1
+			Accuracy on train : 81.935483871
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 86.4077669903
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 87.3786407767
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.9048488537
+			 Accuracy on test : 79.0983606557
+	- Iteration 58
+		 Fold 1
+			Accuracy on train : 81.2903225806
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 86.4077669903
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 80.5822682086
+			 Accuracy on test : 80.3278688525
+	- Iteration 59
+		 Fold 1
+			Accuracy on train : 80.6451612903
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 79.2452830189
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 86.4077669903
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.9452221546
+			 Accuracy on test : 79.5081967213
+	- Iteration 60
+		 Fold 1
+			Accuracy on train : 79.3548387097
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 87.3786407767
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.6145262731
+			 Accuracy on test : 79.9180327869
+	- Iteration 61
+		 Fold 1
+			Accuracy on train : 79.3548387097
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 77.9874213836
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 86.4077669903
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.6711300467
+			 Accuracy on test : 78.6885245902
+	- Iteration 62
+		 Fold 1
+			Accuracy on train : 78.7096774194
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 79.2452830189
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.9774802191
+			 Accuracy on test : 79.5081967213
+	- Iteration 63
+		 Fold 1
+			Accuracy on train : 77.4193548387
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 79.2452830189
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 88.3495145631
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.3323189288
+			 Accuracy on test : 79.5081967213
+	- Iteration 64
+		 Fold 1
+			Accuracy on train : 78.7096774194
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 78.6163522013
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 87.3786407767
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 78.6630148103
+			 Accuracy on test : 79.5081967213
+	- Iteration 65
+		 Fold 1
+			Accuracy on train : 77.4193548387
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 87.3786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 78.6467843376
+			 Accuracy on test : 79.9180327869
+	- Iteration 66
+		 Fold 1
+			Accuracy on train : 80.0
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 88.3495145631
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.9371069182
+			 Accuracy on test : 79.5081967213
+	- Iteration 67
+		 Fold 1
+			Accuracy on train : 78.7096774194
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.2452830189
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 87.3786407767
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.9774802191
+			 Accuracy on test : 78.6885245902
+	- Iteration 68
+		 Fold 1
+			Accuracy on train : 79.3548387097
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 80.5031446541
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 88.3495145631
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.9289916819
+			 Accuracy on test : 79.5081967213
+	- Iteration 69
+		 Fold 1
+			Accuracy on train : 80.6451612903
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 81.1320754717
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 89.3203883495
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.888618381
+			 Accuracy on test : 79.9180327869
+	- Iteration 70
+		 Fold 1
+			Accuracy on train : 79.3548387097
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 81.1320754717
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 89.3203883495
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 80.2434570907
+			 Accuracy on test : 79.5081967213
+	- Iteration 71
+		 Fold 1
+			Accuracy on train : 80.0
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 80.5031446541
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 88.3495145631
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 80.251572327
+			 Accuracy on test : 79.5081967213
+	- Iteration 72
+		 Fold 1
+			Accuracy on train : 80.0
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 85.4368932039
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 88.3495145631
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 79.9371069182
+			 Accuracy on test : 79.0983606557
+	- Iteration 73
+		 Fold 1
+			Accuracy on train : 78.7096774194
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 80.5031446541
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 88.3495145631
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.6064110367
+			 Accuracy on test : 79.5081967213
+	- Iteration 74
+		 Fold 1
+			Accuracy on train : 77.4193548387
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 78.6163522013
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 88.3495145631
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 78.01785352
+			 Accuracy on test : 79.0983606557
+	- Iteration 75
+		 Fold 1
+			Accuracy on train : 80.0
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 86.4077669903
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 78.6163522013
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 87.3786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 79.3081761006
+			 Accuracy on test : 79.0983606557
+	- Iteration 76
+		 Fold 1
+			Accuracy on train : 76.7741935484
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.3242036924
+			 Accuracy on test : 79.0983606557
+	- Iteration 77
+		 Fold 1
+			Accuracy on train : 76.7741935484
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 79.2452830189
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 87.3786407767
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.0097382836
+			 Accuracy on test : 79.5081967213
+	- Iteration 78
+		 Fold 1
+			Accuracy on train : 76.7741935484
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 80.5031446541
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 89.3203883495
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.6386691012
+			 Accuracy on test : 79.5081967213
+	- Iteration 79
+		 Fold 1
+			Accuracy on train : 76.1290322581
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 84.4660194175
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 79.2452830189
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 88.3495145631
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 77.6871576385
+			 Accuracy on test : 79.0983606557
+	- Iteration 80
+		 Fold 1
+			Accuracy on train : 76.7741935484
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 84.4660194175
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 80.5031446541
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 88.3495145631
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 78.6386691012
+			 Accuracy on test : 78.6885245902
+	- Iteration 81
+		 Fold 1
+			Accuracy on train : 76.1290322581
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 78.6163522013
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 77.3726922297
+			 Accuracy on test : 78.6885245902
+	- Iteration 82
+		 Fold 1
+			Accuracy on train : 76.7741935484
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 78.6163522013
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 87.3786407767
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 77.6952728748
+			 Accuracy on test : 78.6885245902
+	- Iteration 83
+		 Fold 1
+			Accuracy on train : 77.4193548387
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 76.1006289308
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 76.7599918848
+			 Accuracy on test : 79.0983606557
+	- Iteration 84
+		 Fold 1
+			Accuracy on train : 76.7741935484
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 76.7295597484
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 76.7518766484
+			 Accuracy on test : 78.6885245902
+	- Iteration 85
+		 Fold 1
+			Accuracy on train : 74.8387096774
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 77.358490566
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 84.4660194175
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 76.0986001217
+			 Accuracy on test : 78.6885245902
+	- Iteration 86
+		 Fold 1
+			Accuracy on train : 74.8387096774
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.2452830189
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 88.3495145631
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 77.0419963481
+			 Accuracy on test : 78.2786885246
+	- Iteration 87
+		 Fold 1
+			Accuracy on train : 74.1935483871
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 77.9874213836
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 76.0904848854
+			 Accuracy on test : 78.2786885246
+	- Iteration 88
+		 Fold 1
+			Accuracy on train : 75.4838709677
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 83.4951456311
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 77.9874213836
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 76.7356461757
+			 Accuracy on test : 78.6885245902
+	- Iteration 89
+		 Fold 1
+			Accuracy on train : 75.4838709677
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 78.6163522013
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 86.4077669903
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 77.0501115845
+			 Accuracy on test : 78.2786885246
+	- Iteration 90
+		 Fold 1
+			Accuracy on train : 75.4838709677
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 87.3786407767
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 77.6790424021
+			 Accuracy on test : 78.2786885246
+	- Iteration 91
+		 Fold 1
+			Accuracy on train : 75.4838709677
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 87.3786407767
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 77.6790424021
+			 Accuracy on test : 78.2786885246
+	- Iteration 92
+		 Fold 1
+			Accuracy on train : 76.1290322581
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 80.5031446541
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 88.3495145631
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.3160884561
+			 Accuracy on test : 78.6885245902
+	- Iteration 93
+		 Fold 1
+			Accuracy on train : 76.1290322581
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 81.1320754717
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 89.3203883495
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.6305538649
+			 Accuracy on test : 78.6885245902
+	- Iteration 94
+		 Fold 1
+			Accuracy on train : 75.4838709677
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 81.1320754717
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 89.3203883495
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.3079732197
+			 Accuracy on test : 78.6885245902
+	- Iteration 95
+		 Fold 1
+			Accuracy on train : 76.1290322581
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 81.7610062893
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 90.2912621359
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.9450192737
+			 Accuracy on test : 78.6885245902
+	- Iteration 96
+		 Fold 1
+			Accuracy on train : 76.1290322581
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 88.3495145631
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.0016230473
+			 Accuracy on test : 78.6885245902
+	- Iteration 97
+		 Fold 1
+			Accuracy on train : 76.1290322581
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 80.5031446541
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 88.3495145631
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 78.3160884561
+			 Accuracy on test : 78.2786885246
+	- Iteration 98
+		 Fold 1
+			Accuracy on train : 74.8387096774
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 81.7610062893
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 88.3495145631
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.2998579834
+			 Accuracy on test : 78.2786885246
+	- Iteration 99
+		 Fold 1
+			Accuracy on train : 75.4838709677
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 80.5031446541
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 88.3495145631
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 77.9935078109
+			 Accuracy on test : 78.2786885246
+	- Iteration 100
+		 Fold 1
+			Accuracy on train : 76.1290322581
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 87.3786407767
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.0016230473
+			 Accuracy on test : 77.868852459
+	- Iteration 101
+		 Fold 1
+			Accuracy on train : 77.4193548387
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 86.4077669903
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.6467843376
+			 Accuracy on test : 77.868852459
+	- Iteration 102
+		 Fold 1
+			Accuracy on train : 78.7096774194
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 84.4660194175
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 79.2452830189
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 87.3786407767
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.9774802191
+			 Accuracy on test : 77.868852459
+	- Iteration 103
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 104
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 105
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 106
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 107
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 108
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 109
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 110
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 111
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 112
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 113
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 114
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 115
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 116
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 117
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 118
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 119
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 120
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 121
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 122
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 123
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 124
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 125
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 126
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 127
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 128
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 129
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 130
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 131
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 132
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 133
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 134
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 135
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 136
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 137
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 138
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 139
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 140
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 141
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 142
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 143
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 144
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 145
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 146
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 147
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 148
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 149
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 150
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 151
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 152
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 153
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 154
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 155
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 156
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 157
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 158
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 159
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 160
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 161
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 162
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 163
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 164
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 165
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 166
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 167
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 168
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 169
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 170
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 171
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 172
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 173
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 174
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 175
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 176
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 177
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 178
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 179
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 180
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 181
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 182
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 183
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 184
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 185
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 186
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 187
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 188
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 189
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 190
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 191
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 192
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 193
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 194
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 195
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 196
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 197
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 198
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 199
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 200
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 201
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 202
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 203
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 204
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 205
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 206
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 207
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 208
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 209
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 210
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 211
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 212
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 213
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 214
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 215
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 216
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 217
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 218
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 219
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 220
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 221
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 222
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 223
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 224
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 225
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 226
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 227
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 228
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 229
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 230
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 231
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 232
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 233
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 234
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 235
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 236
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 237
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 238
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 239
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 240
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 241
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 242
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 243
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 244
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 245
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 246
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 247
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 248
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 249
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 250
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 251
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 252
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 253
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 254
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 255
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 256
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 257
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 258
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 259
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 260
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 261
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 262
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 263
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 264
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 265
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 266
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 267
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 268
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 269
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 270
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 271
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 272
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 273
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 274
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 275
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 276
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 277
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 278
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 279
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 280
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 281
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 282
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 283
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 284
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 285
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 286
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 287
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 288
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 289
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 290
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 291
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 292
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 293
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 294
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 295
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 296
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 297
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 298
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 299
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 300
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 301
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 302
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 303
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 304
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 305
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 306
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 307
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 308
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 309
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 310
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 311
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 312
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 313
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 314
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 315
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 316
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 317
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 318
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 319
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 320
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 321
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 322
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 323
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 324
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 325
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 326
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 327
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 328
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 329
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 330
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 331
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 332
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 333
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 334
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 335
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 336
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 337
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 338
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 339
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 340
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 341
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 342
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 343
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 344
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 345
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 346
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 347
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 348
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 349
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 350
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 351
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 352
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 353
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 354
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 355
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 356
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 357
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 358
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 359
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 360
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 361
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 362
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 363
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 364
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 365
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 366
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 367
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 368
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 369
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 370
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 371
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 372
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 373
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 374
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 375
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 376
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 377
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 378
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 379
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 380
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 381
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 382
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 383
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 384
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 385
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 386
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 387
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 388
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 389
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 390
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 391
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 392
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 393
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 394
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 395
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 396
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 397
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 398
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 399
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 400
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 401
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 402
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 403
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 404
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 405
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 406
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 407
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 408
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 409
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 410
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 411
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 412
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 413
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 414
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 415
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 416
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 417
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 418
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 419
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 420
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 421
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 422
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 423
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 424
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 425
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 426
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 427
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 428
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 429
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 430
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 431
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 432
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 433
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 434
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 435
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 436
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 437
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 438
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 439
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 440
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 441
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 442
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 443
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 444
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 445
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 446
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 447
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 448
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 449
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 450
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 451
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 452
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 453
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 454
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 455
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 456
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 457
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 458
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 459
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 460
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 461
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 462
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 463
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 464
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 465
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 466
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 467
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 468
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 469
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 470
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 471
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 472
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 473
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 474
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 475
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 476
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 477
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 478
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 479
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 480
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 481
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 482
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 483
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 484
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 485
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 486
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 487
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 488
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 489
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 490
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 491
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 492
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 493
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 494
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 495
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 496
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 497
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 498
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 499
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 500
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 501
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 502
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 503
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 504
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 505
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 506
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 507
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 508
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 509
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 510
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 511
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 512
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 513
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 514
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 515
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 516
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 517
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 518
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 519
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 520
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 521
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 522
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 523
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 524
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 525
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 526
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 527
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 528
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 529
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 530
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 531
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 532
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 533
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 534
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 535
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 536
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 537
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 538
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 539
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 540
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 541
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 542
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 543
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 544
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 545
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 546
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 547
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 548
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 549
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 550
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 551
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 552
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 553
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 554
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 555
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 556
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 557
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 558
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 559
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 560
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 561
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 562
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 563
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 564
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 565
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 566
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 567
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 568
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 569
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 570
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 571
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 572
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 573
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 574
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 575
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 576
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 577
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 578
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 579
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 580
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 581
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 582
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 583
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 584
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 585
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 586
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 587
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 588
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 589
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 590
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 591
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 592
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 593
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 594
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 595
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 596
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 597
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 598
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 599
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 600
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 601
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 602
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 603
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 604
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 605
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 606
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 607
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 608
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 609
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 610
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 611
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 612
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 613
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 614
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 615
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 616
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 617
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 618
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 619
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 620
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 621
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 622
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 623
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 624
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 625
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 626
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 627
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 628
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 629
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 630
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 631
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 632
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 633
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 634
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 635
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 636
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 637
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 638
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 639
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 640
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 641
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 642
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 643
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 644
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 645
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 646
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 647
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 648
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 649
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 650
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 651
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 652
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 653
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 654
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 655
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 656
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 657
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 658
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 659
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 660
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 661
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 662
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 663
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 664
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 665
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 666
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 667
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 668
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 669
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 670
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 671
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 672
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 673
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 674
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 675
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 676
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 677
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 678
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 679
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 680
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 681
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 682
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 683
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 684
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 685
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 686
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 687
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 688
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 689
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 690
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 691
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 692
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 693
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 694
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 695
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 696
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 697
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 698
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 699
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 700
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 701
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 702
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 703
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 704
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 705
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 706
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 707
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 708
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 709
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 710
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 711
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 712
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 713
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 714
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 715
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 716
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 717
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 718
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 719
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 720
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 721
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 722
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 723
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 724
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 725
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 726
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 727
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 728
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 729
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 730
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 731
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 732
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 733
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 734
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 735
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 736
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 737
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 738
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 739
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 740
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 741
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 742
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 743
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 744
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 745
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 746
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 747
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 748
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 749
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 750
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 751
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 752
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 753
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 754
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 755
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 756
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 757
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 758
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 759
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 760
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 761
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 762
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 763
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 764
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 765
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 766
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 767
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 768
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 769
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 770
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 771
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 772
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 773
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 774
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 775
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 776
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 777
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 778
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 779
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 780
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 781
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 782
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 783
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 784
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 785
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 786
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 787
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 788
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 789
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 790
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 791
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 792
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 793
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 794
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 795
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 796
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 797
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 798
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 799
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 800
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 801
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 802
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 803
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 804
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 805
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 806
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 807
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 808
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 809
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 810
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 811
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 812
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 813
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 814
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 815
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 816
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 817
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 818
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 819
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 820
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 821
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 822
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 823
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 824
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 825
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 826
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 827
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 828
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 829
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 830
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 831
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 832
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 833
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 834
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 835
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 836
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 837
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 838
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 839
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 840
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 841
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 842
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 843
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 844
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 845
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 846
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 847
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 848
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 849
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 850
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 851
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 852
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 853
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 854
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 855
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 856
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 857
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 858
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 859
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 860
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 861
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 862
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 863
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 864
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 865
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 866
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 867
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 868
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 869
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 870
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 871
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 872
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 873
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 874
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 875
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 876
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 877
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 878
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 879
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 880
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 881
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 882
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 883
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 884
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 885
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 886
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 887
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 888
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 889
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 890
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 891
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 892
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 893
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 894
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 895
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 896
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 897
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 898
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 899
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 900
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 901
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 902
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 903
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 904
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 905
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 906
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 907
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 908
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 909
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 910
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 911
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 912
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 913
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 914
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 915
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 916
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 917
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 918
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 919
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 920
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 921
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 922
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 923
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 924
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 925
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 926
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 927
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 928
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 929
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 930
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 931
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 932
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 933
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 934
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 935
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 936
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 937
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 938
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 939
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 940
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 941
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 942
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 943
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 944
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 945
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 946
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 947
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 948
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 949
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 950
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 951
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 952
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 953
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 954
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 955
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 956
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 957
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 958
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 959
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 960
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 961
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 962
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 963
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 964
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 965
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 966
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 967
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 968
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 969
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 970
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 971
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 972
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 973
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 974
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 975
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 976
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 977
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 978
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 979
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 980
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 981
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 982
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 983
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 984
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 985
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 986
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 987
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 988
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 989
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 990
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 991
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 992
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 993
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 994
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 995
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 996
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 997
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 998
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 999
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 1000
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+
+Computation time on 1 cores : 
+	Database extraction time : 0:00:00
+	                         Learn     Prediction
+	         Fold 1        0:06:03        0:00:15
+	         Fold 2        0:12:21        0:00:15
+	          Total        0:18:25        0:00:30
+	So a total classification time of 0:12:36.
+
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-115022-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-115022-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..e8da3267
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-115022-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,655 @@
+2016-08-24 11:50:22,490 INFO: Start:	 Read HDF5 Database Files for ModifiedMultiOmic
+2016-08-24 11:50:22,491 INFO: Info:	 Labels used: No, Yes
+2016-08-24 11:50:22,491 INFO: Info:	 Length of dataset:347
+2016-08-24 11:50:22,493 INFO: ### Main Programm for Multiview Classification
+2016-08-24 11:50:22,493 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 11:50:22,493 INFO: Info:	 Shape of Methyl_ :(347, 25978)
+2016-08-24 11:50:22,494 INFO: Info:	 Shape of MiRNA__ :(347, 1046)
+2016-08-24 11:50:22,494 INFO: Info:	 Shape of RANSeq_ :(347, 73599)
+2016-08-24 11:50:22,494 INFO: Info:	 Shape of Clinic_ :(347, 127)
+2016-08-24 11:50:22,495 INFO: Done:	 Read Database Files
+2016-08-24 11:50:22,495 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-24 11:50:22,498 INFO: Done:	 Determine validation split
+2016-08-24 11:50:22,498 INFO: Start:	 Determine 2 folds
+2016-08-24 11:50:22,508 INFO: Info:	 Length of Learning Sets: 122
+2016-08-24 11:50:22,508 INFO: Info:	 Length of Testing Sets: 122
+2016-08-24 11:50:22,508 INFO: Info:	 Length of Validation Set: 103
+2016-08-24 11:50:22,509 INFO: Done:	 Determine folds
+2016-08-24 11:50:22,509 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-24 11:50:22,509 INFO: 	Start:	 Fold number 1
+2016-08-24 11:50:24,147 DEBUG: 		Start:	 Iteration 1
+2016-08-24 11:50:24,169 DEBUG: 			View 0 : 0.496855345912
+2016-08-24 11:50:24,180 DEBUG: 			View 1 : 0.622641509434
+2016-08-24 11:50:24,222 DEBUG: 			View 2 : 0.622641509434
+2016-08-24 11:50:24,230 DEBUG: 			View 3 : 0.471698113208
+2016-08-24 11:50:24,276 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:50:24,364 DEBUG: 		Start:	 Iteration 2
+2016-08-24 11:50:24,382 DEBUG: 			View 0 : 0.477987421384
+2016-08-24 11:50:24,390 DEBUG: 			View 1 : 0.591194968553
+2016-08-24 11:50:24,491 DEBUG: 			View 2 : 0.610062893082
+2016-08-24 11:50:24,499 DEBUG: 			View 3 : 0.547169811321
+2016-08-24 11:50:24,557 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:50:24,711 DEBUG: 		Start:	 Iteration 3
+2016-08-24 11:50:24,728 DEBUG: 			View 0 : 0.345911949686
+2016-08-24 11:50:24,737 DEBUG: 			View 1 : 0.48427672956
+2016-08-24 11:50:24,825 DEBUG: 			View 2 : 0.540880503145
+2016-08-24 11:50:24,833 DEBUG: 			View 3 : 0.660377358491
+2016-08-24 11:50:24,890 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:50:25,106 DEBUG: 		Start:	 Iteration 4
+2016-08-24 11:50:25,124 DEBUG: 			View 0 : 0.427672955975
+2016-08-24 11:50:25,132 DEBUG: 			View 1 : 0.496855345912
+2016-08-24 11:50:25,223 DEBUG: 			View 2 : 0.698113207547
+2016-08-24 11:50:25,231 DEBUG: 			View 3 : 0.566037735849
+2016-08-24 11:50:25,293 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:50:25,589 DEBUG: 		Start:	 Iteration 5
+2016-08-24 11:50:25,610 DEBUG: 			View 0 : 0.503144654088
+2016-08-24 11:50:25,626 DEBUG: 			View 1 : 0.603773584906
+2016-08-24 11:50:25,714 DEBUG: 			View 2 : 0.522012578616
+2016-08-24 11:50:25,722 DEBUG: 			View 3 : 0.647798742138
+2016-08-24 11:50:25,785 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:50:26,134 DEBUG: 		Start:	 Iteration 6
+2016-08-24 11:50:26,151 DEBUG: 			View 0 : 0.40251572327
+2016-08-24 11:50:26,159 DEBUG: 			View 1 : 0.704402515723
+2016-08-24 11:50:26,249 DEBUG: 			View 2 : 0.547169811321
+2016-08-24 11:50:26,257 DEBUG: 			View 3 : 0.59748427673
+2016-08-24 11:50:26,320 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:50:26,737 DEBUG: 		Start:	 Iteration 7
+2016-08-24 11:50:26,754 DEBUG: 			View 0 : 0.51572327044
+2016-08-24 11:50:26,762 DEBUG: 			View 1 : 0.48427672956
+2016-08-24 11:50:26,851 DEBUG: 			View 2 : 0.578616352201
+2016-08-24 11:50:26,859 DEBUG: 			View 3 : 0.610062893082
+2016-08-24 11:50:26,925 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:50:27,480 DEBUG: 		Start:	 Iteration 8
+2016-08-24 11:50:27,500 DEBUG: 			View 0 : 0.635220125786
+2016-08-24 11:50:27,513 DEBUG: 			View 1 : 0.389937106918
+2016-08-24 11:50:27,646 DEBUG: 			View 2 : 0.559748427673
+2016-08-24 11:50:27,661 DEBUG: 			View 3 : 0.584905660377
+2016-08-24 11:50:27,774 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:50:28,343 DEBUG: 		Start:	 Iteration 9
+2016-08-24 11:50:28,360 DEBUG: 			View 0 : 0.440251572327
+2016-08-24 11:50:28,368 DEBUG: 			View 1 : 0.528301886792
+2016-08-24 11:50:28,458 DEBUG: 			View 2 : 0.641509433962
+2016-08-24 11:50:28,466 DEBUG: 			View 3 : 0.603773584906
+2016-08-24 11:50:28,538 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:50:29,134 DEBUG: 		Start:	 Iteration 10
+2016-08-24 11:50:29,150 DEBUG: 			View 0 : 0.37106918239
+2016-08-24 11:50:29,158 DEBUG: 			View 1 : 0.660377358491
+2016-08-24 11:50:29,248 DEBUG: 			View 2 : 0.48427672956
+2016-08-24 11:50:29,256 DEBUG: 			View 3 : 0.572327044025
+2016-08-24 11:50:29,328 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:50:29,975 DEBUG: 		Start:	 Iteration 11
+2016-08-24 11:50:29,992 DEBUG: 			View 0 : 0.446540880503
+2016-08-24 11:50:29,999 DEBUG: 			View 1 : 0.691823899371
+2016-08-24 11:50:30,091 DEBUG: 			View 2 : 0.48427672956
+2016-08-24 11:50:30,098 DEBUG: 			View 3 : 0.610062893082
+2016-08-24 11:50:30,172 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:50:30,885 DEBUG: 		Start:	 Iteration 12
+2016-08-24 11:50:30,902 DEBUG: 			View 0 : 0.408805031447
+2016-08-24 11:50:30,909 DEBUG: 			View 1 : 0.377358490566
+2016-08-24 11:50:30,995 DEBUG: 			View 2 : 0.616352201258
+2016-08-24 11:50:31,004 DEBUG: 			View 3 : 0.584905660377
+2016-08-24 11:50:31,080 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:50:31,869 DEBUG: 		Start:	 Iteration 13
+2016-08-24 11:50:31,885 DEBUG: 			View 0 : 0.415094339623
+2016-08-24 11:50:31,893 DEBUG: 			View 1 : 0.578616352201
+2016-08-24 11:50:31,978 DEBUG: 			View 2 : 0.603773584906
+2016-08-24 11:50:31,986 DEBUG: 			View 3 : 0.641509433962
+2016-08-24 11:50:32,067 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:50:32,908 DEBUG: 		Start:	 Iteration 14
+2016-08-24 11:50:32,924 DEBUG: 			View 0 : 0.440251572327
+2016-08-24 11:50:32,932 DEBUG: 			View 1 : 0.654088050314
+2016-08-24 11:50:33,013 DEBUG: 			View 2 : 0.603773584906
+2016-08-24 11:50:33,020 DEBUG: 			View 3 : 0.59748427673
+2016-08-24 11:50:33,100 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:50:33,998 DEBUG: 		Start:	 Iteration 15
+2016-08-24 11:50:34,015 DEBUG: 			View 0 : 0.616352201258
+2016-08-24 11:50:34,022 DEBUG: 			View 1 : 0.584905660377
+2016-08-24 11:50:34,108 DEBUG: 			View 2 : 0.622641509434
+2016-08-24 11:50:34,116 DEBUG: 			View 3 : 0.660377358491
+2016-08-24 11:50:34,198 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:50:35,164 DEBUG: 		Start:	 Iteration 16
+2016-08-24 11:50:35,181 DEBUG: 			View 0 : 0.358490566038
+2016-08-24 11:50:35,189 DEBUG: 			View 1 : 0.641509433962
+2016-08-24 11:50:35,278 DEBUG: 			View 2 : 0.566037735849
+2016-08-24 11:50:35,286 DEBUG: 			View 3 : 0.572327044025
+2016-08-24 11:50:35,370 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:50:36,375 DEBUG: 		Start:	 Iteration 17
+2016-08-24 11:50:36,391 DEBUG: 			View 0 : 0.477987421384
+2016-08-24 11:50:36,399 DEBUG: 			View 1 : 0.698113207547
+2016-08-24 11:50:36,489 DEBUG: 			View 2 : 0.660377358491
+2016-08-24 11:50:36,496 DEBUG: 			View 3 : 0.610062893082
+2016-08-24 11:50:36,583 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:50:37,656 DEBUG: 		Start:	 Iteration 18
+2016-08-24 11:50:37,672 DEBUG: 			View 0 : 0.389937106918
+2016-08-24 11:50:37,680 DEBUG: 			View 1 : 0.584905660377
+2016-08-24 11:50:37,770 DEBUG: 			View 2 : 0.591194968553
+2016-08-24 11:50:37,778 DEBUG: 			View 3 : 0.59748427673
+2016-08-24 11:50:37,866 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:50:38,996 DEBUG: 		Start:	 Iteration 19
+2016-08-24 11:50:39,013 DEBUG: 			View 0 : 0.591194968553
+2016-08-24 11:50:39,020 DEBUG: 			View 1 : 0.251572327044
+2016-08-24 11:50:39,101 DEBUG: 			View 2 : 0.547169811321
+2016-08-24 11:50:39,109 DEBUG: 			View 3 : 0.62893081761
+2016-08-24 11:50:39,199 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:50:40,389 DEBUG: 		Start:	 Iteration 20
+2016-08-24 11:50:40,406 DEBUG: 			View 0 : 0.578616352201
+2016-08-24 11:50:40,414 DEBUG: 			View 1 : 0.691823899371
+2016-08-24 11:50:40,500 DEBUG: 			View 2 : 0.59748427673
+2016-08-24 11:50:40,508 DEBUG: 			View 3 : 0.534591194969
+2016-08-24 11:50:40,600 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:50:41,849 DEBUG: 		Start:	 Iteration 21
+2016-08-24 11:50:41,866 DEBUG: 			View 0 : 0.553459119497
+2016-08-24 11:50:41,873 DEBUG: 			View 1 : 0.522012578616
+2016-08-24 11:50:41,960 DEBUG: 			View 2 : 0.553459119497
+2016-08-24 11:50:41,968 DEBUG: 			View 3 : 0.509433962264
+2016-08-24 11:50:42,063 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:50:43,380 DEBUG: 		Start:	 Iteration 22
+2016-08-24 11:50:43,397 DEBUG: 			View 0 : 0.48427672956
+2016-08-24 11:50:43,405 DEBUG: 			View 1 : 0.440251572327
+2016-08-24 11:50:43,494 DEBUG: 			View 2 : 0.509433962264
+2016-08-24 11:50:43,502 DEBUG: 			View 3 : 0.584905660377
+2016-08-24 11:50:43,600 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:50:44,988 DEBUG: 		Start:	 Iteration 23
+2016-08-24 11:50:45,005 DEBUG: 			View 0 : 0.622641509434
+2016-08-24 11:50:45,013 DEBUG: 			View 1 : 0.559748427673
+2016-08-24 11:50:45,102 DEBUG: 			View 2 : 0.559748427673
+2016-08-24 11:50:45,110 DEBUG: 			View 3 : 0.584905660377
+2016-08-24 11:50:45,209 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:50:46,651 DEBUG: 		Start:	 Iteration 24
+2016-08-24 11:50:46,668 DEBUG: 			View 0 : 0.547169811321
+2016-08-24 11:50:46,675 DEBUG: 			View 1 : 0.704402515723
+2016-08-24 11:50:46,758 DEBUG: 			View 2 : 0.547169811321
+2016-08-24 11:50:46,766 DEBUG: 			View 3 : 0.584905660377
+2016-08-24 11:50:46,867 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:50:48,357 DEBUG: 		Start:	 Iteration 25
+2016-08-24 11:50:48,374 DEBUG: 			View 0 : 0.641509433962
+2016-08-24 11:50:48,381 DEBUG: 			View 1 : 0.534591194969
+2016-08-24 11:50:48,472 DEBUG: 			View 2 : 0.496855345912
+2016-08-24 11:50:48,480 DEBUG: 			View 3 : 0.578616352201
+2016-08-24 11:50:48,583 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:50:50,137 DEBUG: 		Start:	 Iteration 26
+2016-08-24 11:50:50,153 DEBUG: 			View 0 : 0.566037735849
+2016-08-24 11:50:50,161 DEBUG: 			View 1 : 0.672955974843
+2016-08-24 11:50:50,254 DEBUG: 			View 2 : 0.647798742138
+2016-08-24 11:50:50,262 DEBUG: 			View 3 : 0.490566037736
+2016-08-24 11:50:50,368 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:50:51,980 DEBUG: 		Start:	 Iteration 27
+2016-08-24 11:50:51,997 DEBUG: 			View 0 : 0.710691823899
+2016-08-24 11:50:52,005 DEBUG: 			View 1 : 0.591194968553
+2016-08-24 11:50:52,092 DEBUG: 			View 2 : 0.559748427673
+2016-08-24 11:50:52,100 DEBUG: 			View 3 : 0.654088050314
+2016-08-24 11:50:52,208 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:50:53,885 DEBUG: 		Start:	 Iteration 28
+2016-08-24 11:50:53,902 DEBUG: 			View 0 : 0.672955974843
+2016-08-24 11:50:53,909 DEBUG: 			View 1 : 0.408805031447
+2016-08-24 11:50:53,997 DEBUG: 			View 2 : 0.566037735849
+2016-08-24 11:50:54,005 DEBUG: 			View 3 : 0.622641509434
+2016-08-24 11:50:54,115 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:50:55,861 DEBUG: 		Start:	 Iteration 29
+2016-08-24 11:50:55,878 DEBUG: 			View 0 : 0.408805031447
+2016-08-24 11:50:55,886 DEBUG: 			View 1 : 0.540880503145
+2016-08-24 11:50:55,971 DEBUG: 			View 2 : 0.528301886792
+2016-08-24 11:50:55,979 DEBUG: 			View 3 : 0.522012578616
+2016-08-24 11:50:56,093 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:50:57,922 DEBUG: 		Start:	 Iteration 30
+2016-08-24 11:50:57,939 DEBUG: 			View 0 : 0.408805031447
+2016-08-24 11:50:57,946 DEBUG: 			View 1 : 0.383647798742
+2016-08-24 11:50:58,039 DEBUG: 			View 2 : 0.540880503145
+2016-08-24 11:50:58,047 DEBUG: 			View 3 : 0.534591194969
+2016-08-24 11:50:58,162 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:51:00,061 DEBUG: 		Start:	 Iteration 31
+2016-08-24 11:51:00,078 DEBUG: 			View 0 : 0.358490566038
+2016-08-24 11:51:00,086 DEBUG: 			View 1 : 0.528301886792
+2016-08-24 11:51:00,176 DEBUG: 			View 2 : 0.528301886792
+2016-08-24 11:51:00,184 DEBUG: 			View 3 : 0.622641509434
+2016-08-24 11:51:00,301 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:51:02,266 DEBUG: 		Start:	 Iteration 32
+2016-08-24 11:51:02,284 DEBUG: 			View 0 : 0.377358490566
+2016-08-24 11:51:02,292 DEBUG: 			View 1 : 0.666666666667
+2016-08-24 11:51:02,388 DEBUG: 			View 2 : 0.572327044025
+2016-08-24 11:51:02,396 DEBUG: 			View 3 : 0.522012578616
+2016-08-24 11:51:02,517 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:51:04,541 DEBUG: 		Start:	 Iteration 33
+2016-08-24 11:51:04,557 DEBUG: 			View 0 : 0.345911949686
+2016-08-24 11:51:04,566 DEBUG: 			View 1 : 0.654088050314
+2016-08-24 11:51:04,663 DEBUG: 			View 2 : 0.51572327044
+2016-08-24 11:51:04,671 DEBUG: 			View 3 : 0.572327044025
+2016-08-24 11:51:04,794 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:51:06,888 DEBUG: 		Start:	 Iteration 34
+2016-08-24 11:51:06,904 DEBUG: 			View 0 : 0.622641509434
+2016-08-24 11:51:06,912 DEBUG: 			View 1 : 0.566037735849
+2016-08-24 11:51:06,992 DEBUG: 			View 2 : 0.522012578616
+2016-08-24 11:51:07,001 DEBUG: 			View 3 : 0.647798742138
+2016-08-24 11:51:07,125 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:51:09,330 DEBUG: 		Start:	 Iteration 35
+2016-08-24 11:51:09,347 DEBUG: 			View 0 : 0.452830188679
+2016-08-24 11:51:09,355 DEBUG: 			View 1 : 0.635220125786
+2016-08-24 11:51:09,453 DEBUG: 			View 2 : 0.59748427673
+2016-08-24 11:51:09,462 DEBUG: 			View 3 : 0.559748427673
+2016-08-24 11:51:09,592 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:51:11,779 DEBUG: 		Start:	 Iteration 36
+2016-08-24 11:51:11,796 DEBUG: 			View 0 : 0.572327044025
+2016-08-24 11:51:11,804 DEBUG: 			View 1 : 0.540880503145
+2016-08-24 11:51:11,891 DEBUG: 			View 2 : 0.51572327044
+2016-08-24 11:51:11,899 DEBUG: 			View 3 : 0.603773584906
+2016-08-24 11:51:12,026 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:51:14,260 DEBUG: 		Start:	 Iteration 37
+2016-08-24 11:51:14,277 DEBUG: 			View 0 : 0.490566037736
+2016-08-24 11:51:14,285 DEBUG: 			View 1 : 0.433962264151
+2016-08-24 11:51:14,380 DEBUG: 			View 2 : 0.578616352201
+2016-08-24 11:51:14,389 DEBUG: 			View 3 : 0.679245283019
+2016-08-24 11:51:14,518 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:51:16,845 DEBUG: 		Start:	 Iteration 38
+2016-08-24 11:51:16,862 DEBUG: 			View 0 : 0.452830188679
+2016-08-24 11:51:16,870 DEBUG: 			View 1 : 0.496855345912
+2016-08-24 11:51:16,959 DEBUG: 			View 2 : 0.503144654088
+2016-08-24 11:51:16,967 DEBUG: 			View 3 : 0.559748427673
+2016-08-24 11:51:17,099 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:51:19,449 DEBUG: 		Start:	 Iteration 39
+2016-08-24 11:51:19,466 DEBUG: 			View 0 : 0.603773584906
+2016-08-24 11:51:19,473 DEBUG: 			View 1 : 0.666666666667
+2016-08-24 11:51:19,563 DEBUG: 			View 2 : 0.540880503145
+2016-08-24 11:51:19,571 DEBUG: 			View 3 : 0.477987421384
+2016-08-24 11:51:19,705 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:51:22,122 DEBUG: 		Start:	 Iteration 40
+2016-08-24 11:51:22,139 DEBUG: 			View 0 : 0.559748427673
+2016-08-24 11:51:22,147 DEBUG: 			View 1 : 0.672955974843
+2016-08-24 11:51:22,236 DEBUG: 			View 2 : 0.559748427673
+2016-08-24 11:51:22,245 DEBUG: 			View 3 : 0.666666666667
+2016-08-24 11:51:22,381 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:51:24,842 DEBUG: 		Start:	 Iteration 41
+2016-08-24 11:51:24,859 DEBUG: 			View 0 : 0.421383647799
+2016-08-24 11:51:24,867 DEBUG: 			View 1 : 0.660377358491
+2016-08-24 11:51:24,950 DEBUG: 			View 2 : 0.616352201258
+2016-08-24 11:51:24,959 DEBUG: 			View 3 : 0.553459119497
+2016-08-24 11:51:25,097 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:51:27,616 DEBUG: 		Start:	 Iteration 42
+2016-08-24 11:51:27,633 DEBUG: 			View 0 : 0.509433962264
+2016-08-24 11:51:27,641 DEBUG: 			View 1 : 0.660377358491
+2016-08-24 11:51:27,734 DEBUG: 			View 2 : 0.522012578616
+2016-08-24 11:51:27,742 DEBUG: 			View 3 : 0.547169811321
+2016-08-24 11:51:27,882 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:51:30,452 DEBUG: 		Start:	 Iteration 43
+2016-08-24 11:51:30,469 DEBUG: 			View 0 : 0.616352201258
+2016-08-24 11:51:30,477 DEBUG: 			View 1 : 0.534591194969
+2016-08-24 11:51:30,572 DEBUG: 			View 2 : 0.509433962264
+2016-08-24 11:51:30,581 DEBUG: 			View 3 : 0.559748427673
+2016-08-24 11:51:30,723 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:51:33,333 DEBUG: 		Start:	 Iteration 44
+2016-08-24 11:51:33,349 DEBUG: 			View 0 : 0.660377358491
+2016-08-24 11:51:33,357 DEBUG: 			View 1 : 0.440251572327
+2016-08-24 11:51:33,455 DEBUG: 			View 2 : 0.62893081761
+2016-08-24 11:51:33,464 DEBUG: 			View 3 : 0.578616352201
+2016-08-24 11:51:33,607 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:51:36,279 DEBUG: 		Start:	 Iteration 45
+2016-08-24 11:51:36,296 DEBUG: 			View 0 : 0.51572327044
+2016-08-24 11:51:36,304 DEBUG: 			View 1 : 0.59748427673
+2016-08-24 11:51:36,400 DEBUG: 			View 2 : 0.660377358491
+2016-08-24 11:51:36,409 DEBUG: 			View 3 : 0.578616352201
+2016-08-24 11:51:36,556 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:51:39,318 DEBUG: 		Start:	 Iteration 46
+2016-08-24 11:51:39,334 DEBUG: 			View 0 : 0.490566037736
+2016-08-24 11:51:39,342 DEBUG: 			View 1 : 0.647798742138
+2016-08-24 11:51:39,437 DEBUG: 			View 2 : 0.534591194969
+2016-08-24 11:51:39,447 DEBUG: 			View 3 : 0.62893081761
+2016-08-24 11:51:39,596 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:51:42,394 DEBUG: 		Start:	 Iteration 47
+2016-08-24 11:51:42,410 DEBUG: 			View 0 : 0.578616352201
+2016-08-24 11:51:42,418 DEBUG: 			View 1 : 0.647798742138
+2016-08-24 11:51:42,514 DEBUG: 			View 2 : 0.547169811321
+2016-08-24 11:51:42,522 DEBUG: 			View 3 : 0.503144654088
+2016-08-24 11:51:42,673 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:51:45,517 DEBUG: 		Start:	 Iteration 48
+2016-08-24 11:51:45,533 DEBUG: 			View 0 : 0.433962264151
+2016-08-24 11:51:45,541 DEBUG: 			View 1 : 0.522012578616
+2016-08-24 11:51:45,630 DEBUG: 			View 2 : 0.616352201258
+2016-08-24 11:51:45,637 DEBUG: 			View 3 : 0.578616352201
+2016-08-24 11:51:45,789 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:51:48,860 DEBUG: 		Start:	 Iteration 49
+2016-08-24 11:51:48,876 DEBUG: 			View 0 : 0.616352201258
+2016-08-24 11:51:48,884 DEBUG: 			View 1 : 0.635220125786
+2016-08-24 11:51:48,972 DEBUG: 			View 2 : 0.59748427673
+2016-08-24 11:51:48,980 DEBUG: 			View 3 : 0.603773584906
+2016-08-24 11:51:49,140 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:51:52,141 DEBUG: 		Start:	 Iteration 50
+2016-08-24 11:51:52,158 DEBUG: 			View 0 : 0.503144654088
+2016-08-24 11:51:52,166 DEBUG: 			View 1 : 0.666666666667
+2016-08-24 11:51:52,255 DEBUG: 			View 2 : 0.578616352201
+2016-08-24 11:51:52,263 DEBUG: 			View 3 : 0.572327044025
+2016-08-24 11:51:52,421 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:51:55,452 DEBUG: 		Start:	 Iteration 51
+2016-08-24 11:51:55,469 DEBUG: 			View 0 : 0.528301886792
+2016-08-24 11:51:55,477 DEBUG: 			View 1 : 0.62893081761
+2016-08-24 11:51:55,564 DEBUG: 			View 2 : 0.578616352201
+2016-08-24 11:51:55,572 DEBUG: 			View 3 : 0.679245283019
+2016-08-24 11:51:55,731 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:51:58,822 DEBUG: 		Start:	 Iteration 52
+2016-08-24 11:51:58,839 DEBUG: 			View 0 : 0.40251572327
+2016-08-24 11:51:58,847 DEBUG: 			View 1 : 0.358490566038
+2016-08-24 11:51:58,937 DEBUG: 			View 2 : 0.559748427673
+2016-08-24 11:51:58,944 DEBUG: 			View 3 : 0.559748427673
+2016-08-24 11:51:59,110 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:52:02,297 DEBUG: 		Start:	 Iteration 53
+2016-08-24 11:52:02,314 DEBUG: 			View 0 : 0.377358490566
+2016-08-24 11:52:02,321 DEBUG: 			View 1 : 0.666666666667
+2016-08-24 11:52:02,411 DEBUG: 			View 2 : 0.509433962264
+2016-08-24 11:52:02,419 DEBUG: 			View 3 : 0.59748427673
+2016-08-24 11:52:02,583 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:52:05,819 DEBUG: 		Start:	 Iteration 54
+2016-08-24 11:52:05,836 DEBUG: 			View 0 : 0.572327044025
+2016-08-24 11:52:05,844 DEBUG: 			View 1 : 0.647798742138
+2016-08-24 11:52:05,941 DEBUG: 			View 2 : 0.603773584906
+2016-08-24 11:52:05,949 DEBUG: 			View 3 : 0.641509433962
+2016-08-24 11:52:06,118 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:52:09,420 DEBUG: 		Start:	 Iteration 55
+2016-08-24 11:52:09,437 DEBUG: 			View 0 : 0.654088050314
+2016-08-24 11:52:09,445 DEBUG: 			View 1 : 0.427672955975
+2016-08-24 11:52:09,525 DEBUG: 			View 2 : 0.591194968553
+2016-08-24 11:52:09,533 DEBUG: 			View 3 : 0.528301886792
+2016-08-24 11:52:09,700 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:52:13,042 DEBUG: 		Start:	 Iteration 56
+2016-08-24 11:52:13,058 DEBUG: 			View 0 : 0.37106918239
+2016-08-24 11:52:13,066 DEBUG: 			View 1 : 0.748427672956
+2016-08-24 11:52:13,150 DEBUG: 			View 2 : 0.584905660377
+2016-08-24 11:52:13,157 DEBUG: 			View 3 : 0.59748427673
+2016-08-24 11:52:13,330 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:52:16,739 DEBUG: 		Start:	 Iteration 57
+2016-08-24 11:52:16,756 DEBUG: 			View 0 : 0.805031446541
+2016-08-24 11:52:16,764 DEBUG: 			View 1 : 0.471698113208
+2016-08-24 11:52:16,851 DEBUG: 			View 2 : 0.591194968553
+2016-08-24 11:52:16,858 DEBUG: 			View 3 : 0.616352201258
+2016-08-24 11:52:17,034 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:52:20,629 DEBUG: 		Start:	 Iteration 58
+2016-08-24 11:52:20,646 DEBUG: 			View 0 : 0.496855345912
+2016-08-24 11:52:20,653 DEBUG: 			View 1 : 0.352201257862
+2016-08-24 11:52:20,738 DEBUG: 			View 2 : 0.647798742138
+2016-08-24 11:52:20,745 DEBUG: 			View 3 : 0.490566037736
+2016-08-24 11:52:20,924 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:52:24,455 DEBUG: 		Start:	 Iteration 59
+2016-08-24 11:52:24,471 DEBUG: 			View 0 : 0.301886792453
+2016-08-24 11:52:24,479 DEBUG: 			View 1 : 0.333333333333
+2016-08-24 11:52:24,562 DEBUG: 			View 2 : 0.51572327044
+2016-08-24 11:52:24,570 DEBUG: 			View 3 : 0.616352201258
+2016-08-24 11:52:24,747 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:52:28,327 DEBUG: 		Start:	 Iteration 60
+2016-08-24 11:52:28,344 DEBUG: 			View 0 : 0.559748427673
+2016-08-24 11:52:28,352 DEBUG: 			View 1 : 0.591194968553
+2016-08-24 11:52:28,439 DEBUG: 			View 2 : 0.51572327044
+2016-08-24 11:52:28,447 DEBUG: 			View 3 : 0.446540880503
+2016-08-24 11:52:28,627 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:52:32,268 DEBUG: 		Start:	 Iteration 61
+2016-08-24 11:52:32,284 DEBUG: 			View 0 : 0.547169811321
+2016-08-24 11:52:32,292 DEBUG: 			View 1 : 0.691823899371
+2016-08-24 11:52:32,379 DEBUG: 			View 2 : 0.553459119497
+2016-08-24 11:52:32,387 DEBUG: 			View 3 : 0.59748427673
+2016-08-24 11:52:32,568 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:52:36,264 DEBUG: 		Start:	 Iteration 62
+2016-08-24 11:52:36,281 DEBUG: 			View 0 : 0.748427672956
+2016-08-24 11:52:36,288 DEBUG: 			View 1 : 0.528301886792
+2016-08-24 11:52:36,377 DEBUG: 			View 2 : 0.672955974843
+2016-08-24 11:52:36,384 DEBUG: 			View 3 : 0.691823899371
+2016-08-24 11:52:36,569 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:52:40,347 DEBUG: 		Start:	 Iteration 63
+2016-08-24 11:52:40,363 DEBUG: 			View 0 : 0.465408805031
+2016-08-24 11:52:40,371 DEBUG: 			View 1 : 0.622641509434
+2016-08-24 11:52:40,459 DEBUG: 			View 2 : 0.622641509434
+2016-08-24 11:52:40,467 DEBUG: 			View 3 : 0.553459119497
+2016-08-24 11:52:40,655 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:52:44,468 DEBUG: 		Start:	 Iteration 64
+2016-08-24 11:52:44,484 DEBUG: 			View 0 : 0.610062893082
+2016-08-24 11:52:44,492 DEBUG: 			View 1 : 0.566037735849
+2016-08-24 11:52:44,580 DEBUG: 			View 2 : 0.62893081761
+2016-08-24 11:52:44,588 DEBUG: 			View 3 : 0.622641509434
+2016-08-24 11:52:44,777 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:52:48,671 DEBUG: 		Start:	 Iteration 65
+2016-08-24 11:52:48,688 DEBUG: 			View 0 : 0.427672955975
+2016-08-24 11:52:48,696 DEBUG: 			View 1 : 0.383647798742
+2016-08-24 11:52:48,780 DEBUG: 			View 2 : 0.584905660377
+2016-08-24 11:52:48,788 DEBUG: 			View 3 : 0.566037735849
+2016-08-24 11:52:48,978 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:52:52,930 DEBUG: 		Start:	 Iteration 66
+2016-08-24 11:52:52,947 DEBUG: 			View 0 : 0.383647798742
+2016-08-24 11:52:52,955 DEBUG: 			View 1 : 0.616352201258
+2016-08-24 11:52:53,044 DEBUG: 			View 2 : 0.591194968553
+2016-08-24 11:52:53,052 DEBUG: 			View 3 : 0.635220125786
+2016-08-24 11:52:53,245 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:52:57,247 DEBUG: 		Start:	 Iteration 67
+2016-08-24 11:52:57,264 DEBUG: 			View 0 : 0.459119496855
+2016-08-24 11:52:57,271 DEBUG: 			View 1 : 0.421383647799
+2016-08-24 11:52:57,359 DEBUG: 			View 2 : 0.522012578616
+2016-08-24 11:52:57,367 DEBUG: 			View 3 : 0.603773584906
+2016-08-24 11:52:57,561 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:53:01,624 DEBUG: 		Start:	 Iteration 68
+2016-08-24 11:53:01,640 DEBUG: 			View 0 : 0.62893081761
+2016-08-24 11:53:01,648 DEBUG: 			View 1 : 0.503144654088
+2016-08-24 11:53:01,739 DEBUG: 			View 2 : 0.534591194969
+2016-08-24 11:53:01,747 DEBUG: 			View 3 : 0.572327044025
+2016-08-24 11:53:01,944 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:53:06,061 DEBUG: 		Start:	 Iteration 69
+2016-08-24 11:53:06,078 DEBUG: 			View 0 : 0.578616352201
+2016-08-24 11:53:06,085 DEBUG: 			View 1 : 0.389937106918
+2016-08-24 11:53:06,174 DEBUG: 			View 2 : 0.572327044025
+2016-08-24 11:53:06,182 DEBUG: 			View 3 : 0.572327044025
+2016-08-24 11:53:06,383 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:53:10,572 DEBUG: 		Start:	 Iteration 70
+2016-08-24 11:53:10,588 DEBUG: 			View 0 : 0.48427672956
+2016-08-24 11:53:10,596 DEBUG: 			View 1 : 0.635220125786
+2016-08-24 11:53:10,680 DEBUG: 			View 2 : 0.51572327044
+2016-08-24 11:53:10,687 DEBUG: 			View 3 : 0.59748427673
+2016-08-24 11:53:10,888 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:53:15,144 DEBUG: 		Start:	 Iteration 71
+2016-08-24 11:53:15,160 DEBUG: 			View 0 : 0.622641509434
+2016-08-24 11:53:15,168 DEBUG: 			View 1 : 0.509433962264
+2016-08-24 11:53:15,258 DEBUG: 			View 2 : 0.616352201258
+2016-08-24 11:53:15,266 DEBUG: 			View 3 : 0.528301886792
+2016-08-24 11:53:15,469 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:53:19,842 DEBUG: 		Start:	 Iteration 72
+2016-08-24 11:53:19,858 DEBUG: 			View 0 : 0.446540880503
+2016-08-24 11:53:19,866 DEBUG: 			View 1 : 0.610062893082
+2016-08-24 11:53:19,954 DEBUG: 			View 2 : 0.635220125786
+2016-08-24 11:53:19,962 DEBUG: 			View 3 : 0.584905660377
+2016-08-24 11:53:20,164 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:53:24,556 DEBUG: 		Start:	 Iteration 73
+2016-08-24 11:53:24,573 DEBUG: 			View 0 : 0.534591194969
+2016-08-24 11:53:24,581 DEBUG: 			View 1 : 0.522012578616
+2016-08-24 11:53:24,668 DEBUG: 			View 2 : 0.603773584906
+2016-08-24 11:53:24,676 DEBUG: 			View 3 : 0.522012578616
+2016-08-24 11:53:24,882 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:53:29,347 DEBUG: 		Start:	 Iteration 74
+2016-08-24 11:53:29,363 DEBUG: 			View 0 : 0.509433962264
+2016-08-24 11:53:29,371 DEBUG: 			View 1 : 0.345911949686
+2016-08-24 11:53:29,457 DEBUG: 			View 2 : 0.51572327044
+2016-08-24 11:53:29,464 DEBUG: 			View 3 : 0.62893081761
+2016-08-24 11:53:29,672 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:53:34,188 DEBUG: 		Start:	 Iteration 75
+2016-08-24 11:53:34,204 DEBUG: 			View 0 : 0.59748427673
+2016-08-24 11:53:34,212 DEBUG: 			View 1 : 0.51572327044
+2016-08-24 11:53:34,298 DEBUG: 			View 2 : 0.635220125786
+2016-08-24 11:53:34,306 DEBUG: 			View 3 : 0.48427672956
+2016-08-24 11:53:34,516 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:53:39,103 DEBUG: 		Start:	 Iteration 76
+2016-08-24 11:53:39,119 DEBUG: 			View 0 : 0.490566037736
+2016-08-24 11:53:39,127 DEBUG: 			View 1 : 0.584905660377
+2016-08-24 11:53:39,214 DEBUG: 			View 2 : 0.622641509434
+2016-08-24 11:53:39,221 DEBUG: 			View 3 : 0.584905660377
+2016-08-24 11:53:39,437 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:53:44,087 DEBUG: 		Start:	 Iteration 77
+2016-08-24 11:53:44,103 DEBUG: 			View 0 : 0.48427672956
+2016-08-24 11:53:44,111 DEBUG: 			View 1 : 0.320754716981
+2016-08-24 11:53:44,195 DEBUG: 			View 2 : 0.584905660377
+2016-08-24 11:53:44,202 DEBUG: 			View 3 : 0.654088050314
+2016-08-24 11:53:44,419 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:53:49,151 DEBUG: 		Start:	 Iteration 78
+2016-08-24 11:53:49,168 DEBUG: 			View 0 : 0.534591194969
+2016-08-24 11:53:49,175 DEBUG: 			View 1 : 0.540880503145
+2016-08-24 11:53:49,262 DEBUG: 			View 2 : 0.59748427673
+2016-08-24 11:53:49,270 DEBUG: 			View 3 : 0.572327044025
+2016-08-24 11:53:49,487 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:53:54,269 DEBUG: 		Start:	 Iteration 79
+2016-08-24 11:53:54,285 DEBUG: 			View 0 : 0.566037735849
+2016-08-24 11:53:54,293 DEBUG: 			View 1 : 0.509433962264
+2016-08-24 11:53:54,380 DEBUG: 			View 2 : 0.559748427673
+2016-08-24 11:53:54,387 DEBUG: 			View 3 : 0.503144654088
+2016-08-24 11:53:54,609 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:53:59,466 DEBUG: 		Start:	 Iteration 80
+2016-08-24 11:53:59,483 DEBUG: 			View 0 : 0.616352201258
+2016-08-24 11:53:59,491 DEBUG: 			View 1 : 0.672955974843
+2016-08-24 11:53:59,579 DEBUG: 			View 2 : 0.62893081761
+2016-08-24 11:53:59,586 DEBUG: 			View 3 : 0.578616352201
+2016-08-24 11:53:59,807 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:54:04,731 DEBUG: 		Start:	 Iteration 81
+2016-08-24 11:54:04,747 DEBUG: 			View 0 : 0.528301886792
+2016-08-24 11:54:04,755 DEBUG: 			View 1 : 0.704402515723
+2016-08-24 11:54:04,837 DEBUG: 			View 2 : 0.522012578616
+2016-08-24 11:54:04,845 DEBUG: 			View 3 : 0.547169811321
+2016-08-24 11:54:05,067 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:54:10,043 DEBUG: 		Start:	 Iteration 82
+2016-08-24 11:54:10,059 DEBUG: 			View 0 : 0.559748427673
+2016-08-24 11:54:10,067 DEBUG: 			View 1 : 0.440251572327
+2016-08-24 11:54:10,153 DEBUG: 			View 2 : 0.578616352201
+2016-08-24 11:54:10,161 DEBUG: 			View 3 : 0.547169811321
+2016-08-24 11:54:10,387 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:54:15,483 DEBUG: 		Start:	 Iteration 83
+2016-08-24 11:54:15,500 DEBUG: 			View 0 : 0.51572327044
+2016-08-24 11:54:15,507 DEBUG: 			View 1 : 0.477987421384
+2016-08-24 11:54:15,594 DEBUG: 			View 2 : 0.62893081761
+2016-08-24 11:54:15,602 DEBUG: 			View 3 : 0.62893081761
+2016-08-24 11:54:15,831 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:54:20,939 DEBUG: 		Start:	 Iteration 84
+2016-08-24 11:54:20,956 DEBUG: 			View 0 : 0.723270440252
+2016-08-24 11:54:20,964 DEBUG: 			View 1 : 0.408805031447
+2016-08-24 11:54:21,047 DEBUG: 			View 2 : 0.641509433962
+2016-08-24 11:54:21,054 DEBUG: 			View 3 : 0.62893081761
+2016-08-24 11:54:21,285 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:54:26,440 DEBUG: 		Start:	 Iteration 85
+2016-08-24 11:54:26,456 DEBUG: 			View 0 : 0.427672955975
+2016-08-24 11:54:26,464 DEBUG: 			View 1 : 0.672955974843
+2016-08-24 11:54:26,552 DEBUG: 			View 2 : 0.616352201258
+2016-08-24 11:54:26,559 DEBUG: 			View 3 : 0.666666666667
+2016-08-24 11:54:26,790 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:54:32,015 DEBUG: 		Start:	 Iteration 86
+2016-08-24 11:54:32,031 DEBUG: 			View 0 : 0.540880503145
+2016-08-24 11:54:32,039 DEBUG: 			View 1 : 0.798742138365
+2016-08-24 11:54:32,114 DEBUG: 			View 2 : 0.553459119497
+2016-08-24 11:54:32,121 DEBUG: 			View 3 : 0.496855345912
+2016-08-24 11:54:32,359 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:54:37,638 DEBUG: 		Start:	 Iteration 87
+2016-08-24 11:54:37,654 DEBUG: 			View 0 : 0.553459119497
+2016-08-24 11:54:37,662 DEBUG: 			View 1 : 0.496855345912
+2016-08-24 11:54:37,748 DEBUG: 			View 2 : 0.654088050314
+2016-08-24 11:54:37,755 DEBUG: 			View 3 : 0.62893081761
+2016-08-24 11:54:37,990 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:54:43,338 DEBUG: 		Start:	 Iteration 88
+2016-08-24 11:54:43,355 DEBUG: 			View 0 : 0.40251572327
+2016-08-24 11:54:43,362 DEBUG: 			View 1 : 0.522012578616
+2016-08-24 11:54:43,453 DEBUG: 			View 2 : 0.578616352201
+2016-08-24 11:54:43,460 DEBUG: 			View 3 : 0.616352201258
+2016-08-24 11:54:43,698 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:54:49,088 DEBUG: 		Start:	 Iteration 89
+2016-08-24 11:54:49,105 DEBUG: 			View 0 : 0.547169811321
+2016-08-24 11:54:49,112 DEBUG: 			View 1 : 0.377358490566
+2016-08-24 11:54:49,199 DEBUG: 			View 2 : 0.622641509434
+2016-08-24 11:54:49,206 DEBUG: 			View 3 : 0.591194968553
+2016-08-24 11:54:49,450 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:54:54,921 DEBUG: 		Start:	 Iteration 90
+2016-08-24 11:54:54,938 DEBUG: 			View 0 : 0.566037735849
+2016-08-24 11:54:54,946 DEBUG: 			View 1 : 0.710691823899
+2016-08-24 11:54:55,029 DEBUG: 			View 2 : 0.59748427673
+2016-08-24 11:54:55,037 DEBUG: 			View 3 : 0.540880503145
+2016-08-24 11:54:55,279 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:55:00,796 DEBUG: 		Start:	 Iteration 91
+2016-08-24 11:55:00,812 DEBUG: 			View 0 : 0.59748427673
+2016-08-24 11:55:00,820 DEBUG: 			View 1 : 0.610062893082
+2016-08-24 11:55:00,908 DEBUG: 			View 2 : 0.584905660377
+2016-08-24 11:55:00,915 DEBUG: 			View 3 : 0.635220125786
+2016-08-24 11:55:01,161 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:55:06,789 DEBUG: 		Start:	 Iteration 92
+2016-08-24 11:55:06,808 DEBUG: 			View 0 : 0.509433962264
+2016-08-24 11:55:06,816 DEBUG: 			View 1 : 0.345911949686
+2016-08-24 11:55:06,909 DEBUG: 			View 2 : 0.553459119497
+2016-08-24 11:55:06,916 DEBUG: 			View 3 : 0.51572327044
+2016-08-24 11:55:07,185 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:55:12,930 DEBUG: 		Start:	 Iteration 93
+2016-08-24 11:55:12,947 DEBUG: 			View 0 : 0.62893081761
+2016-08-24 11:55:12,955 DEBUG: 			View 1 : 0.364779874214
+2016-08-24 11:55:13,040 DEBUG: 			View 2 : 0.534591194969
+2016-08-24 11:55:13,048 DEBUG: 			View 3 : 0.553459119497
+2016-08-24 11:55:13,301 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:55:19,024 DEBUG: 		Start:	 Iteration 94
+2016-08-24 11:55:19,040 DEBUG: 			View 0 : 0.452830188679
+2016-08-24 11:55:19,048 DEBUG: 			View 1 : 0.610062893082
+2016-08-24 11:55:19,137 DEBUG: 			View 2 : 0.559748427673
+2016-08-24 11:55:19,144 DEBUG: 			View 3 : 0.559748427673
+2016-08-24 11:55:19,395 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:55:25,181 DEBUG: 		Start:	 Iteration 95
+2016-08-24 11:55:25,198 DEBUG: 			View 0 : 0.547169811321
+2016-08-24 11:55:25,206 DEBUG: 			View 1 : 0.553459119497
+2016-08-24 11:55:25,288 DEBUG: 			View 2 : 0.591194968553
+2016-08-24 11:55:25,296 DEBUG: 			View 3 : 0.584905660377
+2016-08-24 11:55:25,547 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:55:31,382 DEBUG: 		Start:	 Iteration 96
+2016-08-24 11:55:31,399 DEBUG: 			View 0 : 0.522012578616
+2016-08-24 11:55:31,406 DEBUG: 			View 1 : 0.641509433962
+2016-08-24 11:55:31,493 DEBUG: 			View 2 : 0.559748427673
+2016-08-24 11:55:31,500 DEBUG: 			View 3 : 0.559748427673
+2016-08-24 11:55:31,755 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:55:37,653 DEBUG: 		Start:	 Iteration 97
+2016-08-24 11:55:37,669 DEBUG: 			View 0 : 0.522012578616
+2016-08-24 11:55:37,677 DEBUG: 			View 1 : 0.729559748428
+2016-08-24 11:55:37,760 DEBUG: 			View 2 : 0.566037735849
+2016-08-24 11:55:37,767 DEBUG: 			View 3 : 0.635220125786
+2016-08-24 11:55:38,024 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:55:43,967 DEBUG: 		Start:	 Iteration 98
+2016-08-24 11:55:43,984 DEBUG: 			View 0 : 0.471698113208
+2016-08-24 11:55:43,991 DEBUG: 			View 1 : 0.641509433962
+2016-08-24 11:55:44,074 DEBUG: 			View 2 : 0.635220125786
+2016-08-24 11:55:44,081 DEBUG: 			View 3 : 0.603773584906
+2016-08-24 11:55:44,341 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:55:50,378 DEBUG: 		Start:	 Iteration 99
+2016-08-24 11:55:50,395 DEBUG: 			View 0 : 0.603773584906
+2016-08-24 11:55:50,402 DEBUG: 			View 1 : 0.459119496855
+2016-08-24 11:55:50,489 DEBUG: 			View 2 : 0.584905660377
+2016-08-24 11:55:50,497 DEBUG: 			View 3 : 0.522012578616
+2016-08-24 11:55:50,758 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:55:56,848 DEBUG: 		Start:	 Iteration 100
+2016-08-24 11:55:56,864 DEBUG: 			View 0 : 0.540880503145
+2016-08-24 11:55:56,873 DEBUG: 			View 1 : 0.666666666667
+2016-08-24 11:55:56,961 DEBUG: 			View 2 : 0.654088050314
+2016-08-24 11:55:56,968 DEBUG: 			View 3 : 0.496855345912
+2016-08-24 11:55:57,232 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:56:03,400 DEBUG: 		Start:	 Iteration 101
+2016-08-24 11:56:03,417 DEBUG: 			View 0 : 0.584905660377
+2016-08-24 11:56:03,424 DEBUG: 			View 1 : 0.415094339623
+2016-08-24 11:56:03,513 DEBUG: 			View 2 : 0.622641509434
+2016-08-24 11:56:03,520 DEBUG: 			View 3 : 0.647798742138
+2016-08-24 11:56:03,784 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:56:10,265 DEBUG: 		Start:	 Iteration 102
+2016-08-24 11:56:10,292 DEBUG: 			View 0 : 0.547169811321
+2016-08-24 11:56:10,303 DEBUG: 			View 1 : 0.503144654088
+2016-08-24 11:56:10,405 DEBUG: 			View 2 : 0.62893081761
+2016-08-24 11:56:10,413 DEBUG: 			View 3 : 0.540880503145
+2016-08-24 11:56:10,685 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:56:17,168 DEBUG: 		Start:	 Iteration 103
+2016-08-24 11:56:17,189 DEBUG: 			View 0 : 0.496855345912
+2016-08-24 11:56:17,198 DEBUG: 			View 1 : 0.377358490566
+2016-08-24 11:56:17,289 DEBUG: 			View 2 : 0.591194968553
+2016-08-24 11:56:17,297 DEBUG: 			View 3 : 0.62893081761
+2016-08-24 11:56:17,571 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:56:24,608 DEBUG: 		Start:	 Iteration 104
+2016-08-24 11:56:24,629 DEBUG: 			View 0 : 0.452830188679
+2016-08-24 11:56:24,642 DEBUG: 			View 1 : 0.528301886792
+2016-08-24 11:56:24,745 DEBUG: 			View 2 : 0.622641509434
+2016-08-24 11:56:24,754 DEBUG: 			View 3 : 0.559748427673
+2016-08-24 11:56:25,049 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:56:32,323 DEBUG: 		Start:	 Iteration 105
+2016-08-24 11:56:32,342 DEBUG: 			View 0 : 0.377358490566
+2016-08-24 11:56:32,353 DEBUG: 			View 1 : 0.647798742138
+2016-08-24 11:56:32,495 DEBUG: 			View 2 : 0.622641509434
+2016-08-24 11:56:32,509 DEBUG: 			View 3 : 0.540880503145
+2016-08-24 11:56:32,842 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:56:40,165 DEBUG: 		Start:	 Iteration 106
+2016-08-24 11:56:40,186 DEBUG: 			View 0 : 0.490566037736
+2016-08-24 11:56:40,196 DEBUG: 			View 1 : 0.540880503145
+2016-08-24 11:56:40,286 DEBUG: 			View 2 : 0.51572327044
+2016-08-24 11:56:40,294 DEBUG: 			View 3 : 0.635220125786
+2016-08-24 11:56:40,572 DEBUG: 			 Best view : 		Clinic_
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-115712-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-115712-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..54ef5d1e
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-115712-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,4082 @@
+2016-08-24 11:57:12,454 INFO: Start:	 Read HDF5 Database Files for ModifiedMultiOmic
+2016-08-24 11:57:12,454 INFO: Info:	 Labels used: No, Yes
+2016-08-24 11:57:12,455 INFO: Info:	 Length of dataset:347
+2016-08-24 11:57:12,456 INFO: ### Main Programm for Multiview Classification
+2016-08-24 11:57:12,456 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 11:57:12,457 INFO: Info:	 Shape of Methyl_ :(347, 25978)
+2016-08-24 11:57:12,457 INFO: Info:	 Shape of MiRNA__ :(347, 1046)
+2016-08-24 11:57:12,457 INFO: Info:	 Shape of RANSeq_ :(347, 73599)
+2016-08-24 11:57:12,458 INFO: Info:	 Shape of Clinic_ :(347, 127)
+2016-08-24 11:57:12,458 INFO: Done:	 Read Database Files
+2016-08-24 11:57:12,458 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-24 11:57:12,462 INFO: Done:	 Determine validation split
+2016-08-24 11:57:12,462 INFO: Start:	 Determine 5 folds
+2016-08-24 11:57:12,469 INFO: Info:	 Length of Learning Sets: 196
+2016-08-24 11:57:12,469 INFO: Info:	 Length of Testing Sets: 48
+2016-08-24 11:57:12,469 INFO: Info:	 Length of Validation Set: 103
+2016-08-24 11:57:12,469 INFO: Done:	 Determine folds
+2016-08-24 11:57:12,470 INFO: Start:	 Learning with Mumbo and 5 folds
+2016-08-24 11:57:12,470 INFO: 	Start:	 Fold number 1
+2016-08-24 11:57:14,621 DEBUG: 		Start:	 Iteration 1
+2016-08-24 11:57:14,642 DEBUG: 			View 0 : 0.379146919431
+2016-08-24 11:57:14,652 DEBUG: 			View 1 : 0.620853080569
+2016-08-24 11:57:14,779 DEBUG: 			View 2 : 0.488151658768
+2016-08-24 11:57:14,789 DEBUG: 			View 3 : 0.620853080569
+2016-08-24 11:57:14,848 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:57:14,947 DEBUG: 		Start:	 Iteration 2
+2016-08-24 11:57:14,970 DEBUG: 			View 0 : 0.625592417062
+2016-08-24 11:57:14,983 DEBUG: 			View 1 : 0.63981042654
+2016-08-24 11:57:15,114 DEBUG: 			View 2 : 0.658767772512
+2016-08-24 11:57:15,124 DEBUG: 			View 3 : 0.568720379147
+2016-08-24 11:57:15,196 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:57:15,401 DEBUG: 		Start:	 Iteration 3
+2016-08-24 11:57:15,424 DEBUG: 			View 0 : 0.611374407583
+2016-08-24 11:57:15,437 DEBUG: 			View 1 : 0.450236966825
+2016-08-24 11:57:15,556 DEBUG: 			View 2 : 0.592417061611
+2016-08-24 11:57:15,566 DEBUG: 			View 3 : 0.563981042654
+2016-08-24 11:57:15,641 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:57:15,925 DEBUG: 		Start:	 Iteration 4
+2016-08-24 11:57:15,946 DEBUG: 			View 0 : 0.54028436019
+2016-08-24 11:57:15,958 DEBUG: 			View 1 : 0.630331753555
+2016-08-24 11:57:16,076 DEBUG: 			View 2 : 0.502369668246
+2016-08-24 11:57:16,085 DEBUG: 			View 3 : 0.625592417062
+2016-08-24 11:57:16,162 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:57:16,517 DEBUG: 		Start:	 Iteration 5
+2016-08-24 11:57:16,539 DEBUG: 			View 0 : 0.682464454976
+2016-08-24 11:57:16,551 DEBUG: 			View 1 : 0.720379146919
+2016-08-24 11:57:16,674 DEBUG: 			View 2 : 0.54028436019
+2016-08-24 11:57:16,684 DEBUG: 			View 3 : 0.57345971564
+2016-08-24 11:57:16,763 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:57:17,203 DEBUG: 		Start:	 Iteration 6
+2016-08-24 11:57:17,226 DEBUG: 			View 0 : 0.521327014218
+2016-08-24 11:57:17,238 DEBUG: 			View 1 : 0.715639810427
+2016-08-24 11:57:17,363 DEBUG: 			View 2 : 0.630331753555
+2016-08-24 11:57:17,372 DEBUG: 			View 3 : 0.644549763033
+2016-08-24 11:57:17,454 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:57:17,964 DEBUG: 		Start:	 Iteration 7
+2016-08-24 11:57:17,985 DEBUG: 			View 0 : 0.559241706161
+2016-08-24 11:57:17,997 DEBUG: 			View 1 : 0.398104265403
+2016-08-24 11:57:18,113 DEBUG: 			View 2 : 0.440758293839
+2016-08-24 11:57:18,123 DEBUG: 			View 3 : 0.715639810427
+2016-08-24 11:57:18,206 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:57:18,799 DEBUG: 		Start:	 Iteration 8
+2016-08-24 11:57:18,821 DEBUG: 			View 0 : 0.497630331754
+2016-08-24 11:57:18,833 DEBUG: 			View 1 : 0.502369668246
+2016-08-24 11:57:18,946 DEBUG: 			View 2 : 0.488151658768
+2016-08-24 11:57:18,955 DEBUG: 			View 3 : 0.654028436019
+2016-08-24 11:57:19,042 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:57:19,704 DEBUG: 		Start:	 Iteration 9
+2016-08-24 11:57:19,726 DEBUG: 			View 0 : 0.511848341232
+2016-08-24 11:57:19,736 DEBUG: 			View 1 : 0.635071090047
+2016-08-24 11:57:19,856 DEBUG: 			View 2 : 0.568720379147
+2016-08-24 11:57:19,866 DEBUG: 			View 3 : 0.687203791469
+2016-08-24 11:57:19,955 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:57:20,697 DEBUG: 		Start:	 Iteration 10
+2016-08-24 11:57:20,718 DEBUG: 			View 0 : 0.616113744076
+2016-08-24 11:57:20,730 DEBUG: 			View 1 : 0.630331753555
+2016-08-24 11:57:20,848 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 11:57:20,857 DEBUG: 			View 3 : 0.597156398104
+2016-08-24 11:57:20,950 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:57:21,773 DEBUG: 		Start:	 Iteration 11
+2016-08-24 11:57:21,795 DEBUG: 			View 0 : 0.379146919431
+2016-08-24 11:57:21,806 DEBUG: 			View 1 : 0.450236966825
+2016-08-24 11:57:21,923 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 11:57:21,932 DEBUG: 			View 3 : 0.545023696682
+2016-08-24 11:57:22,027 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:57:22,922 DEBUG: 		Start:	 Iteration 12
+2016-08-24 11:57:22,944 DEBUG: 			View 0 : 0.601895734597
+2016-08-24 11:57:22,955 DEBUG: 			View 1 : 0.663507109005
+2016-08-24 11:57:23,071 DEBUG: 			View 2 : 0.563981042654
+2016-08-24 11:57:23,081 DEBUG: 			View 3 : 0.611374407583
+2016-08-24 11:57:23,178 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:57:24,152 DEBUG: 		Start:	 Iteration 13
+2016-08-24 11:57:24,174 DEBUG: 			View 0 : 0.473933649289
+2016-08-24 11:57:24,185 DEBUG: 			View 1 : 0.682464454976
+2016-08-24 11:57:24,301 DEBUG: 			View 2 : 0.611374407583
+2016-08-24 11:57:24,311 DEBUG: 			View 3 : 0.60663507109
+2016-08-24 11:57:24,411 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:57:25,461 DEBUG: 		Start:	 Iteration 14
+2016-08-24 11:57:25,482 DEBUG: 			View 0 : 0.630331753555
+2016-08-24 11:57:25,493 DEBUG: 			View 1 : 0.644549763033
+2016-08-24 11:57:25,610 DEBUG: 			View 2 : 0.60663507109
+2016-08-24 11:57:25,619 DEBUG: 			View 3 : 0.530805687204
+2016-08-24 11:57:25,722 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:57:26,857 DEBUG: 		Start:	 Iteration 15
+2016-08-24 11:57:26,878 DEBUG: 			View 0 : 0.502369668246
+2016-08-24 11:57:26,889 DEBUG: 			View 1 : 0.592417061611
+2016-08-24 11:57:27,009 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 11:57:27,019 DEBUG: 			View 3 : 0.530805687204
+2016-08-24 11:57:27,123 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:57:28,347 DEBUG: 		Start:	 Iteration 16
+2016-08-24 11:57:28,368 DEBUG: 			View 0 : 0.454976303318
+2016-08-24 11:57:28,379 DEBUG: 			View 1 : 0.535545023697
+2016-08-24 11:57:28,499 DEBUG: 			View 2 : 0.54028436019
+2016-08-24 11:57:28,509 DEBUG: 			View 3 : 0.668246445498
+2016-08-24 11:57:28,617 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:57:29,920 DEBUG: 		Start:	 Iteration 17
+2016-08-24 11:57:29,941 DEBUG: 			View 0 : 0.587677725118
+2016-08-24 11:57:29,952 DEBUG: 			View 1 : 0.511848341232
+2016-08-24 11:57:30,072 DEBUG: 			View 2 : 0.611374407583
+2016-08-24 11:57:30,081 DEBUG: 			View 3 : 0.601895734597
+2016-08-24 11:57:30,193 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:57:31,573 DEBUG: 		Start:	 Iteration 18
+2016-08-24 11:57:31,594 DEBUG: 			View 0 : 0.502369668246
+2016-08-24 11:57:31,605 DEBUG: 			View 1 : 0.682464454976
+2016-08-24 11:57:31,723 DEBUG: 			View 2 : 0.516587677725
+2016-08-24 11:57:31,732 DEBUG: 			View 3 : 0.587677725118
+2016-08-24 11:57:31,846 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:57:33,303 DEBUG: 		Start:	 Iteration 19
+2016-08-24 11:57:33,324 DEBUG: 			View 0 : 0.60663507109
+2016-08-24 11:57:33,335 DEBUG: 			View 1 : 0.663507109005
+2016-08-24 11:57:33,455 DEBUG: 			View 2 : 0.454976303318
+2016-08-24 11:57:33,465 DEBUG: 			View 3 : 0.663507109005
+2016-08-24 11:57:33,582 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:57:35,115 DEBUG: 		Start:	 Iteration 20
+2016-08-24 11:57:35,137 DEBUG: 			View 0 : 0.658767772512
+2016-08-24 11:57:35,148 DEBUG: 			View 1 : 0.644549763033
+2016-08-24 11:57:35,256 DEBUG: 			View 2 : 0.630331753555
+2016-08-24 11:57:35,266 DEBUG: 			View 3 : 0.616113744076
+2016-08-24 11:57:35,390 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:57:37,005 DEBUG: 		Start:	 Iteration 21
+2016-08-24 11:57:37,026 DEBUG: 			View 0 : 0.60663507109
+2016-08-24 11:57:37,037 DEBUG: 			View 1 : 0.644549763033
+2016-08-24 11:57:37,153 DEBUG: 			View 2 : 0.582938388626
+2016-08-24 11:57:37,162 DEBUG: 			View 3 : 0.672985781991
+2016-08-24 11:57:37,285 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:57:38,978 DEBUG: 		Start:	 Iteration 22
+2016-08-24 11:57:38,999 DEBUG: 			View 0 : 0.658767772512
+2016-08-24 11:57:39,010 DEBUG: 			View 1 : 0.473933649289
+2016-08-24 11:57:39,131 DEBUG: 			View 2 : 0.601895734597
+2016-08-24 11:57:39,140 DEBUG: 			View 3 : 0.559241706161
+2016-08-24 11:57:39,265 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:57:41,041 DEBUG: 		Start:	 Iteration 23
+2016-08-24 11:57:41,063 DEBUG: 			View 0 : 0.630331753555
+2016-08-24 11:57:41,073 DEBUG: 			View 1 : 0.492890995261
+2016-08-24 11:57:41,179 DEBUG: 			View 2 : 0.592417061611
+2016-08-24 11:57:41,188 DEBUG: 			View 3 : 0.682464454976
+2016-08-24 11:57:41,317 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:57:43,177 DEBUG: 		Start:	 Iteration 24
+2016-08-24 11:57:43,198 DEBUG: 			View 0 : 0.417061611374
+2016-08-24 11:57:43,208 DEBUG: 			View 1 : 0.663507109005
+2016-08-24 11:57:43,329 DEBUG: 			View 2 : 0.57345971564
+2016-08-24 11:57:43,338 DEBUG: 			View 3 : 0.57345971564
+2016-08-24 11:57:43,468 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:57:45,397 DEBUG: 		Start:	 Iteration 25
+2016-08-24 11:57:45,418 DEBUG: 			View 0 : 0.630331753555
+2016-08-24 11:57:45,428 DEBUG: 			View 1 : 0.388625592417
+2016-08-24 11:57:45,549 DEBUG: 			View 2 : 0.568720379147
+2016-08-24 11:57:45,558 DEBUG: 			View 3 : 0.63981042654
+2016-08-24 11:57:45,690 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:57:47,697 DEBUG: 		Start:	 Iteration 26
+2016-08-24 11:57:47,718 DEBUG: 			View 0 : 0.701421800948
+2016-08-24 11:57:47,727 DEBUG: 			View 1 : 0.388625592417
+2016-08-24 11:57:47,849 DEBUG: 			View 2 : 0.545023696682
+2016-08-24 11:57:47,859 DEBUG: 			View 3 : 0.616113744076
+2016-08-24 11:57:47,994 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:57:50,081 DEBUG: 		Start:	 Iteration 27
+2016-08-24 11:57:50,102 DEBUG: 			View 0 : 0.521327014218
+2016-08-24 11:57:50,112 DEBUG: 			View 1 : 0.744075829384
+2016-08-24 11:57:50,232 DEBUG: 			View 2 : 0.535545023697
+2016-08-24 11:57:50,241 DEBUG: 			View 3 : 0.611374407583
+2016-08-24 11:57:50,382 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:57:52,548 DEBUG: 		Start:	 Iteration 28
+2016-08-24 11:57:52,569 DEBUG: 			View 0 : 0.725118483412
+2016-08-24 11:57:52,579 DEBUG: 			View 1 : 0.478672985782
+2016-08-24 11:57:52,696 DEBUG: 			View 2 : 0.473933649289
+2016-08-24 11:57:52,705 DEBUG: 			View 3 : 0.57345971564
+2016-08-24 11:57:52,847 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:57:55,093 DEBUG: 		Start:	 Iteration 29
+2016-08-24 11:57:55,114 DEBUG: 			View 0 : 0.473933649289
+2016-08-24 11:57:55,124 DEBUG: 			View 1 : 0.611374407583
+2016-08-24 11:57:55,243 DEBUG: 			View 2 : 0.587677725118
+2016-08-24 11:57:55,253 DEBUG: 			View 3 : 0.587677725118
+2016-08-24 11:57:55,398 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:57:57,716 DEBUG: 		Start:	 Iteration 30
+2016-08-24 11:57:57,737 DEBUG: 			View 0 : 0.516587677725
+2016-08-24 11:57:57,747 DEBUG: 			View 1 : 0.582938388626
+2016-08-24 11:57:57,864 DEBUG: 			View 2 : 0.625592417062
+2016-08-24 11:57:57,873 DEBUG: 			View 3 : 0.592417061611
+2016-08-24 11:57:58,023 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:58:00,451 DEBUG: 		Start:	 Iteration 31
+2016-08-24 11:58:00,472 DEBUG: 			View 0 : 0.488151658768
+2016-08-24 11:58:00,482 DEBUG: 			View 1 : 0.677725118483
+2016-08-24 11:58:00,594 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 11:58:00,604 DEBUG: 			View 3 : 0.530805687204
+2016-08-24 11:58:00,755 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:58:03,265 DEBUG: 		Start:	 Iteration 32
+2016-08-24 11:58:03,287 DEBUG: 			View 0 : 0.507109004739
+2016-08-24 11:58:03,296 DEBUG: 			View 1 : 0.559241706161
+2016-08-24 11:58:03,410 DEBUG: 			View 2 : 0.587677725118
+2016-08-24 11:58:03,419 DEBUG: 			View 3 : 0.687203791469
+2016-08-24 11:58:03,573 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:58:06,148 DEBUG: 		Start:	 Iteration 33
+2016-08-24 11:58:06,168 DEBUG: 			View 0 : 0.545023696682
+2016-08-24 11:58:06,179 DEBUG: 			View 1 : 0.54028436019
+2016-08-24 11:58:06,300 DEBUG: 			View 2 : 0.644549763033
+2016-08-24 11:58:06,310 DEBUG: 			View 3 : 0.597156398104
+2016-08-24 11:58:06,465 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:58:09,133 DEBUG: 		Start:	 Iteration 34
+2016-08-24 11:58:09,155 DEBUG: 			View 0 : 0.549763033175
+2016-08-24 11:58:09,164 DEBUG: 			View 1 : 0.407582938389
+2016-08-24 11:58:09,283 DEBUG: 			View 2 : 0.54028436019
+2016-08-24 11:58:09,292 DEBUG: 			View 3 : 0.507109004739
+2016-08-24 11:58:09,450 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:58:12,216 DEBUG: 		Start:	 Iteration 35
+2016-08-24 11:58:12,237 DEBUG: 			View 0 : 0.582938388626
+2016-08-24 11:58:12,247 DEBUG: 			View 1 : 0.611374407583
+2016-08-24 11:58:12,360 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 11:58:12,369 DEBUG: 			View 3 : 0.611374407583
+2016-08-24 11:58:12,530 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:58:15,378 DEBUG: 		Start:	 Iteration 36
+2016-08-24 11:58:15,399 DEBUG: 			View 0 : 0.473933649289
+2016-08-24 11:58:15,408 DEBUG: 			View 1 : 0.492890995261
+2016-08-24 11:58:15,522 DEBUG: 			View 2 : 0.635071090047
+2016-08-24 11:58:15,532 DEBUG: 			View 3 : 0.530805687204
+2016-08-24 11:58:15,696 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:58:18,642 DEBUG: 		Start:	 Iteration 37
+2016-08-24 11:58:18,663 DEBUG: 			View 0 : 0.559241706161
+2016-08-24 11:58:18,673 DEBUG: 			View 1 : 0.511848341232
+2016-08-24 11:58:18,794 DEBUG: 			View 2 : 0.592417061611
+2016-08-24 11:58:18,803 DEBUG: 			View 3 : 0.545023696682
+2016-08-24 11:58:18,971 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:58:22,000 DEBUG: 		Start:	 Iteration 38
+2016-08-24 11:58:22,021 DEBUG: 			View 0 : 0.549763033175
+2016-08-24 11:58:22,031 DEBUG: 			View 1 : 0.654028436019
+2016-08-24 11:58:22,156 DEBUG: 			View 2 : 0.549763033175
+2016-08-24 11:58:22,165 DEBUG: 			View 3 : 0.42654028436
+2016-08-24 11:58:22,335 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:58:25,444 DEBUG: 		Start:	 Iteration 39
+2016-08-24 11:58:25,465 DEBUG: 			View 0 : 0.635071090047
+2016-08-24 11:58:25,475 DEBUG: 			View 1 : 0.838862559242
+2016-08-24 11:58:25,592 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 11:58:25,601 DEBUG: 			View 3 : 0.526066350711
+2016-08-24 11:58:25,773 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:58:28,956 DEBUG: 		Start:	 Iteration 40
+2016-08-24 11:58:28,978 DEBUG: 			View 0 : 0.421800947867
+2016-08-24 11:58:28,988 DEBUG: 			View 1 : 0.545023696682
+2016-08-24 11:58:29,112 DEBUG: 			View 2 : 0.568720379147
+2016-08-24 11:58:29,121 DEBUG: 			View 3 : 0.578199052133
+2016-08-24 11:58:29,297 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:58:32,559 DEBUG: 		Start:	 Iteration 41
+2016-08-24 11:58:32,580 DEBUG: 			View 0 : 0.559241706161
+2016-08-24 11:58:32,589 DEBUG: 			View 1 : 0.464454976303
+2016-08-24 11:58:32,706 DEBUG: 			View 2 : 0.601895734597
+2016-08-24 11:58:32,715 DEBUG: 			View 3 : 0.630331753555
+2016-08-24 11:58:32,893 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:58:36,238 DEBUG: 		Start:	 Iteration 42
+2016-08-24 11:58:36,259 DEBUG: 			View 0 : 0.54028436019
+2016-08-24 11:58:36,269 DEBUG: 			View 1 : 0.492890995261
+2016-08-24 11:58:36,391 DEBUG: 			View 2 : 0.563981042654
+2016-08-24 11:58:36,400 DEBUG: 			View 3 : 0.611374407583
+2016-08-24 11:58:36,581 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:58:40,001 DEBUG: 		Start:	 Iteration 43
+2016-08-24 11:58:40,022 DEBUG: 			View 0 : 0.511848341232
+2016-08-24 11:58:40,032 DEBUG: 			View 1 : 0.60663507109
+2016-08-24 11:58:40,150 DEBUG: 			View 2 : 0.57345971564
+2016-08-24 11:58:40,159 DEBUG: 			View 3 : 0.644549763033
+2016-08-24 11:58:40,346 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:58:43,845 DEBUG: 		Start:	 Iteration 44
+2016-08-24 11:58:43,866 DEBUG: 			View 0 : 0.63981042654
+2016-08-24 11:58:43,876 DEBUG: 			View 1 : 0.521327014218
+2016-08-24 11:58:43,997 DEBUG: 			View 2 : 0.568720379147
+2016-08-24 11:58:44,007 DEBUG: 			View 3 : 0.563981042654
+2016-08-24 11:58:44,194 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:58:47,769 DEBUG: 		Start:	 Iteration 45
+2016-08-24 11:58:47,790 DEBUG: 			View 0 : 0.597156398104
+2016-08-24 11:58:47,800 DEBUG: 			View 1 : 0.417061611374
+2016-08-24 11:58:47,921 DEBUG: 			View 2 : 0.635071090047
+2016-08-24 11:58:47,931 DEBUG: 			View 3 : 0.554502369668
+2016-08-24 11:58:48,122 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:58:51,801 DEBUG: 		Start:	 Iteration 46
+2016-08-24 11:58:51,822 DEBUG: 			View 0 : 0.767772511848
+2016-08-24 11:58:51,832 DEBUG: 			View 1 : 0.516587677725
+2016-08-24 11:58:51,953 DEBUG: 			View 2 : 0.587677725118
+2016-08-24 11:58:51,962 DEBUG: 			View 3 : 0.511848341232
+2016-08-24 11:58:52,156 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:58:55,936 DEBUG: 		Start:	 Iteration 47
+2016-08-24 11:58:55,957 DEBUG: 			View 0 : 0.601895734597
+2016-08-24 11:58:55,967 DEBUG: 			View 1 : 0.663507109005
+2016-08-24 11:58:56,088 DEBUG: 			View 2 : 0.492890995261
+2016-08-24 11:58:56,097 DEBUG: 			View 3 : 0.578199052133
+2016-08-24 11:58:56,294 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:59:00,122 DEBUG: 		Start:	 Iteration 48
+2016-08-24 11:59:00,144 DEBUG: 			View 0 : 0.57345971564
+2016-08-24 11:59:00,153 DEBUG: 			View 1 : 0.535545023697
+2016-08-24 11:59:00,265 DEBUG: 			View 2 : 0.582938388626
+2016-08-24 11:59:00,274 DEBUG: 			View 3 : 0.63981042654
+2016-08-24 11:59:00,473 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:59:04,401 DEBUG: 		Start:	 Iteration 49
+2016-08-24 11:59:04,422 DEBUG: 			View 0 : 0.587677725118
+2016-08-24 11:59:04,432 DEBUG: 			View 1 : 0.511848341232
+2016-08-24 11:59:04,563 DEBUG: 			View 2 : 0.545023696682
+2016-08-24 11:59:04,573 DEBUG: 			View 3 : 0.668246445498
+2016-08-24 11:59:04,783 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:59:08,788 DEBUG: 		Start:	 Iteration 50
+2016-08-24 11:59:08,810 DEBUG: 			View 0 : 0.578199052133
+2016-08-24 11:59:08,819 DEBUG: 			View 1 : 0.317535545024
+2016-08-24 11:59:08,939 DEBUG: 			View 2 : 0.587677725118
+2016-08-24 11:59:08,948 DEBUG: 			View 3 : 0.511848341232
+2016-08-24 11:59:09,155 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:59:13,226 DEBUG: 		Start:	 Iteration 51
+2016-08-24 11:59:13,247 DEBUG: 			View 0 : 0.559241706161
+2016-08-24 11:59:13,257 DEBUG: 			View 1 : 0.526066350711
+2016-08-24 11:59:13,375 DEBUG: 			View 2 : 0.545023696682
+2016-08-24 11:59:13,384 DEBUG: 			View 3 : 0.530805687204
+2016-08-24 11:59:13,595 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:59:17,767 DEBUG: 		Start:	 Iteration 52
+2016-08-24 11:59:17,788 DEBUG: 			View 0 : 0.549763033175
+2016-08-24 11:59:17,798 DEBUG: 			View 1 : 0.488151658768
+2016-08-24 11:59:17,910 DEBUG: 			View 2 : 0.611374407583
+2016-08-24 11:59:17,919 DEBUG: 			View 3 : 0.578199052133
+2016-08-24 11:59:18,133 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:59:22,394 DEBUG: 		Start:	 Iteration 53
+2016-08-24 11:59:22,415 DEBUG: 			View 0 : 0.492890995261
+2016-08-24 11:59:22,425 DEBUG: 			View 1 : 0.582938388626
+2016-08-24 11:59:22,545 DEBUG: 			View 2 : 0.649289099526
+2016-08-24 11:59:22,555 DEBUG: 			View 3 : 0.663507109005
+2016-08-24 11:59:22,768 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:59:27,110 DEBUG: 		Start:	 Iteration 54
+2016-08-24 11:59:27,131 DEBUG: 			View 0 : 0.554502369668
+2016-08-24 11:59:27,141 DEBUG: 			View 1 : 0.620853080569
+2016-08-24 11:59:27,262 DEBUG: 			View 2 : 0.60663507109
+2016-08-24 11:59:27,272 DEBUG: 			View 3 : 0.630331753555
+2016-08-24 11:59:27,488 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:59:31,904 DEBUG: 		Start:	 Iteration 55
+2016-08-24 11:59:31,925 DEBUG: 			View 0 : 0.592417061611
+2016-08-24 11:59:31,935 DEBUG: 			View 1 : 0.436018957346
+2016-08-24 11:59:32,054 DEBUG: 			View 2 : 0.60663507109
+2016-08-24 11:59:32,064 DEBUG: 			View 3 : 0.554502369668
+2016-08-24 11:59:32,283 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:59:36,798 DEBUG: 		Start:	 Iteration 56
+2016-08-24 11:59:36,819 DEBUG: 			View 0 : 0.616113744076
+2016-08-24 11:59:36,829 DEBUG: 			View 1 : 0.383886255924
+2016-08-24 11:59:36,947 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 11:59:36,956 DEBUG: 			View 3 : 0.658767772512
+2016-08-24 11:59:37,178 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:59:41,766 DEBUG: 		Start:	 Iteration 57
+2016-08-24 11:59:41,787 DEBUG: 			View 0 : 0.559241706161
+2016-08-24 11:59:41,796 DEBUG: 			View 1 : 0.592417061611
+2016-08-24 11:59:41,913 DEBUG: 			View 2 : 0.587677725118
+2016-08-24 11:59:41,922 DEBUG: 			View 3 : 0.582938388626
+2016-08-24 11:59:42,148 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:59:46,820 DEBUG: 		Start:	 Iteration 58
+2016-08-24 11:59:46,841 DEBUG: 			View 0 : 0.57345971564
+2016-08-24 11:59:46,851 DEBUG: 			View 1 : 0.478672985782
+2016-08-24 11:59:46,973 DEBUG: 			View 2 : 0.563981042654
+2016-08-24 11:59:46,982 DEBUG: 			View 3 : 0.630331753555
+2016-08-24 11:59:47,211 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:59:51,954 DEBUG: 		Start:	 Iteration 59
+2016-08-24 11:59:51,975 DEBUG: 			View 0 : 0.582938388626
+2016-08-24 11:59:51,985 DEBUG: 			View 1 : 0.625592417062
+2016-08-24 11:59:52,105 DEBUG: 			View 2 : 0.592417061611
+2016-08-24 11:59:52,115 DEBUG: 			View 3 : 0.464454976303
+2016-08-24 11:59:52,344 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:59:57,158 DEBUG: 		Start:	 Iteration 60
+2016-08-24 11:59:57,179 DEBUG: 			View 0 : 0.644549763033
+2016-08-24 11:59:57,189 DEBUG: 			View 1 : 0.582938388626
+2016-08-24 11:59:57,305 DEBUG: 			View 2 : 0.530805687204
+2016-08-24 11:59:57,314 DEBUG: 			View 3 : 0.521327014218
+2016-08-24 11:59:57,548 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:00:02,454 DEBUG: 		Start:	 Iteration 61
+2016-08-24 12:00:02,476 DEBUG: 			View 0 : 0.492890995261
+2016-08-24 12:00:02,485 DEBUG: 			View 1 : 0.545023696682
+2016-08-24 12:00:02,603 DEBUG: 			View 2 : 0.568720379147
+2016-08-24 12:00:02,613 DEBUG: 			View 3 : 0.549763033175
+2016-08-24 12:00:02,847 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:00:07,853 DEBUG: 		Start:	 Iteration 62
+2016-08-24 12:00:07,875 DEBUG: 			View 0 : 0.388625592417
+2016-08-24 12:00:07,885 DEBUG: 			View 1 : 0.691943127962
+2016-08-24 12:00:08,001 DEBUG: 			View 2 : 0.63981042654
+2016-08-24 12:00:08,011 DEBUG: 			View 3 : 0.635071090047
+2016-08-24 12:00:08,248 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:00:13,319 DEBUG: 		Start:	 Iteration 63
+2016-08-24 12:00:13,340 DEBUG: 			View 0 : 0.563981042654
+2016-08-24 12:00:13,350 DEBUG: 			View 1 : 0.63981042654
+2016-08-24 12:00:13,468 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 12:00:13,478 DEBUG: 			View 3 : 0.530805687204
+2016-08-24 12:00:13,717 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:00:18,868 DEBUG: 		Start:	 Iteration 64
+2016-08-24 12:00:18,889 DEBUG: 			View 0 : 0.492890995261
+2016-08-24 12:00:18,899 DEBUG: 			View 1 : 0.559241706161
+2016-08-24 12:00:19,016 DEBUG: 			View 2 : 0.473933649289
+2016-08-24 12:00:19,025 DEBUG: 			View 3 : 0.715639810427
+2016-08-24 12:00:19,268 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:00:24,514 DEBUG: 		Start:	 Iteration 65
+2016-08-24 12:00:24,535 DEBUG: 			View 0 : 0.526066350711
+2016-08-24 12:00:24,545 DEBUG: 			View 1 : 0.668246445498
+2016-08-24 12:00:24,657 DEBUG: 			View 2 : 0.545023696682
+2016-08-24 12:00:24,667 DEBUG: 			View 3 : 0.654028436019
+2016-08-24 12:00:24,914 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:00:30,236 DEBUG: 		Start:	 Iteration 66
+2016-08-24 12:00:30,257 DEBUG: 			View 0 : 0.649289099526
+2016-08-24 12:00:30,267 DEBUG: 			View 1 : 0.421800947867
+2016-08-24 12:00:30,388 DEBUG: 			View 2 : 0.611374407583
+2016-08-24 12:00:30,397 DEBUG: 			View 3 : 0.473933649289
+2016-08-24 12:00:30,649 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:00:36,037 DEBUG: 		Start:	 Iteration 67
+2016-08-24 12:00:36,058 DEBUG: 			View 0 : 0.644549763033
+2016-08-24 12:00:36,068 DEBUG: 			View 1 : 0.668246445498
+2016-08-24 12:00:36,184 DEBUG: 			View 2 : 0.582938388626
+2016-08-24 12:00:36,193 DEBUG: 			View 3 : 0.57345971564
+2016-08-24 12:00:36,445 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:00:41,924 DEBUG: 		Start:	 Iteration 68
+2016-08-24 12:00:41,945 DEBUG: 			View 0 : 0.568720379147
+2016-08-24 12:00:41,955 DEBUG: 			View 1 : 0.649289099526
+2016-08-24 12:00:42,071 DEBUG: 			View 2 : 0.57345971564
+2016-08-24 12:00:42,080 DEBUG: 			View 3 : 0.60663507109
+2016-08-24 12:00:42,335 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:00:47,885 DEBUG: 		Start:	 Iteration 69
+2016-08-24 12:00:47,907 DEBUG: 			View 0 : 0.45971563981
+2016-08-24 12:00:47,916 DEBUG: 			View 1 : 0.706161137441
+2016-08-24 12:00:48,034 DEBUG: 			View 2 : 0.60663507109
+2016-08-24 12:00:48,043 DEBUG: 			View 3 : 0.672985781991
+2016-08-24 12:00:48,301 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:00:53,925 DEBUG: 		Start:	 Iteration 70
+2016-08-24 12:00:53,946 DEBUG: 			View 0 : 0.587677725118
+2016-08-24 12:00:53,955 DEBUG: 			View 1 : 0.60663507109
+2016-08-24 12:00:54,077 DEBUG: 			View 2 : 0.654028436019
+2016-08-24 12:00:54,086 DEBUG: 			View 3 : 0.635071090047
+2016-08-24 12:00:54,348 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:01:00,090 DEBUG: 		Start:	 Iteration 71
+2016-08-24 12:01:00,111 DEBUG: 			View 0 : 0.511848341232
+2016-08-24 12:01:00,121 DEBUG: 			View 1 : 0.729857819905
+2016-08-24 12:01:00,238 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 12:01:00,247 DEBUG: 			View 3 : 0.687203791469
+2016-08-24 12:01:00,509 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:01:06,310 DEBUG: 		Start:	 Iteration 72
+2016-08-24 12:01:06,331 DEBUG: 			View 0 : 0.630331753555
+2016-08-24 12:01:06,341 DEBUG: 			View 1 : 0.388625592417
+2016-08-24 12:01:06,454 DEBUG: 			View 2 : 0.60663507109
+2016-08-24 12:01:06,463 DEBUG: 			View 3 : 0.597156398104
+2016-08-24 12:01:06,728 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:01:12,616 DEBUG: 		Start:	 Iteration 73
+2016-08-24 12:01:12,637 DEBUG: 			View 0 : 0.701421800948
+2016-08-24 12:01:12,647 DEBUG: 			View 1 : 0.691943127962
+2016-08-24 12:01:12,765 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 12:01:12,774 DEBUG: 			View 3 : 0.710900473934
+2016-08-24 12:01:13,045 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:01:19,004 DEBUG: 		Start:	 Iteration 74
+2016-08-24 12:01:19,025 DEBUG: 			View 0 : 0.578199052133
+2016-08-24 12:01:19,035 DEBUG: 			View 1 : 0.559241706161
+2016-08-24 12:01:19,156 DEBUG: 			View 2 : 0.587677725118
+2016-08-24 12:01:19,165 DEBUG: 			View 3 : 0.677725118483
+2016-08-24 12:01:19,437 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:01:25,474 DEBUG: 		Start:	 Iteration 75
+2016-08-24 12:01:25,495 DEBUG: 			View 0 : 0.601895734597
+2016-08-24 12:01:25,505 DEBUG: 			View 1 : 0.649289099526
+2016-08-24 12:01:25,617 DEBUG: 			View 2 : 0.549763033175
+2016-08-24 12:01:25,626 DEBUG: 			View 3 : 0.521327014218
+2016-08-24 12:01:25,899 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:01:32,011 DEBUG: 		Start:	 Iteration 76
+2016-08-24 12:01:32,032 DEBUG: 			View 0 : 0.559241706161
+2016-08-24 12:01:32,042 DEBUG: 			View 1 : 0.549763033175
+2016-08-24 12:01:32,155 DEBUG: 			View 2 : 0.582938388626
+2016-08-24 12:01:32,164 DEBUG: 			View 3 : 0.530805687204
+2016-08-24 12:01:32,442 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:01:38,648 DEBUG: 		Start:	 Iteration 77
+2016-08-24 12:01:38,669 DEBUG: 			View 0 : 0.620853080569
+2016-08-24 12:01:38,679 DEBUG: 			View 1 : 0.620853080569
+2016-08-24 12:01:38,796 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 12:01:38,805 DEBUG: 			View 3 : 0.601895734597
+2016-08-24 12:01:39,085 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:01:45,370 DEBUG: 		Start:	 Iteration 78
+2016-08-24 12:01:45,392 DEBUG: 			View 0 : 0.42654028436
+2016-08-24 12:01:45,401 DEBUG: 			View 1 : 0.440758293839
+2016-08-24 12:01:45,518 DEBUG: 			View 2 : 0.597156398104
+2016-08-24 12:01:45,528 DEBUG: 			View 3 : 0.715639810427
+2016-08-24 12:01:45,810 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:01:52,166 DEBUG: 		Start:	 Iteration 79
+2016-08-24 12:01:52,187 DEBUG: 			View 0 : 0.649289099526
+2016-08-24 12:01:52,196 DEBUG: 			View 1 : 0.63981042654
+2016-08-24 12:01:52,314 DEBUG: 			View 2 : 0.545023696682
+2016-08-24 12:01:52,323 DEBUG: 			View 3 : 0.478672985782
+2016-08-24 12:01:52,609 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:01:59,070 DEBUG: 		Start:	 Iteration 80
+2016-08-24 12:01:59,092 DEBUG: 			View 0 : 0.568720379147
+2016-08-24 12:01:59,101 DEBUG: 			View 1 : 0.469194312796
+2016-08-24 12:01:59,214 DEBUG: 			View 2 : 0.530805687204
+2016-08-24 12:01:59,223 DEBUG: 			View 3 : 0.649289099526
+2016-08-24 12:01:59,513 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:02:06,043 DEBUG: 		Start:	 Iteration 81
+2016-08-24 12:02:06,064 DEBUG: 			View 0 : 0.654028436019
+2016-08-24 12:02:06,074 DEBUG: 			View 1 : 0.644549763033
+2016-08-24 12:02:06,186 DEBUG: 			View 2 : 0.597156398104
+2016-08-24 12:02:06,195 DEBUG: 			View 3 : 0.63981042654
+2016-08-24 12:02:06,487 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:02:13,114 DEBUG: 		Start:	 Iteration 82
+2016-08-24 12:02:13,136 DEBUG: 			View 0 : 0.502369668246
+2016-08-24 12:02:13,146 DEBUG: 			View 1 : 0.36018957346
+2016-08-24 12:02:13,274 DEBUG: 			View 2 : 0.526066350711
+2016-08-24 12:02:13,284 DEBUG: 			View 3 : 0.63981042654
+2016-08-24 12:02:13,581 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:02:20,360 DEBUG: 		Start:	 Iteration 83
+2016-08-24 12:02:20,381 DEBUG: 			View 0 : 0.502369668246
+2016-08-24 12:02:20,391 DEBUG: 			View 1 : 0.654028436019
+2016-08-24 12:02:20,515 DEBUG: 			View 2 : 0.492890995261
+2016-08-24 12:02:20,524 DEBUG: 			View 3 : 0.563981042654
+2016-08-24 12:02:20,828 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:02:27,746 DEBUG: 		Start:	 Iteration 84
+2016-08-24 12:02:27,767 DEBUG: 			View 0 : 0.57345971564
+2016-08-24 12:02:27,777 DEBUG: 			View 1 : 0.582938388626
+2016-08-24 12:02:27,933 DEBUG: 			View 2 : 0.592417061611
+2016-08-24 12:02:27,942 DEBUG: 			View 3 : 0.530805687204
+2016-08-24 12:02:28,242 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:02:35,093 DEBUG: 		Start:	 Iteration 85
+2016-08-24 12:02:35,114 DEBUG: 			View 0 : 0.649289099526
+2016-08-24 12:02:35,124 DEBUG: 			View 1 : 0.63981042654
+2016-08-24 12:02:35,242 DEBUG: 			View 2 : 0.526066350711
+2016-08-24 12:02:35,251 DEBUG: 			View 3 : 0.431279620853
+2016-08-24 12:02:35,553 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:02:42,467 DEBUG: 		Start:	 Iteration 86
+2016-08-24 12:02:42,488 DEBUG: 			View 0 : 0.601895734597
+2016-08-24 12:02:42,498 DEBUG: 			View 1 : 0.431279620853
+2016-08-24 12:02:42,619 DEBUG: 			View 2 : 0.587677725118
+2016-08-24 12:02:42,628 DEBUG: 			View 3 : 0.530805687204
+2016-08-24 12:02:42,932 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:02:49,946 DEBUG: 		Start:	 Iteration 87
+2016-08-24 12:02:49,965 DEBUG: 			View 0 : 0.369668246445
+2016-08-24 12:02:49,975 DEBUG: 			View 1 : 0.54028436019
+2016-08-24 12:02:50,088 DEBUG: 			View 2 : 0.63981042654
+2016-08-24 12:02:50,098 DEBUG: 			View 3 : 0.578199052133
+2016-08-24 12:02:50,405 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:02:57,532 DEBUG: 		Start:	 Iteration 88
+2016-08-24 12:02:57,553 DEBUG: 			View 0 : 0.436018957346
+2016-08-24 12:02:57,563 DEBUG: 			View 1 : 0.587677725118
+2016-08-24 12:02:57,676 DEBUG: 			View 2 : 0.568720379147
+2016-08-24 12:02:57,685 DEBUG: 			View 3 : 0.644549763033
+2016-08-24 12:02:57,995 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:03:05,188 DEBUG: 		Start:	 Iteration 89
+2016-08-24 12:03:05,209 DEBUG: 			View 0 : 0.60663507109
+2016-08-24 12:03:05,219 DEBUG: 			View 1 : 0.663507109005
+2016-08-24 12:03:05,332 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 12:03:05,342 DEBUG: 			View 3 : 0.578199052133
+2016-08-24 12:03:05,655 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:03:12,949 DEBUG: 		Start:	 Iteration 90
+2016-08-24 12:03:12,969 DEBUG: 			View 0 : 0.597156398104
+2016-08-24 12:03:12,979 DEBUG: 			View 1 : 0.563981042654
+2016-08-24 12:03:13,100 DEBUG: 			View 2 : 0.582938388626
+2016-08-24 12:03:13,109 DEBUG: 			View 3 : 0.559241706161
+2016-08-24 12:03:13,425 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:03:20,775 DEBUG: 		Start:	 Iteration 91
+2016-08-24 12:03:20,796 DEBUG: 			View 0 : 0.497630331754
+2016-08-24 12:03:20,806 DEBUG: 			View 1 : 0.60663507109
+2016-08-24 12:03:20,925 DEBUG: 			View 2 : 0.597156398104
+2016-08-24 12:03:20,934 DEBUG: 			View 3 : 0.582938388626
+2016-08-24 12:03:21,297 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:03:28,741 DEBUG: 		Start:	 Iteration 92
+2016-08-24 12:03:28,762 DEBUG: 			View 0 : 0.54028436019
+2016-08-24 12:03:28,772 DEBUG: 			View 1 : 0.587677725118
+2016-08-24 12:03:28,877 DEBUG: 			View 2 : 0.587677725118
+2016-08-24 12:03:28,886 DEBUG: 			View 3 : 0.549763033175
+2016-08-24 12:03:29,206 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:03:36,720 DEBUG: 		Start:	 Iteration 93
+2016-08-24 12:03:36,741 DEBUG: 			View 0 : 0.473933649289
+2016-08-24 12:03:36,751 DEBUG: 			View 1 : 0.616113744076
+2016-08-24 12:03:36,873 DEBUG: 			View 2 : 0.60663507109
+2016-08-24 12:03:36,882 DEBUG: 			View 3 : 0.635071090047
+2016-08-24 12:03:37,206 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:03:44,800 DEBUG: 		Start:	 Iteration 94
+2016-08-24 12:03:44,822 DEBUG: 			View 0 : 0.469194312796
+2016-08-24 12:03:44,831 DEBUG: 			View 1 : 0.578199052133
+2016-08-24 12:03:44,953 DEBUG: 			View 2 : 0.616113744076
+2016-08-24 12:03:44,962 DEBUG: 			View 3 : 0.663507109005
+2016-08-24 12:03:45,290 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:03:52,966 DEBUG: 		Start:	 Iteration 95
+2016-08-24 12:03:52,988 DEBUG: 			View 0 : 0.530805687204
+2016-08-24 12:03:52,997 DEBUG: 			View 1 : 0.687203791469
+2016-08-24 12:03:53,118 DEBUG: 			View 2 : 0.63981042654
+2016-08-24 12:03:53,128 DEBUG: 			View 3 : 0.587677725118
+2016-08-24 12:03:53,458 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:04:01,211 DEBUG: 		Start:	 Iteration 96
+2016-08-24 12:04:01,232 DEBUG: 			View 0 : 0.469194312796
+2016-08-24 12:04:01,242 DEBUG: 			View 1 : 0.601895734597
+2016-08-24 12:04:01,350 DEBUG: 			View 2 : 0.611374407583
+2016-08-24 12:04:01,359 DEBUG: 			View 3 : 0.635071090047
+2016-08-24 12:04:01,694 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:04:09,530 DEBUG: 		Start:	 Iteration 97
+2016-08-24 12:04:09,552 DEBUG: 			View 0 : 0.488151658768
+2016-08-24 12:04:09,563 DEBUG: 			View 1 : 0.436018957346
+2016-08-24 12:04:09,681 DEBUG: 			View 2 : 0.658767772512
+2016-08-24 12:04:09,690 DEBUG: 			View 3 : 0.630331753555
+2016-08-24 12:04:10,026 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:04:17,961 DEBUG: 		Start:	 Iteration 98
+2016-08-24 12:04:17,982 DEBUG: 			View 0 : 0.464454976303
+2016-08-24 12:04:17,992 DEBUG: 			View 1 : 0.545023696682
+2016-08-24 12:04:18,109 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 12:04:18,118 DEBUG: 			View 3 : 0.526066350711
+2016-08-24 12:04:18,456 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:04:26,502 DEBUG: 		Start:	 Iteration 99
+2016-08-24 12:04:26,523 DEBUG: 			View 0 : 0.563981042654
+2016-08-24 12:04:26,533 DEBUG: 			View 1 : 0.630331753555
+2016-08-24 12:04:26,641 DEBUG: 			View 2 : 0.625592417062
+2016-08-24 12:04:26,651 DEBUG: 			View 3 : 0.530805687204
+2016-08-24 12:04:26,992 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:04:35,093 DEBUG: 		Start:	 Iteration 100
+2016-08-24 12:04:35,115 DEBUG: 			View 0 : 0.63981042654
+2016-08-24 12:04:35,125 DEBUG: 			View 1 : 0.450236966825
+2016-08-24 12:04:35,244 DEBUG: 			View 2 : 0.57345971564
+2016-08-24 12:04:35,254 DEBUG: 			View 3 : 0.554502369668
+2016-08-24 12:04:35,597 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:04:43,787 DEBUG: 		Start:	 Iteration 101
+2016-08-24 12:04:43,808 DEBUG: 			View 0 : 0.57345971564
+2016-08-24 12:04:43,818 DEBUG: 			View 1 : 0.587677725118
+2016-08-24 12:04:43,934 DEBUG: 			View 2 : 0.535545023697
+2016-08-24 12:04:43,943 DEBUG: 			View 3 : 0.568720379147
+2016-08-24 12:04:44,291 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:04:52,538 DEBUG: 		Start:	 Iteration 102
+2016-08-24 12:04:52,559 DEBUG: 			View 0 : 0.507109004739
+2016-08-24 12:04:52,568 DEBUG: 			View 1 : 0.597156398104
+2016-08-24 12:04:52,681 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 12:04:52,690 DEBUG: 			View 3 : 0.559241706161
+2016-08-24 12:04:53,040 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:05:01,389 DEBUG: 		Start:	 Iteration 103
+2016-08-24 12:05:01,411 DEBUG: 			View 0 : 0.616113744076
+2016-08-24 12:05:01,421 DEBUG: 			View 1 : 0.545023696682
+2016-08-24 12:05:01,540 DEBUG: 			View 2 : 0.625592417062
+2016-08-24 12:05:01,549 DEBUG: 			View 3 : 0.635071090047
+2016-08-24 12:05:01,901 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:05:10,323 DEBUG: 		Start:	 Iteration 104
+2016-08-24 12:05:10,344 DEBUG: 			View 0 : 0.511848341232
+2016-08-24 12:05:10,354 DEBUG: 			View 1 : 0.483412322275
+2016-08-24 12:05:10,473 DEBUG: 			View 2 : 0.601895734597
+2016-08-24 12:05:10,482 DEBUG: 			View 3 : 0.535545023697
+2016-08-24 12:05:10,838 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:05:19,346 DEBUG: 		Start:	 Iteration 105
+2016-08-24 12:05:19,367 DEBUG: 			View 0 : 0.601895734597
+2016-08-24 12:05:19,377 DEBUG: 			View 1 : 0.625592417062
+2016-08-24 12:05:19,491 DEBUG: 			View 2 : 0.526066350711
+2016-08-24 12:05:19,500 DEBUG: 			View 3 : 0.616113744076
+2016-08-24 12:05:19,859 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:05:28,447 DEBUG: 		Start:	 Iteration 106
+2016-08-24 12:05:28,468 DEBUG: 			View 0 : 0.601895734597
+2016-08-24 12:05:28,478 DEBUG: 			View 1 : 0.507109004739
+2016-08-24 12:05:28,592 DEBUG: 			View 2 : 0.582938388626
+2016-08-24 12:05:28,601 DEBUG: 			View 3 : 0.54028436019
+2016-08-24 12:05:28,962 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:05:37,647 DEBUG: 		Start:	 Iteration 107
+2016-08-24 12:05:37,668 DEBUG: 			View 0 : 0.601895734597
+2016-08-24 12:05:37,678 DEBUG: 			View 1 : 0.57345971564
+2016-08-24 12:05:37,800 DEBUG: 			View 2 : 0.625592417062
+2016-08-24 12:05:37,809 DEBUG: 			View 3 : 0.578199052133
+2016-08-24 12:05:38,173 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:05:46,950 DEBUG: 		Start:	 Iteration 108
+2016-08-24 12:05:46,971 DEBUG: 			View 0 : 0.630331753555
+2016-08-24 12:05:46,981 DEBUG: 			View 1 : 0.60663507109
+2016-08-24 12:05:47,093 DEBUG: 			View 2 : 0.625592417062
+2016-08-24 12:05:47,102 DEBUG: 			View 3 : 0.715639810427
+2016-08-24 12:05:47,469 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:05:56,315 DEBUG: 		Start:	 Iteration 109
+2016-08-24 12:05:56,336 DEBUG: 			View 0 : 0.649289099526
+2016-08-24 12:05:56,345 DEBUG: 			View 1 : 0.582938388626
+2016-08-24 12:05:56,462 DEBUG: 			View 2 : 0.644549763033
+2016-08-24 12:05:56,471 DEBUG: 			View 3 : 0.57345971564
+2016-08-24 12:05:56,844 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:06:05,777 DEBUG: 		Start:	 Iteration 110
+2016-08-24 12:06:05,798 DEBUG: 			View 0 : 0.568720379147
+2016-08-24 12:06:05,808 DEBUG: 			View 1 : 0.526066350711
+2016-08-24 12:06:05,930 DEBUG: 			View 2 : 0.535545023697
+2016-08-24 12:06:05,939 DEBUG: 			View 3 : 0.57345971564
+2016-08-24 12:06:06,312 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:06:15,323 DEBUG: 		Start:	 Iteration 111
+2016-08-24 12:06:15,344 DEBUG: 			View 0 : 0.568720379147
+2016-08-24 12:06:15,354 DEBUG: 			View 1 : 0.545023696682
+2016-08-24 12:06:15,478 DEBUG: 			View 2 : 0.649289099526
+2016-08-24 12:06:15,488 DEBUG: 			View 3 : 0.60663507109
+2016-08-24 12:06:15,862 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:06:24,977 DEBUG: 		Start:	 Iteration 112
+2016-08-24 12:06:24,998 DEBUG: 			View 0 : 0.502369668246
+2016-08-24 12:06:25,008 DEBUG: 			View 1 : 0.563981042654
+2016-08-24 12:06:25,132 DEBUG: 			View 2 : 0.54028436019
+2016-08-24 12:06:25,141 DEBUG: 			View 3 : 0.587677725118
+2016-08-24 12:06:25,522 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:06:34,714 DEBUG: 		Start:	 Iteration 113
+2016-08-24 12:06:34,735 DEBUG: 			View 0 : 0.568720379147
+2016-08-24 12:06:34,744 DEBUG: 			View 1 : 0.507109004739
+2016-08-24 12:06:34,868 DEBUG: 			View 2 : 0.582938388626
+2016-08-24 12:06:34,877 DEBUG: 			View 3 : 0.63981042654
+2016-08-24 12:06:35,257 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:06:44,518 DEBUG: 		Start:	 Iteration 114
+2016-08-24 12:06:44,539 DEBUG: 			View 0 : 0.445497630332
+2016-08-24 12:06:44,548 DEBUG: 			View 1 : 0.597156398104
+2016-08-24 12:06:44,669 DEBUG: 			View 2 : 0.563981042654
+2016-08-24 12:06:44,679 DEBUG: 			View 3 : 0.611374407583
+2016-08-24 12:06:45,064 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:06:54,444 DEBUG: 		Start:	 Iteration 115
+2016-08-24 12:06:54,465 DEBUG: 			View 0 : 0.526066350711
+2016-08-24 12:06:54,475 DEBUG: 			View 1 : 0.63981042654
+2016-08-24 12:06:54,593 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 12:06:54,602 DEBUG: 			View 3 : 0.554502369668
+2016-08-24 12:06:54,988 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:07:04,409 DEBUG: 		Start:	 Iteration 116
+2016-08-24 12:07:04,431 DEBUG: 			View 0 : 0.60663507109
+2016-08-24 12:07:04,441 DEBUG: 			View 1 : 0.734597156398
+2016-08-24 12:07:04,563 DEBUG: 			View 2 : 0.582938388626
+2016-08-24 12:07:04,572 DEBUG: 			View 3 : 0.587677725118
+2016-08-24 12:07:04,967 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:07:14,506 DEBUG: 		Start:	 Iteration 117
+2016-08-24 12:07:14,527 DEBUG: 			View 0 : 0.545023696682
+2016-08-24 12:07:14,537 DEBUG: 			View 1 : 0.611374407583
+2016-08-24 12:07:14,654 DEBUG: 			View 2 : 0.60663507109
+2016-08-24 12:07:14,663 DEBUG: 			View 3 : 0.530805687204
+2016-08-24 12:07:15,054 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:07:24,664 DEBUG: 		Start:	 Iteration 118
+2016-08-24 12:07:24,686 DEBUG: 			View 0 : 0.649289099526
+2016-08-24 12:07:24,695 DEBUG: 			View 1 : 0.42654028436
+2016-08-24 12:07:24,813 DEBUG: 			View 2 : 0.582938388626
+2016-08-24 12:07:24,823 DEBUG: 			View 3 : 0.620853080569
+2016-08-24 12:07:25,216 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:07:34,886 DEBUG: 		Start:	 Iteration 119
+2016-08-24 12:07:34,908 DEBUG: 			View 0 : 0.592417061611
+2016-08-24 12:07:34,918 DEBUG: 			View 1 : 0.649289099526
+2016-08-24 12:07:35,044 DEBUG: 			View 2 : 0.601895734597
+2016-08-24 12:07:35,053 DEBUG: 			View 3 : 0.601895734597
+2016-08-24 12:07:35,452 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:07:45,211 DEBUG: 		Start:	 Iteration 120
+2016-08-24 12:07:45,232 DEBUG: 			View 0 : 0.545023696682
+2016-08-24 12:07:45,242 DEBUG: 			View 1 : 0.677725118483
+2016-08-24 12:07:45,365 DEBUG: 			View 2 : 0.511848341232
+2016-08-24 12:07:45,375 DEBUG: 			View 3 : 0.563981042654
+2016-08-24 12:07:45,780 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:07:55,605 DEBUG: 		Start:	 Iteration 121
+2016-08-24 12:07:55,625 DEBUG: 			View 0 : 0.511848341232
+2016-08-24 12:07:55,635 DEBUG: 			View 1 : 0.578199052133
+2016-08-24 12:07:55,752 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 12:07:55,761 DEBUG: 			View 3 : 0.57345971564
+2016-08-24 12:07:56,167 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:08:06,056 DEBUG: 		Start:	 Iteration 122
+2016-08-24 12:08:06,077 DEBUG: 			View 0 : 0.587677725118
+2016-08-24 12:08:06,087 DEBUG: 			View 1 : 0.611374407583
+2016-08-24 12:08:06,205 DEBUG: 			View 2 : 0.511848341232
+2016-08-24 12:08:06,215 DEBUG: 			View 3 : 0.526066350711
+2016-08-24 12:08:06,620 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:08:16,607 DEBUG: 		Start:	 Iteration 123
+2016-08-24 12:08:16,628 DEBUG: 			View 0 : 0.511848341232
+2016-08-24 12:08:16,638 DEBUG: 			View 1 : 0.511848341232
+2016-08-24 12:08:16,760 DEBUG: 			View 2 : 0.530805687204
+2016-08-24 12:08:16,769 DEBUG: 			View 3 : 0.568720379147
+2016-08-24 12:08:17,180 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:08:27,249 DEBUG: 		Start:	 Iteration 124
+2016-08-24 12:08:27,270 DEBUG: 			View 0 : 0.545023696682
+2016-08-24 12:08:27,280 DEBUG: 			View 1 : 0.668246445498
+2016-08-24 12:08:27,393 DEBUG: 			View 2 : 0.57345971564
+2016-08-24 12:08:27,403 DEBUG: 			View 3 : 0.592417061611
+2016-08-24 12:08:27,816 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:08:37,964 DEBUG: 		Start:	 Iteration 125
+2016-08-24 12:08:37,985 DEBUG: 			View 0 : 0.620853080569
+2016-08-24 12:08:37,995 DEBUG: 			View 1 : 0.57345971564
+2016-08-24 12:08:38,112 DEBUG: 			View 2 : 0.630331753555
+2016-08-24 12:08:38,121 DEBUG: 			View 3 : 0.654028436019
+2016-08-24 12:08:38,538 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:08:48,754 DEBUG: 		Start:	 Iteration 126
+2016-08-24 12:08:48,775 DEBUG: 			View 0 : 0.402843601896
+2016-08-24 12:08:48,785 DEBUG: 			View 1 : 0.644549763033
+2016-08-24 12:08:48,897 DEBUG: 			View 2 : 0.545023696682
+2016-08-24 12:08:48,906 DEBUG: 			View 3 : 0.672985781991
+2016-08-24 12:08:49,326 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:08:59,605 DEBUG: 		Start:	 Iteration 127
+2016-08-24 12:08:59,626 DEBUG: 			View 0 : 0.663507109005
+2016-08-24 12:08:59,636 DEBUG: 			View 1 : 0.578199052133
+2016-08-24 12:08:59,753 DEBUG: 			View 2 : 0.587677725118
+2016-08-24 12:08:59,763 DEBUG: 			View 3 : 0.568720379147
+2016-08-24 12:09:00,192 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:09:10,552 DEBUG: 		Start:	 Iteration 128
+2016-08-24 12:09:10,573 DEBUG: 			View 0 : 0.672985781991
+2016-08-24 12:09:10,583 DEBUG: 			View 1 : 0.710900473934
+2016-08-24 12:09:10,705 DEBUG: 			View 2 : 0.502369668246
+2016-08-24 12:09:10,714 DEBUG: 			View 3 : 0.568720379147
+2016-08-24 12:09:11,139 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:09:21,574 DEBUG: 		Start:	 Iteration 129
+2016-08-24 12:09:21,595 DEBUG: 			View 0 : 0.663507109005
+2016-08-24 12:09:21,605 DEBUG: 			View 1 : 0.497630331754
+2016-08-24 12:09:21,726 DEBUG: 			View 2 : 0.57345971564
+2016-08-24 12:09:21,735 DEBUG: 			View 3 : 0.644549763033
+2016-08-24 12:09:22,164 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:09:32,723 DEBUG: 		Start:	 Iteration 130
+2016-08-24 12:09:32,744 DEBUG: 			View 0 : 0.611374407583
+2016-08-24 12:09:32,754 DEBUG: 			View 1 : 0.616113744076
+2016-08-24 12:09:32,869 DEBUG: 			View 2 : 0.530805687204
+2016-08-24 12:09:32,878 DEBUG: 			View 3 : 0.644549763033
+2016-08-24 12:09:33,308 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:09:43,918 DEBUG: 		Start:	 Iteration 131
+2016-08-24 12:09:43,939 DEBUG: 			View 0 : 0.554502369668
+2016-08-24 12:09:43,949 DEBUG: 			View 1 : 0.554502369668
+2016-08-24 12:09:44,068 DEBUG: 			View 2 : 0.545023696682
+2016-08-24 12:09:44,077 DEBUG: 			View 3 : 0.616113744076
+2016-08-24 12:09:44,512 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:09:55,225 DEBUG: 		Start:	 Iteration 132
+2016-08-24 12:09:55,246 DEBUG: 			View 0 : 0.563981042654
+2016-08-24 12:09:55,256 DEBUG: 			View 1 : 0.36018957346
+2016-08-24 12:09:55,373 DEBUG: 			View 2 : 0.530805687204
+2016-08-24 12:09:55,383 DEBUG: 			View 3 : 0.625592417062
+2016-08-24 12:09:55,820 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:10:06,593 DEBUG: 		Start:	 Iteration 133
+2016-08-24 12:10:06,614 DEBUG: 			View 0 : 0.530805687204
+2016-08-24 12:10:06,624 DEBUG: 			View 1 : 0.488151658768
+2016-08-24 12:10:06,736 DEBUG: 			View 2 : 0.545023696682
+2016-08-24 12:10:06,746 DEBUG: 			View 3 : 0.710900473934
+2016-08-24 12:10:07,184 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:10:18,015 DEBUG: 		Start:	 Iteration 134
+2016-08-24 12:10:18,036 DEBUG: 			View 0 : 0.440758293839
+2016-08-24 12:10:18,046 DEBUG: 			View 1 : 0.677725118483
+2016-08-24 12:10:18,166 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 12:10:18,175 DEBUG: 			View 3 : 0.530805687204
+2016-08-24 12:10:18,618 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:10:29,538 DEBUG: 		Start:	 Iteration 135
+2016-08-24 12:10:29,560 DEBUG: 			View 0 : 0.45971563981
+2016-08-24 12:10:29,569 DEBUG: 			View 1 : 0.601895734597
+2016-08-24 12:10:29,693 DEBUG: 			View 2 : 0.502369668246
+2016-08-24 12:10:29,702 DEBUG: 			View 3 : 0.597156398104
+2016-08-24 12:10:30,148 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:10:41,135 DEBUG: 		Start:	 Iteration 136
+2016-08-24 12:10:41,156 DEBUG: 			View 0 : 0.483412322275
+2016-08-24 12:10:41,165 DEBUG: 			View 1 : 0.710900473934
+2016-08-24 12:10:41,284 DEBUG: 			View 2 : 0.535545023697
+2016-08-24 12:10:41,293 DEBUG: 			View 3 : 0.511848341232
+2016-08-24 12:10:41,741 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:10:52,818 DEBUG: 		Start:	 Iteration 137
+2016-08-24 12:10:52,841 DEBUG: 			View 0 : 0.549763033175
+2016-08-24 12:10:52,850 DEBUG: 			View 1 : 0.554502369668
+2016-08-24 12:10:52,964 DEBUG: 			View 2 : 0.469194312796
+2016-08-24 12:10:52,974 DEBUG: 			View 3 : 0.516587677725
+2016-08-24 12:10:53,424 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:11:04,593 DEBUG: 		Start:	 Iteration 138
+2016-08-24 12:11:04,614 DEBUG: 			View 0 : 0.473933649289
+2016-08-24 12:11:04,624 DEBUG: 			View 1 : 0.701421800948
+2016-08-24 12:11:04,741 DEBUG: 			View 2 : 0.54028436019
+2016-08-24 12:11:04,751 DEBUG: 			View 3 : 0.644549763033
+2016-08-24 12:11:05,209 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:11:16,483 DEBUG: 		Start:	 Iteration 139
+2016-08-24 12:11:16,504 DEBUG: 			View 0 : 0.502369668246
+2016-08-24 12:11:16,513 DEBUG: 			View 1 : 0.341232227488
+2016-08-24 12:11:16,631 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 12:11:16,640 DEBUG: 			View 3 : 0.578199052133
+2016-08-24 12:11:17,099 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:11:28,407 DEBUG: 		Start:	 Iteration 140
+2016-08-24 12:11:28,428 DEBUG: 			View 0 : 0.658767772512
+2016-08-24 12:11:28,437 DEBUG: 			View 1 : 0.530805687204
+2016-08-24 12:11:28,550 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 12:11:28,559 DEBUG: 			View 3 : 0.511848341232
+2016-08-24 12:11:29,017 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:11:40,402 DEBUG: 		Start:	 Iteration 141
+2016-08-24 12:11:40,424 DEBUG: 			View 0 : 0.535545023697
+2016-08-24 12:11:40,434 DEBUG: 			View 1 : 0.526066350711
+2016-08-24 12:11:40,555 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 12:11:40,564 DEBUG: 			View 3 : 0.672985781991
+2016-08-24 12:11:41,028 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:11:52,497 DEBUG: 		Start:	 Iteration 142
+2016-08-24 12:11:52,519 DEBUG: 			View 0 : 0.511848341232
+2016-08-24 12:11:52,528 DEBUG: 			View 1 : 0.60663507109
+2016-08-24 12:11:52,637 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 12:11:52,646 DEBUG: 			View 3 : 0.526066350711
+2016-08-24 12:11:53,112 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:12:04,623 DEBUG: 		Start:	 Iteration 143
+2016-08-24 12:12:04,644 DEBUG: 			View 0 : 0.57345971564
+2016-08-24 12:12:04,654 DEBUG: 			View 1 : 0.483412322275
+2016-08-24 12:12:04,776 DEBUG: 			View 2 : 0.54028436019
+2016-08-24 12:12:04,786 DEBUG: 			View 3 : 0.616113744076
+2016-08-24 12:12:05,252 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:12:16,866 DEBUG: 		Start:	 Iteration 144
+2016-08-24 12:12:16,887 DEBUG: 			View 0 : 0.526066350711
+2016-08-24 12:12:16,897 DEBUG: 			View 1 : 0.388625592417
+2016-08-24 12:12:17,016 DEBUG: 			View 2 : 0.54028436019
+2016-08-24 12:12:17,025 DEBUG: 			View 3 : 0.521327014218
+2016-08-24 12:12:17,502 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:12:29,210 DEBUG: 		Start:	 Iteration 145
+2016-08-24 12:12:29,231 DEBUG: 			View 0 : 0.450236966825
+2016-08-24 12:12:29,241 DEBUG: 			View 1 : 0.620853080569
+2016-08-24 12:12:29,354 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 12:12:29,364 DEBUG: 			View 3 : 0.511848341232
+2016-08-24 12:12:29,840 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:12:41,619 DEBUG: 		Start:	 Iteration 146
+2016-08-24 12:12:41,641 DEBUG: 			View 0 : 0.654028436019
+2016-08-24 12:12:41,650 DEBUG: 			View 1 : 0.511848341232
+2016-08-24 12:12:41,771 DEBUG: 			View 2 : 0.592417061611
+2016-08-24 12:12:41,780 DEBUG: 			View 3 : 0.625592417062
+2016-08-24 12:12:42,255 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:12:54,122 DEBUG: 		Start:	 Iteration 147
+2016-08-24 12:12:54,143 DEBUG: 			View 0 : 0.729857819905
+2016-08-24 12:12:54,153 DEBUG: 			View 1 : 0.421800947867
+2016-08-24 12:12:54,271 DEBUG: 			View 2 : 0.592417061611
+2016-08-24 12:12:54,281 DEBUG: 			View 3 : 0.592417061611
+2016-08-24 12:12:54,761 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:13:06,717 DEBUG: 		Start:	 Iteration 148
+2016-08-24 12:13:06,738 DEBUG: 			View 0 : 0.616113744076
+2016-08-24 12:13:06,748 DEBUG: 			View 1 : 0.696682464455
+2016-08-24 12:13:06,866 DEBUG: 			View 2 : 0.54028436019
+2016-08-24 12:13:06,875 DEBUG: 			View 3 : 0.611374407583
+2016-08-24 12:13:07,360 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:13:19,413 DEBUG: 		Start:	 Iteration 149
+2016-08-24 12:13:19,435 DEBUG: 			View 0 : 0.601895734597
+2016-08-24 12:13:19,444 DEBUG: 			View 1 : 0.672985781991
+2016-08-24 12:13:19,567 DEBUG: 			View 2 : 0.526066350711
+2016-08-24 12:13:19,576 DEBUG: 			View 3 : 0.554502369668
+2016-08-24 12:13:20,060 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:13:32,162 DEBUG: 		Start:	 Iteration 150
+2016-08-24 12:13:32,183 DEBUG: 			View 0 : 0.42654028436
+2016-08-24 12:13:32,193 DEBUG: 			View 1 : 0.530805687204
+2016-08-24 12:13:32,314 DEBUG: 			View 2 : 0.620853080569
+2016-08-24 12:13:32,324 DEBUG: 			View 3 : 0.691943127962
+2016-08-24 12:13:32,822 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:13:45,034 DEBUG: 		Start:	 Iteration 151
+2016-08-24 12:13:45,056 DEBUG: 			View 0 : 0.57345971564
+2016-08-24 12:13:45,066 DEBUG: 			View 1 : 0.412322274882
+2016-08-24 12:13:45,192 DEBUG: 			View 2 : 0.563981042654
+2016-08-24 12:13:45,201 DEBUG: 			View 3 : 0.597156398104
+2016-08-24 12:13:45,693 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:13:57,957 DEBUG: 		Start:	 Iteration 152
+2016-08-24 12:13:57,979 DEBUG: 			View 0 : 0.530805687204
+2016-08-24 12:13:57,988 DEBUG: 			View 1 : 0.549763033175
+2016-08-24 12:13:58,111 DEBUG: 			View 2 : 0.616113744076
+2016-08-24 12:13:58,120 DEBUG: 			View 3 : 0.592417061611
+2016-08-24 12:13:58,616 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:14:10,970 DEBUG: 		Start:	 Iteration 153
+2016-08-24 12:14:10,991 DEBUG: 			View 0 : 0.616113744076
+2016-08-24 12:14:11,001 DEBUG: 			View 1 : 0.57345971564
+2016-08-24 12:14:11,123 DEBUG: 			View 2 : 0.54028436019
+2016-08-24 12:14:11,133 DEBUG: 			View 3 : 0.530805687204
+2016-08-24 12:14:11,628 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:14:24,069 DEBUG: 		Start:	 Iteration 154
+2016-08-24 12:14:24,090 DEBUG: 			View 0 : 0.630331753555
+2016-08-24 12:14:24,100 DEBUG: 			View 1 : 0.682464454976
+2016-08-24 12:14:24,218 DEBUG: 			View 2 : 0.60663507109
+2016-08-24 12:14:24,227 DEBUG: 			View 3 : 0.601895734597
+2016-08-24 12:14:24,731 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:14:37,258 DEBUG: 		Start:	 Iteration 155
+2016-08-24 12:14:37,279 DEBUG: 			View 0 : 0.592417061611
+2016-08-24 12:14:37,288 DEBUG: 			View 1 : 0.483412322275
+2016-08-24 12:14:37,409 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 12:14:37,418 DEBUG: 			View 3 : 0.672985781991
+2016-08-24 12:14:37,917 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:14:50,508 DEBUG: 		Start:	 Iteration 156
+2016-08-24 12:14:50,529 DEBUG: 			View 0 : 0.549763033175
+2016-08-24 12:14:50,539 DEBUG: 			View 1 : 0.625592417062
+2016-08-24 12:14:50,655 DEBUG: 			View 2 : 0.530805687204
+2016-08-24 12:14:50,664 DEBUG: 			View 3 : 0.549763033175
+2016-08-24 12:14:51,169 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:15:03,825 DEBUG: 		Start:	 Iteration 157
+2016-08-24 12:15:03,846 DEBUG: 			View 0 : 0.507109004739
+2016-08-24 12:15:03,855 DEBUG: 			View 1 : 0.592417061611
+2016-08-24 12:15:03,972 DEBUG: 			View 2 : 0.511848341232
+2016-08-24 12:15:03,981 DEBUG: 			View 3 : 0.535545023697
+2016-08-24 12:15:04,489 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:15:17,235 DEBUG: 		Start:	 Iteration 158
+2016-08-24 12:15:17,257 DEBUG: 			View 0 : 0.526066350711
+2016-08-24 12:15:17,266 DEBUG: 			View 1 : 0.60663507109
+2016-08-24 12:15:17,384 DEBUG: 			View 2 : 0.625592417062
+2016-08-24 12:15:17,394 DEBUG: 			View 3 : 0.54028436019
+2016-08-24 12:15:17,905 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:15:30,740 DEBUG: 		Start:	 Iteration 159
+2016-08-24 12:15:30,761 DEBUG: 			View 0 : 0.658767772512
+2016-08-24 12:15:30,771 DEBUG: 			View 1 : 0.710900473934
+2016-08-24 12:15:30,890 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 12:15:30,899 DEBUG: 			View 3 : 0.663507109005
+2016-08-24 12:15:31,411 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:15:44,313 DEBUG: 		Start:	 Iteration 160
+2016-08-24 12:15:44,334 DEBUG: 			View 0 : 0.568720379147
+2016-08-24 12:15:44,344 DEBUG: 			View 1 : 0.597156398104
+2016-08-24 12:15:44,470 DEBUG: 			View 2 : 0.57345971564
+2016-08-24 12:15:44,479 DEBUG: 			View 3 : 0.578199052133
+2016-08-24 12:15:44,994 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:15:58,000 DEBUG: 		Start:	 Iteration 161
+2016-08-24 12:15:58,021 DEBUG: 			View 0 : 0.815165876777
+2016-08-24 12:15:58,031 DEBUG: 			View 1 : 0.45971563981
+2016-08-24 12:15:58,144 DEBUG: 			View 2 : 0.597156398104
+2016-08-24 12:15:58,153 DEBUG: 			View 3 : 0.582938388626
+2016-08-24 12:15:58,671 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:16:11,725 DEBUG: 		Start:	 Iteration 162
+2016-08-24 12:16:11,746 DEBUG: 			View 0 : 0.578199052133
+2016-08-24 12:16:11,756 DEBUG: 			View 1 : 0.549763033175
+2016-08-24 12:16:11,873 DEBUG: 			View 2 : 0.521327014218
+2016-08-24 12:16:11,882 DEBUG: 			View 3 : 0.559241706161
+2016-08-24 12:16:12,403 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:16:25,556 DEBUG: 		Start:	 Iteration 163
+2016-08-24 12:16:25,577 DEBUG: 			View 0 : 0.464454976303
+2016-08-24 12:16:25,586 DEBUG: 			View 1 : 0.549763033175
+2016-08-24 12:16:25,707 DEBUG: 			View 2 : 0.454976303318
+2016-08-24 12:16:25,716 DEBUG: 			View 3 : 0.563981042654
+2016-08-24 12:16:26,241 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:16:39,475 DEBUG: 		Start:	 Iteration 164
+2016-08-24 12:16:39,497 DEBUG: 			View 0 : 0.625592417062
+2016-08-24 12:16:39,506 DEBUG: 			View 1 : 0.545023696682
+2016-08-24 12:16:39,619 DEBUG: 			View 2 : 0.635071090047
+2016-08-24 12:16:39,628 DEBUG: 			View 3 : 0.521327014218
+2016-08-24 12:16:40,153 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:16:53,496 DEBUG: 		Start:	 Iteration 165
+2016-08-24 12:16:53,517 DEBUG: 			View 0 : 0.568720379147
+2016-08-24 12:16:53,527 DEBUG: 			View 1 : 0.635071090047
+2016-08-24 12:16:53,645 DEBUG: 			View 2 : 0.568720379147
+2016-08-24 12:16:53,654 DEBUG: 			View 3 : 0.687203791469
+2016-08-24 12:16:54,187 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:17:07,598 DEBUG: 		Start:	 Iteration 166
+2016-08-24 12:17:07,619 DEBUG: 			View 0 : 0.436018957346
+2016-08-24 12:17:07,629 DEBUG: 			View 1 : 0.563981042654
+2016-08-24 12:17:07,735 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 12:17:07,744 DEBUG: 			View 3 : 0.478672985782
+2016-08-24 12:17:08,276 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:17:21,774 DEBUG: 		Start:	 Iteration 167
+2016-08-24 12:17:21,796 DEBUG: 			View 0 : 0.473933649289
+2016-08-24 12:17:21,805 DEBUG: 			View 1 : 0.42654028436
+2016-08-24 12:17:21,922 DEBUG: 			View 2 : 0.545023696682
+2016-08-24 12:17:21,931 DEBUG: 			View 3 : 0.672985781991
+2016-08-24 12:17:22,467 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:17:36,030 DEBUG: 		Start:	 Iteration 168
+2016-08-24 12:17:36,051 DEBUG: 			View 0 : 0.251184834123
+2016-08-24 12:17:36,061 DEBUG: 			View 1 : 0.597156398104
+2016-08-24 12:17:36,181 DEBUG: 			View 2 : 0.530805687204
+2016-08-24 12:17:36,190 DEBUG: 			View 3 : 0.511848341232
+2016-08-24 12:17:36,730 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:17:50,379 DEBUG: 		Start:	 Iteration 169
+2016-08-24 12:17:50,400 DEBUG: 			View 0 : 0.483412322275
+2016-08-24 12:17:50,410 DEBUG: 			View 1 : 0.45971563981
+2016-08-24 12:17:50,528 DEBUG: 			View 2 : 0.616113744076
+2016-08-24 12:17:50,537 DEBUG: 			View 3 : 0.578199052133
+2016-08-24 12:17:51,078 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:18:04,862 DEBUG: 		Start:	 Iteration 170
+2016-08-24 12:18:04,884 DEBUG: 			View 0 : 0.559241706161
+2016-08-24 12:18:04,894 DEBUG: 			View 1 : 0.649289099526
+2016-08-24 12:18:05,012 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 12:18:05,021 DEBUG: 			View 3 : 0.630331753555
+2016-08-24 12:18:05,570 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:18:19,413 DEBUG: 		Start:	 Iteration 171
+2016-08-24 12:18:19,434 DEBUG: 			View 0 : 0.36018957346
+2016-08-24 12:18:19,444 DEBUG: 			View 1 : 0.511848341232
+2016-08-24 12:18:19,561 DEBUG: 			View 2 : 0.530805687204
+2016-08-24 12:18:19,570 DEBUG: 			View 3 : 0.601895734597
+2016-08-24 12:18:20,121 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:18:34,055 DEBUG: 		Start:	 Iteration 172
+2016-08-24 12:18:34,076 DEBUG: 			View 0 : 0.672985781991
+2016-08-24 12:18:34,085 DEBUG: 			View 1 : 0.497630331754
+2016-08-24 12:18:34,207 DEBUG: 			View 2 : 0.635071090047
+2016-08-24 12:18:34,216 DEBUG: 			View 3 : 0.658767772512
+2016-08-24 12:18:34,767 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:18:48,760 DEBUG: 		Start:	 Iteration 173
+2016-08-24 12:18:48,781 DEBUG: 			View 0 : 0.54028436019
+2016-08-24 12:18:48,790 DEBUG: 			View 1 : 0.473933649289
+2016-08-24 12:18:48,903 DEBUG: 			View 2 : 0.592417061611
+2016-08-24 12:18:48,912 DEBUG: 			View 3 : 0.597156398104
+2016-08-24 12:18:49,465 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:19:03,546 DEBUG: 		Start:	 Iteration 174
+2016-08-24 12:19:03,567 DEBUG: 			View 0 : 0.436018957346
+2016-08-24 12:19:03,577 DEBUG: 			View 1 : 0.488151658768
+2016-08-24 12:19:03,694 DEBUG: 			View 2 : 0.535545023697
+2016-08-24 12:19:03,704 DEBUG: 			View 3 : 0.616113744076
+2016-08-24 12:19:04,260 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:19:18,387 DEBUG: 		Start:	 Iteration 175
+2016-08-24 12:19:18,408 DEBUG: 			View 0 : 0.620853080569
+2016-08-24 12:19:18,417 DEBUG: 			View 1 : 0.578199052133
+2016-08-24 12:19:18,530 DEBUG: 			View 2 : 0.592417061611
+2016-08-24 12:19:18,539 DEBUG: 			View 3 : 0.57345971564
+2016-08-24 12:19:19,102 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:19:33,321 DEBUG: 		Start:	 Iteration 176
+2016-08-24 12:19:33,343 DEBUG: 			View 0 : 0.611374407583
+2016-08-24 12:19:33,353 DEBUG: 			View 1 : 0.355450236967
+2016-08-24 12:19:33,475 DEBUG: 			View 2 : 0.545023696682
+2016-08-24 12:19:33,484 DEBUG: 			View 3 : 0.635071090047
+2016-08-24 12:19:34,046 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:19:48,336 DEBUG: 		Start:	 Iteration 177
+2016-08-24 12:19:48,357 DEBUG: 			View 0 : 0.559241706161
+2016-08-24 12:19:48,367 DEBUG: 			View 1 : 0.516587677725
+2016-08-24 12:19:48,483 DEBUG: 			View 2 : 0.616113744076
+2016-08-24 12:19:48,492 DEBUG: 			View 3 : 0.691943127962
+2016-08-24 12:19:49,059 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:20:03,424 DEBUG: 		Start:	 Iteration 178
+2016-08-24 12:20:03,446 DEBUG: 			View 0 : 0.620853080569
+2016-08-24 12:20:03,455 DEBUG: 			View 1 : 0.668246445498
+2016-08-24 12:20:03,569 DEBUG: 			View 2 : 0.521327014218
+2016-08-24 12:20:03,578 DEBUG: 			View 3 : 0.549763033175
+2016-08-24 12:20:04,145 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:20:18,599 DEBUG: 		Start:	 Iteration 179
+2016-08-24 12:20:18,620 DEBUG: 			View 0 : 0.578199052133
+2016-08-24 12:20:18,629 DEBUG: 			View 1 : 0.625592417062
+2016-08-24 12:20:18,751 DEBUG: 			View 2 : 0.60663507109
+2016-08-24 12:20:18,760 DEBUG: 			View 3 : 0.710900473934
+2016-08-24 12:20:19,336 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:20:33,854 DEBUG: 		Start:	 Iteration 180
+2016-08-24 12:20:33,875 DEBUG: 			View 0 : 0.511848341232
+2016-08-24 12:20:33,884 DEBUG: 			View 1 : 0.611374407583
+2016-08-24 12:20:34,004 DEBUG: 			View 2 : 0.507109004739
+2016-08-24 12:20:34,013 DEBUG: 			View 3 : 0.663507109005
+2016-08-24 12:20:34,586 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:20:49,180 DEBUG: 		Start:	 Iteration 181
+2016-08-24 12:20:49,201 DEBUG: 			View 0 : 0.45971563981
+2016-08-24 12:20:49,211 DEBUG: 			View 1 : 0.383886255924
+2016-08-24 12:20:49,328 DEBUG: 			View 2 : 0.568720379147
+2016-08-24 12:20:49,338 DEBUG: 			View 3 : 0.710900473934
+2016-08-24 12:20:49,925 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:21:04,606 DEBUG: 		Start:	 Iteration 182
+2016-08-24 12:21:04,628 DEBUG: 			View 0 : 0.587677725118
+2016-08-24 12:21:04,637 DEBUG: 			View 1 : 0.582938388626
+2016-08-24 12:21:04,757 DEBUG: 			View 2 : 0.530805687204
+2016-08-24 12:21:04,766 DEBUG: 			View 3 : 0.559241706161
+2016-08-24 12:21:05,345 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:21:20,109 DEBUG: 		Start:	 Iteration 183
+2016-08-24 12:21:20,131 DEBUG: 			View 0 : 0.696682464455
+2016-08-24 12:21:20,140 DEBUG: 			View 1 : 0.625592417062
+2016-08-24 12:21:20,257 DEBUG: 			View 2 : 0.521327014218
+2016-08-24 12:21:20,266 DEBUG: 			View 3 : 0.587677725118
+2016-08-24 12:21:20,850 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:21:35,677 DEBUG: 		Start:	 Iteration 184
+2016-08-24 12:21:35,698 DEBUG: 			View 0 : 0.483412322275
+2016-08-24 12:21:35,708 DEBUG: 			View 1 : 0.620853080569
+2016-08-24 12:21:35,825 DEBUG: 			View 2 : 0.563981042654
+2016-08-24 12:21:35,835 DEBUG: 			View 3 : 0.54028436019
+2016-08-24 12:21:36,423 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:21:51,330 DEBUG: 		Start:	 Iteration 185
+2016-08-24 12:21:51,351 DEBUG: 			View 0 : 0.635071090047
+2016-08-24 12:21:51,361 DEBUG: 			View 1 : 0.706161137441
+2016-08-24 12:21:51,480 DEBUG: 			View 2 : 0.616113744076
+2016-08-24 12:21:51,490 DEBUG: 			View 3 : 0.54028436019
+2016-08-24 12:21:52,074 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:22:07,069 DEBUG: 		Start:	 Iteration 186
+2016-08-24 12:22:07,090 DEBUG: 			View 0 : 0.545023696682
+2016-08-24 12:22:07,100 DEBUG: 			View 1 : 0.45971563981
+2016-08-24 12:22:07,220 DEBUG: 			View 2 : 0.60663507109
+2016-08-24 12:22:07,229 DEBUG: 			View 3 : 0.530805687204
+2016-08-24 12:22:07,825 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:22:22,929 DEBUG: 		Start:	 Iteration 187
+2016-08-24 12:22:22,950 DEBUG: 			View 0 : 0.672985781991
+2016-08-24 12:22:22,959 DEBUG: 			View 1 : 0.725118483412
+2016-08-24 12:22:23,078 DEBUG: 			View 2 : 0.592417061611
+2016-08-24 12:22:23,088 DEBUG: 			View 3 : 0.620853080569
+2016-08-24 12:22:23,683 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:22:38,861 DEBUG: 		Start:	 Iteration 188
+2016-08-24 12:22:38,882 DEBUG: 			View 0 : 0.625592417062
+2016-08-24 12:22:38,892 DEBUG: 			View 1 : 0.549763033175
+2016-08-24 12:22:39,013 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 12:22:39,022 DEBUG: 			View 3 : 0.677725118483
+2016-08-24 12:22:39,617 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:22:54,875 DEBUG: 		Start:	 Iteration 189
+2016-08-24 12:22:54,896 DEBUG: 			View 0 : 0.530805687204
+2016-08-24 12:22:54,906 DEBUG: 			View 1 : 0.412322274882
+2016-08-24 12:22:55,034 DEBUG: 			View 2 : 0.597156398104
+2016-08-24 12:22:55,043 DEBUG: 			View 3 : 0.582938388626
+2016-08-24 12:22:55,648 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:23:10,946 DEBUG: 		Start:	 Iteration 190
+2016-08-24 12:23:10,967 DEBUG: 			View 0 : 0.502369668246
+2016-08-24 12:23:10,977 DEBUG: 			View 1 : 0.440758293839
+2016-08-24 12:23:11,109 DEBUG: 			View 2 : 0.473933649289
+2016-08-24 12:23:11,118 DEBUG: 			View 3 : 0.625592417062
+2016-08-24 12:23:11,721 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:23:27,156 DEBUG: 		Start:	 Iteration 191
+2016-08-24 12:23:27,177 DEBUG: 			View 0 : 0.497630331754
+2016-08-24 12:23:27,187 DEBUG: 			View 1 : 0.644549763033
+2016-08-24 12:23:27,310 DEBUG: 			View 2 : 0.587677725118
+2016-08-24 12:23:27,320 DEBUG: 			View 3 : 0.63981042654
+2016-08-24 12:23:27,920 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:23:43,375 DEBUG: 		Start:	 Iteration 192
+2016-08-24 12:23:43,396 DEBUG: 			View 0 : 0.620853080569
+2016-08-24 12:23:43,406 DEBUG: 			View 1 : 0.620853080569
+2016-08-24 12:23:43,540 DEBUG: 			View 2 : 0.54028436019
+2016-08-24 12:23:43,551 DEBUG: 			View 3 : 0.587677725118
+2016-08-24 12:23:44,160 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:23:59,708 DEBUG: 		Start:	 Iteration 193
+2016-08-24 12:23:59,730 DEBUG: 			View 0 : 0.516587677725
+2016-08-24 12:23:59,739 DEBUG: 			View 1 : 0.417061611374
+2016-08-24 12:23:59,880 DEBUG: 			View 2 : 0.545023696682
+2016-08-24 12:23:59,892 DEBUG: 			View 3 : 0.535545023697
+2016-08-24 12:24:00,504 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:24:16,134 DEBUG: 		Start:	 Iteration 194
+2016-08-24 12:24:16,155 DEBUG: 			View 0 : 0.39336492891
+2016-08-24 12:24:16,165 DEBUG: 			View 1 : 0.478672985782
+2016-08-24 12:24:16,296 DEBUG: 			View 2 : 0.511848341232
+2016-08-24 12:24:16,308 DEBUG: 			View 3 : 0.658767772512
+2016-08-24 12:24:16,929 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:24:32,642 DEBUG: 		Start:	 Iteration 195
+2016-08-24 12:24:32,663 DEBUG: 			View 0 : 0.587677725118
+2016-08-24 12:24:32,673 DEBUG: 			View 1 : 0.587677725118
+2016-08-24 12:24:32,808 DEBUG: 			View 2 : 0.587677725118
+2016-08-24 12:24:32,819 DEBUG: 			View 3 : 0.545023696682
+2016-08-24 12:24:33,438 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:24:49,256 DEBUG: 		Start:	 Iteration 196
+2016-08-24 12:24:49,277 DEBUG: 			View 0 : 0.592417061611
+2016-08-24 12:24:49,287 DEBUG: 			View 1 : 0.469194312796
+2016-08-24 12:24:49,418 DEBUG: 			View 2 : 0.649289099526
+2016-08-24 12:24:49,430 DEBUG: 			View 3 : 0.492890995261
+2016-08-24 12:24:50,049 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:25:05,942 DEBUG: 		Start:	 Iteration 197
+2016-08-24 12:25:05,961 DEBUG: 			View 0 : 0.497630331754
+2016-08-24 12:25:05,971 DEBUG: 			View 1 : 0.549763033175
+2016-08-24 12:25:06,106 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 12:25:06,118 DEBUG: 			View 3 : 0.554502369668
+2016-08-24 12:25:06,739 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:25:22,740 DEBUG: 		Start:	 Iteration 198
+2016-08-24 12:25:22,761 DEBUG: 			View 0 : 0.535545023697
+2016-08-24 12:25:22,771 DEBUG: 			View 1 : 0.672985781991
+2016-08-24 12:25:22,906 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 12:25:22,918 DEBUG: 			View 3 : 0.559241706161
+2016-08-24 12:25:23,544 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:25:39,634 DEBUG: 		Start:	 Iteration 199
+2016-08-24 12:25:39,655 DEBUG: 			View 0 : 0.597156398104
+2016-08-24 12:25:39,665 DEBUG: 			View 1 : 0.691943127962
+2016-08-24 12:25:39,791 DEBUG: 			View 2 : 0.521327014218
+2016-08-24 12:25:39,803 DEBUG: 			View 3 : 0.625592417062
+2016-08-24 12:25:40,445 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:25:56,609 DEBUG: 		Start:	 Iteration 200
+2016-08-24 12:25:56,631 DEBUG: 			View 0 : 0.644549763033
+2016-08-24 12:25:56,640 DEBUG: 			View 1 : 0.54028436019
+2016-08-24 12:25:56,772 DEBUG: 			View 2 : 0.60663507109
+2016-08-24 12:25:56,783 DEBUG: 			View 3 : 0.701421800948
+2016-08-24 12:25:57,413 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:26:13,644 DEBUG: 		Start:	 Iteration 201
+2016-08-24 12:26:13,665 DEBUG: 			View 0 : 0.440758293839
+2016-08-24 12:26:13,675 DEBUG: 			View 1 : 0.635071090047
+2016-08-24 12:26:13,806 DEBUG: 			View 2 : 0.620853080569
+2016-08-24 12:26:13,818 DEBUG: 			View 3 : 0.511848341232
+2016-08-24 12:26:14,451 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:26:30,791 DEBUG: 		Start:	 Iteration 202
+2016-08-24 12:26:30,813 DEBUG: 			View 0 : 0.54028436019
+2016-08-24 12:26:30,822 DEBUG: 			View 1 : 0.398104265403
+2016-08-24 12:26:30,963 DEBUG: 			View 2 : 0.587677725118
+2016-08-24 12:26:30,974 DEBUG: 			View 3 : 0.559241706161
+2016-08-24 12:26:31,610 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:26:48,031 DEBUG: 		Start:	 Iteration 203
+2016-08-24 12:26:48,052 DEBUG: 			View 0 : 0.630331753555
+2016-08-24 12:26:48,062 DEBUG: 			View 1 : 0.54028436019
+2016-08-24 12:26:48,172 DEBUG: 			View 2 : 0.597156398104
+2016-08-24 12:26:48,184 DEBUG: 			View 3 : 0.663507109005
+2016-08-24 12:26:48,822 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:27:05,312 DEBUG: 		Start:	 Iteration 204
+2016-08-24 12:27:05,334 DEBUG: 			View 0 : 0.478672985782
+2016-08-24 12:27:05,344 DEBUG: 			View 1 : 0.473933649289
+2016-08-24 12:27:05,472 DEBUG: 			View 2 : 0.563981042654
+2016-08-24 12:27:05,484 DEBUG: 			View 3 : 0.672985781991
+2016-08-24 12:27:06,126 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:27:22,687 DEBUG: 		Start:	 Iteration 205
+2016-08-24 12:27:22,709 DEBUG: 			View 0 : 0.625592417062
+2016-08-24 12:27:22,718 DEBUG: 			View 1 : 0.568720379147
+2016-08-24 12:27:22,856 DEBUG: 			View 2 : 0.582938388626
+2016-08-24 12:27:22,868 DEBUG: 			View 3 : 0.635071090047
+2016-08-24 12:27:23,510 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:27:40,173 DEBUG: 		Start:	 Iteration 206
+2016-08-24 12:27:40,194 DEBUG: 			View 0 : 0.483412322275
+2016-08-24 12:27:40,204 DEBUG: 			View 1 : 0.483412322275
+2016-08-24 12:27:40,338 DEBUG: 			View 2 : 0.60663507109
+2016-08-24 12:27:40,349 DEBUG: 			View 3 : 0.601895734597
+2016-08-24 12:27:41,001 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:27:57,762 DEBUG: 		Start:	 Iteration 207
+2016-08-24 12:27:57,783 DEBUG: 			View 0 : 0.601895734597
+2016-08-24 12:27:57,793 DEBUG: 			View 1 : 0.663507109005
+2016-08-24 12:27:57,928 DEBUG: 			View 2 : 0.563981042654
+2016-08-24 12:27:57,939 DEBUG: 			View 3 : 0.559241706161
+2016-08-24 12:27:58,591 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:28:15,463 DEBUG: 		Start:	 Iteration 208
+2016-08-24 12:28:15,484 DEBUG: 			View 0 : 0.620853080569
+2016-08-24 12:28:15,494 DEBUG: 			View 1 : 0.57345971564
+2016-08-24 12:28:15,627 DEBUG: 			View 2 : 0.597156398104
+2016-08-24 12:28:15,638 DEBUG: 			View 3 : 0.611374407583
+2016-08-24 12:28:16,292 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:28:33,226 DEBUG: 		Start:	 Iteration 209
+2016-08-24 12:28:33,247 DEBUG: 			View 0 : 0.511848341232
+2016-08-24 12:28:33,257 DEBUG: 			View 1 : 0.677725118483
+2016-08-24 12:28:33,393 DEBUG: 			View 2 : 0.601895734597
+2016-08-24 12:28:33,404 DEBUG: 			View 3 : 0.582938388626
+2016-08-24 12:28:34,062 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:28:51,028 DEBUG: 		Start:	 Iteration 210
+2016-08-24 12:28:51,049 DEBUG: 			View 0 : 0.535545023697
+2016-08-24 12:28:51,059 DEBUG: 			View 1 : 0.578199052133
+2016-08-24 12:28:51,182 DEBUG: 			View 2 : 0.587677725118
+2016-08-24 12:28:51,194 DEBUG: 			View 3 : 0.616113744076
+2016-08-24 12:28:51,859 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:29:08,915 DEBUG: 		Start:	 Iteration 211
+2016-08-24 12:29:08,936 DEBUG: 			View 0 : 0.582938388626
+2016-08-24 12:29:08,945 DEBUG: 			View 1 : 0.654028436019
+2016-08-24 12:29:09,080 DEBUG: 			View 2 : 0.526066350711
+2016-08-24 12:29:09,091 DEBUG: 			View 3 : 0.535545023697
+2016-08-24 12:29:09,755 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:29:26,868 DEBUG: 		Start:	 Iteration 212
+2016-08-24 12:29:26,889 DEBUG: 			View 0 : 0.483412322275
+2016-08-24 12:29:26,899 DEBUG: 			View 1 : 0.483412322275
+2016-08-24 12:29:27,034 DEBUG: 			View 2 : 0.582938388626
+2016-08-24 12:29:27,046 DEBUG: 			View 3 : 0.668246445498
+2016-08-24 12:29:27,711 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:29:44,959 DEBUG: 		Start:	 Iteration 213
+2016-08-24 12:29:44,980 DEBUG: 			View 0 : 0.464454976303
+2016-08-24 12:29:44,990 DEBUG: 			View 1 : 0.507109004739
+2016-08-24 12:29:45,125 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 12:29:45,136 DEBUG: 			View 3 : 0.60663507109
+2016-08-24 12:29:45,810 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:30:03,096 DEBUG: 		Start:	 Iteration 214
+2016-08-24 12:30:03,118 DEBUG: 			View 0 : 0.568720379147
+2016-08-24 12:30:03,127 DEBUG: 			View 1 : 0.549763033175
+2016-08-24 12:30:03,252 DEBUG: 			View 2 : 0.625592417062
+2016-08-24 12:30:03,263 DEBUG: 			View 3 : 0.502369668246
+2016-08-24 12:30:03,934 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:30:21,334 DEBUG: 		Start:	 Iteration 215
+2016-08-24 12:30:21,355 DEBUG: 			View 0 : 0.492890995261
+2016-08-24 12:30:21,365 DEBUG: 			View 1 : 0.687203791469
+2016-08-24 12:30:21,499 DEBUG: 			View 2 : 0.488151658768
+2016-08-24 12:30:21,508 DEBUG: 			View 3 : 0.483412322275
+2016-08-24 12:30:22,180 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:30:39,659 DEBUG: 		Start:	 Iteration 216
+2016-08-24 12:30:39,680 DEBUG: 			View 0 : 0.507109004739
+2016-08-24 12:30:39,690 DEBUG: 			View 1 : 0.720379146919
+2016-08-24 12:30:39,811 DEBUG: 			View 2 : 0.492890995261
+2016-08-24 12:30:39,820 DEBUG: 			View 3 : 0.691943127962
+2016-08-24 12:30:40,498 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:30:58,038 DEBUG: 		Start:	 Iteration 217
+2016-08-24 12:30:58,059 DEBUG: 			View 0 : 0.668246445498
+2016-08-24 12:30:58,069 DEBUG: 			View 1 : 0.682464454976
+2016-08-24 12:30:58,190 DEBUG: 			View 2 : 0.587677725118
+2016-08-24 12:30:58,200 DEBUG: 			View 3 : 0.526066350711
+2016-08-24 12:30:58,880 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:31:16,516 DEBUG: 		Start:	 Iteration 218
+2016-08-24 12:31:16,537 DEBUG: 			View 0 : 0.535545023697
+2016-08-24 12:31:16,547 DEBUG: 			View 1 : 0.63981042654
+2016-08-24 12:31:16,670 DEBUG: 			View 2 : 0.535545023697
+2016-08-24 12:31:16,679 DEBUG: 			View 3 : 0.635071090047
+2016-08-24 12:31:17,364 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:31:35,062 DEBUG: 		Start:	 Iteration 219
+2016-08-24 12:31:35,083 DEBUG: 			View 0 : 0.436018957346
+2016-08-24 12:31:35,092 DEBUG: 			View 1 : 0.502369668246
+2016-08-24 12:31:35,218 DEBUG: 			View 2 : 0.521327014218
+2016-08-24 12:31:35,227 DEBUG: 			View 3 : 0.649289099526
+2016-08-24 12:31:35,914 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:31:53,669 DEBUG: 		Start:	 Iteration 220
+2016-08-24 12:31:53,690 DEBUG: 			View 0 : 0.706161137441
+2016-08-24 12:31:53,700 DEBUG: 			View 1 : 0.620853080569
+2016-08-24 12:31:53,823 DEBUG: 			View 2 : 0.54028436019
+2016-08-24 12:31:53,832 DEBUG: 			View 3 : 0.592417061611
+2016-08-24 12:31:54,527 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:32:12,385 DEBUG: 		Start:	 Iteration 221
+2016-08-24 12:32:12,406 DEBUG: 			View 0 : 0.502369668246
+2016-08-24 12:32:12,416 DEBUG: 			View 1 : 0.492890995261
+2016-08-24 12:32:12,539 DEBUG: 			View 2 : 0.592417061611
+2016-08-24 12:32:12,548 DEBUG: 			View 3 : 0.554502369668
+2016-08-24 12:32:13,236 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:32:31,134 DEBUG: 		Start:	 Iteration 222
+2016-08-24 12:32:31,155 DEBUG: 			View 0 : 0.587677725118
+2016-08-24 12:32:31,165 DEBUG: 			View 1 : 0.483412322275
+2016-08-24 12:32:31,296 DEBUG: 			View 2 : 0.549763033175
+2016-08-24 12:32:31,305 DEBUG: 			View 3 : 0.54028436019
+2016-08-24 12:32:32,001 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:32:49,999 DEBUG: 		Start:	 Iteration 223
+2016-08-24 12:32:50,020 DEBUG: 			View 0 : 0.497630331754
+2016-08-24 12:32:50,029 DEBUG: 			View 1 : 0.81990521327
+2016-08-24 12:32:50,164 DEBUG: 			View 2 : 0.568720379147
+2016-08-24 12:32:50,174 DEBUG: 			View 3 : 0.60663507109
+2016-08-24 12:32:50,871 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:33:08,927 DEBUG: 		Start:	 Iteration 224
+2016-08-24 12:33:08,948 DEBUG: 			View 0 : 0.464454976303
+2016-08-24 12:33:08,957 DEBUG: 			View 1 : 0.293838862559
+2016-08-24 12:33:09,076 DEBUG: 			View 2 : 0.644549763033
+2016-08-24 12:33:09,085 DEBUG: 			View 3 : 0.630331753555
+2016-08-24 12:33:09,787 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:33:27,976 DEBUG: 		Start:	 Iteration 225
+2016-08-24 12:33:27,997 DEBUG: 			View 0 : 0.388625592417
+2016-08-24 12:33:28,007 DEBUG: 			View 1 : 0.805687203791
+2016-08-24 12:33:28,130 DEBUG: 			View 2 : 0.545023696682
+2016-08-24 12:33:28,140 DEBUG: 			View 3 : 0.611374407583
+2016-08-24 12:33:28,840 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:33:47,106 DEBUG: 		Start:	 Iteration 226
+2016-08-24 12:33:47,128 DEBUG: 			View 0 : 0.530805687204
+2016-08-24 12:33:47,138 DEBUG: 			View 1 : 0.677725118483
+2016-08-24 12:33:47,268 DEBUG: 			View 2 : 0.516587677725
+2016-08-24 12:33:47,278 DEBUG: 			View 3 : 0.649289099526
+2016-08-24 12:33:47,984 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:34:06,263 DEBUG: 		Start:	 Iteration 227
+2016-08-24 12:34:06,284 DEBUG: 			View 0 : 0.57345971564
+2016-08-24 12:34:06,294 DEBUG: 			View 1 : 0.620853080569
+2016-08-24 12:34:06,422 DEBUG: 			View 2 : 0.530805687204
+2016-08-24 12:34:06,432 DEBUG: 			View 3 : 0.60663507109
+2016-08-24 12:34:07,137 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:34:25,806 DEBUG: 		Start:	 Iteration 228
+2016-08-24 12:34:25,830 DEBUG: 			View 0 : 0.563981042654
+2016-08-24 12:34:25,843 DEBUG: 			View 1 : 0.526066350711
+2016-08-24 12:34:26,007 DEBUG: 			View 2 : 0.568720379147
+2016-08-24 12:34:26,017 DEBUG: 			View 3 : 0.530805687204
+2016-08-24 12:34:26,767 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:34:46,243 DEBUG: 		Start:	 Iteration 229
+2016-08-24 12:34:46,265 DEBUG: 			View 0 : 0.57345971564
+2016-08-24 12:34:46,276 DEBUG: 			View 1 : 0.654028436019
+2016-08-24 12:34:46,453 DEBUG: 			View 2 : 0.535545023697
+2016-08-24 12:34:46,463 DEBUG: 			View 3 : 0.592417061611
+2016-08-24 12:34:47,215 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:35:05,992 DEBUG: 		Start:	 Iteration 230
+2016-08-24 12:35:06,013 DEBUG: 			View 0 : 0.616113744076
+2016-08-24 12:35:06,023 DEBUG: 			View 1 : 0.431279620853
+2016-08-24 12:35:06,139 DEBUG: 			View 2 : 0.521327014218
+2016-08-24 12:35:06,150 DEBUG: 			View 3 : 0.597156398104
+2016-08-24 12:35:06,863 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:35:25,551 DEBUG: 		Start:	 Iteration 231
+2016-08-24 12:35:25,573 DEBUG: 			View 0 : 0.450236966825
+2016-08-24 12:35:25,583 DEBUG: 			View 1 : 0.635071090047
+2016-08-24 12:35:25,703 DEBUG: 			View 2 : 0.616113744076
+2016-08-24 12:35:25,713 DEBUG: 			View 3 : 0.545023696682
+2016-08-24 12:35:26,428 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:35:45,202 DEBUG: 		Start:	 Iteration 232
+2016-08-24 12:35:45,223 DEBUG: 			View 0 : 0.620853080569
+2016-08-24 12:35:45,233 DEBUG: 			View 1 : 0.469194312796
+2016-08-24 12:35:45,356 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 12:35:45,366 DEBUG: 			View 3 : 0.478672985782
+2016-08-24 12:35:46,085 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:36:04,939 DEBUG: 		Start:	 Iteration 233
+2016-08-24 12:36:04,960 DEBUG: 			View 0 : 0.554502369668
+2016-08-24 12:36:04,970 DEBUG: 			View 1 : 0.568720379147
+2016-08-24 12:36:05,097 DEBUG: 			View 2 : 0.521327014218
+2016-08-24 12:36:05,106 DEBUG: 			View 3 : 0.568720379147
+2016-08-24 12:36:05,830 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:36:24,753 DEBUG: 		Start:	 Iteration 234
+2016-08-24 12:36:24,773 DEBUG: 			View 0 : 0.530805687204
+2016-08-24 12:36:24,783 DEBUG: 			View 1 : 0.511848341232
+2016-08-24 12:36:24,899 DEBUG: 			View 2 : 0.563981042654
+2016-08-24 12:36:24,908 DEBUG: 			View 3 : 0.563981042654
+2016-08-24 12:36:25,636 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:36:44,616 DEBUG: 		Start:	 Iteration 235
+2016-08-24 12:36:44,637 DEBUG: 			View 0 : 0.469194312796
+2016-08-24 12:36:44,647 DEBUG: 			View 1 : 0.42654028436
+2016-08-24 12:36:44,761 DEBUG: 			View 2 : 0.535545023697
+2016-08-24 12:36:44,770 DEBUG: 			View 3 : 0.701421800948
+2016-08-24 12:36:45,502 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:37:04,540 DEBUG: 		Start:	 Iteration 236
+2016-08-24 12:37:04,562 DEBUG: 			View 0 : 0.445497630332
+2016-08-24 12:37:04,573 DEBUG: 			View 1 : 0.478672985782
+2016-08-24 12:37:04,691 DEBUG: 			View 2 : 0.592417061611
+2016-08-24 12:37:04,700 DEBUG: 			View 3 : 0.701421800948
+2016-08-24 12:37:05,432 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:37:24,538 DEBUG: 		Start:	 Iteration 237
+2016-08-24 12:37:24,559 DEBUG: 			View 0 : 0.511848341232
+2016-08-24 12:37:24,569 DEBUG: 			View 1 : 0.582938388626
+2016-08-24 12:37:24,691 DEBUG: 			View 2 : 0.563981042654
+2016-08-24 12:37:24,700 DEBUG: 			View 3 : 0.625592417062
+2016-08-24 12:37:25,438 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:37:44,807 DEBUG: 		Start:	 Iteration 238
+2016-08-24 12:37:44,828 DEBUG: 			View 0 : 0.625592417062
+2016-08-24 12:37:44,838 DEBUG: 			View 1 : 0.597156398104
+2016-08-24 12:37:44,955 DEBUG: 			View 2 : 0.521327014218
+2016-08-24 12:37:44,964 DEBUG: 			View 3 : 0.559241706161
+2016-08-24 12:37:45,704 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:38:05,054 DEBUG: 		Start:	 Iteration 239
+2016-08-24 12:38:05,076 DEBUG: 			View 0 : 0.725118483412
+2016-08-24 12:38:05,085 DEBUG: 			View 1 : 0.682464454976
+2016-08-24 12:38:05,204 DEBUG: 			View 2 : 0.568720379147
+2016-08-24 12:38:05,213 DEBUG: 			View 3 : 0.516587677725
+2016-08-24 12:38:05,956 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:38:25,314 DEBUG: 		Start:	 Iteration 240
+2016-08-24 12:38:25,335 DEBUG: 			View 0 : 0.530805687204
+2016-08-24 12:38:25,345 DEBUG: 			View 1 : 0.635071090047
+2016-08-24 12:38:25,474 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 12:38:25,483 DEBUG: 			View 3 : 0.563981042654
+2016-08-24 12:38:26,227 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:38:45,701 DEBUG: 		Start:	 Iteration 241
+2016-08-24 12:38:45,723 DEBUG: 			View 0 : 0.545023696682
+2016-08-24 12:38:45,733 DEBUG: 			View 1 : 0.677725118483
+2016-08-24 12:38:45,846 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 12:38:45,856 DEBUG: 			View 3 : 0.649289099526
+2016-08-24 12:38:46,600 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:39:06,116 DEBUG: 		Start:	 Iteration 242
+2016-08-24 12:39:06,137 DEBUG: 			View 0 : 0.549763033175
+2016-08-24 12:39:06,147 DEBUG: 			View 1 : 0.658767772512
+2016-08-24 12:39:06,265 DEBUG: 			View 2 : 0.535545023697
+2016-08-24 12:39:06,275 DEBUG: 			View 3 : 0.687203791469
+2016-08-24 12:39:07,024 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:39:26,644 DEBUG: 		Start:	 Iteration 243
+2016-08-24 12:39:26,665 DEBUG: 			View 0 : 0.748815165877
+2016-08-24 12:39:26,675 DEBUG: 			View 1 : 0.483412322275
+2016-08-24 12:39:26,796 DEBUG: 			View 2 : 0.545023696682
+2016-08-24 12:39:26,805 DEBUG: 			View 3 : 0.57345971564
+2016-08-24 12:39:27,561 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:39:47,265 DEBUG: 		Start:	 Iteration 244
+2016-08-24 12:39:47,286 DEBUG: 			View 0 : 0.502369668246
+2016-08-24 12:39:47,296 DEBUG: 			View 1 : 0.45971563981
+2016-08-24 12:39:47,413 DEBUG: 			View 2 : 0.620853080569
+2016-08-24 12:39:47,422 DEBUG: 			View 3 : 0.497630331754
+2016-08-24 12:39:48,175 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:40:07,943 DEBUG: 		Start:	 Iteration 245
+2016-08-24 12:40:07,964 DEBUG: 			View 0 : 0.492890995261
+2016-08-24 12:40:07,974 DEBUG: 			View 1 : 0.57345971564
+2016-08-24 12:40:08,075 DEBUG: 			View 2 : 0.630331753555
+2016-08-24 12:40:08,085 DEBUG: 			View 3 : 0.507109004739
+2016-08-24 12:40:08,845 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:40:28,754 DEBUG: 		Start:	 Iteration 246
+2016-08-24 12:40:28,775 DEBUG: 			View 0 : 0.729857819905
+2016-08-24 12:40:28,785 DEBUG: 			View 1 : 0.57345971564
+2016-08-24 12:40:28,902 DEBUG: 			View 2 : 0.60663507109
+2016-08-24 12:40:28,911 DEBUG: 			View 3 : 0.677725118483
+2016-08-24 12:40:29,672 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:40:49,632 DEBUG: 		Start:	 Iteration 247
+2016-08-24 12:40:49,654 DEBUG: 			View 0 : 0.440758293839
+2016-08-24 12:40:49,663 DEBUG: 			View 1 : 0.369668246445
+2016-08-24 12:40:49,781 DEBUG: 			View 2 : 0.587677725118
+2016-08-24 12:40:49,790 DEBUG: 			View 3 : 0.611374407583
+2016-08-24 12:40:50,557 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:41:10,634 DEBUG: 		Start:	 Iteration 248
+2016-08-24 12:41:10,653 DEBUG: 			View 0 : 0.592417061611
+2016-08-24 12:41:10,663 DEBUG: 			View 1 : 0.763033175355
+2016-08-24 12:41:10,785 DEBUG: 			View 2 : 0.530805687204
+2016-08-24 12:41:10,794 DEBUG: 			View 3 : 0.601895734597
+2016-08-24 12:41:11,561 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:41:31,677 DEBUG: 		Start:	 Iteration 249
+2016-08-24 12:41:31,698 DEBUG: 			View 0 : 0.488151658768
+2016-08-24 12:41:31,708 DEBUG: 			View 1 : 0.777251184834
+2016-08-24 12:41:31,832 DEBUG: 			View 2 : 0.625592417062
+2016-08-24 12:41:31,841 DEBUG: 			View 3 : 0.545023696682
+2016-08-24 12:41:32,606 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:41:52,512 DEBUG: 		Start:	 Iteration 250
+2016-08-24 12:41:52,533 DEBUG: 			View 0 : 0.635071090047
+2016-08-24 12:41:52,543 DEBUG: 			View 1 : 0.687203791469
+2016-08-24 12:41:52,666 DEBUG: 			View 2 : 0.545023696682
+2016-08-24 12:41:52,676 DEBUG: 			View 3 : 0.691943127962
+2016-08-24 12:41:53,438 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:42:13,324 DEBUG: 		Start:	 Iteration 251
+2016-08-24 12:42:13,346 DEBUG: 			View 0 : 0.620853080569
+2016-08-24 12:42:13,356 DEBUG: 			View 1 : 0.364928909953
+2016-08-24 12:42:13,476 DEBUG: 			View 2 : 0.625592417062
+2016-08-24 12:42:13,486 DEBUG: 			View 3 : 0.57345971564
+2016-08-24 12:42:14,258 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:42:34,246 DEBUG: 		Start:	 Iteration 252
+2016-08-24 12:42:34,267 DEBUG: 			View 0 : 0.597156398104
+2016-08-24 12:42:34,276 DEBUG: 			View 1 : 0.407582938389
+2016-08-24 12:42:34,390 DEBUG: 			View 2 : 0.511848341232
+2016-08-24 12:42:34,400 DEBUG: 			View 3 : 0.492890995261
+2016-08-24 12:42:35,175 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:42:55,285 DEBUG: 		Start:	 Iteration 253
+2016-08-24 12:42:55,307 DEBUG: 			View 0 : 0.521327014218
+2016-08-24 12:42:55,317 DEBUG: 			View 1 : 0.582938388626
+2016-08-24 12:42:55,443 DEBUG: 			View 2 : 0.568720379147
+2016-08-24 12:42:55,453 DEBUG: 			View 3 : 0.597156398104
+2016-08-24 12:42:56,233 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:43:16,372 DEBUG: 		Start:	 Iteration 254
+2016-08-24 12:43:16,393 DEBUG: 			View 0 : 0.516587677725
+2016-08-24 12:43:16,403 DEBUG: 			View 1 : 0.473933649289
+2016-08-24 12:43:16,532 DEBUG: 			View 2 : 0.516587677725
+2016-08-24 12:43:16,543 DEBUG: 			View 3 : 0.497630331754
+2016-08-24 12:43:17,330 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:43:37,613 DEBUG: 		Start:	 Iteration 255
+2016-08-24 12:43:37,634 DEBUG: 			View 0 : 0.473933649289
+2016-08-24 12:43:37,644 DEBUG: 			View 1 : 0.63981042654
+2016-08-24 12:43:37,771 DEBUG: 			View 2 : 0.60663507109
+2016-08-24 12:43:37,782 DEBUG: 			View 3 : 0.578199052133
+2016-08-24 12:43:38,562 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:43:58,879 DEBUG: 		Start:	 Iteration 256
+2016-08-24 12:43:58,900 DEBUG: 			View 0 : 0.469194312796
+2016-08-24 12:43:58,909 DEBUG: 			View 1 : 0.601895734597
+2016-08-24 12:43:59,033 DEBUG: 			View 2 : 0.597156398104
+2016-08-24 12:43:59,044 DEBUG: 			View 3 : 0.663507109005
+2016-08-24 12:43:59,827 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:44:20,227 DEBUG: 		Start:	 Iteration 257
+2016-08-24 12:44:20,249 DEBUG: 			View 0 : 0.554502369668
+2016-08-24 12:44:20,259 DEBUG: 			View 1 : 0.625592417062
+2016-08-24 12:44:20,387 DEBUG: 			View 2 : 0.592417061611
+2016-08-24 12:44:20,398 DEBUG: 			View 3 : 0.507109004739
+2016-08-24 12:44:21,184 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:44:41,641 DEBUG: 		Start:	 Iteration 258
+2016-08-24 12:44:41,662 DEBUG: 			View 0 : 0.454976303318
+2016-08-24 12:44:41,673 DEBUG: 			View 1 : 0.478672985782
+2016-08-24 12:44:41,799 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 12:44:41,810 DEBUG: 			View 3 : 0.649289099526
+2016-08-24 12:44:42,597 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:45:03,175 DEBUG: 		Start:	 Iteration 259
+2016-08-24 12:45:03,196 DEBUG: 			View 0 : 0.625592417062
+2016-08-24 12:45:03,206 DEBUG: 			View 1 : 0.701421800948
+2016-08-24 12:45:03,329 DEBUG: 			View 2 : 0.516587677725
+2016-08-24 12:45:03,340 DEBUG: 			View 3 : 0.582938388626
+2016-08-24 12:45:04,129 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:45:24,744 DEBUG: 		Start:	 Iteration 260
+2016-08-24 12:45:24,765 DEBUG: 			View 0 : 0.616113744076
+2016-08-24 12:45:24,774 DEBUG: 			View 1 : 0.625592417062
+2016-08-24 12:45:24,899 DEBUG: 			View 2 : 0.592417061611
+2016-08-24 12:45:24,909 DEBUG: 			View 3 : 0.549763033175
+2016-08-24 12:45:25,705 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:45:46,401 DEBUG: 		Start:	 Iteration 261
+2016-08-24 12:45:46,423 DEBUG: 			View 0 : 0.535545023697
+2016-08-24 12:45:46,432 DEBUG: 			View 1 : 0.663507109005
+2016-08-24 12:45:46,559 DEBUG: 			View 2 : 0.568720379147
+2016-08-24 12:45:46,570 DEBUG: 			View 3 : 0.620853080569
+2016-08-24 12:45:47,370 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:46:08,132 DEBUG: 		Start:	 Iteration 262
+2016-08-24 12:46:08,153 DEBUG: 			View 0 : 0.54028436019
+2016-08-24 12:46:08,163 DEBUG: 			View 1 : 0.620853080569
+2016-08-24 12:46:08,294 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 12:46:08,305 DEBUG: 			View 3 : 0.545023696682
+2016-08-24 12:46:09,099 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:46:29,920 DEBUG: 		Start:	 Iteration 263
+2016-08-24 12:46:29,941 DEBUG: 			View 0 : 0.568720379147
+2016-08-24 12:46:29,951 DEBUG: 			View 1 : 0.644549763033
+2016-08-24 12:46:30,079 DEBUG: 			View 2 : 0.526066350711
+2016-08-24 12:46:30,090 DEBUG: 			View 3 : 0.611374407583
+2016-08-24 12:46:30,901 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:46:51,789 DEBUG: 		Start:	 Iteration 264
+2016-08-24 12:46:51,810 DEBUG: 			View 0 : 0.60663507109
+2016-08-24 12:46:51,820 DEBUG: 			View 1 : 0.483412322275
+2016-08-24 12:46:51,936 DEBUG: 			View 2 : 0.630331753555
+2016-08-24 12:46:51,947 DEBUG: 			View 3 : 0.635071090047
+2016-08-24 12:46:52,749 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:47:13,747 DEBUG: 		Start:	 Iteration 265
+2016-08-24 12:47:13,769 DEBUG: 			View 0 : 0.691943127962
+2016-08-24 12:47:13,778 DEBUG: 			View 1 : 0.402843601896
+2016-08-24 12:47:13,907 DEBUG: 			View 2 : 0.521327014218
+2016-08-24 12:47:13,918 DEBUG: 			View 3 : 0.578199052133
+2016-08-24 12:47:14,728 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:47:35,822 DEBUG: 		Start:	 Iteration 266
+2016-08-24 12:47:35,843 DEBUG: 			View 0 : 0.677725118483
+2016-08-24 12:47:35,853 DEBUG: 			View 1 : 0.706161137441
+2016-08-24 12:47:35,975 DEBUG: 			View 2 : 0.597156398104
+2016-08-24 12:47:35,985 DEBUG: 			View 3 : 0.597156398104
+2016-08-24 12:47:36,793 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:47:57,934 DEBUG: 		Start:	 Iteration 267
+2016-08-24 12:47:57,955 DEBUG: 			View 0 : 0.559241706161
+2016-08-24 12:47:57,964 DEBUG: 			View 1 : 0.744075829384
+2016-08-24 12:47:58,093 DEBUG: 			View 2 : 0.549763033175
+2016-08-24 12:47:58,103 DEBUG: 			View 3 : 0.630331753555
+2016-08-24 12:47:58,921 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:48:20,152 DEBUG: 		Start:	 Iteration 268
+2016-08-24 12:48:20,173 DEBUG: 			View 0 : 0.526066350711
+2016-08-24 12:48:20,182 DEBUG: 			View 1 : 0.57345971564
+2016-08-24 12:48:20,306 DEBUG: 			View 2 : 0.57345971564
+2016-08-24 12:48:20,316 DEBUG: 			View 3 : 0.701421800948
+2016-08-24 12:48:21,134 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:48:42,436 DEBUG: 		Start:	 Iteration 269
+2016-08-24 12:48:42,456 DEBUG: 			View 0 : 0.42654028436
+2016-08-24 12:48:42,466 DEBUG: 			View 1 : 0.57345971564
+2016-08-24 12:48:42,592 DEBUG: 			View 2 : 0.497630331754
+2016-08-24 12:48:42,602 DEBUG: 			View 3 : 0.611374407583
+2016-08-24 12:48:43,424 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:49:04,786 DEBUG: 		Start:	 Iteration 270
+2016-08-24 12:49:04,807 DEBUG: 			View 0 : 0.57345971564
+2016-08-24 12:49:04,816 DEBUG: 			View 1 : 0.412322274882
+2016-08-24 12:49:04,945 DEBUG: 			View 2 : 0.630331753555
+2016-08-24 12:49:04,956 DEBUG: 			View 3 : 0.478672985782
+2016-08-24 12:49:05,789 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:49:27,239 DEBUG: 		Start:	 Iteration 271
+2016-08-24 12:49:27,260 DEBUG: 			View 0 : 0.568720379147
+2016-08-24 12:49:27,270 DEBUG: 			View 1 : 0.521327014218
+2016-08-24 12:49:27,396 DEBUG: 			View 2 : 0.568720379147
+2016-08-24 12:49:27,407 DEBUG: 			View 3 : 0.654028436019
+2016-08-24 12:49:28,229 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:49:49,823 DEBUG: 		Start:	 Iteration 272
+2016-08-24 12:49:49,845 DEBUG: 			View 0 : 0.616113744076
+2016-08-24 12:49:49,854 DEBUG: 			View 1 : 0.545023696682
+2016-08-24 12:49:49,981 DEBUG: 			View 2 : 0.611374407583
+2016-08-24 12:49:49,992 DEBUG: 			View 3 : 0.535545023697
+2016-08-24 12:49:50,819 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:50:12,458 DEBUG: 		Start:	 Iteration 273
+2016-08-24 12:50:12,480 DEBUG: 			View 0 : 0.502369668246
+2016-08-24 12:50:12,489 DEBUG: 			View 1 : 0.635071090047
+2016-08-24 12:50:12,618 DEBUG: 			View 2 : 0.530805687204
+2016-08-24 12:50:12,628 DEBUG: 			View 3 : 0.507109004739
+2016-08-24 12:50:13,463 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:50:35,159 DEBUG: 		Start:	 Iteration 274
+2016-08-24 12:50:35,180 DEBUG: 			View 0 : 0.436018957346
+2016-08-24 12:50:35,189 DEBUG: 			View 1 : 0.587677725118
+2016-08-24 12:50:35,317 DEBUG: 			View 2 : 0.601895734597
+2016-08-24 12:50:35,328 DEBUG: 			View 3 : 0.554502369668
+2016-08-24 12:50:36,162 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:50:57,942 DEBUG: 		Start:	 Iteration 275
+2016-08-24 12:50:57,963 DEBUG: 			View 0 : 0.473933649289
+2016-08-24 12:50:57,973 DEBUG: 			View 1 : 0.658767772512
+2016-08-24 12:50:58,092 DEBUG: 			View 2 : 0.526066350711
+2016-08-24 12:50:58,102 DEBUG: 			View 3 : 0.57345971564
+2016-08-24 12:50:58,936 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:51:20,806 DEBUG: 		Start:	 Iteration 276
+2016-08-24 12:51:20,827 DEBUG: 			View 0 : 0.530805687204
+2016-08-24 12:51:20,837 DEBUG: 			View 1 : 0.729857819905
+2016-08-24 12:51:20,957 DEBUG: 			View 2 : 0.511848341232
+2016-08-24 12:51:20,968 DEBUG: 			View 3 : 0.57345971564
+2016-08-24 12:51:21,806 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:51:43,736 DEBUG: 		Start:	 Iteration 277
+2016-08-24 12:51:43,757 DEBUG: 			View 0 : 0.464454976303
+2016-08-24 12:51:43,767 DEBUG: 			View 1 : 0.668246445498
+2016-08-24 12:51:43,893 DEBUG: 			View 2 : 0.654028436019
+2016-08-24 12:51:43,903 DEBUG: 			View 3 : 0.582938388626
+2016-08-24 12:51:44,745 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:52:06,799 DEBUG: 		Start:	 Iteration 278
+2016-08-24 12:52:06,820 DEBUG: 			View 0 : 0.526066350711
+2016-08-24 12:52:06,830 DEBUG: 			View 1 : 0.706161137441
+2016-08-24 12:52:06,956 DEBUG: 			View 2 : 0.563981042654
+2016-08-24 12:52:06,966 DEBUG: 			View 3 : 0.563981042654
+2016-08-24 12:52:07,817 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:52:29,952 DEBUG: 		Start:	 Iteration 279
+2016-08-24 12:52:29,973 DEBUG: 			View 0 : 0.644549763033
+2016-08-24 12:52:29,983 DEBUG: 			View 1 : 0.473933649289
+2016-08-24 12:52:30,112 DEBUG: 			View 2 : 0.597156398104
+2016-08-24 12:52:30,123 DEBUG: 			View 3 : 0.630331753555
+2016-08-24 12:52:30,970 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:52:53,162 DEBUG: 		Start:	 Iteration 280
+2016-08-24 12:52:53,183 DEBUG: 			View 0 : 0.521327014218
+2016-08-24 12:52:53,193 DEBUG: 			View 1 : 0.379146919431
+2016-08-24 12:52:53,322 DEBUG: 			View 2 : 0.582938388626
+2016-08-24 12:52:53,333 DEBUG: 			View 3 : 0.658767772512
+2016-08-24 12:52:54,181 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:53:16,493 DEBUG: 		Start:	 Iteration 281
+2016-08-24 12:53:16,514 DEBUG: 			View 0 : 0.559241706161
+2016-08-24 12:53:16,524 DEBUG: 			View 1 : 0.60663507109
+2016-08-24 12:53:16,648 DEBUG: 			View 2 : 0.521327014218
+2016-08-24 12:53:16,659 DEBUG: 			View 3 : 0.60663507109
+2016-08-24 12:53:17,515 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:53:39,938 DEBUG: 		Start:	 Iteration 282
+2016-08-24 12:53:39,959 DEBUG: 			View 0 : 0.568720379147
+2016-08-24 12:53:39,969 DEBUG: 			View 1 : 0.317535545024
+2016-08-24 12:53:40,093 DEBUG: 			View 2 : 0.625592417062
+2016-08-24 12:53:40,104 DEBUG: 			View 3 : 0.654028436019
+2016-08-24 12:53:40,961 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:54:03,344 DEBUG: 		Start:	 Iteration 283
+2016-08-24 12:54:03,366 DEBUG: 			View 0 : 0.521327014218
+2016-08-24 12:54:03,375 DEBUG: 			View 1 : 0.578199052133
+2016-08-24 12:54:03,496 DEBUG: 			View 2 : 0.60663507109
+2016-08-24 12:54:03,506 DEBUG: 			View 3 : 0.701421800948
+2016-08-24 12:54:04,364 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:54:26,851 DEBUG: 		Start:	 Iteration 284
+2016-08-24 12:54:26,872 DEBUG: 			View 0 : 0.630331753555
+2016-08-24 12:54:26,882 DEBUG: 			View 1 : 0.63981042654
+2016-08-24 12:54:27,010 DEBUG: 			View 2 : 0.60663507109
+2016-08-24 12:54:27,021 DEBUG: 			View 3 : 0.616113744076
+2016-08-24 12:54:27,891 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:54:50,442 DEBUG: 		Start:	 Iteration 285
+2016-08-24 12:54:50,463 DEBUG: 			View 0 : 0.469194312796
+2016-08-24 12:54:50,473 DEBUG: 			View 1 : 0.635071090047
+2016-08-24 12:54:50,598 DEBUG: 			View 2 : 0.507109004739
+2016-08-24 12:54:50,609 DEBUG: 			View 3 : 0.592417061611
+2016-08-24 12:54:51,471 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:55:14,160 DEBUG: 		Start:	 Iteration 286
+2016-08-24 12:55:14,181 DEBUG: 			View 0 : 0.497630331754
+2016-08-24 12:55:14,190 DEBUG: 			View 1 : 0.597156398104
+2016-08-24 12:55:14,316 DEBUG: 			View 2 : 0.530805687204
+2016-08-24 12:55:14,326 DEBUG: 			View 3 : 0.635071090047
+2016-08-24 12:55:15,212 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:55:37,935 DEBUG: 		Start:	 Iteration 287
+2016-08-24 12:55:37,954 DEBUG: 			View 0 : 0.398104265403
+2016-08-24 12:55:37,964 DEBUG: 			View 1 : 0.445497630332
+2016-08-24 12:55:38,095 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 12:55:38,106 DEBUG: 			View 3 : 0.568720379147
+2016-08-24 12:55:38,977 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:56:01,705 DEBUG: 		Start:	 Iteration 288
+2016-08-24 12:56:01,726 DEBUG: 			View 0 : 0.597156398104
+2016-08-24 12:56:01,735 DEBUG: 			View 1 : 0.483412322275
+2016-08-24 12:56:01,866 DEBUG: 			View 2 : 0.530805687204
+2016-08-24 12:56:01,877 DEBUG: 			View 3 : 0.492890995261
+2016-08-24 12:56:02,747 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:56:25,635 DEBUG: 		Start:	 Iteration 289
+2016-08-24 12:56:25,656 DEBUG: 			View 0 : 0.530805687204
+2016-08-24 12:56:25,665 DEBUG: 			View 1 : 0.644549763033
+2016-08-24 12:56:25,792 DEBUG: 			View 2 : 0.568720379147
+2016-08-24 12:56:25,804 DEBUG: 			View 3 : 0.625592417062
+2016-08-24 12:56:26,676 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:56:49,632 DEBUG: 		Start:	 Iteration 290
+2016-08-24 12:56:49,653 DEBUG: 			View 0 : 0.497630331754
+2016-08-24 12:56:49,663 DEBUG: 			View 1 : 0.582938388626
+2016-08-24 12:56:49,798 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 12:56:49,809 DEBUG: 			View 3 : 0.563981042654
+2016-08-24 12:56:50,683 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:57:13,765 DEBUG: 		Start:	 Iteration 291
+2016-08-24 12:57:13,786 DEBUG: 			View 0 : 0.483412322275
+2016-08-24 12:57:13,796 DEBUG: 			View 1 : 0.412322274882
+2016-08-24 12:57:13,930 DEBUG: 			View 2 : 0.592417061611
+2016-08-24 12:57:13,942 DEBUG: 			View 3 : 0.568720379147
+2016-08-24 12:57:14,822 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:57:37,933 DEBUG: 		Start:	 Iteration 292
+2016-08-24 12:57:37,955 DEBUG: 			View 0 : 0.511848341232
+2016-08-24 12:57:37,964 DEBUG: 			View 1 : 0.445497630332
+2016-08-24 12:57:38,094 DEBUG: 			View 2 : 0.620853080569
+2016-08-24 12:57:38,106 DEBUG: 			View 3 : 0.601895734597
+2016-08-24 12:57:38,988 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:58:02,193 DEBUG: 		Start:	 Iteration 293
+2016-08-24 12:58:02,215 DEBUG: 			View 0 : 0.578199052133
+2016-08-24 12:58:02,225 DEBUG: 			View 1 : 0.454976303318
+2016-08-24 12:58:02,357 DEBUG: 			View 2 : 0.587677725118
+2016-08-24 12:58:02,368 DEBUG: 			View 3 : 0.625592417062
+2016-08-24 12:58:03,251 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:58:26,533 DEBUG: 		Start:	 Iteration 294
+2016-08-24 12:58:26,554 DEBUG: 			View 0 : 0.597156398104
+2016-08-24 12:58:26,564 DEBUG: 			View 1 : 0.39336492891
+2016-08-24 12:58:26,688 DEBUG: 			View 2 : 0.57345971564
+2016-08-24 12:58:26,699 DEBUG: 			View 3 : 0.597156398104
+2016-08-24 12:58:27,585 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:58:50,953 DEBUG: 		Start:	 Iteration 295
+2016-08-24 12:58:50,974 DEBUG: 			View 0 : 0.488151658768
+2016-08-24 12:58:50,984 DEBUG: 			View 1 : 0.715639810427
+2016-08-24 12:58:51,111 DEBUG: 			View 2 : 0.582938388626
+2016-08-24 12:58:51,122 DEBUG: 			View 3 : 0.568720379147
+2016-08-24 12:58:52,015 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:59:15,436 DEBUG: 		Start:	 Iteration 296
+2016-08-24 12:59:15,457 DEBUG: 			View 0 : 0.507109004739
+2016-08-24 12:59:15,466 DEBUG: 			View 1 : 0.530805687204
+2016-08-24 12:59:15,594 DEBUG: 			View 2 : 0.587677725118
+2016-08-24 12:59:15,604 DEBUG: 			View 3 : 0.597156398104
+2016-08-24 12:59:16,503 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:59:40,003 DEBUG: 		Start:	 Iteration 297
+2016-08-24 12:59:40,024 DEBUG: 			View 0 : 0.563981042654
+2016-08-24 12:59:40,033 DEBUG: 			View 1 : 0.582938388626
+2016-08-24 12:59:40,159 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 12:59:40,169 DEBUG: 			View 3 : 0.530805687204
+2016-08-24 12:59:41,074 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 13:00:04,679 DEBUG: 		Start:	 Iteration 298
+2016-08-24 13:00:04,700 DEBUG: 			View 0 : 0.440758293839
+2016-08-24 13:00:04,709 DEBUG: 			View 1 : 0.545023696682
+2016-08-24 13:00:04,837 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 13:00:04,847 DEBUG: 			View 3 : 0.658767772512
+2016-08-24 13:00:05,752 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:00:29,468 DEBUG: 		Start:	 Iteration 299
+2016-08-24 13:00:29,489 DEBUG: 			View 0 : 0.620853080569
+2016-08-24 13:00:29,498 DEBUG: 			View 1 : 0.440758293839
+2016-08-24 13:00:29,623 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 13:00:29,634 DEBUG: 			View 3 : 0.620853080569
+2016-08-24 13:00:30,543 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:00:54,312 DEBUG: 		Start:	 Iteration 300
+2016-08-24 13:00:54,334 DEBUG: 			View 0 : 0.587677725118
+2016-08-24 13:00:54,343 DEBUG: 			View 1 : 0.549763033175
+2016-08-24 13:00:54,474 DEBUG: 			View 2 : 0.60663507109
+2016-08-24 13:00:54,485 DEBUG: 			View 3 : 0.568720379147
+2016-08-24 13:00:55,389 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 13:01:19,318 DEBUG: 		Start:	 Iteration 301
+2016-08-24 13:01:19,339 DEBUG: 			View 0 : 0.511848341232
+2016-08-24 13:01:19,349 DEBUG: 			View 1 : 0.60663507109
+2016-08-24 13:01:19,478 DEBUG: 			View 2 : 0.630331753555
+2016-08-24 13:01:19,489 DEBUG: 			View 3 : 0.549763033175
+2016-08-24 13:01:20,406 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 13:01:44,342 DEBUG: 		Start:	 Iteration 302
+2016-08-24 13:01:44,363 DEBUG: 			View 0 : 0.507109004739
+2016-08-24 13:01:44,373 DEBUG: 			View 1 : 0.611374407583
+2016-08-24 13:01:44,499 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 13:01:44,510 DEBUG: 			View 3 : 0.57345971564
+2016-08-24 13:01:45,420 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:02:09,473 DEBUG: 		Start:	 Iteration 303
+2016-08-24 13:02:09,494 DEBUG: 			View 0 : 0.663507109005
+2016-08-24 13:02:09,504 DEBUG: 			View 1 : 0.554502369668
+2016-08-24 13:02:09,629 DEBUG: 			View 2 : 0.530805687204
+2016-08-24 13:02:09,640 DEBUG: 			View 3 : 0.549763033175
+2016-08-24 13:02:10,560 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 13:02:34,701 DEBUG: 		Start:	 Iteration 304
+2016-08-24 13:02:34,722 DEBUG: 			View 0 : 0.597156398104
+2016-08-24 13:02:34,732 DEBUG: 			View 1 : 0.729857819905
+2016-08-24 13:02:34,853 DEBUG: 			View 2 : 0.587677725118
+2016-08-24 13:02:34,864 DEBUG: 			View 3 : 0.620853080569
+2016-08-24 13:02:35,788 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:02:59,937 DEBUG: 		Start:	 Iteration 305
+2016-08-24 13:02:59,958 DEBUG: 			View 0 : 0.473933649289
+2016-08-24 13:02:59,968 DEBUG: 			View 1 : 0.601895734597
+2016-08-24 13:03:00,090 DEBUG: 			View 2 : 0.625592417062
+2016-08-24 13:03:00,101 DEBUG: 			View 3 : 0.516587677725
+2016-08-24 13:03:01,023 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 13:03:25,286 DEBUG: 		Start:	 Iteration 306
+2016-08-24 13:03:25,307 DEBUG: 			View 0 : 0.454976303318
+2016-08-24 13:03:25,317 DEBUG: 			View 1 : 0.710900473934
+2016-08-24 13:03:25,451 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 13:03:25,461 DEBUG: 			View 3 : 0.563981042654
+2016-08-24 13:03:26,384 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:03:50,762 DEBUG: 		Start:	 Iteration 307
+2016-08-24 13:03:50,783 DEBUG: 			View 0 : 0.644549763033
+2016-08-24 13:03:50,793 DEBUG: 			View 1 : 0.611374407583
+2016-08-24 13:03:50,921 DEBUG: 			View 2 : 0.511848341232
+2016-08-24 13:03:50,932 DEBUG: 			View 3 : 0.635071090047
+2016-08-24 13:03:51,861 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:04:16,296 DEBUG: 		Start:	 Iteration 308
+2016-08-24 13:04:16,317 DEBUG: 			View 0 : 0.582938388626
+2016-08-24 13:04:16,326 DEBUG: 			View 1 : 0.677725118483
+2016-08-24 13:04:16,452 DEBUG: 			View 2 : 0.54028436019
+2016-08-24 13:04:16,463 DEBUG: 			View 3 : 0.582938388626
+2016-08-24 13:04:17,396 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:04:41,935 DEBUG: 		Start:	 Iteration 309
+2016-08-24 13:04:41,954 DEBUG: 			View 0 : 0.530805687204
+2016-08-24 13:04:41,964 DEBUG: 			View 1 : 0.63981042654
+2016-08-24 13:04:42,095 DEBUG: 			View 2 : 0.549763033175
+2016-08-24 13:04:42,106 DEBUG: 			View 3 : 0.54028436019
+2016-08-24 13:04:43,048 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:05:07,600 DEBUG: 		Start:	 Iteration 310
+2016-08-24 13:05:07,621 DEBUG: 			View 0 : 0.620853080569
+2016-08-24 13:05:07,632 DEBUG: 			View 1 : 0.592417061611
+2016-08-24 13:05:07,760 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 13:05:07,771 DEBUG: 			View 3 : 0.554502369668
+2016-08-24 13:05:08,706 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 13:05:33,385 DEBUG: 		Start:	 Iteration 311
+2016-08-24 13:05:33,406 DEBUG: 			View 0 : 0.81990521327
+2016-08-24 13:05:33,416 DEBUG: 			View 1 : 0.644549763033
+2016-08-24 13:05:33,542 DEBUG: 			View 2 : 0.521327014218
+2016-08-24 13:05:33,552 DEBUG: 			View 3 : 0.601895734597
+2016-08-24 13:05:34,490 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 13:05:59,216 DEBUG: 		Start:	 Iteration 312
+2016-08-24 13:05:59,237 DEBUG: 			View 0 : 0.440758293839
+2016-08-24 13:05:59,246 DEBUG: 			View 1 : 0.578199052133
+2016-08-24 13:05:59,373 DEBUG: 			View 2 : 0.545023696682
+2016-08-24 13:05:59,384 DEBUG: 			View 3 : 0.682464454976
+2016-08-24 13:06:00,326 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:06:25,148 DEBUG: 		Start:	 Iteration 313
+2016-08-24 13:06:25,169 DEBUG: 			View 0 : 0.597156398104
+2016-08-24 13:06:25,179 DEBUG: 			View 1 : 0.715639810427
+2016-08-24 13:06:25,314 DEBUG: 			View 2 : 0.535545023697
+2016-08-24 13:06:25,325 DEBUG: 			View 3 : 0.672985781991
+2016-08-24 13:06:26,268 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:06:51,146 DEBUG: 		Start:	 Iteration 314
+2016-08-24 13:06:51,167 DEBUG: 			View 0 : 0.563981042654
+2016-08-24 13:06:51,176 DEBUG: 			View 1 : 0.620853080569
+2016-08-24 13:06:51,304 DEBUG: 			View 2 : 0.663507109005
+2016-08-24 13:06:51,315 DEBUG: 			View 3 : 0.611374407583
+2016-08-24 13:06:52,260 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 13:07:17,317 DEBUG: 		Start:	 Iteration 315
+2016-08-24 13:07:17,338 DEBUG: 			View 0 : 0.568720379147
+2016-08-24 13:07:17,348 DEBUG: 			View 1 : 0.379146919431
+2016-08-24 13:07:17,474 DEBUG: 			View 2 : 0.582938388626
+2016-08-24 13:07:17,485 DEBUG: 			View 3 : 0.568720379147
+2016-08-24 13:07:18,436 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 13:07:43,598 DEBUG: 		Start:	 Iteration 316
+2016-08-24 13:07:43,619 DEBUG: 			View 0 : 0.407582938389
+2016-08-24 13:07:43,629 DEBUG: 			View 1 : 0.545023696682
+2016-08-24 13:07:43,759 DEBUG: 			View 2 : 0.592417061611
+2016-08-24 13:07:43,770 DEBUG: 			View 3 : 0.710900473934
+2016-08-24 13:07:44,721 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:08:09,887 DEBUG: 		Start:	 Iteration 317
+2016-08-24 13:08:09,908 DEBUG: 			View 0 : 0.696682464455
+2016-08-24 13:08:09,918 DEBUG: 			View 1 : 0.625592417062
+2016-08-24 13:08:10,041 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 13:08:10,052 DEBUG: 			View 3 : 0.682464454976
+2016-08-24 13:08:11,006 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 13:08:36,231 DEBUG: 		Start:	 Iteration 318
+2016-08-24 13:08:36,252 DEBUG: 			View 0 : 0.63981042654
+2016-08-24 13:08:36,261 DEBUG: 			View 1 : 0.611374407583
+2016-08-24 13:08:36,388 DEBUG: 			View 2 : 0.535545023697
+2016-08-24 13:08:36,399 DEBUG: 			View 3 : 0.57345971564
+2016-08-24 13:08:37,367 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 13:09:02,676 DEBUG: 		Start:	 Iteration 319
+2016-08-24 13:09:02,697 DEBUG: 			View 0 : 0.701421800948
+2016-08-24 13:09:02,706 DEBUG: 			View 1 : 0.597156398104
+2016-08-24 13:09:02,833 DEBUG: 			View 2 : 0.497630331754
+2016-08-24 13:09:02,844 DEBUG: 			View 3 : 0.530805687204
+2016-08-24 13:09:03,803 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 13:09:29,304 DEBUG: 		Start:	 Iteration 320
+2016-08-24 13:09:29,325 DEBUG: 			View 0 : 0.516587677725
+2016-08-24 13:09:29,335 DEBUG: 			View 1 : 0.625592417062
+2016-08-24 13:09:29,462 DEBUG: 			View 2 : 0.545023696682
+2016-08-24 13:09:29,473 DEBUG: 			View 3 : 0.578199052133
+2016-08-24 13:09:30,442 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:09:55,977 DEBUG: 		Start:	 Iteration 321
+2016-08-24 13:09:55,998 DEBUG: 			View 0 : 0.611374407583
+2016-08-24 13:09:56,008 DEBUG: 			View 1 : 0.492890995261
+2016-08-24 13:09:56,129 DEBUG: 			View 2 : 0.492890995261
+2016-08-24 13:09:56,140 DEBUG: 			View 3 : 0.60663507109
+2016-08-24 13:09:57,108 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:10:22,680 DEBUG: 		Start:	 Iteration 322
+2016-08-24 13:10:22,699 DEBUG: 			View 0 : 0.502369668246
+2016-08-24 13:10:22,709 DEBUG: 			View 1 : 0.644549763033
+2016-08-24 13:10:22,836 DEBUG: 			View 2 : 0.497630331754
+2016-08-24 13:10:22,847 DEBUG: 			View 3 : 0.682464454976
+2016-08-24 13:10:23,824 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:10:49,464 DEBUG: 		Start:	 Iteration 323
+2016-08-24 13:10:49,485 DEBUG: 			View 0 : 0.464454976303
+2016-08-24 13:10:49,495 DEBUG: 			View 1 : 0.445497630332
+2016-08-24 13:10:49,627 DEBUG: 			View 2 : 0.597156398104
+2016-08-24 13:10:49,638 DEBUG: 			View 3 : 0.63981042654
+2016-08-24 13:10:50,603 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:11:16,319 DEBUG: 		Start:	 Iteration 324
+2016-08-24 13:11:16,340 DEBUG: 			View 0 : 0.545023696682
+2016-08-24 13:11:16,350 DEBUG: 			View 1 : 0.701421800948
+2016-08-24 13:11:16,481 DEBUG: 			View 2 : 0.57345971564
+2016-08-24 13:11:16,492 DEBUG: 			View 3 : 0.478672985782
+2016-08-24 13:11:17,473 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:11:43,320 DEBUG: 		Start:	 Iteration 325
+2016-08-24 13:11:43,341 DEBUG: 			View 0 : 0.587677725118
+2016-08-24 13:11:43,351 DEBUG: 			View 1 : 0.649289099526
+2016-08-24 13:11:43,469 DEBUG: 			View 2 : 0.488151658768
+2016-08-24 13:11:43,480 DEBUG: 			View 3 : 0.63981042654
+2016-08-24 13:11:44,462 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:12:10,284 DEBUG: 		Start:	 Iteration 326
+2016-08-24 13:12:10,305 DEBUG: 			View 0 : 0.57345971564
+2016-08-24 13:12:10,315 DEBUG: 			View 1 : 0.729857819905
+2016-08-24 13:12:10,445 DEBUG: 			View 2 : 0.616113744076
+2016-08-24 13:12:10,457 DEBUG: 			View 3 : 0.677725118483
+2016-08-24 13:12:11,437 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:12:37,412 DEBUG: 		Start:	 Iteration 327
+2016-08-24 13:12:37,433 DEBUG: 			View 0 : 0.630331753555
+2016-08-24 13:12:37,442 DEBUG: 			View 1 : 0.620853080569
+2016-08-24 13:12:37,574 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 13:12:37,585 DEBUG: 			View 3 : 0.559241706161
+2016-08-24 13:12:38,570 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:13:04,614 DEBUG: 		Start:	 Iteration 328
+2016-08-24 13:13:04,635 DEBUG: 			View 0 : 0.592417061611
+2016-08-24 13:13:04,645 DEBUG: 			View 1 : 0.60663507109
+2016-08-24 13:13:04,781 DEBUG: 			View 2 : 0.597156398104
+2016-08-24 13:13:04,792 DEBUG: 			View 3 : 0.620853080569
+2016-08-24 13:13:05,777 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:13:31,866 DEBUG: 		Start:	 Iteration 329
+2016-08-24 13:13:31,887 DEBUG: 			View 0 : 0.582938388626
+2016-08-24 13:13:31,896 DEBUG: 			View 1 : 0.635071090047
+2016-08-24 13:13:32,023 DEBUG: 			View 2 : 0.488151658768
+2016-08-24 13:13:32,035 DEBUG: 			View 3 : 0.60663507109
+2016-08-24 13:13:33,028 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:13:59,177 DEBUG: 		Start:	 Iteration 330
+2016-08-24 13:13:59,198 DEBUG: 			View 0 : 0.492890995261
+2016-08-24 13:13:59,208 DEBUG: 			View 1 : 0.620853080569
+2016-08-24 13:13:59,338 DEBUG: 			View 2 : 0.630331753555
+2016-08-24 13:13:59,350 DEBUG: 			View 3 : 0.483412322275
+2016-08-24 13:14:00,344 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 13:14:26,647 DEBUG: 		Start:	 Iteration 331
+2016-08-24 13:14:26,668 DEBUG: 			View 0 : 0.597156398104
+2016-08-24 13:14:26,677 DEBUG: 			View 1 : 0.630331753555
+2016-08-24 13:14:26,812 DEBUG: 			View 2 : 0.63981042654
+2016-08-24 13:14:26,824 DEBUG: 			View 3 : 0.511848341232
+2016-08-24 13:14:27,820 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 13:14:54,213 DEBUG: 		Start:	 Iteration 332
+2016-08-24 13:14:54,234 DEBUG: 			View 0 : 0.421800947867
+2016-08-24 13:14:54,243 DEBUG: 			View 1 : 0.507109004739
+2016-08-24 13:14:54,382 DEBUG: 			View 2 : 0.625592417062
+2016-08-24 13:14:54,394 DEBUG: 			View 3 : 0.526066350711
+2016-08-24 13:14:55,386 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 13:15:21,825 DEBUG: 		Start:	 Iteration 333
+2016-08-24 13:15:21,846 DEBUG: 			View 0 : 0.582938388626
+2016-08-24 13:15:21,856 DEBUG: 			View 1 : 0.677725118483
+2016-08-24 13:15:21,980 DEBUG: 			View 2 : 0.497630331754
+2016-08-24 13:15:21,992 DEBUG: 			View 3 : 0.682464454976
+2016-08-24 13:15:22,993 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:15:49,454 DEBUG: 		Start:	 Iteration 334
+2016-08-24 13:15:49,475 DEBUG: 			View 0 : 0.644549763033
+2016-08-24 13:15:49,485 DEBUG: 			View 1 : 0.630331753555
+2016-08-24 13:15:49,616 DEBUG: 			View 2 : 0.545023696682
+2016-08-24 13:15:49,627 DEBUG: 			View 3 : 0.682464454976
+2016-08-24 13:15:50,634 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:16:17,257 DEBUG: 		Start:	 Iteration 335
+2016-08-24 13:16:17,278 DEBUG: 			View 0 : 0.582938388626
+2016-08-24 13:16:17,288 DEBUG: 			View 1 : 0.497630331754
+2016-08-24 13:16:17,429 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 13:16:17,441 DEBUG: 			View 3 : 0.578199052133
+2016-08-24 13:16:18,444 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:16:45,102 DEBUG: 		Start:	 Iteration 336
+2016-08-24 13:16:45,123 DEBUG: 			View 0 : 0.772511848341
+2016-08-24 13:16:45,132 DEBUG: 			View 1 : 0.592417061611
+2016-08-24 13:16:45,262 DEBUG: 			View 2 : 0.497630331754
+2016-08-24 13:16:45,272 DEBUG: 			View 3 : 0.535545023697
+2016-08-24 13:16:46,283 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 13:17:12,988 DEBUG: 		Start:	 Iteration 337
+2016-08-24 13:17:13,009 DEBUG: 			View 0 : 0.45971563981
+2016-08-24 13:17:13,018 DEBUG: 			View 1 : 0.843601895735
+2016-08-24 13:17:13,155 DEBUG: 			View 2 : 0.521327014218
+2016-08-24 13:17:13,164 DEBUG: 			View 3 : 0.563981042654
+2016-08-24 13:17:14,174 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:17:40,947 DEBUG: 		Start:	 Iteration 338
+2016-08-24 13:17:40,968 DEBUG: 			View 0 : 0.578199052133
+2016-08-24 13:17:40,978 DEBUG: 			View 1 : 0.701421800948
+2016-08-24 13:17:41,102 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 13:17:41,111 DEBUG: 			View 3 : 0.625592417062
+2016-08-24 13:17:42,125 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:18:08,964 DEBUG: 		Start:	 Iteration 339
+2016-08-24 13:18:08,985 DEBUG: 			View 0 : 0.445497630332
+2016-08-24 13:18:08,995 DEBUG: 			View 1 : 0.691943127962
+2016-08-24 13:18:09,116 DEBUG: 			View 2 : 0.592417061611
+2016-08-24 13:18:09,126 DEBUG: 			View 3 : 0.630331753555
+2016-08-24 13:18:10,144 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:18:37,137 DEBUG: 		Start:	 Iteration 340
+2016-08-24 13:18:37,158 DEBUG: 			View 0 : 0.516587677725
+2016-08-24 13:18:37,168 DEBUG: 			View 1 : 0.829383886256
+2016-08-24 13:18:37,289 DEBUG: 			View 2 : 0.630331753555
+2016-08-24 13:18:37,298 DEBUG: 			View 3 : 0.535545023697
+2016-08-24 13:18:38,321 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:19:05,398 DEBUG: 		Start:	 Iteration 341
+2016-08-24 13:19:05,419 DEBUG: 			View 0 : 0.54028436019
+2016-08-24 13:19:05,429 DEBUG: 			View 1 : 0.687203791469
+2016-08-24 13:19:05,558 DEBUG: 			View 2 : 0.54028436019
+2016-08-24 13:19:05,567 DEBUG: 			View 3 : 0.682464454976
+2016-08-24 13:19:06,592 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:19:33,682 DEBUG: 		Start:	 Iteration 342
+2016-08-24 13:19:33,703 DEBUG: 			View 0 : 0.526066350711
+2016-08-24 13:19:33,712 DEBUG: 			View 1 : 0.398104265403
+2016-08-24 13:19:33,846 DEBUG: 			View 2 : 0.526066350711
+2016-08-24 13:19:33,855 DEBUG: 			View 3 : 0.677725118483
+2016-08-24 13:19:34,880 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:20:02,169 DEBUG: 		Start:	 Iteration 343
+2016-08-24 13:20:02,190 DEBUG: 			View 0 : 0.421800947867
+2016-08-24 13:20:02,200 DEBUG: 			View 1 : 0.350710900474
+2016-08-24 13:20:02,331 DEBUG: 			View 2 : 0.535545023697
+2016-08-24 13:20:02,340 DEBUG: 			View 3 : 0.554502369668
+2016-08-24 13:20:03,376 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:20:31,151 DEBUG: 		Start:	 Iteration 344
+2016-08-24 13:20:31,173 DEBUG: 			View 0 : 0.616113744076
+2016-08-24 13:20:31,182 DEBUG: 			View 1 : 0.715639810427
+2016-08-24 13:20:31,302 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 13:20:31,312 DEBUG: 			View 3 : 0.625592417062
+2016-08-24 13:20:32,370 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:21:00,542 DEBUG: 		Start:	 Iteration 345
+2016-08-24 13:21:00,564 DEBUG: 			View 0 : 0.436018957346
+2016-08-24 13:21:00,575 DEBUG: 			View 1 : 0.578199052133
+2016-08-24 13:21:00,701 DEBUG: 			View 2 : 0.530805687204
+2016-08-24 13:21:00,711 DEBUG: 			View 3 : 0.620853080569
+2016-08-24 13:21:01,779 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:21:29,765 DEBUG: 		Start:	 Iteration 346
+2016-08-24 13:21:29,786 DEBUG: 			View 0 : 0.63981042654
+2016-08-24 13:21:29,796 DEBUG: 			View 1 : 0.473933649289
+2016-08-24 13:21:29,922 DEBUG: 			View 2 : 0.592417061611
+2016-08-24 13:21:29,931 DEBUG: 			View 3 : 0.691943127962
+2016-08-24 13:21:30,995 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:21:59,180 DEBUG: 		Start:	 Iteration 347
+2016-08-24 13:21:59,201 DEBUG: 			View 0 : 0.587677725118
+2016-08-24 13:21:59,211 DEBUG: 			View 1 : 0.687203791469
+2016-08-24 13:21:59,335 DEBUG: 			View 2 : 0.54028436019
+2016-08-24 13:21:59,345 DEBUG: 			View 3 : 0.611374407583
+2016-08-24 13:22:00,434 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:22:28,518 DEBUG: 		Start:	 Iteration 348
+2016-08-24 13:22:28,539 DEBUG: 			View 0 : 0.521327014218
+2016-08-24 13:22:28,549 DEBUG: 			View 1 : 0.563981042654
+2016-08-24 13:22:28,662 DEBUG: 			View 2 : 0.635071090047
+2016-08-24 13:22:28,672 DEBUG: 			View 3 : 0.545023696682
+2016-08-24 13:22:29,716 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 13:22:57,657 DEBUG: 		Start:	 Iteration 349
+2016-08-24 13:22:57,678 DEBUG: 			View 0 : 0.601895734597
+2016-08-24 13:22:57,687 DEBUG: 			View 1 : 0.255924170616
+2016-08-24 13:22:57,819 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 13:22:57,829 DEBUG: 			View 3 : 0.45971563981
+2016-08-24 13:22:58,880 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 13:23:26,842 DEBUG: 		Start:	 Iteration 350
+2016-08-24 13:23:26,863 DEBUG: 			View 0 : 0.559241706161
+2016-08-24 13:23:26,873 DEBUG: 			View 1 : 0.526066350711
+2016-08-24 13:23:26,995 DEBUG: 			View 2 : 0.545023696682
+2016-08-24 13:23:27,006 DEBUG: 			View 3 : 0.563981042654
+2016-08-24 13:23:28,055 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:23:56,069 DEBUG: 		Start:	 Iteration 351
+2016-08-24 13:23:56,090 DEBUG: 			View 0 : 0.563981042654
+2016-08-24 13:23:56,099 DEBUG: 			View 1 : 0.597156398104
+2016-08-24 13:23:56,229 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 13:23:56,241 DEBUG: 			View 3 : 0.611374407583
+2016-08-24 13:23:57,313 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:24:25,267 DEBUG: 		Start:	 Iteration 352
+2016-08-24 13:24:25,288 DEBUG: 			View 0 : 0.658767772512
+2016-08-24 13:24:25,297 DEBUG: 			View 1 : 0.668246445498
+2016-08-24 13:24:25,435 DEBUG: 			View 2 : 0.63981042654
+2016-08-24 13:24:25,446 DEBUG: 			View 3 : 0.691943127962
+2016-08-24 13:24:26,503 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:24:55,334 DEBUG: 		Start:	 Iteration 353
+2016-08-24 13:24:55,356 DEBUG: 			View 0 : 0.715639810427
+2016-08-24 13:24:55,368 DEBUG: 			View 1 : 0.383886255924
+2016-08-24 13:24:55,509 DEBUG: 			View 2 : 0.568720379147
+2016-08-24 13:24:55,520 DEBUG: 			View 3 : 0.620853080569
+2016-08-24 13:24:56,581 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 13:25:25,491 DEBUG: 		Start:	 Iteration 354
+2016-08-24 13:25:25,512 DEBUG: 			View 0 : 0.687203791469
+2016-08-24 13:25:25,522 DEBUG: 			View 1 : 0.592417061611
+2016-08-24 13:25:25,677 DEBUG: 			View 2 : 0.601895734597
+2016-08-24 13:25:25,690 DEBUG: 			View 3 : 0.587677725118
+2016-08-24 13:25:26,866 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 13:25:55,868 DEBUG: 		Start:	 Iteration 355
+2016-08-24 13:25:55,889 DEBUG: 			View 0 : 0.450236966825
+2016-08-24 13:25:55,899 DEBUG: 			View 1 : 0.597156398104
+2016-08-24 13:25:56,036 DEBUG: 			View 2 : 0.549763033175
+2016-08-24 13:25:56,048 DEBUG: 			View 3 : 0.563981042654
+2016-08-24 13:25:57,138 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:26:26,039 DEBUG: 		Start:	 Iteration 356
+2016-08-24 13:26:26,060 DEBUG: 			View 0 : 0.535545023697
+2016-08-24 13:26:26,070 DEBUG: 			View 1 : 0.625592417062
+2016-08-24 13:26:26,209 DEBUG: 			View 2 : 0.502369668246
+2016-08-24 13:26:26,220 DEBUG: 			View 3 : 0.630331753555
+2016-08-24 13:26:27,295 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:26:56,537 DEBUG: 		Start:	 Iteration 357
+2016-08-24 13:26:56,559 DEBUG: 			View 0 : 0.521327014218
+2016-08-24 13:26:56,568 DEBUG: 			View 1 : 0.758293838863
+2016-08-24 13:26:56,704 DEBUG: 			View 2 : 0.635071090047
+2016-08-24 13:26:56,715 DEBUG: 			View 3 : 0.592417061611
+2016-08-24 13:26:57,821 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:27:26,994 DEBUG: 		Start:	 Iteration 358
+2016-08-24 13:27:27,015 DEBUG: 			View 0 : 0.630331753555
+2016-08-24 13:27:27,025 DEBUG: 			View 1 : 0.616113744076
+2016-08-24 13:27:27,162 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 13:27:27,174 DEBUG: 			View 3 : 0.554502369668
+2016-08-24 13:27:28,247 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 13:27:58,044 DEBUG: 		Start:	 Iteration 359
+2016-08-24 13:27:58,064 DEBUG: 			View 0 : 0.545023696682
+2016-08-24 13:27:58,074 DEBUG: 			View 1 : 0.469194312796
+2016-08-24 13:27:58,197 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 13:27:58,209 DEBUG: 			View 3 : 0.616113744076
+2016-08-24 13:27:59,367 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:28:28,618 DEBUG: 		Start:	 Iteration 360
+2016-08-24 13:28:28,639 DEBUG: 			View 0 : 0.620853080569
+2016-08-24 13:28:28,650 DEBUG: 			View 1 : 0.379146919431
+2016-08-24 13:28:28,788 DEBUG: 			View 2 : 0.587677725118
+2016-08-24 13:28:28,800 DEBUG: 			View 3 : 0.625592417062
+2016-08-24 13:28:30,145 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:28:59,484 DEBUG: 		Start:	 Iteration 361
+2016-08-24 13:28:59,505 DEBUG: 			View 0 : 0.57345971564
+2016-08-24 13:28:59,515 DEBUG: 			View 1 : 0.620853080569
+2016-08-24 13:28:59,644 DEBUG: 			View 2 : 0.592417061611
+2016-08-24 13:28:59,655 DEBUG: 			View 3 : 0.563981042654
+2016-08-24 13:29:00,763 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:29:30,434 DEBUG: 		Start:	 Iteration 362
+2016-08-24 13:29:30,455 DEBUG: 			View 0 : 0.620853080569
+2016-08-24 13:29:30,465 DEBUG: 			View 1 : 0.45971563981
+2016-08-24 13:29:30,598 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 13:29:30,610 DEBUG: 			View 3 : 0.592417061611
+2016-08-24 13:29:31,731 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:30:01,786 DEBUG: 		Start:	 Iteration 363
+2016-08-24 13:30:01,807 DEBUG: 			View 0 : 0.630331753555
+2016-08-24 13:30:01,816 DEBUG: 			View 1 : 0.502369668246
+2016-08-24 13:30:01,953 DEBUG: 			View 2 : 0.60663507109
+2016-08-24 13:30:01,964 DEBUG: 			View 3 : 0.507109004739
+2016-08-24 13:30:03,086 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 13:30:32,971 DEBUG: 		Start:	 Iteration 364
+2016-08-24 13:30:32,993 DEBUG: 			View 0 : 0.554502369668
+2016-08-24 13:30:33,003 DEBUG: 			View 1 : 0.644549763033
+2016-08-24 13:30:33,126 DEBUG: 			View 2 : 0.592417061611
+2016-08-24 13:30:33,137 DEBUG: 			View 3 : 0.616113744076
+2016-08-24 13:30:34,239 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:31:04,052 DEBUG: 		Start:	 Iteration 365
+2016-08-24 13:31:04,072 DEBUG: 			View 0 : 0.545023696682
+2016-08-24 13:31:04,082 DEBUG: 			View 1 : 0.706161137441
+2016-08-24 13:31:04,215 DEBUG: 			View 2 : 0.492890995261
+2016-08-24 13:31:04,226 DEBUG: 			View 3 : 0.554502369668
+2016-08-24 13:31:05,331 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:31:35,076 DEBUG: 		Start:	 Iteration 366
+2016-08-24 13:31:35,096 DEBUG: 			View 0 : 0.658767772512
+2016-08-24 13:31:35,106 DEBUG: 			View 1 : 0.54028436019
+2016-08-24 13:31:35,242 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 13:31:35,253 DEBUG: 			View 3 : 0.587677725118
+2016-08-24 13:31:36,362 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 13:32:05,866 DEBUG: 		Start:	 Iteration 367
+2016-08-24 13:32:05,887 DEBUG: 			View 0 : 0.630331753555
+2016-08-24 13:32:05,897 DEBUG: 			View 1 : 0.677725118483
+2016-08-24 13:32:06,019 DEBUG: 			View 2 : 0.587677725118
+2016-08-24 13:32:06,030 DEBUG: 			View 3 : 0.592417061611
+2016-08-24 13:32:07,151 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:32:37,659 DEBUG: 		Start:	 Iteration 368
+2016-08-24 13:32:37,680 DEBUG: 			View 0 : 0.625592417062
+2016-08-24 13:32:37,691 DEBUG: 			View 1 : 0.563981042654
+2016-08-24 13:32:37,812 DEBUG: 			View 2 : 0.511848341232
+2016-08-24 13:32:37,822 DEBUG: 			View 3 : 0.563981042654
+2016-08-24 13:32:38,995 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 13:33:09,312 DEBUG: 		Start:	 Iteration 369
+2016-08-24 13:33:09,334 DEBUG: 			View 0 : 0.464454976303
+2016-08-24 13:33:09,348 DEBUG: 			View 1 : 0.549763033175
+2016-08-24 13:33:09,482 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 13:33:09,498 DEBUG: 			View 3 : 0.625592417062
+2016-08-24 13:33:10,676 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:33:40,714 DEBUG: 		Start:	 Iteration 370
+2016-08-24 13:33:40,736 DEBUG: 			View 0 : 0.507109004739
+2016-08-24 13:33:40,745 DEBUG: 			View 1 : 0.644549763033
+2016-08-24 13:33:40,862 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 13:33:40,872 DEBUG: 			View 3 : 0.611374407583
+2016-08-24 13:33:41,996 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:34:11,589 DEBUG: 		Start:	 Iteration 371
+2016-08-24 13:34:11,611 DEBUG: 			View 0 : 0.516587677725
+2016-08-24 13:34:11,620 DEBUG: 			View 1 : 0.450236966825
+2016-08-24 13:34:11,740 DEBUG: 			View 2 : 0.597156398104
+2016-08-24 13:34:11,749 DEBUG: 			View 3 : 0.582938388626
+2016-08-24 13:34:12,914 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:34:42,966 DEBUG: 		Start:	 Iteration 372
+2016-08-24 13:34:42,987 DEBUG: 			View 0 : 0.54028436019
+2016-08-24 13:34:42,997 DEBUG: 			View 1 : 0.597156398104
+2016-08-24 13:34:43,125 DEBUG: 			View 2 : 0.620853080569
+2016-08-24 13:34:43,134 DEBUG: 			View 3 : 0.611374407583
+2016-08-24 13:34:44,307 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 13:35:14,647 DEBUG: 		Start:	 Iteration 373
+2016-08-24 13:35:14,668 DEBUG: 			View 0 : 0.654028436019
+2016-08-24 13:35:14,680 DEBUG: 			View 1 : 0.421800947867
+2016-08-24 13:35:14,805 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 13:35:14,814 DEBUG: 			View 3 : 0.578199052133
+2016-08-24 13:35:15,960 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 13:35:46,317 DEBUG: 		Start:	 Iteration 374
+2016-08-24 13:35:46,339 DEBUG: 			View 0 : 0.492890995261
+2016-08-24 13:35:46,349 DEBUG: 			View 1 : 0.625592417062
+2016-08-24 13:35:46,466 DEBUG: 			View 2 : 0.535545023697
+2016-08-24 13:35:46,475 DEBUG: 			View 3 : 0.511848341232
+2016-08-24 13:35:47,650 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:36:17,996 DEBUG: 		Start:	 Iteration 375
+2016-08-24 13:36:18,018 DEBUG: 			View 0 : 0.587677725118
+2016-08-24 13:36:18,028 DEBUG: 			View 1 : 0.388625592417
+2016-08-24 13:36:18,170 DEBUG: 			View 2 : 0.563981042654
+2016-08-24 13:36:18,181 DEBUG: 			View 3 : 0.630331753555
+2016-08-24 13:36:19,343 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:36:49,753 DEBUG: 		Start:	 Iteration 376
+2016-08-24 13:36:49,774 DEBUG: 			View 0 : 0.445497630332
+2016-08-24 13:36:49,784 DEBUG: 			View 1 : 0.616113744076
+2016-08-24 13:36:49,904 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 13:36:49,913 DEBUG: 			View 3 : 0.597156398104
+2016-08-24 13:36:51,145 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:37:21,399 DEBUG: 		Start:	 Iteration 377
+2016-08-24 13:37:21,420 DEBUG: 			View 0 : 0.545023696682
+2016-08-24 13:37:21,430 DEBUG: 			View 1 : 0.611374407583
+2016-08-24 13:37:21,550 DEBUG: 			View 2 : 0.502369668246
+2016-08-24 13:37:21,560 DEBUG: 			View 3 : 0.521327014218
+2016-08-24 13:37:22,689 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:37:52,749 DEBUG: 		Start:	 Iteration 378
+2016-08-24 13:37:52,770 DEBUG: 			View 0 : 0.42654028436
+2016-08-24 13:37:52,779 DEBUG: 			View 1 : 0.587677725118
+2016-08-24 13:37:52,902 DEBUG: 			View 2 : 0.582938388626
+2016-08-24 13:37:52,912 DEBUG: 			View 3 : 0.620853080569
+2016-08-24 13:37:54,077 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:38:24,175 DEBUG: 		Start:	 Iteration 379
+2016-08-24 13:38:24,197 DEBUG: 			View 0 : 0.625592417062
+2016-08-24 13:38:24,206 DEBUG: 			View 1 : 0.75355450237
+2016-08-24 13:38:24,329 DEBUG: 			View 2 : 0.526066350711
+2016-08-24 13:38:24,338 DEBUG: 			View 3 : 0.620853080569
+2016-08-24 13:38:25,566 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:38:55,931 DEBUG: 		Start:	 Iteration 380
+2016-08-24 13:38:55,953 DEBUG: 			View 0 : 0.535545023697
+2016-08-24 13:38:55,962 DEBUG: 			View 1 : 0.677725118483
+2016-08-24 13:38:56,079 DEBUG: 			View 2 : 0.635071090047
+2016-08-24 13:38:56,088 DEBUG: 			View 3 : 0.616113744076
+2016-08-24 13:38:57,256 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:39:27,647 DEBUG: 		Start:	 Iteration 381
+2016-08-24 13:39:27,668 DEBUG: 			View 0 : 0.473933649289
+2016-08-24 13:39:27,678 DEBUG: 			View 1 : 0.620853080569
+2016-08-24 13:39:27,798 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 13:39:27,808 DEBUG: 			View 3 : 0.616113744076
+2016-08-24 13:39:28,946 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:40:00,455 DEBUG: 		Start:	 Iteration 382
+2016-08-24 13:40:00,481 DEBUG: 			View 0 : 0.42654028436
+2016-08-24 13:40:00,492 DEBUG: 			View 1 : 0.436018957346
+2016-08-24 13:40:00,631 DEBUG: 			View 2 : 0.635071090047
+2016-08-24 13:40:00,643 DEBUG: 			View 3 : 0.616113744076
+2016-08-24 13:40:01,991 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 13:40:32,518 DEBUG: 		Start:	 Iteration 383
+2016-08-24 13:40:32,539 DEBUG: 			View 0 : 0.436018957346
+2016-08-24 13:40:32,548 DEBUG: 			View 1 : 0.60663507109
+2016-08-24 13:40:32,668 DEBUG: 			View 2 : 0.507109004739
+2016-08-24 13:40:32,678 DEBUG: 			View 3 : 0.563981042654
+2016-08-24 13:40:33,824 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:41:04,952 DEBUG: 		Start:	 Iteration 384
+2016-08-24 13:41:04,974 DEBUG: 			View 0 : 0.587677725118
+2016-08-24 13:41:04,983 DEBUG: 			View 1 : 0.597156398104
+2016-08-24 13:41:05,103 DEBUG: 			View 2 : 0.597156398104
+2016-08-24 13:41:05,112 DEBUG: 			View 3 : 0.545023696682
+2016-08-24 13:41:06,291 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:41:37,036 DEBUG: 		Start:	 Iteration 385
+2016-08-24 13:41:37,056 DEBUG: 			View 0 : 0.530805687204
+2016-08-24 13:41:37,066 DEBUG: 			View 1 : 0.630331753555
+2016-08-24 13:41:37,181 DEBUG: 			View 2 : 0.535545023697
+2016-08-24 13:41:37,191 DEBUG: 			View 3 : 0.582938388626
+2016-08-24 13:41:38,358 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:42:09,865 DEBUG: 		Start:	 Iteration 386
+2016-08-24 13:42:09,889 DEBUG: 			View 0 : 0.635071090047
+2016-08-24 13:42:09,902 DEBUG: 			View 1 : 0.582938388626
+2016-08-24 13:42:10,037 DEBUG: 			View 2 : 0.57345971564
+2016-08-24 13:42:10,046 DEBUG: 			View 3 : 0.663507109005
+2016-08-24 13:42:11,381 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:42:43,246 DEBUG: 		Start:	 Iteration 387
+2016-08-24 13:42:43,270 DEBUG: 			View 0 : 0.530805687204
+2016-08-24 13:42:43,281 DEBUG: 			View 1 : 0.497630331754
+2016-08-24 13:42:43,425 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 13:42:43,436 DEBUG: 			View 3 : 0.663507109005
+2016-08-24 13:42:44,706 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:43:15,848 DEBUG: 		Start:	 Iteration 388
+2016-08-24 13:43:15,869 DEBUG: 			View 0 : 0.54028436019
+2016-08-24 13:43:15,879 DEBUG: 			View 1 : 0.654028436019
+2016-08-24 13:43:15,990 DEBUG: 			View 2 : 0.568720379147
+2016-08-24 13:43:15,999 DEBUG: 			View 3 : 0.563981042654
+2016-08-24 13:43:17,163 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:43:48,364 DEBUG: 		Start:	 Iteration 389
+2016-08-24 13:43:48,385 DEBUG: 			View 0 : 0.635071090047
+2016-08-24 13:43:48,394 DEBUG: 			View 1 : 0.687203791469
+2016-08-24 13:43:48,501 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 13:43:48,510 DEBUG: 			View 3 : 0.625592417062
+2016-08-24 13:43:49,674 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:44:21,139 DEBUG: 		Start:	 Iteration 390
+2016-08-24 13:44:21,160 DEBUG: 			View 0 : 0.492890995261
+2016-08-24 13:44:21,170 DEBUG: 			View 1 : 0.45971563981
+2016-08-24 13:44:21,292 DEBUG: 			View 2 : 0.502369668246
+2016-08-24 13:44:21,301 DEBUG: 			View 3 : 0.563981042654
+2016-08-24 13:44:22,530 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:44:54,159 DEBUG: 		Start:	 Iteration 391
+2016-08-24 13:44:54,180 DEBUG: 			View 0 : 0.497630331754
+2016-08-24 13:44:54,190 DEBUG: 			View 1 : 0.483412322275
+2016-08-24 13:44:54,307 DEBUG: 			View 2 : 0.582938388626
+2016-08-24 13:44:54,318 DEBUG: 			View 3 : 0.554502369668
+2016-08-24 13:44:55,517 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 13:45:27,112 DEBUG: 		Start:	 Iteration 392
+2016-08-24 13:45:27,133 DEBUG: 			View 0 : 0.473933649289
+2016-08-24 13:45:27,143 DEBUG: 			View 1 : 0.601895734597
+2016-08-24 13:45:27,260 DEBUG: 			View 2 : 0.601895734597
+2016-08-24 13:45:27,270 DEBUG: 			View 3 : 0.635071090047
+2016-08-24 13:45:28,443 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:46:00,019 DEBUG: 		Start:	 Iteration 393
+2016-08-24 13:46:00,040 DEBUG: 			View 0 : 0.691943127962
+2016-08-24 13:46:00,050 DEBUG: 			View 1 : 0.421800947867
+2016-08-24 13:46:00,166 DEBUG: 			View 2 : 0.521327014218
+2016-08-24 13:46:00,175 DEBUG: 			View 3 : 0.559241706161
+2016-08-24 13:46:01,367 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 13:46:33,081 DEBUG: 		Start:	 Iteration 394
+2016-08-24 13:46:33,102 DEBUG: 			View 0 : 0.549763033175
+2016-08-24 13:46:33,111 DEBUG: 			View 1 : 0.545023696682
+2016-08-24 13:46:33,231 DEBUG: 			View 2 : 0.592417061611
+2016-08-24 13:46:33,240 DEBUG: 			View 3 : 0.635071090047
+2016-08-24 13:46:34,419 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:47:06,196 DEBUG: 		Start:	 Iteration 395
+2016-08-24 13:47:06,221 DEBUG: 			View 0 : 0.464454976303
+2016-08-24 13:47:06,232 DEBUG: 			View 1 : 0.597156398104
+2016-08-24 13:47:06,363 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 13:47:06,372 DEBUG: 			View 3 : 0.578199052133
+2016-08-24 13:47:07,572 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:47:39,732 DEBUG: 		Start:	 Iteration 396
+2016-08-24 13:47:39,754 DEBUG: 			View 0 : 0.582938388626
+2016-08-24 13:47:39,764 DEBUG: 			View 1 : 0.658767772512
+2016-08-24 13:47:39,911 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 13:47:39,920 DEBUG: 			View 3 : 0.545023696682
+2016-08-24 13:47:41,213 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:48:13,299 DEBUG: 		Start:	 Iteration 397
+2016-08-24 13:48:13,320 DEBUG: 			View 0 : 0.635071090047
+2016-08-24 13:48:13,330 DEBUG: 			View 1 : 0.644549763033
+2016-08-24 13:48:13,453 DEBUG: 			View 2 : 0.611374407583
+2016-08-24 13:48:13,463 DEBUG: 			View 3 : 0.654028436019
+2016-08-24 13:48:14,683 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:48:47,260 DEBUG: 		Start:	 Iteration 398
+2016-08-24 13:48:47,281 DEBUG: 			View 0 : 0.54028436019
+2016-08-24 13:48:47,290 DEBUG: 			View 1 : 0.625592417062
+2016-08-24 13:48:47,425 DEBUG: 			View 2 : 0.535545023697
+2016-08-24 13:48:47,435 DEBUG: 			View 3 : 0.545023696682
+2016-08-24 13:48:48,673 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:49:20,843 DEBUG: 		Start:	 Iteration 399
+2016-08-24 13:49:20,864 DEBUG: 			View 0 : 0.829383886256
+2016-08-24 13:49:20,874 DEBUG: 			View 1 : 0.744075829384
+2016-08-24 13:49:20,991 DEBUG: 			View 2 : 0.597156398104
+2016-08-24 13:49:21,000 DEBUG: 			View 3 : 0.549763033175
+2016-08-24 13:49:22,365 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 13:49:55,510 DEBUG: 		Start:	 Iteration 400
+2016-08-24 13:49:55,537 DEBUG: 			View 0 : 0.620853080569
+2016-08-24 13:49:55,548 DEBUG: 			View 1 : 0.649289099526
+2016-08-24 13:49:55,685 DEBUG: 			View 2 : 0.635071090047
+2016-08-24 13:49:55,695 DEBUG: 			View 3 : 0.691943127962
+2016-08-24 13:49:57,078 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:50:30,035 DEBUG: 		Start:	 Iteration 401
+2016-08-24 13:50:30,056 DEBUG: 			View 0 : 0.436018957346
+2016-08-24 13:50:30,065 DEBUG: 			View 1 : 0.677725118483
+2016-08-24 13:50:30,179 DEBUG: 			View 2 : 0.635071090047
+2016-08-24 13:50:30,188 DEBUG: 			View 3 : 0.597156398104
+2016-08-24 13:50:31,383 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:51:03,983 DEBUG: 		Start:	 Iteration 402
+2016-08-24 13:51:04,005 DEBUG: 			View 0 : 0.620853080569
+2016-08-24 13:51:04,014 DEBUG: 			View 1 : 0.644549763033
+2016-08-24 13:51:04,129 DEBUG: 			View 2 : 0.597156398104
+2016-08-24 13:51:04,138 DEBUG: 			View 3 : 0.706161137441
+2016-08-24 13:51:05,329 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:51:37,241 DEBUG: 		Start:	 Iteration 403
+2016-08-24 13:51:37,263 DEBUG: 			View 0 : 0.549763033175
+2016-08-24 13:51:37,273 DEBUG: 			View 1 : 0.369668246445
+2016-08-24 13:51:37,388 DEBUG: 			View 2 : 0.592417061611
+2016-08-24 13:51:37,397 DEBUG: 			View 3 : 0.658767772512
+2016-08-24 13:51:38,606 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:52:11,139 DEBUG: 		Start:	 Iteration 404
+2016-08-24 13:52:11,160 DEBUG: 			View 0 : 0.620853080569
+2016-08-24 13:52:11,169 DEBUG: 			View 1 : 0.559241706161
+2016-08-24 13:52:11,289 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 13:52:11,298 DEBUG: 			View 3 : 0.554502369668
+2016-08-24 13:52:12,508 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 13:52:44,577 DEBUG: 		Start:	 Iteration 405
+2016-08-24 13:52:44,598 DEBUG: 			View 0 : 0.620853080569
+2016-08-24 13:52:44,608 DEBUG: 			View 1 : 0.625592417062
+2016-08-24 13:52:44,723 DEBUG: 			View 2 : 0.492890995261
+2016-08-24 13:52:44,732 DEBUG: 			View 3 : 0.625592417062
+2016-08-24 13:52:45,935 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:53:19,104 DEBUG: 		Start:	 Iteration 406
+2016-08-24 13:53:19,125 DEBUG: 			View 0 : 0.535545023697
+2016-08-24 13:53:19,134 DEBUG: 			View 1 : 0.625592417062
+2016-08-24 13:53:19,257 DEBUG: 			View 2 : 0.601895734597
+2016-08-24 13:53:19,266 DEBUG: 			View 3 : 0.658767772512
+2016-08-24 13:53:20,642 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:53:53,732 DEBUG: 		Start:	 Iteration 407
+2016-08-24 13:53:53,754 DEBUG: 			View 0 : 0.810426540284
+2016-08-24 13:53:53,764 DEBUG: 			View 1 : 0.341232227488
+2016-08-24 13:53:53,883 DEBUG: 			View 2 : 0.601895734597
+2016-08-24 13:53:53,892 DEBUG: 			View 3 : 0.611374407583
+2016-08-24 13:53:55,101 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 13:54:27,648 DEBUG: 		Start:	 Iteration 408
+2016-08-24 13:54:27,669 DEBUG: 			View 0 : 0.507109004739
+2016-08-24 13:54:27,679 DEBUG: 			View 1 : 0.464454976303
+2016-08-24 13:54:27,798 DEBUG: 			View 2 : 0.526066350711
+2016-08-24 13:54:27,807 DEBUG: 			View 3 : 0.436018957346
+2016-08-24 13:54:29,031 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 13:55:02,477 DEBUG: 		Start:	 Iteration 409
+2016-08-24 13:55:02,498 DEBUG: 			View 0 : 0.663507109005
+2016-08-24 13:55:02,508 DEBUG: 			View 1 : 0.417061611374
+2016-08-24 13:55:02,624 DEBUG: 			View 2 : 0.63981042654
+2016-08-24 13:55:02,633 DEBUG: 			View 3 : 0.597156398104
+2016-08-24 13:55:03,877 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 13:55:37,510 DEBUG: 		Start:	 Iteration 410
+2016-08-24 13:55:37,531 DEBUG: 			View 0 : 0.658767772512
+2016-08-24 13:55:37,541 DEBUG: 			View 1 : 0.630331753555
+2016-08-24 13:55:37,664 DEBUG: 			View 2 : 0.620853080569
+2016-08-24 13:55:37,673 DEBUG: 			View 3 : 0.545023696682
+2016-08-24 13:55:38,897 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 13:56:12,501 DEBUG: 		Start:	 Iteration 411
+2016-08-24 13:56:12,523 DEBUG: 			View 0 : 0.635071090047
+2016-08-24 13:56:12,533 DEBUG: 			View 1 : 0.644549763033
+2016-08-24 13:56:12,666 DEBUG: 			View 2 : 0.516587677725
+2016-08-24 13:56:12,677 DEBUG: 			View 3 : 0.663507109005
+2016-08-24 13:56:13,983 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:56:47,750 DEBUG: 		Start:	 Iteration 412
+2016-08-24 13:56:47,771 DEBUG: 			View 0 : 0.502369668246
+2016-08-24 13:56:47,781 DEBUG: 			View 1 : 0.57345971564
+2016-08-24 13:56:47,892 DEBUG: 			View 2 : 0.63981042654
+2016-08-24 13:56:47,901 DEBUG: 			View 3 : 0.630331753555
+2016-08-24 13:56:49,135 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:57:23,645 DEBUG: 		Start:	 Iteration 413
+2016-08-24 13:57:23,666 DEBUG: 			View 0 : 0.488151658768
+2016-08-24 13:57:23,677 DEBUG: 			View 1 : 0.663507109005
+2016-08-24 13:57:23,802 DEBUG: 			View 2 : 0.582938388626
+2016-08-24 13:57:23,811 DEBUG: 			View 3 : 0.568720379147
+2016-08-24 13:57:25,057 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:57:59,361 DEBUG: 		Start:	 Iteration 414
+2016-08-24 13:57:59,382 DEBUG: 			View 0 : 0.644549763033
+2016-08-24 13:57:59,391 DEBUG: 			View 1 : 0.63981042654
+2016-08-24 13:57:59,507 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 13:57:59,516 DEBUG: 			View 3 : 0.582938388626
+2016-08-24 13:58:00,773 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 13:58:34,062 DEBUG: 		Start:	 Iteration 415
+2016-08-24 13:58:34,083 DEBUG: 			View 0 : 0.511848341232
+2016-08-24 13:58:34,093 DEBUG: 			View 1 : 0.597156398104
+2016-08-24 13:58:34,220 DEBUG: 			View 2 : 0.549763033175
+2016-08-24 13:58:34,229 DEBUG: 			View 3 : 0.554502369668
+2016-08-24 13:58:35,453 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:59:08,331 DEBUG: 		Start:	 Iteration 416
+2016-08-24 13:59:08,352 DEBUG: 			View 0 : 0.54028436019
+2016-08-24 13:59:08,362 DEBUG: 			View 1 : 0.601895734597
+2016-08-24 13:59:08,476 DEBUG: 			View 2 : 0.616113744076
+2016-08-24 13:59:08,485 DEBUG: 			View 3 : 0.578199052133
+2016-08-24 13:59:09,711 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:59:43,368 DEBUG: 		Start:	 Iteration 417
+2016-08-24 13:59:43,389 DEBUG: 			View 0 : 0.454976303318
+2016-08-24 13:59:43,399 DEBUG: 			View 1 : 0.710900473934
+2016-08-24 13:59:43,519 DEBUG: 			View 2 : 0.568720379147
+2016-08-24 13:59:43,528 DEBUG: 			View 3 : 0.687203791469
+2016-08-24 13:59:44,841 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 14:00:18,976 DEBUG: 		Start:	 Iteration 418
+2016-08-24 14:00:18,997 DEBUG: 			View 0 : 0.658767772512
+2016-08-24 14:00:19,008 DEBUG: 			View 1 : 0.578199052133
+2016-08-24 14:00:19,124 DEBUG: 			View 2 : 0.592417061611
+2016-08-24 14:00:19,133 DEBUG: 			View 3 : 0.545023696682
+2016-08-24 14:00:20,396 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 14:00:54,344 DEBUG: 		Start:	 Iteration 419
+2016-08-24 14:00:54,365 DEBUG: 			View 0 : 0.516587677725
+2016-08-24 14:00:54,375 DEBUG: 			View 1 : 0.635071090047
+2016-08-24 14:00:54,498 DEBUG: 			View 2 : 0.568720379147
+2016-08-24 14:00:54,507 DEBUG: 			View 3 : 0.57345971564
+2016-08-24 14:00:55,752 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 14:01:30,338 DEBUG: 		Start:	 Iteration 420
+2016-08-24 14:01:30,359 DEBUG: 			View 0 : 0.592417061611
+2016-08-24 14:01:30,369 DEBUG: 			View 1 : 0.677725118483
+2016-08-24 14:01:30,504 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 14:01:30,514 DEBUG: 			View 3 : 0.60663507109
+2016-08-24 14:01:31,799 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 14:02:05,514 DEBUG: 		Start:	 Iteration 421
+2016-08-24 14:02:05,535 DEBUG: 			View 0 : 0.545023696682
+2016-08-24 14:02:05,545 DEBUG: 			View 1 : 0.777251184834
+2016-08-24 14:02:05,681 DEBUG: 			View 2 : 0.597156398104
+2016-08-24 14:02:05,691 DEBUG: 			View 3 : 0.635071090047
+2016-08-24 14:02:06,975 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 14:02:40,836 DEBUG: 		Start:	 Iteration 422
+2016-08-24 14:02:40,857 DEBUG: 			View 0 : 0.597156398104
+2016-08-24 14:02:40,867 DEBUG: 			View 1 : 0.672985781991
+2016-08-24 14:02:40,989 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 14:02:40,998 DEBUG: 			View 3 : 0.616113744076
+2016-08-24 14:02:42,282 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 14:03:16,292 DEBUG: 		Start:	 Iteration 423
+2016-08-24 14:03:16,313 DEBUG: 			View 0 : 0.507109004739
+2016-08-24 14:03:16,322 DEBUG: 			View 1 : 0.497630331754
+2016-08-24 14:03:16,440 DEBUG: 			View 2 : 0.507109004739
+2016-08-24 14:03:16,449 DEBUG: 			View 3 : 0.620853080569
+2016-08-24 14:03:17,705 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:03:52,074 DEBUG: 		Start:	 Iteration 424
+2016-08-24 14:03:52,095 DEBUG: 			View 0 : 0.601895734597
+2016-08-24 14:03:52,104 DEBUG: 			View 1 : 0.616113744076
+2016-08-24 14:03:52,220 DEBUG: 			View 2 : 0.597156398104
+2016-08-24 14:03:52,229 DEBUG: 			View 3 : 0.497630331754
+2016-08-24 14:03:53,482 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 14:04:27,383 DEBUG: 		Start:	 Iteration 425
+2016-08-24 14:04:27,404 DEBUG: 			View 0 : 0.454976303318
+2016-08-24 14:04:27,414 DEBUG: 			View 1 : 0.644549763033
+2016-08-24 14:04:27,534 DEBUG: 			View 2 : 0.563981042654
+2016-08-24 14:04:27,543 DEBUG: 			View 3 : 0.497630331754
+2016-08-24 14:04:28,823 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 14:05:03,346 DEBUG: 		Start:	 Iteration 426
+2016-08-24 14:05:03,367 DEBUG: 			View 0 : 0.492890995261
+2016-08-24 14:05:03,377 DEBUG: 			View 1 : 0.549763033175
+2016-08-24 14:05:03,497 DEBUG: 			View 2 : 0.535545023697
+2016-08-24 14:05:03,506 DEBUG: 			View 3 : 0.469194312796
+2016-08-24 14:05:04,788 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 14:05:39,257 DEBUG: 		Start:	 Iteration 427
+2016-08-24 14:05:39,279 DEBUG: 			View 0 : 0.620853080569
+2016-08-24 14:05:39,288 DEBUG: 			View 1 : 0.469194312796
+2016-08-24 14:05:39,410 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 14:05:39,419 DEBUG: 			View 3 : 0.568720379147
+2016-08-24 14:05:40,675 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 14:06:14,724 DEBUG: 		Start:	 Iteration 428
+2016-08-24 14:06:14,745 DEBUG: 			View 0 : 0.582938388626
+2016-08-24 14:06:14,755 DEBUG: 			View 1 : 0.654028436019
+2016-08-24 14:06:14,913 DEBUG: 			View 2 : 0.530805687204
+2016-08-24 14:06:14,927 DEBUG: 			View 3 : 0.668246445498
+2016-08-24 14:06:16,235 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:06:50,711 DEBUG: 		Start:	 Iteration 429
+2016-08-24 14:06:50,731 DEBUG: 			View 0 : 0.611374407583
+2016-08-24 14:06:50,741 DEBUG: 			View 1 : 0.649289099526
+2016-08-24 14:06:50,867 DEBUG: 			View 2 : 0.611374407583
+2016-08-24 14:06:50,879 DEBUG: 			View 3 : 0.625592417062
+2016-08-24 14:06:52,142 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:07:25,955 DEBUG: 		Start:	 Iteration 430
+2016-08-24 14:07:25,977 DEBUG: 			View 0 : 0.488151658768
+2016-08-24 14:07:25,986 DEBUG: 			View 1 : 0.663507109005
+2016-08-24 14:07:26,117 DEBUG: 			View 2 : 0.521327014218
+2016-08-24 14:07:26,129 DEBUG: 			View 3 : 0.440758293839
+2016-08-24 14:07:27,392 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 14:08:01,799 DEBUG: 		Start:	 Iteration 431
+2016-08-24 14:08:01,820 DEBUG: 			View 0 : 0.644549763033
+2016-08-24 14:08:01,830 DEBUG: 			View 1 : 0.63981042654
+2016-08-24 14:08:01,953 DEBUG: 			View 2 : 0.563981042654
+2016-08-24 14:08:01,965 DEBUG: 			View 3 : 0.526066350711
+2016-08-24 14:08:03,237 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 14:08:37,425 DEBUG: 		Start:	 Iteration 432
+2016-08-24 14:08:37,446 DEBUG: 			View 0 : 0.511848341232
+2016-08-24 14:08:37,455 DEBUG: 			View 1 : 0.649289099526
+2016-08-24 14:08:37,583 DEBUG: 			View 2 : 0.502369668246
+2016-08-24 14:08:37,594 DEBUG: 			View 3 : 0.654028436019
+2016-08-24 14:08:38,862 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:09:13,162 DEBUG: 		Start:	 Iteration 433
+2016-08-24 14:09:13,183 DEBUG: 			View 0 : 0.57345971564
+2016-08-24 14:09:13,192 DEBUG: 			View 1 : 0.454976303318
+2016-08-24 14:09:13,326 DEBUG: 			View 2 : 0.60663507109
+2016-08-24 14:09:13,338 DEBUG: 			View 3 : 0.696682464455
+2016-08-24 14:09:14,619 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:09:50,222 DEBUG: 		Start:	 Iteration 434
+2016-08-24 14:09:50,243 DEBUG: 			View 0 : 0.473933649289
+2016-08-24 14:09:50,253 DEBUG: 			View 1 : 0.469194312796
+2016-08-24 14:09:50,388 DEBUG: 			View 2 : 0.611374407583
+2016-08-24 14:09:50,399 DEBUG: 			View 3 : 0.473933649289
+2016-08-24 14:09:51,683 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 14:10:26,874 DEBUG: 		Start:	 Iteration 435
+2016-08-24 14:10:26,896 DEBUG: 			View 0 : 0.464454976303
+2016-08-24 14:10:26,906 DEBUG: 			View 1 : 0.616113744076
+2016-08-24 14:10:27,058 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 14:10:27,068 DEBUG: 			View 3 : 0.691943127962
+2016-08-24 14:10:28,544 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:11:04,720 DEBUG: 		Start:	 Iteration 436
+2016-08-24 14:11:04,741 DEBUG: 			View 0 : 0.417061611374
+2016-08-24 14:11:04,750 DEBUG: 			View 1 : 0.635071090047
+2016-08-24 14:11:04,869 DEBUG: 			View 2 : 0.464454976303
+2016-08-24 14:11:04,879 DEBUG: 			View 3 : 0.654028436019
+2016-08-24 14:11:06,172 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 14:11:40,928 DEBUG: 		Start:	 Iteration 437
+2016-08-24 14:11:40,949 DEBUG: 			View 0 : 0.625592417062
+2016-08-24 14:11:40,959 DEBUG: 			View 1 : 0.483412322275
+2016-08-24 14:11:41,090 DEBUG: 			View 2 : 0.488151658768
+2016-08-24 14:11:41,099 DEBUG: 			View 3 : 0.587677725118
+2016-08-24 14:11:42,392 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 14:12:17,624 DEBUG: 		Start:	 Iteration 438
+2016-08-24 14:12:17,645 DEBUG: 			View 0 : 0.431279620853
+2016-08-24 14:12:17,655 DEBUG: 			View 1 : 0.644549763033
+2016-08-24 14:12:17,781 DEBUG: 			View 2 : 0.620853080569
+2016-08-24 14:12:17,790 DEBUG: 			View 3 : 0.507109004739
+2016-08-24 14:12:19,346 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 14:12:55,038 DEBUG: 		Start:	 Iteration 439
+2016-08-24 14:12:55,063 DEBUG: 			View 0 : 0.630331753555
+2016-08-24 14:12:55,073 DEBUG: 			View 1 : 0.611374407583
+2016-08-24 14:12:55,216 DEBUG: 			View 2 : 0.597156398104
+2016-08-24 14:12:55,225 DEBUG: 			View 3 : 0.635071090047
+2016-08-24 14:12:56,554 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:13:32,726 DEBUG: 		Start:	 Iteration 440
+2016-08-24 14:13:32,747 DEBUG: 			View 0 : 0.611374407583
+2016-08-24 14:13:32,758 DEBUG: 			View 1 : 0.587677725118
+2016-08-24 14:13:32,905 DEBUG: 			View 2 : 0.625592417062
+2016-08-24 14:13:32,916 DEBUG: 			View 3 : 0.57345971564
+2016-08-24 14:13:34,216 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 14:14:09,458 DEBUG: 		Start:	 Iteration 441
+2016-08-24 14:14:09,479 DEBUG: 			View 0 : 0.563981042654
+2016-08-24 14:14:09,489 DEBUG: 			View 1 : 0.810426540284
+2016-08-24 14:14:09,624 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 14:14:09,636 DEBUG: 			View 3 : 0.597156398104
+2016-08-24 14:14:10,973 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 14:14:46,186 DEBUG: 		Start:	 Iteration 442
+2016-08-24 14:14:46,208 DEBUG: 			View 0 : 0.672985781991
+2016-08-24 14:14:46,218 DEBUG: 			View 1 : 0.464454976303
+2016-08-24 14:14:46,347 DEBUG: 			View 2 : 0.654028436019
+2016-08-24 14:14:46,358 DEBUG: 			View 3 : 0.57345971564
+2016-08-24 14:14:47,659 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 14:15:24,290 DEBUG: 		Start:	 Iteration 443
+2016-08-24 14:15:24,311 DEBUG: 			View 0 : 0.658767772512
+2016-08-24 14:15:24,321 DEBUG: 			View 1 : 0.658767772512
+2016-08-24 14:15:24,494 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 14:15:24,507 DEBUG: 			View 3 : 0.511848341232
+2016-08-24 14:15:25,989 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 14:16:02,481 DEBUG: 		Start:	 Iteration 444
+2016-08-24 14:16:02,502 DEBUG: 			View 0 : 0.568720379147
+2016-08-24 14:16:02,511 DEBUG: 			View 1 : 0.611374407583
+2016-08-24 14:16:02,641 DEBUG: 			View 2 : 0.630331753555
+2016-08-24 14:16:02,652 DEBUG: 			View 3 : 0.706161137441
+2016-08-24 14:16:04,126 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:16:40,930 DEBUG: 		Start:	 Iteration 445
+2016-08-24 14:16:40,951 DEBUG: 			View 0 : 0.625592417062
+2016-08-24 14:16:40,960 DEBUG: 			View 1 : 0.492890995261
+2016-08-24 14:16:41,091 DEBUG: 			View 2 : 0.54028436019
+2016-08-24 14:16:41,102 DEBUG: 			View 3 : 0.516587677725
+2016-08-24 14:16:42,421 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 14:17:18,422 DEBUG: 		Start:	 Iteration 446
+2016-08-24 14:17:18,444 DEBUG: 			View 0 : 0.478672985782
+2016-08-24 14:17:18,453 DEBUG: 			View 1 : 0.63981042654
+2016-08-24 14:17:18,602 DEBUG: 			View 2 : 0.60663507109
+2016-08-24 14:17:18,612 DEBUG: 			View 3 : 0.620853080569
+2016-08-24 14:17:20,117 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:17:57,426 DEBUG: 		Start:	 Iteration 447
+2016-08-24 14:17:57,450 DEBUG: 			View 0 : 0.469194312796
+2016-08-24 14:17:57,461 DEBUG: 			View 1 : 0.601895734597
+2016-08-24 14:17:57,600 DEBUG: 			View 2 : 0.597156398104
+2016-08-24 14:17:57,611 DEBUG: 			View 3 : 0.568720379147
+2016-08-24 14:17:59,029 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 14:18:35,354 DEBUG: 		Start:	 Iteration 448
+2016-08-24 14:18:35,375 DEBUG: 			View 0 : 0.630331753555
+2016-08-24 14:18:35,385 DEBUG: 			View 1 : 0.507109004739
+2016-08-24 14:18:35,505 DEBUG: 			View 2 : 0.616113744076
+2016-08-24 14:18:35,514 DEBUG: 			View 3 : 0.649289099526
+2016-08-24 14:18:36,846 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:19:13,619 DEBUG: 		Start:	 Iteration 449
+2016-08-24 14:19:13,641 DEBUG: 			View 0 : 0.616113744076
+2016-08-24 14:19:13,651 DEBUG: 			View 1 : 0.554502369668
+2016-08-24 14:19:13,792 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 14:19:13,801 DEBUG: 			View 3 : 0.521327014218
+2016-08-24 14:19:15,250 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 14:19:52,835 DEBUG: 		Start:	 Iteration 450
+2016-08-24 14:19:52,856 DEBUG: 			View 0 : 0.454976303318
+2016-08-24 14:19:52,865 DEBUG: 			View 1 : 0.649289099526
+2016-08-24 14:19:53,007 DEBUG: 			View 2 : 0.57345971564
+2016-08-24 14:19:53,042 DEBUG: 			View 3 : 0.554502369668
+2016-08-24 14:19:54,465 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 14:20:31,239 DEBUG: 		Start:	 Iteration 451
+2016-08-24 14:20:31,261 DEBUG: 			View 0 : 0.559241706161
+2016-08-24 14:20:31,271 DEBUG: 			View 1 : 0.473933649289
+2016-08-24 14:20:31,395 DEBUG: 			View 2 : 0.535545023697
+2016-08-24 14:20:31,407 DEBUG: 			View 3 : 0.658767772512
+2016-08-24 14:20:32,738 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:21:09,265 DEBUG: 		Start:	 Iteration 452
+2016-08-24 14:21:09,286 DEBUG: 			View 0 : 0.601895734597
+2016-08-24 14:21:09,296 DEBUG: 			View 1 : 0.582938388626
+2016-08-24 14:21:09,420 DEBUG: 			View 2 : 0.57345971564
+2016-08-24 14:21:09,432 DEBUG: 			View 3 : 0.644549763033
+2016-08-24 14:21:10,870 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:21:47,810 DEBUG: 		Start:	 Iteration 453
+2016-08-24 14:21:47,835 DEBUG: 			View 0 : 0.473933649289
+2016-08-24 14:21:47,852 DEBUG: 			View 1 : 0.578199052133
+2016-08-24 14:21:48,046 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 14:21:48,058 DEBUG: 			View 3 : 0.57345971564
+2016-08-24 14:21:49,470 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:22:26,194 DEBUG: 		Start:	 Iteration 454
+2016-08-24 14:22:26,214 DEBUG: 			View 0 : 0.492890995261
+2016-08-24 14:22:26,224 DEBUG: 			View 1 : 0.516587677725
+2016-08-24 14:22:26,352 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 14:22:26,363 DEBUG: 			View 3 : 0.535545023697
+2016-08-24 14:22:27,705 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 14:23:05,443 DEBUG: 		Start:	 Iteration 455
+2016-08-24 14:23:05,468 DEBUG: 			View 0 : 0.445497630332
+2016-08-24 14:23:05,479 DEBUG: 			View 1 : 0.597156398104
+2016-08-24 14:23:05,630 DEBUG: 			View 2 : 0.611374407583
+2016-08-24 14:23:05,642 DEBUG: 			View 3 : 0.601895734597
+2016-08-24 14:23:06,986 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 14:23:44,594 DEBUG: 		Start:	 Iteration 456
+2016-08-24 14:23:44,616 DEBUG: 			View 0 : 0.578199052133
+2016-08-24 14:23:44,626 DEBUG: 			View 1 : 0.57345971564
+2016-08-24 14:23:44,757 DEBUG: 			View 2 : 0.620853080569
+2016-08-24 14:23:44,768 DEBUG: 			View 3 : 0.559241706161
+2016-08-24 14:23:46,145 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 14:24:23,164 DEBUG: 		Start:	 Iteration 457
+2016-08-24 14:24:23,185 DEBUG: 			View 0 : 0.554502369668
+2016-08-24 14:24:23,194 DEBUG: 			View 1 : 0.682464454976
+2016-08-24 14:24:23,314 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 14:24:23,325 DEBUG: 			View 3 : 0.507109004739
+2016-08-24 14:24:24,700 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 14:25:02,897 DEBUG: 		Start:	 Iteration 458
+2016-08-24 14:25:02,918 DEBUG: 			View 0 : 0.440758293839
+2016-08-24 14:25:02,928 DEBUG: 			View 1 : 0.483412322275
+2016-08-24 14:25:03,068 DEBUG: 			View 2 : 0.563981042654
+2016-08-24 14:25:03,077 DEBUG: 			View 3 : 0.587677725118
+2016-08-24 14:25:04,547 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:25:42,116 DEBUG: 		Start:	 Iteration 459
+2016-08-24 14:25:42,137 DEBUG: 			View 0 : 0.644549763033
+2016-08-24 14:25:42,147 DEBUG: 			View 1 : 0.54028436019
+2016-08-24 14:25:42,279 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 14:25:42,289 DEBUG: 			View 3 : 0.535545023697
+2016-08-24 14:25:43,672 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 14:26:20,762 DEBUG: 		Start:	 Iteration 460
+2016-08-24 14:26:20,783 DEBUG: 			View 0 : 0.60663507109
+2016-08-24 14:26:20,793 DEBUG: 			View 1 : 0.668246445498
+2016-08-24 14:26:20,907 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 14:26:20,916 DEBUG: 			View 3 : 0.587677725118
+2016-08-24 14:26:22,282 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 14:26:59,239 DEBUG: 		Start:	 Iteration 461
+2016-08-24 14:26:59,260 DEBUG: 			View 0 : 0.611374407583
+2016-08-24 14:26:59,269 DEBUG: 			View 1 : 0.469194312796
+2016-08-24 14:26:59,405 DEBUG: 			View 2 : 0.516587677725
+2016-08-24 14:26:59,415 DEBUG: 			View 3 : 0.516587677725
+2016-08-24 14:27:00,776 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 14:27:38,287 DEBUG: 		Start:	 Iteration 462
+2016-08-24 14:27:38,308 DEBUG: 			View 0 : 0.559241706161
+2016-08-24 14:27:38,317 DEBUG: 			View 1 : 0.587677725118
+2016-08-24 14:27:38,464 DEBUG: 			View 2 : 0.582938388626
+2016-08-24 14:27:38,474 DEBUG: 			View 3 : 0.60663507109
+2016-08-24 14:27:39,847 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:28:18,037 DEBUG: 		Start:	 Iteration 463
+2016-08-24 14:28:18,062 DEBUG: 			View 0 : 0.436018957346
+2016-08-24 14:28:18,072 DEBUG: 			View 1 : 0.630331753555
+2016-08-24 14:28:18,228 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 14:28:18,237 DEBUG: 			View 3 : 0.611374407583
+2016-08-24 14:28:19,596 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:28:56,597 DEBUG: 		Start:	 Iteration 464
+2016-08-24 14:28:56,619 DEBUG: 			View 0 : 0.57345971564
+2016-08-24 14:28:56,628 DEBUG: 			View 1 : 0.677725118483
+2016-08-24 14:28:56,758 DEBUG: 			View 2 : 0.511848341232
+2016-08-24 14:28:56,767 DEBUG: 			View 3 : 0.682464454976
+2016-08-24 14:28:58,130 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:29:35,413 DEBUG: 		Start:	 Iteration 465
+2016-08-24 14:29:35,434 DEBUG: 			View 0 : 0.663507109005
+2016-08-24 14:29:35,444 DEBUG: 			View 1 : 0.597156398104
+2016-08-24 14:29:35,556 DEBUG: 			View 2 : 0.535545023697
+2016-08-24 14:29:35,566 DEBUG: 			View 3 : 0.582938388626
+2016-08-24 14:29:36,961 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 14:30:14,881 DEBUG: 		Start:	 Iteration 466
+2016-08-24 14:30:14,902 DEBUG: 			View 0 : 0.620853080569
+2016-08-24 14:30:14,912 DEBUG: 			View 1 : 0.597156398104
+2016-08-24 14:30:15,025 DEBUG: 			View 2 : 0.54028436019
+2016-08-24 14:30:15,035 DEBUG: 			View 3 : 0.706161137441
+2016-08-24 14:30:16,512 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:30:55,095 DEBUG: 		Start:	 Iteration 467
+2016-08-24 14:30:55,116 DEBUG: 			View 0 : 0.407582938389
+2016-08-24 14:30:55,126 DEBUG: 			View 1 : 0.587677725118
+2016-08-24 14:30:55,250 DEBUG: 			View 2 : 0.611374407583
+2016-08-24 14:30:55,259 DEBUG: 			View 3 : 0.554502369668
+2016-08-24 14:30:56,684 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 14:31:34,469 DEBUG: 		Start:	 Iteration 468
+2016-08-24 14:31:34,489 DEBUG: 			View 0 : 0.668246445498
+2016-08-24 14:31:34,498 DEBUG: 			View 1 : 0.668246445498
+2016-08-24 14:31:34,620 DEBUG: 			View 2 : 0.483412322275
+2016-08-24 14:31:34,629 DEBUG: 			View 3 : 0.654028436019
+2016-08-24 14:31:36,027 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 14:32:14,205 DEBUG: 		Start:	 Iteration 469
+2016-08-24 14:32:14,226 DEBUG: 			View 0 : 0.535545023697
+2016-08-24 14:32:14,235 DEBUG: 			View 1 : 0.739336492891
+2016-08-24 14:32:14,353 DEBUG: 			View 2 : 0.649289099526
+2016-08-24 14:32:14,362 DEBUG: 			View 3 : 0.601895734597
+2016-08-24 14:32:15,787 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 14:32:54,091 DEBUG: 		Start:	 Iteration 470
+2016-08-24 14:32:54,114 DEBUG: 			View 0 : 0.60663507109
+2016-08-24 14:32:54,124 DEBUG: 			View 1 : 0.502369668246
+2016-08-24 14:32:54,243 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 14:32:54,253 DEBUG: 			View 3 : 0.568720379147
+2016-08-24 14:32:55,737 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 14:33:34,003 DEBUG: 		Start:	 Iteration 471
+2016-08-24 14:33:34,024 DEBUG: 			View 0 : 0.559241706161
+2016-08-24 14:33:34,033 DEBUG: 			View 1 : 0.720379146919
+2016-08-24 14:33:34,146 DEBUG: 			View 2 : 0.549763033175
+2016-08-24 14:33:34,156 DEBUG: 			View 3 : 0.654028436019
+2016-08-24 14:33:35,545 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 14:34:13,876 DEBUG: 		Start:	 Iteration 472
+2016-08-24 14:34:13,897 DEBUG: 			View 0 : 0.611374407583
+2016-08-24 14:34:13,906 DEBUG: 			View 1 : 0.616113744076
+2016-08-24 14:34:14,030 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 14:34:14,040 DEBUG: 			View 3 : 0.658767772512
+2016-08-24 14:34:15,463 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:34:54,173 DEBUG: 		Start:	 Iteration 473
+2016-08-24 14:34:54,194 DEBUG: 			View 0 : 0.611374407583
+2016-08-24 14:34:54,203 DEBUG: 			View 1 : 0.611374407583
+2016-08-24 14:34:54,329 DEBUG: 			View 2 : 0.545023696682
+2016-08-24 14:34:54,339 DEBUG: 			View 3 : 0.554502369668
+2016-08-24 14:34:55,732 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 14:35:34,082 DEBUG: 		Start:	 Iteration 474
+2016-08-24 14:35:34,103 DEBUG: 			View 0 : 0.511848341232
+2016-08-24 14:35:34,112 DEBUG: 			View 1 : 0.75355450237
+2016-08-24 14:35:34,239 DEBUG: 			View 2 : 0.473933649289
+2016-08-24 14:35:34,249 DEBUG: 			View 3 : 0.620853080569
+2016-08-24 14:35:35,798 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 14:36:14,378 DEBUG: 		Start:	 Iteration 475
+2016-08-24 14:36:14,399 DEBUG: 			View 0 : 0.516587677725
+2016-08-24 14:36:14,408 DEBUG: 			View 1 : 0.507109004739
+2016-08-24 14:36:14,537 DEBUG: 			View 2 : 0.611374407583
+2016-08-24 14:36:14,547 DEBUG: 			View 3 : 0.592417061611
+2016-08-24 14:36:16,022 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 14:36:54,417 DEBUG: 		Start:	 Iteration 476
+2016-08-24 14:36:54,438 DEBUG: 			View 0 : 0.668246445498
+2016-08-24 14:36:54,448 DEBUG: 			View 1 : 0.687203791469
+2016-08-24 14:36:54,562 DEBUG: 			View 2 : 0.497630331754
+2016-08-24 14:36:54,572 DEBUG: 			View 3 : 0.578199052133
+2016-08-24 14:36:56,022 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 14:37:33,927 DEBUG: 		Start:	 Iteration 477
+2016-08-24 14:37:33,948 DEBUG: 			View 0 : 0.587677725118
+2016-08-24 14:37:33,957 DEBUG: 			View 1 : 0.374407582938
+2016-08-24 14:37:34,072 DEBUG: 			View 2 : 0.483412322275
+2016-08-24 14:37:34,082 DEBUG: 			View 3 : 0.563981042654
+2016-08-24 14:37:35,484 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:38:13,694 DEBUG: 		Start:	 Iteration 478
+2016-08-24 14:38:13,715 DEBUG: 			View 0 : 0.554502369668
+2016-08-24 14:38:13,725 DEBUG: 			View 1 : 0.554502369668
+2016-08-24 14:38:13,838 DEBUG: 			View 2 : 0.601895734597
+2016-08-24 14:38:13,848 DEBUG: 			View 3 : 0.554502369668
+2016-08-24 14:38:15,290 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 14:38:53,757 DEBUG: 		Start:	 Iteration 479
+2016-08-24 14:38:53,778 DEBUG: 			View 0 : 0.554502369668
+2016-08-24 14:38:53,788 DEBUG: 			View 1 : 0.630331753555
+2016-08-24 14:38:53,912 DEBUG: 			View 2 : 0.516587677725
+2016-08-24 14:38:53,922 DEBUG: 			View 3 : 0.625592417062
+2016-08-24 14:38:55,346 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:39:34,401 DEBUG: 		Start:	 Iteration 480
+2016-08-24 14:39:34,425 DEBUG: 			View 0 : 0.545023696682
+2016-08-24 14:39:34,440 DEBUG: 			View 1 : 0.668246445498
+2016-08-24 14:39:34,579 DEBUG: 			View 2 : 0.582938388626
+2016-08-24 14:39:34,589 DEBUG: 			View 3 : 0.691943127962
+2016-08-24 14:39:36,125 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:40:14,887 DEBUG: 		Start:	 Iteration 481
+2016-08-24 14:40:14,908 DEBUG: 			View 0 : 0.54028436019
+2016-08-24 14:40:14,918 DEBUG: 			View 1 : 0.668246445498
+2016-08-24 14:40:15,053 DEBUG: 			View 2 : 0.507109004739
+2016-08-24 14:40:15,066 DEBUG: 			View 3 : 0.535545023697
+2016-08-24 14:40:16,577 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 14:40:55,468 DEBUG: 		Start:	 Iteration 482
+2016-08-24 14:40:55,489 DEBUG: 			View 0 : 0.488151658768
+2016-08-24 14:40:55,499 DEBUG: 			View 1 : 0.630331753555
+2016-08-24 14:40:55,629 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 14:40:55,640 DEBUG: 			View 3 : 0.592417061611
+2016-08-24 14:40:57,059 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 14:41:35,975 DEBUG: 		Start:	 Iteration 483
+2016-08-24 14:41:35,995 DEBUG: 			View 0 : 0.578199052133
+2016-08-24 14:41:36,005 DEBUG: 			View 1 : 0.601895734597
+2016-08-24 14:41:36,148 DEBUG: 			View 2 : 0.54028436019
+2016-08-24 14:41:36,160 DEBUG: 			View 3 : 0.563981042654
+2016-08-24 14:41:37,599 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:42:16,484 DEBUG: 		Start:	 Iteration 484
+2016-08-24 14:42:16,505 DEBUG: 			View 0 : 0.611374407583
+2016-08-24 14:42:16,515 DEBUG: 			View 1 : 0.535545023697
+2016-08-24 14:42:16,644 DEBUG: 			View 2 : 0.60663507109
+2016-08-24 14:42:16,656 DEBUG: 			View 3 : 0.701421800948
+2016-08-24 14:42:18,100 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:42:57,361 DEBUG: 		Start:	 Iteration 485
+2016-08-24 14:42:57,385 DEBUG: 			View 0 : 0.563981042654
+2016-08-24 14:42:57,394 DEBUG: 			View 1 : 0.398104265403
+2016-08-24 14:42:57,528 DEBUG: 			View 2 : 0.582938388626
+2016-08-24 14:42:57,540 DEBUG: 			View 3 : 0.587677725118
+2016-08-24 14:42:59,092 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:43:38,145 DEBUG: 		Start:	 Iteration 486
+2016-08-24 14:43:38,166 DEBUG: 			View 0 : 0.45971563981
+2016-08-24 14:43:38,176 DEBUG: 			View 1 : 0.582938388626
+2016-08-24 14:43:38,310 DEBUG: 			View 2 : 0.616113744076
+2016-08-24 14:43:38,322 DEBUG: 			View 3 : 0.620853080569
+2016-08-24 14:43:39,765 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:44:19,272 DEBUG: 		Start:	 Iteration 487
+2016-08-24 14:44:19,297 DEBUG: 			View 0 : 0.554502369668
+2016-08-24 14:44:19,308 DEBUG: 			View 1 : 0.668246445498
+2016-08-24 14:44:19,463 DEBUG: 			View 2 : 0.526066350711
+2016-08-24 14:44:19,476 DEBUG: 			View 3 : 0.649289099526
+2016-08-24 14:44:20,936 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:45:00,133 DEBUG: 		Start:	 Iteration 488
+2016-08-24 14:45:00,155 DEBUG: 			View 0 : 0.507109004739
+2016-08-24 14:45:00,164 DEBUG: 			View 1 : 0.635071090047
+2016-08-24 14:45:00,292 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 14:45:00,304 DEBUG: 			View 3 : 0.568720379147
+2016-08-24 14:45:01,790 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 14:45:40,751 DEBUG: 		Start:	 Iteration 489
+2016-08-24 14:45:40,770 DEBUG: 			View 0 : 0.549763033175
+2016-08-24 14:45:40,780 DEBUG: 			View 1 : 0.488151658768
+2016-08-24 14:45:40,918 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 14:45:40,930 DEBUG: 			View 3 : 0.568720379147
+2016-08-24 14:45:42,383 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:46:21,819 DEBUG: 		Start:	 Iteration 490
+2016-08-24 14:46:21,840 DEBUG: 			View 0 : 0.450236966825
+2016-08-24 14:46:21,850 DEBUG: 			View 1 : 0.535545023697
+2016-08-24 14:46:21,980 DEBUG: 			View 2 : 0.611374407583
+2016-08-24 14:46:21,991 DEBUG: 			View 3 : 0.511848341232
+2016-08-24 14:46:23,445 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 14:47:03,443 DEBUG: 		Start:	 Iteration 491
+2016-08-24 14:47:03,465 DEBUG: 			View 0 : 0.492890995261
+2016-08-24 14:47:03,475 DEBUG: 			View 1 : 0.630331753555
+2016-08-24 14:47:03,604 DEBUG: 			View 2 : 0.549763033175
+2016-08-24 14:47:03,616 DEBUG: 			View 3 : 0.582938388626
+2016-08-24 14:47:05,066 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 14:47:44,382 DEBUG: 		Start:	 Iteration 492
+2016-08-24 14:47:44,404 DEBUG: 			View 0 : 0.654028436019
+2016-08-24 14:47:44,413 DEBUG: 			View 1 : 0.478672985782
+2016-08-24 14:47:44,543 DEBUG: 			View 2 : 0.57345971564
+2016-08-24 14:47:44,555 DEBUG: 			View 3 : 0.568720379147
+2016-08-24 14:47:46,025 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 14:48:26,539 DEBUG: 		Start:	 Iteration 493
+2016-08-24 14:48:26,562 DEBUG: 			View 0 : 0.421800947867
+2016-08-24 14:48:26,571 DEBUG: 			View 1 : 0.677725118483
+2016-08-24 14:48:26,712 DEBUG: 			View 2 : 0.516587677725
+2016-08-24 14:48:26,725 DEBUG: 			View 3 : 0.625592417062
+2016-08-24 14:48:28,443 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 14:49:08,581 DEBUG: 		Start:	 Iteration 494
+2016-08-24 14:49:08,602 DEBUG: 			View 0 : 0.502369668246
+2016-08-24 14:49:08,612 DEBUG: 			View 1 : 0.502369668246
+2016-08-24 14:49:08,767 DEBUG: 			View 2 : 0.587677725118
+2016-08-24 14:49:08,776 DEBUG: 			View 3 : 0.554502369668
+2016-08-24 14:49:10,262 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 14:49:49,722 DEBUG: 		Start:	 Iteration 495
+2016-08-24 14:49:49,742 DEBUG: 			View 0 : 0.497630331754
+2016-08-24 14:49:49,752 DEBUG: 			View 1 : 0.488151658768
+2016-08-24 14:49:49,869 DEBUG: 			View 2 : 0.563981042654
+2016-08-24 14:49:49,878 DEBUG: 			View 3 : 0.60663507109
+2016-08-24 14:49:51,372 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:50:31,344 DEBUG: 		Start:	 Iteration 496
+2016-08-24 14:50:31,368 DEBUG: 			View 0 : 0.464454976303
+2016-08-24 14:50:31,379 DEBUG: 			View 1 : 0.563981042654
+2016-08-24 14:50:31,540 DEBUG: 			View 2 : 0.535545023697
+2016-08-24 14:50:31,551 DEBUG: 			View 3 : 0.677725118483
+2016-08-24 14:50:33,064 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:51:12,832 DEBUG: 		Start:	 Iteration 497
+2016-08-24 14:51:12,853 DEBUG: 			View 0 : 0.436018957346
+2016-08-24 14:51:12,862 DEBUG: 			View 1 : 0.274881516588
+2016-08-24 14:51:13,000 DEBUG: 			View 2 : 0.492890995261
+2016-08-24 14:51:13,010 DEBUG: 			View 3 : 0.592417061611
+2016-08-24 14:51:14,493 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:51:54,078 DEBUG: 		Start:	 Iteration 498
+2016-08-24 14:51:54,099 DEBUG: 			View 0 : 0.696682464455
+2016-08-24 14:51:54,109 DEBUG: 			View 1 : 0.649289099526
+2016-08-24 14:51:54,236 DEBUG: 			View 2 : 0.545023696682
+2016-08-24 14:51:54,247 DEBUG: 			View 3 : 0.511848341232
+2016-08-24 14:51:55,773 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 14:52:35,842 DEBUG: 		Start:	 Iteration 499
+2016-08-24 14:52:35,863 DEBUG: 			View 0 : 0.620853080569
+2016-08-24 14:52:35,873 DEBUG: 			View 1 : 0.587677725118
+2016-08-24 14:52:35,995 DEBUG: 			View 2 : 0.63981042654
+2016-08-24 14:52:36,005 DEBUG: 			View 3 : 0.677725118483
+2016-08-24 14:52:37,485 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:53:17,616 DEBUG: 		Start:	 Iteration 500
+2016-08-24 14:53:17,637 DEBUG: 			View 0 : 0.563981042654
+2016-08-24 14:53:17,648 DEBUG: 			View 1 : 0.554502369668
+2016-08-24 14:53:17,772 DEBUG: 			View 2 : 0.563981042654
+2016-08-24 14:53:17,782 DEBUG: 			View 3 : 0.63981042654
+2016-08-24 14:53:19,276 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:53:59,709 DEBUG: 		Start:	 Iteration 501
+2016-08-24 14:53:59,730 DEBUG: 			View 0 : 0.549763033175
+2016-08-24 14:53:59,740 DEBUG: 			View 1 : 0.682464454976
+2016-08-24 14:53:59,869 DEBUG: 			View 2 : 0.611374407583
+2016-08-24 14:53:59,879 DEBUG: 			View 3 : 0.502369668246
+2016-08-24 14:54:01,355 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 14:54:42,269 DEBUG: 6.43108861106e-05 proche de zero ?
+2016-08-24 14:54:42,269 DEBUG: 		Start:	 Iteration 502
+2016-08-24 14:54:42,293 DEBUG: 			View 0 : 0.350710900474
+2016-08-24 14:54:42,304 DEBUG: 			View 1 : 0.488151658768
+2016-08-24 14:54:42,455 DEBUG: 			View 2 : 0.582938388626
+2016-08-24 14:54:42,466 DEBUG: 			View 3 : 0.578199052133
+2016-08-24 14:54:43,961 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:55:24,658 DEBUG: 6.42019701749e-05 proche de zero ?
+2016-08-24 14:55:24,658 DEBUG: 		Start:	 Iteration 503
+2016-08-24 14:55:24,684 DEBUG: 			View 0 : 0.521327014218
+2016-08-24 14:55:24,695 DEBUG: 			View 1 : 0.559241706161
+2016-08-24 14:55:24,844 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 14:55:24,855 DEBUG: 			View 3 : 0.545023696682
+2016-08-24 14:55:26,433 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 14:56:07,371 DEBUG: 6.40932219808e-05 proche de zero ?
+2016-08-24 14:56:07,372 DEBUG: 		Start:	 Iteration 504
+2016-08-24 14:56:07,396 DEBUG: 			View 0 : 0.582938388626
+2016-08-24 14:56:07,410 DEBUG: 			View 1 : 0.516587677725
+2016-08-24 14:56:07,564 DEBUG: 			View 2 : 0.464454976303
+2016-08-24 14:56:07,576 DEBUG: 			View 3 : 0.545023696682
+2016-08-24 14:56:09,062 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:56:49,356 DEBUG: 6.39846425015e-05 proche de zero ?
+2016-08-24 14:56:49,357 DEBUG: 		Start:	 Iteration 505
+2016-08-24 14:56:49,386 DEBUG: 			View 0 : 0.469194312796
+2016-08-24 14:56:49,398 DEBUG: 			View 1 : 0.57345971564
+2016-08-24 14:56:49,520 DEBUG: 			View 2 : 0.511848341232
+2016-08-24 14:56:49,533 DEBUG: 			View 3 : 0.63981042654
+2016-08-24 14:56:51,030 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:57:31,246 DEBUG: 6.38762326861e-05 proche de zero ?
+2016-08-24 14:57:31,246 DEBUG: 		Start:	 Iteration 506
+2016-08-24 14:57:31,276 DEBUG: 			View 0 : 0.445497630332
+2016-08-24 14:57:31,294 DEBUG: 			View 1 : 0.63981042654
+2016-08-24 14:57:31,445 DEBUG: 			View 2 : 0.625592417062
+2016-08-24 14:57:31,457 DEBUG: 			View 3 : 0.592417061611
+2016-08-24 14:57:32,969 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 14:58:13,419 DEBUG: 6.37679934601e-05 proche de zero ?
+2016-08-24 14:58:13,420 DEBUG: 		Start:	 Iteration 507
+2016-08-24 14:58:13,444 DEBUG: 			View 0 : 0.388625592417
+2016-08-24 14:58:13,455 DEBUG: 			View 1 : 0.677725118483
+2016-08-24 14:58:13,595 DEBUG: 			View 2 : 0.521327014218
+2016-08-24 14:58:13,608 DEBUG: 			View 3 : 0.563981042654
+2016-08-24 14:58:15,125 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 14:58:56,247 DEBUG: 6.36473362773e-05 proche de zero ?
+2016-08-24 14:58:56,247 DEBUG: 		Start:	 Iteration 508
+2016-08-24 14:58:56,278 DEBUG: 			View 0 : 0.611374407583
+2016-08-24 14:58:56,287 DEBUG: 			View 1 : 0.497630331754
+2016-08-24 14:58:56,432 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 14:58:56,444 DEBUG: 			View 3 : 0.635071090047
+2016-08-24 14:58:57,984 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:59:39,248 DEBUG: 6.35269610662e-05 proche de zero ?
+2016-08-24 14:59:39,249 DEBUG: 		Start:	 Iteration 509
+2016-08-24 14:59:39,273 DEBUG: 			View 0 : 0.454976303318
+2016-08-24 14:59:39,285 DEBUG: 			View 1 : 0.654028436019
+2016-08-24 14:59:39,428 DEBUG: 			View 2 : 0.587677725118
+2016-08-24 14:59:39,439 DEBUG: 			View 3 : 0.691943127962
+2016-08-24 14:59:40,975 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 15:00:21,819 DEBUG: 6.34193719181e-05 proche de zero ?
+2016-08-24 15:00:21,820 DEBUG: 		Start:	 Iteration 510
+2016-08-24 15:00:21,845 DEBUG: 			View 0 : 0.587677725118
+2016-08-24 15:00:21,856 DEBUG: 			View 1 : 0.663507109005
+2016-08-24 15:00:21,994 DEBUG: 			View 2 : 0.582938388626
+2016-08-24 15:00:22,011 DEBUG: 			View 3 : 0.601895734597
+2016-08-24 15:00:23,521 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 15:01:04,544 DEBUG: 6.33119559779e-05 proche de zero ?
+2016-08-24 15:01:04,544 DEBUG: 		Start:	 Iteration 511
+2016-08-24 15:01:04,569 DEBUG: 			View 0 : 0.341232227488
+2016-08-24 15:01:04,579 DEBUG: 			View 1 : 0.421800947867
+2016-08-24 15:01:04,714 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 15:01:04,727 DEBUG: 			View 3 : 0.57345971564
+2016-08-24 15:01:06,266 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 15:01:47,018 DEBUG: 6.32047140654e-05 proche de zero ?
+2016-08-24 15:01:47,018 DEBUG: 		Start:	 Iteration 512
+2016-08-24 15:01:47,042 DEBUG: 			View 0 : 0.526066350711
+2016-08-24 15:01:47,053 DEBUG: 			View 1 : 0.364928909953
+2016-08-24 15:01:47,210 DEBUG: 			View 2 : 0.511848341232
+2016-08-24 15:01:47,220 DEBUG: 			View 3 : 0.630331753555
+2016-08-24 15:01:48,727 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 15:02:29,648 DEBUG: 6.30976469783e-05 proche de zero ?
+2016-08-24 15:02:29,648 DEBUG: 		Start:	 Iteration 513
+2016-08-24 15:02:29,673 DEBUG: 			View 0 : 0.601895734597
+2016-08-24 15:02:29,685 DEBUG: 			View 1 : 0.473933649289
+2016-08-24 15:02:29,850 DEBUG: 			View 2 : 0.625592417062
+2016-08-24 15:02:29,859 DEBUG: 			View 3 : 0.710900473934
+2016-08-24 15:02:31,405 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 15:03:12,445 DEBUG: 6.29907554935e-05 proche de zero ?
+2016-08-24 15:03:12,445 DEBUG: 		Start:	 Iteration 514
+2016-08-24 15:03:12,470 DEBUG: 			View 0 : 0.60663507109
+2016-08-24 15:03:12,481 DEBUG: 			View 1 : 0.677725118483
+2016-08-24 15:03:12,621 DEBUG: 			View 2 : 0.60663507109
+2016-08-24 15:03:12,637 DEBUG: 			View 3 : 0.559241706161
+2016-08-24 15:03:14,153 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 15:03:55,418 DEBUG: 6.28840403669e-05 proche de zero ?
+2016-08-24 15:03:55,418 DEBUG: 		Start:	 Iteration 515
+2016-08-24 15:03:55,452 DEBUG: 			View 0 : 0.672985781991
+2016-08-24 15:03:55,469 DEBUG: 			View 1 : 0.729857819905
+2016-08-24 15:03:55,590 DEBUG: 			View 2 : 0.526066350711
+2016-08-24 15:03:55,599 DEBUG: 			View 3 : 0.616113744076
+2016-08-24 15:03:57,134 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 15:04:38,371 DEBUG: 6.27775023341e-05 proche de zero ?
+2016-08-24 15:04:38,371 DEBUG: 		Start:	 Iteration 516
+2016-08-24 15:04:38,405 DEBUG: 			View 0 : 0.616113744076
+2016-08-24 15:04:38,421 DEBUG: 			View 1 : 0.625592417062
+2016-08-24 15:04:38,562 DEBUG: 			View 2 : 0.488151658768
+2016-08-24 15:04:38,571 DEBUG: 			View 3 : 0.554502369668
+2016-08-24 15:04:40,107 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 15:05:21,425 DEBUG: 6.26711421105e-05 proche de zero ?
+2016-08-24 15:05:21,426 DEBUG: 		Start:	 Iteration 517
+2016-08-24 15:05:21,451 DEBUG: 			View 0 : 0.582938388626
+2016-08-24 15:05:21,462 DEBUG: 			View 1 : 0.559241706161
+2016-08-24 15:05:21,590 DEBUG: 			View 2 : 0.582938388626
+2016-08-24 15:05:21,599 DEBUG: 			View 3 : 0.54028436019
+2016-08-24 15:05:23,158 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 15:06:04,833 DEBUG: 6.25649603915e-05 proche de zero ?
+2016-08-24 15:06:04,833 DEBUG: 		Start:	 Iteration 518
+2016-08-24 15:06:04,858 DEBUG: 			View 0 : 0.616113744076
+2016-08-24 15:06:04,869 DEBUG: 			View 1 : 0.473933649289
+2016-08-24 15:06:05,004 DEBUG: 			View 2 : 0.57345971564
+2016-08-24 15:06:05,014 DEBUG: 			View 3 : 0.578199052133
+2016-08-24 15:06:06,594 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 15:06:48,955 DEBUG: 6.24589578535e-05 proche de zero ?
+2016-08-24 15:06:48,956 DEBUG: 		Start:	 Iteration 519
+2016-08-24 15:06:48,980 DEBUG: 			View 0 : 0.635071090047
+2016-08-24 15:06:48,991 DEBUG: 			View 1 : 0.57345971564
+2016-08-24 15:06:49,152 DEBUG: 			View 2 : 0.469194312796
+2016-08-24 15:06:49,163 DEBUG: 			View 3 : 0.710900473934
+2016-08-24 15:06:50,826 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 15:07:33,656 DEBUG: 6.23531351532e-05 proche de zero ?
+2016-08-24 15:07:33,656 DEBUG: 		Start:	 Iteration 520
+2016-08-24 15:07:33,680 DEBUG: 			View 0 : 0.554502369668
+2016-08-24 15:07:33,691 DEBUG: 			View 1 : 0.800947867299
+2016-08-24 15:07:33,850 DEBUG: 			View 2 : 0.592417061611
+2016-08-24 15:07:33,859 DEBUG: 			View 3 : 0.649289099526
+2016-08-24 15:07:35,393 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 15:08:17,754 DEBUG: 6.22474929289e-05 proche de zero ?
+2016-08-24 15:08:17,755 DEBUG: 		Start:	 Iteration 521
+2016-08-24 15:08:17,779 DEBUG: 			View 0 : 0.625592417062
+2016-08-24 15:08:17,790 DEBUG: 			View 1 : 0.654028436019
+2016-08-24 15:08:17,926 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 15:08:17,935 DEBUG: 			View 3 : 0.597156398104
+2016-08-24 15:08:19,472 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 15:09:00,815 DEBUG: 6.21420318002e-05 proche de zero ?
+2016-08-24 15:09:00,815 DEBUG: 		Start:	 Iteration 522
+2016-08-24 15:09:00,840 DEBUG: 			View 0 : 0.578199052133
+2016-08-24 15:09:00,852 DEBUG: 			View 1 : 0.644549763033
+2016-08-24 15:09:00,991 DEBUG: 			View 2 : 0.60663507109
+2016-08-24 15:09:01,000 DEBUG: 			View 3 : 0.488151658768
+2016-08-24 15:09:02,525 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 15:09:44,500 DEBUG: 6.20367523684e-05 proche de zero ?
+2016-08-24 15:09:44,501 DEBUG: 		Start:	 Iteration 523
+2016-08-24 15:09:44,525 DEBUG: 			View 0 : 0.492890995261
+2016-08-24 15:09:44,535 DEBUG: 			View 1 : 0.720379146919
+2016-08-24 15:09:44,661 DEBUG: 			View 2 : 0.587677725118
+2016-08-24 15:09:44,670 DEBUG: 			View 3 : 0.630331753555
+2016-08-24 15:09:46,207 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 15:10:29,196 DEBUG: 6.19197235513e-05 proche de zero ?
+2016-08-24 15:10:29,196 DEBUG: 		Start:	 Iteration 524
+2016-08-24 15:10:29,412 DEBUG: 			View 0 : 0.601895734597
+2016-08-24 15:10:29,438 DEBUG: 			View 1 : 0.469194312796
+2016-08-24 15:10:29,851 DEBUG: 			View 2 : 0.597156398104
+2016-08-24 15:10:29,862 DEBUG: 			View 3 : 0.549763033175
+2016-08-24 15:10:31,523 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 15:11:15,637 DEBUG: 6.18148708249e-05 proche de zero ?
+2016-08-24 15:11:15,637 DEBUG: 		Start:	 Iteration 525
+2016-08-24 15:11:15,662 DEBUG: 			View 0 : 0.663507109005
+2016-08-24 15:11:15,674 DEBUG: 			View 1 : 0.677725118483
+2016-08-24 15:11:15,811 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 15:11:15,821 DEBUG: 			View 3 : 0.582938388626
+2016-08-24 15:11:17,608 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 15:12:01,649 DEBUG: 6.17102011088e-05 proche de zero ?
+2016-08-24 15:12:01,650 DEBUG: 		Start:	 Iteration 526
+2016-08-24 15:12:01,674 DEBUG: 			View 0 : 0.284360189573
+2016-08-24 15:12:01,685 DEBUG: 			View 1 : 0.587677725118
+2016-08-24 15:12:01,813 DEBUG: 			View 2 : 0.545023696682
+2016-08-24 15:12:01,822 DEBUG: 			View 3 : 0.57345971564
+2016-08-24 15:12:03,531 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 15:12:47,530 DEBUG: 6.16057149375e-05 proche de zero ?
+2016-08-24 15:12:47,531 DEBUG: 		Start:	 Iteration 527
+2016-08-24 15:12:47,568 DEBUG: 			View 0 : 0.687203791469
+2016-08-24 15:12:47,585 DEBUG: 			View 1 : 0.578199052133
+2016-08-24 15:12:47,742 DEBUG: 			View 2 : 0.658767772512
+2016-08-24 15:12:47,753 DEBUG: 			View 3 : 0.630331753555
+2016-08-24 15:12:49,328 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 15:13:31,667 DEBUG: 6.15014128287e-05 proche de zero ?
+2016-08-24 15:13:31,668 DEBUG: 		Start:	 Iteration 528
+2016-08-24 15:13:31,692 DEBUG: 			View 0 : 0.507109004739
+2016-08-24 15:13:31,703 DEBUG: 			View 1 : 0.559241706161
+2016-08-24 15:13:31,836 DEBUG: 			View 2 : 0.526066350711
+2016-08-24 15:13:31,845 DEBUG: 			View 3 : 0.469194312796
+2016-08-24 15:13:33,405 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 15:14:16,032 DEBUG: 6.13972952838e-05 proche de zero ?
+2016-08-24 15:14:16,032 DEBUG: 		Start:	 Iteration 529
+2016-08-24 15:14:16,055 DEBUG: 			View 0 : 0.436018957346
+2016-08-24 15:14:16,064 DEBUG: 			View 1 : 0.654028436019
+2016-08-24 15:14:16,191 DEBUG: 			View 2 : 0.635071090047
+2016-08-24 15:14:16,200 DEBUG: 			View 3 : 0.57345971564
+2016-08-24 15:14:18,060 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 15:15:02,190 DEBUG: 6.12933627878e-05 proche de zero ?
+2016-08-24 15:15:02,190 DEBUG: 		Start:	 Iteration 530
+2016-08-24 15:15:02,219 DEBUG: 			View 0 : 0.635071090047
+2016-08-24 15:15:02,236 DEBUG: 			View 1 : 0.649289099526
+2016-08-24 15:15:02,391 DEBUG: 			View 2 : 0.587677725118
+2016-08-24 15:15:02,408 DEBUG: 			View 3 : 0.530805687204
+2016-08-24 15:15:04,103 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 15:15:47,898 DEBUG: 6.11896158096e-05 proche de zero ?
+2016-08-24 15:15:47,899 DEBUG: 		Start:	 Iteration 531
+2016-08-24 15:15:47,937 DEBUG: 			View 0 : 0.469194312796
+2016-08-24 15:15:47,957 DEBUG: 			View 1 : 0.45971563981
+2016-08-24 15:15:48,105 DEBUG: 			View 2 : 0.549763033175
+2016-08-24 15:15:48,116 DEBUG: 			View 3 : 0.597156398104
+2016-08-24 15:15:49,811 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 15:16:34,198 DEBUG: 6.10860548028e-05 proche de zero ?
+2016-08-24 15:16:34,198 DEBUG: 		Start:	 Iteration 532
+2016-08-24 15:16:34,225 DEBUG: 			View 0 : 0.54028436019
+2016-08-24 15:16:34,238 DEBUG: 			View 1 : 0.687203791469
+2016-08-24 15:16:34,404 DEBUG: 			View 2 : 0.620853080569
+2016-08-24 15:16:34,415 DEBUG: 			View 3 : 0.649289099526
+2016-08-24 15:16:36,063 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 15:17:20,598 DEBUG: 6.09826802051e-05 proche de zero ?
+2016-08-24 15:17:20,598 DEBUG: 		Start:	 Iteration 533
+2016-08-24 15:17:20,622 DEBUG: 			View 0 : 0.658767772512
+2016-08-24 15:17:20,633 DEBUG: 			View 1 : 0.620853080569
+2016-08-24 15:17:20,763 DEBUG: 			View 2 : 0.568720379147
+2016-08-24 15:17:20,775 DEBUG: 			View 3 : 0.54028436019
+2016-08-24 15:17:22,446 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 15:18:06,572 DEBUG: 6.08794924395e-05 proche de zero ?
+2016-08-24 15:18:06,572 DEBUG: 		Start:	 Iteration 534
+2016-08-24 15:18:06,596 DEBUG: 			View 0 : 0.601895734597
+2016-08-24 15:18:06,605 DEBUG: 			View 1 : 0.625592417062
+2016-08-24 15:18:06,755 DEBUG: 			View 2 : 0.492890995261
+2016-08-24 15:18:06,767 DEBUG: 			View 3 : 0.701421800948
+2016-08-24 15:18:08,389 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 15:18:54,278 DEBUG: 6.07764919137e-05 proche de zero ?
+2016-08-24 15:18:54,279 DEBUG: 		Start:	 Iteration 535
+2016-08-24 15:18:54,640 DEBUG: 			View 0 : 0.549763033175
+2016-08-24 15:18:54,662 DEBUG: 			View 1 : 0.421800947867
+2016-08-24 15:18:56,081 DEBUG: 			View 2 : 0.587677725118
+2016-08-24 15:18:56,104 DEBUG: 			View 3 : 0.630331753555
+2016-08-24 15:18:57,810 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 15:19:42,131 DEBUG: 6.0673679021e-05 proche de zero ?
+2016-08-24 15:19:42,131 DEBUG: 		Start:	 Iteration 536
+2016-08-24 15:19:42,156 DEBUG: 			View 0 : 0.578199052133
+2016-08-24 15:19:42,166 DEBUG: 			View 1 : 0.601895734597
+2016-08-24 15:19:42,283 DEBUG: 			View 2 : 0.54028436019
+2016-08-24 15:19:42,292 DEBUG: 			View 3 : 0.578199052133
+2016-08-24 15:19:43,942 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 15:20:27,085 DEBUG: 6.05710541401e-05 proche de zero ?
+2016-08-24 15:20:27,085 DEBUG: 		Start:	 Iteration 537
+2016-08-24 15:20:27,107 DEBUG: 			View 0 : 0.436018957346
+2016-08-24 15:20:27,117 DEBUG: 			View 1 : 0.473933649289
+2016-08-24 15:20:27,252 DEBUG: 			View 2 : 0.563981042654
+2016-08-24 15:20:27,265 DEBUG: 			View 3 : 0.696682464455
+2016-08-24 15:20:28,953 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 15:21:13,372 DEBUG: 6.04686176355e-05 proche de zero ?
+2016-08-24 15:21:13,372 DEBUG: 		Start:	 Iteration 538
+2016-08-24 15:21:13,397 DEBUG: 			View 0 : 0.587677725118
+2016-08-24 15:21:13,407 DEBUG: 			View 1 : 0.511848341232
+2016-08-24 15:21:13,545 DEBUG: 			View 2 : 0.511848341232
+2016-08-24 15:21:13,556 DEBUG: 			View 3 : 0.563981042654
+2016-08-24 15:21:15,151 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 15:21:59,346 DEBUG: 6.03663698579e-05 proche de zero ?
+2016-08-24 15:21:59,347 DEBUG: 		Start:	 Iteration 539
+2016-08-24 15:22:00,071 DEBUG: 			View 0 : 0.492890995261
+2016-08-24 15:22:00,093 DEBUG: 			View 1 : 0.620853080569
+2016-08-24 15:22:01,161 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 15:22:01,193 DEBUG: 			View 3 : 0.672985781991
+2016-08-24 15:22:03,131 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 15:22:48,366 DEBUG: 6.02643111442e-05 proche de zero ?
+2016-08-24 15:22:48,366 DEBUG: 		Start:	 Iteration 540
+2016-08-24 15:22:48,389 DEBUG: 			View 0 : 0.630331753555
+2016-08-24 15:22:48,399 DEBUG: 			View 1 : 0.691943127962
+2016-08-24 15:22:48,523 DEBUG: 			View 2 : 0.563981042654
+2016-08-24 15:22:48,532 DEBUG: 			View 3 : 0.611374407583
+2016-08-24 15:22:50,133 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 15:23:33,606 DEBUG: 6.01624418179e-05 proche de zero ?
+2016-08-24 15:23:33,607 DEBUG: 		Start:	 Iteration 541
+2016-08-24 15:23:33,630 DEBUG: 			View 0 : 0.592417061611
+2016-08-24 15:23:33,640 DEBUG: 			View 1 : 0.545023696682
+2016-08-24 15:23:33,771 DEBUG: 			View 2 : 0.635071090047
+2016-08-24 15:23:33,781 DEBUG: 			View 3 : 0.597156398104
+2016-08-24 15:23:35,443 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 15:24:18,979 DEBUG: 6.0060762189e-05 proche de zero ?
+2016-08-24 15:24:18,979 DEBUG: 		Start:	 Iteration 542
+2016-08-24 15:24:19,003 DEBUG: 			View 0 : 0.630331753555
+2016-08-24 15:24:19,013 DEBUG: 			View 1 : 0.492890995261
+2016-08-24 15:24:19,135 DEBUG: 			View 2 : 0.592417061611
+2016-08-24 15:24:19,144 DEBUG: 			View 3 : 0.63981042654
+2016-08-24 15:24:20,737 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 15:25:03,911 DEBUG: 5.99592725547e-05 proche de zero ?
+2016-08-24 15:25:03,911 DEBUG: 		Start:	 Iteration 543
+2016-08-24 15:25:03,936 DEBUG: 			View 0 : 0.568720379147
+2016-08-24 15:25:03,946 DEBUG: 			View 1 : 0.601895734597
+2016-08-24 15:25:04,091 DEBUG: 			View 2 : 0.611374407583
+2016-08-24 15:25:04,104 DEBUG: 			View 3 : 0.601895734597
+2016-08-24 15:25:05,694 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 15:25:49,244 DEBUG: 5.98579731994e-05 proche de zero ?
+2016-08-24 15:25:49,245 DEBUG: 		Start:	 Iteration 544
+2016-08-24 15:25:49,269 DEBUG: 			View 0 : 0.654028436019
+2016-08-24 15:25:49,278 DEBUG: 			View 1 : 0.625592417062
+2016-08-24 15:25:49,417 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 15:25:49,430 DEBUG: 			View 3 : 0.60663507109
+2016-08-24 15:25:51,062 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 15:26:34,788 DEBUG: 5.97568643947e-05 proche de zero ?
+2016-08-24 15:26:34,788 DEBUG: 		Start:	 Iteration 545
+2016-08-24 15:26:34,813 DEBUG: 			View 0 : 0.450236966825
+2016-08-24 15:26:34,824 DEBUG: 			View 1 : 0.559241706161
+2016-08-24 15:26:34,971 DEBUG: 			View 2 : 0.483412322275
+2016-08-24 15:26:34,983 DEBUG: 			View 3 : 0.545023696682
+2016-08-24 15:26:36,583 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 15:27:20,428 DEBUG: 5.96559463999e-05 proche de zero ?
+2016-08-24 15:27:20,428 DEBUG: 		Start:	 Iteration 546
+2016-08-24 15:27:20,453 DEBUG: 			View 0 : 0.545023696682
+2016-08-24 15:27:20,464 DEBUG: 			View 1 : 0.488151658768
+2016-08-24 15:27:20,609 DEBUG: 			View 2 : 0.592417061611
+2016-08-24 15:27:20,621 DEBUG: 			View 3 : 0.663507109005
+2016-08-24 15:27:22,232 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 15:28:06,308 DEBUG: 5.95552194623e-05 proche de zero ?
+2016-08-24 15:28:06,309 DEBUG: 		Start:	 Iteration 547
+2016-08-24 15:28:06,335 DEBUG: 			View 0 : 0.488151658768
+2016-08-24 15:28:06,346 DEBUG: 			View 1 : 0.796208530806
+2016-08-24 15:28:06,484 DEBUG: 			View 2 : 0.54028436019
+2016-08-24 15:28:06,496 DEBUG: 			View 3 : 0.582938388626
+2016-08-24 15:28:08,119 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 15:28:52,144 DEBUG: 5.94546838169e-05 proche de zero ?
+2016-08-24 15:28:52,144 DEBUG: 		Start:	 Iteration 548
+2016-08-24 15:28:52,168 DEBUG: 			View 0 : 0.483412322275
+2016-08-24 15:28:52,178 DEBUG: 			View 1 : 0.521327014218
+2016-08-24 15:28:52,310 DEBUG: 			View 2 : 0.530805687204
+2016-08-24 15:28:52,322 DEBUG: 			View 3 : 0.582938388626
+2016-08-24 15:28:53,922 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 15:29:38,112 DEBUG: 5.93543396871e-05 proche de zero ?
+2016-08-24 15:29:38,113 DEBUG: 		Start:	 Iteration 549
+2016-08-24 15:29:38,139 DEBUG: 			View 0 : 0.549763033175
+2016-08-24 15:29:38,152 DEBUG: 			View 1 : 0.649289099526
+2016-08-24 15:29:38,291 DEBUG: 			View 2 : 0.568720379147
+2016-08-24 15:29:38,303 DEBUG: 			View 3 : 0.511848341232
+2016-08-24 15:29:39,936 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 15:30:24,016 DEBUG: 5.92541872847e-05 proche de zero ?
+2016-08-24 15:30:24,016 DEBUG: 		Start:	 Iteration 550
+2016-08-24 15:30:24,039 DEBUG: 			View 0 : 0.57345971564
+2016-08-24 15:30:24,049 DEBUG: 			View 1 : 0.578199052133
+2016-08-24 15:30:24,182 DEBUG: 			View 2 : 0.60663507109
+2016-08-24 15:30:24,193 DEBUG: 			View 3 : 0.578199052133
+2016-08-24 15:30:25,802 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 15:31:09,943 DEBUG: 5.91542268102e-05 proche de zero ?
+2016-08-24 15:31:09,944 DEBUG: 		Start:	 Iteration 551
+2016-08-24 15:31:09,968 DEBUG: 			View 0 : 0.630331753555
+2016-08-24 15:31:09,979 DEBUG: 			View 1 : 0.654028436019
+2016-08-24 15:31:10,127 DEBUG: 			View 2 : 0.649289099526
+2016-08-24 15:31:10,136 DEBUG: 			View 3 : 0.630331753555
+2016-08-24 15:31:11,803 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 15:31:56,974 DEBUG: 5.90544584529e-05 proche de zero ?
+2016-08-24 15:31:56,974 DEBUG: 		Start:	 Iteration 552
+2016-08-24 15:31:56,998 DEBUG: 			View 0 : 0.530805687204
+2016-08-24 15:31:57,009 DEBUG: 			View 1 : 0.616113744076
+2016-08-24 15:31:57,162 DEBUG: 			View 2 : 0.54028436019
+2016-08-24 15:31:57,173 DEBUG: 			View 3 : 0.587677725118
+2016-08-24 15:31:58,845 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 15:32:45,571 DEBUG: 5.89548823909e-05 proche de zero ?
+2016-08-24 15:32:45,571 DEBUG: 		Start:	 Iteration 553
+2016-08-24 15:32:45,595 DEBUG: 			View 0 : 0.554502369668
+2016-08-24 15:32:45,605 DEBUG: 			View 1 : 0.398104265403
+2016-08-24 15:32:45,762 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 15:32:45,772 DEBUG: 			View 3 : 0.478672985782
+2016-08-24 15:32:47,481 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 15:33:33,740 DEBUG: 5.88554987916e-05 proche de zero ?
+2016-08-24 15:33:33,740 DEBUG: 		Start:	 Iteration 554
+2016-08-24 15:33:33,764 DEBUG: 			View 0 : 0.478672985782
+2016-08-24 15:33:33,775 DEBUG: 			View 1 : 0.516587677725
+2016-08-24 15:33:33,902 DEBUG: 			View 2 : 0.545023696682
+2016-08-24 15:33:33,912 DEBUG: 			View 3 : 0.620853080569
+2016-08-24 15:33:35,669 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 15:34:20,273 DEBUG: 5.8756307812e-05 proche de zero ?
+2016-08-24 15:34:20,273 DEBUG: 		Start:	 Iteration 555
+2016-08-24 15:34:20,299 DEBUG: 			View 0 : 0.554502369668
+2016-08-24 15:34:20,310 DEBUG: 			View 1 : 0.597156398104
+2016-08-24 15:34:20,438 DEBUG: 			View 2 : 0.587677725118
+2016-08-24 15:34:20,447 DEBUG: 			View 3 : 0.630331753555
+2016-08-24 15:34:22,103 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 15:35:07,929 DEBUG: 5.86573095984e-05 proche de zero ?
+2016-08-24 15:35:07,930 DEBUG: 		Start:	 Iteration 556
+2016-08-24 15:35:07,955 DEBUG: 			View 0 : 0.592417061611
+2016-08-24 15:35:07,967 DEBUG: 			View 1 : 0.663507109005
+2016-08-24 15:35:08,095 DEBUG: 			View 2 : 0.616113744076
+2016-08-24 15:35:08,104 DEBUG: 			View 3 : 0.549763033175
+2016-08-24 15:35:09,807 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 15:35:58,044 DEBUG: 5.85585042868e-05 proche de zero ?
+2016-08-24 15:35:58,044 DEBUG: 		Start:	 Iteration 557
+2016-08-24 15:35:58,069 DEBUG: 			View 0 : 0.535545023697
+2016-08-24 15:35:58,080 DEBUG: 			View 1 : 0.710900473934
+2016-08-24 15:35:58,243 DEBUG: 			View 2 : 0.597156398104
+2016-08-24 15:35:58,254 DEBUG: 			View 3 : 0.57345971564
+2016-08-24 15:36:00,159 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 15:36:52,201 DEBUG: 5.84598920032e-05 proche de zero ?
+2016-08-24 15:36:52,327 DEBUG: 		Start:	 Iteration 558
+2016-08-24 15:36:54,210 DEBUG: 			View 0 : 0.559241706161
+2016-08-24 15:36:54,232 DEBUG: 			View 1 : 0.350710900474
+2016-08-24 15:36:55,005 DEBUG: 			View 2 : 0.587677725118
+2016-08-24 15:36:56,248 DEBUG: 			View 3 : 0.601895734597
+2016-08-24 15:36:58,070 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 15:37:46,240 DEBUG: 5.83614728638e-05 proche de zero ?
+2016-08-24 15:37:46,240 DEBUG: 		Start:	 Iteration 559
+2016-08-24 15:37:46,265 DEBUG: 			View 0 : 0.388625592417
+2016-08-24 15:37:46,276 DEBUG: 			View 1 : 0.563981042654
+2016-08-24 15:37:46,403 DEBUG: 			View 2 : 0.521327014218
+2016-08-24 15:37:46,412 DEBUG: 			View 3 : 0.568720379147
+2016-08-24 15:37:48,074 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 15:38:34,352 DEBUG: 5.82632469748e-05 proche de zero ?
+2016-08-24 15:38:34,352 DEBUG: 		Start:	 Iteration 560
+2016-08-24 15:38:34,389 DEBUG: 			View 0 : 0.530805687204
+2016-08-24 15:38:34,402 DEBUG: 			View 1 : 0.592417061611
+2016-08-24 15:38:34,530 DEBUG: 			View 2 : 0.483412322275
+2016-08-24 15:38:34,540 DEBUG: 			View 3 : 0.568720379147
+2016-08-24 15:38:36,229 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 15:39:22,206 DEBUG: 5.81652144331e-05 proche de zero ?
+2016-08-24 15:39:22,206 DEBUG: 		Start:	 Iteration 561
+2016-08-24 15:39:22,229 DEBUG: 			View 0 : 0.469194312796
+2016-08-24 15:39:22,239 DEBUG: 			View 1 : 0.706161137441
+2016-08-24 15:39:22,360 DEBUG: 			View 2 : 0.497630331754
+2016-08-24 15:39:22,369 DEBUG: 			View 3 : 0.502369668246
+2016-08-24 15:39:24,075 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 15:40:10,837 DEBUG: 5.80673753259e-05 proche de zero ?
+2016-08-24 15:40:10,837 DEBUG: 		Start:	 Iteration 562
+2016-08-24 15:40:10,859 DEBUG: 			View 0 : 0.492890995261
+2016-08-24 15:40:10,869 DEBUG: 			View 1 : 0.668246445498
+2016-08-24 15:40:10,987 DEBUG: 			View 2 : 0.492890995261
+2016-08-24 15:40:10,997 DEBUG: 			View 3 : 0.516587677725
+2016-08-24 15:40:12,696 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 15:40:59,048 DEBUG: 5.79697297312e-05 proche de zero ?
+2016-08-24 15:40:59,048 DEBUG: 		Start:	 Iteration 563
+2016-08-24 15:40:59,071 DEBUG: 			View 0 : 0.526066350711
+2016-08-24 15:40:59,081 DEBUG: 			View 1 : 0.582938388626
+2016-08-24 15:40:59,203 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 15:40:59,212 DEBUG: 			View 3 : 0.483412322275
+2016-08-24 15:41:00,908 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 15:41:47,728 DEBUG: 5.78722777182e-05 proche de zero ?
+2016-08-24 15:41:47,728 DEBUG: 		Start:	 Iteration 564
+2016-08-24 15:41:47,751 DEBUG: 			View 0 : 0.611374407583
+2016-08-24 15:41:47,760 DEBUG: 			View 1 : 0.75355450237
+2016-08-24 15:41:47,883 DEBUG: 			View 2 : 0.57345971564
+2016-08-24 15:41:47,893 DEBUG: 			View 3 : 0.616113744076
+2016-08-24 15:41:49,554 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 15:42:36,097 DEBUG: 5.77750193467e-05 proche de zero ?
+2016-08-24 15:42:36,097 DEBUG: 		Start:	 Iteration 565
+2016-08-24 15:42:36,119 DEBUG: 			View 0 : 0.635071090047
+2016-08-24 15:42:36,129 DEBUG: 			View 1 : 0.554502369668
+2016-08-24 15:42:36,252 DEBUG: 			View 2 : 0.549763033175
+2016-08-24 15:42:36,262 DEBUG: 			View 3 : 0.492890995261
+2016-08-24 15:42:37,977 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 15:43:24,037 DEBUG: 5.76779546681e-05 proche de zero ?
+2016-08-24 15:43:24,037 DEBUG: 		Start:	 Iteration 566
+2016-08-24 15:43:24,061 DEBUG: 			View 0 : 0.635071090047
+2016-08-24 15:43:24,072 DEBUG: 			View 1 : 0.654028436019
+2016-08-24 15:43:24,198 DEBUG: 			View 2 : 0.592417061611
+2016-08-24 15:43:24,208 DEBUG: 			View 3 : 0.592417061611
+2016-08-24 15:43:25,937 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 15:44:11,585 DEBUG: 5.75810837249e-05 proche de zero ?
+2016-08-24 15:44:11,585 DEBUG: 		Start:	 Iteration 567
+2016-08-24 15:44:11,607 DEBUG: 			View 0 : 0.582938388626
+2016-08-24 15:44:11,617 DEBUG: 			View 1 : 0.578199052133
+2016-08-24 15:44:11,732 DEBUG: 			View 2 : 0.601895734597
+2016-08-24 15:44:11,741 DEBUG: 			View 3 : 0.582938388626
+2016-08-24 15:44:13,424 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 15:45:00,021 DEBUG: 5.74844065512e-05 proche de zero ?
+2016-08-24 15:45:00,022 DEBUG: 		Start:	 Iteration 568
+2016-08-24 15:45:00,044 DEBUG: 			View 0 : 0.440758293839
+2016-08-24 15:45:00,054 DEBUG: 			View 1 : 0.473933649289
+2016-08-24 15:45:00,181 DEBUG: 			View 2 : 0.488151658768
+2016-08-24 15:45:00,191 DEBUG: 			View 3 : 0.578199052133
+2016-08-24 15:45:01,914 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 15:45:48,690 DEBUG: 5.73879231729e-05 proche de zero ?
+2016-08-24 15:45:48,690 DEBUG: 		Start:	 Iteration 569
+2016-08-24 15:45:48,713 DEBUG: 			View 0 : 0.663507109005
+2016-08-24 15:45:48,723 DEBUG: 			View 1 : 0.383886255924
+2016-08-24 15:45:48,840 DEBUG: 			View 2 : 0.592417061611
+2016-08-24 15:45:48,849 DEBUG: 			View 3 : 0.635071090047
+2016-08-24 15:45:50,539 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 15:46:37,307 DEBUG: 5.72916336075e-05 proche de zero ?
+2016-08-24 15:46:37,308 DEBUG: 		Start:	 Iteration 570
+2016-08-24 15:46:37,332 DEBUG: 			View 0 : 0.630331753555
+2016-08-24 15:46:37,347 DEBUG: 			View 1 : 0.630331753555
+2016-08-24 15:46:37,468 DEBUG: 			View 2 : 0.60663507109
+2016-08-24 15:46:37,479 DEBUG: 			View 3 : 0.592417061611
+2016-08-24 15:46:39,281 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 15:47:25,307 DEBUG: 5.71955378646e-05 proche de zero ?
+2016-08-24 15:47:25,308 DEBUG: 		Start:	 Iteration 571
+2016-08-24 15:47:25,331 DEBUG: 			View 0 : 0.763033175355
+2016-08-24 15:47:25,341 DEBUG: 			View 1 : 0.682464454976
+2016-08-24 15:47:25,471 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 15:47:25,481 DEBUG: 			View 3 : 0.563981042654
+2016-08-24 15:47:27,250 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 15:48:14,586 DEBUG: 5.70996359457e-05 proche de zero ?
+2016-08-24 15:48:14,586 DEBUG: 		Start:	 Iteration 572
+2016-08-24 15:48:14,607 DEBUG: 			View 0 : 0.635071090047
+2016-08-24 15:48:14,619 DEBUG: 			View 1 : 0.39336492891
+2016-08-24 15:48:14,737 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 15:48:14,747 DEBUG: 			View 3 : 0.649289099526
+2016-08-24 15:48:16,681 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 15:49:05,561 DEBUG: 5.70039278448e-05 proche de zero ?
+2016-08-24 15:49:05,561 DEBUG: 		Start:	 Iteration 573
+2016-08-24 15:49:05,583 DEBUG: 			View 0 : 0.725118483412
+2016-08-24 15:49:05,593 DEBUG: 			View 1 : 0.516587677725
+2016-08-24 15:49:05,714 DEBUG: 			View 2 : 0.597156398104
+2016-08-24 15:49:05,723 DEBUG: 			View 3 : 0.649289099526
+2016-08-24 15:49:07,444 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 15:49:54,785 DEBUG: 5.69084135481e-05 proche de zero ?
+2016-08-24 15:49:54,785 DEBUG: 		Start:	 Iteration 574
+2016-08-24 15:49:54,807 DEBUG: 			View 0 : 0.521327014218
+2016-08-24 15:49:54,817 DEBUG: 			View 1 : 0.729857819905
+2016-08-24 15:49:54,937 DEBUG: 			View 2 : 0.592417061611
+2016-08-24 15:49:54,946 DEBUG: 			View 3 : 0.668246445498
+2016-08-24 15:49:56,655 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 15:50:45,854 DEBUG: 5.68130930342e-05 proche de zero ?
+2016-08-24 15:50:45,854 DEBUG: 		Start:	 Iteration 575
+2016-08-24 15:50:45,876 DEBUG: 			View 0 : 0.398104265403
+2016-08-24 15:50:45,885 DEBUG: 			View 1 : 0.668246445498
+2016-08-24 15:50:46,010 DEBUG: 			View 2 : 0.57345971564
+2016-08-24 15:50:46,020 DEBUG: 			View 3 : 0.592417061611
+2016-08-24 15:50:47,761 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 15:51:34,498 DEBUG: 5.67280869189e-05 proche de zero ?
+2016-08-24 15:51:34,498 DEBUG: 		Start:	 Iteration 576
+2016-08-24 15:51:34,520 DEBUG: 			View 0 : 0.582938388626
+2016-08-24 15:51:34,531 DEBUG: 			View 1 : 0.616113744076
+2016-08-24 15:51:34,650 DEBUG: 			View 2 : 0.582938388626
+2016-08-24 15:51:34,659 DEBUG: 			View 3 : 0.436018957346
+2016-08-24 15:51:36,373 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 15:52:24,031 DEBUG: 5.6643196095e-05 proche de zero ?
+2016-08-24 15:52:24,031 DEBUG: 		Start:	 Iteration 577
+2016-08-24 15:52:24,053 DEBUG: 			View 0 : 0.473933649289
+2016-08-24 15:52:24,062 DEBUG: 			View 1 : 0.421800947867
+2016-08-24 15:52:24,187 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 15:52:24,196 DEBUG: 			View 3 : 0.611374407583
+2016-08-24 15:52:25,951 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 15:53:13,077 DEBUG: 5.65584211559e-05 proche de zero ?
+2016-08-24 15:53:13,077 DEBUG: 		Start:	 Iteration 578
+2016-08-24 15:53:13,100 DEBUG: 			View 0 : 0.374407582938
+2016-08-24 15:53:13,111 DEBUG: 			View 1 : 0.658767772512
+2016-08-24 15:53:13,256 DEBUG: 			View 2 : 0.511848341232
+2016-08-24 15:53:13,267 DEBUG: 			View 3 : 0.654028436019
+2016-08-24 15:53:15,260 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 15:54:03,129 DEBUG: 5.64637334828e-05 proche de zero ?
+2016-08-24 15:54:03,129 DEBUG: 		Start:	 Iteration 579
+2016-08-24 15:54:03,154 DEBUG: 			View 0 : 0.554502369668
+2016-08-24 15:54:03,164 DEBUG: 			View 1 : 0.554502369668
+2016-08-24 15:54:03,304 DEBUG: 			View 2 : 0.601895734597
+2016-08-24 15:54:03,313 DEBUG: 			View 3 : 0.644549763033
+2016-08-24 15:54:05,055 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 15:54:52,005 DEBUG: 5.63792391847e-05 proche de zero ?
+2016-08-24 15:54:52,005 DEBUG: 		Start:	 Iteration 580
+2016-08-24 15:54:52,027 DEBUG: 			View 0 : 0.563981042654
+2016-08-24 15:54:52,036 DEBUG: 			View 1 : 0.388625592417
+2016-08-24 15:54:52,159 DEBUG: 			View 2 : 0.635071090047
+2016-08-24 15:54:52,168 DEBUG: 			View 3 : 0.568720379147
+2016-08-24 15:54:53,905 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 15:55:42,320 DEBUG: 5.6284893273e-05 proche de zero ?
+2016-08-24 15:55:42,320 DEBUG: 		Start:	 Iteration 581
+2016-08-24 15:55:42,359 DEBUG: 			View 0 : 0.60663507109
+2016-08-24 15:55:42,377 DEBUG: 			View 1 : 0.658767772512
+2016-08-24 15:55:42,540 DEBUG: 			View 2 : 0.563981042654
+2016-08-24 15:55:42,549 DEBUG: 			View 3 : 0.54028436019
+2016-08-24 15:55:44,296 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 15:56:32,161 DEBUG: 5.61907418602e-05 proche de zero ?
+2016-08-24 15:56:32,161 DEBUG: 		Start:	 Iteration 582
+2016-08-24 15:56:32,183 DEBUG: 			View 0 : 0.625592417062
+2016-08-24 15:56:32,193 DEBUG: 			View 1 : 0.483412322275
+2016-08-24 15:56:32,312 DEBUG: 			View 2 : 0.57345971564
+2016-08-24 15:56:32,321 DEBUG: 			View 3 : 0.630331753555
+2016-08-24 15:56:34,074 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 15:57:22,663 DEBUG: 5.60967848622e-05 proche de zero ?
+2016-08-24 15:57:22,663 DEBUG: 		Start:	 Iteration 583
+2016-08-24 15:57:22,698 DEBUG: 			View 0 : 0.625592417062
+2016-08-24 15:57:22,710 DEBUG: 			View 1 : 0.507109004739
+2016-08-24 15:57:22,848 DEBUG: 			View 2 : 0.545023696682
+2016-08-24 15:57:22,859 DEBUG: 			View 3 : 0.597156398104
+2016-08-24 15:57:24,791 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 15:58:13,942 DEBUG: 5.60030221883e-05 proche de zero ?
+2016-08-24 15:58:13,943 DEBUG: 		Start:	 Iteration 584
+2016-08-24 15:58:13,965 DEBUG: 			View 0 : 0.587677725118
+2016-08-24 15:58:13,976 DEBUG: 			View 1 : 0.663507109005
+2016-08-24 15:58:14,103 DEBUG: 			View 2 : 0.601895734597
+2016-08-24 15:58:14,113 DEBUG: 			View 3 : 0.559241706161
+2016-08-24 15:58:15,877 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 15:59:04,748 DEBUG: 5.59094537419e-05 proche de zero ?
+2016-08-24 15:59:04,749 DEBUG: 		Start:	 Iteration 585
+2016-08-24 15:59:04,770 DEBUG: 			View 0 : 0.601895734597
+2016-08-24 15:59:04,780 DEBUG: 			View 1 : 0.516587677725
+2016-08-24 15:59:04,901 DEBUG: 			View 2 : 0.483412322275
+2016-08-24 15:59:04,910 DEBUG: 			View 3 : 0.563981042654
+2016-08-24 15:59:06,785 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 15:59:54,484 DEBUG: 5.58160794201e-05 proche de zero ?
+2016-08-24 15:59:54,484 DEBUG: 		Start:	 Iteration 586
+2016-08-24 15:59:54,506 DEBUG: 			View 0 : 0.568720379147
+2016-08-24 15:59:54,516 DEBUG: 			View 1 : 0.535545023697
+2016-08-24 15:59:54,633 DEBUG: 			View 2 : 0.568720379147
+2016-08-24 15:59:54,642 DEBUG: 			View 3 : 0.706161137441
+2016-08-24 15:59:56,355 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 16:00:44,580 DEBUG: 5.5722899114e-05 proche de zero ?
+2016-08-24 16:00:44,580 DEBUG: 		Start:	 Iteration 587
+2016-08-24 16:00:44,602 DEBUG: 			View 0 : 0.668246445498
+2016-08-24 16:00:44,612 DEBUG: 			View 1 : 0.649289099526
+2016-08-24 16:00:44,734 DEBUG: 			View 2 : 0.507109004739
+2016-08-24 16:00:44,743 DEBUG: 			View 3 : 0.57345971564
+2016-08-24 16:00:46,475 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 16:01:33,775 DEBUG: 5.5639675002e-05 proche de zero ?
+2016-08-24 16:01:33,775 DEBUG: 		Start:	 Iteration 588
+2016-08-24 16:01:33,797 DEBUG: 			View 0 : 0.526066350711
+2016-08-24 16:01:33,807 DEBUG: 			View 1 : 0.625592417062
+2016-08-24 16:01:33,931 DEBUG: 			View 2 : 0.582938388626
+2016-08-24 16:01:33,941 DEBUG: 			View 3 : 0.60663507109
+2016-08-24 16:01:35,687 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 16:02:23,165 DEBUG: 5.55565704549e-05 proche de zero ?
+2016-08-24 16:02:23,165 DEBUG: 		Start:	 Iteration 589
+2016-08-24 16:02:23,187 DEBUG: 			View 0 : 0.568720379147
+2016-08-24 16:02:23,196 DEBUG: 			View 1 : 0.668246445498
+2016-08-24 16:02:23,317 DEBUG: 			View 2 : 0.635071090047
+2016-08-24 16:02:23,326 DEBUG: 			View 3 : 0.54028436019
+2016-08-24 16:02:25,045 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 16:03:12,485 DEBUG: 5.54735859372e-05 proche de zero ?
+2016-08-24 16:03:12,485 DEBUG: 		Start:	 Iteration 590
+2016-08-24 16:03:12,510 DEBUG: 			View 0 : 0.672985781991
+2016-08-24 16:03:12,521 DEBUG: 			View 1 : 0.317535545024
+2016-08-24 16:03:12,658 DEBUG: 			View 2 : 0.516587677725
+2016-08-24 16:03:12,668 DEBUG: 			View 3 : 0.616113744076
+2016-08-24 16:03:14,546 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 16:04:01,915 DEBUG: 5.53907219025e-05 proche de zero ?
+2016-08-24 16:04:01,915 DEBUG: 		Start:	 Iteration 591
+2016-08-24 16:04:01,937 DEBUG: 			View 0 : 0.554502369668
+2016-08-24 16:04:01,947 DEBUG: 			View 1 : 0.450236966825
+2016-08-24 16:04:02,066 DEBUG: 			View 2 : 0.625592417062
+2016-08-24 16:04:02,075 DEBUG: 			View 3 : 0.568720379147
+2016-08-24 16:04:03,799 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 16:04:50,961 DEBUG: 5.53079787937e-05 proche de zero ?
+2016-08-24 16:04:50,961 DEBUG: 		Start:	 Iteration 592
+2016-08-24 16:04:50,983 DEBUG: 			View 0 : 0.644549763033
+2016-08-24 16:04:50,994 DEBUG: 			View 1 : 0.734597156398
+2016-08-24 16:04:51,111 DEBUG: 			View 2 : 0.644549763033
+2016-08-24 16:04:51,120 DEBUG: 			View 3 : 0.60663507109
+2016-08-24 16:04:52,847 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 16:05:40,087 DEBUG: 5.52253570429e-05 proche de zero ?
+2016-08-24 16:05:40,087 DEBUG: 		Start:	 Iteration 593
+2016-08-24 16:05:40,109 DEBUG: 			View 0 : 0.507109004739
+2016-08-24 16:05:40,119 DEBUG: 			View 1 : 0.701421800948
+2016-08-24 16:05:40,235 DEBUG: 			View 2 : 0.473933649289
+2016-08-24 16:05:40,245 DEBUG: 			View 3 : 0.625592417062
+2016-08-24 16:05:41,978 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 16:06:29,547 DEBUG: 5.51428570719e-05 proche de zero ?
+2016-08-24 16:06:29,547 DEBUG: 		Start:	 Iteration 594
+2016-08-24 16:06:29,569 DEBUG: 			View 0 : 0.445497630332
+2016-08-24 16:06:29,579 DEBUG: 			View 1 : 0.355450236967
+2016-08-24 16:06:29,699 DEBUG: 			View 2 : 0.530805687204
+2016-08-24 16:06:29,708 DEBUG: 			View 3 : 0.57345971564
+2016-08-24 16:06:31,458 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 16:07:19,034 DEBUG: 5.5060479292e-05 proche de zero ?
+2016-08-24 16:07:19,034 DEBUG: 		Start:	 Iteration 595
+2016-08-24 16:07:19,057 DEBUG: 			View 0 : 0.563981042654
+2016-08-24 16:07:19,067 DEBUG: 			View 1 : 0.502369668246
+2016-08-24 16:07:19,187 DEBUG: 			View 2 : 0.601895734597
+2016-08-24 16:07:19,196 DEBUG: 			View 3 : 0.658767772512
+2016-08-24 16:07:20,939 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 16:08:08,827 DEBUG: 5.49782241045e-05 proche de zero ?
+2016-08-24 16:08:08,827 DEBUG: 		Start:	 Iteration 596
+2016-08-24 16:08:08,849 DEBUG: 			View 0 : 0.511848341232
+2016-08-24 16:08:08,859 DEBUG: 			View 1 : 0.554502369668
+2016-08-24 16:08:08,981 DEBUG: 			View 2 : 0.60663507109
+2016-08-24 16:08:08,990 DEBUG: 			View 3 : 0.687203791469
+2016-08-24 16:08:10,760 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 16:08:58,882 DEBUG: 5.48960919006e-05 proche de zero ?
+2016-08-24 16:08:58,882 DEBUG: 		Start:	 Iteration 597
+2016-08-24 16:08:58,913 DEBUG: 			View 0 : 0.478672985782
+2016-08-24 16:08:58,933 DEBUG: 			View 1 : 0.696682464455
+2016-08-24 16:08:59,084 DEBUG: 			View 2 : 0.625592417062
+2016-08-24 16:08:59,095 DEBUG: 			View 3 : 0.587677725118
+2016-08-24 16:09:00,892 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 16:09:49,241 DEBUG: 5.48140830615e-05 proche de zero ?
+2016-08-24 16:09:49,241 DEBUG: 		Start:	 Iteration 598
+2016-08-24 16:09:49,263 DEBUG: 			View 0 : 0.582938388626
+2016-08-24 16:09:49,272 DEBUG: 			View 1 : 0.616113744076
+2016-08-24 16:09:49,391 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 16:09:49,400 DEBUG: 			View 3 : 0.592417061611
+2016-08-24 16:09:51,155 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 16:10:39,013 DEBUG: 5.47321979589e-05 proche de zero ?
+2016-08-24 16:10:39,013 DEBUG: 		Start:	 Iteration 599
+2016-08-24 16:10:39,035 DEBUG: 			View 0 : 0.592417061611
+2016-08-24 16:10:39,045 DEBUG: 			View 1 : 0.592417061611
+2016-08-24 16:10:39,166 DEBUG: 			View 2 : 0.497630331754
+2016-08-24 16:10:39,176 DEBUG: 			View 3 : 0.578199052133
+2016-08-24 16:10:40,931 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 16:11:28,926 DEBUG: 5.46504369546e-05 proche de zero ?
+2016-08-24 16:11:28,926 DEBUG: 		Start:	 Iteration 600
+2016-08-24 16:11:28,948 DEBUG: 			View 0 : 0.431279620853
+2016-08-24 16:11:28,957 DEBUG: 			View 1 : 0.663507109005
+2016-08-24 16:11:29,078 DEBUG: 			View 2 : 0.620853080569
+2016-08-24 16:11:29,087 DEBUG: 			View 3 : 0.616113744076
+2016-08-24 16:11:30,845 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 16:12:18,982 DEBUG: 5.45688004013e-05 proche de zero ?
+2016-08-24 16:12:18,983 DEBUG: 		Start:	 Iteration 601
+2016-08-24 16:12:19,004 DEBUG: 			View 0 : 0.345971563981
+2016-08-24 16:12:19,014 DEBUG: 			View 1 : 0.696682464455
+2016-08-24 16:12:19,131 DEBUG: 			View 2 : 0.57345971564
+2016-08-24 16:12:19,141 DEBUG: 			View 3 : 0.620853080569
+2016-08-24 16:12:20,902 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 16:13:09,183 DEBUG: 5.4487288642e-05 proche de zero ?
+2016-08-24 16:13:09,183 DEBUG: 		Start:	 Iteration 602
+2016-08-24 16:13:09,205 DEBUG: 			View 0 : 0.545023696682
+2016-08-24 16:13:09,214 DEBUG: 			View 1 : 0.57345971564
+2016-08-24 16:13:09,342 DEBUG: 			View 2 : 0.582938388626
+2016-08-24 16:13:09,352 DEBUG: 			View 3 : 0.582938388626
+2016-08-24 16:13:11,147 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 16:13:59,514 DEBUG: 5.44059020109e-05 proche de zero ?
+2016-08-24 16:13:59,514 DEBUG: 		Start:	 Iteration 603
+2016-08-24 16:13:59,536 DEBUG: 			View 0 : 0.57345971564
+2016-08-24 16:13:59,545 DEBUG: 			View 1 : 0.535545023697
+2016-08-24 16:13:59,674 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 16:13:59,684 DEBUG: 			View 3 : 0.710900473934
+2016-08-24 16:14:01,459 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 16:14:49,977 DEBUG: 5.43246408327e-05 proche de zero ?
+2016-08-24 16:14:49,977 DEBUG: 		Start:	 Iteration 604
+2016-08-24 16:14:49,999 DEBUG: 			View 0 : 0.748815165877
+2016-08-24 16:14:50,009 DEBUG: 			View 1 : 0.691943127962
+2016-08-24 16:14:50,131 DEBUG: 			View 2 : 0.625592417062
+2016-08-24 16:14:50,140 DEBUG: 			View 3 : 0.57345971564
+2016-08-24 16:14:51,957 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 16:15:41,515 DEBUG: 5.42435054237e-05 proche de zero ?
+2016-08-24 16:15:41,515 DEBUG: 		Start:	 Iteration 605
+2016-08-24 16:15:41,537 DEBUG: 			View 0 : 0.421800947867
+2016-08-24 16:15:41,547 DEBUG: 			View 1 : 0.635071090047
+2016-08-24 16:15:41,663 DEBUG: 			View 2 : 0.597156398104
+2016-08-24 16:15:41,673 DEBUG: 			View 3 : 0.54028436019
+2016-08-24 16:15:43,441 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 16:16:32,734 DEBUG: 5.41624960909e-05 proche de zero ?
+2016-08-24 16:16:32,734 DEBUG: 		Start:	 Iteration 606
+2016-08-24 16:16:32,759 DEBUG: 			View 0 : 0.601895734597
+2016-08-24 16:16:32,770 DEBUG: 			View 1 : 0.644549763033
+2016-08-24 16:16:32,925 DEBUG: 			View 2 : 0.521327014218
+2016-08-24 16:16:32,937 DEBUG: 			View 3 : 0.582938388626
+2016-08-24 16:16:34,787 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 16:17:23,226 DEBUG: 5.4081613133e-05 proche de zero ?
+2016-08-24 16:17:23,226 DEBUG: 		Start:	 Iteration 607
+2016-08-24 16:17:23,248 DEBUG: 			View 0 : 0.630331753555
+2016-08-24 16:17:23,258 DEBUG: 			View 1 : 0.578199052133
+2016-08-24 16:17:23,376 DEBUG: 			View 2 : 0.635071090047
+2016-08-24 16:17:23,386 DEBUG: 			View 3 : 0.668246445498
+2016-08-24 16:17:25,176 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 16:18:13,881 DEBUG: 5.400085684e-05 proche de zero ?
+2016-08-24 16:18:13,881 DEBUG: 		Start:	 Iteration 608
+2016-08-24 16:18:13,903 DEBUG: 			View 0 : 0.644549763033
+2016-08-24 16:18:13,912 DEBUG: 			View 1 : 0.355450236967
+2016-08-24 16:18:14,026 DEBUG: 			View 2 : 0.492890995261
+2016-08-24 16:18:14,036 DEBUG: 			View 3 : 0.635071090047
+2016-08-24 16:18:15,817 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 16:19:04,326 DEBUG: 5.39202274935e-05 proche de zero ?
+2016-08-24 16:19:04,327 DEBUG: 		Start:	 Iteration 609
+2016-08-24 16:19:04,348 DEBUG: 			View 0 : 0.473933649289
+2016-08-24 16:19:04,358 DEBUG: 			View 1 : 0.535545023697
+2016-08-24 16:19:04,480 DEBUG: 			View 2 : 0.549763033175
+2016-08-24 16:19:04,490 DEBUG: 			View 3 : 0.672985781991
+2016-08-24 16:19:06,282 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 16:19:54,903 DEBUG: 5.38397253669e-05 proche de zero ?
+2016-08-24 16:19:54,903 DEBUG: 		Start:	 Iteration 610
+2016-08-24 16:19:54,924 DEBUG: 			View 0 : 0.568720379147
+2016-08-24 16:19:54,934 DEBUG: 			View 1 : 0.691943127962
+2016-08-24 16:19:55,050 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 16:19:55,061 DEBUG: 			View 3 : 0.60663507109
+2016-08-24 16:19:56,858 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 16:20:45,411 DEBUG: 5.37593507254e-05 proche de zero ?
+2016-08-24 16:20:45,412 DEBUG: 		Start:	 Iteration 611
+2016-08-24 16:20:45,433 DEBUG: 			View 0 : 0.445497630332
+2016-08-24 16:20:45,443 DEBUG: 			View 1 : 0.511848341232
+2016-08-24 16:20:45,571 DEBUG: 			View 2 : 0.497630331754
+2016-08-24 16:20:45,581 DEBUG: 			View 3 : 0.554502369668
+2016-08-24 16:20:47,384 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 16:21:36,123 DEBUG: 5.3679103826e-05 proche de zero ?
+2016-08-24 16:21:36,124 DEBUG: 		Start:	 Iteration 612
+2016-08-24 16:21:36,145 DEBUG: 			View 0 : 0.478672985782
+2016-08-24 16:21:36,155 DEBUG: 			View 1 : 0.630331753555
+2016-08-24 16:21:36,304 DEBUG: 			View 2 : 0.616113744076
+2016-08-24 16:21:36,313 DEBUG: 			View 3 : 0.649289099526
+2016-08-24 16:21:38,101 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 16:22:28,302 DEBUG: 5.3598984918e-05 proche de zero ?
+2016-08-24 16:22:28,302 DEBUG: 		Start:	 Iteration 613
+2016-08-24 16:22:28,325 DEBUG: 			View 0 : 0.488151658768
+2016-08-24 16:22:28,334 DEBUG: 			View 1 : 0.60663507109
+2016-08-24 16:22:28,475 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 16:22:28,485 DEBUG: 			View 3 : 0.587677725118
+2016-08-24 16:22:30,299 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 16:23:19,384 DEBUG: 5.35189942428e-05 proche de zero ?
+2016-08-24 16:23:19,384 DEBUG: 		Start:	 Iteration 614
+2016-08-24 16:23:19,406 DEBUG: 			View 0 : 0.654028436019
+2016-08-24 16:23:19,415 DEBUG: 			View 1 : 0.60663507109
+2016-08-24 16:23:19,552 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 16:23:19,564 DEBUG: 			View 3 : 0.60663507109
+2016-08-24 16:23:21,373 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 16:24:10,622 DEBUG: 5.3439132034e-05 proche de zero ?
+2016-08-24 16:24:10,622 DEBUG: 		Start:	 Iteration 615
+2016-08-24 16:24:10,645 DEBUG: 			View 0 : 0.559241706161
+2016-08-24 16:24:10,655 DEBUG: 			View 1 : 0.658767772512
+2016-08-24 16:24:10,783 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 16:24:10,794 DEBUG: 			View 3 : 0.601895734597
+2016-08-24 16:24:12,596 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 16:25:01,702 DEBUG: 5.33593985177e-05 proche de zero ?
+2016-08-24 16:25:01,703 DEBUG: 		Start:	 Iteration 616
+2016-08-24 16:25:01,725 DEBUG: 			View 0 : 0.63981042654
+2016-08-24 16:25:01,736 DEBUG: 			View 1 : 0.488151658768
+2016-08-24 16:25:01,866 DEBUG: 			View 2 : 0.587677725118
+2016-08-24 16:25:01,878 DEBUG: 			View 3 : 0.568720379147
+2016-08-24 16:25:03,674 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 16:25:53,123 DEBUG: 5.32797939126e-05 proche de zero ?
+2016-08-24 16:25:53,123 DEBUG: 		Start:	 Iteration 617
+2016-08-24 16:25:53,145 DEBUG: 			View 0 : 0.796208530806
+2016-08-24 16:25:53,156 DEBUG: 			View 1 : 0.630331753555
+2016-08-24 16:25:53,292 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 16:25:53,304 DEBUG: 			View 3 : 0.545023696682
+2016-08-24 16:25:55,142 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 16:26:44,515 DEBUG: 5.32092650058e-05 proche de zero ?
+2016-08-24 16:26:44,515 DEBUG: 		Start:	 Iteration 618
+2016-08-24 16:26:44,537 DEBUG: 			View 0 : 0.587677725118
+2016-08-24 16:26:44,549 DEBUG: 			View 1 : 0.635071090047
+2016-08-24 16:26:44,686 DEBUG: 			View 2 : 0.473933649289
+2016-08-24 16:26:44,697 DEBUG: 			View 3 : 0.57345971564
+2016-08-24 16:26:46,509 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 16:27:36,201 DEBUG: 5.31298792906e-05 proche de zero ?
+2016-08-24 16:27:36,201 DEBUG: 		Start:	 Iteration 619
+2016-08-24 16:27:36,225 DEBUG: 			View 0 : 0.563981042654
+2016-08-24 16:27:36,235 DEBUG: 			View 1 : 0.649289099526
+2016-08-24 16:27:36,365 DEBUG: 			View 2 : 0.563981042654
+2016-08-24 16:27:36,376 DEBUG: 			View 3 : 0.57345971564
+2016-08-24 16:27:38,191 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 16:28:27,719 DEBUG: 5.30506233104e-05 proche de zero ?
+2016-08-24 16:28:27,719 DEBUG: 		Start:	 Iteration 620
+2016-08-24 16:28:27,741 DEBUG: 			View 0 : 0.497630331754
+2016-08-24 16:28:27,753 DEBUG: 			View 1 : 0.800947867299
+2016-08-24 16:28:27,886 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 16:28:27,896 DEBUG: 			View 3 : 0.597156398104
+2016-08-24 16:28:29,803 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 16:29:19,334 DEBUG: 5.29803680113e-05 proche de zero ?
+2016-08-24 16:29:19,335 DEBUG: 		Start:	 Iteration 621
+2016-08-24 16:29:24,389 DEBUG: 			View 0 : 0.587677725118
+2016-08-24 16:29:24,398 DEBUG: 			View 1 : 0.691943127962
+2016-08-24 16:29:24,532 DEBUG: 			View 2 : 0.545023696682
+2016-08-24 16:29:24,541 DEBUG: 			View 3 : 0.473933649289
+2016-08-24 16:29:26,362 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 16:30:16,056 DEBUG: 5.29013330137e-05 proche de zero ?
+2016-08-24 16:30:16,056 DEBUG: 		Start:	 Iteration 622
+2016-08-24 16:30:16,078 DEBUG: 			View 0 : 0.473933649289
+2016-08-24 16:30:16,088 DEBUG: 			View 1 : 0.530805687204
+2016-08-24 16:30:16,232 DEBUG: 			View 2 : 0.587677725118
+2016-08-24 16:30:16,244 DEBUG: 			View 3 : 0.587677725118
+2016-08-24 16:30:18,066 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 16:31:08,022 DEBUG: 5.28224285036e-05 proche de zero ?
+2016-08-24 16:31:08,022 DEBUG: 		Start:	 Iteration 623
+2016-08-24 16:31:08,045 DEBUG: 			View 0 : 0.625592417062
+2016-08-24 16:31:08,055 DEBUG: 			View 1 : 0.57345971564
+2016-08-24 16:31:08,186 DEBUG: 			View 2 : 0.563981042654
+2016-08-24 16:31:08,197 DEBUG: 			View 3 : 0.492890995261
+2016-08-24 16:31:10,022 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 16:31:59,790 DEBUG: 5.27436546477e-05 proche de zero ?
+2016-08-24 16:31:59,790 DEBUG: 		Start:	 Iteration 624
+2016-08-24 16:31:59,813 DEBUG: 			View 0 : 0.625592417062
+2016-08-24 16:31:59,824 DEBUG: 			View 1 : 0.492890995261
+2016-08-24 16:31:59,961 DEBUG: 			View 2 : 0.502369668246
+2016-08-24 16:31:59,973 DEBUG: 			View 3 : 0.592417061611
+2016-08-24 16:32:01,813 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 16:32:51,910 DEBUG: 5.26650116059e-05 proche de zero ?
+2016-08-24 16:32:51,910 DEBUG: 		Start:	 Iteration 625
+2016-08-24 16:32:51,932 DEBUG: 			View 0 : 0.521327014218
+2016-08-24 16:32:51,942 DEBUG: 			View 1 : 0.57345971564
+2016-08-24 16:32:52,076 DEBUG: 			View 2 : 0.597156398104
+2016-08-24 16:32:52,088 DEBUG: 			View 3 : 0.511848341232
+2016-08-24 16:32:53,919 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 16:33:43,825 DEBUG: 5.25864995314e-05 proche de zero ?
+2016-08-24 16:33:43,825 DEBUG: 		Start:	 Iteration 626
+2016-08-24 16:33:43,846 DEBUG: 			View 0 : 0.464454976303
+2016-08-24 16:33:43,856 DEBUG: 			View 1 : 0.687203791469
+2016-08-24 16:33:43,984 DEBUG: 			View 2 : 0.469194312796
+2016-08-24 16:33:43,996 DEBUG: 			View 3 : 0.592417061611
+2016-08-24 16:33:45,827 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 16:34:35,741 DEBUG: 5.25081185713e-05 proche de zero ?
+2016-08-24 16:34:35,741 DEBUG: 		Start:	 Iteration 627
+2016-08-24 16:34:35,763 DEBUG: 			View 0 : 0.559241706161
+2016-08-24 16:34:35,773 DEBUG: 			View 1 : 0.672985781991
+2016-08-24 16:34:35,904 DEBUG: 			View 2 : 0.530805687204
+2016-08-24 16:34:35,915 DEBUG: 			View 3 : 0.630331753555
+2016-08-24 16:34:37,740 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 16:35:27,702 DEBUG: 5.24298688663e-05 proche de zero ?
+2016-08-24 16:35:27,702 DEBUG: 		Start:	 Iteration 628
+2016-08-24 16:35:27,724 DEBUG: 			View 0 : 0.563981042654
+2016-08-24 16:35:27,734 DEBUG: 			View 1 : 0.663507109005
+2016-08-24 16:35:27,869 DEBUG: 			View 2 : 0.587677725118
+2016-08-24 16:35:27,881 DEBUG: 			View 3 : 0.521327014218
+2016-08-24 16:35:29,718 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 16:36:20,008 DEBUG: 5.23517505506e-05 proche de zero ?
+2016-08-24 16:36:20,008 DEBUG: 		Start:	 Iteration 629
+2016-08-24 16:36:20,030 DEBUG: 			View 0 : 0.654028436019
+2016-08-24 16:36:20,040 DEBUG: 			View 1 : 0.649289099526
+2016-08-24 16:36:20,164 DEBUG: 			View 2 : 0.497630331754
+2016-08-24 16:36:20,176 DEBUG: 			View 3 : 0.60663507109
+2016-08-24 16:36:22,019 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 16:37:13,881 DEBUG: 5.22737637527e-05 proche de zero ?
+2016-08-24 16:37:13,882 DEBUG: 		Start:	 Iteration 630
+2016-08-24 16:37:13,903 DEBUG: 			View 0 : 0.649289099526
+2016-08-24 16:37:13,913 DEBUG: 			View 1 : 0.672985781991
+2016-08-24 16:37:14,046 DEBUG: 			View 2 : 0.545023696682
+2016-08-24 16:37:14,058 DEBUG: 			View 3 : 0.549763033175
+2016-08-24 16:37:16,082 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 16:38:06,920 DEBUG: 5.21959085947e-05 proche de zero ?
+2016-08-24 16:38:06,921 DEBUG: 		Start:	 Iteration 631
+2016-08-24 16:38:06,943 DEBUG: 			View 0 : 0.54028436019
+2016-08-24 16:38:06,953 DEBUG: 			View 1 : 0.57345971564
+2016-08-24 16:38:07,079 DEBUG: 			View 2 : 0.616113744076
+2016-08-24 16:38:07,090 DEBUG: 			View 3 : 0.563981042654
+2016-08-24 16:38:08,965 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 16:38:59,459 DEBUG: 5.21181851928e-05 proche de zero ?
+2016-08-24 16:38:59,459 DEBUG: 		Start:	 Iteration 632
+2016-08-24 16:38:59,481 DEBUG: 			View 0 : 0.42654028436
+2016-08-24 16:38:59,491 DEBUG: 			View 1 : 0.54028436019
+2016-08-24 16:38:59,622 DEBUG: 			View 2 : 0.601895734597
+2016-08-24 16:38:59,634 DEBUG: 			View 3 : 0.60663507109
+2016-08-24 16:39:01,506 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 16:39:52,607 DEBUG: 5.20405936574e-05 proche de zero ?
+2016-08-24 16:39:52,607 DEBUG: 		Start:	 Iteration 633
+2016-08-24 16:39:52,629 DEBUG: 			View 0 : 0.526066350711
+2016-08-24 16:39:52,639 DEBUG: 			View 1 : 0.559241706161
+2016-08-24 16:39:52,769 DEBUG: 			View 2 : 0.644549763033
+2016-08-24 16:39:52,780 DEBUG: 			View 3 : 0.54028436019
+2016-08-24 16:39:54,689 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 16:40:46,923 DEBUG: 5.19631340932e-05 proche de zero ?
+2016-08-24 16:40:46,924 DEBUG: 		Start:	 Iteration 634
+2016-08-24 16:40:46,945 DEBUG: 			View 0 : 0.620853080569
+2016-08-24 16:40:46,955 DEBUG: 			View 1 : 0.682464454976
+2016-08-24 16:40:47,087 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 16:40:47,098 DEBUG: 			View 3 : 0.611374407583
+2016-08-24 16:40:49,029 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 16:41:40,415 DEBUG: 5.18858065989e-05 proche de zero ?
+2016-08-24 16:41:40,415 DEBUG: 		Start:	 Iteration 635
+2016-08-24 16:41:40,439 DEBUG: 			View 0 : 0.710900473934
+2016-08-24 16:41:40,451 DEBUG: 			View 1 : 0.511848341232
+2016-08-24 16:41:40,618 DEBUG: 			View 2 : 0.616113744076
+2016-08-24 16:41:40,632 DEBUG: 			View 3 : 0.592417061611
+2016-08-24 16:41:42,629 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 16:42:35,543 DEBUG: 5.1808611268e-05 proche de zero ?
+2016-08-24 16:42:35,543 DEBUG: 		Start:	 Iteration 636
+2016-08-24 16:42:35,565 DEBUG: 			View 0 : 0.488151658768
+2016-08-24 16:42:35,575 DEBUG: 			View 1 : 0.559241706161
+2016-08-24 16:42:35,711 DEBUG: 			View 2 : 0.545023696682
+2016-08-24 16:42:35,724 DEBUG: 			View 3 : 0.687203791469
+2016-08-24 16:42:37,626 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 16:43:31,235 DEBUG: 5.17315481882e-05 proche de zero ?
+2016-08-24 16:43:31,235 DEBUG: 		Start:	 Iteration 637
+2016-08-24 16:43:31,257 DEBUG: 			View 0 : 0.421800947867
+2016-08-24 16:43:31,267 DEBUG: 			View 1 : 0.597156398104
+2016-08-24 16:43:31,411 DEBUG: 			View 2 : 0.601895734597
+2016-08-24 16:43:31,420 DEBUG: 			View 3 : 0.687203791469
+2016-08-24 16:43:33,273 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 16:44:24,284 DEBUG: 5.16630764724e-05 proche de zero ?
+2016-08-24 16:44:24,284 DEBUG: 		Start:	 Iteration 638
+2016-08-24 16:44:24,306 DEBUG: 			View 0 : 0.578199052133
+2016-08-24 16:44:24,316 DEBUG: 			View 1 : 0.620853080569
+2016-08-24 16:44:24,441 DEBUG: 			View 2 : 0.563981042654
+2016-08-24 16:44:24,450 DEBUG: 			View 3 : 0.57345971564
+2016-08-24 16:44:26,329 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 16:45:17,253 DEBUG: 5.15946775578e-05 proche de zero ?
+2016-08-24 16:45:17,253 DEBUG: 		Start:	 Iteration 639
+2016-08-24 16:45:17,275 DEBUG: 			View 0 : 0.379146919431
+2016-08-24 16:45:17,285 DEBUG: 			View 1 : 0.454976303318
+2016-08-24 16:45:17,408 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 16:45:17,418 DEBUG: 			View 3 : 0.502369668246
+2016-08-24 16:45:19,271 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 16:46:10,385 DEBUG: 5.15263519555e-05 proche de zero ?
+2016-08-24 16:46:10,386 DEBUG: 		Start:	 Iteration 640
+2016-08-24 16:46:10,408 DEBUG: 			View 0 : 0.582938388626
+2016-08-24 16:46:10,418 DEBUG: 			View 1 : 0.597156398104
+2016-08-24 16:46:10,548 DEBUG: 			View 2 : 0.549763033175
+2016-08-24 16:46:10,559 DEBUG: 			View 3 : 0.559241706161
+2016-08-24 16:46:12,480 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 16:47:05,838 DEBUG: 5.14581001676e-05 proche de zero ?
+2016-08-24 16:47:05,839 DEBUG: 		Start:	 Iteration 641
+2016-08-24 16:47:05,860 DEBUG: 			View 0 : 0.497630331754
+2016-08-24 16:47:05,870 DEBUG: 			View 1 : 0.677725118483
+2016-08-24 16:47:05,990 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 16:47:06,000 DEBUG: 			View 3 : 0.445497630332
+2016-08-24 16:47:07,908 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 16:47:59,781 DEBUG: 5.13899226877e-05 proche de zero ?
+2016-08-24 16:47:59,781 DEBUG: 		Start:	 Iteration 642
+2016-08-24 16:47:59,802 DEBUG: 			View 0 : 0.682464454976
+2016-08-24 16:47:59,812 DEBUG: 			View 1 : 0.672985781991
+2016-08-24 16:47:59,933 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 16:47:59,943 DEBUG: 			View 3 : 0.687203791469
+2016-08-24 16:48:01,831 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 16:48:54,427 DEBUG: 5.13218200004e-05 proche de zero ?
+2016-08-24 16:48:54,427 DEBUG: 		Start:	 Iteration 643
+2016-08-24 16:48:54,450 DEBUG: 			View 0 : 0.601895734597
+2016-08-24 16:48:54,462 DEBUG: 			View 1 : 0.630331753555
+2016-08-24 16:48:54,581 DEBUG: 			View 2 : 0.507109004739
+2016-08-24 16:48:54,590 DEBUG: 			View 3 : 0.649289099526
+2016-08-24 16:48:56,518 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 16:49:48,909 DEBUG: 5.12454719495e-05 proche de zero ?
+2016-08-24 16:49:48,909 DEBUG: 		Start:	 Iteration 644
+2016-08-24 16:49:48,931 DEBUG: 			View 0 : 0.492890995261
+2016-08-24 16:49:48,940 DEBUG: 			View 1 : 0.60663507109
+2016-08-24 16:49:49,056 DEBUG: 			View 2 : 0.483412322275
+2016-08-24 16:49:49,065 DEBUG: 			View 3 : 0.60663507109
+2016-08-24 16:49:50,963 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 16:50:43,820 DEBUG: 5.11692577604e-05 proche de zero ?
+2016-08-24 16:50:43,820 DEBUG: 		Start:	 Iteration 645
+2016-08-24 16:50:43,842 DEBUG: 			View 0 : 0.521327014218
+2016-08-24 16:50:43,852 DEBUG: 			View 1 : 0.725118483412
+2016-08-24 16:50:43,974 DEBUG: 			View 2 : 0.545023696682
+2016-08-24 16:50:43,983 DEBUG: 			View 3 : 0.625592417062
+2016-08-24 16:50:45,972 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 16:51:38,015 DEBUG: 5.10931774675e-05 proche de zero ?
+2016-08-24 16:51:38,015 DEBUG: 		Start:	 Iteration 646
+2016-08-24 16:51:38,036 DEBUG: 			View 0 : 0.431279620853
+2016-08-24 16:51:38,046 DEBUG: 			View 1 : 0.777251184834
+2016-08-24 16:51:38,158 DEBUG: 			View 2 : 0.60663507109
+2016-08-24 16:51:38,167 DEBUG: 			View 3 : 0.668246445498
+2016-08-24 16:51:40,048 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 16:52:32,446 DEBUG: 5.10172311008e-05 proche de zero ?
+2016-08-24 16:52:32,447 DEBUG: 		Start:	 Iteration 647
+2016-08-24 16:52:32,468 DEBUG: 			View 0 : 0.706161137441
+2016-08-24 16:52:32,478 DEBUG: 			View 1 : 0.654028436019
+2016-08-24 16:52:32,592 DEBUG: 			View 2 : 0.592417061611
+2016-08-24 16:52:32,601 DEBUG: 			View 3 : 0.54028436019
+2016-08-24 16:52:34,507 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 16:53:27,202 DEBUG: 5.09414186855e-05 proche de zero ?
+2016-08-24 16:53:27,202 DEBUG: 		Start:	 Iteration 648
+2016-08-24 16:53:27,223 DEBUG: 			View 0 : 0.635071090047
+2016-08-24 16:53:27,233 DEBUG: 			View 1 : 0.654028436019
+2016-08-24 16:53:27,354 DEBUG: 			View 2 : 0.507109004739
+2016-08-24 16:53:27,364 DEBUG: 			View 3 : 0.497630331754
+2016-08-24 16:53:29,269 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 16:54:21,571 DEBUG: 5.08657402423e-05 proche de zero ?
+2016-08-24 16:54:21,571 DEBUG: 		Start:	 Iteration 649
+2016-08-24 16:54:21,593 DEBUG: 			View 0 : 0.715639810427
+2016-08-24 16:54:21,605 DEBUG: 			View 1 : 0.630331753555
+2016-08-24 16:54:21,732 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 16:54:21,741 DEBUG: 			View 3 : 0.54028436019
+2016-08-24 16:54:23,723 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 16:55:16,895 DEBUG: 5.07901957873e-05 proche de zero ?
+2016-08-24 16:55:16,895 DEBUG: 		Start:	 Iteration 650
+2016-08-24 16:55:16,916 DEBUG: 			View 0 : 0.483412322275
+2016-08-24 16:55:16,927 DEBUG: 			View 1 : 0.549763033175
+2016-08-24 16:55:17,048 DEBUG: 			View 2 : 0.587677725118
+2016-08-24 16:55:17,057 DEBUG: 			View 3 : 0.578199052133
+2016-08-24 16:55:19,081 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 16:56:11,954 DEBUG: 5.07147853324e-05 proche de zero ?
+2016-08-24 16:56:11,954 DEBUG: 		Start:	 Iteration 651
+2016-08-24 16:56:11,976 DEBUG: 			View 0 : 0.568720379147
+2016-08-24 16:56:11,986 DEBUG: 			View 1 : 0.464454976303
+2016-08-24 16:56:12,106 DEBUG: 			View 2 : 0.582938388626
+2016-08-24 16:56:12,115 DEBUG: 			View 3 : 0.611374407583
+2016-08-24 16:56:14,038 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 16:57:06,332 DEBUG: 5.0639508885e-05 proche de zero ?
+2016-08-24 16:57:06,332 DEBUG: 		Start:	 Iteration 652
+2016-08-24 16:57:06,355 DEBUG: 			View 0 : 0.521327014218
+2016-08-24 16:57:06,365 DEBUG: 			View 1 : 0.445497630332
+2016-08-24 16:57:06,476 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 16:57:06,485 DEBUG: 			View 3 : 0.630331753555
+2016-08-24 16:57:08,488 DEBUG: 			 Best view : 		Clinic_
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-134900-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-134900-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..2eee6f4a
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-134900-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,19 @@
+2016-08-24 13:49:00,493 INFO: Start:	 Read HDF5 Database Files for ModifiedMultiOmic
+2016-08-24 13:49:00,493 INFO: Info:	 Labels used: No, Yes
+2016-08-24 13:49:00,494 INFO: Info:	 Length of dataset:347
+2016-08-24 13:49:00,507 INFO: ### Main Programm for Multiview Classification
+2016-08-24 13:49:00,507 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Fusion ; Cores : 4
+2016-08-24 13:49:00,508 INFO: Info:	 Shape of Methyl_ :(347, 25978)
+2016-08-24 13:49:00,508 INFO: Info:	 Shape of MiRNA__ :(347, 1046)
+2016-08-24 13:49:00,509 INFO: Info:	 Shape of RANSeq_ :(347, 73599)
+2016-08-24 13:49:00,509 INFO: Info:	 Shape of Clinic_ :(347, 127)
+2016-08-24 13:49:00,509 INFO: Done:	 Read Database Files
+2016-08-24 13:49:00,509 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-24 13:49:00,513 INFO: Done:	 Determine validation split
+2016-08-24 13:49:00,513 INFO: Start:	 Determine 5 folds
+2016-08-24 13:49:00,522 INFO: Info:	 Length of Learning Sets: 196
+2016-08-24 13:49:00,522 INFO: Info:	 Length of Testing Sets: 48
+2016-08-24 13:49:00,522 INFO: Info:	 Length of Validation Set: 103
+2016-08-24 13:49:00,522 INFO: Done:	 Determine folds
+2016-08-24 13:49:00,522 INFO: Start:	 Learning with Fusion and 5 folds
+2016-08-24 13:49:00,522 INFO: 	Start:	 Fold number 1
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-135019-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-135019-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..b60809d5
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-135019-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,19 @@
+2016-08-24 13:50:19,043 INFO: Start:	 Read HDF5 Database Files for ModifiedMultiOmic
+2016-08-24 13:50:19,043 INFO: Info:	 Labels used: No, Yes
+2016-08-24 13:50:19,044 INFO: Info:	 Length of dataset:347
+2016-08-24 13:50:19,045 INFO: ### Main Programm for Multiview Classification
+2016-08-24 13:50:19,045 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Fusion ; Cores : 4
+2016-08-24 13:50:19,046 INFO: Info:	 Shape of Methyl_ :(347, 25978)
+2016-08-24 13:50:19,046 INFO: Info:	 Shape of MiRNA__ :(347, 1046)
+2016-08-24 13:50:19,047 INFO: Info:	 Shape of RANSeq_ :(347, 73599)
+2016-08-24 13:50:19,047 INFO: Info:	 Shape of Clinic_ :(347, 127)
+2016-08-24 13:50:19,047 INFO: Done:	 Read Database Files
+2016-08-24 13:50:19,047 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-24 13:50:19,051 INFO: Done:	 Determine validation split
+2016-08-24 13:50:19,051 INFO: Start:	 Determine 5 folds
+2016-08-24 13:50:19,059 INFO: Info:	 Length of Learning Sets: 196
+2016-08-24 13:50:19,059 INFO: Info:	 Length of Testing Sets: 48
+2016-08-24 13:50:19,059 INFO: Info:	 Length of Validation Set: 103
+2016-08-24 13:50:19,059 INFO: Done:	 Determine folds
+2016-08-24 13:50:19,059 INFO: Start:	 Learning with Fusion and 5 folds
+2016-08-24 13:50:19,059 INFO: 	Start:	 Fold number 1
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-135102-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-135102-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..0e0edeb3
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-135102-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,19 @@
+2016-08-24 13:51:02,963 INFO: Start:	 Read HDF5 Database Files for ModifiedMultiOmic
+2016-08-24 13:51:02,964 INFO: Info:	 Labels used: No, Yes
+2016-08-24 13:51:02,964 INFO: Info:	 Length of dataset:347
+2016-08-24 13:51:02,965 INFO: ### Main Programm for Multiview Classification
+2016-08-24 13:51:02,966 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Fusion ; Cores : 4
+2016-08-24 13:51:02,966 INFO: Info:	 Shape of Methyl_ :(347, 25978)
+2016-08-24 13:51:02,966 INFO: Info:	 Shape of MiRNA__ :(347, 1046)
+2016-08-24 13:51:02,967 INFO: Info:	 Shape of RANSeq_ :(347, 73599)
+2016-08-24 13:51:02,967 INFO: Info:	 Shape of Clinic_ :(347, 127)
+2016-08-24 13:51:02,967 INFO: Done:	 Read Database Files
+2016-08-24 13:51:02,968 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-24 13:51:02,971 INFO: Done:	 Determine validation split
+2016-08-24 13:51:02,971 INFO: Start:	 Determine 5 folds
+2016-08-24 13:51:02,981 INFO: Info:	 Length of Learning Sets: 196
+2016-08-24 13:51:02,981 INFO: Info:	 Length of Testing Sets: 48
+2016-08-24 13:51:02,981 INFO: Info:	 Length of Validation Set: 103
+2016-08-24 13:51:02,981 INFO: Done:	 Determine folds
+2016-08-24 13:51:02,981 INFO: Start:	 Learning with Fusion and 5 folds
+2016-08-24 13:51:02,982 INFO: 	Start:	 Fold number 1
diff --git a/Code/Multiview/Results/2016_04_26-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_04_26-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG
similarity index 100%
rename from Code/Multiview/Results/2016_04_26-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_04_26-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG
diff --git a/Code/Multiview/Results/2016_04_26-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_04_26-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG.log
similarity index 100%
rename from Code/Multiview/Results/2016_04_26-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_04_26-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG.log
diff --git a/Code/Multiview/Results/2016_04_26-CMultiV-Mumbo-phog-hist_decaf_cq-hist-Awa-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_04_26-CMultiV-Mumbo-phog-hist_decaf_cq-hist-Awa-LOG.log
similarity index 100%
rename from Code/Multiview/Results/2016_04_26-CMultiV-Mumbo-phog-hist_decaf_cq-hist-Awa-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_04_26-CMultiV-Mumbo-phog-hist_decaf_cq-hist-Awa-LOG.log
diff --git a/Code/Multiview/Results/2016_06_16-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_16-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG
similarity index 100%
rename from Code/Multiview/Results/2016_06_16-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_16-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG
diff --git a/Code/Multiview/Results/2016_06_16-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_16-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG.log
similarity index 100%
rename from Code/Multiview/Results/2016_06_16-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_16-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG.log
diff --git a/Code/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_cq-hist_decaf-Awa-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_cq-hist_decaf-Awa-LOG.log
similarity index 100%
rename from Code/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_cq-hist_decaf-Awa-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_cq-hist_decaf-Awa-LOG.log
diff --git a/Code/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_cq-hist_surf-hist-Awa-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_cq-hist_surf-hist-Awa-LOG
similarity index 100%
rename from Code/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_cq-hist_surf-hist-Awa-LOG
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_cq-hist_surf-hist-Awa-LOG
diff --git a/Code/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_cq-hist_surf-hist-Awa-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_cq-hist_surf-hist-Awa-LOG.log
similarity index 100%
rename from Code/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_cq-hist_surf-hist-Awa-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_cq-hist_surf-hist-Awa-LOG.log
diff --git a/Code/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_decaf_cq-hist-Awa-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_decaf_cq-hist-Awa-LOG
similarity index 100%
rename from Code/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_decaf_cq-hist-Awa-LOG
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_decaf_cq-hist-Awa-LOG
diff --git a/Code/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_decaf_cq-hist-Awa-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_decaf_cq-hist-Awa-LOG.log
similarity index 100%
rename from Code/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_decaf_cq-hist-Awa-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_decaf_cq-hist-Awa-LOG.log
diff --git a/Code/Multiview/Results/2016_06_20-CMultiV-Mumbo-phog-hist_cq-hist_surf-hist-Awa-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_20-CMultiV-Mumbo-phog-hist_cq-hist_surf-hist-Awa-LOG
similarity index 100%
rename from Code/Multiview/Results/2016_06_20-CMultiV-Mumbo-phog-hist_cq-hist_surf-hist-Awa-LOG
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_20-CMultiV-Mumbo-phog-hist_cq-hist_surf-hist-Awa-LOG
diff --git a/Code/Multiview/Results/2016_06_20-CMultiV-Mumbo-phog-hist_cq-hist_surf-hist-Awa-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_20-CMultiV-Mumbo-phog-hist_cq-hist_surf-hist-Awa-LOG.log
similarity index 100%
rename from Code/Multiview/Results/2016_06_20-CMultiV-Mumbo-phog-hist_cq-hist_surf-hist-Awa-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_20-CMultiV-Mumbo-phog-hist_cq-hist_surf-hist-Awa-LOG.log
diff --git a/Code/Multiview/Results/2016_06_23-CMultiV-Mumbo-Methylation_RNA-seq_miRNA-MultiOmic-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_23-CMultiV-Mumbo-Methylation_RNA-seq_miRNA-MultiOmic-LOG
similarity index 100%
rename from Code/Multiview/Results/2016_06_23-CMultiV-Mumbo-Methylation_RNA-seq_miRNA-MultiOmic-LOG
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_23-CMultiV-Mumbo-Methylation_RNA-seq_miRNA-MultiOmic-LOG
diff --git a/Code/Multiview/Results/2016_06_23-CMultiV-Mumbo-Methylation_RNA-seq_miRNA-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_23-CMultiV-Mumbo-Methylation_RNA-seq_miRNA-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/2016_06_23-CMultiV-Mumbo-Methylation_RNA-seq_miRNA-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_23-CMultiV-Mumbo-Methylation_RNA-seq_miRNA-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/2016_06_23-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_23-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG
similarity index 100%
rename from Code/Multiview/Results/2016_06_23-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_23-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG
diff --git a/Code/Multiview/Results/2016_06_23-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_23-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/2016_06_23-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_23-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/2016_07_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_07_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
similarity index 100%
rename from Code/Multiview/Results/2016_07_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_07_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
diff --git a/Code/Multiview/Results/2016_07_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_07_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/2016_07_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_07_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/2016_07_12-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_07_12-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG
similarity index 100%
rename from Code/Multiview/Results/2016_07_12-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_07_12-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG
diff --git a/Code/Multiview/Results/2016_07_12-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_07_12-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/2016_07_12-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_07_12-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/2016_07_12-CMultiV-Mumbo-a_b_c_d-MultiOmic-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_07_12-CMultiV-Mumbo-a_b_c_d-MultiOmic-LOG
similarity index 100%
rename from Code/Multiview/Results/2016_07_12-CMultiV-Mumbo-a_b_c_d-MultiOmic-LOG
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_07_12-CMultiV-Mumbo-a_b_c_d-MultiOmic-LOG
diff --git a/Code/Multiview/Results/2016_07_12-CMultiV-Mumbo-a_b_c_d-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_07_12-CMultiV-Mumbo-a_b_c_d-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/2016_07_12-CMultiV-Mumbo-a_b_c_d-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_07_12-CMultiV-Mumbo-a_b_c_d-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/2016_08_01-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_01-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
similarity index 100%
rename from Code/Multiview/Results/2016_08_01-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_01-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
diff --git a/Code/Multiview/Results/2016_08_01-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_01-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/2016_08_01-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_01-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/2016_08_01-CMultiV-Mumbo-RGB_HOG SIFT-Caltech-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_01-CMultiV-Mumbo-RGB_HOG SIFT-Caltech-LOG.log
similarity index 100%
rename from Code/Multiview/Results/2016_08_01-CMultiV-Mumbo-RGB_HOG SIFT-Caltech-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_01-CMultiV-Mumbo-RGB_HOG SIFT-Caltech-LOG.log
diff --git a/Code/Multiview/Results/2016_08_02-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_02-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG.log
similarity index 100%
rename from Code/Multiview/Results/2016_08_02-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_02-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG.log
diff --git a/Code/Multiview/Results/2016_08_04-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-Fake-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_04-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-Fake-LOG
similarity index 100%
rename from Code/Multiview/Results/2016_08_04-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-Fake-LOG
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_04-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-Fake-LOG
diff --git a/Code/Multiview/Results/2016_08_04-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-Fake-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_04-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-Fake-LOG.log
similarity index 100%
rename from Code/Multiview/Results/2016_08_04-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-Fake-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_04-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-Fake-LOG.log
diff --git a/Code/Multiview/Results/2016_08_04-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_04-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
similarity index 100%
rename from Code/Multiview/Results/2016_08_04-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_04-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
diff --git a/Code/Multiview/Results/2016_08_04-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_04-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/2016_08_04-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_04-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/2016_08_05-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-Fake-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_05-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-Fake-LOG
similarity index 100%
rename from Code/Multiview/Results/2016_08_05-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-Fake-LOG
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_05-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-Fake-LOG
diff --git a/Code/Multiview/Results/2016_08_05-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-Fake-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_05-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-Fake-LOG.log
similarity index 100%
rename from Code/Multiview/Results/2016_08_05-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-Fake-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_05-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-Fake-LOG.log
diff --git a/Code/Multiview/Results/2016_08_05-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_05-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
similarity index 100%
rename from Code/Multiview/Results/2016_08_05-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_05-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
diff --git a/Code/Multiview/Results/2016_08_05-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_05-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/2016_08_05-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_05-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/2016_08_10-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_10-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
similarity index 100%
rename from Code/Multiview/Results/2016_08_10-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_10-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
diff --git a/Code/Multiview/Results/2016_08_10-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_10-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/2016_08_10-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_10-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/2016_08_11-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_11-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
similarity index 100%
rename from Code/Multiview/Results/2016_08_11-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_11-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
diff --git a/Code/Multiview/Results/2016_08_11-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_11-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/2016_08_11-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_11-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/2016_08_11-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical_PseudoRNASeq-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_11-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical_PseudoRNASeq-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/2016_08_11-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical_PseudoRNASeq-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_11-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical_PseudoRNASeq-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/2016_08_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
similarity index 100%
rename from Code/Multiview/Results/2016_08_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
diff --git a/Code/Multiview/Results/2016_08_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/2016_08_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/2016_08_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical_PseudoRNASeq-MultiOmic-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical_PseudoRNASeq-MultiOmic-LOG
similarity index 100%
rename from Code/Multiview/Results/2016_08_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical_PseudoRNASeq-MultiOmic-LOG
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical_PseudoRNASeq-MultiOmic-LOG
diff --git a/Code/Multiview/Results/2016_08_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical_PseudoRNASeq-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical_PseudoRNASeq-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/2016_08_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical_PseudoRNASeq-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical_PseudoRNASeq-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/2016_08_15-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_15-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
similarity index 100%
rename from Code/Multiview/Results/2016_08_15-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_15-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
diff --git a/Code/Multiview/Results/2016_08_15-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_15-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/2016_08_15-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_15-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/2016_08_16-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_16-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
similarity index 100%
rename from Code/Multiview/Results/2016_08_16-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_16-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
diff --git a/Code/Multiview/Results/2016_08_16-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_16-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/2016_08_16-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_16-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/2016_08_17-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_17-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
similarity index 100%
rename from Code/Multiview/Results/2016_08_17-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_17-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
diff --git a/Code/Multiview/Results/2016_08_17-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_17-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/2016_08_17-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_17-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/2016_08_17-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_17-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
similarity index 100%
rename from Code/Multiview/Results/2016_08_17-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_17-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
diff --git a/Code/Multiview/Results/2016_08_17-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_17-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/2016_08_17-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_17-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/2016_08_18-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_18-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
similarity index 100%
rename from Code/Multiview/Results/2016_08_18-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_18-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
diff --git a/Code/Multiview/Results/2016_08_18-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_18-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/2016_08_18-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_18-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/2016_08_19-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_19-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG
similarity index 100%
rename from Code/Multiview/Results/2016_08_19-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_19-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG
diff --git a/Code/Multiview/Results/2016_08_19-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_19-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log
similarity index 100%
rename from Code/Multiview/Results/2016_08_19-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_19-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate1.0-nbIter1-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate1.0-nbIter1-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate1.0-nbIter1-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate1.0-nbIter1-MultiOmic.txt
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate1.0-nbIter1-MultiOmicaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate1.0-nbIter1-MultiOmicaccuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate1.0-nbIter1-MultiOmicaccuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate1.0-nbIter1-MultiOmicaccuracyByIteration.png
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate1.0-nbIter100-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate1.0-nbIter100-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate1.0-nbIter100-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate1.0-nbIter100-MultiOmic.txt
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate1.0-nbIter100-MultiOmicaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate1.0-nbIter100-MultiOmicaccuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate1.0-nbIter100-MultiOmicaccuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate1.0-nbIter100-MultiOmicaccuracyByIteration.png
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-Methylation-RNA-seq-miRNA-No-Yes-learnRate0.8-nbIter30-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-Methylation-RNA-seq-miRNA-No-Yes-learnRate0.8-nbIter30-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-Methylation-RNA-seq-miRNA-No-Yes-learnRate0.8-nbIter30-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-Methylation-RNA-seq-miRNA-No-Yes-learnRate0.8-nbIter30-MultiOmic.txt
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-Methylation-RNA-seq-miRNA-No-Yes-learnRate0.8-nbIter30-MultiOmicaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-Methylation-RNA-seq-miRNA-No-Yes-learnRate0.8-nbIter30-MultiOmicaccuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-Methylation-RNA-seq-miRNA-No-Yes-learnRate0.8-nbIter30-MultiOmicaccuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-Methylation-RNA-seq-miRNA-No-Yes-learnRate0.8-nbIter30-MultiOmicaccuracyByIteration.png
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-Methylation-RNA-seq-miRNA-No-Yes-learnRate1.0-nbIter100-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-Methylation-RNA-seq-miRNA-No-Yes-learnRate1.0-nbIter100-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-Methylation-RNA-seq-miRNA-No-Yes-learnRate1.0-nbIter100-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-Methylation-RNA-seq-miRNA-No-Yes-learnRate1.0-nbIter100-MultiOmic.txt
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-Methylation-RNA-seq-miRNA-No-Yes-learnRate1.0-nbIter100-MultiOmicaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-Methylation-RNA-seq-miRNA-No-Yes-learnRate1.0-nbIter100-MultiOmicaccuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-Methylation-RNA-seq-miRNA-No-Yes-learnRate1.0-nbIter100-MultiOmicaccuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-Methylation-RNA-seq-miRNA-No-Yes-learnRate1.0-nbIter100-MultiOmicaccuracyByIteration.png
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-RGB-HOG-SIFT-No-Yes-learnRate0.8-nbIter30-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-RGB-HOG-SIFT-No-Yes-learnRate0.8-nbIter30-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-RGB-HOG-SIFT-No-Yes-learnRate0.8-nbIter30-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-RGB-HOG-SIFT-No-Yes-learnRate0.8-nbIter30-MultiOmic.txt
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-RGB-HOG-SIFT-No-Yes-learnRate0.8-nbIter30-MultiOmicaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-RGB-HOG-SIFT-No-Yes-learnRate0.8-nbIter30-MultiOmicaccuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-RGB-HOG-SIFT-No-Yes-learnRate0.8-nbIter30-MultiOmicaccuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-RGB-HOG-SIFT-No-Yes-learnRate0.8-nbIter30-MultiOmicaccuracyByIteration.png
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-RGB-HOG-SIFT-No-Yes-learnRate1.0-nbIter10-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-RGB-HOG-SIFT-No-Yes-learnRate1.0-nbIter10-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-RGB-HOG-SIFT-No-Yes-learnRate1.0-nbIter10-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-RGB-HOG-SIFT-No-Yes-learnRate1.0-nbIter10-MultiOmic.txt
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-RGB-HOG-SIFT-No-Yes-learnRate1.0-nbIter10-MultiOmicaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-RGB-HOG-SIFT-No-Yes-learnRate1.0-nbIter10-MultiOmicaccuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-RGB-HOG-SIFT-No-Yes-learnRate1.0-nbIter10-MultiOmicaccuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-RGB-HOG-SIFT-No-Yes-learnRate1.0-nbIter10-MultiOmicaccuracyByIteration.png
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-a-b-c-d-No-Yes-learnRate1.0-nbIter1-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-a-b-c-d-No-Yes-learnRate1.0-nbIter1-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-a-b-c-d-No-Yes-learnRate1.0-nbIter1-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-a-b-c-d-No-Yes-learnRate1.0-nbIter1-MultiOmic.txt
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-a-b-c-d-No-Yes-learnRate1.0-nbIter1-MultiOmicaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-a-b-c-d-No-Yes-learnRate1.0-nbIter1-MultiOmicaccuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-a-b-c-d-No-Yes-learnRate1.0-nbIter1-MultiOmicaccuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-a-b-c-d-No-Yes-learnRate1.0-nbIter1-MultiOmicaccuracyByIteration.png
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-a-b-c-d-No-Yes-learnRate1.0-nbIter10-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-a-b-c-d-No-Yes-learnRate1.0-nbIter10-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-a-b-c-d-No-Yes-learnRate1.0-nbIter10-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-a-b-c-d-No-Yes-learnRate1.0-nbIter10-MultiOmic.txt
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-a-b-c-d-No-Yes-learnRate1.0-nbIter10-MultiOmicaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-a-b-c-d-No-Yes-learnRate1.0-nbIter10-MultiOmicaccuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-a-b-c-d-No-Yes-learnRate1.0-nbIter10-MultiOmicaccuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-a-b-c-d-No-Yes-learnRate1.0-nbIter10-MultiOmicaccuracyByIteration.png
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-bat-beaver-rat-rabbit-fox-pig-walrus-chihuahua-moose-squirrel-learnRate0.3-nbIter10-Awa.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-bat-beaver-rat-rabbit-fox-pig-walrus-chihuahua-moose-squirrel-learnRate0.3-nbIter10-Awa.txt
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-bat-beaver-rat-rabbit-fox-pig-walrus-chihuahua-moose-squirrel-learnRate0.3-nbIter10-Awa.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-bat-beaver-rat-rabbit-fox-pig-walrus-chihuahua-moose-squirrel-learnRate0.3-nbIter10-Awa.txt
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-bat-beaver-rat-rabbit-fox-pig-walrus-chihuahua-moose-squirrel-learnRate0.3-nbIter10-AwaaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-bat-beaver-rat-rabbit-fox-pig-walrus-chihuahua-moose-squirrel-learnRate0.3-nbIter10-AwaaccuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-bat-beaver-rat-rabbit-fox-pig-walrus-chihuahua-moose-squirrel-learnRate0.3-nbIter10-AwaaccuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-bat-beaver-rat-rabbit-fox-pig-walrus-chihuahua-moose-squirrel-learnRate0.3-nbIter10-AwaaccuracyByIteration.png
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-deer-persian+cat-chihuahua-sheep-siamese+cat-antelope-german+shepherd-rat-moose-killer+whale-learnRate0.3-nbIter10-Awa.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-deer-persian+cat-chihuahua-sheep-siamese+cat-antelope-german+shepherd-rat-moose-killer+whale-learnRate0.3-nbIter10-Awa.txt
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-deer-persian+cat-chihuahua-sheep-siamese+cat-antelope-german+shepherd-rat-moose-killer+whale-learnRate0.3-nbIter10-Awa.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-deer-persian+cat-chihuahua-sheep-siamese+cat-antelope-german+shepherd-rat-moose-killer+whale-learnRate0.3-nbIter10-Awa.txt
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-deer-persian+cat-chihuahua-sheep-siamese+cat-antelope-german+shepherd-rat-moose-killer+whale-learnRate0.3-nbIter10-AwaaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-deer-persian+cat-chihuahua-sheep-siamese+cat-antelope-german+shepherd-rat-moose-killer+whale-learnRate0.3-nbIter10-AwaaccuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-deer-persian+cat-chihuahua-sheep-siamese+cat-antelope-german+shepherd-rat-moose-killer+whale-learnRate0.3-nbIter10-AwaaccuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-deer-persian+cat-chihuahua-sheep-siamese+cat-antelope-german+shepherd-rat-moose-killer+whale-learnRate0.3-nbIter10-AwaaccuracyByIteration.png
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-german+shepherd-otter-blue+whale-antelope-rhinoceros-humpback+whale-elephant-grizzly+bear-dolphin-gorilla-learnRate0.3-nbIter50-Awa.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-german+shepherd-otter-blue+whale-antelope-rhinoceros-humpback+whale-elephant-grizzly+bear-dolphin-gorilla-learnRate0.3-nbIter50-Awa.txt
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-german+shepherd-otter-blue+whale-antelope-rhinoceros-humpback+whale-elephant-grizzly+bear-dolphin-gorilla-learnRate0.3-nbIter50-Awa.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-german+shepherd-otter-blue+whale-antelope-rhinoceros-humpback+whale-elephant-grizzly+bear-dolphin-gorilla-learnRate0.3-nbIter50-Awa.txt
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-german+shepherd-otter-blue+whale-antelope-rhinoceros-humpback+whale-elephant-grizzly+bear-dolphin-gorilla-learnRate0.3-nbIter50-AwaaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-german+shepherd-otter-blue+whale-antelope-rhinoceros-humpback+whale-elephant-grizzly+bear-dolphin-gorilla-learnRate0.3-nbIter50-AwaaccuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-german+shepherd-otter-blue+whale-antelope-rhinoceros-humpback+whale-elephant-grizzly+bear-dolphin-gorilla-learnRate0.3-nbIter50-AwaaccuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-german+shepherd-otter-blue+whale-antelope-rhinoceros-humpback+whale-elephant-grizzly+bear-dolphin-gorilla-learnRate0.3-nbIter50-AwaaccuracyByIteration.png
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-giant+panda-chimpanzee-antelope-german+shepherd-seal-killer+whale-giraffe-rat-squirrel-mouse-learnRate0.3-nbIter10-Awa.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-giant+panda-chimpanzee-antelope-german+shepherd-seal-killer+whale-giraffe-rat-squirrel-mouse-learnRate0.3-nbIter10-Awa.txt
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-giant+panda-chimpanzee-antelope-german+shepherd-seal-killer+whale-giraffe-rat-squirrel-mouse-learnRate0.3-nbIter10-Awa.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-giant+panda-chimpanzee-antelope-german+shepherd-seal-killer+whale-giraffe-rat-squirrel-mouse-learnRate0.3-nbIter10-Awa.txt
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-giant+panda-chimpanzee-antelope-german+shepherd-seal-killer+whale-giraffe-rat-squirrel-mouse-learnRate0.3-nbIter10-AwaaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-giant+panda-chimpanzee-antelope-german+shepherd-seal-killer+whale-giraffe-rat-squirrel-mouse-learnRate0.3-nbIter10-AwaaccuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-giant+panda-chimpanzee-antelope-german+shepherd-seal-killer+whale-giraffe-rat-squirrel-mouse-learnRate0.3-nbIter10-AwaaccuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-giant+panda-chimpanzee-antelope-german+shepherd-seal-killer+whale-giraffe-rat-squirrel-mouse-learnRate0.3-nbIter10-AwaaccuracyByIteration.png
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-mole-antelope-moose-polar+bear-skunk-blue+whale-dalmatian-killer+whale-wolf-walrus-learnRate0.3-nbIter50-Awa.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-mole-antelope-moose-polar+bear-skunk-blue+whale-dalmatian-killer+whale-wolf-walrus-learnRate0.3-nbIter50-Awa.txt
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-mole-antelope-moose-polar+bear-skunk-blue+whale-dalmatian-killer+whale-wolf-walrus-learnRate0.3-nbIter50-Awa.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-mole-antelope-moose-polar+bear-skunk-blue+whale-dalmatian-killer+whale-wolf-walrus-learnRate0.3-nbIter50-Awa.txt
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-mole-antelope-moose-polar+bear-skunk-blue+whale-dalmatian-killer+whale-wolf-walrus-learnRate0.3-nbIter50-AwaaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-mole-antelope-moose-polar+bear-skunk-blue+whale-dalmatian-killer+whale-wolf-walrus-learnRate0.3-nbIter50-AwaaccuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-mole-antelope-moose-polar+bear-skunk-blue+whale-dalmatian-killer+whale-wolf-walrus-learnRate0.3-nbIter50-AwaaccuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-mole-antelope-moose-polar+bear-skunk-blue+whale-dalmatian-killer+whale-wolf-walrus-learnRate0.3-nbIter50-AwaaccuracyByIteration.png
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-mole-german+shepherd-humpback+whale-rabbit-dalmatian-persian+cat-giraffe-weasel-blue+whale-killer+whale-learnRate0.5-nbIter50-Awa.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-mole-german+shepherd-humpback+whale-rabbit-dalmatian-persian+cat-giraffe-weasel-blue+whale-killer+whale-learnRate0.5-nbIter50-Awa.txt
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-mole-german+shepherd-humpback+whale-rabbit-dalmatian-persian+cat-giraffe-weasel-blue+whale-killer+whale-learnRate0.5-nbIter50-Awa.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-mole-german+shepherd-humpback+whale-rabbit-dalmatian-persian+cat-giraffe-weasel-blue+whale-killer+whale-learnRate0.5-nbIter50-Awa.txt
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-mole-german+shepherd-humpback+whale-rabbit-dalmatian-persian+cat-giraffe-weasel-blue+whale-killer+whale-learnRate0.5-nbIter50-AwaaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-mole-german+shepherd-humpback+whale-rabbit-dalmatian-persian+cat-giraffe-weasel-blue+whale-killer+whale-learnRate0.5-nbIter50-AwaaccuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-mole-german+shepherd-humpback+whale-rabbit-dalmatian-persian+cat-giraffe-weasel-blue+whale-killer+whale-learnRate0.5-nbIter50-AwaaccuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-mole-german+shepherd-humpback+whale-rabbit-dalmatian-persian+cat-giraffe-weasel-blue+whale-killer+whale-learnRate0.5-nbIter50-AwaaccuracyByIteration.png
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-persian+cat-giraffe-beaver-hamster-deer-mole-grizzly+bear-mouse-otter-rhinoceros-learnRate0.3-nbIter50-Awa.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-persian+cat-giraffe-beaver-hamster-deer-mole-grizzly+bear-mouse-otter-rhinoceros-learnRate0.3-nbIter50-Awa.txt
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-persian+cat-giraffe-beaver-hamster-deer-mole-grizzly+bear-mouse-otter-rhinoceros-learnRate0.3-nbIter50-Awa.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-persian+cat-giraffe-beaver-hamster-deer-mole-grizzly+bear-mouse-otter-rhinoceros-learnRate0.3-nbIter50-Awa.txt
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-persian+cat-giraffe-beaver-hamster-deer-mole-grizzly+bear-mouse-otter-rhinoceros-learnRate0.3-nbIter50-AwaaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-persian+cat-giraffe-beaver-hamster-deer-mole-grizzly+bear-mouse-otter-rhinoceros-learnRate0.3-nbIter50-AwaaccuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-persian+cat-giraffe-beaver-hamster-deer-mole-grizzly+bear-mouse-otter-rhinoceros-learnRate0.3-nbIter50-AwaaccuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-persian+cat-giraffe-beaver-hamster-deer-mole-grizzly+bear-mouse-otter-rhinoceros-learnRate0.3-nbIter50-AwaaccuracyByIteration.png
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-skunk-sheep-wolf-polar+bear-weasel-walrus-rhinoceros-leopard-cow-lion-learnRate0.3-nbIter5-Awa.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-skunk-sheep-wolf-polar+bear-weasel-walrus-rhinoceros-leopard-cow-lion-learnRate0.3-nbIter5-Awa.txt
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-skunk-sheep-wolf-polar+bear-weasel-walrus-rhinoceros-leopard-cow-lion-learnRate0.3-nbIter5-Awa.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-skunk-sheep-wolf-polar+bear-weasel-walrus-rhinoceros-leopard-cow-lion-learnRate0.3-nbIter5-Awa.txt
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-skunk-sheep-wolf-polar+bear-weasel-walrus-rhinoceros-leopard-cow-lion-learnRate0.3-nbIter5-AwaaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-skunk-sheep-wolf-polar+bear-weasel-walrus-rhinoceros-leopard-cow-lion-learnRate0.3-nbIter5-AwaaccuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-skunk-sheep-wolf-polar+bear-weasel-walrus-rhinoceros-leopard-cow-lion-learnRate0.3-nbIter5-AwaaccuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-skunk-sheep-wolf-polar+bear-weasel-walrus-rhinoceros-leopard-cow-lion-learnRate0.3-nbIter5-AwaaccuracyByIteration.png
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-skunk-tiger-walrus-weasel-pig-sheep-dalmatian-spider+monkey-collie-mole-learnRate0.5-nbIter50-Awa.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-skunk-tiger-walrus-weasel-pig-sheep-dalmatian-spider+monkey-collie-mole-learnRate0.5-nbIter50-Awa.txt
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-skunk-tiger-walrus-weasel-pig-sheep-dalmatian-spider+monkey-collie-mole-learnRate0.5-nbIter50-Awa.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-skunk-tiger-walrus-weasel-pig-sheep-dalmatian-spider+monkey-collie-mole-learnRate0.5-nbIter50-Awa.txt
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-skunk-tiger-walrus-weasel-pig-sheep-dalmatian-spider+monkey-collie-mole-learnRate0.5-nbIter50-AwaaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-skunk-tiger-walrus-weasel-pig-sheep-dalmatian-spider+monkey-collie-mole-learnRate0.5-nbIter50-AwaaccuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-skunk-tiger-walrus-weasel-pig-sheep-dalmatian-spider+monkey-collie-mole-learnRate0.5-nbIter50-AwaaccuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-skunk-tiger-walrus-weasel-pig-sheep-dalmatian-spider+monkey-collie-mole-learnRate0.5-nbIter50-AwaaccuracyByIteration.png
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-antelope-grizzly+bear-killer+whale-beaver-dalmatian-learnRate0.5-nbIter40-Awa.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-antelope-grizzly+bear-killer+whale-beaver-dalmatian-learnRate0.5-nbIter40-Awa.txt
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-antelope-grizzly+bear-killer+whale-beaver-dalmatian-learnRate0.5-nbIter40-Awa.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-antelope-grizzly+bear-killer+whale-beaver-dalmatian-learnRate0.5-nbIter40-Awa.txt
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-antelope-grizzly+bear-killer+whale-beaver-dalmatian-learnRate0.5-nbIter40-AwaaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-antelope-grizzly+bear-killer+whale-beaver-dalmatian-learnRate0.5-nbIter40-AwaaccuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-antelope-grizzly+bear-killer+whale-beaver-dalmatian-learnRate0.5-nbIter40-AwaaccuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-antelope-grizzly+bear-killer+whale-beaver-dalmatian-learnRate0.5-nbIter40-AwaaccuracyByIteration.png
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-beaver-moose-squirrel-seal-cow-bobcat-rat-gorilla-elephant-walrus-learnRate0.3-nbIter50-Awa.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-beaver-moose-squirrel-seal-cow-bobcat-rat-gorilla-elephant-walrus-learnRate0.3-nbIter50-Awa.txt
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-beaver-moose-squirrel-seal-cow-bobcat-rat-gorilla-elephant-walrus-learnRate0.3-nbIter50-Awa.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-beaver-moose-squirrel-seal-cow-bobcat-rat-gorilla-elephant-walrus-learnRate0.3-nbIter50-Awa.txt
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-dalmatian-tiger-rhinoceros-bat-killer+whale-learnRate0.1-nbIter50-Awa.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-dalmatian-tiger-rhinoceros-bat-killer+whale-learnRate0.1-nbIter50-Awa.txt
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-dalmatian-tiger-rhinoceros-bat-killer+whale-learnRate0.1-nbIter50-Awa.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-dalmatian-tiger-rhinoceros-bat-killer+whale-learnRate0.1-nbIter50-Awa.txt
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-giraffe-squirrel-tiger-deer-chimpanzee-learnRate0.1-nbIter50-Awa.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-giraffe-squirrel-tiger-deer-chimpanzee-learnRate0.1-nbIter50-Awa.txt
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-giraffe-squirrel-tiger-deer-chimpanzee-learnRate0.1-nbIter50-Awa.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-giraffe-squirrel-tiger-deer-chimpanzee-learnRate0.1-nbIter50-Awa.txt
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-leopard-gorilla-elephant-zebra-wolf-learnRate0.5-nbIter100-Awa.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-leopard-gorilla-elephant-zebra-wolf-learnRate0.5-nbIter100-Awa.txt
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-leopard-gorilla-elephant-zebra-wolf-learnRate0.5-nbIter100-Awa.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-leopard-gorilla-elephant-zebra-wolf-learnRate0.5-nbIter100-Awa.txt
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-leopard-gorilla-elephant-zebra-wolf-learnRate0.5-nbIter100-AwaaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-leopard-gorilla-elephant-zebra-wolf-learnRate0.5-nbIter100-AwaaccuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-leopard-gorilla-elephant-zebra-wolf-learnRate0.5-nbIter100-AwaaccuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-leopard-gorilla-elephant-zebra-wolf-learnRate0.5-nbIter100-AwaaccuracyByIteration.png
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-pig-fox-horse-rhinoceros-chimpanzee-learnRate0.5-nbIter50-Awa.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-pig-fox-horse-rhinoceros-chimpanzee-learnRate0.5-nbIter50-Awa.txt
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-pig-fox-horse-rhinoceros-chimpanzee-learnRate0.5-nbIter50-Awa.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-pig-fox-horse-rhinoceros-chimpanzee-learnRate0.5-nbIter50-Awa.txt
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-rabbit-giant+panda-rat-skunk-buffalo-learnRate0.5-nbIter200-Awa.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-rabbit-giant+panda-rat-skunk-buffalo-learnRate0.5-nbIter200-Awa.txt
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-rabbit-giant+panda-rat-skunk-buffalo-learnRate0.5-nbIter200-Awa.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-rabbit-giant+panda-rat-skunk-buffalo-learnRate0.5-nbIter200-Awa.txt
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-rabbit-giant+panda-rat-skunk-buffalo-learnRate0.5-nbIter200-AwaaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-rabbit-giant+panda-rat-skunk-buffalo-learnRate0.5-nbIter200-AwaaccuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-rabbit-giant+panda-rat-skunk-buffalo-learnRate0.5-nbIter200-AwaaccuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-rabbit-giant+panda-rat-skunk-buffalo-learnRate0.5-nbIter200-AwaaccuracyByIteration.png
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-seal-rabbit-mouse-sheep-deer-bobcat-persian+cat-elephant-ox-otter-learnRate0.1-nbIter50-Awa.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-seal-rabbit-mouse-sheep-deer-bobcat-persian+cat-elephant-ox-otter-learnRate0.1-nbIter50-Awa.txt
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-seal-rabbit-mouse-sheep-deer-bobcat-persian+cat-elephant-ox-otter-learnRate0.1-nbIter50-Awa.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-seal-rabbit-mouse-sheep-deer-bobcat-persian+cat-elephant-ox-otter-learnRate0.1-nbIter50-Awa.txt
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-siamese+cat-hamster-tiger-collie-antelope-chihuahua-polar+bear-hippopotamus-elephant-skunk-learnRate0.3-nbIter50-Awa.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-siamese+cat-hamster-tiger-collie-antelope-chihuahua-polar+bear-hippopotamus-elephant-skunk-learnRate0.3-nbIter50-Awa.txt
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-siamese+cat-hamster-tiger-collie-antelope-chihuahua-polar+bear-hippopotamus-elephant-skunk-learnRate0.3-nbIter50-Awa.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-siamese+cat-hamster-tiger-collie-antelope-chihuahua-polar+bear-hippopotamus-elephant-skunk-learnRate0.3-nbIter50-Awa.txt
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-Fake.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-Fake.txt
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-Fake.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-Fake.txt
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-FakeaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-FakeaccuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-FakeaccuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-FakeaccuracyByIteration.png
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate4.0-nbIter10-Fake.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate4.0-nbIter10-Fake.txt
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate4.0-nbIter10-Fake.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate4.0-nbIter10-Fake.txt
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate4.0-nbIter10-FakeaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate4.0-nbIter10-FakeaccuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate4.0-nbIter10-FakeaccuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate4.0-nbIter10-FakeaccuracyByIteration.png
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate4.0-nbIter2-Fake.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate4.0-nbIter2-Fake.txt
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate4.0-nbIter2-Fake.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate4.0-nbIter2-Fake.txt
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate4.0-nbIter2-FakeaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate4.0-nbIter2-FakeaccuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate4.0-nbIter2-FakeaccuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate4.0-nbIter2-FakeaccuracyByIteration.png
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate4.0-nbIter2-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate4.0-nbIter2-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate4.0-nbIter2-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate4.0-nbIter2-MultiOmic.txt
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate4.0-nbIter2-MultiOmicaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate4.0-nbIter2-MultiOmicaccuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate4.0-nbIter2-MultiOmicaccuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate4.0-nbIter2-MultiOmicaccuracyByIteration.png
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmicaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmicaccuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmicaccuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmicaccuracyByIteration.png
diff --git a/Code/Multiview/__init__.py b/Code/MonoMutliViewClassifiers/Multiview/__init__.py
similarity index 100%
rename from Code/Multiview/__init__.py
rename to Code/MonoMutliViewClassifiers/Multiview/__init__.py
diff --git a/Code/Multiview/profile b/Code/MonoMutliViewClassifiers/Multiview/profile
similarity index 100%
rename from Code/Multiview/profile
rename to Code/MonoMutliViewClassifiers/Multiview/profile
diff --git a/Code/Multiview/res b/Code/MonoMutliViewClassifiers/Multiview/res
similarity index 100%
rename from Code/Multiview/res
rename to Code/MonoMutliViewClassifiers/Multiview/res
diff --git a/Code/Multiview/run.py b/Code/MonoMutliViewClassifiers/Multiview/run.py
similarity index 60%
rename from Code/Multiview/run.py
rename to Code/MonoMutliViewClassifiers/Multiview/run.py
index 3c60436d..7a3b56c1 100644
--- a/Code/Multiview/run.py
+++ b/Code/MonoMutliViewClassifiers/Multiview/run.py
@@ -1,6 +1,6 @@
 # coding=utf-8
 import os
-os.system('python ExecMultiview.py -log --name ModifiedMultiOmic --type .csv --views Methyl:MiRNA:RNASEQ:Clinical --pathF /home/bbauvin/Documents/Data/Data_multi_omics/ --CL_split 0.7 --CL_nbFolds 2 --CL_nb_class 2 --CL_classes Positive:Negative --CL_type Fusion --CL_cores 4 --FU_type EarlyFusion --FU_method WeightedLinear')
+os.system('python ExecMultiview.py -log --name ModifiedMultiOmic --type .hdf5 --views Methyl:MiRNA:RNASEQ:Clinical --pathF /home/bbauvin/Documents/Data/Data_multi_omics/ --CL_split 0.7 --CL_nbFolds 5 --CL_nb_class 2 --CL_classes Positive:Negative --CL_type Fusion --CL_cores 4 --FU_type EarlyFusion --FU_method WeightedLinear')
 # /donnees/pj_bdd_bbauvin/Data_multi_omics/
 #
 # /home/bbauvin/Documents/Data/Data_multi_omics/
diff --git a/Code/ResultAnalysis.py b/Code/MonoMutliViewClassifiers/ResultAnalysis.py
similarity index 100%
rename from Code/ResultAnalysis.py
rename to Code/MonoMutliViewClassifiers/ResultAnalysis.py
diff --git a/Code/Results/20160822-132504-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-132214-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-132504-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-132214-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
diff --git a/Code/MonoMutliViewClassifiers/Results/20160822-132504-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-132504-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
new file mode 100644
index 00000000..e69de29b
diff --git a/Code/Results/20160822-132643-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-132643-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-132643-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-132643-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-133011-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-133011-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-133011-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-133011-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-133020-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-133020-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-133020-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-133020-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-133220-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-133220-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-133220-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-133220-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-133238-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-133238-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-133238-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-133238-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-133410-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-133410-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-133410-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-133410-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-133436-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-133436-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-133436-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-133436-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-133458-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-133458-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-133458-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-133458-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-133530-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-133530-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-133530-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-133530-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-133639-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-133639-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-133639-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-133639-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-133846-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-133846-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-133846-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-133846-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-134037-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-134037-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-134037-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-134037-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-134211-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-134211-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-134211-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-134211-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-134319Results-Mumbo-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.9-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Results/20160822-134319Results-Mumbo-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.9-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Results/20160822-134319Results-Mumbo-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.9-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Results/20160822-134319Results-Mumbo-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.9-MultiOmic-accuracyByIteration.png
diff --git a/Code/Results/20160822-134319Results-Mumbo-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.9-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Results/20160822-134319Results-Mumbo-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.9-MultiOmic.txt
similarity index 100%
rename from Code/Results/20160822-134319Results-Mumbo-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.9-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Results/20160822-134319Results-Mumbo-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.9-MultiOmic.txt
diff --git a/Code/Results/20160822-140630-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-140630-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-140630-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-140630-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-140803-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-140803-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-140803-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-140803-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-140845-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-140845-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-140845-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-140845-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-140937-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-140937-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-140937-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-140937-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-141037-CMultiV-Benchmark-Methyl_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-141037-CMultiV-Benchmark-Methyl_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-141037-CMultiV-Benchmark-Methyl_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-141037-CMultiV-Benchmark-Methyl_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-141112-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-141112-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-141112-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-141112-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-141147-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-141147-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-141147-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-141147-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-141207-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-141207-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-141207-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-141207-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-141238-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-141238-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-141238-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-141238-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-141345-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-141345-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-141345-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-141345-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-141834-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-141834-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-141834-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-141834-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-142903-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-142903-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-142903-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-142903-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-142943-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-142943-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-142943-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-142943-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-143254-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-143254-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-143254-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-143254-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-143512-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-143512-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-143512-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-143512-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-143553-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-143553-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-143553-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-143553-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-150532-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-150532-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-150532-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-150532-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-150705-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-150705-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-150705-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-150705-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-150714-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-150714-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-150714-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-150714-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-152212-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-152212-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-152212-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-152212-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-153503-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-153503-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-153503-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-153503-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-154718-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-154718-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-154718-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-154718-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-155011-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-155011-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-155011-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-155011-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-155240-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-155240-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-155240-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-155240-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-155839-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-155839-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-155839-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-155839-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
diff --git a/Code/Results/20160823-105758-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160823-105758-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160823-105758-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160823-105758-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
diff --git a/Code/Results/20160823-110509-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160823-110509-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160823-110509-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160823-110509-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
diff --git a/Code/Results/20160823-110659-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160823-110659-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160823-110659-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160823-110659-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
diff --git a/Code/Results/20160823-110859-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160823-110859-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160823-110859-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160823-110859-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
diff --git a/Code/Results/20160823-111036-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160823-111036-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160823-111036-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160823-111036-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
diff --git a/Code/Results/20160823-111124-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160823-111124-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160823-111124-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160823-111124-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
diff --git a/Code/MonoMutliViewClassifiers/Results/20160823-111945-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160823-111945-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 00000000..fd3749c7
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160823-111945-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,32 @@
+2016-08-23 11:19:45,964 INFO: Begginging
+2016-08-23 11:19:45,968 INFO: ### Main Programm for Multiview Classification
+2016-08-23 11:19:45,968 INFO: ### Classification - Database : MultiOmic ; Views : Methyl, MiRNA_, RNASeq, Clinic ; Algorithm : Mumbo ; Cores : 1
+2016-08-23 11:19:45,968 INFO: Info:	 Shape of Methyl :(347, 25978)
+2016-08-23 11:19:45,969 INFO: Info:	 Shape of MiRNA_ :(347, 1046)
+2016-08-23 11:19:45,969 INFO: Info:	 Shape of RANSeq :(347, 73599)
+2016-08-23 11:19:45,970 INFO: Info:	 Shape of Clinic :(347, 127)
+2016-08-23 11:19:45,970 INFO: Done:	 Read Database Files
+2016-08-23 11:19:45,970 INFO: Start:	 Determine validation split for ratio 0.9
+2016-08-23 11:19:45,973 INFO: Done:	 Determine validation split
+2016-08-23 11:19:45,973 INFO: Start:	 Determine 2 folds
+2016-08-23 11:19:45,998 INFO: Info:	 Length of Learning Sets: 157
+2016-08-23 11:19:45,999 INFO: Info:	 Length of Testing Sets: 156
+2016-08-23 11:19:45,999 INFO: Info:	 Length of Validation Set: 34
+2016-08-23 11:19:45,999 INFO: Done:	 Determine folds
+2016-08-23 11:19:45,999 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-23 11:19:45,999 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-23 11:20:15,162 INFO: Done:	 Gridsearching best settings for monoview classifiers
+2016-08-23 11:20:15,162 INFO: 	Start:	 Fold number 1
+2016-08-23 11:20:15,177 DEBUG: 		Start:	 Iteration 1
+2016-08-23 11:20:15,221 DEBUG: 			View 0 : 0.715083798883
+2016-08-23 11:20:15,235 DEBUG: 			View 1 : 0.720670391061
+2016-08-23 11:20:15,275 DEBUG: 			View 2 : 0.385474860335
+2016-08-23 11:20:15,285 DEBUG: 			View 3 : 0.54748603352
+2016-08-23 11:20:15,325 DEBUG: 			 Best view : 		RANSeq
+2016-08-23 11:20:15,334 DEBUG: 		Start:	 Iteration 2
+2016-08-23 11:20:15,355 DEBUG: 			View 0 : 0.357541899441
+2016-08-23 11:20:15,364 DEBUG: 			View 1 : 0.290502793296
+2016-08-23 11:20:15,405 DEBUG: 			View 2 : 0.614525139665
+2016-08-23 11:20:15,414 DEBUG: 			View 3 : 0.357541899441
+2016-08-23 11:20:15,460 DEBUG: 			 Best view : 		RANSeq
+2016-08-23 11:20:15,470 INFO: 	Start: 	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160823-112110-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160823-112110-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 00000000..dd4dfe9d
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160823-112110-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,157 @@
+2016-08-23 11:21:10,029 INFO: Begginging
+2016-08-23 11:21:10,033 INFO: ### Main Programm for Multiview Classification
+2016-08-23 11:21:10,033 INFO: ### Classification - Database : MultiOmic ; Views : Methyl, MiRNA_, RNASeq, Clinic ; Algorithm : Mumbo ; Cores : 1
+2016-08-23 11:21:10,034 INFO: Info:	 Shape of Methyl :(347, 25978)
+2016-08-23 11:21:10,034 INFO: Info:	 Shape of MiRNA_ :(347, 1046)
+2016-08-23 11:21:10,034 INFO: Info:	 Shape of RANSeq :(347, 73599)
+2016-08-23 11:21:10,035 INFO: Info:	 Shape of Clinic :(347, 127)
+2016-08-23 11:21:10,035 INFO: Done:	 Read Database Files
+2016-08-23 11:21:10,035 INFO: Start:	 Determine validation split for ratio 0.9
+2016-08-23 11:21:10,038 INFO: Done:	 Determine validation split
+2016-08-23 11:21:10,038 INFO: Start:	 Determine 2 folds
+2016-08-23 11:21:10,056 INFO: Info:	 Length of Learning Sets: 157
+2016-08-23 11:21:10,056 INFO: Info:	 Length of Testing Sets: 156
+2016-08-23 11:21:10,056 INFO: Info:	 Length of Validation Set: 34
+2016-08-23 11:21:10,056 INFO: Done:	 Determine folds
+2016-08-23 11:21:10,056 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-23 11:21:10,056 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-23 11:21:38,101 INFO: Done:	 Gridsearching best settings for monoview classifiers
+2016-08-23 11:21:38,101 INFO: 	Start:	 Fold number 1
+2016-08-23 11:21:38,116 DEBUG: 		Start:	 Iteration 1
+2016-08-23 11:21:38,135 DEBUG: 			View 0 : 0.619047619048
+2016-08-23 11:21:38,144 DEBUG: 			View 1 : 0.696428571429
+2016-08-23 11:21:38,178 DEBUG: 			View 2 : 0.303571428571
+2016-08-23 11:21:38,187 DEBUG: 			View 3 : 0.696428571429
+2016-08-23 11:21:38,223 DEBUG: 			 Best view : 		MiRNA_
+2016-08-23 11:21:38,231 DEBUG: 		Start:	 Iteration 2
+2016-08-23 11:21:38,249 DEBUG: 			View 0 : 0.315476190476
+2016-08-23 11:21:38,258 DEBUG: 			View 1 : 0.690476190476
+2016-08-23 11:21:38,302 DEBUG: 			View 2 : 0.589285714286
+2016-08-23 11:21:38,312 DEBUG: 			View 3 : 0.660714285714
+2016-08-23 11:21:38,353 DEBUG: 			 Best view : 		MiRNA_
+2016-08-23 11:21:38,361 INFO: 	Start: 	 Classification
+2016-08-23 11:21:38,625 INFO: 	Done: 	 Fold number 1
+2016-08-23 11:21:38,626 INFO: 	Start:	 Fold number 2
+2016-08-23 11:21:38,640 DEBUG: 		Start:	 Iteration 1
+2016-08-23 11:21:38,657 DEBUG: 			View 0 : 0.710227272727
+2016-08-23 11:21:38,666 DEBUG: 			View 1 : 0.477272727273
+2016-08-23 11:21:38,704 DEBUG: 			View 2 : 0.289772727273
+2016-08-23 11:21:38,714 DEBUG: 			View 3 : 0.289772727273
+2016-08-23 11:21:38,751 DEBUG: 			 Best view : 		Methyl
+2016-08-23 11:21:38,759 DEBUG: 		Start:	 Iteration 2
+2016-08-23 11:21:38,777 DEBUG: 			View 0 : 0.710227272727
+2016-08-23 11:21:38,787 DEBUG: 			View 1 : 0.625
+2016-08-23 11:21:38,832 DEBUG: 			View 2 : 0.392045454545
+2016-08-23 11:21:38,842 DEBUG: 			View 3 : 0.306818181818
+2016-08-23 11:21:38,885 DEBUG: 			 Best view : 		Methyl
+2016-08-23 11:21:38,894 INFO: 	Start: 	 Classification
+2016-08-23 11:21:39,183 INFO: 	Done: 	 Fold number 2
+2016-08-23 11:21:39,183 INFO: Done:	 Classification
+2016-08-23 11:21:39,183 INFO: Info:	 Time for Classification: 29[s]
+2016-08-23 11:21:39,183 INFO: Start:	 Result Analysis for Mumbo
+2016-08-23 11:21:39,918 INFO: 		Result for Multiview classification with Mumbo
+
+Average accuracy :
+	-On Train : 70.3327922078
+	-On Test : 73.0769230769
+	-On Validation : 73.5294117647
+
+Dataset info :
+	-Database name : MultiOmic
+	-Labels : No, Yes
+	-Views : Methyl, MiRNA_, RNASeq, Clinic
+	-2 folds
+	- Validation set length : 34 for learning rate : 0.9
+
+Classification configuration : 
+	-Algorithm used : Mumbo 
+	-Iterations : 2
+	-Weak Classifiers : DecisionTree with depth 1.0,  sub-sampled at 0.006 on Methyl
+		-DecisionTree with depth 1.0,  sub-sampled at 0.006 on MiRNA_
+		-DecisionTree with depth 1.0,  sub-sampled at 0.006 on RNASeq
+		-DecisionTree with depth 1.0,  sub-sampled at 0.0065 on Clinic
+
+ Mean average accuracies and stats for each fold : 
+	- Fold 0
+		- On Methyl : 
+			- Mean average Accuracy : 0.467261904762
+			- Percentage of time chosen : 0.0
+		- On MiRNA_ : 
+			- Mean average Accuracy : 0.693452380952
+			- Percentage of time chosen : 1.0
+		- On RANSeq : 
+			- Mean average Accuracy : 0.446428571429
+			- Percentage of time chosen : 0.0
+		- On Clinic : 
+			- Mean average Accuracy : 0.678571428571
+			- Percentage of time chosen : 0.0
+	- Fold 1
+		- On Methyl : 
+			- Mean average Accuracy : 0.710227272727
+			- Percentage of time chosen : 1.0
+		- On MiRNA_ : 
+			- Mean average Accuracy : 0.551136363636
+			- Percentage of time chosen : 0.0
+		- On RANSeq : 
+			- Mean average Accuracy : 0.340909090909
+			- Percentage of time chosen : 0.0
+		- On Clinic : 
+			- Mean average Accuracy : 0.298295454545
+			- Percentage of time chosen : 0.0
+
+ For each iteration : 
+	- Iteration 1
+		 Fold 1
+			Accuracy on train : 69.6428571429
+			Accuracy on test : 73.0769230769
+			Accuracy on validation : 73.5294117647
+			Selected View : MiRNA_
+		 Fold 2
+			Accuracy on train : 71.0227272727
+			Accuracy on test : 73.0769230769
+			Accuracy on validation : 73.5294117647
+			Selected View : Methyl
+		- Mean : 
+			 Accuracy on train : 70.3327922078
+			 Accuracy on test : 73.0769230769
+	- Iteration 2
+		 Fold 1
+			Accuracy on train : 69.6428571429
+			Accuracy on test : 73.0769230769
+			Accuracy on validation : 73.5294117647
+			Selected View : MiRNA_
+		 Fold 2
+			Accuracy on train : 71.0227272727
+			Accuracy on test : 73.0769230769
+			Accuracy on validation : 73.5294117647
+			Selected View : Methyl
+		- Mean : 
+			 Accuracy on train : 70.3327922078
+			 Accuracy on test : 73.0769230769
+
+Computation time on 1 cores : 
+	Database extraction time : 0:00:00
+	                         Learn     Prediction
+	         Fold 1        0:00:28        0:00:00
+	         Fold 2        0:00:28        0:00:00
+	          Total        0:00:57        0:00:00
+	So a total classification time of 0:00:29.
+
+
+2016-08-23 11:21:40,125 INFO: Done:	 Result Analysis
+2016-08-23 11:21:40,126 INFO: ### Main Programm for Multiview Classification
+2016-08-23 11:21:40,126 INFO: ### Classification - Database : MultiOmic ; Views : Methyl, MiRNA_, RNASeq, Clinic ; Algorithm : Mumbo ; Cores : 1
+2016-08-23 11:21:40,127 INFO: Info:	 Shape of Methyl :(347, 25978)
+2016-08-23 11:21:40,127 INFO: Info:	 Shape of MiRNA_ :(347, 1046)
+2016-08-23 11:21:40,127 INFO: Info:	 Shape of RANSeq :(347, 73599)
+2016-08-23 11:21:40,128 INFO: Info:	 Shape of Clinic :(347, 127)
+2016-08-23 11:21:40,128 INFO: Done:	 Read Database Files
+2016-08-23 11:21:40,128 INFO: Start:	 Determine validation split for ratio 0.9
+2016-08-23 11:21:40,131 INFO: Done:	 Determine validation split
+2016-08-23 11:21:40,131 INFO: Start:	 Determine 2 folds
+2016-08-23 11:21:40,145 INFO: Info:	 Length of Learning Sets: 157
+2016-08-23 11:21:40,145 INFO: Info:	 Length of Testing Sets: 156
+2016-08-23 11:21:40,145 INFO: Info:	 Length of Validation Set: 34
+2016-08-23 11:21:40,145 INFO: Done:	 Determine folds
+2016-08-23 11:21:40,145 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-23 11:21:40,145 INFO: Start:	 Gridsearching best settings for monoview classifiers
diff --git a/Code/MonoMutliViewClassifiers/Results/20160823-112139Results-Mumbo-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.9-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Results/20160823-112139Results-Mumbo-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.9-MultiOmic-accuracyByIteration.png
new file mode 100644
index 0000000000000000000000000000000000000000..532f595c4dfe64597162c05541121c52a3751a4c
GIT binary patch
literal 49502
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_eYq4(y0_7COTdtx)XdW3H6E}g!`
zYfEO}2_e%>?K;NOB=0At%-z^KbKy_ER1qf?=bl*A$JS+nX--RXQae3n@A~@lZ(;rS
zn%$+{Mwic&Kil)~;@<O>=ZfdOtvY9U-csIFNvS~Qcp(^>G9H{C%h31O0*wAyR<O1}
z**nw@Yb$`&6v`Yom5gJ22vK9P?&Jq94yg7*-?nfEsCZwt(H^El5Mv8tCO;Gv0Gnyi
z_jnf1`UaSd*HcEVfCSWjV`gUNl6Q9`r%s*vX7^-ue<uZjgl}(d=EwZMvNG7B?2W|l
zn(yyoOI}=9c<||sU8UN8{{EHTb8nKW_kzWXnX|LAXUv#!;M_UBhYugFShXsvAdaiD
zvhv04?fH8%_2T#S95`^mE&uVSr>7@)s7&x$`r_JJ>08_L`B#Q;tqkc}zyIH^i$DL#
zU0WaDU;6qQBg49wolQS}RBT(bX_F9BBZI1{D(|`S|Ns7e`0$}(`KG<zmGAECWEK|}
z&&bL;bnV)<ds{+7LuXi(YVq*$Cg$YybaZr-Ykj|c>eQ*GZQIHw=e&+(VP{YN`|B%j
zT>iB+krDf9Dx0rqYG@n?kFO2QpT*41ci_w!o@2+3ad2>~_+AyUDTNbcQc6mTYqyxD
z?(H3g$~`?j2`MQp7cK-Wy+3hx`TIlHuZu5RwoHJlwWFse=R%!{OIVl~3ln1-zx=u{
zf1l5<=WBFmINZ*^-?0DeY;$E}<H@ysU0tiD-oKskX6LgV`-S5eAMUt6bJi@WFJHeF
zJ~+VmEw-e@Bqt~5Ue@0!Q$%EJtG0yA>(%v6?vXO(nyw#zY;E**0dev69Xl+}%rada
zSjpJ1Zk?XrT&vK0sqF0RH+Ob!zIc1Xwr$6zYKKplHLGi>_w++ouZpf*xzfYe_vjqU
z;whJe0vB(;ED^li@91&)dLD<kz*~E(w_o~nY~J$n*zd8YFYl|Z)`{OIb9;M!ee$if
z(c6`*t)*wqoM}=1PG*{ZeBbTu`R1$6@P1u){KflcH#et8?5!%Ddpdq^RqKQa0x~ug
z0^9TNw@sTSw(rLy?x~rRCr{p(f8XxUuh;8$6h3CF`}I<Njzu98!-SbLJ5x_jdw6GO
z@re^B4(zS|E+8t(>QKkeCubuuS<Uy*+1ciWkB{;4NE$u)e*b2cRoR;kY4f}XKR-Wb
zcrx|Tj~^8rt%tTp*;`rdx@LNMy>4H&3@9Y+59}y>e4~C#YildWy?gfTnR2P-@7L=a
zwr_V|AGi0x<HyavzrR=3)#Viw6zu5jZ4J>%{r^%}P)t9rCvI=m!5cSbga+*U_bc0H
zp3TgsKR-S7&dAPwe6(A9|LuJe5)uklR#MVtIR{pUuV-L5-Y@Sy->x<xIhnb-x_Zfy
zB^$oXHqUQ!QEH6PX<NHi_ubvy%dd0?hlRCGRCagL5OGqPxZ!cpt1FrwDnirFZ_B-{
zAk?WK*8TAL^Y%S^Y#2VVNAmOYv#_!rJavj|+qP{dPM)lMT-Vats;HpAFmK*G0j}1H
zUtcuy?(gH3mzTeB^QNPYnD*8KaXSha*R5N(Ve3}c^>KSQl)t|hRk^R~E7$w||LwA`
zPW4(UVO^%fpkQq+t)`}ybG!KYIoG&2xoNu5ZA+G@cq|P%GsBR%;m@D8_V&Z)&hgn+
ze{=Ei={Z%qV#SIBQ#6AUa&mas+1sP0?wT<}qRe;ajvWuS->+j<$Y1&O!-t0X^W}AP
zbRN8V)y2*)x2L$$s_YF1J3IT9tgEkjkK60%@hK`Q=IniVxIOv$y4d`f^}8-z3Swbl
zanKNP(h)m+{kk~Ageg;&gdFtu_HLdyQSi5q%M9CUGZ!VnHEY&PS$F-_Je$g<e}8{(
zew}w|iKotfyV_q1!q>+MaJ5Ek%@U1P*U{l=Y;64S^=s?KjfQ{z{spC%imIwZM~<)@
zJa|wix1hj4&2J8eySw|0S+kN3wQ#Ojv0_DNUso5`nYq^D-@bjD;I)*4i_0l7QISEx
z++6(c@9*sa8ZFbOix(9azqW~MY;4@Hd2_Re%Ap00%@gL&=V##H<vn_Oy1wF6uZIsF
z1Z3}ZZs*%r%zr}rLa8a=n|phu7rXbneSUWK;-1Rl9%=KwrFS={^Z)t#cj3~dtPC@Z
zQn{kb{`@G+$jVB3aG+6V{jRE2a`tsR_4V}~E=nCPN-pm1n^UW*sv`DO7|O`XUfi7S
zzb0nqrgM)ME?d^NV1YuJt-N&^Pgz-6#{GS^-iue%+`N6;Sw}4S)|Si(CsR6ldX8LO
z9scp6yS$^;)J<MtiHV9#%*=_YsjSu2)pvH6^D{hn`?lA%`rC#YetEkdyV_q@BF*}K
zA6M*qTo-<Kclq)yTTFzwTBl5(?k*@OXj1>LCTdTG;n`WH-5niC$;p~3DlMy4t?KB=
zxV<gcB;f#qlG4%=7Z*!Q%O%T}x&8k3R#|D$V)y<@ot>P5f_p1IHd&Rva?y|9r=qkd
zfB)ZUYJPJ(TwJ2J<tWzI*H2CD>F8MC+AX#+Cam~3*Q{ByN<Kbv-BtXY&(gx;!s_t#
z9UU6R#*<4*OIPmMGskb9ji+tZmj%cB<%I<UGcz@(PMa3w=f_w2;zDCb$G5k)-Q(io
zbnZ7bF)1l|d3q{#x;VMGTwfo*{M=mY;J7$BLBZOePp3b5`}XX&)wRFBm3)5}tEBYn
z&F1qNr>1CnrG{>O&n>2-U~6l8>il_irA1v`T${FSTh`OVqokyzr>Dlv&AqGWDVJ^i
zzd1{SG;J$CwRCjMv#E5ds;bJ_zv}hf-R5&`tEYYX{Ml1!;)Y^jNlDMk%Y2h>|NC;;
zzq2Fb@-knOnjZz*_W7tOo0^*bdbj(1N5_j}z0z0K#afG|w`JVjRr=)ROV6oOr-sDE
z`JFp=?#aW4jxH|C{pKp!+uN^Nu|h#<(PVZ1NggUmw{xzp61{!>>FMc{`}@yZPj^=|
zG@O`|lk>_qIW5g?x?XJ3{KJP2XC7+d{JJhUxTePD=dWLz&Ua-mfA(#C++Hs?H#ZlR
z{dQNcTmeO)i_4e!|NpduVo6n1b?c}9uU4<m`1R%G)=%|cUx`kgK3!Na(9@H%(?w}l
z%}*o2ljqlN+-N8&CMGoTPgOxt(V|P2f<TU27~pZdUtV2lQQ%^?i5@D8CQTArwPuZq
zyuAFcSF6|G*z|t?|9Kr9)AVA!w8PdUJdN0rA$WF<<>ZczKY#ybzPz;5#pTO`gUpvM
zU0S5S|4-1<k3li7U0mX8KC<54e&&qNrEAy1YA1ANTwN9Fb$sE54HNEFzqg&5xp(j0
z%=7bX-+XRlW<PQEY;Q-0le2T?*;%GJH@9YAUy*)(o{P(uv*!0NOi*;zP*7-45#r>P
zHtQ)WDhkO<esN*pmV$>)N=j8<UI^BHILQ9yNBP@ZQ`64R^L6?3drR!@vN!wI`fWV_
z{oUQ<??*Qz9@en5oH=LCoEH}sI=i@-)cvWrwX;|~I{(d$ja$mzMuD@zr|RX-?R+Kw
z|J5of{dzLl|3;y8(Gw0!YwOKhnAvz1?AT$U6l8Z@=DYvWkLlqJ7VqA-{rmrQ-h&4T
zIrsKR{{H^{c%Q8Gl(=9|503*&y{9Wo^<q2`&$?p0_Wsn<(<E#v3>Xd^Jjhu7?hYdZ
zsPwq8A+e*c@7S4{#v2n4vn~Dp^L5bP>q{2?F8%T%FeNqh;LV#eYnLxv*jWAj-NO$L
z4|DMGwe|J!F@Q4M)=z?+E*}2=$G^P1{P4{i9(nosQJFzOL7<}H++1ts3EL0oMQ`iL
zJ%8{Z<F8-8-n_5>|NDOaR{nka_N_5Bv$d6d`SK+P2S>usY15`X+J3+8@ZaCx3!k5p
zt*ENnl*-h|us!c?((h#to;_<5R`+{wZ*TR7Z{LnxT^&Ag-n_meM~<-dW^!_IF)>6$
zL@-R)e(d_4u%IBJV?C10jSdWr4h@Bmk13j&i8a*NoVdC=JTW`_^r=5@ZW^CRF=A+#
zJXx5BmzR-YvYPLz&r@f$O<BIuQ$^^^Ok;NAv@<I{-wIq>`T3cIX_g4Xg7WwGE?m6m
z7!@V;=Iz_5mo(Qcou(Uo=;lqydGqEmG(38g)Y8_bq^rxz)X2auXLI1{>hPO?U%!0W
zxh?lL(}eF$Tl4SFi~TLs$s#E!nX~3xhoJI>O{v}t2Y!5f{P8fq{e#K=c7a;%PEJf-
z-rj=Z;_MFhlowf)dwP2Q`1kugBZGX+2gcW|L8-5=t?lUTb*-$lJay{SjlW;Q6(*mY
zFlSB=x47Pc6DK(C*Z;S5>yzo+oPPeA*X$WHIzD_TU~pLOH`k!zLxPH$+NQ_<AGXUg
zP58c`<n=Y)n>TNkep~k9<x59*cXszanS;I3<_{h{TC}C+|G&RGYJM8MeyXLd?L6Bo
z_thPKb#?WUx3@$a{`|VRB~zH;!0FT6o72x9>y<XYu&XqC$<n2XFD@+PwRDmBzWtcC
zg3NbzPCmZ25UtjgD>bX9IyQC~<lnRLnPc&B?We4Jdn|uP$HvBHHvI09G&U%B;4ov>
zEGKt&_OP(9{pa~YieF#ToicUm!7Eop#Pwnt+S`vu@BO~s>-)RAA8+UHSG2U0RQH>6
z;LgtCiPNTCTVS&)Jm<>Qt2dp$%?_!bprDkIovmzYx;1PUGdrJyiqO@ctNcpey?Yn2
zA%RiOrlR4%0f#;R|NXY8`(sh}?`L|>ogE+7o?5zW*|IJEOpOoLep^|!bZUn|-Jc4b
zxII65Utg3ycEDtt&DV?9uOGj=yF4*BmzUwh$&-mwPi()sIo*HB^5x2!nw-b`<&WRl
zSzP$`mT5*thQ?jt)YR0k&zxNXf`bo#dU{$=UY_67)O1bcX0~<f*6k>I$|WQ$ys`Rw
zUQ281!&6hWf4tdze!=S1-7{uLtXR1+@xlT}uiGmsZOxwi3c32h!6jmUo$ar$ufwxv
zIxP6}tR$9Ke7WCTCl?o%b91fR`(&+??(eIO*qG!x_vs41_;~r{{`1r3Z{EE5<3V=$
zD>J{nySw{M@z>A4mZe_1cI{2*&Ib<?&djl#Ja_i5ZyTRIZ~G_LBWo>|e5~i7yL@d(
zwxpn<q9P+38{5}sAI)yhGfZaN_xqhSsDOBMq%$BqyneNf<-7R}{frNH*mta3rx&&^
zX62{3PYyP-D=R56v9hu<JXzZqzCMnXVN3RPKK=N8AztyH8#n$+7Zw)&^5P=%WHsNU
z_aFAJe)aSDlP3v}j&y>$R=2ifGW+}ctEj0x`t|j-&e@~g;*1P+b#*uP)mqEhR<StT
zTfCqmAo$784-cIgKHcju&A!IK@b3Qp^;>Gi#l>Z8tEM~^78GPOH{X80^uY3+J1wKO
z<*W>uc<Rg<m&8QHIdkR|{Qj1^l<UM)?eLIuEYBW1XplC~Q&3f9-CO;=ZT4*GYwKdU
zYinzlmY){A_w3KLqj&Gh-rkn$oSLc{x4*7eH+tKK)MhqbCm$ak>wPXQr>E<0e!Bn9
zC+<y~HZd^FHp^{Vz52EF^yO8*%-0&%{3!VI;V}P-RjUqdPCqXoFW)by?8eY=$}nh^
zO~nU>hCf!npUuu!n0)fXhlkFf04aZWC-M8`ZMnCnT&w>3%k;ITRrNQWPoF<0rlz+3
z{QP`#CwEM2?8Lcqd(CohCH(mCkb|H9_}SU!fk8n{O-)Ro%<JpRyZ`Su=}D6&NtM*B
zy1lpB+{@cLFfy`JH+tKOIY)CoJUIB{+3frqdxL|54jucvW9QC|A5;0|?T#F5W)IC<
zzF+~v+uPgS+xcVz;^NkYNakH%C+p?q^=i(|bH|Ufi|fTC7~AFE*ubdl-WM{n?8k?P
z9i5$t-+w(jJ3I1L;^DT$`}=B7oImd#8Y-%!tbB75BQu+Vx_bNF$L)NwO#vDqmHoSS
z?|$4aU&o;EzSG;oBjd`O{I2Yh6B87Fe7Wp@bH<WaZ2WRPQ?<i4B?kut9C#-k`rWJ6
ztzWL!xt%ZZ_qVsbuS%co*l!H#h~1C;`rqMrk0i6T_3o(5rlux?vNsVscI<Fan&_Z3
z@xhamlNlK5>+5577P)2${F)ub;OyiS5E=RNTI`>R6DNM%Hs$!SV~1|tl3KQGnS@~y
z3lkI5hqLDQ876FZI)3a}(x)dUCwQoA*sviX_{_JLm)X0;beonhS3i<u`0MNI_T~Qb
zwWj|3_4W0OySvS28<l@~adB(f!i^g?fcp7IKmB|<J^lvsiTAF~&dlumaxO73GDngO
zTbvZtd}p;>x)fCM=7u0Uzub{aOTBN}=|yaCc*;Dxt&L4aM&`m|cYc%XYdm3LVH(=n
z&AWH+KJ~V$qGG{{6&ymHEuj+kOX@_I`OIXht*xCgbLPVM{dH^185w?kd)xi=^z`Hh
z2O1}Ms0eVidNn6he}C6|b91`0hRCBIA0OY?ka*a7`tz%+!!KOEe7Ie{uH*If_0I9}
z^L-CTg@&?rx*TG&>zB0_V`F18FfwY|yVv&F`T6JBUZ$s~@4xEsZOaxD3oENl+3Amt
zbQ+kNw$7U;mv(+0Z+3RJg_YH{s?axozu!Op^z?K^p-zL!PbqJ1ZSCI678+YrWVB}O
zTE&ST7q;ieuZi6)wl-?(p+l|Qf|8P)8zXvJxy28iJ^Qvdb?xgLH*efHaQCjPn3&jw
zix&@md3iZ|>1_LYyV*w^RfG;+yeMd%cZY$YrM>;}^ZE5{0UAeIIE7#7oNi!bPDn^#
zNKQ`v^7eN4%czUjuB8b(u8?ZEw=UK?=gy9ayld)zebEH@Wm<J*<-=QBvl*U<D%IE5
zbF?~fv^xFx`Ez0Y|9=b&&d$y)t*r;|-IG&OQ+si1tG1fY3<igL(m(%xzkm4jX>OrT
z7HRXml&ME%{rmgA{_&})+5(*}A3l6Y_`Y=2<LG$h)}+X8G2IU@m(O1myxec=waD#x
zvRAHNRTS$6<y=q?lWo$;$?C}`C#iZhUwD0aS7|nnjD<k$?{A@1e|yi*Ia=5tWx8c$
z_v0P==SUi-Ehv6|?#G|c=l{Q1R8a327#L_#_9kNO%d-Dk%lzhcZA?DC&v4p_|GOSM
zNU*T5NO*N+Wqn!T4z+;DNX|}|Ci%J_j;YQf$Nx_LXs96b-CjpupMTxDbr&vO3gU`8
zQTX5cpQhu@iqqfiK@E(wb8|W!o7p~|Vn4p}KsC~kW(^OXvCj7g4jf>ZYh51J<yi3P
zi6;jO)0ug;(hMIi``ag;n`6n)u)F-dle05(&`Ob{jS@ngEbaXAX|MC{?h<8cWUwxK
zlW<?ws$@mjhBa^A<g8e|`tfP~{eNP=FR%K!X3d&}yu7}Xlhrq`jFr|_QDIr`H+PkJ
z@A~!nMn*<bdwUs~*&MW{Iw?(bP!MoX5!!gO=bsP1oK1qUsG#69oybKZ+6opHJ1!<G
zSe3kJxO3-@+w`}wr;TfWl}JcPI4B5g$V_@&^xy#FjF~eJ-nb#b$jGRnshL@_Q+kpA
zd^@l2H{t_>f`oE%a-{aeMMX(<FTN-++dMxl_|2+MKRzaddj2<VNGMI@*#GB~_uS0$
z^K7{%dawis2Y-2gU%p@7KJ7GU?1Y`2ea5U=hYlWO1T|GpcW@*oCK?zTCT{lqJ8{mO
zITseWa+`%3Go+-XI4B4xC@3&66g)h{%EHdhJb_<9oP$N6`=~(o(G6R+gv`2Usj11y
z)Y!nP!xA#T|Ii_)EqQmP7A{;^|Kwfao&WRf?QU2d|6405Au*x1m-p@6-P3E$v#w}t
z+PZaV<mR-iUh^kUc9yj&Ntn+sXXEkq*4D+VR%t0I-P)AOEh!-p&@X4ZV$q_erG<rs
zfv3_BHnD=bg|^k-KrxZ_Q%g%L<Kdy!CF|Gwx3;$Kf4%LW2UFvMd!J6FY*N!XTOS${
zGGW#%DN%9p&F|fMrCjgV|F2#A>Gg$$%(gW@KKN^&e|dSirn&j_FJHdAxE^1>);KmX
zQSs%A7XfK$YJ!5kGmToGot=ICMUi>S<jKOI#NfH@YD8yeXG(JN<p*EaLHd%saqoSP
zr+j&F@ypZc@j`+ZcNRbQh>xGIrLCR4boHuLi{9PceOZ71A14<V?eKL=4jgdUcIW2J
znMujXogEq1*Tp`0@Zi9-wUL|Kn3$Mu?EUfM<72k>?#>pLmJ@q>d0X4tH@~<0{l*v+
zS`QDmU-#0Ve9}WfAi&d;Q&4c}vSpX5-|uzzpKqtC^waY7rKQ}Z@9xax;^OM?`1-S>
zqeDSlTpZM;ymaZ3eb#r2clCVl86WN_H_5wWAtteA!-frE0bAEbZ$EVZe*Dv2d3kvn
zT3UxbKR<u7JZYmu&`Od2|Gw`JT^Af0+NvA9O~J-SCinKX)Q`^pIHaVcK!d_|KOQiP
zZFv9j@o`Yy^yckbMWN0O1rMF3{d;zH_J>cOnmkmRB6QLYo{x!%DR^*zk>Qg<g_xMw
z1h1t6oh~{ZiQnJdjm&9Wvqq<)qQXH%$Wd!*(*J*dbEKIX8MMRJG|ZhVTlMYDN|7G_
z#w?a&r@^DwW_EwS1V=<igIaE)qM|db%k@C^PW2KL5otMe$cf?84>3hW#SPoHw@2t4
z+md;CO4Uvgw;qXuNx3cU?Tb@SPpkO*%aoxqrmy(<xsAEZ4jCC5SFT)n@Ztr>%8*l0
z$@zD7Fq)g2&zLbI;Yf#|)^=8g-{0Og&zvc#BGefa!{%`B)|<zVnXRp@JB}u~xVbU?
z$oGDCsFhoBqDMkj)~RKWYp;K@u(Wgx5C7il$iXjbb>y75!u+!G=jY~rUANdPB}HX-
z*^wl}?xgk0moLA<tUS@9;Mp0;Z$EErOy00{D`@=g-`Dl^S7-j8r0SiJm&dmfG#_xP
zYC32DD?OckqDPBkGuy@+YF)*<6Am(onLod?vv`JOv6_kyr;Czc-n~7X4)>Du#JUA#
zWOx<^a70H(i``zlOxeBfz{!)GW@csu1qA_JUUFh$Y|6^YH*Vchva{QFuJ-1>TI)A&
z-X!Ga@~#Z&Qg-j#kX-TgRcOtZi|(bzHh1**AD^Nb%)n4qR(9dqwPW@FKF^POd2YUa
zzgh0B0~ap}HvFl&wYywjOI!Qni;K!J`|IYi%JFb;IJmj7y}P@cogrd#8gJOzsH2OT
zulL*yx_fG>c4B5Gr?$3skEAi1tE=mq2+(Nn_3Pr#o;`bUe}DbnMyBIEl85W`SFKvL
zA^p4@3me;}r>m+KiCo|2qU3mcTkh1V=G`SPn<gr|Z>sQJ<>Km^`0vlpf`Wn--)jo*
z*q@sp{r};P|G7Aa@?JCE+?2}w^Y?Gzz_)U3GiFE>m6xZ_7tPGSzt4BBb@{UJ^>J5U
zF<RFAFv#}&^KSQh4GoPIj;ZI)o>lF1SyU8x_LFAKpO42)a&MU^DSi6#Wy$>de=|Ft
ztZj*li`$ZZUT)IKl$4wtpTfezoW1Gi=Lrf1?yvis@&Dgn7nda~S9<o#*(SZ#j=Imw
z!=s_A+uPCc=FOWI?ecXBN{f1WctE+e`ujUU!HKhGN!9*-yWPd5<nuG%tlQgi*ItV>
zH8rjJ`APNnoS8E{v$C?bWM9|&cK6a!@64lJqHjJga_xTcxZhq)Y0<~W$1k6oYkhOm
z#^mFdZf(uZmYv=!ZGP#=$;q7^C(fVmuloMZSKV*Uf<=pzE?v8}?9?f*Q)kYo<mTpX
z+kZ7WwDXBA-`?u)%dW4F4^B;0y?Oig<$1Q%S-Gz-E_T1NG1>jpi4zJ+i@v_TKG{KG
zK|8;EkgF?eWOVfA)T2j_rX(ghhOdiJoay5Ra$wF)qcR<<vNs-}+V8Yf@Vr;M%HBrh
z^PgB1x*9ad_NF*7QE~70d(~f`t@L_*ZEYlX$yd-Y-O(h&?5X8NMN0nu{;O84TJ-2q
z(j*TR5qbG|?f1+5=TDk8O>A%7-&q|UUf$lIq0x?xPoF<W?$Y1)qv>t;qg_@tKMVu~
zUESP*Zg0!Ixh;H6#KCvxj~sCk;$SKH^(9kDsjIhFm7AM;o6kk&NfReJ_Vx9JgoL=b
zxNOhAuNE5{JLzP~lnE0YlqPn({eEJi^6NK@fp@B1T*}|wS$J-)_2zqRzp5PM?CX4T
zZ*2+um3Lx-;+EXo+oCcbKYDcH`t|Ua*1Ed7yXybj&9$$e*W$GBlF`Z#ujT&pmpwl}
zKe$^=H{<K8t10Q}?tFZFTIV?hFZ$d6b(uD8+M9|VdHZ>Gzg{RSP5RCvEhV+7y7tG1
zhg;IlN=^N#@$Kf>v%NvV!7m>iY&NO-l5uNGrtoXVm349=-`gHVsH>_@oH|w1x~*%=
z&!0b+EMDyV{r&y*SD7bGo94#G#^&O(rTl$dQCV3SXrx>HQK5syJJ}2WxA(EKvnPLk
zcJ{{pdi%0BHx5>DhiK~Pw1j9K-JE{@!<(DND(dRjy^>Q>K*dht(^FHoDv7$gx+ebl
z@sZ()?&ieA#EPGvR834x@2@(uYuBzdPk-cUe%ric35%zvXT_%{oWIxY*deh!@9v?s
z(c3@#`kMXC&Xl3#&5ey=aqr%}1C3Gr`Sa(&+qbc==e}IDNNLHkWt(bEOiVzPt>1jR
z-USO37!v-^nlWQR<mR-BFE0dlmAnjkZ?`4qrjW8*Pr`g*A)$b%sIDD5EEpVIU0K1S
zVxTd^r>Cdi{CzhyH8tbzuC1qPBe!OWYH4dvoH(&j)qC25Bb~w;`ugq7&CD!JSLdDy
zS$sU<#015P_j|uHoKQ|pPffiV_593C;}=&~i)%k#;yL-lMR$2dhD(<(gNE)dHeQv6
ztp#XkV3<~(nW<U#`>lCIR1^~fXp+T2?&Q6T7X_F5&p-Cz;bH06dG^hZZb=#>Fx1r4
zMD(AU4Jz`ova&L+t`fET^TAm~O)crhhD5JStCANC%*@Oz?Cgi{-j!u$<4L%F<=Wb4
zL22pkPoIjWOr5Ifx;5|iHr+jY_cAi<t@`Tp``g>d{)V+{b-%s4d-{^rx>Sd{_kQzi
zB>UxTgS3uMRCb>*b!w|!?XL}=7cE@a`1|{NWlKv*P_P9)R`;LR<2hMv<(=ni*66UX
zvOauxxc$O~3l5HsjPLI4?Uu8x+H=(~d(EutleCOx@~n^F?-m*=3L3YWGe^e4%IeUa
zJ2KCnJ@d*G78W)vdg4*`zqPF`>C20YIXky+H@~$to1J09_U-G-bGR9L<n85Vo8>yi
z#mU+I`|;R(S$Ro`OJJbjySuyF_f~)3Bqz<PtE=lX-%gfWOy|Iw$jwuxxw^Y2pP6CE
z@Fe+;le6>0nKMtmOYHlt{#aC?@3$-qJG-;i)I(RUeCg$PeS2$bvS>r<>1l~aIs|u=
zz80%~5DXetcTp1L;o-Sa{`2Qgi;@=tdU1O?o}QlG+@Ub}<c8$qefB21J{|2AH%vPt
zAs~3=%9VnDe=1F~ulZ=6oz14G{pRLocF-iTr)Oh-KmWczpS+iPaR*o@M4vsc8?_~&
zo|}bfspFMZmzY<CHYzBsiQg~x_t)3eQ>S%Im@r{M$(zuZ_x4&dD43avm6eqhl$Re5
zkFRa*>f$o{5EFXOH1xiFY3bLf-=CM&ba33dbxTWoTG#dES$W&{EvV?#^soK$_3P9)
z<x}U*9b=cTx$vMyNJyyQ=cm*qOO`CC|Nk#yZ<T2qpDY(IFYnUpM^2qO_3Es<uP?88
z-W`X60s~MZ=FOX)t=ZQf9ctyaD1OG{H_wLC+S>Za@#BxbzP{ek(Q#mB@$(BClilCk
z-p&u2gs3#lzc=Ua+I8#hJxC7!Y$G7JXV0FHeNjJ_m9FOI;Bcs@u=w-m4+F!jS+nwO
z^cwzzu2{87%clO{98-lSPo6l$$L|k|s;#Yk^5n^e^ZN1oTs%EFOG--@u3OjF&M&{|
zK9AC&zrVj<TpMkkk)6Hyl!C(iGl%cplbfy=yDF5i^0J-zmkNGKBbLw4&N{!ow)W!o
z{QFhf3RziM7S-Q$qPFF9u2`YbBWEimDJco+6MC7apOcZ0mOgy<?%dk&xVS!9>#_x@
zr>Avvb}|Y+1o^M8@7SlOr(f$TAO9=-!B9cwyY+>uSC5{Ws=cx3=_&JNYyT-oh>5Y~
z=H^b_%=hxuD<u^bmzVb1M=K`nE`R^%++6Du=gzs+)YzEi-um+UjYsdN(2$UXlao{{
zetb}DYHGT$t2BGZjvX3PHTCuRckbM2U})&LI&5u3KNEvZ^*0~Q_p4TErKF~Uny}yA
z+>|iOk<g3Tv0%zF-`Qppyq4bBQ)$egU~DW5>XJ35Z4UZ6A^!93gU#%ZXXo!r<WE&q
zRb3-wTJa%aP0UWA(9lqZhNh+_t7^tOckY1N(-jpJ3zCobDJZ?Uz1{z1qRYnI($dl`
zd3Sf+`+nv1qZcnau3QQEc3?~9WwkK7;^N{hIX8n=KG!uip4^+sc%UymEKCfPd+lm}
z?Fp`wIs_ddOTE7#ky%=r;ly!{*u7O-@7bgnNrIM<WM^lCCKH_7coHAC_w@9D@(07G
z$eCGoA$hmA@lKsORYOzr;JLZh58u7xTNu!x9llP%)KoP4`nsd5!`FX!a#GmB(o#`J
zhv(b3Z#$~KYH@LKUD#J!UGm}r<I|^4b7CeRy1nIxc1mjMM#-gRZ*R5c-QBe?c)6cf
z=AJ!!3ckDuT*|dK$^P!$yP&aV5pnUwt5$K@|M}oN_co~Iv)Up5=BC!(*$hv56~4~>
zywJHl>2Mn_LqqZNbBgx%^S|B+Nzcyie)K45o4>SKPQ(8F_E)Z6UATHR_rib^$9^3-
zdi3Ch3j$SDRSXTF#$%!8&!0a*lLl+ntjWp+6}*Log&KN#Yzp#+AH94TnSS&B64!3A
zh}~tnhYlaUKV#aeUe(zKiA;0m&Yh|?p9?fj^n8B(IukiR!?@S?_Ex{y{_D%j%QrTq
za_`Q!d^f)*98}GQ<o8M&r}4ab^G0e5pMreP&Z@6jQ`b)Z|Lgkx53jCjZ#xGXm0Z2B
zslA>3)2C1OelRSbFnv1v%8;n%pB61r@>m*V_Tuxy!|k9PeQR4TH^YsM$?QhP#y3AL
zbZ&oib8~t?c=+*ue}4<g%JOP!YkQ~&ef!n9=#SA%p2x@g(@zHn2j46?dbR)bx3{-9
zW?$FqIGV)5!lIz1)wOlT{*~oVa`%G<u#O}d=H%uo3Uxks@!|v<>-y;Je6L=;66ijf
z({<tZ_xG!9K=t*G^7nGDKNb`hJ6Bfj4D!zVntOhxG5g<NUz3~nz0N+mZe8$lzZ+XJ
zh5!8dqcG8<;QzncZ@1>QwXyNZ*>vpKVbO6kiKErYXO;=)(xppt{(kyY<e?(OBVoYs
z`uh6x_2Q=6Y#M5+Qf+N*ZR-9=ynFY~z}PtXw3tpr!;2Rg44>HV^-7zA78xBob_}%q
zL)t}u^2vh7$9m28IfVxXHf~HlzUk%E_3``rW*Vn6F@P4`)ck(CeS+80j^5t2rEh$F
zd>%Y_z_2lbho7IHN7iaf*gsZQ)(_vmw|l5GO`R&r!o=9r+-#U|fI&h+;=qj?61Bg-
zwQk+I^->kDW!$uB({Ai2RMyee{dm^={tB6n{G6Pgx3{+^A8O%*j=u^A{rLGa5i+#7
zVf*%U+k#bVqPO!gv-7#EkK0@D`I+xhx#iHYwNgH(_`Ox8K|w(YIXR%3SkcUE+FrjM
zb$_eOUPLJfB>evNmV=kKwX>5`NLcve*X!|{Ys~WQfF{Of%$V`ucK-g<$)yaR8lSTB
z$uulosu~j;D<~$$wlN}Rwa&hM`+j^l%%7N_&#$emJ!R_D#G9K^^R2FI4YBwC_wSz<
zFH8PrK87_>Te$)Q11ml~@m#w_QBm>2g$oI<UEJN1udE34%4~5`EGa4Z_vx}zaZGT)
z;x?1}pyh%8gSE7^FRqC+24%|B)6?q93bQQB-^nB;B}vJ0KdpBS3KDvDc6Rvc<Nc2<
z-p%jmXMAYU_j`8mp637IDf#*Q)z!c4cT30|FN_g>WUC<a-F#!tO`|t=cTeBTv_Rs|
z&&U1t*M6^JJ6<Sry+lb_Sx`_g@b&hpzrVijF*^4*8C0NO=U`)F(@~f+bEf3%b)pRK
z?(OAnbZD3`LEu|#Vd2J8nvuK9-}CYF_eb5=kKH9QZQ8U69x4Xr=IhNXW;sPfNJxjw
zo;B;#zr2j6$*-@i1uY#}vvzG_ULIekOVd*C>HDtoSbd%7wKPXzrB-ESC9hP*x~$qx
z7p9dVT*}JITe7Zpu}+z7obI>y^IuyP6_pLeGv>~X&Hhku)}bn2TUU4OHIrk!U-h0=
zetjisV{7~I-|zR=r9J!-Pfk)bFfnPFI8jhcH|oj@Bl8v|fn-ll&&fIKHy%24$e{e)
z9k%t`^X^(Ly+3Qaqf5l56wkfJZgXv`#gry;EL*nh#r^&Ea`tsG>9;`X|HKInH#av9
zUfxitlv<PlLa*lw7c5|KbaXT@G;CbDRQ1rILsDDhc^B^BJCbC0B*{=mS9fFXZL@7Q
z;GsH)m)m2m{tb<Y=(x5vTG_-T<mK<KE-p|z%xR&3(nJoYg#!0$zt26j$!DHT<kNi9
z^)&_mHR>~_2=@J+ZDe4uAp80{LBWfM+xb0%gD307?eTE=lu)-ediyedyB`ggE?@5K
zSg~S72MbeUkX&bHr^-YR4|n(WqN1W3->bj9QFM2A7ZX^!Y15?K)tVvvb39b|FPIfP
zaFDVnNSHkJVeHZ+ORh-f1TIYbaA;Z4qa&QJuCAVbsXU+SN%-_xjpt|WvPn%%E&24s
z)63U4^`O}6NmHh{C{64*b?VfLHEViQgg9mG>;B9=_0LS?pu8yK(|@bPbRrz)*Zs<D
zz8<~1Ot-bA#Ux{HR~Oe(g=*8#(9l58Ae6(=soLQ|2?+~MZJ9Z9=9R74;bLnp9zWi0
zmUqX)<x|6CD=VuhGiQ3bxCAfrSy=h`*~ZepfBtCL*vzS|`}3o)`P*W}EH*}8U*DzQ
z?^XA+Zu9Z+S)v!aE8zLLxhoeeXy^#JA1^2<_~g+er>Ll?kf^9r`{H*NsrJfPP696^
zdhzx3^*7(=Ki+Yxf}i8KsnFm5x4UC^l{Btgsrl~S-qX`ev#;@des=b7`uy6k=f462
z1810I3N<w~O-XC7{P2L$s_e~)M@<|oOkzHK41MzUeRj3K4jeni_U+p@4^Pj;(_;E@
zJjuz)H*VZe(9wBQUitOa-|zR2Ut1eJamI{}FJDR+KuawiJbT6#9UUDJ9i4oBo~_Q`
zh0g5>+1cD1BY0MZoLVLz%E6+cqr)PY`0LBd4I4HzxF|LD_VS)OeY)`bJJ1@~#;3(^
zZWu;HM?33?9X@)rHTU<GmBAafY&o(e^Kyjuv)e3TJzZU(Dz1%3l4+txi+1?B2NxH+
zb8v7p?A>eYq6Auac;?dmeYMhdc6Ok}W)V7WDJe@%)quu%{`{$7_$0yH6*p(oCZmk(
z?8Tcl2?YiQ>b!{0$k4cS`Lg0vuc>LtxAs<>LspBOuUcNr$IT5|N|%$HD=06&e#@H^
z6O{{!ikf<Rd1Yi|BHr{aS)u}}3fbA6HAD_wyEg6YkFR=9Gw<!O{Pp$qai)V;)4#vF
zD`8t@GRr)_@7dYe$#-@XYNa=>@(&FaUFJLc*gDzh=;)BJFePnm?pwER>D)a%U4QDM
zD*}RH>tZ-NU6_J{gO{#cv|3wN*VVy+p~Xq@NRnYqZ7n0i&Ye38N=sXNdwF$qb*D0&
zb9Hq+c=@uhvU^`kYb)!VxpNCYKlA<Z`}g5HcVz7B>~hRDZP;MI!oqUk>Q&LSw6qW3
zzppR0x^s1P_~Co^<n~s5ZCbxxU(T+E!{Hv2ynp~hadEMQwe@4rSoY_Nv-51F%gV|o
zcr7g`ElmyfY;S9G^7ZBI>+8$;w)quw0B=J>*TRJhZ|p8#AGAia^~aBjAHRQZz9A93
z%qQ{r*9!}sH*DUVym8_(zqzNT-Q80uY@T=LK#!zxL|p0DMWUjjiFbAsZrHM=W$98?
zP+w`=8vprrpfTAwbLS?eq%4^-U#shWZl_Drw%psB9&?>|{}j~hirg2{+0}LE&(F^f
zA3Ru4^53@N1H)Xa(xmmFpphU0Q`6Mb$w^5!ewGv#CO%)gXc1HJGM~nc8x3V-WDKgm
z<xJiCNap+Y&(E*bTfD2E+}Oytbm>w-!N962D@jSojbaDp%#nF@VIlL$6r)!+H>=OJ
zEM6AIf8z7=^DC2&_k~16cwAo>t6W=KyY0=z#qKG2d48ZJbr%=A2bYwXWM}S1T6^bl
z@7IdetG%B-eOmJ2fuj&tD`bplv0E=_On<e`|3+r^S2?C@Z!#}Z5bD&hvzr&Ur@~RF
zvqjFf%EiS6G!V0Xz5mXgJ4=3l%e{2*;=<e8^Mxnwxw>(~h6x=VEKH1hYkp2z7qinT
zEiFwa{%FzBLgh)@Te31UH-`O?wJw{mbEl=?$!hairrF1;<|rvCow$5Cc;%W^RSssk
zw_I{>Z(F)%jn22Zvu8`swJdJyc(V4;yLazE!&aiAqA9t#zLJuXE-oQ4F+O5qVkJ*c
zO^rJK^f15ulDXF9L8+;#GiS`0(Avs6b;^_r8<US`9B5$7xqY~uUtOuvdv$MbZ;)K<
z?y{vfH>V2=UYxA%zan;b*_S6LCr91BwZGoJ(?#i8k!{fvk84h|A){w+{@mYJJG-Q`
z)KhJ8U{aD2CkvBR?JpBS!K25HO=@jD3R<IQZ2Y;`R^i^gdt1`a%YFNKppp5>vu9!N
ztxRM0R7}*-)xG(Ax_<nsJO8@H^;bl0PIFP&&vy07m5iI4Qgw2V_sPCI*v!85Q-6QI
zdVGBRx5$e^abaP{`gZ!LDd*?s|N3}bzSE;F&${f5$IhKQU0g&YBs`8CJND(xO=Bgc
zPoF*|*)nm9=`7HT-L)a?yXR!Ji(4`;-!O9J_we!IX>DuURFrdX&rCL6DHj(P<MeY&
zIEB?V{53H&T=_XJ?2nqDVD9~WbKgdvz1J}7(W6IG`j`bLPMaoncYpo<uv-@{1Vn94
z<NaOp_LeCq!3hekjoR9^%zys5X`*6c;Q1LBm+J5DRMpkhxi~o$SB7}S#l^ib-@44Q
z_}PUU8<RUbUR+%ro|2mC3R0z{q^_=BmOpjMlnMLx*~RWESs5nR_1d9OZt|o_Cr+K}
zN->fY{QKSR#QF2;va+(f>i^fRm7B0-i;0neLBiAWva+yS??IJti<6@7ER)Vhj~+$n
zzg`)<95m{yrKQ!;@#4wJ$tpsf9Uk|ZpQ10fT=>bN;Ld$c&>WGQlwlIfnX_jVMYs%;
zkM%@dEWCR4DyYTw?VWw-?DvVs`(!_S`{s6gTP|oUUshID#=4BB!RFrKUTO0U$;bI3
zA|n(3{`v}9d5~fx*(Yb)wPuZug|)S_(!_)t8xk*ExByz~4q67*(7+(}vHH`Klcm${
zo<F}n%wel};FSMoW*YA(e$KaN?_R};9uMBV18pCO-k$gHNT=|JZ{O11`>tNSdh-v(
zuCLW!UNoLM<pmmPGBh;Q(AQtTbuDOR*{M@qM~gwLn)CAXii(RF8QR*~Kx2Ba6@-<m
zYYU2sociT#8BQG6pJP?Z1zN3YYgqpN-qEwO%|U~GU%r%pR%t6u1TCb~(A5pK)H`(c
zEH7vw*HZ843Awqw`)YqHsj9Mec6OG!IfuIn-gk|TmcF~I)VZvzY^{l>rzdD$ENW{O
ztHVzjdCMY}$jHbSmzVRa2yrqoF)diQ@Zh8A5>ir|5{eod8$sPGIoql)eor&A+S=MQ
zbajuma0+k8y}gaiHDkU-p%TM_^z-vx+}*uBD5Z?G)1@i<`ntqpJ(3;${pou(rcRyu
z<H=<Ii1qibt`492=-rohccpjj+QrZSTFrm%T%W7p_Kh1I-Q3u`U%!6c{r!HuJcB{z
zB^4DlwQJxde0}ove4Q>#oi0tFMapxJKY5bkGsA$f!Dd(G*M>e*S<508K0ZEBjsEHB
z>50>(E!#3j%7ES1`O-e#nLcfwpPvT}+JU;#%Y0|IF*38QxZ{_Uq$K_P(lTFZ7It>+
zqxyj|&C_(Fom7ObN}7mFVE+Od=$$@Y98_(rSiM?X_xhzvhrYbLyfNWmQ`BoW*eKxh
zkJr{l>%3UHbgAm5&6@?~<oIf9Yg<}dH_9FT`}_OjS65eq=FMD`4z7vZ3>vULkz%Bx
zt`2gH00&FPwKbB*dZn*VIDDe;|K=Yidt|PA>@I)bwsfiLq)C$=Jb%s}9v&VM5uve^
zlZWTXEYs`__5bUZE(im4jsE;FtorhTQOPMVP_TL`^929dt7gnAIo2b&Cddi2rXrxL
z;;sl67uSTDGdULqbXb?abI=fZWdHxC|JstTyfI;K>UWpDEqHv47nHP4o;*3jJYUXl
zzFq8V#|3uak;K)jSMUGYoH5%h_s0Fu&`<#mmK`N8gVu5~t&82wmYe%_d)3y{ckjw}
zi|e;7T&QScW3yo8%FZK4TtFKvUOdiUyz%!E2bT|@J{_8-8=a-Q`gP-)eF|0Yqvp*5
zk0J)2IeD^i-@dx$PoSO-Xoz~rk|he3mXh;pze%2(W62B}Mf?=Xe_%zx--FZs)n8kv
z8@(;z?ygeM^1nAXHydVM(ZF0NSo8U;dBw*^te`Q~w6n7wKJK><n>A(OvyE9NHU^jS
zb#Q=&ac^u)zF*<<%Bub5&6}XP$)Moih3nV%YlpAXa1~g;-U-B+Ge_pz&!?xSYiMdF
zPF*uA^R?CbU%!5NiSB*#CPz#lFg{-X*RNlo!h_)_^WPU27Z?8j_t!j5-1Pg;-2Uye
zW=Wl!XWKnZH(E(ci)*oaznhzz+uCD`EsLKWxN##wGa|9F(z5K$jYg0PH8nPumh0=|
zm94C#PEXfoSE&Db?dVZfJv}`M>oT1$U%v*1gs><b`tkAc)VPl|w`(8o*spz$`A}i+
zk{|qc&YtB3?GJiBzdkNoQlbAx^j_1qpPrrutsTqD(|dPkXY-pkIVovrk6v6{T=DIV
zq+a~KHCGnRpEr+hrVpE~t!+hBm6D;M;Pv(K>8C}Lb?)4~D=062{@>x%mYV~Uzwt86
zv#agm6jlR`?i!eywk}?*ylM01iBqN=xwK^IQb)DPpr+yRKH0->Z*ONj5p5a2w`%E>
z^tw8`uCA^J@80!2Jw5&KfddVpF(R37-o7pT`>XWZ-*vIOFKo@eZtiwEkHgp3*TT|r
zV>`RUzjgI-adKzQp1rs!)q81ITw2<)Q{TUS{qhC0&Lij67S4C?-W3!UIyyNq6%`jJ
zrly8!*X}NR`>N*sf8RSOV{x<1a+6NOhU&Z)Ji5j3Wa@<Yx}U5Ke=5peU*nx?Ra&+D
zlZL=W>F5*f{PKM>W=Kq#Hf_<GH9Vj-D!SLdzrP<Y^*m(ya{u{@cI=Rllaq_sn8doP
z>}}VVFC`@}FR_Y>imq9%sHV2;+ODos36QZ%c6D|29$D*YXB|wku4sT4CGKhe@Ou6J
zHXpUahuirB0|FRgV`D*U(kd$}y^`liy}Gc_85AQ8|NFdGWqx>Y5VRmQZchcHgPotl
z#p;Le-ktmQ^y%s8H@0R^KlOG`%}*iSs4bvX#||z!v#b>AJ@W7FDxLfM?zL-TM~@zT
zQ+0DgBJ-cWe?!fLc%;pEet&!GTvuneYSk(MNy(GvR`>Vw>&5IiP{nDMbK}6Yo40N)
za_tt&(K#~HIQ_z!NaLj)Z@J#Rd-o<vUrX!Ix3{;aY6a)7{#9y~c!<Tq+B*4Ym+00@
zTeGfm&9DDwDW(^5V&CoU`SNGZoGEyJ&-UBy+FxHXb8c>84Gj(b@$>ooscBrhOI`|X
z*}C=OGGA#PDH9GuL&KasoPrNOJw2Use_QVDwo|9P_SF52N@Zp`{#W*+oIqc8%dE8_
z++sQn6DJCS_7e8VT5IWk|M0<~U(Oa}3B#wnKL-vtEd6R~YI<>heSOaDZM@H(J)2=y
zYgOF<s;ke<wFYh8(bd&G0$Fybp{om8(XArHxh?-bUw(dm%$^Ftpp_!CX3hHW?OWK-
zS)2@izFhYI@pAe6S2euas;aElu3gj6)O73?(|z#%{rNc6?ECv{`DCqHEQ_B#nCx%o
zSXpVgtMqkSOAE`FH#dc6o97<`EdcE5;>yU#P*750+FSKC>G+d>e}8juayI&?fmXU!
zeSgQBpPz42@u6X9<^R9mHzptFV_|0p^$$Udbxa@p`o5v~x!;*trrn_;x3=YW_ez^P
zg@=oSRyBe)4WylwI+0@Z;>C-E=jY~LxN>F9)c)POttU;Md~s`bIK!vw(?r%+T~(Rr
zk&uzW;qC1$Auav*xP1MZQroLnxn4bg-tIkJ&rxaOg4*BTK79F-GI48fZ|}z1-({eR
zGc`3;Lth`X*KR}U>oA5-;Vz&NJk8)`;7N<#-rDD%7#adJTpS%4L8-E~wsyzv-Jmk6
zVNcMOs;^lQk&y?_p5^`b@1FoyE2vBc1;)R>znLfSKUiy*u}2ToPMM+^tT6dxKxind
zy1F`Obr(}3!|Q8no0l(F-?DY<RJP07r`GQX_wx4MSogPTD*vv`%uLXFy@kt`vCZ^p
z>l9W$bmfYOar!wI2M2~VYt~#?>Mb7j?ii?9<lw*nDhIN%R()zL{_^4?sL=oQ?Jaks
z1H(+8wh0piI$V@=qPB1dtNXR=+-bRG>(+;F-mKa5NnNblFy(~6jF~eXqobvn+4(}E
z?9$K4e0hDHe{J-3x1gX&mskXt8X0bH&j+n30nG`&c==M(H`2Q9PX(x(d-^nYTU#3k
zH+S>iy|$n^t!K}U#R+C#UngspcZVZBK0YKg6tpogzV@pq!%xebyGpf>^~?8PUmw5N
zwOh=?!y_Q_WaOR-!?ZIq4r;A*baa$3$q+cbeAlmaS7)6LTN?%112*-te0xg^cpMdd
z(6ivjheVtDe=?vzsjRd#F);zvx_^IvXGUJWx?<HTr^-r8Ha;1S?CflxnMSPp|NYWF
zbLPx~rAu4y?X7-%YioAtJLcnmV?Q{w$b2{d`g;BTL+8)GUwhoWpg!Ky(-YJfSiR=Y
zRnT;gZPgbC2ZsamW2e}ML_|n{R&QTj9sd8O>%)JGzP-QS|9<~}x#Ruv|2KCZDy-K4
zRZTL-|E_#Bd)=(Z7Ja{eKeR>K25!eO7iE9=clOn5)*Jz?B}z+U1I-RB4Fb6qv@5jq
zm57QECxe2%e!uI*I^p>E_@y_P-k&;ffFUg{O`!Xzftgv`{{8mn=Gp%Ct8{a7d-Qt!
z{&nVO7rAyz$?)!e_Nyy`Gxzp3*M2!$g^3;tQ@!f1KfWw+@7_I~vSZKA&c5m6z%WH=
zvH6t!`|YJ2?nS&0n&&&)?BJzKLT6{09{%<9^=sei-`{dAEG!OOxgx^H$G4;O^)>6M
zzjIq#TUW|N{0R?=jO1)|XqYr<65IOQ3!T};grDcmwW$o!EOYb4*xYP&*{<%7#JqX)
zK#ulMN!pys=-}ze>DD8`sI06!W9CdnMMcNVyLWe&A3k-8YudDF8#Zl9GIn-#bzSJ(
z&Nsnp=>!jz_a+zq=Yo2oyi2xk-P*c&voW8n6^nyh;@=Ms4>LTO+_UGbiUcPoXU-<R
zzQ?bQA8#mFykjXZY%RbY`J6vLK7w+|x%u|}Wp8gWGSvO~=nhIs2kO()E?&KQbY<}J
zds^q4+4=viOAQGQPA>Fi_&H^=ot>RU-5(3kV$P}QwT%Lz({v&)t=O}A{rVG!uU-}1
zoOZTp{`~o;woIKmmAA|E)4Dzx%R~SA`ug0K`^`<r$T+d@xAF7e_0vDyxOMB%art`C
zV(t4g%v4lZ<ZHhOGBGm?ii@`wK0fyF%uM56z3=yZlh-#MTQhymoSsdajHX`x$8_M@
z+UT289-N<V-yWgUwtBU8Pj7Gb(z({<dcVHC?M^=4_wdip&m0^a4rOI#EKH1HYol7r
z-riDFR%R}Lcc-zrnK>pV29!m-r|TuYytLHA&kwZ4s;jGO!NQOCj|=eg^S`;bclW{H
z*Cej5i*4@j=iioln@wL|pW&0+f>)QjwQD{e70;jg{K3Iy!-@|N?r)tV^S%6NwS&bw
z{wY(Zw#wK45scoJlQ@;1LBgs;gNKJ_%B6dItG8bZnW2qXAZQW`8m+q-(z|o#P6@jj
zi#2Q3D2R1$%(%G7ZR*xv1qSu?^`KOreQgb+LjQBa{ChSxZr^s+nws?F#6+Dohr~oh
zCnu+b%uLQsmqSW^`jMMhHm9FwW0+%I&IcM{3(;zwI#pCjS(%aH@v&a#iV6#c1v_>~
z2&?%d=q|o0Ul1D;16ooI+E)b~oR9oB%lX!qFJD0Whi=@wxpAdqa#B)4ettiwGj{Z7
z>rq99hO4W?H>ZMjla+4U#Vc)=aBE8@!xMf(rbY%$O-+U;wnp0F>r!t2d%OL<fTU#S
z>hSfC7WdmVg=nR&z0lg)%E80aGIgrxo40Ronw&LVx_tTOjBC#Ae5r+@43#F|Crl6k
z`4F-tcEy@CEDHGt|NeN~pO~G^ot&I(cHwvI>EzT@*5u^J=5{RhRbM!+ua8eJlxJdM
znlN!<VEVpN%i?D|Yu2v4xpi>|yP%BBnk&r4+1GTI&d{^8v;>V`&YUUv=kMRwJ(UwD
zOgK=bwsy^$h}GZ2<7-*1t*s-XqYvM^7pJ+bYu-FLF};|MdwZ)FM{m#jVgK!&wN6*|
zU*;d>)9!^h1cr!6cQuI!?oM*<RaJ{vWO&1L){|9+fyv%ivUkr)m}MB)tou#M^xF+#
z9g+2SXGCo5*5&f5tgruYd#6rxgp0V+{qvuHa9F3G+moJFHnaTs8B5S0`JbPk1J}pd
zhOCJY1V#9V{kvrzAMbY$2oP8my1GqNJ8Z?*6x;aobFJI2$5r!|zPjR=kg(vF9OFN8
zcGrLa0k?j++>&@%>oT5RDN`p84~{>7{utE$Dq)ye%zt*aIe)jfzFR@ThJ!ox!`4JB
zJZJXq*|WBDbFHQ4CZ}9o6<YEAZaE_Z$k0w9)hnHz;cFrm?z7hpThr0TE4}LQ#kzk#
zpZ|EVxc|Y!hl~ovNf*{k=9u-{<JH5%?ScF2YFXIW7RBwY0xfBn@Ut>{kqc*!v^n3_
ztgB8}SB3W8`#RGsSBi~KW`&x(!?WoQH`{NqmYm;O`1shu>hJF|uCJ3_6~4aj!-s;e
zcTUx*7ykS6lY@uHB_Tn<$=R8=Zk~W>l#`48*;7-sRSgU-y!d2W{mmmFU_wVn%$|zC
znAq5>sa=aaLPDl=bj-0Vc8iILQL(j+b#d9Vckk018<UlkE^WySo@rORYuCNG*5y2T
zueV;0n|$L&MDyuQ*OqV1yKA*FaB*8lhtEtSSJ2*r)u+{bXQ{m3`+Z(V$Cp=Ez5iOi
z{$~ICjj^Oz&Ww(ZJ^y~a-c<9mXzQ83zrSBC1ucpY6qGbfYWecwqO*&OoPC{+qod=d
zqNiShf}Gsklg;nf1REI{saRS@YK5#&Ff=r@`q<Xmda{jIx+G3JdfS>kzu)bC^}hQ1
zyQ$ya-uBMQTGi3<=HA|DCMG5qmz0Z(T#Yg=C~VCsDcJ(Dx$5_;J3EVmwq}J23jX}_
z`TSDHW;Ua=GZKP=E5p~%ld-J|x%=(pWOY}UC5eaIHdTI3+uB$8`B~@c)vH0fbX;6O
zEA&9E&9B>3m4rk@RJz6W#RMlNAMfj2yLK(8(W|6%X}Q0A<hGodQQN}T#~Ec`(<z<3
zHfrmno*tgk`gKuTwa$Oc`1<0a^S-~|q8Fd$m$g!<tE;nG&&tkz`rqH*zSm~Q-rkm*
z`t{Y-SMP5XtN;Gi&L^uiS>0buaN@?~<6bW>Eq(g!?QJC`ql5ztk~S3^4*tr%vSOi}
zvEamZe)+DBcfVg8Xk@m^)r{V@rboii$;IW|JX>u(K0c$|TPA{npv@vjFJBIJak+Hq
zl1re-Oq0w>9UXJ*>*Ma+x%1@J)zz;y9q*S11>%)eq2B*~JmwcXY4bn($_mAgA3qj7
zKE_*ETpT?8>^$3O6RBPmHMLh;pI%(-{^`w4V?n{nPft2oSXfrP|G6>w_^IRa^*JT>
zzkmID^`?FOzF%IyzP()?{_fe?*^l15S@ZeU?EHNz=PmB*>$Cd(?l8Z7$nE&eX}*&7
zb$d)QFS#@|H$T1XZy$R4>}+#?uPGXejEszzHY7Sn?k-z<&>}b}Xi3h^O`l$`-{0l&
zEPciD<;!g<Ke?QnZ?E6A=)|#JX;+t&%gcOUrAL(6+1YK%ysWnPxAN<1mDfAX%HBk*
zjM=%#rs9Kxi;GqHJ00Wnb0N1c>?}?f6uh}HxjkfMkZa!EU8+hmk1MOH9)0nxgG;*X
zppw>sUFGlj7*<4W)ym1qDR_L0ckayt^7eH-%<OzGYED0Y_bzXPUhe(0V$W&$%GcM&
z_qX%QuQGO6zHHedr&g}4y^;H6&9?kq<~uv-(h^UL@^><`OtahAc%@!Uy}3189JE}4
zVWzR5yPI3m@jlsC=3TM7%UTy{fR5`(NKp9q=d=HnmBH%A%f7t38~wNPa2v0OhlfK(
z#)@0}c9*{gZQ*@=ef{x`$;Ypx7a18DmF#NI2wfS(>ObEOG_eWl1NqE0<CU-fV+h)5
zYya;D^TC4$EswFJ_<1a!yJJJ#-YTojv$F5*F6UqFKR;~$)U}bD)m~j)z5MdL8#f}p
z&VDy#iim}^_3G2r-`;S#20nQ4qGS90I%(_jcP`8Q=FYR8_XpI=1$BFt`_Fg#{OoM$
zt$eTDWp4xaR1`8CXkcXi@a=ZKw9fTKuG}>r4zgE#K5H&0C%4YetMbQ(M3BooJv~8Z
zwY<E%95l2zPdIjW8S4Z~#wESIy;bwt+S(o+>y-wrCw=qg4THm8?TD2@s#n&>%m4oV
z{`${lf4;oDY*G8mWLL?{Mf0YgJbBWh^p%KS%ns1ffUUdlfUI9%|Mzr4w48lik7G02
z!y6luFJzd2)+PxF37xT1kKeXsiwS7_+Pdt`fz9dXFRY8T25pFxFi2pySMit^wB@m^
ztPEsq)Yh!lqNk@8hOLdVDxG6jE5*mhmvL*0X2TiJe|PTQE&TJNaL4Z5hi~4Le0ysv
z^Mp#d{XLZvZf(h2eDC7A=<VyyeGZ8N?ZQ-2Rt{X`!pYFk+<ch3zxl=d9!`#n-b-pF
ze%;$!ZFP6`nT30AT)T9xBWJ~&JuMfv@XOor*xTDP%shGGdVGDam~NEK^>6Jwl1-qE
zw9n7Ym9VWc`SbTLXmQGn81-uL`D=b3I(6#QgM9`nuUU6?EbyOi_v6jx^IuMNavbZE
z?T*`9^)w>=^Ru%XD?g{j?5mOFl{Rzn^5VL-F1FjPS8C>6`~Q`<CvUA2JoxMD>#w^$
z&)od3yX&}wzP`SSnwpc#mEtF-rfO@1uZvmt>gR{U{2z}==O<iW7YiEe&bqp)HF9&>
z!CSYY-sZ8TsKqbKxE;4WFV?2^mx!OApGCm~hP1P@T7#GSfi{1<xVV`8*O!;gj?HWf
zi=UsfsQ943#KZ&|kPy+2i<$dWs^MOB@bBGjlW%Ue)YbL%b=b7ue#^#;|KfsEGy<6l
z3k$0X*GF&ndtM&=erw=jH_&KVx0r6zB8`f_U#}P6(T{q1YU<&o-qWvegC>=vY{KN^
z<W8J8;Sdxgbmz{UFQ>9zU#t@>{P@TfRA!yFDt*NwEiHZH#*GKP=Jy<Ye0bP+Bo<s_
zWw^RJ+<kS}+AHtMcP758j9DF~`{&#3{EXY%a@V~&f7YzygoPcm(-)!8RUw>$f`Tt@
zZ(r{x{{^%V^U=}ns;8UdVrEPZv9PpUSorvu)nebfJB!ux9hE=N{tD{Zftu+JXWF$F
zFIqHV&K#Zx_4m&)IkfZ18WcbCF^zM+ZD0OQ=G1ik{(ZH-K}&42=D%GNwI!qR=jZ3l
zC;q6Fe|&T_<Lau=dABEBeZ78vpKG_+%G!;tEE_j&%#uz&Kd<-q_xH>v_M8Sy&NqKG
z$-gIadAYy)-Cd=ODfb@!e6#sHk6H#pz!DF^#pe}fJbLx2OUg70wCItc;qmeQ*FApM
zHYU4+@~5PvB!kiW8Gn90pZ^N9cvjigR@Q%>&B0Bnr?0S2m~TGsjnCZ0^XAR_@cDDF
zyJhsoBv!5Pb!*~Q^vPHXffn!e-3AqTS|KYM>i+&pys{$j)z09ZMX54YB^(aVET?~6
zSg-K;+?~6-%NbL?9lb6$d&UfjBgc=gKCd&!wp#4!>hR;$@AtMhGP5hGsj>ObvvI7d
z+EwN5@q5mt&s}|eY!iO=fc7~{nP#y(sQ<mb>g%h5f`Wj4V}?2Q^>Y03b}oN^eH9cJ
zUtV|GF8`j**NXJ=_xEfoDk~iWMdnzQdOdG^HK(ug`MJ4<<?murQc@ngySqDLYu41N
z>FT>XIyh>+-z{e_`u=>bb@_!2iO%4o39blk0hP%z76lBlRwWD*D&5O}e|sw+2s%>W
zc%N)m(WKIl_0r~f3Fqh8zPfv2O-*g>#7UDD*_Cgt|6g}!ce(%G;;Db<n3VN_0;u@;
zxvMh^|NQ#;8Z=tg^KS8-7Z(;Xi|IzS%r?(wIw2!_=1$6l6$S}RPG2U0TJbADh4Yn_
z%=Pv4S5^cvTbI4L@bj3z_G|MiH}|hK+m>^2k*h_~6HvodKt`q~fB)ZW380NzrayRB
zZ`-#ncDIs-28W%U9q8nYX}Zw@LPAUmpZiPS-r5?t+)tK;g=In9-l|tee~QP~G)|c!
z^5ge!WeW?5<YPS-SO1@#zc28yw0Yi~TUWKRt&jCevu9^#|M>lTaopaj7dJL4D=8@z
z-4Wkexz=;C8t9xK(Dud!3lx6*{JHY(DJ5m)i=d6enU`E-PhG#UBIWFC^W#&s!>@4v
znx-55=+o2F8Ta<=JebQbV<8}{=5wL)#qF4Gas6Z4@7Jxin{j_fVRGrs>G5@-jYFW8
za@yHhpnc^a1D=Mi4s+dG^;JMZq61{qS@Zj6if!!w{ZQVsXU~SZzg3{wK~P!HDXh+r
zQg&6^reZ_Xw|4nD&_?LiRiUeuw6wf@4Hy*^6&aU$O+8guy*ce{(D}KY!s<!KdL$Vd
z%J0{TcXoDu`25-V{=QmJTYc_VDYKjoz1Up`u3s0wzCPaEYSP6HLFFs$7sA&>H2T~B
z6<N1#9jMS15E5#-wKe<o9arWeJNeE3|Gl|s%)-jLF!%Ph8Mf8iZuJI5pSyKSYPMPK
zp)OHv0SO5XdwYA(vdEJsPijPNQh9cEcKf%tx0N+CIKtP(I9^=j%DXM~&ySBk{{4P0
zC?V1D@$vE3bNU4Z1ubfRY`EBdq5A79*8KeZkd;BKrLV6YeQ|Md;MS~AhMDEgoBQ5@
zPP$>Q{`RJ^zn`CtN1|b=_w-feb#A><t<~S(Ei8I^D&zJx-DhWJHYXkJVq~cL@}lw4
z(eA}=y;2-pTus}zo8PPdU&}DlbKW<L?Rj^l7Q6KZO`f&p&6_tH(#}ft$k|FYHa3E4
zfotnxSKpgz@O(290}~U|hRV-rXXaQ6Pt^{0b8uh)RnzxYnthGT>D#cu0Ho{T!-t@*
z%H?IgS10m!b{H=d7Th~Y$~3FR-|i>N`n}(x>e?5n+uF*0eSJOreZrnqmo8sUOipe-
z-Y@@Il0j*aP6c~Q#|zOZ^FQ}IIdbaMtEv8WTjH)6N4dECPuaul<N^X>hpiP{Tv$7{
zZ{Ke9GUn^6tDuzl_2K{L8w(yf&9N@myZ-v<v15y(x96STdslpI`1-gD875ZD%zyrV
zzh6*RW|lqUruTHcmp<><U--SqT=zz}O-L~Cogt&5l9q#r>%mh~wFTwn`-7MJJ^c6g
zcf^K-gT>dkCmdv&V_B?r{q@yVq296wS1AODuqrAl{`h!Y{_6FxH4%+crdcz#{%hqH
zzjASAoQsZ&%a=bh8UzGI4Q|cbsHv%0@##tDIrDd*Nr6|_)^<;rAh74#t?XAT!lljg
zKqIzI&CP+E(|mL8>=69?{QU8Yi`@-#ZWyqzvnRj4w$|!)<gOCUTif&3e~wz}HMQW+
zkHR;1cZa7-TzPwY`{KaGZYyGUo4vZWc6Fb?w{N%elYf4C%Fu9gbNb<P=lu32U*1z$
zT)N}7_`_cFdk2>J&Ym!97MDVC#cjLVUoWN@ialT8*j(`LjwK5_`|F+;pbbi(*4R|7
z&_hp7PG(HG_xI!1uUA)YcWh?6u`TyDcQ&_R;KH<tKd*ImoY1*<?_SW_C{s=zo+(L3
zyF9zabRiwhX?n3*e}8|U-qXV)C>Xh?V&j(F+hHy)OiWBFYHDt4pC4>yS5guZ6H}8m
z%Q4uo_Q{hJ&A>%1clJ~UySS9Szo)CHsHmj0DgC@0Cl{BH;Kcp^etEyTx>~(o&Q?fp
z;^*h*yFq<~>Tf=vVY!#Lx3BN$*z@t2^rZ!k%r`fsc7u8kUE=zBnVFeYxBtFeK3~Pa
zAfTzK>C3;f^K5S?tl3-jbrR@YCN@494ejuCQ;gHkc{H=}p6N5r-nr&?)rkp;N=ik~
z&&g^=ZCMesyUf?cManEk!@BH^fZ)U(J1jna{3s|mv0GffYxU~Y2PHZ?PT0)hoZGRY
zA#!Jt>Yu-VL3@)Jnb{JaoR~PnFqsW>?&D(j{#EB~Qc_Y@+-(FcLQ`~Z1I>aweE9Gc
zOa8JOw{L@Xz=Dd$4-XG-OgP8{>KUxRb8T(($LI6w7ZpA}_Uf)=c6K(Xd8Zq-<-n0n
zVUQ)DhS#YnnxHl0CQ`gk&d!OcsY}D-zrVYCac}ka=eNvje|<T)qwukSfWQLr)hjJ}
zFCKgN?p<G(s5WR<$%ijrj_m*URUdScV8+EotZC=xtu@}yDJb}qcXxsyDB*Ue_qsKA
zbZ~5aJ*5LYt5Z{B^XT#8!Z$YzRa8_MPP~~VDl5winyq+qQ`k8DoJn@{-s<meB_$@H
z#<}loGf5vF7Z%;<Z7wk}b9TKwJzals&{8kZR^qvHWkH7~wzRY?sQmow#@=f4vUhh@
z8VkmSc~94K4G5TUZ~ub_38ihh$xhDBphIoeL~LZr-}`mi%|fZga}V&Hkdd>{)#YXQ
z@N9PeqaPn1dw6&pIMyr8tCr^C@}&k;gsfor{q=hMRmqjsWp6t4_x)fJ6cj8dEp?5G
zlJc8l(Rkp11E@8!Z{I%9NqbYLPPIB*IZ?^=!-Ip&i@$=F*13RoiY-h%J?+(+tC3r?
zu5t;h`yKiC`1r&3@A(-(HFDPVb-W6n-<<}XpL8>Q{=$rli#BZBc<|NL)u8#A=G$jZ
z%L*tIUwdO+{_eoZlPBL;6yM^%85tP~T2}tz!b0YIHJ^P&G=p4X)nxY0>(KBA7ZwU#
zi$Ke93knJxva+=H?A?3y;_O}J@B5Z4Q8CHACDOG>L06Zz_SYB3gaie*e!1S_=jRR{
zJI3bc=l5!E3n<NjPDknLIy6Ny7_`S_Z|=8uccqox`>s@b#I6on>J_o8M3aqArsK(z
z6r1XAJdTcz5t~vt!DndAFi!8QIu4q5nPFdVmvwE;Pp9wQVV9Tr7R#oeon;!h*o_y|
zHUJs2zi#injIf*a?{9C{Kh`7J{QZ9Y{S-?jrBkwgE*>r}DF<F%UH$Rz_xr2MCwFwb
zIQl?VKuKv)&aEw(&7jWe>uYOIzYpl>h_ghL=YbnKK;T3YC=>(*1t%UgU{q8xI(%<$
z^}>r83od4C$iKhu58v~tn+hH}Wtd1sL`F)^F)`55;gRZPJ3Gttbo&dg?VQ4DD~`AM
zJl>~dBrhzWHRape+sos8vP`6o969o&+~W)XLB$B&{@-&tUR*uI(!#Zrm0OJA#GVa-
zBCOqFx~J|pbevFmTRm0h{FQz6SKs?REh*Qtp10iPSt65Ds~@OCwI-6;HSockH#~x%
zDq`ZSS+njh6r9MoyZpUdRh3oQ+gnrbFBGwwU-wHBw7+oLw6p?C{T=_+m)E+w{6Ean
z!Zo+_^|gl=7rQewtl#&GiviR#%DJ<{(EhNJ(l7T%8UI|SMEf|bxNxy-I~NCs!})o(
zpt^qU_0Eotju%fst~do+j#d2JPot|z&bEpHRHZWt9=x_T8nkYA^Xp%4x8J|8zrH?X
zbr`Q}w^-}kxw3oq>;Y}pIWx~znqSVwVAs2)-qQ`Tu4sTVUd6{p8@6tB?G#eIu%j>;
z)ZZ7^i@Bh^zBa*bxy#Ahx22_e*=m1%xfs3d?fEqqGeCRSKxt-k+F7T)RbK-Zxo~Ef
zNcqgM2-KZFYgU)<Y_o^W{C1!n_;>EyNdWEJIoiEA@9wS{28m5Kf4{l8IUTf=^w!qw
z_D!j$58b;bckbLdP!sI`zrUbq)~#<qhg+qmv-i3+A8clS9`Svd@9ZmOYvcCbT2ryf
z+tc&l6wP2zgDO2eT|_@lhF99`$ezm2MPGUI-Q3tf1JmE$-d^l8(+D)m^6}Bpiz@<^
zU0huiL8CsqZvMVJ-?mzenT^NcXqV{22M-!9E%jcUeSMup$%_e*8}IC?6iz<Y<M{U0
zR?s%6>gwt#+Tnb$yUR>(&OLeI=eFeId|UGG%gviN4`le!E>T0sVP?-Hj{p7r9kjUS
z$FE<9E?yK=^`7Q(dYbN8yRc>Rj4Li~R8v(2ZD(8&wpL0;RyJ@|h-OQBJLsrhhNAyI
z4Vs{}X9pUYA3lD}tgfyuq8Y?eS62tx@KN~klIr5udtaE%PRdDH9=Es3aq-23_xJWP
zG}u;ud%^Q&;l+%Ag-)!^rFJzx1cI0QxgKugefaPpqqVj56unp}S*wx*vrMynjxAmr
z{o4{WU%9CG`8kd7buu}*xq+Z_x<0A<&pYzu<m8LHO0z2}D?x|Q=;`Tw`1sLrecaxj
zebcurzW4RrU1^7Bv2t(Iv#-@hx*stv7g+<E7rL<_5fp6`m0TY@dBP$uFAo~7wJ3b#
zvhG&>lM{j^udn&$M&I0&Dkv%0X`Fs;#+r7G`<#J_M#;x`0!3WctX=!`*4At#rJ{$2
zSTAOnEV`KS<n{Xf=Qj2|d6M$-+S=I~T}oYxR=iI8yIiBoXNJMS44!S<wy9muy|rcK
zIV*AfxRBHOF*`1#)ZDvwZ_&k!CFSq$Rh<^oiCA#0_{)nxP9B~s-OAZ_Y^%SSNG&(J
z_ULH$>4VMezQ;u5<@H6iLJV%E^|~of*NY9h{_@h&ZjCObyu7?mUtR`J{<{C?v)NfX
z=jYiPM_!vCZJyV$e*OA`KSW$7URxUt+HQ6AY4!JarV;0tdQVqTP&klcy*gy2((`k3
zjd#>VM9j!Ak;=TaWo6FIO|En1%;C9~n3}4(Iqj^`&1I_I(>gY9-h9zavrFmkudkE8
zd@0#mx_N&7Vz*wSsQ&i$_Boct$1-G=`^}wnX{on#?0*0Gc2>_*uN5D-P**u~<G=6w
z|4*Hy>Ma#p|KLEQ<*}@Fn!(FDrcRxDG56-}+ou<~cJr+Jt#o_N<nwmFeb!p9j@w)H
za&P_S|EnW5E{dzQE`KLdUS2-=dFt(LxlcbnKF;>|;yUxhLoAZERa@e0MYTc#PQSak
zS^fC=OxM7aFE1`u-M+awy+3Z}o7d5ikuPh+ByNXC>c;E{c=Psc@3#B5ZbdEgo10bg
zcg@@X-)`q0J$CF^f~}vQ-=_Nib&J0WJT+HS2wB0x!qVZkc%qnY)Qdg$HY7R+inwN7
zUzc0-x2K0E^X8_dzuXsOU0wC*>Gb$h2b<Yd?d;;}em)hKv@Too<HrvP9|twRIV;w^
ze)df5@v+{?vAfGWot&E9+}!LA8dc4_v0))-cW?UM=@T137EPTx71UJPmUC0-<HwJi
z5)ZT8+*P_dYM*<*T+q&<RM0HMny9T_e6m(58#iv;RQ5IsG{pX^eM`#8NkzZE<u-o=
zjTywm#9Vn>_Uejf*xD%7jT<)>{rHd=xhbX7#m&uYqLOQg-iu9fAN1q*-N~rVzrRm+
z+qP|sE@q^>xUf*|d#_?<W@gapFx}GV+*?~F@=BX|#Kg>56Td(1(BZ?bi!XX)WUM&J
z^5os!-H)C=Rqa~T(cIk3BWdJvZB3*y$VKJv<0OsKdS(fPtc!`1v#VJV-u}($_VMHH
zF|n~nuU-vZ=09K0(9lpwSXeoDx!=^Jqg^Wtb8c)nm@peOV-?o}8sJVlJ4^NU_WbET
zepEzm&zrj?`?_DOUCobzy<a!a%jcCc5pWG$61h1IG)L3f-90(J{%`1WrY&`Uf3ZET
z`0-(3MP=p6r@PAE>qT$Ro4R9%MdZGkoh@x`uii!{b9O8|^2ha9)&GCBnz6gKM6C;7
zAGay@wi(EnsoLRQ&1}3bi!XZI-BtQ|P6KF%UY4w?_p~W1R%lq3yqEwQS2HSn<nr}z
zQfjJd^tPPJ%v`hfjoq)Zudh3Ka<cl;vbVPuX>_%;wVgUSS-te%-;c-TtzOGm6gbqb
zud1p#HAOQx<@2+%Lh|zZv(59TojBoP`pj>xm1K{*wD;Lrrmle^pngXyxA>`xi``TI
z|NCnduk`lL&fu7sm?hEM^FAHsw?DD3_P2_nqT{yw`+9+afk6wMSWBz9#dI#*JU3b0
z|H+e+lZ`4rrIgOLE`N6=`|)IT|DrqLQM0Xm53Gf)1u)AE+8(~dLvW@=;UXEEiU3ej
z3JeT<^zh-rb@u7!WG25|AHIHGL}a9ALBR%{m>mI0$;nR-G%_32{3zJCZJSuHoASMT
z_a@DnmG$R=&{JhKg^&yt6%~oS9rKOT`*ywg^769V>mQ#^>zC>+@vXhRZtvkmqVn?k
zVPRp5E@m9Lemy+DG7NNr$<M#8>I%1ZEn2+T_uAL%@%1xf>K+~8EG#S(>~&Lqe7xU0
zLe0V=;%{31(^FI3UVC|YO`0-A<m>mI9-ghbYooRr?Ybu(U$b!A^BWtJ)gGHZ0S*0J
zmp93naM0-QudkPH=C=t=cz1Vq_aY5Y5G@v8_VMG#M{nNfNcFlM>yur*J*Il$T8*w9
zyLO$rxjFsosW~>4L0w|HT2j4kd-m*6(be@$|2fyXd`ZN{Bv7GT|NkG``+|;+9!X<2
zTfLj_Po&u1H<9WERTONmU)<lnKT1zg(J}w0yL{~uz4>;vyY7A3vc)9x>Z+;d_MP=+
znlwG4olka^o_UG7iL$b@RoR;v$!jck*8bjBmA*RX=B7zAW~>NTdtI6ILSp|4v)Rha
zyR(9itF69rCFJYhJKJ)jJ^lR5BJ$qd*=Z&I=Vs<~%`T;f4<D-8H^0BPR~ys{k_@h>
z*zs%M*%K!&XiuJP9k=XTXjay$DVo7<zIOk9-~az=>dumvld85~xOp@3-Mzi5!_~5X
z-`<{|Z*cI$ER(hI`|qWkarxQG$ssCrxQ#bB-`BqCi${87P|&0sH*a>jEuQFa_w&eu
zUy_oNueR@edTOfiE!P7Qx!ZNMwO7Z)YwYi_R?v;!b|#ePSjPA4v$IUUPD|a}o%mw*
zw>cT_B_gAvU#q4@-O6{$zPf7a>tC)eSyxslb}i~yzI^$`?nV3m|BHTp`{WzW6Gywn
zujb3v|9mPw`L?uW(Gra=rPR~Yu0}80JL7VOiIAvh>XyF$f1cZC?KI84_Cn|KyUj&U
zPtE-E%~)60_tZ4qYy-(tRr{uD1|NIjdhh1u^xn8F_SN5f?%cTp%FhW23ocr$i`%>E
zvZ|pz=ZVk9etmfvTv%Ev+UurV`s#|I)a$de&5s^DsOZn>aV>d!)>W;=PdCN6tc%+l
zm4353WAo0q5T;EPACm$_TxDcsdE+9|Lznx>Ud%ALwAh`0Z|W_U3%71X>BaBMsdMhJ
zD0?&G*1jD(EcQOt*J6y^S+sOl&aoazH}LT3l_KNxb629*<?dg+c=5&E=Rn6{{GVrg
z{<+>n)enj#S|XP&Uj}Vs(CBLV_V)JSn>QoVcdlNo9asI<w1WfG!E7#7QBisD>gsBS
zhJSy5AHI0;;+wap|Jy%Vr@?jT(4m0MX=k73pW(i=xB7d``r`lpYX5w_9uJxs@|$PV
zIa%F*QN+e1hKAtfeu}oXvCIE}TBP&ac_b&je*5+1Wp=4vx7rQXyLarckg>0m=~}cP
z|Ng$6>;50>l?E9h;_5hEFE$}RKYzoV$&-b5mAp*aG7ofHf~~D=Utb^SG?SCLW_foc
z7z*CrGW}X}$}dpF#m!A>?c(zH_g>xMwl05nC30KgV>gX1(1xo+w{G3akPQn9TM@oq
z&V^<F|9`tL7R|LPZR+jqJ(y}|XZNc5<@){qE=7t-OLtd)f5*sB_3cgOmVZX6rxa{#
z?!5SPr{Z2jznpCsXcD2p%A!?KPEHOy+mLicZhg|xF3{+ZLDahV{dHBZB|h!R-L_?Z
z{Xa>D3rjqOckJ9bQ|I=M!sN-%moC!CxUhh6&z?O+qK7x9pD%cNN_380ZPedCr%s#*
zm@aQ!rW5}4Y1=mmt*%9OH}X85pPL)FB_nWd>84;2R?tYm$45tb^~%f2+@@-UGCcWT
zsBYB8$sx*hdt2_|v$M?^8Q$;t+;`CE7I**Z@byXG-`%Y`{rK_YtMjEzv!<+m8^5E#
zaqoeXZ+Gc;@ASOTDXe~BxxYN9#haIxw<2bz5$FJ#_wV`Z>+5U2-ArdNa<9J>SCEzY
zJ#uH!)1umq3@LGQwq;%AQd)E_ZvNGN`+pn^8#ZsQUf1&K$H&L7&Tq}WZWd`~Vshoh
zrp504ObqjEDw(vkwf9ae+Vn5``ntKh?)6HW^IQvG=)^i%Jo9L`c>DJ4+vB8-jEp8s
zn83gQ>Oh~gFo|^IF&1NI2w5F=_JxsxaV7hLb88oWUGyzC&nACOq`Taz(ACpUS~)p6
z%`@KhKi4}@goT}bwv6t{!-t)1k1ca^tGZ_vee2?4_k|i<+w$(tdR%E){LF`8*?I3`
z`~CB5Dw|dYFIO@!5b*Q!(}>?^lXYdq!n!(EcJ|e&@9*rKyxncq0^2rGt&oP@yLVqK
zGBYy+jrDdsdAVcv&Yg}fpZ@L;mIQT0S>FasefRF2+x~+&x3{hRmAh}@!o1D@3O{}M
za^~u{&zs(zUbNT1Fcq}wgpco76Dv1p%X{gy$8Y{`nKXHF>9zgE&-p}LPX^E4dY|S0
z&*$?k3LZ54`n5Uz{FU8N`FlRL{aTxtr=qI5(!RQ)VunuirWDV`r}OUaTKX?1M_%$)
zy8k>I!-#mljTw&x1?QT96mB+{E#1CIqw2Ws>N)SeWSY#ZciVLTZ&l!LGxK@o*Vc3v
zcM7TcT$_0L)0~X&-Im99gscpzI&QK1dG6+=nfH}<TI&1qM&_P-etoI;^aszMw;LuO
zd+_7q;}a)NoVfb@diRtmQ&?OB&)B`YRoe4&xlFlIa?kzw>Q$~bH9rLG|Nk)-aXmQK
zy1b_>{6yB<TU%$?R-4Jl$mj?p{yUMm2IQ-x3kw`Q{QccePEs{YI>KR+drRcry?X_P
zg@M=m`})Fm+n@BFA-J>l_cx8mO)7bJceTEFkztZ^Lx2G^TXAQ1x&CoI-e;$(6emUB
zvIkAL9iL}gedZqjv1gtY_aZjM<$QU4{rsD}{B7H|o!@F({519czExbe?JmxnoqKD`
z!TNun=i6MLe)+lhgv#*WkB)Y~+T#IQPq2QyzSk6uh5uv)1h=l6{_*G3*hK4hF2@WQ
z7lz;K64jnCY0{$axzi1mn)d(yC!KwL-O=0m``7N9w{`#9udlB^eEc}MjOXU{v$}7$
zM>3TB(vkl3<KyF)>-i^|Sh*)mo5q%%oeesk<ZbYrxhwNuc8Tlv8K<AK37@@n&Dyn~
zo}Hv|TEf*;p+A1TUjOjLiw@AK4m0oWj@pv(F{U*AuUP19*Ygs=r?<vx$=O!5WL;hL
z^rw>Y@`x>|BCZ!-uA2HaUC{CCtE-<y+~ZR2Z=b3iZWeWI&bNI&k;!{&e{VY(k$->R
z+~v7DckX<6tXDd1>(67o(pATQ%s+MauI%;o@y9o(pVujhn`c`s#?CL-vPeV1IE_cm
zXGX$?IV;bv7x%oadg{*Ob+PR)LXYZ2d^r`pr^2w|%sT(m({xXNjK8@lmGMRS;ZwK5
zEndIb{%l3S!lqk$wYR@!YUu9n{#E?#xz46t<?rLxr4^e$eR6U#LqkIY!{U?dAND_&
z=ehW9^XcjOpp#h7%XV**zV`Td|HiDVTA*W}j`zt1h_LRh`dam_>hIsbSLgT3SSD>+
zv+}8<qa#DZa{u|W?#MseRq(Ls<l~y>=VW8{R0uLWc>a9(zP#k*W+~Gw2bY2m4-VQK
zpD3=MbwA3fSIYFt{N&_h-)U!GfBgFSb90A+p5D19(>b^2-w#W7K3~<tEmb@@_iZt+
zd%s-hZq9u^x6bP`sIgBt@v>sy3Tv@j$rTR|u}+?UF*7r>qrbm>kp}Cp9l}pVg$1gX
z#_p*I{41uTq{I}vtK{Uzco!EI7nc41eyu)d{+*GL5i~s8k#KKMrQ7fK(u-uLdbn&T
ze}6Bge_PO+2t(6G!>{bcH#eo~uaR#2rgZR%?9|uS*RNiDTjJ8b+Ul>*SFBj^yl<)3
zRIOKse_y<KF=9u-!dvsL^*KA1FITUrtyNTt*qS9e&#pFW!=1_M{u_#(dM*CCCI5ch
z-hi2=+1HAXFIH7zo9}$7tFJGtzxdm3d(eC=!yL<EHtVuCCyI5>uMS%q^=dBb+vyB#
zpiuw)?d>$K(+eg{5cn#&NY#6qgl_rkYq~kNx9R%dz9hH)_xJb7Z*OgN11&o`|H4qu
zV~g@}$?EqRndeWl^UJL$*N<Pe#<Oqb`3>*){XUms8|i-R^vd348T|`8X5{=|6}lQU
z8a%hOBhJ;w;l<Q#1rMFR_E#+Tn|mh8Jz7s$+4*^rOP~no@IVG5_fuUxJuX>Us}5SZ
zxU9c@(OtflrPqyF@L+WQ-qs^WToxNjL@kq@Rdl$GcSpg)rhA_@r=L&y^W&rb8)@se
zvHhT7QA0z+s?(DvPrkUfx_mN!ms$QjnXOq@n>rr6UccY0QgHs1DJh%Q)&2eD=mOf;
z1{$<yXxOm9V2XbHy*p}>CK(qL7-rs;YvY&C+i>Q>Lg!LBlk=eCv*%iuw{;}^{PfgP
zO;KDw?#QR7r+uf*G|3b?H`jXk_g^nBFE>m*CBiV1^9pE5_~x1u6BG-|%Gx>>l)t}c
zQTl4i$+v$#oz_=#zg-!(ZQC}`CN38iPEO8OC)^^JE?>U5{{KI>`|i_{($m{dobc%2
z=##NrG%r4~lY@;%V#4z70EJ?XRCjmx4vsc{`M&Jy>t0T^EPErd%x^9igGTf=&|!iz
zmgnyCxy7hfB=v4<`uTaU#4SLpD89YFpTFtP!DjaPuk$vBUE95_&FuoS(PaL&pBs;*
z$T~beZ~wpMU4>QIn~qCMy`5b^CqOs9->DtGZbf~vjI3<@iOsn#tk+J@N@!W3up(yX
zCXFtorCw8ws^|9f@PN9q875L6zkk0TEhZ<o?wm{X)~wK<pHAyPeQ>ZD)ZL8UmNW6=
z<Kx}^{rx^O3>??L1Kk(#YS+4T>x|0YMBLn(JzYgb<-|PO>Xd71A}{SIOwPQvX6C(J
zx3}d6t1tZY>C>d2pPzfj#LNK|p~w2=^^bOm3d_sOfBf*lAY19s9JQ-fMNc};t+^At
z%x7Zl?{6m`9&S(l_U2~LQZG?ZD|tnr^5oKacC}G+bz=iXIy*Whgsu+r%*k0JV^<Ra
znp(51{w9*1o<7-7Rb73xaZUF2?IkaRCg&QsM@7xDir&3Q1GG`|=7z-PBS(*d)>U4a
zImy}C+4o$_yeU&urfP?WJ<h(gr1Q*t`}m}!Bo#ZmxUzS5H0Rg<+qos<qSKl+YnBv0
zKUY=S(%RbTwpdVJULMr;4-XHYX_h<d$dMx+K0ZA@bFD(VM75V4+n9IPsyR1mciGyA
z$jHt`8jl`4P-tf3oixAxU*w}lkDgpu=)5WItdyi>(UOog5rHDE6VJ{zf4%1aBDH-r
zA09M<1|NQJtN#9OQ|aq4(6GYO)6>1*-rDNA_~MH<(aFMsSthe&)RoS7ukrNseDw0=
z%41TJlA5=-<xU2TRO~ETdS!ilyoprrm9^2~ckg}nYca3>mQ!lI)NAUb$jxb>fPK3C
ze%)kFVYQC#?ry8hm)F)t$4AXRJMpqh%jaijgQxRLoB4pc?0<fKF8cSUa&NMvu&^>8
zA0Mdued|_K)t48FtHak%yKy7Jvgk?2pFf|^e|oume%Jo}`!%|h?$`ZZd+*zp+eTl0
z&YHVT&NXmJ_Vsm}GB2xj_V!NYl{WKO?l;#ZP-O0TedkiUsxKbBmMSVPWp8dMK0h}%
z`1Xv_PnYI=yZY?x?5pS7m0Y_{Eb*ND1ms%hcD|G1@imI7-qS*^|Nr;<J@2)|yx+ci
z(>u7B)D*s)vH~@?5^XasEQneA`(E{X$+@!TmX?vbN?s~S^}78{p7eMAN_)__uxNC2
z^yJr4UJfoUZG5s>CA&qnLM9lep99UDYjjO|&f=m{9G07W`*MbfQPL5P&98d8yC;8o
zdRjVn^S31J<ulm$<<?9VS-ND&lN)TsF}urrYietIw{7;FZMG@-INxN>4v%L(H+^TB
zocws_LWaqu_3`$5ziy5*0hJh!-n_{vsLjsKo@~6dyCdh;7SAqm{k)?2*(OpOH*TB=
z8pmEU`!;t>^7GjpCr(aQzuI!|!nfbw-p+n(nexu(MP={T8yk~@Hl=t@-uUmw<NjCg
zx98n8+G!iS%x|vNwQJYhwm*IFK*4*Oj^U1X-8sd6MY~q~`~80Z(x9bYZuXNmS(m&B
z=$p@a>-&jEN4vjXJMYUhX~F~rP>c6_VM4-!J39)Mk6XF-$z*=9o%?mO!tz>GrA-+Z
zl}r~Jeyf{fSG()t*W$?y64mDgL|Iz*af2%QkDznbeP^2$l$W==EjGOM{nwe9#u;~a
zna0G#fOc=5IN`BaSp4jKd-<!Y!$Id!*3{H|IBR}?&zZCdjNRh;Veb37Iyz2V-6bd}
z_$v43o9Cb{QJ{4L@%4X2-|zX%rxmt_!`<Ee#?6}xV|EsSW(ezkJY-*dw-U6V12oh7
z;=;lY-@m(GT;!UVoXpJ6&)?G8n)vC-Nw@O{SFF&`iQOgAD{by}agi&iL6&uORpOTy
z7eQCGTwN8)c;HD#{IY4O=6QE4KzH*zeE6`SxVRZQL9{Yh{mqSy%$Jw@o3B2%V1dFM
z+iEe;jx5kb^(0mAL&uJ>>FMc#7Ak?J4(D2zFN)b&r1totpVCSVu3e?C*{rRtH{Y5l
z?C<XnI-c<U|9|Fx{{DUV;sr-|c=(mo;r#b&zsrIKd2igf@#KadXcx)N&Fr8xGPm>h
z_j*m$I(YIV=eBLzK79D#(9FhbQ1heU&E4JN#m~=~MzsH_pMKCR_tt|K7Z<;{yqtf}
z-o1(G>FtwLy+McGgH|Ad680wF+}qoZwsMPu7TSRp#x3=l+O&49E@;waW0EUq@&<JI
zl3vV?1~uPVFV@bV{rO19%~w}fKYns@GH8uUO-&7GM~9HA7wB}-h;2EN&(6+HzxFNe
zie>JqoU^k`3twH)<dL_#ld*<h-Y(>{{rNk_QH$MrooZ@qetm!6e`>1s;fogq&z(EB
zB5to$8=q{Kar(IzJ%^^xE_<>xC+~WBQPH9I`~UYTI=3yT`ueJ%sL06Tcw1OThQ_}i
zkNH6-^u4{c)p@2-YC?KCJ3Bi&X#Qz!)K<_6jKXJUBqwjaG+S9gfq|2g6SOJe;oG;o
z(b3U6cJE&7H`fZZ39#_R1;x$J7J&8?JUcfRwC?lZ-Mg~au3ZZdaZN9AT07_4SL^qC
znvK)Xt@wTV=1s}IzCKWY8MJEX$B&902}33Sw`S&Ii~cO>h)8(wn(57@rQRz77BZch
zuHWA!s-1Lxo^3~8ALtMtznw>pxUjIXf$m>)ZsR$)*uCE%`54a>{dl={e)+boU;n$A
z{QLL&y<x@$g_3u7Bp*I}2s)1zv;gkq<>jmYT6b!E2d#nv9jYHFB4bseaei}<xQXv<
zv!nO+Rtt)WwZ+%}HQj$$kr@=OKR-V|eEPJv?9#4|j-urk&NBz?D#^UFqmWrnP7ai|
z-`?8FJ8ia2rO~9xlP6A?&|s8$ih&{P`nuj}y3t7on^<2NEY#H01nmvKwLQOIR6C3T
zyz}qNmlB^@CY;P{JSQ%1PjhL#2^tGfDE2rVuKROAlfJ4dtF&28!y=6p(cAOt+MQj#
z^oPFKoshYE-;<QLx3<1|o3!@X+1ZDWA9qhrnSXb8xw57vXEQthwaEW_zu!B2zy5#k
z+1cj%cRc9i0@dz{YHDm<i&iLy3-0w;=2mp-#EApD-|t&pw)^bq59eK6T4NXPXHEjO
zjUHZG8_l-Ake8SD=rrBvEB7Bie$1HC*Em0PZPeBU7c&Ip<@?{=-M#-#LuZ^I=+ex~
z%l!)<9pS9`@vxntA!w=B-b;srH=Qs02Ws8%$=mg8zgNXw`szw!dprB2$&)|c|Njq^
zr(9!VWJFvYPfydmxXgF<AHL}wFXX#9J0!P!woH-bk2!t$vaqM8r-!d^Yi}>_y7>Kk
z+S=Nn1-#4W^!D=JxqFwl@28(jn`z!1iRt?BVfEo6toLg^pXILpu}4AcN&nNQyN%P&
zJ-F;|f3-UHw?qEnHr|anH#gOE^mM$qdXVJ^&&iV~84^A$a<}%*Dk?I{$;kmNl#Py#
zZvJ}X_U+ZBf`R8uq<BSK8@s!?|NQ+6I@fhe-d(HxhpSdv6#4#>w5>8(6}Gl(u66mN
zM@PGN)c!UL3JwM>Y5^^%`g$$;#jUN`b?u%mU;2-;9O2>P<6}rDV2gQs=IkvaK0dyR
zZ*OKEtO^PWx>D43XJ;|{?QOZu+qZ8&S>)1s^wrhXU*o#FyHB@!=sf;>-afp(ZtCsG
z39aqz%AoPHA~|s-FF(IyN4v!@t_s!OE2p0#r>2m0p=|G^vZJS7{rdVERHF9w_C|s3
z6Dxmr=c1)%aBwhaW`2rZ?5!7N+j4JDdtP`RGMgX0DW&t|&#Ds^Y6@u@vAayXrf4)S
zcJF_sYhClhfQgy;>V0NrW<@27sxK@2!Y3-b_bDhVJ1@^EyLay%gOPtmeEfa!>kL{O
z+IXegR;*a@hp$<u<@oM`hadG~D)w;qUtaFN*u7uwRjKq-Ibi`~R~MIri;G-6e0)OM
zAKl%WEe>k>8$T}HoOTv;rP=#^zx~u1f4<xO{=t(cE!%Q$OWkeTc6;jj_4-ZC&GA9r
zD-<-NwrKR1Djs?qyW>NJxSq|uR{q_m?d{bR7(jbo?(DCZ@9gYkXaJ2DhOdiZWcc$s
z{(n<<H#ca7%GK53$~rneb2)3DoteqO!Er&7|K7cOa-hplf4|?~uNS*(LFnqR8{6~c
zr|HFZX$CJ_5V0}o=S3GKB_*XrOpTlz4Kt0?S2@>ebv2c~zLt1*S1Ch7`MpYZJv}{8
z2jbhiyWRZue+1^&eB#W>&AqrT*80pG%i!97&e<0hIBwXw_2~2Y^?jhz_CVK#rJX&*
zE?<-Iaho6rh^qKFFvRRAIJl;0-@biTllf*{+MXZ(<?U^A{X~$w;NBvWpRx>riPzRf
zZ~w#BsM7%t<IXe3Sz0vYKk|n?M1+dVvt%aN0!5Y<(0Y~*oi<Jmuu+jb!U7;KDQ%Ka
zQvj`DbV)JvaR949Tl4}_)txwM5GasF!w7FW+6g+%chA>r(V#J#$&-a^YHJNa#{j9T
zzn)@U{ER1RdmgX2xH#x60wW`#@^^PmE?)sEe>%AMUjN~HF#pl3tE)jPM`L1RL07dM
zID3|N|Nnp1pi4Q996bujYe$Z_m}FhyShsH746|G*&}g2daoU3;ox&D1KMdBa-FX^h
z;EE5Au5OqKs^i=F<sW^&U+=y(>na1o-(O#ytE#L(*ATPw%Pq*bxM&9Ms`|zC_3?FP
z&7dry5x<dp+Dy>BYYZPge7I1#H)Lhdg$$DoTeq?@fUb0Uduwa(WPXN>dwVQvYHC2E
zNT*qSK<Oof!I04~I3hyAg$1<qabxoFg0HVaL2Cz#pPe~4LDBiag9i=S*Vln+S`JRm
zi_!KbCL$j{e*7t53Cg8`2M_8+q-9-QB?`JUOEY-cgXi<>*%&msnhcYVfv$>UXn1{n
zJu`!it?k!q-@klu2?`Pl3Jy+8PEOu=02B@#TmoteJ0HA#+pFd~YeDdGzk=f8!_Usn
zHmv-VGDRzttC^iY%>D4D&6_VrU%z)xj$y)_IcFd-%%!WQkQTMC#uC&d`~3X;>T(Ov
z;Kr9PB|S2hLU(tSHa9mjGdy^Cd3n|A<x7?@G(@$5LTZIU5>wK$_xpbH9Xxoj>h5aL
z68%<gaV0yuI9XZm+oIa5UteE;`0UxUYj(>YZsT>nxX86M?)9~`(z{AuPiq$w03FPl
zrxU%6=kzq)%av~rHnaZ}IlH=<vtwr7y*-@f=H`2^2L}f$DtUN&JHNcN6tvAr#<nVC
z{hf!0+XW>gGOle~v}loljLe+pGeG`-@l)~_lZBohXq)S)<sEUnGOVY4K)VzA`;Y(p
z{Jb<SepiX+nl)<zHmCVAIJmg5nC0GTIda5h>zQ@2yFqJ^OI}_&y2wx%6d9r>dzh1!
z_1piGh~AzDTHy5Y-|zRJQ=O&F^NwuGy$xFF1`1OKgQ_nXYvT4wB_<|H7^QH4lITq1
zbR`7^(8>Cz?z@3JDfra*9;0FKVz=H8pbH#TR9HZL5>WNYEv}bvYKkUk^?ua4oSU0&
zfbKpCU)KX#tqwXjqGw)53~VjH?y|QVYJZpY)wzNaTdUmrh9{s+#b&v;rX*X&$H(W~
z+;o%)<aR;9znees4at&!&1Y+dOXa^x>f9Ybo^1PIrTczHgNTD|)su1-kcf*uyYK|2
zj7v+nR|FhX+<#aBR8i-Ex>kjcKUsIxo2e<VUf5AM_medXs481Dy@}I<aZAccp&!3~
zJu8<088PMT%gf6zHvfJ4xrNh%@yYAg-47l-_`?Uz`!8A_8|(ooqCy4f=Mo_>*KY28
zK~NHysJO@Pw6U53Yhb_JPgzD#G+p#Q$g)HsY7@(cuV>$Dfbx^Z?#s)6rWVQ>GHQ0z
z)HXhN@Tac{B>tlHvGWTmxoTL~|2sv*#oPI0tq$D1E9>Xy_u>2Z<L38k76(7W7%jQ8
zvsit;k{T$DXj!cJY~4^l3ACBPxt))LkMG!zkB=X|dDCP6|BrC^`nb^3Dr#z=yO;|~
zOOI~Jy!_$CMddRy44FX-C?6hfPs}|V>j#RRR`K<1XTQ9-sQl&4P2sn<w;x{>y1EBn
z|M122_4AiHK^#$VgY~qJ{ogObpc%ZAlhv8Q6TpHOwYQhOjoOlZ-OtyK0km5E!^e-H
z^}o7e`k*uv=y-(Xh|lh_w@wq4TtTzpA*;i9&z(D`5wwH@bg$%c|M^S|>tc7eMQ_hj
zR8eus|9jy=z>(v}qpfm4USGu2%Gog!GzhR{*|JApugAO3Hp|^m_BQIv+uP#B&(1i`
zx2t7fxV}D~ouQ(t>ebr!FJE>pS)#IJ*|I2;Jg@;xE$16%ynMg^zgtm}5gV^m%Ze2m
z3=YTpWIuj+84TL^I>Vw+Y0~7$jG!Bzs$So|eVdtK(&Wh~mDW8*!^z<KW$pHRmn!#G
ze}5++_~+m6_gRv;)7PvC3JNNDr3kW2tEYnfh|f~*>Bm+EFAvz1;yL%at&I%>!}oW0
zgLlVe?oLWA{rjsFv|OO{d-9D9i5gK`R-DVeyQ|cBd*0o7<~1NQPAyG6Jq>h@xz&2x
ziVq6&7gd%TFd7E0joJ#@*$j$j(Dc#k>+52fC(P^sP426DO*wFJvHRC+_K?oe*;`>D
zAtIp8iO&O2tbd8&sb!QA7jKW+n)Ni;Wj$NjL8IX5da(*hGwkd4oqJvU{2Zt+JIf@K
zi2-zR251Y+j2SDYf%a;Hu2Rs8-4$Vy26Ee?rnYj2Ga?ca9d@<96s)YIR<2x`acK!>
z+53CFrrFmLzPz}o5xPo*0mO*dTV)D5^E>5)fKAmG4p3d;;J{Gz_0`n<y`VBt=~TLp
zL(#+E@Atd^{Pa{%R<`%+>+6eaetw!^nk@#pYi+B~%}uEr%iqU=I`E+59zlzy%ii8f
ze0FB0%-=3hvBPDnrm!<1HMO<y@v+1^I||iK|NQkU>GU*Ru`aOui}{b`Kk}UT^73-&
zyp>=}7u7GTcVPk@fB+hiIXlbL8MGV2wra|KMNn!Lyjc9hT}5HKUhJVOD}yIanbNYa
z_V=QYl|dD+*KP-G?OL*Y`SbD$P^h}3fJ_QncIN-q^5-8-@BEfOe!sXy=ZKj1rGSkh
zYa_D4MK*4qcq?mllvhUV(k)S2r@3XWogS8%d1dLhxvTbW6H|@3n!Q?8t8?yxZ91QS
zA3pr^t4ZL*R6nKl&mTYhIN^PH+PU;|-=C!1OW#*~ES#B*=RzYhJLqWMuP-mV?=E{A
zv^nkUlgE!2Z@*s`y}SH<S=mem1_lN>MQ4@?`#*jEe*MM8#ihT#Wai%86}mP1`n4-7
zgTEf))?blwauOFO=fzfT@j0<-3=9knE-5=0lsrKl@;^U6f4!MLKlAFU&{LCCyJwl@
zYSq`**Z%o<Tq|zRj%m8l&)yg@GB7aw@onQ&SeBXf_t)1~cXn>(64P11Cu^l)WE3>N
z_S?*J^K4gNT^*kN^3qbP+Fx6=LRT#*zh8U(rYbW71H+HmJcaTT>i+)9JlMo)RsU~K
zO-;?0XS4HH1uys03SQ>Zlv-O;b7gOJdFiVwCpo7wfwZVgDm8$n^Rg~3YPBkTwS<jV
z>V!d0eaybFwNYHWyjxdTfjsUxRgvk$&(F`N+E#y4(SQH^xw^gm{w>-Z3=9kon^HQm
z9Y8D9n%Vj7w*0>yUw`%L>TumPV9BDC4hGQ3{MQ#3A20lCTm9`y_4~c)iLM|+Cn-C#
zOgKB+Tw6oq#lpX5XPI6;)+>#quju0=*QckazhC$_E-vm)jQ|4!!wCi>7lw}?KVJOz
z_qY75{rUIpo}Qn7|4<jmI2HFc4u!L`&99%CX}q=Q=_!_4?XWcg85t|0wq!hPIR#Q;
z)5r7CbdP-Pmx*S1cUFk$My;s%`RUX5@6%Oetx7!p|9xNo_08t<Sw}hq{niOFFfbfg
zoYG;eu(RmtrFF5pO;Sz>96fR*<Kv^FQF|&jCM6}Al)MOddv9;_&f@2Y1Tu$l;*vKv
zH)kK|5S;T8WU0{xo<cSjkZF?@56@xTS^T^YbZ_T|4F<06?%H;C_ZHqa;5j?T^0Mbu
zQ2cvz@d!E`I(#^EeVpxFyV|Io#m~b^O16A@c6N34^>vzhdVW7YJq_-Yv4o~D_Y(ra
z8$i3uU%be8duyxr@jltfnX{rcBsAvT+q2T&{%^>;ckiOM=gr-G8svx%9Fj^6IrsKN
z?ydS7baho|>gK!pH%)wZ?%I`gpn-8!{QiCSDxb@$hjTJ8Fgyq}a$(q6`g+=*KYvs_
zEsLK`NtEd7>)ZDI`iekj>#{cmL8TxMPSSE_nXr6*T~zw{c~ez(?$`mkxNLXX+fCp9
zzpwv4dG_qtn@@p~=L8qYM@nBB8W`3_Y;-!@&OcqH^yMYj#qRyruC5Ljm6u-+S~B?R
z%F4-;SA$)uA*s~BBV!S;|IerHclY*chlhvrN||^}oH!8_{+m)xF5;85$~e@*c}`Cl
z6uinQ9SonoT=swca{2si|KB`&woKAEE#p{^q~97Yko;q>@7Ejd>?-w+i;I)8E?cwN
z8x-CXoL<^BR8&-)IC|9e=H~SBGEI=5f;8^33wUN-T{TrqKThYe$=q0w5e*_I1g<xL
zYGY97?XCJMA|s<?Z*RYI_ipuwbxB9N{8sRRvP4j72Sd>Iyx8CWx98uVx8S~suVmZ8
z9Xl+zSA+80haE;P44k~YrDdQ%W(aa@<4~AuU0w#~?%<FGxp%Un^Bl&?$GzrqJ9`o(
zW?2?5W4#J;o5wmHK?k$^dpd^=WNtlr^hiWhbm@*A7EjO5pZ~iBq(IW4jYDC%|9rnK
zwrXl_mzVorU*b7=OX6X+>~66AH;lfRDnxEh3w?iY@6{E7%3t5zy?yg3NM}V0kF0~7
zM*O}#+j4I|dt(F=vpFOz=wOy}LxG>4KYcnV$Q}q99Whl<cJK4q^7q!(>|5J%XCFFr
z$fV$bLpQ>MKVK~F7s@?9S-rnYTz_5W<z<={7B_A!0-LyvN6_KX<HvJjLC$Fi`QQ@6
z3}PuHpAcY7Io!r8Ws-5h`8PYi+?unq&7&g(K_%&v69SAXDk?7Ze?A^}{;jN}BqAh~
zgjA4#7M5RK6<VE9KUFIfRFZRRgUp;DBdOGIXK!`*_jh-HAO9D<Juebr-jVzF<4;f1
z_1<#c#8)?VSIBwW?{kiZg1lG}BdOG|=kK@Mw{{jUkE{I}`uErC^<BNap*cBg_~dL>
zgvZy0+W-Hv`Ci@c-1O<7cmxGXt%FtBn-#+9exSP(uU%T|ox1t%dEbv8KN|5kJGb!!
zK0h~iZj36(H|{3|7+of{@yoC4leNyexhd7E^3xKPl@%W!W!>AevrAn6-IG_Kpi*&d
z<5alx_rS+{)$c8L^MHg-PElOP$jQxp`O3;*`CIm-uR>%k3JxHZfz9mv*N*i{%ir2x
z`8kbO(&z}1-0yF1gWulTDt{|}cUkV+ySuL=$(iTfnb3XuuzvW)n>nCtzCj6W-9$yE
z6UOIl7Jq$x-G0mecKN!1jY&s!kc#)U(dKI-H@p4){r&pZ?CWpdUSAg*yua@6m&5$_
zpeYQ$HK3B)At<F|{lmAHm-q9@SS;|Itd{xd$;ql$E0?QyPMkQgtH1v`Xaz{!-(QwH
zy+GFXPf}#+NR;5><qci#Hy6}{``ybCU-?vYYt~h-(%08Ob<9+Ce>wGVP{w>PAC&hU
z_EvojSs!Qn`+WKPdsk0Q)xNr?viR?Z!~DC7pZ5u`29-e{G$geeJSJt%y0s;9^0RYu
zSErty_VU-)*Qe&&@3$&>@!-uRkmWW`ZJY|fzrDSDXJ@f#{lA*I*5!U}iJ*h)U)|lk
zeO35+y~74`VnM;v;O=pq5wwzjmUa0$ka>@f_n*FgJ$(J%Z?jf~tzES(_x7sL)nTgw
z7q>ym-w7@+%^I$(2z0Lg_9k#&&Ce^lO0&<-Fm&FUb#;=;T#Ld(Cn2>!Ux~Cs+53BI
z7rAz49ctmM`uTMF|BrqzK&~@tE2&mKbl(1djGdhwsNM$c)ZCozpL=tY>#|I%-6p#O
z7rUKI+q^PnXA$Qw(3%)E-&vpo|KsA~K*g(G?5-y*T8s<~4PTV+&I@~Sb@lYBudkK{
zFZauQcW39Xce~$z`FcJ6^zGZxUte9FoG9V9_k)d+lG9@M{xHxP6K_|??%ww4$;rir
z$;VzC>y-u-rF^nhOKhvZ6_~LzFfhyv+hs4L7qw+Y8;|57Md!8~`#G}@HnAG{2Jfx<
z3c5m6R73>a&NzGa?517!YQM)`T@mQKapT5aH9t2w-(L~97<9>jtVMytzJ2>9Ezt^H
zwIcCw+bq-UX}ikb=S9v1m9SNl@|Gv4E(==fHOnBe3DkpG8^1rUSK9nq6Dzlfh{%$f
zpPwSbj&IAoy`|)3knb!L&5Qq*dQaCfFt{LRr?Rr{?=P*$O-sb|VlqNOEjx!@lNU0b
zU^biW%PVDaVNK-bl7D|HLB~aXeSLlVlZ}rbKfb!$Ummp3)n}#==PzYt<<f_TSVPyv
zSUSdET@?yCibMMpsM5N$w8WnEb>N*lcdl&9jozAj``V=Azd;);o}H1*y|>5m;=dIu
zG(0Eu_xm^5$;->f?ksXOG&DRl%QSn|HBc$C#9i_ePsiq%okgyP+xf3=NIX2nJpZ1{
zbkP0-m6KPmnmXQZ&JK~&0j1>>GnNU*4Jtk)R9055EPsEGKla$&yRnl>zQ4Q6Qd|D+
zPGJNasL7OL^hZQzHK;@N>(}e`U*FgNj}{aZoTPHur1beY*`r5}XxP}qSQbCq;=i}b
zK=k$cMT-`J>~#0r|LXes`9)7pJ-u*kUv2f){QGuOzky8bH_E?fb9T1*`GvYxR<}H_
z+F0@!+upsYFME4e>1xm>d(Dfp6{Xr1?yLO`O1fGR8y0{Lfcp9QxwTI4u98eqy_g7T
zvmB2vhKCLv3RxMX`u6sAe^Ko)pTFR!?JC$at!NITC+O08-RNyPj=vuqY%cx$%-46G
zP2|xo(a9>HB4Bg+`7jrkmcOej%yVxoNj~29@^1P4ty}UK7#I|66&qA0PM<!#si{e5
zi~k&pz_vutEfC+fIX1IpetdLvRrL0CpaaCD&GRxqm$Ag}+XGr4p9rd59ey2heX;U@
z0Z;pUZc(izYooWXa_JQM_2DqTY2F<RRyMY*zrViL{MBP%U@$U0*RbTmG~H;S-1=`f
z)3=trjp|+vsyr^4pKAbR)D1k0pfu5t%Ao+_>NqoiWD_KrKuu$Y(*h14(TFw%P(5|P
zhy_$kGE7q()jC{)X%gtJ4p1ZO>HGKVWh{$UcuZ8vy1i{}pS=CNgqzCleJeaCt9|<N
zWy<vF(?NYN@9BD$3$s8exVEscj8XFF^7(bE=GXo5T)*$vs#8<7mlr=jmw9T6=BkK|
zi$Hb5^Lf>NlSBjs7v9>Mt?fV0M#?y?C-2UVg&UKPgU&3!wK=^%CZ^&PBLl;P%0iPl
zF7NmKUia+m?B@aspku@~rJl|@GsAF}ZS^*l%quGbch&yh#wTN;5Fa1!88lTZ^vZ@r
z=d-g+z3=WWFZcQjE_4rwtWjANx3{Wkv$(3)lz^E=sU<%?Bv#+PwA5QvLL!4-ep1N(
zy4tBakwM(zdRx}SfxKd?)Uf0NsOzX7Z|515lClJJndPae+UgPOvaYVWwZDG<)u*6r
z@sf*Ch4tB)nTtV3K4f3_n<OGCs_Oaa<44a8Yx?{9*Tw8yG-HN@cQz<TT@q&UFp{+_
za@kw`J?!i()2l0k)jco0y}e!4bKSaioYTsSi;E$JUk``ENzgpi-ansCpPH=RFQyx%
za@at{^WD35la}l*f3Ftt{M=k?zSE$bI8*R`)7Kg6;`gruEz|k+_4Tcd$?bdg?tNR!
zzbwvnM%UNyz`(#$v(49UN;~`O#BtE*9ZKogdX<@hL1E>yv$L01etu@T#ns*2dgUy2
zcE%@$pay7TW8<&C-|uhDysS1=EA-UD|0|cz3;Orx=hpJ~_gG%PySdq2R4c^e(qqu3
zc2H?JbrvY%Y&vThWW>alc}>-_T)9Y{Ie5b)4LiHI+*?~NzPr17YsJT;(6v#f7oSFL
z&02bOb-1>Y(xH3XGB2yiT9<*Yl-{^11{4Xgk9a(UzP`U7zdCGfP(Z*0z1Uq#b{0Rk
z`m+Dqt?Wrl@Ro~@T0kkN;Y%~aBo|N@IaQ)9Y;Dxi(A8n8FX{yxxS*wE{r`WUQgW(p
zv>B+BytAXwbJssmHB~W5&|y->>1n#2ao=vH&%b(WYxd<0QXp3)Kav_jWuD$SJq8c&
z^z-ws9_<!SowW?q{XC$_b2#ANpP!*C0u<AyGkGXAJmB0~@X)DO%G8UUU#<ky8C}Bt
z^wiYL4-Ph8UFIvDKE27OkD*EZ+@V(PtLtK|O>=LBIJfhKPE>N8qUtS{KAn}JA^6DA
zqnb80F$)(i%(}jAu8N@3gAf)0n?ko<sin(&XJ=hq6}su>jx(GL4O*eAR-~Su#>K;P
zWr1UJ$iAA&sTzSz{4XAe$jp7%S@i8qq^wOvK<w@^)fxtd58`ICePef*UF{TBH>v)X
z0~-4(EG#^y$30WPJ)>d~=<wG`Axk_2)x((>9DY51{#^ZKoy5)U`Sbne+r7O~HNjHQ
z;e$)%hurWvL2L{P3)$=C@7}p1A}zi8!-oR(@Rl<jpo(w;XX@!`zTxZRO3Nfqw16wl
znG+HvVwjnhD>N{82-pAnxje^gc2iT+oLH^~^&_3a>M5IVURmtU-~O#n*7{W1W=$g_
zqm#F_LRL)hnx-@Jma0`n#9oIqcLv6J24=J0ZUmjeV|_NukjJ?#ammeZ6SrNuob9P}
zWm!5u6X@Doxt%$S-Fj0t-`tXPv@4{#=CFa>@7espkN1K`Ud(3u_DY%lI)40Ntw6z%
zT89SpGw$-WQx@btI?}nT?(Z&8qvFoaV(TxU`1E~sVxH}8K6$$}GL}V4PJWyC?b7LN
z&X@581snGLerFA8^ylyU`OJAbH$VUNWxlhYynekp?d+_jw;uOPoBKJp^G)5py?j-!
zvFVSWKVN=$c$l*;yx~kA1Cvc+8?W@V1-d3CA=lT(U$=h0XYum+b+<M}U8<^Lz7$qf
zrR(|szizol{i`c07f(|4&ieoFuT{Z=1I~wE^hg?~%t~8zfAz|QgH2iy8xmIK>aUdh
zI_u0NRqprA4oWkcSRE#X>?}%sdS+%YXwY(kqVtzC#^+C5y&78k>&rwHP<u7`SWn>H
zU8PT7zXpxSR9087E`5ECi<{ef!`^n^>6P#IeoxtaQ$$Q`+0NqUtBRhU`t;!gD2ap0
z=-+!|CTxt|RpJRc&DU$Xo^E-0`O~wr!+mF&T)eh6T3Dz0`8nBMX>-5x_W$>Qx)`8J
zGh$;BXdDK#aM|<Mqi+2v#_4{NZ40li4!8FC3u^se-QDiO!p?r$#JBeE*Xy0%jvqgs
zeQizTrkgphuC1M|qG@Clr0mucaCVmI)5njM!^6Wt<*clA*_Dfn-6#LK@xO%k#FLYg
zLznqT?%cU^WxztGSGTvX&%3i@;)}9Hix-0iZ8a4X99p?VC#_z+8Z;g&rW=)Uex5Dg
z>2q@|gKut1ot!9fYe(VY!`YuE``b<Ya{hXQi>vF)wcGDanm>R3ojZ3zHY7N1&AS`L
z&L`us;mw(u#;Kccez{wIKlAc3Ur<}r#@2SKb$K2uE9=V}8<Rcj)-`--FjintxjTQk
zjJ*8%0|y*HrFpNk`LyZNr~h5n2Rf^?Lr^(ndtR(*{=FE`_~gpq<y(rLdaaGy8zpU?
z7XmsV_=`nb;tSAHxLKyzUruSS*HBP!ur7ahWsYU>m)rUKGvD9aduHaj1AVgA%NiOO
zTwPsP#_g>F6$M{kU*B5v)a&Z{`1s;yX99PZy?t|fd*)@g)#2;Ij&_M&-I^V~bJs2{
zB_*fZ+j1{IJ3Bjcb(n7G>M-ACHr`9>^J^AOQuSWt+|KvyYkb8+*7P@O|CSX$KPP2V
zu>n*yetdlV^x3m#7ykeKet)=&ON*3wUQRt|V^sICUg_mkUtg_EI@)z=p6%{FdHZ#)
z-C~(vUtRt6a{2r(cZ$#3e%dHsHuos#+^E{0Pp5zS`t>U4<li-so3nm?dJ1aqBqb$1
zdH3$!hCd6P+f8zA7+hT$?C$93cxtZo_CtpcgS=Jy|L=Fuh5;rfCKb=ATA`OVBpx;?
zdg1}9a_3r=ZpwdtR6PFA@hbm$HY;bDX1_Yr%AIv#L1SF?ThqCg#cthVx|e2|W^bwa
zSp@139JJGm-sYnnw&ucV{rzj=_Ex>Tu+TYbZ`Ias@9wS!)s{YAosK0c-Mz6rf4=6)
zJKOW;Z}vX9p@L8N`Sa)Lw{pykZEXH5JRPzw=B5eH;Wc4vXI1|F^_Ass`1&~0^|8CB
zE%^K7<m9w{H9ya+3N2weHUYL4V71kj`+F)coA4aYxwdAe^Ka0gx>Q@@v(wYhgN~V#
z{S{aFRP=J%=9$^o*VWFs+uS<oQ`D-Em6K+gW``AjeRY-ZZTPwvL+|N&xzA2bJ>ApS
zXXbm^WbvX!K8Fp?RDFG=x@)a=__`ba|8KZ1a;bk??(JD-v(JJKR1p5c%E~&^Z1&lh
zT_r2`zCF~+{cL{yznKX)nc4Yf+}xaQ-rUqAbF2RU-}1`_JjNClHx}+qKHj(NY?`sM
zlG2;p+uL%Dc@G<a?5*EBb6MuSoyEu3L~UJ_Dbe=xjPZGk9Ca(JTMtdYADC&J?vtON
z59$Z=z1_HR<FZ7Fw8L$@!qrxCQTYxI4Vjy7p4pgu+-l4F8ygRwnWWksxxj((^S8IR
zzkQQ5PMgt|IOFD~RO9Wrx1Vh|*TBf^Gy80s-y93Wi&FpI9lU>X!UTchKR-S`YhvY|
zv_<Zp{BbGG<B|dnlk)CP>XX^{uh4t?G#i^W^>^A0c$|}u^-Ns8JiTdOd+nyMEg6BV
ztgM;W)<o_qdmA;$uF;ss`ThR?`#|G$7w+w?E?*n7GYB-WGg-}d(sp6Lve(yiWeX2w
zuPk|a>5~Wh`lX=8d}3nat6N)F$JPBzZQo~8`6=VYg@sjrzk>5z>6;rD?@b5oRNg*a
z-G83R+Uqmt9oart&bBJ!;i1-9hRJP*B^yD#fVa1{Y6UE4IK1V|pP!%Acg_9u^z>@K
zxmKW2EuYIi*Ca3I@B8W2mIyNY)J)^$d+%Po8alt`Q>T<!&Wwb)`}Mwuw{nYzot~y^
zntRIxbVY-!`0n=h_UzNsbhX0P%=q>F{rd~yo6~%^W?pvV7Sp-#>FH_Nb0S{fm(RMo
zF821qweJ0LQs#LvO`1s#Rc;K7OMbgEPSuM1zvK5ePf_it|2zIK@S3W{|MvE#)b3?I
zGZ)3z{d5)AiwW@Y>DhbUfXCIvMWvF<VX4c!_lH`!y@T5J8NZ*X>@IY7`<89__w7P`
zKtWaiFLF}J!$YjS5{62S|8H(iPo1@lPu@<)^V7F)VSB5-f(Eoh*TqEYMsEvwduwax
z)~wK-yLLrI?Y;^MvW5l*QT@0WP=R-Gv3uyM5KYhThaGZq*6b>KyGkc=lf|0NMNhqa
z=i9|5CMJRgo|2N2-`2JzzBn~i`_rdSRd1rcy}z%o`SE3d{=OfNob{XT@2lOd=09)E
z-QDG{54CddDt|xE*;Y_cP?Jlcey#RKDJCW+llp%(Z}0E7cVwsxx^F)5r+@>)%YW`o
zzrR^NFT5<s&(EKFexB{ceU`<~Run%!_vy=*ki%`fp<6NnQ_s(fZA;9!yQ}op*6iu;
z?(LoZ<hYm4iXA)d)O(*gQT|LfcGs3~mJhdvSk2utO)q|*&dYx_|KIQbZ+9`3=kSHI
zv(4YyuaDa51&UxXornbso!d{D_*Pa_tccxRCS_grMz~t+iD&KYm-qJWw)^wJ8PxPh
zKHfL=%YX5}^7r@dCf@w`_;~h#2F6dHJ_R+i@q!w0J9qCsZNQ@&xyhxSPqu2!_o@54
z`ue6VaoI1coqcUh=e~7fx=~BMy}f<<@L^|OX|s@xNk^yHR+rt(G0VNR#S?UQW|?jM
z`qRgct6%)b4jK|J&M@bB+*y0y<(V@my?hqDba46cbKm?g%YcRn=U5iMI?%}cjoU*W
zbS4AnIJ0X{Q#s`1<X%4VY1#bb)Ku@b#2280L!O_TJ9$fAdwaW+laq*$&?5VPKb)ht
z=UqKB)A;LI^ZOcFT3*@L)_6W%HTN;d%eS_!ZsV0+c5`!j_LmnIZ|y1tWs{|ByizM7
zHYR<0nv|SuTJ*%@=dWL&X40wY`tuKi*Gez4DtdZK)e|&{$|b7x<bt@c@Z#0s>(w|E
zK@GFryLW?zt`@m)w(m1eKX+sQR9(|oR^{(v7X1wj4CFh_=&!V|P5glJ(W6ISo|$R9
zDqx{g(+5Fm>DBY=ex3B3s<?M$+}>S2mwmn+On!K%_3FlC_upq<U0WZY|NqF(gI8qj
zUi#jbi+K(@hf6nln~!nYnF)y!ocp@I{rUNMSK;F}P;*G3=FX17!*-#XJLPHwCfo?O
z&%e7X^y9~moVWbv*=W|+|7UrqY-eY8@x#XiuB(stsLikcSLykEdDYC$JMN%!ZH#!7
zgX<?Ws>?I798gX@Imvb3zI~u0+};G|EctEzP|BiU0jSx&=h1|9S5^kQi)x2~8V)A)
z|Ngj4zq!ADf34K1oyE_E_GZ{ySw+?V`?-8m>ghCoxxBo*qVn?VGmX<P<*`rDlDi|E
z^5@6LsC_j%KRrFY{Mp&r);gab?2`vg>E+$sm73q**%|o$-rnFEU+3%VVpC@=v-|fW
z`S)wzNqP78tv%SxuD;6;bOzFw7lCu_>+dbBeQ{x7=e_L120TwsPJX^IZnA5aNZ{V8
zuO*L;aQe=(xw$a^`MJ4KI|>$pYzvR8R6Ti{#Yk#d0;9(y(6so021c#$b#tP&<!H`6
zyKHUrb}bv582!CpCS6+>`}&R0L_eLVEgrm5CIRhyvL<zZDneHVxz3w6&#L;{ns4v#
zuLrG>zaC#7x-MoX$il1ZVxvI~)jxm#K7IWfG&>8L-0$k^yY}E<^V{M(s-R)!sLg4;
zQQPy@Zc06U>gZ8dkl|aiuFlzU{Ksy$Ua6Dk&-+(@dowXn;?<?4-G?o_zMq!^%{och
z*X=nqO?UNz1qyffR)^0v&%gHd^>xrph=}juRk6Fb-K%=7>pR=bH}%w%z}MH-K7I6P
z(bLn@S35K^X$35BXe#~n_4RVl+6B-dTdTv?K6&(L(c9bGU;p^{IP2P)nPKbW<|fSj
z_4Rf3$w{i938#7W|0;Lx*s&t-?ygmlo1Zyn&$g@Gm34jH+JAq4XTQC*71VYBwVx_J
zCZ(R86}ma?tXDz*q$B61F-VH0J2dzxX~rl2^gsRO{r&jM%Y1|P)%+BZl3Mli^Yhgu
zFE4@GW%Fvk-E7Z$U%21S*z)y(sD7#Wi(I>J<;O^hi!TRF`+^$wpu2oQV@LOEKKIsk
zdB420)U@VD0jMi7+bs9ekxpSy^KGhLY*e?n{<RYmm1Vct*8VC1HLP!M&ky(T=m2H(
zxz^>&Zthe137RVSU;FR((dYc2gMdJ5CqU=4Uk#7XJlZ7+nvVhP2@}-{(YSd1*5P}~
zLfO9`b?cjCUQ&5_YN|JA&J;9}AR)2h>+9>F5|8uR%d4xWr=6RlnV+8z8Wy`>`+aVg
zsP?kEyURhBd33%z{Cs}>y0W*oGOw?T{dWCH{PJ4Wu>4LT)h+q=?Y_Rb8SLICbMeQ=
z$6M?ER+(mB^RX^}7jk)-@8m7@{Z)PqUrrfxUU}&j5ivt6bk&r+eSXHuk1Saj9z2x$
zGna>xbK>sZySYTQmYC(<ve><br!~2E%3~gKMv)H+KRwtx<I$r>b7D9d7+#)l-rs*`
zhrl@(hJ(VY_5c1%S_1BigZl5qzrJL82A!K@IX9Za$drj=o<=K|Xwc50r=Xbq@uMPr
zIx~aAF3^qW7cK<+{P|Ne|K6TS7Q#%=3ku5^9kM{@V&B@Dz5KudhtjvVLhI`4K&xIh
zpJrk>p!w+0qmo}=GF#i)UV)|)-{0H&_U*cL>-^U7%@ky0@t<RsdrQO2EKI)c$HH4%
zG9SMwVqowP|MTb1mEGm}q3h#fmt|_1nT74!w+}q_z{ujigiqG$#QF37tHah#QmL${
zIFXioOp!t1vmuW&cw%GsuIlgW^kQ}>=<DnM{Q1*zyG4o@%LJ36_xEghWvxPrpPjjQ
zb#*vsI;XXzWrbri+c`bm%PYdx&Pqy3`to}H{#Vb=&NlL$ymK8xgU`!nXJ_xK{Jc!%
z<k6$9_wL=};^3Gtefspt+RkY%44%q!t;<0ZzgO4C+fUU9blRMD_L8^$-X-$&e**RQ
zd}!Ky`m_jW<$_h|s}(^@y}G)(f<XJ3FPD@>GB8;5o=uy)eEIS{d-pzlbSP0_PIGvi
z)Q!#Q{h&(y<KyG2<M-E1T5>(UKK9?ge^vkge&3pWoKHP`#?B`vCOV(D`P{Slw8xb_
zm7lNdtF2C-&e&~mZzlKSxjPN+Ib1T-wByx@+Y_Our^m&|w{82*UAtCAZ_oSn^Z9&H
zLBWSdUQL*HX14kHo2mz#ddi<2sz}%CF`rPvGQp(a!2w24rnD@2QjoDeYU`@K@(c_N
zCwe#(G8MG6yzK1kIB(U~)TGQ>rlhPqH$W7$Y@`OH@AtR2F8OaBKYNz;9yBRvq^#%U
z&;0J)yIs}a^P0X{m%qF5TlllW3>mu`i??0QyM$zA*KXKgfa2_#$D1FU*ai66F?mRR
z`1sMYWL9WM$P|^AE0@pnD%pE^xxe=$(D7VpTNVGV3|Tp8vv)(Q#QQU?AJ4@|yg&2w
z%gf8FA~!GFeEP%$4u#AGPOV(OJ|33`O(eB*Uo3xnOZBip$U>)9m+RSgc5HlhW~Q>e
z{r>iOs-St%&v*9KMuV;|d3>yQZmd^Z>Wn)xb+5j?x!L{d>hSA33LjtDUtjO}{e927
z_wU#L`T05f`MJ4%>p)|f1$^fkmNc#kUH$56c>L9N`MMRKpP#?|zC}(>Zrz0o0qN60
zVPV0W?r`bE-s<n51w?0O8oPrQnSyebkkBGFUMY*+CZOdXnc%@M2A#vTuz8}S#_I3y
zUN-aFO<2Evy^W1c$lj{b+&eoAJwbOIuXgX319b_Co}5_N(7*s{hxTf_d8w4|G0(rZ
zChzX9l_4vGK>cdaa*PKL66RW$pKDq*F-G&}-+!wgJV>~iW5&wLy3}#1hpwjV`(A1D
zRds)Vf%?rw&(5qoHB~$N;v(0~2*V&H)yI4D@7uAmv7I`8+<o4>d0O%N_JG>>KYsi$
zStoV!>+|{bSwB8J%(}H@<(@rzQa0Z-ss8pxW&L@>=u3hQI-uKed}o<>uHXM}mzw`P
z9dU8-y<aYQgL?S?3T-c&e7)qYpZV|4&sUe1_k#|9>lW8vm3McSRpFx+*Q<{URm=C-
z|9HR*8hg}@-gae*W-utR>&EN|0JTtBxy5x>$@OdReEc`O`un@9+wa$%zMh}XpegzO
z!i50SygLy$H>F;Fad9!I>kb+ksQ>e^opq|R<s|ESiHV7z<Z^C~<>E$WcJRby+@2kv
z5k1fXyG5@)?f?y%_uK!AaPN}|Y~>P7k#L)I{ppOihBG~acbC66<2`Jk?lU7He|Pco
zzQ{!`oSW0m&icROT@x!es8_wzd-|>0dU1O)o}HY0yyorJ>zCG~sl<C7tN#7%E$6Lm
zxwq4#+7kI>txT?FyPjH_vgiM+R`EE4-R1A|e*OG86I9`J2TkM(GP<|if4-Tmjm??5
zzrU82&h${#lzji-LBi#;XV2~_dppaydahOJnL9g+mwWE@*jfGk-OT6b=bQUpHu?VU
zZnjigV%_hz+dZSECvQ7`SaO2Nwu+BQJ9q5Ru&}ss@7b$Ypn!h)e13hHi^~z`>#>_s
zI`{0|dv%d3cXc#qrNS~_Y0%0oLqo&NC~LWRuVcHz)<$vO0yPu%RDOQ-;o;%TApIaU
z)yIDiyt%pgD`<@A%8J0uNUb18uVcSY>+cV#soCS!Bcb^6UkLw_d`-#s(&l+5&YtxJ
zosX6A{oA)^KIvA|OtZs8H3AeOUl*PER>7f=`Q|_)Gia{<u<XU9zrS-;UifeD`}_NF
z(4iJv!q-NHZqK`WX=C#7pzRS$BD{`S8-m)Rpp|bmKR+#v>h-YIlzl(jJU{Effkr8t
zih@o5UmUd3lzi_y+YHnx2er<)#PxLi{rxK|D>H9wNHqFsbgD#C^>OU>yx7?Nb+NWp
zUoK2kb}xB$MiSKCIz3(g`U1!1OIz|R*pKJ*w@V8y+qhzd#?K!=R5HGQ{5UalR##8Y
zpW~&kudJN>V%H=QNy(K)si&62ZS>eUrKdazbiC+{84_Ewuj_5~a?$d7S<x?H=p-j6
zSM_{u`K47ZOBPM(`Tp_o@u{lbVtYRxlm7LfnLlJ*jHPbut`J2<#jft|$2<{MQzm`n
z<Kw%QzyI&DmzS4kAM25vq#`aZUi<Io^H&!ayU)7H^ZenAw;u%@F5P&0d;8N@uVyW{
zd-m+vd-La%`d<EXy!4@rrsVtmx3}facI%T_xh?m$+OK77&%IAp$Xl2BOjh>?t)ZA=
zntjb=wctv1)yK7;pZU&Q23|_|e((2rDl1*P#Xvn~(B*8PeU7K**;d~Y=}YlES#dkZ
z4AkrPon;a@+bs9Vt5>TkKR*MlP5AWf+q2v6<~hi0wv}V@kSZ=OzkYXjx$u_zJByEl
z+{Jr1K`s;Iv45*U^P;Jzr-2&k`~LlU9kLeeh`ZbKK`Sl1&(1dY-~4OBuApCab+50j
zWl1-_y*+<@>FaBm|Ns5%jALhe?s>AJU((nuc$v?|kB^T(efUt(GwbfItxQZzU)I<E
z^=@oz+;npW>wgtc5Pf*%pKNCbx&zzm!oLM?K^4p7(uXoD4bwm+gOq9363_t6*;%GF
zTC@68Aw_BF>uW3h=i71d^M_Yd?C_g!xAw-3h`al0qaQwexU2B7+pKGS$EQ!a|DL^;
zm0PSNLqA|agU{tFS67DzZwy+}Hl^qL^!U1!4Gj#{KPnV7G(09woM=`1t7O$RuIG;-
zkrvU)C0g?4hT+{km6sRRUSAh$#N#Zg74qYF>ET0%gtolDwbffrPEIRwQ_8CA-BUbI
zR(M|m-CVLFQ2FSwV_A21m2&chP1vVWzUTjs$NZ9Q3&nJ!R%BdUq!qPg1*pM#;)DmN
zi+;3AG&mz;h3M{v;}a&`fA2L_%QL7c-><8qV?v_DsrmNxuf%&qJWp24x37;YEG*=_
zC0`>Pl#`S5N{o9s%%QKZtreA)UcG+buT%HR-rutY6;oGNhfiO>e!a@eJ3EW5s=ll^
zEFJdx+S<~8e=2ojcU`$x_VSXdZrq*-M@Ppq(*Es1M)$Vo-3_|D%vV%Ybm{y3|KpB!
ziEiFgXEX0fU-{o(U$^GmG}4XVcjsaJzM7vQOT9#O<M+j!on=~l%I@LApijT=Zp)3H
zxoqW3<Mdm%eJ+P&WUTn~>})o_hKGHS(LGh~X;<2KrDe|L96f#<v;+w><nr;+(Y3b)
zmss`P3~DUSv!AqcOXlTcXQt`S{`v3s``PieU#I>&#H|k=KP-Q9BQYK{b`2VStf<(r
zS65H(+?v3}Z8MG2{feKQnE33<%3$C6`g-H=burI2CLf=(QQM>GN#A$v^?Q<}+7ip&
z-@7}<IKA)i{->v>TPKH4U^yxK{z!rHp)dNXkMAyUWH$DmrjvGlp6%I{!OLgyN}HMF
zn$5OMKE|`UoY`~AosaXZ%h!QMI)zldW`H^{mZ_&iHoNsofyPta`{myD#5xLrGJTqd
zN5{`=(fKpm5@&#pTXlAFIx}H{z~^6IUoXonIx|g*LqTju_4jpPANt#Vo$~VCyS%W~
zVQ24bNNhfA6uYa$aC6GZNe}q1ZOy)Z=D~vm<NAMp()wg9&oneJ80+YqIrZt|j7iq_
z>gwv2olW!p5`S@#>)Ly~DuG^g`~R=YxVR`SARr)WTDOST$qLYcd};gZ{+?Mruj*7u
zak25~>H7KSW}BY}nGs}k@AdWd=C7}=P8ZV%IAC`#zW(plsZW(9|Gmur*lhT0hVE0I
z%TM?`7#J8B)*LjY=Bk+o6Sw8v)tY^FS?=v^mb<5fe7xu`e=_Z{zXF2=^ZR`a2^;hG
z{|z&n?VFgG_-)(P?Can~;A>v(1KredzwUSLqT05^h?ujrrLV7r?ksv5R64sY(IU5=
zL1D9U14D!GpT7^j|9-#!`iY6kb3@MlpKVo|wTN+v-&`xus*1RpkFKY)l{6R*Om1ah
zVtCn*IV*G1UF-69OKxr3lzMtv)@>$+lsFavhJsD&Vs~e~y0UVT%Ivdhv(GNmiQIJK
zx9{aEOFSn(dH-I&yu7@!y8885^ZQq}W?z@t_W1ep<qH-lfR?_6t_lHl68HUjrR^D%
zk+I^{_4VtUSh-J~JqsEmxVR<rvdlI8s4Xk%e!n#b-Td^;3N!&?`$uX5=%O#gG~L%<
zuh(lE8C^=8sTaEov}kbR#EGC00vlV~&;<^Ryb=ZqHxHgp+YBlKqc$eBo|>ksZEkM<
z^Y?GiP8-f?cQ+=t|NU9<Y-akK^PWl1&df}{FR!n!zcv4UT>ANWTffU&7P-jD$-TO?
z)Vt|;L1E#=cKNy)YyL7eoH=szCM$zO+V^L(^R<kOf~3v!uH4yKEG#qS`-_Xto72x<
zlg{4*T2uDw%F5tbMyXw(b)<8x%Woa-N|XSdXk}IMV!=Gy>Q$h2aOkQjDw(&oWP-M8
zXs_R+BrYz#HfpOE=<1csSyivsZddXA|L^<$tGmndE32xqPE1fV@(pI?7Ta?D<M)-I
zgIO<uEX%sOD)Y<?L(m|gn(wS7puu}k)8pJ6%eSwO9zVXi@bR%#aeH?i>z7~OD{T&L
zG6pVcsrvS2=9=fZzrVeW+Eua=G@Ih@?+;qLwl;eEwVB50Q`G(CJTEPDZojglFj-V1
zz(Lu)FT}^E2Xq%GsO59;8)%|F@o?M9*xhAZe0<lAc8i-<eoDEzGWhsD`=#E~uYoR(
z|9-zder@#ju!MvKptCLYVt2jR`Fx(Y_~jQ23U`ee8K%uL&7KA-JZgV`yLr3n`@7s*
zIonuH=iT3T*M#Tr9Q*ox&cA<seeHYL;7sM`XE$&E`SS-fOOkhEgW|!mcXxJ9UI4my
zE3H#VRp!>8zkkny{1Nf(xO_dRjM`cHI_$EEud$liF`bAF3nKT`RDOPUclWoa*VaTP
zgIbwiF1ml)rWd<whS}`1GNxHm4x4F*t;q;m8KinJ`ETsqU8QF?rJlChBH5O>Yv<0H
z%l+nV+AeETalwS=@SjKB`fqa2&Nep(HF7tnpTBjxPsTE7*Nz<)HuoPse7LN;yW2AD
zj70nKpKrI{KeHxs^Q^`0{oA%5J$`&P=m^!?nwm4Gr|ZxD|LgkxGdVXm%}h*8?7t(<
z(2!}w%FS?T<I!$$?ecebKpP!EX8`~I{^#>~ZTCKzTbok54}Ws)77J}=;}yy|e)a0r
zfB#=!U;p~k)6-QSkBXOmdg6I^N8#g*uW#)xUk_Tt6t}m^GDiB-C2xIbOVYQg^k3bw
z#bs}ASyg^|l5GEtnOE9u%KZ8B|32T8dRi;}+?;Q@$BrM*{`>1IXw_~_ZSC9BQ?)|9
zdZo?FZd{wB>YXxcSzPVc(Dvs$9U7Ucp3O{`nU{Xpz$E*c&fPtg!M?N2u5QV^Y?5(7
z!S?^3&nNGRGo0|5(ZtH|^2W!<$3d5_xh&_AY+J}Ju4l1DR5!}x;@dZOb_Ro%k*<r~
zUGn;xZhNkayZh<Omp^ZO#l_D*Jy8PGhG^P%X{k4;1Iw42mzVeH)2E`0)05Tv*TwDq
z71942G)?4p;oJ4xxIGntpyMAqg;a%f!dHc8u8rM&?ceA3`~R=|@#BZfbW<MXgRDP}
zc8Om8@bIu{!U2Y<y3t|IZ9Jae>KGi-oEaD!N_6b(;#j%Gu9V-eo&JLL_Rr7H%YWRw
zd)M}$k-Go9kY+aCFQCmgkB)R|#q8LyDfRR+)9h;*mzH>T_4oU4{w4q8wd>c+y=RZi
zTkhW3-#`6q+GT$GKNDW?a)D~%1-W;3l^XFlPn<aM+h$dU26yEK1_!GT8>(YLr^kTC
z54rXCJTT~eRR}tf|NFbUmsf?ZmRY8hduxm4$<jZu6O~+3W-aTJvt6~T^tII&S=*`*
z*Devyu(c~S>;L@$4QYRTd|dd8tYy)WhtEM5JDB+X{P|P0O6<w|WxlhQ`OY>2Eus7M
zWU~L2&FTKS(c5&cX0bP@OI`;#V}fmUndkTQ=YOm=1CMN(UCa;f>h2CMDfyzj{qF;x
zgYoA}T-@D3ixxVsef+-uyRXmFQ&U03EvU<3XlVHD+t%#spbi!n4^Pb#vrDtirUgGf
z*1NUlXHon5OSUyXHe6dD|9(Tx>1n#Dn{Uchng0S$-`2mnqWOD!0<Vlkz~f`Rm%Bu@
zP14WJ*>Y2mq2f>h8w<mn2k$SpXoap)xoq<F+wFW%c?KG!yR|KMwRn6@pl$WHD>Dp}
zOCB6xG|jr=5xF_->c-^bTPi*#fl4#o=xu+FAFtZrmyoca>f4)@pvAPudL%)seb3Fc
zp1z<j^YSuKm}mtqYT**m03AG~y5i>1qptJoeys#ug}V30qwcKx`}UrjYrXvBWcAe%
z8<Rl2prDsCy=Dq3yS)Gn4X%yadS!LE{?Q{xUVJ`pKYjoH{d{sZ8S(2PHYS1g*)4Ev
zE&=)Rub1CEo0XseaL^f!_xJBtdD&}zZ$f)}``>%IpdQ>LRqrd?^W#l3E;!t~chB!;
zIKv4I4h4n>EcNqWUD=fC4chhh`T6<n_qmtk-rhE838>besvUmq%gf8A6(15ndz#Ll
z_n&K38gzD+sqD6yH$+x}R@R)Hq$*{U(!s_fp^%@S|Mk^XZ_pC^Yinm8-gLN)_wr2R
zbd$0-5qEbKI+wn>vXOnle$e2+InW@?u^vg#FoRb0w>O~KoMSzb$@|$)9RBt_@NIw8
zyTsqWzJJ@4dK$FW_|^UW`$79eoLadupPZQ3)zeeLp}-~-^qPTzVTY%SW5}d02ifIU
zgscpjWl^~3Z%;62MrnzsFe@vo=Ooa$Oz!P%nJ+Ib<rBYpevV~u>gj2r1qB<z)<#WT
vQp?nE=9IzY;;nL^2A2x+b^0tle)gY%dFuP4UmvUn@AU9=^>bP0l+XkKn^dj|

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Results/20160823-112139Results-Mumbo-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.9-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Results/20160823-112139Results-Mumbo-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.9-MultiOmic.txt
new file mode 100644
index 00000000..ad390878
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160823-112139Results-Mumbo-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.9-MultiOmic.txt
@@ -0,0 +1,88 @@
+		Result for Multiview classification with Mumbo
+
+Average accuracy :
+	-On Train : 70.3327922078
+	-On Test : 73.0769230769
+	-On Validation : 73.5294117647
+
+Dataset info :
+	-Database name : MultiOmic
+	-Labels : No, Yes
+	-Views : Methyl, MiRNA_, RNASeq, Clinic
+	-2 folds
+	- Validation set length : 34 for learning rate : 0.9
+
+Classification configuration : 
+	-Algorithm used : Mumbo 
+	-Iterations : 2
+	-Weak Classifiers : DecisionTree with depth 1.0,  sub-sampled at 0.006 on Methyl
+		-DecisionTree with depth 1.0,  sub-sampled at 0.006 on MiRNA_
+		-DecisionTree with depth 1.0,  sub-sampled at 0.006 on RNASeq
+		-DecisionTree with depth 1.0,  sub-sampled at 0.0065 on Clinic
+
+ Mean average accuracies and stats for each fold : 
+	- Fold 0
+		- On Methyl : 
+			- Mean average Accuracy : 0.467261904762
+			- Percentage of time chosen : 0.0
+		- On MiRNA_ : 
+			- Mean average Accuracy : 0.693452380952
+			- Percentage of time chosen : 1.0
+		- On RANSeq : 
+			- Mean average Accuracy : 0.446428571429
+			- Percentage of time chosen : 0.0
+		- On Clinic : 
+			- Mean average Accuracy : 0.678571428571
+			- Percentage of time chosen : 0.0
+	- Fold 1
+		- On Methyl : 
+			- Mean average Accuracy : 0.710227272727
+			- Percentage of time chosen : 1.0
+		- On MiRNA_ : 
+			- Mean average Accuracy : 0.551136363636
+			- Percentage of time chosen : 0.0
+		- On RANSeq : 
+			- Mean average Accuracy : 0.340909090909
+			- Percentage of time chosen : 0.0
+		- On Clinic : 
+			- Mean average Accuracy : 0.298295454545
+			- Percentage of time chosen : 0.0
+
+ For each iteration : 
+	- Iteration 1
+		 Fold 1
+			Accuracy on train : 69.6428571429
+			Accuracy on test : 73.0769230769
+			Accuracy on validation : 73.5294117647
+			Selected View : MiRNA_
+		 Fold 2
+			Accuracy on train : 71.0227272727
+			Accuracy on test : 73.0769230769
+			Accuracy on validation : 73.5294117647
+			Selected View : Methyl
+		- Mean : 
+			 Accuracy on train : 70.3327922078
+			 Accuracy on test : 73.0769230769
+	- Iteration 2
+		 Fold 1
+			Accuracy on train : 69.6428571429
+			Accuracy on test : 73.0769230769
+			Accuracy on validation : 73.5294117647
+			Selected View : MiRNA_
+		 Fold 2
+			Accuracy on train : 71.0227272727
+			Accuracy on test : 73.0769230769
+			Accuracy on validation : 73.5294117647
+			Selected View : Methyl
+		- Mean : 
+			 Accuracy on train : 70.3327922078
+			 Accuracy on test : 73.0769230769
+
+Computation time on 1 cores : 
+	Database extraction time : 0:00:00
+	                         Learn     Prediction
+	         Fold 1        0:00:28        0:00:00
+	         Fold 2        0:00:28        0:00:00
+	          Total        0:00:57        0:00:00
+	So a total classification time of 0:00:29.
+
diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-150940-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-150940-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 00000000..78212b4e
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160824-150940-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,18 @@
+2016-08-24 15:09:40,867 INFO: Begginging
+2016-08-24 15:09:40,868 INFO: ### Main Programm for Multiview Classification
+2016-08-24 15:09:40,869 INFO: ### Classification - Database : MultiOmic ; Views : Methyl, MiRNA_, RNASeq, Clinic ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 15:09:40,869 INFO: Info:	 Shape of Methyl :(347, 25978)
+2016-08-24 15:09:40,869 INFO: Info:	 Shape of MiRNA_ :(347, 1046)
+2016-08-24 15:09:40,870 INFO: Info:	 Shape of RANSeq :(347, 73599)
+2016-08-24 15:09:40,870 INFO: Info:	 Shape of Clinic :(347, 127)
+2016-08-24 15:09:40,870 INFO: Done:	 Read Database Files
+2016-08-24 15:09:40,870 INFO: Start:	 Determine validation split for ratio 0.9
+2016-08-24 15:09:40,873 INFO: Done:	 Determine validation split
+2016-08-24 15:09:40,873 INFO: Start:	 Determine 2 folds
+2016-08-24 15:09:40,885 INFO: Info:	 Length of Learning Sets: 157
+2016-08-24 15:09:40,885 INFO: Info:	 Length of Testing Sets: 156
+2016-08-24 15:09:40,886 INFO: Info:	 Length of Validation Set: 34
+2016-08-24 15:09:40,886 INFO: Done:	 Determine folds
+2016-08-24 15:09:40,886 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-24 15:09:40,886 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-24 15:09:40,886 DEBUG: 	Start:	 Gridsearch for DecisionTree on Methyl
diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-151006-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-151006-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 00000000..12fc0bf7
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160824-151006-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,24 @@
+2016-08-24 15:10:06,969 INFO: Begginging
+2016-08-24 15:10:06,971 INFO: ### Main Programm for Multiview Classification
+2016-08-24 15:10:06,971 INFO: ### Classification - Database : MultiOmic ; Views : Methyl, MiRNA_, RNASeq, Clinic ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 15:10:06,971 INFO: Info:	 Shape of Methyl :(347, 25978)
+2016-08-24 15:10:06,972 INFO: Info:	 Shape of MiRNA_ :(347, 1046)
+2016-08-24 15:10:06,972 INFO: Info:	 Shape of RANSeq :(347, 73599)
+2016-08-24 15:10:06,973 INFO: Info:	 Shape of Clinic :(347, 127)
+2016-08-24 15:10:06,973 INFO: Done:	 Read Database Files
+2016-08-24 15:10:06,973 INFO: Start:	 Determine validation split for ratio 0.9
+2016-08-24 15:10:06,975 INFO: Done:	 Determine validation split
+2016-08-24 15:10:06,976 INFO: Start:	 Determine 2 folds
+2016-08-24 15:10:06,990 INFO: Info:	 Length of Learning Sets: 157
+2016-08-24 15:10:06,990 INFO: Info:	 Length of Testing Sets: 156
+2016-08-24 15:10:06,990 INFO: Info:	 Length of Validation Set: 34
+2016-08-24 15:10:06,990 INFO: Done:	 Determine folds
+2016-08-24 15:10:06,990 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-24 15:10:06,990 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-24 15:10:06,991 DEBUG: 	Start:	 Gridsearch for DecisionTree on Methyl
+2016-08-24 15:10:14,842 DEBUG: 		Info:	 Best Reslut : 0.555043227666
+2016-08-24 15:10:14,843 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 15:10:14,843 DEBUG: 	Start:	 Gridsearch for DecisionTree on MiRNA_
+2016-08-24 15:10:17,017 DEBUG: 		Info:	 Best Reslut : 0.524956772334
+2016-08-24 15:10:17,017 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 15:10:17,018 DEBUG: 	Start:	 Gridsearch for DecisionTree on RANSeq
diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-151503-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-151503-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 00000000..6611dd3a
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160824-151503-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,8 @@
+2016-08-24 15:15:03,256 INFO: Begginging
+2016-08-24 15:15:03,268 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 15:15:03,268 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : DecisionTree
+2016-08-24 15:15:03,268 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 15:15:03,300 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 15:15:03,300 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 15:15:03,300 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 15:15:03,300 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-151604-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-151604-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 00000000..d08108a0
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160824-151604-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,8 @@
+2016-08-24 15:16:04,064 INFO: Begginging
+2016-08-24 15:16:04,080 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 15:16:04,080 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : DecisionTree
+2016-08-24 15:16:04,080 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 15:16:04,136 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 15:16:04,136 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 15:16:04,136 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 15:16:04,136 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-151656-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-151656-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 00000000..f5754b56
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160824-151656-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,8 @@
+2016-08-24 15:16:56,323 INFO: Begginging
+2016-08-24 15:16:56,345 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 15:16:56,345 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : DecisionTree
+2016-08-24 15:16:56,345 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 15:16:56,394 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 15:16:56,395 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 15:16:56,395 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 15:16:56,395 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-151836-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-151836-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 00000000..e05049d1
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160824-151836-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,74 @@
+2016-08-24 15:18:36,539 INFO: Begginging
+2016-08-24 15:18:36,572 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 15:18:36,573 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : DecisionTree
+2016-08-24 15:18:36,573 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 15:18:36,682 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 15:18:36,682 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 15:18:36,682 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 15:18:36,682 DEBUG: Start:	 Classification
+2016-08-24 15:18:43,218 DEBUG: Info:	 Time for Classification: 6.44028186798[s]
+2016-08-24 15:18:43,218 DEBUG: Done:	 Classification
+2016-08-24 15:18:43,248 DEBUG: Start:	 Statistic Results
+2016-08-24 15:18:43,249 DEBUG: Info:	 Classification report:
+2016-08-24 15:18:43,255 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.91      0.87      0.89        23
+        Oui       0.77      0.83      0.80        12
+
+avg / total       0.86      0.86      0.86        35
+
+2016-08-24 15:18:43,277 DEBUG: Info:	 Statistics:
+2016-08-24 15:18:43,304 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.857142857143
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.844444
+5    Mean of F1-Score of top 20 classes by F1-Score        0.844444
+6    Mean of F1-Score of top 30 classes by F1-Score        0.844444
+2016-08-24 15:18:43,305 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 15:18:47,165 DEBUG: Done:	 Statistic Results
+2016-08-24 15:18:47,165 DEBUG: Start:	 Plot Result
+2016-08-24 15:18:47,389 DEBUG: Done:	 Plot Result
+2016-08-24 15:18:47,567 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 15:18:47,567 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : KNN
+2016-08-24 15:18:47,567 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 15:18:47,603 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 15:18:47,604 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 15:18:47,604 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 15:18:47,604 DEBUG: Start:	 Classification
+2016-08-24 15:18:57,893 DEBUG: Info:	 Time for Classification: 10.3103861809[s]
+2016-08-24 15:18:57,893 DEBUG: Done:	 Classification
+2016-08-24 15:18:58,420 DEBUG: Start:	 Statistic Results
+2016-08-24 15:18:58,421 DEBUG: Info:	 Classification report:
+2016-08-24 15:18:58,422 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.88      0.92      0.90        24
+        Oui       0.80      0.73      0.76        11
+
+avg / total       0.85      0.86      0.86        35
+
+2016-08-24 15:18:58,432 DEBUG: Info:	 Statistics:
+2016-08-24 15:18:58,440 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.857142857143
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.829932
+5    Mean of F1-Score of top 20 classes by F1-Score        0.829932
+6    Mean of F1-Score of top 30 classes by F1-Score        0.829932
+2016-08-24 15:18:58,440 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 15:18:58,814 DEBUG: Done:	 Statistic Results
+2016-08-24 15:18:58,814 DEBUG: Start:	 Plot Result
+2016-08-24 15:18:59,544 DEBUG: Done:	 Plot Result
+2016-08-24 15:18:59,780 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 15:18:59,780 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : RandomForest
+2016-08-24 15:18:59,780 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 15:18:59,793 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 15:18:59,793 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 15:18:59,793 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 15:18:59,793 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-152149-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-152149-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 00000000..113ec1fa
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160824-152149-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,74 @@
+2016-08-24 15:21:49,852 INFO: Begginging
+2016-08-24 15:21:49,900 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 15:21:49,900 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : DecisionTree
+2016-08-24 15:21:49,900 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 15:21:49,944 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 15:21:49,944 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 15:21:49,944 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 15:21:49,944 DEBUG: Start:	 Classification
+2016-08-24 15:21:56,634 DEBUG: Info:	 Time for Classification: 6.73074197769[s]
+2016-08-24 15:21:56,634 DEBUG: Done:	 Classification
+2016-08-24 15:21:56,641 DEBUG: Start:	 Statistic Results
+2016-08-24 15:21:56,642 DEBUG: Info:	 Classification report:
+2016-08-24 15:21:56,643 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       1.00      0.78      0.88        27
+        Oui       0.57      1.00      0.73         8
+
+avg / total       0.90      0.83      0.84        35
+
+2016-08-24 15:21:56,645 DEBUG: Info:	 Statistics:
+2016-08-24 15:21:56,659 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.828571428571
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.801136
+5    Mean of F1-Score of top 20 classes by F1-Score        0.801136
+6    Mean of F1-Score of top 30 classes by F1-Score        0.801136
+2016-08-24 15:21:56,659 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 15:21:58,311 DEBUG: Done:	 Statistic Results
+2016-08-24 15:21:58,311 DEBUG: Start:	 Plot Result
+2016-08-24 15:21:58,529 DEBUG: Done:	 Plot Result
+2016-08-24 15:21:58,545 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 15:21:58,546 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : KNN
+2016-08-24 15:21:58,546 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 15:21:58,567 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 15:21:58,567 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 15:21:58,567 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 15:21:58,567 DEBUG: Start:	 Classification
+2016-08-24 15:22:09,219 DEBUG: Info:	 Time for Classification: 10.6697540283[s]
+2016-08-24 15:22:09,219 DEBUG: Done:	 Classification
+2016-08-24 15:22:09,835 DEBUG: Start:	 Statistic Results
+2016-08-24 15:22:09,836 DEBUG: Info:	 Classification report:
+2016-08-24 15:22:09,837 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.88      0.84      0.86        25
+        Oui       0.64      0.70      0.67        10
+
+avg / total       0.81      0.80      0.80        35
+
+2016-08-24 15:22:09,839 DEBUG: Info:	 Statistics:
+2016-08-24 15:22:09,847 DEBUG: 
+                                          Statistic      Values
+0                            Accuracy score on test         0.8
+1                        Top 10 classes by F1-Score  [Non, Oui]
+2                      Worst 10 classes by F1-Score  [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes           0
+4    Mean of F1-Score of top 10 classes by F1-Score    0.761905
+5    Mean of F1-Score of top 20 classes by F1-Score    0.761905
+6    Mean of F1-Score of top 30 classes by F1-Score    0.761905
+2016-08-24 15:22:09,847 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 15:22:10,192 DEBUG: Done:	 Statistic Results
+2016-08-24 15:22:10,193 DEBUG: Start:	 Plot Result
+2016-08-24 15:22:11,137 DEBUG: Done:	 Plot Result
+2016-08-24 15:22:11,149 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 15:22:11,149 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : RandomForest
+2016-08-24 15:22:11,149 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 15:22:11,164 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 15:22:11,164 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 15:22:11,164 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 15:22:11,164 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-153240-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-153240-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 00000000..75472f2a
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160824-153240-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,107 @@
+2016-08-24 15:32:40,924 INFO: Begginging
+2016-08-24 15:32:40,949 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 15:32:40,950 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : DecisionTree
+2016-08-24 15:32:40,950 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 15:32:41,016 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 15:32:41,016 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 15:32:41,016 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 15:32:41,016 DEBUG: Start:	 Classification
+2016-08-24 15:32:51,899 DEBUG: Info:	 Time for Classification: 10.9459741116[s]
+2016-08-24 15:32:51,899 DEBUG: Done:	 Classification
+2016-08-24 15:32:51,901 DEBUG: Start:	 Statistic Results
+2016-08-24 15:32:51,902 DEBUG: Info:	 Classification report:
+2016-08-24 15:32:51,903 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.95      0.87      0.91        23
+        Oui       0.79      0.92      0.85        12
+
+avg / total       0.90      0.89      0.89        35
+
+2016-08-24 15:32:51,916 DEBUG: Info:	 Statistics:
+2016-08-24 15:32:51,924 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.885714285714
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.877622
+5    Mean of F1-Score of top 20 classes by F1-Score        0.877622
+6    Mean of F1-Score of top 30 classes by F1-Score        0.877622
+2016-08-24 15:32:51,924 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 15:32:53,052 DEBUG: Done:	 Statistic Results
+2016-08-24 15:32:53,052 DEBUG: Start:	 Plot Result
+2016-08-24 15:32:53,269 DEBUG: Done:	 Plot Result
+2016-08-24 15:32:53,283 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 15:32:53,283 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : KNN
+2016-08-24 15:32:53,283 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 15:32:53,298 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 15:32:53,298 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 15:32:53,298 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 15:32:53,298 DEBUG: Start:	 Classification
+2016-08-24 15:33:03,233 DEBUG: Info:	 Time for Classification: 9.94683003426[s]
+2016-08-24 15:33:03,233 DEBUG: Done:	 Classification
+2016-08-24 15:33:03,754 DEBUG: Start:	 Statistic Results
+2016-08-24 15:33:03,754 DEBUG: Info:	 Classification report:
+2016-08-24 15:33:03,755 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.97      0.97      0.97        29
+        Oui       0.83      0.83      0.83         6
+
+avg / total       0.94      0.94      0.94        35
+
+2016-08-24 15:33:03,757 DEBUG: Info:	 Statistics:
+2016-08-24 15:33:03,764 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.942857142857
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.899425
+5    Mean of F1-Score of top 20 classes by F1-Score        0.899425
+6    Mean of F1-Score of top 30 classes by F1-Score        0.899425
+2016-08-24 15:33:03,764 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 15:33:04,063 DEBUG: Done:	 Statistic Results
+2016-08-24 15:33:04,064 DEBUG: Start:	 Plot Result
+2016-08-24 15:33:04,789 DEBUG: Done:	 Plot Result
+2016-08-24 15:33:04,798 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 15:33:04,799 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : RandomForest
+2016-08-24 15:33:04,799 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 15:33:04,812 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 15:33:04,812 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 15:33:04,813 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 15:33:04,813 DEBUG: Start:	 Classification
+2016-08-24 15:33:13,668 DEBUG: Info:	 Time for Classification: 8.86640405655[s]
+2016-08-24 15:33:13,668 DEBUG: Done:	 Classification
+2016-08-24 15:33:13,686 DEBUG: Start:	 Statistic Results
+2016-08-24 15:33:13,687 DEBUG: Info:	 Classification report:
+2016-08-24 15:33:13,688 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.96      0.92      0.94        26
+        Oui       0.80      0.89      0.84         9
+
+avg / total       0.92      0.91      0.92        35
+
+2016-08-24 15:33:13,689 DEBUG: Info:	 Statistics:
+2016-08-24 15:33:13,697 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.914285714286
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.891641
+5    Mean of F1-Score of top 20 classes by F1-Score        0.891641
+6    Mean of F1-Score of top 30 classes by F1-Score        0.891641
+2016-08-24 15:33:13,697 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 15:33:14,000 DEBUG: Done:	 Statistic Results
+2016-08-24 15:33:14,000 DEBUG: Start:	 Plot Result
+2016-08-24 15:33:14,230 DEBUG: Done:	 Plot Result
+2016-08-24 15:33:14,239 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 15:33:14,240 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SGD
+2016-08-24 15:33:14,240 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 15:33:14,254 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 15:33:14,254 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 15:33:14,254 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 15:33:14,254 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-153513-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-153513-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 00000000..647aeee4
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160824-153513-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,463 @@
+2016-08-24 15:35:13,860 INFO: Begginging
+2016-08-24 15:35:13,873 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 15:35:13,873 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : DecisionTree
+2016-08-24 15:35:13,873 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 15:35:13,888 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 15:35:13,888 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 15:35:13,888 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 15:35:13,888 DEBUG: Start:	 Classification
+2016-08-24 15:35:20,736 DEBUG: Info:	 Time for Classification: 6.85920500755[s]
+2016-08-24 15:35:20,736 DEBUG: Done:	 Classification
+2016-08-24 15:35:20,739 DEBUG: Start:	 Statistic Results
+2016-08-24 15:35:20,740 DEBUG: Info:	 Classification report:
+2016-08-24 15:35:20,740 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.92      0.79      0.85        28
+        Oui       0.45      0.71      0.56         7
+
+avg / total       0.82      0.77      0.79        35
+
+2016-08-24 15:35:20,743 DEBUG: Info:	 Statistics:
+2016-08-24 15:35:20,750 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.771428571429
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.700855
+5    Mean of F1-Score of top 20 classes by F1-Score        0.700855
+6    Mean of F1-Score of top 30 classes by F1-Score        0.700855
+2016-08-24 15:35:20,750 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 15:35:21,134 DEBUG: Done:	 Statistic Results
+2016-08-24 15:35:21,134 DEBUG: Start:	 Plot Result
+2016-08-24 15:35:21,349 DEBUG: Done:	 Plot Result
+2016-08-24 15:35:21,361 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 15:35:21,362 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : KNN
+2016-08-24 15:35:21,362 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 15:35:21,376 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 15:35:21,376 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 15:35:21,376 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 15:35:21,376 DEBUG: Start:	 Classification
+2016-08-24 15:35:31,289 DEBUG: Info:	 Time for Classification: 9.92338085175[s]
+2016-08-24 15:35:31,289 DEBUG: Done:	 Classification
+2016-08-24 15:35:31,806 DEBUG: Start:	 Statistic Results
+2016-08-24 15:35:31,806 DEBUG: Info:	 Classification report:
+2016-08-24 15:35:31,807 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.90      0.79      0.84        24
+        Oui       0.64      0.82      0.72        11
+
+avg / total       0.82      0.80      0.81        35
+
+2016-08-24 15:35:31,809 DEBUG: Info:	 Statistics:
+2016-08-24 15:35:31,816 DEBUG: 
+                                          Statistic      Values
+0                            Accuracy score on test         0.8
+1                        Top 10 classes by F1-Score  [Non, Oui]
+2                      Worst 10 classes by F1-Score  [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes           0
+4    Mean of F1-Score of top 10 classes by F1-Score    0.782222
+5    Mean of F1-Score of top 20 classes by F1-Score    0.782222
+6    Mean of F1-Score of top 30 classes by F1-Score    0.782222
+2016-08-24 15:35:31,816 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 15:35:32,102 DEBUG: Done:	 Statistic Results
+2016-08-24 15:35:32,102 DEBUG: Start:	 Plot Result
+2016-08-24 15:35:32,829 DEBUG: Done:	 Plot Result
+2016-08-24 15:35:32,839 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 15:35:32,839 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : RandomForest
+2016-08-24 15:35:32,839 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 15:35:32,853 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 15:35:32,853 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 15:35:32,853 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 15:35:32,853 DEBUG: Start:	 Classification
+2016-08-24 15:35:40,098 DEBUG: Info:	 Time for Classification: 7.25602412224[s]
+2016-08-24 15:35:40,099 DEBUG: Done:	 Classification
+2016-08-24 15:35:40,107 DEBUG: Start:	 Statistic Results
+2016-08-24 15:35:40,108 DEBUG: Info:	 Classification report:
+2016-08-24 15:35:40,108 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       1.00      0.93      0.97        30
+        Oui       0.71      1.00      0.83         5
+
+avg / total       0.96      0.94      0.95        35
+
+2016-08-24 15:35:40,110 DEBUG: Info:	 Statistics:
+2016-08-24 15:35:40,118 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.942857142857
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.899425
+5    Mean of F1-Score of top 20 classes by F1-Score        0.899425
+6    Mean of F1-Score of top 30 classes by F1-Score        0.899425
+2016-08-24 15:35:40,118 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 15:35:40,419 DEBUG: Done:	 Statistic Results
+2016-08-24 15:35:40,419 DEBUG: Start:	 Plot Result
+2016-08-24 15:35:40,641 DEBUG: Done:	 Plot Result
+2016-08-24 15:35:40,650 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 15:35:40,650 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SGD
+2016-08-24 15:35:40,651 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 15:35:40,664 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 15:35:40,664 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 15:35:40,665 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 15:35:40,665 DEBUG: Start:	 Classification
+2016-08-24 15:35:42,133 DEBUG: Info:	 Time for Classification: 1.47857999802[s]
+2016-08-24 15:35:42,133 DEBUG: Done:	 Classification
+2016-08-24 15:35:42,157 DEBUG: Start:	 Statistic Results
+2016-08-24 15:35:42,157 DEBUG: Info:	 Classification report:
+2016-08-24 15:35:42,159 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.96      0.86      0.91        29
+        Oui       0.56      0.83      0.67         6
+
+avg / total       0.89      0.86      0.87        35
+
+2016-08-24 15:35:42,162 DEBUG: Info:	 Statistics:
+2016-08-24 15:35:42,176 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.857142857143
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.787879
+5    Mean of F1-Score of top 20 classes by F1-Score        0.787879
+6    Mean of F1-Score of top 30 classes by F1-Score        0.787879
+2016-08-24 15:35:42,176 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 15:35:42,575 DEBUG: Done:	 Statistic Results
+2016-08-24 15:35:42,576 DEBUG: Start:	 Plot Result
+2016-08-24 15:35:42,919 DEBUG: Done:	 Plot Result
+2016-08-24 15:35:42,931 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 15:35:42,932 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SVMLinear
+2016-08-24 15:35:42,932 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 15:35:42,952 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 15:35:42,952 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 15:35:42,952 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 15:35:42,952 DEBUG: Start:	 Classification
+2016-08-24 15:35:50,958 DEBUG: Info:	 Time for Classification: 8.02294683456[s]
+2016-08-24 15:35:50,958 DEBUG: Done:	 Classification
+2016-08-24 15:35:51,120 DEBUG: Start:	 Statistic Results
+2016-08-24 15:35:51,120 DEBUG: Info:	 Classification report:
+2016-08-24 15:35:51,121 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.97      0.90      0.93        31
+        Oui       0.50      0.75      0.60         4
+
+avg / total       0.91      0.89      0.90        35
+
+2016-08-24 15:35:51,123 DEBUG: Info:	 Statistics:
+2016-08-24 15:35:51,130 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.885714285714
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.766667
+5    Mean of F1-Score of top 20 classes by F1-Score        0.766667
+6    Mean of F1-Score of top 30 classes by F1-Score        0.766667
+2016-08-24 15:35:51,130 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 15:35:51,433 DEBUG: Done:	 Statistic Results
+2016-08-24 15:35:51,433 DEBUG: Start:	 Plot Result
+2016-08-24 15:35:51,806 DEBUG: Done:	 Plot Result
+2016-08-24 15:35:51,816 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 15:35:51,816 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SVMRBF
+2016-08-24 15:35:51,816 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 15:35:51,830 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 15:35:51,830 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 15:35:51,830 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 15:35:51,830 DEBUG: Start:	 Classification
+2016-08-24 15:35:59,691 DEBUG: Info:	 Time for Classification: 7.87138581276[s]
+2016-08-24 15:35:59,691 DEBUG: Done:	 Classification
+2016-08-24 15:35:59,853 DEBUG: Start:	 Statistic Results
+2016-08-24 15:35:59,853 DEBUG: Info:	 Classification report:
+2016-08-24 15:35:59,854 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.87      0.91      0.89        22
+        Oui       0.83      0.77      0.80        13
+
+avg / total       0.86      0.86      0.86        35
+
+2016-08-24 15:35:59,856 DEBUG: Info:	 Statistics:
+2016-08-24 15:35:59,863 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.857142857143
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.844444
+5    Mean of F1-Score of top 20 classes by F1-Score        0.844444
+6    Mean of F1-Score of top 30 classes by F1-Score        0.844444
+2016-08-24 15:35:59,863 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 15:36:00,167 DEBUG: Done:	 Statistic Results
+2016-08-24 15:36:00,167 DEBUG: Start:	 Plot Result
+2016-08-24 15:36:00,556 DEBUG: Done:	 Plot Result
+2016-08-24 15:36:00,590 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 15:36:00,590 DEBUG: ### Classification - Database:MultiOmic Feature:RNASeq train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : DecisionTree
+2016-08-24 15:36:00,590 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 15:36:00,591 DEBUG: Info:	 Shape X_train:(312, 1046), Length of y_train:312
+2016-08-24 15:36:00,591 DEBUG: Info:	 Shape X_test:(35, 1046), Length of y_test:35
+2016-08-24 15:36:00,591 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 15:36:00,591 DEBUG: Start:	 Classification
+2016-08-24 15:36:00,792 DEBUG: Info:	 Time for Classification: 0.19925403595[s]
+2016-08-24 15:36:00,792 DEBUG: Done:	 Classification
+2016-08-24 15:36:00,794 DEBUG: Start:	 Statistic Results
+2016-08-24 15:36:00,794 DEBUG: Info:	 Classification report:
+2016-08-24 15:36:00,795 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.81      0.92      0.86        24
+        Oui       0.75      0.55      0.63        11
+
+avg / total       0.79      0.80      0.79        35
+
+2016-08-24 15:36:00,797 DEBUG: Info:	 Statistics:
+2016-08-24 15:36:00,804 DEBUG: 
+                                          Statistic      Values
+0                            Accuracy score on test         0.8
+1                        Top 10 classes by F1-Score  [Non, Oui]
+2                      Worst 10 classes by F1-Score  [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes           0
+4    Mean of F1-Score of top 10 classes by F1-Score    0.747162
+5    Mean of F1-Score of top 20 classes by F1-Score    0.747162
+6    Mean of F1-Score of top 30 classes by F1-Score    0.747162
+2016-08-24 15:36:00,804 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 15:36:01,103 DEBUG: Done:	 Statistic Results
+2016-08-24 15:36:01,103 DEBUG: Start:	 Plot Result
+2016-08-24 15:36:01,325 DEBUG: Done:	 Plot Result
+2016-08-24 15:36:01,326 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 15:36:01,326 DEBUG: ### Classification - Database:MultiOmic Feature:RNASeq train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : KNN
+2016-08-24 15:36:01,327 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 15:36:01,327 DEBUG: Info:	 Shape X_train:(312, 1046), Length of y_train:312
+2016-08-24 15:36:01,327 DEBUG: Info:	 Shape X_test:(35, 1046), Length of y_test:35
+2016-08-24 15:36:01,327 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 15:36:01,328 DEBUG: Start:	 Classification
+2016-08-24 15:36:01,694 DEBUG: Info:	 Time for Classification: 0.363206863403[s]
+2016-08-24 15:36:01,694 DEBUG: Done:	 Classification
+2016-08-24 15:36:01,714 DEBUG: Start:	 Statistic Results
+2016-08-24 15:36:01,715 DEBUG: Info:	 Classification report:
+2016-08-24 15:36:01,716 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.96      0.96      0.96        27
+        Oui       0.88      0.88      0.88         8
+
+avg / total       0.94      0.94      0.94        35
+
+2016-08-24 15:36:01,720 DEBUG: Info:	 Statistics:
+2016-08-24 15:36:01,731 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.942857142857
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.918981
+5    Mean of F1-Score of top 20 classes by F1-Score        0.918981
+6    Mean of F1-Score of top 30 classes by F1-Score        0.918981
+2016-08-24 15:36:01,732 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 15:36:02,044 DEBUG: Done:	 Statistic Results
+2016-08-24 15:36:02,044 DEBUG: Start:	 Plot Result
+2016-08-24 15:36:02,331 DEBUG: Done:	 Plot Result
+2016-08-24 15:36:02,332 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 15:36:02,332 DEBUG: ### Classification - Database:MultiOmic Feature:RNASeq train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : RandomForest
+2016-08-24 15:36:02,333 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 15:36:02,333 DEBUG: Info:	 Shape X_train:(312, 1046), Length of y_train:312
+2016-08-24 15:36:02,333 DEBUG: Info:	 Shape X_test:(35, 1046), Length of y_test:35
+2016-08-24 15:36:02,333 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 15:36:02,334 DEBUG: Start:	 Classification
+2016-08-24 15:36:04,885 DEBUG: Info:	 Time for Classification: 2.54951691628[s]
+2016-08-24 15:36:04,885 DEBUG: Done:	 Classification
+2016-08-24 15:36:04,889 DEBUG: Start:	 Statistic Results
+2016-08-24 15:36:04,889 DEBUG: Info:	 Classification report:
+2016-08-24 15:36:04,890 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.93      0.97      0.95        29
+        Oui       0.80      0.67      0.73         6
+
+avg / total       0.91      0.91      0.91        35
+
+2016-08-24 15:36:04,892 DEBUG: Info:	 Statistics:
+2016-08-24 15:36:04,900 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.914285714286
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.838213
+5    Mean of F1-Score of top 20 classes by F1-Score        0.838213
+6    Mean of F1-Score of top 30 classes by F1-Score        0.838213
+2016-08-24 15:36:04,900 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 15:36:05,213 DEBUG: Done:	 Statistic Results
+2016-08-24 15:36:05,213 DEBUG: Start:	 Plot Result
+2016-08-24 15:36:05,434 DEBUG: Done:	 Plot Result
+2016-08-24 15:36:05,435 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 15:36:05,435 DEBUG: ### Classification - Database:MultiOmic Feature:RNASeq train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SGD
+2016-08-24 15:36:05,435 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 15:36:05,436 DEBUG: Info:	 Shape X_train:(312, 1046), Length of y_train:312
+2016-08-24 15:36:05,436 DEBUG: Info:	 Shape X_test:(35, 1046), Length of y_test:35
+2016-08-24 15:36:05,436 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 15:36:05,436 DEBUG: Start:	 Classification
+2016-08-24 15:36:05,523 DEBUG: Info:	 Time for Classification: 0.0844321250916[s]
+2016-08-24 15:36:05,523 DEBUG: Done:	 Classification
+2016-08-24 15:36:05,525 DEBUG: Start:	 Statistic Results
+2016-08-24 15:36:05,525 DEBUG: Info:	 Classification report:
+2016-08-24 15:36:05,526 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       1.00      0.60      0.75        25
+        Oui       0.50      1.00      0.67        10
+
+avg / total       0.86      0.71      0.73        35
+
+2016-08-24 15:36:05,528 DEBUG: Info:	 Statistics:
+2016-08-24 15:36:05,536 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.714285714286
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.708333
+5    Mean of F1-Score of top 20 classes by F1-Score        0.708333
+6    Mean of F1-Score of top 30 classes by F1-Score        0.708333
+2016-08-24 15:36:05,536 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 15:36:05,859 DEBUG: Done:	 Statistic Results
+2016-08-24 15:36:05,859 DEBUG: Start:	 Plot Result
+2016-08-24 15:36:06,199 DEBUG: Done:	 Plot Result
+2016-08-24 15:36:06,200 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 15:36:06,201 DEBUG: ### Classification - Database:MultiOmic Feature:RNASeq train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SVMLinear
+2016-08-24 15:36:06,201 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 15:36:06,201 DEBUG: Info:	 Shape X_train:(312, 1046), Length of y_train:312
+2016-08-24 15:36:06,201 DEBUG: Info:	 Shape X_test:(35, 1046), Length of y_test:35
+2016-08-24 15:36:06,202 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 15:36:06,202 DEBUG: Start:	 Classification
+2016-08-24 15:36:11,831 DEBUG: Info:	 Time for Classification: 5.62734603882[s]
+2016-08-24 15:36:11,831 DEBUG: Done:	 Classification
+2016-08-24 15:36:11,836 DEBUG: Start:	 Statistic Results
+2016-08-24 15:36:11,836 DEBUG: Info:	 Classification report:
+2016-08-24 15:36:11,837 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.92      0.73      0.81        30
+        Oui       0.27      0.60      0.37         5
+
+avg / total       0.82      0.71      0.75        35
+
+2016-08-24 15:36:11,839 DEBUG: Info:	 Statistics:
+2016-08-24 15:36:11,846 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.714285714286
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.594907
+5    Mean of F1-Score of top 20 classes by F1-Score        0.594907
+6    Mean of F1-Score of top 30 classes by F1-Score        0.594907
+2016-08-24 15:36:11,846 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 15:36:12,215 DEBUG: Done:	 Statistic Results
+2016-08-24 15:36:12,215 DEBUG: Start:	 Plot Result
+2016-08-24 15:36:12,479 DEBUG: Done:	 Plot Result
+2016-08-24 15:36:12,480 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 15:36:12,480 DEBUG: ### Classification - Database:MultiOmic Feature:RNASeq train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SVMRBF
+2016-08-24 15:36:12,480 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 15:36:12,481 DEBUG: Info:	 Shape X_train:(312, 1046), Length of y_train:312
+2016-08-24 15:36:12,481 DEBUG: Info:	 Shape X_test:(35, 1046), Length of y_test:35
+2016-08-24 15:36:12,481 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 15:36:12,481 DEBUG: Start:	 Classification
+2016-08-24 15:36:13,146 DEBUG: Info:	 Time for Classification: 0.662354946136[s]
+2016-08-24 15:36:13,146 DEBUG: Done:	 Classification
+2016-08-24 15:36:13,161 DEBUG: Start:	 Statistic Results
+2016-08-24 15:36:13,162 DEBUG: Info:	 Classification report:
+2016-08-24 15:36:13,185 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.71      1.00      0.83        25
+        Oui       0.00      0.00      0.00        10
+
+avg / total       0.51      0.71      0.60        35
+
+2016-08-24 15:36:13,187 DEBUG: Info:	 Statistics:
+2016-08-24 15:36:13,195 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.714285714286
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes             0.5
+4    Mean of F1-Score of top 10 classes by F1-Score        0.416667
+5    Mean of F1-Score of top 20 classes by F1-Score        0.416667
+6    Mean of F1-Score of top 30 classes by F1-Score        0.416667
+2016-08-24 15:36:13,195 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 15:36:13,572 DEBUG: Done:	 Statistic Results
+2016-08-24 15:36:13,572 DEBUG: Start:	 Plot Result
+2016-08-24 15:36:13,826 DEBUG: Done:	 Plot Result
+2016-08-24 15:36:14,979 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 15:36:14,979 DEBUG: ### Classification - Database:MultiOmic Feature:Clinic train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : DecisionTree
+2016-08-24 15:36:14,979 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 15:36:15,063 DEBUG: Info:	 Shape X_train:(312, 73599), Length of y_train:312
+2016-08-24 15:36:15,063 DEBUG: Info:	 Shape X_test:(35, 73599), Length of y_test:35
+2016-08-24 15:36:15,063 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 15:36:15,063 DEBUG: Start:	 Classification
+2016-08-24 15:36:36,485 DEBUG: Info:	 Time for Classification: 21.5033020973[s]
+2016-08-24 15:36:36,485 DEBUG: Done:	 Classification
+2016-08-24 15:36:36,489 DEBUG: Start:	 Statistic Results
+2016-08-24 15:36:36,489 DEBUG: Info:	 Classification report:
+2016-08-24 15:36:36,490 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.66      1.00      0.79        23
+        Oui       0.00      0.00      0.00        12
+
+avg / total       0.43      0.66      0.52        35
+
+2016-08-24 15:36:36,492 DEBUG: Info:	 Statistics:
+2016-08-24 15:36:36,499 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.657142857143
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes             0.5
+4    Mean of F1-Score of top 10 classes by F1-Score        0.396552
+5    Mean of F1-Score of top 20 classes by F1-Score        0.396552
+6    Mean of F1-Score of top 30 classes by F1-Score        0.396552
+2016-08-24 15:36:36,500 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 15:36:36,817 DEBUG: Done:	 Statistic Results
+2016-08-24 15:36:36,818 DEBUG: Start:	 Plot Result
+2016-08-24 15:36:37,036 DEBUG: Done:	 Plot Result
+2016-08-24 15:36:38,028 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 15:36:38,028 DEBUG: ### Classification - Database:MultiOmic Feature:Clinic train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : KNN
+2016-08-24 15:36:38,028 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 15:36:38,080 DEBUG: Info:	 Shape X_train:(312, 73599), Length of y_train:312
+2016-08-24 15:36:38,080 DEBUG: Info:	 Shape X_test:(35, 73599), Length of y_test:35
+2016-08-24 15:36:38,080 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 15:36:38,080 DEBUG: Start:	 Classification
+2016-08-24 15:37:07,285 DEBUG: Info:	 Time for Classification: 28.5032260418[s]
+2016-08-24 15:37:07,285 DEBUG: Done:	 Classification
+2016-08-24 15:37:08,833 DEBUG: Start:	 Statistic Results
+2016-08-24 15:37:08,834 DEBUG: Info:	 Classification report:
+2016-08-24 15:37:08,920 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.74      0.96      0.83        26
+        Oui       0.00      0.00      0.00         9
+
+avg / total       0.55      0.71      0.62        35
+
+2016-08-24 15:37:08,954 DEBUG: Info:	 Statistics:
+2016-08-24 15:37:09,007 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.714285714286
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes             0.5
+4    Mean of F1-Score of top 10 classes by F1-Score        0.416667
+5    Mean of F1-Score of top 20 classes by F1-Score        0.416667
+6    Mean of F1-Score of top 30 classes by F1-Score        0.416667
+2016-08-24 15:37:09,007 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 15:37:12,867 DEBUG: Done:	 Statistic Results
+2016-08-24 15:37:12,867 DEBUG: Start:	 Plot Result
+2016-08-24 15:37:14,530 DEBUG: Done:	 Plot Result
diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-165838-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-165838-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 00000000..b4b31aa8
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160824-165838-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1 @@
+2016-08-24 16:58:38,944 INFO: Begginging
diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-170101-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-170101-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 00000000..ab433508
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160824-170101-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1 @@
+2016-08-24 17:01:01,205 INFO: Begginging
diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-170131-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-170131-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 00000000..132c798c
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160824-170131-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1 @@
+2016-08-24 17:01:31,670 INFO: Begginging
diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-170148-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-170148-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 00000000..aa4df084
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160824-170148-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,24 @@
+2016-08-24 17:01:48,282 INFO: Begginging
+2016-08-24 17:01:48,285 INFO: ### Main Programm for Multiview Classification
+2016-08-24 17:01:48,285 INFO: ### Classification - Database : MultiOmic ; Views : Methyl, MiRNA_, RNASeq, Clinic ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 17:01:48,285 INFO: Info:	 Shape of Methyl :(347, 25978)
+2016-08-24 17:01:48,285 INFO: Info:	 Shape of MiRNA_ :(347, 1046)
+2016-08-24 17:01:48,286 INFO: Info:	 Shape of RANSeq :(347, 73599)
+2016-08-24 17:01:48,286 INFO: Info:	 Shape of Clinic :(347, 127)
+2016-08-24 17:01:48,286 INFO: Done:	 Read Database Files
+2016-08-24 17:01:48,287 INFO: Start:	 Determine validation split for ratio 0.9
+2016-08-24 17:01:48,309 INFO: Done:	 Determine validation split
+2016-08-24 17:01:48,310 INFO: Start:	 Determine 2 folds
+2016-08-24 17:01:48,328 INFO: Info:	 Length of Learning Sets: 157
+2016-08-24 17:01:48,328 INFO: Info:	 Length of Testing Sets: 156
+2016-08-24 17:01:48,328 INFO: Info:	 Length of Validation Set: 34
+2016-08-24 17:01:48,328 INFO: Done:	 Determine folds
+2016-08-24 17:01:48,328 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-24 17:01:48,328 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-24 17:01:48,329 DEBUG: 	Start:	 Gridsearch for DecisionTree on Methyl
+2016-08-24 17:01:56,163 DEBUG: 		Info:	 Best Reslut : 0.542708933718
+2016-08-24 17:01:56,163 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 17:01:56,164 DEBUG: 	Start:	 Gridsearch for DecisionTree on MiRNA_
+2016-08-24 17:01:58,267 DEBUG: 		Info:	 Best Reslut : 0.553948126801
+2016-08-24 17:01:58,267 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 17:01:58,267 DEBUG: 	Start:	 Gridsearch for DecisionTree on RANSeq
diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-170204-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-170204-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 00000000..3ad1a6bd
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160824-170204-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,31 @@
+2016-08-24 17:02:04,433 INFO: Begginging
+2016-08-24 17:02:04,435 INFO: ### Main Programm for Multiview Classification
+2016-08-24 17:02:04,435 INFO: ### Classification - Database : MultiOmic ; Views : Methyl, MiRNA_, RNASeq, Clinic ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 17:02:04,435 INFO: Info:	 Shape of Methyl :(347, 25978)
+2016-08-24 17:02:04,436 INFO: Info:	 Shape of MiRNA_ :(347, 1046)
+2016-08-24 17:02:04,436 INFO: Info:	 Shape of RANSeq :(347, 73599)
+2016-08-24 17:02:04,437 INFO: Info:	 Shape of Clinic :(347, 127)
+2016-08-24 17:02:04,437 INFO: Done:	 Read Database Files
+2016-08-24 17:02:04,437 INFO: Start:	 Determine validation split for ratio 0.9
+2016-08-24 17:02:04,440 INFO: Done:	 Determine validation split
+2016-08-24 17:02:04,440 INFO: Start:	 Determine 2 folds
+2016-08-24 17:02:04,452 INFO: Info:	 Length of Learning Sets: 157
+2016-08-24 17:02:04,452 INFO: Info:	 Length of Testing Sets: 156
+2016-08-24 17:02:04,452 INFO: Info:	 Length of Validation Set: 34
+2016-08-24 17:02:04,452 INFO: Done:	 Determine folds
+2016-08-24 17:02:04,452 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-24 17:02:04,452 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-24 17:02:04,453 DEBUG: 	Start:	 Gridsearch for DecisionTree on Methyl
+2016-08-24 17:02:11,934 DEBUG: 		Info:	 Best Reslut : 0.550489913545
+2016-08-24 17:02:11,934 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 17:02:11,935 DEBUG: 	Start:	 Gridsearch for DecisionTree on MiRNA_
+2016-08-24 17:02:13,994 DEBUG: 		Info:	 Best Reslut : 0.560345821326
+2016-08-24 17:02:13,994 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 17:02:13,994 DEBUG: 	Start:	 Gridsearch for DecisionTree on RANSeq
+2016-08-24 17:02:30,869 DEBUG: 		Info:	 Best Reslut : 0.512507204611
+2016-08-24 17:02:30,869 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 17:02:30,870 DEBUG: 	Start:	 Gridsearch for DecisionTree on Clinic
+2016-08-24 17:02:32,818 DEBUG: 		Info:	 Best Reslut : 0.506109510086
+2016-08-24 17:02:32,819 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 17:02:32,819 INFO: Done:	 Gridsearching best settings for monoview classifiers
+2016-08-24 17:02:32,819 INFO: 	Start:	 Fold number 1
diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-170346-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-170346-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 00000000..e95f7dd3
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160824-170346-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,150 @@
+2016-08-24 17:03:46,119 INFO: Begginging
+2016-08-24 17:03:46,120 INFO: ### Main Programm for Multiview Classification
+2016-08-24 17:03:46,121 INFO: ### Classification - Database : MultiOmic ; Views : Methyl, MiRNA_, RNASeq, Clinic ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 17:03:46,121 INFO: Info:	 Shape of Methyl :(347, 25978)
+2016-08-24 17:03:46,121 INFO: Info:	 Shape of MiRNA_ :(347, 1046)
+2016-08-24 17:03:46,122 INFO: Info:	 Shape of RANSeq :(347, 73599)
+2016-08-24 17:03:46,122 INFO: Info:	 Shape of Clinic :(347, 127)
+2016-08-24 17:03:46,122 INFO: Done:	 Read Database Files
+2016-08-24 17:03:46,122 INFO: Start:	 Determine validation split for ratio 0.9
+2016-08-24 17:03:46,125 INFO: Done:	 Determine validation split
+2016-08-24 17:03:46,125 INFO: Start:	 Determine 2 folds
+2016-08-24 17:03:46,142 INFO: Info:	 Length of Learning Sets: 157
+2016-08-24 17:03:46,142 INFO: Info:	 Length of Testing Sets: 156
+2016-08-24 17:03:46,142 INFO: Info:	 Length of Validation Set: 34
+2016-08-24 17:03:46,142 INFO: Done:	 Determine folds
+2016-08-24 17:03:46,142 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-24 17:03:46,142 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-24 17:03:46,143 DEBUG: 	Start:	 Gridsearch for DecisionTree on Methyl
+2016-08-24 17:03:53,600 DEBUG: 		Info:	 Best Reslut : 0.531123919308
+2016-08-24 17:03:53,600 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 17:03:53,601 DEBUG: 	Start:	 Gridsearch for DecisionTree on MiRNA_
+2016-08-24 17:03:55,659 DEBUG: 		Info:	 Best Reslut : 0.501613832853
+2016-08-24 17:03:55,659 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 17:03:55,660 DEBUG: 	Start:	 Gridsearch for DecisionTree on RANSeq
+2016-08-24 17:04:13,538 DEBUG: 		Info:	 Best Reslut : 0.502363112392
+2016-08-24 17:04:13,538 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 17:04:13,539 DEBUG: 	Start:	 Gridsearch for DecisionTree on Clinic
+2016-08-24 17:04:15,465 DEBUG: 		Info:	 Best Reslut : 0.58144092219
+2016-08-24 17:04:15,465 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 17:04:15,465 INFO: Done:	 Gridsearching best settings for monoview classifiers
+2016-08-24 17:04:15,466 INFO: 	Start:	 Fold number 1
+2016-08-24 17:04:17,304 DEBUG: 		Start:	 Iteration 1
+2016-08-24 17:04:17,324 DEBUG: 			View 0 : 0.563953488372
+2016-08-24 17:04:17,333 DEBUG: 			View 1 : 0.703488372093
+2016-08-24 17:04:17,372 DEBUG: 			View 2 : 0.68023255814
+2016-08-24 17:04:17,381 DEBUG: 			View 3 : 0.546511627907
+2016-08-24 17:04:17,428 DEBUG: 			 Best view : 		Methyl
+2016-08-24 17:04:17,511 DEBUG: 		Start:	 Iteration 2
+2016-08-24 17:04:17,529 DEBUG: 			View 0 : 0.546511627907
+2016-08-24 17:04:17,539 DEBUG: 			View 1 : 0.703488372093
+2016-08-24 17:04:17,578 DEBUG: 			View 2 : 0.46511627907
+2016-08-24 17:04:17,587 DEBUG: 			View 3 : 0.308139534884
+2016-08-24 17:04:17,645 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:04:17,802 DEBUG: 		Start:	 Iteration 3
+2016-08-24 17:04:17,820 DEBUG: 			View 0 : 0.529069767442
+2016-08-24 17:04:17,829 DEBUG: 			View 1 : 0.43023255814
+2016-08-24 17:04:17,869 DEBUG: 			View 2 : 0.377906976744
+2016-08-24 17:04:17,878 DEBUG: 			View 3 : 0.389534883721
+2016-08-24 17:04:17,937 DEBUG: 			 Best view : 		Methyl
+2016-08-24 17:04:18,161 DEBUG: 		Start:	 Iteration 4
+2016-08-24 17:04:18,180 DEBUG: 			View 0 : 0.697674418605
+2016-08-24 17:04:18,189 DEBUG: 			View 1 : 0.337209302326
+2016-08-24 17:04:18,228 DEBUG: 			View 2 : 0.604651162791
+2016-08-24 17:04:18,237 DEBUG: 			View 3 : 0.604651162791
+2016-08-24 17:04:18,300 DEBUG: 			 Best view : 		Methyl
+2016-08-24 17:04:18,594 DEBUG: 		Start:	 Iteration 5
+2016-08-24 17:04:18,612 DEBUG: 			View 0 : 0.656976744186
+2016-08-24 17:04:18,621 DEBUG: 			View 1 : 0.424418604651
+2016-08-24 17:04:18,660 DEBUG: 			View 2 : 0.43023255814
+2016-08-24 17:04:18,669 DEBUG: 			View 3 : 0.674418604651
+2016-08-24 17:04:18,734 DEBUG: 			 Best view : 		Methyl
+2016-08-24 17:04:19,088 DEBUG: 		Start:	 Iteration 6
+2016-08-24 17:04:19,106 DEBUG: 			View 0 : 0.593023255814
+2016-08-24 17:04:19,114 DEBUG: 			View 1 : 0.610465116279
+2016-08-24 17:04:19,153 DEBUG: 			View 2 : 0.360465116279
+2016-08-24 17:04:19,162 DEBUG: 			View 3 : 0.372093023256
+2016-08-24 17:04:19,231 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:04:19,648 DEBUG: 		Start:	 Iteration 7
+2016-08-24 17:04:19,666 DEBUG: 			View 0 : 0.523255813953
+2016-08-24 17:04:19,675 DEBUG: 			View 1 : 0.709302325581
+2016-08-24 17:04:19,714 DEBUG: 			View 2 : 0.418604651163
+2016-08-24 17:04:19,723 DEBUG: 			View 3 : 0.406976744186
+2016-08-24 17:04:19,795 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:04:20,275 DEBUG: 		Start:	 Iteration 8
+2016-08-24 17:04:20,293 DEBUG: 			View 0 : 0.78488372093
+2016-08-24 17:04:20,302 DEBUG: 			View 1 : 0.593023255814
+2016-08-24 17:04:20,342 DEBUG: 			View 2 : 0.540697674419
+2016-08-24 17:04:20,350 DEBUG: 			View 3 : 0.639534883721
+2016-08-24 17:04:20,425 DEBUG: 			 Best view : 		Methyl
+2016-08-24 17:04:20,980 DEBUG: 		Start:	 Iteration 9
+2016-08-24 17:04:20,998 DEBUG: 			View 0 : 0.31976744186
+2016-08-24 17:04:21,007 DEBUG: 			View 1 : 0.796511627907
+2016-08-24 17:04:21,046 DEBUG: 			View 2 : 0.610465116279
+2016-08-24 17:04:21,055 DEBUG: 			View 3 : 0.656976744186
+2016-08-24 17:04:21,131 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:04:21,741 DEBUG: 		Start:	 Iteration 10
+2016-08-24 17:04:21,758 DEBUG: 			View 0 : 0.476744186047
+2016-08-24 17:04:21,767 DEBUG: 			View 1 : 0.354651162791
+2016-08-24 17:04:21,807 DEBUG: 			View 2 : 0.505813953488
+2016-08-24 17:04:21,816 DEBUG: 			View 3 : 0.5
+2016-08-24 17:04:21,894 DEBUG: 			 Best view : 		Methyl
+2016-08-24 17:04:22,579 DEBUG: 		Start:	 Iteration 11
+2016-08-24 17:04:22,597 DEBUG: 			View 0 : 0.575581395349
+2016-08-24 17:04:22,606 DEBUG: 			View 1 : 0.354651162791
+2016-08-24 17:04:22,645 DEBUG: 			View 2 : 0.552325581395
+2016-08-24 17:04:22,653 DEBUG: 			View 3 : 0.418604651163
+2016-08-24 17:04:22,736 DEBUG: 			 Best view : 		Methyl
+2016-08-24 17:04:23,491 DEBUG: 		Start:	 Iteration 12
+2016-08-24 17:04:23,509 DEBUG: 			View 0 : 0.488372093023
+2016-08-24 17:04:23,518 DEBUG: 			View 1 : 0.633720930233
+2016-08-24 17:04:23,556 DEBUG: 			View 2 : 0.616279069767
+2016-08-24 17:04:23,565 DEBUG: 			View 3 : 0.395348837209
+2016-08-24 17:04:23,650 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:04:24,460 DEBUG: 		Start:	 Iteration 13
+2016-08-24 17:04:24,478 DEBUG: 			View 0 : 0.436046511628
+2016-08-24 17:04:24,487 DEBUG: 			View 1 : 0.627906976744
+2016-08-24 17:04:24,525 DEBUG: 			View 2 : 0.581395348837
+2016-08-24 17:04:24,534 DEBUG: 			View 3 : 0.488372093023
+2016-08-24 17:04:24,621 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:04:25,498 DEBUG: 		Start:	 Iteration 14
+2016-08-24 17:04:25,516 DEBUG: 			View 0 : 0.738372093023
+2016-08-24 17:04:25,525 DEBUG: 			View 1 : 0.662790697674
+2016-08-24 17:04:25,564 DEBUG: 			View 2 : 0.46511627907
+2016-08-24 17:04:25,572 DEBUG: 			View 3 : 0.412790697674
+2016-08-24 17:04:25,662 DEBUG: 			 Best view : 		Methyl
+2016-08-24 17:04:26,603 DEBUG: 		Start:	 Iteration 15
+2016-08-24 17:04:26,621 DEBUG: 			View 0 : 0.56976744186
+2016-08-24 17:04:26,629 DEBUG: 			View 1 : 0.308139534884
+2016-08-24 17:04:26,668 DEBUG: 			View 2 : 0.453488372093
+2016-08-24 17:04:26,676 DEBUG: 			View 3 : 0.418604651163
+2016-08-24 17:04:26,769 DEBUG: 			 Best view : 		Methyl
+2016-08-24 17:04:27,796 DEBUG: 		Start:	 Iteration 16
+2016-08-24 17:04:27,816 DEBUG: 			View 0 : 0.436046511628
+2016-08-24 17:04:27,826 DEBUG: 			View 1 : 0.761627906977
+2016-08-24 17:04:27,866 DEBUG: 			View 2 : 0.668604651163
+2016-08-24 17:04:27,875 DEBUG: 			View 3 : 0.505813953488
+2016-08-24 17:04:27,978 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:04:29,101 DEBUG: 		Start:	 Iteration 17
+2016-08-24 17:04:29,120 DEBUG: 			View 0 : 0.31976744186
+2016-08-24 17:04:29,130 DEBUG: 			View 1 : 0.31976744186
+2016-08-24 17:04:29,173 DEBUG: 			View 2 : 0.517441860465
+2016-08-24 17:04:29,183 DEBUG: 			View 3 : 0.505813953488
+2016-08-24 17:04:29,333 DEBUG: 			 Best view : 		RANSeq
+2016-08-24 17:04:30,588 DEBUG: 		Start:	 Iteration 18
+2016-08-24 17:04:30,607 DEBUG: 			View 0 : 0.616279069767
+2016-08-24 17:04:30,616 DEBUG: 			View 1 : 0.366279069767
+2016-08-24 17:04:30,656 DEBUG: 			View 2 : 0.372093023256
+2016-08-24 17:04:30,666 DEBUG: 			View 3 : 0.651162790698
+2016-08-24 17:04:30,786 DEBUG: 			 Best view : 		Clinic
+2016-08-24 17:04:32,048 DEBUG: 		Start:	 Iteration 19
+2016-08-24 17:04:32,066 DEBUG: 			View 0 : 0.523255813953
+2016-08-24 17:04:32,075 DEBUG: 			View 1 : 0.441860465116
+2016-08-24 17:04:32,114 DEBUG: 			View 2 : 0.436046511628
+2016-08-24 17:04:32,123 DEBUG: 			View 3 : 0.470930232558
+2016-08-24 17:04:32,233 DEBUG: 			 Best view : 		Methyl
+2016-08-24 17:04:33,641 DEBUG: 		Start:	 Iteration 20
+2016-08-24 17:04:33,666 DEBUG: 			View 0 : 0.406976744186
+2016-08-24 17:04:33,676 DEBUG: 			View 1 : 0.563953488372
+2016-08-24 17:04:33,723 DEBUG: 			View 2 : 0.46511627907
+2016-08-24 17:04:33,733 DEBUG: 			View 3 : 0.43023255814
diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-170435-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-170435-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 00000000..4766a8df
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160824-170435-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,18 @@
+2016-08-24 17:04:35,603 INFO: Begginging
+2016-08-24 17:04:35,606 INFO: ### Main Programm for Multiview Classification
+2016-08-24 17:04:35,606 INFO: ### Classification - Database : MultiOmic ; Views : Methyl, MiRNA_, RNASeq, Clinic ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 17:04:35,607 INFO: Info:	 Shape of Methyl :(347, 25978)
+2016-08-24 17:04:35,607 INFO: Info:	 Shape of MiRNA_ :(347, 1046)
+2016-08-24 17:04:35,607 INFO: Info:	 Shape of RANSeq :(347, 73599)
+2016-08-24 17:04:35,608 INFO: Info:	 Shape of Clinic :(347, 127)
+2016-08-24 17:04:35,608 INFO: Done:	 Read Database Files
+2016-08-24 17:04:35,608 INFO: Start:	 Determine validation split for ratio 0.9
+2016-08-24 17:04:35,611 INFO: Done:	 Determine validation split
+2016-08-24 17:04:35,611 INFO: Start:	 Determine 2 folds
+2016-08-24 17:04:35,627 INFO: Info:	 Length of Learning Sets: 157
+2016-08-24 17:04:35,627 INFO: Info:	 Length of Testing Sets: 156
+2016-08-24 17:04:35,627 INFO: Info:	 Length of Validation Set: 34
+2016-08-24 17:04:35,627 INFO: Done:	 Determine folds
+2016-08-24 17:04:35,627 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-24 17:04:35,627 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-24 17:04:35,627 DEBUG: 	Start:	 Gridsearch for DecisionTree on Methyl
diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-170504-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-170504-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 00000000..f2e8de61
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160824-170504-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1 @@
+2016-08-24 17:05:04,538 INFO: Begginging
diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-170547-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-170547-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 00000000..ed318790
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160824-170547-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1 @@
+2016-08-24 17:05:47,733 INFO: Begginging
diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-170609-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-170609-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 00000000..2fd16d82
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160824-170609-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,8 @@
+2016-08-24 17:06:09,716 INFO: Begginging
+2016-08-24 17:06:09,729 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:06:09,729 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : Adaboost
+2016-08-24 17:06:09,729 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:06:09,742 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 17:06:09,743 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 17:06:09,743 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:06:09,743 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-170651-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-170651-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 00000000..921f5175
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160824-170651-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,8 @@
+2016-08-24 17:06:51,976 INFO: Begginging
+2016-08-24 17:06:51,987 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:06:51,988 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : Adaboost
+2016-08-24 17:06:51,988 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:06:52,001 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 17:06:52,001 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 17:06:52,002 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:06:52,002 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-170714-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-170714-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 00000000..7659913c
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160824-170714-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,8 @@
+2016-08-24 17:07:14,669 INFO: Begginging
+2016-08-24 17:07:14,681 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:07:14,682 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : Adaboost
+2016-08-24 17:07:14,682 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:07:14,695 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 17:07:14,695 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 17:07:14,696 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:07:14,696 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-170830-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-170830-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 00000000..c8f73426
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160824-170830-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,8 @@
+2016-08-24 17:08:30,663 INFO: Begginging
+2016-08-24 17:08:30,675 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:08:30,675 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : Adaboost
+2016-08-24 17:08:30,675 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:08:30,689 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 17:08:30,690 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 17:08:30,690 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:08:30,690 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-171109-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-171109-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 00000000..796f2ca8
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160824-171109-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,8 @@
+2016-08-24 17:11:09,644 INFO: Begginging
+2016-08-24 17:11:09,657 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:11:09,657 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : Adaboost
+2016-08-24 17:11:09,657 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:11:09,674 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 17:11:09,674 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 17:11:09,674 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:11:09,674 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-171228-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-171228-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 00000000..d1279baf
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160824-171228-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,8 @@
+2016-08-24 17:12:28,726 INFO: Begginging
+2016-08-24 17:12:28,738 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:12:28,738 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : Adaboost
+2016-08-24 17:12:28,739 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:12:28,752 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 17:12:28,752 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 17:12:28,752 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:12:28,752 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-171252-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-171252-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 00000000..f3d65d39
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160824-171252-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,1526 @@
+2016-08-24 17:12:52,347 INFO: Begginging
+2016-08-24 17:12:52,365 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:12:52,365 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : Adaboost
+2016-08-24 17:12:52,365 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:12:52,379 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 17:12:52,379 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 17:12:52,379 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:12:52,379 DEBUG: Start:	 Classification
+2016-08-24 17:13:02,249 DEBUG: Info:	 Time for Classification: 9.84349799156[s]
+2016-08-24 17:13:02,249 DEBUG: Done:	 Classification
+2016-08-24 17:13:02,283 DEBUG: Start:	 Statistic Results
+2016-08-24 17:13:02,284 DEBUG: Info:	 Classification report:
+2016-08-24 17:13:02,285 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.97      0.93      0.95        30
+        Oui       0.67      0.80      0.73         5
+
+avg / total       0.92      0.91      0.92        35
+
+2016-08-24 17:13:02,322 DEBUG: Info:	 Statistics:
+2016-08-24 17:13:02,330 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.914285714286
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.838213
+5    Mean of F1-Score of top 20 classes by F1-Score        0.838213
+6    Mean of F1-Score of top 30 classes by F1-Score        0.838213
+2016-08-24 17:13:02,330 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:13:04,158 DEBUG: Done:	 Statistic Results
+2016-08-24 17:13:04,158 DEBUG: Start:	 Plot Result
+2016-08-24 17:13:04,385 DEBUG: Done:	 Plot Result
+2016-08-24 17:13:04,396 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:13:04,396 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : DecisionTree
+2016-08-24 17:13:04,397 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:13:04,409 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 17:13:04,409 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 17:13:04,409 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:13:04,409 DEBUG: Start:	 Classification
+2016-08-24 17:13:11,488 DEBUG: Info:	 Time for Classification: 7.08845591545[s]
+2016-08-24 17:13:11,488 DEBUG: Done:	 Classification
+2016-08-24 17:13:11,490 DEBUG: Start:	 Statistic Results
+2016-08-24 17:13:11,490 DEBUG: Info:	 Classification report:
+2016-08-24 17:13:11,491 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       1.00      0.82      0.90        28
+        Oui       0.58      1.00      0.74         7
+
+avg / total       0.92      0.86      0.87        35
+
+2016-08-24 17:13:11,498 DEBUG: Info:	 Statistics:
+2016-08-24 17:13:11,505 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.857142857143
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.819401
+5    Mean of F1-Score of top 20 classes by F1-Score        0.819401
+6    Mean of F1-Score of top 30 classes by F1-Score        0.819401
+2016-08-24 17:13:11,505 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:13:11,798 DEBUG: Done:	 Statistic Results
+2016-08-24 17:13:11,798 DEBUG: Start:	 Plot Result
+2016-08-24 17:13:12,021 DEBUG: Done:	 Plot Result
+2016-08-24 17:13:12,033 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:13:12,033 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : KNN
+2016-08-24 17:13:12,033 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:13:12,046 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 17:13:12,046 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 17:13:12,046 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:13:12,046 DEBUG: Start:	 Classification
+2016-08-24 17:13:21,419 DEBUG: Info:	 Time for Classification: 9.38218188286[s]
+2016-08-24 17:13:21,419 DEBUG: Done:	 Classification
+2016-08-24 17:13:21,905 DEBUG: Start:	 Statistic Results
+2016-08-24 17:13:21,905 DEBUG: Info:	 Classification report:
+2016-08-24 17:13:21,906 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.92      0.86      0.89        28
+        Oui       0.56      0.71      0.63         7
+
+avg / total       0.85      0.83      0.84        35
+
+2016-08-24 17:13:21,908 DEBUG: Info:	 Statistics:
+2016-08-24 17:13:21,915 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.828571428571
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.756944
+5    Mean of F1-Score of top 20 classes by F1-Score        0.756944
+6    Mean of F1-Score of top 30 classes by F1-Score        0.756944
+2016-08-24 17:13:21,915 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:13:22,195 DEBUG: Done:	 Statistic Results
+2016-08-24 17:13:22,195 DEBUG: Start:	 Plot Result
+2016-08-24 17:13:22,884 DEBUG: Done:	 Plot Result
+2016-08-24 17:13:22,892 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:13:22,892 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : RandomForest
+2016-08-24 17:13:22,892 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:13:22,905 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 17:13:22,905 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 17:13:22,905 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:13:22,905 DEBUG: Start:	 Classification
+2016-08-24 17:13:30,919 DEBUG: Info:	 Time for Classification: 8.02398109436[s]
+2016-08-24 17:13:30,920 DEBUG: Done:	 Classification
+2016-08-24 17:13:30,937 DEBUG: Start:	 Statistic Results
+2016-08-24 17:13:30,937 DEBUG: Info:	 Classification report:
+2016-08-24 17:13:30,938 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.91      0.80      0.85        25
+        Oui       0.62      0.80      0.70        10
+
+avg / total       0.83      0.80      0.81        35
+
+2016-08-24 17:13:30,940 DEBUG: Info:	 Statistics:
+2016-08-24 17:13:30,947 DEBUG: 
+                                          Statistic      Values
+0                            Accuracy score on test         0.8
+1                        Top 10 classes by F1-Score  [Non, Oui]
+2                      Worst 10 classes by F1-Score  [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes           0
+4    Mean of F1-Score of top 10 classes by F1-Score    0.773358
+5    Mean of F1-Score of top 20 classes by F1-Score    0.773358
+6    Mean of F1-Score of top 30 classes by F1-Score    0.773358
+2016-08-24 17:13:30,947 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:13:31,246 DEBUG: Done:	 Statistic Results
+2016-08-24 17:13:31,246 DEBUG: Start:	 Plot Result
+2016-08-24 17:13:31,467 DEBUG: Done:	 Plot Result
+2016-08-24 17:13:31,475 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:13:31,475 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SGD
+2016-08-24 17:13:31,475 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:13:31,488 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 17:13:31,488 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 17:13:31,488 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:13:31,488 DEBUG: Start:	 Classification
+2016-08-24 17:13:32,881 DEBUG: Info:	 Time for Classification: 1.40213799477[s]
+2016-08-24 17:13:32,881 DEBUG: Done:	 Classification
+2016-08-24 17:13:32,898 DEBUG: Start:	 Statistic Results
+2016-08-24 17:13:32,899 DEBUG: Info:	 Classification report:
+2016-08-24 17:13:32,900 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       1.00      0.67      0.80        27
+        Oui       0.47      1.00      0.64         8
+
+avg / total       0.88      0.74      0.76        35
+
+2016-08-24 17:13:32,902 DEBUG: Info:	 Statistics:
+2016-08-24 17:13:32,911 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.742857142857
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score            0.72
+5    Mean of F1-Score of top 20 classes by F1-Score            0.72
+6    Mean of F1-Score of top 30 classes by F1-Score            0.72
+2016-08-24 17:13:32,912 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:13:33,221 DEBUG: Done:	 Statistic Results
+2016-08-24 17:13:33,221 DEBUG: Start:	 Plot Result
+2016-08-24 17:13:33,508 DEBUG: Done:	 Plot Result
+2016-08-24 17:13:33,518 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:13:33,518 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SVMLinear
+2016-08-24 17:13:33,518 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:13:33,532 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 17:13:33,532 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 17:13:33,532 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:13:33,533 DEBUG: Start:	 Classification
+2016-08-24 17:13:40,859 DEBUG: Info:	 Time for Classification: 7.33764505386[s]
+2016-08-24 17:13:40,859 DEBUG: Done:	 Classification
+2016-08-24 17:13:40,998 DEBUG: Start:	 Statistic Results
+2016-08-24 17:13:40,998 DEBUG: Info:	 Classification report:
+2016-08-24 17:13:40,999 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.80      1.00      0.89        24
+        Oui       1.00      0.45      0.62        11
+
+avg / total       0.86      0.83      0.81        35
+
+2016-08-24 17:13:41,001 DEBUG: Info:	 Statistics:
+2016-08-24 17:13:41,008 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.828571428571
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.756944
+5    Mean of F1-Score of top 20 classes by F1-Score        0.756944
+6    Mean of F1-Score of top 30 classes by F1-Score        0.756944
+2016-08-24 17:13:41,008 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:13:41,289 DEBUG: Done:	 Statistic Results
+2016-08-24 17:13:41,289 DEBUG: Start:	 Plot Result
+2016-08-24 17:13:41,642 DEBUG: Done:	 Plot Result
+2016-08-24 17:13:41,650 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:13:41,650 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SVMPoly
+2016-08-24 17:13:41,650 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:13:41,663 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 17:13:41,663 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 17:13:41,663 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:13:41,663 DEBUG: Start:	 Classification
+2016-08-24 17:14:06,809 DEBUG: Info:	 Time for Classification: 25.1557309628[s]
+2016-08-24 17:14:06,809 DEBUG: Done:	 Classification
+2016-08-24 17:14:06,949 DEBUG: Start:	 Statistic Results
+2016-08-24 17:14:06,949 DEBUG: Info:	 Classification report:
+2016-08-24 17:14:06,950 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.88      0.92      0.90        25
+        Oui       0.78      0.70      0.74        10
+
+avg / total       0.85      0.86      0.85        35
+
+2016-08-24 17:14:06,952 DEBUG: Info:	 Statistics:
+2016-08-24 17:14:06,959 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.857142857143
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.819401
+5    Mean of F1-Score of top 20 classes by F1-Score        0.819401
+6    Mean of F1-Score of top 30 classes by F1-Score        0.819401
+2016-08-24 17:14:06,959 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:14:07,241 DEBUG: Done:	 Statistic Results
+2016-08-24 17:14:07,241 DEBUG: Start:	 Plot Result
+2016-08-24 17:14:07,583 DEBUG: Done:	 Plot Result
+2016-08-24 17:14:07,591 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:14:07,592 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SVMRBF
+2016-08-24 17:14:07,592 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:14:07,605 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 17:14:07,605 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 17:14:07,605 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:14:07,605 DEBUG: Start:	 Classification
+2016-08-24 17:14:15,024 DEBUG: Info:	 Time for Classification: 7.42890310287[s]
+2016-08-24 17:14:15,024 DEBUG: Done:	 Classification
+2016-08-24 17:14:15,163 DEBUG: Start:	 Statistic Results
+2016-08-24 17:14:15,163 DEBUG: Info:	 Classification report:
+2016-08-24 17:14:15,164 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       1.00      0.97      0.98        29
+        Oui       0.86      1.00      0.92         6
+
+avg / total       0.98      0.97      0.97        35
+
+2016-08-24 17:14:15,165 DEBUG: Info:	 Statistics:
+2016-08-24 17:14:15,172 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.971428571429
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.952767
+5    Mean of F1-Score of top 20 classes by F1-Score        0.952767
+6    Mean of F1-Score of top 30 classes by F1-Score        0.952767
+2016-08-24 17:14:15,172 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:14:15,325 DEBUG: Done:	 Statistic Results
+2016-08-24 17:14:15,325 DEBUG: Start:	 Plot Result
+2016-08-24 17:14:15,573 DEBUG: Done:	 Plot Result
+2016-08-24 17:14:15,575 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:14:15,575 DEBUG: ### Classification - Database:MultiOmic Feature:RNASeq train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : Adaboost
+2016-08-24 17:14:15,575 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:14:15,576 DEBUG: Info:	 Shape X_train:(312, 1046), Length of y_train:312
+2016-08-24 17:14:15,576 DEBUG: Info:	 Shape X_test:(35, 1046), Length of y_test:35
+2016-08-24 17:14:15,576 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:14:15,576 DEBUG: Start:	 Classification
+2016-08-24 17:14:15,863 DEBUG: Info:	 Time for Classification: 0.284190177917[s]
+2016-08-24 17:14:15,863 DEBUG: Done:	 Classification
+2016-08-24 17:14:15,864 DEBUG: Start:	 Statistic Results
+2016-08-24 17:14:15,865 DEBUG: Info:	 Classification report:
+2016-08-24 17:14:15,865 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.84      0.88      0.86        24
+        Oui       0.70      0.64      0.67        11
+
+avg / total       0.80      0.80      0.80        35
+
+2016-08-24 17:14:15,876 DEBUG: Info:	 Statistics:
+2016-08-24 17:14:15,883 DEBUG: 
+                                          Statistic      Values
+0                            Accuracy score on test         0.8
+1                        Top 10 classes by F1-Score  [Non, Oui]
+2                      Worst 10 classes by F1-Score  [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes           0
+4    Mean of F1-Score of top 10 classes by F1-Score    0.761905
+5    Mean of F1-Score of top 20 classes by F1-Score    0.761905
+6    Mean of F1-Score of top 30 classes by F1-Score    0.761905
+2016-08-24 17:14:15,883 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:14:16,173 DEBUG: Done:	 Statistic Results
+2016-08-24 17:14:16,173 DEBUG: Start:	 Plot Result
+2016-08-24 17:14:16,378 DEBUG: Done:	 Plot Result
+2016-08-24 17:14:16,379 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:14:16,379 DEBUG: ### Classification - Database:MultiOmic Feature:RNASeq train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : DecisionTree
+2016-08-24 17:14:16,379 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:14:16,380 DEBUG: Info:	 Shape X_train:(312, 1046), Length of y_train:312
+2016-08-24 17:14:16,380 DEBUG: Info:	 Shape X_test:(35, 1046), Length of y_test:35
+2016-08-24 17:14:16,380 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:14:16,380 DEBUG: Start:	 Classification
+2016-08-24 17:14:16,590 DEBUG: Info:	 Time for Classification: 0.207895994186[s]
+2016-08-24 17:14:16,590 DEBUG: Done:	 Classification
+2016-08-24 17:14:16,592 DEBUG: Start:	 Statistic Results
+2016-08-24 17:14:16,592 DEBUG: Info:	 Classification report:
+2016-08-24 17:14:16,593 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.85      0.92      0.88        25
+        Oui       0.75      0.60      0.67        10
+
+avg / total       0.82      0.83      0.82        35
+
+2016-08-24 17:14:16,594 DEBUG: Info:	 Statistics:
+2016-08-24 17:14:16,601 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.828571428571
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.775641
+5    Mean of F1-Score of top 20 classes by F1-Score        0.775641
+6    Mean of F1-Score of top 30 classes by F1-Score        0.775641
+2016-08-24 17:14:16,602 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:14:16,883 DEBUG: Done:	 Statistic Results
+2016-08-24 17:14:16,884 DEBUG: Start:	 Plot Result
+2016-08-24 17:14:17,095 DEBUG: Done:	 Plot Result
+2016-08-24 17:14:17,097 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:14:17,097 DEBUG: ### Classification - Database:MultiOmic Feature:RNASeq train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : KNN
+2016-08-24 17:14:17,097 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:14:17,097 DEBUG: Info:	 Shape X_train:(312, 1046), Length of y_train:312
+2016-08-24 17:14:17,097 DEBUG: Info:	 Shape X_test:(35, 1046), Length of y_test:35
+2016-08-24 17:14:17,098 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:14:17,098 DEBUG: Start:	 Classification
+2016-08-24 17:14:17,430 DEBUG: Info:	 Time for Classification: 0.33030295372[s]
+2016-08-24 17:14:17,430 DEBUG: Done:	 Classification
+2016-08-24 17:14:17,447 DEBUG: Start:	 Statistic Results
+2016-08-24 17:14:17,447 DEBUG: Info:	 Classification report:
+2016-08-24 17:14:17,448 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.83      0.93      0.88        27
+        Oui       0.60      0.38      0.46         8
+
+avg / total       0.78      0.80      0.78        35
+
+2016-08-24 17:14:17,450 DEBUG: Info:	 Statistics:
+2016-08-24 17:14:17,457 DEBUG: 
+                                          Statistic      Values
+0                            Accuracy score on test         0.8
+1                        Top 10 classes by F1-Score  [Non, Oui]
+2                      Worst 10 classes by F1-Score  [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes           0
+4    Mean of F1-Score of top 10 classes by F1-Score    0.669366
+5    Mean of F1-Score of top 20 classes by F1-Score    0.669366
+6    Mean of F1-Score of top 30 classes by F1-Score    0.669366
+2016-08-24 17:14:17,457 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:14:17,736 DEBUG: Done:	 Statistic Results
+2016-08-24 17:14:17,736 DEBUG: Start:	 Plot Result
+2016-08-24 17:14:17,957 DEBUG: Done:	 Plot Result
+2016-08-24 17:14:17,958 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:14:17,958 DEBUG: ### Classification - Database:MultiOmic Feature:RNASeq train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : RandomForest
+2016-08-24 17:14:17,958 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:14:17,959 DEBUG: Info:	 Shape X_train:(312, 1046), Length of y_train:312
+2016-08-24 17:14:17,959 DEBUG: Info:	 Shape X_test:(35, 1046), Length of y_test:35
+2016-08-24 17:14:17,959 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:14:17,959 DEBUG: Start:	 Classification
+2016-08-24 17:14:20,605 DEBUG: Info:	 Time for Classification: 2.64367699623[s]
+2016-08-24 17:14:20,605 DEBUG: Done:	 Classification
+2016-08-24 17:14:20,613 DEBUG: Start:	 Statistic Results
+2016-08-24 17:14:20,613 DEBUG: Info:	 Classification report:
+2016-08-24 17:14:20,614 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.93      0.96      0.94        26
+        Oui       0.88      0.78      0.82         9
+
+avg / total       0.91      0.91      0.91        35
+
+2016-08-24 17:14:20,616 DEBUG: Info:	 Statistics:
+2016-08-24 17:14:20,623 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.914285714286
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.883463
+5    Mean of F1-Score of top 20 classes by F1-Score        0.883463
+6    Mean of F1-Score of top 30 classes by F1-Score        0.883463
+2016-08-24 17:14:20,623 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:14:20,917 DEBUG: Done:	 Statistic Results
+2016-08-24 17:14:20,917 DEBUG: Start:	 Plot Result
+2016-08-24 17:14:21,129 DEBUG: Done:	 Plot Result
+2016-08-24 17:14:21,130 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:14:21,130 DEBUG: ### Classification - Database:MultiOmic Feature:RNASeq train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SGD
+2016-08-24 17:14:21,131 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:14:21,131 DEBUG: Info:	 Shape X_train:(312, 1046), Length of y_train:312
+2016-08-24 17:14:21,131 DEBUG: Info:	 Shape X_test:(35, 1046), Length of y_test:35
+2016-08-24 17:14:21,131 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:14:21,131 DEBUG: Start:	 Classification
+2016-08-24 17:14:21,217 DEBUG: Info:	 Time for Classification: 0.082671880722[s]
+2016-08-24 17:14:21,217 DEBUG: Done:	 Classification
+2016-08-24 17:14:21,218 DEBUG: Start:	 Statistic Results
+2016-08-24 17:14:21,219 DEBUG: Info:	 Classification report:
+2016-08-24 17:14:21,219 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.73      0.90      0.81        21
+        Oui       0.78      0.50      0.61        14
+
+avg / total       0.75      0.74      0.73        35
+
+2016-08-24 17:14:21,222 DEBUG: Info:	 Statistics:
+2016-08-24 17:14:21,229 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.742857142857
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.708603
+5    Mean of F1-Score of top 20 classes by F1-Score        0.708603
+6    Mean of F1-Score of top 30 classes by F1-Score        0.708603
+2016-08-24 17:14:21,229 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:14:21,554 DEBUG: Done:	 Statistic Results
+2016-08-24 17:14:21,554 DEBUG: Start:	 Plot Result
+2016-08-24 17:14:21,788 DEBUG: Done:	 Plot Result
+2016-08-24 17:14:21,790 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:14:21,790 DEBUG: ### Classification - Database:MultiOmic Feature:RNASeq train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SVMLinear
+2016-08-24 17:14:21,790 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:14:21,790 DEBUG: Info:	 Shape X_train:(312, 1046), Length of y_train:312
+2016-08-24 17:14:21,790 DEBUG: Info:	 Shape X_test:(35, 1046), Length of y_test:35
+2016-08-24 17:14:21,791 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:14:21,791 DEBUG: Start:	 Classification
+2016-08-24 17:14:33,705 DEBUG: Info:	 Time for Classification: 11.9117758274[s]
+2016-08-24 17:14:33,705 DEBUG: Done:	 Classification
+2016-08-24 17:14:33,709 DEBUG: Start:	 Statistic Results
+2016-08-24 17:14:33,709 DEBUG: Info:	 Classification report:
+2016-08-24 17:14:33,710 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.86      0.90      0.88        21
+        Oui       0.85      0.79      0.81        14
+
+avg / total       0.86      0.86      0.86        35
+
+2016-08-24 17:14:33,712 DEBUG: Info:	 Statistics:
+2016-08-24 17:14:33,719 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.857142857143
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.849268
+5    Mean of F1-Score of top 20 classes by F1-Score        0.849268
+6    Mean of F1-Score of top 30 classes by F1-Score        0.849268
+2016-08-24 17:14:33,720 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:14:34,006 DEBUG: Done:	 Statistic Results
+2016-08-24 17:14:34,006 DEBUG: Start:	 Plot Result
+2016-08-24 17:14:34,214 DEBUG: Done:	 Plot Result
+2016-08-24 17:14:34,215 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:14:34,215 DEBUG: ### Classification - Database:MultiOmic Feature:RNASeq train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SVMPoly
+2016-08-24 17:14:34,216 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:14:34,216 DEBUG: Info:	 Shape X_train:(312, 1046), Length of y_train:312
+2016-08-24 17:14:34,216 DEBUG: Info:	 Shape X_test:(35, 1046), Length of y_test:35
+2016-08-24 17:14:34,216 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:14:34,216 DEBUG: Start:	 Classification
+2016-08-24 17:14:50,392 DEBUG: Info:	 Time for Classification: 16.1731550694[s]
+2016-08-24 17:14:50,392 DEBUG: Done:	 Classification
+2016-08-24 17:14:50,396 DEBUG: Start:	 Statistic Results
+2016-08-24 17:14:50,397 DEBUG: Info:	 Classification report:
+2016-08-24 17:14:50,398 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.92      0.83      0.87        29
+        Oui       0.44      0.67      0.53         6
+
+avg / total       0.84      0.80      0.81        35
+
+2016-08-24 17:14:50,400 DEBUG: Info:	 Statistics:
+2016-08-24 17:14:50,407 DEBUG: 
+                                          Statistic      Values
+0                            Accuracy score on test         0.8
+1                        Top 10 classes by F1-Score  [Non, Oui]
+2                      Worst 10 classes by F1-Score  [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes           0
+4    Mean of F1-Score of top 10 classes by F1-Score     0.70303
+5    Mean of F1-Score of top 20 classes by F1-Score     0.70303
+6    Mean of F1-Score of top 30 classes by F1-Score     0.70303
+2016-08-24 17:14:50,407 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:14:50,693 DEBUG: Done:	 Statistic Results
+2016-08-24 17:14:50,694 DEBUG: Start:	 Plot Result
+2016-08-24 17:14:50,901 DEBUG: Done:	 Plot Result
+2016-08-24 17:14:50,902 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:14:50,902 DEBUG: ### Classification - Database:MultiOmic Feature:RNASeq train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SVMRBF
+2016-08-24 17:14:50,902 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:14:50,903 DEBUG: Info:	 Shape X_train:(312, 1046), Length of y_train:312
+2016-08-24 17:14:50,903 DEBUG: Info:	 Shape X_test:(35, 1046), Length of y_test:35
+2016-08-24 17:14:50,903 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:14:50,903 DEBUG: Start:	 Classification
+2016-08-24 17:14:51,458 DEBUG: Info:	 Time for Classification: 0.552815914154[s]
+2016-08-24 17:14:51,458 DEBUG: Done:	 Classification
+2016-08-24 17:14:51,471 DEBUG: Start:	 Statistic Results
+2016-08-24 17:14:51,471 DEBUG: Info:	 Classification report:
+2016-08-24 17:14:51,482 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.80      1.00      0.89        28
+        Oui       0.00      0.00      0.00         7
+
+avg / total       0.64      0.80      0.71        35
+
+2016-08-24 17:14:51,484 DEBUG: Info:	 Statistics:
+2016-08-24 17:14:51,492 DEBUG: 
+                                          Statistic      Values
+0                            Accuracy score on test         0.8
+1                        Top 10 classes by F1-Score  [Non, Oui]
+2                      Worst 10 classes by F1-Score  [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes         0.5
+4    Mean of F1-Score of top 10 classes by F1-Score    0.444444
+5    Mean of F1-Score of top 20 classes by F1-Score    0.444444
+6    Mean of F1-Score of top 30 classes by F1-Score    0.444444
+2016-08-24 17:14:51,492 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:14:51,798 DEBUG: Done:	 Statistic Results
+2016-08-24 17:14:51,799 DEBUG: Start:	 Plot Result
+2016-08-24 17:14:52,015 DEBUG: Done:	 Plot Result
+2016-08-24 17:14:52,044 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:14:52,044 DEBUG: ### Classification - Database:MultiOmic Feature:Clinic train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : Adaboost
+2016-08-24 17:14:52,044 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:14:52,105 DEBUG: Info:	 Shape X_train:(312, 73599), Length of y_train:312
+2016-08-24 17:14:52,105 DEBUG: Info:	 Shape X_test:(35, 73599), Length of y_test:35
+2016-08-24 17:14:52,105 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:14:52,105 DEBUG: Start:	 Classification
+2016-08-24 17:15:33,379 DEBUG: Info:	 Time for Classification: 41.3318929672[s]
+2016-08-24 17:15:33,379 DEBUG: Done:	 Classification
+2016-08-24 17:15:33,384 DEBUG: Start:	 Statistic Results
+2016-08-24 17:15:33,384 DEBUG: Info:	 Classification report:
+2016-08-24 17:15:33,385 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.67      0.64      0.65        25
+        Oui       0.18      0.20      0.19        10
+
+avg / total       0.53      0.51      0.52        35
+
+2016-08-24 17:15:33,387 DEBUG: Info:	 Statistics:
+2016-08-24 17:15:33,394 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.514285714286
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.421769
+5    Mean of F1-Score of top 20 classes by F1-Score        0.421769
+6    Mean of F1-Score of top 30 classes by F1-Score        0.421769
+2016-08-24 17:15:33,394 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:15:33,680 DEBUG: Done:	 Statistic Results
+2016-08-24 17:15:33,680 DEBUG: Start:	 Plot Result
+2016-08-24 17:15:33,894 DEBUG: Done:	 Plot Result
+2016-08-24 17:15:33,924 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:15:33,924 DEBUG: ### Classification - Database:MultiOmic Feature:Clinic train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : DecisionTree
+2016-08-24 17:15:33,924 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:15:33,960 DEBUG: Info:	 Shape X_train:(312, 73599), Length of y_train:312
+2016-08-24 17:15:33,960 DEBUG: Info:	 Shape X_test:(35, 73599), Length of y_test:35
+2016-08-24 17:15:33,960 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:15:33,960 DEBUG: Start:	 Classification
+2016-08-24 17:15:53,507 DEBUG: Info:	 Time for Classification: 19.5791618824[s]
+2016-08-24 17:15:53,507 DEBUG: Done:	 Classification
+2016-08-24 17:15:53,510 DEBUG: Start:	 Statistic Results
+2016-08-24 17:15:53,510 DEBUG: Info:	 Classification report:
+2016-08-24 17:15:53,511 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.80      0.71      0.75        28
+        Oui       0.20      0.29      0.24         7
+
+avg / total       0.68      0.63      0.65        35
+
+2016-08-24 17:15:53,513 DEBUG: Info:	 Statistics:
+2016-08-24 17:15:53,535 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.628571428571
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.495006
+5    Mean of F1-Score of top 20 classes by F1-Score        0.495006
+6    Mean of F1-Score of top 30 classes by F1-Score        0.495006
+2016-08-24 17:15:53,535 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:15:53,808 DEBUG: Done:	 Statistic Results
+2016-08-24 17:15:53,809 DEBUG: Start:	 Plot Result
+2016-08-24 17:15:54,018 DEBUG: Done:	 Plot Result
+2016-08-24 17:15:54,047 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:15:54,047 DEBUG: ### Classification - Database:MultiOmic Feature:Clinic train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : KNN
+2016-08-24 17:15:54,047 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:15:54,082 DEBUG: Info:	 Shape X_train:(312, 73599), Length of y_train:312
+2016-08-24 17:15:54,082 DEBUG: Info:	 Shape X_test:(35, 73599), Length of y_test:35
+2016-08-24 17:15:54,082 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:15:54,083 DEBUG: Start:	 Classification
+2016-08-24 17:16:20,926 DEBUG: Info:	 Time for Classification: 26.8760640621[s]
+2016-08-24 17:16:20,926 DEBUG: Done:	 Classification
+2016-08-24 17:16:22,296 DEBUG: Start:	 Statistic Results
+2016-08-24 17:16:22,296 DEBUG: Info:	 Classification report:
+2016-08-24 17:16:22,297 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.74      0.96      0.83        26
+        Oui       0.00      0.00      0.00         9
+
+avg / total       0.55      0.71      0.62        35
+
+2016-08-24 17:16:22,299 DEBUG: Info:	 Statistics:
+2016-08-24 17:16:22,306 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.714285714286
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes             0.5
+4    Mean of F1-Score of top 10 classes by F1-Score        0.416667
+5    Mean of F1-Score of top 20 classes by F1-Score        0.416667
+6    Mean of F1-Score of top 30 classes by F1-Score        0.416667
+2016-08-24 17:16:22,306 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:16:22,613 DEBUG: Done:	 Statistic Results
+2016-08-24 17:16:22,613 DEBUG: Start:	 Plot Result
+2016-08-24 17:16:24,168 DEBUG: Done:	 Plot Result
+2016-08-24 17:16:24,275 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:16:24,275 DEBUG: ### Classification - Database:MultiOmic Feature:Clinic train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : RandomForest
+2016-08-24 17:16:24,275 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:16:24,311 DEBUG: Info:	 Shape X_train:(312, 73599), Length of y_train:312
+2016-08-24 17:16:24,311 DEBUG: Info:	 Shape X_test:(35, 73599), Length of y_test:35
+2016-08-24 17:16:24,311 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:16:24,311 DEBUG: Start:	 Classification
+2016-08-24 17:16:35,981 DEBUG: Info:	 Time for Classification: 11.7026500702[s]
+2016-08-24 17:16:35,981 DEBUG: Done:	 Classification
+2016-08-24 17:16:35,991 DEBUG: Start:	 Statistic Results
+2016-08-24 17:16:35,991 DEBUG: Info:	 Classification report:
+2016-08-24 17:16:35,992 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.71      1.00      0.83        24
+        Oui       1.00      0.09      0.17        11
+
+avg / total       0.80      0.71      0.62        35
+
+2016-08-24 17:16:35,994 DEBUG: Info:	 Statistics:
+2016-08-24 17:16:36,001 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.714285714286
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.497126
+5    Mean of F1-Score of top 20 classes by F1-Score        0.497126
+6    Mean of F1-Score of top 30 classes by F1-Score        0.497126
+2016-08-24 17:16:36,001 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:16:36,287 DEBUG: Done:	 Statistic Results
+2016-08-24 17:16:36,287 DEBUG: Start:	 Plot Result
+2016-08-24 17:16:36,501 DEBUG: Done:	 Plot Result
+2016-08-24 17:16:36,530 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:16:36,530 DEBUG: ### Classification - Database:MultiOmic Feature:Clinic train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SGD
+2016-08-24 17:16:36,530 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:16:36,566 DEBUG: Info:	 Shape X_train:(312, 73599), Length of y_train:312
+2016-08-24 17:16:36,566 DEBUG: Info:	 Shape X_test:(35, 73599), Length of y_test:35
+2016-08-24 17:16:36,566 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:16:36,566 DEBUG: Start:	 Classification
+2016-08-24 17:16:39,126 DEBUG: Info:	 Time for Classification: 2.59249281883[s]
+2016-08-24 17:16:39,126 DEBUG: Done:	 Classification
+2016-08-24 17:16:39,135 DEBUG: Start:	 Statistic Results
+2016-08-24 17:16:39,135 DEBUG: Info:	 Classification report:
+2016-08-24 17:16:39,136 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.67      0.75      0.71        24
+        Oui       0.25      0.18      0.21        11
+
+avg / total       0.54      0.57      0.55        35
+
+2016-08-24 17:16:39,138 DEBUG: Info:	 Statistics:
+2016-08-24 17:16:39,146 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.571428571429
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.458204
+5    Mean of F1-Score of top 20 classes by F1-Score        0.458204
+6    Mean of F1-Score of top 30 classes by F1-Score        0.458204
+2016-08-24 17:16:39,146 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:16:39,466 DEBUG: Done:	 Statistic Results
+2016-08-24 17:16:39,466 DEBUG: Start:	 Plot Result
+2016-08-24 17:16:39,708 DEBUG: Done:	 Plot Result
+2016-08-24 17:16:39,740 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:16:39,740 DEBUG: ### Classification - Database:MultiOmic Feature:Clinic train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SVMLinear
+2016-08-24 17:16:39,740 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:16:39,780 DEBUG: Info:	 Shape X_train:(312, 73599), Length of y_train:312
+2016-08-24 17:16:39,780 DEBUG: Info:	 Shape X_test:(35, 73599), Length of y_test:35
+2016-08-24 17:16:39,780 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:16:39,780 DEBUG: Start:	 Classification
+2016-08-24 17:17:12,799 DEBUG: Info:	 Time for Classification: 33.0559568405[s]
+2016-08-24 17:17:12,800 DEBUG: Done:	 Classification
+2016-08-24 17:17:13,409 DEBUG: Start:	 Statistic Results
+2016-08-24 17:17:13,409 DEBUG: Info:	 Classification report:
+2016-08-24 17:17:13,410 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.74      0.68      0.71        25
+        Oui       0.33      0.40      0.36        10
+
+avg / total       0.62      0.60      0.61        35
+
+2016-08-24 17:17:13,412 DEBUG: Info:	 Statistics:
+2016-08-24 17:17:13,419 DEBUG: 
+                                          Statistic      Values
+0                            Accuracy score on test         0.6
+1                        Top 10 classes by F1-Score  [Non, Oui]
+2                      Worst 10 classes by F1-Score  [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes           0
+4    Mean of F1-Score of top 10 classes by F1-Score    0.535985
+5    Mean of F1-Score of top 20 classes by F1-Score    0.535985
+6    Mean of F1-Score of top 30 classes by F1-Score    0.535985
+2016-08-24 17:17:13,419 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:17:13,707 DEBUG: Done:	 Statistic Results
+2016-08-24 17:17:13,707 DEBUG: Start:	 Plot Result
+2016-08-24 17:17:14,521 DEBUG: Done:	 Plot Result
+2016-08-24 17:17:14,557 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:17:14,557 DEBUG: ### Classification - Database:MultiOmic Feature:Clinic train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SVMPoly
+2016-08-24 17:17:14,557 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:17:14,593 DEBUG: Info:	 Shape X_train:(312, 73599), Length of y_train:312
+2016-08-24 17:17:14,593 DEBUG: Info:	 Shape X_test:(35, 73599), Length of y_test:35
+2016-08-24 17:17:14,594 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:17:14,594 DEBUG: Start:	 Classification
+2016-08-24 17:19:04,671 DEBUG: Info:	 Time for Classification: 110.109973192[s]
+2016-08-24 17:19:04,671 DEBUG: Done:	 Classification
+2016-08-24 17:19:05,281 DEBUG: Start:	 Statistic Results
+2016-08-24 17:19:05,281 DEBUG: Info:	 Classification report:
+2016-08-24 17:19:05,282 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.77      0.92      0.84        25
+        Oui       0.60      0.30      0.40        10
+
+avg / total       0.72      0.74      0.71        35
+
+2016-08-24 17:19:05,284 DEBUG: Info:	 Statistics:
+2016-08-24 17:19:05,291 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.742857142857
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.618182
+5    Mean of F1-Score of top 20 classes by F1-Score        0.618182
+6    Mean of F1-Score of top 30 classes by F1-Score        0.618182
+2016-08-24 17:19:05,291 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:19:05,584 DEBUG: Done:	 Statistic Results
+2016-08-24 17:19:05,584 DEBUG: Start:	 Plot Result
+2016-08-24 17:19:06,399 DEBUG: Done:	 Plot Result
+2016-08-24 17:19:06,435 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:19:06,435 DEBUG: ### Classification - Database:MultiOmic Feature:Clinic train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SVMRBF
+2016-08-24 17:19:06,435 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:19:06,471 DEBUG: Info:	 Shape X_train:(312, 73599), Length of y_train:312
+2016-08-24 17:19:06,471 DEBUG: Info:	 Shape X_test:(35, 73599), Length of y_test:35
+2016-08-24 17:19:06,471 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:19:06,471 DEBUG: Start:	 Classification
+2016-08-24 17:19:44,657 DEBUG: Info:	 Time for Classification: 38.2183771133[s]
+2016-08-24 17:19:44,657 DEBUG: Done:	 Classification
+2016-08-24 17:19:45,518 DEBUG: Start:	 Statistic Results
+2016-08-24 17:19:45,518 DEBUG: Info:	 Classification report:
+2016-08-24 17:19:45,519 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.77      1.00      0.87        27
+        Oui       0.00      0.00      0.00         8
+
+avg / total       0.60      0.77      0.67        35
+
+2016-08-24 17:19:45,521 DEBUG: Info:	 Statistics:
+2016-08-24 17:19:45,528 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.771428571429
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes             0.5
+4    Mean of F1-Score of top 10 classes by F1-Score        0.435484
+5    Mean of F1-Score of top 20 classes by F1-Score        0.435484
+6    Mean of F1-Score of top 30 classes by F1-Score        0.435484
+2016-08-24 17:19:45,528 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:19:45,835 DEBUG: Done:	 Statistic Results
+2016-08-24 17:19:45,835 DEBUG: Start:	 Plot Result
+2016-08-24 17:19:46,893 DEBUG: Done:	 Plot Result
+2016-08-24 17:19:46,931 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:19:46,931 DEBUG: ### Classification - Database:MultiOmic Feature:Methyl train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : Adaboost
+2016-08-24 17:19:46,931 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:19:46,931 DEBUG: Info:	 Shape X_train:(312, 127), Length of y_train:312
+2016-08-24 17:19:46,932 DEBUG: Info:	 Shape X_test:(35, 127), Length of y_test:35
+2016-08-24 17:19:46,932 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:19:46,932 DEBUG: Start:	 Classification
+2016-08-24 17:19:47,048 DEBUG: Info:	 Time for Classification: 0.114088058472[s]
+2016-08-24 17:19:47,048 DEBUG: Done:	 Classification
+2016-08-24 17:19:47,050 DEBUG: Start:	 Statistic Results
+2016-08-24 17:19:47,050 DEBUG: Info:	 Classification report:
+2016-08-24 17:19:47,051 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.91      1.00      0.95        21
+        Oui       1.00      0.86      0.92        14
+
+avg / total       0.95      0.94      0.94        35
+
+2016-08-24 17:19:47,053 DEBUG: Info:	 Statistics:
+2016-08-24 17:19:47,060 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.942857142857
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.938811
+5    Mean of F1-Score of top 20 classes by F1-Score        0.938811
+6    Mean of F1-Score of top 30 classes by F1-Score        0.938811
+2016-08-24 17:19:47,060 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:19:47,348 DEBUG: Done:	 Statistic Results
+2016-08-24 17:19:47,349 DEBUG: Start:	 Plot Result
+2016-08-24 17:19:47,573 DEBUG: Done:	 Plot Result
+2016-08-24 17:19:47,574 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:19:47,574 DEBUG: ### Classification - Database:MultiOmic Feature:Methyl train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : DecisionTree
+2016-08-24 17:19:47,575 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:19:47,575 DEBUG: Info:	 Shape X_train:(312, 127), Length of y_train:312
+2016-08-24 17:19:47,575 DEBUG: Info:	 Shape X_test:(35, 127), Length of y_test:35
+2016-08-24 17:19:47,575 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:19:47,575 DEBUG: Start:	 Classification
+2016-08-24 17:19:47,616 DEBUG: Info:	 Time for Classification: 0.038232088089[s]
+2016-08-24 17:19:47,616 DEBUG: Done:	 Classification
+2016-08-24 17:19:47,617 DEBUG: Start:	 Statistic Results
+2016-08-24 17:19:47,618 DEBUG: Info:	 Classification report:
+2016-08-24 17:19:47,618 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.71      1.00      0.83        25
+        Oui       0.00      0.00      0.00        10
+
+avg / total       0.51      0.71      0.60        35
+
+2016-08-24 17:19:47,620 DEBUG: Info:	 Statistics:
+2016-08-24 17:19:47,637 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.714285714286
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes             0.5
+4    Mean of F1-Score of top 10 classes by F1-Score        0.416667
+5    Mean of F1-Score of top 20 classes by F1-Score        0.416667
+6    Mean of F1-Score of top 30 classes by F1-Score        0.416667
+2016-08-24 17:19:47,637 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:19:47,922 DEBUG: Done:	 Statistic Results
+2016-08-24 17:19:47,922 DEBUG: Start:	 Plot Result
+2016-08-24 17:19:48,128 DEBUG: Done:	 Plot Result
+2016-08-24 17:19:48,129 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:19:48,129 DEBUG: ### Classification - Database:MultiOmic Feature:Methyl train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : KNN
+2016-08-24 17:19:48,129 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:19:48,129 DEBUG: Info:	 Shape X_train:(312, 127), Length of y_train:312
+2016-08-24 17:19:48,130 DEBUG: Info:	 Shape X_test:(35, 127), Length of y_test:35
+2016-08-24 17:19:48,130 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:19:48,130 DEBUG: Start:	 Classification
+2016-08-24 17:19:48,211 DEBUG: Info:	 Time for Classification: 0.0789890289307[s]
+2016-08-24 17:19:48,211 DEBUG: Done:	 Classification
+2016-08-24 17:19:48,214 DEBUG: Start:	 Statistic Results
+2016-08-24 17:19:48,215 DEBUG: Info:	 Classification report:
+2016-08-24 17:19:48,215 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.69      1.00      0.81        24
+        Oui       0.00      0.00      0.00        11
+
+avg / total       0.47      0.69      0.56        35
+
+2016-08-24 17:19:48,217 DEBUG: Info:	 Statistics:
+2016-08-24 17:19:48,224 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.685714285714
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes             0.5
+4    Mean of F1-Score of top 10 classes by F1-Score         0.40678
+5    Mean of F1-Score of top 20 classes by F1-Score         0.40678
+6    Mean of F1-Score of top 30 classes by F1-Score         0.40678
+2016-08-24 17:19:48,225 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:19:48,505 DEBUG: Done:	 Statistic Results
+2016-08-24 17:19:48,505 DEBUG: Start:	 Plot Result
+2016-08-24 17:19:48,713 DEBUG: Done:	 Plot Result
+2016-08-24 17:19:48,714 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:19:48,714 DEBUG: ### Classification - Database:MultiOmic Feature:Methyl train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : RandomForest
+2016-08-24 17:19:48,714 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:19:48,714 DEBUG: Info:	 Shape X_train:(312, 127), Length of y_train:312
+2016-08-24 17:19:48,715 DEBUG: Info:	 Shape X_test:(35, 127), Length of y_test:35
+2016-08-24 17:19:48,715 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:19:48,715 DEBUG: Start:	 Classification
+2016-08-24 17:19:51,055 DEBUG: Info:	 Time for Classification: 2.3381061554[s]
+2016-08-24 17:19:51,055 DEBUG: Done:	 Classification
+2016-08-24 17:19:51,067 DEBUG: Start:	 Statistic Results
+2016-08-24 17:19:51,068 DEBUG: Info:	 Classification report:
+2016-08-24 17:19:51,069 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.88      1.00      0.93        28
+        Oui       1.00      0.43      0.60         7
+
+avg / total       0.90      0.89      0.87        35
+
+2016-08-24 17:19:51,070 DEBUG: Info:	 Statistics:
+2016-08-24 17:19:51,077 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.885714285714
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.766667
+5    Mean of F1-Score of top 20 classes by F1-Score        0.766667
+6    Mean of F1-Score of top 30 classes by F1-Score        0.766667
+2016-08-24 17:19:51,077 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:19:51,369 DEBUG: Done:	 Statistic Results
+2016-08-24 17:19:51,370 DEBUG: Start:	 Plot Result
+2016-08-24 17:19:51,587 DEBUG: Done:	 Plot Result
+2016-08-24 17:19:51,589 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:19:51,589 DEBUG: ### Classification - Database:MultiOmic Feature:Methyl train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SGD
+2016-08-24 17:19:51,589 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:19:51,589 DEBUG: Info:	 Shape X_train:(312, 127), Length of y_train:312
+2016-08-24 17:19:51,589 DEBUG: Info:	 Shape X_test:(35, 127), Length of y_test:35
+2016-08-24 17:19:51,589 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:19:51,589 DEBUG: Start:	 Classification
+2016-08-24 17:19:51,655 DEBUG: Info:	 Time for Classification: 0.0632700920105[s]
+2016-08-24 17:19:51,656 DEBUG: Done:	 Classification
+2016-08-24 17:19:51,657 DEBUG: Start:	 Statistic Results
+2016-08-24 17:19:51,657 DEBUG: Info:	 Classification report:
+2016-08-24 17:19:51,658 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       1.00      0.14      0.25        28
+        Oui       0.23      1.00      0.37         7
+
+avg / total       0.85      0.31      0.27        35
+
+2016-08-24 17:19:51,660 DEBUG: Info:	 Statistics:
+2016-08-24 17:19:51,668 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.314285714286
+1                        Top 10 classes by F1-Score      [Oui, Non]
+2                      Worst 10 classes by F1-Score      [Non, Oui]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.309211
+5    Mean of F1-Score of top 20 classes by F1-Score        0.309211
+6    Mean of F1-Score of top 30 classes by F1-Score        0.309211
+2016-08-24 17:19:51,668 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:19:51,992 DEBUG: Done:	 Statistic Results
+2016-08-24 17:19:51,993 DEBUG: Start:	 Plot Result
+2016-08-24 17:19:52,241 DEBUG: Done:	 Plot Result
+2016-08-24 17:19:52,242 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:19:52,242 DEBUG: ### Classification - Database:MultiOmic Feature:Methyl train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SVMLinear
+2016-08-24 17:19:52,242 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:19:52,242 DEBUG: Info:	 Shape X_train:(312, 127), Length of y_train:312
+2016-08-24 17:19:52,242 DEBUG: Info:	 Shape X_test:(35, 127), Length of y_test:35
+2016-08-24 17:19:52,242 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:19:52,242 DEBUG: Start:	 Classification
+2016-08-24 17:21:47,120 DEBUG: Info:	 Time for Classification: 114.874765158[s]
+2016-08-24 17:21:47,120 DEBUG: Done:	 Classification
+2016-08-24 17:21:47,122 DEBUG: Start:	 Statistic Results
+2016-08-24 17:21:47,122 DEBUG: Info:	 Classification report:
+2016-08-24 17:21:47,123 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.93      0.87      0.90        30
+        Oui       0.43      0.60      0.50         5
+
+avg / total       0.86      0.83      0.84        35
+
+2016-08-24 17:21:47,125 DEBUG: Info:	 Statistics:
+2016-08-24 17:21:47,132 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.828571428571
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.698276
+5    Mean of F1-Score of top 20 classes by F1-Score        0.698276
+6    Mean of F1-Score of top 30 classes by F1-Score        0.698276
+2016-08-24 17:21:47,132 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:21:47,411 DEBUG: Done:	 Statistic Results
+2016-08-24 17:21:47,411 DEBUG: Start:	 Plot Result
+2016-08-24 17:21:47,619 DEBUG: Done:	 Plot Result
+2016-08-24 17:21:47,620 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:21:47,620 DEBUG: ### Classification - Database:MultiOmic Feature:Methyl train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SVMPoly
+2016-08-24 17:21:47,620 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:21:47,620 DEBUG: Info:	 Shape X_train:(312, 127), Length of y_train:312
+2016-08-24 17:21:47,620 DEBUG: Info:	 Shape X_test:(35, 127), Length of y_test:35
+2016-08-24 17:21:47,620 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:21:47,621 DEBUG: Start:	 Classification
+2016-08-24 17:26:12,253 DEBUG: Info:	 Time for Classification: 264.629760981[s]
+2016-08-24 17:26:12,253 DEBUG: Done:	 Classification
+2016-08-24 17:26:12,255 DEBUG: Start:	 Statistic Results
+2016-08-24 17:26:12,255 DEBUG: Info:	 Classification report:
+2016-08-24 17:26:12,256 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.81      0.81      0.81        27
+        Oui       0.38      0.38      0.38         8
+
+avg / total       0.71      0.71      0.71        35
+
+2016-08-24 17:26:12,258 DEBUG: Info:	 Statistics:
+2016-08-24 17:26:12,265 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.714285714286
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.594907
+5    Mean of F1-Score of top 20 classes by F1-Score        0.594907
+6    Mean of F1-Score of top 30 classes by F1-Score        0.594907
+2016-08-24 17:26:12,266 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:26:12,563 DEBUG: Done:	 Statistic Results
+2016-08-24 17:26:12,564 DEBUG: Start:	 Plot Result
+2016-08-24 17:26:12,784 DEBUG: Done:	 Plot Result
+2016-08-24 17:26:12,785 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:26:12,785 DEBUG: ### Classification - Database:MultiOmic Feature:Methyl train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SVMRBF
+2016-08-24 17:26:12,785 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:26:12,786 DEBUG: Info:	 Shape X_train:(312, 127), Length of y_train:312
+2016-08-24 17:26:12,786 DEBUG: Info:	 Shape X_test:(35, 127), Length of y_test:35
+2016-08-24 17:26:12,786 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:26:12,786 DEBUG: Start:	 Classification
+2016-08-24 17:26:12,940 DEBUG: Info:	 Time for Classification: 0.151942014694[s]
+2016-08-24 17:26:12,941 DEBUG: Done:	 Classification
+2016-08-24 17:26:12,944 DEBUG: Start:	 Statistic Results
+2016-08-24 17:26:12,944 DEBUG: Info:	 Classification report:
+2016-08-24 17:26:12,945 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.66      1.00      0.79        23
+        Oui       0.00      0.00      0.00        12
+
+avg / total       0.43      0.66      0.52        35
+
+2016-08-24 17:26:12,947 DEBUG: Info:	 Statistics:
+2016-08-24 17:26:12,954 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.657142857143
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes             0.5
+4    Mean of F1-Score of top 10 classes by F1-Score        0.396552
+5    Mean of F1-Score of top 20 classes by F1-Score        0.396552
+6    Mean of F1-Score of top 30 classes by F1-Score        0.396552
+2016-08-24 17:26:12,954 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:26:13,253 DEBUG: Done:	 Statistic Results
+2016-08-24 17:26:13,253 DEBUG: Start:	 Plot Result
+2016-08-24 17:26:13,526 DEBUG: Done:	 Plot Result
+2016-08-24 17:26:13,630 INFO: ### Main Programm for Multiview Classification
+2016-08-24 17:26:13,630 INFO: ### Classification - Database : MultiOmic ; Views : Methyl, MiRNA_, RNASeq, Clinic ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 17:26:13,631 INFO: Info:	 Shape of Methyl :(347, 25978)
+2016-08-24 17:26:13,631 INFO: Info:	 Shape of MiRNA_ :(347, 1046)
+2016-08-24 17:26:13,632 INFO: Info:	 Shape of RANSeq :(347, 73599)
+2016-08-24 17:26:13,632 INFO: Info:	 Shape of Clinic :(347, 127)
+2016-08-24 17:26:13,632 INFO: Done:	 Read Database Files
+2016-08-24 17:26:13,632 INFO: Start:	 Determine validation split for ratio 0.9
+2016-08-24 17:26:13,635 INFO: Done:	 Determine validation split
+2016-08-24 17:26:13,635 INFO: Start:	 Determine 2 folds
+2016-08-24 17:26:13,649 INFO: Info:	 Length of Learning Sets: 157
+2016-08-24 17:26:13,649 INFO: Info:	 Length of Testing Sets: 156
+2016-08-24 17:26:13,650 INFO: Info:	 Length of Validation Set: 34
+2016-08-24 17:26:13,650 INFO: Done:	 Determine folds
+2016-08-24 17:26:13,650 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-24 17:26:13,650 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-24 17:26:13,650 DEBUG: 	Start:	 Gridsearch for DecisionTree on Methyl
+2016-08-24 17:26:21,801 DEBUG: 		Info:	 Best Reslut : 0.516253602305
+2016-08-24 17:26:21,801 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 17:26:21,801 DEBUG: 	Start:	 Gridsearch for DecisionTree on MiRNA_
+2016-08-24 17:26:23,966 DEBUG: 		Info:	 Best Reslut : 0.565129682997
+2016-08-24 17:26:23,967 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 17:26:23,967 DEBUG: 	Start:	 Gridsearch for DecisionTree on RANSeq
+2016-08-24 17:26:42,003 DEBUG: 		Info:	 Best Reslut : 0.51204610951
+2016-08-24 17:26:42,004 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 17:26:42,004 DEBUG: 	Start:	 Gridsearch for DecisionTree on Clinic
+2016-08-24 17:26:43,930 DEBUG: 		Info:	 Best Reslut : 0.514236311239
+2016-08-24 17:26:43,931 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 17:26:43,931 INFO: Done:	 Gridsearching best settings for monoview classifiers
+2016-08-24 17:26:43,931 INFO: 	Start:	 Fold number 1
+2016-08-24 17:26:45,766 DEBUG: 		Start:	 Iteration 1
+2016-08-24 17:26:45,796 DEBUG: 			View 0 : 0.706896551724
+2016-08-24 17:26:45,805 DEBUG: 			View 1 : 0.706896551724
+2016-08-24 17:26:45,836 DEBUG: 			View 2 : 0.706896551724
+2016-08-24 17:26:45,845 DEBUG: 			View 3 : 0.706896551724
+2016-08-24 17:26:45,892 DEBUG: 			 Best view : 		Methyl
+2016-08-24 17:26:45,977 DEBUG: 		Start:	 Iteration 2
+2016-08-24 17:26:45,995 DEBUG: 			View 0 : 0.551724137931
+2016-08-24 17:26:46,004 DEBUG: 			View 1 : 0.442528735632
+2016-08-24 17:26:46,043 DEBUG: 			View 2 : 0.683908045977
+2016-08-24 17:26:46,052 DEBUG: 			View 3 : 0.614942528736
+2016-08-24 17:26:46,105 DEBUG: 			 Best view : 		RANSeq
+2016-08-24 17:26:46,271 DEBUG: 		Start:	 Iteration 3
+2016-08-24 17:26:46,289 DEBUG: 			View 0 : 0.431034482759
+2016-08-24 17:26:46,297 DEBUG: 			View 1 : 0.310344827586
+2016-08-24 17:26:46,337 DEBUG: 			View 2 : 0.522988505747
+2016-08-24 17:26:46,345 DEBUG: 			View 3 : 0.695402298851
+2016-08-24 17:26:46,406 DEBUG: 			 Best view : 		Clinic
+2016-08-24 17:26:46,638 DEBUG: 		Start:	 Iteration 4
+2016-08-24 17:26:46,656 DEBUG: 			View 0 : 0.465517241379
+2016-08-24 17:26:46,666 DEBUG: 			View 1 : 0.729885057471
+2016-08-24 17:26:46,706 DEBUG: 			View 2 : 0.522988505747
+2016-08-24 17:26:46,715 DEBUG: 			View 3 : 0.471264367816
+2016-08-24 17:26:46,780 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:26:47,078 DEBUG: 		Start:	 Iteration 5
+2016-08-24 17:26:47,099 DEBUG: 			View 0 : 0.557471264368
+2016-08-24 17:26:47,108 DEBUG: 			View 1 : 0.729885057471
+2016-08-24 17:26:47,148 DEBUG: 			View 2 : 0.465517241379
+2016-08-24 17:26:47,156 DEBUG: 			View 3 : 0.442528735632
+2016-08-24 17:26:47,222 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:26:47,581 DEBUG: 		Start:	 Iteration 6
+2016-08-24 17:26:47,599 DEBUG: 			View 0 : 0.580459770115
+2016-08-24 17:26:47,607 DEBUG: 			View 1 : 0.718390804598
+2016-08-24 17:26:47,647 DEBUG: 			View 2 : 0.436781609195
+2016-08-24 17:26:47,655 DEBUG: 			View 3 : 0.350574712644
+2016-08-24 17:26:47,724 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:26:48,163 DEBUG: 		Start:	 Iteration 7
+2016-08-24 17:26:48,181 DEBUG: 			View 0 : 0.367816091954
+2016-08-24 17:26:48,191 DEBUG: 			View 1 : 0.614942528736
+2016-08-24 17:26:48,230 DEBUG: 			View 2 : 0.66091954023
+2016-08-24 17:26:48,239 DEBUG: 			View 3 : 0.413793103448
+2016-08-24 17:26:48,310 DEBUG: 			 Best view : 		RANSeq
+2016-08-24 17:26:48,811 DEBUG: 		Start:	 Iteration 8
+2016-08-24 17:26:48,829 DEBUG: 			View 0 : 0.488505747126
+2016-08-24 17:26:48,838 DEBUG: 			View 1 : 0.706896551724
+2016-08-24 17:26:48,878 DEBUG: 			View 2 : 0.591954022989
+2016-08-24 17:26:48,887 DEBUG: 			View 3 : 0.522988505747
+2016-08-24 17:26:48,961 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:26:49,526 DEBUG: 		Start:	 Iteration 9
+2016-08-24 17:26:49,545 DEBUG: 			View 0 : 0.413793103448
+2016-08-24 17:26:49,554 DEBUG: 			View 1 : 0.436781609195
+2016-08-24 17:26:49,593 DEBUG: 			View 2 : 0.522988505747
+2016-08-24 17:26:49,602 DEBUG: 			View 3 : 0.614942528736
+2016-08-24 17:26:49,681 DEBUG: 			 Best view : 		Clinic
+2016-08-24 17:26:50,309 DEBUG: 		Start:	 Iteration 10
+2016-08-24 17:26:50,327 DEBUG: 			View 0 : 0.637931034483
+2016-08-24 17:26:50,336 DEBUG: 			View 1 : 0.494252873563
+2016-08-24 17:26:50,376 DEBUG: 			View 2 : 0.488505747126
+2016-08-24 17:26:50,384 DEBUG: 			View 3 : 0.66091954023
+2016-08-24 17:26:50,465 DEBUG: 			 Best view : 		Clinic
+2016-08-24 17:26:51,156 DEBUG: 		Start:	 Iteration 11
+2016-08-24 17:26:51,174 DEBUG: 			View 0 : 0.689655172414
+2016-08-24 17:26:51,184 DEBUG: 			View 1 : 0.655172413793
+2016-08-24 17:26:51,223 DEBUG: 			View 2 : 0.701149425287
+2016-08-24 17:26:51,232 DEBUG: 			View 3 : 0.488505747126
+2016-08-24 17:26:51,316 DEBUG: 			 Best view : 		Methyl
+2016-08-24 17:26:52,083 DEBUG: 		Start:	 Iteration 12
+2016-08-24 17:26:52,101 DEBUG: 			View 0 : 0.540229885057
+2016-08-24 17:26:52,110 DEBUG: 			View 1 : 0.591954022989
+2016-08-24 17:26:52,149 DEBUG: 			View 2 : 0.367816091954
+2016-08-24 17:26:52,158 DEBUG: 			View 3 : 0.48275862069
+2016-08-24 17:26:52,244 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:26:53,068 DEBUG: 		Start:	 Iteration 13
+2016-08-24 17:26:53,087 DEBUG: 			View 0 : 0.459770114943
+2016-08-24 17:26:53,095 DEBUG: 			View 1 : 0.591954022989
+2016-08-24 17:26:53,135 DEBUG: 			View 2 : 0.350574712644
+2016-08-24 17:26:53,144 DEBUG: 			View 3 : 0.350574712644
+2016-08-24 17:26:53,234 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:26:54,133 DEBUG: 		Start:	 Iteration 14
+2016-08-24 17:26:54,152 DEBUG: 			View 0 : 0.362068965517
+2016-08-24 17:26:54,162 DEBUG: 			View 1 : 0.51724137931
+2016-08-24 17:26:54,202 DEBUG: 			View 2 : 0.695402298851
+2016-08-24 17:26:54,211 DEBUG: 			View 3 : 0.304597701149
+2016-08-24 17:26:54,305 DEBUG: 			 Best view : 		RANSeq
+2016-08-24 17:26:55,286 DEBUG: 		Start:	 Iteration 15
+2016-08-24 17:26:55,305 DEBUG: 			View 0 : 0.436781609195
+2016-08-24 17:26:55,314 DEBUG: 			View 1 : 0.494252873563
+2016-08-24 17:26:55,354 DEBUG: 			View 2 : 0.459770114943
+2016-08-24 17:26:55,362 DEBUG: 			View 3 : 0.367816091954
+2016-08-24 17:26:55,363 WARNING: WARNING:	All bad for iteration 14
+2016-08-24 17:26:55,458 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:26:56,490 DEBUG: 		Start:	 Iteration 16
+2016-08-24 17:26:56,509 DEBUG: 			View 0 : 0.396551724138
+2016-08-24 17:26:56,518 DEBUG: 			View 1 : 0.735632183908
+2016-08-24 17:26:56,562 DEBUG: 			View 2 : 0.706896551724
+2016-08-24 17:26:56,571 DEBUG: 			View 3 : 0.522988505747
+2016-08-24 17:26:56,670 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:26:57,816 DEBUG: 		Start:	 Iteration 17
+2016-08-24 17:26:57,836 DEBUG: 			View 0 : 0.649425287356
+2016-08-24 17:26:57,846 DEBUG: 			View 1 : 0.465517241379
+2016-08-24 17:26:57,901 DEBUG: 			View 2 : 0.649425287356
+2016-08-24 17:26:57,915 DEBUG: 			View 3 : 0.672413793103
+2016-08-24 17:26:58,024 DEBUG: 			 Best view : 		Methyl
+2016-08-24 17:26:59,247 DEBUG: 		Start:	 Iteration 18
+2016-08-24 17:26:59,266 DEBUG: 			View 0 : 0.551724137931
+2016-08-24 17:26:59,275 DEBUG: 			View 1 : 0.712643678161
+2016-08-24 17:26:59,315 DEBUG: 			View 2 : 0.551724137931
+2016-08-24 17:26:59,324 DEBUG: 			View 3 : 0.620689655172
+2016-08-24 17:26:59,430 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:27:00,676 DEBUG: 		Start:	 Iteration 19
+2016-08-24 17:27:00,696 DEBUG: 			View 0 : 0.689655172414
+2016-08-24 17:27:00,706 DEBUG: 			View 1 : 0.701149425287
+2016-08-24 17:27:00,748 DEBUG: 			View 2 : 0.655172413793
+2016-08-24 17:27:00,756 DEBUG: 			View 3 : 0.419540229885
+2016-08-24 17:27:00,869 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:27:02,190 DEBUG: 		Start:	 Iteration 20
+2016-08-24 17:27:02,209 DEBUG: 			View 0 : 0.477011494253
+2016-08-24 17:27:02,219 DEBUG: 			View 1 : 0.67816091954
+2016-08-24 17:27:02,262 DEBUG: 			View 2 : 0.649425287356
+2016-08-24 17:27:02,271 DEBUG: 			View 3 : 0.333333333333
+2016-08-24 17:27:02,388 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:27:03,782 DEBUG: 		Start:	 Iteration 21
+2016-08-24 17:27:03,800 DEBUG: 			View 0 : 0.67816091954
+2016-08-24 17:27:03,809 DEBUG: 			View 1 : 0.511494252874
+2016-08-24 17:27:03,848 DEBUG: 			View 2 : 0.48275862069
+2016-08-24 17:27:03,857 DEBUG: 			View 3 : 0.655172413793
+2016-08-24 17:27:03,969 DEBUG: 			 Best view : 		Methyl
+2016-08-24 17:27:05,395 DEBUG: 		Start:	 Iteration 22
+2016-08-24 17:27:05,414 DEBUG: 			View 0 : 0.672413793103
+2016-08-24 17:27:05,423 DEBUG: 			View 1 : 0.465517241379
+2016-08-24 17:27:05,463 DEBUG: 			View 2 : 0.327586206897
+2016-08-24 17:27:05,471 DEBUG: 			View 3 : 0.459770114943
+2016-08-24 17:27:05,588 DEBUG: 			 Best view : 		Methyl
+2016-08-24 17:27:07,113 DEBUG: 		Start:	 Iteration 23
+2016-08-24 17:27:07,131 DEBUG: 			View 0 : 0.344827586207
+2016-08-24 17:27:07,140 DEBUG: 			View 1 : 0.666666666667
+2016-08-24 17:27:07,179 DEBUG: 			View 2 : 0.655172413793
+2016-08-24 17:27:07,188 DEBUG: 			View 3 : 0.672413793103
+2016-08-24 17:27:07,305 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:27:08,889 DEBUG: 		Start:	 Iteration 24
+2016-08-24 17:27:08,907 DEBUG: 			View 0 : 0.66091954023
+2016-08-24 17:27:08,916 DEBUG: 			View 1 : 0.275862068966
+2016-08-24 17:27:08,956 DEBUG: 			View 2 : 0.471264367816
+2016-08-24 17:27:08,965 DEBUG: 			View 3 : 0.465517241379
+2016-08-24 17:27:09,088 DEBUG: 			 Best view : 		Methyl
+2016-08-24 17:27:10,750 DEBUG: 		Start:	 Iteration 25
+2016-08-24 17:27:10,769 DEBUG: 			View 0 : 0.33908045977
+2016-08-24 17:27:10,778 DEBUG: 			View 1 : 0.545977011494
+2016-08-24 17:27:10,819 DEBUG: 			View 2 : 0.568965517241
+2016-08-24 17:27:10,827 DEBUG: 			View 3 : 0.33908045977
+2016-08-24 17:27:10,955 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:27:12,704 DEBUG: 		Start:	 Iteration 26
+2016-08-24 17:27:12,724 DEBUG: 			View 0 : 0.540229885057
+2016-08-24 17:27:12,733 DEBUG: 			View 1 : 0.724137931034
+2016-08-24 17:27:12,775 DEBUG: 			View 2 : 0.557471264368
+2016-08-24 17:27:12,784 DEBUG: 			View 3 : 0.586206896552
+2016-08-24 17:27:12,910 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:27:14,655 DEBUG: 		Start:	 Iteration 27
+2016-08-24 17:27:14,674 DEBUG: 			View 0 : 0.67816091954
+2016-08-24 17:27:14,683 DEBUG: 			View 1 : 0.626436781609
+2016-08-24 17:27:14,722 DEBUG: 			View 2 : 0.580459770115
+2016-08-24 17:27:14,730 DEBUG: 			View 3 : 0.408045977011
+2016-08-24 17:27:14,859 DEBUG: 			 Best view : 		Methyl
+2016-08-24 17:27:16,745 DEBUG: 		Start:	 Iteration 28
+2016-08-24 17:27:16,764 DEBUG: 			View 0 : 0.442528735632
+2016-08-24 17:27:16,773 DEBUG: 			View 1 : 0.494252873563
+2016-08-24 17:27:16,813 DEBUG: 			View 2 : 0.666666666667
+2016-08-24 17:27:16,822 DEBUG: 			View 3 : 0.534482758621
+2016-08-24 17:27:16,954 DEBUG: 			 Best view : 		RANSeq
+2016-08-24 17:27:18,894 DEBUG: 		Start:	 Iteration 29
+2016-08-24 17:27:18,912 DEBUG: 			View 0 : 0.465517241379
+2016-08-24 17:27:18,921 DEBUG: 			View 1 : 0.408045977011
+2016-08-24 17:27:18,961 DEBUG: 			View 2 : 0.586206896552
+2016-08-24 17:27:18,969 DEBUG: 			View 3 : 0.48275862069
+2016-08-24 17:27:19,109 DEBUG: 			 Best view : 		RANSeq
+2016-08-24 17:27:21,141 DEBUG: 		Start:	 Iteration 30
+2016-08-24 17:27:21,162 DEBUG: 			View 0 : 0.770114942529
+2016-08-24 17:27:21,172 DEBUG: 			View 1 : 0.522988505747
+2016-08-24 17:27:21,212 DEBUG: 			View 2 : 0.442528735632
+2016-08-24 17:27:21,221 DEBUG: 			View 3 : 0.67816091954
+2016-08-24 17:27:21,365 DEBUG: 			 Best view : 		Methyl
+2016-08-24 17:27:23,483 DEBUG: 		Start:	 Iteration 31
+2016-08-24 17:27:23,502 DEBUG: 			View 0 : 0.540229885057
+2016-08-24 17:27:23,512 DEBUG: 			View 1 : 0.522988505747
+2016-08-24 17:27:23,552 DEBUG: 			View 2 : 0.425287356322
+2016-08-24 17:27:23,561 DEBUG: 			View 3 : 0.5
+2016-08-24 17:27:23,700 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:27:25,832 DEBUG: 		Start:	 Iteration 32
+2016-08-24 17:27:25,851 DEBUG: 			View 0 : 0.33908045977
+2016-08-24 17:27:25,859 DEBUG: 			View 1 : 0.695402298851
+2016-08-24 17:27:25,899 DEBUG: 			View 2 : 0.540229885057
+2016-08-24 17:27:25,907 DEBUG: 			View 3 : 0.557471264368
+2016-08-24 17:27:26,056 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:27:28,321 DEBUG: 		Start:	 Iteration 33
+2016-08-24 17:27:28,339 DEBUG: 			View 0 : 0.390804597701
+2016-08-24 17:27:28,348 DEBUG: 			View 1 : 0.333333333333
+2016-08-24 17:27:28,388 DEBUG: 			View 2 : 0.672413793103
+2016-08-24 17:27:28,397 DEBUG: 			View 3 : 0.35632183908
+2016-08-24 17:27:28,544 DEBUG: 			 Best view : 		RANSeq
+2016-08-24 17:27:30,848 DEBUG: 		Start:	 Iteration 34
+2016-08-24 17:27:30,867 DEBUG: 			View 0 : 0.350574712644
+2016-08-24 17:27:30,876 DEBUG: 			View 1 : 0.545977011494
+2016-08-24 17:27:30,915 DEBUG: 			View 2 : 0.689655172414
+2016-08-24 17:27:30,924 DEBUG: 			View 3 : 0.614942528736
+2016-08-24 17:27:31,075 DEBUG: 			 Best view : 		RANSeq
+2016-08-24 17:27:33,490 DEBUG: 		Start:	 Iteration 35
+2016-08-24 17:27:33,509 DEBUG: 			View 0 : 0.597701149425
+2016-08-24 17:27:33,518 DEBUG: 			View 1 : 0.390804597701
+2016-08-24 17:27:33,559 DEBUG: 			View 2 : 0.413793103448
+2016-08-24 17:27:33,568 DEBUG: 			View 3 : 0.689655172414
+2016-08-24 17:27:33,727 DEBUG: 			 Best view : 		Clinic
+2016-08-24 17:27:36,221 DEBUG: 		Start:	 Iteration 36
+2016-08-24 17:27:36,240 DEBUG: 			View 0 : 0.67816091954
+2016-08-24 17:27:36,250 DEBUG: 			View 1 : 0.270114942529
+2016-08-24 17:27:36,290 DEBUG: 			View 2 : 0.408045977011
+2016-08-24 17:27:36,299 DEBUG: 			View 3 : 0.580459770115
+2016-08-24 17:27:36,460 DEBUG: 			 Best view : 		Methyl
+2016-08-24 17:27:39,010 DEBUG: 		Start:	 Iteration 37
+2016-08-24 17:27:39,029 DEBUG: 			View 0 : 0.390804597701
+2016-08-24 17:27:39,038 DEBUG: 			View 1 : 0.666666666667
+2016-08-24 17:27:39,077 DEBUG: 			View 2 : 0.385057471264
+2016-08-24 17:27:39,086 DEBUG: 			View 3 : 0.511494252874
+2016-08-24 17:27:39,243 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:27:41,886 DEBUG: 		Start:	 Iteration 38
+2016-08-24 17:27:41,904 DEBUG: 			View 0 : 0.683908045977
+2016-08-24 17:27:41,914 DEBUG: 			View 1 : 0.67816091954
+2016-08-24 17:27:41,956 DEBUG: 			View 2 : 0.304597701149
+2016-08-24 17:27:41,965 DEBUG: 			View 3 : 0.557471264368
+2016-08-24 17:27:42,128 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:27:44,780 DEBUG: 		Start:	 Iteration 39
+2016-08-24 17:27:44,800 DEBUG: 			View 0 : 0.488505747126
+2016-08-24 17:27:44,809 DEBUG: 			View 1 : 0.551724137931
+2016-08-24 17:27:44,849 DEBUG: 			View 2 : 0.563218390805
+2016-08-24 17:27:44,858 DEBUG: 			View 3 : 0.408045977011
+2016-08-24 17:27:45,028 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:27:47,765 DEBUG: 		Start:	 Iteration 40
+2016-08-24 17:27:47,783 DEBUG: 			View 0 : 0.534482758621
+2016-08-24 17:27:47,792 DEBUG: 			View 1 : 0.729885057471
+2016-08-24 17:27:47,832 DEBUG: 			View 2 : 0.540229885057
+2016-08-24 17:27:47,840 DEBUG: 			View 3 : 0.540229885057
+2016-08-24 17:27:48,005 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:27:50,795 DEBUG: 		Start:	 Iteration 41
+2016-08-24 17:27:50,813 DEBUG: 			View 0 : 0.551724137931
+2016-08-24 17:27:50,822 DEBUG: 			View 1 : 0.465517241379
+2016-08-24 17:27:50,862 DEBUG: 			View 2 : 0.695402298851
+2016-08-24 17:27:50,870 DEBUG: 			View 3 : 0.511494252874
+2016-08-24 17:27:51,044 DEBUG: 			 Best view : 		RANSeq
+2016-08-24 17:27:53,933 DEBUG: 		Start:	 Iteration 42
+2016-08-24 17:27:53,952 DEBUG: 			View 0 : 0.419540229885
+2016-08-24 17:27:53,961 DEBUG: 			View 1 : 0.287356321839
+2016-08-24 17:27:54,000 DEBUG: 			View 2 : 0.557471264368
+2016-08-24 17:27:54,008 DEBUG: 			View 3 : 0.51724137931
+2016-08-24 17:27:54,180 DEBUG: 			 Best view : 		RANSeq
+2016-08-24 17:27:57,122 DEBUG: 		Start:	 Iteration 43
+2016-08-24 17:27:57,140 DEBUG: 			View 0 : 0.494252873563
+2016-08-24 17:27:57,149 DEBUG: 			View 1 : 0.689655172414
+2016-08-24 17:27:57,189 DEBUG: 			View 2 : 0.672413793103
+2016-08-24 17:27:57,197 DEBUG: 			View 3 : 0.586206896552
+2016-08-24 17:27:57,372 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:28:00,355 DEBUG: 		Start:	 Iteration 44
+2016-08-24 17:28:00,373 DEBUG: 			View 0 : 0.316091954023
+2016-08-24 17:28:00,382 DEBUG: 			View 1 : 0.66091954023
+2016-08-24 17:28:00,422 DEBUG: 			View 2 : 0.632183908046
+2016-08-24 17:28:00,431 DEBUG: 			View 3 : 0.522988505747
+2016-08-24 17:28:00,608 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:28:03,684 DEBUG: 		Start:	 Iteration 45
+2016-08-24 17:28:03,702 DEBUG: 			View 0 : 0.362068965517
+2016-08-24 17:28:03,711 DEBUG: 			View 1 : 0.649425287356
+2016-08-24 17:28:03,751 DEBUG: 			View 2 : 0.293103448276
+2016-08-24 17:28:03,760 DEBUG: 			View 3 : 0.454022988506
+2016-08-24 17:28:03,939 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:28:07,014 DEBUG: 		Start:	 Iteration 46
+2016-08-24 17:28:07,032 DEBUG: 			View 0 : 0.465517241379
+2016-08-24 17:28:07,041 DEBUG: 			View 1 : 0.385057471264
+2016-08-24 17:28:07,081 DEBUG: 			View 2 : 0.626436781609
+2016-08-24 17:28:07,089 DEBUG: 			View 3 : 0.67816091954
+2016-08-24 17:28:07,271 DEBUG: 			 Best view : 		Clinic
+2016-08-24 17:28:10,416 DEBUG: 		Start:	 Iteration 47
+2016-08-24 17:28:10,435 DEBUG: 			View 0 : 0.488505747126
+2016-08-24 17:28:10,444 DEBUG: 			View 1 : 0.557471264368
+2016-08-24 17:28:10,483 DEBUG: 			View 2 : 0.586206896552
+2016-08-24 17:28:10,491 DEBUG: 			View 3 : 0.390804597701
+2016-08-24 17:28:10,675 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:28:13,877 DEBUG: 		Start:	 Iteration 48
+2016-08-24 17:28:13,896 DEBUG: 			View 0 : 0.551724137931
+2016-08-24 17:28:13,905 DEBUG: 			View 1 : 0.66091954023
+2016-08-24 17:28:13,944 DEBUG: 			View 2 : 0.689655172414
+2016-08-24 17:28:13,952 DEBUG: 			View 3 : 0.413793103448
+2016-08-24 17:28:14,140 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:28:17,471 DEBUG: 		Start:	 Iteration 49
+2016-08-24 17:28:17,489 DEBUG: 			View 0 : 0.5
+2016-08-24 17:28:17,498 DEBUG: 			View 1 : 0.701149425287
+2016-08-24 17:28:17,537 DEBUG: 			View 2 : 0.379310344828
+2016-08-24 17:28:17,546 DEBUG: 			View 3 : 0.367816091954
+2016-08-24 17:28:17,737 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:28:21,092 DEBUG: 		Start:	 Iteration 50
+2016-08-24 17:28:21,111 DEBUG: 			View 0 : 0.454022988506
+2016-08-24 17:28:21,120 DEBUG: 			View 1 : 0.706896551724
+2016-08-24 17:28:21,159 DEBUG: 			View 2 : 0.5
+2016-08-24 17:28:21,168 DEBUG: 			View 3 : 0.586206896552
+2016-08-24 17:28:21,365 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:28:24,779 DEBUG: 		Start:	 Iteration 51
+2016-08-24 17:28:24,798 DEBUG: 			View 0 : 0.51724137931
+2016-08-24 17:28:24,808 DEBUG: 			View 1 : 0.724137931034
+2016-08-24 17:28:24,848 DEBUG: 			View 2 : 0.706896551724
+2016-08-24 17:28:24,857 DEBUG: 			View 3 : 0.712643678161
+2016-08-24 17:28:25,055 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:28:28,594 DEBUG: 		Start:	 Iteration 52
+2016-08-24 17:28:28,613 DEBUG: 			View 0 : 0.563218390805
+2016-08-24 17:28:28,622 DEBUG: 			View 1 : 0.373563218391
+2016-08-24 17:28:28,661 DEBUG: 			View 2 : 0.568965517241
+2016-08-24 17:28:28,670 DEBUG: 			View 3 : 0.413793103448
+2016-08-24 17:28:28,872 DEBUG: 			 Best view : 		RANSeq
+2016-08-24 17:28:32,461 DEBUG: 		Start:	 Iteration 53
+2016-08-24 17:28:32,479 DEBUG: 			View 0 : 0.741379310345
+2016-08-24 17:28:32,488 DEBUG: 			View 1 : 0.327586206897
+2016-08-24 17:28:32,527 DEBUG: 			View 2 : 0.557471264368
+2016-08-24 17:28:32,536 DEBUG: 			View 3 : 0.436781609195
+2016-08-24 17:28:32,740 DEBUG: 			 Best view : 		Methyl
+2016-08-24 17:28:36,368 DEBUG: 		Start:	 Iteration 54
+2016-08-24 17:28:36,386 DEBUG: 			View 0 : 0.459770114943
+2016-08-24 17:28:36,395 DEBUG: 			View 1 : 0.373563218391
+2016-08-24 17:28:36,435 DEBUG: 			View 2 : 0.488505747126
+2016-08-24 17:28:36,444 DEBUG: 			View 3 : 0.586206896552
+2016-08-24 17:28:36,646 DEBUG: 			 Best view : 		Clinic
+2016-08-24 17:28:40,331 DEBUG: 		Start:	 Iteration 55
+2016-08-24 17:28:40,349 DEBUG: 			View 0 : 0.522988505747
+2016-08-24 17:28:40,358 DEBUG: 			View 1 : 0.287356321839
+2016-08-24 17:28:40,397 DEBUG: 			View 2 : 0.48275862069
+2016-08-24 17:28:40,406 DEBUG: 			View 3 : 0.304597701149
+2016-08-24 17:28:40,613 DEBUG: 			 Best view : 		Methyl
+2016-08-24 17:28:44,382 DEBUG: 		Start:	 Iteration 56
+2016-08-24 17:28:44,401 DEBUG: 			View 0 : 0.362068965517
+2016-08-24 17:28:44,410 DEBUG: 			View 1 : 0.747126436782
+2016-08-24 17:28:44,450 DEBUG: 			View 2 : 0.534482758621
+2016-08-24 17:28:44,459 DEBUG: 			View 3 : 0.540229885057
+2016-08-24 17:28:44,672 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:28:48,498 DEBUG: 		Start:	 Iteration 57
+2016-08-24 17:28:48,517 DEBUG: 			View 0 : 0.695402298851
+2016-08-24 17:28:48,526 DEBUG: 			View 1 : 0.672413793103
+2016-08-24 17:28:48,564 DEBUG: 			View 2 : 0.362068965517
+2016-08-24 17:28:48,573 DEBUG: 			View 3 : 0.390804597701
+2016-08-24 17:28:48,787 DEBUG: 			 Best view : 		Methyl
+2016-08-24 17:28:52,684 DEBUG: 		Start:	 Iteration 58
+2016-08-24 17:28:52,702 DEBUG: 			View 0 : 0.293103448276
+2016-08-24 17:28:52,711 DEBUG: 			View 1 : 0.649425287356
+2016-08-24 17:28:52,750 DEBUG: 			View 2 : 0.390804597701
+2016-08-24 17:28:52,759 DEBUG: 			View 3 : 0.367816091954
+2016-08-24 17:28:52,975 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:28:56,925 DEBUG: 		Start:	 Iteration 59
+2016-08-24 17:28:56,943 DEBUG: 			View 0 : 0.471264367816
+2016-08-24 17:28:56,952 DEBUG: 			View 1 : 0.5
+2016-08-24 17:28:56,992 DEBUG: 			View 2 : 0.51724137931
+2016-08-24 17:28:57,000 DEBUG: 			View 3 : 0.350574712644
+2016-08-24 17:28:57,219 DEBUG: 			 Best view : 		RANSeq
+2016-08-24 17:29:01,240 DEBUG: 		Start:	 Iteration 60
+2016-08-24 17:29:01,258 DEBUG: 			View 0 : 0.494252873563
+2016-08-24 17:29:01,267 DEBUG: 			View 1 : 0.402298850575
+2016-08-24 17:29:01,306 DEBUG: 			View 2 : 0.471264367816
+2016-08-24 17:29:01,315 DEBUG: 			View 3 : 0.614942528736
+2016-08-24 17:29:01,537 DEBUG: 			 Best view : 		Clinic
+2016-08-24 17:29:05,631 DEBUG: 		Start:	 Iteration 61
+2016-08-24 17:29:05,649 DEBUG: 			View 0 : 0.632183908046
+2016-08-24 17:29:05,658 DEBUG: 			View 1 : 0.580459770115
+2016-08-24 17:29:05,697 DEBUG: 			View 2 : 0.419540229885
+2016-08-24 17:29:05,705 DEBUG: 			View 3 : 0.591954022989
+2016-08-24 17:29:05,931 DEBUG: 			 Best view : 		Methyl
+2016-08-24 17:29:10,109 DEBUG: 		Start:	 Iteration 62
+2016-08-24 17:29:10,128 DEBUG: 			View 0 : 0.333333333333
+2016-08-24 17:29:10,137 DEBUG: 			View 1 : 0.591954022989
+2016-08-24 17:29:10,177 DEBUG: 			View 2 : 0.586206896552
+2016-08-24 17:29:10,186 DEBUG: 			View 3 : 0.706896551724
+2016-08-24 17:29:10,415 DEBUG: 			 Best view : 		Clinic
+2016-08-24 17:29:14,649 DEBUG: 		Start:	 Iteration 63
+2016-08-24 17:29:14,667 DEBUG: 			View 0 : 0.419540229885
+2016-08-24 17:29:14,677 DEBUG: 			View 1 : 0.287356321839
+2016-08-24 17:29:14,716 DEBUG: 			View 2 : 0.67816091954
+2016-08-24 17:29:14,726 DEBUG: 			View 3 : 0.586206896552
+2016-08-24 17:29:14,957 DEBUG: 			 Best view : 		RANSeq
+2016-08-24 17:29:19,251 DEBUG: 		Start:	 Iteration 64
+2016-08-24 17:29:19,270 DEBUG: 			View 0 : 0.408045977011
+2016-08-24 17:29:19,279 DEBUG: 			View 1 : 0.67816091954
+2016-08-24 17:29:19,318 DEBUG: 			View 2 : 0.505747126437
+2016-08-24 17:29:19,327 DEBUG: 			View 3 : 0.551724137931
+2016-08-24 17:29:19,560 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:29:23,920 DEBUG: 		Start:	 Iteration 65
+2016-08-24 17:29:23,939 DEBUG: 			View 0 : 0.505747126437
+2016-08-24 17:29:23,948 DEBUG: 			View 1 : 0.557471264368
+2016-08-24 17:29:23,986 DEBUG: 			View 2 : 0.545977011494
+2016-08-24 17:29:23,995 DEBUG: 			View 3 : 0.477011494253
+2016-08-24 17:29:24,230 DEBUG: 			 Best view : 		RANSeq
+2016-08-24 17:29:28,683 DEBUG: 		Start:	 Iteration 66
+2016-08-24 17:29:28,702 DEBUG: 			View 0 : 0.534482758621
+2016-08-24 17:29:28,711 DEBUG: 			View 1 : 0.626436781609
+2016-08-24 17:29:28,750 DEBUG: 			View 2 : 0.454022988506
+2016-08-24 17:29:28,759 DEBUG: 			View 3 : 0.316091954023
+2016-08-24 17:29:29,004 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:29:33,525 DEBUG: 		Start:	 Iteration 67
+2016-08-24 17:29:33,543 DEBUG: 			View 0 : 0.683908045977
+2016-08-24 17:29:33,552 DEBUG: 			View 1 : 0.32183908046
+2016-08-24 17:29:33,592 DEBUG: 			View 2 : 0.563218390805
+2016-08-24 17:29:33,601 DEBUG: 			View 3 : 0.344827586207
+2016-08-24 17:29:33,845 DEBUG: 			 Best view : 		Methyl
+2016-08-24 17:29:38,422 DEBUG: 		Start:	 Iteration 68
+2016-08-24 17:29:38,440 DEBUG: 			View 0 : 0.442528735632
+2016-08-24 17:29:38,449 DEBUG: 			View 1 : 0.419540229885
+2016-08-24 17:29:38,488 DEBUG: 			View 2 : 0.528735632184
+2016-08-24 17:29:38,497 DEBUG: 			View 3 : 0.67816091954
+2016-08-24 17:29:38,740 DEBUG: 			 Best view : 		Clinic
+2016-08-24 17:29:43,435 DEBUG: 		Start:	 Iteration 69
+2016-08-24 17:29:43,453 DEBUG: 			View 0 : 0.459770114943
+2016-08-24 17:29:43,462 DEBUG: 			View 1 : 0.67816091954
+2016-08-24 17:29:43,501 DEBUG: 			View 2 : 0.574712643678
+2016-08-24 17:29:43,510 DEBUG: 			View 3 : 0.655172413793
+2016-08-24 17:29:43,759 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:29:48,463 DEBUG: 		Start:	 Iteration 70
+2016-08-24 17:29:48,481 DEBUG: 			View 0 : 0.333333333333
+2016-08-24 17:29:48,490 DEBUG: 			View 1 : 0.66091954023
+2016-08-24 17:29:48,529 DEBUG: 			View 2 : 0.545977011494
+2016-08-24 17:29:48,538 DEBUG: 			View 3 : 0.568965517241
+2016-08-24 17:29:48,789 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:29:53,582 DEBUG: 		Start:	 Iteration 71
+2016-08-24 17:29:53,601 DEBUG: 			View 0 : 0.436781609195
+2016-08-24 17:29:53,610 DEBUG: 			View 1 : 0.603448275862
+2016-08-24 17:29:53,649 DEBUG: 			View 2 : 0.448275862069
+2016-08-24 17:29:53,658 DEBUG: 			View 3 : 0.66091954023
+2016-08-24 17:29:53,910 DEBUG: 			 Best view : 		Clinic
+2016-08-24 17:29:58,731 DEBUG: 		Start:	 Iteration 72
+2016-08-24 17:29:58,750 DEBUG: 			View 0 : 0.327586206897
+2016-08-24 17:29:58,759 DEBUG: 			View 1 : 0.706896551724
+2016-08-24 17:29:58,797 DEBUG: 			View 2 : 0.620689655172
+2016-08-24 17:29:58,806 DEBUG: 			View 3 : 0.568965517241
+2016-08-24 17:29:59,062 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:30:03,975 DEBUG: 		Start:	 Iteration 73
+2016-08-24 17:30:03,993 DEBUG: 			View 0 : 0.494252873563
+2016-08-24 17:30:04,002 DEBUG: 			View 1 : 0.5
+2016-08-24 17:30:04,041 DEBUG: 			View 2 : 0.310344827586
+2016-08-24 17:30:04,050 DEBUG: 			View 3 : 0.477011494253
+2016-08-24 17:30:04,310 DEBUG: 			 Best view : 		MiRNA_
diff --git a/Code/Versions.py b/Code/MonoMutliViewClassifiers/Versions.py
similarity index 100%
rename from Code/Versions.py
rename to Code/MonoMutliViewClassifiers/Versions.py
diff --git a/Code/MonoMutliViewClassifiers/__init__.py b/Code/MonoMutliViewClassifiers/__init__.py
new file mode 100644
index 00000000..e69de29b
diff --git a/Code/Multiview/Fusion/Methods/MonoviewClassifiers/DecisionTree.py b/Code/Multiview/Fusion/Methods/MonoviewClassifiers/DecisionTree.py
deleted file mode 100644
index ce91729f..00000000
--- a/Code/Multiview/Fusion/Methods/MonoviewClassifiers/DecisionTree.py
+++ /dev/null
@@ -1,11 +0,0 @@
-from sklearn.tree import DecisionTreeClassifier
-
-
-def fit(DATASET, CLASS_LABELS, NB_CORES=1,**kwargs):
-    maxDepth = int(kwargs['0'])
-    classifier = DecisionTreeClassifier(max_depth=maxDepth)
-    classifier.fit(DATASET, CLASS_LABELS)
-    return classifier
-
-def getConfig(config):
-    return "\n\t\t- Decision Tree with max_depth : "+config[0]
\ No newline at end of file
diff --git a/Code/Multiview/Fusion/Methods/MonoviewClassifiers/KNN.py b/Code/Multiview/Fusion/Methods/MonoviewClassifiers/KNN.py
deleted file mode 100644
index d8a59153..00000000
--- a/Code/Multiview/Fusion/Methods/MonoviewClassifiers/KNN.py
+++ /dev/null
@@ -1,11 +0,0 @@
-from sklearn.neighbors import KNeighborsClassifier
-
-
-def fit(DATASET, CLASS_LABELS, NB_CORES=1,**kwargs):
-    nNeighbors = int(kwargs['0'])
-    classifier = KNeighborsClassifier(n_neighbors=nNeighbors)
-    classifier.fit(DATASET, CLASS_LABELS)
-    return classifier
-
-def getConfig(config):
-    return "\n\t\t- K nearest Neighbors with  n_neighbors: "+config[0]
\ No newline at end of file
diff --git a/Code/Multiview/Fusion/Methods/MonoviewClassifiers/RandomForest.py b/Code/Multiview/Fusion/Methods/MonoviewClassifiers/RandomForest.py
deleted file mode 100644
index 7ba9b066..00000000
--- a/Code/Multiview/Fusion/Methods/MonoviewClassifiers/RandomForest.py
+++ /dev/null
@@ -1,12 +0,0 @@
-from sklearn.ensemble import RandomForestClassifier
-
-
-def fit(DATASET, CLASS_LABELS, NB_CORES=1,**kwargs):
-    num_estimators = int(kwargs['0'])
-    maxDepth = int(kwargs['1'])
-    classifier = RandomForestClassifier(n_estimators=num_estimators, max_depth=maxDepth, n_jobs=NB_CORES)
-    classifier.fit(DATASET, CLASS_LABELS)
-    return classifier
-
-def getConfig(config):
-    return "\n\t\t- Random Forest with num_esimators : "+config[0]+", max_depth : "+config[1]
\ No newline at end of file
diff --git a/Code/Multiview/Fusion/Methods/MonoviewClassifiers/SGD.py b/Code/Multiview/Fusion/Methods/MonoviewClassifiers/SGD.py
deleted file mode 100644
index 072a7a32..00000000
--- a/Code/Multiview/Fusion/Methods/MonoviewClassifiers/SGD.py
+++ /dev/null
@@ -1,16 +0,0 @@
-from sklearn.linear_model import SGDClassifier
-
-
-def fit(DATASET, CLASS_LABELS, NB_CORES=1,**kwargs):
-    loss = kwargs['0']
-    penalty = kwargs['1']
-    try:
-        alpha = int(kwargs['2'])
-    except:
-        alpha = 0.15
-    classifier = SGDClassifier(loss=loss, penalty=penalty, alpha=alpha)
-    classifier.fit(DATASET, CLASS_LABELS)
-    return classifier
-
-def getConfig(config):
-    return "\n\t\t- SGDClassifier with loss : "+config[0]+", penalty : "+config[1]
\ No newline at end of file
diff --git a/Code/Multiview/Fusion/Methods/MonoviewClassifiers/SVC.py b/Code/Multiview/Fusion/Methods/MonoviewClassifiers/SVC.py
deleted file mode 100644
index 34c4679d..00000000
--- a/Code/Multiview/Fusion/Methods/MonoviewClassifiers/SVC.py
+++ /dev/null
@@ -1,13 +0,0 @@
-from sklearn.svm import SVC
-
-
-def fit(DATASET, CLASS_LABELS, NB_CORES=1,**kwargs):
-    C = int(kwargs['0'])
-    kernel = kwargs['1']
-    classifier = SVC(C=C, kernel=kernel, probability=True)
-    classifier.fit(DATASET, CLASS_LABELS)
-    return classifier
-
-
-def getConfig(config):
-    return "\n\t\t- SVM with C : "+config[0]+", kernel : "+config[1]
\ No newline at end of file
diff --git a/Code/__init__.py b/Code/__init__.py
index b07b92a4..7ccf8824 100644
--- a/Code/__init__.py
+++ b/Code/__init__.py
@@ -1 +1,2 @@
-__all__ = ['FeatExtraction', 'Monoview', 'Multiview']
\ No newline at end of file
+__all__ = ['FeatExtraction', 'Monoview', 'Multiview', 'MonoviewClassifiers']
+from . import FeatExtraction, Monoview, Multiview, MonoviewClassifiers
\ No newline at end of file
-- 
GitLab